1 // SPDX-License-Identifier: (GPL-2.0-only OR BSD-2-Clause) 2 /* Copyright (C) 2017-2018 Netronome Systems, Inc. */ 3 4 #include <linux/skbuff.h> 5 #include <net/devlink.h> 6 #include <net/pkt_cls.h> 7 8 #include "cmsg.h" 9 #include "main.h" 10 #include "../nfpcore/nfp_cpp.h" 11 #include "../nfpcore/nfp_nsp.h" 12 #include "../nfp_app.h" 13 #include "../nfp_main.h" 14 #include "../nfp_net.h" 15 #include "../nfp_port.h" 16 17 #define NFP_FLOWER_SUPPORTED_TCPFLAGS \ 18 (TCPHDR_FIN | TCPHDR_SYN | TCPHDR_RST | \ 19 TCPHDR_PSH | TCPHDR_URG) 20 21 #define NFP_FLOWER_SUPPORTED_CTLFLAGS \ 22 (FLOW_DIS_IS_FRAGMENT | \ 23 FLOW_DIS_FIRST_FRAG) 24 25 #define NFP_FLOWER_WHITELIST_DISSECTOR \ 26 (BIT(FLOW_DISSECTOR_KEY_CONTROL) | \ 27 BIT(FLOW_DISSECTOR_KEY_BASIC) | \ 28 BIT(FLOW_DISSECTOR_KEY_IPV4_ADDRS) | \ 29 BIT(FLOW_DISSECTOR_KEY_IPV6_ADDRS) | \ 30 BIT(FLOW_DISSECTOR_KEY_TCP) | \ 31 BIT(FLOW_DISSECTOR_KEY_PORTS) | \ 32 BIT(FLOW_DISSECTOR_KEY_ETH_ADDRS) | \ 33 BIT(FLOW_DISSECTOR_KEY_VLAN) | \ 34 BIT(FLOW_DISSECTOR_KEY_ENC_KEYID) | \ 35 BIT(FLOW_DISSECTOR_KEY_ENC_IPV4_ADDRS) | \ 36 BIT(FLOW_DISSECTOR_KEY_ENC_IPV6_ADDRS) | \ 37 BIT(FLOW_DISSECTOR_KEY_ENC_CONTROL) | \ 38 BIT(FLOW_DISSECTOR_KEY_ENC_PORTS) | \ 39 BIT(FLOW_DISSECTOR_KEY_ENC_OPTS) | \ 40 BIT(FLOW_DISSECTOR_KEY_ENC_IP) | \ 41 BIT(FLOW_DISSECTOR_KEY_MPLS) | \ 42 BIT(FLOW_DISSECTOR_KEY_IP)) 43 44 #define NFP_FLOWER_WHITELIST_TUN_DISSECTOR \ 45 (BIT(FLOW_DISSECTOR_KEY_ENC_CONTROL) | \ 46 BIT(FLOW_DISSECTOR_KEY_ENC_KEYID) | \ 47 BIT(FLOW_DISSECTOR_KEY_ENC_IPV4_ADDRS) | \ 48 BIT(FLOW_DISSECTOR_KEY_ENC_IPV6_ADDRS) | \ 49 BIT(FLOW_DISSECTOR_KEY_ENC_OPTS) | \ 50 BIT(FLOW_DISSECTOR_KEY_ENC_PORTS) | \ 51 BIT(FLOW_DISSECTOR_KEY_ENC_IP)) 52 53 #define NFP_FLOWER_WHITELIST_TUN_DISSECTOR_R \ 54 (BIT(FLOW_DISSECTOR_KEY_ENC_CONTROL) | \ 55 BIT(FLOW_DISSECTOR_KEY_ENC_IPV4_ADDRS)) 56 57 #define NFP_FLOWER_WHITELIST_TUN_DISSECTOR_V6_R \ 58 (BIT(FLOW_DISSECTOR_KEY_ENC_CONTROL) | \ 59 BIT(FLOW_DISSECTOR_KEY_ENC_IPV6_ADDRS)) 60 61 #define NFP_FLOWER_MERGE_FIELDS \ 62 (NFP_FLOWER_LAYER_PORT | \ 63 NFP_FLOWER_LAYER_MAC | \ 64 NFP_FLOWER_LAYER_TP | \ 65 NFP_FLOWER_LAYER_IPV4 | \ 66 NFP_FLOWER_LAYER_IPV6) 67 68 #define NFP_FLOWER_PRE_TUN_RULE_FIELDS \ 69 (NFP_FLOWER_LAYER_PORT | \ 70 NFP_FLOWER_LAYER_MAC | \ 71 NFP_FLOWER_LAYER_IPV4 | \ 72 NFP_FLOWER_LAYER_IPV6) 73 74 struct nfp_flower_merge_check { 75 union { 76 struct { 77 __be16 tci; 78 struct nfp_flower_mac_mpls l2; 79 struct nfp_flower_tp_ports l4; 80 union { 81 struct nfp_flower_ipv4 ipv4; 82 struct nfp_flower_ipv6 ipv6; 83 }; 84 }; 85 unsigned long vals[8]; 86 }; 87 }; 88 89 static int 90 nfp_flower_xmit_flow(struct nfp_app *app, struct nfp_fl_payload *nfp_flow, 91 u8 mtype) 92 { 93 u32 meta_len, key_len, mask_len, act_len, tot_len; 94 struct sk_buff *skb; 95 unsigned char *msg; 96 97 meta_len = sizeof(struct nfp_fl_rule_metadata); 98 key_len = nfp_flow->meta.key_len; 99 mask_len = nfp_flow->meta.mask_len; 100 act_len = nfp_flow->meta.act_len; 101 102 tot_len = meta_len + key_len + mask_len + act_len; 103 104 /* Convert to long words as firmware expects 105 * lengths in units of NFP_FL_LW_SIZ. 106 */ 107 nfp_flow->meta.key_len >>= NFP_FL_LW_SIZ; 108 nfp_flow->meta.mask_len >>= NFP_FL_LW_SIZ; 109 nfp_flow->meta.act_len >>= NFP_FL_LW_SIZ; 110 111 skb = nfp_flower_cmsg_alloc(app, tot_len, mtype, GFP_KERNEL); 112 if (!skb) 113 return -ENOMEM; 114 115 msg = nfp_flower_cmsg_get_data(skb); 116 memcpy(msg, &nfp_flow->meta, meta_len); 117 memcpy(&msg[meta_len], nfp_flow->unmasked_data, key_len); 118 memcpy(&msg[meta_len + key_len], nfp_flow->mask_data, mask_len); 119 memcpy(&msg[meta_len + key_len + mask_len], 120 nfp_flow->action_data, act_len); 121 122 /* Convert back to bytes as software expects 123 * lengths in units of bytes. 124 */ 125 nfp_flow->meta.key_len <<= NFP_FL_LW_SIZ; 126 nfp_flow->meta.mask_len <<= NFP_FL_LW_SIZ; 127 nfp_flow->meta.act_len <<= NFP_FL_LW_SIZ; 128 129 nfp_ctrl_tx(app->ctrl, skb); 130 131 return 0; 132 } 133 134 static bool nfp_flower_check_higher_than_mac(struct flow_cls_offload *f) 135 { 136 struct flow_rule *rule = flow_cls_offload_flow_rule(f); 137 138 return flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_IPV4_ADDRS) || 139 flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_IPV6_ADDRS) || 140 flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_PORTS) || 141 flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ICMP); 142 } 143 144 static bool nfp_flower_check_higher_than_l3(struct flow_cls_offload *f) 145 { 146 struct flow_rule *rule = flow_cls_offload_flow_rule(f); 147 148 return flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_PORTS) || 149 flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ICMP); 150 } 151 152 static int 153 nfp_flower_calc_opt_layer(struct flow_dissector_key_enc_opts *enc_opts, 154 u32 *key_layer_two, int *key_size, bool ipv6, 155 struct netlink_ext_ack *extack) 156 { 157 if (enc_opts->len > NFP_FL_MAX_GENEVE_OPT_KEY || 158 (ipv6 && enc_opts->len > NFP_FL_MAX_GENEVE_OPT_KEY_V6)) { 159 NL_SET_ERR_MSG_MOD(extack, "unsupported offload: geneve options exceed maximum length"); 160 return -EOPNOTSUPP; 161 } 162 163 if (enc_opts->len > 0) { 164 *key_layer_two |= NFP_FLOWER_LAYER2_GENEVE_OP; 165 *key_size += sizeof(struct nfp_flower_geneve_options); 166 } 167 168 return 0; 169 } 170 171 static int 172 nfp_flower_calc_udp_tun_layer(struct flow_dissector_key_ports *enc_ports, 173 struct flow_dissector_key_enc_opts *enc_op, 174 u32 *key_layer_two, u8 *key_layer, int *key_size, 175 struct nfp_flower_priv *priv, 176 enum nfp_flower_tun_type *tun_type, bool ipv6, 177 struct netlink_ext_ack *extack) 178 { 179 int err; 180 181 switch (enc_ports->dst) { 182 case htons(IANA_VXLAN_UDP_PORT): 183 *tun_type = NFP_FL_TUNNEL_VXLAN; 184 *key_layer |= NFP_FLOWER_LAYER_VXLAN; 185 186 if (ipv6) { 187 *key_layer |= NFP_FLOWER_LAYER_EXT_META; 188 *key_size += sizeof(struct nfp_flower_ext_meta); 189 *key_layer_two |= NFP_FLOWER_LAYER2_TUN_IPV6; 190 *key_size += sizeof(struct nfp_flower_ipv6_udp_tun); 191 } else { 192 *key_size += sizeof(struct nfp_flower_ipv4_udp_tun); 193 } 194 195 if (enc_op) { 196 NL_SET_ERR_MSG_MOD(extack, "unsupported offload: encap options not supported on vxlan tunnels"); 197 return -EOPNOTSUPP; 198 } 199 break; 200 case htons(GENEVE_UDP_PORT): 201 if (!(priv->flower_ext_feats & NFP_FL_FEATS_GENEVE)) { 202 NL_SET_ERR_MSG_MOD(extack, "unsupported offload: loaded firmware does not support geneve offload"); 203 return -EOPNOTSUPP; 204 } 205 *tun_type = NFP_FL_TUNNEL_GENEVE; 206 *key_layer |= NFP_FLOWER_LAYER_EXT_META; 207 *key_size += sizeof(struct nfp_flower_ext_meta); 208 *key_layer_two |= NFP_FLOWER_LAYER2_GENEVE; 209 210 if (ipv6) { 211 *key_layer_two |= NFP_FLOWER_LAYER2_TUN_IPV6; 212 *key_size += sizeof(struct nfp_flower_ipv6_udp_tun); 213 } else { 214 *key_size += sizeof(struct nfp_flower_ipv4_udp_tun); 215 } 216 217 if (!enc_op) 218 break; 219 if (!(priv->flower_ext_feats & NFP_FL_FEATS_GENEVE_OPT)) { 220 NL_SET_ERR_MSG_MOD(extack, "unsupported offload: loaded firmware does not support geneve option offload"); 221 return -EOPNOTSUPP; 222 } 223 err = nfp_flower_calc_opt_layer(enc_op, key_layer_two, key_size, 224 ipv6, extack); 225 if (err) 226 return err; 227 break; 228 default: 229 NL_SET_ERR_MSG_MOD(extack, "unsupported offload: tunnel type unknown"); 230 return -EOPNOTSUPP; 231 } 232 233 return 0; 234 } 235 236 static int 237 nfp_flower_calculate_key_layers(struct nfp_app *app, 238 struct net_device *netdev, 239 struct nfp_fl_key_ls *ret_key_ls, 240 struct flow_cls_offload *flow, 241 enum nfp_flower_tun_type *tun_type, 242 struct netlink_ext_ack *extack) 243 { 244 struct flow_rule *rule = flow_cls_offload_flow_rule(flow); 245 struct flow_dissector *dissector = rule->match.dissector; 246 struct flow_match_basic basic = { NULL, NULL}; 247 struct nfp_flower_priv *priv = app->priv; 248 u32 key_layer_two; 249 u8 key_layer; 250 int key_size; 251 int err; 252 253 if (dissector->used_keys & ~NFP_FLOWER_WHITELIST_DISSECTOR) { 254 NL_SET_ERR_MSG_MOD(extack, "unsupported offload: match not supported"); 255 return -EOPNOTSUPP; 256 } 257 258 /* If any tun dissector is used then the required set must be used. */ 259 if (dissector->used_keys & NFP_FLOWER_WHITELIST_TUN_DISSECTOR && 260 (dissector->used_keys & NFP_FLOWER_WHITELIST_TUN_DISSECTOR_V6_R) 261 != NFP_FLOWER_WHITELIST_TUN_DISSECTOR_V6_R && 262 (dissector->used_keys & NFP_FLOWER_WHITELIST_TUN_DISSECTOR_R) 263 != NFP_FLOWER_WHITELIST_TUN_DISSECTOR_R) { 264 NL_SET_ERR_MSG_MOD(extack, "unsupported offload: tunnel match not supported"); 265 return -EOPNOTSUPP; 266 } 267 268 key_layer_two = 0; 269 key_layer = NFP_FLOWER_LAYER_PORT; 270 key_size = sizeof(struct nfp_flower_meta_tci) + 271 sizeof(struct nfp_flower_in_port); 272 273 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ETH_ADDRS) || 274 flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_MPLS)) { 275 key_layer |= NFP_FLOWER_LAYER_MAC; 276 key_size += sizeof(struct nfp_flower_mac_mpls); 277 } 278 279 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_VLAN)) { 280 struct flow_match_vlan vlan; 281 282 flow_rule_match_vlan(rule, &vlan); 283 if (!(priv->flower_ext_feats & NFP_FL_FEATS_VLAN_PCP) && 284 vlan.key->vlan_priority) { 285 NL_SET_ERR_MSG_MOD(extack, "unsupported offload: loaded firmware does not support VLAN PCP offload"); 286 return -EOPNOTSUPP; 287 } 288 } 289 290 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ENC_CONTROL)) { 291 struct flow_match_enc_opts enc_op = { NULL, NULL }; 292 struct flow_match_ipv4_addrs ipv4_addrs; 293 struct flow_match_ipv6_addrs ipv6_addrs; 294 struct flow_match_control enc_ctl; 295 struct flow_match_ports enc_ports; 296 bool ipv6_tun = false; 297 298 flow_rule_match_enc_control(rule, &enc_ctl); 299 300 if (enc_ctl.mask->addr_type != 0xffff) { 301 NL_SET_ERR_MSG_MOD(extack, "unsupported offload: wildcarded protocols on tunnels are not supported"); 302 return -EOPNOTSUPP; 303 } 304 305 ipv6_tun = enc_ctl.key->addr_type == 306 FLOW_DISSECTOR_KEY_IPV6_ADDRS; 307 if (ipv6_tun && 308 !(priv->flower_ext_feats & NFP_FL_FEATS_IPV6_TUN)) { 309 NL_SET_ERR_MSG_MOD(extack, "unsupported offload: firmware does not support IPv6 tunnels"); 310 return -EOPNOTSUPP; 311 } 312 313 if (!ipv6_tun && 314 enc_ctl.key->addr_type != FLOW_DISSECTOR_KEY_IPV4_ADDRS) { 315 NL_SET_ERR_MSG_MOD(extack, "unsupported offload: tunnel address type not IPv4 or IPv6"); 316 return -EOPNOTSUPP; 317 } 318 319 if (ipv6_tun) { 320 flow_rule_match_enc_ipv6_addrs(rule, &ipv6_addrs); 321 if (memchr_inv(&ipv6_addrs.mask->dst, 0xff, 322 sizeof(ipv6_addrs.mask->dst))) { 323 NL_SET_ERR_MSG_MOD(extack, "unsupported offload: only an exact match IPv6 destination address is supported"); 324 return -EOPNOTSUPP; 325 } 326 } else { 327 flow_rule_match_enc_ipv4_addrs(rule, &ipv4_addrs); 328 if (ipv4_addrs.mask->dst != cpu_to_be32(~0)) { 329 NL_SET_ERR_MSG_MOD(extack, "unsupported offload: only an exact match IPv4 destination address is supported"); 330 return -EOPNOTSUPP; 331 } 332 } 333 334 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ENC_OPTS)) 335 flow_rule_match_enc_opts(rule, &enc_op); 336 337 if (!flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ENC_PORTS)) { 338 /* check if GRE, which has no enc_ports */ 339 if (!netif_is_gretap(netdev)) { 340 NL_SET_ERR_MSG_MOD(extack, "unsupported offload: an exact match on L4 destination port is required for non-GRE tunnels"); 341 return -EOPNOTSUPP; 342 } 343 344 *tun_type = NFP_FL_TUNNEL_GRE; 345 key_layer |= NFP_FLOWER_LAYER_EXT_META; 346 key_size += sizeof(struct nfp_flower_ext_meta); 347 key_layer_two |= NFP_FLOWER_LAYER2_GRE; 348 349 if (ipv6_tun) { 350 key_layer_two |= NFP_FLOWER_LAYER2_TUN_IPV6; 351 key_size += 352 sizeof(struct nfp_flower_ipv6_udp_tun); 353 } else { 354 key_size += 355 sizeof(struct nfp_flower_ipv4_udp_tun); 356 } 357 358 if (enc_op.key) { 359 NL_SET_ERR_MSG_MOD(extack, "unsupported offload: encap options not supported on GRE tunnels"); 360 return -EOPNOTSUPP; 361 } 362 } else { 363 flow_rule_match_enc_ports(rule, &enc_ports); 364 if (enc_ports.mask->dst != cpu_to_be16(~0)) { 365 NL_SET_ERR_MSG_MOD(extack, "unsupported offload: only an exact match L4 destination port is supported"); 366 return -EOPNOTSUPP; 367 } 368 369 err = nfp_flower_calc_udp_tun_layer(enc_ports.key, 370 enc_op.key, 371 &key_layer_two, 372 &key_layer, 373 &key_size, priv, 374 tun_type, ipv6_tun, 375 extack); 376 if (err) 377 return err; 378 379 /* Ensure the ingress netdev matches the expected 380 * tun type. 381 */ 382 if (!nfp_fl_netdev_is_tunnel_type(netdev, *tun_type)) { 383 NL_SET_ERR_MSG_MOD(extack, "unsupported offload: ingress netdev does not match the expected tunnel type"); 384 return -EOPNOTSUPP; 385 } 386 } 387 } 388 389 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_BASIC)) 390 flow_rule_match_basic(rule, &basic); 391 392 if (basic.mask && basic.mask->n_proto) { 393 /* Ethernet type is present in the key. */ 394 switch (basic.key->n_proto) { 395 case cpu_to_be16(ETH_P_IP): 396 key_layer |= NFP_FLOWER_LAYER_IPV4; 397 key_size += sizeof(struct nfp_flower_ipv4); 398 break; 399 400 case cpu_to_be16(ETH_P_IPV6): 401 key_layer |= NFP_FLOWER_LAYER_IPV6; 402 key_size += sizeof(struct nfp_flower_ipv6); 403 break; 404 405 /* Currently we do not offload ARP 406 * because we rely on it to get to the host. 407 */ 408 case cpu_to_be16(ETH_P_ARP): 409 NL_SET_ERR_MSG_MOD(extack, "unsupported offload: ARP not supported"); 410 return -EOPNOTSUPP; 411 412 case cpu_to_be16(ETH_P_MPLS_UC): 413 case cpu_to_be16(ETH_P_MPLS_MC): 414 if (!(key_layer & NFP_FLOWER_LAYER_MAC)) { 415 key_layer |= NFP_FLOWER_LAYER_MAC; 416 key_size += sizeof(struct nfp_flower_mac_mpls); 417 } 418 break; 419 420 /* Will be included in layer 2. */ 421 case cpu_to_be16(ETH_P_8021Q): 422 break; 423 424 default: 425 NL_SET_ERR_MSG_MOD(extack, "unsupported offload: match on given EtherType is not supported"); 426 return -EOPNOTSUPP; 427 } 428 } else if (nfp_flower_check_higher_than_mac(flow)) { 429 NL_SET_ERR_MSG_MOD(extack, "unsupported offload: cannot match above L2 without specified EtherType"); 430 return -EOPNOTSUPP; 431 } 432 433 if (basic.mask && basic.mask->ip_proto) { 434 switch (basic.key->ip_proto) { 435 case IPPROTO_TCP: 436 case IPPROTO_UDP: 437 case IPPROTO_SCTP: 438 case IPPROTO_ICMP: 439 case IPPROTO_ICMPV6: 440 key_layer |= NFP_FLOWER_LAYER_TP; 441 key_size += sizeof(struct nfp_flower_tp_ports); 442 break; 443 } 444 } 445 446 if (!(key_layer & NFP_FLOWER_LAYER_TP) && 447 nfp_flower_check_higher_than_l3(flow)) { 448 NL_SET_ERR_MSG_MOD(extack, "unsupported offload: cannot match on L4 information without specified IP protocol type"); 449 return -EOPNOTSUPP; 450 } 451 452 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_TCP)) { 453 struct flow_match_tcp tcp; 454 u32 tcp_flags; 455 456 flow_rule_match_tcp(rule, &tcp); 457 tcp_flags = be16_to_cpu(tcp.key->flags); 458 459 if (tcp_flags & ~NFP_FLOWER_SUPPORTED_TCPFLAGS) { 460 NL_SET_ERR_MSG_MOD(extack, "unsupported offload: no match support for selected TCP flags"); 461 return -EOPNOTSUPP; 462 } 463 464 /* We only support PSH and URG flags when either 465 * FIN, SYN or RST is present as well. 466 */ 467 if ((tcp_flags & (TCPHDR_PSH | TCPHDR_URG)) && 468 !(tcp_flags & (TCPHDR_FIN | TCPHDR_SYN | TCPHDR_RST))) { 469 NL_SET_ERR_MSG_MOD(extack, "unsupported offload: PSH and URG is only supported when used with FIN, SYN or RST"); 470 return -EOPNOTSUPP; 471 } 472 473 /* We need to store TCP flags in the either the IPv4 or IPv6 key 474 * space, thus we need to ensure we include a IPv4/IPv6 key 475 * layer if we have not done so already. 476 */ 477 if (!basic.key) { 478 NL_SET_ERR_MSG_MOD(extack, "unsupported offload: match on TCP flags requires a match on L3 protocol"); 479 return -EOPNOTSUPP; 480 } 481 482 if (!(key_layer & NFP_FLOWER_LAYER_IPV4) && 483 !(key_layer & NFP_FLOWER_LAYER_IPV6)) { 484 switch (basic.key->n_proto) { 485 case cpu_to_be16(ETH_P_IP): 486 key_layer |= NFP_FLOWER_LAYER_IPV4; 487 key_size += sizeof(struct nfp_flower_ipv4); 488 break; 489 490 case cpu_to_be16(ETH_P_IPV6): 491 key_layer |= NFP_FLOWER_LAYER_IPV6; 492 key_size += sizeof(struct nfp_flower_ipv6); 493 break; 494 495 default: 496 NL_SET_ERR_MSG_MOD(extack, "unsupported offload: match on TCP flags requires a match on IPv4/IPv6"); 497 return -EOPNOTSUPP; 498 } 499 } 500 } 501 502 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_CONTROL)) { 503 struct flow_match_control ctl; 504 505 flow_rule_match_control(rule, &ctl); 506 if (ctl.key->flags & ~NFP_FLOWER_SUPPORTED_CTLFLAGS) { 507 NL_SET_ERR_MSG_MOD(extack, "unsupported offload: match on unknown control flag"); 508 return -EOPNOTSUPP; 509 } 510 } 511 512 ret_key_ls->key_layer = key_layer; 513 ret_key_ls->key_layer_two = key_layer_two; 514 ret_key_ls->key_size = key_size; 515 516 return 0; 517 } 518 519 static struct nfp_fl_payload * 520 nfp_flower_allocate_new(struct nfp_fl_key_ls *key_layer) 521 { 522 struct nfp_fl_payload *flow_pay; 523 524 flow_pay = kmalloc(sizeof(*flow_pay), GFP_KERNEL); 525 if (!flow_pay) 526 return NULL; 527 528 flow_pay->meta.key_len = key_layer->key_size; 529 flow_pay->unmasked_data = kmalloc(key_layer->key_size, GFP_KERNEL); 530 if (!flow_pay->unmasked_data) 531 goto err_free_flow; 532 533 flow_pay->meta.mask_len = key_layer->key_size; 534 flow_pay->mask_data = kmalloc(key_layer->key_size, GFP_KERNEL); 535 if (!flow_pay->mask_data) 536 goto err_free_unmasked; 537 538 flow_pay->action_data = kmalloc(NFP_FL_MAX_A_SIZ, GFP_KERNEL); 539 if (!flow_pay->action_data) 540 goto err_free_mask; 541 542 flow_pay->nfp_tun_ipv4_addr = 0; 543 flow_pay->nfp_tun_ipv6 = NULL; 544 flow_pay->meta.flags = 0; 545 INIT_LIST_HEAD(&flow_pay->linked_flows); 546 flow_pay->in_hw = false; 547 flow_pay->pre_tun_rule.dev = NULL; 548 549 return flow_pay; 550 551 err_free_mask: 552 kfree(flow_pay->mask_data); 553 err_free_unmasked: 554 kfree(flow_pay->unmasked_data); 555 err_free_flow: 556 kfree(flow_pay); 557 return NULL; 558 } 559 560 static int 561 nfp_flower_update_merge_with_actions(struct nfp_fl_payload *flow, 562 struct nfp_flower_merge_check *merge, 563 u8 *last_act_id, int *act_out) 564 { 565 struct nfp_fl_set_ipv6_tc_hl_fl *ipv6_tc_hl_fl; 566 struct nfp_fl_set_ip4_ttl_tos *ipv4_ttl_tos; 567 struct nfp_fl_set_ip4_addrs *ipv4_add; 568 struct nfp_fl_set_ipv6_addr *ipv6_add; 569 struct nfp_fl_push_vlan *push_vlan; 570 struct nfp_fl_pre_tunnel *pre_tun; 571 struct nfp_fl_set_tport *tport; 572 struct nfp_fl_set_eth *eth; 573 struct nfp_fl_act_head *a; 574 unsigned int act_off = 0; 575 bool ipv6_tun = false; 576 u8 act_id = 0; 577 u8 *ports; 578 int i; 579 580 while (act_off < flow->meta.act_len) { 581 a = (struct nfp_fl_act_head *)&flow->action_data[act_off]; 582 act_id = a->jump_id; 583 584 switch (act_id) { 585 case NFP_FL_ACTION_OPCODE_OUTPUT: 586 if (act_out) 587 (*act_out)++; 588 break; 589 case NFP_FL_ACTION_OPCODE_PUSH_VLAN: 590 push_vlan = (struct nfp_fl_push_vlan *)a; 591 if (push_vlan->vlan_tci) 592 merge->tci = cpu_to_be16(0xffff); 593 break; 594 case NFP_FL_ACTION_OPCODE_POP_VLAN: 595 merge->tci = cpu_to_be16(0); 596 break; 597 case NFP_FL_ACTION_OPCODE_SET_TUNNEL: 598 /* New tunnel header means l2 to l4 can be matched. */ 599 eth_broadcast_addr(&merge->l2.mac_dst[0]); 600 eth_broadcast_addr(&merge->l2.mac_src[0]); 601 memset(&merge->l4, 0xff, 602 sizeof(struct nfp_flower_tp_ports)); 603 if (ipv6_tun) 604 memset(&merge->ipv6, 0xff, 605 sizeof(struct nfp_flower_ipv6)); 606 else 607 memset(&merge->ipv4, 0xff, 608 sizeof(struct nfp_flower_ipv4)); 609 break; 610 case NFP_FL_ACTION_OPCODE_SET_ETHERNET: 611 eth = (struct nfp_fl_set_eth *)a; 612 for (i = 0; i < ETH_ALEN; i++) 613 merge->l2.mac_dst[i] |= eth->eth_addr_mask[i]; 614 for (i = 0; i < ETH_ALEN; i++) 615 merge->l2.mac_src[i] |= 616 eth->eth_addr_mask[ETH_ALEN + i]; 617 break; 618 case NFP_FL_ACTION_OPCODE_SET_IPV4_ADDRS: 619 ipv4_add = (struct nfp_fl_set_ip4_addrs *)a; 620 merge->ipv4.ipv4_src |= ipv4_add->ipv4_src_mask; 621 merge->ipv4.ipv4_dst |= ipv4_add->ipv4_dst_mask; 622 break; 623 case NFP_FL_ACTION_OPCODE_SET_IPV4_TTL_TOS: 624 ipv4_ttl_tos = (struct nfp_fl_set_ip4_ttl_tos *)a; 625 merge->ipv4.ip_ext.ttl |= ipv4_ttl_tos->ipv4_ttl_mask; 626 merge->ipv4.ip_ext.tos |= ipv4_ttl_tos->ipv4_tos_mask; 627 break; 628 case NFP_FL_ACTION_OPCODE_SET_IPV6_SRC: 629 ipv6_add = (struct nfp_fl_set_ipv6_addr *)a; 630 for (i = 0; i < 4; i++) 631 merge->ipv6.ipv6_src.in6_u.u6_addr32[i] |= 632 ipv6_add->ipv6[i].mask; 633 break; 634 case NFP_FL_ACTION_OPCODE_SET_IPV6_DST: 635 ipv6_add = (struct nfp_fl_set_ipv6_addr *)a; 636 for (i = 0; i < 4; i++) 637 merge->ipv6.ipv6_dst.in6_u.u6_addr32[i] |= 638 ipv6_add->ipv6[i].mask; 639 break; 640 case NFP_FL_ACTION_OPCODE_SET_IPV6_TC_HL_FL: 641 ipv6_tc_hl_fl = (struct nfp_fl_set_ipv6_tc_hl_fl *)a; 642 merge->ipv6.ip_ext.ttl |= 643 ipv6_tc_hl_fl->ipv6_hop_limit_mask; 644 merge->ipv6.ip_ext.tos |= ipv6_tc_hl_fl->ipv6_tc_mask; 645 merge->ipv6.ipv6_flow_label_exthdr |= 646 ipv6_tc_hl_fl->ipv6_label_mask; 647 break; 648 case NFP_FL_ACTION_OPCODE_SET_UDP: 649 case NFP_FL_ACTION_OPCODE_SET_TCP: 650 tport = (struct nfp_fl_set_tport *)a; 651 ports = (u8 *)&merge->l4.port_src; 652 for (i = 0; i < 4; i++) 653 ports[i] |= tport->tp_port_mask[i]; 654 break; 655 case NFP_FL_ACTION_OPCODE_PRE_TUNNEL: 656 pre_tun = (struct nfp_fl_pre_tunnel *)a; 657 ipv6_tun = be16_to_cpu(pre_tun->flags) & 658 NFP_FL_PRE_TUN_IPV6; 659 break; 660 case NFP_FL_ACTION_OPCODE_PRE_LAG: 661 case NFP_FL_ACTION_OPCODE_PUSH_GENEVE: 662 break; 663 default: 664 return -EOPNOTSUPP; 665 } 666 667 act_off += a->len_lw << NFP_FL_LW_SIZ; 668 } 669 670 if (last_act_id) 671 *last_act_id = act_id; 672 673 return 0; 674 } 675 676 static int 677 nfp_flower_populate_merge_match(struct nfp_fl_payload *flow, 678 struct nfp_flower_merge_check *merge, 679 bool extra_fields) 680 { 681 struct nfp_flower_meta_tci *meta_tci; 682 u8 *mask = flow->mask_data; 683 u8 key_layer, match_size; 684 685 memset(merge, 0, sizeof(struct nfp_flower_merge_check)); 686 687 meta_tci = (struct nfp_flower_meta_tci *)mask; 688 key_layer = meta_tci->nfp_flow_key_layer; 689 690 if (key_layer & ~NFP_FLOWER_MERGE_FIELDS && !extra_fields) 691 return -EOPNOTSUPP; 692 693 merge->tci = meta_tci->tci; 694 mask += sizeof(struct nfp_flower_meta_tci); 695 696 if (key_layer & NFP_FLOWER_LAYER_EXT_META) 697 mask += sizeof(struct nfp_flower_ext_meta); 698 699 mask += sizeof(struct nfp_flower_in_port); 700 701 if (key_layer & NFP_FLOWER_LAYER_MAC) { 702 match_size = sizeof(struct nfp_flower_mac_mpls); 703 memcpy(&merge->l2, mask, match_size); 704 mask += match_size; 705 } 706 707 if (key_layer & NFP_FLOWER_LAYER_TP) { 708 match_size = sizeof(struct nfp_flower_tp_ports); 709 memcpy(&merge->l4, mask, match_size); 710 mask += match_size; 711 } 712 713 if (key_layer & NFP_FLOWER_LAYER_IPV4) { 714 match_size = sizeof(struct nfp_flower_ipv4); 715 memcpy(&merge->ipv4, mask, match_size); 716 } 717 718 if (key_layer & NFP_FLOWER_LAYER_IPV6) { 719 match_size = sizeof(struct nfp_flower_ipv6); 720 memcpy(&merge->ipv6, mask, match_size); 721 } 722 723 return 0; 724 } 725 726 static int 727 nfp_flower_can_merge(struct nfp_fl_payload *sub_flow1, 728 struct nfp_fl_payload *sub_flow2) 729 { 730 /* Two flows can be merged if sub_flow2 only matches on bits that are 731 * either matched by sub_flow1 or set by a sub_flow1 action. This 732 * ensures that every packet that hits sub_flow1 and recirculates is 733 * guaranteed to hit sub_flow2. 734 */ 735 struct nfp_flower_merge_check sub_flow1_merge, sub_flow2_merge; 736 int err, act_out = 0; 737 u8 last_act_id = 0; 738 739 err = nfp_flower_populate_merge_match(sub_flow1, &sub_flow1_merge, 740 true); 741 if (err) 742 return err; 743 744 err = nfp_flower_populate_merge_match(sub_flow2, &sub_flow2_merge, 745 false); 746 if (err) 747 return err; 748 749 err = nfp_flower_update_merge_with_actions(sub_flow1, &sub_flow1_merge, 750 &last_act_id, &act_out); 751 if (err) 752 return err; 753 754 /* Must only be 1 output action and it must be the last in sequence. */ 755 if (act_out != 1 || last_act_id != NFP_FL_ACTION_OPCODE_OUTPUT) 756 return -EOPNOTSUPP; 757 758 /* Reject merge if sub_flow2 matches on something that is not matched 759 * on or set in an action by sub_flow1. 760 */ 761 err = bitmap_andnot(sub_flow2_merge.vals, sub_flow2_merge.vals, 762 sub_flow1_merge.vals, 763 sizeof(struct nfp_flower_merge_check) * 8); 764 if (err) 765 return -EINVAL; 766 767 return 0; 768 } 769 770 static unsigned int 771 nfp_flower_copy_pre_actions(char *act_dst, char *act_src, int len, 772 bool *tunnel_act) 773 { 774 unsigned int act_off = 0, act_len; 775 struct nfp_fl_act_head *a; 776 u8 act_id = 0; 777 778 while (act_off < len) { 779 a = (struct nfp_fl_act_head *)&act_src[act_off]; 780 act_len = a->len_lw << NFP_FL_LW_SIZ; 781 act_id = a->jump_id; 782 783 switch (act_id) { 784 case NFP_FL_ACTION_OPCODE_PRE_TUNNEL: 785 if (tunnel_act) 786 *tunnel_act = true; 787 /* fall through */ 788 case NFP_FL_ACTION_OPCODE_PRE_LAG: 789 memcpy(act_dst + act_off, act_src + act_off, act_len); 790 break; 791 default: 792 return act_off; 793 } 794 795 act_off += act_len; 796 } 797 798 return act_off; 799 } 800 801 static int 802 nfp_fl_verify_post_tun_acts(char *acts, int len, struct nfp_fl_push_vlan **vlan) 803 { 804 struct nfp_fl_act_head *a; 805 unsigned int act_off = 0; 806 807 while (act_off < len) { 808 a = (struct nfp_fl_act_head *)&acts[act_off]; 809 810 if (a->jump_id == NFP_FL_ACTION_OPCODE_PUSH_VLAN && !act_off) 811 *vlan = (struct nfp_fl_push_vlan *)a; 812 else if (a->jump_id != NFP_FL_ACTION_OPCODE_OUTPUT) 813 return -EOPNOTSUPP; 814 815 act_off += a->len_lw << NFP_FL_LW_SIZ; 816 } 817 818 /* Ensure any VLAN push also has an egress action. */ 819 if (*vlan && act_off <= sizeof(struct nfp_fl_push_vlan)) 820 return -EOPNOTSUPP; 821 822 return 0; 823 } 824 825 static int 826 nfp_fl_push_vlan_after_tun(char *acts, int len, struct nfp_fl_push_vlan *vlan) 827 { 828 struct nfp_fl_set_tun *tun; 829 struct nfp_fl_act_head *a; 830 unsigned int act_off = 0; 831 832 while (act_off < len) { 833 a = (struct nfp_fl_act_head *)&acts[act_off]; 834 835 if (a->jump_id == NFP_FL_ACTION_OPCODE_SET_TUNNEL) { 836 tun = (struct nfp_fl_set_tun *)a; 837 tun->outer_vlan_tpid = vlan->vlan_tpid; 838 tun->outer_vlan_tci = vlan->vlan_tci; 839 840 return 0; 841 } 842 843 act_off += a->len_lw << NFP_FL_LW_SIZ; 844 } 845 846 /* Return error if no tunnel action is found. */ 847 return -EOPNOTSUPP; 848 } 849 850 static int 851 nfp_flower_merge_action(struct nfp_fl_payload *sub_flow1, 852 struct nfp_fl_payload *sub_flow2, 853 struct nfp_fl_payload *merge_flow) 854 { 855 unsigned int sub1_act_len, sub2_act_len, pre_off1, pre_off2; 856 struct nfp_fl_push_vlan *post_tun_push_vlan = NULL; 857 bool tunnel_act = false; 858 char *merge_act; 859 int err; 860 861 /* The last action of sub_flow1 must be output - do not merge this. */ 862 sub1_act_len = sub_flow1->meta.act_len - sizeof(struct nfp_fl_output); 863 sub2_act_len = sub_flow2->meta.act_len; 864 865 if (!sub2_act_len) 866 return -EINVAL; 867 868 if (sub1_act_len + sub2_act_len > NFP_FL_MAX_A_SIZ) 869 return -EINVAL; 870 871 /* A shortcut can only be applied if there is a single action. */ 872 if (sub1_act_len) 873 merge_flow->meta.shortcut = cpu_to_be32(NFP_FL_SC_ACT_NULL); 874 else 875 merge_flow->meta.shortcut = sub_flow2->meta.shortcut; 876 877 merge_flow->meta.act_len = sub1_act_len + sub2_act_len; 878 merge_act = merge_flow->action_data; 879 880 /* Copy any pre-actions to the start of merge flow action list. */ 881 pre_off1 = nfp_flower_copy_pre_actions(merge_act, 882 sub_flow1->action_data, 883 sub1_act_len, &tunnel_act); 884 merge_act += pre_off1; 885 sub1_act_len -= pre_off1; 886 pre_off2 = nfp_flower_copy_pre_actions(merge_act, 887 sub_flow2->action_data, 888 sub2_act_len, NULL); 889 merge_act += pre_off2; 890 sub2_act_len -= pre_off2; 891 892 /* FW does a tunnel push when egressing, therefore, if sub_flow 1 pushes 893 * a tunnel, there are restrictions on what sub_flow 2 actions lead to a 894 * valid merge. 895 */ 896 if (tunnel_act) { 897 char *post_tun_acts = &sub_flow2->action_data[pre_off2]; 898 899 err = nfp_fl_verify_post_tun_acts(post_tun_acts, sub2_act_len, 900 &post_tun_push_vlan); 901 if (err) 902 return err; 903 904 if (post_tun_push_vlan) { 905 pre_off2 += sizeof(*post_tun_push_vlan); 906 sub2_act_len -= sizeof(*post_tun_push_vlan); 907 } 908 } 909 910 /* Copy remaining actions from sub_flows 1 and 2. */ 911 memcpy(merge_act, sub_flow1->action_data + pre_off1, sub1_act_len); 912 913 if (post_tun_push_vlan) { 914 /* Update tunnel action in merge to include VLAN push. */ 915 err = nfp_fl_push_vlan_after_tun(merge_act, sub1_act_len, 916 post_tun_push_vlan); 917 if (err) 918 return err; 919 920 merge_flow->meta.act_len -= sizeof(*post_tun_push_vlan); 921 } 922 923 merge_act += sub1_act_len; 924 memcpy(merge_act, sub_flow2->action_data + pre_off2, sub2_act_len); 925 926 return 0; 927 } 928 929 /* Flow link code should only be accessed under RTNL. */ 930 static void nfp_flower_unlink_flow(struct nfp_fl_payload_link *link) 931 { 932 list_del(&link->merge_flow.list); 933 list_del(&link->sub_flow.list); 934 kfree(link); 935 } 936 937 static void nfp_flower_unlink_flows(struct nfp_fl_payload *merge_flow, 938 struct nfp_fl_payload *sub_flow) 939 { 940 struct nfp_fl_payload_link *link; 941 942 list_for_each_entry(link, &merge_flow->linked_flows, merge_flow.list) 943 if (link->sub_flow.flow == sub_flow) { 944 nfp_flower_unlink_flow(link); 945 return; 946 } 947 } 948 949 static int nfp_flower_link_flows(struct nfp_fl_payload *merge_flow, 950 struct nfp_fl_payload *sub_flow) 951 { 952 struct nfp_fl_payload_link *link; 953 954 link = kmalloc(sizeof(*link), GFP_KERNEL); 955 if (!link) 956 return -ENOMEM; 957 958 link->merge_flow.flow = merge_flow; 959 list_add_tail(&link->merge_flow.list, &merge_flow->linked_flows); 960 link->sub_flow.flow = sub_flow; 961 list_add_tail(&link->sub_flow.list, &sub_flow->linked_flows); 962 963 return 0; 964 } 965 966 /** 967 * nfp_flower_merge_offloaded_flows() - Merge 2 existing flows to single flow. 968 * @app: Pointer to the APP handle 969 * @sub_flow1: Initial flow matched to produce merge hint 970 * @sub_flow2: Post recirculation flow matched in merge hint 971 * 972 * Combines 2 flows (if valid) to a single flow, removing the initial from hw 973 * and offloading the new, merged flow. 974 * 975 * Return: negative value on error, 0 in success. 976 */ 977 int nfp_flower_merge_offloaded_flows(struct nfp_app *app, 978 struct nfp_fl_payload *sub_flow1, 979 struct nfp_fl_payload *sub_flow2) 980 { 981 struct flow_cls_offload merge_tc_off; 982 struct nfp_flower_priv *priv = app->priv; 983 struct netlink_ext_ack *extack = NULL; 984 struct nfp_fl_payload *merge_flow; 985 struct nfp_fl_key_ls merge_key_ls; 986 int err; 987 988 ASSERT_RTNL(); 989 990 extack = merge_tc_off.common.extack; 991 if (sub_flow1 == sub_flow2 || 992 nfp_flower_is_merge_flow(sub_flow1) || 993 nfp_flower_is_merge_flow(sub_flow2)) 994 return -EINVAL; 995 996 err = nfp_flower_can_merge(sub_flow1, sub_flow2); 997 if (err) 998 return err; 999 1000 merge_key_ls.key_size = sub_flow1->meta.key_len; 1001 1002 merge_flow = nfp_flower_allocate_new(&merge_key_ls); 1003 if (!merge_flow) 1004 return -ENOMEM; 1005 1006 merge_flow->tc_flower_cookie = (unsigned long)merge_flow; 1007 merge_flow->ingress_dev = sub_flow1->ingress_dev; 1008 1009 memcpy(merge_flow->unmasked_data, sub_flow1->unmasked_data, 1010 sub_flow1->meta.key_len); 1011 memcpy(merge_flow->mask_data, sub_flow1->mask_data, 1012 sub_flow1->meta.mask_len); 1013 1014 err = nfp_flower_merge_action(sub_flow1, sub_flow2, merge_flow); 1015 if (err) 1016 goto err_destroy_merge_flow; 1017 1018 err = nfp_flower_link_flows(merge_flow, sub_flow1); 1019 if (err) 1020 goto err_destroy_merge_flow; 1021 1022 err = nfp_flower_link_flows(merge_flow, sub_flow2); 1023 if (err) 1024 goto err_unlink_sub_flow1; 1025 1026 merge_tc_off.cookie = merge_flow->tc_flower_cookie; 1027 err = nfp_compile_flow_metadata(app, &merge_tc_off, merge_flow, 1028 merge_flow->ingress_dev, extack); 1029 if (err) 1030 goto err_unlink_sub_flow2; 1031 1032 err = rhashtable_insert_fast(&priv->flow_table, &merge_flow->fl_node, 1033 nfp_flower_table_params); 1034 if (err) 1035 goto err_release_metadata; 1036 1037 err = nfp_flower_xmit_flow(app, merge_flow, 1038 NFP_FLOWER_CMSG_TYPE_FLOW_MOD); 1039 if (err) 1040 goto err_remove_rhash; 1041 1042 merge_flow->in_hw = true; 1043 sub_flow1->in_hw = false; 1044 1045 return 0; 1046 1047 err_remove_rhash: 1048 WARN_ON_ONCE(rhashtable_remove_fast(&priv->flow_table, 1049 &merge_flow->fl_node, 1050 nfp_flower_table_params)); 1051 err_release_metadata: 1052 nfp_modify_flow_metadata(app, merge_flow); 1053 err_unlink_sub_flow2: 1054 nfp_flower_unlink_flows(merge_flow, sub_flow2); 1055 err_unlink_sub_flow1: 1056 nfp_flower_unlink_flows(merge_flow, sub_flow1); 1057 err_destroy_merge_flow: 1058 kfree(merge_flow->action_data); 1059 kfree(merge_flow->mask_data); 1060 kfree(merge_flow->unmasked_data); 1061 kfree(merge_flow); 1062 return err; 1063 } 1064 1065 /** 1066 * nfp_flower_validate_pre_tun_rule() 1067 * @app: Pointer to the APP handle 1068 * @flow: Pointer to NFP flow representation of rule 1069 * @extack: Netlink extended ACK report 1070 * 1071 * Verifies the flow as a pre-tunnel rule. 1072 * 1073 * Return: negative value on error, 0 if verified. 1074 */ 1075 static int 1076 nfp_flower_validate_pre_tun_rule(struct nfp_app *app, 1077 struct nfp_fl_payload *flow, 1078 struct netlink_ext_ack *extack) 1079 { 1080 struct nfp_flower_meta_tci *meta_tci; 1081 struct nfp_flower_mac_mpls *mac; 1082 struct nfp_fl_act_head *act; 1083 u8 *mask = flow->mask_data; 1084 bool vlan = false; 1085 int act_offset; 1086 u8 key_layer; 1087 1088 meta_tci = (struct nfp_flower_meta_tci *)flow->unmasked_data; 1089 if (meta_tci->tci & cpu_to_be16(NFP_FLOWER_MASK_VLAN_PRESENT)) { 1090 u16 vlan_tci = be16_to_cpu(meta_tci->tci); 1091 1092 vlan_tci &= ~NFP_FLOWER_MASK_VLAN_PRESENT; 1093 flow->pre_tun_rule.vlan_tci = cpu_to_be16(vlan_tci); 1094 vlan = true; 1095 } else { 1096 flow->pre_tun_rule.vlan_tci = cpu_to_be16(0xffff); 1097 } 1098 1099 key_layer = meta_tci->nfp_flow_key_layer; 1100 if (key_layer & ~NFP_FLOWER_PRE_TUN_RULE_FIELDS) { 1101 NL_SET_ERR_MSG_MOD(extack, "unsupported pre-tunnel rule: too many match fields"); 1102 return -EOPNOTSUPP; 1103 } 1104 1105 if (!(key_layer & NFP_FLOWER_LAYER_MAC)) { 1106 NL_SET_ERR_MSG_MOD(extack, "unsupported pre-tunnel rule: MAC fields match required"); 1107 return -EOPNOTSUPP; 1108 } 1109 1110 /* Skip fields known to exist. */ 1111 mask += sizeof(struct nfp_flower_meta_tci); 1112 mask += sizeof(struct nfp_flower_in_port); 1113 1114 /* Ensure destination MAC address is fully matched. */ 1115 mac = (struct nfp_flower_mac_mpls *)mask; 1116 if (!is_broadcast_ether_addr(&mac->mac_dst[0])) { 1117 NL_SET_ERR_MSG_MOD(extack, "unsupported pre-tunnel rule: dest MAC field must not be masked"); 1118 return -EOPNOTSUPP; 1119 } 1120 1121 if (key_layer & NFP_FLOWER_LAYER_IPV4 || 1122 key_layer & NFP_FLOWER_LAYER_IPV6) { 1123 /* Flags and proto fields have same offset in IPv4 and IPv6. */ 1124 int ip_flags = offsetof(struct nfp_flower_ipv4, ip_ext.flags); 1125 int ip_proto = offsetof(struct nfp_flower_ipv4, ip_ext.proto); 1126 int size; 1127 int i; 1128 1129 size = key_layer & NFP_FLOWER_LAYER_IPV4 ? 1130 sizeof(struct nfp_flower_ipv4) : 1131 sizeof(struct nfp_flower_ipv6); 1132 1133 mask += sizeof(struct nfp_flower_mac_mpls); 1134 1135 /* Ensure proto and flags are the only IP layer fields. */ 1136 for (i = 0; i < size; i++) 1137 if (mask[i] && i != ip_flags && i != ip_proto) { 1138 NL_SET_ERR_MSG_MOD(extack, "unsupported pre-tunnel rule: only flags and proto can be matched in ip header"); 1139 return -EOPNOTSUPP; 1140 } 1141 } 1142 1143 /* Action must be a single egress or pop_vlan and egress. */ 1144 act_offset = 0; 1145 act = (struct nfp_fl_act_head *)&flow->action_data[act_offset]; 1146 if (vlan) { 1147 if (act->jump_id != NFP_FL_ACTION_OPCODE_POP_VLAN) { 1148 NL_SET_ERR_MSG_MOD(extack, "unsupported pre-tunnel rule: match on VLAN must have VLAN pop as first action"); 1149 return -EOPNOTSUPP; 1150 } 1151 1152 act_offset += act->len_lw << NFP_FL_LW_SIZ; 1153 act = (struct nfp_fl_act_head *)&flow->action_data[act_offset]; 1154 } 1155 1156 if (act->jump_id != NFP_FL_ACTION_OPCODE_OUTPUT) { 1157 NL_SET_ERR_MSG_MOD(extack, "unsupported pre-tunnel rule: non egress action detected where egress was expected"); 1158 return -EOPNOTSUPP; 1159 } 1160 1161 act_offset += act->len_lw << NFP_FL_LW_SIZ; 1162 1163 /* Ensure there are no more actions after egress. */ 1164 if (act_offset != flow->meta.act_len) { 1165 NL_SET_ERR_MSG_MOD(extack, "unsupported pre-tunnel rule: egress is not the last action"); 1166 return -EOPNOTSUPP; 1167 } 1168 1169 return 0; 1170 } 1171 1172 /** 1173 * nfp_flower_add_offload() - Adds a new flow to hardware. 1174 * @app: Pointer to the APP handle 1175 * @netdev: netdev structure. 1176 * @flow: TC flower classifier offload structure. 1177 * 1178 * Adds a new flow to the repeated hash structure and action payload. 1179 * 1180 * Return: negative value on error, 0 if configured successfully. 1181 */ 1182 static int 1183 nfp_flower_add_offload(struct nfp_app *app, struct net_device *netdev, 1184 struct flow_cls_offload *flow) 1185 { 1186 enum nfp_flower_tun_type tun_type = NFP_FL_TUNNEL_NONE; 1187 struct nfp_flower_priv *priv = app->priv; 1188 struct netlink_ext_ack *extack = NULL; 1189 struct nfp_fl_payload *flow_pay; 1190 struct nfp_fl_key_ls *key_layer; 1191 struct nfp_port *port = NULL; 1192 int err; 1193 1194 extack = flow->common.extack; 1195 if (nfp_netdev_is_nfp_repr(netdev)) 1196 port = nfp_port_from_netdev(netdev); 1197 1198 key_layer = kmalloc(sizeof(*key_layer), GFP_KERNEL); 1199 if (!key_layer) 1200 return -ENOMEM; 1201 1202 err = nfp_flower_calculate_key_layers(app, netdev, key_layer, flow, 1203 &tun_type, extack); 1204 if (err) 1205 goto err_free_key_ls; 1206 1207 flow_pay = nfp_flower_allocate_new(key_layer); 1208 if (!flow_pay) { 1209 err = -ENOMEM; 1210 goto err_free_key_ls; 1211 } 1212 1213 err = nfp_flower_compile_flow_match(app, flow, key_layer, netdev, 1214 flow_pay, tun_type, extack); 1215 if (err) 1216 goto err_destroy_flow; 1217 1218 err = nfp_flower_compile_action(app, flow, netdev, flow_pay, extack); 1219 if (err) 1220 goto err_destroy_flow; 1221 1222 if (flow_pay->pre_tun_rule.dev) { 1223 err = nfp_flower_validate_pre_tun_rule(app, flow_pay, extack); 1224 if (err) 1225 goto err_destroy_flow; 1226 } 1227 1228 err = nfp_compile_flow_metadata(app, flow, flow_pay, netdev, extack); 1229 if (err) 1230 goto err_destroy_flow; 1231 1232 flow_pay->tc_flower_cookie = flow->cookie; 1233 err = rhashtable_insert_fast(&priv->flow_table, &flow_pay->fl_node, 1234 nfp_flower_table_params); 1235 if (err) { 1236 NL_SET_ERR_MSG_MOD(extack, "invalid entry: cannot insert flow into tables for offloads"); 1237 goto err_release_metadata; 1238 } 1239 1240 if (flow_pay->pre_tun_rule.dev) 1241 err = nfp_flower_xmit_pre_tun_flow(app, flow_pay); 1242 else 1243 err = nfp_flower_xmit_flow(app, flow_pay, 1244 NFP_FLOWER_CMSG_TYPE_FLOW_ADD); 1245 if (err) 1246 goto err_remove_rhash; 1247 1248 if (port) 1249 port->tc_offload_cnt++; 1250 1251 flow_pay->in_hw = true; 1252 1253 /* Deallocate flow payload when flower rule has been destroyed. */ 1254 kfree(key_layer); 1255 1256 return 0; 1257 1258 err_remove_rhash: 1259 WARN_ON_ONCE(rhashtable_remove_fast(&priv->flow_table, 1260 &flow_pay->fl_node, 1261 nfp_flower_table_params)); 1262 err_release_metadata: 1263 nfp_modify_flow_metadata(app, flow_pay); 1264 err_destroy_flow: 1265 if (flow_pay->nfp_tun_ipv6) 1266 nfp_tunnel_put_ipv6_off(app, flow_pay->nfp_tun_ipv6); 1267 kfree(flow_pay->action_data); 1268 kfree(flow_pay->mask_data); 1269 kfree(flow_pay->unmasked_data); 1270 kfree(flow_pay); 1271 err_free_key_ls: 1272 kfree(key_layer); 1273 return err; 1274 } 1275 1276 static void 1277 nfp_flower_remove_merge_flow(struct nfp_app *app, 1278 struct nfp_fl_payload *del_sub_flow, 1279 struct nfp_fl_payload *merge_flow) 1280 { 1281 struct nfp_flower_priv *priv = app->priv; 1282 struct nfp_fl_payload_link *link, *temp; 1283 struct nfp_fl_payload *origin; 1284 bool mod = false; 1285 int err; 1286 1287 link = list_first_entry(&merge_flow->linked_flows, 1288 struct nfp_fl_payload_link, merge_flow.list); 1289 origin = link->sub_flow.flow; 1290 1291 /* Re-add rule the merge had overwritten if it has not been deleted. */ 1292 if (origin != del_sub_flow) 1293 mod = true; 1294 1295 err = nfp_modify_flow_metadata(app, merge_flow); 1296 if (err) { 1297 nfp_flower_cmsg_warn(app, "Metadata fail for merge flow delete.\n"); 1298 goto err_free_links; 1299 } 1300 1301 if (!mod) { 1302 err = nfp_flower_xmit_flow(app, merge_flow, 1303 NFP_FLOWER_CMSG_TYPE_FLOW_DEL); 1304 if (err) { 1305 nfp_flower_cmsg_warn(app, "Failed to delete merged flow.\n"); 1306 goto err_free_links; 1307 } 1308 } else { 1309 __nfp_modify_flow_metadata(priv, origin); 1310 err = nfp_flower_xmit_flow(app, origin, 1311 NFP_FLOWER_CMSG_TYPE_FLOW_MOD); 1312 if (err) 1313 nfp_flower_cmsg_warn(app, "Failed to revert merge flow.\n"); 1314 origin->in_hw = true; 1315 } 1316 1317 err_free_links: 1318 /* Clean any links connected with the merged flow. */ 1319 list_for_each_entry_safe(link, temp, &merge_flow->linked_flows, 1320 merge_flow.list) 1321 nfp_flower_unlink_flow(link); 1322 1323 kfree(merge_flow->action_data); 1324 kfree(merge_flow->mask_data); 1325 kfree(merge_flow->unmasked_data); 1326 WARN_ON_ONCE(rhashtable_remove_fast(&priv->flow_table, 1327 &merge_flow->fl_node, 1328 nfp_flower_table_params)); 1329 kfree_rcu(merge_flow, rcu); 1330 } 1331 1332 static void 1333 nfp_flower_del_linked_merge_flows(struct nfp_app *app, 1334 struct nfp_fl_payload *sub_flow) 1335 { 1336 struct nfp_fl_payload_link *link, *temp; 1337 1338 /* Remove any merge flow formed from the deleted sub_flow. */ 1339 list_for_each_entry_safe(link, temp, &sub_flow->linked_flows, 1340 sub_flow.list) 1341 nfp_flower_remove_merge_flow(app, sub_flow, 1342 link->merge_flow.flow); 1343 } 1344 1345 /** 1346 * nfp_flower_del_offload() - Removes a flow from hardware. 1347 * @app: Pointer to the APP handle 1348 * @netdev: netdev structure. 1349 * @flow: TC flower classifier offload structure 1350 * 1351 * Removes a flow from the repeated hash structure and clears the 1352 * action payload. Any flows merged from this are also deleted. 1353 * 1354 * Return: negative value on error, 0 if removed successfully. 1355 */ 1356 static int 1357 nfp_flower_del_offload(struct nfp_app *app, struct net_device *netdev, 1358 struct flow_cls_offload *flow) 1359 { 1360 struct nfp_flower_priv *priv = app->priv; 1361 struct netlink_ext_ack *extack = NULL; 1362 struct nfp_fl_payload *nfp_flow; 1363 struct nfp_port *port = NULL; 1364 int err; 1365 1366 extack = flow->common.extack; 1367 if (nfp_netdev_is_nfp_repr(netdev)) 1368 port = nfp_port_from_netdev(netdev); 1369 1370 nfp_flow = nfp_flower_search_fl_table(app, flow->cookie, netdev); 1371 if (!nfp_flow) { 1372 NL_SET_ERR_MSG_MOD(extack, "invalid entry: cannot remove flow that does not exist"); 1373 return -ENOENT; 1374 } 1375 1376 err = nfp_modify_flow_metadata(app, nfp_flow); 1377 if (err) 1378 goto err_free_merge_flow; 1379 1380 if (nfp_flow->nfp_tun_ipv4_addr) 1381 nfp_tunnel_del_ipv4_off(app, nfp_flow->nfp_tun_ipv4_addr); 1382 1383 if (nfp_flow->nfp_tun_ipv6) 1384 nfp_tunnel_put_ipv6_off(app, nfp_flow->nfp_tun_ipv6); 1385 1386 if (!nfp_flow->in_hw) { 1387 err = 0; 1388 goto err_free_merge_flow; 1389 } 1390 1391 if (nfp_flow->pre_tun_rule.dev) 1392 err = nfp_flower_xmit_pre_tun_del_flow(app, nfp_flow); 1393 else 1394 err = nfp_flower_xmit_flow(app, nfp_flow, 1395 NFP_FLOWER_CMSG_TYPE_FLOW_DEL); 1396 /* Fall through on error. */ 1397 1398 err_free_merge_flow: 1399 nfp_flower_del_linked_merge_flows(app, nfp_flow); 1400 if (port) 1401 port->tc_offload_cnt--; 1402 kfree(nfp_flow->action_data); 1403 kfree(nfp_flow->mask_data); 1404 kfree(nfp_flow->unmasked_data); 1405 WARN_ON_ONCE(rhashtable_remove_fast(&priv->flow_table, 1406 &nfp_flow->fl_node, 1407 nfp_flower_table_params)); 1408 kfree_rcu(nfp_flow, rcu); 1409 return err; 1410 } 1411 1412 static void 1413 __nfp_flower_update_merge_stats(struct nfp_app *app, 1414 struct nfp_fl_payload *merge_flow) 1415 { 1416 struct nfp_flower_priv *priv = app->priv; 1417 struct nfp_fl_payload_link *link; 1418 struct nfp_fl_payload *sub_flow; 1419 u64 pkts, bytes, used; 1420 u32 ctx_id; 1421 1422 ctx_id = be32_to_cpu(merge_flow->meta.host_ctx_id); 1423 pkts = priv->stats[ctx_id].pkts; 1424 /* Do not cycle subflows if no stats to distribute. */ 1425 if (!pkts) 1426 return; 1427 bytes = priv->stats[ctx_id].bytes; 1428 used = priv->stats[ctx_id].used; 1429 1430 /* Reset stats for the merge flow. */ 1431 priv->stats[ctx_id].pkts = 0; 1432 priv->stats[ctx_id].bytes = 0; 1433 1434 /* The merge flow has received stats updates from firmware. 1435 * Distribute these stats to all subflows that form the merge. 1436 * The stats will collected from TC via the subflows. 1437 */ 1438 list_for_each_entry(link, &merge_flow->linked_flows, merge_flow.list) { 1439 sub_flow = link->sub_flow.flow; 1440 ctx_id = be32_to_cpu(sub_flow->meta.host_ctx_id); 1441 priv->stats[ctx_id].pkts += pkts; 1442 priv->stats[ctx_id].bytes += bytes; 1443 priv->stats[ctx_id].used = max_t(u64, used, 1444 priv->stats[ctx_id].used); 1445 } 1446 } 1447 1448 static void 1449 nfp_flower_update_merge_stats(struct nfp_app *app, 1450 struct nfp_fl_payload *sub_flow) 1451 { 1452 struct nfp_fl_payload_link *link; 1453 1454 /* Get merge flows that the subflow forms to distribute their stats. */ 1455 list_for_each_entry(link, &sub_flow->linked_flows, sub_flow.list) 1456 __nfp_flower_update_merge_stats(app, link->merge_flow.flow); 1457 } 1458 1459 /** 1460 * nfp_flower_get_stats() - Populates flow stats obtained from hardware. 1461 * @app: Pointer to the APP handle 1462 * @netdev: Netdev structure. 1463 * @flow: TC flower classifier offload structure 1464 * 1465 * Populates a flow statistics structure which which corresponds to a 1466 * specific flow. 1467 * 1468 * Return: negative value on error, 0 if stats populated successfully. 1469 */ 1470 static int 1471 nfp_flower_get_stats(struct nfp_app *app, struct net_device *netdev, 1472 struct flow_cls_offload *flow) 1473 { 1474 struct nfp_flower_priv *priv = app->priv; 1475 struct netlink_ext_ack *extack = NULL; 1476 struct nfp_fl_payload *nfp_flow; 1477 u32 ctx_id; 1478 1479 extack = flow->common.extack; 1480 nfp_flow = nfp_flower_search_fl_table(app, flow->cookie, netdev); 1481 if (!nfp_flow) { 1482 NL_SET_ERR_MSG_MOD(extack, "invalid entry: cannot dump stats for flow that does not exist"); 1483 return -EINVAL; 1484 } 1485 1486 ctx_id = be32_to_cpu(nfp_flow->meta.host_ctx_id); 1487 1488 spin_lock_bh(&priv->stats_lock); 1489 /* If request is for a sub_flow, update stats from merged flows. */ 1490 if (!list_empty(&nfp_flow->linked_flows)) 1491 nfp_flower_update_merge_stats(app, nfp_flow); 1492 1493 flow_stats_update(&flow->stats, priv->stats[ctx_id].bytes, 1494 priv->stats[ctx_id].pkts, priv->stats[ctx_id].used, 1495 FLOW_ACTION_HW_STATS_DELAYED); 1496 1497 priv->stats[ctx_id].pkts = 0; 1498 priv->stats[ctx_id].bytes = 0; 1499 spin_unlock_bh(&priv->stats_lock); 1500 1501 return 0; 1502 } 1503 1504 static int 1505 nfp_flower_repr_offload(struct nfp_app *app, struct net_device *netdev, 1506 struct flow_cls_offload *flower) 1507 { 1508 if (!eth_proto_is_802_3(flower->common.protocol)) 1509 return -EOPNOTSUPP; 1510 1511 switch (flower->command) { 1512 case FLOW_CLS_REPLACE: 1513 return nfp_flower_add_offload(app, netdev, flower); 1514 case FLOW_CLS_DESTROY: 1515 return nfp_flower_del_offload(app, netdev, flower); 1516 case FLOW_CLS_STATS: 1517 return nfp_flower_get_stats(app, netdev, flower); 1518 default: 1519 return -EOPNOTSUPP; 1520 } 1521 } 1522 1523 static int nfp_flower_setup_tc_block_cb(enum tc_setup_type type, 1524 void *type_data, void *cb_priv) 1525 { 1526 struct nfp_repr *repr = cb_priv; 1527 1528 if (!tc_cls_can_offload_and_chain0(repr->netdev, type_data)) 1529 return -EOPNOTSUPP; 1530 1531 switch (type) { 1532 case TC_SETUP_CLSFLOWER: 1533 return nfp_flower_repr_offload(repr->app, repr->netdev, 1534 type_data); 1535 case TC_SETUP_CLSMATCHALL: 1536 return nfp_flower_setup_qos_offload(repr->app, repr->netdev, 1537 type_data); 1538 default: 1539 return -EOPNOTSUPP; 1540 } 1541 } 1542 1543 static LIST_HEAD(nfp_block_cb_list); 1544 1545 static int nfp_flower_setup_tc_block(struct net_device *netdev, 1546 struct flow_block_offload *f) 1547 { 1548 struct nfp_repr *repr = netdev_priv(netdev); 1549 struct nfp_flower_repr_priv *repr_priv; 1550 struct flow_block_cb *block_cb; 1551 1552 if (f->binder_type != FLOW_BLOCK_BINDER_TYPE_CLSACT_INGRESS) 1553 return -EOPNOTSUPP; 1554 1555 repr_priv = repr->app_priv; 1556 repr_priv->block_shared = f->block_shared; 1557 f->driver_block_list = &nfp_block_cb_list; 1558 1559 switch (f->command) { 1560 case FLOW_BLOCK_BIND: 1561 if (flow_block_cb_is_busy(nfp_flower_setup_tc_block_cb, repr, 1562 &nfp_block_cb_list)) 1563 return -EBUSY; 1564 1565 block_cb = flow_block_cb_alloc(nfp_flower_setup_tc_block_cb, 1566 repr, repr, NULL); 1567 if (IS_ERR(block_cb)) 1568 return PTR_ERR(block_cb); 1569 1570 flow_block_cb_add(block_cb, f); 1571 list_add_tail(&block_cb->driver_list, &nfp_block_cb_list); 1572 return 0; 1573 case FLOW_BLOCK_UNBIND: 1574 block_cb = flow_block_cb_lookup(f->block, 1575 nfp_flower_setup_tc_block_cb, 1576 repr); 1577 if (!block_cb) 1578 return -ENOENT; 1579 1580 flow_block_cb_remove(block_cb, f); 1581 list_del(&block_cb->driver_list); 1582 return 0; 1583 default: 1584 return -EOPNOTSUPP; 1585 } 1586 } 1587 1588 int nfp_flower_setup_tc(struct nfp_app *app, struct net_device *netdev, 1589 enum tc_setup_type type, void *type_data) 1590 { 1591 switch (type) { 1592 case TC_SETUP_BLOCK: 1593 return nfp_flower_setup_tc_block(netdev, type_data); 1594 default: 1595 return -EOPNOTSUPP; 1596 } 1597 } 1598 1599 struct nfp_flower_indr_block_cb_priv { 1600 struct net_device *netdev; 1601 struct nfp_app *app; 1602 struct list_head list; 1603 }; 1604 1605 static struct nfp_flower_indr_block_cb_priv * 1606 nfp_flower_indr_block_cb_priv_lookup(struct nfp_app *app, 1607 struct net_device *netdev) 1608 { 1609 struct nfp_flower_indr_block_cb_priv *cb_priv; 1610 struct nfp_flower_priv *priv = app->priv; 1611 1612 /* All callback list access should be protected by RTNL. */ 1613 ASSERT_RTNL(); 1614 1615 list_for_each_entry(cb_priv, &priv->indr_block_cb_priv, list) 1616 if (cb_priv->netdev == netdev) 1617 return cb_priv; 1618 1619 return NULL; 1620 } 1621 1622 static int nfp_flower_setup_indr_block_cb(enum tc_setup_type type, 1623 void *type_data, void *cb_priv) 1624 { 1625 struct nfp_flower_indr_block_cb_priv *priv = cb_priv; 1626 struct flow_cls_offload *flower = type_data; 1627 1628 if (flower->common.chain_index) 1629 return -EOPNOTSUPP; 1630 1631 switch (type) { 1632 case TC_SETUP_CLSFLOWER: 1633 return nfp_flower_repr_offload(priv->app, priv->netdev, 1634 type_data); 1635 default: 1636 return -EOPNOTSUPP; 1637 } 1638 } 1639 1640 void nfp_flower_setup_indr_tc_release(void *cb_priv) 1641 { 1642 struct nfp_flower_indr_block_cb_priv *priv = cb_priv; 1643 1644 list_del(&priv->list); 1645 kfree(priv); 1646 } 1647 1648 static int 1649 nfp_flower_setup_indr_tc_block(struct net_device *netdev, struct nfp_app *app, 1650 struct flow_block_offload *f, void *data, 1651 void (*cleanup)(struct flow_block_cb *block_cb)) 1652 { 1653 struct nfp_flower_indr_block_cb_priv *cb_priv; 1654 struct nfp_flower_priv *priv = app->priv; 1655 struct flow_block_cb *block_cb; 1656 1657 if ((f->binder_type != FLOW_BLOCK_BINDER_TYPE_CLSACT_INGRESS && 1658 !nfp_flower_internal_port_can_offload(app, netdev)) || 1659 (f->binder_type != FLOW_BLOCK_BINDER_TYPE_CLSACT_EGRESS && 1660 nfp_flower_internal_port_can_offload(app, netdev))) 1661 return -EOPNOTSUPP; 1662 1663 switch (f->command) { 1664 case FLOW_BLOCK_BIND: 1665 cb_priv = nfp_flower_indr_block_cb_priv_lookup(app, netdev); 1666 if (cb_priv && 1667 flow_block_cb_is_busy(nfp_flower_setup_indr_block_cb, 1668 cb_priv, 1669 &nfp_block_cb_list)) 1670 return -EBUSY; 1671 1672 cb_priv = kmalloc(sizeof(*cb_priv), GFP_KERNEL); 1673 if (!cb_priv) 1674 return -ENOMEM; 1675 1676 cb_priv->netdev = netdev; 1677 cb_priv->app = app; 1678 list_add(&cb_priv->list, &priv->indr_block_cb_priv); 1679 1680 block_cb = flow_indr_block_cb_alloc(nfp_flower_setup_indr_block_cb, 1681 cb_priv, cb_priv, 1682 nfp_flower_setup_indr_tc_release, 1683 f, netdev, data, app, cleanup); 1684 if (IS_ERR(block_cb)) { 1685 list_del(&cb_priv->list); 1686 kfree(cb_priv); 1687 return PTR_ERR(block_cb); 1688 } 1689 1690 flow_block_cb_add(block_cb, f); 1691 list_add_tail(&block_cb->driver_list, &nfp_block_cb_list); 1692 return 0; 1693 case FLOW_BLOCK_UNBIND: 1694 cb_priv = nfp_flower_indr_block_cb_priv_lookup(app, netdev); 1695 if (!cb_priv) 1696 return -ENOENT; 1697 1698 block_cb = flow_block_cb_lookup(f->block, 1699 nfp_flower_setup_indr_block_cb, 1700 cb_priv); 1701 if (!block_cb) 1702 return -ENOENT; 1703 1704 flow_indr_block_cb_remove(block_cb, f); 1705 list_del(&block_cb->driver_list); 1706 return 0; 1707 default: 1708 return -EOPNOTSUPP; 1709 } 1710 return 0; 1711 } 1712 1713 int 1714 nfp_flower_indr_setup_tc_cb(struct net_device *netdev, void *cb_priv, 1715 enum tc_setup_type type, void *type_data, 1716 void *data, 1717 void (*cleanup)(struct flow_block_cb *block_cb)) 1718 { 1719 if (!nfp_fl_is_netdev_to_offload(netdev)) 1720 return -EOPNOTSUPP; 1721 1722 switch (type) { 1723 case TC_SETUP_BLOCK: 1724 return nfp_flower_setup_indr_tc_block(netdev, cb_priv, 1725 type_data, data, cleanup); 1726 default: 1727 return -EOPNOTSUPP; 1728 } 1729 } 1730