1 // SPDX-License-Identifier: (GPL-2.0-only OR BSD-2-Clause)
2 /* Copyright (C) 2017-2018 Netronome Systems, Inc. */
3 
4 #include <linux/skbuff.h>
5 #include <net/devlink.h>
6 #include <net/pkt_cls.h>
7 
8 #include "cmsg.h"
9 #include "main.h"
10 #include "../nfpcore/nfp_cpp.h"
11 #include "../nfpcore/nfp_nsp.h"
12 #include "../nfp_app.h"
13 #include "../nfp_main.h"
14 #include "../nfp_net.h"
15 #include "../nfp_port.h"
16 
17 #define NFP_FLOWER_SUPPORTED_TCPFLAGS \
18 	(TCPHDR_FIN | TCPHDR_SYN | TCPHDR_RST | \
19 	 TCPHDR_PSH | TCPHDR_URG)
20 
21 #define NFP_FLOWER_SUPPORTED_CTLFLAGS \
22 	(FLOW_DIS_IS_FRAGMENT | \
23 	 FLOW_DIS_FIRST_FRAG)
24 
25 #define NFP_FLOWER_WHITELIST_DISSECTOR \
26 	(BIT(FLOW_DISSECTOR_KEY_CONTROL) | \
27 	 BIT(FLOW_DISSECTOR_KEY_BASIC) | \
28 	 BIT(FLOW_DISSECTOR_KEY_IPV4_ADDRS) | \
29 	 BIT(FLOW_DISSECTOR_KEY_IPV6_ADDRS) | \
30 	 BIT(FLOW_DISSECTOR_KEY_TCP) | \
31 	 BIT(FLOW_DISSECTOR_KEY_PORTS) | \
32 	 BIT(FLOW_DISSECTOR_KEY_ETH_ADDRS) | \
33 	 BIT(FLOW_DISSECTOR_KEY_VLAN) | \
34 	 BIT(FLOW_DISSECTOR_KEY_ENC_KEYID) | \
35 	 BIT(FLOW_DISSECTOR_KEY_ENC_IPV4_ADDRS) | \
36 	 BIT(FLOW_DISSECTOR_KEY_ENC_IPV6_ADDRS) | \
37 	 BIT(FLOW_DISSECTOR_KEY_ENC_CONTROL) | \
38 	 BIT(FLOW_DISSECTOR_KEY_ENC_PORTS) | \
39 	 BIT(FLOW_DISSECTOR_KEY_ENC_OPTS) | \
40 	 BIT(FLOW_DISSECTOR_KEY_ENC_IP) | \
41 	 BIT(FLOW_DISSECTOR_KEY_MPLS) | \
42 	 BIT(FLOW_DISSECTOR_KEY_IP))
43 
44 #define NFP_FLOWER_WHITELIST_TUN_DISSECTOR \
45 	(BIT(FLOW_DISSECTOR_KEY_ENC_CONTROL) | \
46 	 BIT(FLOW_DISSECTOR_KEY_ENC_KEYID) | \
47 	 BIT(FLOW_DISSECTOR_KEY_ENC_IPV4_ADDRS) | \
48 	 BIT(FLOW_DISSECTOR_KEY_ENC_IPV6_ADDRS) | \
49 	 BIT(FLOW_DISSECTOR_KEY_ENC_OPTS) | \
50 	 BIT(FLOW_DISSECTOR_KEY_ENC_PORTS) | \
51 	 BIT(FLOW_DISSECTOR_KEY_ENC_IP))
52 
53 #define NFP_FLOWER_WHITELIST_TUN_DISSECTOR_R \
54 	(BIT(FLOW_DISSECTOR_KEY_ENC_CONTROL) | \
55 	 BIT(FLOW_DISSECTOR_KEY_ENC_IPV4_ADDRS))
56 
57 #define NFP_FLOWER_WHITELIST_TUN_DISSECTOR_V6_R \
58 	(BIT(FLOW_DISSECTOR_KEY_ENC_CONTROL) | \
59 	 BIT(FLOW_DISSECTOR_KEY_ENC_IPV6_ADDRS))
60 
61 #define NFP_FLOWER_MERGE_FIELDS \
62 	(NFP_FLOWER_LAYER_PORT | \
63 	 NFP_FLOWER_LAYER_MAC | \
64 	 NFP_FLOWER_LAYER_TP | \
65 	 NFP_FLOWER_LAYER_IPV4 | \
66 	 NFP_FLOWER_LAYER_IPV6)
67 
68 #define NFP_FLOWER_PRE_TUN_RULE_FIELDS \
69 	(NFP_FLOWER_LAYER_PORT | \
70 	 NFP_FLOWER_LAYER_MAC | \
71 	 NFP_FLOWER_LAYER_IPV4 | \
72 	 NFP_FLOWER_LAYER_IPV6)
73 
74 struct nfp_flower_merge_check {
75 	union {
76 		struct {
77 			__be16 tci;
78 			struct nfp_flower_mac_mpls l2;
79 			struct nfp_flower_tp_ports l4;
80 			union {
81 				struct nfp_flower_ipv4 ipv4;
82 				struct nfp_flower_ipv6 ipv6;
83 			};
84 		};
85 		unsigned long vals[8];
86 	};
87 };
88 
89 static int
90 nfp_flower_xmit_flow(struct nfp_app *app, struct nfp_fl_payload *nfp_flow,
91 		     u8 mtype)
92 {
93 	u32 meta_len, key_len, mask_len, act_len, tot_len;
94 	struct sk_buff *skb;
95 	unsigned char *msg;
96 
97 	meta_len =  sizeof(struct nfp_fl_rule_metadata);
98 	key_len = nfp_flow->meta.key_len;
99 	mask_len = nfp_flow->meta.mask_len;
100 	act_len = nfp_flow->meta.act_len;
101 
102 	tot_len = meta_len + key_len + mask_len + act_len;
103 
104 	/* Convert to long words as firmware expects
105 	 * lengths in units of NFP_FL_LW_SIZ.
106 	 */
107 	nfp_flow->meta.key_len >>= NFP_FL_LW_SIZ;
108 	nfp_flow->meta.mask_len >>= NFP_FL_LW_SIZ;
109 	nfp_flow->meta.act_len >>= NFP_FL_LW_SIZ;
110 
111 	skb = nfp_flower_cmsg_alloc(app, tot_len, mtype, GFP_KERNEL);
112 	if (!skb)
113 		return -ENOMEM;
114 
115 	msg = nfp_flower_cmsg_get_data(skb);
116 	memcpy(msg, &nfp_flow->meta, meta_len);
117 	memcpy(&msg[meta_len], nfp_flow->unmasked_data, key_len);
118 	memcpy(&msg[meta_len + key_len], nfp_flow->mask_data, mask_len);
119 	memcpy(&msg[meta_len + key_len + mask_len],
120 	       nfp_flow->action_data, act_len);
121 
122 	/* Convert back to bytes as software expects
123 	 * lengths in units of bytes.
124 	 */
125 	nfp_flow->meta.key_len <<= NFP_FL_LW_SIZ;
126 	nfp_flow->meta.mask_len <<= NFP_FL_LW_SIZ;
127 	nfp_flow->meta.act_len <<= NFP_FL_LW_SIZ;
128 
129 	nfp_ctrl_tx(app->ctrl, skb);
130 
131 	return 0;
132 }
133 
134 static bool nfp_flower_check_higher_than_mac(struct flow_cls_offload *f)
135 {
136 	struct flow_rule *rule = flow_cls_offload_flow_rule(f);
137 
138 	return flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_IPV4_ADDRS) ||
139 	       flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_IPV6_ADDRS) ||
140 	       flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_PORTS) ||
141 	       flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ICMP);
142 }
143 
144 static bool nfp_flower_check_higher_than_l3(struct flow_cls_offload *f)
145 {
146 	struct flow_rule *rule = flow_cls_offload_flow_rule(f);
147 
148 	return flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_PORTS) ||
149 	       flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ICMP);
150 }
151 
152 static int
153 nfp_flower_calc_opt_layer(struct flow_dissector_key_enc_opts *enc_opts,
154 			  u32 *key_layer_two, int *key_size, bool ipv6,
155 			  struct netlink_ext_ack *extack)
156 {
157 	if (enc_opts->len > NFP_FL_MAX_GENEVE_OPT_KEY ||
158 	    (ipv6 && enc_opts->len > NFP_FL_MAX_GENEVE_OPT_KEY_V6)) {
159 		NL_SET_ERR_MSG_MOD(extack, "unsupported offload: geneve options exceed maximum length");
160 		return -EOPNOTSUPP;
161 	}
162 
163 	if (enc_opts->len > 0) {
164 		*key_layer_two |= NFP_FLOWER_LAYER2_GENEVE_OP;
165 		*key_size += sizeof(struct nfp_flower_geneve_options);
166 	}
167 
168 	return 0;
169 }
170 
171 static int
172 nfp_flower_calc_udp_tun_layer(struct flow_dissector_key_ports *enc_ports,
173 			      struct flow_dissector_key_enc_opts *enc_op,
174 			      u32 *key_layer_two, u8 *key_layer, int *key_size,
175 			      struct nfp_flower_priv *priv,
176 			      enum nfp_flower_tun_type *tun_type, bool ipv6,
177 			      struct netlink_ext_ack *extack)
178 {
179 	int err;
180 
181 	switch (enc_ports->dst) {
182 	case htons(IANA_VXLAN_UDP_PORT):
183 		*tun_type = NFP_FL_TUNNEL_VXLAN;
184 		*key_layer |= NFP_FLOWER_LAYER_VXLAN;
185 
186 		if (ipv6) {
187 			*key_layer |= NFP_FLOWER_LAYER_EXT_META;
188 			*key_size += sizeof(struct nfp_flower_ext_meta);
189 			*key_layer_two |= NFP_FLOWER_LAYER2_TUN_IPV6;
190 			*key_size += sizeof(struct nfp_flower_ipv6_udp_tun);
191 		} else {
192 			*key_size += sizeof(struct nfp_flower_ipv4_udp_tun);
193 		}
194 
195 		if (enc_op) {
196 			NL_SET_ERR_MSG_MOD(extack, "unsupported offload: encap options not supported on vxlan tunnels");
197 			return -EOPNOTSUPP;
198 		}
199 		break;
200 	case htons(GENEVE_UDP_PORT):
201 		if (!(priv->flower_ext_feats & NFP_FL_FEATS_GENEVE)) {
202 			NL_SET_ERR_MSG_MOD(extack, "unsupported offload: loaded firmware does not support geneve offload");
203 			return -EOPNOTSUPP;
204 		}
205 		*tun_type = NFP_FL_TUNNEL_GENEVE;
206 		*key_layer |= NFP_FLOWER_LAYER_EXT_META;
207 		*key_size += sizeof(struct nfp_flower_ext_meta);
208 		*key_layer_two |= NFP_FLOWER_LAYER2_GENEVE;
209 
210 		if (ipv6) {
211 			*key_layer_two |= NFP_FLOWER_LAYER2_TUN_IPV6;
212 			*key_size += sizeof(struct nfp_flower_ipv6_udp_tun);
213 		} else {
214 			*key_size += sizeof(struct nfp_flower_ipv4_udp_tun);
215 		}
216 
217 		if (!enc_op)
218 			break;
219 		if (!(priv->flower_ext_feats & NFP_FL_FEATS_GENEVE_OPT)) {
220 			NL_SET_ERR_MSG_MOD(extack, "unsupported offload: loaded firmware does not support geneve option offload");
221 			return -EOPNOTSUPP;
222 		}
223 		err = nfp_flower_calc_opt_layer(enc_op, key_layer_two, key_size,
224 						ipv6, extack);
225 		if (err)
226 			return err;
227 		break;
228 	default:
229 		NL_SET_ERR_MSG_MOD(extack, "unsupported offload: tunnel type unknown");
230 		return -EOPNOTSUPP;
231 	}
232 
233 	return 0;
234 }
235 
236 static int
237 nfp_flower_calculate_key_layers(struct nfp_app *app,
238 				struct net_device *netdev,
239 				struct nfp_fl_key_ls *ret_key_ls,
240 				struct flow_cls_offload *flow,
241 				enum nfp_flower_tun_type *tun_type,
242 				struct netlink_ext_ack *extack)
243 {
244 	struct flow_rule *rule = flow_cls_offload_flow_rule(flow);
245 	struct flow_dissector *dissector = rule->match.dissector;
246 	struct flow_match_basic basic = { NULL, NULL};
247 	struct nfp_flower_priv *priv = app->priv;
248 	u32 key_layer_two;
249 	u8 key_layer;
250 	int key_size;
251 	int err;
252 
253 	if (dissector->used_keys & ~NFP_FLOWER_WHITELIST_DISSECTOR) {
254 		NL_SET_ERR_MSG_MOD(extack, "unsupported offload: match not supported");
255 		return -EOPNOTSUPP;
256 	}
257 
258 	/* If any tun dissector is used then the required set must be used. */
259 	if (dissector->used_keys & NFP_FLOWER_WHITELIST_TUN_DISSECTOR &&
260 	    (dissector->used_keys & NFP_FLOWER_WHITELIST_TUN_DISSECTOR_V6_R)
261 	    != NFP_FLOWER_WHITELIST_TUN_DISSECTOR_V6_R &&
262 	    (dissector->used_keys & NFP_FLOWER_WHITELIST_TUN_DISSECTOR_R)
263 	    != NFP_FLOWER_WHITELIST_TUN_DISSECTOR_R) {
264 		NL_SET_ERR_MSG_MOD(extack, "unsupported offload: tunnel match not supported");
265 		return -EOPNOTSUPP;
266 	}
267 
268 	key_layer_two = 0;
269 	key_layer = NFP_FLOWER_LAYER_PORT;
270 	key_size = sizeof(struct nfp_flower_meta_tci) +
271 		   sizeof(struct nfp_flower_in_port);
272 
273 	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ETH_ADDRS) ||
274 	    flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_MPLS)) {
275 		key_layer |= NFP_FLOWER_LAYER_MAC;
276 		key_size += sizeof(struct nfp_flower_mac_mpls);
277 	}
278 
279 	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_VLAN)) {
280 		struct flow_match_vlan vlan;
281 
282 		flow_rule_match_vlan(rule, &vlan);
283 		if (!(priv->flower_ext_feats & NFP_FL_FEATS_VLAN_PCP) &&
284 		    vlan.key->vlan_priority) {
285 			NL_SET_ERR_MSG_MOD(extack, "unsupported offload: loaded firmware does not support VLAN PCP offload");
286 			return -EOPNOTSUPP;
287 		}
288 	}
289 
290 	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ENC_CONTROL)) {
291 		struct flow_match_enc_opts enc_op = { NULL, NULL };
292 		struct flow_match_ipv4_addrs ipv4_addrs;
293 		struct flow_match_ipv6_addrs ipv6_addrs;
294 		struct flow_match_control enc_ctl;
295 		struct flow_match_ports enc_ports;
296 		bool ipv6_tun = false;
297 
298 		flow_rule_match_enc_control(rule, &enc_ctl);
299 
300 		if (enc_ctl.mask->addr_type != 0xffff) {
301 			NL_SET_ERR_MSG_MOD(extack, "unsupported offload: wildcarded protocols on tunnels are not supported");
302 			return -EOPNOTSUPP;
303 		}
304 
305 		ipv6_tun = enc_ctl.key->addr_type ==
306 				FLOW_DISSECTOR_KEY_IPV6_ADDRS;
307 		if (ipv6_tun &&
308 		    !(priv->flower_ext_feats & NFP_FL_FEATS_IPV6_TUN)) {
309 			NL_SET_ERR_MSG_MOD(extack, "unsupported offload: firmware does not support IPv6 tunnels");
310 			return -EOPNOTSUPP;
311 		}
312 
313 		if (!ipv6_tun &&
314 		    enc_ctl.key->addr_type != FLOW_DISSECTOR_KEY_IPV4_ADDRS) {
315 			NL_SET_ERR_MSG_MOD(extack, "unsupported offload: tunnel address type not IPv4 or IPv6");
316 			return -EOPNOTSUPP;
317 		}
318 
319 		if (ipv6_tun) {
320 			flow_rule_match_enc_ipv6_addrs(rule, &ipv6_addrs);
321 			if (memchr_inv(&ipv6_addrs.mask->dst, 0xff,
322 				       sizeof(ipv6_addrs.mask->dst))) {
323 				NL_SET_ERR_MSG_MOD(extack, "unsupported offload: only an exact match IPv6 destination address is supported");
324 				return -EOPNOTSUPP;
325 			}
326 		} else {
327 			flow_rule_match_enc_ipv4_addrs(rule, &ipv4_addrs);
328 			if (ipv4_addrs.mask->dst != cpu_to_be32(~0)) {
329 				NL_SET_ERR_MSG_MOD(extack, "unsupported offload: only an exact match IPv4 destination address is supported");
330 				return -EOPNOTSUPP;
331 			}
332 		}
333 
334 		if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ENC_OPTS))
335 			flow_rule_match_enc_opts(rule, &enc_op);
336 
337 		if (!flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ENC_PORTS)) {
338 			/* check if GRE, which has no enc_ports */
339 			if (!netif_is_gretap(netdev)) {
340 				NL_SET_ERR_MSG_MOD(extack, "unsupported offload: an exact match on L4 destination port is required for non-GRE tunnels");
341 				return -EOPNOTSUPP;
342 			}
343 
344 			*tun_type = NFP_FL_TUNNEL_GRE;
345 			key_layer |= NFP_FLOWER_LAYER_EXT_META;
346 			key_size += sizeof(struct nfp_flower_ext_meta);
347 			key_layer_two |= NFP_FLOWER_LAYER2_GRE;
348 
349 			if (ipv6_tun) {
350 				key_layer_two |= NFP_FLOWER_LAYER2_TUN_IPV6;
351 				key_size +=
352 					sizeof(struct nfp_flower_ipv6_udp_tun);
353 			} else {
354 				key_size +=
355 					sizeof(struct nfp_flower_ipv4_udp_tun);
356 			}
357 
358 			if (enc_op.key) {
359 				NL_SET_ERR_MSG_MOD(extack, "unsupported offload: encap options not supported on GRE tunnels");
360 				return -EOPNOTSUPP;
361 			}
362 		} else {
363 			flow_rule_match_enc_ports(rule, &enc_ports);
364 			if (enc_ports.mask->dst != cpu_to_be16(~0)) {
365 				NL_SET_ERR_MSG_MOD(extack, "unsupported offload: only an exact match L4 destination port is supported");
366 				return -EOPNOTSUPP;
367 			}
368 
369 			err = nfp_flower_calc_udp_tun_layer(enc_ports.key,
370 							    enc_op.key,
371 							    &key_layer_two,
372 							    &key_layer,
373 							    &key_size, priv,
374 							    tun_type, ipv6_tun,
375 							    extack);
376 			if (err)
377 				return err;
378 
379 			/* Ensure the ingress netdev matches the expected
380 			 * tun type.
381 			 */
382 			if (!nfp_fl_netdev_is_tunnel_type(netdev, *tun_type)) {
383 				NL_SET_ERR_MSG_MOD(extack, "unsupported offload: ingress netdev does not match the expected tunnel type");
384 				return -EOPNOTSUPP;
385 			}
386 		}
387 	}
388 
389 	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_BASIC))
390 		flow_rule_match_basic(rule, &basic);
391 
392 	if (basic.mask && basic.mask->n_proto) {
393 		/* Ethernet type is present in the key. */
394 		switch (basic.key->n_proto) {
395 		case cpu_to_be16(ETH_P_IP):
396 			key_layer |= NFP_FLOWER_LAYER_IPV4;
397 			key_size += sizeof(struct nfp_flower_ipv4);
398 			break;
399 
400 		case cpu_to_be16(ETH_P_IPV6):
401 			key_layer |= NFP_FLOWER_LAYER_IPV6;
402 			key_size += sizeof(struct nfp_flower_ipv6);
403 			break;
404 
405 		/* Currently we do not offload ARP
406 		 * because we rely on it to get to the host.
407 		 */
408 		case cpu_to_be16(ETH_P_ARP):
409 			NL_SET_ERR_MSG_MOD(extack, "unsupported offload: ARP not supported");
410 			return -EOPNOTSUPP;
411 
412 		case cpu_to_be16(ETH_P_MPLS_UC):
413 		case cpu_to_be16(ETH_P_MPLS_MC):
414 			if (!(key_layer & NFP_FLOWER_LAYER_MAC)) {
415 				key_layer |= NFP_FLOWER_LAYER_MAC;
416 				key_size += sizeof(struct nfp_flower_mac_mpls);
417 			}
418 			break;
419 
420 		/* Will be included in layer 2. */
421 		case cpu_to_be16(ETH_P_8021Q):
422 			break;
423 
424 		default:
425 			NL_SET_ERR_MSG_MOD(extack, "unsupported offload: match on given EtherType is not supported");
426 			return -EOPNOTSUPP;
427 		}
428 	} else if (nfp_flower_check_higher_than_mac(flow)) {
429 		NL_SET_ERR_MSG_MOD(extack, "unsupported offload: cannot match above L2 without specified EtherType");
430 		return -EOPNOTSUPP;
431 	}
432 
433 	if (basic.mask && basic.mask->ip_proto) {
434 		switch (basic.key->ip_proto) {
435 		case IPPROTO_TCP:
436 		case IPPROTO_UDP:
437 		case IPPROTO_SCTP:
438 		case IPPROTO_ICMP:
439 		case IPPROTO_ICMPV6:
440 			key_layer |= NFP_FLOWER_LAYER_TP;
441 			key_size += sizeof(struct nfp_flower_tp_ports);
442 			break;
443 		}
444 	}
445 
446 	if (!(key_layer & NFP_FLOWER_LAYER_TP) &&
447 	    nfp_flower_check_higher_than_l3(flow)) {
448 		NL_SET_ERR_MSG_MOD(extack, "unsupported offload: cannot match on L4 information without specified IP protocol type");
449 		return -EOPNOTSUPP;
450 	}
451 
452 	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_TCP)) {
453 		struct flow_match_tcp tcp;
454 		u32 tcp_flags;
455 
456 		flow_rule_match_tcp(rule, &tcp);
457 		tcp_flags = be16_to_cpu(tcp.key->flags);
458 
459 		if (tcp_flags & ~NFP_FLOWER_SUPPORTED_TCPFLAGS) {
460 			NL_SET_ERR_MSG_MOD(extack, "unsupported offload: no match support for selected TCP flags");
461 			return -EOPNOTSUPP;
462 		}
463 
464 		/* We only support PSH and URG flags when either
465 		 * FIN, SYN or RST is present as well.
466 		 */
467 		if ((tcp_flags & (TCPHDR_PSH | TCPHDR_URG)) &&
468 		    !(tcp_flags & (TCPHDR_FIN | TCPHDR_SYN | TCPHDR_RST))) {
469 			NL_SET_ERR_MSG_MOD(extack, "unsupported offload: PSH and URG is only supported when used with FIN, SYN or RST");
470 			return -EOPNOTSUPP;
471 		}
472 
473 		/* We need to store TCP flags in the either the IPv4 or IPv6 key
474 		 * space, thus we need to ensure we include a IPv4/IPv6 key
475 		 * layer if we have not done so already.
476 		 */
477 		if (!basic.key) {
478 			NL_SET_ERR_MSG_MOD(extack, "unsupported offload: match on TCP flags requires a match on L3 protocol");
479 			return -EOPNOTSUPP;
480 		}
481 
482 		if (!(key_layer & NFP_FLOWER_LAYER_IPV4) &&
483 		    !(key_layer & NFP_FLOWER_LAYER_IPV6)) {
484 			switch (basic.key->n_proto) {
485 			case cpu_to_be16(ETH_P_IP):
486 				key_layer |= NFP_FLOWER_LAYER_IPV4;
487 				key_size += sizeof(struct nfp_flower_ipv4);
488 				break;
489 
490 			case cpu_to_be16(ETH_P_IPV6):
491 					key_layer |= NFP_FLOWER_LAYER_IPV6;
492 				key_size += sizeof(struct nfp_flower_ipv6);
493 				break;
494 
495 			default:
496 				NL_SET_ERR_MSG_MOD(extack, "unsupported offload: match on TCP flags requires a match on IPv4/IPv6");
497 				return -EOPNOTSUPP;
498 			}
499 		}
500 	}
501 
502 	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_CONTROL)) {
503 		struct flow_match_control ctl;
504 
505 		flow_rule_match_control(rule, &ctl);
506 		if (ctl.key->flags & ~NFP_FLOWER_SUPPORTED_CTLFLAGS) {
507 			NL_SET_ERR_MSG_MOD(extack, "unsupported offload: match on unknown control flag");
508 			return -EOPNOTSUPP;
509 		}
510 	}
511 
512 	ret_key_ls->key_layer = key_layer;
513 	ret_key_ls->key_layer_two = key_layer_two;
514 	ret_key_ls->key_size = key_size;
515 
516 	return 0;
517 }
518 
519 static struct nfp_fl_payload *
520 nfp_flower_allocate_new(struct nfp_fl_key_ls *key_layer)
521 {
522 	struct nfp_fl_payload *flow_pay;
523 
524 	flow_pay = kmalloc(sizeof(*flow_pay), GFP_KERNEL);
525 	if (!flow_pay)
526 		return NULL;
527 
528 	flow_pay->meta.key_len = key_layer->key_size;
529 	flow_pay->unmasked_data = kmalloc(key_layer->key_size, GFP_KERNEL);
530 	if (!flow_pay->unmasked_data)
531 		goto err_free_flow;
532 
533 	flow_pay->meta.mask_len = key_layer->key_size;
534 	flow_pay->mask_data = kmalloc(key_layer->key_size, GFP_KERNEL);
535 	if (!flow_pay->mask_data)
536 		goto err_free_unmasked;
537 
538 	flow_pay->action_data = kmalloc(NFP_FL_MAX_A_SIZ, GFP_KERNEL);
539 	if (!flow_pay->action_data)
540 		goto err_free_mask;
541 
542 	flow_pay->nfp_tun_ipv4_addr = 0;
543 	flow_pay->nfp_tun_ipv6 = NULL;
544 	flow_pay->meta.flags = 0;
545 	INIT_LIST_HEAD(&flow_pay->linked_flows);
546 	flow_pay->in_hw = false;
547 	flow_pay->pre_tun_rule.dev = NULL;
548 
549 	return flow_pay;
550 
551 err_free_mask:
552 	kfree(flow_pay->mask_data);
553 err_free_unmasked:
554 	kfree(flow_pay->unmasked_data);
555 err_free_flow:
556 	kfree(flow_pay);
557 	return NULL;
558 }
559 
560 static int
561 nfp_flower_update_merge_with_actions(struct nfp_fl_payload *flow,
562 				     struct nfp_flower_merge_check *merge,
563 				     u8 *last_act_id, int *act_out)
564 {
565 	struct nfp_fl_set_ipv6_tc_hl_fl *ipv6_tc_hl_fl;
566 	struct nfp_fl_set_ip4_ttl_tos *ipv4_ttl_tos;
567 	struct nfp_fl_set_ip4_addrs *ipv4_add;
568 	struct nfp_fl_set_ipv6_addr *ipv6_add;
569 	struct nfp_fl_push_vlan *push_vlan;
570 	struct nfp_fl_pre_tunnel *pre_tun;
571 	struct nfp_fl_set_tport *tport;
572 	struct nfp_fl_set_eth *eth;
573 	struct nfp_fl_act_head *a;
574 	unsigned int act_off = 0;
575 	bool ipv6_tun = false;
576 	u8 act_id = 0;
577 	u8 *ports;
578 	int i;
579 
580 	while (act_off < flow->meta.act_len) {
581 		a = (struct nfp_fl_act_head *)&flow->action_data[act_off];
582 		act_id = a->jump_id;
583 
584 		switch (act_id) {
585 		case NFP_FL_ACTION_OPCODE_OUTPUT:
586 			if (act_out)
587 				(*act_out)++;
588 			break;
589 		case NFP_FL_ACTION_OPCODE_PUSH_VLAN:
590 			push_vlan = (struct nfp_fl_push_vlan *)a;
591 			if (push_vlan->vlan_tci)
592 				merge->tci = cpu_to_be16(0xffff);
593 			break;
594 		case NFP_FL_ACTION_OPCODE_POP_VLAN:
595 			merge->tci = cpu_to_be16(0);
596 			break;
597 		case NFP_FL_ACTION_OPCODE_SET_TUNNEL:
598 			/* New tunnel header means l2 to l4 can be matched. */
599 			eth_broadcast_addr(&merge->l2.mac_dst[0]);
600 			eth_broadcast_addr(&merge->l2.mac_src[0]);
601 			memset(&merge->l4, 0xff,
602 			       sizeof(struct nfp_flower_tp_ports));
603 			if (ipv6_tun)
604 				memset(&merge->ipv6, 0xff,
605 				       sizeof(struct nfp_flower_ipv6));
606 			else
607 				memset(&merge->ipv4, 0xff,
608 				       sizeof(struct nfp_flower_ipv4));
609 			break;
610 		case NFP_FL_ACTION_OPCODE_SET_ETHERNET:
611 			eth = (struct nfp_fl_set_eth *)a;
612 			for (i = 0; i < ETH_ALEN; i++)
613 				merge->l2.mac_dst[i] |= eth->eth_addr_mask[i];
614 			for (i = 0; i < ETH_ALEN; i++)
615 				merge->l2.mac_src[i] |=
616 					eth->eth_addr_mask[ETH_ALEN + i];
617 			break;
618 		case NFP_FL_ACTION_OPCODE_SET_IPV4_ADDRS:
619 			ipv4_add = (struct nfp_fl_set_ip4_addrs *)a;
620 			merge->ipv4.ipv4_src |= ipv4_add->ipv4_src_mask;
621 			merge->ipv4.ipv4_dst |= ipv4_add->ipv4_dst_mask;
622 			break;
623 		case NFP_FL_ACTION_OPCODE_SET_IPV4_TTL_TOS:
624 			ipv4_ttl_tos = (struct nfp_fl_set_ip4_ttl_tos *)a;
625 			merge->ipv4.ip_ext.ttl |= ipv4_ttl_tos->ipv4_ttl_mask;
626 			merge->ipv4.ip_ext.tos |= ipv4_ttl_tos->ipv4_tos_mask;
627 			break;
628 		case NFP_FL_ACTION_OPCODE_SET_IPV6_SRC:
629 			ipv6_add = (struct nfp_fl_set_ipv6_addr *)a;
630 			for (i = 0; i < 4; i++)
631 				merge->ipv6.ipv6_src.in6_u.u6_addr32[i] |=
632 					ipv6_add->ipv6[i].mask;
633 			break;
634 		case NFP_FL_ACTION_OPCODE_SET_IPV6_DST:
635 			ipv6_add = (struct nfp_fl_set_ipv6_addr *)a;
636 			for (i = 0; i < 4; i++)
637 				merge->ipv6.ipv6_dst.in6_u.u6_addr32[i] |=
638 					ipv6_add->ipv6[i].mask;
639 			break;
640 		case NFP_FL_ACTION_OPCODE_SET_IPV6_TC_HL_FL:
641 			ipv6_tc_hl_fl = (struct nfp_fl_set_ipv6_tc_hl_fl *)a;
642 			merge->ipv6.ip_ext.ttl |=
643 				ipv6_tc_hl_fl->ipv6_hop_limit_mask;
644 			merge->ipv6.ip_ext.tos |= ipv6_tc_hl_fl->ipv6_tc_mask;
645 			merge->ipv6.ipv6_flow_label_exthdr |=
646 				ipv6_tc_hl_fl->ipv6_label_mask;
647 			break;
648 		case NFP_FL_ACTION_OPCODE_SET_UDP:
649 		case NFP_FL_ACTION_OPCODE_SET_TCP:
650 			tport = (struct nfp_fl_set_tport *)a;
651 			ports = (u8 *)&merge->l4.port_src;
652 			for (i = 0; i < 4; i++)
653 				ports[i] |= tport->tp_port_mask[i];
654 			break;
655 		case NFP_FL_ACTION_OPCODE_PRE_TUNNEL:
656 			pre_tun = (struct nfp_fl_pre_tunnel *)a;
657 			ipv6_tun = be16_to_cpu(pre_tun->flags) &
658 					NFP_FL_PRE_TUN_IPV6;
659 			break;
660 		case NFP_FL_ACTION_OPCODE_PRE_LAG:
661 		case NFP_FL_ACTION_OPCODE_PUSH_GENEVE:
662 			break;
663 		default:
664 			return -EOPNOTSUPP;
665 		}
666 
667 		act_off += a->len_lw << NFP_FL_LW_SIZ;
668 	}
669 
670 	if (last_act_id)
671 		*last_act_id = act_id;
672 
673 	return 0;
674 }
675 
676 static int
677 nfp_flower_populate_merge_match(struct nfp_fl_payload *flow,
678 				struct nfp_flower_merge_check *merge,
679 				bool extra_fields)
680 {
681 	struct nfp_flower_meta_tci *meta_tci;
682 	u8 *mask = flow->mask_data;
683 	u8 key_layer, match_size;
684 
685 	memset(merge, 0, sizeof(struct nfp_flower_merge_check));
686 
687 	meta_tci = (struct nfp_flower_meta_tci *)mask;
688 	key_layer = meta_tci->nfp_flow_key_layer;
689 
690 	if (key_layer & ~NFP_FLOWER_MERGE_FIELDS && !extra_fields)
691 		return -EOPNOTSUPP;
692 
693 	merge->tci = meta_tci->tci;
694 	mask += sizeof(struct nfp_flower_meta_tci);
695 
696 	if (key_layer & NFP_FLOWER_LAYER_EXT_META)
697 		mask += sizeof(struct nfp_flower_ext_meta);
698 
699 	mask += sizeof(struct nfp_flower_in_port);
700 
701 	if (key_layer & NFP_FLOWER_LAYER_MAC) {
702 		match_size = sizeof(struct nfp_flower_mac_mpls);
703 		memcpy(&merge->l2, mask, match_size);
704 		mask += match_size;
705 	}
706 
707 	if (key_layer & NFP_FLOWER_LAYER_TP) {
708 		match_size = sizeof(struct nfp_flower_tp_ports);
709 		memcpy(&merge->l4, mask, match_size);
710 		mask += match_size;
711 	}
712 
713 	if (key_layer & NFP_FLOWER_LAYER_IPV4) {
714 		match_size = sizeof(struct nfp_flower_ipv4);
715 		memcpy(&merge->ipv4, mask, match_size);
716 	}
717 
718 	if (key_layer & NFP_FLOWER_LAYER_IPV6) {
719 		match_size = sizeof(struct nfp_flower_ipv6);
720 		memcpy(&merge->ipv6, mask, match_size);
721 	}
722 
723 	return 0;
724 }
725 
726 static int
727 nfp_flower_can_merge(struct nfp_fl_payload *sub_flow1,
728 		     struct nfp_fl_payload *sub_flow2)
729 {
730 	/* Two flows can be merged if sub_flow2 only matches on bits that are
731 	 * either matched by sub_flow1 or set by a sub_flow1 action. This
732 	 * ensures that every packet that hits sub_flow1 and recirculates is
733 	 * guaranteed to hit sub_flow2.
734 	 */
735 	struct nfp_flower_merge_check sub_flow1_merge, sub_flow2_merge;
736 	int err, act_out = 0;
737 	u8 last_act_id = 0;
738 
739 	err = nfp_flower_populate_merge_match(sub_flow1, &sub_flow1_merge,
740 					      true);
741 	if (err)
742 		return err;
743 
744 	err = nfp_flower_populate_merge_match(sub_flow2, &sub_flow2_merge,
745 					      false);
746 	if (err)
747 		return err;
748 
749 	err = nfp_flower_update_merge_with_actions(sub_flow1, &sub_flow1_merge,
750 						   &last_act_id, &act_out);
751 	if (err)
752 		return err;
753 
754 	/* Must only be 1 output action and it must be the last in sequence. */
755 	if (act_out != 1 || last_act_id != NFP_FL_ACTION_OPCODE_OUTPUT)
756 		return -EOPNOTSUPP;
757 
758 	/* Reject merge if sub_flow2 matches on something that is not matched
759 	 * on or set in an action by sub_flow1.
760 	 */
761 	err = bitmap_andnot(sub_flow2_merge.vals, sub_flow2_merge.vals,
762 			    sub_flow1_merge.vals,
763 			    sizeof(struct nfp_flower_merge_check) * 8);
764 	if (err)
765 		return -EINVAL;
766 
767 	return 0;
768 }
769 
770 static unsigned int
771 nfp_flower_copy_pre_actions(char *act_dst, char *act_src, int len,
772 			    bool *tunnel_act)
773 {
774 	unsigned int act_off = 0, act_len;
775 	struct nfp_fl_act_head *a;
776 	u8 act_id = 0;
777 
778 	while (act_off < len) {
779 		a = (struct nfp_fl_act_head *)&act_src[act_off];
780 		act_len = a->len_lw << NFP_FL_LW_SIZ;
781 		act_id = a->jump_id;
782 
783 		switch (act_id) {
784 		case NFP_FL_ACTION_OPCODE_PRE_TUNNEL:
785 			if (tunnel_act)
786 				*tunnel_act = true;
787 			/* fall through */
788 		case NFP_FL_ACTION_OPCODE_PRE_LAG:
789 			memcpy(act_dst + act_off, act_src + act_off, act_len);
790 			break;
791 		default:
792 			return act_off;
793 		}
794 
795 		act_off += act_len;
796 	}
797 
798 	return act_off;
799 }
800 
801 static int
802 nfp_fl_verify_post_tun_acts(char *acts, int len, struct nfp_fl_push_vlan **vlan)
803 {
804 	struct nfp_fl_act_head *a;
805 	unsigned int act_off = 0;
806 
807 	while (act_off < len) {
808 		a = (struct nfp_fl_act_head *)&acts[act_off];
809 
810 		if (a->jump_id == NFP_FL_ACTION_OPCODE_PUSH_VLAN && !act_off)
811 			*vlan = (struct nfp_fl_push_vlan *)a;
812 		else if (a->jump_id != NFP_FL_ACTION_OPCODE_OUTPUT)
813 			return -EOPNOTSUPP;
814 
815 		act_off += a->len_lw << NFP_FL_LW_SIZ;
816 	}
817 
818 	/* Ensure any VLAN push also has an egress action. */
819 	if (*vlan && act_off <= sizeof(struct nfp_fl_push_vlan))
820 		return -EOPNOTSUPP;
821 
822 	return 0;
823 }
824 
825 static int
826 nfp_fl_push_vlan_after_tun(char *acts, int len, struct nfp_fl_push_vlan *vlan)
827 {
828 	struct nfp_fl_set_tun *tun;
829 	struct nfp_fl_act_head *a;
830 	unsigned int act_off = 0;
831 
832 	while (act_off < len) {
833 		a = (struct nfp_fl_act_head *)&acts[act_off];
834 
835 		if (a->jump_id == NFP_FL_ACTION_OPCODE_SET_TUNNEL) {
836 			tun = (struct nfp_fl_set_tun *)a;
837 			tun->outer_vlan_tpid = vlan->vlan_tpid;
838 			tun->outer_vlan_tci = vlan->vlan_tci;
839 
840 			return 0;
841 		}
842 
843 		act_off += a->len_lw << NFP_FL_LW_SIZ;
844 	}
845 
846 	/* Return error if no tunnel action is found. */
847 	return -EOPNOTSUPP;
848 }
849 
850 static int
851 nfp_flower_merge_action(struct nfp_fl_payload *sub_flow1,
852 			struct nfp_fl_payload *sub_flow2,
853 			struct nfp_fl_payload *merge_flow)
854 {
855 	unsigned int sub1_act_len, sub2_act_len, pre_off1, pre_off2;
856 	struct nfp_fl_push_vlan *post_tun_push_vlan = NULL;
857 	bool tunnel_act = false;
858 	char *merge_act;
859 	int err;
860 
861 	/* The last action of sub_flow1 must be output - do not merge this. */
862 	sub1_act_len = sub_flow1->meta.act_len - sizeof(struct nfp_fl_output);
863 	sub2_act_len = sub_flow2->meta.act_len;
864 
865 	if (!sub2_act_len)
866 		return -EINVAL;
867 
868 	if (sub1_act_len + sub2_act_len > NFP_FL_MAX_A_SIZ)
869 		return -EINVAL;
870 
871 	/* A shortcut can only be applied if there is a single action. */
872 	if (sub1_act_len)
873 		merge_flow->meta.shortcut = cpu_to_be32(NFP_FL_SC_ACT_NULL);
874 	else
875 		merge_flow->meta.shortcut = sub_flow2->meta.shortcut;
876 
877 	merge_flow->meta.act_len = sub1_act_len + sub2_act_len;
878 	merge_act = merge_flow->action_data;
879 
880 	/* Copy any pre-actions to the start of merge flow action list. */
881 	pre_off1 = nfp_flower_copy_pre_actions(merge_act,
882 					       sub_flow1->action_data,
883 					       sub1_act_len, &tunnel_act);
884 	merge_act += pre_off1;
885 	sub1_act_len -= pre_off1;
886 	pre_off2 = nfp_flower_copy_pre_actions(merge_act,
887 					       sub_flow2->action_data,
888 					       sub2_act_len, NULL);
889 	merge_act += pre_off2;
890 	sub2_act_len -= pre_off2;
891 
892 	/* FW does a tunnel push when egressing, therefore, if sub_flow 1 pushes
893 	 * a tunnel, there are restrictions on what sub_flow 2 actions lead to a
894 	 * valid merge.
895 	 */
896 	if (tunnel_act) {
897 		char *post_tun_acts = &sub_flow2->action_data[pre_off2];
898 
899 		err = nfp_fl_verify_post_tun_acts(post_tun_acts, sub2_act_len,
900 						  &post_tun_push_vlan);
901 		if (err)
902 			return err;
903 
904 		if (post_tun_push_vlan) {
905 			pre_off2 += sizeof(*post_tun_push_vlan);
906 			sub2_act_len -= sizeof(*post_tun_push_vlan);
907 		}
908 	}
909 
910 	/* Copy remaining actions from sub_flows 1 and 2. */
911 	memcpy(merge_act, sub_flow1->action_data + pre_off1, sub1_act_len);
912 
913 	if (post_tun_push_vlan) {
914 		/* Update tunnel action in merge to include VLAN push. */
915 		err = nfp_fl_push_vlan_after_tun(merge_act, sub1_act_len,
916 						 post_tun_push_vlan);
917 		if (err)
918 			return err;
919 
920 		merge_flow->meta.act_len -= sizeof(*post_tun_push_vlan);
921 	}
922 
923 	merge_act += sub1_act_len;
924 	memcpy(merge_act, sub_flow2->action_data + pre_off2, sub2_act_len);
925 
926 	return 0;
927 }
928 
929 /* Flow link code should only be accessed under RTNL. */
930 static void nfp_flower_unlink_flow(struct nfp_fl_payload_link *link)
931 {
932 	list_del(&link->merge_flow.list);
933 	list_del(&link->sub_flow.list);
934 	kfree(link);
935 }
936 
937 static void nfp_flower_unlink_flows(struct nfp_fl_payload *merge_flow,
938 				    struct nfp_fl_payload *sub_flow)
939 {
940 	struct nfp_fl_payload_link *link;
941 
942 	list_for_each_entry(link, &merge_flow->linked_flows, merge_flow.list)
943 		if (link->sub_flow.flow == sub_flow) {
944 			nfp_flower_unlink_flow(link);
945 			return;
946 		}
947 }
948 
949 static int nfp_flower_link_flows(struct nfp_fl_payload *merge_flow,
950 				 struct nfp_fl_payload *sub_flow)
951 {
952 	struct nfp_fl_payload_link *link;
953 
954 	link = kmalloc(sizeof(*link), GFP_KERNEL);
955 	if (!link)
956 		return -ENOMEM;
957 
958 	link->merge_flow.flow = merge_flow;
959 	list_add_tail(&link->merge_flow.list, &merge_flow->linked_flows);
960 	link->sub_flow.flow = sub_flow;
961 	list_add_tail(&link->sub_flow.list, &sub_flow->linked_flows);
962 
963 	return 0;
964 }
965 
966 /**
967  * nfp_flower_merge_offloaded_flows() - Merge 2 existing flows to single flow.
968  * @app:	Pointer to the APP handle
969  * @sub_flow1:	Initial flow matched to produce merge hint
970  * @sub_flow2:	Post recirculation flow matched in merge hint
971  *
972  * Combines 2 flows (if valid) to a single flow, removing the initial from hw
973  * and offloading the new, merged flow.
974  *
975  * Return: negative value on error, 0 in success.
976  */
977 int nfp_flower_merge_offloaded_flows(struct nfp_app *app,
978 				     struct nfp_fl_payload *sub_flow1,
979 				     struct nfp_fl_payload *sub_flow2)
980 {
981 	struct flow_cls_offload merge_tc_off;
982 	struct nfp_flower_priv *priv = app->priv;
983 	struct netlink_ext_ack *extack = NULL;
984 	struct nfp_fl_payload *merge_flow;
985 	struct nfp_fl_key_ls merge_key_ls;
986 	int err;
987 
988 	ASSERT_RTNL();
989 
990 	extack = merge_tc_off.common.extack;
991 	if (sub_flow1 == sub_flow2 ||
992 	    nfp_flower_is_merge_flow(sub_flow1) ||
993 	    nfp_flower_is_merge_flow(sub_flow2))
994 		return -EINVAL;
995 
996 	err = nfp_flower_can_merge(sub_flow1, sub_flow2);
997 	if (err)
998 		return err;
999 
1000 	merge_key_ls.key_size = sub_flow1->meta.key_len;
1001 
1002 	merge_flow = nfp_flower_allocate_new(&merge_key_ls);
1003 	if (!merge_flow)
1004 		return -ENOMEM;
1005 
1006 	merge_flow->tc_flower_cookie = (unsigned long)merge_flow;
1007 	merge_flow->ingress_dev = sub_flow1->ingress_dev;
1008 
1009 	memcpy(merge_flow->unmasked_data, sub_flow1->unmasked_data,
1010 	       sub_flow1->meta.key_len);
1011 	memcpy(merge_flow->mask_data, sub_flow1->mask_data,
1012 	       sub_flow1->meta.mask_len);
1013 
1014 	err = nfp_flower_merge_action(sub_flow1, sub_flow2, merge_flow);
1015 	if (err)
1016 		goto err_destroy_merge_flow;
1017 
1018 	err = nfp_flower_link_flows(merge_flow, sub_flow1);
1019 	if (err)
1020 		goto err_destroy_merge_flow;
1021 
1022 	err = nfp_flower_link_flows(merge_flow, sub_flow2);
1023 	if (err)
1024 		goto err_unlink_sub_flow1;
1025 
1026 	merge_tc_off.cookie = merge_flow->tc_flower_cookie;
1027 	err = nfp_compile_flow_metadata(app, &merge_tc_off, merge_flow,
1028 					merge_flow->ingress_dev, extack);
1029 	if (err)
1030 		goto err_unlink_sub_flow2;
1031 
1032 	err = rhashtable_insert_fast(&priv->flow_table, &merge_flow->fl_node,
1033 				     nfp_flower_table_params);
1034 	if (err)
1035 		goto err_release_metadata;
1036 
1037 	err = nfp_flower_xmit_flow(app, merge_flow,
1038 				   NFP_FLOWER_CMSG_TYPE_FLOW_MOD);
1039 	if (err)
1040 		goto err_remove_rhash;
1041 
1042 	merge_flow->in_hw = true;
1043 	sub_flow1->in_hw = false;
1044 
1045 	return 0;
1046 
1047 err_remove_rhash:
1048 	WARN_ON_ONCE(rhashtable_remove_fast(&priv->flow_table,
1049 					    &merge_flow->fl_node,
1050 					    nfp_flower_table_params));
1051 err_release_metadata:
1052 	nfp_modify_flow_metadata(app, merge_flow);
1053 err_unlink_sub_flow2:
1054 	nfp_flower_unlink_flows(merge_flow, sub_flow2);
1055 err_unlink_sub_flow1:
1056 	nfp_flower_unlink_flows(merge_flow, sub_flow1);
1057 err_destroy_merge_flow:
1058 	kfree(merge_flow->action_data);
1059 	kfree(merge_flow->mask_data);
1060 	kfree(merge_flow->unmasked_data);
1061 	kfree(merge_flow);
1062 	return err;
1063 }
1064 
1065 /**
1066  * nfp_flower_validate_pre_tun_rule()
1067  * @app:	Pointer to the APP handle
1068  * @flow:	Pointer to NFP flow representation of rule
1069  * @extack:	Netlink extended ACK report
1070  *
1071  * Verifies the flow as a pre-tunnel rule.
1072  *
1073  * Return: negative value on error, 0 if verified.
1074  */
1075 static int
1076 nfp_flower_validate_pre_tun_rule(struct nfp_app *app,
1077 				 struct nfp_fl_payload *flow,
1078 				 struct netlink_ext_ack *extack)
1079 {
1080 	struct nfp_flower_meta_tci *meta_tci;
1081 	struct nfp_flower_mac_mpls *mac;
1082 	struct nfp_fl_act_head *act;
1083 	u8 *mask = flow->mask_data;
1084 	bool vlan = false;
1085 	int act_offset;
1086 	u8 key_layer;
1087 
1088 	meta_tci = (struct nfp_flower_meta_tci *)flow->unmasked_data;
1089 	if (meta_tci->tci & cpu_to_be16(NFP_FLOWER_MASK_VLAN_PRESENT)) {
1090 		u16 vlan_tci = be16_to_cpu(meta_tci->tci);
1091 
1092 		vlan_tci &= ~NFP_FLOWER_MASK_VLAN_PRESENT;
1093 		flow->pre_tun_rule.vlan_tci = cpu_to_be16(vlan_tci);
1094 		vlan = true;
1095 	} else {
1096 		flow->pre_tun_rule.vlan_tci = cpu_to_be16(0xffff);
1097 	}
1098 
1099 	key_layer = meta_tci->nfp_flow_key_layer;
1100 	if (key_layer & ~NFP_FLOWER_PRE_TUN_RULE_FIELDS) {
1101 		NL_SET_ERR_MSG_MOD(extack, "unsupported pre-tunnel rule: too many match fields");
1102 		return -EOPNOTSUPP;
1103 	}
1104 
1105 	if (!(key_layer & NFP_FLOWER_LAYER_MAC)) {
1106 		NL_SET_ERR_MSG_MOD(extack, "unsupported pre-tunnel rule: MAC fields match required");
1107 		return -EOPNOTSUPP;
1108 	}
1109 
1110 	/* Skip fields known to exist. */
1111 	mask += sizeof(struct nfp_flower_meta_tci);
1112 	mask += sizeof(struct nfp_flower_in_port);
1113 
1114 	/* Ensure destination MAC address is fully matched. */
1115 	mac = (struct nfp_flower_mac_mpls *)mask;
1116 	if (!is_broadcast_ether_addr(&mac->mac_dst[0])) {
1117 		NL_SET_ERR_MSG_MOD(extack, "unsupported pre-tunnel rule: dest MAC field must not be masked");
1118 		return -EOPNOTSUPP;
1119 	}
1120 
1121 	if (key_layer & NFP_FLOWER_LAYER_IPV4 ||
1122 	    key_layer & NFP_FLOWER_LAYER_IPV6) {
1123 		/* Flags and proto fields have same offset in IPv4 and IPv6. */
1124 		int ip_flags = offsetof(struct nfp_flower_ipv4, ip_ext.flags);
1125 		int ip_proto = offsetof(struct nfp_flower_ipv4, ip_ext.proto);
1126 		int size;
1127 		int i;
1128 
1129 		size = key_layer & NFP_FLOWER_LAYER_IPV4 ?
1130 			sizeof(struct nfp_flower_ipv4) :
1131 			sizeof(struct nfp_flower_ipv6);
1132 
1133 		mask += sizeof(struct nfp_flower_mac_mpls);
1134 
1135 		/* Ensure proto and flags are the only IP layer fields. */
1136 		for (i = 0; i < size; i++)
1137 			if (mask[i] && i != ip_flags && i != ip_proto) {
1138 				NL_SET_ERR_MSG_MOD(extack, "unsupported pre-tunnel rule: only flags and proto can be matched in ip header");
1139 				return -EOPNOTSUPP;
1140 			}
1141 	}
1142 
1143 	/* Action must be a single egress or pop_vlan and egress. */
1144 	act_offset = 0;
1145 	act = (struct nfp_fl_act_head *)&flow->action_data[act_offset];
1146 	if (vlan) {
1147 		if (act->jump_id != NFP_FL_ACTION_OPCODE_POP_VLAN) {
1148 			NL_SET_ERR_MSG_MOD(extack, "unsupported pre-tunnel rule: match on VLAN must have VLAN pop as first action");
1149 			return -EOPNOTSUPP;
1150 		}
1151 
1152 		act_offset += act->len_lw << NFP_FL_LW_SIZ;
1153 		act = (struct nfp_fl_act_head *)&flow->action_data[act_offset];
1154 	}
1155 
1156 	if (act->jump_id != NFP_FL_ACTION_OPCODE_OUTPUT) {
1157 		NL_SET_ERR_MSG_MOD(extack, "unsupported pre-tunnel rule: non egress action detected where egress was expected");
1158 		return -EOPNOTSUPP;
1159 	}
1160 
1161 	act_offset += act->len_lw << NFP_FL_LW_SIZ;
1162 
1163 	/* Ensure there are no more actions after egress. */
1164 	if (act_offset != flow->meta.act_len) {
1165 		NL_SET_ERR_MSG_MOD(extack, "unsupported pre-tunnel rule: egress is not the last action");
1166 		return -EOPNOTSUPP;
1167 	}
1168 
1169 	return 0;
1170 }
1171 
1172 /**
1173  * nfp_flower_add_offload() - Adds a new flow to hardware.
1174  * @app:	Pointer to the APP handle
1175  * @netdev:	netdev structure.
1176  * @flow:	TC flower classifier offload structure.
1177  *
1178  * Adds a new flow to the repeated hash structure and action payload.
1179  *
1180  * Return: negative value on error, 0 if configured successfully.
1181  */
1182 static int
1183 nfp_flower_add_offload(struct nfp_app *app, struct net_device *netdev,
1184 		       struct flow_cls_offload *flow)
1185 {
1186 	enum nfp_flower_tun_type tun_type = NFP_FL_TUNNEL_NONE;
1187 	struct nfp_flower_priv *priv = app->priv;
1188 	struct netlink_ext_ack *extack = NULL;
1189 	struct nfp_fl_payload *flow_pay;
1190 	struct nfp_fl_key_ls *key_layer;
1191 	struct nfp_port *port = NULL;
1192 	int err;
1193 
1194 	extack = flow->common.extack;
1195 	if (nfp_netdev_is_nfp_repr(netdev))
1196 		port = nfp_port_from_netdev(netdev);
1197 
1198 	key_layer = kmalloc(sizeof(*key_layer), GFP_KERNEL);
1199 	if (!key_layer)
1200 		return -ENOMEM;
1201 
1202 	err = nfp_flower_calculate_key_layers(app, netdev, key_layer, flow,
1203 					      &tun_type, extack);
1204 	if (err)
1205 		goto err_free_key_ls;
1206 
1207 	flow_pay = nfp_flower_allocate_new(key_layer);
1208 	if (!flow_pay) {
1209 		err = -ENOMEM;
1210 		goto err_free_key_ls;
1211 	}
1212 
1213 	err = nfp_flower_compile_flow_match(app, flow, key_layer, netdev,
1214 					    flow_pay, tun_type, extack);
1215 	if (err)
1216 		goto err_destroy_flow;
1217 
1218 	err = nfp_flower_compile_action(app, flow, netdev, flow_pay, extack);
1219 	if (err)
1220 		goto err_destroy_flow;
1221 
1222 	if (flow_pay->pre_tun_rule.dev) {
1223 		err = nfp_flower_validate_pre_tun_rule(app, flow_pay, extack);
1224 		if (err)
1225 			goto err_destroy_flow;
1226 	}
1227 
1228 	err = nfp_compile_flow_metadata(app, flow, flow_pay, netdev, extack);
1229 	if (err)
1230 		goto err_destroy_flow;
1231 
1232 	flow_pay->tc_flower_cookie = flow->cookie;
1233 	err = rhashtable_insert_fast(&priv->flow_table, &flow_pay->fl_node,
1234 				     nfp_flower_table_params);
1235 	if (err) {
1236 		NL_SET_ERR_MSG_MOD(extack, "invalid entry: cannot insert flow into tables for offloads");
1237 		goto err_release_metadata;
1238 	}
1239 
1240 	if (flow_pay->pre_tun_rule.dev)
1241 		err = nfp_flower_xmit_pre_tun_flow(app, flow_pay);
1242 	else
1243 		err = nfp_flower_xmit_flow(app, flow_pay,
1244 					   NFP_FLOWER_CMSG_TYPE_FLOW_ADD);
1245 	if (err)
1246 		goto err_remove_rhash;
1247 
1248 	if (port)
1249 		port->tc_offload_cnt++;
1250 
1251 	flow_pay->in_hw = true;
1252 
1253 	/* Deallocate flow payload when flower rule has been destroyed. */
1254 	kfree(key_layer);
1255 
1256 	return 0;
1257 
1258 err_remove_rhash:
1259 	WARN_ON_ONCE(rhashtable_remove_fast(&priv->flow_table,
1260 					    &flow_pay->fl_node,
1261 					    nfp_flower_table_params));
1262 err_release_metadata:
1263 	nfp_modify_flow_metadata(app, flow_pay);
1264 err_destroy_flow:
1265 	if (flow_pay->nfp_tun_ipv6)
1266 		nfp_tunnel_put_ipv6_off(app, flow_pay->nfp_tun_ipv6);
1267 	kfree(flow_pay->action_data);
1268 	kfree(flow_pay->mask_data);
1269 	kfree(flow_pay->unmasked_data);
1270 	kfree(flow_pay);
1271 err_free_key_ls:
1272 	kfree(key_layer);
1273 	return err;
1274 }
1275 
1276 static void
1277 nfp_flower_remove_merge_flow(struct nfp_app *app,
1278 			     struct nfp_fl_payload *del_sub_flow,
1279 			     struct nfp_fl_payload *merge_flow)
1280 {
1281 	struct nfp_flower_priv *priv = app->priv;
1282 	struct nfp_fl_payload_link *link, *temp;
1283 	struct nfp_fl_payload *origin;
1284 	bool mod = false;
1285 	int err;
1286 
1287 	link = list_first_entry(&merge_flow->linked_flows,
1288 				struct nfp_fl_payload_link, merge_flow.list);
1289 	origin = link->sub_flow.flow;
1290 
1291 	/* Re-add rule the merge had overwritten if it has not been deleted. */
1292 	if (origin != del_sub_flow)
1293 		mod = true;
1294 
1295 	err = nfp_modify_flow_metadata(app, merge_flow);
1296 	if (err) {
1297 		nfp_flower_cmsg_warn(app, "Metadata fail for merge flow delete.\n");
1298 		goto err_free_links;
1299 	}
1300 
1301 	if (!mod) {
1302 		err = nfp_flower_xmit_flow(app, merge_flow,
1303 					   NFP_FLOWER_CMSG_TYPE_FLOW_DEL);
1304 		if (err) {
1305 			nfp_flower_cmsg_warn(app, "Failed to delete merged flow.\n");
1306 			goto err_free_links;
1307 		}
1308 	} else {
1309 		__nfp_modify_flow_metadata(priv, origin);
1310 		err = nfp_flower_xmit_flow(app, origin,
1311 					   NFP_FLOWER_CMSG_TYPE_FLOW_MOD);
1312 		if (err)
1313 			nfp_flower_cmsg_warn(app, "Failed to revert merge flow.\n");
1314 		origin->in_hw = true;
1315 	}
1316 
1317 err_free_links:
1318 	/* Clean any links connected with the merged flow. */
1319 	list_for_each_entry_safe(link, temp, &merge_flow->linked_flows,
1320 				 merge_flow.list)
1321 		nfp_flower_unlink_flow(link);
1322 
1323 	kfree(merge_flow->action_data);
1324 	kfree(merge_flow->mask_data);
1325 	kfree(merge_flow->unmasked_data);
1326 	WARN_ON_ONCE(rhashtable_remove_fast(&priv->flow_table,
1327 					    &merge_flow->fl_node,
1328 					    nfp_flower_table_params));
1329 	kfree_rcu(merge_flow, rcu);
1330 }
1331 
1332 static void
1333 nfp_flower_del_linked_merge_flows(struct nfp_app *app,
1334 				  struct nfp_fl_payload *sub_flow)
1335 {
1336 	struct nfp_fl_payload_link *link, *temp;
1337 
1338 	/* Remove any merge flow formed from the deleted sub_flow. */
1339 	list_for_each_entry_safe(link, temp, &sub_flow->linked_flows,
1340 				 sub_flow.list)
1341 		nfp_flower_remove_merge_flow(app, sub_flow,
1342 					     link->merge_flow.flow);
1343 }
1344 
1345 /**
1346  * nfp_flower_del_offload() - Removes a flow from hardware.
1347  * @app:	Pointer to the APP handle
1348  * @netdev:	netdev structure.
1349  * @flow:	TC flower classifier offload structure
1350  *
1351  * Removes a flow from the repeated hash structure and clears the
1352  * action payload. Any flows merged from this are also deleted.
1353  *
1354  * Return: negative value on error, 0 if removed successfully.
1355  */
1356 static int
1357 nfp_flower_del_offload(struct nfp_app *app, struct net_device *netdev,
1358 		       struct flow_cls_offload *flow)
1359 {
1360 	struct nfp_flower_priv *priv = app->priv;
1361 	struct netlink_ext_ack *extack = NULL;
1362 	struct nfp_fl_payload *nfp_flow;
1363 	struct nfp_port *port = NULL;
1364 	int err;
1365 
1366 	extack = flow->common.extack;
1367 	if (nfp_netdev_is_nfp_repr(netdev))
1368 		port = nfp_port_from_netdev(netdev);
1369 
1370 	nfp_flow = nfp_flower_search_fl_table(app, flow->cookie, netdev);
1371 	if (!nfp_flow) {
1372 		NL_SET_ERR_MSG_MOD(extack, "invalid entry: cannot remove flow that does not exist");
1373 		return -ENOENT;
1374 	}
1375 
1376 	err = nfp_modify_flow_metadata(app, nfp_flow);
1377 	if (err)
1378 		goto err_free_merge_flow;
1379 
1380 	if (nfp_flow->nfp_tun_ipv4_addr)
1381 		nfp_tunnel_del_ipv4_off(app, nfp_flow->nfp_tun_ipv4_addr);
1382 
1383 	if (nfp_flow->nfp_tun_ipv6)
1384 		nfp_tunnel_put_ipv6_off(app, nfp_flow->nfp_tun_ipv6);
1385 
1386 	if (!nfp_flow->in_hw) {
1387 		err = 0;
1388 		goto err_free_merge_flow;
1389 	}
1390 
1391 	if (nfp_flow->pre_tun_rule.dev)
1392 		err = nfp_flower_xmit_pre_tun_del_flow(app, nfp_flow);
1393 	else
1394 		err = nfp_flower_xmit_flow(app, nfp_flow,
1395 					   NFP_FLOWER_CMSG_TYPE_FLOW_DEL);
1396 	/* Fall through on error. */
1397 
1398 err_free_merge_flow:
1399 	nfp_flower_del_linked_merge_flows(app, nfp_flow);
1400 	if (port)
1401 		port->tc_offload_cnt--;
1402 	kfree(nfp_flow->action_data);
1403 	kfree(nfp_flow->mask_data);
1404 	kfree(nfp_flow->unmasked_data);
1405 	WARN_ON_ONCE(rhashtable_remove_fast(&priv->flow_table,
1406 					    &nfp_flow->fl_node,
1407 					    nfp_flower_table_params));
1408 	kfree_rcu(nfp_flow, rcu);
1409 	return err;
1410 }
1411 
1412 static void
1413 __nfp_flower_update_merge_stats(struct nfp_app *app,
1414 				struct nfp_fl_payload *merge_flow)
1415 {
1416 	struct nfp_flower_priv *priv = app->priv;
1417 	struct nfp_fl_payload_link *link;
1418 	struct nfp_fl_payload *sub_flow;
1419 	u64 pkts, bytes, used;
1420 	u32 ctx_id;
1421 
1422 	ctx_id = be32_to_cpu(merge_flow->meta.host_ctx_id);
1423 	pkts = priv->stats[ctx_id].pkts;
1424 	/* Do not cycle subflows if no stats to distribute. */
1425 	if (!pkts)
1426 		return;
1427 	bytes = priv->stats[ctx_id].bytes;
1428 	used = priv->stats[ctx_id].used;
1429 
1430 	/* Reset stats for the merge flow. */
1431 	priv->stats[ctx_id].pkts = 0;
1432 	priv->stats[ctx_id].bytes = 0;
1433 
1434 	/* The merge flow has received stats updates from firmware.
1435 	 * Distribute these stats to all subflows that form the merge.
1436 	 * The stats will collected from TC via the subflows.
1437 	 */
1438 	list_for_each_entry(link, &merge_flow->linked_flows, merge_flow.list) {
1439 		sub_flow = link->sub_flow.flow;
1440 		ctx_id = be32_to_cpu(sub_flow->meta.host_ctx_id);
1441 		priv->stats[ctx_id].pkts += pkts;
1442 		priv->stats[ctx_id].bytes += bytes;
1443 		priv->stats[ctx_id].used = max_t(u64, used,
1444 						 priv->stats[ctx_id].used);
1445 	}
1446 }
1447 
1448 static void
1449 nfp_flower_update_merge_stats(struct nfp_app *app,
1450 			      struct nfp_fl_payload *sub_flow)
1451 {
1452 	struct nfp_fl_payload_link *link;
1453 
1454 	/* Get merge flows that the subflow forms to distribute their stats. */
1455 	list_for_each_entry(link, &sub_flow->linked_flows, sub_flow.list)
1456 		__nfp_flower_update_merge_stats(app, link->merge_flow.flow);
1457 }
1458 
1459 /**
1460  * nfp_flower_get_stats() - Populates flow stats obtained from hardware.
1461  * @app:	Pointer to the APP handle
1462  * @netdev:	Netdev structure.
1463  * @flow:	TC flower classifier offload structure
1464  *
1465  * Populates a flow statistics structure which which corresponds to a
1466  * specific flow.
1467  *
1468  * Return: negative value on error, 0 if stats populated successfully.
1469  */
1470 static int
1471 nfp_flower_get_stats(struct nfp_app *app, struct net_device *netdev,
1472 		     struct flow_cls_offload *flow)
1473 {
1474 	struct nfp_flower_priv *priv = app->priv;
1475 	struct netlink_ext_ack *extack = NULL;
1476 	struct nfp_fl_payload *nfp_flow;
1477 	u32 ctx_id;
1478 
1479 	extack = flow->common.extack;
1480 	nfp_flow = nfp_flower_search_fl_table(app, flow->cookie, netdev);
1481 	if (!nfp_flow) {
1482 		NL_SET_ERR_MSG_MOD(extack, "invalid entry: cannot dump stats for flow that does not exist");
1483 		return -EINVAL;
1484 	}
1485 
1486 	ctx_id = be32_to_cpu(nfp_flow->meta.host_ctx_id);
1487 
1488 	spin_lock_bh(&priv->stats_lock);
1489 	/* If request is for a sub_flow, update stats from merged flows. */
1490 	if (!list_empty(&nfp_flow->linked_flows))
1491 		nfp_flower_update_merge_stats(app, nfp_flow);
1492 
1493 	flow_stats_update(&flow->stats, priv->stats[ctx_id].bytes,
1494 			  priv->stats[ctx_id].pkts, priv->stats[ctx_id].used,
1495 			  FLOW_ACTION_HW_STATS_DELAYED);
1496 
1497 	priv->stats[ctx_id].pkts = 0;
1498 	priv->stats[ctx_id].bytes = 0;
1499 	spin_unlock_bh(&priv->stats_lock);
1500 
1501 	return 0;
1502 }
1503 
1504 static int
1505 nfp_flower_repr_offload(struct nfp_app *app, struct net_device *netdev,
1506 			struct flow_cls_offload *flower)
1507 {
1508 	if (!eth_proto_is_802_3(flower->common.protocol))
1509 		return -EOPNOTSUPP;
1510 
1511 	switch (flower->command) {
1512 	case FLOW_CLS_REPLACE:
1513 		return nfp_flower_add_offload(app, netdev, flower);
1514 	case FLOW_CLS_DESTROY:
1515 		return nfp_flower_del_offload(app, netdev, flower);
1516 	case FLOW_CLS_STATS:
1517 		return nfp_flower_get_stats(app, netdev, flower);
1518 	default:
1519 		return -EOPNOTSUPP;
1520 	}
1521 }
1522 
1523 static int nfp_flower_setup_tc_block_cb(enum tc_setup_type type,
1524 					void *type_data, void *cb_priv)
1525 {
1526 	struct nfp_repr *repr = cb_priv;
1527 
1528 	if (!tc_cls_can_offload_and_chain0(repr->netdev, type_data))
1529 		return -EOPNOTSUPP;
1530 
1531 	switch (type) {
1532 	case TC_SETUP_CLSFLOWER:
1533 		return nfp_flower_repr_offload(repr->app, repr->netdev,
1534 					       type_data);
1535 	case TC_SETUP_CLSMATCHALL:
1536 		return nfp_flower_setup_qos_offload(repr->app, repr->netdev,
1537 						    type_data);
1538 	default:
1539 		return -EOPNOTSUPP;
1540 	}
1541 }
1542 
1543 static LIST_HEAD(nfp_block_cb_list);
1544 
1545 static int nfp_flower_setup_tc_block(struct net_device *netdev,
1546 				     struct flow_block_offload *f)
1547 {
1548 	struct nfp_repr *repr = netdev_priv(netdev);
1549 	struct nfp_flower_repr_priv *repr_priv;
1550 	struct flow_block_cb *block_cb;
1551 
1552 	if (f->binder_type != FLOW_BLOCK_BINDER_TYPE_CLSACT_INGRESS)
1553 		return -EOPNOTSUPP;
1554 
1555 	repr_priv = repr->app_priv;
1556 	repr_priv->block_shared = f->block_shared;
1557 	f->driver_block_list = &nfp_block_cb_list;
1558 
1559 	switch (f->command) {
1560 	case FLOW_BLOCK_BIND:
1561 		if (flow_block_cb_is_busy(nfp_flower_setup_tc_block_cb, repr,
1562 					  &nfp_block_cb_list))
1563 			return -EBUSY;
1564 
1565 		block_cb = flow_block_cb_alloc(nfp_flower_setup_tc_block_cb,
1566 					       repr, repr, NULL);
1567 		if (IS_ERR(block_cb))
1568 			return PTR_ERR(block_cb);
1569 
1570 		flow_block_cb_add(block_cb, f);
1571 		list_add_tail(&block_cb->driver_list, &nfp_block_cb_list);
1572 		return 0;
1573 	case FLOW_BLOCK_UNBIND:
1574 		block_cb = flow_block_cb_lookup(f->block,
1575 						nfp_flower_setup_tc_block_cb,
1576 						repr);
1577 		if (!block_cb)
1578 			return -ENOENT;
1579 
1580 		flow_block_cb_remove(block_cb, f);
1581 		list_del(&block_cb->driver_list);
1582 		return 0;
1583 	default:
1584 		return -EOPNOTSUPP;
1585 	}
1586 }
1587 
1588 int nfp_flower_setup_tc(struct nfp_app *app, struct net_device *netdev,
1589 			enum tc_setup_type type, void *type_data)
1590 {
1591 	switch (type) {
1592 	case TC_SETUP_BLOCK:
1593 		return nfp_flower_setup_tc_block(netdev, type_data);
1594 	default:
1595 		return -EOPNOTSUPP;
1596 	}
1597 }
1598 
1599 struct nfp_flower_indr_block_cb_priv {
1600 	struct net_device *netdev;
1601 	struct nfp_app *app;
1602 	struct list_head list;
1603 };
1604 
1605 static struct nfp_flower_indr_block_cb_priv *
1606 nfp_flower_indr_block_cb_priv_lookup(struct nfp_app *app,
1607 				     struct net_device *netdev)
1608 {
1609 	struct nfp_flower_indr_block_cb_priv *cb_priv;
1610 	struct nfp_flower_priv *priv = app->priv;
1611 
1612 	/* All callback list access should be protected by RTNL. */
1613 	ASSERT_RTNL();
1614 
1615 	list_for_each_entry(cb_priv, &priv->indr_block_cb_priv, list)
1616 		if (cb_priv->netdev == netdev)
1617 			return cb_priv;
1618 
1619 	return NULL;
1620 }
1621 
1622 static int nfp_flower_setup_indr_block_cb(enum tc_setup_type type,
1623 					  void *type_data, void *cb_priv)
1624 {
1625 	struct nfp_flower_indr_block_cb_priv *priv = cb_priv;
1626 	struct flow_cls_offload *flower = type_data;
1627 
1628 	if (flower->common.chain_index)
1629 		return -EOPNOTSUPP;
1630 
1631 	switch (type) {
1632 	case TC_SETUP_CLSFLOWER:
1633 		return nfp_flower_repr_offload(priv->app, priv->netdev,
1634 					       type_data);
1635 	default:
1636 		return -EOPNOTSUPP;
1637 	}
1638 }
1639 
1640 void nfp_flower_setup_indr_tc_release(void *cb_priv)
1641 {
1642 	struct nfp_flower_indr_block_cb_priv *priv = cb_priv;
1643 
1644 	list_del(&priv->list);
1645 	kfree(priv);
1646 }
1647 
1648 static int
1649 nfp_flower_setup_indr_tc_block(struct net_device *netdev, struct nfp_app *app,
1650 			       struct flow_block_offload *f, void *data,
1651 			       void (*cleanup)(struct flow_block_cb *block_cb))
1652 {
1653 	struct nfp_flower_indr_block_cb_priv *cb_priv;
1654 	struct nfp_flower_priv *priv = app->priv;
1655 	struct flow_block_cb *block_cb;
1656 
1657 	if ((f->binder_type != FLOW_BLOCK_BINDER_TYPE_CLSACT_INGRESS &&
1658 	     !nfp_flower_internal_port_can_offload(app, netdev)) ||
1659 	    (f->binder_type != FLOW_BLOCK_BINDER_TYPE_CLSACT_EGRESS &&
1660 	     nfp_flower_internal_port_can_offload(app, netdev)))
1661 		return -EOPNOTSUPP;
1662 
1663 	switch (f->command) {
1664 	case FLOW_BLOCK_BIND:
1665 		cb_priv = nfp_flower_indr_block_cb_priv_lookup(app, netdev);
1666 		if (cb_priv &&
1667 		    flow_block_cb_is_busy(nfp_flower_setup_indr_block_cb,
1668 					  cb_priv,
1669 					  &nfp_block_cb_list))
1670 			return -EBUSY;
1671 
1672 		cb_priv = kmalloc(sizeof(*cb_priv), GFP_KERNEL);
1673 		if (!cb_priv)
1674 			return -ENOMEM;
1675 
1676 		cb_priv->netdev = netdev;
1677 		cb_priv->app = app;
1678 		list_add(&cb_priv->list, &priv->indr_block_cb_priv);
1679 
1680 		block_cb = flow_indr_block_cb_alloc(nfp_flower_setup_indr_block_cb,
1681 						    cb_priv, cb_priv,
1682 						    nfp_flower_setup_indr_tc_release,
1683 						    f, netdev, data, app, cleanup);
1684 		if (IS_ERR(block_cb)) {
1685 			list_del(&cb_priv->list);
1686 			kfree(cb_priv);
1687 			return PTR_ERR(block_cb);
1688 		}
1689 
1690 		flow_block_cb_add(block_cb, f);
1691 		list_add_tail(&block_cb->driver_list, &nfp_block_cb_list);
1692 		return 0;
1693 	case FLOW_BLOCK_UNBIND:
1694 		cb_priv = nfp_flower_indr_block_cb_priv_lookup(app, netdev);
1695 		if (!cb_priv)
1696 			return -ENOENT;
1697 
1698 		block_cb = flow_block_cb_lookup(f->block,
1699 						nfp_flower_setup_indr_block_cb,
1700 						cb_priv);
1701 		if (!block_cb)
1702 			return -ENOENT;
1703 
1704 		flow_indr_block_cb_remove(block_cb, f);
1705 		list_del(&block_cb->driver_list);
1706 		return 0;
1707 	default:
1708 		return -EOPNOTSUPP;
1709 	}
1710 	return 0;
1711 }
1712 
1713 int
1714 nfp_flower_indr_setup_tc_cb(struct net_device *netdev, void *cb_priv,
1715 			    enum tc_setup_type type, void *type_data,
1716 			    void *data,
1717 			    void (*cleanup)(struct flow_block_cb *block_cb))
1718 {
1719 	if (!nfp_fl_is_netdev_to_offload(netdev))
1720 		return -EOPNOTSUPP;
1721 
1722 	switch (type) {
1723 	case TC_SETUP_BLOCK:
1724 		return nfp_flower_setup_indr_tc_block(netdev, cb_priv,
1725 						      type_data, data, cleanup);
1726 	default:
1727 		return -EOPNOTSUPP;
1728 	}
1729 }
1730