xref: /openbmc/linux/drivers/net/ethernet/netronome/nfp/flower/offload.c (revision 28efb0046512e8a13ed9f9bdf0d68d10bbfbe9cf)
1 /*
2  * Copyright (C) 2017 Netronome Systems, Inc.
3  *
4  * This software is dual licensed under the GNU General License Version 2,
5  * June 1991 as shown in the file COPYING in the top-level directory of this
6  * source tree or the BSD 2-Clause License provided below.  You have the
7  * option to license this software under the complete terms of either license.
8  *
9  * The BSD 2-Clause License:
10  *
11  *     Redistribution and use in source and binary forms, with or
12  *     without modification, are permitted provided that the following
13  *     conditions are met:
14  *
15  *      1. Redistributions of source code must retain the above
16  *         copyright notice, this list of conditions and the following
17  *         disclaimer.
18  *
19  *      2. Redistributions in binary form must reproduce the above
20  *         copyright notice, this list of conditions and the following
21  *         disclaimer in the documentation and/or other materials
22  *         provided with the distribution.
23  *
24  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31  * SOFTWARE.
32  */
33 
34 #include <linux/skbuff.h>
35 #include <net/devlink.h>
36 #include <net/pkt_cls.h>
37 
38 #include "cmsg.h"
39 #include "main.h"
40 #include "../nfpcore/nfp_cpp.h"
41 #include "../nfpcore/nfp_nsp.h"
42 #include "../nfp_app.h"
43 #include "../nfp_main.h"
44 #include "../nfp_net.h"
45 #include "../nfp_port.h"
46 
47 #define NFP_FLOWER_WHITELIST_DISSECTOR \
48 	(BIT(FLOW_DISSECTOR_KEY_CONTROL) | \
49 	 BIT(FLOW_DISSECTOR_KEY_BASIC) | \
50 	 BIT(FLOW_DISSECTOR_KEY_IPV4_ADDRS) | \
51 	 BIT(FLOW_DISSECTOR_KEY_IPV6_ADDRS) | \
52 	 BIT(FLOW_DISSECTOR_KEY_PORTS) | \
53 	 BIT(FLOW_DISSECTOR_KEY_ETH_ADDRS) | \
54 	 BIT(FLOW_DISSECTOR_KEY_VLAN) | \
55 	 BIT(FLOW_DISSECTOR_KEY_ENC_KEYID) | \
56 	 BIT(FLOW_DISSECTOR_KEY_ENC_IPV4_ADDRS) | \
57 	 BIT(FLOW_DISSECTOR_KEY_ENC_IPV6_ADDRS) | \
58 	 BIT(FLOW_DISSECTOR_KEY_ENC_CONTROL) | \
59 	 BIT(FLOW_DISSECTOR_KEY_ENC_PORTS) | \
60 	 BIT(FLOW_DISSECTOR_KEY_IP))
61 
62 #define NFP_FLOWER_WHITELIST_TUN_DISSECTOR \
63 	(BIT(FLOW_DISSECTOR_KEY_ENC_CONTROL) | \
64 	 BIT(FLOW_DISSECTOR_KEY_ENC_KEYID) | \
65 	 BIT(FLOW_DISSECTOR_KEY_ENC_IPV4_ADDRS) | \
66 	 BIT(FLOW_DISSECTOR_KEY_ENC_IPV6_ADDRS) | \
67 	 BIT(FLOW_DISSECTOR_KEY_ENC_PORTS))
68 
69 #define NFP_FLOWER_WHITELIST_TUN_DISSECTOR_R \
70 	(BIT(FLOW_DISSECTOR_KEY_ENC_CONTROL) | \
71 	 BIT(FLOW_DISSECTOR_KEY_ENC_IPV4_ADDRS) | \
72 	 BIT(FLOW_DISSECTOR_KEY_ENC_PORTS))
73 
74 static int
75 nfp_flower_xmit_flow(struct net_device *netdev,
76 		     struct nfp_fl_payload *nfp_flow, u8 mtype)
77 {
78 	u32 meta_len, key_len, mask_len, act_len, tot_len;
79 	struct nfp_repr *priv = netdev_priv(netdev);
80 	struct sk_buff *skb;
81 	unsigned char *msg;
82 
83 	meta_len =  sizeof(struct nfp_fl_rule_metadata);
84 	key_len = nfp_flow->meta.key_len;
85 	mask_len = nfp_flow->meta.mask_len;
86 	act_len = nfp_flow->meta.act_len;
87 
88 	tot_len = meta_len + key_len + mask_len + act_len;
89 
90 	/* Convert to long words as firmware expects
91 	 * lengths in units of NFP_FL_LW_SIZ.
92 	 */
93 	nfp_flow->meta.key_len >>= NFP_FL_LW_SIZ;
94 	nfp_flow->meta.mask_len >>= NFP_FL_LW_SIZ;
95 	nfp_flow->meta.act_len >>= NFP_FL_LW_SIZ;
96 
97 	skb = nfp_flower_cmsg_alloc(priv->app, tot_len, mtype);
98 	if (!skb)
99 		return -ENOMEM;
100 
101 	msg = nfp_flower_cmsg_get_data(skb);
102 	memcpy(msg, &nfp_flow->meta, meta_len);
103 	memcpy(&msg[meta_len], nfp_flow->unmasked_data, key_len);
104 	memcpy(&msg[meta_len + key_len], nfp_flow->mask_data, mask_len);
105 	memcpy(&msg[meta_len + key_len + mask_len],
106 	       nfp_flow->action_data, act_len);
107 
108 	/* Convert back to bytes as software expects
109 	 * lengths in units of bytes.
110 	 */
111 	nfp_flow->meta.key_len <<= NFP_FL_LW_SIZ;
112 	nfp_flow->meta.mask_len <<= NFP_FL_LW_SIZ;
113 	nfp_flow->meta.act_len <<= NFP_FL_LW_SIZ;
114 
115 	nfp_ctrl_tx(priv->app->ctrl, skb);
116 
117 	return 0;
118 }
119 
120 static bool nfp_flower_check_higher_than_mac(struct tc_cls_flower_offload *f)
121 {
122 	return dissector_uses_key(f->dissector,
123 				  FLOW_DISSECTOR_KEY_IPV4_ADDRS) ||
124 		dissector_uses_key(f->dissector,
125 				   FLOW_DISSECTOR_KEY_IPV6_ADDRS) ||
126 		dissector_uses_key(f->dissector,
127 				   FLOW_DISSECTOR_KEY_PORTS) ||
128 		dissector_uses_key(f->dissector, FLOW_DISSECTOR_KEY_ICMP);
129 }
130 
131 static int
132 nfp_flower_calculate_key_layers(struct nfp_fl_key_ls *ret_key_ls,
133 				struct tc_cls_flower_offload *flow)
134 {
135 	struct flow_dissector_key_basic *mask_basic = NULL;
136 	struct flow_dissector_key_basic *key_basic = NULL;
137 	struct flow_dissector_key_ip *mask_ip = NULL;
138 	u32 key_layer_two;
139 	u8 key_layer;
140 	int key_size;
141 
142 	if (flow->dissector->used_keys & ~NFP_FLOWER_WHITELIST_DISSECTOR)
143 		return -EOPNOTSUPP;
144 
145 	/* If any tun dissector is used then the required set must be used. */
146 	if (flow->dissector->used_keys & NFP_FLOWER_WHITELIST_TUN_DISSECTOR &&
147 	    (flow->dissector->used_keys & NFP_FLOWER_WHITELIST_TUN_DISSECTOR_R)
148 	    != NFP_FLOWER_WHITELIST_TUN_DISSECTOR_R)
149 		return -EOPNOTSUPP;
150 
151 	key_layer_two = 0;
152 	key_layer = NFP_FLOWER_LAYER_PORT | NFP_FLOWER_LAYER_MAC;
153 	key_size = sizeof(struct nfp_flower_meta_one) +
154 		   sizeof(struct nfp_flower_in_port) +
155 		   sizeof(struct nfp_flower_mac_mpls);
156 
157 	if (dissector_uses_key(flow->dissector,
158 			       FLOW_DISSECTOR_KEY_ENC_CONTROL)) {
159 		struct flow_dissector_key_ipv4_addrs *mask_ipv4 = NULL;
160 		struct flow_dissector_key_ports *mask_enc_ports = NULL;
161 		struct flow_dissector_key_ports *enc_ports = NULL;
162 		struct flow_dissector_key_control *mask_enc_ctl =
163 			skb_flow_dissector_target(flow->dissector,
164 						  FLOW_DISSECTOR_KEY_ENC_CONTROL,
165 						  flow->mask);
166 		struct flow_dissector_key_control *enc_ctl =
167 			skb_flow_dissector_target(flow->dissector,
168 						  FLOW_DISSECTOR_KEY_ENC_CONTROL,
169 						  flow->key);
170 		if (mask_enc_ctl->addr_type != 0xffff ||
171 		    enc_ctl->addr_type != FLOW_DISSECTOR_KEY_IPV4_ADDRS)
172 			return -EOPNOTSUPP;
173 
174 		/* These fields are already verified as used. */
175 		mask_ipv4 =
176 			skb_flow_dissector_target(flow->dissector,
177 						  FLOW_DISSECTOR_KEY_ENC_IPV4_ADDRS,
178 						  flow->mask);
179 		if (mask_ipv4->dst != cpu_to_be32(~0))
180 			return -EOPNOTSUPP;
181 
182 		mask_enc_ports =
183 			skb_flow_dissector_target(flow->dissector,
184 						  FLOW_DISSECTOR_KEY_ENC_PORTS,
185 						  flow->mask);
186 		enc_ports =
187 			skb_flow_dissector_target(flow->dissector,
188 						  FLOW_DISSECTOR_KEY_ENC_PORTS,
189 						  flow->key);
190 
191 		if (mask_enc_ports->dst != cpu_to_be16(~0) ||
192 		    enc_ports->dst != htons(NFP_FL_VXLAN_PORT))
193 			return -EOPNOTSUPP;
194 
195 		key_layer |= NFP_FLOWER_LAYER_VXLAN;
196 		key_size += sizeof(struct nfp_flower_vxlan);
197 	}
198 
199 	if (dissector_uses_key(flow->dissector, FLOW_DISSECTOR_KEY_BASIC)) {
200 		mask_basic = skb_flow_dissector_target(flow->dissector,
201 						       FLOW_DISSECTOR_KEY_BASIC,
202 						       flow->mask);
203 
204 		key_basic = skb_flow_dissector_target(flow->dissector,
205 						      FLOW_DISSECTOR_KEY_BASIC,
206 						      flow->key);
207 	}
208 
209 	if (dissector_uses_key(flow->dissector, FLOW_DISSECTOR_KEY_IP))
210 		mask_ip = skb_flow_dissector_target(flow->dissector,
211 						    FLOW_DISSECTOR_KEY_IP,
212 						    flow->mask);
213 
214 	if (mask_basic && mask_basic->n_proto) {
215 		/* Ethernet type is present in the key. */
216 		switch (key_basic->n_proto) {
217 		case cpu_to_be16(ETH_P_IP):
218 			if (mask_ip && mask_ip->tos)
219 				return -EOPNOTSUPP;
220 			if (mask_ip && mask_ip->ttl)
221 				return -EOPNOTSUPP;
222 			key_layer |= NFP_FLOWER_LAYER_IPV4;
223 			key_size += sizeof(struct nfp_flower_ipv4);
224 			break;
225 
226 		case cpu_to_be16(ETH_P_IPV6):
227 			if (mask_ip && mask_ip->tos)
228 				return -EOPNOTSUPP;
229 			if (mask_ip && mask_ip->ttl)
230 				return -EOPNOTSUPP;
231 			key_layer |= NFP_FLOWER_LAYER_IPV6;
232 			key_size += sizeof(struct nfp_flower_ipv6);
233 			break;
234 
235 		/* Currently we do not offload ARP
236 		 * because we rely on it to get to the host.
237 		 */
238 		case cpu_to_be16(ETH_P_ARP):
239 			return -EOPNOTSUPP;
240 
241 		/* Currently we do not offload MPLS. */
242 		case cpu_to_be16(ETH_P_MPLS_UC):
243 		case cpu_to_be16(ETH_P_MPLS_MC):
244 			return -EOPNOTSUPP;
245 
246 		/* Will be included in layer 2. */
247 		case cpu_to_be16(ETH_P_8021Q):
248 			break;
249 
250 		default:
251 			/* Other ethtype - we need check the masks for the
252 			 * remainder of the key to ensure we can offload.
253 			 */
254 			if (nfp_flower_check_higher_than_mac(flow))
255 				return -EOPNOTSUPP;
256 			break;
257 		}
258 	}
259 
260 	if (mask_basic && mask_basic->ip_proto) {
261 		/* Ethernet type is present in the key. */
262 		switch (key_basic->ip_proto) {
263 		case IPPROTO_TCP:
264 		case IPPROTO_UDP:
265 		case IPPROTO_SCTP:
266 		case IPPROTO_ICMP:
267 		case IPPROTO_ICMPV6:
268 			key_layer |= NFP_FLOWER_LAYER_TP;
269 			key_size += sizeof(struct nfp_flower_tp_ports);
270 			break;
271 		default:
272 			/* Other ip proto - we need check the masks for the
273 			 * remainder of the key to ensure we can offload.
274 			 */
275 			return -EOPNOTSUPP;
276 		}
277 	}
278 
279 	ret_key_ls->key_layer = key_layer;
280 	ret_key_ls->key_layer_two = key_layer_two;
281 	ret_key_ls->key_size = key_size;
282 
283 	return 0;
284 }
285 
286 static struct nfp_fl_payload *
287 nfp_flower_allocate_new(struct nfp_fl_key_ls *key_layer)
288 {
289 	struct nfp_fl_payload *flow_pay;
290 
291 	flow_pay = kmalloc(sizeof(*flow_pay), GFP_KERNEL);
292 	if (!flow_pay)
293 		return NULL;
294 
295 	flow_pay->meta.key_len = key_layer->key_size;
296 	flow_pay->unmasked_data = kmalloc(key_layer->key_size, GFP_KERNEL);
297 	if (!flow_pay->unmasked_data)
298 		goto err_free_flow;
299 
300 	flow_pay->meta.mask_len = key_layer->key_size;
301 	flow_pay->mask_data = kmalloc(key_layer->key_size, GFP_KERNEL);
302 	if (!flow_pay->mask_data)
303 		goto err_free_unmasked;
304 
305 	flow_pay->action_data = kmalloc(NFP_FL_MAX_A_SIZ, GFP_KERNEL);
306 	if (!flow_pay->action_data)
307 		goto err_free_mask;
308 
309 	flow_pay->nfp_tun_ipv4_addr = 0;
310 	flow_pay->meta.flags = 0;
311 	spin_lock_init(&flow_pay->lock);
312 
313 	return flow_pay;
314 
315 err_free_mask:
316 	kfree(flow_pay->mask_data);
317 err_free_unmasked:
318 	kfree(flow_pay->unmasked_data);
319 err_free_flow:
320 	kfree(flow_pay);
321 	return NULL;
322 }
323 
324 /**
325  * nfp_flower_add_offload() - Adds a new flow to hardware.
326  * @app:	Pointer to the APP handle
327  * @netdev:	netdev structure.
328  * @flow:	TC flower classifier offload structure.
329  *
330  * Adds a new flow to the repeated hash structure and action payload.
331  *
332  * Return: negative value on error, 0 if configured successfully.
333  */
334 static int
335 nfp_flower_add_offload(struct nfp_app *app, struct net_device *netdev,
336 		       struct tc_cls_flower_offload *flow)
337 {
338 	struct nfp_flower_priv *priv = app->priv;
339 	struct nfp_fl_payload *flow_pay;
340 	struct nfp_fl_key_ls *key_layer;
341 	int err;
342 
343 	key_layer = kmalloc(sizeof(*key_layer), GFP_KERNEL);
344 	if (!key_layer)
345 		return -ENOMEM;
346 
347 	err = nfp_flower_calculate_key_layers(key_layer, flow);
348 	if (err)
349 		goto err_free_key_ls;
350 
351 	flow_pay = nfp_flower_allocate_new(key_layer);
352 	if (!flow_pay) {
353 		err = -ENOMEM;
354 		goto err_free_key_ls;
355 	}
356 
357 	err = nfp_flower_compile_flow_match(flow, key_layer, netdev, flow_pay);
358 	if (err)
359 		goto err_destroy_flow;
360 
361 	err = nfp_flower_compile_action(flow, netdev, flow_pay);
362 	if (err)
363 		goto err_destroy_flow;
364 
365 	err = nfp_compile_flow_metadata(app, flow, flow_pay);
366 	if (err)
367 		goto err_destroy_flow;
368 
369 	err = nfp_flower_xmit_flow(netdev, flow_pay,
370 				   NFP_FLOWER_CMSG_TYPE_FLOW_ADD);
371 	if (err)
372 		goto err_destroy_flow;
373 
374 	INIT_HLIST_NODE(&flow_pay->link);
375 	flow_pay->tc_flower_cookie = flow->cookie;
376 	hash_add_rcu(priv->flow_table, &flow_pay->link, flow->cookie);
377 
378 	/* Deallocate flow payload when flower rule has been destroyed. */
379 	kfree(key_layer);
380 
381 	return 0;
382 
383 err_destroy_flow:
384 	kfree(flow_pay->action_data);
385 	kfree(flow_pay->mask_data);
386 	kfree(flow_pay->unmasked_data);
387 	kfree(flow_pay);
388 err_free_key_ls:
389 	kfree(key_layer);
390 	return err;
391 }
392 
393 /**
394  * nfp_flower_del_offload() - Removes a flow from hardware.
395  * @app:	Pointer to the APP handle
396  * @netdev:	netdev structure.
397  * @flow:	TC flower classifier offload structure
398  *
399  * Removes a flow from the repeated hash structure and clears the
400  * action payload.
401  *
402  * Return: negative value on error, 0 if removed successfully.
403  */
404 static int
405 nfp_flower_del_offload(struct nfp_app *app, struct net_device *netdev,
406 		       struct tc_cls_flower_offload *flow)
407 {
408 	struct nfp_fl_payload *nfp_flow;
409 	int err;
410 
411 	nfp_flow = nfp_flower_search_fl_table(app, flow->cookie);
412 	if (!nfp_flow)
413 		return -ENOENT;
414 
415 	err = nfp_modify_flow_metadata(app, nfp_flow);
416 	if (err)
417 		goto err_free_flow;
418 
419 	if (nfp_flow->nfp_tun_ipv4_addr)
420 		nfp_tunnel_del_ipv4_off(app, nfp_flow->nfp_tun_ipv4_addr);
421 
422 	err = nfp_flower_xmit_flow(netdev, nfp_flow,
423 				   NFP_FLOWER_CMSG_TYPE_FLOW_DEL);
424 	if (err)
425 		goto err_free_flow;
426 
427 err_free_flow:
428 	hash_del_rcu(&nfp_flow->link);
429 	kfree(nfp_flow->action_data);
430 	kfree(nfp_flow->mask_data);
431 	kfree(nfp_flow->unmasked_data);
432 	kfree_rcu(nfp_flow, rcu);
433 	return err;
434 }
435 
436 /**
437  * nfp_flower_get_stats() - Populates flow stats obtained from hardware.
438  * @app:	Pointer to the APP handle
439  * @flow:	TC flower classifier offload structure
440  *
441  * Populates a flow statistics structure which which corresponds to a
442  * specific flow.
443  *
444  * Return: negative value on error, 0 if stats populated successfully.
445  */
446 static int
447 nfp_flower_get_stats(struct nfp_app *app, struct tc_cls_flower_offload *flow)
448 {
449 	struct nfp_fl_payload *nfp_flow;
450 
451 	nfp_flow = nfp_flower_search_fl_table(app, flow->cookie);
452 	if (!nfp_flow)
453 		return -EINVAL;
454 
455 	spin_lock_bh(&nfp_flow->lock);
456 	tcf_exts_stats_update(flow->exts, nfp_flow->stats.bytes,
457 			      nfp_flow->stats.pkts, nfp_flow->stats.used);
458 
459 	nfp_flow->stats.pkts = 0;
460 	nfp_flow->stats.bytes = 0;
461 	spin_unlock_bh(&nfp_flow->lock);
462 
463 	return 0;
464 }
465 
466 static int
467 nfp_flower_repr_offload(struct nfp_app *app, struct net_device *netdev,
468 			struct tc_cls_flower_offload *flower)
469 {
470 	switch (flower->command) {
471 	case TC_CLSFLOWER_REPLACE:
472 		return nfp_flower_add_offload(app, netdev, flower);
473 	case TC_CLSFLOWER_DESTROY:
474 		return nfp_flower_del_offload(app, netdev, flower);
475 	case TC_CLSFLOWER_STATS:
476 		return nfp_flower_get_stats(app, flower);
477 	}
478 
479 	return -EOPNOTSUPP;
480 }
481 
482 int nfp_flower_setup_tc(struct nfp_app *app, struct net_device *netdev,
483 			enum tc_setup_type type, void *type_data)
484 {
485 	struct tc_cls_flower_offload *cls_flower = type_data;
486 
487 	if (type != TC_SETUP_CLSFLOWER ||
488 	    !is_classid_clsact_ingress(cls_flower->common.classid) ||
489 	    !eth_proto_is_802_3(cls_flower->common.protocol) ||
490 	    cls_flower->common.chain_index)
491 		return -EOPNOTSUPP;
492 
493 	return nfp_flower_repr_offload(app, netdev, cls_flower);
494 }
495