1 /*
2  * Copyright (C) 2016-2018 Netronome Systems, Inc.
3  *
4  * This software is dual licensed under the GNU General License Version 2,
5  * June 1991 as shown in the file COPYING in the top-level directory of this
6  * source tree or the BSD 2-Clause License provided below.  You have the
7  * option to license this software under the complete terms of either license.
8  *
9  * The BSD 2-Clause License:
10  *
11  *     Redistribution and use in source and binary forms, with or
12  *     without modification, are permitted provided that the following
13  *     conditions are met:
14  *
15  *      1. Redistributions of source code must retain the above
16  *         copyright notice, this list of conditions and the following
17  *         disclaimer.
18  *
19  *      2. Redistributions in binary form must reproduce the above
20  *         copyright notice, this list of conditions and the following
21  *         disclaimer in the documentation and/or other materials
22  *         provided with the distribution.
23  *
24  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31  * SOFTWARE.
32  */
33 
34 #define pr_fmt(fmt)	"NFP net bpf: " fmt
35 
36 #include <linux/bug.h>
37 #include <linux/kernel.h>
38 #include <linux/bpf.h>
39 #include <linux/filter.h>
40 #include <linux/pkt_cls.h>
41 #include <linux/unistd.h>
42 
43 #include "main.h"
44 #include "../nfp_asm.h"
45 #include "../nfp_net_ctrl.h"
46 
47 /* --- NFP prog --- */
48 /* Foreach "multiple" entries macros provide pos and next<n> pointers.
49  * It's safe to modify the next pointers (but not pos).
50  */
51 #define nfp_for_each_insn_walk2(nfp_prog, pos, next)			\
52 	for (pos = list_first_entry(&(nfp_prog)->insns, typeof(*pos), l), \
53 	     next = list_next_entry(pos, l);			\
54 	     &(nfp_prog)->insns != &pos->l &&			\
55 	     &(nfp_prog)->insns != &next->l;			\
56 	     pos = nfp_meta_next(pos),				\
57 	     next = nfp_meta_next(pos))
58 
59 #define nfp_for_each_insn_walk3(nfp_prog, pos, next, next2)		\
60 	for (pos = list_first_entry(&(nfp_prog)->insns, typeof(*pos), l), \
61 	     next = list_next_entry(pos, l),			\
62 	     next2 = list_next_entry(next, l);			\
63 	     &(nfp_prog)->insns != &pos->l &&			\
64 	     &(nfp_prog)->insns != &next->l &&			\
65 	     &(nfp_prog)->insns != &next2->l;			\
66 	     pos = nfp_meta_next(pos),				\
67 	     next = nfp_meta_next(pos),				\
68 	     next2 = nfp_meta_next(next))
69 
70 static bool
71 nfp_meta_has_prev(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
72 {
73 	return meta->l.prev != &nfp_prog->insns;
74 }
75 
76 static void nfp_prog_push(struct nfp_prog *nfp_prog, u64 insn)
77 {
78 	if (nfp_prog->__prog_alloc_len / sizeof(u64) == nfp_prog->prog_len) {
79 		pr_warn("instruction limit reached (%u NFP instructions)\n",
80 			nfp_prog->prog_len);
81 		nfp_prog->error = -ENOSPC;
82 		return;
83 	}
84 
85 	nfp_prog->prog[nfp_prog->prog_len] = insn;
86 	nfp_prog->prog_len++;
87 }
88 
89 static unsigned int nfp_prog_current_offset(struct nfp_prog *nfp_prog)
90 {
91 	return nfp_prog->prog_len;
92 }
93 
94 static bool
95 nfp_prog_confirm_current_offset(struct nfp_prog *nfp_prog, unsigned int off)
96 {
97 	/* If there is a recorded error we may have dropped instructions;
98 	 * that doesn't have to be due to translator bug, and the translation
99 	 * will fail anyway, so just return OK.
100 	 */
101 	if (nfp_prog->error)
102 		return true;
103 	return !WARN_ON_ONCE(nfp_prog_current_offset(nfp_prog) != off);
104 }
105 
106 /* --- Emitters --- */
107 static void
108 __emit_cmd(struct nfp_prog *nfp_prog, enum cmd_tgt_map op,
109 	   u8 mode, u8 xfer, u8 areg, u8 breg, u8 size, enum cmd_ctx_swap ctx,
110 	   bool indir)
111 {
112 	u64 insn;
113 
114 	insn =	FIELD_PREP(OP_CMD_A_SRC, areg) |
115 		FIELD_PREP(OP_CMD_CTX, ctx) |
116 		FIELD_PREP(OP_CMD_B_SRC, breg) |
117 		FIELD_PREP(OP_CMD_TOKEN, cmd_tgt_act[op].token) |
118 		FIELD_PREP(OP_CMD_XFER, xfer) |
119 		FIELD_PREP(OP_CMD_CNT, size) |
120 		FIELD_PREP(OP_CMD_SIG, ctx != CMD_CTX_NO_SWAP) |
121 		FIELD_PREP(OP_CMD_TGT_CMD, cmd_tgt_act[op].tgt_cmd) |
122 		FIELD_PREP(OP_CMD_INDIR, indir) |
123 		FIELD_PREP(OP_CMD_MODE, mode);
124 
125 	nfp_prog_push(nfp_prog, insn);
126 }
127 
128 static void
129 emit_cmd_any(struct nfp_prog *nfp_prog, enum cmd_tgt_map op, u8 mode, u8 xfer,
130 	     swreg lreg, swreg rreg, u8 size, enum cmd_ctx_swap ctx, bool indir)
131 {
132 	struct nfp_insn_re_regs reg;
133 	int err;
134 
135 	err = swreg_to_restricted(reg_none(), lreg, rreg, &reg, false);
136 	if (err) {
137 		nfp_prog->error = err;
138 		return;
139 	}
140 	if (reg.swap) {
141 		pr_err("cmd can't swap arguments\n");
142 		nfp_prog->error = -EFAULT;
143 		return;
144 	}
145 	if (reg.dst_lmextn || reg.src_lmextn) {
146 		pr_err("cmd can't use LMextn\n");
147 		nfp_prog->error = -EFAULT;
148 		return;
149 	}
150 
151 	__emit_cmd(nfp_prog, op, mode, xfer, reg.areg, reg.breg, size, ctx,
152 		   indir);
153 }
154 
155 static void
156 emit_cmd(struct nfp_prog *nfp_prog, enum cmd_tgt_map op, u8 mode, u8 xfer,
157 	 swreg lreg, swreg rreg, u8 size, enum cmd_ctx_swap ctx)
158 {
159 	emit_cmd_any(nfp_prog, op, mode, xfer, lreg, rreg, size, ctx, false);
160 }
161 
162 static void
163 emit_cmd_indir(struct nfp_prog *nfp_prog, enum cmd_tgt_map op, u8 mode, u8 xfer,
164 	       swreg lreg, swreg rreg, u8 size, enum cmd_ctx_swap ctx)
165 {
166 	emit_cmd_any(nfp_prog, op, mode, xfer, lreg, rreg, size, ctx, true);
167 }
168 
169 static void
170 __emit_br(struct nfp_prog *nfp_prog, enum br_mask mask, enum br_ev_pip ev_pip,
171 	  enum br_ctx_signal_state css, u16 addr, u8 defer)
172 {
173 	u16 addr_lo, addr_hi;
174 	u64 insn;
175 
176 	addr_lo = addr & (OP_BR_ADDR_LO >> __bf_shf(OP_BR_ADDR_LO));
177 	addr_hi = addr != addr_lo;
178 
179 	insn = OP_BR_BASE |
180 		FIELD_PREP(OP_BR_MASK, mask) |
181 		FIELD_PREP(OP_BR_EV_PIP, ev_pip) |
182 		FIELD_PREP(OP_BR_CSS, css) |
183 		FIELD_PREP(OP_BR_DEFBR, defer) |
184 		FIELD_PREP(OP_BR_ADDR_LO, addr_lo) |
185 		FIELD_PREP(OP_BR_ADDR_HI, addr_hi);
186 
187 	nfp_prog_push(nfp_prog, insn);
188 }
189 
190 static void
191 emit_br_relo(struct nfp_prog *nfp_prog, enum br_mask mask, u16 addr, u8 defer,
192 	     enum nfp_relo_type relo)
193 {
194 	if (mask == BR_UNC && defer > 2) {
195 		pr_err("BUG: branch defer out of bounds %d\n", defer);
196 		nfp_prog->error = -EFAULT;
197 		return;
198 	}
199 
200 	__emit_br(nfp_prog, mask,
201 		  mask != BR_UNC ? BR_EV_PIP_COND : BR_EV_PIP_UNCOND,
202 		  BR_CSS_NONE, addr, defer);
203 
204 	nfp_prog->prog[nfp_prog->prog_len - 1] |=
205 		FIELD_PREP(OP_RELO_TYPE, relo);
206 }
207 
208 static void
209 emit_br(struct nfp_prog *nfp_prog, enum br_mask mask, u16 addr, u8 defer)
210 {
211 	emit_br_relo(nfp_prog, mask, addr, defer, RELO_BR_REL);
212 }
213 
214 static void
215 __emit_br_bit(struct nfp_prog *nfp_prog, u16 areg, u16 breg, u16 addr, u8 defer,
216 	      bool set, bool src_lmextn)
217 {
218 	u16 addr_lo, addr_hi;
219 	u64 insn;
220 
221 	addr_lo = addr & (OP_BR_BIT_ADDR_LO >> __bf_shf(OP_BR_BIT_ADDR_LO));
222 	addr_hi = addr != addr_lo;
223 
224 	insn = OP_BR_BIT_BASE |
225 		FIELD_PREP(OP_BR_BIT_A_SRC, areg) |
226 		FIELD_PREP(OP_BR_BIT_B_SRC, breg) |
227 		FIELD_PREP(OP_BR_BIT_BV, set) |
228 		FIELD_PREP(OP_BR_BIT_DEFBR, defer) |
229 		FIELD_PREP(OP_BR_BIT_ADDR_LO, addr_lo) |
230 		FIELD_PREP(OP_BR_BIT_ADDR_HI, addr_hi) |
231 		FIELD_PREP(OP_BR_BIT_SRC_LMEXTN, src_lmextn);
232 
233 	nfp_prog_push(nfp_prog, insn);
234 }
235 
236 static void
237 emit_br_bit_relo(struct nfp_prog *nfp_prog, swreg src, u8 bit, u16 addr,
238 		 u8 defer, bool set, enum nfp_relo_type relo)
239 {
240 	struct nfp_insn_re_regs reg;
241 	int err;
242 
243 	/* NOTE: The bit to test is specified as an rotation amount, such that
244 	 *	 the bit to test will be placed on the MSB of the result when
245 	 *	 doing a rotate right. For bit X, we need right rotate X + 1.
246 	 */
247 	bit += 1;
248 
249 	err = swreg_to_restricted(reg_none(), src, reg_imm(bit), &reg, false);
250 	if (err) {
251 		nfp_prog->error = err;
252 		return;
253 	}
254 
255 	__emit_br_bit(nfp_prog, reg.areg, reg.breg, addr, defer, set,
256 		      reg.src_lmextn);
257 
258 	nfp_prog->prog[nfp_prog->prog_len - 1] |=
259 		FIELD_PREP(OP_RELO_TYPE, relo);
260 }
261 
262 static void
263 emit_br_bset(struct nfp_prog *nfp_prog, swreg src, u8 bit, u16 addr, u8 defer)
264 {
265 	emit_br_bit_relo(nfp_prog, src, bit, addr, defer, true, RELO_BR_REL);
266 }
267 
268 static void
269 __emit_immed(struct nfp_prog *nfp_prog, u16 areg, u16 breg, u16 imm_hi,
270 	     enum immed_width width, bool invert,
271 	     enum immed_shift shift, bool wr_both,
272 	     bool dst_lmextn, bool src_lmextn)
273 {
274 	u64 insn;
275 
276 	insn = OP_IMMED_BASE |
277 		FIELD_PREP(OP_IMMED_A_SRC, areg) |
278 		FIELD_PREP(OP_IMMED_B_SRC, breg) |
279 		FIELD_PREP(OP_IMMED_IMM, imm_hi) |
280 		FIELD_PREP(OP_IMMED_WIDTH, width) |
281 		FIELD_PREP(OP_IMMED_INV, invert) |
282 		FIELD_PREP(OP_IMMED_SHIFT, shift) |
283 		FIELD_PREP(OP_IMMED_WR_AB, wr_both) |
284 		FIELD_PREP(OP_IMMED_SRC_LMEXTN, src_lmextn) |
285 		FIELD_PREP(OP_IMMED_DST_LMEXTN, dst_lmextn);
286 
287 	nfp_prog_push(nfp_prog, insn);
288 }
289 
290 static void
291 emit_immed(struct nfp_prog *nfp_prog, swreg dst, u16 imm,
292 	   enum immed_width width, bool invert, enum immed_shift shift)
293 {
294 	struct nfp_insn_ur_regs reg;
295 	int err;
296 
297 	if (swreg_type(dst) == NN_REG_IMM) {
298 		nfp_prog->error = -EFAULT;
299 		return;
300 	}
301 
302 	err = swreg_to_unrestricted(dst, dst, reg_imm(imm & 0xff), &reg);
303 	if (err) {
304 		nfp_prog->error = err;
305 		return;
306 	}
307 
308 	/* Use reg.dst when destination is No-Dest. */
309 	__emit_immed(nfp_prog,
310 		     swreg_type(dst) == NN_REG_NONE ? reg.dst : reg.areg,
311 		     reg.breg, imm >> 8, width, invert, shift,
312 		     reg.wr_both, reg.dst_lmextn, reg.src_lmextn);
313 }
314 
315 static void
316 __emit_shf(struct nfp_prog *nfp_prog, u16 dst, enum alu_dst_ab dst_ab,
317 	   enum shf_sc sc, u8 shift,
318 	   u16 areg, enum shf_op op, u16 breg, bool i8, bool sw, bool wr_both,
319 	   bool dst_lmextn, bool src_lmextn)
320 {
321 	u64 insn;
322 
323 	if (!FIELD_FIT(OP_SHF_SHIFT, shift)) {
324 		nfp_prog->error = -EFAULT;
325 		return;
326 	}
327 
328 	if (sc == SHF_SC_L_SHF)
329 		shift = 32 - shift;
330 
331 	insn = OP_SHF_BASE |
332 		FIELD_PREP(OP_SHF_A_SRC, areg) |
333 		FIELD_PREP(OP_SHF_SC, sc) |
334 		FIELD_PREP(OP_SHF_B_SRC, breg) |
335 		FIELD_PREP(OP_SHF_I8, i8) |
336 		FIELD_PREP(OP_SHF_SW, sw) |
337 		FIELD_PREP(OP_SHF_DST, dst) |
338 		FIELD_PREP(OP_SHF_SHIFT, shift) |
339 		FIELD_PREP(OP_SHF_OP, op) |
340 		FIELD_PREP(OP_SHF_DST_AB, dst_ab) |
341 		FIELD_PREP(OP_SHF_WR_AB, wr_both) |
342 		FIELD_PREP(OP_SHF_SRC_LMEXTN, src_lmextn) |
343 		FIELD_PREP(OP_SHF_DST_LMEXTN, dst_lmextn);
344 
345 	nfp_prog_push(nfp_prog, insn);
346 }
347 
348 static void
349 emit_shf(struct nfp_prog *nfp_prog, swreg dst,
350 	 swreg lreg, enum shf_op op, swreg rreg, enum shf_sc sc, u8 shift)
351 {
352 	struct nfp_insn_re_regs reg;
353 	int err;
354 
355 	err = swreg_to_restricted(dst, lreg, rreg, &reg, true);
356 	if (err) {
357 		nfp_prog->error = err;
358 		return;
359 	}
360 
361 	__emit_shf(nfp_prog, reg.dst, reg.dst_ab, sc, shift,
362 		   reg.areg, op, reg.breg, reg.i8, reg.swap, reg.wr_both,
363 		   reg.dst_lmextn, reg.src_lmextn);
364 }
365 
366 static void
367 emit_shf_indir(struct nfp_prog *nfp_prog, swreg dst,
368 	       swreg lreg, enum shf_op op, swreg rreg, enum shf_sc sc)
369 {
370 	if (sc == SHF_SC_R_ROT) {
371 		pr_err("indirect shift is not allowed on rotation\n");
372 		nfp_prog->error = -EFAULT;
373 		return;
374 	}
375 
376 	emit_shf(nfp_prog, dst, lreg, op, rreg, sc, 0);
377 }
378 
379 static void
380 __emit_alu(struct nfp_prog *nfp_prog, u16 dst, enum alu_dst_ab dst_ab,
381 	   u16 areg, enum alu_op op, u16 breg, bool swap, bool wr_both,
382 	   bool dst_lmextn, bool src_lmextn)
383 {
384 	u64 insn;
385 
386 	insn = OP_ALU_BASE |
387 		FIELD_PREP(OP_ALU_A_SRC, areg) |
388 		FIELD_PREP(OP_ALU_B_SRC, breg) |
389 		FIELD_PREP(OP_ALU_DST, dst) |
390 		FIELD_PREP(OP_ALU_SW, swap) |
391 		FIELD_PREP(OP_ALU_OP, op) |
392 		FIELD_PREP(OP_ALU_DST_AB, dst_ab) |
393 		FIELD_PREP(OP_ALU_WR_AB, wr_both) |
394 		FIELD_PREP(OP_ALU_SRC_LMEXTN, src_lmextn) |
395 		FIELD_PREP(OP_ALU_DST_LMEXTN, dst_lmextn);
396 
397 	nfp_prog_push(nfp_prog, insn);
398 }
399 
400 static void
401 emit_alu(struct nfp_prog *nfp_prog, swreg dst,
402 	 swreg lreg, enum alu_op op, swreg rreg)
403 {
404 	struct nfp_insn_ur_regs reg;
405 	int err;
406 
407 	err = swreg_to_unrestricted(dst, lreg, rreg, &reg);
408 	if (err) {
409 		nfp_prog->error = err;
410 		return;
411 	}
412 
413 	__emit_alu(nfp_prog, reg.dst, reg.dst_ab,
414 		   reg.areg, op, reg.breg, reg.swap, reg.wr_both,
415 		   reg.dst_lmextn, reg.src_lmextn);
416 }
417 
418 static void
419 __emit_ld_field(struct nfp_prog *nfp_prog, enum shf_sc sc,
420 		u8 areg, u8 bmask, u8 breg, u8 shift, bool imm8,
421 		bool zero, bool swap, bool wr_both,
422 		bool dst_lmextn, bool src_lmextn)
423 {
424 	u64 insn;
425 
426 	insn = OP_LDF_BASE |
427 		FIELD_PREP(OP_LDF_A_SRC, areg) |
428 		FIELD_PREP(OP_LDF_SC, sc) |
429 		FIELD_PREP(OP_LDF_B_SRC, breg) |
430 		FIELD_PREP(OP_LDF_I8, imm8) |
431 		FIELD_PREP(OP_LDF_SW, swap) |
432 		FIELD_PREP(OP_LDF_ZF, zero) |
433 		FIELD_PREP(OP_LDF_BMASK, bmask) |
434 		FIELD_PREP(OP_LDF_SHF, shift) |
435 		FIELD_PREP(OP_LDF_WR_AB, wr_both) |
436 		FIELD_PREP(OP_LDF_SRC_LMEXTN, src_lmextn) |
437 		FIELD_PREP(OP_LDF_DST_LMEXTN, dst_lmextn);
438 
439 	nfp_prog_push(nfp_prog, insn);
440 }
441 
442 static void
443 emit_ld_field_any(struct nfp_prog *nfp_prog, swreg dst, u8 bmask, swreg src,
444 		  enum shf_sc sc, u8 shift, bool zero)
445 {
446 	struct nfp_insn_re_regs reg;
447 	int err;
448 
449 	/* Note: ld_field is special as it uses one of the src regs as dst */
450 	err = swreg_to_restricted(dst, dst, src, &reg, true);
451 	if (err) {
452 		nfp_prog->error = err;
453 		return;
454 	}
455 
456 	__emit_ld_field(nfp_prog, sc, reg.areg, bmask, reg.breg, shift,
457 			reg.i8, zero, reg.swap, reg.wr_both,
458 			reg.dst_lmextn, reg.src_lmextn);
459 }
460 
461 static void
462 emit_ld_field(struct nfp_prog *nfp_prog, swreg dst, u8 bmask, swreg src,
463 	      enum shf_sc sc, u8 shift)
464 {
465 	emit_ld_field_any(nfp_prog, dst, bmask, src, sc, shift, false);
466 }
467 
468 static void
469 __emit_lcsr(struct nfp_prog *nfp_prog, u16 areg, u16 breg, bool wr, u16 addr,
470 	    bool dst_lmextn, bool src_lmextn)
471 {
472 	u64 insn;
473 
474 	insn = OP_LCSR_BASE |
475 		FIELD_PREP(OP_LCSR_A_SRC, areg) |
476 		FIELD_PREP(OP_LCSR_B_SRC, breg) |
477 		FIELD_PREP(OP_LCSR_WRITE, wr) |
478 		FIELD_PREP(OP_LCSR_ADDR, addr / 4) |
479 		FIELD_PREP(OP_LCSR_SRC_LMEXTN, src_lmextn) |
480 		FIELD_PREP(OP_LCSR_DST_LMEXTN, dst_lmextn);
481 
482 	nfp_prog_push(nfp_prog, insn);
483 }
484 
485 static void emit_csr_wr(struct nfp_prog *nfp_prog, swreg src, u16 addr)
486 {
487 	struct nfp_insn_ur_regs reg;
488 	int err;
489 
490 	/* This instruction takes immeds instead of reg_none() for the ignored
491 	 * operand, but we can't encode 2 immeds in one instr with our normal
492 	 * swreg infra so if param is an immed, we encode as reg_none() and
493 	 * copy the immed to both operands.
494 	 */
495 	if (swreg_type(src) == NN_REG_IMM) {
496 		err = swreg_to_unrestricted(reg_none(), src, reg_none(), &reg);
497 		reg.breg = reg.areg;
498 	} else {
499 		err = swreg_to_unrestricted(reg_none(), src, reg_imm(0), &reg);
500 	}
501 	if (err) {
502 		nfp_prog->error = err;
503 		return;
504 	}
505 
506 	__emit_lcsr(nfp_prog, reg.areg, reg.breg, true, addr,
507 		    false, reg.src_lmextn);
508 }
509 
510 /* CSR value is read in following immed[gpr, 0] */
511 static void __emit_csr_rd(struct nfp_prog *nfp_prog, u16 addr)
512 {
513 	__emit_lcsr(nfp_prog, 0, 0, false, addr, false, false);
514 }
515 
516 static void emit_nop(struct nfp_prog *nfp_prog)
517 {
518 	__emit_immed(nfp_prog, UR_REG_IMM, UR_REG_IMM, 0, 0, 0, 0, 0, 0, 0);
519 }
520 
521 /* --- Wrappers --- */
522 static bool pack_immed(u32 imm, u16 *val, enum immed_shift *shift)
523 {
524 	if (!(imm & 0xffff0000)) {
525 		*val = imm;
526 		*shift = IMMED_SHIFT_0B;
527 	} else if (!(imm & 0xff0000ff)) {
528 		*val = imm >> 8;
529 		*shift = IMMED_SHIFT_1B;
530 	} else if (!(imm & 0x0000ffff)) {
531 		*val = imm >> 16;
532 		*shift = IMMED_SHIFT_2B;
533 	} else {
534 		return false;
535 	}
536 
537 	return true;
538 }
539 
540 static void wrp_immed(struct nfp_prog *nfp_prog, swreg dst, u32 imm)
541 {
542 	enum immed_shift shift;
543 	u16 val;
544 
545 	if (pack_immed(imm, &val, &shift)) {
546 		emit_immed(nfp_prog, dst, val, IMMED_WIDTH_ALL, false, shift);
547 	} else if (pack_immed(~imm, &val, &shift)) {
548 		emit_immed(nfp_prog, dst, val, IMMED_WIDTH_ALL, true, shift);
549 	} else {
550 		emit_immed(nfp_prog, dst, imm & 0xffff, IMMED_WIDTH_ALL,
551 			   false, IMMED_SHIFT_0B);
552 		emit_immed(nfp_prog, dst, imm >> 16, IMMED_WIDTH_WORD,
553 			   false, IMMED_SHIFT_2B);
554 	}
555 }
556 
557 static void
558 wrp_immed_relo(struct nfp_prog *nfp_prog, swreg dst, u32 imm,
559 	       enum nfp_relo_type relo)
560 {
561 	if (imm > 0xffff) {
562 		pr_err("relocation of a large immediate!\n");
563 		nfp_prog->error = -EFAULT;
564 		return;
565 	}
566 	emit_immed(nfp_prog, dst, imm, IMMED_WIDTH_ALL, false, IMMED_SHIFT_0B);
567 
568 	nfp_prog->prog[nfp_prog->prog_len - 1] |=
569 		FIELD_PREP(OP_RELO_TYPE, relo);
570 }
571 
572 /* ur_load_imm_any() - encode immediate or use tmp register (unrestricted)
573  * If the @imm is small enough encode it directly in operand and return
574  * otherwise load @imm to a spare register and return its encoding.
575  */
576 static swreg ur_load_imm_any(struct nfp_prog *nfp_prog, u32 imm, swreg tmp_reg)
577 {
578 	if (FIELD_FIT(UR_REG_IMM_MAX, imm))
579 		return reg_imm(imm);
580 
581 	wrp_immed(nfp_prog, tmp_reg, imm);
582 	return tmp_reg;
583 }
584 
585 /* re_load_imm_any() - encode immediate or use tmp register (restricted)
586  * If the @imm is small enough encode it directly in operand and return
587  * otherwise load @imm to a spare register and return its encoding.
588  */
589 static swreg re_load_imm_any(struct nfp_prog *nfp_prog, u32 imm, swreg tmp_reg)
590 {
591 	if (FIELD_FIT(RE_REG_IMM_MAX, imm))
592 		return reg_imm(imm);
593 
594 	wrp_immed(nfp_prog, tmp_reg, imm);
595 	return tmp_reg;
596 }
597 
598 static void wrp_nops(struct nfp_prog *nfp_prog, unsigned int count)
599 {
600 	while (count--)
601 		emit_nop(nfp_prog);
602 }
603 
604 static void wrp_mov(struct nfp_prog *nfp_prog, swreg dst, swreg src)
605 {
606 	emit_alu(nfp_prog, dst, reg_none(), ALU_OP_NONE, src);
607 }
608 
609 static void wrp_reg_mov(struct nfp_prog *nfp_prog, u16 dst, u16 src)
610 {
611 	wrp_mov(nfp_prog, reg_both(dst), reg_b(src));
612 }
613 
614 /* wrp_reg_subpart() - load @field_len bytes from @offset of @src, write the
615  * result to @dst from low end.
616  */
617 static void
618 wrp_reg_subpart(struct nfp_prog *nfp_prog, swreg dst, swreg src, u8 field_len,
619 		u8 offset)
620 {
621 	enum shf_sc sc = offset ? SHF_SC_R_SHF : SHF_SC_NONE;
622 	u8 mask = (1 << field_len) - 1;
623 
624 	emit_ld_field_any(nfp_prog, dst, mask, src, sc, offset * 8, true);
625 }
626 
627 /* wrp_reg_or_subpart() - load @field_len bytes from low end of @src, or the
628  * result to @dst from offset, there is no change on the other bits of @dst.
629  */
630 static void
631 wrp_reg_or_subpart(struct nfp_prog *nfp_prog, swreg dst, swreg src,
632 		   u8 field_len, u8 offset)
633 {
634 	enum shf_sc sc = offset ? SHF_SC_L_SHF : SHF_SC_NONE;
635 	u8 mask = ((1 << field_len) - 1) << offset;
636 
637 	emit_ld_field(nfp_prog, dst, mask, src, sc, 32 - offset * 8);
638 }
639 
640 static void
641 addr40_offset(struct nfp_prog *nfp_prog, u8 src_gpr, swreg offset,
642 	      swreg *rega, swreg *regb)
643 {
644 	if (offset == reg_imm(0)) {
645 		*rega = reg_a(src_gpr);
646 		*regb = reg_b(src_gpr + 1);
647 		return;
648 	}
649 
650 	emit_alu(nfp_prog, imm_a(nfp_prog), reg_a(src_gpr), ALU_OP_ADD, offset);
651 	emit_alu(nfp_prog, imm_b(nfp_prog), reg_b(src_gpr + 1), ALU_OP_ADD_C,
652 		 reg_imm(0));
653 	*rega = imm_a(nfp_prog);
654 	*regb = imm_b(nfp_prog);
655 }
656 
657 /* NFP has Command Push Pull bus which supports bluk memory operations. */
658 static int nfp_cpp_memcpy(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
659 {
660 	bool descending_seq = meta->ldst_gather_len < 0;
661 	s16 len = abs(meta->ldst_gather_len);
662 	swreg src_base, off;
663 	bool src_40bit_addr;
664 	unsigned int i;
665 	u8 xfer_num;
666 
667 	off = re_load_imm_any(nfp_prog, meta->insn.off, imm_b(nfp_prog));
668 	src_40bit_addr = meta->ptr.type == PTR_TO_MAP_VALUE;
669 	src_base = reg_a(meta->insn.src_reg * 2);
670 	xfer_num = round_up(len, 4) / 4;
671 
672 	if (src_40bit_addr)
673 		addr40_offset(nfp_prog, meta->insn.src_reg, off, &src_base,
674 			      &off);
675 
676 	/* Setup PREV_ALU fields to override memory read length. */
677 	if (len > 32)
678 		wrp_immed(nfp_prog, reg_none(),
679 			  CMD_OVE_LEN | FIELD_PREP(CMD_OV_LEN, xfer_num - 1));
680 
681 	/* Memory read from source addr into transfer-in registers. */
682 	emit_cmd_any(nfp_prog, CMD_TGT_READ32_SWAP,
683 		     src_40bit_addr ? CMD_MODE_40b_BA : CMD_MODE_32b, 0,
684 		     src_base, off, xfer_num - 1, CMD_CTX_SWAP, len > 32);
685 
686 	/* Move from transfer-in to transfer-out. */
687 	for (i = 0; i < xfer_num; i++)
688 		wrp_mov(nfp_prog, reg_xfer(i), reg_xfer(i));
689 
690 	off = re_load_imm_any(nfp_prog, meta->paired_st->off, imm_b(nfp_prog));
691 
692 	if (len <= 8) {
693 		/* Use single direct_ref write8. */
694 		emit_cmd(nfp_prog, CMD_TGT_WRITE8_SWAP, CMD_MODE_32b, 0,
695 			 reg_a(meta->paired_st->dst_reg * 2), off, len - 1,
696 			 CMD_CTX_SWAP);
697 	} else if (len <= 32 && IS_ALIGNED(len, 4)) {
698 		/* Use single direct_ref write32. */
699 		emit_cmd(nfp_prog, CMD_TGT_WRITE32_SWAP, CMD_MODE_32b, 0,
700 			 reg_a(meta->paired_st->dst_reg * 2), off, xfer_num - 1,
701 			 CMD_CTX_SWAP);
702 	} else if (len <= 32) {
703 		/* Use single indirect_ref write8. */
704 		wrp_immed(nfp_prog, reg_none(),
705 			  CMD_OVE_LEN | FIELD_PREP(CMD_OV_LEN, len - 1));
706 		emit_cmd_indir(nfp_prog, CMD_TGT_WRITE8_SWAP, CMD_MODE_32b, 0,
707 			       reg_a(meta->paired_st->dst_reg * 2), off,
708 			       len - 1, CMD_CTX_SWAP);
709 	} else if (IS_ALIGNED(len, 4)) {
710 		/* Use single indirect_ref write32. */
711 		wrp_immed(nfp_prog, reg_none(),
712 			  CMD_OVE_LEN | FIELD_PREP(CMD_OV_LEN, xfer_num - 1));
713 		emit_cmd_indir(nfp_prog, CMD_TGT_WRITE32_SWAP, CMD_MODE_32b, 0,
714 			       reg_a(meta->paired_st->dst_reg * 2), off,
715 			       xfer_num - 1, CMD_CTX_SWAP);
716 	} else if (len <= 40) {
717 		/* Use one direct_ref write32 to write the first 32-bytes, then
718 		 * another direct_ref write8 to write the remaining bytes.
719 		 */
720 		emit_cmd(nfp_prog, CMD_TGT_WRITE32_SWAP, CMD_MODE_32b, 0,
721 			 reg_a(meta->paired_st->dst_reg * 2), off, 7,
722 			 CMD_CTX_SWAP);
723 
724 		off = re_load_imm_any(nfp_prog, meta->paired_st->off + 32,
725 				      imm_b(nfp_prog));
726 		emit_cmd(nfp_prog, CMD_TGT_WRITE8_SWAP, CMD_MODE_32b, 8,
727 			 reg_a(meta->paired_st->dst_reg * 2), off, len - 33,
728 			 CMD_CTX_SWAP);
729 	} else {
730 		/* Use one indirect_ref write32 to write 4-bytes aligned length,
731 		 * then another direct_ref write8 to write the remaining bytes.
732 		 */
733 		u8 new_off;
734 
735 		wrp_immed(nfp_prog, reg_none(),
736 			  CMD_OVE_LEN | FIELD_PREP(CMD_OV_LEN, xfer_num - 2));
737 		emit_cmd_indir(nfp_prog, CMD_TGT_WRITE32_SWAP, CMD_MODE_32b, 0,
738 			       reg_a(meta->paired_st->dst_reg * 2), off,
739 			       xfer_num - 2, CMD_CTX_SWAP);
740 		new_off = meta->paired_st->off + (xfer_num - 1) * 4;
741 		off = re_load_imm_any(nfp_prog, new_off, imm_b(nfp_prog));
742 		emit_cmd(nfp_prog, CMD_TGT_WRITE8_SWAP, CMD_MODE_32b,
743 			 xfer_num - 1, reg_a(meta->paired_st->dst_reg * 2), off,
744 			 (len & 0x3) - 1, CMD_CTX_SWAP);
745 	}
746 
747 	/* TODO: The following extra load is to make sure data flow be identical
748 	 *  before and after we do memory copy optimization.
749 	 *
750 	 *  The load destination register is not guaranteed to be dead, so we
751 	 *  need to make sure it is loaded with the value the same as before
752 	 *  this transformation.
753 	 *
754 	 *  These extra loads could be removed once we have accurate register
755 	 *  usage information.
756 	 */
757 	if (descending_seq)
758 		xfer_num = 0;
759 	else if (BPF_SIZE(meta->insn.code) != BPF_DW)
760 		xfer_num = xfer_num - 1;
761 	else
762 		xfer_num = xfer_num - 2;
763 
764 	switch (BPF_SIZE(meta->insn.code)) {
765 	case BPF_B:
766 		wrp_reg_subpart(nfp_prog, reg_both(meta->insn.dst_reg * 2),
767 				reg_xfer(xfer_num), 1,
768 				IS_ALIGNED(len, 4) ? 3 : (len & 3) - 1);
769 		break;
770 	case BPF_H:
771 		wrp_reg_subpart(nfp_prog, reg_both(meta->insn.dst_reg * 2),
772 				reg_xfer(xfer_num), 2, (len & 3) ^ 2);
773 		break;
774 	case BPF_W:
775 		wrp_mov(nfp_prog, reg_both(meta->insn.dst_reg * 2),
776 			reg_xfer(0));
777 		break;
778 	case BPF_DW:
779 		wrp_mov(nfp_prog, reg_both(meta->insn.dst_reg * 2),
780 			reg_xfer(xfer_num));
781 		wrp_mov(nfp_prog, reg_both(meta->insn.dst_reg * 2 + 1),
782 			reg_xfer(xfer_num + 1));
783 		break;
784 	}
785 
786 	if (BPF_SIZE(meta->insn.code) != BPF_DW)
787 		wrp_immed(nfp_prog, reg_both(meta->insn.dst_reg * 2 + 1), 0);
788 
789 	return 0;
790 }
791 
792 static int
793 data_ld(struct nfp_prog *nfp_prog, swreg offset, u8 dst_gpr, int size)
794 {
795 	unsigned int i;
796 	u16 shift, sz;
797 
798 	/* We load the value from the address indicated in @offset and then
799 	 * shift out the data we don't need.  Note: this is big endian!
800 	 */
801 	sz = max(size, 4);
802 	shift = size < 4 ? 4 - size : 0;
803 
804 	emit_cmd(nfp_prog, CMD_TGT_READ8, CMD_MODE_32b, 0,
805 		 pptr_reg(nfp_prog), offset, sz - 1, CMD_CTX_SWAP);
806 
807 	i = 0;
808 	if (shift)
809 		emit_shf(nfp_prog, reg_both(dst_gpr), reg_none(), SHF_OP_NONE,
810 			 reg_xfer(0), SHF_SC_R_SHF, shift * 8);
811 	else
812 		for (; i * 4 < size; i++)
813 			wrp_mov(nfp_prog, reg_both(dst_gpr + i), reg_xfer(i));
814 
815 	if (i < 2)
816 		wrp_immed(nfp_prog, reg_both(dst_gpr + 1), 0);
817 
818 	return 0;
819 }
820 
821 static int
822 data_ld_host_order(struct nfp_prog *nfp_prog, u8 dst_gpr,
823 		   swreg lreg, swreg rreg, int size, enum cmd_mode mode)
824 {
825 	unsigned int i;
826 	u8 mask, sz;
827 
828 	/* We load the value from the address indicated in rreg + lreg and then
829 	 * mask out the data we don't need.  Note: this is little endian!
830 	 */
831 	sz = max(size, 4);
832 	mask = size < 4 ? GENMASK(size - 1, 0) : 0;
833 
834 	emit_cmd(nfp_prog, CMD_TGT_READ32_SWAP, mode, 0,
835 		 lreg, rreg, sz / 4 - 1, CMD_CTX_SWAP);
836 
837 	i = 0;
838 	if (mask)
839 		emit_ld_field_any(nfp_prog, reg_both(dst_gpr), mask,
840 				  reg_xfer(0), SHF_SC_NONE, 0, true);
841 	else
842 		for (; i * 4 < size; i++)
843 			wrp_mov(nfp_prog, reg_both(dst_gpr + i), reg_xfer(i));
844 
845 	if (i < 2)
846 		wrp_immed(nfp_prog, reg_both(dst_gpr + 1), 0);
847 
848 	return 0;
849 }
850 
851 static int
852 data_ld_host_order_addr32(struct nfp_prog *nfp_prog, u8 src_gpr, swreg offset,
853 			  u8 dst_gpr, u8 size)
854 {
855 	return data_ld_host_order(nfp_prog, dst_gpr, reg_a(src_gpr), offset,
856 				  size, CMD_MODE_32b);
857 }
858 
859 static int
860 data_ld_host_order_addr40(struct nfp_prog *nfp_prog, u8 src_gpr, swreg offset,
861 			  u8 dst_gpr, u8 size)
862 {
863 	swreg rega, regb;
864 
865 	addr40_offset(nfp_prog, src_gpr, offset, &rega, &regb);
866 
867 	return data_ld_host_order(nfp_prog, dst_gpr, rega, regb,
868 				  size, CMD_MODE_40b_BA);
869 }
870 
871 static int
872 construct_data_ind_ld(struct nfp_prog *nfp_prog, u16 offset, u16 src, u8 size)
873 {
874 	swreg tmp_reg;
875 
876 	/* Calculate the true offset (src_reg + imm) */
877 	tmp_reg = ur_load_imm_any(nfp_prog, offset, imm_b(nfp_prog));
878 	emit_alu(nfp_prog, imm_both(nfp_prog), reg_a(src), ALU_OP_ADD, tmp_reg);
879 
880 	/* Check packet length (size guaranteed to fit b/c it's u8) */
881 	emit_alu(nfp_prog, imm_a(nfp_prog),
882 		 imm_a(nfp_prog), ALU_OP_ADD, reg_imm(size));
883 	emit_alu(nfp_prog, reg_none(),
884 		 plen_reg(nfp_prog), ALU_OP_SUB, imm_a(nfp_prog));
885 	emit_br_relo(nfp_prog, BR_BLO, BR_OFF_RELO, 0, RELO_BR_GO_ABORT);
886 
887 	/* Load data */
888 	return data_ld(nfp_prog, imm_b(nfp_prog), 0, size);
889 }
890 
891 static int construct_data_ld(struct nfp_prog *nfp_prog, u16 offset, u8 size)
892 {
893 	swreg tmp_reg;
894 
895 	/* Check packet length */
896 	tmp_reg = ur_load_imm_any(nfp_prog, offset + size, imm_a(nfp_prog));
897 	emit_alu(nfp_prog, reg_none(), plen_reg(nfp_prog), ALU_OP_SUB, tmp_reg);
898 	emit_br_relo(nfp_prog, BR_BLO, BR_OFF_RELO, 0, RELO_BR_GO_ABORT);
899 
900 	/* Load data */
901 	tmp_reg = re_load_imm_any(nfp_prog, offset, imm_b(nfp_prog));
902 	return data_ld(nfp_prog, tmp_reg, 0, size);
903 }
904 
905 static int
906 data_stx_host_order(struct nfp_prog *nfp_prog, u8 dst_gpr, swreg offset,
907 		    u8 src_gpr, u8 size)
908 {
909 	unsigned int i;
910 
911 	for (i = 0; i * 4 < size; i++)
912 		wrp_mov(nfp_prog, reg_xfer(i), reg_a(src_gpr + i));
913 
914 	emit_cmd(nfp_prog, CMD_TGT_WRITE8_SWAP, CMD_MODE_32b, 0,
915 		 reg_a(dst_gpr), offset, size - 1, CMD_CTX_SWAP);
916 
917 	return 0;
918 }
919 
920 static int
921 data_st_host_order(struct nfp_prog *nfp_prog, u8 dst_gpr, swreg offset,
922 		   u64 imm, u8 size)
923 {
924 	wrp_immed(nfp_prog, reg_xfer(0), imm);
925 	if (size == 8)
926 		wrp_immed(nfp_prog, reg_xfer(1), imm >> 32);
927 
928 	emit_cmd(nfp_prog, CMD_TGT_WRITE8_SWAP, CMD_MODE_32b, 0,
929 		 reg_a(dst_gpr), offset, size - 1, CMD_CTX_SWAP);
930 
931 	return 0;
932 }
933 
934 typedef int
935 (*lmem_step)(struct nfp_prog *nfp_prog, u8 gpr, u8 gpr_byte, s32 off,
936 	     unsigned int size, bool first, bool new_gpr, bool last, bool lm3,
937 	     bool needs_inc);
938 
939 static int
940 wrp_lmem_load(struct nfp_prog *nfp_prog, u8 dst, u8 dst_byte, s32 off,
941 	      unsigned int size, bool first, bool new_gpr, bool last, bool lm3,
942 	      bool needs_inc)
943 {
944 	bool should_inc = needs_inc && new_gpr && !last;
945 	u32 idx, src_byte;
946 	enum shf_sc sc;
947 	swreg reg;
948 	int shf;
949 	u8 mask;
950 
951 	if (WARN_ON_ONCE(dst_byte + size > 4 || off % 4 + size > 4))
952 		return -EOPNOTSUPP;
953 
954 	idx = off / 4;
955 
956 	/* Move the entire word */
957 	if (size == 4) {
958 		wrp_mov(nfp_prog, reg_both(dst),
959 			should_inc ? reg_lm_inc(3) : reg_lm(lm3 ? 3 : 0, idx));
960 		return 0;
961 	}
962 
963 	if (WARN_ON_ONCE(lm3 && idx > RE_REG_LM_IDX_MAX))
964 		return -EOPNOTSUPP;
965 
966 	src_byte = off % 4;
967 
968 	mask = (1 << size) - 1;
969 	mask <<= dst_byte;
970 
971 	if (WARN_ON_ONCE(mask > 0xf))
972 		return -EOPNOTSUPP;
973 
974 	shf = abs(src_byte - dst_byte) * 8;
975 	if (src_byte == dst_byte) {
976 		sc = SHF_SC_NONE;
977 	} else if (src_byte < dst_byte) {
978 		shf = 32 - shf;
979 		sc = SHF_SC_L_SHF;
980 	} else {
981 		sc = SHF_SC_R_SHF;
982 	}
983 
984 	/* ld_field can address fewer indexes, if offset too large do RMW.
985 	 * Because we RMV twice we waste 2 cycles on unaligned 8 byte writes.
986 	 */
987 	if (idx <= RE_REG_LM_IDX_MAX) {
988 		reg = reg_lm(lm3 ? 3 : 0, idx);
989 	} else {
990 		reg = imm_a(nfp_prog);
991 		/* If it's not the first part of the load and we start a new GPR
992 		 * that means we are loading a second part of the LMEM word into
993 		 * a new GPR.  IOW we've already looked that LMEM word and
994 		 * therefore it has been loaded into imm_a().
995 		 */
996 		if (first || !new_gpr)
997 			wrp_mov(nfp_prog, reg, reg_lm(0, idx));
998 	}
999 
1000 	emit_ld_field_any(nfp_prog, reg_both(dst), mask, reg, sc, shf, new_gpr);
1001 
1002 	if (should_inc)
1003 		wrp_mov(nfp_prog, reg_none(), reg_lm_inc(3));
1004 
1005 	return 0;
1006 }
1007 
1008 static int
1009 wrp_lmem_store(struct nfp_prog *nfp_prog, u8 src, u8 src_byte, s32 off,
1010 	       unsigned int size, bool first, bool new_gpr, bool last, bool lm3,
1011 	       bool needs_inc)
1012 {
1013 	bool should_inc = needs_inc && new_gpr && !last;
1014 	u32 idx, dst_byte;
1015 	enum shf_sc sc;
1016 	swreg reg;
1017 	int shf;
1018 	u8 mask;
1019 
1020 	if (WARN_ON_ONCE(src_byte + size > 4 || off % 4 + size > 4))
1021 		return -EOPNOTSUPP;
1022 
1023 	idx = off / 4;
1024 
1025 	/* Move the entire word */
1026 	if (size == 4) {
1027 		wrp_mov(nfp_prog,
1028 			should_inc ? reg_lm_inc(3) : reg_lm(lm3 ? 3 : 0, idx),
1029 			reg_b(src));
1030 		return 0;
1031 	}
1032 
1033 	if (WARN_ON_ONCE(lm3 && idx > RE_REG_LM_IDX_MAX))
1034 		return -EOPNOTSUPP;
1035 
1036 	dst_byte = off % 4;
1037 
1038 	mask = (1 << size) - 1;
1039 	mask <<= dst_byte;
1040 
1041 	if (WARN_ON_ONCE(mask > 0xf))
1042 		return -EOPNOTSUPP;
1043 
1044 	shf = abs(src_byte - dst_byte) * 8;
1045 	if (src_byte == dst_byte) {
1046 		sc = SHF_SC_NONE;
1047 	} else if (src_byte < dst_byte) {
1048 		shf = 32 - shf;
1049 		sc = SHF_SC_L_SHF;
1050 	} else {
1051 		sc = SHF_SC_R_SHF;
1052 	}
1053 
1054 	/* ld_field can address fewer indexes, if offset too large do RMW.
1055 	 * Because we RMV twice we waste 2 cycles on unaligned 8 byte writes.
1056 	 */
1057 	if (idx <= RE_REG_LM_IDX_MAX) {
1058 		reg = reg_lm(lm3 ? 3 : 0, idx);
1059 	} else {
1060 		reg = imm_a(nfp_prog);
1061 		/* Only first and last LMEM locations are going to need RMW,
1062 		 * the middle location will be overwritten fully.
1063 		 */
1064 		if (first || last)
1065 			wrp_mov(nfp_prog, reg, reg_lm(0, idx));
1066 	}
1067 
1068 	emit_ld_field(nfp_prog, reg, mask, reg_b(src), sc, shf);
1069 
1070 	if (new_gpr || last) {
1071 		if (idx > RE_REG_LM_IDX_MAX)
1072 			wrp_mov(nfp_prog, reg_lm(0, idx), reg);
1073 		if (should_inc)
1074 			wrp_mov(nfp_prog, reg_none(), reg_lm_inc(3));
1075 	}
1076 
1077 	return 0;
1078 }
1079 
1080 static int
1081 mem_op_stack(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
1082 	     unsigned int size, unsigned int ptr_off, u8 gpr, u8 ptr_gpr,
1083 	     bool clr_gpr, lmem_step step)
1084 {
1085 	s32 off = nfp_prog->stack_depth + meta->insn.off + ptr_off;
1086 	bool first = true, last;
1087 	bool needs_inc = false;
1088 	swreg stack_off_reg;
1089 	u8 prev_gpr = 255;
1090 	u32 gpr_byte = 0;
1091 	bool lm3 = true;
1092 	int ret;
1093 
1094 	if (meta->ptr_not_const) {
1095 		/* Use of the last encountered ptr_off is OK, they all have
1096 		 * the same alignment.  Depend on low bits of value being
1097 		 * discarded when written to LMaddr register.
1098 		 */
1099 		stack_off_reg = ur_load_imm_any(nfp_prog, meta->insn.off,
1100 						stack_imm(nfp_prog));
1101 
1102 		emit_alu(nfp_prog, imm_b(nfp_prog),
1103 			 reg_a(ptr_gpr), ALU_OP_ADD, stack_off_reg);
1104 
1105 		needs_inc = true;
1106 	} else if (off + size <= 64) {
1107 		/* We can reach bottom 64B with LMaddr0 */
1108 		lm3 = false;
1109 	} else if (round_down(off, 32) == round_down(off + size - 1, 32)) {
1110 		/* We have to set up a new pointer.  If we know the offset
1111 		 * and the entire access falls into a single 32 byte aligned
1112 		 * window we won't have to increment the LM pointer.
1113 		 * The 32 byte alignment is imporant because offset is ORed in
1114 		 * not added when doing *l$indexN[off].
1115 		 */
1116 		stack_off_reg = ur_load_imm_any(nfp_prog, round_down(off, 32),
1117 						stack_imm(nfp_prog));
1118 		emit_alu(nfp_prog, imm_b(nfp_prog),
1119 			 stack_reg(nfp_prog), ALU_OP_ADD, stack_off_reg);
1120 
1121 		off %= 32;
1122 	} else {
1123 		stack_off_reg = ur_load_imm_any(nfp_prog, round_down(off, 4),
1124 						stack_imm(nfp_prog));
1125 
1126 		emit_alu(nfp_prog, imm_b(nfp_prog),
1127 			 stack_reg(nfp_prog), ALU_OP_ADD, stack_off_reg);
1128 
1129 		needs_inc = true;
1130 	}
1131 	if (lm3) {
1132 		emit_csr_wr(nfp_prog, imm_b(nfp_prog), NFP_CSR_ACT_LM_ADDR3);
1133 		/* For size < 4 one slot will be filled by zeroing of upper. */
1134 		wrp_nops(nfp_prog, clr_gpr && size < 8 ? 2 : 3);
1135 	}
1136 
1137 	if (clr_gpr && size < 8)
1138 		wrp_immed(nfp_prog, reg_both(gpr + 1), 0);
1139 
1140 	while (size) {
1141 		u32 slice_end;
1142 		u8 slice_size;
1143 
1144 		slice_size = min(size, 4 - gpr_byte);
1145 		slice_end = min(off + slice_size, round_up(off + 1, 4));
1146 		slice_size = slice_end - off;
1147 
1148 		last = slice_size == size;
1149 
1150 		if (needs_inc)
1151 			off %= 4;
1152 
1153 		ret = step(nfp_prog, gpr, gpr_byte, off, slice_size,
1154 			   first, gpr != prev_gpr, last, lm3, needs_inc);
1155 		if (ret)
1156 			return ret;
1157 
1158 		prev_gpr = gpr;
1159 		first = false;
1160 
1161 		gpr_byte += slice_size;
1162 		if (gpr_byte >= 4) {
1163 			gpr_byte -= 4;
1164 			gpr++;
1165 		}
1166 
1167 		size -= slice_size;
1168 		off += slice_size;
1169 	}
1170 
1171 	return 0;
1172 }
1173 
1174 static void
1175 wrp_alu_imm(struct nfp_prog *nfp_prog, u8 dst, enum alu_op alu_op, u32 imm)
1176 {
1177 	swreg tmp_reg;
1178 
1179 	if (alu_op == ALU_OP_AND) {
1180 		if (!imm)
1181 			wrp_immed(nfp_prog, reg_both(dst), 0);
1182 		if (!imm || !~imm)
1183 			return;
1184 	}
1185 	if (alu_op == ALU_OP_OR) {
1186 		if (!~imm)
1187 			wrp_immed(nfp_prog, reg_both(dst), ~0U);
1188 		if (!imm || !~imm)
1189 			return;
1190 	}
1191 	if (alu_op == ALU_OP_XOR) {
1192 		if (!~imm)
1193 			emit_alu(nfp_prog, reg_both(dst), reg_none(),
1194 				 ALU_OP_NOT, reg_b(dst));
1195 		if (!imm || !~imm)
1196 			return;
1197 	}
1198 
1199 	tmp_reg = ur_load_imm_any(nfp_prog, imm, imm_b(nfp_prog));
1200 	emit_alu(nfp_prog, reg_both(dst), reg_a(dst), alu_op, tmp_reg);
1201 }
1202 
1203 static int
1204 wrp_alu64_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
1205 	      enum alu_op alu_op, bool skip)
1206 {
1207 	const struct bpf_insn *insn = &meta->insn;
1208 	u64 imm = insn->imm; /* sign extend */
1209 
1210 	if (skip) {
1211 		meta->skip = true;
1212 		return 0;
1213 	}
1214 
1215 	wrp_alu_imm(nfp_prog, insn->dst_reg * 2, alu_op, imm & ~0U);
1216 	wrp_alu_imm(nfp_prog, insn->dst_reg * 2 + 1, alu_op, imm >> 32);
1217 
1218 	return 0;
1219 }
1220 
1221 static int
1222 wrp_alu64_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
1223 	      enum alu_op alu_op)
1224 {
1225 	u8 dst = meta->insn.dst_reg * 2, src = meta->insn.src_reg * 2;
1226 
1227 	emit_alu(nfp_prog, reg_both(dst), reg_a(dst), alu_op, reg_b(src));
1228 	emit_alu(nfp_prog, reg_both(dst + 1),
1229 		 reg_a(dst + 1), alu_op, reg_b(src + 1));
1230 
1231 	return 0;
1232 }
1233 
1234 static int
1235 wrp_alu32_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
1236 	      enum alu_op alu_op, bool skip)
1237 {
1238 	const struct bpf_insn *insn = &meta->insn;
1239 
1240 	if (skip) {
1241 		meta->skip = true;
1242 		return 0;
1243 	}
1244 
1245 	wrp_alu_imm(nfp_prog, insn->dst_reg * 2, alu_op, insn->imm);
1246 	wrp_immed(nfp_prog, reg_both(insn->dst_reg * 2 + 1), 0);
1247 
1248 	return 0;
1249 }
1250 
1251 static int
1252 wrp_alu32_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
1253 	      enum alu_op alu_op)
1254 {
1255 	u8 dst = meta->insn.dst_reg * 2, src = meta->insn.src_reg * 2;
1256 
1257 	emit_alu(nfp_prog, reg_both(dst), reg_a(dst), alu_op, reg_b(src));
1258 	wrp_immed(nfp_prog, reg_both(meta->insn.dst_reg * 2 + 1), 0);
1259 
1260 	return 0;
1261 }
1262 
1263 static void
1264 wrp_test_reg_one(struct nfp_prog *nfp_prog, u8 dst, enum alu_op alu_op, u8 src,
1265 		 enum br_mask br_mask, u16 off)
1266 {
1267 	emit_alu(nfp_prog, reg_none(), reg_a(dst), alu_op, reg_b(src));
1268 	emit_br(nfp_prog, br_mask, off, 0);
1269 }
1270 
1271 static int
1272 wrp_test_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
1273 	     enum alu_op alu_op, enum br_mask br_mask)
1274 {
1275 	const struct bpf_insn *insn = &meta->insn;
1276 
1277 	wrp_test_reg_one(nfp_prog, insn->dst_reg * 2, alu_op,
1278 			 insn->src_reg * 2, br_mask, insn->off);
1279 	wrp_test_reg_one(nfp_prog, insn->dst_reg * 2 + 1, alu_op,
1280 			 insn->src_reg * 2 + 1, br_mask, insn->off);
1281 
1282 	return 0;
1283 }
1284 
1285 static const struct jmp_code_map {
1286 	enum br_mask br_mask;
1287 	bool swap;
1288 } jmp_code_map[] = {
1289 	[BPF_JGT >> 4]	= { BR_BLO, true },
1290 	[BPF_JGE >> 4]	= { BR_BHS, false },
1291 	[BPF_JLT >> 4]	= { BR_BLO, false },
1292 	[BPF_JLE >> 4]	= { BR_BHS, true },
1293 	[BPF_JSGT >> 4]	= { BR_BLT, true },
1294 	[BPF_JSGE >> 4]	= { BR_BGE, false },
1295 	[BPF_JSLT >> 4]	= { BR_BLT, false },
1296 	[BPF_JSLE >> 4]	= { BR_BGE, true },
1297 };
1298 
1299 static const struct jmp_code_map *nfp_jmp_code_get(struct nfp_insn_meta *meta)
1300 {
1301 	unsigned int op;
1302 
1303 	op = BPF_OP(meta->insn.code) >> 4;
1304 	/* br_mask of 0 is BR_BEQ which we don't use in jump code table */
1305 	if (WARN_ONCE(op >= ARRAY_SIZE(jmp_code_map) ||
1306 		      !jmp_code_map[op].br_mask,
1307 		      "no code found for jump instruction"))
1308 		return NULL;
1309 
1310 	return &jmp_code_map[op];
1311 }
1312 
1313 static int cmp_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1314 {
1315 	const struct bpf_insn *insn = &meta->insn;
1316 	u64 imm = insn->imm; /* sign extend */
1317 	const struct jmp_code_map *code;
1318 	enum alu_op alu_op, carry_op;
1319 	u8 reg = insn->dst_reg * 2;
1320 	swreg tmp_reg;
1321 
1322 	code = nfp_jmp_code_get(meta);
1323 	if (!code)
1324 		return -EINVAL;
1325 
1326 	alu_op = meta->jump_neg_op ? ALU_OP_ADD : ALU_OP_SUB;
1327 	carry_op = meta->jump_neg_op ? ALU_OP_ADD_C : ALU_OP_SUB_C;
1328 
1329 	tmp_reg = ur_load_imm_any(nfp_prog, imm & ~0U, imm_b(nfp_prog));
1330 	if (!code->swap)
1331 		emit_alu(nfp_prog, reg_none(), reg_a(reg), alu_op, tmp_reg);
1332 	else
1333 		emit_alu(nfp_prog, reg_none(), tmp_reg, alu_op, reg_a(reg));
1334 
1335 	tmp_reg = ur_load_imm_any(nfp_prog, imm >> 32, imm_b(nfp_prog));
1336 	if (!code->swap)
1337 		emit_alu(nfp_prog, reg_none(),
1338 			 reg_a(reg + 1), carry_op, tmp_reg);
1339 	else
1340 		emit_alu(nfp_prog, reg_none(),
1341 			 tmp_reg, carry_op, reg_a(reg + 1));
1342 
1343 	emit_br(nfp_prog, code->br_mask, insn->off, 0);
1344 
1345 	return 0;
1346 }
1347 
1348 static int cmp_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1349 {
1350 	const struct bpf_insn *insn = &meta->insn;
1351 	const struct jmp_code_map *code;
1352 	u8 areg, breg;
1353 
1354 	code = nfp_jmp_code_get(meta);
1355 	if (!code)
1356 		return -EINVAL;
1357 
1358 	areg = insn->dst_reg * 2;
1359 	breg = insn->src_reg * 2;
1360 
1361 	if (code->swap) {
1362 		areg ^= breg;
1363 		breg ^= areg;
1364 		areg ^= breg;
1365 	}
1366 
1367 	emit_alu(nfp_prog, reg_none(), reg_a(areg), ALU_OP_SUB, reg_b(breg));
1368 	emit_alu(nfp_prog, reg_none(),
1369 		 reg_a(areg + 1), ALU_OP_SUB_C, reg_b(breg + 1));
1370 	emit_br(nfp_prog, code->br_mask, insn->off, 0);
1371 
1372 	return 0;
1373 }
1374 
1375 static void wrp_end32(struct nfp_prog *nfp_prog, swreg reg_in, u8 gpr_out)
1376 {
1377 	emit_ld_field(nfp_prog, reg_both(gpr_out), 0xf, reg_in,
1378 		      SHF_SC_R_ROT, 8);
1379 	emit_ld_field(nfp_prog, reg_both(gpr_out), 0x5, reg_a(gpr_out),
1380 		      SHF_SC_R_ROT, 16);
1381 }
1382 
1383 static int adjust_head(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1384 {
1385 	swreg tmp = imm_a(nfp_prog), tmp_len = imm_b(nfp_prog);
1386 	struct nfp_bpf_cap_adjust_head *adjust_head;
1387 	u32 ret_einval, end;
1388 
1389 	adjust_head = &nfp_prog->bpf->adjust_head;
1390 
1391 	/* Optimized version - 5 vs 14 cycles */
1392 	if (nfp_prog->adjust_head_location != UINT_MAX) {
1393 		if (WARN_ON_ONCE(nfp_prog->adjust_head_location != meta->n))
1394 			return -EINVAL;
1395 
1396 		emit_alu(nfp_prog, pptr_reg(nfp_prog),
1397 			 reg_a(2 * 2), ALU_OP_ADD, pptr_reg(nfp_prog));
1398 		emit_alu(nfp_prog, plen_reg(nfp_prog),
1399 			 plen_reg(nfp_prog), ALU_OP_SUB, reg_a(2 * 2));
1400 		emit_alu(nfp_prog, pv_len(nfp_prog),
1401 			 pv_len(nfp_prog), ALU_OP_SUB, reg_a(2 * 2));
1402 
1403 		wrp_immed(nfp_prog, reg_both(0), 0);
1404 		wrp_immed(nfp_prog, reg_both(1), 0);
1405 
1406 		/* TODO: when adjust head is guaranteed to succeed we can
1407 		 * also eliminate the following if (r0 == 0) branch.
1408 		 */
1409 
1410 		return 0;
1411 	}
1412 
1413 	ret_einval = nfp_prog_current_offset(nfp_prog) + 14;
1414 	end = ret_einval + 2;
1415 
1416 	/* We need to use a temp because offset is just a part of the pkt ptr */
1417 	emit_alu(nfp_prog, tmp,
1418 		 reg_a(2 * 2), ALU_OP_ADD_2B, pptr_reg(nfp_prog));
1419 
1420 	/* Validate result will fit within FW datapath constraints */
1421 	emit_alu(nfp_prog, reg_none(),
1422 		 tmp, ALU_OP_SUB, reg_imm(adjust_head->off_min));
1423 	emit_br(nfp_prog, BR_BLO, ret_einval, 0);
1424 	emit_alu(nfp_prog, reg_none(),
1425 		 reg_imm(adjust_head->off_max), ALU_OP_SUB, tmp);
1426 	emit_br(nfp_prog, BR_BLO, ret_einval, 0);
1427 
1428 	/* Validate the length is at least ETH_HLEN */
1429 	emit_alu(nfp_prog, tmp_len,
1430 		 plen_reg(nfp_prog), ALU_OP_SUB, reg_a(2 * 2));
1431 	emit_alu(nfp_prog, reg_none(),
1432 		 tmp_len, ALU_OP_SUB, reg_imm(ETH_HLEN));
1433 	emit_br(nfp_prog, BR_BMI, ret_einval, 0);
1434 
1435 	/* Load the ret code */
1436 	wrp_immed(nfp_prog, reg_both(0), 0);
1437 	wrp_immed(nfp_prog, reg_both(1), 0);
1438 
1439 	/* Modify the packet metadata */
1440 	emit_ld_field(nfp_prog, pptr_reg(nfp_prog), 0x3, tmp, SHF_SC_NONE, 0);
1441 
1442 	/* Skip over the -EINVAL ret code (defer 2) */
1443 	emit_br(nfp_prog, BR_UNC, end, 2);
1444 
1445 	emit_alu(nfp_prog, plen_reg(nfp_prog),
1446 		 plen_reg(nfp_prog), ALU_OP_SUB, reg_a(2 * 2));
1447 	emit_alu(nfp_prog, pv_len(nfp_prog),
1448 		 pv_len(nfp_prog), ALU_OP_SUB, reg_a(2 * 2));
1449 
1450 	/* return -EINVAL target */
1451 	if (!nfp_prog_confirm_current_offset(nfp_prog, ret_einval))
1452 		return -EINVAL;
1453 
1454 	wrp_immed(nfp_prog, reg_both(0), -22);
1455 	wrp_immed(nfp_prog, reg_both(1), ~0);
1456 
1457 	if (!nfp_prog_confirm_current_offset(nfp_prog, end))
1458 		return -EINVAL;
1459 
1460 	return 0;
1461 }
1462 
1463 static int
1464 map_call_stack_common(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1465 {
1466 	bool load_lm_ptr;
1467 	u32 ret_tgt;
1468 	s64 lm_off;
1469 
1470 	/* We only have to reload LM0 if the key is not at start of stack */
1471 	lm_off = nfp_prog->stack_depth;
1472 	lm_off += meta->arg2.reg.var_off.value + meta->arg2.reg.off;
1473 	load_lm_ptr = meta->arg2.var_off || lm_off;
1474 
1475 	/* Set LM0 to start of key */
1476 	if (load_lm_ptr)
1477 		emit_csr_wr(nfp_prog, reg_b(2 * 2), NFP_CSR_ACT_LM_ADDR0);
1478 	if (meta->func_id == BPF_FUNC_map_update_elem)
1479 		emit_csr_wr(nfp_prog, reg_b(3 * 2), NFP_CSR_ACT_LM_ADDR2);
1480 
1481 	emit_br_relo(nfp_prog, BR_UNC, BR_OFF_RELO + meta->func_id,
1482 		     2, RELO_BR_HELPER);
1483 	ret_tgt = nfp_prog_current_offset(nfp_prog) + 2;
1484 
1485 	/* Load map ID into A0 */
1486 	wrp_mov(nfp_prog, reg_a(0), reg_a(2));
1487 
1488 	/* Load the return address into B0 */
1489 	wrp_immed_relo(nfp_prog, reg_b(0), ret_tgt, RELO_IMMED_REL);
1490 
1491 	if (!nfp_prog_confirm_current_offset(nfp_prog, ret_tgt))
1492 		return -EINVAL;
1493 
1494 	/* Reset the LM0 pointer */
1495 	if (!load_lm_ptr)
1496 		return 0;
1497 
1498 	emit_csr_wr(nfp_prog, stack_reg(nfp_prog), NFP_CSR_ACT_LM_ADDR0);
1499 	wrp_nops(nfp_prog, 3);
1500 
1501 	return 0;
1502 }
1503 
1504 static int
1505 nfp_get_prandom_u32(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1506 {
1507 	__emit_csr_rd(nfp_prog, NFP_CSR_PSEUDO_RND_NUM);
1508 	/* CSR value is read in following immed[gpr, 0] */
1509 	emit_immed(nfp_prog, reg_both(0), 0,
1510 		   IMMED_WIDTH_ALL, false, IMMED_SHIFT_0B);
1511 	emit_immed(nfp_prog, reg_both(1), 0,
1512 		   IMMED_WIDTH_ALL, false, IMMED_SHIFT_0B);
1513 	return 0;
1514 }
1515 
1516 static int
1517 nfp_perf_event_output(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1518 {
1519 	swreg ptr_type;
1520 	u32 ret_tgt;
1521 
1522 	ptr_type = ur_load_imm_any(nfp_prog, meta->arg1.type, imm_a(nfp_prog));
1523 
1524 	ret_tgt = nfp_prog_current_offset(nfp_prog) + 3;
1525 
1526 	emit_br_relo(nfp_prog, BR_UNC, BR_OFF_RELO + meta->func_id,
1527 		     2, RELO_BR_HELPER);
1528 
1529 	/* Load ptr type into A1 */
1530 	wrp_mov(nfp_prog, reg_a(1), ptr_type);
1531 
1532 	/* Load the return address into B0 */
1533 	wrp_immed_relo(nfp_prog, reg_b(0), ret_tgt, RELO_IMMED_REL);
1534 
1535 	if (!nfp_prog_confirm_current_offset(nfp_prog, ret_tgt))
1536 		return -EINVAL;
1537 
1538 	return 0;
1539 }
1540 
1541 static int
1542 nfp_queue_select(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1543 {
1544 	u32 jmp_tgt;
1545 
1546 	jmp_tgt = nfp_prog_current_offset(nfp_prog) + 5;
1547 
1548 	/* Make sure the queue id fits into FW field */
1549 	emit_alu(nfp_prog, reg_none(), reg_a(meta->insn.src_reg * 2),
1550 		 ALU_OP_AND_NOT_B, reg_imm(0xff));
1551 	emit_br(nfp_prog, BR_BEQ, jmp_tgt, 2);
1552 
1553 	/* Set the 'queue selected' bit and the queue value */
1554 	emit_shf(nfp_prog, pv_qsel_set(nfp_prog),
1555 		 pv_qsel_set(nfp_prog), SHF_OP_OR, reg_imm(1),
1556 		 SHF_SC_L_SHF, PKT_VEL_QSEL_SET_BIT);
1557 	emit_ld_field(nfp_prog,
1558 		      pv_qsel_val(nfp_prog), 0x1, reg_b(meta->insn.src_reg * 2),
1559 		      SHF_SC_NONE, 0);
1560 	/* Delay slots end here, we will jump over next instruction if queue
1561 	 * value fits into the field.
1562 	 */
1563 	emit_ld_field(nfp_prog,
1564 		      pv_qsel_val(nfp_prog), 0x1, reg_imm(NFP_NET_RXR_MAX),
1565 		      SHF_SC_NONE, 0);
1566 
1567 	if (!nfp_prog_confirm_current_offset(nfp_prog, jmp_tgt))
1568 		return -EINVAL;
1569 
1570 	return 0;
1571 }
1572 
1573 /* --- Callbacks --- */
1574 static int mov_reg64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1575 {
1576 	const struct bpf_insn *insn = &meta->insn;
1577 	u8 dst = insn->dst_reg * 2;
1578 	u8 src = insn->src_reg * 2;
1579 
1580 	if (insn->src_reg == BPF_REG_10) {
1581 		swreg stack_depth_reg;
1582 
1583 		stack_depth_reg = ur_load_imm_any(nfp_prog,
1584 						  nfp_prog->stack_depth,
1585 						  stack_imm(nfp_prog));
1586 		emit_alu(nfp_prog, reg_both(dst),
1587 			 stack_reg(nfp_prog), ALU_OP_ADD, stack_depth_reg);
1588 		wrp_immed(nfp_prog, reg_both(dst + 1), 0);
1589 	} else {
1590 		wrp_reg_mov(nfp_prog, dst, src);
1591 		wrp_reg_mov(nfp_prog, dst + 1, src + 1);
1592 	}
1593 
1594 	return 0;
1595 }
1596 
1597 static int mov_imm64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1598 {
1599 	u64 imm = meta->insn.imm; /* sign extend */
1600 
1601 	wrp_immed(nfp_prog, reg_both(meta->insn.dst_reg * 2), imm & ~0U);
1602 	wrp_immed(nfp_prog, reg_both(meta->insn.dst_reg * 2 + 1), imm >> 32);
1603 
1604 	return 0;
1605 }
1606 
1607 static int xor_reg64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1608 {
1609 	return wrp_alu64_reg(nfp_prog, meta, ALU_OP_XOR);
1610 }
1611 
1612 static int xor_imm64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1613 {
1614 	return wrp_alu64_imm(nfp_prog, meta, ALU_OP_XOR, !meta->insn.imm);
1615 }
1616 
1617 static int and_reg64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1618 {
1619 	return wrp_alu64_reg(nfp_prog, meta, ALU_OP_AND);
1620 }
1621 
1622 static int and_imm64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1623 {
1624 	return wrp_alu64_imm(nfp_prog, meta, ALU_OP_AND, !~meta->insn.imm);
1625 }
1626 
1627 static int or_reg64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1628 {
1629 	return wrp_alu64_reg(nfp_prog, meta, ALU_OP_OR);
1630 }
1631 
1632 static int or_imm64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1633 {
1634 	return wrp_alu64_imm(nfp_prog, meta, ALU_OP_OR, !meta->insn.imm);
1635 }
1636 
1637 static int add_reg64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1638 {
1639 	const struct bpf_insn *insn = &meta->insn;
1640 
1641 	emit_alu(nfp_prog, reg_both(insn->dst_reg * 2),
1642 		 reg_a(insn->dst_reg * 2), ALU_OP_ADD,
1643 		 reg_b(insn->src_reg * 2));
1644 	emit_alu(nfp_prog, reg_both(insn->dst_reg * 2 + 1),
1645 		 reg_a(insn->dst_reg * 2 + 1), ALU_OP_ADD_C,
1646 		 reg_b(insn->src_reg * 2 + 1));
1647 
1648 	return 0;
1649 }
1650 
1651 static int add_imm64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1652 {
1653 	const struct bpf_insn *insn = &meta->insn;
1654 	u64 imm = insn->imm; /* sign extend */
1655 
1656 	wrp_alu_imm(nfp_prog, insn->dst_reg * 2, ALU_OP_ADD, imm & ~0U);
1657 	wrp_alu_imm(nfp_prog, insn->dst_reg * 2 + 1, ALU_OP_ADD_C, imm >> 32);
1658 
1659 	return 0;
1660 }
1661 
1662 static int sub_reg64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1663 {
1664 	const struct bpf_insn *insn = &meta->insn;
1665 
1666 	emit_alu(nfp_prog, reg_both(insn->dst_reg * 2),
1667 		 reg_a(insn->dst_reg * 2), ALU_OP_SUB,
1668 		 reg_b(insn->src_reg * 2));
1669 	emit_alu(nfp_prog, reg_both(insn->dst_reg * 2 + 1),
1670 		 reg_a(insn->dst_reg * 2 + 1), ALU_OP_SUB_C,
1671 		 reg_b(insn->src_reg * 2 + 1));
1672 
1673 	return 0;
1674 }
1675 
1676 static int sub_imm64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1677 {
1678 	const struct bpf_insn *insn = &meta->insn;
1679 	u64 imm = insn->imm; /* sign extend */
1680 
1681 	wrp_alu_imm(nfp_prog, insn->dst_reg * 2, ALU_OP_SUB, imm & ~0U);
1682 	wrp_alu_imm(nfp_prog, insn->dst_reg * 2 + 1, ALU_OP_SUB_C, imm >> 32);
1683 
1684 	return 0;
1685 }
1686 
1687 static int neg_reg64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1688 {
1689 	const struct bpf_insn *insn = &meta->insn;
1690 
1691 	emit_alu(nfp_prog, reg_both(insn->dst_reg * 2), reg_imm(0),
1692 		 ALU_OP_SUB, reg_b(insn->dst_reg * 2));
1693 	emit_alu(nfp_prog, reg_both(insn->dst_reg * 2 + 1), reg_imm(0),
1694 		 ALU_OP_SUB_C, reg_b(insn->dst_reg * 2 + 1));
1695 
1696 	return 0;
1697 }
1698 
1699 /* Pseudo code:
1700  *   if shift_amt >= 32
1701  *     dst_high = dst_low << shift_amt[4:0]
1702  *     dst_low = 0;
1703  *   else
1704  *     dst_high = (dst_high, dst_low) >> (32 - shift_amt)
1705  *     dst_low = dst_low << shift_amt
1706  *
1707  * The indirect shift will use the same logic at runtime.
1708  */
1709 static int __shl_imm64(struct nfp_prog *nfp_prog, u8 dst, u8 shift_amt)
1710 {
1711 	if (shift_amt < 32) {
1712 		emit_shf(nfp_prog, reg_both(dst + 1), reg_a(dst + 1),
1713 			 SHF_OP_NONE, reg_b(dst), SHF_SC_R_DSHF,
1714 			 32 - shift_amt);
1715 		emit_shf(nfp_prog, reg_both(dst), reg_none(), SHF_OP_NONE,
1716 			 reg_b(dst), SHF_SC_L_SHF, shift_amt);
1717 	} else if (shift_amt == 32) {
1718 		wrp_reg_mov(nfp_prog, dst + 1, dst);
1719 		wrp_immed(nfp_prog, reg_both(dst), 0);
1720 	} else if (shift_amt > 32) {
1721 		emit_shf(nfp_prog, reg_both(dst + 1), reg_none(), SHF_OP_NONE,
1722 			 reg_b(dst), SHF_SC_L_SHF, shift_amt - 32);
1723 		wrp_immed(nfp_prog, reg_both(dst), 0);
1724 	}
1725 
1726 	return 0;
1727 }
1728 
1729 static int shl_imm64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1730 {
1731 	const struct bpf_insn *insn = &meta->insn;
1732 	u8 dst = insn->dst_reg * 2;
1733 
1734 	return __shl_imm64(nfp_prog, dst, insn->imm);
1735 }
1736 
1737 static void shl_reg64_lt32_high(struct nfp_prog *nfp_prog, u8 dst, u8 src)
1738 {
1739 	emit_alu(nfp_prog, imm_both(nfp_prog), reg_imm(32), ALU_OP_SUB,
1740 		 reg_b(src));
1741 	emit_alu(nfp_prog, reg_none(), imm_a(nfp_prog), ALU_OP_OR, reg_imm(0));
1742 	emit_shf_indir(nfp_prog, reg_both(dst + 1), reg_a(dst + 1), SHF_OP_NONE,
1743 		       reg_b(dst), SHF_SC_R_DSHF);
1744 }
1745 
1746 /* NOTE: for indirect left shift, HIGH part should be calculated first. */
1747 static void shl_reg64_lt32_low(struct nfp_prog *nfp_prog, u8 dst, u8 src)
1748 {
1749 	emit_alu(nfp_prog, reg_none(), reg_a(src), ALU_OP_OR, reg_imm(0));
1750 	emit_shf_indir(nfp_prog, reg_both(dst), reg_none(), SHF_OP_NONE,
1751 		       reg_b(dst), SHF_SC_L_SHF);
1752 }
1753 
1754 static void shl_reg64_lt32(struct nfp_prog *nfp_prog, u8 dst, u8 src)
1755 {
1756 	shl_reg64_lt32_high(nfp_prog, dst, src);
1757 	shl_reg64_lt32_low(nfp_prog, dst, src);
1758 }
1759 
1760 static void shl_reg64_ge32(struct nfp_prog *nfp_prog, u8 dst, u8 src)
1761 {
1762 	emit_alu(nfp_prog, reg_none(), reg_a(src), ALU_OP_OR, reg_imm(0));
1763 	emit_shf_indir(nfp_prog, reg_both(dst + 1), reg_none(), SHF_OP_NONE,
1764 		       reg_b(dst), SHF_SC_L_SHF);
1765 	wrp_immed(nfp_prog, reg_both(dst), 0);
1766 }
1767 
1768 static int shl_reg64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1769 {
1770 	const struct bpf_insn *insn = &meta->insn;
1771 	u64 umin, umax;
1772 	u8 dst, src;
1773 
1774 	dst = insn->dst_reg * 2;
1775 	umin = meta->umin;
1776 	umax = meta->umax;
1777 	if (umin == umax)
1778 		return __shl_imm64(nfp_prog, dst, umin);
1779 
1780 	src = insn->src_reg * 2;
1781 	if (umax < 32) {
1782 		shl_reg64_lt32(nfp_prog, dst, src);
1783 	} else if (umin >= 32) {
1784 		shl_reg64_ge32(nfp_prog, dst, src);
1785 	} else {
1786 		/* Generate different instruction sequences depending on runtime
1787 		 * value of shift amount.
1788 		 */
1789 		u16 label_ge32, label_end;
1790 
1791 		label_ge32 = nfp_prog_current_offset(nfp_prog) + 7;
1792 		emit_br_bset(nfp_prog, reg_a(src), 5, label_ge32, 0);
1793 
1794 		shl_reg64_lt32_high(nfp_prog, dst, src);
1795 		label_end = nfp_prog_current_offset(nfp_prog) + 6;
1796 		emit_br(nfp_prog, BR_UNC, label_end, 2);
1797 		/* shl_reg64_lt32_low packed in delay slot. */
1798 		shl_reg64_lt32_low(nfp_prog, dst, src);
1799 
1800 		if (!nfp_prog_confirm_current_offset(nfp_prog, label_ge32))
1801 			return -EINVAL;
1802 		shl_reg64_ge32(nfp_prog, dst, src);
1803 
1804 		if (!nfp_prog_confirm_current_offset(nfp_prog, label_end))
1805 			return -EINVAL;
1806 	}
1807 
1808 	return 0;
1809 }
1810 
1811 /* Pseudo code:
1812  *   if shift_amt >= 32
1813  *     dst_high = 0;
1814  *     dst_low = dst_high >> shift_amt[4:0]
1815  *   else
1816  *     dst_high = dst_high >> shift_amt
1817  *     dst_low = (dst_high, dst_low) >> shift_amt
1818  *
1819  * The indirect shift will use the same logic at runtime.
1820  */
1821 static int __shr_imm64(struct nfp_prog *nfp_prog, u8 dst, u8 shift_amt)
1822 {
1823 	if (shift_amt < 32) {
1824 		emit_shf(nfp_prog, reg_both(dst), reg_a(dst + 1), SHF_OP_NONE,
1825 			 reg_b(dst), SHF_SC_R_DSHF, shift_amt);
1826 		emit_shf(nfp_prog, reg_both(dst + 1), reg_none(), SHF_OP_NONE,
1827 			 reg_b(dst + 1), SHF_SC_R_SHF, shift_amt);
1828 	} else if (shift_amt == 32) {
1829 		wrp_reg_mov(nfp_prog, dst, dst + 1);
1830 		wrp_immed(nfp_prog, reg_both(dst + 1), 0);
1831 	} else if (shift_amt > 32) {
1832 		emit_shf(nfp_prog, reg_both(dst), reg_none(), SHF_OP_NONE,
1833 			 reg_b(dst + 1), SHF_SC_R_SHF, shift_amt - 32);
1834 		wrp_immed(nfp_prog, reg_both(dst + 1), 0);
1835 	}
1836 
1837 	return 0;
1838 }
1839 
1840 static int shr_imm64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1841 {
1842 	const struct bpf_insn *insn = &meta->insn;
1843 	u8 dst = insn->dst_reg * 2;
1844 
1845 	return __shr_imm64(nfp_prog, dst, insn->imm);
1846 }
1847 
1848 /* NOTE: for indirect right shift, LOW part should be calculated first. */
1849 static void shr_reg64_lt32_high(struct nfp_prog *nfp_prog, u8 dst, u8 src)
1850 {
1851 	emit_alu(nfp_prog, reg_none(), reg_a(src), ALU_OP_OR, reg_imm(0));
1852 	emit_shf_indir(nfp_prog, reg_both(dst + 1), reg_none(), SHF_OP_NONE,
1853 		       reg_b(dst + 1), SHF_SC_R_SHF);
1854 }
1855 
1856 static void shr_reg64_lt32_low(struct nfp_prog *nfp_prog, u8 dst, u8 src)
1857 {
1858 	emit_alu(nfp_prog, reg_none(), reg_a(src), ALU_OP_OR, reg_imm(0));
1859 	emit_shf_indir(nfp_prog, reg_both(dst), reg_a(dst + 1), SHF_OP_NONE,
1860 		       reg_b(dst), SHF_SC_R_DSHF);
1861 }
1862 
1863 static void shr_reg64_lt32(struct nfp_prog *nfp_prog, u8 dst, u8 src)
1864 {
1865 	shr_reg64_lt32_low(nfp_prog, dst, src);
1866 	shr_reg64_lt32_high(nfp_prog, dst, src);
1867 }
1868 
1869 static void shr_reg64_ge32(struct nfp_prog *nfp_prog, u8 dst, u8 src)
1870 {
1871 	emit_alu(nfp_prog, reg_none(), reg_a(src), ALU_OP_OR, reg_imm(0));
1872 	emit_shf_indir(nfp_prog, reg_both(dst), reg_none(), SHF_OP_NONE,
1873 		       reg_b(dst + 1), SHF_SC_R_SHF);
1874 	wrp_immed(nfp_prog, reg_both(dst + 1), 0);
1875 }
1876 
1877 static int shr_reg64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1878 {
1879 	const struct bpf_insn *insn = &meta->insn;
1880 	u64 umin, umax;
1881 	u8 dst, src;
1882 
1883 	dst = insn->dst_reg * 2;
1884 	umin = meta->umin;
1885 	umax = meta->umax;
1886 	if (umin == umax)
1887 		return __shr_imm64(nfp_prog, dst, umin);
1888 
1889 	src = insn->src_reg * 2;
1890 	if (umax < 32) {
1891 		shr_reg64_lt32(nfp_prog, dst, src);
1892 	} else if (umin >= 32) {
1893 		shr_reg64_ge32(nfp_prog, dst, src);
1894 	} else {
1895 		/* Generate different instruction sequences depending on runtime
1896 		 * value of shift amount.
1897 		 */
1898 		u16 label_ge32, label_end;
1899 
1900 		label_ge32 = nfp_prog_current_offset(nfp_prog) + 6;
1901 		emit_br_bset(nfp_prog, reg_a(src), 5, label_ge32, 0);
1902 		shr_reg64_lt32_low(nfp_prog, dst, src);
1903 		label_end = nfp_prog_current_offset(nfp_prog) + 6;
1904 		emit_br(nfp_prog, BR_UNC, label_end, 2);
1905 		/* shr_reg64_lt32_high packed in delay slot. */
1906 		shr_reg64_lt32_high(nfp_prog, dst, src);
1907 
1908 		if (!nfp_prog_confirm_current_offset(nfp_prog, label_ge32))
1909 			return -EINVAL;
1910 		shr_reg64_ge32(nfp_prog, dst, src);
1911 
1912 		if (!nfp_prog_confirm_current_offset(nfp_prog, label_end))
1913 			return -EINVAL;
1914 	}
1915 
1916 	return 0;
1917 }
1918 
1919 /* Code logic is the same as __shr_imm64 except ashr requires signedness bit
1920  * told through PREV_ALU result.
1921  */
1922 static int ashr_imm64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1923 {
1924 	const struct bpf_insn *insn = &meta->insn;
1925 	u8 dst = insn->dst_reg * 2;
1926 
1927 	if (insn->imm < 32) {
1928 		emit_shf(nfp_prog, reg_both(dst), reg_a(dst + 1), SHF_OP_NONE,
1929 			 reg_b(dst), SHF_SC_R_DSHF, insn->imm);
1930 		/* Set signedness bit. */
1931 		emit_alu(nfp_prog, reg_none(), reg_a(dst + 1), ALU_OP_OR,
1932 			 reg_imm(0));
1933 		emit_shf(nfp_prog, reg_both(dst + 1), reg_none(), SHF_OP_ASHR,
1934 			 reg_b(dst + 1), SHF_SC_R_SHF, insn->imm);
1935 	} else if (insn->imm == 32) {
1936 		/* NOTE: this also helps setting signedness bit. */
1937 		wrp_reg_mov(nfp_prog, dst, dst + 1);
1938 		emit_shf(nfp_prog, reg_both(dst + 1), reg_none(), SHF_OP_ASHR,
1939 			 reg_b(dst + 1), SHF_SC_R_SHF, 31);
1940 	} else if (insn->imm > 32) {
1941 		emit_alu(nfp_prog, reg_none(), reg_a(dst + 1), ALU_OP_OR,
1942 			 reg_imm(0));
1943 		emit_shf(nfp_prog, reg_both(dst), reg_none(), SHF_OP_ASHR,
1944 			 reg_b(dst + 1), SHF_SC_R_SHF, insn->imm - 32);
1945 		emit_shf(nfp_prog, reg_both(dst + 1), reg_none(), SHF_OP_ASHR,
1946 			 reg_b(dst + 1), SHF_SC_R_SHF, 31);
1947 	}
1948 
1949 	return 0;
1950 }
1951 
1952 static int mov_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1953 {
1954 	const struct bpf_insn *insn = &meta->insn;
1955 
1956 	wrp_reg_mov(nfp_prog, insn->dst_reg * 2,  insn->src_reg * 2);
1957 	wrp_immed(nfp_prog, reg_both(insn->dst_reg * 2 + 1), 0);
1958 
1959 	return 0;
1960 }
1961 
1962 static int mov_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1963 {
1964 	const struct bpf_insn *insn = &meta->insn;
1965 
1966 	wrp_immed(nfp_prog, reg_both(insn->dst_reg * 2), insn->imm);
1967 	wrp_immed(nfp_prog, reg_both(insn->dst_reg * 2 + 1), 0);
1968 
1969 	return 0;
1970 }
1971 
1972 static int xor_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1973 {
1974 	return wrp_alu32_reg(nfp_prog, meta, ALU_OP_XOR);
1975 }
1976 
1977 static int xor_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1978 {
1979 	return wrp_alu32_imm(nfp_prog, meta, ALU_OP_XOR, !~meta->insn.imm);
1980 }
1981 
1982 static int and_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1983 {
1984 	return wrp_alu32_reg(nfp_prog, meta, ALU_OP_AND);
1985 }
1986 
1987 static int and_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1988 {
1989 	return wrp_alu32_imm(nfp_prog, meta, ALU_OP_AND, !~meta->insn.imm);
1990 }
1991 
1992 static int or_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1993 {
1994 	return wrp_alu32_reg(nfp_prog, meta, ALU_OP_OR);
1995 }
1996 
1997 static int or_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1998 {
1999 	return wrp_alu32_imm(nfp_prog, meta, ALU_OP_OR, !meta->insn.imm);
2000 }
2001 
2002 static int add_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2003 {
2004 	return wrp_alu32_reg(nfp_prog, meta, ALU_OP_ADD);
2005 }
2006 
2007 static int add_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2008 {
2009 	return wrp_alu32_imm(nfp_prog, meta, ALU_OP_ADD, !meta->insn.imm);
2010 }
2011 
2012 static int sub_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2013 {
2014 	return wrp_alu32_reg(nfp_prog, meta, ALU_OP_SUB);
2015 }
2016 
2017 static int sub_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2018 {
2019 	return wrp_alu32_imm(nfp_prog, meta, ALU_OP_SUB, !meta->insn.imm);
2020 }
2021 
2022 static int neg_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2023 {
2024 	u8 dst = meta->insn.dst_reg * 2;
2025 
2026 	emit_alu(nfp_prog, reg_both(dst), reg_imm(0), ALU_OP_SUB, reg_b(dst));
2027 	wrp_immed(nfp_prog, reg_both(meta->insn.dst_reg * 2 + 1), 0);
2028 
2029 	return 0;
2030 }
2031 
2032 static int shl_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2033 {
2034 	const struct bpf_insn *insn = &meta->insn;
2035 
2036 	if (!insn->imm)
2037 		return 1; /* TODO: zero shift means indirect */
2038 
2039 	emit_shf(nfp_prog, reg_both(insn->dst_reg * 2),
2040 		 reg_none(), SHF_OP_NONE, reg_b(insn->dst_reg * 2),
2041 		 SHF_SC_L_SHF, insn->imm);
2042 	wrp_immed(nfp_prog, reg_both(insn->dst_reg * 2 + 1), 0);
2043 
2044 	return 0;
2045 }
2046 
2047 static int end_reg32(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2048 {
2049 	const struct bpf_insn *insn = &meta->insn;
2050 	u8 gpr = insn->dst_reg * 2;
2051 
2052 	switch (insn->imm) {
2053 	case 16:
2054 		emit_ld_field(nfp_prog, reg_both(gpr), 0x9, reg_b(gpr),
2055 			      SHF_SC_R_ROT, 8);
2056 		emit_ld_field(nfp_prog, reg_both(gpr), 0xe, reg_a(gpr),
2057 			      SHF_SC_R_SHF, 16);
2058 
2059 		wrp_immed(nfp_prog, reg_both(gpr + 1), 0);
2060 		break;
2061 	case 32:
2062 		wrp_end32(nfp_prog, reg_a(gpr), gpr);
2063 		wrp_immed(nfp_prog, reg_both(gpr + 1), 0);
2064 		break;
2065 	case 64:
2066 		wrp_mov(nfp_prog, imm_a(nfp_prog), reg_b(gpr + 1));
2067 
2068 		wrp_end32(nfp_prog, reg_a(gpr), gpr + 1);
2069 		wrp_end32(nfp_prog, imm_a(nfp_prog), gpr);
2070 		break;
2071 	}
2072 
2073 	return 0;
2074 }
2075 
2076 static int imm_ld8_part2(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2077 {
2078 	struct nfp_insn_meta *prev = nfp_meta_prev(meta);
2079 	u32 imm_lo, imm_hi;
2080 	u8 dst;
2081 
2082 	dst = prev->insn.dst_reg * 2;
2083 	imm_lo = prev->insn.imm;
2084 	imm_hi = meta->insn.imm;
2085 
2086 	wrp_immed(nfp_prog, reg_both(dst), imm_lo);
2087 
2088 	/* mov is always 1 insn, load imm may be two, so try to use mov */
2089 	if (imm_hi == imm_lo)
2090 		wrp_mov(nfp_prog, reg_both(dst + 1), reg_a(dst));
2091 	else
2092 		wrp_immed(nfp_prog, reg_both(dst + 1), imm_hi);
2093 
2094 	return 0;
2095 }
2096 
2097 static int imm_ld8(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2098 {
2099 	meta->double_cb = imm_ld8_part2;
2100 	return 0;
2101 }
2102 
2103 static int data_ld1(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2104 {
2105 	return construct_data_ld(nfp_prog, meta->insn.imm, 1);
2106 }
2107 
2108 static int data_ld2(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2109 {
2110 	return construct_data_ld(nfp_prog, meta->insn.imm, 2);
2111 }
2112 
2113 static int data_ld4(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2114 {
2115 	return construct_data_ld(nfp_prog, meta->insn.imm, 4);
2116 }
2117 
2118 static int data_ind_ld1(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2119 {
2120 	return construct_data_ind_ld(nfp_prog, meta->insn.imm,
2121 				     meta->insn.src_reg * 2, 1);
2122 }
2123 
2124 static int data_ind_ld2(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2125 {
2126 	return construct_data_ind_ld(nfp_prog, meta->insn.imm,
2127 				     meta->insn.src_reg * 2, 2);
2128 }
2129 
2130 static int data_ind_ld4(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2131 {
2132 	return construct_data_ind_ld(nfp_prog, meta->insn.imm,
2133 				     meta->insn.src_reg * 2, 4);
2134 }
2135 
2136 static int
2137 mem_ldx_stack(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
2138 	      unsigned int size, unsigned int ptr_off)
2139 {
2140 	return mem_op_stack(nfp_prog, meta, size, ptr_off,
2141 			    meta->insn.dst_reg * 2, meta->insn.src_reg * 2,
2142 			    true, wrp_lmem_load);
2143 }
2144 
2145 static int mem_ldx_skb(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
2146 		       u8 size)
2147 {
2148 	swreg dst = reg_both(meta->insn.dst_reg * 2);
2149 
2150 	switch (meta->insn.off) {
2151 	case offsetof(struct __sk_buff, len):
2152 		if (size != FIELD_SIZEOF(struct __sk_buff, len))
2153 			return -EOPNOTSUPP;
2154 		wrp_mov(nfp_prog, dst, plen_reg(nfp_prog));
2155 		break;
2156 	case offsetof(struct __sk_buff, data):
2157 		if (size != FIELD_SIZEOF(struct __sk_buff, data))
2158 			return -EOPNOTSUPP;
2159 		wrp_mov(nfp_prog, dst, pptr_reg(nfp_prog));
2160 		break;
2161 	case offsetof(struct __sk_buff, data_end):
2162 		if (size != FIELD_SIZEOF(struct __sk_buff, data_end))
2163 			return -EOPNOTSUPP;
2164 		emit_alu(nfp_prog, dst,
2165 			 plen_reg(nfp_prog), ALU_OP_ADD, pptr_reg(nfp_prog));
2166 		break;
2167 	default:
2168 		return -EOPNOTSUPP;
2169 	}
2170 
2171 	wrp_immed(nfp_prog, reg_both(meta->insn.dst_reg * 2 + 1), 0);
2172 
2173 	return 0;
2174 }
2175 
2176 static int mem_ldx_xdp(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
2177 		       u8 size)
2178 {
2179 	swreg dst = reg_both(meta->insn.dst_reg * 2);
2180 
2181 	switch (meta->insn.off) {
2182 	case offsetof(struct xdp_md, data):
2183 		if (size != FIELD_SIZEOF(struct xdp_md, data))
2184 			return -EOPNOTSUPP;
2185 		wrp_mov(nfp_prog, dst, pptr_reg(nfp_prog));
2186 		break;
2187 	case offsetof(struct xdp_md, data_end):
2188 		if (size != FIELD_SIZEOF(struct xdp_md, data_end))
2189 			return -EOPNOTSUPP;
2190 		emit_alu(nfp_prog, dst,
2191 			 plen_reg(nfp_prog), ALU_OP_ADD, pptr_reg(nfp_prog));
2192 		break;
2193 	default:
2194 		return -EOPNOTSUPP;
2195 	}
2196 
2197 	wrp_immed(nfp_prog, reg_both(meta->insn.dst_reg * 2 + 1), 0);
2198 
2199 	return 0;
2200 }
2201 
2202 static int
2203 mem_ldx_data(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
2204 	     unsigned int size)
2205 {
2206 	swreg tmp_reg;
2207 
2208 	tmp_reg = re_load_imm_any(nfp_prog, meta->insn.off, imm_b(nfp_prog));
2209 
2210 	return data_ld_host_order_addr32(nfp_prog, meta->insn.src_reg * 2,
2211 					 tmp_reg, meta->insn.dst_reg * 2, size);
2212 }
2213 
2214 static int
2215 mem_ldx_emem(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
2216 	     unsigned int size)
2217 {
2218 	swreg tmp_reg;
2219 
2220 	tmp_reg = re_load_imm_any(nfp_prog, meta->insn.off, imm_b(nfp_prog));
2221 
2222 	return data_ld_host_order_addr40(nfp_prog, meta->insn.src_reg * 2,
2223 					 tmp_reg, meta->insn.dst_reg * 2, size);
2224 }
2225 
2226 static void
2227 mem_ldx_data_init_pktcache(struct nfp_prog *nfp_prog,
2228 			   struct nfp_insn_meta *meta)
2229 {
2230 	s16 range_start = meta->pkt_cache.range_start;
2231 	s16 range_end = meta->pkt_cache.range_end;
2232 	swreg src_base, off;
2233 	u8 xfer_num, len;
2234 	bool indir;
2235 
2236 	off = re_load_imm_any(nfp_prog, range_start, imm_b(nfp_prog));
2237 	src_base = reg_a(meta->insn.src_reg * 2);
2238 	len = range_end - range_start;
2239 	xfer_num = round_up(len, REG_WIDTH) / REG_WIDTH;
2240 
2241 	indir = len > 8 * REG_WIDTH;
2242 	/* Setup PREV_ALU for indirect mode. */
2243 	if (indir)
2244 		wrp_immed(nfp_prog, reg_none(),
2245 			  CMD_OVE_LEN | FIELD_PREP(CMD_OV_LEN, xfer_num - 1));
2246 
2247 	/* Cache memory into transfer-in registers. */
2248 	emit_cmd_any(nfp_prog, CMD_TGT_READ32_SWAP, CMD_MODE_32b, 0, src_base,
2249 		     off, xfer_num - 1, CMD_CTX_SWAP, indir);
2250 }
2251 
2252 static int
2253 mem_ldx_data_from_pktcache_unaligned(struct nfp_prog *nfp_prog,
2254 				     struct nfp_insn_meta *meta,
2255 				     unsigned int size)
2256 {
2257 	s16 range_start = meta->pkt_cache.range_start;
2258 	s16 insn_off = meta->insn.off - range_start;
2259 	swreg dst_lo, dst_hi, src_lo, src_mid;
2260 	u8 dst_gpr = meta->insn.dst_reg * 2;
2261 	u8 len_lo = size, len_mid = 0;
2262 	u8 idx = insn_off / REG_WIDTH;
2263 	u8 off = insn_off % REG_WIDTH;
2264 
2265 	dst_hi = reg_both(dst_gpr + 1);
2266 	dst_lo = reg_both(dst_gpr);
2267 	src_lo = reg_xfer(idx);
2268 
2269 	/* The read length could involve as many as three registers. */
2270 	if (size > REG_WIDTH - off) {
2271 		/* Calculate the part in the second register. */
2272 		len_lo = REG_WIDTH - off;
2273 		len_mid = size - len_lo;
2274 
2275 		/* Calculate the part in the third register. */
2276 		if (size > 2 * REG_WIDTH - off)
2277 			len_mid = REG_WIDTH;
2278 	}
2279 
2280 	wrp_reg_subpart(nfp_prog, dst_lo, src_lo, len_lo, off);
2281 
2282 	if (!len_mid) {
2283 		wrp_immed(nfp_prog, dst_hi, 0);
2284 		return 0;
2285 	}
2286 
2287 	src_mid = reg_xfer(idx + 1);
2288 
2289 	if (size <= REG_WIDTH) {
2290 		wrp_reg_or_subpart(nfp_prog, dst_lo, src_mid, len_mid, len_lo);
2291 		wrp_immed(nfp_prog, dst_hi, 0);
2292 	} else {
2293 		swreg src_hi = reg_xfer(idx + 2);
2294 
2295 		wrp_reg_or_subpart(nfp_prog, dst_lo, src_mid,
2296 				   REG_WIDTH - len_lo, len_lo);
2297 		wrp_reg_subpart(nfp_prog, dst_hi, src_mid, len_lo,
2298 				REG_WIDTH - len_lo);
2299 		wrp_reg_or_subpart(nfp_prog, dst_hi, src_hi, REG_WIDTH - len_lo,
2300 				   len_lo);
2301 	}
2302 
2303 	return 0;
2304 }
2305 
2306 static int
2307 mem_ldx_data_from_pktcache_aligned(struct nfp_prog *nfp_prog,
2308 				   struct nfp_insn_meta *meta,
2309 				   unsigned int size)
2310 {
2311 	swreg dst_lo, dst_hi, src_lo;
2312 	u8 dst_gpr, idx;
2313 
2314 	idx = (meta->insn.off - meta->pkt_cache.range_start) / REG_WIDTH;
2315 	dst_gpr = meta->insn.dst_reg * 2;
2316 	dst_hi = reg_both(dst_gpr + 1);
2317 	dst_lo = reg_both(dst_gpr);
2318 	src_lo = reg_xfer(idx);
2319 
2320 	if (size < REG_WIDTH) {
2321 		wrp_reg_subpart(nfp_prog, dst_lo, src_lo, size, 0);
2322 		wrp_immed(nfp_prog, dst_hi, 0);
2323 	} else if (size == REG_WIDTH) {
2324 		wrp_mov(nfp_prog, dst_lo, src_lo);
2325 		wrp_immed(nfp_prog, dst_hi, 0);
2326 	} else {
2327 		swreg src_hi = reg_xfer(idx + 1);
2328 
2329 		wrp_mov(nfp_prog, dst_lo, src_lo);
2330 		wrp_mov(nfp_prog, dst_hi, src_hi);
2331 	}
2332 
2333 	return 0;
2334 }
2335 
2336 static int
2337 mem_ldx_data_from_pktcache(struct nfp_prog *nfp_prog,
2338 			   struct nfp_insn_meta *meta, unsigned int size)
2339 {
2340 	u8 off = meta->insn.off - meta->pkt_cache.range_start;
2341 
2342 	if (IS_ALIGNED(off, REG_WIDTH))
2343 		return mem_ldx_data_from_pktcache_aligned(nfp_prog, meta, size);
2344 
2345 	return mem_ldx_data_from_pktcache_unaligned(nfp_prog, meta, size);
2346 }
2347 
2348 static int
2349 mem_ldx(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
2350 	unsigned int size)
2351 {
2352 	if (meta->ldst_gather_len)
2353 		return nfp_cpp_memcpy(nfp_prog, meta);
2354 
2355 	if (meta->ptr.type == PTR_TO_CTX) {
2356 		if (nfp_prog->type == BPF_PROG_TYPE_XDP)
2357 			return mem_ldx_xdp(nfp_prog, meta, size);
2358 		else
2359 			return mem_ldx_skb(nfp_prog, meta, size);
2360 	}
2361 
2362 	if (meta->ptr.type == PTR_TO_PACKET) {
2363 		if (meta->pkt_cache.range_end) {
2364 			if (meta->pkt_cache.do_init)
2365 				mem_ldx_data_init_pktcache(nfp_prog, meta);
2366 
2367 			return mem_ldx_data_from_pktcache(nfp_prog, meta, size);
2368 		} else {
2369 			return mem_ldx_data(nfp_prog, meta, size);
2370 		}
2371 	}
2372 
2373 	if (meta->ptr.type == PTR_TO_STACK)
2374 		return mem_ldx_stack(nfp_prog, meta, size,
2375 				     meta->ptr.off + meta->ptr.var_off.value);
2376 
2377 	if (meta->ptr.type == PTR_TO_MAP_VALUE)
2378 		return mem_ldx_emem(nfp_prog, meta, size);
2379 
2380 	return -EOPNOTSUPP;
2381 }
2382 
2383 static int mem_ldx1(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2384 {
2385 	return mem_ldx(nfp_prog, meta, 1);
2386 }
2387 
2388 static int mem_ldx2(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2389 {
2390 	return mem_ldx(nfp_prog, meta, 2);
2391 }
2392 
2393 static int mem_ldx4(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2394 {
2395 	return mem_ldx(nfp_prog, meta, 4);
2396 }
2397 
2398 static int mem_ldx8(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2399 {
2400 	return mem_ldx(nfp_prog, meta, 8);
2401 }
2402 
2403 static int
2404 mem_st_data(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
2405 	    unsigned int size)
2406 {
2407 	u64 imm = meta->insn.imm; /* sign extend */
2408 	swreg off_reg;
2409 
2410 	off_reg = re_load_imm_any(nfp_prog, meta->insn.off, imm_b(nfp_prog));
2411 
2412 	return data_st_host_order(nfp_prog, meta->insn.dst_reg * 2, off_reg,
2413 				  imm, size);
2414 }
2415 
2416 static int mem_st(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
2417 		  unsigned int size)
2418 {
2419 	if (meta->ptr.type == PTR_TO_PACKET)
2420 		return mem_st_data(nfp_prog, meta, size);
2421 
2422 	return -EOPNOTSUPP;
2423 }
2424 
2425 static int mem_st1(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2426 {
2427 	return mem_st(nfp_prog, meta, 1);
2428 }
2429 
2430 static int mem_st2(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2431 {
2432 	return mem_st(nfp_prog, meta, 2);
2433 }
2434 
2435 static int mem_st4(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2436 {
2437 	return mem_st(nfp_prog, meta, 4);
2438 }
2439 
2440 static int mem_st8(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2441 {
2442 	return mem_st(nfp_prog, meta, 8);
2443 }
2444 
2445 static int
2446 mem_stx_data(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
2447 	     unsigned int size)
2448 {
2449 	swreg off_reg;
2450 
2451 	off_reg = re_load_imm_any(nfp_prog, meta->insn.off, imm_b(nfp_prog));
2452 
2453 	return data_stx_host_order(nfp_prog, meta->insn.dst_reg * 2, off_reg,
2454 				   meta->insn.src_reg * 2, size);
2455 }
2456 
2457 static int
2458 mem_stx_stack(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
2459 	      unsigned int size, unsigned int ptr_off)
2460 {
2461 	return mem_op_stack(nfp_prog, meta, size, ptr_off,
2462 			    meta->insn.src_reg * 2, meta->insn.dst_reg * 2,
2463 			    false, wrp_lmem_store);
2464 }
2465 
2466 static int mem_stx_xdp(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2467 {
2468 	switch (meta->insn.off) {
2469 	case offsetof(struct xdp_md, rx_queue_index):
2470 		return nfp_queue_select(nfp_prog, meta);
2471 	}
2472 
2473 	WARN_ON_ONCE(1); /* verifier should have rejected bad accesses */
2474 	return -EOPNOTSUPP;
2475 }
2476 
2477 static int
2478 mem_stx(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
2479 	unsigned int size)
2480 {
2481 	if (meta->ptr.type == PTR_TO_PACKET)
2482 		return mem_stx_data(nfp_prog, meta, size);
2483 
2484 	if (meta->ptr.type == PTR_TO_STACK)
2485 		return mem_stx_stack(nfp_prog, meta, size,
2486 				     meta->ptr.off + meta->ptr.var_off.value);
2487 
2488 	return -EOPNOTSUPP;
2489 }
2490 
2491 static int mem_stx1(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2492 {
2493 	return mem_stx(nfp_prog, meta, 1);
2494 }
2495 
2496 static int mem_stx2(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2497 {
2498 	return mem_stx(nfp_prog, meta, 2);
2499 }
2500 
2501 static int mem_stx4(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2502 {
2503 	if (meta->ptr.type == PTR_TO_CTX)
2504 		if (nfp_prog->type == BPF_PROG_TYPE_XDP)
2505 			return mem_stx_xdp(nfp_prog, meta);
2506 	return mem_stx(nfp_prog, meta, 4);
2507 }
2508 
2509 static int mem_stx8(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2510 {
2511 	return mem_stx(nfp_prog, meta, 8);
2512 }
2513 
2514 static int
2515 mem_xadd(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta, bool is64)
2516 {
2517 	u8 dst_gpr = meta->insn.dst_reg * 2;
2518 	u8 src_gpr = meta->insn.src_reg * 2;
2519 	unsigned int full_add, out;
2520 	swreg addra, addrb, off;
2521 
2522 	off = ur_load_imm_any(nfp_prog, meta->insn.off, imm_b(nfp_prog));
2523 
2524 	/* We can fit 16 bits into command immediate, if we know the immediate
2525 	 * is guaranteed to either always or never fit into 16 bit we only
2526 	 * generate code to handle that particular case, otherwise generate
2527 	 * code for both.
2528 	 */
2529 	out = nfp_prog_current_offset(nfp_prog);
2530 	full_add = nfp_prog_current_offset(nfp_prog);
2531 
2532 	if (meta->insn.off) {
2533 		out += 2;
2534 		full_add += 2;
2535 	}
2536 	if (meta->xadd_maybe_16bit) {
2537 		out += 3;
2538 		full_add += 3;
2539 	}
2540 	if (meta->xadd_over_16bit)
2541 		out += 2 + is64;
2542 	if (meta->xadd_maybe_16bit && meta->xadd_over_16bit) {
2543 		out += 5;
2544 		full_add += 5;
2545 	}
2546 
2547 	/* Generate the branch for choosing add_imm vs add */
2548 	if (meta->xadd_maybe_16bit && meta->xadd_over_16bit) {
2549 		swreg max_imm = imm_a(nfp_prog);
2550 
2551 		wrp_immed(nfp_prog, max_imm, 0xffff);
2552 		emit_alu(nfp_prog, reg_none(),
2553 			 max_imm, ALU_OP_SUB, reg_b(src_gpr));
2554 		emit_alu(nfp_prog, reg_none(),
2555 			 reg_imm(0), ALU_OP_SUB_C, reg_b(src_gpr + 1));
2556 		emit_br(nfp_prog, BR_BLO, full_add, meta->insn.off ? 2 : 0);
2557 		/* defer for add */
2558 	}
2559 
2560 	/* If insn has an offset add to the address */
2561 	if (!meta->insn.off) {
2562 		addra = reg_a(dst_gpr);
2563 		addrb = reg_b(dst_gpr + 1);
2564 	} else {
2565 		emit_alu(nfp_prog, imma_a(nfp_prog),
2566 			 reg_a(dst_gpr), ALU_OP_ADD, off);
2567 		emit_alu(nfp_prog, imma_b(nfp_prog),
2568 			 reg_a(dst_gpr + 1), ALU_OP_ADD_C, reg_imm(0));
2569 		addra = imma_a(nfp_prog);
2570 		addrb = imma_b(nfp_prog);
2571 	}
2572 
2573 	/* Generate the add_imm if 16 bits are possible */
2574 	if (meta->xadd_maybe_16bit) {
2575 		swreg prev_alu = imm_a(nfp_prog);
2576 
2577 		wrp_immed(nfp_prog, prev_alu,
2578 			  FIELD_PREP(CMD_OVE_DATA, 2) |
2579 			  CMD_OVE_LEN |
2580 			  FIELD_PREP(CMD_OV_LEN, 0x8 | is64 << 2));
2581 		wrp_reg_or_subpart(nfp_prog, prev_alu, reg_b(src_gpr), 2, 2);
2582 		emit_cmd_indir(nfp_prog, CMD_TGT_ADD_IMM, CMD_MODE_40b_BA, 0,
2583 			       addra, addrb, 0, CMD_CTX_NO_SWAP);
2584 
2585 		if (meta->xadd_over_16bit)
2586 			emit_br(nfp_prog, BR_UNC, out, 0);
2587 	}
2588 
2589 	if (!nfp_prog_confirm_current_offset(nfp_prog, full_add))
2590 		return -EINVAL;
2591 
2592 	/* Generate the add if 16 bits are not guaranteed */
2593 	if (meta->xadd_over_16bit) {
2594 		emit_cmd(nfp_prog, CMD_TGT_ADD, CMD_MODE_40b_BA, 0,
2595 			 addra, addrb, is64 << 2,
2596 			 is64 ? CMD_CTX_SWAP_DEFER2 : CMD_CTX_SWAP_DEFER1);
2597 
2598 		wrp_mov(nfp_prog, reg_xfer(0), reg_a(src_gpr));
2599 		if (is64)
2600 			wrp_mov(nfp_prog, reg_xfer(1), reg_a(src_gpr + 1));
2601 	}
2602 
2603 	if (!nfp_prog_confirm_current_offset(nfp_prog, out))
2604 		return -EINVAL;
2605 
2606 	return 0;
2607 }
2608 
2609 static int mem_xadd4(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2610 {
2611 	return mem_xadd(nfp_prog, meta, false);
2612 }
2613 
2614 static int mem_xadd8(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2615 {
2616 	return mem_xadd(nfp_prog, meta, true);
2617 }
2618 
2619 static int jump(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2620 {
2621 	emit_br(nfp_prog, BR_UNC, meta->insn.off, 0);
2622 
2623 	return 0;
2624 }
2625 
2626 static int jeq_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2627 {
2628 	const struct bpf_insn *insn = &meta->insn;
2629 	u64 imm = insn->imm; /* sign extend */
2630 	swreg or1, or2, tmp_reg;
2631 
2632 	or1 = reg_a(insn->dst_reg * 2);
2633 	or2 = reg_b(insn->dst_reg * 2 + 1);
2634 
2635 	if (imm & ~0U) {
2636 		tmp_reg = ur_load_imm_any(nfp_prog, imm & ~0U, imm_b(nfp_prog));
2637 		emit_alu(nfp_prog, imm_a(nfp_prog),
2638 			 reg_a(insn->dst_reg * 2), ALU_OP_XOR, tmp_reg);
2639 		or1 = imm_a(nfp_prog);
2640 	}
2641 
2642 	if (imm >> 32) {
2643 		tmp_reg = ur_load_imm_any(nfp_prog, imm >> 32, imm_b(nfp_prog));
2644 		emit_alu(nfp_prog, imm_b(nfp_prog),
2645 			 reg_a(insn->dst_reg * 2 + 1), ALU_OP_XOR, tmp_reg);
2646 		or2 = imm_b(nfp_prog);
2647 	}
2648 
2649 	emit_alu(nfp_prog, reg_none(), or1, ALU_OP_OR, or2);
2650 	emit_br(nfp_prog, BR_BEQ, insn->off, 0);
2651 
2652 	return 0;
2653 }
2654 
2655 static int jset_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2656 {
2657 	const struct bpf_insn *insn = &meta->insn;
2658 	u64 imm = insn->imm; /* sign extend */
2659 	swreg tmp_reg;
2660 
2661 	if (!imm) {
2662 		meta->skip = true;
2663 		return 0;
2664 	}
2665 
2666 	if (imm & ~0U) {
2667 		tmp_reg = ur_load_imm_any(nfp_prog, imm & ~0U, imm_b(nfp_prog));
2668 		emit_alu(nfp_prog, reg_none(),
2669 			 reg_a(insn->dst_reg * 2), ALU_OP_AND, tmp_reg);
2670 		emit_br(nfp_prog, BR_BNE, insn->off, 0);
2671 	}
2672 
2673 	if (imm >> 32) {
2674 		tmp_reg = ur_load_imm_any(nfp_prog, imm >> 32, imm_b(nfp_prog));
2675 		emit_alu(nfp_prog, reg_none(),
2676 			 reg_a(insn->dst_reg * 2 + 1), ALU_OP_AND, tmp_reg);
2677 		emit_br(nfp_prog, BR_BNE, insn->off, 0);
2678 	}
2679 
2680 	return 0;
2681 }
2682 
2683 static int jne_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2684 {
2685 	const struct bpf_insn *insn = &meta->insn;
2686 	u64 imm = insn->imm; /* sign extend */
2687 	swreg tmp_reg;
2688 
2689 	if (!imm) {
2690 		emit_alu(nfp_prog, reg_none(), reg_a(insn->dst_reg * 2),
2691 			 ALU_OP_OR, reg_b(insn->dst_reg * 2 + 1));
2692 		emit_br(nfp_prog, BR_BNE, insn->off, 0);
2693 		return 0;
2694 	}
2695 
2696 	tmp_reg = ur_load_imm_any(nfp_prog, imm & ~0U, imm_b(nfp_prog));
2697 	emit_alu(nfp_prog, reg_none(),
2698 		 reg_a(insn->dst_reg * 2), ALU_OP_XOR, tmp_reg);
2699 	emit_br(nfp_prog, BR_BNE, insn->off, 0);
2700 
2701 	tmp_reg = ur_load_imm_any(nfp_prog, imm >> 32, imm_b(nfp_prog));
2702 	emit_alu(nfp_prog, reg_none(),
2703 		 reg_a(insn->dst_reg * 2 + 1), ALU_OP_XOR, tmp_reg);
2704 	emit_br(nfp_prog, BR_BNE, insn->off, 0);
2705 
2706 	return 0;
2707 }
2708 
2709 static int jeq_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2710 {
2711 	const struct bpf_insn *insn = &meta->insn;
2712 
2713 	emit_alu(nfp_prog, imm_a(nfp_prog), reg_a(insn->dst_reg * 2),
2714 		 ALU_OP_XOR, reg_b(insn->src_reg * 2));
2715 	emit_alu(nfp_prog, imm_b(nfp_prog), reg_a(insn->dst_reg * 2 + 1),
2716 		 ALU_OP_XOR, reg_b(insn->src_reg * 2 + 1));
2717 	emit_alu(nfp_prog, reg_none(),
2718 		 imm_a(nfp_prog), ALU_OP_OR, imm_b(nfp_prog));
2719 	emit_br(nfp_prog, BR_BEQ, insn->off, 0);
2720 
2721 	return 0;
2722 }
2723 
2724 static int jset_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2725 {
2726 	return wrp_test_reg(nfp_prog, meta, ALU_OP_AND, BR_BNE);
2727 }
2728 
2729 static int jne_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2730 {
2731 	return wrp_test_reg(nfp_prog, meta, ALU_OP_XOR, BR_BNE);
2732 }
2733 
2734 static int call(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2735 {
2736 	switch (meta->insn.imm) {
2737 	case BPF_FUNC_xdp_adjust_head:
2738 		return adjust_head(nfp_prog, meta);
2739 	case BPF_FUNC_map_lookup_elem:
2740 	case BPF_FUNC_map_update_elem:
2741 	case BPF_FUNC_map_delete_elem:
2742 		return map_call_stack_common(nfp_prog, meta);
2743 	case BPF_FUNC_get_prandom_u32:
2744 		return nfp_get_prandom_u32(nfp_prog, meta);
2745 	case BPF_FUNC_perf_event_output:
2746 		return nfp_perf_event_output(nfp_prog, meta);
2747 	default:
2748 		WARN_ONCE(1, "verifier allowed unsupported function\n");
2749 		return -EOPNOTSUPP;
2750 	}
2751 }
2752 
2753 static int goto_out(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2754 {
2755 	emit_br_relo(nfp_prog, BR_UNC, BR_OFF_RELO, 0, RELO_BR_GO_OUT);
2756 
2757 	return 0;
2758 }
2759 
2760 static const instr_cb_t instr_cb[256] = {
2761 	[BPF_ALU64 | BPF_MOV | BPF_X] =	mov_reg64,
2762 	[BPF_ALU64 | BPF_MOV | BPF_K] =	mov_imm64,
2763 	[BPF_ALU64 | BPF_XOR | BPF_X] =	xor_reg64,
2764 	[BPF_ALU64 | BPF_XOR | BPF_K] =	xor_imm64,
2765 	[BPF_ALU64 | BPF_AND | BPF_X] =	and_reg64,
2766 	[BPF_ALU64 | BPF_AND | BPF_K] =	and_imm64,
2767 	[BPF_ALU64 | BPF_OR | BPF_X] =	or_reg64,
2768 	[BPF_ALU64 | BPF_OR | BPF_K] =	or_imm64,
2769 	[BPF_ALU64 | BPF_ADD | BPF_X] =	add_reg64,
2770 	[BPF_ALU64 | BPF_ADD | BPF_K] =	add_imm64,
2771 	[BPF_ALU64 | BPF_SUB | BPF_X] =	sub_reg64,
2772 	[BPF_ALU64 | BPF_SUB | BPF_K] =	sub_imm64,
2773 	[BPF_ALU64 | BPF_NEG] =		neg_reg64,
2774 	[BPF_ALU64 | BPF_LSH | BPF_X] =	shl_reg64,
2775 	[BPF_ALU64 | BPF_LSH | BPF_K] =	shl_imm64,
2776 	[BPF_ALU64 | BPF_RSH | BPF_X] =	shr_reg64,
2777 	[BPF_ALU64 | BPF_RSH | BPF_K] =	shr_imm64,
2778 	[BPF_ALU64 | BPF_ARSH | BPF_K] = ashr_imm64,
2779 	[BPF_ALU | BPF_MOV | BPF_X] =	mov_reg,
2780 	[BPF_ALU | BPF_MOV | BPF_K] =	mov_imm,
2781 	[BPF_ALU | BPF_XOR | BPF_X] =	xor_reg,
2782 	[BPF_ALU | BPF_XOR | BPF_K] =	xor_imm,
2783 	[BPF_ALU | BPF_AND | BPF_X] =	and_reg,
2784 	[BPF_ALU | BPF_AND | BPF_K] =	and_imm,
2785 	[BPF_ALU | BPF_OR | BPF_X] =	or_reg,
2786 	[BPF_ALU | BPF_OR | BPF_K] =	or_imm,
2787 	[BPF_ALU | BPF_ADD | BPF_X] =	add_reg,
2788 	[BPF_ALU | BPF_ADD | BPF_K] =	add_imm,
2789 	[BPF_ALU | BPF_SUB | BPF_X] =	sub_reg,
2790 	[BPF_ALU | BPF_SUB | BPF_K] =	sub_imm,
2791 	[BPF_ALU | BPF_NEG] =		neg_reg,
2792 	[BPF_ALU | BPF_LSH | BPF_K] =	shl_imm,
2793 	[BPF_ALU | BPF_END | BPF_X] =	end_reg32,
2794 	[BPF_LD | BPF_IMM | BPF_DW] =	imm_ld8,
2795 	[BPF_LD | BPF_ABS | BPF_B] =	data_ld1,
2796 	[BPF_LD | BPF_ABS | BPF_H] =	data_ld2,
2797 	[BPF_LD | BPF_ABS | BPF_W] =	data_ld4,
2798 	[BPF_LD | BPF_IND | BPF_B] =	data_ind_ld1,
2799 	[BPF_LD | BPF_IND | BPF_H] =	data_ind_ld2,
2800 	[BPF_LD | BPF_IND | BPF_W] =	data_ind_ld4,
2801 	[BPF_LDX | BPF_MEM | BPF_B] =	mem_ldx1,
2802 	[BPF_LDX | BPF_MEM | BPF_H] =	mem_ldx2,
2803 	[BPF_LDX | BPF_MEM | BPF_W] =	mem_ldx4,
2804 	[BPF_LDX | BPF_MEM | BPF_DW] =	mem_ldx8,
2805 	[BPF_STX | BPF_MEM | BPF_B] =	mem_stx1,
2806 	[BPF_STX | BPF_MEM | BPF_H] =	mem_stx2,
2807 	[BPF_STX | BPF_MEM | BPF_W] =	mem_stx4,
2808 	[BPF_STX | BPF_MEM | BPF_DW] =	mem_stx8,
2809 	[BPF_STX | BPF_XADD | BPF_W] =	mem_xadd4,
2810 	[BPF_STX | BPF_XADD | BPF_DW] =	mem_xadd8,
2811 	[BPF_ST | BPF_MEM | BPF_B] =	mem_st1,
2812 	[BPF_ST | BPF_MEM | BPF_H] =	mem_st2,
2813 	[BPF_ST | BPF_MEM | BPF_W] =	mem_st4,
2814 	[BPF_ST | BPF_MEM | BPF_DW] =	mem_st8,
2815 	[BPF_JMP | BPF_JA | BPF_K] =	jump,
2816 	[BPF_JMP | BPF_JEQ | BPF_K] =	jeq_imm,
2817 	[BPF_JMP | BPF_JGT | BPF_K] =	cmp_imm,
2818 	[BPF_JMP | BPF_JGE | BPF_K] =	cmp_imm,
2819 	[BPF_JMP | BPF_JLT | BPF_K] =	cmp_imm,
2820 	[BPF_JMP | BPF_JLE | BPF_K] =	cmp_imm,
2821 	[BPF_JMP | BPF_JSGT | BPF_K] =  cmp_imm,
2822 	[BPF_JMP | BPF_JSGE | BPF_K] =  cmp_imm,
2823 	[BPF_JMP | BPF_JSLT | BPF_K] =  cmp_imm,
2824 	[BPF_JMP | BPF_JSLE | BPF_K] =  cmp_imm,
2825 	[BPF_JMP | BPF_JSET | BPF_K] =	jset_imm,
2826 	[BPF_JMP | BPF_JNE | BPF_K] =	jne_imm,
2827 	[BPF_JMP | BPF_JEQ | BPF_X] =	jeq_reg,
2828 	[BPF_JMP | BPF_JGT | BPF_X] =	cmp_reg,
2829 	[BPF_JMP | BPF_JGE | BPF_X] =	cmp_reg,
2830 	[BPF_JMP | BPF_JLT | BPF_X] =	cmp_reg,
2831 	[BPF_JMP | BPF_JLE | BPF_X] =	cmp_reg,
2832 	[BPF_JMP | BPF_JSGT | BPF_X] =  cmp_reg,
2833 	[BPF_JMP | BPF_JSGE | BPF_X] =  cmp_reg,
2834 	[BPF_JMP | BPF_JSLT | BPF_X] =  cmp_reg,
2835 	[BPF_JMP | BPF_JSLE | BPF_X] =  cmp_reg,
2836 	[BPF_JMP | BPF_JSET | BPF_X] =	jset_reg,
2837 	[BPF_JMP | BPF_JNE | BPF_X] =	jne_reg,
2838 	[BPF_JMP | BPF_CALL] =		call,
2839 	[BPF_JMP | BPF_EXIT] =		goto_out,
2840 };
2841 
2842 /* --- Assembler logic --- */
2843 static int nfp_fixup_branches(struct nfp_prog *nfp_prog)
2844 {
2845 	struct nfp_insn_meta *meta, *jmp_dst;
2846 	u32 idx, br_idx;
2847 
2848 	list_for_each_entry(meta, &nfp_prog->insns, l) {
2849 		if (meta->skip)
2850 			continue;
2851 		if (meta->insn.code == (BPF_JMP | BPF_CALL))
2852 			continue;
2853 		if (BPF_CLASS(meta->insn.code) != BPF_JMP)
2854 			continue;
2855 
2856 		if (list_is_last(&meta->l, &nfp_prog->insns))
2857 			br_idx = nfp_prog->last_bpf_off;
2858 		else
2859 			br_idx = list_next_entry(meta, l)->off - 1;
2860 
2861 		if (!nfp_is_br(nfp_prog->prog[br_idx])) {
2862 			pr_err("Fixup found block not ending in branch %d %02x %016llx!!\n",
2863 			       br_idx, meta->insn.code, nfp_prog->prog[br_idx]);
2864 			return -ELOOP;
2865 		}
2866 		/* Leave special branches for later */
2867 		if (FIELD_GET(OP_RELO_TYPE, nfp_prog->prog[br_idx]) !=
2868 		    RELO_BR_REL)
2869 			continue;
2870 
2871 		if (!meta->jmp_dst) {
2872 			pr_err("Non-exit jump doesn't have destination info recorded!!\n");
2873 			return -ELOOP;
2874 		}
2875 
2876 		jmp_dst = meta->jmp_dst;
2877 
2878 		if (jmp_dst->skip) {
2879 			pr_err("Branch landing on removed instruction!!\n");
2880 			return -ELOOP;
2881 		}
2882 
2883 		for (idx = meta->off; idx <= br_idx; idx++) {
2884 			if (!nfp_is_br(nfp_prog->prog[idx]))
2885 				continue;
2886 			br_set_offset(&nfp_prog->prog[idx], jmp_dst->off);
2887 		}
2888 	}
2889 
2890 	return 0;
2891 }
2892 
2893 static void nfp_intro(struct nfp_prog *nfp_prog)
2894 {
2895 	wrp_immed(nfp_prog, plen_reg(nfp_prog), GENMASK(13, 0));
2896 	emit_alu(nfp_prog, plen_reg(nfp_prog),
2897 		 plen_reg(nfp_prog), ALU_OP_AND, pv_len(nfp_prog));
2898 }
2899 
2900 static void nfp_outro_tc_da(struct nfp_prog *nfp_prog)
2901 {
2902 	/* TC direct-action mode:
2903 	 *   0,1   ok        NOT SUPPORTED[1]
2904 	 *   2   drop  0x22 -> drop,  count as stat1
2905 	 *   4,5 nuke  0x02 -> drop
2906 	 *   7  redir  0x44 -> redir, count as stat2
2907 	 *   * unspec  0x11 -> pass,  count as stat0
2908 	 *
2909 	 * [1] We can't support OK and RECLASSIFY because we can't tell TC
2910 	 *     the exact decision made.  We are forced to support UNSPEC
2911 	 *     to handle aborts so that's the only one we handle for passing
2912 	 *     packets up the stack.
2913 	 */
2914 	/* Target for aborts */
2915 	nfp_prog->tgt_abort = nfp_prog_current_offset(nfp_prog);
2916 
2917 	emit_br_relo(nfp_prog, BR_UNC, BR_OFF_RELO, 2, RELO_BR_NEXT_PKT);
2918 
2919 	wrp_mov(nfp_prog, reg_a(0), NFP_BPF_ABI_FLAGS);
2920 	emit_ld_field(nfp_prog, reg_a(0), 0xc, reg_imm(0x11), SHF_SC_L_SHF, 16);
2921 
2922 	/* Target for normal exits */
2923 	nfp_prog->tgt_out = nfp_prog_current_offset(nfp_prog);
2924 
2925 	/* if R0 > 7 jump to abort */
2926 	emit_alu(nfp_prog, reg_none(), reg_imm(7), ALU_OP_SUB, reg_b(0));
2927 	emit_br(nfp_prog, BR_BLO, nfp_prog->tgt_abort, 0);
2928 	wrp_mov(nfp_prog, reg_a(0), NFP_BPF_ABI_FLAGS);
2929 
2930 	wrp_immed(nfp_prog, reg_b(2), 0x41221211);
2931 	wrp_immed(nfp_prog, reg_b(3), 0x41001211);
2932 
2933 	emit_shf(nfp_prog, reg_a(1),
2934 		 reg_none(), SHF_OP_NONE, reg_b(0), SHF_SC_L_SHF, 2);
2935 
2936 	emit_alu(nfp_prog, reg_none(), reg_a(1), ALU_OP_OR, reg_imm(0));
2937 	emit_shf(nfp_prog, reg_a(2),
2938 		 reg_imm(0xf), SHF_OP_AND, reg_b(2), SHF_SC_R_SHF, 0);
2939 
2940 	emit_alu(nfp_prog, reg_none(), reg_a(1), ALU_OP_OR, reg_imm(0));
2941 	emit_shf(nfp_prog, reg_b(2),
2942 		 reg_imm(0xf), SHF_OP_AND, reg_b(3), SHF_SC_R_SHF, 0);
2943 
2944 	emit_br_relo(nfp_prog, BR_UNC, BR_OFF_RELO, 2, RELO_BR_NEXT_PKT);
2945 
2946 	emit_shf(nfp_prog, reg_b(2),
2947 		 reg_a(2), SHF_OP_OR, reg_b(2), SHF_SC_L_SHF, 4);
2948 	emit_ld_field(nfp_prog, reg_a(0), 0xc, reg_b(2), SHF_SC_L_SHF, 16);
2949 }
2950 
2951 static void nfp_outro_xdp(struct nfp_prog *nfp_prog)
2952 {
2953 	/* XDP return codes:
2954 	 *   0 aborted  0x82 -> drop,  count as stat3
2955 	 *   1    drop  0x22 -> drop,  count as stat1
2956 	 *   2    pass  0x11 -> pass,  count as stat0
2957 	 *   3      tx  0x44 -> redir, count as stat2
2958 	 *   * unknown  0x82 -> drop,  count as stat3
2959 	 */
2960 	/* Target for aborts */
2961 	nfp_prog->tgt_abort = nfp_prog_current_offset(nfp_prog);
2962 
2963 	emit_br_relo(nfp_prog, BR_UNC, BR_OFF_RELO, 2, RELO_BR_NEXT_PKT);
2964 
2965 	wrp_mov(nfp_prog, reg_a(0), NFP_BPF_ABI_FLAGS);
2966 	emit_ld_field(nfp_prog, reg_a(0), 0xc, reg_imm(0x82), SHF_SC_L_SHF, 16);
2967 
2968 	/* Target for normal exits */
2969 	nfp_prog->tgt_out = nfp_prog_current_offset(nfp_prog);
2970 
2971 	/* if R0 > 3 jump to abort */
2972 	emit_alu(nfp_prog, reg_none(), reg_imm(3), ALU_OP_SUB, reg_b(0));
2973 	emit_br(nfp_prog, BR_BLO, nfp_prog->tgt_abort, 0);
2974 
2975 	wrp_immed(nfp_prog, reg_b(2), 0x44112282);
2976 
2977 	emit_shf(nfp_prog, reg_a(1),
2978 		 reg_none(), SHF_OP_NONE, reg_b(0), SHF_SC_L_SHF, 3);
2979 
2980 	emit_alu(nfp_prog, reg_none(), reg_a(1), ALU_OP_OR, reg_imm(0));
2981 	emit_shf(nfp_prog, reg_b(2),
2982 		 reg_imm(0xff), SHF_OP_AND, reg_b(2), SHF_SC_R_SHF, 0);
2983 
2984 	emit_br_relo(nfp_prog, BR_UNC, BR_OFF_RELO, 2, RELO_BR_NEXT_PKT);
2985 
2986 	wrp_mov(nfp_prog, reg_a(0), NFP_BPF_ABI_FLAGS);
2987 	emit_ld_field(nfp_prog, reg_a(0), 0xc, reg_b(2), SHF_SC_L_SHF, 16);
2988 }
2989 
2990 static void nfp_outro(struct nfp_prog *nfp_prog)
2991 {
2992 	switch (nfp_prog->type) {
2993 	case BPF_PROG_TYPE_SCHED_CLS:
2994 		nfp_outro_tc_da(nfp_prog);
2995 		break;
2996 	case BPF_PROG_TYPE_XDP:
2997 		nfp_outro_xdp(nfp_prog);
2998 		break;
2999 	default:
3000 		WARN_ON(1);
3001 	}
3002 }
3003 
3004 static int nfp_translate(struct nfp_prog *nfp_prog)
3005 {
3006 	struct nfp_insn_meta *meta;
3007 	int err;
3008 
3009 	nfp_intro(nfp_prog);
3010 	if (nfp_prog->error)
3011 		return nfp_prog->error;
3012 
3013 	list_for_each_entry(meta, &nfp_prog->insns, l) {
3014 		instr_cb_t cb = instr_cb[meta->insn.code];
3015 
3016 		meta->off = nfp_prog_current_offset(nfp_prog);
3017 
3018 		if (meta->skip) {
3019 			nfp_prog->n_translated++;
3020 			continue;
3021 		}
3022 
3023 		if (nfp_meta_has_prev(nfp_prog, meta) &&
3024 		    nfp_meta_prev(meta)->double_cb)
3025 			cb = nfp_meta_prev(meta)->double_cb;
3026 		if (!cb)
3027 			return -ENOENT;
3028 		err = cb(nfp_prog, meta);
3029 		if (err)
3030 			return err;
3031 		if (nfp_prog->error)
3032 			return nfp_prog->error;
3033 
3034 		nfp_prog->n_translated++;
3035 	}
3036 
3037 	nfp_prog->last_bpf_off = nfp_prog_current_offset(nfp_prog) - 1;
3038 
3039 	nfp_outro(nfp_prog);
3040 	if (nfp_prog->error)
3041 		return nfp_prog->error;
3042 
3043 	wrp_nops(nfp_prog, NFP_USTORE_PREFETCH_WINDOW);
3044 	if (nfp_prog->error)
3045 		return nfp_prog->error;
3046 
3047 	return nfp_fixup_branches(nfp_prog);
3048 }
3049 
3050 /* --- Optimizations --- */
3051 static void nfp_bpf_opt_reg_init(struct nfp_prog *nfp_prog)
3052 {
3053 	struct nfp_insn_meta *meta;
3054 
3055 	list_for_each_entry(meta, &nfp_prog->insns, l) {
3056 		struct bpf_insn insn = meta->insn;
3057 
3058 		/* Programs converted from cBPF start with register xoring */
3059 		if (insn.code == (BPF_ALU64 | BPF_XOR | BPF_X) &&
3060 		    insn.src_reg == insn.dst_reg)
3061 			continue;
3062 
3063 		/* Programs start with R6 = R1 but we ignore the skb pointer */
3064 		if (insn.code == (BPF_ALU64 | BPF_MOV | BPF_X) &&
3065 		    insn.src_reg == 1 && insn.dst_reg == 6)
3066 			meta->skip = true;
3067 
3068 		/* Return as soon as something doesn't match */
3069 		if (!meta->skip)
3070 			return;
3071 	}
3072 }
3073 
3074 /* abs(insn.imm) will fit better into unrestricted reg immediate -
3075  * convert add/sub of a negative number into a sub/add of a positive one.
3076  */
3077 static void nfp_bpf_opt_neg_add_sub(struct nfp_prog *nfp_prog)
3078 {
3079 	struct nfp_insn_meta *meta;
3080 
3081 	list_for_each_entry(meta, &nfp_prog->insns, l) {
3082 		struct bpf_insn insn = meta->insn;
3083 
3084 		if (meta->skip)
3085 			continue;
3086 
3087 		if (BPF_CLASS(insn.code) != BPF_ALU &&
3088 		    BPF_CLASS(insn.code) != BPF_ALU64 &&
3089 		    BPF_CLASS(insn.code) != BPF_JMP)
3090 			continue;
3091 		if (BPF_SRC(insn.code) != BPF_K)
3092 			continue;
3093 		if (insn.imm >= 0)
3094 			continue;
3095 
3096 		if (BPF_CLASS(insn.code) == BPF_JMP) {
3097 			switch (BPF_OP(insn.code)) {
3098 			case BPF_JGE:
3099 			case BPF_JSGE:
3100 			case BPF_JLT:
3101 			case BPF_JSLT:
3102 				meta->jump_neg_op = true;
3103 				break;
3104 			default:
3105 				continue;
3106 			}
3107 		} else {
3108 			if (BPF_OP(insn.code) == BPF_ADD)
3109 				insn.code = BPF_CLASS(insn.code) | BPF_SUB;
3110 			else if (BPF_OP(insn.code) == BPF_SUB)
3111 				insn.code = BPF_CLASS(insn.code) | BPF_ADD;
3112 			else
3113 				continue;
3114 
3115 			meta->insn.code = insn.code | BPF_K;
3116 		}
3117 
3118 		meta->insn.imm = -insn.imm;
3119 	}
3120 }
3121 
3122 /* Remove masking after load since our load guarantees this is not needed */
3123 static void nfp_bpf_opt_ld_mask(struct nfp_prog *nfp_prog)
3124 {
3125 	struct nfp_insn_meta *meta1, *meta2;
3126 	const s32 exp_mask[] = {
3127 		[BPF_B] = 0x000000ffU,
3128 		[BPF_H] = 0x0000ffffU,
3129 		[BPF_W] = 0xffffffffU,
3130 	};
3131 
3132 	nfp_for_each_insn_walk2(nfp_prog, meta1, meta2) {
3133 		struct bpf_insn insn, next;
3134 
3135 		insn = meta1->insn;
3136 		next = meta2->insn;
3137 
3138 		if (BPF_CLASS(insn.code) != BPF_LD)
3139 			continue;
3140 		if (BPF_MODE(insn.code) != BPF_ABS &&
3141 		    BPF_MODE(insn.code) != BPF_IND)
3142 			continue;
3143 
3144 		if (next.code != (BPF_ALU64 | BPF_AND | BPF_K))
3145 			continue;
3146 
3147 		if (!exp_mask[BPF_SIZE(insn.code)])
3148 			continue;
3149 		if (exp_mask[BPF_SIZE(insn.code)] != next.imm)
3150 			continue;
3151 
3152 		if (next.src_reg || next.dst_reg)
3153 			continue;
3154 
3155 		if (meta2->flags & FLAG_INSN_IS_JUMP_DST)
3156 			continue;
3157 
3158 		meta2->skip = true;
3159 	}
3160 }
3161 
3162 static void nfp_bpf_opt_ld_shift(struct nfp_prog *nfp_prog)
3163 {
3164 	struct nfp_insn_meta *meta1, *meta2, *meta3;
3165 
3166 	nfp_for_each_insn_walk3(nfp_prog, meta1, meta2, meta3) {
3167 		struct bpf_insn insn, next1, next2;
3168 
3169 		insn = meta1->insn;
3170 		next1 = meta2->insn;
3171 		next2 = meta3->insn;
3172 
3173 		if (BPF_CLASS(insn.code) != BPF_LD)
3174 			continue;
3175 		if (BPF_MODE(insn.code) != BPF_ABS &&
3176 		    BPF_MODE(insn.code) != BPF_IND)
3177 			continue;
3178 		if (BPF_SIZE(insn.code) != BPF_W)
3179 			continue;
3180 
3181 		if (!(next1.code == (BPF_LSH | BPF_K | BPF_ALU64) &&
3182 		      next2.code == (BPF_RSH | BPF_K | BPF_ALU64)) &&
3183 		    !(next1.code == (BPF_RSH | BPF_K | BPF_ALU64) &&
3184 		      next2.code == (BPF_LSH | BPF_K | BPF_ALU64)))
3185 			continue;
3186 
3187 		if (next1.src_reg || next1.dst_reg ||
3188 		    next2.src_reg || next2.dst_reg)
3189 			continue;
3190 
3191 		if (next1.imm != 0x20 || next2.imm != 0x20)
3192 			continue;
3193 
3194 		if (meta2->flags & FLAG_INSN_IS_JUMP_DST ||
3195 		    meta3->flags & FLAG_INSN_IS_JUMP_DST)
3196 			continue;
3197 
3198 		meta2->skip = true;
3199 		meta3->skip = true;
3200 	}
3201 }
3202 
3203 /* load/store pair that forms memory copy sould look like the following:
3204  *
3205  *   ld_width R, [addr_src + offset_src]
3206  *   st_width [addr_dest + offset_dest], R
3207  *
3208  * The destination register of load and source register of store should
3209  * be the same, load and store should also perform at the same width.
3210  * If either of addr_src or addr_dest is stack pointer, we don't do the
3211  * CPP optimization as stack is modelled by registers on NFP.
3212  */
3213 static bool
3214 curr_pair_is_memcpy(struct nfp_insn_meta *ld_meta,
3215 		    struct nfp_insn_meta *st_meta)
3216 {
3217 	struct bpf_insn *ld = &ld_meta->insn;
3218 	struct bpf_insn *st = &st_meta->insn;
3219 
3220 	if (!is_mbpf_load(ld_meta) || !is_mbpf_store(st_meta))
3221 		return false;
3222 
3223 	if (ld_meta->ptr.type != PTR_TO_PACKET)
3224 		return false;
3225 
3226 	if (st_meta->ptr.type != PTR_TO_PACKET)
3227 		return false;
3228 
3229 	if (BPF_SIZE(ld->code) != BPF_SIZE(st->code))
3230 		return false;
3231 
3232 	if (ld->dst_reg != st->src_reg)
3233 		return false;
3234 
3235 	/* There is jump to the store insn in this pair. */
3236 	if (st_meta->flags & FLAG_INSN_IS_JUMP_DST)
3237 		return false;
3238 
3239 	return true;
3240 }
3241 
3242 /* Currently, we only support chaining load/store pairs if:
3243  *
3244  *  - Their address base registers are the same.
3245  *  - Their address offsets are in the same order.
3246  *  - They operate at the same memory width.
3247  *  - There is no jump into the middle of them.
3248  */
3249 static bool
3250 curr_pair_chain_with_previous(struct nfp_insn_meta *ld_meta,
3251 			      struct nfp_insn_meta *st_meta,
3252 			      struct bpf_insn *prev_ld,
3253 			      struct bpf_insn *prev_st)
3254 {
3255 	u8 prev_size, curr_size, prev_ld_base, prev_st_base, prev_ld_dst;
3256 	struct bpf_insn *ld = &ld_meta->insn;
3257 	struct bpf_insn *st = &st_meta->insn;
3258 	s16 prev_ld_off, prev_st_off;
3259 
3260 	/* This pair is the start pair. */
3261 	if (!prev_ld)
3262 		return true;
3263 
3264 	prev_size = BPF_LDST_BYTES(prev_ld);
3265 	curr_size = BPF_LDST_BYTES(ld);
3266 	prev_ld_base = prev_ld->src_reg;
3267 	prev_st_base = prev_st->dst_reg;
3268 	prev_ld_dst = prev_ld->dst_reg;
3269 	prev_ld_off = prev_ld->off;
3270 	prev_st_off = prev_st->off;
3271 
3272 	if (ld->dst_reg != prev_ld_dst)
3273 		return false;
3274 
3275 	if (ld->src_reg != prev_ld_base || st->dst_reg != prev_st_base)
3276 		return false;
3277 
3278 	if (curr_size != prev_size)
3279 		return false;
3280 
3281 	/* There is jump to the head of this pair. */
3282 	if (ld_meta->flags & FLAG_INSN_IS_JUMP_DST)
3283 		return false;
3284 
3285 	/* Both in ascending order. */
3286 	if (prev_ld_off + prev_size == ld->off &&
3287 	    prev_st_off + prev_size == st->off)
3288 		return true;
3289 
3290 	/* Both in descending order. */
3291 	if (ld->off + curr_size == prev_ld_off &&
3292 	    st->off + curr_size == prev_st_off)
3293 		return true;
3294 
3295 	return false;
3296 }
3297 
3298 /* Return TRUE if cross memory access happens. Cross memory access means
3299  * store area is overlapping with load area that a later load might load
3300  * the value from previous store, for this case we can't treat the sequence
3301  * as an memory copy.
3302  */
3303 static bool
3304 cross_mem_access(struct bpf_insn *ld, struct nfp_insn_meta *head_ld_meta,
3305 		 struct nfp_insn_meta *head_st_meta)
3306 {
3307 	s16 head_ld_off, head_st_off, ld_off;
3308 
3309 	/* Different pointer types does not overlap. */
3310 	if (head_ld_meta->ptr.type != head_st_meta->ptr.type)
3311 		return false;
3312 
3313 	/* load and store are both PTR_TO_PACKET, check ID info.  */
3314 	if (head_ld_meta->ptr.id != head_st_meta->ptr.id)
3315 		return true;
3316 
3317 	/* Canonicalize the offsets. Turn all of them against the original
3318 	 * base register.
3319 	 */
3320 	head_ld_off = head_ld_meta->insn.off + head_ld_meta->ptr.off;
3321 	head_st_off = head_st_meta->insn.off + head_st_meta->ptr.off;
3322 	ld_off = ld->off + head_ld_meta->ptr.off;
3323 
3324 	/* Ascending order cross. */
3325 	if (ld_off > head_ld_off &&
3326 	    head_ld_off < head_st_off && ld_off >= head_st_off)
3327 		return true;
3328 
3329 	/* Descending order cross. */
3330 	if (ld_off < head_ld_off &&
3331 	    head_ld_off > head_st_off && ld_off <= head_st_off)
3332 		return true;
3333 
3334 	return false;
3335 }
3336 
3337 /* This pass try to identify the following instructoin sequences.
3338  *
3339  *   load R, [regA + offA]
3340  *   store [regB + offB], R
3341  *   load R, [regA + offA + const_imm_A]
3342  *   store [regB + offB + const_imm_A], R
3343  *   load R, [regA + offA + 2 * const_imm_A]
3344  *   store [regB + offB + 2 * const_imm_A], R
3345  *   ...
3346  *
3347  * Above sequence is typically generated by compiler when lowering
3348  * memcpy. NFP prefer using CPP instructions to accelerate it.
3349  */
3350 static void nfp_bpf_opt_ldst_gather(struct nfp_prog *nfp_prog)
3351 {
3352 	struct nfp_insn_meta *head_ld_meta = NULL;
3353 	struct nfp_insn_meta *head_st_meta = NULL;
3354 	struct nfp_insn_meta *meta1, *meta2;
3355 	struct bpf_insn *prev_ld = NULL;
3356 	struct bpf_insn *prev_st = NULL;
3357 	u8 count = 0;
3358 
3359 	nfp_for_each_insn_walk2(nfp_prog, meta1, meta2) {
3360 		struct bpf_insn *ld = &meta1->insn;
3361 		struct bpf_insn *st = &meta2->insn;
3362 
3363 		/* Reset record status if any of the following if true:
3364 		 *   - The current insn pair is not load/store.
3365 		 *   - The load/store pair doesn't chain with previous one.
3366 		 *   - The chained load/store pair crossed with previous pair.
3367 		 *   - The chained load/store pair has a total size of memory
3368 		 *     copy beyond 128 bytes which is the maximum length a
3369 		 *     single NFP CPP command can transfer.
3370 		 */
3371 		if (!curr_pair_is_memcpy(meta1, meta2) ||
3372 		    !curr_pair_chain_with_previous(meta1, meta2, prev_ld,
3373 						   prev_st) ||
3374 		    (head_ld_meta && (cross_mem_access(ld, head_ld_meta,
3375 						       head_st_meta) ||
3376 				      head_ld_meta->ldst_gather_len >= 128))) {
3377 			if (!count)
3378 				continue;
3379 
3380 			if (count > 1) {
3381 				s16 prev_ld_off = prev_ld->off;
3382 				s16 prev_st_off = prev_st->off;
3383 				s16 head_ld_off = head_ld_meta->insn.off;
3384 
3385 				if (prev_ld_off < head_ld_off) {
3386 					head_ld_meta->insn.off = prev_ld_off;
3387 					head_st_meta->insn.off = prev_st_off;
3388 					head_ld_meta->ldst_gather_len =
3389 						-head_ld_meta->ldst_gather_len;
3390 				}
3391 
3392 				head_ld_meta->paired_st = &head_st_meta->insn;
3393 				head_st_meta->skip = true;
3394 			} else {
3395 				head_ld_meta->ldst_gather_len = 0;
3396 			}
3397 
3398 			/* If the chain is ended by an load/store pair then this
3399 			 * could serve as the new head of the the next chain.
3400 			 */
3401 			if (curr_pair_is_memcpy(meta1, meta2)) {
3402 				head_ld_meta = meta1;
3403 				head_st_meta = meta2;
3404 				head_ld_meta->ldst_gather_len =
3405 					BPF_LDST_BYTES(ld);
3406 				meta1 = nfp_meta_next(meta1);
3407 				meta2 = nfp_meta_next(meta2);
3408 				prev_ld = ld;
3409 				prev_st = st;
3410 				count = 1;
3411 			} else {
3412 				head_ld_meta = NULL;
3413 				head_st_meta = NULL;
3414 				prev_ld = NULL;
3415 				prev_st = NULL;
3416 				count = 0;
3417 			}
3418 
3419 			continue;
3420 		}
3421 
3422 		if (!head_ld_meta) {
3423 			head_ld_meta = meta1;
3424 			head_st_meta = meta2;
3425 		} else {
3426 			meta1->skip = true;
3427 			meta2->skip = true;
3428 		}
3429 
3430 		head_ld_meta->ldst_gather_len += BPF_LDST_BYTES(ld);
3431 		meta1 = nfp_meta_next(meta1);
3432 		meta2 = nfp_meta_next(meta2);
3433 		prev_ld = ld;
3434 		prev_st = st;
3435 		count++;
3436 	}
3437 }
3438 
3439 static void nfp_bpf_opt_pkt_cache(struct nfp_prog *nfp_prog)
3440 {
3441 	struct nfp_insn_meta *meta, *range_node = NULL;
3442 	s16 range_start = 0, range_end = 0;
3443 	bool cache_avail = false;
3444 	struct bpf_insn *insn;
3445 	s32 range_ptr_off = 0;
3446 	u32 range_ptr_id = 0;
3447 
3448 	list_for_each_entry(meta, &nfp_prog->insns, l) {
3449 		if (meta->flags & FLAG_INSN_IS_JUMP_DST)
3450 			cache_avail = false;
3451 
3452 		if (meta->skip)
3453 			continue;
3454 
3455 		insn = &meta->insn;
3456 
3457 		if (is_mbpf_store_pkt(meta) ||
3458 		    insn->code == (BPF_JMP | BPF_CALL) ||
3459 		    is_mbpf_classic_store_pkt(meta) ||
3460 		    is_mbpf_classic_load(meta)) {
3461 			cache_avail = false;
3462 			continue;
3463 		}
3464 
3465 		if (!is_mbpf_load(meta))
3466 			continue;
3467 
3468 		if (meta->ptr.type != PTR_TO_PACKET || meta->ldst_gather_len) {
3469 			cache_avail = false;
3470 			continue;
3471 		}
3472 
3473 		if (!cache_avail) {
3474 			cache_avail = true;
3475 			if (range_node)
3476 				goto end_current_then_start_new;
3477 			goto start_new;
3478 		}
3479 
3480 		/* Check ID to make sure two reads share the same
3481 		 * variable offset against PTR_TO_PACKET, and check OFF
3482 		 * to make sure they also share the same constant
3483 		 * offset.
3484 		 *
3485 		 * OFFs don't really need to be the same, because they
3486 		 * are the constant offsets against PTR_TO_PACKET, so
3487 		 * for different OFFs, we could canonicalize them to
3488 		 * offsets against original packet pointer. We don't
3489 		 * support this.
3490 		 */
3491 		if (meta->ptr.id == range_ptr_id &&
3492 		    meta->ptr.off == range_ptr_off) {
3493 			s16 new_start = range_start;
3494 			s16 end, off = insn->off;
3495 			s16 new_end = range_end;
3496 			bool changed = false;
3497 
3498 			if (off < range_start) {
3499 				new_start = off;
3500 				changed = true;
3501 			}
3502 
3503 			end = off + BPF_LDST_BYTES(insn);
3504 			if (end > range_end) {
3505 				new_end = end;
3506 				changed = true;
3507 			}
3508 
3509 			if (!changed)
3510 				continue;
3511 
3512 			if (new_end - new_start <= 64) {
3513 				/* Install new range. */
3514 				range_start = new_start;
3515 				range_end = new_end;
3516 				continue;
3517 			}
3518 		}
3519 
3520 end_current_then_start_new:
3521 		range_node->pkt_cache.range_start = range_start;
3522 		range_node->pkt_cache.range_end = range_end;
3523 start_new:
3524 		range_node = meta;
3525 		range_node->pkt_cache.do_init = true;
3526 		range_ptr_id = range_node->ptr.id;
3527 		range_ptr_off = range_node->ptr.off;
3528 		range_start = insn->off;
3529 		range_end = insn->off + BPF_LDST_BYTES(insn);
3530 	}
3531 
3532 	if (range_node) {
3533 		range_node->pkt_cache.range_start = range_start;
3534 		range_node->pkt_cache.range_end = range_end;
3535 	}
3536 
3537 	list_for_each_entry(meta, &nfp_prog->insns, l) {
3538 		if (meta->skip)
3539 			continue;
3540 
3541 		if (is_mbpf_load_pkt(meta) && !meta->ldst_gather_len) {
3542 			if (meta->pkt_cache.do_init) {
3543 				range_start = meta->pkt_cache.range_start;
3544 				range_end = meta->pkt_cache.range_end;
3545 			} else {
3546 				meta->pkt_cache.range_start = range_start;
3547 				meta->pkt_cache.range_end = range_end;
3548 			}
3549 		}
3550 	}
3551 }
3552 
3553 static int nfp_bpf_optimize(struct nfp_prog *nfp_prog)
3554 {
3555 	nfp_bpf_opt_reg_init(nfp_prog);
3556 
3557 	nfp_bpf_opt_neg_add_sub(nfp_prog);
3558 	nfp_bpf_opt_ld_mask(nfp_prog);
3559 	nfp_bpf_opt_ld_shift(nfp_prog);
3560 	nfp_bpf_opt_ldst_gather(nfp_prog);
3561 	nfp_bpf_opt_pkt_cache(nfp_prog);
3562 
3563 	return 0;
3564 }
3565 
3566 static int nfp_bpf_replace_map_ptrs(struct nfp_prog *nfp_prog)
3567 {
3568 	struct nfp_insn_meta *meta1, *meta2;
3569 	struct nfp_bpf_map *nfp_map;
3570 	struct bpf_map *map;
3571 
3572 	nfp_for_each_insn_walk2(nfp_prog, meta1, meta2) {
3573 		if (meta1->skip || meta2->skip)
3574 			continue;
3575 
3576 		if (meta1->insn.code != (BPF_LD | BPF_IMM | BPF_DW) ||
3577 		    meta1->insn.src_reg != BPF_PSEUDO_MAP_FD)
3578 			continue;
3579 
3580 		map = (void *)(unsigned long)((u32)meta1->insn.imm |
3581 					      (u64)meta2->insn.imm << 32);
3582 		if (bpf_map_offload_neutral(map))
3583 			continue;
3584 		nfp_map = map_to_offmap(map)->dev_priv;
3585 
3586 		meta1->insn.imm = nfp_map->tid;
3587 		meta2->insn.imm = 0;
3588 	}
3589 
3590 	return 0;
3591 }
3592 
3593 static int nfp_bpf_ustore_calc(u64 *prog, unsigned int len)
3594 {
3595 	__le64 *ustore = (__force __le64 *)prog;
3596 	int i;
3597 
3598 	for (i = 0; i < len; i++) {
3599 		int err;
3600 
3601 		err = nfp_ustore_check_valid_no_ecc(prog[i]);
3602 		if (err)
3603 			return err;
3604 
3605 		ustore[i] = cpu_to_le64(nfp_ustore_calc_ecc_insn(prog[i]));
3606 	}
3607 
3608 	return 0;
3609 }
3610 
3611 static void nfp_bpf_prog_trim(struct nfp_prog *nfp_prog)
3612 {
3613 	void *prog;
3614 
3615 	prog = kvmalloc_array(nfp_prog->prog_len, sizeof(u64), GFP_KERNEL);
3616 	if (!prog)
3617 		return;
3618 
3619 	nfp_prog->__prog_alloc_len = nfp_prog->prog_len * sizeof(u64);
3620 	memcpy(prog, nfp_prog->prog, nfp_prog->__prog_alloc_len);
3621 	kvfree(nfp_prog->prog);
3622 	nfp_prog->prog = prog;
3623 }
3624 
3625 int nfp_bpf_jit(struct nfp_prog *nfp_prog)
3626 {
3627 	int ret;
3628 
3629 	ret = nfp_bpf_replace_map_ptrs(nfp_prog);
3630 	if (ret)
3631 		return ret;
3632 
3633 	ret = nfp_bpf_optimize(nfp_prog);
3634 	if (ret)
3635 		return ret;
3636 
3637 	ret = nfp_translate(nfp_prog);
3638 	if (ret) {
3639 		pr_err("Translation failed with error %d (translated: %u)\n",
3640 		       ret, nfp_prog->n_translated);
3641 		return -EINVAL;
3642 	}
3643 
3644 	nfp_bpf_prog_trim(nfp_prog);
3645 
3646 	return ret;
3647 }
3648 
3649 void nfp_bpf_jit_prepare(struct nfp_prog *nfp_prog, unsigned int cnt)
3650 {
3651 	struct nfp_insn_meta *meta;
3652 
3653 	/* Another pass to record jump information. */
3654 	list_for_each_entry(meta, &nfp_prog->insns, l) {
3655 		u64 code = meta->insn.code;
3656 
3657 		if (BPF_CLASS(code) == BPF_JMP && BPF_OP(code) != BPF_EXIT &&
3658 		    BPF_OP(code) != BPF_CALL) {
3659 			struct nfp_insn_meta *dst_meta;
3660 			unsigned short dst_indx;
3661 
3662 			dst_indx = meta->n + 1 + meta->insn.off;
3663 			dst_meta = nfp_bpf_goto_meta(nfp_prog, meta, dst_indx,
3664 						     cnt);
3665 
3666 			meta->jmp_dst = dst_meta;
3667 			dst_meta->flags |= FLAG_INSN_IS_JUMP_DST;
3668 		}
3669 	}
3670 }
3671 
3672 bool nfp_bpf_supported_opcode(u8 code)
3673 {
3674 	return !!instr_cb[code];
3675 }
3676 
3677 void *nfp_bpf_relo_for_vnic(struct nfp_prog *nfp_prog, struct nfp_bpf_vnic *bv)
3678 {
3679 	unsigned int i;
3680 	u64 *prog;
3681 	int err;
3682 
3683 	prog = kmemdup(nfp_prog->prog, nfp_prog->prog_len * sizeof(u64),
3684 		       GFP_KERNEL);
3685 	if (!prog)
3686 		return ERR_PTR(-ENOMEM);
3687 
3688 	for (i = 0; i < nfp_prog->prog_len; i++) {
3689 		enum nfp_relo_type special;
3690 		u32 val;
3691 
3692 		special = FIELD_GET(OP_RELO_TYPE, prog[i]);
3693 		switch (special) {
3694 		case RELO_NONE:
3695 			continue;
3696 		case RELO_BR_REL:
3697 			br_add_offset(&prog[i], bv->start_off);
3698 			break;
3699 		case RELO_BR_GO_OUT:
3700 			br_set_offset(&prog[i],
3701 				      nfp_prog->tgt_out + bv->start_off);
3702 			break;
3703 		case RELO_BR_GO_ABORT:
3704 			br_set_offset(&prog[i],
3705 				      nfp_prog->tgt_abort + bv->start_off);
3706 			break;
3707 		case RELO_BR_NEXT_PKT:
3708 			br_set_offset(&prog[i], bv->tgt_done);
3709 			break;
3710 		case RELO_BR_HELPER:
3711 			val = br_get_offset(prog[i]);
3712 			val -= BR_OFF_RELO;
3713 			switch (val) {
3714 			case BPF_FUNC_map_lookup_elem:
3715 				val = nfp_prog->bpf->helpers.map_lookup;
3716 				break;
3717 			case BPF_FUNC_map_update_elem:
3718 				val = nfp_prog->bpf->helpers.map_update;
3719 				break;
3720 			case BPF_FUNC_map_delete_elem:
3721 				val = nfp_prog->bpf->helpers.map_delete;
3722 				break;
3723 			case BPF_FUNC_perf_event_output:
3724 				val = nfp_prog->bpf->helpers.perf_event_output;
3725 				break;
3726 			default:
3727 				pr_err("relocation of unknown helper %d\n",
3728 				       val);
3729 				err = -EINVAL;
3730 				goto err_free_prog;
3731 			}
3732 			br_set_offset(&prog[i], val);
3733 			break;
3734 		case RELO_IMMED_REL:
3735 			immed_add_value(&prog[i], bv->start_off);
3736 			break;
3737 		}
3738 
3739 		prog[i] &= ~OP_RELO_TYPE;
3740 	}
3741 
3742 	err = nfp_bpf_ustore_calc(prog, nfp_prog->prog_len);
3743 	if (err)
3744 		goto err_free_prog;
3745 
3746 	return prog;
3747 
3748 err_free_prog:
3749 	kfree(prog);
3750 	return ERR_PTR(err);
3751 }
3752