1 // SPDX-License-Identifier: (GPL-2.0-only OR BSD-2-Clause)
2 /* Copyright (C) 2016-2018 Netronome Systems, Inc. */
3 
4 #define pr_fmt(fmt)	"NFP net bpf: " fmt
5 
6 #include <linux/bug.h>
7 #include <linux/bpf.h>
8 #include <linux/filter.h>
9 #include <linux/kernel.h>
10 #include <linux/pkt_cls.h>
11 #include <linux/reciprocal_div.h>
12 #include <linux/unistd.h>
13 
14 #include "main.h"
15 #include "../nfp_asm.h"
16 #include "../nfp_net_ctrl.h"
17 
18 /* --- NFP prog --- */
19 /* Foreach "multiple" entries macros provide pos and next<n> pointers.
20  * It's safe to modify the next pointers (but not pos).
21  */
22 #define nfp_for_each_insn_walk2(nfp_prog, pos, next)			\
23 	for (pos = list_first_entry(&(nfp_prog)->insns, typeof(*pos), l), \
24 	     next = list_next_entry(pos, l);			\
25 	     &(nfp_prog)->insns != &pos->l &&			\
26 	     &(nfp_prog)->insns != &next->l;			\
27 	     pos = nfp_meta_next(pos),				\
28 	     next = nfp_meta_next(pos))
29 
30 #define nfp_for_each_insn_walk3(nfp_prog, pos, next, next2)		\
31 	for (pos = list_first_entry(&(nfp_prog)->insns, typeof(*pos), l), \
32 	     next = list_next_entry(pos, l),			\
33 	     next2 = list_next_entry(next, l);			\
34 	     &(nfp_prog)->insns != &pos->l &&			\
35 	     &(nfp_prog)->insns != &next->l &&			\
36 	     &(nfp_prog)->insns != &next2->l;			\
37 	     pos = nfp_meta_next(pos),				\
38 	     next = nfp_meta_next(pos),				\
39 	     next2 = nfp_meta_next(next))
40 
41 static bool
42 nfp_meta_has_prev(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
43 {
44 	return meta->l.prev != &nfp_prog->insns;
45 }
46 
47 static void nfp_prog_push(struct nfp_prog *nfp_prog, u64 insn)
48 {
49 	if (nfp_prog->__prog_alloc_len / sizeof(u64) == nfp_prog->prog_len) {
50 		pr_warn("instruction limit reached (%u NFP instructions)\n",
51 			nfp_prog->prog_len);
52 		nfp_prog->error = -ENOSPC;
53 		return;
54 	}
55 
56 	nfp_prog->prog[nfp_prog->prog_len] = insn;
57 	nfp_prog->prog_len++;
58 }
59 
60 static unsigned int nfp_prog_current_offset(struct nfp_prog *nfp_prog)
61 {
62 	return nfp_prog->prog_len;
63 }
64 
65 static bool
66 nfp_prog_confirm_current_offset(struct nfp_prog *nfp_prog, unsigned int off)
67 {
68 	/* If there is a recorded error we may have dropped instructions;
69 	 * that doesn't have to be due to translator bug, and the translation
70 	 * will fail anyway, so just return OK.
71 	 */
72 	if (nfp_prog->error)
73 		return true;
74 	return !WARN_ON_ONCE(nfp_prog_current_offset(nfp_prog) != off);
75 }
76 
77 /* --- Emitters --- */
78 static void
79 __emit_cmd(struct nfp_prog *nfp_prog, enum cmd_tgt_map op,
80 	   u8 mode, u8 xfer, u8 areg, u8 breg, u8 size, enum cmd_ctx_swap ctx,
81 	   bool indir)
82 {
83 	u64 insn;
84 
85 	insn =	FIELD_PREP(OP_CMD_A_SRC, areg) |
86 		FIELD_PREP(OP_CMD_CTX, ctx) |
87 		FIELD_PREP(OP_CMD_B_SRC, breg) |
88 		FIELD_PREP(OP_CMD_TOKEN, cmd_tgt_act[op].token) |
89 		FIELD_PREP(OP_CMD_XFER, xfer) |
90 		FIELD_PREP(OP_CMD_CNT, size) |
91 		FIELD_PREP(OP_CMD_SIG, ctx != CMD_CTX_NO_SWAP) |
92 		FIELD_PREP(OP_CMD_TGT_CMD, cmd_tgt_act[op].tgt_cmd) |
93 		FIELD_PREP(OP_CMD_INDIR, indir) |
94 		FIELD_PREP(OP_CMD_MODE, mode);
95 
96 	nfp_prog_push(nfp_prog, insn);
97 }
98 
99 static void
100 emit_cmd_any(struct nfp_prog *nfp_prog, enum cmd_tgt_map op, u8 mode, u8 xfer,
101 	     swreg lreg, swreg rreg, u8 size, enum cmd_ctx_swap ctx, bool indir)
102 {
103 	struct nfp_insn_re_regs reg;
104 	int err;
105 
106 	err = swreg_to_restricted(reg_none(), lreg, rreg, &reg, false);
107 	if (err) {
108 		nfp_prog->error = err;
109 		return;
110 	}
111 	if (reg.swap) {
112 		pr_err("cmd can't swap arguments\n");
113 		nfp_prog->error = -EFAULT;
114 		return;
115 	}
116 	if (reg.dst_lmextn || reg.src_lmextn) {
117 		pr_err("cmd can't use LMextn\n");
118 		nfp_prog->error = -EFAULT;
119 		return;
120 	}
121 
122 	__emit_cmd(nfp_prog, op, mode, xfer, reg.areg, reg.breg, size, ctx,
123 		   indir);
124 }
125 
126 static void
127 emit_cmd(struct nfp_prog *nfp_prog, enum cmd_tgt_map op, u8 mode, u8 xfer,
128 	 swreg lreg, swreg rreg, u8 size, enum cmd_ctx_swap ctx)
129 {
130 	emit_cmd_any(nfp_prog, op, mode, xfer, lreg, rreg, size, ctx, false);
131 }
132 
133 static void
134 emit_cmd_indir(struct nfp_prog *nfp_prog, enum cmd_tgt_map op, u8 mode, u8 xfer,
135 	       swreg lreg, swreg rreg, u8 size, enum cmd_ctx_swap ctx)
136 {
137 	emit_cmd_any(nfp_prog, op, mode, xfer, lreg, rreg, size, ctx, true);
138 }
139 
140 static void
141 __emit_br(struct nfp_prog *nfp_prog, enum br_mask mask, enum br_ev_pip ev_pip,
142 	  enum br_ctx_signal_state css, u16 addr, u8 defer)
143 {
144 	u16 addr_lo, addr_hi;
145 	u64 insn;
146 
147 	addr_lo = addr & (OP_BR_ADDR_LO >> __bf_shf(OP_BR_ADDR_LO));
148 	addr_hi = addr != addr_lo;
149 
150 	insn = OP_BR_BASE |
151 		FIELD_PREP(OP_BR_MASK, mask) |
152 		FIELD_PREP(OP_BR_EV_PIP, ev_pip) |
153 		FIELD_PREP(OP_BR_CSS, css) |
154 		FIELD_PREP(OP_BR_DEFBR, defer) |
155 		FIELD_PREP(OP_BR_ADDR_LO, addr_lo) |
156 		FIELD_PREP(OP_BR_ADDR_HI, addr_hi);
157 
158 	nfp_prog_push(nfp_prog, insn);
159 }
160 
161 static void
162 emit_br_relo(struct nfp_prog *nfp_prog, enum br_mask mask, u16 addr, u8 defer,
163 	     enum nfp_relo_type relo)
164 {
165 	if (mask == BR_UNC && defer > 2) {
166 		pr_err("BUG: branch defer out of bounds %d\n", defer);
167 		nfp_prog->error = -EFAULT;
168 		return;
169 	}
170 
171 	__emit_br(nfp_prog, mask,
172 		  mask != BR_UNC ? BR_EV_PIP_COND : BR_EV_PIP_UNCOND,
173 		  BR_CSS_NONE, addr, defer);
174 
175 	nfp_prog->prog[nfp_prog->prog_len - 1] |=
176 		FIELD_PREP(OP_RELO_TYPE, relo);
177 }
178 
179 static void
180 emit_br(struct nfp_prog *nfp_prog, enum br_mask mask, u16 addr, u8 defer)
181 {
182 	emit_br_relo(nfp_prog, mask, addr, defer, RELO_BR_REL);
183 }
184 
185 static void
186 __emit_br_bit(struct nfp_prog *nfp_prog, u16 areg, u16 breg, u16 addr, u8 defer,
187 	      bool set, bool src_lmextn)
188 {
189 	u16 addr_lo, addr_hi;
190 	u64 insn;
191 
192 	addr_lo = addr & (OP_BR_BIT_ADDR_LO >> __bf_shf(OP_BR_BIT_ADDR_LO));
193 	addr_hi = addr != addr_lo;
194 
195 	insn = OP_BR_BIT_BASE |
196 		FIELD_PREP(OP_BR_BIT_A_SRC, areg) |
197 		FIELD_PREP(OP_BR_BIT_B_SRC, breg) |
198 		FIELD_PREP(OP_BR_BIT_BV, set) |
199 		FIELD_PREP(OP_BR_BIT_DEFBR, defer) |
200 		FIELD_PREP(OP_BR_BIT_ADDR_LO, addr_lo) |
201 		FIELD_PREP(OP_BR_BIT_ADDR_HI, addr_hi) |
202 		FIELD_PREP(OP_BR_BIT_SRC_LMEXTN, src_lmextn);
203 
204 	nfp_prog_push(nfp_prog, insn);
205 }
206 
207 static void
208 emit_br_bit_relo(struct nfp_prog *nfp_prog, swreg src, u8 bit, u16 addr,
209 		 u8 defer, bool set, enum nfp_relo_type relo)
210 {
211 	struct nfp_insn_re_regs reg;
212 	int err;
213 
214 	/* NOTE: The bit to test is specified as an rotation amount, such that
215 	 *	 the bit to test will be placed on the MSB of the result when
216 	 *	 doing a rotate right. For bit X, we need right rotate X + 1.
217 	 */
218 	bit += 1;
219 
220 	err = swreg_to_restricted(reg_none(), src, reg_imm(bit), &reg, false);
221 	if (err) {
222 		nfp_prog->error = err;
223 		return;
224 	}
225 
226 	__emit_br_bit(nfp_prog, reg.areg, reg.breg, addr, defer, set,
227 		      reg.src_lmextn);
228 
229 	nfp_prog->prog[nfp_prog->prog_len - 1] |=
230 		FIELD_PREP(OP_RELO_TYPE, relo);
231 }
232 
233 static void
234 emit_br_bset(struct nfp_prog *nfp_prog, swreg src, u8 bit, u16 addr, u8 defer)
235 {
236 	emit_br_bit_relo(nfp_prog, src, bit, addr, defer, true, RELO_BR_REL);
237 }
238 
239 static void
240 __emit_br_alu(struct nfp_prog *nfp_prog, u16 areg, u16 breg, u16 imm_hi,
241 	      u8 defer, bool dst_lmextn, bool src_lmextn)
242 {
243 	u64 insn;
244 
245 	insn = OP_BR_ALU_BASE |
246 		FIELD_PREP(OP_BR_ALU_A_SRC, areg) |
247 		FIELD_PREP(OP_BR_ALU_B_SRC, breg) |
248 		FIELD_PREP(OP_BR_ALU_DEFBR, defer) |
249 		FIELD_PREP(OP_BR_ALU_IMM_HI, imm_hi) |
250 		FIELD_PREP(OP_BR_ALU_SRC_LMEXTN, src_lmextn) |
251 		FIELD_PREP(OP_BR_ALU_DST_LMEXTN, dst_lmextn);
252 
253 	nfp_prog_push(nfp_prog, insn);
254 }
255 
256 static void emit_rtn(struct nfp_prog *nfp_prog, swreg base, u8 defer)
257 {
258 	struct nfp_insn_ur_regs reg;
259 	int err;
260 
261 	err = swreg_to_unrestricted(reg_none(), base, reg_imm(0), &reg);
262 	if (err) {
263 		nfp_prog->error = err;
264 		return;
265 	}
266 
267 	__emit_br_alu(nfp_prog, reg.areg, reg.breg, 0, defer, reg.dst_lmextn,
268 		      reg.src_lmextn);
269 }
270 
271 static void
272 __emit_immed(struct nfp_prog *nfp_prog, u16 areg, u16 breg, u16 imm_hi,
273 	     enum immed_width width, bool invert,
274 	     enum immed_shift shift, bool wr_both,
275 	     bool dst_lmextn, bool src_lmextn)
276 {
277 	u64 insn;
278 
279 	insn = OP_IMMED_BASE |
280 		FIELD_PREP(OP_IMMED_A_SRC, areg) |
281 		FIELD_PREP(OP_IMMED_B_SRC, breg) |
282 		FIELD_PREP(OP_IMMED_IMM, imm_hi) |
283 		FIELD_PREP(OP_IMMED_WIDTH, width) |
284 		FIELD_PREP(OP_IMMED_INV, invert) |
285 		FIELD_PREP(OP_IMMED_SHIFT, shift) |
286 		FIELD_PREP(OP_IMMED_WR_AB, wr_both) |
287 		FIELD_PREP(OP_IMMED_SRC_LMEXTN, src_lmextn) |
288 		FIELD_PREP(OP_IMMED_DST_LMEXTN, dst_lmextn);
289 
290 	nfp_prog_push(nfp_prog, insn);
291 }
292 
293 static void
294 emit_immed(struct nfp_prog *nfp_prog, swreg dst, u16 imm,
295 	   enum immed_width width, bool invert, enum immed_shift shift)
296 {
297 	struct nfp_insn_ur_regs reg;
298 	int err;
299 
300 	if (swreg_type(dst) == NN_REG_IMM) {
301 		nfp_prog->error = -EFAULT;
302 		return;
303 	}
304 
305 	err = swreg_to_unrestricted(dst, dst, reg_imm(imm & 0xff), &reg);
306 	if (err) {
307 		nfp_prog->error = err;
308 		return;
309 	}
310 
311 	/* Use reg.dst when destination is No-Dest. */
312 	__emit_immed(nfp_prog,
313 		     swreg_type(dst) == NN_REG_NONE ? reg.dst : reg.areg,
314 		     reg.breg, imm >> 8, width, invert, shift,
315 		     reg.wr_both, reg.dst_lmextn, reg.src_lmextn);
316 }
317 
318 static void
319 __emit_shf(struct nfp_prog *nfp_prog, u16 dst, enum alu_dst_ab dst_ab,
320 	   enum shf_sc sc, u8 shift,
321 	   u16 areg, enum shf_op op, u16 breg, bool i8, bool sw, bool wr_both,
322 	   bool dst_lmextn, bool src_lmextn)
323 {
324 	u64 insn;
325 
326 	if (!FIELD_FIT(OP_SHF_SHIFT, shift)) {
327 		nfp_prog->error = -EFAULT;
328 		return;
329 	}
330 
331 	if (sc == SHF_SC_L_SHF)
332 		shift = 32 - shift;
333 
334 	insn = OP_SHF_BASE |
335 		FIELD_PREP(OP_SHF_A_SRC, areg) |
336 		FIELD_PREP(OP_SHF_SC, sc) |
337 		FIELD_PREP(OP_SHF_B_SRC, breg) |
338 		FIELD_PREP(OP_SHF_I8, i8) |
339 		FIELD_PREP(OP_SHF_SW, sw) |
340 		FIELD_PREP(OP_SHF_DST, dst) |
341 		FIELD_PREP(OP_SHF_SHIFT, shift) |
342 		FIELD_PREP(OP_SHF_OP, op) |
343 		FIELD_PREP(OP_SHF_DST_AB, dst_ab) |
344 		FIELD_PREP(OP_SHF_WR_AB, wr_both) |
345 		FIELD_PREP(OP_SHF_SRC_LMEXTN, src_lmextn) |
346 		FIELD_PREP(OP_SHF_DST_LMEXTN, dst_lmextn);
347 
348 	nfp_prog_push(nfp_prog, insn);
349 }
350 
351 static void
352 emit_shf(struct nfp_prog *nfp_prog, swreg dst,
353 	 swreg lreg, enum shf_op op, swreg rreg, enum shf_sc sc, u8 shift)
354 {
355 	struct nfp_insn_re_regs reg;
356 	int err;
357 
358 	err = swreg_to_restricted(dst, lreg, rreg, &reg, true);
359 	if (err) {
360 		nfp_prog->error = err;
361 		return;
362 	}
363 
364 	__emit_shf(nfp_prog, reg.dst, reg.dst_ab, sc, shift,
365 		   reg.areg, op, reg.breg, reg.i8, reg.swap, reg.wr_both,
366 		   reg.dst_lmextn, reg.src_lmextn);
367 }
368 
369 static void
370 emit_shf_indir(struct nfp_prog *nfp_prog, swreg dst,
371 	       swreg lreg, enum shf_op op, swreg rreg, enum shf_sc sc)
372 {
373 	if (sc == SHF_SC_R_ROT) {
374 		pr_err("indirect shift is not allowed on rotation\n");
375 		nfp_prog->error = -EFAULT;
376 		return;
377 	}
378 
379 	emit_shf(nfp_prog, dst, lreg, op, rreg, sc, 0);
380 }
381 
382 static void
383 __emit_alu(struct nfp_prog *nfp_prog, u16 dst, enum alu_dst_ab dst_ab,
384 	   u16 areg, enum alu_op op, u16 breg, bool swap, bool wr_both,
385 	   bool dst_lmextn, bool src_lmextn)
386 {
387 	u64 insn;
388 
389 	insn = OP_ALU_BASE |
390 		FIELD_PREP(OP_ALU_A_SRC, areg) |
391 		FIELD_PREP(OP_ALU_B_SRC, breg) |
392 		FIELD_PREP(OP_ALU_DST, dst) |
393 		FIELD_PREP(OP_ALU_SW, swap) |
394 		FIELD_PREP(OP_ALU_OP, op) |
395 		FIELD_PREP(OP_ALU_DST_AB, dst_ab) |
396 		FIELD_PREP(OP_ALU_WR_AB, wr_both) |
397 		FIELD_PREP(OP_ALU_SRC_LMEXTN, src_lmextn) |
398 		FIELD_PREP(OP_ALU_DST_LMEXTN, dst_lmextn);
399 
400 	nfp_prog_push(nfp_prog, insn);
401 }
402 
403 static void
404 emit_alu(struct nfp_prog *nfp_prog, swreg dst,
405 	 swreg lreg, enum alu_op op, swreg rreg)
406 {
407 	struct nfp_insn_ur_regs reg;
408 	int err;
409 
410 	err = swreg_to_unrestricted(dst, lreg, rreg, &reg);
411 	if (err) {
412 		nfp_prog->error = err;
413 		return;
414 	}
415 
416 	__emit_alu(nfp_prog, reg.dst, reg.dst_ab,
417 		   reg.areg, op, reg.breg, reg.swap, reg.wr_both,
418 		   reg.dst_lmextn, reg.src_lmextn);
419 }
420 
421 static void
422 __emit_mul(struct nfp_prog *nfp_prog, enum alu_dst_ab dst_ab, u16 areg,
423 	   enum mul_type type, enum mul_step step, u16 breg, bool swap,
424 	   bool wr_both, bool dst_lmextn, bool src_lmextn)
425 {
426 	u64 insn;
427 
428 	insn = OP_MUL_BASE |
429 		FIELD_PREP(OP_MUL_A_SRC, areg) |
430 		FIELD_PREP(OP_MUL_B_SRC, breg) |
431 		FIELD_PREP(OP_MUL_STEP, step) |
432 		FIELD_PREP(OP_MUL_DST_AB, dst_ab) |
433 		FIELD_PREP(OP_MUL_SW, swap) |
434 		FIELD_PREP(OP_MUL_TYPE, type) |
435 		FIELD_PREP(OP_MUL_WR_AB, wr_both) |
436 		FIELD_PREP(OP_MUL_SRC_LMEXTN, src_lmextn) |
437 		FIELD_PREP(OP_MUL_DST_LMEXTN, dst_lmextn);
438 
439 	nfp_prog_push(nfp_prog, insn);
440 }
441 
442 static void
443 emit_mul(struct nfp_prog *nfp_prog, swreg lreg, enum mul_type type,
444 	 enum mul_step step, swreg rreg)
445 {
446 	struct nfp_insn_ur_regs reg;
447 	u16 areg;
448 	int err;
449 
450 	if (type == MUL_TYPE_START && step != MUL_STEP_NONE) {
451 		nfp_prog->error = -EINVAL;
452 		return;
453 	}
454 
455 	if (step == MUL_LAST || step == MUL_LAST_2) {
456 		/* When type is step and step Number is LAST or LAST2, left
457 		 * source is used as destination.
458 		 */
459 		err = swreg_to_unrestricted(lreg, reg_none(), rreg, &reg);
460 		areg = reg.dst;
461 	} else {
462 		err = swreg_to_unrestricted(reg_none(), lreg, rreg, &reg);
463 		areg = reg.areg;
464 	}
465 
466 	if (err) {
467 		nfp_prog->error = err;
468 		return;
469 	}
470 
471 	__emit_mul(nfp_prog, reg.dst_ab, areg, type, step, reg.breg, reg.swap,
472 		   reg.wr_both, reg.dst_lmextn, reg.src_lmextn);
473 }
474 
475 static void
476 __emit_ld_field(struct nfp_prog *nfp_prog, enum shf_sc sc,
477 		u8 areg, u8 bmask, u8 breg, u8 shift, bool imm8,
478 		bool zero, bool swap, bool wr_both,
479 		bool dst_lmextn, bool src_lmextn)
480 {
481 	u64 insn;
482 
483 	insn = OP_LDF_BASE |
484 		FIELD_PREP(OP_LDF_A_SRC, areg) |
485 		FIELD_PREP(OP_LDF_SC, sc) |
486 		FIELD_PREP(OP_LDF_B_SRC, breg) |
487 		FIELD_PREP(OP_LDF_I8, imm8) |
488 		FIELD_PREP(OP_LDF_SW, swap) |
489 		FIELD_PREP(OP_LDF_ZF, zero) |
490 		FIELD_PREP(OP_LDF_BMASK, bmask) |
491 		FIELD_PREP(OP_LDF_SHF, shift) |
492 		FIELD_PREP(OP_LDF_WR_AB, wr_both) |
493 		FIELD_PREP(OP_LDF_SRC_LMEXTN, src_lmextn) |
494 		FIELD_PREP(OP_LDF_DST_LMEXTN, dst_lmextn);
495 
496 	nfp_prog_push(nfp_prog, insn);
497 }
498 
499 static void
500 emit_ld_field_any(struct nfp_prog *nfp_prog, swreg dst, u8 bmask, swreg src,
501 		  enum shf_sc sc, u8 shift, bool zero)
502 {
503 	struct nfp_insn_re_regs reg;
504 	int err;
505 
506 	/* Note: ld_field is special as it uses one of the src regs as dst */
507 	err = swreg_to_restricted(dst, dst, src, &reg, true);
508 	if (err) {
509 		nfp_prog->error = err;
510 		return;
511 	}
512 
513 	__emit_ld_field(nfp_prog, sc, reg.areg, bmask, reg.breg, shift,
514 			reg.i8, zero, reg.swap, reg.wr_both,
515 			reg.dst_lmextn, reg.src_lmextn);
516 }
517 
518 static void
519 emit_ld_field(struct nfp_prog *nfp_prog, swreg dst, u8 bmask, swreg src,
520 	      enum shf_sc sc, u8 shift)
521 {
522 	emit_ld_field_any(nfp_prog, dst, bmask, src, sc, shift, false);
523 }
524 
525 static void
526 __emit_lcsr(struct nfp_prog *nfp_prog, u16 areg, u16 breg, bool wr, u16 addr,
527 	    bool dst_lmextn, bool src_lmextn)
528 {
529 	u64 insn;
530 
531 	insn = OP_LCSR_BASE |
532 		FIELD_PREP(OP_LCSR_A_SRC, areg) |
533 		FIELD_PREP(OP_LCSR_B_SRC, breg) |
534 		FIELD_PREP(OP_LCSR_WRITE, wr) |
535 		FIELD_PREP(OP_LCSR_ADDR, addr / 4) |
536 		FIELD_PREP(OP_LCSR_SRC_LMEXTN, src_lmextn) |
537 		FIELD_PREP(OP_LCSR_DST_LMEXTN, dst_lmextn);
538 
539 	nfp_prog_push(nfp_prog, insn);
540 }
541 
542 static void emit_csr_wr(struct nfp_prog *nfp_prog, swreg src, u16 addr)
543 {
544 	struct nfp_insn_ur_regs reg;
545 	int err;
546 
547 	/* This instruction takes immeds instead of reg_none() for the ignored
548 	 * operand, but we can't encode 2 immeds in one instr with our normal
549 	 * swreg infra so if param is an immed, we encode as reg_none() and
550 	 * copy the immed to both operands.
551 	 */
552 	if (swreg_type(src) == NN_REG_IMM) {
553 		err = swreg_to_unrestricted(reg_none(), src, reg_none(), &reg);
554 		reg.breg = reg.areg;
555 	} else {
556 		err = swreg_to_unrestricted(reg_none(), src, reg_imm(0), &reg);
557 	}
558 	if (err) {
559 		nfp_prog->error = err;
560 		return;
561 	}
562 
563 	__emit_lcsr(nfp_prog, reg.areg, reg.breg, true, addr,
564 		    false, reg.src_lmextn);
565 }
566 
567 /* CSR value is read in following immed[gpr, 0] */
568 static void __emit_csr_rd(struct nfp_prog *nfp_prog, u16 addr)
569 {
570 	__emit_lcsr(nfp_prog, 0, 0, false, addr, false, false);
571 }
572 
573 static void emit_nop(struct nfp_prog *nfp_prog)
574 {
575 	__emit_immed(nfp_prog, UR_REG_IMM, UR_REG_IMM, 0, 0, 0, 0, 0, 0, 0);
576 }
577 
578 /* --- Wrappers --- */
579 static bool pack_immed(u32 imm, u16 *val, enum immed_shift *shift)
580 {
581 	if (!(imm & 0xffff0000)) {
582 		*val = imm;
583 		*shift = IMMED_SHIFT_0B;
584 	} else if (!(imm & 0xff0000ff)) {
585 		*val = imm >> 8;
586 		*shift = IMMED_SHIFT_1B;
587 	} else if (!(imm & 0x0000ffff)) {
588 		*val = imm >> 16;
589 		*shift = IMMED_SHIFT_2B;
590 	} else {
591 		return false;
592 	}
593 
594 	return true;
595 }
596 
597 static void wrp_immed(struct nfp_prog *nfp_prog, swreg dst, u32 imm)
598 {
599 	enum immed_shift shift;
600 	u16 val;
601 
602 	if (pack_immed(imm, &val, &shift)) {
603 		emit_immed(nfp_prog, dst, val, IMMED_WIDTH_ALL, false, shift);
604 	} else if (pack_immed(~imm, &val, &shift)) {
605 		emit_immed(nfp_prog, dst, val, IMMED_WIDTH_ALL, true, shift);
606 	} else {
607 		emit_immed(nfp_prog, dst, imm & 0xffff, IMMED_WIDTH_ALL,
608 			   false, IMMED_SHIFT_0B);
609 		emit_immed(nfp_prog, dst, imm >> 16, IMMED_WIDTH_WORD,
610 			   false, IMMED_SHIFT_2B);
611 	}
612 }
613 
614 static void
615 wrp_immed_relo(struct nfp_prog *nfp_prog, swreg dst, u32 imm,
616 	       enum nfp_relo_type relo)
617 {
618 	if (imm > 0xffff) {
619 		pr_err("relocation of a large immediate!\n");
620 		nfp_prog->error = -EFAULT;
621 		return;
622 	}
623 	emit_immed(nfp_prog, dst, imm, IMMED_WIDTH_ALL, false, IMMED_SHIFT_0B);
624 
625 	nfp_prog->prog[nfp_prog->prog_len - 1] |=
626 		FIELD_PREP(OP_RELO_TYPE, relo);
627 }
628 
629 /* ur_load_imm_any() - encode immediate or use tmp register (unrestricted)
630  * If the @imm is small enough encode it directly in operand and return
631  * otherwise load @imm to a spare register and return its encoding.
632  */
633 static swreg ur_load_imm_any(struct nfp_prog *nfp_prog, u32 imm, swreg tmp_reg)
634 {
635 	if (FIELD_FIT(UR_REG_IMM_MAX, imm))
636 		return reg_imm(imm);
637 
638 	wrp_immed(nfp_prog, tmp_reg, imm);
639 	return tmp_reg;
640 }
641 
642 /* re_load_imm_any() - encode immediate or use tmp register (restricted)
643  * If the @imm is small enough encode it directly in operand and return
644  * otherwise load @imm to a spare register and return its encoding.
645  */
646 static swreg re_load_imm_any(struct nfp_prog *nfp_prog, u32 imm, swreg tmp_reg)
647 {
648 	if (FIELD_FIT(RE_REG_IMM_MAX, imm))
649 		return reg_imm(imm);
650 
651 	wrp_immed(nfp_prog, tmp_reg, imm);
652 	return tmp_reg;
653 }
654 
655 static void wrp_nops(struct nfp_prog *nfp_prog, unsigned int count)
656 {
657 	while (count--)
658 		emit_nop(nfp_prog);
659 }
660 
661 static void wrp_mov(struct nfp_prog *nfp_prog, swreg dst, swreg src)
662 {
663 	emit_alu(nfp_prog, dst, reg_none(), ALU_OP_NONE, src);
664 }
665 
666 static void wrp_reg_mov(struct nfp_prog *nfp_prog, u16 dst, u16 src)
667 {
668 	wrp_mov(nfp_prog, reg_both(dst), reg_b(src));
669 }
670 
671 /* wrp_reg_subpart() - load @field_len bytes from @offset of @src, write the
672  * result to @dst from low end.
673  */
674 static void
675 wrp_reg_subpart(struct nfp_prog *nfp_prog, swreg dst, swreg src, u8 field_len,
676 		u8 offset)
677 {
678 	enum shf_sc sc = offset ? SHF_SC_R_SHF : SHF_SC_NONE;
679 	u8 mask = (1 << field_len) - 1;
680 
681 	emit_ld_field_any(nfp_prog, dst, mask, src, sc, offset * 8, true);
682 }
683 
684 /* wrp_reg_or_subpart() - load @field_len bytes from low end of @src, or the
685  * result to @dst from offset, there is no change on the other bits of @dst.
686  */
687 static void
688 wrp_reg_or_subpart(struct nfp_prog *nfp_prog, swreg dst, swreg src,
689 		   u8 field_len, u8 offset)
690 {
691 	enum shf_sc sc = offset ? SHF_SC_L_SHF : SHF_SC_NONE;
692 	u8 mask = ((1 << field_len) - 1) << offset;
693 
694 	emit_ld_field(nfp_prog, dst, mask, src, sc, 32 - offset * 8);
695 }
696 
697 static void
698 addr40_offset(struct nfp_prog *nfp_prog, u8 src_gpr, swreg offset,
699 	      swreg *rega, swreg *regb)
700 {
701 	if (offset == reg_imm(0)) {
702 		*rega = reg_a(src_gpr);
703 		*regb = reg_b(src_gpr + 1);
704 		return;
705 	}
706 
707 	emit_alu(nfp_prog, imm_a(nfp_prog), reg_a(src_gpr), ALU_OP_ADD, offset);
708 	emit_alu(nfp_prog, imm_b(nfp_prog), reg_b(src_gpr + 1), ALU_OP_ADD_C,
709 		 reg_imm(0));
710 	*rega = imm_a(nfp_prog);
711 	*regb = imm_b(nfp_prog);
712 }
713 
714 /* NFP has Command Push Pull bus which supports bluk memory operations. */
715 static int nfp_cpp_memcpy(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
716 {
717 	bool descending_seq = meta->ldst_gather_len < 0;
718 	s16 len = abs(meta->ldst_gather_len);
719 	swreg src_base, off;
720 	bool src_40bit_addr;
721 	unsigned int i;
722 	u8 xfer_num;
723 
724 	off = re_load_imm_any(nfp_prog, meta->insn.off, imm_b(nfp_prog));
725 	src_40bit_addr = meta->ptr.type == PTR_TO_MAP_VALUE;
726 	src_base = reg_a(meta->insn.src_reg * 2);
727 	xfer_num = round_up(len, 4) / 4;
728 
729 	if (src_40bit_addr)
730 		addr40_offset(nfp_prog, meta->insn.src_reg * 2, off, &src_base,
731 			      &off);
732 
733 	/* Setup PREV_ALU fields to override memory read length. */
734 	if (len > 32)
735 		wrp_immed(nfp_prog, reg_none(),
736 			  CMD_OVE_LEN | FIELD_PREP(CMD_OV_LEN, xfer_num - 1));
737 
738 	/* Memory read from source addr into transfer-in registers. */
739 	emit_cmd_any(nfp_prog, CMD_TGT_READ32_SWAP,
740 		     src_40bit_addr ? CMD_MODE_40b_BA : CMD_MODE_32b, 0,
741 		     src_base, off, xfer_num - 1, CMD_CTX_SWAP, len > 32);
742 
743 	/* Move from transfer-in to transfer-out. */
744 	for (i = 0; i < xfer_num; i++)
745 		wrp_mov(nfp_prog, reg_xfer(i), reg_xfer(i));
746 
747 	off = re_load_imm_any(nfp_prog, meta->paired_st->off, imm_b(nfp_prog));
748 
749 	if (len <= 8) {
750 		/* Use single direct_ref write8. */
751 		emit_cmd(nfp_prog, CMD_TGT_WRITE8_SWAP, CMD_MODE_32b, 0,
752 			 reg_a(meta->paired_st->dst_reg * 2), off, len - 1,
753 			 CMD_CTX_SWAP);
754 	} else if (len <= 32 && IS_ALIGNED(len, 4)) {
755 		/* Use single direct_ref write32. */
756 		emit_cmd(nfp_prog, CMD_TGT_WRITE32_SWAP, CMD_MODE_32b, 0,
757 			 reg_a(meta->paired_st->dst_reg * 2), off, xfer_num - 1,
758 			 CMD_CTX_SWAP);
759 	} else if (len <= 32) {
760 		/* Use single indirect_ref write8. */
761 		wrp_immed(nfp_prog, reg_none(),
762 			  CMD_OVE_LEN | FIELD_PREP(CMD_OV_LEN, len - 1));
763 		emit_cmd_indir(nfp_prog, CMD_TGT_WRITE8_SWAP, CMD_MODE_32b, 0,
764 			       reg_a(meta->paired_st->dst_reg * 2), off,
765 			       len - 1, CMD_CTX_SWAP);
766 	} else if (IS_ALIGNED(len, 4)) {
767 		/* Use single indirect_ref write32. */
768 		wrp_immed(nfp_prog, reg_none(),
769 			  CMD_OVE_LEN | FIELD_PREP(CMD_OV_LEN, xfer_num - 1));
770 		emit_cmd_indir(nfp_prog, CMD_TGT_WRITE32_SWAP, CMD_MODE_32b, 0,
771 			       reg_a(meta->paired_st->dst_reg * 2), off,
772 			       xfer_num - 1, CMD_CTX_SWAP);
773 	} else if (len <= 40) {
774 		/* Use one direct_ref write32 to write the first 32-bytes, then
775 		 * another direct_ref write8 to write the remaining bytes.
776 		 */
777 		emit_cmd(nfp_prog, CMD_TGT_WRITE32_SWAP, CMD_MODE_32b, 0,
778 			 reg_a(meta->paired_st->dst_reg * 2), off, 7,
779 			 CMD_CTX_SWAP);
780 
781 		off = re_load_imm_any(nfp_prog, meta->paired_st->off + 32,
782 				      imm_b(nfp_prog));
783 		emit_cmd(nfp_prog, CMD_TGT_WRITE8_SWAP, CMD_MODE_32b, 8,
784 			 reg_a(meta->paired_st->dst_reg * 2), off, len - 33,
785 			 CMD_CTX_SWAP);
786 	} else {
787 		/* Use one indirect_ref write32 to write 4-bytes aligned length,
788 		 * then another direct_ref write8 to write the remaining bytes.
789 		 */
790 		u8 new_off;
791 
792 		wrp_immed(nfp_prog, reg_none(),
793 			  CMD_OVE_LEN | FIELD_PREP(CMD_OV_LEN, xfer_num - 2));
794 		emit_cmd_indir(nfp_prog, CMD_TGT_WRITE32_SWAP, CMD_MODE_32b, 0,
795 			       reg_a(meta->paired_st->dst_reg * 2), off,
796 			       xfer_num - 2, CMD_CTX_SWAP);
797 		new_off = meta->paired_st->off + (xfer_num - 1) * 4;
798 		off = re_load_imm_any(nfp_prog, new_off, imm_b(nfp_prog));
799 		emit_cmd(nfp_prog, CMD_TGT_WRITE8_SWAP, CMD_MODE_32b,
800 			 xfer_num - 1, reg_a(meta->paired_st->dst_reg * 2), off,
801 			 (len & 0x3) - 1, CMD_CTX_SWAP);
802 	}
803 
804 	/* TODO: The following extra load is to make sure data flow be identical
805 	 *  before and after we do memory copy optimization.
806 	 *
807 	 *  The load destination register is not guaranteed to be dead, so we
808 	 *  need to make sure it is loaded with the value the same as before
809 	 *  this transformation.
810 	 *
811 	 *  These extra loads could be removed once we have accurate register
812 	 *  usage information.
813 	 */
814 	if (descending_seq)
815 		xfer_num = 0;
816 	else if (BPF_SIZE(meta->insn.code) != BPF_DW)
817 		xfer_num = xfer_num - 1;
818 	else
819 		xfer_num = xfer_num - 2;
820 
821 	switch (BPF_SIZE(meta->insn.code)) {
822 	case BPF_B:
823 		wrp_reg_subpart(nfp_prog, reg_both(meta->insn.dst_reg * 2),
824 				reg_xfer(xfer_num), 1,
825 				IS_ALIGNED(len, 4) ? 3 : (len & 3) - 1);
826 		break;
827 	case BPF_H:
828 		wrp_reg_subpart(nfp_prog, reg_both(meta->insn.dst_reg * 2),
829 				reg_xfer(xfer_num), 2, (len & 3) ^ 2);
830 		break;
831 	case BPF_W:
832 		wrp_mov(nfp_prog, reg_both(meta->insn.dst_reg * 2),
833 			reg_xfer(0));
834 		break;
835 	case BPF_DW:
836 		wrp_mov(nfp_prog, reg_both(meta->insn.dst_reg * 2),
837 			reg_xfer(xfer_num));
838 		wrp_mov(nfp_prog, reg_both(meta->insn.dst_reg * 2 + 1),
839 			reg_xfer(xfer_num + 1));
840 		break;
841 	}
842 
843 	if (BPF_SIZE(meta->insn.code) != BPF_DW)
844 		wrp_immed(nfp_prog, reg_both(meta->insn.dst_reg * 2 + 1), 0);
845 
846 	return 0;
847 }
848 
849 static int
850 data_ld(struct nfp_prog *nfp_prog, swreg offset, u8 dst_gpr, int size)
851 {
852 	unsigned int i;
853 	u16 shift, sz;
854 
855 	/* We load the value from the address indicated in @offset and then
856 	 * shift out the data we don't need.  Note: this is big endian!
857 	 */
858 	sz = max(size, 4);
859 	shift = size < 4 ? 4 - size : 0;
860 
861 	emit_cmd(nfp_prog, CMD_TGT_READ8, CMD_MODE_32b, 0,
862 		 pptr_reg(nfp_prog), offset, sz - 1, CMD_CTX_SWAP);
863 
864 	i = 0;
865 	if (shift)
866 		emit_shf(nfp_prog, reg_both(dst_gpr), reg_none(), SHF_OP_NONE,
867 			 reg_xfer(0), SHF_SC_R_SHF, shift * 8);
868 	else
869 		for (; i * 4 < size; i++)
870 			wrp_mov(nfp_prog, reg_both(dst_gpr + i), reg_xfer(i));
871 
872 	if (i < 2)
873 		wrp_immed(nfp_prog, reg_both(dst_gpr + 1), 0);
874 
875 	return 0;
876 }
877 
878 static int
879 data_ld_host_order(struct nfp_prog *nfp_prog, u8 dst_gpr,
880 		   swreg lreg, swreg rreg, int size, enum cmd_mode mode)
881 {
882 	unsigned int i;
883 	u8 mask, sz;
884 
885 	/* We load the value from the address indicated in rreg + lreg and then
886 	 * mask out the data we don't need.  Note: this is little endian!
887 	 */
888 	sz = max(size, 4);
889 	mask = size < 4 ? GENMASK(size - 1, 0) : 0;
890 
891 	emit_cmd(nfp_prog, CMD_TGT_READ32_SWAP, mode, 0,
892 		 lreg, rreg, sz / 4 - 1, CMD_CTX_SWAP);
893 
894 	i = 0;
895 	if (mask)
896 		emit_ld_field_any(nfp_prog, reg_both(dst_gpr), mask,
897 				  reg_xfer(0), SHF_SC_NONE, 0, true);
898 	else
899 		for (; i * 4 < size; i++)
900 			wrp_mov(nfp_prog, reg_both(dst_gpr + i), reg_xfer(i));
901 
902 	if (i < 2)
903 		wrp_immed(nfp_prog, reg_both(dst_gpr + 1), 0);
904 
905 	return 0;
906 }
907 
908 static int
909 data_ld_host_order_addr32(struct nfp_prog *nfp_prog, u8 src_gpr, swreg offset,
910 			  u8 dst_gpr, u8 size)
911 {
912 	return data_ld_host_order(nfp_prog, dst_gpr, reg_a(src_gpr), offset,
913 				  size, CMD_MODE_32b);
914 }
915 
916 static int
917 data_ld_host_order_addr40(struct nfp_prog *nfp_prog, u8 src_gpr, swreg offset,
918 			  u8 dst_gpr, u8 size)
919 {
920 	swreg rega, regb;
921 
922 	addr40_offset(nfp_prog, src_gpr, offset, &rega, &regb);
923 
924 	return data_ld_host_order(nfp_prog, dst_gpr, rega, regb,
925 				  size, CMD_MODE_40b_BA);
926 }
927 
928 static int
929 construct_data_ind_ld(struct nfp_prog *nfp_prog, u16 offset, u16 src, u8 size)
930 {
931 	swreg tmp_reg;
932 
933 	/* Calculate the true offset (src_reg + imm) */
934 	tmp_reg = ur_load_imm_any(nfp_prog, offset, imm_b(nfp_prog));
935 	emit_alu(nfp_prog, imm_both(nfp_prog), reg_a(src), ALU_OP_ADD, tmp_reg);
936 
937 	/* Check packet length (size guaranteed to fit b/c it's u8) */
938 	emit_alu(nfp_prog, imm_a(nfp_prog),
939 		 imm_a(nfp_prog), ALU_OP_ADD, reg_imm(size));
940 	emit_alu(nfp_prog, reg_none(),
941 		 plen_reg(nfp_prog), ALU_OP_SUB, imm_a(nfp_prog));
942 	emit_br_relo(nfp_prog, BR_BLO, BR_OFF_RELO, 0, RELO_BR_GO_ABORT);
943 
944 	/* Load data */
945 	return data_ld(nfp_prog, imm_b(nfp_prog), 0, size);
946 }
947 
948 static int construct_data_ld(struct nfp_prog *nfp_prog, u16 offset, u8 size)
949 {
950 	swreg tmp_reg;
951 
952 	/* Check packet length */
953 	tmp_reg = ur_load_imm_any(nfp_prog, offset + size, imm_a(nfp_prog));
954 	emit_alu(nfp_prog, reg_none(), plen_reg(nfp_prog), ALU_OP_SUB, tmp_reg);
955 	emit_br_relo(nfp_prog, BR_BLO, BR_OFF_RELO, 0, RELO_BR_GO_ABORT);
956 
957 	/* Load data */
958 	tmp_reg = re_load_imm_any(nfp_prog, offset, imm_b(nfp_prog));
959 	return data_ld(nfp_prog, tmp_reg, 0, size);
960 }
961 
962 static int
963 data_stx_host_order(struct nfp_prog *nfp_prog, u8 dst_gpr, swreg offset,
964 		    u8 src_gpr, u8 size)
965 {
966 	unsigned int i;
967 
968 	for (i = 0; i * 4 < size; i++)
969 		wrp_mov(nfp_prog, reg_xfer(i), reg_a(src_gpr + i));
970 
971 	emit_cmd(nfp_prog, CMD_TGT_WRITE8_SWAP, CMD_MODE_32b, 0,
972 		 reg_a(dst_gpr), offset, size - 1, CMD_CTX_SWAP);
973 
974 	return 0;
975 }
976 
977 static int
978 data_st_host_order(struct nfp_prog *nfp_prog, u8 dst_gpr, swreg offset,
979 		   u64 imm, u8 size)
980 {
981 	wrp_immed(nfp_prog, reg_xfer(0), imm);
982 	if (size == 8)
983 		wrp_immed(nfp_prog, reg_xfer(1), imm >> 32);
984 
985 	emit_cmd(nfp_prog, CMD_TGT_WRITE8_SWAP, CMD_MODE_32b, 0,
986 		 reg_a(dst_gpr), offset, size - 1, CMD_CTX_SWAP);
987 
988 	return 0;
989 }
990 
991 typedef int
992 (*lmem_step)(struct nfp_prog *nfp_prog, u8 gpr, u8 gpr_byte, s32 off,
993 	     unsigned int size, bool first, bool new_gpr, bool last, bool lm3,
994 	     bool needs_inc);
995 
996 static int
997 wrp_lmem_load(struct nfp_prog *nfp_prog, u8 dst, u8 dst_byte, s32 off,
998 	      unsigned int size, bool first, bool new_gpr, bool last, bool lm3,
999 	      bool needs_inc)
1000 {
1001 	bool should_inc = needs_inc && new_gpr && !last;
1002 	u32 idx, src_byte;
1003 	enum shf_sc sc;
1004 	swreg reg;
1005 	int shf;
1006 	u8 mask;
1007 
1008 	if (WARN_ON_ONCE(dst_byte + size > 4 || off % 4 + size > 4))
1009 		return -EOPNOTSUPP;
1010 
1011 	idx = off / 4;
1012 
1013 	/* Move the entire word */
1014 	if (size == 4) {
1015 		wrp_mov(nfp_prog, reg_both(dst),
1016 			should_inc ? reg_lm_inc(3) : reg_lm(lm3 ? 3 : 0, idx));
1017 		return 0;
1018 	}
1019 
1020 	if (WARN_ON_ONCE(lm3 && idx > RE_REG_LM_IDX_MAX))
1021 		return -EOPNOTSUPP;
1022 
1023 	src_byte = off % 4;
1024 
1025 	mask = (1 << size) - 1;
1026 	mask <<= dst_byte;
1027 
1028 	if (WARN_ON_ONCE(mask > 0xf))
1029 		return -EOPNOTSUPP;
1030 
1031 	shf = abs(src_byte - dst_byte) * 8;
1032 	if (src_byte == dst_byte) {
1033 		sc = SHF_SC_NONE;
1034 	} else if (src_byte < dst_byte) {
1035 		shf = 32 - shf;
1036 		sc = SHF_SC_L_SHF;
1037 	} else {
1038 		sc = SHF_SC_R_SHF;
1039 	}
1040 
1041 	/* ld_field can address fewer indexes, if offset too large do RMW.
1042 	 * Because we RMV twice we waste 2 cycles on unaligned 8 byte writes.
1043 	 */
1044 	if (idx <= RE_REG_LM_IDX_MAX) {
1045 		reg = reg_lm(lm3 ? 3 : 0, idx);
1046 	} else {
1047 		reg = imm_a(nfp_prog);
1048 		/* If it's not the first part of the load and we start a new GPR
1049 		 * that means we are loading a second part of the LMEM word into
1050 		 * a new GPR.  IOW we've already looked that LMEM word and
1051 		 * therefore it has been loaded into imm_a().
1052 		 */
1053 		if (first || !new_gpr)
1054 			wrp_mov(nfp_prog, reg, reg_lm(0, idx));
1055 	}
1056 
1057 	emit_ld_field_any(nfp_prog, reg_both(dst), mask, reg, sc, shf, new_gpr);
1058 
1059 	if (should_inc)
1060 		wrp_mov(nfp_prog, reg_none(), reg_lm_inc(3));
1061 
1062 	return 0;
1063 }
1064 
1065 static int
1066 wrp_lmem_store(struct nfp_prog *nfp_prog, u8 src, u8 src_byte, s32 off,
1067 	       unsigned int size, bool first, bool new_gpr, bool last, bool lm3,
1068 	       bool needs_inc)
1069 {
1070 	bool should_inc = needs_inc && new_gpr && !last;
1071 	u32 idx, dst_byte;
1072 	enum shf_sc sc;
1073 	swreg reg;
1074 	int shf;
1075 	u8 mask;
1076 
1077 	if (WARN_ON_ONCE(src_byte + size > 4 || off % 4 + size > 4))
1078 		return -EOPNOTSUPP;
1079 
1080 	idx = off / 4;
1081 
1082 	/* Move the entire word */
1083 	if (size == 4) {
1084 		wrp_mov(nfp_prog,
1085 			should_inc ? reg_lm_inc(3) : reg_lm(lm3 ? 3 : 0, idx),
1086 			reg_b(src));
1087 		return 0;
1088 	}
1089 
1090 	if (WARN_ON_ONCE(lm3 && idx > RE_REG_LM_IDX_MAX))
1091 		return -EOPNOTSUPP;
1092 
1093 	dst_byte = off % 4;
1094 
1095 	mask = (1 << size) - 1;
1096 	mask <<= dst_byte;
1097 
1098 	if (WARN_ON_ONCE(mask > 0xf))
1099 		return -EOPNOTSUPP;
1100 
1101 	shf = abs(src_byte - dst_byte) * 8;
1102 	if (src_byte == dst_byte) {
1103 		sc = SHF_SC_NONE;
1104 	} else if (src_byte < dst_byte) {
1105 		shf = 32 - shf;
1106 		sc = SHF_SC_L_SHF;
1107 	} else {
1108 		sc = SHF_SC_R_SHF;
1109 	}
1110 
1111 	/* ld_field can address fewer indexes, if offset too large do RMW.
1112 	 * Because we RMV twice we waste 2 cycles on unaligned 8 byte writes.
1113 	 */
1114 	if (idx <= RE_REG_LM_IDX_MAX) {
1115 		reg = reg_lm(lm3 ? 3 : 0, idx);
1116 	} else {
1117 		reg = imm_a(nfp_prog);
1118 		/* Only first and last LMEM locations are going to need RMW,
1119 		 * the middle location will be overwritten fully.
1120 		 */
1121 		if (first || last)
1122 			wrp_mov(nfp_prog, reg, reg_lm(0, idx));
1123 	}
1124 
1125 	emit_ld_field(nfp_prog, reg, mask, reg_b(src), sc, shf);
1126 
1127 	if (new_gpr || last) {
1128 		if (idx > RE_REG_LM_IDX_MAX)
1129 			wrp_mov(nfp_prog, reg_lm(0, idx), reg);
1130 		if (should_inc)
1131 			wrp_mov(nfp_prog, reg_none(), reg_lm_inc(3));
1132 	}
1133 
1134 	return 0;
1135 }
1136 
1137 static int
1138 mem_op_stack(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
1139 	     unsigned int size, unsigned int ptr_off, u8 gpr, u8 ptr_gpr,
1140 	     bool clr_gpr, lmem_step step)
1141 {
1142 	s32 off = nfp_prog->stack_frame_depth + meta->insn.off + ptr_off;
1143 	bool first = true, last;
1144 	bool needs_inc = false;
1145 	swreg stack_off_reg;
1146 	u8 prev_gpr = 255;
1147 	u32 gpr_byte = 0;
1148 	bool lm3 = true;
1149 	int ret;
1150 
1151 	if (meta->ptr_not_const ||
1152 	    meta->flags & FLAG_INSN_PTR_CALLER_STACK_FRAME) {
1153 		/* Use of the last encountered ptr_off is OK, they all have
1154 		 * the same alignment.  Depend on low bits of value being
1155 		 * discarded when written to LMaddr register.
1156 		 */
1157 		stack_off_reg = ur_load_imm_any(nfp_prog, meta->insn.off,
1158 						stack_imm(nfp_prog));
1159 
1160 		emit_alu(nfp_prog, imm_b(nfp_prog),
1161 			 reg_a(ptr_gpr), ALU_OP_ADD, stack_off_reg);
1162 
1163 		needs_inc = true;
1164 	} else if (off + size <= 64) {
1165 		/* We can reach bottom 64B with LMaddr0 */
1166 		lm3 = false;
1167 	} else if (round_down(off, 32) == round_down(off + size - 1, 32)) {
1168 		/* We have to set up a new pointer.  If we know the offset
1169 		 * and the entire access falls into a single 32 byte aligned
1170 		 * window we won't have to increment the LM pointer.
1171 		 * The 32 byte alignment is imporant because offset is ORed in
1172 		 * not added when doing *l$indexN[off].
1173 		 */
1174 		stack_off_reg = ur_load_imm_any(nfp_prog, round_down(off, 32),
1175 						stack_imm(nfp_prog));
1176 		emit_alu(nfp_prog, imm_b(nfp_prog),
1177 			 stack_reg(nfp_prog), ALU_OP_ADD, stack_off_reg);
1178 
1179 		off %= 32;
1180 	} else {
1181 		stack_off_reg = ur_load_imm_any(nfp_prog, round_down(off, 4),
1182 						stack_imm(nfp_prog));
1183 
1184 		emit_alu(nfp_prog, imm_b(nfp_prog),
1185 			 stack_reg(nfp_prog), ALU_OP_ADD, stack_off_reg);
1186 
1187 		needs_inc = true;
1188 	}
1189 	if (lm3) {
1190 		emit_csr_wr(nfp_prog, imm_b(nfp_prog), NFP_CSR_ACT_LM_ADDR3);
1191 		/* For size < 4 one slot will be filled by zeroing of upper. */
1192 		wrp_nops(nfp_prog, clr_gpr && size < 8 ? 2 : 3);
1193 	}
1194 
1195 	if (clr_gpr && size < 8)
1196 		wrp_immed(nfp_prog, reg_both(gpr + 1), 0);
1197 
1198 	while (size) {
1199 		u32 slice_end;
1200 		u8 slice_size;
1201 
1202 		slice_size = min(size, 4 - gpr_byte);
1203 		slice_end = min(off + slice_size, round_up(off + 1, 4));
1204 		slice_size = slice_end - off;
1205 
1206 		last = slice_size == size;
1207 
1208 		if (needs_inc)
1209 			off %= 4;
1210 
1211 		ret = step(nfp_prog, gpr, gpr_byte, off, slice_size,
1212 			   first, gpr != prev_gpr, last, lm3, needs_inc);
1213 		if (ret)
1214 			return ret;
1215 
1216 		prev_gpr = gpr;
1217 		first = false;
1218 
1219 		gpr_byte += slice_size;
1220 		if (gpr_byte >= 4) {
1221 			gpr_byte -= 4;
1222 			gpr++;
1223 		}
1224 
1225 		size -= slice_size;
1226 		off += slice_size;
1227 	}
1228 
1229 	return 0;
1230 }
1231 
1232 static void
1233 wrp_alu_imm(struct nfp_prog *nfp_prog, u8 dst, enum alu_op alu_op, u32 imm)
1234 {
1235 	swreg tmp_reg;
1236 
1237 	if (alu_op == ALU_OP_AND) {
1238 		if (!imm)
1239 			wrp_immed(nfp_prog, reg_both(dst), 0);
1240 		if (!imm || !~imm)
1241 			return;
1242 	}
1243 	if (alu_op == ALU_OP_OR) {
1244 		if (!~imm)
1245 			wrp_immed(nfp_prog, reg_both(dst), ~0U);
1246 		if (!imm || !~imm)
1247 			return;
1248 	}
1249 	if (alu_op == ALU_OP_XOR) {
1250 		if (!~imm)
1251 			emit_alu(nfp_prog, reg_both(dst), reg_none(),
1252 				 ALU_OP_NOT, reg_b(dst));
1253 		if (!imm || !~imm)
1254 			return;
1255 	}
1256 
1257 	tmp_reg = ur_load_imm_any(nfp_prog, imm, imm_b(nfp_prog));
1258 	emit_alu(nfp_prog, reg_both(dst), reg_a(dst), alu_op, tmp_reg);
1259 }
1260 
1261 static int
1262 wrp_alu64_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
1263 	      enum alu_op alu_op, bool skip)
1264 {
1265 	const struct bpf_insn *insn = &meta->insn;
1266 	u64 imm = insn->imm; /* sign extend */
1267 
1268 	if (skip) {
1269 		meta->skip = true;
1270 		return 0;
1271 	}
1272 
1273 	wrp_alu_imm(nfp_prog, insn->dst_reg * 2, alu_op, imm & ~0U);
1274 	wrp_alu_imm(nfp_prog, insn->dst_reg * 2 + 1, alu_op, imm >> 32);
1275 
1276 	return 0;
1277 }
1278 
1279 static int
1280 wrp_alu64_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
1281 	      enum alu_op alu_op)
1282 {
1283 	u8 dst = meta->insn.dst_reg * 2, src = meta->insn.src_reg * 2;
1284 
1285 	emit_alu(nfp_prog, reg_both(dst), reg_a(dst), alu_op, reg_b(src));
1286 	emit_alu(nfp_prog, reg_both(dst + 1),
1287 		 reg_a(dst + 1), alu_op, reg_b(src + 1));
1288 
1289 	return 0;
1290 }
1291 
1292 static int
1293 wrp_alu32_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
1294 	      enum alu_op alu_op)
1295 {
1296 	const struct bpf_insn *insn = &meta->insn;
1297 
1298 	wrp_alu_imm(nfp_prog, insn->dst_reg * 2, alu_op, insn->imm);
1299 	wrp_immed(nfp_prog, reg_both(insn->dst_reg * 2 + 1), 0);
1300 
1301 	return 0;
1302 }
1303 
1304 static int
1305 wrp_alu32_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
1306 	      enum alu_op alu_op)
1307 {
1308 	u8 dst = meta->insn.dst_reg * 2, src = meta->insn.src_reg * 2;
1309 
1310 	emit_alu(nfp_prog, reg_both(dst), reg_a(dst), alu_op, reg_b(src));
1311 	wrp_immed(nfp_prog, reg_both(meta->insn.dst_reg * 2 + 1), 0);
1312 
1313 	return 0;
1314 }
1315 
1316 static void
1317 wrp_test_reg_one(struct nfp_prog *nfp_prog, u8 dst, enum alu_op alu_op, u8 src,
1318 		 enum br_mask br_mask, u16 off)
1319 {
1320 	emit_alu(nfp_prog, reg_none(), reg_a(dst), alu_op, reg_b(src));
1321 	emit_br(nfp_prog, br_mask, off, 0);
1322 }
1323 
1324 static int
1325 wrp_test_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
1326 	     enum alu_op alu_op, enum br_mask br_mask)
1327 {
1328 	const struct bpf_insn *insn = &meta->insn;
1329 
1330 	wrp_test_reg_one(nfp_prog, insn->dst_reg * 2, alu_op,
1331 			 insn->src_reg * 2, br_mask, insn->off);
1332 	wrp_test_reg_one(nfp_prog, insn->dst_reg * 2 + 1, alu_op,
1333 			 insn->src_reg * 2 + 1, br_mask, insn->off);
1334 
1335 	return 0;
1336 }
1337 
1338 static const struct jmp_code_map {
1339 	enum br_mask br_mask;
1340 	bool swap;
1341 } jmp_code_map[] = {
1342 	[BPF_JGT >> 4]	= { BR_BLO, true },
1343 	[BPF_JGE >> 4]	= { BR_BHS, false },
1344 	[BPF_JLT >> 4]	= { BR_BLO, false },
1345 	[BPF_JLE >> 4]	= { BR_BHS, true },
1346 	[BPF_JSGT >> 4]	= { BR_BLT, true },
1347 	[BPF_JSGE >> 4]	= { BR_BGE, false },
1348 	[BPF_JSLT >> 4]	= { BR_BLT, false },
1349 	[BPF_JSLE >> 4]	= { BR_BGE, true },
1350 };
1351 
1352 static const struct jmp_code_map *nfp_jmp_code_get(struct nfp_insn_meta *meta)
1353 {
1354 	unsigned int op;
1355 
1356 	op = BPF_OP(meta->insn.code) >> 4;
1357 	/* br_mask of 0 is BR_BEQ which we don't use in jump code table */
1358 	if (WARN_ONCE(op >= ARRAY_SIZE(jmp_code_map) ||
1359 		      !jmp_code_map[op].br_mask,
1360 		      "no code found for jump instruction"))
1361 		return NULL;
1362 
1363 	return &jmp_code_map[op];
1364 }
1365 
1366 static int cmp_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1367 {
1368 	const struct bpf_insn *insn = &meta->insn;
1369 	u64 imm = insn->imm; /* sign extend */
1370 	const struct jmp_code_map *code;
1371 	enum alu_op alu_op, carry_op;
1372 	u8 reg = insn->dst_reg * 2;
1373 	swreg tmp_reg;
1374 
1375 	code = nfp_jmp_code_get(meta);
1376 	if (!code)
1377 		return -EINVAL;
1378 
1379 	alu_op = meta->jump_neg_op ? ALU_OP_ADD : ALU_OP_SUB;
1380 	carry_op = meta->jump_neg_op ? ALU_OP_ADD_C : ALU_OP_SUB_C;
1381 
1382 	tmp_reg = ur_load_imm_any(nfp_prog, imm & ~0U, imm_b(nfp_prog));
1383 	if (!code->swap)
1384 		emit_alu(nfp_prog, reg_none(), reg_a(reg), alu_op, tmp_reg);
1385 	else
1386 		emit_alu(nfp_prog, reg_none(), tmp_reg, alu_op, reg_a(reg));
1387 
1388 	tmp_reg = ur_load_imm_any(nfp_prog, imm >> 32, imm_b(nfp_prog));
1389 	if (!code->swap)
1390 		emit_alu(nfp_prog, reg_none(),
1391 			 reg_a(reg + 1), carry_op, tmp_reg);
1392 	else
1393 		emit_alu(nfp_prog, reg_none(),
1394 			 tmp_reg, carry_op, reg_a(reg + 1));
1395 
1396 	emit_br(nfp_prog, code->br_mask, insn->off, 0);
1397 
1398 	return 0;
1399 }
1400 
1401 static int cmp_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1402 {
1403 	const struct bpf_insn *insn = &meta->insn;
1404 	const struct jmp_code_map *code;
1405 	u8 areg, breg;
1406 
1407 	code = nfp_jmp_code_get(meta);
1408 	if (!code)
1409 		return -EINVAL;
1410 
1411 	areg = insn->dst_reg * 2;
1412 	breg = insn->src_reg * 2;
1413 
1414 	if (code->swap) {
1415 		areg ^= breg;
1416 		breg ^= areg;
1417 		areg ^= breg;
1418 	}
1419 
1420 	emit_alu(nfp_prog, reg_none(), reg_a(areg), ALU_OP_SUB, reg_b(breg));
1421 	emit_alu(nfp_prog, reg_none(),
1422 		 reg_a(areg + 1), ALU_OP_SUB_C, reg_b(breg + 1));
1423 	emit_br(nfp_prog, code->br_mask, insn->off, 0);
1424 
1425 	return 0;
1426 }
1427 
1428 static void wrp_end32(struct nfp_prog *nfp_prog, swreg reg_in, u8 gpr_out)
1429 {
1430 	emit_ld_field(nfp_prog, reg_both(gpr_out), 0xf, reg_in,
1431 		      SHF_SC_R_ROT, 8);
1432 	emit_ld_field(nfp_prog, reg_both(gpr_out), 0x5, reg_a(gpr_out),
1433 		      SHF_SC_R_ROT, 16);
1434 }
1435 
1436 static void
1437 wrp_mul_u32(struct nfp_prog *nfp_prog, swreg dst_hi, swreg dst_lo, swreg lreg,
1438 	    swreg rreg, bool gen_high_half)
1439 {
1440 	emit_mul(nfp_prog, lreg, MUL_TYPE_START, MUL_STEP_NONE, rreg);
1441 	emit_mul(nfp_prog, lreg, MUL_TYPE_STEP_32x32, MUL_STEP_1, rreg);
1442 	emit_mul(nfp_prog, lreg, MUL_TYPE_STEP_32x32, MUL_STEP_2, rreg);
1443 	emit_mul(nfp_prog, lreg, MUL_TYPE_STEP_32x32, MUL_STEP_3, rreg);
1444 	emit_mul(nfp_prog, lreg, MUL_TYPE_STEP_32x32, MUL_STEP_4, rreg);
1445 	emit_mul(nfp_prog, dst_lo, MUL_TYPE_STEP_32x32, MUL_LAST, reg_none());
1446 	if (gen_high_half)
1447 		emit_mul(nfp_prog, dst_hi, MUL_TYPE_STEP_32x32, MUL_LAST_2,
1448 			 reg_none());
1449 	else
1450 		wrp_immed(nfp_prog, dst_hi, 0);
1451 }
1452 
1453 static void
1454 wrp_mul_u16(struct nfp_prog *nfp_prog, swreg dst_hi, swreg dst_lo, swreg lreg,
1455 	    swreg rreg)
1456 {
1457 	emit_mul(nfp_prog, lreg, MUL_TYPE_START, MUL_STEP_NONE, rreg);
1458 	emit_mul(nfp_prog, lreg, MUL_TYPE_STEP_16x16, MUL_STEP_1, rreg);
1459 	emit_mul(nfp_prog, lreg, MUL_TYPE_STEP_16x16, MUL_STEP_2, rreg);
1460 	emit_mul(nfp_prog, dst_lo, MUL_TYPE_STEP_16x16, MUL_LAST, reg_none());
1461 }
1462 
1463 static int
1464 wrp_mul(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
1465 	bool gen_high_half, bool ropnd_from_reg)
1466 {
1467 	swreg multiplier, multiplicand, dst_hi, dst_lo;
1468 	const struct bpf_insn *insn = &meta->insn;
1469 	u32 lopnd_max, ropnd_max;
1470 	u8 dst_reg;
1471 
1472 	dst_reg = insn->dst_reg;
1473 	multiplicand = reg_a(dst_reg * 2);
1474 	dst_hi = reg_both(dst_reg * 2 + 1);
1475 	dst_lo = reg_both(dst_reg * 2);
1476 	lopnd_max = meta->umax_dst;
1477 	if (ropnd_from_reg) {
1478 		multiplier = reg_b(insn->src_reg * 2);
1479 		ropnd_max = meta->umax_src;
1480 	} else {
1481 		u32 imm = insn->imm;
1482 
1483 		multiplier = ur_load_imm_any(nfp_prog, imm, imm_b(nfp_prog));
1484 		ropnd_max = imm;
1485 	}
1486 	if (lopnd_max > U16_MAX || ropnd_max > U16_MAX)
1487 		wrp_mul_u32(nfp_prog, dst_hi, dst_lo, multiplicand, multiplier,
1488 			    gen_high_half);
1489 	else
1490 		wrp_mul_u16(nfp_prog, dst_hi, dst_lo, multiplicand, multiplier);
1491 
1492 	return 0;
1493 }
1494 
1495 static int wrp_div_imm(struct nfp_prog *nfp_prog, u8 dst, u64 imm)
1496 {
1497 	swreg dst_both = reg_both(dst), dst_a = reg_a(dst), dst_b = reg_a(dst);
1498 	struct reciprocal_value_adv rvalue;
1499 	u8 pre_shift, exp;
1500 	swreg magic;
1501 
1502 	if (imm > U32_MAX) {
1503 		wrp_immed(nfp_prog, dst_both, 0);
1504 		return 0;
1505 	}
1506 
1507 	/* NOTE: because we are using "reciprocal_value_adv" which doesn't
1508 	 * support "divisor > (1u << 31)", we need to JIT separate NFP sequence
1509 	 * to handle such case which actually equals to the result of unsigned
1510 	 * comparison "dst >= imm" which could be calculated using the following
1511 	 * NFP sequence:
1512 	 *
1513 	 *  alu[--, dst, -, imm]
1514 	 *  immed[imm, 0]
1515 	 *  alu[dst, imm, +carry, 0]
1516 	 *
1517 	 */
1518 	if (imm > 1U << 31) {
1519 		swreg tmp_b = ur_load_imm_any(nfp_prog, imm, imm_b(nfp_prog));
1520 
1521 		emit_alu(nfp_prog, reg_none(), dst_a, ALU_OP_SUB, tmp_b);
1522 		wrp_immed(nfp_prog, imm_a(nfp_prog), 0);
1523 		emit_alu(nfp_prog, dst_both, imm_a(nfp_prog), ALU_OP_ADD_C,
1524 			 reg_imm(0));
1525 		return 0;
1526 	}
1527 
1528 	rvalue = reciprocal_value_adv(imm, 32);
1529 	exp = rvalue.exp;
1530 	if (rvalue.is_wide_m && !(imm & 1)) {
1531 		pre_shift = fls(imm & -imm) - 1;
1532 		rvalue = reciprocal_value_adv(imm >> pre_shift, 32 - pre_shift);
1533 	} else {
1534 		pre_shift = 0;
1535 	}
1536 	magic = ur_load_imm_any(nfp_prog, rvalue.m, imm_b(nfp_prog));
1537 	if (imm == 1U << exp) {
1538 		emit_shf(nfp_prog, dst_both, reg_none(), SHF_OP_NONE, dst_b,
1539 			 SHF_SC_R_SHF, exp);
1540 	} else if (rvalue.is_wide_m) {
1541 		wrp_mul_u32(nfp_prog, imm_both(nfp_prog), reg_none(), dst_a,
1542 			    magic, true);
1543 		emit_alu(nfp_prog, dst_both, dst_a, ALU_OP_SUB,
1544 			 imm_b(nfp_prog));
1545 		emit_shf(nfp_prog, dst_both, reg_none(), SHF_OP_NONE, dst_b,
1546 			 SHF_SC_R_SHF, 1);
1547 		emit_alu(nfp_prog, dst_both, dst_a, ALU_OP_ADD,
1548 			 imm_b(nfp_prog));
1549 		emit_shf(nfp_prog, dst_both, reg_none(), SHF_OP_NONE, dst_b,
1550 			 SHF_SC_R_SHF, rvalue.sh - 1);
1551 	} else {
1552 		if (pre_shift)
1553 			emit_shf(nfp_prog, dst_both, reg_none(), SHF_OP_NONE,
1554 				 dst_b, SHF_SC_R_SHF, pre_shift);
1555 		wrp_mul_u32(nfp_prog, dst_both, reg_none(), dst_a, magic, true);
1556 		emit_shf(nfp_prog, dst_both, reg_none(), SHF_OP_NONE,
1557 			 dst_b, SHF_SC_R_SHF, rvalue.sh);
1558 	}
1559 
1560 	return 0;
1561 }
1562 
1563 static int adjust_head(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1564 {
1565 	swreg tmp = imm_a(nfp_prog), tmp_len = imm_b(nfp_prog);
1566 	struct nfp_bpf_cap_adjust_head *adjust_head;
1567 	u32 ret_einval, end;
1568 
1569 	adjust_head = &nfp_prog->bpf->adjust_head;
1570 
1571 	/* Optimized version - 5 vs 14 cycles */
1572 	if (nfp_prog->adjust_head_location != UINT_MAX) {
1573 		if (WARN_ON_ONCE(nfp_prog->adjust_head_location != meta->n))
1574 			return -EINVAL;
1575 
1576 		emit_alu(nfp_prog, pptr_reg(nfp_prog),
1577 			 reg_a(2 * 2), ALU_OP_ADD, pptr_reg(nfp_prog));
1578 		emit_alu(nfp_prog, plen_reg(nfp_prog),
1579 			 plen_reg(nfp_prog), ALU_OP_SUB, reg_a(2 * 2));
1580 		emit_alu(nfp_prog, pv_len(nfp_prog),
1581 			 pv_len(nfp_prog), ALU_OP_SUB, reg_a(2 * 2));
1582 
1583 		wrp_immed(nfp_prog, reg_both(0), 0);
1584 		wrp_immed(nfp_prog, reg_both(1), 0);
1585 
1586 		/* TODO: when adjust head is guaranteed to succeed we can
1587 		 * also eliminate the following if (r0 == 0) branch.
1588 		 */
1589 
1590 		return 0;
1591 	}
1592 
1593 	ret_einval = nfp_prog_current_offset(nfp_prog) + 14;
1594 	end = ret_einval + 2;
1595 
1596 	/* We need to use a temp because offset is just a part of the pkt ptr */
1597 	emit_alu(nfp_prog, tmp,
1598 		 reg_a(2 * 2), ALU_OP_ADD_2B, pptr_reg(nfp_prog));
1599 
1600 	/* Validate result will fit within FW datapath constraints */
1601 	emit_alu(nfp_prog, reg_none(),
1602 		 tmp, ALU_OP_SUB, reg_imm(adjust_head->off_min));
1603 	emit_br(nfp_prog, BR_BLO, ret_einval, 0);
1604 	emit_alu(nfp_prog, reg_none(),
1605 		 reg_imm(adjust_head->off_max), ALU_OP_SUB, tmp);
1606 	emit_br(nfp_prog, BR_BLO, ret_einval, 0);
1607 
1608 	/* Validate the length is at least ETH_HLEN */
1609 	emit_alu(nfp_prog, tmp_len,
1610 		 plen_reg(nfp_prog), ALU_OP_SUB, reg_a(2 * 2));
1611 	emit_alu(nfp_prog, reg_none(),
1612 		 tmp_len, ALU_OP_SUB, reg_imm(ETH_HLEN));
1613 	emit_br(nfp_prog, BR_BMI, ret_einval, 0);
1614 
1615 	/* Load the ret code */
1616 	wrp_immed(nfp_prog, reg_both(0), 0);
1617 	wrp_immed(nfp_prog, reg_both(1), 0);
1618 
1619 	/* Modify the packet metadata */
1620 	emit_ld_field(nfp_prog, pptr_reg(nfp_prog), 0x3, tmp, SHF_SC_NONE, 0);
1621 
1622 	/* Skip over the -EINVAL ret code (defer 2) */
1623 	emit_br(nfp_prog, BR_UNC, end, 2);
1624 
1625 	emit_alu(nfp_prog, plen_reg(nfp_prog),
1626 		 plen_reg(nfp_prog), ALU_OP_SUB, reg_a(2 * 2));
1627 	emit_alu(nfp_prog, pv_len(nfp_prog),
1628 		 pv_len(nfp_prog), ALU_OP_SUB, reg_a(2 * 2));
1629 
1630 	/* return -EINVAL target */
1631 	if (!nfp_prog_confirm_current_offset(nfp_prog, ret_einval))
1632 		return -EINVAL;
1633 
1634 	wrp_immed(nfp_prog, reg_both(0), -22);
1635 	wrp_immed(nfp_prog, reg_both(1), ~0);
1636 
1637 	if (!nfp_prog_confirm_current_offset(nfp_prog, end))
1638 		return -EINVAL;
1639 
1640 	return 0;
1641 }
1642 
1643 static int adjust_tail(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1644 {
1645 	u32 ret_einval, end;
1646 	swreg plen, delta;
1647 
1648 	BUILD_BUG_ON(plen_reg(nfp_prog) != reg_b(STATIC_REG_PKT_LEN));
1649 
1650 	plen = imm_a(nfp_prog);
1651 	delta = reg_a(2 * 2);
1652 
1653 	ret_einval = nfp_prog_current_offset(nfp_prog) + 9;
1654 	end = nfp_prog_current_offset(nfp_prog) + 11;
1655 
1656 	/* Calculate resulting length */
1657 	emit_alu(nfp_prog, plen, plen_reg(nfp_prog), ALU_OP_ADD, delta);
1658 	/* delta == 0 is not allowed by the kernel, add must overflow to make
1659 	 * length smaller.
1660 	 */
1661 	emit_br(nfp_prog, BR_BCC, ret_einval, 0);
1662 
1663 	/* if (new_len < 14) then -EINVAL */
1664 	emit_alu(nfp_prog, reg_none(), plen, ALU_OP_SUB, reg_imm(ETH_HLEN));
1665 	emit_br(nfp_prog, BR_BMI, ret_einval, 0);
1666 
1667 	emit_alu(nfp_prog, plen_reg(nfp_prog),
1668 		 plen_reg(nfp_prog), ALU_OP_ADD, delta);
1669 	emit_alu(nfp_prog, pv_len(nfp_prog),
1670 		 pv_len(nfp_prog), ALU_OP_ADD, delta);
1671 
1672 	emit_br(nfp_prog, BR_UNC, end, 2);
1673 	wrp_immed(nfp_prog, reg_both(0), 0);
1674 	wrp_immed(nfp_prog, reg_both(1), 0);
1675 
1676 	if (!nfp_prog_confirm_current_offset(nfp_prog, ret_einval))
1677 		return -EINVAL;
1678 
1679 	wrp_immed(nfp_prog, reg_both(0), -22);
1680 	wrp_immed(nfp_prog, reg_both(1), ~0);
1681 
1682 	if (!nfp_prog_confirm_current_offset(nfp_prog, end))
1683 		return -EINVAL;
1684 
1685 	return 0;
1686 }
1687 
1688 static int
1689 map_call_stack_common(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1690 {
1691 	bool load_lm_ptr;
1692 	u32 ret_tgt;
1693 	s64 lm_off;
1694 
1695 	/* We only have to reload LM0 if the key is not at start of stack */
1696 	lm_off = nfp_prog->stack_frame_depth;
1697 	lm_off += meta->arg2.reg.var_off.value + meta->arg2.reg.off;
1698 	load_lm_ptr = meta->arg2.var_off || lm_off;
1699 
1700 	/* Set LM0 to start of key */
1701 	if (load_lm_ptr)
1702 		emit_csr_wr(nfp_prog, reg_b(2 * 2), NFP_CSR_ACT_LM_ADDR0);
1703 	if (meta->func_id == BPF_FUNC_map_update_elem)
1704 		emit_csr_wr(nfp_prog, reg_b(3 * 2), NFP_CSR_ACT_LM_ADDR2);
1705 
1706 	emit_br_relo(nfp_prog, BR_UNC, BR_OFF_RELO + meta->func_id,
1707 		     2, RELO_BR_HELPER);
1708 	ret_tgt = nfp_prog_current_offset(nfp_prog) + 2;
1709 
1710 	/* Load map ID into A0 */
1711 	wrp_mov(nfp_prog, reg_a(0), reg_a(2));
1712 
1713 	/* Load the return address into B0 */
1714 	wrp_immed_relo(nfp_prog, reg_b(0), ret_tgt, RELO_IMMED_REL);
1715 
1716 	if (!nfp_prog_confirm_current_offset(nfp_prog, ret_tgt))
1717 		return -EINVAL;
1718 
1719 	/* Reset the LM0 pointer */
1720 	if (!load_lm_ptr)
1721 		return 0;
1722 
1723 	emit_csr_wr(nfp_prog, stack_reg(nfp_prog), NFP_CSR_ACT_LM_ADDR0);
1724 	wrp_nops(nfp_prog, 3);
1725 
1726 	return 0;
1727 }
1728 
1729 static int
1730 nfp_get_prandom_u32(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1731 {
1732 	__emit_csr_rd(nfp_prog, NFP_CSR_PSEUDO_RND_NUM);
1733 	/* CSR value is read in following immed[gpr, 0] */
1734 	emit_immed(nfp_prog, reg_both(0), 0,
1735 		   IMMED_WIDTH_ALL, false, IMMED_SHIFT_0B);
1736 	emit_immed(nfp_prog, reg_both(1), 0,
1737 		   IMMED_WIDTH_ALL, false, IMMED_SHIFT_0B);
1738 	return 0;
1739 }
1740 
1741 static int
1742 nfp_perf_event_output(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1743 {
1744 	swreg ptr_type;
1745 	u32 ret_tgt;
1746 
1747 	ptr_type = ur_load_imm_any(nfp_prog, meta->arg1.type, imm_a(nfp_prog));
1748 
1749 	ret_tgt = nfp_prog_current_offset(nfp_prog) + 3;
1750 
1751 	emit_br_relo(nfp_prog, BR_UNC, BR_OFF_RELO + meta->func_id,
1752 		     2, RELO_BR_HELPER);
1753 
1754 	/* Load ptr type into A1 */
1755 	wrp_mov(nfp_prog, reg_a(1), ptr_type);
1756 
1757 	/* Load the return address into B0 */
1758 	wrp_immed_relo(nfp_prog, reg_b(0), ret_tgt, RELO_IMMED_REL);
1759 
1760 	if (!nfp_prog_confirm_current_offset(nfp_prog, ret_tgt))
1761 		return -EINVAL;
1762 
1763 	return 0;
1764 }
1765 
1766 static int
1767 nfp_queue_select(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1768 {
1769 	u32 jmp_tgt;
1770 
1771 	jmp_tgt = nfp_prog_current_offset(nfp_prog) + 5;
1772 
1773 	/* Make sure the queue id fits into FW field */
1774 	emit_alu(nfp_prog, reg_none(), reg_a(meta->insn.src_reg * 2),
1775 		 ALU_OP_AND_NOT_B, reg_imm(0xff));
1776 	emit_br(nfp_prog, BR_BEQ, jmp_tgt, 2);
1777 
1778 	/* Set the 'queue selected' bit and the queue value */
1779 	emit_shf(nfp_prog, pv_qsel_set(nfp_prog),
1780 		 pv_qsel_set(nfp_prog), SHF_OP_OR, reg_imm(1),
1781 		 SHF_SC_L_SHF, PKT_VEL_QSEL_SET_BIT);
1782 	emit_ld_field(nfp_prog,
1783 		      pv_qsel_val(nfp_prog), 0x1, reg_b(meta->insn.src_reg * 2),
1784 		      SHF_SC_NONE, 0);
1785 	/* Delay slots end here, we will jump over next instruction if queue
1786 	 * value fits into the field.
1787 	 */
1788 	emit_ld_field(nfp_prog,
1789 		      pv_qsel_val(nfp_prog), 0x1, reg_imm(NFP_NET_RXR_MAX),
1790 		      SHF_SC_NONE, 0);
1791 
1792 	if (!nfp_prog_confirm_current_offset(nfp_prog, jmp_tgt))
1793 		return -EINVAL;
1794 
1795 	return 0;
1796 }
1797 
1798 /* --- Callbacks --- */
1799 static int mov_reg64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1800 {
1801 	const struct bpf_insn *insn = &meta->insn;
1802 	u8 dst = insn->dst_reg * 2;
1803 	u8 src = insn->src_reg * 2;
1804 
1805 	if (insn->src_reg == BPF_REG_10) {
1806 		swreg stack_depth_reg;
1807 
1808 		stack_depth_reg = ur_load_imm_any(nfp_prog,
1809 						  nfp_prog->stack_frame_depth,
1810 						  stack_imm(nfp_prog));
1811 		emit_alu(nfp_prog, reg_both(dst), stack_reg(nfp_prog),
1812 			 ALU_OP_ADD, stack_depth_reg);
1813 		wrp_immed(nfp_prog, reg_both(dst + 1), 0);
1814 	} else {
1815 		wrp_reg_mov(nfp_prog, dst, src);
1816 		wrp_reg_mov(nfp_prog, dst + 1, src + 1);
1817 	}
1818 
1819 	return 0;
1820 }
1821 
1822 static int mov_imm64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1823 {
1824 	u64 imm = meta->insn.imm; /* sign extend */
1825 
1826 	wrp_immed(nfp_prog, reg_both(meta->insn.dst_reg * 2), imm & ~0U);
1827 	wrp_immed(nfp_prog, reg_both(meta->insn.dst_reg * 2 + 1), imm >> 32);
1828 
1829 	return 0;
1830 }
1831 
1832 static int xor_reg64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1833 {
1834 	return wrp_alu64_reg(nfp_prog, meta, ALU_OP_XOR);
1835 }
1836 
1837 static int xor_imm64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1838 {
1839 	return wrp_alu64_imm(nfp_prog, meta, ALU_OP_XOR, !meta->insn.imm);
1840 }
1841 
1842 static int and_reg64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1843 {
1844 	return wrp_alu64_reg(nfp_prog, meta, ALU_OP_AND);
1845 }
1846 
1847 static int and_imm64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1848 {
1849 	return wrp_alu64_imm(nfp_prog, meta, ALU_OP_AND, !~meta->insn.imm);
1850 }
1851 
1852 static int or_reg64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1853 {
1854 	return wrp_alu64_reg(nfp_prog, meta, ALU_OP_OR);
1855 }
1856 
1857 static int or_imm64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1858 {
1859 	return wrp_alu64_imm(nfp_prog, meta, ALU_OP_OR, !meta->insn.imm);
1860 }
1861 
1862 static int add_reg64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1863 {
1864 	const struct bpf_insn *insn = &meta->insn;
1865 
1866 	emit_alu(nfp_prog, reg_both(insn->dst_reg * 2),
1867 		 reg_a(insn->dst_reg * 2), ALU_OP_ADD,
1868 		 reg_b(insn->src_reg * 2));
1869 	emit_alu(nfp_prog, reg_both(insn->dst_reg * 2 + 1),
1870 		 reg_a(insn->dst_reg * 2 + 1), ALU_OP_ADD_C,
1871 		 reg_b(insn->src_reg * 2 + 1));
1872 
1873 	return 0;
1874 }
1875 
1876 static int add_imm64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1877 {
1878 	const struct bpf_insn *insn = &meta->insn;
1879 	u64 imm = insn->imm; /* sign extend */
1880 
1881 	wrp_alu_imm(nfp_prog, insn->dst_reg * 2, ALU_OP_ADD, imm & ~0U);
1882 	wrp_alu_imm(nfp_prog, insn->dst_reg * 2 + 1, ALU_OP_ADD_C, imm >> 32);
1883 
1884 	return 0;
1885 }
1886 
1887 static int sub_reg64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1888 {
1889 	const struct bpf_insn *insn = &meta->insn;
1890 
1891 	emit_alu(nfp_prog, reg_both(insn->dst_reg * 2),
1892 		 reg_a(insn->dst_reg * 2), ALU_OP_SUB,
1893 		 reg_b(insn->src_reg * 2));
1894 	emit_alu(nfp_prog, reg_both(insn->dst_reg * 2 + 1),
1895 		 reg_a(insn->dst_reg * 2 + 1), ALU_OP_SUB_C,
1896 		 reg_b(insn->src_reg * 2 + 1));
1897 
1898 	return 0;
1899 }
1900 
1901 static int sub_imm64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1902 {
1903 	const struct bpf_insn *insn = &meta->insn;
1904 	u64 imm = insn->imm; /* sign extend */
1905 
1906 	wrp_alu_imm(nfp_prog, insn->dst_reg * 2, ALU_OP_SUB, imm & ~0U);
1907 	wrp_alu_imm(nfp_prog, insn->dst_reg * 2 + 1, ALU_OP_SUB_C, imm >> 32);
1908 
1909 	return 0;
1910 }
1911 
1912 static int mul_reg64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1913 {
1914 	return wrp_mul(nfp_prog, meta, true, true);
1915 }
1916 
1917 static int mul_imm64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1918 {
1919 	return wrp_mul(nfp_prog, meta, true, false);
1920 }
1921 
1922 static int div_imm64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1923 {
1924 	const struct bpf_insn *insn = &meta->insn;
1925 
1926 	return wrp_div_imm(nfp_prog, insn->dst_reg * 2, insn->imm);
1927 }
1928 
1929 static int div_reg64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1930 {
1931 	/* NOTE: verifier hook has rejected cases for which verifier doesn't
1932 	 * know whether the source operand is constant or not.
1933 	 */
1934 	return wrp_div_imm(nfp_prog, meta->insn.dst_reg * 2, meta->umin_src);
1935 }
1936 
1937 static int neg_reg64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1938 {
1939 	const struct bpf_insn *insn = &meta->insn;
1940 
1941 	emit_alu(nfp_prog, reg_both(insn->dst_reg * 2), reg_imm(0),
1942 		 ALU_OP_SUB, reg_b(insn->dst_reg * 2));
1943 	emit_alu(nfp_prog, reg_both(insn->dst_reg * 2 + 1), reg_imm(0),
1944 		 ALU_OP_SUB_C, reg_b(insn->dst_reg * 2 + 1));
1945 
1946 	return 0;
1947 }
1948 
1949 /* Pseudo code:
1950  *   if shift_amt >= 32
1951  *     dst_high = dst_low << shift_amt[4:0]
1952  *     dst_low = 0;
1953  *   else
1954  *     dst_high = (dst_high, dst_low) >> (32 - shift_amt)
1955  *     dst_low = dst_low << shift_amt
1956  *
1957  * The indirect shift will use the same logic at runtime.
1958  */
1959 static int __shl_imm64(struct nfp_prog *nfp_prog, u8 dst, u8 shift_amt)
1960 {
1961 	if (shift_amt < 32) {
1962 		emit_shf(nfp_prog, reg_both(dst + 1), reg_a(dst + 1),
1963 			 SHF_OP_NONE, reg_b(dst), SHF_SC_R_DSHF,
1964 			 32 - shift_amt);
1965 		emit_shf(nfp_prog, reg_both(dst), reg_none(), SHF_OP_NONE,
1966 			 reg_b(dst), SHF_SC_L_SHF, shift_amt);
1967 	} else if (shift_amt == 32) {
1968 		wrp_reg_mov(nfp_prog, dst + 1, dst);
1969 		wrp_immed(nfp_prog, reg_both(dst), 0);
1970 	} else if (shift_amt > 32) {
1971 		emit_shf(nfp_prog, reg_both(dst + 1), reg_none(), SHF_OP_NONE,
1972 			 reg_b(dst), SHF_SC_L_SHF, shift_amt - 32);
1973 		wrp_immed(nfp_prog, reg_both(dst), 0);
1974 	}
1975 
1976 	return 0;
1977 }
1978 
1979 static int shl_imm64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1980 {
1981 	const struct bpf_insn *insn = &meta->insn;
1982 	u8 dst = insn->dst_reg * 2;
1983 
1984 	return __shl_imm64(nfp_prog, dst, insn->imm);
1985 }
1986 
1987 static void shl_reg64_lt32_high(struct nfp_prog *nfp_prog, u8 dst, u8 src)
1988 {
1989 	emit_alu(nfp_prog, imm_both(nfp_prog), reg_imm(32), ALU_OP_SUB,
1990 		 reg_b(src));
1991 	emit_alu(nfp_prog, reg_none(), imm_a(nfp_prog), ALU_OP_OR, reg_imm(0));
1992 	emit_shf_indir(nfp_prog, reg_both(dst + 1), reg_a(dst + 1), SHF_OP_NONE,
1993 		       reg_b(dst), SHF_SC_R_DSHF);
1994 }
1995 
1996 /* NOTE: for indirect left shift, HIGH part should be calculated first. */
1997 static void shl_reg64_lt32_low(struct nfp_prog *nfp_prog, u8 dst, u8 src)
1998 {
1999 	emit_alu(nfp_prog, reg_none(), reg_a(src), ALU_OP_OR, reg_imm(0));
2000 	emit_shf_indir(nfp_prog, reg_both(dst), reg_none(), SHF_OP_NONE,
2001 		       reg_b(dst), SHF_SC_L_SHF);
2002 }
2003 
2004 static void shl_reg64_lt32(struct nfp_prog *nfp_prog, u8 dst, u8 src)
2005 {
2006 	shl_reg64_lt32_high(nfp_prog, dst, src);
2007 	shl_reg64_lt32_low(nfp_prog, dst, src);
2008 }
2009 
2010 static void shl_reg64_ge32(struct nfp_prog *nfp_prog, u8 dst, u8 src)
2011 {
2012 	emit_alu(nfp_prog, reg_none(), reg_a(src), ALU_OP_OR, reg_imm(0));
2013 	emit_shf_indir(nfp_prog, reg_both(dst + 1), reg_none(), SHF_OP_NONE,
2014 		       reg_b(dst), SHF_SC_L_SHF);
2015 	wrp_immed(nfp_prog, reg_both(dst), 0);
2016 }
2017 
2018 static int shl_reg64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2019 {
2020 	const struct bpf_insn *insn = &meta->insn;
2021 	u64 umin, umax;
2022 	u8 dst, src;
2023 
2024 	dst = insn->dst_reg * 2;
2025 	umin = meta->umin_src;
2026 	umax = meta->umax_src;
2027 	if (umin == umax)
2028 		return __shl_imm64(nfp_prog, dst, umin);
2029 
2030 	src = insn->src_reg * 2;
2031 	if (umax < 32) {
2032 		shl_reg64_lt32(nfp_prog, dst, src);
2033 	} else if (umin >= 32) {
2034 		shl_reg64_ge32(nfp_prog, dst, src);
2035 	} else {
2036 		/* Generate different instruction sequences depending on runtime
2037 		 * value of shift amount.
2038 		 */
2039 		u16 label_ge32, label_end;
2040 
2041 		label_ge32 = nfp_prog_current_offset(nfp_prog) + 7;
2042 		emit_br_bset(nfp_prog, reg_a(src), 5, label_ge32, 0);
2043 
2044 		shl_reg64_lt32_high(nfp_prog, dst, src);
2045 		label_end = nfp_prog_current_offset(nfp_prog) + 6;
2046 		emit_br(nfp_prog, BR_UNC, label_end, 2);
2047 		/* shl_reg64_lt32_low packed in delay slot. */
2048 		shl_reg64_lt32_low(nfp_prog, dst, src);
2049 
2050 		if (!nfp_prog_confirm_current_offset(nfp_prog, label_ge32))
2051 			return -EINVAL;
2052 		shl_reg64_ge32(nfp_prog, dst, src);
2053 
2054 		if (!nfp_prog_confirm_current_offset(nfp_prog, label_end))
2055 			return -EINVAL;
2056 	}
2057 
2058 	return 0;
2059 }
2060 
2061 /* Pseudo code:
2062  *   if shift_amt >= 32
2063  *     dst_high = 0;
2064  *     dst_low = dst_high >> shift_amt[4:0]
2065  *   else
2066  *     dst_high = dst_high >> shift_amt
2067  *     dst_low = (dst_high, dst_low) >> shift_amt
2068  *
2069  * The indirect shift will use the same logic at runtime.
2070  */
2071 static int __shr_imm64(struct nfp_prog *nfp_prog, u8 dst, u8 shift_amt)
2072 {
2073 	if (shift_amt < 32) {
2074 		emit_shf(nfp_prog, reg_both(dst), reg_a(dst + 1), SHF_OP_NONE,
2075 			 reg_b(dst), SHF_SC_R_DSHF, shift_amt);
2076 		emit_shf(nfp_prog, reg_both(dst + 1), reg_none(), SHF_OP_NONE,
2077 			 reg_b(dst + 1), SHF_SC_R_SHF, shift_amt);
2078 	} else if (shift_amt == 32) {
2079 		wrp_reg_mov(nfp_prog, dst, dst + 1);
2080 		wrp_immed(nfp_prog, reg_both(dst + 1), 0);
2081 	} else if (shift_amt > 32) {
2082 		emit_shf(nfp_prog, reg_both(dst), reg_none(), SHF_OP_NONE,
2083 			 reg_b(dst + 1), SHF_SC_R_SHF, shift_amt - 32);
2084 		wrp_immed(nfp_prog, reg_both(dst + 1), 0);
2085 	}
2086 
2087 	return 0;
2088 }
2089 
2090 static int shr_imm64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2091 {
2092 	const struct bpf_insn *insn = &meta->insn;
2093 	u8 dst = insn->dst_reg * 2;
2094 
2095 	return __shr_imm64(nfp_prog, dst, insn->imm);
2096 }
2097 
2098 /* NOTE: for indirect right shift, LOW part should be calculated first. */
2099 static void shr_reg64_lt32_high(struct nfp_prog *nfp_prog, u8 dst, u8 src)
2100 {
2101 	emit_alu(nfp_prog, reg_none(), reg_a(src), ALU_OP_OR, reg_imm(0));
2102 	emit_shf_indir(nfp_prog, reg_both(dst + 1), reg_none(), SHF_OP_NONE,
2103 		       reg_b(dst + 1), SHF_SC_R_SHF);
2104 }
2105 
2106 static void shr_reg64_lt32_low(struct nfp_prog *nfp_prog, u8 dst, u8 src)
2107 {
2108 	emit_alu(nfp_prog, reg_none(), reg_a(src), ALU_OP_OR, reg_imm(0));
2109 	emit_shf_indir(nfp_prog, reg_both(dst), reg_a(dst + 1), SHF_OP_NONE,
2110 		       reg_b(dst), SHF_SC_R_DSHF);
2111 }
2112 
2113 static void shr_reg64_lt32(struct nfp_prog *nfp_prog, u8 dst, u8 src)
2114 {
2115 	shr_reg64_lt32_low(nfp_prog, dst, src);
2116 	shr_reg64_lt32_high(nfp_prog, dst, src);
2117 }
2118 
2119 static void shr_reg64_ge32(struct nfp_prog *nfp_prog, u8 dst, u8 src)
2120 {
2121 	emit_alu(nfp_prog, reg_none(), reg_a(src), ALU_OP_OR, reg_imm(0));
2122 	emit_shf_indir(nfp_prog, reg_both(dst), reg_none(), SHF_OP_NONE,
2123 		       reg_b(dst + 1), SHF_SC_R_SHF);
2124 	wrp_immed(nfp_prog, reg_both(dst + 1), 0);
2125 }
2126 
2127 static int shr_reg64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2128 {
2129 	const struct bpf_insn *insn = &meta->insn;
2130 	u64 umin, umax;
2131 	u8 dst, src;
2132 
2133 	dst = insn->dst_reg * 2;
2134 	umin = meta->umin_src;
2135 	umax = meta->umax_src;
2136 	if (umin == umax)
2137 		return __shr_imm64(nfp_prog, dst, umin);
2138 
2139 	src = insn->src_reg * 2;
2140 	if (umax < 32) {
2141 		shr_reg64_lt32(nfp_prog, dst, src);
2142 	} else if (umin >= 32) {
2143 		shr_reg64_ge32(nfp_prog, dst, src);
2144 	} else {
2145 		/* Generate different instruction sequences depending on runtime
2146 		 * value of shift amount.
2147 		 */
2148 		u16 label_ge32, label_end;
2149 
2150 		label_ge32 = nfp_prog_current_offset(nfp_prog) + 6;
2151 		emit_br_bset(nfp_prog, reg_a(src), 5, label_ge32, 0);
2152 		shr_reg64_lt32_low(nfp_prog, dst, src);
2153 		label_end = nfp_prog_current_offset(nfp_prog) + 6;
2154 		emit_br(nfp_prog, BR_UNC, label_end, 2);
2155 		/* shr_reg64_lt32_high packed in delay slot. */
2156 		shr_reg64_lt32_high(nfp_prog, dst, src);
2157 
2158 		if (!nfp_prog_confirm_current_offset(nfp_prog, label_ge32))
2159 			return -EINVAL;
2160 		shr_reg64_ge32(nfp_prog, dst, src);
2161 
2162 		if (!nfp_prog_confirm_current_offset(nfp_prog, label_end))
2163 			return -EINVAL;
2164 	}
2165 
2166 	return 0;
2167 }
2168 
2169 /* Code logic is the same as __shr_imm64 except ashr requires signedness bit
2170  * told through PREV_ALU result.
2171  */
2172 static int __ashr_imm64(struct nfp_prog *nfp_prog, u8 dst, u8 shift_amt)
2173 {
2174 	if (shift_amt < 32) {
2175 		emit_shf(nfp_prog, reg_both(dst), reg_a(dst + 1), SHF_OP_NONE,
2176 			 reg_b(dst), SHF_SC_R_DSHF, shift_amt);
2177 		/* Set signedness bit. */
2178 		emit_alu(nfp_prog, reg_none(), reg_a(dst + 1), ALU_OP_OR,
2179 			 reg_imm(0));
2180 		emit_shf(nfp_prog, reg_both(dst + 1), reg_none(), SHF_OP_ASHR,
2181 			 reg_b(dst + 1), SHF_SC_R_SHF, shift_amt);
2182 	} else if (shift_amt == 32) {
2183 		/* NOTE: this also helps setting signedness bit. */
2184 		wrp_reg_mov(nfp_prog, dst, dst + 1);
2185 		emit_shf(nfp_prog, reg_both(dst + 1), reg_none(), SHF_OP_ASHR,
2186 			 reg_b(dst + 1), SHF_SC_R_SHF, 31);
2187 	} else if (shift_amt > 32) {
2188 		emit_alu(nfp_prog, reg_none(), reg_a(dst + 1), ALU_OP_OR,
2189 			 reg_imm(0));
2190 		emit_shf(nfp_prog, reg_both(dst), reg_none(), SHF_OP_ASHR,
2191 			 reg_b(dst + 1), SHF_SC_R_SHF, shift_amt - 32);
2192 		emit_shf(nfp_prog, reg_both(dst + 1), reg_none(), SHF_OP_ASHR,
2193 			 reg_b(dst + 1), SHF_SC_R_SHF, 31);
2194 	}
2195 
2196 	return 0;
2197 }
2198 
2199 static int ashr_imm64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2200 {
2201 	const struct bpf_insn *insn = &meta->insn;
2202 	u8 dst = insn->dst_reg * 2;
2203 
2204 	return __ashr_imm64(nfp_prog, dst, insn->imm);
2205 }
2206 
2207 static void ashr_reg64_lt32_high(struct nfp_prog *nfp_prog, u8 dst, u8 src)
2208 {
2209 	/* NOTE: the first insn will set both indirect shift amount (source A)
2210 	 * and signedness bit (MSB of result).
2211 	 */
2212 	emit_alu(nfp_prog, reg_none(), reg_a(src), ALU_OP_OR, reg_b(dst + 1));
2213 	emit_shf_indir(nfp_prog, reg_both(dst + 1), reg_none(), SHF_OP_ASHR,
2214 		       reg_b(dst + 1), SHF_SC_R_SHF);
2215 }
2216 
2217 static void ashr_reg64_lt32_low(struct nfp_prog *nfp_prog, u8 dst, u8 src)
2218 {
2219 	/* NOTE: it is the same as logic shift because we don't need to shift in
2220 	 * signedness bit when the shift amount is less than 32.
2221 	 */
2222 	return shr_reg64_lt32_low(nfp_prog, dst, src);
2223 }
2224 
2225 static void ashr_reg64_lt32(struct nfp_prog *nfp_prog, u8 dst, u8 src)
2226 {
2227 	ashr_reg64_lt32_low(nfp_prog, dst, src);
2228 	ashr_reg64_lt32_high(nfp_prog, dst, src);
2229 }
2230 
2231 static void ashr_reg64_ge32(struct nfp_prog *nfp_prog, u8 dst, u8 src)
2232 {
2233 	emit_alu(nfp_prog, reg_none(), reg_a(src), ALU_OP_OR, reg_b(dst + 1));
2234 	emit_shf_indir(nfp_prog, reg_both(dst), reg_none(), SHF_OP_ASHR,
2235 		       reg_b(dst + 1), SHF_SC_R_SHF);
2236 	emit_shf(nfp_prog, reg_both(dst + 1), reg_none(), SHF_OP_ASHR,
2237 		 reg_b(dst + 1), SHF_SC_R_SHF, 31);
2238 }
2239 
2240 /* Like ashr_imm64, but need to use indirect shift. */
2241 static int ashr_reg64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2242 {
2243 	const struct bpf_insn *insn = &meta->insn;
2244 	u64 umin, umax;
2245 	u8 dst, src;
2246 
2247 	dst = insn->dst_reg * 2;
2248 	umin = meta->umin_src;
2249 	umax = meta->umax_src;
2250 	if (umin == umax)
2251 		return __ashr_imm64(nfp_prog, dst, umin);
2252 
2253 	src = insn->src_reg * 2;
2254 	if (umax < 32) {
2255 		ashr_reg64_lt32(nfp_prog, dst, src);
2256 	} else if (umin >= 32) {
2257 		ashr_reg64_ge32(nfp_prog, dst, src);
2258 	} else {
2259 		u16 label_ge32, label_end;
2260 
2261 		label_ge32 = nfp_prog_current_offset(nfp_prog) + 6;
2262 		emit_br_bset(nfp_prog, reg_a(src), 5, label_ge32, 0);
2263 		ashr_reg64_lt32_low(nfp_prog, dst, src);
2264 		label_end = nfp_prog_current_offset(nfp_prog) + 6;
2265 		emit_br(nfp_prog, BR_UNC, label_end, 2);
2266 		/* ashr_reg64_lt32_high packed in delay slot. */
2267 		ashr_reg64_lt32_high(nfp_prog, dst, src);
2268 
2269 		if (!nfp_prog_confirm_current_offset(nfp_prog, label_ge32))
2270 			return -EINVAL;
2271 		ashr_reg64_ge32(nfp_prog, dst, src);
2272 
2273 		if (!nfp_prog_confirm_current_offset(nfp_prog, label_end))
2274 			return -EINVAL;
2275 	}
2276 
2277 	return 0;
2278 }
2279 
2280 static int mov_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2281 {
2282 	const struct bpf_insn *insn = &meta->insn;
2283 
2284 	wrp_reg_mov(nfp_prog, insn->dst_reg * 2,  insn->src_reg * 2);
2285 	wrp_immed(nfp_prog, reg_both(insn->dst_reg * 2 + 1), 0);
2286 
2287 	return 0;
2288 }
2289 
2290 static int mov_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2291 {
2292 	const struct bpf_insn *insn = &meta->insn;
2293 
2294 	wrp_immed(nfp_prog, reg_both(insn->dst_reg * 2), insn->imm);
2295 	wrp_immed(nfp_prog, reg_both(insn->dst_reg * 2 + 1), 0);
2296 
2297 	return 0;
2298 }
2299 
2300 static int xor_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2301 {
2302 	return wrp_alu32_reg(nfp_prog, meta, ALU_OP_XOR);
2303 }
2304 
2305 static int xor_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2306 {
2307 	return wrp_alu32_imm(nfp_prog, meta, ALU_OP_XOR);
2308 }
2309 
2310 static int and_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2311 {
2312 	return wrp_alu32_reg(nfp_prog, meta, ALU_OP_AND);
2313 }
2314 
2315 static int and_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2316 {
2317 	return wrp_alu32_imm(nfp_prog, meta, ALU_OP_AND);
2318 }
2319 
2320 static int or_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2321 {
2322 	return wrp_alu32_reg(nfp_prog, meta, ALU_OP_OR);
2323 }
2324 
2325 static int or_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2326 {
2327 	return wrp_alu32_imm(nfp_prog, meta, ALU_OP_OR);
2328 }
2329 
2330 static int add_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2331 {
2332 	return wrp_alu32_reg(nfp_prog, meta, ALU_OP_ADD);
2333 }
2334 
2335 static int add_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2336 {
2337 	return wrp_alu32_imm(nfp_prog, meta, ALU_OP_ADD);
2338 }
2339 
2340 static int sub_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2341 {
2342 	return wrp_alu32_reg(nfp_prog, meta, ALU_OP_SUB);
2343 }
2344 
2345 static int sub_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2346 {
2347 	return wrp_alu32_imm(nfp_prog, meta, ALU_OP_SUB);
2348 }
2349 
2350 static int mul_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2351 {
2352 	return wrp_mul(nfp_prog, meta, false, true);
2353 }
2354 
2355 static int mul_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2356 {
2357 	return wrp_mul(nfp_prog, meta, false, false);
2358 }
2359 
2360 static int div_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2361 {
2362 	return div_reg64(nfp_prog, meta);
2363 }
2364 
2365 static int div_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2366 {
2367 	return div_imm64(nfp_prog, meta);
2368 }
2369 
2370 static int neg_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2371 {
2372 	u8 dst = meta->insn.dst_reg * 2;
2373 
2374 	emit_alu(nfp_prog, reg_both(dst), reg_imm(0), ALU_OP_SUB, reg_b(dst));
2375 	wrp_immed(nfp_prog, reg_both(meta->insn.dst_reg * 2 + 1), 0);
2376 
2377 	return 0;
2378 }
2379 
2380 static int __ashr_imm(struct nfp_prog *nfp_prog, u8 dst, u8 shift_amt)
2381 {
2382 	/* Set signedness bit (MSB of result). */
2383 	emit_alu(nfp_prog, reg_none(), reg_a(dst), ALU_OP_OR, reg_imm(0));
2384 	emit_shf(nfp_prog, reg_both(dst), reg_none(), SHF_OP_ASHR, reg_b(dst),
2385 		 SHF_SC_R_SHF, shift_amt);
2386 	wrp_immed(nfp_prog, reg_both(dst + 1), 0);
2387 
2388 	return 0;
2389 }
2390 
2391 static int ashr_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2392 {
2393 	const struct bpf_insn *insn = &meta->insn;
2394 	u64 umin, umax;
2395 	u8 dst, src;
2396 
2397 	dst = insn->dst_reg * 2;
2398 	umin = meta->umin_src;
2399 	umax = meta->umax_src;
2400 	if (umin == umax)
2401 		return __ashr_imm(nfp_prog, dst, umin);
2402 
2403 	src = insn->src_reg * 2;
2404 	/* NOTE: the first insn will set both indirect shift amount (source A)
2405 	 * and signedness bit (MSB of result).
2406 	 */
2407 	emit_alu(nfp_prog, reg_none(), reg_a(src), ALU_OP_OR, reg_b(dst));
2408 	emit_shf_indir(nfp_prog, reg_both(dst), reg_none(), SHF_OP_ASHR,
2409 		       reg_b(dst), SHF_SC_R_SHF);
2410 	wrp_immed(nfp_prog, reg_both(dst + 1), 0);
2411 
2412 	return 0;
2413 }
2414 
2415 static int ashr_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2416 {
2417 	const struct bpf_insn *insn = &meta->insn;
2418 	u8 dst = insn->dst_reg * 2;
2419 
2420 	return __ashr_imm(nfp_prog, dst, insn->imm);
2421 }
2422 
2423 static int shl_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2424 {
2425 	const struct bpf_insn *insn = &meta->insn;
2426 
2427 	if (!insn->imm)
2428 		return 1; /* TODO: zero shift means indirect */
2429 
2430 	emit_shf(nfp_prog, reg_both(insn->dst_reg * 2),
2431 		 reg_none(), SHF_OP_NONE, reg_b(insn->dst_reg * 2),
2432 		 SHF_SC_L_SHF, insn->imm);
2433 	wrp_immed(nfp_prog, reg_both(insn->dst_reg * 2 + 1), 0);
2434 
2435 	return 0;
2436 }
2437 
2438 static int end_reg32(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2439 {
2440 	const struct bpf_insn *insn = &meta->insn;
2441 	u8 gpr = insn->dst_reg * 2;
2442 
2443 	switch (insn->imm) {
2444 	case 16:
2445 		emit_ld_field(nfp_prog, reg_both(gpr), 0x9, reg_b(gpr),
2446 			      SHF_SC_R_ROT, 8);
2447 		emit_ld_field(nfp_prog, reg_both(gpr), 0xe, reg_a(gpr),
2448 			      SHF_SC_R_SHF, 16);
2449 
2450 		wrp_immed(nfp_prog, reg_both(gpr + 1), 0);
2451 		break;
2452 	case 32:
2453 		wrp_end32(nfp_prog, reg_a(gpr), gpr);
2454 		wrp_immed(nfp_prog, reg_both(gpr + 1), 0);
2455 		break;
2456 	case 64:
2457 		wrp_mov(nfp_prog, imm_a(nfp_prog), reg_b(gpr + 1));
2458 
2459 		wrp_end32(nfp_prog, reg_a(gpr), gpr + 1);
2460 		wrp_end32(nfp_prog, imm_a(nfp_prog), gpr);
2461 		break;
2462 	}
2463 
2464 	return 0;
2465 }
2466 
2467 static int imm_ld8_part2(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2468 {
2469 	struct nfp_insn_meta *prev = nfp_meta_prev(meta);
2470 	u32 imm_lo, imm_hi;
2471 	u8 dst;
2472 
2473 	dst = prev->insn.dst_reg * 2;
2474 	imm_lo = prev->insn.imm;
2475 	imm_hi = meta->insn.imm;
2476 
2477 	wrp_immed(nfp_prog, reg_both(dst), imm_lo);
2478 
2479 	/* mov is always 1 insn, load imm may be two, so try to use mov */
2480 	if (imm_hi == imm_lo)
2481 		wrp_mov(nfp_prog, reg_both(dst + 1), reg_a(dst));
2482 	else
2483 		wrp_immed(nfp_prog, reg_both(dst + 1), imm_hi);
2484 
2485 	return 0;
2486 }
2487 
2488 static int imm_ld8(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2489 {
2490 	meta->double_cb = imm_ld8_part2;
2491 	return 0;
2492 }
2493 
2494 static int data_ld1(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2495 {
2496 	return construct_data_ld(nfp_prog, meta->insn.imm, 1);
2497 }
2498 
2499 static int data_ld2(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2500 {
2501 	return construct_data_ld(nfp_prog, meta->insn.imm, 2);
2502 }
2503 
2504 static int data_ld4(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2505 {
2506 	return construct_data_ld(nfp_prog, meta->insn.imm, 4);
2507 }
2508 
2509 static int data_ind_ld1(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2510 {
2511 	return construct_data_ind_ld(nfp_prog, meta->insn.imm,
2512 				     meta->insn.src_reg * 2, 1);
2513 }
2514 
2515 static int data_ind_ld2(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2516 {
2517 	return construct_data_ind_ld(nfp_prog, meta->insn.imm,
2518 				     meta->insn.src_reg * 2, 2);
2519 }
2520 
2521 static int data_ind_ld4(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2522 {
2523 	return construct_data_ind_ld(nfp_prog, meta->insn.imm,
2524 				     meta->insn.src_reg * 2, 4);
2525 }
2526 
2527 static int
2528 mem_ldx_stack(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
2529 	      unsigned int size, unsigned int ptr_off)
2530 {
2531 	return mem_op_stack(nfp_prog, meta, size, ptr_off,
2532 			    meta->insn.dst_reg * 2, meta->insn.src_reg * 2,
2533 			    true, wrp_lmem_load);
2534 }
2535 
2536 static int mem_ldx_skb(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
2537 		       u8 size)
2538 {
2539 	swreg dst = reg_both(meta->insn.dst_reg * 2);
2540 
2541 	switch (meta->insn.off) {
2542 	case offsetof(struct __sk_buff, len):
2543 		if (size != FIELD_SIZEOF(struct __sk_buff, len))
2544 			return -EOPNOTSUPP;
2545 		wrp_mov(nfp_prog, dst, plen_reg(nfp_prog));
2546 		break;
2547 	case offsetof(struct __sk_buff, data):
2548 		if (size != FIELD_SIZEOF(struct __sk_buff, data))
2549 			return -EOPNOTSUPP;
2550 		wrp_mov(nfp_prog, dst, pptr_reg(nfp_prog));
2551 		break;
2552 	case offsetof(struct __sk_buff, data_end):
2553 		if (size != FIELD_SIZEOF(struct __sk_buff, data_end))
2554 			return -EOPNOTSUPP;
2555 		emit_alu(nfp_prog, dst,
2556 			 plen_reg(nfp_prog), ALU_OP_ADD, pptr_reg(nfp_prog));
2557 		break;
2558 	default:
2559 		return -EOPNOTSUPP;
2560 	}
2561 
2562 	wrp_immed(nfp_prog, reg_both(meta->insn.dst_reg * 2 + 1), 0);
2563 
2564 	return 0;
2565 }
2566 
2567 static int mem_ldx_xdp(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
2568 		       u8 size)
2569 {
2570 	swreg dst = reg_both(meta->insn.dst_reg * 2);
2571 
2572 	switch (meta->insn.off) {
2573 	case offsetof(struct xdp_md, data):
2574 		if (size != FIELD_SIZEOF(struct xdp_md, data))
2575 			return -EOPNOTSUPP;
2576 		wrp_mov(nfp_prog, dst, pptr_reg(nfp_prog));
2577 		break;
2578 	case offsetof(struct xdp_md, data_end):
2579 		if (size != FIELD_SIZEOF(struct xdp_md, data_end))
2580 			return -EOPNOTSUPP;
2581 		emit_alu(nfp_prog, dst,
2582 			 plen_reg(nfp_prog), ALU_OP_ADD, pptr_reg(nfp_prog));
2583 		break;
2584 	default:
2585 		return -EOPNOTSUPP;
2586 	}
2587 
2588 	wrp_immed(nfp_prog, reg_both(meta->insn.dst_reg * 2 + 1), 0);
2589 
2590 	return 0;
2591 }
2592 
2593 static int
2594 mem_ldx_data(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
2595 	     unsigned int size)
2596 {
2597 	swreg tmp_reg;
2598 
2599 	tmp_reg = re_load_imm_any(nfp_prog, meta->insn.off, imm_b(nfp_prog));
2600 
2601 	return data_ld_host_order_addr32(nfp_prog, meta->insn.src_reg * 2,
2602 					 tmp_reg, meta->insn.dst_reg * 2, size);
2603 }
2604 
2605 static int
2606 mem_ldx_emem(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
2607 	     unsigned int size)
2608 {
2609 	swreg tmp_reg;
2610 
2611 	tmp_reg = re_load_imm_any(nfp_prog, meta->insn.off, imm_b(nfp_prog));
2612 
2613 	return data_ld_host_order_addr40(nfp_prog, meta->insn.src_reg * 2,
2614 					 tmp_reg, meta->insn.dst_reg * 2, size);
2615 }
2616 
2617 static void
2618 mem_ldx_data_init_pktcache(struct nfp_prog *nfp_prog,
2619 			   struct nfp_insn_meta *meta)
2620 {
2621 	s16 range_start = meta->pkt_cache.range_start;
2622 	s16 range_end = meta->pkt_cache.range_end;
2623 	swreg src_base, off;
2624 	u8 xfer_num, len;
2625 	bool indir;
2626 
2627 	off = re_load_imm_any(nfp_prog, range_start, imm_b(nfp_prog));
2628 	src_base = reg_a(meta->insn.src_reg * 2);
2629 	len = range_end - range_start;
2630 	xfer_num = round_up(len, REG_WIDTH) / REG_WIDTH;
2631 
2632 	indir = len > 8 * REG_WIDTH;
2633 	/* Setup PREV_ALU for indirect mode. */
2634 	if (indir)
2635 		wrp_immed(nfp_prog, reg_none(),
2636 			  CMD_OVE_LEN | FIELD_PREP(CMD_OV_LEN, xfer_num - 1));
2637 
2638 	/* Cache memory into transfer-in registers. */
2639 	emit_cmd_any(nfp_prog, CMD_TGT_READ32_SWAP, CMD_MODE_32b, 0, src_base,
2640 		     off, xfer_num - 1, CMD_CTX_SWAP, indir);
2641 }
2642 
2643 static int
2644 mem_ldx_data_from_pktcache_unaligned(struct nfp_prog *nfp_prog,
2645 				     struct nfp_insn_meta *meta,
2646 				     unsigned int size)
2647 {
2648 	s16 range_start = meta->pkt_cache.range_start;
2649 	s16 insn_off = meta->insn.off - range_start;
2650 	swreg dst_lo, dst_hi, src_lo, src_mid;
2651 	u8 dst_gpr = meta->insn.dst_reg * 2;
2652 	u8 len_lo = size, len_mid = 0;
2653 	u8 idx = insn_off / REG_WIDTH;
2654 	u8 off = insn_off % REG_WIDTH;
2655 
2656 	dst_hi = reg_both(dst_gpr + 1);
2657 	dst_lo = reg_both(dst_gpr);
2658 	src_lo = reg_xfer(idx);
2659 
2660 	/* The read length could involve as many as three registers. */
2661 	if (size > REG_WIDTH - off) {
2662 		/* Calculate the part in the second register. */
2663 		len_lo = REG_WIDTH - off;
2664 		len_mid = size - len_lo;
2665 
2666 		/* Calculate the part in the third register. */
2667 		if (size > 2 * REG_WIDTH - off)
2668 			len_mid = REG_WIDTH;
2669 	}
2670 
2671 	wrp_reg_subpart(nfp_prog, dst_lo, src_lo, len_lo, off);
2672 
2673 	if (!len_mid) {
2674 		wrp_immed(nfp_prog, dst_hi, 0);
2675 		return 0;
2676 	}
2677 
2678 	src_mid = reg_xfer(idx + 1);
2679 
2680 	if (size <= REG_WIDTH) {
2681 		wrp_reg_or_subpart(nfp_prog, dst_lo, src_mid, len_mid, len_lo);
2682 		wrp_immed(nfp_prog, dst_hi, 0);
2683 	} else {
2684 		swreg src_hi = reg_xfer(idx + 2);
2685 
2686 		wrp_reg_or_subpart(nfp_prog, dst_lo, src_mid,
2687 				   REG_WIDTH - len_lo, len_lo);
2688 		wrp_reg_subpart(nfp_prog, dst_hi, src_mid, len_lo,
2689 				REG_WIDTH - len_lo);
2690 		wrp_reg_or_subpart(nfp_prog, dst_hi, src_hi, REG_WIDTH - len_lo,
2691 				   len_lo);
2692 	}
2693 
2694 	return 0;
2695 }
2696 
2697 static int
2698 mem_ldx_data_from_pktcache_aligned(struct nfp_prog *nfp_prog,
2699 				   struct nfp_insn_meta *meta,
2700 				   unsigned int size)
2701 {
2702 	swreg dst_lo, dst_hi, src_lo;
2703 	u8 dst_gpr, idx;
2704 
2705 	idx = (meta->insn.off - meta->pkt_cache.range_start) / REG_WIDTH;
2706 	dst_gpr = meta->insn.dst_reg * 2;
2707 	dst_hi = reg_both(dst_gpr + 1);
2708 	dst_lo = reg_both(dst_gpr);
2709 	src_lo = reg_xfer(idx);
2710 
2711 	if (size < REG_WIDTH) {
2712 		wrp_reg_subpart(nfp_prog, dst_lo, src_lo, size, 0);
2713 		wrp_immed(nfp_prog, dst_hi, 0);
2714 	} else if (size == REG_WIDTH) {
2715 		wrp_mov(nfp_prog, dst_lo, src_lo);
2716 		wrp_immed(nfp_prog, dst_hi, 0);
2717 	} else {
2718 		swreg src_hi = reg_xfer(idx + 1);
2719 
2720 		wrp_mov(nfp_prog, dst_lo, src_lo);
2721 		wrp_mov(nfp_prog, dst_hi, src_hi);
2722 	}
2723 
2724 	return 0;
2725 }
2726 
2727 static int
2728 mem_ldx_data_from_pktcache(struct nfp_prog *nfp_prog,
2729 			   struct nfp_insn_meta *meta, unsigned int size)
2730 {
2731 	u8 off = meta->insn.off - meta->pkt_cache.range_start;
2732 
2733 	if (IS_ALIGNED(off, REG_WIDTH))
2734 		return mem_ldx_data_from_pktcache_aligned(nfp_prog, meta, size);
2735 
2736 	return mem_ldx_data_from_pktcache_unaligned(nfp_prog, meta, size);
2737 }
2738 
2739 static int
2740 mem_ldx(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
2741 	unsigned int size)
2742 {
2743 	if (meta->ldst_gather_len)
2744 		return nfp_cpp_memcpy(nfp_prog, meta);
2745 
2746 	if (meta->ptr.type == PTR_TO_CTX) {
2747 		if (nfp_prog->type == BPF_PROG_TYPE_XDP)
2748 			return mem_ldx_xdp(nfp_prog, meta, size);
2749 		else
2750 			return mem_ldx_skb(nfp_prog, meta, size);
2751 	}
2752 
2753 	if (meta->ptr.type == PTR_TO_PACKET) {
2754 		if (meta->pkt_cache.range_end) {
2755 			if (meta->pkt_cache.do_init)
2756 				mem_ldx_data_init_pktcache(nfp_prog, meta);
2757 
2758 			return mem_ldx_data_from_pktcache(nfp_prog, meta, size);
2759 		} else {
2760 			return mem_ldx_data(nfp_prog, meta, size);
2761 		}
2762 	}
2763 
2764 	if (meta->ptr.type == PTR_TO_STACK)
2765 		return mem_ldx_stack(nfp_prog, meta, size,
2766 				     meta->ptr.off + meta->ptr.var_off.value);
2767 
2768 	if (meta->ptr.type == PTR_TO_MAP_VALUE)
2769 		return mem_ldx_emem(nfp_prog, meta, size);
2770 
2771 	return -EOPNOTSUPP;
2772 }
2773 
2774 static int mem_ldx1(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2775 {
2776 	return mem_ldx(nfp_prog, meta, 1);
2777 }
2778 
2779 static int mem_ldx2(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2780 {
2781 	return mem_ldx(nfp_prog, meta, 2);
2782 }
2783 
2784 static int mem_ldx4(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2785 {
2786 	return mem_ldx(nfp_prog, meta, 4);
2787 }
2788 
2789 static int mem_ldx8(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2790 {
2791 	return mem_ldx(nfp_prog, meta, 8);
2792 }
2793 
2794 static int
2795 mem_st_data(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
2796 	    unsigned int size)
2797 {
2798 	u64 imm = meta->insn.imm; /* sign extend */
2799 	swreg off_reg;
2800 
2801 	off_reg = re_load_imm_any(nfp_prog, meta->insn.off, imm_b(nfp_prog));
2802 
2803 	return data_st_host_order(nfp_prog, meta->insn.dst_reg * 2, off_reg,
2804 				  imm, size);
2805 }
2806 
2807 static int mem_st(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
2808 		  unsigned int size)
2809 {
2810 	if (meta->ptr.type == PTR_TO_PACKET)
2811 		return mem_st_data(nfp_prog, meta, size);
2812 
2813 	return -EOPNOTSUPP;
2814 }
2815 
2816 static int mem_st1(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2817 {
2818 	return mem_st(nfp_prog, meta, 1);
2819 }
2820 
2821 static int mem_st2(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2822 {
2823 	return mem_st(nfp_prog, meta, 2);
2824 }
2825 
2826 static int mem_st4(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2827 {
2828 	return mem_st(nfp_prog, meta, 4);
2829 }
2830 
2831 static int mem_st8(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2832 {
2833 	return mem_st(nfp_prog, meta, 8);
2834 }
2835 
2836 static int
2837 mem_stx_data(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
2838 	     unsigned int size)
2839 {
2840 	swreg off_reg;
2841 
2842 	off_reg = re_load_imm_any(nfp_prog, meta->insn.off, imm_b(nfp_prog));
2843 
2844 	return data_stx_host_order(nfp_prog, meta->insn.dst_reg * 2, off_reg,
2845 				   meta->insn.src_reg * 2, size);
2846 }
2847 
2848 static int
2849 mem_stx_stack(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
2850 	      unsigned int size, unsigned int ptr_off)
2851 {
2852 	return mem_op_stack(nfp_prog, meta, size, ptr_off,
2853 			    meta->insn.src_reg * 2, meta->insn.dst_reg * 2,
2854 			    false, wrp_lmem_store);
2855 }
2856 
2857 static int mem_stx_xdp(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2858 {
2859 	switch (meta->insn.off) {
2860 	case offsetof(struct xdp_md, rx_queue_index):
2861 		return nfp_queue_select(nfp_prog, meta);
2862 	}
2863 
2864 	WARN_ON_ONCE(1); /* verifier should have rejected bad accesses */
2865 	return -EOPNOTSUPP;
2866 }
2867 
2868 static int
2869 mem_stx(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
2870 	unsigned int size)
2871 {
2872 	if (meta->ptr.type == PTR_TO_PACKET)
2873 		return mem_stx_data(nfp_prog, meta, size);
2874 
2875 	if (meta->ptr.type == PTR_TO_STACK)
2876 		return mem_stx_stack(nfp_prog, meta, size,
2877 				     meta->ptr.off + meta->ptr.var_off.value);
2878 
2879 	return -EOPNOTSUPP;
2880 }
2881 
2882 static int mem_stx1(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2883 {
2884 	return mem_stx(nfp_prog, meta, 1);
2885 }
2886 
2887 static int mem_stx2(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2888 {
2889 	return mem_stx(nfp_prog, meta, 2);
2890 }
2891 
2892 static int mem_stx4(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2893 {
2894 	if (meta->ptr.type == PTR_TO_CTX)
2895 		if (nfp_prog->type == BPF_PROG_TYPE_XDP)
2896 			return mem_stx_xdp(nfp_prog, meta);
2897 	return mem_stx(nfp_prog, meta, 4);
2898 }
2899 
2900 static int mem_stx8(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2901 {
2902 	return mem_stx(nfp_prog, meta, 8);
2903 }
2904 
2905 static int
2906 mem_xadd(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta, bool is64)
2907 {
2908 	u8 dst_gpr = meta->insn.dst_reg * 2;
2909 	u8 src_gpr = meta->insn.src_reg * 2;
2910 	unsigned int full_add, out;
2911 	swreg addra, addrb, off;
2912 
2913 	off = ur_load_imm_any(nfp_prog, meta->insn.off, imm_b(nfp_prog));
2914 
2915 	/* We can fit 16 bits into command immediate, if we know the immediate
2916 	 * is guaranteed to either always or never fit into 16 bit we only
2917 	 * generate code to handle that particular case, otherwise generate
2918 	 * code for both.
2919 	 */
2920 	out = nfp_prog_current_offset(nfp_prog);
2921 	full_add = nfp_prog_current_offset(nfp_prog);
2922 
2923 	if (meta->insn.off) {
2924 		out += 2;
2925 		full_add += 2;
2926 	}
2927 	if (meta->xadd_maybe_16bit) {
2928 		out += 3;
2929 		full_add += 3;
2930 	}
2931 	if (meta->xadd_over_16bit)
2932 		out += 2 + is64;
2933 	if (meta->xadd_maybe_16bit && meta->xadd_over_16bit) {
2934 		out += 5;
2935 		full_add += 5;
2936 	}
2937 
2938 	/* Generate the branch for choosing add_imm vs add */
2939 	if (meta->xadd_maybe_16bit && meta->xadd_over_16bit) {
2940 		swreg max_imm = imm_a(nfp_prog);
2941 
2942 		wrp_immed(nfp_prog, max_imm, 0xffff);
2943 		emit_alu(nfp_prog, reg_none(),
2944 			 max_imm, ALU_OP_SUB, reg_b(src_gpr));
2945 		emit_alu(nfp_prog, reg_none(),
2946 			 reg_imm(0), ALU_OP_SUB_C, reg_b(src_gpr + 1));
2947 		emit_br(nfp_prog, BR_BLO, full_add, meta->insn.off ? 2 : 0);
2948 		/* defer for add */
2949 	}
2950 
2951 	/* If insn has an offset add to the address */
2952 	if (!meta->insn.off) {
2953 		addra = reg_a(dst_gpr);
2954 		addrb = reg_b(dst_gpr + 1);
2955 	} else {
2956 		emit_alu(nfp_prog, imma_a(nfp_prog),
2957 			 reg_a(dst_gpr), ALU_OP_ADD, off);
2958 		emit_alu(nfp_prog, imma_b(nfp_prog),
2959 			 reg_a(dst_gpr + 1), ALU_OP_ADD_C, reg_imm(0));
2960 		addra = imma_a(nfp_prog);
2961 		addrb = imma_b(nfp_prog);
2962 	}
2963 
2964 	/* Generate the add_imm if 16 bits are possible */
2965 	if (meta->xadd_maybe_16bit) {
2966 		swreg prev_alu = imm_a(nfp_prog);
2967 
2968 		wrp_immed(nfp_prog, prev_alu,
2969 			  FIELD_PREP(CMD_OVE_DATA, 2) |
2970 			  CMD_OVE_LEN |
2971 			  FIELD_PREP(CMD_OV_LEN, 0x8 | is64 << 2));
2972 		wrp_reg_or_subpart(nfp_prog, prev_alu, reg_b(src_gpr), 2, 2);
2973 		emit_cmd_indir(nfp_prog, CMD_TGT_ADD_IMM, CMD_MODE_40b_BA, 0,
2974 			       addra, addrb, 0, CMD_CTX_NO_SWAP);
2975 
2976 		if (meta->xadd_over_16bit)
2977 			emit_br(nfp_prog, BR_UNC, out, 0);
2978 	}
2979 
2980 	if (!nfp_prog_confirm_current_offset(nfp_prog, full_add))
2981 		return -EINVAL;
2982 
2983 	/* Generate the add if 16 bits are not guaranteed */
2984 	if (meta->xadd_over_16bit) {
2985 		emit_cmd(nfp_prog, CMD_TGT_ADD, CMD_MODE_40b_BA, 0,
2986 			 addra, addrb, is64 << 2,
2987 			 is64 ? CMD_CTX_SWAP_DEFER2 : CMD_CTX_SWAP_DEFER1);
2988 
2989 		wrp_mov(nfp_prog, reg_xfer(0), reg_a(src_gpr));
2990 		if (is64)
2991 			wrp_mov(nfp_prog, reg_xfer(1), reg_a(src_gpr + 1));
2992 	}
2993 
2994 	if (!nfp_prog_confirm_current_offset(nfp_prog, out))
2995 		return -EINVAL;
2996 
2997 	return 0;
2998 }
2999 
3000 static int mem_xadd4(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
3001 {
3002 	return mem_xadd(nfp_prog, meta, false);
3003 }
3004 
3005 static int mem_xadd8(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
3006 {
3007 	return mem_xadd(nfp_prog, meta, true);
3008 }
3009 
3010 static int jump(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
3011 {
3012 	emit_br(nfp_prog, BR_UNC, meta->insn.off, 0);
3013 
3014 	return 0;
3015 }
3016 
3017 static int jeq_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
3018 {
3019 	const struct bpf_insn *insn = &meta->insn;
3020 	u64 imm = insn->imm; /* sign extend */
3021 	swreg or1, or2, tmp_reg;
3022 
3023 	or1 = reg_a(insn->dst_reg * 2);
3024 	or2 = reg_b(insn->dst_reg * 2 + 1);
3025 
3026 	if (imm & ~0U) {
3027 		tmp_reg = ur_load_imm_any(nfp_prog, imm & ~0U, imm_b(nfp_prog));
3028 		emit_alu(nfp_prog, imm_a(nfp_prog),
3029 			 reg_a(insn->dst_reg * 2), ALU_OP_XOR, tmp_reg);
3030 		or1 = imm_a(nfp_prog);
3031 	}
3032 
3033 	if (imm >> 32) {
3034 		tmp_reg = ur_load_imm_any(nfp_prog, imm >> 32, imm_b(nfp_prog));
3035 		emit_alu(nfp_prog, imm_b(nfp_prog),
3036 			 reg_a(insn->dst_reg * 2 + 1), ALU_OP_XOR, tmp_reg);
3037 		or2 = imm_b(nfp_prog);
3038 	}
3039 
3040 	emit_alu(nfp_prog, reg_none(), or1, ALU_OP_OR, or2);
3041 	emit_br(nfp_prog, BR_BEQ, insn->off, 0);
3042 
3043 	return 0;
3044 }
3045 
3046 static int jset_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
3047 {
3048 	const struct bpf_insn *insn = &meta->insn;
3049 	u64 imm = insn->imm; /* sign extend */
3050 	u8 dst_gpr = insn->dst_reg * 2;
3051 	swreg tmp_reg;
3052 
3053 	tmp_reg = ur_load_imm_any(nfp_prog, imm & ~0U, imm_b(nfp_prog));
3054 	emit_alu(nfp_prog, imm_b(nfp_prog),
3055 		 reg_a(dst_gpr), ALU_OP_AND, tmp_reg);
3056 	/* Upper word of the mask can only be 0 or ~0 from sign extension,
3057 	 * so either ignore it or OR the whole thing in.
3058 	 */
3059 	if (imm >> 32)
3060 		emit_alu(nfp_prog, reg_none(),
3061 			 reg_a(dst_gpr + 1), ALU_OP_OR, imm_b(nfp_prog));
3062 	emit_br(nfp_prog, BR_BNE, insn->off, 0);
3063 
3064 	return 0;
3065 }
3066 
3067 static int jne_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
3068 {
3069 	const struct bpf_insn *insn = &meta->insn;
3070 	u64 imm = insn->imm; /* sign extend */
3071 	swreg tmp_reg;
3072 
3073 	if (!imm) {
3074 		emit_alu(nfp_prog, reg_none(), reg_a(insn->dst_reg * 2),
3075 			 ALU_OP_OR, reg_b(insn->dst_reg * 2 + 1));
3076 		emit_br(nfp_prog, BR_BNE, insn->off, 0);
3077 		return 0;
3078 	}
3079 
3080 	tmp_reg = ur_load_imm_any(nfp_prog, imm & ~0U, imm_b(nfp_prog));
3081 	emit_alu(nfp_prog, reg_none(),
3082 		 reg_a(insn->dst_reg * 2), ALU_OP_XOR, tmp_reg);
3083 	emit_br(nfp_prog, BR_BNE, insn->off, 0);
3084 
3085 	tmp_reg = ur_load_imm_any(nfp_prog, imm >> 32, imm_b(nfp_prog));
3086 	emit_alu(nfp_prog, reg_none(),
3087 		 reg_a(insn->dst_reg * 2 + 1), ALU_OP_XOR, tmp_reg);
3088 	emit_br(nfp_prog, BR_BNE, insn->off, 0);
3089 
3090 	return 0;
3091 }
3092 
3093 static int jeq_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
3094 {
3095 	const struct bpf_insn *insn = &meta->insn;
3096 
3097 	emit_alu(nfp_prog, imm_a(nfp_prog), reg_a(insn->dst_reg * 2),
3098 		 ALU_OP_XOR, reg_b(insn->src_reg * 2));
3099 	emit_alu(nfp_prog, imm_b(nfp_prog), reg_a(insn->dst_reg * 2 + 1),
3100 		 ALU_OP_XOR, reg_b(insn->src_reg * 2 + 1));
3101 	emit_alu(nfp_prog, reg_none(),
3102 		 imm_a(nfp_prog), ALU_OP_OR, imm_b(nfp_prog));
3103 	emit_br(nfp_prog, BR_BEQ, insn->off, 0);
3104 
3105 	return 0;
3106 }
3107 
3108 static int jset_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
3109 {
3110 	return wrp_test_reg(nfp_prog, meta, ALU_OP_AND, BR_BNE);
3111 }
3112 
3113 static int jne_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
3114 {
3115 	return wrp_test_reg(nfp_prog, meta, ALU_OP_XOR, BR_BNE);
3116 }
3117 
3118 static int
3119 bpf_to_bpf_call(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
3120 {
3121 	u32 ret_tgt, stack_depth, offset_br;
3122 	swreg tmp_reg;
3123 
3124 	stack_depth = round_up(nfp_prog->stack_frame_depth, STACK_FRAME_ALIGN);
3125 	/* Space for saving the return address is accounted for by the callee,
3126 	 * so stack_depth can be zero for the main function.
3127 	 */
3128 	if (stack_depth) {
3129 		tmp_reg = ur_load_imm_any(nfp_prog, stack_depth,
3130 					  stack_imm(nfp_prog));
3131 		emit_alu(nfp_prog, stack_reg(nfp_prog),
3132 			 stack_reg(nfp_prog), ALU_OP_ADD, tmp_reg);
3133 		emit_csr_wr(nfp_prog, stack_reg(nfp_prog),
3134 			    NFP_CSR_ACT_LM_ADDR0);
3135 	}
3136 
3137 	/* Two cases for jumping to the callee:
3138 	 *
3139 	 * - If callee uses and needs to save R6~R9 then:
3140 	 *     1. Put the start offset of the callee into imm_b(). This will
3141 	 *        require a fixup step, as we do not necessarily know this
3142 	 *        address yet.
3143 	 *     2. Put the return address from the callee to the caller into
3144 	 *        register ret_reg().
3145 	 *     3. (After defer slots are consumed) Jump to the subroutine that
3146 	 *        pushes the registers to the stack.
3147 	 *   The subroutine acts as a trampoline, and returns to the address in
3148 	 *   imm_b(), i.e. jumps to the callee.
3149 	 *
3150 	 * - If callee does not need to save R6~R9 then just load return
3151 	 *   address to the caller in ret_reg(), and jump to the callee
3152 	 *   directly.
3153 	 *
3154 	 * Using ret_reg() to pass the return address to the callee is set here
3155 	 * as a convention. The callee can then push this address onto its
3156 	 * stack frame in its prologue. The advantages of passing the return
3157 	 * address through ret_reg(), instead of pushing it to the stack right
3158 	 * here, are the following:
3159 	 * - It looks cleaner.
3160 	 * - If the called function is called multiple time, we get a lower
3161 	 *   program size.
3162 	 * - We save two no-op instructions that should be added just before
3163 	 *   the emit_br() when stack depth is not null otherwise.
3164 	 * - If we ever find a register to hold the return address during whole
3165 	 *   execution of the callee, we will not have to push the return
3166 	 *   address to the stack for leaf functions.
3167 	 */
3168 	if (!meta->jmp_dst) {
3169 		pr_err("BUG: BPF-to-BPF call has no destination recorded\n");
3170 		return -ELOOP;
3171 	}
3172 	if (nfp_prog->subprog[meta->jmp_dst->subprog_idx].needs_reg_push) {
3173 		ret_tgt = nfp_prog_current_offset(nfp_prog) + 3;
3174 		emit_br_relo(nfp_prog, BR_UNC, BR_OFF_RELO, 2,
3175 			     RELO_BR_GO_CALL_PUSH_REGS);
3176 		offset_br = nfp_prog_current_offset(nfp_prog);
3177 		wrp_immed_relo(nfp_prog, imm_b(nfp_prog), 0, RELO_IMMED_REL);
3178 	} else {
3179 		ret_tgt = nfp_prog_current_offset(nfp_prog) + 2;
3180 		emit_br(nfp_prog, BR_UNC, meta->n + 1 + meta->insn.imm, 1);
3181 		offset_br = nfp_prog_current_offset(nfp_prog);
3182 	}
3183 	wrp_immed_relo(nfp_prog, ret_reg(nfp_prog), ret_tgt, RELO_IMMED_REL);
3184 
3185 	if (!nfp_prog_confirm_current_offset(nfp_prog, ret_tgt))
3186 		return -EINVAL;
3187 
3188 	if (stack_depth) {
3189 		tmp_reg = ur_load_imm_any(nfp_prog, stack_depth,
3190 					  stack_imm(nfp_prog));
3191 		emit_alu(nfp_prog, stack_reg(nfp_prog),
3192 			 stack_reg(nfp_prog), ALU_OP_SUB, tmp_reg);
3193 		emit_csr_wr(nfp_prog, stack_reg(nfp_prog),
3194 			    NFP_CSR_ACT_LM_ADDR0);
3195 		wrp_nops(nfp_prog, 3);
3196 	}
3197 
3198 	meta->num_insns_after_br = nfp_prog_current_offset(nfp_prog);
3199 	meta->num_insns_after_br -= offset_br;
3200 
3201 	return 0;
3202 }
3203 
3204 static int helper_call(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
3205 {
3206 	switch (meta->insn.imm) {
3207 	case BPF_FUNC_xdp_adjust_head:
3208 		return adjust_head(nfp_prog, meta);
3209 	case BPF_FUNC_xdp_adjust_tail:
3210 		return adjust_tail(nfp_prog, meta);
3211 	case BPF_FUNC_map_lookup_elem:
3212 	case BPF_FUNC_map_update_elem:
3213 	case BPF_FUNC_map_delete_elem:
3214 		return map_call_stack_common(nfp_prog, meta);
3215 	case BPF_FUNC_get_prandom_u32:
3216 		return nfp_get_prandom_u32(nfp_prog, meta);
3217 	case BPF_FUNC_perf_event_output:
3218 		return nfp_perf_event_output(nfp_prog, meta);
3219 	default:
3220 		WARN_ONCE(1, "verifier allowed unsupported function\n");
3221 		return -EOPNOTSUPP;
3222 	}
3223 }
3224 
3225 static int call(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
3226 {
3227 	if (is_mbpf_pseudo_call(meta))
3228 		return bpf_to_bpf_call(nfp_prog, meta);
3229 	else
3230 		return helper_call(nfp_prog, meta);
3231 }
3232 
3233 static bool nfp_is_main_function(struct nfp_insn_meta *meta)
3234 {
3235 	return meta->subprog_idx == 0;
3236 }
3237 
3238 static int goto_out(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
3239 {
3240 	emit_br_relo(nfp_prog, BR_UNC, BR_OFF_RELO, 0, RELO_BR_GO_OUT);
3241 
3242 	return 0;
3243 }
3244 
3245 static int
3246 nfp_subprog_epilogue(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
3247 {
3248 	if (nfp_prog->subprog[meta->subprog_idx].needs_reg_push) {
3249 		/* Pop R6~R9 to the stack via related subroutine.
3250 		 * We loaded the return address to the caller into ret_reg().
3251 		 * This means that the subroutine does not come back here, we
3252 		 * make it jump back to the subprogram caller directly!
3253 		 */
3254 		emit_br_relo(nfp_prog, BR_UNC, BR_OFF_RELO, 1,
3255 			     RELO_BR_GO_CALL_POP_REGS);
3256 		/* Pop return address from the stack. */
3257 		wrp_mov(nfp_prog, ret_reg(nfp_prog), reg_lm(0, 0));
3258 	} else {
3259 		/* Pop return address from the stack. */
3260 		wrp_mov(nfp_prog, ret_reg(nfp_prog), reg_lm(0, 0));
3261 		/* Jump back to caller if no callee-saved registers were used
3262 		 * by the subprogram.
3263 		 */
3264 		emit_rtn(nfp_prog, ret_reg(nfp_prog), 0);
3265 	}
3266 
3267 	return 0;
3268 }
3269 
3270 static int jmp_exit(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
3271 {
3272 	if (nfp_is_main_function(meta))
3273 		return goto_out(nfp_prog, meta);
3274 	else
3275 		return nfp_subprog_epilogue(nfp_prog, meta);
3276 }
3277 
3278 static const instr_cb_t instr_cb[256] = {
3279 	[BPF_ALU64 | BPF_MOV | BPF_X] =	mov_reg64,
3280 	[BPF_ALU64 | BPF_MOV | BPF_K] =	mov_imm64,
3281 	[BPF_ALU64 | BPF_XOR | BPF_X] =	xor_reg64,
3282 	[BPF_ALU64 | BPF_XOR | BPF_K] =	xor_imm64,
3283 	[BPF_ALU64 | BPF_AND | BPF_X] =	and_reg64,
3284 	[BPF_ALU64 | BPF_AND | BPF_K] =	and_imm64,
3285 	[BPF_ALU64 | BPF_OR | BPF_X] =	or_reg64,
3286 	[BPF_ALU64 | BPF_OR | BPF_K] =	or_imm64,
3287 	[BPF_ALU64 | BPF_ADD | BPF_X] =	add_reg64,
3288 	[BPF_ALU64 | BPF_ADD | BPF_K] =	add_imm64,
3289 	[BPF_ALU64 | BPF_SUB | BPF_X] =	sub_reg64,
3290 	[BPF_ALU64 | BPF_SUB | BPF_K] =	sub_imm64,
3291 	[BPF_ALU64 | BPF_MUL | BPF_X] =	mul_reg64,
3292 	[BPF_ALU64 | BPF_MUL | BPF_K] =	mul_imm64,
3293 	[BPF_ALU64 | BPF_DIV | BPF_X] =	div_reg64,
3294 	[BPF_ALU64 | BPF_DIV | BPF_K] =	div_imm64,
3295 	[BPF_ALU64 | BPF_NEG] =		neg_reg64,
3296 	[BPF_ALU64 | BPF_LSH | BPF_X] =	shl_reg64,
3297 	[BPF_ALU64 | BPF_LSH | BPF_K] =	shl_imm64,
3298 	[BPF_ALU64 | BPF_RSH | BPF_X] =	shr_reg64,
3299 	[BPF_ALU64 | BPF_RSH | BPF_K] =	shr_imm64,
3300 	[BPF_ALU64 | BPF_ARSH | BPF_X] = ashr_reg64,
3301 	[BPF_ALU64 | BPF_ARSH | BPF_K] = ashr_imm64,
3302 	[BPF_ALU | BPF_MOV | BPF_X] =	mov_reg,
3303 	[BPF_ALU | BPF_MOV | BPF_K] =	mov_imm,
3304 	[BPF_ALU | BPF_XOR | BPF_X] =	xor_reg,
3305 	[BPF_ALU | BPF_XOR | BPF_K] =	xor_imm,
3306 	[BPF_ALU | BPF_AND | BPF_X] =	and_reg,
3307 	[BPF_ALU | BPF_AND | BPF_K] =	and_imm,
3308 	[BPF_ALU | BPF_OR | BPF_X] =	or_reg,
3309 	[BPF_ALU | BPF_OR | BPF_K] =	or_imm,
3310 	[BPF_ALU | BPF_ADD | BPF_X] =	add_reg,
3311 	[BPF_ALU | BPF_ADD | BPF_K] =	add_imm,
3312 	[BPF_ALU | BPF_SUB | BPF_X] =	sub_reg,
3313 	[BPF_ALU | BPF_SUB | BPF_K] =	sub_imm,
3314 	[BPF_ALU | BPF_MUL | BPF_X] =	mul_reg,
3315 	[BPF_ALU | BPF_MUL | BPF_K] =	mul_imm,
3316 	[BPF_ALU | BPF_DIV | BPF_X] =	div_reg,
3317 	[BPF_ALU | BPF_DIV | BPF_K] =	div_imm,
3318 	[BPF_ALU | BPF_NEG] =		neg_reg,
3319 	[BPF_ALU | BPF_LSH | BPF_K] =	shl_imm,
3320 	[BPF_ALU | BPF_ARSH | BPF_X] =	ashr_reg,
3321 	[BPF_ALU | BPF_ARSH | BPF_K] =	ashr_imm,
3322 	[BPF_ALU | BPF_END | BPF_X] =	end_reg32,
3323 	[BPF_LD | BPF_IMM | BPF_DW] =	imm_ld8,
3324 	[BPF_LD | BPF_ABS | BPF_B] =	data_ld1,
3325 	[BPF_LD | BPF_ABS | BPF_H] =	data_ld2,
3326 	[BPF_LD | BPF_ABS | BPF_W] =	data_ld4,
3327 	[BPF_LD | BPF_IND | BPF_B] =	data_ind_ld1,
3328 	[BPF_LD | BPF_IND | BPF_H] =	data_ind_ld2,
3329 	[BPF_LD | BPF_IND | BPF_W] =	data_ind_ld4,
3330 	[BPF_LDX | BPF_MEM | BPF_B] =	mem_ldx1,
3331 	[BPF_LDX | BPF_MEM | BPF_H] =	mem_ldx2,
3332 	[BPF_LDX | BPF_MEM | BPF_W] =	mem_ldx4,
3333 	[BPF_LDX | BPF_MEM | BPF_DW] =	mem_ldx8,
3334 	[BPF_STX | BPF_MEM | BPF_B] =	mem_stx1,
3335 	[BPF_STX | BPF_MEM | BPF_H] =	mem_stx2,
3336 	[BPF_STX | BPF_MEM | BPF_W] =	mem_stx4,
3337 	[BPF_STX | BPF_MEM | BPF_DW] =	mem_stx8,
3338 	[BPF_STX | BPF_XADD | BPF_W] =	mem_xadd4,
3339 	[BPF_STX | BPF_XADD | BPF_DW] =	mem_xadd8,
3340 	[BPF_ST | BPF_MEM | BPF_B] =	mem_st1,
3341 	[BPF_ST | BPF_MEM | BPF_H] =	mem_st2,
3342 	[BPF_ST | BPF_MEM | BPF_W] =	mem_st4,
3343 	[BPF_ST | BPF_MEM | BPF_DW] =	mem_st8,
3344 	[BPF_JMP | BPF_JA | BPF_K] =	jump,
3345 	[BPF_JMP | BPF_JEQ | BPF_K] =	jeq_imm,
3346 	[BPF_JMP | BPF_JGT | BPF_K] =	cmp_imm,
3347 	[BPF_JMP | BPF_JGE | BPF_K] =	cmp_imm,
3348 	[BPF_JMP | BPF_JLT | BPF_K] =	cmp_imm,
3349 	[BPF_JMP | BPF_JLE | BPF_K] =	cmp_imm,
3350 	[BPF_JMP | BPF_JSGT | BPF_K] =  cmp_imm,
3351 	[BPF_JMP | BPF_JSGE | BPF_K] =  cmp_imm,
3352 	[BPF_JMP | BPF_JSLT | BPF_K] =  cmp_imm,
3353 	[BPF_JMP | BPF_JSLE | BPF_K] =  cmp_imm,
3354 	[BPF_JMP | BPF_JSET | BPF_K] =	jset_imm,
3355 	[BPF_JMP | BPF_JNE | BPF_K] =	jne_imm,
3356 	[BPF_JMP | BPF_JEQ | BPF_X] =	jeq_reg,
3357 	[BPF_JMP | BPF_JGT | BPF_X] =	cmp_reg,
3358 	[BPF_JMP | BPF_JGE | BPF_X] =	cmp_reg,
3359 	[BPF_JMP | BPF_JLT | BPF_X] =	cmp_reg,
3360 	[BPF_JMP | BPF_JLE | BPF_X] =	cmp_reg,
3361 	[BPF_JMP | BPF_JSGT | BPF_X] =  cmp_reg,
3362 	[BPF_JMP | BPF_JSGE | BPF_X] =  cmp_reg,
3363 	[BPF_JMP | BPF_JSLT | BPF_X] =  cmp_reg,
3364 	[BPF_JMP | BPF_JSLE | BPF_X] =  cmp_reg,
3365 	[BPF_JMP | BPF_JSET | BPF_X] =	jset_reg,
3366 	[BPF_JMP | BPF_JNE | BPF_X] =	jne_reg,
3367 	[BPF_JMP | BPF_CALL] =		call,
3368 	[BPF_JMP | BPF_EXIT] =		jmp_exit,
3369 };
3370 
3371 /* --- Assembler logic --- */
3372 static int
3373 nfp_fixup_immed_relo(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
3374 		     struct nfp_insn_meta *jmp_dst, u32 br_idx)
3375 {
3376 	if (immed_get_value(nfp_prog->prog[br_idx + 1])) {
3377 		pr_err("BUG: failed to fix up callee register saving\n");
3378 		return -EINVAL;
3379 	}
3380 
3381 	immed_set_value(&nfp_prog->prog[br_idx + 1], jmp_dst->off);
3382 
3383 	return 0;
3384 }
3385 
3386 static int nfp_fixup_branches(struct nfp_prog *nfp_prog)
3387 {
3388 	struct nfp_insn_meta *meta, *jmp_dst;
3389 	u32 idx, br_idx;
3390 	int err;
3391 
3392 	list_for_each_entry(meta, &nfp_prog->insns, l) {
3393 		if (meta->skip)
3394 			continue;
3395 		if (BPF_CLASS(meta->insn.code) != BPF_JMP)
3396 			continue;
3397 		if (meta->insn.code == (BPF_JMP | BPF_EXIT) &&
3398 		    !nfp_is_main_function(meta))
3399 			continue;
3400 		if (is_mbpf_helper_call(meta))
3401 			continue;
3402 
3403 		if (list_is_last(&meta->l, &nfp_prog->insns))
3404 			br_idx = nfp_prog->last_bpf_off;
3405 		else
3406 			br_idx = list_next_entry(meta, l)->off - 1;
3407 
3408 		/* For BPF-to-BPF function call, a stack adjustment sequence is
3409 		 * generated after the return instruction. Therefore, we must
3410 		 * withdraw the length of this sequence to have br_idx pointing
3411 		 * to where the "branch" NFP instruction is expected to be.
3412 		 */
3413 		if (is_mbpf_pseudo_call(meta))
3414 			br_idx -= meta->num_insns_after_br;
3415 
3416 		if (!nfp_is_br(nfp_prog->prog[br_idx])) {
3417 			pr_err("Fixup found block not ending in branch %d %02x %016llx!!\n",
3418 			       br_idx, meta->insn.code, nfp_prog->prog[br_idx]);
3419 			return -ELOOP;
3420 		}
3421 
3422 		if (meta->insn.code == (BPF_JMP | BPF_EXIT))
3423 			continue;
3424 
3425 		/* Leave special branches for later */
3426 		if (FIELD_GET(OP_RELO_TYPE, nfp_prog->prog[br_idx]) !=
3427 		    RELO_BR_REL && !is_mbpf_pseudo_call(meta))
3428 			continue;
3429 
3430 		if (!meta->jmp_dst) {
3431 			pr_err("Non-exit jump doesn't have destination info recorded!!\n");
3432 			return -ELOOP;
3433 		}
3434 
3435 		jmp_dst = meta->jmp_dst;
3436 
3437 		if (jmp_dst->skip) {
3438 			pr_err("Branch landing on removed instruction!!\n");
3439 			return -ELOOP;
3440 		}
3441 
3442 		if (is_mbpf_pseudo_call(meta) &&
3443 		    nfp_prog->subprog[jmp_dst->subprog_idx].needs_reg_push) {
3444 			err = nfp_fixup_immed_relo(nfp_prog, meta,
3445 						   jmp_dst, br_idx);
3446 			if (err)
3447 				return err;
3448 		}
3449 
3450 		if (FIELD_GET(OP_RELO_TYPE, nfp_prog->prog[br_idx]) !=
3451 		    RELO_BR_REL)
3452 			continue;
3453 
3454 		for (idx = meta->off; idx <= br_idx; idx++) {
3455 			if (!nfp_is_br(nfp_prog->prog[idx]))
3456 				continue;
3457 			br_set_offset(&nfp_prog->prog[idx], jmp_dst->off);
3458 		}
3459 	}
3460 
3461 	return 0;
3462 }
3463 
3464 static void nfp_intro(struct nfp_prog *nfp_prog)
3465 {
3466 	wrp_immed(nfp_prog, plen_reg(nfp_prog), GENMASK(13, 0));
3467 	emit_alu(nfp_prog, plen_reg(nfp_prog),
3468 		 plen_reg(nfp_prog), ALU_OP_AND, pv_len(nfp_prog));
3469 }
3470 
3471 static void
3472 nfp_subprog_prologue(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
3473 {
3474 	/* Save return address into the stack. */
3475 	wrp_mov(nfp_prog, reg_lm(0, 0), ret_reg(nfp_prog));
3476 }
3477 
3478 static void
3479 nfp_start_subprog(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
3480 {
3481 	unsigned int depth = nfp_prog->subprog[meta->subprog_idx].stack_depth;
3482 
3483 	nfp_prog->stack_frame_depth = round_up(depth, 4);
3484 	nfp_subprog_prologue(nfp_prog, meta);
3485 }
3486 
3487 bool nfp_is_subprog_start(struct nfp_insn_meta *meta)
3488 {
3489 	return meta->flags & FLAG_INSN_IS_SUBPROG_START;
3490 }
3491 
3492 static void nfp_outro_tc_da(struct nfp_prog *nfp_prog)
3493 {
3494 	/* TC direct-action mode:
3495 	 *   0,1   ok        NOT SUPPORTED[1]
3496 	 *   2   drop  0x22 -> drop,  count as stat1
3497 	 *   4,5 nuke  0x02 -> drop
3498 	 *   7  redir  0x44 -> redir, count as stat2
3499 	 *   * unspec  0x11 -> pass,  count as stat0
3500 	 *
3501 	 * [1] We can't support OK and RECLASSIFY because we can't tell TC
3502 	 *     the exact decision made.  We are forced to support UNSPEC
3503 	 *     to handle aborts so that's the only one we handle for passing
3504 	 *     packets up the stack.
3505 	 */
3506 	/* Target for aborts */
3507 	nfp_prog->tgt_abort = nfp_prog_current_offset(nfp_prog);
3508 
3509 	emit_br_relo(nfp_prog, BR_UNC, BR_OFF_RELO, 2, RELO_BR_NEXT_PKT);
3510 
3511 	wrp_mov(nfp_prog, reg_a(0), NFP_BPF_ABI_FLAGS);
3512 	emit_ld_field(nfp_prog, reg_a(0), 0xc, reg_imm(0x11), SHF_SC_L_SHF, 16);
3513 
3514 	/* Target for normal exits */
3515 	nfp_prog->tgt_out = nfp_prog_current_offset(nfp_prog);
3516 
3517 	/* if R0 > 7 jump to abort */
3518 	emit_alu(nfp_prog, reg_none(), reg_imm(7), ALU_OP_SUB, reg_b(0));
3519 	emit_br(nfp_prog, BR_BLO, nfp_prog->tgt_abort, 0);
3520 	wrp_mov(nfp_prog, reg_a(0), NFP_BPF_ABI_FLAGS);
3521 
3522 	wrp_immed(nfp_prog, reg_b(2), 0x41221211);
3523 	wrp_immed(nfp_prog, reg_b(3), 0x41001211);
3524 
3525 	emit_shf(nfp_prog, reg_a(1),
3526 		 reg_none(), SHF_OP_NONE, reg_b(0), SHF_SC_L_SHF, 2);
3527 
3528 	emit_alu(nfp_prog, reg_none(), reg_a(1), ALU_OP_OR, reg_imm(0));
3529 	emit_shf(nfp_prog, reg_a(2),
3530 		 reg_imm(0xf), SHF_OP_AND, reg_b(2), SHF_SC_R_SHF, 0);
3531 
3532 	emit_alu(nfp_prog, reg_none(), reg_a(1), ALU_OP_OR, reg_imm(0));
3533 	emit_shf(nfp_prog, reg_b(2),
3534 		 reg_imm(0xf), SHF_OP_AND, reg_b(3), SHF_SC_R_SHF, 0);
3535 
3536 	emit_br_relo(nfp_prog, BR_UNC, BR_OFF_RELO, 2, RELO_BR_NEXT_PKT);
3537 
3538 	emit_shf(nfp_prog, reg_b(2),
3539 		 reg_a(2), SHF_OP_OR, reg_b(2), SHF_SC_L_SHF, 4);
3540 	emit_ld_field(nfp_prog, reg_a(0), 0xc, reg_b(2), SHF_SC_L_SHF, 16);
3541 }
3542 
3543 static void nfp_outro_xdp(struct nfp_prog *nfp_prog)
3544 {
3545 	/* XDP return codes:
3546 	 *   0 aborted  0x82 -> drop,  count as stat3
3547 	 *   1    drop  0x22 -> drop,  count as stat1
3548 	 *   2    pass  0x11 -> pass,  count as stat0
3549 	 *   3      tx  0x44 -> redir, count as stat2
3550 	 *   * unknown  0x82 -> drop,  count as stat3
3551 	 */
3552 	/* Target for aborts */
3553 	nfp_prog->tgt_abort = nfp_prog_current_offset(nfp_prog);
3554 
3555 	emit_br_relo(nfp_prog, BR_UNC, BR_OFF_RELO, 2, RELO_BR_NEXT_PKT);
3556 
3557 	wrp_mov(nfp_prog, reg_a(0), NFP_BPF_ABI_FLAGS);
3558 	emit_ld_field(nfp_prog, reg_a(0), 0xc, reg_imm(0x82), SHF_SC_L_SHF, 16);
3559 
3560 	/* Target for normal exits */
3561 	nfp_prog->tgt_out = nfp_prog_current_offset(nfp_prog);
3562 
3563 	/* if R0 > 3 jump to abort */
3564 	emit_alu(nfp_prog, reg_none(), reg_imm(3), ALU_OP_SUB, reg_b(0));
3565 	emit_br(nfp_prog, BR_BLO, nfp_prog->tgt_abort, 0);
3566 
3567 	wrp_immed(nfp_prog, reg_b(2), 0x44112282);
3568 
3569 	emit_shf(nfp_prog, reg_a(1),
3570 		 reg_none(), SHF_OP_NONE, reg_b(0), SHF_SC_L_SHF, 3);
3571 
3572 	emit_alu(nfp_prog, reg_none(), reg_a(1), ALU_OP_OR, reg_imm(0));
3573 	emit_shf(nfp_prog, reg_b(2),
3574 		 reg_imm(0xff), SHF_OP_AND, reg_b(2), SHF_SC_R_SHF, 0);
3575 
3576 	emit_br_relo(nfp_prog, BR_UNC, BR_OFF_RELO, 2, RELO_BR_NEXT_PKT);
3577 
3578 	wrp_mov(nfp_prog, reg_a(0), NFP_BPF_ABI_FLAGS);
3579 	emit_ld_field(nfp_prog, reg_a(0), 0xc, reg_b(2), SHF_SC_L_SHF, 16);
3580 }
3581 
3582 static bool nfp_prog_needs_callee_reg_save(struct nfp_prog *nfp_prog)
3583 {
3584 	unsigned int idx;
3585 
3586 	for (idx = 1; idx < nfp_prog->subprog_cnt; idx++)
3587 		if (nfp_prog->subprog[idx].needs_reg_push)
3588 			return true;
3589 
3590 	return false;
3591 }
3592 
3593 static void nfp_push_callee_registers(struct nfp_prog *nfp_prog)
3594 {
3595 	u8 reg;
3596 
3597 	/* Subroutine: Save all callee saved registers (R6 ~ R9).
3598 	 * imm_b() holds the return address.
3599 	 */
3600 	nfp_prog->tgt_call_push_regs = nfp_prog_current_offset(nfp_prog);
3601 	for (reg = BPF_REG_6; reg <= BPF_REG_9; reg++) {
3602 		u8 adj = (reg - BPF_REG_0) * 2;
3603 		u8 idx = (reg - BPF_REG_6) * 2;
3604 
3605 		/* The first slot in the stack frame is used to push the return
3606 		 * address in bpf_to_bpf_call(), start just after.
3607 		 */
3608 		wrp_mov(nfp_prog, reg_lm(0, 1 + idx), reg_b(adj));
3609 
3610 		if (reg == BPF_REG_8)
3611 			/* Prepare to jump back, last 3 insns use defer slots */
3612 			emit_rtn(nfp_prog, imm_b(nfp_prog), 3);
3613 
3614 		wrp_mov(nfp_prog, reg_lm(0, 1 + idx + 1), reg_b(adj + 1));
3615 	}
3616 }
3617 
3618 static void nfp_pop_callee_registers(struct nfp_prog *nfp_prog)
3619 {
3620 	u8 reg;
3621 
3622 	/* Subroutine: Restore all callee saved registers (R6 ~ R9).
3623 	 * ret_reg() holds the return address.
3624 	 */
3625 	nfp_prog->tgt_call_pop_regs = nfp_prog_current_offset(nfp_prog);
3626 	for (reg = BPF_REG_6; reg <= BPF_REG_9; reg++) {
3627 		u8 adj = (reg - BPF_REG_0) * 2;
3628 		u8 idx = (reg - BPF_REG_6) * 2;
3629 
3630 		/* The first slot in the stack frame holds the return address,
3631 		 * start popping just after that.
3632 		 */
3633 		wrp_mov(nfp_prog, reg_both(adj), reg_lm(0, 1 + idx));
3634 
3635 		if (reg == BPF_REG_8)
3636 			/* Prepare to jump back, last 3 insns use defer slots */
3637 			emit_rtn(nfp_prog, ret_reg(nfp_prog), 3);
3638 
3639 		wrp_mov(nfp_prog, reg_both(adj + 1), reg_lm(0, 1 + idx + 1));
3640 	}
3641 }
3642 
3643 static void nfp_outro(struct nfp_prog *nfp_prog)
3644 {
3645 	switch (nfp_prog->type) {
3646 	case BPF_PROG_TYPE_SCHED_CLS:
3647 		nfp_outro_tc_da(nfp_prog);
3648 		break;
3649 	case BPF_PROG_TYPE_XDP:
3650 		nfp_outro_xdp(nfp_prog);
3651 		break;
3652 	default:
3653 		WARN_ON(1);
3654 	}
3655 
3656 	if (!nfp_prog_needs_callee_reg_save(nfp_prog))
3657 		return;
3658 
3659 	nfp_push_callee_registers(nfp_prog);
3660 	nfp_pop_callee_registers(nfp_prog);
3661 }
3662 
3663 static int nfp_translate(struct nfp_prog *nfp_prog)
3664 {
3665 	struct nfp_insn_meta *meta;
3666 	unsigned int depth;
3667 	int err;
3668 
3669 	depth = nfp_prog->subprog[0].stack_depth;
3670 	nfp_prog->stack_frame_depth = round_up(depth, 4);
3671 
3672 	nfp_intro(nfp_prog);
3673 	if (nfp_prog->error)
3674 		return nfp_prog->error;
3675 
3676 	list_for_each_entry(meta, &nfp_prog->insns, l) {
3677 		instr_cb_t cb = instr_cb[meta->insn.code];
3678 
3679 		meta->off = nfp_prog_current_offset(nfp_prog);
3680 
3681 		if (nfp_is_subprog_start(meta)) {
3682 			nfp_start_subprog(nfp_prog, meta);
3683 			if (nfp_prog->error)
3684 				return nfp_prog->error;
3685 		}
3686 
3687 		if (meta->skip) {
3688 			nfp_prog->n_translated++;
3689 			continue;
3690 		}
3691 
3692 		if (nfp_meta_has_prev(nfp_prog, meta) &&
3693 		    nfp_meta_prev(meta)->double_cb)
3694 			cb = nfp_meta_prev(meta)->double_cb;
3695 		if (!cb)
3696 			return -ENOENT;
3697 		err = cb(nfp_prog, meta);
3698 		if (err)
3699 			return err;
3700 		if (nfp_prog->error)
3701 			return nfp_prog->error;
3702 
3703 		nfp_prog->n_translated++;
3704 	}
3705 
3706 	nfp_prog->last_bpf_off = nfp_prog_current_offset(nfp_prog) - 1;
3707 
3708 	nfp_outro(nfp_prog);
3709 	if (nfp_prog->error)
3710 		return nfp_prog->error;
3711 
3712 	wrp_nops(nfp_prog, NFP_USTORE_PREFETCH_WINDOW);
3713 	if (nfp_prog->error)
3714 		return nfp_prog->error;
3715 
3716 	return nfp_fixup_branches(nfp_prog);
3717 }
3718 
3719 /* --- Optimizations --- */
3720 static void nfp_bpf_opt_reg_init(struct nfp_prog *nfp_prog)
3721 {
3722 	struct nfp_insn_meta *meta;
3723 
3724 	list_for_each_entry(meta, &nfp_prog->insns, l) {
3725 		struct bpf_insn insn = meta->insn;
3726 
3727 		/* Programs converted from cBPF start with register xoring */
3728 		if (insn.code == (BPF_ALU64 | BPF_XOR | BPF_X) &&
3729 		    insn.src_reg == insn.dst_reg)
3730 			continue;
3731 
3732 		/* Programs start with R6 = R1 but we ignore the skb pointer */
3733 		if (insn.code == (BPF_ALU64 | BPF_MOV | BPF_X) &&
3734 		    insn.src_reg == 1 && insn.dst_reg == 6)
3735 			meta->skip = true;
3736 
3737 		/* Return as soon as something doesn't match */
3738 		if (!meta->skip)
3739 			return;
3740 	}
3741 }
3742 
3743 /* abs(insn.imm) will fit better into unrestricted reg immediate -
3744  * convert add/sub of a negative number into a sub/add of a positive one.
3745  */
3746 static void nfp_bpf_opt_neg_add_sub(struct nfp_prog *nfp_prog)
3747 {
3748 	struct nfp_insn_meta *meta;
3749 
3750 	list_for_each_entry(meta, &nfp_prog->insns, l) {
3751 		struct bpf_insn insn = meta->insn;
3752 
3753 		if (meta->skip)
3754 			continue;
3755 
3756 		if (BPF_CLASS(insn.code) != BPF_ALU &&
3757 		    BPF_CLASS(insn.code) != BPF_ALU64 &&
3758 		    BPF_CLASS(insn.code) != BPF_JMP)
3759 			continue;
3760 		if (BPF_SRC(insn.code) != BPF_K)
3761 			continue;
3762 		if (insn.imm >= 0)
3763 			continue;
3764 
3765 		if (BPF_CLASS(insn.code) == BPF_JMP) {
3766 			switch (BPF_OP(insn.code)) {
3767 			case BPF_JGE:
3768 			case BPF_JSGE:
3769 			case BPF_JLT:
3770 			case BPF_JSLT:
3771 				meta->jump_neg_op = true;
3772 				break;
3773 			default:
3774 				continue;
3775 			}
3776 		} else {
3777 			if (BPF_OP(insn.code) == BPF_ADD)
3778 				insn.code = BPF_CLASS(insn.code) | BPF_SUB;
3779 			else if (BPF_OP(insn.code) == BPF_SUB)
3780 				insn.code = BPF_CLASS(insn.code) | BPF_ADD;
3781 			else
3782 				continue;
3783 
3784 			meta->insn.code = insn.code | BPF_K;
3785 		}
3786 
3787 		meta->insn.imm = -insn.imm;
3788 	}
3789 }
3790 
3791 /* Remove masking after load since our load guarantees this is not needed */
3792 static void nfp_bpf_opt_ld_mask(struct nfp_prog *nfp_prog)
3793 {
3794 	struct nfp_insn_meta *meta1, *meta2;
3795 	const s32 exp_mask[] = {
3796 		[BPF_B] = 0x000000ffU,
3797 		[BPF_H] = 0x0000ffffU,
3798 		[BPF_W] = 0xffffffffU,
3799 	};
3800 
3801 	nfp_for_each_insn_walk2(nfp_prog, meta1, meta2) {
3802 		struct bpf_insn insn, next;
3803 
3804 		insn = meta1->insn;
3805 		next = meta2->insn;
3806 
3807 		if (BPF_CLASS(insn.code) != BPF_LD)
3808 			continue;
3809 		if (BPF_MODE(insn.code) != BPF_ABS &&
3810 		    BPF_MODE(insn.code) != BPF_IND)
3811 			continue;
3812 
3813 		if (next.code != (BPF_ALU64 | BPF_AND | BPF_K))
3814 			continue;
3815 
3816 		if (!exp_mask[BPF_SIZE(insn.code)])
3817 			continue;
3818 		if (exp_mask[BPF_SIZE(insn.code)] != next.imm)
3819 			continue;
3820 
3821 		if (next.src_reg || next.dst_reg)
3822 			continue;
3823 
3824 		if (meta2->flags & FLAG_INSN_IS_JUMP_DST)
3825 			continue;
3826 
3827 		meta2->skip = true;
3828 	}
3829 }
3830 
3831 static void nfp_bpf_opt_ld_shift(struct nfp_prog *nfp_prog)
3832 {
3833 	struct nfp_insn_meta *meta1, *meta2, *meta3;
3834 
3835 	nfp_for_each_insn_walk3(nfp_prog, meta1, meta2, meta3) {
3836 		struct bpf_insn insn, next1, next2;
3837 
3838 		insn = meta1->insn;
3839 		next1 = meta2->insn;
3840 		next2 = meta3->insn;
3841 
3842 		if (BPF_CLASS(insn.code) != BPF_LD)
3843 			continue;
3844 		if (BPF_MODE(insn.code) != BPF_ABS &&
3845 		    BPF_MODE(insn.code) != BPF_IND)
3846 			continue;
3847 		if (BPF_SIZE(insn.code) != BPF_W)
3848 			continue;
3849 
3850 		if (!(next1.code == (BPF_LSH | BPF_K | BPF_ALU64) &&
3851 		      next2.code == (BPF_RSH | BPF_K | BPF_ALU64)) &&
3852 		    !(next1.code == (BPF_RSH | BPF_K | BPF_ALU64) &&
3853 		      next2.code == (BPF_LSH | BPF_K | BPF_ALU64)))
3854 			continue;
3855 
3856 		if (next1.src_reg || next1.dst_reg ||
3857 		    next2.src_reg || next2.dst_reg)
3858 			continue;
3859 
3860 		if (next1.imm != 0x20 || next2.imm != 0x20)
3861 			continue;
3862 
3863 		if (meta2->flags & FLAG_INSN_IS_JUMP_DST ||
3864 		    meta3->flags & FLAG_INSN_IS_JUMP_DST)
3865 			continue;
3866 
3867 		meta2->skip = true;
3868 		meta3->skip = true;
3869 	}
3870 }
3871 
3872 /* load/store pair that forms memory copy sould look like the following:
3873  *
3874  *   ld_width R, [addr_src + offset_src]
3875  *   st_width [addr_dest + offset_dest], R
3876  *
3877  * The destination register of load and source register of store should
3878  * be the same, load and store should also perform at the same width.
3879  * If either of addr_src or addr_dest is stack pointer, we don't do the
3880  * CPP optimization as stack is modelled by registers on NFP.
3881  */
3882 static bool
3883 curr_pair_is_memcpy(struct nfp_insn_meta *ld_meta,
3884 		    struct nfp_insn_meta *st_meta)
3885 {
3886 	struct bpf_insn *ld = &ld_meta->insn;
3887 	struct bpf_insn *st = &st_meta->insn;
3888 
3889 	if (!is_mbpf_load(ld_meta) || !is_mbpf_store(st_meta))
3890 		return false;
3891 
3892 	if (ld_meta->ptr.type != PTR_TO_PACKET &&
3893 	    ld_meta->ptr.type != PTR_TO_MAP_VALUE)
3894 		return false;
3895 
3896 	if (st_meta->ptr.type != PTR_TO_PACKET)
3897 		return false;
3898 
3899 	if (BPF_SIZE(ld->code) != BPF_SIZE(st->code))
3900 		return false;
3901 
3902 	if (ld->dst_reg != st->src_reg)
3903 		return false;
3904 
3905 	/* There is jump to the store insn in this pair. */
3906 	if (st_meta->flags & FLAG_INSN_IS_JUMP_DST)
3907 		return false;
3908 
3909 	return true;
3910 }
3911 
3912 /* Currently, we only support chaining load/store pairs if:
3913  *
3914  *  - Their address base registers are the same.
3915  *  - Their address offsets are in the same order.
3916  *  - They operate at the same memory width.
3917  *  - There is no jump into the middle of them.
3918  */
3919 static bool
3920 curr_pair_chain_with_previous(struct nfp_insn_meta *ld_meta,
3921 			      struct nfp_insn_meta *st_meta,
3922 			      struct bpf_insn *prev_ld,
3923 			      struct bpf_insn *prev_st)
3924 {
3925 	u8 prev_size, curr_size, prev_ld_base, prev_st_base, prev_ld_dst;
3926 	struct bpf_insn *ld = &ld_meta->insn;
3927 	struct bpf_insn *st = &st_meta->insn;
3928 	s16 prev_ld_off, prev_st_off;
3929 
3930 	/* This pair is the start pair. */
3931 	if (!prev_ld)
3932 		return true;
3933 
3934 	prev_size = BPF_LDST_BYTES(prev_ld);
3935 	curr_size = BPF_LDST_BYTES(ld);
3936 	prev_ld_base = prev_ld->src_reg;
3937 	prev_st_base = prev_st->dst_reg;
3938 	prev_ld_dst = prev_ld->dst_reg;
3939 	prev_ld_off = prev_ld->off;
3940 	prev_st_off = prev_st->off;
3941 
3942 	if (ld->dst_reg != prev_ld_dst)
3943 		return false;
3944 
3945 	if (ld->src_reg != prev_ld_base || st->dst_reg != prev_st_base)
3946 		return false;
3947 
3948 	if (curr_size != prev_size)
3949 		return false;
3950 
3951 	/* There is jump to the head of this pair. */
3952 	if (ld_meta->flags & FLAG_INSN_IS_JUMP_DST)
3953 		return false;
3954 
3955 	/* Both in ascending order. */
3956 	if (prev_ld_off + prev_size == ld->off &&
3957 	    prev_st_off + prev_size == st->off)
3958 		return true;
3959 
3960 	/* Both in descending order. */
3961 	if (ld->off + curr_size == prev_ld_off &&
3962 	    st->off + curr_size == prev_st_off)
3963 		return true;
3964 
3965 	return false;
3966 }
3967 
3968 /* Return TRUE if cross memory access happens. Cross memory access means
3969  * store area is overlapping with load area that a later load might load
3970  * the value from previous store, for this case we can't treat the sequence
3971  * as an memory copy.
3972  */
3973 static bool
3974 cross_mem_access(struct bpf_insn *ld, struct nfp_insn_meta *head_ld_meta,
3975 		 struct nfp_insn_meta *head_st_meta)
3976 {
3977 	s16 head_ld_off, head_st_off, ld_off;
3978 
3979 	/* Different pointer types does not overlap. */
3980 	if (head_ld_meta->ptr.type != head_st_meta->ptr.type)
3981 		return false;
3982 
3983 	/* load and store are both PTR_TO_PACKET, check ID info.  */
3984 	if (head_ld_meta->ptr.id != head_st_meta->ptr.id)
3985 		return true;
3986 
3987 	/* Canonicalize the offsets. Turn all of them against the original
3988 	 * base register.
3989 	 */
3990 	head_ld_off = head_ld_meta->insn.off + head_ld_meta->ptr.off;
3991 	head_st_off = head_st_meta->insn.off + head_st_meta->ptr.off;
3992 	ld_off = ld->off + head_ld_meta->ptr.off;
3993 
3994 	/* Ascending order cross. */
3995 	if (ld_off > head_ld_off &&
3996 	    head_ld_off < head_st_off && ld_off >= head_st_off)
3997 		return true;
3998 
3999 	/* Descending order cross. */
4000 	if (ld_off < head_ld_off &&
4001 	    head_ld_off > head_st_off && ld_off <= head_st_off)
4002 		return true;
4003 
4004 	return false;
4005 }
4006 
4007 /* This pass try to identify the following instructoin sequences.
4008  *
4009  *   load R, [regA + offA]
4010  *   store [regB + offB], R
4011  *   load R, [regA + offA + const_imm_A]
4012  *   store [regB + offB + const_imm_A], R
4013  *   load R, [regA + offA + 2 * const_imm_A]
4014  *   store [regB + offB + 2 * const_imm_A], R
4015  *   ...
4016  *
4017  * Above sequence is typically generated by compiler when lowering
4018  * memcpy. NFP prefer using CPP instructions to accelerate it.
4019  */
4020 static void nfp_bpf_opt_ldst_gather(struct nfp_prog *nfp_prog)
4021 {
4022 	struct nfp_insn_meta *head_ld_meta = NULL;
4023 	struct nfp_insn_meta *head_st_meta = NULL;
4024 	struct nfp_insn_meta *meta1, *meta2;
4025 	struct bpf_insn *prev_ld = NULL;
4026 	struct bpf_insn *prev_st = NULL;
4027 	u8 count = 0;
4028 
4029 	nfp_for_each_insn_walk2(nfp_prog, meta1, meta2) {
4030 		struct bpf_insn *ld = &meta1->insn;
4031 		struct bpf_insn *st = &meta2->insn;
4032 
4033 		/* Reset record status if any of the following if true:
4034 		 *   - The current insn pair is not load/store.
4035 		 *   - The load/store pair doesn't chain with previous one.
4036 		 *   - The chained load/store pair crossed with previous pair.
4037 		 *   - The chained load/store pair has a total size of memory
4038 		 *     copy beyond 128 bytes which is the maximum length a
4039 		 *     single NFP CPP command can transfer.
4040 		 */
4041 		if (!curr_pair_is_memcpy(meta1, meta2) ||
4042 		    !curr_pair_chain_with_previous(meta1, meta2, prev_ld,
4043 						   prev_st) ||
4044 		    (head_ld_meta && (cross_mem_access(ld, head_ld_meta,
4045 						       head_st_meta) ||
4046 				      head_ld_meta->ldst_gather_len >= 128))) {
4047 			if (!count)
4048 				continue;
4049 
4050 			if (count > 1) {
4051 				s16 prev_ld_off = prev_ld->off;
4052 				s16 prev_st_off = prev_st->off;
4053 				s16 head_ld_off = head_ld_meta->insn.off;
4054 
4055 				if (prev_ld_off < head_ld_off) {
4056 					head_ld_meta->insn.off = prev_ld_off;
4057 					head_st_meta->insn.off = prev_st_off;
4058 					head_ld_meta->ldst_gather_len =
4059 						-head_ld_meta->ldst_gather_len;
4060 				}
4061 
4062 				head_ld_meta->paired_st = &head_st_meta->insn;
4063 				head_st_meta->skip = true;
4064 			} else {
4065 				head_ld_meta->ldst_gather_len = 0;
4066 			}
4067 
4068 			/* If the chain is ended by an load/store pair then this
4069 			 * could serve as the new head of the the next chain.
4070 			 */
4071 			if (curr_pair_is_memcpy(meta1, meta2)) {
4072 				head_ld_meta = meta1;
4073 				head_st_meta = meta2;
4074 				head_ld_meta->ldst_gather_len =
4075 					BPF_LDST_BYTES(ld);
4076 				meta1 = nfp_meta_next(meta1);
4077 				meta2 = nfp_meta_next(meta2);
4078 				prev_ld = ld;
4079 				prev_st = st;
4080 				count = 1;
4081 			} else {
4082 				head_ld_meta = NULL;
4083 				head_st_meta = NULL;
4084 				prev_ld = NULL;
4085 				prev_st = NULL;
4086 				count = 0;
4087 			}
4088 
4089 			continue;
4090 		}
4091 
4092 		if (!head_ld_meta) {
4093 			head_ld_meta = meta1;
4094 			head_st_meta = meta2;
4095 		} else {
4096 			meta1->skip = true;
4097 			meta2->skip = true;
4098 		}
4099 
4100 		head_ld_meta->ldst_gather_len += BPF_LDST_BYTES(ld);
4101 		meta1 = nfp_meta_next(meta1);
4102 		meta2 = nfp_meta_next(meta2);
4103 		prev_ld = ld;
4104 		prev_st = st;
4105 		count++;
4106 	}
4107 }
4108 
4109 static void nfp_bpf_opt_pkt_cache(struct nfp_prog *nfp_prog)
4110 {
4111 	struct nfp_insn_meta *meta, *range_node = NULL;
4112 	s16 range_start = 0, range_end = 0;
4113 	bool cache_avail = false;
4114 	struct bpf_insn *insn;
4115 	s32 range_ptr_off = 0;
4116 	u32 range_ptr_id = 0;
4117 
4118 	list_for_each_entry(meta, &nfp_prog->insns, l) {
4119 		if (meta->flags & FLAG_INSN_IS_JUMP_DST)
4120 			cache_avail = false;
4121 
4122 		if (meta->skip)
4123 			continue;
4124 
4125 		insn = &meta->insn;
4126 
4127 		if (is_mbpf_store_pkt(meta) ||
4128 		    insn->code == (BPF_JMP | BPF_CALL) ||
4129 		    is_mbpf_classic_store_pkt(meta) ||
4130 		    is_mbpf_classic_load(meta)) {
4131 			cache_avail = false;
4132 			continue;
4133 		}
4134 
4135 		if (!is_mbpf_load(meta))
4136 			continue;
4137 
4138 		if (meta->ptr.type != PTR_TO_PACKET || meta->ldst_gather_len) {
4139 			cache_avail = false;
4140 			continue;
4141 		}
4142 
4143 		if (!cache_avail) {
4144 			cache_avail = true;
4145 			if (range_node)
4146 				goto end_current_then_start_new;
4147 			goto start_new;
4148 		}
4149 
4150 		/* Check ID to make sure two reads share the same
4151 		 * variable offset against PTR_TO_PACKET, and check OFF
4152 		 * to make sure they also share the same constant
4153 		 * offset.
4154 		 *
4155 		 * OFFs don't really need to be the same, because they
4156 		 * are the constant offsets against PTR_TO_PACKET, so
4157 		 * for different OFFs, we could canonicalize them to
4158 		 * offsets against original packet pointer. We don't
4159 		 * support this.
4160 		 */
4161 		if (meta->ptr.id == range_ptr_id &&
4162 		    meta->ptr.off == range_ptr_off) {
4163 			s16 new_start = range_start;
4164 			s16 end, off = insn->off;
4165 			s16 new_end = range_end;
4166 			bool changed = false;
4167 
4168 			if (off < range_start) {
4169 				new_start = off;
4170 				changed = true;
4171 			}
4172 
4173 			end = off + BPF_LDST_BYTES(insn);
4174 			if (end > range_end) {
4175 				new_end = end;
4176 				changed = true;
4177 			}
4178 
4179 			if (!changed)
4180 				continue;
4181 
4182 			if (new_end - new_start <= 64) {
4183 				/* Install new range. */
4184 				range_start = new_start;
4185 				range_end = new_end;
4186 				continue;
4187 			}
4188 		}
4189 
4190 end_current_then_start_new:
4191 		range_node->pkt_cache.range_start = range_start;
4192 		range_node->pkt_cache.range_end = range_end;
4193 start_new:
4194 		range_node = meta;
4195 		range_node->pkt_cache.do_init = true;
4196 		range_ptr_id = range_node->ptr.id;
4197 		range_ptr_off = range_node->ptr.off;
4198 		range_start = insn->off;
4199 		range_end = insn->off + BPF_LDST_BYTES(insn);
4200 	}
4201 
4202 	if (range_node) {
4203 		range_node->pkt_cache.range_start = range_start;
4204 		range_node->pkt_cache.range_end = range_end;
4205 	}
4206 
4207 	list_for_each_entry(meta, &nfp_prog->insns, l) {
4208 		if (meta->skip)
4209 			continue;
4210 
4211 		if (is_mbpf_load_pkt(meta) && !meta->ldst_gather_len) {
4212 			if (meta->pkt_cache.do_init) {
4213 				range_start = meta->pkt_cache.range_start;
4214 				range_end = meta->pkt_cache.range_end;
4215 			} else {
4216 				meta->pkt_cache.range_start = range_start;
4217 				meta->pkt_cache.range_end = range_end;
4218 			}
4219 		}
4220 	}
4221 }
4222 
4223 static int nfp_bpf_optimize(struct nfp_prog *nfp_prog)
4224 {
4225 	nfp_bpf_opt_reg_init(nfp_prog);
4226 
4227 	nfp_bpf_opt_neg_add_sub(nfp_prog);
4228 	nfp_bpf_opt_ld_mask(nfp_prog);
4229 	nfp_bpf_opt_ld_shift(nfp_prog);
4230 	nfp_bpf_opt_ldst_gather(nfp_prog);
4231 	nfp_bpf_opt_pkt_cache(nfp_prog);
4232 
4233 	return 0;
4234 }
4235 
4236 static int nfp_bpf_replace_map_ptrs(struct nfp_prog *nfp_prog)
4237 {
4238 	struct nfp_insn_meta *meta1, *meta2;
4239 	struct nfp_bpf_map *nfp_map;
4240 	struct bpf_map *map;
4241 	u32 id;
4242 
4243 	nfp_for_each_insn_walk2(nfp_prog, meta1, meta2) {
4244 		if (meta1->skip || meta2->skip)
4245 			continue;
4246 
4247 		if (meta1->insn.code != (BPF_LD | BPF_IMM | BPF_DW) ||
4248 		    meta1->insn.src_reg != BPF_PSEUDO_MAP_FD)
4249 			continue;
4250 
4251 		map = (void *)(unsigned long)((u32)meta1->insn.imm |
4252 					      (u64)meta2->insn.imm << 32);
4253 		if (bpf_map_offload_neutral(map)) {
4254 			id = map->id;
4255 		} else {
4256 			nfp_map = map_to_offmap(map)->dev_priv;
4257 			id = nfp_map->tid;
4258 		}
4259 
4260 		meta1->insn.imm = id;
4261 		meta2->insn.imm = 0;
4262 	}
4263 
4264 	return 0;
4265 }
4266 
4267 static int nfp_bpf_ustore_calc(u64 *prog, unsigned int len)
4268 {
4269 	__le64 *ustore = (__force __le64 *)prog;
4270 	int i;
4271 
4272 	for (i = 0; i < len; i++) {
4273 		int err;
4274 
4275 		err = nfp_ustore_check_valid_no_ecc(prog[i]);
4276 		if (err)
4277 			return err;
4278 
4279 		ustore[i] = cpu_to_le64(nfp_ustore_calc_ecc_insn(prog[i]));
4280 	}
4281 
4282 	return 0;
4283 }
4284 
4285 static void nfp_bpf_prog_trim(struct nfp_prog *nfp_prog)
4286 {
4287 	void *prog;
4288 
4289 	prog = kvmalloc_array(nfp_prog->prog_len, sizeof(u64), GFP_KERNEL);
4290 	if (!prog)
4291 		return;
4292 
4293 	nfp_prog->__prog_alloc_len = nfp_prog->prog_len * sizeof(u64);
4294 	memcpy(prog, nfp_prog->prog, nfp_prog->__prog_alloc_len);
4295 	kvfree(nfp_prog->prog);
4296 	nfp_prog->prog = prog;
4297 }
4298 
4299 int nfp_bpf_jit(struct nfp_prog *nfp_prog)
4300 {
4301 	int ret;
4302 
4303 	ret = nfp_bpf_replace_map_ptrs(nfp_prog);
4304 	if (ret)
4305 		return ret;
4306 
4307 	ret = nfp_bpf_optimize(nfp_prog);
4308 	if (ret)
4309 		return ret;
4310 
4311 	ret = nfp_translate(nfp_prog);
4312 	if (ret) {
4313 		pr_err("Translation failed with error %d (translated: %u)\n",
4314 		       ret, nfp_prog->n_translated);
4315 		return -EINVAL;
4316 	}
4317 
4318 	nfp_bpf_prog_trim(nfp_prog);
4319 
4320 	return ret;
4321 }
4322 
4323 void nfp_bpf_jit_prepare(struct nfp_prog *nfp_prog, unsigned int cnt)
4324 {
4325 	struct nfp_insn_meta *meta;
4326 
4327 	/* Another pass to record jump information. */
4328 	list_for_each_entry(meta, &nfp_prog->insns, l) {
4329 		struct nfp_insn_meta *dst_meta;
4330 		u64 code = meta->insn.code;
4331 		unsigned int dst_idx;
4332 		bool pseudo_call;
4333 
4334 		if (BPF_CLASS(code) != BPF_JMP)
4335 			continue;
4336 		if (BPF_OP(code) == BPF_EXIT)
4337 			continue;
4338 		if (is_mbpf_helper_call(meta))
4339 			continue;
4340 
4341 		/* If opcode is BPF_CALL at this point, this can only be a
4342 		 * BPF-to-BPF call (a.k.a pseudo call).
4343 		 */
4344 		pseudo_call = BPF_OP(code) == BPF_CALL;
4345 
4346 		if (pseudo_call)
4347 			dst_idx = meta->n + 1 + meta->insn.imm;
4348 		else
4349 			dst_idx = meta->n + 1 + meta->insn.off;
4350 
4351 		dst_meta = nfp_bpf_goto_meta(nfp_prog, meta, dst_idx, cnt);
4352 
4353 		if (pseudo_call)
4354 			dst_meta->flags |= FLAG_INSN_IS_SUBPROG_START;
4355 
4356 		dst_meta->flags |= FLAG_INSN_IS_JUMP_DST;
4357 		meta->jmp_dst = dst_meta;
4358 	}
4359 }
4360 
4361 bool nfp_bpf_supported_opcode(u8 code)
4362 {
4363 	return !!instr_cb[code];
4364 }
4365 
4366 void *nfp_bpf_relo_for_vnic(struct nfp_prog *nfp_prog, struct nfp_bpf_vnic *bv)
4367 {
4368 	unsigned int i;
4369 	u64 *prog;
4370 	int err;
4371 
4372 	prog = kmemdup(nfp_prog->prog, nfp_prog->prog_len * sizeof(u64),
4373 		       GFP_KERNEL);
4374 	if (!prog)
4375 		return ERR_PTR(-ENOMEM);
4376 
4377 	for (i = 0; i < nfp_prog->prog_len; i++) {
4378 		enum nfp_relo_type special;
4379 		u32 val;
4380 		u16 off;
4381 
4382 		special = FIELD_GET(OP_RELO_TYPE, prog[i]);
4383 		switch (special) {
4384 		case RELO_NONE:
4385 			continue;
4386 		case RELO_BR_REL:
4387 			br_add_offset(&prog[i], bv->start_off);
4388 			break;
4389 		case RELO_BR_GO_OUT:
4390 			br_set_offset(&prog[i],
4391 				      nfp_prog->tgt_out + bv->start_off);
4392 			break;
4393 		case RELO_BR_GO_ABORT:
4394 			br_set_offset(&prog[i],
4395 				      nfp_prog->tgt_abort + bv->start_off);
4396 			break;
4397 		case RELO_BR_GO_CALL_PUSH_REGS:
4398 			if (!nfp_prog->tgt_call_push_regs) {
4399 				pr_err("BUG: failed to detect subprogram registers needs\n");
4400 				err = -EINVAL;
4401 				goto err_free_prog;
4402 			}
4403 			off = nfp_prog->tgt_call_push_regs + bv->start_off;
4404 			br_set_offset(&prog[i], off);
4405 			break;
4406 		case RELO_BR_GO_CALL_POP_REGS:
4407 			if (!nfp_prog->tgt_call_pop_regs) {
4408 				pr_err("BUG: failed to detect subprogram registers needs\n");
4409 				err = -EINVAL;
4410 				goto err_free_prog;
4411 			}
4412 			off = nfp_prog->tgt_call_pop_regs + bv->start_off;
4413 			br_set_offset(&prog[i], off);
4414 			break;
4415 		case RELO_BR_NEXT_PKT:
4416 			br_set_offset(&prog[i], bv->tgt_done);
4417 			break;
4418 		case RELO_BR_HELPER:
4419 			val = br_get_offset(prog[i]);
4420 			val -= BR_OFF_RELO;
4421 			switch (val) {
4422 			case BPF_FUNC_map_lookup_elem:
4423 				val = nfp_prog->bpf->helpers.map_lookup;
4424 				break;
4425 			case BPF_FUNC_map_update_elem:
4426 				val = nfp_prog->bpf->helpers.map_update;
4427 				break;
4428 			case BPF_FUNC_map_delete_elem:
4429 				val = nfp_prog->bpf->helpers.map_delete;
4430 				break;
4431 			case BPF_FUNC_perf_event_output:
4432 				val = nfp_prog->bpf->helpers.perf_event_output;
4433 				break;
4434 			default:
4435 				pr_err("relocation of unknown helper %d\n",
4436 				       val);
4437 				err = -EINVAL;
4438 				goto err_free_prog;
4439 			}
4440 			br_set_offset(&prog[i], val);
4441 			break;
4442 		case RELO_IMMED_REL:
4443 			immed_add_value(&prog[i], bv->start_off);
4444 			break;
4445 		}
4446 
4447 		prog[i] &= ~OP_RELO_TYPE;
4448 	}
4449 
4450 	err = nfp_bpf_ustore_calc(prog, nfp_prog->prog_len);
4451 	if (err)
4452 		goto err_free_prog;
4453 
4454 	return prog;
4455 
4456 err_free_prog:
4457 	kfree(prog);
4458 	return ERR_PTR(err);
4459 }
4460