1 /*
2  * Copyright (C) 2016-2017 Netronome Systems, Inc.
3  *
4  * This software is dual licensed under the GNU General License Version 2,
5  * June 1991 as shown in the file COPYING in the top-level directory of this
6  * source tree or the BSD 2-Clause License provided below.  You have the
7  * option to license this software under the complete terms of either license.
8  *
9  * The BSD 2-Clause License:
10  *
11  *     Redistribution and use in source and binary forms, with or
12  *     without modification, are permitted provided that the following
13  *     conditions are met:
14  *
15  *      1. Redistributions of source code must retain the above
16  *         copyright notice, this list of conditions and the following
17  *         disclaimer.
18  *
19  *      2. Redistributions in binary form must reproduce the above
20  *         copyright notice, this list of conditions and the following
21  *         disclaimer in the documentation and/or other materials
22  *         provided with the distribution.
23  *
24  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31  * SOFTWARE.
32  */
33 
34 #define pr_fmt(fmt)	"NFP net bpf: " fmt
35 
36 #include <linux/bug.h>
37 #include <linux/kernel.h>
38 #include <linux/bpf.h>
39 #include <linux/filter.h>
40 #include <linux/pkt_cls.h>
41 #include <linux/unistd.h>
42 
43 #include "main.h"
44 #include "../nfp_asm.h"
45 
46 /* --- NFP prog --- */
47 /* Foreach "multiple" entries macros provide pos and next<n> pointers.
48  * It's safe to modify the next pointers (but not pos).
49  */
50 #define nfp_for_each_insn_walk2(nfp_prog, pos, next)			\
51 	for (pos = list_first_entry(&(nfp_prog)->insns, typeof(*pos), l), \
52 	     next = list_next_entry(pos, l);			\
53 	     &(nfp_prog)->insns != &pos->l &&			\
54 	     &(nfp_prog)->insns != &next->l;			\
55 	     pos = nfp_meta_next(pos),				\
56 	     next = nfp_meta_next(pos))
57 
58 #define nfp_for_each_insn_walk3(nfp_prog, pos, next, next2)		\
59 	for (pos = list_first_entry(&(nfp_prog)->insns, typeof(*pos), l), \
60 	     next = list_next_entry(pos, l),			\
61 	     next2 = list_next_entry(next, l);			\
62 	     &(nfp_prog)->insns != &pos->l &&			\
63 	     &(nfp_prog)->insns != &next->l &&			\
64 	     &(nfp_prog)->insns != &next2->l;			\
65 	     pos = nfp_meta_next(pos),				\
66 	     next = nfp_meta_next(pos),				\
67 	     next2 = nfp_meta_next(next))
68 
69 static bool
70 nfp_meta_has_prev(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
71 {
72 	return meta->l.prev != &nfp_prog->insns;
73 }
74 
75 static void nfp_prog_push(struct nfp_prog *nfp_prog, u64 insn)
76 {
77 	if (nfp_prog->__prog_alloc_len == nfp_prog->prog_len) {
78 		nfp_prog->error = -ENOSPC;
79 		return;
80 	}
81 
82 	nfp_prog->prog[nfp_prog->prog_len] = insn;
83 	nfp_prog->prog_len++;
84 }
85 
86 static unsigned int nfp_prog_current_offset(struct nfp_prog *nfp_prog)
87 {
88 	return nfp_prog->prog_len;
89 }
90 
91 static bool
92 nfp_prog_confirm_current_offset(struct nfp_prog *nfp_prog, unsigned int off)
93 {
94 	/* If there is a recorded error we may have dropped instructions;
95 	 * that doesn't have to be due to translator bug, and the translation
96 	 * will fail anyway, so just return OK.
97 	 */
98 	if (nfp_prog->error)
99 		return true;
100 	return !WARN_ON_ONCE(nfp_prog_current_offset(nfp_prog) != off);
101 }
102 
103 /* --- Emitters --- */
104 static void
105 __emit_cmd(struct nfp_prog *nfp_prog, enum cmd_tgt_map op,
106 	   u8 mode, u8 xfer, u8 areg, u8 breg, u8 size, enum cmd_ctx_swap ctx,
107 	   bool indir)
108 {
109 	u64 insn;
110 
111 	insn =	FIELD_PREP(OP_CMD_A_SRC, areg) |
112 		FIELD_PREP(OP_CMD_CTX, ctx) |
113 		FIELD_PREP(OP_CMD_B_SRC, breg) |
114 		FIELD_PREP(OP_CMD_TOKEN, cmd_tgt_act[op].token) |
115 		FIELD_PREP(OP_CMD_XFER, xfer) |
116 		FIELD_PREP(OP_CMD_CNT, size) |
117 		FIELD_PREP(OP_CMD_SIG, ctx != CMD_CTX_NO_SWAP) |
118 		FIELD_PREP(OP_CMD_TGT_CMD, cmd_tgt_act[op].tgt_cmd) |
119 		FIELD_PREP(OP_CMD_INDIR, indir) |
120 		FIELD_PREP(OP_CMD_MODE, mode);
121 
122 	nfp_prog_push(nfp_prog, insn);
123 }
124 
125 static void
126 emit_cmd_any(struct nfp_prog *nfp_prog, enum cmd_tgt_map op, u8 mode, u8 xfer,
127 	     swreg lreg, swreg rreg, u8 size, enum cmd_ctx_swap ctx, bool indir)
128 {
129 	struct nfp_insn_re_regs reg;
130 	int err;
131 
132 	err = swreg_to_restricted(reg_none(), lreg, rreg, &reg, false);
133 	if (err) {
134 		nfp_prog->error = err;
135 		return;
136 	}
137 	if (reg.swap) {
138 		pr_err("cmd can't swap arguments\n");
139 		nfp_prog->error = -EFAULT;
140 		return;
141 	}
142 	if (reg.dst_lmextn || reg.src_lmextn) {
143 		pr_err("cmd can't use LMextn\n");
144 		nfp_prog->error = -EFAULT;
145 		return;
146 	}
147 
148 	__emit_cmd(nfp_prog, op, mode, xfer, reg.areg, reg.breg, size, ctx,
149 		   indir);
150 }
151 
152 static void
153 emit_cmd(struct nfp_prog *nfp_prog, enum cmd_tgt_map op, u8 mode, u8 xfer,
154 	 swreg lreg, swreg rreg, u8 size, enum cmd_ctx_swap ctx)
155 {
156 	emit_cmd_any(nfp_prog, op, mode, xfer, lreg, rreg, size, ctx, false);
157 }
158 
159 static void
160 emit_cmd_indir(struct nfp_prog *nfp_prog, enum cmd_tgt_map op, u8 mode, u8 xfer,
161 	       swreg lreg, swreg rreg, u8 size, enum cmd_ctx_swap ctx)
162 {
163 	emit_cmd_any(nfp_prog, op, mode, xfer, lreg, rreg, size, ctx, true);
164 }
165 
166 static void
167 __emit_br(struct nfp_prog *nfp_prog, enum br_mask mask, enum br_ev_pip ev_pip,
168 	  enum br_ctx_signal_state css, u16 addr, u8 defer)
169 {
170 	u16 addr_lo, addr_hi;
171 	u64 insn;
172 
173 	addr_lo = addr & (OP_BR_ADDR_LO >> __bf_shf(OP_BR_ADDR_LO));
174 	addr_hi = addr != addr_lo;
175 
176 	insn = OP_BR_BASE |
177 		FIELD_PREP(OP_BR_MASK, mask) |
178 		FIELD_PREP(OP_BR_EV_PIP, ev_pip) |
179 		FIELD_PREP(OP_BR_CSS, css) |
180 		FIELD_PREP(OP_BR_DEFBR, defer) |
181 		FIELD_PREP(OP_BR_ADDR_LO, addr_lo) |
182 		FIELD_PREP(OP_BR_ADDR_HI, addr_hi);
183 
184 	nfp_prog_push(nfp_prog, insn);
185 }
186 
187 static void
188 emit_br_relo(struct nfp_prog *nfp_prog, enum br_mask mask, u16 addr, u8 defer,
189 	     enum nfp_relo_type relo)
190 {
191 	if (mask == BR_UNC && defer > 2) {
192 		pr_err("BUG: branch defer out of bounds %d\n", defer);
193 		nfp_prog->error = -EFAULT;
194 		return;
195 	}
196 
197 	__emit_br(nfp_prog, mask,
198 		  mask != BR_UNC ? BR_EV_PIP_COND : BR_EV_PIP_UNCOND,
199 		  BR_CSS_NONE, addr, defer);
200 
201 	nfp_prog->prog[nfp_prog->prog_len - 1] |=
202 		FIELD_PREP(OP_RELO_TYPE, relo);
203 }
204 
205 static void
206 emit_br(struct nfp_prog *nfp_prog, enum br_mask mask, u16 addr, u8 defer)
207 {
208 	emit_br_relo(nfp_prog, mask, addr, defer, RELO_BR_REL);
209 }
210 
211 static void
212 __emit_immed(struct nfp_prog *nfp_prog, u16 areg, u16 breg, u16 imm_hi,
213 	     enum immed_width width, bool invert,
214 	     enum immed_shift shift, bool wr_both,
215 	     bool dst_lmextn, bool src_lmextn)
216 {
217 	u64 insn;
218 
219 	insn = OP_IMMED_BASE |
220 		FIELD_PREP(OP_IMMED_A_SRC, areg) |
221 		FIELD_PREP(OP_IMMED_B_SRC, breg) |
222 		FIELD_PREP(OP_IMMED_IMM, imm_hi) |
223 		FIELD_PREP(OP_IMMED_WIDTH, width) |
224 		FIELD_PREP(OP_IMMED_INV, invert) |
225 		FIELD_PREP(OP_IMMED_SHIFT, shift) |
226 		FIELD_PREP(OP_IMMED_WR_AB, wr_both) |
227 		FIELD_PREP(OP_IMMED_SRC_LMEXTN, src_lmextn) |
228 		FIELD_PREP(OP_IMMED_DST_LMEXTN, dst_lmextn);
229 
230 	nfp_prog_push(nfp_prog, insn);
231 }
232 
233 static void
234 emit_immed(struct nfp_prog *nfp_prog, swreg dst, u16 imm,
235 	   enum immed_width width, bool invert, enum immed_shift shift)
236 {
237 	struct nfp_insn_ur_regs reg;
238 	int err;
239 
240 	if (swreg_type(dst) == NN_REG_IMM) {
241 		nfp_prog->error = -EFAULT;
242 		return;
243 	}
244 
245 	err = swreg_to_unrestricted(dst, dst, reg_imm(imm & 0xff), &reg);
246 	if (err) {
247 		nfp_prog->error = err;
248 		return;
249 	}
250 
251 	/* Use reg.dst when destination is No-Dest. */
252 	__emit_immed(nfp_prog,
253 		     swreg_type(dst) == NN_REG_NONE ? reg.dst : reg.areg,
254 		     reg.breg, imm >> 8, width, invert, shift,
255 		     reg.wr_both, reg.dst_lmextn, reg.src_lmextn);
256 }
257 
258 static void
259 __emit_shf(struct nfp_prog *nfp_prog, u16 dst, enum alu_dst_ab dst_ab,
260 	   enum shf_sc sc, u8 shift,
261 	   u16 areg, enum shf_op op, u16 breg, bool i8, bool sw, bool wr_both,
262 	   bool dst_lmextn, bool src_lmextn)
263 {
264 	u64 insn;
265 
266 	if (!FIELD_FIT(OP_SHF_SHIFT, shift)) {
267 		nfp_prog->error = -EFAULT;
268 		return;
269 	}
270 
271 	if (sc == SHF_SC_L_SHF)
272 		shift = 32 - shift;
273 
274 	insn = OP_SHF_BASE |
275 		FIELD_PREP(OP_SHF_A_SRC, areg) |
276 		FIELD_PREP(OP_SHF_SC, sc) |
277 		FIELD_PREP(OP_SHF_B_SRC, breg) |
278 		FIELD_PREP(OP_SHF_I8, i8) |
279 		FIELD_PREP(OP_SHF_SW, sw) |
280 		FIELD_PREP(OP_SHF_DST, dst) |
281 		FIELD_PREP(OP_SHF_SHIFT, shift) |
282 		FIELD_PREP(OP_SHF_OP, op) |
283 		FIELD_PREP(OP_SHF_DST_AB, dst_ab) |
284 		FIELD_PREP(OP_SHF_WR_AB, wr_both) |
285 		FIELD_PREP(OP_SHF_SRC_LMEXTN, src_lmextn) |
286 		FIELD_PREP(OP_SHF_DST_LMEXTN, dst_lmextn);
287 
288 	nfp_prog_push(nfp_prog, insn);
289 }
290 
291 static void
292 emit_shf(struct nfp_prog *nfp_prog, swreg dst,
293 	 swreg lreg, enum shf_op op, swreg rreg, enum shf_sc sc, u8 shift)
294 {
295 	struct nfp_insn_re_regs reg;
296 	int err;
297 
298 	err = swreg_to_restricted(dst, lreg, rreg, &reg, true);
299 	if (err) {
300 		nfp_prog->error = err;
301 		return;
302 	}
303 
304 	__emit_shf(nfp_prog, reg.dst, reg.dst_ab, sc, shift,
305 		   reg.areg, op, reg.breg, reg.i8, reg.swap, reg.wr_both,
306 		   reg.dst_lmextn, reg.src_lmextn);
307 }
308 
309 static void
310 __emit_alu(struct nfp_prog *nfp_prog, u16 dst, enum alu_dst_ab dst_ab,
311 	   u16 areg, enum alu_op op, u16 breg, bool swap, bool wr_both,
312 	   bool dst_lmextn, bool src_lmextn)
313 {
314 	u64 insn;
315 
316 	insn = OP_ALU_BASE |
317 		FIELD_PREP(OP_ALU_A_SRC, areg) |
318 		FIELD_PREP(OP_ALU_B_SRC, breg) |
319 		FIELD_PREP(OP_ALU_DST, dst) |
320 		FIELD_PREP(OP_ALU_SW, swap) |
321 		FIELD_PREP(OP_ALU_OP, op) |
322 		FIELD_PREP(OP_ALU_DST_AB, dst_ab) |
323 		FIELD_PREP(OP_ALU_WR_AB, wr_both) |
324 		FIELD_PREP(OP_ALU_SRC_LMEXTN, src_lmextn) |
325 		FIELD_PREP(OP_ALU_DST_LMEXTN, dst_lmextn);
326 
327 	nfp_prog_push(nfp_prog, insn);
328 }
329 
330 static void
331 emit_alu(struct nfp_prog *nfp_prog, swreg dst,
332 	 swreg lreg, enum alu_op op, swreg rreg)
333 {
334 	struct nfp_insn_ur_regs reg;
335 	int err;
336 
337 	err = swreg_to_unrestricted(dst, lreg, rreg, &reg);
338 	if (err) {
339 		nfp_prog->error = err;
340 		return;
341 	}
342 
343 	__emit_alu(nfp_prog, reg.dst, reg.dst_ab,
344 		   reg.areg, op, reg.breg, reg.swap, reg.wr_both,
345 		   reg.dst_lmextn, reg.src_lmextn);
346 }
347 
348 static void
349 __emit_ld_field(struct nfp_prog *nfp_prog, enum shf_sc sc,
350 		u8 areg, u8 bmask, u8 breg, u8 shift, bool imm8,
351 		bool zero, bool swap, bool wr_both,
352 		bool dst_lmextn, bool src_lmextn)
353 {
354 	u64 insn;
355 
356 	insn = OP_LDF_BASE |
357 		FIELD_PREP(OP_LDF_A_SRC, areg) |
358 		FIELD_PREP(OP_LDF_SC, sc) |
359 		FIELD_PREP(OP_LDF_B_SRC, breg) |
360 		FIELD_PREP(OP_LDF_I8, imm8) |
361 		FIELD_PREP(OP_LDF_SW, swap) |
362 		FIELD_PREP(OP_LDF_ZF, zero) |
363 		FIELD_PREP(OP_LDF_BMASK, bmask) |
364 		FIELD_PREP(OP_LDF_SHF, shift) |
365 		FIELD_PREP(OP_LDF_WR_AB, wr_both) |
366 		FIELD_PREP(OP_LDF_SRC_LMEXTN, src_lmextn) |
367 		FIELD_PREP(OP_LDF_DST_LMEXTN, dst_lmextn);
368 
369 	nfp_prog_push(nfp_prog, insn);
370 }
371 
372 static void
373 emit_ld_field_any(struct nfp_prog *nfp_prog, swreg dst, u8 bmask, swreg src,
374 		  enum shf_sc sc, u8 shift, bool zero)
375 {
376 	struct nfp_insn_re_regs reg;
377 	int err;
378 
379 	/* Note: ld_field is special as it uses one of the src regs as dst */
380 	err = swreg_to_restricted(dst, dst, src, &reg, true);
381 	if (err) {
382 		nfp_prog->error = err;
383 		return;
384 	}
385 
386 	__emit_ld_field(nfp_prog, sc, reg.areg, bmask, reg.breg, shift,
387 			reg.i8, zero, reg.swap, reg.wr_both,
388 			reg.dst_lmextn, reg.src_lmextn);
389 }
390 
391 static void
392 emit_ld_field(struct nfp_prog *nfp_prog, swreg dst, u8 bmask, swreg src,
393 	      enum shf_sc sc, u8 shift)
394 {
395 	emit_ld_field_any(nfp_prog, dst, bmask, src, sc, shift, false);
396 }
397 
398 static void
399 __emit_lcsr(struct nfp_prog *nfp_prog, u16 areg, u16 breg, bool wr, u16 addr,
400 	    bool dst_lmextn, bool src_lmextn)
401 {
402 	u64 insn;
403 
404 	insn = OP_LCSR_BASE |
405 		FIELD_PREP(OP_LCSR_A_SRC, areg) |
406 		FIELD_PREP(OP_LCSR_B_SRC, breg) |
407 		FIELD_PREP(OP_LCSR_WRITE, wr) |
408 		FIELD_PREP(OP_LCSR_ADDR, addr / 4) |
409 		FIELD_PREP(OP_LCSR_SRC_LMEXTN, src_lmextn) |
410 		FIELD_PREP(OP_LCSR_DST_LMEXTN, dst_lmextn);
411 
412 	nfp_prog_push(nfp_prog, insn);
413 }
414 
415 static void emit_csr_wr(struct nfp_prog *nfp_prog, swreg src, u16 addr)
416 {
417 	struct nfp_insn_ur_regs reg;
418 	int err;
419 
420 	/* This instruction takes immeds instead of reg_none() for the ignored
421 	 * operand, but we can't encode 2 immeds in one instr with our normal
422 	 * swreg infra so if param is an immed, we encode as reg_none() and
423 	 * copy the immed to both operands.
424 	 */
425 	if (swreg_type(src) == NN_REG_IMM) {
426 		err = swreg_to_unrestricted(reg_none(), src, reg_none(), &reg);
427 		reg.breg = reg.areg;
428 	} else {
429 		err = swreg_to_unrestricted(reg_none(), src, reg_imm(0), &reg);
430 	}
431 	if (err) {
432 		nfp_prog->error = err;
433 		return;
434 	}
435 
436 	__emit_lcsr(nfp_prog, reg.areg, reg.breg, true, addr,
437 		    false, reg.src_lmextn);
438 }
439 
440 /* CSR value is read in following immed[gpr, 0] */
441 static void __emit_csr_rd(struct nfp_prog *nfp_prog, u16 addr)
442 {
443 	__emit_lcsr(nfp_prog, 0, 0, false, addr, false, false);
444 }
445 
446 static void emit_nop(struct nfp_prog *nfp_prog)
447 {
448 	__emit_immed(nfp_prog, UR_REG_IMM, UR_REG_IMM, 0, 0, 0, 0, 0, 0, 0);
449 }
450 
451 /* --- Wrappers --- */
452 static bool pack_immed(u32 imm, u16 *val, enum immed_shift *shift)
453 {
454 	if (!(imm & 0xffff0000)) {
455 		*val = imm;
456 		*shift = IMMED_SHIFT_0B;
457 	} else if (!(imm & 0xff0000ff)) {
458 		*val = imm >> 8;
459 		*shift = IMMED_SHIFT_1B;
460 	} else if (!(imm & 0x0000ffff)) {
461 		*val = imm >> 16;
462 		*shift = IMMED_SHIFT_2B;
463 	} else {
464 		return false;
465 	}
466 
467 	return true;
468 }
469 
470 static void wrp_immed(struct nfp_prog *nfp_prog, swreg dst, u32 imm)
471 {
472 	enum immed_shift shift;
473 	u16 val;
474 
475 	if (pack_immed(imm, &val, &shift)) {
476 		emit_immed(nfp_prog, dst, val, IMMED_WIDTH_ALL, false, shift);
477 	} else if (pack_immed(~imm, &val, &shift)) {
478 		emit_immed(nfp_prog, dst, val, IMMED_WIDTH_ALL, true, shift);
479 	} else {
480 		emit_immed(nfp_prog, dst, imm & 0xffff, IMMED_WIDTH_ALL,
481 			   false, IMMED_SHIFT_0B);
482 		emit_immed(nfp_prog, dst, imm >> 16, IMMED_WIDTH_WORD,
483 			   false, IMMED_SHIFT_2B);
484 	}
485 }
486 
487 static void
488 wrp_immed_relo(struct nfp_prog *nfp_prog, swreg dst, u32 imm,
489 	       enum nfp_relo_type relo)
490 {
491 	if (imm > 0xffff) {
492 		pr_err("relocation of a large immediate!\n");
493 		nfp_prog->error = -EFAULT;
494 		return;
495 	}
496 	emit_immed(nfp_prog, dst, imm, IMMED_WIDTH_ALL, false, IMMED_SHIFT_0B);
497 
498 	nfp_prog->prog[nfp_prog->prog_len - 1] |=
499 		FIELD_PREP(OP_RELO_TYPE, relo);
500 }
501 
502 /* ur_load_imm_any() - encode immediate or use tmp register (unrestricted)
503  * If the @imm is small enough encode it directly in operand and return
504  * otherwise load @imm to a spare register and return its encoding.
505  */
506 static swreg ur_load_imm_any(struct nfp_prog *nfp_prog, u32 imm, swreg tmp_reg)
507 {
508 	if (FIELD_FIT(UR_REG_IMM_MAX, imm))
509 		return reg_imm(imm);
510 
511 	wrp_immed(nfp_prog, tmp_reg, imm);
512 	return tmp_reg;
513 }
514 
515 /* re_load_imm_any() - encode immediate or use tmp register (restricted)
516  * If the @imm is small enough encode it directly in operand and return
517  * otherwise load @imm to a spare register and return its encoding.
518  */
519 static swreg re_load_imm_any(struct nfp_prog *nfp_prog, u32 imm, swreg tmp_reg)
520 {
521 	if (FIELD_FIT(RE_REG_IMM_MAX, imm))
522 		return reg_imm(imm);
523 
524 	wrp_immed(nfp_prog, tmp_reg, imm);
525 	return tmp_reg;
526 }
527 
528 static void wrp_nops(struct nfp_prog *nfp_prog, unsigned int count)
529 {
530 	while (count--)
531 		emit_nop(nfp_prog);
532 }
533 
534 static void wrp_mov(struct nfp_prog *nfp_prog, swreg dst, swreg src)
535 {
536 	emit_alu(nfp_prog, dst, reg_none(), ALU_OP_NONE, src);
537 }
538 
539 static void wrp_reg_mov(struct nfp_prog *nfp_prog, u16 dst, u16 src)
540 {
541 	wrp_mov(nfp_prog, reg_both(dst), reg_b(src));
542 }
543 
544 /* wrp_reg_subpart() - load @field_len bytes from @offset of @src, write the
545  * result to @dst from low end.
546  */
547 static void
548 wrp_reg_subpart(struct nfp_prog *nfp_prog, swreg dst, swreg src, u8 field_len,
549 		u8 offset)
550 {
551 	enum shf_sc sc = offset ? SHF_SC_R_SHF : SHF_SC_NONE;
552 	u8 mask = (1 << field_len) - 1;
553 
554 	emit_ld_field_any(nfp_prog, dst, mask, src, sc, offset * 8, true);
555 }
556 
557 /* wrp_reg_or_subpart() - load @field_len bytes from low end of @src, or the
558  * result to @dst from offset, there is no change on the other bits of @dst.
559  */
560 static void
561 wrp_reg_or_subpart(struct nfp_prog *nfp_prog, swreg dst, swreg src,
562 		   u8 field_len, u8 offset)
563 {
564 	enum shf_sc sc = offset ? SHF_SC_L_SHF : SHF_SC_NONE;
565 	u8 mask = ((1 << field_len) - 1) << offset;
566 
567 	emit_ld_field(nfp_prog, dst, mask, src, sc, 32 - offset * 8);
568 }
569 
570 static void
571 addr40_offset(struct nfp_prog *nfp_prog, u8 src_gpr, swreg offset,
572 	      swreg *rega, swreg *regb)
573 {
574 	if (offset == reg_imm(0)) {
575 		*rega = reg_a(src_gpr);
576 		*regb = reg_b(src_gpr + 1);
577 		return;
578 	}
579 
580 	emit_alu(nfp_prog, imm_a(nfp_prog), reg_a(src_gpr), ALU_OP_ADD, offset);
581 	emit_alu(nfp_prog, imm_b(nfp_prog), reg_b(src_gpr + 1), ALU_OP_ADD_C,
582 		 reg_imm(0));
583 	*rega = imm_a(nfp_prog);
584 	*regb = imm_b(nfp_prog);
585 }
586 
587 /* NFP has Command Push Pull bus which supports bluk memory operations. */
588 static int nfp_cpp_memcpy(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
589 {
590 	bool descending_seq = meta->ldst_gather_len < 0;
591 	s16 len = abs(meta->ldst_gather_len);
592 	swreg src_base, off;
593 	bool src_40bit_addr;
594 	unsigned int i;
595 	u8 xfer_num;
596 
597 	off = re_load_imm_any(nfp_prog, meta->insn.off, imm_b(nfp_prog));
598 	src_40bit_addr = meta->ptr.type == PTR_TO_MAP_VALUE;
599 	src_base = reg_a(meta->insn.src_reg * 2);
600 	xfer_num = round_up(len, 4) / 4;
601 
602 	if (src_40bit_addr)
603 		addr40_offset(nfp_prog, meta->insn.src_reg, off, &src_base,
604 			      &off);
605 
606 	/* Setup PREV_ALU fields to override memory read length. */
607 	if (len > 32)
608 		wrp_immed(nfp_prog, reg_none(),
609 			  CMD_OVE_LEN | FIELD_PREP(CMD_OV_LEN, xfer_num - 1));
610 
611 	/* Memory read from source addr into transfer-in registers. */
612 	emit_cmd_any(nfp_prog, CMD_TGT_READ32_SWAP,
613 		     src_40bit_addr ? CMD_MODE_40b_BA : CMD_MODE_32b, 0,
614 		     src_base, off, xfer_num - 1, CMD_CTX_SWAP, len > 32);
615 
616 	/* Move from transfer-in to transfer-out. */
617 	for (i = 0; i < xfer_num; i++)
618 		wrp_mov(nfp_prog, reg_xfer(i), reg_xfer(i));
619 
620 	off = re_load_imm_any(nfp_prog, meta->paired_st->off, imm_b(nfp_prog));
621 
622 	if (len <= 8) {
623 		/* Use single direct_ref write8. */
624 		emit_cmd(nfp_prog, CMD_TGT_WRITE8_SWAP, CMD_MODE_32b, 0,
625 			 reg_a(meta->paired_st->dst_reg * 2), off, len - 1,
626 			 CMD_CTX_SWAP);
627 	} else if (len <= 32 && IS_ALIGNED(len, 4)) {
628 		/* Use single direct_ref write32. */
629 		emit_cmd(nfp_prog, CMD_TGT_WRITE32_SWAP, CMD_MODE_32b, 0,
630 			 reg_a(meta->paired_st->dst_reg * 2), off, xfer_num - 1,
631 			 CMD_CTX_SWAP);
632 	} else if (len <= 32) {
633 		/* Use single indirect_ref write8. */
634 		wrp_immed(nfp_prog, reg_none(),
635 			  CMD_OVE_LEN | FIELD_PREP(CMD_OV_LEN, len - 1));
636 		emit_cmd_indir(nfp_prog, CMD_TGT_WRITE8_SWAP, CMD_MODE_32b, 0,
637 			       reg_a(meta->paired_st->dst_reg * 2), off,
638 			       len - 1, CMD_CTX_SWAP);
639 	} else if (IS_ALIGNED(len, 4)) {
640 		/* Use single indirect_ref write32. */
641 		wrp_immed(nfp_prog, reg_none(),
642 			  CMD_OVE_LEN | FIELD_PREP(CMD_OV_LEN, xfer_num - 1));
643 		emit_cmd_indir(nfp_prog, CMD_TGT_WRITE32_SWAP, CMD_MODE_32b, 0,
644 			       reg_a(meta->paired_st->dst_reg * 2), off,
645 			       xfer_num - 1, CMD_CTX_SWAP);
646 	} else if (len <= 40) {
647 		/* Use one direct_ref write32 to write the first 32-bytes, then
648 		 * another direct_ref write8 to write the remaining bytes.
649 		 */
650 		emit_cmd(nfp_prog, CMD_TGT_WRITE32_SWAP, CMD_MODE_32b, 0,
651 			 reg_a(meta->paired_st->dst_reg * 2), off, 7,
652 			 CMD_CTX_SWAP);
653 
654 		off = re_load_imm_any(nfp_prog, meta->paired_st->off + 32,
655 				      imm_b(nfp_prog));
656 		emit_cmd(nfp_prog, CMD_TGT_WRITE8_SWAP, CMD_MODE_32b, 8,
657 			 reg_a(meta->paired_st->dst_reg * 2), off, len - 33,
658 			 CMD_CTX_SWAP);
659 	} else {
660 		/* Use one indirect_ref write32 to write 4-bytes aligned length,
661 		 * then another direct_ref write8 to write the remaining bytes.
662 		 */
663 		u8 new_off;
664 
665 		wrp_immed(nfp_prog, reg_none(),
666 			  CMD_OVE_LEN | FIELD_PREP(CMD_OV_LEN, xfer_num - 2));
667 		emit_cmd_indir(nfp_prog, CMD_TGT_WRITE32_SWAP, CMD_MODE_32b, 0,
668 			       reg_a(meta->paired_st->dst_reg * 2), off,
669 			       xfer_num - 2, CMD_CTX_SWAP);
670 		new_off = meta->paired_st->off + (xfer_num - 1) * 4;
671 		off = re_load_imm_any(nfp_prog, new_off, imm_b(nfp_prog));
672 		emit_cmd(nfp_prog, CMD_TGT_WRITE8_SWAP, CMD_MODE_32b,
673 			 xfer_num - 1, reg_a(meta->paired_st->dst_reg * 2), off,
674 			 (len & 0x3) - 1, CMD_CTX_SWAP);
675 	}
676 
677 	/* TODO: The following extra load is to make sure data flow be identical
678 	 *  before and after we do memory copy optimization.
679 	 *
680 	 *  The load destination register is not guaranteed to be dead, so we
681 	 *  need to make sure it is loaded with the value the same as before
682 	 *  this transformation.
683 	 *
684 	 *  These extra loads could be removed once we have accurate register
685 	 *  usage information.
686 	 */
687 	if (descending_seq)
688 		xfer_num = 0;
689 	else if (BPF_SIZE(meta->insn.code) != BPF_DW)
690 		xfer_num = xfer_num - 1;
691 	else
692 		xfer_num = xfer_num - 2;
693 
694 	switch (BPF_SIZE(meta->insn.code)) {
695 	case BPF_B:
696 		wrp_reg_subpart(nfp_prog, reg_both(meta->insn.dst_reg * 2),
697 				reg_xfer(xfer_num), 1,
698 				IS_ALIGNED(len, 4) ? 3 : (len & 3) - 1);
699 		break;
700 	case BPF_H:
701 		wrp_reg_subpart(nfp_prog, reg_both(meta->insn.dst_reg * 2),
702 				reg_xfer(xfer_num), 2, (len & 3) ^ 2);
703 		break;
704 	case BPF_W:
705 		wrp_mov(nfp_prog, reg_both(meta->insn.dst_reg * 2),
706 			reg_xfer(0));
707 		break;
708 	case BPF_DW:
709 		wrp_mov(nfp_prog, reg_both(meta->insn.dst_reg * 2),
710 			reg_xfer(xfer_num));
711 		wrp_mov(nfp_prog, reg_both(meta->insn.dst_reg * 2 + 1),
712 			reg_xfer(xfer_num + 1));
713 		break;
714 	}
715 
716 	if (BPF_SIZE(meta->insn.code) != BPF_DW)
717 		wrp_immed(nfp_prog, reg_both(meta->insn.dst_reg * 2 + 1), 0);
718 
719 	return 0;
720 }
721 
722 static int
723 data_ld(struct nfp_prog *nfp_prog, swreg offset, u8 dst_gpr, int size)
724 {
725 	unsigned int i;
726 	u16 shift, sz;
727 
728 	/* We load the value from the address indicated in @offset and then
729 	 * shift out the data we don't need.  Note: this is big endian!
730 	 */
731 	sz = max(size, 4);
732 	shift = size < 4 ? 4 - size : 0;
733 
734 	emit_cmd(nfp_prog, CMD_TGT_READ8, CMD_MODE_32b, 0,
735 		 pptr_reg(nfp_prog), offset, sz - 1, CMD_CTX_SWAP);
736 
737 	i = 0;
738 	if (shift)
739 		emit_shf(nfp_prog, reg_both(dst_gpr), reg_none(), SHF_OP_NONE,
740 			 reg_xfer(0), SHF_SC_R_SHF, shift * 8);
741 	else
742 		for (; i * 4 < size; i++)
743 			wrp_mov(nfp_prog, reg_both(dst_gpr + i), reg_xfer(i));
744 
745 	if (i < 2)
746 		wrp_immed(nfp_prog, reg_both(dst_gpr + 1), 0);
747 
748 	return 0;
749 }
750 
751 static int
752 data_ld_host_order(struct nfp_prog *nfp_prog, u8 dst_gpr,
753 		   swreg lreg, swreg rreg, int size, enum cmd_mode mode)
754 {
755 	unsigned int i;
756 	u8 mask, sz;
757 
758 	/* We load the value from the address indicated in rreg + lreg and then
759 	 * mask out the data we don't need.  Note: this is little endian!
760 	 */
761 	sz = max(size, 4);
762 	mask = size < 4 ? GENMASK(size - 1, 0) : 0;
763 
764 	emit_cmd(nfp_prog, CMD_TGT_READ32_SWAP, mode, 0,
765 		 lreg, rreg, sz / 4 - 1, CMD_CTX_SWAP);
766 
767 	i = 0;
768 	if (mask)
769 		emit_ld_field_any(nfp_prog, reg_both(dst_gpr), mask,
770 				  reg_xfer(0), SHF_SC_NONE, 0, true);
771 	else
772 		for (; i * 4 < size; i++)
773 			wrp_mov(nfp_prog, reg_both(dst_gpr + i), reg_xfer(i));
774 
775 	if (i < 2)
776 		wrp_immed(nfp_prog, reg_both(dst_gpr + 1), 0);
777 
778 	return 0;
779 }
780 
781 static int
782 data_ld_host_order_addr32(struct nfp_prog *nfp_prog, u8 src_gpr, swreg offset,
783 			  u8 dst_gpr, u8 size)
784 {
785 	return data_ld_host_order(nfp_prog, dst_gpr, reg_a(src_gpr), offset,
786 				  size, CMD_MODE_32b);
787 }
788 
789 static int
790 data_ld_host_order_addr40(struct nfp_prog *nfp_prog, u8 src_gpr, swreg offset,
791 			  u8 dst_gpr, u8 size)
792 {
793 	swreg rega, regb;
794 
795 	addr40_offset(nfp_prog, src_gpr, offset, &rega, &regb);
796 
797 	return data_ld_host_order(nfp_prog, dst_gpr, rega, regb,
798 				  size, CMD_MODE_40b_BA);
799 }
800 
801 static int
802 construct_data_ind_ld(struct nfp_prog *nfp_prog, u16 offset, u16 src, u8 size)
803 {
804 	swreg tmp_reg;
805 
806 	/* Calculate the true offset (src_reg + imm) */
807 	tmp_reg = ur_load_imm_any(nfp_prog, offset, imm_b(nfp_prog));
808 	emit_alu(nfp_prog, imm_both(nfp_prog), reg_a(src), ALU_OP_ADD, tmp_reg);
809 
810 	/* Check packet length (size guaranteed to fit b/c it's u8) */
811 	emit_alu(nfp_prog, imm_a(nfp_prog),
812 		 imm_a(nfp_prog), ALU_OP_ADD, reg_imm(size));
813 	emit_alu(nfp_prog, reg_none(),
814 		 plen_reg(nfp_prog), ALU_OP_SUB, imm_a(nfp_prog));
815 	emit_br_relo(nfp_prog, BR_BLO, BR_OFF_RELO, 0, RELO_BR_GO_ABORT);
816 
817 	/* Load data */
818 	return data_ld(nfp_prog, imm_b(nfp_prog), 0, size);
819 }
820 
821 static int construct_data_ld(struct nfp_prog *nfp_prog, u16 offset, u8 size)
822 {
823 	swreg tmp_reg;
824 
825 	/* Check packet length */
826 	tmp_reg = ur_load_imm_any(nfp_prog, offset + size, imm_a(nfp_prog));
827 	emit_alu(nfp_prog, reg_none(), plen_reg(nfp_prog), ALU_OP_SUB, tmp_reg);
828 	emit_br_relo(nfp_prog, BR_BLO, BR_OFF_RELO, 0, RELO_BR_GO_ABORT);
829 
830 	/* Load data */
831 	tmp_reg = re_load_imm_any(nfp_prog, offset, imm_b(nfp_prog));
832 	return data_ld(nfp_prog, tmp_reg, 0, size);
833 }
834 
835 static int
836 data_stx_host_order(struct nfp_prog *nfp_prog, u8 dst_gpr, swreg offset,
837 		    u8 src_gpr, u8 size)
838 {
839 	unsigned int i;
840 
841 	for (i = 0; i * 4 < size; i++)
842 		wrp_mov(nfp_prog, reg_xfer(i), reg_a(src_gpr + i));
843 
844 	emit_cmd(nfp_prog, CMD_TGT_WRITE8_SWAP, CMD_MODE_32b, 0,
845 		 reg_a(dst_gpr), offset, size - 1, CMD_CTX_SWAP);
846 
847 	return 0;
848 }
849 
850 static int
851 data_st_host_order(struct nfp_prog *nfp_prog, u8 dst_gpr, swreg offset,
852 		   u64 imm, u8 size)
853 {
854 	wrp_immed(nfp_prog, reg_xfer(0), imm);
855 	if (size == 8)
856 		wrp_immed(nfp_prog, reg_xfer(1), imm >> 32);
857 
858 	emit_cmd(nfp_prog, CMD_TGT_WRITE8_SWAP, CMD_MODE_32b, 0,
859 		 reg_a(dst_gpr), offset, size - 1, CMD_CTX_SWAP);
860 
861 	return 0;
862 }
863 
864 typedef int
865 (*lmem_step)(struct nfp_prog *nfp_prog, u8 gpr, u8 gpr_byte, s32 off,
866 	     unsigned int size, bool first, bool new_gpr, bool last, bool lm3,
867 	     bool needs_inc);
868 
869 static int
870 wrp_lmem_load(struct nfp_prog *nfp_prog, u8 dst, u8 dst_byte, s32 off,
871 	      unsigned int size, bool first, bool new_gpr, bool last, bool lm3,
872 	      bool needs_inc)
873 {
874 	bool should_inc = needs_inc && new_gpr && !last;
875 	u32 idx, src_byte;
876 	enum shf_sc sc;
877 	swreg reg;
878 	int shf;
879 	u8 mask;
880 
881 	if (WARN_ON_ONCE(dst_byte + size > 4 || off % 4 + size > 4))
882 		return -EOPNOTSUPP;
883 
884 	idx = off / 4;
885 
886 	/* Move the entire word */
887 	if (size == 4) {
888 		wrp_mov(nfp_prog, reg_both(dst),
889 			should_inc ? reg_lm_inc(3) : reg_lm(lm3 ? 3 : 0, idx));
890 		return 0;
891 	}
892 
893 	if (WARN_ON_ONCE(lm3 && idx > RE_REG_LM_IDX_MAX))
894 		return -EOPNOTSUPP;
895 
896 	src_byte = off % 4;
897 
898 	mask = (1 << size) - 1;
899 	mask <<= dst_byte;
900 
901 	if (WARN_ON_ONCE(mask > 0xf))
902 		return -EOPNOTSUPP;
903 
904 	shf = abs(src_byte - dst_byte) * 8;
905 	if (src_byte == dst_byte) {
906 		sc = SHF_SC_NONE;
907 	} else if (src_byte < dst_byte) {
908 		shf = 32 - shf;
909 		sc = SHF_SC_L_SHF;
910 	} else {
911 		sc = SHF_SC_R_SHF;
912 	}
913 
914 	/* ld_field can address fewer indexes, if offset too large do RMW.
915 	 * Because we RMV twice we waste 2 cycles on unaligned 8 byte writes.
916 	 */
917 	if (idx <= RE_REG_LM_IDX_MAX) {
918 		reg = reg_lm(lm3 ? 3 : 0, idx);
919 	} else {
920 		reg = imm_a(nfp_prog);
921 		/* If it's not the first part of the load and we start a new GPR
922 		 * that means we are loading a second part of the LMEM word into
923 		 * a new GPR.  IOW we've already looked that LMEM word and
924 		 * therefore it has been loaded into imm_a().
925 		 */
926 		if (first || !new_gpr)
927 			wrp_mov(nfp_prog, reg, reg_lm(0, idx));
928 	}
929 
930 	emit_ld_field_any(nfp_prog, reg_both(dst), mask, reg, sc, shf, new_gpr);
931 
932 	if (should_inc)
933 		wrp_mov(nfp_prog, reg_none(), reg_lm_inc(3));
934 
935 	return 0;
936 }
937 
938 static int
939 wrp_lmem_store(struct nfp_prog *nfp_prog, u8 src, u8 src_byte, s32 off,
940 	       unsigned int size, bool first, bool new_gpr, bool last, bool lm3,
941 	       bool needs_inc)
942 {
943 	bool should_inc = needs_inc && new_gpr && !last;
944 	u32 idx, dst_byte;
945 	enum shf_sc sc;
946 	swreg reg;
947 	int shf;
948 	u8 mask;
949 
950 	if (WARN_ON_ONCE(src_byte + size > 4 || off % 4 + size > 4))
951 		return -EOPNOTSUPP;
952 
953 	idx = off / 4;
954 
955 	/* Move the entire word */
956 	if (size == 4) {
957 		wrp_mov(nfp_prog,
958 			should_inc ? reg_lm_inc(3) : reg_lm(lm3 ? 3 : 0, idx),
959 			reg_b(src));
960 		return 0;
961 	}
962 
963 	if (WARN_ON_ONCE(lm3 && idx > RE_REG_LM_IDX_MAX))
964 		return -EOPNOTSUPP;
965 
966 	dst_byte = off % 4;
967 
968 	mask = (1 << size) - 1;
969 	mask <<= dst_byte;
970 
971 	if (WARN_ON_ONCE(mask > 0xf))
972 		return -EOPNOTSUPP;
973 
974 	shf = abs(src_byte - dst_byte) * 8;
975 	if (src_byte == dst_byte) {
976 		sc = SHF_SC_NONE;
977 	} else if (src_byte < dst_byte) {
978 		shf = 32 - shf;
979 		sc = SHF_SC_L_SHF;
980 	} else {
981 		sc = SHF_SC_R_SHF;
982 	}
983 
984 	/* ld_field can address fewer indexes, if offset too large do RMW.
985 	 * Because we RMV twice we waste 2 cycles on unaligned 8 byte writes.
986 	 */
987 	if (idx <= RE_REG_LM_IDX_MAX) {
988 		reg = reg_lm(lm3 ? 3 : 0, idx);
989 	} else {
990 		reg = imm_a(nfp_prog);
991 		/* Only first and last LMEM locations are going to need RMW,
992 		 * the middle location will be overwritten fully.
993 		 */
994 		if (first || last)
995 			wrp_mov(nfp_prog, reg, reg_lm(0, idx));
996 	}
997 
998 	emit_ld_field(nfp_prog, reg, mask, reg_b(src), sc, shf);
999 
1000 	if (new_gpr || last) {
1001 		if (idx > RE_REG_LM_IDX_MAX)
1002 			wrp_mov(nfp_prog, reg_lm(0, idx), reg);
1003 		if (should_inc)
1004 			wrp_mov(nfp_prog, reg_none(), reg_lm_inc(3));
1005 	}
1006 
1007 	return 0;
1008 }
1009 
1010 static int
1011 mem_op_stack(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
1012 	     unsigned int size, unsigned int ptr_off, u8 gpr, u8 ptr_gpr,
1013 	     bool clr_gpr, lmem_step step)
1014 {
1015 	s32 off = nfp_prog->stack_depth + meta->insn.off + ptr_off;
1016 	bool first = true, last;
1017 	bool needs_inc = false;
1018 	swreg stack_off_reg;
1019 	u8 prev_gpr = 255;
1020 	u32 gpr_byte = 0;
1021 	bool lm3 = true;
1022 	int ret;
1023 
1024 	if (meta->ptr_not_const) {
1025 		/* Use of the last encountered ptr_off is OK, they all have
1026 		 * the same alignment.  Depend on low bits of value being
1027 		 * discarded when written to LMaddr register.
1028 		 */
1029 		stack_off_reg = ur_load_imm_any(nfp_prog, meta->insn.off,
1030 						stack_imm(nfp_prog));
1031 
1032 		emit_alu(nfp_prog, imm_b(nfp_prog),
1033 			 reg_a(ptr_gpr), ALU_OP_ADD, stack_off_reg);
1034 
1035 		needs_inc = true;
1036 	} else if (off + size <= 64) {
1037 		/* We can reach bottom 64B with LMaddr0 */
1038 		lm3 = false;
1039 	} else if (round_down(off, 32) == round_down(off + size - 1, 32)) {
1040 		/* We have to set up a new pointer.  If we know the offset
1041 		 * and the entire access falls into a single 32 byte aligned
1042 		 * window we won't have to increment the LM pointer.
1043 		 * The 32 byte alignment is imporant because offset is ORed in
1044 		 * not added when doing *l$indexN[off].
1045 		 */
1046 		stack_off_reg = ur_load_imm_any(nfp_prog, round_down(off, 32),
1047 						stack_imm(nfp_prog));
1048 		emit_alu(nfp_prog, imm_b(nfp_prog),
1049 			 stack_reg(nfp_prog), ALU_OP_ADD, stack_off_reg);
1050 
1051 		off %= 32;
1052 	} else {
1053 		stack_off_reg = ur_load_imm_any(nfp_prog, round_down(off, 4),
1054 						stack_imm(nfp_prog));
1055 
1056 		emit_alu(nfp_prog, imm_b(nfp_prog),
1057 			 stack_reg(nfp_prog), ALU_OP_ADD, stack_off_reg);
1058 
1059 		needs_inc = true;
1060 	}
1061 	if (lm3) {
1062 		emit_csr_wr(nfp_prog, imm_b(nfp_prog), NFP_CSR_ACT_LM_ADDR3);
1063 		/* For size < 4 one slot will be filled by zeroing of upper. */
1064 		wrp_nops(nfp_prog, clr_gpr && size < 8 ? 2 : 3);
1065 	}
1066 
1067 	if (clr_gpr && size < 8)
1068 		wrp_immed(nfp_prog, reg_both(gpr + 1), 0);
1069 
1070 	while (size) {
1071 		u32 slice_end;
1072 		u8 slice_size;
1073 
1074 		slice_size = min(size, 4 - gpr_byte);
1075 		slice_end = min(off + slice_size, round_up(off + 1, 4));
1076 		slice_size = slice_end - off;
1077 
1078 		last = slice_size == size;
1079 
1080 		if (needs_inc)
1081 			off %= 4;
1082 
1083 		ret = step(nfp_prog, gpr, gpr_byte, off, slice_size,
1084 			   first, gpr != prev_gpr, last, lm3, needs_inc);
1085 		if (ret)
1086 			return ret;
1087 
1088 		prev_gpr = gpr;
1089 		first = false;
1090 
1091 		gpr_byte += slice_size;
1092 		if (gpr_byte >= 4) {
1093 			gpr_byte -= 4;
1094 			gpr++;
1095 		}
1096 
1097 		size -= slice_size;
1098 		off += slice_size;
1099 	}
1100 
1101 	return 0;
1102 }
1103 
1104 static void
1105 wrp_alu_imm(struct nfp_prog *nfp_prog, u8 dst, enum alu_op alu_op, u32 imm)
1106 {
1107 	swreg tmp_reg;
1108 
1109 	if (alu_op == ALU_OP_AND) {
1110 		if (!imm)
1111 			wrp_immed(nfp_prog, reg_both(dst), 0);
1112 		if (!imm || !~imm)
1113 			return;
1114 	}
1115 	if (alu_op == ALU_OP_OR) {
1116 		if (!~imm)
1117 			wrp_immed(nfp_prog, reg_both(dst), ~0U);
1118 		if (!imm || !~imm)
1119 			return;
1120 	}
1121 	if (alu_op == ALU_OP_XOR) {
1122 		if (!~imm)
1123 			emit_alu(nfp_prog, reg_both(dst), reg_none(),
1124 				 ALU_OP_NOT, reg_b(dst));
1125 		if (!imm || !~imm)
1126 			return;
1127 	}
1128 
1129 	tmp_reg = ur_load_imm_any(nfp_prog, imm, imm_b(nfp_prog));
1130 	emit_alu(nfp_prog, reg_both(dst), reg_a(dst), alu_op, tmp_reg);
1131 }
1132 
1133 static int
1134 wrp_alu64_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
1135 	      enum alu_op alu_op, bool skip)
1136 {
1137 	const struct bpf_insn *insn = &meta->insn;
1138 	u64 imm = insn->imm; /* sign extend */
1139 
1140 	if (skip) {
1141 		meta->skip = true;
1142 		return 0;
1143 	}
1144 
1145 	wrp_alu_imm(nfp_prog, insn->dst_reg * 2, alu_op, imm & ~0U);
1146 	wrp_alu_imm(nfp_prog, insn->dst_reg * 2 + 1, alu_op, imm >> 32);
1147 
1148 	return 0;
1149 }
1150 
1151 static int
1152 wrp_alu64_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
1153 	      enum alu_op alu_op)
1154 {
1155 	u8 dst = meta->insn.dst_reg * 2, src = meta->insn.src_reg * 2;
1156 
1157 	emit_alu(nfp_prog, reg_both(dst), reg_a(dst), alu_op, reg_b(src));
1158 	emit_alu(nfp_prog, reg_both(dst + 1),
1159 		 reg_a(dst + 1), alu_op, reg_b(src + 1));
1160 
1161 	return 0;
1162 }
1163 
1164 static int
1165 wrp_alu32_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
1166 	      enum alu_op alu_op, bool skip)
1167 {
1168 	const struct bpf_insn *insn = &meta->insn;
1169 
1170 	if (skip) {
1171 		meta->skip = true;
1172 		return 0;
1173 	}
1174 
1175 	wrp_alu_imm(nfp_prog, insn->dst_reg * 2, alu_op, insn->imm);
1176 	wrp_immed(nfp_prog, reg_both(insn->dst_reg * 2 + 1), 0);
1177 
1178 	return 0;
1179 }
1180 
1181 static int
1182 wrp_alu32_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
1183 	      enum alu_op alu_op)
1184 {
1185 	u8 dst = meta->insn.dst_reg * 2, src = meta->insn.src_reg * 2;
1186 
1187 	emit_alu(nfp_prog, reg_both(dst), reg_a(dst), alu_op, reg_b(src));
1188 	wrp_immed(nfp_prog, reg_both(meta->insn.dst_reg * 2 + 1), 0);
1189 
1190 	return 0;
1191 }
1192 
1193 static void
1194 wrp_test_reg_one(struct nfp_prog *nfp_prog, u8 dst, enum alu_op alu_op, u8 src,
1195 		 enum br_mask br_mask, u16 off)
1196 {
1197 	emit_alu(nfp_prog, reg_none(), reg_a(dst), alu_op, reg_b(src));
1198 	emit_br(nfp_prog, br_mask, off, 0);
1199 }
1200 
1201 static int
1202 wrp_test_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
1203 	     enum alu_op alu_op, enum br_mask br_mask)
1204 {
1205 	const struct bpf_insn *insn = &meta->insn;
1206 
1207 	wrp_test_reg_one(nfp_prog, insn->dst_reg * 2, alu_op,
1208 			 insn->src_reg * 2, br_mask, insn->off);
1209 	wrp_test_reg_one(nfp_prog, insn->dst_reg * 2 + 1, alu_op,
1210 			 insn->src_reg * 2 + 1, br_mask, insn->off);
1211 
1212 	return 0;
1213 }
1214 
1215 static int
1216 wrp_cmp_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
1217 	    enum br_mask br_mask, bool swap)
1218 {
1219 	const struct bpf_insn *insn = &meta->insn;
1220 	u64 imm = insn->imm; /* sign extend */
1221 	u8 reg = insn->dst_reg * 2;
1222 	swreg tmp_reg;
1223 
1224 	tmp_reg = ur_load_imm_any(nfp_prog, imm & ~0U, imm_b(nfp_prog));
1225 	if (!swap)
1226 		emit_alu(nfp_prog, reg_none(), reg_a(reg), ALU_OP_SUB, tmp_reg);
1227 	else
1228 		emit_alu(nfp_prog, reg_none(), tmp_reg, ALU_OP_SUB, reg_a(reg));
1229 
1230 	tmp_reg = ur_load_imm_any(nfp_prog, imm >> 32, imm_b(nfp_prog));
1231 	if (!swap)
1232 		emit_alu(nfp_prog, reg_none(),
1233 			 reg_a(reg + 1), ALU_OP_SUB_C, tmp_reg);
1234 	else
1235 		emit_alu(nfp_prog, reg_none(),
1236 			 tmp_reg, ALU_OP_SUB_C, reg_a(reg + 1));
1237 
1238 	emit_br(nfp_prog, br_mask, insn->off, 0);
1239 
1240 	return 0;
1241 }
1242 
1243 static int
1244 wrp_cmp_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
1245 	    enum br_mask br_mask, bool swap)
1246 {
1247 	const struct bpf_insn *insn = &meta->insn;
1248 	u8 areg, breg;
1249 
1250 	areg = insn->dst_reg * 2;
1251 	breg = insn->src_reg * 2;
1252 
1253 	if (swap) {
1254 		areg ^= breg;
1255 		breg ^= areg;
1256 		areg ^= breg;
1257 	}
1258 
1259 	emit_alu(nfp_prog, reg_none(), reg_a(areg), ALU_OP_SUB, reg_b(breg));
1260 	emit_alu(nfp_prog, reg_none(),
1261 		 reg_a(areg + 1), ALU_OP_SUB_C, reg_b(breg + 1));
1262 	emit_br(nfp_prog, br_mask, insn->off, 0);
1263 
1264 	return 0;
1265 }
1266 
1267 static void wrp_end32(struct nfp_prog *nfp_prog, swreg reg_in, u8 gpr_out)
1268 {
1269 	emit_ld_field(nfp_prog, reg_both(gpr_out), 0xf, reg_in,
1270 		      SHF_SC_R_ROT, 8);
1271 	emit_ld_field(nfp_prog, reg_both(gpr_out), 0x5, reg_a(gpr_out),
1272 		      SHF_SC_R_ROT, 16);
1273 }
1274 
1275 static int adjust_head(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1276 {
1277 	swreg tmp = imm_a(nfp_prog), tmp_len = imm_b(nfp_prog);
1278 	struct nfp_bpf_cap_adjust_head *adjust_head;
1279 	u32 ret_einval, end;
1280 
1281 	adjust_head = &nfp_prog->bpf->adjust_head;
1282 
1283 	/* Optimized version - 5 vs 14 cycles */
1284 	if (nfp_prog->adjust_head_location != UINT_MAX) {
1285 		if (WARN_ON_ONCE(nfp_prog->adjust_head_location != meta->n))
1286 			return -EINVAL;
1287 
1288 		emit_alu(nfp_prog, pptr_reg(nfp_prog),
1289 			 reg_a(2 * 2), ALU_OP_ADD, pptr_reg(nfp_prog));
1290 		emit_alu(nfp_prog, plen_reg(nfp_prog),
1291 			 plen_reg(nfp_prog), ALU_OP_SUB, reg_a(2 * 2));
1292 		emit_alu(nfp_prog, pv_len(nfp_prog),
1293 			 pv_len(nfp_prog), ALU_OP_SUB, reg_a(2 * 2));
1294 
1295 		wrp_immed(nfp_prog, reg_both(0), 0);
1296 		wrp_immed(nfp_prog, reg_both(1), 0);
1297 
1298 		/* TODO: when adjust head is guaranteed to succeed we can
1299 		 * also eliminate the following if (r0 == 0) branch.
1300 		 */
1301 
1302 		return 0;
1303 	}
1304 
1305 	ret_einval = nfp_prog_current_offset(nfp_prog) + 14;
1306 	end = ret_einval + 2;
1307 
1308 	/* We need to use a temp because offset is just a part of the pkt ptr */
1309 	emit_alu(nfp_prog, tmp,
1310 		 reg_a(2 * 2), ALU_OP_ADD_2B, pptr_reg(nfp_prog));
1311 
1312 	/* Validate result will fit within FW datapath constraints */
1313 	emit_alu(nfp_prog, reg_none(),
1314 		 tmp, ALU_OP_SUB, reg_imm(adjust_head->off_min));
1315 	emit_br(nfp_prog, BR_BLO, ret_einval, 0);
1316 	emit_alu(nfp_prog, reg_none(),
1317 		 reg_imm(adjust_head->off_max), ALU_OP_SUB, tmp);
1318 	emit_br(nfp_prog, BR_BLO, ret_einval, 0);
1319 
1320 	/* Validate the length is at least ETH_HLEN */
1321 	emit_alu(nfp_prog, tmp_len,
1322 		 plen_reg(nfp_prog), ALU_OP_SUB, reg_a(2 * 2));
1323 	emit_alu(nfp_prog, reg_none(),
1324 		 tmp_len, ALU_OP_SUB, reg_imm(ETH_HLEN));
1325 	emit_br(nfp_prog, BR_BMI, ret_einval, 0);
1326 
1327 	/* Load the ret code */
1328 	wrp_immed(nfp_prog, reg_both(0), 0);
1329 	wrp_immed(nfp_prog, reg_both(1), 0);
1330 
1331 	/* Modify the packet metadata */
1332 	emit_ld_field(nfp_prog, pptr_reg(nfp_prog), 0x3, tmp, SHF_SC_NONE, 0);
1333 
1334 	/* Skip over the -EINVAL ret code (defer 2) */
1335 	emit_br(nfp_prog, BR_UNC, end, 2);
1336 
1337 	emit_alu(nfp_prog, plen_reg(nfp_prog),
1338 		 plen_reg(nfp_prog), ALU_OP_SUB, reg_a(2 * 2));
1339 	emit_alu(nfp_prog, pv_len(nfp_prog),
1340 		 pv_len(nfp_prog), ALU_OP_SUB, reg_a(2 * 2));
1341 
1342 	/* return -EINVAL target */
1343 	if (!nfp_prog_confirm_current_offset(nfp_prog, ret_einval))
1344 		return -EINVAL;
1345 
1346 	wrp_immed(nfp_prog, reg_both(0), -22);
1347 	wrp_immed(nfp_prog, reg_both(1), ~0);
1348 
1349 	if (!nfp_prog_confirm_current_offset(nfp_prog, end))
1350 		return -EINVAL;
1351 
1352 	return 0;
1353 }
1354 
1355 static int
1356 map_call_stack_common(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1357 {
1358 	struct bpf_offloaded_map *offmap;
1359 	struct nfp_bpf_map *nfp_map;
1360 	bool load_lm_ptr;
1361 	u32 ret_tgt;
1362 	s64 lm_off;
1363 	swreg tid;
1364 
1365 	offmap = (struct bpf_offloaded_map *)meta->arg1.map_ptr;
1366 	nfp_map = offmap->dev_priv;
1367 
1368 	/* We only have to reload LM0 if the key is not at start of stack */
1369 	lm_off = nfp_prog->stack_depth;
1370 	lm_off += meta->arg2.reg.var_off.value + meta->arg2.reg.off;
1371 	load_lm_ptr = meta->arg2.var_off || lm_off;
1372 
1373 	/* Set LM0 to start of key */
1374 	if (load_lm_ptr)
1375 		emit_csr_wr(nfp_prog, reg_b(2 * 2), NFP_CSR_ACT_LM_ADDR0);
1376 	if (meta->func_id == BPF_FUNC_map_update_elem)
1377 		emit_csr_wr(nfp_prog, reg_b(3 * 2), NFP_CSR_ACT_LM_ADDR2);
1378 
1379 	/* Load map ID into a register, it should actually fit as an immediate
1380 	 * but in case it doesn't deal with it here, not in the delay slots.
1381 	 */
1382 	tid = ur_load_imm_any(nfp_prog, nfp_map->tid, imm_a(nfp_prog));
1383 
1384 	emit_br_relo(nfp_prog, BR_UNC, BR_OFF_RELO + meta->func_id,
1385 		     2, RELO_BR_HELPER);
1386 	ret_tgt = nfp_prog_current_offset(nfp_prog) + 2;
1387 
1388 	/* Load map ID into A0 */
1389 	wrp_mov(nfp_prog, reg_a(0), tid);
1390 
1391 	/* Load the return address into B0 */
1392 	wrp_immed_relo(nfp_prog, reg_b(0), ret_tgt, RELO_IMMED_REL);
1393 
1394 	if (!nfp_prog_confirm_current_offset(nfp_prog, ret_tgt))
1395 		return -EINVAL;
1396 
1397 	/* Reset the LM0 pointer */
1398 	if (!load_lm_ptr)
1399 		return 0;
1400 
1401 	emit_csr_wr(nfp_prog, stack_reg(nfp_prog),  NFP_CSR_ACT_LM_ADDR0);
1402 	wrp_nops(nfp_prog, 3);
1403 
1404 	return 0;
1405 }
1406 
1407 static int
1408 nfp_get_prandom_u32(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1409 {
1410 	__emit_csr_rd(nfp_prog, NFP_CSR_PSEUDO_RND_NUM);
1411 	/* CSR value is read in following immed[gpr, 0] */
1412 	emit_immed(nfp_prog, reg_both(0), 0,
1413 		   IMMED_WIDTH_ALL, false, IMMED_SHIFT_0B);
1414 	emit_immed(nfp_prog, reg_both(1), 0,
1415 		   IMMED_WIDTH_ALL, false, IMMED_SHIFT_0B);
1416 	return 0;
1417 }
1418 
1419 /* --- Callbacks --- */
1420 static int mov_reg64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1421 {
1422 	const struct bpf_insn *insn = &meta->insn;
1423 	u8 dst = insn->dst_reg * 2;
1424 	u8 src = insn->src_reg * 2;
1425 
1426 	if (insn->src_reg == BPF_REG_10) {
1427 		swreg stack_depth_reg;
1428 
1429 		stack_depth_reg = ur_load_imm_any(nfp_prog,
1430 						  nfp_prog->stack_depth,
1431 						  stack_imm(nfp_prog));
1432 		emit_alu(nfp_prog, reg_both(dst),
1433 			 stack_reg(nfp_prog), ALU_OP_ADD, stack_depth_reg);
1434 		wrp_immed(nfp_prog, reg_both(dst + 1), 0);
1435 	} else {
1436 		wrp_reg_mov(nfp_prog, dst, src);
1437 		wrp_reg_mov(nfp_prog, dst + 1, src + 1);
1438 	}
1439 
1440 	return 0;
1441 }
1442 
1443 static int mov_imm64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1444 {
1445 	u64 imm = meta->insn.imm; /* sign extend */
1446 
1447 	wrp_immed(nfp_prog, reg_both(meta->insn.dst_reg * 2), imm & ~0U);
1448 	wrp_immed(nfp_prog, reg_both(meta->insn.dst_reg * 2 + 1), imm >> 32);
1449 
1450 	return 0;
1451 }
1452 
1453 static int xor_reg64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1454 {
1455 	return wrp_alu64_reg(nfp_prog, meta, ALU_OP_XOR);
1456 }
1457 
1458 static int xor_imm64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1459 {
1460 	return wrp_alu64_imm(nfp_prog, meta, ALU_OP_XOR, !meta->insn.imm);
1461 }
1462 
1463 static int and_reg64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1464 {
1465 	return wrp_alu64_reg(nfp_prog, meta, ALU_OP_AND);
1466 }
1467 
1468 static int and_imm64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1469 {
1470 	return wrp_alu64_imm(nfp_prog, meta, ALU_OP_AND, !~meta->insn.imm);
1471 }
1472 
1473 static int or_reg64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1474 {
1475 	return wrp_alu64_reg(nfp_prog, meta, ALU_OP_OR);
1476 }
1477 
1478 static int or_imm64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1479 {
1480 	return wrp_alu64_imm(nfp_prog, meta, ALU_OP_OR, !meta->insn.imm);
1481 }
1482 
1483 static int add_reg64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1484 {
1485 	const struct bpf_insn *insn = &meta->insn;
1486 
1487 	emit_alu(nfp_prog, reg_both(insn->dst_reg * 2),
1488 		 reg_a(insn->dst_reg * 2), ALU_OP_ADD,
1489 		 reg_b(insn->src_reg * 2));
1490 	emit_alu(nfp_prog, reg_both(insn->dst_reg * 2 + 1),
1491 		 reg_a(insn->dst_reg * 2 + 1), ALU_OP_ADD_C,
1492 		 reg_b(insn->src_reg * 2 + 1));
1493 
1494 	return 0;
1495 }
1496 
1497 static int add_imm64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1498 {
1499 	const struct bpf_insn *insn = &meta->insn;
1500 	u64 imm = insn->imm; /* sign extend */
1501 
1502 	wrp_alu_imm(nfp_prog, insn->dst_reg * 2, ALU_OP_ADD, imm & ~0U);
1503 	wrp_alu_imm(nfp_prog, insn->dst_reg * 2 + 1, ALU_OP_ADD_C, imm >> 32);
1504 
1505 	return 0;
1506 }
1507 
1508 static int sub_reg64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1509 {
1510 	const struct bpf_insn *insn = &meta->insn;
1511 
1512 	emit_alu(nfp_prog, reg_both(insn->dst_reg * 2),
1513 		 reg_a(insn->dst_reg * 2), ALU_OP_SUB,
1514 		 reg_b(insn->src_reg * 2));
1515 	emit_alu(nfp_prog, reg_both(insn->dst_reg * 2 + 1),
1516 		 reg_a(insn->dst_reg * 2 + 1), ALU_OP_SUB_C,
1517 		 reg_b(insn->src_reg * 2 + 1));
1518 
1519 	return 0;
1520 }
1521 
1522 static int sub_imm64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1523 {
1524 	const struct bpf_insn *insn = &meta->insn;
1525 	u64 imm = insn->imm; /* sign extend */
1526 
1527 	wrp_alu_imm(nfp_prog, insn->dst_reg * 2, ALU_OP_SUB, imm & ~0U);
1528 	wrp_alu_imm(nfp_prog, insn->dst_reg * 2 + 1, ALU_OP_SUB_C, imm >> 32);
1529 
1530 	return 0;
1531 }
1532 
1533 static int neg_reg64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1534 {
1535 	const struct bpf_insn *insn = &meta->insn;
1536 
1537 	emit_alu(nfp_prog, reg_both(insn->dst_reg * 2), reg_imm(0),
1538 		 ALU_OP_SUB, reg_b(insn->dst_reg * 2));
1539 	emit_alu(nfp_prog, reg_both(insn->dst_reg * 2 + 1), reg_imm(0),
1540 		 ALU_OP_SUB_C, reg_b(insn->dst_reg * 2 + 1));
1541 
1542 	return 0;
1543 }
1544 
1545 static int shl_imm64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1546 {
1547 	const struct bpf_insn *insn = &meta->insn;
1548 	u8 dst = insn->dst_reg * 2;
1549 
1550 	if (insn->imm < 32) {
1551 		emit_shf(nfp_prog, reg_both(dst + 1),
1552 			 reg_a(dst + 1), SHF_OP_NONE, reg_b(dst),
1553 			 SHF_SC_R_DSHF, 32 - insn->imm);
1554 		emit_shf(nfp_prog, reg_both(dst),
1555 			 reg_none(), SHF_OP_NONE, reg_b(dst),
1556 			 SHF_SC_L_SHF, insn->imm);
1557 	} else if (insn->imm == 32) {
1558 		wrp_reg_mov(nfp_prog, dst + 1, dst);
1559 		wrp_immed(nfp_prog, reg_both(dst), 0);
1560 	} else if (insn->imm > 32) {
1561 		emit_shf(nfp_prog, reg_both(dst + 1),
1562 			 reg_none(), SHF_OP_NONE, reg_b(dst),
1563 			 SHF_SC_L_SHF, insn->imm - 32);
1564 		wrp_immed(nfp_prog, reg_both(dst), 0);
1565 	}
1566 
1567 	return 0;
1568 }
1569 
1570 static int shr_imm64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1571 {
1572 	const struct bpf_insn *insn = &meta->insn;
1573 	u8 dst = insn->dst_reg * 2;
1574 
1575 	if (insn->imm < 32) {
1576 		emit_shf(nfp_prog, reg_both(dst),
1577 			 reg_a(dst + 1), SHF_OP_NONE, reg_b(dst),
1578 			 SHF_SC_R_DSHF, insn->imm);
1579 		emit_shf(nfp_prog, reg_both(dst + 1),
1580 			 reg_none(), SHF_OP_NONE, reg_b(dst + 1),
1581 			 SHF_SC_R_SHF, insn->imm);
1582 	} else if (insn->imm == 32) {
1583 		wrp_reg_mov(nfp_prog, dst, dst + 1);
1584 		wrp_immed(nfp_prog, reg_both(dst + 1), 0);
1585 	} else if (insn->imm > 32) {
1586 		emit_shf(nfp_prog, reg_both(dst),
1587 			 reg_none(), SHF_OP_NONE, reg_b(dst + 1),
1588 			 SHF_SC_R_SHF, insn->imm - 32);
1589 		wrp_immed(nfp_prog, reg_both(dst + 1), 0);
1590 	}
1591 
1592 	return 0;
1593 }
1594 
1595 static int mov_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1596 {
1597 	const struct bpf_insn *insn = &meta->insn;
1598 
1599 	wrp_reg_mov(nfp_prog, insn->dst_reg * 2,  insn->src_reg * 2);
1600 	wrp_immed(nfp_prog, reg_both(insn->dst_reg * 2 + 1), 0);
1601 
1602 	return 0;
1603 }
1604 
1605 static int mov_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1606 {
1607 	const struct bpf_insn *insn = &meta->insn;
1608 
1609 	wrp_immed(nfp_prog, reg_both(insn->dst_reg * 2), insn->imm);
1610 	wrp_immed(nfp_prog, reg_both(insn->dst_reg * 2 + 1), 0);
1611 
1612 	return 0;
1613 }
1614 
1615 static int xor_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1616 {
1617 	return wrp_alu32_reg(nfp_prog, meta, ALU_OP_XOR);
1618 }
1619 
1620 static int xor_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1621 {
1622 	return wrp_alu32_imm(nfp_prog, meta, ALU_OP_XOR, !~meta->insn.imm);
1623 }
1624 
1625 static int and_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1626 {
1627 	return wrp_alu32_reg(nfp_prog, meta, ALU_OP_AND);
1628 }
1629 
1630 static int and_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1631 {
1632 	return wrp_alu32_imm(nfp_prog, meta, ALU_OP_AND, !~meta->insn.imm);
1633 }
1634 
1635 static int or_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1636 {
1637 	return wrp_alu32_reg(nfp_prog, meta, ALU_OP_OR);
1638 }
1639 
1640 static int or_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1641 {
1642 	return wrp_alu32_imm(nfp_prog, meta, ALU_OP_OR, !meta->insn.imm);
1643 }
1644 
1645 static int add_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1646 {
1647 	return wrp_alu32_reg(nfp_prog, meta, ALU_OP_ADD);
1648 }
1649 
1650 static int add_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1651 {
1652 	return wrp_alu32_imm(nfp_prog, meta, ALU_OP_ADD, !meta->insn.imm);
1653 }
1654 
1655 static int sub_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1656 {
1657 	return wrp_alu32_reg(nfp_prog, meta, ALU_OP_SUB);
1658 }
1659 
1660 static int sub_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1661 {
1662 	return wrp_alu32_imm(nfp_prog, meta, ALU_OP_SUB, !meta->insn.imm);
1663 }
1664 
1665 static int neg_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1666 {
1667 	u8 dst = meta->insn.dst_reg * 2;
1668 
1669 	emit_alu(nfp_prog, reg_both(dst), reg_imm(0), ALU_OP_SUB, reg_b(dst));
1670 	wrp_immed(nfp_prog, reg_both(meta->insn.dst_reg * 2 + 1), 0);
1671 
1672 	return 0;
1673 }
1674 
1675 static int shl_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1676 {
1677 	const struct bpf_insn *insn = &meta->insn;
1678 
1679 	if (!insn->imm)
1680 		return 1; /* TODO: zero shift means indirect */
1681 
1682 	emit_shf(nfp_prog, reg_both(insn->dst_reg * 2),
1683 		 reg_none(), SHF_OP_NONE, reg_b(insn->dst_reg * 2),
1684 		 SHF_SC_L_SHF, insn->imm);
1685 	wrp_immed(nfp_prog, reg_both(insn->dst_reg * 2 + 1), 0);
1686 
1687 	return 0;
1688 }
1689 
1690 static int end_reg32(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1691 {
1692 	const struct bpf_insn *insn = &meta->insn;
1693 	u8 gpr = insn->dst_reg * 2;
1694 
1695 	switch (insn->imm) {
1696 	case 16:
1697 		emit_ld_field(nfp_prog, reg_both(gpr), 0x9, reg_b(gpr),
1698 			      SHF_SC_R_ROT, 8);
1699 		emit_ld_field(nfp_prog, reg_both(gpr), 0xe, reg_a(gpr),
1700 			      SHF_SC_R_SHF, 16);
1701 
1702 		wrp_immed(nfp_prog, reg_both(gpr + 1), 0);
1703 		break;
1704 	case 32:
1705 		wrp_end32(nfp_prog, reg_a(gpr), gpr);
1706 		wrp_immed(nfp_prog, reg_both(gpr + 1), 0);
1707 		break;
1708 	case 64:
1709 		wrp_mov(nfp_prog, imm_a(nfp_prog), reg_b(gpr + 1));
1710 
1711 		wrp_end32(nfp_prog, reg_a(gpr), gpr + 1);
1712 		wrp_end32(nfp_prog, imm_a(nfp_prog), gpr);
1713 		break;
1714 	}
1715 
1716 	return 0;
1717 }
1718 
1719 static int imm_ld8_part2(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1720 {
1721 	struct nfp_insn_meta *prev = nfp_meta_prev(meta);
1722 	u32 imm_lo, imm_hi;
1723 	u8 dst;
1724 
1725 	dst = prev->insn.dst_reg * 2;
1726 	imm_lo = prev->insn.imm;
1727 	imm_hi = meta->insn.imm;
1728 
1729 	wrp_immed(nfp_prog, reg_both(dst), imm_lo);
1730 
1731 	/* mov is always 1 insn, load imm may be two, so try to use mov */
1732 	if (imm_hi == imm_lo)
1733 		wrp_mov(nfp_prog, reg_both(dst + 1), reg_a(dst));
1734 	else
1735 		wrp_immed(nfp_prog, reg_both(dst + 1), imm_hi);
1736 
1737 	return 0;
1738 }
1739 
1740 static int imm_ld8(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1741 {
1742 	meta->double_cb = imm_ld8_part2;
1743 	return 0;
1744 }
1745 
1746 static int data_ld1(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1747 {
1748 	return construct_data_ld(nfp_prog, meta->insn.imm, 1);
1749 }
1750 
1751 static int data_ld2(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1752 {
1753 	return construct_data_ld(nfp_prog, meta->insn.imm, 2);
1754 }
1755 
1756 static int data_ld4(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1757 {
1758 	return construct_data_ld(nfp_prog, meta->insn.imm, 4);
1759 }
1760 
1761 static int data_ind_ld1(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1762 {
1763 	return construct_data_ind_ld(nfp_prog, meta->insn.imm,
1764 				     meta->insn.src_reg * 2, 1);
1765 }
1766 
1767 static int data_ind_ld2(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1768 {
1769 	return construct_data_ind_ld(nfp_prog, meta->insn.imm,
1770 				     meta->insn.src_reg * 2, 2);
1771 }
1772 
1773 static int data_ind_ld4(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1774 {
1775 	return construct_data_ind_ld(nfp_prog, meta->insn.imm,
1776 				     meta->insn.src_reg * 2, 4);
1777 }
1778 
1779 static int
1780 mem_ldx_stack(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
1781 	      unsigned int size, unsigned int ptr_off)
1782 {
1783 	return mem_op_stack(nfp_prog, meta, size, ptr_off,
1784 			    meta->insn.dst_reg * 2, meta->insn.src_reg * 2,
1785 			    true, wrp_lmem_load);
1786 }
1787 
1788 static int mem_ldx_skb(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
1789 		       u8 size)
1790 {
1791 	swreg dst = reg_both(meta->insn.dst_reg * 2);
1792 
1793 	switch (meta->insn.off) {
1794 	case offsetof(struct __sk_buff, len):
1795 		if (size != FIELD_SIZEOF(struct __sk_buff, len))
1796 			return -EOPNOTSUPP;
1797 		wrp_mov(nfp_prog, dst, plen_reg(nfp_prog));
1798 		break;
1799 	case offsetof(struct __sk_buff, data):
1800 		if (size != FIELD_SIZEOF(struct __sk_buff, data))
1801 			return -EOPNOTSUPP;
1802 		wrp_mov(nfp_prog, dst, pptr_reg(nfp_prog));
1803 		break;
1804 	case offsetof(struct __sk_buff, data_end):
1805 		if (size != FIELD_SIZEOF(struct __sk_buff, data_end))
1806 			return -EOPNOTSUPP;
1807 		emit_alu(nfp_prog, dst,
1808 			 plen_reg(nfp_prog), ALU_OP_ADD, pptr_reg(nfp_prog));
1809 		break;
1810 	default:
1811 		return -EOPNOTSUPP;
1812 	}
1813 
1814 	wrp_immed(nfp_prog, reg_both(meta->insn.dst_reg * 2 + 1), 0);
1815 
1816 	return 0;
1817 }
1818 
1819 static int mem_ldx_xdp(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
1820 		       u8 size)
1821 {
1822 	swreg dst = reg_both(meta->insn.dst_reg * 2);
1823 
1824 	switch (meta->insn.off) {
1825 	case offsetof(struct xdp_md, data):
1826 		if (size != FIELD_SIZEOF(struct xdp_md, data))
1827 			return -EOPNOTSUPP;
1828 		wrp_mov(nfp_prog, dst, pptr_reg(nfp_prog));
1829 		break;
1830 	case offsetof(struct xdp_md, data_end):
1831 		if (size != FIELD_SIZEOF(struct xdp_md, data_end))
1832 			return -EOPNOTSUPP;
1833 		emit_alu(nfp_prog, dst,
1834 			 plen_reg(nfp_prog), ALU_OP_ADD, pptr_reg(nfp_prog));
1835 		break;
1836 	default:
1837 		return -EOPNOTSUPP;
1838 	}
1839 
1840 	wrp_immed(nfp_prog, reg_both(meta->insn.dst_reg * 2 + 1), 0);
1841 
1842 	return 0;
1843 }
1844 
1845 static int
1846 mem_ldx_data(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
1847 	     unsigned int size)
1848 {
1849 	swreg tmp_reg;
1850 
1851 	tmp_reg = re_load_imm_any(nfp_prog, meta->insn.off, imm_b(nfp_prog));
1852 
1853 	return data_ld_host_order_addr32(nfp_prog, meta->insn.src_reg * 2,
1854 					 tmp_reg, meta->insn.dst_reg * 2, size);
1855 }
1856 
1857 static int
1858 mem_ldx_emem(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
1859 	     unsigned int size)
1860 {
1861 	swreg tmp_reg;
1862 
1863 	tmp_reg = re_load_imm_any(nfp_prog, meta->insn.off, imm_b(nfp_prog));
1864 
1865 	return data_ld_host_order_addr40(nfp_prog, meta->insn.src_reg * 2,
1866 					 tmp_reg, meta->insn.dst_reg * 2, size);
1867 }
1868 
1869 static void
1870 mem_ldx_data_init_pktcache(struct nfp_prog *nfp_prog,
1871 			   struct nfp_insn_meta *meta)
1872 {
1873 	s16 range_start = meta->pkt_cache.range_start;
1874 	s16 range_end = meta->pkt_cache.range_end;
1875 	swreg src_base, off;
1876 	u8 xfer_num, len;
1877 	bool indir;
1878 
1879 	off = re_load_imm_any(nfp_prog, range_start, imm_b(nfp_prog));
1880 	src_base = reg_a(meta->insn.src_reg * 2);
1881 	len = range_end - range_start;
1882 	xfer_num = round_up(len, REG_WIDTH) / REG_WIDTH;
1883 
1884 	indir = len > 8 * REG_WIDTH;
1885 	/* Setup PREV_ALU for indirect mode. */
1886 	if (indir)
1887 		wrp_immed(nfp_prog, reg_none(),
1888 			  CMD_OVE_LEN | FIELD_PREP(CMD_OV_LEN, xfer_num - 1));
1889 
1890 	/* Cache memory into transfer-in registers. */
1891 	emit_cmd_any(nfp_prog, CMD_TGT_READ32_SWAP, CMD_MODE_32b, 0, src_base,
1892 		     off, xfer_num - 1, CMD_CTX_SWAP, indir);
1893 }
1894 
1895 static int
1896 mem_ldx_data_from_pktcache_unaligned(struct nfp_prog *nfp_prog,
1897 				     struct nfp_insn_meta *meta,
1898 				     unsigned int size)
1899 {
1900 	s16 range_start = meta->pkt_cache.range_start;
1901 	s16 insn_off = meta->insn.off - range_start;
1902 	swreg dst_lo, dst_hi, src_lo, src_mid;
1903 	u8 dst_gpr = meta->insn.dst_reg * 2;
1904 	u8 len_lo = size, len_mid = 0;
1905 	u8 idx = insn_off / REG_WIDTH;
1906 	u8 off = insn_off % REG_WIDTH;
1907 
1908 	dst_hi = reg_both(dst_gpr + 1);
1909 	dst_lo = reg_both(dst_gpr);
1910 	src_lo = reg_xfer(idx);
1911 
1912 	/* The read length could involve as many as three registers. */
1913 	if (size > REG_WIDTH - off) {
1914 		/* Calculate the part in the second register. */
1915 		len_lo = REG_WIDTH - off;
1916 		len_mid = size - len_lo;
1917 
1918 		/* Calculate the part in the third register. */
1919 		if (size > 2 * REG_WIDTH - off)
1920 			len_mid = REG_WIDTH;
1921 	}
1922 
1923 	wrp_reg_subpart(nfp_prog, dst_lo, src_lo, len_lo, off);
1924 
1925 	if (!len_mid) {
1926 		wrp_immed(nfp_prog, dst_hi, 0);
1927 		return 0;
1928 	}
1929 
1930 	src_mid = reg_xfer(idx + 1);
1931 
1932 	if (size <= REG_WIDTH) {
1933 		wrp_reg_or_subpart(nfp_prog, dst_lo, src_mid, len_mid, len_lo);
1934 		wrp_immed(nfp_prog, dst_hi, 0);
1935 	} else {
1936 		swreg src_hi = reg_xfer(idx + 2);
1937 
1938 		wrp_reg_or_subpart(nfp_prog, dst_lo, src_mid,
1939 				   REG_WIDTH - len_lo, len_lo);
1940 		wrp_reg_subpart(nfp_prog, dst_hi, src_mid, len_lo,
1941 				REG_WIDTH - len_lo);
1942 		wrp_reg_or_subpart(nfp_prog, dst_hi, src_hi, REG_WIDTH - len_lo,
1943 				   len_lo);
1944 	}
1945 
1946 	return 0;
1947 }
1948 
1949 static int
1950 mem_ldx_data_from_pktcache_aligned(struct nfp_prog *nfp_prog,
1951 				   struct nfp_insn_meta *meta,
1952 				   unsigned int size)
1953 {
1954 	swreg dst_lo, dst_hi, src_lo;
1955 	u8 dst_gpr, idx;
1956 
1957 	idx = (meta->insn.off - meta->pkt_cache.range_start) / REG_WIDTH;
1958 	dst_gpr = meta->insn.dst_reg * 2;
1959 	dst_hi = reg_both(dst_gpr + 1);
1960 	dst_lo = reg_both(dst_gpr);
1961 	src_lo = reg_xfer(idx);
1962 
1963 	if (size < REG_WIDTH) {
1964 		wrp_reg_subpart(nfp_prog, dst_lo, src_lo, size, 0);
1965 		wrp_immed(nfp_prog, dst_hi, 0);
1966 	} else if (size == REG_WIDTH) {
1967 		wrp_mov(nfp_prog, dst_lo, src_lo);
1968 		wrp_immed(nfp_prog, dst_hi, 0);
1969 	} else {
1970 		swreg src_hi = reg_xfer(idx + 1);
1971 
1972 		wrp_mov(nfp_prog, dst_lo, src_lo);
1973 		wrp_mov(nfp_prog, dst_hi, src_hi);
1974 	}
1975 
1976 	return 0;
1977 }
1978 
1979 static int
1980 mem_ldx_data_from_pktcache(struct nfp_prog *nfp_prog,
1981 			   struct nfp_insn_meta *meta, unsigned int size)
1982 {
1983 	u8 off = meta->insn.off - meta->pkt_cache.range_start;
1984 
1985 	if (IS_ALIGNED(off, REG_WIDTH))
1986 		return mem_ldx_data_from_pktcache_aligned(nfp_prog, meta, size);
1987 
1988 	return mem_ldx_data_from_pktcache_unaligned(nfp_prog, meta, size);
1989 }
1990 
1991 static int
1992 mem_ldx(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
1993 	unsigned int size)
1994 {
1995 	if (meta->ldst_gather_len)
1996 		return nfp_cpp_memcpy(nfp_prog, meta);
1997 
1998 	if (meta->ptr.type == PTR_TO_CTX) {
1999 		if (nfp_prog->type == BPF_PROG_TYPE_XDP)
2000 			return mem_ldx_xdp(nfp_prog, meta, size);
2001 		else
2002 			return mem_ldx_skb(nfp_prog, meta, size);
2003 	}
2004 
2005 	if (meta->ptr.type == PTR_TO_PACKET) {
2006 		if (meta->pkt_cache.range_end) {
2007 			if (meta->pkt_cache.do_init)
2008 				mem_ldx_data_init_pktcache(nfp_prog, meta);
2009 
2010 			return mem_ldx_data_from_pktcache(nfp_prog, meta, size);
2011 		} else {
2012 			return mem_ldx_data(nfp_prog, meta, size);
2013 		}
2014 	}
2015 
2016 	if (meta->ptr.type == PTR_TO_STACK)
2017 		return mem_ldx_stack(nfp_prog, meta, size,
2018 				     meta->ptr.off + meta->ptr.var_off.value);
2019 
2020 	if (meta->ptr.type == PTR_TO_MAP_VALUE)
2021 		return mem_ldx_emem(nfp_prog, meta, size);
2022 
2023 	return -EOPNOTSUPP;
2024 }
2025 
2026 static int mem_ldx1(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2027 {
2028 	return mem_ldx(nfp_prog, meta, 1);
2029 }
2030 
2031 static int mem_ldx2(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2032 {
2033 	return mem_ldx(nfp_prog, meta, 2);
2034 }
2035 
2036 static int mem_ldx4(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2037 {
2038 	return mem_ldx(nfp_prog, meta, 4);
2039 }
2040 
2041 static int mem_ldx8(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2042 {
2043 	return mem_ldx(nfp_prog, meta, 8);
2044 }
2045 
2046 static int
2047 mem_st_data(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
2048 	    unsigned int size)
2049 {
2050 	u64 imm = meta->insn.imm; /* sign extend */
2051 	swreg off_reg;
2052 
2053 	off_reg = re_load_imm_any(nfp_prog, meta->insn.off, imm_b(nfp_prog));
2054 
2055 	return data_st_host_order(nfp_prog, meta->insn.dst_reg * 2, off_reg,
2056 				  imm, size);
2057 }
2058 
2059 static int mem_st(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
2060 		  unsigned int size)
2061 {
2062 	if (meta->ptr.type == PTR_TO_PACKET)
2063 		return mem_st_data(nfp_prog, meta, size);
2064 
2065 	return -EOPNOTSUPP;
2066 }
2067 
2068 static int mem_st1(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2069 {
2070 	return mem_st(nfp_prog, meta, 1);
2071 }
2072 
2073 static int mem_st2(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2074 {
2075 	return mem_st(nfp_prog, meta, 2);
2076 }
2077 
2078 static int mem_st4(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2079 {
2080 	return mem_st(nfp_prog, meta, 4);
2081 }
2082 
2083 static int mem_st8(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2084 {
2085 	return mem_st(nfp_prog, meta, 8);
2086 }
2087 
2088 static int
2089 mem_stx_data(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
2090 	     unsigned int size)
2091 {
2092 	swreg off_reg;
2093 
2094 	off_reg = re_load_imm_any(nfp_prog, meta->insn.off, imm_b(nfp_prog));
2095 
2096 	return data_stx_host_order(nfp_prog, meta->insn.dst_reg * 2, off_reg,
2097 				   meta->insn.src_reg * 2, size);
2098 }
2099 
2100 static int
2101 mem_stx_stack(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
2102 	      unsigned int size, unsigned int ptr_off)
2103 {
2104 	return mem_op_stack(nfp_prog, meta, size, ptr_off,
2105 			    meta->insn.src_reg * 2, meta->insn.dst_reg * 2,
2106 			    false, wrp_lmem_store);
2107 }
2108 
2109 static int
2110 mem_stx(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
2111 	unsigned int size)
2112 {
2113 	if (meta->ptr.type == PTR_TO_PACKET)
2114 		return mem_stx_data(nfp_prog, meta, size);
2115 
2116 	if (meta->ptr.type == PTR_TO_STACK)
2117 		return mem_stx_stack(nfp_prog, meta, size,
2118 				     meta->ptr.off + meta->ptr.var_off.value);
2119 
2120 	return -EOPNOTSUPP;
2121 }
2122 
2123 static int mem_stx1(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2124 {
2125 	return mem_stx(nfp_prog, meta, 1);
2126 }
2127 
2128 static int mem_stx2(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2129 {
2130 	return mem_stx(nfp_prog, meta, 2);
2131 }
2132 
2133 static int mem_stx4(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2134 {
2135 	return mem_stx(nfp_prog, meta, 4);
2136 }
2137 
2138 static int mem_stx8(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2139 {
2140 	return mem_stx(nfp_prog, meta, 8);
2141 }
2142 
2143 static int
2144 mem_xadd(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta, bool is64)
2145 {
2146 	u8 dst_gpr = meta->insn.dst_reg * 2;
2147 	u8 src_gpr = meta->insn.src_reg * 2;
2148 	unsigned int full_add, out;
2149 	swreg addra, addrb, off;
2150 
2151 	off = ur_load_imm_any(nfp_prog, meta->insn.off, imm_b(nfp_prog));
2152 
2153 	/* We can fit 16 bits into command immediate, if we know the immediate
2154 	 * is guaranteed to either always or never fit into 16 bit we only
2155 	 * generate code to handle that particular case, otherwise generate
2156 	 * code for both.
2157 	 */
2158 	out = nfp_prog_current_offset(nfp_prog);
2159 	full_add = nfp_prog_current_offset(nfp_prog);
2160 
2161 	if (meta->insn.off) {
2162 		out += 2;
2163 		full_add += 2;
2164 	}
2165 	if (meta->xadd_maybe_16bit) {
2166 		out += 3;
2167 		full_add += 3;
2168 	}
2169 	if (meta->xadd_over_16bit)
2170 		out += 2 + is64;
2171 	if (meta->xadd_maybe_16bit && meta->xadd_over_16bit) {
2172 		out += 5;
2173 		full_add += 5;
2174 	}
2175 
2176 	/* Generate the branch for choosing add_imm vs add */
2177 	if (meta->xadd_maybe_16bit && meta->xadd_over_16bit) {
2178 		swreg max_imm = imm_a(nfp_prog);
2179 
2180 		wrp_immed(nfp_prog, max_imm, 0xffff);
2181 		emit_alu(nfp_prog, reg_none(),
2182 			 max_imm, ALU_OP_SUB, reg_b(src_gpr));
2183 		emit_alu(nfp_prog, reg_none(),
2184 			 reg_imm(0), ALU_OP_SUB_C, reg_b(src_gpr + 1));
2185 		emit_br(nfp_prog, BR_BLO, full_add, meta->insn.off ? 2 : 0);
2186 		/* defer for add */
2187 	}
2188 
2189 	/* If insn has an offset add to the address */
2190 	if (!meta->insn.off) {
2191 		addra = reg_a(dst_gpr);
2192 		addrb = reg_b(dst_gpr + 1);
2193 	} else {
2194 		emit_alu(nfp_prog, imma_a(nfp_prog),
2195 			 reg_a(dst_gpr), ALU_OP_ADD, off);
2196 		emit_alu(nfp_prog, imma_b(nfp_prog),
2197 			 reg_a(dst_gpr + 1), ALU_OP_ADD_C, reg_imm(0));
2198 		addra = imma_a(nfp_prog);
2199 		addrb = imma_b(nfp_prog);
2200 	}
2201 
2202 	/* Generate the add_imm if 16 bits are possible */
2203 	if (meta->xadd_maybe_16bit) {
2204 		swreg prev_alu = imm_a(nfp_prog);
2205 
2206 		wrp_immed(nfp_prog, prev_alu,
2207 			  FIELD_PREP(CMD_OVE_DATA, 2) |
2208 			  CMD_OVE_LEN |
2209 			  FIELD_PREP(CMD_OV_LEN, 0x8 | is64 << 2));
2210 		wrp_reg_or_subpart(nfp_prog, prev_alu, reg_b(src_gpr), 2, 2);
2211 		emit_cmd_indir(nfp_prog, CMD_TGT_ADD_IMM, CMD_MODE_40b_BA, 0,
2212 			       addra, addrb, 0, CMD_CTX_NO_SWAP);
2213 
2214 		if (meta->xadd_over_16bit)
2215 			emit_br(nfp_prog, BR_UNC, out, 0);
2216 	}
2217 
2218 	if (!nfp_prog_confirm_current_offset(nfp_prog, full_add))
2219 		return -EINVAL;
2220 
2221 	/* Generate the add if 16 bits are not guaranteed */
2222 	if (meta->xadd_over_16bit) {
2223 		emit_cmd(nfp_prog, CMD_TGT_ADD, CMD_MODE_40b_BA, 0,
2224 			 addra, addrb, is64 << 2,
2225 			 is64 ? CMD_CTX_SWAP_DEFER2 : CMD_CTX_SWAP_DEFER1);
2226 
2227 		wrp_mov(nfp_prog, reg_xfer(0), reg_a(src_gpr));
2228 		if (is64)
2229 			wrp_mov(nfp_prog, reg_xfer(1), reg_a(src_gpr + 1));
2230 	}
2231 
2232 	if (!nfp_prog_confirm_current_offset(nfp_prog, out))
2233 		return -EINVAL;
2234 
2235 	return 0;
2236 }
2237 
2238 static int mem_xadd4(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2239 {
2240 	return mem_xadd(nfp_prog, meta, false);
2241 }
2242 
2243 static int mem_xadd8(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2244 {
2245 	return mem_xadd(nfp_prog, meta, true);
2246 }
2247 
2248 static int jump(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2249 {
2250 	emit_br(nfp_prog, BR_UNC, meta->insn.off, 0);
2251 
2252 	return 0;
2253 }
2254 
2255 static int jeq_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2256 {
2257 	const struct bpf_insn *insn = &meta->insn;
2258 	u64 imm = insn->imm; /* sign extend */
2259 	swreg or1, or2, tmp_reg;
2260 
2261 	or1 = reg_a(insn->dst_reg * 2);
2262 	or2 = reg_b(insn->dst_reg * 2 + 1);
2263 
2264 	if (imm & ~0U) {
2265 		tmp_reg = ur_load_imm_any(nfp_prog, imm & ~0U, imm_b(nfp_prog));
2266 		emit_alu(nfp_prog, imm_a(nfp_prog),
2267 			 reg_a(insn->dst_reg * 2), ALU_OP_XOR, tmp_reg);
2268 		or1 = imm_a(nfp_prog);
2269 	}
2270 
2271 	if (imm >> 32) {
2272 		tmp_reg = ur_load_imm_any(nfp_prog, imm >> 32, imm_b(nfp_prog));
2273 		emit_alu(nfp_prog, imm_b(nfp_prog),
2274 			 reg_a(insn->dst_reg * 2 + 1), ALU_OP_XOR, tmp_reg);
2275 		or2 = imm_b(nfp_prog);
2276 	}
2277 
2278 	emit_alu(nfp_prog, reg_none(), or1, ALU_OP_OR, or2);
2279 	emit_br(nfp_prog, BR_BEQ, insn->off, 0);
2280 
2281 	return 0;
2282 }
2283 
2284 static int jgt_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2285 {
2286 	return wrp_cmp_imm(nfp_prog, meta, BR_BLO, true);
2287 }
2288 
2289 static int jge_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2290 {
2291 	return wrp_cmp_imm(nfp_prog, meta, BR_BHS, false);
2292 }
2293 
2294 static int jlt_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2295 {
2296 	return wrp_cmp_imm(nfp_prog, meta, BR_BLO, false);
2297 }
2298 
2299 static int jle_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2300 {
2301 	return wrp_cmp_imm(nfp_prog, meta, BR_BHS, true);
2302 }
2303 
2304 static int jsgt_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2305 {
2306 	return wrp_cmp_imm(nfp_prog, meta, BR_BLT, true);
2307 }
2308 
2309 static int jsge_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2310 {
2311 	return wrp_cmp_imm(nfp_prog, meta, BR_BGE, false);
2312 }
2313 
2314 static int jslt_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2315 {
2316 	return wrp_cmp_imm(nfp_prog, meta, BR_BLT, false);
2317 }
2318 
2319 static int jsle_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2320 {
2321 	return wrp_cmp_imm(nfp_prog, meta, BR_BGE, true);
2322 }
2323 
2324 static int jset_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2325 {
2326 	const struct bpf_insn *insn = &meta->insn;
2327 	u64 imm = insn->imm; /* sign extend */
2328 	swreg tmp_reg;
2329 
2330 	if (!imm) {
2331 		meta->skip = true;
2332 		return 0;
2333 	}
2334 
2335 	if (imm & ~0U) {
2336 		tmp_reg = ur_load_imm_any(nfp_prog, imm & ~0U, imm_b(nfp_prog));
2337 		emit_alu(nfp_prog, reg_none(),
2338 			 reg_a(insn->dst_reg * 2), ALU_OP_AND, tmp_reg);
2339 		emit_br(nfp_prog, BR_BNE, insn->off, 0);
2340 	}
2341 
2342 	if (imm >> 32) {
2343 		tmp_reg = ur_load_imm_any(nfp_prog, imm >> 32, imm_b(nfp_prog));
2344 		emit_alu(nfp_prog, reg_none(),
2345 			 reg_a(insn->dst_reg * 2 + 1), ALU_OP_AND, tmp_reg);
2346 		emit_br(nfp_prog, BR_BNE, insn->off, 0);
2347 	}
2348 
2349 	return 0;
2350 }
2351 
2352 static int jne_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2353 {
2354 	const struct bpf_insn *insn = &meta->insn;
2355 	u64 imm = insn->imm; /* sign extend */
2356 	swreg tmp_reg;
2357 
2358 	if (!imm) {
2359 		emit_alu(nfp_prog, reg_none(), reg_a(insn->dst_reg * 2),
2360 			 ALU_OP_OR, reg_b(insn->dst_reg * 2 + 1));
2361 		emit_br(nfp_prog, BR_BNE, insn->off, 0);
2362 		return 0;
2363 	}
2364 
2365 	tmp_reg = ur_load_imm_any(nfp_prog, imm & ~0U, imm_b(nfp_prog));
2366 	emit_alu(nfp_prog, reg_none(),
2367 		 reg_a(insn->dst_reg * 2), ALU_OP_XOR, tmp_reg);
2368 	emit_br(nfp_prog, BR_BNE, insn->off, 0);
2369 
2370 	tmp_reg = ur_load_imm_any(nfp_prog, imm >> 32, imm_b(nfp_prog));
2371 	emit_alu(nfp_prog, reg_none(),
2372 		 reg_a(insn->dst_reg * 2 + 1), ALU_OP_XOR, tmp_reg);
2373 	emit_br(nfp_prog, BR_BNE, insn->off, 0);
2374 
2375 	return 0;
2376 }
2377 
2378 static int jeq_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2379 {
2380 	const struct bpf_insn *insn = &meta->insn;
2381 
2382 	emit_alu(nfp_prog, imm_a(nfp_prog), reg_a(insn->dst_reg * 2),
2383 		 ALU_OP_XOR, reg_b(insn->src_reg * 2));
2384 	emit_alu(nfp_prog, imm_b(nfp_prog), reg_a(insn->dst_reg * 2 + 1),
2385 		 ALU_OP_XOR, reg_b(insn->src_reg * 2 + 1));
2386 	emit_alu(nfp_prog, reg_none(),
2387 		 imm_a(nfp_prog), ALU_OP_OR, imm_b(nfp_prog));
2388 	emit_br(nfp_prog, BR_BEQ, insn->off, 0);
2389 
2390 	return 0;
2391 }
2392 
2393 static int jgt_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2394 {
2395 	return wrp_cmp_reg(nfp_prog, meta, BR_BLO, true);
2396 }
2397 
2398 static int jge_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2399 {
2400 	return wrp_cmp_reg(nfp_prog, meta, BR_BHS, false);
2401 }
2402 
2403 static int jlt_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2404 {
2405 	return wrp_cmp_reg(nfp_prog, meta, BR_BLO, false);
2406 }
2407 
2408 static int jle_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2409 {
2410 	return wrp_cmp_reg(nfp_prog, meta, BR_BHS, true);
2411 }
2412 
2413 static int jsgt_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2414 {
2415 	return wrp_cmp_reg(nfp_prog, meta, BR_BLT, true);
2416 }
2417 
2418 static int jsge_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2419 {
2420 	return wrp_cmp_reg(nfp_prog, meta, BR_BGE, false);
2421 }
2422 
2423 static int jslt_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2424 {
2425 	return wrp_cmp_reg(nfp_prog, meta, BR_BLT, false);
2426 }
2427 
2428 static int jsle_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2429 {
2430 	return wrp_cmp_reg(nfp_prog, meta, BR_BGE, true);
2431 }
2432 
2433 static int jset_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2434 {
2435 	return wrp_test_reg(nfp_prog, meta, ALU_OP_AND, BR_BNE);
2436 }
2437 
2438 static int jne_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2439 {
2440 	return wrp_test_reg(nfp_prog, meta, ALU_OP_XOR, BR_BNE);
2441 }
2442 
2443 static int call(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2444 {
2445 	switch (meta->insn.imm) {
2446 	case BPF_FUNC_xdp_adjust_head:
2447 		return adjust_head(nfp_prog, meta);
2448 	case BPF_FUNC_map_lookup_elem:
2449 	case BPF_FUNC_map_update_elem:
2450 	case BPF_FUNC_map_delete_elem:
2451 		return map_call_stack_common(nfp_prog, meta);
2452 	case BPF_FUNC_get_prandom_u32:
2453 		return nfp_get_prandom_u32(nfp_prog, meta);
2454 	default:
2455 		WARN_ONCE(1, "verifier allowed unsupported function\n");
2456 		return -EOPNOTSUPP;
2457 	}
2458 }
2459 
2460 static int goto_out(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2461 {
2462 	emit_br_relo(nfp_prog, BR_UNC, BR_OFF_RELO, 0, RELO_BR_GO_OUT);
2463 
2464 	return 0;
2465 }
2466 
2467 static const instr_cb_t instr_cb[256] = {
2468 	[BPF_ALU64 | BPF_MOV | BPF_X] =	mov_reg64,
2469 	[BPF_ALU64 | BPF_MOV | BPF_K] =	mov_imm64,
2470 	[BPF_ALU64 | BPF_XOR | BPF_X] =	xor_reg64,
2471 	[BPF_ALU64 | BPF_XOR | BPF_K] =	xor_imm64,
2472 	[BPF_ALU64 | BPF_AND | BPF_X] =	and_reg64,
2473 	[BPF_ALU64 | BPF_AND | BPF_K] =	and_imm64,
2474 	[BPF_ALU64 | BPF_OR | BPF_X] =	or_reg64,
2475 	[BPF_ALU64 | BPF_OR | BPF_K] =	or_imm64,
2476 	[BPF_ALU64 | BPF_ADD | BPF_X] =	add_reg64,
2477 	[BPF_ALU64 | BPF_ADD | BPF_K] =	add_imm64,
2478 	[BPF_ALU64 | BPF_SUB | BPF_X] =	sub_reg64,
2479 	[BPF_ALU64 | BPF_SUB | BPF_K] =	sub_imm64,
2480 	[BPF_ALU64 | BPF_NEG] =		neg_reg64,
2481 	[BPF_ALU64 | BPF_LSH | BPF_K] =	shl_imm64,
2482 	[BPF_ALU64 | BPF_RSH | BPF_K] =	shr_imm64,
2483 	[BPF_ALU | BPF_MOV | BPF_X] =	mov_reg,
2484 	[BPF_ALU | BPF_MOV | BPF_K] =	mov_imm,
2485 	[BPF_ALU | BPF_XOR | BPF_X] =	xor_reg,
2486 	[BPF_ALU | BPF_XOR | BPF_K] =	xor_imm,
2487 	[BPF_ALU | BPF_AND | BPF_X] =	and_reg,
2488 	[BPF_ALU | BPF_AND | BPF_K] =	and_imm,
2489 	[BPF_ALU | BPF_OR | BPF_X] =	or_reg,
2490 	[BPF_ALU | BPF_OR | BPF_K] =	or_imm,
2491 	[BPF_ALU | BPF_ADD | BPF_X] =	add_reg,
2492 	[BPF_ALU | BPF_ADD | BPF_K] =	add_imm,
2493 	[BPF_ALU | BPF_SUB | BPF_X] =	sub_reg,
2494 	[BPF_ALU | BPF_SUB | BPF_K] =	sub_imm,
2495 	[BPF_ALU | BPF_NEG] =		neg_reg,
2496 	[BPF_ALU | BPF_LSH | BPF_K] =	shl_imm,
2497 	[BPF_ALU | BPF_END | BPF_X] =	end_reg32,
2498 	[BPF_LD | BPF_IMM | BPF_DW] =	imm_ld8,
2499 	[BPF_LD | BPF_ABS | BPF_B] =	data_ld1,
2500 	[BPF_LD | BPF_ABS | BPF_H] =	data_ld2,
2501 	[BPF_LD | BPF_ABS | BPF_W] =	data_ld4,
2502 	[BPF_LD | BPF_IND | BPF_B] =	data_ind_ld1,
2503 	[BPF_LD | BPF_IND | BPF_H] =	data_ind_ld2,
2504 	[BPF_LD | BPF_IND | BPF_W] =	data_ind_ld4,
2505 	[BPF_LDX | BPF_MEM | BPF_B] =	mem_ldx1,
2506 	[BPF_LDX | BPF_MEM | BPF_H] =	mem_ldx2,
2507 	[BPF_LDX | BPF_MEM | BPF_W] =	mem_ldx4,
2508 	[BPF_LDX | BPF_MEM | BPF_DW] =	mem_ldx8,
2509 	[BPF_STX | BPF_MEM | BPF_B] =	mem_stx1,
2510 	[BPF_STX | BPF_MEM | BPF_H] =	mem_stx2,
2511 	[BPF_STX | BPF_MEM | BPF_W] =	mem_stx4,
2512 	[BPF_STX | BPF_MEM | BPF_DW] =	mem_stx8,
2513 	[BPF_STX | BPF_XADD | BPF_W] =	mem_xadd4,
2514 	[BPF_STX | BPF_XADD | BPF_DW] =	mem_xadd8,
2515 	[BPF_ST | BPF_MEM | BPF_B] =	mem_st1,
2516 	[BPF_ST | BPF_MEM | BPF_H] =	mem_st2,
2517 	[BPF_ST | BPF_MEM | BPF_W] =	mem_st4,
2518 	[BPF_ST | BPF_MEM | BPF_DW] =	mem_st8,
2519 	[BPF_JMP | BPF_JA | BPF_K] =	jump,
2520 	[BPF_JMP | BPF_JEQ | BPF_K] =	jeq_imm,
2521 	[BPF_JMP | BPF_JGT | BPF_K] =	jgt_imm,
2522 	[BPF_JMP | BPF_JGE | BPF_K] =	jge_imm,
2523 	[BPF_JMP | BPF_JLT | BPF_K] =	jlt_imm,
2524 	[BPF_JMP | BPF_JLE | BPF_K] =	jle_imm,
2525 	[BPF_JMP | BPF_JSGT | BPF_K] =  jsgt_imm,
2526 	[BPF_JMP | BPF_JSGE | BPF_K] =  jsge_imm,
2527 	[BPF_JMP | BPF_JSLT | BPF_K] =  jslt_imm,
2528 	[BPF_JMP | BPF_JSLE | BPF_K] =  jsle_imm,
2529 	[BPF_JMP | BPF_JSET | BPF_K] =	jset_imm,
2530 	[BPF_JMP | BPF_JNE | BPF_K] =	jne_imm,
2531 	[BPF_JMP | BPF_JEQ | BPF_X] =	jeq_reg,
2532 	[BPF_JMP | BPF_JGT | BPF_X] =	jgt_reg,
2533 	[BPF_JMP | BPF_JGE | BPF_X] =	jge_reg,
2534 	[BPF_JMP | BPF_JLT | BPF_X] =	jlt_reg,
2535 	[BPF_JMP | BPF_JLE | BPF_X] =	jle_reg,
2536 	[BPF_JMP | BPF_JSGT | BPF_X] =  jsgt_reg,
2537 	[BPF_JMP | BPF_JSGE | BPF_X] =  jsge_reg,
2538 	[BPF_JMP | BPF_JSLT | BPF_X] =  jslt_reg,
2539 	[BPF_JMP | BPF_JSLE | BPF_X] =  jsle_reg,
2540 	[BPF_JMP | BPF_JSET | BPF_X] =	jset_reg,
2541 	[BPF_JMP | BPF_JNE | BPF_X] =	jne_reg,
2542 	[BPF_JMP | BPF_CALL] =		call,
2543 	[BPF_JMP | BPF_EXIT] =		goto_out,
2544 };
2545 
2546 /* --- Assembler logic --- */
2547 static int nfp_fixup_branches(struct nfp_prog *nfp_prog)
2548 {
2549 	struct nfp_insn_meta *meta, *jmp_dst;
2550 	u32 idx, br_idx;
2551 
2552 	list_for_each_entry(meta, &nfp_prog->insns, l) {
2553 		if (meta->skip)
2554 			continue;
2555 		if (meta->insn.code == (BPF_JMP | BPF_CALL))
2556 			continue;
2557 		if (BPF_CLASS(meta->insn.code) != BPF_JMP)
2558 			continue;
2559 
2560 		if (list_is_last(&meta->l, &nfp_prog->insns))
2561 			br_idx = nfp_prog->last_bpf_off;
2562 		else
2563 			br_idx = list_next_entry(meta, l)->off - 1;
2564 
2565 		if (!nfp_is_br(nfp_prog->prog[br_idx])) {
2566 			pr_err("Fixup found block not ending in branch %d %02x %016llx!!\n",
2567 			       br_idx, meta->insn.code, nfp_prog->prog[br_idx]);
2568 			return -ELOOP;
2569 		}
2570 		/* Leave special branches for later */
2571 		if (FIELD_GET(OP_RELO_TYPE, nfp_prog->prog[br_idx]) !=
2572 		    RELO_BR_REL)
2573 			continue;
2574 
2575 		if (!meta->jmp_dst) {
2576 			pr_err("Non-exit jump doesn't have destination info recorded!!\n");
2577 			return -ELOOP;
2578 		}
2579 
2580 		jmp_dst = meta->jmp_dst;
2581 
2582 		if (jmp_dst->skip) {
2583 			pr_err("Branch landing on removed instruction!!\n");
2584 			return -ELOOP;
2585 		}
2586 
2587 		for (idx = meta->off; idx <= br_idx; idx++) {
2588 			if (!nfp_is_br(nfp_prog->prog[idx]))
2589 				continue;
2590 			br_set_offset(&nfp_prog->prog[idx], jmp_dst->off);
2591 		}
2592 	}
2593 
2594 	return 0;
2595 }
2596 
2597 static void nfp_intro(struct nfp_prog *nfp_prog)
2598 {
2599 	wrp_immed(nfp_prog, plen_reg(nfp_prog), GENMASK(13, 0));
2600 	emit_alu(nfp_prog, plen_reg(nfp_prog),
2601 		 plen_reg(nfp_prog), ALU_OP_AND, pv_len(nfp_prog));
2602 }
2603 
2604 static void nfp_outro_tc_da(struct nfp_prog *nfp_prog)
2605 {
2606 	/* TC direct-action mode:
2607 	 *   0,1   ok        NOT SUPPORTED[1]
2608 	 *   2   drop  0x22 -> drop,  count as stat1
2609 	 *   4,5 nuke  0x02 -> drop
2610 	 *   7  redir  0x44 -> redir, count as stat2
2611 	 *   * unspec  0x11 -> pass,  count as stat0
2612 	 *
2613 	 * [1] We can't support OK and RECLASSIFY because we can't tell TC
2614 	 *     the exact decision made.  We are forced to support UNSPEC
2615 	 *     to handle aborts so that's the only one we handle for passing
2616 	 *     packets up the stack.
2617 	 */
2618 	/* Target for aborts */
2619 	nfp_prog->tgt_abort = nfp_prog_current_offset(nfp_prog);
2620 
2621 	emit_br_relo(nfp_prog, BR_UNC, BR_OFF_RELO, 2, RELO_BR_NEXT_PKT);
2622 
2623 	wrp_mov(nfp_prog, reg_a(0), NFP_BPF_ABI_FLAGS);
2624 	emit_ld_field(nfp_prog, reg_a(0), 0xc, reg_imm(0x11), SHF_SC_L_SHF, 16);
2625 
2626 	/* Target for normal exits */
2627 	nfp_prog->tgt_out = nfp_prog_current_offset(nfp_prog);
2628 
2629 	/* if R0 > 7 jump to abort */
2630 	emit_alu(nfp_prog, reg_none(), reg_imm(7), ALU_OP_SUB, reg_b(0));
2631 	emit_br(nfp_prog, BR_BLO, nfp_prog->tgt_abort, 0);
2632 	wrp_mov(nfp_prog, reg_a(0), NFP_BPF_ABI_FLAGS);
2633 
2634 	wrp_immed(nfp_prog, reg_b(2), 0x41221211);
2635 	wrp_immed(nfp_prog, reg_b(3), 0x41001211);
2636 
2637 	emit_shf(nfp_prog, reg_a(1),
2638 		 reg_none(), SHF_OP_NONE, reg_b(0), SHF_SC_L_SHF, 2);
2639 
2640 	emit_alu(nfp_prog, reg_none(), reg_a(1), ALU_OP_OR, reg_imm(0));
2641 	emit_shf(nfp_prog, reg_a(2),
2642 		 reg_imm(0xf), SHF_OP_AND, reg_b(2), SHF_SC_R_SHF, 0);
2643 
2644 	emit_alu(nfp_prog, reg_none(), reg_a(1), ALU_OP_OR, reg_imm(0));
2645 	emit_shf(nfp_prog, reg_b(2),
2646 		 reg_imm(0xf), SHF_OP_AND, reg_b(3), SHF_SC_R_SHF, 0);
2647 
2648 	emit_br_relo(nfp_prog, BR_UNC, BR_OFF_RELO, 2, RELO_BR_NEXT_PKT);
2649 
2650 	emit_shf(nfp_prog, reg_b(2),
2651 		 reg_a(2), SHF_OP_OR, reg_b(2), SHF_SC_L_SHF, 4);
2652 	emit_ld_field(nfp_prog, reg_a(0), 0xc, reg_b(2), SHF_SC_L_SHF, 16);
2653 }
2654 
2655 static void nfp_outro_xdp(struct nfp_prog *nfp_prog)
2656 {
2657 	/* XDP return codes:
2658 	 *   0 aborted  0x82 -> drop,  count as stat3
2659 	 *   1    drop  0x22 -> drop,  count as stat1
2660 	 *   2    pass  0x11 -> pass,  count as stat0
2661 	 *   3      tx  0x44 -> redir, count as stat2
2662 	 *   * unknown  0x82 -> drop,  count as stat3
2663 	 */
2664 	/* Target for aborts */
2665 	nfp_prog->tgt_abort = nfp_prog_current_offset(nfp_prog);
2666 
2667 	emit_br_relo(nfp_prog, BR_UNC, BR_OFF_RELO, 2, RELO_BR_NEXT_PKT);
2668 
2669 	wrp_mov(nfp_prog, reg_a(0), NFP_BPF_ABI_FLAGS);
2670 	emit_ld_field(nfp_prog, reg_a(0), 0xc, reg_imm(0x82), SHF_SC_L_SHF, 16);
2671 
2672 	/* Target for normal exits */
2673 	nfp_prog->tgt_out = nfp_prog_current_offset(nfp_prog);
2674 
2675 	/* if R0 > 3 jump to abort */
2676 	emit_alu(nfp_prog, reg_none(), reg_imm(3), ALU_OP_SUB, reg_b(0));
2677 	emit_br(nfp_prog, BR_BLO, nfp_prog->tgt_abort, 0);
2678 
2679 	wrp_immed(nfp_prog, reg_b(2), 0x44112282);
2680 
2681 	emit_shf(nfp_prog, reg_a(1),
2682 		 reg_none(), SHF_OP_NONE, reg_b(0), SHF_SC_L_SHF, 3);
2683 
2684 	emit_alu(nfp_prog, reg_none(), reg_a(1), ALU_OP_OR, reg_imm(0));
2685 	emit_shf(nfp_prog, reg_b(2),
2686 		 reg_imm(0xff), SHF_OP_AND, reg_b(2), SHF_SC_R_SHF, 0);
2687 
2688 	emit_br_relo(nfp_prog, BR_UNC, BR_OFF_RELO, 2, RELO_BR_NEXT_PKT);
2689 
2690 	wrp_mov(nfp_prog, reg_a(0), NFP_BPF_ABI_FLAGS);
2691 	emit_ld_field(nfp_prog, reg_a(0), 0xc, reg_b(2), SHF_SC_L_SHF, 16);
2692 }
2693 
2694 static void nfp_outro(struct nfp_prog *nfp_prog)
2695 {
2696 	switch (nfp_prog->type) {
2697 	case BPF_PROG_TYPE_SCHED_CLS:
2698 		nfp_outro_tc_da(nfp_prog);
2699 		break;
2700 	case BPF_PROG_TYPE_XDP:
2701 		nfp_outro_xdp(nfp_prog);
2702 		break;
2703 	default:
2704 		WARN_ON(1);
2705 	}
2706 }
2707 
2708 static int nfp_translate(struct nfp_prog *nfp_prog)
2709 {
2710 	struct nfp_insn_meta *meta;
2711 	int err;
2712 
2713 	nfp_intro(nfp_prog);
2714 	if (nfp_prog->error)
2715 		return nfp_prog->error;
2716 
2717 	list_for_each_entry(meta, &nfp_prog->insns, l) {
2718 		instr_cb_t cb = instr_cb[meta->insn.code];
2719 
2720 		meta->off = nfp_prog_current_offset(nfp_prog);
2721 
2722 		if (meta->skip) {
2723 			nfp_prog->n_translated++;
2724 			continue;
2725 		}
2726 
2727 		if (nfp_meta_has_prev(nfp_prog, meta) &&
2728 		    nfp_meta_prev(meta)->double_cb)
2729 			cb = nfp_meta_prev(meta)->double_cb;
2730 		if (!cb)
2731 			return -ENOENT;
2732 		err = cb(nfp_prog, meta);
2733 		if (err)
2734 			return err;
2735 
2736 		nfp_prog->n_translated++;
2737 	}
2738 
2739 	nfp_prog->last_bpf_off = nfp_prog_current_offset(nfp_prog) - 1;
2740 
2741 	nfp_outro(nfp_prog);
2742 	if (nfp_prog->error)
2743 		return nfp_prog->error;
2744 
2745 	wrp_nops(nfp_prog, NFP_USTORE_PREFETCH_WINDOW);
2746 	if (nfp_prog->error)
2747 		return nfp_prog->error;
2748 
2749 	return nfp_fixup_branches(nfp_prog);
2750 }
2751 
2752 /* --- Optimizations --- */
2753 static void nfp_bpf_opt_reg_init(struct nfp_prog *nfp_prog)
2754 {
2755 	struct nfp_insn_meta *meta;
2756 
2757 	list_for_each_entry(meta, &nfp_prog->insns, l) {
2758 		struct bpf_insn insn = meta->insn;
2759 
2760 		/* Programs converted from cBPF start with register xoring */
2761 		if (insn.code == (BPF_ALU64 | BPF_XOR | BPF_X) &&
2762 		    insn.src_reg == insn.dst_reg)
2763 			continue;
2764 
2765 		/* Programs start with R6 = R1 but we ignore the skb pointer */
2766 		if (insn.code == (BPF_ALU64 | BPF_MOV | BPF_X) &&
2767 		    insn.src_reg == 1 && insn.dst_reg == 6)
2768 			meta->skip = true;
2769 
2770 		/* Return as soon as something doesn't match */
2771 		if (!meta->skip)
2772 			return;
2773 	}
2774 }
2775 
2776 /* Remove masking after load since our load guarantees this is not needed */
2777 static void nfp_bpf_opt_ld_mask(struct nfp_prog *nfp_prog)
2778 {
2779 	struct nfp_insn_meta *meta1, *meta2;
2780 	const s32 exp_mask[] = {
2781 		[BPF_B] = 0x000000ffU,
2782 		[BPF_H] = 0x0000ffffU,
2783 		[BPF_W] = 0xffffffffU,
2784 	};
2785 
2786 	nfp_for_each_insn_walk2(nfp_prog, meta1, meta2) {
2787 		struct bpf_insn insn, next;
2788 
2789 		insn = meta1->insn;
2790 		next = meta2->insn;
2791 
2792 		if (BPF_CLASS(insn.code) != BPF_LD)
2793 			continue;
2794 		if (BPF_MODE(insn.code) != BPF_ABS &&
2795 		    BPF_MODE(insn.code) != BPF_IND)
2796 			continue;
2797 
2798 		if (next.code != (BPF_ALU64 | BPF_AND | BPF_K))
2799 			continue;
2800 
2801 		if (!exp_mask[BPF_SIZE(insn.code)])
2802 			continue;
2803 		if (exp_mask[BPF_SIZE(insn.code)] != next.imm)
2804 			continue;
2805 
2806 		if (next.src_reg || next.dst_reg)
2807 			continue;
2808 
2809 		if (meta2->flags & FLAG_INSN_IS_JUMP_DST)
2810 			continue;
2811 
2812 		meta2->skip = true;
2813 	}
2814 }
2815 
2816 static void nfp_bpf_opt_ld_shift(struct nfp_prog *nfp_prog)
2817 {
2818 	struct nfp_insn_meta *meta1, *meta2, *meta3;
2819 
2820 	nfp_for_each_insn_walk3(nfp_prog, meta1, meta2, meta3) {
2821 		struct bpf_insn insn, next1, next2;
2822 
2823 		insn = meta1->insn;
2824 		next1 = meta2->insn;
2825 		next2 = meta3->insn;
2826 
2827 		if (BPF_CLASS(insn.code) != BPF_LD)
2828 			continue;
2829 		if (BPF_MODE(insn.code) != BPF_ABS &&
2830 		    BPF_MODE(insn.code) != BPF_IND)
2831 			continue;
2832 		if (BPF_SIZE(insn.code) != BPF_W)
2833 			continue;
2834 
2835 		if (!(next1.code == (BPF_LSH | BPF_K | BPF_ALU64) &&
2836 		      next2.code == (BPF_RSH | BPF_K | BPF_ALU64)) &&
2837 		    !(next1.code == (BPF_RSH | BPF_K | BPF_ALU64) &&
2838 		      next2.code == (BPF_LSH | BPF_K | BPF_ALU64)))
2839 			continue;
2840 
2841 		if (next1.src_reg || next1.dst_reg ||
2842 		    next2.src_reg || next2.dst_reg)
2843 			continue;
2844 
2845 		if (next1.imm != 0x20 || next2.imm != 0x20)
2846 			continue;
2847 
2848 		if (meta2->flags & FLAG_INSN_IS_JUMP_DST ||
2849 		    meta3->flags & FLAG_INSN_IS_JUMP_DST)
2850 			continue;
2851 
2852 		meta2->skip = true;
2853 		meta3->skip = true;
2854 	}
2855 }
2856 
2857 /* load/store pair that forms memory copy sould look like the following:
2858  *
2859  *   ld_width R, [addr_src + offset_src]
2860  *   st_width [addr_dest + offset_dest], R
2861  *
2862  * The destination register of load and source register of store should
2863  * be the same, load and store should also perform at the same width.
2864  * If either of addr_src or addr_dest is stack pointer, we don't do the
2865  * CPP optimization as stack is modelled by registers on NFP.
2866  */
2867 static bool
2868 curr_pair_is_memcpy(struct nfp_insn_meta *ld_meta,
2869 		    struct nfp_insn_meta *st_meta)
2870 {
2871 	struct bpf_insn *ld = &ld_meta->insn;
2872 	struct bpf_insn *st = &st_meta->insn;
2873 
2874 	if (!is_mbpf_load(ld_meta) || !is_mbpf_store(st_meta))
2875 		return false;
2876 
2877 	if (ld_meta->ptr.type != PTR_TO_PACKET)
2878 		return false;
2879 
2880 	if (st_meta->ptr.type != PTR_TO_PACKET)
2881 		return false;
2882 
2883 	if (BPF_SIZE(ld->code) != BPF_SIZE(st->code))
2884 		return false;
2885 
2886 	if (ld->dst_reg != st->src_reg)
2887 		return false;
2888 
2889 	/* There is jump to the store insn in this pair. */
2890 	if (st_meta->flags & FLAG_INSN_IS_JUMP_DST)
2891 		return false;
2892 
2893 	return true;
2894 }
2895 
2896 /* Currently, we only support chaining load/store pairs if:
2897  *
2898  *  - Their address base registers are the same.
2899  *  - Their address offsets are in the same order.
2900  *  - They operate at the same memory width.
2901  *  - There is no jump into the middle of them.
2902  */
2903 static bool
2904 curr_pair_chain_with_previous(struct nfp_insn_meta *ld_meta,
2905 			      struct nfp_insn_meta *st_meta,
2906 			      struct bpf_insn *prev_ld,
2907 			      struct bpf_insn *prev_st)
2908 {
2909 	u8 prev_size, curr_size, prev_ld_base, prev_st_base, prev_ld_dst;
2910 	struct bpf_insn *ld = &ld_meta->insn;
2911 	struct bpf_insn *st = &st_meta->insn;
2912 	s16 prev_ld_off, prev_st_off;
2913 
2914 	/* This pair is the start pair. */
2915 	if (!prev_ld)
2916 		return true;
2917 
2918 	prev_size = BPF_LDST_BYTES(prev_ld);
2919 	curr_size = BPF_LDST_BYTES(ld);
2920 	prev_ld_base = prev_ld->src_reg;
2921 	prev_st_base = prev_st->dst_reg;
2922 	prev_ld_dst = prev_ld->dst_reg;
2923 	prev_ld_off = prev_ld->off;
2924 	prev_st_off = prev_st->off;
2925 
2926 	if (ld->dst_reg != prev_ld_dst)
2927 		return false;
2928 
2929 	if (ld->src_reg != prev_ld_base || st->dst_reg != prev_st_base)
2930 		return false;
2931 
2932 	if (curr_size != prev_size)
2933 		return false;
2934 
2935 	/* There is jump to the head of this pair. */
2936 	if (ld_meta->flags & FLAG_INSN_IS_JUMP_DST)
2937 		return false;
2938 
2939 	/* Both in ascending order. */
2940 	if (prev_ld_off + prev_size == ld->off &&
2941 	    prev_st_off + prev_size == st->off)
2942 		return true;
2943 
2944 	/* Both in descending order. */
2945 	if (ld->off + curr_size == prev_ld_off &&
2946 	    st->off + curr_size == prev_st_off)
2947 		return true;
2948 
2949 	return false;
2950 }
2951 
2952 /* Return TRUE if cross memory access happens. Cross memory access means
2953  * store area is overlapping with load area that a later load might load
2954  * the value from previous store, for this case we can't treat the sequence
2955  * as an memory copy.
2956  */
2957 static bool
2958 cross_mem_access(struct bpf_insn *ld, struct nfp_insn_meta *head_ld_meta,
2959 		 struct nfp_insn_meta *head_st_meta)
2960 {
2961 	s16 head_ld_off, head_st_off, ld_off;
2962 
2963 	/* Different pointer types does not overlap. */
2964 	if (head_ld_meta->ptr.type != head_st_meta->ptr.type)
2965 		return false;
2966 
2967 	/* load and store are both PTR_TO_PACKET, check ID info.  */
2968 	if (head_ld_meta->ptr.id != head_st_meta->ptr.id)
2969 		return true;
2970 
2971 	/* Canonicalize the offsets. Turn all of them against the original
2972 	 * base register.
2973 	 */
2974 	head_ld_off = head_ld_meta->insn.off + head_ld_meta->ptr.off;
2975 	head_st_off = head_st_meta->insn.off + head_st_meta->ptr.off;
2976 	ld_off = ld->off + head_ld_meta->ptr.off;
2977 
2978 	/* Ascending order cross. */
2979 	if (ld_off > head_ld_off &&
2980 	    head_ld_off < head_st_off && ld_off >= head_st_off)
2981 		return true;
2982 
2983 	/* Descending order cross. */
2984 	if (ld_off < head_ld_off &&
2985 	    head_ld_off > head_st_off && ld_off <= head_st_off)
2986 		return true;
2987 
2988 	return false;
2989 }
2990 
2991 /* This pass try to identify the following instructoin sequences.
2992  *
2993  *   load R, [regA + offA]
2994  *   store [regB + offB], R
2995  *   load R, [regA + offA + const_imm_A]
2996  *   store [regB + offB + const_imm_A], R
2997  *   load R, [regA + offA + 2 * const_imm_A]
2998  *   store [regB + offB + 2 * const_imm_A], R
2999  *   ...
3000  *
3001  * Above sequence is typically generated by compiler when lowering
3002  * memcpy. NFP prefer using CPP instructions to accelerate it.
3003  */
3004 static void nfp_bpf_opt_ldst_gather(struct nfp_prog *nfp_prog)
3005 {
3006 	struct nfp_insn_meta *head_ld_meta = NULL;
3007 	struct nfp_insn_meta *head_st_meta = NULL;
3008 	struct nfp_insn_meta *meta1, *meta2;
3009 	struct bpf_insn *prev_ld = NULL;
3010 	struct bpf_insn *prev_st = NULL;
3011 	u8 count = 0;
3012 
3013 	nfp_for_each_insn_walk2(nfp_prog, meta1, meta2) {
3014 		struct bpf_insn *ld = &meta1->insn;
3015 		struct bpf_insn *st = &meta2->insn;
3016 
3017 		/* Reset record status if any of the following if true:
3018 		 *   - The current insn pair is not load/store.
3019 		 *   - The load/store pair doesn't chain with previous one.
3020 		 *   - The chained load/store pair crossed with previous pair.
3021 		 *   - The chained load/store pair has a total size of memory
3022 		 *     copy beyond 128 bytes which is the maximum length a
3023 		 *     single NFP CPP command can transfer.
3024 		 */
3025 		if (!curr_pair_is_memcpy(meta1, meta2) ||
3026 		    !curr_pair_chain_with_previous(meta1, meta2, prev_ld,
3027 						   prev_st) ||
3028 		    (head_ld_meta && (cross_mem_access(ld, head_ld_meta,
3029 						       head_st_meta) ||
3030 				      head_ld_meta->ldst_gather_len >= 128))) {
3031 			if (!count)
3032 				continue;
3033 
3034 			if (count > 1) {
3035 				s16 prev_ld_off = prev_ld->off;
3036 				s16 prev_st_off = prev_st->off;
3037 				s16 head_ld_off = head_ld_meta->insn.off;
3038 
3039 				if (prev_ld_off < head_ld_off) {
3040 					head_ld_meta->insn.off = prev_ld_off;
3041 					head_st_meta->insn.off = prev_st_off;
3042 					head_ld_meta->ldst_gather_len =
3043 						-head_ld_meta->ldst_gather_len;
3044 				}
3045 
3046 				head_ld_meta->paired_st = &head_st_meta->insn;
3047 				head_st_meta->skip = true;
3048 			} else {
3049 				head_ld_meta->ldst_gather_len = 0;
3050 			}
3051 
3052 			/* If the chain is ended by an load/store pair then this
3053 			 * could serve as the new head of the the next chain.
3054 			 */
3055 			if (curr_pair_is_memcpy(meta1, meta2)) {
3056 				head_ld_meta = meta1;
3057 				head_st_meta = meta2;
3058 				head_ld_meta->ldst_gather_len =
3059 					BPF_LDST_BYTES(ld);
3060 				meta1 = nfp_meta_next(meta1);
3061 				meta2 = nfp_meta_next(meta2);
3062 				prev_ld = ld;
3063 				prev_st = st;
3064 				count = 1;
3065 			} else {
3066 				head_ld_meta = NULL;
3067 				head_st_meta = NULL;
3068 				prev_ld = NULL;
3069 				prev_st = NULL;
3070 				count = 0;
3071 			}
3072 
3073 			continue;
3074 		}
3075 
3076 		if (!head_ld_meta) {
3077 			head_ld_meta = meta1;
3078 			head_st_meta = meta2;
3079 		} else {
3080 			meta1->skip = true;
3081 			meta2->skip = true;
3082 		}
3083 
3084 		head_ld_meta->ldst_gather_len += BPF_LDST_BYTES(ld);
3085 		meta1 = nfp_meta_next(meta1);
3086 		meta2 = nfp_meta_next(meta2);
3087 		prev_ld = ld;
3088 		prev_st = st;
3089 		count++;
3090 	}
3091 }
3092 
3093 static void nfp_bpf_opt_pkt_cache(struct nfp_prog *nfp_prog)
3094 {
3095 	struct nfp_insn_meta *meta, *range_node = NULL;
3096 	s16 range_start = 0, range_end = 0;
3097 	bool cache_avail = false;
3098 	struct bpf_insn *insn;
3099 	s32 range_ptr_off = 0;
3100 	u32 range_ptr_id = 0;
3101 
3102 	list_for_each_entry(meta, &nfp_prog->insns, l) {
3103 		if (meta->flags & FLAG_INSN_IS_JUMP_DST)
3104 			cache_avail = false;
3105 
3106 		if (meta->skip)
3107 			continue;
3108 
3109 		insn = &meta->insn;
3110 
3111 		if (is_mbpf_store_pkt(meta) ||
3112 		    insn->code == (BPF_JMP | BPF_CALL) ||
3113 		    is_mbpf_classic_store_pkt(meta) ||
3114 		    is_mbpf_classic_load(meta)) {
3115 			cache_avail = false;
3116 			continue;
3117 		}
3118 
3119 		if (!is_mbpf_load(meta))
3120 			continue;
3121 
3122 		if (meta->ptr.type != PTR_TO_PACKET || meta->ldst_gather_len) {
3123 			cache_avail = false;
3124 			continue;
3125 		}
3126 
3127 		if (!cache_avail) {
3128 			cache_avail = true;
3129 			if (range_node)
3130 				goto end_current_then_start_new;
3131 			goto start_new;
3132 		}
3133 
3134 		/* Check ID to make sure two reads share the same
3135 		 * variable offset against PTR_TO_PACKET, and check OFF
3136 		 * to make sure they also share the same constant
3137 		 * offset.
3138 		 *
3139 		 * OFFs don't really need to be the same, because they
3140 		 * are the constant offsets against PTR_TO_PACKET, so
3141 		 * for different OFFs, we could canonicalize them to
3142 		 * offsets against original packet pointer. We don't
3143 		 * support this.
3144 		 */
3145 		if (meta->ptr.id == range_ptr_id &&
3146 		    meta->ptr.off == range_ptr_off) {
3147 			s16 new_start = range_start;
3148 			s16 end, off = insn->off;
3149 			s16 new_end = range_end;
3150 			bool changed = false;
3151 
3152 			if (off < range_start) {
3153 				new_start = off;
3154 				changed = true;
3155 			}
3156 
3157 			end = off + BPF_LDST_BYTES(insn);
3158 			if (end > range_end) {
3159 				new_end = end;
3160 				changed = true;
3161 			}
3162 
3163 			if (!changed)
3164 				continue;
3165 
3166 			if (new_end - new_start <= 64) {
3167 				/* Install new range. */
3168 				range_start = new_start;
3169 				range_end = new_end;
3170 				continue;
3171 			}
3172 		}
3173 
3174 end_current_then_start_new:
3175 		range_node->pkt_cache.range_start = range_start;
3176 		range_node->pkt_cache.range_end = range_end;
3177 start_new:
3178 		range_node = meta;
3179 		range_node->pkt_cache.do_init = true;
3180 		range_ptr_id = range_node->ptr.id;
3181 		range_ptr_off = range_node->ptr.off;
3182 		range_start = insn->off;
3183 		range_end = insn->off + BPF_LDST_BYTES(insn);
3184 	}
3185 
3186 	if (range_node) {
3187 		range_node->pkt_cache.range_start = range_start;
3188 		range_node->pkt_cache.range_end = range_end;
3189 	}
3190 
3191 	list_for_each_entry(meta, &nfp_prog->insns, l) {
3192 		if (meta->skip)
3193 			continue;
3194 
3195 		if (is_mbpf_load_pkt(meta) && !meta->ldst_gather_len) {
3196 			if (meta->pkt_cache.do_init) {
3197 				range_start = meta->pkt_cache.range_start;
3198 				range_end = meta->pkt_cache.range_end;
3199 			} else {
3200 				meta->pkt_cache.range_start = range_start;
3201 				meta->pkt_cache.range_end = range_end;
3202 			}
3203 		}
3204 	}
3205 }
3206 
3207 static int nfp_bpf_optimize(struct nfp_prog *nfp_prog)
3208 {
3209 	nfp_bpf_opt_reg_init(nfp_prog);
3210 
3211 	nfp_bpf_opt_ld_mask(nfp_prog);
3212 	nfp_bpf_opt_ld_shift(nfp_prog);
3213 	nfp_bpf_opt_ldst_gather(nfp_prog);
3214 	nfp_bpf_opt_pkt_cache(nfp_prog);
3215 
3216 	return 0;
3217 }
3218 
3219 static int nfp_bpf_ustore_calc(u64 *prog, unsigned int len)
3220 {
3221 	__le64 *ustore = (__force __le64 *)prog;
3222 	int i;
3223 
3224 	for (i = 0; i < len; i++) {
3225 		int err;
3226 
3227 		err = nfp_ustore_check_valid_no_ecc(prog[i]);
3228 		if (err)
3229 			return err;
3230 
3231 		ustore[i] = cpu_to_le64(nfp_ustore_calc_ecc_insn(prog[i]));
3232 	}
3233 
3234 	return 0;
3235 }
3236 
3237 static void nfp_bpf_prog_trim(struct nfp_prog *nfp_prog)
3238 {
3239 	void *prog;
3240 
3241 	prog = kvmalloc_array(nfp_prog->prog_len, sizeof(u64), GFP_KERNEL);
3242 	if (!prog)
3243 		return;
3244 
3245 	nfp_prog->__prog_alloc_len = nfp_prog->prog_len * sizeof(u64);
3246 	memcpy(prog, nfp_prog->prog, nfp_prog->__prog_alloc_len);
3247 	kvfree(nfp_prog->prog);
3248 	nfp_prog->prog = prog;
3249 }
3250 
3251 int nfp_bpf_jit(struct nfp_prog *nfp_prog)
3252 {
3253 	int ret;
3254 
3255 	ret = nfp_bpf_optimize(nfp_prog);
3256 	if (ret)
3257 		return ret;
3258 
3259 	ret = nfp_translate(nfp_prog);
3260 	if (ret) {
3261 		pr_err("Translation failed with error %d (translated: %u)\n",
3262 		       ret, nfp_prog->n_translated);
3263 		return -EINVAL;
3264 	}
3265 
3266 	nfp_bpf_prog_trim(nfp_prog);
3267 
3268 	return ret;
3269 }
3270 
3271 void nfp_bpf_jit_prepare(struct nfp_prog *nfp_prog, unsigned int cnt)
3272 {
3273 	struct nfp_insn_meta *meta;
3274 
3275 	/* Another pass to record jump information. */
3276 	list_for_each_entry(meta, &nfp_prog->insns, l) {
3277 		u64 code = meta->insn.code;
3278 
3279 		if (BPF_CLASS(code) == BPF_JMP && BPF_OP(code) != BPF_EXIT &&
3280 		    BPF_OP(code) != BPF_CALL) {
3281 			struct nfp_insn_meta *dst_meta;
3282 			unsigned short dst_indx;
3283 
3284 			dst_indx = meta->n + 1 + meta->insn.off;
3285 			dst_meta = nfp_bpf_goto_meta(nfp_prog, meta, dst_indx,
3286 						     cnt);
3287 
3288 			meta->jmp_dst = dst_meta;
3289 			dst_meta->flags |= FLAG_INSN_IS_JUMP_DST;
3290 		}
3291 	}
3292 }
3293 
3294 bool nfp_bpf_supported_opcode(u8 code)
3295 {
3296 	return !!instr_cb[code];
3297 }
3298 
3299 void *nfp_bpf_relo_for_vnic(struct nfp_prog *nfp_prog, struct nfp_bpf_vnic *bv)
3300 {
3301 	unsigned int i;
3302 	u64 *prog;
3303 	int err;
3304 
3305 	prog = kmemdup(nfp_prog->prog, nfp_prog->prog_len * sizeof(u64),
3306 		       GFP_KERNEL);
3307 	if (!prog)
3308 		return ERR_PTR(-ENOMEM);
3309 
3310 	for (i = 0; i < nfp_prog->prog_len; i++) {
3311 		enum nfp_relo_type special;
3312 		u32 val;
3313 
3314 		special = FIELD_GET(OP_RELO_TYPE, prog[i]);
3315 		switch (special) {
3316 		case RELO_NONE:
3317 			continue;
3318 		case RELO_BR_REL:
3319 			br_add_offset(&prog[i], bv->start_off);
3320 			break;
3321 		case RELO_BR_GO_OUT:
3322 			br_set_offset(&prog[i],
3323 				      nfp_prog->tgt_out + bv->start_off);
3324 			break;
3325 		case RELO_BR_GO_ABORT:
3326 			br_set_offset(&prog[i],
3327 				      nfp_prog->tgt_abort + bv->start_off);
3328 			break;
3329 		case RELO_BR_NEXT_PKT:
3330 			br_set_offset(&prog[i], bv->tgt_done);
3331 			break;
3332 		case RELO_BR_HELPER:
3333 			val = br_get_offset(prog[i]);
3334 			val -= BR_OFF_RELO;
3335 			switch (val) {
3336 			case BPF_FUNC_map_lookup_elem:
3337 				val = nfp_prog->bpf->helpers.map_lookup;
3338 				break;
3339 			case BPF_FUNC_map_update_elem:
3340 				val = nfp_prog->bpf->helpers.map_update;
3341 				break;
3342 			case BPF_FUNC_map_delete_elem:
3343 				val = nfp_prog->bpf->helpers.map_delete;
3344 				break;
3345 			default:
3346 				pr_err("relocation of unknown helper %d\n",
3347 				       val);
3348 				err = -EINVAL;
3349 				goto err_free_prog;
3350 			}
3351 			br_set_offset(&prog[i], val);
3352 			break;
3353 		case RELO_IMMED_REL:
3354 			immed_add_value(&prog[i], bv->start_off);
3355 			break;
3356 		}
3357 
3358 		prog[i] &= ~OP_RELO_TYPE;
3359 	}
3360 
3361 	err = nfp_bpf_ustore_calc(prog, nfp_prog->prog_len);
3362 	if (err)
3363 		goto err_free_prog;
3364 
3365 	return prog;
3366 
3367 err_free_prog:
3368 	kfree(prog);
3369 	return ERR_PTR(err);
3370 }
3371