1 // SPDX-License-Identifier: (GPL-2.0-only OR BSD-2-Clause)
2 /* Copyright (C) 2016-2018 Netronome Systems, Inc. */
3 
4 #define pr_fmt(fmt)	"NFP net bpf: " fmt
5 
6 #include <linux/bug.h>
7 #include <linux/bpf.h>
8 #include <linux/filter.h>
9 #include <linux/kernel.h>
10 #include <linux/pkt_cls.h>
11 #include <linux/reciprocal_div.h>
12 #include <linux/unistd.h>
13 
14 #include "main.h"
15 #include "../nfp_asm.h"
16 #include "../nfp_net_ctrl.h"
17 
18 /* --- NFP prog --- */
19 /* Foreach "multiple" entries macros provide pos and next<n> pointers.
20  * It's safe to modify the next pointers (but not pos).
21  */
22 #define nfp_for_each_insn_walk2(nfp_prog, pos, next)			\
23 	for (pos = list_first_entry(&(nfp_prog)->insns, typeof(*pos), l), \
24 	     next = list_next_entry(pos, l);			\
25 	     &(nfp_prog)->insns != &pos->l &&			\
26 	     &(nfp_prog)->insns != &next->l;			\
27 	     pos = nfp_meta_next(pos),				\
28 	     next = nfp_meta_next(pos))
29 
30 #define nfp_for_each_insn_walk3(nfp_prog, pos, next, next2)		\
31 	for (pos = list_first_entry(&(nfp_prog)->insns, typeof(*pos), l), \
32 	     next = list_next_entry(pos, l),			\
33 	     next2 = list_next_entry(next, l);			\
34 	     &(nfp_prog)->insns != &pos->l &&			\
35 	     &(nfp_prog)->insns != &next->l &&			\
36 	     &(nfp_prog)->insns != &next2->l;			\
37 	     pos = nfp_meta_next(pos),				\
38 	     next = nfp_meta_next(pos),				\
39 	     next2 = nfp_meta_next(next))
40 
41 static bool
42 nfp_meta_has_prev(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
43 {
44 	return meta->l.prev != &nfp_prog->insns;
45 }
46 
47 static void nfp_prog_push(struct nfp_prog *nfp_prog, u64 insn)
48 {
49 	if (nfp_prog->__prog_alloc_len / sizeof(u64) == nfp_prog->prog_len) {
50 		pr_warn("instruction limit reached (%u NFP instructions)\n",
51 			nfp_prog->prog_len);
52 		nfp_prog->error = -ENOSPC;
53 		return;
54 	}
55 
56 	nfp_prog->prog[nfp_prog->prog_len] = insn;
57 	nfp_prog->prog_len++;
58 }
59 
60 static unsigned int nfp_prog_current_offset(struct nfp_prog *nfp_prog)
61 {
62 	return nfp_prog->prog_len;
63 }
64 
65 static bool
66 nfp_prog_confirm_current_offset(struct nfp_prog *nfp_prog, unsigned int off)
67 {
68 	/* If there is a recorded error we may have dropped instructions;
69 	 * that doesn't have to be due to translator bug, and the translation
70 	 * will fail anyway, so just return OK.
71 	 */
72 	if (nfp_prog->error)
73 		return true;
74 	return !WARN_ON_ONCE(nfp_prog_current_offset(nfp_prog) != off);
75 }
76 
77 /* --- Emitters --- */
78 static void
79 __emit_cmd(struct nfp_prog *nfp_prog, enum cmd_tgt_map op,
80 	   u8 mode, u8 xfer, u8 areg, u8 breg, u8 size, enum cmd_ctx_swap ctx,
81 	   bool indir)
82 {
83 	u64 insn;
84 
85 	insn =	FIELD_PREP(OP_CMD_A_SRC, areg) |
86 		FIELD_PREP(OP_CMD_CTX, ctx) |
87 		FIELD_PREP(OP_CMD_B_SRC, breg) |
88 		FIELD_PREP(OP_CMD_TOKEN, cmd_tgt_act[op].token) |
89 		FIELD_PREP(OP_CMD_XFER, xfer) |
90 		FIELD_PREP(OP_CMD_CNT, size) |
91 		FIELD_PREP(OP_CMD_SIG, ctx != CMD_CTX_NO_SWAP) |
92 		FIELD_PREP(OP_CMD_TGT_CMD, cmd_tgt_act[op].tgt_cmd) |
93 		FIELD_PREP(OP_CMD_INDIR, indir) |
94 		FIELD_PREP(OP_CMD_MODE, mode);
95 
96 	nfp_prog_push(nfp_prog, insn);
97 }
98 
99 static void
100 emit_cmd_any(struct nfp_prog *nfp_prog, enum cmd_tgt_map op, u8 mode, u8 xfer,
101 	     swreg lreg, swreg rreg, u8 size, enum cmd_ctx_swap ctx, bool indir)
102 {
103 	struct nfp_insn_re_regs reg;
104 	int err;
105 
106 	err = swreg_to_restricted(reg_none(), lreg, rreg, &reg, false);
107 	if (err) {
108 		nfp_prog->error = err;
109 		return;
110 	}
111 	if (reg.swap) {
112 		pr_err("cmd can't swap arguments\n");
113 		nfp_prog->error = -EFAULT;
114 		return;
115 	}
116 	if (reg.dst_lmextn || reg.src_lmextn) {
117 		pr_err("cmd can't use LMextn\n");
118 		nfp_prog->error = -EFAULT;
119 		return;
120 	}
121 
122 	__emit_cmd(nfp_prog, op, mode, xfer, reg.areg, reg.breg, size, ctx,
123 		   indir);
124 }
125 
126 static void
127 emit_cmd(struct nfp_prog *nfp_prog, enum cmd_tgt_map op, u8 mode, u8 xfer,
128 	 swreg lreg, swreg rreg, u8 size, enum cmd_ctx_swap ctx)
129 {
130 	emit_cmd_any(nfp_prog, op, mode, xfer, lreg, rreg, size, ctx, false);
131 }
132 
133 static void
134 emit_cmd_indir(struct nfp_prog *nfp_prog, enum cmd_tgt_map op, u8 mode, u8 xfer,
135 	       swreg lreg, swreg rreg, u8 size, enum cmd_ctx_swap ctx)
136 {
137 	emit_cmd_any(nfp_prog, op, mode, xfer, lreg, rreg, size, ctx, true);
138 }
139 
140 static void
141 __emit_br(struct nfp_prog *nfp_prog, enum br_mask mask, enum br_ev_pip ev_pip,
142 	  enum br_ctx_signal_state css, u16 addr, u8 defer)
143 {
144 	u16 addr_lo, addr_hi;
145 	u64 insn;
146 
147 	addr_lo = addr & (OP_BR_ADDR_LO >> __bf_shf(OP_BR_ADDR_LO));
148 	addr_hi = addr != addr_lo;
149 
150 	insn = OP_BR_BASE |
151 		FIELD_PREP(OP_BR_MASK, mask) |
152 		FIELD_PREP(OP_BR_EV_PIP, ev_pip) |
153 		FIELD_PREP(OP_BR_CSS, css) |
154 		FIELD_PREP(OP_BR_DEFBR, defer) |
155 		FIELD_PREP(OP_BR_ADDR_LO, addr_lo) |
156 		FIELD_PREP(OP_BR_ADDR_HI, addr_hi);
157 
158 	nfp_prog_push(nfp_prog, insn);
159 }
160 
161 static void
162 emit_br_relo(struct nfp_prog *nfp_prog, enum br_mask mask, u16 addr, u8 defer,
163 	     enum nfp_relo_type relo)
164 {
165 	if (mask == BR_UNC && defer > 2) {
166 		pr_err("BUG: branch defer out of bounds %d\n", defer);
167 		nfp_prog->error = -EFAULT;
168 		return;
169 	}
170 
171 	__emit_br(nfp_prog, mask,
172 		  mask != BR_UNC ? BR_EV_PIP_COND : BR_EV_PIP_UNCOND,
173 		  BR_CSS_NONE, addr, defer);
174 
175 	nfp_prog->prog[nfp_prog->prog_len - 1] |=
176 		FIELD_PREP(OP_RELO_TYPE, relo);
177 }
178 
179 static void
180 emit_br(struct nfp_prog *nfp_prog, enum br_mask mask, u16 addr, u8 defer)
181 {
182 	emit_br_relo(nfp_prog, mask, addr, defer, RELO_BR_REL);
183 }
184 
185 static void
186 __emit_br_bit(struct nfp_prog *nfp_prog, u16 areg, u16 breg, u16 addr, u8 defer,
187 	      bool set, bool src_lmextn)
188 {
189 	u16 addr_lo, addr_hi;
190 	u64 insn;
191 
192 	addr_lo = addr & (OP_BR_BIT_ADDR_LO >> __bf_shf(OP_BR_BIT_ADDR_LO));
193 	addr_hi = addr != addr_lo;
194 
195 	insn = OP_BR_BIT_BASE |
196 		FIELD_PREP(OP_BR_BIT_A_SRC, areg) |
197 		FIELD_PREP(OP_BR_BIT_B_SRC, breg) |
198 		FIELD_PREP(OP_BR_BIT_BV, set) |
199 		FIELD_PREP(OP_BR_BIT_DEFBR, defer) |
200 		FIELD_PREP(OP_BR_BIT_ADDR_LO, addr_lo) |
201 		FIELD_PREP(OP_BR_BIT_ADDR_HI, addr_hi) |
202 		FIELD_PREP(OP_BR_BIT_SRC_LMEXTN, src_lmextn);
203 
204 	nfp_prog_push(nfp_prog, insn);
205 }
206 
207 static void
208 emit_br_bit_relo(struct nfp_prog *nfp_prog, swreg src, u8 bit, u16 addr,
209 		 u8 defer, bool set, enum nfp_relo_type relo)
210 {
211 	struct nfp_insn_re_regs reg;
212 	int err;
213 
214 	/* NOTE: The bit to test is specified as an rotation amount, such that
215 	 *	 the bit to test will be placed on the MSB of the result when
216 	 *	 doing a rotate right. For bit X, we need right rotate X + 1.
217 	 */
218 	bit += 1;
219 
220 	err = swreg_to_restricted(reg_none(), src, reg_imm(bit), &reg, false);
221 	if (err) {
222 		nfp_prog->error = err;
223 		return;
224 	}
225 
226 	__emit_br_bit(nfp_prog, reg.areg, reg.breg, addr, defer, set,
227 		      reg.src_lmextn);
228 
229 	nfp_prog->prog[nfp_prog->prog_len - 1] |=
230 		FIELD_PREP(OP_RELO_TYPE, relo);
231 }
232 
233 static void
234 emit_br_bset(struct nfp_prog *nfp_prog, swreg src, u8 bit, u16 addr, u8 defer)
235 {
236 	emit_br_bit_relo(nfp_prog, src, bit, addr, defer, true, RELO_BR_REL);
237 }
238 
239 static void
240 __emit_br_alu(struct nfp_prog *nfp_prog, u16 areg, u16 breg, u16 imm_hi,
241 	      u8 defer, bool dst_lmextn, bool src_lmextn)
242 {
243 	u64 insn;
244 
245 	insn = OP_BR_ALU_BASE |
246 		FIELD_PREP(OP_BR_ALU_A_SRC, areg) |
247 		FIELD_PREP(OP_BR_ALU_B_SRC, breg) |
248 		FIELD_PREP(OP_BR_ALU_DEFBR, defer) |
249 		FIELD_PREP(OP_BR_ALU_IMM_HI, imm_hi) |
250 		FIELD_PREP(OP_BR_ALU_SRC_LMEXTN, src_lmextn) |
251 		FIELD_PREP(OP_BR_ALU_DST_LMEXTN, dst_lmextn);
252 
253 	nfp_prog_push(nfp_prog, insn);
254 }
255 
256 static void emit_rtn(struct nfp_prog *nfp_prog, swreg base, u8 defer)
257 {
258 	struct nfp_insn_ur_regs reg;
259 	int err;
260 
261 	err = swreg_to_unrestricted(reg_none(), base, reg_imm(0), &reg);
262 	if (err) {
263 		nfp_prog->error = err;
264 		return;
265 	}
266 
267 	__emit_br_alu(nfp_prog, reg.areg, reg.breg, 0, defer, reg.dst_lmextn,
268 		      reg.src_lmextn);
269 }
270 
271 static void
272 __emit_immed(struct nfp_prog *nfp_prog, u16 areg, u16 breg, u16 imm_hi,
273 	     enum immed_width width, bool invert,
274 	     enum immed_shift shift, bool wr_both,
275 	     bool dst_lmextn, bool src_lmextn)
276 {
277 	u64 insn;
278 
279 	insn = OP_IMMED_BASE |
280 		FIELD_PREP(OP_IMMED_A_SRC, areg) |
281 		FIELD_PREP(OP_IMMED_B_SRC, breg) |
282 		FIELD_PREP(OP_IMMED_IMM, imm_hi) |
283 		FIELD_PREP(OP_IMMED_WIDTH, width) |
284 		FIELD_PREP(OP_IMMED_INV, invert) |
285 		FIELD_PREP(OP_IMMED_SHIFT, shift) |
286 		FIELD_PREP(OP_IMMED_WR_AB, wr_both) |
287 		FIELD_PREP(OP_IMMED_SRC_LMEXTN, src_lmextn) |
288 		FIELD_PREP(OP_IMMED_DST_LMEXTN, dst_lmextn);
289 
290 	nfp_prog_push(nfp_prog, insn);
291 }
292 
293 static void
294 emit_immed(struct nfp_prog *nfp_prog, swreg dst, u16 imm,
295 	   enum immed_width width, bool invert, enum immed_shift shift)
296 {
297 	struct nfp_insn_ur_regs reg;
298 	int err;
299 
300 	if (swreg_type(dst) == NN_REG_IMM) {
301 		nfp_prog->error = -EFAULT;
302 		return;
303 	}
304 
305 	err = swreg_to_unrestricted(dst, dst, reg_imm(imm & 0xff), &reg);
306 	if (err) {
307 		nfp_prog->error = err;
308 		return;
309 	}
310 
311 	/* Use reg.dst when destination is No-Dest. */
312 	__emit_immed(nfp_prog,
313 		     swreg_type(dst) == NN_REG_NONE ? reg.dst : reg.areg,
314 		     reg.breg, imm >> 8, width, invert, shift,
315 		     reg.wr_both, reg.dst_lmextn, reg.src_lmextn);
316 }
317 
318 static void
319 __emit_shf(struct nfp_prog *nfp_prog, u16 dst, enum alu_dst_ab dst_ab,
320 	   enum shf_sc sc, u8 shift,
321 	   u16 areg, enum shf_op op, u16 breg, bool i8, bool sw, bool wr_both,
322 	   bool dst_lmextn, bool src_lmextn)
323 {
324 	u64 insn;
325 
326 	if (!FIELD_FIT(OP_SHF_SHIFT, shift)) {
327 		nfp_prog->error = -EFAULT;
328 		return;
329 	}
330 
331 	if (sc == SHF_SC_L_SHF)
332 		shift = 32 - shift;
333 
334 	insn = OP_SHF_BASE |
335 		FIELD_PREP(OP_SHF_A_SRC, areg) |
336 		FIELD_PREP(OP_SHF_SC, sc) |
337 		FIELD_PREP(OP_SHF_B_SRC, breg) |
338 		FIELD_PREP(OP_SHF_I8, i8) |
339 		FIELD_PREP(OP_SHF_SW, sw) |
340 		FIELD_PREP(OP_SHF_DST, dst) |
341 		FIELD_PREP(OP_SHF_SHIFT, shift) |
342 		FIELD_PREP(OP_SHF_OP, op) |
343 		FIELD_PREP(OP_SHF_DST_AB, dst_ab) |
344 		FIELD_PREP(OP_SHF_WR_AB, wr_both) |
345 		FIELD_PREP(OP_SHF_SRC_LMEXTN, src_lmextn) |
346 		FIELD_PREP(OP_SHF_DST_LMEXTN, dst_lmextn);
347 
348 	nfp_prog_push(nfp_prog, insn);
349 }
350 
351 static void
352 emit_shf(struct nfp_prog *nfp_prog, swreg dst,
353 	 swreg lreg, enum shf_op op, swreg rreg, enum shf_sc sc, u8 shift)
354 {
355 	struct nfp_insn_re_regs reg;
356 	int err;
357 
358 	err = swreg_to_restricted(dst, lreg, rreg, &reg, true);
359 	if (err) {
360 		nfp_prog->error = err;
361 		return;
362 	}
363 
364 	__emit_shf(nfp_prog, reg.dst, reg.dst_ab, sc, shift,
365 		   reg.areg, op, reg.breg, reg.i8, reg.swap, reg.wr_both,
366 		   reg.dst_lmextn, reg.src_lmextn);
367 }
368 
369 static void
370 emit_shf_indir(struct nfp_prog *nfp_prog, swreg dst,
371 	       swreg lreg, enum shf_op op, swreg rreg, enum shf_sc sc)
372 {
373 	if (sc == SHF_SC_R_ROT) {
374 		pr_err("indirect shift is not allowed on rotation\n");
375 		nfp_prog->error = -EFAULT;
376 		return;
377 	}
378 
379 	emit_shf(nfp_prog, dst, lreg, op, rreg, sc, 0);
380 }
381 
382 static void
383 __emit_alu(struct nfp_prog *nfp_prog, u16 dst, enum alu_dst_ab dst_ab,
384 	   u16 areg, enum alu_op op, u16 breg, bool swap, bool wr_both,
385 	   bool dst_lmextn, bool src_lmextn)
386 {
387 	u64 insn;
388 
389 	insn = OP_ALU_BASE |
390 		FIELD_PREP(OP_ALU_A_SRC, areg) |
391 		FIELD_PREP(OP_ALU_B_SRC, breg) |
392 		FIELD_PREP(OP_ALU_DST, dst) |
393 		FIELD_PREP(OP_ALU_SW, swap) |
394 		FIELD_PREP(OP_ALU_OP, op) |
395 		FIELD_PREP(OP_ALU_DST_AB, dst_ab) |
396 		FIELD_PREP(OP_ALU_WR_AB, wr_both) |
397 		FIELD_PREP(OP_ALU_SRC_LMEXTN, src_lmextn) |
398 		FIELD_PREP(OP_ALU_DST_LMEXTN, dst_lmextn);
399 
400 	nfp_prog_push(nfp_prog, insn);
401 }
402 
403 static void
404 emit_alu(struct nfp_prog *nfp_prog, swreg dst,
405 	 swreg lreg, enum alu_op op, swreg rreg)
406 {
407 	struct nfp_insn_ur_regs reg;
408 	int err;
409 
410 	err = swreg_to_unrestricted(dst, lreg, rreg, &reg);
411 	if (err) {
412 		nfp_prog->error = err;
413 		return;
414 	}
415 
416 	__emit_alu(nfp_prog, reg.dst, reg.dst_ab,
417 		   reg.areg, op, reg.breg, reg.swap, reg.wr_both,
418 		   reg.dst_lmextn, reg.src_lmextn);
419 }
420 
421 static void
422 __emit_mul(struct nfp_prog *nfp_prog, enum alu_dst_ab dst_ab, u16 areg,
423 	   enum mul_type type, enum mul_step step, u16 breg, bool swap,
424 	   bool wr_both, bool dst_lmextn, bool src_lmextn)
425 {
426 	u64 insn;
427 
428 	insn = OP_MUL_BASE |
429 		FIELD_PREP(OP_MUL_A_SRC, areg) |
430 		FIELD_PREP(OP_MUL_B_SRC, breg) |
431 		FIELD_PREP(OP_MUL_STEP, step) |
432 		FIELD_PREP(OP_MUL_DST_AB, dst_ab) |
433 		FIELD_PREP(OP_MUL_SW, swap) |
434 		FIELD_PREP(OP_MUL_TYPE, type) |
435 		FIELD_PREP(OP_MUL_WR_AB, wr_both) |
436 		FIELD_PREP(OP_MUL_SRC_LMEXTN, src_lmextn) |
437 		FIELD_PREP(OP_MUL_DST_LMEXTN, dst_lmextn);
438 
439 	nfp_prog_push(nfp_prog, insn);
440 }
441 
442 static void
443 emit_mul(struct nfp_prog *nfp_prog, swreg lreg, enum mul_type type,
444 	 enum mul_step step, swreg rreg)
445 {
446 	struct nfp_insn_ur_regs reg;
447 	u16 areg;
448 	int err;
449 
450 	if (type == MUL_TYPE_START && step != MUL_STEP_NONE) {
451 		nfp_prog->error = -EINVAL;
452 		return;
453 	}
454 
455 	if (step == MUL_LAST || step == MUL_LAST_2) {
456 		/* When type is step and step Number is LAST or LAST2, left
457 		 * source is used as destination.
458 		 */
459 		err = swreg_to_unrestricted(lreg, reg_none(), rreg, &reg);
460 		areg = reg.dst;
461 	} else {
462 		err = swreg_to_unrestricted(reg_none(), lreg, rreg, &reg);
463 		areg = reg.areg;
464 	}
465 
466 	if (err) {
467 		nfp_prog->error = err;
468 		return;
469 	}
470 
471 	__emit_mul(nfp_prog, reg.dst_ab, areg, type, step, reg.breg, reg.swap,
472 		   reg.wr_both, reg.dst_lmextn, reg.src_lmextn);
473 }
474 
475 static void
476 __emit_ld_field(struct nfp_prog *nfp_prog, enum shf_sc sc,
477 		u8 areg, u8 bmask, u8 breg, u8 shift, bool imm8,
478 		bool zero, bool swap, bool wr_both,
479 		bool dst_lmextn, bool src_lmextn)
480 {
481 	u64 insn;
482 
483 	insn = OP_LDF_BASE |
484 		FIELD_PREP(OP_LDF_A_SRC, areg) |
485 		FIELD_PREP(OP_LDF_SC, sc) |
486 		FIELD_PREP(OP_LDF_B_SRC, breg) |
487 		FIELD_PREP(OP_LDF_I8, imm8) |
488 		FIELD_PREP(OP_LDF_SW, swap) |
489 		FIELD_PREP(OP_LDF_ZF, zero) |
490 		FIELD_PREP(OP_LDF_BMASK, bmask) |
491 		FIELD_PREP(OP_LDF_SHF, shift) |
492 		FIELD_PREP(OP_LDF_WR_AB, wr_both) |
493 		FIELD_PREP(OP_LDF_SRC_LMEXTN, src_lmextn) |
494 		FIELD_PREP(OP_LDF_DST_LMEXTN, dst_lmextn);
495 
496 	nfp_prog_push(nfp_prog, insn);
497 }
498 
499 static void
500 emit_ld_field_any(struct nfp_prog *nfp_prog, swreg dst, u8 bmask, swreg src,
501 		  enum shf_sc sc, u8 shift, bool zero)
502 {
503 	struct nfp_insn_re_regs reg;
504 	int err;
505 
506 	/* Note: ld_field is special as it uses one of the src regs as dst */
507 	err = swreg_to_restricted(dst, dst, src, &reg, true);
508 	if (err) {
509 		nfp_prog->error = err;
510 		return;
511 	}
512 
513 	__emit_ld_field(nfp_prog, sc, reg.areg, bmask, reg.breg, shift,
514 			reg.i8, zero, reg.swap, reg.wr_both,
515 			reg.dst_lmextn, reg.src_lmextn);
516 }
517 
518 static void
519 emit_ld_field(struct nfp_prog *nfp_prog, swreg dst, u8 bmask, swreg src,
520 	      enum shf_sc sc, u8 shift)
521 {
522 	emit_ld_field_any(nfp_prog, dst, bmask, src, sc, shift, false);
523 }
524 
525 static void
526 __emit_lcsr(struct nfp_prog *nfp_prog, u16 areg, u16 breg, bool wr, u16 addr,
527 	    bool dst_lmextn, bool src_lmextn)
528 {
529 	u64 insn;
530 
531 	insn = OP_LCSR_BASE |
532 		FIELD_PREP(OP_LCSR_A_SRC, areg) |
533 		FIELD_PREP(OP_LCSR_B_SRC, breg) |
534 		FIELD_PREP(OP_LCSR_WRITE, wr) |
535 		FIELD_PREP(OP_LCSR_ADDR, addr / 4) |
536 		FIELD_PREP(OP_LCSR_SRC_LMEXTN, src_lmextn) |
537 		FIELD_PREP(OP_LCSR_DST_LMEXTN, dst_lmextn);
538 
539 	nfp_prog_push(nfp_prog, insn);
540 }
541 
542 static void emit_csr_wr(struct nfp_prog *nfp_prog, swreg src, u16 addr)
543 {
544 	struct nfp_insn_ur_regs reg;
545 	int err;
546 
547 	/* This instruction takes immeds instead of reg_none() for the ignored
548 	 * operand, but we can't encode 2 immeds in one instr with our normal
549 	 * swreg infra so if param is an immed, we encode as reg_none() and
550 	 * copy the immed to both operands.
551 	 */
552 	if (swreg_type(src) == NN_REG_IMM) {
553 		err = swreg_to_unrestricted(reg_none(), src, reg_none(), &reg);
554 		reg.breg = reg.areg;
555 	} else {
556 		err = swreg_to_unrestricted(reg_none(), src, reg_imm(0), &reg);
557 	}
558 	if (err) {
559 		nfp_prog->error = err;
560 		return;
561 	}
562 
563 	__emit_lcsr(nfp_prog, reg.areg, reg.breg, true, addr,
564 		    false, reg.src_lmextn);
565 }
566 
567 /* CSR value is read in following immed[gpr, 0] */
568 static void __emit_csr_rd(struct nfp_prog *nfp_prog, u16 addr)
569 {
570 	__emit_lcsr(nfp_prog, 0, 0, false, addr, false, false);
571 }
572 
573 static void emit_nop(struct nfp_prog *nfp_prog)
574 {
575 	__emit_immed(nfp_prog, UR_REG_IMM, UR_REG_IMM, 0, 0, 0, 0, 0, 0, 0);
576 }
577 
578 /* --- Wrappers --- */
579 static bool pack_immed(u32 imm, u16 *val, enum immed_shift *shift)
580 {
581 	if (!(imm & 0xffff0000)) {
582 		*val = imm;
583 		*shift = IMMED_SHIFT_0B;
584 	} else if (!(imm & 0xff0000ff)) {
585 		*val = imm >> 8;
586 		*shift = IMMED_SHIFT_1B;
587 	} else if (!(imm & 0x0000ffff)) {
588 		*val = imm >> 16;
589 		*shift = IMMED_SHIFT_2B;
590 	} else {
591 		return false;
592 	}
593 
594 	return true;
595 }
596 
597 static void wrp_immed(struct nfp_prog *nfp_prog, swreg dst, u32 imm)
598 {
599 	enum immed_shift shift;
600 	u16 val;
601 
602 	if (pack_immed(imm, &val, &shift)) {
603 		emit_immed(nfp_prog, dst, val, IMMED_WIDTH_ALL, false, shift);
604 	} else if (pack_immed(~imm, &val, &shift)) {
605 		emit_immed(nfp_prog, dst, val, IMMED_WIDTH_ALL, true, shift);
606 	} else {
607 		emit_immed(nfp_prog, dst, imm & 0xffff, IMMED_WIDTH_ALL,
608 			   false, IMMED_SHIFT_0B);
609 		emit_immed(nfp_prog, dst, imm >> 16, IMMED_WIDTH_WORD,
610 			   false, IMMED_SHIFT_2B);
611 	}
612 }
613 
614 static void
615 wrp_immed_relo(struct nfp_prog *nfp_prog, swreg dst, u32 imm,
616 	       enum nfp_relo_type relo)
617 {
618 	if (imm > 0xffff) {
619 		pr_err("relocation of a large immediate!\n");
620 		nfp_prog->error = -EFAULT;
621 		return;
622 	}
623 	emit_immed(nfp_prog, dst, imm, IMMED_WIDTH_ALL, false, IMMED_SHIFT_0B);
624 
625 	nfp_prog->prog[nfp_prog->prog_len - 1] |=
626 		FIELD_PREP(OP_RELO_TYPE, relo);
627 }
628 
629 /* ur_load_imm_any() - encode immediate or use tmp register (unrestricted)
630  * If the @imm is small enough encode it directly in operand and return
631  * otherwise load @imm to a spare register and return its encoding.
632  */
633 static swreg ur_load_imm_any(struct nfp_prog *nfp_prog, u32 imm, swreg tmp_reg)
634 {
635 	if (FIELD_FIT(UR_REG_IMM_MAX, imm))
636 		return reg_imm(imm);
637 
638 	wrp_immed(nfp_prog, tmp_reg, imm);
639 	return tmp_reg;
640 }
641 
642 /* re_load_imm_any() - encode immediate or use tmp register (restricted)
643  * If the @imm is small enough encode it directly in operand and return
644  * otherwise load @imm to a spare register and return its encoding.
645  */
646 static swreg re_load_imm_any(struct nfp_prog *nfp_prog, u32 imm, swreg tmp_reg)
647 {
648 	if (FIELD_FIT(RE_REG_IMM_MAX, imm))
649 		return reg_imm(imm);
650 
651 	wrp_immed(nfp_prog, tmp_reg, imm);
652 	return tmp_reg;
653 }
654 
655 static void wrp_nops(struct nfp_prog *nfp_prog, unsigned int count)
656 {
657 	while (count--)
658 		emit_nop(nfp_prog);
659 }
660 
661 static void wrp_mov(struct nfp_prog *nfp_prog, swreg dst, swreg src)
662 {
663 	emit_alu(nfp_prog, dst, reg_none(), ALU_OP_NONE, src);
664 }
665 
666 static void wrp_reg_mov(struct nfp_prog *nfp_prog, u16 dst, u16 src)
667 {
668 	wrp_mov(nfp_prog, reg_both(dst), reg_b(src));
669 }
670 
671 /* wrp_reg_subpart() - load @field_len bytes from @offset of @src, write the
672  * result to @dst from low end.
673  */
674 static void
675 wrp_reg_subpart(struct nfp_prog *nfp_prog, swreg dst, swreg src, u8 field_len,
676 		u8 offset)
677 {
678 	enum shf_sc sc = offset ? SHF_SC_R_SHF : SHF_SC_NONE;
679 	u8 mask = (1 << field_len) - 1;
680 
681 	emit_ld_field_any(nfp_prog, dst, mask, src, sc, offset * 8, true);
682 }
683 
684 /* wrp_reg_or_subpart() - load @field_len bytes from low end of @src, or the
685  * result to @dst from offset, there is no change on the other bits of @dst.
686  */
687 static void
688 wrp_reg_or_subpart(struct nfp_prog *nfp_prog, swreg dst, swreg src,
689 		   u8 field_len, u8 offset)
690 {
691 	enum shf_sc sc = offset ? SHF_SC_L_SHF : SHF_SC_NONE;
692 	u8 mask = ((1 << field_len) - 1) << offset;
693 
694 	emit_ld_field(nfp_prog, dst, mask, src, sc, 32 - offset * 8);
695 }
696 
697 static void
698 addr40_offset(struct nfp_prog *nfp_prog, u8 src_gpr, swreg offset,
699 	      swreg *rega, swreg *regb)
700 {
701 	if (offset == reg_imm(0)) {
702 		*rega = reg_a(src_gpr);
703 		*regb = reg_b(src_gpr + 1);
704 		return;
705 	}
706 
707 	emit_alu(nfp_prog, imm_a(nfp_prog), reg_a(src_gpr), ALU_OP_ADD, offset);
708 	emit_alu(nfp_prog, imm_b(nfp_prog), reg_b(src_gpr + 1), ALU_OP_ADD_C,
709 		 reg_imm(0));
710 	*rega = imm_a(nfp_prog);
711 	*regb = imm_b(nfp_prog);
712 }
713 
714 /* NFP has Command Push Pull bus which supports bluk memory operations. */
715 static int nfp_cpp_memcpy(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
716 {
717 	bool descending_seq = meta->ldst_gather_len < 0;
718 	s16 len = abs(meta->ldst_gather_len);
719 	swreg src_base, off;
720 	bool src_40bit_addr;
721 	unsigned int i;
722 	u8 xfer_num;
723 
724 	off = re_load_imm_any(nfp_prog, meta->insn.off, imm_b(nfp_prog));
725 	src_40bit_addr = meta->ptr.type == PTR_TO_MAP_VALUE;
726 	src_base = reg_a(meta->insn.src_reg * 2);
727 	xfer_num = round_up(len, 4) / 4;
728 
729 	if (src_40bit_addr)
730 		addr40_offset(nfp_prog, meta->insn.src_reg * 2, off, &src_base,
731 			      &off);
732 
733 	/* Setup PREV_ALU fields to override memory read length. */
734 	if (len > 32)
735 		wrp_immed(nfp_prog, reg_none(),
736 			  CMD_OVE_LEN | FIELD_PREP(CMD_OV_LEN, xfer_num - 1));
737 
738 	/* Memory read from source addr into transfer-in registers. */
739 	emit_cmd_any(nfp_prog, CMD_TGT_READ32_SWAP,
740 		     src_40bit_addr ? CMD_MODE_40b_BA : CMD_MODE_32b, 0,
741 		     src_base, off, xfer_num - 1, CMD_CTX_SWAP, len > 32);
742 
743 	/* Move from transfer-in to transfer-out. */
744 	for (i = 0; i < xfer_num; i++)
745 		wrp_mov(nfp_prog, reg_xfer(i), reg_xfer(i));
746 
747 	off = re_load_imm_any(nfp_prog, meta->paired_st->off, imm_b(nfp_prog));
748 
749 	if (len <= 8) {
750 		/* Use single direct_ref write8. */
751 		emit_cmd(nfp_prog, CMD_TGT_WRITE8_SWAP, CMD_MODE_32b, 0,
752 			 reg_a(meta->paired_st->dst_reg * 2), off, len - 1,
753 			 CMD_CTX_SWAP);
754 	} else if (len <= 32 && IS_ALIGNED(len, 4)) {
755 		/* Use single direct_ref write32. */
756 		emit_cmd(nfp_prog, CMD_TGT_WRITE32_SWAP, CMD_MODE_32b, 0,
757 			 reg_a(meta->paired_st->dst_reg * 2), off, xfer_num - 1,
758 			 CMD_CTX_SWAP);
759 	} else if (len <= 32) {
760 		/* Use single indirect_ref write8. */
761 		wrp_immed(nfp_prog, reg_none(),
762 			  CMD_OVE_LEN | FIELD_PREP(CMD_OV_LEN, len - 1));
763 		emit_cmd_indir(nfp_prog, CMD_TGT_WRITE8_SWAP, CMD_MODE_32b, 0,
764 			       reg_a(meta->paired_st->dst_reg * 2), off,
765 			       len - 1, CMD_CTX_SWAP);
766 	} else if (IS_ALIGNED(len, 4)) {
767 		/* Use single indirect_ref write32. */
768 		wrp_immed(nfp_prog, reg_none(),
769 			  CMD_OVE_LEN | FIELD_PREP(CMD_OV_LEN, xfer_num - 1));
770 		emit_cmd_indir(nfp_prog, CMD_TGT_WRITE32_SWAP, CMD_MODE_32b, 0,
771 			       reg_a(meta->paired_st->dst_reg * 2), off,
772 			       xfer_num - 1, CMD_CTX_SWAP);
773 	} else if (len <= 40) {
774 		/* Use one direct_ref write32 to write the first 32-bytes, then
775 		 * another direct_ref write8 to write the remaining bytes.
776 		 */
777 		emit_cmd(nfp_prog, CMD_TGT_WRITE32_SWAP, CMD_MODE_32b, 0,
778 			 reg_a(meta->paired_st->dst_reg * 2), off, 7,
779 			 CMD_CTX_SWAP);
780 
781 		off = re_load_imm_any(nfp_prog, meta->paired_st->off + 32,
782 				      imm_b(nfp_prog));
783 		emit_cmd(nfp_prog, CMD_TGT_WRITE8_SWAP, CMD_MODE_32b, 8,
784 			 reg_a(meta->paired_st->dst_reg * 2), off, len - 33,
785 			 CMD_CTX_SWAP);
786 	} else {
787 		/* Use one indirect_ref write32 to write 4-bytes aligned length,
788 		 * then another direct_ref write8 to write the remaining bytes.
789 		 */
790 		u8 new_off;
791 
792 		wrp_immed(nfp_prog, reg_none(),
793 			  CMD_OVE_LEN | FIELD_PREP(CMD_OV_LEN, xfer_num - 2));
794 		emit_cmd_indir(nfp_prog, CMD_TGT_WRITE32_SWAP, CMD_MODE_32b, 0,
795 			       reg_a(meta->paired_st->dst_reg * 2), off,
796 			       xfer_num - 2, CMD_CTX_SWAP);
797 		new_off = meta->paired_st->off + (xfer_num - 1) * 4;
798 		off = re_load_imm_any(nfp_prog, new_off, imm_b(nfp_prog));
799 		emit_cmd(nfp_prog, CMD_TGT_WRITE8_SWAP, CMD_MODE_32b,
800 			 xfer_num - 1, reg_a(meta->paired_st->dst_reg * 2), off,
801 			 (len & 0x3) - 1, CMD_CTX_SWAP);
802 	}
803 
804 	/* TODO: The following extra load is to make sure data flow be identical
805 	 *  before and after we do memory copy optimization.
806 	 *
807 	 *  The load destination register is not guaranteed to be dead, so we
808 	 *  need to make sure it is loaded with the value the same as before
809 	 *  this transformation.
810 	 *
811 	 *  These extra loads could be removed once we have accurate register
812 	 *  usage information.
813 	 */
814 	if (descending_seq)
815 		xfer_num = 0;
816 	else if (BPF_SIZE(meta->insn.code) != BPF_DW)
817 		xfer_num = xfer_num - 1;
818 	else
819 		xfer_num = xfer_num - 2;
820 
821 	switch (BPF_SIZE(meta->insn.code)) {
822 	case BPF_B:
823 		wrp_reg_subpart(nfp_prog, reg_both(meta->insn.dst_reg * 2),
824 				reg_xfer(xfer_num), 1,
825 				IS_ALIGNED(len, 4) ? 3 : (len & 3) - 1);
826 		break;
827 	case BPF_H:
828 		wrp_reg_subpart(nfp_prog, reg_both(meta->insn.dst_reg * 2),
829 				reg_xfer(xfer_num), 2, (len & 3) ^ 2);
830 		break;
831 	case BPF_W:
832 		wrp_mov(nfp_prog, reg_both(meta->insn.dst_reg * 2),
833 			reg_xfer(0));
834 		break;
835 	case BPF_DW:
836 		wrp_mov(nfp_prog, reg_both(meta->insn.dst_reg * 2),
837 			reg_xfer(xfer_num));
838 		wrp_mov(nfp_prog, reg_both(meta->insn.dst_reg * 2 + 1),
839 			reg_xfer(xfer_num + 1));
840 		break;
841 	}
842 
843 	if (BPF_SIZE(meta->insn.code) != BPF_DW)
844 		wrp_immed(nfp_prog, reg_both(meta->insn.dst_reg * 2 + 1), 0);
845 
846 	return 0;
847 }
848 
849 static int
850 data_ld(struct nfp_prog *nfp_prog, swreg offset, u8 dst_gpr, int size)
851 {
852 	unsigned int i;
853 	u16 shift, sz;
854 
855 	/* We load the value from the address indicated in @offset and then
856 	 * shift out the data we don't need.  Note: this is big endian!
857 	 */
858 	sz = max(size, 4);
859 	shift = size < 4 ? 4 - size : 0;
860 
861 	emit_cmd(nfp_prog, CMD_TGT_READ8, CMD_MODE_32b, 0,
862 		 pptr_reg(nfp_prog), offset, sz - 1, CMD_CTX_SWAP);
863 
864 	i = 0;
865 	if (shift)
866 		emit_shf(nfp_prog, reg_both(dst_gpr), reg_none(), SHF_OP_NONE,
867 			 reg_xfer(0), SHF_SC_R_SHF, shift * 8);
868 	else
869 		for (; i * 4 < size; i++)
870 			wrp_mov(nfp_prog, reg_both(dst_gpr + i), reg_xfer(i));
871 
872 	if (i < 2)
873 		wrp_immed(nfp_prog, reg_both(dst_gpr + 1), 0);
874 
875 	return 0;
876 }
877 
878 static int
879 data_ld_host_order(struct nfp_prog *nfp_prog, u8 dst_gpr,
880 		   swreg lreg, swreg rreg, int size, enum cmd_mode mode)
881 {
882 	unsigned int i;
883 	u8 mask, sz;
884 
885 	/* We load the value from the address indicated in rreg + lreg and then
886 	 * mask out the data we don't need.  Note: this is little endian!
887 	 */
888 	sz = max(size, 4);
889 	mask = size < 4 ? GENMASK(size - 1, 0) : 0;
890 
891 	emit_cmd(nfp_prog, CMD_TGT_READ32_SWAP, mode, 0,
892 		 lreg, rreg, sz / 4 - 1, CMD_CTX_SWAP);
893 
894 	i = 0;
895 	if (mask)
896 		emit_ld_field_any(nfp_prog, reg_both(dst_gpr), mask,
897 				  reg_xfer(0), SHF_SC_NONE, 0, true);
898 	else
899 		for (; i * 4 < size; i++)
900 			wrp_mov(nfp_prog, reg_both(dst_gpr + i), reg_xfer(i));
901 
902 	if (i < 2)
903 		wrp_immed(nfp_prog, reg_both(dst_gpr + 1), 0);
904 
905 	return 0;
906 }
907 
908 static int
909 data_ld_host_order_addr32(struct nfp_prog *nfp_prog, u8 src_gpr, swreg offset,
910 			  u8 dst_gpr, u8 size)
911 {
912 	return data_ld_host_order(nfp_prog, dst_gpr, reg_a(src_gpr), offset,
913 				  size, CMD_MODE_32b);
914 }
915 
916 static int
917 data_ld_host_order_addr40(struct nfp_prog *nfp_prog, u8 src_gpr, swreg offset,
918 			  u8 dst_gpr, u8 size)
919 {
920 	swreg rega, regb;
921 
922 	addr40_offset(nfp_prog, src_gpr, offset, &rega, &regb);
923 
924 	return data_ld_host_order(nfp_prog, dst_gpr, rega, regb,
925 				  size, CMD_MODE_40b_BA);
926 }
927 
928 static int
929 construct_data_ind_ld(struct nfp_prog *nfp_prog, u16 offset, u16 src, u8 size)
930 {
931 	swreg tmp_reg;
932 
933 	/* Calculate the true offset (src_reg + imm) */
934 	tmp_reg = ur_load_imm_any(nfp_prog, offset, imm_b(nfp_prog));
935 	emit_alu(nfp_prog, imm_both(nfp_prog), reg_a(src), ALU_OP_ADD, tmp_reg);
936 
937 	/* Check packet length (size guaranteed to fit b/c it's u8) */
938 	emit_alu(nfp_prog, imm_a(nfp_prog),
939 		 imm_a(nfp_prog), ALU_OP_ADD, reg_imm(size));
940 	emit_alu(nfp_prog, reg_none(),
941 		 plen_reg(nfp_prog), ALU_OP_SUB, imm_a(nfp_prog));
942 	emit_br_relo(nfp_prog, BR_BLO, BR_OFF_RELO, 0, RELO_BR_GO_ABORT);
943 
944 	/* Load data */
945 	return data_ld(nfp_prog, imm_b(nfp_prog), 0, size);
946 }
947 
948 static int construct_data_ld(struct nfp_prog *nfp_prog, u16 offset, u8 size)
949 {
950 	swreg tmp_reg;
951 
952 	/* Check packet length */
953 	tmp_reg = ur_load_imm_any(nfp_prog, offset + size, imm_a(nfp_prog));
954 	emit_alu(nfp_prog, reg_none(), plen_reg(nfp_prog), ALU_OP_SUB, tmp_reg);
955 	emit_br_relo(nfp_prog, BR_BLO, BR_OFF_RELO, 0, RELO_BR_GO_ABORT);
956 
957 	/* Load data */
958 	tmp_reg = re_load_imm_any(nfp_prog, offset, imm_b(nfp_prog));
959 	return data_ld(nfp_prog, tmp_reg, 0, size);
960 }
961 
962 static int
963 data_stx_host_order(struct nfp_prog *nfp_prog, u8 dst_gpr, swreg offset,
964 		    u8 src_gpr, u8 size)
965 {
966 	unsigned int i;
967 
968 	for (i = 0; i * 4 < size; i++)
969 		wrp_mov(nfp_prog, reg_xfer(i), reg_a(src_gpr + i));
970 
971 	emit_cmd(nfp_prog, CMD_TGT_WRITE8_SWAP, CMD_MODE_32b, 0,
972 		 reg_a(dst_gpr), offset, size - 1, CMD_CTX_SWAP);
973 
974 	return 0;
975 }
976 
977 static int
978 data_st_host_order(struct nfp_prog *nfp_prog, u8 dst_gpr, swreg offset,
979 		   u64 imm, u8 size)
980 {
981 	wrp_immed(nfp_prog, reg_xfer(0), imm);
982 	if (size == 8)
983 		wrp_immed(nfp_prog, reg_xfer(1), imm >> 32);
984 
985 	emit_cmd(nfp_prog, CMD_TGT_WRITE8_SWAP, CMD_MODE_32b, 0,
986 		 reg_a(dst_gpr), offset, size - 1, CMD_CTX_SWAP);
987 
988 	return 0;
989 }
990 
991 typedef int
992 (*lmem_step)(struct nfp_prog *nfp_prog, u8 gpr, u8 gpr_byte, s32 off,
993 	     unsigned int size, bool first, bool new_gpr, bool last, bool lm3,
994 	     bool needs_inc);
995 
996 static int
997 wrp_lmem_load(struct nfp_prog *nfp_prog, u8 dst, u8 dst_byte, s32 off,
998 	      unsigned int size, bool first, bool new_gpr, bool last, bool lm3,
999 	      bool needs_inc)
1000 {
1001 	bool should_inc = needs_inc && new_gpr && !last;
1002 	u32 idx, src_byte;
1003 	enum shf_sc sc;
1004 	swreg reg;
1005 	int shf;
1006 	u8 mask;
1007 
1008 	if (WARN_ON_ONCE(dst_byte + size > 4 || off % 4 + size > 4))
1009 		return -EOPNOTSUPP;
1010 
1011 	idx = off / 4;
1012 
1013 	/* Move the entire word */
1014 	if (size == 4) {
1015 		wrp_mov(nfp_prog, reg_both(dst),
1016 			should_inc ? reg_lm_inc(3) : reg_lm(lm3 ? 3 : 0, idx));
1017 		return 0;
1018 	}
1019 
1020 	if (WARN_ON_ONCE(lm3 && idx > RE_REG_LM_IDX_MAX))
1021 		return -EOPNOTSUPP;
1022 
1023 	src_byte = off % 4;
1024 
1025 	mask = (1 << size) - 1;
1026 	mask <<= dst_byte;
1027 
1028 	if (WARN_ON_ONCE(mask > 0xf))
1029 		return -EOPNOTSUPP;
1030 
1031 	shf = abs(src_byte - dst_byte) * 8;
1032 	if (src_byte == dst_byte) {
1033 		sc = SHF_SC_NONE;
1034 	} else if (src_byte < dst_byte) {
1035 		shf = 32 - shf;
1036 		sc = SHF_SC_L_SHF;
1037 	} else {
1038 		sc = SHF_SC_R_SHF;
1039 	}
1040 
1041 	/* ld_field can address fewer indexes, if offset too large do RMW.
1042 	 * Because we RMV twice we waste 2 cycles on unaligned 8 byte writes.
1043 	 */
1044 	if (idx <= RE_REG_LM_IDX_MAX) {
1045 		reg = reg_lm(lm3 ? 3 : 0, idx);
1046 	} else {
1047 		reg = imm_a(nfp_prog);
1048 		/* If it's not the first part of the load and we start a new GPR
1049 		 * that means we are loading a second part of the LMEM word into
1050 		 * a new GPR.  IOW we've already looked that LMEM word and
1051 		 * therefore it has been loaded into imm_a().
1052 		 */
1053 		if (first || !new_gpr)
1054 			wrp_mov(nfp_prog, reg, reg_lm(0, idx));
1055 	}
1056 
1057 	emit_ld_field_any(nfp_prog, reg_both(dst), mask, reg, sc, shf, new_gpr);
1058 
1059 	if (should_inc)
1060 		wrp_mov(nfp_prog, reg_none(), reg_lm_inc(3));
1061 
1062 	return 0;
1063 }
1064 
1065 static int
1066 wrp_lmem_store(struct nfp_prog *nfp_prog, u8 src, u8 src_byte, s32 off,
1067 	       unsigned int size, bool first, bool new_gpr, bool last, bool lm3,
1068 	       bool needs_inc)
1069 {
1070 	bool should_inc = needs_inc && new_gpr && !last;
1071 	u32 idx, dst_byte;
1072 	enum shf_sc sc;
1073 	swreg reg;
1074 	int shf;
1075 	u8 mask;
1076 
1077 	if (WARN_ON_ONCE(src_byte + size > 4 || off % 4 + size > 4))
1078 		return -EOPNOTSUPP;
1079 
1080 	idx = off / 4;
1081 
1082 	/* Move the entire word */
1083 	if (size == 4) {
1084 		wrp_mov(nfp_prog,
1085 			should_inc ? reg_lm_inc(3) : reg_lm(lm3 ? 3 : 0, idx),
1086 			reg_b(src));
1087 		return 0;
1088 	}
1089 
1090 	if (WARN_ON_ONCE(lm3 && idx > RE_REG_LM_IDX_MAX))
1091 		return -EOPNOTSUPP;
1092 
1093 	dst_byte = off % 4;
1094 
1095 	mask = (1 << size) - 1;
1096 	mask <<= dst_byte;
1097 
1098 	if (WARN_ON_ONCE(mask > 0xf))
1099 		return -EOPNOTSUPP;
1100 
1101 	shf = abs(src_byte - dst_byte) * 8;
1102 	if (src_byte == dst_byte) {
1103 		sc = SHF_SC_NONE;
1104 	} else if (src_byte < dst_byte) {
1105 		shf = 32 - shf;
1106 		sc = SHF_SC_L_SHF;
1107 	} else {
1108 		sc = SHF_SC_R_SHF;
1109 	}
1110 
1111 	/* ld_field can address fewer indexes, if offset too large do RMW.
1112 	 * Because we RMV twice we waste 2 cycles on unaligned 8 byte writes.
1113 	 */
1114 	if (idx <= RE_REG_LM_IDX_MAX) {
1115 		reg = reg_lm(lm3 ? 3 : 0, idx);
1116 	} else {
1117 		reg = imm_a(nfp_prog);
1118 		/* Only first and last LMEM locations are going to need RMW,
1119 		 * the middle location will be overwritten fully.
1120 		 */
1121 		if (first || last)
1122 			wrp_mov(nfp_prog, reg, reg_lm(0, idx));
1123 	}
1124 
1125 	emit_ld_field(nfp_prog, reg, mask, reg_b(src), sc, shf);
1126 
1127 	if (new_gpr || last) {
1128 		if (idx > RE_REG_LM_IDX_MAX)
1129 			wrp_mov(nfp_prog, reg_lm(0, idx), reg);
1130 		if (should_inc)
1131 			wrp_mov(nfp_prog, reg_none(), reg_lm_inc(3));
1132 	}
1133 
1134 	return 0;
1135 }
1136 
1137 static int
1138 mem_op_stack(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
1139 	     unsigned int size, unsigned int ptr_off, u8 gpr, u8 ptr_gpr,
1140 	     bool clr_gpr, lmem_step step)
1141 {
1142 	s32 off = nfp_prog->stack_frame_depth + meta->insn.off + ptr_off;
1143 	bool first = true, last;
1144 	bool needs_inc = false;
1145 	swreg stack_off_reg;
1146 	u8 prev_gpr = 255;
1147 	u32 gpr_byte = 0;
1148 	bool lm3 = true;
1149 	int ret;
1150 
1151 	if (meta->ptr_not_const ||
1152 	    meta->flags & FLAG_INSN_PTR_CALLER_STACK_FRAME) {
1153 		/* Use of the last encountered ptr_off is OK, they all have
1154 		 * the same alignment.  Depend on low bits of value being
1155 		 * discarded when written to LMaddr register.
1156 		 */
1157 		stack_off_reg = ur_load_imm_any(nfp_prog, meta->insn.off,
1158 						stack_imm(nfp_prog));
1159 
1160 		emit_alu(nfp_prog, imm_b(nfp_prog),
1161 			 reg_a(ptr_gpr), ALU_OP_ADD, stack_off_reg);
1162 
1163 		needs_inc = true;
1164 	} else if (off + size <= 64) {
1165 		/* We can reach bottom 64B with LMaddr0 */
1166 		lm3 = false;
1167 	} else if (round_down(off, 32) == round_down(off + size - 1, 32)) {
1168 		/* We have to set up a new pointer.  If we know the offset
1169 		 * and the entire access falls into a single 32 byte aligned
1170 		 * window we won't have to increment the LM pointer.
1171 		 * The 32 byte alignment is imporant because offset is ORed in
1172 		 * not added when doing *l$indexN[off].
1173 		 */
1174 		stack_off_reg = ur_load_imm_any(nfp_prog, round_down(off, 32),
1175 						stack_imm(nfp_prog));
1176 		emit_alu(nfp_prog, imm_b(nfp_prog),
1177 			 stack_reg(nfp_prog), ALU_OP_ADD, stack_off_reg);
1178 
1179 		off %= 32;
1180 	} else {
1181 		stack_off_reg = ur_load_imm_any(nfp_prog, round_down(off, 4),
1182 						stack_imm(nfp_prog));
1183 
1184 		emit_alu(nfp_prog, imm_b(nfp_prog),
1185 			 stack_reg(nfp_prog), ALU_OP_ADD, stack_off_reg);
1186 
1187 		needs_inc = true;
1188 	}
1189 	if (lm3) {
1190 		emit_csr_wr(nfp_prog, imm_b(nfp_prog), NFP_CSR_ACT_LM_ADDR3);
1191 		/* For size < 4 one slot will be filled by zeroing of upper. */
1192 		wrp_nops(nfp_prog, clr_gpr && size < 8 ? 2 : 3);
1193 	}
1194 
1195 	if (clr_gpr && size < 8)
1196 		wrp_immed(nfp_prog, reg_both(gpr + 1), 0);
1197 
1198 	while (size) {
1199 		u32 slice_end;
1200 		u8 slice_size;
1201 
1202 		slice_size = min(size, 4 - gpr_byte);
1203 		slice_end = min(off + slice_size, round_up(off + 1, 4));
1204 		slice_size = slice_end - off;
1205 
1206 		last = slice_size == size;
1207 
1208 		if (needs_inc)
1209 			off %= 4;
1210 
1211 		ret = step(nfp_prog, gpr, gpr_byte, off, slice_size,
1212 			   first, gpr != prev_gpr, last, lm3, needs_inc);
1213 		if (ret)
1214 			return ret;
1215 
1216 		prev_gpr = gpr;
1217 		first = false;
1218 
1219 		gpr_byte += slice_size;
1220 		if (gpr_byte >= 4) {
1221 			gpr_byte -= 4;
1222 			gpr++;
1223 		}
1224 
1225 		size -= slice_size;
1226 		off += slice_size;
1227 	}
1228 
1229 	return 0;
1230 }
1231 
1232 static void
1233 wrp_alu_imm(struct nfp_prog *nfp_prog, u8 dst, enum alu_op alu_op, u32 imm)
1234 {
1235 	swreg tmp_reg;
1236 
1237 	if (alu_op == ALU_OP_AND) {
1238 		if (!imm)
1239 			wrp_immed(nfp_prog, reg_both(dst), 0);
1240 		if (!imm || !~imm)
1241 			return;
1242 	}
1243 	if (alu_op == ALU_OP_OR) {
1244 		if (!~imm)
1245 			wrp_immed(nfp_prog, reg_both(dst), ~0U);
1246 		if (!imm || !~imm)
1247 			return;
1248 	}
1249 	if (alu_op == ALU_OP_XOR) {
1250 		if (!~imm)
1251 			emit_alu(nfp_prog, reg_both(dst), reg_none(),
1252 				 ALU_OP_NOT, reg_b(dst));
1253 		if (!imm || !~imm)
1254 			return;
1255 	}
1256 
1257 	tmp_reg = ur_load_imm_any(nfp_prog, imm, imm_b(nfp_prog));
1258 	emit_alu(nfp_prog, reg_both(dst), reg_a(dst), alu_op, tmp_reg);
1259 }
1260 
1261 static int
1262 wrp_alu64_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
1263 	      enum alu_op alu_op, bool skip)
1264 {
1265 	const struct bpf_insn *insn = &meta->insn;
1266 	u64 imm = insn->imm; /* sign extend */
1267 
1268 	if (skip) {
1269 		meta->flags |= FLAG_INSN_SKIP_NOOP;
1270 		return 0;
1271 	}
1272 
1273 	wrp_alu_imm(nfp_prog, insn->dst_reg * 2, alu_op, imm & ~0U);
1274 	wrp_alu_imm(nfp_prog, insn->dst_reg * 2 + 1, alu_op, imm >> 32);
1275 
1276 	return 0;
1277 }
1278 
1279 static int
1280 wrp_alu64_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
1281 	      enum alu_op alu_op)
1282 {
1283 	u8 dst = meta->insn.dst_reg * 2, src = meta->insn.src_reg * 2;
1284 
1285 	emit_alu(nfp_prog, reg_both(dst), reg_a(dst), alu_op, reg_b(src));
1286 	emit_alu(nfp_prog, reg_both(dst + 1),
1287 		 reg_a(dst + 1), alu_op, reg_b(src + 1));
1288 
1289 	return 0;
1290 }
1291 
1292 static int
1293 wrp_alu32_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
1294 	      enum alu_op alu_op, bool skip)
1295 {
1296 	const struct bpf_insn *insn = &meta->insn;
1297 
1298 	if (skip) {
1299 		meta->flags |= FLAG_INSN_SKIP_NOOP;
1300 		return 0;
1301 	}
1302 
1303 	wrp_alu_imm(nfp_prog, insn->dst_reg * 2, alu_op, insn->imm);
1304 	wrp_immed(nfp_prog, reg_both(insn->dst_reg * 2 + 1), 0);
1305 
1306 	return 0;
1307 }
1308 
1309 static int
1310 wrp_alu32_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
1311 	      enum alu_op alu_op)
1312 {
1313 	u8 dst = meta->insn.dst_reg * 2, src = meta->insn.src_reg * 2;
1314 
1315 	emit_alu(nfp_prog, reg_both(dst), reg_a(dst), alu_op, reg_b(src));
1316 	wrp_immed(nfp_prog, reg_both(meta->insn.dst_reg * 2 + 1), 0);
1317 
1318 	return 0;
1319 }
1320 
1321 static void
1322 wrp_test_reg_one(struct nfp_prog *nfp_prog, u8 dst, enum alu_op alu_op, u8 src,
1323 		 enum br_mask br_mask, u16 off)
1324 {
1325 	emit_alu(nfp_prog, reg_none(), reg_a(dst), alu_op, reg_b(src));
1326 	emit_br(nfp_prog, br_mask, off, 0);
1327 }
1328 
1329 static int
1330 wrp_test_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
1331 	     enum alu_op alu_op, enum br_mask br_mask)
1332 {
1333 	const struct bpf_insn *insn = &meta->insn;
1334 
1335 	wrp_test_reg_one(nfp_prog, insn->dst_reg * 2, alu_op,
1336 			 insn->src_reg * 2, br_mask, insn->off);
1337 	if (is_mbpf_jmp64(meta))
1338 		wrp_test_reg_one(nfp_prog, insn->dst_reg * 2 + 1, alu_op,
1339 				 insn->src_reg * 2 + 1, br_mask, insn->off);
1340 
1341 	return 0;
1342 }
1343 
1344 static const struct jmp_code_map {
1345 	enum br_mask br_mask;
1346 	bool swap;
1347 } jmp_code_map[] = {
1348 	[BPF_JGT >> 4]	= { BR_BLO, true },
1349 	[BPF_JGE >> 4]	= { BR_BHS, false },
1350 	[BPF_JLT >> 4]	= { BR_BLO, false },
1351 	[BPF_JLE >> 4]	= { BR_BHS, true },
1352 	[BPF_JSGT >> 4]	= { BR_BLT, true },
1353 	[BPF_JSGE >> 4]	= { BR_BGE, false },
1354 	[BPF_JSLT >> 4]	= { BR_BLT, false },
1355 	[BPF_JSLE >> 4]	= { BR_BGE, true },
1356 };
1357 
1358 static const struct jmp_code_map *nfp_jmp_code_get(struct nfp_insn_meta *meta)
1359 {
1360 	unsigned int op;
1361 
1362 	op = BPF_OP(meta->insn.code) >> 4;
1363 	/* br_mask of 0 is BR_BEQ which we don't use in jump code table */
1364 	if (WARN_ONCE(op >= ARRAY_SIZE(jmp_code_map) ||
1365 		      !jmp_code_map[op].br_mask,
1366 		      "no code found for jump instruction"))
1367 		return NULL;
1368 
1369 	return &jmp_code_map[op];
1370 }
1371 
1372 static int cmp_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1373 {
1374 	const struct bpf_insn *insn = &meta->insn;
1375 	u64 imm = insn->imm; /* sign extend */
1376 	const struct jmp_code_map *code;
1377 	enum alu_op alu_op, carry_op;
1378 	u8 reg = insn->dst_reg * 2;
1379 	swreg tmp_reg;
1380 
1381 	code = nfp_jmp_code_get(meta);
1382 	if (!code)
1383 		return -EINVAL;
1384 
1385 	alu_op = meta->jump_neg_op ? ALU_OP_ADD : ALU_OP_SUB;
1386 	carry_op = meta->jump_neg_op ? ALU_OP_ADD_C : ALU_OP_SUB_C;
1387 
1388 	tmp_reg = ur_load_imm_any(nfp_prog, imm & ~0U, imm_b(nfp_prog));
1389 	if (!code->swap)
1390 		emit_alu(nfp_prog, reg_none(), reg_a(reg), alu_op, tmp_reg);
1391 	else
1392 		emit_alu(nfp_prog, reg_none(), tmp_reg, alu_op, reg_a(reg));
1393 
1394 	if (is_mbpf_jmp64(meta)) {
1395 		tmp_reg = ur_load_imm_any(nfp_prog, imm >> 32, imm_b(nfp_prog));
1396 		if (!code->swap)
1397 			emit_alu(nfp_prog, reg_none(),
1398 				 reg_a(reg + 1), carry_op, tmp_reg);
1399 		else
1400 			emit_alu(nfp_prog, reg_none(),
1401 				 tmp_reg, carry_op, reg_a(reg + 1));
1402 	}
1403 
1404 	emit_br(nfp_prog, code->br_mask, insn->off, 0);
1405 
1406 	return 0;
1407 }
1408 
1409 static int cmp_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1410 {
1411 	const struct bpf_insn *insn = &meta->insn;
1412 	const struct jmp_code_map *code;
1413 	u8 areg, breg;
1414 
1415 	code = nfp_jmp_code_get(meta);
1416 	if (!code)
1417 		return -EINVAL;
1418 
1419 	areg = insn->dst_reg * 2;
1420 	breg = insn->src_reg * 2;
1421 
1422 	if (code->swap) {
1423 		areg ^= breg;
1424 		breg ^= areg;
1425 		areg ^= breg;
1426 	}
1427 
1428 	emit_alu(nfp_prog, reg_none(), reg_a(areg), ALU_OP_SUB, reg_b(breg));
1429 	if (is_mbpf_jmp64(meta))
1430 		emit_alu(nfp_prog, reg_none(),
1431 			 reg_a(areg + 1), ALU_OP_SUB_C, reg_b(breg + 1));
1432 	emit_br(nfp_prog, code->br_mask, insn->off, 0);
1433 
1434 	return 0;
1435 }
1436 
1437 static void wrp_end32(struct nfp_prog *nfp_prog, swreg reg_in, u8 gpr_out)
1438 {
1439 	emit_ld_field(nfp_prog, reg_both(gpr_out), 0xf, reg_in,
1440 		      SHF_SC_R_ROT, 8);
1441 	emit_ld_field(nfp_prog, reg_both(gpr_out), 0x5, reg_a(gpr_out),
1442 		      SHF_SC_R_ROT, 16);
1443 }
1444 
1445 static void
1446 wrp_mul_u32(struct nfp_prog *nfp_prog, swreg dst_hi, swreg dst_lo, swreg lreg,
1447 	    swreg rreg, bool gen_high_half)
1448 {
1449 	emit_mul(nfp_prog, lreg, MUL_TYPE_START, MUL_STEP_NONE, rreg);
1450 	emit_mul(nfp_prog, lreg, MUL_TYPE_STEP_32x32, MUL_STEP_1, rreg);
1451 	emit_mul(nfp_prog, lreg, MUL_TYPE_STEP_32x32, MUL_STEP_2, rreg);
1452 	emit_mul(nfp_prog, lreg, MUL_TYPE_STEP_32x32, MUL_STEP_3, rreg);
1453 	emit_mul(nfp_prog, lreg, MUL_TYPE_STEP_32x32, MUL_STEP_4, rreg);
1454 	emit_mul(nfp_prog, dst_lo, MUL_TYPE_STEP_32x32, MUL_LAST, reg_none());
1455 	if (gen_high_half)
1456 		emit_mul(nfp_prog, dst_hi, MUL_TYPE_STEP_32x32, MUL_LAST_2,
1457 			 reg_none());
1458 	else
1459 		wrp_immed(nfp_prog, dst_hi, 0);
1460 }
1461 
1462 static void
1463 wrp_mul_u16(struct nfp_prog *nfp_prog, swreg dst_hi, swreg dst_lo, swreg lreg,
1464 	    swreg rreg)
1465 {
1466 	emit_mul(nfp_prog, lreg, MUL_TYPE_START, MUL_STEP_NONE, rreg);
1467 	emit_mul(nfp_prog, lreg, MUL_TYPE_STEP_16x16, MUL_STEP_1, rreg);
1468 	emit_mul(nfp_prog, lreg, MUL_TYPE_STEP_16x16, MUL_STEP_2, rreg);
1469 	emit_mul(nfp_prog, dst_lo, MUL_TYPE_STEP_16x16, MUL_LAST, reg_none());
1470 }
1471 
1472 static int
1473 wrp_mul(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
1474 	bool gen_high_half, bool ropnd_from_reg)
1475 {
1476 	swreg multiplier, multiplicand, dst_hi, dst_lo;
1477 	const struct bpf_insn *insn = &meta->insn;
1478 	u32 lopnd_max, ropnd_max;
1479 	u8 dst_reg;
1480 
1481 	dst_reg = insn->dst_reg;
1482 	multiplicand = reg_a(dst_reg * 2);
1483 	dst_hi = reg_both(dst_reg * 2 + 1);
1484 	dst_lo = reg_both(dst_reg * 2);
1485 	lopnd_max = meta->umax_dst;
1486 	if (ropnd_from_reg) {
1487 		multiplier = reg_b(insn->src_reg * 2);
1488 		ropnd_max = meta->umax_src;
1489 	} else {
1490 		u32 imm = insn->imm;
1491 
1492 		multiplier = ur_load_imm_any(nfp_prog, imm, imm_b(nfp_prog));
1493 		ropnd_max = imm;
1494 	}
1495 	if (lopnd_max > U16_MAX || ropnd_max > U16_MAX)
1496 		wrp_mul_u32(nfp_prog, dst_hi, dst_lo, multiplicand, multiplier,
1497 			    gen_high_half);
1498 	else
1499 		wrp_mul_u16(nfp_prog, dst_hi, dst_lo, multiplicand, multiplier);
1500 
1501 	return 0;
1502 }
1503 
1504 static int wrp_div_imm(struct nfp_prog *nfp_prog, u8 dst, u64 imm)
1505 {
1506 	swreg dst_both = reg_both(dst), dst_a = reg_a(dst), dst_b = reg_a(dst);
1507 	struct reciprocal_value_adv rvalue;
1508 	u8 pre_shift, exp;
1509 	swreg magic;
1510 
1511 	if (imm > U32_MAX) {
1512 		wrp_immed(nfp_prog, dst_both, 0);
1513 		return 0;
1514 	}
1515 
1516 	/* NOTE: because we are using "reciprocal_value_adv" which doesn't
1517 	 * support "divisor > (1u << 31)", we need to JIT separate NFP sequence
1518 	 * to handle such case which actually equals to the result of unsigned
1519 	 * comparison "dst >= imm" which could be calculated using the following
1520 	 * NFP sequence:
1521 	 *
1522 	 *  alu[--, dst, -, imm]
1523 	 *  immed[imm, 0]
1524 	 *  alu[dst, imm, +carry, 0]
1525 	 *
1526 	 */
1527 	if (imm > 1U << 31) {
1528 		swreg tmp_b = ur_load_imm_any(nfp_prog, imm, imm_b(nfp_prog));
1529 
1530 		emit_alu(nfp_prog, reg_none(), dst_a, ALU_OP_SUB, tmp_b);
1531 		wrp_immed(nfp_prog, imm_a(nfp_prog), 0);
1532 		emit_alu(nfp_prog, dst_both, imm_a(nfp_prog), ALU_OP_ADD_C,
1533 			 reg_imm(0));
1534 		return 0;
1535 	}
1536 
1537 	rvalue = reciprocal_value_adv(imm, 32);
1538 	exp = rvalue.exp;
1539 	if (rvalue.is_wide_m && !(imm & 1)) {
1540 		pre_shift = fls(imm & -imm) - 1;
1541 		rvalue = reciprocal_value_adv(imm >> pre_shift, 32 - pre_shift);
1542 	} else {
1543 		pre_shift = 0;
1544 	}
1545 	magic = ur_load_imm_any(nfp_prog, rvalue.m, imm_b(nfp_prog));
1546 	if (imm == 1U << exp) {
1547 		emit_shf(nfp_prog, dst_both, reg_none(), SHF_OP_NONE, dst_b,
1548 			 SHF_SC_R_SHF, exp);
1549 	} else if (rvalue.is_wide_m) {
1550 		wrp_mul_u32(nfp_prog, imm_both(nfp_prog), reg_none(), dst_a,
1551 			    magic, true);
1552 		emit_alu(nfp_prog, dst_both, dst_a, ALU_OP_SUB,
1553 			 imm_b(nfp_prog));
1554 		emit_shf(nfp_prog, dst_both, reg_none(), SHF_OP_NONE, dst_b,
1555 			 SHF_SC_R_SHF, 1);
1556 		emit_alu(nfp_prog, dst_both, dst_a, ALU_OP_ADD,
1557 			 imm_b(nfp_prog));
1558 		emit_shf(nfp_prog, dst_both, reg_none(), SHF_OP_NONE, dst_b,
1559 			 SHF_SC_R_SHF, rvalue.sh - 1);
1560 	} else {
1561 		if (pre_shift)
1562 			emit_shf(nfp_prog, dst_both, reg_none(), SHF_OP_NONE,
1563 				 dst_b, SHF_SC_R_SHF, pre_shift);
1564 		wrp_mul_u32(nfp_prog, dst_both, reg_none(), dst_a, magic, true);
1565 		emit_shf(nfp_prog, dst_both, reg_none(), SHF_OP_NONE,
1566 			 dst_b, SHF_SC_R_SHF, rvalue.sh);
1567 	}
1568 
1569 	return 0;
1570 }
1571 
1572 static int adjust_head(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1573 {
1574 	swreg tmp = imm_a(nfp_prog), tmp_len = imm_b(nfp_prog);
1575 	struct nfp_bpf_cap_adjust_head *adjust_head;
1576 	u32 ret_einval, end;
1577 
1578 	adjust_head = &nfp_prog->bpf->adjust_head;
1579 
1580 	/* Optimized version - 5 vs 14 cycles */
1581 	if (nfp_prog->adjust_head_location != UINT_MAX) {
1582 		if (WARN_ON_ONCE(nfp_prog->adjust_head_location != meta->n))
1583 			return -EINVAL;
1584 
1585 		emit_alu(nfp_prog, pptr_reg(nfp_prog),
1586 			 reg_a(2 * 2), ALU_OP_ADD, pptr_reg(nfp_prog));
1587 		emit_alu(nfp_prog, plen_reg(nfp_prog),
1588 			 plen_reg(nfp_prog), ALU_OP_SUB, reg_a(2 * 2));
1589 		emit_alu(nfp_prog, pv_len(nfp_prog),
1590 			 pv_len(nfp_prog), ALU_OP_SUB, reg_a(2 * 2));
1591 
1592 		wrp_immed(nfp_prog, reg_both(0), 0);
1593 		wrp_immed(nfp_prog, reg_both(1), 0);
1594 
1595 		/* TODO: when adjust head is guaranteed to succeed we can
1596 		 * also eliminate the following if (r0 == 0) branch.
1597 		 */
1598 
1599 		return 0;
1600 	}
1601 
1602 	ret_einval = nfp_prog_current_offset(nfp_prog) + 14;
1603 	end = ret_einval + 2;
1604 
1605 	/* We need to use a temp because offset is just a part of the pkt ptr */
1606 	emit_alu(nfp_prog, tmp,
1607 		 reg_a(2 * 2), ALU_OP_ADD_2B, pptr_reg(nfp_prog));
1608 
1609 	/* Validate result will fit within FW datapath constraints */
1610 	emit_alu(nfp_prog, reg_none(),
1611 		 tmp, ALU_OP_SUB, reg_imm(adjust_head->off_min));
1612 	emit_br(nfp_prog, BR_BLO, ret_einval, 0);
1613 	emit_alu(nfp_prog, reg_none(),
1614 		 reg_imm(adjust_head->off_max), ALU_OP_SUB, tmp);
1615 	emit_br(nfp_prog, BR_BLO, ret_einval, 0);
1616 
1617 	/* Validate the length is at least ETH_HLEN */
1618 	emit_alu(nfp_prog, tmp_len,
1619 		 plen_reg(nfp_prog), ALU_OP_SUB, reg_a(2 * 2));
1620 	emit_alu(nfp_prog, reg_none(),
1621 		 tmp_len, ALU_OP_SUB, reg_imm(ETH_HLEN));
1622 	emit_br(nfp_prog, BR_BMI, ret_einval, 0);
1623 
1624 	/* Load the ret code */
1625 	wrp_immed(nfp_prog, reg_both(0), 0);
1626 	wrp_immed(nfp_prog, reg_both(1), 0);
1627 
1628 	/* Modify the packet metadata */
1629 	emit_ld_field(nfp_prog, pptr_reg(nfp_prog), 0x3, tmp, SHF_SC_NONE, 0);
1630 
1631 	/* Skip over the -EINVAL ret code (defer 2) */
1632 	emit_br(nfp_prog, BR_UNC, end, 2);
1633 
1634 	emit_alu(nfp_prog, plen_reg(nfp_prog),
1635 		 plen_reg(nfp_prog), ALU_OP_SUB, reg_a(2 * 2));
1636 	emit_alu(nfp_prog, pv_len(nfp_prog),
1637 		 pv_len(nfp_prog), ALU_OP_SUB, reg_a(2 * 2));
1638 
1639 	/* return -EINVAL target */
1640 	if (!nfp_prog_confirm_current_offset(nfp_prog, ret_einval))
1641 		return -EINVAL;
1642 
1643 	wrp_immed(nfp_prog, reg_both(0), -22);
1644 	wrp_immed(nfp_prog, reg_both(1), ~0);
1645 
1646 	if (!nfp_prog_confirm_current_offset(nfp_prog, end))
1647 		return -EINVAL;
1648 
1649 	return 0;
1650 }
1651 
1652 static int adjust_tail(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1653 {
1654 	u32 ret_einval, end;
1655 	swreg plen, delta;
1656 
1657 	BUILD_BUG_ON(plen_reg(nfp_prog) != reg_b(STATIC_REG_PKT_LEN));
1658 
1659 	plen = imm_a(nfp_prog);
1660 	delta = reg_a(2 * 2);
1661 
1662 	ret_einval = nfp_prog_current_offset(nfp_prog) + 9;
1663 	end = nfp_prog_current_offset(nfp_prog) + 11;
1664 
1665 	/* Calculate resulting length */
1666 	emit_alu(nfp_prog, plen, plen_reg(nfp_prog), ALU_OP_ADD, delta);
1667 	/* delta == 0 is not allowed by the kernel, add must overflow to make
1668 	 * length smaller.
1669 	 */
1670 	emit_br(nfp_prog, BR_BCC, ret_einval, 0);
1671 
1672 	/* if (new_len < 14) then -EINVAL */
1673 	emit_alu(nfp_prog, reg_none(), plen, ALU_OP_SUB, reg_imm(ETH_HLEN));
1674 	emit_br(nfp_prog, BR_BMI, ret_einval, 0);
1675 
1676 	emit_alu(nfp_prog, plen_reg(nfp_prog),
1677 		 plen_reg(nfp_prog), ALU_OP_ADD, delta);
1678 	emit_alu(nfp_prog, pv_len(nfp_prog),
1679 		 pv_len(nfp_prog), ALU_OP_ADD, delta);
1680 
1681 	emit_br(nfp_prog, BR_UNC, end, 2);
1682 	wrp_immed(nfp_prog, reg_both(0), 0);
1683 	wrp_immed(nfp_prog, reg_both(1), 0);
1684 
1685 	if (!nfp_prog_confirm_current_offset(nfp_prog, ret_einval))
1686 		return -EINVAL;
1687 
1688 	wrp_immed(nfp_prog, reg_both(0), -22);
1689 	wrp_immed(nfp_prog, reg_both(1), ~0);
1690 
1691 	if (!nfp_prog_confirm_current_offset(nfp_prog, end))
1692 		return -EINVAL;
1693 
1694 	return 0;
1695 }
1696 
1697 static int
1698 map_call_stack_common(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1699 {
1700 	bool load_lm_ptr;
1701 	u32 ret_tgt;
1702 	s64 lm_off;
1703 
1704 	/* We only have to reload LM0 if the key is not at start of stack */
1705 	lm_off = nfp_prog->stack_frame_depth;
1706 	lm_off += meta->arg2.reg.var_off.value + meta->arg2.reg.off;
1707 	load_lm_ptr = meta->arg2.var_off || lm_off;
1708 
1709 	/* Set LM0 to start of key */
1710 	if (load_lm_ptr)
1711 		emit_csr_wr(nfp_prog, reg_b(2 * 2), NFP_CSR_ACT_LM_ADDR0);
1712 	if (meta->func_id == BPF_FUNC_map_update_elem)
1713 		emit_csr_wr(nfp_prog, reg_b(3 * 2), NFP_CSR_ACT_LM_ADDR2);
1714 
1715 	emit_br_relo(nfp_prog, BR_UNC, BR_OFF_RELO + meta->func_id,
1716 		     2, RELO_BR_HELPER);
1717 	ret_tgt = nfp_prog_current_offset(nfp_prog) + 2;
1718 
1719 	/* Load map ID into A0 */
1720 	wrp_mov(nfp_prog, reg_a(0), reg_a(2));
1721 
1722 	/* Load the return address into B0 */
1723 	wrp_immed_relo(nfp_prog, reg_b(0), ret_tgt, RELO_IMMED_REL);
1724 
1725 	if (!nfp_prog_confirm_current_offset(nfp_prog, ret_tgt))
1726 		return -EINVAL;
1727 
1728 	/* Reset the LM0 pointer */
1729 	if (!load_lm_ptr)
1730 		return 0;
1731 
1732 	emit_csr_wr(nfp_prog, stack_reg(nfp_prog), NFP_CSR_ACT_LM_ADDR0);
1733 	wrp_nops(nfp_prog, 3);
1734 
1735 	return 0;
1736 }
1737 
1738 static int
1739 nfp_get_prandom_u32(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1740 {
1741 	__emit_csr_rd(nfp_prog, NFP_CSR_PSEUDO_RND_NUM);
1742 	/* CSR value is read in following immed[gpr, 0] */
1743 	emit_immed(nfp_prog, reg_both(0), 0,
1744 		   IMMED_WIDTH_ALL, false, IMMED_SHIFT_0B);
1745 	emit_immed(nfp_prog, reg_both(1), 0,
1746 		   IMMED_WIDTH_ALL, false, IMMED_SHIFT_0B);
1747 	return 0;
1748 }
1749 
1750 static int
1751 nfp_perf_event_output(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1752 {
1753 	swreg ptr_type;
1754 	u32 ret_tgt;
1755 
1756 	ptr_type = ur_load_imm_any(nfp_prog, meta->arg1.type, imm_a(nfp_prog));
1757 
1758 	ret_tgt = nfp_prog_current_offset(nfp_prog) + 3;
1759 
1760 	emit_br_relo(nfp_prog, BR_UNC, BR_OFF_RELO + meta->func_id,
1761 		     2, RELO_BR_HELPER);
1762 
1763 	/* Load ptr type into A1 */
1764 	wrp_mov(nfp_prog, reg_a(1), ptr_type);
1765 
1766 	/* Load the return address into B0 */
1767 	wrp_immed_relo(nfp_prog, reg_b(0), ret_tgt, RELO_IMMED_REL);
1768 
1769 	if (!nfp_prog_confirm_current_offset(nfp_prog, ret_tgt))
1770 		return -EINVAL;
1771 
1772 	return 0;
1773 }
1774 
1775 static int
1776 nfp_queue_select(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1777 {
1778 	u32 jmp_tgt;
1779 
1780 	jmp_tgt = nfp_prog_current_offset(nfp_prog) + 5;
1781 
1782 	/* Make sure the queue id fits into FW field */
1783 	emit_alu(nfp_prog, reg_none(), reg_a(meta->insn.src_reg * 2),
1784 		 ALU_OP_AND_NOT_B, reg_imm(0xff));
1785 	emit_br(nfp_prog, BR_BEQ, jmp_tgt, 2);
1786 
1787 	/* Set the 'queue selected' bit and the queue value */
1788 	emit_shf(nfp_prog, pv_qsel_set(nfp_prog),
1789 		 pv_qsel_set(nfp_prog), SHF_OP_OR, reg_imm(1),
1790 		 SHF_SC_L_SHF, PKT_VEL_QSEL_SET_BIT);
1791 	emit_ld_field(nfp_prog,
1792 		      pv_qsel_val(nfp_prog), 0x1, reg_b(meta->insn.src_reg * 2),
1793 		      SHF_SC_NONE, 0);
1794 	/* Delay slots end here, we will jump over next instruction if queue
1795 	 * value fits into the field.
1796 	 */
1797 	emit_ld_field(nfp_prog,
1798 		      pv_qsel_val(nfp_prog), 0x1, reg_imm(NFP_NET_RXR_MAX),
1799 		      SHF_SC_NONE, 0);
1800 
1801 	if (!nfp_prog_confirm_current_offset(nfp_prog, jmp_tgt))
1802 		return -EINVAL;
1803 
1804 	return 0;
1805 }
1806 
1807 /* --- Callbacks --- */
1808 static int mov_reg64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1809 {
1810 	const struct bpf_insn *insn = &meta->insn;
1811 	u8 dst = insn->dst_reg * 2;
1812 	u8 src = insn->src_reg * 2;
1813 
1814 	if (insn->src_reg == BPF_REG_10) {
1815 		swreg stack_depth_reg;
1816 
1817 		stack_depth_reg = ur_load_imm_any(nfp_prog,
1818 						  nfp_prog->stack_frame_depth,
1819 						  stack_imm(nfp_prog));
1820 		emit_alu(nfp_prog, reg_both(dst), stack_reg(nfp_prog),
1821 			 ALU_OP_ADD, stack_depth_reg);
1822 		wrp_immed(nfp_prog, reg_both(dst + 1), 0);
1823 	} else {
1824 		wrp_reg_mov(nfp_prog, dst, src);
1825 		wrp_reg_mov(nfp_prog, dst + 1, src + 1);
1826 	}
1827 
1828 	return 0;
1829 }
1830 
1831 static int mov_imm64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1832 {
1833 	u64 imm = meta->insn.imm; /* sign extend */
1834 
1835 	wrp_immed(nfp_prog, reg_both(meta->insn.dst_reg * 2), imm & ~0U);
1836 	wrp_immed(nfp_prog, reg_both(meta->insn.dst_reg * 2 + 1), imm >> 32);
1837 
1838 	return 0;
1839 }
1840 
1841 static int xor_reg64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1842 {
1843 	return wrp_alu64_reg(nfp_prog, meta, ALU_OP_XOR);
1844 }
1845 
1846 static int xor_imm64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1847 {
1848 	return wrp_alu64_imm(nfp_prog, meta, ALU_OP_XOR, !meta->insn.imm);
1849 }
1850 
1851 static int and_reg64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1852 {
1853 	return wrp_alu64_reg(nfp_prog, meta, ALU_OP_AND);
1854 }
1855 
1856 static int and_imm64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1857 {
1858 	return wrp_alu64_imm(nfp_prog, meta, ALU_OP_AND, !~meta->insn.imm);
1859 }
1860 
1861 static int or_reg64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1862 {
1863 	return wrp_alu64_reg(nfp_prog, meta, ALU_OP_OR);
1864 }
1865 
1866 static int or_imm64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1867 {
1868 	return wrp_alu64_imm(nfp_prog, meta, ALU_OP_OR, !meta->insn.imm);
1869 }
1870 
1871 static int add_reg64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1872 {
1873 	const struct bpf_insn *insn = &meta->insn;
1874 
1875 	emit_alu(nfp_prog, reg_both(insn->dst_reg * 2),
1876 		 reg_a(insn->dst_reg * 2), ALU_OP_ADD,
1877 		 reg_b(insn->src_reg * 2));
1878 	emit_alu(nfp_prog, reg_both(insn->dst_reg * 2 + 1),
1879 		 reg_a(insn->dst_reg * 2 + 1), ALU_OP_ADD_C,
1880 		 reg_b(insn->src_reg * 2 + 1));
1881 
1882 	return 0;
1883 }
1884 
1885 static int add_imm64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1886 {
1887 	const struct bpf_insn *insn = &meta->insn;
1888 	u64 imm = insn->imm; /* sign extend */
1889 
1890 	wrp_alu_imm(nfp_prog, insn->dst_reg * 2, ALU_OP_ADD, imm & ~0U);
1891 	wrp_alu_imm(nfp_prog, insn->dst_reg * 2 + 1, ALU_OP_ADD_C, imm >> 32);
1892 
1893 	return 0;
1894 }
1895 
1896 static int sub_reg64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1897 {
1898 	const struct bpf_insn *insn = &meta->insn;
1899 
1900 	emit_alu(nfp_prog, reg_both(insn->dst_reg * 2),
1901 		 reg_a(insn->dst_reg * 2), ALU_OP_SUB,
1902 		 reg_b(insn->src_reg * 2));
1903 	emit_alu(nfp_prog, reg_both(insn->dst_reg * 2 + 1),
1904 		 reg_a(insn->dst_reg * 2 + 1), ALU_OP_SUB_C,
1905 		 reg_b(insn->src_reg * 2 + 1));
1906 
1907 	return 0;
1908 }
1909 
1910 static int sub_imm64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1911 {
1912 	const struct bpf_insn *insn = &meta->insn;
1913 	u64 imm = insn->imm; /* sign extend */
1914 
1915 	wrp_alu_imm(nfp_prog, insn->dst_reg * 2, ALU_OP_SUB, imm & ~0U);
1916 	wrp_alu_imm(nfp_prog, insn->dst_reg * 2 + 1, ALU_OP_SUB_C, imm >> 32);
1917 
1918 	return 0;
1919 }
1920 
1921 static int mul_reg64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1922 {
1923 	return wrp_mul(nfp_prog, meta, true, true);
1924 }
1925 
1926 static int mul_imm64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1927 {
1928 	return wrp_mul(nfp_prog, meta, true, false);
1929 }
1930 
1931 static int div_imm64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1932 {
1933 	const struct bpf_insn *insn = &meta->insn;
1934 
1935 	return wrp_div_imm(nfp_prog, insn->dst_reg * 2, insn->imm);
1936 }
1937 
1938 static int div_reg64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1939 {
1940 	/* NOTE: verifier hook has rejected cases for which verifier doesn't
1941 	 * know whether the source operand is constant or not.
1942 	 */
1943 	return wrp_div_imm(nfp_prog, meta->insn.dst_reg * 2, meta->umin_src);
1944 }
1945 
1946 static int neg_reg64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1947 {
1948 	const struct bpf_insn *insn = &meta->insn;
1949 
1950 	emit_alu(nfp_prog, reg_both(insn->dst_reg * 2), reg_imm(0),
1951 		 ALU_OP_SUB, reg_b(insn->dst_reg * 2));
1952 	emit_alu(nfp_prog, reg_both(insn->dst_reg * 2 + 1), reg_imm(0),
1953 		 ALU_OP_SUB_C, reg_b(insn->dst_reg * 2 + 1));
1954 
1955 	return 0;
1956 }
1957 
1958 /* Pseudo code:
1959  *   if shift_amt >= 32
1960  *     dst_high = dst_low << shift_amt[4:0]
1961  *     dst_low = 0;
1962  *   else
1963  *     dst_high = (dst_high, dst_low) >> (32 - shift_amt)
1964  *     dst_low = dst_low << shift_amt
1965  *
1966  * The indirect shift will use the same logic at runtime.
1967  */
1968 static int __shl_imm64(struct nfp_prog *nfp_prog, u8 dst, u8 shift_amt)
1969 {
1970 	if (!shift_amt)
1971 		return 0;
1972 
1973 	if (shift_amt < 32) {
1974 		emit_shf(nfp_prog, reg_both(dst + 1), reg_a(dst + 1),
1975 			 SHF_OP_NONE, reg_b(dst), SHF_SC_R_DSHF,
1976 			 32 - shift_amt);
1977 		emit_shf(nfp_prog, reg_both(dst), reg_none(), SHF_OP_NONE,
1978 			 reg_b(dst), SHF_SC_L_SHF, shift_amt);
1979 	} else if (shift_amt == 32) {
1980 		wrp_reg_mov(nfp_prog, dst + 1, dst);
1981 		wrp_immed(nfp_prog, reg_both(dst), 0);
1982 	} else if (shift_amt > 32) {
1983 		emit_shf(nfp_prog, reg_both(dst + 1), reg_none(), SHF_OP_NONE,
1984 			 reg_b(dst), SHF_SC_L_SHF, shift_amt - 32);
1985 		wrp_immed(nfp_prog, reg_both(dst), 0);
1986 	}
1987 
1988 	return 0;
1989 }
1990 
1991 static int shl_imm64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1992 {
1993 	const struct bpf_insn *insn = &meta->insn;
1994 	u8 dst = insn->dst_reg * 2;
1995 
1996 	return __shl_imm64(nfp_prog, dst, insn->imm);
1997 }
1998 
1999 static void shl_reg64_lt32_high(struct nfp_prog *nfp_prog, u8 dst, u8 src)
2000 {
2001 	emit_alu(nfp_prog, imm_both(nfp_prog), reg_imm(32), ALU_OP_SUB,
2002 		 reg_b(src));
2003 	emit_alu(nfp_prog, reg_none(), imm_a(nfp_prog), ALU_OP_OR, reg_imm(0));
2004 	emit_shf_indir(nfp_prog, reg_both(dst + 1), reg_a(dst + 1), SHF_OP_NONE,
2005 		       reg_b(dst), SHF_SC_R_DSHF);
2006 }
2007 
2008 /* NOTE: for indirect left shift, HIGH part should be calculated first. */
2009 static void shl_reg64_lt32_low(struct nfp_prog *nfp_prog, u8 dst, u8 src)
2010 {
2011 	emit_alu(nfp_prog, reg_none(), reg_a(src), ALU_OP_OR, reg_imm(0));
2012 	emit_shf_indir(nfp_prog, reg_both(dst), reg_none(), SHF_OP_NONE,
2013 		       reg_b(dst), SHF_SC_L_SHF);
2014 }
2015 
2016 static void shl_reg64_lt32(struct nfp_prog *nfp_prog, u8 dst, u8 src)
2017 {
2018 	shl_reg64_lt32_high(nfp_prog, dst, src);
2019 	shl_reg64_lt32_low(nfp_prog, dst, src);
2020 }
2021 
2022 static void shl_reg64_ge32(struct nfp_prog *nfp_prog, u8 dst, u8 src)
2023 {
2024 	emit_alu(nfp_prog, reg_none(), reg_a(src), ALU_OP_OR, reg_imm(0));
2025 	emit_shf_indir(nfp_prog, reg_both(dst + 1), reg_none(), SHF_OP_NONE,
2026 		       reg_b(dst), SHF_SC_L_SHF);
2027 	wrp_immed(nfp_prog, reg_both(dst), 0);
2028 }
2029 
2030 static int shl_reg64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2031 {
2032 	const struct bpf_insn *insn = &meta->insn;
2033 	u64 umin, umax;
2034 	u8 dst, src;
2035 
2036 	dst = insn->dst_reg * 2;
2037 	umin = meta->umin_src;
2038 	umax = meta->umax_src;
2039 	if (umin == umax)
2040 		return __shl_imm64(nfp_prog, dst, umin);
2041 
2042 	src = insn->src_reg * 2;
2043 	if (umax < 32) {
2044 		shl_reg64_lt32(nfp_prog, dst, src);
2045 	} else if (umin >= 32) {
2046 		shl_reg64_ge32(nfp_prog, dst, src);
2047 	} else {
2048 		/* Generate different instruction sequences depending on runtime
2049 		 * value of shift amount.
2050 		 */
2051 		u16 label_ge32, label_end;
2052 
2053 		label_ge32 = nfp_prog_current_offset(nfp_prog) + 7;
2054 		emit_br_bset(nfp_prog, reg_a(src), 5, label_ge32, 0);
2055 
2056 		shl_reg64_lt32_high(nfp_prog, dst, src);
2057 		label_end = nfp_prog_current_offset(nfp_prog) + 6;
2058 		emit_br(nfp_prog, BR_UNC, label_end, 2);
2059 		/* shl_reg64_lt32_low packed in delay slot. */
2060 		shl_reg64_lt32_low(nfp_prog, dst, src);
2061 
2062 		if (!nfp_prog_confirm_current_offset(nfp_prog, label_ge32))
2063 			return -EINVAL;
2064 		shl_reg64_ge32(nfp_prog, dst, src);
2065 
2066 		if (!nfp_prog_confirm_current_offset(nfp_prog, label_end))
2067 			return -EINVAL;
2068 	}
2069 
2070 	return 0;
2071 }
2072 
2073 /* Pseudo code:
2074  *   if shift_amt >= 32
2075  *     dst_high = 0;
2076  *     dst_low = dst_high >> shift_amt[4:0]
2077  *   else
2078  *     dst_high = dst_high >> shift_amt
2079  *     dst_low = (dst_high, dst_low) >> shift_amt
2080  *
2081  * The indirect shift will use the same logic at runtime.
2082  */
2083 static int __shr_imm64(struct nfp_prog *nfp_prog, u8 dst, u8 shift_amt)
2084 {
2085 	if (!shift_amt)
2086 		return 0;
2087 
2088 	if (shift_amt < 32) {
2089 		emit_shf(nfp_prog, reg_both(dst), reg_a(dst + 1), SHF_OP_NONE,
2090 			 reg_b(dst), SHF_SC_R_DSHF, shift_amt);
2091 		emit_shf(nfp_prog, reg_both(dst + 1), reg_none(), SHF_OP_NONE,
2092 			 reg_b(dst + 1), SHF_SC_R_SHF, shift_amt);
2093 	} else if (shift_amt == 32) {
2094 		wrp_reg_mov(nfp_prog, dst, dst + 1);
2095 		wrp_immed(nfp_prog, reg_both(dst + 1), 0);
2096 	} else if (shift_amt > 32) {
2097 		emit_shf(nfp_prog, reg_both(dst), reg_none(), SHF_OP_NONE,
2098 			 reg_b(dst + 1), SHF_SC_R_SHF, shift_amt - 32);
2099 		wrp_immed(nfp_prog, reg_both(dst + 1), 0);
2100 	}
2101 
2102 	return 0;
2103 }
2104 
2105 static int shr_imm64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2106 {
2107 	const struct bpf_insn *insn = &meta->insn;
2108 	u8 dst = insn->dst_reg * 2;
2109 
2110 	return __shr_imm64(nfp_prog, dst, insn->imm);
2111 }
2112 
2113 /* NOTE: for indirect right shift, LOW part should be calculated first. */
2114 static void shr_reg64_lt32_high(struct nfp_prog *nfp_prog, u8 dst, u8 src)
2115 {
2116 	emit_alu(nfp_prog, reg_none(), reg_a(src), ALU_OP_OR, reg_imm(0));
2117 	emit_shf_indir(nfp_prog, reg_both(dst + 1), reg_none(), SHF_OP_NONE,
2118 		       reg_b(dst + 1), SHF_SC_R_SHF);
2119 }
2120 
2121 static void shr_reg64_lt32_low(struct nfp_prog *nfp_prog, u8 dst, u8 src)
2122 {
2123 	emit_alu(nfp_prog, reg_none(), reg_a(src), ALU_OP_OR, reg_imm(0));
2124 	emit_shf_indir(nfp_prog, reg_both(dst), reg_a(dst + 1), SHF_OP_NONE,
2125 		       reg_b(dst), SHF_SC_R_DSHF);
2126 }
2127 
2128 static void shr_reg64_lt32(struct nfp_prog *nfp_prog, u8 dst, u8 src)
2129 {
2130 	shr_reg64_lt32_low(nfp_prog, dst, src);
2131 	shr_reg64_lt32_high(nfp_prog, dst, src);
2132 }
2133 
2134 static void shr_reg64_ge32(struct nfp_prog *nfp_prog, u8 dst, u8 src)
2135 {
2136 	emit_alu(nfp_prog, reg_none(), reg_a(src), ALU_OP_OR, reg_imm(0));
2137 	emit_shf_indir(nfp_prog, reg_both(dst), reg_none(), SHF_OP_NONE,
2138 		       reg_b(dst + 1), SHF_SC_R_SHF);
2139 	wrp_immed(nfp_prog, reg_both(dst + 1), 0);
2140 }
2141 
2142 static int shr_reg64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2143 {
2144 	const struct bpf_insn *insn = &meta->insn;
2145 	u64 umin, umax;
2146 	u8 dst, src;
2147 
2148 	dst = insn->dst_reg * 2;
2149 	umin = meta->umin_src;
2150 	umax = meta->umax_src;
2151 	if (umin == umax)
2152 		return __shr_imm64(nfp_prog, dst, umin);
2153 
2154 	src = insn->src_reg * 2;
2155 	if (umax < 32) {
2156 		shr_reg64_lt32(nfp_prog, dst, src);
2157 	} else if (umin >= 32) {
2158 		shr_reg64_ge32(nfp_prog, dst, src);
2159 	} else {
2160 		/* Generate different instruction sequences depending on runtime
2161 		 * value of shift amount.
2162 		 */
2163 		u16 label_ge32, label_end;
2164 
2165 		label_ge32 = nfp_prog_current_offset(nfp_prog) + 6;
2166 		emit_br_bset(nfp_prog, reg_a(src), 5, label_ge32, 0);
2167 		shr_reg64_lt32_low(nfp_prog, dst, src);
2168 		label_end = nfp_prog_current_offset(nfp_prog) + 6;
2169 		emit_br(nfp_prog, BR_UNC, label_end, 2);
2170 		/* shr_reg64_lt32_high packed in delay slot. */
2171 		shr_reg64_lt32_high(nfp_prog, dst, src);
2172 
2173 		if (!nfp_prog_confirm_current_offset(nfp_prog, label_ge32))
2174 			return -EINVAL;
2175 		shr_reg64_ge32(nfp_prog, dst, src);
2176 
2177 		if (!nfp_prog_confirm_current_offset(nfp_prog, label_end))
2178 			return -EINVAL;
2179 	}
2180 
2181 	return 0;
2182 }
2183 
2184 /* Code logic is the same as __shr_imm64 except ashr requires signedness bit
2185  * told through PREV_ALU result.
2186  */
2187 static int __ashr_imm64(struct nfp_prog *nfp_prog, u8 dst, u8 shift_amt)
2188 {
2189 	if (!shift_amt)
2190 		return 0;
2191 
2192 	if (shift_amt < 32) {
2193 		emit_shf(nfp_prog, reg_both(dst), reg_a(dst + 1), SHF_OP_NONE,
2194 			 reg_b(dst), SHF_SC_R_DSHF, shift_amt);
2195 		/* Set signedness bit. */
2196 		emit_alu(nfp_prog, reg_none(), reg_a(dst + 1), ALU_OP_OR,
2197 			 reg_imm(0));
2198 		emit_shf(nfp_prog, reg_both(dst + 1), reg_none(), SHF_OP_ASHR,
2199 			 reg_b(dst + 1), SHF_SC_R_SHF, shift_amt);
2200 	} else if (shift_amt == 32) {
2201 		/* NOTE: this also helps setting signedness bit. */
2202 		wrp_reg_mov(nfp_prog, dst, dst + 1);
2203 		emit_shf(nfp_prog, reg_both(dst + 1), reg_none(), SHF_OP_ASHR,
2204 			 reg_b(dst + 1), SHF_SC_R_SHF, 31);
2205 	} else if (shift_amt > 32) {
2206 		emit_alu(nfp_prog, reg_none(), reg_a(dst + 1), ALU_OP_OR,
2207 			 reg_imm(0));
2208 		emit_shf(nfp_prog, reg_both(dst), reg_none(), SHF_OP_ASHR,
2209 			 reg_b(dst + 1), SHF_SC_R_SHF, shift_amt - 32);
2210 		emit_shf(nfp_prog, reg_both(dst + 1), reg_none(), SHF_OP_ASHR,
2211 			 reg_b(dst + 1), SHF_SC_R_SHF, 31);
2212 	}
2213 
2214 	return 0;
2215 }
2216 
2217 static int ashr_imm64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2218 {
2219 	const struct bpf_insn *insn = &meta->insn;
2220 	u8 dst = insn->dst_reg * 2;
2221 
2222 	return __ashr_imm64(nfp_prog, dst, insn->imm);
2223 }
2224 
2225 static void ashr_reg64_lt32_high(struct nfp_prog *nfp_prog, u8 dst, u8 src)
2226 {
2227 	/* NOTE: the first insn will set both indirect shift amount (source A)
2228 	 * and signedness bit (MSB of result).
2229 	 */
2230 	emit_alu(nfp_prog, reg_none(), reg_a(src), ALU_OP_OR, reg_b(dst + 1));
2231 	emit_shf_indir(nfp_prog, reg_both(dst + 1), reg_none(), SHF_OP_ASHR,
2232 		       reg_b(dst + 1), SHF_SC_R_SHF);
2233 }
2234 
2235 static void ashr_reg64_lt32_low(struct nfp_prog *nfp_prog, u8 dst, u8 src)
2236 {
2237 	/* NOTE: it is the same as logic shift because we don't need to shift in
2238 	 * signedness bit when the shift amount is less than 32.
2239 	 */
2240 	return shr_reg64_lt32_low(nfp_prog, dst, src);
2241 }
2242 
2243 static void ashr_reg64_lt32(struct nfp_prog *nfp_prog, u8 dst, u8 src)
2244 {
2245 	ashr_reg64_lt32_low(nfp_prog, dst, src);
2246 	ashr_reg64_lt32_high(nfp_prog, dst, src);
2247 }
2248 
2249 static void ashr_reg64_ge32(struct nfp_prog *nfp_prog, u8 dst, u8 src)
2250 {
2251 	emit_alu(nfp_prog, reg_none(), reg_a(src), ALU_OP_OR, reg_b(dst + 1));
2252 	emit_shf_indir(nfp_prog, reg_both(dst), reg_none(), SHF_OP_ASHR,
2253 		       reg_b(dst + 1), SHF_SC_R_SHF);
2254 	emit_shf(nfp_prog, reg_both(dst + 1), reg_none(), SHF_OP_ASHR,
2255 		 reg_b(dst + 1), SHF_SC_R_SHF, 31);
2256 }
2257 
2258 /* Like ashr_imm64, but need to use indirect shift. */
2259 static int ashr_reg64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2260 {
2261 	const struct bpf_insn *insn = &meta->insn;
2262 	u64 umin, umax;
2263 	u8 dst, src;
2264 
2265 	dst = insn->dst_reg * 2;
2266 	umin = meta->umin_src;
2267 	umax = meta->umax_src;
2268 	if (umin == umax)
2269 		return __ashr_imm64(nfp_prog, dst, umin);
2270 
2271 	src = insn->src_reg * 2;
2272 	if (umax < 32) {
2273 		ashr_reg64_lt32(nfp_prog, dst, src);
2274 	} else if (umin >= 32) {
2275 		ashr_reg64_ge32(nfp_prog, dst, src);
2276 	} else {
2277 		u16 label_ge32, label_end;
2278 
2279 		label_ge32 = nfp_prog_current_offset(nfp_prog) + 6;
2280 		emit_br_bset(nfp_prog, reg_a(src), 5, label_ge32, 0);
2281 		ashr_reg64_lt32_low(nfp_prog, dst, src);
2282 		label_end = nfp_prog_current_offset(nfp_prog) + 6;
2283 		emit_br(nfp_prog, BR_UNC, label_end, 2);
2284 		/* ashr_reg64_lt32_high packed in delay slot. */
2285 		ashr_reg64_lt32_high(nfp_prog, dst, src);
2286 
2287 		if (!nfp_prog_confirm_current_offset(nfp_prog, label_ge32))
2288 			return -EINVAL;
2289 		ashr_reg64_ge32(nfp_prog, dst, src);
2290 
2291 		if (!nfp_prog_confirm_current_offset(nfp_prog, label_end))
2292 			return -EINVAL;
2293 	}
2294 
2295 	return 0;
2296 }
2297 
2298 static int mov_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2299 {
2300 	const struct bpf_insn *insn = &meta->insn;
2301 
2302 	wrp_reg_mov(nfp_prog, insn->dst_reg * 2,  insn->src_reg * 2);
2303 	wrp_immed(nfp_prog, reg_both(insn->dst_reg * 2 + 1), 0);
2304 
2305 	return 0;
2306 }
2307 
2308 static int mov_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2309 {
2310 	const struct bpf_insn *insn = &meta->insn;
2311 
2312 	wrp_immed(nfp_prog, reg_both(insn->dst_reg * 2), insn->imm);
2313 	wrp_immed(nfp_prog, reg_both(insn->dst_reg * 2 + 1), 0);
2314 
2315 	return 0;
2316 }
2317 
2318 static int xor_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2319 {
2320 	return wrp_alu32_reg(nfp_prog, meta, ALU_OP_XOR);
2321 }
2322 
2323 static int xor_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2324 {
2325 	return wrp_alu32_imm(nfp_prog, meta, ALU_OP_XOR, !~meta->insn.imm);
2326 }
2327 
2328 static int and_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2329 {
2330 	return wrp_alu32_reg(nfp_prog, meta, ALU_OP_AND);
2331 }
2332 
2333 static int and_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2334 {
2335 	return wrp_alu32_imm(nfp_prog, meta, ALU_OP_AND, !~meta->insn.imm);
2336 }
2337 
2338 static int or_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2339 {
2340 	return wrp_alu32_reg(nfp_prog, meta, ALU_OP_OR);
2341 }
2342 
2343 static int or_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2344 {
2345 	return wrp_alu32_imm(nfp_prog, meta, ALU_OP_OR, !meta->insn.imm);
2346 }
2347 
2348 static int add_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2349 {
2350 	return wrp_alu32_reg(nfp_prog, meta, ALU_OP_ADD);
2351 }
2352 
2353 static int add_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2354 {
2355 	return wrp_alu32_imm(nfp_prog, meta, ALU_OP_ADD, !meta->insn.imm);
2356 }
2357 
2358 static int sub_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2359 {
2360 	return wrp_alu32_reg(nfp_prog, meta, ALU_OP_SUB);
2361 }
2362 
2363 static int sub_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2364 {
2365 	return wrp_alu32_imm(nfp_prog, meta, ALU_OP_SUB, !meta->insn.imm);
2366 }
2367 
2368 static int mul_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2369 {
2370 	return wrp_mul(nfp_prog, meta, false, true);
2371 }
2372 
2373 static int mul_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2374 {
2375 	return wrp_mul(nfp_prog, meta, false, false);
2376 }
2377 
2378 static int div_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2379 {
2380 	return div_reg64(nfp_prog, meta);
2381 }
2382 
2383 static int div_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2384 {
2385 	return div_imm64(nfp_prog, meta);
2386 }
2387 
2388 static int neg_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2389 {
2390 	u8 dst = meta->insn.dst_reg * 2;
2391 
2392 	emit_alu(nfp_prog, reg_both(dst), reg_imm(0), ALU_OP_SUB, reg_b(dst));
2393 	wrp_immed(nfp_prog, reg_both(meta->insn.dst_reg * 2 + 1), 0);
2394 
2395 	return 0;
2396 }
2397 
2398 static int __ashr_imm(struct nfp_prog *nfp_prog, u8 dst, u8 shift_amt)
2399 {
2400 	if (shift_amt) {
2401 		/* Set signedness bit (MSB of result). */
2402 		emit_alu(nfp_prog, reg_none(), reg_a(dst), ALU_OP_OR,
2403 			 reg_imm(0));
2404 		emit_shf(nfp_prog, reg_both(dst), reg_none(), SHF_OP_ASHR,
2405 			 reg_b(dst), SHF_SC_R_SHF, shift_amt);
2406 	}
2407 	wrp_immed(nfp_prog, reg_both(dst + 1), 0);
2408 
2409 	return 0;
2410 }
2411 
2412 static int ashr_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2413 {
2414 	const struct bpf_insn *insn = &meta->insn;
2415 	u64 umin, umax;
2416 	u8 dst, src;
2417 
2418 	dst = insn->dst_reg * 2;
2419 	umin = meta->umin_src;
2420 	umax = meta->umax_src;
2421 	if (umin == umax)
2422 		return __ashr_imm(nfp_prog, dst, umin);
2423 
2424 	src = insn->src_reg * 2;
2425 	/* NOTE: the first insn will set both indirect shift amount (source A)
2426 	 * and signedness bit (MSB of result).
2427 	 */
2428 	emit_alu(nfp_prog, reg_none(), reg_a(src), ALU_OP_OR, reg_b(dst));
2429 	emit_shf_indir(nfp_prog, reg_both(dst), reg_none(), SHF_OP_ASHR,
2430 		       reg_b(dst), SHF_SC_R_SHF);
2431 	wrp_immed(nfp_prog, reg_both(dst + 1), 0);
2432 
2433 	return 0;
2434 }
2435 
2436 static int ashr_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2437 {
2438 	const struct bpf_insn *insn = &meta->insn;
2439 	u8 dst = insn->dst_reg * 2;
2440 
2441 	return __ashr_imm(nfp_prog, dst, insn->imm);
2442 }
2443 
2444 static int shl_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2445 {
2446 	const struct bpf_insn *insn = &meta->insn;
2447 
2448 	if (insn->imm)
2449 		emit_shf(nfp_prog, reg_both(insn->dst_reg * 2),
2450 			 reg_none(), SHF_OP_NONE, reg_b(insn->dst_reg * 2),
2451 			 SHF_SC_L_SHF, insn->imm);
2452 	wrp_immed(nfp_prog, reg_both(insn->dst_reg * 2 + 1), 0);
2453 
2454 	return 0;
2455 }
2456 
2457 static int end_reg32(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2458 {
2459 	const struct bpf_insn *insn = &meta->insn;
2460 	u8 gpr = insn->dst_reg * 2;
2461 
2462 	switch (insn->imm) {
2463 	case 16:
2464 		emit_ld_field(nfp_prog, reg_both(gpr), 0x9, reg_b(gpr),
2465 			      SHF_SC_R_ROT, 8);
2466 		emit_ld_field(nfp_prog, reg_both(gpr), 0xe, reg_a(gpr),
2467 			      SHF_SC_R_SHF, 16);
2468 
2469 		wrp_immed(nfp_prog, reg_both(gpr + 1), 0);
2470 		break;
2471 	case 32:
2472 		wrp_end32(nfp_prog, reg_a(gpr), gpr);
2473 		wrp_immed(nfp_prog, reg_both(gpr + 1), 0);
2474 		break;
2475 	case 64:
2476 		wrp_mov(nfp_prog, imm_a(nfp_prog), reg_b(gpr + 1));
2477 
2478 		wrp_end32(nfp_prog, reg_a(gpr), gpr + 1);
2479 		wrp_end32(nfp_prog, imm_a(nfp_prog), gpr);
2480 		break;
2481 	}
2482 
2483 	return 0;
2484 }
2485 
2486 static int imm_ld8_part2(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2487 {
2488 	struct nfp_insn_meta *prev = nfp_meta_prev(meta);
2489 	u32 imm_lo, imm_hi;
2490 	u8 dst;
2491 
2492 	dst = prev->insn.dst_reg * 2;
2493 	imm_lo = prev->insn.imm;
2494 	imm_hi = meta->insn.imm;
2495 
2496 	wrp_immed(nfp_prog, reg_both(dst), imm_lo);
2497 
2498 	/* mov is always 1 insn, load imm may be two, so try to use mov */
2499 	if (imm_hi == imm_lo)
2500 		wrp_mov(nfp_prog, reg_both(dst + 1), reg_a(dst));
2501 	else
2502 		wrp_immed(nfp_prog, reg_both(dst + 1), imm_hi);
2503 
2504 	return 0;
2505 }
2506 
2507 static int imm_ld8(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2508 {
2509 	meta->double_cb = imm_ld8_part2;
2510 	return 0;
2511 }
2512 
2513 static int data_ld1(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2514 {
2515 	return construct_data_ld(nfp_prog, meta->insn.imm, 1);
2516 }
2517 
2518 static int data_ld2(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2519 {
2520 	return construct_data_ld(nfp_prog, meta->insn.imm, 2);
2521 }
2522 
2523 static int data_ld4(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2524 {
2525 	return construct_data_ld(nfp_prog, meta->insn.imm, 4);
2526 }
2527 
2528 static int data_ind_ld1(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2529 {
2530 	return construct_data_ind_ld(nfp_prog, meta->insn.imm,
2531 				     meta->insn.src_reg * 2, 1);
2532 }
2533 
2534 static int data_ind_ld2(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2535 {
2536 	return construct_data_ind_ld(nfp_prog, meta->insn.imm,
2537 				     meta->insn.src_reg * 2, 2);
2538 }
2539 
2540 static int data_ind_ld4(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2541 {
2542 	return construct_data_ind_ld(nfp_prog, meta->insn.imm,
2543 				     meta->insn.src_reg * 2, 4);
2544 }
2545 
2546 static int
2547 mem_ldx_stack(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
2548 	      unsigned int size, unsigned int ptr_off)
2549 {
2550 	return mem_op_stack(nfp_prog, meta, size, ptr_off,
2551 			    meta->insn.dst_reg * 2, meta->insn.src_reg * 2,
2552 			    true, wrp_lmem_load);
2553 }
2554 
2555 static int mem_ldx_skb(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
2556 		       u8 size)
2557 {
2558 	swreg dst = reg_both(meta->insn.dst_reg * 2);
2559 
2560 	switch (meta->insn.off) {
2561 	case offsetof(struct __sk_buff, len):
2562 		if (size != FIELD_SIZEOF(struct __sk_buff, len))
2563 			return -EOPNOTSUPP;
2564 		wrp_mov(nfp_prog, dst, plen_reg(nfp_prog));
2565 		break;
2566 	case offsetof(struct __sk_buff, data):
2567 		if (size != FIELD_SIZEOF(struct __sk_buff, data))
2568 			return -EOPNOTSUPP;
2569 		wrp_mov(nfp_prog, dst, pptr_reg(nfp_prog));
2570 		break;
2571 	case offsetof(struct __sk_buff, data_end):
2572 		if (size != FIELD_SIZEOF(struct __sk_buff, data_end))
2573 			return -EOPNOTSUPP;
2574 		emit_alu(nfp_prog, dst,
2575 			 plen_reg(nfp_prog), ALU_OP_ADD, pptr_reg(nfp_prog));
2576 		break;
2577 	default:
2578 		return -EOPNOTSUPP;
2579 	}
2580 
2581 	wrp_immed(nfp_prog, reg_both(meta->insn.dst_reg * 2 + 1), 0);
2582 
2583 	return 0;
2584 }
2585 
2586 static int mem_ldx_xdp(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
2587 		       u8 size)
2588 {
2589 	swreg dst = reg_both(meta->insn.dst_reg * 2);
2590 
2591 	switch (meta->insn.off) {
2592 	case offsetof(struct xdp_md, data):
2593 		if (size != FIELD_SIZEOF(struct xdp_md, data))
2594 			return -EOPNOTSUPP;
2595 		wrp_mov(nfp_prog, dst, pptr_reg(nfp_prog));
2596 		break;
2597 	case offsetof(struct xdp_md, data_end):
2598 		if (size != FIELD_SIZEOF(struct xdp_md, data_end))
2599 			return -EOPNOTSUPP;
2600 		emit_alu(nfp_prog, dst,
2601 			 plen_reg(nfp_prog), ALU_OP_ADD, pptr_reg(nfp_prog));
2602 		break;
2603 	default:
2604 		return -EOPNOTSUPP;
2605 	}
2606 
2607 	wrp_immed(nfp_prog, reg_both(meta->insn.dst_reg * 2 + 1), 0);
2608 
2609 	return 0;
2610 }
2611 
2612 static int
2613 mem_ldx_data(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
2614 	     unsigned int size)
2615 {
2616 	swreg tmp_reg;
2617 
2618 	tmp_reg = re_load_imm_any(nfp_prog, meta->insn.off, imm_b(nfp_prog));
2619 
2620 	return data_ld_host_order_addr32(nfp_prog, meta->insn.src_reg * 2,
2621 					 tmp_reg, meta->insn.dst_reg * 2, size);
2622 }
2623 
2624 static int
2625 mem_ldx_emem(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
2626 	     unsigned int size)
2627 {
2628 	swreg tmp_reg;
2629 
2630 	tmp_reg = re_load_imm_any(nfp_prog, meta->insn.off, imm_b(nfp_prog));
2631 
2632 	return data_ld_host_order_addr40(nfp_prog, meta->insn.src_reg * 2,
2633 					 tmp_reg, meta->insn.dst_reg * 2, size);
2634 }
2635 
2636 static void
2637 mem_ldx_data_init_pktcache(struct nfp_prog *nfp_prog,
2638 			   struct nfp_insn_meta *meta)
2639 {
2640 	s16 range_start = meta->pkt_cache.range_start;
2641 	s16 range_end = meta->pkt_cache.range_end;
2642 	swreg src_base, off;
2643 	u8 xfer_num, len;
2644 	bool indir;
2645 
2646 	off = re_load_imm_any(nfp_prog, range_start, imm_b(nfp_prog));
2647 	src_base = reg_a(meta->insn.src_reg * 2);
2648 	len = range_end - range_start;
2649 	xfer_num = round_up(len, REG_WIDTH) / REG_WIDTH;
2650 
2651 	indir = len > 8 * REG_WIDTH;
2652 	/* Setup PREV_ALU for indirect mode. */
2653 	if (indir)
2654 		wrp_immed(nfp_prog, reg_none(),
2655 			  CMD_OVE_LEN | FIELD_PREP(CMD_OV_LEN, xfer_num - 1));
2656 
2657 	/* Cache memory into transfer-in registers. */
2658 	emit_cmd_any(nfp_prog, CMD_TGT_READ32_SWAP, CMD_MODE_32b, 0, src_base,
2659 		     off, xfer_num - 1, CMD_CTX_SWAP, indir);
2660 }
2661 
2662 static int
2663 mem_ldx_data_from_pktcache_unaligned(struct nfp_prog *nfp_prog,
2664 				     struct nfp_insn_meta *meta,
2665 				     unsigned int size)
2666 {
2667 	s16 range_start = meta->pkt_cache.range_start;
2668 	s16 insn_off = meta->insn.off - range_start;
2669 	swreg dst_lo, dst_hi, src_lo, src_mid;
2670 	u8 dst_gpr = meta->insn.dst_reg * 2;
2671 	u8 len_lo = size, len_mid = 0;
2672 	u8 idx = insn_off / REG_WIDTH;
2673 	u8 off = insn_off % REG_WIDTH;
2674 
2675 	dst_hi = reg_both(dst_gpr + 1);
2676 	dst_lo = reg_both(dst_gpr);
2677 	src_lo = reg_xfer(idx);
2678 
2679 	/* The read length could involve as many as three registers. */
2680 	if (size > REG_WIDTH - off) {
2681 		/* Calculate the part in the second register. */
2682 		len_lo = REG_WIDTH - off;
2683 		len_mid = size - len_lo;
2684 
2685 		/* Calculate the part in the third register. */
2686 		if (size > 2 * REG_WIDTH - off)
2687 			len_mid = REG_WIDTH;
2688 	}
2689 
2690 	wrp_reg_subpart(nfp_prog, dst_lo, src_lo, len_lo, off);
2691 
2692 	if (!len_mid) {
2693 		wrp_immed(nfp_prog, dst_hi, 0);
2694 		return 0;
2695 	}
2696 
2697 	src_mid = reg_xfer(idx + 1);
2698 
2699 	if (size <= REG_WIDTH) {
2700 		wrp_reg_or_subpart(nfp_prog, dst_lo, src_mid, len_mid, len_lo);
2701 		wrp_immed(nfp_prog, dst_hi, 0);
2702 	} else {
2703 		swreg src_hi = reg_xfer(idx + 2);
2704 
2705 		wrp_reg_or_subpart(nfp_prog, dst_lo, src_mid,
2706 				   REG_WIDTH - len_lo, len_lo);
2707 		wrp_reg_subpart(nfp_prog, dst_hi, src_mid, len_lo,
2708 				REG_WIDTH - len_lo);
2709 		wrp_reg_or_subpart(nfp_prog, dst_hi, src_hi, REG_WIDTH - len_lo,
2710 				   len_lo);
2711 	}
2712 
2713 	return 0;
2714 }
2715 
2716 static int
2717 mem_ldx_data_from_pktcache_aligned(struct nfp_prog *nfp_prog,
2718 				   struct nfp_insn_meta *meta,
2719 				   unsigned int size)
2720 {
2721 	swreg dst_lo, dst_hi, src_lo;
2722 	u8 dst_gpr, idx;
2723 
2724 	idx = (meta->insn.off - meta->pkt_cache.range_start) / REG_WIDTH;
2725 	dst_gpr = meta->insn.dst_reg * 2;
2726 	dst_hi = reg_both(dst_gpr + 1);
2727 	dst_lo = reg_both(dst_gpr);
2728 	src_lo = reg_xfer(idx);
2729 
2730 	if (size < REG_WIDTH) {
2731 		wrp_reg_subpart(nfp_prog, dst_lo, src_lo, size, 0);
2732 		wrp_immed(nfp_prog, dst_hi, 0);
2733 	} else if (size == REG_WIDTH) {
2734 		wrp_mov(nfp_prog, dst_lo, src_lo);
2735 		wrp_immed(nfp_prog, dst_hi, 0);
2736 	} else {
2737 		swreg src_hi = reg_xfer(idx + 1);
2738 
2739 		wrp_mov(nfp_prog, dst_lo, src_lo);
2740 		wrp_mov(nfp_prog, dst_hi, src_hi);
2741 	}
2742 
2743 	return 0;
2744 }
2745 
2746 static int
2747 mem_ldx_data_from_pktcache(struct nfp_prog *nfp_prog,
2748 			   struct nfp_insn_meta *meta, unsigned int size)
2749 {
2750 	u8 off = meta->insn.off - meta->pkt_cache.range_start;
2751 
2752 	if (IS_ALIGNED(off, REG_WIDTH))
2753 		return mem_ldx_data_from_pktcache_aligned(nfp_prog, meta, size);
2754 
2755 	return mem_ldx_data_from_pktcache_unaligned(nfp_prog, meta, size);
2756 }
2757 
2758 static int
2759 mem_ldx(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
2760 	unsigned int size)
2761 {
2762 	if (meta->ldst_gather_len)
2763 		return nfp_cpp_memcpy(nfp_prog, meta);
2764 
2765 	if (meta->ptr.type == PTR_TO_CTX) {
2766 		if (nfp_prog->type == BPF_PROG_TYPE_XDP)
2767 			return mem_ldx_xdp(nfp_prog, meta, size);
2768 		else
2769 			return mem_ldx_skb(nfp_prog, meta, size);
2770 	}
2771 
2772 	if (meta->ptr.type == PTR_TO_PACKET) {
2773 		if (meta->pkt_cache.range_end) {
2774 			if (meta->pkt_cache.do_init)
2775 				mem_ldx_data_init_pktcache(nfp_prog, meta);
2776 
2777 			return mem_ldx_data_from_pktcache(nfp_prog, meta, size);
2778 		} else {
2779 			return mem_ldx_data(nfp_prog, meta, size);
2780 		}
2781 	}
2782 
2783 	if (meta->ptr.type == PTR_TO_STACK)
2784 		return mem_ldx_stack(nfp_prog, meta, size,
2785 				     meta->ptr.off + meta->ptr.var_off.value);
2786 
2787 	if (meta->ptr.type == PTR_TO_MAP_VALUE)
2788 		return mem_ldx_emem(nfp_prog, meta, size);
2789 
2790 	return -EOPNOTSUPP;
2791 }
2792 
2793 static int mem_ldx1(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2794 {
2795 	return mem_ldx(nfp_prog, meta, 1);
2796 }
2797 
2798 static int mem_ldx2(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2799 {
2800 	return mem_ldx(nfp_prog, meta, 2);
2801 }
2802 
2803 static int mem_ldx4(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2804 {
2805 	return mem_ldx(nfp_prog, meta, 4);
2806 }
2807 
2808 static int mem_ldx8(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2809 {
2810 	return mem_ldx(nfp_prog, meta, 8);
2811 }
2812 
2813 static int
2814 mem_st_data(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
2815 	    unsigned int size)
2816 {
2817 	u64 imm = meta->insn.imm; /* sign extend */
2818 	swreg off_reg;
2819 
2820 	off_reg = re_load_imm_any(nfp_prog, meta->insn.off, imm_b(nfp_prog));
2821 
2822 	return data_st_host_order(nfp_prog, meta->insn.dst_reg * 2, off_reg,
2823 				  imm, size);
2824 }
2825 
2826 static int mem_st(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
2827 		  unsigned int size)
2828 {
2829 	if (meta->ptr.type == PTR_TO_PACKET)
2830 		return mem_st_data(nfp_prog, meta, size);
2831 
2832 	return -EOPNOTSUPP;
2833 }
2834 
2835 static int mem_st1(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2836 {
2837 	return mem_st(nfp_prog, meta, 1);
2838 }
2839 
2840 static int mem_st2(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2841 {
2842 	return mem_st(nfp_prog, meta, 2);
2843 }
2844 
2845 static int mem_st4(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2846 {
2847 	return mem_st(nfp_prog, meta, 4);
2848 }
2849 
2850 static int mem_st8(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2851 {
2852 	return mem_st(nfp_prog, meta, 8);
2853 }
2854 
2855 static int
2856 mem_stx_data(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
2857 	     unsigned int size)
2858 {
2859 	swreg off_reg;
2860 
2861 	off_reg = re_load_imm_any(nfp_prog, meta->insn.off, imm_b(nfp_prog));
2862 
2863 	return data_stx_host_order(nfp_prog, meta->insn.dst_reg * 2, off_reg,
2864 				   meta->insn.src_reg * 2, size);
2865 }
2866 
2867 static int
2868 mem_stx_stack(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
2869 	      unsigned int size, unsigned int ptr_off)
2870 {
2871 	return mem_op_stack(nfp_prog, meta, size, ptr_off,
2872 			    meta->insn.src_reg * 2, meta->insn.dst_reg * 2,
2873 			    false, wrp_lmem_store);
2874 }
2875 
2876 static int mem_stx_xdp(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2877 {
2878 	switch (meta->insn.off) {
2879 	case offsetof(struct xdp_md, rx_queue_index):
2880 		return nfp_queue_select(nfp_prog, meta);
2881 	}
2882 
2883 	WARN_ON_ONCE(1); /* verifier should have rejected bad accesses */
2884 	return -EOPNOTSUPP;
2885 }
2886 
2887 static int
2888 mem_stx(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
2889 	unsigned int size)
2890 {
2891 	if (meta->ptr.type == PTR_TO_PACKET)
2892 		return mem_stx_data(nfp_prog, meta, size);
2893 
2894 	if (meta->ptr.type == PTR_TO_STACK)
2895 		return mem_stx_stack(nfp_prog, meta, size,
2896 				     meta->ptr.off + meta->ptr.var_off.value);
2897 
2898 	return -EOPNOTSUPP;
2899 }
2900 
2901 static int mem_stx1(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2902 {
2903 	return mem_stx(nfp_prog, meta, 1);
2904 }
2905 
2906 static int mem_stx2(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2907 {
2908 	return mem_stx(nfp_prog, meta, 2);
2909 }
2910 
2911 static int mem_stx4(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2912 {
2913 	if (meta->ptr.type == PTR_TO_CTX)
2914 		if (nfp_prog->type == BPF_PROG_TYPE_XDP)
2915 			return mem_stx_xdp(nfp_prog, meta);
2916 	return mem_stx(nfp_prog, meta, 4);
2917 }
2918 
2919 static int mem_stx8(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2920 {
2921 	return mem_stx(nfp_prog, meta, 8);
2922 }
2923 
2924 static int
2925 mem_xadd(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta, bool is64)
2926 {
2927 	u8 dst_gpr = meta->insn.dst_reg * 2;
2928 	u8 src_gpr = meta->insn.src_reg * 2;
2929 	unsigned int full_add, out;
2930 	swreg addra, addrb, off;
2931 
2932 	off = ur_load_imm_any(nfp_prog, meta->insn.off, imm_b(nfp_prog));
2933 
2934 	/* We can fit 16 bits into command immediate, if we know the immediate
2935 	 * is guaranteed to either always or never fit into 16 bit we only
2936 	 * generate code to handle that particular case, otherwise generate
2937 	 * code for both.
2938 	 */
2939 	out = nfp_prog_current_offset(nfp_prog);
2940 	full_add = nfp_prog_current_offset(nfp_prog);
2941 
2942 	if (meta->insn.off) {
2943 		out += 2;
2944 		full_add += 2;
2945 	}
2946 	if (meta->xadd_maybe_16bit) {
2947 		out += 3;
2948 		full_add += 3;
2949 	}
2950 	if (meta->xadd_over_16bit)
2951 		out += 2 + is64;
2952 	if (meta->xadd_maybe_16bit && meta->xadd_over_16bit) {
2953 		out += 5;
2954 		full_add += 5;
2955 	}
2956 
2957 	/* Generate the branch for choosing add_imm vs add */
2958 	if (meta->xadd_maybe_16bit && meta->xadd_over_16bit) {
2959 		swreg max_imm = imm_a(nfp_prog);
2960 
2961 		wrp_immed(nfp_prog, max_imm, 0xffff);
2962 		emit_alu(nfp_prog, reg_none(),
2963 			 max_imm, ALU_OP_SUB, reg_b(src_gpr));
2964 		emit_alu(nfp_prog, reg_none(),
2965 			 reg_imm(0), ALU_OP_SUB_C, reg_b(src_gpr + 1));
2966 		emit_br(nfp_prog, BR_BLO, full_add, meta->insn.off ? 2 : 0);
2967 		/* defer for add */
2968 	}
2969 
2970 	/* If insn has an offset add to the address */
2971 	if (!meta->insn.off) {
2972 		addra = reg_a(dst_gpr);
2973 		addrb = reg_b(dst_gpr + 1);
2974 	} else {
2975 		emit_alu(nfp_prog, imma_a(nfp_prog),
2976 			 reg_a(dst_gpr), ALU_OP_ADD, off);
2977 		emit_alu(nfp_prog, imma_b(nfp_prog),
2978 			 reg_a(dst_gpr + 1), ALU_OP_ADD_C, reg_imm(0));
2979 		addra = imma_a(nfp_prog);
2980 		addrb = imma_b(nfp_prog);
2981 	}
2982 
2983 	/* Generate the add_imm if 16 bits are possible */
2984 	if (meta->xadd_maybe_16bit) {
2985 		swreg prev_alu = imm_a(nfp_prog);
2986 
2987 		wrp_immed(nfp_prog, prev_alu,
2988 			  FIELD_PREP(CMD_OVE_DATA, 2) |
2989 			  CMD_OVE_LEN |
2990 			  FIELD_PREP(CMD_OV_LEN, 0x8 | is64 << 2));
2991 		wrp_reg_or_subpart(nfp_prog, prev_alu, reg_b(src_gpr), 2, 2);
2992 		emit_cmd_indir(nfp_prog, CMD_TGT_ADD_IMM, CMD_MODE_40b_BA, 0,
2993 			       addra, addrb, 0, CMD_CTX_NO_SWAP);
2994 
2995 		if (meta->xadd_over_16bit)
2996 			emit_br(nfp_prog, BR_UNC, out, 0);
2997 	}
2998 
2999 	if (!nfp_prog_confirm_current_offset(nfp_prog, full_add))
3000 		return -EINVAL;
3001 
3002 	/* Generate the add if 16 bits are not guaranteed */
3003 	if (meta->xadd_over_16bit) {
3004 		emit_cmd(nfp_prog, CMD_TGT_ADD, CMD_MODE_40b_BA, 0,
3005 			 addra, addrb, is64 << 2,
3006 			 is64 ? CMD_CTX_SWAP_DEFER2 : CMD_CTX_SWAP_DEFER1);
3007 
3008 		wrp_mov(nfp_prog, reg_xfer(0), reg_a(src_gpr));
3009 		if (is64)
3010 			wrp_mov(nfp_prog, reg_xfer(1), reg_a(src_gpr + 1));
3011 	}
3012 
3013 	if (!nfp_prog_confirm_current_offset(nfp_prog, out))
3014 		return -EINVAL;
3015 
3016 	return 0;
3017 }
3018 
3019 static int mem_xadd4(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
3020 {
3021 	return mem_xadd(nfp_prog, meta, false);
3022 }
3023 
3024 static int mem_xadd8(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
3025 {
3026 	return mem_xadd(nfp_prog, meta, true);
3027 }
3028 
3029 static int jump(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
3030 {
3031 	emit_br(nfp_prog, BR_UNC, meta->insn.off, 0);
3032 
3033 	return 0;
3034 }
3035 
3036 static int jeq_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
3037 {
3038 	const struct bpf_insn *insn = &meta->insn;
3039 	u64 imm = insn->imm; /* sign extend */
3040 	swreg or1, or2, tmp_reg;
3041 
3042 	or1 = reg_a(insn->dst_reg * 2);
3043 	or2 = reg_b(insn->dst_reg * 2 + 1);
3044 
3045 	if (imm & ~0U) {
3046 		tmp_reg = ur_load_imm_any(nfp_prog, imm & ~0U, imm_b(nfp_prog));
3047 		emit_alu(nfp_prog, imm_a(nfp_prog),
3048 			 reg_a(insn->dst_reg * 2), ALU_OP_XOR, tmp_reg);
3049 		or1 = imm_a(nfp_prog);
3050 	}
3051 
3052 	if (imm >> 32) {
3053 		tmp_reg = ur_load_imm_any(nfp_prog, imm >> 32, imm_b(nfp_prog));
3054 		emit_alu(nfp_prog, imm_b(nfp_prog),
3055 			 reg_a(insn->dst_reg * 2 + 1), ALU_OP_XOR, tmp_reg);
3056 		or2 = imm_b(nfp_prog);
3057 	}
3058 
3059 	emit_alu(nfp_prog, reg_none(), or1, ALU_OP_OR, or2);
3060 	emit_br(nfp_prog, BR_BEQ, insn->off, 0);
3061 
3062 	return 0;
3063 }
3064 
3065 static int jeq32_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
3066 {
3067 	const struct bpf_insn *insn = &meta->insn;
3068 	swreg tmp_reg;
3069 
3070 	tmp_reg = ur_load_imm_any(nfp_prog, insn->imm, imm_b(nfp_prog));
3071 	emit_alu(nfp_prog, reg_none(),
3072 		 reg_a(insn->dst_reg * 2), ALU_OP_XOR, tmp_reg);
3073 	emit_br(nfp_prog, BR_BEQ, insn->off, 0);
3074 
3075 	return 0;
3076 }
3077 
3078 static int jset_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
3079 {
3080 	const struct bpf_insn *insn = &meta->insn;
3081 	u64 imm = insn->imm; /* sign extend */
3082 	u8 dst_gpr = insn->dst_reg * 2;
3083 	swreg tmp_reg;
3084 
3085 	tmp_reg = ur_load_imm_any(nfp_prog, imm & ~0U, imm_b(nfp_prog));
3086 	emit_alu(nfp_prog, imm_b(nfp_prog),
3087 		 reg_a(dst_gpr), ALU_OP_AND, tmp_reg);
3088 	/* Upper word of the mask can only be 0 or ~0 from sign extension,
3089 	 * so either ignore it or OR the whole thing in.
3090 	 */
3091 	if (is_mbpf_jmp64(meta) && imm >> 32) {
3092 		emit_alu(nfp_prog, reg_none(),
3093 			 reg_a(dst_gpr + 1), ALU_OP_OR, imm_b(nfp_prog));
3094 	}
3095 	emit_br(nfp_prog, BR_BNE, insn->off, 0);
3096 
3097 	return 0;
3098 }
3099 
3100 static int jne_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
3101 {
3102 	const struct bpf_insn *insn = &meta->insn;
3103 	u64 imm = insn->imm; /* sign extend */
3104 	bool is_jmp32 = is_mbpf_jmp32(meta);
3105 	swreg tmp_reg;
3106 
3107 	if (!imm) {
3108 		if (is_jmp32)
3109 			emit_alu(nfp_prog, reg_none(), reg_none(), ALU_OP_NONE,
3110 				 reg_b(insn->dst_reg * 2));
3111 		else
3112 			emit_alu(nfp_prog, reg_none(), reg_a(insn->dst_reg * 2),
3113 				 ALU_OP_OR, reg_b(insn->dst_reg * 2 + 1));
3114 		emit_br(nfp_prog, BR_BNE, insn->off, 0);
3115 		return 0;
3116 	}
3117 
3118 	tmp_reg = ur_load_imm_any(nfp_prog, imm & ~0U, imm_b(nfp_prog));
3119 	emit_alu(nfp_prog, reg_none(),
3120 		 reg_a(insn->dst_reg * 2), ALU_OP_XOR, tmp_reg);
3121 	emit_br(nfp_prog, BR_BNE, insn->off, 0);
3122 
3123 	if (is_jmp32)
3124 		return 0;
3125 
3126 	tmp_reg = ur_load_imm_any(nfp_prog, imm >> 32, imm_b(nfp_prog));
3127 	emit_alu(nfp_prog, reg_none(),
3128 		 reg_a(insn->dst_reg * 2 + 1), ALU_OP_XOR, tmp_reg);
3129 	emit_br(nfp_prog, BR_BNE, insn->off, 0);
3130 
3131 	return 0;
3132 }
3133 
3134 static int jeq_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
3135 {
3136 	const struct bpf_insn *insn = &meta->insn;
3137 
3138 	emit_alu(nfp_prog, imm_a(nfp_prog), reg_a(insn->dst_reg * 2),
3139 		 ALU_OP_XOR, reg_b(insn->src_reg * 2));
3140 	if (is_mbpf_jmp64(meta)) {
3141 		emit_alu(nfp_prog, imm_b(nfp_prog),
3142 			 reg_a(insn->dst_reg * 2 + 1), ALU_OP_XOR,
3143 			 reg_b(insn->src_reg * 2 + 1));
3144 		emit_alu(nfp_prog, reg_none(), imm_a(nfp_prog), ALU_OP_OR,
3145 			 imm_b(nfp_prog));
3146 	}
3147 	emit_br(nfp_prog, BR_BEQ, insn->off, 0);
3148 
3149 	return 0;
3150 }
3151 
3152 static int jset_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
3153 {
3154 	return wrp_test_reg(nfp_prog, meta, ALU_OP_AND, BR_BNE);
3155 }
3156 
3157 static int jne_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
3158 {
3159 	return wrp_test_reg(nfp_prog, meta, ALU_OP_XOR, BR_BNE);
3160 }
3161 
3162 static int
3163 bpf_to_bpf_call(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
3164 {
3165 	u32 ret_tgt, stack_depth, offset_br;
3166 	swreg tmp_reg;
3167 
3168 	stack_depth = round_up(nfp_prog->stack_frame_depth, STACK_FRAME_ALIGN);
3169 	/* Space for saving the return address is accounted for by the callee,
3170 	 * so stack_depth can be zero for the main function.
3171 	 */
3172 	if (stack_depth) {
3173 		tmp_reg = ur_load_imm_any(nfp_prog, stack_depth,
3174 					  stack_imm(nfp_prog));
3175 		emit_alu(nfp_prog, stack_reg(nfp_prog),
3176 			 stack_reg(nfp_prog), ALU_OP_ADD, tmp_reg);
3177 		emit_csr_wr(nfp_prog, stack_reg(nfp_prog),
3178 			    NFP_CSR_ACT_LM_ADDR0);
3179 	}
3180 
3181 	/* Two cases for jumping to the callee:
3182 	 *
3183 	 * - If callee uses and needs to save R6~R9 then:
3184 	 *     1. Put the start offset of the callee into imm_b(). This will
3185 	 *        require a fixup step, as we do not necessarily know this
3186 	 *        address yet.
3187 	 *     2. Put the return address from the callee to the caller into
3188 	 *        register ret_reg().
3189 	 *     3. (After defer slots are consumed) Jump to the subroutine that
3190 	 *        pushes the registers to the stack.
3191 	 *   The subroutine acts as a trampoline, and returns to the address in
3192 	 *   imm_b(), i.e. jumps to the callee.
3193 	 *
3194 	 * - If callee does not need to save R6~R9 then just load return
3195 	 *   address to the caller in ret_reg(), and jump to the callee
3196 	 *   directly.
3197 	 *
3198 	 * Using ret_reg() to pass the return address to the callee is set here
3199 	 * as a convention. The callee can then push this address onto its
3200 	 * stack frame in its prologue. The advantages of passing the return
3201 	 * address through ret_reg(), instead of pushing it to the stack right
3202 	 * here, are the following:
3203 	 * - It looks cleaner.
3204 	 * - If the called function is called multiple time, we get a lower
3205 	 *   program size.
3206 	 * - We save two no-op instructions that should be added just before
3207 	 *   the emit_br() when stack depth is not null otherwise.
3208 	 * - If we ever find a register to hold the return address during whole
3209 	 *   execution of the callee, we will not have to push the return
3210 	 *   address to the stack for leaf functions.
3211 	 */
3212 	if (!meta->jmp_dst) {
3213 		pr_err("BUG: BPF-to-BPF call has no destination recorded\n");
3214 		return -ELOOP;
3215 	}
3216 	if (nfp_prog->subprog[meta->jmp_dst->subprog_idx].needs_reg_push) {
3217 		ret_tgt = nfp_prog_current_offset(nfp_prog) + 3;
3218 		emit_br_relo(nfp_prog, BR_UNC, BR_OFF_RELO, 2,
3219 			     RELO_BR_GO_CALL_PUSH_REGS);
3220 		offset_br = nfp_prog_current_offset(nfp_prog);
3221 		wrp_immed_relo(nfp_prog, imm_b(nfp_prog), 0, RELO_IMMED_REL);
3222 	} else {
3223 		ret_tgt = nfp_prog_current_offset(nfp_prog) + 2;
3224 		emit_br(nfp_prog, BR_UNC, meta->insn.imm, 1);
3225 		offset_br = nfp_prog_current_offset(nfp_prog);
3226 	}
3227 	wrp_immed_relo(nfp_prog, ret_reg(nfp_prog), ret_tgt, RELO_IMMED_REL);
3228 
3229 	if (!nfp_prog_confirm_current_offset(nfp_prog, ret_tgt))
3230 		return -EINVAL;
3231 
3232 	if (stack_depth) {
3233 		tmp_reg = ur_load_imm_any(nfp_prog, stack_depth,
3234 					  stack_imm(nfp_prog));
3235 		emit_alu(nfp_prog, stack_reg(nfp_prog),
3236 			 stack_reg(nfp_prog), ALU_OP_SUB, tmp_reg);
3237 		emit_csr_wr(nfp_prog, stack_reg(nfp_prog),
3238 			    NFP_CSR_ACT_LM_ADDR0);
3239 		wrp_nops(nfp_prog, 3);
3240 	}
3241 
3242 	meta->num_insns_after_br = nfp_prog_current_offset(nfp_prog);
3243 	meta->num_insns_after_br -= offset_br;
3244 
3245 	return 0;
3246 }
3247 
3248 static int helper_call(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
3249 {
3250 	switch (meta->insn.imm) {
3251 	case BPF_FUNC_xdp_adjust_head:
3252 		return adjust_head(nfp_prog, meta);
3253 	case BPF_FUNC_xdp_adjust_tail:
3254 		return adjust_tail(nfp_prog, meta);
3255 	case BPF_FUNC_map_lookup_elem:
3256 	case BPF_FUNC_map_update_elem:
3257 	case BPF_FUNC_map_delete_elem:
3258 		return map_call_stack_common(nfp_prog, meta);
3259 	case BPF_FUNC_get_prandom_u32:
3260 		return nfp_get_prandom_u32(nfp_prog, meta);
3261 	case BPF_FUNC_perf_event_output:
3262 		return nfp_perf_event_output(nfp_prog, meta);
3263 	default:
3264 		WARN_ONCE(1, "verifier allowed unsupported function\n");
3265 		return -EOPNOTSUPP;
3266 	}
3267 }
3268 
3269 static int call(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
3270 {
3271 	if (is_mbpf_pseudo_call(meta))
3272 		return bpf_to_bpf_call(nfp_prog, meta);
3273 	else
3274 		return helper_call(nfp_prog, meta);
3275 }
3276 
3277 static bool nfp_is_main_function(struct nfp_insn_meta *meta)
3278 {
3279 	return meta->subprog_idx == 0;
3280 }
3281 
3282 static int goto_out(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
3283 {
3284 	emit_br_relo(nfp_prog, BR_UNC, BR_OFF_RELO, 0, RELO_BR_GO_OUT);
3285 
3286 	return 0;
3287 }
3288 
3289 static int
3290 nfp_subprog_epilogue(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
3291 {
3292 	if (nfp_prog->subprog[meta->subprog_idx].needs_reg_push) {
3293 		/* Pop R6~R9 to the stack via related subroutine.
3294 		 * We loaded the return address to the caller into ret_reg().
3295 		 * This means that the subroutine does not come back here, we
3296 		 * make it jump back to the subprogram caller directly!
3297 		 */
3298 		emit_br_relo(nfp_prog, BR_UNC, BR_OFF_RELO, 1,
3299 			     RELO_BR_GO_CALL_POP_REGS);
3300 		/* Pop return address from the stack. */
3301 		wrp_mov(nfp_prog, ret_reg(nfp_prog), reg_lm(0, 0));
3302 	} else {
3303 		/* Pop return address from the stack. */
3304 		wrp_mov(nfp_prog, ret_reg(nfp_prog), reg_lm(0, 0));
3305 		/* Jump back to caller if no callee-saved registers were used
3306 		 * by the subprogram.
3307 		 */
3308 		emit_rtn(nfp_prog, ret_reg(nfp_prog), 0);
3309 	}
3310 
3311 	return 0;
3312 }
3313 
3314 static int jmp_exit(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
3315 {
3316 	if (nfp_is_main_function(meta))
3317 		return goto_out(nfp_prog, meta);
3318 	else
3319 		return nfp_subprog_epilogue(nfp_prog, meta);
3320 }
3321 
3322 static const instr_cb_t instr_cb[256] = {
3323 	[BPF_ALU64 | BPF_MOV | BPF_X] =	mov_reg64,
3324 	[BPF_ALU64 | BPF_MOV | BPF_K] =	mov_imm64,
3325 	[BPF_ALU64 | BPF_XOR | BPF_X] =	xor_reg64,
3326 	[BPF_ALU64 | BPF_XOR | BPF_K] =	xor_imm64,
3327 	[BPF_ALU64 | BPF_AND | BPF_X] =	and_reg64,
3328 	[BPF_ALU64 | BPF_AND | BPF_K] =	and_imm64,
3329 	[BPF_ALU64 | BPF_OR | BPF_X] =	or_reg64,
3330 	[BPF_ALU64 | BPF_OR | BPF_K] =	or_imm64,
3331 	[BPF_ALU64 | BPF_ADD | BPF_X] =	add_reg64,
3332 	[BPF_ALU64 | BPF_ADD | BPF_K] =	add_imm64,
3333 	[BPF_ALU64 | BPF_SUB | BPF_X] =	sub_reg64,
3334 	[BPF_ALU64 | BPF_SUB | BPF_K] =	sub_imm64,
3335 	[BPF_ALU64 | BPF_MUL | BPF_X] =	mul_reg64,
3336 	[BPF_ALU64 | BPF_MUL | BPF_K] =	mul_imm64,
3337 	[BPF_ALU64 | BPF_DIV | BPF_X] =	div_reg64,
3338 	[BPF_ALU64 | BPF_DIV | BPF_K] =	div_imm64,
3339 	[BPF_ALU64 | BPF_NEG] =		neg_reg64,
3340 	[BPF_ALU64 | BPF_LSH | BPF_X] =	shl_reg64,
3341 	[BPF_ALU64 | BPF_LSH | BPF_K] =	shl_imm64,
3342 	[BPF_ALU64 | BPF_RSH | BPF_X] =	shr_reg64,
3343 	[BPF_ALU64 | BPF_RSH | BPF_K] =	shr_imm64,
3344 	[BPF_ALU64 | BPF_ARSH | BPF_X] = ashr_reg64,
3345 	[BPF_ALU64 | BPF_ARSH | BPF_K] = ashr_imm64,
3346 	[BPF_ALU | BPF_MOV | BPF_X] =	mov_reg,
3347 	[BPF_ALU | BPF_MOV | BPF_K] =	mov_imm,
3348 	[BPF_ALU | BPF_XOR | BPF_X] =	xor_reg,
3349 	[BPF_ALU | BPF_XOR | BPF_K] =	xor_imm,
3350 	[BPF_ALU | BPF_AND | BPF_X] =	and_reg,
3351 	[BPF_ALU | BPF_AND | BPF_K] =	and_imm,
3352 	[BPF_ALU | BPF_OR | BPF_X] =	or_reg,
3353 	[BPF_ALU | BPF_OR | BPF_K] =	or_imm,
3354 	[BPF_ALU | BPF_ADD | BPF_X] =	add_reg,
3355 	[BPF_ALU | BPF_ADD | BPF_K] =	add_imm,
3356 	[BPF_ALU | BPF_SUB | BPF_X] =	sub_reg,
3357 	[BPF_ALU | BPF_SUB | BPF_K] =	sub_imm,
3358 	[BPF_ALU | BPF_MUL | BPF_X] =	mul_reg,
3359 	[BPF_ALU | BPF_MUL | BPF_K] =	mul_imm,
3360 	[BPF_ALU | BPF_DIV | BPF_X] =	div_reg,
3361 	[BPF_ALU | BPF_DIV | BPF_K] =	div_imm,
3362 	[BPF_ALU | BPF_NEG] =		neg_reg,
3363 	[BPF_ALU | BPF_LSH | BPF_K] =	shl_imm,
3364 	[BPF_ALU | BPF_ARSH | BPF_X] =	ashr_reg,
3365 	[BPF_ALU | BPF_ARSH | BPF_K] =	ashr_imm,
3366 	[BPF_ALU | BPF_END | BPF_X] =	end_reg32,
3367 	[BPF_LD | BPF_IMM | BPF_DW] =	imm_ld8,
3368 	[BPF_LD | BPF_ABS | BPF_B] =	data_ld1,
3369 	[BPF_LD | BPF_ABS | BPF_H] =	data_ld2,
3370 	[BPF_LD | BPF_ABS | BPF_W] =	data_ld4,
3371 	[BPF_LD | BPF_IND | BPF_B] =	data_ind_ld1,
3372 	[BPF_LD | BPF_IND | BPF_H] =	data_ind_ld2,
3373 	[BPF_LD | BPF_IND | BPF_W] =	data_ind_ld4,
3374 	[BPF_LDX | BPF_MEM | BPF_B] =	mem_ldx1,
3375 	[BPF_LDX | BPF_MEM | BPF_H] =	mem_ldx2,
3376 	[BPF_LDX | BPF_MEM | BPF_W] =	mem_ldx4,
3377 	[BPF_LDX | BPF_MEM | BPF_DW] =	mem_ldx8,
3378 	[BPF_STX | BPF_MEM | BPF_B] =	mem_stx1,
3379 	[BPF_STX | BPF_MEM | BPF_H] =	mem_stx2,
3380 	[BPF_STX | BPF_MEM | BPF_W] =	mem_stx4,
3381 	[BPF_STX | BPF_MEM | BPF_DW] =	mem_stx8,
3382 	[BPF_STX | BPF_XADD | BPF_W] =	mem_xadd4,
3383 	[BPF_STX | BPF_XADD | BPF_DW] =	mem_xadd8,
3384 	[BPF_ST | BPF_MEM | BPF_B] =	mem_st1,
3385 	[BPF_ST | BPF_MEM | BPF_H] =	mem_st2,
3386 	[BPF_ST | BPF_MEM | BPF_W] =	mem_st4,
3387 	[BPF_ST | BPF_MEM | BPF_DW] =	mem_st8,
3388 	[BPF_JMP | BPF_JA | BPF_K] =	jump,
3389 	[BPF_JMP | BPF_JEQ | BPF_K] =	jeq_imm,
3390 	[BPF_JMP | BPF_JGT | BPF_K] =	cmp_imm,
3391 	[BPF_JMP | BPF_JGE | BPF_K] =	cmp_imm,
3392 	[BPF_JMP | BPF_JLT | BPF_K] =	cmp_imm,
3393 	[BPF_JMP | BPF_JLE | BPF_K] =	cmp_imm,
3394 	[BPF_JMP | BPF_JSGT | BPF_K] =  cmp_imm,
3395 	[BPF_JMP | BPF_JSGE | BPF_K] =  cmp_imm,
3396 	[BPF_JMP | BPF_JSLT | BPF_K] =  cmp_imm,
3397 	[BPF_JMP | BPF_JSLE | BPF_K] =  cmp_imm,
3398 	[BPF_JMP | BPF_JSET | BPF_K] =	jset_imm,
3399 	[BPF_JMP | BPF_JNE | BPF_K] =	jne_imm,
3400 	[BPF_JMP | BPF_JEQ | BPF_X] =	jeq_reg,
3401 	[BPF_JMP | BPF_JGT | BPF_X] =	cmp_reg,
3402 	[BPF_JMP | BPF_JGE | BPF_X] =	cmp_reg,
3403 	[BPF_JMP | BPF_JLT | BPF_X] =	cmp_reg,
3404 	[BPF_JMP | BPF_JLE | BPF_X] =	cmp_reg,
3405 	[BPF_JMP | BPF_JSGT | BPF_X] =  cmp_reg,
3406 	[BPF_JMP | BPF_JSGE | BPF_X] =  cmp_reg,
3407 	[BPF_JMP | BPF_JSLT | BPF_X] =  cmp_reg,
3408 	[BPF_JMP | BPF_JSLE | BPF_X] =  cmp_reg,
3409 	[BPF_JMP | BPF_JSET | BPF_X] =	jset_reg,
3410 	[BPF_JMP | BPF_JNE | BPF_X] =	jne_reg,
3411 	[BPF_JMP32 | BPF_JEQ | BPF_K] =	jeq32_imm,
3412 	[BPF_JMP32 | BPF_JGT | BPF_K] =	cmp_imm,
3413 	[BPF_JMP32 | BPF_JGE | BPF_K] =	cmp_imm,
3414 	[BPF_JMP32 | BPF_JLT | BPF_K] =	cmp_imm,
3415 	[BPF_JMP32 | BPF_JLE | BPF_K] =	cmp_imm,
3416 	[BPF_JMP32 | BPF_JSGT | BPF_K] =cmp_imm,
3417 	[BPF_JMP32 | BPF_JSGE | BPF_K] =cmp_imm,
3418 	[BPF_JMP32 | BPF_JSLT | BPF_K] =cmp_imm,
3419 	[BPF_JMP32 | BPF_JSLE | BPF_K] =cmp_imm,
3420 	[BPF_JMP32 | BPF_JSET | BPF_K] =jset_imm,
3421 	[BPF_JMP32 | BPF_JNE | BPF_K] =	jne_imm,
3422 	[BPF_JMP32 | BPF_JEQ | BPF_X] =	jeq_reg,
3423 	[BPF_JMP32 | BPF_JGT | BPF_X] =	cmp_reg,
3424 	[BPF_JMP32 | BPF_JGE | BPF_X] =	cmp_reg,
3425 	[BPF_JMP32 | BPF_JLT | BPF_X] =	cmp_reg,
3426 	[BPF_JMP32 | BPF_JLE | BPF_X] =	cmp_reg,
3427 	[BPF_JMP32 | BPF_JSGT | BPF_X] =cmp_reg,
3428 	[BPF_JMP32 | BPF_JSGE | BPF_X] =cmp_reg,
3429 	[BPF_JMP32 | BPF_JSLT | BPF_X] =cmp_reg,
3430 	[BPF_JMP32 | BPF_JSLE | BPF_X] =cmp_reg,
3431 	[BPF_JMP32 | BPF_JSET | BPF_X] =jset_reg,
3432 	[BPF_JMP32 | BPF_JNE | BPF_X] =	jne_reg,
3433 	[BPF_JMP | BPF_CALL] =		call,
3434 	[BPF_JMP | BPF_EXIT] =		jmp_exit,
3435 };
3436 
3437 /* --- Assembler logic --- */
3438 static int
3439 nfp_fixup_immed_relo(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
3440 		     struct nfp_insn_meta *jmp_dst, u32 br_idx)
3441 {
3442 	if (immed_get_value(nfp_prog->prog[br_idx + 1])) {
3443 		pr_err("BUG: failed to fix up callee register saving\n");
3444 		return -EINVAL;
3445 	}
3446 
3447 	immed_set_value(&nfp_prog->prog[br_idx + 1], jmp_dst->off);
3448 
3449 	return 0;
3450 }
3451 
3452 static int nfp_fixup_branches(struct nfp_prog *nfp_prog)
3453 {
3454 	struct nfp_insn_meta *meta, *jmp_dst;
3455 	u32 idx, br_idx;
3456 	int err;
3457 
3458 	list_for_each_entry(meta, &nfp_prog->insns, l) {
3459 		if (meta->flags & FLAG_INSN_SKIP_MASK)
3460 			continue;
3461 		if (!is_mbpf_jmp(meta))
3462 			continue;
3463 		if (meta->insn.code == (BPF_JMP | BPF_EXIT) &&
3464 		    !nfp_is_main_function(meta))
3465 			continue;
3466 		if (is_mbpf_helper_call(meta))
3467 			continue;
3468 
3469 		if (list_is_last(&meta->l, &nfp_prog->insns))
3470 			br_idx = nfp_prog->last_bpf_off;
3471 		else
3472 			br_idx = list_next_entry(meta, l)->off - 1;
3473 
3474 		/* For BPF-to-BPF function call, a stack adjustment sequence is
3475 		 * generated after the return instruction. Therefore, we must
3476 		 * withdraw the length of this sequence to have br_idx pointing
3477 		 * to where the "branch" NFP instruction is expected to be.
3478 		 */
3479 		if (is_mbpf_pseudo_call(meta))
3480 			br_idx -= meta->num_insns_after_br;
3481 
3482 		if (!nfp_is_br(nfp_prog->prog[br_idx])) {
3483 			pr_err("Fixup found block not ending in branch %d %02x %016llx!!\n",
3484 			       br_idx, meta->insn.code, nfp_prog->prog[br_idx]);
3485 			return -ELOOP;
3486 		}
3487 
3488 		if (meta->insn.code == (BPF_JMP | BPF_EXIT))
3489 			continue;
3490 
3491 		/* Leave special branches for later */
3492 		if (FIELD_GET(OP_RELO_TYPE, nfp_prog->prog[br_idx]) !=
3493 		    RELO_BR_REL && !is_mbpf_pseudo_call(meta))
3494 			continue;
3495 
3496 		if (!meta->jmp_dst) {
3497 			pr_err("Non-exit jump doesn't have destination info recorded!!\n");
3498 			return -ELOOP;
3499 		}
3500 
3501 		jmp_dst = meta->jmp_dst;
3502 
3503 		if (jmp_dst->flags & FLAG_INSN_SKIP_PREC_DEPENDENT) {
3504 			pr_err("Branch landing on removed instruction!!\n");
3505 			return -ELOOP;
3506 		}
3507 
3508 		if (is_mbpf_pseudo_call(meta) &&
3509 		    nfp_prog->subprog[jmp_dst->subprog_idx].needs_reg_push) {
3510 			err = nfp_fixup_immed_relo(nfp_prog, meta,
3511 						   jmp_dst, br_idx);
3512 			if (err)
3513 				return err;
3514 		}
3515 
3516 		if (FIELD_GET(OP_RELO_TYPE, nfp_prog->prog[br_idx]) !=
3517 		    RELO_BR_REL)
3518 			continue;
3519 
3520 		for (idx = meta->off; idx <= br_idx; idx++) {
3521 			if (!nfp_is_br(nfp_prog->prog[idx]))
3522 				continue;
3523 			br_set_offset(&nfp_prog->prog[idx], jmp_dst->off);
3524 		}
3525 	}
3526 
3527 	return 0;
3528 }
3529 
3530 static void nfp_intro(struct nfp_prog *nfp_prog)
3531 {
3532 	wrp_immed(nfp_prog, plen_reg(nfp_prog), GENMASK(13, 0));
3533 	emit_alu(nfp_prog, plen_reg(nfp_prog),
3534 		 plen_reg(nfp_prog), ALU_OP_AND, pv_len(nfp_prog));
3535 }
3536 
3537 static void
3538 nfp_subprog_prologue(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
3539 {
3540 	/* Save return address into the stack. */
3541 	wrp_mov(nfp_prog, reg_lm(0, 0), ret_reg(nfp_prog));
3542 }
3543 
3544 static void
3545 nfp_start_subprog(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
3546 {
3547 	unsigned int depth = nfp_prog->subprog[meta->subprog_idx].stack_depth;
3548 
3549 	nfp_prog->stack_frame_depth = round_up(depth, 4);
3550 	nfp_subprog_prologue(nfp_prog, meta);
3551 }
3552 
3553 bool nfp_is_subprog_start(struct nfp_insn_meta *meta)
3554 {
3555 	return meta->flags & FLAG_INSN_IS_SUBPROG_START;
3556 }
3557 
3558 static void nfp_outro_tc_da(struct nfp_prog *nfp_prog)
3559 {
3560 	/* TC direct-action mode:
3561 	 *   0,1   ok        NOT SUPPORTED[1]
3562 	 *   2   drop  0x22 -> drop,  count as stat1
3563 	 *   4,5 nuke  0x02 -> drop
3564 	 *   7  redir  0x44 -> redir, count as stat2
3565 	 *   * unspec  0x11 -> pass,  count as stat0
3566 	 *
3567 	 * [1] We can't support OK and RECLASSIFY because we can't tell TC
3568 	 *     the exact decision made.  We are forced to support UNSPEC
3569 	 *     to handle aborts so that's the only one we handle for passing
3570 	 *     packets up the stack.
3571 	 */
3572 	/* Target for aborts */
3573 	nfp_prog->tgt_abort = nfp_prog_current_offset(nfp_prog);
3574 
3575 	emit_br_relo(nfp_prog, BR_UNC, BR_OFF_RELO, 2, RELO_BR_NEXT_PKT);
3576 
3577 	wrp_mov(nfp_prog, reg_a(0), NFP_BPF_ABI_FLAGS);
3578 	emit_ld_field(nfp_prog, reg_a(0), 0xc, reg_imm(0x11), SHF_SC_L_SHF, 16);
3579 
3580 	/* Target for normal exits */
3581 	nfp_prog->tgt_out = nfp_prog_current_offset(nfp_prog);
3582 
3583 	/* if R0 > 7 jump to abort */
3584 	emit_alu(nfp_prog, reg_none(), reg_imm(7), ALU_OP_SUB, reg_b(0));
3585 	emit_br(nfp_prog, BR_BLO, nfp_prog->tgt_abort, 0);
3586 	wrp_mov(nfp_prog, reg_a(0), NFP_BPF_ABI_FLAGS);
3587 
3588 	wrp_immed(nfp_prog, reg_b(2), 0x41221211);
3589 	wrp_immed(nfp_prog, reg_b(3), 0x41001211);
3590 
3591 	emit_shf(nfp_prog, reg_a(1),
3592 		 reg_none(), SHF_OP_NONE, reg_b(0), SHF_SC_L_SHF, 2);
3593 
3594 	emit_alu(nfp_prog, reg_none(), reg_a(1), ALU_OP_OR, reg_imm(0));
3595 	emit_shf(nfp_prog, reg_a(2),
3596 		 reg_imm(0xf), SHF_OP_AND, reg_b(2), SHF_SC_R_SHF, 0);
3597 
3598 	emit_alu(nfp_prog, reg_none(), reg_a(1), ALU_OP_OR, reg_imm(0));
3599 	emit_shf(nfp_prog, reg_b(2),
3600 		 reg_imm(0xf), SHF_OP_AND, reg_b(3), SHF_SC_R_SHF, 0);
3601 
3602 	emit_br_relo(nfp_prog, BR_UNC, BR_OFF_RELO, 2, RELO_BR_NEXT_PKT);
3603 
3604 	emit_shf(nfp_prog, reg_b(2),
3605 		 reg_a(2), SHF_OP_OR, reg_b(2), SHF_SC_L_SHF, 4);
3606 	emit_ld_field(nfp_prog, reg_a(0), 0xc, reg_b(2), SHF_SC_L_SHF, 16);
3607 }
3608 
3609 static void nfp_outro_xdp(struct nfp_prog *nfp_prog)
3610 {
3611 	/* XDP return codes:
3612 	 *   0 aborted  0x82 -> drop,  count as stat3
3613 	 *   1    drop  0x22 -> drop,  count as stat1
3614 	 *   2    pass  0x11 -> pass,  count as stat0
3615 	 *   3      tx  0x44 -> redir, count as stat2
3616 	 *   * unknown  0x82 -> drop,  count as stat3
3617 	 */
3618 	/* Target for aborts */
3619 	nfp_prog->tgt_abort = nfp_prog_current_offset(nfp_prog);
3620 
3621 	emit_br_relo(nfp_prog, BR_UNC, BR_OFF_RELO, 2, RELO_BR_NEXT_PKT);
3622 
3623 	wrp_mov(nfp_prog, reg_a(0), NFP_BPF_ABI_FLAGS);
3624 	emit_ld_field(nfp_prog, reg_a(0), 0xc, reg_imm(0x82), SHF_SC_L_SHF, 16);
3625 
3626 	/* Target for normal exits */
3627 	nfp_prog->tgt_out = nfp_prog_current_offset(nfp_prog);
3628 
3629 	/* if R0 > 3 jump to abort */
3630 	emit_alu(nfp_prog, reg_none(), reg_imm(3), ALU_OP_SUB, reg_b(0));
3631 	emit_br(nfp_prog, BR_BLO, nfp_prog->tgt_abort, 0);
3632 
3633 	wrp_immed(nfp_prog, reg_b(2), 0x44112282);
3634 
3635 	emit_shf(nfp_prog, reg_a(1),
3636 		 reg_none(), SHF_OP_NONE, reg_b(0), SHF_SC_L_SHF, 3);
3637 
3638 	emit_alu(nfp_prog, reg_none(), reg_a(1), ALU_OP_OR, reg_imm(0));
3639 	emit_shf(nfp_prog, reg_b(2),
3640 		 reg_imm(0xff), SHF_OP_AND, reg_b(2), SHF_SC_R_SHF, 0);
3641 
3642 	emit_br_relo(nfp_prog, BR_UNC, BR_OFF_RELO, 2, RELO_BR_NEXT_PKT);
3643 
3644 	wrp_mov(nfp_prog, reg_a(0), NFP_BPF_ABI_FLAGS);
3645 	emit_ld_field(nfp_prog, reg_a(0), 0xc, reg_b(2), SHF_SC_L_SHF, 16);
3646 }
3647 
3648 static bool nfp_prog_needs_callee_reg_save(struct nfp_prog *nfp_prog)
3649 {
3650 	unsigned int idx;
3651 
3652 	for (idx = 1; idx < nfp_prog->subprog_cnt; idx++)
3653 		if (nfp_prog->subprog[idx].needs_reg_push)
3654 			return true;
3655 
3656 	return false;
3657 }
3658 
3659 static void nfp_push_callee_registers(struct nfp_prog *nfp_prog)
3660 {
3661 	u8 reg;
3662 
3663 	/* Subroutine: Save all callee saved registers (R6 ~ R9).
3664 	 * imm_b() holds the return address.
3665 	 */
3666 	nfp_prog->tgt_call_push_regs = nfp_prog_current_offset(nfp_prog);
3667 	for (reg = BPF_REG_6; reg <= BPF_REG_9; reg++) {
3668 		u8 adj = (reg - BPF_REG_0) * 2;
3669 		u8 idx = (reg - BPF_REG_6) * 2;
3670 
3671 		/* The first slot in the stack frame is used to push the return
3672 		 * address in bpf_to_bpf_call(), start just after.
3673 		 */
3674 		wrp_mov(nfp_prog, reg_lm(0, 1 + idx), reg_b(adj));
3675 
3676 		if (reg == BPF_REG_8)
3677 			/* Prepare to jump back, last 3 insns use defer slots */
3678 			emit_rtn(nfp_prog, imm_b(nfp_prog), 3);
3679 
3680 		wrp_mov(nfp_prog, reg_lm(0, 1 + idx + 1), reg_b(adj + 1));
3681 	}
3682 }
3683 
3684 static void nfp_pop_callee_registers(struct nfp_prog *nfp_prog)
3685 {
3686 	u8 reg;
3687 
3688 	/* Subroutine: Restore all callee saved registers (R6 ~ R9).
3689 	 * ret_reg() holds the return address.
3690 	 */
3691 	nfp_prog->tgt_call_pop_regs = nfp_prog_current_offset(nfp_prog);
3692 	for (reg = BPF_REG_6; reg <= BPF_REG_9; reg++) {
3693 		u8 adj = (reg - BPF_REG_0) * 2;
3694 		u8 idx = (reg - BPF_REG_6) * 2;
3695 
3696 		/* The first slot in the stack frame holds the return address,
3697 		 * start popping just after that.
3698 		 */
3699 		wrp_mov(nfp_prog, reg_both(adj), reg_lm(0, 1 + idx));
3700 
3701 		if (reg == BPF_REG_8)
3702 			/* Prepare to jump back, last 3 insns use defer slots */
3703 			emit_rtn(nfp_prog, ret_reg(nfp_prog), 3);
3704 
3705 		wrp_mov(nfp_prog, reg_both(adj + 1), reg_lm(0, 1 + idx + 1));
3706 	}
3707 }
3708 
3709 static void nfp_outro(struct nfp_prog *nfp_prog)
3710 {
3711 	switch (nfp_prog->type) {
3712 	case BPF_PROG_TYPE_SCHED_CLS:
3713 		nfp_outro_tc_da(nfp_prog);
3714 		break;
3715 	case BPF_PROG_TYPE_XDP:
3716 		nfp_outro_xdp(nfp_prog);
3717 		break;
3718 	default:
3719 		WARN_ON(1);
3720 	}
3721 
3722 	if (!nfp_prog_needs_callee_reg_save(nfp_prog))
3723 		return;
3724 
3725 	nfp_push_callee_registers(nfp_prog);
3726 	nfp_pop_callee_registers(nfp_prog);
3727 }
3728 
3729 static int nfp_translate(struct nfp_prog *nfp_prog)
3730 {
3731 	struct nfp_insn_meta *meta;
3732 	unsigned int depth;
3733 	int err;
3734 
3735 	depth = nfp_prog->subprog[0].stack_depth;
3736 	nfp_prog->stack_frame_depth = round_up(depth, 4);
3737 
3738 	nfp_intro(nfp_prog);
3739 	if (nfp_prog->error)
3740 		return nfp_prog->error;
3741 
3742 	list_for_each_entry(meta, &nfp_prog->insns, l) {
3743 		instr_cb_t cb = instr_cb[meta->insn.code];
3744 
3745 		meta->off = nfp_prog_current_offset(nfp_prog);
3746 
3747 		if (nfp_is_subprog_start(meta)) {
3748 			nfp_start_subprog(nfp_prog, meta);
3749 			if (nfp_prog->error)
3750 				return nfp_prog->error;
3751 		}
3752 
3753 		if (meta->flags & FLAG_INSN_SKIP_MASK) {
3754 			nfp_prog->n_translated++;
3755 			continue;
3756 		}
3757 
3758 		if (nfp_meta_has_prev(nfp_prog, meta) &&
3759 		    nfp_meta_prev(meta)->double_cb)
3760 			cb = nfp_meta_prev(meta)->double_cb;
3761 		if (!cb)
3762 			return -ENOENT;
3763 		err = cb(nfp_prog, meta);
3764 		if (err)
3765 			return err;
3766 		if (nfp_prog->error)
3767 			return nfp_prog->error;
3768 
3769 		nfp_prog->n_translated++;
3770 	}
3771 
3772 	nfp_prog->last_bpf_off = nfp_prog_current_offset(nfp_prog) - 1;
3773 
3774 	nfp_outro(nfp_prog);
3775 	if (nfp_prog->error)
3776 		return nfp_prog->error;
3777 
3778 	wrp_nops(nfp_prog, NFP_USTORE_PREFETCH_WINDOW);
3779 	if (nfp_prog->error)
3780 		return nfp_prog->error;
3781 
3782 	return nfp_fixup_branches(nfp_prog);
3783 }
3784 
3785 /* --- Optimizations --- */
3786 static void nfp_bpf_opt_reg_init(struct nfp_prog *nfp_prog)
3787 {
3788 	struct nfp_insn_meta *meta;
3789 
3790 	list_for_each_entry(meta, &nfp_prog->insns, l) {
3791 		struct bpf_insn insn = meta->insn;
3792 
3793 		/* Programs converted from cBPF start with register xoring */
3794 		if (insn.code == (BPF_ALU64 | BPF_XOR | BPF_X) &&
3795 		    insn.src_reg == insn.dst_reg)
3796 			continue;
3797 
3798 		/* Programs start with R6 = R1 but we ignore the skb pointer */
3799 		if (insn.code == (BPF_ALU64 | BPF_MOV | BPF_X) &&
3800 		    insn.src_reg == 1 && insn.dst_reg == 6)
3801 			meta->flags |= FLAG_INSN_SKIP_PREC_DEPENDENT;
3802 
3803 		/* Return as soon as something doesn't match */
3804 		if (!(meta->flags & FLAG_INSN_SKIP_MASK))
3805 			return;
3806 	}
3807 }
3808 
3809 /* abs(insn.imm) will fit better into unrestricted reg immediate -
3810  * convert add/sub of a negative number into a sub/add of a positive one.
3811  */
3812 static void nfp_bpf_opt_neg_add_sub(struct nfp_prog *nfp_prog)
3813 {
3814 	struct nfp_insn_meta *meta;
3815 
3816 	list_for_each_entry(meta, &nfp_prog->insns, l) {
3817 		struct bpf_insn insn = meta->insn;
3818 
3819 		if (meta->flags & FLAG_INSN_SKIP_MASK)
3820 			continue;
3821 
3822 		if (!is_mbpf_alu(meta) && !is_mbpf_jmp(meta))
3823 			continue;
3824 		if (BPF_SRC(insn.code) != BPF_K)
3825 			continue;
3826 		if (insn.imm >= 0)
3827 			continue;
3828 
3829 		if (is_mbpf_jmp(meta)) {
3830 			switch (BPF_OP(insn.code)) {
3831 			case BPF_JGE:
3832 			case BPF_JSGE:
3833 			case BPF_JLT:
3834 			case BPF_JSLT:
3835 				meta->jump_neg_op = true;
3836 				break;
3837 			default:
3838 				continue;
3839 			}
3840 		} else {
3841 			if (BPF_OP(insn.code) == BPF_ADD)
3842 				insn.code = BPF_CLASS(insn.code) | BPF_SUB;
3843 			else if (BPF_OP(insn.code) == BPF_SUB)
3844 				insn.code = BPF_CLASS(insn.code) | BPF_ADD;
3845 			else
3846 				continue;
3847 
3848 			meta->insn.code = insn.code | BPF_K;
3849 		}
3850 
3851 		meta->insn.imm = -insn.imm;
3852 	}
3853 }
3854 
3855 /* Remove masking after load since our load guarantees this is not needed */
3856 static void nfp_bpf_opt_ld_mask(struct nfp_prog *nfp_prog)
3857 {
3858 	struct nfp_insn_meta *meta1, *meta2;
3859 	const s32 exp_mask[] = {
3860 		[BPF_B] = 0x000000ffU,
3861 		[BPF_H] = 0x0000ffffU,
3862 		[BPF_W] = 0xffffffffU,
3863 	};
3864 
3865 	nfp_for_each_insn_walk2(nfp_prog, meta1, meta2) {
3866 		struct bpf_insn insn, next;
3867 
3868 		insn = meta1->insn;
3869 		next = meta2->insn;
3870 
3871 		if (BPF_CLASS(insn.code) != BPF_LD)
3872 			continue;
3873 		if (BPF_MODE(insn.code) != BPF_ABS &&
3874 		    BPF_MODE(insn.code) != BPF_IND)
3875 			continue;
3876 
3877 		if (next.code != (BPF_ALU64 | BPF_AND | BPF_K))
3878 			continue;
3879 
3880 		if (!exp_mask[BPF_SIZE(insn.code)])
3881 			continue;
3882 		if (exp_mask[BPF_SIZE(insn.code)] != next.imm)
3883 			continue;
3884 
3885 		if (next.src_reg || next.dst_reg)
3886 			continue;
3887 
3888 		if (meta2->flags & FLAG_INSN_IS_JUMP_DST)
3889 			continue;
3890 
3891 		meta2->flags |= FLAG_INSN_SKIP_PREC_DEPENDENT;
3892 	}
3893 }
3894 
3895 static void nfp_bpf_opt_ld_shift(struct nfp_prog *nfp_prog)
3896 {
3897 	struct nfp_insn_meta *meta1, *meta2, *meta3;
3898 
3899 	nfp_for_each_insn_walk3(nfp_prog, meta1, meta2, meta3) {
3900 		struct bpf_insn insn, next1, next2;
3901 
3902 		insn = meta1->insn;
3903 		next1 = meta2->insn;
3904 		next2 = meta3->insn;
3905 
3906 		if (BPF_CLASS(insn.code) != BPF_LD)
3907 			continue;
3908 		if (BPF_MODE(insn.code) != BPF_ABS &&
3909 		    BPF_MODE(insn.code) != BPF_IND)
3910 			continue;
3911 		if (BPF_SIZE(insn.code) != BPF_W)
3912 			continue;
3913 
3914 		if (!(next1.code == (BPF_LSH | BPF_K | BPF_ALU64) &&
3915 		      next2.code == (BPF_RSH | BPF_K | BPF_ALU64)) &&
3916 		    !(next1.code == (BPF_RSH | BPF_K | BPF_ALU64) &&
3917 		      next2.code == (BPF_LSH | BPF_K | BPF_ALU64)))
3918 			continue;
3919 
3920 		if (next1.src_reg || next1.dst_reg ||
3921 		    next2.src_reg || next2.dst_reg)
3922 			continue;
3923 
3924 		if (next1.imm != 0x20 || next2.imm != 0x20)
3925 			continue;
3926 
3927 		if (meta2->flags & FLAG_INSN_IS_JUMP_DST ||
3928 		    meta3->flags & FLAG_INSN_IS_JUMP_DST)
3929 			continue;
3930 
3931 		meta2->flags |= FLAG_INSN_SKIP_PREC_DEPENDENT;
3932 		meta3->flags |= FLAG_INSN_SKIP_PREC_DEPENDENT;
3933 	}
3934 }
3935 
3936 /* load/store pair that forms memory copy sould look like the following:
3937  *
3938  *   ld_width R, [addr_src + offset_src]
3939  *   st_width [addr_dest + offset_dest], R
3940  *
3941  * The destination register of load and source register of store should
3942  * be the same, load and store should also perform at the same width.
3943  * If either of addr_src or addr_dest is stack pointer, we don't do the
3944  * CPP optimization as stack is modelled by registers on NFP.
3945  */
3946 static bool
3947 curr_pair_is_memcpy(struct nfp_insn_meta *ld_meta,
3948 		    struct nfp_insn_meta *st_meta)
3949 {
3950 	struct bpf_insn *ld = &ld_meta->insn;
3951 	struct bpf_insn *st = &st_meta->insn;
3952 
3953 	if (!is_mbpf_load(ld_meta) || !is_mbpf_store(st_meta))
3954 		return false;
3955 
3956 	if (ld_meta->ptr.type != PTR_TO_PACKET &&
3957 	    ld_meta->ptr.type != PTR_TO_MAP_VALUE)
3958 		return false;
3959 
3960 	if (st_meta->ptr.type != PTR_TO_PACKET)
3961 		return false;
3962 
3963 	if (BPF_SIZE(ld->code) != BPF_SIZE(st->code))
3964 		return false;
3965 
3966 	if (ld->dst_reg != st->src_reg)
3967 		return false;
3968 
3969 	/* There is jump to the store insn in this pair. */
3970 	if (st_meta->flags & FLAG_INSN_IS_JUMP_DST)
3971 		return false;
3972 
3973 	return true;
3974 }
3975 
3976 /* Currently, we only support chaining load/store pairs if:
3977  *
3978  *  - Their address base registers are the same.
3979  *  - Their address offsets are in the same order.
3980  *  - They operate at the same memory width.
3981  *  - There is no jump into the middle of them.
3982  */
3983 static bool
3984 curr_pair_chain_with_previous(struct nfp_insn_meta *ld_meta,
3985 			      struct nfp_insn_meta *st_meta,
3986 			      struct bpf_insn *prev_ld,
3987 			      struct bpf_insn *prev_st)
3988 {
3989 	u8 prev_size, curr_size, prev_ld_base, prev_st_base, prev_ld_dst;
3990 	struct bpf_insn *ld = &ld_meta->insn;
3991 	struct bpf_insn *st = &st_meta->insn;
3992 	s16 prev_ld_off, prev_st_off;
3993 
3994 	/* This pair is the start pair. */
3995 	if (!prev_ld)
3996 		return true;
3997 
3998 	prev_size = BPF_LDST_BYTES(prev_ld);
3999 	curr_size = BPF_LDST_BYTES(ld);
4000 	prev_ld_base = prev_ld->src_reg;
4001 	prev_st_base = prev_st->dst_reg;
4002 	prev_ld_dst = prev_ld->dst_reg;
4003 	prev_ld_off = prev_ld->off;
4004 	prev_st_off = prev_st->off;
4005 
4006 	if (ld->dst_reg != prev_ld_dst)
4007 		return false;
4008 
4009 	if (ld->src_reg != prev_ld_base || st->dst_reg != prev_st_base)
4010 		return false;
4011 
4012 	if (curr_size != prev_size)
4013 		return false;
4014 
4015 	/* There is jump to the head of this pair. */
4016 	if (ld_meta->flags & FLAG_INSN_IS_JUMP_DST)
4017 		return false;
4018 
4019 	/* Both in ascending order. */
4020 	if (prev_ld_off + prev_size == ld->off &&
4021 	    prev_st_off + prev_size == st->off)
4022 		return true;
4023 
4024 	/* Both in descending order. */
4025 	if (ld->off + curr_size == prev_ld_off &&
4026 	    st->off + curr_size == prev_st_off)
4027 		return true;
4028 
4029 	return false;
4030 }
4031 
4032 /* Return TRUE if cross memory access happens. Cross memory access means
4033  * store area is overlapping with load area that a later load might load
4034  * the value from previous store, for this case we can't treat the sequence
4035  * as an memory copy.
4036  */
4037 static bool
4038 cross_mem_access(struct bpf_insn *ld, struct nfp_insn_meta *head_ld_meta,
4039 		 struct nfp_insn_meta *head_st_meta)
4040 {
4041 	s16 head_ld_off, head_st_off, ld_off;
4042 
4043 	/* Different pointer types does not overlap. */
4044 	if (head_ld_meta->ptr.type != head_st_meta->ptr.type)
4045 		return false;
4046 
4047 	/* load and store are both PTR_TO_PACKET, check ID info.  */
4048 	if (head_ld_meta->ptr.id != head_st_meta->ptr.id)
4049 		return true;
4050 
4051 	/* Canonicalize the offsets. Turn all of them against the original
4052 	 * base register.
4053 	 */
4054 	head_ld_off = head_ld_meta->insn.off + head_ld_meta->ptr.off;
4055 	head_st_off = head_st_meta->insn.off + head_st_meta->ptr.off;
4056 	ld_off = ld->off + head_ld_meta->ptr.off;
4057 
4058 	/* Ascending order cross. */
4059 	if (ld_off > head_ld_off &&
4060 	    head_ld_off < head_st_off && ld_off >= head_st_off)
4061 		return true;
4062 
4063 	/* Descending order cross. */
4064 	if (ld_off < head_ld_off &&
4065 	    head_ld_off > head_st_off && ld_off <= head_st_off)
4066 		return true;
4067 
4068 	return false;
4069 }
4070 
4071 /* This pass try to identify the following instructoin sequences.
4072  *
4073  *   load R, [regA + offA]
4074  *   store [regB + offB], R
4075  *   load R, [regA + offA + const_imm_A]
4076  *   store [regB + offB + const_imm_A], R
4077  *   load R, [regA + offA + 2 * const_imm_A]
4078  *   store [regB + offB + 2 * const_imm_A], R
4079  *   ...
4080  *
4081  * Above sequence is typically generated by compiler when lowering
4082  * memcpy. NFP prefer using CPP instructions to accelerate it.
4083  */
4084 static void nfp_bpf_opt_ldst_gather(struct nfp_prog *nfp_prog)
4085 {
4086 	struct nfp_insn_meta *head_ld_meta = NULL;
4087 	struct nfp_insn_meta *head_st_meta = NULL;
4088 	struct nfp_insn_meta *meta1, *meta2;
4089 	struct bpf_insn *prev_ld = NULL;
4090 	struct bpf_insn *prev_st = NULL;
4091 	u8 count = 0;
4092 
4093 	nfp_for_each_insn_walk2(nfp_prog, meta1, meta2) {
4094 		struct bpf_insn *ld = &meta1->insn;
4095 		struct bpf_insn *st = &meta2->insn;
4096 
4097 		/* Reset record status if any of the following if true:
4098 		 *   - The current insn pair is not load/store.
4099 		 *   - The load/store pair doesn't chain with previous one.
4100 		 *   - The chained load/store pair crossed with previous pair.
4101 		 *   - The chained load/store pair has a total size of memory
4102 		 *     copy beyond 128 bytes which is the maximum length a
4103 		 *     single NFP CPP command can transfer.
4104 		 */
4105 		if (!curr_pair_is_memcpy(meta1, meta2) ||
4106 		    !curr_pair_chain_with_previous(meta1, meta2, prev_ld,
4107 						   prev_st) ||
4108 		    (head_ld_meta && (cross_mem_access(ld, head_ld_meta,
4109 						       head_st_meta) ||
4110 				      head_ld_meta->ldst_gather_len >= 128))) {
4111 			if (!count)
4112 				continue;
4113 
4114 			if (count > 1) {
4115 				s16 prev_ld_off = prev_ld->off;
4116 				s16 prev_st_off = prev_st->off;
4117 				s16 head_ld_off = head_ld_meta->insn.off;
4118 
4119 				if (prev_ld_off < head_ld_off) {
4120 					head_ld_meta->insn.off = prev_ld_off;
4121 					head_st_meta->insn.off = prev_st_off;
4122 					head_ld_meta->ldst_gather_len =
4123 						-head_ld_meta->ldst_gather_len;
4124 				}
4125 
4126 				head_ld_meta->paired_st = &head_st_meta->insn;
4127 				head_st_meta->flags |=
4128 					FLAG_INSN_SKIP_PREC_DEPENDENT;
4129 			} else {
4130 				head_ld_meta->ldst_gather_len = 0;
4131 			}
4132 
4133 			/* If the chain is ended by an load/store pair then this
4134 			 * could serve as the new head of the the next chain.
4135 			 */
4136 			if (curr_pair_is_memcpy(meta1, meta2)) {
4137 				head_ld_meta = meta1;
4138 				head_st_meta = meta2;
4139 				head_ld_meta->ldst_gather_len =
4140 					BPF_LDST_BYTES(ld);
4141 				meta1 = nfp_meta_next(meta1);
4142 				meta2 = nfp_meta_next(meta2);
4143 				prev_ld = ld;
4144 				prev_st = st;
4145 				count = 1;
4146 			} else {
4147 				head_ld_meta = NULL;
4148 				head_st_meta = NULL;
4149 				prev_ld = NULL;
4150 				prev_st = NULL;
4151 				count = 0;
4152 			}
4153 
4154 			continue;
4155 		}
4156 
4157 		if (!head_ld_meta) {
4158 			head_ld_meta = meta1;
4159 			head_st_meta = meta2;
4160 		} else {
4161 			meta1->flags |= FLAG_INSN_SKIP_PREC_DEPENDENT;
4162 			meta2->flags |= FLAG_INSN_SKIP_PREC_DEPENDENT;
4163 		}
4164 
4165 		head_ld_meta->ldst_gather_len += BPF_LDST_BYTES(ld);
4166 		meta1 = nfp_meta_next(meta1);
4167 		meta2 = nfp_meta_next(meta2);
4168 		prev_ld = ld;
4169 		prev_st = st;
4170 		count++;
4171 	}
4172 }
4173 
4174 static void nfp_bpf_opt_pkt_cache(struct nfp_prog *nfp_prog)
4175 {
4176 	struct nfp_insn_meta *meta, *range_node = NULL;
4177 	s16 range_start = 0, range_end = 0;
4178 	bool cache_avail = false;
4179 	struct bpf_insn *insn;
4180 	s32 range_ptr_off = 0;
4181 	u32 range_ptr_id = 0;
4182 
4183 	list_for_each_entry(meta, &nfp_prog->insns, l) {
4184 		if (meta->flags & FLAG_INSN_IS_JUMP_DST)
4185 			cache_avail = false;
4186 
4187 		if (meta->flags & FLAG_INSN_SKIP_MASK)
4188 			continue;
4189 
4190 		insn = &meta->insn;
4191 
4192 		if (is_mbpf_store_pkt(meta) ||
4193 		    insn->code == (BPF_JMP | BPF_CALL) ||
4194 		    is_mbpf_classic_store_pkt(meta) ||
4195 		    is_mbpf_classic_load(meta)) {
4196 			cache_avail = false;
4197 			continue;
4198 		}
4199 
4200 		if (!is_mbpf_load(meta))
4201 			continue;
4202 
4203 		if (meta->ptr.type != PTR_TO_PACKET || meta->ldst_gather_len) {
4204 			cache_avail = false;
4205 			continue;
4206 		}
4207 
4208 		if (!cache_avail) {
4209 			cache_avail = true;
4210 			if (range_node)
4211 				goto end_current_then_start_new;
4212 			goto start_new;
4213 		}
4214 
4215 		/* Check ID to make sure two reads share the same
4216 		 * variable offset against PTR_TO_PACKET, and check OFF
4217 		 * to make sure they also share the same constant
4218 		 * offset.
4219 		 *
4220 		 * OFFs don't really need to be the same, because they
4221 		 * are the constant offsets against PTR_TO_PACKET, so
4222 		 * for different OFFs, we could canonicalize them to
4223 		 * offsets against original packet pointer. We don't
4224 		 * support this.
4225 		 */
4226 		if (meta->ptr.id == range_ptr_id &&
4227 		    meta->ptr.off == range_ptr_off) {
4228 			s16 new_start = range_start;
4229 			s16 end, off = insn->off;
4230 			s16 new_end = range_end;
4231 			bool changed = false;
4232 
4233 			if (off < range_start) {
4234 				new_start = off;
4235 				changed = true;
4236 			}
4237 
4238 			end = off + BPF_LDST_BYTES(insn);
4239 			if (end > range_end) {
4240 				new_end = end;
4241 				changed = true;
4242 			}
4243 
4244 			if (!changed)
4245 				continue;
4246 
4247 			if (new_end - new_start <= 64) {
4248 				/* Install new range. */
4249 				range_start = new_start;
4250 				range_end = new_end;
4251 				continue;
4252 			}
4253 		}
4254 
4255 end_current_then_start_new:
4256 		range_node->pkt_cache.range_start = range_start;
4257 		range_node->pkt_cache.range_end = range_end;
4258 start_new:
4259 		range_node = meta;
4260 		range_node->pkt_cache.do_init = true;
4261 		range_ptr_id = range_node->ptr.id;
4262 		range_ptr_off = range_node->ptr.off;
4263 		range_start = insn->off;
4264 		range_end = insn->off + BPF_LDST_BYTES(insn);
4265 	}
4266 
4267 	if (range_node) {
4268 		range_node->pkt_cache.range_start = range_start;
4269 		range_node->pkt_cache.range_end = range_end;
4270 	}
4271 
4272 	list_for_each_entry(meta, &nfp_prog->insns, l) {
4273 		if (meta->flags & FLAG_INSN_SKIP_MASK)
4274 			continue;
4275 
4276 		if (is_mbpf_load_pkt(meta) && !meta->ldst_gather_len) {
4277 			if (meta->pkt_cache.do_init) {
4278 				range_start = meta->pkt_cache.range_start;
4279 				range_end = meta->pkt_cache.range_end;
4280 			} else {
4281 				meta->pkt_cache.range_start = range_start;
4282 				meta->pkt_cache.range_end = range_end;
4283 			}
4284 		}
4285 	}
4286 }
4287 
4288 static int nfp_bpf_optimize(struct nfp_prog *nfp_prog)
4289 {
4290 	nfp_bpf_opt_reg_init(nfp_prog);
4291 
4292 	nfp_bpf_opt_neg_add_sub(nfp_prog);
4293 	nfp_bpf_opt_ld_mask(nfp_prog);
4294 	nfp_bpf_opt_ld_shift(nfp_prog);
4295 	nfp_bpf_opt_ldst_gather(nfp_prog);
4296 	nfp_bpf_opt_pkt_cache(nfp_prog);
4297 
4298 	return 0;
4299 }
4300 
4301 static int nfp_bpf_replace_map_ptrs(struct nfp_prog *nfp_prog)
4302 {
4303 	struct nfp_insn_meta *meta1, *meta2;
4304 	struct nfp_bpf_map *nfp_map;
4305 	struct bpf_map *map;
4306 	u32 id;
4307 
4308 	nfp_for_each_insn_walk2(nfp_prog, meta1, meta2) {
4309 		if (meta1->flags & FLAG_INSN_SKIP_MASK ||
4310 		    meta2->flags & FLAG_INSN_SKIP_MASK)
4311 			continue;
4312 
4313 		if (meta1->insn.code != (BPF_LD | BPF_IMM | BPF_DW) ||
4314 		    meta1->insn.src_reg != BPF_PSEUDO_MAP_FD)
4315 			continue;
4316 
4317 		map = (void *)(unsigned long)((u32)meta1->insn.imm |
4318 					      (u64)meta2->insn.imm << 32);
4319 		if (bpf_map_offload_neutral(map)) {
4320 			id = map->id;
4321 		} else {
4322 			nfp_map = map_to_offmap(map)->dev_priv;
4323 			id = nfp_map->tid;
4324 		}
4325 
4326 		meta1->insn.imm = id;
4327 		meta2->insn.imm = 0;
4328 	}
4329 
4330 	return 0;
4331 }
4332 
4333 static int nfp_bpf_ustore_calc(u64 *prog, unsigned int len)
4334 {
4335 	__le64 *ustore = (__force __le64 *)prog;
4336 	int i;
4337 
4338 	for (i = 0; i < len; i++) {
4339 		int err;
4340 
4341 		err = nfp_ustore_check_valid_no_ecc(prog[i]);
4342 		if (err)
4343 			return err;
4344 
4345 		ustore[i] = cpu_to_le64(nfp_ustore_calc_ecc_insn(prog[i]));
4346 	}
4347 
4348 	return 0;
4349 }
4350 
4351 static void nfp_bpf_prog_trim(struct nfp_prog *nfp_prog)
4352 {
4353 	void *prog;
4354 
4355 	prog = kvmalloc_array(nfp_prog->prog_len, sizeof(u64), GFP_KERNEL);
4356 	if (!prog)
4357 		return;
4358 
4359 	nfp_prog->__prog_alloc_len = nfp_prog->prog_len * sizeof(u64);
4360 	memcpy(prog, nfp_prog->prog, nfp_prog->__prog_alloc_len);
4361 	kvfree(nfp_prog->prog);
4362 	nfp_prog->prog = prog;
4363 }
4364 
4365 int nfp_bpf_jit(struct nfp_prog *nfp_prog)
4366 {
4367 	int ret;
4368 
4369 	ret = nfp_bpf_replace_map_ptrs(nfp_prog);
4370 	if (ret)
4371 		return ret;
4372 
4373 	ret = nfp_bpf_optimize(nfp_prog);
4374 	if (ret)
4375 		return ret;
4376 
4377 	ret = nfp_translate(nfp_prog);
4378 	if (ret) {
4379 		pr_err("Translation failed with error %d (translated: %u)\n",
4380 		       ret, nfp_prog->n_translated);
4381 		return -EINVAL;
4382 	}
4383 
4384 	nfp_bpf_prog_trim(nfp_prog);
4385 
4386 	return ret;
4387 }
4388 
4389 void nfp_bpf_jit_prepare(struct nfp_prog *nfp_prog)
4390 {
4391 	struct nfp_insn_meta *meta;
4392 
4393 	/* Another pass to record jump information. */
4394 	list_for_each_entry(meta, &nfp_prog->insns, l) {
4395 		struct nfp_insn_meta *dst_meta;
4396 		u64 code = meta->insn.code;
4397 		unsigned int dst_idx;
4398 		bool pseudo_call;
4399 
4400 		if (!is_mbpf_jmp(meta))
4401 			continue;
4402 		if (BPF_OP(code) == BPF_EXIT)
4403 			continue;
4404 		if (is_mbpf_helper_call(meta))
4405 			continue;
4406 
4407 		/* If opcode is BPF_CALL at this point, this can only be a
4408 		 * BPF-to-BPF call (a.k.a pseudo call).
4409 		 */
4410 		pseudo_call = BPF_OP(code) == BPF_CALL;
4411 
4412 		if (pseudo_call)
4413 			dst_idx = meta->n + 1 + meta->insn.imm;
4414 		else
4415 			dst_idx = meta->n + 1 + meta->insn.off;
4416 
4417 		dst_meta = nfp_bpf_goto_meta(nfp_prog, meta, dst_idx);
4418 
4419 		if (pseudo_call)
4420 			dst_meta->flags |= FLAG_INSN_IS_SUBPROG_START;
4421 
4422 		dst_meta->flags |= FLAG_INSN_IS_JUMP_DST;
4423 		meta->jmp_dst = dst_meta;
4424 	}
4425 }
4426 
4427 bool nfp_bpf_supported_opcode(u8 code)
4428 {
4429 	return !!instr_cb[code];
4430 }
4431 
4432 void *nfp_bpf_relo_for_vnic(struct nfp_prog *nfp_prog, struct nfp_bpf_vnic *bv)
4433 {
4434 	unsigned int i;
4435 	u64 *prog;
4436 	int err;
4437 
4438 	prog = kmemdup(nfp_prog->prog, nfp_prog->prog_len * sizeof(u64),
4439 		       GFP_KERNEL);
4440 	if (!prog)
4441 		return ERR_PTR(-ENOMEM);
4442 
4443 	for (i = 0; i < nfp_prog->prog_len; i++) {
4444 		enum nfp_relo_type special;
4445 		u32 val;
4446 		u16 off;
4447 
4448 		special = FIELD_GET(OP_RELO_TYPE, prog[i]);
4449 		switch (special) {
4450 		case RELO_NONE:
4451 			continue;
4452 		case RELO_BR_REL:
4453 			br_add_offset(&prog[i], bv->start_off);
4454 			break;
4455 		case RELO_BR_GO_OUT:
4456 			br_set_offset(&prog[i],
4457 				      nfp_prog->tgt_out + bv->start_off);
4458 			break;
4459 		case RELO_BR_GO_ABORT:
4460 			br_set_offset(&prog[i],
4461 				      nfp_prog->tgt_abort + bv->start_off);
4462 			break;
4463 		case RELO_BR_GO_CALL_PUSH_REGS:
4464 			if (!nfp_prog->tgt_call_push_regs) {
4465 				pr_err("BUG: failed to detect subprogram registers needs\n");
4466 				err = -EINVAL;
4467 				goto err_free_prog;
4468 			}
4469 			off = nfp_prog->tgt_call_push_regs + bv->start_off;
4470 			br_set_offset(&prog[i], off);
4471 			break;
4472 		case RELO_BR_GO_CALL_POP_REGS:
4473 			if (!nfp_prog->tgt_call_pop_regs) {
4474 				pr_err("BUG: failed to detect subprogram registers needs\n");
4475 				err = -EINVAL;
4476 				goto err_free_prog;
4477 			}
4478 			off = nfp_prog->tgt_call_pop_regs + bv->start_off;
4479 			br_set_offset(&prog[i], off);
4480 			break;
4481 		case RELO_BR_NEXT_PKT:
4482 			br_set_offset(&prog[i], bv->tgt_done);
4483 			break;
4484 		case RELO_BR_HELPER:
4485 			val = br_get_offset(prog[i]);
4486 			val -= BR_OFF_RELO;
4487 			switch (val) {
4488 			case BPF_FUNC_map_lookup_elem:
4489 				val = nfp_prog->bpf->helpers.map_lookup;
4490 				break;
4491 			case BPF_FUNC_map_update_elem:
4492 				val = nfp_prog->bpf->helpers.map_update;
4493 				break;
4494 			case BPF_FUNC_map_delete_elem:
4495 				val = nfp_prog->bpf->helpers.map_delete;
4496 				break;
4497 			case BPF_FUNC_perf_event_output:
4498 				val = nfp_prog->bpf->helpers.perf_event_output;
4499 				break;
4500 			default:
4501 				pr_err("relocation of unknown helper %d\n",
4502 				       val);
4503 				err = -EINVAL;
4504 				goto err_free_prog;
4505 			}
4506 			br_set_offset(&prog[i], val);
4507 			break;
4508 		case RELO_IMMED_REL:
4509 			immed_add_value(&prog[i], bv->start_off);
4510 			break;
4511 		}
4512 
4513 		prog[i] &= ~OP_RELO_TYPE;
4514 	}
4515 
4516 	err = nfp_bpf_ustore_calc(prog, nfp_prog->prog_len);
4517 	if (err)
4518 		goto err_free_prog;
4519 
4520 	return prog;
4521 
4522 err_free_prog:
4523 	kfree(prog);
4524 	return ERR_PTR(err);
4525 }
4526