1 /*
2  * Copyright (C) 2016-2018 Netronome Systems, Inc.
3  *
4  * This software is dual licensed under the GNU General License Version 2,
5  * June 1991 as shown in the file COPYING in the top-level directory of this
6  * source tree or the BSD 2-Clause License provided below.  You have the
7  * option to license this software under the complete terms of either license.
8  *
9  * The BSD 2-Clause License:
10  *
11  *     Redistribution and use in source and binary forms, with or
12  *     without modification, are permitted provided that the following
13  *     conditions are met:
14  *
15  *      1. Redistributions of source code must retain the above
16  *         copyright notice, this list of conditions and the following
17  *         disclaimer.
18  *
19  *      2. Redistributions in binary form must reproduce the above
20  *         copyright notice, this list of conditions and the following
21  *         disclaimer in the documentation and/or other materials
22  *         provided with the distribution.
23  *
24  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31  * SOFTWARE.
32  */
33 
34 #define pr_fmt(fmt)	"NFP net bpf: " fmt
35 
36 #include <linux/bug.h>
37 #include <linux/kernel.h>
38 #include <linux/bpf.h>
39 #include <linux/filter.h>
40 #include <linux/pkt_cls.h>
41 #include <linux/unistd.h>
42 
43 #include "main.h"
44 #include "../nfp_asm.h"
45 #include "../nfp_net_ctrl.h"
46 
47 /* --- NFP prog --- */
48 /* Foreach "multiple" entries macros provide pos and next<n> pointers.
49  * It's safe to modify the next pointers (but not pos).
50  */
51 #define nfp_for_each_insn_walk2(nfp_prog, pos, next)			\
52 	for (pos = list_first_entry(&(nfp_prog)->insns, typeof(*pos), l), \
53 	     next = list_next_entry(pos, l);			\
54 	     &(nfp_prog)->insns != &pos->l &&			\
55 	     &(nfp_prog)->insns != &next->l;			\
56 	     pos = nfp_meta_next(pos),				\
57 	     next = nfp_meta_next(pos))
58 
59 #define nfp_for_each_insn_walk3(nfp_prog, pos, next, next2)		\
60 	for (pos = list_first_entry(&(nfp_prog)->insns, typeof(*pos), l), \
61 	     next = list_next_entry(pos, l),			\
62 	     next2 = list_next_entry(next, l);			\
63 	     &(nfp_prog)->insns != &pos->l &&			\
64 	     &(nfp_prog)->insns != &next->l &&			\
65 	     &(nfp_prog)->insns != &next2->l;			\
66 	     pos = nfp_meta_next(pos),				\
67 	     next = nfp_meta_next(pos),				\
68 	     next2 = nfp_meta_next(next))
69 
70 static bool
71 nfp_meta_has_prev(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
72 {
73 	return meta->l.prev != &nfp_prog->insns;
74 }
75 
76 static void nfp_prog_push(struct nfp_prog *nfp_prog, u64 insn)
77 {
78 	if (nfp_prog->__prog_alloc_len / sizeof(u64) == nfp_prog->prog_len) {
79 		pr_warn("instruction limit reached (%u NFP instructions)\n",
80 			nfp_prog->prog_len);
81 		nfp_prog->error = -ENOSPC;
82 		return;
83 	}
84 
85 	nfp_prog->prog[nfp_prog->prog_len] = insn;
86 	nfp_prog->prog_len++;
87 }
88 
89 static unsigned int nfp_prog_current_offset(struct nfp_prog *nfp_prog)
90 {
91 	return nfp_prog->prog_len;
92 }
93 
94 static bool
95 nfp_prog_confirm_current_offset(struct nfp_prog *nfp_prog, unsigned int off)
96 {
97 	/* If there is a recorded error we may have dropped instructions;
98 	 * that doesn't have to be due to translator bug, and the translation
99 	 * will fail anyway, so just return OK.
100 	 */
101 	if (nfp_prog->error)
102 		return true;
103 	return !WARN_ON_ONCE(nfp_prog_current_offset(nfp_prog) != off);
104 }
105 
106 /* --- Emitters --- */
107 static void
108 __emit_cmd(struct nfp_prog *nfp_prog, enum cmd_tgt_map op,
109 	   u8 mode, u8 xfer, u8 areg, u8 breg, u8 size, enum cmd_ctx_swap ctx,
110 	   bool indir)
111 {
112 	u64 insn;
113 
114 	insn =	FIELD_PREP(OP_CMD_A_SRC, areg) |
115 		FIELD_PREP(OP_CMD_CTX, ctx) |
116 		FIELD_PREP(OP_CMD_B_SRC, breg) |
117 		FIELD_PREP(OP_CMD_TOKEN, cmd_tgt_act[op].token) |
118 		FIELD_PREP(OP_CMD_XFER, xfer) |
119 		FIELD_PREP(OP_CMD_CNT, size) |
120 		FIELD_PREP(OP_CMD_SIG, ctx != CMD_CTX_NO_SWAP) |
121 		FIELD_PREP(OP_CMD_TGT_CMD, cmd_tgt_act[op].tgt_cmd) |
122 		FIELD_PREP(OP_CMD_INDIR, indir) |
123 		FIELD_PREP(OP_CMD_MODE, mode);
124 
125 	nfp_prog_push(nfp_prog, insn);
126 }
127 
128 static void
129 emit_cmd_any(struct nfp_prog *nfp_prog, enum cmd_tgt_map op, u8 mode, u8 xfer,
130 	     swreg lreg, swreg rreg, u8 size, enum cmd_ctx_swap ctx, bool indir)
131 {
132 	struct nfp_insn_re_regs reg;
133 	int err;
134 
135 	err = swreg_to_restricted(reg_none(), lreg, rreg, &reg, false);
136 	if (err) {
137 		nfp_prog->error = err;
138 		return;
139 	}
140 	if (reg.swap) {
141 		pr_err("cmd can't swap arguments\n");
142 		nfp_prog->error = -EFAULT;
143 		return;
144 	}
145 	if (reg.dst_lmextn || reg.src_lmextn) {
146 		pr_err("cmd can't use LMextn\n");
147 		nfp_prog->error = -EFAULT;
148 		return;
149 	}
150 
151 	__emit_cmd(nfp_prog, op, mode, xfer, reg.areg, reg.breg, size, ctx,
152 		   indir);
153 }
154 
155 static void
156 emit_cmd(struct nfp_prog *nfp_prog, enum cmd_tgt_map op, u8 mode, u8 xfer,
157 	 swreg lreg, swreg rreg, u8 size, enum cmd_ctx_swap ctx)
158 {
159 	emit_cmd_any(nfp_prog, op, mode, xfer, lreg, rreg, size, ctx, false);
160 }
161 
162 static void
163 emit_cmd_indir(struct nfp_prog *nfp_prog, enum cmd_tgt_map op, u8 mode, u8 xfer,
164 	       swreg lreg, swreg rreg, u8 size, enum cmd_ctx_swap ctx)
165 {
166 	emit_cmd_any(nfp_prog, op, mode, xfer, lreg, rreg, size, ctx, true);
167 }
168 
169 static void
170 __emit_br(struct nfp_prog *nfp_prog, enum br_mask mask, enum br_ev_pip ev_pip,
171 	  enum br_ctx_signal_state css, u16 addr, u8 defer)
172 {
173 	u16 addr_lo, addr_hi;
174 	u64 insn;
175 
176 	addr_lo = addr & (OP_BR_ADDR_LO >> __bf_shf(OP_BR_ADDR_LO));
177 	addr_hi = addr != addr_lo;
178 
179 	insn = OP_BR_BASE |
180 		FIELD_PREP(OP_BR_MASK, mask) |
181 		FIELD_PREP(OP_BR_EV_PIP, ev_pip) |
182 		FIELD_PREP(OP_BR_CSS, css) |
183 		FIELD_PREP(OP_BR_DEFBR, defer) |
184 		FIELD_PREP(OP_BR_ADDR_LO, addr_lo) |
185 		FIELD_PREP(OP_BR_ADDR_HI, addr_hi);
186 
187 	nfp_prog_push(nfp_prog, insn);
188 }
189 
190 static void
191 emit_br_relo(struct nfp_prog *nfp_prog, enum br_mask mask, u16 addr, u8 defer,
192 	     enum nfp_relo_type relo)
193 {
194 	if (mask == BR_UNC && defer > 2) {
195 		pr_err("BUG: branch defer out of bounds %d\n", defer);
196 		nfp_prog->error = -EFAULT;
197 		return;
198 	}
199 
200 	__emit_br(nfp_prog, mask,
201 		  mask != BR_UNC ? BR_EV_PIP_COND : BR_EV_PIP_UNCOND,
202 		  BR_CSS_NONE, addr, defer);
203 
204 	nfp_prog->prog[nfp_prog->prog_len - 1] |=
205 		FIELD_PREP(OP_RELO_TYPE, relo);
206 }
207 
208 static void
209 emit_br(struct nfp_prog *nfp_prog, enum br_mask mask, u16 addr, u8 defer)
210 {
211 	emit_br_relo(nfp_prog, mask, addr, defer, RELO_BR_REL);
212 }
213 
214 static void
215 __emit_immed(struct nfp_prog *nfp_prog, u16 areg, u16 breg, u16 imm_hi,
216 	     enum immed_width width, bool invert,
217 	     enum immed_shift shift, bool wr_both,
218 	     bool dst_lmextn, bool src_lmextn)
219 {
220 	u64 insn;
221 
222 	insn = OP_IMMED_BASE |
223 		FIELD_PREP(OP_IMMED_A_SRC, areg) |
224 		FIELD_PREP(OP_IMMED_B_SRC, breg) |
225 		FIELD_PREP(OP_IMMED_IMM, imm_hi) |
226 		FIELD_PREP(OP_IMMED_WIDTH, width) |
227 		FIELD_PREP(OP_IMMED_INV, invert) |
228 		FIELD_PREP(OP_IMMED_SHIFT, shift) |
229 		FIELD_PREP(OP_IMMED_WR_AB, wr_both) |
230 		FIELD_PREP(OP_IMMED_SRC_LMEXTN, src_lmextn) |
231 		FIELD_PREP(OP_IMMED_DST_LMEXTN, dst_lmextn);
232 
233 	nfp_prog_push(nfp_prog, insn);
234 }
235 
236 static void
237 emit_immed(struct nfp_prog *nfp_prog, swreg dst, u16 imm,
238 	   enum immed_width width, bool invert, enum immed_shift shift)
239 {
240 	struct nfp_insn_ur_regs reg;
241 	int err;
242 
243 	if (swreg_type(dst) == NN_REG_IMM) {
244 		nfp_prog->error = -EFAULT;
245 		return;
246 	}
247 
248 	err = swreg_to_unrestricted(dst, dst, reg_imm(imm & 0xff), &reg);
249 	if (err) {
250 		nfp_prog->error = err;
251 		return;
252 	}
253 
254 	/* Use reg.dst when destination is No-Dest. */
255 	__emit_immed(nfp_prog,
256 		     swreg_type(dst) == NN_REG_NONE ? reg.dst : reg.areg,
257 		     reg.breg, imm >> 8, width, invert, shift,
258 		     reg.wr_both, reg.dst_lmextn, reg.src_lmextn);
259 }
260 
261 static void
262 __emit_shf(struct nfp_prog *nfp_prog, u16 dst, enum alu_dst_ab dst_ab,
263 	   enum shf_sc sc, u8 shift,
264 	   u16 areg, enum shf_op op, u16 breg, bool i8, bool sw, bool wr_both,
265 	   bool dst_lmextn, bool src_lmextn)
266 {
267 	u64 insn;
268 
269 	if (!FIELD_FIT(OP_SHF_SHIFT, shift)) {
270 		nfp_prog->error = -EFAULT;
271 		return;
272 	}
273 
274 	if (sc == SHF_SC_L_SHF)
275 		shift = 32 - shift;
276 
277 	insn = OP_SHF_BASE |
278 		FIELD_PREP(OP_SHF_A_SRC, areg) |
279 		FIELD_PREP(OP_SHF_SC, sc) |
280 		FIELD_PREP(OP_SHF_B_SRC, breg) |
281 		FIELD_PREP(OP_SHF_I8, i8) |
282 		FIELD_PREP(OP_SHF_SW, sw) |
283 		FIELD_PREP(OP_SHF_DST, dst) |
284 		FIELD_PREP(OP_SHF_SHIFT, shift) |
285 		FIELD_PREP(OP_SHF_OP, op) |
286 		FIELD_PREP(OP_SHF_DST_AB, dst_ab) |
287 		FIELD_PREP(OP_SHF_WR_AB, wr_both) |
288 		FIELD_PREP(OP_SHF_SRC_LMEXTN, src_lmextn) |
289 		FIELD_PREP(OP_SHF_DST_LMEXTN, dst_lmextn);
290 
291 	nfp_prog_push(nfp_prog, insn);
292 }
293 
294 static void
295 emit_shf(struct nfp_prog *nfp_prog, swreg dst,
296 	 swreg lreg, enum shf_op op, swreg rreg, enum shf_sc sc, u8 shift)
297 {
298 	struct nfp_insn_re_regs reg;
299 	int err;
300 
301 	err = swreg_to_restricted(dst, lreg, rreg, &reg, true);
302 	if (err) {
303 		nfp_prog->error = err;
304 		return;
305 	}
306 
307 	__emit_shf(nfp_prog, reg.dst, reg.dst_ab, sc, shift,
308 		   reg.areg, op, reg.breg, reg.i8, reg.swap, reg.wr_both,
309 		   reg.dst_lmextn, reg.src_lmextn);
310 }
311 
312 static void
313 __emit_alu(struct nfp_prog *nfp_prog, u16 dst, enum alu_dst_ab dst_ab,
314 	   u16 areg, enum alu_op op, u16 breg, bool swap, bool wr_both,
315 	   bool dst_lmextn, bool src_lmextn)
316 {
317 	u64 insn;
318 
319 	insn = OP_ALU_BASE |
320 		FIELD_PREP(OP_ALU_A_SRC, areg) |
321 		FIELD_PREP(OP_ALU_B_SRC, breg) |
322 		FIELD_PREP(OP_ALU_DST, dst) |
323 		FIELD_PREP(OP_ALU_SW, swap) |
324 		FIELD_PREP(OP_ALU_OP, op) |
325 		FIELD_PREP(OP_ALU_DST_AB, dst_ab) |
326 		FIELD_PREP(OP_ALU_WR_AB, wr_both) |
327 		FIELD_PREP(OP_ALU_SRC_LMEXTN, src_lmextn) |
328 		FIELD_PREP(OP_ALU_DST_LMEXTN, dst_lmextn);
329 
330 	nfp_prog_push(nfp_prog, insn);
331 }
332 
333 static void
334 emit_alu(struct nfp_prog *nfp_prog, swreg dst,
335 	 swreg lreg, enum alu_op op, swreg rreg)
336 {
337 	struct nfp_insn_ur_regs reg;
338 	int err;
339 
340 	err = swreg_to_unrestricted(dst, lreg, rreg, &reg);
341 	if (err) {
342 		nfp_prog->error = err;
343 		return;
344 	}
345 
346 	__emit_alu(nfp_prog, reg.dst, reg.dst_ab,
347 		   reg.areg, op, reg.breg, reg.swap, reg.wr_both,
348 		   reg.dst_lmextn, reg.src_lmextn);
349 }
350 
351 static void
352 __emit_ld_field(struct nfp_prog *nfp_prog, enum shf_sc sc,
353 		u8 areg, u8 bmask, u8 breg, u8 shift, bool imm8,
354 		bool zero, bool swap, bool wr_both,
355 		bool dst_lmextn, bool src_lmextn)
356 {
357 	u64 insn;
358 
359 	insn = OP_LDF_BASE |
360 		FIELD_PREP(OP_LDF_A_SRC, areg) |
361 		FIELD_PREP(OP_LDF_SC, sc) |
362 		FIELD_PREP(OP_LDF_B_SRC, breg) |
363 		FIELD_PREP(OP_LDF_I8, imm8) |
364 		FIELD_PREP(OP_LDF_SW, swap) |
365 		FIELD_PREP(OP_LDF_ZF, zero) |
366 		FIELD_PREP(OP_LDF_BMASK, bmask) |
367 		FIELD_PREP(OP_LDF_SHF, shift) |
368 		FIELD_PREP(OP_LDF_WR_AB, wr_both) |
369 		FIELD_PREP(OP_LDF_SRC_LMEXTN, src_lmextn) |
370 		FIELD_PREP(OP_LDF_DST_LMEXTN, dst_lmextn);
371 
372 	nfp_prog_push(nfp_prog, insn);
373 }
374 
375 static void
376 emit_ld_field_any(struct nfp_prog *nfp_prog, swreg dst, u8 bmask, swreg src,
377 		  enum shf_sc sc, u8 shift, bool zero)
378 {
379 	struct nfp_insn_re_regs reg;
380 	int err;
381 
382 	/* Note: ld_field is special as it uses one of the src regs as dst */
383 	err = swreg_to_restricted(dst, dst, src, &reg, true);
384 	if (err) {
385 		nfp_prog->error = err;
386 		return;
387 	}
388 
389 	__emit_ld_field(nfp_prog, sc, reg.areg, bmask, reg.breg, shift,
390 			reg.i8, zero, reg.swap, reg.wr_both,
391 			reg.dst_lmextn, reg.src_lmextn);
392 }
393 
394 static void
395 emit_ld_field(struct nfp_prog *nfp_prog, swreg dst, u8 bmask, swreg src,
396 	      enum shf_sc sc, u8 shift)
397 {
398 	emit_ld_field_any(nfp_prog, dst, bmask, src, sc, shift, false);
399 }
400 
401 static void
402 __emit_lcsr(struct nfp_prog *nfp_prog, u16 areg, u16 breg, bool wr, u16 addr,
403 	    bool dst_lmextn, bool src_lmextn)
404 {
405 	u64 insn;
406 
407 	insn = OP_LCSR_BASE |
408 		FIELD_PREP(OP_LCSR_A_SRC, areg) |
409 		FIELD_PREP(OP_LCSR_B_SRC, breg) |
410 		FIELD_PREP(OP_LCSR_WRITE, wr) |
411 		FIELD_PREP(OP_LCSR_ADDR, addr / 4) |
412 		FIELD_PREP(OP_LCSR_SRC_LMEXTN, src_lmextn) |
413 		FIELD_PREP(OP_LCSR_DST_LMEXTN, dst_lmextn);
414 
415 	nfp_prog_push(nfp_prog, insn);
416 }
417 
418 static void emit_csr_wr(struct nfp_prog *nfp_prog, swreg src, u16 addr)
419 {
420 	struct nfp_insn_ur_regs reg;
421 	int err;
422 
423 	/* This instruction takes immeds instead of reg_none() for the ignored
424 	 * operand, but we can't encode 2 immeds in one instr with our normal
425 	 * swreg infra so if param is an immed, we encode as reg_none() and
426 	 * copy the immed to both operands.
427 	 */
428 	if (swreg_type(src) == NN_REG_IMM) {
429 		err = swreg_to_unrestricted(reg_none(), src, reg_none(), &reg);
430 		reg.breg = reg.areg;
431 	} else {
432 		err = swreg_to_unrestricted(reg_none(), src, reg_imm(0), &reg);
433 	}
434 	if (err) {
435 		nfp_prog->error = err;
436 		return;
437 	}
438 
439 	__emit_lcsr(nfp_prog, reg.areg, reg.breg, true, addr,
440 		    false, reg.src_lmextn);
441 }
442 
443 /* CSR value is read in following immed[gpr, 0] */
444 static void __emit_csr_rd(struct nfp_prog *nfp_prog, u16 addr)
445 {
446 	__emit_lcsr(nfp_prog, 0, 0, false, addr, false, false);
447 }
448 
449 static void emit_nop(struct nfp_prog *nfp_prog)
450 {
451 	__emit_immed(nfp_prog, UR_REG_IMM, UR_REG_IMM, 0, 0, 0, 0, 0, 0, 0);
452 }
453 
454 /* --- Wrappers --- */
455 static bool pack_immed(u32 imm, u16 *val, enum immed_shift *shift)
456 {
457 	if (!(imm & 0xffff0000)) {
458 		*val = imm;
459 		*shift = IMMED_SHIFT_0B;
460 	} else if (!(imm & 0xff0000ff)) {
461 		*val = imm >> 8;
462 		*shift = IMMED_SHIFT_1B;
463 	} else if (!(imm & 0x0000ffff)) {
464 		*val = imm >> 16;
465 		*shift = IMMED_SHIFT_2B;
466 	} else {
467 		return false;
468 	}
469 
470 	return true;
471 }
472 
473 static void wrp_immed(struct nfp_prog *nfp_prog, swreg dst, u32 imm)
474 {
475 	enum immed_shift shift;
476 	u16 val;
477 
478 	if (pack_immed(imm, &val, &shift)) {
479 		emit_immed(nfp_prog, dst, val, IMMED_WIDTH_ALL, false, shift);
480 	} else if (pack_immed(~imm, &val, &shift)) {
481 		emit_immed(nfp_prog, dst, val, IMMED_WIDTH_ALL, true, shift);
482 	} else {
483 		emit_immed(nfp_prog, dst, imm & 0xffff, IMMED_WIDTH_ALL,
484 			   false, IMMED_SHIFT_0B);
485 		emit_immed(nfp_prog, dst, imm >> 16, IMMED_WIDTH_WORD,
486 			   false, IMMED_SHIFT_2B);
487 	}
488 }
489 
490 static void
491 wrp_immed_relo(struct nfp_prog *nfp_prog, swreg dst, u32 imm,
492 	       enum nfp_relo_type relo)
493 {
494 	if (imm > 0xffff) {
495 		pr_err("relocation of a large immediate!\n");
496 		nfp_prog->error = -EFAULT;
497 		return;
498 	}
499 	emit_immed(nfp_prog, dst, imm, IMMED_WIDTH_ALL, false, IMMED_SHIFT_0B);
500 
501 	nfp_prog->prog[nfp_prog->prog_len - 1] |=
502 		FIELD_PREP(OP_RELO_TYPE, relo);
503 }
504 
505 /* ur_load_imm_any() - encode immediate or use tmp register (unrestricted)
506  * If the @imm is small enough encode it directly in operand and return
507  * otherwise load @imm to a spare register and return its encoding.
508  */
509 static swreg ur_load_imm_any(struct nfp_prog *nfp_prog, u32 imm, swreg tmp_reg)
510 {
511 	if (FIELD_FIT(UR_REG_IMM_MAX, imm))
512 		return reg_imm(imm);
513 
514 	wrp_immed(nfp_prog, tmp_reg, imm);
515 	return tmp_reg;
516 }
517 
518 /* re_load_imm_any() - encode immediate or use tmp register (restricted)
519  * If the @imm is small enough encode it directly in operand and return
520  * otherwise load @imm to a spare register and return its encoding.
521  */
522 static swreg re_load_imm_any(struct nfp_prog *nfp_prog, u32 imm, swreg tmp_reg)
523 {
524 	if (FIELD_FIT(RE_REG_IMM_MAX, imm))
525 		return reg_imm(imm);
526 
527 	wrp_immed(nfp_prog, tmp_reg, imm);
528 	return tmp_reg;
529 }
530 
531 static void wrp_nops(struct nfp_prog *nfp_prog, unsigned int count)
532 {
533 	while (count--)
534 		emit_nop(nfp_prog);
535 }
536 
537 static void wrp_mov(struct nfp_prog *nfp_prog, swreg dst, swreg src)
538 {
539 	emit_alu(nfp_prog, dst, reg_none(), ALU_OP_NONE, src);
540 }
541 
542 static void wrp_reg_mov(struct nfp_prog *nfp_prog, u16 dst, u16 src)
543 {
544 	wrp_mov(nfp_prog, reg_both(dst), reg_b(src));
545 }
546 
547 /* wrp_reg_subpart() - load @field_len bytes from @offset of @src, write the
548  * result to @dst from low end.
549  */
550 static void
551 wrp_reg_subpart(struct nfp_prog *nfp_prog, swreg dst, swreg src, u8 field_len,
552 		u8 offset)
553 {
554 	enum shf_sc sc = offset ? SHF_SC_R_SHF : SHF_SC_NONE;
555 	u8 mask = (1 << field_len) - 1;
556 
557 	emit_ld_field_any(nfp_prog, dst, mask, src, sc, offset * 8, true);
558 }
559 
560 /* wrp_reg_or_subpart() - load @field_len bytes from low end of @src, or the
561  * result to @dst from offset, there is no change on the other bits of @dst.
562  */
563 static void
564 wrp_reg_or_subpart(struct nfp_prog *nfp_prog, swreg dst, swreg src,
565 		   u8 field_len, u8 offset)
566 {
567 	enum shf_sc sc = offset ? SHF_SC_L_SHF : SHF_SC_NONE;
568 	u8 mask = ((1 << field_len) - 1) << offset;
569 
570 	emit_ld_field(nfp_prog, dst, mask, src, sc, 32 - offset * 8);
571 }
572 
573 static void
574 addr40_offset(struct nfp_prog *nfp_prog, u8 src_gpr, swreg offset,
575 	      swreg *rega, swreg *regb)
576 {
577 	if (offset == reg_imm(0)) {
578 		*rega = reg_a(src_gpr);
579 		*regb = reg_b(src_gpr + 1);
580 		return;
581 	}
582 
583 	emit_alu(nfp_prog, imm_a(nfp_prog), reg_a(src_gpr), ALU_OP_ADD, offset);
584 	emit_alu(nfp_prog, imm_b(nfp_prog), reg_b(src_gpr + 1), ALU_OP_ADD_C,
585 		 reg_imm(0));
586 	*rega = imm_a(nfp_prog);
587 	*regb = imm_b(nfp_prog);
588 }
589 
590 /* NFP has Command Push Pull bus which supports bluk memory operations. */
591 static int nfp_cpp_memcpy(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
592 {
593 	bool descending_seq = meta->ldst_gather_len < 0;
594 	s16 len = abs(meta->ldst_gather_len);
595 	swreg src_base, off;
596 	bool src_40bit_addr;
597 	unsigned int i;
598 	u8 xfer_num;
599 
600 	off = re_load_imm_any(nfp_prog, meta->insn.off, imm_b(nfp_prog));
601 	src_40bit_addr = meta->ptr.type == PTR_TO_MAP_VALUE;
602 	src_base = reg_a(meta->insn.src_reg * 2);
603 	xfer_num = round_up(len, 4) / 4;
604 
605 	if (src_40bit_addr)
606 		addr40_offset(nfp_prog, meta->insn.src_reg, off, &src_base,
607 			      &off);
608 
609 	/* Setup PREV_ALU fields to override memory read length. */
610 	if (len > 32)
611 		wrp_immed(nfp_prog, reg_none(),
612 			  CMD_OVE_LEN | FIELD_PREP(CMD_OV_LEN, xfer_num - 1));
613 
614 	/* Memory read from source addr into transfer-in registers. */
615 	emit_cmd_any(nfp_prog, CMD_TGT_READ32_SWAP,
616 		     src_40bit_addr ? CMD_MODE_40b_BA : CMD_MODE_32b, 0,
617 		     src_base, off, xfer_num - 1, CMD_CTX_SWAP, len > 32);
618 
619 	/* Move from transfer-in to transfer-out. */
620 	for (i = 0; i < xfer_num; i++)
621 		wrp_mov(nfp_prog, reg_xfer(i), reg_xfer(i));
622 
623 	off = re_load_imm_any(nfp_prog, meta->paired_st->off, imm_b(nfp_prog));
624 
625 	if (len <= 8) {
626 		/* Use single direct_ref write8. */
627 		emit_cmd(nfp_prog, CMD_TGT_WRITE8_SWAP, CMD_MODE_32b, 0,
628 			 reg_a(meta->paired_st->dst_reg * 2), off, len - 1,
629 			 CMD_CTX_SWAP);
630 	} else if (len <= 32 && IS_ALIGNED(len, 4)) {
631 		/* Use single direct_ref write32. */
632 		emit_cmd(nfp_prog, CMD_TGT_WRITE32_SWAP, CMD_MODE_32b, 0,
633 			 reg_a(meta->paired_st->dst_reg * 2), off, xfer_num - 1,
634 			 CMD_CTX_SWAP);
635 	} else if (len <= 32) {
636 		/* Use single indirect_ref write8. */
637 		wrp_immed(nfp_prog, reg_none(),
638 			  CMD_OVE_LEN | FIELD_PREP(CMD_OV_LEN, len - 1));
639 		emit_cmd_indir(nfp_prog, CMD_TGT_WRITE8_SWAP, CMD_MODE_32b, 0,
640 			       reg_a(meta->paired_st->dst_reg * 2), off,
641 			       len - 1, CMD_CTX_SWAP);
642 	} else if (IS_ALIGNED(len, 4)) {
643 		/* Use single indirect_ref write32. */
644 		wrp_immed(nfp_prog, reg_none(),
645 			  CMD_OVE_LEN | FIELD_PREP(CMD_OV_LEN, xfer_num - 1));
646 		emit_cmd_indir(nfp_prog, CMD_TGT_WRITE32_SWAP, CMD_MODE_32b, 0,
647 			       reg_a(meta->paired_st->dst_reg * 2), off,
648 			       xfer_num - 1, CMD_CTX_SWAP);
649 	} else if (len <= 40) {
650 		/* Use one direct_ref write32 to write the first 32-bytes, then
651 		 * another direct_ref write8 to write the remaining bytes.
652 		 */
653 		emit_cmd(nfp_prog, CMD_TGT_WRITE32_SWAP, CMD_MODE_32b, 0,
654 			 reg_a(meta->paired_st->dst_reg * 2), off, 7,
655 			 CMD_CTX_SWAP);
656 
657 		off = re_load_imm_any(nfp_prog, meta->paired_st->off + 32,
658 				      imm_b(nfp_prog));
659 		emit_cmd(nfp_prog, CMD_TGT_WRITE8_SWAP, CMD_MODE_32b, 8,
660 			 reg_a(meta->paired_st->dst_reg * 2), off, len - 33,
661 			 CMD_CTX_SWAP);
662 	} else {
663 		/* Use one indirect_ref write32 to write 4-bytes aligned length,
664 		 * then another direct_ref write8 to write the remaining bytes.
665 		 */
666 		u8 new_off;
667 
668 		wrp_immed(nfp_prog, reg_none(),
669 			  CMD_OVE_LEN | FIELD_PREP(CMD_OV_LEN, xfer_num - 2));
670 		emit_cmd_indir(nfp_prog, CMD_TGT_WRITE32_SWAP, CMD_MODE_32b, 0,
671 			       reg_a(meta->paired_st->dst_reg * 2), off,
672 			       xfer_num - 2, CMD_CTX_SWAP);
673 		new_off = meta->paired_st->off + (xfer_num - 1) * 4;
674 		off = re_load_imm_any(nfp_prog, new_off, imm_b(nfp_prog));
675 		emit_cmd(nfp_prog, CMD_TGT_WRITE8_SWAP, CMD_MODE_32b,
676 			 xfer_num - 1, reg_a(meta->paired_st->dst_reg * 2), off,
677 			 (len & 0x3) - 1, CMD_CTX_SWAP);
678 	}
679 
680 	/* TODO: The following extra load is to make sure data flow be identical
681 	 *  before and after we do memory copy optimization.
682 	 *
683 	 *  The load destination register is not guaranteed to be dead, so we
684 	 *  need to make sure it is loaded with the value the same as before
685 	 *  this transformation.
686 	 *
687 	 *  These extra loads could be removed once we have accurate register
688 	 *  usage information.
689 	 */
690 	if (descending_seq)
691 		xfer_num = 0;
692 	else if (BPF_SIZE(meta->insn.code) != BPF_DW)
693 		xfer_num = xfer_num - 1;
694 	else
695 		xfer_num = xfer_num - 2;
696 
697 	switch (BPF_SIZE(meta->insn.code)) {
698 	case BPF_B:
699 		wrp_reg_subpart(nfp_prog, reg_both(meta->insn.dst_reg * 2),
700 				reg_xfer(xfer_num), 1,
701 				IS_ALIGNED(len, 4) ? 3 : (len & 3) - 1);
702 		break;
703 	case BPF_H:
704 		wrp_reg_subpart(nfp_prog, reg_both(meta->insn.dst_reg * 2),
705 				reg_xfer(xfer_num), 2, (len & 3) ^ 2);
706 		break;
707 	case BPF_W:
708 		wrp_mov(nfp_prog, reg_both(meta->insn.dst_reg * 2),
709 			reg_xfer(0));
710 		break;
711 	case BPF_DW:
712 		wrp_mov(nfp_prog, reg_both(meta->insn.dst_reg * 2),
713 			reg_xfer(xfer_num));
714 		wrp_mov(nfp_prog, reg_both(meta->insn.dst_reg * 2 + 1),
715 			reg_xfer(xfer_num + 1));
716 		break;
717 	}
718 
719 	if (BPF_SIZE(meta->insn.code) != BPF_DW)
720 		wrp_immed(nfp_prog, reg_both(meta->insn.dst_reg * 2 + 1), 0);
721 
722 	return 0;
723 }
724 
725 static int
726 data_ld(struct nfp_prog *nfp_prog, swreg offset, u8 dst_gpr, int size)
727 {
728 	unsigned int i;
729 	u16 shift, sz;
730 
731 	/* We load the value from the address indicated in @offset and then
732 	 * shift out the data we don't need.  Note: this is big endian!
733 	 */
734 	sz = max(size, 4);
735 	shift = size < 4 ? 4 - size : 0;
736 
737 	emit_cmd(nfp_prog, CMD_TGT_READ8, CMD_MODE_32b, 0,
738 		 pptr_reg(nfp_prog), offset, sz - 1, CMD_CTX_SWAP);
739 
740 	i = 0;
741 	if (shift)
742 		emit_shf(nfp_prog, reg_both(dst_gpr), reg_none(), SHF_OP_NONE,
743 			 reg_xfer(0), SHF_SC_R_SHF, shift * 8);
744 	else
745 		for (; i * 4 < size; i++)
746 			wrp_mov(nfp_prog, reg_both(dst_gpr + i), reg_xfer(i));
747 
748 	if (i < 2)
749 		wrp_immed(nfp_prog, reg_both(dst_gpr + 1), 0);
750 
751 	return 0;
752 }
753 
754 static int
755 data_ld_host_order(struct nfp_prog *nfp_prog, u8 dst_gpr,
756 		   swreg lreg, swreg rreg, int size, enum cmd_mode mode)
757 {
758 	unsigned int i;
759 	u8 mask, sz;
760 
761 	/* We load the value from the address indicated in rreg + lreg and then
762 	 * mask out the data we don't need.  Note: this is little endian!
763 	 */
764 	sz = max(size, 4);
765 	mask = size < 4 ? GENMASK(size - 1, 0) : 0;
766 
767 	emit_cmd(nfp_prog, CMD_TGT_READ32_SWAP, mode, 0,
768 		 lreg, rreg, sz / 4 - 1, CMD_CTX_SWAP);
769 
770 	i = 0;
771 	if (mask)
772 		emit_ld_field_any(nfp_prog, reg_both(dst_gpr), mask,
773 				  reg_xfer(0), SHF_SC_NONE, 0, true);
774 	else
775 		for (; i * 4 < size; i++)
776 			wrp_mov(nfp_prog, reg_both(dst_gpr + i), reg_xfer(i));
777 
778 	if (i < 2)
779 		wrp_immed(nfp_prog, reg_both(dst_gpr + 1), 0);
780 
781 	return 0;
782 }
783 
784 static int
785 data_ld_host_order_addr32(struct nfp_prog *nfp_prog, u8 src_gpr, swreg offset,
786 			  u8 dst_gpr, u8 size)
787 {
788 	return data_ld_host_order(nfp_prog, dst_gpr, reg_a(src_gpr), offset,
789 				  size, CMD_MODE_32b);
790 }
791 
792 static int
793 data_ld_host_order_addr40(struct nfp_prog *nfp_prog, u8 src_gpr, swreg offset,
794 			  u8 dst_gpr, u8 size)
795 {
796 	swreg rega, regb;
797 
798 	addr40_offset(nfp_prog, src_gpr, offset, &rega, &regb);
799 
800 	return data_ld_host_order(nfp_prog, dst_gpr, rega, regb,
801 				  size, CMD_MODE_40b_BA);
802 }
803 
804 static int
805 construct_data_ind_ld(struct nfp_prog *nfp_prog, u16 offset, u16 src, u8 size)
806 {
807 	swreg tmp_reg;
808 
809 	/* Calculate the true offset (src_reg + imm) */
810 	tmp_reg = ur_load_imm_any(nfp_prog, offset, imm_b(nfp_prog));
811 	emit_alu(nfp_prog, imm_both(nfp_prog), reg_a(src), ALU_OP_ADD, tmp_reg);
812 
813 	/* Check packet length (size guaranteed to fit b/c it's u8) */
814 	emit_alu(nfp_prog, imm_a(nfp_prog),
815 		 imm_a(nfp_prog), ALU_OP_ADD, reg_imm(size));
816 	emit_alu(nfp_prog, reg_none(),
817 		 plen_reg(nfp_prog), ALU_OP_SUB, imm_a(nfp_prog));
818 	emit_br_relo(nfp_prog, BR_BLO, BR_OFF_RELO, 0, RELO_BR_GO_ABORT);
819 
820 	/* Load data */
821 	return data_ld(nfp_prog, imm_b(nfp_prog), 0, size);
822 }
823 
824 static int construct_data_ld(struct nfp_prog *nfp_prog, u16 offset, u8 size)
825 {
826 	swreg tmp_reg;
827 
828 	/* Check packet length */
829 	tmp_reg = ur_load_imm_any(nfp_prog, offset + size, imm_a(nfp_prog));
830 	emit_alu(nfp_prog, reg_none(), plen_reg(nfp_prog), ALU_OP_SUB, tmp_reg);
831 	emit_br_relo(nfp_prog, BR_BLO, BR_OFF_RELO, 0, RELO_BR_GO_ABORT);
832 
833 	/* Load data */
834 	tmp_reg = re_load_imm_any(nfp_prog, offset, imm_b(nfp_prog));
835 	return data_ld(nfp_prog, tmp_reg, 0, size);
836 }
837 
838 static int
839 data_stx_host_order(struct nfp_prog *nfp_prog, u8 dst_gpr, swreg offset,
840 		    u8 src_gpr, u8 size)
841 {
842 	unsigned int i;
843 
844 	for (i = 0; i * 4 < size; i++)
845 		wrp_mov(nfp_prog, reg_xfer(i), reg_a(src_gpr + i));
846 
847 	emit_cmd(nfp_prog, CMD_TGT_WRITE8_SWAP, CMD_MODE_32b, 0,
848 		 reg_a(dst_gpr), offset, size - 1, CMD_CTX_SWAP);
849 
850 	return 0;
851 }
852 
853 static int
854 data_st_host_order(struct nfp_prog *nfp_prog, u8 dst_gpr, swreg offset,
855 		   u64 imm, u8 size)
856 {
857 	wrp_immed(nfp_prog, reg_xfer(0), imm);
858 	if (size == 8)
859 		wrp_immed(nfp_prog, reg_xfer(1), imm >> 32);
860 
861 	emit_cmd(nfp_prog, CMD_TGT_WRITE8_SWAP, CMD_MODE_32b, 0,
862 		 reg_a(dst_gpr), offset, size - 1, CMD_CTX_SWAP);
863 
864 	return 0;
865 }
866 
867 typedef int
868 (*lmem_step)(struct nfp_prog *nfp_prog, u8 gpr, u8 gpr_byte, s32 off,
869 	     unsigned int size, bool first, bool new_gpr, bool last, bool lm3,
870 	     bool needs_inc);
871 
872 static int
873 wrp_lmem_load(struct nfp_prog *nfp_prog, u8 dst, u8 dst_byte, s32 off,
874 	      unsigned int size, bool first, bool new_gpr, bool last, bool lm3,
875 	      bool needs_inc)
876 {
877 	bool should_inc = needs_inc && new_gpr && !last;
878 	u32 idx, src_byte;
879 	enum shf_sc sc;
880 	swreg reg;
881 	int shf;
882 	u8 mask;
883 
884 	if (WARN_ON_ONCE(dst_byte + size > 4 || off % 4 + size > 4))
885 		return -EOPNOTSUPP;
886 
887 	idx = off / 4;
888 
889 	/* Move the entire word */
890 	if (size == 4) {
891 		wrp_mov(nfp_prog, reg_both(dst),
892 			should_inc ? reg_lm_inc(3) : reg_lm(lm3 ? 3 : 0, idx));
893 		return 0;
894 	}
895 
896 	if (WARN_ON_ONCE(lm3 && idx > RE_REG_LM_IDX_MAX))
897 		return -EOPNOTSUPP;
898 
899 	src_byte = off % 4;
900 
901 	mask = (1 << size) - 1;
902 	mask <<= dst_byte;
903 
904 	if (WARN_ON_ONCE(mask > 0xf))
905 		return -EOPNOTSUPP;
906 
907 	shf = abs(src_byte - dst_byte) * 8;
908 	if (src_byte == dst_byte) {
909 		sc = SHF_SC_NONE;
910 	} else if (src_byte < dst_byte) {
911 		shf = 32 - shf;
912 		sc = SHF_SC_L_SHF;
913 	} else {
914 		sc = SHF_SC_R_SHF;
915 	}
916 
917 	/* ld_field can address fewer indexes, if offset too large do RMW.
918 	 * Because we RMV twice we waste 2 cycles on unaligned 8 byte writes.
919 	 */
920 	if (idx <= RE_REG_LM_IDX_MAX) {
921 		reg = reg_lm(lm3 ? 3 : 0, idx);
922 	} else {
923 		reg = imm_a(nfp_prog);
924 		/* If it's not the first part of the load and we start a new GPR
925 		 * that means we are loading a second part of the LMEM word into
926 		 * a new GPR.  IOW we've already looked that LMEM word and
927 		 * therefore it has been loaded into imm_a().
928 		 */
929 		if (first || !new_gpr)
930 			wrp_mov(nfp_prog, reg, reg_lm(0, idx));
931 	}
932 
933 	emit_ld_field_any(nfp_prog, reg_both(dst), mask, reg, sc, shf, new_gpr);
934 
935 	if (should_inc)
936 		wrp_mov(nfp_prog, reg_none(), reg_lm_inc(3));
937 
938 	return 0;
939 }
940 
941 static int
942 wrp_lmem_store(struct nfp_prog *nfp_prog, u8 src, u8 src_byte, s32 off,
943 	       unsigned int size, bool first, bool new_gpr, bool last, bool lm3,
944 	       bool needs_inc)
945 {
946 	bool should_inc = needs_inc && new_gpr && !last;
947 	u32 idx, dst_byte;
948 	enum shf_sc sc;
949 	swreg reg;
950 	int shf;
951 	u8 mask;
952 
953 	if (WARN_ON_ONCE(src_byte + size > 4 || off % 4 + size > 4))
954 		return -EOPNOTSUPP;
955 
956 	idx = off / 4;
957 
958 	/* Move the entire word */
959 	if (size == 4) {
960 		wrp_mov(nfp_prog,
961 			should_inc ? reg_lm_inc(3) : reg_lm(lm3 ? 3 : 0, idx),
962 			reg_b(src));
963 		return 0;
964 	}
965 
966 	if (WARN_ON_ONCE(lm3 && idx > RE_REG_LM_IDX_MAX))
967 		return -EOPNOTSUPP;
968 
969 	dst_byte = off % 4;
970 
971 	mask = (1 << size) - 1;
972 	mask <<= dst_byte;
973 
974 	if (WARN_ON_ONCE(mask > 0xf))
975 		return -EOPNOTSUPP;
976 
977 	shf = abs(src_byte - dst_byte) * 8;
978 	if (src_byte == dst_byte) {
979 		sc = SHF_SC_NONE;
980 	} else if (src_byte < dst_byte) {
981 		shf = 32 - shf;
982 		sc = SHF_SC_L_SHF;
983 	} else {
984 		sc = SHF_SC_R_SHF;
985 	}
986 
987 	/* ld_field can address fewer indexes, if offset too large do RMW.
988 	 * Because we RMV twice we waste 2 cycles on unaligned 8 byte writes.
989 	 */
990 	if (idx <= RE_REG_LM_IDX_MAX) {
991 		reg = reg_lm(lm3 ? 3 : 0, idx);
992 	} else {
993 		reg = imm_a(nfp_prog);
994 		/* Only first and last LMEM locations are going to need RMW,
995 		 * the middle location will be overwritten fully.
996 		 */
997 		if (first || last)
998 			wrp_mov(nfp_prog, reg, reg_lm(0, idx));
999 	}
1000 
1001 	emit_ld_field(nfp_prog, reg, mask, reg_b(src), sc, shf);
1002 
1003 	if (new_gpr || last) {
1004 		if (idx > RE_REG_LM_IDX_MAX)
1005 			wrp_mov(nfp_prog, reg_lm(0, idx), reg);
1006 		if (should_inc)
1007 			wrp_mov(nfp_prog, reg_none(), reg_lm_inc(3));
1008 	}
1009 
1010 	return 0;
1011 }
1012 
1013 static int
1014 mem_op_stack(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
1015 	     unsigned int size, unsigned int ptr_off, u8 gpr, u8 ptr_gpr,
1016 	     bool clr_gpr, lmem_step step)
1017 {
1018 	s32 off = nfp_prog->stack_depth + meta->insn.off + ptr_off;
1019 	bool first = true, last;
1020 	bool needs_inc = false;
1021 	swreg stack_off_reg;
1022 	u8 prev_gpr = 255;
1023 	u32 gpr_byte = 0;
1024 	bool lm3 = true;
1025 	int ret;
1026 
1027 	if (meta->ptr_not_const) {
1028 		/* Use of the last encountered ptr_off is OK, they all have
1029 		 * the same alignment.  Depend on low bits of value being
1030 		 * discarded when written to LMaddr register.
1031 		 */
1032 		stack_off_reg = ur_load_imm_any(nfp_prog, meta->insn.off,
1033 						stack_imm(nfp_prog));
1034 
1035 		emit_alu(nfp_prog, imm_b(nfp_prog),
1036 			 reg_a(ptr_gpr), ALU_OP_ADD, stack_off_reg);
1037 
1038 		needs_inc = true;
1039 	} else if (off + size <= 64) {
1040 		/* We can reach bottom 64B with LMaddr0 */
1041 		lm3 = false;
1042 	} else if (round_down(off, 32) == round_down(off + size - 1, 32)) {
1043 		/* We have to set up a new pointer.  If we know the offset
1044 		 * and the entire access falls into a single 32 byte aligned
1045 		 * window we won't have to increment the LM pointer.
1046 		 * The 32 byte alignment is imporant because offset is ORed in
1047 		 * not added when doing *l$indexN[off].
1048 		 */
1049 		stack_off_reg = ur_load_imm_any(nfp_prog, round_down(off, 32),
1050 						stack_imm(nfp_prog));
1051 		emit_alu(nfp_prog, imm_b(nfp_prog),
1052 			 stack_reg(nfp_prog), ALU_OP_ADD, stack_off_reg);
1053 
1054 		off %= 32;
1055 	} else {
1056 		stack_off_reg = ur_load_imm_any(nfp_prog, round_down(off, 4),
1057 						stack_imm(nfp_prog));
1058 
1059 		emit_alu(nfp_prog, imm_b(nfp_prog),
1060 			 stack_reg(nfp_prog), ALU_OP_ADD, stack_off_reg);
1061 
1062 		needs_inc = true;
1063 	}
1064 	if (lm3) {
1065 		emit_csr_wr(nfp_prog, imm_b(nfp_prog), NFP_CSR_ACT_LM_ADDR3);
1066 		/* For size < 4 one slot will be filled by zeroing of upper. */
1067 		wrp_nops(nfp_prog, clr_gpr && size < 8 ? 2 : 3);
1068 	}
1069 
1070 	if (clr_gpr && size < 8)
1071 		wrp_immed(nfp_prog, reg_both(gpr + 1), 0);
1072 
1073 	while (size) {
1074 		u32 slice_end;
1075 		u8 slice_size;
1076 
1077 		slice_size = min(size, 4 - gpr_byte);
1078 		slice_end = min(off + slice_size, round_up(off + 1, 4));
1079 		slice_size = slice_end - off;
1080 
1081 		last = slice_size == size;
1082 
1083 		if (needs_inc)
1084 			off %= 4;
1085 
1086 		ret = step(nfp_prog, gpr, gpr_byte, off, slice_size,
1087 			   first, gpr != prev_gpr, last, lm3, needs_inc);
1088 		if (ret)
1089 			return ret;
1090 
1091 		prev_gpr = gpr;
1092 		first = false;
1093 
1094 		gpr_byte += slice_size;
1095 		if (gpr_byte >= 4) {
1096 			gpr_byte -= 4;
1097 			gpr++;
1098 		}
1099 
1100 		size -= slice_size;
1101 		off += slice_size;
1102 	}
1103 
1104 	return 0;
1105 }
1106 
1107 static void
1108 wrp_alu_imm(struct nfp_prog *nfp_prog, u8 dst, enum alu_op alu_op, u32 imm)
1109 {
1110 	swreg tmp_reg;
1111 
1112 	if (alu_op == ALU_OP_AND) {
1113 		if (!imm)
1114 			wrp_immed(nfp_prog, reg_both(dst), 0);
1115 		if (!imm || !~imm)
1116 			return;
1117 	}
1118 	if (alu_op == ALU_OP_OR) {
1119 		if (!~imm)
1120 			wrp_immed(nfp_prog, reg_both(dst), ~0U);
1121 		if (!imm || !~imm)
1122 			return;
1123 	}
1124 	if (alu_op == ALU_OP_XOR) {
1125 		if (!~imm)
1126 			emit_alu(nfp_prog, reg_both(dst), reg_none(),
1127 				 ALU_OP_NOT, reg_b(dst));
1128 		if (!imm || !~imm)
1129 			return;
1130 	}
1131 
1132 	tmp_reg = ur_load_imm_any(nfp_prog, imm, imm_b(nfp_prog));
1133 	emit_alu(nfp_prog, reg_both(dst), reg_a(dst), alu_op, tmp_reg);
1134 }
1135 
1136 static int
1137 wrp_alu64_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
1138 	      enum alu_op alu_op, bool skip)
1139 {
1140 	const struct bpf_insn *insn = &meta->insn;
1141 	u64 imm = insn->imm; /* sign extend */
1142 
1143 	if (skip) {
1144 		meta->skip = true;
1145 		return 0;
1146 	}
1147 
1148 	wrp_alu_imm(nfp_prog, insn->dst_reg * 2, alu_op, imm & ~0U);
1149 	wrp_alu_imm(nfp_prog, insn->dst_reg * 2 + 1, alu_op, imm >> 32);
1150 
1151 	return 0;
1152 }
1153 
1154 static int
1155 wrp_alu64_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
1156 	      enum alu_op alu_op)
1157 {
1158 	u8 dst = meta->insn.dst_reg * 2, src = meta->insn.src_reg * 2;
1159 
1160 	emit_alu(nfp_prog, reg_both(dst), reg_a(dst), alu_op, reg_b(src));
1161 	emit_alu(nfp_prog, reg_both(dst + 1),
1162 		 reg_a(dst + 1), alu_op, reg_b(src + 1));
1163 
1164 	return 0;
1165 }
1166 
1167 static int
1168 wrp_alu32_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
1169 	      enum alu_op alu_op, bool skip)
1170 {
1171 	const struct bpf_insn *insn = &meta->insn;
1172 
1173 	if (skip) {
1174 		meta->skip = true;
1175 		return 0;
1176 	}
1177 
1178 	wrp_alu_imm(nfp_prog, insn->dst_reg * 2, alu_op, insn->imm);
1179 	wrp_immed(nfp_prog, reg_both(insn->dst_reg * 2 + 1), 0);
1180 
1181 	return 0;
1182 }
1183 
1184 static int
1185 wrp_alu32_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
1186 	      enum alu_op alu_op)
1187 {
1188 	u8 dst = meta->insn.dst_reg * 2, src = meta->insn.src_reg * 2;
1189 
1190 	emit_alu(nfp_prog, reg_both(dst), reg_a(dst), alu_op, reg_b(src));
1191 	wrp_immed(nfp_prog, reg_both(meta->insn.dst_reg * 2 + 1), 0);
1192 
1193 	return 0;
1194 }
1195 
1196 static void
1197 wrp_test_reg_one(struct nfp_prog *nfp_prog, u8 dst, enum alu_op alu_op, u8 src,
1198 		 enum br_mask br_mask, u16 off)
1199 {
1200 	emit_alu(nfp_prog, reg_none(), reg_a(dst), alu_op, reg_b(src));
1201 	emit_br(nfp_prog, br_mask, off, 0);
1202 }
1203 
1204 static int
1205 wrp_test_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
1206 	     enum alu_op alu_op, enum br_mask br_mask)
1207 {
1208 	const struct bpf_insn *insn = &meta->insn;
1209 
1210 	wrp_test_reg_one(nfp_prog, insn->dst_reg * 2, alu_op,
1211 			 insn->src_reg * 2, br_mask, insn->off);
1212 	wrp_test_reg_one(nfp_prog, insn->dst_reg * 2 + 1, alu_op,
1213 			 insn->src_reg * 2 + 1, br_mask, insn->off);
1214 
1215 	return 0;
1216 }
1217 
1218 static const struct jmp_code_map {
1219 	enum br_mask br_mask;
1220 	bool swap;
1221 } jmp_code_map[] = {
1222 	[BPF_JGT >> 4]	= { BR_BLO, true },
1223 	[BPF_JGE >> 4]	= { BR_BHS, false },
1224 	[BPF_JLT >> 4]	= { BR_BLO, false },
1225 	[BPF_JLE >> 4]	= { BR_BHS, true },
1226 	[BPF_JSGT >> 4]	= { BR_BLT, true },
1227 	[BPF_JSGE >> 4]	= { BR_BGE, false },
1228 	[BPF_JSLT >> 4]	= { BR_BLT, false },
1229 	[BPF_JSLE >> 4]	= { BR_BGE, true },
1230 };
1231 
1232 static const struct jmp_code_map *nfp_jmp_code_get(struct nfp_insn_meta *meta)
1233 {
1234 	unsigned int op;
1235 
1236 	op = BPF_OP(meta->insn.code) >> 4;
1237 	/* br_mask of 0 is BR_BEQ which we don't use in jump code table */
1238 	if (WARN_ONCE(op >= ARRAY_SIZE(jmp_code_map) ||
1239 		      !jmp_code_map[op].br_mask,
1240 		      "no code found for jump instruction"))
1241 		return NULL;
1242 
1243 	return &jmp_code_map[op];
1244 }
1245 
1246 static int cmp_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1247 {
1248 	const struct bpf_insn *insn = &meta->insn;
1249 	u64 imm = insn->imm; /* sign extend */
1250 	const struct jmp_code_map *code;
1251 	enum alu_op alu_op, carry_op;
1252 	u8 reg = insn->dst_reg * 2;
1253 	swreg tmp_reg;
1254 
1255 	code = nfp_jmp_code_get(meta);
1256 	if (!code)
1257 		return -EINVAL;
1258 
1259 	alu_op = meta->jump_neg_op ? ALU_OP_ADD : ALU_OP_SUB;
1260 	carry_op = meta->jump_neg_op ? ALU_OP_ADD_C : ALU_OP_SUB_C;
1261 
1262 	tmp_reg = ur_load_imm_any(nfp_prog, imm & ~0U, imm_b(nfp_prog));
1263 	if (!code->swap)
1264 		emit_alu(nfp_prog, reg_none(), reg_a(reg), alu_op, tmp_reg);
1265 	else
1266 		emit_alu(nfp_prog, reg_none(), tmp_reg, alu_op, reg_a(reg));
1267 
1268 	tmp_reg = ur_load_imm_any(nfp_prog, imm >> 32, imm_b(nfp_prog));
1269 	if (!code->swap)
1270 		emit_alu(nfp_prog, reg_none(),
1271 			 reg_a(reg + 1), carry_op, tmp_reg);
1272 	else
1273 		emit_alu(nfp_prog, reg_none(),
1274 			 tmp_reg, carry_op, reg_a(reg + 1));
1275 
1276 	emit_br(nfp_prog, code->br_mask, insn->off, 0);
1277 
1278 	return 0;
1279 }
1280 
1281 static int cmp_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1282 {
1283 	const struct bpf_insn *insn = &meta->insn;
1284 	const struct jmp_code_map *code;
1285 	u8 areg, breg;
1286 
1287 	code = nfp_jmp_code_get(meta);
1288 	if (!code)
1289 		return -EINVAL;
1290 
1291 	areg = insn->dst_reg * 2;
1292 	breg = insn->src_reg * 2;
1293 
1294 	if (code->swap) {
1295 		areg ^= breg;
1296 		breg ^= areg;
1297 		areg ^= breg;
1298 	}
1299 
1300 	emit_alu(nfp_prog, reg_none(), reg_a(areg), ALU_OP_SUB, reg_b(breg));
1301 	emit_alu(nfp_prog, reg_none(),
1302 		 reg_a(areg + 1), ALU_OP_SUB_C, reg_b(breg + 1));
1303 	emit_br(nfp_prog, code->br_mask, insn->off, 0);
1304 
1305 	return 0;
1306 }
1307 
1308 static void wrp_end32(struct nfp_prog *nfp_prog, swreg reg_in, u8 gpr_out)
1309 {
1310 	emit_ld_field(nfp_prog, reg_both(gpr_out), 0xf, reg_in,
1311 		      SHF_SC_R_ROT, 8);
1312 	emit_ld_field(nfp_prog, reg_both(gpr_out), 0x5, reg_a(gpr_out),
1313 		      SHF_SC_R_ROT, 16);
1314 }
1315 
1316 static int adjust_head(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1317 {
1318 	swreg tmp = imm_a(nfp_prog), tmp_len = imm_b(nfp_prog);
1319 	struct nfp_bpf_cap_adjust_head *adjust_head;
1320 	u32 ret_einval, end;
1321 
1322 	adjust_head = &nfp_prog->bpf->adjust_head;
1323 
1324 	/* Optimized version - 5 vs 14 cycles */
1325 	if (nfp_prog->adjust_head_location != UINT_MAX) {
1326 		if (WARN_ON_ONCE(nfp_prog->adjust_head_location != meta->n))
1327 			return -EINVAL;
1328 
1329 		emit_alu(nfp_prog, pptr_reg(nfp_prog),
1330 			 reg_a(2 * 2), ALU_OP_ADD, pptr_reg(nfp_prog));
1331 		emit_alu(nfp_prog, plen_reg(nfp_prog),
1332 			 plen_reg(nfp_prog), ALU_OP_SUB, reg_a(2 * 2));
1333 		emit_alu(nfp_prog, pv_len(nfp_prog),
1334 			 pv_len(nfp_prog), ALU_OP_SUB, reg_a(2 * 2));
1335 
1336 		wrp_immed(nfp_prog, reg_both(0), 0);
1337 		wrp_immed(nfp_prog, reg_both(1), 0);
1338 
1339 		/* TODO: when adjust head is guaranteed to succeed we can
1340 		 * also eliminate the following if (r0 == 0) branch.
1341 		 */
1342 
1343 		return 0;
1344 	}
1345 
1346 	ret_einval = nfp_prog_current_offset(nfp_prog) + 14;
1347 	end = ret_einval + 2;
1348 
1349 	/* We need to use a temp because offset is just a part of the pkt ptr */
1350 	emit_alu(nfp_prog, tmp,
1351 		 reg_a(2 * 2), ALU_OP_ADD_2B, pptr_reg(nfp_prog));
1352 
1353 	/* Validate result will fit within FW datapath constraints */
1354 	emit_alu(nfp_prog, reg_none(),
1355 		 tmp, ALU_OP_SUB, reg_imm(adjust_head->off_min));
1356 	emit_br(nfp_prog, BR_BLO, ret_einval, 0);
1357 	emit_alu(nfp_prog, reg_none(),
1358 		 reg_imm(adjust_head->off_max), ALU_OP_SUB, tmp);
1359 	emit_br(nfp_prog, BR_BLO, ret_einval, 0);
1360 
1361 	/* Validate the length is at least ETH_HLEN */
1362 	emit_alu(nfp_prog, tmp_len,
1363 		 plen_reg(nfp_prog), ALU_OP_SUB, reg_a(2 * 2));
1364 	emit_alu(nfp_prog, reg_none(),
1365 		 tmp_len, ALU_OP_SUB, reg_imm(ETH_HLEN));
1366 	emit_br(nfp_prog, BR_BMI, ret_einval, 0);
1367 
1368 	/* Load the ret code */
1369 	wrp_immed(nfp_prog, reg_both(0), 0);
1370 	wrp_immed(nfp_prog, reg_both(1), 0);
1371 
1372 	/* Modify the packet metadata */
1373 	emit_ld_field(nfp_prog, pptr_reg(nfp_prog), 0x3, tmp, SHF_SC_NONE, 0);
1374 
1375 	/* Skip over the -EINVAL ret code (defer 2) */
1376 	emit_br(nfp_prog, BR_UNC, end, 2);
1377 
1378 	emit_alu(nfp_prog, plen_reg(nfp_prog),
1379 		 plen_reg(nfp_prog), ALU_OP_SUB, reg_a(2 * 2));
1380 	emit_alu(nfp_prog, pv_len(nfp_prog),
1381 		 pv_len(nfp_prog), ALU_OP_SUB, reg_a(2 * 2));
1382 
1383 	/* return -EINVAL target */
1384 	if (!nfp_prog_confirm_current_offset(nfp_prog, ret_einval))
1385 		return -EINVAL;
1386 
1387 	wrp_immed(nfp_prog, reg_both(0), -22);
1388 	wrp_immed(nfp_prog, reg_both(1), ~0);
1389 
1390 	if (!nfp_prog_confirm_current_offset(nfp_prog, end))
1391 		return -EINVAL;
1392 
1393 	return 0;
1394 }
1395 
1396 static int
1397 map_call_stack_common(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1398 {
1399 	bool load_lm_ptr;
1400 	u32 ret_tgt;
1401 	s64 lm_off;
1402 
1403 	/* We only have to reload LM0 if the key is not at start of stack */
1404 	lm_off = nfp_prog->stack_depth;
1405 	lm_off += meta->arg2.reg.var_off.value + meta->arg2.reg.off;
1406 	load_lm_ptr = meta->arg2.var_off || lm_off;
1407 
1408 	/* Set LM0 to start of key */
1409 	if (load_lm_ptr)
1410 		emit_csr_wr(nfp_prog, reg_b(2 * 2), NFP_CSR_ACT_LM_ADDR0);
1411 	if (meta->func_id == BPF_FUNC_map_update_elem)
1412 		emit_csr_wr(nfp_prog, reg_b(3 * 2), NFP_CSR_ACT_LM_ADDR2);
1413 
1414 	emit_br_relo(nfp_prog, BR_UNC, BR_OFF_RELO + meta->func_id,
1415 		     2, RELO_BR_HELPER);
1416 	ret_tgt = nfp_prog_current_offset(nfp_prog) + 2;
1417 
1418 	/* Load map ID into A0 */
1419 	wrp_mov(nfp_prog, reg_a(0), reg_a(2));
1420 
1421 	/* Load the return address into B0 */
1422 	wrp_immed_relo(nfp_prog, reg_b(0), ret_tgt, RELO_IMMED_REL);
1423 
1424 	if (!nfp_prog_confirm_current_offset(nfp_prog, ret_tgt))
1425 		return -EINVAL;
1426 
1427 	/* Reset the LM0 pointer */
1428 	if (!load_lm_ptr)
1429 		return 0;
1430 
1431 	emit_csr_wr(nfp_prog, stack_reg(nfp_prog), NFP_CSR_ACT_LM_ADDR0);
1432 	wrp_nops(nfp_prog, 3);
1433 
1434 	return 0;
1435 }
1436 
1437 static int
1438 nfp_get_prandom_u32(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1439 {
1440 	__emit_csr_rd(nfp_prog, NFP_CSR_PSEUDO_RND_NUM);
1441 	/* CSR value is read in following immed[gpr, 0] */
1442 	emit_immed(nfp_prog, reg_both(0), 0,
1443 		   IMMED_WIDTH_ALL, false, IMMED_SHIFT_0B);
1444 	emit_immed(nfp_prog, reg_both(1), 0,
1445 		   IMMED_WIDTH_ALL, false, IMMED_SHIFT_0B);
1446 	return 0;
1447 }
1448 
1449 static int
1450 nfp_perf_event_output(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1451 {
1452 	swreg ptr_type;
1453 	u32 ret_tgt;
1454 
1455 	ptr_type = ur_load_imm_any(nfp_prog, meta->arg1.type, imm_a(nfp_prog));
1456 
1457 	ret_tgt = nfp_prog_current_offset(nfp_prog) + 3;
1458 
1459 	emit_br_relo(nfp_prog, BR_UNC, BR_OFF_RELO + meta->func_id,
1460 		     2, RELO_BR_HELPER);
1461 
1462 	/* Load ptr type into A1 */
1463 	wrp_mov(nfp_prog, reg_a(1), ptr_type);
1464 
1465 	/* Load the return address into B0 */
1466 	wrp_immed_relo(nfp_prog, reg_b(0), ret_tgt, RELO_IMMED_REL);
1467 
1468 	if (!nfp_prog_confirm_current_offset(nfp_prog, ret_tgt))
1469 		return -EINVAL;
1470 
1471 	return 0;
1472 }
1473 
1474 static int
1475 nfp_queue_select(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1476 {
1477 	u32 jmp_tgt;
1478 
1479 	jmp_tgt = nfp_prog_current_offset(nfp_prog) + 5;
1480 
1481 	/* Make sure the queue id fits into FW field */
1482 	emit_alu(nfp_prog, reg_none(), reg_a(meta->insn.src_reg * 2),
1483 		 ALU_OP_AND_NOT_B, reg_imm(0xff));
1484 	emit_br(nfp_prog, BR_BEQ, jmp_tgt, 2);
1485 
1486 	/* Set the 'queue selected' bit and the queue value */
1487 	emit_shf(nfp_prog, pv_qsel_set(nfp_prog),
1488 		 pv_qsel_set(nfp_prog), SHF_OP_OR, reg_imm(1),
1489 		 SHF_SC_L_SHF, PKT_VEL_QSEL_SET_BIT);
1490 	emit_ld_field(nfp_prog,
1491 		      pv_qsel_val(nfp_prog), 0x1, reg_b(meta->insn.src_reg * 2),
1492 		      SHF_SC_NONE, 0);
1493 	/* Delay slots end here, we will jump over next instruction if queue
1494 	 * value fits into the field.
1495 	 */
1496 	emit_ld_field(nfp_prog,
1497 		      pv_qsel_val(nfp_prog), 0x1, reg_imm(NFP_NET_RXR_MAX),
1498 		      SHF_SC_NONE, 0);
1499 
1500 	if (!nfp_prog_confirm_current_offset(nfp_prog, jmp_tgt))
1501 		return -EINVAL;
1502 
1503 	return 0;
1504 }
1505 
1506 /* --- Callbacks --- */
1507 static int mov_reg64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1508 {
1509 	const struct bpf_insn *insn = &meta->insn;
1510 	u8 dst = insn->dst_reg * 2;
1511 	u8 src = insn->src_reg * 2;
1512 
1513 	if (insn->src_reg == BPF_REG_10) {
1514 		swreg stack_depth_reg;
1515 
1516 		stack_depth_reg = ur_load_imm_any(nfp_prog,
1517 						  nfp_prog->stack_depth,
1518 						  stack_imm(nfp_prog));
1519 		emit_alu(nfp_prog, reg_both(dst),
1520 			 stack_reg(nfp_prog), ALU_OP_ADD, stack_depth_reg);
1521 		wrp_immed(nfp_prog, reg_both(dst + 1), 0);
1522 	} else {
1523 		wrp_reg_mov(nfp_prog, dst, src);
1524 		wrp_reg_mov(nfp_prog, dst + 1, src + 1);
1525 	}
1526 
1527 	return 0;
1528 }
1529 
1530 static int mov_imm64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1531 {
1532 	u64 imm = meta->insn.imm; /* sign extend */
1533 
1534 	wrp_immed(nfp_prog, reg_both(meta->insn.dst_reg * 2), imm & ~0U);
1535 	wrp_immed(nfp_prog, reg_both(meta->insn.dst_reg * 2 + 1), imm >> 32);
1536 
1537 	return 0;
1538 }
1539 
1540 static int xor_reg64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1541 {
1542 	return wrp_alu64_reg(nfp_prog, meta, ALU_OP_XOR);
1543 }
1544 
1545 static int xor_imm64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1546 {
1547 	return wrp_alu64_imm(nfp_prog, meta, ALU_OP_XOR, !meta->insn.imm);
1548 }
1549 
1550 static int and_reg64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1551 {
1552 	return wrp_alu64_reg(nfp_prog, meta, ALU_OP_AND);
1553 }
1554 
1555 static int and_imm64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1556 {
1557 	return wrp_alu64_imm(nfp_prog, meta, ALU_OP_AND, !~meta->insn.imm);
1558 }
1559 
1560 static int or_reg64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1561 {
1562 	return wrp_alu64_reg(nfp_prog, meta, ALU_OP_OR);
1563 }
1564 
1565 static int or_imm64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1566 {
1567 	return wrp_alu64_imm(nfp_prog, meta, ALU_OP_OR, !meta->insn.imm);
1568 }
1569 
1570 static int add_reg64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1571 {
1572 	const struct bpf_insn *insn = &meta->insn;
1573 
1574 	emit_alu(nfp_prog, reg_both(insn->dst_reg * 2),
1575 		 reg_a(insn->dst_reg * 2), ALU_OP_ADD,
1576 		 reg_b(insn->src_reg * 2));
1577 	emit_alu(nfp_prog, reg_both(insn->dst_reg * 2 + 1),
1578 		 reg_a(insn->dst_reg * 2 + 1), ALU_OP_ADD_C,
1579 		 reg_b(insn->src_reg * 2 + 1));
1580 
1581 	return 0;
1582 }
1583 
1584 static int add_imm64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1585 {
1586 	const struct bpf_insn *insn = &meta->insn;
1587 	u64 imm = insn->imm; /* sign extend */
1588 
1589 	wrp_alu_imm(nfp_prog, insn->dst_reg * 2, ALU_OP_ADD, imm & ~0U);
1590 	wrp_alu_imm(nfp_prog, insn->dst_reg * 2 + 1, ALU_OP_ADD_C, imm >> 32);
1591 
1592 	return 0;
1593 }
1594 
1595 static int sub_reg64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1596 {
1597 	const struct bpf_insn *insn = &meta->insn;
1598 
1599 	emit_alu(nfp_prog, reg_both(insn->dst_reg * 2),
1600 		 reg_a(insn->dst_reg * 2), ALU_OP_SUB,
1601 		 reg_b(insn->src_reg * 2));
1602 	emit_alu(nfp_prog, reg_both(insn->dst_reg * 2 + 1),
1603 		 reg_a(insn->dst_reg * 2 + 1), ALU_OP_SUB_C,
1604 		 reg_b(insn->src_reg * 2 + 1));
1605 
1606 	return 0;
1607 }
1608 
1609 static int sub_imm64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1610 {
1611 	const struct bpf_insn *insn = &meta->insn;
1612 	u64 imm = insn->imm; /* sign extend */
1613 
1614 	wrp_alu_imm(nfp_prog, insn->dst_reg * 2, ALU_OP_SUB, imm & ~0U);
1615 	wrp_alu_imm(nfp_prog, insn->dst_reg * 2 + 1, ALU_OP_SUB_C, imm >> 32);
1616 
1617 	return 0;
1618 }
1619 
1620 static int neg_reg64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1621 {
1622 	const struct bpf_insn *insn = &meta->insn;
1623 
1624 	emit_alu(nfp_prog, reg_both(insn->dst_reg * 2), reg_imm(0),
1625 		 ALU_OP_SUB, reg_b(insn->dst_reg * 2));
1626 	emit_alu(nfp_prog, reg_both(insn->dst_reg * 2 + 1), reg_imm(0),
1627 		 ALU_OP_SUB_C, reg_b(insn->dst_reg * 2 + 1));
1628 
1629 	return 0;
1630 }
1631 
1632 static int shl_imm64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1633 {
1634 	const struct bpf_insn *insn = &meta->insn;
1635 	u8 dst = insn->dst_reg * 2;
1636 
1637 	if (insn->imm < 32) {
1638 		emit_shf(nfp_prog, reg_both(dst + 1),
1639 			 reg_a(dst + 1), SHF_OP_NONE, reg_b(dst),
1640 			 SHF_SC_R_DSHF, 32 - insn->imm);
1641 		emit_shf(nfp_prog, reg_both(dst),
1642 			 reg_none(), SHF_OP_NONE, reg_b(dst),
1643 			 SHF_SC_L_SHF, insn->imm);
1644 	} else if (insn->imm == 32) {
1645 		wrp_reg_mov(nfp_prog, dst + 1, dst);
1646 		wrp_immed(nfp_prog, reg_both(dst), 0);
1647 	} else if (insn->imm > 32) {
1648 		emit_shf(nfp_prog, reg_both(dst + 1),
1649 			 reg_none(), SHF_OP_NONE, reg_b(dst),
1650 			 SHF_SC_L_SHF, insn->imm - 32);
1651 		wrp_immed(nfp_prog, reg_both(dst), 0);
1652 	}
1653 
1654 	return 0;
1655 }
1656 
1657 static int shr_imm64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1658 {
1659 	const struct bpf_insn *insn = &meta->insn;
1660 	u8 dst = insn->dst_reg * 2;
1661 
1662 	if (insn->imm < 32) {
1663 		emit_shf(nfp_prog, reg_both(dst),
1664 			 reg_a(dst + 1), SHF_OP_NONE, reg_b(dst),
1665 			 SHF_SC_R_DSHF, insn->imm);
1666 		emit_shf(nfp_prog, reg_both(dst + 1),
1667 			 reg_none(), SHF_OP_NONE, reg_b(dst + 1),
1668 			 SHF_SC_R_SHF, insn->imm);
1669 	} else if (insn->imm == 32) {
1670 		wrp_reg_mov(nfp_prog, dst, dst + 1);
1671 		wrp_immed(nfp_prog, reg_both(dst + 1), 0);
1672 	} else if (insn->imm > 32) {
1673 		emit_shf(nfp_prog, reg_both(dst),
1674 			 reg_none(), SHF_OP_NONE, reg_b(dst + 1),
1675 			 SHF_SC_R_SHF, insn->imm - 32);
1676 		wrp_immed(nfp_prog, reg_both(dst + 1), 0);
1677 	}
1678 
1679 	return 0;
1680 }
1681 
1682 static int mov_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1683 {
1684 	const struct bpf_insn *insn = &meta->insn;
1685 
1686 	wrp_reg_mov(nfp_prog, insn->dst_reg * 2,  insn->src_reg * 2);
1687 	wrp_immed(nfp_prog, reg_both(insn->dst_reg * 2 + 1), 0);
1688 
1689 	return 0;
1690 }
1691 
1692 static int mov_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1693 {
1694 	const struct bpf_insn *insn = &meta->insn;
1695 
1696 	wrp_immed(nfp_prog, reg_both(insn->dst_reg * 2), insn->imm);
1697 	wrp_immed(nfp_prog, reg_both(insn->dst_reg * 2 + 1), 0);
1698 
1699 	return 0;
1700 }
1701 
1702 static int xor_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1703 {
1704 	return wrp_alu32_reg(nfp_prog, meta, ALU_OP_XOR);
1705 }
1706 
1707 static int xor_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1708 {
1709 	return wrp_alu32_imm(nfp_prog, meta, ALU_OP_XOR, !~meta->insn.imm);
1710 }
1711 
1712 static int and_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1713 {
1714 	return wrp_alu32_reg(nfp_prog, meta, ALU_OP_AND);
1715 }
1716 
1717 static int and_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1718 {
1719 	return wrp_alu32_imm(nfp_prog, meta, ALU_OP_AND, !~meta->insn.imm);
1720 }
1721 
1722 static int or_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1723 {
1724 	return wrp_alu32_reg(nfp_prog, meta, ALU_OP_OR);
1725 }
1726 
1727 static int or_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1728 {
1729 	return wrp_alu32_imm(nfp_prog, meta, ALU_OP_OR, !meta->insn.imm);
1730 }
1731 
1732 static int add_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1733 {
1734 	return wrp_alu32_reg(nfp_prog, meta, ALU_OP_ADD);
1735 }
1736 
1737 static int add_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1738 {
1739 	return wrp_alu32_imm(nfp_prog, meta, ALU_OP_ADD, !meta->insn.imm);
1740 }
1741 
1742 static int sub_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1743 {
1744 	return wrp_alu32_reg(nfp_prog, meta, ALU_OP_SUB);
1745 }
1746 
1747 static int sub_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1748 {
1749 	return wrp_alu32_imm(nfp_prog, meta, ALU_OP_SUB, !meta->insn.imm);
1750 }
1751 
1752 static int neg_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1753 {
1754 	u8 dst = meta->insn.dst_reg * 2;
1755 
1756 	emit_alu(nfp_prog, reg_both(dst), reg_imm(0), ALU_OP_SUB, reg_b(dst));
1757 	wrp_immed(nfp_prog, reg_both(meta->insn.dst_reg * 2 + 1), 0);
1758 
1759 	return 0;
1760 }
1761 
1762 static int shl_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1763 {
1764 	const struct bpf_insn *insn = &meta->insn;
1765 
1766 	if (!insn->imm)
1767 		return 1; /* TODO: zero shift means indirect */
1768 
1769 	emit_shf(nfp_prog, reg_both(insn->dst_reg * 2),
1770 		 reg_none(), SHF_OP_NONE, reg_b(insn->dst_reg * 2),
1771 		 SHF_SC_L_SHF, insn->imm);
1772 	wrp_immed(nfp_prog, reg_both(insn->dst_reg * 2 + 1), 0);
1773 
1774 	return 0;
1775 }
1776 
1777 static int end_reg32(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1778 {
1779 	const struct bpf_insn *insn = &meta->insn;
1780 	u8 gpr = insn->dst_reg * 2;
1781 
1782 	switch (insn->imm) {
1783 	case 16:
1784 		emit_ld_field(nfp_prog, reg_both(gpr), 0x9, reg_b(gpr),
1785 			      SHF_SC_R_ROT, 8);
1786 		emit_ld_field(nfp_prog, reg_both(gpr), 0xe, reg_a(gpr),
1787 			      SHF_SC_R_SHF, 16);
1788 
1789 		wrp_immed(nfp_prog, reg_both(gpr + 1), 0);
1790 		break;
1791 	case 32:
1792 		wrp_end32(nfp_prog, reg_a(gpr), gpr);
1793 		wrp_immed(nfp_prog, reg_both(gpr + 1), 0);
1794 		break;
1795 	case 64:
1796 		wrp_mov(nfp_prog, imm_a(nfp_prog), reg_b(gpr + 1));
1797 
1798 		wrp_end32(nfp_prog, reg_a(gpr), gpr + 1);
1799 		wrp_end32(nfp_prog, imm_a(nfp_prog), gpr);
1800 		break;
1801 	}
1802 
1803 	return 0;
1804 }
1805 
1806 static int imm_ld8_part2(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1807 {
1808 	struct nfp_insn_meta *prev = nfp_meta_prev(meta);
1809 	u32 imm_lo, imm_hi;
1810 	u8 dst;
1811 
1812 	dst = prev->insn.dst_reg * 2;
1813 	imm_lo = prev->insn.imm;
1814 	imm_hi = meta->insn.imm;
1815 
1816 	wrp_immed(nfp_prog, reg_both(dst), imm_lo);
1817 
1818 	/* mov is always 1 insn, load imm may be two, so try to use mov */
1819 	if (imm_hi == imm_lo)
1820 		wrp_mov(nfp_prog, reg_both(dst + 1), reg_a(dst));
1821 	else
1822 		wrp_immed(nfp_prog, reg_both(dst + 1), imm_hi);
1823 
1824 	return 0;
1825 }
1826 
1827 static int imm_ld8(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1828 {
1829 	meta->double_cb = imm_ld8_part2;
1830 	return 0;
1831 }
1832 
1833 static int data_ld1(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1834 {
1835 	return construct_data_ld(nfp_prog, meta->insn.imm, 1);
1836 }
1837 
1838 static int data_ld2(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1839 {
1840 	return construct_data_ld(nfp_prog, meta->insn.imm, 2);
1841 }
1842 
1843 static int data_ld4(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1844 {
1845 	return construct_data_ld(nfp_prog, meta->insn.imm, 4);
1846 }
1847 
1848 static int data_ind_ld1(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1849 {
1850 	return construct_data_ind_ld(nfp_prog, meta->insn.imm,
1851 				     meta->insn.src_reg * 2, 1);
1852 }
1853 
1854 static int data_ind_ld2(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1855 {
1856 	return construct_data_ind_ld(nfp_prog, meta->insn.imm,
1857 				     meta->insn.src_reg * 2, 2);
1858 }
1859 
1860 static int data_ind_ld4(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1861 {
1862 	return construct_data_ind_ld(nfp_prog, meta->insn.imm,
1863 				     meta->insn.src_reg * 2, 4);
1864 }
1865 
1866 static int
1867 mem_ldx_stack(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
1868 	      unsigned int size, unsigned int ptr_off)
1869 {
1870 	return mem_op_stack(nfp_prog, meta, size, ptr_off,
1871 			    meta->insn.dst_reg * 2, meta->insn.src_reg * 2,
1872 			    true, wrp_lmem_load);
1873 }
1874 
1875 static int mem_ldx_skb(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
1876 		       u8 size)
1877 {
1878 	swreg dst = reg_both(meta->insn.dst_reg * 2);
1879 
1880 	switch (meta->insn.off) {
1881 	case offsetof(struct __sk_buff, len):
1882 		if (size != FIELD_SIZEOF(struct __sk_buff, len))
1883 			return -EOPNOTSUPP;
1884 		wrp_mov(nfp_prog, dst, plen_reg(nfp_prog));
1885 		break;
1886 	case offsetof(struct __sk_buff, data):
1887 		if (size != FIELD_SIZEOF(struct __sk_buff, data))
1888 			return -EOPNOTSUPP;
1889 		wrp_mov(nfp_prog, dst, pptr_reg(nfp_prog));
1890 		break;
1891 	case offsetof(struct __sk_buff, data_end):
1892 		if (size != FIELD_SIZEOF(struct __sk_buff, data_end))
1893 			return -EOPNOTSUPP;
1894 		emit_alu(nfp_prog, dst,
1895 			 plen_reg(nfp_prog), ALU_OP_ADD, pptr_reg(nfp_prog));
1896 		break;
1897 	default:
1898 		return -EOPNOTSUPP;
1899 	}
1900 
1901 	wrp_immed(nfp_prog, reg_both(meta->insn.dst_reg * 2 + 1), 0);
1902 
1903 	return 0;
1904 }
1905 
1906 static int mem_ldx_xdp(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
1907 		       u8 size)
1908 {
1909 	swreg dst = reg_both(meta->insn.dst_reg * 2);
1910 
1911 	switch (meta->insn.off) {
1912 	case offsetof(struct xdp_md, data):
1913 		if (size != FIELD_SIZEOF(struct xdp_md, data))
1914 			return -EOPNOTSUPP;
1915 		wrp_mov(nfp_prog, dst, pptr_reg(nfp_prog));
1916 		break;
1917 	case offsetof(struct xdp_md, data_end):
1918 		if (size != FIELD_SIZEOF(struct xdp_md, data_end))
1919 			return -EOPNOTSUPP;
1920 		emit_alu(nfp_prog, dst,
1921 			 plen_reg(nfp_prog), ALU_OP_ADD, pptr_reg(nfp_prog));
1922 		break;
1923 	default:
1924 		return -EOPNOTSUPP;
1925 	}
1926 
1927 	wrp_immed(nfp_prog, reg_both(meta->insn.dst_reg * 2 + 1), 0);
1928 
1929 	return 0;
1930 }
1931 
1932 static int
1933 mem_ldx_data(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
1934 	     unsigned int size)
1935 {
1936 	swreg tmp_reg;
1937 
1938 	tmp_reg = re_load_imm_any(nfp_prog, meta->insn.off, imm_b(nfp_prog));
1939 
1940 	return data_ld_host_order_addr32(nfp_prog, meta->insn.src_reg * 2,
1941 					 tmp_reg, meta->insn.dst_reg * 2, size);
1942 }
1943 
1944 static int
1945 mem_ldx_emem(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
1946 	     unsigned int size)
1947 {
1948 	swreg tmp_reg;
1949 
1950 	tmp_reg = re_load_imm_any(nfp_prog, meta->insn.off, imm_b(nfp_prog));
1951 
1952 	return data_ld_host_order_addr40(nfp_prog, meta->insn.src_reg * 2,
1953 					 tmp_reg, meta->insn.dst_reg * 2, size);
1954 }
1955 
1956 static void
1957 mem_ldx_data_init_pktcache(struct nfp_prog *nfp_prog,
1958 			   struct nfp_insn_meta *meta)
1959 {
1960 	s16 range_start = meta->pkt_cache.range_start;
1961 	s16 range_end = meta->pkt_cache.range_end;
1962 	swreg src_base, off;
1963 	u8 xfer_num, len;
1964 	bool indir;
1965 
1966 	off = re_load_imm_any(nfp_prog, range_start, imm_b(nfp_prog));
1967 	src_base = reg_a(meta->insn.src_reg * 2);
1968 	len = range_end - range_start;
1969 	xfer_num = round_up(len, REG_WIDTH) / REG_WIDTH;
1970 
1971 	indir = len > 8 * REG_WIDTH;
1972 	/* Setup PREV_ALU for indirect mode. */
1973 	if (indir)
1974 		wrp_immed(nfp_prog, reg_none(),
1975 			  CMD_OVE_LEN | FIELD_PREP(CMD_OV_LEN, xfer_num - 1));
1976 
1977 	/* Cache memory into transfer-in registers. */
1978 	emit_cmd_any(nfp_prog, CMD_TGT_READ32_SWAP, CMD_MODE_32b, 0, src_base,
1979 		     off, xfer_num - 1, CMD_CTX_SWAP, indir);
1980 }
1981 
1982 static int
1983 mem_ldx_data_from_pktcache_unaligned(struct nfp_prog *nfp_prog,
1984 				     struct nfp_insn_meta *meta,
1985 				     unsigned int size)
1986 {
1987 	s16 range_start = meta->pkt_cache.range_start;
1988 	s16 insn_off = meta->insn.off - range_start;
1989 	swreg dst_lo, dst_hi, src_lo, src_mid;
1990 	u8 dst_gpr = meta->insn.dst_reg * 2;
1991 	u8 len_lo = size, len_mid = 0;
1992 	u8 idx = insn_off / REG_WIDTH;
1993 	u8 off = insn_off % REG_WIDTH;
1994 
1995 	dst_hi = reg_both(dst_gpr + 1);
1996 	dst_lo = reg_both(dst_gpr);
1997 	src_lo = reg_xfer(idx);
1998 
1999 	/* The read length could involve as many as three registers. */
2000 	if (size > REG_WIDTH - off) {
2001 		/* Calculate the part in the second register. */
2002 		len_lo = REG_WIDTH - off;
2003 		len_mid = size - len_lo;
2004 
2005 		/* Calculate the part in the third register. */
2006 		if (size > 2 * REG_WIDTH - off)
2007 			len_mid = REG_WIDTH;
2008 	}
2009 
2010 	wrp_reg_subpart(nfp_prog, dst_lo, src_lo, len_lo, off);
2011 
2012 	if (!len_mid) {
2013 		wrp_immed(nfp_prog, dst_hi, 0);
2014 		return 0;
2015 	}
2016 
2017 	src_mid = reg_xfer(idx + 1);
2018 
2019 	if (size <= REG_WIDTH) {
2020 		wrp_reg_or_subpart(nfp_prog, dst_lo, src_mid, len_mid, len_lo);
2021 		wrp_immed(nfp_prog, dst_hi, 0);
2022 	} else {
2023 		swreg src_hi = reg_xfer(idx + 2);
2024 
2025 		wrp_reg_or_subpart(nfp_prog, dst_lo, src_mid,
2026 				   REG_WIDTH - len_lo, len_lo);
2027 		wrp_reg_subpart(nfp_prog, dst_hi, src_mid, len_lo,
2028 				REG_WIDTH - len_lo);
2029 		wrp_reg_or_subpart(nfp_prog, dst_hi, src_hi, REG_WIDTH - len_lo,
2030 				   len_lo);
2031 	}
2032 
2033 	return 0;
2034 }
2035 
2036 static int
2037 mem_ldx_data_from_pktcache_aligned(struct nfp_prog *nfp_prog,
2038 				   struct nfp_insn_meta *meta,
2039 				   unsigned int size)
2040 {
2041 	swreg dst_lo, dst_hi, src_lo;
2042 	u8 dst_gpr, idx;
2043 
2044 	idx = (meta->insn.off - meta->pkt_cache.range_start) / REG_WIDTH;
2045 	dst_gpr = meta->insn.dst_reg * 2;
2046 	dst_hi = reg_both(dst_gpr + 1);
2047 	dst_lo = reg_both(dst_gpr);
2048 	src_lo = reg_xfer(idx);
2049 
2050 	if (size < REG_WIDTH) {
2051 		wrp_reg_subpart(nfp_prog, dst_lo, src_lo, size, 0);
2052 		wrp_immed(nfp_prog, dst_hi, 0);
2053 	} else if (size == REG_WIDTH) {
2054 		wrp_mov(nfp_prog, dst_lo, src_lo);
2055 		wrp_immed(nfp_prog, dst_hi, 0);
2056 	} else {
2057 		swreg src_hi = reg_xfer(idx + 1);
2058 
2059 		wrp_mov(nfp_prog, dst_lo, src_lo);
2060 		wrp_mov(nfp_prog, dst_hi, src_hi);
2061 	}
2062 
2063 	return 0;
2064 }
2065 
2066 static int
2067 mem_ldx_data_from_pktcache(struct nfp_prog *nfp_prog,
2068 			   struct nfp_insn_meta *meta, unsigned int size)
2069 {
2070 	u8 off = meta->insn.off - meta->pkt_cache.range_start;
2071 
2072 	if (IS_ALIGNED(off, REG_WIDTH))
2073 		return mem_ldx_data_from_pktcache_aligned(nfp_prog, meta, size);
2074 
2075 	return mem_ldx_data_from_pktcache_unaligned(nfp_prog, meta, size);
2076 }
2077 
2078 static int
2079 mem_ldx(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
2080 	unsigned int size)
2081 {
2082 	if (meta->ldst_gather_len)
2083 		return nfp_cpp_memcpy(nfp_prog, meta);
2084 
2085 	if (meta->ptr.type == PTR_TO_CTX) {
2086 		if (nfp_prog->type == BPF_PROG_TYPE_XDP)
2087 			return mem_ldx_xdp(nfp_prog, meta, size);
2088 		else
2089 			return mem_ldx_skb(nfp_prog, meta, size);
2090 	}
2091 
2092 	if (meta->ptr.type == PTR_TO_PACKET) {
2093 		if (meta->pkt_cache.range_end) {
2094 			if (meta->pkt_cache.do_init)
2095 				mem_ldx_data_init_pktcache(nfp_prog, meta);
2096 
2097 			return mem_ldx_data_from_pktcache(nfp_prog, meta, size);
2098 		} else {
2099 			return mem_ldx_data(nfp_prog, meta, size);
2100 		}
2101 	}
2102 
2103 	if (meta->ptr.type == PTR_TO_STACK)
2104 		return mem_ldx_stack(nfp_prog, meta, size,
2105 				     meta->ptr.off + meta->ptr.var_off.value);
2106 
2107 	if (meta->ptr.type == PTR_TO_MAP_VALUE)
2108 		return mem_ldx_emem(nfp_prog, meta, size);
2109 
2110 	return -EOPNOTSUPP;
2111 }
2112 
2113 static int mem_ldx1(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2114 {
2115 	return mem_ldx(nfp_prog, meta, 1);
2116 }
2117 
2118 static int mem_ldx2(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2119 {
2120 	return mem_ldx(nfp_prog, meta, 2);
2121 }
2122 
2123 static int mem_ldx4(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2124 {
2125 	return mem_ldx(nfp_prog, meta, 4);
2126 }
2127 
2128 static int mem_ldx8(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2129 {
2130 	return mem_ldx(nfp_prog, meta, 8);
2131 }
2132 
2133 static int
2134 mem_st_data(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
2135 	    unsigned int size)
2136 {
2137 	u64 imm = meta->insn.imm; /* sign extend */
2138 	swreg off_reg;
2139 
2140 	off_reg = re_load_imm_any(nfp_prog, meta->insn.off, imm_b(nfp_prog));
2141 
2142 	return data_st_host_order(nfp_prog, meta->insn.dst_reg * 2, off_reg,
2143 				  imm, size);
2144 }
2145 
2146 static int mem_st(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
2147 		  unsigned int size)
2148 {
2149 	if (meta->ptr.type == PTR_TO_PACKET)
2150 		return mem_st_data(nfp_prog, meta, size);
2151 
2152 	return -EOPNOTSUPP;
2153 }
2154 
2155 static int mem_st1(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2156 {
2157 	return mem_st(nfp_prog, meta, 1);
2158 }
2159 
2160 static int mem_st2(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2161 {
2162 	return mem_st(nfp_prog, meta, 2);
2163 }
2164 
2165 static int mem_st4(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2166 {
2167 	return mem_st(nfp_prog, meta, 4);
2168 }
2169 
2170 static int mem_st8(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2171 {
2172 	return mem_st(nfp_prog, meta, 8);
2173 }
2174 
2175 static int
2176 mem_stx_data(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
2177 	     unsigned int size)
2178 {
2179 	swreg off_reg;
2180 
2181 	off_reg = re_load_imm_any(nfp_prog, meta->insn.off, imm_b(nfp_prog));
2182 
2183 	return data_stx_host_order(nfp_prog, meta->insn.dst_reg * 2, off_reg,
2184 				   meta->insn.src_reg * 2, size);
2185 }
2186 
2187 static int
2188 mem_stx_stack(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
2189 	      unsigned int size, unsigned int ptr_off)
2190 {
2191 	return mem_op_stack(nfp_prog, meta, size, ptr_off,
2192 			    meta->insn.src_reg * 2, meta->insn.dst_reg * 2,
2193 			    false, wrp_lmem_store);
2194 }
2195 
2196 static int mem_stx_xdp(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2197 {
2198 	switch (meta->insn.off) {
2199 	case offsetof(struct xdp_md, rx_queue_index):
2200 		return nfp_queue_select(nfp_prog, meta);
2201 	}
2202 
2203 	WARN_ON_ONCE(1); /* verifier should have rejected bad accesses */
2204 	return -EOPNOTSUPP;
2205 }
2206 
2207 static int
2208 mem_stx(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
2209 	unsigned int size)
2210 {
2211 	if (meta->ptr.type == PTR_TO_PACKET)
2212 		return mem_stx_data(nfp_prog, meta, size);
2213 
2214 	if (meta->ptr.type == PTR_TO_STACK)
2215 		return mem_stx_stack(nfp_prog, meta, size,
2216 				     meta->ptr.off + meta->ptr.var_off.value);
2217 
2218 	return -EOPNOTSUPP;
2219 }
2220 
2221 static int mem_stx1(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2222 {
2223 	return mem_stx(nfp_prog, meta, 1);
2224 }
2225 
2226 static int mem_stx2(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2227 {
2228 	return mem_stx(nfp_prog, meta, 2);
2229 }
2230 
2231 static int mem_stx4(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2232 {
2233 	if (meta->ptr.type == PTR_TO_CTX)
2234 		if (nfp_prog->type == BPF_PROG_TYPE_XDP)
2235 			return mem_stx_xdp(nfp_prog, meta);
2236 	return mem_stx(nfp_prog, meta, 4);
2237 }
2238 
2239 static int mem_stx8(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2240 {
2241 	return mem_stx(nfp_prog, meta, 8);
2242 }
2243 
2244 static int
2245 mem_xadd(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta, bool is64)
2246 {
2247 	u8 dst_gpr = meta->insn.dst_reg * 2;
2248 	u8 src_gpr = meta->insn.src_reg * 2;
2249 	unsigned int full_add, out;
2250 	swreg addra, addrb, off;
2251 
2252 	off = ur_load_imm_any(nfp_prog, meta->insn.off, imm_b(nfp_prog));
2253 
2254 	/* We can fit 16 bits into command immediate, if we know the immediate
2255 	 * is guaranteed to either always or never fit into 16 bit we only
2256 	 * generate code to handle that particular case, otherwise generate
2257 	 * code for both.
2258 	 */
2259 	out = nfp_prog_current_offset(nfp_prog);
2260 	full_add = nfp_prog_current_offset(nfp_prog);
2261 
2262 	if (meta->insn.off) {
2263 		out += 2;
2264 		full_add += 2;
2265 	}
2266 	if (meta->xadd_maybe_16bit) {
2267 		out += 3;
2268 		full_add += 3;
2269 	}
2270 	if (meta->xadd_over_16bit)
2271 		out += 2 + is64;
2272 	if (meta->xadd_maybe_16bit && meta->xadd_over_16bit) {
2273 		out += 5;
2274 		full_add += 5;
2275 	}
2276 
2277 	/* Generate the branch for choosing add_imm vs add */
2278 	if (meta->xadd_maybe_16bit && meta->xadd_over_16bit) {
2279 		swreg max_imm = imm_a(nfp_prog);
2280 
2281 		wrp_immed(nfp_prog, max_imm, 0xffff);
2282 		emit_alu(nfp_prog, reg_none(),
2283 			 max_imm, ALU_OP_SUB, reg_b(src_gpr));
2284 		emit_alu(nfp_prog, reg_none(),
2285 			 reg_imm(0), ALU_OP_SUB_C, reg_b(src_gpr + 1));
2286 		emit_br(nfp_prog, BR_BLO, full_add, meta->insn.off ? 2 : 0);
2287 		/* defer for add */
2288 	}
2289 
2290 	/* If insn has an offset add to the address */
2291 	if (!meta->insn.off) {
2292 		addra = reg_a(dst_gpr);
2293 		addrb = reg_b(dst_gpr + 1);
2294 	} else {
2295 		emit_alu(nfp_prog, imma_a(nfp_prog),
2296 			 reg_a(dst_gpr), ALU_OP_ADD, off);
2297 		emit_alu(nfp_prog, imma_b(nfp_prog),
2298 			 reg_a(dst_gpr + 1), ALU_OP_ADD_C, reg_imm(0));
2299 		addra = imma_a(nfp_prog);
2300 		addrb = imma_b(nfp_prog);
2301 	}
2302 
2303 	/* Generate the add_imm if 16 bits are possible */
2304 	if (meta->xadd_maybe_16bit) {
2305 		swreg prev_alu = imm_a(nfp_prog);
2306 
2307 		wrp_immed(nfp_prog, prev_alu,
2308 			  FIELD_PREP(CMD_OVE_DATA, 2) |
2309 			  CMD_OVE_LEN |
2310 			  FIELD_PREP(CMD_OV_LEN, 0x8 | is64 << 2));
2311 		wrp_reg_or_subpart(nfp_prog, prev_alu, reg_b(src_gpr), 2, 2);
2312 		emit_cmd_indir(nfp_prog, CMD_TGT_ADD_IMM, CMD_MODE_40b_BA, 0,
2313 			       addra, addrb, 0, CMD_CTX_NO_SWAP);
2314 
2315 		if (meta->xadd_over_16bit)
2316 			emit_br(nfp_prog, BR_UNC, out, 0);
2317 	}
2318 
2319 	if (!nfp_prog_confirm_current_offset(nfp_prog, full_add))
2320 		return -EINVAL;
2321 
2322 	/* Generate the add if 16 bits are not guaranteed */
2323 	if (meta->xadd_over_16bit) {
2324 		emit_cmd(nfp_prog, CMD_TGT_ADD, CMD_MODE_40b_BA, 0,
2325 			 addra, addrb, is64 << 2,
2326 			 is64 ? CMD_CTX_SWAP_DEFER2 : CMD_CTX_SWAP_DEFER1);
2327 
2328 		wrp_mov(nfp_prog, reg_xfer(0), reg_a(src_gpr));
2329 		if (is64)
2330 			wrp_mov(nfp_prog, reg_xfer(1), reg_a(src_gpr + 1));
2331 	}
2332 
2333 	if (!nfp_prog_confirm_current_offset(nfp_prog, out))
2334 		return -EINVAL;
2335 
2336 	return 0;
2337 }
2338 
2339 static int mem_xadd4(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2340 {
2341 	return mem_xadd(nfp_prog, meta, false);
2342 }
2343 
2344 static int mem_xadd8(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2345 {
2346 	return mem_xadd(nfp_prog, meta, true);
2347 }
2348 
2349 static int jump(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2350 {
2351 	emit_br(nfp_prog, BR_UNC, meta->insn.off, 0);
2352 
2353 	return 0;
2354 }
2355 
2356 static int jeq_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2357 {
2358 	const struct bpf_insn *insn = &meta->insn;
2359 	u64 imm = insn->imm; /* sign extend */
2360 	swreg or1, or2, tmp_reg;
2361 
2362 	or1 = reg_a(insn->dst_reg * 2);
2363 	or2 = reg_b(insn->dst_reg * 2 + 1);
2364 
2365 	if (imm & ~0U) {
2366 		tmp_reg = ur_load_imm_any(nfp_prog, imm & ~0U, imm_b(nfp_prog));
2367 		emit_alu(nfp_prog, imm_a(nfp_prog),
2368 			 reg_a(insn->dst_reg * 2), ALU_OP_XOR, tmp_reg);
2369 		or1 = imm_a(nfp_prog);
2370 	}
2371 
2372 	if (imm >> 32) {
2373 		tmp_reg = ur_load_imm_any(nfp_prog, imm >> 32, imm_b(nfp_prog));
2374 		emit_alu(nfp_prog, imm_b(nfp_prog),
2375 			 reg_a(insn->dst_reg * 2 + 1), ALU_OP_XOR, tmp_reg);
2376 		or2 = imm_b(nfp_prog);
2377 	}
2378 
2379 	emit_alu(nfp_prog, reg_none(), or1, ALU_OP_OR, or2);
2380 	emit_br(nfp_prog, BR_BEQ, insn->off, 0);
2381 
2382 	return 0;
2383 }
2384 
2385 static int jset_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2386 {
2387 	const struct bpf_insn *insn = &meta->insn;
2388 	u64 imm = insn->imm; /* sign extend */
2389 	swreg tmp_reg;
2390 
2391 	if (!imm) {
2392 		meta->skip = true;
2393 		return 0;
2394 	}
2395 
2396 	if (imm & ~0U) {
2397 		tmp_reg = ur_load_imm_any(nfp_prog, imm & ~0U, imm_b(nfp_prog));
2398 		emit_alu(nfp_prog, reg_none(),
2399 			 reg_a(insn->dst_reg * 2), ALU_OP_AND, tmp_reg);
2400 		emit_br(nfp_prog, BR_BNE, insn->off, 0);
2401 	}
2402 
2403 	if (imm >> 32) {
2404 		tmp_reg = ur_load_imm_any(nfp_prog, imm >> 32, imm_b(nfp_prog));
2405 		emit_alu(nfp_prog, reg_none(),
2406 			 reg_a(insn->dst_reg * 2 + 1), ALU_OP_AND, tmp_reg);
2407 		emit_br(nfp_prog, BR_BNE, insn->off, 0);
2408 	}
2409 
2410 	return 0;
2411 }
2412 
2413 static int jne_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2414 {
2415 	const struct bpf_insn *insn = &meta->insn;
2416 	u64 imm = insn->imm; /* sign extend */
2417 	swreg tmp_reg;
2418 
2419 	if (!imm) {
2420 		emit_alu(nfp_prog, reg_none(), reg_a(insn->dst_reg * 2),
2421 			 ALU_OP_OR, reg_b(insn->dst_reg * 2 + 1));
2422 		emit_br(nfp_prog, BR_BNE, insn->off, 0);
2423 		return 0;
2424 	}
2425 
2426 	tmp_reg = ur_load_imm_any(nfp_prog, imm & ~0U, imm_b(nfp_prog));
2427 	emit_alu(nfp_prog, reg_none(),
2428 		 reg_a(insn->dst_reg * 2), ALU_OP_XOR, tmp_reg);
2429 	emit_br(nfp_prog, BR_BNE, insn->off, 0);
2430 
2431 	tmp_reg = ur_load_imm_any(nfp_prog, imm >> 32, imm_b(nfp_prog));
2432 	emit_alu(nfp_prog, reg_none(),
2433 		 reg_a(insn->dst_reg * 2 + 1), ALU_OP_XOR, tmp_reg);
2434 	emit_br(nfp_prog, BR_BNE, insn->off, 0);
2435 
2436 	return 0;
2437 }
2438 
2439 static int jeq_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2440 {
2441 	const struct bpf_insn *insn = &meta->insn;
2442 
2443 	emit_alu(nfp_prog, imm_a(nfp_prog), reg_a(insn->dst_reg * 2),
2444 		 ALU_OP_XOR, reg_b(insn->src_reg * 2));
2445 	emit_alu(nfp_prog, imm_b(nfp_prog), reg_a(insn->dst_reg * 2 + 1),
2446 		 ALU_OP_XOR, reg_b(insn->src_reg * 2 + 1));
2447 	emit_alu(nfp_prog, reg_none(),
2448 		 imm_a(nfp_prog), ALU_OP_OR, imm_b(nfp_prog));
2449 	emit_br(nfp_prog, BR_BEQ, insn->off, 0);
2450 
2451 	return 0;
2452 }
2453 
2454 static int jset_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2455 {
2456 	return wrp_test_reg(nfp_prog, meta, ALU_OP_AND, BR_BNE);
2457 }
2458 
2459 static int jne_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2460 {
2461 	return wrp_test_reg(nfp_prog, meta, ALU_OP_XOR, BR_BNE);
2462 }
2463 
2464 static int call(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2465 {
2466 	switch (meta->insn.imm) {
2467 	case BPF_FUNC_xdp_adjust_head:
2468 		return adjust_head(nfp_prog, meta);
2469 	case BPF_FUNC_map_lookup_elem:
2470 	case BPF_FUNC_map_update_elem:
2471 	case BPF_FUNC_map_delete_elem:
2472 		return map_call_stack_common(nfp_prog, meta);
2473 	case BPF_FUNC_get_prandom_u32:
2474 		return nfp_get_prandom_u32(nfp_prog, meta);
2475 	case BPF_FUNC_perf_event_output:
2476 		return nfp_perf_event_output(nfp_prog, meta);
2477 	default:
2478 		WARN_ONCE(1, "verifier allowed unsupported function\n");
2479 		return -EOPNOTSUPP;
2480 	}
2481 }
2482 
2483 static int goto_out(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2484 {
2485 	emit_br_relo(nfp_prog, BR_UNC, BR_OFF_RELO, 0, RELO_BR_GO_OUT);
2486 
2487 	return 0;
2488 }
2489 
2490 static const instr_cb_t instr_cb[256] = {
2491 	[BPF_ALU64 | BPF_MOV | BPF_X] =	mov_reg64,
2492 	[BPF_ALU64 | BPF_MOV | BPF_K] =	mov_imm64,
2493 	[BPF_ALU64 | BPF_XOR | BPF_X] =	xor_reg64,
2494 	[BPF_ALU64 | BPF_XOR | BPF_K] =	xor_imm64,
2495 	[BPF_ALU64 | BPF_AND | BPF_X] =	and_reg64,
2496 	[BPF_ALU64 | BPF_AND | BPF_K] =	and_imm64,
2497 	[BPF_ALU64 | BPF_OR | BPF_X] =	or_reg64,
2498 	[BPF_ALU64 | BPF_OR | BPF_K] =	or_imm64,
2499 	[BPF_ALU64 | BPF_ADD | BPF_X] =	add_reg64,
2500 	[BPF_ALU64 | BPF_ADD | BPF_K] =	add_imm64,
2501 	[BPF_ALU64 | BPF_SUB | BPF_X] =	sub_reg64,
2502 	[BPF_ALU64 | BPF_SUB | BPF_K] =	sub_imm64,
2503 	[BPF_ALU64 | BPF_NEG] =		neg_reg64,
2504 	[BPF_ALU64 | BPF_LSH | BPF_K] =	shl_imm64,
2505 	[BPF_ALU64 | BPF_RSH | BPF_K] =	shr_imm64,
2506 	[BPF_ALU | BPF_MOV | BPF_X] =	mov_reg,
2507 	[BPF_ALU | BPF_MOV | BPF_K] =	mov_imm,
2508 	[BPF_ALU | BPF_XOR | BPF_X] =	xor_reg,
2509 	[BPF_ALU | BPF_XOR | BPF_K] =	xor_imm,
2510 	[BPF_ALU | BPF_AND | BPF_X] =	and_reg,
2511 	[BPF_ALU | BPF_AND | BPF_K] =	and_imm,
2512 	[BPF_ALU | BPF_OR | BPF_X] =	or_reg,
2513 	[BPF_ALU | BPF_OR | BPF_K] =	or_imm,
2514 	[BPF_ALU | BPF_ADD | BPF_X] =	add_reg,
2515 	[BPF_ALU | BPF_ADD | BPF_K] =	add_imm,
2516 	[BPF_ALU | BPF_SUB | BPF_X] =	sub_reg,
2517 	[BPF_ALU | BPF_SUB | BPF_K] =	sub_imm,
2518 	[BPF_ALU | BPF_NEG] =		neg_reg,
2519 	[BPF_ALU | BPF_LSH | BPF_K] =	shl_imm,
2520 	[BPF_ALU | BPF_END | BPF_X] =	end_reg32,
2521 	[BPF_LD | BPF_IMM | BPF_DW] =	imm_ld8,
2522 	[BPF_LD | BPF_ABS | BPF_B] =	data_ld1,
2523 	[BPF_LD | BPF_ABS | BPF_H] =	data_ld2,
2524 	[BPF_LD | BPF_ABS | BPF_W] =	data_ld4,
2525 	[BPF_LD | BPF_IND | BPF_B] =	data_ind_ld1,
2526 	[BPF_LD | BPF_IND | BPF_H] =	data_ind_ld2,
2527 	[BPF_LD | BPF_IND | BPF_W] =	data_ind_ld4,
2528 	[BPF_LDX | BPF_MEM | BPF_B] =	mem_ldx1,
2529 	[BPF_LDX | BPF_MEM | BPF_H] =	mem_ldx2,
2530 	[BPF_LDX | BPF_MEM | BPF_W] =	mem_ldx4,
2531 	[BPF_LDX | BPF_MEM | BPF_DW] =	mem_ldx8,
2532 	[BPF_STX | BPF_MEM | BPF_B] =	mem_stx1,
2533 	[BPF_STX | BPF_MEM | BPF_H] =	mem_stx2,
2534 	[BPF_STX | BPF_MEM | BPF_W] =	mem_stx4,
2535 	[BPF_STX | BPF_MEM | BPF_DW] =	mem_stx8,
2536 	[BPF_STX | BPF_XADD | BPF_W] =	mem_xadd4,
2537 	[BPF_STX | BPF_XADD | BPF_DW] =	mem_xadd8,
2538 	[BPF_ST | BPF_MEM | BPF_B] =	mem_st1,
2539 	[BPF_ST | BPF_MEM | BPF_H] =	mem_st2,
2540 	[BPF_ST | BPF_MEM | BPF_W] =	mem_st4,
2541 	[BPF_ST | BPF_MEM | BPF_DW] =	mem_st8,
2542 	[BPF_JMP | BPF_JA | BPF_K] =	jump,
2543 	[BPF_JMP | BPF_JEQ | BPF_K] =	jeq_imm,
2544 	[BPF_JMP | BPF_JGT | BPF_K] =	cmp_imm,
2545 	[BPF_JMP | BPF_JGE | BPF_K] =	cmp_imm,
2546 	[BPF_JMP | BPF_JLT | BPF_K] =	cmp_imm,
2547 	[BPF_JMP | BPF_JLE | BPF_K] =	cmp_imm,
2548 	[BPF_JMP | BPF_JSGT | BPF_K] =  cmp_imm,
2549 	[BPF_JMP | BPF_JSGE | BPF_K] =  cmp_imm,
2550 	[BPF_JMP | BPF_JSLT | BPF_K] =  cmp_imm,
2551 	[BPF_JMP | BPF_JSLE | BPF_K] =  cmp_imm,
2552 	[BPF_JMP | BPF_JSET | BPF_K] =	jset_imm,
2553 	[BPF_JMP | BPF_JNE | BPF_K] =	jne_imm,
2554 	[BPF_JMP | BPF_JEQ | BPF_X] =	jeq_reg,
2555 	[BPF_JMP | BPF_JGT | BPF_X] =	cmp_reg,
2556 	[BPF_JMP | BPF_JGE | BPF_X] =	cmp_reg,
2557 	[BPF_JMP | BPF_JLT | BPF_X] =	cmp_reg,
2558 	[BPF_JMP | BPF_JLE | BPF_X] =	cmp_reg,
2559 	[BPF_JMP | BPF_JSGT | BPF_X] =  cmp_reg,
2560 	[BPF_JMP | BPF_JSGE | BPF_X] =  cmp_reg,
2561 	[BPF_JMP | BPF_JSLT | BPF_X] =  cmp_reg,
2562 	[BPF_JMP | BPF_JSLE | BPF_X] =  cmp_reg,
2563 	[BPF_JMP | BPF_JSET | BPF_X] =	jset_reg,
2564 	[BPF_JMP | BPF_JNE | BPF_X] =	jne_reg,
2565 	[BPF_JMP | BPF_CALL] =		call,
2566 	[BPF_JMP | BPF_EXIT] =		goto_out,
2567 };
2568 
2569 /* --- Assembler logic --- */
2570 static int nfp_fixup_branches(struct nfp_prog *nfp_prog)
2571 {
2572 	struct nfp_insn_meta *meta, *jmp_dst;
2573 	u32 idx, br_idx;
2574 
2575 	list_for_each_entry(meta, &nfp_prog->insns, l) {
2576 		if (meta->skip)
2577 			continue;
2578 		if (meta->insn.code == (BPF_JMP | BPF_CALL))
2579 			continue;
2580 		if (BPF_CLASS(meta->insn.code) != BPF_JMP)
2581 			continue;
2582 
2583 		if (list_is_last(&meta->l, &nfp_prog->insns))
2584 			br_idx = nfp_prog->last_bpf_off;
2585 		else
2586 			br_idx = list_next_entry(meta, l)->off - 1;
2587 
2588 		if (!nfp_is_br(nfp_prog->prog[br_idx])) {
2589 			pr_err("Fixup found block not ending in branch %d %02x %016llx!!\n",
2590 			       br_idx, meta->insn.code, nfp_prog->prog[br_idx]);
2591 			return -ELOOP;
2592 		}
2593 		/* Leave special branches for later */
2594 		if (FIELD_GET(OP_RELO_TYPE, nfp_prog->prog[br_idx]) !=
2595 		    RELO_BR_REL)
2596 			continue;
2597 
2598 		if (!meta->jmp_dst) {
2599 			pr_err("Non-exit jump doesn't have destination info recorded!!\n");
2600 			return -ELOOP;
2601 		}
2602 
2603 		jmp_dst = meta->jmp_dst;
2604 
2605 		if (jmp_dst->skip) {
2606 			pr_err("Branch landing on removed instruction!!\n");
2607 			return -ELOOP;
2608 		}
2609 
2610 		for (idx = meta->off; idx <= br_idx; idx++) {
2611 			if (!nfp_is_br(nfp_prog->prog[idx]))
2612 				continue;
2613 			br_set_offset(&nfp_prog->prog[idx], jmp_dst->off);
2614 		}
2615 	}
2616 
2617 	return 0;
2618 }
2619 
2620 static void nfp_intro(struct nfp_prog *nfp_prog)
2621 {
2622 	wrp_immed(nfp_prog, plen_reg(nfp_prog), GENMASK(13, 0));
2623 	emit_alu(nfp_prog, plen_reg(nfp_prog),
2624 		 plen_reg(nfp_prog), ALU_OP_AND, pv_len(nfp_prog));
2625 }
2626 
2627 static void nfp_outro_tc_da(struct nfp_prog *nfp_prog)
2628 {
2629 	/* TC direct-action mode:
2630 	 *   0,1   ok        NOT SUPPORTED[1]
2631 	 *   2   drop  0x22 -> drop,  count as stat1
2632 	 *   4,5 nuke  0x02 -> drop
2633 	 *   7  redir  0x44 -> redir, count as stat2
2634 	 *   * unspec  0x11 -> pass,  count as stat0
2635 	 *
2636 	 * [1] We can't support OK and RECLASSIFY because we can't tell TC
2637 	 *     the exact decision made.  We are forced to support UNSPEC
2638 	 *     to handle aborts so that's the only one we handle for passing
2639 	 *     packets up the stack.
2640 	 */
2641 	/* Target for aborts */
2642 	nfp_prog->tgt_abort = nfp_prog_current_offset(nfp_prog);
2643 
2644 	emit_br_relo(nfp_prog, BR_UNC, BR_OFF_RELO, 2, RELO_BR_NEXT_PKT);
2645 
2646 	wrp_mov(nfp_prog, reg_a(0), NFP_BPF_ABI_FLAGS);
2647 	emit_ld_field(nfp_prog, reg_a(0), 0xc, reg_imm(0x11), SHF_SC_L_SHF, 16);
2648 
2649 	/* Target for normal exits */
2650 	nfp_prog->tgt_out = nfp_prog_current_offset(nfp_prog);
2651 
2652 	/* if R0 > 7 jump to abort */
2653 	emit_alu(nfp_prog, reg_none(), reg_imm(7), ALU_OP_SUB, reg_b(0));
2654 	emit_br(nfp_prog, BR_BLO, nfp_prog->tgt_abort, 0);
2655 	wrp_mov(nfp_prog, reg_a(0), NFP_BPF_ABI_FLAGS);
2656 
2657 	wrp_immed(nfp_prog, reg_b(2), 0x41221211);
2658 	wrp_immed(nfp_prog, reg_b(3), 0x41001211);
2659 
2660 	emit_shf(nfp_prog, reg_a(1),
2661 		 reg_none(), SHF_OP_NONE, reg_b(0), SHF_SC_L_SHF, 2);
2662 
2663 	emit_alu(nfp_prog, reg_none(), reg_a(1), ALU_OP_OR, reg_imm(0));
2664 	emit_shf(nfp_prog, reg_a(2),
2665 		 reg_imm(0xf), SHF_OP_AND, reg_b(2), SHF_SC_R_SHF, 0);
2666 
2667 	emit_alu(nfp_prog, reg_none(), reg_a(1), ALU_OP_OR, reg_imm(0));
2668 	emit_shf(nfp_prog, reg_b(2),
2669 		 reg_imm(0xf), SHF_OP_AND, reg_b(3), SHF_SC_R_SHF, 0);
2670 
2671 	emit_br_relo(nfp_prog, BR_UNC, BR_OFF_RELO, 2, RELO_BR_NEXT_PKT);
2672 
2673 	emit_shf(nfp_prog, reg_b(2),
2674 		 reg_a(2), SHF_OP_OR, reg_b(2), SHF_SC_L_SHF, 4);
2675 	emit_ld_field(nfp_prog, reg_a(0), 0xc, reg_b(2), SHF_SC_L_SHF, 16);
2676 }
2677 
2678 static void nfp_outro_xdp(struct nfp_prog *nfp_prog)
2679 {
2680 	/* XDP return codes:
2681 	 *   0 aborted  0x82 -> drop,  count as stat3
2682 	 *   1    drop  0x22 -> drop,  count as stat1
2683 	 *   2    pass  0x11 -> pass,  count as stat0
2684 	 *   3      tx  0x44 -> redir, count as stat2
2685 	 *   * unknown  0x82 -> drop,  count as stat3
2686 	 */
2687 	/* Target for aborts */
2688 	nfp_prog->tgt_abort = nfp_prog_current_offset(nfp_prog);
2689 
2690 	emit_br_relo(nfp_prog, BR_UNC, BR_OFF_RELO, 2, RELO_BR_NEXT_PKT);
2691 
2692 	wrp_mov(nfp_prog, reg_a(0), NFP_BPF_ABI_FLAGS);
2693 	emit_ld_field(nfp_prog, reg_a(0), 0xc, reg_imm(0x82), SHF_SC_L_SHF, 16);
2694 
2695 	/* Target for normal exits */
2696 	nfp_prog->tgt_out = nfp_prog_current_offset(nfp_prog);
2697 
2698 	/* if R0 > 3 jump to abort */
2699 	emit_alu(nfp_prog, reg_none(), reg_imm(3), ALU_OP_SUB, reg_b(0));
2700 	emit_br(nfp_prog, BR_BLO, nfp_prog->tgt_abort, 0);
2701 
2702 	wrp_immed(nfp_prog, reg_b(2), 0x44112282);
2703 
2704 	emit_shf(nfp_prog, reg_a(1),
2705 		 reg_none(), SHF_OP_NONE, reg_b(0), SHF_SC_L_SHF, 3);
2706 
2707 	emit_alu(nfp_prog, reg_none(), reg_a(1), ALU_OP_OR, reg_imm(0));
2708 	emit_shf(nfp_prog, reg_b(2),
2709 		 reg_imm(0xff), SHF_OP_AND, reg_b(2), SHF_SC_R_SHF, 0);
2710 
2711 	emit_br_relo(nfp_prog, BR_UNC, BR_OFF_RELO, 2, RELO_BR_NEXT_PKT);
2712 
2713 	wrp_mov(nfp_prog, reg_a(0), NFP_BPF_ABI_FLAGS);
2714 	emit_ld_field(nfp_prog, reg_a(0), 0xc, reg_b(2), SHF_SC_L_SHF, 16);
2715 }
2716 
2717 static void nfp_outro(struct nfp_prog *nfp_prog)
2718 {
2719 	switch (nfp_prog->type) {
2720 	case BPF_PROG_TYPE_SCHED_CLS:
2721 		nfp_outro_tc_da(nfp_prog);
2722 		break;
2723 	case BPF_PROG_TYPE_XDP:
2724 		nfp_outro_xdp(nfp_prog);
2725 		break;
2726 	default:
2727 		WARN_ON(1);
2728 	}
2729 }
2730 
2731 static int nfp_translate(struct nfp_prog *nfp_prog)
2732 {
2733 	struct nfp_insn_meta *meta;
2734 	int err;
2735 
2736 	nfp_intro(nfp_prog);
2737 	if (nfp_prog->error)
2738 		return nfp_prog->error;
2739 
2740 	list_for_each_entry(meta, &nfp_prog->insns, l) {
2741 		instr_cb_t cb = instr_cb[meta->insn.code];
2742 
2743 		meta->off = nfp_prog_current_offset(nfp_prog);
2744 
2745 		if (meta->skip) {
2746 			nfp_prog->n_translated++;
2747 			continue;
2748 		}
2749 
2750 		if (nfp_meta_has_prev(nfp_prog, meta) &&
2751 		    nfp_meta_prev(meta)->double_cb)
2752 			cb = nfp_meta_prev(meta)->double_cb;
2753 		if (!cb)
2754 			return -ENOENT;
2755 		err = cb(nfp_prog, meta);
2756 		if (err)
2757 			return err;
2758 		if (nfp_prog->error)
2759 			return nfp_prog->error;
2760 
2761 		nfp_prog->n_translated++;
2762 	}
2763 
2764 	nfp_prog->last_bpf_off = nfp_prog_current_offset(nfp_prog) - 1;
2765 
2766 	nfp_outro(nfp_prog);
2767 	if (nfp_prog->error)
2768 		return nfp_prog->error;
2769 
2770 	wrp_nops(nfp_prog, NFP_USTORE_PREFETCH_WINDOW);
2771 	if (nfp_prog->error)
2772 		return nfp_prog->error;
2773 
2774 	return nfp_fixup_branches(nfp_prog);
2775 }
2776 
2777 /* --- Optimizations --- */
2778 static void nfp_bpf_opt_reg_init(struct nfp_prog *nfp_prog)
2779 {
2780 	struct nfp_insn_meta *meta;
2781 
2782 	list_for_each_entry(meta, &nfp_prog->insns, l) {
2783 		struct bpf_insn insn = meta->insn;
2784 
2785 		/* Programs converted from cBPF start with register xoring */
2786 		if (insn.code == (BPF_ALU64 | BPF_XOR | BPF_X) &&
2787 		    insn.src_reg == insn.dst_reg)
2788 			continue;
2789 
2790 		/* Programs start with R6 = R1 but we ignore the skb pointer */
2791 		if (insn.code == (BPF_ALU64 | BPF_MOV | BPF_X) &&
2792 		    insn.src_reg == 1 && insn.dst_reg == 6)
2793 			meta->skip = true;
2794 
2795 		/* Return as soon as something doesn't match */
2796 		if (!meta->skip)
2797 			return;
2798 	}
2799 }
2800 
2801 /* abs(insn.imm) will fit better into unrestricted reg immediate -
2802  * convert add/sub of a negative number into a sub/add of a positive one.
2803  */
2804 static void nfp_bpf_opt_neg_add_sub(struct nfp_prog *nfp_prog)
2805 {
2806 	struct nfp_insn_meta *meta;
2807 
2808 	list_for_each_entry(meta, &nfp_prog->insns, l) {
2809 		struct bpf_insn insn = meta->insn;
2810 
2811 		if (meta->skip)
2812 			continue;
2813 
2814 		if (BPF_CLASS(insn.code) != BPF_ALU &&
2815 		    BPF_CLASS(insn.code) != BPF_ALU64 &&
2816 		    BPF_CLASS(insn.code) != BPF_JMP)
2817 			continue;
2818 		if (BPF_SRC(insn.code) != BPF_K)
2819 			continue;
2820 		if (insn.imm >= 0)
2821 			continue;
2822 
2823 		if (BPF_CLASS(insn.code) == BPF_JMP) {
2824 			switch (BPF_OP(insn.code)) {
2825 			case BPF_JGE:
2826 			case BPF_JSGE:
2827 			case BPF_JLT:
2828 			case BPF_JSLT:
2829 				meta->jump_neg_op = true;
2830 				break;
2831 			default:
2832 				continue;
2833 			}
2834 		} else {
2835 			if (BPF_OP(insn.code) == BPF_ADD)
2836 				insn.code = BPF_CLASS(insn.code) | BPF_SUB;
2837 			else if (BPF_OP(insn.code) == BPF_SUB)
2838 				insn.code = BPF_CLASS(insn.code) | BPF_ADD;
2839 			else
2840 				continue;
2841 
2842 			meta->insn.code = insn.code | BPF_K;
2843 		}
2844 
2845 		meta->insn.imm = -insn.imm;
2846 	}
2847 }
2848 
2849 /* Remove masking after load since our load guarantees this is not needed */
2850 static void nfp_bpf_opt_ld_mask(struct nfp_prog *nfp_prog)
2851 {
2852 	struct nfp_insn_meta *meta1, *meta2;
2853 	const s32 exp_mask[] = {
2854 		[BPF_B] = 0x000000ffU,
2855 		[BPF_H] = 0x0000ffffU,
2856 		[BPF_W] = 0xffffffffU,
2857 	};
2858 
2859 	nfp_for_each_insn_walk2(nfp_prog, meta1, meta2) {
2860 		struct bpf_insn insn, next;
2861 
2862 		insn = meta1->insn;
2863 		next = meta2->insn;
2864 
2865 		if (BPF_CLASS(insn.code) != BPF_LD)
2866 			continue;
2867 		if (BPF_MODE(insn.code) != BPF_ABS &&
2868 		    BPF_MODE(insn.code) != BPF_IND)
2869 			continue;
2870 
2871 		if (next.code != (BPF_ALU64 | BPF_AND | BPF_K))
2872 			continue;
2873 
2874 		if (!exp_mask[BPF_SIZE(insn.code)])
2875 			continue;
2876 		if (exp_mask[BPF_SIZE(insn.code)] != next.imm)
2877 			continue;
2878 
2879 		if (next.src_reg || next.dst_reg)
2880 			continue;
2881 
2882 		if (meta2->flags & FLAG_INSN_IS_JUMP_DST)
2883 			continue;
2884 
2885 		meta2->skip = true;
2886 	}
2887 }
2888 
2889 static void nfp_bpf_opt_ld_shift(struct nfp_prog *nfp_prog)
2890 {
2891 	struct nfp_insn_meta *meta1, *meta2, *meta3;
2892 
2893 	nfp_for_each_insn_walk3(nfp_prog, meta1, meta2, meta3) {
2894 		struct bpf_insn insn, next1, next2;
2895 
2896 		insn = meta1->insn;
2897 		next1 = meta2->insn;
2898 		next2 = meta3->insn;
2899 
2900 		if (BPF_CLASS(insn.code) != BPF_LD)
2901 			continue;
2902 		if (BPF_MODE(insn.code) != BPF_ABS &&
2903 		    BPF_MODE(insn.code) != BPF_IND)
2904 			continue;
2905 		if (BPF_SIZE(insn.code) != BPF_W)
2906 			continue;
2907 
2908 		if (!(next1.code == (BPF_LSH | BPF_K | BPF_ALU64) &&
2909 		      next2.code == (BPF_RSH | BPF_K | BPF_ALU64)) &&
2910 		    !(next1.code == (BPF_RSH | BPF_K | BPF_ALU64) &&
2911 		      next2.code == (BPF_LSH | BPF_K | BPF_ALU64)))
2912 			continue;
2913 
2914 		if (next1.src_reg || next1.dst_reg ||
2915 		    next2.src_reg || next2.dst_reg)
2916 			continue;
2917 
2918 		if (next1.imm != 0x20 || next2.imm != 0x20)
2919 			continue;
2920 
2921 		if (meta2->flags & FLAG_INSN_IS_JUMP_DST ||
2922 		    meta3->flags & FLAG_INSN_IS_JUMP_DST)
2923 			continue;
2924 
2925 		meta2->skip = true;
2926 		meta3->skip = true;
2927 	}
2928 }
2929 
2930 /* load/store pair that forms memory copy sould look like the following:
2931  *
2932  *   ld_width R, [addr_src + offset_src]
2933  *   st_width [addr_dest + offset_dest], R
2934  *
2935  * The destination register of load and source register of store should
2936  * be the same, load and store should also perform at the same width.
2937  * If either of addr_src or addr_dest is stack pointer, we don't do the
2938  * CPP optimization as stack is modelled by registers on NFP.
2939  */
2940 static bool
2941 curr_pair_is_memcpy(struct nfp_insn_meta *ld_meta,
2942 		    struct nfp_insn_meta *st_meta)
2943 {
2944 	struct bpf_insn *ld = &ld_meta->insn;
2945 	struct bpf_insn *st = &st_meta->insn;
2946 
2947 	if (!is_mbpf_load(ld_meta) || !is_mbpf_store(st_meta))
2948 		return false;
2949 
2950 	if (ld_meta->ptr.type != PTR_TO_PACKET)
2951 		return false;
2952 
2953 	if (st_meta->ptr.type != PTR_TO_PACKET)
2954 		return false;
2955 
2956 	if (BPF_SIZE(ld->code) != BPF_SIZE(st->code))
2957 		return false;
2958 
2959 	if (ld->dst_reg != st->src_reg)
2960 		return false;
2961 
2962 	/* There is jump to the store insn in this pair. */
2963 	if (st_meta->flags & FLAG_INSN_IS_JUMP_DST)
2964 		return false;
2965 
2966 	return true;
2967 }
2968 
2969 /* Currently, we only support chaining load/store pairs if:
2970  *
2971  *  - Their address base registers are the same.
2972  *  - Their address offsets are in the same order.
2973  *  - They operate at the same memory width.
2974  *  - There is no jump into the middle of them.
2975  */
2976 static bool
2977 curr_pair_chain_with_previous(struct nfp_insn_meta *ld_meta,
2978 			      struct nfp_insn_meta *st_meta,
2979 			      struct bpf_insn *prev_ld,
2980 			      struct bpf_insn *prev_st)
2981 {
2982 	u8 prev_size, curr_size, prev_ld_base, prev_st_base, prev_ld_dst;
2983 	struct bpf_insn *ld = &ld_meta->insn;
2984 	struct bpf_insn *st = &st_meta->insn;
2985 	s16 prev_ld_off, prev_st_off;
2986 
2987 	/* This pair is the start pair. */
2988 	if (!prev_ld)
2989 		return true;
2990 
2991 	prev_size = BPF_LDST_BYTES(prev_ld);
2992 	curr_size = BPF_LDST_BYTES(ld);
2993 	prev_ld_base = prev_ld->src_reg;
2994 	prev_st_base = prev_st->dst_reg;
2995 	prev_ld_dst = prev_ld->dst_reg;
2996 	prev_ld_off = prev_ld->off;
2997 	prev_st_off = prev_st->off;
2998 
2999 	if (ld->dst_reg != prev_ld_dst)
3000 		return false;
3001 
3002 	if (ld->src_reg != prev_ld_base || st->dst_reg != prev_st_base)
3003 		return false;
3004 
3005 	if (curr_size != prev_size)
3006 		return false;
3007 
3008 	/* There is jump to the head of this pair. */
3009 	if (ld_meta->flags & FLAG_INSN_IS_JUMP_DST)
3010 		return false;
3011 
3012 	/* Both in ascending order. */
3013 	if (prev_ld_off + prev_size == ld->off &&
3014 	    prev_st_off + prev_size == st->off)
3015 		return true;
3016 
3017 	/* Both in descending order. */
3018 	if (ld->off + curr_size == prev_ld_off &&
3019 	    st->off + curr_size == prev_st_off)
3020 		return true;
3021 
3022 	return false;
3023 }
3024 
3025 /* Return TRUE if cross memory access happens. Cross memory access means
3026  * store area is overlapping with load area that a later load might load
3027  * the value from previous store, for this case we can't treat the sequence
3028  * as an memory copy.
3029  */
3030 static bool
3031 cross_mem_access(struct bpf_insn *ld, struct nfp_insn_meta *head_ld_meta,
3032 		 struct nfp_insn_meta *head_st_meta)
3033 {
3034 	s16 head_ld_off, head_st_off, ld_off;
3035 
3036 	/* Different pointer types does not overlap. */
3037 	if (head_ld_meta->ptr.type != head_st_meta->ptr.type)
3038 		return false;
3039 
3040 	/* load and store are both PTR_TO_PACKET, check ID info.  */
3041 	if (head_ld_meta->ptr.id != head_st_meta->ptr.id)
3042 		return true;
3043 
3044 	/* Canonicalize the offsets. Turn all of them against the original
3045 	 * base register.
3046 	 */
3047 	head_ld_off = head_ld_meta->insn.off + head_ld_meta->ptr.off;
3048 	head_st_off = head_st_meta->insn.off + head_st_meta->ptr.off;
3049 	ld_off = ld->off + head_ld_meta->ptr.off;
3050 
3051 	/* Ascending order cross. */
3052 	if (ld_off > head_ld_off &&
3053 	    head_ld_off < head_st_off && ld_off >= head_st_off)
3054 		return true;
3055 
3056 	/* Descending order cross. */
3057 	if (ld_off < head_ld_off &&
3058 	    head_ld_off > head_st_off && ld_off <= head_st_off)
3059 		return true;
3060 
3061 	return false;
3062 }
3063 
3064 /* This pass try to identify the following instructoin sequences.
3065  *
3066  *   load R, [regA + offA]
3067  *   store [regB + offB], R
3068  *   load R, [regA + offA + const_imm_A]
3069  *   store [regB + offB + const_imm_A], R
3070  *   load R, [regA + offA + 2 * const_imm_A]
3071  *   store [regB + offB + 2 * const_imm_A], R
3072  *   ...
3073  *
3074  * Above sequence is typically generated by compiler when lowering
3075  * memcpy. NFP prefer using CPP instructions to accelerate it.
3076  */
3077 static void nfp_bpf_opt_ldst_gather(struct nfp_prog *nfp_prog)
3078 {
3079 	struct nfp_insn_meta *head_ld_meta = NULL;
3080 	struct nfp_insn_meta *head_st_meta = NULL;
3081 	struct nfp_insn_meta *meta1, *meta2;
3082 	struct bpf_insn *prev_ld = NULL;
3083 	struct bpf_insn *prev_st = NULL;
3084 	u8 count = 0;
3085 
3086 	nfp_for_each_insn_walk2(nfp_prog, meta1, meta2) {
3087 		struct bpf_insn *ld = &meta1->insn;
3088 		struct bpf_insn *st = &meta2->insn;
3089 
3090 		/* Reset record status if any of the following if true:
3091 		 *   - The current insn pair is not load/store.
3092 		 *   - The load/store pair doesn't chain with previous one.
3093 		 *   - The chained load/store pair crossed with previous pair.
3094 		 *   - The chained load/store pair has a total size of memory
3095 		 *     copy beyond 128 bytes which is the maximum length a
3096 		 *     single NFP CPP command can transfer.
3097 		 */
3098 		if (!curr_pair_is_memcpy(meta1, meta2) ||
3099 		    !curr_pair_chain_with_previous(meta1, meta2, prev_ld,
3100 						   prev_st) ||
3101 		    (head_ld_meta && (cross_mem_access(ld, head_ld_meta,
3102 						       head_st_meta) ||
3103 				      head_ld_meta->ldst_gather_len >= 128))) {
3104 			if (!count)
3105 				continue;
3106 
3107 			if (count > 1) {
3108 				s16 prev_ld_off = prev_ld->off;
3109 				s16 prev_st_off = prev_st->off;
3110 				s16 head_ld_off = head_ld_meta->insn.off;
3111 
3112 				if (prev_ld_off < head_ld_off) {
3113 					head_ld_meta->insn.off = prev_ld_off;
3114 					head_st_meta->insn.off = prev_st_off;
3115 					head_ld_meta->ldst_gather_len =
3116 						-head_ld_meta->ldst_gather_len;
3117 				}
3118 
3119 				head_ld_meta->paired_st = &head_st_meta->insn;
3120 				head_st_meta->skip = true;
3121 			} else {
3122 				head_ld_meta->ldst_gather_len = 0;
3123 			}
3124 
3125 			/* If the chain is ended by an load/store pair then this
3126 			 * could serve as the new head of the the next chain.
3127 			 */
3128 			if (curr_pair_is_memcpy(meta1, meta2)) {
3129 				head_ld_meta = meta1;
3130 				head_st_meta = meta2;
3131 				head_ld_meta->ldst_gather_len =
3132 					BPF_LDST_BYTES(ld);
3133 				meta1 = nfp_meta_next(meta1);
3134 				meta2 = nfp_meta_next(meta2);
3135 				prev_ld = ld;
3136 				prev_st = st;
3137 				count = 1;
3138 			} else {
3139 				head_ld_meta = NULL;
3140 				head_st_meta = NULL;
3141 				prev_ld = NULL;
3142 				prev_st = NULL;
3143 				count = 0;
3144 			}
3145 
3146 			continue;
3147 		}
3148 
3149 		if (!head_ld_meta) {
3150 			head_ld_meta = meta1;
3151 			head_st_meta = meta2;
3152 		} else {
3153 			meta1->skip = true;
3154 			meta2->skip = true;
3155 		}
3156 
3157 		head_ld_meta->ldst_gather_len += BPF_LDST_BYTES(ld);
3158 		meta1 = nfp_meta_next(meta1);
3159 		meta2 = nfp_meta_next(meta2);
3160 		prev_ld = ld;
3161 		prev_st = st;
3162 		count++;
3163 	}
3164 }
3165 
3166 static void nfp_bpf_opt_pkt_cache(struct nfp_prog *nfp_prog)
3167 {
3168 	struct nfp_insn_meta *meta, *range_node = NULL;
3169 	s16 range_start = 0, range_end = 0;
3170 	bool cache_avail = false;
3171 	struct bpf_insn *insn;
3172 	s32 range_ptr_off = 0;
3173 	u32 range_ptr_id = 0;
3174 
3175 	list_for_each_entry(meta, &nfp_prog->insns, l) {
3176 		if (meta->flags & FLAG_INSN_IS_JUMP_DST)
3177 			cache_avail = false;
3178 
3179 		if (meta->skip)
3180 			continue;
3181 
3182 		insn = &meta->insn;
3183 
3184 		if (is_mbpf_store_pkt(meta) ||
3185 		    insn->code == (BPF_JMP | BPF_CALL) ||
3186 		    is_mbpf_classic_store_pkt(meta) ||
3187 		    is_mbpf_classic_load(meta)) {
3188 			cache_avail = false;
3189 			continue;
3190 		}
3191 
3192 		if (!is_mbpf_load(meta))
3193 			continue;
3194 
3195 		if (meta->ptr.type != PTR_TO_PACKET || meta->ldst_gather_len) {
3196 			cache_avail = false;
3197 			continue;
3198 		}
3199 
3200 		if (!cache_avail) {
3201 			cache_avail = true;
3202 			if (range_node)
3203 				goto end_current_then_start_new;
3204 			goto start_new;
3205 		}
3206 
3207 		/* Check ID to make sure two reads share the same
3208 		 * variable offset against PTR_TO_PACKET, and check OFF
3209 		 * to make sure they also share the same constant
3210 		 * offset.
3211 		 *
3212 		 * OFFs don't really need to be the same, because they
3213 		 * are the constant offsets against PTR_TO_PACKET, so
3214 		 * for different OFFs, we could canonicalize them to
3215 		 * offsets against original packet pointer. We don't
3216 		 * support this.
3217 		 */
3218 		if (meta->ptr.id == range_ptr_id &&
3219 		    meta->ptr.off == range_ptr_off) {
3220 			s16 new_start = range_start;
3221 			s16 end, off = insn->off;
3222 			s16 new_end = range_end;
3223 			bool changed = false;
3224 
3225 			if (off < range_start) {
3226 				new_start = off;
3227 				changed = true;
3228 			}
3229 
3230 			end = off + BPF_LDST_BYTES(insn);
3231 			if (end > range_end) {
3232 				new_end = end;
3233 				changed = true;
3234 			}
3235 
3236 			if (!changed)
3237 				continue;
3238 
3239 			if (new_end - new_start <= 64) {
3240 				/* Install new range. */
3241 				range_start = new_start;
3242 				range_end = new_end;
3243 				continue;
3244 			}
3245 		}
3246 
3247 end_current_then_start_new:
3248 		range_node->pkt_cache.range_start = range_start;
3249 		range_node->pkt_cache.range_end = range_end;
3250 start_new:
3251 		range_node = meta;
3252 		range_node->pkt_cache.do_init = true;
3253 		range_ptr_id = range_node->ptr.id;
3254 		range_ptr_off = range_node->ptr.off;
3255 		range_start = insn->off;
3256 		range_end = insn->off + BPF_LDST_BYTES(insn);
3257 	}
3258 
3259 	if (range_node) {
3260 		range_node->pkt_cache.range_start = range_start;
3261 		range_node->pkt_cache.range_end = range_end;
3262 	}
3263 
3264 	list_for_each_entry(meta, &nfp_prog->insns, l) {
3265 		if (meta->skip)
3266 			continue;
3267 
3268 		if (is_mbpf_load_pkt(meta) && !meta->ldst_gather_len) {
3269 			if (meta->pkt_cache.do_init) {
3270 				range_start = meta->pkt_cache.range_start;
3271 				range_end = meta->pkt_cache.range_end;
3272 			} else {
3273 				meta->pkt_cache.range_start = range_start;
3274 				meta->pkt_cache.range_end = range_end;
3275 			}
3276 		}
3277 	}
3278 }
3279 
3280 static int nfp_bpf_optimize(struct nfp_prog *nfp_prog)
3281 {
3282 	nfp_bpf_opt_reg_init(nfp_prog);
3283 
3284 	nfp_bpf_opt_neg_add_sub(nfp_prog);
3285 	nfp_bpf_opt_ld_mask(nfp_prog);
3286 	nfp_bpf_opt_ld_shift(nfp_prog);
3287 	nfp_bpf_opt_ldst_gather(nfp_prog);
3288 	nfp_bpf_opt_pkt_cache(nfp_prog);
3289 
3290 	return 0;
3291 }
3292 
3293 static int nfp_bpf_replace_map_ptrs(struct nfp_prog *nfp_prog)
3294 {
3295 	struct nfp_insn_meta *meta1, *meta2;
3296 	struct nfp_bpf_map *nfp_map;
3297 	struct bpf_map *map;
3298 
3299 	nfp_for_each_insn_walk2(nfp_prog, meta1, meta2) {
3300 		if (meta1->skip || meta2->skip)
3301 			continue;
3302 
3303 		if (meta1->insn.code != (BPF_LD | BPF_IMM | BPF_DW) ||
3304 		    meta1->insn.src_reg != BPF_PSEUDO_MAP_FD)
3305 			continue;
3306 
3307 		map = (void *)(unsigned long)((u32)meta1->insn.imm |
3308 					      (u64)meta2->insn.imm << 32);
3309 		if (bpf_map_offload_neutral(map))
3310 			continue;
3311 		nfp_map = map_to_offmap(map)->dev_priv;
3312 
3313 		meta1->insn.imm = nfp_map->tid;
3314 		meta2->insn.imm = 0;
3315 	}
3316 
3317 	return 0;
3318 }
3319 
3320 static int nfp_bpf_ustore_calc(u64 *prog, unsigned int len)
3321 {
3322 	__le64 *ustore = (__force __le64 *)prog;
3323 	int i;
3324 
3325 	for (i = 0; i < len; i++) {
3326 		int err;
3327 
3328 		err = nfp_ustore_check_valid_no_ecc(prog[i]);
3329 		if (err)
3330 			return err;
3331 
3332 		ustore[i] = cpu_to_le64(nfp_ustore_calc_ecc_insn(prog[i]));
3333 	}
3334 
3335 	return 0;
3336 }
3337 
3338 static void nfp_bpf_prog_trim(struct nfp_prog *nfp_prog)
3339 {
3340 	void *prog;
3341 
3342 	prog = kvmalloc_array(nfp_prog->prog_len, sizeof(u64), GFP_KERNEL);
3343 	if (!prog)
3344 		return;
3345 
3346 	nfp_prog->__prog_alloc_len = nfp_prog->prog_len * sizeof(u64);
3347 	memcpy(prog, nfp_prog->prog, nfp_prog->__prog_alloc_len);
3348 	kvfree(nfp_prog->prog);
3349 	nfp_prog->prog = prog;
3350 }
3351 
3352 int nfp_bpf_jit(struct nfp_prog *nfp_prog)
3353 {
3354 	int ret;
3355 
3356 	ret = nfp_bpf_replace_map_ptrs(nfp_prog);
3357 	if (ret)
3358 		return ret;
3359 
3360 	ret = nfp_bpf_optimize(nfp_prog);
3361 	if (ret)
3362 		return ret;
3363 
3364 	ret = nfp_translate(nfp_prog);
3365 	if (ret) {
3366 		pr_err("Translation failed with error %d (translated: %u)\n",
3367 		       ret, nfp_prog->n_translated);
3368 		return -EINVAL;
3369 	}
3370 
3371 	nfp_bpf_prog_trim(nfp_prog);
3372 
3373 	return ret;
3374 }
3375 
3376 void nfp_bpf_jit_prepare(struct nfp_prog *nfp_prog, unsigned int cnt)
3377 {
3378 	struct nfp_insn_meta *meta;
3379 
3380 	/* Another pass to record jump information. */
3381 	list_for_each_entry(meta, &nfp_prog->insns, l) {
3382 		u64 code = meta->insn.code;
3383 
3384 		if (BPF_CLASS(code) == BPF_JMP && BPF_OP(code) != BPF_EXIT &&
3385 		    BPF_OP(code) != BPF_CALL) {
3386 			struct nfp_insn_meta *dst_meta;
3387 			unsigned short dst_indx;
3388 
3389 			dst_indx = meta->n + 1 + meta->insn.off;
3390 			dst_meta = nfp_bpf_goto_meta(nfp_prog, meta, dst_indx,
3391 						     cnt);
3392 
3393 			meta->jmp_dst = dst_meta;
3394 			dst_meta->flags |= FLAG_INSN_IS_JUMP_DST;
3395 		}
3396 	}
3397 }
3398 
3399 bool nfp_bpf_supported_opcode(u8 code)
3400 {
3401 	return !!instr_cb[code];
3402 }
3403 
3404 void *nfp_bpf_relo_for_vnic(struct nfp_prog *nfp_prog, struct nfp_bpf_vnic *bv)
3405 {
3406 	unsigned int i;
3407 	u64 *prog;
3408 	int err;
3409 
3410 	prog = kmemdup(nfp_prog->prog, nfp_prog->prog_len * sizeof(u64),
3411 		       GFP_KERNEL);
3412 	if (!prog)
3413 		return ERR_PTR(-ENOMEM);
3414 
3415 	for (i = 0; i < nfp_prog->prog_len; i++) {
3416 		enum nfp_relo_type special;
3417 		u32 val;
3418 
3419 		special = FIELD_GET(OP_RELO_TYPE, prog[i]);
3420 		switch (special) {
3421 		case RELO_NONE:
3422 			continue;
3423 		case RELO_BR_REL:
3424 			br_add_offset(&prog[i], bv->start_off);
3425 			break;
3426 		case RELO_BR_GO_OUT:
3427 			br_set_offset(&prog[i],
3428 				      nfp_prog->tgt_out + bv->start_off);
3429 			break;
3430 		case RELO_BR_GO_ABORT:
3431 			br_set_offset(&prog[i],
3432 				      nfp_prog->tgt_abort + bv->start_off);
3433 			break;
3434 		case RELO_BR_NEXT_PKT:
3435 			br_set_offset(&prog[i], bv->tgt_done);
3436 			break;
3437 		case RELO_BR_HELPER:
3438 			val = br_get_offset(prog[i]);
3439 			val -= BR_OFF_RELO;
3440 			switch (val) {
3441 			case BPF_FUNC_map_lookup_elem:
3442 				val = nfp_prog->bpf->helpers.map_lookup;
3443 				break;
3444 			case BPF_FUNC_map_update_elem:
3445 				val = nfp_prog->bpf->helpers.map_update;
3446 				break;
3447 			case BPF_FUNC_map_delete_elem:
3448 				val = nfp_prog->bpf->helpers.map_delete;
3449 				break;
3450 			case BPF_FUNC_perf_event_output:
3451 				val = nfp_prog->bpf->helpers.perf_event_output;
3452 				break;
3453 			default:
3454 				pr_err("relocation of unknown helper %d\n",
3455 				       val);
3456 				err = -EINVAL;
3457 				goto err_free_prog;
3458 			}
3459 			br_set_offset(&prog[i], val);
3460 			break;
3461 		case RELO_IMMED_REL:
3462 			immed_add_value(&prog[i], bv->start_off);
3463 			break;
3464 		}
3465 
3466 		prog[i] &= ~OP_RELO_TYPE;
3467 	}
3468 
3469 	err = nfp_bpf_ustore_calc(prog, nfp_prog->prog_len);
3470 	if (err)
3471 		goto err_free_prog;
3472 
3473 	return prog;
3474 
3475 err_free_prog:
3476 	kfree(prog);
3477 	return ERR_PTR(err);
3478 }
3479