1 /*
2  * Copyright (C) 2016-2017 Netronome Systems, Inc.
3  *
4  * This software is dual licensed under the GNU General License Version 2,
5  * June 1991 as shown in the file COPYING in the top-level directory of this
6  * source tree or the BSD 2-Clause License provided below.  You have the
7  * option to license this software under the complete terms of either license.
8  *
9  * The BSD 2-Clause License:
10  *
11  *     Redistribution and use in source and binary forms, with or
12  *     without modification, are permitted provided that the following
13  *     conditions are met:
14  *
15  *      1. Redistributions of source code must retain the above
16  *         copyright notice, this list of conditions and the following
17  *         disclaimer.
18  *
19  *      2. Redistributions in binary form must reproduce the above
20  *         copyright notice, this list of conditions and the following
21  *         disclaimer in the documentation and/or other materials
22  *         provided with the distribution.
23  *
24  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31  * SOFTWARE.
32  */
33 
34 #define pr_fmt(fmt)	"NFP net bpf: " fmt
35 
36 #include <linux/bug.h>
37 #include <linux/kernel.h>
38 #include <linux/bpf.h>
39 #include <linux/filter.h>
40 #include <linux/pkt_cls.h>
41 #include <linux/unistd.h>
42 
43 #include "main.h"
44 #include "../nfp_asm.h"
45 
46 /* --- NFP prog --- */
47 /* Foreach "multiple" entries macros provide pos and next<n> pointers.
48  * It's safe to modify the next pointers (but not pos).
49  */
50 #define nfp_for_each_insn_walk2(nfp_prog, pos, next)			\
51 	for (pos = list_first_entry(&(nfp_prog)->insns, typeof(*pos), l), \
52 	     next = list_next_entry(pos, l);			\
53 	     &(nfp_prog)->insns != &pos->l &&			\
54 	     &(nfp_prog)->insns != &next->l;			\
55 	     pos = nfp_meta_next(pos),				\
56 	     next = nfp_meta_next(pos))
57 
58 #define nfp_for_each_insn_walk3(nfp_prog, pos, next, next2)		\
59 	for (pos = list_first_entry(&(nfp_prog)->insns, typeof(*pos), l), \
60 	     next = list_next_entry(pos, l),			\
61 	     next2 = list_next_entry(next, l);			\
62 	     &(nfp_prog)->insns != &pos->l &&			\
63 	     &(nfp_prog)->insns != &next->l &&			\
64 	     &(nfp_prog)->insns != &next2->l;			\
65 	     pos = nfp_meta_next(pos),				\
66 	     next = nfp_meta_next(pos),				\
67 	     next2 = nfp_meta_next(next))
68 
69 static bool
70 nfp_meta_has_prev(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
71 {
72 	return meta->l.prev != &nfp_prog->insns;
73 }
74 
75 static void nfp_prog_push(struct nfp_prog *nfp_prog, u64 insn)
76 {
77 	if (nfp_prog->__prog_alloc_len == nfp_prog->prog_len) {
78 		nfp_prog->error = -ENOSPC;
79 		return;
80 	}
81 
82 	nfp_prog->prog[nfp_prog->prog_len] = insn;
83 	nfp_prog->prog_len++;
84 }
85 
86 static unsigned int nfp_prog_current_offset(struct nfp_prog *nfp_prog)
87 {
88 	return nfp_prog->prog_len;
89 }
90 
91 static bool
92 nfp_prog_confirm_current_offset(struct nfp_prog *nfp_prog, unsigned int off)
93 {
94 	/* If there is a recorded error we may have dropped instructions;
95 	 * that doesn't have to be due to translator bug, and the translation
96 	 * will fail anyway, so just return OK.
97 	 */
98 	if (nfp_prog->error)
99 		return true;
100 	return !WARN_ON_ONCE(nfp_prog_current_offset(nfp_prog) != off);
101 }
102 
103 /* --- Emitters --- */
104 static void
105 __emit_cmd(struct nfp_prog *nfp_prog, enum cmd_tgt_map op,
106 	   u8 mode, u8 xfer, u8 areg, u8 breg, u8 size, bool sync, bool indir)
107 {
108 	enum cmd_ctx_swap ctx;
109 	u64 insn;
110 
111 	if (sync)
112 		ctx = CMD_CTX_SWAP;
113 	else
114 		ctx = CMD_CTX_NO_SWAP;
115 
116 	insn =	FIELD_PREP(OP_CMD_A_SRC, areg) |
117 		FIELD_PREP(OP_CMD_CTX, ctx) |
118 		FIELD_PREP(OP_CMD_B_SRC, breg) |
119 		FIELD_PREP(OP_CMD_TOKEN, cmd_tgt_act[op].token) |
120 		FIELD_PREP(OP_CMD_XFER, xfer) |
121 		FIELD_PREP(OP_CMD_CNT, size) |
122 		FIELD_PREP(OP_CMD_SIG, sync) |
123 		FIELD_PREP(OP_CMD_TGT_CMD, cmd_tgt_act[op].tgt_cmd) |
124 		FIELD_PREP(OP_CMD_INDIR, indir) |
125 		FIELD_PREP(OP_CMD_MODE, mode);
126 
127 	nfp_prog_push(nfp_prog, insn);
128 }
129 
130 static void
131 emit_cmd_any(struct nfp_prog *nfp_prog, enum cmd_tgt_map op, u8 mode, u8 xfer,
132 	     swreg lreg, swreg rreg, u8 size, bool sync, bool indir)
133 {
134 	struct nfp_insn_re_regs reg;
135 	int err;
136 
137 	err = swreg_to_restricted(reg_none(), lreg, rreg, &reg, false);
138 	if (err) {
139 		nfp_prog->error = err;
140 		return;
141 	}
142 	if (reg.swap) {
143 		pr_err("cmd can't swap arguments\n");
144 		nfp_prog->error = -EFAULT;
145 		return;
146 	}
147 	if (reg.dst_lmextn || reg.src_lmextn) {
148 		pr_err("cmd can't use LMextn\n");
149 		nfp_prog->error = -EFAULT;
150 		return;
151 	}
152 
153 	__emit_cmd(nfp_prog, op, mode, xfer, reg.areg, reg.breg, size, sync,
154 		   indir);
155 }
156 
157 static void
158 emit_cmd(struct nfp_prog *nfp_prog, enum cmd_tgt_map op, u8 mode, u8 xfer,
159 	 swreg lreg, swreg rreg, u8 size, bool sync)
160 {
161 	emit_cmd_any(nfp_prog, op, mode, xfer, lreg, rreg, size, sync, false);
162 }
163 
164 static void
165 emit_cmd_indir(struct nfp_prog *nfp_prog, enum cmd_tgt_map op, u8 mode, u8 xfer,
166 	       swreg lreg, swreg rreg, u8 size, bool sync)
167 {
168 	emit_cmd_any(nfp_prog, op, mode, xfer, lreg, rreg, size, sync, true);
169 }
170 
171 static void
172 __emit_br(struct nfp_prog *nfp_prog, enum br_mask mask, enum br_ev_pip ev_pip,
173 	  enum br_ctx_signal_state css, u16 addr, u8 defer)
174 {
175 	u16 addr_lo, addr_hi;
176 	u64 insn;
177 
178 	addr_lo = addr & (OP_BR_ADDR_LO >> __bf_shf(OP_BR_ADDR_LO));
179 	addr_hi = addr != addr_lo;
180 
181 	insn = OP_BR_BASE |
182 		FIELD_PREP(OP_BR_MASK, mask) |
183 		FIELD_PREP(OP_BR_EV_PIP, ev_pip) |
184 		FIELD_PREP(OP_BR_CSS, css) |
185 		FIELD_PREP(OP_BR_DEFBR, defer) |
186 		FIELD_PREP(OP_BR_ADDR_LO, addr_lo) |
187 		FIELD_PREP(OP_BR_ADDR_HI, addr_hi);
188 
189 	nfp_prog_push(nfp_prog, insn);
190 }
191 
192 static void
193 emit_br_relo(struct nfp_prog *nfp_prog, enum br_mask mask, u16 addr, u8 defer,
194 	     enum nfp_relo_type relo)
195 {
196 	if (mask == BR_UNC && defer > 2) {
197 		pr_err("BUG: branch defer out of bounds %d\n", defer);
198 		nfp_prog->error = -EFAULT;
199 		return;
200 	}
201 
202 	__emit_br(nfp_prog, mask,
203 		  mask != BR_UNC ? BR_EV_PIP_COND : BR_EV_PIP_UNCOND,
204 		  BR_CSS_NONE, addr, defer);
205 
206 	nfp_prog->prog[nfp_prog->prog_len - 1] |=
207 		FIELD_PREP(OP_RELO_TYPE, relo);
208 }
209 
210 static void
211 emit_br(struct nfp_prog *nfp_prog, enum br_mask mask, u16 addr, u8 defer)
212 {
213 	emit_br_relo(nfp_prog, mask, addr, defer, RELO_BR_REL);
214 }
215 
216 static void
217 __emit_immed(struct nfp_prog *nfp_prog, u16 areg, u16 breg, u16 imm_hi,
218 	     enum immed_width width, bool invert,
219 	     enum immed_shift shift, bool wr_both,
220 	     bool dst_lmextn, bool src_lmextn)
221 {
222 	u64 insn;
223 
224 	insn = OP_IMMED_BASE |
225 		FIELD_PREP(OP_IMMED_A_SRC, areg) |
226 		FIELD_PREP(OP_IMMED_B_SRC, breg) |
227 		FIELD_PREP(OP_IMMED_IMM, imm_hi) |
228 		FIELD_PREP(OP_IMMED_WIDTH, width) |
229 		FIELD_PREP(OP_IMMED_INV, invert) |
230 		FIELD_PREP(OP_IMMED_SHIFT, shift) |
231 		FIELD_PREP(OP_IMMED_WR_AB, wr_both) |
232 		FIELD_PREP(OP_IMMED_SRC_LMEXTN, src_lmextn) |
233 		FIELD_PREP(OP_IMMED_DST_LMEXTN, dst_lmextn);
234 
235 	nfp_prog_push(nfp_prog, insn);
236 }
237 
238 static void
239 emit_immed(struct nfp_prog *nfp_prog, swreg dst, u16 imm,
240 	   enum immed_width width, bool invert, enum immed_shift shift)
241 {
242 	struct nfp_insn_ur_regs reg;
243 	int err;
244 
245 	if (swreg_type(dst) == NN_REG_IMM) {
246 		nfp_prog->error = -EFAULT;
247 		return;
248 	}
249 
250 	err = swreg_to_unrestricted(dst, dst, reg_imm(imm & 0xff), &reg);
251 	if (err) {
252 		nfp_prog->error = err;
253 		return;
254 	}
255 
256 	/* Use reg.dst when destination is No-Dest. */
257 	__emit_immed(nfp_prog,
258 		     swreg_type(dst) == NN_REG_NONE ? reg.dst : reg.areg,
259 		     reg.breg, imm >> 8, width, invert, shift,
260 		     reg.wr_both, reg.dst_lmextn, reg.src_lmextn);
261 }
262 
263 static void
264 __emit_shf(struct nfp_prog *nfp_prog, u16 dst, enum alu_dst_ab dst_ab,
265 	   enum shf_sc sc, u8 shift,
266 	   u16 areg, enum shf_op op, u16 breg, bool i8, bool sw, bool wr_both,
267 	   bool dst_lmextn, bool src_lmextn)
268 {
269 	u64 insn;
270 
271 	if (!FIELD_FIT(OP_SHF_SHIFT, shift)) {
272 		nfp_prog->error = -EFAULT;
273 		return;
274 	}
275 
276 	if (sc == SHF_SC_L_SHF)
277 		shift = 32 - shift;
278 
279 	insn = OP_SHF_BASE |
280 		FIELD_PREP(OP_SHF_A_SRC, areg) |
281 		FIELD_PREP(OP_SHF_SC, sc) |
282 		FIELD_PREP(OP_SHF_B_SRC, breg) |
283 		FIELD_PREP(OP_SHF_I8, i8) |
284 		FIELD_PREP(OP_SHF_SW, sw) |
285 		FIELD_PREP(OP_SHF_DST, dst) |
286 		FIELD_PREP(OP_SHF_SHIFT, shift) |
287 		FIELD_PREP(OP_SHF_OP, op) |
288 		FIELD_PREP(OP_SHF_DST_AB, dst_ab) |
289 		FIELD_PREP(OP_SHF_WR_AB, wr_both) |
290 		FIELD_PREP(OP_SHF_SRC_LMEXTN, src_lmextn) |
291 		FIELD_PREP(OP_SHF_DST_LMEXTN, dst_lmextn);
292 
293 	nfp_prog_push(nfp_prog, insn);
294 }
295 
296 static void
297 emit_shf(struct nfp_prog *nfp_prog, swreg dst,
298 	 swreg lreg, enum shf_op op, swreg rreg, enum shf_sc sc, u8 shift)
299 {
300 	struct nfp_insn_re_regs reg;
301 	int err;
302 
303 	err = swreg_to_restricted(dst, lreg, rreg, &reg, true);
304 	if (err) {
305 		nfp_prog->error = err;
306 		return;
307 	}
308 
309 	__emit_shf(nfp_prog, reg.dst, reg.dst_ab, sc, shift,
310 		   reg.areg, op, reg.breg, reg.i8, reg.swap, reg.wr_both,
311 		   reg.dst_lmextn, reg.src_lmextn);
312 }
313 
314 static void
315 __emit_alu(struct nfp_prog *nfp_prog, u16 dst, enum alu_dst_ab dst_ab,
316 	   u16 areg, enum alu_op op, u16 breg, bool swap, bool wr_both,
317 	   bool dst_lmextn, bool src_lmextn)
318 {
319 	u64 insn;
320 
321 	insn = OP_ALU_BASE |
322 		FIELD_PREP(OP_ALU_A_SRC, areg) |
323 		FIELD_PREP(OP_ALU_B_SRC, breg) |
324 		FIELD_PREP(OP_ALU_DST, dst) |
325 		FIELD_PREP(OP_ALU_SW, swap) |
326 		FIELD_PREP(OP_ALU_OP, op) |
327 		FIELD_PREP(OP_ALU_DST_AB, dst_ab) |
328 		FIELD_PREP(OP_ALU_WR_AB, wr_both) |
329 		FIELD_PREP(OP_ALU_SRC_LMEXTN, src_lmextn) |
330 		FIELD_PREP(OP_ALU_DST_LMEXTN, dst_lmextn);
331 
332 	nfp_prog_push(nfp_prog, insn);
333 }
334 
335 static void
336 emit_alu(struct nfp_prog *nfp_prog, swreg dst,
337 	 swreg lreg, enum alu_op op, swreg rreg)
338 {
339 	struct nfp_insn_ur_regs reg;
340 	int err;
341 
342 	err = swreg_to_unrestricted(dst, lreg, rreg, &reg);
343 	if (err) {
344 		nfp_prog->error = err;
345 		return;
346 	}
347 
348 	__emit_alu(nfp_prog, reg.dst, reg.dst_ab,
349 		   reg.areg, op, reg.breg, reg.swap, reg.wr_both,
350 		   reg.dst_lmextn, reg.src_lmextn);
351 }
352 
353 static void
354 __emit_ld_field(struct nfp_prog *nfp_prog, enum shf_sc sc,
355 		u8 areg, u8 bmask, u8 breg, u8 shift, bool imm8,
356 		bool zero, bool swap, bool wr_both,
357 		bool dst_lmextn, bool src_lmextn)
358 {
359 	u64 insn;
360 
361 	insn = OP_LDF_BASE |
362 		FIELD_PREP(OP_LDF_A_SRC, areg) |
363 		FIELD_PREP(OP_LDF_SC, sc) |
364 		FIELD_PREP(OP_LDF_B_SRC, breg) |
365 		FIELD_PREP(OP_LDF_I8, imm8) |
366 		FIELD_PREP(OP_LDF_SW, swap) |
367 		FIELD_PREP(OP_LDF_ZF, zero) |
368 		FIELD_PREP(OP_LDF_BMASK, bmask) |
369 		FIELD_PREP(OP_LDF_SHF, shift) |
370 		FIELD_PREP(OP_LDF_WR_AB, wr_both) |
371 		FIELD_PREP(OP_LDF_SRC_LMEXTN, src_lmextn) |
372 		FIELD_PREP(OP_LDF_DST_LMEXTN, dst_lmextn);
373 
374 	nfp_prog_push(nfp_prog, insn);
375 }
376 
377 static void
378 emit_ld_field_any(struct nfp_prog *nfp_prog, swreg dst, u8 bmask, swreg src,
379 		  enum shf_sc sc, u8 shift, bool zero)
380 {
381 	struct nfp_insn_re_regs reg;
382 	int err;
383 
384 	/* Note: ld_field is special as it uses one of the src regs as dst */
385 	err = swreg_to_restricted(dst, dst, src, &reg, true);
386 	if (err) {
387 		nfp_prog->error = err;
388 		return;
389 	}
390 
391 	__emit_ld_field(nfp_prog, sc, reg.areg, bmask, reg.breg, shift,
392 			reg.i8, zero, reg.swap, reg.wr_both,
393 			reg.dst_lmextn, reg.src_lmextn);
394 }
395 
396 static void
397 emit_ld_field(struct nfp_prog *nfp_prog, swreg dst, u8 bmask, swreg src,
398 	      enum shf_sc sc, u8 shift)
399 {
400 	emit_ld_field_any(nfp_prog, dst, bmask, src, sc, shift, false);
401 }
402 
403 static void
404 __emit_lcsr(struct nfp_prog *nfp_prog, u16 areg, u16 breg, bool wr, u16 addr,
405 	    bool dst_lmextn, bool src_lmextn)
406 {
407 	u64 insn;
408 
409 	insn = OP_LCSR_BASE |
410 		FIELD_PREP(OP_LCSR_A_SRC, areg) |
411 		FIELD_PREP(OP_LCSR_B_SRC, breg) |
412 		FIELD_PREP(OP_LCSR_WRITE, wr) |
413 		FIELD_PREP(OP_LCSR_ADDR, addr) |
414 		FIELD_PREP(OP_LCSR_SRC_LMEXTN, src_lmextn) |
415 		FIELD_PREP(OP_LCSR_DST_LMEXTN, dst_lmextn);
416 
417 	nfp_prog_push(nfp_prog, insn);
418 }
419 
420 static void emit_csr_wr(struct nfp_prog *nfp_prog, swreg src, u16 addr)
421 {
422 	struct nfp_insn_ur_regs reg;
423 	int err;
424 
425 	/* This instruction takes immeds instead of reg_none() for the ignored
426 	 * operand, but we can't encode 2 immeds in one instr with our normal
427 	 * swreg infra so if param is an immed, we encode as reg_none() and
428 	 * copy the immed to both operands.
429 	 */
430 	if (swreg_type(src) == NN_REG_IMM) {
431 		err = swreg_to_unrestricted(reg_none(), src, reg_none(), &reg);
432 		reg.breg = reg.areg;
433 	} else {
434 		err = swreg_to_unrestricted(reg_none(), src, reg_imm(0), &reg);
435 	}
436 	if (err) {
437 		nfp_prog->error = err;
438 		return;
439 	}
440 
441 	__emit_lcsr(nfp_prog, reg.areg, reg.breg, true, addr / 4,
442 		    false, reg.src_lmextn);
443 }
444 
445 static void emit_nop(struct nfp_prog *nfp_prog)
446 {
447 	__emit_immed(nfp_prog, UR_REG_IMM, UR_REG_IMM, 0, 0, 0, 0, 0, 0, 0);
448 }
449 
450 /* --- Wrappers --- */
451 static bool pack_immed(u32 imm, u16 *val, enum immed_shift *shift)
452 {
453 	if (!(imm & 0xffff0000)) {
454 		*val = imm;
455 		*shift = IMMED_SHIFT_0B;
456 	} else if (!(imm & 0xff0000ff)) {
457 		*val = imm >> 8;
458 		*shift = IMMED_SHIFT_1B;
459 	} else if (!(imm & 0x0000ffff)) {
460 		*val = imm >> 16;
461 		*shift = IMMED_SHIFT_2B;
462 	} else {
463 		return false;
464 	}
465 
466 	return true;
467 }
468 
469 static void wrp_immed(struct nfp_prog *nfp_prog, swreg dst, u32 imm)
470 {
471 	enum immed_shift shift;
472 	u16 val;
473 
474 	if (pack_immed(imm, &val, &shift)) {
475 		emit_immed(nfp_prog, dst, val, IMMED_WIDTH_ALL, false, shift);
476 	} else if (pack_immed(~imm, &val, &shift)) {
477 		emit_immed(nfp_prog, dst, val, IMMED_WIDTH_ALL, true, shift);
478 	} else {
479 		emit_immed(nfp_prog, dst, imm & 0xffff, IMMED_WIDTH_ALL,
480 			   false, IMMED_SHIFT_0B);
481 		emit_immed(nfp_prog, dst, imm >> 16, IMMED_WIDTH_WORD,
482 			   false, IMMED_SHIFT_2B);
483 	}
484 }
485 
486 /* ur_load_imm_any() - encode immediate or use tmp register (unrestricted)
487  * If the @imm is small enough encode it directly in operand and return
488  * otherwise load @imm to a spare register and return its encoding.
489  */
490 static swreg ur_load_imm_any(struct nfp_prog *nfp_prog, u32 imm, swreg tmp_reg)
491 {
492 	if (FIELD_FIT(UR_REG_IMM_MAX, imm))
493 		return reg_imm(imm);
494 
495 	wrp_immed(nfp_prog, tmp_reg, imm);
496 	return tmp_reg;
497 }
498 
499 /* re_load_imm_any() - encode immediate or use tmp register (restricted)
500  * If the @imm is small enough encode it directly in operand and return
501  * otherwise load @imm to a spare register and return its encoding.
502  */
503 static swreg re_load_imm_any(struct nfp_prog *nfp_prog, u32 imm, swreg tmp_reg)
504 {
505 	if (FIELD_FIT(RE_REG_IMM_MAX, imm))
506 		return reg_imm(imm);
507 
508 	wrp_immed(nfp_prog, tmp_reg, imm);
509 	return tmp_reg;
510 }
511 
512 static void wrp_nops(struct nfp_prog *nfp_prog, unsigned int count)
513 {
514 	while (count--)
515 		emit_nop(nfp_prog);
516 }
517 
518 static void wrp_mov(struct nfp_prog *nfp_prog, swreg dst, swreg src)
519 {
520 	emit_alu(nfp_prog, dst, reg_none(), ALU_OP_NONE, src);
521 }
522 
523 static void wrp_reg_mov(struct nfp_prog *nfp_prog, u16 dst, u16 src)
524 {
525 	wrp_mov(nfp_prog, reg_both(dst), reg_b(src));
526 }
527 
528 /* wrp_reg_subpart() - load @field_len bytes from @offset of @src, write the
529  * result to @dst from low end.
530  */
531 static void
532 wrp_reg_subpart(struct nfp_prog *nfp_prog, swreg dst, swreg src, u8 field_len,
533 		u8 offset)
534 {
535 	enum shf_sc sc = offset ? SHF_SC_R_SHF : SHF_SC_NONE;
536 	u8 mask = (1 << field_len) - 1;
537 
538 	emit_ld_field_any(nfp_prog, dst, mask, src, sc, offset * 8, true);
539 }
540 
541 /* NFP has Command Push Pull bus which supports bluk memory operations. */
542 static int nfp_cpp_memcpy(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
543 {
544 	bool descending_seq = meta->ldst_gather_len < 0;
545 	s16 len = abs(meta->ldst_gather_len);
546 	swreg src_base, off;
547 	unsigned int i;
548 	u8 xfer_num;
549 
550 	off = re_load_imm_any(nfp_prog, meta->insn.off, imm_b(nfp_prog));
551 	src_base = reg_a(meta->insn.src_reg * 2);
552 	xfer_num = round_up(len, 4) / 4;
553 
554 	/* Setup PREV_ALU fields to override memory read length. */
555 	if (len > 32)
556 		wrp_immed(nfp_prog, reg_none(),
557 			  CMD_OVE_LEN | FIELD_PREP(CMD_OV_LEN, xfer_num - 1));
558 
559 	/* Memory read from source addr into transfer-in registers. */
560 	emit_cmd_any(nfp_prog, CMD_TGT_READ32_SWAP, CMD_MODE_32b, 0, src_base,
561 		     off, xfer_num - 1, true, len > 32);
562 
563 	/* Move from transfer-in to transfer-out. */
564 	for (i = 0; i < xfer_num; i++)
565 		wrp_mov(nfp_prog, reg_xfer(i), reg_xfer(i));
566 
567 	off = re_load_imm_any(nfp_prog, meta->paired_st->off, imm_b(nfp_prog));
568 
569 	if (len <= 8) {
570 		/* Use single direct_ref write8. */
571 		emit_cmd(nfp_prog, CMD_TGT_WRITE8_SWAP, CMD_MODE_32b, 0,
572 			 reg_a(meta->paired_st->dst_reg * 2), off, len - 1,
573 			 true);
574 	} else if (len <= 32 && IS_ALIGNED(len, 4)) {
575 		/* Use single direct_ref write32. */
576 		emit_cmd(nfp_prog, CMD_TGT_WRITE32_SWAP, CMD_MODE_32b, 0,
577 			 reg_a(meta->paired_st->dst_reg * 2), off, xfer_num - 1,
578 			 true);
579 	} else if (len <= 32) {
580 		/* Use single indirect_ref write8. */
581 		wrp_immed(nfp_prog, reg_none(),
582 			  CMD_OVE_LEN | FIELD_PREP(CMD_OV_LEN, len - 1));
583 		emit_cmd_indir(nfp_prog, CMD_TGT_WRITE8_SWAP, CMD_MODE_32b, 0,
584 			       reg_a(meta->paired_st->dst_reg * 2), off,
585 			       len - 1, true);
586 	} else if (IS_ALIGNED(len, 4)) {
587 		/* Use single indirect_ref write32. */
588 		wrp_immed(nfp_prog, reg_none(),
589 			  CMD_OVE_LEN | FIELD_PREP(CMD_OV_LEN, xfer_num - 1));
590 		emit_cmd_indir(nfp_prog, CMD_TGT_WRITE32_SWAP, CMD_MODE_32b, 0,
591 			       reg_a(meta->paired_st->dst_reg * 2), off,
592 			       xfer_num - 1, true);
593 	} else if (len <= 40) {
594 		/* Use one direct_ref write32 to write the first 32-bytes, then
595 		 * another direct_ref write8 to write the remaining bytes.
596 		 */
597 		emit_cmd(nfp_prog, CMD_TGT_WRITE32_SWAP, CMD_MODE_32b, 0,
598 			 reg_a(meta->paired_st->dst_reg * 2), off, 7,
599 			 true);
600 
601 		off = re_load_imm_any(nfp_prog, meta->paired_st->off + 32,
602 				      imm_b(nfp_prog));
603 		emit_cmd(nfp_prog, CMD_TGT_WRITE8_SWAP, CMD_MODE_32b, 8,
604 			 reg_a(meta->paired_st->dst_reg * 2), off, len - 33,
605 			 true);
606 	} else {
607 		/* Use one indirect_ref write32 to write 4-bytes aligned length,
608 		 * then another direct_ref write8 to write the remaining bytes.
609 		 */
610 		u8 new_off;
611 
612 		wrp_immed(nfp_prog, reg_none(),
613 			  CMD_OVE_LEN | FIELD_PREP(CMD_OV_LEN, xfer_num - 2));
614 		emit_cmd_indir(nfp_prog, CMD_TGT_WRITE32_SWAP, CMD_MODE_32b, 0,
615 			       reg_a(meta->paired_st->dst_reg * 2), off,
616 			       xfer_num - 2, true);
617 		new_off = meta->paired_st->off + (xfer_num - 1) * 4;
618 		off = re_load_imm_any(nfp_prog, new_off, imm_b(nfp_prog));
619 		emit_cmd(nfp_prog, CMD_TGT_WRITE8_SWAP, CMD_MODE_32b,
620 			 xfer_num - 1, reg_a(meta->paired_st->dst_reg * 2), off,
621 			 (len & 0x3) - 1, true);
622 	}
623 
624 	/* TODO: The following extra load is to make sure data flow be identical
625 	 *  before and after we do memory copy optimization.
626 	 *
627 	 *  The load destination register is not guaranteed to be dead, so we
628 	 *  need to make sure it is loaded with the value the same as before
629 	 *  this transformation.
630 	 *
631 	 *  These extra loads could be removed once we have accurate register
632 	 *  usage information.
633 	 */
634 	if (descending_seq)
635 		xfer_num = 0;
636 	else if (BPF_SIZE(meta->insn.code) != BPF_DW)
637 		xfer_num = xfer_num - 1;
638 	else
639 		xfer_num = xfer_num - 2;
640 
641 	switch (BPF_SIZE(meta->insn.code)) {
642 	case BPF_B:
643 		wrp_reg_subpart(nfp_prog, reg_both(meta->insn.dst_reg * 2),
644 				reg_xfer(xfer_num), 1,
645 				IS_ALIGNED(len, 4) ? 3 : (len & 3) - 1);
646 		break;
647 	case BPF_H:
648 		wrp_reg_subpart(nfp_prog, reg_both(meta->insn.dst_reg * 2),
649 				reg_xfer(xfer_num), 2, (len & 3) ^ 2);
650 		break;
651 	case BPF_W:
652 		wrp_mov(nfp_prog, reg_both(meta->insn.dst_reg * 2),
653 			reg_xfer(0));
654 		break;
655 	case BPF_DW:
656 		wrp_mov(nfp_prog, reg_both(meta->insn.dst_reg * 2),
657 			reg_xfer(xfer_num));
658 		wrp_mov(nfp_prog, reg_both(meta->insn.dst_reg * 2 + 1),
659 			reg_xfer(xfer_num + 1));
660 		break;
661 	}
662 
663 	if (BPF_SIZE(meta->insn.code) != BPF_DW)
664 		wrp_immed(nfp_prog, reg_both(meta->insn.dst_reg * 2 + 1), 0);
665 
666 	return 0;
667 }
668 
669 static int
670 data_ld(struct nfp_prog *nfp_prog, swreg offset, u8 dst_gpr, int size)
671 {
672 	unsigned int i;
673 	u16 shift, sz;
674 
675 	/* We load the value from the address indicated in @offset and then
676 	 * shift out the data we don't need.  Note: this is big endian!
677 	 */
678 	sz = max(size, 4);
679 	shift = size < 4 ? 4 - size : 0;
680 
681 	emit_cmd(nfp_prog, CMD_TGT_READ8, CMD_MODE_32b, 0,
682 		 pptr_reg(nfp_prog), offset, sz - 1, true);
683 
684 	i = 0;
685 	if (shift)
686 		emit_shf(nfp_prog, reg_both(dst_gpr), reg_none(), SHF_OP_NONE,
687 			 reg_xfer(0), SHF_SC_R_SHF, shift * 8);
688 	else
689 		for (; i * 4 < size; i++)
690 			wrp_mov(nfp_prog, reg_both(dst_gpr + i), reg_xfer(i));
691 
692 	if (i < 2)
693 		wrp_immed(nfp_prog, reg_both(dst_gpr + 1), 0);
694 
695 	return 0;
696 }
697 
698 static int
699 data_ld_host_order(struct nfp_prog *nfp_prog, u8 src_gpr, swreg offset,
700 		   u8 dst_gpr, int size)
701 {
702 	unsigned int i;
703 	u8 mask, sz;
704 
705 	/* We load the value from the address indicated in @offset and then
706 	 * mask out the data we don't need.  Note: this is little endian!
707 	 */
708 	sz = max(size, 4);
709 	mask = size < 4 ? GENMASK(size - 1, 0) : 0;
710 
711 	emit_cmd(nfp_prog, CMD_TGT_READ32_SWAP, CMD_MODE_32b, 0,
712 		 reg_a(src_gpr), offset, sz / 4 - 1, true);
713 
714 	i = 0;
715 	if (mask)
716 		emit_ld_field_any(nfp_prog, reg_both(dst_gpr), mask,
717 				  reg_xfer(0), SHF_SC_NONE, 0, true);
718 	else
719 		for (; i * 4 < size; i++)
720 			wrp_mov(nfp_prog, reg_both(dst_gpr + i), reg_xfer(i));
721 
722 	if (i < 2)
723 		wrp_immed(nfp_prog, reg_both(dst_gpr + 1), 0);
724 
725 	return 0;
726 }
727 
728 static int
729 construct_data_ind_ld(struct nfp_prog *nfp_prog, u16 offset, u16 src, u8 size)
730 {
731 	swreg tmp_reg;
732 
733 	/* Calculate the true offset (src_reg + imm) */
734 	tmp_reg = ur_load_imm_any(nfp_prog, offset, imm_b(nfp_prog));
735 	emit_alu(nfp_prog, imm_both(nfp_prog), reg_a(src), ALU_OP_ADD, tmp_reg);
736 
737 	/* Check packet length (size guaranteed to fit b/c it's u8) */
738 	emit_alu(nfp_prog, imm_a(nfp_prog),
739 		 imm_a(nfp_prog), ALU_OP_ADD, reg_imm(size));
740 	emit_alu(nfp_prog, reg_none(),
741 		 plen_reg(nfp_prog), ALU_OP_SUB, imm_a(nfp_prog));
742 	emit_br_relo(nfp_prog, BR_BLO, BR_OFF_RELO, 0, RELO_BR_GO_ABORT);
743 
744 	/* Load data */
745 	return data_ld(nfp_prog, imm_b(nfp_prog), 0, size);
746 }
747 
748 static int construct_data_ld(struct nfp_prog *nfp_prog, u16 offset, u8 size)
749 {
750 	swreg tmp_reg;
751 
752 	/* Check packet length */
753 	tmp_reg = ur_load_imm_any(nfp_prog, offset + size, imm_a(nfp_prog));
754 	emit_alu(nfp_prog, reg_none(), plen_reg(nfp_prog), ALU_OP_SUB, tmp_reg);
755 	emit_br_relo(nfp_prog, BR_BLO, BR_OFF_RELO, 0, RELO_BR_GO_ABORT);
756 
757 	/* Load data */
758 	tmp_reg = re_load_imm_any(nfp_prog, offset, imm_b(nfp_prog));
759 	return data_ld(nfp_prog, tmp_reg, 0, size);
760 }
761 
762 static int
763 data_stx_host_order(struct nfp_prog *nfp_prog, u8 dst_gpr, swreg offset,
764 		    u8 src_gpr, u8 size)
765 {
766 	unsigned int i;
767 
768 	for (i = 0; i * 4 < size; i++)
769 		wrp_mov(nfp_prog, reg_xfer(i), reg_a(src_gpr + i));
770 
771 	emit_cmd(nfp_prog, CMD_TGT_WRITE8_SWAP, CMD_MODE_32b, 0,
772 		 reg_a(dst_gpr), offset, size - 1, true);
773 
774 	return 0;
775 }
776 
777 static int
778 data_st_host_order(struct nfp_prog *nfp_prog, u8 dst_gpr, swreg offset,
779 		   u64 imm, u8 size)
780 {
781 	wrp_immed(nfp_prog, reg_xfer(0), imm);
782 	if (size == 8)
783 		wrp_immed(nfp_prog, reg_xfer(1), imm >> 32);
784 
785 	emit_cmd(nfp_prog, CMD_TGT_WRITE8_SWAP, CMD_MODE_32b, 0,
786 		 reg_a(dst_gpr), offset, size - 1, true);
787 
788 	return 0;
789 }
790 
791 typedef int
792 (*lmem_step)(struct nfp_prog *nfp_prog, u8 gpr, u8 gpr_byte, s32 off,
793 	     unsigned int size, bool first, bool new_gpr, bool last, bool lm3,
794 	     bool needs_inc);
795 
796 static int
797 wrp_lmem_load(struct nfp_prog *nfp_prog, u8 dst, u8 dst_byte, s32 off,
798 	      unsigned int size, bool first, bool new_gpr, bool last, bool lm3,
799 	      bool needs_inc)
800 {
801 	bool should_inc = needs_inc && new_gpr && !last;
802 	u32 idx, src_byte;
803 	enum shf_sc sc;
804 	swreg reg;
805 	int shf;
806 	u8 mask;
807 
808 	if (WARN_ON_ONCE(dst_byte + size > 4 || off % 4 + size > 4))
809 		return -EOPNOTSUPP;
810 
811 	idx = off / 4;
812 
813 	/* Move the entire word */
814 	if (size == 4) {
815 		wrp_mov(nfp_prog, reg_both(dst),
816 			should_inc ? reg_lm_inc(3) : reg_lm(lm3 ? 3 : 0, idx));
817 		return 0;
818 	}
819 
820 	if (WARN_ON_ONCE(lm3 && idx > RE_REG_LM_IDX_MAX))
821 		return -EOPNOTSUPP;
822 
823 	src_byte = off % 4;
824 
825 	mask = (1 << size) - 1;
826 	mask <<= dst_byte;
827 
828 	if (WARN_ON_ONCE(mask > 0xf))
829 		return -EOPNOTSUPP;
830 
831 	shf = abs(src_byte - dst_byte) * 8;
832 	if (src_byte == dst_byte) {
833 		sc = SHF_SC_NONE;
834 	} else if (src_byte < dst_byte) {
835 		shf = 32 - shf;
836 		sc = SHF_SC_L_SHF;
837 	} else {
838 		sc = SHF_SC_R_SHF;
839 	}
840 
841 	/* ld_field can address fewer indexes, if offset too large do RMW.
842 	 * Because we RMV twice we waste 2 cycles on unaligned 8 byte writes.
843 	 */
844 	if (idx <= RE_REG_LM_IDX_MAX) {
845 		reg = reg_lm(lm3 ? 3 : 0, idx);
846 	} else {
847 		reg = imm_a(nfp_prog);
848 		/* If it's not the first part of the load and we start a new GPR
849 		 * that means we are loading a second part of the LMEM word into
850 		 * a new GPR.  IOW we've already looked that LMEM word and
851 		 * therefore it has been loaded into imm_a().
852 		 */
853 		if (first || !new_gpr)
854 			wrp_mov(nfp_prog, reg, reg_lm(0, idx));
855 	}
856 
857 	emit_ld_field_any(nfp_prog, reg_both(dst), mask, reg, sc, shf, new_gpr);
858 
859 	if (should_inc)
860 		wrp_mov(nfp_prog, reg_none(), reg_lm_inc(3));
861 
862 	return 0;
863 }
864 
865 static int
866 wrp_lmem_store(struct nfp_prog *nfp_prog, u8 src, u8 src_byte, s32 off,
867 	       unsigned int size, bool first, bool new_gpr, bool last, bool lm3,
868 	       bool needs_inc)
869 {
870 	bool should_inc = needs_inc && new_gpr && !last;
871 	u32 idx, dst_byte;
872 	enum shf_sc sc;
873 	swreg reg;
874 	int shf;
875 	u8 mask;
876 
877 	if (WARN_ON_ONCE(src_byte + size > 4 || off % 4 + size > 4))
878 		return -EOPNOTSUPP;
879 
880 	idx = off / 4;
881 
882 	/* Move the entire word */
883 	if (size == 4) {
884 		wrp_mov(nfp_prog,
885 			should_inc ? reg_lm_inc(3) : reg_lm(lm3 ? 3 : 0, idx),
886 			reg_b(src));
887 		return 0;
888 	}
889 
890 	if (WARN_ON_ONCE(lm3 && idx > RE_REG_LM_IDX_MAX))
891 		return -EOPNOTSUPP;
892 
893 	dst_byte = off % 4;
894 
895 	mask = (1 << size) - 1;
896 	mask <<= dst_byte;
897 
898 	if (WARN_ON_ONCE(mask > 0xf))
899 		return -EOPNOTSUPP;
900 
901 	shf = abs(src_byte - dst_byte) * 8;
902 	if (src_byte == dst_byte) {
903 		sc = SHF_SC_NONE;
904 	} else if (src_byte < dst_byte) {
905 		shf = 32 - shf;
906 		sc = SHF_SC_L_SHF;
907 	} else {
908 		sc = SHF_SC_R_SHF;
909 	}
910 
911 	/* ld_field can address fewer indexes, if offset too large do RMW.
912 	 * Because we RMV twice we waste 2 cycles on unaligned 8 byte writes.
913 	 */
914 	if (idx <= RE_REG_LM_IDX_MAX) {
915 		reg = reg_lm(lm3 ? 3 : 0, idx);
916 	} else {
917 		reg = imm_a(nfp_prog);
918 		/* Only first and last LMEM locations are going to need RMW,
919 		 * the middle location will be overwritten fully.
920 		 */
921 		if (first || last)
922 			wrp_mov(nfp_prog, reg, reg_lm(0, idx));
923 	}
924 
925 	emit_ld_field(nfp_prog, reg, mask, reg_b(src), sc, shf);
926 
927 	if (new_gpr || last) {
928 		if (idx > RE_REG_LM_IDX_MAX)
929 			wrp_mov(nfp_prog, reg_lm(0, idx), reg);
930 		if (should_inc)
931 			wrp_mov(nfp_prog, reg_none(), reg_lm_inc(3));
932 	}
933 
934 	return 0;
935 }
936 
937 static int
938 mem_op_stack(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
939 	     unsigned int size, unsigned int ptr_off, u8 gpr, u8 ptr_gpr,
940 	     bool clr_gpr, lmem_step step)
941 {
942 	s32 off = nfp_prog->stack_depth + meta->insn.off + ptr_off;
943 	bool first = true, last;
944 	bool needs_inc = false;
945 	swreg stack_off_reg;
946 	u8 prev_gpr = 255;
947 	u32 gpr_byte = 0;
948 	bool lm3 = true;
949 	int ret;
950 
951 	if (meta->ptr_not_const) {
952 		/* Use of the last encountered ptr_off is OK, they all have
953 		 * the same alignment.  Depend on low bits of value being
954 		 * discarded when written to LMaddr register.
955 		 */
956 		stack_off_reg = ur_load_imm_any(nfp_prog, meta->insn.off,
957 						stack_imm(nfp_prog));
958 
959 		emit_alu(nfp_prog, imm_b(nfp_prog),
960 			 reg_a(ptr_gpr), ALU_OP_ADD, stack_off_reg);
961 
962 		needs_inc = true;
963 	} else if (off + size <= 64) {
964 		/* We can reach bottom 64B with LMaddr0 */
965 		lm3 = false;
966 	} else if (round_down(off, 32) == round_down(off + size - 1, 32)) {
967 		/* We have to set up a new pointer.  If we know the offset
968 		 * and the entire access falls into a single 32 byte aligned
969 		 * window we won't have to increment the LM pointer.
970 		 * The 32 byte alignment is imporant because offset is ORed in
971 		 * not added when doing *l$indexN[off].
972 		 */
973 		stack_off_reg = ur_load_imm_any(nfp_prog, round_down(off, 32),
974 						stack_imm(nfp_prog));
975 		emit_alu(nfp_prog, imm_b(nfp_prog),
976 			 stack_reg(nfp_prog), ALU_OP_ADD, stack_off_reg);
977 
978 		off %= 32;
979 	} else {
980 		stack_off_reg = ur_load_imm_any(nfp_prog, round_down(off, 4),
981 						stack_imm(nfp_prog));
982 
983 		emit_alu(nfp_prog, imm_b(nfp_prog),
984 			 stack_reg(nfp_prog), ALU_OP_ADD, stack_off_reg);
985 
986 		needs_inc = true;
987 	}
988 	if (lm3) {
989 		emit_csr_wr(nfp_prog, imm_b(nfp_prog), NFP_CSR_ACT_LM_ADDR3);
990 		/* For size < 4 one slot will be filled by zeroing of upper. */
991 		wrp_nops(nfp_prog, clr_gpr && size < 8 ? 2 : 3);
992 	}
993 
994 	if (clr_gpr && size < 8)
995 		wrp_immed(nfp_prog, reg_both(gpr + 1), 0);
996 
997 	while (size) {
998 		u32 slice_end;
999 		u8 slice_size;
1000 
1001 		slice_size = min(size, 4 - gpr_byte);
1002 		slice_end = min(off + slice_size, round_up(off + 1, 4));
1003 		slice_size = slice_end - off;
1004 
1005 		last = slice_size == size;
1006 
1007 		if (needs_inc)
1008 			off %= 4;
1009 
1010 		ret = step(nfp_prog, gpr, gpr_byte, off, slice_size,
1011 			   first, gpr != prev_gpr, last, lm3, needs_inc);
1012 		if (ret)
1013 			return ret;
1014 
1015 		prev_gpr = gpr;
1016 		first = false;
1017 
1018 		gpr_byte += slice_size;
1019 		if (gpr_byte >= 4) {
1020 			gpr_byte -= 4;
1021 			gpr++;
1022 		}
1023 
1024 		size -= slice_size;
1025 		off += slice_size;
1026 	}
1027 
1028 	return 0;
1029 }
1030 
1031 static void
1032 wrp_alu_imm(struct nfp_prog *nfp_prog, u8 dst, enum alu_op alu_op, u32 imm)
1033 {
1034 	swreg tmp_reg;
1035 
1036 	if (alu_op == ALU_OP_AND) {
1037 		if (!imm)
1038 			wrp_immed(nfp_prog, reg_both(dst), 0);
1039 		if (!imm || !~imm)
1040 			return;
1041 	}
1042 	if (alu_op == ALU_OP_OR) {
1043 		if (!~imm)
1044 			wrp_immed(nfp_prog, reg_both(dst), ~0U);
1045 		if (!imm || !~imm)
1046 			return;
1047 	}
1048 	if (alu_op == ALU_OP_XOR) {
1049 		if (!~imm)
1050 			emit_alu(nfp_prog, reg_both(dst), reg_none(),
1051 				 ALU_OP_NOT, reg_b(dst));
1052 		if (!imm || !~imm)
1053 			return;
1054 	}
1055 
1056 	tmp_reg = ur_load_imm_any(nfp_prog, imm, imm_b(nfp_prog));
1057 	emit_alu(nfp_prog, reg_both(dst), reg_a(dst), alu_op, tmp_reg);
1058 }
1059 
1060 static int
1061 wrp_alu64_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
1062 	      enum alu_op alu_op, bool skip)
1063 {
1064 	const struct bpf_insn *insn = &meta->insn;
1065 	u64 imm = insn->imm; /* sign extend */
1066 
1067 	if (skip) {
1068 		meta->skip = true;
1069 		return 0;
1070 	}
1071 
1072 	wrp_alu_imm(nfp_prog, insn->dst_reg * 2, alu_op, imm & ~0U);
1073 	wrp_alu_imm(nfp_prog, insn->dst_reg * 2 + 1, alu_op, imm >> 32);
1074 
1075 	return 0;
1076 }
1077 
1078 static int
1079 wrp_alu64_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
1080 	      enum alu_op alu_op)
1081 {
1082 	u8 dst = meta->insn.dst_reg * 2, src = meta->insn.src_reg * 2;
1083 
1084 	emit_alu(nfp_prog, reg_both(dst), reg_a(dst), alu_op, reg_b(src));
1085 	emit_alu(nfp_prog, reg_both(dst + 1),
1086 		 reg_a(dst + 1), alu_op, reg_b(src + 1));
1087 
1088 	return 0;
1089 }
1090 
1091 static int
1092 wrp_alu32_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
1093 	      enum alu_op alu_op, bool skip)
1094 {
1095 	const struct bpf_insn *insn = &meta->insn;
1096 
1097 	if (skip) {
1098 		meta->skip = true;
1099 		return 0;
1100 	}
1101 
1102 	wrp_alu_imm(nfp_prog, insn->dst_reg * 2, alu_op, insn->imm);
1103 	wrp_immed(nfp_prog, reg_both(insn->dst_reg * 2 + 1), 0);
1104 
1105 	return 0;
1106 }
1107 
1108 static int
1109 wrp_alu32_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
1110 	      enum alu_op alu_op)
1111 {
1112 	u8 dst = meta->insn.dst_reg * 2, src = meta->insn.src_reg * 2;
1113 
1114 	emit_alu(nfp_prog, reg_both(dst), reg_a(dst), alu_op, reg_b(src));
1115 	wrp_immed(nfp_prog, reg_both(meta->insn.dst_reg * 2 + 1), 0);
1116 
1117 	return 0;
1118 }
1119 
1120 static void
1121 wrp_test_reg_one(struct nfp_prog *nfp_prog, u8 dst, enum alu_op alu_op, u8 src,
1122 		 enum br_mask br_mask, u16 off)
1123 {
1124 	emit_alu(nfp_prog, reg_none(), reg_a(dst), alu_op, reg_b(src));
1125 	emit_br(nfp_prog, br_mask, off, 0);
1126 }
1127 
1128 static int
1129 wrp_test_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
1130 	     enum alu_op alu_op, enum br_mask br_mask)
1131 {
1132 	const struct bpf_insn *insn = &meta->insn;
1133 
1134 	wrp_test_reg_one(nfp_prog, insn->dst_reg * 2, alu_op,
1135 			 insn->src_reg * 2, br_mask, insn->off);
1136 	wrp_test_reg_one(nfp_prog, insn->dst_reg * 2 + 1, alu_op,
1137 			 insn->src_reg * 2 + 1, br_mask, insn->off);
1138 
1139 	return 0;
1140 }
1141 
1142 static int
1143 wrp_cmp_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
1144 	    enum br_mask br_mask, bool swap)
1145 {
1146 	const struct bpf_insn *insn = &meta->insn;
1147 	u64 imm = insn->imm; /* sign extend */
1148 	u8 reg = insn->dst_reg * 2;
1149 	swreg tmp_reg;
1150 
1151 	tmp_reg = ur_load_imm_any(nfp_prog, imm & ~0U, imm_b(nfp_prog));
1152 	if (!swap)
1153 		emit_alu(nfp_prog, reg_none(), reg_a(reg), ALU_OP_SUB, tmp_reg);
1154 	else
1155 		emit_alu(nfp_prog, reg_none(), tmp_reg, ALU_OP_SUB, reg_a(reg));
1156 
1157 	tmp_reg = ur_load_imm_any(nfp_prog, imm >> 32, imm_b(nfp_prog));
1158 	if (!swap)
1159 		emit_alu(nfp_prog, reg_none(),
1160 			 reg_a(reg + 1), ALU_OP_SUB_C, tmp_reg);
1161 	else
1162 		emit_alu(nfp_prog, reg_none(),
1163 			 tmp_reg, ALU_OP_SUB_C, reg_a(reg + 1));
1164 
1165 	emit_br(nfp_prog, br_mask, insn->off, 0);
1166 
1167 	return 0;
1168 }
1169 
1170 static int
1171 wrp_cmp_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
1172 	    enum br_mask br_mask, bool swap)
1173 {
1174 	const struct bpf_insn *insn = &meta->insn;
1175 	u8 areg, breg;
1176 
1177 	areg = insn->dst_reg * 2;
1178 	breg = insn->src_reg * 2;
1179 
1180 	if (swap) {
1181 		areg ^= breg;
1182 		breg ^= areg;
1183 		areg ^= breg;
1184 	}
1185 
1186 	emit_alu(nfp_prog, reg_none(), reg_a(areg), ALU_OP_SUB, reg_b(breg));
1187 	emit_alu(nfp_prog, reg_none(),
1188 		 reg_a(areg + 1), ALU_OP_SUB_C, reg_b(breg + 1));
1189 	emit_br(nfp_prog, br_mask, insn->off, 0);
1190 
1191 	return 0;
1192 }
1193 
1194 static void wrp_end32(struct nfp_prog *nfp_prog, swreg reg_in, u8 gpr_out)
1195 {
1196 	emit_ld_field(nfp_prog, reg_both(gpr_out), 0xf, reg_in,
1197 		      SHF_SC_R_ROT, 8);
1198 	emit_ld_field(nfp_prog, reg_both(gpr_out), 0x5, reg_a(gpr_out),
1199 		      SHF_SC_R_ROT, 16);
1200 }
1201 
1202 static int adjust_head(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1203 {
1204 	swreg tmp = imm_a(nfp_prog), tmp_len = imm_b(nfp_prog);
1205 	struct nfp_bpf_cap_adjust_head *adjust_head;
1206 	u32 ret_einval, end;
1207 
1208 	adjust_head = &nfp_prog->bpf->adjust_head;
1209 
1210 	/* Optimized version - 5 vs 14 cycles */
1211 	if (nfp_prog->adjust_head_location != UINT_MAX) {
1212 		if (WARN_ON_ONCE(nfp_prog->adjust_head_location != meta->n))
1213 			return -EINVAL;
1214 
1215 		emit_alu(nfp_prog, pptr_reg(nfp_prog),
1216 			 reg_a(2 * 2), ALU_OP_ADD, pptr_reg(nfp_prog));
1217 		emit_alu(nfp_prog, plen_reg(nfp_prog),
1218 			 plen_reg(nfp_prog), ALU_OP_SUB, reg_a(2 * 2));
1219 		emit_alu(nfp_prog, pv_len(nfp_prog),
1220 			 pv_len(nfp_prog), ALU_OP_SUB, reg_a(2 * 2));
1221 
1222 		wrp_immed(nfp_prog, reg_both(0), 0);
1223 		wrp_immed(nfp_prog, reg_both(1), 0);
1224 
1225 		/* TODO: when adjust head is guaranteed to succeed we can
1226 		 * also eliminate the following if (r0 == 0) branch.
1227 		 */
1228 
1229 		return 0;
1230 	}
1231 
1232 	ret_einval = nfp_prog_current_offset(nfp_prog) + 14;
1233 	end = ret_einval + 2;
1234 
1235 	/* We need to use a temp because offset is just a part of the pkt ptr */
1236 	emit_alu(nfp_prog, tmp,
1237 		 reg_a(2 * 2), ALU_OP_ADD_2B, pptr_reg(nfp_prog));
1238 
1239 	/* Validate result will fit within FW datapath constraints */
1240 	emit_alu(nfp_prog, reg_none(),
1241 		 tmp, ALU_OP_SUB, reg_imm(adjust_head->off_min));
1242 	emit_br(nfp_prog, BR_BLO, ret_einval, 0);
1243 	emit_alu(nfp_prog, reg_none(),
1244 		 reg_imm(adjust_head->off_max), ALU_OP_SUB, tmp);
1245 	emit_br(nfp_prog, BR_BLO, ret_einval, 0);
1246 
1247 	/* Validate the length is at least ETH_HLEN */
1248 	emit_alu(nfp_prog, tmp_len,
1249 		 plen_reg(nfp_prog), ALU_OP_SUB, reg_a(2 * 2));
1250 	emit_alu(nfp_prog, reg_none(),
1251 		 tmp_len, ALU_OP_SUB, reg_imm(ETH_HLEN));
1252 	emit_br(nfp_prog, BR_BMI, ret_einval, 0);
1253 
1254 	/* Load the ret code */
1255 	wrp_immed(nfp_prog, reg_both(0), 0);
1256 	wrp_immed(nfp_prog, reg_both(1), 0);
1257 
1258 	/* Modify the packet metadata */
1259 	emit_ld_field(nfp_prog, pptr_reg(nfp_prog), 0x3, tmp, SHF_SC_NONE, 0);
1260 
1261 	/* Skip over the -EINVAL ret code (defer 2) */
1262 	emit_br(nfp_prog, BR_UNC, end, 2);
1263 
1264 	emit_alu(nfp_prog, plen_reg(nfp_prog),
1265 		 plen_reg(nfp_prog), ALU_OP_SUB, reg_a(2 * 2));
1266 	emit_alu(nfp_prog, pv_len(nfp_prog),
1267 		 pv_len(nfp_prog), ALU_OP_SUB, reg_a(2 * 2));
1268 
1269 	/* return -EINVAL target */
1270 	if (!nfp_prog_confirm_current_offset(nfp_prog, ret_einval))
1271 		return -EINVAL;
1272 
1273 	wrp_immed(nfp_prog, reg_both(0), -22);
1274 	wrp_immed(nfp_prog, reg_both(1), ~0);
1275 
1276 	if (!nfp_prog_confirm_current_offset(nfp_prog, end))
1277 		return -EINVAL;
1278 
1279 	return 0;
1280 }
1281 
1282 /* --- Callbacks --- */
1283 static int mov_reg64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1284 {
1285 	const struct bpf_insn *insn = &meta->insn;
1286 	u8 dst = insn->dst_reg * 2;
1287 	u8 src = insn->src_reg * 2;
1288 
1289 	if (insn->src_reg == BPF_REG_10) {
1290 		swreg stack_depth_reg;
1291 
1292 		stack_depth_reg = ur_load_imm_any(nfp_prog,
1293 						  nfp_prog->stack_depth,
1294 						  stack_imm(nfp_prog));
1295 		emit_alu(nfp_prog, reg_both(dst),
1296 			 stack_reg(nfp_prog), ALU_OP_ADD, stack_depth_reg);
1297 		wrp_immed(nfp_prog, reg_both(dst + 1), 0);
1298 	} else {
1299 		wrp_reg_mov(nfp_prog, dst, src);
1300 		wrp_reg_mov(nfp_prog, dst + 1, src + 1);
1301 	}
1302 
1303 	return 0;
1304 }
1305 
1306 static int mov_imm64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1307 {
1308 	u64 imm = meta->insn.imm; /* sign extend */
1309 
1310 	wrp_immed(nfp_prog, reg_both(meta->insn.dst_reg * 2), imm & ~0U);
1311 	wrp_immed(nfp_prog, reg_both(meta->insn.dst_reg * 2 + 1), imm >> 32);
1312 
1313 	return 0;
1314 }
1315 
1316 static int xor_reg64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1317 {
1318 	return wrp_alu64_reg(nfp_prog, meta, ALU_OP_XOR);
1319 }
1320 
1321 static int xor_imm64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1322 {
1323 	return wrp_alu64_imm(nfp_prog, meta, ALU_OP_XOR, !meta->insn.imm);
1324 }
1325 
1326 static int and_reg64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1327 {
1328 	return wrp_alu64_reg(nfp_prog, meta, ALU_OP_AND);
1329 }
1330 
1331 static int and_imm64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1332 {
1333 	return wrp_alu64_imm(nfp_prog, meta, ALU_OP_AND, !~meta->insn.imm);
1334 }
1335 
1336 static int or_reg64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1337 {
1338 	return wrp_alu64_reg(nfp_prog, meta, ALU_OP_OR);
1339 }
1340 
1341 static int or_imm64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1342 {
1343 	return wrp_alu64_imm(nfp_prog, meta, ALU_OP_OR, !meta->insn.imm);
1344 }
1345 
1346 static int add_reg64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1347 {
1348 	const struct bpf_insn *insn = &meta->insn;
1349 
1350 	emit_alu(nfp_prog, reg_both(insn->dst_reg * 2),
1351 		 reg_a(insn->dst_reg * 2), ALU_OP_ADD,
1352 		 reg_b(insn->src_reg * 2));
1353 	emit_alu(nfp_prog, reg_both(insn->dst_reg * 2 + 1),
1354 		 reg_a(insn->dst_reg * 2 + 1), ALU_OP_ADD_C,
1355 		 reg_b(insn->src_reg * 2 + 1));
1356 
1357 	return 0;
1358 }
1359 
1360 static int add_imm64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1361 {
1362 	const struct bpf_insn *insn = &meta->insn;
1363 	u64 imm = insn->imm; /* sign extend */
1364 
1365 	wrp_alu_imm(nfp_prog, insn->dst_reg * 2, ALU_OP_ADD, imm & ~0U);
1366 	wrp_alu_imm(nfp_prog, insn->dst_reg * 2 + 1, ALU_OP_ADD_C, imm >> 32);
1367 
1368 	return 0;
1369 }
1370 
1371 static int sub_reg64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1372 {
1373 	const struct bpf_insn *insn = &meta->insn;
1374 
1375 	emit_alu(nfp_prog, reg_both(insn->dst_reg * 2),
1376 		 reg_a(insn->dst_reg * 2), ALU_OP_SUB,
1377 		 reg_b(insn->src_reg * 2));
1378 	emit_alu(nfp_prog, reg_both(insn->dst_reg * 2 + 1),
1379 		 reg_a(insn->dst_reg * 2 + 1), ALU_OP_SUB_C,
1380 		 reg_b(insn->src_reg * 2 + 1));
1381 
1382 	return 0;
1383 }
1384 
1385 static int sub_imm64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1386 {
1387 	const struct bpf_insn *insn = &meta->insn;
1388 	u64 imm = insn->imm; /* sign extend */
1389 
1390 	wrp_alu_imm(nfp_prog, insn->dst_reg * 2, ALU_OP_SUB, imm & ~0U);
1391 	wrp_alu_imm(nfp_prog, insn->dst_reg * 2 + 1, ALU_OP_SUB_C, imm >> 32);
1392 
1393 	return 0;
1394 }
1395 
1396 static int neg_reg64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1397 {
1398 	const struct bpf_insn *insn = &meta->insn;
1399 
1400 	emit_alu(nfp_prog, reg_both(insn->dst_reg * 2), reg_imm(0),
1401 		 ALU_OP_SUB, reg_b(insn->dst_reg * 2));
1402 	emit_alu(nfp_prog, reg_both(insn->dst_reg * 2 + 1), reg_imm(0),
1403 		 ALU_OP_SUB_C, reg_b(insn->dst_reg * 2 + 1));
1404 
1405 	return 0;
1406 }
1407 
1408 static int shl_imm64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1409 {
1410 	const struct bpf_insn *insn = &meta->insn;
1411 	u8 dst = insn->dst_reg * 2;
1412 
1413 	if (insn->imm < 32) {
1414 		emit_shf(nfp_prog, reg_both(dst + 1),
1415 			 reg_a(dst + 1), SHF_OP_NONE, reg_b(dst),
1416 			 SHF_SC_R_DSHF, 32 - insn->imm);
1417 		emit_shf(nfp_prog, reg_both(dst),
1418 			 reg_none(), SHF_OP_NONE, reg_b(dst),
1419 			 SHF_SC_L_SHF, insn->imm);
1420 	} else if (insn->imm == 32) {
1421 		wrp_reg_mov(nfp_prog, dst + 1, dst);
1422 		wrp_immed(nfp_prog, reg_both(dst), 0);
1423 	} else if (insn->imm > 32) {
1424 		emit_shf(nfp_prog, reg_both(dst + 1),
1425 			 reg_none(), SHF_OP_NONE, reg_b(dst),
1426 			 SHF_SC_L_SHF, insn->imm - 32);
1427 		wrp_immed(nfp_prog, reg_both(dst), 0);
1428 	}
1429 
1430 	return 0;
1431 }
1432 
1433 static int shr_imm64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1434 {
1435 	const struct bpf_insn *insn = &meta->insn;
1436 	u8 dst = insn->dst_reg * 2;
1437 
1438 	if (insn->imm < 32) {
1439 		emit_shf(nfp_prog, reg_both(dst),
1440 			 reg_a(dst + 1), SHF_OP_NONE, reg_b(dst),
1441 			 SHF_SC_R_DSHF, insn->imm);
1442 		emit_shf(nfp_prog, reg_both(dst + 1),
1443 			 reg_none(), SHF_OP_NONE, reg_b(dst + 1),
1444 			 SHF_SC_R_SHF, insn->imm);
1445 	} else if (insn->imm == 32) {
1446 		wrp_reg_mov(nfp_prog, dst, dst + 1);
1447 		wrp_immed(nfp_prog, reg_both(dst + 1), 0);
1448 	} else if (insn->imm > 32) {
1449 		emit_shf(nfp_prog, reg_both(dst),
1450 			 reg_none(), SHF_OP_NONE, reg_b(dst + 1),
1451 			 SHF_SC_R_SHF, insn->imm - 32);
1452 		wrp_immed(nfp_prog, reg_both(dst + 1), 0);
1453 	}
1454 
1455 	return 0;
1456 }
1457 
1458 static int mov_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1459 {
1460 	const struct bpf_insn *insn = &meta->insn;
1461 
1462 	wrp_reg_mov(nfp_prog, insn->dst_reg * 2,  insn->src_reg * 2);
1463 	wrp_immed(nfp_prog, reg_both(insn->dst_reg * 2 + 1), 0);
1464 
1465 	return 0;
1466 }
1467 
1468 static int mov_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1469 {
1470 	const struct bpf_insn *insn = &meta->insn;
1471 
1472 	wrp_immed(nfp_prog, reg_both(insn->dst_reg * 2), insn->imm);
1473 	wrp_immed(nfp_prog, reg_both(insn->dst_reg * 2 + 1), 0);
1474 
1475 	return 0;
1476 }
1477 
1478 static int xor_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1479 {
1480 	return wrp_alu32_reg(nfp_prog, meta, ALU_OP_XOR);
1481 }
1482 
1483 static int xor_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1484 {
1485 	return wrp_alu32_imm(nfp_prog, meta, ALU_OP_XOR, !~meta->insn.imm);
1486 }
1487 
1488 static int and_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1489 {
1490 	return wrp_alu32_reg(nfp_prog, meta, ALU_OP_AND);
1491 }
1492 
1493 static int and_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1494 {
1495 	return wrp_alu32_imm(nfp_prog, meta, ALU_OP_AND, !~meta->insn.imm);
1496 }
1497 
1498 static int or_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1499 {
1500 	return wrp_alu32_reg(nfp_prog, meta, ALU_OP_OR);
1501 }
1502 
1503 static int or_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1504 {
1505 	return wrp_alu32_imm(nfp_prog, meta, ALU_OP_OR, !meta->insn.imm);
1506 }
1507 
1508 static int add_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1509 {
1510 	return wrp_alu32_reg(nfp_prog, meta, ALU_OP_ADD);
1511 }
1512 
1513 static int add_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1514 {
1515 	return wrp_alu32_imm(nfp_prog, meta, ALU_OP_ADD, !meta->insn.imm);
1516 }
1517 
1518 static int sub_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1519 {
1520 	return wrp_alu32_reg(nfp_prog, meta, ALU_OP_SUB);
1521 }
1522 
1523 static int sub_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1524 {
1525 	return wrp_alu32_imm(nfp_prog, meta, ALU_OP_SUB, !meta->insn.imm);
1526 }
1527 
1528 static int neg_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1529 {
1530 	u8 dst = meta->insn.dst_reg * 2;
1531 
1532 	emit_alu(nfp_prog, reg_both(dst), reg_imm(0), ALU_OP_SUB, reg_b(dst));
1533 	wrp_immed(nfp_prog, reg_both(meta->insn.dst_reg * 2 + 1), 0);
1534 
1535 	return 0;
1536 }
1537 
1538 static int shl_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1539 {
1540 	const struct bpf_insn *insn = &meta->insn;
1541 
1542 	if (!insn->imm)
1543 		return 1; /* TODO: zero shift means indirect */
1544 
1545 	emit_shf(nfp_prog, reg_both(insn->dst_reg * 2),
1546 		 reg_none(), SHF_OP_NONE, reg_b(insn->dst_reg * 2),
1547 		 SHF_SC_L_SHF, insn->imm);
1548 	wrp_immed(nfp_prog, reg_both(insn->dst_reg * 2 + 1), 0);
1549 
1550 	return 0;
1551 }
1552 
1553 static int end_reg32(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1554 {
1555 	const struct bpf_insn *insn = &meta->insn;
1556 	u8 gpr = insn->dst_reg * 2;
1557 
1558 	switch (insn->imm) {
1559 	case 16:
1560 		emit_ld_field(nfp_prog, reg_both(gpr), 0x9, reg_b(gpr),
1561 			      SHF_SC_R_ROT, 8);
1562 		emit_ld_field(nfp_prog, reg_both(gpr), 0xe, reg_a(gpr),
1563 			      SHF_SC_R_SHF, 16);
1564 
1565 		wrp_immed(nfp_prog, reg_both(gpr + 1), 0);
1566 		break;
1567 	case 32:
1568 		wrp_end32(nfp_prog, reg_a(gpr), gpr);
1569 		wrp_immed(nfp_prog, reg_both(gpr + 1), 0);
1570 		break;
1571 	case 64:
1572 		wrp_mov(nfp_prog, imm_a(nfp_prog), reg_b(gpr + 1));
1573 
1574 		wrp_end32(nfp_prog, reg_a(gpr), gpr + 1);
1575 		wrp_end32(nfp_prog, imm_a(nfp_prog), gpr);
1576 		break;
1577 	}
1578 
1579 	return 0;
1580 }
1581 
1582 static int imm_ld8_part2(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1583 {
1584 	struct nfp_insn_meta *prev = nfp_meta_prev(meta);
1585 	u32 imm_lo, imm_hi;
1586 	u8 dst;
1587 
1588 	dst = prev->insn.dst_reg * 2;
1589 	imm_lo = prev->insn.imm;
1590 	imm_hi = meta->insn.imm;
1591 
1592 	wrp_immed(nfp_prog, reg_both(dst), imm_lo);
1593 
1594 	/* mov is always 1 insn, load imm may be two, so try to use mov */
1595 	if (imm_hi == imm_lo)
1596 		wrp_mov(nfp_prog, reg_both(dst + 1), reg_a(dst));
1597 	else
1598 		wrp_immed(nfp_prog, reg_both(dst + 1), imm_hi);
1599 
1600 	return 0;
1601 }
1602 
1603 static int imm_ld8(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1604 {
1605 	meta->double_cb = imm_ld8_part2;
1606 	return 0;
1607 }
1608 
1609 static int data_ld1(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1610 {
1611 	return construct_data_ld(nfp_prog, meta->insn.imm, 1);
1612 }
1613 
1614 static int data_ld2(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1615 {
1616 	return construct_data_ld(nfp_prog, meta->insn.imm, 2);
1617 }
1618 
1619 static int data_ld4(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1620 {
1621 	return construct_data_ld(nfp_prog, meta->insn.imm, 4);
1622 }
1623 
1624 static int data_ind_ld1(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1625 {
1626 	return construct_data_ind_ld(nfp_prog, meta->insn.imm,
1627 				     meta->insn.src_reg * 2, 1);
1628 }
1629 
1630 static int data_ind_ld2(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1631 {
1632 	return construct_data_ind_ld(nfp_prog, meta->insn.imm,
1633 				     meta->insn.src_reg * 2, 2);
1634 }
1635 
1636 static int data_ind_ld4(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1637 {
1638 	return construct_data_ind_ld(nfp_prog, meta->insn.imm,
1639 				     meta->insn.src_reg * 2, 4);
1640 }
1641 
1642 static int
1643 mem_ldx_stack(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
1644 	      unsigned int size, unsigned int ptr_off)
1645 {
1646 	return mem_op_stack(nfp_prog, meta, size, ptr_off,
1647 			    meta->insn.dst_reg * 2, meta->insn.src_reg * 2,
1648 			    true, wrp_lmem_load);
1649 }
1650 
1651 static int mem_ldx_skb(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
1652 		       u8 size)
1653 {
1654 	swreg dst = reg_both(meta->insn.dst_reg * 2);
1655 
1656 	switch (meta->insn.off) {
1657 	case offsetof(struct __sk_buff, len):
1658 		if (size != FIELD_SIZEOF(struct __sk_buff, len))
1659 			return -EOPNOTSUPP;
1660 		wrp_mov(nfp_prog, dst, plen_reg(nfp_prog));
1661 		break;
1662 	case offsetof(struct __sk_buff, data):
1663 		if (size != FIELD_SIZEOF(struct __sk_buff, data))
1664 			return -EOPNOTSUPP;
1665 		wrp_mov(nfp_prog, dst, pptr_reg(nfp_prog));
1666 		break;
1667 	case offsetof(struct __sk_buff, data_end):
1668 		if (size != FIELD_SIZEOF(struct __sk_buff, data_end))
1669 			return -EOPNOTSUPP;
1670 		emit_alu(nfp_prog, dst,
1671 			 plen_reg(nfp_prog), ALU_OP_ADD, pptr_reg(nfp_prog));
1672 		break;
1673 	default:
1674 		return -EOPNOTSUPP;
1675 	}
1676 
1677 	wrp_immed(nfp_prog, reg_both(meta->insn.dst_reg * 2 + 1), 0);
1678 
1679 	return 0;
1680 }
1681 
1682 static int mem_ldx_xdp(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
1683 		       u8 size)
1684 {
1685 	swreg dst = reg_both(meta->insn.dst_reg * 2);
1686 
1687 	switch (meta->insn.off) {
1688 	case offsetof(struct xdp_md, data):
1689 		if (size != FIELD_SIZEOF(struct xdp_md, data))
1690 			return -EOPNOTSUPP;
1691 		wrp_mov(nfp_prog, dst, pptr_reg(nfp_prog));
1692 		break;
1693 	case offsetof(struct xdp_md, data_end):
1694 		if (size != FIELD_SIZEOF(struct xdp_md, data_end))
1695 			return -EOPNOTSUPP;
1696 		emit_alu(nfp_prog, dst,
1697 			 plen_reg(nfp_prog), ALU_OP_ADD, pptr_reg(nfp_prog));
1698 		break;
1699 	default:
1700 		return -EOPNOTSUPP;
1701 	}
1702 
1703 	wrp_immed(nfp_prog, reg_both(meta->insn.dst_reg * 2 + 1), 0);
1704 
1705 	return 0;
1706 }
1707 
1708 static int
1709 mem_ldx_data(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
1710 	     unsigned int size)
1711 {
1712 	swreg tmp_reg;
1713 
1714 	tmp_reg = re_load_imm_any(nfp_prog, meta->insn.off, imm_b(nfp_prog));
1715 
1716 	return data_ld_host_order(nfp_prog, meta->insn.src_reg * 2, tmp_reg,
1717 				  meta->insn.dst_reg * 2, size);
1718 }
1719 
1720 static int
1721 mem_ldx(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
1722 	unsigned int size)
1723 {
1724 	if (meta->ldst_gather_len)
1725 		return nfp_cpp_memcpy(nfp_prog, meta);
1726 
1727 	if (meta->ptr.type == PTR_TO_CTX) {
1728 		if (nfp_prog->type == BPF_PROG_TYPE_XDP)
1729 			return mem_ldx_xdp(nfp_prog, meta, size);
1730 		else
1731 			return mem_ldx_skb(nfp_prog, meta, size);
1732 	}
1733 
1734 	if (meta->ptr.type == PTR_TO_PACKET)
1735 		return mem_ldx_data(nfp_prog, meta, size);
1736 
1737 	if (meta->ptr.type == PTR_TO_STACK)
1738 		return mem_ldx_stack(nfp_prog, meta, size,
1739 				     meta->ptr.off + meta->ptr.var_off.value);
1740 
1741 	return -EOPNOTSUPP;
1742 }
1743 
1744 static int mem_ldx1(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1745 {
1746 	return mem_ldx(nfp_prog, meta, 1);
1747 }
1748 
1749 static int mem_ldx2(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1750 {
1751 	return mem_ldx(nfp_prog, meta, 2);
1752 }
1753 
1754 static int mem_ldx4(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1755 {
1756 	return mem_ldx(nfp_prog, meta, 4);
1757 }
1758 
1759 static int mem_ldx8(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1760 {
1761 	return mem_ldx(nfp_prog, meta, 8);
1762 }
1763 
1764 static int
1765 mem_st_data(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
1766 	    unsigned int size)
1767 {
1768 	u64 imm = meta->insn.imm; /* sign extend */
1769 	swreg off_reg;
1770 
1771 	off_reg = re_load_imm_any(nfp_prog, meta->insn.off, imm_b(nfp_prog));
1772 
1773 	return data_st_host_order(nfp_prog, meta->insn.dst_reg * 2, off_reg,
1774 				  imm, size);
1775 }
1776 
1777 static int mem_st(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
1778 		  unsigned int size)
1779 {
1780 	if (meta->ptr.type == PTR_TO_PACKET)
1781 		return mem_st_data(nfp_prog, meta, size);
1782 
1783 	return -EOPNOTSUPP;
1784 }
1785 
1786 static int mem_st1(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1787 {
1788 	return mem_st(nfp_prog, meta, 1);
1789 }
1790 
1791 static int mem_st2(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1792 {
1793 	return mem_st(nfp_prog, meta, 2);
1794 }
1795 
1796 static int mem_st4(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1797 {
1798 	return mem_st(nfp_prog, meta, 4);
1799 }
1800 
1801 static int mem_st8(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1802 {
1803 	return mem_st(nfp_prog, meta, 8);
1804 }
1805 
1806 static int
1807 mem_stx_data(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
1808 	     unsigned int size)
1809 {
1810 	swreg off_reg;
1811 
1812 	off_reg = re_load_imm_any(nfp_prog, meta->insn.off, imm_b(nfp_prog));
1813 
1814 	return data_stx_host_order(nfp_prog, meta->insn.dst_reg * 2, off_reg,
1815 				   meta->insn.src_reg * 2, size);
1816 }
1817 
1818 static int
1819 mem_stx_stack(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
1820 	      unsigned int size, unsigned int ptr_off)
1821 {
1822 	return mem_op_stack(nfp_prog, meta, size, ptr_off,
1823 			    meta->insn.src_reg * 2, meta->insn.dst_reg * 2,
1824 			    false, wrp_lmem_store);
1825 }
1826 
1827 static int
1828 mem_stx(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
1829 	unsigned int size)
1830 {
1831 	if (meta->ptr.type == PTR_TO_PACKET)
1832 		return mem_stx_data(nfp_prog, meta, size);
1833 
1834 	if (meta->ptr.type == PTR_TO_STACK)
1835 		return mem_stx_stack(nfp_prog, meta, size,
1836 				     meta->ptr.off + meta->ptr.var_off.value);
1837 
1838 	return -EOPNOTSUPP;
1839 }
1840 
1841 static int mem_stx1(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1842 {
1843 	return mem_stx(nfp_prog, meta, 1);
1844 }
1845 
1846 static int mem_stx2(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1847 {
1848 	return mem_stx(nfp_prog, meta, 2);
1849 }
1850 
1851 static int mem_stx4(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1852 {
1853 	return mem_stx(nfp_prog, meta, 4);
1854 }
1855 
1856 static int mem_stx8(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1857 {
1858 	return mem_stx(nfp_prog, meta, 8);
1859 }
1860 
1861 static int jump(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1862 {
1863 	emit_br(nfp_prog, BR_UNC, meta->insn.off, 0);
1864 
1865 	return 0;
1866 }
1867 
1868 static int jeq_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1869 {
1870 	const struct bpf_insn *insn = &meta->insn;
1871 	u64 imm = insn->imm; /* sign extend */
1872 	swreg or1, or2, tmp_reg;
1873 
1874 	or1 = reg_a(insn->dst_reg * 2);
1875 	or2 = reg_b(insn->dst_reg * 2 + 1);
1876 
1877 	if (imm & ~0U) {
1878 		tmp_reg = ur_load_imm_any(nfp_prog, imm & ~0U, imm_b(nfp_prog));
1879 		emit_alu(nfp_prog, imm_a(nfp_prog),
1880 			 reg_a(insn->dst_reg * 2), ALU_OP_XOR, tmp_reg);
1881 		or1 = imm_a(nfp_prog);
1882 	}
1883 
1884 	if (imm >> 32) {
1885 		tmp_reg = ur_load_imm_any(nfp_prog, imm >> 32, imm_b(nfp_prog));
1886 		emit_alu(nfp_prog, imm_b(nfp_prog),
1887 			 reg_a(insn->dst_reg * 2 + 1), ALU_OP_XOR, tmp_reg);
1888 		or2 = imm_b(nfp_prog);
1889 	}
1890 
1891 	emit_alu(nfp_prog, reg_none(), or1, ALU_OP_OR, or2);
1892 	emit_br(nfp_prog, BR_BEQ, insn->off, 0);
1893 
1894 	return 0;
1895 }
1896 
1897 static int jgt_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1898 {
1899 	return wrp_cmp_imm(nfp_prog, meta, BR_BLO, true);
1900 }
1901 
1902 static int jge_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1903 {
1904 	return wrp_cmp_imm(nfp_prog, meta, BR_BHS, false);
1905 }
1906 
1907 static int jlt_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1908 {
1909 	return wrp_cmp_imm(nfp_prog, meta, BR_BLO, false);
1910 }
1911 
1912 static int jle_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1913 {
1914 	return wrp_cmp_imm(nfp_prog, meta, BR_BHS, true);
1915 }
1916 
1917 static int jsgt_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1918 {
1919 	return wrp_cmp_imm(nfp_prog, meta, BR_BLT, true);
1920 }
1921 
1922 static int jsge_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1923 {
1924 	return wrp_cmp_imm(nfp_prog, meta, BR_BGE, false);
1925 }
1926 
1927 static int jslt_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1928 {
1929 	return wrp_cmp_imm(nfp_prog, meta, BR_BLT, false);
1930 }
1931 
1932 static int jsle_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1933 {
1934 	return wrp_cmp_imm(nfp_prog, meta, BR_BGE, true);
1935 }
1936 
1937 static int jset_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1938 {
1939 	const struct bpf_insn *insn = &meta->insn;
1940 	u64 imm = insn->imm; /* sign extend */
1941 	swreg tmp_reg;
1942 
1943 	if (!imm) {
1944 		meta->skip = true;
1945 		return 0;
1946 	}
1947 
1948 	if (imm & ~0U) {
1949 		tmp_reg = ur_load_imm_any(nfp_prog, imm & ~0U, imm_b(nfp_prog));
1950 		emit_alu(nfp_prog, reg_none(),
1951 			 reg_a(insn->dst_reg * 2), ALU_OP_AND, tmp_reg);
1952 		emit_br(nfp_prog, BR_BNE, insn->off, 0);
1953 	}
1954 
1955 	if (imm >> 32) {
1956 		tmp_reg = ur_load_imm_any(nfp_prog, imm >> 32, imm_b(nfp_prog));
1957 		emit_alu(nfp_prog, reg_none(),
1958 			 reg_a(insn->dst_reg * 2 + 1), ALU_OP_AND, tmp_reg);
1959 		emit_br(nfp_prog, BR_BNE, insn->off, 0);
1960 	}
1961 
1962 	return 0;
1963 }
1964 
1965 static int jne_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1966 {
1967 	const struct bpf_insn *insn = &meta->insn;
1968 	u64 imm = insn->imm; /* sign extend */
1969 	swreg tmp_reg;
1970 
1971 	if (!imm) {
1972 		emit_alu(nfp_prog, reg_none(), reg_a(insn->dst_reg * 2),
1973 			 ALU_OP_OR, reg_b(insn->dst_reg * 2 + 1));
1974 		emit_br(nfp_prog, BR_BNE, insn->off, 0);
1975 		return 0;
1976 	}
1977 
1978 	tmp_reg = ur_load_imm_any(nfp_prog, imm & ~0U, imm_b(nfp_prog));
1979 	emit_alu(nfp_prog, reg_none(),
1980 		 reg_a(insn->dst_reg * 2), ALU_OP_XOR, tmp_reg);
1981 	emit_br(nfp_prog, BR_BNE, insn->off, 0);
1982 
1983 	tmp_reg = ur_load_imm_any(nfp_prog, imm >> 32, imm_b(nfp_prog));
1984 	emit_alu(nfp_prog, reg_none(),
1985 		 reg_a(insn->dst_reg * 2 + 1), ALU_OP_XOR, tmp_reg);
1986 	emit_br(nfp_prog, BR_BNE, insn->off, 0);
1987 
1988 	return 0;
1989 }
1990 
1991 static int jeq_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1992 {
1993 	const struct bpf_insn *insn = &meta->insn;
1994 
1995 	emit_alu(nfp_prog, imm_a(nfp_prog), reg_a(insn->dst_reg * 2),
1996 		 ALU_OP_XOR, reg_b(insn->src_reg * 2));
1997 	emit_alu(nfp_prog, imm_b(nfp_prog), reg_a(insn->dst_reg * 2 + 1),
1998 		 ALU_OP_XOR, reg_b(insn->src_reg * 2 + 1));
1999 	emit_alu(nfp_prog, reg_none(),
2000 		 imm_a(nfp_prog), ALU_OP_OR, imm_b(nfp_prog));
2001 	emit_br(nfp_prog, BR_BEQ, insn->off, 0);
2002 
2003 	return 0;
2004 }
2005 
2006 static int jgt_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2007 {
2008 	return wrp_cmp_reg(nfp_prog, meta, BR_BLO, true);
2009 }
2010 
2011 static int jge_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2012 {
2013 	return wrp_cmp_reg(nfp_prog, meta, BR_BHS, false);
2014 }
2015 
2016 static int jlt_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2017 {
2018 	return wrp_cmp_reg(nfp_prog, meta, BR_BLO, false);
2019 }
2020 
2021 static int jle_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2022 {
2023 	return wrp_cmp_reg(nfp_prog, meta, BR_BHS, true);
2024 }
2025 
2026 static int jsgt_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2027 {
2028 	return wrp_cmp_reg(nfp_prog, meta, BR_BLT, true);
2029 }
2030 
2031 static int jsge_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2032 {
2033 	return wrp_cmp_reg(nfp_prog, meta, BR_BGE, false);
2034 }
2035 
2036 static int jslt_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2037 {
2038 	return wrp_cmp_reg(nfp_prog, meta, BR_BLT, false);
2039 }
2040 
2041 static int jsle_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2042 {
2043 	return wrp_cmp_reg(nfp_prog, meta, BR_BGE, true);
2044 }
2045 
2046 static int jset_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2047 {
2048 	return wrp_test_reg(nfp_prog, meta, ALU_OP_AND, BR_BNE);
2049 }
2050 
2051 static int jne_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2052 {
2053 	return wrp_test_reg(nfp_prog, meta, ALU_OP_XOR, BR_BNE);
2054 }
2055 
2056 static int call(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2057 {
2058 	switch (meta->insn.imm) {
2059 	case BPF_FUNC_xdp_adjust_head:
2060 		return adjust_head(nfp_prog, meta);
2061 	default:
2062 		WARN_ONCE(1, "verifier allowed unsupported function\n");
2063 		return -EOPNOTSUPP;
2064 	}
2065 }
2066 
2067 static int goto_out(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2068 {
2069 	emit_br_relo(nfp_prog, BR_UNC, BR_OFF_RELO, 0, RELO_BR_GO_OUT);
2070 
2071 	return 0;
2072 }
2073 
2074 static const instr_cb_t instr_cb[256] = {
2075 	[BPF_ALU64 | BPF_MOV | BPF_X] =	mov_reg64,
2076 	[BPF_ALU64 | BPF_MOV | BPF_K] =	mov_imm64,
2077 	[BPF_ALU64 | BPF_XOR | BPF_X] =	xor_reg64,
2078 	[BPF_ALU64 | BPF_XOR | BPF_K] =	xor_imm64,
2079 	[BPF_ALU64 | BPF_AND | BPF_X] =	and_reg64,
2080 	[BPF_ALU64 | BPF_AND | BPF_K] =	and_imm64,
2081 	[BPF_ALU64 | BPF_OR | BPF_X] =	or_reg64,
2082 	[BPF_ALU64 | BPF_OR | BPF_K] =	or_imm64,
2083 	[BPF_ALU64 | BPF_ADD | BPF_X] =	add_reg64,
2084 	[BPF_ALU64 | BPF_ADD | BPF_K] =	add_imm64,
2085 	[BPF_ALU64 | BPF_SUB | BPF_X] =	sub_reg64,
2086 	[BPF_ALU64 | BPF_SUB | BPF_K] =	sub_imm64,
2087 	[BPF_ALU64 | BPF_NEG] =		neg_reg64,
2088 	[BPF_ALU64 | BPF_LSH | BPF_K] =	shl_imm64,
2089 	[BPF_ALU64 | BPF_RSH | BPF_K] =	shr_imm64,
2090 	[BPF_ALU | BPF_MOV | BPF_X] =	mov_reg,
2091 	[BPF_ALU | BPF_MOV | BPF_K] =	mov_imm,
2092 	[BPF_ALU | BPF_XOR | BPF_X] =	xor_reg,
2093 	[BPF_ALU | BPF_XOR | BPF_K] =	xor_imm,
2094 	[BPF_ALU | BPF_AND | BPF_X] =	and_reg,
2095 	[BPF_ALU | BPF_AND | BPF_K] =	and_imm,
2096 	[BPF_ALU | BPF_OR | BPF_X] =	or_reg,
2097 	[BPF_ALU | BPF_OR | BPF_K] =	or_imm,
2098 	[BPF_ALU | BPF_ADD | BPF_X] =	add_reg,
2099 	[BPF_ALU | BPF_ADD | BPF_K] =	add_imm,
2100 	[BPF_ALU | BPF_SUB | BPF_X] =	sub_reg,
2101 	[BPF_ALU | BPF_SUB | BPF_K] =	sub_imm,
2102 	[BPF_ALU | BPF_NEG] =		neg_reg,
2103 	[BPF_ALU | BPF_LSH | BPF_K] =	shl_imm,
2104 	[BPF_ALU | BPF_END | BPF_X] =	end_reg32,
2105 	[BPF_LD | BPF_IMM | BPF_DW] =	imm_ld8,
2106 	[BPF_LD | BPF_ABS | BPF_B] =	data_ld1,
2107 	[BPF_LD | BPF_ABS | BPF_H] =	data_ld2,
2108 	[BPF_LD | BPF_ABS | BPF_W] =	data_ld4,
2109 	[BPF_LD | BPF_IND | BPF_B] =	data_ind_ld1,
2110 	[BPF_LD | BPF_IND | BPF_H] =	data_ind_ld2,
2111 	[BPF_LD | BPF_IND | BPF_W] =	data_ind_ld4,
2112 	[BPF_LDX | BPF_MEM | BPF_B] =	mem_ldx1,
2113 	[BPF_LDX | BPF_MEM | BPF_H] =	mem_ldx2,
2114 	[BPF_LDX | BPF_MEM | BPF_W] =	mem_ldx4,
2115 	[BPF_LDX | BPF_MEM | BPF_DW] =	mem_ldx8,
2116 	[BPF_STX | BPF_MEM | BPF_B] =	mem_stx1,
2117 	[BPF_STX | BPF_MEM | BPF_H] =	mem_stx2,
2118 	[BPF_STX | BPF_MEM | BPF_W] =	mem_stx4,
2119 	[BPF_STX | BPF_MEM | BPF_DW] =	mem_stx8,
2120 	[BPF_ST | BPF_MEM | BPF_B] =	mem_st1,
2121 	[BPF_ST | BPF_MEM | BPF_H] =	mem_st2,
2122 	[BPF_ST | BPF_MEM | BPF_W] =	mem_st4,
2123 	[BPF_ST | BPF_MEM | BPF_DW] =	mem_st8,
2124 	[BPF_JMP | BPF_JA | BPF_K] =	jump,
2125 	[BPF_JMP | BPF_JEQ | BPF_K] =	jeq_imm,
2126 	[BPF_JMP | BPF_JGT | BPF_K] =	jgt_imm,
2127 	[BPF_JMP | BPF_JGE | BPF_K] =	jge_imm,
2128 	[BPF_JMP | BPF_JLT | BPF_K] =	jlt_imm,
2129 	[BPF_JMP | BPF_JLE | BPF_K] =	jle_imm,
2130 	[BPF_JMP | BPF_JSGT | BPF_K] =  jsgt_imm,
2131 	[BPF_JMP | BPF_JSGE | BPF_K] =  jsge_imm,
2132 	[BPF_JMP | BPF_JSLT | BPF_K] =  jslt_imm,
2133 	[BPF_JMP | BPF_JSLE | BPF_K] =  jsle_imm,
2134 	[BPF_JMP | BPF_JSET | BPF_K] =	jset_imm,
2135 	[BPF_JMP | BPF_JNE | BPF_K] =	jne_imm,
2136 	[BPF_JMP | BPF_JEQ | BPF_X] =	jeq_reg,
2137 	[BPF_JMP | BPF_JGT | BPF_X] =	jgt_reg,
2138 	[BPF_JMP | BPF_JGE | BPF_X] =	jge_reg,
2139 	[BPF_JMP | BPF_JLT | BPF_X] =	jlt_reg,
2140 	[BPF_JMP | BPF_JLE | BPF_X] =	jle_reg,
2141 	[BPF_JMP | BPF_JSGT | BPF_X] =  jsgt_reg,
2142 	[BPF_JMP | BPF_JSGE | BPF_X] =  jsge_reg,
2143 	[BPF_JMP | BPF_JSLT | BPF_X] =  jslt_reg,
2144 	[BPF_JMP | BPF_JSLE | BPF_X] =  jsle_reg,
2145 	[BPF_JMP | BPF_JSET | BPF_X] =	jset_reg,
2146 	[BPF_JMP | BPF_JNE | BPF_X] =	jne_reg,
2147 	[BPF_JMP | BPF_CALL] =		call,
2148 	[BPF_JMP | BPF_EXIT] =		goto_out,
2149 };
2150 
2151 /* --- Assembler logic --- */
2152 static int nfp_fixup_branches(struct nfp_prog *nfp_prog)
2153 {
2154 	struct nfp_insn_meta *meta, *jmp_dst;
2155 	u32 idx, br_idx;
2156 
2157 	list_for_each_entry(meta, &nfp_prog->insns, l) {
2158 		if (meta->skip)
2159 			continue;
2160 		if (meta->insn.code == (BPF_JMP | BPF_CALL))
2161 			continue;
2162 		if (BPF_CLASS(meta->insn.code) != BPF_JMP)
2163 			continue;
2164 
2165 		if (list_is_last(&meta->l, &nfp_prog->insns))
2166 			br_idx = nfp_prog->last_bpf_off;
2167 		else
2168 			br_idx = list_next_entry(meta, l)->off - 1;
2169 
2170 		if (!nfp_is_br(nfp_prog->prog[br_idx])) {
2171 			pr_err("Fixup found block not ending in branch %d %02x %016llx!!\n",
2172 			       br_idx, meta->insn.code, nfp_prog->prog[br_idx]);
2173 			return -ELOOP;
2174 		}
2175 		/* Leave special branches for later */
2176 		if (FIELD_GET(OP_RELO_TYPE, nfp_prog->prog[br_idx]) !=
2177 		    RELO_BR_REL)
2178 			continue;
2179 
2180 		if (!meta->jmp_dst) {
2181 			pr_err("Non-exit jump doesn't have destination info recorded!!\n");
2182 			return -ELOOP;
2183 		}
2184 
2185 		jmp_dst = meta->jmp_dst;
2186 
2187 		if (jmp_dst->skip) {
2188 			pr_err("Branch landing on removed instruction!!\n");
2189 			return -ELOOP;
2190 		}
2191 
2192 		for (idx = meta->off; idx <= br_idx; idx++) {
2193 			if (!nfp_is_br(nfp_prog->prog[idx]))
2194 				continue;
2195 			br_set_offset(&nfp_prog->prog[idx], jmp_dst->off);
2196 		}
2197 	}
2198 
2199 	return 0;
2200 }
2201 
2202 static void nfp_intro(struct nfp_prog *nfp_prog)
2203 {
2204 	wrp_immed(nfp_prog, plen_reg(nfp_prog), GENMASK(13, 0));
2205 	emit_alu(nfp_prog, plen_reg(nfp_prog),
2206 		 plen_reg(nfp_prog), ALU_OP_AND, pv_len(nfp_prog));
2207 }
2208 
2209 static void nfp_outro_tc_da(struct nfp_prog *nfp_prog)
2210 {
2211 	/* TC direct-action mode:
2212 	 *   0,1   ok        NOT SUPPORTED[1]
2213 	 *   2   drop  0x22 -> drop,  count as stat1
2214 	 *   4,5 nuke  0x02 -> drop
2215 	 *   7  redir  0x44 -> redir, count as stat2
2216 	 *   * unspec  0x11 -> pass,  count as stat0
2217 	 *
2218 	 * [1] We can't support OK and RECLASSIFY because we can't tell TC
2219 	 *     the exact decision made.  We are forced to support UNSPEC
2220 	 *     to handle aborts so that's the only one we handle for passing
2221 	 *     packets up the stack.
2222 	 */
2223 	/* Target for aborts */
2224 	nfp_prog->tgt_abort = nfp_prog_current_offset(nfp_prog);
2225 
2226 	emit_br_relo(nfp_prog, BR_UNC, BR_OFF_RELO, 2, RELO_BR_NEXT_PKT);
2227 
2228 	wrp_mov(nfp_prog, reg_a(0), NFP_BPF_ABI_FLAGS);
2229 	emit_ld_field(nfp_prog, reg_a(0), 0xc, reg_imm(0x11), SHF_SC_L_SHF, 16);
2230 
2231 	/* Target for normal exits */
2232 	nfp_prog->tgt_out = nfp_prog_current_offset(nfp_prog);
2233 
2234 	/* if R0 > 7 jump to abort */
2235 	emit_alu(nfp_prog, reg_none(), reg_imm(7), ALU_OP_SUB, reg_b(0));
2236 	emit_br(nfp_prog, BR_BLO, nfp_prog->tgt_abort, 0);
2237 	wrp_mov(nfp_prog, reg_a(0), NFP_BPF_ABI_FLAGS);
2238 
2239 	wrp_immed(nfp_prog, reg_b(2), 0x41221211);
2240 	wrp_immed(nfp_prog, reg_b(3), 0x41001211);
2241 
2242 	emit_shf(nfp_prog, reg_a(1),
2243 		 reg_none(), SHF_OP_NONE, reg_b(0), SHF_SC_L_SHF, 2);
2244 
2245 	emit_alu(nfp_prog, reg_none(), reg_a(1), ALU_OP_OR, reg_imm(0));
2246 	emit_shf(nfp_prog, reg_a(2),
2247 		 reg_imm(0xf), SHF_OP_AND, reg_b(2), SHF_SC_R_SHF, 0);
2248 
2249 	emit_alu(nfp_prog, reg_none(), reg_a(1), ALU_OP_OR, reg_imm(0));
2250 	emit_shf(nfp_prog, reg_b(2),
2251 		 reg_imm(0xf), SHF_OP_AND, reg_b(3), SHF_SC_R_SHF, 0);
2252 
2253 	emit_br_relo(nfp_prog, BR_UNC, BR_OFF_RELO, 2, RELO_BR_NEXT_PKT);
2254 
2255 	emit_shf(nfp_prog, reg_b(2),
2256 		 reg_a(2), SHF_OP_OR, reg_b(2), SHF_SC_L_SHF, 4);
2257 	emit_ld_field(nfp_prog, reg_a(0), 0xc, reg_b(2), SHF_SC_L_SHF, 16);
2258 }
2259 
2260 static void nfp_outro_xdp(struct nfp_prog *nfp_prog)
2261 {
2262 	/* XDP return codes:
2263 	 *   0 aborted  0x82 -> drop,  count as stat3
2264 	 *   1    drop  0x22 -> drop,  count as stat1
2265 	 *   2    pass  0x11 -> pass,  count as stat0
2266 	 *   3      tx  0x44 -> redir, count as stat2
2267 	 *   * unknown  0x82 -> drop,  count as stat3
2268 	 */
2269 	/* Target for aborts */
2270 	nfp_prog->tgt_abort = nfp_prog_current_offset(nfp_prog);
2271 
2272 	emit_br_relo(nfp_prog, BR_UNC, BR_OFF_RELO, 2, RELO_BR_NEXT_PKT);
2273 
2274 	wrp_mov(nfp_prog, reg_a(0), NFP_BPF_ABI_FLAGS);
2275 	emit_ld_field(nfp_prog, reg_a(0), 0xc, reg_imm(0x82), SHF_SC_L_SHF, 16);
2276 
2277 	/* Target for normal exits */
2278 	nfp_prog->tgt_out = nfp_prog_current_offset(nfp_prog);
2279 
2280 	/* if R0 > 3 jump to abort */
2281 	emit_alu(nfp_prog, reg_none(), reg_imm(3), ALU_OP_SUB, reg_b(0));
2282 	emit_br(nfp_prog, BR_BLO, nfp_prog->tgt_abort, 0);
2283 
2284 	wrp_immed(nfp_prog, reg_b(2), 0x44112282);
2285 
2286 	emit_shf(nfp_prog, reg_a(1),
2287 		 reg_none(), SHF_OP_NONE, reg_b(0), SHF_SC_L_SHF, 3);
2288 
2289 	emit_alu(nfp_prog, reg_none(), reg_a(1), ALU_OP_OR, reg_imm(0));
2290 	emit_shf(nfp_prog, reg_b(2),
2291 		 reg_imm(0xff), SHF_OP_AND, reg_b(2), SHF_SC_R_SHF, 0);
2292 
2293 	emit_br_relo(nfp_prog, BR_UNC, BR_OFF_RELO, 2, RELO_BR_NEXT_PKT);
2294 
2295 	wrp_mov(nfp_prog, reg_a(0), NFP_BPF_ABI_FLAGS);
2296 	emit_ld_field(nfp_prog, reg_a(0), 0xc, reg_b(2), SHF_SC_L_SHF, 16);
2297 }
2298 
2299 static void nfp_outro(struct nfp_prog *nfp_prog)
2300 {
2301 	switch (nfp_prog->type) {
2302 	case BPF_PROG_TYPE_SCHED_CLS:
2303 		nfp_outro_tc_da(nfp_prog);
2304 		break;
2305 	case BPF_PROG_TYPE_XDP:
2306 		nfp_outro_xdp(nfp_prog);
2307 		break;
2308 	default:
2309 		WARN_ON(1);
2310 	}
2311 }
2312 
2313 static int nfp_translate(struct nfp_prog *nfp_prog)
2314 {
2315 	struct nfp_insn_meta *meta;
2316 	int err;
2317 
2318 	nfp_intro(nfp_prog);
2319 	if (nfp_prog->error)
2320 		return nfp_prog->error;
2321 
2322 	list_for_each_entry(meta, &nfp_prog->insns, l) {
2323 		instr_cb_t cb = instr_cb[meta->insn.code];
2324 
2325 		meta->off = nfp_prog_current_offset(nfp_prog);
2326 
2327 		if (meta->skip) {
2328 			nfp_prog->n_translated++;
2329 			continue;
2330 		}
2331 
2332 		if (nfp_meta_has_prev(nfp_prog, meta) &&
2333 		    nfp_meta_prev(meta)->double_cb)
2334 			cb = nfp_meta_prev(meta)->double_cb;
2335 		if (!cb)
2336 			return -ENOENT;
2337 		err = cb(nfp_prog, meta);
2338 		if (err)
2339 			return err;
2340 
2341 		nfp_prog->n_translated++;
2342 	}
2343 
2344 	nfp_prog->last_bpf_off = nfp_prog_current_offset(nfp_prog) - 1;
2345 
2346 	nfp_outro(nfp_prog);
2347 	if (nfp_prog->error)
2348 		return nfp_prog->error;
2349 
2350 	wrp_nops(nfp_prog, NFP_USTORE_PREFETCH_WINDOW);
2351 	if (nfp_prog->error)
2352 		return nfp_prog->error;
2353 
2354 	return nfp_fixup_branches(nfp_prog);
2355 }
2356 
2357 /* --- Optimizations --- */
2358 static void nfp_bpf_opt_reg_init(struct nfp_prog *nfp_prog)
2359 {
2360 	struct nfp_insn_meta *meta;
2361 
2362 	list_for_each_entry(meta, &nfp_prog->insns, l) {
2363 		struct bpf_insn insn = meta->insn;
2364 
2365 		/* Programs converted from cBPF start with register xoring */
2366 		if (insn.code == (BPF_ALU64 | BPF_XOR | BPF_X) &&
2367 		    insn.src_reg == insn.dst_reg)
2368 			continue;
2369 
2370 		/* Programs start with R6 = R1 but we ignore the skb pointer */
2371 		if (insn.code == (BPF_ALU64 | BPF_MOV | BPF_X) &&
2372 		    insn.src_reg == 1 && insn.dst_reg == 6)
2373 			meta->skip = true;
2374 
2375 		/* Return as soon as something doesn't match */
2376 		if (!meta->skip)
2377 			return;
2378 	}
2379 }
2380 
2381 /* Remove masking after load since our load guarantees this is not needed */
2382 static void nfp_bpf_opt_ld_mask(struct nfp_prog *nfp_prog)
2383 {
2384 	struct nfp_insn_meta *meta1, *meta2;
2385 	const s32 exp_mask[] = {
2386 		[BPF_B] = 0x000000ffU,
2387 		[BPF_H] = 0x0000ffffU,
2388 		[BPF_W] = 0xffffffffU,
2389 	};
2390 
2391 	nfp_for_each_insn_walk2(nfp_prog, meta1, meta2) {
2392 		struct bpf_insn insn, next;
2393 
2394 		insn = meta1->insn;
2395 		next = meta2->insn;
2396 
2397 		if (BPF_CLASS(insn.code) != BPF_LD)
2398 			continue;
2399 		if (BPF_MODE(insn.code) != BPF_ABS &&
2400 		    BPF_MODE(insn.code) != BPF_IND)
2401 			continue;
2402 
2403 		if (next.code != (BPF_ALU64 | BPF_AND | BPF_K))
2404 			continue;
2405 
2406 		if (!exp_mask[BPF_SIZE(insn.code)])
2407 			continue;
2408 		if (exp_mask[BPF_SIZE(insn.code)] != next.imm)
2409 			continue;
2410 
2411 		if (next.src_reg || next.dst_reg)
2412 			continue;
2413 
2414 		if (meta2->flags & FLAG_INSN_IS_JUMP_DST)
2415 			continue;
2416 
2417 		meta2->skip = true;
2418 	}
2419 }
2420 
2421 static void nfp_bpf_opt_ld_shift(struct nfp_prog *nfp_prog)
2422 {
2423 	struct nfp_insn_meta *meta1, *meta2, *meta3;
2424 
2425 	nfp_for_each_insn_walk3(nfp_prog, meta1, meta2, meta3) {
2426 		struct bpf_insn insn, next1, next2;
2427 
2428 		insn = meta1->insn;
2429 		next1 = meta2->insn;
2430 		next2 = meta3->insn;
2431 
2432 		if (BPF_CLASS(insn.code) != BPF_LD)
2433 			continue;
2434 		if (BPF_MODE(insn.code) != BPF_ABS &&
2435 		    BPF_MODE(insn.code) != BPF_IND)
2436 			continue;
2437 		if (BPF_SIZE(insn.code) != BPF_W)
2438 			continue;
2439 
2440 		if (!(next1.code == (BPF_LSH | BPF_K | BPF_ALU64) &&
2441 		      next2.code == (BPF_RSH | BPF_K | BPF_ALU64)) &&
2442 		    !(next1.code == (BPF_RSH | BPF_K | BPF_ALU64) &&
2443 		      next2.code == (BPF_LSH | BPF_K | BPF_ALU64)))
2444 			continue;
2445 
2446 		if (next1.src_reg || next1.dst_reg ||
2447 		    next2.src_reg || next2.dst_reg)
2448 			continue;
2449 
2450 		if (next1.imm != 0x20 || next2.imm != 0x20)
2451 			continue;
2452 
2453 		if (meta2->flags & FLAG_INSN_IS_JUMP_DST ||
2454 		    meta3->flags & FLAG_INSN_IS_JUMP_DST)
2455 			continue;
2456 
2457 		meta2->skip = true;
2458 		meta3->skip = true;
2459 	}
2460 }
2461 
2462 /* load/store pair that forms memory copy sould look like the following:
2463  *
2464  *   ld_width R, [addr_src + offset_src]
2465  *   st_width [addr_dest + offset_dest], R
2466  *
2467  * The destination register of load and source register of store should
2468  * be the same, load and store should also perform at the same width.
2469  * If either of addr_src or addr_dest is stack pointer, we don't do the
2470  * CPP optimization as stack is modelled by registers on NFP.
2471  */
2472 static bool
2473 curr_pair_is_memcpy(struct nfp_insn_meta *ld_meta,
2474 		    struct nfp_insn_meta *st_meta)
2475 {
2476 	struct bpf_insn *ld = &ld_meta->insn;
2477 	struct bpf_insn *st = &st_meta->insn;
2478 
2479 	if (!is_mbpf_load(ld_meta) || !is_mbpf_store(st_meta))
2480 		return false;
2481 
2482 	if (ld_meta->ptr.type != PTR_TO_PACKET)
2483 		return false;
2484 
2485 	if (st_meta->ptr.type != PTR_TO_PACKET)
2486 		return false;
2487 
2488 	if (BPF_SIZE(ld->code) != BPF_SIZE(st->code))
2489 		return false;
2490 
2491 	if (ld->dst_reg != st->src_reg)
2492 		return false;
2493 
2494 	/* There is jump to the store insn in this pair. */
2495 	if (st_meta->flags & FLAG_INSN_IS_JUMP_DST)
2496 		return false;
2497 
2498 	return true;
2499 }
2500 
2501 /* Currently, we only support chaining load/store pairs if:
2502  *
2503  *  - Their address base registers are the same.
2504  *  - Their address offsets are in the same order.
2505  *  - They operate at the same memory width.
2506  *  - There is no jump into the middle of them.
2507  */
2508 static bool
2509 curr_pair_chain_with_previous(struct nfp_insn_meta *ld_meta,
2510 			      struct nfp_insn_meta *st_meta,
2511 			      struct bpf_insn *prev_ld,
2512 			      struct bpf_insn *prev_st)
2513 {
2514 	u8 prev_size, curr_size, prev_ld_base, prev_st_base, prev_ld_dst;
2515 	struct bpf_insn *ld = &ld_meta->insn;
2516 	struct bpf_insn *st = &st_meta->insn;
2517 	s16 prev_ld_off, prev_st_off;
2518 
2519 	/* This pair is the start pair. */
2520 	if (!prev_ld)
2521 		return true;
2522 
2523 	prev_size = BPF_LDST_BYTES(prev_ld);
2524 	curr_size = BPF_LDST_BYTES(ld);
2525 	prev_ld_base = prev_ld->src_reg;
2526 	prev_st_base = prev_st->dst_reg;
2527 	prev_ld_dst = prev_ld->dst_reg;
2528 	prev_ld_off = prev_ld->off;
2529 	prev_st_off = prev_st->off;
2530 
2531 	if (ld->dst_reg != prev_ld_dst)
2532 		return false;
2533 
2534 	if (ld->src_reg != prev_ld_base || st->dst_reg != prev_st_base)
2535 		return false;
2536 
2537 	if (curr_size != prev_size)
2538 		return false;
2539 
2540 	/* There is jump to the head of this pair. */
2541 	if (ld_meta->flags & FLAG_INSN_IS_JUMP_DST)
2542 		return false;
2543 
2544 	/* Both in ascending order. */
2545 	if (prev_ld_off + prev_size == ld->off &&
2546 	    prev_st_off + prev_size == st->off)
2547 		return true;
2548 
2549 	/* Both in descending order. */
2550 	if (ld->off + curr_size == prev_ld_off &&
2551 	    st->off + curr_size == prev_st_off)
2552 		return true;
2553 
2554 	return false;
2555 }
2556 
2557 /* Return TRUE if cross memory access happens. Cross memory access means
2558  * store area is overlapping with load area that a later load might load
2559  * the value from previous store, for this case we can't treat the sequence
2560  * as an memory copy.
2561  */
2562 static bool
2563 cross_mem_access(struct bpf_insn *ld, struct nfp_insn_meta *head_ld_meta,
2564 		 struct nfp_insn_meta *head_st_meta)
2565 {
2566 	s16 head_ld_off, head_st_off, ld_off;
2567 
2568 	/* Different pointer types does not overlap. */
2569 	if (head_ld_meta->ptr.type != head_st_meta->ptr.type)
2570 		return false;
2571 
2572 	/* load and store are both PTR_TO_PACKET, check ID info.  */
2573 	if (head_ld_meta->ptr.id != head_st_meta->ptr.id)
2574 		return true;
2575 
2576 	/* Canonicalize the offsets. Turn all of them against the original
2577 	 * base register.
2578 	 */
2579 	head_ld_off = head_ld_meta->insn.off + head_ld_meta->ptr.off;
2580 	head_st_off = head_st_meta->insn.off + head_st_meta->ptr.off;
2581 	ld_off = ld->off + head_ld_meta->ptr.off;
2582 
2583 	/* Ascending order cross. */
2584 	if (ld_off > head_ld_off &&
2585 	    head_ld_off < head_st_off && ld_off >= head_st_off)
2586 		return true;
2587 
2588 	/* Descending order cross. */
2589 	if (ld_off < head_ld_off &&
2590 	    head_ld_off > head_st_off && ld_off <= head_st_off)
2591 		return true;
2592 
2593 	return false;
2594 }
2595 
2596 /* This pass try to identify the following instructoin sequences.
2597  *
2598  *   load R, [regA + offA]
2599  *   store [regB + offB], R
2600  *   load R, [regA + offA + const_imm_A]
2601  *   store [regB + offB + const_imm_A], R
2602  *   load R, [regA + offA + 2 * const_imm_A]
2603  *   store [regB + offB + 2 * const_imm_A], R
2604  *   ...
2605  *
2606  * Above sequence is typically generated by compiler when lowering
2607  * memcpy. NFP prefer using CPP instructions to accelerate it.
2608  */
2609 static void nfp_bpf_opt_ldst_gather(struct nfp_prog *nfp_prog)
2610 {
2611 	struct nfp_insn_meta *head_ld_meta = NULL;
2612 	struct nfp_insn_meta *head_st_meta = NULL;
2613 	struct nfp_insn_meta *meta1, *meta2;
2614 	struct bpf_insn *prev_ld = NULL;
2615 	struct bpf_insn *prev_st = NULL;
2616 	u8 count = 0;
2617 
2618 	nfp_for_each_insn_walk2(nfp_prog, meta1, meta2) {
2619 		struct bpf_insn *ld = &meta1->insn;
2620 		struct bpf_insn *st = &meta2->insn;
2621 
2622 		/* Reset record status if any of the following if true:
2623 		 *   - The current insn pair is not load/store.
2624 		 *   - The load/store pair doesn't chain with previous one.
2625 		 *   - The chained load/store pair crossed with previous pair.
2626 		 *   - The chained load/store pair has a total size of memory
2627 		 *     copy beyond 128 bytes which is the maximum length a
2628 		 *     single NFP CPP command can transfer.
2629 		 */
2630 		if (!curr_pair_is_memcpy(meta1, meta2) ||
2631 		    !curr_pair_chain_with_previous(meta1, meta2, prev_ld,
2632 						   prev_st) ||
2633 		    (head_ld_meta && (cross_mem_access(ld, head_ld_meta,
2634 						       head_st_meta) ||
2635 				      head_ld_meta->ldst_gather_len >= 128))) {
2636 			if (!count)
2637 				continue;
2638 
2639 			if (count > 1) {
2640 				s16 prev_ld_off = prev_ld->off;
2641 				s16 prev_st_off = prev_st->off;
2642 				s16 head_ld_off = head_ld_meta->insn.off;
2643 
2644 				if (prev_ld_off < head_ld_off) {
2645 					head_ld_meta->insn.off = prev_ld_off;
2646 					head_st_meta->insn.off = prev_st_off;
2647 					head_ld_meta->ldst_gather_len =
2648 						-head_ld_meta->ldst_gather_len;
2649 				}
2650 
2651 				head_ld_meta->paired_st = &head_st_meta->insn;
2652 				head_st_meta->skip = true;
2653 			} else {
2654 				head_ld_meta->ldst_gather_len = 0;
2655 			}
2656 
2657 			/* If the chain is ended by an load/store pair then this
2658 			 * could serve as the new head of the the next chain.
2659 			 */
2660 			if (curr_pair_is_memcpy(meta1, meta2)) {
2661 				head_ld_meta = meta1;
2662 				head_st_meta = meta2;
2663 				head_ld_meta->ldst_gather_len =
2664 					BPF_LDST_BYTES(ld);
2665 				meta1 = nfp_meta_next(meta1);
2666 				meta2 = nfp_meta_next(meta2);
2667 				prev_ld = ld;
2668 				prev_st = st;
2669 				count = 1;
2670 			} else {
2671 				head_ld_meta = NULL;
2672 				head_st_meta = NULL;
2673 				prev_ld = NULL;
2674 				prev_st = NULL;
2675 				count = 0;
2676 			}
2677 
2678 			continue;
2679 		}
2680 
2681 		if (!head_ld_meta) {
2682 			head_ld_meta = meta1;
2683 			head_st_meta = meta2;
2684 		} else {
2685 			meta1->skip = true;
2686 			meta2->skip = true;
2687 		}
2688 
2689 		head_ld_meta->ldst_gather_len += BPF_LDST_BYTES(ld);
2690 		meta1 = nfp_meta_next(meta1);
2691 		meta2 = nfp_meta_next(meta2);
2692 		prev_ld = ld;
2693 		prev_st = st;
2694 		count++;
2695 	}
2696 }
2697 
2698 static int nfp_bpf_optimize(struct nfp_prog *nfp_prog)
2699 {
2700 	nfp_bpf_opt_reg_init(nfp_prog);
2701 
2702 	nfp_bpf_opt_ld_mask(nfp_prog);
2703 	nfp_bpf_opt_ld_shift(nfp_prog);
2704 	nfp_bpf_opt_ldst_gather(nfp_prog);
2705 
2706 	return 0;
2707 }
2708 
2709 static int nfp_bpf_ustore_calc(u64 *prog, unsigned int len)
2710 {
2711 	__le64 *ustore = (__force __le64 *)prog;
2712 	int i;
2713 
2714 	for (i = 0; i < len; i++) {
2715 		int err;
2716 
2717 		err = nfp_ustore_check_valid_no_ecc(prog[i]);
2718 		if (err)
2719 			return err;
2720 
2721 		ustore[i] = cpu_to_le64(nfp_ustore_calc_ecc_insn(prog[i]));
2722 	}
2723 
2724 	return 0;
2725 }
2726 
2727 static void nfp_bpf_prog_trim(struct nfp_prog *nfp_prog)
2728 {
2729 	void *prog;
2730 
2731 	prog = kvmalloc_array(nfp_prog->prog_len, sizeof(u64), GFP_KERNEL);
2732 	if (!prog)
2733 		return;
2734 
2735 	nfp_prog->__prog_alloc_len = nfp_prog->prog_len * sizeof(u64);
2736 	memcpy(prog, nfp_prog->prog, nfp_prog->__prog_alloc_len);
2737 	kvfree(nfp_prog->prog);
2738 	nfp_prog->prog = prog;
2739 }
2740 
2741 int nfp_bpf_jit(struct nfp_prog *nfp_prog)
2742 {
2743 	int ret;
2744 
2745 	ret = nfp_bpf_optimize(nfp_prog);
2746 	if (ret)
2747 		return ret;
2748 
2749 	ret = nfp_translate(nfp_prog);
2750 	if (ret) {
2751 		pr_err("Translation failed with error %d (translated: %u)\n",
2752 		       ret, nfp_prog->n_translated);
2753 		return -EINVAL;
2754 	}
2755 
2756 	nfp_bpf_prog_trim(nfp_prog);
2757 
2758 	return ret;
2759 }
2760 
2761 void nfp_bpf_jit_prepare(struct nfp_prog *nfp_prog, unsigned int cnt)
2762 {
2763 	struct nfp_insn_meta *meta;
2764 
2765 	/* Another pass to record jump information. */
2766 	list_for_each_entry(meta, &nfp_prog->insns, l) {
2767 		u64 code = meta->insn.code;
2768 
2769 		if (BPF_CLASS(code) == BPF_JMP && BPF_OP(code) != BPF_EXIT &&
2770 		    BPF_OP(code) != BPF_CALL) {
2771 			struct nfp_insn_meta *dst_meta;
2772 			unsigned short dst_indx;
2773 
2774 			dst_indx = meta->n + 1 + meta->insn.off;
2775 			dst_meta = nfp_bpf_goto_meta(nfp_prog, meta, dst_indx,
2776 						     cnt);
2777 
2778 			meta->jmp_dst = dst_meta;
2779 			dst_meta->flags |= FLAG_INSN_IS_JUMP_DST;
2780 		}
2781 	}
2782 }
2783 
2784 void *nfp_bpf_relo_for_vnic(struct nfp_prog *nfp_prog, struct nfp_bpf_vnic *bv)
2785 {
2786 	unsigned int i;
2787 	u64 *prog;
2788 	int err;
2789 
2790 	prog = kmemdup(nfp_prog->prog, nfp_prog->prog_len * sizeof(u64),
2791 		       GFP_KERNEL);
2792 	if (!prog)
2793 		return ERR_PTR(-ENOMEM);
2794 
2795 	for (i = 0; i < nfp_prog->prog_len; i++) {
2796 		enum nfp_relo_type special;
2797 
2798 		special = FIELD_GET(OP_RELO_TYPE, prog[i]);
2799 		switch (special) {
2800 		case RELO_NONE:
2801 			continue;
2802 		case RELO_BR_REL:
2803 			br_add_offset(&prog[i], bv->start_off);
2804 			break;
2805 		case RELO_BR_GO_OUT:
2806 			br_set_offset(&prog[i],
2807 				      nfp_prog->tgt_out + bv->start_off);
2808 			break;
2809 		case RELO_BR_GO_ABORT:
2810 			br_set_offset(&prog[i],
2811 				      nfp_prog->tgt_abort + bv->start_off);
2812 			break;
2813 		case RELO_BR_NEXT_PKT:
2814 			br_set_offset(&prog[i], bv->tgt_done);
2815 			break;
2816 		}
2817 
2818 		prog[i] &= ~OP_RELO_TYPE;
2819 	}
2820 
2821 	err = nfp_bpf_ustore_calc(prog, nfp_prog->prog_len);
2822 	if (err)
2823 		goto err_free_prog;
2824 
2825 	return prog;
2826 
2827 err_free_prog:
2828 	kfree(prog);
2829 	return ERR_PTR(err);
2830 }
2831