1 /*
2  * Copyright (C) 2016-2017 Netronome Systems, Inc.
3  *
4  * This software is dual licensed under the GNU General License Version 2,
5  * June 1991 as shown in the file COPYING in the top-level directory of this
6  * source tree or the BSD 2-Clause License provided below.  You have the
7  * option to license this software under the complete terms of either license.
8  *
9  * The BSD 2-Clause License:
10  *
11  *     Redistribution and use in source and binary forms, with or
12  *     without modification, are permitted provided that the following
13  *     conditions are met:
14  *
15  *      1. Redistributions of source code must retain the above
16  *         copyright notice, this list of conditions and the following
17  *         disclaimer.
18  *
19  *      2. Redistributions in binary form must reproduce the above
20  *         copyright notice, this list of conditions and the following
21  *         disclaimer in the documentation and/or other materials
22  *         provided with the distribution.
23  *
24  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31  * SOFTWARE.
32  */
33 
34 #define pr_fmt(fmt)	"NFP net bpf: " fmt
35 
36 #include <linux/bug.h>
37 #include <linux/kernel.h>
38 #include <linux/bpf.h>
39 #include <linux/filter.h>
40 #include <linux/pkt_cls.h>
41 #include <linux/unistd.h>
42 
43 #include "main.h"
44 #include "../nfp_asm.h"
45 
46 /* --- NFP prog --- */
47 /* Foreach "multiple" entries macros provide pos and next<n> pointers.
48  * It's safe to modify the next pointers (but not pos).
49  */
50 #define nfp_for_each_insn_walk2(nfp_prog, pos, next)			\
51 	for (pos = list_first_entry(&(nfp_prog)->insns, typeof(*pos), l), \
52 	     next = list_next_entry(pos, l);			\
53 	     &(nfp_prog)->insns != &pos->l &&			\
54 	     &(nfp_prog)->insns != &next->l;			\
55 	     pos = nfp_meta_next(pos),				\
56 	     next = nfp_meta_next(pos))
57 
58 #define nfp_for_each_insn_walk3(nfp_prog, pos, next, next2)		\
59 	for (pos = list_first_entry(&(nfp_prog)->insns, typeof(*pos), l), \
60 	     next = list_next_entry(pos, l),			\
61 	     next2 = list_next_entry(next, l);			\
62 	     &(nfp_prog)->insns != &pos->l &&			\
63 	     &(nfp_prog)->insns != &next->l &&			\
64 	     &(nfp_prog)->insns != &next2->l;			\
65 	     pos = nfp_meta_next(pos),				\
66 	     next = nfp_meta_next(pos),				\
67 	     next2 = nfp_meta_next(next))
68 
69 static bool
70 nfp_meta_has_prev(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
71 {
72 	return meta->l.prev != &nfp_prog->insns;
73 }
74 
75 static void nfp_prog_push(struct nfp_prog *nfp_prog, u64 insn)
76 {
77 	if (nfp_prog->__prog_alloc_len == nfp_prog->prog_len) {
78 		nfp_prog->error = -ENOSPC;
79 		return;
80 	}
81 
82 	nfp_prog->prog[nfp_prog->prog_len] = insn;
83 	nfp_prog->prog_len++;
84 }
85 
86 static unsigned int nfp_prog_current_offset(struct nfp_prog *nfp_prog)
87 {
88 	return nfp_prog->prog_len;
89 }
90 
91 static bool
92 nfp_prog_confirm_current_offset(struct nfp_prog *nfp_prog, unsigned int off)
93 {
94 	/* If there is a recorded error we may have dropped instructions;
95 	 * that doesn't have to be due to translator bug, and the translation
96 	 * will fail anyway, so just return OK.
97 	 */
98 	if (nfp_prog->error)
99 		return true;
100 	return !WARN_ON_ONCE(nfp_prog_current_offset(nfp_prog) != off);
101 }
102 
103 /* --- Emitters --- */
104 static void
105 __emit_cmd(struct nfp_prog *nfp_prog, enum cmd_tgt_map op,
106 	   u8 mode, u8 xfer, u8 areg, u8 breg, u8 size, bool sync, bool indir)
107 {
108 	enum cmd_ctx_swap ctx;
109 	u64 insn;
110 
111 	if (sync)
112 		ctx = CMD_CTX_SWAP;
113 	else
114 		ctx = CMD_CTX_NO_SWAP;
115 
116 	insn =	FIELD_PREP(OP_CMD_A_SRC, areg) |
117 		FIELD_PREP(OP_CMD_CTX, ctx) |
118 		FIELD_PREP(OP_CMD_B_SRC, breg) |
119 		FIELD_PREP(OP_CMD_TOKEN, cmd_tgt_act[op].token) |
120 		FIELD_PREP(OP_CMD_XFER, xfer) |
121 		FIELD_PREP(OP_CMD_CNT, size) |
122 		FIELD_PREP(OP_CMD_SIG, sync) |
123 		FIELD_PREP(OP_CMD_TGT_CMD, cmd_tgt_act[op].tgt_cmd) |
124 		FIELD_PREP(OP_CMD_INDIR, indir) |
125 		FIELD_PREP(OP_CMD_MODE, mode);
126 
127 	nfp_prog_push(nfp_prog, insn);
128 }
129 
130 static void
131 emit_cmd_any(struct nfp_prog *nfp_prog, enum cmd_tgt_map op, u8 mode, u8 xfer,
132 	     swreg lreg, swreg rreg, u8 size, bool sync, bool indir)
133 {
134 	struct nfp_insn_re_regs reg;
135 	int err;
136 
137 	err = swreg_to_restricted(reg_none(), lreg, rreg, &reg, false);
138 	if (err) {
139 		nfp_prog->error = err;
140 		return;
141 	}
142 	if (reg.swap) {
143 		pr_err("cmd can't swap arguments\n");
144 		nfp_prog->error = -EFAULT;
145 		return;
146 	}
147 	if (reg.dst_lmextn || reg.src_lmextn) {
148 		pr_err("cmd can't use LMextn\n");
149 		nfp_prog->error = -EFAULT;
150 		return;
151 	}
152 
153 	__emit_cmd(nfp_prog, op, mode, xfer, reg.areg, reg.breg, size, sync,
154 		   indir);
155 }
156 
157 static void
158 emit_cmd(struct nfp_prog *nfp_prog, enum cmd_tgt_map op, u8 mode, u8 xfer,
159 	 swreg lreg, swreg rreg, u8 size, bool sync)
160 {
161 	emit_cmd_any(nfp_prog, op, mode, xfer, lreg, rreg, size, sync, false);
162 }
163 
164 static void
165 emit_cmd_indir(struct nfp_prog *nfp_prog, enum cmd_tgt_map op, u8 mode, u8 xfer,
166 	       swreg lreg, swreg rreg, u8 size, bool sync)
167 {
168 	emit_cmd_any(nfp_prog, op, mode, xfer, lreg, rreg, size, sync, true);
169 }
170 
171 static void
172 __emit_br(struct nfp_prog *nfp_prog, enum br_mask mask, enum br_ev_pip ev_pip,
173 	  enum br_ctx_signal_state css, u16 addr, u8 defer)
174 {
175 	u16 addr_lo, addr_hi;
176 	u64 insn;
177 
178 	addr_lo = addr & (OP_BR_ADDR_LO >> __bf_shf(OP_BR_ADDR_LO));
179 	addr_hi = addr != addr_lo;
180 
181 	insn = OP_BR_BASE |
182 		FIELD_PREP(OP_BR_MASK, mask) |
183 		FIELD_PREP(OP_BR_EV_PIP, ev_pip) |
184 		FIELD_PREP(OP_BR_CSS, css) |
185 		FIELD_PREP(OP_BR_DEFBR, defer) |
186 		FIELD_PREP(OP_BR_ADDR_LO, addr_lo) |
187 		FIELD_PREP(OP_BR_ADDR_HI, addr_hi);
188 
189 	nfp_prog_push(nfp_prog, insn);
190 }
191 
192 static void
193 emit_br_relo(struct nfp_prog *nfp_prog, enum br_mask mask, u16 addr, u8 defer,
194 	     enum nfp_relo_type relo)
195 {
196 	if (mask == BR_UNC && defer > 2) {
197 		pr_err("BUG: branch defer out of bounds %d\n", defer);
198 		nfp_prog->error = -EFAULT;
199 		return;
200 	}
201 
202 	__emit_br(nfp_prog, mask,
203 		  mask != BR_UNC ? BR_EV_PIP_COND : BR_EV_PIP_UNCOND,
204 		  BR_CSS_NONE, addr, defer);
205 
206 	nfp_prog->prog[nfp_prog->prog_len - 1] |=
207 		FIELD_PREP(OP_RELO_TYPE, relo);
208 }
209 
210 static void
211 emit_br(struct nfp_prog *nfp_prog, enum br_mask mask, u16 addr, u8 defer)
212 {
213 	emit_br_relo(nfp_prog, mask, addr, defer, RELO_BR_REL);
214 }
215 
216 static void
217 __emit_immed(struct nfp_prog *nfp_prog, u16 areg, u16 breg, u16 imm_hi,
218 	     enum immed_width width, bool invert,
219 	     enum immed_shift shift, bool wr_both,
220 	     bool dst_lmextn, bool src_lmextn)
221 {
222 	u64 insn;
223 
224 	insn = OP_IMMED_BASE |
225 		FIELD_PREP(OP_IMMED_A_SRC, areg) |
226 		FIELD_PREP(OP_IMMED_B_SRC, breg) |
227 		FIELD_PREP(OP_IMMED_IMM, imm_hi) |
228 		FIELD_PREP(OP_IMMED_WIDTH, width) |
229 		FIELD_PREP(OP_IMMED_INV, invert) |
230 		FIELD_PREP(OP_IMMED_SHIFT, shift) |
231 		FIELD_PREP(OP_IMMED_WR_AB, wr_both) |
232 		FIELD_PREP(OP_IMMED_SRC_LMEXTN, src_lmextn) |
233 		FIELD_PREP(OP_IMMED_DST_LMEXTN, dst_lmextn);
234 
235 	nfp_prog_push(nfp_prog, insn);
236 }
237 
238 static void
239 emit_immed(struct nfp_prog *nfp_prog, swreg dst, u16 imm,
240 	   enum immed_width width, bool invert, enum immed_shift shift)
241 {
242 	struct nfp_insn_ur_regs reg;
243 	int err;
244 
245 	if (swreg_type(dst) == NN_REG_IMM) {
246 		nfp_prog->error = -EFAULT;
247 		return;
248 	}
249 
250 	err = swreg_to_unrestricted(dst, dst, reg_imm(imm & 0xff), &reg);
251 	if (err) {
252 		nfp_prog->error = err;
253 		return;
254 	}
255 
256 	/* Use reg.dst when destination is No-Dest. */
257 	__emit_immed(nfp_prog,
258 		     swreg_type(dst) == NN_REG_NONE ? reg.dst : reg.areg,
259 		     reg.breg, imm >> 8, width, invert, shift,
260 		     reg.wr_both, reg.dst_lmextn, reg.src_lmextn);
261 }
262 
263 static void
264 __emit_shf(struct nfp_prog *nfp_prog, u16 dst, enum alu_dst_ab dst_ab,
265 	   enum shf_sc sc, u8 shift,
266 	   u16 areg, enum shf_op op, u16 breg, bool i8, bool sw, bool wr_both,
267 	   bool dst_lmextn, bool src_lmextn)
268 {
269 	u64 insn;
270 
271 	if (!FIELD_FIT(OP_SHF_SHIFT, shift)) {
272 		nfp_prog->error = -EFAULT;
273 		return;
274 	}
275 
276 	if (sc == SHF_SC_L_SHF)
277 		shift = 32 - shift;
278 
279 	insn = OP_SHF_BASE |
280 		FIELD_PREP(OP_SHF_A_SRC, areg) |
281 		FIELD_PREP(OP_SHF_SC, sc) |
282 		FIELD_PREP(OP_SHF_B_SRC, breg) |
283 		FIELD_PREP(OP_SHF_I8, i8) |
284 		FIELD_PREP(OP_SHF_SW, sw) |
285 		FIELD_PREP(OP_SHF_DST, dst) |
286 		FIELD_PREP(OP_SHF_SHIFT, shift) |
287 		FIELD_PREP(OP_SHF_OP, op) |
288 		FIELD_PREP(OP_SHF_DST_AB, dst_ab) |
289 		FIELD_PREP(OP_SHF_WR_AB, wr_both) |
290 		FIELD_PREP(OP_SHF_SRC_LMEXTN, src_lmextn) |
291 		FIELD_PREP(OP_SHF_DST_LMEXTN, dst_lmextn);
292 
293 	nfp_prog_push(nfp_prog, insn);
294 }
295 
296 static void
297 emit_shf(struct nfp_prog *nfp_prog, swreg dst,
298 	 swreg lreg, enum shf_op op, swreg rreg, enum shf_sc sc, u8 shift)
299 {
300 	struct nfp_insn_re_regs reg;
301 	int err;
302 
303 	err = swreg_to_restricted(dst, lreg, rreg, &reg, true);
304 	if (err) {
305 		nfp_prog->error = err;
306 		return;
307 	}
308 
309 	__emit_shf(nfp_prog, reg.dst, reg.dst_ab, sc, shift,
310 		   reg.areg, op, reg.breg, reg.i8, reg.swap, reg.wr_both,
311 		   reg.dst_lmextn, reg.src_lmextn);
312 }
313 
314 static void
315 __emit_alu(struct nfp_prog *nfp_prog, u16 dst, enum alu_dst_ab dst_ab,
316 	   u16 areg, enum alu_op op, u16 breg, bool swap, bool wr_both,
317 	   bool dst_lmextn, bool src_lmextn)
318 {
319 	u64 insn;
320 
321 	insn = OP_ALU_BASE |
322 		FIELD_PREP(OP_ALU_A_SRC, areg) |
323 		FIELD_PREP(OP_ALU_B_SRC, breg) |
324 		FIELD_PREP(OP_ALU_DST, dst) |
325 		FIELD_PREP(OP_ALU_SW, swap) |
326 		FIELD_PREP(OP_ALU_OP, op) |
327 		FIELD_PREP(OP_ALU_DST_AB, dst_ab) |
328 		FIELD_PREP(OP_ALU_WR_AB, wr_both) |
329 		FIELD_PREP(OP_ALU_SRC_LMEXTN, src_lmextn) |
330 		FIELD_PREP(OP_ALU_DST_LMEXTN, dst_lmextn);
331 
332 	nfp_prog_push(nfp_prog, insn);
333 }
334 
335 static void
336 emit_alu(struct nfp_prog *nfp_prog, swreg dst,
337 	 swreg lreg, enum alu_op op, swreg rreg)
338 {
339 	struct nfp_insn_ur_regs reg;
340 	int err;
341 
342 	err = swreg_to_unrestricted(dst, lreg, rreg, &reg);
343 	if (err) {
344 		nfp_prog->error = err;
345 		return;
346 	}
347 
348 	__emit_alu(nfp_prog, reg.dst, reg.dst_ab,
349 		   reg.areg, op, reg.breg, reg.swap, reg.wr_both,
350 		   reg.dst_lmextn, reg.src_lmextn);
351 }
352 
353 static void
354 __emit_ld_field(struct nfp_prog *nfp_prog, enum shf_sc sc,
355 		u8 areg, u8 bmask, u8 breg, u8 shift, bool imm8,
356 		bool zero, bool swap, bool wr_both,
357 		bool dst_lmextn, bool src_lmextn)
358 {
359 	u64 insn;
360 
361 	insn = OP_LDF_BASE |
362 		FIELD_PREP(OP_LDF_A_SRC, areg) |
363 		FIELD_PREP(OP_LDF_SC, sc) |
364 		FIELD_PREP(OP_LDF_B_SRC, breg) |
365 		FIELD_PREP(OP_LDF_I8, imm8) |
366 		FIELD_PREP(OP_LDF_SW, swap) |
367 		FIELD_PREP(OP_LDF_ZF, zero) |
368 		FIELD_PREP(OP_LDF_BMASK, bmask) |
369 		FIELD_PREP(OP_LDF_SHF, shift) |
370 		FIELD_PREP(OP_LDF_WR_AB, wr_both) |
371 		FIELD_PREP(OP_LDF_SRC_LMEXTN, src_lmextn) |
372 		FIELD_PREP(OP_LDF_DST_LMEXTN, dst_lmextn);
373 
374 	nfp_prog_push(nfp_prog, insn);
375 }
376 
377 static void
378 emit_ld_field_any(struct nfp_prog *nfp_prog, swreg dst, u8 bmask, swreg src,
379 		  enum shf_sc sc, u8 shift, bool zero)
380 {
381 	struct nfp_insn_re_regs reg;
382 	int err;
383 
384 	/* Note: ld_field is special as it uses one of the src regs as dst */
385 	err = swreg_to_restricted(dst, dst, src, &reg, true);
386 	if (err) {
387 		nfp_prog->error = err;
388 		return;
389 	}
390 
391 	__emit_ld_field(nfp_prog, sc, reg.areg, bmask, reg.breg, shift,
392 			reg.i8, zero, reg.swap, reg.wr_both,
393 			reg.dst_lmextn, reg.src_lmextn);
394 }
395 
396 static void
397 emit_ld_field(struct nfp_prog *nfp_prog, swreg dst, u8 bmask, swreg src,
398 	      enum shf_sc sc, u8 shift)
399 {
400 	emit_ld_field_any(nfp_prog, dst, bmask, src, sc, shift, false);
401 }
402 
403 static void
404 __emit_lcsr(struct nfp_prog *nfp_prog, u16 areg, u16 breg, bool wr, u16 addr,
405 	    bool dst_lmextn, bool src_lmextn)
406 {
407 	u64 insn;
408 
409 	insn = OP_LCSR_BASE |
410 		FIELD_PREP(OP_LCSR_A_SRC, areg) |
411 		FIELD_PREP(OP_LCSR_B_SRC, breg) |
412 		FIELD_PREP(OP_LCSR_WRITE, wr) |
413 		FIELD_PREP(OP_LCSR_ADDR, addr) |
414 		FIELD_PREP(OP_LCSR_SRC_LMEXTN, src_lmextn) |
415 		FIELD_PREP(OP_LCSR_DST_LMEXTN, dst_lmextn);
416 
417 	nfp_prog_push(nfp_prog, insn);
418 }
419 
420 static void emit_csr_wr(struct nfp_prog *nfp_prog, swreg src, u16 addr)
421 {
422 	struct nfp_insn_ur_regs reg;
423 	int err;
424 
425 	/* This instruction takes immeds instead of reg_none() for the ignored
426 	 * operand, but we can't encode 2 immeds in one instr with our normal
427 	 * swreg infra so if param is an immed, we encode as reg_none() and
428 	 * copy the immed to both operands.
429 	 */
430 	if (swreg_type(src) == NN_REG_IMM) {
431 		err = swreg_to_unrestricted(reg_none(), src, reg_none(), &reg);
432 		reg.breg = reg.areg;
433 	} else {
434 		err = swreg_to_unrestricted(reg_none(), src, reg_imm(0), &reg);
435 	}
436 	if (err) {
437 		nfp_prog->error = err;
438 		return;
439 	}
440 
441 	__emit_lcsr(nfp_prog, reg.areg, reg.breg, true, addr / 4,
442 		    false, reg.src_lmextn);
443 }
444 
445 static void emit_nop(struct nfp_prog *nfp_prog)
446 {
447 	__emit_immed(nfp_prog, UR_REG_IMM, UR_REG_IMM, 0, 0, 0, 0, 0, 0, 0);
448 }
449 
450 /* --- Wrappers --- */
451 static bool pack_immed(u32 imm, u16 *val, enum immed_shift *shift)
452 {
453 	if (!(imm & 0xffff0000)) {
454 		*val = imm;
455 		*shift = IMMED_SHIFT_0B;
456 	} else if (!(imm & 0xff0000ff)) {
457 		*val = imm >> 8;
458 		*shift = IMMED_SHIFT_1B;
459 	} else if (!(imm & 0x0000ffff)) {
460 		*val = imm >> 16;
461 		*shift = IMMED_SHIFT_2B;
462 	} else {
463 		return false;
464 	}
465 
466 	return true;
467 }
468 
469 static void wrp_immed(struct nfp_prog *nfp_prog, swreg dst, u32 imm)
470 {
471 	enum immed_shift shift;
472 	u16 val;
473 
474 	if (pack_immed(imm, &val, &shift)) {
475 		emit_immed(nfp_prog, dst, val, IMMED_WIDTH_ALL, false, shift);
476 	} else if (pack_immed(~imm, &val, &shift)) {
477 		emit_immed(nfp_prog, dst, val, IMMED_WIDTH_ALL, true, shift);
478 	} else {
479 		emit_immed(nfp_prog, dst, imm & 0xffff, IMMED_WIDTH_ALL,
480 			   false, IMMED_SHIFT_0B);
481 		emit_immed(nfp_prog, dst, imm >> 16, IMMED_WIDTH_WORD,
482 			   false, IMMED_SHIFT_2B);
483 	}
484 }
485 
486 static void
487 wrp_immed_relo(struct nfp_prog *nfp_prog, swreg dst, u32 imm,
488 	       enum nfp_relo_type relo)
489 {
490 	if (imm > 0xffff) {
491 		pr_err("relocation of a large immediate!\n");
492 		nfp_prog->error = -EFAULT;
493 		return;
494 	}
495 	emit_immed(nfp_prog, dst, imm, IMMED_WIDTH_ALL, false, IMMED_SHIFT_0B);
496 
497 	nfp_prog->prog[nfp_prog->prog_len - 1] |=
498 		FIELD_PREP(OP_RELO_TYPE, relo);
499 }
500 
501 /* ur_load_imm_any() - encode immediate or use tmp register (unrestricted)
502  * If the @imm is small enough encode it directly in operand and return
503  * otherwise load @imm to a spare register and return its encoding.
504  */
505 static swreg ur_load_imm_any(struct nfp_prog *nfp_prog, u32 imm, swreg tmp_reg)
506 {
507 	if (FIELD_FIT(UR_REG_IMM_MAX, imm))
508 		return reg_imm(imm);
509 
510 	wrp_immed(nfp_prog, tmp_reg, imm);
511 	return tmp_reg;
512 }
513 
514 /* re_load_imm_any() - encode immediate or use tmp register (restricted)
515  * If the @imm is small enough encode it directly in operand and return
516  * otherwise load @imm to a spare register and return its encoding.
517  */
518 static swreg re_load_imm_any(struct nfp_prog *nfp_prog, u32 imm, swreg tmp_reg)
519 {
520 	if (FIELD_FIT(RE_REG_IMM_MAX, imm))
521 		return reg_imm(imm);
522 
523 	wrp_immed(nfp_prog, tmp_reg, imm);
524 	return tmp_reg;
525 }
526 
527 static void wrp_nops(struct nfp_prog *nfp_prog, unsigned int count)
528 {
529 	while (count--)
530 		emit_nop(nfp_prog);
531 }
532 
533 static void wrp_mov(struct nfp_prog *nfp_prog, swreg dst, swreg src)
534 {
535 	emit_alu(nfp_prog, dst, reg_none(), ALU_OP_NONE, src);
536 }
537 
538 static void wrp_reg_mov(struct nfp_prog *nfp_prog, u16 dst, u16 src)
539 {
540 	wrp_mov(nfp_prog, reg_both(dst), reg_b(src));
541 }
542 
543 /* wrp_reg_subpart() - load @field_len bytes from @offset of @src, write the
544  * result to @dst from low end.
545  */
546 static void
547 wrp_reg_subpart(struct nfp_prog *nfp_prog, swreg dst, swreg src, u8 field_len,
548 		u8 offset)
549 {
550 	enum shf_sc sc = offset ? SHF_SC_R_SHF : SHF_SC_NONE;
551 	u8 mask = (1 << field_len) - 1;
552 
553 	emit_ld_field_any(nfp_prog, dst, mask, src, sc, offset * 8, true);
554 }
555 
556 /* wrp_reg_or_subpart() - load @field_len bytes from low end of @src, or the
557  * result to @dst from offset, there is no change on the other bits of @dst.
558  */
559 static void
560 wrp_reg_or_subpart(struct nfp_prog *nfp_prog, swreg dst, swreg src,
561 		   u8 field_len, u8 offset)
562 {
563 	enum shf_sc sc = offset ? SHF_SC_L_SHF : SHF_SC_NONE;
564 	u8 mask = ((1 << field_len) - 1) << offset;
565 
566 	emit_ld_field(nfp_prog, dst, mask, src, sc, 32 - offset * 8);
567 }
568 
569 static void
570 addr40_offset(struct nfp_prog *nfp_prog, u8 src_gpr, swreg offset,
571 	      swreg *rega, swreg *regb)
572 {
573 	if (offset == reg_imm(0)) {
574 		*rega = reg_a(src_gpr);
575 		*regb = reg_b(src_gpr + 1);
576 		return;
577 	}
578 
579 	emit_alu(nfp_prog, imm_a(nfp_prog), reg_a(src_gpr), ALU_OP_ADD, offset);
580 	emit_alu(nfp_prog, imm_b(nfp_prog), reg_b(src_gpr + 1), ALU_OP_ADD_C,
581 		 reg_imm(0));
582 	*rega = imm_a(nfp_prog);
583 	*regb = imm_b(nfp_prog);
584 }
585 
586 /* NFP has Command Push Pull bus which supports bluk memory operations. */
587 static int nfp_cpp_memcpy(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
588 {
589 	bool descending_seq = meta->ldst_gather_len < 0;
590 	s16 len = abs(meta->ldst_gather_len);
591 	swreg src_base, off;
592 	bool src_40bit_addr;
593 	unsigned int i;
594 	u8 xfer_num;
595 
596 	off = re_load_imm_any(nfp_prog, meta->insn.off, imm_b(nfp_prog));
597 	src_40bit_addr = meta->ptr.type == PTR_TO_MAP_VALUE;
598 	src_base = reg_a(meta->insn.src_reg * 2);
599 	xfer_num = round_up(len, 4) / 4;
600 
601 	if (src_40bit_addr)
602 		addr40_offset(nfp_prog, meta->insn.src_reg, off, &src_base,
603 			      &off);
604 
605 	/* Setup PREV_ALU fields to override memory read length. */
606 	if (len > 32)
607 		wrp_immed(nfp_prog, reg_none(),
608 			  CMD_OVE_LEN | FIELD_PREP(CMD_OV_LEN, xfer_num - 1));
609 
610 	/* Memory read from source addr into transfer-in registers. */
611 	emit_cmd_any(nfp_prog, CMD_TGT_READ32_SWAP,
612 		     src_40bit_addr ? CMD_MODE_40b_BA : CMD_MODE_32b, 0,
613 		     src_base, off, xfer_num - 1, true, len > 32);
614 
615 	/* Move from transfer-in to transfer-out. */
616 	for (i = 0; i < xfer_num; i++)
617 		wrp_mov(nfp_prog, reg_xfer(i), reg_xfer(i));
618 
619 	off = re_load_imm_any(nfp_prog, meta->paired_st->off, imm_b(nfp_prog));
620 
621 	if (len <= 8) {
622 		/* Use single direct_ref write8. */
623 		emit_cmd(nfp_prog, CMD_TGT_WRITE8_SWAP, CMD_MODE_32b, 0,
624 			 reg_a(meta->paired_st->dst_reg * 2), off, len - 1,
625 			 true);
626 	} else if (len <= 32 && IS_ALIGNED(len, 4)) {
627 		/* Use single direct_ref write32. */
628 		emit_cmd(nfp_prog, CMD_TGT_WRITE32_SWAP, CMD_MODE_32b, 0,
629 			 reg_a(meta->paired_st->dst_reg * 2), off, xfer_num - 1,
630 			 true);
631 	} else if (len <= 32) {
632 		/* Use single indirect_ref write8. */
633 		wrp_immed(nfp_prog, reg_none(),
634 			  CMD_OVE_LEN | FIELD_PREP(CMD_OV_LEN, len - 1));
635 		emit_cmd_indir(nfp_prog, CMD_TGT_WRITE8_SWAP, CMD_MODE_32b, 0,
636 			       reg_a(meta->paired_st->dst_reg * 2), off,
637 			       len - 1, true);
638 	} else if (IS_ALIGNED(len, 4)) {
639 		/* Use single indirect_ref write32. */
640 		wrp_immed(nfp_prog, reg_none(),
641 			  CMD_OVE_LEN | FIELD_PREP(CMD_OV_LEN, xfer_num - 1));
642 		emit_cmd_indir(nfp_prog, CMD_TGT_WRITE32_SWAP, CMD_MODE_32b, 0,
643 			       reg_a(meta->paired_st->dst_reg * 2), off,
644 			       xfer_num - 1, true);
645 	} else if (len <= 40) {
646 		/* Use one direct_ref write32 to write the first 32-bytes, then
647 		 * another direct_ref write8 to write the remaining bytes.
648 		 */
649 		emit_cmd(nfp_prog, CMD_TGT_WRITE32_SWAP, CMD_MODE_32b, 0,
650 			 reg_a(meta->paired_st->dst_reg * 2), off, 7,
651 			 true);
652 
653 		off = re_load_imm_any(nfp_prog, meta->paired_st->off + 32,
654 				      imm_b(nfp_prog));
655 		emit_cmd(nfp_prog, CMD_TGT_WRITE8_SWAP, CMD_MODE_32b, 8,
656 			 reg_a(meta->paired_st->dst_reg * 2), off, len - 33,
657 			 true);
658 	} else {
659 		/* Use one indirect_ref write32 to write 4-bytes aligned length,
660 		 * then another direct_ref write8 to write the remaining bytes.
661 		 */
662 		u8 new_off;
663 
664 		wrp_immed(nfp_prog, reg_none(),
665 			  CMD_OVE_LEN | FIELD_PREP(CMD_OV_LEN, xfer_num - 2));
666 		emit_cmd_indir(nfp_prog, CMD_TGT_WRITE32_SWAP, CMD_MODE_32b, 0,
667 			       reg_a(meta->paired_st->dst_reg * 2), off,
668 			       xfer_num - 2, true);
669 		new_off = meta->paired_st->off + (xfer_num - 1) * 4;
670 		off = re_load_imm_any(nfp_prog, new_off, imm_b(nfp_prog));
671 		emit_cmd(nfp_prog, CMD_TGT_WRITE8_SWAP, CMD_MODE_32b,
672 			 xfer_num - 1, reg_a(meta->paired_st->dst_reg * 2), off,
673 			 (len & 0x3) - 1, true);
674 	}
675 
676 	/* TODO: The following extra load is to make sure data flow be identical
677 	 *  before and after we do memory copy optimization.
678 	 *
679 	 *  The load destination register is not guaranteed to be dead, so we
680 	 *  need to make sure it is loaded with the value the same as before
681 	 *  this transformation.
682 	 *
683 	 *  These extra loads could be removed once we have accurate register
684 	 *  usage information.
685 	 */
686 	if (descending_seq)
687 		xfer_num = 0;
688 	else if (BPF_SIZE(meta->insn.code) != BPF_DW)
689 		xfer_num = xfer_num - 1;
690 	else
691 		xfer_num = xfer_num - 2;
692 
693 	switch (BPF_SIZE(meta->insn.code)) {
694 	case BPF_B:
695 		wrp_reg_subpart(nfp_prog, reg_both(meta->insn.dst_reg * 2),
696 				reg_xfer(xfer_num), 1,
697 				IS_ALIGNED(len, 4) ? 3 : (len & 3) - 1);
698 		break;
699 	case BPF_H:
700 		wrp_reg_subpart(nfp_prog, reg_both(meta->insn.dst_reg * 2),
701 				reg_xfer(xfer_num), 2, (len & 3) ^ 2);
702 		break;
703 	case BPF_W:
704 		wrp_mov(nfp_prog, reg_both(meta->insn.dst_reg * 2),
705 			reg_xfer(0));
706 		break;
707 	case BPF_DW:
708 		wrp_mov(nfp_prog, reg_both(meta->insn.dst_reg * 2),
709 			reg_xfer(xfer_num));
710 		wrp_mov(nfp_prog, reg_both(meta->insn.dst_reg * 2 + 1),
711 			reg_xfer(xfer_num + 1));
712 		break;
713 	}
714 
715 	if (BPF_SIZE(meta->insn.code) != BPF_DW)
716 		wrp_immed(nfp_prog, reg_both(meta->insn.dst_reg * 2 + 1), 0);
717 
718 	return 0;
719 }
720 
721 static int
722 data_ld(struct nfp_prog *nfp_prog, swreg offset, u8 dst_gpr, int size)
723 {
724 	unsigned int i;
725 	u16 shift, sz;
726 
727 	/* We load the value from the address indicated in @offset and then
728 	 * shift out the data we don't need.  Note: this is big endian!
729 	 */
730 	sz = max(size, 4);
731 	shift = size < 4 ? 4 - size : 0;
732 
733 	emit_cmd(nfp_prog, CMD_TGT_READ8, CMD_MODE_32b, 0,
734 		 pptr_reg(nfp_prog), offset, sz - 1, true);
735 
736 	i = 0;
737 	if (shift)
738 		emit_shf(nfp_prog, reg_both(dst_gpr), reg_none(), SHF_OP_NONE,
739 			 reg_xfer(0), SHF_SC_R_SHF, shift * 8);
740 	else
741 		for (; i * 4 < size; i++)
742 			wrp_mov(nfp_prog, reg_both(dst_gpr + i), reg_xfer(i));
743 
744 	if (i < 2)
745 		wrp_immed(nfp_prog, reg_both(dst_gpr + 1), 0);
746 
747 	return 0;
748 }
749 
750 static int
751 data_ld_host_order(struct nfp_prog *nfp_prog, u8 dst_gpr,
752 		   swreg lreg, swreg rreg, int size, enum cmd_mode mode)
753 {
754 	unsigned int i;
755 	u8 mask, sz;
756 
757 	/* We load the value from the address indicated in rreg + lreg and then
758 	 * mask out the data we don't need.  Note: this is little endian!
759 	 */
760 	sz = max(size, 4);
761 	mask = size < 4 ? GENMASK(size - 1, 0) : 0;
762 
763 	emit_cmd(nfp_prog, CMD_TGT_READ32_SWAP, mode, 0,
764 		 lreg, rreg, sz / 4 - 1, true);
765 
766 	i = 0;
767 	if (mask)
768 		emit_ld_field_any(nfp_prog, reg_both(dst_gpr), mask,
769 				  reg_xfer(0), SHF_SC_NONE, 0, true);
770 	else
771 		for (; i * 4 < size; i++)
772 			wrp_mov(nfp_prog, reg_both(dst_gpr + i), reg_xfer(i));
773 
774 	if (i < 2)
775 		wrp_immed(nfp_prog, reg_both(dst_gpr + 1), 0);
776 
777 	return 0;
778 }
779 
780 static int
781 data_ld_host_order_addr32(struct nfp_prog *nfp_prog, u8 src_gpr, swreg offset,
782 			  u8 dst_gpr, u8 size)
783 {
784 	return data_ld_host_order(nfp_prog, dst_gpr, reg_a(src_gpr), offset,
785 				  size, CMD_MODE_32b);
786 }
787 
788 static int
789 data_ld_host_order_addr40(struct nfp_prog *nfp_prog, u8 src_gpr, swreg offset,
790 			  u8 dst_gpr, u8 size)
791 {
792 	swreg rega, regb;
793 
794 	addr40_offset(nfp_prog, src_gpr, offset, &rega, &regb);
795 
796 	return data_ld_host_order(nfp_prog, dst_gpr, rega, regb,
797 				  size, CMD_MODE_40b_BA);
798 }
799 
800 static int
801 construct_data_ind_ld(struct nfp_prog *nfp_prog, u16 offset, u16 src, u8 size)
802 {
803 	swreg tmp_reg;
804 
805 	/* Calculate the true offset (src_reg + imm) */
806 	tmp_reg = ur_load_imm_any(nfp_prog, offset, imm_b(nfp_prog));
807 	emit_alu(nfp_prog, imm_both(nfp_prog), reg_a(src), ALU_OP_ADD, tmp_reg);
808 
809 	/* Check packet length (size guaranteed to fit b/c it's u8) */
810 	emit_alu(nfp_prog, imm_a(nfp_prog),
811 		 imm_a(nfp_prog), ALU_OP_ADD, reg_imm(size));
812 	emit_alu(nfp_prog, reg_none(),
813 		 plen_reg(nfp_prog), ALU_OP_SUB, imm_a(nfp_prog));
814 	emit_br_relo(nfp_prog, BR_BLO, BR_OFF_RELO, 0, RELO_BR_GO_ABORT);
815 
816 	/* Load data */
817 	return data_ld(nfp_prog, imm_b(nfp_prog), 0, size);
818 }
819 
820 static int construct_data_ld(struct nfp_prog *nfp_prog, u16 offset, u8 size)
821 {
822 	swreg tmp_reg;
823 
824 	/* Check packet length */
825 	tmp_reg = ur_load_imm_any(nfp_prog, offset + size, imm_a(nfp_prog));
826 	emit_alu(nfp_prog, reg_none(), plen_reg(nfp_prog), ALU_OP_SUB, tmp_reg);
827 	emit_br_relo(nfp_prog, BR_BLO, BR_OFF_RELO, 0, RELO_BR_GO_ABORT);
828 
829 	/* Load data */
830 	tmp_reg = re_load_imm_any(nfp_prog, offset, imm_b(nfp_prog));
831 	return data_ld(nfp_prog, tmp_reg, 0, size);
832 }
833 
834 static int
835 data_stx_host_order(struct nfp_prog *nfp_prog, u8 dst_gpr, swreg offset,
836 		    u8 src_gpr, u8 size)
837 {
838 	unsigned int i;
839 
840 	for (i = 0; i * 4 < size; i++)
841 		wrp_mov(nfp_prog, reg_xfer(i), reg_a(src_gpr + i));
842 
843 	emit_cmd(nfp_prog, CMD_TGT_WRITE8_SWAP, CMD_MODE_32b, 0,
844 		 reg_a(dst_gpr), offset, size - 1, true);
845 
846 	return 0;
847 }
848 
849 static int
850 data_st_host_order(struct nfp_prog *nfp_prog, u8 dst_gpr, swreg offset,
851 		   u64 imm, u8 size)
852 {
853 	wrp_immed(nfp_prog, reg_xfer(0), imm);
854 	if (size == 8)
855 		wrp_immed(nfp_prog, reg_xfer(1), imm >> 32);
856 
857 	emit_cmd(nfp_prog, CMD_TGT_WRITE8_SWAP, CMD_MODE_32b, 0,
858 		 reg_a(dst_gpr), offset, size - 1, true);
859 
860 	return 0;
861 }
862 
863 typedef int
864 (*lmem_step)(struct nfp_prog *nfp_prog, u8 gpr, u8 gpr_byte, s32 off,
865 	     unsigned int size, bool first, bool new_gpr, bool last, bool lm3,
866 	     bool needs_inc);
867 
868 static int
869 wrp_lmem_load(struct nfp_prog *nfp_prog, u8 dst, u8 dst_byte, s32 off,
870 	      unsigned int size, bool first, bool new_gpr, bool last, bool lm3,
871 	      bool needs_inc)
872 {
873 	bool should_inc = needs_inc && new_gpr && !last;
874 	u32 idx, src_byte;
875 	enum shf_sc sc;
876 	swreg reg;
877 	int shf;
878 	u8 mask;
879 
880 	if (WARN_ON_ONCE(dst_byte + size > 4 || off % 4 + size > 4))
881 		return -EOPNOTSUPP;
882 
883 	idx = off / 4;
884 
885 	/* Move the entire word */
886 	if (size == 4) {
887 		wrp_mov(nfp_prog, reg_both(dst),
888 			should_inc ? reg_lm_inc(3) : reg_lm(lm3 ? 3 : 0, idx));
889 		return 0;
890 	}
891 
892 	if (WARN_ON_ONCE(lm3 && idx > RE_REG_LM_IDX_MAX))
893 		return -EOPNOTSUPP;
894 
895 	src_byte = off % 4;
896 
897 	mask = (1 << size) - 1;
898 	mask <<= dst_byte;
899 
900 	if (WARN_ON_ONCE(mask > 0xf))
901 		return -EOPNOTSUPP;
902 
903 	shf = abs(src_byte - dst_byte) * 8;
904 	if (src_byte == dst_byte) {
905 		sc = SHF_SC_NONE;
906 	} else if (src_byte < dst_byte) {
907 		shf = 32 - shf;
908 		sc = SHF_SC_L_SHF;
909 	} else {
910 		sc = SHF_SC_R_SHF;
911 	}
912 
913 	/* ld_field can address fewer indexes, if offset too large do RMW.
914 	 * Because we RMV twice we waste 2 cycles on unaligned 8 byte writes.
915 	 */
916 	if (idx <= RE_REG_LM_IDX_MAX) {
917 		reg = reg_lm(lm3 ? 3 : 0, idx);
918 	} else {
919 		reg = imm_a(nfp_prog);
920 		/* If it's not the first part of the load and we start a new GPR
921 		 * that means we are loading a second part of the LMEM word into
922 		 * a new GPR.  IOW we've already looked that LMEM word and
923 		 * therefore it has been loaded into imm_a().
924 		 */
925 		if (first || !new_gpr)
926 			wrp_mov(nfp_prog, reg, reg_lm(0, idx));
927 	}
928 
929 	emit_ld_field_any(nfp_prog, reg_both(dst), mask, reg, sc, shf, new_gpr);
930 
931 	if (should_inc)
932 		wrp_mov(nfp_prog, reg_none(), reg_lm_inc(3));
933 
934 	return 0;
935 }
936 
937 static int
938 wrp_lmem_store(struct nfp_prog *nfp_prog, u8 src, u8 src_byte, s32 off,
939 	       unsigned int size, bool first, bool new_gpr, bool last, bool lm3,
940 	       bool needs_inc)
941 {
942 	bool should_inc = needs_inc && new_gpr && !last;
943 	u32 idx, dst_byte;
944 	enum shf_sc sc;
945 	swreg reg;
946 	int shf;
947 	u8 mask;
948 
949 	if (WARN_ON_ONCE(src_byte + size > 4 || off % 4 + size > 4))
950 		return -EOPNOTSUPP;
951 
952 	idx = off / 4;
953 
954 	/* Move the entire word */
955 	if (size == 4) {
956 		wrp_mov(nfp_prog,
957 			should_inc ? reg_lm_inc(3) : reg_lm(lm3 ? 3 : 0, idx),
958 			reg_b(src));
959 		return 0;
960 	}
961 
962 	if (WARN_ON_ONCE(lm3 && idx > RE_REG_LM_IDX_MAX))
963 		return -EOPNOTSUPP;
964 
965 	dst_byte = off % 4;
966 
967 	mask = (1 << size) - 1;
968 	mask <<= dst_byte;
969 
970 	if (WARN_ON_ONCE(mask > 0xf))
971 		return -EOPNOTSUPP;
972 
973 	shf = abs(src_byte - dst_byte) * 8;
974 	if (src_byte == dst_byte) {
975 		sc = SHF_SC_NONE;
976 	} else if (src_byte < dst_byte) {
977 		shf = 32 - shf;
978 		sc = SHF_SC_L_SHF;
979 	} else {
980 		sc = SHF_SC_R_SHF;
981 	}
982 
983 	/* ld_field can address fewer indexes, if offset too large do RMW.
984 	 * Because we RMV twice we waste 2 cycles on unaligned 8 byte writes.
985 	 */
986 	if (idx <= RE_REG_LM_IDX_MAX) {
987 		reg = reg_lm(lm3 ? 3 : 0, idx);
988 	} else {
989 		reg = imm_a(nfp_prog);
990 		/* Only first and last LMEM locations are going to need RMW,
991 		 * the middle location will be overwritten fully.
992 		 */
993 		if (first || last)
994 			wrp_mov(nfp_prog, reg, reg_lm(0, idx));
995 	}
996 
997 	emit_ld_field(nfp_prog, reg, mask, reg_b(src), sc, shf);
998 
999 	if (new_gpr || last) {
1000 		if (idx > RE_REG_LM_IDX_MAX)
1001 			wrp_mov(nfp_prog, reg_lm(0, idx), reg);
1002 		if (should_inc)
1003 			wrp_mov(nfp_prog, reg_none(), reg_lm_inc(3));
1004 	}
1005 
1006 	return 0;
1007 }
1008 
1009 static int
1010 mem_op_stack(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
1011 	     unsigned int size, unsigned int ptr_off, u8 gpr, u8 ptr_gpr,
1012 	     bool clr_gpr, lmem_step step)
1013 {
1014 	s32 off = nfp_prog->stack_depth + meta->insn.off + ptr_off;
1015 	bool first = true, last;
1016 	bool needs_inc = false;
1017 	swreg stack_off_reg;
1018 	u8 prev_gpr = 255;
1019 	u32 gpr_byte = 0;
1020 	bool lm3 = true;
1021 	int ret;
1022 
1023 	if (meta->ptr_not_const) {
1024 		/* Use of the last encountered ptr_off is OK, they all have
1025 		 * the same alignment.  Depend on low bits of value being
1026 		 * discarded when written to LMaddr register.
1027 		 */
1028 		stack_off_reg = ur_load_imm_any(nfp_prog, meta->insn.off,
1029 						stack_imm(nfp_prog));
1030 
1031 		emit_alu(nfp_prog, imm_b(nfp_prog),
1032 			 reg_a(ptr_gpr), ALU_OP_ADD, stack_off_reg);
1033 
1034 		needs_inc = true;
1035 	} else if (off + size <= 64) {
1036 		/* We can reach bottom 64B with LMaddr0 */
1037 		lm3 = false;
1038 	} else if (round_down(off, 32) == round_down(off + size - 1, 32)) {
1039 		/* We have to set up a new pointer.  If we know the offset
1040 		 * and the entire access falls into a single 32 byte aligned
1041 		 * window we won't have to increment the LM pointer.
1042 		 * The 32 byte alignment is imporant because offset is ORed in
1043 		 * not added when doing *l$indexN[off].
1044 		 */
1045 		stack_off_reg = ur_load_imm_any(nfp_prog, round_down(off, 32),
1046 						stack_imm(nfp_prog));
1047 		emit_alu(nfp_prog, imm_b(nfp_prog),
1048 			 stack_reg(nfp_prog), ALU_OP_ADD, stack_off_reg);
1049 
1050 		off %= 32;
1051 	} else {
1052 		stack_off_reg = ur_load_imm_any(nfp_prog, round_down(off, 4),
1053 						stack_imm(nfp_prog));
1054 
1055 		emit_alu(nfp_prog, imm_b(nfp_prog),
1056 			 stack_reg(nfp_prog), ALU_OP_ADD, stack_off_reg);
1057 
1058 		needs_inc = true;
1059 	}
1060 	if (lm3) {
1061 		emit_csr_wr(nfp_prog, imm_b(nfp_prog), NFP_CSR_ACT_LM_ADDR3);
1062 		/* For size < 4 one slot will be filled by zeroing of upper. */
1063 		wrp_nops(nfp_prog, clr_gpr && size < 8 ? 2 : 3);
1064 	}
1065 
1066 	if (clr_gpr && size < 8)
1067 		wrp_immed(nfp_prog, reg_both(gpr + 1), 0);
1068 
1069 	while (size) {
1070 		u32 slice_end;
1071 		u8 slice_size;
1072 
1073 		slice_size = min(size, 4 - gpr_byte);
1074 		slice_end = min(off + slice_size, round_up(off + 1, 4));
1075 		slice_size = slice_end - off;
1076 
1077 		last = slice_size == size;
1078 
1079 		if (needs_inc)
1080 			off %= 4;
1081 
1082 		ret = step(nfp_prog, gpr, gpr_byte, off, slice_size,
1083 			   first, gpr != prev_gpr, last, lm3, needs_inc);
1084 		if (ret)
1085 			return ret;
1086 
1087 		prev_gpr = gpr;
1088 		first = false;
1089 
1090 		gpr_byte += slice_size;
1091 		if (gpr_byte >= 4) {
1092 			gpr_byte -= 4;
1093 			gpr++;
1094 		}
1095 
1096 		size -= slice_size;
1097 		off += slice_size;
1098 	}
1099 
1100 	return 0;
1101 }
1102 
1103 static void
1104 wrp_alu_imm(struct nfp_prog *nfp_prog, u8 dst, enum alu_op alu_op, u32 imm)
1105 {
1106 	swreg tmp_reg;
1107 
1108 	if (alu_op == ALU_OP_AND) {
1109 		if (!imm)
1110 			wrp_immed(nfp_prog, reg_both(dst), 0);
1111 		if (!imm || !~imm)
1112 			return;
1113 	}
1114 	if (alu_op == ALU_OP_OR) {
1115 		if (!~imm)
1116 			wrp_immed(nfp_prog, reg_both(dst), ~0U);
1117 		if (!imm || !~imm)
1118 			return;
1119 	}
1120 	if (alu_op == ALU_OP_XOR) {
1121 		if (!~imm)
1122 			emit_alu(nfp_prog, reg_both(dst), reg_none(),
1123 				 ALU_OP_NOT, reg_b(dst));
1124 		if (!imm || !~imm)
1125 			return;
1126 	}
1127 
1128 	tmp_reg = ur_load_imm_any(nfp_prog, imm, imm_b(nfp_prog));
1129 	emit_alu(nfp_prog, reg_both(dst), reg_a(dst), alu_op, tmp_reg);
1130 }
1131 
1132 static int
1133 wrp_alu64_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
1134 	      enum alu_op alu_op, bool skip)
1135 {
1136 	const struct bpf_insn *insn = &meta->insn;
1137 	u64 imm = insn->imm; /* sign extend */
1138 
1139 	if (skip) {
1140 		meta->skip = true;
1141 		return 0;
1142 	}
1143 
1144 	wrp_alu_imm(nfp_prog, insn->dst_reg * 2, alu_op, imm & ~0U);
1145 	wrp_alu_imm(nfp_prog, insn->dst_reg * 2 + 1, alu_op, imm >> 32);
1146 
1147 	return 0;
1148 }
1149 
1150 static int
1151 wrp_alu64_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
1152 	      enum alu_op alu_op)
1153 {
1154 	u8 dst = meta->insn.dst_reg * 2, src = meta->insn.src_reg * 2;
1155 
1156 	emit_alu(nfp_prog, reg_both(dst), reg_a(dst), alu_op, reg_b(src));
1157 	emit_alu(nfp_prog, reg_both(dst + 1),
1158 		 reg_a(dst + 1), alu_op, reg_b(src + 1));
1159 
1160 	return 0;
1161 }
1162 
1163 static int
1164 wrp_alu32_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
1165 	      enum alu_op alu_op, bool skip)
1166 {
1167 	const struct bpf_insn *insn = &meta->insn;
1168 
1169 	if (skip) {
1170 		meta->skip = true;
1171 		return 0;
1172 	}
1173 
1174 	wrp_alu_imm(nfp_prog, insn->dst_reg * 2, alu_op, insn->imm);
1175 	wrp_immed(nfp_prog, reg_both(insn->dst_reg * 2 + 1), 0);
1176 
1177 	return 0;
1178 }
1179 
1180 static int
1181 wrp_alu32_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
1182 	      enum alu_op alu_op)
1183 {
1184 	u8 dst = meta->insn.dst_reg * 2, src = meta->insn.src_reg * 2;
1185 
1186 	emit_alu(nfp_prog, reg_both(dst), reg_a(dst), alu_op, reg_b(src));
1187 	wrp_immed(nfp_prog, reg_both(meta->insn.dst_reg * 2 + 1), 0);
1188 
1189 	return 0;
1190 }
1191 
1192 static void
1193 wrp_test_reg_one(struct nfp_prog *nfp_prog, u8 dst, enum alu_op alu_op, u8 src,
1194 		 enum br_mask br_mask, u16 off)
1195 {
1196 	emit_alu(nfp_prog, reg_none(), reg_a(dst), alu_op, reg_b(src));
1197 	emit_br(nfp_prog, br_mask, off, 0);
1198 }
1199 
1200 static int
1201 wrp_test_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
1202 	     enum alu_op alu_op, enum br_mask br_mask)
1203 {
1204 	const struct bpf_insn *insn = &meta->insn;
1205 
1206 	wrp_test_reg_one(nfp_prog, insn->dst_reg * 2, alu_op,
1207 			 insn->src_reg * 2, br_mask, insn->off);
1208 	wrp_test_reg_one(nfp_prog, insn->dst_reg * 2 + 1, alu_op,
1209 			 insn->src_reg * 2 + 1, br_mask, insn->off);
1210 
1211 	return 0;
1212 }
1213 
1214 static int
1215 wrp_cmp_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
1216 	    enum br_mask br_mask, bool swap)
1217 {
1218 	const struct bpf_insn *insn = &meta->insn;
1219 	u64 imm = insn->imm; /* sign extend */
1220 	u8 reg = insn->dst_reg * 2;
1221 	swreg tmp_reg;
1222 
1223 	tmp_reg = ur_load_imm_any(nfp_prog, imm & ~0U, imm_b(nfp_prog));
1224 	if (!swap)
1225 		emit_alu(nfp_prog, reg_none(), reg_a(reg), ALU_OP_SUB, tmp_reg);
1226 	else
1227 		emit_alu(nfp_prog, reg_none(), tmp_reg, ALU_OP_SUB, reg_a(reg));
1228 
1229 	tmp_reg = ur_load_imm_any(nfp_prog, imm >> 32, imm_b(nfp_prog));
1230 	if (!swap)
1231 		emit_alu(nfp_prog, reg_none(),
1232 			 reg_a(reg + 1), ALU_OP_SUB_C, tmp_reg);
1233 	else
1234 		emit_alu(nfp_prog, reg_none(),
1235 			 tmp_reg, ALU_OP_SUB_C, reg_a(reg + 1));
1236 
1237 	emit_br(nfp_prog, br_mask, insn->off, 0);
1238 
1239 	return 0;
1240 }
1241 
1242 static int
1243 wrp_cmp_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
1244 	    enum br_mask br_mask, bool swap)
1245 {
1246 	const struct bpf_insn *insn = &meta->insn;
1247 	u8 areg, breg;
1248 
1249 	areg = insn->dst_reg * 2;
1250 	breg = insn->src_reg * 2;
1251 
1252 	if (swap) {
1253 		areg ^= breg;
1254 		breg ^= areg;
1255 		areg ^= breg;
1256 	}
1257 
1258 	emit_alu(nfp_prog, reg_none(), reg_a(areg), ALU_OP_SUB, reg_b(breg));
1259 	emit_alu(nfp_prog, reg_none(),
1260 		 reg_a(areg + 1), ALU_OP_SUB_C, reg_b(breg + 1));
1261 	emit_br(nfp_prog, br_mask, insn->off, 0);
1262 
1263 	return 0;
1264 }
1265 
1266 static void wrp_end32(struct nfp_prog *nfp_prog, swreg reg_in, u8 gpr_out)
1267 {
1268 	emit_ld_field(nfp_prog, reg_both(gpr_out), 0xf, reg_in,
1269 		      SHF_SC_R_ROT, 8);
1270 	emit_ld_field(nfp_prog, reg_both(gpr_out), 0x5, reg_a(gpr_out),
1271 		      SHF_SC_R_ROT, 16);
1272 }
1273 
1274 static int adjust_head(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1275 {
1276 	swreg tmp = imm_a(nfp_prog), tmp_len = imm_b(nfp_prog);
1277 	struct nfp_bpf_cap_adjust_head *adjust_head;
1278 	u32 ret_einval, end;
1279 
1280 	adjust_head = &nfp_prog->bpf->adjust_head;
1281 
1282 	/* Optimized version - 5 vs 14 cycles */
1283 	if (nfp_prog->adjust_head_location != UINT_MAX) {
1284 		if (WARN_ON_ONCE(nfp_prog->adjust_head_location != meta->n))
1285 			return -EINVAL;
1286 
1287 		emit_alu(nfp_prog, pptr_reg(nfp_prog),
1288 			 reg_a(2 * 2), ALU_OP_ADD, pptr_reg(nfp_prog));
1289 		emit_alu(nfp_prog, plen_reg(nfp_prog),
1290 			 plen_reg(nfp_prog), ALU_OP_SUB, reg_a(2 * 2));
1291 		emit_alu(nfp_prog, pv_len(nfp_prog),
1292 			 pv_len(nfp_prog), ALU_OP_SUB, reg_a(2 * 2));
1293 
1294 		wrp_immed(nfp_prog, reg_both(0), 0);
1295 		wrp_immed(nfp_prog, reg_both(1), 0);
1296 
1297 		/* TODO: when adjust head is guaranteed to succeed we can
1298 		 * also eliminate the following if (r0 == 0) branch.
1299 		 */
1300 
1301 		return 0;
1302 	}
1303 
1304 	ret_einval = nfp_prog_current_offset(nfp_prog) + 14;
1305 	end = ret_einval + 2;
1306 
1307 	/* We need to use a temp because offset is just a part of the pkt ptr */
1308 	emit_alu(nfp_prog, tmp,
1309 		 reg_a(2 * 2), ALU_OP_ADD_2B, pptr_reg(nfp_prog));
1310 
1311 	/* Validate result will fit within FW datapath constraints */
1312 	emit_alu(nfp_prog, reg_none(),
1313 		 tmp, ALU_OP_SUB, reg_imm(adjust_head->off_min));
1314 	emit_br(nfp_prog, BR_BLO, ret_einval, 0);
1315 	emit_alu(nfp_prog, reg_none(),
1316 		 reg_imm(adjust_head->off_max), ALU_OP_SUB, tmp);
1317 	emit_br(nfp_prog, BR_BLO, ret_einval, 0);
1318 
1319 	/* Validate the length is at least ETH_HLEN */
1320 	emit_alu(nfp_prog, tmp_len,
1321 		 plen_reg(nfp_prog), ALU_OP_SUB, reg_a(2 * 2));
1322 	emit_alu(nfp_prog, reg_none(),
1323 		 tmp_len, ALU_OP_SUB, reg_imm(ETH_HLEN));
1324 	emit_br(nfp_prog, BR_BMI, ret_einval, 0);
1325 
1326 	/* Load the ret code */
1327 	wrp_immed(nfp_prog, reg_both(0), 0);
1328 	wrp_immed(nfp_prog, reg_both(1), 0);
1329 
1330 	/* Modify the packet metadata */
1331 	emit_ld_field(nfp_prog, pptr_reg(nfp_prog), 0x3, tmp, SHF_SC_NONE, 0);
1332 
1333 	/* Skip over the -EINVAL ret code (defer 2) */
1334 	emit_br(nfp_prog, BR_UNC, end, 2);
1335 
1336 	emit_alu(nfp_prog, plen_reg(nfp_prog),
1337 		 plen_reg(nfp_prog), ALU_OP_SUB, reg_a(2 * 2));
1338 	emit_alu(nfp_prog, pv_len(nfp_prog),
1339 		 pv_len(nfp_prog), ALU_OP_SUB, reg_a(2 * 2));
1340 
1341 	/* return -EINVAL target */
1342 	if (!nfp_prog_confirm_current_offset(nfp_prog, ret_einval))
1343 		return -EINVAL;
1344 
1345 	wrp_immed(nfp_prog, reg_both(0), -22);
1346 	wrp_immed(nfp_prog, reg_both(1), ~0);
1347 
1348 	if (!nfp_prog_confirm_current_offset(nfp_prog, end))
1349 		return -EINVAL;
1350 
1351 	return 0;
1352 }
1353 
1354 static int
1355 map_call_stack_common(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1356 {
1357 	struct bpf_offloaded_map *offmap;
1358 	struct nfp_bpf_map *nfp_map;
1359 	bool load_lm_ptr;
1360 	u32 ret_tgt;
1361 	s64 lm_off;
1362 	swreg tid;
1363 
1364 	offmap = (struct bpf_offloaded_map *)meta->arg1.map_ptr;
1365 	nfp_map = offmap->dev_priv;
1366 
1367 	/* We only have to reload LM0 if the key is not at start of stack */
1368 	lm_off = nfp_prog->stack_depth;
1369 	lm_off += meta->arg2.reg.var_off.value + meta->arg2.reg.off;
1370 	load_lm_ptr = meta->arg2.var_off || lm_off;
1371 
1372 	/* Set LM0 to start of key */
1373 	if (load_lm_ptr)
1374 		emit_csr_wr(nfp_prog, reg_b(2 * 2), NFP_CSR_ACT_LM_ADDR0);
1375 	if (meta->func_id == BPF_FUNC_map_update_elem)
1376 		emit_csr_wr(nfp_prog, reg_b(3 * 2), NFP_CSR_ACT_LM_ADDR2);
1377 
1378 	/* Load map ID into a register, it should actually fit as an immediate
1379 	 * but in case it doesn't deal with it here, not in the delay slots.
1380 	 */
1381 	tid = ur_load_imm_any(nfp_prog, nfp_map->tid, imm_a(nfp_prog));
1382 
1383 	emit_br_relo(nfp_prog, BR_UNC, BR_OFF_RELO + meta->func_id,
1384 		     2, RELO_BR_HELPER);
1385 	ret_tgt = nfp_prog_current_offset(nfp_prog) + 2;
1386 
1387 	/* Load map ID into A0 */
1388 	wrp_mov(nfp_prog, reg_a(0), tid);
1389 
1390 	/* Load the return address into B0 */
1391 	wrp_immed_relo(nfp_prog, reg_b(0), ret_tgt, RELO_IMMED_REL);
1392 
1393 	if (!nfp_prog_confirm_current_offset(nfp_prog, ret_tgt))
1394 		return -EINVAL;
1395 
1396 	/* Reset the LM0 pointer */
1397 	if (!load_lm_ptr)
1398 		return 0;
1399 
1400 	emit_csr_wr(nfp_prog, stack_reg(nfp_prog),  NFP_CSR_ACT_LM_ADDR0);
1401 	wrp_nops(nfp_prog, 3);
1402 
1403 	return 0;
1404 }
1405 
1406 /* --- Callbacks --- */
1407 static int mov_reg64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1408 {
1409 	const struct bpf_insn *insn = &meta->insn;
1410 	u8 dst = insn->dst_reg * 2;
1411 	u8 src = insn->src_reg * 2;
1412 
1413 	if (insn->src_reg == BPF_REG_10) {
1414 		swreg stack_depth_reg;
1415 
1416 		stack_depth_reg = ur_load_imm_any(nfp_prog,
1417 						  nfp_prog->stack_depth,
1418 						  stack_imm(nfp_prog));
1419 		emit_alu(nfp_prog, reg_both(dst),
1420 			 stack_reg(nfp_prog), ALU_OP_ADD, stack_depth_reg);
1421 		wrp_immed(nfp_prog, reg_both(dst + 1), 0);
1422 	} else {
1423 		wrp_reg_mov(nfp_prog, dst, src);
1424 		wrp_reg_mov(nfp_prog, dst + 1, src + 1);
1425 	}
1426 
1427 	return 0;
1428 }
1429 
1430 static int mov_imm64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1431 {
1432 	u64 imm = meta->insn.imm; /* sign extend */
1433 
1434 	wrp_immed(nfp_prog, reg_both(meta->insn.dst_reg * 2), imm & ~0U);
1435 	wrp_immed(nfp_prog, reg_both(meta->insn.dst_reg * 2 + 1), imm >> 32);
1436 
1437 	return 0;
1438 }
1439 
1440 static int xor_reg64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1441 {
1442 	return wrp_alu64_reg(nfp_prog, meta, ALU_OP_XOR);
1443 }
1444 
1445 static int xor_imm64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1446 {
1447 	return wrp_alu64_imm(nfp_prog, meta, ALU_OP_XOR, !meta->insn.imm);
1448 }
1449 
1450 static int and_reg64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1451 {
1452 	return wrp_alu64_reg(nfp_prog, meta, ALU_OP_AND);
1453 }
1454 
1455 static int and_imm64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1456 {
1457 	return wrp_alu64_imm(nfp_prog, meta, ALU_OP_AND, !~meta->insn.imm);
1458 }
1459 
1460 static int or_reg64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1461 {
1462 	return wrp_alu64_reg(nfp_prog, meta, ALU_OP_OR);
1463 }
1464 
1465 static int or_imm64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1466 {
1467 	return wrp_alu64_imm(nfp_prog, meta, ALU_OP_OR, !meta->insn.imm);
1468 }
1469 
1470 static int add_reg64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1471 {
1472 	const struct bpf_insn *insn = &meta->insn;
1473 
1474 	emit_alu(nfp_prog, reg_both(insn->dst_reg * 2),
1475 		 reg_a(insn->dst_reg * 2), ALU_OP_ADD,
1476 		 reg_b(insn->src_reg * 2));
1477 	emit_alu(nfp_prog, reg_both(insn->dst_reg * 2 + 1),
1478 		 reg_a(insn->dst_reg * 2 + 1), ALU_OP_ADD_C,
1479 		 reg_b(insn->src_reg * 2 + 1));
1480 
1481 	return 0;
1482 }
1483 
1484 static int add_imm64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1485 {
1486 	const struct bpf_insn *insn = &meta->insn;
1487 	u64 imm = insn->imm; /* sign extend */
1488 
1489 	wrp_alu_imm(nfp_prog, insn->dst_reg * 2, ALU_OP_ADD, imm & ~0U);
1490 	wrp_alu_imm(nfp_prog, insn->dst_reg * 2 + 1, ALU_OP_ADD_C, imm >> 32);
1491 
1492 	return 0;
1493 }
1494 
1495 static int sub_reg64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1496 {
1497 	const struct bpf_insn *insn = &meta->insn;
1498 
1499 	emit_alu(nfp_prog, reg_both(insn->dst_reg * 2),
1500 		 reg_a(insn->dst_reg * 2), ALU_OP_SUB,
1501 		 reg_b(insn->src_reg * 2));
1502 	emit_alu(nfp_prog, reg_both(insn->dst_reg * 2 + 1),
1503 		 reg_a(insn->dst_reg * 2 + 1), ALU_OP_SUB_C,
1504 		 reg_b(insn->src_reg * 2 + 1));
1505 
1506 	return 0;
1507 }
1508 
1509 static int sub_imm64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1510 {
1511 	const struct bpf_insn *insn = &meta->insn;
1512 	u64 imm = insn->imm; /* sign extend */
1513 
1514 	wrp_alu_imm(nfp_prog, insn->dst_reg * 2, ALU_OP_SUB, imm & ~0U);
1515 	wrp_alu_imm(nfp_prog, insn->dst_reg * 2 + 1, ALU_OP_SUB_C, imm >> 32);
1516 
1517 	return 0;
1518 }
1519 
1520 static int neg_reg64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1521 {
1522 	const struct bpf_insn *insn = &meta->insn;
1523 
1524 	emit_alu(nfp_prog, reg_both(insn->dst_reg * 2), reg_imm(0),
1525 		 ALU_OP_SUB, reg_b(insn->dst_reg * 2));
1526 	emit_alu(nfp_prog, reg_both(insn->dst_reg * 2 + 1), reg_imm(0),
1527 		 ALU_OP_SUB_C, reg_b(insn->dst_reg * 2 + 1));
1528 
1529 	return 0;
1530 }
1531 
1532 static int shl_imm64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1533 {
1534 	const struct bpf_insn *insn = &meta->insn;
1535 	u8 dst = insn->dst_reg * 2;
1536 
1537 	if (insn->imm < 32) {
1538 		emit_shf(nfp_prog, reg_both(dst + 1),
1539 			 reg_a(dst + 1), SHF_OP_NONE, reg_b(dst),
1540 			 SHF_SC_R_DSHF, 32 - insn->imm);
1541 		emit_shf(nfp_prog, reg_both(dst),
1542 			 reg_none(), SHF_OP_NONE, reg_b(dst),
1543 			 SHF_SC_L_SHF, insn->imm);
1544 	} else if (insn->imm == 32) {
1545 		wrp_reg_mov(nfp_prog, dst + 1, dst);
1546 		wrp_immed(nfp_prog, reg_both(dst), 0);
1547 	} else if (insn->imm > 32) {
1548 		emit_shf(nfp_prog, reg_both(dst + 1),
1549 			 reg_none(), SHF_OP_NONE, reg_b(dst),
1550 			 SHF_SC_L_SHF, insn->imm - 32);
1551 		wrp_immed(nfp_prog, reg_both(dst), 0);
1552 	}
1553 
1554 	return 0;
1555 }
1556 
1557 static int shr_imm64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1558 {
1559 	const struct bpf_insn *insn = &meta->insn;
1560 	u8 dst = insn->dst_reg * 2;
1561 
1562 	if (insn->imm < 32) {
1563 		emit_shf(nfp_prog, reg_both(dst),
1564 			 reg_a(dst + 1), SHF_OP_NONE, reg_b(dst),
1565 			 SHF_SC_R_DSHF, insn->imm);
1566 		emit_shf(nfp_prog, reg_both(dst + 1),
1567 			 reg_none(), SHF_OP_NONE, reg_b(dst + 1),
1568 			 SHF_SC_R_SHF, insn->imm);
1569 	} else if (insn->imm == 32) {
1570 		wrp_reg_mov(nfp_prog, dst, dst + 1);
1571 		wrp_immed(nfp_prog, reg_both(dst + 1), 0);
1572 	} else if (insn->imm > 32) {
1573 		emit_shf(nfp_prog, reg_both(dst),
1574 			 reg_none(), SHF_OP_NONE, reg_b(dst + 1),
1575 			 SHF_SC_R_SHF, insn->imm - 32);
1576 		wrp_immed(nfp_prog, reg_both(dst + 1), 0);
1577 	}
1578 
1579 	return 0;
1580 }
1581 
1582 static int mov_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1583 {
1584 	const struct bpf_insn *insn = &meta->insn;
1585 
1586 	wrp_reg_mov(nfp_prog, insn->dst_reg * 2,  insn->src_reg * 2);
1587 	wrp_immed(nfp_prog, reg_both(insn->dst_reg * 2 + 1), 0);
1588 
1589 	return 0;
1590 }
1591 
1592 static int mov_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1593 {
1594 	const struct bpf_insn *insn = &meta->insn;
1595 
1596 	wrp_immed(nfp_prog, reg_both(insn->dst_reg * 2), insn->imm);
1597 	wrp_immed(nfp_prog, reg_both(insn->dst_reg * 2 + 1), 0);
1598 
1599 	return 0;
1600 }
1601 
1602 static int xor_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1603 {
1604 	return wrp_alu32_reg(nfp_prog, meta, ALU_OP_XOR);
1605 }
1606 
1607 static int xor_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1608 {
1609 	return wrp_alu32_imm(nfp_prog, meta, ALU_OP_XOR, !~meta->insn.imm);
1610 }
1611 
1612 static int and_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1613 {
1614 	return wrp_alu32_reg(nfp_prog, meta, ALU_OP_AND);
1615 }
1616 
1617 static int and_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1618 {
1619 	return wrp_alu32_imm(nfp_prog, meta, ALU_OP_AND, !~meta->insn.imm);
1620 }
1621 
1622 static int or_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1623 {
1624 	return wrp_alu32_reg(nfp_prog, meta, ALU_OP_OR);
1625 }
1626 
1627 static int or_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1628 {
1629 	return wrp_alu32_imm(nfp_prog, meta, ALU_OP_OR, !meta->insn.imm);
1630 }
1631 
1632 static int add_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1633 {
1634 	return wrp_alu32_reg(nfp_prog, meta, ALU_OP_ADD);
1635 }
1636 
1637 static int add_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1638 {
1639 	return wrp_alu32_imm(nfp_prog, meta, ALU_OP_ADD, !meta->insn.imm);
1640 }
1641 
1642 static int sub_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1643 {
1644 	return wrp_alu32_reg(nfp_prog, meta, ALU_OP_SUB);
1645 }
1646 
1647 static int sub_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1648 {
1649 	return wrp_alu32_imm(nfp_prog, meta, ALU_OP_SUB, !meta->insn.imm);
1650 }
1651 
1652 static int neg_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1653 {
1654 	u8 dst = meta->insn.dst_reg * 2;
1655 
1656 	emit_alu(nfp_prog, reg_both(dst), reg_imm(0), ALU_OP_SUB, reg_b(dst));
1657 	wrp_immed(nfp_prog, reg_both(meta->insn.dst_reg * 2 + 1), 0);
1658 
1659 	return 0;
1660 }
1661 
1662 static int shl_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1663 {
1664 	const struct bpf_insn *insn = &meta->insn;
1665 
1666 	if (!insn->imm)
1667 		return 1; /* TODO: zero shift means indirect */
1668 
1669 	emit_shf(nfp_prog, reg_both(insn->dst_reg * 2),
1670 		 reg_none(), SHF_OP_NONE, reg_b(insn->dst_reg * 2),
1671 		 SHF_SC_L_SHF, insn->imm);
1672 	wrp_immed(nfp_prog, reg_both(insn->dst_reg * 2 + 1), 0);
1673 
1674 	return 0;
1675 }
1676 
1677 static int end_reg32(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1678 {
1679 	const struct bpf_insn *insn = &meta->insn;
1680 	u8 gpr = insn->dst_reg * 2;
1681 
1682 	switch (insn->imm) {
1683 	case 16:
1684 		emit_ld_field(nfp_prog, reg_both(gpr), 0x9, reg_b(gpr),
1685 			      SHF_SC_R_ROT, 8);
1686 		emit_ld_field(nfp_prog, reg_both(gpr), 0xe, reg_a(gpr),
1687 			      SHF_SC_R_SHF, 16);
1688 
1689 		wrp_immed(nfp_prog, reg_both(gpr + 1), 0);
1690 		break;
1691 	case 32:
1692 		wrp_end32(nfp_prog, reg_a(gpr), gpr);
1693 		wrp_immed(nfp_prog, reg_both(gpr + 1), 0);
1694 		break;
1695 	case 64:
1696 		wrp_mov(nfp_prog, imm_a(nfp_prog), reg_b(gpr + 1));
1697 
1698 		wrp_end32(nfp_prog, reg_a(gpr), gpr + 1);
1699 		wrp_end32(nfp_prog, imm_a(nfp_prog), gpr);
1700 		break;
1701 	}
1702 
1703 	return 0;
1704 }
1705 
1706 static int imm_ld8_part2(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1707 {
1708 	struct nfp_insn_meta *prev = nfp_meta_prev(meta);
1709 	u32 imm_lo, imm_hi;
1710 	u8 dst;
1711 
1712 	dst = prev->insn.dst_reg * 2;
1713 	imm_lo = prev->insn.imm;
1714 	imm_hi = meta->insn.imm;
1715 
1716 	wrp_immed(nfp_prog, reg_both(dst), imm_lo);
1717 
1718 	/* mov is always 1 insn, load imm may be two, so try to use mov */
1719 	if (imm_hi == imm_lo)
1720 		wrp_mov(nfp_prog, reg_both(dst + 1), reg_a(dst));
1721 	else
1722 		wrp_immed(nfp_prog, reg_both(dst + 1), imm_hi);
1723 
1724 	return 0;
1725 }
1726 
1727 static int imm_ld8(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1728 {
1729 	meta->double_cb = imm_ld8_part2;
1730 	return 0;
1731 }
1732 
1733 static int data_ld1(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1734 {
1735 	return construct_data_ld(nfp_prog, meta->insn.imm, 1);
1736 }
1737 
1738 static int data_ld2(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1739 {
1740 	return construct_data_ld(nfp_prog, meta->insn.imm, 2);
1741 }
1742 
1743 static int data_ld4(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1744 {
1745 	return construct_data_ld(nfp_prog, meta->insn.imm, 4);
1746 }
1747 
1748 static int data_ind_ld1(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1749 {
1750 	return construct_data_ind_ld(nfp_prog, meta->insn.imm,
1751 				     meta->insn.src_reg * 2, 1);
1752 }
1753 
1754 static int data_ind_ld2(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1755 {
1756 	return construct_data_ind_ld(nfp_prog, meta->insn.imm,
1757 				     meta->insn.src_reg * 2, 2);
1758 }
1759 
1760 static int data_ind_ld4(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1761 {
1762 	return construct_data_ind_ld(nfp_prog, meta->insn.imm,
1763 				     meta->insn.src_reg * 2, 4);
1764 }
1765 
1766 static int
1767 mem_ldx_stack(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
1768 	      unsigned int size, unsigned int ptr_off)
1769 {
1770 	return mem_op_stack(nfp_prog, meta, size, ptr_off,
1771 			    meta->insn.dst_reg * 2, meta->insn.src_reg * 2,
1772 			    true, wrp_lmem_load);
1773 }
1774 
1775 static int mem_ldx_skb(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
1776 		       u8 size)
1777 {
1778 	swreg dst = reg_both(meta->insn.dst_reg * 2);
1779 
1780 	switch (meta->insn.off) {
1781 	case offsetof(struct __sk_buff, len):
1782 		if (size != FIELD_SIZEOF(struct __sk_buff, len))
1783 			return -EOPNOTSUPP;
1784 		wrp_mov(nfp_prog, dst, plen_reg(nfp_prog));
1785 		break;
1786 	case offsetof(struct __sk_buff, data):
1787 		if (size != FIELD_SIZEOF(struct __sk_buff, data))
1788 			return -EOPNOTSUPP;
1789 		wrp_mov(nfp_prog, dst, pptr_reg(nfp_prog));
1790 		break;
1791 	case offsetof(struct __sk_buff, data_end):
1792 		if (size != FIELD_SIZEOF(struct __sk_buff, data_end))
1793 			return -EOPNOTSUPP;
1794 		emit_alu(nfp_prog, dst,
1795 			 plen_reg(nfp_prog), ALU_OP_ADD, pptr_reg(nfp_prog));
1796 		break;
1797 	default:
1798 		return -EOPNOTSUPP;
1799 	}
1800 
1801 	wrp_immed(nfp_prog, reg_both(meta->insn.dst_reg * 2 + 1), 0);
1802 
1803 	return 0;
1804 }
1805 
1806 static int mem_ldx_xdp(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
1807 		       u8 size)
1808 {
1809 	swreg dst = reg_both(meta->insn.dst_reg * 2);
1810 
1811 	switch (meta->insn.off) {
1812 	case offsetof(struct xdp_md, data):
1813 		if (size != FIELD_SIZEOF(struct xdp_md, data))
1814 			return -EOPNOTSUPP;
1815 		wrp_mov(nfp_prog, dst, pptr_reg(nfp_prog));
1816 		break;
1817 	case offsetof(struct xdp_md, data_end):
1818 		if (size != FIELD_SIZEOF(struct xdp_md, data_end))
1819 			return -EOPNOTSUPP;
1820 		emit_alu(nfp_prog, dst,
1821 			 plen_reg(nfp_prog), ALU_OP_ADD, pptr_reg(nfp_prog));
1822 		break;
1823 	default:
1824 		return -EOPNOTSUPP;
1825 	}
1826 
1827 	wrp_immed(nfp_prog, reg_both(meta->insn.dst_reg * 2 + 1), 0);
1828 
1829 	return 0;
1830 }
1831 
1832 static int
1833 mem_ldx_data(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
1834 	     unsigned int size)
1835 {
1836 	swreg tmp_reg;
1837 
1838 	tmp_reg = re_load_imm_any(nfp_prog, meta->insn.off, imm_b(nfp_prog));
1839 
1840 	return data_ld_host_order_addr32(nfp_prog, meta->insn.src_reg * 2,
1841 					 tmp_reg, meta->insn.dst_reg * 2, size);
1842 }
1843 
1844 static int
1845 mem_ldx_emem(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
1846 	     unsigned int size)
1847 {
1848 	swreg tmp_reg;
1849 
1850 	tmp_reg = re_load_imm_any(nfp_prog, meta->insn.off, imm_b(nfp_prog));
1851 
1852 	return data_ld_host_order_addr40(nfp_prog, meta->insn.src_reg * 2,
1853 					 tmp_reg, meta->insn.dst_reg * 2, size);
1854 }
1855 
1856 static void
1857 mem_ldx_data_init_pktcache(struct nfp_prog *nfp_prog,
1858 			   struct nfp_insn_meta *meta)
1859 {
1860 	s16 range_start = meta->pkt_cache.range_start;
1861 	s16 range_end = meta->pkt_cache.range_end;
1862 	swreg src_base, off;
1863 	u8 xfer_num, len;
1864 	bool indir;
1865 
1866 	off = re_load_imm_any(nfp_prog, range_start, imm_b(nfp_prog));
1867 	src_base = reg_a(meta->insn.src_reg * 2);
1868 	len = range_end - range_start;
1869 	xfer_num = round_up(len, REG_WIDTH) / REG_WIDTH;
1870 
1871 	indir = len > 8 * REG_WIDTH;
1872 	/* Setup PREV_ALU for indirect mode. */
1873 	if (indir)
1874 		wrp_immed(nfp_prog, reg_none(),
1875 			  CMD_OVE_LEN | FIELD_PREP(CMD_OV_LEN, xfer_num - 1));
1876 
1877 	/* Cache memory into transfer-in registers. */
1878 	emit_cmd_any(nfp_prog, CMD_TGT_READ32_SWAP, CMD_MODE_32b, 0, src_base,
1879 		     off, xfer_num - 1, true, indir);
1880 }
1881 
1882 static int
1883 mem_ldx_data_from_pktcache_unaligned(struct nfp_prog *nfp_prog,
1884 				     struct nfp_insn_meta *meta,
1885 				     unsigned int size)
1886 {
1887 	s16 range_start = meta->pkt_cache.range_start;
1888 	s16 insn_off = meta->insn.off - range_start;
1889 	swreg dst_lo, dst_hi, src_lo, src_mid;
1890 	u8 dst_gpr = meta->insn.dst_reg * 2;
1891 	u8 len_lo = size, len_mid = 0;
1892 	u8 idx = insn_off / REG_WIDTH;
1893 	u8 off = insn_off % REG_WIDTH;
1894 
1895 	dst_hi = reg_both(dst_gpr + 1);
1896 	dst_lo = reg_both(dst_gpr);
1897 	src_lo = reg_xfer(idx);
1898 
1899 	/* The read length could involve as many as three registers. */
1900 	if (size > REG_WIDTH - off) {
1901 		/* Calculate the part in the second register. */
1902 		len_lo = REG_WIDTH - off;
1903 		len_mid = size - len_lo;
1904 
1905 		/* Calculate the part in the third register. */
1906 		if (size > 2 * REG_WIDTH - off)
1907 			len_mid = REG_WIDTH;
1908 	}
1909 
1910 	wrp_reg_subpart(nfp_prog, dst_lo, src_lo, len_lo, off);
1911 
1912 	if (!len_mid) {
1913 		wrp_immed(nfp_prog, dst_hi, 0);
1914 		return 0;
1915 	}
1916 
1917 	src_mid = reg_xfer(idx + 1);
1918 
1919 	if (size <= REG_WIDTH) {
1920 		wrp_reg_or_subpart(nfp_prog, dst_lo, src_mid, len_mid, len_lo);
1921 		wrp_immed(nfp_prog, dst_hi, 0);
1922 	} else {
1923 		swreg src_hi = reg_xfer(idx + 2);
1924 
1925 		wrp_reg_or_subpart(nfp_prog, dst_lo, src_mid,
1926 				   REG_WIDTH - len_lo, len_lo);
1927 		wrp_reg_subpart(nfp_prog, dst_hi, src_mid, len_lo,
1928 				REG_WIDTH - len_lo);
1929 		wrp_reg_or_subpart(nfp_prog, dst_hi, src_hi, REG_WIDTH - len_lo,
1930 				   len_lo);
1931 	}
1932 
1933 	return 0;
1934 }
1935 
1936 static int
1937 mem_ldx_data_from_pktcache_aligned(struct nfp_prog *nfp_prog,
1938 				   struct nfp_insn_meta *meta,
1939 				   unsigned int size)
1940 {
1941 	swreg dst_lo, dst_hi, src_lo;
1942 	u8 dst_gpr, idx;
1943 
1944 	idx = (meta->insn.off - meta->pkt_cache.range_start) / REG_WIDTH;
1945 	dst_gpr = meta->insn.dst_reg * 2;
1946 	dst_hi = reg_both(dst_gpr + 1);
1947 	dst_lo = reg_both(dst_gpr);
1948 	src_lo = reg_xfer(idx);
1949 
1950 	if (size < REG_WIDTH) {
1951 		wrp_reg_subpart(nfp_prog, dst_lo, src_lo, size, 0);
1952 		wrp_immed(nfp_prog, dst_hi, 0);
1953 	} else if (size == REG_WIDTH) {
1954 		wrp_mov(nfp_prog, dst_lo, src_lo);
1955 		wrp_immed(nfp_prog, dst_hi, 0);
1956 	} else {
1957 		swreg src_hi = reg_xfer(idx + 1);
1958 
1959 		wrp_mov(nfp_prog, dst_lo, src_lo);
1960 		wrp_mov(nfp_prog, dst_hi, src_hi);
1961 	}
1962 
1963 	return 0;
1964 }
1965 
1966 static int
1967 mem_ldx_data_from_pktcache(struct nfp_prog *nfp_prog,
1968 			   struct nfp_insn_meta *meta, unsigned int size)
1969 {
1970 	u8 off = meta->insn.off - meta->pkt_cache.range_start;
1971 
1972 	if (IS_ALIGNED(off, REG_WIDTH))
1973 		return mem_ldx_data_from_pktcache_aligned(nfp_prog, meta, size);
1974 
1975 	return mem_ldx_data_from_pktcache_unaligned(nfp_prog, meta, size);
1976 }
1977 
1978 static int
1979 mem_ldx(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
1980 	unsigned int size)
1981 {
1982 	if (meta->ldst_gather_len)
1983 		return nfp_cpp_memcpy(nfp_prog, meta);
1984 
1985 	if (meta->ptr.type == PTR_TO_CTX) {
1986 		if (nfp_prog->type == BPF_PROG_TYPE_XDP)
1987 			return mem_ldx_xdp(nfp_prog, meta, size);
1988 		else
1989 			return mem_ldx_skb(nfp_prog, meta, size);
1990 	}
1991 
1992 	if (meta->ptr.type == PTR_TO_PACKET) {
1993 		if (meta->pkt_cache.range_end) {
1994 			if (meta->pkt_cache.do_init)
1995 				mem_ldx_data_init_pktcache(nfp_prog, meta);
1996 
1997 			return mem_ldx_data_from_pktcache(nfp_prog, meta, size);
1998 		} else {
1999 			return mem_ldx_data(nfp_prog, meta, size);
2000 		}
2001 	}
2002 
2003 	if (meta->ptr.type == PTR_TO_STACK)
2004 		return mem_ldx_stack(nfp_prog, meta, size,
2005 				     meta->ptr.off + meta->ptr.var_off.value);
2006 
2007 	if (meta->ptr.type == PTR_TO_MAP_VALUE)
2008 		return mem_ldx_emem(nfp_prog, meta, size);
2009 
2010 	return -EOPNOTSUPP;
2011 }
2012 
2013 static int mem_ldx1(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2014 {
2015 	return mem_ldx(nfp_prog, meta, 1);
2016 }
2017 
2018 static int mem_ldx2(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2019 {
2020 	return mem_ldx(nfp_prog, meta, 2);
2021 }
2022 
2023 static int mem_ldx4(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2024 {
2025 	return mem_ldx(nfp_prog, meta, 4);
2026 }
2027 
2028 static int mem_ldx8(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2029 {
2030 	return mem_ldx(nfp_prog, meta, 8);
2031 }
2032 
2033 static int
2034 mem_st_data(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
2035 	    unsigned int size)
2036 {
2037 	u64 imm = meta->insn.imm; /* sign extend */
2038 	swreg off_reg;
2039 
2040 	off_reg = re_load_imm_any(nfp_prog, meta->insn.off, imm_b(nfp_prog));
2041 
2042 	return data_st_host_order(nfp_prog, meta->insn.dst_reg * 2, off_reg,
2043 				  imm, size);
2044 }
2045 
2046 static int mem_st(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
2047 		  unsigned int size)
2048 {
2049 	if (meta->ptr.type == PTR_TO_PACKET)
2050 		return mem_st_data(nfp_prog, meta, size);
2051 
2052 	return -EOPNOTSUPP;
2053 }
2054 
2055 static int mem_st1(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2056 {
2057 	return mem_st(nfp_prog, meta, 1);
2058 }
2059 
2060 static int mem_st2(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2061 {
2062 	return mem_st(nfp_prog, meta, 2);
2063 }
2064 
2065 static int mem_st4(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2066 {
2067 	return mem_st(nfp_prog, meta, 4);
2068 }
2069 
2070 static int mem_st8(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2071 {
2072 	return mem_st(nfp_prog, meta, 8);
2073 }
2074 
2075 static int
2076 mem_stx_data(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
2077 	     unsigned int size)
2078 {
2079 	swreg off_reg;
2080 
2081 	off_reg = re_load_imm_any(nfp_prog, meta->insn.off, imm_b(nfp_prog));
2082 
2083 	return data_stx_host_order(nfp_prog, meta->insn.dst_reg * 2, off_reg,
2084 				   meta->insn.src_reg * 2, size);
2085 }
2086 
2087 static int
2088 mem_stx_stack(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
2089 	      unsigned int size, unsigned int ptr_off)
2090 {
2091 	return mem_op_stack(nfp_prog, meta, size, ptr_off,
2092 			    meta->insn.src_reg * 2, meta->insn.dst_reg * 2,
2093 			    false, wrp_lmem_store);
2094 }
2095 
2096 static int
2097 mem_stx(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
2098 	unsigned int size)
2099 {
2100 	if (meta->ptr.type == PTR_TO_PACKET)
2101 		return mem_stx_data(nfp_prog, meta, size);
2102 
2103 	if (meta->ptr.type == PTR_TO_STACK)
2104 		return mem_stx_stack(nfp_prog, meta, size,
2105 				     meta->ptr.off + meta->ptr.var_off.value);
2106 
2107 	return -EOPNOTSUPP;
2108 }
2109 
2110 static int mem_stx1(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2111 {
2112 	return mem_stx(nfp_prog, meta, 1);
2113 }
2114 
2115 static int mem_stx2(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2116 {
2117 	return mem_stx(nfp_prog, meta, 2);
2118 }
2119 
2120 static int mem_stx4(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2121 {
2122 	return mem_stx(nfp_prog, meta, 4);
2123 }
2124 
2125 static int mem_stx8(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2126 {
2127 	return mem_stx(nfp_prog, meta, 8);
2128 }
2129 
2130 static int jump(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2131 {
2132 	emit_br(nfp_prog, BR_UNC, meta->insn.off, 0);
2133 
2134 	return 0;
2135 }
2136 
2137 static int jeq_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2138 {
2139 	const struct bpf_insn *insn = &meta->insn;
2140 	u64 imm = insn->imm; /* sign extend */
2141 	swreg or1, or2, tmp_reg;
2142 
2143 	or1 = reg_a(insn->dst_reg * 2);
2144 	or2 = reg_b(insn->dst_reg * 2 + 1);
2145 
2146 	if (imm & ~0U) {
2147 		tmp_reg = ur_load_imm_any(nfp_prog, imm & ~0U, imm_b(nfp_prog));
2148 		emit_alu(nfp_prog, imm_a(nfp_prog),
2149 			 reg_a(insn->dst_reg * 2), ALU_OP_XOR, tmp_reg);
2150 		or1 = imm_a(nfp_prog);
2151 	}
2152 
2153 	if (imm >> 32) {
2154 		tmp_reg = ur_load_imm_any(nfp_prog, imm >> 32, imm_b(nfp_prog));
2155 		emit_alu(nfp_prog, imm_b(nfp_prog),
2156 			 reg_a(insn->dst_reg * 2 + 1), ALU_OP_XOR, tmp_reg);
2157 		or2 = imm_b(nfp_prog);
2158 	}
2159 
2160 	emit_alu(nfp_prog, reg_none(), or1, ALU_OP_OR, or2);
2161 	emit_br(nfp_prog, BR_BEQ, insn->off, 0);
2162 
2163 	return 0;
2164 }
2165 
2166 static int jgt_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2167 {
2168 	return wrp_cmp_imm(nfp_prog, meta, BR_BLO, true);
2169 }
2170 
2171 static int jge_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2172 {
2173 	return wrp_cmp_imm(nfp_prog, meta, BR_BHS, false);
2174 }
2175 
2176 static int jlt_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2177 {
2178 	return wrp_cmp_imm(nfp_prog, meta, BR_BLO, false);
2179 }
2180 
2181 static int jle_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2182 {
2183 	return wrp_cmp_imm(nfp_prog, meta, BR_BHS, true);
2184 }
2185 
2186 static int jsgt_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2187 {
2188 	return wrp_cmp_imm(nfp_prog, meta, BR_BLT, true);
2189 }
2190 
2191 static int jsge_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2192 {
2193 	return wrp_cmp_imm(nfp_prog, meta, BR_BGE, false);
2194 }
2195 
2196 static int jslt_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2197 {
2198 	return wrp_cmp_imm(nfp_prog, meta, BR_BLT, false);
2199 }
2200 
2201 static int jsle_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2202 {
2203 	return wrp_cmp_imm(nfp_prog, meta, BR_BGE, true);
2204 }
2205 
2206 static int jset_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2207 {
2208 	const struct bpf_insn *insn = &meta->insn;
2209 	u64 imm = insn->imm; /* sign extend */
2210 	swreg tmp_reg;
2211 
2212 	if (!imm) {
2213 		meta->skip = true;
2214 		return 0;
2215 	}
2216 
2217 	if (imm & ~0U) {
2218 		tmp_reg = ur_load_imm_any(nfp_prog, imm & ~0U, imm_b(nfp_prog));
2219 		emit_alu(nfp_prog, reg_none(),
2220 			 reg_a(insn->dst_reg * 2), ALU_OP_AND, tmp_reg);
2221 		emit_br(nfp_prog, BR_BNE, insn->off, 0);
2222 	}
2223 
2224 	if (imm >> 32) {
2225 		tmp_reg = ur_load_imm_any(nfp_prog, imm >> 32, imm_b(nfp_prog));
2226 		emit_alu(nfp_prog, reg_none(),
2227 			 reg_a(insn->dst_reg * 2 + 1), ALU_OP_AND, tmp_reg);
2228 		emit_br(nfp_prog, BR_BNE, insn->off, 0);
2229 	}
2230 
2231 	return 0;
2232 }
2233 
2234 static int jne_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2235 {
2236 	const struct bpf_insn *insn = &meta->insn;
2237 	u64 imm = insn->imm; /* sign extend */
2238 	swreg tmp_reg;
2239 
2240 	if (!imm) {
2241 		emit_alu(nfp_prog, reg_none(), reg_a(insn->dst_reg * 2),
2242 			 ALU_OP_OR, reg_b(insn->dst_reg * 2 + 1));
2243 		emit_br(nfp_prog, BR_BNE, insn->off, 0);
2244 		return 0;
2245 	}
2246 
2247 	tmp_reg = ur_load_imm_any(nfp_prog, imm & ~0U, imm_b(nfp_prog));
2248 	emit_alu(nfp_prog, reg_none(),
2249 		 reg_a(insn->dst_reg * 2), ALU_OP_XOR, tmp_reg);
2250 	emit_br(nfp_prog, BR_BNE, insn->off, 0);
2251 
2252 	tmp_reg = ur_load_imm_any(nfp_prog, imm >> 32, imm_b(nfp_prog));
2253 	emit_alu(nfp_prog, reg_none(),
2254 		 reg_a(insn->dst_reg * 2 + 1), ALU_OP_XOR, tmp_reg);
2255 	emit_br(nfp_prog, BR_BNE, insn->off, 0);
2256 
2257 	return 0;
2258 }
2259 
2260 static int jeq_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2261 {
2262 	const struct bpf_insn *insn = &meta->insn;
2263 
2264 	emit_alu(nfp_prog, imm_a(nfp_prog), reg_a(insn->dst_reg * 2),
2265 		 ALU_OP_XOR, reg_b(insn->src_reg * 2));
2266 	emit_alu(nfp_prog, imm_b(nfp_prog), reg_a(insn->dst_reg * 2 + 1),
2267 		 ALU_OP_XOR, reg_b(insn->src_reg * 2 + 1));
2268 	emit_alu(nfp_prog, reg_none(),
2269 		 imm_a(nfp_prog), ALU_OP_OR, imm_b(nfp_prog));
2270 	emit_br(nfp_prog, BR_BEQ, insn->off, 0);
2271 
2272 	return 0;
2273 }
2274 
2275 static int jgt_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2276 {
2277 	return wrp_cmp_reg(nfp_prog, meta, BR_BLO, true);
2278 }
2279 
2280 static int jge_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2281 {
2282 	return wrp_cmp_reg(nfp_prog, meta, BR_BHS, false);
2283 }
2284 
2285 static int jlt_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2286 {
2287 	return wrp_cmp_reg(nfp_prog, meta, BR_BLO, false);
2288 }
2289 
2290 static int jle_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2291 {
2292 	return wrp_cmp_reg(nfp_prog, meta, BR_BHS, true);
2293 }
2294 
2295 static int jsgt_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2296 {
2297 	return wrp_cmp_reg(nfp_prog, meta, BR_BLT, true);
2298 }
2299 
2300 static int jsge_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2301 {
2302 	return wrp_cmp_reg(nfp_prog, meta, BR_BGE, false);
2303 }
2304 
2305 static int jslt_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2306 {
2307 	return wrp_cmp_reg(nfp_prog, meta, BR_BLT, false);
2308 }
2309 
2310 static int jsle_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2311 {
2312 	return wrp_cmp_reg(nfp_prog, meta, BR_BGE, true);
2313 }
2314 
2315 static int jset_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2316 {
2317 	return wrp_test_reg(nfp_prog, meta, ALU_OP_AND, BR_BNE);
2318 }
2319 
2320 static int jne_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2321 {
2322 	return wrp_test_reg(nfp_prog, meta, ALU_OP_XOR, BR_BNE);
2323 }
2324 
2325 static int call(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2326 {
2327 	switch (meta->insn.imm) {
2328 	case BPF_FUNC_xdp_adjust_head:
2329 		return adjust_head(nfp_prog, meta);
2330 	case BPF_FUNC_map_lookup_elem:
2331 	case BPF_FUNC_map_update_elem:
2332 	case BPF_FUNC_map_delete_elem:
2333 		return map_call_stack_common(nfp_prog, meta);
2334 	default:
2335 		WARN_ONCE(1, "verifier allowed unsupported function\n");
2336 		return -EOPNOTSUPP;
2337 	}
2338 }
2339 
2340 static int goto_out(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2341 {
2342 	emit_br_relo(nfp_prog, BR_UNC, BR_OFF_RELO, 0, RELO_BR_GO_OUT);
2343 
2344 	return 0;
2345 }
2346 
2347 static const instr_cb_t instr_cb[256] = {
2348 	[BPF_ALU64 | BPF_MOV | BPF_X] =	mov_reg64,
2349 	[BPF_ALU64 | BPF_MOV | BPF_K] =	mov_imm64,
2350 	[BPF_ALU64 | BPF_XOR | BPF_X] =	xor_reg64,
2351 	[BPF_ALU64 | BPF_XOR | BPF_K] =	xor_imm64,
2352 	[BPF_ALU64 | BPF_AND | BPF_X] =	and_reg64,
2353 	[BPF_ALU64 | BPF_AND | BPF_K] =	and_imm64,
2354 	[BPF_ALU64 | BPF_OR | BPF_X] =	or_reg64,
2355 	[BPF_ALU64 | BPF_OR | BPF_K] =	or_imm64,
2356 	[BPF_ALU64 | BPF_ADD | BPF_X] =	add_reg64,
2357 	[BPF_ALU64 | BPF_ADD | BPF_K] =	add_imm64,
2358 	[BPF_ALU64 | BPF_SUB | BPF_X] =	sub_reg64,
2359 	[BPF_ALU64 | BPF_SUB | BPF_K] =	sub_imm64,
2360 	[BPF_ALU64 | BPF_NEG] =		neg_reg64,
2361 	[BPF_ALU64 | BPF_LSH | BPF_K] =	shl_imm64,
2362 	[BPF_ALU64 | BPF_RSH | BPF_K] =	shr_imm64,
2363 	[BPF_ALU | BPF_MOV | BPF_X] =	mov_reg,
2364 	[BPF_ALU | BPF_MOV | BPF_K] =	mov_imm,
2365 	[BPF_ALU | BPF_XOR | BPF_X] =	xor_reg,
2366 	[BPF_ALU | BPF_XOR | BPF_K] =	xor_imm,
2367 	[BPF_ALU | BPF_AND | BPF_X] =	and_reg,
2368 	[BPF_ALU | BPF_AND | BPF_K] =	and_imm,
2369 	[BPF_ALU | BPF_OR | BPF_X] =	or_reg,
2370 	[BPF_ALU | BPF_OR | BPF_K] =	or_imm,
2371 	[BPF_ALU | BPF_ADD | BPF_X] =	add_reg,
2372 	[BPF_ALU | BPF_ADD | BPF_K] =	add_imm,
2373 	[BPF_ALU | BPF_SUB | BPF_X] =	sub_reg,
2374 	[BPF_ALU | BPF_SUB | BPF_K] =	sub_imm,
2375 	[BPF_ALU | BPF_NEG] =		neg_reg,
2376 	[BPF_ALU | BPF_LSH | BPF_K] =	shl_imm,
2377 	[BPF_ALU | BPF_END | BPF_X] =	end_reg32,
2378 	[BPF_LD | BPF_IMM | BPF_DW] =	imm_ld8,
2379 	[BPF_LD | BPF_ABS | BPF_B] =	data_ld1,
2380 	[BPF_LD | BPF_ABS | BPF_H] =	data_ld2,
2381 	[BPF_LD | BPF_ABS | BPF_W] =	data_ld4,
2382 	[BPF_LD | BPF_IND | BPF_B] =	data_ind_ld1,
2383 	[BPF_LD | BPF_IND | BPF_H] =	data_ind_ld2,
2384 	[BPF_LD | BPF_IND | BPF_W] =	data_ind_ld4,
2385 	[BPF_LDX | BPF_MEM | BPF_B] =	mem_ldx1,
2386 	[BPF_LDX | BPF_MEM | BPF_H] =	mem_ldx2,
2387 	[BPF_LDX | BPF_MEM | BPF_W] =	mem_ldx4,
2388 	[BPF_LDX | BPF_MEM | BPF_DW] =	mem_ldx8,
2389 	[BPF_STX | BPF_MEM | BPF_B] =	mem_stx1,
2390 	[BPF_STX | BPF_MEM | BPF_H] =	mem_stx2,
2391 	[BPF_STX | BPF_MEM | BPF_W] =	mem_stx4,
2392 	[BPF_STX | BPF_MEM | BPF_DW] =	mem_stx8,
2393 	[BPF_ST | BPF_MEM | BPF_B] =	mem_st1,
2394 	[BPF_ST | BPF_MEM | BPF_H] =	mem_st2,
2395 	[BPF_ST | BPF_MEM | BPF_W] =	mem_st4,
2396 	[BPF_ST | BPF_MEM | BPF_DW] =	mem_st8,
2397 	[BPF_JMP | BPF_JA | BPF_K] =	jump,
2398 	[BPF_JMP | BPF_JEQ | BPF_K] =	jeq_imm,
2399 	[BPF_JMP | BPF_JGT | BPF_K] =	jgt_imm,
2400 	[BPF_JMP | BPF_JGE | BPF_K] =	jge_imm,
2401 	[BPF_JMP | BPF_JLT | BPF_K] =	jlt_imm,
2402 	[BPF_JMP | BPF_JLE | BPF_K] =	jle_imm,
2403 	[BPF_JMP | BPF_JSGT | BPF_K] =  jsgt_imm,
2404 	[BPF_JMP | BPF_JSGE | BPF_K] =  jsge_imm,
2405 	[BPF_JMP | BPF_JSLT | BPF_K] =  jslt_imm,
2406 	[BPF_JMP | BPF_JSLE | BPF_K] =  jsle_imm,
2407 	[BPF_JMP | BPF_JSET | BPF_K] =	jset_imm,
2408 	[BPF_JMP | BPF_JNE | BPF_K] =	jne_imm,
2409 	[BPF_JMP | BPF_JEQ | BPF_X] =	jeq_reg,
2410 	[BPF_JMP | BPF_JGT | BPF_X] =	jgt_reg,
2411 	[BPF_JMP | BPF_JGE | BPF_X] =	jge_reg,
2412 	[BPF_JMP | BPF_JLT | BPF_X] =	jlt_reg,
2413 	[BPF_JMP | BPF_JLE | BPF_X] =	jle_reg,
2414 	[BPF_JMP | BPF_JSGT | BPF_X] =  jsgt_reg,
2415 	[BPF_JMP | BPF_JSGE | BPF_X] =  jsge_reg,
2416 	[BPF_JMP | BPF_JSLT | BPF_X] =  jslt_reg,
2417 	[BPF_JMP | BPF_JSLE | BPF_X] =  jsle_reg,
2418 	[BPF_JMP | BPF_JSET | BPF_X] =	jset_reg,
2419 	[BPF_JMP | BPF_JNE | BPF_X] =	jne_reg,
2420 	[BPF_JMP | BPF_CALL] =		call,
2421 	[BPF_JMP | BPF_EXIT] =		goto_out,
2422 };
2423 
2424 /* --- Assembler logic --- */
2425 static int nfp_fixup_branches(struct nfp_prog *nfp_prog)
2426 {
2427 	struct nfp_insn_meta *meta, *jmp_dst;
2428 	u32 idx, br_idx;
2429 
2430 	list_for_each_entry(meta, &nfp_prog->insns, l) {
2431 		if (meta->skip)
2432 			continue;
2433 		if (meta->insn.code == (BPF_JMP | BPF_CALL))
2434 			continue;
2435 		if (BPF_CLASS(meta->insn.code) != BPF_JMP)
2436 			continue;
2437 
2438 		if (list_is_last(&meta->l, &nfp_prog->insns))
2439 			br_idx = nfp_prog->last_bpf_off;
2440 		else
2441 			br_idx = list_next_entry(meta, l)->off - 1;
2442 
2443 		if (!nfp_is_br(nfp_prog->prog[br_idx])) {
2444 			pr_err("Fixup found block not ending in branch %d %02x %016llx!!\n",
2445 			       br_idx, meta->insn.code, nfp_prog->prog[br_idx]);
2446 			return -ELOOP;
2447 		}
2448 		/* Leave special branches for later */
2449 		if (FIELD_GET(OP_RELO_TYPE, nfp_prog->prog[br_idx]) !=
2450 		    RELO_BR_REL)
2451 			continue;
2452 
2453 		if (!meta->jmp_dst) {
2454 			pr_err("Non-exit jump doesn't have destination info recorded!!\n");
2455 			return -ELOOP;
2456 		}
2457 
2458 		jmp_dst = meta->jmp_dst;
2459 
2460 		if (jmp_dst->skip) {
2461 			pr_err("Branch landing on removed instruction!!\n");
2462 			return -ELOOP;
2463 		}
2464 
2465 		for (idx = meta->off; idx <= br_idx; idx++) {
2466 			if (!nfp_is_br(nfp_prog->prog[idx]))
2467 				continue;
2468 			br_set_offset(&nfp_prog->prog[idx], jmp_dst->off);
2469 		}
2470 	}
2471 
2472 	return 0;
2473 }
2474 
2475 static void nfp_intro(struct nfp_prog *nfp_prog)
2476 {
2477 	wrp_immed(nfp_prog, plen_reg(nfp_prog), GENMASK(13, 0));
2478 	emit_alu(nfp_prog, plen_reg(nfp_prog),
2479 		 plen_reg(nfp_prog), ALU_OP_AND, pv_len(nfp_prog));
2480 }
2481 
2482 static void nfp_outro_tc_da(struct nfp_prog *nfp_prog)
2483 {
2484 	/* TC direct-action mode:
2485 	 *   0,1   ok        NOT SUPPORTED[1]
2486 	 *   2   drop  0x22 -> drop,  count as stat1
2487 	 *   4,5 nuke  0x02 -> drop
2488 	 *   7  redir  0x44 -> redir, count as stat2
2489 	 *   * unspec  0x11 -> pass,  count as stat0
2490 	 *
2491 	 * [1] We can't support OK and RECLASSIFY because we can't tell TC
2492 	 *     the exact decision made.  We are forced to support UNSPEC
2493 	 *     to handle aborts so that's the only one we handle for passing
2494 	 *     packets up the stack.
2495 	 */
2496 	/* Target for aborts */
2497 	nfp_prog->tgt_abort = nfp_prog_current_offset(nfp_prog);
2498 
2499 	emit_br_relo(nfp_prog, BR_UNC, BR_OFF_RELO, 2, RELO_BR_NEXT_PKT);
2500 
2501 	wrp_mov(nfp_prog, reg_a(0), NFP_BPF_ABI_FLAGS);
2502 	emit_ld_field(nfp_prog, reg_a(0), 0xc, reg_imm(0x11), SHF_SC_L_SHF, 16);
2503 
2504 	/* Target for normal exits */
2505 	nfp_prog->tgt_out = nfp_prog_current_offset(nfp_prog);
2506 
2507 	/* if R0 > 7 jump to abort */
2508 	emit_alu(nfp_prog, reg_none(), reg_imm(7), ALU_OP_SUB, reg_b(0));
2509 	emit_br(nfp_prog, BR_BLO, nfp_prog->tgt_abort, 0);
2510 	wrp_mov(nfp_prog, reg_a(0), NFP_BPF_ABI_FLAGS);
2511 
2512 	wrp_immed(nfp_prog, reg_b(2), 0x41221211);
2513 	wrp_immed(nfp_prog, reg_b(3), 0x41001211);
2514 
2515 	emit_shf(nfp_prog, reg_a(1),
2516 		 reg_none(), SHF_OP_NONE, reg_b(0), SHF_SC_L_SHF, 2);
2517 
2518 	emit_alu(nfp_prog, reg_none(), reg_a(1), ALU_OP_OR, reg_imm(0));
2519 	emit_shf(nfp_prog, reg_a(2),
2520 		 reg_imm(0xf), SHF_OP_AND, reg_b(2), SHF_SC_R_SHF, 0);
2521 
2522 	emit_alu(nfp_prog, reg_none(), reg_a(1), ALU_OP_OR, reg_imm(0));
2523 	emit_shf(nfp_prog, reg_b(2),
2524 		 reg_imm(0xf), SHF_OP_AND, reg_b(3), SHF_SC_R_SHF, 0);
2525 
2526 	emit_br_relo(nfp_prog, BR_UNC, BR_OFF_RELO, 2, RELO_BR_NEXT_PKT);
2527 
2528 	emit_shf(nfp_prog, reg_b(2),
2529 		 reg_a(2), SHF_OP_OR, reg_b(2), SHF_SC_L_SHF, 4);
2530 	emit_ld_field(nfp_prog, reg_a(0), 0xc, reg_b(2), SHF_SC_L_SHF, 16);
2531 }
2532 
2533 static void nfp_outro_xdp(struct nfp_prog *nfp_prog)
2534 {
2535 	/* XDP return codes:
2536 	 *   0 aborted  0x82 -> drop,  count as stat3
2537 	 *   1    drop  0x22 -> drop,  count as stat1
2538 	 *   2    pass  0x11 -> pass,  count as stat0
2539 	 *   3      tx  0x44 -> redir, count as stat2
2540 	 *   * unknown  0x82 -> drop,  count as stat3
2541 	 */
2542 	/* Target for aborts */
2543 	nfp_prog->tgt_abort = nfp_prog_current_offset(nfp_prog);
2544 
2545 	emit_br_relo(nfp_prog, BR_UNC, BR_OFF_RELO, 2, RELO_BR_NEXT_PKT);
2546 
2547 	wrp_mov(nfp_prog, reg_a(0), NFP_BPF_ABI_FLAGS);
2548 	emit_ld_field(nfp_prog, reg_a(0), 0xc, reg_imm(0x82), SHF_SC_L_SHF, 16);
2549 
2550 	/* Target for normal exits */
2551 	nfp_prog->tgt_out = nfp_prog_current_offset(nfp_prog);
2552 
2553 	/* if R0 > 3 jump to abort */
2554 	emit_alu(nfp_prog, reg_none(), reg_imm(3), ALU_OP_SUB, reg_b(0));
2555 	emit_br(nfp_prog, BR_BLO, nfp_prog->tgt_abort, 0);
2556 
2557 	wrp_immed(nfp_prog, reg_b(2), 0x44112282);
2558 
2559 	emit_shf(nfp_prog, reg_a(1),
2560 		 reg_none(), SHF_OP_NONE, reg_b(0), SHF_SC_L_SHF, 3);
2561 
2562 	emit_alu(nfp_prog, reg_none(), reg_a(1), ALU_OP_OR, reg_imm(0));
2563 	emit_shf(nfp_prog, reg_b(2),
2564 		 reg_imm(0xff), SHF_OP_AND, reg_b(2), SHF_SC_R_SHF, 0);
2565 
2566 	emit_br_relo(nfp_prog, BR_UNC, BR_OFF_RELO, 2, RELO_BR_NEXT_PKT);
2567 
2568 	wrp_mov(nfp_prog, reg_a(0), NFP_BPF_ABI_FLAGS);
2569 	emit_ld_field(nfp_prog, reg_a(0), 0xc, reg_b(2), SHF_SC_L_SHF, 16);
2570 }
2571 
2572 static void nfp_outro(struct nfp_prog *nfp_prog)
2573 {
2574 	switch (nfp_prog->type) {
2575 	case BPF_PROG_TYPE_SCHED_CLS:
2576 		nfp_outro_tc_da(nfp_prog);
2577 		break;
2578 	case BPF_PROG_TYPE_XDP:
2579 		nfp_outro_xdp(nfp_prog);
2580 		break;
2581 	default:
2582 		WARN_ON(1);
2583 	}
2584 }
2585 
2586 static int nfp_translate(struct nfp_prog *nfp_prog)
2587 {
2588 	struct nfp_insn_meta *meta;
2589 	int err;
2590 
2591 	nfp_intro(nfp_prog);
2592 	if (nfp_prog->error)
2593 		return nfp_prog->error;
2594 
2595 	list_for_each_entry(meta, &nfp_prog->insns, l) {
2596 		instr_cb_t cb = instr_cb[meta->insn.code];
2597 
2598 		meta->off = nfp_prog_current_offset(nfp_prog);
2599 
2600 		if (meta->skip) {
2601 			nfp_prog->n_translated++;
2602 			continue;
2603 		}
2604 
2605 		if (nfp_meta_has_prev(nfp_prog, meta) &&
2606 		    nfp_meta_prev(meta)->double_cb)
2607 			cb = nfp_meta_prev(meta)->double_cb;
2608 		if (!cb)
2609 			return -ENOENT;
2610 		err = cb(nfp_prog, meta);
2611 		if (err)
2612 			return err;
2613 
2614 		nfp_prog->n_translated++;
2615 	}
2616 
2617 	nfp_prog->last_bpf_off = nfp_prog_current_offset(nfp_prog) - 1;
2618 
2619 	nfp_outro(nfp_prog);
2620 	if (nfp_prog->error)
2621 		return nfp_prog->error;
2622 
2623 	wrp_nops(nfp_prog, NFP_USTORE_PREFETCH_WINDOW);
2624 	if (nfp_prog->error)
2625 		return nfp_prog->error;
2626 
2627 	return nfp_fixup_branches(nfp_prog);
2628 }
2629 
2630 /* --- Optimizations --- */
2631 static void nfp_bpf_opt_reg_init(struct nfp_prog *nfp_prog)
2632 {
2633 	struct nfp_insn_meta *meta;
2634 
2635 	list_for_each_entry(meta, &nfp_prog->insns, l) {
2636 		struct bpf_insn insn = meta->insn;
2637 
2638 		/* Programs converted from cBPF start with register xoring */
2639 		if (insn.code == (BPF_ALU64 | BPF_XOR | BPF_X) &&
2640 		    insn.src_reg == insn.dst_reg)
2641 			continue;
2642 
2643 		/* Programs start with R6 = R1 but we ignore the skb pointer */
2644 		if (insn.code == (BPF_ALU64 | BPF_MOV | BPF_X) &&
2645 		    insn.src_reg == 1 && insn.dst_reg == 6)
2646 			meta->skip = true;
2647 
2648 		/* Return as soon as something doesn't match */
2649 		if (!meta->skip)
2650 			return;
2651 	}
2652 }
2653 
2654 /* Remove masking after load since our load guarantees this is not needed */
2655 static void nfp_bpf_opt_ld_mask(struct nfp_prog *nfp_prog)
2656 {
2657 	struct nfp_insn_meta *meta1, *meta2;
2658 	const s32 exp_mask[] = {
2659 		[BPF_B] = 0x000000ffU,
2660 		[BPF_H] = 0x0000ffffU,
2661 		[BPF_W] = 0xffffffffU,
2662 	};
2663 
2664 	nfp_for_each_insn_walk2(nfp_prog, meta1, meta2) {
2665 		struct bpf_insn insn, next;
2666 
2667 		insn = meta1->insn;
2668 		next = meta2->insn;
2669 
2670 		if (BPF_CLASS(insn.code) != BPF_LD)
2671 			continue;
2672 		if (BPF_MODE(insn.code) != BPF_ABS &&
2673 		    BPF_MODE(insn.code) != BPF_IND)
2674 			continue;
2675 
2676 		if (next.code != (BPF_ALU64 | BPF_AND | BPF_K))
2677 			continue;
2678 
2679 		if (!exp_mask[BPF_SIZE(insn.code)])
2680 			continue;
2681 		if (exp_mask[BPF_SIZE(insn.code)] != next.imm)
2682 			continue;
2683 
2684 		if (next.src_reg || next.dst_reg)
2685 			continue;
2686 
2687 		if (meta2->flags & FLAG_INSN_IS_JUMP_DST)
2688 			continue;
2689 
2690 		meta2->skip = true;
2691 	}
2692 }
2693 
2694 static void nfp_bpf_opt_ld_shift(struct nfp_prog *nfp_prog)
2695 {
2696 	struct nfp_insn_meta *meta1, *meta2, *meta3;
2697 
2698 	nfp_for_each_insn_walk3(nfp_prog, meta1, meta2, meta3) {
2699 		struct bpf_insn insn, next1, next2;
2700 
2701 		insn = meta1->insn;
2702 		next1 = meta2->insn;
2703 		next2 = meta3->insn;
2704 
2705 		if (BPF_CLASS(insn.code) != BPF_LD)
2706 			continue;
2707 		if (BPF_MODE(insn.code) != BPF_ABS &&
2708 		    BPF_MODE(insn.code) != BPF_IND)
2709 			continue;
2710 		if (BPF_SIZE(insn.code) != BPF_W)
2711 			continue;
2712 
2713 		if (!(next1.code == (BPF_LSH | BPF_K | BPF_ALU64) &&
2714 		      next2.code == (BPF_RSH | BPF_K | BPF_ALU64)) &&
2715 		    !(next1.code == (BPF_RSH | BPF_K | BPF_ALU64) &&
2716 		      next2.code == (BPF_LSH | BPF_K | BPF_ALU64)))
2717 			continue;
2718 
2719 		if (next1.src_reg || next1.dst_reg ||
2720 		    next2.src_reg || next2.dst_reg)
2721 			continue;
2722 
2723 		if (next1.imm != 0x20 || next2.imm != 0x20)
2724 			continue;
2725 
2726 		if (meta2->flags & FLAG_INSN_IS_JUMP_DST ||
2727 		    meta3->flags & FLAG_INSN_IS_JUMP_DST)
2728 			continue;
2729 
2730 		meta2->skip = true;
2731 		meta3->skip = true;
2732 	}
2733 }
2734 
2735 /* load/store pair that forms memory copy sould look like the following:
2736  *
2737  *   ld_width R, [addr_src + offset_src]
2738  *   st_width [addr_dest + offset_dest], R
2739  *
2740  * The destination register of load and source register of store should
2741  * be the same, load and store should also perform at the same width.
2742  * If either of addr_src or addr_dest is stack pointer, we don't do the
2743  * CPP optimization as stack is modelled by registers on NFP.
2744  */
2745 static bool
2746 curr_pair_is_memcpy(struct nfp_insn_meta *ld_meta,
2747 		    struct nfp_insn_meta *st_meta)
2748 {
2749 	struct bpf_insn *ld = &ld_meta->insn;
2750 	struct bpf_insn *st = &st_meta->insn;
2751 
2752 	if (!is_mbpf_load(ld_meta) || !is_mbpf_store(st_meta))
2753 		return false;
2754 
2755 	if (ld_meta->ptr.type != PTR_TO_PACKET)
2756 		return false;
2757 
2758 	if (st_meta->ptr.type != PTR_TO_PACKET)
2759 		return false;
2760 
2761 	if (BPF_SIZE(ld->code) != BPF_SIZE(st->code))
2762 		return false;
2763 
2764 	if (ld->dst_reg != st->src_reg)
2765 		return false;
2766 
2767 	/* There is jump to the store insn in this pair. */
2768 	if (st_meta->flags & FLAG_INSN_IS_JUMP_DST)
2769 		return false;
2770 
2771 	return true;
2772 }
2773 
2774 /* Currently, we only support chaining load/store pairs if:
2775  *
2776  *  - Their address base registers are the same.
2777  *  - Their address offsets are in the same order.
2778  *  - They operate at the same memory width.
2779  *  - There is no jump into the middle of them.
2780  */
2781 static bool
2782 curr_pair_chain_with_previous(struct nfp_insn_meta *ld_meta,
2783 			      struct nfp_insn_meta *st_meta,
2784 			      struct bpf_insn *prev_ld,
2785 			      struct bpf_insn *prev_st)
2786 {
2787 	u8 prev_size, curr_size, prev_ld_base, prev_st_base, prev_ld_dst;
2788 	struct bpf_insn *ld = &ld_meta->insn;
2789 	struct bpf_insn *st = &st_meta->insn;
2790 	s16 prev_ld_off, prev_st_off;
2791 
2792 	/* This pair is the start pair. */
2793 	if (!prev_ld)
2794 		return true;
2795 
2796 	prev_size = BPF_LDST_BYTES(prev_ld);
2797 	curr_size = BPF_LDST_BYTES(ld);
2798 	prev_ld_base = prev_ld->src_reg;
2799 	prev_st_base = prev_st->dst_reg;
2800 	prev_ld_dst = prev_ld->dst_reg;
2801 	prev_ld_off = prev_ld->off;
2802 	prev_st_off = prev_st->off;
2803 
2804 	if (ld->dst_reg != prev_ld_dst)
2805 		return false;
2806 
2807 	if (ld->src_reg != prev_ld_base || st->dst_reg != prev_st_base)
2808 		return false;
2809 
2810 	if (curr_size != prev_size)
2811 		return false;
2812 
2813 	/* There is jump to the head of this pair. */
2814 	if (ld_meta->flags & FLAG_INSN_IS_JUMP_DST)
2815 		return false;
2816 
2817 	/* Both in ascending order. */
2818 	if (prev_ld_off + prev_size == ld->off &&
2819 	    prev_st_off + prev_size == st->off)
2820 		return true;
2821 
2822 	/* Both in descending order. */
2823 	if (ld->off + curr_size == prev_ld_off &&
2824 	    st->off + curr_size == prev_st_off)
2825 		return true;
2826 
2827 	return false;
2828 }
2829 
2830 /* Return TRUE if cross memory access happens. Cross memory access means
2831  * store area is overlapping with load area that a later load might load
2832  * the value from previous store, for this case we can't treat the sequence
2833  * as an memory copy.
2834  */
2835 static bool
2836 cross_mem_access(struct bpf_insn *ld, struct nfp_insn_meta *head_ld_meta,
2837 		 struct nfp_insn_meta *head_st_meta)
2838 {
2839 	s16 head_ld_off, head_st_off, ld_off;
2840 
2841 	/* Different pointer types does not overlap. */
2842 	if (head_ld_meta->ptr.type != head_st_meta->ptr.type)
2843 		return false;
2844 
2845 	/* load and store are both PTR_TO_PACKET, check ID info.  */
2846 	if (head_ld_meta->ptr.id != head_st_meta->ptr.id)
2847 		return true;
2848 
2849 	/* Canonicalize the offsets. Turn all of them against the original
2850 	 * base register.
2851 	 */
2852 	head_ld_off = head_ld_meta->insn.off + head_ld_meta->ptr.off;
2853 	head_st_off = head_st_meta->insn.off + head_st_meta->ptr.off;
2854 	ld_off = ld->off + head_ld_meta->ptr.off;
2855 
2856 	/* Ascending order cross. */
2857 	if (ld_off > head_ld_off &&
2858 	    head_ld_off < head_st_off && ld_off >= head_st_off)
2859 		return true;
2860 
2861 	/* Descending order cross. */
2862 	if (ld_off < head_ld_off &&
2863 	    head_ld_off > head_st_off && ld_off <= head_st_off)
2864 		return true;
2865 
2866 	return false;
2867 }
2868 
2869 /* This pass try to identify the following instructoin sequences.
2870  *
2871  *   load R, [regA + offA]
2872  *   store [regB + offB], R
2873  *   load R, [regA + offA + const_imm_A]
2874  *   store [regB + offB + const_imm_A], R
2875  *   load R, [regA + offA + 2 * const_imm_A]
2876  *   store [regB + offB + 2 * const_imm_A], R
2877  *   ...
2878  *
2879  * Above sequence is typically generated by compiler when lowering
2880  * memcpy. NFP prefer using CPP instructions to accelerate it.
2881  */
2882 static void nfp_bpf_opt_ldst_gather(struct nfp_prog *nfp_prog)
2883 {
2884 	struct nfp_insn_meta *head_ld_meta = NULL;
2885 	struct nfp_insn_meta *head_st_meta = NULL;
2886 	struct nfp_insn_meta *meta1, *meta2;
2887 	struct bpf_insn *prev_ld = NULL;
2888 	struct bpf_insn *prev_st = NULL;
2889 	u8 count = 0;
2890 
2891 	nfp_for_each_insn_walk2(nfp_prog, meta1, meta2) {
2892 		struct bpf_insn *ld = &meta1->insn;
2893 		struct bpf_insn *st = &meta2->insn;
2894 
2895 		/* Reset record status if any of the following if true:
2896 		 *   - The current insn pair is not load/store.
2897 		 *   - The load/store pair doesn't chain with previous one.
2898 		 *   - The chained load/store pair crossed with previous pair.
2899 		 *   - The chained load/store pair has a total size of memory
2900 		 *     copy beyond 128 bytes which is the maximum length a
2901 		 *     single NFP CPP command can transfer.
2902 		 */
2903 		if (!curr_pair_is_memcpy(meta1, meta2) ||
2904 		    !curr_pair_chain_with_previous(meta1, meta2, prev_ld,
2905 						   prev_st) ||
2906 		    (head_ld_meta && (cross_mem_access(ld, head_ld_meta,
2907 						       head_st_meta) ||
2908 				      head_ld_meta->ldst_gather_len >= 128))) {
2909 			if (!count)
2910 				continue;
2911 
2912 			if (count > 1) {
2913 				s16 prev_ld_off = prev_ld->off;
2914 				s16 prev_st_off = prev_st->off;
2915 				s16 head_ld_off = head_ld_meta->insn.off;
2916 
2917 				if (prev_ld_off < head_ld_off) {
2918 					head_ld_meta->insn.off = prev_ld_off;
2919 					head_st_meta->insn.off = prev_st_off;
2920 					head_ld_meta->ldst_gather_len =
2921 						-head_ld_meta->ldst_gather_len;
2922 				}
2923 
2924 				head_ld_meta->paired_st = &head_st_meta->insn;
2925 				head_st_meta->skip = true;
2926 			} else {
2927 				head_ld_meta->ldst_gather_len = 0;
2928 			}
2929 
2930 			/* If the chain is ended by an load/store pair then this
2931 			 * could serve as the new head of the the next chain.
2932 			 */
2933 			if (curr_pair_is_memcpy(meta1, meta2)) {
2934 				head_ld_meta = meta1;
2935 				head_st_meta = meta2;
2936 				head_ld_meta->ldst_gather_len =
2937 					BPF_LDST_BYTES(ld);
2938 				meta1 = nfp_meta_next(meta1);
2939 				meta2 = nfp_meta_next(meta2);
2940 				prev_ld = ld;
2941 				prev_st = st;
2942 				count = 1;
2943 			} else {
2944 				head_ld_meta = NULL;
2945 				head_st_meta = NULL;
2946 				prev_ld = NULL;
2947 				prev_st = NULL;
2948 				count = 0;
2949 			}
2950 
2951 			continue;
2952 		}
2953 
2954 		if (!head_ld_meta) {
2955 			head_ld_meta = meta1;
2956 			head_st_meta = meta2;
2957 		} else {
2958 			meta1->skip = true;
2959 			meta2->skip = true;
2960 		}
2961 
2962 		head_ld_meta->ldst_gather_len += BPF_LDST_BYTES(ld);
2963 		meta1 = nfp_meta_next(meta1);
2964 		meta2 = nfp_meta_next(meta2);
2965 		prev_ld = ld;
2966 		prev_st = st;
2967 		count++;
2968 	}
2969 }
2970 
2971 static void nfp_bpf_opt_pkt_cache(struct nfp_prog *nfp_prog)
2972 {
2973 	struct nfp_insn_meta *meta, *range_node = NULL;
2974 	s16 range_start = 0, range_end = 0;
2975 	bool cache_avail = false;
2976 	struct bpf_insn *insn;
2977 	s32 range_ptr_off = 0;
2978 	u32 range_ptr_id = 0;
2979 
2980 	list_for_each_entry(meta, &nfp_prog->insns, l) {
2981 		if (meta->flags & FLAG_INSN_IS_JUMP_DST)
2982 			cache_avail = false;
2983 
2984 		if (meta->skip)
2985 			continue;
2986 
2987 		insn = &meta->insn;
2988 
2989 		if (is_mbpf_store_pkt(meta) ||
2990 		    insn->code == (BPF_JMP | BPF_CALL) ||
2991 		    is_mbpf_classic_store_pkt(meta) ||
2992 		    is_mbpf_classic_load(meta)) {
2993 			cache_avail = false;
2994 			continue;
2995 		}
2996 
2997 		if (!is_mbpf_load(meta))
2998 			continue;
2999 
3000 		if (meta->ptr.type != PTR_TO_PACKET || meta->ldst_gather_len) {
3001 			cache_avail = false;
3002 			continue;
3003 		}
3004 
3005 		if (!cache_avail) {
3006 			cache_avail = true;
3007 			if (range_node)
3008 				goto end_current_then_start_new;
3009 			goto start_new;
3010 		}
3011 
3012 		/* Check ID to make sure two reads share the same
3013 		 * variable offset against PTR_TO_PACKET, and check OFF
3014 		 * to make sure they also share the same constant
3015 		 * offset.
3016 		 *
3017 		 * OFFs don't really need to be the same, because they
3018 		 * are the constant offsets against PTR_TO_PACKET, so
3019 		 * for different OFFs, we could canonicalize them to
3020 		 * offsets against original packet pointer. We don't
3021 		 * support this.
3022 		 */
3023 		if (meta->ptr.id == range_ptr_id &&
3024 		    meta->ptr.off == range_ptr_off) {
3025 			s16 new_start = range_start;
3026 			s16 end, off = insn->off;
3027 			s16 new_end = range_end;
3028 			bool changed = false;
3029 
3030 			if (off < range_start) {
3031 				new_start = off;
3032 				changed = true;
3033 			}
3034 
3035 			end = off + BPF_LDST_BYTES(insn);
3036 			if (end > range_end) {
3037 				new_end = end;
3038 				changed = true;
3039 			}
3040 
3041 			if (!changed)
3042 				continue;
3043 
3044 			if (new_end - new_start <= 64) {
3045 				/* Install new range. */
3046 				range_start = new_start;
3047 				range_end = new_end;
3048 				continue;
3049 			}
3050 		}
3051 
3052 end_current_then_start_new:
3053 		range_node->pkt_cache.range_start = range_start;
3054 		range_node->pkt_cache.range_end = range_end;
3055 start_new:
3056 		range_node = meta;
3057 		range_node->pkt_cache.do_init = true;
3058 		range_ptr_id = range_node->ptr.id;
3059 		range_ptr_off = range_node->ptr.off;
3060 		range_start = insn->off;
3061 		range_end = insn->off + BPF_LDST_BYTES(insn);
3062 	}
3063 
3064 	if (range_node) {
3065 		range_node->pkt_cache.range_start = range_start;
3066 		range_node->pkt_cache.range_end = range_end;
3067 	}
3068 
3069 	list_for_each_entry(meta, &nfp_prog->insns, l) {
3070 		if (meta->skip)
3071 			continue;
3072 
3073 		if (is_mbpf_load_pkt(meta) && !meta->ldst_gather_len) {
3074 			if (meta->pkt_cache.do_init) {
3075 				range_start = meta->pkt_cache.range_start;
3076 				range_end = meta->pkt_cache.range_end;
3077 			} else {
3078 				meta->pkt_cache.range_start = range_start;
3079 				meta->pkt_cache.range_end = range_end;
3080 			}
3081 		}
3082 	}
3083 }
3084 
3085 static int nfp_bpf_optimize(struct nfp_prog *nfp_prog)
3086 {
3087 	nfp_bpf_opt_reg_init(nfp_prog);
3088 
3089 	nfp_bpf_opt_ld_mask(nfp_prog);
3090 	nfp_bpf_opt_ld_shift(nfp_prog);
3091 	nfp_bpf_opt_ldst_gather(nfp_prog);
3092 	nfp_bpf_opt_pkt_cache(nfp_prog);
3093 
3094 	return 0;
3095 }
3096 
3097 static int nfp_bpf_ustore_calc(u64 *prog, unsigned int len)
3098 {
3099 	__le64 *ustore = (__force __le64 *)prog;
3100 	int i;
3101 
3102 	for (i = 0; i < len; i++) {
3103 		int err;
3104 
3105 		err = nfp_ustore_check_valid_no_ecc(prog[i]);
3106 		if (err)
3107 			return err;
3108 
3109 		ustore[i] = cpu_to_le64(nfp_ustore_calc_ecc_insn(prog[i]));
3110 	}
3111 
3112 	return 0;
3113 }
3114 
3115 static void nfp_bpf_prog_trim(struct nfp_prog *nfp_prog)
3116 {
3117 	void *prog;
3118 
3119 	prog = kvmalloc_array(nfp_prog->prog_len, sizeof(u64), GFP_KERNEL);
3120 	if (!prog)
3121 		return;
3122 
3123 	nfp_prog->__prog_alloc_len = nfp_prog->prog_len * sizeof(u64);
3124 	memcpy(prog, nfp_prog->prog, nfp_prog->__prog_alloc_len);
3125 	kvfree(nfp_prog->prog);
3126 	nfp_prog->prog = prog;
3127 }
3128 
3129 int nfp_bpf_jit(struct nfp_prog *nfp_prog)
3130 {
3131 	int ret;
3132 
3133 	ret = nfp_bpf_optimize(nfp_prog);
3134 	if (ret)
3135 		return ret;
3136 
3137 	ret = nfp_translate(nfp_prog);
3138 	if (ret) {
3139 		pr_err("Translation failed with error %d (translated: %u)\n",
3140 		       ret, nfp_prog->n_translated);
3141 		return -EINVAL;
3142 	}
3143 
3144 	nfp_bpf_prog_trim(nfp_prog);
3145 
3146 	return ret;
3147 }
3148 
3149 void nfp_bpf_jit_prepare(struct nfp_prog *nfp_prog, unsigned int cnt)
3150 {
3151 	struct nfp_insn_meta *meta;
3152 
3153 	/* Another pass to record jump information. */
3154 	list_for_each_entry(meta, &nfp_prog->insns, l) {
3155 		u64 code = meta->insn.code;
3156 
3157 		if (BPF_CLASS(code) == BPF_JMP && BPF_OP(code) != BPF_EXIT &&
3158 		    BPF_OP(code) != BPF_CALL) {
3159 			struct nfp_insn_meta *dst_meta;
3160 			unsigned short dst_indx;
3161 
3162 			dst_indx = meta->n + 1 + meta->insn.off;
3163 			dst_meta = nfp_bpf_goto_meta(nfp_prog, meta, dst_indx,
3164 						     cnt);
3165 
3166 			meta->jmp_dst = dst_meta;
3167 			dst_meta->flags |= FLAG_INSN_IS_JUMP_DST;
3168 		}
3169 	}
3170 }
3171 
3172 bool nfp_bpf_supported_opcode(u8 code)
3173 {
3174 	return !!instr_cb[code];
3175 }
3176 
3177 void *nfp_bpf_relo_for_vnic(struct nfp_prog *nfp_prog, struct nfp_bpf_vnic *bv)
3178 {
3179 	unsigned int i;
3180 	u64 *prog;
3181 	int err;
3182 
3183 	prog = kmemdup(nfp_prog->prog, nfp_prog->prog_len * sizeof(u64),
3184 		       GFP_KERNEL);
3185 	if (!prog)
3186 		return ERR_PTR(-ENOMEM);
3187 
3188 	for (i = 0; i < nfp_prog->prog_len; i++) {
3189 		enum nfp_relo_type special;
3190 		u32 val;
3191 
3192 		special = FIELD_GET(OP_RELO_TYPE, prog[i]);
3193 		switch (special) {
3194 		case RELO_NONE:
3195 			continue;
3196 		case RELO_BR_REL:
3197 			br_add_offset(&prog[i], bv->start_off);
3198 			break;
3199 		case RELO_BR_GO_OUT:
3200 			br_set_offset(&prog[i],
3201 				      nfp_prog->tgt_out + bv->start_off);
3202 			break;
3203 		case RELO_BR_GO_ABORT:
3204 			br_set_offset(&prog[i],
3205 				      nfp_prog->tgt_abort + bv->start_off);
3206 			break;
3207 		case RELO_BR_NEXT_PKT:
3208 			br_set_offset(&prog[i], bv->tgt_done);
3209 			break;
3210 		case RELO_BR_HELPER:
3211 			val = br_get_offset(prog[i]);
3212 			val -= BR_OFF_RELO;
3213 			switch (val) {
3214 			case BPF_FUNC_map_lookup_elem:
3215 				val = nfp_prog->bpf->helpers.map_lookup;
3216 				break;
3217 			case BPF_FUNC_map_update_elem:
3218 				val = nfp_prog->bpf->helpers.map_update;
3219 				break;
3220 			case BPF_FUNC_map_delete_elem:
3221 				val = nfp_prog->bpf->helpers.map_delete;
3222 				break;
3223 			default:
3224 				pr_err("relocation of unknown helper %d\n",
3225 				       val);
3226 				err = -EINVAL;
3227 				goto err_free_prog;
3228 			}
3229 			br_set_offset(&prog[i], val);
3230 			break;
3231 		case RELO_IMMED_REL:
3232 			immed_add_value(&prog[i], bv->start_off);
3233 			break;
3234 		}
3235 
3236 		prog[i] &= ~OP_RELO_TYPE;
3237 	}
3238 
3239 	err = nfp_bpf_ustore_calc(prog, nfp_prog->prog_len);
3240 	if (err)
3241 		goto err_free_prog;
3242 
3243 	return prog;
3244 
3245 err_free_prog:
3246 	kfree(prog);
3247 	return ERR_PTR(err);
3248 }
3249