1 // SPDX-License-Identifier: (GPL-2.0-only OR BSD-2-Clause)
2 /* Copyright (C) 2016-2018 Netronome Systems, Inc. */
3 
4 #define pr_fmt(fmt)	"NFP net bpf: " fmt
5 
6 #include <linux/bug.h>
7 #include <linux/bpf.h>
8 #include <linux/filter.h>
9 #include <linux/kernel.h>
10 #include <linux/pkt_cls.h>
11 #include <linux/reciprocal_div.h>
12 #include <linux/unistd.h>
13 
14 #include "main.h"
15 #include "../nfp_asm.h"
16 #include "../nfp_net_ctrl.h"
17 
18 /* --- NFP prog --- */
19 /* Foreach "multiple" entries macros provide pos and next<n> pointers.
20  * It's safe to modify the next pointers (but not pos).
21  */
22 #define nfp_for_each_insn_walk2(nfp_prog, pos, next)			\
23 	for (pos = list_first_entry(&(nfp_prog)->insns, typeof(*pos), l), \
24 	     next = list_next_entry(pos, l);			\
25 	     &(nfp_prog)->insns != &pos->l &&			\
26 	     &(nfp_prog)->insns != &next->l;			\
27 	     pos = nfp_meta_next(pos),				\
28 	     next = nfp_meta_next(pos))
29 
30 #define nfp_for_each_insn_walk3(nfp_prog, pos, next, next2)		\
31 	for (pos = list_first_entry(&(nfp_prog)->insns, typeof(*pos), l), \
32 	     next = list_next_entry(pos, l),			\
33 	     next2 = list_next_entry(next, l);			\
34 	     &(nfp_prog)->insns != &pos->l &&			\
35 	     &(nfp_prog)->insns != &next->l &&			\
36 	     &(nfp_prog)->insns != &next2->l;			\
37 	     pos = nfp_meta_next(pos),				\
38 	     next = nfp_meta_next(pos),				\
39 	     next2 = nfp_meta_next(next))
40 
41 static bool
42 nfp_meta_has_prev(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
43 {
44 	return meta->l.prev != &nfp_prog->insns;
45 }
46 
47 static void nfp_prog_push(struct nfp_prog *nfp_prog, u64 insn)
48 {
49 	if (nfp_prog->__prog_alloc_len / sizeof(u64) == nfp_prog->prog_len) {
50 		pr_warn("instruction limit reached (%u NFP instructions)\n",
51 			nfp_prog->prog_len);
52 		nfp_prog->error = -ENOSPC;
53 		return;
54 	}
55 
56 	nfp_prog->prog[nfp_prog->prog_len] = insn;
57 	nfp_prog->prog_len++;
58 }
59 
60 static unsigned int nfp_prog_current_offset(struct nfp_prog *nfp_prog)
61 {
62 	return nfp_prog->prog_len;
63 }
64 
65 static bool
66 nfp_prog_confirm_current_offset(struct nfp_prog *nfp_prog, unsigned int off)
67 {
68 	/* If there is a recorded error we may have dropped instructions;
69 	 * that doesn't have to be due to translator bug, and the translation
70 	 * will fail anyway, so just return OK.
71 	 */
72 	if (nfp_prog->error)
73 		return true;
74 	return !WARN_ON_ONCE(nfp_prog_current_offset(nfp_prog) != off);
75 }
76 
77 /* --- Emitters --- */
78 static void
79 __emit_cmd(struct nfp_prog *nfp_prog, enum cmd_tgt_map op,
80 	   u8 mode, u8 xfer, u8 areg, u8 breg, u8 size, enum cmd_ctx_swap ctx,
81 	   bool indir)
82 {
83 	u64 insn;
84 
85 	insn =	FIELD_PREP(OP_CMD_A_SRC, areg) |
86 		FIELD_PREP(OP_CMD_CTX, ctx) |
87 		FIELD_PREP(OP_CMD_B_SRC, breg) |
88 		FIELD_PREP(OP_CMD_TOKEN, cmd_tgt_act[op].token) |
89 		FIELD_PREP(OP_CMD_XFER, xfer) |
90 		FIELD_PREP(OP_CMD_CNT, size) |
91 		FIELD_PREP(OP_CMD_SIG, ctx != CMD_CTX_NO_SWAP) |
92 		FIELD_PREP(OP_CMD_TGT_CMD, cmd_tgt_act[op].tgt_cmd) |
93 		FIELD_PREP(OP_CMD_INDIR, indir) |
94 		FIELD_PREP(OP_CMD_MODE, mode);
95 
96 	nfp_prog_push(nfp_prog, insn);
97 }
98 
99 static void
100 emit_cmd_any(struct nfp_prog *nfp_prog, enum cmd_tgt_map op, u8 mode, u8 xfer,
101 	     swreg lreg, swreg rreg, u8 size, enum cmd_ctx_swap ctx, bool indir)
102 {
103 	struct nfp_insn_re_regs reg;
104 	int err;
105 
106 	err = swreg_to_restricted(reg_none(), lreg, rreg, &reg, false);
107 	if (err) {
108 		nfp_prog->error = err;
109 		return;
110 	}
111 	if (reg.swap) {
112 		pr_err("cmd can't swap arguments\n");
113 		nfp_prog->error = -EFAULT;
114 		return;
115 	}
116 	if (reg.dst_lmextn || reg.src_lmextn) {
117 		pr_err("cmd can't use LMextn\n");
118 		nfp_prog->error = -EFAULT;
119 		return;
120 	}
121 
122 	__emit_cmd(nfp_prog, op, mode, xfer, reg.areg, reg.breg, size, ctx,
123 		   indir);
124 }
125 
126 static void
127 emit_cmd(struct nfp_prog *nfp_prog, enum cmd_tgt_map op, u8 mode, u8 xfer,
128 	 swreg lreg, swreg rreg, u8 size, enum cmd_ctx_swap ctx)
129 {
130 	emit_cmd_any(nfp_prog, op, mode, xfer, lreg, rreg, size, ctx, false);
131 }
132 
133 static void
134 emit_cmd_indir(struct nfp_prog *nfp_prog, enum cmd_tgt_map op, u8 mode, u8 xfer,
135 	       swreg lreg, swreg rreg, u8 size, enum cmd_ctx_swap ctx)
136 {
137 	emit_cmd_any(nfp_prog, op, mode, xfer, lreg, rreg, size, ctx, true);
138 }
139 
140 static void
141 __emit_br(struct nfp_prog *nfp_prog, enum br_mask mask, enum br_ev_pip ev_pip,
142 	  enum br_ctx_signal_state css, u16 addr, u8 defer)
143 {
144 	u16 addr_lo, addr_hi;
145 	u64 insn;
146 
147 	addr_lo = addr & (OP_BR_ADDR_LO >> __bf_shf(OP_BR_ADDR_LO));
148 	addr_hi = addr != addr_lo;
149 
150 	insn = OP_BR_BASE |
151 		FIELD_PREP(OP_BR_MASK, mask) |
152 		FIELD_PREP(OP_BR_EV_PIP, ev_pip) |
153 		FIELD_PREP(OP_BR_CSS, css) |
154 		FIELD_PREP(OP_BR_DEFBR, defer) |
155 		FIELD_PREP(OP_BR_ADDR_LO, addr_lo) |
156 		FIELD_PREP(OP_BR_ADDR_HI, addr_hi);
157 
158 	nfp_prog_push(nfp_prog, insn);
159 }
160 
161 static void
162 emit_br_relo(struct nfp_prog *nfp_prog, enum br_mask mask, u16 addr, u8 defer,
163 	     enum nfp_relo_type relo)
164 {
165 	if (mask == BR_UNC && defer > 2) {
166 		pr_err("BUG: branch defer out of bounds %d\n", defer);
167 		nfp_prog->error = -EFAULT;
168 		return;
169 	}
170 
171 	__emit_br(nfp_prog, mask,
172 		  mask != BR_UNC ? BR_EV_PIP_COND : BR_EV_PIP_UNCOND,
173 		  BR_CSS_NONE, addr, defer);
174 
175 	nfp_prog->prog[nfp_prog->prog_len - 1] |=
176 		FIELD_PREP(OP_RELO_TYPE, relo);
177 }
178 
179 static void
180 emit_br(struct nfp_prog *nfp_prog, enum br_mask mask, u16 addr, u8 defer)
181 {
182 	emit_br_relo(nfp_prog, mask, addr, defer, RELO_BR_REL);
183 }
184 
185 static void
186 __emit_br_bit(struct nfp_prog *nfp_prog, u16 areg, u16 breg, u16 addr, u8 defer,
187 	      bool set, bool src_lmextn)
188 {
189 	u16 addr_lo, addr_hi;
190 	u64 insn;
191 
192 	addr_lo = addr & (OP_BR_BIT_ADDR_LO >> __bf_shf(OP_BR_BIT_ADDR_LO));
193 	addr_hi = addr != addr_lo;
194 
195 	insn = OP_BR_BIT_BASE |
196 		FIELD_PREP(OP_BR_BIT_A_SRC, areg) |
197 		FIELD_PREP(OP_BR_BIT_B_SRC, breg) |
198 		FIELD_PREP(OP_BR_BIT_BV, set) |
199 		FIELD_PREP(OP_BR_BIT_DEFBR, defer) |
200 		FIELD_PREP(OP_BR_BIT_ADDR_LO, addr_lo) |
201 		FIELD_PREP(OP_BR_BIT_ADDR_HI, addr_hi) |
202 		FIELD_PREP(OP_BR_BIT_SRC_LMEXTN, src_lmextn);
203 
204 	nfp_prog_push(nfp_prog, insn);
205 }
206 
207 static void
208 emit_br_bit_relo(struct nfp_prog *nfp_prog, swreg src, u8 bit, u16 addr,
209 		 u8 defer, bool set, enum nfp_relo_type relo)
210 {
211 	struct nfp_insn_re_regs reg;
212 	int err;
213 
214 	/* NOTE: The bit to test is specified as an rotation amount, such that
215 	 *	 the bit to test will be placed on the MSB of the result when
216 	 *	 doing a rotate right. For bit X, we need right rotate X + 1.
217 	 */
218 	bit += 1;
219 
220 	err = swreg_to_restricted(reg_none(), src, reg_imm(bit), &reg, false);
221 	if (err) {
222 		nfp_prog->error = err;
223 		return;
224 	}
225 
226 	__emit_br_bit(nfp_prog, reg.areg, reg.breg, addr, defer, set,
227 		      reg.src_lmextn);
228 
229 	nfp_prog->prog[nfp_prog->prog_len - 1] |=
230 		FIELD_PREP(OP_RELO_TYPE, relo);
231 }
232 
233 static void
234 emit_br_bset(struct nfp_prog *nfp_prog, swreg src, u8 bit, u16 addr, u8 defer)
235 {
236 	emit_br_bit_relo(nfp_prog, src, bit, addr, defer, true, RELO_BR_REL);
237 }
238 
239 static void
240 __emit_br_alu(struct nfp_prog *nfp_prog, u16 areg, u16 breg, u16 imm_hi,
241 	      u8 defer, bool dst_lmextn, bool src_lmextn)
242 {
243 	u64 insn;
244 
245 	insn = OP_BR_ALU_BASE |
246 		FIELD_PREP(OP_BR_ALU_A_SRC, areg) |
247 		FIELD_PREP(OP_BR_ALU_B_SRC, breg) |
248 		FIELD_PREP(OP_BR_ALU_DEFBR, defer) |
249 		FIELD_PREP(OP_BR_ALU_IMM_HI, imm_hi) |
250 		FIELD_PREP(OP_BR_ALU_SRC_LMEXTN, src_lmextn) |
251 		FIELD_PREP(OP_BR_ALU_DST_LMEXTN, dst_lmextn);
252 
253 	nfp_prog_push(nfp_prog, insn);
254 }
255 
256 static void emit_rtn(struct nfp_prog *nfp_prog, swreg base, u8 defer)
257 {
258 	struct nfp_insn_ur_regs reg;
259 	int err;
260 
261 	err = swreg_to_unrestricted(reg_none(), base, reg_imm(0), &reg);
262 	if (err) {
263 		nfp_prog->error = err;
264 		return;
265 	}
266 
267 	__emit_br_alu(nfp_prog, reg.areg, reg.breg, 0, defer, reg.dst_lmextn,
268 		      reg.src_lmextn);
269 }
270 
271 static void
272 __emit_immed(struct nfp_prog *nfp_prog, u16 areg, u16 breg, u16 imm_hi,
273 	     enum immed_width width, bool invert,
274 	     enum immed_shift shift, bool wr_both,
275 	     bool dst_lmextn, bool src_lmextn)
276 {
277 	u64 insn;
278 
279 	insn = OP_IMMED_BASE |
280 		FIELD_PREP(OP_IMMED_A_SRC, areg) |
281 		FIELD_PREP(OP_IMMED_B_SRC, breg) |
282 		FIELD_PREP(OP_IMMED_IMM, imm_hi) |
283 		FIELD_PREP(OP_IMMED_WIDTH, width) |
284 		FIELD_PREP(OP_IMMED_INV, invert) |
285 		FIELD_PREP(OP_IMMED_SHIFT, shift) |
286 		FIELD_PREP(OP_IMMED_WR_AB, wr_both) |
287 		FIELD_PREP(OP_IMMED_SRC_LMEXTN, src_lmextn) |
288 		FIELD_PREP(OP_IMMED_DST_LMEXTN, dst_lmextn);
289 
290 	nfp_prog_push(nfp_prog, insn);
291 }
292 
293 static void
294 emit_immed(struct nfp_prog *nfp_prog, swreg dst, u16 imm,
295 	   enum immed_width width, bool invert, enum immed_shift shift)
296 {
297 	struct nfp_insn_ur_regs reg;
298 	int err;
299 
300 	if (swreg_type(dst) == NN_REG_IMM) {
301 		nfp_prog->error = -EFAULT;
302 		return;
303 	}
304 
305 	err = swreg_to_unrestricted(dst, dst, reg_imm(imm & 0xff), &reg);
306 	if (err) {
307 		nfp_prog->error = err;
308 		return;
309 	}
310 
311 	/* Use reg.dst when destination is No-Dest. */
312 	__emit_immed(nfp_prog,
313 		     swreg_type(dst) == NN_REG_NONE ? reg.dst : reg.areg,
314 		     reg.breg, imm >> 8, width, invert, shift,
315 		     reg.wr_both, reg.dst_lmextn, reg.src_lmextn);
316 }
317 
318 static void
319 __emit_shf(struct nfp_prog *nfp_prog, u16 dst, enum alu_dst_ab dst_ab,
320 	   enum shf_sc sc, u8 shift,
321 	   u16 areg, enum shf_op op, u16 breg, bool i8, bool sw, bool wr_both,
322 	   bool dst_lmextn, bool src_lmextn)
323 {
324 	u64 insn;
325 
326 	if (!FIELD_FIT(OP_SHF_SHIFT, shift)) {
327 		nfp_prog->error = -EFAULT;
328 		return;
329 	}
330 
331 	if (sc == SHF_SC_L_SHF)
332 		shift = 32 - shift;
333 
334 	insn = OP_SHF_BASE |
335 		FIELD_PREP(OP_SHF_A_SRC, areg) |
336 		FIELD_PREP(OP_SHF_SC, sc) |
337 		FIELD_PREP(OP_SHF_B_SRC, breg) |
338 		FIELD_PREP(OP_SHF_I8, i8) |
339 		FIELD_PREP(OP_SHF_SW, sw) |
340 		FIELD_PREP(OP_SHF_DST, dst) |
341 		FIELD_PREP(OP_SHF_SHIFT, shift) |
342 		FIELD_PREP(OP_SHF_OP, op) |
343 		FIELD_PREP(OP_SHF_DST_AB, dst_ab) |
344 		FIELD_PREP(OP_SHF_WR_AB, wr_both) |
345 		FIELD_PREP(OP_SHF_SRC_LMEXTN, src_lmextn) |
346 		FIELD_PREP(OP_SHF_DST_LMEXTN, dst_lmextn);
347 
348 	nfp_prog_push(nfp_prog, insn);
349 }
350 
351 static void
352 emit_shf(struct nfp_prog *nfp_prog, swreg dst,
353 	 swreg lreg, enum shf_op op, swreg rreg, enum shf_sc sc, u8 shift)
354 {
355 	struct nfp_insn_re_regs reg;
356 	int err;
357 
358 	err = swreg_to_restricted(dst, lreg, rreg, &reg, true);
359 	if (err) {
360 		nfp_prog->error = err;
361 		return;
362 	}
363 
364 	__emit_shf(nfp_prog, reg.dst, reg.dst_ab, sc, shift,
365 		   reg.areg, op, reg.breg, reg.i8, reg.swap, reg.wr_both,
366 		   reg.dst_lmextn, reg.src_lmextn);
367 }
368 
369 static void
370 emit_shf_indir(struct nfp_prog *nfp_prog, swreg dst,
371 	       swreg lreg, enum shf_op op, swreg rreg, enum shf_sc sc)
372 {
373 	if (sc == SHF_SC_R_ROT) {
374 		pr_err("indirect shift is not allowed on rotation\n");
375 		nfp_prog->error = -EFAULT;
376 		return;
377 	}
378 
379 	emit_shf(nfp_prog, dst, lreg, op, rreg, sc, 0);
380 }
381 
382 static void
383 __emit_alu(struct nfp_prog *nfp_prog, u16 dst, enum alu_dst_ab dst_ab,
384 	   u16 areg, enum alu_op op, u16 breg, bool swap, bool wr_both,
385 	   bool dst_lmextn, bool src_lmextn)
386 {
387 	u64 insn;
388 
389 	insn = OP_ALU_BASE |
390 		FIELD_PREP(OP_ALU_A_SRC, areg) |
391 		FIELD_PREP(OP_ALU_B_SRC, breg) |
392 		FIELD_PREP(OP_ALU_DST, dst) |
393 		FIELD_PREP(OP_ALU_SW, swap) |
394 		FIELD_PREP(OP_ALU_OP, op) |
395 		FIELD_PREP(OP_ALU_DST_AB, dst_ab) |
396 		FIELD_PREP(OP_ALU_WR_AB, wr_both) |
397 		FIELD_PREP(OP_ALU_SRC_LMEXTN, src_lmextn) |
398 		FIELD_PREP(OP_ALU_DST_LMEXTN, dst_lmextn);
399 
400 	nfp_prog_push(nfp_prog, insn);
401 }
402 
403 static void
404 emit_alu(struct nfp_prog *nfp_prog, swreg dst,
405 	 swreg lreg, enum alu_op op, swreg rreg)
406 {
407 	struct nfp_insn_ur_regs reg;
408 	int err;
409 
410 	err = swreg_to_unrestricted(dst, lreg, rreg, &reg);
411 	if (err) {
412 		nfp_prog->error = err;
413 		return;
414 	}
415 
416 	__emit_alu(nfp_prog, reg.dst, reg.dst_ab,
417 		   reg.areg, op, reg.breg, reg.swap, reg.wr_both,
418 		   reg.dst_lmextn, reg.src_lmextn);
419 }
420 
421 static void
422 __emit_mul(struct nfp_prog *nfp_prog, enum alu_dst_ab dst_ab, u16 areg,
423 	   enum mul_type type, enum mul_step step, u16 breg, bool swap,
424 	   bool wr_both, bool dst_lmextn, bool src_lmextn)
425 {
426 	u64 insn;
427 
428 	insn = OP_MUL_BASE |
429 		FIELD_PREP(OP_MUL_A_SRC, areg) |
430 		FIELD_PREP(OP_MUL_B_SRC, breg) |
431 		FIELD_PREP(OP_MUL_STEP, step) |
432 		FIELD_PREP(OP_MUL_DST_AB, dst_ab) |
433 		FIELD_PREP(OP_MUL_SW, swap) |
434 		FIELD_PREP(OP_MUL_TYPE, type) |
435 		FIELD_PREP(OP_MUL_WR_AB, wr_both) |
436 		FIELD_PREP(OP_MUL_SRC_LMEXTN, src_lmextn) |
437 		FIELD_PREP(OP_MUL_DST_LMEXTN, dst_lmextn);
438 
439 	nfp_prog_push(nfp_prog, insn);
440 }
441 
442 static void
443 emit_mul(struct nfp_prog *nfp_prog, swreg lreg, enum mul_type type,
444 	 enum mul_step step, swreg rreg)
445 {
446 	struct nfp_insn_ur_regs reg;
447 	u16 areg;
448 	int err;
449 
450 	if (type == MUL_TYPE_START && step != MUL_STEP_NONE) {
451 		nfp_prog->error = -EINVAL;
452 		return;
453 	}
454 
455 	if (step == MUL_LAST || step == MUL_LAST_2) {
456 		/* When type is step and step Number is LAST or LAST2, left
457 		 * source is used as destination.
458 		 */
459 		err = swreg_to_unrestricted(lreg, reg_none(), rreg, &reg);
460 		areg = reg.dst;
461 	} else {
462 		err = swreg_to_unrestricted(reg_none(), lreg, rreg, &reg);
463 		areg = reg.areg;
464 	}
465 
466 	if (err) {
467 		nfp_prog->error = err;
468 		return;
469 	}
470 
471 	__emit_mul(nfp_prog, reg.dst_ab, areg, type, step, reg.breg, reg.swap,
472 		   reg.wr_both, reg.dst_lmextn, reg.src_lmextn);
473 }
474 
475 static void
476 __emit_ld_field(struct nfp_prog *nfp_prog, enum shf_sc sc,
477 		u8 areg, u8 bmask, u8 breg, u8 shift, bool imm8,
478 		bool zero, bool swap, bool wr_both,
479 		bool dst_lmextn, bool src_lmextn)
480 {
481 	u64 insn;
482 
483 	insn = OP_LDF_BASE |
484 		FIELD_PREP(OP_LDF_A_SRC, areg) |
485 		FIELD_PREP(OP_LDF_SC, sc) |
486 		FIELD_PREP(OP_LDF_B_SRC, breg) |
487 		FIELD_PREP(OP_LDF_I8, imm8) |
488 		FIELD_PREP(OP_LDF_SW, swap) |
489 		FIELD_PREP(OP_LDF_ZF, zero) |
490 		FIELD_PREP(OP_LDF_BMASK, bmask) |
491 		FIELD_PREP(OP_LDF_SHF, shift) |
492 		FIELD_PREP(OP_LDF_WR_AB, wr_both) |
493 		FIELD_PREP(OP_LDF_SRC_LMEXTN, src_lmextn) |
494 		FIELD_PREP(OP_LDF_DST_LMEXTN, dst_lmextn);
495 
496 	nfp_prog_push(nfp_prog, insn);
497 }
498 
499 static void
500 emit_ld_field_any(struct nfp_prog *nfp_prog, swreg dst, u8 bmask, swreg src,
501 		  enum shf_sc sc, u8 shift, bool zero)
502 {
503 	struct nfp_insn_re_regs reg;
504 	int err;
505 
506 	/* Note: ld_field is special as it uses one of the src regs as dst */
507 	err = swreg_to_restricted(dst, dst, src, &reg, true);
508 	if (err) {
509 		nfp_prog->error = err;
510 		return;
511 	}
512 
513 	__emit_ld_field(nfp_prog, sc, reg.areg, bmask, reg.breg, shift,
514 			reg.i8, zero, reg.swap, reg.wr_both,
515 			reg.dst_lmextn, reg.src_lmextn);
516 }
517 
518 static void
519 emit_ld_field(struct nfp_prog *nfp_prog, swreg dst, u8 bmask, swreg src,
520 	      enum shf_sc sc, u8 shift)
521 {
522 	emit_ld_field_any(nfp_prog, dst, bmask, src, sc, shift, false);
523 }
524 
525 static void
526 __emit_lcsr(struct nfp_prog *nfp_prog, u16 areg, u16 breg, bool wr, u16 addr,
527 	    bool dst_lmextn, bool src_lmextn)
528 {
529 	u64 insn;
530 
531 	insn = OP_LCSR_BASE |
532 		FIELD_PREP(OP_LCSR_A_SRC, areg) |
533 		FIELD_PREP(OP_LCSR_B_SRC, breg) |
534 		FIELD_PREP(OP_LCSR_WRITE, wr) |
535 		FIELD_PREP(OP_LCSR_ADDR, addr / 4) |
536 		FIELD_PREP(OP_LCSR_SRC_LMEXTN, src_lmextn) |
537 		FIELD_PREP(OP_LCSR_DST_LMEXTN, dst_lmextn);
538 
539 	nfp_prog_push(nfp_prog, insn);
540 }
541 
542 static void emit_csr_wr(struct nfp_prog *nfp_prog, swreg src, u16 addr)
543 {
544 	struct nfp_insn_ur_regs reg;
545 	int err;
546 
547 	/* This instruction takes immeds instead of reg_none() for the ignored
548 	 * operand, but we can't encode 2 immeds in one instr with our normal
549 	 * swreg infra so if param is an immed, we encode as reg_none() and
550 	 * copy the immed to both operands.
551 	 */
552 	if (swreg_type(src) == NN_REG_IMM) {
553 		err = swreg_to_unrestricted(reg_none(), src, reg_none(), &reg);
554 		reg.breg = reg.areg;
555 	} else {
556 		err = swreg_to_unrestricted(reg_none(), src, reg_imm(0), &reg);
557 	}
558 	if (err) {
559 		nfp_prog->error = err;
560 		return;
561 	}
562 
563 	__emit_lcsr(nfp_prog, reg.areg, reg.breg, true, addr,
564 		    false, reg.src_lmextn);
565 }
566 
567 /* CSR value is read in following immed[gpr, 0] */
568 static void __emit_csr_rd(struct nfp_prog *nfp_prog, u16 addr)
569 {
570 	__emit_lcsr(nfp_prog, 0, 0, false, addr, false, false);
571 }
572 
573 static void emit_nop(struct nfp_prog *nfp_prog)
574 {
575 	__emit_immed(nfp_prog, UR_REG_IMM, UR_REG_IMM, 0, 0, 0, 0, 0, 0, 0);
576 }
577 
578 /* --- Wrappers --- */
579 static bool pack_immed(u32 imm, u16 *val, enum immed_shift *shift)
580 {
581 	if (!(imm & 0xffff0000)) {
582 		*val = imm;
583 		*shift = IMMED_SHIFT_0B;
584 	} else if (!(imm & 0xff0000ff)) {
585 		*val = imm >> 8;
586 		*shift = IMMED_SHIFT_1B;
587 	} else if (!(imm & 0x0000ffff)) {
588 		*val = imm >> 16;
589 		*shift = IMMED_SHIFT_2B;
590 	} else {
591 		return false;
592 	}
593 
594 	return true;
595 }
596 
597 static void wrp_immed(struct nfp_prog *nfp_prog, swreg dst, u32 imm)
598 {
599 	enum immed_shift shift;
600 	u16 val;
601 
602 	if (pack_immed(imm, &val, &shift)) {
603 		emit_immed(nfp_prog, dst, val, IMMED_WIDTH_ALL, false, shift);
604 	} else if (pack_immed(~imm, &val, &shift)) {
605 		emit_immed(nfp_prog, dst, val, IMMED_WIDTH_ALL, true, shift);
606 	} else {
607 		emit_immed(nfp_prog, dst, imm & 0xffff, IMMED_WIDTH_ALL,
608 			   false, IMMED_SHIFT_0B);
609 		emit_immed(nfp_prog, dst, imm >> 16, IMMED_WIDTH_WORD,
610 			   false, IMMED_SHIFT_2B);
611 	}
612 }
613 
614 static void
615 wrp_immed_relo(struct nfp_prog *nfp_prog, swreg dst, u32 imm,
616 	       enum nfp_relo_type relo)
617 {
618 	if (imm > 0xffff) {
619 		pr_err("relocation of a large immediate!\n");
620 		nfp_prog->error = -EFAULT;
621 		return;
622 	}
623 	emit_immed(nfp_prog, dst, imm, IMMED_WIDTH_ALL, false, IMMED_SHIFT_0B);
624 
625 	nfp_prog->prog[nfp_prog->prog_len - 1] |=
626 		FIELD_PREP(OP_RELO_TYPE, relo);
627 }
628 
629 /* ur_load_imm_any() - encode immediate or use tmp register (unrestricted)
630  * If the @imm is small enough encode it directly in operand and return
631  * otherwise load @imm to a spare register and return its encoding.
632  */
633 static swreg ur_load_imm_any(struct nfp_prog *nfp_prog, u32 imm, swreg tmp_reg)
634 {
635 	if (FIELD_FIT(UR_REG_IMM_MAX, imm))
636 		return reg_imm(imm);
637 
638 	wrp_immed(nfp_prog, tmp_reg, imm);
639 	return tmp_reg;
640 }
641 
642 /* re_load_imm_any() - encode immediate or use tmp register (restricted)
643  * If the @imm is small enough encode it directly in operand and return
644  * otherwise load @imm to a spare register and return its encoding.
645  */
646 static swreg re_load_imm_any(struct nfp_prog *nfp_prog, u32 imm, swreg tmp_reg)
647 {
648 	if (FIELD_FIT(RE_REG_IMM_MAX, imm))
649 		return reg_imm(imm);
650 
651 	wrp_immed(nfp_prog, tmp_reg, imm);
652 	return tmp_reg;
653 }
654 
655 static void wrp_nops(struct nfp_prog *nfp_prog, unsigned int count)
656 {
657 	while (count--)
658 		emit_nop(nfp_prog);
659 }
660 
661 static void wrp_mov(struct nfp_prog *nfp_prog, swreg dst, swreg src)
662 {
663 	emit_alu(nfp_prog, dst, reg_none(), ALU_OP_NONE, src);
664 }
665 
666 static void wrp_reg_mov(struct nfp_prog *nfp_prog, u16 dst, u16 src)
667 {
668 	wrp_mov(nfp_prog, reg_both(dst), reg_b(src));
669 }
670 
671 /* wrp_reg_subpart() - load @field_len bytes from @offset of @src, write the
672  * result to @dst from low end.
673  */
674 static void
675 wrp_reg_subpart(struct nfp_prog *nfp_prog, swreg dst, swreg src, u8 field_len,
676 		u8 offset)
677 {
678 	enum shf_sc sc = offset ? SHF_SC_R_SHF : SHF_SC_NONE;
679 	u8 mask = (1 << field_len) - 1;
680 
681 	emit_ld_field_any(nfp_prog, dst, mask, src, sc, offset * 8, true);
682 }
683 
684 /* wrp_reg_or_subpart() - load @field_len bytes from low end of @src, or the
685  * result to @dst from offset, there is no change on the other bits of @dst.
686  */
687 static void
688 wrp_reg_or_subpart(struct nfp_prog *nfp_prog, swreg dst, swreg src,
689 		   u8 field_len, u8 offset)
690 {
691 	enum shf_sc sc = offset ? SHF_SC_L_SHF : SHF_SC_NONE;
692 	u8 mask = ((1 << field_len) - 1) << offset;
693 
694 	emit_ld_field(nfp_prog, dst, mask, src, sc, 32 - offset * 8);
695 }
696 
697 static void
698 addr40_offset(struct nfp_prog *nfp_prog, u8 src_gpr, swreg offset,
699 	      swreg *rega, swreg *regb)
700 {
701 	if (offset == reg_imm(0)) {
702 		*rega = reg_a(src_gpr);
703 		*regb = reg_b(src_gpr + 1);
704 		return;
705 	}
706 
707 	emit_alu(nfp_prog, imm_a(nfp_prog), reg_a(src_gpr), ALU_OP_ADD, offset);
708 	emit_alu(nfp_prog, imm_b(nfp_prog), reg_b(src_gpr + 1), ALU_OP_ADD_C,
709 		 reg_imm(0));
710 	*rega = imm_a(nfp_prog);
711 	*regb = imm_b(nfp_prog);
712 }
713 
714 /* NFP has Command Push Pull bus which supports bluk memory operations. */
715 static int nfp_cpp_memcpy(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
716 {
717 	bool descending_seq = meta->ldst_gather_len < 0;
718 	s16 len = abs(meta->ldst_gather_len);
719 	swreg src_base, off;
720 	bool src_40bit_addr;
721 	unsigned int i;
722 	u8 xfer_num;
723 
724 	off = re_load_imm_any(nfp_prog, meta->insn.off, imm_b(nfp_prog));
725 	src_40bit_addr = meta->ptr.type == PTR_TO_MAP_VALUE;
726 	src_base = reg_a(meta->insn.src_reg * 2);
727 	xfer_num = round_up(len, 4) / 4;
728 
729 	if (src_40bit_addr)
730 		addr40_offset(nfp_prog, meta->insn.src_reg * 2, off, &src_base,
731 			      &off);
732 
733 	/* Setup PREV_ALU fields to override memory read length. */
734 	if (len > 32)
735 		wrp_immed(nfp_prog, reg_none(),
736 			  CMD_OVE_LEN | FIELD_PREP(CMD_OV_LEN, xfer_num - 1));
737 
738 	/* Memory read from source addr into transfer-in registers. */
739 	emit_cmd_any(nfp_prog, CMD_TGT_READ32_SWAP,
740 		     src_40bit_addr ? CMD_MODE_40b_BA : CMD_MODE_32b, 0,
741 		     src_base, off, xfer_num - 1, CMD_CTX_SWAP, len > 32);
742 
743 	/* Move from transfer-in to transfer-out. */
744 	for (i = 0; i < xfer_num; i++)
745 		wrp_mov(nfp_prog, reg_xfer(i), reg_xfer(i));
746 
747 	off = re_load_imm_any(nfp_prog, meta->paired_st->off, imm_b(nfp_prog));
748 
749 	if (len <= 8) {
750 		/* Use single direct_ref write8. */
751 		emit_cmd(nfp_prog, CMD_TGT_WRITE8_SWAP, CMD_MODE_32b, 0,
752 			 reg_a(meta->paired_st->dst_reg * 2), off, len - 1,
753 			 CMD_CTX_SWAP);
754 	} else if (len <= 32 && IS_ALIGNED(len, 4)) {
755 		/* Use single direct_ref write32. */
756 		emit_cmd(nfp_prog, CMD_TGT_WRITE32_SWAP, CMD_MODE_32b, 0,
757 			 reg_a(meta->paired_st->dst_reg * 2), off, xfer_num - 1,
758 			 CMD_CTX_SWAP);
759 	} else if (len <= 32) {
760 		/* Use single indirect_ref write8. */
761 		wrp_immed(nfp_prog, reg_none(),
762 			  CMD_OVE_LEN | FIELD_PREP(CMD_OV_LEN, len - 1));
763 		emit_cmd_indir(nfp_prog, CMD_TGT_WRITE8_SWAP, CMD_MODE_32b, 0,
764 			       reg_a(meta->paired_st->dst_reg * 2), off,
765 			       len - 1, CMD_CTX_SWAP);
766 	} else if (IS_ALIGNED(len, 4)) {
767 		/* Use single indirect_ref write32. */
768 		wrp_immed(nfp_prog, reg_none(),
769 			  CMD_OVE_LEN | FIELD_PREP(CMD_OV_LEN, xfer_num - 1));
770 		emit_cmd_indir(nfp_prog, CMD_TGT_WRITE32_SWAP, CMD_MODE_32b, 0,
771 			       reg_a(meta->paired_st->dst_reg * 2), off,
772 			       xfer_num - 1, CMD_CTX_SWAP);
773 	} else if (len <= 40) {
774 		/* Use one direct_ref write32 to write the first 32-bytes, then
775 		 * another direct_ref write8 to write the remaining bytes.
776 		 */
777 		emit_cmd(nfp_prog, CMD_TGT_WRITE32_SWAP, CMD_MODE_32b, 0,
778 			 reg_a(meta->paired_st->dst_reg * 2), off, 7,
779 			 CMD_CTX_SWAP);
780 
781 		off = re_load_imm_any(nfp_prog, meta->paired_st->off + 32,
782 				      imm_b(nfp_prog));
783 		emit_cmd(nfp_prog, CMD_TGT_WRITE8_SWAP, CMD_MODE_32b, 8,
784 			 reg_a(meta->paired_st->dst_reg * 2), off, len - 33,
785 			 CMD_CTX_SWAP);
786 	} else {
787 		/* Use one indirect_ref write32 to write 4-bytes aligned length,
788 		 * then another direct_ref write8 to write the remaining bytes.
789 		 */
790 		u8 new_off;
791 
792 		wrp_immed(nfp_prog, reg_none(),
793 			  CMD_OVE_LEN | FIELD_PREP(CMD_OV_LEN, xfer_num - 2));
794 		emit_cmd_indir(nfp_prog, CMD_TGT_WRITE32_SWAP, CMD_MODE_32b, 0,
795 			       reg_a(meta->paired_st->dst_reg * 2), off,
796 			       xfer_num - 2, CMD_CTX_SWAP);
797 		new_off = meta->paired_st->off + (xfer_num - 1) * 4;
798 		off = re_load_imm_any(nfp_prog, new_off, imm_b(nfp_prog));
799 		emit_cmd(nfp_prog, CMD_TGT_WRITE8_SWAP, CMD_MODE_32b,
800 			 xfer_num - 1, reg_a(meta->paired_st->dst_reg * 2), off,
801 			 (len & 0x3) - 1, CMD_CTX_SWAP);
802 	}
803 
804 	/* TODO: The following extra load is to make sure data flow be identical
805 	 *  before and after we do memory copy optimization.
806 	 *
807 	 *  The load destination register is not guaranteed to be dead, so we
808 	 *  need to make sure it is loaded with the value the same as before
809 	 *  this transformation.
810 	 *
811 	 *  These extra loads could be removed once we have accurate register
812 	 *  usage information.
813 	 */
814 	if (descending_seq)
815 		xfer_num = 0;
816 	else if (BPF_SIZE(meta->insn.code) != BPF_DW)
817 		xfer_num = xfer_num - 1;
818 	else
819 		xfer_num = xfer_num - 2;
820 
821 	switch (BPF_SIZE(meta->insn.code)) {
822 	case BPF_B:
823 		wrp_reg_subpart(nfp_prog, reg_both(meta->insn.dst_reg * 2),
824 				reg_xfer(xfer_num), 1,
825 				IS_ALIGNED(len, 4) ? 3 : (len & 3) - 1);
826 		break;
827 	case BPF_H:
828 		wrp_reg_subpart(nfp_prog, reg_both(meta->insn.dst_reg * 2),
829 				reg_xfer(xfer_num), 2, (len & 3) ^ 2);
830 		break;
831 	case BPF_W:
832 		wrp_mov(nfp_prog, reg_both(meta->insn.dst_reg * 2),
833 			reg_xfer(0));
834 		break;
835 	case BPF_DW:
836 		wrp_mov(nfp_prog, reg_both(meta->insn.dst_reg * 2),
837 			reg_xfer(xfer_num));
838 		wrp_mov(nfp_prog, reg_both(meta->insn.dst_reg * 2 + 1),
839 			reg_xfer(xfer_num + 1));
840 		break;
841 	}
842 
843 	if (BPF_SIZE(meta->insn.code) != BPF_DW)
844 		wrp_immed(nfp_prog, reg_both(meta->insn.dst_reg * 2 + 1), 0);
845 
846 	return 0;
847 }
848 
849 static int
850 data_ld(struct nfp_prog *nfp_prog, swreg offset, u8 dst_gpr, int size)
851 {
852 	unsigned int i;
853 	u16 shift, sz;
854 
855 	/* We load the value from the address indicated in @offset and then
856 	 * shift out the data we don't need.  Note: this is big endian!
857 	 */
858 	sz = max(size, 4);
859 	shift = size < 4 ? 4 - size : 0;
860 
861 	emit_cmd(nfp_prog, CMD_TGT_READ8, CMD_MODE_32b, 0,
862 		 pptr_reg(nfp_prog), offset, sz - 1, CMD_CTX_SWAP);
863 
864 	i = 0;
865 	if (shift)
866 		emit_shf(nfp_prog, reg_both(dst_gpr), reg_none(), SHF_OP_NONE,
867 			 reg_xfer(0), SHF_SC_R_SHF, shift * 8);
868 	else
869 		for (; i * 4 < size; i++)
870 			wrp_mov(nfp_prog, reg_both(dst_gpr + i), reg_xfer(i));
871 
872 	if (i < 2)
873 		wrp_immed(nfp_prog, reg_both(dst_gpr + 1), 0);
874 
875 	return 0;
876 }
877 
878 static int
879 data_ld_host_order(struct nfp_prog *nfp_prog, u8 dst_gpr,
880 		   swreg lreg, swreg rreg, int size, enum cmd_mode mode)
881 {
882 	unsigned int i;
883 	u8 mask, sz;
884 
885 	/* We load the value from the address indicated in rreg + lreg and then
886 	 * mask out the data we don't need.  Note: this is little endian!
887 	 */
888 	sz = max(size, 4);
889 	mask = size < 4 ? GENMASK(size - 1, 0) : 0;
890 
891 	emit_cmd(nfp_prog, CMD_TGT_READ32_SWAP, mode, 0,
892 		 lreg, rreg, sz / 4 - 1, CMD_CTX_SWAP);
893 
894 	i = 0;
895 	if (mask)
896 		emit_ld_field_any(nfp_prog, reg_both(dst_gpr), mask,
897 				  reg_xfer(0), SHF_SC_NONE, 0, true);
898 	else
899 		for (; i * 4 < size; i++)
900 			wrp_mov(nfp_prog, reg_both(dst_gpr + i), reg_xfer(i));
901 
902 	if (i < 2)
903 		wrp_immed(nfp_prog, reg_both(dst_gpr + 1), 0);
904 
905 	return 0;
906 }
907 
908 static int
909 data_ld_host_order_addr32(struct nfp_prog *nfp_prog, u8 src_gpr, swreg offset,
910 			  u8 dst_gpr, u8 size)
911 {
912 	return data_ld_host_order(nfp_prog, dst_gpr, reg_a(src_gpr), offset,
913 				  size, CMD_MODE_32b);
914 }
915 
916 static int
917 data_ld_host_order_addr40(struct nfp_prog *nfp_prog, u8 src_gpr, swreg offset,
918 			  u8 dst_gpr, u8 size)
919 {
920 	swreg rega, regb;
921 
922 	addr40_offset(nfp_prog, src_gpr, offset, &rega, &regb);
923 
924 	return data_ld_host_order(nfp_prog, dst_gpr, rega, regb,
925 				  size, CMD_MODE_40b_BA);
926 }
927 
928 static int
929 construct_data_ind_ld(struct nfp_prog *nfp_prog, u16 offset, u16 src, u8 size)
930 {
931 	swreg tmp_reg;
932 
933 	/* Calculate the true offset (src_reg + imm) */
934 	tmp_reg = ur_load_imm_any(nfp_prog, offset, imm_b(nfp_prog));
935 	emit_alu(nfp_prog, imm_both(nfp_prog), reg_a(src), ALU_OP_ADD, tmp_reg);
936 
937 	/* Check packet length (size guaranteed to fit b/c it's u8) */
938 	emit_alu(nfp_prog, imm_a(nfp_prog),
939 		 imm_a(nfp_prog), ALU_OP_ADD, reg_imm(size));
940 	emit_alu(nfp_prog, reg_none(),
941 		 plen_reg(nfp_prog), ALU_OP_SUB, imm_a(nfp_prog));
942 	emit_br_relo(nfp_prog, BR_BLO, BR_OFF_RELO, 0, RELO_BR_GO_ABORT);
943 
944 	/* Load data */
945 	return data_ld(nfp_prog, imm_b(nfp_prog), 0, size);
946 }
947 
948 static int construct_data_ld(struct nfp_prog *nfp_prog, u16 offset, u8 size)
949 {
950 	swreg tmp_reg;
951 
952 	/* Check packet length */
953 	tmp_reg = ur_load_imm_any(nfp_prog, offset + size, imm_a(nfp_prog));
954 	emit_alu(nfp_prog, reg_none(), plen_reg(nfp_prog), ALU_OP_SUB, tmp_reg);
955 	emit_br_relo(nfp_prog, BR_BLO, BR_OFF_RELO, 0, RELO_BR_GO_ABORT);
956 
957 	/* Load data */
958 	tmp_reg = re_load_imm_any(nfp_prog, offset, imm_b(nfp_prog));
959 	return data_ld(nfp_prog, tmp_reg, 0, size);
960 }
961 
962 static int
963 data_stx_host_order(struct nfp_prog *nfp_prog, u8 dst_gpr, swreg offset,
964 		    u8 src_gpr, u8 size)
965 {
966 	unsigned int i;
967 
968 	for (i = 0; i * 4 < size; i++)
969 		wrp_mov(nfp_prog, reg_xfer(i), reg_a(src_gpr + i));
970 
971 	emit_cmd(nfp_prog, CMD_TGT_WRITE8_SWAP, CMD_MODE_32b, 0,
972 		 reg_a(dst_gpr), offset, size - 1, CMD_CTX_SWAP);
973 
974 	return 0;
975 }
976 
977 static int
978 data_st_host_order(struct nfp_prog *nfp_prog, u8 dst_gpr, swreg offset,
979 		   u64 imm, u8 size)
980 {
981 	wrp_immed(nfp_prog, reg_xfer(0), imm);
982 	if (size == 8)
983 		wrp_immed(nfp_prog, reg_xfer(1), imm >> 32);
984 
985 	emit_cmd(nfp_prog, CMD_TGT_WRITE8_SWAP, CMD_MODE_32b, 0,
986 		 reg_a(dst_gpr), offset, size - 1, CMD_CTX_SWAP);
987 
988 	return 0;
989 }
990 
991 typedef int
992 (*lmem_step)(struct nfp_prog *nfp_prog, u8 gpr, u8 gpr_byte, s32 off,
993 	     unsigned int size, bool first, bool new_gpr, bool last, bool lm3,
994 	     bool needs_inc);
995 
996 static int
997 wrp_lmem_load(struct nfp_prog *nfp_prog, u8 dst, u8 dst_byte, s32 off,
998 	      unsigned int size, bool first, bool new_gpr, bool last, bool lm3,
999 	      bool needs_inc)
1000 {
1001 	bool should_inc = needs_inc && new_gpr && !last;
1002 	u32 idx, src_byte;
1003 	enum shf_sc sc;
1004 	swreg reg;
1005 	int shf;
1006 	u8 mask;
1007 
1008 	if (WARN_ON_ONCE(dst_byte + size > 4 || off % 4 + size > 4))
1009 		return -EOPNOTSUPP;
1010 
1011 	idx = off / 4;
1012 
1013 	/* Move the entire word */
1014 	if (size == 4) {
1015 		wrp_mov(nfp_prog, reg_both(dst),
1016 			should_inc ? reg_lm_inc(3) : reg_lm(lm3 ? 3 : 0, idx));
1017 		return 0;
1018 	}
1019 
1020 	if (WARN_ON_ONCE(lm3 && idx > RE_REG_LM_IDX_MAX))
1021 		return -EOPNOTSUPP;
1022 
1023 	src_byte = off % 4;
1024 
1025 	mask = (1 << size) - 1;
1026 	mask <<= dst_byte;
1027 
1028 	if (WARN_ON_ONCE(mask > 0xf))
1029 		return -EOPNOTSUPP;
1030 
1031 	shf = abs(src_byte - dst_byte) * 8;
1032 	if (src_byte == dst_byte) {
1033 		sc = SHF_SC_NONE;
1034 	} else if (src_byte < dst_byte) {
1035 		shf = 32 - shf;
1036 		sc = SHF_SC_L_SHF;
1037 	} else {
1038 		sc = SHF_SC_R_SHF;
1039 	}
1040 
1041 	/* ld_field can address fewer indexes, if offset too large do RMW.
1042 	 * Because we RMV twice we waste 2 cycles on unaligned 8 byte writes.
1043 	 */
1044 	if (idx <= RE_REG_LM_IDX_MAX) {
1045 		reg = reg_lm(lm3 ? 3 : 0, idx);
1046 	} else {
1047 		reg = imm_a(nfp_prog);
1048 		/* If it's not the first part of the load and we start a new GPR
1049 		 * that means we are loading a second part of the LMEM word into
1050 		 * a new GPR.  IOW we've already looked that LMEM word and
1051 		 * therefore it has been loaded into imm_a().
1052 		 */
1053 		if (first || !new_gpr)
1054 			wrp_mov(nfp_prog, reg, reg_lm(0, idx));
1055 	}
1056 
1057 	emit_ld_field_any(nfp_prog, reg_both(dst), mask, reg, sc, shf, new_gpr);
1058 
1059 	if (should_inc)
1060 		wrp_mov(nfp_prog, reg_none(), reg_lm_inc(3));
1061 
1062 	return 0;
1063 }
1064 
1065 static int
1066 wrp_lmem_store(struct nfp_prog *nfp_prog, u8 src, u8 src_byte, s32 off,
1067 	       unsigned int size, bool first, bool new_gpr, bool last, bool lm3,
1068 	       bool needs_inc)
1069 {
1070 	bool should_inc = needs_inc && new_gpr && !last;
1071 	u32 idx, dst_byte;
1072 	enum shf_sc sc;
1073 	swreg reg;
1074 	int shf;
1075 	u8 mask;
1076 
1077 	if (WARN_ON_ONCE(src_byte + size > 4 || off % 4 + size > 4))
1078 		return -EOPNOTSUPP;
1079 
1080 	idx = off / 4;
1081 
1082 	/* Move the entire word */
1083 	if (size == 4) {
1084 		wrp_mov(nfp_prog,
1085 			should_inc ? reg_lm_inc(3) : reg_lm(lm3 ? 3 : 0, idx),
1086 			reg_b(src));
1087 		return 0;
1088 	}
1089 
1090 	if (WARN_ON_ONCE(lm3 && idx > RE_REG_LM_IDX_MAX))
1091 		return -EOPNOTSUPP;
1092 
1093 	dst_byte = off % 4;
1094 
1095 	mask = (1 << size) - 1;
1096 	mask <<= dst_byte;
1097 
1098 	if (WARN_ON_ONCE(mask > 0xf))
1099 		return -EOPNOTSUPP;
1100 
1101 	shf = abs(src_byte - dst_byte) * 8;
1102 	if (src_byte == dst_byte) {
1103 		sc = SHF_SC_NONE;
1104 	} else if (src_byte < dst_byte) {
1105 		shf = 32 - shf;
1106 		sc = SHF_SC_L_SHF;
1107 	} else {
1108 		sc = SHF_SC_R_SHF;
1109 	}
1110 
1111 	/* ld_field can address fewer indexes, if offset too large do RMW.
1112 	 * Because we RMV twice we waste 2 cycles on unaligned 8 byte writes.
1113 	 */
1114 	if (idx <= RE_REG_LM_IDX_MAX) {
1115 		reg = reg_lm(lm3 ? 3 : 0, idx);
1116 	} else {
1117 		reg = imm_a(nfp_prog);
1118 		/* Only first and last LMEM locations are going to need RMW,
1119 		 * the middle location will be overwritten fully.
1120 		 */
1121 		if (first || last)
1122 			wrp_mov(nfp_prog, reg, reg_lm(0, idx));
1123 	}
1124 
1125 	emit_ld_field(nfp_prog, reg, mask, reg_b(src), sc, shf);
1126 
1127 	if (new_gpr || last) {
1128 		if (idx > RE_REG_LM_IDX_MAX)
1129 			wrp_mov(nfp_prog, reg_lm(0, idx), reg);
1130 		if (should_inc)
1131 			wrp_mov(nfp_prog, reg_none(), reg_lm_inc(3));
1132 	}
1133 
1134 	return 0;
1135 }
1136 
1137 static int
1138 mem_op_stack(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
1139 	     unsigned int size, unsigned int ptr_off, u8 gpr, u8 ptr_gpr,
1140 	     bool clr_gpr, lmem_step step)
1141 {
1142 	s32 off = nfp_prog->stack_frame_depth + meta->insn.off + ptr_off;
1143 	bool first = true, last;
1144 	bool needs_inc = false;
1145 	swreg stack_off_reg;
1146 	u8 prev_gpr = 255;
1147 	u32 gpr_byte = 0;
1148 	bool lm3 = true;
1149 	int ret;
1150 
1151 	if (meta->ptr_not_const ||
1152 	    meta->flags & FLAG_INSN_PTR_CALLER_STACK_FRAME) {
1153 		/* Use of the last encountered ptr_off is OK, they all have
1154 		 * the same alignment.  Depend on low bits of value being
1155 		 * discarded when written to LMaddr register.
1156 		 */
1157 		stack_off_reg = ur_load_imm_any(nfp_prog, meta->insn.off,
1158 						stack_imm(nfp_prog));
1159 
1160 		emit_alu(nfp_prog, imm_b(nfp_prog),
1161 			 reg_a(ptr_gpr), ALU_OP_ADD, stack_off_reg);
1162 
1163 		needs_inc = true;
1164 	} else if (off + size <= 64) {
1165 		/* We can reach bottom 64B with LMaddr0 */
1166 		lm3 = false;
1167 	} else if (round_down(off, 32) == round_down(off + size - 1, 32)) {
1168 		/* We have to set up a new pointer.  If we know the offset
1169 		 * and the entire access falls into a single 32 byte aligned
1170 		 * window we won't have to increment the LM pointer.
1171 		 * The 32 byte alignment is imporant because offset is ORed in
1172 		 * not added when doing *l$indexN[off].
1173 		 */
1174 		stack_off_reg = ur_load_imm_any(nfp_prog, round_down(off, 32),
1175 						stack_imm(nfp_prog));
1176 		emit_alu(nfp_prog, imm_b(nfp_prog),
1177 			 stack_reg(nfp_prog), ALU_OP_ADD, stack_off_reg);
1178 
1179 		off %= 32;
1180 	} else {
1181 		stack_off_reg = ur_load_imm_any(nfp_prog, round_down(off, 4),
1182 						stack_imm(nfp_prog));
1183 
1184 		emit_alu(nfp_prog, imm_b(nfp_prog),
1185 			 stack_reg(nfp_prog), ALU_OP_ADD, stack_off_reg);
1186 
1187 		needs_inc = true;
1188 	}
1189 	if (lm3) {
1190 		emit_csr_wr(nfp_prog, imm_b(nfp_prog), NFP_CSR_ACT_LM_ADDR3);
1191 		/* For size < 4 one slot will be filled by zeroing of upper. */
1192 		wrp_nops(nfp_prog, clr_gpr && size < 8 ? 2 : 3);
1193 	}
1194 
1195 	if (clr_gpr && size < 8)
1196 		wrp_immed(nfp_prog, reg_both(gpr + 1), 0);
1197 
1198 	while (size) {
1199 		u32 slice_end;
1200 		u8 slice_size;
1201 
1202 		slice_size = min(size, 4 - gpr_byte);
1203 		slice_end = min(off + slice_size, round_up(off + 1, 4));
1204 		slice_size = slice_end - off;
1205 
1206 		last = slice_size == size;
1207 
1208 		if (needs_inc)
1209 			off %= 4;
1210 
1211 		ret = step(nfp_prog, gpr, gpr_byte, off, slice_size,
1212 			   first, gpr != prev_gpr, last, lm3, needs_inc);
1213 		if (ret)
1214 			return ret;
1215 
1216 		prev_gpr = gpr;
1217 		first = false;
1218 
1219 		gpr_byte += slice_size;
1220 		if (gpr_byte >= 4) {
1221 			gpr_byte -= 4;
1222 			gpr++;
1223 		}
1224 
1225 		size -= slice_size;
1226 		off += slice_size;
1227 	}
1228 
1229 	return 0;
1230 }
1231 
1232 static void
1233 wrp_alu_imm(struct nfp_prog *nfp_prog, u8 dst, enum alu_op alu_op, u32 imm)
1234 {
1235 	swreg tmp_reg;
1236 
1237 	if (alu_op == ALU_OP_AND) {
1238 		if (!imm)
1239 			wrp_immed(nfp_prog, reg_both(dst), 0);
1240 		if (!imm || !~imm)
1241 			return;
1242 	}
1243 	if (alu_op == ALU_OP_OR) {
1244 		if (!~imm)
1245 			wrp_immed(nfp_prog, reg_both(dst), ~0U);
1246 		if (!imm || !~imm)
1247 			return;
1248 	}
1249 	if (alu_op == ALU_OP_XOR) {
1250 		if (!~imm)
1251 			emit_alu(nfp_prog, reg_both(dst), reg_none(),
1252 				 ALU_OP_NOT, reg_b(dst));
1253 		if (!imm || !~imm)
1254 			return;
1255 	}
1256 
1257 	tmp_reg = ur_load_imm_any(nfp_prog, imm, imm_b(nfp_prog));
1258 	emit_alu(nfp_prog, reg_both(dst), reg_a(dst), alu_op, tmp_reg);
1259 }
1260 
1261 static int
1262 wrp_alu64_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
1263 	      enum alu_op alu_op, bool skip)
1264 {
1265 	const struct bpf_insn *insn = &meta->insn;
1266 	u64 imm = insn->imm; /* sign extend */
1267 
1268 	if (skip) {
1269 		meta->flags |= FLAG_INSN_SKIP_NOOP;
1270 		return 0;
1271 	}
1272 
1273 	wrp_alu_imm(nfp_prog, insn->dst_reg * 2, alu_op, imm & ~0U);
1274 	wrp_alu_imm(nfp_prog, insn->dst_reg * 2 + 1, alu_op, imm >> 32);
1275 
1276 	return 0;
1277 }
1278 
1279 static int
1280 wrp_alu64_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
1281 	      enum alu_op alu_op)
1282 {
1283 	u8 dst = meta->insn.dst_reg * 2, src = meta->insn.src_reg * 2;
1284 
1285 	emit_alu(nfp_prog, reg_both(dst), reg_a(dst), alu_op, reg_b(src));
1286 	emit_alu(nfp_prog, reg_both(dst + 1),
1287 		 reg_a(dst + 1), alu_op, reg_b(src + 1));
1288 
1289 	return 0;
1290 }
1291 
1292 static int
1293 wrp_alu32_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
1294 	      enum alu_op alu_op, bool skip)
1295 {
1296 	const struct bpf_insn *insn = &meta->insn;
1297 
1298 	if (skip) {
1299 		meta->flags |= FLAG_INSN_SKIP_NOOP;
1300 		return 0;
1301 	}
1302 
1303 	wrp_alu_imm(nfp_prog, insn->dst_reg * 2, alu_op, insn->imm);
1304 	wrp_immed(nfp_prog, reg_both(insn->dst_reg * 2 + 1), 0);
1305 
1306 	return 0;
1307 }
1308 
1309 static int
1310 wrp_alu32_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
1311 	      enum alu_op alu_op)
1312 {
1313 	u8 dst = meta->insn.dst_reg * 2, src = meta->insn.src_reg * 2;
1314 
1315 	emit_alu(nfp_prog, reg_both(dst), reg_a(dst), alu_op, reg_b(src));
1316 	wrp_immed(nfp_prog, reg_both(meta->insn.dst_reg * 2 + 1), 0);
1317 
1318 	return 0;
1319 }
1320 
1321 static void
1322 wrp_test_reg_one(struct nfp_prog *nfp_prog, u8 dst, enum alu_op alu_op, u8 src,
1323 		 enum br_mask br_mask, u16 off)
1324 {
1325 	emit_alu(nfp_prog, reg_none(), reg_a(dst), alu_op, reg_b(src));
1326 	emit_br(nfp_prog, br_mask, off, 0);
1327 }
1328 
1329 static int
1330 wrp_test_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
1331 	     enum alu_op alu_op, enum br_mask br_mask)
1332 {
1333 	const struct bpf_insn *insn = &meta->insn;
1334 
1335 	wrp_test_reg_one(nfp_prog, insn->dst_reg * 2, alu_op,
1336 			 insn->src_reg * 2, br_mask, insn->off);
1337 	if (is_mbpf_jmp64(meta))
1338 		wrp_test_reg_one(nfp_prog, insn->dst_reg * 2 + 1, alu_op,
1339 				 insn->src_reg * 2 + 1, br_mask, insn->off);
1340 
1341 	return 0;
1342 }
1343 
1344 static const struct jmp_code_map {
1345 	enum br_mask br_mask;
1346 	bool swap;
1347 } jmp_code_map[] = {
1348 	[BPF_JGT >> 4]	= { BR_BLO, true },
1349 	[BPF_JGE >> 4]	= { BR_BHS, false },
1350 	[BPF_JLT >> 4]	= { BR_BLO, false },
1351 	[BPF_JLE >> 4]	= { BR_BHS, true },
1352 	[BPF_JSGT >> 4]	= { BR_BLT, true },
1353 	[BPF_JSGE >> 4]	= { BR_BGE, false },
1354 	[BPF_JSLT >> 4]	= { BR_BLT, false },
1355 	[BPF_JSLE >> 4]	= { BR_BGE, true },
1356 };
1357 
1358 static const struct jmp_code_map *nfp_jmp_code_get(struct nfp_insn_meta *meta)
1359 {
1360 	unsigned int op;
1361 
1362 	op = BPF_OP(meta->insn.code) >> 4;
1363 	/* br_mask of 0 is BR_BEQ which we don't use in jump code table */
1364 	if (WARN_ONCE(op >= ARRAY_SIZE(jmp_code_map) ||
1365 		      !jmp_code_map[op].br_mask,
1366 		      "no code found for jump instruction"))
1367 		return NULL;
1368 
1369 	return &jmp_code_map[op];
1370 }
1371 
1372 static int cmp_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1373 {
1374 	const struct bpf_insn *insn = &meta->insn;
1375 	u64 imm = insn->imm; /* sign extend */
1376 	const struct jmp_code_map *code;
1377 	enum alu_op alu_op, carry_op;
1378 	u8 reg = insn->dst_reg * 2;
1379 	swreg tmp_reg;
1380 
1381 	code = nfp_jmp_code_get(meta);
1382 	if (!code)
1383 		return -EINVAL;
1384 
1385 	alu_op = meta->jump_neg_op ? ALU_OP_ADD : ALU_OP_SUB;
1386 	carry_op = meta->jump_neg_op ? ALU_OP_ADD_C : ALU_OP_SUB_C;
1387 
1388 	tmp_reg = ur_load_imm_any(nfp_prog, imm & ~0U, imm_b(nfp_prog));
1389 	if (!code->swap)
1390 		emit_alu(nfp_prog, reg_none(), reg_a(reg), alu_op, tmp_reg);
1391 	else
1392 		emit_alu(nfp_prog, reg_none(), tmp_reg, alu_op, reg_a(reg));
1393 
1394 	if (is_mbpf_jmp64(meta)) {
1395 		tmp_reg = ur_load_imm_any(nfp_prog, imm >> 32, imm_b(nfp_prog));
1396 		if (!code->swap)
1397 			emit_alu(nfp_prog, reg_none(),
1398 				 reg_a(reg + 1), carry_op, tmp_reg);
1399 		else
1400 			emit_alu(nfp_prog, reg_none(),
1401 				 tmp_reg, carry_op, reg_a(reg + 1));
1402 	}
1403 
1404 	emit_br(nfp_prog, code->br_mask, insn->off, 0);
1405 
1406 	return 0;
1407 }
1408 
1409 static int cmp_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1410 {
1411 	const struct bpf_insn *insn = &meta->insn;
1412 	const struct jmp_code_map *code;
1413 	u8 areg, breg;
1414 
1415 	code = nfp_jmp_code_get(meta);
1416 	if (!code)
1417 		return -EINVAL;
1418 
1419 	areg = insn->dst_reg * 2;
1420 	breg = insn->src_reg * 2;
1421 
1422 	if (code->swap) {
1423 		areg ^= breg;
1424 		breg ^= areg;
1425 		areg ^= breg;
1426 	}
1427 
1428 	emit_alu(nfp_prog, reg_none(), reg_a(areg), ALU_OP_SUB, reg_b(breg));
1429 	if (is_mbpf_jmp64(meta))
1430 		emit_alu(nfp_prog, reg_none(),
1431 			 reg_a(areg + 1), ALU_OP_SUB_C, reg_b(breg + 1));
1432 	emit_br(nfp_prog, code->br_mask, insn->off, 0);
1433 
1434 	return 0;
1435 }
1436 
1437 static void wrp_end32(struct nfp_prog *nfp_prog, swreg reg_in, u8 gpr_out)
1438 {
1439 	emit_ld_field(nfp_prog, reg_both(gpr_out), 0xf, reg_in,
1440 		      SHF_SC_R_ROT, 8);
1441 	emit_ld_field(nfp_prog, reg_both(gpr_out), 0x5, reg_a(gpr_out),
1442 		      SHF_SC_R_ROT, 16);
1443 }
1444 
1445 static void
1446 wrp_mul_u32(struct nfp_prog *nfp_prog, swreg dst_hi, swreg dst_lo, swreg lreg,
1447 	    swreg rreg, bool gen_high_half)
1448 {
1449 	emit_mul(nfp_prog, lreg, MUL_TYPE_START, MUL_STEP_NONE, rreg);
1450 	emit_mul(nfp_prog, lreg, MUL_TYPE_STEP_32x32, MUL_STEP_1, rreg);
1451 	emit_mul(nfp_prog, lreg, MUL_TYPE_STEP_32x32, MUL_STEP_2, rreg);
1452 	emit_mul(nfp_prog, lreg, MUL_TYPE_STEP_32x32, MUL_STEP_3, rreg);
1453 	emit_mul(nfp_prog, lreg, MUL_TYPE_STEP_32x32, MUL_STEP_4, rreg);
1454 	emit_mul(nfp_prog, dst_lo, MUL_TYPE_STEP_32x32, MUL_LAST, reg_none());
1455 	if (gen_high_half)
1456 		emit_mul(nfp_prog, dst_hi, MUL_TYPE_STEP_32x32, MUL_LAST_2,
1457 			 reg_none());
1458 	else
1459 		wrp_immed(nfp_prog, dst_hi, 0);
1460 }
1461 
1462 static void
1463 wrp_mul_u16(struct nfp_prog *nfp_prog, swreg dst_hi, swreg dst_lo, swreg lreg,
1464 	    swreg rreg)
1465 {
1466 	emit_mul(nfp_prog, lreg, MUL_TYPE_START, MUL_STEP_NONE, rreg);
1467 	emit_mul(nfp_prog, lreg, MUL_TYPE_STEP_16x16, MUL_STEP_1, rreg);
1468 	emit_mul(nfp_prog, lreg, MUL_TYPE_STEP_16x16, MUL_STEP_2, rreg);
1469 	emit_mul(nfp_prog, dst_lo, MUL_TYPE_STEP_16x16, MUL_LAST, reg_none());
1470 }
1471 
1472 static int
1473 wrp_mul(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
1474 	bool gen_high_half, bool ropnd_from_reg)
1475 {
1476 	swreg multiplier, multiplicand, dst_hi, dst_lo;
1477 	const struct bpf_insn *insn = &meta->insn;
1478 	u32 lopnd_max, ropnd_max;
1479 	u8 dst_reg;
1480 
1481 	dst_reg = insn->dst_reg;
1482 	multiplicand = reg_a(dst_reg * 2);
1483 	dst_hi = reg_both(dst_reg * 2 + 1);
1484 	dst_lo = reg_both(dst_reg * 2);
1485 	lopnd_max = meta->umax_dst;
1486 	if (ropnd_from_reg) {
1487 		multiplier = reg_b(insn->src_reg * 2);
1488 		ropnd_max = meta->umax_src;
1489 	} else {
1490 		u32 imm = insn->imm;
1491 
1492 		multiplier = ur_load_imm_any(nfp_prog, imm, imm_b(nfp_prog));
1493 		ropnd_max = imm;
1494 	}
1495 	if (lopnd_max > U16_MAX || ropnd_max > U16_MAX)
1496 		wrp_mul_u32(nfp_prog, dst_hi, dst_lo, multiplicand, multiplier,
1497 			    gen_high_half);
1498 	else
1499 		wrp_mul_u16(nfp_prog, dst_hi, dst_lo, multiplicand, multiplier);
1500 
1501 	return 0;
1502 }
1503 
1504 static int wrp_div_imm(struct nfp_prog *nfp_prog, u8 dst, u64 imm)
1505 {
1506 	swreg dst_both = reg_both(dst), dst_a = reg_a(dst), dst_b = reg_a(dst);
1507 	struct reciprocal_value_adv rvalue;
1508 	u8 pre_shift, exp;
1509 	swreg magic;
1510 
1511 	if (imm > U32_MAX) {
1512 		wrp_immed(nfp_prog, dst_both, 0);
1513 		return 0;
1514 	}
1515 
1516 	/* NOTE: because we are using "reciprocal_value_adv" which doesn't
1517 	 * support "divisor > (1u << 31)", we need to JIT separate NFP sequence
1518 	 * to handle such case which actually equals to the result of unsigned
1519 	 * comparison "dst >= imm" which could be calculated using the following
1520 	 * NFP sequence:
1521 	 *
1522 	 *  alu[--, dst, -, imm]
1523 	 *  immed[imm, 0]
1524 	 *  alu[dst, imm, +carry, 0]
1525 	 *
1526 	 */
1527 	if (imm > 1U << 31) {
1528 		swreg tmp_b = ur_load_imm_any(nfp_prog, imm, imm_b(nfp_prog));
1529 
1530 		emit_alu(nfp_prog, reg_none(), dst_a, ALU_OP_SUB, tmp_b);
1531 		wrp_immed(nfp_prog, imm_a(nfp_prog), 0);
1532 		emit_alu(nfp_prog, dst_both, imm_a(nfp_prog), ALU_OP_ADD_C,
1533 			 reg_imm(0));
1534 		return 0;
1535 	}
1536 
1537 	rvalue = reciprocal_value_adv(imm, 32);
1538 	exp = rvalue.exp;
1539 	if (rvalue.is_wide_m && !(imm & 1)) {
1540 		pre_shift = fls(imm & -imm) - 1;
1541 		rvalue = reciprocal_value_adv(imm >> pre_shift, 32 - pre_shift);
1542 	} else {
1543 		pre_shift = 0;
1544 	}
1545 	magic = ur_load_imm_any(nfp_prog, rvalue.m, imm_b(nfp_prog));
1546 	if (imm == 1U << exp) {
1547 		emit_shf(nfp_prog, dst_both, reg_none(), SHF_OP_NONE, dst_b,
1548 			 SHF_SC_R_SHF, exp);
1549 	} else if (rvalue.is_wide_m) {
1550 		wrp_mul_u32(nfp_prog, imm_both(nfp_prog), reg_none(), dst_a,
1551 			    magic, true);
1552 		emit_alu(nfp_prog, dst_both, dst_a, ALU_OP_SUB,
1553 			 imm_b(nfp_prog));
1554 		emit_shf(nfp_prog, dst_both, reg_none(), SHF_OP_NONE, dst_b,
1555 			 SHF_SC_R_SHF, 1);
1556 		emit_alu(nfp_prog, dst_both, dst_a, ALU_OP_ADD,
1557 			 imm_b(nfp_prog));
1558 		emit_shf(nfp_prog, dst_both, reg_none(), SHF_OP_NONE, dst_b,
1559 			 SHF_SC_R_SHF, rvalue.sh - 1);
1560 	} else {
1561 		if (pre_shift)
1562 			emit_shf(nfp_prog, dst_both, reg_none(), SHF_OP_NONE,
1563 				 dst_b, SHF_SC_R_SHF, pre_shift);
1564 		wrp_mul_u32(nfp_prog, dst_both, reg_none(), dst_a, magic, true);
1565 		emit_shf(nfp_prog, dst_both, reg_none(), SHF_OP_NONE,
1566 			 dst_b, SHF_SC_R_SHF, rvalue.sh);
1567 	}
1568 
1569 	return 0;
1570 }
1571 
1572 static int adjust_head(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1573 {
1574 	swreg tmp = imm_a(nfp_prog), tmp_len = imm_b(nfp_prog);
1575 	struct nfp_bpf_cap_adjust_head *adjust_head;
1576 	u32 ret_einval, end;
1577 
1578 	adjust_head = &nfp_prog->bpf->adjust_head;
1579 
1580 	/* Optimized version - 5 vs 14 cycles */
1581 	if (nfp_prog->adjust_head_location != UINT_MAX) {
1582 		if (WARN_ON_ONCE(nfp_prog->adjust_head_location != meta->n))
1583 			return -EINVAL;
1584 
1585 		emit_alu(nfp_prog, pptr_reg(nfp_prog),
1586 			 reg_a(2 * 2), ALU_OP_ADD, pptr_reg(nfp_prog));
1587 		emit_alu(nfp_prog, plen_reg(nfp_prog),
1588 			 plen_reg(nfp_prog), ALU_OP_SUB, reg_a(2 * 2));
1589 		emit_alu(nfp_prog, pv_len(nfp_prog),
1590 			 pv_len(nfp_prog), ALU_OP_SUB, reg_a(2 * 2));
1591 
1592 		wrp_immed(nfp_prog, reg_both(0), 0);
1593 		wrp_immed(nfp_prog, reg_both(1), 0);
1594 
1595 		/* TODO: when adjust head is guaranteed to succeed we can
1596 		 * also eliminate the following if (r0 == 0) branch.
1597 		 */
1598 
1599 		return 0;
1600 	}
1601 
1602 	ret_einval = nfp_prog_current_offset(nfp_prog) + 14;
1603 	end = ret_einval + 2;
1604 
1605 	/* We need to use a temp because offset is just a part of the pkt ptr */
1606 	emit_alu(nfp_prog, tmp,
1607 		 reg_a(2 * 2), ALU_OP_ADD_2B, pptr_reg(nfp_prog));
1608 
1609 	/* Validate result will fit within FW datapath constraints */
1610 	emit_alu(nfp_prog, reg_none(),
1611 		 tmp, ALU_OP_SUB, reg_imm(adjust_head->off_min));
1612 	emit_br(nfp_prog, BR_BLO, ret_einval, 0);
1613 	emit_alu(nfp_prog, reg_none(),
1614 		 reg_imm(adjust_head->off_max), ALU_OP_SUB, tmp);
1615 	emit_br(nfp_prog, BR_BLO, ret_einval, 0);
1616 
1617 	/* Validate the length is at least ETH_HLEN */
1618 	emit_alu(nfp_prog, tmp_len,
1619 		 plen_reg(nfp_prog), ALU_OP_SUB, reg_a(2 * 2));
1620 	emit_alu(nfp_prog, reg_none(),
1621 		 tmp_len, ALU_OP_SUB, reg_imm(ETH_HLEN));
1622 	emit_br(nfp_prog, BR_BMI, ret_einval, 0);
1623 
1624 	/* Load the ret code */
1625 	wrp_immed(nfp_prog, reg_both(0), 0);
1626 	wrp_immed(nfp_prog, reg_both(1), 0);
1627 
1628 	/* Modify the packet metadata */
1629 	emit_ld_field(nfp_prog, pptr_reg(nfp_prog), 0x3, tmp, SHF_SC_NONE, 0);
1630 
1631 	/* Skip over the -EINVAL ret code (defer 2) */
1632 	emit_br(nfp_prog, BR_UNC, end, 2);
1633 
1634 	emit_alu(nfp_prog, plen_reg(nfp_prog),
1635 		 plen_reg(nfp_prog), ALU_OP_SUB, reg_a(2 * 2));
1636 	emit_alu(nfp_prog, pv_len(nfp_prog),
1637 		 pv_len(nfp_prog), ALU_OP_SUB, reg_a(2 * 2));
1638 
1639 	/* return -EINVAL target */
1640 	if (!nfp_prog_confirm_current_offset(nfp_prog, ret_einval))
1641 		return -EINVAL;
1642 
1643 	wrp_immed(nfp_prog, reg_both(0), -22);
1644 	wrp_immed(nfp_prog, reg_both(1), ~0);
1645 
1646 	if (!nfp_prog_confirm_current_offset(nfp_prog, end))
1647 		return -EINVAL;
1648 
1649 	return 0;
1650 }
1651 
1652 static int adjust_tail(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1653 {
1654 	u32 ret_einval, end;
1655 	swreg plen, delta;
1656 
1657 	BUILD_BUG_ON(plen_reg(nfp_prog) != reg_b(STATIC_REG_PKT_LEN));
1658 
1659 	plen = imm_a(nfp_prog);
1660 	delta = reg_a(2 * 2);
1661 
1662 	ret_einval = nfp_prog_current_offset(nfp_prog) + 9;
1663 	end = nfp_prog_current_offset(nfp_prog) + 11;
1664 
1665 	/* Calculate resulting length */
1666 	emit_alu(nfp_prog, plen, plen_reg(nfp_prog), ALU_OP_ADD, delta);
1667 	/* delta == 0 is not allowed by the kernel, add must overflow to make
1668 	 * length smaller.
1669 	 */
1670 	emit_br(nfp_prog, BR_BCC, ret_einval, 0);
1671 
1672 	/* if (new_len < 14) then -EINVAL */
1673 	emit_alu(nfp_prog, reg_none(), plen, ALU_OP_SUB, reg_imm(ETH_HLEN));
1674 	emit_br(nfp_prog, BR_BMI, ret_einval, 0);
1675 
1676 	emit_alu(nfp_prog, plen_reg(nfp_prog),
1677 		 plen_reg(nfp_prog), ALU_OP_ADD, delta);
1678 	emit_alu(nfp_prog, pv_len(nfp_prog),
1679 		 pv_len(nfp_prog), ALU_OP_ADD, delta);
1680 
1681 	emit_br(nfp_prog, BR_UNC, end, 2);
1682 	wrp_immed(nfp_prog, reg_both(0), 0);
1683 	wrp_immed(nfp_prog, reg_both(1), 0);
1684 
1685 	if (!nfp_prog_confirm_current_offset(nfp_prog, ret_einval))
1686 		return -EINVAL;
1687 
1688 	wrp_immed(nfp_prog, reg_both(0), -22);
1689 	wrp_immed(nfp_prog, reg_both(1), ~0);
1690 
1691 	if (!nfp_prog_confirm_current_offset(nfp_prog, end))
1692 		return -EINVAL;
1693 
1694 	return 0;
1695 }
1696 
1697 static int
1698 map_call_stack_common(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1699 {
1700 	bool load_lm_ptr;
1701 	u32 ret_tgt;
1702 	s64 lm_off;
1703 
1704 	/* We only have to reload LM0 if the key is not at start of stack */
1705 	lm_off = nfp_prog->stack_frame_depth;
1706 	lm_off += meta->arg2.reg.var_off.value + meta->arg2.reg.off;
1707 	load_lm_ptr = meta->arg2.var_off || lm_off;
1708 
1709 	/* Set LM0 to start of key */
1710 	if (load_lm_ptr)
1711 		emit_csr_wr(nfp_prog, reg_b(2 * 2), NFP_CSR_ACT_LM_ADDR0);
1712 	if (meta->func_id == BPF_FUNC_map_update_elem)
1713 		emit_csr_wr(nfp_prog, reg_b(3 * 2), NFP_CSR_ACT_LM_ADDR2);
1714 
1715 	emit_br_relo(nfp_prog, BR_UNC, BR_OFF_RELO + meta->func_id,
1716 		     2, RELO_BR_HELPER);
1717 	ret_tgt = nfp_prog_current_offset(nfp_prog) + 2;
1718 
1719 	/* Load map ID into A0 */
1720 	wrp_mov(nfp_prog, reg_a(0), reg_a(2));
1721 
1722 	/* Load the return address into B0 */
1723 	wrp_immed_relo(nfp_prog, reg_b(0), ret_tgt, RELO_IMMED_REL);
1724 
1725 	if (!nfp_prog_confirm_current_offset(nfp_prog, ret_tgt))
1726 		return -EINVAL;
1727 
1728 	/* Reset the LM0 pointer */
1729 	if (!load_lm_ptr)
1730 		return 0;
1731 
1732 	emit_csr_wr(nfp_prog, stack_reg(nfp_prog), NFP_CSR_ACT_LM_ADDR0);
1733 	wrp_nops(nfp_prog, 3);
1734 
1735 	return 0;
1736 }
1737 
1738 static int
1739 nfp_get_prandom_u32(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1740 {
1741 	__emit_csr_rd(nfp_prog, NFP_CSR_PSEUDO_RND_NUM);
1742 	/* CSR value is read in following immed[gpr, 0] */
1743 	emit_immed(nfp_prog, reg_both(0), 0,
1744 		   IMMED_WIDTH_ALL, false, IMMED_SHIFT_0B);
1745 	emit_immed(nfp_prog, reg_both(1), 0,
1746 		   IMMED_WIDTH_ALL, false, IMMED_SHIFT_0B);
1747 	return 0;
1748 }
1749 
1750 static int
1751 nfp_perf_event_output(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1752 {
1753 	swreg ptr_type;
1754 	u32 ret_tgt;
1755 
1756 	ptr_type = ur_load_imm_any(nfp_prog, meta->arg1.type, imm_a(nfp_prog));
1757 
1758 	ret_tgt = nfp_prog_current_offset(nfp_prog) + 3;
1759 
1760 	emit_br_relo(nfp_prog, BR_UNC, BR_OFF_RELO + meta->func_id,
1761 		     2, RELO_BR_HELPER);
1762 
1763 	/* Load ptr type into A1 */
1764 	wrp_mov(nfp_prog, reg_a(1), ptr_type);
1765 
1766 	/* Load the return address into B0 */
1767 	wrp_immed_relo(nfp_prog, reg_b(0), ret_tgt, RELO_IMMED_REL);
1768 
1769 	if (!nfp_prog_confirm_current_offset(nfp_prog, ret_tgt))
1770 		return -EINVAL;
1771 
1772 	return 0;
1773 }
1774 
1775 static int
1776 nfp_queue_select(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1777 {
1778 	u32 jmp_tgt;
1779 
1780 	jmp_tgt = nfp_prog_current_offset(nfp_prog) + 5;
1781 
1782 	/* Make sure the queue id fits into FW field */
1783 	emit_alu(nfp_prog, reg_none(), reg_a(meta->insn.src_reg * 2),
1784 		 ALU_OP_AND_NOT_B, reg_imm(0xff));
1785 	emit_br(nfp_prog, BR_BEQ, jmp_tgt, 2);
1786 
1787 	/* Set the 'queue selected' bit and the queue value */
1788 	emit_shf(nfp_prog, pv_qsel_set(nfp_prog),
1789 		 pv_qsel_set(nfp_prog), SHF_OP_OR, reg_imm(1),
1790 		 SHF_SC_L_SHF, PKT_VEL_QSEL_SET_BIT);
1791 	emit_ld_field(nfp_prog,
1792 		      pv_qsel_val(nfp_prog), 0x1, reg_b(meta->insn.src_reg * 2),
1793 		      SHF_SC_NONE, 0);
1794 	/* Delay slots end here, we will jump over next instruction if queue
1795 	 * value fits into the field.
1796 	 */
1797 	emit_ld_field(nfp_prog,
1798 		      pv_qsel_val(nfp_prog), 0x1, reg_imm(NFP_NET_RXR_MAX),
1799 		      SHF_SC_NONE, 0);
1800 
1801 	if (!nfp_prog_confirm_current_offset(nfp_prog, jmp_tgt))
1802 		return -EINVAL;
1803 
1804 	return 0;
1805 }
1806 
1807 /* --- Callbacks --- */
1808 static int mov_reg64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1809 {
1810 	const struct bpf_insn *insn = &meta->insn;
1811 	u8 dst = insn->dst_reg * 2;
1812 	u8 src = insn->src_reg * 2;
1813 
1814 	if (insn->src_reg == BPF_REG_10) {
1815 		swreg stack_depth_reg;
1816 
1817 		stack_depth_reg = ur_load_imm_any(nfp_prog,
1818 						  nfp_prog->stack_frame_depth,
1819 						  stack_imm(nfp_prog));
1820 		emit_alu(nfp_prog, reg_both(dst), stack_reg(nfp_prog),
1821 			 ALU_OP_ADD, stack_depth_reg);
1822 		wrp_immed(nfp_prog, reg_both(dst + 1), 0);
1823 	} else {
1824 		wrp_reg_mov(nfp_prog, dst, src);
1825 		wrp_reg_mov(nfp_prog, dst + 1, src + 1);
1826 	}
1827 
1828 	return 0;
1829 }
1830 
1831 static int mov_imm64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1832 {
1833 	u64 imm = meta->insn.imm; /* sign extend */
1834 
1835 	wrp_immed(nfp_prog, reg_both(meta->insn.dst_reg * 2), imm & ~0U);
1836 	wrp_immed(nfp_prog, reg_both(meta->insn.dst_reg * 2 + 1), imm >> 32);
1837 
1838 	return 0;
1839 }
1840 
1841 static int xor_reg64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1842 {
1843 	return wrp_alu64_reg(nfp_prog, meta, ALU_OP_XOR);
1844 }
1845 
1846 static int xor_imm64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1847 {
1848 	return wrp_alu64_imm(nfp_prog, meta, ALU_OP_XOR, !meta->insn.imm);
1849 }
1850 
1851 static int and_reg64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1852 {
1853 	return wrp_alu64_reg(nfp_prog, meta, ALU_OP_AND);
1854 }
1855 
1856 static int and_imm64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1857 {
1858 	return wrp_alu64_imm(nfp_prog, meta, ALU_OP_AND, !~meta->insn.imm);
1859 }
1860 
1861 static int or_reg64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1862 {
1863 	return wrp_alu64_reg(nfp_prog, meta, ALU_OP_OR);
1864 }
1865 
1866 static int or_imm64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1867 {
1868 	return wrp_alu64_imm(nfp_prog, meta, ALU_OP_OR, !meta->insn.imm);
1869 }
1870 
1871 static int add_reg64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1872 {
1873 	const struct bpf_insn *insn = &meta->insn;
1874 
1875 	emit_alu(nfp_prog, reg_both(insn->dst_reg * 2),
1876 		 reg_a(insn->dst_reg * 2), ALU_OP_ADD,
1877 		 reg_b(insn->src_reg * 2));
1878 	emit_alu(nfp_prog, reg_both(insn->dst_reg * 2 + 1),
1879 		 reg_a(insn->dst_reg * 2 + 1), ALU_OP_ADD_C,
1880 		 reg_b(insn->src_reg * 2 + 1));
1881 
1882 	return 0;
1883 }
1884 
1885 static int add_imm64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1886 {
1887 	const struct bpf_insn *insn = &meta->insn;
1888 	u64 imm = insn->imm; /* sign extend */
1889 
1890 	wrp_alu_imm(nfp_prog, insn->dst_reg * 2, ALU_OP_ADD, imm & ~0U);
1891 	wrp_alu_imm(nfp_prog, insn->dst_reg * 2 + 1, ALU_OP_ADD_C, imm >> 32);
1892 
1893 	return 0;
1894 }
1895 
1896 static int sub_reg64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1897 {
1898 	const struct bpf_insn *insn = &meta->insn;
1899 
1900 	emit_alu(nfp_prog, reg_both(insn->dst_reg * 2),
1901 		 reg_a(insn->dst_reg * 2), ALU_OP_SUB,
1902 		 reg_b(insn->src_reg * 2));
1903 	emit_alu(nfp_prog, reg_both(insn->dst_reg * 2 + 1),
1904 		 reg_a(insn->dst_reg * 2 + 1), ALU_OP_SUB_C,
1905 		 reg_b(insn->src_reg * 2 + 1));
1906 
1907 	return 0;
1908 }
1909 
1910 static int sub_imm64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1911 {
1912 	const struct bpf_insn *insn = &meta->insn;
1913 	u64 imm = insn->imm; /* sign extend */
1914 
1915 	wrp_alu_imm(nfp_prog, insn->dst_reg * 2, ALU_OP_SUB, imm & ~0U);
1916 	wrp_alu_imm(nfp_prog, insn->dst_reg * 2 + 1, ALU_OP_SUB_C, imm >> 32);
1917 
1918 	return 0;
1919 }
1920 
1921 static int mul_reg64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1922 {
1923 	return wrp_mul(nfp_prog, meta, true, true);
1924 }
1925 
1926 static int mul_imm64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1927 {
1928 	return wrp_mul(nfp_prog, meta, true, false);
1929 }
1930 
1931 static int div_imm64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1932 {
1933 	const struct bpf_insn *insn = &meta->insn;
1934 
1935 	return wrp_div_imm(nfp_prog, insn->dst_reg * 2, insn->imm);
1936 }
1937 
1938 static int div_reg64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1939 {
1940 	/* NOTE: verifier hook has rejected cases for which verifier doesn't
1941 	 * know whether the source operand is constant or not.
1942 	 */
1943 	return wrp_div_imm(nfp_prog, meta->insn.dst_reg * 2, meta->umin_src);
1944 }
1945 
1946 static int neg_reg64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1947 {
1948 	const struct bpf_insn *insn = &meta->insn;
1949 
1950 	emit_alu(nfp_prog, reg_both(insn->dst_reg * 2), reg_imm(0),
1951 		 ALU_OP_SUB, reg_b(insn->dst_reg * 2));
1952 	emit_alu(nfp_prog, reg_both(insn->dst_reg * 2 + 1), reg_imm(0),
1953 		 ALU_OP_SUB_C, reg_b(insn->dst_reg * 2 + 1));
1954 
1955 	return 0;
1956 }
1957 
1958 /* Pseudo code:
1959  *   if shift_amt >= 32
1960  *     dst_high = dst_low << shift_amt[4:0]
1961  *     dst_low = 0;
1962  *   else
1963  *     dst_high = (dst_high, dst_low) >> (32 - shift_amt)
1964  *     dst_low = dst_low << shift_amt
1965  *
1966  * The indirect shift will use the same logic at runtime.
1967  */
1968 static int __shl_imm64(struct nfp_prog *nfp_prog, u8 dst, u8 shift_amt)
1969 {
1970 	if (!shift_amt)
1971 		return 0;
1972 
1973 	if (shift_amt < 32) {
1974 		emit_shf(nfp_prog, reg_both(dst + 1), reg_a(dst + 1),
1975 			 SHF_OP_NONE, reg_b(dst), SHF_SC_R_DSHF,
1976 			 32 - shift_amt);
1977 		emit_shf(nfp_prog, reg_both(dst), reg_none(), SHF_OP_NONE,
1978 			 reg_b(dst), SHF_SC_L_SHF, shift_amt);
1979 	} else if (shift_amt == 32) {
1980 		wrp_reg_mov(nfp_prog, dst + 1, dst);
1981 		wrp_immed(nfp_prog, reg_both(dst), 0);
1982 	} else if (shift_amt > 32) {
1983 		emit_shf(nfp_prog, reg_both(dst + 1), reg_none(), SHF_OP_NONE,
1984 			 reg_b(dst), SHF_SC_L_SHF, shift_amt - 32);
1985 		wrp_immed(nfp_prog, reg_both(dst), 0);
1986 	}
1987 
1988 	return 0;
1989 }
1990 
1991 static int shl_imm64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1992 {
1993 	const struct bpf_insn *insn = &meta->insn;
1994 	u8 dst = insn->dst_reg * 2;
1995 
1996 	return __shl_imm64(nfp_prog, dst, insn->imm);
1997 }
1998 
1999 static void shl_reg64_lt32_high(struct nfp_prog *nfp_prog, u8 dst, u8 src)
2000 {
2001 	emit_alu(nfp_prog, imm_both(nfp_prog), reg_imm(32), ALU_OP_SUB,
2002 		 reg_b(src));
2003 	emit_alu(nfp_prog, reg_none(), imm_a(nfp_prog), ALU_OP_OR, reg_imm(0));
2004 	emit_shf_indir(nfp_prog, reg_both(dst + 1), reg_a(dst + 1), SHF_OP_NONE,
2005 		       reg_b(dst), SHF_SC_R_DSHF);
2006 }
2007 
2008 /* NOTE: for indirect left shift, HIGH part should be calculated first. */
2009 static void shl_reg64_lt32_low(struct nfp_prog *nfp_prog, u8 dst, u8 src)
2010 {
2011 	emit_alu(nfp_prog, reg_none(), reg_a(src), ALU_OP_OR, reg_imm(0));
2012 	emit_shf_indir(nfp_prog, reg_both(dst), reg_none(), SHF_OP_NONE,
2013 		       reg_b(dst), SHF_SC_L_SHF);
2014 }
2015 
2016 static void shl_reg64_lt32(struct nfp_prog *nfp_prog, u8 dst, u8 src)
2017 {
2018 	shl_reg64_lt32_high(nfp_prog, dst, src);
2019 	shl_reg64_lt32_low(nfp_prog, dst, src);
2020 }
2021 
2022 static void shl_reg64_ge32(struct nfp_prog *nfp_prog, u8 dst, u8 src)
2023 {
2024 	emit_alu(nfp_prog, reg_none(), reg_a(src), ALU_OP_OR, reg_imm(0));
2025 	emit_shf_indir(nfp_prog, reg_both(dst + 1), reg_none(), SHF_OP_NONE,
2026 		       reg_b(dst), SHF_SC_L_SHF);
2027 	wrp_immed(nfp_prog, reg_both(dst), 0);
2028 }
2029 
2030 static int shl_reg64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2031 {
2032 	const struct bpf_insn *insn = &meta->insn;
2033 	u64 umin, umax;
2034 	u8 dst, src;
2035 
2036 	dst = insn->dst_reg * 2;
2037 	umin = meta->umin_src;
2038 	umax = meta->umax_src;
2039 	if (umin == umax)
2040 		return __shl_imm64(nfp_prog, dst, umin);
2041 
2042 	src = insn->src_reg * 2;
2043 	if (umax < 32) {
2044 		shl_reg64_lt32(nfp_prog, dst, src);
2045 	} else if (umin >= 32) {
2046 		shl_reg64_ge32(nfp_prog, dst, src);
2047 	} else {
2048 		/* Generate different instruction sequences depending on runtime
2049 		 * value of shift amount.
2050 		 */
2051 		u16 label_ge32, label_end;
2052 
2053 		label_ge32 = nfp_prog_current_offset(nfp_prog) + 7;
2054 		emit_br_bset(nfp_prog, reg_a(src), 5, label_ge32, 0);
2055 
2056 		shl_reg64_lt32_high(nfp_prog, dst, src);
2057 		label_end = nfp_prog_current_offset(nfp_prog) + 6;
2058 		emit_br(nfp_prog, BR_UNC, label_end, 2);
2059 		/* shl_reg64_lt32_low packed in delay slot. */
2060 		shl_reg64_lt32_low(nfp_prog, dst, src);
2061 
2062 		if (!nfp_prog_confirm_current_offset(nfp_prog, label_ge32))
2063 			return -EINVAL;
2064 		shl_reg64_ge32(nfp_prog, dst, src);
2065 
2066 		if (!nfp_prog_confirm_current_offset(nfp_prog, label_end))
2067 			return -EINVAL;
2068 	}
2069 
2070 	return 0;
2071 }
2072 
2073 /* Pseudo code:
2074  *   if shift_amt >= 32
2075  *     dst_high = 0;
2076  *     dst_low = dst_high >> shift_amt[4:0]
2077  *   else
2078  *     dst_high = dst_high >> shift_amt
2079  *     dst_low = (dst_high, dst_low) >> shift_amt
2080  *
2081  * The indirect shift will use the same logic at runtime.
2082  */
2083 static int __shr_imm64(struct nfp_prog *nfp_prog, u8 dst, u8 shift_amt)
2084 {
2085 	if (!shift_amt)
2086 		return 0;
2087 
2088 	if (shift_amt < 32) {
2089 		emit_shf(nfp_prog, reg_both(dst), reg_a(dst + 1), SHF_OP_NONE,
2090 			 reg_b(dst), SHF_SC_R_DSHF, shift_amt);
2091 		emit_shf(nfp_prog, reg_both(dst + 1), reg_none(), SHF_OP_NONE,
2092 			 reg_b(dst + 1), SHF_SC_R_SHF, shift_amt);
2093 	} else if (shift_amt == 32) {
2094 		wrp_reg_mov(nfp_prog, dst, dst + 1);
2095 		wrp_immed(nfp_prog, reg_both(dst + 1), 0);
2096 	} else if (shift_amt > 32) {
2097 		emit_shf(nfp_prog, reg_both(dst), reg_none(), SHF_OP_NONE,
2098 			 reg_b(dst + 1), SHF_SC_R_SHF, shift_amt - 32);
2099 		wrp_immed(nfp_prog, reg_both(dst + 1), 0);
2100 	}
2101 
2102 	return 0;
2103 }
2104 
2105 static int shr_imm64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2106 {
2107 	const struct bpf_insn *insn = &meta->insn;
2108 	u8 dst = insn->dst_reg * 2;
2109 
2110 	return __shr_imm64(nfp_prog, dst, insn->imm);
2111 }
2112 
2113 /* NOTE: for indirect right shift, LOW part should be calculated first. */
2114 static void shr_reg64_lt32_high(struct nfp_prog *nfp_prog, u8 dst, u8 src)
2115 {
2116 	emit_alu(nfp_prog, reg_none(), reg_a(src), ALU_OP_OR, reg_imm(0));
2117 	emit_shf_indir(nfp_prog, reg_both(dst + 1), reg_none(), SHF_OP_NONE,
2118 		       reg_b(dst + 1), SHF_SC_R_SHF);
2119 }
2120 
2121 static void shr_reg64_lt32_low(struct nfp_prog *nfp_prog, u8 dst, u8 src)
2122 {
2123 	emit_alu(nfp_prog, reg_none(), reg_a(src), ALU_OP_OR, reg_imm(0));
2124 	emit_shf_indir(nfp_prog, reg_both(dst), reg_a(dst + 1), SHF_OP_NONE,
2125 		       reg_b(dst), SHF_SC_R_DSHF);
2126 }
2127 
2128 static void shr_reg64_lt32(struct nfp_prog *nfp_prog, u8 dst, u8 src)
2129 {
2130 	shr_reg64_lt32_low(nfp_prog, dst, src);
2131 	shr_reg64_lt32_high(nfp_prog, dst, src);
2132 }
2133 
2134 static void shr_reg64_ge32(struct nfp_prog *nfp_prog, u8 dst, u8 src)
2135 {
2136 	emit_alu(nfp_prog, reg_none(), reg_a(src), ALU_OP_OR, reg_imm(0));
2137 	emit_shf_indir(nfp_prog, reg_both(dst), reg_none(), SHF_OP_NONE,
2138 		       reg_b(dst + 1), SHF_SC_R_SHF);
2139 	wrp_immed(nfp_prog, reg_both(dst + 1), 0);
2140 }
2141 
2142 static int shr_reg64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2143 {
2144 	const struct bpf_insn *insn = &meta->insn;
2145 	u64 umin, umax;
2146 	u8 dst, src;
2147 
2148 	dst = insn->dst_reg * 2;
2149 	umin = meta->umin_src;
2150 	umax = meta->umax_src;
2151 	if (umin == umax)
2152 		return __shr_imm64(nfp_prog, dst, umin);
2153 
2154 	src = insn->src_reg * 2;
2155 	if (umax < 32) {
2156 		shr_reg64_lt32(nfp_prog, dst, src);
2157 	} else if (umin >= 32) {
2158 		shr_reg64_ge32(nfp_prog, dst, src);
2159 	} else {
2160 		/* Generate different instruction sequences depending on runtime
2161 		 * value of shift amount.
2162 		 */
2163 		u16 label_ge32, label_end;
2164 
2165 		label_ge32 = nfp_prog_current_offset(nfp_prog) + 6;
2166 		emit_br_bset(nfp_prog, reg_a(src), 5, label_ge32, 0);
2167 		shr_reg64_lt32_low(nfp_prog, dst, src);
2168 		label_end = nfp_prog_current_offset(nfp_prog) + 6;
2169 		emit_br(nfp_prog, BR_UNC, label_end, 2);
2170 		/* shr_reg64_lt32_high packed in delay slot. */
2171 		shr_reg64_lt32_high(nfp_prog, dst, src);
2172 
2173 		if (!nfp_prog_confirm_current_offset(nfp_prog, label_ge32))
2174 			return -EINVAL;
2175 		shr_reg64_ge32(nfp_prog, dst, src);
2176 
2177 		if (!nfp_prog_confirm_current_offset(nfp_prog, label_end))
2178 			return -EINVAL;
2179 	}
2180 
2181 	return 0;
2182 }
2183 
2184 /* Code logic is the same as __shr_imm64 except ashr requires signedness bit
2185  * told through PREV_ALU result.
2186  */
2187 static int __ashr_imm64(struct nfp_prog *nfp_prog, u8 dst, u8 shift_amt)
2188 {
2189 	if (!shift_amt)
2190 		return 0;
2191 
2192 	if (shift_amt < 32) {
2193 		emit_shf(nfp_prog, reg_both(dst), reg_a(dst + 1), SHF_OP_NONE,
2194 			 reg_b(dst), SHF_SC_R_DSHF, shift_amt);
2195 		/* Set signedness bit. */
2196 		emit_alu(nfp_prog, reg_none(), reg_a(dst + 1), ALU_OP_OR,
2197 			 reg_imm(0));
2198 		emit_shf(nfp_prog, reg_both(dst + 1), reg_none(), SHF_OP_ASHR,
2199 			 reg_b(dst + 1), SHF_SC_R_SHF, shift_amt);
2200 	} else if (shift_amt == 32) {
2201 		/* NOTE: this also helps setting signedness bit. */
2202 		wrp_reg_mov(nfp_prog, dst, dst + 1);
2203 		emit_shf(nfp_prog, reg_both(dst + 1), reg_none(), SHF_OP_ASHR,
2204 			 reg_b(dst + 1), SHF_SC_R_SHF, 31);
2205 	} else if (shift_amt > 32) {
2206 		emit_alu(nfp_prog, reg_none(), reg_a(dst + 1), ALU_OP_OR,
2207 			 reg_imm(0));
2208 		emit_shf(nfp_prog, reg_both(dst), reg_none(), SHF_OP_ASHR,
2209 			 reg_b(dst + 1), SHF_SC_R_SHF, shift_amt - 32);
2210 		emit_shf(nfp_prog, reg_both(dst + 1), reg_none(), SHF_OP_ASHR,
2211 			 reg_b(dst + 1), SHF_SC_R_SHF, 31);
2212 	}
2213 
2214 	return 0;
2215 }
2216 
2217 static int ashr_imm64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2218 {
2219 	const struct bpf_insn *insn = &meta->insn;
2220 	u8 dst = insn->dst_reg * 2;
2221 
2222 	return __ashr_imm64(nfp_prog, dst, insn->imm);
2223 }
2224 
2225 static void ashr_reg64_lt32_high(struct nfp_prog *nfp_prog, u8 dst, u8 src)
2226 {
2227 	/* NOTE: the first insn will set both indirect shift amount (source A)
2228 	 * and signedness bit (MSB of result).
2229 	 */
2230 	emit_alu(nfp_prog, reg_none(), reg_a(src), ALU_OP_OR, reg_b(dst + 1));
2231 	emit_shf_indir(nfp_prog, reg_both(dst + 1), reg_none(), SHF_OP_ASHR,
2232 		       reg_b(dst + 1), SHF_SC_R_SHF);
2233 }
2234 
2235 static void ashr_reg64_lt32_low(struct nfp_prog *nfp_prog, u8 dst, u8 src)
2236 {
2237 	/* NOTE: it is the same as logic shift because we don't need to shift in
2238 	 * signedness bit when the shift amount is less than 32.
2239 	 */
2240 	return shr_reg64_lt32_low(nfp_prog, dst, src);
2241 }
2242 
2243 static void ashr_reg64_lt32(struct nfp_prog *nfp_prog, u8 dst, u8 src)
2244 {
2245 	ashr_reg64_lt32_low(nfp_prog, dst, src);
2246 	ashr_reg64_lt32_high(nfp_prog, dst, src);
2247 }
2248 
2249 static void ashr_reg64_ge32(struct nfp_prog *nfp_prog, u8 dst, u8 src)
2250 {
2251 	emit_alu(nfp_prog, reg_none(), reg_a(src), ALU_OP_OR, reg_b(dst + 1));
2252 	emit_shf_indir(nfp_prog, reg_both(dst), reg_none(), SHF_OP_ASHR,
2253 		       reg_b(dst + 1), SHF_SC_R_SHF);
2254 	emit_shf(nfp_prog, reg_both(dst + 1), reg_none(), SHF_OP_ASHR,
2255 		 reg_b(dst + 1), SHF_SC_R_SHF, 31);
2256 }
2257 
2258 /* Like ashr_imm64, but need to use indirect shift. */
2259 static int ashr_reg64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2260 {
2261 	const struct bpf_insn *insn = &meta->insn;
2262 	u64 umin, umax;
2263 	u8 dst, src;
2264 
2265 	dst = insn->dst_reg * 2;
2266 	umin = meta->umin_src;
2267 	umax = meta->umax_src;
2268 	if (umin == umax)
2269 		return __ashr_imm64(nfp_prog, dst, umin);
2270 
2271 	src = insn->src_reg * 2;
2272 	if (umax < 32) {
2273 		ashr_reg64_lt32(nfp_prog, dst, src);
2274 	} else if (umin >= 32) {
2275 		ashr_reg64_ge32(nfp_prog, dst, src);
2276 	} else {
2277 		u16 label_ge32, label_end;
2278 
2279 		label_ge32 = nfp_prog_current_offset(nfp_prog) + 6;
2280 		emit_br_bset(nfp_prog, reg_a(src), 5, label_ge32, 0);
2281 		ashr_reg64_lt32_low(nfp_prog, dst, src);
2282 		label_end = nfp_prog_current_offset(nfp_prog) + 6;
2283 		emit_br(nfp_prog, BR_UNC, label_end, 2);
2284 		/* ashr_reg64_lt32_high packed in delay slot. */
2285 		ashr_reg64_lt32_high(nfp_prog, dst, src);
2286 
2287 		if (!nfp_prog_confirm_current_offset(nfp_prog, label_ge32))
2288 			return -EINVAL;
2289 		ashr_reg64_ge32(nfp_prog, dst, src);
2290 
2291 		if (!nfp_prog_confirm_current_offset(nfp_prog, label_end))
2292 			return -EINVAL;
2293 	}
2294 
2295 	return 0;
2296 }
2297 
2298 static int mov_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2299 {
2300 	const struct bpf_insn *insn = &meta->insn;
2301 
2302 	wrp_reg_mov(nfp_prog, insn->dst_reg * 2,  insn->src_reg * 2);
2303 	wrp_immed(nfp_prog, reg_both(insn->dst_reg * 2 + 1), 0);
2304 
2305 	return 0;
2306 }
2307 
2308 static int mov_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2309 {
2310 	const struct bpf_insn *insn = &meta->insn;
2311 
2312 	wrp_immed(nfp_prog, reg_both(insn->dst_reg * 2), insn->imm);
2313 	wrp_immed(nfp_prog, reg_both(insn->dst_reg * 2 + 1), 0);
2314 
2315 	return 0;
2316 }
2317 
2318 static int xor_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2319 {
2320 	return wrp_alu32_reg(nfp_prog, meta, ALU_OP_XOR);
2321 }
2322 
2323 static int xor_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2324 {
2325 	return wrp_alu32_imm(nfp_prog, meta, ALU_OP_XOR, !~meta->insn.imm);
2326 }
2327 
2328 static int and_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2329 {
2330 	return wrp_alu32_reg(nfp_prog, meta, ALU_OP_AND);
2331 }
2332 
2333 static int and_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2334 {
2335 	return wrp_alu32_imm(nfp_prog, meta, ALU_OP_AND, !~meta->insn.imm);
2336 }
2337 
2338 static int or_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2339 {
2340 	return wrp_alu32_reg(nfp_prog, meta, ALU_OP_OR);
2341 }
2342 
2343 static int or_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2344 {
2345 	return wrp_alu32_imm(nfp_prog, meta, ALU_OP_OR, !meta->insn.imm);
2346 }
2347 
2348 static int add_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2349 {
2350 	return wrp_alu32_reg(nfp_prog, meta, ALU_OP_ADD);
2351 }
2352 
2353 static int add_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2354 {
2355 	return wrp_alu32_imm(nfp_prog, meta, ALU_OP_ADD, !meta->insn.imm);
2356 }
2357 
2358 static int sub_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2359 {
2360 	return wrp_alu32_reg(nfp_prog, meta, ALU_OP_SUB);
2361 }
2362 
2363 static int sub_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2364 {
2365 	return wrp_alu32_imm(nfp_prog, meta, ALU_OP_SUB, !meta->insn.imm);
2366 }
2367 
2368 static int mul_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2369 {
2370 	return wrp_mul(nfp_prog, meta, false, true);
2371 }
2372 
2373 static int mul_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2374 {
2375 	return wrp_mul(nfp_prog, meta, false, false);
2376 }
2377 
2378 static int div_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2379 {
2380 	return div_reg64(nfp_prog, meta);
2381 }
2382 
2383 static int div_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2384 {
2385 	return div_imm64(nfp_prog, meta);
2386 }
2387 
2388 static int neg_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2389 {
2390 	u8 dst = meta->insn.dst_reg * 2;
2391 
2392 	emit_alu(nfp_prog, reg_both(dst), reg_imm(0), ALU_OP_SUB, reg_b(dst));
2393 	wrp_immed(nfp_prog, reg_both(meta->insn.dst_reg * 2 + 1), 0);
2394 
2395 	return 0;
2396 }
2397 
2398 static int __ashr_imm(struct nfp_prog *nfp_prog, u8 dst, u8 shift_amt)
2399 {
2400 	if (shift_amt) {
2401 		/* Set signedness bit (MSB of result). */
2402 		emit_alu(nfp_prog, reg_none(), reg_a(dst), ALU_OP_OR,
2403 			 reg_imm(0));
2404 		emit_shf(nfp_prog, reg_both(dst), reg_none(), SHF_OP_ASHR,
2405 			 reg_b(dst), SHF_SC_R_SHF, shift_amt);
2406 	}
2407 	wrp_immed(nfp_prog, reg_both(dst + 1), 0);
2408 
2409 	return 0;
2410 }
2411 
2412 static int ashr_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2413 {
2414 	const struct bpf_insn *insn = &meta->insn;
2415 	u64 umin, umax;
2416 	u8 dst, src;
2417 
2418 	dst = insn->dst_reg * 2;
2419 	umin = meta->umin_src;
2420 	umax = meta->umax_src;
2421 	if (umin == umax)
2422 		return __ashr_imm(nfp_prog, dst, umin);
2423 
2424 	src = insn->src_reg * 2;
2425 	/* NOTE: the first insn will set both indirect shift amount (source A)
2426 	 * and signedness bit (MSB of result).
2427 	 */
2428 	emit_alu(nfp_prog, reg_none(), reg_a(src), ALU_OP_OR, reg_b(dst));
2429 	emit_shf_indir(nfp_prog, reg_both(dst), reg_none(), SHF_OP_ASHR,
2430 		       reg_b(dst), SHF_SC_R_SHF);
2431 	wrp_immed(nfp_prog, reg_both(dst + 1), 0);
2432 
2433 	return 0;
2434 }
2435 
2436 static int ashr_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2437 {
2438 	const struct bpf_insn *insn = &meta->insn;
2439 	u8 dst = insn->dst_reg * 2;
2440 
2441 	return __ashr_imm(nfp_prog, dst, insn->imm);
2442 }
2443 
2444 static int __shr_imm(struct nfp_prog *nfp_prog, u8 dst, u8 shift_amt)
2445 {
2446 	if (shift_amt)
2447 		emit_shf(nfp_prog, reg_both(dst), reg_none(), SHF_OP_NONE,
2448 			 reg_b(dst), SHF_SC_R_SHF, shift_amt);
2449 	wrp_immed(nfp_prog, reg_both(dst + 1), 0);
2450 	return 0;
2451 }
2452 
2453 static int shr_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2454 {
2455 	const struct bpf_insn *insn = &meta->insn;
2456 	u8 dst = insn->dst_reg * 2;
2457 
2458 	return __shr_imm(nfp_prog, dst, insn->imm);
2459 }
2460 
2461 static int shr_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2462 {
2463 	const struct bpf_insn *insn = &meta->insn;
2464 	u64 umin, umax;
2465 	u8 dst, src;
2466 
2467 	dst = insn->dst_reg * 2;
2468 	umin = meta->umin_src;
2469 	umax = meta->umax_src;
2470 	if (umin == umax)
2471 		return __shr_imm(nfp_prog, dst, umin);
2472 
2473 	src = insn->src_reg * 2;
2474 	emit_alu(nfp_prog, reg_none(), reg_a(src), ALU_OP_OR, reg_imm(0));
2475 	emit_shf_indir(nfp_prog, reg_both(dst), reg_none(), SHF_OP_NONE,
2476 		       reg_b(dst), SHF_SC_R_SHF);
2477 	wrp_immed(nfp_prog, reg_both(dst + 1), 0);
2478 	return 0;
2479 }
2480 
2481 static int __shl_imm(struct nfp_prog *nfp_prog, u8 dst, u8 shift_amt)
2482 {
2483 	if (shift_amt)
2484 		emit_shf(nfp_prog, reg_both(dst), reg_none(), SHF_OP_NONE,
2485 			 reg_b(dst), SHF_SC_L_SHF, shift_amt);
2486 	wrp_immed(nfp_prog, reg_both(dst + 1), 0);
2487 	return 0;
2488 }
2489 
2490 static int shl_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2491 {
2492 	const struct bpf_insn *insn = &meta->insn;
2493 	u8 dst = insn->dst_reg * 2;
2494 
2495 	return __shl_imm(nfp_prog, dst, insn->imm);
2496 }
2497 
2498 static int shl_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2499 {
2500 	const struct bpf_insn *insn = &meta->insn;
2501 	u64 umin, umax;
2502 	u8 dst, src;
2503 
2504 	dst = insn->dst_reg * 2;
2505 	umin = meta->umin_src;
2506 	umax = meta->umax_src;
2507 	if (umin == umax)
2508 		return __shl_imm(nfp_prog, dst, umin);
2509 
2510 	src = insn->src_reg * 2;
2511 	shl_reg64_lt32_low(nfp_prog, dst, src);
2512 	wrp_immed(nfp_prog, reg_both(dst + 1), 0);
2513 	return 0;
2514 }
2515 
2516 static int end_reg32(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2517 {
2518 	const struct bpf_insn *insn = &meta->insn;
2519 	u8 gpr = insn->dst_reg * 2;
2520 
2521 	switch (insn->imm) {
2522 	case 16:
2523 		emit_ld_field(nfp_prog, reg_both(gpr), 0x9, reg_b(gpr),
2524 			      SHF_SC_R_ROT, 8);
2525 		emit_ld_field(nfp_prog, reg_both(gpr), 0xe, reg_a(gpr),
2526 			      SHF_SC_R_SHF, 16);
2527 
2528 		wrp_immed(nfp_prog, reg_both(gpr + 1), 0);
2529 		break;
2530 	case 32:
2531 		wrp_end32(nfp_prog, reg_a(gpr), gpr);
2532 		wrp_immed(nfp_prog, reg_both(gpr + 1), 0);
2533 		break;
2534 	case 64:
2535 		wrp_mov(nfp_prog, imm_a(nfp_prog), reg_b(gpr + 1));
2536 
2537 		wrp_end32(nfp_prog, reg_a(gpr), gpr + 1);
2538 		wrp_end32(nfp_prog, imm_a(nfp_prog), gpr);
2539 		break;
2540 	}
2541 
2542 	return 0;
2543 }
2544 
2545 static int imm_ld8_part2(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2546 {
2547 	struct nfp_insn_meta *prev = nfp_meta_prev(meta);
2548 	u32 imm_lo, imm_hi;
2549 	u8 dst;
2550 
2551 	dst = prev->insn.dst_reg * 2;
2552 	imm_lo = prev->insn.imm;
2553 	imm_hi = meta->insn.imm;
2554 
2555 	wrp_immed(nfp_prog, reg_both(dst), imm_lo);
2556 
2557 	/* mov is always 1 insn, load imm may be two, so try to use mov */
2558 	if (imm_hi == imm_lo)
2559 		wrp_mov(nfp_prog, reg_both(dst + 1), reg_a(dst));
2560 	else
2561 		wrp_immed(nfp_prog, reg_both(dst + 1), imm_hi);
2562 
2563 	return 0;
2564 }
2565 
2566 static int imm_ld8(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2567 {
2568 	meta->double_cb = imm_ld8_part2;
2569 	return 0;
2570 }
2571 
2572 static int data_ld1(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2573 {
2574 	return construct_data_ld(nfp_prog, meta->insn.imm, 1);
2575 }
2576 
2577 static int data_ld2(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2578 {
2579 	return construct_data_ld(nfp_prog, meta->insn.imm, 2);
2580 }
2581 
2582 static int data_ld4(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2583 {
2584 	return construct_data_ld(nfp_prog, meta->insn.imm, 4);
2585 }
2586 
2587 static int data_ind_ld1(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2588 {
2589 	return construct_data_ind_ld(nfp_prog, meta->insn.imm,
2590 				     meta->insn.src_reg * 2, 1);
2591 }
2592 
2593 static int data_ind_ld2(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2594 {
2595 	return construct_data_ind_ld(nfp_prog, meta->insn.imm,
2596 				     meta->insn.src_reg * 2, 2);
2597 }
2598 
2599 static int data_ind_ld4(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2600 {
2601 	return construct_data_ind_ld(nfp_prog, meta->insn.imm,
2602 				     meta->insn.src_reg * 2, 4);
2603 }
2604 
2605 static int
2606 mem_ldx_stack(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
2607 	      unsigned int size, unsigned int ptr_off)
2608 {
2609 	return mem_op_stack(nfp_prog, meta, size, ptr_off,
2610 			    meta->insn.dst_reg * 2, meta->insn.src_reg * 2,
2611 			    true, wrp_lmem_load);
2612 }
2613 
2614 static int mem_ldx_skb(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
2615 		       u8 size)
2616 {
2617 	swreg dst = reg_both(meta->insn.dst_reg * 2);
2618 
2619 	switch (meta->insn.off) {
2620 	case offsetof(struct __sk_buff, len):
2621 		if (size != FIELD_SIZEOF(struct __sk_buff, len))
2622 			return -EOPNOTSUPP;
2623 		wrp_mov(nfp_prog, dst, plen_reg(nfp_prog));
2624 		break;
2625 	case offsetof(struct __sk_buff, data):
2626 		if (size != FIELD_SIZEOF(struct __sk_buff, data))
2627 			return -EOPNOTSUPP;
2628 		wrp_mov(nfp_prog, dst, pptr_reg(nfp_prog));
2629 		break;
2630 	case offsetof(struct __sk_buff, data_end):
2631 		if (size != FIELD_SIZEOF(struct __sk_buff, data_end))
2632 			return -EOPNOTSUPP;
2633 		emit_alu(nfp_prog, dst,
2634 			 plen_reg(nfp_prog), ALU_OP_ADD, pptr_reg(nfp_prog));
2635 		break;
2636 	default:
2637 		return -EOPNOTSUPP;
2638 	}
2639 
2640 	wrp_immed(nfp_prog, reg_both(meta->insn.dst_reg * 2 + 1), 0);
2641 
2642 	return 0;
2643 }
2644 
2645 static int mem_ldx_xdp(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
2646 		       u8 size)
2647 {
2648 	swreg dst = reg_both(meta->insn.dst_reg * 2);
2649 
2650 	switch (meta->insn.off) {
2651 	case offsetof(struct xdp_md, data):
2652 		if (size != FIELD_SIZEOF(struct xdp_md, data))
2653 			return -EOPNOTSUPP;
2654 		wrp_mov(nfp_prog, dst, pptr_reg(nfp_prog));
2655 		break;
2656 	case offsetof(struct xdp_md, data_end):
2657 		if (size != FIELD_SIZEOF(struct xdp_md, data_end))
2658 			return -EOPNOTSUPP;
2659 		emit_alu(nfp_prog, dst,
2660 			 plen_reg(nfp_prog), ALU_OP_ADD, pptr_reg(nfp_prog));
2661 		break;
2662 	default:
2663 		return -EOPNOTSUPP;
2664 	}
2665 
2666 	wrp_immed(nfp_prog, reg_both(meta->insn.dst_reg * 2 + 1), 0);
2667 
2668 	return 0;
2669 }
2670 
2671 static int
2672 mem_ldx_data(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
2673 	     unsigned int size)
2674 {
2675 	swreg tmp_reg;
2676 
2677 	tmp_reg = re_load_imm_any(nfp_prog, meta->insn.off, imm_b(nfp_prog));
2678 
2679 	return data_ld_host_order_addr32(nfp_prog, meta->insn.src_reg * 2,
2680 					 tmp_reg, meta->insn.dst_reg * 2, size);
2681 }
2682 
2683 static int
2684 mem_ldx_emem(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
2685 	     unsigned int size)
2686 {
2687 	swreg tmp_reg;
2688 
2689 	tmp_reg = re_load_imm_any(nfp_prog, meta->insn.off, imm_b(nfp_prog));
2690 
2691 	return data_ld_host_order_addr40(nfp_prog, meta->insn.src_reg * 2,
2692 					 tmp_reg, meta->insn.dst_reg * 2, size);
2693 }
2694 
2695 static void
2696 mem_ldx_data_init_pktcache(struct nfp_prog *nfp_prog,
2697 			   struct nfp_insn_meta *meta)
2698 {
2699 	s16 range_start = meta->pkt_cache.range_start;
2700 	s16 range_end = meta->pkt_cache.range_end;
2701 	swreg src_base, off;
2702 	u8 xfer_num, len;
2703 	bool indir;
2704 
2705 	off = re_load_imm_any(nfp_prog, range_start, imm_b(nfp_prog));
2706 	src_base = reg_a(meta->insn.src_reg * 2);
2707 	len = range_end - range_start;
2708 	xfer_num = round_up(len, REG_WIDTH) / REG_WIDTH;
2709 
2710 	indir = len > 8 * REG_WIDTH;
2711 	/* Setup PREV_ALU for indirect mode. */
2712 	if (indir)
2713 		wrp_immed(nfp_prog, reg_none(),
2714 			  CMD_OVE_LEN | FIELD_PREP(CMD_OV_LEN, xfer_num - 1));
2715 
2716 	/* Cache memory into transfer-in registers. */
2717 	emit_cmd_any(nfp_prog, CMD_TGT_READ32_SWAP, CMD_MODE_32b, 0, src_base,
2718 		     off, xfer_num - 1, CMD_CTX_SWAP, indir);
2719 }
2720 
2721 static int
2722 mem_ldx_data_from_pktcache_unaligned(struct nfp_prog *nfp_prog,
2723 				     struct nfp_insn_meta *meta,
2724 				     unsigned int size)
2725 {
2726 	s16 range_start = meta->pkt_cache.range_start;
2727 	s16 insn_off = meta->insn.off - range_start;
2728 	swreg dst_lo, dst_hi, src_lo, src_mid;
2729 	u8 dst_gpr = meta->insn.dst_reg * 2;
2730 	u8 len_lo = size, len_mid = 0;
2731 	u8 idx = insn_off / REG_WIDTH;
2732 	u8 off = insn_off % REG_WIDTH;
2733 
2734 	dst_hi = reg_both(dst_gpr + 1);
2735 	dst_lo = reg_both(dst_gpr);
2736 	src_lo = reg_xfer(idx);
2737 
2738 	/* The read length could involve as many as three registers. */
2739 	if (size > REG_WIDTH - off) {
2740 		/* Calculate the part in the second register. */
2741 		len_lo = REG_WIDTH - off;
2742 		len_mid = size - len_lo;
2743 
2744 		/* Calculate the part in the third register. */
2745 		if (size > 2 * REG_WIDTH - off)
2746 			len_mid = REG_WIDTH;
2747 	}
2748 
2749 	wrp_reg_subpart(nfp_prog, dst_lo, src_lo, len_lo, off);
2750 
2751 	if (!len_mid) {
2752 		wrp_immed(nfp_prog, dst_hi, 0);
2753 		return 0;
2754 	}
2755 
2756 	src_mid = reg_xfer(idx + 1);
2757 
2758 	if (size <= REG_WIDTH) {
2759 		wrp_reg_or_subpart(nfp_prog, dst_lo, src_mid, len_mid, len_lo);
2760 		wrp_immed(nfp_prog, dst_hi, 0);
2761 	} else {
2762 		swreg src_hi = reg_xfer(idx + 2);
2763 
2764 		wrp_reg_or_subpart(nfp_prog, dst_lo, src_mid,
2765 				   REG_WIDTH - len_lo, len_lo);
2766 		wrp_reg_subpart(nfp_prog, dst_hi, src_mid, len_lo,
2767 				REG_WIDTH - len_lo);
2768 		wrp_reg_or_subpart(nfp_prog, dst_hi, src_hi, REG_WIDTH - len_lo,
2769 				   len_lo);
2770 	}
2771 
2772 	return 0;
2773 }
2774 
2775 static int
2776 mem_ldx_data_from_pktcache_aligned(struct nfp_prog *nfp_prog,
2777 				   struct nfp_insn_meta *meta,
2778 				   unsigned int size)
2779 {
2780 	swreg dst_lo, dst_hi, src_lo;
2781 	u8 dst_gpr, idx;
2782 
2783 	idx = (meta->insn.off - meta->pkt_cache.range_start) / REG_WIDTH;
2784 	dst_gpr = meta->insn.dst_reg * 2;
2785 	dst_hi = reg_both(dst_gpr + 1);
2786 	dst_lo = reg_both(dst_gpr);
2787 	src_lo = reg_xfer(idx);
2788 
2789 	if (size < REG_WIDTH) {
2790 		wrp_reg_subpart(nfp_prog, dst_lo, src_lo, size, 0);
2791 		wrp_immed(nfp_prog, dst_hi, 0);
2792 	} else if (size == REG_WIDTH) {
2793 		wrp_mov(nfp_prog, dst_lo, src_lo);
2794 		wrp_immed(nfp_prog, dst_hi, 0);
2795 	} else {
2796 		swreg src_hi = reg_xfer(idx + 1);
2797 
2798 		wrp_mov(nfp_prog, dst_lo, src_lo);
2799 		wrp_mov(nfp_prog, dst_hi, src_hi);
2800 	}
2801 
2802 	return 0;
2803 }
2804 
2805 static int
2806 mem_ldx_data_from_pktcache(struct nfp_prog *nfp_prog,
2807 			   struct nfp_insn_meta *meta, unsigned int size)
2808 {
2809 	u8 off = meta->insn.off - meta->pkt_cache.range_start;
2810 
2811 	if (IS_ALIGNED(off, REG_WIDTH))
2812 		return mem_ldx_data_from_pktcache_aligned(nfp_prog, meta, size);
2813 
2814 	return mem_ldx_data_from_pktcache_unaligned(nfp_prog, meta, size);
2815 }
2816 
2817 static int
2818 mem_ldx(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
2819 	unsigned int size)
2820 {
2821 	if (meta->ldst_gather_len)
2822 		return nfp_cpp_memcpy(nfp_prog, meta);
2823 
2824 	if (meta->ptr.type == PTR_TO_CTX) {
2825 		if (nfp_prog->type == BPF_PROG_TYPE_XDP)
2826 			return mem_ldx_xdp(nfp_prog, meta, size);
2827 		else
2828 			return mem_ldx_skb(nfp_prog, meta, size);
2829 	}
2830 
2831 	if (meta->ptr.type == PTR_TO_PACKET) {
2832 		if (meta->pkt_cache.range_end) {
2833 			if (meta->pkt_cache.do_init)
2834 				mem_ldx_data_init_pktcache(nfp_prog, meta);
2835 
2836 			return mem_ldx_data_from_pktcache(nfp_prog, meta, size);
2837 		} else {
2838 			return mem_ldx_data(nfp_prog, meta, size);
2839 		}
2840 	}
2841 
2842 	if (meta->ptr.type == PTR_TO_STACK)
2843 		return mem_ldx_stack(nfp_prog, meta, size,
2844 				     meta->ptr.off + meta->ptr.var_off.value);
2845 
2846 	if (meta->ptr.type == PTR_TO_MAP_VALUE)
2847 		return mem_ldx_emem(nfp_prog, meta, size);
2848 
2849 	return -EOPNOTSUPP;
2850 }
2851 
2852 static int mem_ldx1(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2853 {
2854 	return mem_ldx(nfp_prog, meta, 1);
2855 }
2856 
2857 static int mem_ldx2(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2858 {
2859 	return mem_ldx(nfp_prog, meta, 2);
2860 }
2861 
2862 static int mem_ldx4(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2863 {
2864 	return mem_ldx(nfp_prog, meta, 4);
2865 }
2866 
2867 static int mem_ldx8(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2868 {
2869 	return mem_ldx(nfp_prog, meta, 8);
2870 }
2871 
2872 static int
2873 mem_st_data(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
2874 	    unsigned int size)
2875 {
2876 	u64 imm = meta->insn.imm; /* sign extend */
2877 	swreg off_reg;
2878 
2879 	off_reg = re_load_imm_any(nfp_prog, meta->insn.off, imm_b(nfp_prog));
2880 
2881 	return data_st_host_order(nfp_prog, meta->insn.dst_reg * 2, off_reg,
2882 				  imm, size);
2883 }
2884 
2885 static int mem_st(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
2886 		  unsigned int size)
2887 {
2888 	if (meta->ptr.type == PTR_TO_PACKET)
2889 		return mem_st_data(nfp_prog, meta, size);
2890 
2891 	return -EOPNOTSUPP;
2892 }
2893 
2894 static int mem_st1(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2895 {
2896 	return mem_st(nfp_prog, meta, 1);
2897 }
2898 
2899 static int mem_st2(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2900 {
2901 	return mem_st(nfp_prog, meta, 2);
2902 }
2903 
2904 static int mem_st4(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2905 {
2906 	return mem_st(nfp_prog, meta, 4);
2907 }
2908 
2909 static int mem_st8(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2910 {
2911 	return mem_st(nfp_prog, meta, 8);
2912 }
2913 
2914 static int
2915 mem_stx_data(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
2916 	     unsigned int size)
2917 {
2918 	swreg off_reg;
2919 
2920 	off_reg = re_load_imm_any(nfp_prog, meta->insn.off, imm_b(nfp_prog));
2921 
2922 	return data_stx_host_order(nfp_prog, meta->insn.dst_reg * 2, off_reg,
2923 				   meta->insn.src_reg * 2, size);
2924 }
2925 
2926 static int
2927 mem_stx_stack(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
2928 	      unsigned int size, unsigned int ptr_off)
2929 {
2930 	return mem_op_stack(nfp_prog, meta, size, ptr_off,
2931 			    meta->insn.src_reg * 2, meta->insn.dst_reg * 2,
2932 			    false, wrp_lmem_store);
2933 }
2934 
2935 static int mem_stx_xdp(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2936 {
2937 	switch (meta->insn.off) {
2938 	case offsetof(struct xdp_md, rx_queue_index):
2939 		return nfp_queue_select(nfp_prog, meta);
2940 	}
2941 
2942 	WARN_ON_ONCE(1); /* verifier should have rejected bad accesses */
2943 	return -EOPNOTSUPP;
2944 }
2945 
2946 static int
2947 mem_stx(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
2948 	unsigned int size)
2949 {
2950 	if (meta->ptr.type == PTR_TO_PACKET)
2951 		return mem_stx_data(nfp_prog, meta, size);
2952 
2953 	if (meta->ptr.type == PTR_TO_STACK)
2954 		return mem_stx_stack(nfp_prog, meta, size,
2955 				     meta->ptr.off + meta->ptr.var_off.value);
2956 
2957 	return -EOPNOTSUPP;
2958 }
2959 
2960 static int mem_stx1(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2961 {
2962 	return mem_stx(nfp_prog, meta, 1);
2963 }
2964 
2965 static int mem_stx2(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2966 {
2967 	return mem_stx(nfp_prog, meta, 2);
2968 }
2969 
2970 static int mem_stx4(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2971 {
2972 	if (meta->ptr.type == PTR_TO_CTX)
2973 		if (nfp_prog->type == BPF_PROG_TYPE_XDP)
2974 			return mem_stx_xdp(nfp_prog, meta);
2975 	return mem_stx(nfp_prog, meta, 4);
2976 }
2977 
2978 static int mem_stx8(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2979 {
2980 	return mem_stx(nfp_prog, meta, 8);
2981 }
2982 
2983 static int
2984 mem_xadd(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta, bool is64)
2985 {
2986 	u8 dst_gpr = meta->insn.dst_reg * 2;
2987 	u8 src_gpr = meta->insn.src_reg * 2;
2988 	unsigned int full_add, out;
2989 	swreg addra, addrb, off;
2990 
2991 	off = ur_load_imm_any(nfp_prog, meta->insn.off, imm_b(nfp_prog));
2992 
2993 	/* We can fit 16 bits into command immediate, if we know the immediate
2994 	 * is guaranteed to either always or never fit into 16 bit we only
2995 	 * generate code to handle that particular case, otherwise generate
2996 	 * code for both.
2997 	 */
2998 	out = nfp_prog_current_offset(nfp_prog);
2999 	full_add = nfp_prog_current_offset(nfp_prog);
3000 
3001 	if (meta->insn.off) {
3002 		out += 2;
3003 		full_add += 2;
3004 	}
3005 	if (meta->xadd_maybe_16bit) {
3006 		out += 3;
3007 		full_add += 3;
3008 	}
3009 	if (meta->xadd_over_16bit)
3010 		out += 2 + is64;
3011 	if (meta->xadd_maybe_16bit && meta->xadd_over_16bit) {
3012 		out += 5;
3013 		full_add += 5;
3014 	}
3015 
3016 	/* Generate the branch for choosing add_imm vs add */
3017 	if (meta->xadd_maybe_16bit && meta->xadd_over_16bit) {
3018 		swreg max_imm = imm_a(nfp_prog);
3019 
3020 		wrp_immed(nfp_prog, max_imm, 0xffff);
3021 		emit_alu(nfp_prog, reg_none(),
3022 			 max_imm, ALU_OP_SUB, reg_b(src_gpr));
3023 		emit_alu(nfp_prog, reg_none(),
3024 			 reg_imm(0), ALU_OP_SUB_C, reg_b(src_gpr + 1));
3025 		emit_br(nfp_prog, BR_BLO, full_add, meta->insn.off ? 2 : 0);
3026 		/* defer for add */
3027 	}
3028 
3029 	/* If insn has an offset add to the address */
3030 	if (!meta->insn.off) {
3031 		addra = reg_a(dst_gpr);
3032 		addrb = reg_b(dst_gpr + 1);
3033 	} else {
3034 		emit_alu(nfp_prog, imma_a(nfp_prog),
3035 			 reg_a(dst_gpr), ALU_OP_ADD, off);
3036 		emit_alu(nfp_prog, imma_b(nfp_prog),
3037 			 reg_a(dst_gpr + 1), ALU_OP_ADD_C, reg_imm(0));
3038 		addra = imma_a(nfp_prog);
3039 		addrb = imma_b(nfp_prog);
3040 	}
3041 
3042 	/* Generate the add_imm if 16 bits are possible */
3043 	if (meta->xadd_maybe_16bit) {
3044 		swreg prev_alu = imm_a(nfp_prog);
3045 
3046 		wrp_immed(nfp_prog, prev_alu,
3047 			  FIELD_PREP(CMD_OVE_DATA, 2) |
3048 			  CMD_OVE_LEN |
3049 			  FIELD_PREP(CMD_OV_LEN, 0x8 | is64 << 2));
3050 		wrp_reg_or_subpart(nfp_prog, prev_alu, reg_b(src_gpr), 2, 2);
3051 		emit_cmd_indir(nfp_prog, CMD_TGT_ADD_IMM, CMD_MODE_40b_BA, 0,
3052 			       addra, addrb, 0, CMD_CTX_NO_SWAP);
3053 
3054 		if (meta->xadd_over_16bit)
3055 			emit_br(nfp_prog, BR_UNC, out, 0);
3056 	}
3057 
3058 	if (!nfp_prog_confirm_current_offset(nfp_prog, full_add))
3059 		return -EINVAL;
3060 
3061 	/* Generate the add if 16 bits are not guaranteed */
3062 	if (meta->xadd_over_16bit) {
3063 		emit_cmd(nfp_prog, CMD_TGT_ADD, CMD_MODE_40b_BA, 0,
3064 			 addra, addrb, is64 << 2,
3065 			 is64 ? CMD_CTX_SWAP_DEFER2 : CMD_CTX_SWAP_DEFER1);
3066 
3067 		wrp_mov(nfp_prog, reg_xfer(0), reg_a(src_gpr));
3068 		if (is64)
3069 			wrp_mov(nfp_prog, reg_xfer(1), reg_a(src_gpr + 1));
3070 	}
3071 
3072 	if (!nfp_prog_confirm_current_offset(nfp_prog, out))
3073 		return -EINVAL;
3074 
3075 	return 0;
3076 }
3077 
3078 static int mem_xadd4(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
3079 {
3080 	return mem_xadd(nfp_prog, meta, false);
3081 }
3082 
3083 static int mem_xadd8(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
3084 {
3085 	return mem_xadd(nfp_prog, meta, true);
3086 }
3087 
3088 static int jump(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
3089 {
3090 	emit_br(nfp_prog, BR_UNC, meta->insn.off, 0);
3091 
3092 	return 0;
3093 }
3094 
3095 static int jeq_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
3096 {
3097 	const struct bpf_insn *insn = &meta->insn;
3098 	u64 imm = insn->imm; /* sign extend */
3099 	swreg or1, or2, tmp_reg;
3100 
3101 	or1 = reg_a(insn->dst_reg * 2);
3102 	or2 = reg_b(insn->dst_reg * 2 + 1);
3103 
3104 	if (imm & ~0U) {
3105 		tmp_reg = ur_load_imm_any(nfp_prog, imm & ~0U, imm_b(nfp_prog));
3106 		emit_alu(nfp_prog, imm_a(nfp_prog),
3107 			 reg_a(insn->dst_reg * 2), ALU_OP_XOR, tmp_reg);
3108 		or1 = imm_a(nfp_prog);
3109 	}
3110 
3111 	if (imm >> 32) {
3112 		tmp_reg = ur_load_imm_any(nfp_prog, imm >> 32, imm_b(nfp_prog));
3113 		emit_alu(nfp_prog, imm_b(nfp_prog),
3114 			 reg_a(insn->dst_reg * 2 + 1), ALU_OP_XOR, tmp_reg);
3115 		or2 = imm_b(nfp_prog);
3116 	}
3117 
3118 	emit_alu(nfp_prog, reg_none(), or1, ALU_OP_OR, or2);
3119 	emit_br(nfp_prog, BR_BEQ, insn->off, 0);
3120 
3121 	return 0;
3122 }
3123 
3124 static int jeq32_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
3125 {
3126 	const struct bpf_insn *insn = &meta->insn;
3127 	swreg tmp_reg;
3128 
3129 	tmp_reg = ur_load_imm_any(nfp_prog, insn->imm, imm_b(nfp_prog));
3130 	emit_alu(nfp_prog, reg_none(),
3131 		 reg_a(insn->dst_reg * 2), ALU_OP_XOR, tmp_reg);
3132 	emit_br(nfp_prog, BR_BEQ, insn->off, 0);
3133 
3134 	return 0;
3135 }
3136 
3137 static int jset_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
3138 {
3139 	const struct bpf_insn *insn = &meta->insn;
3140 	u64 imm = insn->imm; /* sign extend */
3141 	u8 dst_gpr = insn->dst_reg * 2;
3142 	swreg tmp_reg;
3143 
3144 	tmp_reg = ur_load_imm_any(nfp_prog, imm & ~0U, imm_b(nfp_prog));
3145 	emit_alu(nfp_prog, imm_b(nfp_prog),
3146 		 reg_a(dst_gpr), ALU_OP_AND, tmp_reg);
3147 	/* Upper word of the mask can only be 0 or ~0 from sign extension,
3148 	 * so either ignore it or OR the whole thing in.
3149 	 */
3150 	if (is_mbpf_jmp64(meta) && imm >> 32) {
3151 		emit_alu(nfp_prog, reg_none(),
3152 			 reg_a(dst_gpr + 1), ALU_OP_OR, imm_b(nfp_prog));
3153 	}
3154 	emit_br(nfp_prog, BR_BNE, insn->off, 0);
3155 
3156 	return 0;
3157 }
3158 
3159 static int jne_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
3160 {
3161 	const struct bpf_insn *insn = &meta->insn;
3162 	u64 imm = insn->imm; /* sign extend */
3163 	bool is_jmp32 = is_mbpf_jmp32(meta);
3164 	swreg tmp_reg;
3165 
3166 	if (!imm) {
3167 		if (is_jmp32)
3168 			emit_alu(nfp_prog, reg_none(), reg_none(), ALU_OP_NONE,
3169 				 reg_b(insn->dst_reg * 2));
3170 		else
3171 			emit_alu(nfp_prog, reg_none(), reg_a(insn->dst_reg * 2),
3172 				 ALU_OP_OR, reg_b(insn->dst_reg * 2 + 1));
3173 		emit_br(nfp_prog, BR_BNE, insn->off, 0);
3174 		return 0;
3175 	}
3176 
3177 	tmp_reg = ur_load_imm_any(nfp_prog, imm & ~0U, imm_b(nfp_prog));
3178 	emit_alu(nfp_prog, reg_none(),
3179 		 reg_a(insn->dst_reg * 2), ALU_OP_XOR, tmp_reg);
3180 	emit_br(nfp_prog, BR_BNE, insn->off, 0);
3181 
3182 	if (is_jmp32)
3183 		return 0;
3184 
3185 	tmp_reg = ur_load_imm_any(nfp_prog, imm >> 32, imm_b(nfp_prog));
3186 	emit_alu(nfp_prog, reg_none(),
3187 		 reg_a(insn->dst_reg * 2 + 1), ALU_OP_XOR, tmp_reg);
3188 	emit_br(nfp_prog, BR_BNE, insn->off, 0);
3189 
3190 	return 0;
3191 }
3192 
3193 static int jeq_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
3194 {
3195 	const struct bpf_insn *insn = &meta->insn;
3196 
3197 	emit_alu(nfp_prog, imm_a(nfp_prog), reg_a(insn->dst_reg * 2),
3198 		 ALU_OP_XOR, reg_b(insn->src_reg * 2));
3199 	if (is_mbpf_jmp64(meta)) {
3200 		emit_alu(nfp_prog, imm_b(nfp_prog),
3201 			 reg_a(insn->dst_reg * 2 + 1), ALU_OP_XOR,
3202 			 reg_b(insn->src_reg * 2 + 1));
3203 		emit_alu(nfp_prog, reg_none(), imm_a(nfp_prog), ALU_OP_OR,
3204 			 imm_b(nfp_prog));
3205 	}
3206 	emit_br(nfp_prog, BR_BEQ, insn->off, 0);
3207 
3208 	return 0;
3209 }
3210 
3211 static int jset_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
3212 {
3213 	return wrp_test_reg(nfp_prog, meta, ALU_OP_AND, BR_BNE);
3214 }
3215 
3216 static int jne_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
3217 {
3218 	return wrp_test_reg(nfp_prog, meta, ALU_OP_XOR, BR_BNE);
3219 }
3220 
3221 static int
3222 bpf_to_bpf_call(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
3223 {
3224 	u32 ret_tgt, stack_depth, offset_br;
3225 	swreg tmp_reg;
3226 
3227 	stack_depth = round_up(nfp_prog->stack_frame_depth, STACK_FRAME_ALIGN);
3228 	/* Space for saving the return address is accounted for by the callee,
3229 	 * so stack_depth can be zero for the main function.
3230 	 */
3231 	if (stack_depth) {
3232 		tmp_reg = ur_load_imm_any(nfp_prog, stack_depth,
3233 					  stack_imm(nfp_prog));
3234 		emit_alu(nfp_prog, stack_reg(nfp_prog),
3235 			 stack_reg(nfp_prog), ALU_OP_ADD, tmp_reg);
3236 		emit_csr_wr(nfp_prog, stack_reg(nfp_prog),
3237 			    NFP_CSR_ACT_LM_ADDR0);
3238 	}
3239 
3240 	/* Two cases for jumping to the callee:
3241 	 *
3242 	 * - If callee uses and needs to save R6~R9 then:
3243 	 *     1. Put the start offset of the callee into imm_b(). This will
3244 	 *        require a fixup step, as we do not necessarily know this
3245 	 *        address yet.
3246 	 *     2. Put the return address from the callee to the caller into
3247 	 *        register ret_reg().
3248 	 *     3. (After defer slots are consumed) Jump to the subroutine that
3249 	 *        pushes the registers to the stack.
3250 	 *   The subroutine acts as a trampoline, and returns to the address in
3251 	 *   imm_b(), i.e. jumps to the callee.
3252 	 *
3253 	 * - If callee does not need to save R6~R9 then just load return
3254 	 *   address to the caller in ret_reg(), and jump to the callee
3255 	 *   directly.
3256 	 *
3257 	 * Using ret_reg() to pass the return address to the callee is set here
3258 	 * as a convention. The callee can then push this address onto its
3259 	 * stack frame in its prologue. The advantages of passing the return
3260 	 * address through ret_reg(), instead of pushing it to the stack right
3261 	 * here, are the following:
3262 	 * - It looks cleaner.
3263 	 * - If the called function is called multiple time, we get a lower
3264 	 *   program size.
3265 	 * - We save two no-op instructions that should be added just before
3266 	 *   the emit_br() when stack depth is not null otherwise.
3267 	 * - If we ever find a register to hold the return address during whole
3268 	 *   execution of the callee, we will not have to push the return
3269 	 *   address to the stack for leaf functions.
3270 	 */
3271 	if (!meta->jmp_dst) {
3272 		pr_err("BUG: BPF-to-BPF call has no destination recorded\n");
3273 		return -ELOOP;
3274 	}
3275 	if (nfp_prog->subprog[meta->jmp_dst->subprog_idx].needs_reg_push) {
3276 		ret_tgt = nfp_prog_current_offset(nfp_prog) + 3;
3277 		emit_br_relo(nfp_prog, BR_UNC, BR_OFF_RELO, 2,
3278 			     RELO_BR_GO_CALL_PUSH_REGS);
3279 		offset_br = nfp_prog_current_offset(nfp_prog);
3280 		wrp_immed_relo(nfp_prog, imm_b(nfp_prog), 0, RELO_IMMED_REL);
3281 	} else {
3282 		ret_tgt = nfp_prog_current_offset(nfp_prog) + 2;
3283 		emit_br(nfp_prog, BR_UNC, meta->insn.imm, 1);
3284 		offset_br = nfp_prog_current_offset(nfp_prog);
3285 	}
3286 	wrp_immed_relo(nfp_prog, ret_reg(nfp_prog), ret_tgt, RELO_IMMED_REL);
3287 
3288 	if (!nfp_prog_confirm_current_offset(nfp_prog, ret_tgt))
3289 		return -EINVAL;
3290 
3291 	if (stack_depth) {
3292 		tmp_reg = ur_load_imm_any(nfp_prog, stack_depth,
3293 					  stack_imm(nfp_prog));
3294 		emit_alu(nfp_prog, stack_reg(nfp_prog),
3295 			 stack_reg(nfp_prog), ALU_OP_SUB, tmp_reg);
3296 		emit_csr_wr(nfp_prog, stack_reg(nfp_prog),
3297 			    NFP_CSR_ACT_LM_ADDR0);
3298 		wrp_nops(nfp_prog, 3);
3299 	}
3300 
3301 	meta->num_insns_after_br = nfp_prog_current_offset(nfp_prog);
3302 	meta->num_insns_after_br -= offset_br;
3303 
3304 	return 0;
3305 }
3306 
3307 static int helper_call(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
3308 {
3309 	switch (meta->insn.imm) {
3310 	case BPF_FUNC_xdp_adjust_head:
3311 		return adjust_head(nfp_prog, meta);
3312 	case BPF_FUNC_xdp_adjust_tail:
3313 		return adjust_tail(nfp_prog, meta);
3314 	case BPF_FUNC_map_lookup_elem:
3315 	case BPF_FUNC_map_update_elem:
3316 	case BPF_FUNC_map_delete_elem:
3317 		return map_call_stack_common(nfp_prog, meta);
3318 	case BPF_FUNC_get_prandom_u32:
3319 		return nfp_get_prandom_u32(nfp_prog, meta);
3320 	case BPF_FUNC_perf_event_output:
3321 		return nfp_perf_event_output(nfp_prog, meta);
3322 	default:
3323 		WARN_ONCE(1, "verifier allowed unsupported function\n");
3324 		return -EOPNOTSUPP;
3325 	}
3326 }
3327 
3328 static int call(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
3329 {
3330 	if (is_mbpf_pseudo_call(meta))
3331 		return bpf_to_bpf_call(nfp_prog, meta);
3332 	else
3333 		return helper_call(nfp_prog, meta);
3334 }
3335 
3336 static bool nfp_is_main_function(struct nfp_insn_meta *meta)
3337 {
3338 	return meta->subprog_idx == 0;
3339 }
3340 
3341 static int goto_out(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
3342 {
3343 	emit_br_relo(nfp_prog, BR_UNC, BR_OFF_RELO, 0, RELO_BR_GO_OUT);
3344 
3345 	return 0;
3346 }
3347 
3348 static int
3349 nfp_subprog_epilogue(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
3350 {
3351 	if (nfp_prog->subprog[meta->subprog_idx].needs_reg_push) {
3352 		/* Pop R6~R9 to the stack via related subroutine.
3353 		 * We loaded the return address to the caller into ret_reg().
3354 		 * This means that the subroutine does not come back here, we
3355 		 * make it jump back to the subprogram caller directly!
3356 		 */
3357 		emit_br_relo(nfp_prog, BR_UNC, BR_OFF_RELO, 1,
3358 			     RELO_BR_GO_CALL_POP_REGS);
3359 		/* Pop return address from the stack. */
3360 		wrp_mov(nfp_prog, ret_reg(nfp_prog), reg_lm(0, 0));
3361 	} else {
3362 		/* Pop return address from the stack. */
3363 		wrp_mov(nfp_prog, ret_reg(nfp_prog), reg_lm(0, 0));
3364 		/* Jump back to caller if no callee-saved registers were used
3365 		 * by the subprogram.
3366 		 */
3367 		emit_rtn(nfp_prog, ret_reg(nfp_prog), 0);
3368 	}
3369 
3370 	return 0;
3371 }
3372 
3373 static int jmp_exit(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
3374 {
3375 	if (nfp_is_main_function(meta))
3376 		return goto_out(nfp_prog, meta);
3377 	else
3378 		return nfp_subprog_epilogue(nfp_prog, meta);
3379 }
3380 
3381 static const instr_cb_t instr_cb[256] = {
3382 	[BPF_ALU64 | BPF_MOV | BPF_X] =	mov_reg64,
3383 	[BPF_ALU64 | BPF_MOV | BPF_K] =	mov_imm64,
3384 	[BPF_ALU64 | BPF_XOR | BPF_X] =	xor_reg64,
3385 	[BPF_ALU64 | BPF_XOR | BPF_K] =	xor_imm64,
3386 	[BPF_ALU64 | BPF_AND | BPF_X] =	and_reg64,
3387 	[BPF_ALU64 | BPF_AND | BPF_K] =	and_imm64,
3388 	[BPF_ALU64 | BPF_OR | BPF_X] =	or_reg64,
3389 	[BPF_ALU64 | BPF_OR | BPF_K] =	or_imm64,
3390 	[BPF_ALU64 | BPF_ADD | BPF_X] =	add_reg64,
3391 	[BPF_ALU64 | BPF_ADD | BPF_K] =	add_imm64,
3392 	[BPF_ALU64 | BPF_SUB | BPF_X] =	sub_reg64,
3393 	[BPF_ALU64 | BPF_SUB | BPF_K] =	sub_imm64,
3394 	[BPF_ALU64 | BPF_MUL | BPF_X] =	mul_reg64,
3395 	[BPF_ALU64 | BPF_MUL | BPF_K] =	mul_imm64,
3396 	[BPF_ALU64 | BPF_DIV | BPF_X] =	div_reg64,
3397 	[BPF_ALU64 | BPF_DIV | BPF_K] =	div_imm64,
3398 	[BPF_ALU64 | BPF_NEG] =		neg_reg64,
3399 	[BPF_ALU64 | BPF_LSH | BPF_X] =	shl_reg64,
3400 	[BPF_ALU64 | BPF_LSH | BPF_K] =	shl_imm64,
3401 	[BPF_ALU64 | BPF_RSH | BPF_X] =	shr_reg64,
3402 	[BPF_ALU64 | BPF_RSH | BPF_K] =	shr_imm64,
3403 	[BPF_ALU64 | BPF_ARSH | BPF_X] = ashr_reg64,
3404 	[BPF_ALU64 | BPF_ARSH | BPF_K] = ashr_imm64,
3405 	[BPF_ALU | BPF_MOV | BPF_X] =	mov_reg,
3406 	[BPF_ALU | BPF_MOV | BPF_K] =	mov_imm,
3407 	[BPF_ALU | BPF_XOR | BPF_X] =	xor_reg,
3408 	[BPF_ALU | BPF_XOR | BPF_K] =	xor_imm,
3409 	[BPF_ALU | BPF_AND | BPF_X] =	and_reg,
3410 	[BPF_ALU | BPF_AND | BPF_K] =	and_imm,
3411 	[BPF_ALU | BPF_OR | BPF_X] =	or_reg,
3412 	[BPF_ALU | BPF_OR | BPF_K] =	or_imm,
3413 	[BPF_ALU | BPF_ADD | BPF_X] =	add_reg,
3414 	[BPF_ALU | BPF_ADD | BPF_K] =	add_imm,
3415 	[BPF_ALU | BPF_SUB | BPF_X] =	sub_reg,
3416 	[BPF_ALU | BPF_SUB | BPF_K] =	sub_imm,
3417 	[BPF_ALU | BPF_MUL | BPF_X] =	mul_reg,
3418 	[BPF_ALU | BPF_MUL | BPF_K] =	mul_imm,
3419 	[BPF_ALU | BPF_DIV | BPF_X] =	div_reg,
3420 	[BPF_ALU | BPF_DIV | BPF_K] =	div_imm,
3421 	[BPF_ALU | BPF_NEG] =		neg_reg,
3422 	[BPF_ALU | BPF_LSH | BPF_X] =	shl_reg,
3423 	[BPF_ALU | BPF_LSH | BPF_K] =	shl_imm,
3424 	[BPF_ALU | BPF_RSH | BPF_X] =	shr_reg,
3425 	[BPF_ALU | BPF_RSH | BPF_K] =	shr_imm,
3426 	[BPF_ALU | BPF_ARSH | BPF_X] =	ashr_reg,
3427 	[BPF_ALU | BPF_ARSH | BPF_K] =	ashr_imm,
3428 	[BPF_ALU | BPF_END | BPF_X] =	end_reg32,
3429 	[BPF_LD | BPF_IMM | BPF_DW] =	imm_ld8,
3430 	[BPF_LD | BPF_ABS | BPF_B] =	data_ld1,
3431 	[BPF_LD | BPF_ABS | BPF_H] =	data_ld2,
3432 	[BPF_LD | BPF_ABS | BPF_W] =	data_ld4,
3433 	[BPF_LD | BPF_IND | BPF_B] =	data_ind_ld1,
3434 	[BPF_LD | BPF_IND | BPF_H] =	data_ind_ld2,
3435 	[BPF_LD | BPF_IND | BPF_W] =	data_ind_ld4,
3436 	[BPF_LDX | BPF_MEM | BPF_B] =	mem_ldx1,
3437 	[BPF_LDX | BPF_MEM | BPF_H] =	mem_ldx2,
3438 	[BPF_LDX | BPF_MEM | BPF_W] =	mem_ldx4,
3439 	[BPF_LDX | BPF_MEM | BPF_DW] =	mem_ldx8,
3440 	[BPF_STX | BPF_MEM | BPF_B] =	mem_stx1,
3441 	[BPF_STX | BPF_MEM | BPF_H] =	mem_stx2,
3442 	[BPF_STX | BPF_MEM | BPF_W] =	mem_stx4,
3443 	[BPF_STX | BPF_MEM | BPF_DW] =	mem_stx8,
3444 	[BPF_STX | BPF_XADD | BPF_W] =	mem_xadd4,
3445 	[BPF_STX | BPF_XADD | BPF_DW] =	mem_xadd8,
3446 	[BPF_ST | BPF_MEM | BPF_B] =	mem_st1,
3447 	[BPF_ST | BPF_MEM | BPF_H] =	mem_st2,
3448 	[BPF_ST | BPF_MEM | BPF_W] =	mem_st4,
3449 	[BPF_ST | BPF_MEM | BPF_DW] =	mem_st8,
3450 	[BPF_JMP | BPF_JA | BPF_K] =	jump,
3451 	[BPF_JMP | BPF_JEQ | BPF_K] =	jeq_imm,
3452 	[BPF_JMP | BPF_JGT | BPF_K] =	cmp_imm,
3453 	[BPF_JMP | BPF_JGE | BPF_K] =	cmp_imm,
3454 	[BPF_JMP | BPF_JLT | BPF_K] =	cmp_imm,
3455 	[BPF_JMP | BPF_JLE | BPF_K] =	cmp_imm,
3456 	[BPF_JMP | BPF_JSGT | BPF_K] =  cmp_imm,
3457 	[BPF_JMP | BPF_JSGE | BPF_K] =  cmp_imm,
3458 	[BPF_JMP | BPF_JSLT | BPF_K] =  cmp_imm,
3459 	[BPF_JMP | BPF_JSLE | BPF_K] =  cmp_imm,
3460 	[BPF_JMP | BPF_JSET | BPF_K] =	jset_imm,
3461 	[BPF_JMP | BPF_JNE | BPF_K] =	jne_imm,
3462 	[BPF_JMP | BPF_JEQ | BPF_X] =	jeq_reg,
3463 	[BPF_JMP | BPF_JGT | BPF_X] =	cmp_reg,
3464 	[BPF_JMP | BPF_JGE | BPF_X] =	cmp_reg,
3465 	[BPF_JMP | BPF_JLT | BPF_X] =	cmp_reg,
3466 	[BPF_JMP | BPF_JLE | BPF_X] =	cmp_reg,
3467 	[BPF_JMP | BPF_JSGT | BPF_X] =  cmp_reg,
3468 	[BPF_JMP | BPF_JSGE | BPF_X] =  cmp_reg,
3469 	[BPF_JMP | BPF_JSLT | BPF_X] =  cmp_reg,
3470 	[BPF_JMP | BPF_JSLE | BPF_X] =  cmp_reg,
3471 	[BPF_JMP | BPF_JSET | BPF_X] =	jset_reg,
3472 	[BPF_JMP | BPF_JNE | BPF_X] =	jne_reg,
3473 	[BPF_JMP32 | BPF_JEQ | BPF_K] =	jeq32_imm,
3474 	[BPF_JMP32 | BPF_JGT | BPF_K] =	cmp_imm,
3475 	[BPF_JMP32 | BPF_JGE | BPF_K] =	cmp_imm,
3476 	[BPF_JMP32 | BPF_JLT | BPF_K] =	cmp_imm,
3477 	[BPF_JMP32 | BPF_JLE | BPF_K] =	cmp_imm,
3478 	[BPF_JMP32 | BPF_JSGT | BPF_K] =cmp_imm,
3479 	[BPF_JMP32 | BPF_JSGE | BPF_K] =cmp_imm,
3480 	[BPF_JMP32 | BPF_JSLT | BPF_K] =cmp_imm,
3481 	[BPF_JMP32 | BPF_JSLE | BPF_K] =cmp_imm,
3482 	[BPF_JMP32 | BPF_JSET | BPF_K] =jset_imm,
3483 	[BPF_JMP32 | BPF_JNE | BPF_K] =	jne_imm,
3484 	[BPF_JMP32 | BPF_JEQ | BPF_X] =	jeq_reg,
3485 	[BPF_JMP32 | BPF_JGT | BPF_X] =	cmp_reg,
3486 	[BPF_JMP32 | BPF_JGE | BPF_X] =	cmp_reg,
3487 	[BPF_JMP32 | BPF_JLT | BPF_X] =	cmp_reg,
3488 	[BPF_JMP32 | BPF_JLE | BPF_X] =	cmp_reg,
3489 	[BPF_JMP32 | BPF_JSGT | BPF_X] =cmp_reg,
3490 	[BPF_JMP32 | BPF_JSGE | BPF_X] =cmp_reg,
3491 	[BPF_JMP32 | BPF_JSLT | BPF_X] =cmp_reg,
3492 	[BPF_JMP32 | BPF_JSLE | BPF_X] =cmp_reg,
3493 	[BPF_JMP32 | BPF_JSET | BPF_X] =jset_reg,
3494 	[BPF_JMP32 | BPF_JNE | BPF_X] =	jne_reg,
3495 	[BPF_JMP | BPF_CALL] =		call,
3496 	[BPF_JMP | BPF_EXIT] =		jmp_exit,
3497 };
3498 
3499 /* --- Assembler logic --- */
3500 static int
3501 nfp_fixup_immed_relo(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
3502 		     struct nfp_insn_meta *jmp_dst, u32 br_idx)
3503 {
3504 	if (immed_get_value(nfp_prog->prog[br_idx + 1])) {
3505 		pr_err("BUG: failed to fix up callee register saving\n");
3506 		return -EINVAL;
3507 	}
3508 
3509 	immed_set_value(&nfp_prog->prog[br_idx + 1], jmp_dst->off);
3510 
3511 	return 0;
3512 }
3513 
3514 static int nfp_fixup_branches(struct nfp_prog *nfp_prog)
3515 {
3516 	struct nfp_insn_meta *meta, *jmp_dst;
3517 	u32 idx, br_idx;
3518 	int err;
3519 
3520 	list_for_each_entry(meta, &nfp_prog->insns, l) {
3521 		if (meta->flags & FLAG_INSN_SKIP_MASK)
3522 			continue;
3523 		if (!is_mbpf_jmp(meta))
3524 			continue;
3525 		if (meta->insn.code == (BPF_JMP | BPF_EXIT) &&
3526 		    !nfp_is_main_function(meta))
3527 			continue;
3528 		if (is_mbpf_helper_call(meta))
3529 			continue;
3530 
3531 		if (list_is_last(&meta->l, &nfp_prog->insns))
3532 			br_idx = nfp_prog->last_bpf_off;
3533 		else
3534 			br_idx = list_next_entry(meta, l)->off - 1;
3535 
3536 		/* For BPF-to-BPF function call, a stack adjustment sequence is
3537 		 * generated after the return instruction. Therefore, we must
3538 		 * withdraw the length of this sequence to have br_idx pointing
3539 		 * to where the "branch" NFP instruction is expected to be.
3540 		 */
3541 		if (is_mbpf_pseudo_call(meta))
3542 			br_idx -= meta->num_insns_after_br;
3543 
3544 		if (!nfp_is_br(nfp_prog->prog[br_idx])) {
3545 			pr_err("Fixup found block not ending in branch %d %02x %016llx!!\n",
3546 			       br_idx, meta->insn.code, nfp_prog->prog[br_idx]);
3547 			return -ELOOP;
3548 		}
3549 
3550 		if (meta->insn.code == (BPF_JMP | BPF_EXIT))
3551 			continue;
3552 
3553 		/* Leave special branches for later */
3554 		if (FIELD_GET(OP_RELO_TYPE, nfp_prog->prog[br_idx]) !=
3555 		    RELO_BR_REL && !is_mbpf_pseudo_call(meta))
3556 			continue;
3557 
3558 		if (!meta->jmp_dst) {
3559 			pr_err("Non-exit jump doesn't have destination info recorded!!\n");
3560 			return -ELOOP;
3561 		}
3562 
3563 		jmp_dst = meta->jmp_dst;
3564 
3565 		if (jmp_dst->flags & FLAG_INSN_SKIP_PREC_DEPENDENT) {
3566 			pr_err("Branch landing on removed instruction!!\n");
3567 			return -ELOOP;
3568 		}
3569 
3570 		if (is_mbpf_pseudo_call(meta) &&
3571 		    nfp_prog->subprog[jmp_dst->subprog_idx].needs_reg_push) {
3572 			err = nfp_fixup_immed_relo(nfp_prog, meta,
3573 						   jmp_dst, br_idx);
3574 			if (err)
3575 				return err;
3576 		}
3577 
3578 		if (FIELD_GET(OP_RELO_TYPE, nfp_prog->prog[br_idx]) !=
3579 		    RELO_BR_REL)
3580 			continue;
3581 
3582 		for (idx = meta->off; idx <= br_idx; idx++) {
3583 			if (!nfp_is_br(nfp_prog->prog[idx]))
3584 				continue;
3585 			br_set_offset(&nfp_prog->prog[idx], jmp_dst->off);
3586 		}
3587 	}
3588 
3589 	return 0;
3590 }
3591 
3592 static void nfp_intro(struct nfp_prog *nfp_prog)
3593 {
3594 	wrp_immed(nfp_prog, plen_reg(nfp_prog), GENMASK(13, 0));
3595 	emit_alu(nfp_prog, plen_reg(nfp_prog),
3596 		 plen_reg(nfp_prog), ALU_OP_AND, pv_len(nfp_prog));
3597 }
3598 
3599 static void
3600 nfp_subprog_prologue(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
3601 {
3602 	/* Save return address into the stack. */
3603 	wrp_mov(nfp_prog, reg_lm(0, 0), ret_reg(nfp_prog));
3604 }
3605 
3606 static void
3607 nfp_start_subprog(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
3608 {
3609 	unsigned int depth = nfp_prog->subprog[meta->subprog_idx].stack_depth;
3610 
3611 	nfp_prog->stack_frame_depth = round_up(depth, 4);
3612 	nfp_subprog_prologue(nfp_prog, meta);
3613 }
3614 
3615 bool nfp_is_subprog_start(struct nfp_insn_meta *meta)
3616 {
3617 	return meta->flags & FLAG_INSN_IS_SUBPROG_START;
3618 }
3619 
3620 static void nfp_outro_tc_da(struct nfp_prog *nfp_prog)
3621 {
3622 	/* TC direct-action mode:
3623 	 *   0,1   ok        NOT SUPPORTED[1]
3624 	 *   2   drop  0x22 -> drop,  count as stat1
3625 	 *   4,5 nuke  0x02 -> drop
3626 	 *   7  redir  0x44 -> redir, count as stat2
3627 	 *   * unspec  0x11 -> pass,  count as stat0
3628 	 *
3629 	 * [1] We can't support OK and RECLASSIFY because we can't tell TC
3630 	 *     the exact decision made.  We are forced to support UNSPEC
3631 	 *     to handle aborts so that's the only one we handle for passing
3632 	 *     packets up the stack.
3633 	 */
3634 	/* Target for aborts */
3635 	nfp_prog->tgt_abort = nfp_prog_current_offset(nfp_prog);
3636 
3637 	emit_br_relo(nfp_prog, BR_UNC, BR_OFF_RELO, 2, RELO_BR_NEXT_PKT);
3638 
3639 	wrp_mov(nfp_prog, reg_a(0), NFP_BPF_ABI_FLAGS);
3640 	emit_ld_field(nfp_prog, reg_a(0), 0xc, reg_imm(0x11), SHF_SC_L_SHF, 16);
3641 
3642 	/* Target for normal exits */
3643 	nfp_prog->tgt_out = nfp_prog_current_offset(nfp_prog);
3644 
3645 	/* if R0 > 7 jump to abort */
3646 	emit_alu(nfp_prog, reg_none(), reg_imm(7), ALU_OP_SUB, reg_b(0));
3647 	emit_br(nfp_prog, BR_BLO, nfp_prog->tgt_abort, 0);
3648 	wrp_mov(nfp_prog, reg_a(0), NFP_BPF_ABI_FLAGS);
3649 
3650 	wrp_immed(nfp_prog, reg_b(2), 0x41221211);
3651 	wrp_immed(nfp_prog, reg_b(3), 0x41001211);
3652 
3653 	emit_shf(nfp_prog, reg_a(1),
3654 		 reg_none(), SHF_OP_NONE, reg_b(0), SHF_SC_L_SHF, 2);
3655 
3656 	emit_alu(nfp_prog, reg_none(), reg_a(1), ALU_OP_OR, reg_imm(0));
3657 	emit_shf(nfp_prog, reg_a(2),
3658 		 reg_imm(0xf), SHF_OP_AND, reg_b(2), SHF_SC_R_SHF, 0);
3659 
3660 	emit_alu(nfp_prog, reg_none(), reg_a(1), ALU_OP_OR, reg_imm(0));
3661 	emit_shf(nfp_prog, reg_b(2),
3662 		 reg_imm(0xf), SHF_OP_AND, reg_b(3), SHF_SC_R_SHF, 0);
3663 
3664 	emit_br_relo(nfp_prog, BR_UNC, BR_OFF_RELO, 2, RELO_BR_NEXT_PKT);
3665 
3666 	emit_shf(nfp_prog, reg_b(2),
3667 		 reg_a(2), SHF_OP_OR, reg_b(2), SHF_SC_L_SHF, 4);
3668 	emit_ld_field(nfp_prog, reg_a(0), 0xc, reg_b(2), SHF_SC_L_SHF, 16);
3669 }
3670 
3671 static void nfp_outro_xdp(struct nfp_prog *nfp_prog)
3672 {
3673 	/* XDP return codes:
3674 	 *   0 aborted  0x82 -> drop,  count as stat3
3675 	 *   1    drop  0x22 -> drop,  count as stat1
3676 	 *   2    pass  0x11 -> pass,  count as stat0
3677 	 *   3      tx  0x44 -> redir, count as stat2
3678 	 *   * unknown  0x82 -> drop,  count as stat3
3679 	 */
3680 	/* Target for aborts */
3681 	nfp_prog->tgt_abort = nfp_prog_current_offset(nfp_prog);
3682 
3683 	emit_br_relo(nfp_prog, BR_UNC, BR_OFF_RELO, 2, RELO_BR_NEXT_PKT);
3684 
3685 	wrp_mov(nfp_prog, reg_a(0), NFP_BPF_ABI_FLAGS);
3686 	emit_ld_field(nfp_prog, reg_a(0), 0xc, reg_imm(0x82), SHF_SC_L_SHF, 16);
3687 
3688 	/* Target for normal exits */
3689 	nfp_prog->tgt_out = nfp_prog_current_offset(nfp_prog);
3690 
3691 	/* if R0 > 3 jump to abort */
3692 	emit_alu(nfp_prog, reg_none(), reg_imm(3), ALU_OP_SUB, reg_b(0));
3693 	emit_br(nfp_prog, BR_BLO, nfp_prog->tgt_abort, 0);
3694 
3695 	wrp_immed(nfp_prog, reg_b(2), 0x44112282);
3696 
3697 	emit_shf(nfp_prog, reg_a(1),
3698 		 reg_none(), SHF_OP_NONE, reg_b(0), SHF_SC_L_SHF, 3);
3699 
3700 	emit_alu(nfp_prog, reg_none(), reg_a(1), ALU_OP_OR, reg_imm(0));
3701 	emit_shf(nfp_prog, reg_b(2),
3702 		 reg_imm(0xff), SHF_OP_AND, reg_b(2), SHF_SC_R_SHF, 0);
3703 
3704 	emit_br_relo(nfp_prog, BR_UNC, BR_OFF_RELO, 2, RELO_BR_NEXT_PKT);
3705 
3706 	wrp_mov(nfp_prog, reg_a(0), NFP_BPF_ABI_FLAGS);
3707 	emit_ld_field(nfp_prog, reg_a(0), 0xc, reg_b(2), SHF_SC_L_SHF, 16);
3708 }
3709 
3710 static bool nfp_prog_needs_callee_reg_save(struct nfp_prog *nfp_prog)
3711 {
3712 	unsigned int idx;
3713 
3714 	for (idx = 1; idx < nfp_prog->subprog_cnt; idx++)
3715 		if (nfp_prog->subprog[idx].needs_reg_push)
3716 			return true;
3717 
3718 	return false;
3719 }
3720 
3721 static void nfp_push_callee_registers(struct nfp_prog *nfp_prog)
3722 {
3723 	u8 reg;
3724 
3725 	/* Subroutine: Save all callee saved registers (R6 ~ R9).
3726 	 * imm_b() holds the return address.
3727 	 */
3728 	nfp_prog->tgt_call_push_regs = nfp_prog_current_offset(nfp_prog);
3729 	for (reg = BPF_REG_6; reg <= BPF_REG_9; reg++) {
3730 		u8 adj = (reg - BPF_REG_0) * 2;
3731 		u8 idx = (reg - BPF_REG_6) * 2;
3732 
3733 		/* The first slot in the stack frame is used to push the return
3734 		 * address in bpf_to_bpf_call(), start just after.
3735 		 */
3736 		wrp_mov(nfp_prog, reg_lm(0, 1 + idx), reg_b(adj));
3737 
3738 		if (reg == BPF_REG_8)
3739 			/* Prepare to jump back, last 3 insns use defer slots */
3740 			emit_rtn(nfp_prog, imm_b(nfp_prog), 3);
3741 
3742 		wrp_mov(nfp_prog, reg_lm(0, 1 + idx + 1), reg_b(adj + 1));
3743 	}
3744 }
3745 
3746 static void nfp_pop_callee_registers(struct nfp_prog *nfp_prog)
3747 {
3748 	u8 reg;
3749 
3750 	/* Subroutine: Restore all callee saved registers (R6 ~ R9).
3751 	 * ret_reg() holds the return address.
3752 	 */
3753 	nfp_prog->tgt_call_pop_regs = nfp_prog_current_offset(nfp_prog);
3754 	for (reg = BPF_REG_6; reg <= BPF_REG_9; reg++) {
3755 		u8 adj = (reg - BPF_REG_0) * 2;
3756 		u8 idx = (reg - BPF_REG_6) * 2;
3757 
3758 		/* The first slot in the stack frame holds the return address,
3759 		 * start popping just after that.
3760 		 */
3761 		wrp_mov(nfp_prog, reg_both(adj), reg_lm(0, 1 + idx));
3762 
3763 		if (reg == BPF_REG_8)
3764 			/* Prepare to jump back, last 3 insns use defer slots */
3765 			emit_rtn(nfp_prog, ret_reg(nfp_prog), 3);
3766 
3767 		wrp_mov(nfp_prog, reg_both(adj + 1), reg_lm(0, 1 + idx + 1));
3768 	}
3769 }
3770 
3771 static void nfp_outro(struct nfp_prog *nfp_prog)
3772 {
3773 	switch (nfp_prog->type) {
3774 	case BPF_PROG_TYPE_SCHED_CLS:
3775 		nfp_outro_tc_da(nfp_prog);
3776 		break;
3777 	case BPF_PROG_TYPE_XDP:
3778 		nfp_outro_xdp(nfp_prog);
3779 		break;
3780 	default:
3781 		WARN_ON(1);
3782 	}
3783 
3784 	if (!nfp_prog_needs_callee_reg_save(nfp_prog))
3785 		return;
3786 
3787 	nfp_push_callee_registers(nfp_prog);
3788 	nfp_pop_callee_registers(nfp_prog);
3789 }
3790 
3791 static int nfp_translate(struct nfp_prog *nfp_prog)
3792 {
3793 	struct nfp_insn_meta *meta;
3794 	unsigned int depth;
3795 	int err;
3796 
3797 	depth = nfp_prog->subprog[0].stack_depth;
3798 	nfp_prog->stack_frame_depth = round_up(depth, 4);
3799 
3800 	nfp_intro(nfp_prog);
3801 	if (nfp_prog->error)
3802 		return nfp_prog->error;
3803 
3804 	list_for_each_entry(meta, &nfp_prog->insns, l) {
3805 		instr_cb_t cb = instr_cb[meta->insn.code];
3806 
3807 		meta->off = nfp_prog_current_offset(nfp_prog);
3808 
3809 		if (nfp_is_subprog_start(meta)) {
3810 			nfp_start_subprog(nfp_prog, meta);
3811 			if (nfp_prog->error)
3812 				return nfp_prog->error;
3813 		}
3814 
3815 		if (meta->flags & FLAG_INSN_SKIP_MASK) {
3816 			nfp_prog->n_translated++;
3817 			continue;
3818 		}
3819 
3820 		if (nfp_meta_has_prev(nfp_prog, meta) &&
3821 		    nfp_meta_prev(meta)->double_cb)
3822 			cb = nfp_meta_prev(meta)->double_cb;
3823 		if (!cb)
3824 			return -ENOENT;
3825 		err = cb(nfp_prog, meta);
3826 		if (err)
3827 			return err;
3828 		if (nfp_prog->error)
3829 			return nfp_prog->error;
3830 
3831 		nfp_prog->n_translated++;
3832 	}
3833 
3834 	nfp_prog->last_bpf_off = nfp_prog_current_offset(nfp_prog) - 1;
3835 
3836 	nfp_outro(nfp_prog);
3837 	if (nfp_prog->error)
3838 		return nfp_prog->error;
3839 
3840 	wrp_nops(nfp_prog, NFP_USTORE_PREFETCH_WINDOW);
3841 	if (nfp_prog->error)
3842 		return nfp_prog->error;
3843 
3844 	return nfp_fixup_branches(nfp_prog);
3845 }
3846 
3847 /* --- Optimizations --- */
3848 static void nfp_bpf_opt_reg_init(struct nfp_prog *nfp_prog)
3849 {
3850 	struct nfp_insn_meta *meta;
3851 
3852 	list_for_each_entry(meta, &nfp_prog->insns, l) {
3853 		struct bpf_insn insn = meta->insn;
3854 
3855 		/* Programs converted from cBPF start with register xoring */
3856 		if (insn.code == (BPF_ALU64 | BPF_XOR | BPF_X) &&
3857 		    insn.src_reg == insn.dst_reg)
3858 			continue;
3859 
3860 		/* Programs start with R6 = R1 but we ignore the skb pointer */
3861 		if (insn.code == (BPF_ALU64 | BPF_MOV | BPF_X) &&
3862 		    insn.src_reg == 1 && insn.dst_reg == 6)
3863 			meta->flags |= FLAG_INSN_SKIP_PREC_DEPENDENT;
3864 
3865 		/* Return as soon as something doesn't match */
3866 		if (!(meta->flags & FLAG_INSN_SKIP_MASK))
3867 			return;
3868 	}
3869 }
3870 
3871 /* abs(insn.imm) will fit better into unrestricted reg immediate -
3872  * convert add/sub of a negative number into a sub/add of a positive one.
3873  */
3874 static void nfp_bpf_opt_neg_add_sub(struct nfp_prog *nfp_prog)
3875 {
3876 	struct nfp_insn_meta *meta;
3877 
3878 	list_for_each_entry(meta, &nfp_prog->insns, l) {
3879 		struct bpf_insn insn = meta->insn;
3880 
3881 		if (meta->flags & FLAG_INSN_SKIP_MASK)
3882 			continue;
3883 
3884 		if (!is_mbpf_alu(meta) && !is_mbpf_jmp(meta))
3885 			continue;
3886 		if (BPF_SRC(insn.code) != BPF_K)
3887 			continue;
3888 		if (insn.imm >= 0)
3889 			continue;
3890 
3891 		if (is_mbpf_jmp(meta)) {
3892 			switch (BPF_OP(insn.code)) {
3893 			case BPF_JGE:
3894 			case BPF_JSGE:
3895 			case BPF_JLT:
3896 			case BPF_JSLT:
3897 				meta->jump_neg_op = true;
3898 				break;
3899 			default:
3900 				continue;
3901 			}
3902 		} else {
3903 			if (BPF_OP(insn.code) == BPF_ADD)
3904 				insn.code = BPF_CLASS(insn.code) | BPF_SUB;
3905 			else if (BPF_OP(insn.code) == BPF_SUB)
3906 				insn.code = BPF_CLASS(insn.code) | BPF_ADD;
3907 			else
3908 				continue;
3909 
3910 			meta->insn.code = insn.code | BPF_K;
3911 		}
3912 
3913 		meta->insn.imm = -insn.imm;
3914 	}
3915 }
3916 
3917 /* Remove masking after load since our load guarantees this is not needed */
3918 static void nfp_bpf_opt_ld_mask(struct nfp_prog *nfp_prog)
3919 {
3920 	struct nfp_insn_meta *meta1, *meta2;
3921 	const s32 exp_mask[] = {
3922 		[BPF_B] = 0x000000ffU,
3923 		[BPF_H] = 0x0000ffffU,
3924 		[BPF_W] = 0xffffffffU,
3925 	};
3926 
3927 	nfp_for_each_insn_walk2(nfp_prog, meta1, meta2) {
3928 		struct bpf_insn insn, next;
3929 
3930 		insn = meta1->insn;
3931 		next = meta2->insn;
3932 
3933 		if (BPF_CLASS(insn.code) != BPF_LD)
3934 			continue;
3935 		if (BPF_MODE(insn.code) != BPF_ABS &&
3936 		    BPF_MODE(insn.code) != BPF_IND)
3937 			continue;
3938 
3939 		if (next.code != (BPF_ALU64 | BPF_AND | BPF_K))
3940 			continue;
3941 
3942 		if (!exp_mask[BPF_SIZE(insn.code)])
3943 			continue;
3944 		if (exp_mask[BPF_SIZE(insn.code)] != next.imm)
3945 			continue;
3946 
3947 		if (next.src_reg || next.dst_reg)
3948 			continue;
3949 
3950 		if (meta2->flags & FLAG_INSN_IS_JUMP_DST)
3951 			continue;
3952 
3953 		meta2->flags |= FLAG_INSN_SKIP_PREC_DEPENDENT;
3954 	}
3955 }
3956 
3957 static void nfp_bpf_opt_ld_shift(struct nfp_prog *nfp_prog)
3958 {
3959 	struct nfp_insn_meta *meta1, *meta2, *meta3;
3960 
3961 	nfp_for_each_insn_walk3(nfp_prog, meta1, meta2, meta3) {
3962 		struct bpf_insn insn, next1, next2;
3963 
3964 		insn = meta1->insn;
3965 		next1 = meta2->insn;
3966 		next2 = meta3->insn;
3967 
3968 		if (BPF_CLASS(insn.code) != BPF_LD)
3969 			continue;
3970 		if (BPF_MODE(insn.code) != BPF_ABS &&
3971 		    BPF_MODE(insn.code) != BPF_IND)
3972 			continue;
3973 		if (BPF_SIZE(insn.code) != BPF_W)
3974 			continue;
3975 
3976 		if (!(next1.code == (BPF_LSH | BPF_K | BPF_ALU64) &&
3977 		      next2.code == (BPF_RSH | BPF_K | BPF_ALU64)) &&
3978 		    !(next1.code == (BPF_RSH | BPF_K | BPF_ALU64) &&
3979 		      next2.code == (BPF_LSH | BPF_K | BPF_ALU64)))
3980 			continue;
3981 
3982 		if (next1.src_reg || next1.dst_reg ||
3983 		    next2.src_reg || next2.dst_reg)
3984 			continue;
3985 
3986 		if (next1.imm != 0x20 || next2.imm != 0x20)
3987 			continue;
3988 
3989 		if (meta2->flags & FLAG_INSN_IS_JUMP_DST ||
3990 		    meta3->flags & FLAG_INSN_IS_JUMP_DST)
3991 			continue;
3992 
3993 		meta2->flags |= FLAG_INSN_SKIP_PREC_DEPENDENT;
3994 		meta3->flags |= FLAG_INSN_SKIP_PREC_DEPENDENT;
3995 	}
3996 }
3997 
3998 /* load/store pair that forms memory copy sould look like the following:
3999  *
4000  *   ld_width R, [addr_src + offset_src]
4001  *   st_width [addr_dest + offset_dest], R
4002  *
4003  * The destination register of load and source register of store should
4004  * be the same, load and store should also perform at the same width.
4005  * If either of addr_src or addr_dest is stack pointer, we don't do the
4006  * CPP optimization as stack is modelled by registers on NFP.
4007  */
4008 static bool
4009 curr_pair_is_memcpy(struct nfp_insn_meta *ld_meta,
4010 		    struct nfp_insn_meta *st_meta)
4011 {
4012 	struct bpf_insn *ld = &ld_meta->insn;
4013 	struct bpf_insn *st = &st_meta->insn;
4014 
4015 	if (!is_mbpf_load(ld_meta) || !is_mbpf_store(st_meta))
4016 		return false;
4017 
4018 	if (ld_meta->ptr.type != PTR_TO_PACKET &&
4019 	    ld_meta->ptr.type != PTR_TO_MAP_VALUE)
4020 		return false;
4021 
4022 	if (st_meta->ptr.type != PTR_TO_PACKET)
4023 		return false;
4024 
4025 	if (BPF_SIZE(ld->code) != BPF_SIZE(st->code))
4026 		return false;
4027 
4028 	if (ld->dst_reg != st->src_reg)
4029 		return false;
4030 
4031 	/* There is jump to the store insn in this pair. */
4032 	if (st_meta->flags & FLAG_INSN_IS_JUMP_DST)
4033 		return false;
4034 
4035 	return true;
4036 }
4037 
4038 /* Currently, we only support chaining load/store pairs if:
4039  *
4040  *  - Their address base registers are the same.
4041  *  - Their address offsets are in the same order.
4042  *  - They operate at the same memory width.
4043  *  - There is no jump into the middle of them.
4044  */
4045 static bool
4046 curr_pair_chain_with_previous(struct nfp_insn_meta *ld_meta,
4047 			      struct nfp_insn_meta *st_meta,
4048 			      struct bpf_insn *prev_ld,
4049 			      struct bpf_insn *prev_st)
4050 {
4051 	u8 prev_size, curr_size, prev_ld_base, prev_st_base, prev_ld_dst;
4052 	struct bpf_insn *ld = &ld_meta->insn;
4053 	struct bpf_insn *st = &st_meta->insn;
4054 	s16 prev_ld_off, prev_st_off;
4055 
4056 	/* This pair is the start pair. */
4057 	if (!prev_ld)
4058 		return true;
4059 
4060 	prev_size = BPF_LDST_BYTES(prev_ld);
4061 	curr_size = BPF_LDST_BYTES(ld);
4062 	prev_ld_base = prev_ld->src_reg;
4063 	prev_st_base = prev_st->dst_reg;
4064 	prev_ld_dst = prev_ld->dst_reg;
4065 	prev_ld_off = prev_ld->off;
4066 	prev_st_off = prev_st->off;
4067 
4068 	if (ld->dst_reg != prev_ld_dst)
4069 		return false;
4070 
4071 	if (ld->src_reg != prev_ld_base || st->dst_reg != prev_st_base)
4072 		return false;
4073 
4074 	if (curr_size != prev_size)
4075 		return false;
4076 
4077 	/* There is jump to the head of this pair. */
4078 	if (ld_meta->flags & FLAG_INSN_IS_JUMP_DST)
4079 		return false;
4080 
4081 	/* Both in ascending order. */
4082 	if (prev_ld_off + prev_size == ld->off &&
4083 	    prev_st_off + prev_size == st->off)
4084 		return true;
4085 
4086 	/* Both in descending order. */
4087 	if (ld->off + curr_size == prev_ld_off &&
4088 	    st->off + curr_size == prev_st_off)
4089 		return true;
4090 
4091 	return false;
4092 }
4093 
4094 /* Return TRUE if cross memory access happens. Cross memory access means
4095  * store area is overlapping with load area that a later load might load
4096  * the value from previous store, for this case we can't treat the sequence
4097  * as an memory copy.
4098  */
4099 static bool
4100 cross_mem_access(struct bpf_insn *ld, struct nfp_insn_meta *head_ld_meta,
4101 		 struct nfp_insn_meta *head_st_meta)
4102 {
4103 	s16 head_ld_off, head_st_off, ld_off;
4104 
4105 	/* Different pointer types does not overlap. */
4106 	if (head_ld_meta->ptr.type != head_st_meta->ptr.type)
4107 		return false;
4108 
4109 	/* load and store are both PTR_TO_PACKET, check ID info.  */
4110 	if (head_ld_meta->ptr.id != head_st_meta->ptr.id)
4111 		return true;
4112 
4113 	/* Canonicalize the offsets. Turn all of them against the original
4114 	 * base register.
4115 	 */
4116 	head_ld_off = head_ld_meta->insn.off + head_ld_meta->ptr.off;
4117 	head_st_off = head_st_meta->insn.off + head_st_meta->ptr.off;
4118 	ld_off = ld->off + head_ld_meta->ptr.off;
4119 
4120 	/* Ascending order cross. */
4121 	if (ld_off > head_ld_off &&
4122 	    head_ld_off < head_st_off && ld_off >= head_st_off)
4123 		return true;
4124 
4125 	/* Descending order cross. */
4126 	if (ld_off < head_ld_off &&
4127 	    head_ld_off > head_st_off && ld_off <= head_st_off)
4128 		return true;
4129 
4130 	return false;
4131 }
4132 
4133 /* This pass try to identify the following instructoin sequences.
4134  *
4135  *   load R, [regA + offA]
4136  *   store [regB + offB], R
4137  *   load R, [regA + offA + const_imm_A]
4138  *   store [regB + offB + const_imm_A], R
4139  *   load R, [regA + offA + 2 * const_imm_A]
4140  *   store [regB + offB + 2 * const_imm_A], R
4141  *   ...
4142  *
4143  * Above sequence is typically generated by compiler when lowering
4144  * memcpy. NFP prefer using CPP instructions to accelerate it.
4145  */
4146 static void nfp_bpf_opt_ldst_gather(struct nfp_prog *nfp_prog)
4147 {
4148 	struct nfp_insn_meta *head_ld_meta = NULL;
4149 	struct nfp_insn_meta *head_st_meta = NULL;
4150 	struct nfp_insn_meta *meta1, *meta2;
4151 	struct bpf_insn *prev_ld = NULL;
4152 	struct bpf_insn *prev_st = NULL;
4153 	u8 count = 0;
4154 
4155 	nfp_for_each_insn_walk2(nfp_prog, meta1, meta2) {
4156 		struct bpf_insn *ld = &meta1->insn;
4157 		struct bpf_insn *st = &meta2->insn;
4158 
4159 		/* Reset record status if any of the following if true:
4160 		 *   - The current insn pair is not load/store.
4161 		 *   - The load/store pair doesn't chain with previous one.
4162 		 *   - The chained load/store pair crossed with previous pair.
4163 		 *   - The chained load/store pair has a total size of memory
4164 		 *     copy beyond 128 bytes which is the maximum length a
4165 		 *     single NFP CPP command can transfer.
4166 		 */
4167 		if (!curr_pair_is_memcpy(meta1, meta2) ||
4168 		    !curr_pair_chain_with_previous(meta1, meta2, prev_ld,
4169 						   prev_st) ||
4170 		    (head_ld_meta && (cross_mem_access(ld, head_ld_meta,
4171 						       head_st_meta) ||
4172 				      head_ld_meta->ldst_gather_len >= 128))) {
4173 			if (!count)
4174 				continue;
4175 
4176 			if (count > 1) {
4177 				s16 prev_ld_off = prev_ld->off;
4178 				s16 prev_st_off = prev_st->off;
4179 				s16 head_ld_off = head_ld_meta->insn.off;
4180 
4181 				if (prev_ld_off < head_ld_off) {
4182 					head_ld_meta->insn.off = prev_ld_off;
4183 					head_st_meta->insn.off = prev_st_off;
4184 					head_ld_meta->ldst_gather_len =
4185 						-head_ld_meta->ldst_gather_len;
4186 				}
4187 
4188 				head_ld_meta->paired_st = &head_st_meta->insn;
4189 				head_st_meta->flags |=
4190 					FLAG_INSN_SKIP_PREC_DEPENDENT;
4191 			} else {
4192 				head_ld_meta->ldst_gather_len = 0;
4193 			}
4194 
4195 			/* If the chain is ended by an load/store pair then this
4196 			 * could serve as the new head of the the next chain.
4197 			 */
4198 			if (curr_pair_is_memcpy(meta1, meta2)) {
4199 				head_ld_meta = meta1;
4200 				head_st_meta = meta2;
4201 				head_ld_meta->ldst_gather_len =
4202 					BPF_LDST_BYTES(ld);
4203 				meta1 = nfp_meta_next(meta1);
4204 				meta2 = nfp_meta_next(meta2);
4205 				prev_ld = ld;
4206 				prev_st = st;
4207 				count = 1;
4208 			} else {
4209 				head_ld_meta = NULL;
4210 				head_st_meta = NULL;
4211 				prev_ld = NULL;
4212 				prev_st = NULL;
4213 				count = 0;
4214 			}
4215 
4216 			continue;
4217 		}
4218 
4219 		if (!head_ld_meta) {
4220 			head_ld_meta = meta1;
4221 			head_st_meta = meta2;
4222 		} else {
4223 			meta1->flags |= FLAG_INSN_SKIP_PREC_DEPENDENT;
4224 			meta2->flags |= FLAG_INSN_SKIP_PREC_DEPENDENT;
4225 		}
4226 
4227 		head_ld_meta->ldst_gather_len += BPF_LDST_BYTES(ld);
4228 		meta1 = nfp_meta_next(meta1);
4229 		meta2 = nfp_meta_next(meta2);
4230 		prev_ld = ld;
4231 		prev_st = st;
4232 		count++;
4233 	}
4234 }
4235 
4236 static void nfp_bpf_opt_pkt_cache(struct nfp_prog *nfp_prog)
4237 {
4238 	struct nfp_insn_meta *meta, *range_node = NULL;
4239 	s16 range_start = 0, range_end = 0;
4240 	bool cache_avail = false;
4241 	struct bpf_insn *insn;
4242 	s32 range_ptr_off = 0;
4243 	u32 range_ptr_id = 0;
4244 
4245 	list_for_each_entry(meta, &nfp_prog->insns, l) {
4246 		if (meta->flags & FLAG_INSN_IS_JUMP_DST)
4247 			cache_avail = false;
4248 
4249 		if (meta->flags & FLAG_INSN_SKIP_MASK)
4250 			continue;
4251 
4252 		insn = &meta->insn;
4253 
4254 		if (is_mbpf_store_pkt(meta) ||
4255 		    insn->code == (BPF_JMP | BPF_CALL) ||
4256 		    is_mbpf_classic_store_pkt(meta) ||
4257 		    is_mbpf_classic_load(meta)) {
4258 			cache_avail = false;
4259 			continue;
4260 		}
4261 
4262 		if (!is_mbpf_load(meta))
4263 			continue;
4264 
4265 		if (meta->ptr.type != PTR_TO_PACKET || meta->ldst_gather_len) {
4266 			cache_avail = false;
4267 			continue;
4268 		}
4269 
4270 		if (!cache_avail) {
4271 			cache_avail = true;
4272 			if (range_node)
4273 				goto end_current_then_start_new;
4274 			goto start_new;
4275 		}
4276 
4277 		/* Check ID to make sure two reads share the same
4278 		 * variable offset against PTR_TO_PACKET, and check OFF
4279 		 * to make sure they also share the same constant
4280 		 * offset.
4281 		 *
4282 		 * OFFs don't really need to be the same, because they
4283 		 * are the constant offsets against PTR_TO_PACKET, so
4284 		 * for different OFFs, we could canonicalize them to
4285 		 * offsets against original packet pointer. We don't
4286 		 * support this.
4287 		 */
4288 		if (meta->ptr.id == range_ptr_id &&
4289 		    meta->ptr.off == range_ptr_off) {
4290 			s16 new_start = range_start;
4291 			s16 end, off = insn->off;
4292 			s16 new_end = range_end;
4293 			bool changed = false;
4294 
4295 			if (off < range_start) {
4296 				new_start = off;
4297 				changed = true;
4298 			}
4299 
4300 			end = off + BPF_LDST_BYTES(insn);
4301 			if (end > range_end) {
4302 				new_end = end;
4303 				changed = true;
4304 			}
4305 
4306 			if (!changed)
4307 				continue;
4308 
4309 			if (new_end - new_start <= 64) {
4310 				/* Install new range. */
4311 				range_start = new_start;
4312 				range_end = new_end;
4313 				continue;
4314 			}
4315 		}
4316 
4317 end_current_then_start_new:
4318 		range_node->pkt_cache.range_start = range_start;
4319 		range_node->pkt_cache.range_end = range_end;
4320 start_new:
4321 		range_node = meta;
4322 		range_node->pkt_cache.do_init = true;
4323 		range_ptr_id = range_node->ptr.id;
4324 		range_ptr_off = range_node->ptr.off;
4325 		range_start = insn->off;
4326 		range_end = insn->off + BPF_LDST_BYTES(insn);
4327 	}
4328 
4329 	if (range_node) {
4330 		range_node->pkt_cache.range_start = range_start;
4331 		range_node->pkt_cache.range_end = range_end;
4332 	}
4333 
4334 	list_for_each_entry(meta, &nfp_prog->insns, l) {
4335 		if (meta->flags & FLAG_INSN_SKIP_MASK)
4336 			continue;
4337 
4338 		if (is_mbpf_load_pkt(meta) && !meta->ldst_gather_len) {
4339 			if (meta->pkt_cache.do_init) {
4340 				range_start = meta->pkt_cache.range_start;
4341 				range_end = meta->pkt_cache.range_end;
4342 			} else {
4343 				meta->pkt_cache.range_start = range_start;
4344 				meta->pkt_cache.range_end = range_end;
4345 			}
4346 		}
4347 	}
4348 }
4349 
4350 static int nfp_bpf_optimize(struct nfp_prog *nfp_prog)
4351 {
4352 	nfp_bpf_opt_reg_init(nfp_prog);
4353 
4354 	nfp_bpf_opt_neg_add_sub(nfp_prog);
4355 	nfp_bpf_opt_ld_mask(nfp_prog);
4356 	nfp_bpf_opt_ld_shift(nfp_prog);
4357 	nfp_bpf_opt_ldst_gather(nfp_prog);
4358 	nfp_bpf_opt_pkt_cache(nfp_prog);
4359 
4360 	return 0;
4361 }
4362 
4363 static int nfp_bpf_replace_map_ptrs(struct nfp_prog *nfp_prog)
4364 {
4365 	struct nfp_insn_meta *meta1, *meta2;
4366 	struct nfp_bpf_map *nfp_map;
4367 	struct bpf_map *map;
4368 	u32 id;
4369 
4370 	nfp_for_each_insn_walk2(nfp_prog, meta1, meta2) {
4371 		if (meta1->flags & FLAG_INSN_SKIP_MASK ||
4372 		    meta2->flags & FLAG_INSN_SKIP_MASK)
4373 			continue;
4374 
4375 		if (meta1->insn.code != (BPF_LD | BPF_IMM | BPF_DW) ||
4376 		    meta1->insn.src_reg != BPF_PSEUDO_MAP_FD)
4377 			continue;
4378 
4379 		map = (void *)(unsigned long)((u32)meta1->insn.imm |
4380 					      (u64)meta2->insn.imm << 32);
4381 		if (bpf_map_offload_neutral(map)) {
4382 			id = map->id;
4383 		} else {
4384 			nfp_map = map_to_offmap(map)->dev_priv;
4385 			id = nfp_map->tid;
4386 		}
4387 
4388 		meta1->insn.imm = id;
4389 		meta2->insn.imm = 0;
4390 	}
4391 
4392 	return 0;
4393 }
4394 
4395 static int nfp_bpf_ustore_calc(u64 *prog, unsigned int len)
4396 {
4397 	__le64 *ustore = (__force __le64 *)prog;
4398 	int i;
4399 
4400 	for (i = 0; i < len; i++) {
4401 		int err;
4402 
4403 		err = nfp_ustore_check_valid_no_ecc(prog[i]);
4404 		if (err)
4405 			return err;
4406 
4407 		ustore[i] = cpu_to_le64(nfp_ustore_calc_ecc_insn(prog[i]));
4408 	}
4409 
4410 	return 0;
4411 }
4412 
4413 static void nfp_bpf_prog_trim(struct nfp_prog *nfp_prog)
4414 {
4415 	void *prog;
4416 
4417 	prog = kvmalloc_array(nfp_prog->prog_len, sizeof(u64), GFP_KERNEL);
4418 	if (!prog)
4419 		return;
4420 
4421 	nfp_prog->__prog_alloc_len = nfp_prog->prog_len * sizeof(u64);
4422 	memcpy(prog, nfp_prog->prog, nfp_prog->__prog_alloc_len);
4423 	kvfree(nfp_prog->prog);
4424 	nfp_prog->prog = prog;
4425 }
4426 
4427 int nfp_bpf_jit(struct nfp_prog *nfp_prog)
4428 {
4429 	int ret;
4430 
4431 	ret = nfp_bpf_replace_map_ptrs(nfp_prog);
4432 	if (ret)
4433 		return ret;
4434 
4435 	ret = nfp_bpf_optimize(nfp_prog);
4436 	if (ret)
4437 		return ret;
4438 
4439 	ret = nfp_translate(nfp_prog);
4440 	if (ret) {
4441 		pr_err("Translation failed with error %d (translated: %u)\n",
4442 		       ret, nfp_prog->n_translated);
4443 		return -EINVAL;
4444 	}
4445 
4446 	nfp_bpf_prog_trim(nfp_prog);
4447 
4448 	return ret;
4449 }
4450 
4451 void nfp_bpf_jit_prepare(struct nfp_prog *nfp_prog)
4452 {
4453 	struct nfp_insn_meta *meta;
4454 
4455 	/* Another pass to record jump information. */
4456 	list_for_each_entry(meta, &nfp_prog->insns, l) {
4457 		struct nfp_insn_meta *dst_meta;
4458 		u64 code = meta->insn.code;
4459 		unsigned int dst_idx;
4460 		bool pseudo_call;
4461 
4462 		if (!is_mbpf_jmp(meta))
4463 			continue;
4464 		if (BPF_OP(code) == BPF_EXIT)
4465 			continue;
4466 		if (is_mbpf_helper_call(meta))
4467 			continue;
4468 
4469 		/* If opcode is BPF_CALL at this point, this can only be a
4470 		 * BPF-to-BPF call (a.k.a pseudo call).
4471 		 */
4472 		pseudo_call = BPF_OP(code) == BPF_CALL;
4473 
4474 		if (pseudo_call)
4475 			dst_idx = meta->n + 1 + meta->insn.imm;
4476 		else
4477 			dst_idx = meta->n + 1 + meta->insn.off;
4478 
4479 		dst_meta = nfp_bpf_goto_meta(nfp_prog, meta, dst_idx);
4480 
4481 		if (pseudo_call)
4482 			dst_meta->flags |= FLAG_INSN_IS_SUBPROG_START;
4483 
4484 		dst_meta->flags |= FLAG_INSN_IS_JUMP_DST;
4485 		meta->jmp_dst = dst_meta;
4486 	}
4487 }
4488 
4489 bool nfp_bpf_supported_opcode(u8 code)
4490 {
4491 	return !!instr_cb[code];
4492 }
4493 
4494 void *nfp_bpf_relo_for_vnic(struct nfp_prog *nfp_prog, struct nfp_bpf_vnic *bv)
4495 {
4496 	unsigned int i;
4497 	u64 *prog;
4498 	int err;
4499 
4500 	prog = kmemdup(nfp_prog->prog, nfp_prog->prog_len * sizeof(u64),
4501 		       GFP_KERNEL);
4502 	if (!prog)
4503 		return ERR_PTR(-ENOMEM);
4504 
4505 	for (i = 0; i < nfp_prog->prog_len; i++) {
4506 		enum nfp_relo_type special;
4507 		u32 val;
4508 		u16 off;
4509 
4510 		special = FIELD_GET(OP_RELO_TYPE, prog[i]);
4511 		switch (special) {
4512 		case RELO_NONE:
4513 			continue;
4514 		case RELO_BR_REL:
4515 			br_add_offset(&prog[i], bv->start_off);
4516 			break;
4517 		case RELO_BR_GO_OUT:
4518 			br_set_offset(&prog[i],
4519 				      nfp_prog->tgt_out + bv->start_off);
4520 			break;
4521 		case RELO_BR_GO_ABORT:
4522 			br_set_offset(&prog[i],
4523 				      nfp_prog->tgt_abort + bv->start_off);
4524 			break;
4525 		case RELO_BR_GO_CALL_PUSH_REGS:
4526 			if (!nfp_prog->tgt_call_push_regs) {
4527 				pr_err("BUG: failed to detect subprogram registers needs\n");
4528 				err = -EINVAL;
4529 				goto err_free_prog;
4530 			}
4531 			off = nfp_prog->tgt_call_push_regs + bv->start_off;
4532 			br_set_offset(&prog[i], off);
4533 			break;
4534 		case RELO_BR_GO_CALL_POP_REGS:
4535 			if (!nfp_prog->tgt_call_pop_regs) {
4536 				pr_err("BUG: failed to detect subprogram registers needs\n");
4537 				err = -EINVAL;
4538 				goto err_free_prog;
4539 			}
4540 			off = nfp_prog->tgt_call_pop_regs + bv->start_off;
4541 			br_set_offset(&prog[i], off);
4542 			break;
4543 		case RELO_BR_NEXT_PKT:
4544 			br_set_offset(&prog[i], bv->tgt_done);
4545 			break;
4546 		case RELO_BR_HELPER:
4547 			val = br_get_offset(prog[i]);
4548 			val -= BR_OFF_RELO;
4549 			switch (val) {
4550 			case BPF_FUNC_map_lookup_elem:
4551 				val = nfp_prog->bpf->helpers.map_lookup;
4552 				break;
4553 			case BPF_FUNC_map_update_elem:
4554 				val = nfp_prog->bpf->helpers.map_update;
4555 				break;
4556 			case BPF_FUNC_map_delete_elem:
4557 				val = nfp_prog->bpf->helpers.map_delete;
4558 				break;
4559 			case BPF_FUNC_perf_event_output:
4560 				val = nfp_prog->bpf->helpers.perf_event_output;
4561 				break;
4562 			default:
4563 				pr_err("relocation of unknown helper %d\n",
4564 				       val);
4565 				err = -EINVAL;
4566 				goto err_free_prog;
4567 			}
4568 			br_set_offset(&prog[i], val);
4569 			break;
4570 		case RELO_IMMED_REL:
4571 			immed_add_value(&prog[i], bv->start_off);
4572 			break;
4573 		}
4574 
4575 		prog[i] &= ~OP_RELO_TYPE;
4576 	}
4577 
4578 	err = nfp_bpf_ustore_calc(prog, nfp_prog->prog_len);
4579 	if (err)
4580 		goto err_free_prog;
4581 
4582 	return prog;
4583 
4584 err_free_prog:
4585 	kfree(prog);
4586 	return ERR_PTR(err);
4587 }
4588