1 /*
2  * Copyright (C) 2016-2017 Netronome Systems, Inc.
3  *
4  * This software is dual licensed under the GNU General License Version 2,
5  * June 1991 as shown in the file COPYING in the top-level directory of this
6  * source tree or the BSD 2-Clause License provided below.  You have the
7  * option to license this software under the complete terms of either license.
8  *
9  * The BSD 2-Clause License:
10  *
11  *     Redistribution and use in source and binary forms, with or
12  *     without modification, are permitted provided that the following
13  *     conditions are met:
14  *
15  *      1. Redistributions of source code must retain the above
16  *         copyright notice, this list of conditions and the following
17  *         disclaimer.
18  *
19  *      2. Redistributions in binary form must reproduce the above
20  *         copyright notice, this list of conditions and the following
21  *         disclaimer in the documentation and/or other materials
22  *         provided with the distribution.
23  *
24  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31  * SOFTWARE.
32  */
33 
34 #define pr_fmt(fmt)	"NFP net bpf: " fmt
35 
36 #include <linux/bug.h>
37 #include <linux/kernel.h>
38 #include <linux/bpf.h>
39 #include <linux/filter.h>
40 #include <linux/pkt_cls.h>
41 #include <linux/unistd.h>
42 
43 #include "main.h"
44 #include "../nfp_asm.h"
45 
46 /* --- NFP prog --- */
47 /* Foreach "multiple" entries macros provide pos and next<n> pointers.
48  * It's safe to modify the next pointers (but not pos).
49  */
50 #define nfp_for_each_insn_walk2(nfp_prog, pos, next)			\
51 	for (pos = list_first_entry(&(nfp_prog)->insns, typeof(*pos), l), \
52 	     next = list_next_entry(pos, l);			\
53 	     &(nfp_prog)->insns != &pos->l &&			\
54 	     &(nfp_prog)->insns != &next->l;			\
55 	     pos = nfp_meta_next(pos),				\
56 	     next = nfp_meta_next(pos))
57 
58 #define nfp_for_each_insn_walk3(nfp_prog, pos, next, next2)		\
59 	for (pos = list_first_entry(&(nfp_prog)->insns, typeof(*pos), l), \
60 	     next = list_next_entry(pos, l),			\
61 	     next2 = list_next_entry(next, l);			\
62 	     &(nfp_prog)->insns != &pos->l &&			\
63 	     &(nfp_prog)->insns != &next->l &&			\
64 	     &(nfp_prog)->insns != &next2->l;			\
65 	     pos = nfp_meta_next(pos),				\
66 	     next = nfp_meta_next(pos),				\
67 	     next2 = nfp_meta_next(next))
68 
69 static bool
70 nfp_meta_has_prev(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
71 {
72 	return meta->l.prev != &nfp_prog->insns;
73 }
74 
75 static void nfp_prog_push(struct nfp_prog *nfp_prog, u64 insn)
76 {
77 	if (nfp_prog->__prog_alloc_len == nfp_prog->prog_len) {
78 		nfp_prog->error = -ENOSPC;
79 		return;
80 	}
81 
82 	nfp_prog->prog[nfp_prog->prog_len] = insn;
83 	nfp_prog->prog_len++;
84 }
85 
86 static unsigned int nfp_prog_current_offset(struct nfp_prog *nfp_prog)
87 {
88 	return nfp_prog->prog_len;
89 }
90 
91 static bool
92 nfp_prog_confirm_current_offset(struct nfp_prog *nfp_prog, unsigned int off)
93 {
94 	/* If there is a recorded error we may have dropped instructions;
95 	 * that doesn't have to be due to translator bug, and the translation
96 	 * will fail anyway, so just return OK.
97 	 */
98 	if (nfp_prog->error)
99 		return true;
100 	return !WARN_ON_ONCE(nfp_prog_current_offset(nfp_prog) != off);
101 }
102 
103 /* --- Emitters --- */
104 static void
105 __emit_cmd(struct nfp_prog *nfp_prog, enum cmd_tgt_map op,
106 	   u8 mode, u8 xfer, u8 areg, u8 breg, u8 size, bool sync, bool indir)
107 {
108 	enum cmd_ctx_swap ctx;
109 	u64 insn;
110 
111 	if (sync)
112 		ctx = CMD_CTX_SWAP;
113 	else
114 		ctx = CMD_CTX_NO_SWAP;
115 
116 	insn =	FIELD_PREP(OP_CMD_A_SRC, areg) |
117 		FIELD_PREP(OP_CMD_CTX, ctx) |
118 		FIELD_PREP(OP_CMD_B_SRC, breg) |
119 		FIELD_PREP(OP_CMD_TOKEN, cmd_tgt_act[op].token) |
120 		FIELD_PREP(OP_CMD_XFER, xfer) |
121 		FIELD_PREP(OP_CMD_CNT, size) |
122 		FIELD_PREP(OP_CMD_SIG, sync) |
123 		FIELD_PREP(OP_CMD_TGT_CMD, cmd_tgt_act[op].tgt_cmd) |
124 		FIELD_PREP(OP_CMD_INDIR, indir) |
125 		FIELD_PREP(OP_CMD_MODE, mode);
126 
127 	nfp_prog_push(nfp_prog, insn);
128 }
129 
130 static void
131 emit_cmd_any(struct nfp_prog *nfp_prog, enum cmd_tgt_map op, u8 mode, u8 xfer,
132 	     swreg lreg, swreg rreg, u8 size, bool sync, bool indir)
133 {
134 	struct nfp_insn_re_regs reg;
135 	int err;
136 
137 	err = swreg_to_restricted(reg_none(), lreg, rreg, &reg, false);
138 	if (err) {
139 		nfp_prog->error = err;
140 		return;
141 	}
142 	if (reg.swap) {
143 		pr_err("cmd can't swap arguments\n");
144 		nfp_prog->error = -EFAULT;
145 		return;
146 	}
147 	if (reg.dst_lmextn || reg.src_lmextn) {
148 		pr_err("cmd can't use LMextn\n");
149 		nfp_prog->error = -EFAULT;
150 		return;
151 	}
152 
153 	__emit_cmd(nfp_prog, op, mode, xfer, reg.areg, reg.breg, size, sync,
154 		   indir);
155 }
156 
157 static void
158 emit_cmd(struct nfp_prog *nfp_prog, enum cmd_tgt_map op, u8 mode, u8 xfer,
159 	 swreg lreg, swreg rreg, u8 size, bool sync)
160 {
161 	emit_cmd_any(nfp_prog, op, mode, xfer, lreg, rreg, size, sync, false);
162 }
163 
164 static void
165 emit_cmd_indir(struct nfp_prog *nfp_prog, enum cmd_tgt_map op, u8 mode, u8 xfer,
166 	       swreg lreg, swreg rreg, u8 size, bool sync)
167 {
168 	emit_cmd_any(nfp_prog, op, mode, xfer, lreg, rreg, size, sync, true);
169 }
170 
171 static void
172 __emit_br(struct nfp_prog *nfp_prog, enum br_mask mask, enum br_ev_pip ev_pip,
173 	  enum br_ctx_signal_state css, u16 addr, u8 defer)
174 {
175 	u16 addr_lo, addr_hi;
176 	u64 insn;
177 
178 	addr_lo = addr & (OP_BR_ADDR_LO >> __bf_shf(OP_BR_ADDR_LO));
179 	addr_hi = addr != addr_lo;
180 
181 	insn = OP_BR_BASE |
182 		FIELD_PREP(OP_BR_MASK, mask) |
183 		FIELD_PREP(OP_BR_EV_PIP, ev_pip) |
184 		FIELD_PREP(OP_BR_CSS, css) |
185 		FIELD_PREP(OP_BR_DEFBR, defer) |
186 		FIELD_PREP(OP_BR_ADDR_LO, addr_lo) |
187 		FIELD_PREP(OP_BR_ADDR_HI, addr_hi);
188 
189 	nfp_prog_push(nfp_prog, insn);
190 }
191 
192 static void
193 emit_br_relo(struct nfp_prog *nfp_prog, enum br_mask mask, u16 addr, u8 defer,
194 	     enum nfp_relo_type relo)
195 {
196 	if (mask == BR_UNC && defer > 2) {
197 		pr_err("BUG: branch defer out of bounds %d\n", defer);
198 		nfp_prog->error = -EFAULT;
199 		return;
200 	}
201 
202 	__emit_br(nfp_prog, mask,
203 		  mask != BR_UNC ? BR_EV_PIP_COND : BR_EV_PIP_UNCOND,
204 		  BR_CSS_NONE, addr, defer);
205 
206 	nfp_prog->prog[nfp_prog->prog_len - 1] |=
207 		FIELD_PREP(OP_RELO_TYPE, relo);
208 }
209 
210 static void
211 emit_br(struct nfp_prog *nfp_prog, enum br_mask mask, u16 addr, u8 defer)
212 {
213 	emit_br_relo(nfp_prog, mask, addr, defer, RELO_BR_REL);
214 }
215 
216 static void
217 __emit_immed(struct nfp_prog *nfp_prog, u16 areg, u16 breg, u16 imm_hi,
218 	     enum immed_width width, bool invert,
219 	     enum immed_shift shift, bool wr_both,
220 	     bool dst_lmextn, bool src_lmextn)
221 {
222 	u64 insn;
223 
224 	insn = OP_IMMED_BASE |
225 		FIELD_PREP(OP_IMMED_A_SRC, areg) |
226 		FIELD_PREP(OP_IMMED_B_SRC, breg) |
227 		FIELD_PREP(OP_IMMED_IMM, imm_hi) |
228 		FIELD_PREP(OP_IMMED_WIDTH, width) |
229 		FIELD_PREP(OP_IMMED_INV, invert) |
230 		FIELD_PREP(OP_IMMED_SHIFT, shift) |
231 		FIELD_PREP(OP_IMMED_WR_AB, wr_both) |
232 		FIELD_PREP(OP_IMMED_SRC_LMEXTN, src_lmextn) |
233 		FIELD_PREP(OP_IMMED_DST_LMEXTN, dst_lmextn);
234 
235 	nfp_prog_push(nfp_prog, insn);
236 }
237 
238 static void
239 emit_immed(struct nfp_prog *nfp_prog, swreg dst, u16 imm,
240 	   enum immed_width width, bool invert, enum immed_shift shift)
241 {
242 	struct nfp_insn_ur_regs reg;
243 	int err;
244 
245 	if (swreg_type(dst) == NN_REG_IMM) {
246 		nfp_prog->error = -EFAULT;
247 		return;
248 	}
249 
250 	err = swreg_to_unrestricted(dst, dst, reg_imm(imm & 0xff), &reg);
251 	if (err) {
252 		nfp_prog->error = err;
253 		return;
254 	}
255 
256 	/* Use reg.dst when destination is No-Dest. */
257 	__emit_immed(nfp_prog,
258 		     swreg_type(dst) == NN_REG_NONE ? reg.dst : reg.areg,
259 		     reg.breg, imm >> 8, width, invert, shift,
260 		     reg.wr_both, reg.dst_lmextn, reg.src_lmextn);
261 }
262 
263 static void
264 __emit_shf(struct nfp_prog *nfp_prog, u16 dst, enum alu_dst_ab dst_ab,
265 	   enum shf_sc sc, u8 shift,
266 	   u16 areg, enum shf_op op, u16 breg, bool i8, bool sw, bool wr_both,
267 	   bool dst_lmextn, bool src_lmextn)
268 {
269 	u64 insn;
270 
271 	if (!FIELD_FIT(OP_SHF_SHIFT, shift)) {
272 		nfp_prog->error = -EFAULT;
273 		return;
274 	}
275 
276 	if (sc == SHF_SC_L_SHF)
277 		shift = 32 - shift;
278 
279 	insn = OP_SHF_BASE |
280 		FIELD_PREP(OP_SHF_A_SRC, areg) |
281 		FIELD_PREP(OP_SHF_SC, sc) |
282 		FIELD_PREP(OP_SHF_B_SRC, breg) |
283 		FIELD_PREP(OP_SHF_I8, i8) |
284 		FIELD_PREP(OP_SHF_SW, sw) |
285 		FIELD_PREP(OP_SHF_DST, dst) |
286 		FIELD_PREP(OP_SHF_SHIFT, shift) |
287 		FIELD_PREP(OP_SHF_OP, op) |
288 		FIELD_PREP(OP_SHF_DST_AB, dst_ab) |
289 		FIELD_PREP(OP_SHF_WR_AB, wr_both) |
290 		FIELD_PREP(OP_SHF_SRC_LMEXTN, src_lmextn) |
291 		FIELD_PREP(OP_SHF_DST_LMEXTN, dst_lmextn);
292 
293 	nfp_prog_push(nfp_prog, insn);
294 }
295 
296 static void
297 emit_shf(struct nfp_prog *nfp_prog, swreg dst,
298 	 swreg lreg, enum shf_op op, swreg rreg, enum shf_sc sc, u8 shift)
299 {
300 	struct nfp_insn_re_regs reg;
301 	int err;
302 
303 	err = swreg_to_restricted(dst, lreg, rreg, &reg, true);
304 	if (err) {
305 		nfp_prog->error = err;
306 		return;
307 	}
308 
309 	__emit_shf(nfp_prog, reg.dst, reg.dst_ab, sc, shift,
310 		   reg.areg, op, reg.breg, reg.i8, reg.swap, reg.wr_both,
311 		   reg.dst_lmextn, reg.src_lmextn);
312 }
313 
314 static void
315 __emit_alu(struct nfp_prog *nfp_prog, u16 dst, enum alu_dst_ab dst_ab,
316 	   u16 areg, enum alu_op op, u16 breg, bool swap, bool wr_both,
317 	   bool dst_lmextn, bool src_lmextn)
318 {
319 	u64 insn;
320 
321 	insn = OP_ALU_BASE |
322 		FIELD_PREP(OP_ALU_A_SRC, areg) |
323 		FIELD_PREP(OP_ALU_B_SRC, breg) |
324 		FIELD_PREP(OP_ALU_DST, dst) |
325 		FIELD_PREP(OP_ALU_SW, swap) |
326 		FIELD_PREP(OP_ALU_OP, op) |
327 		FIELD_PREP(OP_ALU_DST_AB, dst_ab) |
328 		FIELD_PREP(OP_ALU_WR_AB, wr_both) |
329 		FIELD_PREP(OP_ALU_SRC_LMEXTN, src_lmextn) |
330 		FIELD_PREP(OP_ALU_DST_LMEXTN, dst_lmextn);
331 
332 	nfp_prog_push(nfp_prog, insn);
333 }
334 
335 static void
336 emit_alu(struct nfp_prog *nfp_prog, swreg dst,
337 	 swreg lreg, enum alu_op op, swreg rreg)
338 {
339 	struct nfp_insn_ur_regs reg;
340 	int err;
341 
342 	err = swreg_to_unrestricted(dst, lreg, rreg, &reg);
343 	if (err) {
344 		nfp_prog->error = err;
345 		return;
346 	}
347 
348 	__emit_alu(nfp_prog, reg.dst, reg.dst_ab,
349 		   reg.areg, op, reg.breg, reg.swap, reg.wr_both,
350 		   reg.dst_lmextn, reg.src_lmextn);
351 }
352 
353 static void
354 __emit_ld_field(struct nfp_prog *nfp_prog, enum shf_sc sc,
355 		u8 areg, u8 bmask, u8 breg, u8 shift, bool imm8,
356 		bool zero, bool swap, bool wr_both,
357 		bool dst_lmextn, bool src_lmextn)
358 {
359 	u64 insn;
360 
361 	insn = OP_LDF_BASE |
362 		FIELD_PREP(OP_LDF_A_SRC, areg) |
363 		FIELD_PREP(OP_LDF_SC, sc) |
364 		FIELD_PREP(OP_LDF_B_SRC, breg) |
365 		FIELD_PREP(OP_LDF_I8, imm8) |
366 		FIELD_PREP(OP_LDF_SW, swap) |
367 		FIELD_PREP(OP_LDF_ZF, zero) |
368 		FIELD_PREP(OP_LDF_BMASK, bmask) |
369 		FIELD_PREP(OP_LDF_SHF, shift) |
370 		FIELD_PREP(OP_LDF_WR_AB, wr_both) |
371 		FIELD_PREP(OP_LDF_SRC_LMEXTN, src_lmextn) |
372 		FIELD_PREP(OP_LDF_DST_LMEXTN, dst_lmextn);
373 
374 	nfp_prog_push(nfp_prog, insn);
375 }
376 
377 static void
378 emit_ld_field_any(struct nfp_prog *nfp_prog, swreg dst, u8 bmask, swreg src,
379 		  enum shf_sc sc, u8 shift, bool zero)
380 {
381 	struct nfp_insn_re_regs reg;
382 	int err;
383 
384 	/* Note: ld_field is special as it uses one of the src regs as dst */
385 	err = swreg_to_restricted(dst, dst, src, &reg, true);
386 	if (err) {
387 		nfp_prog->error = err;
388 		return;
389 	}
390 
391 	__emit_ld_field(nfp_prog, sc, reg.areg, bmask, reg.breg, shift,
392 			reg.i8, zero, reg.swap, reg.wr_both,
393 			reg.dst_lmextn, reg.src_lmextn);
394 }
395 
396 static void
397 emit_ld_field(struct nfp_prog *nfp_prog, swreg dst, u8 bmask, swreg src,
398 	      enum shf_sc sc, u8 shift)
399 {
400 	emit_ld_field_any(nfp_prog, dst, bmask, src, sc, shift, false);
401 }
402 
403 static void
404 __emit_lcsr(struct nfp_prog *nfp_prog, u16 areg, u16 breg, bool wr, u16 addr,
405 	    bool dst_lmextn, bool src_lmextn)
406 {
407 	u64 insn;
408 
409 	insn = OP_LCSR_BASE |
410 		FIELD_PREP(OP_LCSR_A_SRC, areg) |
411 		FIELD_PREP(OP_LCSR_B_SRC, breg) |
412 		FIELD_PREP(OP_LCSR_WRITE, wr) |
413 		FIELD_PREP(OP_LCSR_ADDR, addr) |
414 		FIELD_PREP(OP_LCSR_SRC_LMEXTN, src_lmextn) |
415 		FIELD_PREP(OP_LCSR_DST_LMEXTN, dst_lmextn);
416 
417 	nfp_prog_push(nfp_prog, insn);
418 }
419 
420 static void emit_csr_wr(struct nfp_prog *nfp_prog, swreg src, u16 addr)
421 {
422 	struct nfp_insn_ur_regs reg;
423 	int err;
424 
425 	/* This instruction takes immeds instead of reg_none() for the ignored
426 	 * operand, but we can't encode 2 immeds in one instr with our normal
427 	 * swreg infra so if param is an immed, we encode as reg_none() and
428 	 * copy the immed to both operands.
429 	 */
430 	if (swreg_type(src) == NN_REG_IMM) {
431 		err = swreg_to_unrestricted(reg_none(), src, reg_none(), &reg);
432 		reg.breg = reg.areg;
433 	} else {
434 		err = swreg_to_unrestricted(reg_none(), src, reg_imm(0), &reg);
435 	}
436 	if (err) {
437 		nfp_prog->error = err;
438 		return;
439 	}
440 
441 	__emit_lcsr(nfp_prog, reg.areg, reg.breg, true, addr / 4,
442 		    false, reg.src_lmextn);
443 }
444 
445 static void emit_nop(struct nfp_prog *nfp_prog)
446 {
447 	__emit_immed(nfp_prog, UR_REG_IMM, UR_REG_IMM, 0, 0, 0, 0, 0, 0, 0);
448 }
449 
450 /* --- Wrappers --- */
451 static bool pack_immed(u32 imm, u16 *val, enum immed_shift *shift)
452 {
453 	if (!(imm & 0xffff0000)) {
454 		*val = imm;
455 		*shift = IMMED_SHIFT_0B;
456 	} else if (!(imm & 0xff0000ff)) {
457 		*val = imm >> 8;
458 		*shift = IMMED_SHIFT_1B;
459 	} else if (!(imm & 0x0000ffff)) {
460 		*val = imm >> 16;
461 		*shift = IMMED_SHIFT_2B;
462 	} else {
463 		return false;
464 	}
465 
466 	return true;
467 }
468 
469 static void wrp_immed(struct nfp_prog *nfp_prog, swreg dst, u32 imm)
470 {
471 	enum immed_shift shift;
472 	u16 val;
473 
474 	if (pack_immed(imm, &val, &shift)) {
475 		emit_immed(nfp_prog, dst, val, IMMED_WIDTH_ALL, false, shift);
476 	} else if (pack_immed(~imm, &val, &shift)) {
477 		emit_immed(nfp_prog, dst, val, IMMED_WIDTH_ALL, true, shift);
478 	} else {
479 		emit_immed(nfp_prog, dst, imm & 0xffff, IMMED_WIDTH_ALL,
480 			   false, IMMED_SHIFT_0B);
481 		emit_immed(nfp_prog, dst, imm >> 16, IMMED_WIDTH_WORD,
482 			   false, IMMED_SHIFT_2B);
483 	}
484 }
485 
486 static void
487 wrp_immed_relo(struct nfp_prog *nfp_prog, swreg dst, u32 imm,
488 	       enum nfp_relo_type relo)
489 {
490 	if (imm > 0xffff) {
491 		pr_err("relocation of a large immediate!\n");
492 		nfp_prog->error = -EFAULT;
493 		return;
494 	}
495 	emit_immed(nfp_prog, dst, imm, IMMED_WIDTH_ALL, false, IMMED_SHIFT_0B);
496 
497 	nfp_prog->prog[nfp_prog->prog_len - 1] |=
498 		FIELD_PREP(OP_RELO_TYPE, relo);
499 }
500 
501 /* ur_load_imm_any() - encode immediate or use tmp register (unrestricted)
502  * If the @imm is small enough encode it directly in operand and return
503  * otherwise load @imm to a spare register and return its encoding.
504  */
505 static swreg ur_load_imm_any(struct nfp_prog *nfp_prog, u32 imm, swreg tmp_reg)
506 {
507 	if (FIELD_FIT(UR_REG_IMM_MAX, imm))
508 		return reg_imm(imm);
509 
510 	wrp_immed(nfp_prog, tmp_reg, imm);
511 	return tmp_reg;
512 }
513 
514 /* re_load_imm_any() - encode immediate or use tmp register (restricted)
515  * If the @imm is small enough encode it directly in operand and return
516  * otherwise load @imm to a spare register and return its encoding.
517  */
518 static swreg re_load_imm_any(struct nfp_prog *nfp_prog, u32 imm, swreg tmp_reg)
519 {
520 	if (FIELD_FIT(RE_REG_IMM_MAX, imm))
521 		return reg_imm(imm);
522 
523 	wrp_immed(nfp_prog, tmp_reg, imm);
524 	return tmp_reg;
525 }
526 
527 static void wrp_nops(struct nfp_prog *nfp_prog, unsigned int count)
528 {
529 	while (count--)
530 		emit_nop(nfp_prog);
531 }
532 
533 static void wrp_mov(struct nfp_prog *nfp_prog, swreg dst, swreg src)
534 {
535 	emit_alu(nfp_prog, dst, reg_none(), ALU_OP_NONE, src);
536 }
537 
538 static void wrp_reg_mov(struct nfp_prog *nfp_prog, u16 dst, u16 src)
539 {
540 	wrp_mov(nfp_prog, reg_both(dst), reg_b(src));
541 }
542 
543 /* wrp_reg_subpart() - load @field_len bytes from @offset of @src, write the
544  * result to @dst from low end.
545  */
546 static void
547 wrp_reg_subpart(struct nfp_prog *nfp_prog, swreg dst, swreg src, u8 field_len,
548 		u8 offset)
549 {
550 	enum shf_sc sc = offset ? SHF_SC_R_SHF : SHF_SC_NONE;
551 	u8 mask = (1 << field_len) - 1;
552 
553 	emit_ld_field_any(nfp_prog, dst, mask, src, sc, offset * 8, true);
554 }
555 
556 /* wrp_reg_or_subpart() - load @field_len bytes from low end of @src, or the
557  * result to @dst from offset, there is no change on the other bits of @dst.
558  */
559 static void
560 wrp_reg_or_subpart(struct nfp_prog *nfp_prog, swreg dst, swreg src,
561 		   u8 field_len, u8 offset)
562 {
563 	enum shf_sc sc = offset ? SHF_SC_L_SHF : SHF_SC_NONE;
564 	u8 mask = ((1 << field_len) - 1) << offset;
565 
566 	emit_ld_field(nfp_prog, dst, mask, src, sc, 32 - offset * 8);
567 }
568 
569 static void
570 addr40_offset(struct nfp_prog *nfp_prog, u8 src_gpr, swreg offset,
571 	      swreg *rega, swreg *regb)
572 {
573 	if (offset == reg_imm(0)) {
574 		*rega = reg_a(src_gpr);
575 		*regb = reg_b(src_gpr + 1);
576 		return;
577 	}
578 
579 	emit_alu(nfp_prog, imm_a(nfp_prog), reg_a(src_gpr), ALU_OP_ADD, offset);
580 	emit_alu(nfp_prog, imm_b(nfp_prog), reg_b(src_gpr + 1), ALU_OP_ADD_C,
581 		 reg_imm(0));
582 	*rega = imm_a(nfp_prog);
583 	*regb = imm_b(nfp_prog);
584 }
585 
586 /* NFP has Command Push Pull bus which supports bluk memory operations. */
587 static int nfp_cpp_memcpy(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
588 {
589 	bool descending_seq = meta->ldst_gather_len < 0;
590 	s16 len = abs(meta->ldst_gather_len);
591 	swreg src_base, off;
592 	bool src_40bit_addr;
593 	unsigned int i;
594 	u8 xfer_num;
595 
596 	off = re_load_imm_any(nfp_prog, meta->insn.off, imm_b(nfp_prog));
597 	src_40bit_addr = meta->ptr.type == PTR_TO_MAP_VALUE;
598 	src_base = reg_a(meta->insn.src_reg * 2);
599 	xfer_num = round_up(len, 4) / 4;
600 
601 	if (src_40bit_addr)
602 		addr40_offset(nfp_prog, meta->insn.src_reg, off, &src_base,
603 			      &off);
604 
605 	/* Setup PREV_ALU fields to override memory read length. */
606 	if (len > 32)
607 		wrp_immed(nfp_prog, reg_none(),
608 			  CMD_OVE_LEN | FIELD_PREP(CMD_OV_LEN, xfer_num - 1));
609 
610 	/* Memory read from source addr into transfer-in registers. */
611 	emit_cmd_any(nfp_prog, CMD_TGT_READ32_SWAP,
612 		     src_40bit_addr ? CMD_MODE_40b_BA : CMD_MODE_32b, 0,
613 		     src_base, off, xfer_num - 1, true, len > 32);
614 
615 	/* Move from transfer-in to transfer-out. */
616 	for (i = 0; i < xfer_num; i++)
617 		wrp_mov(nfp_prog, reg_xfer(i), reg_xfer(i));
618 
619 	off = re_load_imm_any(nfp_prog, meta->paired_st->off, imm_b(nfp_prog));
620 
621 	if (len <= 8) {
622 		/* Use single direct_ref write8. */
623 		emit_cmd(nfp_prog, CMD_TGT_WRITE8_SWAP, CMD_MODE_32b, 0,
624 			 reg_a(meta->paired_st->dst_reg * 2), off, len - 1,
625 			 true);
626 	} else if (len <= 32 && IS_ALIGNED(len, 4)) {
627 		/* Use single direct_ref write32. */
628 		emit_cmd(nfp_prog, CMD_TGT_WRITE32_SWAP, CMD_MODE_32b, 0,
629 			 reg_a(meta->paired_st->dst_reg * 2), off, xfer_num - 1,
630 			 true);
631 	} else if (len <= 32) {
632 		/* Use single indirect_ref write8. */
633 		wrp_immed(nfp_prog, reg_none(),
634 			  CMD_OVE_LEN | FIELD_PREP(CMD_OV_LEN, len - 1));
635 		emit_cmd_indir(nfp_prog, CMD_TGT_WRITE8_SWAP, CMD_MODE_32b, 0,
636 			       reg_a(meta->paired_st->dst_reg * 2), off,
637 			       len - 1, true);
638 	} else if (IS_ALIGNED(len, 4)) {
639 		/* Use single indirect_ref write32. */
640 		wrp_immed(nfp_prog, reg_none(),
641 			  CMD_OVE_LEN | FIELD_PREP(CMD_OV_LEN, xfer_num - 1));
642 		emit_cmd_indir(nfp_prog, CMD_TGT_WRITE32_SWAP, CMD_MODE_32b, 0,
643 			       reg_a(meta->paired_st->dst_reg * 2), off,
644 			       xfer_num - 1, true);
645 	} else if (len <= 40) {
646 		/* Use one direct_ref write32 to write the first 32-bytes, then
647 		 * another direct_ref write8 to write the remaining bytes.
648 		 */
649 		emit_cmd(nfp_prog, CMD_TGT_WRITE32_SWAP, CMD_MODE_32b, 0,
650 			 reg_a(meta->paired_st->dst_reg * 2), off, 7,
651 			 true);
652 
653 		off = re_load_imm_any(nfp_prog, meta->paired_st->off + 32,
654 				      imm_b(nfp_prog));
655 		emit_cmd(nfp_prog, CMD_TGT_WRITE8_SWAP, CMD_MODE_32b, 8,
656 			 reg_a(meta->paired_st->dst_reg * 2), off, len - 33,
657 			 true);
658 	} else {
659 		/* Use one indirect_ref write32 to write 4-bytes aligned length,
660 		 * then another direct_ref write8 to write the remaining bytes.
661 		 */
662 		u8 new_off;
663 
664 		wrp_immed(nfp_prog, reg_none(),
665 			  CMD_OVE_LEN | FIELD_PREP(CMD_OV_LEN, xfer_num - 2));
666 		emit_cmd_indir(nfp_prog, CMD_TGT_WRITE32_SWAP, CMD_MODE_32b, 0,
667 			       reg_a(meta->paired_st->dst_reg * 2), off,
668 			       xfer_num - 2, true);
669 		new_off = meta->paired_st->off + (xfer_num - 1) * 4;
670 		off = re_load_imm_any(nfp_prog, new_off, imm_b(nfp_prog));
671 		emit_cmd(nfp_prog, CMD_TGT_WRITE8_SWAP, CMD_MODE_32b,
672 			 xfer_num - 1, reg_a(meta->paired_st->dst_reg * 2), off,
673 			 (len & 0x3) - 1, true);
674 	}
675 
676 	/* TODO: The following extra load is to make sure data flow be identical
677 	 *  before and after we do memory copy optimization.
678 	 *
679 	 *  The load destination register is not guaranteed to be dead, so we
680 	 *  need to make sure it is loaded with the value the same as before
681 	 *  this transformation.
682 	 *
683 	 *  These extra loads could be removed once we have accurate register
684 	 *  usage information.
685 	 */
686 	if (descending_seq)
687 		xfer_num = 0;
688 	else if (BPF_SIZE(meta->insn.code) != BPF_DW)
689 		xfer_num = xfer_num - 1;
690 	else
691 		xfer_num = xfer_num - 2;
692 
693 	switch (BPF_SIZE(meta->insn.code)) {
694 	case BPF_B:
695 		wrp_reg_subpart(nfp_prog, reg_both(meta->insn.dst_reg * 2),
696 				reg_xfer(xfer_num), 1,
697 				IS_ALIGNED(len, 4) ? 3 : (len & 3) - 1);
698 		break;
699 	case BPF_H:
700 		wrp_reg_subpart(nfp_prog, reg_both(meta->insn.dst_reg * 2),
701 				reg_xfer(xfer_num), 2, (len & 3) ^ 2);
702 		break;
703 	case BPF_W:
704 		wrp_mov(nfp_prog, reg_both(meta->insn.dst_reg * 2),
705 			reg_xfer(0));
706 		break;
707 	case BPF_DW:
708 		wrp_mov(nfp_prog, reg_both(meta->insn.dst_reg * 2),
709 			reg_xfer(xfer_num));
710 		wrp_mov(nfp_prog, reg_both(meta->insn.dst_reg * 2 + 1),
711 			reg_xfer(xfer_num + 1));
712 		break;
713 	}
714 
715 	if (BPF_SIZE(meta->insn.code) != BPF_DW)
716 		wrp_immed(nfp_prog, reg_both(meta->insn.dst_reg * 2 + 1), 0);
717 
718 	return 0;
719 }
720 
721 static int
722 data_ld(struct nfp_prog *nfp_prog, swreg offset, u8 dst_gpr, int size)
723 {
724 	unsigned int i;
725 	u16 shift, sz;
726 
727 	/* We load the value from the address indicated in @offset and then
728 	 * shift out the data we don't need.  Note: this is big endian!
729 	 */
730 	sz = max(size, 4);
731 	shift = size < 4 ? 4 - size : 0;
732 
733 	emit_cmd(nfp_prog, CMD_TGT_READ8, CMD_MODE_32b, 0,
734 		 pptr_reg(nfp_prog), offset, sz - 1, true);
735 
736 	i = 0;
737 	if (shift)
738 		emit_shf(nfp_prog, reg_both(dst_gpr), reg_none(), SHF_OP_NONE,
739 			 reg_xfer(0), SHF_SC_R_SHF, shift * 8);
740 	else
741 		for (; i * 4 < size; i++)
742 			wrp_mov(nfp_prog, reg_both(dst_gpr + i), reg_xfer(i));
743 
744 	if (i < 2)
745 		wrp_immed(nfp_prog, reg_both(dst_gpr + 1), 0);
746 
747 	return 0;
748 }
749 
750 static int
751 data_ld_host_order(struct nfp_prog *nfp_prog, u8 dst_gpr,
752 		   swreg lreg, swreg rreg, int size, enum cmd_mode mode)
753 {
754 	unsigned int i;
755 	u8 mask, sz;
756 
757 	/* We load the value from the address indicated in rreg + lreg and then
758 	 * mask out the data we don't need.  Note: this is little endian!
759 	 */
760 	sz = max(size, 4);
761 	mask = size < 4 ? GENMASK(size - 1, 0) : 0;
762 
763 	emit_cmd(nfp_prog, CMD_TGT_READ32_SWAP, mode, 0,
764 		 lreg, rreg, sz / 4 - 1, true);
765 
766 	i = 0;
767 	if (mask)
768 		emit_ld_field_any(nfp_prog, reg_both(dst_gpr), mask,
769 				  reg_xfer(0), SHF_SC_NONE, 0, true);
770 	else
771 		for (; i * 4 < size; i++)
772 			wrp_mov(nfp_prog, reg_both(dst_gpr + i), reg_xfer(i));
773 
774 	if (i < 2)
775 		wrp_immed(nfp_prog, reg_both(dst_gpr + 1), 0);
776 
777 	return 0;
778 }
779 
780 static int
781 data_ld_host_order_addr32(struct nfp_prog *nfp_prog, u8 src_gpr, swreg offset,
782 			  u8 dst_gpr, u8 size)
783 {
784 	return data_ld_host_order(nfp_prog, dst_gpr, reg_a(src_gpr), offset,
785 				  size, CMD_MODE_32b);
786 }
787 
788 static int
789 data_ld_host_order_addr40(struct nfp_prog *nfp_prog, u8 src_gpr, swreg offset,
790 			  u8 dst_gpr, u8 size)
791 {
792 	swreg rega, regb;
793 
794 	addr40_offset(nfp_prog, src_gpr, offset, &rega, &regb);
795 
796 	return data_ld_host_order(nfp_prog, dst_gpr, rega, regb,
797 				  size, CMD_MODE_40b_BA);
798 }
799 
800 static int
801 construct_data_ind_ld(struct nfp_prog *nfp_prog, u16 offset, u16 src, u8 size)
802 {
803 	swreg tmp_reg;
804 
805 	/* Calculate the true offset (src_reg + imm) */
806 	tmp_reg = ur_load_imm_any(nfp_prog, offset, imm_b(nfp_prog));
807 	emit_alu(nfp_prog, imm_both(nfp_prog), reg_a(src), ALU_OP_ADD, tmp_reg);
808 
809 	/* Check packet length (size guaranteed to fit b/c it's u8) */
810 	emit_alu(nfp_prog, imm_a(nfp_prog),
811 		 imm_a(nfp_prog), ALU_OP_ADD, reg_imm(size));
812 	emit_alu(nfp_prog, reg_none(),
813 		 plen_reg(nfp_prog), ALU_OP_SUB, imm_a(nfp_prog));
814 	emit_br_relo(nfp_prog, BR_BLO, BR_OFF_RELO, 0, RELO_BR_GO_ABORT);
815 
816 	/* Load data */
817 	return data_ld(nfp_prog, imm_b(nfp_prog), 0, size);
818 }
819 
820 static int construct_data_ld(struct nfp_prog *nfp_prog, u16 offset, u8 size)
821 {
822 	swreg tmp_reg;
823 
824 	/* Check packet length */
825 	tmp_reg = ur_load_imm_any(nfp_prog, offset + size, imm_a(nfp_prog));
826 	emit_alu(nfp_prog, reg_none(), plen_reg(nfp_prog), ALU_OP_SUB, tmp_reg);
827 	emit_br_relo(nfp_prog, BR_BLO, BR_OFF_RELO, 0, RELO_BR_GO_ABORT);
828 
829 	/* Load data */
830 	tmp_reg = re_load_imm_any(nfp_prog, offset, imm_b(nfp_prog));
831 	return data_ld(nfp_prog, tmp_reg, 0, size);
832 }
833 
834 static int
835 data_stx_host_order(struct nfp_prog *nfp_prog, u8 dst_gpr, swreg offset,
836 		    u8 src_gpr, u8 size)
837 {
838 	unsigned int i;
839 
840 	for (i = 0; i * 4 < size; i++)
841 		wrp_mov(nfp_prog, reg_xfer(i), reg_a(src_gpr + i));
842 
843 	emit_cmd(nfp_prog, CMD_TGT_WRITE8_SWAP, CMD_MODE_32b, 0,
844 		 reg_a(dst_gpr), offset, size - 1, true);
845 
846 	return 0;
847 }
848 
849 static int
850 data_st_host_order(struct nfp_prog *nfp_prog, u8 dst_gpr, swreg offset,
851 		   u64 imm, u8 size)
852 {
853 	wrp_immed(nfp_prog, reg_xfer(0), imm);
854 	if (size == 8)
855 		wrp_immed(nfp_prog, reg_xfer(1), imm >> 32);
856 
857 	emit_cmd(nfp_prog, CMD_TGT_WRITE8_SWAP, CMD_MODE_32b, 0,
858 		 reg_a(dst_gpr), offset, size - 1, true);
859 
860 	return 0;
861 }
862 
863 typedef int
864 (*lmem_step)(struct nfp_prog *nfp_prog, u8 gpr, u8 gpr_byte, s32 off,
865 	     unsigned int size, bool first, bool new_gpr, bool last, bool lm3,
866 	     bool needs_inc);
867 
868 static int
869 wrp_lmem_load(struct nfp_prog *nfp_prog, u8 dst, u8 dst_byte, s32 off,
870 	      unsigned int size, bool first, bool new_gpr, bool last, bool lm3,
871 	      bool needs_inc)
872 {
873 	bool should_inc = needs_inc && new_gpr && !last;
874 	u32 idx, src_byte;
875 	enum shf_sc sc;
876 	swreg reg;
877 	int shf;
878 	u8 mask;
879 
880 	if (WARN_ON_ONCE(dst_byte + size > 4 || off % 4 + size > 4))
881 		return -EOPNOTSUPP;
882 
883 	idx = off / 4;
884 
885 	/* Move the entire word */
886 	if (size == 4) {
887 		wrp_mov(nfp_prog, reg_both(dst),
888 			should_inc ? reg_lm_inc(3) : reg_lm(lm3 ? 3 : 0, idx));
889 		return 0;
890 	}
891 
892 	if (WARN_ON_ONCE(lm3 && idx > RE_REG_LM_IDX_MAX))
893 		return -EOPNOTSUPP;
894 
895 	src_byte = off % 4;
896 
897 	mask = (1 << size) - 1;
898 	mask <<= dst_byte;
899 
900 	if (WARN_ON_ONCE(mask > 0xf))
901 		return -EOPNOTSUPP;
902 
903 	shf = abs(src_byte - dst_byte) * 8;
904 	if (src_byte == dst_byte) {
905 		sc = SHF_SC_NONE;
906 	} else if (src_byte < dst_byte) {
907 		shf = 32 - shf;
908 		sc = SHF_SC_L_SHF;
909 	} else {
910 		sc = SHF_SC_R_SHF;
911 	}
912 
913 	/* ld_field can address fewer indexes, if offset too large do RMW.
914 	 * Because we RMV twice we waste 2 cycles on unaligned 8 byte writes.
915 	 */
916 	if (idx <= RE_REG_LM_IDX_MAX) {
917 		reg = reg_lm(lm3 ? 3 : 0, idx);
918 	} else {
919 		reg = imm_a(nfp_prog);
920 		/* If it's not the first part of the load and we start a new GPR
921 		 * that means we are loading a second part of the LMEM word into
922 		 * a new GPR.  IOW we've already looked that LMEM word and
923 		 * therefore it has been loaded into imm_a().
924 		 */
925 		if (first || !new_gpr)
926 			wrp_mov(nfp_prog, reg, reg_lm(0, idx));
927 	}
928 
929 	emit_ld_field_any(nfp_prog, reg_both(dst), mask, reg, sc, shf, new_gpr);
930 
931 	if (should_inc)
932 		wrp_mov(nfp_prog, reg_none(), reg_lm_inc(3));
933 
934 	return 0;
935 }
936 
937 static int
938 wrp_lmem_store(struct nfp_prog *nfp_prog, u8 src, u8 src_byte, s32 off,
939 	       unsigned int size, bool first, bool new_gpr, bool last, bool lm3,
940 	       bool needs_inc)
941 {
942 	bool should_inc = needs_inc && new_gpr && !last;
943 	u32 idx, dst_byte;
944 	enum shf_sc sc;
945 	swreg reg;
946 	int shf;
947 	u8 mask;
948 
949 	if (WARN_ON_ONCE(src_byte + size > 4 || off % 4 + size > 4))
950 		return -EOPNOTSUPP;
951 
952 	idx = off / 4;
953 
954 	/* Move the entire word */
955 	if (size == 4) {
956 		wrp_mov(nfp_prog,
957 			should_inc ? reg_lm_inc(3) : reg_lm(lm3 ? 3 : 0, idx),
958 			reg_b(src));
959 		return 0;
960 	}
961 
962 	if (WARN_ON_ONCE(lm3 && idx > RE_REG_LM_IDX_MAX))
963 		return -EOPNOTSUPP;
964 
965 	dst_byte = off % 4;
966 
967 	mask = (1 << size) - 1;
968 	mask <<= dst_byte;
969 
970 	if (WARN_ON_ONCE(mask > 0xf))
971 		return -EOPNOTSUPP;
972 
973 	shf = abs(src_byte - dst_byte) * 8;
974 	if (src_byte == dst_byte) {
975 		sc = SHF_SC_NONE;
976 	} else if (src_byte < dst_byte) {
977 		shf = 32 - shf;
978 		sc = SHF_SC_L_SHF;
979 	} else {
980 		sc = SHF_SC_R_SHF;
981 	}
982 
983 	/* ld_field can address fewer indexes, if offset too large do RMW.
984 	 * Because we RMV twice we waste 2 cycles on unaligned 8 byte writes.
985 	 */
986 	if (idx <= RE_REG_LM_IDX_MAX) {
987 		reg = reg_lm(lm3 ? 3 : 0, idx);
988 	} else {
989 		reg = imm_a(nfp_prog);
990 		/* Only first and last LMEM locations are going to need RMW,
991 		 * the middle location will be overwritten fully.
992 		 */
993 		if (first || last)
994 			wrp_mov(nfp_prog, reg, reg_lm(0, idx));
995 	}
996 
997 	emit_ld_field(nfp_prog, reg, mask, reg_b(src), sc, shf);
998 
999 	if (new_gpr || last) {
1000 		if (idx > RE_REG_LM_IDX_MAX)
1001 			wrp_mov(nfp_prog, reg_lm(0, idx), reg);
1002 		if (should_inc)
1003 			wrp_mov(nfp_prog, reg_none(), reg_lm_inc(3));
1004 	}
1005 
1006 	return 0;
1007 }
1008 
1009 static int
1010 mem_op_stack(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
1011 	     unsigned int size, unsigned int ptr_off, u8 gpr, u8 ptr_gpr,
1012 	     bool clr_gpr, lmem_step step)
1013 {
1014 	s32 off = nfp_prog->stack_depth + meta->insn.off + ptr_off;
1015 	bool first = true, last;
1016 	bool needs_inc = false;
1017 	swreg stack_off_reg;
1018 	u8 prev_gpr = 255;
1019 	u32 gpr_byte = 0;
1020 	bool lm3 = true;
1021 	int ret;
1022 
1023 	if (meta->ptr_not_const) {
1024 		/* Use of the last encountered ptr_off is OK, they all have
1025 		 * the same alignment.  Depend on low bits of value being
1026 		 * discarded when written to LMaddr register.
1027 		 */
1028 		stack_off_reg = ur_load_imm_any(nfp_prog, meta->insn.off,
1029 						stack_imm(nfp_prog));
1030 
1031 		emit_alu(nfp_prog, imm_b(nfp_prog),
1032 			 reg_a(ptr_gpr), ALU_OP_ADD, stack_off_reg);
1033 
1034 		needs_inc = true;
1035 	} else if (off + size <= 64) {
1036 		/* We can reach bottom 64B with LMaddr0 */
1037 		lm3 = false;
1038 	} else if (round_down(off, 32) == round_down(off + size - 1, 32)) {
1039 		/* We have to set up a new pointer.  If we know the offset
1040 		 * and the entire access falls into a single 32 byte aligned
1041 		 * window we won't have to increment the LM pointer.
1042 		 * The 32 byte alignment is imporant because offset is ORed in
1043 		 * not added when doing *l$indexN[off].
1044 		 */
1045 		stack_off_reg = ur_load_imm_any(nfp_prog, round_down(off, 32),
1046 						stack_imm(nfp_prog));
1047 		emit_alu(nfp_prog, imm_b(nfp_prog),
1048 			 stack_reg(nfp_prog), ALU_OP_ADD, stack_off_reg);
1049 
1050 		off %= 32;
1051 	} else {
1052 		stack_off_reg = ur_load_imm_any(nfp_prog, round_down(off, 4),
1053 						stack_imm(nfp_prog));
1054 
1055 		emit_alu(nfp_prog, imm_b(nfp_prog),
1056 			 stack_reg(nfp_prog), ALU_OP_ADD, stack_off_reg);
1057 
1058 		needs_inc = true;
1059 	}
1060 	if (lm3) {
1061 		emit_csr_wr(nfp_prog, imm_b(nfp_prog), NFP_CSR_ACT_LM_ADDR3);
1062 		/* For size < 4 one slot will be filled by zeroing of upper. */
1063 		wrp_nops(nfp_prog, clr_gpr && size < 8 ? 2 : 3);
1064 	}
1065 
1066 	if (clr_gpr && size < 8)
1067 		wrp_immed(nfp_prog, reg_both(gpr + 1), 0);
1068 
1069 	while (size) {
1070 		u32 slice_end;
1071 		u8 slice_size;
1072 
1073 		slice_size = min(size, 4 - gpr_byte);
1074 		slice_end = min(off + slice_size, round_up(off + 1, 4));
1075 		slice_size = slice_end - off;
1076 
1077 		last = slice_size == size;
1078 
1079 		if (needs_inc)
1080 			off %= 4;
1081 
1082 		ret = step(nfp_prog, gpr, gpr_byte, off, slice_size,
1083 			   first, gpr != prev_gpr, last, lm3, needs_inc);
1084 		if (ret)
1085 			return ret;
1086 
1087 		prev_gpr = gpr;
1088 		first = false;
1089 
1090 		gpr_byte += slice_size;
1091 		if (gpr_byte >= 4) {
1092 			gpr_byte -= 4;
1093 			gpr++;
1094 		}
1095 
1096 		size -= slice_size;
1097 		off += slice_size;
1098 	}
1099 
1100 	return 0;
1101 }
1102 
1103 static void
1104 wrp_alu_imm(struct nfp_prog *nfp_prog, u8 dst, enum alu_op alu_op, u32 imm)
1105 {
1106 	swreg tmp_reg;
1107 
1108 	if (alu_op == ALU_OP_AND) {
1109 		if (!imm)
1110 			wrp_immed(nfp_prog, reg_both(dst), 0);
1111 		if (!imm || !~imm)
1112 			return;
1113 	}
1114 	if (alu_op == ALU_OP_OR) {
1115 		if (!~imm)
1116 			wrp_immed(nfp_prog, reg_both(dst), ~0U);
1117 		if (!imm || !~imm)
1118 			return;
1119 	}
1120 	if (alu_op == ALU_OP_XOR) {
1121 		if (!~imm)
1122 			emit_alu(nfp_prog, reg_both(dst), reg_none(),
1123 				 ALU_OP_NOT, reg_b(dst));
1124 		if (!imm || !~imm)
1125 			return;
1126 	}
1127 
1128 	tmp_reg = ur_load_imm_any(nfp_prog, imm, imm_b(nfp_prog));
1129 	emit_alu(nfp_prog, reg_both(dst), reg_a(dst), alu_op, tmp_reg);
1130 }
1131 
1132 static int
1133 wrp_alu64_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
1134 	      enum alu_op alu_op, bool skip)
1135 {
1136 	const struct bpf_insn *insn = &meta->insn;
1137 	u64 imm = insn->imm; /* sign extend */
1138 
1139 	if (skip) {
1140 		meta->skip = true;
1141 		return 0;
1142 	}
1143 
1144 	wrp_alu_imm(nfp_prog, insn->dst_reg * 2, alu_op, imm & ~0U);
1145 	wrp_alu_imm(nfp_prog, insn->dst_reg * 2 + 1, alu_op, imm >> 32);
1146 
1147 	return 0;
1148 }
1149 
1150 static int
1151 wrp_alu64_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
1152 	      enum alu_op alu_op)
1153 {
1154 	u8 dst = meta->insn.dst_reg * 2, src = meta->insn.src_reg * 2;
1155 
1156 	emit_alu(nfp_prog, reg_both(dst), reg_a(dst), alu_op, reg_b(src));
1157 	emit_alu(nfp_prog, reg_both(dst + 1),
1158 		 reg_a(dst + 1), alu_op, reg_b(src + 1));
1159 
1160 	return 0;
1161 }
1162 
1163 static int
1164 wrp_alu32_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
1165 	      enum alu_op alu_op, bool skip)
1166 {
1167 	const struct bpf_insn *insn = &meta->insn;
1168 
1169 	if (skip) {
1170 		meta->skip = true;
1171 		return 0;
1172 	}
1173 
1174 	wrp_alu_imm(nfp_prog, insn->dst_reg * 2, alu_op, insn->imm);
1175 	wrp_immed(nfp_prog, reg_both(insn->dst_reg * 2 + 1), 0);
1176 
1177 	return 0;
1178 }
1179 
1180 static int
1181 wrp_alu32_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
1182 	      enum alu_op alu_op)
1183 {
1184 	u8 dst = meta->insn.dst_reg * 2, src = meta->insn.src_reg * 2;
1185 
1186 	emit_alu(nfp_prog, reg_both(dst), reg_a(dst), alu_op, reg_b(src));
1187 	wrp_immed(nfp_prog, reg_both(meta->insn.dst_reg * 2 + 1), 0);
1188 
1189 	return 0;
1190 }
1191 
1192 static void
1193 wrp_test_reg_one(struct nfp_prog *nfp_prog, u8 dst, enum alu_op alu_op, u8 src,
1194 		 enum br_mask br_mask, u16 off)
1195 {
1196 	emit_alu(nfp_prog, reg_none(), reg_a(dst), alu_op, reg_b(src));
1197 	emit_br(nfp_prog, br_mask, off, 0);
1198 }
1199 
1200 static int
1201 wrp_test_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
1202 	     enum alu_op alu_op, enum br_mask br_mask)
1203 {
1204 	const struct bpf_insn *insn = &meta->insn;
1205 
1206 	wrp_test_reg_one(nfp_prog, insn->dst_reg * 2, alu_op,
1207 			 insn->src_reg * 2, br_mask, insn->off);
1208 	wrp_test_reg_one(nfp_prog, insn->dst_reg * 2 + 1, alu_op,
1209 			 insn->src_reg * 2 + 1, br_mask, insn->off);
1210 
1211 	return 0;
1212 }
1213 
1214 static int
1215 wrp_cmp_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
1216 	    enum br_mask br_mask, bool swap)
1217 {
1218 	const struct bpf_insn *insn = &meta->insn;
1219 	u64 imm = insn->imm; /* sign extend */
1220 	u8 reg = insn->dst_reg * 2;
1221 	swreg tmp_reg;
1222 
1223 	tmp_reg = ur_load_imm_any(nfp_prog, imm & ~0U, imm_b(nfp_prog));
1224 	if (!swap)
1225 		emit_alu(nfp_prog, reg_none(), reg_a(reg), ALU_OP_SUB, tmp_reg);
1226 	else
1227 		emit_alu(nfp_prog, reg_none(), tmp_reg, ALU_OP_SUB, reg_a(reg));
1228 
1229 	tmp_reg = ur_load_imm_any(nfp_prog, imm >> 32, imm_b(nfp_prog));
1230 	if (!swap)
1231 		emit_alu(nfp_prog, reg_none(),
1232 			 reg_a(reg + 1), ALU_OP_SUB_C, tmp_reg);
1233 	else
1234 		emit_alu(nfp_prog, reg_none(),
1235 			 tmp_reg, ALU_OP_SUB_C, reg_a(reg + 1));
1236 
1237 	emit_br(nfp_prog, br_mask, insn->off, 0);
1238 
1239 	return 0;
1240 }
1241 
1242 static int
1243 wrp_cmp_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
1244 	    enum br_mask br_mask, bool swap)
1245 {
1246 	const struct bpf_insn *insn = &meta->insn;
1247 	u8 areg, breg;
1248 
1249 	areg = insn->dst_reg * 2;
1250 	breg = insn->src_reg * 2;
1251 
1252 	if (swap) {
1253 		areg ^= breg;
1254 		breg ^= areg;
1255 		areg ^= breg;
1256 	}
1257 
1258 	emit_alu(nfp_prog, reg_none(), reg_a(areg), ALU_OP_SUB, reg_b(breg));
1259 	emit_alu(nfp_prog, reg_none(),
1260 		 reg_a(areg + 1), ALU_OP_SUB_C, reg_b(breg + 1));
1261 	emit_br(nfp_prog, br_mask, insn->off, 0);
1262 
1263 	return 0;
1264 }
1265 
1266 static void wrp_end32(struct nfp_prog *nfp_prog, swreg reg_in, u8 gpr_out)
1267 {
1268 	emit_ld_field(nfp_prog, reg_both(gpr_out), 0xf, reg_in,
1269 		      SHF_SC_R_ROT, 8);
1270 	emit_ld_field(nfp_prog, reg_both(gpr_out), 0x5, reg_a(gpr_out),
1271 		      SHF_SC_R_ROT, 16);
1272 }
1273 
1274 static int adjust_head(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1275 {
1276 	swreg tmp = imm_a(nfp_prog), tmp_len = imm_b(nfp_prog);
1277 	struct nfp_bpf_cap_adjust_head *adjust_head;
1278 	u32 ret_einval, end;
1279 
1280 	adjust_head = &nfp_prog->bpf->adjust_head;
1281 
1282 	/* Optimized version - 5 vs 14 cycles */
1283 	if (nfp_prog->adjust_head_location != UINT_MAX) {
1284 		if (WARN_ON_ONCE(nfp_prog->adjust_head_location != meta->n))
1285 			return -EINVAL;
1286 
1287 		emit_alu(nfp_prog, pptr_reg(nfp_prog),
1288 			 reg_a(2 * 2), ALU_OP_ADD, pptr_reg(nfp_prog));
1289 		emit_alu(nfp_prog, plen_reg(nfp_prog),
1290 			 plen_reg(nfp_prog), ALU_OP_SUB, reg_a(2 * 2));
1291 		emit_alu(nfp_prog, pv_len(nfp_prog),
1292 			 pv_len(nfp_prog), ALU_OP_SUB, reg_a(2 * 2));
1293 
1294 		wrp_immed(nfp_prog, reg_both(0), 0);
1295 		wrp_immed(nfp_prog, reg_both(1), 0);
1296 
1297 		/* TODO: when adjust head is guaranteed to succeed we can
1298 		 * also eliminate the following if (r0 == 0) branch.
1299 		 */
1300 
1301 		return 0;
1302 	}
1303 
1304 	ret_einval = nfp_prog_current_offset(nfp_prog) + 14;
1305 	end = ret_einval + 2;
1306 
1307 	/* We need to use a temp because offset is just a part of the pkt ptr */
1308 	emit_alu(nfp_prog, tmp,
1309 		 reg_a(2 * 2), ALU_OP_ADD_2B, pptr_reg(nfp_prog));
1310 
1311 	/* Validate result will fit within FW datapath constraints */
1312 	emit_alu(nfp_prog, reg_none(),
1313 		 tmp, ALU_OP_SUB, reg_imm(adjust_head->off_min));
1314 	emit_br(nfp_prog, BR_BLO, ret_einval, 0);
1315 	emit_alu(nfp_prog, reg_none(),
1316 		 reg_imm(adjust_head->off_max), ALU_OP_SUB, tmp);
1317 	emit_br(nfp_prog, BR_BLO, ret_einval, 0);
1318 
1319 	/* Validate the length is at least ETH_HLEN */
1320 	emit_alu(nfp_prog, tmp_len,
1321 		 plen_reg(nfp_prog), ALU_OP_SUB, reg_a(2 * 2));
1322 	emit_alu(nfp_prog, reg_none(),
1323 		 tmp_len, ALU_OP_SUB, reg_imm(ETH_HLEN));
1324 	emit_br(nfp_prog, BR_BMI, ret_einval, 0);
1325 
1326 	/* Load the ret code */
1327 	wrp_immed(nfp_prog, reg_both(0), 0);
1328 	wrp_immed(nfp_prog, reg_both(1), 0);
1329 
1330 	/* Modify the packet metadata */
1331 	emit_ld_field(nfp_prog, pptr_reg(nfp_prog), 0x3, tmp, SHF_SC_NONE, 0);
1332 
1333 	/* Skip over the -EINVAL ret code (defer 2) */
1334 	emit_br(nfp_prog, BR_UNC, end, 2);
1335 
1336 	emit_alu(nfp_prog, plen_reg(nfp_prog),
1337 		 plen_reg(nfp_prog), ALU_OP_SUB, reg_a(2 * 2));
1338 	emit_alu(nfp_prog, pv_len(nfp_prog),
1339 		 pv_len(nfp_prog), ALU_OP_SUB, reg_a(2 * 2));
1340 
1341 	/* return -EINVAL target */
1342 	if (!nfp_prog_confirm_current_offset(nfp_prog, ret_einval))
1343 		return -EINVAL;
1344 
1345 	wrp_immed(nfp_prog, reg_both(0), -22);
1346 	wrp_immed(nfp_prog, reg_both(1), ~0);
1347 
1348 	if (!nfp_prog_confirm_current_offset(nfp_prog, end))
1349 		return -EINVAL;
1350 
1351 	return 0;
1352 }
1353 
1354 static int
1355 map_lookup_stack(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1356 {
1357 	struct bpf_offloaded_map *offmap;
1358 	struct nfp_bpf_map *nfp_map;
1359 	bool load_lm_ptr;
1360 	u32 ret_tgt;
1361 	s64 lm_off;
1362 	swreg tid;
1363 
1364 	offmap = (struct bpf_offloaded_map *)meta->arg1.map_ptr;
1365 	nfp_map = offmap->dev_priv;
1366 
1367 	/* We only have to reload LM0 if the key is not at start of stack */
1368 	lm_off = nfp_prog->stack_depth;
1369 	lm_off += meta->arg2.var_off.value + meta->arg2.off;
1370 	load_lm_ptr = meta->arg2_var_off || lm_off;
1371 
1372 	/* Set LM0 to start of key */
1373 	if (load_lm_ptr)
1374 		emit_csr_wr(nfp_prog, reg_b(2 * 2), NFP_CSR_ACT_LM_ADDR0);
1375 
1376 	/* Load map ID into a register, it should actually fit as an immediate
1377 	 * but in case it doesn't deal with it here, not in the delay slots.
1378 	 */
1379 	tid = ur_load_imm_any(nfp_prog, nfp_map->tid, imm_a(nfp_prog));
1380 
1381 	emit_br_relo(nfp_prog, BR_UNC, BR_OFF_RELO + BPF_FUNC_map_lookup_elem,
1382 		     2, RELO_BR_HELPER);
1383 	ret_tgt = nfp_prog_current_offset(nfp_prog) + 2;
1384 
1385 	/* Load map ID into A0 */
1386 	wrp_mov(nfp_prog, reg_a(0), tid);
1387 
1388 	/* Load the return address into B0 */
1389 	wrp_immed_relo(nfp_prog, reg_b(0), ret_tgt, RELO_IMMED_REL);
1390 
1391 	if (!nfp_prog_confirm_current_offset(nfp_prog, ret_tgt))
1392 		return -EINVAL;
1393 
1394 	/* Reset the LM0 pointer */
1395 	if (!load_lm_ptr)
1396 		return 0;
1397 
1398 	emit_csr_wr(nfp_prog, stack_reg(nfp_prog),  NFP_CSR_ACT_LM_ADDR0);
1399 	wrp_nops(nfp_prog, 3);
1400 
1401 	return 0;
1402 }
1403 
1404 /* --- Callbacks --- */
1405 static int mov_reg64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1406 {
1407 	const struct bpf_insn *insn = &meta->insn;
1408 	u8 dst = insn->dst_reg * 2;
1409 	u8 src = insn->src_reg * 2;
1410 
1411 	if (insn->src_reg == BPF_REG_10) {
1412 		swreg stack_depth_reg;
1413 
1414 		stack_depth_reg = ur_load_imm_any(nfp_prog,
1415 						  nfp_prog->stack_depth,
1416 						  stack_imm(nfp_prog));
1417 		emit_alu(nfp_prog, reg_both(dst),
1418 			 stack_reg(nfp_prog), ALU_OP_ADD, stack_depth_reg);
1419 		wrp_immed(nfp_prog, reg_both(dst + 1), 0);
1420 	} else {
1421 		wrp_reg_mov(nfp_prog, dst, src);
1422 		wrp_reg_mov(nfp_prog, dst + 1, src + 1);
1423 	}
1424 
1425 	return 0;
1426 }
1427 
1428 static int mov_imm64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1429 {
1430 	u64 imm = meta->insn.imm; /* sign extend */
1431 
1432 	wrp_immed(nfp_prog, reg_both(meta->insn.dst_reg * 2), imm & ~0U);
1433 	wrp_immed(nfp_prog, reg_both(meta->insn.dst_reg * 2 + 1), imm >> 32);
1434 
1435 	return 0;
1436 }
1437 
1438 static int xor_reg64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1439 {
1440 	return wrp_alu64_reg(nfp_prog, meta, ALU_OP_XOR);
1441 }
1442 
1443 static int xor_imm64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1444 {
1445 	return wrp_alu64_imm(nfp_prog, meta, ALU_OP_XOR, !meta->insn.imm);
1446 }
1447 
1448 static int and_reg64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1449 {
1450 	return wrp_alu64_reg(nfp_prog, meta, ALU_OP_AND);
1451 }
1452 
1453 static int and_imm64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1454 {
1455 	return wrp_alu64_imm(nfp_prog, meta, ALU_OP_AND, !~meta->insn.imm);
1456 }
1457 
1458 static int or_reg64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1459 {
1460 	return wrp_alu64_reg(nfp_prog, meta, ALU_OP_OR);
1461 }
1462 
1463 static int or_imm64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1464 {
1465 	return wrp_alu64_imm(nfp_prog, meta, ALU_OP_OR, !meta->insn.imm);
1466 }
1467 
1468 static int add_reg64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1469 {
1470 	const struct bpf_insn *insn = &meta->insn;
1471 
1472 	emit_alu(nfp_prog, reg_both(insn->dst_reg * 2),
1473 		 reg_a(insn->dst_reg * 2), ALU_OP_ADD,
1474 		 reg_b(insn->src_reg * 2));
1475 	emit_alu(nfp_prog, reg_both(insn->dst_reg * 2 + 1),
1476 		 reg_a(insn->dst_reg * 2 + 1), ALU_OP_ADD_C,
1477 		 reg_b(insn->src_reg * 2 + 1));
1478 
1479 	return 0;
1480 }
1481 
1482 static int add_imm64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1483 {
1484 	const struct bpf_insn *insn = &meta->insn;
1485 	u64 imm = insn->imm; /* sign extend */
1486 
1487 	wrp_alu_imm(nfp_prog, insn->dst_reg * 2, ALU_OP_ADD, imm & ~0U);
1488 	wrp_alu_imm(nfp_prog, insn->dst_reg * 2 + 1, ALU_OP_ADD_C, imm >> 32);
1489 
1490 	return 0;
1491 }
1492 
1493 static int sub_reg64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1494 {
1495 	const struct bpf_insn *insn = &meta->insn;
1496 
1497 	emit_alu(nfp_prog, reg_both(insn->dst_reg * 2),
1498 		 reg_a(insn->dst_reg * 2), ALU_OP_SUB,
1499 		 reg_b(insn->src_reg * 2));
1500 	emit_alu(nfp_prog, reg_both(insn->dst_reg * 2 + 1),
1501 		 reg_a(insn->dst_reg * 2 + 1), ALU_OP_SUB_C,
1502 		 reg_b(insn->src_reg * 2 + 1));
1503 
1504 	return 0;
1505 }
1506 
1507 static int sub_imm64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1508 {
1509 	const struct bpf_insn *insn = &meta->insn;
1510 	u64 imm = insn->imm; /* sign extend */
1511 
1512 	wrp_alu_imm(nfp_prog, insn->dst_reg * 2, ALU_OP_SUB, imm & ~0U);
1513 	wrp_alu_imm(nfp_prog, insn->dst_reg * 2 + 1, ALU_OP_SUB_C, imm >> 32);
1514 
1515 	return 0;
1516 }
1517 
1518 static int neg_reg64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1519 {
1520 	const struct bpf_insn *insn = &meta->insn;
1521 
1522 	emit_alu(nfp_prog, reg_both(insn->dst_reg * 2), reg_imm(0),
1523 		 ALU_OP_SUB, reg_b(insn->dst_reg * 2));
1524 	emit_alu(nfp_prog, reg_both(insn->dst_reg * 2 + 1), reg_imm(0),
1525 		 ALU_OP_SUB_C, reg_b(insn->dst_reg * 2 + 1));
1526 
1527 	return 0;
1528 }
1529 
1530 static int shl_imm64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1531 {
1532 	const struct bpf_insn *insn = &meta->insn;
1533 	u8 dst = insn->dst_reg * 2;
1534 
1535 	if (insn->imm < 32) {
1536 		emit_shf(nfp_prog, reg_both(dst + 1),
1537 			 reg_a(dst + 1), SHF_OP_NONE, reg_b(dst),
1538 			 SHF_SC_R_DSHF, 32 - insn->imm);
1539 		emit_shf(nfp_prog, reg_both(dst),
1540 			 reg_none(), SHF_OP_NONE, reg_b(dst),
1541 			 SHF_SC_L_SHF, insn->imm);
1542 	} else if (insn->imm == 32) {
1543 		wrp_reg_mov(nfp_prog, dst + 1, dst);
1544 		wrp_immed(nfp_prog, reg_both(dst), 0);
1545 	} else if (insn->imm > 32) {
1546 		emit_shf(nfp_prog, reg_both(dst + 1),
1547 			 reg_none(), SHF_OP_NONE, reg_b(dst),
1548 			 SHF_SC_L_SHF, insn->imm - 32);
1549 		wrp_immed(nfp_prog, reg_both(dst), 0);
1550 	}
1551 
1552 	return 0;
1553 }
1554 
1555 static int shr_imm64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1556 {
1557 	const struct bpf_insn *insn = &meta->insn;
1558 	u8 dst = insn->dst_reg * 2;
1559 
1560 	if (insn->imm < 32) {
1561 		emit_shf(nfp_prog, reg_both(dst),
1562 			 reg_a(dst + 1), SHF_OP_NONE, reg_b(dst),
1563 			 SHF_SC_R_DSHF, insn->imm);
1564 		emit_shf(nfp_prog, reg_both(dst + 1),
1565 			 reg_none(), SHF_OP_NONE, reg_b(dst + 1),
1566 			 SHF_SC_R_SHF, insn->imm);
1567 	} else if (insn->imm == 32) {
1568 		wrp_reg_mov(nfp_prog, dst, dst + 1);
1569 		wrp_immed(nfp_prog, reg_both(dst + 1), 0);
1570 	} else if (insn->imm > 32) {
1571 		emit_shf(nfp_prog, reg_both(dst),
1572 			 reg_none(), SHF_OP_NONE, reg_b(dst + 1),
1573 			 SHF_SC_R_SHF, insn->imm - 32);
1574 		wrp_immed(nfp_prog, reg_both(dst + 1), 0);
1575 	}
1576 
1577 	return 0;
1578 }
1579 
1580 static int mov_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1581 {
1582 	const struct bpf_insn *insn = &meta->insn;
1583 
1584 	wrp_reg_mov(nfp_prog, insn->dst_reg * 2,  insn->src_reg * 2);
1585 	wrp_immed(nfp_prog, reg_both(insn->dst_reg * 2 + 1), 0);
1586 
1587 	return 0;
1588 }
1589 
1590 static int mov_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1591 {
1592 	const struct bpf_insn *insn = &meta->insn;
1593 
1594 	wrp_immed(nfp_prog, reg_both(insn->dst_reg * 2), insn->imm);
1595 	wrp_immed(nfp_prog, reg_both(insn->dst_reg * 2 + 1), 0);
1596 
1597 	return 0;
1598 }
1599 
1600 static int xor_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1601 {
1602 	return wrp_alu32_reg(nfp_prog, meta, ALU_OP_XOR);
1603 }
1604 
1605 static int xor_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1606 {
1607 	return wrp_alu32_imm(nfp_prog, meta, ALU_OP_XOR, !~meta->insn.imm);
1608 }
1609 
1610 static int and_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1611 {
1612 	return wrp_alu32_reg(nfp_prog, meta, ALU_OP_AND);
1613 }
1614 
1615 static int and_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1616 {
1617 	return wrp_alu32_imm(nfp_prog, meta, ALU_OP_AND, !~meta->insn.imm);
1618 }
1619 
1620 static int or_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1621 {
1622 	return wrp_alu32_reg(nfp_prog, meta, ALU_OP_OR);
1623 }
1624 
1625 static int or_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1626 {
1627 	return wrp_alu32_imm(nfp_prog, meta, ALU_OP_OR, !meta->insn.imm);
1628 }
1629 
1630 static int add_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1631 {
1632 	return wrp_alu32_reg(nfp_prog, meta, ALU_OP_ADD);
1633 }
1634 
1635 static int add_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1636 {
1637 	return wrp_alu32_imm(nfp_prog, meta, ALU_OP_ADD, !meta->insn.imm);
1638 }
1639 
1640 static int sub_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1641 {
1642 	return wrp_alu32_reg(nfp_prog, meta, ALU_OP_SUB);
1643 }
1644 
1645 static int sub_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1646 {
1647 	return wrp_alu32_imm(nfp_prog, meta, ALU_OP_SUB, !meta->insn.imm);
1648 }
1649 
1650 static int neg_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1651 {
1652 	u8 dst = meta->insn.dst_reg * 2;
1653 
1654 	emit_alu(nfp_prog, reg_both(dst), reg_imm(0), ALU_OP_SUB, reg_b(dst));
1655 	wrp_immed(nfp_prog, reg_both(meta->insn.dst_reg * 2 + 1), 0);
1656 
1657 	return 0;
1658 }
1659 
1660 static int shl_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1661 {
1662 	const struct bpf_insn *insn = &meta->insn;
1663 
1664 	if (!insn->imm)
1665 		return 1; /* TODO: zero shift means indirect */
1666 
1667 	emit_shf(nfp_prog, reg_both(insn->dst_reg * 2),
1668 		 reg_none(), SHF_OP_NONE, reg_b(insn->dst_reg * 2),
1669 		 SHF_SC_L_SHF, insn->imm);
1670 	wrp_immed(nfp_prog, reg_both(insn->dst_reg * 2 + 1), 0);
1671 
1672 	return 0;
1673 }
1674 
1675 static int end_reg32(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1676 {
1677 	const struct bpf_insn *insn = &meta->insn;
1678 	u8 gpr = insn->dst_reg * 2;
1679 
1680 	switch (insn->imm) {
1681 	case 16:
1682 		emit_ld_field(nfp_prog, reg_both(gpr), 0x9, reg_b(gpr),
1683 			      SHF_SC_R_ROT, 8);
1684 		emit_ld_field(nfp_prog, reg_both(gpr), 0xe, reg_a(gpr),
1685 			      SHF_SC_R_SHF, 16);
1686 
1687 		wrp_immed(nfp_prog, reg_both(gpr + 1), 0);
1688 		break;
1689 	case 32:
1690 		wrp_end32(nfp_prog, reg_a(gpr), gpr);
1691 		wrp_immed(nfp_prog, reg_both(gpr + 1), 0);
1692 		break;
1693 	case 64:
1694 		wrp_mov(nfp_prog, imm_a(nfp_prog), reg_b(gpr + 1));
1695 
1696 		wrp_end32(nfp_prog, reg_a(gpr), gpr + 1);
1697 		wrp_end32(nfp_prog, imm_a(nfp_prog), gpr);
1698 		break;
1699 	}
1700 
1701 	return 0;
1702 }
1703 
1704 static int imm_ld8_part2(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1705 {
1706 	struct nfp_insn_meta *prev = nfp_meta_prev(meta);
1707 	u32 imm_lo, imm_hi;
1708 	u8 dst;
1709 
1710 	dst = prev->insn.dst_reg * 2;
1711 	imm_lo = prev->insn.imm;
1712 	imm_hi = meta->insn.imm;
1713 
1714 	wrp_immed(nfp_prog, reg_both(dst), imm_lo);
1715 
1716 	/* mov is always 1 insn, load imm may be two, so try to use mov */
1717 	if (imm_hi == imm_lo)
1718 		wrp_mov(nfp_prog, reg_both(dst + 1), reg_a(dst));
1719 	else
1720 		wrp_immed(nfp_prog, reg_both(dst + 1), imm_hi);
1721 
1722 	return 0;
1723 }
1724 
1725 static int imm_ld8(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1726 {
1727 	meta->double_cb = imm_ld8_part2;
1728 	return 0;
1729 }
1730 
1731 static int data_ld1(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1732 {
1733 	return construct_data_ld(nfp_prog, meta->insn.imm, 1);
1734 }
1735 
1736 static int data_ld2(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1737 {
1738 	return construct_data_ld(nfp_prog, meta->insn.imm, 2);
1739 }
1740 
1741 static int data_ld4(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1742 {
1743 	return construct_data_ld(nfp_prog, meta->insn.imm, 4);
1744 }
1745 
1746 static int data_ind_ld1(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1747 {
1748 	return construct_data_ind_ld(nfp_prog, meta->insn.imm,
1749 				     meta->insn.src_reg * 2, 1);
1750 }
1751 
1752 static int data_ind_ld2(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1753 {
1754 	return construct_data_ind_ld(nfp_prog, meta->insn.imm,
1755 				     meta->insn.src_reg * 2, 2);
1756 }
1757 
1758 static int data_ind_ld4(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1759 {
1760 	return construct_data_ind_ld(nfp_prog, meta->insn.imm,
1761 				     meta->insn.src_reg * 2, 4);
1762 }
1763 
1764 static int
1765 mem_ldx_stack(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
1766 	      unsigned int size, unsigned int ptr_off)
1767 {
1768 	return mem_op_stack(nfp_prog, meta, size, ptr_off,
1769 			    meta->insn.dst_reg * 2, meta->insn.src_reg * 2,
1770 			    true, wrp_lmem_load);
1771 }
1772 
1773 static int mem_ldx_skb(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
1774 		       u8 size)
1775 {
1776 	swreg dst = reg_both(meta->insn.dst_reg * 2);
1777 
1778 	switch (meta->insn.off) {
1779 	case offsetof(struct __sk_buff, len):
1780 		if (size != FIELD_SIZEOF(struct __sk_buff, len))
1781 			return -EOPNOTSUPP;
1782 		wrp_mov(nfp_prog, dst, plen_reg(nfp_prog));
1783 		break;
1784 	case offsetof(struct __sk_buff, data):
1785 		if (size != FIELD_SIZEOF(struct __sk_buff, data))
1786 			return -EOPNOTSUPP;
1787 		wrp_mov(nfp_prog, dst, pptr_reg(nfp_prog));
1788 		break;
1789 	case offsetof(struct __sk_buff, data_end):
1790 		if (size != FIELD_SIZEOF(struct __sk_buff, data_end))
1791 			return -EOPNOTSUPP;
1792 		emit_alu(nfp_prog, dst,
1793 			 plen_reg(nfp_prog), ALU_OP_ADD, pptr_reg(nfp_prog));
1794 		break;
1795 	default:
1796 		return -EOPNOTSUPP;
1797 	}
1798 
1799 	wrp_immed(nfp_prog, reg_both(meta->insn.dst_reg * 2 + 1), 0);
1800 
1801 	return 0;
1802 }
1803 
1804 static int mem_ldx_xdp(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
1805 		       u8 size)
1806 {
1807 	swreg dst = reg_both(meta->insn.dst_reg * 2);
1808 
1809 	switch (meta->insn.off) {
1810 	case offsetof(struct xdp_md, data):
1811 		if (size != FIELD_SIZEOF(struct xdp_md, data))
1812 			return -EOPNOTSUPP;
1813 		wrp_mov(nfp_prog, dst, pptr_reg(nfp_prog));
1814 		break;
1815 	case offsetof(struct xdp_md, data_end):
1816 		if (size != FIELD_SIZEOF(struct xdp_md, data_end))
1817 			return -EOPNOTSUPP;
1818 		emit_alu(nfp_prog, dst,
1819 			 plen_reg(nfp_prog), ALU_OP_ADD, pptr_reg(nfp_prog));
1820 		break;
1821 	default:
1822 		return -EOPNOTSUPP;
1823 	}
1824 
1825 	wrp_immed(nfp_prog, reg_both(meta->insn.dst_reg * 2 + 1), 0);
1826 
1827 	return 0;
1828 }
1829 
1830 static int
1831 mem_ldx_data(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
1832 	     unsigned int size)
1833 {
1834 	swreg tmp_reg;
1835 
1836 	tmp_reg = re_load_imm_any(nfp_prog, meta->insn.off, imm_b(nfp_prog));
1837 
1838 	return data_ld_host_order_addr32(nfp_prog, meta->insn.src_reg * 2,
1839 					 tmp_reg, meta->insn.dst_reg * 2, size);
1840 }
1841 
1842 static int
1843 mem_ldx_emem(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
1844 	     unsigned int size)
1845 {
1846 	swreg tmp_reg;
1847 
1848 	tmp_reg = re_load_imm_any(nfp_prog, meta->insn.off, imm_b(nfp_prog));
1849 
1850 	return data_ld_host_order_addr40(nfp_prog, meta->insn.src_reg * 2,
1851 					 tmp_reg, meta->insn.dst_reg * 2, size);
1852 }
1853 
1854 static void
1855 mem_ldx_data_init_pktcache(struct nfp_prog *nfp_prog,
1856 			   struct nfp_insn_meta *meta)
1857 {
1858 	s16 range_start = meta->pkt_cache.range_start;
1859 	s16 range_end = meta->pkt_cache.range_end;
1860 	swreg src_base, off;
1861 	u8 xfer_num, len;
1862 	bool indir;
1863 
1864 	off = re_load_imm_any(nfp_prog, range_start, imm_b(nfp_prog));
1865 	src_base = reg_a(meta->insn.src_reg * 2);
1866 	len = range_end - range_start;
1867 	xfer_num = round_up(len, REG_WIDTH) / REG_WIDTH;
1868 
1869 	indir = len > 8 * REG_WIDTH;
1870 	/* Setup PREV_ALU for indirect mode. */
1871 	if (indir)
1872 		wrp_immed(nfp_prog, reg_none(),
1873 			  CMD_OVE_LEN | FIELD_PREP(CMD_OV_LEN, xfer_num - 1));
1874 
1875 	/* Cache memory into transfer-in registers. */
1876 	emit_cmd_any(nfp_prog, CMD_TGT_READ32_SWAP, CMD_MODE_32b, 0, src_base,
1877 		     off, xfer_num - 1, true, indir);
1878 }
1879 
1880 static int
1881 mem_ldx_data_from_pktcache_unaligned(struct nfp_prog *nfp_prog,
1882 				     struct nfp_insn_meta *meta,
1883 				     unsigned int size)
1884 {
1885 	s16 range_start = meta->pkt_cache.range_start;
1886 	s16 insn_off = meta->insn.off - range_start;
1887 	swreg dst_lo, dst_hi, src_lo, src_mid;
1888 	u8 dst_gpr = meta->insn.dst_reg * 2;
1889 	u8 len_lo = size, len_mid = 0;
1890 	u8 idx = insn_off / REG_WIDTH;
1891 	u8 off = insn_off % REG_WIDTH;
1892 
1893 	dst_hi = reg_both(dst_gpr + 1);
1894 	dst_lo = reg_both(dst_gpr);
1895 	src_lo = reg_xfer(idx);
1896 
1897 	/* The read length could involve as many as three registers. */
1898 	if (size > REG_WIDTH - off) {
1899 		/* Calculate the part in the second register. */
1900 		len_lo = REG_WIDTH - off;
1901 		len_mid = size - len_lo;
1902 
1903 		/* Calculate the part in the third register. */
1904 		if (size > 2 * REG_WIDTH - off)
1905 			len_mid = REG_WIDTH;
1906 	}
1907 
1908 	wrp_reg_subpart(nfp_prog, dst_lo, src_lo, len_lo, off);
1909 
1910 	if (!len_mid) {
1911 		wrp_immed(nfp_prog, dst_hi, 0);
1912 		return 0;
1913 	}
1914 
1915 	src_mid = reg_xfer(idx + 1);
1916 
1917 	if (size <= REG_WIDTH) {
1918 		wrp_reg_or_subpart(nfp_prog, dst_lo, src_mid, len_mid, len_lo);
1919 		wrp_immed(nfp_prog, dst_hi, 0);
1920 	} else {
1921 		swreg src_hi = reg_xfer(idx + 2);
1922 
1923 		wrp_reg_or_subpart(nfp_prog, dst_lo, src_mid,
1924 				   REG_WIDTH - len_lo, len_lo);
1925 		wrp_reg_subpart(nfp_prog, dst_hi, src_mid, len_lo,
1926 				REG_WIDTH - len_lo);
1927 		wrp_reg_or_subpart(nfp_prog, dst_hi, src_hi, REG_WIDTH - len_lo,
1928 				   len_lo);
1929 	}
1930 
1931 	return 0;
1932 }
1933 
1934 static int
1935 mem_ldx_data_from_pktcache_aligned(struct nfp_prog *nfp_prog,
1936 				   struct nfp_insn_meta *meta,
1937 				   unsigned int size)
1938 {
1939 	swreg dst_lo, dst_hi, src_lo;
1940 	u8 dst_gpr, idx;
1941 
1942 	idx = (meta->insn.off - meta->pkt_cache.range_start) / REG_WIDTH;
1943 	dst_gpr = meta->insn.dst_reg * 2;
1944 	dst_hi = reg_both(dst_gpr + 1);
1945 	dst_lo = reg_both(dst_gpr);
1946 	src_lo = reg_xfer(idx);
1947 
1948 	if (size < REG_WIDTH) {
1949 		wrp_reg_subpart(nfp_prog, dst_lo, src_lo, size, 0);
1950 		wrp_immed(nfp_prog, dst_hi, 0);
1951 	} else if (size == REG_WIDTH) {
1952 		wrp_mov(nfp_prog, dst_lo, src_lo);
1953 		wrp_immed(nfp_prog, dst_hi, 0);
1954 	} else {
1955 		swreg src_hi = reg_xfer(idx + 1);
1956 
1957 		wrp_mov(nfp_prog, dst_lo, src_lo);
1958 		wrp_mov(nfp_prog, dst_hi, src_hi);
1959 	}
1960 
1961 	return 0;
1962 }
1963 
1964 static int
1965 mem_ldx_data_from_pktcache(struct nfp_prog *nfp_prog,
1966 			   struct nfp_insn_meta *meta, unsigned int size)
1967 {
1968 	u8 off = meta->insn.off - meta->pkt_cache.range_start;
1969 
1970 	if (IS_ALIGNED(off, REG_WIDTH))
1971 		return mem_ldx_data_from_pktcache_aligned(nfp_prog, meta, size);
1972 
1973 	return mem_ldx_data_from_pktcache_unaligned(nfp_prog, meta, size);
1974 }
1975 
1976 static int
1977 mem_ldx(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
1978 	unsigned int size)
1979 {
1980 	if (meta->ldst_gather_len)
1981 		return nfp_cpp_memcpy(nfp_prog, meta);
1982 
1983 	if (meta->ptr.type == PTR_TO_CTX) {
1984 		if (nfp_prog->type == BPF_PROG_TYPE_XDP)
1985 			return mem_ldx_xdp(nfp_prog, meta, size);
1986 		else
1987 			return mem_ldx_skb(nfp_prog, meta, size);
1988 	}
1989 
1990 	if (meta->ptr.type == PTR_TO_PACKET) {
1991 		if (meta->pkt_cache.range_end) {
1992 			if (meta->pkt_cache.do_init)
1993 				mem_ldx_data_init_pktcache(nfp_prog, meta);
1994 
1995 			return mem_ldx_data_from_pktcache(nfp_prog, meta, size);
1996 		} else {
1997 			return mem_ldx_data(nfp_prog, meta, size);
1998 		}
1999 	}
2000 
2001 	if (meta->ptr.type == PTR_TO_STACK)
2002 		return mem_ldx_stack(nfp_prog, meta, size,
2003 				     meta->ptr.off + meta->ptr.var_off.value);
2004 
2005 	if (meta->ptr.type == PTR_TO_MAP_VALUE)
2006 		return mem_ldx_emem(nfp_prog, meta, size);
2007 
2008 	return -EOPNOTSUPP;
2009 }
2010 
2011 static int mem_ldx1(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2012 {
2013 	return mem_ldx(nfp_prog, meta, 1);
2014 }
2015 
2016 static int mem_ldx2(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2017 {
2018 	return mem_ldx(nfp_prog, meta, 2);
2019 }
2020 
2021 static int mem_ldx4(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2022 {
2023 	return mem_ldx(nfp_prog, meta, 4);
2024 }
2025 
2026 static int mem_ldx8(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2027 {
2028 	return mem_ldx(nfp_prog, meta, 8);
2029 }
2030 
2031 static int
2032 mem_st_data(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
2033 	    unsigned int size)
2034 {
2035 	u64 imm = meta->insn.imm; /* sign extend */
2036 	swreg off_reg;
2037 
2038 	off_reg = re_load_imm_any(nfp_prog, meta->insn.off, imm_b(nfp_prog));
2039 
2040 	return data_st_host_order(nfp_prog, meta->insn.dst_reg * 2, off_reg,
2041 				  imm, size);
2042 }
2043 
2044 static int mem_st(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
2045 		  unsigned int size)
2046 {
2047 	if (meta->ptr.type == PTR_TO_PACKET)
2048 		return mem_st_data(nfp_prog, meta, size);
2049 
2050 	return -EOPNOTSUPP;
2051 }
2052 
2053 static int mem_st1(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2054 {
2055 	return mem_st(nfp_prog, meta, 1);
2056 }
2057 
2058 static int mem_st2(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2059 {
2060 	return mem_st(nfp_prog, meta, 2);
2061 }
2062 
2063 static int mem_st4(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2064 {
2065 	return mem_st(nfp_prog, meta, 4);
2066 }
2067 
2068 static int mem_st8(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2069 {
2070 	return mem_st(nfp_prog, meta, 8);
2071 }
2072 
2073 static int
2074 mem_stx_data(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
2075 	     unsigned int size)
2076 {
2077 	swreg off_reg;
2078 
2079 	off_reg = re_load_imm_any(nfp_prog, meta->insn.off, imm_b(nfp_prog));
2080 
2081 	return data_stx_host_order(nfp_prog, meta->insn.dst_reg * 2, off_reg,
2082 				   meta->insn.src_reg * 2, size);
2083 }
2084 
2085 static int
2086 mem_stx_stack(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
2087 	      unsigned int size, unsigned int ptr_off)
2088 {
2089 	return mem_op_stack(nfp_prog, meta, size, ptr_off,
2090 			    meta->insn.src_reg * 2, meta->insn.dst_reg * 2,
2091 			    false, wrp_lmem_store);
2092 }
2093 
2094 static int
2095 mem_stx(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
2096 	unsigned int size)
2097 {
2098 	if (meta->ptr.type == PTR_TO_PACKET)
2099 		return mem_stx_data(nfp_prog, meta, size);
2100 
2101 	if (meta->ptr.type == PTR_TO_STACK)
2102 		return mem_stx_stack(nfp_prog, meta, size,
2103 				     meta->ptr.off + meta->ptr.var_off.value);
2104 
2105 	return -EOPNOTSUPP;
2106 }
2107 
2108 static int mem_stx1(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2109 {
2110 	return mem_stx(nfp_prog, meta, 1);
2111 }
2112 
2113 static int mem_stx2(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2114 {
2115 	return mem_stx(nfp_prog, meta, 2);
2116 }
2117 
2118 static int mem_stx4(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2119 {
2120 	return mem_stx(nfp_prog, meta, 4);
2121 }
2122 
2123 static int mem_stx8(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2124 {
2125 	return mem_stx(nfp_prog, meta, 8);
2126 }
2127 
2128 static int jump(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2129 {
2130 	emit_br(nfp_prog, BR_UNC, meta->insn.off, 0);
2131 
2132 	return 0;
2133 }
2134 
2135 static int jeq_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2136 {
2137 	const struct bpf_insn *insn = &meta->insn;
2138 	u64 imm = insn->imm; /* sign extend */
2139 	swreg or1, or2, tmp_reg;
2140 
2141 	or1 = reg_a(insn->dst_reg * 2);
2142 	or2 = reg_b(insn->dst_reg * 2 + 1);
2143 
2144 	if (imm & ~0U) {
2145 		tmp_reg = ur_load_imm_any(nfp_prog, imm & ~0U, imm_b(nfp_prog));
2146 		emit_alu(nfp_prog, imm_a(nfp_prog),
2147 			 reg_a(insn->dst_reg * 2), ALU_OP_XOR, tmp_reg);
2148 		or1 = imm_a(nfp_prog);
2149 	}
2150 
2151 	if (imm >> 32) {
2152 		tmp_reg = ur_load_imm_any(nfp_prog, imm >> 32, imm_b(nfp_prog));
2153 		emit_alu(nfp_prog, imm_b(nfp_prog),
2154 			 reg_a(insn->dst_reg * 2 + 1), ALU_OP_XOR, tmp_reg);
2155 		or2 = imm_b(nfp_prog);
2156 	}
2157 
2158 	emit_alu(nfp_prog, reg_none(), or1, ALU_OP_OR, or2);
2159 	emit_br(nfp_prog, BR_BEQ, insn->off, 0);
2160 
2161 	return 0;
2162 }
2163 
2164 static int jgt_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2165 {
2166 	return wrp_cmp_imm(nfp_prog, meta, BR_BLO, true);
2167 }
2168 
2169 static int jge_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2170 {
2171 	return wrp_cmp_imm(nfp_prog, meta, BR_BHS, false);
2172 }
2173 
2174 static int jlt_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2175 {
2176 	return wrp_cmp_imm(nfp_prog, meta, BR_BLO, false);
2177 }
2178 
2179 static int jle_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2180 {
2181 	return wrp_cmp_imm(nfp_prog, meta, BR_BHS, true);
2182 }
2183 
2184 static int jsgt_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2185 {
2186 	return wrp_cmp_imm(nfp_prog, meta, BR_BLT, true);
2187 }
2188 
2189 static int jsge_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2190 {
2191 	return wrp_cmp_imm(nfp_prog, meta, BR_BGE, false);
2192 }
2193 
2194 static int jslt_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2195 {
2196 	return wrp_cmp_imm(nfp_prog, meta, BR_BLT, false);
2197 }
2198 
2199 static int jsle_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2200 {
2201 	return wrp_cmp_imm(nfp_prog, meta, BR_BGE, true);
2202 }
2203 
2204 static int jset_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2205 {
2206 	const struct bpf_insn *insn = &meta->insn;
2207 	u64 imm = insn->imm; /* sign extend */
2208 	swreg tmp_reg;
2209 
2210 	if (!imm) {
2211 		meta->skip = true;
2212 		return 0;
2213 	}
2214 
2215 	if (imm & ~0U) {
2216 		tmp_reg = ur_load_imm_any(nfp_prog, imm & ~0U, imm_b(nfp_prog));
2217 		emit_alu(nfp_prog, reg_none(),
2218 			 reg_a(insn->dst_reg * 2), ALU_OP_AND, tmp_reg);
2219 		emit_br(nfp_prog, BR_BNE, insn->off, 0);
2220 	}
2221 
2222 	if (imm >> 32) {
2223 		tmp_reg = ur_load_imm_any(nfp_prog, imm >> 32, imm_b(nfp_prog));
2224 		emit_alu(nfp_prog, reg_none(),
2225 			 reg_a(insn->dst_reg * 2 + 1), ALU_OP_AND, tmp_reg);
2226 		emit_br(nfp_prog, BR_BNE, insn->off, 0);
2227 	}
2228 
2229 	return 0;
2230 }
2231 
2232 static int jne_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2233 {
2234 	const struct bpf_insn *insn = &meta->insn;
2235 	u64 imm = insn->imm; /* sign extend */
2236 	swreg tmp_reg;
2237 
2238 	if (!imm) {
2239 		emit_alu(nfp_prog, reg_none(), reg_a(insn->dst_reg * 2),
2240 			 ALU_OP_OR, reg_b(insn->dst_reg * 2 + 1));
2241 		emit_br(nfp_prog, BR_BNE, insn->off, 0);
2242 		return 0;
2243 	}
2244 
2245 	tmp_reg = ur_load_imm_any(nfp_prog, imm & ~0U, imm_b(nfp_prog));
2246 	emit_alu(nfp_prog, reg_none(),
2247 		 reg_a(insn->dst_reg * 2), ALU_OP_XOR, tmp_reg);
2248 	emit_br(nfp_prog, BR_BNE, insn->off, 0);
2249 
2250 	tmp_reg = ur_load_imm_any(nfp_prog, imm >> 32, imm_b(nfp_prog));
2251 	emit_alu(nfp_prog, reg_none(),
2252 		 reg_a(insn->dst_reg * 2 + 1), ALU_OP_XOR, tmp_reg);
2253 	emit_br(nfp_prog, BR_BNE, insn->off, 0);
2254 
2255 	return 0;
2256 }
2257 
2258 static int jeq_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2259 {
2260 	const struct bpf_insn *insn = &meta->insn;
2261 
2262 	emit_alu(nfp_prog, imm_a(nfp_prog), reg_a(insn->dst_reg * 2),
2263 		 ALU_OP_XOR, reg_b(insn->src_reg * 2));
2264 	emit_alu(nfp_prog, imm_b(nfp_prog), reg_a(insn->dst_reg * 2 + 1),
2265 		 ALU_OP_XOR, reg_b(insn->src_reg * 2 + 1));
2266 	emit_alu(nfp_prog, reg_none(),
2267 		 imm_a(nfp_prog), ALU_OP_OR, imm_b(nfp_prog));
2268 	emit_br(nfp_prog, BR_BEQ, insn->off, 0);
2269 
2270 	return 0;
2271 }
2272 
2273 static int jgt_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2274 {
2275 	return wrp_cmp_reg(nfp_prog, meta, BR_BLO, true);
2276 }
2277 
2278 static int jge_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2279 {
2280 	return wrp_cmp_reg(nfp_prog, meta, BR_BHS, false);
2281 }
2282 
2283 static int jlt_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2284 {
2285 	return wrp_cmp_reg(nfp_prog, meta, BR_BLO, false);
2286 }
2287 
2288 static int jle_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2289 {
2290 	return wrp_cmp_reg(nfp_prog, meta, BR_BHS, true);
2291 }
2292 
2293 static int jsgt_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2294 {
2295 	return wrp_cmp_reg(nfp_prog, meta, BR_BLT, true);
2296 }
2297 
2298 static int jsge_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2299 {
2300 	return wrp_cmp_reg(nfp_prog, meta, BR_BGE, false);
2301 }
2302 
2303 static int jslt_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2304 {
2305 	return wrp_cmp_reg(nfp_prog, meta, BR_BLT, false);
2306 }
2307 
2308 static int jsle_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2309 {
2310 	return wrp_cmp_reg(nfp_prog, meta, BR_BGE, true);
2311 }
2312 
2313 static int jset_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2314 {
2315 	return wrp_test_reg(nfp_prog, meta, ALU_OP_AND, BR_BNE);
2316 }
2317 
2318 static int jne_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2319 {
2320 	return wrp_test_reg(nfp_prog, meta, ALU_OP_XOR, BR_BNE);
2321 }
2322 
2323 static int call(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2324 {
2325 	switch (meta->insn.imm) {
2326 	case BPF_FUNC_xdp_adjust_head:
2327 		return adjust_head(nfp_prog, meta);
2328 	case BPF_FUNC_map_lookup_elem:
2329 		return map_lookup_stack(nfp_prog, meta);
2330 	default:
2331 		WARN_ONCE(1, "verifier allowed unsupported function\n");
2332 		return -EOPNOTSUPP;
2333 	}
2334 }
2335 
2336 static int goto_out(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2337 {
2338 	emit_br_relo(nfp_prog, BR_UNC, BR_OFF_RELO, 0, RELO_BR_GO_OUT);
2339 
2340 	return 0;
2341 }
2342 
2343 static const instr_cb_t instr_cb[256] = {
2344 	[BPF_ALU64 | BPF_MOV | BPF_X] =	mov_reg64,
2345 	[BPF_ALU64 | BPF_MOV | BPF_K] =	mov_imm64,
2346 	[BPF_ALU64 | BPF_XOR | BPF_X] =	xor_reg64,
2347 	[BPF_ALU64 | BPF_XOR | BPF_K] =	xor_imm64,
2348 	[BPF_ALU64 | BPF_AND | BPF_X] =	and_reg64,
2349 	[BPF_ALU64 | BPF_AND | BPF_K] =	and_imm64,
2350 	[BPF_ALU64 | BPF_OR | BPF_X] =	or_reg64,
2351 	[BPF_ALU64 | BPF_OR | BPF_K] =	or_imm64,
2352 	[BPF_ALU64 | BPF_ADD | BPF_X] =	add_reg64,
2353 	[BPF_ALU64 | BPF_ADD | BPF_K] =	add_imm64,
2354 	[BPF_ALU64 | BPF_SUB | BPF_X] =	sub_reg64,
2355 	[BPF_ALU64 | BPF_SUB | BPF_K] =	sub_imm64,
2356 	[BPF_ALU64 | BPF_NEG] =		neg_reg64,
2357 	[BPF_ALU64 | BPF_LSH | BPF_K] =	shl_imm64,
2358 	[BPF_ALU64 | BPF_RSH | BPF_K] =	shr_imm64,
2359 	[BPF_ALU | BPF_MOV | BPF_X] =	mov_reg,
2360 	[BPF_ALU | BPF_MOV | BPF_K] =	mov_imm,
2361 	[BPF_ALU | BPF_XOR | BPF_X] =	xor_reg,
2362 	[BPF_ALU | BPF_XOR | BPF_K] =	xor_imm,
2363 	[BPF_ALU | BPF_AND | BPF_X] =	and_reg,
2364 	[BPF_ALU | BPF_AND | BPF_K] =	and_imm,
2365 	[BPF_ALU | BPF_OR | BPF_X] =	or_reg,
2366 	[BPF_ALU | BPF_OR | BPF_K] =	or_imm,
2367 	[BPF_ALU | BPF_ADD | BPF_X] =	add_reg,
2368 	[BPF_ALU | BPF_ADD | BPF_K] =	add_imm,
2369 	[BPF_ALU | BPF_SUB | BPF_X] =	sub_reg,
2370 	[BPF_ALU | BPF_SUB | BPF_K] =	sub_imm,
2371 	[BPF_ALU | BPF_NEG] =		neg_reg,
2372 	[BPF_ALU | BPF_LSH | BPF_K] =	shl_imm,
2373 	[BPF_ALU | BPF_END | BPF_X] =	end_reg32,
2374 	[BPF_LD | BPF_IMM | BPF_DW] =	imm_ld8,
2375 	[BPF_LD | BPF_ABS | BPF_B] =	data_ld1,
2376 	[BPF_LD | BPF_ABS | BPF_H] =	data_ld2,
2377 	[BPF_LD | BPF_ABS | BPF_W] =	data_ld4,
2378 	[BPF_LD | BPF_IND | BPF_B] =	data_ind_ld1,
2379 	[BPF_LD | BPF_IND | BPF_H] =	data_ind_ld2,
2380 	[BPF_LD | BPF_IND | BPF_W] =	data_ind_ld4,
2381 	[BPF_LDX | BPF_MEM | BPF_B] =	mem_ldx1,
2382 	[BPF_LDX | BPF_MEM | BPF_H] =	mem_ldx2,
2383 	[BPF_LDX | BPF_MEM | BPF_W] =	mem_ldx4,
2384 	[BPF_LDX | BPF_MEM | BPF_DW] =	mem_ldx8,
2385 	[BPF_STX | BPF_MEM | BPF_B] =	mem_stx1,
2386 	[BPF_STX | BPF_MEM | BPF_H] =	mem_stx2,
2387 	[BPF_STX | BPF_MEM | BPF_W] =	mem_stx4,
2388 	[BPF_STX | BPF_MEM | BPF_DW] =	mem_stx8,
2389 	[BPF_ST | BPF_MEM | BPF_B] =	mem_st1,
2390 	[BPF_ST | BPF_MEM | BPF_H] =	mem_st2,
2391 	[BPF_ST | BPF_MEM | BPF_W] =	mem_st4,
2392 	[BPF_ST | BPF_MEM | BPF_DW] =	mem_st8,
2393 	[BPF_JMP | BPF_JA | BPF_K] =	jump,
2394 	[BPF_JMP | BPF_JEQ | BPF_K] =	jeq_imm,
2395 	[BPF_JMP | BPF_JGT | BPF_K] =	jgt_imm,
2396 	[BPF_JMP | BPF_JGE | BPF_K] =	jge_imm,
2397 	[BPF_JMP | BPF_JLT | BPF_K] =	jlt_imm,
2398 	[BPF_JMP | BPF_JLE | BPF_K] =	jle_imm,
2399 	[BPF_JMP | BPF_JSGT | BPF_K] =  jsgt_imm,
2400 	[BPF_JMP | BPF_JSGE | BPF_K] =  jsge_imm,
2401 	[BPF_JMP | BPF_JSLT | BPF_K] =  jslt_imm,
2402 	[BPF_JMP | BPF_JSLE | BPF_K] =  jsle_imm,
2403 	[BPF_JMP | BPF_JSET | BPF_K] =	jset_imm,
2404 	[BPF_JMP | BPF_JNE | BPF_K] =	jne_imm,
2405 	[BPF_JMP | BPF_JEQ | BPF_X] =	jeq_reg,
2406 	[BPF_JMP | BPF_JGT | BPF_X] =	jgt_reg,
2407 	[BPF_JMP | BPF_JGE | BPF_X] =	jge_reg,
2408 	[BPF_JMP | BPF_JLT | BPF_X] =	jlt_reg,
2409 	[BPF_JMP | BPF_JLE | BPF_X] =	jle_reg,
2410 	[BPF_JMP | BPF_JSGT | BPF_X] =  jsgt_reg,
2411 	[BPF_JMP | BPF_JSGE | BPF_X] =  jsge_reg,
2412 	[BPF_JMP | BPF_JSLT | BPF_X] =  jslt_reg,
2413 	[BPF_JMP | BPF_JSLE | BPF_X] =  jsle_reg,
2414 	[BPF_JMP | BPF_JSET | BPF_X] =	jset_reg,
2415 	[BPF_JMP | BPF_JNE | BPF_X] =	jne_reg,
2416 	[BPF_JMP | BPF_CALL] =		call,
2417 	[BPF_JMP | BPF_EXIT] =		goto_out,
2418 };
2419 
2420 /* --- Assembler logic --- */
2421 static int nfp_fixup_branches(struct nfp_prog *nfp_prog)
2422 {
2423 	struct nfp_insn_meta *meta, *jmp_dst;
2424 	u32 idx, br_idx;
2425 
2426 	list_for_each_entry(meta, &nfp_prog->insns, l) {
2427 		if (meta->skip)
2428 			continue;
2429 		if (meta->insn.code == (BPF_JMP | BPF_CALL))
2430 			continue;
2431 		if (BPF_CLASS(meta->insn.code) != BPF_JMP)
2432 			continue;
2433 
2434 		if (list_is_last(&meta->l, &nfp_prog->insns))
2435 			br_idx = nfp_prog->last_bpf_off;
2436 		else
2437 			br_idx = list_next_entry(meta, l)->off - 1;
2438 
2439 		if (!nfp_is_br(nfp_prog->prog[br_idx])) {
2440 			pr_err("Fixup found block not ending in branch %d %02x %016llx!!\n",
2441 			       br_idx, meta->insn.code, nfp_prog->prog[br_idx]);
2442 			return -ELOOP;
2443 		}
2444 		/* Leave special branches for later */
2445 		if (FIELD_GET(OP_RELO_TYPE, nfp_prog->prog[br_idx]) !=
2446 		    RELO_BR_REL)
2447 			continue;
2448 
2449 		if (!meta->jmp_dst) {
2450 			pr_err("Non-exit jump doesn't have destination info recorded!!\n");
2451 			return -ELOOP;
2452 		}
2453 
2454 		jmp_dst = meta->jmp_dst;
2455 
2456 		if (jmp_dst->skip) {
2457 			pr_err("Branch landing on removed instruction!!\n");
2458 			return -ELOOP;
2459 		}
2460 
2461 		for (idx = meta->off; idx <= br_idx; idx++) {
2462 			if (!nfp_is_br(nfp_prog->prog[idx]))
2463 				continue;
2464 			br_set_offset(&nfp_prog->prog[idx], jmp_dst->off);
2465 		}
2466 	}
2467 
2468 	return 0;
2469 }
2470 
2471 static void nfp_intro(struct nfp_prog *nfp_prog)
2472 {
2473 	wrp_immed(nfp_prog, plen_reg(nfp_prog), GENMASK(13, 0));
2474 	emit_alu(nfp_prog, plen_reg(nfp_prog),
2475 		 plen_reg(nfp_prog), ALU_OP_AND, pv_len(nfp_prog));
2476 }
2477 
2478 static void nfp_outro_tc_da(struct nfp_prog *nfp_prog)
2479 {
2480 	/* TC direct-action mode:
2481 	 *   0,1   ok        NOT SUPPORTED[1]
2482 	 *   2   drop  0x22 -> drop,  count as stat1
2483 	 *   4,5 nuke  0x02 -> drop
2484 	 *   7  redir  0x44 -> redir, count as stat2
2485 	 *   * unspec  0x11 -> pass,  count as stat0
2486 	 *
2487 	 * [1] We can't support OK and RECLASSIFY because we can't tell TC
2488 	 *     the exact decision made.  We are forced to support UNSPEC
2489 	 *     to handle aborts so that's the only one we handle for passing
2490 	 *     packets up the stack.
2491 	 */
2492 	/* Target for aborts */
2493 	nfp_prog->tgt_abort = nfp_prog_current_offset(nfp_prog);
2494 
2495 	emit_br_relo(nfp_prog, BR_UNC, BR_OFF_RELO, 2, RELO_BR_NEXT_PKT);
2496 
2497 	wrp_mov(nfp_prog, reg_a(0), NFP_BPF_ABI_FLAGS);
2498 	emit_ld_field(nfp_prog, reg_a(0), 0xc, reg_imm(0x11), SHF_SC_L_SHF, 16);
2499 
2500 	/* Target for normal exits */
2501 	nfp_prog->tgt_out = nfp_prog_current_offset(nfp_prog);
2502 
2503 	/* if R0 > 7 jump to abort */
2504 	emit_alu(nfp_prog, reg_none(), reg_imm(7), ALU_OP_SUB, reg_b(0));
2505 	emit_br(nfp_prog, BR_BLO, nfp_prog->tgt_abort, 0);
2506 	wrp_mov(nfp_prog, reg_a(0), NFP_BPF_ABI_FLAGS);
2507 
2508 	wrp_immed(nfp_prog, reg_b(2), 0x41221211);
2509 	wrp_immed(nfp_prog, reg_b(3), 0x41001211);
2510 
2511 	emit_shf(nfp_prog, reg_a(1),
2512 		 reg_none(), SHF_OP_NONE, reg_b(0), SHF_SC_L_SHF, 2);
2513 
2514 	emit_alu(nfp_prog, reg_none(), reg_a(1), ALU_OP_OR, reg_imm(0));
2515 	emit_shf(nfp_prog, reg_a(2),
2516 		 reg_imm(0xf), SHF_OP_AND, reg_b(2), SHF_SC_R_SHF, 0);
2517 
2518 	emit_alu(nfp_prog, reg_none(), reg_a(1), ALU_OP_OR, reg_imm(0));
2519 	emit_shf(nfp_prog, reg_b(2),
2520 		 reg_imm(0xf), SHF_OP_AND, reg_b(3), SHF_SC_R_SHF, 0);
2521 
2522 	emit_br_relo(nfp_prog, BR_UNC, BR_OFF_RELO, 2, RELO_BR_NEXT_PKT);
2523 
2524 	emit_shf(nfp_prog, reg_b(2),
2525 		 reg_a(2), SHF_OP_OR, reg_b(2), SHF_SC_L_SHF, 4);
2526 	emit_ld_field(nfp_prog, reg_a(0), 0xc, reg_b(2), SHF_SC_L_SHF, 16);
2527 }
2528 
2529 static void nfp_outro_xdp(struct nfp_prog *nfp_prog)
2530 {
2531 	/* XDP return codes:
2532 	 *   0 aborted  0x82 -> drop,  count as stat3
2533 	 *   1    drop  0x22 -> drop,  count as stat1
2534 	 *   2    pass  0x11 -> pass,  count as stat0
2535 	 *   3      tx  0x44 -> redir, count as stat2
2536 	 *   * unknown  0x82 -> drop,  count as stat3
2537 	 */
2538 	/* Target for aborts */
2539 	nfp_prog->tgt_abort = nfp_prog_current_offset(nfp_prog);
2540 
2541 	emit_br_relo(nfp_prog, BR_UNC, BR_OFF_RELO, 2, RELO_BR_NEXT_PKT);
2542 
2543 	wrp_mov(nfp_prog, reg_a(0), NFP_BPF_ABI_FLAGS);
2544 	emit_ld_field(nfp_prog, reg_a(0), 0xc, reg_imm(0x82), SHF_SC_L_SHF, 16);
2545 
2546 	/* Target for normal exits */
2547 	nfp_prog->tgt_out = nfp_prog_current_offset(nfp_prog);
2548 
2549 	/* if R0 > 3 jump to abort */
2550 	emit_alu(nfp_prog, reg_none(), reg_imm(3), ALU_OP_SUB, reg_b(0));
2551 	emit_br(nfp_prog, BR_BLO, nfp_prog->tgt_abort, 0);
2552 
2553 	wrp_immed(nfp_prog, reg_b(2), 0x44112282);
2554 
2555 	emit_shf(nfp_prog, reg_a(1),
2556 		 reg_none(), SHF_OP_NONE, reg_b(0), SHF_SC_L_SHF, 3);
2557 
2558 	emit_alu(nfp_prog, reg_none(), reg_a(1), ALU_OP_OR, reg_imm(0));
2559 	emit_shf(nfp_prog, reg_b(2),
2560 		 reg_imm(0xff), SHF_OP_AND, reg_b(2), SHF_SC_R_SHF, 0);
2561 
2562 	emit_br_relo(nfp_prog, BR_UNC, BR_OFF_RELO, 2, RELO_BR_NEXT_PKT);
2563 
2564 	wrp_mov(nfp_prog, reg_a(0), NFP_BPF_ABI_FLAGS);
2565 	emit_ld_field(nfp_prog, reg_a(0), 0xc, reg_b(2), SHF_SC_L_SHF, 16);
2566 }
2567 
2568 static void nfp_outro(struct nfp_prog *nfp_prog)
2569 {
2570 	switch (nfp_prog->type) {
2571 	case BPF_PROG_TYPE_SCHED_CLS:
2572 		nfp_outro_tc_da(nfp_prog);
2573 		break;
2574 	case BPF_PROG_TYPE_XDP:
2575 		nfp_outro_xdp(nfp_prog);
2576 		break;
2577 	default:
2578 		WARN_ON(1);
2579 	}
2580 }
2581 
2582 static int nfp_translate(struct nfp_prog *nfp_prog)
2583 {
2584 	struct nfp_insn_meta *meta;
2585 	int err;
2586 
2587 	nfp_intro(nfp_prog);
2588 	if (nfp_prog->error)
2589 		return nfp_prog->error;
2590 
2591 	list_for_each_entry(meta, &nfp_prog->insns, l) {
2592 		instr_cb_t cb = instr_cb[meta->insn.code];
2593 
2594 		meta->off = nfp_prog_current_offset(nfp_prog);
2595 
2596 		if (meta->skip) {
2597 			nfp_prog->n_translated++;
2598 			continue;
2599 		}
2600 
2601 		if (nfp_meta_has_prev(nfp_prog, meta) &&
2602 		    nfp_meta_prev(meta)->double_cb)
2603 			cb = nfp_meta_prev(meta)->double_cb;
2604 		if (!cb)
2605 			return -ENOENT;
2606 		err = cb(nfp_prog, meta);
2607 		if (err)
2608 			return err;
2609 
2610 		nfp_prog->n_translated++;
2611 	}
2612 
2613 	nfp_prog->last_bpf_off = nfp_prog_current_offset(nfp_prog) - 1;
2614 
2615 	nfp_outro(nfp_prog);
2616 	if (nfp_prog->error)
2617 		return nfp_prog->error;
2618 
2619 	wrp_nops(nfp_prog, NFP_USTORE_PREFETCH_WINDOW);
2620 	if (nfp_prog->error)
2621 		return nfp_prog->error;
2622 
2623 	return nfp_fixup_branches(nfp_prog);
2624 }
2625 
2626 /* --- Optimizations --- */
2627 static void nfp_bpf_opt_reg_init(struct nfp_prog *nfp_prog)
2628 {
2629 	struct nfp_insn_meta *meta;
2630 
2631 	list_for_each_entry(meta, &nfp_prog->insns, l) {
2632 		struct bpf_insn insn = meta->insn;
2633 
2634 		/* Programs converted from cBPF start with register xoring */
2635 		if (insn.code == (BPF_ALU64 | BPF_XOR | BPF_X) &&
2636 		    insn.src_reg == insn.dst_reg)
2637 			continue;
2638 
2639 		/* Programs start with R6 = R1 but we ignore the skb pointer */
2640 		if (insn.code == (BPF_ALU64 | BPF_MOV | BPF_X) &&
2641 		    insn.src_reg == 1 && insn.dst_reg == 6)
2642 			meta->skip = true;
2643 
2644 		/* Return as soon as something doesn't match */
2645 		if (!meta->skip)
2646 			return;
2647 	}
2648 }
2649 
2650 /* Remove masking after load since our load guarantees this is not needed */
2651 static void nfp_bpf_opt_ld_mask(struct nfp_prog *nfp_prog)
2652 {
2653 	struct nfp_insn_meta *meta1, *meta2;
2654 	const s32 exp_mask[] = {
2655 		[BPF_B] = 0x000000ffU,
2656 		[BPF_H] = 0x0000ffffU,
2657 		[BPF_W] = 0xffffffffU,
2658 	};
2659 
2660 	nfp_for_each_insn_walk2(nfp_prog, meta1, meta2) {
2661 		struct bpf_insn insn, next;
2662 
2663 		insn = meta1->insn;
2664 		next = meta2->insn;
2665 
2666 		if (BPF_CLASS(insn.code) != BPF_LD)
2667 			continue;
2668 		if (BPF_MODE(insn.code) != BPF_ABS &&
2669 		    BPF_MODE(insn.code) != BPF_IND)
2670 			continue;
2671 
2672 		if (next.code != (BPF_ALU64 | BPF_AND | BPF_K))
2673 			continue;
2674 
2675 		if (!exp_mask[BPF_SIZE(insn.code)])
2676 			continue;
2677 		if (exp_mask[BPF_SIZE(insn.code)] != next.imm)
2678 			continue;
2679 
2680 		if (next.src_reg || next.dst_reg)
2681 			continue;
2682 
2683 		if (meta2->flags & FLAG_INSN_IS_JUMP_DST)
2684 			continue;
2685 
2686 		meta2->skip = true;
2687 	}
2688 }
2689 
2690 static void nfp_bpf_opt_ld_shift(struct nfp_prog *nfp_prog)
2691 {
2692 	struct nfp_insn_meta *meta1, *meta2, *meta3;
2693 
2694 	nfp_for_each_insn_walk3(nfp_prog, meta1, meta2, meta3) {
2695 		struct bpf_insn insn, next1, next2;
2696 
2697 		insn = meta1->insn;
2698 		next1 = meta2->insn;
2699 		next2 = meta3->insn;
2700 
2701 		if (BPF_CLASS(insn.code) != BPF_LD)
2702 			continue;
2703 		if (BPF_MODE(insn.code) != BPF_ABS &&
2704 		    BPF_MODE(insn.code) != BPF_IND)
2705 			continue;
2706 		if (BPF_SIZE(insn.code) != BPF_W)
2707 			continue;
2708 
2709 		if (!(next1.code == (BPF_LSH | BPF_K | BPF_ALU64) &&
2710 		      next2.code == (BPF_RSH | BPF_K | BPF_ALU64)) &&
2711 		    !(next1.code == (BPF_RSH | BPF_K | BPF_ALU64) &&
2712 		      next2.code == (BPF_LSH | BPF_K | BPF_ALU64)))
2713 			continue;
2714 
2715 		if (next1.src_reg || next1.dst_reg ||
2716 		    next2.src_reg || next2.dst_reg)
2717 			continue;
2718 
2719 		if (next1.imm != 0x20 || next2.imm != 0x20)
2720 			continue;
2721 
2722 		if (meta2->flags & FLAG_INSN_IS_JUMP_DST ||
2723 		    meta3->flags & FLAG_INSN_IS_JUMP_DST)
2724 			continue;
2725 
2726 		meta2->skip = true;
2727 		meta3->skip = true;
2728 	}
2729 }
2730 
2731 /* load/store pair that forms memory copy sould look like the following:
2732  *
2733  *   ld_width R, [addr_src + offset_src]
2734  *   st_width [addr_dest + offset_dest], R
2735  *
2736  * The destination register of load and source register of store should
2737  * be the same, load and store should also perform at the same width.
2738  * If either of addr_src or addr_dest is stack pointer, we don't do the
2739  * CPP optimization as stack is modelled by registers on NFP.
2740  */
2741 static bool
2742 curr_pair_is_memcpy(struct nfp_insn_meta *ld_meta,
2743 		    struct nfp_insn_meta *st_meta)
2744 {
2745 	struct bpf_insn *ld = &ld_meta->insn;
2746 	struct bpf_insn *st = &st_meta->insn;
2747 
2748 	if (!is_mbpf_load(ld_meta) || !is_mbpf_store(st_meta))
2749 		return false;
2750 
2751 	if (ld_meta->ptr.type != PTR_TO_PACKET)
2752 		return false;
2753 
2754 	if (st_meta->ptr.type != PTR_TO_PACKET)
2755 		return false;
2756 
2757 	if (BPF_SIZE(ld->code) != BPF_SIZE(st->code))
2758 		return false;
2759 
2760 	if (ld->dst_reg != st->src_reg)
2761 		return false;
2762 
2763 	/* There is jump to the store insn in this pair. */
2764 	if (st_meta->flags & FLAG_INSN_IS_JUMP_DST)
2765 		return false;
2766 
2767 	return true;
2768 }
2769 
2770 /* Currently, we only support chaining load/store pairs if:
2771  *
2772  *  - Their address base registers are the same.
2773  *  - Their address offsets are in the same order.
2774  *  - They operate at the same memory width.
2775  *  - There is no jump into the middle of them.
2776  */
2777 static bool
2778 curr_pair_chain_with_previous(struct nfp_insn_meta *ld_meta,
2779 			      struct nfp_insn_meta *st_meta,
2780 			      struct bpf_insn *prev_ld,
2781 			      struct bpf_insn *prev_st)
2782 {
2783 	u8 prev_size, curr_size, prev_ld_base, prev_st_base, prev_ld_dst;
2784 	struct bpf_insn *ld = &ld_meta->insn;
2785 	struct bpf_insn *st = &st_meta->insn;
2786 	s16 prev_ld_off, prev_st_off;
2787 
2788 	/* This pair is the start pair. */
2789 	if (!prev_ld)
2790 		return true;
2791 
2792 	prev_size = BPF_LDST_BYTES(prev_ld);
2793 	curr_size = BPF_LDST_BYTES(ld);
2794 	prev_ld_base = prev_ld->src_reg;
2795 	prev_st_base = prev_st->dst_reg;
2796 	prev_ld_dst = prev_ld->dst_reg;
2797 	prev_ld_off = prev_ld->off;
2798 	prev_st_off = prev_st->off;
2799 
2800 	if (ld->dst_reg != prev_ld_dst)
2801 		return false;
2802 
2803 	if (ld->src_reg != prev_ld_base || st->dst_reg != prev_st_base)
2804 		return false;
2805 
2806 	if (curr_size != prev_size)
2807 		return false;
2808 
2809 	/* There is jump to the head of this pair. */
2810 	if (ld_meta->flags & FLAG_INSN_IS_JUMP_DST)
2811 		return false;
2812 
2813 	/* Both in ascending order. */
2814 	if (prev_ld_off + prev_size == ld->off &&
2815 	    prev_st_off + prev_size == st->off)
2816 		return true;
2817 
2818 	/* Both in descending order. */
2819 	if (ld->off + curr_size == prev_ld_off &&
2820 	    st->off + curr_size == prev_st_off)
2821 		return true;
2822 
2823 	return false;
2824 }
2825 
2826 /* Return TRUE if cross memory access happens. Cross memory access means
2827  * store area is overlapping with load area that a later load might load
2828  * the value from previous store, for this case we can't treat the sequence
2829  * as an memory copy.
2830  */
2831 static bool
2832 cross_mem_access(struct bpf_insn *ld, struct nfp_insn_meta *head_ld_meta,
2833 		 struct nfp_insn_meta *head_st_meta)
2834 {
2835 	s16 head_ld_off, head_st_off, ld_off;
2836 
2837 	/* Different pointer types does not overlap. */
2838 	if (head_ld_meta->ptr.type != head_st_meta->ptr.type)
2839 		return false;
2840 
2841 	/* load and store are both PTR_TO_PACKET, check ID info.  */
2842 	if (head_ld_meta->ptr.id != head_st_meta->ptr.id)
2843 		return true;
2844 
2845 	/* Canonicalize the offsets. Turn all of them against the original
2846 	 * base register.
2847 	 */
2848 	head_ld_off = head_ld_meta->insn.off + head_ld_meta->ptr.off;
2849 	head_st_off = head_st_meta->insn.off + head_st_meta->ptr.off;
2850 	ld_off = ld->off + head_ld_meta->ptr.off;
2851 
2852 	/* Ascending order cross. */
2853 	if (ld_off > head_ld_off &&
2854 	    head_ld_off < head_st_off && ld_off >= head_st_off)
2855 		return true;
2856 
2857 	/* Descending order cross. */
2858 	if (ld_off < head_ld_off &&
2859 	    head_ld_off > head_st_off && ld_off <= head_st_off)
2860 		return true;
2861 
2862 	return false;
2863 }
2864 
2865 /* This pass try to identify the following instructoin sequences.
2866  *
2867  *   load R, [regA + offA]
2868  *   store [regB + offB], R
2869  *   load R, [regA + offA + const_imm_A]
2870  *   store [regB + offB + const_imm_A], R
2871  *   load R, [regA + offA + 2 * const_imm_A]
2872  *   store [regB + offB + 2 * const_imm_A], R
2873  *   ...
2874  *
2875  * Above sequence is typically generated by compiler when lowering
2876  * memcpy. NFP prefer using CPP instructions to accelerate it.
2877  */
2878 static void nfp_bpf_opt_ldst_gather(struct nfp_prog *nfp_prog)
2879 {
2880 	struct nfp_insn_meta *head_ld_meta = NULL;
2881 	struct nfp_insn_meta *head_st_meta = NULL;
2882 	struct nfp_insn_meta *meta1, *meta2;
2883 	struct bpf_insn *prev_ld = NULL;
2884 	struct bpf_insn *prev_st = NULL;
2885 	u8 count = 0;
2886 
2887 	nfp_for_each_insn_walk2(nfp_prog, meta1, meta2) {
2888 		struct bpf_insn *ld = &meta1->insn;
2889 		struct bpf_insn *st = &meta2->insn;
2890 
2891 		/* Reset record status if any of the following if true:
2892 		 *   - The current insn pair is not load/store.
2893 		 *   - The load/store pair doesn't chain with previous one.
2894 		 *   - The chained load/store pair crossed with previous pair.
2895 		 *   - The chained load/store pair has a total size of memory
2896 		 *     copy beyond 128 bytes which is the maximum length a
2897 		 *     single NFP CPP command can transfer.
2898 		 */
2899 		if (!curr_pair_is_memcpy(meta1, meta2) ||
2900 		    !curr_pair_chain_with_previous(meta1, meta2, prev_ld,
2901 						   prev_st) ||
2902 		    (head_ld_meta && (cross_mem_access(ld, head_ld_meta,
2903 						       head_st_meta) ||
2904 				      head_ld_meta->ldst_gather_len >= 128))) {
2905 			if (!count)
2906 				continue;
2907 
2908 			if (count > 1) {
2909 				s16 prev_ld_off = prev_ld->off;
2910 				s16 prev_st_off = prev_st->off;
2911 				s16 head_ld_off = head_ld_meta->insn.off;
2912 
2913 				if (prev_ld_off < head_ld_off) {
2914 					head_ld_meta->insn.off = prev_ld_off;
2915 					head_st_meta->insn.off = prev_st_off;
2916 					head_ld_meta->ldst_gather_len =
2917 						-head_ld_meta->ldst_gather_len;
2918 				}
2919 
2920 				head_ld_meta->paired_st = &head_st_meta->insn;
2921 				head_st_meta->skip = true;
2922 			} else {
2923 				head_ld_meta->ldst_gather_len = 0;
2924 			}
2925 
2926 			/* If the chain is ended by an load/store pair then this
2927 			 * could serve as the new head of the the next chain.
2928 			 */
2929 			if (curr_pair_is_memcpy(meta1, meta2)) {
2930 				head_ld_meta = meta1;
2931 				head_st_meta = meta2;
2932 				head_ld_meta->ldst_gather_len =
2933 					BPF_LDST_BYTES(ld);
2934 				meta1 = nfp_meta_next(meta1);
2935 				meta2 = nfp_meta_next(meta2);
2936 				prev_ld = ld;
2937 				prev_st = st;
2938 				count = 1;
2939 			} else {
2940 				head_ld_meta = NULL;
2941 				head_st_meta = NULL;
2942 				prev_ld = NULL;
2943 				prev_st = NULL;
2944 				count = 0;
2945 			}
2946 
2947 			continue;
2948 		}
2949 
2950 		if (!head_ld_meta) {
2951 			head_ld_meta = meta1;
2952 			head_st_meta = meta2;
2953 		} else {
2954 			meta1->skip = true;
2955 			meta2->skip = true;
2956 		}
2957 
2958 		head_ld_meta->ldst_gather_len += BPF_LDST_BYTES(ld);
2959 		meta1 = nfp_meta_next(meta1);
2960 		meta2 = nfp_meta_next(meta2);
2961 		prev_ld = ld;
2962 		prev_st = st;
2963 		count++;
2964 	}
2965 }
2966 
2967 static int nfp_bpf_optimize(struct nfp_prog *nfp_prog)
2968 {
2969 	nfp_bpf_opt_reg_init(nfp_prog);
2970 
2971 	nfp_bpf_opt_ld_mask(nfp_prog);
2972 	nfp_bpf_opt_ld_shift(nfp_prog);
2973 	nfp_bpf_opt_ldst_gather(nfp_prog);
2974 
2975 	return 0;
2976 }
2977 
2978 static int nfp_bpf_ustore_calc(u64 *prog, unsigned int len)
2979 {
2980 	__le64 *ustore = (__force __le64 *)prog;
2981 	int i;
2982 
2983 	for (i = 0; i < len; i++) {
2984 		int err;
2985 
2986 		err = nfp_ustore_check_valid_no_ecc(prog[i]);
2987 		if (err)
2988 			return err;
2989 
2990 		ustore[i] = cpu_to_le64(nfp_ustore_calc_ecc_insn(prog[i]));
2991 	}
2992 
2993 	return 0;
2994 }
2995 
2996 static void nfp_bpf_prog_trim(struct nfp_prog *nfp_prog)
2997 {
2998 	void *prog;
2999 
3000 	prog = kvmalloc_array(nfp_prog->prog_len, sizeof(u64), GFP_KERNEL);
3001 	if (!prog)
3002 		return;
3003 
3004 	nfp_prog->__prog_alloc_len = nfp_prog->prog_len * sizeof(u64);
3005 	memcpy(prog, nfp_prog->prog, nfp_prog->__prog_alloc_len);
3006 	kvfree(nfp_prog->prog);
3007 	nfp_prog->prog = prog;
3008 }
3009 
3010 int nfp_bpf_jit(struct nfp_prog *nfp_prog)
3011 {
3012 	int ret;
3013 
3014 	ret = nfp_bpf_optimize(nfp_prog);
3015 	if (ret)
3016 		return ret;
3017 
3018 	ret = nfp_translate(nfp_prog);
3019 	if (ret) {
3020 		pr_err("Translation failed with error %d (translated: %u)\n",
3021 		       ret, nfp_prog->n_translated);
3022 		return -EINVAL;
3023 	}
3024 
3025 	nfp_bpf_prog_trim(nfp_prog);
3026 
3027 	return ret;
3028 }
3029 
3030 void nfp_bpf_jit_prepare(struct nfp_prog *nfp_prog, unsigned int cnt)
3031 {
3032 	struct nfp_insn_meta *meta;
3033 
3034 	/* Another pass to record jump information. */
3035 	list_for_each_entry(meta, &nfp_prog->insns, l) {
3036 		u64 code = meta->insn.code;
3037 
3038 		if (BPF_CLASS(code) == BPF_JMP && BPF_OP(code) != BPF_EXIT &&
3039 		    BPF_OP(code) != BPF_CALL) {
3040 			struct nfp_insn_meta *dst_meta;
3041 			unsigned short dst_indx;
3042 
3043 			dst_indx = meta->n + 1 + meta->insn.off;
3044 			dst_meta = nfp_bpf_goto_meta(nfp_prog, meta, dst_indx,
3045 						     cnt);
3046 
3047 			meta->jmp_dst = dst_meta;
3048 			dst_meta->flags |= FLAG_INSN_IS_JUMP_DST;
3049 		}
3050 	}
3051 }
3052 
3053 bool nfp_bpf_supported_opcode(u8 code)
3054 {
3055 	return !!instr_cb[code];
3056 }
3057 
3058 void *nfp_bpf_relo_for_vnic(struct nfp_prog *nfp_prog, struct nfp_bpf_vnic *bv)
3059 {
3060 	unsigned int i;
3061 	u64 *prog;
3062 	int err;
3063 
3064 	prog = kmemdup(nfp_prog->prog, nfp_prog->prog_len * sizeof(u64),
3065 		       GFP_KERNEL);
3066 	if (!prog)
3067 		return ERR_PTR(-ENOMEM);
3068 
3069 	for (i = 0; i < nfp_prog->prog_len; i++) {
3070 		enum nfp_relo_type special;
3071 		u32 val;
3072 
3073 		special = FIELD_GET(OP_RELO_TYPE, prog[i]);
3074 		switch (special) {
3075 		case RELO_NONE:
3076 			continue;
3077 		case RELO_BR_REL:
3078 			br_add_offset(&prog[i], bv->start_off);
3079 			break;
3080 		case RELO_BR_GO_OUT:
3081 			br_set_offset(&prog[i],
3082 				      nfp_prog->tgt_out + bv->start_off);
3083 			break;
3084 		case RELO_BR_GO_ABORT:
3085 			br_set_offset(&prog[i],
3086 				      nfp_prog->tgt_abort + bv->start_off);
3087 			break;
3088 		case RELO_BR_NEXT_PKT:
3089 			br_set_offset(&prog[i], bv->tgt_done);
3090 			break;
3091 		case RELO_BR_HELPER:
3092 			val = br_get_offset(prog[i]);
3093 			val -= BR_OFF_RELO;
3094 			switch (val) {
3095 			case BPF_FUNC_map_lookup_elem:
3096 				val = nfp_prog->bpf->helpers.map_lookup;
3097 				break;
3098 			default:
3099 				pr_err("relocation of unknown helper %d\n",
3100 				       val);
3101 				err = -EINVAL;
3102 				goto err_free_prog;
3103 			}
3104 			br_set_offset(&prog[i], val);
3105 			break;
3106 		case RELO_IMMED_REL:
3107 			immed_add_value(&prog[i], bv->start_off);
3108 			break;
3109 		}
3110 
3111 		prog[i] &= ~OP_RELO_TYPE;
3112 	}
3113 
3114 	err = nfp_bpf_ustore_calc(prog, nfp_prog->prog_len);
3115 	if (err)
3116 		goto err_free_prog;
3117 
3118 	return prog;
3119 
3120 err_free_prog:
3121 	kfree(prog);
3122 	return ERR_PTR(err);
3123 }
3124