1 /*
2  * Copyright (C) 2016-2017 Netronome Systems, Inc.
3  *
4  * This software is dual licensed under the GNU General License Version 2,
5  * June 1991 as shown in the file COPYING in the top-level directory of this
6  * source tree or the BSD 2-Clause License provided below.  You have the
7  * option to license this software under the complete terms of either license.
8  *
9  * The BSD 2-Clause License:
10  *
11  *     Redistribution and use in source and binary forms, with or
12  *     without modification, are permitted provided that the following
13  *     conditions are met:
14  *
15  *      1. Redistributions of source code must retain the above
16  *         copyright notice, this list of conditions and the following
17  *         disclaimer.
18  *
19  *      2. Redistributions in binary form must reproduce the above
20  *         copyright notice, this list of conditions and the following
21  *         disclaimer in the documentation and/or other materials
22  *         provided with the distribution.
23  *
24  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31  * SOFTWARE.
32  */
33 
34 #define pr_fmt(fmt)	"NFP net bpf: " fmt
35 
36 #include <linux/bug.h>
37 #include <linux/kernel.h>
38 #include <linux/bpf.h>
39 #include <linux/filter.h>
40 #include <linux/pkt_cls.h>
41 #include <linux/unistd.h>
42 
43 #include "main.h"
44 #include "../nfp_asm.h"
45 
46 /* --- NFP prog --- */
47 /* Foreach "multiple" entries macros provide pos and next<n> pointers.
48  * It's safe to modify the next pointers (but not pos).
49  */
50 #define nfp_for_each_insn_walk2(nfp_prog, pos, next)			\
51 	for (pos = list_first_entry(&(nfp_prog)->insns, typeof(*pos), l), \
52 	     next = list_next_entry(pos, l);			\
53 	     &(nfp_prog)->insns != &pos->l &&			\
54 	     &(nfp_prog)->insns != &next->l;			\
55 	     pos = nfp_meta_next(pos),				\
56 	     next = nfp_meta_next(pos))
57 
58 #define nfp_for_each_insn_walk3(nfp_prog, pos, next, next2)		\
59 	for (pos = list_first_entry(&(nfp_prog)->insns, typeof(*pos), l), \
60 	     next = list_next_entry(pos, l),			\
61 	     next2 = list_next_entry(next, l);			\
62 	     &(nfp_prog)->insns != &pos->l &&			\
63 	     &(nfp_prog)->insns != &next->l &&			\
64 	     &(nfp_prog)->insns != &next2->l;			\
65 	     pos = nfp_meta_next(pos),				\
66 	     next = nfp_meta_next(pos),				\
67 	     next2 = nfp_meta_next(next))
68 
69 static bool
70 nfp_meta_has_prev(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
71 {
72 	return meta->l.prev != &nfp_prog->insns;
73 }
74 
75 static void nfp_prog_push(struct nfp_prog *nfp_prog, u64 insn)
76 {
77 	if (nfp_prog->__prog_alloc_len == nfp_prog->prog_len) {
78 		nfp_prog->error = -ENOSPC;
79 		return;
80 	}
81 
82 	nfp_prog->prog[nfp_prog->prog_len] = insn;
83 	nfp_prog->prog_len++;
84 }
85 
86 static unsigned int nfp_prog_current_offset(struct nfp_prog *nfp_prog)
87 {
88 	return nfp_prog->prog_len;
89 }
90 
91 static bool
92 nfp_prog_confirm_current_offset(struct nfp_prog *nfp_prog, unsigned int off)
93 {
94 	/* If there is a recorded error we may have dropped instructions;
95 	 * that doesn't have to be due to translator bug, and the translation
96 	 * will fail anyway, so just return OK.
97 	 */
98 	if (nfp_prog->error)
99 		return true;
100 	return !WARN_ON_ONCE(nfp_prog_current_offset(nfp_prog) != off);
101 }
102 
103 /* --- Emitters --- */
104 static void
105 __emit_cmd(struct nfp_prog *nfp_prog, enum cmd_tgt_map op,
106 	   u8 mode, u8 xfer, u8 areg, u8 breg, u8 size, bool sync, bool indir)
107 {
108 	enum cmd_ctx_swap ctx;
109 	u64 insn;
110 
111 	if (sync)
112 		ctx = CMD_CTX_SWAP;
113 	else
114 		ctx = CMD_CTX_NO_SWAP;
115 
116 	insn =	FIELD_PREP(OP_CMD_A_SRC, areg) |
117 		FIELD_PREP(OP_CMD_CTX, ctx) |
118 		FIELD_PREP(OP_CMD_B_SRC, breg) |
119 		FIELD_PREP(OP_CMD_TOKEN, cmd_tgt_act[op].token) |
120 		FIELD_PREP(OP_CMD_XFER, xfer) |
121 		FIELD_PREP(OP_CMD_CNT, size) |
122 		FIELD_PREP(OP_CMD_SIG, sync) |
123 		FIELD_PREP(OP_CMD_TGT_CMD, cmd_tgt_act[op].tgt_cmd) |
124 		FIELD_PREP(OP_CMD_INDIR, indir) |
125 		FIELD_PREP(OP_CMD_MODE, mode);
126 
127 	nfp_prog_push(nfp_prog, insn);
128 }
129 
130 static void
131 emit_cmd_any(struct nfp_prog *nfp_prog, enum cmd_tgt_map op, u8 mode, u8 xfer,
132 	     swreg lreg, swreg rreg, u8 size, bool sync, bool indir)
133 {
134 	struct nfp_insn_re_regs reg;
135 	int err;
136 
137 	err = swreg_to_restricted(reg_none(), lreg, rreg, &reg, false);
138 	if (err) {
139 		nfp_prog->error = err;
140 		return;
141 	}
142 	if (reg.swap) {
143 		pr_err("cmd can't swap arguments\n");
144 		nfp_prog->error = -EFAULT;
145 		return;
146 	}
147 	if (reg.dst_lmextn || reg.src_lmextn) {
148 		pr_err("cmd can't use LMextn\n");
149 		nfp_prog->error = -EFAULT;
150 		return;
151 	}
152 
153 	__emit_cmd(nfp_prog, op, mode, xfer, reg.areg, reg.breg, size, sync,
154 		   indir);
155 }
156 
157 static void
158 emit_cmd(struct nfp_prog *nfp_prog, enum cmd_tgt_map op, u8 mode, u8 xfer,
159 	 swreg lreg, swreg rreg, u8 size, bool sync)
160 {
161 	emit_cmd_any(nfp_prog, op, mode, xfer, lreg, rreg, size, sync, false);
162 }
163 
164 static void
165 emit_cmd_indir(struct nfp_prog *nfp_prog, enum cmd_tgt_map op, u8 mode, u8 xfer,
166 	       swreg lreg, swreg rreg, u8 size, bool sync)
167 {
168 	emit_cmd_any(nfp_prog, op, mode, xfer, lreg, rreg, size, sync, true);
169 }
170 
171 static void
172 __emit_br(struct nfp_prog *nfp_prog, enum br_mask mask, enum br_ev_pip ev_pip,
173 	  enum br_ctx_signal_state css, u16 addr, u8 defer)
174 {
175 	u16 addr_lo, addr_hi;
176 	u64 insn;
177 
178 	addr_lo = addr & (OP_BR_ADDR_LO >> __bf_shf(OP_BR_ADDR_LO));
179 	addr_hi = addr != addr_lo;
180 
181 	insn = OP_BR_BASE |
182 		FIELD_PREP(OP_BR_MASK, mask) |
183 		FIELD_PREP(OP_BR_EV_PIP, ev_pip) |
184 		FIELD_PREP(OP_BR_CSS, css) |
185 		FIELD_PREP(OP_BR_DEFBR, defer) |
186 		FIELD_PREP(OP_BR_ADDR_LO, addr_lo) |
187 		FIELD_PREP(OP_BR_ADDR_HI, addr_hi);
188 
189 	nfp_prog_push(nfp_prog, insn);
190 }
191 
192 static void
193 emit_br_relo(struct nfp_prog *nfp_prog, enum br_mask mask, u16 addr, u8 defer,
194 	     enum nfp_relo_type relo)
195 {
196 	if (mask == BR_UNC && defer > 2) {
197 		pr_err("BUG: branch defer out of bounds %d\n", defer);
198 		nfp_prog->error = -EFAULT;
199 		return;
200 	}
201 
202 	__emit_br(nfp_prog, mask,
203 		  mask != BR_UNC ? BR_EV_PIP_COND : BR_EV_PIP_UNCOND,
204 		  BR_CSS_NONE, addr, defer);
205 
206 	nfp_prog->prog[nfp_prog->prog_len - 1] |=
207 		FIELD_PREP(OP_RELO_TYPE, relo);
208 }
209 
210 static void
211 emit_br(struct nfp_prog *nfp_prog, enum br_mask mask, u16 addr, u8 defer)
212 {
213 	emit_br_relo(nfp_prog, mask, addr, defer, RELO_BR_REL);
214 }
215 
216 static void
217 __emit_immed(struct nfp_prog *nfp_prog, u16 areg, u16 breg, u16 imm_hi,
218 	     enum immed_width width, bool invert,
219 	     enum immed_shift shift, bool wr_both,
220 	     bool dst_lmextn, bool src_lmextn)
221 {
222 	u64 insn;
223 
224 	insn = OP_IMMED_BASE |
225 		FIELD_PREP(OP_IMMED_A_SRC, areg) |
226 		FIELD_PREP(OP_IMMED_B_SRC, breg) |
227 		FIELD_PREP(OP_IMMED_IMM, imm_hi) |
228 		FIELD_PREP(OP_IMMED_WIDTH, width) |
229 		FIELD_PREP(OP_IMMED_INV, invert) |
230 		FIELD_PREP(OP_IMMED_SHIFT, shift) |
231 		FIELD_PREP(OP_IMMED_WR_AB, wr_both) |
232 		FIELD_PREP(OP_IMMED_SRC_LMEXTN, src_lmextn) |
233 		FIELD_PREP(OP_IMMED_DST_LMEXTN, dst_lmextn);
234 
235 	nfp_prog_push(nfp_prog, insn);
236 }
237 
238 static void
239 emit_immed(struct nfp_prog *nfp_prog, swreg dst, u16 imm,
240 	   enum immed_width width, bool invert, enum immed_shift shift)
241 {
242 	struct nfp_insn_ur_regs reg;
243 	int err;
244 
245 	if (swreg_type(dst) == NN_REG_IMM) {
246 		nfp_prog->error = -EFAULT;
247 		return;
248 	}
249 
250 	err = swreg_to_unrestricted(dst, dst, reg_imm(imm & 0xff), &reg);
251 	if (err) {
252 		nfp_prog->error = err;
253 		return;
254 	}
255 
256 	/* Use reg.dst when destination is No-Dest. */
257 	__emit_immed(nfp_prog,
258 		     swreg_type(dst) == NN_REG_NONE ? reg.dst : reg.areg,
259 		     reg.breg, imm >> 8, width, invert, shift,
260 		     reg.wr_both, reg.dst_lmextn, reg.src_lmextn);
261 }
262 
263 static void
264 __emit_shf(struct nfp_prog *nfp_prog, u16 dst, enum alu_dst_ab dst_ab,
265 	   enum shf_sc sc, u8 shift,
266 	   u16 areg, enum shf_op op, u16 breg, bool i8, bool sw, bool wr_both,
267 	   bool dst_lmextn, bool src_lmextn)
268 {
269 	u64 insn;
270 
271 	if (!FIELD_FIT(OP_SHF_SHIFT, shift)) {
272 		nfp_prog->error = -EFAULT;
273 		return;
274 	}
275 
276 	if (sc == SHF_SC_L_SHF)
277 		shift = 32 - shift;
278 
279 	insn = OP_SHF_BASE |
280 		FIELD_PREP(OP_SHF_A_SRC, areg) |
281 		FIELD_PREP(OP_SHF_SC, sc) |
282 		FIELD_PREP(OP_SHF_B_SRC, breg) |
283 		FIELD_PREP(OP_SHF_I8, i8) |
284 		FIELD_PREP(OP_SHF_SW, sw) |
285 		FIELD_PREP(OP_SHF_DST, dst) |
286 		FIELD_PREP(OP_SHF_SHIFT, shift) |
287 		FIELD_PREP(OP_SHF_OP, op) |
288 		FIELD_PREP(OP_SHF_DST_AB, dst_ab) |
289 		FIELD_PREP(OP_SHF_WR_AB, wr_both) |
290 		FIELD_PREP(OP_SHF_SRC_LMEXTN, src_lmextn) |
291 		FIELD_PREP(OP_SHF_DST_LMEXTN, dst_lmextn);
292 
293 	nfp_prog_push(nfp_prog, insn);
294 }
295 
296 static void
297 emit_shf(struct nfp_prog *nfp_prog, swreg dst,
298 	 swreg lreg, enum shf_op op, swreg rreg, enum shf_sc sc, u8 shift)
299 {
300 	struct nfp_insn_re_regs reg;
301 	int err;
302 
303 	err = swreg_to_restricted(dst, lreg, rreg, &reg, true);
304 	if (err) {
305 		nfp_prog->error = err;
306 		return;
307 	}
308 
309 	__emit_shf(nfp_prog, reg.dst, reg.dst_ab, sc, shift,
310 		   reg.areg, op, reg.breg, reg.i8, reg.swap, reg.wr_both,
311 		   reg.dst_lmextn, reg.src_lmextn);
312 }
313 
314 static void
315 __emit_alu(struct nfp_prog *nfp_prog, u16 dst, enum alu_dst_ab dst_ab,
316 	   u16 areg, enum alu_op op, u16 breg, bool swap, bool wr_both,
317 	   bool dst_lmextn, bool src_lmextn)
318 {
319 	u64 insn;
320 
321 	insn = OP_ALU_BASE |
322 		FIELD_PREP(OP_ALU_A_SRC, areg) |
323 		FIELD_PREP(OP_ALU_B_SRC, breg) |
324 		FIELD_PREP(OP_ALU_DST, dst) |
325 		FIELD_PREP(OP_ALU_SW, swap) |
326 		FIELD_PREP(OP_ALU_OP, op) |
327 		FIELD_PREP(OP_ALU_DST_AB, dst_ab) |
328 		FIELD_PREP(OP_ALU_WR_AB, wr_both) |
329 		FIELD_PREP(OP_ALU_SRC_LMEXTN, src_lmextn) |
330 		FIELD_PREP(OP_ALU_DST_LMEXTN, dst_lmextn);
331 
332 	nfp_prog_push(nfp_prog, insn);
333 }
334 
335 static void
336 emit_alu(struct nfp_prog *nfp_prog, swreg dst,
337 	 swreg lreg, enum alu_op op, swreg rreg)
338 {
339 	struct nfp_insn_ur_regs reg;
340 	int err;
341 
342 	err = swreg_to_unrestricted(dst, lreg, rreg, &reg);
343 	if (err) {
344 		nfp_prog->error = err;
345 		return;
346 	}
347 
348 	__emit_alu(nfp_prog, reg.dst, reg.dst_ab,
349 		   reg.areg, op, reg.breg, reg.swap, reg.wr_both,
350 		   reg.dst_lmextn, reg.src_lmextn);
351 }
352 
353 static void
354 __emit_ld_field(struct nfp_prog *nfp_prog, enum shf_sc sc,
355 		u8 areg, u8 bmask, u8 breg, u8 shift, bool imm8,
356 		bool zero, bool swap, bool wr_both,
357 		bool dst_lmextn, bool src_lmextn)
358 {
359 	u64 insn;
360 
361 	insn = OP_LDF_BASE |
362 		FIELD_PREP(OP_LDF_A_SRC, areg) |
363 		FIELD_PREP(OP_LDF_SC, sc) |
364 		FIELD_PREP(OP_LDF_B_SRC, breg) |
365 		FIELD_PREP(OP_LDF_I8, imm8) |
366 		FIELD_PREP(OP_LDF_SW, swap) |
367 		FIELD_PREP(OP_LDF_ZF, zero) |
368 		FIELD_PREP(OP_LDF_BMASK, bmask) |
369 		FIELD_PREP(OP_LDF_SHF, shift) |
370 		FIELD_PREP(OP_LDF_WR_AB, wr_both) |
371 		FIELD_PREP(OP_LDF_SRC_LMEXTN, src_lmextn) |
372 		FIELD_PREP(OP_LDF_DST_LMEXTN, dst_lmextn);
373 
374 	nfp_prog_push(nfp_prog, insn);
375 }
376 
377 static void
378 emit_ld_field_any(struct nfp_prog *nfp_prog, swreg dst, u8 bmask, swreg src,
379 		  enum shf_sc sc, u8 shift, bool zero)
380 {
381 	struct nfp_insn_re_regs reg;
382 	int err;
383 
384 	/* Note: ld_field is special as it uses one of the src regs as dst */
385 	err = swreg_to_restricted(dst, dst, src, &reg, true);
386 	if (err) {
387 		nfp_prog->error = err;
388 		return;
389 	}
390 
391 	__emit_ld_field(nfp_prog, sc, reg.areg, bmask, reg.breg, shift,
392 			reg.i8, zero, reg.swap, reg.wr_both,
393 			reg.dst_lmextn, reg.src_lmextn);
394 }
395 
396 static void
397 emit_ld_field(struct nfp_prog *nfp_prog, swreg dst, u8 bmask, swreg src,
398 	      enum shf_sc sc, u8 shift)
399 {
400 	emit_ld_field_any(nfp_prog, dst, bmask, src, sc, shift, false);
401 }
402 
403 static void
404 __emit_lcsr(struct nfp_prog *nfp_prog, u16 areg, u16 breg, bool wr, u16 addr,
405 	    bool dst_lmextn, bool src_lmextn)
406 {
407 	u64 insn;
408 
409 	insn = OP_LCSR_BASE |
410 		FIELD_PREP(OP_LCSR_A_SRC, areg) |
411 		FIELD_PREP(OP_LCSR_B_SRC, breg) |
412 		FIELD_PREP(OP_LCSR_WRITE, wr) |
413 		FIELD_PREP(OP_LCSR_ADDR, addr) |
414 		FIELD_PREP(OP_LCSR_SRC_LMEXTN, src_lmextn) |
415 		FIELD_PREP(OP_LCSR_DST_LMEXTN, dst_lmextn);
416 
417 	nfp_prog_push(nfp_prog, insn);
418 }
419 
420 static void emit_csr_wr(struct nfp_prog *nfp_prog, swreg src, u16 addr)
421 {
422 	struct nfp_insn_ur_regs reg;
423 	int err;
424 
425 	/* This instruction takes immeds instead of reg_none() for the ignored
426 	 * operand, but we can't encode 2 immeds in one instr with our normal
427 	 * swreg infra so if param is an immed, we encode as reg_none() and
428 	 * copy the immed to both operands.
429 	 */
430 	if (swreg_type(src) == NN_REG_IMM) {
431 		err = swreg_to_unrestricted(reg_none(), src, reg_none(), &reg);
432 		reg.breg = reg.areg;
433 	} else {
434 		err = swreg_to_unrestricted(reg_none(), src, reg_imm(0), &reg);
435 	}
436 	if (err) {
437 		nfp_prog->error = err;
438 		return;
439 	}
440 
441 	__emit_lcsr(nfp_prog, reg.areg, reg.breg, true, addr / 4,
442 		    false, reg.src_lmextn);
443 }
444 
445 static void emit_nop(struct nfp_prog *nfp_prog)
446 {
447 	__emit_immed(nfp_prog, UR_REG_IMM, UR_REG_IMM, 0, 0, 0, 0, 0, 0, 0);
448 }
449 
450 /* --- Wrappers --- */
451 static bool pack_immed(u32 imm, u16 *val, enum immed_shift *shift)
452 {
453 	if (!(imm & 0xffff0000)) {
454 		*val = imm;
455 		*shift = IMMED_SHIFT_0B;
456 	} else if (!(imm & 0xff0000ff)) {
457 		*val = imm >> 8;
458 		*shift = IMMED_SHIFT_1B;
459 	} else if (!(imm & 0x0000ffff)) {
460 		*val = imm >> 16;
461 		*shift = IMMED_SHIFT_2B;
462 	} else {
463 		return false;
464 	}
465 
466 	return true;
467 }
468 
469 static void wrp_immed(struct nfp_prog *nfp_prog, swreg dst, u32 imm)
470 {
471 	enum immed_shift shift;
472 	u16 val;
473 
474 	if (pack_immed(imm, &val, &shift)) {
475 		emit_immed(nfp_prog, dst, val, IMMED_WIDTH_ALL, false, shift);
476 	} else if (pack_immed(~imm, &val, &shift)) {
477 		emit_immed(nfp_prog, dst, val, IMMED_WIDTH_ALL, true, shift);
478 	} else {
479 		emit_immed(nfp_prog, dst, imm & 0xffff, IMMED_WIDTH_ALL,
480 			   false, IMMED_SHIFT_0B);
481 		emit_immed(nfp_prog, dst, imm >> 16, IMMED_WIDTH_WORD,
482 			   false, IMMED_SHIFT_2B);
483 	}
484 }
485 
486 static void
487 wrp_immed_relo(struct nfp_prog *nfp_prog, swreg dst, u32 imm,
488 	       enum nfp_relo_type relo)
489 {
490 	if (imm > 0xffff) {
491 		pr_err("relocation of a large immediate!\n");
492 		nfp_prog->error = -EFAULT;
493 		return;
494 	}
495 	emit_immed(nfp_prog, dst, imm, IMMED_WIDTH_ALL, false, IMMED_SHIFT_0B);
496 
497 	nfp_prog->prog[nfp_prog->prog_len - 1] |=
498 		FIELD_PREP(OP_RELO_TYPE, relo);
499 }
500 
501 /* ur_load_imm_any() - encode immediate or use tmp register (unrestricted)
502  * If the @imm is small enough encode it directly in operand and return
503  * otherwise load @imm to a spare register and return its encoding.
504  */
505 static swreg ur_load_imm_any(struct nfp_prog *nfp_prog, u32 imm, swreg tmp_reg)
506 {
507 	if (FIELD_FIT(UR_REG_IMM_MAX, imm))
508 		return reg_imm(imm);
509 
510 	wrp_immed(nfp_prog, tmp_reg, imm);
511 	return tmp_reg;
512 }
513 
514 /* re_load_imm_any() - encode immediate or use tmp register (restricted)
515  * If the @imm is small enough encode it directly in operand and return
516  * otherwise load @imm to a spare register and return its encoding.
517  */
518 static swreg re_load_imm_any(struct nfp_prog *nfp_prog, u32 imm, swreg tmp_reg)
519 {
520 	if (FIELD_FIT(RE_REG_IMM_MAX, imm))
521 		return reg_imm(imm);
522 
523 	wrp_immed(nfp_prog, tmp_reg, imm);
524 	return tmp_reg;
525 }
526 
527 static void wrp_nops(struct nfp_prog *nfp_prog, unsigned int count)
528 {
529 	while (count--)
530 		emit_nop(nfp_prog);
531 }
532 
533 static void wrp_mov(struct nfp_prog *nfp_prog, swreg dst, swreg src)
534 {
535 	emit_alu(nfp_prog, dst, reg_none(), ALU_OP_NONE, src);
536 }
537 
538 static void wrp_reg_mov(struct nfp_prog *nfp_prog, u16 dst, u16 src)
539 {
540 	wrp_mov(nfp_prog, reg_both(dst), reg_b(src));
541 }
542 
543 /* wrp_reg_subpart() - load @field_len bytes from @offset of @src, write the
544  * result to @dst from low end.
545  */
546 static void
547 wrp_reg_subpart(struct nfp_prog *nfp_prog, swreg dst, swreg src, u8 field_len,
548 		u8 offset)
549 {
550 	enum shf_sc sc = offset ? SHF_SC_R_SHF : SHF_SC_NONE;
551 	u8 mask = (1 << field_len) - 1;
552 
553 	emit_ld_field_any(nfp_prog, dst, mask, src, sc, offset * 8, true);
554 }
555 
556 /* NFP has Command Push Pull bus which supports bluk memory operations. */
557 static int nfp_cpp_memcpy(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
558 {
559 	bool descending_seq = meta->ldst_gather_len < 0;
560 	s16 len = abs(meta->ldst_gather_len);
561 	swreg src_base, off;
562 	unsigned int i;
563 	u8 xfer_num;
564 
565 	off = re_load_imm_any(nfp_prog, meta->insn.off, imm_b(nfp_prog));
566 	src_base = reg_a(meta->insn.src_reg * 2);
567 	xfer_num = round_up(len, 4) / 4;
568 
569 	/* Setup PREV_ALU fields to override memory read length. */
570 	if (len > 32)
571 		wrp_immed(nfp_prog, reg_none(),
572 			  CMD_OVE_LEN | FIELD_PREP(CMD_OV_LEN, xfer_num - 1));
573 
574 	/* Memory read from source addr into transfer-in registers. */
575 	emit_cmd_any(nfp_prog, CMD_TGT_READ32_SWAP, CMD_MODE_32b, 0, src_base,
576 		     off, xfer_num - 1, true, len > 32);
577 
578 	/* Move from transfer-in to transfer-out. */
579 	for (i = 0; i < xfer_num; i++)
580 		wrp_mov(nfp_prog, reg_xfer(i), reg_xfer(i));
581 
582 	off = re_load_imm_any(nfp_prog, meta->paired_st->off, imm_b(nfp_prog));
583 
584 	if (len <= 8) {
585 		/* Use single direct_ref write8. */
586 		emit_cmd(nfp_prog, CMD_TGT_WRITE8_SWAP, CMD_MODE_32b, 0,
587 			 reg_a(meta->paired_st->dst_reg * 2), off, len - 1,
588 			 true);
589 	} else if (len <= 32 && IS_ALIGNED(len, 4)) {
590 		/* Use single direct_ref write32. */
591 		emit_cmd(nfp_prog, CMD_TGT_WRITE32_SWAP, CMD_MODE_32b, 0,
592 			 reg_a(meta->paired_st->dst_reg * 2), off, xfer_num - 1,
593 			 true);
594 	} else if (len <= 32) {
595 		/* Use single indirect_ref write8. */
596 		wrp_immed(nfp_prog, reg_none(),
597 			  CMD_OVE_LEN | FIELD_PREP(CMD_OV_LEN, len - 1));
598 		emit_cmd_indir(nfp_prog, CMD_TGT_WRITE8_SWAP, CMD_MODE_32b, 0,
599 			       reg_a(meta->paired_st->dst_reg * 2), off,
600 			       len - 1, true);
601 	} else if (IS_ALIGNED(len, 4)) {
602 		/* Use single indirect_ref write32. */
603 		wrp_immed(nfp_prog, reg_none(),
604 			  CMD_OVE_LEN | FIELD_PREP(CMD_OV_LEN, xfer_num - 1));
605 		emit_cmd_indir(nfp_prog, CMD_TGT_WRITE32_SWAP, CMD_MODE_32b, 0,
606 			       reg_a(meta->paired_st->dst_reg * 2), off,
607 			       xfer_num - 1, true);
608 	} else if (len <= 40) {
609 		/* Use one direct_ref write32 to write the first 32-bytes, then
610 		 * another direct_ref write8 to write the remaining bytes.
611 		 */
612 		emit_cmd(nfp_prog, CMD_TGT_WRITE32_SWAP, CMD_MODE_32b, 0,
613 			 reg_a(meta->paired_st->dst_reg * 2), off, 7,
614 			 true);
615 
616 		off = re_load_imm_any(nfp_prog, meta->paired_st->off + 32,
617 				      imm_b(nfp_prog));
618 		emit_cmd(nfp_prog, CMD_TGT_WRITE8_SWAP, CMD_MODE_32b, 8,
619 			 reg_a(meta->paired_st->dst_reg * 2), off, len - 33,
620 			 true);
621 	} else {
622 		/* Use one indirect_ref write32 to write 4-bytes aligned length,
623 		 * then another direct_ref write8 to write the remaining bytes.
624 		 */
625 		u8 new_off;
626 
627 		wrp_immed(nfp_prog, reg_none(),
628 			  CMD_OVE_LEN | FIELD_PREP(CMD_OV_LEN, xfer_num - 2));
629 		emit_cmd_indir(nfp_prog, CMD_TGT_WRITE32_SWAP, CMD_MODE_32b, 0,
630 			       reg_a(meta->paired_st->dst_reg * 2), off,
631 			       xfer_num - 2, true);
632 		new_off = meta->paired_st->off + (xfer_num - 1) * 4;
633 		off = re_load_imm_any(nfp_prog, new_off, imm_b(nfp_prog));
634 		emit_cmd(nfp_prog, CMD_TGT_WRITE8_SWAP, CMD_MODE_32b,
635 			 xfer_num - 1, reg_a(meta->paired_st->dst_reg * 2), off,
636 			 (len & 0x3) - 1, true);
637 	}
638 
639 	/* TODO: The following extra load is to make sure data flow be identical
640 	 *  before and after we do memory copy optimization.
641 	 *
642 	 *  The load destination register is not guaranteed to be dead, so we
643 	 *  need to make sure it is loaded with the value the same as before
644 	 *  this transformation.
645 	 *
646 	 *  These extra loads could be removed once we have accurate register
647 	 *  usage information.
648 	 */
649 	if (descending_seq)
650 		xfer_num = 0;
651 	else if (BPF_SIZE(meta->insn.code) != BPF_DW)
652 		xfer_num = xfer_num - 1;
653 	else
654 		xfer_num = xfer_num - 2;
655 
656 	switch (BPF_SIZE(meta->insn.code)) {
657 	case BPF_B:
658 		wrp_reg_subpart(nfp_prog, reg_both(meta->insn.dst_reg * 2),
659 				reg_xfer(xfer_num), 1,
660 				IS_ALIGNED(len, 4) ? 3 : (len & 3) - 1);
661 		break;
662 	case BPF_H:
663 		wrp_reg_subpart(nfp_prog, reg_both(meta->insn.dst_reg * 2),
664 				reg_xfer(xfer_num), 2, (len & 3) ^ 2);
665 		break;
666 	case BPF_W:
667 		wrp_mov(nfp_prog, reg_both(meta->insn.dst_reg * 2),
668 			reg_xfer(0));
669 		break;
670 	case BPF_DW:
671 		wrp_mov(nfp_prog, reg_both(meta->insn.dst_reg * 2),
672 			reg_xfer(xfer_num));
673 		wrp_mov(nfp_prog, reg_both(meta->insn.dst_reg * 2 + 1),
674 			reg_xfer(xfer_num + 1));
675 		break;
676 	}
677 
678 	if (BPF_SIZE(meta->insn.code) != BPF_DW)
679 		wrp_immed(nfp_prog, reg_both(meta->insn.dst_reg * 2 + 1), 0);
680 
681 	return 0;
682 }
683 
684 static int
685 data_ld(struct nfp_prog *nfp_prog, swreg offset, u8 dst_gpr, int size)
686 {
687 	unsigned int i;
688 	u16 shift, sz;
689 
690 	/* We load the value from the address indicated in @offset and then
691 	 * shift out the data we don't need.  Note: this is big endian!
692 	 */
693 	sz = max(size, 4);
694 	shift = size < 4 ? 4 - size : 0;
695 
696 	emit_cmd(nfp_prog, CMD_TGT_READ8, CMD_MODE_32b, 0,
697 		 pptr_reg(nfp_prog), offset, sz - 1, true);
698 
699 	i = 0;
700 	if (shift)
701 		emit_shf(nfp_prog, reg_both(dst_gpr), reg_none(), SHF_OP_NONE,
702 			 reg_xfer(0), SHF_SC_R_SHF, shift * 8);
703 	else
704 		for (; i * 4 < size; i++)
705 			wrp_mov(nfp_prog, reg_both(dst_gpr + i), reg_xfer(i));
706 
707 	if (i < 2)
708 		wrp_immed(nfp_prog, reg_both(dst_gpr + 1), 0);
709 
710 	return 0;
711 }
712 
713 static int
714 data_ld_host_order(struct nfp_prog *nfp_prog, u8 src_gpr, swreg offset,
715 		   u8 dst_gpr, int size)
716 {
717 	unsigned int i;
718 	u8 mask, sz;
719 
720 	/* We load the value from the address indicated in @offset and then
721 	 * mask out the data we don't need.  Note: this is little endian!
722 	 */
723 	sz = max(size, 4);
724 	mask = size < 4 ? GENMASK(size - 1, 0) : 0;
725 
726 	emit_cmd(nfp_prog, CMD_TGT_READ32_SWAP, CMD_MODE_32b, 0,
727 		 reg_a(src_gpr), offset, sz / 4 - 1, true);
728 
729 	i = 0;
730 	if (mask)
731 		emit_ld_field_any(nfp_prog, reg_both(dst_gpr), mask,
732 				  reg_xfer(0), SHF_SC_NONE, 0, true);
733 	else
734 		for (; i * 4 < size; i++)
735 			wrp_mov(nfp_prog, reg_both(dst_gpr + i), reg_xfer(i));
736 
737 	if (i < 2)
738 		wrp_immed(nfp_prog, reg_both(dst_gpr + 1), 0);
739 
740 	return 0;
741 }
742 
743 static int
744 construct_data_ind_ld(struct nfp_prog *nfp_prog, u16 offset, u16 src, u8 size)
745 {
746 	swreg tmp_reg;
747 
748 	/* Calculate the true offset (src_reg + imm) */
749 	tmp_reg = ur_load_imm_any(nfp_prog, offset, imm_b(nfp_prog));
750 	emit_alu(nfp_prog, imm_both(nfp_prog), reg_a(src), ALU_OP_ADD, tmp_reg);
751 
752 	/* Check packet length (size guaranteed to fit b/c it's u8) */
753 	emit_alu(nfp_prog, imm_a(nfp_prog),
754 		 imm_a(nfp_prog), ALU_OP_ADD, reg_imm(size));
755 	emit_alu(nfp_prog, reg_none(),
756 		 plen_reg(nfp_prog), ALU_OP_SUB, imm_a(nfp_prog));
757 	emit_br_relo(nfp_prog, BR_BLO, BR_OFF_RELO, 0, RELO_BR_GO_ABORT);
758 
759 	/* Load data */
760 	return data_ld(nfp_prog, imm_b(nfp_prog), 0, size);
761 }
762 
763 static int construct_data_ld(struct nfp_prog *nfp_prog, u16 offset, u8 size)
764 {
765 	swreg tmp_reg;
766 
767 	/* Check packet length */
768 	tmp_reg = ur_load_imm_any(nfp_prog, offset + size, imm_a(nfp_prog));
769 	emit_alu(nfp_prog, reg_none(), plen_reg(nfp_prog), ALU_OP_SUB, tmp_reg);
770 	emit_br_relo(nfp_prog, BR_BLO, BR_OFF_RELO, 0, RELO_BR_GO_ABORT);
771 
772 	/* Load data */
773 	tmp_reg = re_load_imm_any(nfp_prog, offset, imm_b(nfp_prog));
774 	return data_ld(nfp_prog, tmp_reg, 0, size);
775 }
776 
777 static int
778 data_stx_host_order(struct nfp_prog *nfp_prog, u8 dst_gpr, swreg offset,
779 		    u8 src_gpr, u8 size)
780 {
781 	unsigned int i;
782 
783 	for (i = 0; i * 4 < size; i++)
784 		wrp_mov(nfp_prog, reg_xfer(i), reg_a(src_gpr + i));
785 
786 	emit_cmd(nfp_prog, CMD_TGT_WRITE8_SWAP, CMD_MODE_32b, 0,
787 		 reg_a(dst_gpr), offset, size - 1, true);
788 
789 	return 0;
790 }
791 
792 static int
793 data_st_host_order(struct nfp_prog *nfp_prog, u8 dst_gpr, swreg offset,
794 		   u64 imm, u8 size)
795 {
796 	wrp_immed(nfp_prog, reg_xfer(0), imm);
797 	if (size == 8)
798 		wrp_immed(nfp_prog, reg_xfer(1), imm >> 32);
799 
800 	emit_cmd(nfp_prog, CMD_TGT_WRITE8_SWAP, CMD_MODE_32b, 0,
801 		 reg_a(dst_gpr), offset, size - 1, true);
802 
803 	return 0;
804 }
805 
806 typedef int
807 (*lmem_step)(struct nfp_prog *nfp_prog, u8 gpr, u8 gpr_byte, s32 off,
808 	     unsigned int size, bool first, bool new_gpr, bool last, bool lm3,
809 	     bool needs_inc);
810 
811 static int
812 wrp_lmem_load(struct nfp_prog *nfp_prog, u8 dst, u8 dst_byte, s32 off,
813 	      unsigned int size, bool first, bool new_gpr, bool last, bool lm3,
814 	      bool needs_inc)
815 {
816 	bool should_inc = needs_inc && new_gpr && !last;
817 	u32 idx, src_byte;
818 	enum shf_sc sc;
819 	swreg reg;
820 	int shf;
821 	u8 mask;
822 
823 	if (WARN_ON_ONCE(dst_byte + size > 4 || off % 4 + size > 4))
824 		return -EOPNOTSUPP;
825 
826 	idx = off / 4;
827 
828 	/* Move the entire word */
829 	if (size == 4) {
830 		wrp_mov(nfp_prog, reg_both(dst),
831 			should_inc ? reg_lm_inc(3) : reg_lm(lm3 ? 3 : 0, idx));
832 		return 0;
833 	}
834 
835 	if (WARN_ON_ONCE(lm3 && idx > RE_REG_LM_IDX_MAX))
836 		return -EOPNOTSUPP;
837 
838 	src_byte = off % 4;
839 
840 	mask = (1 << size) - 1;
841 	mask <<= dst_byte;
842 
843 	if (WARN_ON_ONCE(mask > 0xf))
844 		return -EOPNOTSUPP;
845 
846 	shf = abs(src_byte - dst_byte) * 8;
847 	if (src_byte == dst_byte) {
848 		sc = SHF_SC_NONE;
849 	} else if (src_byte < dst_byte) {
850 		shf = 32 - shf;
851 		sc = SHF_SC_L_SHF;
852 	} else {
853 		sc = SHF_SC_R_SHF;
854 	}
855 
856 	/* ld_field can address fewer indexes, if offset too large do RMW.
857 	 * Because we RMV twice we waste 2 cycles on unaligned 8 byte writes.
858 	 */
859 	if (idx <= RE_REG_LM_IDX_MAX) {
860 		reg = reg_lm(lm3 ? 3 : 0, idx);
861 	} else {
862 		reg = imm_a(nfp_prog);
863 		/* If it's not the first part of the load and we start a new GPR
864 		 * that means we are loading a second part of the LMEM word into
865 		 * a new GPR.  IOW we've already looked that LMEM word and
866 		 * therefore it has been loaded into imm_a().
867 		 */
868 		if (first || !new_gpr)
869 			wrp_mov(nfp_prog, reg, reg_lm(0, idx));
870 	}
871 
872 	emit_ld_field_any(nfp_prog, reg_both(dst), mask, reg, sc, shf, new_gpr);
873 
874 	if (should_inc)
875 		wrp_mov(nfp_prog, reg_none(), reg_lm_inc(3));
876 
877 	return 0;
878 }
879 
880 static int
881 wrp_lmem_store(struct nfp_prog *nfp_prog, u8 src, u8 src_byte, s32 off,
882 	       unsigned int size, bool first, bool new_gpr, bool last, bool lm3,
883 	       bool needs_inc)
884 {
885 	bool should_inc = needs_inc && new_gpr && !last;
886 	u32 idx, dst_byte;
887 	enum shf_sc sc;
888 	swreg reg;
889 	int shf;
890 	u8 mask;
891 
892 	if (WARN_ON_ONCE(src_byte + size > 4 || off % 4 + size > 4))
893 		return -EOPNOTSUPP;
894 
895 	idx = off / 4;
896 
897 	/* Move the entire word */
898 	if (size == 4) {
899 		wrp_mov(nfp_prog,
900 			should_inc ? reg_lm_inc(3) : reg_lm(lm3 ? 3 : 0, idx),
901 			reg_b(src));
902 		return 0;
903 	}
904 
905 	if (WARN_ON_ONCE(lm3 && idx > RE_REG_LM_IDX_MAX))
906 		return -EOPNOTSUPP;
907 
908 	dst_byte = off % 4;
909 
910 	mask = (1 << size) - 1;
911 	mask <<= dst_byte;
912 
913 	if (WARN_ON_ONCE(mask > 0xf))
914 		return -EOPNOTSUPP;
915 
916 	shf = abs(src_byte - dst_byte) * 8;
917 	if (src_byte == dst_byte) {
918 		sc = SHF_SC_NONE;
919 	} else if (src_byte < dst_byte) {
920 		shf = 32 - shf;
921 		sc = SHF_SC_L_SHF;
922 	} else {
923 		sc = SHF_SC_R_SHF;
924 	}
925 
926 	/* ld_field can address fewer indexes, if offset too large do RMW.
927 	 * Because we RMV twice we waste 2 cycles on unaligned 8 byte writes.
928 	 */
929 	if (idx <= RE_REG_LM_IDX_MAX) {
930 		reg = reg_lm(lm3 ? 3 : 0, idx);
931 	} else {
932 		reg = imm_a(nfp_prog);
933 		/* Only first and last LMEM locations are going to need RMW,
934 		 * the middle location will be overwritten fully.
935 		 */
936 		if (first || last)
937 			wrp_mov(nfp_prog, reg, reg_lm(0, idx));
938 	}
939 
940 	emit_ld_field(nfp_prog, reg, mask, reg_b(src), sc, shf);
941 
942 	if (new_gpr || last) {
943 		if (idx > RE_REG_LM_IDX_MAX)
944 			wrp_mov(nfp_prog, reg_lm(0, idx), reg);
945 		if (should_inc)
946 			wrp_mov(nfp_prog, reg_none(), reg_lm_inc(3));
947 	}
948 
949 	return 0;
950 }
951 
952 static int
953 mem_op_stack(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
954 	     unsigned int size, unsigned int ptr_off, u8 gpr, u8 ptr_gpr,
955 	     bool clr_gpr, lmem_step step)
956 {
957 	s32 off = nfp_prog->stack_depth + meta->insn.off + ptr_off;
958 	bool first = true, last;
959 	bool needs_inc = false;
960 	swreg stack_off_reg;
961 	u8 prev_gpr = 255;
962 	u32 gpr_byte = 0;
963 	bool lm3 = true;
964 	int ret;
965 
966 	if (meta->ptr_not_const) {
967 		/* Use of the last encountered ptr_off is OK, they all have
968 		 * the same alignment.  Depend on low bits of value being
969 		 * discarded when written to LMaddr register.
970 		 */
971 		stack_off_reg = ur_load_imm_any(nfp_prog, meta->insn.off,
972 						stack_imm(nfp_prog));
973 
974 		emit_alu(nfp_prog, imm_b(nfp_prog),
975 			 reg_a(ptr_gpr), ALU_OP_ADD, stack_off_reg);
976 
977 		needs_inc = true;
978 	} else if (off + size <= 64) {
979 		/* We can reach bottom 64B with LMaddr0 */
980 		lm3 = false;
981 	} else if (round_down(off, 32) == round_down(off + size - 1, 32)) {
982 		/* We have to set up a new pointer.  If we know the offset
983 		 * and the entire access falls into a single 32 byte aligned
984 		 * window we won't have to increment the LM pointer.
985 		 * The 32 byte alignment is imporant because offset is ORed in
986 		 * not added when doing *l$indexN[off].
987 		 */
988 		stack_off_reg = ur_load_imm_any(nfp_prog, round_down(off, 32),
989 						stack_imm(nfp_prog));
990 		emit_alu(nfp_prog, imm_b(nfp_prog),
991 			 stack_reg(nfp_prog), ALU_OP_ADD, stack_off_reg);
992 
993 		off %= 32;
994 	} else {
995 		stack_off_reg = ur_load_imm_any(nfp_prog, round_down(off, 4),
996 						stack_imm(nfp_prog));
997 
998 		emit_alu(nfp_prog, imm_b(nfp_prog),
999 			 stack_reg(nfp_prog), ALU_OP_ADD, stack_off_reg);
1000 
1001 		needs_inc = true;
1002 	}
1003 	if (lm3) {
1004 		emit_csr_wr(nfp_prog, imm_b(nfp_prog), NFP_CSR_ACT_LM_ADDR3);
1005 		/* For size < 4 one slot will be filled by zeroing of upper. */
1006 		wrp_nops(nfp_prog, clr_gpr && size < 8 ? 2 : 3);
1007 	}
1008 
1009 	if (clr_gpr && size < 8)
1010 		wrp_immed(nfp_prog, reg_both(gpr + 1), 0);
1011 
1012 	while (size) {
1013 		u32 slice_end;
1014 		u8 slice_size;
1015 
1016 		slice_size = min(size, 4 - gpr_byte);
1017 		slice_end = min(off + slice_size, round_up(off + 1, 4));
1018 		slice_size = slice_end - off;
1019 
1020 		last = slice_size == size;
1021 
1022 		if (needs_inc)
1023 			off %= 4;
1024 
1025 		ret = step(nfp_prog, gpr, gpr_byte, off, slice_size,
1026 			   first, gpr != prev_gpr, last, lm3, needs_inc);
1027 		if (ret)
1028 			return ret;
1029 
1030 		prev_gpr = gpr;
1031 		first = false;
1032 
1033 		gpr_byte += slice_size;
1034 		if (gpr_byte >= 4) {
1035 			gpr_byte -= 4;
1036 			gpr++;
1037 		}
1038 
1039 		size -= slice_size;
1040 		off += slice_size;
1041 	}
1042 
1043 	return 0;
1044 }
1045 
1046 static void
1047 wrp_alu_imm(struct nfp_prog *nfp_prog, u8 dst, enum alu_op alu_op, u32 imm)
1048 {
1049 	swreg tmp_reg;
1050 
1051 	if (alu_op == ALU_OP_AND) {
1052 		if (!imm)
1053 			wrp_immed(nfp_prog, reg_both(dst), 0);
1054 		if (!imm || !~imm)
1055 			return;
1056 	}
1057 	if (alu_op == ALU_OP_OR) {
1058 		if (!~imm)
1059 			wrp_immed(nfp_prog, reg_both(dst), ~0U);
1060 		if (!imm || !~imm)
1061 			return;
1062 	}
1063 	if (alu_op == ALU_OP_XOR) {
1064 		if (!~imm)
1065 			emit_alu(nfp_prog, reg_both(dst), reg_none(),
1066 				 ALU_OP_NOT, reg_b(dst));
1067 		if (!imm || !~imm)
1068 			return;
1069 	}
1070 
1071 	tmp_reg = ur_load_imm_any(nfp_prog, imm, imm_b(nfp_prog));
1072 	emit_alu(nfp_prog, reg_both(dst), reg_a(dst), alu_op, tmp_reg);
1073 }
1074 
1075 static int
1076 wrp_alu64_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
1077 	      enum alu_op alu_op, bool skip)
1078 {
1079 	const struct bpf_insn *insn = &meta->insn;
1080 	u64 imm = insn->imm; /* sign extend */
1081 
1082 	if (skip) {
1083 		meta->skip = true;
1084 		return 0;
1085 	}
1086 
1087 	wrp_alu_imm(nfp_prog, insn->dst_reg * 2, alu_op, imm & ~0U);
1088 	wrp_alu_imm(nfp_prog, insn->dst_reg * 2 + 1, alu_op, imm >> 32);
1089 
1090 	return 0;
1091 }
1092 
1093 static int
1094 wrp_alu64_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
1095 	      enum alu_op alu_op)
1096 {
1097 	u8 dst = meta->insn.dst_reg * 2, src = meta->insn.src_reg * 2;
1098 
1099 	emit_alu(nfp_prog, reg_both(dst), reg_a(dst), alu_op, reg_b(src));
1100 	emit_alu(nfp_prog, reg_both(dst + 1),
1101 		 reg_a(dst + 1), alu_op, reg_b(src + 1));
1102 
1103 	return 0;
1104 }
1105 
1106 static int
1107 wrp_alu32_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
1108 	      enum alu_op alu_op, bool skip)
1109 {
1110 	const struct bpf_insn *insn = &meta->insn;
1111 
1112 	if (skip) {
1113 		meta->skip = true;
1114 		return 0;
1115 	}
1116 
1117 	wrp_alu_imm(nfp_prog, insn->dst_reg * 2, alu_op, insn->imm);
1118 	wrp_immed(nfp_prog, reg_both(insn->dst_reg * 2 + 1), 0);
1119 
1120 	return 0;
1121 }
1122 
1123 static int
1124 wrp_alu32_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
1125 	      enum alu_op alu_op)
1126 {
1127 	u8 dst = meta->insn.dst_reg * 2, src = meta->insn.src_reg * 2;
1128 
1129 	emit_alu(nfp_prog, reg_both(dst), reg_a(dst), alu_op, reg_b(src));
1130 	wrp_immed(nfp_prog, reg_both(meta->insn.dst_reg * 2 + 1), 0);
1131 
1132 	return 0;
1133 }
1134 
1135 static void
1136 wrp_test_reg_one(struct nfp_prog *nfp_prog, u8 dst, enum alu_op alu_op, u8 src,
1137 		 enum br_mask br_mask, u16 off)
1138 {
1139 	emit_alu(nfp_prog, reg_none(), reg_a(dst), alu_op, reg_b(src));
1140 	emit_br(nfp_prog, br_mask, off, 0);
1141 }
1142 
1143 static int
1144 wrp_test_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
1145 	     enum alu_op alu_op, enum br_mask br_mask)
1146 {
1147 	const struct bpf_insn *insn = &meta->insn;
1148 
1149 	wrp_test_reg_one(nfp_prog, insn->dst_reg * 2, alu_op,
1150 			 insn->src_reg * 2, br_mask, insn->off);
1151 	wrp_test_reg_one(nfp_prog, insn->dst_reg * 2 + 1, alu_op,
1152 			 insn->src_reg * 2 + 1, br_mask, insn->off);
1153 
1154 	return 0;
1155 }
1156 
1157 static int
1158 wrp_cmp_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
1159 	    enum br_mask br_mask, bool swap)
1160 {
1161 	const struct bpf_insn *insn = &meta->insn;
1162 	u64 imm = insn->imm; /* sign extend */
1163 	u8 reg = insn->dst_reg * 2;
1164 	swreg tmp_reg;
1165 
1166 	tmp_reg = ur_load_imm_any(nfp_prog, imm & ~0U, imm_b(nfp_prog));
1167 	if (!swap)
1168 		emit_alu(nfp_prog, reg_none(), reg_a(reg), ALU_OP_SUB, tmp_reg);
1169 	else
1170 		emit_alu(nfp_prog, reg_none(), tmp_reg, ALU_OP_SUB, reg_a(reg));
1171 
1172 	tmp_reg = ur_load_imm_any(nfp_prog, imm >> 32, imm_b(nfp_prog));
1173 	if (!swap)
1174 		emit_alu(nfp_prog, reg_none(),
1175 			 reg_a(reg + 1), ALU_OP_SUB_C, tmp_reg);
1176 	else
1177 		emit_alu(nfp_prog, reg_none(),
1178 			 tmp_reg, ALU_OP_SUB_C, reg_a(reg + 1));
1179 
1180 	emit_br(nfp_prog, br_mask, insn->off, 0);
1181 
1182 	return 0;
1183 }
1184 
1185 static int
1186 wrp_cmp_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
1187 	    enum br_mask br_mask, bool swap)
1188 {
1189 	const struct bpf_insn *insn = &meta->insn;
1190 	u8 areg, breg;
1191 
1192 	areg = insn->dst_reg * 2;
1193 	breg = insn->src_reg * 2;
1194 
1195 	if (swap) {
1196 		areg ^= breg;
1197 		breg ^= areg;
1198 		areg ^= breg;
1199 	}
1200 
1201 	emit_alu(nfp_prog, reg_none(), reg_a(areg), ALU_OP_SUB, reg_b(breg));
1202 	emit_alu(nfp_prog, reg_none(),
1203 		 reg_a(areg + 1), ALU_OP_SUB_C, reg_b(breg + 1));
1204 	emit_br(nfp_prog, br_mask, insn->off, 0);
1205 
1206 	return 0;
1207 }
1208 
1209 static void wrp_end32(struct nfp_prog *nfp_prog, swreg reg_in, u8 gpr_out)
1210 {
1211 	emit_ld_field(nfp_prog, reg_both(gpr_out), 0xf, reg_in,
1212 		      SHF_SC_R_ROT, 8);
1213 	emit_ld_field(nfp_prog, reg_both(gpr_out), 0x5, reg_a(gpr_out),
1214 		      SHF_SC_R_ROT, 16);
1215 }
1216 
1217 static int adjust_head(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1218 {
1219 	swreg tmp = imm_a(nfp_prog), tmp_len = imm_b(nfp_prog);
1220 	struct nfp_bpf_cap_adjust_head *adjust_head;
1221 	u32 ret_einval, end;
1222 
1223 	adjust_head = &nfp_prog->bpf->adjust_head;
1224 
1225 	/* Optimized version - 5 vs 14 cycles */
1226 	if (nfp_prog->adjust_head_location != UINT_MAX) {
1227 		if (WARN_ON_ONCE(nfp_prog->adjust_head_location != meta->n))
1228 			return -EINVAL;
1229 
1230 		emit_alu(nfp_prog, pptr_reg(nfp_prog),
1231 			 reg_a(2 * 2), ALU_OP_ADD, pptr_reg(nfp_prog));
1232 		emit_alu(nfp_prog, plen_reg(nfp_prog),
1233 			 plen_reg(nfp_prog), ALU_OP_SUB, reg_a(2 * 2));
1234 		emit_alu(nfp_prog, pv_len(nfp_prog),
1235 			 pv_len(nfp_prog), ALU_OP_SUB, reg_a(2 * 2));
1236 
1237 		wrp_immed(nfp_prog, reg_both(0), 0);
1238 		wrp_immed(nfp_prog, reg_both(1), 0);
1239 
1240 		/* TODO: when adjust head is guaranteed to succeed we can
1241 		 * also eliminate the following if (r0 == 0) branch.
1242 		 */
1243 
1244 		return 0;
1245 	}
1246 
1247 	ret_einval = nfp_prog_current_offset(nfp_prog) + 14;
1248 	end = ret_einval + 2;
1249 
1250 	/* We need to use a temp because offset is just a part of the pkt ptr */
1251 	emit_alu(nfp_prog, tmp,
1252 		 reg_a(2 * 2), ALU_OP_ADD_2B, pptr_reg(nfp_prog));
1253 
1254 	/* Validate result will fit within FW datapath constraints */
1255 	emit_alu(nfp_prog, reg_none(),
1256 		 tmp, ALU_OP_SUB, reg_imm(adjust_head->off_min));
1257 	emit_br(nfp_prog, BR_BLO, ret_einval, 0);
1258 	emit_alu(nfp_prog, reg_none(),
1259 		 reg_imm(adjust_head->off_max), ALU_OP_SUB, tmp);
1260 	emit_br(nfp_prog, BR_BLO, ret_einval, 0);
1261 
1262 	/* Validate the length is at least ETH_HLEN */
1263 	emit_alu(nfp_prog, tmp_len,
1264 		 plen_reg(nfp_prog), ALU_OP_SUB, reg_a(2 * 2));
1265 	emit_alu(nfp_prog, reg_none(),
1266 		 tmp_len, ALU_OP_SUB, reg_imm(ETH_HLEN));
1267 	emit_br(nfp_prog, BR_BMI, ret_einval, 0);
1268 
1269 	/* Load the ret code */
1270 	wrp_immed(nfp_prog, reg_both(0), 0);
1271 	wrp_immed(nfp_prog, reg_both(1), 0);
1272 
1273 	/* Modify the packet metadata */
1274 	emit_ld_field(nfp_prog, pptr_reg(nfp_prog), 0x3, tmp, SHF_SC_NONE, 0);
1275 
1276 	/* Skip over the -EINVAL ret code (defer 2) */
1277 	emit_br(nfp_prog, BR_UNC, end, 2);
1278 
1279 	emit_alu(nfp_prog, plen_reg(nfp_prog),
1280 		 plen_reg(nfp_prog), ALU_OP_SUB, reg_a(2 * 2));
1281 	emit_alu(nfp_prog, pv_len(nfp_prog),
1282 		 pv_len(nfp_prog), ALU_OP_SUB, reg_a(2 * 2));
1283 
1284 	/* return -EINVAL target */
1285 	if (!nfp_prog_confirm_current_offset(nfp_prog, ret_einval))
1286 		return -EINVAL;
1287 
1288 	wrp_immed(nfp_prog, reg_both(0), -22);
1289 	wrp_immed(nfp_prog, reg_both(1), ~0);
1290 
1291 	if (!nfp_prog_confirm_current_offset(nfp_prog, end))
1292 		return -EINVAL;
1293 
1294 	return 0;
1295 }
1296 
1297 static int
1298 map_lookup_stack(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1299 {
1300 	struct bpf_offloaded_map *offmap;
1301 	struct nfp_bpf_map *nfp_map;
1302 	bool load_lm_ptr;
1303 	u32 ret_tgt;
1304 	s64 lm_off;
1305 	swreg tid;
1306 
1307 	offmap = (struct bpf_offloaded_map *)meta->arg1.map_ptr;
1308 	nfp_map = offmap->dev_priv;
1309 
1310 	/* We only have to reload LM0 if the key is not at start of stack */
1311 	lm_off = nfp_prog->stack_depth;
1312 	lm_off += meta->arg2.var_off.value + meta->arg2.off;
1313 	load_lm_ptr = meta->arg2_var_off || lm_off;
1314 
1315 	/* Set LM0 to start of key */
1316 	if (load_lm_ptr)
1317 		emit_csr_wr(nfp_prog, reg_b(2 * 2), NFP_CSR_ACT_LM_ADDR0);
1318 
1319 	/* Load map ID into a register, it should actually fit as an immediate
1320 	 * but in case it doesn't deal with it here, not in the delay slots.
1321 	 */
1322 	tid = ur_load_imm_any(nfp_prog, nfp_map->tid, imm_a(nfp_prog));
1323 
1324 	emit_br_relo(nfp_prog, BR_UNC, BR_OFF_RELO + BPF_FUNC_map_lookup_elem,
1325 		     2, RELO_BR_HELPER);
1326 	ret_tgt = nfp_prog_current_offset(nfp_prog) + 2;
1327 
1328 	/* Load map ID into A0 */
1329 	wrp_mov(nfp_prog, reg_a(0), tid);
1330 
1331 	/* Load the return address into B0 */
1332 	wrp_immed_relo(nfp_prog, reg_b(0), ret_tgt, RELO_IMMED_REL);
1333 
1334 	if (!nfp_prog_confirm_current_offset(nfp_prog, ret_tgt))
1335 		return -EINVAL;
1336 
1337 	/* Reset the LM0 pointer */
1338 	if (!load_lm_ptr)
1339 		return 0;
1340 
1341 	emit_csr_wr(nfp_prog, stack_reg(nfp_prog),  NFP_CSR_ACT_LM_ADDR0);
1342 	wrp_nops(nfp_prog, 3);
1343 
1344 	return 0;
1345 }
1346 
1347 /* --- Callbacks --- */
1348 static int mov_reg64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1349 {
1350 	const struct bpf_insn *insn = &meta->insn;
1351 	u8 dst = insn->dst_reg * 2;
1352 	u8 src = insn->src_reg * 2;
1353 
1354 	if (insn->src_reg == BPF_REG_10) {
1355 		swreg stack_depth_reg;
1356 
1357 		stack_depth_reg = ur_load_imm_any(nfp_prog,
1358 						  nfp_prog->stack_depth,
1359 						  stack_imm(nfp_prog));
1360 		emit_alu(nfp_prog, reg_both(dst),
1361 			 stack_reg(nfp_prog), ALU_OP_ADD, stack_depth_reg);
1362 		wrp_immed(nfp_prog, reg_both(dst + 1), 0);
1363 	} else {
1364 		wrp_reg_mov(nfp_prog, dst, src);
1365 		wrp_reg_mov(nfp_prog, dst + 1, src + 1);
1366 	}
1367 
1368 	return 0;
1369 }
1370 
1371 static int mov_imm64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1372 {
1373 	u64 imm = meta->insn.imm; /* sign extend */
1374 
1375 	wrp_immed(nfp_prog, reg_both(meta->insn.dst_reg * 2), imm & ~0U);
1376 	wrp_immed(nfp_prog, reg_both(meta->insn.dst_reg * 2 + 1), imm >> 32);
1377 
1378 	return 0;
1379 }
1380 
1381 static int xor_reg64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1382 {
1383 	return wrp_alu64_reg(nfp_prog, meta, ALU_OP_XOR);
1384 }
1385 
1386 static int xor_imm64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1387 {
1388 	return wrp_alu64_imm(nfp_prog, meta, ALU_OP_XOR, !meta->insn.imm);
1389 }
1390 
1391 static int and_reg64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1392 {
1393 	return wrp_alu64_reg(nfp_prog, meta, ALU_OP_AND);
1394 }
1395 
1396 static int and_imm64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1397 {
1398 	return wrp_alu64_imm(nfp_prog, meta, ALU_OP_AND, !~meta->insn.imm);
1399 }
1400 
1401 static int or_reg64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1402 {
1403 	return wrp_alu64_reg(nfp_prog, meta, ALU_OP_OR);
1404 }
1405 
1406 static int or_imm64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1407 {
1408 	return wrp_alu64_imm(nfp_prog, meta, ALU_OP_OR, !meta->insn.imm);
1409 }
1410 
1411 static int add_reg64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1412 {
1413 	const struct bpf_insn *insn = &meta->insn;
1414 
1415 	emit_alu(nfp_prog, reg_both(insn->dst_reg * 2),
1416 		 reg_a(insn->dst_reg * 2), ALU_OP_ADD,
1417 		 reg_b(insn->src_reg * 2));
1418 	emit_alu(nfp_prog, reg_both(insn->dst_reg * 2 + 1),
1419 		 reg_a(insn->dst_reg * 2 + 1), ALU_OP_ADD_C,
1420 		 reg_b(insn->src_reg * 2 + 1));
1421 
1422 	return 0;
1423 }
1424 
1425 static int add_imm64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1426 {
1427 	const struct bpf_insn *insn = &meta->insn;
1428 	u64 imm = insn->imm; /* sign extend */
1429 
1430 	wrp_alu_imm(nfp_prog, insn->dst_reg * 2, ALU_OP_ADD, imm & ~0U);
1431 	wrp_alu_imm(nfp_prog, insn->dst_reg * 2 + 1, ALU_OP_ADD_C, imm >> 32);
1432 
1433 	return 0;
1434 }
1435 
1436 static int sub_reg64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1437 {
1438 	const struct bpf_insn *insn = &meta->insn;
1439 
1440 	emit_alu(nfp_prog, reg_both(insn->dst_reg * 2),
1441 		 reg_a(insn->dst_reg * 2), ALU_OP_SUB,
1442 		 reg_b(insn->src_reg * 2));
1443 	emit_alu(nfp_prog, reg_both(insn->dst_reg * 2 + 1),
1444 		 reg_a(insn->dst_reg * 2 + 1), ALU_OP_SUB_C,
1445 		 reg_b(insn->src_reg * 2 + 1));
1446 
1447 	return 0;
1448 }
1449 
1450 static int sub_imm64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1451 {
1452 	const struct bpf_insn *insn = &meta->insn;
1453 	u64 imm = insn->imm; /* sign extend */
1454 
1455 	wrp_alu_imm(nfp_prog, insn->dst_reg * 2, ALU_OP_SUB, imm & ~0U);
1456 	wrp_alu_imm(nfp_prog, insn->dst_reg * 2 + 1, ALU_OP_SUB_C, imm >> 32);
1457 
1458 	return 0;
1459 }
1460 
1461 static int neg_reg64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1462 {
1463 	const struct bpf_insn *insn = &meta->insn;
1464 
1465 	emit_alu(nfp_prog, reg_both(insn->dst_reg * 2), reg_imm(0),
1466 		 ALU_OP_SUB, reg_b(insn->dst_reg * 2));
1467 	emit_alu(nfp_prog, reg_both(insn->dst_reg * 2 + 1), reg_imm(0),
1468 		 ALU_OP_SUB_C, reg_b(insn->dst_reg * 2 + 1));
1469 
1470 	return 0;
1471 }
1472 
1473 static int shl_imm64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1474 {
1475 	const struct bpf_insn *insn = &meta->insn;
1476 	u8 dst = insn->dst_reg * 2;
1477 
1478 	if (insn->imm < 32) {
1479 		emit_shf(nfp_prog, reg_both(dst + 1),
1480 			 reg_a(dst + 1), SHF_OP_NONE, reg_b(dst),
1481 			 SHF_SC_R_DSHF, 32 - insn->imm);
1482 		emit_shf(nfp_prog, reg_both(dst),
1483 			 reg_none(), SHF_OP_NONE, reg_b(dst),
1484 			 SHF_SC_L_SHF, insn->imm);
1485 	} else if (insn->imm == 32) {
1486 		wrp_reg_mov(nfp_prog, dst + 1, dst);
1487 		wrp_immed(nfp_prog, reg_both(dst), 0);
1488 	} else if (insn->imm > 32) {
1489 		emit_shf(nfp_prog, reg_both(dst + 1),
1490 			 reg_none(), SHF_OP_NONE, reg_b(dst),
1491 			 SHF_SC_L_SHF, insn->imm - 32);
1492 		wrp_immed(nfp_prog, reg_both(dst), 0);
1493 	}
1494 
1495 	return 0;
1496 }
1497 
1498 static int shr_imm64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1499 {
1500 	const struct bpf_insn *insn = &meta->insn;
1501 	u8 dst = insn->dst_reg * 2;
1502 
1503 	if (insn->imm < 32) {
1504 		emit_shf(nfp_prog, reg_both(dst),
1505 			 reg_a(dst + 1), SHF_OP_NONE, reg_b(dst),
1506 			 SHF_SC_R_DSHF, insn->imm);
1507 		emit_shf(nfp_prog, reg_both(dst + 1),
1508 			 reg_none(), SHF_OP_NONE, reg_b(dst + 1),
1509 			 SHF_SC_R_SHF, insn->imm);
1510 	} else if (insn->imm == 32) {
1511 		wrp_reg_mov(nfp_prog, dst, dst + 1);
1512 		wrp_immed(nfp_prog, reg_both(dst + 1), 0);
1513 	} else if (insn->imm > 32) {
1514 		emit_shf(nfp_prog, reg_both(dst),
1515 			 reg_none(), SHF_OP_NONE, reg_b(dst + 1),
1516 			 SHF_SC_R_SHF, insn->imm - 32);
1517 		wrp_immed(nfp_prog, reg_both(dst + 1), 0);
1518 	}
1519 
1520 	return 0;
1521 }
1522 
1523 static int mov_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1524 {
1525 	const struct bpf_insn *insn = &meta->insn;
1526 
1527 	wrp_reg_mov(nfp_prog, insn->dst_reg * 2,  insn->src_reg * 2);
1528 	wrp_immed(nfp_prog, reg_both(insn->dst_reg * 2 + 1), 0);
1529 
1530 	return 0;
1531 }
1532 
1533 static int mov_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1534 {
1535 	const struct bpf_insn *insn = &meta->insn;
1536 
1537 	wrp_immed(nfp_prog, reg_both(insn->dst_reg * 2), insn->imm);
1538 	wrp_immed(nfp_prog, reg_both(insn->dst_reg * 2 + 1), 0);
1539 
1540 	return 0;
1541 }
1542 
1543 static int xor_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1544 {
1545 	return wrp_alu32_reg(nfp_prog, meta, ALU_OP_XOR);
1546 }
1547 
1548 static int xor_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1549 {
1550 	return wrp_alu32_imm(nfp_prog, meta, ALU_OP_XOR, !~meta->insn.imm);
1551 }
1552 
1553 static int and_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1554 {
1555 	return wrp_alu32_reg(nfp_prog, meta, ALU_OP_AND);
1556 }
1557 
1558 static int and_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1559 {
1560 	return wrp_alu32_imm(nfp_prog, meta, ALU_OP_AND, !~meta->insn.imm);
1561 }
1562 
1563 static int or_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1564 {
1565 	return wrp_alu32_reg(nfp_prog, meta, ALU_OP_OR);
1566 }
1567 
1568 static int or_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1569 {
1570 	return wrp_alu32_imm(nfp_prog, meta, ALU_OP_OR, !meta->insn.imm);
1571 }
1572 
1573 static int add_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1574 {
1575 	return wrp_alu32_reg(nfp_prog, meta, ALU_OP_ADD);
1576 }
1577 
1578 static int add_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1579 {
1580 	return wrp_alu32_imm(nfp_prog, meta, ALU_OP_ADD, !meta->insn.imm);
1581 }
1582 
1583 static int sub_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1584 {
1585 	return wrp_alu32_reg(nfp_prog, meta, ALU_OP_SUB);
1586 }
1587 
1588 static int sub_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1589 {
1590 	return wrp_alu32_imm(nfp_prog, meta, ALU_OP_SUB, !meta->insn.imm);
1591 }
1592 
1593 static int neg_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1594 {
1595 	u8 dst = meta->insn.dst_reg * 2;
1596 
1597 	emit_alu(nfp_prog, reg_both(dst), reg_imm(0), ALU_OP_SUB, reg_b(dst));
1598 	wrp_immed(nfp_prog, reg_both(meta->insn.dst_reg * 2 + 1), 0);
1599 
1600 	return 0;
1601 }
1602 
1603 static int shl_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1604 {
1605 	const struct bpf_insn *insn = &meta->insn;
1606 
1607 	if (!insn->imm)
1608 		return 1; /* TODO: zero shift means indirect */
1609 
1610 	emit_shf(nfp_prog, reg_both(insn->dst_reg * 2),
1611 		 reg_none(), SHF_OP_NONE, reg_b(insn->dst_reg * 2),
1612 		 SHF_SC_L_SHF, insn->imm);
1613 	wrp_immed(nfp_prog, reg_both(insn->dst_reg * 2 + 1), 0);
1614 
1615 	return 0;
1616 }
1617 
1618 static int end_reg32(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1619 {
1620 	const struct bpf_insn *insn = &meta->insn;
1621 	u8 gpr = insn->dst_reg * 2;
1622 
1623 	switch (insn->imm) {
1624 	case 16:
1625 		emit_ld_field(nfp_prog, reg_both(gpr), 0x9, reg_b(gpr),
1626 			      SHF_SC_R_ROT, 8);
1627 		emit_ld_field(nfp_prog, reg_both(gpr), 0xe, reg_a(gpr),
1628 			      SHF_SC_R_SHF, 16);
1629 
1630 		wrp_immed(nfp_prog, reg_both(gpr + 1), 0);
1631 		break;
1632 	case 32:
1633 		wrp_end32(nfp_prog, reg_a(gpr), gpr);
1634 		wrp_immed(nfp_prog, reg_both(gpr + 1), 0);
1635 		break;
1636 	case 64:
1637 		wrp_mov(nfp_prog, imm_a(nfp_prog), reg_b(gpr + 1));
1638 
1639 		wrp_end32(nfp_prog, reg_a(gpr), gpr + 1);
1640 		wrp_end32(nfp_prog, imm_a(nfp_prog), gpr);
1641 		break;
1642 	}
1643 
1644 	return 0;
1645 }
1646 
1647 static int imm_ld8_part2(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1648 {
1649 	struct nfp_insn_meta *prev = nfp_meta_prev(meta);
1650 	u32 imm_lo, imm_hi;
1651 	u8 dst;
1652 
1653 	dst = prev->insn.dst_reg * 2;
1654 	imm_lo = prev->insn.imm;
1655 	imm_hi = meta->insn.imm;
1656 
1657 	wrp_immed(nfp_prog, reg_both(dst), imm_lo);
1658 
1659 	/* mov is always 1 insn, load imm may be two, so try to use mov */
1660 	if (imm_hi == imm_lo)
1661 		wrp_mov(nfp_prog, reg_both(dst + 1), reg_a(dst));
1662 	else
1663 		wrp_immed(nfp_prog, reg_both(dst + 1), imm_hi);
1664 
1665 	return 0;
1666 }
1667 
1668 static int imm_ld8(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1669 {
1670 	meta->double_cb = imm_ld8_part2;
1671 	return 0;
1672 }
1673 
1674 static int data_ld1(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1675 {
1676 	return construct_data_ld(nfp_prog, meta->insn.imm, 1);
1677 }
1678 
1679 static int data_ld2(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1680 {
1681 	return construct_data_ld(nfp_prog, meta->insn.imm, 2);
1682 }
1683 
1684 static int data_ld4(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1685 {
1686 	return construct_data_ld(nfp_prog, meta->insn.imm, 4);
1687 }
1688 
1689 static int data_ind_ld1(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1690 {
1691 	return construct_data_ind_ld(nfp_prog, meta->insn.imm,
1692 				     meta->insn.src_reg * 2, 1);
1693 }
1694 
1695 static int data_ind_ld2(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1696 {
1697 	return construct_data_ind_ld(nfp_prog, meta->insn.imm,
1698 				     meta->insn.src_reg * 2, 2);
1699 }
1700 
1701 static int data_ind_ld4(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1702 {
1703 	return construct_data_ind_ld(nfp_prog, meta->insn.imm,
1704 				     meta->insn.src_reg * 2, 4);
1705 }
1706 
1707 static int
1708 mem_ldx_stack(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
1709 	      unsigned int size, unsigned int ptr_off)
1710 {
1711 	return mem_op_stack(nfp_prog, meta, size, ptr_off,
1712 			    meta->insn.dst_reg * 2, meta->insn.src_reg * 2,
1713 			    true, wrp_lmem_load);
1714 }
1715 
1716 static int mem_ldx_skb(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
1717 		       u8 size)
1718 {
1719 	swreg dst = reg_both(meta->insn.dst_reg * 2);
1720 
1721 	switch (meta->insn.off) {
1722 	case offsetof(struct __sk_buff, len):
1723 		if (size != FIELD_SIZEOF(struct __sk_buff, len))
1724 			return -EOPNOTSUPP;
1725 		wrp_mov(nfp_prog, dst, plen_reg(nfp_prog));
1726 		break;
1727 	case offsetof(struct __sk_buff, data):
1728 		if (size != FIELD_SIZEOF(struct __sk_buff, data))
1729 			return -EOPNOTSUPP;
1730 		wrp_mov(nfp_prog, dst, pptr_reg(nfp_prog));
1731 		break;
1732 	case offsetof(struct __sk_buff, data_end):
1733 		if (size != FIELD_SIZEOF(struct __sk_buff, data_end))
1734 			return -EOPNOTSUPP;
1735 		emit_alu(nfp_prog, dst,
1736 			 plen_reg(nfp_prog), ALU_OP_ADD, pptr_reg(nfp_prog));
1737 		break;
1738 	default:
1739 		return -EOPNOTSUPP;
1740 	}
1741 
1742 	wrp_immed(nfp_prog, reg_both(meta->insn.dst_reg * 2 + 1), 0);
1743 
1744 	return 0;
1745 }
1746 
1747 static int mem_ldx_xdp(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
1748 		       u8 size)
1749 {
1750 	swreg dst = reg_both(meta->insn.dst_reg * 2);
1751 
1752 	switch (meta->insn.off) {
1753 	case offsetof(struct xdp_md, data):
1754 		if (size != FIELD_SIZEOF(struct xdp_md, data))
1755 			return -EOPNOTSUPP;
1756 		wrp_mov(nfp_prog, dst, pptr_reg(nfp_prog));
1757 		break;
1758 	case offsetof(struct xdp_md, data_end):
1759 		if (size != FIELD_SIZEOF(struct xdp_md, data_end))
1760 			return -EOPNOTSUPP;
1761 		emit_alu(nfp_prog, dst,
1762 			 plen_reg(nfp_prog), ALU_OP_ADD, pptr_reg(nfp_prog));
1763 		break;
1764 	default:
1765 		return -EOPNOTSUPP;
1766 	}
1767 
1768 	wrp_immed(nfp_prog, reg_both(meta->insn.dst_reg * 2 + 1), 0);
1769 
1770 	return 0;
1771 }
1772 
1773 static int
1774 mem_ldx_data(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
1775 	     unsigned int size)
1776 {
1777 	swreg tmp_reg;
1778 
1779 	tmp_reg = re_load_imm_any(nfp_prog, meta->insn.off, imm_b(nfp_prog));
1780 
1781 	return data_ld_host_order(nfp_prog, meta->insn.src_reg * 2, tmp_reg,
1782 				  meta->insn.dst_reg * 2, size);
1783 }
1784 
1785 static int
1786 mem_ldx(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
1787 	unsigned int size)
1788 {
1789 	if (meta->ldst_gather_len)
1790 		return nfp_cpp_memcpy(nfp_prog, meta);
1791 
1792 	if (meta->ptr.type == PTR_TO_CTX) {
1793 		if (nfp_prog->type == BPF_PROG_TYPE_XDP)
1794 			return mem_ldx_xdp(nfp_prog, meta, size);
1795 		else
1796 			return mem_ldx_skb(nfp_prog, meta, size);
1797 	}
1798 
1799 	if (meta->ptr.type == PTR_TO_PACKET)
1800 		return mem_ldx_data(nfp_prog, meta, size);
1801 
1802 	if (meta->ptr.type == PTR_TO_STACK)
1803 		return mem_ldx_stack(nfp_prog, meta, size,
1804 				     meta->ptr.off + meta->ptr.var_off.value);
1805 
1806 	return -EOPNOTSUPP;
1807 }
1808 
1809 static int mem_ldx1(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1810 {
1811 	return mem_ldx(nfp_prog, meta, 1);
1812 }
1813 
1814 static int mem_ldx2(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1815 {
1816 	return mem_ldx(nfp_prog, meta, 2);
1817 }
1818 
1819 static int mem_ldx4(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1820 {
1821 	return mem_ldx(nfp_prog, meta, 4);
1822 }
1823 
1824 static int mem_ldx8(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1825 {
1826 	return mem_ldx(nfp_prog, meta, 8);
1827 }
1828 
1829 static int
1830 mem_st_data(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
1831 	    unsigned int size)
1832 {
1833 	u64 imm = meta->insn.imm; /* sign extend */
1834 	swreg off_reg;
1835 
1836 	off_reg = re_load_imm_any(nfp_prog, meta->insn.off, imm_b(nfp_prog));
1837 
1838 	return data_st_host_order(nfp_prog, meta->insn.dst_reg * 2, off_reg,
1839 				  imm, size);
1840 }
1841 
1842 static int mem_st(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
1843 		  unsigned int size)
1844 {
1845 	if (meta->ptr.type == PTR_TO_PACKET)
1846 		return mem_st_data(nfp_prog, meta, size);
1847 
1848 	return -EOPNOTSUPP;
1849 }
1850 
1851 static int mem_st1(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1852 {
1853 	return mem_st(nfp_prog, meta, 1);
1854 }
1855 
1856 static int mem_st2(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1857 {
1858 	return mem_st(nfp_prog, meta, 2);
1859 }
1860 
1861 static int mem_st4(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1862 {
1863 	return mem_st(nfp_prog, meta, 4);
1864 }
1865 
1866 static int mem_st8(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1867 {
1868 	return mem_st(nfp_prog, meta, 8);
1869 }
1870 
1871 static int
1872 mem_stx_data(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
1873 	     unsigned int size)
1874 {
1875 	swreg off_reg;
1876 
1877 	off_reg = re_load_imm_any(nfp_prog, meta->insn.off, imm_b(nfp_prog));
1878 
1879 	return data_stx_host_order(nfp_prog, meta->insn.dst_reg * 2, off_reg,
1880 				   meta->insn.src_reg * 2, size);
1881 }
1882 
1883 static int
1884 mem_stx_stack(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
1885 	      unsigned int size, unsigned int ptr_off)
1886 {
1887 	return mem_op_stack(nfp_prog, meta, size, ptr_off,
1888 			    meta->insn.src_reg * 2, meta->insn.dst_reg * 2,
1889 			    false, wrp_lmem_store);
1890 }
1891 
1892 static int
1893 mem_stx(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
1894 	unsigned int size)
1895 {
1896 	if (meta->ptr.type == PTR_TO_PACKET)
1897 		return mem_stx_data(nfp_prog, meta, size);
1898 
1899 	if (meta->ptr.type == PTR_TO_STACK)
1900 		return mem_stx_stack(nfp_prog, meta, size,
1901 				     meta->ptr.off + meta->ptr.var_off.value);
1902 
1903 	return -EOPNOTSUPP;
1904 }
1905 
1906 static int mem_stx1(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1907 {
1908 	return mem_stx(nfp_prog, meta, 1);
1909 }
1910 
1911 static int mem_stx2(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1912 {
1913 	return mem_stx(nfp_prog, meta, 2);
1914 }
1915 
1916 static int mem_stx4(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1917 {
1918 	return mem_stx(nfp_prog, meta, 4);
1919 }
1920 
1921 static int mem_stx8(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1922 {
1923 	return mem_stx(nfp_prog, meta, 8);
1924 }
1925 
1926 static int jump(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1927 {
1928 	emit_br(nfp_prog, BR_UNC, meta->insn.off, 0);
1929 
1930 	return 0;
1931 }
1932 
1933 static int jeq_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1934 {
1935 	const struct bpf_insn *insn = &meta->insn;
1936 	u64 imm = insn->imm; /* sign extend */
1937 	swreg or1, or2, tmp_reg;
1938 
1939 	or1 = reg_a(insn->dst_reg * 2);
1940 	or2 = reg_b(insn->dst_reg * 2 + 1);
1941 
1942 	if (imm & ~0U) {
1943 		tmp_reg = ur_load_imm_any(nfp_prog, imm & ~0U, imm_b(nfp_prog));
1944 		emit_alu(nfp_prog, imm_a(nfp_prog),
1945 			 reg_a(insn->dst_reg * 2), ALU_OP_XOR, tmp_reg);
1946 		or1 = imm_a(nfp_prog);
1947 	}
1948 
1949 	if (imm >> 32) {
1950 		tmp_reg = ur_load_imm_any(nfp_prog, imm >> 32, imm_b(nfp_prog));
1951 		emit_alu(nfp_prog, imm_b(nfp_prog),
1952 			 reg_a(insn->dst_reg * 2 + 1), ALU_OP_XOR, tmp_reg);
1953 		or2 = imm_b(nfp_prog);
1954 	}
1955 
1956 	emit_alu(nfp_prog, reg_none(), or1, ALU_OP_OR, or2);
1957 	emit_br(nfp_prog, BR_BEQ, insn->off, 0);
1958 
1959 	return 0;
1960 }
1961 
1962 static int jgt_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1963 {
1964 	return wrp_cmp_imm(nfp_prog, meta, BR_BLO, true);
1965 }
1966 
1967 static int jge_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1968 {
1969 	return wrp_cmp_imm(nfp_prog, meta, BR_BHS, false);
1970 }
1971 
1972 static int jlt_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1973 {
1974 	return wrp_cmp_imm(nfp_prog, meta, BR_BLO, false);
1975 }
1976 
1977 static int jle_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1978 {
1979 	return wrp_cmp_imm(nfp_prog, meta, BR_BHS, true);
1980 }
1981 
1982 static int jsgt_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1983 {
1984 	return wrp_cmp_imm(nfp_prog, meta, BR_BLT, true);
1985 }
1986 
1987 static int jsge_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1988 {
1989 	return wrp_cmp_imm(nfp_prog, meta, BR_BGE, false);
1990 }
1991 
1992 static int jslt_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1993 {
1994 	return wrp_cmp_imm(nfp_prog, meta, BR_BLT, false);
1995 }
1996 
1997 static int jsle_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1998 {
1999 	return wrp_cmp_imm(nfp_prog, meta, BR_BGE, true);
2000 }
2001 
2002 static int jset_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2003 {
2004 	const struct bpf_insn *insn = &meta->insn;
2005 	u64 imm = insn->imm; /* sign extend */
2006 	swreg tmp_reg;
2007 
2008 	if (!imm) {
2009 		meta->skip = true;
2010 		return 0;
2011 	}
2012 
2013 	if (imm & ~0U) {
2014 		tmp_reg = ur_load_imm_any(nfp_prog, imm & ~0U, imm_b(nfp_prog));
2015 		emit_alu(nfp_prog, reg_none(),
2016 			 reg_a(insn->dst_reg * 2), ALU_OP_AND, tmp_reg);
2017 		emit_br(nfp_prog, BR_BNE, insn->off, 0);
2018 	}
2019 
2020 	if (imm >> 32) {
2021 		tmp_reg = ur_load_imm_any(nfp_prog, imm >> 32, imm_b(nfp_prog));
2022 		emit_alu(nfp_prog, reg_none(),
2023 			 reg_a(insn->dst_reg * 2 + 1), ALU_OP_AND, tmp_reg);
2024 		emit_br(nfp_prog, BR_BNE, insn->off, 0);
2025 	}
2026 
2027 	return 0;
2028 }
2029 
2030 static int jne_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2031 {
2032 	const struct bpf_insn *insn = &meta->insn;
2033 	u64 imm = insn->imm; /* sign extend */
2034 	swreg tmp_reg;
2035 
2036 	if (!imm) {
2037 		emit_alu(nfp_prog, reg_none(), reg_a(insn->dst_reg * 2),
2038 			 ALU_OP_OR, reg_b(insn->dst_reg * 2 + 1));
2039 		emit_br(nfp_prog, BR_BNE, insn->off, 0);
2040 		return 0;
2041 	}
2042 
2043 	tmp_reg = ur_load_imm_any(nfp_prog, imm & ~0U, imm_b(nfp_prog));
2044 	emit_alu(nfp_prog, reg_none(),
2045 		 reg_a(insn->dst_reg * 2), ALU_OP_XOR, tmp_reg);
2046 	emit_br(nfp_prog, BR_BNE, insn->off, 0);
2047 
2048 	tmp_reg = ur_load_imm_any(nfp_prog, imm >> 32, imm_b(nfp_prog));
2049 	emit_alu(nfp_prog, reg_none(),
2050 		 reg_a(insn->dst_reg * 2 + 1), ALU_OP_XOR, tmp_reg);
2051 	emit_br(nfp_prog, BR_BNE, insn->off, 0);
2052 
2053 	return 0;
2054 }
2055 
2056 static int jeq_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2057 {
2058 	const struct bpf_insn *insn = &meta->insn;
2059 
2060 	emit_alu(nfp_prog, imm_a(nfp_prog), reg_a(insn->dst_reg * 2),
2061 		 ALU_OP_XOR, reg_b(insn->src_reg * 2));
2062 	emit_alu(nfp_prog, imm_b(nfp_prog), reg_a(insn->dst_reg * 2 + 1),
2063 		 ALU_OP_XOR, reg_b(insn->src_reg * 2 + 1));
2064 	emit_alu(nfp_prog, reg_none(),
2065 		 imm_a(nfp_prog), ALU_OP_OR, imm_b(nfp_prog));
2066 	emit_br(nfp_prog, BR_BEQ, insn->off, 0);
2067 
2068 	return 0;
2069 }
2070 
2071 static int jgt_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2072 {
2073 	return wrp_cmp_reg(nfp_prog, meta, BR_BLO, true);
2074 }
2075 
2076 static int jge_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2077 {
2078 	return wrp_cmp_reg(nfp_prog, meta, BR_BHS, false);
2079 }
2080 
2081 static int jlt_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2082 {
2083 	return wrp_cmp_reg(nfp_prog, meta, BR_BLO, false);
2084 }
2085 
2086 static int jle_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2087 {
2088 	return wrp_cmp_reg(nfp_prog, meta, BR_BHS, true);
2089 }
2090 
2091 static int jsgt_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2092 {
2093 	return wrp_cmp_reg(nfp_prog, meta, BR_BLT, true);
2094 }
2095 
2096 static int jsge_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2097 {
2098 	return wrp_cmp_reg(nfp_prog, meta, BR_BGE, false);
2099 }
2100 
2101 static int jslt_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2102 {
2103 	return wrp_cmp_reg(nfp_prog, meta, BR_BLT, false);
2104 }
2105 
2106 static int jsle_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2107 {
2108 	return wrp_cmp_reg(nfp_prog, meta, BR_BGE, true);
2109 }
2110 
2111 static int jset_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2112 {
2113 	return wrp_test_reg(nfp_prog, meta, ALU_OP_AND, BR_BNE);
2114 }
2115 
2116 static int jne_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2117 {
2118 	return wrp_test_reg(nfp_prog, meta, ALU_OP_XOR, BR_BNE);
2119 }
2120 
2121 static int call(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2122 {
2123 	switch (meta->insn.imm) {
2124 	case BPF_FUNC_xdp_adjust_head:
2125 		return adjust_head(nfp_prog, meta);
2126 	case BPF_FUNC_map_lookup_elem:
2127 		return map_lookup_stack(nfp_prog, meta);
2128 	default:
2129 		WARN_ONCE(1, "verifier allowed unsupported function\n");
2130 		return -EOPNOTSUPP;
2131 	}
2132 }
2133 
2134 static int goto_out(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2135 {
2136 	emit_br_relo(nfp_prog, BR_UNC, BR_OFF_RELO, 0, RELO_BR_GO_OUT);
2137 
2138 	return 0;
2139 }
2140 
2141 static const instr_cb_t instr_cb[256] = {
2142 	[BPF_ALU64 | BPF_MOV | BPF_X] =	mov_reg64,
2143 	[BPF_ALU64 | BPF_MOV | BPF_K] =	mov_imm64,
2144 	[BPF_ALU64 | BPF_XOR | BPF_X] =	xor_reg64,
2145 	[BPF_ALU64 | BPF_XOR | BPF_K] =	xor_imm64,
2146 	[BPF_ALU64 | BPF_AND | BPF_X] =	and_reg64,
2147 	[BPF_ALU64 | BPF_AND | BPF_K] =	and_imm64,
2148 	[BPF_ALU64 | BPF_OR | BPF_X] =	or_reg64,
2149 	[BPF_ALU64 | BPF_OR | BPF_K] =	or_imm64,
2150 	[BPF_ALU64 | BPF_ADD | BPF_X] =	add_reg64,
2151 	[BPF_ALU64 | BPF_ADD | BPF_K] =	add_imm64,
2152 	[BPF_ALU64 | BPF_SUB | BPF_X] =	sub_reg64,
2153 	[BPF_ALU64 | BPF_SUB | BPF_K] =	sub_imm64,
2154 	[BPF_ALU64 | BPF_NEG] =		neg_reg64,
2155 	[BPF_ALU64 | BPF_LSH | BPF_K] =	shl_imm64,
2156 	[BPF_ALU64 | BPF_RSH | BPF_K] =	shr_imm64,
2157 	[BPF_ALU | BPF_MOV | BPF_X] =	mov_reg,
2158 	[BPF_ALU | BPF_MOV | BPF_K] =	mov_imm,
2159 	[BPF_ALU | BPF_XOR | BPF_X] =	xor_reg,
2160 	[BPF_ALU | BPF_XOR | BPF_K] =	xor_imm,
2161 	[BPF_ALU | BPF_AND | BPF_X] =	and_reg,
2162 	[BPF_ALU | BPF_AND | BPF_K] =	and_imm,
2163 	[BPF_ALU | BPF_OR | BPF_X] =	or_reg,
2164 	[BPF_ALU | BPF_OR | BPF_K] =	or_imm,
2165 	[BPF_ALU | BPF_ADD | BPF_X] =	add_reg,
2166 	[BPF_ALU | BPF_ADD | BPF_K] =	add_imm,
2167 	[BPF_ALU | BPF_SUB | BPF_X] =	sub_reg,
2168 	[BPF_ALU | BPF_SUB | BPF_K] =	sub_imm,
2169 	[BPF_ALU | BPF_NEG] =		neg_reg,
2170 	[BPF_ALU | BPF_LSH | BPF_K] =	shl_imm,
2171 	[BPF_ALU | BPF_END | BPF_X] =	end_reg32,
2172 	[BPF_LD | BPF_IMM | BPF_DW] =	imm_ld8,
2173 	[BPF_LD | BPF_ABS | BPF_B] =	data_ld1,
2174 	[BPF_LD | BPF_ABS | BPF_H] =	data_ld2,
2175 	[BPF_LD | BPF_ABS | BPF_W] =	data_ld4,
2176 	[BPF_LD | BPF_IND | BPF_B] =	data_ind_ld1,
2177 	[BPF_LD | BPF_IND | BPF_H] =	data_ind_ld2,
2178 	[BPF_LD | BPF_IND | BPF_W] =	data_ind_ld4,
2179 	[BPF_LDX | BPF_MEM | BPF_B] =	mem_ldx1,
2180 	[BPF_LDX | BPF_MEM | BPF_H] =	mem_ldx2,
2181 	[BPF_LDX | BPF_MEM | BPF_W] =	mem_ldx4,
2182 	[BPF_LDX | BPF_MEM | BPF_DW] =	mem_ldx8,
2183 	[BPF_STX | BPF_MEM | BPF_B] =	mem_stx1,
2184 	[BPF_STX | BPF_MEM | BPF_H] =	mem_stx2,
2185 	[BPF_STX | BPF_MEM | BPF_W] =	mem_stx4,
2186 	[BPF_STX | BPF_MEM | BPF_DW] =	mem_stx8,
2187 	[BPF_ST | BPF_MEM | BPF_B] =	mem_st1,
2188 	[BPF_ST | BPF_MEM | BPF_H] =	mem_st2,
2189 	[BPF_ST | BPF_MEM | BPF_W] =	mem_st4,
2190 	[BPF_ST | BPF_MEM | BPF_DW] =	mem_st8,
2191 	[BPF_JMP | BPF_JA | BPF_K] =	jump,
2192 	[BPF_JMP | BPF_JEQ | BPF_K] =	jeq_imm,
2193 	[BPF_JMP | BPF_JGT | BPF_K] =	jgt_imm,
2194 	[BPF_JMP | BPF_JGE | BPF_K] =	jge_imm,
2195 	[BPF_JMP | BPF_JLT | BPF_K] =	jlt_imm,
2196 	[BPF_JMP | BPF_JLE | BPF_K] =	jle_imm,
2197 	[BPF_JMP | BPF_JSGT | BPF_K] =  jsgt_imm,
2198 	[BPF_JMP | BPF_JSGE | BPF_K] =  jsge_imm,
2199 	[BPF_JMP | BPF_JSLT | BPF_K] =  jslt_imm,
2200 	[BPF_JMP | BPF_JSLE | BPF_K] =  jsle_imm,
2201 	[BPF_JMP | BPF_JSET | BPF_K] =	jset_imm,
2202 	[BPF_JMP | BPF_JNE | BPF_K] =	jne_imm,
2203 	[BPF_JMP | BPF_JEQ | BPF_X] =	jeq_reg,
2204 	[BPF_JMP | BPF_JGT | BPF_X] =	jgt_reg,
2205 	[BPF_JMP | BPF_JGE | BPF_X] =	jge_reg,
2206 	[BPF_JMP | BPF_JLT | BPF_X] =	jlt_reg,
2207 	[BPF_JMP | BPF_JLE | BPF_X] =	jle_reg,
2208 	[BPF_JMP | BPF_JSGT | BPF_X] =  jsgt_reg,
2209 	[BPF_JMP | BPF_JSGE | BPF_X] =  jsge_reg,
2210 	[BPF_JMP | BPF_JSLT | BPF_X] =  jslt_reg,
2211 	[BPF_JMP | BPF_JSLE | BPF_X] =  jsle_reg,
2212 	[BPF_JMP | BPF_JSET | BPF_X] =	jset_reg,
2213 	[BPF_JMP | BPF_JNE | BPF_X] =	jne_reg,
2214 	[BPF_JMP | BPF_CALL] =		call,
2215 	[BPF_JMP | BPF_EXIT] =		goto_out,
2216 };
2217 
2218 /* --- Assembler logic --- */
2219 static int nfp_fixup_branches(struct nfp_prog *nfp_prog)
2220 {
2221 	struct nfp_insn_meta *meta, *jmp_dst;
2222 	u32 idx, br_idx;
2223 
2224 	list_for_each_entry(meta, &nfp_prog->insns, l) {
2225 		if (meta->skip)
2226 			continue;
2227 		if (meta->insn.code == (BPF_JMP | BPF_CALL))
2228 			continue;
2229 		if (BPF_CLASS(meta->insn.code) != BPF_JMP)
2230 			continue;
2231 
2232 		if (list_is_last(&meta->l, &nfp_prog->insns))
2233 			br_idx = nfp_prog->last_bpf_off;
2234 		else
2235 			br_idx = list_next_entry(meta, l)->off - 1;
2236 
2237 		if (!nfp_is_br(nfp_prog->prog[br_idx])) {
2238 			pr_err("Fixup found block not ending in branch %d %02x %016llx!!\n",
2239 			       br_idx, meta->insn.code, nfp_prog->prog[br_idx]);
2240 			return -ELOOP;
2241 		}
2242 		/* Leave special branches for later */
2243 		if (FIELD_GET(OP_RELO_TYPE, nfp_prog->prog[br_idx]) !=
2244 		    RELO_BR_REL)
2245 			continue;
2246 
2247 		if (!meta->jmp_dst) {
2248 			pr_err("Non-exit jump doesn't have destination info recorded!!\n");
2249 			return -ELOOP;
2250 		}
2251 
2252 		jmp_dst = meta->jmp_dst;
2253 
2254 		if (jmp_dst->skip) {
2255 			pr_err("Branch landing on removed instruction!!\n");
2256 			return -ELOOP;
2257 		}
2258 
2259 		for (idx = meta->off; idx <= br_idx; idx++) {
2260 			if (!nfp_is_br(nfp_prog->prog[idx]))
2261 				continue;
2262 			br_set_offset(&nfp_prog->prog[idx], jmp_dst->off);
2263 		}
2264 	}
2265 
2266 	return 0;
2267 }
2268 
2269 static void nfp_intro(struct nfp_prog *nfp_prog)
2270 {
2271 	wrp_immed(nfp_prog, plen_reg(nfp_prog), GENMASK(13, 0));
2272 	emit_alu(nfp_prog, plen_reg(nfp_prog),
2273 		 plen_reg(nfp_prog), ALU_OP_AND, pv_len(nfp_prog));
2274 }
2275 
2276 static void nfp_outro_tc_da(struct nfp_prog *nfp_prog)
2277 {
2278 	/* TC direct-action mode:
2279 	 *   0,1   ok        NOT SUPPORTED[1]
2280 	 *   2   drop  0x22 -> drop,  count as stat1
2281 	 *   4,5 nuke  0x02 -> drop
2282 	 *   7  redir  0x44 -> redir, count as stat2
2283 	 *   * unspec  0x11 -> pass,  count as stat0
2284 	 *
2285 	 * [1] We can't support OK and RECLASSIFY because we can't tell TC
2286 	 *     the exact decision made.  We are forced to support UNSPEC
2287 	 *     to handle aborts so that's the only one we handle for passing
2288 	 *     packets up the stack.
2289 	 */
2290 	/* Target for aborts */
2291 	nfp_prog->tgt_abort = nfp_prog_current_offset(nfp_prog);
2292 
2293 	emit_br_relo(nfp_prog, BR_UNC, BR_OFF_RELO, 2, RELO_BR_NEXT_PKT);
2294 
2295 	wrp_mov(nfp_prog, reg_a(0), NFP_BPF_ABI_FLAGS);
2296 	emit_ld_field(nfp_prog, reg_a(0), 0xc, reg_imm(0x11), SHF_SC_L_SHF, 16);
2297 
2298 	/* Target for normal exits */
2299 	nfp_prog->tgt_out = nfp_prog_current_offset(nfp_prog);
2300 
2301 	/* if R0 > 7 jump to abort */
2302 	emit_alu(nfp_prog, reg_none(), reg_imm(7), ALU_OP_SUB, reg_b(0));
2303 	emit_br(nfp_prog, BR_BLO, nfp_prog->tgt_abort, 0);
2304 	wrp_mov(nfp_prog, reg_a(0), NFP_BPF_ABI_FLAGS);
2305 
2306 	wrp_immed(nfp_prog, reg_b(2), 0x41221211);
2307 	wrp_immed(nfp_prog, reg_b(3), 0x41001211);
2308 
2309 	emit_shf(nfp_prog, reg_a(1),
2310 		 reg_none(), SHF_OP_NONE, reg_b(0), SHF_SC_L_SHF, 2);
2311 
2312 	emit_alu(nfp_prog, reg_none(), reg_a(1), ALU_OP_OR, reg_imm(0));
2313 	emit_shf(nfp_prog, reg_a(2),
2314 		 reg_imm(0xf), SHF_OP_AND, reg_b(2), SHF_SC_R_SHF, 0);
2315 
2316 	emit_alu(nfp_prog, reg_none(), reg_a(1), ALU_OP_OR, reg_imm(0));
2317 	emit_shf(nfp_prog, reg_b(2),
2318 		 reg_imm(0xf), SHF_OP_AND, reg_b(3), SHF_SC_R_SHF, 0);
2319 
2320 	emit_br_relo(nfp_prog, BR_UNC, BR_OFF_RELO, 2, RELO_BR_NEXT_PKT);
2321 
2322 	emit_shf(nfp_prog, reg_b(2),
2323 		 reg_a(2), SHF_OP_OR, reg_b(2), SHF_SC_L_SHF, 4);
2324 	emit_ld_field(nfp_prog, reg_a(0), 0xc, reg_b(2), SHF_SC_L_SHF, 16);
2325 }
2326 
2327 static void nfp_outro_xdp(struct nfp_prog *nfp_prog)
2328 {
2329 	/* XDP return codes:
2330 	 *   0 aborted  0x82 -> drop,  count as stat3
2331 	 *   1    drop  0x22 -> drop,  count as stat1
2332 	 *   2    pass  0x11 -> pass,  count as stat0
2333 	 *   3      tx  0x44 -> redir, count as stat2
2334 	 *   * unknown  0x82 -> drop,  count as stat3
2335 	 */
2336 	/* Target for aborts */
2337 	nfp_prog->tgt_abort = nfp_prog_current_offset(nfp_prog);
2338 
2339 	emit_br_relo(nfp_prog, BR_UNC, BR_OFF_RELO, 2, RELO_BR_NEXT_PKT);
2340 
2341 	wrp_mov(nfp_prog, reg_a(0), NFP_BPF_ABI_FLAGS);
2342 	emit_ld_field(nfp_prog, reg_a(0), 0xc, reg_imm(0x82), SHF_SC_L_SHF, 16);
2343 
2344 	/* Target for normal exits */
2345 	nfp_prog->tgt_out = nfp_prog_current_offset(nfp_prog);
2346 
2347 	/* if R0 > 3 jump to abort */
2348 	emit_alu(nfp_prog, reg_none(), reg_imm(3), ALU_OP_SUB, reg_b(0));
2349 	emit_br(nfp_prog, BR_BLO, nfp_prog->tgt_abort, 0);
2350 
2351 	wrp_immed(nfp_prog, reg_b(2), 0x44112282);
2352 
2353 	emit_shf(nfp_prog, reg_a(1),
2354 		 reg_none(), SHF_OP_NONE, reg_b(0), SHF_SC_L_SHF, 3);
2355 
2356 	emit_alu(nfp_prog, reg_none(), reg_a(1), ALU_OP_OR, reg_imm(0));
2357 	emit_shf(nfp_prog, reg_b(2),
2358 		 reg_imm(0xff), SHF_OP_AND, reg_b(2), SHF_SC_R_SHF, 0);
2359 
2360 	emit_br_relo(nfp_prog, BR_UNC, BR_OFF_RELO, 2, RELO_BR_NEXT_PKT);
2361 
2362 	wrp_mov(nfp_prog, reg_a(0), NFP_BPF_ABI_FLAGS);
2363 	emit_ld_field(nfp_prog, reg_a(0), 0xc, reg_b(2), SHF_SC_L_SHF, 16);
2364 }
2365 
2366 static void nfp_outro(struct nfp_prog *nfp_prog)
2367 {
2368 	switch (nfp_prog->type) {
2369 	case BPF_PROG_TYPE_SCHED_CLS:
2370 		nfp_outro_tc_da(nfp_prog);
2371 		break;
2372 	case BPF_PROG_TYPE_XDP:
2373 		nfp_outro_xdp(nfp_prog);
2374 		break;
2375 	default:
2376 		WARN_ON(1);
2377 	}
2378 }
2379 
2380 static int nfp_translate(struct nfp_prog *nfp_prog)
2381 {
2382 	struct nfp_insn_meta *meta;
2383 	int err;
2384 
2385 	nfp_intro(nfp_prog);
2386 	if (nfp_prog->error)
2387 		return nfp_prog->error;
2388 
2389 	list_for_each_entry(meta, &nfp_prog->insns, l) {
2390 		instr_cb_t cb = instr_cb[meta->insn.code];
2391 
2392 		meta->off = nfp_prog_current_offset(nfp_prog);
2393 
2394 		if (meta->skip) {
2395 			nfp_prog->n_translated++;
2396 			continue;
2397 		}
2398 
2399 		if (nfp_meta_has_prev(nfp_prog, meta) &&
2400 		    nfp_meta_prev(meta)->double_cb)
2401 			cb = nfp_meta_prev(meta)->double_cb;
2402 		if (!cb)
2403 			return -ENOENT;
2404 		err = cb(nfp_prog, meta);
2405 		if (err)
2406 			return err;
2407 
2408 		nfp_prog->n_translated++;
2409 	}
2410 
2411 	nfp_prog->last_bpf_off = nfp_prog_current_offset(nfp_prog) - 1;
2412 
2413 	nfp_outro(nfp_prog);
2414 	if (nfp_prog->error)
2415 		return nfp_prog->error;
2416 
2417 	wrp_nops(nfp_prog, NFP_USTORE_PREFETCH_WINDOW);
2418 	if (nfp_prog->error)
2419 		return nfp_prog->error;
2420 
2421 	return nfp_fixup_branches(nfp_prog);
2422 }
2423 
2424 /* --- Optimizations --- */
2425 static void nfp_bpf_opt_reg_init(struct nfp_prog *nfp_prog)
2426 {
2427 	struct nfp_insn_meta *meta;
2428 
2429 	list_for_each_entry(meta, &nfp_prog->insns, l) {
2430 		struct bpf_insn insn = meta->insn;
2431 
2432 		/* Programs converted from cBPF start with register xoring */
2433 		if (insn.code == (BPF_ALU64 | BPF_XOR | BPF_X) &&
2434 		    insn.src_reg == insn.dst_reg)
2435 			continue;
2436 
2437 		/* Programs start with R6 = R1 but we ignore the skb pointer */
2438 		if (insn.code == (BPF_ALU64 | BPF_MOV | BPF_X) &&
2439 		    insn.src_reg == 1 && insn.dst_reg == 6)
2440 			meta->skip = true;
2441 
2442 		/* Return as soon as something doesn't match */
2443 		if (!meta->skip)
2444 			return;
2445 	}
2446 }
2447 
2448 /* Remove masking after load since our load guarantees this is not needed */
2449 static void nfp_bpf_opt_ld_mask(struct nfp_prog *nfp_prog)
2450 {
2451 	struct nfp_insn_meta *meta1, *meta2;
2452 	const s32 exp_mask[] = {
2453 		[BPF_B] = 0x000000ffU,
2454 		[BPF_H] = 0x0000ffffU,
2455 		[BPF_W] = 0xffffffffU,
2456 	};
2457 
2458 	nfp_for_each_insn_walk2(nfp_prog, meta1, meta2) {
2459 		struct bpf_insn insn, next;
2460 
2461 		insn = meta1->insn;
2462 		next = meta2->insn;
2463 
2464 		if (BPF_CLASS(insn.code) != BPF_LD)
2465 			continue;
2466 		if (BPF_MODE(insn.code) != BPF_ABS &&
2467 		    BPF_MODE(insn.code) != BPF_IND)
2468 			continue;
2469 
2470 		if (next.code != (BPF_ALU64 | BPF_AND | BPF_K))
2471 			continue;
2472 
2473 		if (!exp_mask[BPF_SIZE(insn.code)])
2474 			continue;
2475 		if (exp_mask[BPF_SIZE(insn.code)] != next.imm)
2476 			continue;
2477 
2478 		if (next.src_reg || next.dst_reg)
2479 			continue;
2480 
2481 		if (meta2->flags & FLAG_INSN_IS_JUMP_DST)
2482 			continue;
2483 
2484 		meta2->skip = true;
2485 	}
2486 }
2487 
2488 static void nfp_bpf_opt_ld_shift(struct nfp_prog *nfp_prog)
2489 {
2490 	struct nfp_insn_meta *meta1, *meta2, *meta3;
2491 
2492 	nfp_for_each_insn_walk3(nfp_prog, meta1, meta2, meta3) {
2493 		struct bpf_insn insn, next1, next2;
2494 
2495 		insn = meta1->insn;
2496 		next1 = meta2->insn;
2497 		next2 = meta3->insn;
2498 
2499 		if (BPF_CLASS(insn.code) != BPF_LD)
2500 			continue;
2501 		if (BPF_MODE(insn.code) != BPF_ABS &&
2502 		    BPF_MODE(insn.code) != BPF_IND)
2503 			continue;
2504 		if (BPF_SIZE(insn.code) != BPF_W)
2505 			continue;
2506 
2507 		if (!(next1.code == (BPF_LSH | BPF_K | BPF_ALU64) &&
2508 		      next2.code == (BPF_RSH | BPF_K | BPF_ALU64)) &&
2509 		    !(next1.code == (BPF_RSH | BPF_K | BPF_ALU64) &&
2510 		      next2.code == (BPF_LSH | BPF_K | BPF_ALU64)))
2511 			continue;
2512 
2513 		if (next1.src_reg || next1.dst_reg ||
2514 		    next2.src_reg || next2.dst_reg)
2515 			continue;
2516 
2517 		if (next1.imm != 0x20 || next2.imm != 0x20)
2518 			continue;
2519 
2520 		if (meta2->flags & FLAG_INSN_IS_JUMP_DST ||
2521 		    meta3->flags & FLAG_INSN_IS_JUMP_DST)
2522 			continue;
2523 
2524 		meta2->skip = true;
2525 		meta3->skip = true;
2526 	}
2527 }
2528 
2529 /* load/store pair that forms memory copy sould look like the following:
2530  *
2531  *   ld_width R, [addr_src + offset_src]
2532  *   st_width [addr_dest + offset_dest], R
2533  *
2534  * The destination register of load and source register of store should
2535  * be the same, load and store should also perform at the same width.
2536  * If either of addr_src or addr_dest is stack pointer, we don't do the
2537  * CPP optimization as stack is modelled by registers on NFP.
2538  */
2539 static bool
2540 curr_pair_is_memcpy(struct nfp_insn_meta *ld_meta,
2541 		    struct nfp_insn_meta *st_meta)
2542 {
2543 	struct bpf_insn *ld = &ld_meta->insn;
2544 	struct bpf_insn *st = &st_meta->insn;
2545 
2546 	if (!is_mbpf_load(ld_meta) || !is_mbpf_store(st_meta))
2547 		return false;
2548 
2549 	if (ld_meta->ptr.type != PTR_TO_PACKET)
2550 		return false;
2551 
2552 	if (st_meta->ptr.type != PTR_TO_PACKET)
2553 		return false;
2554 
2555 	if (BPF_SIZE(ld->code) != BPF_SIZE(st->code))
2556 		return false;
2557 
2558 	if (ld->dst_reg != st->src_reg)
2559 		return false;
2560 
2561 	/* There is jump to the store insn in this pair. */
2562 	if (st_meta->flags & FLAG_INSN_IS_JUMP_DST)
2563 		return false;
2564 
2565 	return true;
2566 }
2567 
2568 /* Currently, we only support chaining load/store pairs if:
2569  *
2570  *  - Their address base registers are the same.
2571  *  - Their address offsets are in the same order.
2572  *  - They operate at the same memory width.
2573  *  - There is no jump into the middle of them.
2574  */
2575 static bool
2576 curr_pair_chain_with_previous(struct nfp_insn_meta *ld_meta,
2577 			      struct nfp_insn_meta *st_meta,
2578 			      struct bpf_insn *prev_ld,
2579 			      struct bpf_insn *prev_st)
2580 {
2581 	u8 prev_size, curr_size, prev_ld_base, prev_st_base, prev_ld_dst;
2582 	struct bpf_insn *ld = &ld_meta->insn;
2583 	struct bpf_insn *st = &st_meta->insn;
2584 	s16 prev_ld_off, prev_st_off;
2585 
2586 	/* This pair is the start pair. */
2587 	if (!prev_ld)
2588 		return true;
2589 
2590 	prev_size = BPF_LDST_BYTES(prev_ld);
2591 	curr_size = BPF_LDST_BYTES(ld);
2592 	prev_ld_base = prev_ld->src_reg;
2593 	prev_st_base = prev_st->dst_reg;
2594 	prev_ld_dst = prev_ld->dst_reg;
2595 	prev_ld_off = prev_ld->off;
2596 	prev_st_off = prev_st->off;
2597 
2598 	if (ld->dst_reg != prev_ld_dst)
2599 		return false;
2600 
2601 	if (ld->src_reg != prev_ld_base || st->dst_reg != prev_st_base)
2602 		return false;
2603 
2604 	if (curr_size != prev_size)
2605 		return false;
2606 
2607 	/* There is jump to the head of this pair. */
2608 	if (ld_meta->flags & FLAG_INSN_IS_JUMP_DST)
2609 		return false;
2610 
2611 	/* Both in ascending order. */
2612 	if (prev_ld_off + prev_size == ld->off &&
2613 	    prev_st_off + prev_size == st->off)
2614 		return true;
2615 
2616 	/* Both in descending order. */
2617 	if (ld->off + curr_size == prev_ld_off &&
2618 	    st->off + curr_size == prev_st_off)
2619 		return true;
2620 
2621 	return false;
2622 }
2623 
2624 /* Return TRUE if cross memory access happens. Cross memory access means
2625  * store area is overlapping with load area that a later load might load
2626  * the value from previous store, for this case we can't treat the sequence
2627  * as an memory copy.
2628  */
2629 static bool
2630 cross_mem_access(struct bpf_insn *ld, struct nfp_insn_meta *head_ld_meta,
2631 		 struct nfp_insn_meta *head_st_meta)
2632 {
2633 	s16 head_ld_off, head_st_off, ld_off;
2634 
2635 	/* Different pointer types does not overlap. */
2636 	if (head_ld_meta->ptr.type != head_st_meta->ptr.type)
2637 		return false;
2638 
2639 	/* load and store are both PTR_TO_PACKET, check ID info.  */
2640 	if (head_ld_meta->ptr.id != head_st_meta->ptr.id)
2641 		return true;
2642 
2643 	/* Canonicalize the offsets. Turn all of them against the original
2644 	 * base register.
2645 	 */
2646 	head_ld_off = head_ld_meta->insn.off + head_ld_meta->ptr.off;
2647 	head_st_off = head_st_meta->insn.off + head_st_meta->ptr.off;
2648 	ld_off = ld->off + head_ld_meta->ptr.off;
2649 
2650 	/* Ascending order cross. */
2651 	if (ld_off > head_ld_off &&
2652 	    head_ld_off < head_st_off && ld_off >= head_st_off)
2653 		return true;
2654 
2655 	/* Descending order cross. */
2656 	if (ld_off < head_ld_off &&
2657 	    head_ld_off > head_st_off && ld_off <= head_st_off)
2658 		return true;
2659 
2660 	return false;
2661 }
2662 
2663 /* This pass try to identify the following instructoin sequences.
2664  *
2665  *   load R, [regA + offA]
2666  *   store [regB + offB], R
2667  *   load R, [regA + offA + const_imm_A]
2668  *   store [regB + offB + const_imm_A], R
2669  *   load R, [regA + offA + 2 * const_imm_A]
2670  *   store [regB + offB + 2 * const_imm_A], R
2671  *   ...
2672  *
2673  * Above sequence is typically generated by compiler when lowering
2674  * memcpy. NFP prefer using CPP instructions to accelerate it.
2675  */
2676 static void nfp_bpf_opt_ldst_gather(struct nfp_prog *nfp_prog)
2677 {
2678 	struct nfp_insn_meta *head_ld_meta = NULL;
2679 	struct nfp_insn_meta *head_st_meta = NULL;
2680 	struct nfp_insn_meta *meta1, *meta2;
2681 	struct bpf_insn *prev_ld = NULL;
2682 	struct bpf_insn *prev_st = NULL;
2683 	u8 count = 0;
2684 
2685 	nfp_for_each_insn_walk2(nfp_prog, meta1, meta2) {
2686 		struct bpf_insn *ld = &meta1->insn;
2687 		struct bpf_insn *st = &meta2->insn;
2688 
2689 		/* Reset record status if any of the following if true:
2690 		 *   - The current insn pair is not load/store.
2691 		 *   - The load/store pair doesn't chain with previous one.
2692 		 *   - The chained load/store pair crossed with previous pair.
2693 		 *   - The chained load/store pair has a total size of memory
2694 		 *     copy beyond 128 bytes which is the maximum length a
2695 		 *     single NFP CPP command can transfer.
2696 		 */
2697 		if (!curr_pair_is_memcpy(meta1, meta2) ||
2698 		    !curr_pair_chain_with_previous(meta1, meta2, prev_ld,
2699 						   prev_st) ||
2700 		    (head_ld_meta && (cross_mem_access(ld, head_ld_meta,
2701 						       head_st_meta) ||
2702 				      head_ld_meta->ldst_gather_len >= 128))) {
2703 			if (!count)
2704 				continue;
2705 
2706 			if (count > 1) {
2707 				s16 prev_ld_off = prev_ld->off;
2708 				s16 prev_st_off = prev_st->off;
2709 				s16 head_ld_off = head_ld_meta->insn.off;
2710 
2711 				if (prev_ld_off < head_ld_off) {
2712 					head_ld_meta->insn.off = prev_ld_off;
2713 					head_st_meta->insn.off = prev_st_off;
2714 					head_ld_meta->ldst_gather_len =
2715 						-head_ld_meta->ldst_gather_len;
2716 				}
2717 
2718 				head_ld_meta->paired_st = &head_st_meta->insn;
2719 				head_st_meta->skip = true;
2720 			} else {
2721 				head_ld_meta->ldst_gather_len = 0;
2722 			}
2723 
2724 			/* If the chain is ended by an load/store pair then this
2725 			 * could serve as the new head of the the next chain.
2726 			 */
2727 			if (curr_pair_is_memcpy(meta1, meta2)) {
2728 				head_ld_meta = meta1;
2729 				head_st_meta = meta2;
2730 				head_ld_meta->ldst_gather_len =
2731 					BPF_LDST_BYTES(ld);
2732 				meta1 = nfp_meta_next(meta1);
2733 				meta2 = nfp_meta_next(meta2);
2734 				prev_ld = ld;
2735 				prev_st = st;
2736 				count = 1;
2737 			} else {
2738 				head_ld_meta = NULL;
2739 				head_st_meta = NULL;
2740 				prev_ld = NULL;
2741 				prev_st = NULL;
2742 				count = 0;
2743 			}
2744 
2745 			continue;
2746 		}
2747 
2748 		if (!head_ld_meta) {
2749 			head_ld_meta = meta1;
2750 			head_st_meta = meta2;
2751 		} else {
2752 			meta1->skip = true;
2753 			meta2->skip = true;
2754 		}
2755 
2756 		head_ld_meta->ldst_gather_len += BPF_LDST_BYTES(ld);
2757 		meta1 = nfp_meta_next(meta1);
2758 		meta2 = nfp_meta_next(meta2);
2759 		prev_ld = ld;
2760 		prev_st = st;
2761 		count++;
2762 	}
2763 }
2764 
2765 static int nfp_bpf_optimize(struct nfp_prog *nfp_prog)
2766 {
2767 	nfp_bpf_opt_reg_init(nfp_prog);
2768 
2769 	nfp_bpf_opt_ld_mask(nfp_prog);
2770 	nfp_bpf_opt_ld_shift(nfp_prog);
2771 	nfp_bpf_opt_ldst_gather(nfp_prog);
2772 
2773 	return 0;
2774 }
2775 
2776 static int nfp_bpf_ustore_calc(u64 *prog, unsigned int len)
2777 {
2778 	__le64 *ustore = (__force __le64 *)prog;
2779 	int i;
2780 
2781 	for (i = 0; i < len; i++) {
2782 		int err;
2783 
2784 		err = nfp_ustore_check_valid_no_ecc(prog[i]);
2785 		if (err)
2786 			return err;
2787 
2788 		ustore[i] = cpu_to_le64(nfp_ustore_calc_ecc_insn(prog[i]));
2789 	}
2790 
2791 	return 0;
2792 }
2793 
2794 static void nfp_bpf_prog_trim(struct nfp_prog *nfp_prog)
2795 {
2796 	void *prog;
2797 
2798 	prog = kvmalloc_array(nfp_prog->prog_len, sizeof(u64), GFP_KERNEL);
2799 	if (!prog)
2800 		return;
2801 
2802 	nfp_prog->__prog_alloc_len = nfp_prog->prog_len * sizeof(u64);
2803 	memcpy(prog, nfp_prog->prog, nfp_prog->__prog_alloc_len);
2804 	kvfree(nfp_prog->prog);
2805 	nfp_prog->prog = prog;
2806 }
2807 
2808 int nfp_bpf_jit(struct nfp_prog *nfp_prog)
2809 {
2810 	int ret;
2811 
2812 	ret = nfp_bpf_optimize(nfp_prog);
2813 	if (ret)
2814 		return ret;
2815 
2816 	ret = nfp_translate(nfp_prog);
2817 	if (ret) {
2818 		pr_err("Translation failed with error %d (translated: %u)\n",
2819 		       ret, nfp_prog->n_translated);
2820 		return -EINVAL;
2821 	}
2822 
2823 	nfp_bpf_prog_trim(nfp_prog);
2824 
2825 	return ret;
2826 }
2827 
2828 void nfp_bpf_jit_prepare(struct nfp_prog *nfp_prog, unsigned int cnt)
2829 {
2830 	struct nfp_insn_meta *meta;
2831 
2832 	/* Another pass to record jump information. */
2833 	list_for_each_entry(meta, &nfp_prog->insns, l) {
2834 		u64 code = meta->insn.code;
2835 
2836 		if (BPF_CLASS(code) == BPF_JMP && BPF_OP(code) != BPF_EXIT &&
2837 		    BPF_OP(code) != BPF_CALL) {
2838 			struct nfp_insn_meta *dst_meta;
2839 			unsigned short dst_indx;
2840 
2841 			dst_indx = meta->n + 1 + meta->insn.off;
2842 			dst_meta = nfp_bpf_goto_meta(nfp_prog, meta, dst_indx,
2843 						     cnt);
2844 
2845 			meta->jmp_dst = dst_meta;
2846 			dst_meta->flags |= FLAG_INSN_IS_JUMP_DST;
2847 		}
2848 	}
2849 }
2850 
2851 void *nfp_bpf_relo_for_vnic(struct nfp_prog *nfp_prog, struct nfp_bpf_vnic *bv)
2852 {
2853 	unsigned int i;
2854 	u64 *prog;
2855 	int err;
2856 
2857 	prog = kmemdup(nfp_prog->prog, nfp_prog->prog_len * sizeof(u64),
2858 		       GFP_KERNEL);
2859 	if (!prog)
2860 		return ERR_PTR(-ENOMEM);
2861 
2862 	for (i = 0; i < nfp_prog->prog_len; i++) {
2863 		enum nfp_relo_type special;
2864 		u32 val;
2865 
2866 		special = FIELD_GET(OP_RELO_TYPE, prog[i]);
2867 		switch (special) {
2868 		case RELO_NONE:
2869 			continue;
2870 		case RELO_BR_REL:
2871 			br_add_offset(&prog[i], bv->start_off);
2872 			break;
2873 		case RELO_BR_GO_OUT:
2874 			br_set_offset(&prog[i],
2875 				      nfp_prog->tgt_out + bv->start_off);
2876 			break;
2877 		case RELO_BR_GO_ABORT:
2878 			br_set_offset(&prog[i],
2879 				      nfp_prog->tgt_abort + bv->start_off);
2880 			break;
2881 		case RELO_BR_NEXT_PKT:
2882 			br_set_offset(&prog[i], bv->tgt_done);
2883 			break;
2884 		case RELO_BR_HELPER:
2885 			val = br_get_offset(prog[i]);
2886 			val -= BR_OFF_RELO;
2887 			switch (val) {
2888 			case BPF_FUNC_map_lookup_elem:
2889 				val = nfp_prog->bpf->helpers.map_lookup;
2890 				break;
2891 			default:
2892 				pr_err("relocation of unknown helper %d\n",
2893 				       val);
2894 				err = -EINVAL;
2895 				goto err_free_prog;
2896 			}
2897 			br_set_offset(&prog[i], val);
2898 			break;
2899 		case RELO_IMMED_REL:
2900 			immed_add_value(&prog[i], bv->start_off);
2901 			break;
2902 		}
2903 
2904 		prog[i] &= ~OP_RELO_TYPE;
2905 	}
2906 
2907 	err = nfp_bpf_ustore_calc(prog, nfp_prog->prog_len);
2908 	if (err)
2909 		goto err_free_prog;
2910 
2911 	return prog;
2912 
2913 err_free_prog:
2914 	kfree(prog);
2915 	return ERR_PTR(err);
2916 }
2917