1 /* 2 * Copyright (C) 2016-2018 Netronome Systems, Inc. 3 * 4 * This software is dual licensed under the GNU General License Version 2, 5 * June 1991 as shown in the file COPYING in the top-level directory of this 6 * source tree or the BSD 2-Clause License provided below. You have the 7 * option to license this software under the complete terms of either license. 8 * 9 * The BSD 2-Clause License: 10 * 11 * Redistribution and use in source and binary forms, with or 12 * without modification, are permitted provided that the following 13 * conditions are met: 14 * 15 * 1. Redistributions of source code must retain the above 16 * copyright notice, this list of conditions and the following 17 * disclaimer. 18 * 19 * 2. Redistributions in binary form must reproduce the above 20 * copyright notice, this list of conditions and the following 21 * disclaimer in the documentation and/or other materials 22 * provided with the distribution. 23 * 24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 31 * SOFTWARE. 32 */ 33 34 #define pr_fmt(fmt) "NFP net bpf: " fmt 35 36 #include <linux/bug.h> 37 #include <linux/bpf.h> 38 #include <linux/filter.h> 39 #include <linux/kernel.h> 40 #include <linux/pkt_cls.h> 41 #include <linux/reciprocal_div.h> 42 #include <linux/unistd.h> 43 44 #include "main.h" 45 #include "../nfp_asm.h" 46 #include "../nfp_net_ctrl.h" 47 48 /* --- NFP prog --- */ 49 /* Foreach "multiple" entries macros provide pos and next<n> pointers. 50 * It's safe to modify the next pointers (but not pos). 51 */ 52 #define nfp_for_each_insn_walk2(nfp_prog, pos, next) \ 53 for (pos = list_first_entry(&(nfp_prog)->insns, typeof(*pos), l), \ 54 next = list_next_entry(pos, l); \ 55 &(nfp_prog)->insns != &pos->l && \ 56 &(nfp_prog)->insns != &next->l; \ 57 pos = nfp_meta_next(pos), \ 58 next = nfp_meta_next(pos)) 59 60 #define nfp_for_each_insn_walk3(nfp_prog, pos, next, next2) \ 61 for (pos = list_first_entry(&(nfp_prog)->insns, typeof(*pos), l), \ 62 next = list_next_entry(pos, l), \ 63 next2 = list_next_entry(next, l); \ 64 &(nfp_prog)->insns != &pos->l && \ 65 &(nfp_prog)->insns != &next->l && \ 66 &(nfp_prog)->insns != &next2->l; \ 67 pos = nfp_meta_next(pos), \ 68 next = nfp_meta_next(pos), \ 69 next2 = nfp_meta_next(next)) 70 71 static bool 72 nfp_meta_has_prev(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) 73 { 74 return meta->l.prev != &nfp_prog->insns; 75 } 76 77 static void nfp_prog_push(struct nfp_prog *nfp_prog, u64 insn) 78 { 79 if (nfp_prog->__prog_alloc_len / sizeof(u64) == nfp_prog->prog_len) { 80 pr_warn("instruction limit reached (%u NFP instructions)\n", 81 nfp_prog->prog_len); 82 nfp_prog->error = -ENOSPC; 83 return; 84 } 85 86 nfp_prog->prog[nfp_prog->prog_len] = insn; 87 nfp_prog->prog_len++; 88 } 89 90 static unsigned int nfp_prog_current_offset(struct nfp_prog *nfp_prog) 91 { 92 return nfp_prog->prog_len; 93 } 94 95 static bool 96 nfp_prog_confirm_current_offset(struct nfp_prog *nfp_prog, unsigned int off) 97 { 98 /* If there is a recorded error we may have dropped instructions; 99 * that doesn't have to be due to translator bug, and the translation 100 * will fail anyway, so just return OK. 101 */ 102 if (nfp_prog->error) 103 return true; 104 return !WARN_ON_ONCE(nfp_prog_current_offset(nfp_prog) != off); 105 } 106 107 /* --- Emitters --- */ 108 static void 109 __emit_cmd(struct nfp_prog *nfp_prog, enum cmd_tgt_map op, 110 u8 mode, u8 xfer, u8 areg, u8 breg, u8 size, enum cmd_ctx_swap ctx, 111 bool indir) 112 { 113 u64 insn; 114 115 insn = FIELD_PREP(OP_CMD_A_SRC, areg) | 116 FIELD_PREP(OP_CMD_CTX, ctx) | 117 FIELD_PREP(OP_CMD_B_SRC, breg) | 118 FIELD_PREP(OP_CMD_TOKEN, cmd_tgt_act[op].token) | 119 FIELD_PREP(OP_CMD_XFER, xfer) | 120 FIELD_PREP(OP_CMD_CNT, size) | 121 FIELD_PREP(OP_CMD_SIG, ctx != CMD_CTX_NO_SWAP) | 122 FIELD_PREP(OP_CMD_TGT_CMD, cmd_tgt_act[op].tgt_cmd) | 123 FIELD_PREP(OP_CMD_INDIR, indir) | 124 FIELD_PREP(OP_CMD_MODE, mode); 125 126 nfp_prog_push(nfp_prog, insn); 127 } 128 129 static void 130 emit_cmd_any(struct nfp_prog *nfp_prog, enum cmd_tgt_map op, u8 mode, u8 xfer, 131 swreg lreg, swreg rreg, u8 size, enum cmd_ctx_swap ctx, bool indir) 132 { 133 struct nfp_insn_re_regs reg; 134 int err; 135 136 err = swreg_to_restricted(reg_none(), lreg, rreg, ®, false); 137 if (err) { 138 nfp_prog->error = err; 139 return; 140 } 141 if (reg.swap) { 142 pr_err("cmd can't swap arguments\n"); 143 nfp_prog->error = -EFAULT; 144 return; 145 } 146 if (reg.dst_lmextn || reg.src_lmextn) { 147 pr_err("cmd can't use LMextn\n"); 148 nfp_prog->error = -EFAULT; 149 return; 150 } 151 152 __emit_cmd(nfp_prog, op, mode, xfer, reg.areg, reg.breg, size, ctx, 153 indir); 154 } 155 156 static void 157 emit_cmd(struct nfp_prog *nfp_prog, enum cmd_tgt_map op, u8 mode, u8 xfer, 158 swreg lreg, swreg rreg, u8 size, enum cmd_ctx_swap ctx) 159 { 160 emit_cmd_any(nfp_prog, op, mode, xfer, lreg, rreg, size, ctx, false); 161 } 162 163 static void 164 emit_cmd_indir(struct nfp_prog *nfp_prog, enum cmd_tgt_map op, u8 mode, u8 xfer, 165 swreg lreg, swreg rreg, u8 size, enum cmd_ctx_swap ctx) 166 { 167 emit_cmd_any(nfp_prog, op, mode, xfer, lreg, rreg, size, ctx, true); 168 } 169 170 static void 171 __emit_br(struct nfp_prog *nfp_prog, enum br_mask mask, enum br_ev_pip ev_pip, 172 enum br_ctx_signal_state css, u16 addr, u8 defer) 173 { 174 u16 addr_lo, addr_hi; 175 u64 insn; 176 177 addr_lo = addr & (OP_BR_ADDR_LO >> __bf_shf(OP_BR_ADDR_LO)); 178 addr_hi = addr != addr_lo; 179 180 insn = OP_BR_BASE | 181 FIELD_PREP(OP_BR_MASK, mask) | 182 FIELD_PREP(OP_BR_EV_PIP, ev_pip) | 183 FIELD_PREP(OP_BR_CSS, css) | 184 FIELD_PREP(OP_BR_DEFBR, defer) | 185 FIELD_PREP(OP_BR_ADDR_LO, addr_lo) | 186 FIELD_PREP(OP_BR_ADDR_HI, addr_hi); 187 188 nfp_prog_push(nfp_prog, insn); 189 } 190 191 static void 192 emit_br_relo(struct nfp_prog *nfp_prog, enum br_mask mask, u16 addr, u8 defer, 193 enum nfp_relo_type relo) 194 { 195 if (mask == BR_UNC && defer > 2) { 196 pr_err("BUG: branch defer out of bounds %d\n", defer); 197 nfp_prog->error = -EFAULT; 198 return; 199 } 200 201 __emit_br(nfp_prog, mask, 202 mask != BR_UNC ? BR_EV_PIP_COND : BR_EV_PIP_UNCOND, 203 BR_CSS_NONE, addr, defer); 204 205 nfp_prog->prog[nfp_prog->prog_len - 1] |= 206 FIELD_PREP(OP_RELO_TYPE, relo); 207 } 208 209 static void 210 emit_br(struct nfp_prog *nfp_prog, enum br_mask mask, u16 addr, u8 defer) 211 { 212 emit_br_relo(nfp_prog, mask, addr, defer, RELO_BR_REL); 213 } 214 215 static void 216 __emit_br_bit(struct nfp_prog *nfp_prog, u16 areg, u16 breg, u16 addr, u8 defer, 217 bool set, bool src_lmextn) 218 { 219 u16 addr_lo, addr_hi; 220 u64 insn; 221 222 addr_lo = addr & (OP_BR_BIT_ADDR_LO >> __bf_shf(OP_BR_BIT_ADDR_LO)); 223 addr_hi = addr != addr_lo; 224 225 insn = OP_BR_BIT_BASE | 226 FIELD_PREP(OP_BR_BIT_A_SRC, areg) | 227 FIELD_PREP(OP_BR_BIT_B_SRC, breg) | 228 FIELD_PREP(OP_BR_BIT_BV, set) | 229 FIELD_PREP(OP_BR_BIT_DEFBR, defer) | 230 FIELD_PREP(OP_BR_BIT_ADDR_LO, addr_lo) | 231 FIELD_PREP(OP_BR_BIT_ADDR_HI, addr_hi) | 232 FIELD_PREP(OP_BR_BIT_SRC_LMEXTN, src_lmextn); 233 234 nfp_prog_push(nfp_prog, insn); 235 } 236 237 static void 238 emit_br_bit_relo(struct nfp_prog *nfp_prog, swreg src, u8 bit, u16 addr, 239 u8 defer, bool set, enum nfp_relo_type relo) 240 { 241 struct nfp_insn_re_regs reg; 242 int err; 243 244 /* NOTE: The bit to test is specified as an rotation amount, such that 245 * the bit to test will be placed on the MSB of the result when 246 * doing a rotate right. For bit X, we need right rotate X + 1. 247 */ 248 bit += 1; 249 250 err = swreg_to_restricted(reg_none(), src, reg_imm(bit), ®, false); 251 if (err) { 252 nfp_prog->error = err; 253 return; 254 } 255 256 __emit_br_bit(nfp_prog, reg.areg, reg.breg, addr, defer, set, 257 reg.src_lmextn); 258 259 nfp_prog->prog[nfp_prog->prog_len - 1] |= 260 FIELD_PREP(OP_RELO_TYPE, relo); 261 } 262 263 static void 264 emit_br_bset(struct nfp_prog *nfp_prog, swreg src, u8 bit, u16 addr, u8 defer) 265 { 266 emit_br_bit_relo(nfp_prog, src, bit, addr, defer, true, RELO_BR_REL); 267 } 268 269 static void 270 __emit_immed(struct nfp_prog *nfp_prog, u16 areg, u16 breg, u16 imm_hi, 271 enum immed_width width, bool invert, 272 enum immed_shift shift, bool wr_both, 273 bool dst_lmextn, bool src_lmextn) 274 { 275 u64 insn; 276 277 insn = OP_IMMED_BASE | 278 FIELD_PREP(OP_IMMED_A_SRC, areg) | 279 FIELD_PREP(OP_IMMED_B_SRC, breg) | 280 FIELD_PREP(OP_IMMED_IMM, imm_hi) | 281 FIELD_PREP(OP_IMMED_WIDTH, width) | 282 FIELD_PREP(OP_IMMED_INV, invert) | 283 FIELD_PREP(OP_IMMED_SHIFT, shift) | 284 FIELD_PREP(OP_IMMED_WR_AB, wr_both) | 285 FIELD_PREP(OP_IMMED_SRC_LMEXTN, src_lmextn) | 286 FIELD_PREP(OP_IMMED_DST_LMEXTN, dst_lmextn); 287 288 nfp_prog_push(nfp_prog, insn); 289 } 290 291 static void 292 emit_immed(struct nfp_prog *nfp_prog, swreg dst, u16 imm, 293 enum immed_width width, bool invert, enum immed_shift shift) 294 { 295 struct nfp_insn_ur_regs reg; 296 int err; 297 298 if (swreg_type(dst) == NN_REG_IMM) { 299 nfp_prog->error = -EFAULT; 300 return; 301 } 302 303 err = swreg_to_unrestricted(dst, dst, reg_imm(imm & 0xff), ®); 304 if (err) { 305 nfp_prog->error = err; 306 return; 307 } 308 309 /* Use reg.dst when destination is No-Dest. */ 310 __emit_immed(nfp_prog, 311 swreg_type(dst) == NN_REG_NONE ? reg.dst : reg.areg, 312 reg.breg, imm >> 8, width, invert, shift, 313 reg.wr_both, reg.dst_lmextn, reg.src_lmextn); 314 } 315 316 static void 317 __emit_shf(struct nfp_prog *nfp_prog, u16 dst, enum alu_dst_ab dst_ab, 318 enum shf_sc sc, u8 shift, 319 u16 areg, enum shf_op op, u16 breg, bool i8, bool sw, bool wr_both, 320 bool dst_lmextn, bool src_lmextn) 321 { 322 u64 insn; 323 324 if (!FIELD_FIT(OP_SHF_SHIFT, shift)) { 325 nfp_prog->error = -EFAULT; 326 return; 327 } 328 329 if (sc == SHF_SC_L_SHF) 330 shift = 32 - shift; 331 332 insn = OP_SHF_BASE | 333 FIELD_PREP(OP_SHF_A_SRC, areg) | 334 FIELD_PREP(OP_SHF_SC, sc) | 335 FIELD_PREP(OP_SHF_B_SRC, breg) | 336 FIELD_PREP(OP_SHF_I8, i8) | 337 FIELD_PREP(OP_SHF_SW, sw) | 338 FIELD_PREP(OP_SHF_DST, dst) | 339 FIELD_PREP(OP_SHF_SHIFT, shift) | 340 FIELD_PREP(OP_SHF_OP, op) | 341 FIELD_PREP(OP_SHF_DST_AB, dst_ab) | 342 FIELD_PREP(OP_SHF_WR_AB, wr_both) | 343 FIELD_PREP(OP_SHF_SRC_LMEXTN, src_lmextn) | 344 FIELD_PREP(OP_SHF_DST_LMEXTN, dst_lmextn); 345 346 nfp_prog_push(nfp_prog, insn); 347 } 348 349 static void 350 emit_shf(struct nfp_prog *nfp_prog, swreg dst, 351 swreg lreg, enum shf_op op, swreg rreg, enum shf_sc sc, u8 shift) 352 { 353 struct nfp_insn_re_regs reg; 354 int err; 355 356 err = swreg_to_restricted(dst, lreg, rreg, ®, true); 357 if (err) { 358 nfp_prog->error = err; 359 return; 360 } 361 362 __emit_shf(nfp_prog, reg.dst, reg.dst_ab, sc, shift, 363 reg.areg, op, reg.breg, reg.i8, reg.swap, reg.wr_both, 364 reg.dst_lmextn, reg.src_lmextn); 365 } 366 367 static void 368 emit_shf_indir(struct nfp_prog *nfp_prog, swreg dst, 369 swreg lreg, enum shf_op op, swreg rreg, enum shf_sc sc) 370 { 371 if (sc == SHF_SC_R_ROT) { 372 pr_err("indirect shift is not allowed on rotation\n"); 373 nfp_prog->error = -EFAULT; 374 return; 375 } 376 377 emit_shf(nfp_prog, dst, lreg, op, rreg, sc, 0); 378 } 379 380 static void 381 __emit_alu(struct nfp_prog *nfp_prog, u16 dst, enum alu_dst_ab dst_ab, 382 u16 areg, enum alu_op op, u16 breg, bool swap, bool wr_both, 383 bool dst_lmextn, bool src_lmextn) 384 { 385 u64 insn; 386 387 insn = OP_ALU_BASE | 388 FIELD_PREP(OP_ALU_A_SRC, areg) | 389 FIELD_PREP(OP_ALU_B_SRC, breg) | 390 FIELD_PREP(OP_ALU_DST, dst) | 391 FIELD_PREP(OP_ALU_SW, swap) | 392 FIELD_PREP(OP_ALU_OP, op) | 393 FIELD_PREP(OP_ALU_DST_AB, dst_ab) | 394 FIELD_PREP(OP_ALU_WR_AB, wr_both) | 395 FIELD_PREP(OP_ALU_SRC_LMEXTN, src_lmextn) | 396 FIELD_PREP(OP_ALU_DST_LMEXTN, dst_lmextn); 397 398 nfp_prog_push(nfp_prog, insn); 399 } 400 401 static void 402 emit_alu(struct nfp_prog *nfp_prog, swreg dst, 403 swreg lreg, enum alu_op op, swreg rreg) 404 { 405 struct nfp_insn_ur_regs reg; 406 int err; 407 408 err = swreg_to_unrestricted(dst, lreg, rreg, ®); 409 if (err) { 410 nfp_prog->error = err; 411 return; 412 } 413 414 __emit_alu(nfp_prog, reg.dst, reg.dst_ab, 415 reg.areg, op, reg.breg, reg.swap, reg.wr_both, 416 reg.dst_lmextn, reg.src_lmextn); 417 } 418 419 static void 420 __emit_mul(struct nfp_prog *nfp_prog, enum alu_dst_ab dst_ab, u16 areg, 421 enum mul_type type, enum mul_step step, u16 breg, bool swap, 422 bool wr_both, bool dst_lmextn, bool src_lmextn) 423 { 424 u64 insn; 425 426 insn = OP_MUL_BASE | 427 FIELD_PREP(OP_MUL_A_SRC, areg) | 428 FIELD_PREP(OP_MUL_B_SRC, breg) | 429 FIELD_PREP(OP_MUL_STEP, step) | 430 FIELD_PREP(OP_MUL_DST_AB, dst_ab) | 431 FIELD_PREP(OP_MUL_SW, swap) | 432 FIELD_PREP(OP_MUL_TYPE, type) | 433 FIELD_PREP(OP_MUL_WR_AB, wr_both) | 434 FIELD_PREP(OP_MUL_SRC_LMEXTN, src_lmextn) | 435 FIELD_PREP(OP_MUL_DST_LMEXTN, dst_lmextn); 436 437 nfp_prog_push(nfp_prog, insn); 438 } 439 440 static void 441 emit_mul(struct nfp_prog *nfp_prog, swreg lreg, enum mul_type type, 442 enum mul_step step, swreg rreg) 443 { 444 struct nfp_insn_ur_regs reg; 445 u16 areg; 446 int err; 447 448 if (type == MUL_TYPE_START && step != MUL_STEP_NONE) { 449 nfp_prog->error = -EINVAL; 450 return; 451 } 452 453 if (step == MUL_LAST || step == MUL_LAST_2) { 454 /* When type is step and step Number is LAST or LAST2, left 455 * source is used as destination. 456 */ 457 err = swreg_to_unrestricted(lreg, reg_none(), rreg, ®); 458 areg = reg.dst; 459 } else { 460 err = swreg_to_unrestricted(reg_none(), lreg, rreg, ®); 461 areg = reg.areg; 462 } 463 464 if (err) { 465 nfp_prog->error = err; 466 return; 467 } 468 469 __emit_mul(nfp_prog, reg.dst_ab, areg, type, step, reg.breg, reg.swap, 470 reg.wr_both, reg.dst_lmextn, reg.src_lmextn); 471 } 472 473 static void 474 __emit_ld_field(struct nfp_prog *nfp_prog, enum shf_sc sc, 475 u8 areg, u8 bmask, u8 breg, u8 shift, bool imm8, 476 bool zero, bool swap, bool wr_both, 477 bool dst_lmextn, bool src_lmextn) 478 { 479 u64 insn; 480 481 insn = OP_LDF_BASE | 482 FIELD_PREP(OP_LDF_A_SRC, areg) | 483 FIELD_PREP(OP_LDF_SC, sc) | 484 FIELD_PREP(OP_LDF_B_SRC, breg) | 485 FIELD_PREP(OP_LDF_I8, imm8) | 486 FIELD_PREP(OP_LDF_SW, swap) | 487 FIELD_PREP(OP_LDF_ZF, zero) | 488 FIELD_PREP(OP_LDF_BMASK, bmask) | 489 FIELD_PREP(OP_LDF_SHF, shift) | 490 FIELD_PREP(OP_LDF_WR_AB, wr_both) | 491 FIELD_PREP(OP_LDF_SRC_LMEXTN, src_lmextn) | 492 FIELD_PREP(OP_LDF_DST_LMEXTN, dst_lmextn); 493 494 nfp_prog_push(nfp_prog, insn); 495 } 496 497 static void 498 emit_ld_field_any(struct nfp_prog *nfp_prog, swreg dst, u8 bmask, swreg src, 499 enum shf_sc sc, u8 shift, bool zero) 500 { 501 struct nfp_insn_re_regs reg; 502 int err; 503 504 /* Note: ld_field is special as it uses one of the src regs as dst */ 505 err = swreg_to_restricted(dst, dst, src, ®, true); 506 if (err) { 507 nfp_prog->error = err; 508 return; 509 } 510 511 __emit_ld_field(nfp_prog, sc, reg.areg, bmask, reg.breg, shift, 512 reg.i8, zero, reg.swap, reg.wr_both, 513 reg.dst_lmextn, reg.src_lmextn); 514 } 515 516 static void 517 emit_ld_field(struct nfp_prog *nfp_prog, swreg dst, u8 bmask, swreg src, 518 enum shf_sc sc, u8 shift) 519 { 520 emit_ld_field_any(nfp_prog, dst, bmask, src, sc, shift, false); 521 } 522 523 static void 524 __emit_lcsr(struct nfp_prog *nfp_prog, u16 areg, u16 breg, bool wr, u16 addr, 525 bool dst_lmextn, bool src_lmextn) 526 { 527 u64 insn; 528 529 insn = OP_LCSR_BASE | 530 FIELD_PREP(OP_LCSR_A_SRC, areg) | 531 FIELD_PREP(OP_LCSR_B_SRC, breg) | 532 FIELD_PREP(OP_LCSR_WRITE, wr) | 533 FIELD_PREP(OP_LCSR_ADDR, addr / 4) | 534 FIELD_PREP(OP_LCSR_SRC_LMEXTN, src_lmextn) | 535 FIELD_PREP(OP_LCSR_DST_LMEXTN, dst_lmextn); 536 537 nfp_prog_push(nfp_prog, insn); 538 } 539 540 static void emit_csr_wr(struct nfp_prog *nfp_prog, swreg src, u16 addr) 541 { 542 struct nfp_insn_ur_regs reg; 543 int err; 544 545 /* This instruction takes immeds instead of reg_none() for the ignored 546 * operand, but we can't encode 2 immeds in one instr with our normal 547 * swreg infra so if param is an immed, we encode as reg_none() and 548 * copy the immed to both operands. 549 */ 550 if (swreg_type(src) == NN_REG_IMM) { 551 err = swreg_to_unrestricted(reg_none(), src, reg_none(), ®); 552 reg.breg = reg.areg; 553 } else { 554 err = swreg_to_unrestricted(reg_none(), src, reg_imm(0), ®); 555 } 556 if (err) { 557 nfp_prog->error = err; 558 return; 559 } 560 561 __emit_lcsr(nfp_prog, reg.areg, reg.breg, true, addr, 562 false, reg.src_lmextn); 563 } 564 565 /* CSR value is read in following immed[gpr, 0] */ 566 static void __emit_csr_rd(struct nfp_prog *nfp_prog, u16 addr) 567 { 568 __emit_lcsr(nfp_prog, 0, 0, false, addr, false, false); 569 } 570 571 static void emit_nop(struct nfp_prog *nfp_prog) 572 { 573 __emit_immed(nfp_prog, UR_REG_IMM, UR_REG_IMM, 0, 0, 0, 0, 0, 0, 0); 574 } 575 576 /* --- Wrappers --- */ 577 static bool pack_immed(u32 imm, u16 *val, enum immed_shift *shift) 578 { 579 if (!(imm & 0xffff0000)) { 580 *val = imm; 581 *shift = IMMED_SHIFT_0B; 582 } else if (!(imm & 0xff0000ff)) { 583 *val = imm >> 8; 584 *shift = IMMED_SHIFT_1B; 585 } else if (!(imm & 0x0000ffff)) { 586 *val = imm >> 16; 587 *shift = IMMED_SHIFT_2B; 588 } else { 589 return false; 590 } 591 592 return true; 593 } 594 595 static void wrp_immed(struct nfp_prog *nfp_prog, swreg dst, u32 imm) 596 { 597 enum immed_shift shift; 598 u16 val; 599 600 if (pack_immed(imm, &val, &shift)) { 601 emit_immed(nfp_prog, dst, val, IMMED_WIDTH_ALL, false, shift); 602 } else if (pack_immed(~imm, &val, &shift)) { 603 emit_immed(nfp_prog, dst, val, IMMED_WIDTH_ALL, true, shift); 604 } else { 605 emit_immed(nfp_prog, dst, imm & 0xffff, IMMED_WIDTH_ALL, 606 false, IMMED_SHIFT_0B); 607 emit_immed(nfp_prog, dst, imm >> 16, IMMED_WIDTH_WORD, 608 false, IMMED_SHIFT_2B); 609 } 610 } 611 612 static void 613 wrp_immed_relo(struct nfp_prog *nfp_prog, swreg dst, u32 imm, 614 enum nfp_relo_type relo) 615 { 616 if (imm > 0xffff) { 617 pr_err("relocation of a large immediate!\n"); 618 nfp_prog->error = -EFAULT; 619 return; 620 } 621 emit_immed(nfp_prog, dst, imm, IMMED_WIDTH_ALL, false, IMMED_SHIFT_0B); 622 623 nfp_prog->prog[nfp_prog->prog_len - 1] |= 624 FIELD_PREP(OP_RELO_TYPE, relo); 625 } 626 627 /* ur_load_imm_any() - encode immediate or use tmp register (unrestricted) 628 * If the @imm is small enough encode it directly in operand and return 629 * otherwise load @imm to a spare register and return its encoding. 630 */ 631 static swreg ur_load_imm_any(struct nfp_prog *nfp_prog, u32 imm, swreg tmp_reg) 632 { 633 if (FIELD_FIT(UR_REG_IMM_MAX, imm)) 634 return reg_imm(imm); 635 636 wrp_immed(nfp_prog, tmp_reg, imm); 637 return tmp_reg; 638 } 639 640 /* re_load_imm_any() - encode immediate or use tmp register (restricted) 641 * If the @imm is small enough encode it directly in operand and return 642 * otherwise load @imm to a spare register and return its encoding. 643 */ 644 static swreg re_load_imm_any(struct nfp_prog *nfp_prog, u32 imm, swreg tmp_reg) 645 { 646 if (FIELD_FIT(RE_REG_IMM_MAX, imm)) 647 return reg_imm(imm); 648 649 wrp_immed(nfp_prog, tmp_reg, imm); 650 return tmp_reg; 651 } 652 653 static void wrp_nops(struct nfp_prog *nfp_prog, unsigned int count) 654 { 655 while (count--) 656 emit_nop(nfp_prog); 657 } 658 659 static void wrp_mov(struct nfp_prog *nfp_prog, swreg dst, swreg src) 660 { 661 emit_alu(nfp_prog, dst, reg_none(), ALU_OP_NONE, src); 662 } 663 664 static void wrp_reg_mov(struct nfp_prog *nfp_prog, u16 dst, u16 src) 665 { 666 wrp_mov(nfp_prog, reg_both(dst), reg_b(src)); 667 } 668 669 /* wrp_reg_subpart() - load @field_len bytes from @offset of @src, write the 670 * result to @dst from low end. 671 */ 672 static void 673 wrp_reg_subpart(struct nfp_prog *nfp_prog, swreg dst, swreg src, u8 field_len, 674 u8 offset) 675 { 676 enum shf_sc sc = offset ? SHF_SC_R_SHF : SHF_SC_NONE; 677 u8 mask = (1 << field_len) - 1; 678 679 emit_ld_field_any(nfp_prog, dst, mask, src, sc, offset * 8, true); 680 } 681 682 /* wrp_reg_or_subpart() - load @field_len bytes from low end of @src, or the 683 * result to @dst from offset, there is no change on the other bits of @dst. 684 */ 685 static void 686 wrp_reg_or_subpart(struct nfp_prog *nfp_prog, swreg dst, swreg src, 687 u8 field_len, u8 offset) 688 { 689 enum shf_sc sc = offset ? SHF_SC_L_SHF : SHF_SC_NONE; 690 u8 mask = ((1 << field_len) - 1) << offset; 691 692 emit_ld_field(nfp_prog, dst, mask, src, sc, 32 - offset * 8); 693 } 694 695 static void 696 addr40_offset(struct nfp_prog *nfp_prog, u8 src_gpr, swreg offset, 697 swreg *rega, swreg *regb) 698 { 699 if (offset == reg_imm(0)) { 700 *rega = reg_a(src_gpr); 701 *regb = reg_b(src_gpr + 1); 702 return; 703 } 704 705 emit_alu(nfp_prog, imm_a(nfp_prog), reg_a(src_gpr), ALU_OP_ADD, offset); 706 emit_alu(nfp_prog, imm_b(nfp_prog), reg_b(src_gpr + 1), ALU_OP_ADD_C, 707 reg_imm(0)); 708 *rega = imm_a(nfp_prog); 709 *regb = imm_b(nfp_prog); 710 } 711 712 /* NFP has Command Push Pull bus which supports bluk memory operations. */ 713 static int nfp_cpp_memcpy(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) 714 { 715 bool descending_seq = meta->ldst_gather_len < 0; 716 s16 len = abs(meta->ldst_gather_len); 717 swreg src_base, off; 718 bool src_40bit_addr; 719 unsigned int i; 720 u8 xfer_num; 721 722 off = re_load_imm_any(nfp_prog, meta->insn.off, imm_b(nfp_prog)); 723 src_40bit_addr = meta->ptr.type == PTR_TO_MAP_VALUE; 724 src_base = reg_a(meta->insn.src_reg * 2); 725 xfer_num = round_up(len, 4) / 4; 726 727 if (src_40bit_addr) 728 addr40_offset(nfp_prog, meta->insn.src_reg * 2, off, &src_base, 729 &off); 730 731 /* Setup PREV_ALU fields to override memory read length. */ 732 if (len > 32) 733 wrp_immed(nfp_prog, reg_none(), 734 CMD_OVE_LEN | FIELD_PREP(CMD_OV_LEN, xfer_num - 1)); 735 736 /* Memory read from source addr into transfer-in registers. */ 737 emit_cmd_any(nfp_prog, CMD_TGT_READ32_SWAP, 738 src_40bit_addr ? CMD_MODE_40b_BA : CMD_MODE_32b, 0, 739 src_base, off, xfer_num - 1, CMD_CTX_SWAP, len > 32); 740 741 /* Move from transfer-in to transfer-out. */ 742 for (i = 0; i < xfer_num; i++) 743 wrp_mov(nfp_prog, reg_xfer(i), reg_xfer(i)); 744 745 off = re_load_imm_any(nfp_prog, meta->paired_st->off, imm_b(nfp_prog)); 746 747 if (len <= 8) { 748 /* Use single direct_ref write8. */ 749 emit_cmd(nfp_prog, CMD_TGT_WRITE8_SWAP, CMD_MODE_32b, 0, 750 reg_a(meta->paired_st->dst_reg * 2), off, len - 1, 751 CMD_CTX_SWAP); 752 } else if (len <= 32 && IS_ALIGNED(len, 4)) { 753 /* Use single direct_ref write32. */ 754 emit_cmd(nfp_prog, CMD_TGT_WRITE32_SWAP, CMD_MODE_32b, 0, 755 reg_a(meta->paired_st->dst_reg * 2), off, xfer_num - 1, 756 CMD_CTX_SWAP); 757 } else if (len <= 32) { 758 /* Use single indirect_ref write8. */ 759 wrp_immed(nfp_prog, reg_none(), 760 CMD_OVE_LEN | FIELD_PREP(CMD_OV_LEN, len - 1)); 761 emit_cmd_indir(nfp_prog, CMD_TGT_WRITE8_SWAP, CMD_MODE_32b, 0, 762 reg_a(meta->paired_st->dst_reg * 2), off, 763 len - 1, CMD_CTX_SWAP); 764 } else if (IS_ALIGNED(len, 4)) { 765 /* Use single indirect_ref write32. */ 766 wrp_immed(nfp_prog, reg_none(), 767 CMD_OVE_LEN | FIELD_PREP(CMD_OV_LEN, xfer_num - 1)); 768 emit_cmd_indir(nfp_prog, CMD_TGT_WRITE32_SWAP, CMD_MODE_32b, 0, 769 reg_a(meta->paired_st->dst_reg * 2), off, 770 xfer_num - 1, CMD_CTX_SWAP); 771 } else if (len <= 40) { 772 /* Use one direct_ref write32 to write the first 32-bytes, then 773 * another direct_ref write8 to write the remaining bytes. 774 */ 775 emit_cmd(nfp_prog, CMD_TGT_WRITE32_SWAP, CMD_MODE_32b, 0, 776 reg_a(meta->paired_st->dst_reg * 2), off, 7, 777 CMD_CTX_SWAP); 778 779 off = re_load_imm_any(nfp_prog, meta->paired_st->off + 32, 780 imm_b(nfp_prog)); 781 emit_cmd(nfp_prog, CMD_TGT_WRITE8_SWAP, CMD_MODE_32b, 8, 782 reg_a(meta->paired_st->dst_reg * 2), off, len - 33, 783 CMD_CTX_SWAP); 784 } else { 785 /* Use one indirect_ref write32 to write 4-bytes aligned length, 786 * then another direct_ref write8 to write the remaining bytes. 787 */ 788 u8 new_off; 789 790 wrp_immed(nfp_prog, reg_none(), 791 CMD_OVE_LEN | FIELD_PREP(CMD_OV_LEN, xfer_num - 2)); 792 emit_cmd_indir(nfp_prog, CMD_TGT_WRITE32_SWAP, CMD_MODE_32b, 0, 793 reg_a(meta->paired_st->dst_reg * 2), off, 794 xfer_num - 2, CMD_CTX_SWAP); 795 new_off = meta->paired_st->off + (xfer_num - 1) * 4; 796 off = re_load_imm_any(nfp_prog, new_off, imm_b(nfp_prog)); 797 emit_cmd(nfp_prog, CMD_TGT_WRITE8_SWAP, CMD_MODE_32b, 798 xfer_num - 1, reg_a(meta->paired_st->dst_reg * 2), off, 799 (len & 0x3) - 1, CMD_CTX_SWAP); 800 } 801 802 /* TODO: The following extra load is to make sure data flow be identical 803 * before and after we do memory copy optimization. 804 * 805 * The load destination register is not guaranteed to be dead, so we 806 * need to make sure it is loaded with the value the same as before 807 * this transformation. 808 * 809 * These extra loads could be removed once we have accurate register 810 * usage information. 811 */ 812 if (descending_seq) 813 xfer_num = 0; 814 else if (BPF_SIZE(meta->insn.code) != BPF_DW) 815 xfer_num = xfer_num - 1; 816 else 817 xfer_num = xfer_num - 2; 818 819 switch (BPF_SIZE(meta->insn.code)) { 820 case BPF_B: 821 wrp_reg_subpart(nfp_prog, reg_both(meta->insn.dst_reg * 2), 822 reg_xfer(xfer_num), 1, 823 IS_ALIGNED(len, 4) ? 3 : (len & 3) - 1); 824 break; 825 case BPF_H: 826 wrp_reg_subpart(nfp_prog, reg_both(meta->insn.dst_reg * 2), 827 reg_xfer(xfer_num), 2, (len & 3) ^ 2); 828 break; 829 case BPF_W: 830 wrp_mov(nfp_prog, reg_both(meta->insn.dst_reg * 2), 831 reg_xfer(0)); 832 break; 833 case BPF_DW: 834 wrp_mov(nfp_prog, reg_both(meta->insn.dst_reg * 2), 835 reg_xfer(xfer_num)); 836 wrp_mov(nfp_prog, reg_both(meta->insn.dst_reg * 2 + 1), 837 reg_xfer(xfer_num + 1)); 838 break; 839 } 840 841 if (BPF_SIZE(meta->insn.code) != BPF_DW) 842 wrp_immed(nfp_prog, reg_both(meta->insn.dst_reg * 2 + 1), 0); 843 844 return 0; 845 } 846 847 static int 848 data_ld(struct nfp_prog *nfp_prog, swreg offset, u8 dst_gpr, int size) 849 { 850 unsigned int i; 851 u16 shift, sz; 852 853 /* We load the value from the address indicated in @offset and then 854 * shift out the data we don't need. Note: this is big endian! 855 */ 856 sz = max(size, 4); 857 shift = size < 4 ? 4 - size : 0; 858 859 emit_cmd(nfp_prog, CMD_TGT_READ8, CMD_MODE_32b, 0, 860 pptr_reg(nfp_prog), offset, sz - 1, CMD_CTX_SWAP); 861 862 i = 0; 863 if (shift) 864 emit_shf(nfp_prog, reg_both(dst_gpr), reg_none(), SHF_OP_NONE, 865 reg_xfer(0), SHF_SC_R_SHF, shift * 8); 866 else 867 for (; i * 4 < size; i++) 868 wrp_mov(nfp_prog, reg_both(dst_gpr + i), reg_xfer(i)); 869 870 if (i < 2) 871 wrp_immed(nfp_prog, reg_both(dst_gpr + 1), 0); 872 873 return 0; 874 } 875 876 static int 877 data_ld_host_order(struct nfp_prog *nfp_prog, u8 dst_gpr, 878 swreg lreg, swreg rreg, int size, enum cmd_mode mode) 879 { 880 unsigned int i; 881 u8 mask, sz; 882 883 /* We load the value from the address indicated in rreg + lreg and then 884 * mask out the data we don't need. Note: this is little endian! 885 */ 886 sz = max(size, 4); 887 mask = size < 4 ? GENMASK(size - 1, 0) : 0; 888 889 emit_cmd(nfp_prog, CMD_TGT_READ32_SWAP, mode, 0, 890 lreg, rreg, sz / 4 - 1, CMD_CTX_SWAP); 891 892 i = 0; 893 if (mask) 894 emit_ld_field_any(nfp_prog, reg_both(dst_gpr), mask, 895 reg_xfer(0), SHF_SC_NONE, 0, true); 896 else 897 for (; i * 4 < size; i++) 898 wrp_mov(nfp_prog, reg_both(dst_gpr + i), reg_xfer(i)); 899 900 if (i < 2) 901 wrp_immed(nfp_prog, reg_both(dst_gpr + 1), 0); 902 903 return 0; 904 } 905 906 static int 907 data_ld_host_order_addr32(struct nfp_prog *nfp_prog, u8 src_gpr, swreg offset, 908 u8 dst_gpr, u8 size) 909 { 910 return data_ld_host_order(nfp_prog, dst_gpr, reg_a(src_gpr), offset, 911 size, CMD_MODE_32b); 912 } 913 914 static int 915 data_ld_host_order_addr40(struct nfp_prog *nfp_prog, u8 src_gpr, swreg offset, 916 u8 dst_gpr, u8 size) 917 { 918 swreg rega, regb; 919 920 addr40_offset(nfp_prog, src_gpr, offset, ®a, ®b); 921 922 return data_ld_host_order(nfp_prog, dst_gpr, rega, regb, 923 size, CMD_MODE_40b_BA); 924 } 925 926 static int 927 construct_data_ind_ld(struct nfp_prog *nfp_prog, u16 offset, u16 src, u8 size) 928 { 929 swreg tmp_reg; 930 931 /* Calculate the true offset (src_reg + imm) */ 932 tmp_reg = ur_load_imm_any(nfp_prog, offset, imm_b(nfp_prog)); 933 emit_alu(nfp_prog, imm_both(nfp_prog), reg_a(src), ALU_OP_ADD, tmp_reg); 934 935 /* Check packet length (size guaranteed to fit b/c it's u8) */ 936 emit_alu(nfp_prog, imm_a(nfp_prog), 937 imm_a(nfp_prog), ALU_OP_ADD, reg_imm(size)); 938 emit_alu(nfp_prog, reg_none(), 939 plen_reg(nfp_prog), ALU_OP_SUB, imm_a(nfp_prog)); 940 emit_br_relo(nfp_prog, BR_BLO, BR_OFF_RELO, 0, RELO_BR_GO_ABORT); 941 942 /* Load data */ 943 return data_ld(nfp_prog, imm_b(nfp_prog), 0, size); 944 } 945 946 static int construct_data_ld(struct nfp_prog *nfp_prog, u16 offset, u8 size) 947 { 948 swreg tmp_reg; 949 950 /* Check packet length */ 951 tmp_reg = ur_load_imm_any(nfp_prog, offset + size, imm_a(nfp_prog)); 952 emit_alu(nfp_prog, reg_none(), plen_reg(nfp_prog), ALU_OP_SUB, tmp_reg); 953 emit_br_relo(nfp_prog, BR_BLO, BR_OFF_RELO, 0, RELO_BR_GO_ABORT); 954 955 /* Load data */ 956 tmp_reg = re_load_imm_any(nfp_prog, offset, imm_b(nfp_prog)); 957 return data_ld(nfp_prog, tmp_reg, 0, size); 958 } 959 960 static int 961 data_stx_host_order(struct nfp_prog *nfp_prog, u8 dst_gpr, swreg offset, 962 u8 src_gpr, u8 size) 963 { 964 unsigned int i; 965 966 for (i = 0; i * 4 < size; i++) 967 wrp_mov(nfp_prog, reg_xfer(i), reg_a(src_gpr + i)); 968 969 emit_cmd(nfp_prog, CMD_TGT_WRITE8_SWAP, CMD_MODE_32b, 0, 970 reg_a(dst_gpr), offset, size - 1, CMD_CTX_SWAP); 971 972 return 0; 973 } 974 975 static int 976 data_st_host_order(struct nfp_prog *nfp_prog, u8 dst_gpr, swreg offset, 977 u64 imm, u8 size) 978 { 979 wrp_immed(nfp_prog, reg_xfer(0), imm); 980 if (size == 8) 981 wrp_immed(nfp_prog, reg_xfer(1), imm >> 32); 982 983 emit_cmd(nfp_prog, CMD_TGT_WRITE8_SWAP, CMD_MODE_32b, 0, 984 reg_a(dst_gpr), offset, size - 1, CMD_CTX_SWAP); 985 986 return 0; 987 } 988 989 typedef int 990 (*lmem_step)(struct nfp_prog *nfp_prog, u8 gpr, u8 gpr_byte, s32 off, 991 unsigned int size, bool first, bool new_gpr, bool last, bool lm3, 992 bool needs_inc); 993 994 static int 995 wrp_lmem_load(struct nfp_prog *nfp_prog, u8 dst, u8 dst_byte, s32 off, 996 unsigned int size, bool first, bool new_gpr, bool last, bool lm3, 997 bool needs_inc) 998 { 999 bool should_inc = needs_inc && new_gpr && !last; 1000 u32 idx, src_byte; 1001 enum shf_sc sc; 1002 swreg reg; 1003 int shf; 1004 u8 mask; 1005 1006 if (WARN_ON_ONCE(dst_byte + size > 4 || off % 4 + size > 4)) 1007 return -EOPNOTSUPP; 1008 1009 idx = off / 4; 1010 1011 /* Move the entire word */ 1012 if (size == 4) { 1013 wrp_mov(nfp_prog, reg_both(dst), 1014 should_inc ? reg_lm_inc(3) : reg_lm(lm3 ? 3 : 0, idx)); 1015 return 0; 1016 } 1017 1018 if (WARN_ON_ONCE(lm3 && idx > RE_REG_LM_IDX_MAX)) 1019 return -EOPNOTSUPP; 1020 1021 src_byte = off % 4; 1022 1023 mask = (1 << size) - 1; 1024 mask <<= dst_byte; 1025 1026 if (WARN_ON_ONCE(mask > 0xf)) 1027 return -EOPNOTSUPP; 1028 1029 shf = abs(src_byte - dst_byte) * 8; 1030 if (src_byte == dst_byte) { 1031 sc = SHF_SC_NONE; 1032 } else if (src_byte < dst_byte) { 1033 shf = 32 - shf; 1034 sc = SHF_SC_L_SHF; 1035 } else { 1036 sc = SHF_SC_R_SHF; 1037 } 1038 1039 /* ld_field can address fewer indexes, if offset too large do RMW. 1040 * Because we RMV twice we waste 2 cycles on unaligned 8 byte writes. 1041 */ 1042 if (idx <= RE_REG_LM_IDX_MAX) { 1043 reg = reg_lm(lm3 ? 3 : 0, idx); 1044 } else { 1045 reg = imm_a(nfp_prog); 1046 /* If it's not the first part of the load and we start a new GPR 1047 * that means we are loading a second part of the LMEM word into 1048 * a new GPR. IOW we've already looked that LMEM word and 1049 * therefore it has been loaded into imm_a(). 1050 */ 1051 if (first || !new_gpr) 1052 wrp_mov(nfp_prog, reg, reg_lm(0, idx)); 1053 } 1054 1055 emit_ld_field_any(nfp_prog, reg_both(dst), mask, reg, sc, shf, new_gpr); 1056 1057 if (should_inc) 1058 wrp_mov(nfp_prog, reg_none(), reg_lm_inc(3)); 1059 1060 return 0; 1061 } 1062 1063 static int 1064 wrp_lmem_store(struct nfp_prog *nfp_prog, u8 src, u8 src_byte, s32 off, 1065 unsigned int size, bool first, bool new_gpr, bool last, bool lm3, 1066 bool needs_inc) 1067 { 1068 bool should_inc = needs_inc && new_gpr && !last; 1069 u32 idx, dst_byte; 1070 enum shf_sc sc; 1071 swreg reg; 1072 int shf; 1073 u8 mask; 1074 1075 if (WARN_ON_ONCE(src_byte + size > 4 || off % 4 + size > 4)) 1076 return -EOPNOTSUPP; 1077 1078 idx = off / 4; 1079 1080 /* Move the entire word */ 1081 if (size == 4) { 1082 wrp_mov(nfp_prog, 1083 should_inc ? reg_lm_inc(3) : reg_lm(lm3 ? 3 : 0, idx), 1084 reg_b(src)); 1085 return 0; 1086 } 1087 1088 if (WARN_ON_ONCE(lm3 && idx > RE_REG_LM_IDX_MAX)) 1089 return -EOPNOTSUPP; 1090 1091 dst_byte = off % 4; 1092 1093 mask = (1 << size) - 1; 1094 mask <<= dst_byte; 1095 1096 if (WARN_ON_ONCE(mask > 0xf)) 1097 return -EOPNOTSUPP; 1098 1099 shf = abs(src_byte - dst_byte) * 8; 1100 if (src_byte == dst_byte) { 1101 sc = SHF_SC_NONE; 1102 } else if (src_byte < dst_byte) { 1103 shf = 32 - shf; 1104 sc = SHF_SC_L_SHF; 1105 } else { 1106 sc = SHF_SC_R_SHF; 1107 } 1108 1109 /* ld_field can address fewer indexes, if offset too large do RMW. 1110 * Because we RMV twice we waste 2 cycles on unaligned 8 byte writes. 1111 */ 1112 if (idx <= RE_REG_LM_IDX_MAX) { 1113 reg = reg_lm(lm3 ? 3 : 0, idx); 1114 } else { 1115 reg = imm_a(nfp_prog); 1116 /* Only first and last LMEM locations are going to need RMW, 1117 * the middle location will be overwritten fully. 1118 */ 1119 if (first || last) 1120 wrp_mov(nfp_prog, reg, reg_lm(0, idx)); 1121 } 1122 1123 emit_ld_field(nfp_prog, reg, mask, reg_b(src), sc, shf); 1124 1125 if (new_gpr || last) { 1126 if (idx > RE_REG_LM_IDX_MAX) 1127 wrp_mov(nfp_prog, reg_lm(0, idx), reg); 1128 if (should_inc) 1129 wrp_mov(nfp_prog, reg_none(), reg_lm_inc(3)); 1130 } 1131 1132 return 0; 1133 } 1134 1135 static int 1136 mem_op_stack(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta, 1137 unsigned int size, unsigned int ptr_off, u8 gpr, u8 ptr_gpr, 1138 bool clr_gpr, lmem_step step) 1139 { 1140 s32 off = nfp_prog->stack_depth + meta->insn.off + ptr_off; 1141 bool first = true, last; 1142 bool needs_inc = false; 1143 swreg stack_off_reg; 1144 u8 prev_gpr = 255; 1145 u32 gpr_byte = 0; 1146 bool lm3 = true; 1147 int ret; 1148 1149 if (meta->ptr_not_const) { 1150 /* Use of the last encountered ptr_off is OK, they all have 1151 * the same alignment. Depend on low bits of value being 1152 * discarded when written to LMaddr register. 1153 */ 1154 stack_off_reg = ur_load_imm_any(nfp_prog, meta->insn.off, 1155 stack_imm(nfp_prog)); 1156 1157 emit_alu(nfp_prog, imm_b(nfp_prog), 1158 reg_a(ptr_gpr), ALU_OP_ADD, stack_off_reg); 1159 1160 needs_inc = true; 1161 } else if (off + size <= 64) { 1162 /* We can reach bottom 64B with LMaddr0 */ 1163 lm3 = false; 1164 } else if (round_down(off, 32) == round_down(off + size - 1, 32)) { 1165 /* We have to set up a new pointer. If we know the offset 1166 * and the entire access falls into a single 32 byte aligned 1167 * window we won't have to increment the LM pointer. 1168 * The 32 byte alignment is imporant because offset is ORed in 1169 * not added when doing *l$indexN[off]. 1170 */ 1171 stack_off_reg = ur_load_imm_any(nfp_prog, round_down(off, 32), 1172 stack_imm(nfp_prog)); 1173 emit_alu(nfp_prog, imm_b(nfp_prog), 1174 stack_reg(nfp_prog), ALU_OP_ADD, stack_off_reg); 1175 1176 off %= 32; 1177 } else { 1178 stack_off_reg = ur_load_imm_any(nfp_prog, round_down(off, 4), 1179 stack_imm(nfp_prog)); 1180 1181 emit_alu(nfp_prog, imm_b(nfp_prog), 1182 stack_reg(nfp_prog), ALU_OP_ADD, stack_off_reg); 1183 1184 needs_inc = true; 1185 } 1186 if (lm3) { 1187 emit_csr_wr(nfp_prog, imm_b(nfp_prog), NFP_CSR_ACT_LM_ADDR3); 1188 /* For size < 4 one slot will be filled by zeroing of upper. */ 1189 wrp_nops(nfp_prog, clr_gpr && size < 8 ? 2 : 3); 1190 } 1191 1192 if (clr_gpr && size < 8) 1193 wrp_immed(nfp_prog, reg_both(gpr + 1), 0); 1194 1195 while (size) { 1196 u32 slice_end; 1197 u8 slice_size; 1198 1199 slice_size = min(size, 4 - gpr_byte); 1200 slice_end = min(off + slice_size, round_up(off + 1, 4)); 1201 slice_size = slice_end - off; 1202 1203 last = slice_size == size; 1204 1205 if (needs_inc) 1206 off %= 4; 1207 1208 ret = step(nfp_prog, gpr, gpr_byte, off, slice_size, 1209 first, gpr != prev_gpr, last, lm3, needs_inc); 1210 if (ret) 1211 return ret; 1212 1213 prev_gpr = gpr; 1214 first = false; 1215 1216 gpr_byte += slice_size; 1217 if (gpr_byte >= 4) { 1218 gpr_byte -= 4; 1219 gpr++; 1220 } 1221 1222 size -= slice_size; 1223 off += slice_size; 1224 } 1225 1226 return 0; 1227 } 1228 1229 static void 1230 wrp_alu_imm(struct nfp_prog *nfp_prog, u8 dst, enum alu_op alu_op, u32 imm) 1231 { 1232 swreg tmp_reg; 1233 1234 if (alu_op == ALU_OP_AND) { 1235 if (!imm) 1236 wrp_immed(nfp_prog, reg_both(dst), 0); 1237 if (!imm || !~imm) 1238 return; 1239 } 1240 if (alu_op == ALU_OP_OR) { 1241 if (!~imm) 1242 wrp_immed(nfp_prog, reg_both(dst), ~0U); 1243 if (!imm || !~imm) 1244 return; 1245 } 1246 if (alu_op == ALU_OP_XOR) { 1247 if (!~imm) 1248 emit_alu(nfp_prog, reg_both(dst), reg_none(), 1249 ALU_OP_NOT, reg_b(dst)); 1250 if (!imm || !~imm) 1251 return; 1252 } 1253 1254 tmp_reg = ur_load_imm_any(nfp_prog, imm, imm_b(nfp_prog)); 1255 emit_alu(nfp_prog, reg_both(dst), reg_a(dst), alu_op, tmp_reg); 1256 } 1257 1258 static int 1259 wrp_alu64_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta, 1260 enum alu_op alu_op, bool skip) 1261 { 1262 const struct bpf_insn *insn = &meta->insn; 1263 u64 imm = insn->imm; /* sign extend */ 1264 1265 if (skip) { 1266 meta->skip = true; 1267 return 0; 1268 } 1269 1270 wrp_alu_imm(nfp_prog, insn->dst_reg * 2, alu_op, imm & ~0U); 1271 wrp_alu_imm(nfp_prog, insn->dst_reg * 2 + 1, alu_op, imm >> 32); 1272 1273 return 0; 1274 } 1275 1276 static int 1277 wrp_alu64_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta, 1278 enum alu_op alu_op) 1279 { 1280 u8 dst = meta->insn.dst_reg * 2, src = meta->insn.src_reg * 2; 1281 1282 emit_alu(nfp_prog, reg_both(dst), reg_a(dst), alu_op, reg_b(src)); 1283 emit_alu(nfp_prog, reg_both(dst + 1), 1284 reg_a(dst + 1), alu_op, reg_b(src + 1)); 1285 1286 return 0; 1287 } 1288 1289 static int 1290 wrp_alu32_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta, 1291 enum alu_op alu_op, bool skip) 1292 { 1293 const struct bpf_insn *insn = &meta->insn; 1294 1295 if (skip) { 1296 meta->skip = true; 1297 return 0; 1298 } 1299 1300 wrp_alu_imm(nfp_prog, insn->dst_reg * 2, alu_op, insn->imm); 1301 wrp_immed(nfp_prog, reg_both(insn->dst_reg * 2 + 1), 0); 1302 1303 return 0; 1304 } 1305 1306 static int 1307 wrp_alu32_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta, 1308 enum alu_op alu_op) 1309 { 1310 u8 dst = meta->insn.dst_reg * 2, src = meta->insn.src_reg * 2; 1311 1312 emit_alu(nfp_prog, reg_both(dst), reg_a(dst), alu_op, reg_b(src)); 1313 wrp_immed(nfp_prog, reg_both(meta->insn.dst_reg * 2 + 1), 0); 1314 1315 return 0; 1316 } 1317 1318 static void 1319 wrp_test_reg_one(struct nfp_prog *nfp_prog, u8 dst, enum alu_op alu_op, u8 src, 1320 enum br_mask br_mask, u16 off) 1321 { 1322 emit_alu(nfp_prog, reg_none(), reg_a(dst), alu_op, reg_b(src)); 1323 emit_br(nfp_prog, br_mask, off, 0); 1324 } 1325 1326 static int 1327 wrp_test_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta, 1328 enum alu_op alu_op, enum br_mask br_mask) 1329 { 1330 const struct bpf_insn *insn = &meta->insn; 1331 1332 wrp_test_reg_one(nfp_prog, insn->dst_reg * 2, alu_op, 1333 insn->src_reg * 2, br_mask, insn->off); 1334 wrp_test_reg_one(nfp_prog, insn->dst_reg * 2 + 1, alu_op, 1335 insn->src_reg * 2 + 1, br_mask, insn->off); 1336 1337 return 0; 1338 } 1339 1340 static const struct jmp_code_map { 1341 enum br_mask br_mask; 1342 bool swap; 1343 } jmp_code_map[] = { 1344 [BPF_JGT >> 4] = { BR_BLO, true }, 1345 [BPF_JGE >> 4] = { BR_BHS, false }, 1346 [BPF_JLT >> 4] = { BR_BLO, false }, 1347 [BPF_JLE >> 4] = { BR_BHS, true }, 1348 [BPF_JSGT >> 4] = { BR_BLT, true }, 1349 [BPF_JSGE >> 4] = { BR_BGE, false }, 1350 [BPF_JSLT >> 4] = { BR_BLT, false }, 1351 [BPF_JSLE >> 4] = { BR_BGE, true }, 1352 }; 1353 1354 static const struct jmp_code_map *nfp_jmp_code_get(struct nfp_insn_meta *meta) 1355 { 1356 unsigned int op; 1357 1358 op = BPF_OP(meta->insn.code) >> 4; 1359 /* br_mask of 0 is BR_BEQ which we don't use in jump code table */ 1360 if (WARN_ONCE(op >= ARRAY_SIZE(jmp_code_map) || 1361 !jmp_code_map[op].br_mask, 1362 "no code found for jump instruction")) 1363 return NULL; 1364 1365 return &jmp_code_map[op]; 1366 } 1367 1368 static int cmp_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) 1369 { 1370 const struct bpf_insn *insn = &meta->insn; 1371 u64 imm = insn->imm; /* sign extend */ 1372 const struct jmp_code_map *code; 1373 enum alu_op alu_op, carry_op; 1374 u8 reg = insn->dst_reg * 2; 1375 swreg tmp_reg; 1376 1377 code = nfp_jmp_code_get(meta); 1378 if (!code) 1379 return -EINVAL; 1380 1381 alu_op = meta->jump_neg_op ? ALU_OP_ADD : ALU_OP_SUB; 1382 carry_op = meta->jump_neg_op ? ALU_OP_ADD_C : ALU_OP_SUB_C; 1383 1384 tmp_reg = ur_load_imm_any(nfp_prog, imm & ~0U, imm_b(nfp_prog)); 1385 if (!code->swap) 1386 emit_alu(nfp_prog, reg_none(), reg_a(reg), alu_op, tmp_reg); 1387 else 1388 emit_alu(nfp_prog, reg_none(), tmp_reg, alu_op, reg_a(reg)); 1389 1390 tmp_reg = ur_load_imm_any(nfp_prog, imm >> 32, imm_b(nfp_prog)); 1391 if (!code->swap) 1392 emit_alu(nfp_prog, reg_none(), 1393 reg_a(reg + 1), carry_op, tmp_reg); 1394 else 1395 emit_alu(nfp_prog, reg_none(), 1396 tmp_reg, carry_op, reg_a(reg + 1)); 1397 1398 emit_br(nfp_prog, code->br_mask, insn->off, 0); 1399 1400 return 0; 1401 } 1402 1403 static int cmp_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) 1404 { 1405 const struct bpf_insn *insn = &meta->insn; 1406 const struct jmp_code_map *code; 1407 u8 areg, breg; 1408 1409 code = nfp_jmp_code_get(meta); 1410 if (!code) 1411 return -EINVAL; 1412 1413 areg = insn->dst_reg * 2; 1414 breg = insn->src_reg * 2; 1415 1416 if (code->swap) { 1417 areg ^= breg; 1418 breg ^= areg; 1419 areg ^= breg; 1420 } 1421 1422 emit_alu(nfp_prog, reg_none(), reg_a(areg), ALU_OP_SUB, reg_b(breg)); 1423 emit_alu(nfp_prog, reg_none(), 1424 reg_a(areg + 1), ALU_OP_SUB_C, reg_b(breg + 1)); 1425 emit_br(nfp_prog, code->br_mask, insn->off, 0); 1426 1427 return 0; 1428 } 1429 1430 static void wrp_end32(struct nfp_prog *nfp_prog, swreg reg_in, u8 gpr_out) 1431 { 1432 emit_ld_field(nfp_prog, reg_both(gpr_out), 0xf, reg_in, 1433 SHF_SC_R_ROT, 8); 1434 emit_ld_field(nfp_prog, reg_both(gpr_out), 0x5, reg_a(gpr_out), 1435 SHF_SC_R_ROT, 16); 1436 } 1437 1438 static void 1439 wrp_mul_u32(struct nfp_prog *nfp_prog, swreg dst_hi, swreg dst_lo, swreg lreg, 1440 swreg rreg, bool gen_high_half) 1441 { 1442 emit_mul(nfp_prog, lreg, MUL_TYPE_START, MUL_STEP_NONE, rreg); 1443 emit_mul(nfp_prog, lreg, MUL_TYPE_STEP_32x32, MUL_STEP_1, rreg); 1444 emit_mul(nfp_prog, lreg, MUL_TYPE_STEP_32x32, MUL_STEP_2, rreg); 1445 emit_mul(nfp_prog, lreg, MUL_TYPE_STEP_32x32, MUL_STEP_3, rreg); 1446 emit_mul(nfp_prog, lreg, MUL_TYPE_STEP_32x32, MUL_STEP_4, rreg); 1447 emit_mul(nfp_prog, dst_lo, MUL_TYPE_STEP_32x32, MUL_LAST, reg_none()); 1448 if (gen_high_half) 1449 emit_mul(nfp_prog, dst_hi, MUL_TYPE_STEP_32x32, MUL_LAST_2, 1450 reg_none()); 1451 else 1452 wrp_immed(nfp_prog, dst_hi, 0); 1453 } 1454 1455 static void 1456 wrp_mul_u16(struct nfp_prog *nfp_prog, swreg dst_hi, swreg dst_lo, swreg lreg, 1457 swreg rreg) 1458 { 1459 emit_mul(nfp_prog, lreg, MUL_TYPE_START, MUL_STEP_NONE, rreg); 1460 emit_mul(nfp_prog, lreg, MUL_TYPE_STEP_16x16, MUL_STEP_1, rreg); 1461 emit_mul(nfp_prog, lreg, MUL_TYPE_STEP_16x16, MUL_STEP_2, rreg); 1462 emit_mul(nfp_prog, dst_lo, MUL_TYPE_STEP_16x16, MUL_LAST, reg_none()); 1463 } 1464 1465 static int 1466 wrp_mul(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta, 1467 bool gen_high_half, bool ropnd_from_reg) 1468 { 1469 swreg multiplier, multiplicand, dst_hi, dst_lo; 1470 const struct bpf_insn *insn = &meta->insn; 1471 u32 lopnd_max, ropnd_max; 1472 u8 dst_reg; 1473 1474 dst_reg = insn->dst_reg; 1475 multiplicand = reg_a(dst_reg * 2); 1476 dst_hi = reg_both(dst_reg * 2 + 1); 1477 dst_lo = reg_both(dst_reg * 2); 1478 lopnd_max = meta->umax_dst; 1479 if (ropnd_from_reg) { 1480 multiplier = reg_b(insn->src_reg * 2); 1481 ropnd_max = meta->umax_src; 1482 } else { 1483 u32 imm = insn->imm; 1484 1485 multiplier = ur_load_imm_any(nfp_prog, imm, imm_b(nfp_prog)); 1486 ropnd_max = imm; 1487 } 1488 if (lopnd_max > U16_MAX || ropnd_max > U16_MAX) 1489 wrp_mul_u32(nfp_prog, dst_hi, dst_lo, multiplicand, multiplier, 1490 gen_high_half); 1491 else 1492 wrp_mul_u16(nfp_prog, dst_hi, dst_lo, multiplicand, multiplier); 1493 1494 return 0; 1495 } 1496 1497 static int wrp_div_imm(struct nfp_prog *nfp_prog, u8 dst, u64 imm) 1498 { 1499 swreg dst_both = reg_both(dst), dst_a = reg_a(dst), dst_b = reg_a(dst); 1500 struct reciprocal_value_adv rvalue; 1501 u8 pre_shift, exp; 1502 swreg magic; 1503 1504 if (imm > U32_MAX) { 1505 wrp_immed(nfp_prog, dst_both, 0); 1506 return 0; 1507 } 1508 1509 /* NOTE: because we are using "reciprocal_value_adv" which doesn't 1510 * support "divisor > (1u << 31)", we need to JIT separate NFP sequence 1511 * to handle such case which actually equals to the result of unsigned 1512 * comparison "dst >= imm" which could be calculated using the following 1513 * NFP sequence: 1514 * 1515 * alu[--, dst, -, imm] 1516 * immed[imm, 0] 1517 * alu[dst, imm, +carry, 0] 1518 * 1519 */ 1520 if (imm > 1U << 31) { 1521 swreg tmp_b = ur_load_imm_any(nfp_prog, imm, imm_b(nfp_prog)); 1522 1523 emit_alu(nfp_prog, reg_none(), dst_a, ALU_OP_SUB, tmp_b); 1524 wrp_immed(nfp_prog, imm_a(nfp_prog), 0); 1525 emit_alu(nfp_prog, dst_both, imm_a(nfp_prog), ALU_OP_ADD_C, 1526 reg_imm(0)); 1527 return 0; 1528 } 1529 1530 rvalue = reciprocal_value_adv(imm, 32); 1531 exp = rvalue.exp; 1532 if (rvalue.is_wide_m && !(imm & 1)) { 1533 pre_shift = fls(imm & -imm) - 1; 1534 rvalue = reciprocal_value_adv(imm >> pre_shift, 32 - pre_shift); 1535 } else { 1536 pre_shift = 0; 1537 } 1538 magic = ur_load_imm_any(nfp_prog, rvalue.m, imm_b(nfp_prog)); 1539 if (imm == 1U << exp) { 1540 emit_shf(nfp_prog, dst_both, reg_none(), SHF_OP_NONE, dst_b, 1541 SHF_SC_R_SHF, exp); 1542 } else if (rvalue.is_wide_m) { 1543 wrp_mul_u32(nfp_prog, imm_both(nfp_prog), reg_none(), dst_a, 1544 magic, true); 1545 emit_alu(nfp_prog, dst_both, dst_a, ALU_OP_SUB, 1546 imm_b(nfp_prog)); 1547 emit_shf(nfp_prog, dst_both, reg_none(), SHF_OP_NONE, dst_b, 1548 SHF_SC_R_SHF, 1); 1549 emit_alu(nfp_prog, dst_both, dst_a, ALU_OP_ADD, 1550 imm_b(nfp_prog)); 1551 emit_shf(nfp_prog, dst_both, reg_none(), SHF_OP_NONE, dst_b, 1552 SHF_SC_R_SHF, rvalue.sh - 1); 1553 } else { 1554 if (pre_shift) 1555 emit_shf(nfp_prog, dst_both, reg_none(), SHF_OP_NONE, 1556 dst_b, SHF_SC_R_SHF, pre_shift); 1557 wrp_mul_u32(nfp_prog, dst_both, reg_none(), dst_a, magic, true); 1558 emit_shf(nfp_prog, dst_both, reg_none(), SHF_OP_NONE, 1559 dst_b, SHF_SC_R_SHF, rvalue.sh); 1560 } 1561 1562 return 0; 1563 } 1564 1565 static int adjust_head(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) 1566 { 1567 swreg tmp = imm_a(nfp_prog), tmp_len = imm_b(nfp_prog); 1568 struct nfp_bpf_cap_adjust_head *adjust_head; 1569 u32 ret_einval, end; 1570 1571 adjust_head = &nfp_prog->bpf->adjust_head; 1572 1573 /* Optimized version - 5 vs 14 cycles */ 1574 if (nfp_prog->adjust_head_location != UINT_MAX) { 1575 if (WARN_ON_ONCE(nfp_prog->adjust_head_location != meta->n)) 1576 return -EINVAL; 1577 1578 emit_alu(nfp_prog, pptr_reg(nfp_prog), 1579 reg_a(2 * 2), ALU_OP_ADD, pptr_reg(nfp_prog)); 1580 emit_alu(nfp_prog, plen_reg(nfp_prog), 1581 plen_reg(nfp_prog), ALU_OP_SUB, reg_a(2 * 2)); 1582 emit_alu(nfp_prog, pv_len(nfp_prog), 1583 pv_len(nfp_prog), ALU_OP_SUB, reg_a(2 * 2)); 1584 1585 wrp_immed(nfp_prog, reg_both(0), 0); 1586 wrp_immed(nfp_prog, reg_both(1), 0); 1587 1588 /* TODO: when adjust head is guaranteed to succeed we can 1589 * also eliminate the following if (r0 == 0) branch. 1590 */ 1591 1592 return 0; 1593 } 1594 1595 ret_einval = nfp_prog_current_offset(nfp_prog) + 14; 1596 end = ret_einval + 2; 1597 1598 /* We need to use a temp because offset is just a part of the pkt ptr */ 1599 emit_alu(nfp_prog, tmp, 1600 reg_a(2 * 2), ALU_OP_ADD_2B, pptr_reg(nfp_prog)); 1601 1602 /* Validate result will fit within FW datapath constraints */ 1603 emit_alu(nfp_prog, reg_none(), 1604 tmp, ALU_OP_SUB, reg_imm(adjust_head->off_min)); 1605 emit_br(nfp_prog, BR_BLO, ret_einval, 0); 1606 emit_alu(nfp_prog, reg_none(), 1607 reg_imm(adjust_head->off_max), ALU_OP_SUB, tmp); 1608 emit_br(nfp_prog, BR_BLO, ret_einval, 0); 1609 1610 /* Validate the length is at least ETH_HLEN */ 1611 emit_alu(nfp_prog, tmp_len, 1612 plen_reg(nfp_prog), ALU_OP_SUB, reg_a(2 * 2)); 1613 emit_alu(nfp_prog, reg_none(), 1614 tmp_len, ALU_OP_SUB, reg_imm(ETH_HLEN)); 1615 emit_br(nfp_prog, BR_BMI, ret_einval, 0); 1616 1617 /* Load the ret code */ 1618 wrp_immed(nfp_prog, reg_both(0), 0); 1619 wrp_immed(nfp_prog, reg_both(1), 0); 1620 1621 /* Modify the packet metadata */ 1622 emit_ld_field(nfp_prog, pptr_reg(nfp_prog), 0x3, tmp, SHF_SC_NONE, 0); 1623 1624 /* Skip over the -EINVAL ret code (defer 2) */ 1625 emit_br(nfp_prog, BR_UNC, end, 2); 1626 1627 emit_alu(nfp_prog, plen_reg(nfp_prog), 1628 plen_reg(nfp_prog), ALU_OP_SUB, reg_a(2 * 2)); 1629 emit_alu(nfp_prog, pv_len(nfp_prog), 1630 pv_len(nfp_prog), ALU_OP_SUB, reg_a(2 * 2)); 1631 1632 /* return -EINVAL target */ 1633 if (!nfp_prog_confirm_current_offset(nfp_prog, ret_einval)) 1634 return -EINVAL; 1635 1636 wrp_immed(nfp_prog, reg_both(0), -22); 1637 wrp_immed(nfp_prog, reg_both(1), ~0); 1638 1639 if (!nfp_prog_confirm_current_offset(nfp_prog, end)) 1640 return -EINVAL; 1641 1642 return 0; 1643 } 1644 1645 static int adjust_tail(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) 1646 { 1647 u32 ret_einval, end; 1648 swreg plen, delta; 1649 1650 BUILD_BUG_ON(plen_reg(nfp_prog) != reg_b(STATIC_REG_PKT_LEN)); 1651 1652 plen = imm_a(nfp_prog); 1653 delta = reg_a(2 * 2); 1654 1655 ret_einval = nfp_prog_current_offset(nfp_prog) + 9; 1656 end = nfp_prog_current_offset(nfp_prog) + 11; 1657 1658 /* Calculate resulting length */ 1659 emit_alu(nfp_prog, plen, plen_reg(nfp_prog), ALU_OP_ADD, delta); 1660 /* delta == 0 is not allowed by the kernel, add must overflow to make 1661 * length smaller. 1662 */ 1663 emit_br(nfp_prog, BR_BCC, ret_einval, 0); 1664 1665 /* if (new_len < 14) then -EINVAL */ 1666 emit_alu(nfp_prog, reg_none(), plen, ALU_OP_SUB, reg_imm(ETH_HLEN)); 1667 emit_br(nfp_prog, BR_BMI, ret_einval, 0); 1668 1669 emit_alu(nfp_prog, plen_reg(nfp_prog), 1670 plen_reg(nfp_prog), ALU_OP_ADD, delta); 1671 emit_alu(nfp_prog, pv_len(nfp_prog), 1672 pv_len(nfp_prog), ALU_OP_ADD, delta); 1673 1674 emit_br(nfp_prog, BR_UNC, end, 2); 1675 wrp_immed(nfp_prog, reg_both(0), 0); 1676 wrp_immed(nfp_prog, reg_both(1), 0); 1677 1678 if (!nfp_prog_confirm_current_offset(nfp_prog, ret_einval)) 1679 return -EINVAL; 1680 1681 wrp_immed(nfp_prog, reg_both(0), -22); 1682 wrp_immed(nfp_prog, reg_both(1), ~0); 1683 1684 if (!nfp_prog_confirm_current_offset(nfp_prog, end)) 1685 return -EINVAL; 1686 1687 return 0; 1688 } 1689 1690 static int 1691 map_call_stack_common(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) 1692 { 1693 bool load_lm_ptr; 1694 u32 ret_tgt; 1695 s64 lm_off; 1696 1697 /* We only have to reload LM0 if the key is not at start of stack */ 1698 lm_off = nfp_prog->stack_depth; 1699 lm_off += meta->arg2.reg.var_off.value + meta->arg2.reg.off; 1700 load_lm_ptr = meta->arg2.var_off || lm_off; 1701 1702 /* Set LM0 to start of key */ 1703 if (load_lm_ptr) 1704 emit_csr_wr(nfp_prog, reg_b(2 * 2), NFP_CSR_ACT_LM_ADDR0); 1705 if (meta->func_id == BPF_FUNC_map_update_elem) 1706 emit_csr_wr(nfp_prog, reg_b(3 * 2), NFP_CSR_ACT_LM_ADDR2); 1707 1708 emit_br_relo(nfp_prog, BR_UNC, BR_OFF_RELO + meta->func_id, 1709 2, RELO_BR_HELPER); 1710 ret_tgt = nfp_prog_current_offset(nfp_prog) + 2; 1711 1712 /* Load map ID into A0 */ 1713 wrp_mov(nfp_prog, reg_a(0), reg_a(2)); 1714 1715 /* Load the return address into B0 */ 1716 wrp_immed_relo(nfp_prog, reg_b(0), ret_tgt, RELO_IMMED_REL); 1717 1718 if (!nfp_prog_confirm_current_offset(nfp_prog, ret_tgt)) 1719 return -EINVAL; 1720 1721 /* Reset the LM0 pointer */ 1722 if (!load_lm_ptr) 1723 return 0; 1724 1725 emit_csr_wr(nfp_prog, stack_reg(nfp_prog), NFP_CSR_ACT_LM_ADDR0); 1726 wrp_nops(nfp_prog, 3); 1727 1728 return 0; 1729 } 1730 1731 static int 1732 nfp_get_prandom_u32(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) 1733 { 1734 __emit_csr_rd(nfp_prog, NFP_CSR_PSEUDO_RND_NUM); 1735 /* CSR value is read in following immed[gpr, 0] */ 1736 emit_immed(nfp_prog, reg_both(0), 0, 1737 IMMED_WIDTH_ALL, false, IMMED_SHIFT_0B); 1738 emit_immed(nfp_prog, reg_both(1), 0, 1739 IMMED_WIDTH_ALL, false, IMMED_SHIFT_0B); 1740 return 0; 1741 } 1742 1743 static int 1744 nfp_perf_event_output(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) 1745 { 1746 swreg ptr_type; 1747 u32 ret_tgt; 1748 1749 ptr_type = ur_load_imm_any(nfp_prog, meta->arg1.type, imm_a(nfp_prog)); 1750 1751 ret_tgt = nfp_prog_current_offset(nfp_prog) + 3; 1752 1753 emit_br_relo(nfp_prog, BR_UNC, BR_OFF_RELO + meta->func_id, 1754 2, RELO_BR_HELPER); 1755 1756 /* Load ptr type into A1 */ 1757 wrp_mov(nfp_prog, reg_a(1), ptr_type); 1758 1759 /* Load the return address into B0 */ 1760 wrp_immed_relo(nfp_prog, reg_b(0), ret_tgt, RELO_IMMED_REL); 1761 1762 if (!nfp_prog_confirm_current_offset(nfp_prog, ret_tgt)) 1763 return -EINVAL; 1764 1765 return 0; 1766 } 1767 1768 static int 1769 nfp_queue_select(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) 1770 { 1771 u32 jmp_tgt; 1772 1773 jmp_tgt = nfp_prog_current_offset(nfp_prog) + 5; 1774 1775 /* Make sure the queue id fits into FW field */ 1776 emit_alu(nfp_prog, reg_none(), reg_a(meta->insn.src_reg * 2), 1777 ALU_OP_AND_NOT_B, reg_imm(0xff)); 1778 emit_br(nfp_prog, BR_BEQ, jmp_tgt, 2); 1779 1780 /* Set the 'queue selected' bit and the queue value */ 1781 emit_shf(nfp_prog, pv_qsel_set(nfp_prog), 1782 pv_qsel_set(nfp_prog), SHF_OP_OR, reg_imm(1), 1783 SHF_SC_L_SHF, PKT_VEL_QSEL_SET_BIT); 1784 emit_ld_field(nfp_prog, 1785 pv_qsel_val(nfp_prog), 0x1, reg_b(meta->insn.src_reg * 2), 1786 SHF_SC_NONE, 0); 1787 /* Delay slots end here, we will jump over next instruction if queue 1788 * value fits into the field. 1789 */ 1790 emit_ld_field(nfp_prog, 1791 pv_qsel_val(nfp_prog), 0x1, reg_imm(NFP_NET_RXR_MAX), 1792 SHF_SC_NONE, 0); 1793 1794 if (!nfp_prog_confirm_current_offset(nfp_prog, jmp_tgt)) 1795 return -EINVAL; 1796 1797 return 0; 1798 } 1799 1800 /* --- Callbacks --- */ 1801 static int mov_reg64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) 1802 { 1803 const struct bpf_insn *insn = &meta->insn; 1804 u8 dst = insn->dst_reg * 2; 1805 u8 src = insn->src_reg * 2; 1806 1807 if (insn->src_reg == BPF_REG_10) { 1808 swreg stack_depth_reg; 1809 1810 stack_depth_reg = ur_load_imm_any(nfp_prog, 1811 nfp_prog->stack_depth, 1812 stack_imm(nfp_prog)); 1813 emit_alu(nfp_prog, reg_both(dst), 1814 stack_reg(nfp_prog), ALU_OP_ADD, stack_depth_reg); 1815 wrp_immed(nfp_prog, reg_both(dst + 1), 0); 1816 } else { 1817 wrp_reg_mov(nfp_prog, dst, src); 1818 wrp_reg_mov(nfp_prog, dst + 1, src + 1); 1819 } 1820 1821 return 0; 1822 } 1823 1824 static int mov_imm64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) 1825 { 1826 u64 imm = meta->insn.imm; /* sign extend */ 1827 1828 wrp_immed(nfp_prog, reg_both(meta->insn.dst_reg * 2), imm & ~0U); 1829 wrp_immed(nfp_prog, reg_both(meta->insn.dst_reg * 2 + 1), imm >> 32); 1830 1831 return 0; 1832 } 1833 1834 static int xor_reg64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) 1835 { 1836 return wrp_alu64_reg(nfp_prog, meta, ALU_OP_XOR); 1837 } 1838 1839 static int xor_imm64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) 1840 { 1841 return wrp_alu64_imm(nfp_prog, meta, ALU_OP_XOR, !meta->insn.imm); 1842 } 1843 1844 static int and_reg64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) 1845 { 1846 return wrp_alu64_reg(nfp_prog, meta, ALU_OP_AND); 1847 } 1848 1849 static int and_imm64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) 1850 { 1851 return wrp_alu64_imm(nfp_prog, meta, ALU_OP_AND, !~meta->insn.imm); 1852 } 1853 1854 static int or_reg64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) 1855 { 1856 return wrp_alu64_reg(nfp_prog, meta, ALU_OP_OR); 1857 } 1858 1859 static int or_imm64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) 1860 { 1861 return wrp_alu64_imm(nfp_prog, meta, ALU_OP_OR, !meta->insn.imm); 1862 } 1863 1864 static int add_reg64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) 1865 { 1866 const struct bpf_insn *insn = &meta->insn; 1867 1868 emit_alu(nfp_prog, reg_both(insn->dst_reg * 2), 1869 reg_a(insn->dst_reg * 2), ALU_OP_ADD, 1870 reg_b(insn->src_reg * 2)); 1871 emit_alu(nfp_prog, reg_both(insn->dst_reg * 2 + 1), 1872 reg_a(insn->dst_reg * 2 + 1), ALU_OP_ADD_C, 1873 reg_b(insn->src_reg * 2 + 1)); 1874 1875 return 0; 1876 } 1877 1878 static int add_imm64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) 1879 { 1880 const struct bpf_insn *insn = &meta->insn; 1881 u64 imm = insn->imm; /* sign extend */ 1882 1883 wrp_alu_imm(nfp_prog, insn->dst_reg * 2, ALU_OP_ADD, imm & ~0U); 1884 wrp_alu_imm(nfp_prog, insn->dst_reg * 2 + 1, ALU_OP_ADD_C, imm >> 32); 1885 1886 return 0; 1887 } 1888 1889 static int sub_reg64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) 1890 { 1891 const struct bpf_insn *insn = &meta->insn; 1892 1893 emit_alu(nfp_prog, reg_both(insn->dst_reg * 2), 1894 reg_a(insn->dst_reg * 2), ALU_OP_SUB, 1895 reg_b(insn->src_reg * 2)); 1896 emit_alu(nfp_prog, reg_both(insn->dst_reg * 2 + 1), 1897 reg_a(insn->dst_reg * 2 + 1), ALU_OP_SUB_C, 1898 reg_b(insn->src_reg * 2 + 1)); 1899 1900 return 0; 1901 } 1902 1903 static int sub_imm64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) 1904 { 1905 const struct bpf_insn *insn = &meta->insn; 1906 u64 imm = insn->imm; /* sign extend */ 1907 1908 wrp_alu_imm(nfp_prog, insn->dst_reg * 2, ALU_OP_SUB, imm & ~0U); 1909 wrp_alu_imm(nfp_prog, insn->dst_reg * 2 + 1, ALU_OP_SUB_C, imm >> 32); 1910 1911 return 0; 1912 } 1913 1914 static int mul_reg64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) 1915 { 1916 return wrp_mul(nfp_prog, meta, true, true); 1917 } 1918 1919 static int mul_imm64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) 1920 { 1921 return wrp_mul(nfp_prog, meta, true, false); 1922 } 1923 1924 static int div_imm64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) 1925 { 1926 const struct bpf_insn *insn = &meta->insn; 1927 1928 return wrp_div_imm(nfp_prog, insn->dst_reg * 2, insn->imm); 1929 } 1930 1931 static int div_reg64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) 1932 { 1933 /* NOTE: verifier hook has rejected cases for which verifier doesn't 1934 * know whether the source operand is constant or not. 1935 */ 1936 return wrp_div_imm(nfp_prog, meta->insn.dst_reg * 2, meta->umin_src); 1937 } 1938 1939 static int neg_reg64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) 1940 { 1941 const struct bpf_insn *insn = &meta->insn; 1942 1943 emit_alu(nfp_prog, reg_both(insn->dst_reg * 2), reg_imm(0), 1944 ALU_OP_SUB, reg_b(insn->dst_reg * 2)); 1945 emit_alu(nfp_prog, reg_both(insn->dst_reg * 2 + 1), reg_imm(0), 1946 ALU_OP_SUB_C, reg_b(insn->dst_reg * 2 + 1)); 1947 1948 return 0; 1949 } 1950 1951 /* Pseudo code: 1952 * if shift_amt >= 32 1953 * dst_high = dst_low << shift_amt[4:0] 1954 * dst_low = 0; 1955 * else 1956 * dst_high = (dst_high, dst_low) >> (32 - shift_amt) 1957 * dst_low = dst_low << shift_amt 1958 * 1959 * The indirect shift will use the same logic at runtime. 1960 */ 1961 static int __shl_imm64(struct nfp_prog *nfp_prog, u8 dst, u8 shift_amt) 1962 { 1963 if (shift_amt < 32) { 1964 emit_shf(nfp_prog, reg_both(dst + 1), reg_a(dst + 1), 1965 SHF_OP_NONE, reg_b(dst), SHF_SC_R_DSHF, 1966 32 - shift_amt); 1967 emit_shf(nfp_prog, reg_both(dst), reg_none(), SHF_OP_NONE, 1968 reg_b(dst), SHF_SC_L_SHF, shift_amt); 1969 } else if (shift_amt == 32) { 1970 wrp_reg_mov(nfp_prog, dst + 1, dst); 1971 wrp_immed(nfp_prog, reg_both(dst), 0); 1972 } else if (shift_amt > 32) { 1973 emit_shf(nfp_prog, reg_both(dst + 1), reg_none(), SHF_OP_NONE, 1974 reg_b(dst), SHF_SC_L_SHF, shift_amt - 32); 1975 wrp_immed(nfp_prog, reg_both(dst), 0); 1976 } 1977 1978 return 0; 1979 } 1980 1981 static int shl_imm64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) 1982 { 1983 const struct bpf_insn *insn = &meta->insn; 1984 u8 dst = insn->dst_reg * 2; 1985 1986 return __shl_imm64(nfp_prog, dst, insn->imm); 1987 } 1988 1989 static void shl_reg64_lt32_high(struct nfp_prog *nfp_prog, u8 dst, u8 src) 1990 { 1991 emit_alu(nfp_prog, imm_both(nfp_prog), reg_imm(32), ALU_OP_SUB, 1992 reg_b(src)); 1993 emit_alu(nfp_prog, reg_none(), imm_a(nfp_prog), ALU_OP_OR, reg_imm(0)); 1994 emit_shf_indir(nfp_prog, reg_both(dst + 1), reg_a(dst + 1), SHF_OP_NONE, 1995 reg_b(dst), SHF_SC_R_DSHF); 1996 } 1997 1998 /* NOTE: for indirect left shift, HIGH part should be calculated first. */ 1999 static void shl_reg64_lt32_low(struct nfp_prog *nfp_prog, u8 dst, u8 src) 2000 { 2001 emit_alu(nfp_prog, reg_none(), reg_a(src), ALU_OP_OR, reg_imm(0)); 2002 emit_shf_indir(nfp_prog, reg_both(dst), reg_none(), SHF_OP_NONE, 2003 reg_b(dst), SHF_SC_L_SHF); 2004 } 2005 2006 static void shl_reg64_lt32(struct nfp_prog *nfp_prog, u8 dst, u8 src) 2007 { 2008 shl_reg64_lt32_high(nfp_prog, dst, src); 2009 shl_reg64_lt32_low(nfp_prog, dst, src); 2010 } 2011 2012 static void shl_reg64_ge32(struct nfp_prog *nfp_prog, u8 dst, u8 src) 2013 { 2014 emit_alu(nfp_prog, reg_none(), reg_a(src), ALU_OP_OR, reg_imm(0)); 2015 emit_shf_indir(nfp_prog, reg_both(dst + 1), reg_none(), SHF_OP_NONE, 2016 reg_b(dst), SHF_SC_L_SHF); 2017 wrp_immed(nfp_prog, reg_both(dst), 0); 2018 } 2019 2020 static int shl_reg64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) 2021 { 2022 const struct bpf_insn *insn = &meta->insn; 2023 u64 umin, umax; 2024 u8 dst, src; 2025 2026 dst = insn->dst_reg * 2; 2027 umin = meta->umin_src; 2028 umax = meta->umax_src; 2029 if (umin == umax) 2030 return __shl_imm64(nfp_prog, dst, umin); 2031 2032 src = insn->src_reg * 2; 2033 if (umax < 32) { 2034 shl_reg64_lt32(nfp_prog, dst, src); 2035 } else if (umin >= 32) { 2036 shl_reg64_ge32(nfp_prog, dst, src); 2037 } else { 2038 /* Generate different instruction sequences depending on runtime 2039 * value of shift amount. 2040 */ 2041 u16 label_ge32, label_end; 2042 2043 label_ge32 = nfp_prog_current_offset(nfp_prog) + 7; 2044 emit_br_bset(nfp_prog, reg_a(src), 5, label_ge32, 0); 2045 2046 shl_reg64_lt32_high(nfp_prog, dst, src); 2047 label_end = nfp_prog_current_offset(nfp_prog) + 6; 2048 emit_br(nfp_prog, BR_UNC, label_end, 2); 2049 /* shl_reg64_lt32_low packed in delay slot. */ 2050 shl_reg64_lt32_low(nfp_prog, dst, src); 2051 2052 if (!nfp_prog_confirm_current_offset(nfp_prog, label_ge32)) 2053 return -EINVAL; 2054 shl_reg64_ge32(nfp_prog, dst, src); 2055 2056 if (!nfp_prog_confirm_current_offset(nfp_prog, label_end)) 2057 return -EINVAL; 2058 } 2059 2060 return 0; 2061 } 2062 2063 /* Pseudo code: 2064 * if shift_amt >= 32 2065 * dst_high = 0; 2066 * dst_low = dst_high >> shift_amt[4:0] 2067 * else 2068 * dst_high = dst_high >> shift_amt 2069 * dst_low = (dst_high, dst_low) >> shift_amt 2070 * 2071 * The indirect shift will use the same logic at runtime. 2072 */ 2073 static int __shr_imm64(struct nfp_prog *nfp_prog, u8 dst, u8 shift_amt) 2074 { 2075 if (shift_amt < 32) { 2076 emit_shf(nfp_prog, reg_both(dst), reg_a(dst + 1), SHF_OP_NONE, 2077 reg_b(dst), SHF_SC_R_DSHF, shift_amt); 2078 emit_shf(nfp_prog, reg_both(dst + 1), reg_none(), SHF_OP_NONE, 2079 reg_b(dst + 1), SHF_SC_R_SHF, shift_amt); 2080 } else if (shift_amt == 32) { 2081 wrp_reg_mov(nfp_prog, dst, dst + 1); 2082 wrp_immed(nfp_prog, reg_both(dst + 1), 0); 2083 } else if (shift_amt > 32) { 2084 emit_shf(nfp_prog, reg_both(dst), reg_none(), SHF_OP_NONE, 2085 reg_b(dst + 1), SHF_SC_R_SHF, shift_amt - 32); 2086 wrp_immed(nfp_prog, reg_both(dst + 1), 0); 2087 } 2088 2089 return 0; 2090 } 2091 2092 static int shr_imm64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) 2093 { 2094 const struct bpf_insn *insn = &meta->insn; 2095 u8 dst = insn->dst_reg * 2; 2096 2097 return __shr_imm64(nfp_prog, dst, insn->imm); 2098 } 2099 2100 /* NOTE: for indirect right shift, LOW part should be calculated first. */ 2101 static void shr_reg64_lt32_high(struct nfp_prog *nfp_prog, u8 dst, u8 src) 2102 { 2103 emit_alu(nfp_prog, reg_none(), reg_a(src), ALU_OP_OR, reg_imm(0)); 2104 emit_shf_indir(nfp_prog, reg_both(dst + 1), reg_none(), SHF_OP_NONE, 2105 reg_b(dst + 1), SHF_SC_R_SHF); 2106 } 2107 2108 static void shr_reg64_lt32_low(struct nfp_prog *nfp_prog, u8 dst, u8 src) 2109 { 2110 emit_alu(nfp_prog, reg_none(), reg_a(src), ALU_OP_OR, reg_imm(0)); 2111 emit_shf_indir(nfp_prog, reg_both(dst), reg_a(dst + 1), SHF_OP_NONE, 2112 reg_b(dst), SHF_SC_R_DSHF); 2113 } 2114 2115 static void shr_reg64_lt32(struct nfp_prog *nfp_prog, u8 dst, u8 src) 2116 { 2117 shr_reg64_lt32_low(nfp_prog, dst, src); 2118 shr_reg64_lt32_high(nfp_prog, dst, src); 2119 } 2120 2121 static void shr_reg64_ge32(struct nfp_prog *nfp_prog, u8 dst, u8 src) 2122 { 2123 emit_alu(nfp_prog, reg_none(), reg_a(src), ALU_OP_OR, reg_imm(0)); 2124 emit_shf_indir(nfp_prog, reg_both(dst), reg_none(), SHF_OP_NONE, 2125 reg_b(dst + 1), SHF_SC_R_SHF); 2126 wrp_immed(nfp_prog, reg_both(dst + 1), 0); 2127 } 2128 2129 static int shr_reg64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) 2130 { 2131 const struct bpf_insn *insn = &meta->insn; 2132 u64 umin, umax; 2133 u8 dst, src; 2134 2135 dst = insn->dst_reg * 2; 2136 umin = meta->umin_src; 2137 umax = meta->umax_src; 2138 if (umin == umax) 2139 return __shr_imm64(nfp_prog, dst, umin); 2140 2141 src = insn->src_reg * 2; 2142 if (umax < 32) { 2143 shr_reg64_lt32(nfp_prog, dst, src); 2144 } else if (umin >= 32) { 2145 shr_reg64_ge32(nfp_prog, dst, src); 2146 } else { 2147 /* Generate different instruction sequences depending on runtime 2148 * value of shift amount. 2149 */ 2150 u16 label_ge32, label_end; 2151 2152 label_ge32 = nfp_prog_current_offset(nfp_prog) + 6; 2153 emit_br_bset(nfp_prog, reg_a(src), 5, label_ge32, 0); 2154 shr_reg64_lt32_low(nfp_prog, dst, src); 2155 label_end = nfp_prog_current_offset(nfp_prog) + 6; 2156 emit_br(nfp_prog, BR_UNC, label_end, 2); 2157 /* shr_reg64_lt32_high packed in delay slot. */ 2158 shr_reg64_lt32_high(nfp_prog, dst, src); 2159 2160 if (!nfp_prog_confirm_current_offset(nfp_prog, label_ge32)) 2161 return -EINVAL; 2162 shr_reg64_ge32(nfp_prog, dst, src); 2163 2164 if (!nfp_prog_confirm_current_offset(nfp_prog, label_end)) 2165 return -EINVAL; 2166 } 2167 2168 return 0; 2169 } 2170 2171 /* Code logic is the same as __shr_imm64 except ashr requires signedness bit 2172 * told through PREV_ALU result. 2173 */ 2174 static int __ashr_imm64(struct nfp_prog *nfp_prog, u8 dst, u8 shift_amt) 2175 { 2176 if (shift_amt < 32) { 2177 emit_shf(nfp_prog, reg_both(dst), reg_a(dst + 1), SHF_OP_NONE, 2178 reg_b(dst), SHF_SC_R_DSHF, shift_amt); 2179 /* Set signedness bit. */ 2180 emit_alu(nfp_prog, reg_none(), reg_a(dst + 1), ALU_OP_OR, 2181 reg_imm(0)); 2182 emit_shf(nfp_prog, reg_both(dst + 1), reg_none(), SHF_OP_ASHR, 2183 reg_b(dst + 1), SHF_SC_R_SHF, shift_amt); 2184 } else if (shift_amt == 32) { 2185 /* NOTE: this also helps setting signedness bit. */ 2186 wrp_reg_mov(nfp_prog, dst, dst + 1); 2187 emit_shf(nfp_prog, reg_both(dst + 1), reg_none(), SHF_OP_ASHR, 2188 reg_b(dst + 1), SHF_SC_R_SHF, 31); 2189 } else if (shift_amt > 32) { 2190 emit_alu(nfp_prog, reg_none(), reg_a(dst + 1), ALU_OP_OR, 2191 reg_imm(0)); 2192 emit_shf(nfp_prog, reg_both(dst), reg_none(), SHF_OP_ASHR, 2193 reg_b(dst + 1), SHF_SC_R_SHF, shift_amt - 32); 2194 emit_shf(nfp_prog, reg_both(dst + 1), reg_none(), SHF_OP_ASHR, 2195 reg_b(dst + 1), SHF_SC_R_SHF, 31); 2196 } 2197 2198 return 0; 2199 } 2200 2201 static int ashr_imm64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) 2202 { 2203 const struct bpf_insn *insn = &meta->insn; 2204 u8 dst = insn->dst_reg * 2; 2205 2206 return __ashr_imm64(nfp_prog, dst, insn->imm); 2207 } 2208 2209 static void ashr_reg64_lt32_high(struct nfp_prog *nfp_prog, u8 dst, u8 src) 2210 { 2211 /* NOTE: the first insn will set both indirect shift amount (source A) 2212 * and signedness bit (MSB of result). 2213 */ 2214 emit_alu(nfp_prog, reg_none(), reg_a(src), ALU_OP_OR, reg_b(dst + 1)); 2215 emit_shf_indir(nfp_prog, reg_both(dst + 1), reg_none(), SHF_OP_ASHR, 2216 reg_b(dst + 1), SHF_SC_R_SHF); 2217 } 2218 2219 static void ashr_reg64_lt32_low(struct nfp_prog *nfp_prog, u8 dst, u8 src) 2220 { 2221 /* NOTE: it is the same as logic shift because we don't need to shift in 2222 * signedness bit when the shift amount is less than 32. 2223 */ 2224 return shr_reg64_lt32_low(nfp_prog, dst, src); 2225 } 2226 2227 static void ashr_reg64_lt32(struct nfp_prog *nfp_prog, u8 dst, u8 src) 2228 { 2229 ashr_reg64_lt32_low(nfp_prog, dst, src); 2230 ashr_reg64_lt32_high(nfp_prog, dst, src); 2231 } 2232 2233 static void ashr_reg64_ge32(struct nfp_prog *nfp_prog, u8 dst, u8 src) 2234 { 2235 emit_alu(nfp_prog, reg_none(), reg_a(src), ALU_OP_OR, reg_b(dst + 1)); 2236 emit_shf_indir(nfp_prog, reg_both(dst), reg_none(), SHF_OP_ASHR, 2237 reg_b(dst + 1), SHF_SC_R_SHF); 2238 emit_shf(nfp_prog, reg_both(dst + 1), reg_none(), SHF_OP_ASHR, 2239 reg_b(dst + 1), SHF_SC_R_SHF, 31); 2240 } 2241 2242 /* Like ashr_imm64, but need to use indirect shift. */ 2243 static int ashr_reg64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) 2244 { 2245 const struct bpf_insn *insn = &meta->insn; 2246 u64 umin, umax; 2247 u8 dst, src; 2248 2249 dst = insn->dst_reg * 2; 2250 umin = meta->umin_src; 2251 umax = meta->umax_src; 2252 if (umin == umax) 2253 return __ashr_imm64(nfp_prog, dst, umin); 2254 2255 src = insn->src_reg * 2; 2256 if (umax < 32) { 2257 ashr_reg64_lt32(nfp_prog, dst, src); 2258 } else if (umin >= 32) { 2259 ashr_reg64_ge32(nfp_prog, dst, src); 2260 } else { 2261 u16 label_ge32, label_end; 2262 2263 label_ge32 = nfp_prog_current_offset(nfp_prog) + 6; 2264 emit_br_bset(nfp_prog, reg_a(src), 5, label_ge32, 0); 2265 ashr_reg64_lt32_low(nfp_prog, dst, src); 2266 label_end = nfp_prog_current_offset(nfp_prog) + 6; 2267 emit_br(nfp_prog, BR_UNC, label_end, 2); 2268 /* ashr_reg64_lt32_high packed in delay slot. */ 2269 ashr_reg64_lt32_high(nfp_prog, dst, src); 2270 2271 if (!nfp_prog_confirm_current_offset(nfp_prog, label_ge32)) 2272 return -EINVAL; 2273 ashr_reg64_ge32(nfp_prog, dst, src); 2274 2275 if (!nfp_prog_confirm_current_offset(nfp_prog, label_end)) 2276 return -EINVAL; 2277 } 2278 2279 return 0; 2280 } 2281 2282 static int mov_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) 2283 { 2284 const struct bpf_insn *insn = &meta->insn; 2285 2286 wrp_reg_mov(nfp_prog, insn->dst_reg * 2, insn->src_reg * 2); 2287 wrp_immed(nfp_prog, reg_both(insn->dst_reg * 2 + 1), 0); 2288 2289 return 0; 2290 } 2291 2292 static int mov_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) 2293 { 2294 const struct bpf_insn *insn = &meta->insn; 2295 2296 wrp_immed(nfp_prog, reg_both(insn->dst_reg * 2), insn->imm); 2297 wrp_immed(nfp_prog, reg_both(insn->dst_reg * 2 + 1), 0); 2298 2299 return 0; 2300 } 2301 2302 static int xor_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) 2303 { 2304 return wrp_alu32_reg(nfp_prog, meta, ALU_OP_XOR); 2305 } 2306 2307 static int xor_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) 2308 { 2309 return wrp_alu32_imm(nfp_prog, meta, ALU_OP_XOR, !~meta->insn.imm); 2310 } 2311 2312 static int and_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) 2313 { 2314 return wrp_alu32_reg(nfp_prog, meta, ALU_OP_AND); 2315 } 2316 2317 static int and_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) 2318 { 2319 return wrp_alu32_imm(nfp_prog, meta, ALU_OP_AND, !~meta->insn.imm); 2320 } 2321 2322 static int or_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) 2323 { 2324 return wrp_alu32_reg(nfp_prog, meta, ALU_OP_OR); 2325 } 2326 2327 static int or_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) 2328 { 2329 return wrp_alu32_imm(nfp_prog, meta, ALU_OP_OR, !meta->insn.imm); 2330 } 2331 2332 static int add_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) 2333 { 2334 return wrp_alu32_reg(nfp_prog, meta, ALU_OP_ADD); 2335 } 2336 2337 static int add_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) 2338 { 2339 return wrp_alu32_imm(nfp_prog, meta, ALU_OP_ADD, !meta->insn.imm); 2340 } 2341 2342 static int sub_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) 2343 { 2344 return wrp_alu32_reg(nfp_prog, meta, ALU_OP_SUB); 2345 } 2346 2347 static int sub_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) 2348 { 2349 return wrp_alu32_imm(nfp_prog, meta, ALU_OP_SUB, !meta->insn.imm); 2350 } 2351 2352 static int mul_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) 2353 { 2354 return wrp_mul(nfp_prog, meta, false, true); 2355 } 2356 2357 static int mul_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) 2358 { 2359 return wrp_mul(nfp_prog, meta, false, false); 2360 } 2361 2362 static int div_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) 2363 { 2364 return div_reg64(nfp_prog, meta); 2365 } 2366 2367 static int div_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) 2368 { 2369 return div_imm64(nfp_prog, meta); 2370 } 2371 2372 static int neg_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) 2373 { 2374 u8 dst = meta->insn.dst_reg * 2; 2375 2376 emit_alu(nfp_prog, reg_both(dst), reg_imm(0), ALU_OP_SUB, reg_b(dst)); 2377 wrp_immed(nfp_prog, reg_both(meta->insn.dst_reg * 2 + 1), 0); 2378 2379 return 0; 2380 } 2381 2382 static int shl_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) 2383 { 2384 const struct bpf_insn *insn = &meta->insn; 2385 2386 if (!insn->imm) 2387 return 1; /* TODO: zero shift means indirect */ 2388 2389 emit_shf(nfp_prog, reg_both(insn->dst_reg * 2), 2390 reg_none(), SHF_OP_NONE, reg_b(insn->dst_reg * 2), 2391 SHF_SC_L_SHF, insn->imm); 2392 wrp_immed(nfp_prog, reg_both(insn->dst_reg * 2 + 1), 0); 2393 2394 return 0; 2395 } 2396 2397 static int end_reg32(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) 2398 { 2399 const struct bpf_insn *insn = &meta->insn; 2400 u8 gpr = insn->dst_reg * 2; 2401 2402 switch (insn->imm) { 2403 case 16: 2404 emit_ld_field(nfp_prog, reg_both(gpr), 0x9, reg_b(gpr), 2405 SHF_SC_R_ROT, 8); 2406 emit_ld_field(nfp_prog, reg_both(gpr), 0xe, reg_a(gpr), 2407 SHF_SC_R_SHF, 16); 2408 2409 wrp_immed(nfp_prog, reg_both(gpr + 1), 0); 2410 break; 2411 case 32: 2412 wrp_end32(nfp_prog, reg_a(gpr), gpr); 2413 wrp_immed(nfp_prog, reg_both(gpr + 1), 0); 2414 break; 2415 case 64: 2416 wrp_mov(nfp_prog, imm_a(nfp_prog), reg_b(gpr + 1)); 2417 2418 wrp_end32(nfp_prog, reg_a(gpr), gpr + 1); 2419 wrp_end32(nfp_prog, imm_a(nfp_prog), gpr); 2420 break; 2421 } 2422 2423 return 0; 2424 } 2425 2426 static int imm_ld8_part2(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) 2427 { 2428 struct nfp_insn_meta *prev = nfp_meta_prev(meta); 2429 u32 imm_lo, imm_hi; 2430 u8 dst; 2431 2432 dst = prev->insn.dst_reg * 2; 2433 imm_lo = prev->insn.imm; 2434 imm_hi = meta->insn.imm; 2435 2436 wrp_immed(nfp_prog, reg_both(dst), imm_lo); 2437 2438 /* mov is always 1 insn, load imm may be two, so try to use mov */ 2439 if (imm_hi == imm_lo) 2440 wrp_mov(nfp_prog, reg_both(dst + 1), reg_a(dst)); 2441 else 2442 wrp_immed(nfp_prog, reg_both(dst + 1), imm_hi); 2443 2444 return 0; 2445 } 2446 2447 static int imm_ld8(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) 2448 { 2449 meta->double_cb = imm_ld8_part2; 2450 return 0; 2451 } 2452 2453 static int data_ld1(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) 2454 { 2455 return construct_data_ld(nfp_prog, meta->insn.imm, 1); 2456 } 2457 2458 static int data_ld2(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) 2459 { 2460 return construct_data_ld(nfp_prog, meta->insn.imm, 2); 2461 } 2462 2463 static int data_ld4(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) 2464 { 2465 return construct_data_ld(nfp_prog, meta->insn.imm, 4); 2466 } 2467 2468 static int data_ind_ld1(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) 2469 { 2470 return construct_data_ind_ld(nfp_prog, meta->insn.imm, 2471 meta->insn.src_reg * 2, 1); 2472 } 2473 2474 static int data_ind_ld2(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) 2475 { 2476 return construct_data_ind_ld(nfp_prog, meta->insn.imm, 2477 meta->insn.src_reg * 2, 2); 2478 } 2479 2480 static int data_ind_ld4(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) 2481 { 2482 return construct_data_ind_ld(nfp_prog, meta->insn.imm, 2483 meta->insn.src_reg * 2, 4); 2484 } 2485 2486 static int 2487 mem_ldx_stack(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta, 2488 unsigned int size, unsigned int ptr_off) 2489 { 2490 return mem_op_stack(nfp_prog, meta, size, ptr_off, 2491 meta->insn.dst_reg * 2, meta->insn.src_reg * 2, 2492 true, wrp_lmem_load); 2493 } 2494 2495 static int mem_ldx_skb(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta, 2496 u8 size) 2497 { 2498 swreg dst = reg_both(meta->insn.dst_reg * 2); 2499 2500 switch (meta->insn.off) { 2501 case offsetof(struct __sk_buff, len): 2502 if (size != FIELD_SIZEOF(struct __sk_buff, len)) 2503 return -EOPNOTSUPP; 2504 wrp_mov(nfp_prog, dst, plen_reg(nfp_prog)); 2505 break; 2506 case offsetof(struct __sk_buff, data): 2507 if (size != FIELD_SIZEOF(struct __sk_buff, data)) 2508 return -EOPNOTSUPP; 2509 wrp_mov(nfp_prog, dst, pptr_reg(nfp_prog)); 2510 break; 2511 case offsetof(struct __sk_buff, data_end): 2512 if (size != FIELD_SIZEOF(struct __sk_buff, data_end)) 2513 return -EOPNOTSUPP; 2514 emit_alu(nfp_prog, dst, 2515 plen_reg(nfp_prog), ALU_OP_ADD, pptr_reg(nfp_prog)); 2516 break; 2517 default: 2518 return -EOPNOTSUPP; 2519 } 2520 2521 wrp_immed(nfp_prog, reg_both(meta->insn.dst_reg * 2 + 1), 0); 2522 2523 return 0; 2524 } 2525 2526 static int mem_ldx_xdp(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta, 2527 u8 size) 2528 { 2529 swreg dst = reg_both(meta->insn.dst_reg * 2); 2530 2531 switch (meta->insn.off) { 2532 case offsetof(struct xdp_md, data): 2533 if (size != FIELD_SIZEOF(struct xdp_md, data)) 2534 return -EOPNOTSUPP; 2535 wrp_mov(nfp_prog, dst, pptr_reg(nfp_prog)); 2536 break; 2537 case offsetof(struct xdp_md, data_end): 2538 if (size != FIELD_SIZEOF(struct xdp_md, data_end)) 2539 return -EOPNOTSUPP; 2540 emit_alu(nfp_prog, dst, 2541 plen_reg(nfp_prog), ALU_OP_ADD, pptr_reg(nfp_prog)); 2542 break; 2543 default: 2544 return -EOPNOTSUPP; 2545 } 2546 2547 wrp_immed(nfp_prog, reg_both(meta->insn.dst_reg * 2 + 1), 0); 2548 2549 return 0; 2550 } 2551 2552 static int 2553 mem_ldx_data(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta, 2554 unsigned int size) 2555 { 2556 swreg tmp_reg; 2557 2558 tmp_reg = re_load_imm_any(nfp_prog, meta->insn.off, imm_b(nfp_prog)); 2559 2560 return data_ld_host_order_addr32(nfp_prog, meta->insn.src_reg * 2, 2561 tmp_reg, meta->insn.dst_reg * 2, size); 2562 } 2563 2564 static int 2565 mem_ldx_emem(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta, 2566 unsigned int size) 2567 { 2568 swreg tmp_reg; 2569 2570 tmp_reg = re_load_imm_any(nfp_prog, meta->insn.off, imm_b(nfp_prog)); 2571 2572 return data_ld_host_order_addr40(nfp_prog, meta->insn.src_reg * 2, 2573 tmp_reg, meta->insn.dst_reg * 2, size); 2574 } 2575 2576 static void 2577 mem_ldx_data_init_pktcache(struct nfp_prog *nfp_prog, 2578 struct nfp_insn_meta *meta) 2579 { 2580 s16 range_start = meta->pkt_cache.range_start; 2581 s16 range_end = meta->pkt_cache.range_end; 2582 swreg src_base, off; 2583 u8 xfer_num, len; 2584 bool indir; 2585 2586 off = re_load_imm_any(nfp_prog, range_start, imm_b(nfp_prog)); 2587 src_base = reg_a(meta->insn.src_reg * 2); 2588 len = range_end - range_start; 2589 xfer_num = round_up(len, REG_WIDTH) / REG_WIDTH; 2590 2591 indir = len > 8 * REG_WIDTH; 2592 /* Setup PREV_ALU for indirect mode. */ 2593 if (indir) 2594 wrp_immed(nfp_prog, reg_none(), 2595 CMD_OVE_LEN | FIELD_PREP(CMD_OV_LEN, xfer_num - 1)); 2596 2597 /* Cache memory into transfer-in registers. */ 2598 emit_cmd_any(nfp_prog, CMD_TGT_READ32_SWAP, CMD_MODE_32b, 0, src_base, 2599 off, xfer_num - 1, CMD_CTX_SWAP, indir); 2600 } 2601 2602 static int 2603 mem_ldx_data_from_pktcache_unaligned(struct nfp_prog *nfp_prog, 2604 struct nfp_insn_meta *meta, 2605 unsigned int size) 2606 { 2607 s16 range_start = meta->pkt_cache.range_start; 2608 s16 insn_off = meta->insn.off - range_start; 2609 swreg dst_lo, dst_hi, src_lo, src_mid; 2610 u8 dst_gpr = meta->insn.dst_reg * 2; 2611 u8 len_lo = size, len_mid = 0; 2612 u8 idx = insn_off / REG_WIDTH; 2613 u8 off = insn_off % REG_WIDTH; 2614 2615 dst_hi = reg_both(dst_gpr + 1); 2616 dst_lo = reg_both(dst_gpr); 2617 src_lo = reg_xfer(idx); 2618 2619 /* The read length could involve as many as three registers. */ 2620 if (size > REG_WIDTH - off) { 2621 /* Calculate the part in the second register. */ 2622 len_lo = REG_WIDTH - off; 2623 len_mid = size - len_lo; 2624 2625 /* Calculate the part in the third register. */ 2626 if (size > 2 * REG_WIDTH - off) 2627 len_mid = REG_WIDTH; 2628 } 2629 2630 wrp_reg_subpart(nfp_prog, dst_lo, src_lo, len_lo, off); 2631 2632 if (!len_mid) { 2633 wrp_immed(nfp_prog, dst_hi, 0); 2634 return 0; 2635 } 2636 2637 src_mid = reg_xfer(idx + 1); 2638 2639 if (size <= REG_WIDTH) { 2640 wrp_reg_or_subpart(nfp_prog, dst_lo, src_mid, len_mid, len_lo); 2641 wrp_immed(nfp_prog, dst_hi, 0); 2642 } else { 2643 swreg src_hi = reg_xfer(idx + 2); 2644 2645 wrp_reg_or_subpart(nfp_prog, dst_lo, src_mid, 2646 REG_WIDTH - len_lo, len_lo); 2647 wrp_reg_subpart(nfp_prog, dst_hi, src_mid, len_lo, 2648 REG_WIDTH - len_lo); 2649 wrp_reg_or_subpart(nfp_prog, dst_hi, src_hi, REG_WIDTH - len_lo, 2650 len_lo); 2651 } 2652 2653 return 0; 2654 } 2655 2656 static int 2657 mem_ldx_data_from_pktcache_aligned(struct nfp_prog *nfp_prog, 2658 struct nfp_insn_meta *meta, 2659 unsigned int size) 2660 { 2661 swreg dst_lo, dst_hi, src_lo; 2662 u8 dst_gpr, idx; 2663 2664 idx = (meta->insn.off - meta->pkt_cache.range_start) / REG_WIDTH; 2665 dst_gpr = meta->insn.dst_reg * 2; 2666 dst_hi = reg_both(dst_gpr + 1); 2667 dst_lo = reg_both(dst_gpr); 2668 src_lo = reg_xfer(idx); 2669 2670 if (size < REG_WIDTH) { 2671 wrp_reg_subpart(nfp_prog, dst_lo, src_lo, size, 0); 2672 wrp_immed(nfp_prog, dst_hi, 0); 2673 } else if (size == REG_WIDTH) { 2674 wrp_mov(nfp_prog, dst_lo, src_lo); 2675 wrp_immed(nfp_prog, dst_hi, 0); 2676 } else { 2677 swreg src_hi = reg_xfer(idx + 1); 2678 2679 wrp_mov(nfp_prog, dst_lo, src_lo); 2680 wrp_mov(nfp_prog, dst_hi, src_hi); 2681 } 2682 2683 return 0; 2684 } 2685 2686 static int 2687 mem_ldx_data_from_pktcache(struct nfp_prog *nfp_prog, 2688 struct nfp_insn_meta *meta, unsigned int size) 2689 { 2690 u8 off = meta->insn.off - meta->pkt_cache.range_start; 2691 2692 if (IS_ALIGNED(off, REG_WIDTH)) 2693 return mem_ldx_data_from_pktcache_aligned(nfp_prog, meta, size); 2694 2695 return mem_ldx_data_from_pktcache_unaligned(nfp_prog, meta, size); 2696 } 2697 2698 static int 2699 mem_ldx(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta, 2700 unsigned int size) 2701 { 2702 if (meta->ldst_gather_len) 2703 return nfp_cpp_memcpy(nfp_prog, meta); 2704 2705 if (meta->ptr.type == PTR_TO_CTX) { 2706 if (nfp_prog->type == BPF_PROG_TYPE_XDP) 2707 return mem_ldx_xdp(nfp_prog, meta, size); 2708 else 2709 return mem_ldx_skb(nfp_prog, meta, size); 2710 } 2711 2712 if (meta->ptr.type == PTR_TO_PACKET) { 2713 if (meta->pkt_cache.range_end) { 2714 if (meta->pkt_cache.do_init) 2715 mem_ldx_data_init_pktcache(nfp_prog, meta); 2716 2717 return mem_ldx_data_from_pktcache(nfp_prog, meta, size); 2718 } else { 2719 return mem_ldx_data(nfp_prog, meta, size); 2720 } 2721 } 2722 2723 if (meta->ptr.type == PTR_TO_STACK) 2724 return mem_ldx_stack(nfp_prog, meta, size, 2725 meta->ptr.off + meta->ptr.var_off.value); 2726 2727 if (meta->ptr.type == PTR_TO_MAP_VALUE) 2728 return mem_ldx_emem(nfp_prog, meta, size); 2729 2730 return -EOPNOTSUPP; 2731 } 2732 2733 static int mem_ldx1(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) 2734 { 2735 return mem_ldx(nfp_prog, meta, 1); 2736 } 2737 2738 static int mem_ldx2(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) 2739 { 2740 return mem_ldx(nfp_prog, meta, 2); 2741 } 2742 2743 static int mem_ldx4(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) 2744 { 2745 return mem_ldx(nfp_prog, meta, 4); 2746 } 2747 2748 static int mem_ldx8(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) 2749 { 2750 return mem_ldx(nfp_prog, meta, 8); 2751 } 2752 2753 static int 2754 mem_st_data(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta, 2755 unsigned int size) 2756 { 2757 u64 imm = meta->insn.imm; /* sign extend */ 2758 swreg off_reg; 2759 2760 off_reg = re_load_imm_any(nfp_prog, meta->insn.off, imm_b(nfp_prog)); 2761 2762 return data_st_host_order(nfp_prog, meta->insn.dst_reg * 2, off_reg, 2763 imm, size); 2764 } 2765 2766 static int mem_st(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta, 2767 unsigned int size) 2768 { 2769 if (meta->ptr.type == PTR_TO_PACKET) 2770 return mem_st_data(nfp_prog, meta, size); 2771 2772 return -EOPNOTSUPP; 2773 } 2774 2775 static int mem_st1(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) 2776 { 2777 return mem_st(nfp_prog, meta, 1); 2778 } 2779 2780 static int mem_st2(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) 2781 { 2782 return mem_st(nfp_prog, meta, 2); 2783 } 2784 2785 static int mem_st4(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) 2786 { 2787 return mem_st(nfp_prog, meta, 4); 2788 } 2789 2790 static int mem_st8(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) 2791 { 2792 return mem_st(nfp_prog, meta, 8); 2793 } 2794 2795 static int 2796 mem_stx_data(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta, 2797 unsigned int size) 2798 { 2799 swreg off_reg; 2800 2801 off_reg = re_load_imm_any(nfp_prog, meta->insn.off, imm_b(nfp_prog)); 2802 2803 return data_stx_host_order(nfp_prog, meta->insn.dst_reg * 2, off_reg, 2804 meta->insn.src_reg * 2, size); 2805 } 2806 2807 static int 2808 mem_stx_stack(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta, 2809 unsigned int size, unsigned int ptr_off) 2810 { 2811 return mem_op_stack(nfp_prog, meta, size, ptr_off, 2812 meta->insn.src_reg * 2, meta->insn.dst_reg * 2, 2813 false, wrp_lmem_store); 2814 } 2815 2816 static int mem_stx_xdp(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) 2817 { 2818 switch (meta->insn.off) { 2819 case offsetof(struct xdp_md, rx_queue_index): 2820 return nfp_queue_select(nfp_prog, meta); 2821 } 2822 2823 WARN_ON_ONCE(1); /* verifier should have rejected bad accesses */ 2824 return -EOPNOTSUPP; 2825 } 2826 2827 static int 2828 mem_stx(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta, 2829 unsigned int size) 2830 { 2831 if (meta->ptr.type == PTR_TO_PACKET) 2832 return mem_stx_data(nfp_prog, meta, size); 2833 2834 if (meta->ptr.type == PTR_TO_STACK) 2835 return mem_stx_stack(nfp_prog, meta, size, 2836 meta->ptr.off + meta->ptr.var_off.value); 2837 2838 return -EOPNOTSUPP; 2839 } 2840 2841 static int mem_stx1(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) 2842 { 2843 return mem_stx(nfp_prog, meta, 1); 2844 } 2845 2846 static int mem_stx2(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) 2847 { 2848 return mem_stx(nfp_prog, meta, 2); 2849 } 2850 2851 static int mem_stx4(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) 2852 { 2853 if (meta->ptr.type == PTR_TO_CTX) 2854 if (nfp_prog->type == BPF_PROG_TYPE_XDP) 2855 return mem_stx_xdp(nfp_prog, meta); 2856 return mem_stx(nfp_prog, meta, 4); 2857 } 2858 2859 static int mem_stx8(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) 2860 { 2861 return mem_stx(nfp_prog, meta, 8); 2862 } 2863 2864 static int 2865 mem_xadd(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta, bool is64) 2866 { 2867 u8 dst_gpr = meta->insn.dst_reg * 2; 2868 u8 src_gpr = meta->insn.src_reg * 2; 2869 unsigned int full_add, out; 2870 swreg addra, addrb, off; 2871 2872 off = ur_load_imm_any(nfp_prog, meta->insn.off, imm_b(nfp_prog)); 2873 2874 /* We can fit 16 bits into command immediate, if we know the immediate 2875 * is guaranteed to either always or never fit into 16 bit we only 2876 * generate code to handle that particular case, otherwise generate 2877 * code for both. 2878 */ 2879 out = nfp_prog_current_offset(nfp_prog); 2880 full_add = nfp_prog_current_offset(nfp_prog); 2881 2882 if (meta->insn.off) { 2883 out += 2; 2884 full_add += 2; 2885 } 2886 if (meta->xadd_maybe_16bit) { 2887 out += 3; 2888 full_add += 3; 2889 } 2890 if (meta->xadd_over_16bit) 2891 out += 2 + is64; 2892 if (meta->xadd_maybe_16bit && meta->xadd_over_16bit) { 2893 out += 5; 2894 full_add += 5; 2895 } 2896 2897 /* Generate the branch for choosing add_imm vs add */ 2898 if (meta->xadd_maybe_16bit && meta->xadd_over_16bit) { 2899 swreg max_imm = imm_a(nfp_prog); 2900 2901 wrp_immed(nfp_prog, max_imm, 0xffff); 2902 emit_alu(nfp_prog, reg_none(), 2903 max_imm, ALU_OP_SUB, reg_b(src_gpr)); 2904 emit_alu(nfp_prog, reg_none(), 2905 reg_imm(0), ALU_OP_SUB_C, reg_b(src_gpr + 1)); 2906 emit_br(nfp_prog, BR_BLO, full_add, meta->insn.off ? 2 : 0); 2907 /* defer for add */ 2908 } 2909 2910 /* If insn has an offset add to the address */ 2911 if (!meta->insn.off) { 2912 addra = reg_a(dst_gpr); 2913 addrb = reg_b(dst_gpr + 1); 2914 } else { 2915 emit_alu(nfp_prog, imma_a(nfp_prog), 2916 reg_a(dst_gpr), ALU_OP_ADD, off); 2917 emit_alu(nfp_prog, imma_b(nfp_prog), 2918 reg_a(dst_gpr + 1), ALU_OP_ADD_C, reg_imm(0)); 2919 addra = imma_a(nfp_prog); 2920 addrb = imma_b(nfp_prog); 2921 } 2922 2923 /* Generate the add_imm if 16 bits are possible */ 2924 if (meta->xadd_maybe_16bit) { 2925 swreg prev_alu = imm_a(nfp_prog); 2926 2927 wrp_immed(nfp_prog, prev_alu, 2928 FIELD_PREP(CMD_OVE_DATA, 2) | 2929 CMD_OVE_LEN | 2930 FIELD_PREP(CMD_OV_LEN, 0x8 | is64 << 2)); 2931 wrp_reg_or_subpart(nfp_prog, prev_alu, reg_b(src_gpr), 2, 2); 2932 emit_cmd_indir(nfp_prog, CMD_TGT_ADD_IMM, CMD_MODE_40b_BA, 0, 2933 addra, addrb, 0, CMD_CTX_NO_SWAP); 2934 2935 if (meta->xadd_over_16bit) 2936 emit_br(nfp_prog, BR_UNC, out, 0); 2937 } 2938 2939 if (!nfp_prog_confirm_current_offset(nfp_prog, full_add)) 2940 return -EINVAL; 2941 2942 /* Generate the add if 16 bits are not guaranteed */ 2943 if (meta->xadd_over_16bit) { 2944 emit_cmd(nfp_prog, CMD_TGT_ADD, CMD_MODE_40b_BA, 0, 2945 addra, addrb, is64 << 2, 2946 is64 ? CMD_CTX_SWAP_DEFER2 : CMD_CTX_SWAP_DEFER1); 2947 2948 wrp_mov(nfp_prog, reg_xfer(0), reg_a(src_gpr)); 2949 if (is64) 2950 wrp_mov(nfp_prog, reg_xfer(1), reg_a(src_gpr + 1)); 2951 } 2952 2953 if (!nfp_prog_confirm_current_offset(nfp_prog, out)) 2954 return -EINVAL; 2955 2956 return 0; 2957 } 2958 2959 static int mem_xadd4(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) 2960 { 2961 return mem_xadd(nfp_prog, meta, false); 2962 } 2963 2964 static int mem_xadd8(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) 2965 { 2966 return mem_xadd(nfp_prog, meta, true); 2967 } 2968 2969 static int jump(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) 2970 { 2971 emit_br(nfp_prog, BR_UNC, meta->insn.off, 0); 2972 2973 return 0; 2974 } 2975 2976 static int jeq_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) 2977 { 2978 const struct bpf_insn *insn = &meta->insn; 2979 u64 imm = insn->imm; /* sign extend */ 2980 swreg or1, or2, tmp_reg; 2981 2982 or1 = reg_a(insn->dst_reg * 2); 2983 or2 = reg_b(insn->dst_reg * 2 + 1); 2984 2985 if (imm & ~0U) { 2986 tmp_reg = ur_load_imm_any(nfp_prog, imm & ~0U, imm_b(nfp_prog)); 2987 emit_alu(nfp_prog, imm_a(nfp_prog), 2988 reg_a(insn->dst_reg * 2), ALU_OP_XOR, tmp_reg); 2989 or1 = imm_a(nfp_prog); 2990 } 2991 2992 if (imm >> 32) { 2993 tmp_reg = ur_load_imm_any(nfp_prog, imm >> 32, imm_b(nfp_prog)); 2994 emit_alu(nfp_prog, imm_b(nfp_prog), 2995 reg_a(insn->dst_reg * 2 + 1), ALU_OP_XOR, tmp_reg); 2996 or2 = imm_b(nfp_prog); 2997 } 2998 2999 emit_alu(nfp_prog, reg_none(), or1, ALU_OP_OR, or2); 3000 emit_br(nfp_prog, BR_BEQ, insn->off, 0); 3001 3002 return 0; 3003 } 3004 3005 static int jset_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) 3006 { 3007 const struct bpf_insn *insn = &meta->insn; 3008 u64 imm = insn->imm; /* sign extend */ 3009 swreg tmp_reg; 3010 3011 if (!imm) { 3012 meta->skip = true; 3013 return 0; 3014 } 3015 3016 if (imm & ~0U) { 3017 tmp_reg = ur_load_imm_any(nfp_prog, imm & ~0U, imm_b(nfp_prog)); 3018 emit_alu(nfp_prog, reg_none(), 3019 reg_a(insn->dst_reg * 2), ALU_OP_AND, tmp_reg); 3020 emit_br(nfp_prog, BR_BNE, insn->off, 0); 3021 } 3022 3023 if (imm >> 32) { 3024 tmp_reg = ur_load_imm_any(nfp_prog, imm >> 32, imm_b(nfp_prog)); 3025 emit_alu(nfp_prog, reg_none(), 3026 reg_a(insn->dst_reg * 2 + 1), ALU_OP_AND, tmp_reg); 3027 emit_br(nfp_prog, BR_BNE, insn->off, 0); 3028 } 3029 3030 return 0; 3031 } 3032 3033 static int jne_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) 3034 { 3035 const struct bpf_insn *insn = &meta->insn; 3036 u64 imm = insn->imm; /* sign extend */ 3037 swreg tmp_reg; 3038 3039 if (!imm) { 3040 emit_alu(nfp_prog, reg_none(), reg_a(insn->dst_reg * 2), 3041 ALU_OP_OR, reg_b(insn->dst_reg * 2 + 1)); 3042 emit_br(nfp_prog, BR_BNE, insn->off, 0); 3043 return 0; 3044 } 3045 3046 tmp_reg = ur_load_imm_any(nfp_prog, imm & ~0U, imm_b(nfp_prog)); 3047 emit_alu(nfp_prog, reg_none(), 3048 reg_a(insn->dst_reg * 2), ALU_OP_XOR, tmp_reg); 3049 emit_br(nfp_prog, BR_BNE, insn->off, 0); 3050 3051 tmp_reg = ur_load_imm_any(nfp_prog, imm >> 32, imm_b(nfp_prog)); 3052 emit_alu(nfp_prog, reg_none(), 3053 reg_a(insn->dst_reg * 2 + 1), ALU_OP_XOR, tmp_reg); 3054 emit_br(nfp_prog, BR_BNE, insn->off, 0); 3055 3056 return 0; 3057 } 3058 3059 static int jeq_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) 3060 { 3061 const struct bpf_insn *insn = &meta->insn; 3062 3063 emit_alu(nfp_prog, imm_a(nfp_prog), reg_a(insn->dst_reg * 2), 3064 ALU_OP_XOR, reg_b(insn->src_reg * 2)); 3065 emit_alu(nfp_prog, imm_b(nfp_prog), reg_a(insn->dst_reg * 2 + 1), 3066 ALU_OP_XOR, reg_b(insn->src_reg * 2 + 1)); 3067 emit_alu(nfp_prog, reg_none(), 3068 imm_a(nfp_prog), ALU_OP_OR, imm_b(nfp_prog)); 3069 emit_br(nfp_prog, BR_BEQ, insn->off, 0); 3070 3071 return 0; 3072 } 3073 3074 static int jset_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) 3075 { 3076 return wrp_test_reg(nfp_prog, meta, ALU_OP_AND, BR_BNE); 3077 } 3078 3079 static int jne_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) 3080 { 3081 return wrp_test_reg(nfp_prog, meta, ALU_OP_XOR, BR_BNE); 3082 } 3083 3084 static int call(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) 3085 { 3086 switch (meta->insn.imm) { 3087 case BPF_FUNC_xdp_adjust_head: 3088 return adjust_head(nfp_prog, meta); 3089 case BPF_FUNC_xdp_adjust_tail: 3090 return adjust_tail(nfp_prog, meta); 3091 case BPF_FUNC_map_lookup_elem: 3092 case BPF_FUNC_map_update_elem: 3093 case BPF_FUNC_map_delete_elem: 3094 return map_call_stack_common(nfp_prog, meta); 3095 case BPF_FUNC_get_prandom_u32: 3096 return nfp_get_prandom_u32(nfp_prog, meta); 3097 case BPF_FUNC_perf_event_output: 3098 return nfp_perf_event_output(nfp_prog, meta); 3099 default: 3100 WARN_ONCE(1, "verifier allowed unsupported function\n"); 3101 return -EOPNOTSUPP; 3102 } 3103 } 3104 3105 static int goto_out(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) 3106 { 3107 emit_br_relo(nfp_prog, BR_UNC, BR_OFF_RELO, 0, RELO_BR_GO_OUT); 3108 3109 return 0; 3110 } 3111 3112 static const instr_cb_t instr_cb[256] = { 3113 [BPF_ALU64 | BPF_MOV | BPF_X] = mov_reg64, 3114 [BPF_ALU64 | BPF_MOV | BPF_K] = mov_imm64, 3115 [BPF_ALU64 | BPF_XOR | BPF_X] = xor_reg64, 3116 [BPF_ALU64 | BPF_XOR | BPF_K] = xor_imm64, 3117 [BPF_ALU64 | BPF_AND | BPF_X] = and_reg64, 3118 [BPF_ALU64 | BPF_AND | BPF_K] = and_imm64, 3119 [BPF_ALU64 | BPF_OR | BPF_X] = or_reg64, 3120 [BPF_ALU64 | BPF_OR | BPF_K] = or_imm64, 3121 [BPF_ALU64 | BPF_ADD | BPF_X] = add_reg64, 3122 [BPF_ALU64 | BPF_ADD | BPF_K] = add_imm64, 3123 [BPF_ALU64 | BPF_SUB | BPF_X] = sub_reg64, 3124 [BPF_ALU64 | BPF_SUB | BPF_K] = sub_imm64, 3125 [BPF_ALU64 | BPF_MUL | BPF_X] = mul_reg64, 3126 [BPF_ALU64 | BPF_MUL | BPF_K] = mul_imm64, 3127 [BPF_ALU64 | BPF_DIV | BPF_X] = div_reg64, 3128 [BPF_ALU64 | BPF_DIV | BPF_K] = div_imm64, 3129 [BPF_ALU64 | BPF_NEG] = neg_reg64, 3130 [BPF_ALU64 | BPF_LSH | BPF_X] = shl_reg64, 3131 [BPF_ALU64 | BPF_LSH | BPF_K] = shl_imm64, 3132 [BPF_ALU64 | BPF_RSH | BPF_X] = shr_reg64, 3133 [BPF_ALU64 | BPF_RSH | BPF_K] = shr_imm64, 3134 [BPF_ALU64 | BPF_ARSH | BPF_X] = ashr_reg64, 3135 [BPF_ALU64 | BPF_ARSH | BPF_K] = ashr_imm64, 3136 [BPF_ALU | BPF_MOV | BPF_X] = mov_reg, 3137 [BPF_ALU | BPF_MOV | BPF_K] = mov_imm, 3138 [BPF_ALU | BPF_XOR | BPF_X] = xor_reg, 3139 [BPF_ALU | BPF_XOR | BPF_K] = xor_imm, 3140 [BPF_ALU | BPF_AND | BPF_X] = and_reg, 3141 [BPF_ALU | BPF_AND | BPF_K] = and_imm, 3142 [BPF_ALU | BPF_OR | BPF_X] = or_reg, 3143 [BPF_ALU | BPF_OR | BPF_K] = or_imm, 3144 [BPF_ALU | BPF_ADD | BPF_X] = add_reg, 3145 [BPF_ALU | BPF_ADD | BPF_K] = add_imm, 3146 [BPF_ALU | BPF_SUB | BPF_X] = sub_reg, 3147 [BPF_ALU | BPF_SUB | BPF_K] = sub_imm, 3148 [BPF_ALU | BPF_MUL | BPF_X] = mul_reg, 3149 [BPF_ALU | BPF_MUL | BPF_K] = mul_imm, 3150 [BPF_ALU | BPF_DIV | BPF_X] = div_reg, 3151 [BPF_ALU | BPF_DIV | BPF_K] = div_imm, 3152 [BPF_ALU | BPF_NEG] = neg_reg, 3153 [BPF_ALU | BPF_LSH | BPF_K] = shl_imm, 3154 [BPF_ALU | BPF_END | BPF_X] = end_reg32, 3155 [BPF_LD | BPF_IMM | BPF_DW] = imm_ld8, 3156 [BPF_LD | BPF_ABS | BPF_B] = data_ld1, 3157 [BPF_LD | BPF_ABS | BPF_H] = data_ld2, 3158 [BPF_LD | BPF_ABS | BPF_W] = data_ld4, 3159 [BPF_LD | BPF_IND | BPF_B] = data_ind_ld1, 3160 [BPF_LD | BPF_IND | BPF_H] = data_ind_ld2, 3161 [BPF_LD | BPF_IND | BPF_W] = data_ind_ld4, 3162 [BPF_LDX | BPF_MEM | BPF_B] = mem_ldx1, 3163 [BPF_LDX | BPF_MEM | BPF_H] = mem_ldx2, 3164 [BPF_LDX | BPF_MEM | BPF_W] = mem_ldx4, 3165 [BPF_LDX | BPF_MEM | BPF_DW] = mem_ldx8, 3166 [BPF_STX | BPF_MEM | BPF_B] = mem_stx1, 3167 [BPF_STX | BPF_MEM | BPF_H] = mem_stx2, 3168 [BPF_STX | BPF_MEM | BPF_W] = mem_stx4, 3169 [BPF_STX | BPF_MEM | BPF_DW] = mem_stx8, 3170 [BPF_STX | BPF_XADD | BPF_W] = mem_xadd4, 3171 [BPF_STX | BPF_XADD | BPF_DW] = mem_xadd8, 3172 [BPF_ST | BPF_MEM | BPF_B] = mem_st1, 3173 [BPF_ST | BPF_MEM | BPF_H] = mem_st2, 3174 [BPF_ST | BPF_MEM | BPF_W] = mem_st4, 3175 [BPF_ST | BPF_MEM | BPF_DW] = mem_st8, 3176 [BPF_JMP | BPF_JA | BPF_K] = jump, 3177 [BPF_JMP | BPF_JEQ | BPF_K] = jeq_imm, 3178 [BPF_JMP | BPF_JGT | BPF_K] = cmp_imm, 3179 [BPF_JMP | BPF_JGE | BPF_K] = cmp_imm, 3180 [BPF_JMP | BPF_JLT | BPF_K] = cmp_imm, 3181 [BPF_JMP | BPF_JLE | BPF_K] = cmp_imm, 3182 [BPF_JMP | BPF_JSGT | BPF_K] = cmp_imm, 3183 [BPF_JMP | BPF_JSGE | BPF_K] = cmp_imm, 3184 [BPF_JMP | BPF_JSLT | BPF_K] = cmp_imm, 3185 [BPF_JMP | BPF_JSLE | BPF_K] = cmp_imm, 3186 [BPF_JMP | BPF_JSET | BPF_K] = jset_imm, 3187 [BPF_JMP | BPF_JNE | BPF_K] = jne_imm, 3188 [BPF_JMP | BPF_JEQ | BPF_X] = jeq_reg, 3189 [BPF_JMP | BPF_JGT | BPF_X] = cmp_reg, 3190 [BPF_JMP | BPF_JGE | BPF_X] = cmp_reg, 3191 [BPF_JMP | BPF_JLT | BPF_X] = cmp_reg, 3192 [BPF_JMP | BPF_JLE | BPF_X] = cmp_reg, 3193 [BPF_JMP | BPF_JSGT | BPF_X] = cmp_reg, 3194 [BPF_JMP | BPF_JSGE | BPF_X] = cmp_reg, 3195 [BPF_JMP | BPF_JSLT | BPF_X] = cmp_reg, 3196 [BPF_JMP | BPF_JSLE | BPF_X] = cmp_reg, 3197 [BPF_JMP | BPF_JSET | BPF_X] = jset_reg, 3198 [BPF_JMP | BPF_JNE | BPF_X] = jne_reg, 3199 [BPF_JMP | BPF_CALL] = call, 3200 [BPF_JMP | BPF_EXIT] = goto_out, 3201 }; 3202 3203 /* --- Assembler logic --- */ 3204 static int nfp_fixup_branches(struct nfp_prog *nfp_prog) 3205 { 3206 struct nfp_insn_meta *meta, *jmp_dst; 3207 u32 idx, br_idx; 3208 3209 list_for_each_entry(meta, &nfp_prog->insns, l) { 3210 if (meta->skip) 3211 continue; 3212 if (meta->insn.code == (BPF_JMP | BPF_CALL)) 3213 continue; 3214 if (BPF_CLASS(meta->insn.code) != BPF_JMP) 3215 continue; 3216 3217 if (list_is_last(&meta->l, &nfp_prog->insns)) 3218 br_idx = nfp_prog->last_bpf_off; 3219 else 3220 br_idx = list_next_entry(meta, l)->off - 1; 3221 3222 if (!nfp_is_br(nfp_prog->prog[br_idx])) { 3223 pr_err("Fixup found block not ending in branch %d %02x %016llx!!\n", 3224 br_idx, meta->insn.code, nfp_prog->prog[br_idx]); 3225 return -ELOOP; 3226 } 3227 /* Leave special branches for later */ 3228 if (FIELD_GET(OP_RELO_TYPE, nfp_prog->prog[br_idx]) != 3229 RELO_BR_REL) 3230 continue; 3231 3232 if (!meta->jmp_dst) { 3233 pr_err("Non-exit jump doesn't have destination info recorded!!\n"); 3234 return -ELOOP; 3235 } 3236 3237 jmp_dst = meta->jmp_dst; 3238 3239 if (jmp_dst->skip) { 3240 pr_err("Branch landing on removed instruction!!\n"); 3241 return -ELOOP; 3242 } 3243 3244 for (idx = meta->off; idx <= br_idx; idx++) { 3245 if (!nfp_is_br(nfp_prog->prog[idx])) 3246 continue; 3247 br_set_offset(&nfp_prog->prog[idx], jmp_dst->off); 3248 } 3249 } 3250 3251 return 0; 3252 } 3253 3254 static void nfp_intro(struct nfp_prog *nfp_prog) 3255 { 3256 wrp_immed(nfp_prog, plen_reg(nfp_prog), GENMASK(13, 0)); 3257 emit_alu(nfp_prog, plen_reg(nfp_prog), 3258 plen_reg(nfp_prog), ALU_OP_AND, pv_len(nfp_prog)); 3259 } 3260 3261 static void nfp_outro_tc_da(struct nfp_prog *nfp_prog) 3262 { 3263 /* TC direct-action mode: 3264 * 0,1 ok NOT SUPPORTED[1] 3265 * 2 drop 0x22 -> drop, count as stat1 3266 * 4,5 nuke 0x02 -> drop 3267 * 7 redir 0x44 -> redir, count as stat2 3268 * * unspec 0x11 -> pass, count as stat0 3269 * 3270 * [1] We can't support OK and RECLASSIFY because we can't tell TC 3271 * the exact decision made. We are forced to support UNSPEC 3272 * to handle aborts so that's the only one we handle for passing 3273 * packets up the stack. 3274 */ 3275 /* Target for aborts */ 3276 nfp_prog->tgt_abort = nfp_prog_current_offset(nfp_prog); 3277 3278 emit_br_relo(nfp_prog, BR_UNC, BR_OFF_RELO, 2, RELO_BR_NEXT_PKT); 3279 3280 wrp_mov(nfp_prog, reg_a(0), NFP_BPF_ABI_FLAGS); 3281 emit_ld_field(nfp_prog, reg_a(0), 0xc, reg_imm(0x11), SHF_SC_L_SHF, 16); 3282 3283 /* Target for normal exits */ 3284 nfp_prog->tgt_out = nfp_prog_current_offset(nfp_prog); 3285 3286 /* if R0 > 7 jump to abort */ 3287 emit_alu(nfp_prog, reg_none(), reg_imm(7), ALU_OP_SUB, reg_b(0)); 3288 emit_br(nfp_prog, BR_BLO, nfp_prog->tgt_abort, 0); 3289 wrp_mov(nfp_prog, reg_a(0), NFP_BPF_ABI_FLAGS); 3290 3291 wrp_immed(nfp_prog, reg_b(2), 0x41221211); 3292 wrp_immed(nfp_prog, reg_b(3), 0x41001211); 3293 3294 emit_shf(nfp_prog, reg_a(1), 3295 reg_none(), SHF_OP_NONE, reg_b(0), SHF_SC_L_SHF, 2); 3296 3297 emit_alu(nfp_prog, reg_none(), reg_a(1), ALU_OP_OR, reg_imm(0)); 3298 emit_shf(nfp_prog, reg_a(2), 3299 reg_imm(0xf), SHF_OP_AND, reg_b(2), SHF_SC_R_SHF, 0); 3300 3301 emit_alu(nfp_prog, reg_none(), reg_a(1), ALU_OP_OR, reg_imm(0)); 3302 emit_shf(nfp_prog, reg_b(2), 3303 reg_imm(0xf), SHF_OP_AND, reg_b(3), SHF_SC_R_SHF, 0); 3304 3305 emit_br_relo(nfp_prog, BR_UNC, BR_OFF_RELO, 2, RELO_BR_NEXT_PKT); 3306 3307 emit_shf(nfp_prog, reg_b(2), 3308 reg_a(2), SHF_OP_OR, reg_b(2), SHF_SC_L_SHF, 4); 3309 emit_ld_field(nfp_prog, reg_a(0), 0xc, reg_b(2), SHF_SC_L_SHF, 16); 3310 } 3311 3312 static void nfp_outro_xdp(struct nfp_prog *nfp_prog) 3313 { 3314 /* XDP return codes: 3315 * 0 aborted 0x82 -> drop, count as stat3 3316 * 1 drop 0x22 -> drop, count as stat1 3317 * 2 pass 0x11 -> pass, count as stat0 3318 * 3 tx 0x44 -> redir, count as stat2 3319 * * unknown 0x82 -> drop, count as stat3 3320 */ 3321 /* Target for aborts */ 3322 nfp_prog->tgt_abort = nfp_prog_current_offset(nfp_prog); 3323 3324 emit_br_relo(nfp_prog, BR_UNC, BR_OFF_RELO, 2, RELO_BR_NEXT_PKT); 3325 3326 wrp_mov(nfp_prog, reg_a(0), NFP_BPF_ABI_FLAGS); 3327 emit_ld_field(nfp_prog, reg_a(0), 0xc, reg_imm(0x82), SHF_SC_L_SHF, 16); 3328 3329 /* Target for normal exits */ 3330 nfp_prog->tgt_out = nfp_prog_current_offset(nfp_prog); 3331 3332 /* if R0 > 3 jump to abort */ 3333 emit_alu(nfp_prog, reg_none(), reg_imm(3), ALU_OP_SUB, reg_b(0)); 3334 emit_br(nfp_prog, BR_BLO, nfp_prog->tgt_abort, 0); 3335 3336 wrp_immed(nfp_prog, reg_b(2), 0x44112282); 3337 3338 emit_shf(nfp_prog, reg_a(1), 3339 reg_none(), SHF_OP_NONE, reg_b(0), SHF_SC_L_SHF, 3); 3340 3341 emit_alu(nfp_prog, reg_none(), reg_a(1), ALU_OP_OR, reg_imm(0)); 3342 emit_shf(nfp_prog, reg_b(2), 3343 reg_imm(0xff), SHF_OP_AND, reg_b(2), SHF_SC_R_SHF, 0); 3344 3345 emit_br_relo(nfp_prog, BR_UNC, BR_OFF_RELO, 2, RELO_BR_NEXT_PKT); 3346 3347 wrp_mov(nfp_prog, reg_a(0), NFP_BPF_ABI_FLAGS); 3348 emit_ld_field(nfp_prog, reg_a(0), 0xc, reg_b(2), SHF_SC_L_SHF, 16); 3349 } 3350 3351 static void nfp_outro(struct nfp_prog *nfp_prog) 3352 { 3353 switch (nfp_prog->type) { 3354 case BPF_PROG_TYPE_SCHED_CLS: 3355 nfp_outro_tc_da(nfp_prog); 3356 break; 3357 case BPF_PROG_TYPE_XDP: 3358 nfp_outro_xdp(nfp_prog); 3359 break; 3360 default: 3361 WARN_ON(1); 3362 } 3363 } 3364 3365 static int nfp_translate(struct nfp_prog *nfp_prog) 3366 { 3367 struct nfp_insn_meta *meta; 3368 int err; 3369 3370 nfp_intro(nfp_prog); 3371 if (nfp_prog->error) 3372 return nfp_prog->error; 3373 3374 list_for_each_entry(meta, &nfp_prog->insns, l) { 3375 instr_cb_t cb = instr_cb[meta->insn.code]; 3376 3377 meta->off = nfp_prog_current_offset(nfp_prog); 3378 3379 if (meta->skip) { 3380 nfp_prog->n_translated++; 3381 continue; 3382 } 3383 3384 if (nfp_meta_has_prev(nfp_prog, meta) && 3385 nfp_meta_prev(meta)->double_cb) 3386 cb = nfp_meta_prev(meta)->double_cb; 3387 if (!cb) 3388 return -ENOENT; 3389 err = cb(nfp_prog, meta); 3390 if (err) 3391 return err; 3392 if (nfp_prog->error) 3393 return nfp_prog->error; 3394 3395 nfp_prog->n_translated++; 3396 } 3397 3398 nfp_prog->last_bpf_off = nfp_prog_current_offset(nfp_prog) - 1; 3399 3400 nfp_outro(nfp_prog); 3401 if (nfp_prog->error) 3402 return nfp_prog->error; 3403 3404 wrp_nops(nfp_prog, NFP_USTORE_PREFETCH_WINDOW); 3405 if (nfp_prog->error) 3406 return nfp_prog->error; 3407 3408 return nfp_fixup_branches(nfp_prog); 3409 } 3410 3411 /* --- Optimizations --- */ 3412 static void nfp_bpf_opt_reg_init(struct nfp_prog *nfp_prog) 3413 { 3414 struct nfp_insn_meta *meta; 3415 3416 list_for_each_entry(meta, &nfp_prog->insns, l) { 3417 struct bpf_insn insn = meta->insn; 3418 3419 /* Programs converted from cBPF start with register xoring */ 3420 if (insn.code == (BPF_ALU64 | BPF_XOR | BPF_X) && 3421 insn.src_reg == insn.dst_reg) 3422 continue; 3423 3424 /* Programs start with R6 = R1 but we ignore the skb pointer */ 3425 if (insn.code == (BPF_ALU64 | BPF_MOV | BPF_X) && 3426 insn.src_reg == 1 && insn.dst_reg == 6) 3427 meta->skip = true; 3428 3429 /* Return as soon as something doesn't match */ 3430 if (!meta->skip) 3431 return; 3432 } 3433 } 3434 3435 /* abs(insn.imm) will fit better into unrestricted reg immediate - 3436 * convert add/sub of a negative number into a sub/add of a positive one. 3437 */ 3438 static void nfp_bpf_opt_neg_add_sub(struct nfp_prog *nfp_prog) 3439 { 3440 struct nfp_insn_meta *meta; 3441 3442 list_for_each_entry(meta, &nfp_prog->insns, l) { 3443 struct bpf_insn insn = meta->insn; 3444 3445 if (meta->skip) 3446 continue; 3447 3448 if (BPF_CLASS(insn.code) != BPF_ALU && 3449 BPF_CLASS(insn.code) != BPF_ALU64 && 3450 BPF_CLASS(insn.code) != BPF_JMP) 3451 continue; 3452 if (BPF_SRC(insn.code) != BPF_K) 3453 continue; 3454 if (insn.imm >= 0) 3455 continue; 3456 3457 if (BPF_CLASS(insn.code) == BPF_JMP) { 3458 switch (BPF_OP(insn.code)) { 3459 case BPF_JGE: 3460 case BPF_JSGE: 3461 case BPF_JLT: 3462 case BPF_JSLT: 3463 meta->jump_neg_op = true; 3464 break; 3465 default: 3466 continue; 3467 } 3468 } else { 3469 if (BPF_OP(insn.code) == BPF_ADD) 3470 insn.code = BPF_CLASS(insn.code) | BPF_SUB; 3471 else if (BPF_OP(insn.code) == BPF_SUB) 3472 insn.code = BPF_CLASS(insn.code) | BPF_ADD; 3473 else 3474 continue; 3475 3476 meta->insn.code = insn.code | BPF_K; 3477 } 3478 3479 meta->insn.imm = -insn.imm; 3480 } 3481 } 3482 3483 /* Remove masking after load since our load guarantees this is not needed */ 3484 static void nfp_bpf_opt_ld_mask(struct nfp_prog *nfp_prog) 3485 { 3486 struct nfp_insn_meta *meta1, *meta2; 3487 const s32 exp_mask[] = { 3488 [BPF_B] = 0x000000ffU, 3489 [BPF_H] = 0x0000ffffU, 3490 [BPF_W] = 0xffffffffU, 3491 }; 3492 3493 nfp_for_each_insn_walk2(nfp_prog, meta1, meta2) { 3494 struct bpf_insn insn, next; 3495 3496 insn = meta1->insn; 3497 next = meta2->insn; 3498 3499 if (BPF_CLASS(insn.code) != BPF_LD) 3500 continue; 3501 if (BPF_MODE(insn.code) != BPF_ABS && 3502 BPF_MODE(insn.code) != BPF_IND) 3503 continue; 3504 3505 if (next.code != (BPF_ALU64 | BPF_AND | BPF_K)) 3506 continue; 3507 3508 if (!exp_mask[BPF_SIZE(insn.code)]) 3509 continue; 3510 if (exp_mask[BPF_SIZE(insn.code)] != next.imm) 3511 continue; 3512 3513 if (next.src_reg || next.dst_reg) 3514 continue; 3515 3516 if (meta2->flags & FLAG_INSN_IS_JUMP_DST) 3517 continue; 3518 3519 meta2->skip = true; 3520 } 3521 } 3522 3523 static void nfp_bpf_opt_ld_shift(struct nfp_prog *nfp_prog) 3524 { 3525 struct nfp_insn_meta *meta1, *meta2, *meta3; 3526 3527 nfp_for_each_insn_walk3(nfp_prog, meta1, meta2, meta3) { 3528 struct bpf_insn insn, next1, next2; 3529 3530 insn = meta1->insn; 3531 next1 = meta2->insn; 3532 next2 = meta3->insn; 3533 3534 if (BPF_CLASS(insn.code) != BPF_LD) 3535 continue; 3536 if (BPF_MODE(insn.code) != BPF_ABS && 3537 BPF_MODE(insn.code) != BPF_IND) 3538 continue; 3539 if (BPF_SIZE(insn.code) != BPF_W) 3540 continue; 3541 3542 if (!(next1.code == (BPF_LSH | BPF_K | BPF_ALU64) && 3543 next2.code == (BPF_RSH | BPF_K | BPF_ALU64)) && 3544 !(next1.code == (BPF_RSH | BPF_K | BPF_ALU64) && 3545 next2.code == (BPF_LSH | BPF_K | BPF_ALU64))) 3546 continue; 3547 3548 if (next1.src_reg || next1.dst_reg || 3549 next2.src_reg || next2.dst_reg) 3550 continue; 3551 3552 if (next1.imm != 0x20 || next2.imm != 0x20) 3553 continue; 3554 3555 if (meta2->flags & FLAG_INSN_IS_JUMP_DST || 3556 meta3->flags & FLAG_INSN_IS_JUMP_DST) 3557 continue; 3558 3559 meta2->skip = true; 3560 meta3->skip = true; 3561 } 3562 } 3563 3564 /* load/store pair that forms memory copy sould look like the following: 3565 * 3566 * ld_width R, [addr_src + offset_src] 3567 * st_width [addr_dest + offset_dest], R 3568 * 3569 * The destination register of load and source register of store should 3570 * be the same, load and store should also perform at the same width. 3571 * If either of addr_src or addr_dest is stack pointer, we don't do the 3572 * CPP optimization as stack is modelled by registers on NFP. 3573 */ 3574 static bool 3575 curr_pair_is_memcpy(struct nfp_insn_meta *ld_meta, 3576 struct nfp_insn_meta *st_meta) 3577 { 3578 struct bpf_insn *ld = &ld_meta->insn; 3579 struct bpf_insn *st = &st_meta->insn; 3580 3581 if (!is_mbpf_load(ld_meta) || !is_mbpf_store(st_meta)) 3582 return false; 3583 3584 if (ld_meta->ptr.type != PTR_TO_PACKET && 3585 ld_meta->ptr.type != PTR_TO_MAP_VALUE) 3586 return false; 3587 3588 if (st_meta->ptr.type != PTR_TO_PACKET) 3589 return false; 3590 3591 if (BPF_SIZE(ld->code) != BPF_SIZE(st->code)) 3592 return false; 3593 3594 if (ld->dst_reg != st->src_reg) 3595 return false; 3596 3597 /* There is jump to the store insn in this pair. */ 3598 if (st_meta->flags & FLAG_INSN_IS_JUMP_DST) 3599 return false; 3600 3601 return true; 3602 } 3603 3604 /* Currently, we only support chaining load/store pairs if: 3605 * 3606 * - Their address base registers are the same. 3607 * - Their address offsets are in the same order. 3608 * - They operate at the same memory width. 3609 * - There is no jump into the middle of them. 3610 */ 3611 static bool 3612 curr_pair_chain_with_previous(struct nfp_insn_meta *ld_meta, 3613 struct nfp_insn_meta *st_meta, 3614 struct bpf_insn *prev_ld, 3615 struct bpf_insn *prev_st) 3616 { 3617 u8 prev_size, curr_size, prev_ld_base, prev_st_base, prev_ld_dst; 3618 struct bpf_insn *ld = &ld_meta->insn; 3619 struct bpf_insn *st = &st_meta->insn; 3620 s16 prev_ld_off, prev_st_off; 3621 3622 /* This pair is the start pair. */ 3623 if (!prev_ld) 3624 return true; 3625 3626 prev_size = BPF_LDST_BYTES(prev_ld); 3627 curr_size = BPF_LDST_BYTES(ld); 3628 prev_ld_base = prev_ld->src_reg; 3629 prev_st_base = prev_st->dst_reg; 3630 prev_ld_dst = prev_ld->dst_reg; 3631 prev_ld_off = prev_ld->off; 3632 prev_st_off = prev_st->off; 3633 3634 if (ld->dst_reg != prev_ld_dst) 3635 return false; 3636 3637 if (ld->src_reg != prev_ld_base || st->dst_reg != prev_st_base) 3638 return false; 3639 3640 if (curr_size != prev_size) 3641 return false; 3642 3643 /* There is jump to the head of this pair. */ 3644 if (ld_meta->flags & FLAG_INSN_IS_JUMP_DST) 3645 return false; 3646 3647 /* Both in ascending order. */ 3648 if (prev_ld_off + prev_size == ld->off && 3649 prev_st_off + prev_size == st->off) 3650 return true; 3651 3652 /* Both in descending order. */ 3653 if (ld->off + curr_size == prev_ld_off && 3654 st->off + curr_size == prev_st_off) 3655 return true; 3656 3657 return false; 3658 } 3659 3660 /* Return TRUE if cross memory access happens. Cross memory access means 3661 * store area is overlapping with load area that a later load might load 3662 * the value from previous store, for this case we can't treat the sequence 3663 * as an memory copy. 3664 */ 3665 static bool 3666 cross_mem_access(struct bpf_insn *ld, struct nfp_insn_meta *head_ld_meta, 3667 struct nfp_insn_meta *head_st_meta) 3668 { 3669 s16 head_ld_off, head_st_off, ld_off; 3670 3671 /* Different pointer types does not overlap. */ 3672 if (head_ld_meta->ptr.type != head_st_meta->ptr.type) 3673 return false; 3674 3675 /* load and store are both PTR_TO_PACKET, check ID info. */ 3676 if (head_ld_meta->ptr.id != head_st_meta->ptr.id) 3677 return true; 3678 3679 /* Canonicalize the offsets. Turn all of them against the original 3680 * base register. 3681 */ 3682 head_ld_off = head_ld_meta->insn.off + head_ld_meta->ptr.off; 3683 head_st_off = head_st_meta->insn.off + head_st_meta->ptr.off; 3684 ld_off = ld->off + head_ld_meta->ptr.off; 3685 3686 /* Ascending order cross. */ 3687 if (ld_off > head_ld_off && 3688 head_ld_off < head_st_off && ld_off >= head_st_off) 3689 return true; 3690 3691 /* Descending order cross. */ 3692 if (ld_off < head_ld_off && 3693 head_ld_off > head_st_off && ld_off <= head_st_off) 3694 return true; 3695 3696 return false; 3697 } 3698 3699 /* This pass try to identify the following instructoin sequences. 3700 * 3701 * load R, [regA + offA] 3702 * store [regB + offB], R 3703 * load R, [regA + offA + const_imm_A] 3704 * store [regB + offB + const_imm_A], R 3705 * load R, [regA + offA + 2 * const_imm_A] 3706 * store [regB + offB + 2 * const_imm_A], R 3707 * ... 3708 * 3709 * Above sequence is typically generated by compiler when lowering 3710 * memcpy. NFP prefer using CPP instructions to accelerate it. 3711 */ 3712 static void nfp_bpf_opt_ldst_gather(struct nfp_prog *nfp_prog) 3713 { 3714 struct nfp_insn_meta *head_ld_meta = NULL; 3715 struct nfp_insn_meta *head_st_meta = NULL; 3716 struct nfp_insn_meta *meta1, *meta2; 3717 struct bpf_insn *prev_ld = NULL; 3718 struct bpf_insn *prev_st = NULL; 3719 u8 count = 0; 3720 3721 nfp_for_each_insn_walk2(nfp_prog, meta1, meta2) { 3722 struct bpf_insn *ld = &meta1->insn; 3723 struct bpf_insn *st = &meta2->insn; 3724 3725 /* Reset record status if any of the following if true: 3726 * - The current insn pair is not load/store. 3727 * - The load/store pair doesn't chain with previous one. 3728 * - The chained load/store pair crossed with previous pair. 3729 * - The chained load/store pair has a total size of memory 3730 * copy beyond 128 bytes which is the maximum length a 3731 * single NFP CPP command can transfer. 3732 */ 3733 if (!curr_pair_is_memcpy(meta1, meta2) || 3734 !curr_pair_chain_with_previous(meta1, meta2, prev_ld, 3735 prev_st) || 3736 (head_ld_meta && (cross_mem_access(ld, head_ld_meta, 3737 head_st_meta) || 3738 head_ld_meta->ldst_gather_len >= 128))) { 3739 if (!count) 3740 continue; 3741 3742 if (count > 1) { 3743 s16 prev_ld_off = prev_ld->off; 3744 s16 prev_st_off = prev_st->off; 3745 s16 head_ld_off = head_ld_meta->insn.off; 3746 3747 if (prev_ld_off < head_ld_off) { 3748 head_ld_meta->insn.off = prev_ld_off; 3749 head_st_meta->insn.off = prev_st_off; 3750 head_ld_meta->ldst_gather_len = 3751 -head_ld_meta->ldst_gather_len; 3752 } 3753 3754 head_ld_meta->paired_st = &head_st_meta->insn; 3755 head_st_meta->skip = true; 3756 } else { 3757 head_ld_meta->ldst_gather_len = 0; 3758 } 3759 3760 /* If the chain is ended by an load/store pair then this 3761 * could serve as the new head of the the next chain. 3762 */ 3763 if (curr_pair_is_memcpy(meta1, meta2)) { 3764 head_ld_meta = meta1; 3765 head_st_meta = meta2; 3766 head_ld_meta->ldst_gather_len = 3767 BPF_LDST_BYTES(ld); 3768 meta1 = nfp_meta_next(meta1); 3769 meta2 = nfp_meta_next(meta2); 3770 prev_ld = ld; 3771 prev_st = st; 3772 count = 1; 3773 } else { 3774 head_ld_meta = NULL; 3775 head_st_meta = NULL; 3776 prev_ld = NULL; 3777 prev_st = NULL; 3778 count = 0; 3779 } 3780 3781 continue; 3782 } 3783 3784 if (!head_ld_meta) { 3785 head_ld_meta = meta1; 3786 head_st_meta = meta2; 3787 } else { 3788 meta1->skip = true; 3789 meta2->skip = true; 3790 } 3791 3792 head_ld_meta->ldst_gather_len += BPF_LDST_BYTES(ld); 3793 meta1 = nfp_meta_next(meta1); 3794 meta2 = nfp_meta_next(meta2); 3795 prev_ld = ld; 3796 prev_st = st; 3797 count++; 3798 } 3799 } 3800 3801 static void nfp_bpf_opt_pkt_cache(struct nfp_prog *nfp_prog) 3802 { 3803 struct nfp_insn_meta *meta, *range_node = NULL; 3804 s16 range_start = 0, range_end = 0; 3805 bool cache_avail = false; 3806 struct bpf_insn *insn; 3807 s32 range_ptr_off = 0; 3808 u32 range_ptr_id = 0; 3809 3810 list_for_each_entry(meta, &nfp_prog->insns, l) { 3811 if (meta->flags & FLAG_INSN_IS_JUMP_DST) 3812 cache_avail = false; 3813 3814 if (meta->skip) 3815 continue; 3816 3817 insn = &meta->insn; 3818 3819 if (is_mbpf_store_pkt(meta) || 3820 insn->code == (BPF_JMP | BPF_CALL) || 3821 is_mbpf_classic_store_pkt(meta) || 3822 is_mbpf_classic_load(meta)) { 3823 cache_avail = false; 3824 continue; 3825 } 3826 3827 if (!is_mbpf_load(meta)) 3828 continue; 3829 3830 if (meta->ptr.type != PTR_TO_PACKET || meta->ldst_gather_len) { 3831 cache_avail = false; 3832 continue; 3833 } 3834 3835 if (!cache_avail) { 3836 cache_avail = true; 3837 if (range_node) 3838 goto end_current_then_start_new; 3839 goto start_new; 3840 } 3841 3842 /* Check ID to make sure two reads share the same 3843 * variable offset against PTR_TO_PACKET, and check OFF 3844 * to make sure they also share the same constant 3845 * offset. 3846 * 3847 * OFFs don't really need to be the same, because they 3848 * are the constant offsets against PTR_TO_PACKET, so 3849 * for different OFFs, we could canonicalize them to 3850 * offsets against original packet pointer. We don't 3851 * support this. 3852 */ 3853 if (meta->ptr.id == range_ptr_id && 3854 meta->ptr.off == range_ptr_off) { 3855 s16 new_start = range_start; 3856 s16 end, off = insn->off; 3857 s16 new_end = range_end; 3858 bool changed = false; 3859 3860 if (off < range_start) { 3861 new_start = off; 3862 changed = true; 3863 } 3864 3865 end = off + BPF_LDST_BYTES(insn); 3866 if (end > range_end) { 3867 new_end = end; 3868 changed = true; 3869 } 3870 3871 if (!changed) 3872 continue; 3873 3874 if (new_end - new_start <= 64) { 3875 /* Install new range. */ 3876 range_start = new_start; 3877 range_end = new_end; 3878 continue; 3879 } 3880 } 3881 3882 end_current_then_start_new: 3883 range_node->pkt_cache.range_start = range_start; 3884 range_node->pkt_cache.range_end = range_end; 3885 start_new: 3886 range_node = meta; 3887 range_node->pkt_cache.do_init = true; 3888 range_ptr_id = range_node->ptr.id; 3889 range_ptr_off = range_node->ptr.off; 3890 range_start = insn->off; 3891 range_end = insn->off + BPF_LDST_BYTES(insn); 3892 } 3893 3894 if (range_node) { 3895 range_node->pkt_cache.range_start = range_start; 3896 range_node->pkt_cache.range_end = range_end; 3897 } 3898 3899 list_for_each_entry(meta, &nfp_prog->insns, l) { 3900 if (meta->skip) 3901 continue; 3902 3903 if (is_mbpf_load_pkt(meta) && !meta->ldst_gather_len) { 3904 if (meta->pkt_cache.do_init) { 3905 range_start = meta->pkt_cache.range_start; 3906 range_end = meta->pkt_cache.range_end; 3907 } else { 3908 meta->pkt_cache.range_start = range_start; 3909 meta->pkt_cache.range_end = range_end; 3910 } 3911 } 3912 } 3913 } 3914 3915 static int nfp_bpf_optimize(struct nfp_prog *nfp_prog) 3916 { 3917 nfp_bpf_opt_reg_init(nfp_prog); 3918 3919 nfp_bpf_opt_neg_add_sub(nfp_prog); 3920 nfp_bpf_opt_ld_mask(nfp_prog); 3921 nfp_bpf_opt_ld_shift(nfp_prog); 3922 nfp_bpf_opt_ldst_gather(nfp_prog); 3923 nfp_bpf_opt_pkt_cache(nfp_prog); 3924 3925 return 0; 3926 } 3927 3928 static int nfp_bpf_replace_map_ptrs(struct nfp_prog *nfp_prog) 3929 { 3930 struct nfp_insn_meta *meta1, *meta2; 3931 struct nfp_bpf_map *nfp_map; 3932 struct bpf_map *map; 3933 u32 id; 3934 3935 nfp_for_each_insn_walk2(nfp_prog, meta1, meta2) { 3936 if (meta1->skip || meta2->skip) 3937 continue; 3938 3939 if (meta1->insn.code != (BPF_LD | BPF_IMM | BPF_DW) || 3940 meta1->insn.src_reg != BPF_PSEUDO_MAP_FD) 3941 continue; 3942 3943 map = (void *)(unsigned long)((u32)meta1->insn.imm | 3944 (u64)meta2->insn.imm << 32); 3945 if (bpf_map_offload_neutral(map)) { 3946 id = map->id; 3947 } else { 3948 nfp_map = map_to_offmap(map)->dev_priv; 3949 id = nfp_map->tid; 3950 } 3951 3952 meta1->insn.imm = id; 3953 meta2->insn.imm = 0; 3954 } 3955 3956 return 0; 3957 } 3958 3959 static int nfp_bpf_ustore_calc(u64 *prog, unsigned int len) 3960 { 3961 __le64 *ustore = (__force __le64 *)prog; 3962 int i; 3963 3964 for (i = 0; i < len; i++) { 3965 int err; 3966 3967 err = nfp_ustore_check_valid_no_ecc(prog[i]); 3968 if (err) 3969 return err; 3970 3971 ustore[i] = cpu_to_le64(nfp_ustore_calc_ecc_insn(prog[i])); 3972 } 3973 3974 return 0; 3975 } 3976 3977 static void nfp_bpf_prog_trim(struct nfp_prog *nfp_prog) 3978 { 3979 void *prog; 3980 3981 prog = kvmalloc_array(nfp_prog->prog_len, sizeof(u64), GFP_KERNEL); 3982 if (!prog) 3983 return; 3984 3985 nfp_prog->__prog_alloc_len = nfp_prog->prog_len * sizeof(u64); 3986 memcpy(prog, nfp_prog->prog, nfp_prog->__prog_alloc_len); 3987 kvfree(nfp_prog->prog); 3988 nfp_prog->prog = prog; 3989 } 3990 3991 int nfp_bpf_jit(struct nfp_prog *nfp_prog) 3992 { 3993 int ret; 3994 3995 ret = nfp_bpf_replace_map_ptrs(nfp_prog); 3996 if (ret) 3997 return ret; 3998 3999 ret = nfp_bpf_optimize(nfp_prog); 4000 if (ret) 4001 return ret; 4002 4003 ret = nfp_translate(nfp_prog); 4004 if (ret) { 4005 pr_err("Translation failed with error %d (translated: %u)\n", 4006 ret, nfp_prog->n_translated); 4007 return -EINVAL; 4008 } 4009 4010 nfp_bpf_prog_trim(nfp_prog); 4011 4012 return ret; 4013 } 4014 4015 void nfp_bpf_jit_prepare(struct nfp_prog *nfp_prog, unsigned int cnt) 4016 { 4017 struct nfp_insn_meta *meta; 4018 4019 /* Another pass to record jump information. */ 4020 list_for_each_entry(meta, &nfp_prog->insns, l) { 4021 u64 code = meta->insn.code; 4022 4023 if (BPF_CLASS(code) == BPF_JMP && BPF_OP(code) != BPF_EXIT && 4024 BPF_OP(code) != BPF_CALL) { 4025 struct nfp_insn_meta *dst_meta; 4026 unsigned short dst_indx; 4027 4028 dst_indx = meta->n + 1 + meta->insn.off; 4029 dst_meta = nfp_bpf_goto_meta(nfp_prog, meta, dst_indx, 4030 cnt); 4031 4032 meta->jmp_dst = dst_meta; 4033 dst_meta->flags |= FLAG_INSN_IS_JUMP_DST; 4034 } 4035 } 4036 } 4037 4038 bool nfp_bpf_supported_opcode(u8 code) 4039 { 4040 return !!instr_cb[code]; 4041 } 4042 4043 void *nfp_bpf_relo_for_vnic(struct nfp_prog *nfp_prog, struct nfp_bpf_vnic *bv) 4044 { 4045 unsigned int i; 4046 u64 *prog; 4047 int err; 4048 4049 prog = kmemdup(nfp_prog->prog, nfp_prog->prog_len * sizeof(u64), 4050 GFP_KERNEL); 4051 if (!prog) 4052 return ERR_PTR(-ENOMEM); 4053 4054 for (i = 0; i < nfp_prog->prog_len; i++) { 4055 enum nfp_relo_type special; 4056 u32 val; 4057 4058 special = FIELD_GET(OP_RELO_TYPE, prog[i]); 4059 switch (special) { 4060 case RELO_NONE: 4061 continue; 4062 case RELO_BR_REL: 4063 br_add_offset(&prog[i], bv->start_off); 4064 break; 4065 case RELO_BR_GO_OUT: 4066 br_set_offset(&prog[i], 4067 nfp_prog->tgt_out + bv->start_off); 4068 break; 4069 case RELO_BR_GO_ABORT: 4070 br_set_offset(&prog[i], 4071 nfp_prog->tgt_abort + bv->start_off); 4072 break; 4073 case RELO_BR_NEXT_PKT: 4074 br_set_offset(&prog[i], bv->tgt_done); 4075 break; 4076 case RELO_BR_HELPER: 4077 val = br_get_offset(prog[i]); 4078 val -= BR_OFF_RELO; 4079 switch (val) { 4080 case BPF_FUNC_map_lookup_elem: 4081 val = nfp_prog->bpf->helpers.map_lookup; 4082 break; 4083 case BPF_FUNC_map_update_elem: 4084 val = nfp_prog->bpf->helpers.map_update; 4085 break; 4086 case BPF_FUNC_map_delete_elem: 4087 val = nfp_prog->bpf->helpers.map_delete; 4088 break; 4089 case BPF_FUNC_perf_event_output: 4090 val = nfp_prog->bpf->helpers.perf_event_output; 4091 break; 4092 default: 4093 pr_err("relocation of unknown helper %d\n", 4094 val); 4095 err = -EINVAL; 4096 goto err_free_prog; 4097 } 4098 br_set_offset(&prog[i], val); 4099 break; 4100 case RELO_IMMED_REL: 4101 immed_add_value(&prog[i], bv->start_off); 4102 break; 4103 } 4104 4105 prog[i] &= ~OP_RELO_TYPE; 4106 } 4107 4108 err = nfp_bpf_ustore_calc(prog, nfp_prog->prog_len); 4109 if (err) 4110 goto err_free_prog; 4111 4112 return prog; 4113 4114 err_free_prog: 4115 kfree(prog); 4116 return ERR_PTR(err); 4117 } 4118