1 /*
2  * Copyright (C) 2016-2017 Netronome Systems, Inc.
3  *
4  * This software is dual licensed under the GNU General License Version 2,
5  * June 1991 as shown in the file COPYING in the top-level directory of this
6  * source tree or the BSD 2-Clause License provided below.  You have the
7  * option to license this software under the complete terms of either license.
8  *
9  * The BSD 2-Clause License:
10  *
11  *     Redistribution and use in source and binary forms, with or
12  *     without modification, are permitted provided that the following
13  *     conditions are met:
14  *
15  *      1. Redistributions of source code must retain the above
16  *         copyright notice, this list of conditions and the following
17  *         disclaimer.
18  *
19  *      2. Redistributions in binary form must reproduce the above
20  *         copyright notice, this list of conditions and the following
21  *         disclaimer in the documentation and/or other materials
22  *         provided with the distribution.
23  *
24  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31  * SOFTWARE.
32  */
33 
34 #define pr_fmt(fmt)	"NFP net bpf: " fmt
35 
36 #include <linux/bug.h>
37 #include <linux/kernel.h>
38 #include <linux/bpf.h>
39 #include <linux/filter.h>
40 #include <linux/pkt_cls.h>
41 #include <linux/unistd.h>
42 
43 #include "main.h"
44 #include "../nfp_asm.h"
45 
46 /* --- NFP prog --- */
47 /* Foreach "multiple" entries macros provide pos and next<n> pointers.
48  * It's safe to modify the next pointers (but not pos).
49  */
50 #define nfp_for_each_insn_walk2(nfp_prog, pos, next)			\
51 	for (pos = list_first_entry(&(nfp_prog)->insns, typeof(*pos), l), \
52 	     next = list_next_entry(pos, l);			\
53 	     &(nfp_prog)->insns != &pos->l &&			\
54 	     &(nfp_prog)->insns != &next->l;			\
55 	     pos = nfp_meta_next(pos),				\
56 	     next = nfp_meta_next(pos))
57 
58 #define nfp_for_each_insn_walk3(nfp_prog, pos, next, next2)		\
59 	for (pos = list_first_entry(&(nfp_prog)->insns, typeof(*pos), l), \
60 	     next = list_next_entry(pos, l),			\
61 	     next2 = list_next_entry(next, l);			\
62 	     &(nfp_prog)->insns != &pos->l &&			\
63 	     &(nfp_prog)->insns != &next->l &&			\
64 	     &(nfp_prog)->insns != &next2->l;			\
65 	     pos = nfp_meta_next(pos),				\
66 	     next = nfp_meta_next(pos),				\
67 	     next2 = nfp_meta_next(next))
68 
69 static bool
70 nfp_meta_has_prev(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
71 {
72 	return meta->l.prev != &nfp_prog->insns;
73 }
74 
75 static void nfp_prog_push(struct nfp_prog *nfp_prog, u64 insn)
76 {
77 	if (nfp_prog->__prog_alloc_len == nfp_prog->prog_len) {
78 		nfp_prog->error = -ENOSPC;
79 		return;
80 	}
81 
82 	nfp_prog->prog[nfp_prog->prog_len] = insn;
83 	nfp_prog->prog_len++;
84 }
85 
86 static unsigned int nfp_prog_current_offset(struct nfp_prog *nfp_prog)
87 {
88 	return nfp_prog->start_off + nfp_prog->prog_len;
89 }
90 
91 static bool
92 nfp_prog_confirm_current_offset(struct nfp_prog *nfp_prog, unsigned int off)
93 {
94 	/* If there is a recorded error we may have dropped instructions;
95 	 * that doesn't have to be due to translator bug, and the translation
96 	 * will fail anyway, so just return OK.
97 	 */
98 	if (nfp_prog->error)
99 		return true;
100 	return !WARN_ON_ONCE(nfp_prog_current_offset(nfp_prog) != off);
101 }
102 
103 static unsigned int
104 nfp_prog_offset_to_index(struct nfp_prog *nfp_prog, unsigned int offset)
105 {
106 	return offset - nfp_prog->start_off;
107 }
108 
109 /* --- Emitters --- */
110 static void
111 __emit_cmd(struct nfp_prog *nfp_prog, enum cmd_tgt_map op,
112 	   u8 mode, u8 xfer, u8 areg, u8 breg, u8 size, bool sync, bool indir)
113 {
114 	enum cmd_ctx_swap ctx;
115 	u64 insn;
116 
117 	if (sync)
118 		ctx = CMD_CTX_SWAP;
119 	else
120 		ctx = CMD_CTX_NO_SWAP;
121 
122 	insn =	FIELD_PREP(OP_CMD_A_SRC, areg) |
123 		FIELD_PREP(OP_CMD_CTX, ctx) |
124 		FIELD_PREP(OP_CMD_B_SRC, breg) |
125 		FIELD_PREP(OP_CMD_TOKEN, cmd_tgt_act[op].token) |
126 		FIELD_PREP(OP_CMD_XFER, xfer) |
127 		FIELD_PREP(OP_CMD_CNT, size) |
128 		FIELD_PREP(OP_CMD_SIG, sync) |
129 		FIELD_PREP(OP_CMD_TGT_CMD, cmd_tgt_act[op].tgt_cmd) |
130 		FIELD_PREP(OP_CMD_INDIR, indir) |
131 		FIELD_PREP(OP_CMD_MODE, mode);
132 
133 	nfp_prog_push(nfp_prog, insn);
134 }
135 
136 static void
137 emit_cmd_any(struct nfp_prog *nfp_prog, enum cmd_tgt_map op, u8 mode, u8 xfer,
138 	     swreg lreg, swreg rreg, u8 size, bool sync, bool indir)
139 {
140 	struct nfp_insn_re_regs reg;
141 	int err;
142 
143 	err = swreg_to_restricted(reg_none(), lreg, rreg, &reg, false);
144 	if (err) {
145 		nfp_prog->error = err;
146 		return;
147 	}
148 	if (reg.swap) {
149 		pr_err("cmd can't swap arguments\n");
150 		nfp_prog->error = -EFAULT;
151 		return;
152 	}
153 	if (reg.dst_lmextn || reg.src_lmextn) {
154 		pr_err("cmd can't use LMextn\n");
155 		nfp_prog->error = -EFAULT;
156 		return;
157 	}
158 
159 	__emit_cmd(nfp_prog, op, mode, xfer, reg.areg, reg.breg, size, sync,
160 		   indir);
161 }
162 
163 static void
164 emit_cmd(struct nfp_prog *nfp_prog, enum cmd_tgt_map op, u8 mode, u8 xfer,
165 	 swreg lreg, swreg rreg, u8 size, bool sync)
166 {
167 	emit_cmd_any(nfp_prog, op, mode, xfer, lreg, rreg, size, sync, false);
168 }
169 
170 static void
171 emit_cmd_indir(struct nfp_prog *nfp_prog, enum cmd_tgt_map op, u8 mode, u8 xfer,
172 	       swreg lreg, swreg rreg, u8 size, bool sync)
173 {
174 	emit_cmd_any(nfp_prog, op, mode, xfer, lreg, rreg, size, sync, true);
175 }
176 
177 static void
178 __emit_br(struct nfp_prog *nfp_prog, enum br_mask mask, enum br_ev_pip ev_pip,
179 	  enum br_ctx_signal_state css, u16 addr, u8 defer)
180 {
181 	u16 addr_lo, addr_hi;
182 	u64 insn;
183 
184 	addr_lo = addr & (OP_BR_ADDR_LO >> __bf_shf(OP_BR_ADDR_LO));
185 	addr_hi = addr != addr_lo;
186 
187 	insn = OP_BR_BASE |
188 		FIELD_PREP(OP_BR_MASK, mask) |
189 		FIELD_PREP(OP_BR_EV_PIP, ev_pip) |
190 		FIELD_PREP(OP_BR_CSS, css) |
191 		FIELD_PREP(OP_BR_DEFBR, defer) |
192 		FIELD_PREP(OP_BR_ADDR_LO, addr_lo) |
193 		FIELD_PREP(OP_BR_ADDR_HI, addr_hi);
194 
195 	nfp_prog_push(nfp_prog, insn);
196 }
197 
198 static void emit_br_def(struct nfp_prog *nfp_prog, u16 addr, u8 defer)
199 {
200 	if (defer > 2) {
201 		pr_err("BUG: branch defer out of bounds %d\n", defer);
202 		nfp_prog->error = -EFAULT;
203 		return;
204 	}
205 	__emit_br(nfp_prog, BR_UNC, BR_EV_PIP_UNCOND, BR_CSS_NONE, addr, defer);
206 }
207 
208 static void
209 emit_br(struct nfp_prog *nfp_prog, enum br_mask mask, u16 addr, u8 defer)
210 {
211 	__emit_br(nfp_prog, mask,
212 		  mask != BR_UNC ? BR_EV_PIP_COND : BR_EV_PIP_UNCOND,
213 		  BR_CSS_NONE, addr, defer);
214 }
215 
216 static void
217 __emit_immed(struct nfp_prog *nfp_prog, u16 areg, u16 breg, u16 imm_hi,
218 	     enum immed_width width, bool invert,
219 	     enum immed_shift shift, bool wr_both,
220 	     bool dst_lmextn, bool src_lmextn)
221 {
222 	u64 insn;
223 
224 	insn = OP_IMMED_BASE |
225 		FIELD_PREP(OP_IMMED_A_SRC, areg) |
226 		FIELD_PREP(OP_IMMED_B_SRC, breg) |
227 		FIELD_PREP(OP_IMMED_IMM, imm_hi) |
228 		FIELD_PREP(OP_IMMED_WIDTH, width) |
229 		FIELD_PREP(OP_IMMED_INV, invert) |
230 		FIELD_PREP(OP_IMMED_SHIFT, shift) |
231 		FIELD_PREP(OP_IMMED_WR_AB, wr_both) |
232 		FIELD_PREP(OP_IMMED_SRC_LMEXTN, src_lmextn) |
233 		FIELD_PREP(OP_IMMED_DST_LMEXTN, dst_lmextn);
234 
235 	nfp_prog_push(nfp_prog, insn);
236 }
237 
238 static void
239 emit_immed(struct nfp_prog *nfp_prog, swreg dst, u16 imm,
240 	   enum immed_width width, bool invert, enum immed_shift shift)
241 {
242 	struct nfp_insn_ur_regs reg;
243 	int err;
244 
245 	if (swreg_type(dst) == NN_REG_IMM) {
246 		nfp_prog->error = -EFAULT;
247 		return;
248 	}
249 
250 	err = swreg_to_unrestricted(dst, dst, reg_imm(imm & 0xff), &reg);
251 	if (err) {
252 		nfp_prog->error = err;
253 		return;
254 	}
255 
256 	/* Use reg.dst when destination is No-Dest. */
257 	__emit_immed(nfp_prog,
258 		     swreg_type(dst) == NN_REG_NONE ? reg.dst : reg.areg,
259 		     reg.breg, imm >> 8, width, invert, shift,
260 		     reg.wr_both, reg.dst_lmextn, reg.src_lmextn);
261 }
262 
263 static void
264 __emit_shf(struct nfp_prog *nfp_prog, u16 dst, enum alu_dst_ab dst_ab,
265 	   enum shf_sc sc, u8 shift,
266 	   u16 areg, enum shf_op op, u16 breg, bool i8, bool sw, bool wr_both,
267 	   bool dst_lmextn, bool src_lmextn)
268 {
269 	u64 insn;
270 
271 	if (!FIELD_FIT(OP_SHF_SHIFT, shift)) {
272 		nfp_prog->error = -EFAULT;
273 		return;
274 	}
275 
276 	if (sc == SHF_SC_L_SHF)
277 		shift = 32 - shift;
278 
279 	insn = OP_SHF_BASE |
280 		FIELD_PREP(OP_SHF_A_SRC, areg) |
281 		FIELD_PREP(OP_SHF_SC, sc) |
282 		FIELD_PREP(OP_SHF_B_SRC, breg) |
283 		FIELD_PREP(OP_SHF_I8, i8) |
284 		FIELD_PREP(OP_SHF_SW, sw) |
285 		FIELD_PREP(OP_SHF_DST, dst) |
286 		FIELD_PREP(OP_SHF_SHIFT, shift) |
287 		FIELD_PREP(OP_SHF_OP, op) |
288 		FIELD_PREP(OP_SHF_DST_AB, dst_ab) |
289 		FIELD_PREP(OP_SHF_WR_AB, wr_both) |
290 		FIELD_PREP(OP_SHF_SRC_LMEXTN, src_lmextn) |
291 		FIELD_PREP(OP_SHF_DST_LMEXTN, dst_lmextn);
292 
293 	nfp_prog_push(nfp_prog, insn);
294 }
295 
296 static void
297 emit_shf(struct nfp_prog *nfp_prog, swreg dst,
298 	 swreg lreg, enum shf_op op, swreg rreg, enum shf_sc sc, u8 shift)
299 {
300 	struct nfp_insn_re_regs reg;
301 	int err;
302 
303 	err = swreg_to_restricted(dst, lreg, rreg, &reg, true);
304 	if (err) {
305 		nfp_prog->error = err;
306 		return;
307 	}
308 
309 	__emit_shf(nfp_prog, reg.dst, reg.dst_ab, sc, shift,
310 		   reg.areg, op, reg.breg, reg.i8, reg.swap, reg.wr_both,
311 		   reg.dst_lmextn, reg.src_lmextn);
312 }
313 
314 static void
315 __emit_alu(struct nfp_prog *nfp_prog, u16 dst, enum alu_dst_ab dst_ab,
316 	   u16 areg, enum alu_op op, u16 breg, bool swap, bool wr_both,
317 	   bool dst_lmextn, bool src_lmextn)
318 {
319 	u64 insn;
320 
321 	insn = OP_ALU_BASE |
322 		FIELD_PREP(OP_ALU_A_SRC, areg) |
323 		FIELD_PREP(OP_ALU_B_SRC, breg) |
324 		FIELD_PREP(OP_ALU_DST, dst) |
325 		FIELD_PREP(OP_ALU_SW, swap) |
326 		FIELD_PREP(OP_ALU_OP, op) |
327 		FIELD_PREP(OP_ALU_DST_AB, dst_ab) |
328 		FIELD_PREP(OP_ALU_WR_AB, wr_both) |
329 		FIELD_PREP(OP_ALU_SRC_LMEXTN, src_lmextn) |
330 		FIELD_PREP(OP_ALU_DST_LMEXTN, dst_lmextn);
331 
332 	nfp_prog_push(nfp_prog, insn);
333 }
334 
335 static void
336 emit_alu(struct nfp_prog *nfp_prog, swreg dst,
337 	 swreg lreg, enum alu_op op, swreg rreg)
338 {
339 	struct nfp_insn_ur_regs reg;
340 	int err;
341 
342 	err = swreg_to_unrestricted(dst, lreg, rreg, &reg);
343 	if (err) {
344 		nfp_prog->error = err;
345 		return;
346 	}
347 
348 	__emit_alu(nfp_prog, reg.dst, reg.dst_ab,
349 		   reg.areg, op, reg.breg, reg.swap, reg.wr_both,
350 		   reg.dst_lmextn, reg.src_lmextn);
351 }
352 
353 static void
354 __emit_ld_field(struct nfp_prog *nfp_prog, enum shf_sc sc,
355 		u8 areg, u8 bmask, u8 breg, u8 shift, bool imm8,
356 		bool zero, bool swap, bool wr_both,
357 		bool dst_lmextn, bool src_lmextn)
358 {
359 	u64 insn;
360 
361 	insn = OP_LDF_BASE |
362 		FIELD_PREP(OP_LDF_A_SRC, areg) |
363 		FIELD_PREP(OP_LDF_SC, sc) |
364 		FIELD_PREP(OP_LDF_B_SRC, breg) |
365 		FIELD_PREP(OP_LDF_I8, imm8) |
366 		FIELD_PREP(OP_LDF_SW, swap) |
367 		FIELD_PREP(OP_LDF_ZF, zero) |
368 		FIELD_PREP(OP_LDF_BMASK, bmask) |
369 		FIELD_PREP(OP_LDF_SHF, shift) |
370 		FIELD_PREP(OP_LDF_WR_AB, wr_both) |
371 		FIELD_PREP(OP_LDF_SRC_LMEXTN, src_lmextn) |
372 		FIELD_PREP(OP_LDF_DST_LMEXTN, dst_lmextn);
373 
374 	nfp_prog_push(nfp_prog, insn);
375 }
376 
377 static void
378 emit_ld_field_any(struct nfp_prog *nfp_prog, swreg dst, u8 bmask, swreg src,
379 		  enum shf_sc sc, u8 shift, bool zero)
380 {
381 	struct nfp_insn_re_regs reg;
382 	int err;
383 
384 	/* Note: ld_field is special as it uses one of the src regs as dst */
385 	err = swreg_to_restricted(dst, dst, src, &reg, true);
386 	if (err) {
387 		nfp_prog->error = err;
388 		return;
389 	}
390 
391 	__emit_ld_field(nfp_prog, sc, reg.areg, bmask, reg.breg, shift,
392 			reg.i8, zero, reg.swap, reg.wr_both,
393 			reg.dst_lmextn, reg.src_lmextn);
394 }
395 
396 static void
397 emit_ld_field(struct nfp_prog *nfp_prog, swreg dst, u8 bmask, swreg src,
398 	      enum shf_sc sc, u8 shift)
399 {
400 	emit_ld_field_any(nfp_prog, dst, bmask, src, sc, shift, false);
401 }
402 
403 static void
404 __emit_lcsr(struct nfp_prog *nfp_prog, u16 areg, u16 breg, bool wr, u16 addr,
405 	    bool dst_lmextn, bool src_lmextn)
406 {
407 	u64 insn;
408 
409 	insn = OP_LCSR_BASE |
410 		FIELD_PREP(OP_LCSR_A_SRC, areg) |
411 		FIELD_PREP(OP_LCSR_B_SRC, breg) |
412 		FIELD_PREP(OP_LCSR_WRITE, wr) |
413 		FIELD_PREP(OP_LCSR_ADDR, addr) |
414 		FIELD_PREP(OP_LCSR_SRC_LMEXTN, src_lmextn) |
415 		FIELD_PREP(OP_LCSR_DST_LMEXTN, dst_lmextn);
416 
417 	nfp_prog_push(nfp_prog, insn);
418 }
419 
420 static void emit_csr_wr(struct nfp_prog *nfp_prog, swreg src, u16 addr)
421 {
422 	struct nfp_insn_ur_regs reg;
423 	int err;
424 
425 	/* This instruction takes immeds instead of reg_none() for the ignored
426 	 * operand, but we can't encode 2 immeds in one instr with our normal
427 	 * swreg infra so if param is an immed, we encode as reg_none() and
428 	 * copy the immed to both operands.
429 	 */
430 	if (swreg_type(src) == NN_REG_IMM) {
431 		err = swreg_to_unrestricted(reg_none(), src, reg_none(), &reg);
432 		reg.breg = reg.areg;
433 	} else {
434 		err = swreg_to_unrestricted(reg_none(), src, reg_imm(0), &reg);
435 	}
436 	if (err) {
437 		nfp_prog->error = err;
438 		return;
439 	}
440 
441 	__emit_lcsr(nfp_prog, reg.areg, reg.breg, true, addr / 4,
442 		    false, reg.src_lmextn);
443 }
444 
445 static void emit_nop(struct nfp_prog *nfp_prog)
446 {
447 	__emit_immed(nfp_prog, UR_REG_IMM, UR_REG_IMM, 0, 0, 0, 0, 0, 0, 0);
448 }
449 
450 /* --- Wrappers --- */
451 static bool pack_immed(u32 imm, u16 *val, enum immed_shift *shift)
452 {
453 	if (!(imm & 0xffff0000)) {
454 		*val = imm;
455 		*shift = IMMED_SHIFT_0B;
456 	} else if (!(imm & 0xff0000ff)) {
457 		*val = imm >> 8;
458 		*shift = IMMED_SHIFT_1B;
459 	} else if (!(imm & 0x0000ffff)) {
460 		*val = imm >> 16;
461 		*shift = IMMED_SHIFT_2B;
462 	} else {
463 		return false;
464 	}
465 
466 	return true;
467 }
468 
469 static void wrp_immed(struct nfp_prog *nfp_prog, swreg dst, u32 imm)
470 {
471 	enum immed_shift shift;
472 	u16 val;
473 
474 	if (pack_immed(imm, &val, &shift)) {
475 		emit_immed(nfp_prog, dst, val, IMMED_WIDTH_ALL, false, shift);
476 	} else if (pack_immed(~imm, &val, &shift)) {
477 		emit_immed(nfp_prog, dst, val, IMMED_WIDTH_ALL, true, shift);
478 	} else {
479 		emit_immed(nfp_prog, dst, imm & 0xffff, IMMED_WIDTH_ALL,
480 			   false, IMMED_SHIFT_0B);
481 		emit_immed(nfp_prog, dst, imm >> 16, IMMED_WIDTH_WORD,
482 			   false, IMMED_SHIFT_2B);
483 	}
484 }
485 
486 /* ur_load_imm_any() - encode immediate or use tmp register (unrestricted)
487  * If the @imm is small enough encode it directly in operand and return
488  * otherwise load @imm to a spare register and return its encoding.
489  */
490 static swreg ur_load_imm_any(struct nfp_prog *nfp_prog, u32 imm, swreg tmp_reg)
491 {
492 	if (FIELD_FIT(UR_REG_IMM_MAX, imm))
493 		return reg_imm(imm);
494 
495 	wrp_immed(nfp_prog, tmp_reg, imm);
496 	return tmp_reg;
497 }
498 
499 /* re_load_imm_any() - encode immediate or use tmp register (restricted)
500  * If the @imm is small enough encode it directly in operand and return
501  * otherwise load @imm to a spare register and return its encoding.
502  */
503 static swreg re_load_imm_any(struct nfp_prog *nfp_prog, u32 imm, swreg tmp_reg)
504 {
505 	if (FIELD_FIT(RE_REG_IMM_MAX, imm))
506 		return reg_imm(imm);
507 
508 	wrp_immed(nfp_prog, tmp_reg, imm);
509 	return tmp_reg;
510 }
511 
512 static void wrp_nops(struct nfp_prog *nfp_prog, unsigned int count)
513 {
514 	while (count--)
515 		emit_nop(nfp_prog);
516 }
517 
518 static void
519 wrp_br_special(struct nfp_prog *nfp_prog, enum br_mask mask,
520 	       enum br_special special)
521 {
522 	emit_br(nfp_prog, mask, 0, 0);
523 
524 	nfp_prog->prog[nfp_prog->prog_len - 1] |=
525 		FIELD_PREP(OP_BR_SPECIAL, special);
526 }
527 
528 static void wrp_mov(struct nfp_prog *nfp_prog, swreg dst, swreg src)
529 {
530 	emit_alu(nfp_prog, dst, reg_none(), ALU_OP_NONE, src);
531 }
532 
533 static void wrp_reg_mov(struct nfp_prog *nfp_prog, u16 dst, u16 src)
534 {
535 	wrp_mov(nfp_prog, reg_both(dst), reg_b(src));
536 }
537 
538 /* wrp_reg_subpart() - load @field_len bytes from @offset of @src, write the
539  * result to @dst from low end.
540  */
541 static void
542 wrp_reg_subpart(struct nfp_prog *nfp_prog, swreg dst, swreg src, u8 field_len,
543 		u8 offset)
544 {
545 	enum shf_sc sc = offset ? SHF_SC_R_SHF : SHF_SC_NONE;
546 	u8 mask = (1 << field_len) - 1;
547 
548 	emit_ld_field_any(nfp_prog, dst, mask, src, sc, offset * 8, true);
549 }
550 
551 /* NFP has Command Push Pull bus which supports bluk memory operations. */
552 static int nfp_cpp_memcpy(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
553 {
554 	bool descending_seq = meta->ldst_gather_len < 0;
555 	s16 len = abs(meta->ldst_gather_len);
556 	swreg src_base, off;
557 	unsigned int i;
558 	u8 xfer_num;
559 
560 	off = re_load_imm_any(nfp_prog, meta->insn.off, imm_b(nfp_prog));
561 	src_base = reg_a(meta->insn.src_reg * 2);
562 	xfer_num = round_up(len, 4) / 4;
563 
564 	/* Setup PREV_ALU fields to override memory read length. */
565 	if (len > 32)
566 		wrp_immed(nfp_prog, reg_none(),
567 			  CMD_OVE_LEN | FIELD_PREP(CMD_OV_LEN, xfer_num - 1));
568 
569 	/* Memory read from source addr into transfer-in registers. */
570 	emit_cmd_any(nfp_prog, CMD_TGT_READ32_SWAP, CMD_MODE_32b, 0, src_base,
571 		     off, xfer_num - 1, true, len > 32);
572 
573 	/* Move from transfer-in to transfer-out. */
574 	for (i = 0; i < xfer_num; i++)
575 		wrp_mov(nfp_prog, reg_xfer(i), reg_xfer(i));
576 
577 	off = re_load_imm_any(nfp_prog, meta->paired_st->off, imm_b(nfp_prog));
578 
579 	if (len <= 8) {
580 		/* Use single direct_ref write8. */
581 		emit_cmd(nfp_prog, CMD_TGT_WRITE8_SWAP, CMD_MODE_32b, 0,
582 			 reg_a(meta->paired_st->dst_reg * 2), off, len - 1,
583 			 true);
584 	} else if (len <= 32 && IS_ALIGNED(len, 4)) {
585 		/* Use single direct_ref write32. */
586 		emit_cmd(nfp_prog, CMD_TGT_WRITE32_SWAP, CMD_MODE_32b, 0,
587 			 reg_a(meta->paired_st->dst_reg * 2), off, xfer_num - 1,
588 			 true);
589 	} else if (len <= 32) {
590 		/* Use single indirect_ref write8. */
591 		wrp_immed(nfp_prog, reg_none(),
592 			  CMD_OVE_LEN | FIELD_PREP(CMD_OV_LEN, len - 1));
593 		emit_cmd_indir(nfp_prog, CMD_TGT_WRITE8_SWAP, CMD_MODE_32b, 0,
594 			       reg_a(meta->paired_st->dst_reg * 2), off,
595 			       len - 1, true);
596 	} else if (IS_ALIGNED(len, 4)) {
597 		/* Use single indirect_ref write32. */
598 		wrp_immed(nfp_prog, reg_none(),
599 			  CMD_OVE_LEN | FIELD_PREP(CMD_OV_LEN, xfer_num - 1));
600 		emit_cmd_indir(nfp_prog, CMD_TGT_WRITE32_SWAP, CMD_MODE_32b, 0,
601 			       reg_a(meta->paired_st->dst_reg * 2), off,
602 			       xfer_num - 1, true);
603 	} else if (len <= 40) {
604 		/* Use one direct_ref write32 to write the first 32-bytes, then
605 		 * another direct_ref write8 to write the remaining bytes.
606 		 */
607 		emit_cmd(nfp_prog, CMD_TGT_WRITE32_SWAP, CMD_MODE_32b, 0,
608 			 reg_a(meta->paired_st->dst_reg * 2), off, 7,
609 			 true);
610 
611 		off = re_load_imm_any(nfp_prog, meta->paired_st->off + 32,
612 				      imm_b(nfp_prog));
613 		emit_cmd(nfp_prog, CMD_TGT_WRITE8_SWAP, CMD_MODE_32b, 8,
614 			 reg_a(meta->paired_st->dst_reg * 2), off, len - 33,
615 			 true);
616 	} else {
617 		/* Use one indirect_ref write32 to write 4-bytes aligned length,
618 		 * then another direct_ref write8 to write the remaining bytes.
619 		 */
620 		u8 new_off;
621 
622 		wrp_immed(nfp_prog, reg_none(),
623 			  CMD_OVE_LEN | FIELD_PREP(CMD_OV_LEN, xfer_num - 2));
624 		emit_cmd_indir(nfp_prog, CMD_TGT_WRITE32_SWAP, CMD_MODE_32b, 0,
625 			       reg_a(meta->paired_st->dst_reg * 2), off,
626 			       xfer_num - 2, true);
627 		new_off = meta->paired_st->off + (xfer_num - 1) * 4;
628 		off = re_load_imm_any(nfp_prog, new_off, imm_b(nfp_prog));
629 		emit_cmd(nfp_prog, CMD_TGT_WRITE8_SWAP, CMD_MODE_32b,
630 			 xfer_num - 1, reg_a(meta->paired_st->dst_reg * 2), off,
631 			 (len & 0x3) - 1, true);
632 	}
633 
634 	/* TODO: The following extra load is to make sure data flow be identical
635 	 *  before and after we do memory copy optimization.
636 	 *
637 	 *  The load destination register is not guaranteed to be dead, so we
638 	 *  need to make sure it is loaded with the value the same as before
639 	 *  this transformation.
640 	 *
641 	 *  These extra loads could be removed once we have accurate register
642 	 *  usage information.
643 	 */
644 	if (descending_seq)
645 		xfer_num = 0;
646 	else if (BPF_SIZE(meta->insn.code) != BPF_DW)
647 		xfer_num = xfer_num - 1;
648 	else
649 		xfer_num = xfer_num - 2;
650 
651 	switch (BPF_SIZE(meta->insn.code)) {
652 	case BPF_B:
653 		wrp_reg_subpart(nfp_prog, reg_both(meta->insn.dst_reg * 2),
654 				reg_xfer(xfer_num), 1,
655 				IS_ALIGNED(len, 4) ? 3 : (len & 3) - 1);
656 		break;
657 	case BPF_H:
658 		wrp_reg_subpart(nfp_prog, reg_both(meta->insn.dst_reg * 2),
659 				reg_xfer(xfer_num), 2, (len & 3) ^ 2);
660 		break;
661 	case BPF_W:
662 		wrp_mov(nfp_prog, reg_both(meta->insn.dst_reg * 2),
663 			reg_xfer(0));
664 		break;
665 	case BPF_DW:
666 		wrp_mov(nfp_prog, reg_both(meta->insn.dst_reg * 2),
667 			reg_xfer(xfer_num));
668 		wrp_mov(nfp_prog, reg_both(meta->insn.dst_reg * 2 + 1),
669 			reg_xfer(xfer_num + 1));
670 		break;
671 	}
672 
673 	if (BPF_SIZE(meta->insn.code) != BPF_DW)
674 		wrp_immed(nfp_prog, reg_both(meta->insn.dst_reg * 2 + 1), 0);
675 
676 	return 0;
677 }
678 
679 static int
680 data_ld(struct nfp_prog *nfp_prog, swreg offset, u8 dst_gpr, int size)
681 {
682 	unsigned int i;
683 	u16 shift, sz;
684 
685 	/* We load the value from the address indicated in @offset and then
686 	 * shift out the data we don't need.  Note: this is big endian!
687 	 */
688 	sz = max(size, 4);
689 	shift = size < 4 ? 4 - size : 0;
690 
691 	emit_cmd(nfp_prog, CMD_TGT_READ8, CMD_MODE_32b, 0,
692 		 pptr_reg(nfp_prog), offset, sz - 1, true);
693 
694 	i = 0;
695 	if (shift)
696 		emit_shf(nfp_prog, reg_both(dst_gpr), reg_none(), SHF_OP_NONE,
697 			 reg_xfer(0), SHF_SC_R_SHF, shift * 8);
698 	else
699 		for (; i * 4 < size; i++)
700 			wrp_mov(nfp_prog, reg_both(dst_gpr + i), reg_xfer(i));
701 
702 	if (i < 2)
703 		wrp_immed(nfp_prog, reg_both(dst_gpr + 1), 0);
704 
705 	return 0;
706 }
707 
708 static int
709 data_ld_host_order(struct nfp_prog *nfp_prog, u8 src_gpr, swreg offset,
710 		   u8 dst_gpr, int size)
711 {
712 	unsigned int i;
713 	u8 mask, sz;
714 
715 	/* We load the value from the address indicated in @offset and then
716 	 * mask out the data we don't need.  Note: this is little endian!
717 	 */
718 	sz = max(size, 4);
719 	mask = size < 4 ? GENMASK(size - 1, 0) : 0;
720 
721 	emit_cmd(nfp_prog, CMD_TGT_READ32_SWAP, CMD_MODE_32b, 0,
722 		 reg_a(src_gpr), offset, sz / 4 - 1, true);
723 
724 	i = 0;
725 	if (mask)
726 		emit_ld_field_any(nfp_prog, reg_both(dst_gpr), mask,
727 				  reg_xfer(0), SHF_SC_NONE, 0, true);
728 	else
729 		for (; i * 4 < size; i++)
730 			wrp_mov(nfp_prog, reg_both(dst_gpr + i), reg_xfer(i));
731 
732 	if (i < 2)
733 		wrp_immed(nfp_prog, reg_both(dst_gpr + 1), 0);
734 
735 	return 0;
736 }
737 
738 static int
739 construct_data_ind_ld(struct nfp_prog *nfp_prog, u16 offset, u16 src, u8 size)
740 {
741 	swreg tmp_reg;
742 
743 	/* Calculate the true offset (src_reg + imm) */
744 	tmp_reg = ur_load_imm_any(nfp_prog, offset, imm_b(nfp_prog));
745 	emit_alu(nfp_prog, imm_both(nfp_prog), reg_a(src), ALU_OP_ADD, tmp_reg);
746 
747 	/* Check packet length (size guaranteed to fit b/c it's u8) */
748 	emit_alu(nfp_prog, imm_a(nfp_prog),
749 		 imm_a(nfp_prog), ALU_OP_ADD, reg_imm(size));
750 	emit_alu(nfp_prog, reg_none(),
751 		 plen_reg(nfp_prog), ALU_OP_SUB, imm_a(nfp_prog));
752 	wrp_br_special(nfp_prog, BR_BLO, OP_BR_GO_ABORT);
753 
754 	/* Load data */
755 	return data_ld(nfp_prog, imm_b(nfp_prog), 0, size);
756 }
757 
758 static int construct_data_ld(struct nfp_prog *nfp_prog, u16 offset, u8 size)
759 {
760 	swreg tmp_reg;
761 
762 	/* Check packet length */
763 	tmp_reg = ur_load_imm_any(nfp_prog, offset + size, imm_a(nfp_prog));
764 	emit_alu(nfp_prog, reg_none(), plen_reg(nfp_prog), ALU_OP_SUB, tmp_reg);
765 	wrp_br_special(nfp_prog, BR_BLO, OP_BR_GO_ABORT);
766 
767 	/* Load data */
768 	tmp_reg = re_load_imm_any(nfp_prog, offset, imm_b(nfp_prog));
769 	return data_ld(nfp_prog, tmp_reg, 0, size);
770 }
771 
772 static int
773 data_stx_host_order(struct nfp_prog *nfp_prog, u8 dst_gpr, swreg offset,
774 		    u8 src_gpr, u8 size)
775 {
776 	unsigned int i;
777 
778 	for (i = 0; i * 4 < size; i++)
779 		wrp_mov(nfp_prog, reg_xfer(i), reg_a(src_gpr + i));
780 
781 	emit_cmd(nfp_prog, CMD_TGT_WRITE8_SWAP, CMD_MODE_32b, 0,
782 		 reg_a(dst_gpr), offset, size - 1, true);
783 
784 	return 0;
785 }
786 
787 static int
788 data_st_host_order(struct nfp_prog *nfp_prog, u8 dst_gpr, swreg offset,
789 		   u64 imm, u8 size)
790 {
791 	wrp_immed(nfp_prog, reg_xfer(0), imm);
792 	if (size == 8)
793 		wrp_immed(nfp_prog, reg_xfer(1), imm >> 32);
794 
795 	emit_cmd(nfp_prog, CMD_TGT_WRITE8_SWAP, CMD_MODE_32b, 0,
796 		 reg_a(dst_gpr), offset, size - 1, true);
797 
798 	return 0;
799 }
800 
801 typedef int
802 (*lmem_step)(struct nfp_prog *nfp_prog, u8 gpr, u8 gpr_byte, s32 off,
803 	     unsigned int size, bool first, bool new_gpr, bool last, bool lm3,
804 	     bool needs_inc);
805 
806 static int
807 wrp_lmem_load(struct nfp_prog *nfp_prog, u8 dst, u8 dst_byte, s32 off,
808 	      unsigned int size, bool first, bool new_gpr, bool last, bool lm3,
809 	      bool needs_inc)
810 {
811 	bool should_inc = needs_inc && new_gpr && !last;
812 	u32 idx, src_byte;
813 	enum shf_sc sc;
814 	swreg reg;
815 	int shf;
816 	u8 mask;
817 
818 	if (WARN_ON_ONCE(dst_byte + size > 4 || off % 4 + size > 4))
819 		return -EOPNOTSUPP;
820 
821 	idx = off / 4;
822 
823 	/* Move the entire word */
824 	if (size == 4) {
825 		wrp_mov(nfp_prog, reg_both(dst),
826 			should_inc ? reg_lm_inc(3) : reg_lm(lm3 ? 3 : 0, idx));
827 		return 0;
828 	}
829 
830 	if (WARN_ON_ONCE(lm3 && idx > RE_REG_LM_IDX_MAX))
831 		return -EOPNOTSUPP;
832 
833 	src_byte = off % 4;
834 
835 	mask = (1 << size) - 1;
836 	mask <<= dst_byte;
837 
838 	if (WARN_ON_ONCE(mask > 0xf))
839 		return -EOPNOTSUPP;
840 
841 	shf = abs(src_byte - dst_byte) * 8;
842 	if (src_byte == dst_byte) {
843 		sc = SHF_SC_NONE;
844 	} else if (src_byte < dst_byte) {
845 		shf = 32 - shf;
846 		sc = SHF_SC_L_SHF;
847 	} else {
848 		sc = SHF_SC_R_SHF;
849 	}
850 
851 	/* ld_field can address fewer indexes, if offset too large do RMW.
852 	 * Because we RMV twice we waste 2 cycles on unaligned 8 byte writes.
853 	 */
854 	if (idx <= RE_REG_LM_IDX_MAX) {
855 		reg = reg_lm(lm3 ? 3 : 0, idx);
856 	} else {
857 		reg = imm_a(nfp_prog);
858 		/* If it's not the first part of the load and we start a new GPR
859 		 * that means we are loading a second part of the LMEM word into
860 		 * a new GPR.  IOW we've already looked that LMEM word and
861 		 * therefore it has been loaded into imm_a().
862 		 */
863 		if (first || !new_gpr)
864 			wrp_mov(nfp_prog, reg, reg_lm(0, idx));
865 	}
866 
867 	emit_ld_field_any(nfp_prog, reg_both(dst), mask, reg, sc, shf, new_gpr);
868 
869 	if (should_inc)
870 		wrp_mov(nfp_prog, reg_none(), reg_lm_inc(3));
871 
872 	return 0;
873 }
874 
875 static int
876 wrp_lmem_store(struct nfp_prog *nfp_prog, u8 src, u8 src_byte, s32 off,
877 	       unsigned int size, bool first, bool new_gpr, bool last, bool lm3,
878 	       bool needs_inc)
879 {
880 	bool should_inc = needs_inc && new_gpr && !last;
881 	u32 idx, dst_byte;
882 	enum shf_sc sc;
883 	swreg reg;
884 	int shf;
885 	u8 mask;
886 
887 	if (WARN_ON_ONCE(src_byte + size > 4 || off % 4 + size > 4))
888 		return -EOPNOTSUPP;
889 
890 	idx = off / 4;
891 
892 	/* Move the entire word */
893 	if (size == 4) {
894 		wrp_mov(nfp_prog,
895 			should_inc ? reg_lm_inc(3) : reg_lm(lm3 ? 3 : 0, idx),
896 			reg_b(src));
897 		return 0;
898 	}
899 
900 	if (WARN_ON_ONCE(lm3 && idx > RE_REG_LM_IDX_MAX))
901 		return -EOPNOTSUPP;
902 
903 	dst_byte = off % 4;
904 
905 	mask = (1 << size) - 1;
906 	mask <<= dst_byte;
907 
908 	if (WARN_ON_ONCE(mask > 0xf))
909 		return -EOPNOTSUPP;
910 
911 	shf = abs(src_byte - dst_byte) * 8;
912 	if (src_byte == dst_byte) {
913 		sc = SHF_SC_NONE;
914 	} else if (src_byte < dst_byte) {
915 		shf = 32 - shf;
916 		sc = SHF_SC_L_SHF;
917 	} else {
918 		sc = SHF_SC_R_SHF;
919 	}
920 
921 	/* ld_field can address fewer indexes, if offset too large do RMW.
922 	 * Because we RMV twice we waste 2 cycles on unaligned 8 byte writes.
923 	 */
924 	if (idx <= RE_REG_LM_IDX_MAX) {
925 		reg = reg_lm(lm3 ? 3 : 0, idx);
926 	} else {
927 		reg = imm_a(nfp_prog);
928 		/* Only first and last LMEM locations are going to need RMW,
929 		 * the middle location will be overwritten fully.
930 		 */
931 		if (first || last)
932 			wrp_mov(nfp_prog, reg, reg_lm(0, idx));
933 	}
934 
935 	emit_ld_field(nfp_prog, reg, mask, reg_b(src), sc, shf);
936 
937 	if (new_gpr || last) {
938 		if (idx > RE_REG_LM_IDX_MAX)
939 			wrp_mov(nfp_prog, reg_lm(0, idx), reg);
940 		if (should_inc)
941 			wrp_mov(nfp_prog, reg_none(), reg_lm_inc(3));
942 	}
943 
944 	return 0;
945 }
946 
947 static int
948 mem_op_stack(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
949 	     unsigned int size, unsigned int ptr_off, u8 gpr, u8 ptr_gpr,
950 	     bool clr_gpr, lmem_step step)
951 {
952 	s32 off = nfp_prog->stack_depth + meta->insn.off + ptr_off;
953 	bool first = true, last;
954 	bool needs_inc = false;
955 	swreg stack_off_reg;
956 	u8 prev_gpr = 255;
957 	u32 gpr_byte = 0;
958 	bool lm3 = true;
959 	int ret;
960 
961 	if (meta->ptr_not_const) {
962 		/* Use of the last encountered ptr_off is OK, they all have
963 		 * the same alignment.  Depend on low bits of value being
964 		 * discarded when written to LMaddr register.
965 		 */
966 		stack_off_reg = ur_load_imm_any(nfp_prog, meta->insn.off,
967 						stack_imm(nfp_prog));
968 
969 		emit_alu(nfp_prog, imm_b(nfp_prog),
970 			 reg_a(ptr_gpr), ALU_OP_ADD, stack_off_reg);
971 
972 		needs_inc = true;
973 	} else if (off + size <= 64) {
974 		/* We can reach bottom 64B with LMaddr0 */
975 		lm3 = false;
976 	} else if (round_down(off, 32) == round_down(off + size - 1, 32)) {
977 		/* We have to set up a new pointer.  If we know the offset
978 		 * and the entire access falls into a single 32 byte aligned
979 		 * window we won't have to increment the LM pointer.
980 		 * The 32 byte alignment is imporant because offset is ORed in
981 		 * not added when doing *l$indexN[off].
982 		 */
983 		stack_off_reg = ur_load_imm_any(nfp_prog, round_down(off, 32),
984 						stack_imm(nfp_prog));
985 		emit_alu(nfp_prog, imm_b(nfp_prog),
986 			 stack_reg(nfp_prog), ALU_OP_ADD, stack_off_reg);
987 
988 		off %= 32;
989 	} else {
990 		stack_off_reg = ur_load_imm_any(nfp_prog, round_down(off, 4),
991 						stack_imm(nfp_prog));
992 
993 		emit_alu(nfp_prog, imm_b(nfp_prog),
994 			 stack_reg(nfp_prog), ALU_OP_ADD, stack_off_reg);
995 
996 		needs_inc = true;
997 	}
998 	if (lm3) {
999 		emit_csr_wr(nfp_prog, imm_b(nfp_prog), NFP_CSR_ACT_LM_ADDR3);
1000 		/* For size < 4 one slot will be filled by zeroing of upper. */
1001 		wrp_nops(nfp_prog, clr_gpr && size < 8 ? 2 : 3);
1002 	}
1003 
1004 	if (clr_gpr && size < 8)
1005 		wrp_immed(nfp_prog, reg_both(gpr + 1), 0);
1006 
1007 	while (size) {
1008 		u32 slice_end;
1009 		u8 slice_size;
1010 
1011 		slice_size = min(size, 4 - gpr_byte);
1012 		slice_end = min(off + slice_size, round_up(off + 1, 4));
1013 		slice_size = slice_end - off;
1014 
1015 		last = slice_size == size;
1016 
1017 		if (needs_inc)
1018 			off %= 4;
1019 
1020 		ret = step(nfp_prog, gpr, gpr_byte, off, slice_size,
1021 			   first, gpr != prev_gpr, last, lm3, needs_inc);
1022 		if (ret)
1023 			return ret;
1024 
1025 		prev_gpr = gpr;
1026 		first = false;
1027 
1028 		gpr_byte += slice_size;
1029 		if (gpr_byte >= 4) {
1030 			gpr_byte -= 4;
1031 			gpr++;
1032 		}
1033 
1034 		size -= slice_size;
1035 		off += slice_size;
1036 	}
1037 
1038 	return 0;
1039 }
1040 
1041 static void
1042 wrp_alu_imm(struct nfp_prog *nfp_prog, u8 dst, enum alu_op alu_op, u32 imm)
1043 {
1044 	swreg tmp_reg;
1045 
1046 	if (alu_op == ALU_OP_AND) {
1047 		if (!imm)
1048 			wrp_immed(nfp_prog, reg_both(dst), 0);
1049 		if (!imm || !~imm)
1050 			return;
1051 	}
1052 	if (alu_op == ALU_OP_OR) {
1053 		if (!~imm)
1054 			wrp_immed(nfp_prog, reg_both(dst), ~0U);
1055 		if (!imm || !~imm)
1056 			return;
1057 	}
1058 	if (alu_op == ALU_OP_XOR) {
1059 		if (!~imm)
1060 			emit_alu(nfp_prog, reg_both(dst), reg_none(),
1061 				 ALU_OP_NOT, reg_b(dst));
1062 		if (!imm || !~imm)
1063 			return;
1064 	}
1065 
1066 	tmp_reg = ur_load_imm_any(nfp_prog, imm, imm_b(nfp_prog));
1067 	emit_alu(nfp_prog, reg_both(dst), reg_a(dst), alu_op, tmp_reg);
1068 }
1069 
1070 static int
1071 wrp_alu64_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
1072 	      enum alu_op alu_op, bool skip)
1073 {
1074 	const struct bpf_insn *insn = &meta->insn;
1075 	u64 imm = insn->imm; /* sign extend */
1076 
1077 	if (skip) {
1078 		meta->skip = true;
1079 		return 0;
1080 	}
1081 
1082 	wrp_alu_imm(nfp_prog, insn->dst_reg * 2, alu_op, imm & ~0U);
1083 	wrp_alu_imm(nfp_prog, insn->dst_reg * 2 + 1, alu_op, imm >> 32);
1084 
1085 	return 0;
1086 }
1087 
1088 static int
1089 wrp_alu64_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
1090 	      enum alu_op alu_op)
1091 {
1092 	u8 dst = meta->insn.dst_reg * 2, src = meta->insn.src_reg * 2;
1093 
1094 	emit_alu(nfp_prog, reg_both(dst), reg_a(dst), alu_op, reg_b(src));
1095 	emit_alu(nfp_prog, reg_both(dst + 1),
1096 		 reg_a(dst + 1), alu_op, reg_b(src + 1));
1097 
1098 	return 0;
1099 }
1100 
1101 static int
1102 wrp_alu32_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
1103 	      enum alu_op alu_op, bool skip)
1104 {
1105 	const struct bpf_insn *insn = &meta->insn;
1106 
1107 	if (skip) {
1108 		meta->skip = true;
1109 		return 0;
1110 	}
1111 
1112 	wrp_alu_imm(nfp_prog, insn->dst_reg * 2, alu_op, insn->imm);
1113 	wrp_immed(nfp_prog, reg_both(insn->dst_reg * 2 + 1), 0);
1114 
1115 	return 0;
1116 }
1117 
1118 static int
1119 wrp_alu32_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
1120 	      enum alu_op alu_op)
1121 {
1122 	u8 dst = meta->insn.dst_reg * 2, src = meta->insn.src_reg * 2;
1123 
1124 	emit_alu(nfp_prog, reg_both(dst), reg_a(dst), alu_op, reg_b(src));
1125 	wrp_immed(nfp_prog, reg_both(meta->insn.dst_reg * 2 + 1), 0);
1126 
1127 	return 0;
1128 }
1129 
1130 static void
1131 wrp_test_reg_one(struct nfp_prog *nfp_prog, u8 dst, enum alu_op alu_op, u8 src,
1132 		 enum br_mask br_mask, u16 off)
1133 {
1134 	emit_alu(nfp_prog, reg_none(), reg_a(dst), alu_op, reg_b(src));
1135 	emit_br(nfp_prog, br_mask, off, 0);
1136 }
1137 
1138 static int
1139 wrp_test_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
1140 	     enum alu_op alu_op, enum br_mask br_mask)
1141 {
1142 	const struct bpf_insn *insn = &meta->insn;
1143 
1144 	wrp_test_reg_one(nfp_prog, insn->dst_reg * 2, alu_op,
1145 			 insn->src_reg * 2, br_mask, insn->off);
1146 	wrp_test_reg_one(nfp_prog, insn->dst_reg * 2 + 1, alu_op,
1147 			 insn->src_reg * 2 + 1, br_mask, insn->off);
1148 
1149 	return 0;
1150 }
1151 
1152 static int
1153 wrp_cmp_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
1154 	    enum br_mask br_mask, bool swap)
1155 {
1156 	const struct bpf_insn *insn = &meta->insn;
1157 	u64 imm = insn->imm; /* sign extend */
1158 	u8 reg = insn->dst_reg * 2;
1159 	swreg tmp_reg;
1160 
1161 	tmp_reg = ur_load_imm_any(nfp_prog, imm & ~0U, imm_b(nfp_prog));
1162 	if (!swap)
1163 		emit_alu(nfp_prog, reg_none(), reg_a(reg), ALU_OP_SUB, tmp_reg);
1164 	else
1165 		emit_alu(nfp_prog, reg_none(), tmp_reg, ALU_OP_SUB, reg_a(reg));
1166 
1167 	tmp_reg = ur_load_imm_any(nfp_prog, imm >> 32, imm_b(nfp_prog));
1168 	if (!swap)
1169 		emit_alu(nfp_prog, reg_none(),
1170 			 reg_a(reg + 1), ALU_OP_SUB_C, tmp_reg);
1171 	else
1172 		emit_alu(nfp_prog, reg_none(),
1173 			 tmp_reg, ALU_OP_SUB_C, reg_a(reg + 1));
1174 
1175 	emit_br(nfp_prog, br_mask, insn->off, 0);
1176 
1177 	return 0;
1178 }
1179 
1180 static int
1181 wrp_cmp_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
1182 	    enum br_mask br_mask, bool swap)
1183 {
1184 	const struct bpf_insn *insn = &meta->insn;
1185 	u8 areg, breg;
1186 
1187 	areg = insn->dst_reg * 2;
1188 	breg = insn->src_reg * 2;
1189 
1190 	if (swap) {
1191 		areg ^= breg;
1192 		breg ^= areg;
1193 		areg ^= breg;
1194 	}
1195 
1196 	emit_alu(nfp_prog, reg_none(), reg_a(areg), ALU_OP_SUB, reg_b(breg));
1197 	emit_alu(nfp_prog, reg_none(),
1198 		 reg_a(areg + 1), ALU_OP_SUB_C, reg_b(breg + 1));
1199 	emit_br(nfp_prog, br_mask, insn->off, 0);
1200 
1201 	return 0;
1202 }
1203 
1204 static void wrp_end32(struct nfp_prog *nfp_prog, swreg reg_in, u8 gpr_out)
1205 {
1206 	emit_ld_field(nfp_prog, reg_both(gpr_out), 0xf, reg_in,
1207 		      SHF_SC_R_ROT, 8);
1208 	emit_ld_field(nfp_prog, reg_both(gpr_out), 0x5, reg_a(gpr_out),
1209 		      SHF_SC_R_ROT, 16);
1210 }
1211 
1212 static int adjust_head(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1213 {
1214 	swreg tmp = imm_a(nfp_prog), tmp_len = imm_b(nfp_prog);
1215 	struct nfp_bpf_cap_adjust_head *adjust_head;
1216 	u32 ret_einval, end;
1217 
1218 	adjust_head = &nfp_prog->bpf->adjust_head;
1219 
1220 	/* Optimized version - 5 vs 14 cycles */
1221 	if (nfp_prog->adjust_head_location != UINT_MAX) {
1222 		if (WARN_ON_ONCE(nfp_prog->adjust_head_location != meta->n))
1223 			return -EINVAL;
1224 
1225 		emit_alu(nfp_prog, pptr_reg(nfp_prog),
1226 			 reg_a(2 * 2), ALU_OP_ADD, pptr_reg(nfp_prog));
1227 		emit_alu(nfp_prog, plen_reg(nfp_prog),
1228 			 plen_reg(nfp_prog), ALU_OP_SUB, reg_a(2 * 2));
1229 		emit_alu(nfp_prog, pv_len(nfp_prog),
1230 			 pv_len(nfp_prog), ALU_OP_SUB, reg_a(2 * 2));
1231 
1232 		wrp_immed(nfp_prog, reg_both(0), 0);
1233 		wrp_immed(nfp_prog, reg_both(1), 0);
1234 
1235 		/* TODO: when adjust head is guaranteed to succeed we can
1236 		 * also eliminate the following if (r0 == 0) branch.
1237 		 */
1238 
1239 		return 0;
1240 	}
1241 
1242 	ret_einval = nfp_prog_current_offset(nfp_prog) + 14;
1243 	end = ret_einval + 2;
1244 
1245 	/* We need to use a temp because offset is just a part of the pkt ptr */
1246 	emit_alu(nfp_prog, tmp,
1247 		 reg_a(2 * 2), ALU_OP_ADD_2B, pptr_reg(nfp_prog));
1248 
1249 	/* Validate result will fit within FW datapath constraints */
1250 	emit_alu(nfp_prog, reg_none(),
1251 		 tmp, ALU_OP_SUB, reg_imm(adjust_head->off_min));
1252 	emit_br(nfp_prog, BR_BLO, ret_einval, 0);
1253 	emit_alu(nfp_prog, reg_none(),
1254 		 reg_imm(adjust_head->off_max), ALU_OP_SUB, tmp);
1255 	emit_br(nfp_prog, BR_BLO, ret_einval, 0);
1256 
1257 	/* Validate the length is at least ETH_HLEN */
1258 	emit_alu(nfp_prog, tmp_len,
1259 		 plen_reg(nfp_prog), ALU_OP_SUB, reg_a(2 * 2));
1260 	emit_alu(nfp_prog, reg_none(),
1261 		 tmp_len, ALU_OP_SUB, reg_imm(ETH_HLEN));
1262 	emit_br(nfp_prog, BR_BMI, ret_einval, 0);
1263 
1264 	/* Load the ret code */
1265 	wrp_immed(nfp_prog, reg_both(0), 0);
1266 	wrp_immed(nfp_prog, reg_both(1), 0);
1267 
1268 	/* Modify the packet metadata */
1269 	emit_ld_field(nfp_prog, pptr_reg(nfp_prog), 0x3, tmp, SHF_SC_NONE, 0);
1270 
1271 	/* Skip over the -EINVAL ret code (defer 2) */
1272 	emit_br_def(nfp_prog, end, 2);
1273 
1274 	emit_alu(nfp_prog, plen_reg(nfp_prog),
1275 		 plen_reg(nfp_prog), ALU_OP_SUB, reg_a(2 * 2));
1276 	emit_alu(nfp_prog, pv_len(nfp_prog),
1277 		 pv_len(nfp_prog), ALU_OP_SUB, reg_a(2 * 2));
1278 
1279 	/* return -EINVAL target */
1280 	if (!nfp_prog_confirm_current_offset(nfp_prog, ret_einval))
1281 		return -EINVAL;
1282 
1283 	wrp_immed(nfp_prog, reg_both(0), -22);
1284 	wrp_immed(nfp_prog, reg_both(1), ~0);
1285 
1286 	if (!nfp_prog_confirm_current_offset(nfp_prog, end))
1287 		return -EINVAL;
1288 
1289 	return 0;
1290 }
1291 
1292 /* --- Callbacks --- */
1293 static int mov_reg64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1294 {
1295 	const struct bpf_insn *insn = &meta->insn;
1296 	u8 dst = insn->dst_reg * 2;
1297 	u8 src = insn->src_reg * 2;
1298 
1299 	if (insn->src_reg == BPF_REG_10) {
1300 		swreg stack_depth_reg;
1301 
1302 		stack_depth_reg = ur_load_imm_any(nfp_prog,
1303 						  nfp_prog->stack_depth,
1304 						  stack_imm(nfp_prog));
1305 		emit_alu(nfp_prog, reg_both(dst),
1306 			 stack_reg(nfp_prog), ALU_OP_ADD, stack_depth_reg);
1307 		wrp_immed(nfp_prog, reg_both(dst + 1), 0);
1308 	} else {
1309 		wrp_reg_mov(nfp_prog, dst, src);
1310 		wrp_reg_mov(nfp_prog, dst + 1, src + 1);
1311 	}
1312 
1313 	return 0;
1314 }
1315 
1316 static int mov_imm64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1317 {
1318 	u64 imm = meta->insn.imm; /* sign extend */
1319 
1320 	wrp_immed(nfp_prog, reg_both(meta->insn.dst_reg * 2), imm & ~0U);
1321 	wrp_immed(nfp_prog, reg_both(meta->insn.dst_reg * 2 + 1), imm >> 32);
1322 
1323 	return 0;
1324 }
1325 
1326 static int xor_reg64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1327 {
1328 	return wrp_alu64_reg(nfp_prog, meta, ALU_OP_XOR);
1329 }
1330 
1331 static int xor_imm64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1332 {
1333 	return wrp_alu64_imm(nfp_prog, meta, ALU_OP_XOR, !meta->insn.imm);
1334 }
1335 
1336 static int and_reg64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1337 {
1338 	return wrp_alu64_reg(nfp_prog, meta, ALU_OP_AND);
1339 }
1340 
1341 static int and_imm64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1342 {
1343 	return wrp_alu64_imm(nfp_prog, meta, ALU_OP_AND, !~meta->insn.imm);
1344 }
1345 
1346 static int or_reg64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1347 {
1348 	return wrp_alu64_reg(nfp_prog, meta, ALU_OP_OR);
1349 }
1350 
1351 static int or_imm64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1352 {
1353 	return wrp_alu64_imm(nfp_prog, meta, ALU_OP_OR, !meta->insn.imm);
1354 }
1355 
1356 static int add_reg64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1357 {
1358 	const struct bpf_insn *insn = &meta->insn;
1359 
1360 	emit_alu(nfp_prog, reg_both(insn->dst_reg * 2),
1361 		 reg_a(insn->dst_reg * 2), ALU_OP_ADD,
1362 		 reg_b(insn->src_reg * 2));
1363 	emit_alu(nfp_prog, reg_both(insn->dst_reg * 2 + 1),
1364 		 reg_a(insn->dst_reg * 2 + 1), ALU_OP_ADD_C,
1365 		 reg_b(insn->src_reg * 2 + 1));
1366 
1367 	return 0;
1368 }
1369 
1370 static int add_imm64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1371 {
1372 	const struct bpf_insn *insn = &meta->insn;
1373 	u64 imm = insn->imm; /* sign extend */
1374 
1375 	wrp_alu_imm(nfp_prog, insn->dst_reg * 2, ALU_OP_ADD, imm & ~0U);
1376 	wrp_alu_imm(nfp_prog, insn->dst_reg * 2 + 1, ALU_OP_ADD_C, imm >> 32);
1377 
1378 	return 0;
1379 }
1380 
1381 static int sub_reg64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1382 {
1383 	const struct bpf_insn *insn = &meta->insn;
1384 
1385 	emit_alu(nfp_prog, reg_both(insn->dst_reg * 2),
1386 		 reg_a(insn->dst_reg * 2), ALU_OP_SUB,
1387 		 reg_b(insn->src_reg * 2));
1388 	emit_alu(nfp_prog, reg_both(insn->dst_reg * 2 + 1),
1389 		 reg_a(insn->dst_reg * 2 + 1), ALU_OP_SUB_C,
1390 		 reg_b(insn->src_reg * 2 + 1));
1391 
1392 	return 0;
1393 }
1394 
1395 static int sub_imm64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1396 {
1397 	const struct bpf_insn *insn = &meta->insn;
1398 	u64 imm = insn->imm; /* sign extend */
1399 
1400 	wrp_alu_imm(nfp_prog, insn->dst_reg * 2, ALU_OP_SUB, imm & ~0U);
1401 	wrp_alu_imm(nfp_prog, insn->dst_reg * 2 + 1, ALU_OP_SUB_C, imm >> 32);
1402 
1403 	return 0;
1404 }
1405 
1406 static int neg_reg64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1407 {
1408 	const struct bpf_insn *insn = &meta->insn;
1409 
1410 	emit_alu(nfp_prog, reg_both(insn->dst_reg * 2), reg_imm(0),
1411 		 ALU_OP_SUB, reg_b(insn->dst_reg * 2));
1412 	emit_alu(nfp_prog, reg_both(insn->dst_reg * 2 + 1), reg_imm(0),
1413 		 ALU_OP_SUB_C, reg_b(insn->dst_reg * 2 + 1));
1414 
1415 	return 0;
1416 }
1417 
1418 static int shl_imm64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1419 {
1420 	const struct bpf_insn *insn = &meta->insn;
1421 	u8 dst = insn->dst_reg * 2;
1422 
1423 	if (insn->imm < 32) {
1424 		emit_shf(nfp_prog, reg_both(dst + 1),
1425 			 reg_a(dst + 1), SHF_OP_NONE, reg_b(dst),
1426 			 SHF_SC_R_DSHF, 32 - insn->imm);
1427 		emit_shf(nfp_prog, reg_both(dst),
1428 			 reg_none(), SHF_OP_NONE, reg_b(dst),
1429 			 SHF_SC_L_SHF, insn->imm);
1430 	} else if (insn->imm == 32) {
1431 		wrp_reg_mov(nfp_prog, dst + 1, dst);
1432 		wrp_immed(nfp_prog, reg_both(dst), 0);
1433 	} else if (insn->imm > 32) {
1434 		emit_shf(nfp_prog, reg_both(dst + 1),
1435 			 reg_none(), SHF_OP_NONE, reg_b(dst),
1436 			 SHF_SC_L_SHF, insn->imm - 32);
1437 		wrp_immed(nfp_prog, reg_both(dst), 0);
1438 	}
1439 
1440 	return 0;
1441 }
1442 
1443 static int shr_imm64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1444 {
1445 	const struct bpf_insn *insn = &meta->insn;
1446 	u8 dst = insn->dst_reg * 2;
1447 
1448 	if (insn->imm < 32) {
1449 		emit_shf(nfp_prog, reg_both(dst),
1450 			 reg_a(dst + 1), SHF_OP_NONE, reg_b(dst),
1451 			 SHF_SC_R_DSHF, insn->imm);
1452 		emit_shf(nfp_prog, reg_both(dst + 1),
1453 			 reg_none(), SHF_OP_NONE, reg_b(dst + 1),
1454 			 SHF_SC_R_SHF, insn->imm);
1455 	} else if (insn->imm == 32) {
1456 		wrp_reg_mov(nfp_prog, dst, dst + 1);
1457 		wrp_immed(nfp_prog, reg_both(dst + 1), 0);
1458 	} else if (insn->imm > 32) {
1459 		emit_shf(nfp_prog, reg_both(dst),
1460 			 reg_none(), SHF_OP_NONE, reg_b(dst + 1),
1461 			 SHF_SC_R_SHF, insn->imm - 32);
1462 		wrp_immed(nfp_prog, reg_both(dst + 1), 0);
1463 	}
1464 
1465 	return 0;
1466 }
1467 
1468 static int mov_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1469 {
1470 	const struct bpf_insn *insn = &meta->insn;
1471 
1472 	wrp_reg_mov(nfp_prog, insn->dst_reg * 2,  insn->src_reg * 2);
1473 	wrp_immed(nfp_prog, reg_both(insn->dst_reg * 2 + 1), 0);
1474 
1475 	return 0;
1476 }
1477 
1478 static int mov_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1479 {
1480 	const struct bpf_insn *insn = &meta->insn;
1481 
1482 	wrp_immed(nfp_prog, reg_both(insn->dst_reg * 2), insn->imm);
1483 	wrp_immed(nfp_prog, reg_both(insn->dst_reg * 2 + 1), 0);
1484 
1485 	return 0;
1486 }
1487 
1488 static int xor_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1489 {
1490 	return wrp_alu32_reg(nfp_prog, meta, ALU_OP_XOR);
1491 }
1492 
1493 static int xor_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1494 {
1495 	return wrp_alu32_imm(nfp_prog, meta, ALU_OP_XOR, !~meta->insn.imm);
1496 }
1497 
1498 static int and_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1499 {
1500 	return wrp_alu32_reg(nfp_prog, meta, ALU_OP_AND);
1501 }
1502 
1503 static int and_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1504 {
1505 	return wrp_alu32_imm(nfp_prog, meta, ALU_OP_AND, !~meta->insn.imm);
1506 }
1507 
1508 static int or_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1509 {
1510 	return wrp_alu32_reg(nfp_prog, meta, ALU_OP_OR);
1511 }
1512 
1513 static int or_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1514 {
1515 	return wrp_alu32_imm(nfp_prog, meta, ALU_OP_OR, !meta->insn.imm);
1516 }
1517 
1518 static int add_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1519 {
1520 	return wrp_alu32_reg(nfp_prog, meta, ALU_OP_ADD);
1521 }
1522 
1523 static int add_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1524 {
1525 	return wrp_alu32_imm(nfp_prog, meta, ALU_OP_ADD, !meta->insn.imm);
1526 }
1527 
1528 static int sub_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1529 {
1530 	return wrp_alu32_reg(nfp_prog, meta, ALU_OP_SUB);
1531 }
1532 
1533 static int sub_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1534 {
1535 	return wrp_alu32_imm(nfp_prog, meta, ALU_OP_SUB, !meta->insn.imm);
1536 }
1537 
1538 static int neg_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1539 {
1540 	u8 dst = meta->insn.dst_reg * 2;
1541 
1542 	emit_alu(nfp_prog, reg_both(dst), reg_imm(0), ALU_OP_SUB, reg_b(dst));
1543 	wrp_immed(nfp_prog, reg_both(meta->insn.dst_reg * 2 + 1), 0);
1544 
1545 	return 0;
1546 }
1547 
1548 static int shl_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1549 {
1550 	const struct bpf_insn *insn = &meta->insn;
1551 
1552 	if (!insn->imm)
1553 		return 1; /* TODO: zero shift means indirect */
1554 
1555 	emit_shf(nfp_prog, reg_both(insn->dst_reg * 2),
1556 		 reg_none(), SHF_OP_NONE, reg_b(insn->dst_reg * 2),
1557 		 SHF_SC_L_SHF, insn->imm);
1558 	wrp_immed(nfp_prog, reg_both(insn->dst_reg * 2 + 1), 0);
1559 
1560 	return 0;
1561 }
1562 
1563 static int end_reg32(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1564 {
1565 	const struct bpf_insn *insn = &meta->insn;
1566 	u8 gpr = insn->dst_reg * 2;
1567 
1568 	switch (insn->imm) {
1569 	case 16:
1570 		emit_ld_field(nfp_prog, reg_both(gpr), 0x9, reg_b(gpr),
1571 			      SHF_SC_R_ROT, 8);
1572 		emit_ld_field(nfp_prog, reg_both(gpr), 0xe, reg_a(gpr),
1573 			      SHF_SC_R_SHF, 16);
1574 
1575 		wrp_immed(nfp_prog, reg_both(gpr + 1), 0);
1576 		break;
1577 	case 32:
1578 		wrp_end32(nfp_prog, reg_a(gpr), gpr);
1579 		wrp_immed(nfp_prog, reg_both(gpr + 1), 0);
1580 		break;
1581 	case 64:
1582 		wrp_mov(nfp_prog, imm_a(nfp_prog), reg_b(gpr + 1));
1583 
1584 		wrp_end32(nfp_prog, reg_a(gpr), gpr + 1);
1585 		wrp_end32(nfp_prog, imm_a(nfp_prog), gpr);
1586 		break;
1587 	}
1588 
1589 	return 0;
1590 }
1591 
1592 static int imm_ld8_part2(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1593 {
1594 	struct nfp_insn_meta *prev = nfp_meta_prev(meta);
1595 	u32 imm_lo, imm_hi;
1596 	u8 dst;
1597 
1598 	dst = prev->insn.dst_reg * 2;
1599 	imm_lo = prev->insn.imm;
1600 	imm_hi = meta->insn.imm;
1601 
1602 	wrp_immed(nfp_prog, reg_both(dst), imm_lo);
1603 
1604 	/* mov is always 1 insn, load imm may be two, so try to use mov */
1605 	if (imm_hi == imm_lo)
1606 		wrp_mov(nfp_prog, reg_both(dst + 1), reg_a(dst));
1607 	else
1608 		wrp_immed(nfp_prog, reg_both(dst + 1), imm_hi);
1609 
1610 	return 0;
1611 }
1612 
1613 static int imm_ld8(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1614 {
1615 	meta->double_cb = imm_ld8_part2;
1616 	return 0;
1617 }
1618 
1619 static int data_ld1(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1620 {
1621 	return construct_data_ld(nfp_prog, meta->insn.imm, 1);
1622 }
1623 
1624 static int data_ld2(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1625 {
1626 	return construct_data_ld(nfp_prog, meta->insn.imm, 2);
1627 }
1628 
1629 static int data_ld4(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1630 {
1631 	return construct_data_ld(nfp_prog, meta->insn.imm, 4);
1632 }
1633 
1634 static int data_ind_ld1(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1635 {
1636 	return construct_data_ind_ld(nfp_prog, meta->insn.imm,
1637 				     meta->insn.src_reg * 2, 1);
1638 }
1639 
1640 static int data_ind_ld2(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1641 {
1642 	return construct_data_ind_ld(nfp_prog, meta->insn.imm,
1643 				     meta->insn.src_reg * 2, 2);
1644 }
1645 
1646 static int data_ind_ld4(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1647 {
1648 	return construct_data_ind_ld(nfp_prog, meta->insn.imm,
1649 				     meta->insn.src_reg * 2, 4);
1650 }
1651 
1652 static int
1653 mem_ldx_stack(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
1654 	      unsigned int size, unsigned int ptr_off)
1655 {
1656 	return mem_op_stack(nfp_prog, meta, size, ptr_off,
1657 			    meta->insn.dst_reg * 2, meta->insn.src_reg * 2,
1658 			    true, wrp_lmem_load);
1659 }
1660 
1661 static int mem_ldx_skb(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
1662 		       u8 size)
1663 {
1664 	swreg dst = reg_both(meta->insn.dst_reg * 2);
1665 
1666 	switch (meta->insn.off) {
1667 	case offsetof(struct __sk_buff, len):
1668 		if (size != FIELD_SIZEOF(struct __sk_buff, len))
1669 			return -EOPNOTSUPP;
1670 		wrp_mov(nfp_prog, dst, plen_reg(nfp_prog));
1671 		break;
1672 	case offsetof(struct __sk_buff, data):
1673 		if (size != FIELD_SIZEOF(struct __sk_buff, data))
1674 			return -EOPNOTSUPP;
1675 		wrp_mov(nfp_prog, dst, pptr_reg(nfp_prog));
1676 		break;
1677 	case offsetof(struct __sk_buff, data_end):
1678 		if (size != FIELD_SIZEOF(struct __sk_buff, data_end))
1679 			return -EOPNOTSUPP;
1680 		emit_alu(nfp_prog, dst,
1681 			 plen_reg(nfp_prog), ALU_OP_ADD, pptr_reg(nfp_prog));
1682 		break;
1683 	default:
1684 		return -EOPNOTSUPP;
1685 	}
1686 
1687 	wrp_immed(nfp_prog, reg_both(meta->insn.dst_reg * 2 + 1), 0);
1688 
1689 	return 0;
1690 }
1691 
1692 static int mem_ldx_xdp(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
1693 		       u8 size)
1694 {
1695 	swreg dst = reg_both(meta->insn.dst_reg * 2);
1696 
1697 	switch (meta->insn.off) {
1698 	case offsetof(struct xdp_md, data):
1699 		if (size != FIELD_SIZEOF(struct xdp_md, data))
1700 			return -EOPNOTSUPP;
1701 		wrp_mov(nfp_prog, dst, pptr_reg(nfp_prog));
1702 		break;
1703 	case offsetof(struct xdp_md, data_end):
1704 		if (size != FIELD_SIZEOF(struct xdp_md, data_end))
1705 			return -EOPNOTSUPP;
1706 		emit_alu(nfp_prog, dst,
1707 			 plen_reg(nfp_prog), ALU_OP_ADD, pptr_reg(nfp_prog));
1708 		break;
1709 	default:
1710 		return -EOPNOTSUPP;
1711 	}
1712 
1713 	wrp_immed(nfp_prog, reg_both(meta->insn.dst_reg * 2 + 1), 0);
1714 
1715 	return 0;
1716 }
1717 
1718 static int
1719 mem_ldx_data(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
1720 	     unsigned int size)
1721 {
1722 	swreg tmp_reg;
1723 
1724 	tmp_reg = re_load_imm_any(nfp_prog, meta->insn.off, imm_b(nfp_prog));
1725 
1726 	return data_ld_host_order(nfp_prog, meta->insn.src_reg * 2, tmp_reg,
1727 				  meta->insn.dst_reg * 2, size);
1728 }
1729 
1730 static int
1731 mem_ldx(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
1732 	unsigned int size)
1733 {
1734 	if (meta->ldst_gather_len)
1735 		return nfp_cpp_memcpy(nfp_prog, meta);
1736 
1737 	if (meta->ptr.type == PTR_TO_CTX) {
1738 		if (nfp_prog->type == BPF_PROG_TYPE_XDP)
1739 			return mem_ldx_xdp(nfp_prog, meta, size);
1740 		else
1741 			return mem_ldx_skb(nfp_prog, meta, size);
1742 	}
1743 
1744 	if (meta->ptr.type == PTR_TO_PACKET)
1745 		return mem_ldx_data(nfp_prog, meta, size);
1746 
1747 	if (meta->ptr.type == PTR_TO_STACK)
1748 		return mem_ldx_stack(nfp_prog, meta, size,
1749 				     meta->ptr.off + meta->ptr.var_off.value);
1750 
1751 	return -EOPNOTSUPP;
1752 }
1753 
1754 static int mem_ldx1(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1755 {
1756 	return mem_ldx(nfp_prog, meta, 1);
1757 }
1758 
1759 static int mem_ldx2(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1760 {
1761 	return mem_ldx(nfp_prog, meta, 2);
1762 }
1763 
1764 static int mem_ldx4(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1765 {
1766 	return mem_ldx(nfp_prog, meta, 4);
1767 }
1768 
1769 static int mem_ldx8(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1770 {
1771 	return mem_ldx(nfp_prog, meta, 8);
1772 }
1773 
1774 static int
1775 mem_st_data(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
1776 	    unsigned int size)
1777 {
1778 	u64 imm = meta->insn.imm; /* sign extend */
1779 	swreg off_reg;
1780 
1781 	off_reg = re_load_imm_any(nfp_prog, meta->insn.off, imm_b(nfp_prog));
1782 
1783 	return data_st_host_order(nfp_prog, meta->insn.dst_reg * 2, off_reg,
1784 				  imm, size);
1785 }
1786 
1787 static int mem_st(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
1788 		  unsigned int size)
1789 {
1790 	if (meta->ptr.type == PTR_TO_PACKET)
1791 		return mem_st_data(nfp_prog, meta, size);
1792 
1793 	return -EOPNOTSUPP;
1794 }
1795 
1796 static int mem_st1(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1797 {
1798 	return mem_st(nfp_prog, meta, 1);
1799 }
1800 
1801 static int mem_st2(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1802 {
1803 	return mem_st(nfp_prog, meta, 2);
1804 }
1805 
1806 static int mem_st4(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1807 {
1808 	return mem_st(nfp_prog, meta, 4);
1809 }
1810 
1811 static int mem_st8(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1812 {
1813 	return mem_st(nfp_prog, meta, 8);
1814 }
1815 
1816 static int
1817 mem_stx_data(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
1818 	     unsigned int size)
1819 {
1820 	swreg off_reg;
1821 
1822 	off_reg = re_load_imm_any(nfp_prog, meta->insn.off, imm_b(nfp_prog));
1823 
1824 	return data_stx_host_order(nfp_prog, meta->insn.dst_reg * 2, off_reg,
1825 				   meta->insn.src_reg * 2, size);
1826 }
1827 
1828 static int
1829 mem_stx_stack(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
1830 	      unsigned int size, unsigned int ptr_off)
1831 {
1832 	return mem_op_stack(nfp_prog, meta, size, ptr_off,
1833 			    meta->insn.src_reg * 2, meta->insn.dst_reg * 2,
1834 			    false, wrp_lmem_store);
1835 }
1836 
1837 static int
1838 mem_stx(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
1839 	unsigned int size)
1840 {
1841 	if (meta->ptr.type == PTR_TO_PACKET)
1842 		return mem_stx_data(nfp_prog, meta, size);
1843 
1844 	if (meta->ptr.type == PTR_TO_STACK)
1845 		return mem_stx_stack(nfp_prog, meta, size,
1846 				     meta->ptr.off + meta->ptr.var_off.value);
1847 
1848 	return -EOPNOTSUPP;
1849 }
1850 
1851 static int mem_stx1(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1852 {
1853 	return mem_stx(nfp_prog, meta, 1);
1854 }
1855 
1856 static int mem_stx2(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1857 {
1858 	return mem_stx(nfp_prog, meta, 2);
1859 }
1860 
1861 static int mem_stx4(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1862 {
1863 	return mem_stx(nfp_prog, meta, 4);
1864 }
1865 
1866 static int mem_stx8(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1867 {
1868 	return mem_stx(nfp_prog, meta, 8);
1869 }
1870 
1871 static int jump(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1872 {
1873 	emit_br(nfp_prog, BR_UNC, meta->insn.off, 0);
1874 
1875 	return 0;
1876 }
1877 
1878 static int jeq_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1879 {
1880 	const struct bpf_insn *insn = &meta->insn;
1881 	u64 imm = insn->imm; /* sign extend */
1882 	swreg or1, or2, tmp_reg;
1883 
1884 	or1 = reg_a(insn->dst_reg * 2);
1885 	or2 = reg_b(insn->dst_reg * 2 + 1);
1886 
1887 	if (imm & ~0U) {
1888 		tmp_reg = ur_load_imm_any(nfp_prog, imm & ~0U, imm_b(nfp_prog));
1889 		emit_alu(nfp_prog, imm_a(nfp_prog),
1890 			 reg_a(insn->dst_reg * 2), ALU_OP_XOR, tmp_reg);
1891 		or1 = imm_a(nfp_prog);
1892 	}
1893 
1894 	if (imm >> 32) {
1895 		tmp_reg = ur_load_imm_any(nfp_prog, imm >> 32, imm_b(nfp_prog));
1896 		emit_alu(nfp_prog, imm_b(nfp_prog),
1897 			 reg_a(insn->dst_reg * 2 + 1), ALU_OP_XOR, tmp_reg);
1898 		or2 = imm_b(nfp_prog);
1899 	}
1900 
1901 	emit_alu(nfp_prog, reg_none(), or1, ALU_OP_OR, or2);
1902 	emit_br(nfp_prog, BR_BEQ, insn->off, 0);
1903 
1904 	return 0;
1905 }
1906 
1907 static int jgt_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1908 {
1909 	return wrp_cmp_imm(nfp_prog, meta, BR_BLO, true);
1910 }
1911 
1912 static int jge_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1913 {
1914 	return wrp_cmp_imm(nfp_prog, meta, BR_BHS, false);
1915 }
1916 
1917 static int jlt_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1918 {
1919 	return wrp_cmp_imm(nfp_prog, meta, BR_BLO, false);
1920 }
1921 
1922 static int jle_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1923 {
1924 	return wrp_cmp_imm(nfp_prog, meta, BR_BHS, true);
1925 }
1926 
1927 static int jset_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1928 {
1929 	const struct bpf_insn *insn = &meta->insn;
1930 	u64 imm = insn->imm; /* sign extend */
1931 	swreg tmp_reg;
1932 
1933 	if (!imm) {
1934 		meta->skip = true;
1935 		return 0;
1936 	}
1937 
1938 	if (imm & ~0U) {
1939 		tmp_reg = ur_load_imm_any(nfp_prog, imm & ~0U, imm_b(nfp_prog));
1940 		emit_alu(nfp_prog, reg_none(),
1941 			 reg_a(insn->dst_reg * 2), ALU_OP_AND, tmp_reg);
1942 		emit_br(nfp_prog, BR_BNE, insn->off, 0);
1943 	}
1944 
1945 	if (imm >> 32) {
1946 		tmp_reg = ur_load_imm_any(nfp_prog, imm >> 32, imm_b(nfp_prog));
1947 		emit_alu(nfp_prog, reg_none(),
1948 			 reg_a(insn->dst_reg * 2 + 1), ALU_OP_AND, tmp_reg);
1949 		emit_br(nfp_prog, BR_BNE, insn->off, 0);
1950 	}
1951 
1952 	return 0;
1953 }
1954 
1955 static int jne_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1956 {
1957 	const struct bpf_insn *insn = &meta->insn;
1958 	u64 imm = insn->imm; /* sign extend */
1959 	swreg tmp_reg;
1960 
1961 	if (!imm) {
1962 		emit_alu(nfp_prog, reg_none(), reg_a(insn->dst_reg * 2),
1963 			 ALU_OP_OR, reg_b(insn->dst_reg * 2 + 1));
1964 		emit_br(nfp_prog, BR_BNE, insn->off, 0);
1965 		return 0;
1966 	}
1967 
1968 	tmp_reg = ur_load_imm_any(nfp_prog, imm & ~0U, imm_b(nfp_prog));
1969 	emit_alu(nfp_prog, reg_none(),
1970 		 reg_a(insn->dst_reg * 2), ALU_OP_XOR, tmp_reg);
1971 	emit_br(nfp_prog, BR_BNE, insn->off, 0);
1972 
1973 	tmp_reg = ur_load_imm_any(nfp_prog, imm >> 32, imm_b(nfp_prog));
1974 	emit_alu(nfp_prog, reg_none(),
1975 		 reg_a(insn->dst_reg * 2 + 1), ALU_OP_XOR, tmp_reg);
1976 	emit_br(nfp_prog, BR_BNE, insn->off, 0);
1977 
1978 	return 0;
1979 }
1980 
1981 static int jeq_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1982 {
1983 	const struct bpf_insn *insn = &meta->insn;
1984 
1985 	emit_alu(nfp_prog, imm_a(nfp_prog), reg_a(insn->dst_reg * 2),
1986 		 ALU_OP_XOR, reg_b(insn->src_reg * 2));
1987 	emit_alu(nfp_prog, imm_b(nfp_prog), reg_a(insn->dst_reg * 2 + 1),
1988 		 ALU_OP_XOR, reg_b(insn->src_reg * 2 + 1));
1989 	emit_alu(nfp_prog, reg_none(),
1990 		 imm_a(nfp_prog), ALU_OP_OR, imm_b(nfp_prog));
1991 	emit_br(nfp_prog, BR_BEQ, insn->off, 0);
1992 
1993 	return 0;
1994 }
1995 
1996 static int jgt_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1997 {
1998 	return wrp_cmp_reg(nfp_prog, meta, BR_BLO, true);
1999 }
2000 
2001 static int jge_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2002 {
2003 	return wrp_cmp_reg(nfp_prog, meta, BR_BHS, false);
2004 }
2005 
2006 static int jlt_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2007 {
2008 	return wrp_cmp_reg(nfp_prog, meta, BR_BLO, false);
2009 }
2010 
2011 static int jle_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2012 {
2013 	return wrp_cmp_reg(nfp_prog, meta, BR_BHS, true);
2014 }
2015 
2016 static int jset_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2017 {
2018 	return wrp_test_reg(nfp_prog, meta, ALU_OP_AND, BR_BNE);
2019 }
2020 
2021 static int jne_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2022 {
2023 	return wrp_test_reg(nfp_prog, meta, ALU_OP_XOR, BR_BNE);
2024 }
2025 
2026 static int call(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2027 {
2028 	switch (meta->insn.imm) {
2029 	case BPF_FUNC_xdp_adjust_head:
2030 		return adjust_head(nfp_prog, meta);
2031 	default:
2032 		WARN_ONCE(1, "verifier allowed unsupported function\n");
2033 		return -EOPNOTSUPP;
2034 	}
2035 }
2036 
2037 static int goto_out(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2038 {
2039 	wrp_br_special(nfp_prog, BR_UNC, OP_BR_GO_OUT);
2040 
2041 	return 0;
2042 }
2043 
2044 static const instr_cb_t instr_cb[256] = {
2045 	[BPF_ALU64 | BPF_MOV | BPF_X] =	mov_reg64,
2046 	[BPF_ALU64 | BPF_MOV | BPF_K] =	mov_imm64,
2047 	[BPF_ALU64 | BPF_XOR | BPF_X] =	xor_reg64,
2048 	[BPF_ALU64 | BPF_XOR | BPF_K] =	xor_imm64,
2049 	[BPF_ALU64 | BPF_AND | BPF_X] =	and_reg64,
2050 	[BPF_ALU64 | BPF_AND | BPF_K] =	and_imm64,
2051 	[BPF_ALU64 | BPF_OR | BPF_X] =	or_reg64,
2052 	[BPF_ALU64 | BPF_OR | BPF_K] =	or_imm64,
2053 	[BPF_ALU64 | BPF_ADD | BPF_X] =	add_reg64,
2054 	[BPF_ALU64 | BPF_ADD | BPF_K] =	add_imm64,
2055 	[BPF_ALU64 | BPF_SUB | BPF_X] =	sub_reg64,
2056 	[BPF_ALU64 | BPF_SUB | BPF_K] =	sub_imm64,
2057 	[BPF_ALU64 | BPF_NEG] =		neg_reg64,
2058 	[BPF_ALU64 | BPF_LSH | BPF_K] =	shl_imm64,
2059 	[BPF_ALU64 | BPF_RSH | BPF_K] =	shr_imm64,
2060 	[BPF_ALU | BPF_MOV | BPF_X] =	mov_reg,
2061 	[BPF_ALU | BPF_MOV | BPF_K] =	mov_imm,
2062 	[BPF_ALU | BPF_XOR | BPF_X] =	xor_reg,
2063 	[BPF_ALU | BPF_XOR | BPF_K] =	xor_imm,
2064 	[BPF_ALU | BPF_AND | BPF_X] =	and_reg,
2065 	[BPF_ALU | BPF_AND | BPF_K] =	and_imm,
2066 	[BPF_ALU | BPF_OR | BPF_X] =	or_reg,
2067 	[BPF_ALU | BPF_OR | BPF_K] =	or_imm,
2068 	[BPF_ALU | BPF_ADD | BPF_X] =	add_reg,
2069 	[BPF_ALU | BPF_ADD | BPF_K] =	add_imm,
2070 	[BPF_ALU | BPF_SUB | BPF_X] =	sub_reg,
2071 	[BPF_ALU | BPF_SUB | BPF_K] =	sub_imm,
2072 	[BPF_ALU | BPF_NEG] =		neg_reg,
2073 	[BPF_ALU | BPF_LSH | BPF_K] =	shl_imm,
2074 	[BPF_ALU | BPF_END | BPF_X] =	end_reg32,
2075 	[BPF_LD | BPF_IMM | BPF_DW] =	imm_ld8,
2076 	[BPF_LD | BPF_ABS | BPF_B] =	data_ld1,
2077 	[BPF_LD | BPF_ABS | BPF_H] =	data_ld2,
2078 	[BPF_LD | BPF_ABS | BPF_W] =	data_ld4,
2079 	[BPF_LD | BPF_IND | BPF_B] =	data_ind_ld1,
2080 	[BPF_LD | BPF_IND | BPF_H] =	data_ind_ld2,
2081 	[BPF_LD | BPF_IND | BPF_W] =	data_ind_ld4,
2082 	[BPF_LDX | BPF_MEM | BPF_B] =	mem_ldx1,
2083 	[BPF_LDX | BPF_MEM | BPF_H] =	mem_ldx2,
2084 	[BPF_LDX | BPF_MEM | BPF_W] =	mem_ldx4,
2085 	[BPF_LDX | BPF_MEM | BPF_DW] =	mem_ldx8,
2086 	[BPF_STX | BPF_MEM | BPF_B] =	mem_stx1,
2087 	[BPF_STX | BPF_MEM | BPF_H] =	mem_stx2,
2088 	[BPF_STX | BPF_MEM | BPF_W] =	mem_stx4,
2089 	[BPF_STX | BPF_MEM | BPF_DW] =	mem_stx8,
2090 	[BPF_ST | BPF_MEM | BPF_B] =	mem_st1,
2091 	[BPF_ST | BPF_MEM | BPF_H] =	mem_st2,
2092 	[BPF_ST | BPF_MEM | BPF_W] =	mem_st4,
2093 	[BPF_ST | BPF_MEM | BPF_DW] =	mem_st8,
2094 	[BPF_JMP | BPF_JA | BPF_K] =	jump,
2095 	[BPF_JMP | BPF_JEQ | BPF_K] =	jeq_imm,
2096 	[BPF_JMP | BPF_JGT | BPF_K] =	jgt_imm,
2097 	[BPF_JMP | BPF_JGE | BPF_K] =	jge_imm,
2098 	[BPF_JMP | BPF_JLT | BPF_K] =	jlt_imm,
2099 	[BPF_JMP | BPF_JLE | BPF_K] =	jle_imm,
2100 	[BPF_JMP | BPF_JSET | BPF_K] =	jset_imm,
2101 	[BPF_JMP | BPF_JNE | BPF_K] =	jne_imm,
2102 	[BPF_JMP | BPF_JEQ | BPF_X] =	jeq_reg,
2103 	[BPF_JMP | BPF_JGT | BPF_X] =	jgt_reg,
2104 	[BPF_JMP | BPF_JGE | BPF_X] =	jge_reg,
2105 	[BPF_JMP | BPF_JLT | BPF_X] =	jlt_reg,
2106 	[BPF_JMP | BPF_JLE | BPF_X] =	jle_reg,
2107 	[BPF_JMP | BPF_JSET | BPF_X] =	jset_reg,
2108 	[BPF_JMP | BPF_JNE | BPF_X] =	jne_reg,
2109 	[BPF_JMP | BPF_CALL] =		call,
2110 	[BPF_JMP | BPF_EXIT] =		goto_out,
2111 };
2112 
2113 /* --- Assembler logic --- */
2114 static int nfp_fixup_branches(struct nfp_prog *nfp_prog)
2115 {
2116 	struct nfp_insn_meta *meta, *jmp_dst;
2117 	u32 idx, br_idx;
2118 
2119 	list_for_each_entry(meta, &nfp_prog->insns, l) {
2120 		if (meta->skip)
2121 			continue;
2122 		if (meta->insn.code == (BPF_JMP | BPF_CALL))
2123 			continue;
2124 		if (BPF_CLASS(meta->insn.code) != BPF_JMP)
2125 			continue;
2126 
2127 		if (list_is_last(&meta->l, &nfp_prog->insns))
2128 			idx = nfp_prog->last_bpf_off;
2129 		else
2130 			idx = list_next_entry(meta, l)->off - 1;
2131 
2132 		br_idx = nfp_prog_offset_to_index(nfp_prog, idx);
2133 
2134 		if (!nfp_is_br(nfp_prog->prog[br_idx])) {
2135 			pr_err("Fixup found block not ending in branch %d %02x %016llx!!\n",
2136 			       br_idx, meta->insn.code, nfp_prog->prog[br_idx]);
2137 			return -ELOOP;
2138 		}
2139 		/* Leave special branches for later */
2140 		if (FIELD_GET(OP_BR_SPECIAL, nfp_prog->prog[br_idx]))
2141 			continue;
2142 
2143 		if (!meta->jmp_dst) {
2144 			pr_err("Non-exit jump doesn't have destination info recorded!!\n");
2145 			return -ELOOP;
2146 		}
2147 
2148 		jmp_dst = meta->jmp_dst;
2149 
2150 		if (jmp_dst->skip) {
2151 			pr_err("Branch landing on removed instruction!!\n");
2152 			return -ELOOP;
2153 		}
2154 
2155 		for (idx = nfp_prog_offset_to_index(nfp_prog, meta->off);
2156 		     idx <= br_idx; idx++) {
2157 			if (!nfp_is_br(nfp_prog->prog[idx]))
2158 				continue;
2159 			br_set_offset(&nfp_prog->prog[idx], jmp_dst->off);
2160 		}
2161 	}
2162 
2163 	/* Fixup 'goto out's separately, they can be scattered around */
2164 	for (br_idx = 0; br_idx < nfp_prog->prog_len; br_idx++) {
2165 		enum br_special special;
2166 
2167 		if ((nfp_prog->prog[br_idx] & OP_BR_BASE_MASK) != OP_BR_BASE)
2168 			continue;
2169 
2170 		special = FIELD_GET(OP_BR_SPECIAL, nfp_prog->prog[br_idx]);
2171 		switch (special) {
2172 		case OP_BR_NORMAL:
2173 			break;
2174 		case OP_BR_GO_OUT:
2175 			br_set_offset(&nfp_prog->prog[br_idx],
2176 				      nfp_prog->tgt_out);
2177 			break;
2178 		case OP_BR_GO_ABORT:
2179 			br_set_offset(&nfp_prog->prog[br_idx],
2180 				      nfp_prog->tgt_abort);
2181 			break;
2182 		}
2183 
2184 		nfp_prog->prog[br_idx] &= ~OP_BR_SPECIAL;
2185 	}
2186 
2187 	return 0;
2188 }
2189 
2190 static void nfp_intro(struct nfp_prog *nfp_prog)
2191 {
2192 	wrp_immed(nfp_prog, plen_reg(nfp_prog), GENMASK(13, 0));
2193 	emit_alu(nfp_prog, plen_reg(nfp_prog),
2194 		 plen_reg(nfp_prog), ALU_OP_AND, pv_len(nfp_prog));
2195 }
2196 
2197 static void nfp_outro_tc_da(struct nfp_prog *nfp_prog)
2198 {
2199 	/* TC direct-action mode:
2200 	 *   0,1   ok        NOT SUPPORTED[1]
2201 	 *   2   drop  0x22 -> drop,  count as stat1
2202 	 *   4,5 nuke  0x02 -> drop
2203 	 *   7  redir  0x44 -> redir, count as stat2
2204 	 *   * unspec  0x11 -> pass,  count as stat0
2205 	 *
2206 	 * [1] We can't support OK and RECLASSIFY because we can't tell TC
2207 	 *     the exact decision made.  We are forced to support UNSPEC
2208 	 *     to handle aborts so that's the only one we handle for passing
2209 	 *     packets up the stack.
2210 	 */
2211 	/* Target for aborts */
2212 	nfp_prog->tgt_abort = nfp_prog_current_offset(nfp_prog);
2213 
2214 	emit_br_def(nfp_prog, nfp_prog->tgt_done, 2);
2215 
2216 	wrp_mov(nfp_prog, reg_a(0), NFP_BPF_ABI_FLAGS);
2217 	emit_ld_field(nfp_prog, reg_a(0), 0xc, reg_imm(0x11), SHF_SC_L_SHF, 16);
2218 
2219 	/* Target for normal exits */
2220 	nfp_prog->tgt_out = nfp_prog_current_offset(nfp_prog);
2221 
2222 	/* if R0 > 7 jump to abort */
2223 	emit_alu(nfp_prog, reg_none(), reg_imm(7), ALU_OP_SUB, reg_b(0));
2224 	emit_br(nfp_prog, BR_BLO, nfp_prog->tgt_abort, 0);
2225 	wrp_mov(nfp_prog, reg_a(0), NFP_BPF_ABI_FLAGS);
2226 
2227 	wrp_immed(nfp_prog, reg_b(2), 0x41221211);
2228 	wrp_immed(nfp_prog, reg_b(3), 0x41001211);
2229 
2230 	emit_shf(nfp_prog, reg_a(1),
2231 		 reg_none(), SHF_OP_NONE, reg_b(0), SHF_SC_L_SHF, 2);
2232 
2233 	emit_alu(nfp_prog, reg_none(), reg_a(1), ALU_OP_OR, reg_imm(0));
2234 	emit_shf(nfp_prog, reg_a(2),
2235 		 reg_imm(0xf), SHF_OP_AND, reg_b(2), SHF_SC_R_SHF, 0);
2236 
2237 	emit_alu(nfp_prog, reg_none(), reg_a(1), ALU_OP_OR, reg_imm(0));
2238 	emit_shf(nfp_prog, reg_b(2),
2239 		 reg_imm(0xf), SHF_OP_AND, reg_b(3), SHF_SC_R_SHF, 0);
2240 
2241 	emit_br_def(nfp_prog, nfp_prog->tgt_done, 2);
2242 
2243 	emit_shf(nfp_prog, reg_b(2),
2244 		 reg_a(2), SHF_OP_OR, reg_b(2), SHF_SC_L_SHF, 4);
2245 	emit_ld_field(nfp_prog, reg_a(0), 0xc, reg_b(2), SHF_SC_L_SHF, 16);
2246 }
2247 
2248 static void nfp_outro_xdp(struct nfp_prog *nfp_prog)
2249 {
2250 	/* XDP return codes:
2251 	 *   0 aborted  0x82 -> drop,  count as stat3
2252 	 *   1    drop  0x22 -> drop,  count as stat1
2253 	 *   2    pass  0x11 -> pass,  count as stat0
2254 	 *   3      tx  0x44 -> redir, count as stat2
2255 	 *   * unknown  0x82 -> drop,  count as stat3
2256 	 */
2257 	/* Target for aborts */
2258 	nfp_prog->tgt_abort = nfp_prog_current_offset(nfp_prog);
2259 
2260 	emit_br_def(nfp_prog, nfp_prog->tgt_done, 2);
2261 
2262 	wrp_mov(nfp_prog, reg_a(0), NFP_BPF_ABI_FLAGS);
2263 	emit_ld_field(nfp_prog, reg_a(0), 0xc, reg_imm(0x82), SHF_SC_L_SHF, 16);
2264 
2265 	/* Target for normal exits */
2266 	nfp_prog->tgt_out = nfp_prog_current_offset(nfp_prog);
2267 
2268 	/* if R0 > 3 jump to abort */
2269 	emit_alu(nfp_prog, reg_none(), reg_imm(3), ALU_OP_SUB, reg_b(0));
2270 	emit_br(nfp_prog, BR_BLO, nfp_prog->tgt_abort, 0);
2271 
2272 	wrp_immed(nfp_prog, reg_b(2), 0x44112282);
2273 
2274 	emit_shf(nfp_prog, reg_a(1),
2275 		 reg_none(), SHF_OP_NONE, reg_b(0), SHF_SC_L_SHF, 3);
2276 
2277 	emit_alu(nfp_prog, reg_none(), reg_a(1), ALU_OP_OR, reg_imm(0));
2278 	emit_shf(nfp_prog, reg_b(2),
2279 		 reg_imm(0xff), SHF_OP_AND, reg_b(2), SHF_SC_R_SHF, 0);
2280 
2281 	emit_br_def(nfp_prog, nfp_prog->tgt_done, 2);
2282 
2283 	wrp_mov(nfp_prog, reg_a(0), NFP_BPF_ABI_FLAGS);
2284 	emit_ld_field(nfp_prog, reg_a(0), 0xc, reg_b(2), SHF_SC_L_SHF, 16);
2285 }
2286 
2287 static void nfp_outro(struct nfp_prog *nfp_prog)
2288 {
2289 	switch (nfp_prog->type) {
2290 	case BPF_PROG_TYPE_SCHED_CLS:
2291 		nfp_outro_tc_da(nfp_prog);
2292 		break;
2293 	case BPF_PROG_TYPE_XDP:
2294 		nfp_outro_xdp(nfp_prog);
2295 		break;
2296 	default:
2297 		WARN_ON(1);
2298 	}
2299 }
2300 
2301 static int nfp_translate(struct nfp_prog *nfp_prog)
2302 {
2303 	struct nfp_insn_meta *meta;
2304 	int err;
2305 
2306 	nfp_intro(nfp_prog);
2307 	if (nfp_prog->error)
2308 		return nfp_prog->error;
2309 
2310 	list_for_each_entry(meta, &nfp_prog->insns, l) {
2311 		instr_cb_t cb = instr_cb[meta->insn.code];
2312 
2313 		meta->off = nfp_prog_current_offset(nfp_prog);
2314 
2315 		if (meta->skip) {
2316 			nfp_prog->n_translated++;
2317 			continue;
2318 		}
2319 
2320 		if (nfp_meta_has_prev(nfp_prog, meta) &&
2321 		    nfp_meta_prev(meta)->double_cb)
2322 			cb = nfp_meta_prev(meta)->double_cb;
2323 		if (!cb)
2324 			return -ENOENT;
2325 		err = cb(nfp_prog, meta);
2326 		if (err)
2327 			return err;
2328 
2329 		nfp_prog->n_translated++;
2330 	}
2331 
2332 	nfp_prog->last_bpf_off = nfp_prog_current_offset(nfp_prog) - 1;
2333 
2334 	nfp_outro(nfp_prog);
2335 	if (nfp_prog->error)
2336 		return nfp_prog->error;
2337 
2338 	wrp_nops(nfp_prog, NFP_USTORE_PREFETCH_WINDOW);
2339 	if (nfp_prog->error)
2340 		return nfp_prog->error;
2341 
2342 	return nfp_fixup_branches(nfp_prog);
2343 }
2344 
2345 /* --- Optimizations --- */
2346 static void nfp_bpf_opt_reg_init(struct nfp_prog *nfp_prog)
2347 {
2348 	struct nfp_insn_meta *meta;
2349 
2350 	list_for_each_entry(meta, &nfp_prog->insns, l) {
2351 		struct bpf_insn insn = meta->insn;
2352 
2353 		/* Programs converted from cBPF start with register xoring */
2354 		if (insn.code == (BPF_ALU64 | BPF_XOR | BPF_X) &&
2355 		    insn.src_reg == insn.dst_reg)
2356 			continue;
2357 
2358 		/* Programs start with R6 = R1 but we ignore the skb pointer */
2359 		if (insn.code == (BPF_ALU64 | BPF_MOV | BPF_X) &&
2360 		    insn.src_reg == 1 && insn.dst_reg == 6)
2361 			meta->skip = true;
2362 
2363 		/* Return as soon as something doesn't match */
2364 		if (!meta->skip)
2365 			return;
2366 	}
2367 }
2368 
2369 /* Remove masking after load since our load guarantees this is not needed */
2370 static void nfp_bpf_opt_ld_mask(struct nfp_prog *nfp_prog)
2371 {
2372 	struct nfp_insn_meta *meta1, *meta2;
2373 	const s32 exp_mask[] = {
2374 		[BPF_B] = 0x000000ffU,
2375 		[BPF_H] = 0x0000ffffU,
2376 		[BPF_W] = 0xffffffffU,
2377 	};
2378 
2379 	nfp_for_each_insn_walk2(nfp_prog, meta1, meta2) {
2380 		struct bpf_insn insn, next;
2381 
2382 		insn = meta1->insn;
2383 		next = meta2->insn;
2384 
2385 		if (BPF_CLASS(insn.code) != BPF_LD)
2386 			continue;
2387 		if (BPF_MODE(insn.code) != BPF_ABS &&
2388 		    BPF_MODE(insn.code) != BPF_IND)
2389 			continue;
2390 
2391 		if (next.code != (BPF_ALU64 | BPF_AND | BPF_K))
2392 			continue;
2393 
2394 		if (!exp_mask[BPF_SIZE(insn.code)])
2395 			continue;
2396 		if (exp_mask[BPF_SIZE(insn.code)] != next.imm)
2397 			continue;
2398 
2399 		if (next.src_reg || next.dst_reg)
2400 			continue;
2401 
2402 		if (meta2->flags & FLAG_INSN_IS_JUMP_DST)
2403 			continue;
2404 
2405 		meta2->skip = true;
2406 	}
2407 }
2408 
2409 static void nfp_bpf_opt_ld_shift(struct nfp_prog *nfp_prog)
2410 {
2411 	struct nfp_insn_meta *meta1, *meta2, *meta3;
2412 
2413 	nfp_for_each_insn_walk3(nfp_prog, meta1, meta2, meta3) {
2414 		struct bpf_insn insn, next1, next2;
2415 
2416 		insn = meta1->insn;
2417 		next1 = meta2->insn;
2418 		next2 = meta3->insn;
2419 
2420 		if (BPF_CLASS(insn.code) != BPF_LD)
2421 			continue;
2422 		if (BPF_MODE(insn.code) != BPF_ABS &&
2423 		    BPF_MODE(insn.code) != BPF_IND)
2424 			continue;
2425 		if (BPF_SIZE(insn.code) != BPF_W)
2426 			continue;
2427 
2428 		if (!(next1.code == (BPF_LSH | BPF_K | BPF_ALU64) &&
2429 		      next2.code == (BPF_RSH | BPF_K | BPF_ALU64)) &&
2430 		    !(next1.code == (BPF_RSH | BPF_K | BPF_ALU64) &&
2431 		      next2.code == (BPF_LSH | BPF_K | BPF_ALU64)))
2432 			continue;
2433 
2434 		if (next1.src_reg || next1.dst_reg ||
2435 		    next2.src_reg || next2.dst_reg)
2436 			continue;
2437 
2438 		if (next1.imm != 0x20 || next2.imm != 0x20)
2439 			continue;
2440 
2441 		if (meta2->flags & FLAG_INSN_IS_JUMP_DST ||
2442 		    meta3->flags & FLAG_INSN_IS_JUMP_DST)
2443 			continue;
2444 
2445 		meta2->skip = true;
2446 		meta3->skip = true;
2447 	}
2448 }
2449 
2450 /* load/store pair that forms memory copy sould look like the following:
2451  *
2452  *   ld_width R, [addr_src + offset_src]
2453  *   st_width [addr_dest + offset_dest], R
2454  *
2455  * The destination register of load and source register of store should
2456  * be the same, load and store should also perform at the same width.
2457  * If either of addr_src or addr_dest is stack pointer, we don't do the
2458  * CPP optimization as stack is modelled by registers on NFP.
2459  */
2460 static bool
2461 curr_pair_is_memcpy(struct nfp_insn_meta *ld_meta,
2462 		    struct nfp_insn_meta *st_meta)
2463 {
2464 	struct bpf_insn *ld = &ld_meta->insn;
2465 	struct bpf_insn *st = &st_meta->insn;
2466 
2467 	if (!is_mbpf_load(ld_meta) || !is_mbpf_store(st_meta))
2468 		return false;
2469 
2470 	if (ld_meta->ptr.type != PTR_TO_PACKET)
2471 		return false;
2472 
2473 	if (st_meta->ptr.type != PTR_TO_PACKET)
2474 		return false;
2475 
2476 	if (BPF_SIZE(ld->code) != BPF_SIZE(st->code))
2477 		return false;
2478 
2479 	if (ld->dst_reg != st->src_reg)
2480 		return false;
2481 
2482 	/* There is jump to the store insn in this pair. */
2483 	if (st_meta->flags & FLAG_INSN_IS_JUMP_DST)
2484 		return false;
2485 
2486 	return true;
2487 }
2488 
2489 /* Currently, we only support chaining load/store pairs if:
2490  *
2491  *  - Their address base registers are the same.
2492  *  - Their address offsets are in the same order.
2493  *  - They operate at the same memory width.
2494  *  - There is no jump into the middle of them.
2495  */
2496 static bool
2497 curr_pair_chain_with_previous(struct nfp_insn_meta *ld_meta,
2498 			      struct nfp_insn_meta *st_meta,
2499 			      struct bpf_insn *prev_ld,
2500 			      struct bpf_insn *prev_st)
2501 {
2502 	u8 prev_size, curr_size, prev_ld_base, prev_st_base, prev_ld_dst;
2503 	struct bpf_insn *ld = &ld_meta->insn;
2504 	struct bpf_insn *st = &st_meta->insn;
2505 	s16 prev_ld_off, prev_st_off;
2506 
2507 	/* This pair is the start pair. */
2508 	if (!prev_ld)
2509 		return true;
2510 
2511 	prev_size = BPF_LDST_BYTES(prev_ld);
2512 	curr_size = BPF_LDST_BYTES(ld);
2513 	prev_ld_base = prev_ld->src_reg;
2514 	prev_st_base = prev_st->dst_reg;
2515 	prev_ld_dst = prev_ld->dst_reg;
2516 	prev_ld_off = prev_ld->off;
2517 	prev_st_off = prev_st->off;
2518 
2519 	if (ld->dst_reg != prev_ld_dst)
2520 		return false;
2521 
2522 	if (ld->src_reg != prev_ld_base || st->dst_reg != prev_st_base)
2523 		return false;
2524 
2525 	if (curr_size != prev_size)
2526 		return false;
2527 
2528 	/* There is jump to the head of this pair. */
2529 	if (ld_meta->flags & FLAG_INSN_IS_JUMP_DST)
2530 		return false;
2531 
2532 	/* Both in ascending order. */
2533 	if (prev_ld_off + prev_size == ld->off &&
2534 	    prev_st_off + prev_size == st->off)
2535 		return true;
2536 
2537 	/* Both in descending order. */
2538 	if (ld->off + curr_size == prev_ld_off &&
2539 	    st->off + curr_size == prev_st_off)
2540 		return true;
2541 
2542 	return false;
2543 }
2544 
2545 /* Return TRUE if cross memory access happens. Cross memory access means
2546  * store area is overlapping with load area that a later load might load
2547  * the value from previous store, for this case we can't treat the sequence
2548  * as an memory copy.
2549  */
2550 static bool
2551 cross_mem_access(struct bpf_insn *ld, struct nfp_insn_meta *head_ld_meta,
2552 		 struct nfp_insn_meta *head_st_meta)
2553 {
2554 	s16 head_ld_off, head_st_off, ld_off;
2555 
2556 	/* Different pointer types does not overlap. */
2557 	if (head_ld_meta->ptr.type != head_st_meta->ptr.type)
2558 		return false;
2559 
2560 	/* load and store are both PTR_TO_PACKET, check ID info.  */
2561 	if (head_ld_meta->ptr.id != head_st_meta->ptr.id)
2562 		return true;
2563 
2564 	/* Canonicalize the offsets. Turn all of them against the original
2565 	 * base register.
2566 	 */
2567 	head_ld_off = head_ld_meta->insn.off + head_ld_meta->ptr.off;
2568 	head_st_off = head_st_meta->insn.off + head_st_meta->ptr.off;
2569 	ld_off = ld->off + head_ld_meta->ptr.off;
2570 
2571 	/* Ascending order cross. */
2572 	if (ld_off > head_ld_off &&
2573 	    head_ld_off < head_st_off && ld_off >= head_st_off)
2574 		return true;
2575 
2576 	/* Descending order cross. */
2577 	if (ld_off < head_ld_off &&
2578 	    head_ld_off > head_st_off && ld_off <= head_st_off)
2579 		return true;
2580 
2581 	return false;
2582 }
2583 
2584 /* This pass try to identify the following instructoin sequences.
2585  *
2586  *   load R, [regA + offA]
2587  *   store [regB + offB], R
2588  *   load R, [regA + offA + const_imm_A]
2589  *   store [regB + offB + const_imm_A], R
2590  *   load R, [regA + offA + 2 * const_imm_A]
2591  *   store [regB + offB + 2 * const_imm_A], R
2592  *   ...
2593  *
2594  * Above sequence is typically generated by compiler when lowering
2595  * memcpy. NFP prefer using CPP instructions to accelerate it.
2596  */
2597 static void nfp_bpf_opt_ldst_gather(struct nfp_prog *nfp_prog)
2598 {
2599 	struct nfp_insn_meta *head_ld_meta = NULL;
2600 	struct nfp_insn_meta *head_st_meta = NULL;
2601 	struct nfp_insn_meta *meta1, *meta2;
2602 	struct bpf_insn *prev_ld = NULL;
2603 	struct bpf_insn *prev_st = NULL;
2604 	u8 count = 0;
2605 
2606 	nfp_for_each_insn_walk2(nfp_prog, meta1, meta2) {
2607 		struct bpf_insn *ld = &meta1->insn;
2608 		struct bpf_insn *st = &meta2->insn;
2609 
2610 		/* Reset record status if any of the following if true:
2611 		 *   - The current insn pair is not load/store.
2612 		 *   - The load/store pair doesn't chain with previous one.
2613 		 *   - The chained load/store pair crossed with previous pair.
2614 		 *   - The chained load/store pair has a total size of memory
2615 		 *     copy beyond 128 bytes which is the maximum length a
2616 		 *     single NFP CPP command can transfer.
2617 		 */
2618 		if (!curr_pair_is_memcpy(meta1, meta2) ||
2619 		    !curr_pair_chain_with_previous(meta1, meta2, prev_ld,
2620 						   prev_st) ||
2621 		    (head_ld_meta && (cross_mem_access(ld, head_ld_meta,
2622 						       head_st_meta) ||
2623 				      head_ld_meta->ldst_gather_len >= 128))) {
2624 			if (!count)
2625 				continue;
2626 
2627 			if (count > 1) {
2628 				s16 prev_ld_off = prev_ld->off;
2629 				s16 prev_st_off = prev_st->off;
2630 				s16 head_ld_off = head_ld_meta->insn.off;
2631 
2632 				if (prev_ld_off < head_ld_off) {
2633 					head_ld_meta->insn.off = prev_ld_off;
2634 					head_st_meta->insn.off = prev_st_off;
2635 					head_ld_meta->ldst_gather_len =
2636 						-head_ld_meta->ldst_gather_len;
2637 				}
2638 
2639 				head_ld_meta->paired_st = &head_st_meta->insn;
2640 				head_st_meta->skip = true;
2641 			} else {
2642 				head_ld_meta->ldst_gather_len = 0;
2643 			}
2644 
2645 			/* If the chain is ended by an load/store pair then this
2646 			 * could serve as the new head of the the next chain.
2647 			 */
2648 			if (curr_pair_is_memcpy(meta1, meta2)) {
2649 				head_ld_meta = meta1;
2650 				head_st_meta = meta2;
2651 				head_ld_meta->ldst_gather_len =
2652 					BPF_LDST_BYTES(ld);
2653 				meta1 = nfp_meta_next(meta1);
2654 				meta2 = nfp_meta_next(meta2);
2655 				prev_ld = ld;
2656 				prev_st = st;
2657 				count = 1;
2658 			} else {
2659 				head_ld_meta = NULL;
2660 				head_st_meta = NULL;
2661 				prev_ld = NULL;
2662 				prev_st = NULL;
2663 				count = 0;
2664 			}
2665 
2666 			continue;
2667 		}
2668 
2669 		if (!head_ld_meta) {
2670 			head_ld_meta = meta1;
2671 			head_st_meta = meta2;
2672 		} else {
2673 			meta1->skip = true;
2674 			meta2->skip = true;
2675 		}
2676 
2677 		head_ld_meta->ldst_gather_len += BPF_LDST_BYTES(ld);
2678 		meta1 = nfp_meta_next(meta1);
2679 		meta2 = nfp_meta_next(meta2);
2680 		prev_ld = ld;
2681 		prev_st = st;
2682 		count++;
2683 	}
2684 }
2685 
2686 static int nfp_bpf_optimize(struct nfp_prog *nfp_prog)
2687 {
2688 	nfp_bpf_opt_reg_init(nfp_prog);
2689 
2690 	nfp_bpf_opt_ld_mask(nfp_prog);
2691 	nfp_bpf_opt_ld_shift(nfp_prog);
2692 	nfp_bpf_opt_ldst_gather(nfp_prog);
2693 
2694 	return 0;
2695 }
2696 
2697 static int nfp_bpf_ustore_calc(struct nfp_prog *nfp_prog, __le64 *ustore)
2698 {
2699 	int i;
2700 
2701 	for (i = 0; i < nfp_prog->prog_len; i++) {
2702 		int err;
2703 
2704 		err = nfp_ustore_check_valid_no_ecc(nfp_prog->prog[i]);
2705 		if (err)
2706 			return err;
2707 
2708 		nfp_prog->prog[i] = nfp_ustore_calc_ecc_insn(nfp_prog->prog[i]);
2709 
2710 		ustore[i] = cpu_to_le64(nfp_prog->prog[i]);
2711 	}
2712 
2713 	return 0;
2714 }
2715 
2716 int nfp_bpf_jit(struct nfp_prog *nfp_prog)
2717 {
2718 	int ret;
2719 
2720 	ret = nfp_bpf_optimize(nfp_prog);
2721 	if (ret)
2722 		return ret;
2723 
2724 	ret = nfp_translate(nfp_prog);
2725 	if (ret) {
2726 		pr_err("Translation failed with error %d (translated: %u)\n",
2727 		       ret, nfp_prog->n_translated);
2728 		return -EINVAL;
2729 	}
2730 
2731 	return nfp_bpf_ustore_calc(nfp_prog, (__force __le64 *)nfp_prog->prog);
2732 }
2733 
2734 void nfp_bpf_jit_prepare(struct nfp_prog *nfp_prog, unsigned int cnt)
2735 {
2736 	struct nfp_insn_meta *meta;
2737 
2738 	/* Another pass to record jump information. */
2739 	list_for_each_entry(meta, &nfp_prog->insns, l) {
2740 		u64 code = meta->insn.code;
2741 
2742 		if (BPF_CLASS(code) == BPF_JMP && BPF_OP(code) != BPF_EXIT &&
2743 		    BPF_OP(code) != BPF_CALL) {
2744 			struct nfp_insn_meta *dst_meta;
2745 			unsigned short dst_indx;
2746 
2747 			dst_indx = meta->n + 1 + meta->insn.off;
2748 			dst_meta = nfp_bpf_goto_meta(nfp_prog, meta, dst_indx,
2749 						     cnt);
2750 
2751 			meta->jmp_dst = dst_meta;
2752 			dst_meta->flags |= FLAG_INSN_IS_JUMP_DST;
2753 		}
2754 	}
2755 }
2756