1 /*
2  * Copyright (C) 2016-2017 Netronome Systems, Inc.
3  *
4  * This software is dual licensed under the GNU General License Version 2,
5  * June 1991 as shown in the file COPYING in the top-level directory of this
6  * source tree or the BSD 2-Clause License provided below.  You have the
7  * option to license this software under the complete terms of either license.
8  *
9  * The BSD 2-Clause License:
10  *
11  *     Redistribution and use in source and binary forms, with or
12  *     without modification, are permitted provided that the following
13  *     conditions are met:
14  *
15  *      1. Redistributions of source code must retain the above
16  *         copyright notice, this list of conditions and the following
17  *         disclaimer.
18  *
19  *      2. Redistributions in binary form must reproduce the above
20  *         copyright notice, this list of conditions and the following
21  *         disclaimer in the documentation and/or other materials
22  *         provided with the distribution.
23  *
24  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31  * SOFTWARE.
32  */
33 
34 #define pr_fmt(fmt)	"NFP net bpf: " fmt
35 
36 #include <linux/kernel.h>
37 #include <linux/bpf.h>
38 #include <linux/filter.h>
39 #include <linux/pkt_cls.h>
40 #include <linux/unistd.h>
41 
42 #include "main.h"
43 #include "../nfp_asm.h"
44 
45 /* --- NFP prog --- */
46 /* Foreach "multiple" entries macros provide pos and next<n> pointers.
47  * It's safe to modify the next pointers (but not pos).
48  */
49 #define nfp_for_each_insn_walk2(nfp_prog, pos, next)			\
50 	for (pos = list_first_entry(&(nfp_prog)->insns, typeof(*pos), l), \
51 	     next = list_next_entry(pos, l);			\
52 	     &(nfp_prog)->insns != &pos->l &&			\
53 	     &(nfp_prog)->insns != &next->l;			\
54 	     pos = nfp_meta_next(pos),				\
55 	     next = nfp_meta_next(pos))
56 
57 #define nfp_for_each_insn_walk3(nfp_prog, pos, next, next2)		\
58 	for (pos = list_first_entry(&(nfp_prog)->insns, typeof(*pos), l), \
59 	     next = list_next_entry(pos, l),			\
60 	     next2 = list_next_entry(next, l);			\
61 	     &(nfp_prog)->insns != &pos->l &&			\
62 	     &(nfp_prog)->insns != &next->l &&			\
63 	     &(nfp_prog)->insns != &next2->l;			\
64 	     pos = nfp_meta_next(pos),				\
65 	     next = nfp_meta_next(pos),				\
66 	     next2 = nfp_meta_next(next))
67 
68 static bool
69 nfp_meta_has_prev(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
70 {
71 	return meta->l.prev != &nfp_prog->insns;
72 }
73 
74 static void nfp_prog_push(struct nfp_prog *nfp_prog, u64 insn)
75 {
76 	if (nfp_prog->__prog_alloc_len == nfp_prog->prog_len) {
77 		nfp_prog->error = -ENOSPC;
78 		return;
79 	}
80 
81 	nfp_prog->prog[nfp_prog->prog_len] = insn;
82 	nfp_prog->prog_len++;
83 }
84 
85 static unsigned int nfp_prog_current_offset(struct nfp_prog *nfp_prog)
86 {
87 	return nfp_prog->start_off + nfp_prog->prog_len;
88 }
89 
90 static unsigned int
91 nfp_prog_offset_to_index(struct nfp_prog *nfp_prog, unsigned int offset)
92 {
93 	return offset - nfp_prog->start_off;
94 }
95 
96 /* --- Emitters --- */
97 static void
98 __emit_cmd(struct nfp_prog *nfp_prog, enum cmd_tgt_map op,
99 	   u8 mode, u8 xfer, u8 areg, u8 breg, u8 size, bool sync, bool indir)
100 {
101 	enum cmd_ctx_swap ctx;
102 	u64 insn;
103 
104 	if (sync)
105 		ctx = CMD_CTX_SWAP;
106 	else
107 		ctx = CMD_CTX_NO_SWAP;
108 
109 	insn =	FIELD_PREP(OP_CMD_A_SRC, areg) |
110 		FIELD_PREP(OP_CMD_CTX, ctx) |
111 		FIELD_PREP(OP_CMD_B_SRC, breg) |
112 		FIELD_PREP(OP_CMD_TOKEN, cmd_tgt_act[op].token) |
113 		FIELD_PREP(OP_CMD_XFER, xfer) |
114 		FIELD_PREP(OP_CMD_CNT, size) |
115 		FIELD_PREP(OP_CMD_SIG, sync) |
116 		FIELD_PREP(OP_CMD_TGT_CMD, cmd_tgt_act[op].tgt_cmd) |
117 		FIELD_PREP(OP_CMD_INDIR, indir) |
118 		FIELD_PREP(OP_CMD_MODE, mode);
119 
120 	nfp_prog_push(nfp_prog, insn);
121 }
122 
123 static void
124 emit_cmd_any(struct nfp_prog *nfp_prog, enum cmd_tgt_map op, u8 mode, u8 xfer,
125 	     swreg lreg, swreg rreg, u8 size, bool sync, bool indir)
126 {
127 	struct nfp_insn_re_regs reg;
128 	int err;
129 
130 	err = swreg_to_restricted(reg_none(), lreg, rreg, &reg, false);
131 	if (err) {
132 		nfp_prog->error = err;
133 		return;
134 	}
135 	if (reg.swap) {
136 		pr_err("cmd can't swap arguments\n");
137 		nfp_prog->error = -EFAULT;
138 		return;
139 	}
140 	if (reg.dst_lmextn || reg.src_lmextn) {
141 		pr_err("cmd can't use LMextn\n");
142 		nfp_prog->error = -EFAULT;
143 		return;
144 	}
145 
146 	__emit_cmd(nfp_prog, op, mode, xfer, reg.areg, reg.breg, size, sync,
147 		   indir);
148 }
149 
150 static void
151 emit_cmd(struct nfp_prog *nfp_prog, enum cmd_tgt_map op, u8 mode, u8 xfer,
152 	 swreg lreg, swreg rreg, u8 size, bool sync)
153 {
154 	emit_cmd_any(nfp_prog, op, mode, xfer, lreg, rreg, size, sync, false);
155 }
156 
157 static void
158 emit_cmd_indir(struct nfp_prog *nfp_prog, enum cmd_tgt_map op, u8 mode, u8 xfer,
159 	       swreg lreg, swreg rreg, u8 size, bool sync)
160 {
161 	emit_cmd_any(nfp_prog, op, mode, xfer, lreg, rreg, size, sync, true);
162 }
163 
164 static void
165 __emit_br(struct nfp_prog *nfp_prog, enum br_mask mask, enum br_ev_pip ev_pip,
166 	  enum br_ctx_signal_state css, u16 addr, u8 defer)
167 {
168 	u16 addr_lo, addr_hi;
169 	u64 insn;
170 
171 	addr_lo = addr & (OP_BR_ADDR_LO >> __bf_shf(OP_BR_ADDR_LO));
172 	addr_hi = addr != addr_lo;
173 
174 	insn = OP_BR_BASE |
175 		FIELD_PREP(OP_BR_MASK, mask) |
176 		FIELD_PREP(OP_BR_EV_PIP, ev_pip) |
177 		FIELD_PREP(OP_BR_CSS, css) |
178 		FIELD_PREP(OP_BR_DEFBR, defer) |
179 		FIELD_PREP(OP_BR_ADDR_LO, addr_lo) |
180 		FIELD_PREP(OP_BR_ADDR_HI, addr_hi);
181 
182 	nfp_prog_push(nfp_prog, insn);
183 }
184 
185 static void emit_br_def(struct nfp_prog *nfp_prog, u16 addr, u8 defer)
186 {
187 	if (defer > 2) {
188 		pr_err("BUG: branch defer out of bounds %d\n", defer);
189 		nfp_prog->error = -EFAULT;
190 		return;
191 	}
192 	__emit_br(nfp_prog, BR_UNC, BR_EV_PIP_UNCOND, BR_CSS_NONE, addr, defer);
193 }
194 
195 static void
196 emit_br(struct nfp_prog *nfp_prog, enum br_mask mask, u16 addr, u8 defer)
197 {
198 	__emit_br(nfp_prog, mask,
199 		  mask != BR_UNC ? BR_EV_PIP_COND : BR_EV_PIP_UNCOND,
200 		  BR_CSS_NONE, addr, defer);
201 }
202 
203 static void
204 __emit_immed(struct nfp_prog *nfp_prog, u16 areg, u16 breg, u16 imm_hi,
205 	     enum immed_width width, bool invert,
206 	     enum immed_shift shift, bool wr_both,
207 	     bool dst_lmextn, bool src_lmextn)
208 {
209 	u64 insn;
210 
211 	insn = OP_IMMED_BASE |
212 		FIELD_PREP(OP_IMMED_A_SRC, areg) |
213 		FIELD_PREP(OP_IMMED_B_SRC, breg) |
214 		FIELD_PREP(OP_IMMED_IMM, imm_hi) |
215 		FIELD_PREP(OP_IMMED_WIDTH, width) |
216 		FIELD_PREP(OP_IMMED_INV, invert) |
217 		FIELD_PREP(OP_IMMED_SHIFT, shift) |
218 		FIELD_PREP(OP_IMMED_WR_AB, wr_both) |
219 		FIELD_PREP(OP_IMMED_SRC_LMEXTN, src_lmextn) |
220 		FIELD_PREP(OP_IMMED_DST_LMEXTN, dst_lmextn);
221 
222 	nfp_prog_push(nfp_prog, insn);
223 }
224 
225 static void
226 emit_immed(struct nfp_prog *nfp_prog, swreg dst, u16 imm,
227 	   enum immed_width width, bool invert, enum immed_shift shift)
228 {
229 	struct nfp_insn_ur_regs reg;
230 	int err;
231 
232 	if (swreg_type(dst) == NN_REG_IMM) {
233 		nfp_prog->error = -EFAULT;
234 		return;
235 	}
236 
237 	err = swreg_to_unrestricted(dst, dst, reg_imm(imm & 0xff), &reg);
238 	if (err) {
239 		nfp_prog->error = err;
240 		return;
241 	}
242 
243 	/* Use reg.dst when destination is No-Dest. */
244 	__emit_immed(nfp_prog,
245 		     swreg_type(dst) == NN_REG_NONE ? reg.dst : reg.areg,
246 		     reg.breg, imm >> 8, width, invert, shift,
247 		     reg.wr_both, reg.dst_lmextn, reg.src_lmextn);
248 }
249 
250 static void
251 __emit_shf(struct nfp_prog *nfp_prog, u16 dst, enum alu_dst_ab dst_ab,
252 	   enum shf_sc sc, u8 shift,
253 	   u16 areg, enum shf_op op, u16 breg, bool i8, bool sw, bool wr_both,
254 	   bool dst_lmextn, bool src_lmextn)
255 {
256 	u64 insn;
257 
258 	if (!FIELD_FIT(OP_SHF_SHIFT, shift)) {
259 		nfp_prog->error = -EFAULT;
260 		return;
261 	}
262 
263 	if (sc == SHF_SC_L_SHF)
264 		shift = 32 - shift;
265 
266 	insn = OP_SHF_BASE |
267 		FIELD_PREP(OP_SHF_A_SRC, areg) |
268 		FIELD_PREP(OP_SHF_SC, sc) |
269 		FIELD_PREP(OP_SHF_B_SRC, breg) |
270 		FIELD_PREP(OP_SHF_I8, i8) |
271 		FIELD_PREP(OP_SHF_SW, sw) |
272 		FIELD_PREP(OP_SHF_DST, dst) |
273 		FIELD_PREP(OP_SHF_SHIFT, shift) |
274 		FIELD_PREP(OP_SHF_OP, op) |
275 		FIELD_PREP(OP_SHF_DST_AB, dst_ab) |
276 		FIELD_PREP(OP_SHF_WR_AB, wr_both) |
277 		FIELD_PREP(OP_SHF_SRC_LMEXTN, src_lmextn) |
278 		FIELD_PREP(OP_SHF_DST_LMEXTN, dst_lmextn);
279 
280 	nfp_prog_push(nfp_prog, insn);
281 }
282 
283 static void
284 emit_shf(struct nfp_prog *nfp_prog, swreg dst,
285 	 swreg lreg, enum shf_op op, swreg rreg, enum shf_sc sc, u8 shift)
286 {
287 	struct nfp_insn_re_regs reg;
288 	int err;
289 
290 	err = swreg_to_restricted(dst, lreg, rreg, &reg, true);
291 	if (err) {
292 		nfp_prog->error = err;
293 		return;
294 	}
295 
296 	__emit_shf(nfp_prog, reg.dst, reg.dst_ab, sc, shift,
297 		   reg.areg, op, reg.breg, reg.i8, reg.swap, reg.wr_both,
298 		   reg.dst_lmextn, reg.src_lmextn);
299 }
300 
301 static void
302 __emit_alu(struct nfp_prog *nfp_prog, u16 dst, enum alu_dst_ab dst_ab,
303 	   u16 areg, enum alu_op op, u16 breg, bool swap, bool wr_both,
304 	   bool dst_lmextn, bool src_lmextn)
305 {
306 	u64 insn;
307 
308 	insn = OP_ALU_BASE |
309 		FIELD_PREP(OP_ALU_A_SRC, areg) |
310 		FIELD_PREP(OP_ALU_B_SRC, breg) |
311 		FIELD_PREP(OP_ALU_DST, dst) |
312 		FIELD_PREP(OP_ALU_SW, swap) |
313 		FIELD_PREP(OP_ALU_OP, op) |
314 		FIELD_PREP(OP_ALU_DST_AB, dst_ab) |
315 		FIELD_PREP(OP_ALU_WR_AB, wr_both) |
316 		FIELD_PREP(OP_ALU_SRC_LMEXTN, src_lmextn) |
317 		FIELD_PREP(OP_ALU_DST_LMEXTN, dst_lmextn);
318 
319 	nfp_prog_push(nfp_prog, insn);
320 }
321 
322 static void
323 emit_alu(struct nfp_prog *nfp_prog, swreg dst,
324 	 swreg lreg, enum alu_op op, swreg rreg)
325 {
326 	struct nfp_insn_ur_regs reg;
327 	int err;
328 
329 	err = swreg_to_unrestricted(dst, lreg, rreg, &reg);
330 	if (err) {
331 		nfp_prog->error = err;
332 		return;
333 	}
334 
335 	__emit_alu(nfp_prog, reg.dst, reg.dst_ab,
336 		   reg.areg, op, reg.breg, reg.swap, reg.wr_both,
337 		   reg.dst_lmextn, reg.src_lmextn);
338 }
339 
340 static void
341 __emit_ld_field(struct nfp_prog *nfp_prog, enum shf_sc sc,
342 		u8 areg, u8 bmask, u8 breg, u8 shift, bool imm8,
343 		bool zero, bool swap, bool wr_both,
344 		bool dst_lmextn, bool src_lmextn)
345 {
346 	u64 insn;
347 
348 	insn = OP_LDF_BASE |
349 		FIELD_PREP(OP_LDF_A_SRC, areg) |
350 		FIELD_PREP(OP_LDF_SC, sc) |
351 		FIELD_PREP(OP_LDF_B_SRC, breg) |
352 		FIELD_PREP(OP_LDF_I8, imm8) |
353 		FIELD_PREP(OP_LDF_SW, swap) |
354 		FIELD_PREP(OP_LDF_ZF, zero) |
355 		FIELD_PREP(OP_LDF_BMASK, bmask) |
356 		FIELD_PREP(OP_LDF_SHF, shift) |
357 		FIELD_PREP(OP_LDF_WR_AB, wr_both) |
358 		FIELD_PREP(OP_LDF_SRC_LMEXTN, src_lmextn) |
359 		FIELD_PREP(OP_LDF_DST_LMEXTN, dst_lmextn);
360 
361 	nfp_prog_push(nfp_prog, insn);
362 }
363 
364 static void
365 emit_ld_field_any(struct nfp_prog *nfp_prog, swreg dst, u8 bmask, swreg src,
366 		  enum shf_sc sc, u8 shift, bool zero)
367 {
368 	struct nfp_insn_re_regs reg;
369 	int err;
370 
371 	/* Note: ld_field is special as it uses one of the src regs as dst */
372 	err = swreg_to_restricted(dst, dst, src, &reg, true);
373 	if (err) {
374 		nfp_prog->error = err;
375 		return;
376 	}
377 
378 	__emit_ld_field(nfp_prog, sc, reg.areg, bmask, reg.breg, shift,
379 			reg.i8, zero, reg.swap, reg.wr_both,
380 			reg.dst_lmextn, reg.src_lmextn);
381 }
382 
383 static void
384 emit_ld_field(struct nfp_prog *nfp_prog, swreg dst, u8 bmask, swreg src,
385 	      enum shf_sc sc, u8 shift)
386 {
387 	emit_ld_field_any(nfp_prog, dst, bmask, src, sc, shift, false);
388 }
389 
390 static void
391 __emit_lcsr(struct nfp_prog *nfp_prog, u16 areg, u16 breg, bool wr, u16 addr,
392 	    bool dst_lmextn, bool src_lmextn)
393 {
394 	u64 insn;
395 
396 	insn = OP_LCSR_BASE |
397 		FIELD_PREP(OP_LCSR_A_SRC, areg) |
398 		FIELD_PREP(OP_LCSR_B_SRC, breg) |
399 		FIELD_PREP(OP_LCSR_WRITE, wr) |
400 		FIELD_PREP(OP_LCSR_ADDR, addr) |
401 		FIELD_PREP(OP_LCSR_SRC_LMEXTN, src_lmextn) |
402 		FIELD_PREP(OP_LCSR_DST_LMEXTN, dst_lmextn);
403 
404 	nfp_prog_push(nfp_prog, insn);
405 }
406 
407 static void emit_csr_wr(struct nfp_prog *nfp_prog, swreg src, u16 addr)
408 {
409 	struct nfp_insn_ur_regs reg;
410 	int err;
411 
412 	/* This instruction takes immeds instead of reg_none() for the ignored
413 	 * operand, but we can't encode 2 immeds in one instr with our normal
414 	 * swreg infra so if param is an immed, we encode as reg_none() and
415 	 * copy the immed to both operands.
416 	 */
417 	if (swreg_type(src) == NN_REG_IMM) {
418 		err = swreg_to_unrestricted(reg_none(), src, reg_none(), &reg);
419 		reg.breg = reg.areg;
420 	} else {
421 		err = swreg_to_unrestricted(reg_none(), src, reg_imm(0), &reg);
422 	}
423 	if (err) {
424 		nfp_prog->error = err;
425 		return;
426 	}
427 
428 	__emit_lcsr(nfp_prog, reg.areg, reg.breg, true, addr / 4,
429 		    false, reg.src_lmextn);
430 }
431 
432 static void emit_nop(struct nfp_prog *nfp_prog)
433 {
434 	__emit_immed(nfp_prog, UR_REG_IMM, UR_REG_IMM, 0, 0, 0, 0, 0, 0, 0);
435 }
436 
437 /* --- Wrappers --- */
438 static bool pack_immed(u32 imm, u16 *val, enum immed_shift *shift)
439 {
440 	if (!(imm & 0xffff0000)) {
441 		*val = imm;
442 		*shift = IMMED_SHIFT_0B;
443 	} else if (!(imm & 0xff0000ff)) {
444 		*val = imm >> 8;
445 		*shift = IMMED_SHIFT_1B;
446 	} else if (!(imm & 0x0000ffff)) {
447 		*val = imm >> 16;
448 		*shift = IMMED_SHIFT_2B;
449 	} else {
450 		return false;
451 	}
452 
453 	return true;
454 }
455 
456 static void wrp_immed(struct nfp_prog *nfp_prog, swreg dst, u32 imm)
457 {
458 	enum immed_shift shift;
459 	u16 val;
460 
461 	if (pack_immed(imm, &val, &shift)) {
462 		emit_immed(nfp_prog, dst, val, IMMED_WIDTH_ALL, false, shift);
463 	} else if (pack_immed(~imm, &val, &shift)) {
464 		emit_immed(nfp_prog, dst, val, IMMED_WIDTH_ALL, true, shift);
465 	} else {
466 		emit_immed(nfp_prog, dst, imm & 0xffff, IMMED_WIDTH_ALL,
467 			   false, IMMED_SHIFT_0B);
468 		emit_immed(nfp_prog, dst, imm >> 16, IMMED_WIDTH_WORD,
469 			   false, IMMED_SHIFT_2B);
470 	}
471 }
472 
473 /* ur_load_imm_any() - encode immediate or use tmp register (unrestricted)
474  * If the @imm is small enough encode it directly in operand and return
475  * otherwise load @imm to a spare register and return its encoding.
476  */
477 static swreg ur_load_imm_any(struct nfp_prog *nfp_prog, u32 imm, swreg tmp_reg)
478 {
479 	if (FIELD_FIT(UR_REG_IMM_MAX, imm))
480 		return reg_imm(imm);
481 
482 	wrp_immed(nfp_prog, tmp_reg, imm);
483 	return tmp_reg;
484 }
485 
486 /* re_load_imm_any() - encode immediate or use tmp register (restricted)
487  * If the @imm is small enough encode it directly in operand and return
488  * otherwise load @imm to a spare register and return its encoding.
489  */
490 static swreg re_load_imm_any(struct nfp_prog *nfp_prog, u32 imm, swreg tmp_reg)
491 {
492 	if (FIELD_FIT(RE_REG_IMM_MAX, imm))
493 		return reg_imm(imm);
494 
495 	wrp_immed(nfp_prog, tmp_reg, imm);
496 	return tmp_reg;
497 }
498 
499 static void wrp_nops(struct nfp_prog *nfp_prog, unsigned int count)
500 {
501 	while (count--)
502 		emit_nop(nfp_prog);
503 }
504 
505 static void
506 wrp_br_special(struct nfp_prog *nfp_prog, enum br_mask mask,
507 	       enum br_special special)
508 {
509 	emit_br(nfp_prog, mask, 0, 0);
510 
511 	nfp_prog->prog[nfp_prog->prog_len - 1] |=
512 		FIELD_PREP(OP_BR_SPECIAL, special);
513 }
514 
515 static void wrp_mov(struct nfp_prog *nfp_prog, swreg dst, swreg src)
516 {
517 	emit_alu(nfp_prog, dst, reg_none(), ALU_OP_NONE, src);
518 }
519 
520 static void wrp_reg_mov(struct nfp_prog *nfp_prog, u16 dst, u16 src)
521 {
522 	wrp_mov(nfp_prog, reg_both(dst), reg_b(src));
523 }
524 
525 /* wrp_reg_subpart() - load @field_len bytes from @offset of @src, write the
526  * result to @dst from low end.
527  */
528 static void
529 wrp_reg_subpart(struct nfp_prog *nfp_prog, swreg dst, swreg src, u8 field_len,
530 		u8 offset)
531 {
532 	enum shf_sc sc = offset ? SHF_SC_R_SHF : SHF_SC_NONE;
533 	u8 mask = (1 << field_len) - 1;
534 
535 	emit_ld_field_any(nfp_prog, dst, mask, src, sc, offset * 8, true);
536 }
537 
538 /* NFP has Command Push Pull bus which supports bluk memory operations. */
539 static int nfp_cpp_memcpy(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
540 {
541 	bool descending_seq = meta->ldst_gather_len < 0;
542 	s16 len = abs(meta->ldst_gather_len);
543 	swreg src_base, off;
544 	unsigned int i;
545 	u8 xfer_num;
546 
547 	off = re_load_imm_any(nfp_prog, meta->insn.off, imm_b(nfp_prog));
548 	src_base = reg_a(meta->insn.src_reg * 2);
549 	xfer_num = round_up(len, 4) / 4;
550 
551 	/* Setup PREV_ALU fields to override memory read length. */
552 	if (len > 32)
553 		wrp_immed(nfp_prog, reg_none(),
554 			  CMD_OVE_LEN | FIELD_PREP(CMD_OV_LEN, xfer_num - 1));
555 
556 	/* Memory read from source addr into transfer-in registers. */
557 	emit_cmd_any(nfp_prog, CMD_TGT_READ32_SWAP, CMD_MODE_32b, 0, src_base,
558 		     off, xfer_num - 1, true, len > 32);
559 
560 	/* Move from transfer-in to transfer-out. */
561 	for (i = 0; i < xfer_num; i++)
562 		wrp_mov(nfp_prog, reg_xfer(i), reg_xfer(i));
563 
564 	off = re_load_imm_any(nfp_prog, meta->paired_st->off, imm_b(nfp_prog));
565 
566 	if (len <= 8) {
567 		/* Use single direct_ref write8. */
568 		emit_cmd(nfp_prog, CMD_TGT_WRITE8_SWAP, CMD_MODE_32b, 0,
569 			 reg_a(meta->paired_st->dst_reg * 2), off, len - 1,
570 			 true);
571 	} else if (len <= 32 && IS_ALIGNED(len, 4)) {
572 		/* Use single direct_ref write32. */
573 		emit_cmd(nfp_prog, CMD_TGT_WRITE32_SWAP, CMD_MODE_32b, 0,
574 			 reg_a(meta->paired_st->dst_reg * 2), off, xfer_num - 1,
575 			 true);
576 	} else if (len <= 32) {
577 		/* Use single indirect_ref write8. */
578 		wrp_immed(nfp_prog, reg_none(),
579 			  CMD_OVE_LEN | FIELD_PREP(CMD_OV_LEN, len - 1));
580 		emit_cmd_indir(nfp_prog, CMD_TGT_WRITE8_SWAP, CMD_MODE_32b, 0,
581 			       reg_a(meta->paired_st->dst_reg * 2), off,
582 			       len - 1, true);
583 	} else if (IS_ALIGNED(len, 4)) {
584 		/* Use single indirect_ref write32. */
585 		wrp_immed(nfp_prog, reg_none(),
586 			  CMD_OVE_LEN | FIELD_PREP(CMD_OV_LEN, xfer_num - 1));
587 		emit_cmd_indir(nfp_prog, CMD_TGT_WRITE32_SWAP, CMD_MODE_32b, 0,
588 			       reg_a(meta->paired_st->dst_reg * 2), off,
589 			       xfer_num - 1, true);
590 	} else if (len <= 40) {
591 		/* Use one direct_ref write32 to write the first 32-bytes, then
592 		 * another direct_ref write8 to write the remaining bytes.
593 		 */
594 		emit_cmd(nfp_prog, CMD_TGT_WRITE32_SWAP, CMD_MODE_32b, 0,
595 			 reg_a(meta->paired_st->dst_reg * 2), off, 7,
596 			 true);
597 
598 		off = re_load_imm_any(nfp_prog, meta->paired_st->off + 32,
599 				      imm_b(nfp_prog));
600 		emit_cmd(nfp_prog, CMD_TGT_WRITE8_SWAP, CMD_MODE_32b, 8,
601 			 reg_a(meta->paired_st->dst_reg * 2), off, len - 33,
602 			 true);
603 	} else {
604 		/* Use one indirect_ref write32 to write 4-bytes aligned length,
605 		 * then another direct_ref write8 to write the remaining bytes.
606 		 */
607 		u8 new_off;
608 
609 		wrp_immed(nfp_prog, reg_none(),
610 			  CMD_OVE_LEN | FIELD_PREP(CMD_OV_LEN, xfer_num - 2));
611 		emit_cmd_indir(nfp_prog, CMD_TGT_WRITE32_SWAP, CMD_MODE_32b, 0,
612 			       reg_a(meta->paired_st->dst_reg * 2), off,
613 			       xfer_num - 2, true);
614 		new_off = meta->paired_st->off + (xfer_num - 1) * 4;
615 		off = re_load_imm_any(nfp_prog, new_off, imm_b(nfp_prog));
616 		emit_cmd(nfp_prog, CMD_TGT_WRITE8_SWAP, CMD_MODE_32b,
617 			 xfer_num - 1, reg_a(meta->paired_st->dst_reg * 2), off,
618 			 (len & 0x3) - 1, true);
619 	}
620 
621 	/* TODO: The following extra load is to make sure data flow be identical
622 	 *  before and after we do memory copy optimization.
623 	 *
624 	 *  The load destination register is not guaranteed to be dead, so we
625 	 *  need to make sure it is loaded with the value the same as before
626 	 *  this transformation.
627 	 *
628 	 *  These extra loads could be removed once we have accurate register
629 	 *  usage information.
630 	 */
631 	if (descending_seq)
632 		xfer_num = 0;
633 	else if (BPF_SIZE(meta->insn.code) != BPF_DW)
634 		xfer_num = xfer_num - 1;
635 	else
636 		xfer_num = xfer_num - 2;
637 
638 	switch (BPF_SIZE(meta->insn.code)) {
639 	case BPF_B:
640 		wrp_reg_subpart(nfp_prog, reg_both(meta->insn.dst_reg * 2),
641 				reg_xfer(xfer_num), 1,
642 				IS_ALIGNED(len, 4) ? 3 : (len & 3) - 1);
643 		break;
644 	case BPF_H:
645 		wrp_reg_subpart(nfp_prog, reg_both(meta->insn.dst_reg * 2),
646 				reg_xfer(xfer_num), 2, (len & 3) ^ 2);
647 		break;
648 	case BPF_W:
649 		wrp_mov(nfp_prog, reg_both(meta->insn.dst_reg * 2),
650 			reg_xfer(0));
651 		break;
652 	case BPF_DW:
653 		wrp_mov(nfp_prog, reg_both(meta->insn.dst_reg * 2),
654 			reg_xfer(xfer_num));
655 		wrp_mov(nfp_prog, reg_both(meta->insn.dst_reg * 2 + 1),
656 			reg_xfer(xfer_num + 1));
657 		break;
658 	}
659 
660 	if (BPF_SIZE(meta->insn.code) != BPF_DW)
661 		wrp_immed(nfp_prog, reg_both(meta->insn.dst_reg * 2 + 1), 0);
662 
663 	return 0;
664 }
665 
666 static int
667 data_ld(struct nfp_prog *nfp_prog, swreg offset, u8 dst_gpr, int size)
668 {
669 	unsigned int i;
670 	u16 shift, sz;
671 
672 	/* We load the value from the address indicated in @offset and then
673 	 * shift out the data we don't need.  Note: this is big endian!
674 	 */
675 	sz = max(size, 4);
676 	shift = size < 4 ? 4 - size : 0;
677 
678 	emit_cmd(nfp_prog, CMD_TGT_READ8, CMD_MODE_32b, 0,
679 		 pptr_reg(nfp_prog), offset, sz - 1, true);
680 
681 	i = 0;
682 	if (shift)
683 		emit_shf(nfp_prog, reg_both(dst_gpr), reg_none(), SHF_OP_NONE,
684 			 reg_xfer(0), SHF_SC_R_SHF, shift * 8);
685 	else
686 		for (; i * 4 < size; i++)
687 			wrp_mov(nfp_prog, reg_both(dst_gpr + i), reg_xfer(i));
688 
689 	if (i < 2)
690 		wrp_immed(nfp_prog, reg_both(dst_gpr + 1), 0);
691 
692 	return 0;
693 }
694 
695 static int
696 data_ld_host_order(struct nfp_prog *nfp_prog, u8 src_gpr, swreg offset,
697 		   u8 dst_gpr, int size)
698 {
699 	unsigned int i;
700 	u8 mask, sz;
701 
702 	/* We load the value from the address indicated in @offset and then
703 	 * mask out the data we don't need.  Note: this is little endian!
704 	 */
705 	sz = max(size, 4);
706 	mask = size < 4 ? GENMASK(size - 1, 0) : 0;
707 
708 	emit_cmd(nfp_prog, CMD_TGT_READ32_SWAP, CMD_MODE_32b, 0,
709 		 reg_a(src_gpr), offset, sz / 4 - 1, true);
710 
711 	i = 0;
712 	if (mask)
713 		emit_ld_field_any(nfp_prog, reg_both(dst_gpr), mask,
714 				  reg_xfer(0), SHF_SC_NONE, 0, true);
715 	else
716 		for (; i * 4 < size; i++)
717 			wrp_mov(nfp_prog, reg_both(dst_gpr + i), reg_xfer(i));
718 
719 	if (i < 2)
720 		wrp_immed(nfp_prog, reg_both(dst_gpr + 1), 0);
721 
722 	return 0;
723 }
724 
725 static int
726 construct_data_ind_ld(struct nfp_prog *nfp_prog, u16 offset, u16 src, u8 size)
727 {
728 	swreg tmp_reg;
729 
730 	/* Calculate the true offset (src_reg + imm) */
731 	tmp_reg = ur_load_imm_any(nfp_prog, offset, imm_b(nfp_prog));
732 	emit_alu(nfp_prog, imm_both(nfp_prog), reg_a(src), ALU_OP_ADD, tmp_reg);
733 
734 	/* Check packet length (size guaranteed to fit b/c it's u8) */
735 	emit_alu(nfp_prog, imm_a(nfp_prog),
736 		 imm_a(nfp_prog), ALU_OP_ADD, reg_imm(size));
737 	emit_alu(nfp_prog, reg_none(),
738 		 plen_reg(nfp_prog), ALU_OP_SUB, imm_a(nfp_prog));
739 	wrp_br_special(nfp_prog, BR_BLO, OP_BR_GO_ABORT);
740 
741 	/* Load data */
742 	return data_ld(nfp_prog, imm_b(nfp_prog), 0, size);
743 }
744 
745 static int construct_data_ld(struct nfp_prog *nfp_prog, u16 offset, u8 size)
746 {
747 	swreg tmp_reg;
748 
749 	/* Check packet length */
750 	tmp_reg = ur_load_imm_any(nfp_prog, offset + size, imm_a(nfp_prog));
751 	emit_alu(nfp_prog, reg_none(), plen_reg(nfp_prog), ALU_OP_SUB, tmp_reg);
752 	wrp_br_special(nfp_prog, BR_BLO, OP_BR_GO_ABORT);
753 
754 	/* Load data */
755 	tmp_reg = re_load_imm_any(nfp_prog, offset, imm_b(nfp_prog));
756 	return data_ld(nfp_prog, tmp_reg, 0, size);
757 }
758 
759 static int
760 data_stx_host_order(struct nfp_prog *nfp_prog, u8 dst_gpr, swreg offset,
761 		    u8 src_gpr, u8 size)
762 {
763 	unsigned int i;
764 
765 	for (i = 0; i * 4 < size; i++)
766 		wrp_mov(nfp_prog, reg_xfer(i), reg_a(src_gpr + i));
767 
768 	emit_cmd(nfp_prog, CMD_TGT_WRITE8_SWAP, CMD_MODE_32b, 0,
769 		 reg_a(dst_gpr), offset, size - 1, true);
770 
771 	return 0;
772 }
773 
774 static int
775 data_st_host_order(struct nfp_prog *nfp_prog, u8 dst_gpr, swreg offset,
776 		   u64 imm, u8 size)
777 {
778 	wrp_immed(nfp_prog, reg_xfer(0), imm);
779 	if (size == 8)
780 		wrp_immed(nfp_prog, reg_xfer(1), imm >> 32);
781 
782 	emit_cmd(nfp_prog, CMD_TGT_WRITE8_SWAP, CMD_MODE_32b, 0,
783 		 reg_a(dst_gpr), offset, size - 1, true);
784 
785 	return 0;
786 }
787 
788 typedef int
789 (*lmem_step)(struct nfp_prog *nfp_prog, u8 gpr, u8 gpr_byte, s32 off,
790 	     unsigned int size, bool first, bool new_gpr, bool last, bool lm3,
791 	     bool needs_inc);
792 
793 static int
794 wrp_lmem_load(struct nfp_prog *nfp_prog, u8 dst, u8 dst_byte, s32 off,
795 	      unsigned int size, bool first, bool new_gpr, bool last, bool lm3,
796 	      bool needs_inc)
797 {
798 	bool should_inc = needs_inc && new_gpr && !last;
799 	u32 idx, src_byte;
800 	enum shf_sc sc;
801 	swreg reg;
802 	int shf;
803 	u8 mask;
804 
805 	if (WARN_ON_ONCE(dst_byte + size > 4 || off % 4 + size > 4))
806 		return -EOPNOTSUPP;
807 
808 	idx = off / 4;
809 
810 	/* Move the entire word */
811 	if (size == 4) {
812 		wrp_mov(nfp_prog, reg_both(dst),
813 			should_inc ? reg_lm_inc(3) : reg_lm(lm3 ? 3 : 0, idx));
814 		return 0;
815 	}
816 
817 	if (WARN_ON_ONCE(lm3 && idx > RE_REG_LM_IDX_MAX))
818 		return -EOPNOTSUPP;
819 
820 	src_byte = off % 4;
821 
822 	mask = (1 << size) - 1;
823 	mask <<= dst_byte;
824 
825 	if (WARN_ON_ONCE(mask > 0xf))
826 		return -EOPNOTSUPP;
827 
828 	shf = abs(src_byte - dst_byte) * 8;
829 	if (src_byte == dst_byte) {
830 		sc = SHF_SC_NONE;
831 	} else if (src_byte < dst_byte) {
832 		shf = 32 - shf;
833 		sc = SHF_SC_L_SHF;
834 	} else {
835 		sc = SHF_SC_R_SHF;
836 	}
837 
838 	/* ld_field can address fewer indexes, if offset too large do RMW.
839 	 * Because we RMV twice we waste 2 cycles on unaligned 8 byte writes.
840 	 */
841 	if (idx <= RE_REG_LM_IDX_MAX) {
842 		reg = reg_lm(lm3 ? 3 : 0, idx);
843 	} else {
844 		reg = imm_a(nfp_prog);
845 		/* If it's not the first part of the load and we start a new GPR
846 		 * that means we are loading a second part of the LMEM word into
847 		 * a new GPR.  IOW we've already looked that LMEM word and
848 		 * therefore it has been loaded into imm_a().
849 		 */
850 		if (first || !new_gpr)
851 			wrp_mov(nfp_prog, reg, reg_lm(0, idx));
852 	}
853 
854 	emit_ld_field_any(nfp_prog, reg_both(dst), mask, reg, sc, shf, new_gpr);
855 
856 	if (should_inc)
857 		wrp_mov(nfp_prog, reg_none(), reg_lm_inc(3));
858 
859 	return 0;
860 }
861 
862 static int
863 wrp_lmem_store(struct nfp_prog *nfp_prog, u8 src, u8 src_byte, s32 off,
864 	       unsigned int size, bool first, bool new_gpr, bool last, bool lm3,
865 	       bool needs_inc)
866 {
867 	bool should_inc = needs_inc && new_gpr && !last;
868 	u32 idx, dst_byte;
869 	enum shf_sc sc;
870 	swreg reg;
871 	int shf;
872 	u8 mask;
873 
874 	if (WARN_ON_ONCE(src_byte + size > 4 || off % 4 + size > 4))
875 		return -EOPNOTSUPP;
876 
877 	idx = off / 4;
878 
879 	/* Move the entire word */
880 	if (size == 4) {
881 		wrp_mov(nfp_prog,
882 			should_inc ? reg_lm_inc(3) : reg_lm(lm3 ? 3 : 0, idx),
883 			reg_b(src));
884 		return 0;
885 	}
886 
887 	if (WARN_ON_ONCE(lm3 && idx > RE_REG_LM_IDX_MAX))
888 		return -EOPNOTSUPP;
889 
890 	dst_byte = off % 4;
891 
892 	mask = (1 << size) - 1;
893 	mask <<= dst_byte;
894 
895 	if (WARN_ON_ONCE(mask > 0xf))
896 		return -EOPNOTSUPP;
897 
898 	shf = abs(src_byte - dst_byte) * 8;
899 	if (src_byte == dst_byte) {
900 		sc = SHF_SC_NONE;
901 	} else if (src_byte < dst_byte) {
902 		shf = 32 - shf;
903 		sc = SHF_SC_L_SHF;
904 	} else {
905 		sc = SHF_SC_R_SHF;
906 	}
907 
908 	/* ld_field can address fewer indexes, if offset too large do RMW.
909 	 * Because we RMV twice we waste 2 cycles on unaligned 8 byte writes.
910 	 */
911 	if (idx <= RE_REG_LM_IDX_MAX) {
912 		reg = reg_lm(lm3 ? 3 : 0, idx);
913 	} else {
914 		reg = imm_a(nfp_prog);
915 		/* Only first and last LMEM locations are going to need RMW,
916 		 * the middle location will be overwritten fully.
917 		 */
918 		if (first || last)
919 			wrp_mov(nfp_prog, reg, reg_lm(0, idx));
920 	}
921 
922 	emit_ld_field(nfp_prog, reg, mask, reg_b(src), sc, shf);
923 
924 	if (new_gpr || last) {
925 		if (idx > RE_REG_LM_IDX_MAX)
926 			wrp_mov(nfp_prog, reg_lm(0, idx), reg);
927 		if (should_inc)
928 			wrp_mov(nfp_prog, reg_none(), reg_lm_inc(3));
929 	}
930 
931 	return 0;
932 }
933 
934 static int
935 mem_op_stack(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
936 	     unsigned int size, unsigned int ptr_off, u8 gpr, u8 ptr_gpr,
937 	     bool clr_gpr, lmem_step step)
938 {
939 	s32 off = nfp_prog->stack_depth + meta->insn.off + ptr_off;
940 	bool first = true, last;
941 	bool needs_inc = false;
942 	swreg stack_off_reg;
943 	u8 prev_gpr = 255;
944 	u32 gpr_byte = 0;
945 	bool lm3 = true;
946 	int ret;
947 
948 	if (meta->ptr_not_const) {
949 		/* Use of the last encountered ptr_off is OK, they all have
950 		 * the same alignment.  Depend on low bits of value being
951 		 * discarded when written to LMaddr register.
952 		 */
953 		stack_off_reg = ur_load_imm_any(nfp_prog, meta->insn.off,
954 						stack_imm(nfp_prog));
955 
956 		emit_alu(nfp_prog, imm_b(nfp_prog),
957 			 reg_a(ptr_gpr), ALU_OP_ADD, stack_off_reg);
958 
959 		needs_inc = true;
960 	} else if (off + size <= 64) {
961 		/* We can reach bottom 64B with LMaddr0 */
962 		lm3 = false;
963 	} else if (round_down(off, 32) == round_down(off + size - 1, 32)) {
964 		/* We have to set up a new pointer.  If we know the offset
965 		 * and the entire access falls into a single 32 byte aligned
966 		 * window we won't have to increment the LM pointer.
967 		 * The 32 byte alignment is imporant because offset is ORed in
968 		 * not added when doing *l$indexN[off].
969 		 */
970 		stack_off_reg = ur_load_imm_any(nfp_prog, round_down(off, 32),
971 						stack_imm(nfp_prog));
972 		emit_alu(nfp_prog, imm_b(nfp_prog),
973 			 stack_reg(nfp_prog), ALU_OP_ADD, stack_off_reg);
974 
975 		off %= 32;
976 	} else {
977 		stack_off_reg = ur_load_imm_any(nfp_prog, round_down(off, 4),
978 						stack_imm(nfp_prog));
979 
980 		emit_alu(nfp_prog, imm_b(nfp_prog),
981 			 stack_reg(nfp_prog), ALU_OP_ADD, stack_off_reg);
982 
983 		needs_inc = true;
984 	}
985 	if (lm3) {
986 		emit_csr_wr(nfp_prog, imm_b(nfp_prog), NFP_CSR_ACT_LM_ADDR3);
987 		/* For size < 4 one slot will be filled by zeroing of upper. */
988 		wrp_nops(nfp_prog, clr_gpr && size < 8 ? 2 : 3);
989 	}
990 
991 	if (clr_gpr && size < 8)
992 		wrp_immed(nfp_prog, reg_both(gpr + 1), 0);
993 
994 	while (size) {
995 		u32 slice_end;
996 		u8 slice_size;
997 
998 		slice_size = min(size, 4 - gpr_byte);
999 		slice_end = min(off + slice_size, round_up(off + 1, 4));
1000 		slice_size = slice_end - off;
1001 
1002 		last = slice_size == size;
1003 
1004 		if (needs_inc)
1005 			off %= 4;
1006 
1007 		ret = step(nfp_prog, gpr, gpr_byte, off, slice_size,
1008 			   first, gpr != prev_gpr, last, lm3, needs_inc);
1009 		if (ret)
1010 			return ret;
1011 
1012 		prev_gpr = gpr;
1013 		first = false;
1014 
1015 		gpr_byte += slice_size;
1016 		if (gpr_byte >= 4) {
1017 			gpr_byte -= 4;
1018 			gpr++;
1019 		}
1020 
1021 		size -= slice_size;
1022 		off += slice_size;
1023 	}
1024 
1025 	return 0;
1026 }
1027 
1028 static void
1029 wrp_alu_imm(struct nfp_prog *nfp_prog, u8 dst, enum alu_op alu_op, u32 imm)
1030 {
1031 	swreg tmp_reg;
1032 
1033 	if (alu_op == ALU_OP_AND) {
1034 		if (!imm)
1035 			wrp_immed(nfp_prog, reg_both(dst), 0);
1036 		if (!imm || !~imm)
1037 			return;
1038 	}
1039 	if (alu_op == ALU_OP_OR) {
1040 		if (!~imm)
1041 			wrp_immed(nfp_prog, reg_both(dst), ~0U);
1042 		if (!imm || !~imm)
1043 			return;
1044 	}
1045 	if (alu_op == ALU_OP_XOR) {
1046 		if (!~imm)
1047 			emit_alu(nfp_prog, reg_both(dst), reg_none(),
1048 				 ALU_OP_NOT, reg_b(dst));
1049 		if (!imm || !~imm)
1050 			return;
1051 	}
1052 
1053 	tmp_reg = ur_load_imm_any(nfp_prog, imm, imm_b(nfp_prog));
1054 	emit_alu(nfp_prog, reg_both(dst), reg_a(dst), alu_op, tmp_reg);
1055 }
1056 
1057 static int
1058 wrp_alu64_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
1059 	      enum alu_op alu_op, bool skip)
1060 {
1061 	const struct bpf_insn *insn = &meta->insn;
1062 	u64 imm = insn->imm; /* sign extend */
1063 
1064 	if (skip) {
1065 		meta->skip = true;
1066 		return 0;
1067 	}
1068 
1069 	wrp_alu_imm(nfp_prog, insn->dst_reg * 2, alu_op, imm & ~0U);
1070 	wrp_alu_imm(nfp_prog, insn->dst_reg * 2 + 1, alu_op, imm >> 32);
1071 
1072 	return 0;
1073 }
1074 
1075 static int
1076 wrp_alu64_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
1077 	      enum alu_op alu_op)
1078 {
1079 	u8 dst = meta->insn.dst_reg * 2, src = meta->insn.src_reg * 2;
1080 
1081 	emit_alu(nfp_prog, reg_both(dst), reg_a(dst), alu_op, reg_b(src));
1082 	emit_alu(nfp_prog, reg_both(dst + 1),
1083 		 reg_a(dst + 1), alu_op, reg_b(src + 1));
1084 
1085 	return 0;
1086 }
1087 
1088 static int
1089 wrp_alu32_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
1090 	      enum alu_op alu_op, bool skip)
1091 {
1092 	const struct bpf_insn *insn = &meta->insn;
1093 
1094 	if (skip) {
1095 		meta->skip = true;
1096 		return 0;
1097 	}
1098 
1099 	wrp_alu_imm(nfp_prog, insn->dst_reg * 2, alu_op, insn->imm);
1100 	wrp_immed(nfp_prog, reg_both(insn->dst_reg * 2 + 1), 0);
1101 
1102 	return 0;
1103 }
1104 
1105 static int
1106 wrp_alu32_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
1107 	      enum alu_op alu_op)
1108 {
1109 	u8 dst = meta->insn.dst_reg * 2, src = meta->insn.src_reg * 2;
1110 
1111 	emit_alu(nfp_prog, reg_both(dst), reg_a(dst), alu_op, reg_b(src));
1112 	wrp_immed(nfp_prog, reg_both(meta->insn.dst_reg * 2 + 1), 0);
1113 
1114 	return 0;
1115 }
1116 
1117 static void
1118 wrp_test_reg_one(struct nfp_prog *nfp_prog, u8 dst, enum alu_op alu_op, u8 src,
1119 		 enum br_mask br_mask, u16 off)
1120 {
1121 	emit_alu(nfp_prog, reg_none(), reg_a(dst), alu_op, reg_b(src));
1122 	emit_br(nfp_prog, br_mask, off, 0);
1123 }
1124 
1125 static int
1126 wrp_test_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
1127 	     enum alu_op alu_op, enum br_mask br_mask)
1128 {
1129 	const struct bpf_insn *insn = &meta->insn;
1130 
1131 	wrp_test_reg_one(nfp_prog, insn->dst_reg * 2, alu_op,
1132 			 insn->src_reg * 2, br_mask, insn->off);
1133 	wrp_test_reg_one(nfp_prog, insn->dst_reg * 2 + 1, alu_op,
1134 			 insn->src_reg * 2 + 1, br_mask, insn->off);
1135 
1136 	return 0;
1137 }
1138 
1139 static int
1140 wrp_cmp_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
1141 	    enum br_mask br_mask, bool swap)
1142 {
1143 	const struct bpf_insn *insn = &meta->insn;
1144 	u64 imm = insn->imm; /* sign extend */
1145 	u8 reg = insn->dst_reg * 2;
1146 	swreg tmp_reg;
1147 
1148 	tmp_reg = ur_load_imm_any(nfp_prog, imm & ~0U, imm_b(nfp_prog));
1149 	if (!swap)
1150 		emit_alu(nfp_prog, reg_none(), reg_a(reg), ALU_OP_SUB, tmp_reg);
1151 	else
1152 		emit_alu(nfp_prog, reg_none(), tmp_reg, ALU_OP_SUB, reg_a(reg));
1153 
1154 	tmp_reg = ur_load_imm_any(nfp_prog, imm >> 32, imm_b(nfp_prog));
1155 	if (!swap)
1156 		emit_alu(nfp_prog, reg_none(),
1157 			 reg_a(reg + 1), ALU_OP_SUB_C, tmp_reg);
1158 	else
1159 		emit_alu(nfp_prog, reg_none(),
1160 			 tmp_reg, ALU_OP_SUB_C, reg_a(reg + 1));
1161 
1162 	emit_br(nfp_prog, br_mask, insn->off, 0);
1163 
1164 	return 0;
1165 }
1166 
1167 static int
1168 wrp_cmp_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
1169 	    enum br_mask br_mask, bool swap)
1170 {
1171 	const struct bpf_insn *insn = &meta->insn;
1172 	u8 areg, breg;
1173 
1174 	areg = insn->dst_reg * 2;
1175 	breg = insn->src_reg * 2;
1176 
1177 	if (swap) {
1178 		areg ^= breg;
1179 		breg ^= areg;
1180 		areg ^= breg;
1181 	}
1182 
1183 	emit_alu(nfp_prog, reg_none(), reg_a(areg), ALU_OP_SUB, reg_b(breg));
1184 	emit_alu(nfp_prog, reg_none(),
1185 		 reg_a(areg + 1), ALU_OP_SUB_C, reg_b(breg + 1));
1186 	emit_br(nfp_prog, br_mask, insn->off, 0);
1187 
1188 	return 0;
1189 }
1190 
1191 static void wrp_end32(struct nfp_prog *nfp_prog, swreg reg_in, u8 gpr_out)
1192 {
1193 	emit_ld_field(nfp_prog, reg_both(gpr_out), 0xf, reg_in,
1194 		      SHF_SC_R_ROT, 8);
1195 	emit_ld_field(nfp_prog, reg_both(gpr_out), 0x5, reg_a(gpr_out),
1196 		      SHF_SC_R_ROT, 16);
1197 }
1198 
1199 /* --- Callbacks --- */
1200 static int mov_reg64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1201 {
1202 	const struct bpf_insn *insn = &meta->insn;
1203 	u8 dst = insn->dst_reg * 2;
1204 	u8 src = insn->src_reg * 2;
1205 
1206 	if (insn->src_reg == BPF_REG_10) {
1207 		swreg stack_depth_reg;
1208 
1209 		stack_depth_reg = ur_load_imm_any(nfp_prog,
1210 						  nfp_prog->stack_depth,
1211 						  stack_imm(nfp_prog));
1212 		emit_alu(nfp_prog, reg_both(dst),
1213 			 stack_reg(nfp_prog), ALU_OP_ADD, stack_depth_reg);
1214 		wrp_immed(nfp_prog, reg_both(dst + 1), 0);
1215 	} else {
1216 		wrp_reg_mov(nfp_prog, dst, src);
1217 		wrp_reg_mov(nfp_prog, dst + 1, src + 1);
1218 	}
1219 
1220 	return 0;
1221 }
1222 
1223 static int mov_imm64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1224 {
1225 	u64 imm = meta->insn.imm; /* sign extend */
1226 
1227 	wrp_immed(nfp_prog, reg_both(meta->insn.dst_reg * 2), imm & ~0U);
1228 	wrp_immed(nfp_prog, reg_both(meta->insn.dst_reg * 2 + 1), imm >> 32);
1229 
1230 	return 0;
1231 }
1232 
1233 static int xor_reg64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1234 {
1235 	return wrp_alu64_reg(nfp_prog, meta, ALU_OP_XOR);
1236 }
1237 
1238 static int xor_imm64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1239 {
1240 	return wrp_alu64_imm(nfp_prog, meta, ALU_OP_XOR, !meta->insn.imm);
1241 }
1242 
1243 static int and_reg64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1244 {
1245 	return wrp_alu64_reg(nfp_prog, meta, ALU_OP_AND);
1246 }
1247 
1248 static int and_imm64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1249 {
1250 	return wrp_alu64_imm(nfp_prog, meta, ALU_OP_AND, !~meta->insn.imm);
1251 }
1252 
1253 static int or_reg64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1254 {
1255 	return wrp_alu64_reg(nfp_prog, meta, ALU_OP_OR);
1256 }
1257 
1258 static int or_imm64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1259 {
1260 	return wrp_alu64_imm(nfp_prog, meta, ALU_OP_OR, !meta->insn.imm);
1261 }
1262 
1263 static int add_reg64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1264 {
1265 	const struct bpf_insn *insn = &meta->insn;
1266 
1267 	emit_alu(nfp_prog, reg_both(insn->dst_reg * 2),
1268 		 reg_a(insn->dst_reg * 2), ALU_OP_ADD,
1269 		 reg_b(insn->src_reg * 2));
1270 	emit_alu(nfp_prog, reg_both(insn->dst_reg * 2 + 1),
1271 		 reg_a(insn->dst_reg * 2 + 1), ALU_OP_ADD_C,
1272 		 reg_b(insn->src_reg * 2 + 1));
1273 
1274 	return 0;
1275 }
1276 
1277 static int add_imm64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1278 {
1279 	const struct bpf_insn *insn = &meta->insn;
1280 	u64 imm = insn->imm; /* sign extend */
1281 
1282 	wrp_alu_imm(nfp_prog, insn->dst_reg * 2, ALU_OP_ADD, imm & ~0U);
1283 	wrp_alu_imm(nfp_prog, insn->dst_reg * 2 + 1, ALU_OP_ADD_C, imm >> 32);
1284 
1285 	return 0;
1286 }
1287 
1288 static int sub_reg64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1289 {
1290 	const struct bpf_insn *insn = &meta->insn;
1291 
1292 	emit_alu(nfp_prog, reg_both(insn->dst_reg * 2),
1293 		 reg_a(insn->dst_reg * 2), ALU_OP_SUB,
1294 		 reg_b(insn->src_reg * 2));
1295 	emit_alu(nfp_prog, reg_both(insn->dst_reg * 2 + 1),
1296 		 reg_a(insn->dst_reg * 2 + 1), ALU_OP_SUB_C,
1297 		 reg_b(insn->src_reg * 2 + 1));
1298 
1299 	return 0;
1300 }
1301 
1302 static int sub_imm64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1303 {
1304 	const struct bpf_insn *insn = &meta->insn;
1305 	u64 imm = insn->imm; /* sign extend */
1306 
1307 	wrp_alu_imm(nfp_prog, insn->dst_reg * 2, ALU_OP_SUB, imm & ~0U);
1308 	wrp_alu_imm(nfp_prog, insn->dst_reg * 2 + 1, ALU_OP_SUB_C, imm >> 32);
1309 
1310 	return 0;
1311 }
1312 
1313 static int neg_reg64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1314 {
1315 	const struct bpf_insn *insn = &meta->insn;
1316 
1317 	emit_alu(nfp_prog, reg_both(insn->dst_reg * 2), reg_imm(0),
1318 		 ALU_OP_SUB, reg_b(insn->dst_reg * 2));
1319 	emit_alu(nfp_prog, reg_both(insn->dst_reg * 2 + 1), reg_imm(0),
1320 		 ALU_OP_SUB_C, reg_b(insn->dst_reg * 2 + 1));
1321 
1322 	return 0;
1323 }
1324 
1325 static int shl_imm64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1326 {
1327 	const struct bpf_insn *insn = &meta->insn;
1328 	u8 dst = insn->dst_reg * 2;
1329 
1330 	if (insn->imm < 32) {
1331 		emit_shf(nfp_prog, reg_both(dst + 1),
1332 			 reg_a(dst + 1), SHF_OP_NONE, reg_b(dst),
1333 			 SHF_SC_R_DSHF, 32 - insn->imm);
1334 		emit_shf(nfp_prog, reg_both(dst),
1335 			 reg_none(), SHF_OP_NONE, reg_b(dst),
1336 			 SHF_SC_L_SHF, insn->imm);
1337 	} else if (insn->imm == 32) {
1338 		wrp_reg_mov(nfp_prog, dst + 1, dst);
1339 		wrp_immed(nfp_prog, reg_both(dst), 0);
1340 	} else if (insn->imm > 32) {
1341 		emit_shf(nfp_prog, reg_both(dst + 1),
1342 			 reg_none(), SHF_OP_NONE, reg_b(dst),
1343 			 SHF_SC_L_SHF, insn->imm - 32);
1344 		wrp_immed(nfp_prog, reg_both(dst), 0);
1345 	}
1346 
1347 	return 0;
1348 }
1349 
1350 static int shr_imm64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1351 {
1352 	const struct bpf_insn *insn = &meta->insn;
1353 	u8 dst = insn->dst_reg * 2;
1354 
1355 	if (insn->imm < 32) {
1356 		emit_shf(nfp_prog, reg_both(dst),
1357 			 reg_a(dst + 1), SHF_OP_NONE, reg_b(dst),
1358 			 SHF_SC_R_DSHF, insn->imm);
1359 		emit_shf(nfp_prog, reg_both(dst + 1),
1360 			 reg_none(), SHF_OP_NONE, reg_b(dst + 1),
1361 			 SHF_SC_R_SHF, insn->imm);
1362 	} else if (insn->imm == 32) {
1363 		wrp_reg_mov(nfp_prog, dst, dst + 1);
1364 		wrp_immed(nfp_prog, reg_both(dst + 1), 0);
1365 	} else if (insn->imm > 32) {
1366 		emit_shf(nfp_prog, reg_both(dst),
1367 			 reg_none(), SHF_OP_NONE, reg_b(dst + 1),
1368 			 SHF_SC_R_SHF, insn->imm - 32);
1369 		wrp_immed(nfp_prog, reg_both(dst + 1), 0);
1370 	}
1371 
1372 	return 0;
1373 }
1374 
1375 static int mov_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1376 {
1377 	const struct bpf_insn *insn = &meta->insn;
1378 
1379 	wrp_reg_mov(nfp_prog, insn->dst_reg * 2,  insn->src_reg * 2);
1380 	wrp_immed(nfp_prog, reg_both(insn->dst_reg * 2 + 1), 0);
1381 
1382 	return 0;
1383 }
1384 
1385 static int mov_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1386 {
1387 	const struct bpf_insn *insn = &meta->insn;
1388 
1389 	wrp_immed(nfp_prog, reg_both(insn->dst_reg * 2), insn->imm);
1390 	wrp_immed(nfp_prog, reg_both(insn->dst_reg * 2 + 1), 0);
1391 
1392 	return 0;
1393 }
1394 
1395 static int xor_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1396 {
1397 	return wrp_alu32_reg(nfp_prog, meta, ALU_OP_XOR);
1398 }
1399 
1400 static int xor_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1401 {
1402 	return wrp_alu32_imm(nfp_prog, meta, ALU_OP_XOR, !~meta->insn.imm);
1403 }
1404 
1405 static int and_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1406 {
1407 	return wrp_alu32_reg(nfp_prog, meta, ALU_OP_AND);
1408 }
1409 
1410 static int and_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1411 {
1412 	return wrp_alu32_imm(nfp_prog, meta, ALU_OP_AND, !~meta->insn.imm);
1413 }
1414 
1415 static int or_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1416 {
1417 	return wrp_alu32_reg(nfp_prog, meta, ALU_OP_OR);
1418 }
1419 
1420 static int or_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1421 {
1422 	return wrp_alu32_imm(nfp_prog, meta, ALU_OP_OR, !meta->insn.imm);
1423 }
1424 
1425 static int add_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1426 {
1427 	return wrp_alu32_reg(nfp_prog, meta, ALU_OP_ADD);
1428 }
1429 
1430 static int add_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1431 {
1432 	return wrp_alu32_imm(nfp_prog, meta, ALU_OP_ADD, !meta->insn.imm);
1433 }
1434 
1435 static int sub_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1436 {
1437 	return wrp_alu32_reg(nfp_prog, meta, ALU_OP_SUB);
1438 }
1439 
1440 static int sub_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1441 {
1442 	return wrp_alu32_imm(nfp_prog, meta, ALU_OP_SUB, !meta->insn.imm);
1443 }
1444 
1445 static int neg_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1446 {
1447 	u8 dst = meta->insn.dst_reg * 2;
1448 
1449 	emit_alu(nfp_prog, reg_both(dst), reg_imm(0), ALU_OP_SUB, reg_b(dst));
1450 	wrp_immed(nfp_prog, reg_both(meta->insn.dst_reg * 2 + 1), 0);
1451 
1452 	return 0;
1453 }
1454 
1455 static int shl_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1456 {
1457 	const struct bpf_insn *insn = &meta->insn;
1458 
1459 	if (!insn->imm)
1460 		return 1; /* TODO: zero shift means indirect */
1461 
1462 	emit_shf(nfp_prog, reg_both(insn->dst_reg * 2),
1463 		 reg_none(), SHF_OP_NONE, reg_b(insn->dst_reg * 2),
1464 		 SHF_SC_L_SHF, insn->imm);
1465 	wrp_immed(nfp_prog, reg_both(insn->dst_reg * 2 + 1), 0);
1466 
1467 	return 0;
1468 }
1469 
1470 static int end_reg32(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1471 {
1472 	const struct bpf_insn *insn = &meta->insn;
1473 	u8 gpr = insn->dst_reg * 2;
1474 
1475 	switch (insn->imm) {
1476 	case 16:
1477 		emit_ld_field(nfp_prog, reg_both(gpr), 0x9, reg_b(gpr),
1478 			      SHF_SC_R_ROT, 8);
1479 		emit_ld_field(nfp_prog, reg_both(gpr), 0xe, reg_a(gpr),
1480 			      SHF_SC_R_SHF, 16);
1481 
1482 		wrp_immed(nfp_prog, reg_both(gpr + 1), 0);
1483 		break;
1484 	case 32:
1485 		wrp_end32(nfp_prog, reg_a(gpr), gpr);
1486 		wrp_immed(nfp_prog, reg_both(gpr + 1), 0);
1487 		break;
1488 	case 64:
1489 		wrp_mov(nfp_prog, imm_a(nfp_prog), reg_b(gpr + 1));
1490 
1491 		wrp_end32(nfp_prog, reg_a(gpr), gpr + 1);
1492 		wrp_end32(nfp_prog, imm_a(nfp_prog), gpr);
1493 		break;
1494 	}
1495 
1496 	return 0;
1497 }
1498 
1499 static int imm_ld8_part2(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1500 {
1501 	struct nfp_insn_meta *prev = nfp_meta_prev(meta);
1502 	u32 imm_lo, imm_hi;
1503 	u8 dst;
1504 
1505 	dst = prev->insn.dst_reg * 2;
1506 	imm_lo = prev->insn.imm;
1507 	imm_hi = meta->insn.imm;
1508 
1509 	wrp_immed(nfp_prog, reg_both(dst), imm_lo);
1510 
1511 	/* mov is always 1 insn, load imm may be two, so try to use mov */
1512 	if (imm_hi == imm_lo)
1513 		wrp_mov(nfp_prog, reg_both(dst + 1), reg_a(dst));
1514 	else
1515 		wrp_immed(nfp_prog, reg_both(dst + 1), imm_hi);
1516 
1517 	return 0;
1518 }
1519 
1520 static int imm_ld8(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1521 {
1522 	meta->double_cb = imm_ld8_part2;
1523 	return 0;
1524 }
1525 
1526 static int data_ld1(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1527 {
1528 	return construct_data_ld(nfp_prog, meta->insn.imm, 1);
1529 }
1530 
1531 static int data_ld2(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1532 {
1533 	return construct_data_ld(nfp_prog, meta->insn.imm, 2);
1534 }
1535 
1536 static int data_ld4(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1537 {
1538 	return construct_data_ld(nfp_prog, meta->insn.imm, 4);
1539 }
1540 
1541 static int data_ind_ld1(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1542 {
1543 	return construct_data_ind_ld(nfp_prog, meta->insn.imm,
1544 				     meta->insn.src_reg * 2, 1);
1545 }
1546 
1547 static int data_ind_ld2(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1548 {
1549 	return construct_data_ind_ld(nfp_prog, meta->insn.imm,
1550 				     meta->insn.src_reg * 2, 2);
1551 }
1552 
1553 static int data_ind_ld4(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1554 {
1555 	return construct_data_ind_ld(nfp_prog, meta->insn.imm,
1556 				     meta->insn.src_reg * 2, 4);
1557 }
1558 
1559 static int
1560 mem_ldx_stack(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
1561 	      unsigned int size, unsigned int ptr_off)
1562 {
1563 	return mem_op_stack(nfp_prog, meta, size, ptr_off,
1564 			    meta->insn.dst_reg * 2, meta->insn.src_reg * 2,
1565 			    true, wrp_lmem_load);
1566 }
1567 
1568 static int mem_ldx_skb(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
1569 		       u8 size)
1570 {
1571 	swreg dst = reg_both(meta->insn.dst_reg * 2);
1572 
1573 	switch (meta->insn.off) {
1574 	case offsetof(struct __sk_buff, len):
1575 		if (size != FIELD_SIZEOF(struct __sk_buff, len))
1576 			return -EOPNOTSUPP;
1577 		wrp_mov(nfp_prog, dst, plen_reg(nfp_prog));
1578 		break;
1579 	case offsetof(struct __sk_buff, data):
1580 		if (size != FIELD_SIZEOF(struct __sk_buff, data))
1581 			return -EOPNOTSUPP;
1582 		wrp_mov(nfp_prog, dst, pptr_reg(nfp_prog));
1583 		break;
1584 	case offsetof(struct __sk_buff, data_end):
1585 		if (size != FIELD_SIZEOF(struct __sk_buff, data_end))
1586 			return -EOPNOTSUPP;
1587 		emit_alu(nfp_prog, dst,
1588 			 plen_reg(nfp_prog), ALU_OP_ADD, pptr_reg(nfp_prog));
1589 		break;
1590 	default:
1591 		return -EOPNOTSUPP;
1592 	}
1593 
1594 	wrp_immed(nfp_prog, reg_both(meta->insn.dst_reg * 2 + 1), 0);
1595 
1596 	return 0;
1597 }
1598 
1599 static int mem_ldx_xdp(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
1600 		       u8 size)
1601 {
1602 	swreg dst = reg_both(meta->insn.dst_reg * 2);
1603 
1604 	switch (meta->insn.off) {
1605 	case offsetof(struct xdp_md, data):
1606 		if (size != FIELD_SIZEOF(struct xdp_md, data))
1607 			return -EOPNOTSUPP;
1608 		wrp_mov(nfp_prog, dst, pptr_reg(nfp_prog));
1609 		break;
1610 	case offsetof(struct xdp_md, data_end):
1611 		if (size != FIELD_SIZEOF(struct xdp_md, data_end))
1612 			return -EOPNOTSUPP;
1613 		emit_alu(nfp_prog, dst,
1614 			 plen_reg(nfp_prog), ALU_OP_ADD, pptr_reg(nfp_prog));
1615 		break;
1616 	default:
1617 		return -EOPNOTSUPP;
1618 	}
1619 
1620 	wrp_immed(nfp_prog, reg_both(meta->insn.dst_reg * 2 + 1), 0);
1621 
1622 	return 0;
1623 }
1624 
1625 static int
1626 mem_ldx_data(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
1627 	     unsigned int size)
1628 {
1629 	swreg tmp_reg;
1630 
1631 	tmp_reg = re_load_imm_any(nfp_prog, meta->insn.off, imm_b(nfp_prog));
1632 
1633 	return data_ld_host_order(nfp_prog, meta->insn.src_reg * 2, tmp_reg,
1634 				  meta->insn.dst_reg * 2, size);
1635 }
1636 
1637 static int
1638 mem_ldx(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
1639 	unsigned int size)
1640 {
1641 	if (meta->ldst_gather_len)
1642 		return nfp_cpp_memcpy(nfp_prog, meta);
1643 
1644 	if (meta->ptr.type == PTR_TO_CTX) {
1645 		if (nfp_prog->type == BPF_PROG_TYPE_XDP)
1646 			return mem_ldx_xdp(nfp_prog, meta, size);
1647 		else
1648 			return mem_ldx_skb(nfp_prog, meta, size);
1649 	}
1650 
1651 	if (meta->ptr.type == PTR_TO_PACKET)
1652 		return mem_ldx_data(nfp_prog, meta, size);
1653 
1654 	if (meta->ptr.type == PTR_TO_STACK)
1655 		return mem_ldx_stack(nfp_prog, meta, size,
1656 				     meta->ptr.off + meta->ptr.var_off.value);
1657 
1658 	return -EOPNOTSUPP;
1659 }
1660 
1661 static int mem_ldx1(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1662 {
1663 	return mem_ldx(nfp_prog, meta, 1);
1664 }
1665 
1666 static int mem_ldx2(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1667 {
1668 	return mem_ldx(nfp_prog, meta, 2);
1669 }
1670 
1671 static int mem_ldx4(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1672 {
1673 	return mem_ldx(nfp_prog, meta, 4);
1674 }
1675 
1676 static int mem_ldx8(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1677 {
1678 	return mem_ldx(nfp_prog, meta, 8);
1679 }
1680 
1681 static int
1682 mem_st_data(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
1683 	    unsigned int size)
1684 {
1685 	u64 imm = meta->insn.imm; /* sign extend */
1686 	swreg off_reg;
1687 
1688 	off_reg = re_load_imm_any(nfp_prog, meta->insn.off, imm_b(nfp_prog));
1689 
1690 	return data_st_host_order(nfp_prog, meta->insn.dst_reg * 2, off_reg,
1691 				  imm, size);
1692 }
1693 
1694 static int mem_st(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
1695 		  unsigned int size)
1696 {
1697 	if (meta->ptr.type == PTR_TO_PACKET)
1698 		return mem_st_data(nfp_prog, meta, size);
1699 
1700 	return -EOPNOTSUPP;
1701 }
1702 
1703 static int mem_st1(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1704 {
1705 	return mem_st(nfp_prog, meta, 1);
1706 }
1707 
1708 static int mem_st2(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1709 {
1710 	return mem_st(nfp_prog, meta, 2);
1711 }
1712 
1713 static int mem_st4(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1714 {
1715 	return mem_st(nfp_prog, meta, 4);
1716 }
1717 
1718 static int mem_st8(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1719 {
1720 	return mem_st(nfp_prog, meta, 8);
1721 }
1722 
1723 static int
1724 mem_stx_data(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
1725 	     unsigned int size)
1726 {
1727 	swreg off_reg;
1728 
1729 	off_reg = re_load_imm_any(nfp_prog, meta->insn.off, imm_b(nfp_prog));
1730 
1731 	return data_stx_host_order(nfp_prog, meta->insn.dst_reg * 2, off_reg,
1732 				   meta->insn.src_reg * 2, size);
1733 }
1734 
1735 static int
1736 mem_stx_stack(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
1737 	      unsigned int size, unsigned int ptr_off)
1738 {
1739 	return mem_op_stack(nfp_prog, meta, size, ptr_off,
1740 			    meta->insn.src_reg * 2, meta->insn.dst_reg * 2,
1741 			    false, wrp_lmem_store);
1742 }
1743 
1744 static int
1745 mem_stx(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
1746 	unsigned int size)
1747 {
1748 	if (meta->ptr.type == PTR_TO_PACKET)
1749 		return mem_stx_data(nfp_prog, meta, size);
1750 
1751 	if (meta->ptr.type == PTR_TO_STACK)
1752 		return mem_stx_stack(nfp_prog, meta, size,
1753 				     meta->ptr.off + meta->ptr.var_off.value);
1754 
1755 	return -EOPNOTSUPP;
1756 }
1757 
1758 static int mem_stx1(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1759 {
1760 	return mem_stx(nfp_prog, meta, 1);
1761 }
1762 
1763 static int mem_stx2(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1764 {
1765 	return mem_stx(nfp_prog, meta, 2);
1766 }
1767 
1768 static int mem_stx4(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1769 {
1770 	return mem_stx(nfp_prog, meta, 4);
1771 }
1772 
1773 static int mem_stx8(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1774 {
1775 	return mem_stx(nfp_prog, meta, 8);
1776 }
1777 
1778 static int jump(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1779 {
1780 	emit_br(nfp_prog, BR_UNC, meta->insn.off, 0);
1781 
1782 	return 0;
1783 }
1784 
1785 static int jeq_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1786 {
1787 	const struct bpf_insn *insn = &meta->insn;
1788 	u64 imm = insn->imm; /* sign extend */
1789 	swreg or1, or2, tmp_reg;
1790 
1791 	or1 = reg_a(insn->dst_reg * 2);
1792 	or2 = reg_b(insn->dst_reg * 2 + 1);
1793 
1794 	if (imm & ~0U) {
1795 		tmp_reg = ur_load_imm_any(nfp_prog, imm & ~0U, imm_b(nfp_prog));
1796 		emit_alu(nfp_prog, imm_a(nfp_prog),
1797 			 reg_a(insn->dst_reg * 2), ALU_OP_XOR, tmp_reg);
1798 		or1 = imm_a(nfp_prog);
1799 	}
1800 
1801 	if (imm >> 32) {
1802 		tmp_reg = ur_load_imm_any(nfp_prog, imm >> 32, imm_b(nfp_prog));
1803 		emit_alu(nfp_prog, imm_b(nfp_prog),
1804 			 reg_a(insn->dst_reg * 2 + 1), ALU_OP_XOR, tmp_reg);
1805 		or2 = imm_b(nfp_prog);
1806 	}
1807 
1808 	emit_alu(nfp_prog, reg_none(), or1, ALU_OP_OR, or2);
1809 	emit_br(nfp_prog, BR_BEQ, insn->off, 0);
1810 
1811 	return 0;
1812 }
1813 
1814 static int jgt_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1815 {
1816 	return wrp_cmp_imm(nfp_prog, meta, BR_BLO, true);
1817 }
1818 
1819 static int jge_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1820 {
1821 	return wrp_cmp_imm(nfp_prog, meta, BR_BHS, false);
1822 }
1823 
1824 static int jlt_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1825 {
1826 	return wrp_cmp_imm(nfp_prog, meta, BR_BLO, false);
1827 }
1828 
1829 static int jle_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1830 {
1831 	return wrp_cmp_imm(nfp_prog, meta, BR_BHS, true);
1832 }
1833 
1834 static int jset_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1835 {
1836 	const struct bpf_insn *insn = &meta->insn;
1837 	u64 imm = insn->imm; /* sign extend */
1838 	swreg tmp_reg;
1839 
1840 	if (!imm) {
1841 		meta->skip = true;
1842 		return 0;
1843 	}
1844 
1845 	if (imm & ~0U) {
1846 		tmp_reg = ur_load_imm_any(nfp_prog, imm & ~0U, imm_b(nfp_prog));
1847 		emit_alu(nfp_prog, reg_none(),
1848 			 reg_a(insn->dst_reg * 2), ALU_OP_AND, tmp_reg);
1849 		emit_br(nfp_prog, BR_BNE, insn->off, 0);
1850 	}
1851 
1852 	if (imm >> 32) {
1853 		tmp_reg = ur_load_imm_any(nfp_prog, imm >> 32, imm_b(nfp_prog));
1854 		emit_alu(nfp_prog, reg_none(),
1855 			 reg_a(insn->dst_reg * 2 + 1), ALU_OP_AND, tmp_reg);
1856 		emit_br(nfp_prog, BR_BNE, insn->off, 0);
1857 	}
1858 
1859 	return 0;
1860 }
1861 
1862 static int jne_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1863 {
1864 	const struct bpf_insn *insn = &meta->insn;
1865 	u64 imm = insn->imm; /* sign extend */
1866 	swreg tmp_reg;
1867 
1868 	if (!imm) {
1869 		emit_alu(nfp_prog, reg_none(), reg_a(insn->dst_reg * 2),
1870 			 ALU_OP_OR, reg_b(insn->dst_reg * 2 + 1));
1871 		emit_br(nfp_prog, BR_BNE, insn->off, 0);
1872 		return 0;
1873 	}
1874 
1875 	tmp_reg = ur_load_imm_any(nfp_prog, imm & ~0U, imm_b(nfp_prog));
1876 	emit_alu(nfp_prog, reg_none(),
1877 		 reg_a(insn->dst_reg * 2), ALU_OP_XOR, tmp_reg);
1878 	emit_br(nfp_prog, BR_BNE, insn->off, 0);
1879 
1880 	tmp_reg = ur_load_imm_any(nfp_prog, imm >> 32, imm_b(nfp_prog));
1881 	emit_alu(nfp_prog, reg_none(),
1882 		 reg_a(insn->dst_reg * 2 + 1), ALU_OP_XOR, tmp_reg);
1883 	emit_br(nfp_prog, BR_BNE, insn->off, 0);
1884 
1885 	return 0;
1886 }
1887 
1888 static int jeq_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1889 {
1890 	const struct bpf_insn *insn = &meta->insn;
1891 
1892 	emit_alu(nfp_prog, imm_a(nfp_prog), reg_a(insn->dst_reg * 2),
1893 		 ALU_OP_XOR, reg_b(insn->src_reg * 2));
1894 	emit_alu(nfp_prog, imm_b(nfp_prog), reg_a(insn->dst_reg * 2 + 1),
1895 		 ALU_OP_XOR, reg_b(insn->src_reg * 2 + 1));
1896 	emit_alu(nfp_prog, reg_none(),
1897 		 imm_a(nfp_prog), ALU_OP_OR, imm_b(nfp_prog));
1898 	emit_br(nfp_prog, BR_BEQ, insn->off, 0);
1899 
1900 	return 0;
1901 }
1902 
1903 static int jgt_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1904 {
1905 	return wrp_cmp_reg(nfp_prog, meta, BR_BLO, true);
1906 }
1907 
1908 static int jge_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1909 {
1910 	return wrp_cmp_reg(nfp_prog, meta, BR_BHS, false);
1911 }
1912 
1913 static int jlt_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1914 {
1915 	return wrp_cmp_reg(nfp_prog, meta, BR_BLO, false);
1916 }
1917 
1918 static int jle_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1919 {
1920 	return wrp_cmp_reg(nfp_prog, meta, BR_BHS, true);
1921 }
1922 
1923 static int jset_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1924 {
1925 	return wrp_test_reg(nfp_prog, meta, ALU_OP_AND, BR_BNE);
1926 }
1927 
1928 static int jne_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1929 {
1930 	return wrp_test_reg(nfp_prog, meta, ALU_OP_XOR, BR_BNE);
1931 }
1932 
1933 static int call(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1934 {
1935 	switch (meta->insn.imm) {
1936 	default:
1937 		WARN_ONCE(1, "verifier allowed unsupported function\n");
1938 		return -EOPNOTSUPP;
1939 	}
1940 }
1941 
1942 static int goto_out(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1943 {
1944 	wrp_br_special(nfp_prog, BR_UNC, OP_BR_GO_OUT);
1945 
1946 	return 0;
1947 }
1948 
1949 static const instr_cb_t instr_cb[256] = {
1950 	[BPF_ALU64 | BPF_MOV | BPF_X] =	mov_reg64,
1951 	[BPF_ALU64 | BPF_MOV | BPF_K] =	mov_imm64,
1952 	[BPF_ALU64 | BPF_XOR | BPF_X] =	xor_reg64,
1953 	[BPF_ALU64 | BPF_XOR | BPF_K] =	xor_imm64,
1954 	[BPF_ALU64 | BPF_AND | BPF_X] =	and_reg64,
1955 	[BPF_ALU64 | BPF_AND | BPF_K] =	and_imm64,
1956 	[BPF_ALU64 | BPF_OR | BPF_X] =	or_reg64,
1957 	[BPF_ALU64 | BPF_OR | BPF_K] =	or_imm64,
1958 	[BPF_ALU64 | BPF_ADD | BPF_X] =	add_reg64,
1959 	[BPF_ALU64 | BPF_ADD | BPF_K] =	add_imm64,
1960 	[BPF_ALU64 | BPF_SUB | BPF_X] =	sub_reg64,
1961 	[BPF_ALU64 | BPF_SUB | BPF_K] =	sub_imm64,
1962 	[BPF_ALU64 | BPF_NEG] =		neg_reg64,
1963 	[BPF_ALU64 | BPF_LSH | BPF_K] =	shl_imm64,
1964 	[BPF_ALU64 | BPF_RSH | BPF_K] =	shr_imm64,
1965 	[BPF_ALU | BPF_MOV | BPF_X] =	mov_reg,
1966 	[BPF_ALU | BPF_MOV | BPF_K] =	mov_imm,
1967 	[BPF_ALU | BPF_XOR | BPF_X] =	xor_reg,
1968 	[BPF_ALU | BPF_XOR | BPF_K] =	xor_imm,
1969 	[BPF_ALU | BPF_AND | BPF_X] =	and_reg,
1970 	[BPF_ALU | BPF_AND | BPF_K] =	and_imm,
1971 	[BPF_ALU | BPF_OR | BPF_X] =	or_reg,
1972 	[BPF_ALU | BPF_OR | BPF_K] =	or_imm,
1973 	[BPF_ALU | BPF_ADD | BPF_X] =	add_reg,
1974 	[BPF_ALU | BPF_ADD | BPF_K] =	add_imm,
1975 	[BPF_ALU | BPF_SUB | BPF_X] =	sub_reg,
1976 	[BPF_ALU | BPF_SUB | BPF_K] =	sub_imm,
1977 	[BPF_ALU | BPF_NEG] =		neg_reg,
1978 	[BPF_ALU | BPF_LSH | BPF_K] =	shl_imm,
1979 	[BPF_ALU | BPF_END | BPF_X] =	end_reg32,
1980 	[BPF_LD | BPF_IMM | BPF_DW] =	imm_ld8,
1981 	[BPF_LD | BPF_ABS | BPF_B] =	data_ld1,
1982 	[BPF_LD | BPF_ABS | BPF_H] =	data_ld2,
1983 	[BPF_LD | BPF_ABS | BPF_W] =	data_ld4,
1984 	[BPF_LD | BPF_IND | BPF_B] =	data_ind_ld1,
1985 	[BPF_LD | BPF_IND | BPF_H] =	data_ind_ld2,
1986 	[BPF_LD | BPF_IND | BPF_W] =	data_ind_ld4,
1987 	[BPF_LDX | BPF_MEM | BPF_B] =	mem_ldx1,
1988 	[BPF_LDX | BPF_MEM | BPF_H] =	mem_ldx2,
1989 	[BPF_LDX | BPF_MEM | BPF_W] =	mem_ldx4,
1990 	[BPF_LDX | BPF_MEM | BPF_DW] =	mem_ldx8,
1991 	[BPF_STX | BPF_MEM | BPF_B] =	mem_stx1,
1992 	[BPF_STX | BPF_MEM | BPF_H] =	mem_stx2,
1993 	[BPF_STX | BPF_MEM | BPF_W] =	mem_stx4,
1994 	[BPF_STX | BPF_MEM | BPF_DW] =	mem_stx8,
1995 	[BPF_ST | BPF_MEM | BPF_B] =	mem_st1,
1996 	[BPF_ST | BPF_MEM | BPF_H] =	mem_st2,
1997 	[BPF_ST | BPF_MEM | BPF_W] =	mem_st4,
1998 	[BPF_ST | BPF_MEM | BPF_DW] =	mem_st8,
1999 	[BPF_JMP | BPF_JA | BPF_K] =	jump,
2000 	[BPF_JMP | BPF_JEQ | BPF_K] =	jeq_imm,
2001 	[BPF_JMP | BPF_JGT | BPF_K] =	jgt_imm,
2002 	[BPF_JMP | BPF_JGE | BPF_K] =	jge_imm,
2003 	[BPF_JMP | BPF_JLT | BPF_K] =	jlt_imm,
2004 	[BPF_JMP | BPF_JLE | BPF_K] =	jle_imm,
2005 	[BPF_JMP | BPF_JSET | BPF_K] =	jset_imm,
2006 	[BPF_JMP | BPF_JNE | BPF_K] =	jne_imm,
2007 	[BPF_JMP | BPF_JEQ | BPF_X] =	jeq_reg,
2008 	[BPF_JMP | BPF_JGT | BPF_X] =	jgt_reg,
2009 	[BPF_JMP | BPF_JGE | BPF_X] =	jge_reg,
2010 	[BPF_JMP | BPF_JLT | BPF_X] =	jlt_reg,
2011 	[BPF_JMP | BPF_JLE | BPF_X] =	jle_reg,
2012 	[BPF_JMP | BPF_JSET | BPF_X] =	jset_reg,
2013 	[BPF_JMP | BPF_JNE | BPF_X] =	jne_reg,
2014 	[BPF_JMP | BPF_CALL] =		call,
2015 	[BPF_JMP | BPF_EXIT] =		goto_out,
2016 };
2017 
2018 /* --- Misc code --- */
2019 static void br_set_offset(u64 *instr, u16 offset)
2020 {
2021 	u16 addr_lo, addr_hi;
2022 
2023 	addr_lo = offset & (OP_BR_ADDR_LO >> __bf_shf(OP_BR_ADDR_LO));
2024 	addr_hi = offset != addr_lo;
2025 	*instr &= ~(OP_BR_ADDR_HI | OP_BR_ADDR_LO);
2026 	*instr |= FIELD_PREP(OP_BR_ADDR_HI, addr_hi);
2027 	*instr |= FIELD_PREP(OP_BR_ADDR_LO, addr_lo);
2028 }
2029 
2030 /* --- Assembler logic --- */
2031 static int nfp_fixup_branches(struct nfp_prog *nfp_prog)
2032 {
2033 	struct nfp_insn_meta *meta, *jmp_dst;
2034 	u32 idx, br_idx;
2035 
2036 	list_for_each_entry(meta, &nfp_prog->insns, l) {
2037 		if (meta->skip)
2038 			continue;
2039 		if (meta->insn.code == (BPF_JMP | BPF_CALL))
2040 			continue;
2041 		if (BPF_CLASS(meta->insn.code) != BPF_JMP)
2042 			continue;
2043 
2044 		if (list_is_last(&meta->l, &nfp_prog->insns))
2045 			idx = nfp_prog->last_bpf_off;
2046 		else
2047 			idx = list_next_entry(meta, l)->off - 1;
2048 
2049 		br_idx = nfp_prog_offset_to_index(nfp_prog, idx);
2050 
2051 		if (!nfp_is_br(nfp_prog->prog[br_idx])) {
2052 			pr_err("Fixup found block not ending in branch %d %02x %016llx!!\n",
2053 			       br_idx, meta->insn.code, nfp_prog->prog[br_idx]);
2054 			return -ELOOP;
2055 		}
2056 		/* Leave special branches for later */
2057 		if (FIELD_GET(OP_BR_SPECIAL, nfp_prog->prog[br_idx]))
2058 			continue;
2059 
2060 		if (!meta->jmp_dst) {
2061 			pr_err("Non-exit jump doesn't have destination info recorded!!\n");
2062 			return -ELOOP;
2063 		}
2064 
2065 		jmp_dst = meta->jmp_dst;
2066 
2067 		if (jmp_dst->skip) {
2068 			pr_err("Branch landing on removed instruction!!\n");
2069 			return -ELOOP;
2070 		}
2071 
2072 		for (idx = nfp_prog_offset_to_index(nfp_prog, meta->off);
2073 		     idx <= br_idx; idx++) {
2074 			if (!nfp_is_br(nfp_prog->prog[idx]))
2075 				continue;
2076 			br_set_offset(&nfp_prog->prog[idx], jmp_dst->off);
2077 		}
2078 	}
2079 
2080 	/* Fixup 'goto out's separately, they can be scattered around */
2081 	for (br_idx = 0; br_idx < nfp_prog->prog_len; br_idx++) {
2082 		enum br_special special;
2083 
2084 		if ((nfp_prog->prog[br_idx] & OP_BR_BASE_MASK) != OP_BR_BASE)
2085 			continue;
2086 
2087 		special = FIELD_GET(OP_BR_SPECIAL, nfp_prog->prog[br_idx]);
2088 		switch (special) {
2089 		case OP_BR_NORMAL:
2090 			break;
2091 		case OP_BR_GO_OUT:
2092 			br_set_offset(&nfp_prog->prog[br_idx],
2093 				      nfp_prog->tgt_out);
2094 			break;
2095 		case OP_BR_GO_ABORT:
2096 			br_set_offset(&nfp_prog->prog[br_idx],
2097 				      nfp_prog->tgt_abort);
2098 			break;
2099 		}
2100 
2101 		nfp_prog->prog[br_idx] &= ~OP_BR_SPECIAL;
2102 	}
2103 
2104 	return 0;
2105 }
2106 
2107 static void nfp_intro(struct nfp_prog *nfp_prog)
2108 {
2109 	wrp_immed(nfp_prog, plen_reg(nfp_prog), GENMASK(13, 0));
2110 	emit_alu(nfp_prog, plen_reg(nfp_prog),
2111 		 plen_reg(nfp_prog), ALU_OP_AND, pv_len(nfp_prog));
2112 }
2113 
2114 static void nfp_outro_tc_da(struct nfp_prog *nfp_prog)
2115 {
2116 	/* TC direct-action mode:
2117 	 *   0,1   ok        NOT SUPPORTED[1]
2118 	 *   2   drop  0x22 -> drop,  count as stat1
2119 	 *   4,5 nuke  0x02 -> drop
2120 	 *   7  redir  0x44 -> redir, count as stat2
2121 	 *   * unspec  0x11 -> pass,  count as stat0
2122 	 *
2123 	 * [1] We can't support OK and RECLASSIFY because we can't tell TC
2124 	 *     the exact decision made.  We are forced to support UNSPEC
2125 	 *     to handle aborts so that's the only one we handle for passing
2126 	 *     packets up the stack.
2127 	 */
2128 	/* Target for aborts */
2129 	nfp_prog->tgt_abort = nfp_prog_current_offset(nfp_prog);
2130 
2131 	emit_br_def(nfp_prog, nfp_prog->tgt_done, 2);
2132 
2133 	wrp_mov(nfp_prog, reg_a(0), NFP_BPF_ABI_FLAGS);
2134 	emit_ld_field(nfp_prog, reg_a(0), 0xc, reg_imm(0x11), SHF_SC_L_SHF, 16);
2135 
2136 	/* Target for normal exits */
2137 	nfp_prog->tgt_out = nfp_prog_current_offset(nfp_prog);
2138 
2139 	/* if R0 > 7 jump to abort */
2140 	emit_alu(nfp_prog, reg_none(), reg_imm(7), ALU_OP_SUB, reg_b(0));
2141 	emit_br(nfp_prog, BR_BLO, nfp_prog->tgt_abort, 0);
2142 	wrp_mov(nfp_prog, reg_a(0), NFP_BPF_ABI_FLAGS);
2143 
2144 	wrp_immed(nfp_prog, reg_b(2), 0x41221211);
2145 	wrp_immed(nfp_prog, reg_b(3), 0x41001211);
2146 
2147 	emit_shf(nfp_prog, reg_a(1),
2148 		 reg_none(), SHF_OP_NONE, reg_b(0), SHF_SC_L_SHF, 2);
2149 
2150 	emit_alu(nfp_prog, reg_none(), reg_a(1), ALU_OP_OR, reg_imm(0));
2151 	emit_shf(nfp_prog, reg_a(2),
2152 		 reg_imm(0xf), SHF_OP_AND, reg_b(2), SHF_SC_R_SHF, 0);
2153 
2154 	emit_alu(nfp_prog, reg_none(), reg_a(1), ALU_OP_OR, reg_imm(0));
2155 	emit_shf(nfp_prog, reg_b(2),
2156 		 reg_imm(0xf), SHF_OP_AND, reg_b(3), SHF_SC_R_SHF, 0);
2157 
2158 	emit_br_def(nfp_prog, nfp_prog->tgt_done, 2);
2159 
2160 	emit_shf(nfp_prog, reg_b(2),
2161 		 reg_a(2), SHF_OP_OR, reg_b(2), SHF_SC_L_SHF, 4);
2162 	emit_ld_field(nfp_prog, reg_a(0), 0xc, reg_b(2), SHF_SC_L_SHF, 16);
2163 }
2164 
2165 static void nfp_outro_xdp(struct nfp_prog *nfp_prog)
2166 {
2167 	/* XDP return codes:
2168 	 *   0 aborted  0x82 -> drop,  count as stat3
2169 	 *   1    drop  0x22 -> drop,  count as stat1
2170 	 *   2    pass  0x11 -> pass,  count as stat0
2171 	 *   3      tx  0x44 -> redir, count as stat2
2172 	 *   * unknown  0x82 -> drop,  count as stat3
2173 	 */
2174 	/* Target for aborts */
2175 	nfp_prog->tgt_abort = nfp_prog_current_offset(nfp_prog);
2176 
2177 	emit_br_def(nfp_prog, nfp_prog->tgt_done, 2);
2178 
2179 	wrp_mov(nfp_prog, reg_a(0), NFP_BPF_ABI_FLAGS);
2180 	emit_ld_field(nfp_prog, reg_a(0), 0xc, reg_imm(0x82), SHF_SC_L_SHF, 16);
2181 
2182 	/* Target for normal exits */
2183 	nfp_prog->tgt_out = nfp_prog_current_offset(nfp_prog);
2184 
2185 	/* if R0 > 3 jump to abort */
2186 	emit_alu(nfp_prog, reg_none(), reg_imm(3), ALU_OP_SUB, reg_b(0));
2187 	emit_br(nfp_prog, BR_BLO, nfp_prog->tgt_abort, 0);
2188 
2189 	wrp_immed(nfp_prog, reg_b(2), 0x44112282);
2190 
2191 	emit_shf(nfp_prog, reg_a(1),
2192 		 reg_none(), SHF_OP_NONE, reg_b(0), SHF_SC_L_SHF, 3);
2193 
2194 	emit_alu(nfp_prog, reg_none(), reg_a(1), ALU_OP_OR, reg_imm(0));
2195 	emit_shf(nfp_prog, reg_b(2),
2196 		 reg_imm(0xff), SHF_OP_AND, reg_b(2), SHF_SC_R_SHF, 0);
2197 
2198 	emit_br_def(nfp_prog, nfp_prog->tgt_done, 2);
2199 
2200 	wrp_mov(nfp_prog, reg_a(0), NFP_BPF_ABI_FLAGS);
2201 	emit_ld_field(nfp_prog, reg_a(0), 0xc, reg_b(2), SHF_SC_L_SHF, 16);
2202 }
2203 
2204 static void nfp_outro(struct nfp_prog *nfp_prog)
2205 {
2206 	switch (nfp_prog->type) {
2207 	case BPF_PROG_TYPE_SCHED_CLS:
2208 		nfp_outro_tc_da(nfp_prog);
2209 		break;
2210 	case BPF_PROG_TYPE_XDP:
2211 		nfp_outro_xdp(nfp_prog);
2212 		break;
2213 	default:
2214 		WARN_ON(1);
2215 	}
2216 }
2217 
2218 static int nfp_translate(struct nfp_prog *nfp_prog)
2219 {
2220 	struct nfp_insn_meta *meta;
2221 	int err;
2222 
2223 	nfp_intro(nfp_prog);
2224 	if (nfp_prog->error)
2225 		return nfp_prog->error;
2226 
2227 	list_for_each_entry(meta, &nfp_prog->insns, l) {
2228 		instr_cb_t cb = instr_cb[meta->insn.code];
2229 
2230 		meta->off = nfp_prog_current_offset(nfp_prog);
2231 
2232 		if (meta->skip) {
2233 			nfp_prog->n_translated++;
2234 			continue;
2235 		}
2236 
2237 		if (nfp_meta_has_prev(nfp_prog, meta) &&
2238 		    nfp_meta_prev(meta)->double_cb)
2239 			cb = nfp_meta_prev(meta)->double_cb;
2240 		if (!cb)
2241 			return -ENOENT;
2242 		err = cb(nfp_prog, meta);
2243 		if (err)
2244 			return err;
2245 
2246 		nfp_prog->n_translated++;
2247 	}
2248 
2249 	nfp_prog->last_bpf_off = nfp_prog_current_offset(nfp_prog) - 1;
2250 
2251 	nfp_outro(nfp_prog);
2252 	if (nfp_prog->error)
2253 		return nfp_prog->error;
2254 
2255 	wrp_nops(nfp_prog, NFP_USTORE_PREFETCH_WINDOW);
2256 	if (nfp_prog->error)
2257 		return nfp_prog->error;
2258 
2259 	return nfp_fixup_branches(nfp_prog);
2260 }
2261 
2262 /* --- Optimizations --- */
2263 static void nfp_bpf_opt_reg_init(struct nfp_prog *nfp_prog)
2264 {
2265 	struct nfp_insn_meta *meta;
2266 
2267 	list_for_each_entry(meta, &nfp_prog->insns, l) {
2268 		struct bpf_insn insn = meta->insn;
2269 
2270 		/* Programs converted from cBPF start with register xoring */
2271 		if (insn.code == (BPF_ALU64 | BPF_XOR | BPF_X) &&
2272 		    insn.src_reg == insn.dst_reg)
2273 			continue;
2274 
2275 		/* Programs start with R6 = R1 but we ignore the skb pointer */
2276 		if (insn.code == (BPF_ALU64 | BPF_MOV | BPF_X) &&
2277 		    insn.src_reg == 1 && insn.dst_reg == 6)
2278 			meta->skip = true;
2279 
2280 		/* Return as soon as something doesn't match */
2281 		if (!meta->skip)
2282 			return;
2283 	}
2284 }
2285 
2286 /* Remove masking after load since our load guarantees this is not needed */
2287 static void nfp_bpf_opt_ld_mask(struct nfp_prog *nfp_prog)
2288 {
2289 	struct nfp_insn_meta *meta1, *meta2;
2290 	const s32 exp_mask[] = {
2291 		[BPF_B] = 0x000000ffU,
2292 		[BPF_H] = 0x0000ffffU,
2293 		[BPF_W] = 0xffffffffU,
2294 	};
2295 
2296 	nfp_for_each_insn_walk2(nfp_prog, meta1, meta2) {
2297 		struct bpf_insn insn, next;
2298 
2299 		insn = meta1->insn;
2300 		next = meta2->insn;
2301 
2302 		if (BPF_CLASS(insn.code) != BPF_LD)
2303 			continue;
2304 		if (BPF_MODE(insn.code) != BPF_ABS &&
2305 		    BPF_MODE(insn.code) != BPF_IND)
2306 			continue;
2307 
2308 		if (next.code != (BPF_ALU64 | BPF_AND | BPF_K))
2309 			continue;
2310 
2311 		if (!exp_mask[BPF_SIZE(insn.code)])
2312 			continue;
2313 		if (exp_mask[BPF_SIZE(insn.code)] != next.imm)
2314 			continue;
2315 
2316 		if (next.src_reg || next.dst_reg)
2317 			continue;
2318 
2319 		if (meta2->flags & FLAG_INSN_IS_JUMP_DST)
2320 			continue;
2321 
2322 		meta2->skip = true;
2323 	}
2324 }
2325 
2326 static void nfp_bpf_opt_ld_shift(struct nfp_prog *nfp_prog)
2327 {
2328 	struct nfp_insn_meta *meta1, *meta2, *meta3;
2329 
2330 	nfp_for_each_insn_walk3(nfp_prog, meta1, meta2, meta3) {
2331 		struct bpf_insn insn, next1, next2;
2332 
2333 		insn = meta1->insn;
2334 		next1 = meta2->insn;
2335 		next2 = meta3->insn;
2336 
2337 		if (BPF_CLASS(insn.code) != BPF_LD)
2338 			continue;
2339 		if (BPF_MODE(insn.code) != BPF_ABS &&
2340 		    BPF_MODE(insn.code) != BPF_IND)
2341 			continue;
2342 		if (BPF_SIZE(insn.code) != BPF_W)
2343 			continue;
2344 
2345 		if (!(next1.code == (BPF_LSH | BPF_K | BPF_ALU64) &&
2346 		      next2.code == (BPF_RSH | BPF_K | BPF_ALU64)) &&
2347 		    !(next1.code == (BPF_RSH | BPF_K | BPF_ALU64) &&
2348 		      next2.code == (BPF_LSH | BPF_K | BPF_ALU64)))
2349 			continue;
2350 
2351 		if (next1.src_reg || next1.dst_reg ||
2352 		    next2.src_reg || next2.dst_reg)
2353 			continue;
2354 
2355 		if (next1.imm != 0x20 || next2.imm != 0x20)
2356 			continue;
2357 
2358 		if (meta2->flags & FLAG_INSN_IS_JUMP_DST ||
2359 		    meta3->flags & FLAG_INSN_IS_JUMP_DST)
2360 			continue;
2361 
2362 		meta2->skip = true;
2363 		meta3->skip = true;
2364 	}
2365 }
2366 
2367 /* load/store pair that forms memory copy sould look like the following:
2368  *
2369  *   ld_width R, [addr_src + offset_src]
2370  *   st_width [addr_dest + offset_dest], R
2371  *
2372  * The destination register of load and source register of store should
2373  * be the same, load and store should also perform at the same width.
2374  * If either of addr_src or addr_dest is stack pointer, we don't do the
2375  * CPP optimization as stack is modelled by registers on NFP.
2376  */
2377 static bool
2378 curr_pair_is_memcpy(struct nfp_insn_meta *ld_meta,
2379 		    struct nfp_insn_meta *st_meta)
2380 {
2381 	struct bpf_insn *ld = &ld_meta->insn;
2382 	struct bpf_insn *st = &st_meta->insn;
2383 
2384 	if (!is_mbpf_load(ld_meta) || !is_mbpf_store(st_meta))
2385 		return false;
2386 
2387 	if (ld_meta->ptr.type != PTR_TO_PACKET)
2388 		return false;
2389 
2390 	if (st_meta->ptr.type != PTR_TO_PACKET)
2391 		return false;
2392 
2393 	if (BPF_SIZE(ld->code) != BPF_SIZE(st->code))
2394 		return false;
2395 
2396 	if (ld->dst_reg != st->src_reg)
2397 		return false;
2398 
2399 	/* There is jump to the store insn in this pair. */
2400 	if (st_meta->flags & FLAG_INSN_IS_JUMP_DST)
2401 		return false;
2402 
2403 	return true;
2404 }
2405 
2406 /* Currently, we only support chaining load/store pairs if:
2407  *
2408  *  - Their address base registers are the same.
2409  *  - Their address offsets are in the same order.
2410  *  - They operate at the same memory width.
2411  *  - There is no jump into the middle of them.
2412  */
2413 static bool
2414 curr_pair_chain_with_previous(struct nfp_insn_meta *ld_meta,
2415 			      struct nfp_insn_meta *st_meta,
2416 			      struct bpf_insn *prev_ld,
2417 			      struct bpf_insn *prev_st)
2418 {
2419 	u8 prev_size, curr_size, prev_ld_base, prev_st_base, prev_ld_dst;
2420 	struct bpf_insn *ld = &ld_meta->insn;
2421 	struct bpf_insn *st = &st_meta->insn;
2422 	s16 prev_ld_off, prev_st_off;
2423 
2424 	/* This pair is the start pair. */
2425 	if (!prev_ld)
2426 		return true;
2427 
2428 	prev_size = BPF_LDST_BYTES(prev_ld);
2429 	curr_size = BPF_LDST_BYTES(ld);
2430 	prev_ld_base = prev_ld->src_reg;
2431 	prev_st_base = prev_st->dst_reg;
2432 	prev_ld_dst = prev_ld->dst_reg;
2433 	prev_ld_off = prev_ld->off;
2434 	prev_st_off = prev_st->off;
2435 
2436 	if (ld->dst_reg != prev_ld_dst)
2437 		return false;
2438 
2439 	if (ld->src_reg != prev_ld_base || st->dst_reg != prev_st_base)
2440 		return false;
2441 
2442 	if (curr_size != prev_size)
2443 		return false;
2444 
2445 	/* There is jump to the head of this pair. */
2446 	if (ld_meta->flags & FLAG_INSN_IS_JUMP_DST)
2447 		return false;
2448 
2449 	/* Both in ascending order. */
2450 	if (prev_ld_off + prev_size == ld->off &&
2451 	    prev_st_off + prev_size == st->off)
2452 		return true;
2453 
2454 	/* Both in descending order. */
2455 	if (ld->off + curr_size == prev_ld_off &&
2456 	    st->off + curr_size == prev_st_off)
2457 		return true;
2458 
2459 	return false;
2460 }
2461 
2462 /* Return TRUE if cross memory access happens. Cross memory access means
2463  * store area is overlapping with load area that a later load might load
2464  * the value from previous store, for this case we can't treat the sequence
2465  * as an memory copy.
2466  */
2467 static bool
2468 cross_mem_access(struct bpf_insn *ld, struct nfp_insn_meta *head_ld_meta,
2469 		 struct nfp_insn_meta *head_st_meta)
2470 {
2471 	s16 head_ld_off, head_st_off, ld_off;
2472 
2473 	/* Different pointer types does not overlap. */
2474 	if (head_ld_meta->ptr.type != head_st_meta->ptr.type)
2475 		return false;
2476 
2477 	/* load and store are both PTR_TO_PACKET, check ID info.  */
2478 	if (head_ld_meta->ptr.id != head_st_meta->ptr.id)
2479 		return true;
2480 
2481 	/* Canonicalize the offsets. Turn all of them against the original
2482 	 * base register.
2483 	 */
2484 	head_ld_off = head_ld_meta->insn.off + head_ld_meta->ptr.off;
2485 	head_st_off = head_st_meta->insn.off + head_st_meta->ptr.off;
2486 	ld_off = ld->off + head_ld_meta->ptr.off;
2487 
2488 	/* Ascending order cross. */
2489 	if (ld_off > head_ld_off &&
2490 	    head_ld_off < head_st_off && ld_off >= head_st_off)
2491 		return true;
2492 
2493 	/* Descending order cross. */
2494 	if (ld_off < head_ld_off &&
2495 	    head_ld_off > head_st_off && ld_off <= head_st_off)
2496 		return true;
2497 
2498 	return false;
2499 }
2500 
2501 /* This pass try to identify the following instructoin sequences.
2502  *
2503  *   load R, [regA + offA]
2504  *   store [regB + offB], R
2505  *   load R, [regA + offA + const_imm_A]
2506  *   store [regB + offB + const_imm_A], R
2507  *   load R, [regA + offA + 2 * const_imm_A]
2508  *   store [regB + offB + 2 * const_imm_A], R
2509  *   ...
2510  *
2511  * Above sequence is typically generated by compiler when lowering
2512  * memcpy. NFP prefer using CPP instructions to accelerate it.
2513  */
2514 static void nfp_bpf_opt_ldst_gather(struct nfp_prog *nfp_prog)
2515 {
2516 	struct nfp_insn_meta *head_ld_meta = NULL;
2517 	struct nfp_insn_meta *head_st_meta = NULL;
2518 	struct nfp_insn_meta *meta1, *meta2;
2519 	struct bpf_insn *prev_ld = NULL;
2520 	struct bpf_insn *prev_st = NULL;
2521 	u8 count = 0;
2522 
2523 	nfp_for_each_insn_walk2(nfp_prog, meta1, meta2) {
2524 		struct bpf_insn *ld = &meta1->insn;
2525 		struct bpf_insn *st = &meta2->insn;
2526 
2527 		/* Reset record status if any of the following if true:
2528 		 *   - The current insn pair is not load/store.
2529 		 *   - The load/store pair doesn't chain with previous one.
2530 		 *   - The chained load/store pair crossed with previous pair.
2531 		 *   - The chained load/store pair has a total size of memory
2532 		 *     copy beyond 128 bytes which is the maximum length a
2533 		 *     single NFP CPP command can transfer.
2534 		 */
2535 		if (!curr_pair_is_memcpy(meta1, meta2) ||
2536 		    !curr_pair_chain_with_previous(meta1, meta2, prev_ld,
2537 						   prev_st) ||
2538 		    (head_ld_meta && (cross_mem_access(ld, head_ld_meta,
2539 						       head_st_meta) ||
2540 				      head_ld_meta->ldst_gather_len >= 128))) {
2541 			if (!count)
2542 				continue;
2543 
2544 			if (count > 1) {
2545 				s16 prev_ld_off = prev_ld->off;
2546 				s16 prev_st_off = prev_st->off;
2547 				s16 head_ld_off = head_ld_meta->insn.off;
2548 
2549 				if (prev_ld_off < head_ld_off) {
2550 					head_ld_meta->insn.off = prev_ld_off;
2551 					head_st_meta->insn.off = prev_st_off;
2552 					head_ld_meta->ldst_gather_len =
2553 						-head_ld_meta->ldst_gather_len;
2554 				}
2555 
2556 				head_ld_meta->paired_st = &head_st_meta->insn;
2557 				head_st_meta->skip = true;
2558 			} else {
2559 				head_ld_meta->ldst_gather_len = 0;
2560 			}
2561 
2562 			/* If the chain is ended by an load/store pair then this
2563 			 * could serve as the new head of the the next chain.
2564 			 */
2565 			if (curr_pair_is_memcpy(meta1, meta2)) {
2566 				head_ld_meta = meta1;
2567 				head_st_meta = meta2;
2568 				head_ld_meta->ldst_gather_len =
2569 					BPF_LDST_BYTES(ld);
2570 				meta1 = nfp_meta_next(meta1);
2571 				meta2 = nfp_meta_next(meta2);
2572 				prev_ld = ld;
2573 				prev_st = st;
2574 				count = 1;
2575 			} else {
2576 				head_ld_meta = NULL;
2577 				head_st_meta = NULL;
2578 				prev_ld = NULL;
2579 				prev_st = NULL;
2580 				count = 0;
2581 			}
2582 
2583 			continue;
2584 		}
2585 
2586 		if (!head_ld_meta) {
2587 			head_ld_meta = meta1;
2588 			head_st_meta = meta2;
2589 		} else {
2590 			meta1->skip = true;
2591 			meta2->skip = true;
2592 		}
2593 
2594 		head_ld_meta->ldst_gather_len += BPF_LDST_BYTES(ld);
2595 		meta1 = nfp_meta_next(meta1);
2596 		meta2 = nfp_meta_next(meta2);
2597 		prev_ld = ld;
2598 		prev_st = st;
2599 		count++;
2600 	}
2601 }
2602 
2603 static int nfp_bpf_optimize(struct nfp_prog *nfp_prog)
2604 {
2605 	nfp_bpf_opt_reg_init(nfp_prog);
2606 
2607 	nfp_bpf_opt_ld_mask(nfp_prog);
2608 	nfp_bpf_opt_ld_shift(nfp_prog);
2609 	nfp_bpf_opt_ldst_gather(nfp_prog);
2610 
2611 	return 0;
2612 }
2613 
2614 static int nfp_bpf_ustore_calc(struct nfp_prog *nfp_prog, __le64 *ustore)
2615 {
2616 	int i;
2617 
2618 	for (i = 0; i < nfp_prog->prog_len; i++) {
2619 		int err;
2620 
2621 		err = nfp_ustore_check_valid_no_ecc(nfp_prog->prog[i]);
2622 		if (err)
2623 			return err;
2624 
2625 		nfp_prog->prog[i] = nfp_ustore_calc_ecc_insn(nfp_prog->prog[i]);
2626 
2627 		ustore[i] = cpu_to_le64(nfp_prog->prog[i]);
2628 	}
2629 
2630 	return 0;
2631 }
2632 
2633 int nfp_bpf_jit(struct nfp_prog *nfp_prog)
2634 {
2635 	int ret;
2636 
2637 	ret = nfp_bpf_optimize(nfp_prog);
2638 	if (ret)
2639 		return ret;
2640 
2641 	ret = nfp_translate(nfp_prog);
2642 	if (ret) {
2643 		pr_err("Translation failed with error %d (translated: %u)\n",
2644 		       ret, nfp_prog->n_translated);
2645 		return -EINVAL;
2646 	}
2647 
2648 	return nfp_bpf_ustore_calc(nfp_prog, (__force __le64 *)nfp_prog->prog);
2649 }
2650