1 /*
2  * Copyright (C) 2016-2018 Netronome Systems, Inc.
3  *
4  * This software is dual licensed under the GNU General License Version 2,
5  * June 1991 as shown in the file COPYING in the top-level directory of this
6  * source tree or the BSD 2-Clause License provided below.  You have the
7  * option to license this software under the complete terms of either license.
8  *
9  * The BSD 2-Clause License:
10  *
11  *     Redistribution and use in source and binary forms, with or
12  *     without modification, are permitted provided that the following
13  *     conditions are met:
14  *
15  *      1. Redistributions of source code must retain the above
16  *         copyright notice, this list of conditions and the following
17  *         disclaimer.
18  *
19  *      2. Redistributions in binary form must reproduce the above
20  *         copyright notice, this list of conditions and the following
21  *         disclaimer in the documentation and/or other materials
22  *         provided with the distribution.
23  *
24  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31  * SOFTWARE.
32  */
33 
34 #define pr_fmt(fmt)	"NFP net bpf: " fmt
35 
36 #include <linux/bug.h>
37 #include <linux/bpf.h>
38 #include <linux/filter.h>
39 #include <linux/kernel.h>
40 #include <linux/pkt_cls.h>
41 #include <linux/reciprocal_div.h>
42 #include <linux/unistd.h>
43 
44 #include "main.h"
45 #include "../nfp_asm.h"
46 #include "../nfp_net_ctrl.h"
47 
48 /* --- NFP prog --- */
49 /* Foreach "multiple" entries macros provide pos and next<n> pointers.
50  * It's safe to modify the next pointers (but not pos).
51  */
52 #define nfp_for_each_insn_walk2(nfp_prog, pos, next)			\
53 	for (pos = list_first_entry(&(nfp_prog)->insns, typeof(*pos), l), \
54 	     next = list_next_entry(pos, l);			\
55 	     &(nfp_prog)->insns != &pos->l &&			\
56 	     &(nfp_prog)->insns != &next->l;			\
57 	     pos = nfp_meta_next(pos),				\
58 	     next = nfp_meta_next(pos))
59 
60 #define nfp_for_each_insn_walk3(nfp_prog, pos, next, next2)		\
61 	for (pos = list_first_entry(&(nfp_prog)->insns, typeof(*pos), l), \
62 	     next = list_next_entry(pos, l),			\
63 	     next2 = list_next_entry(next, l);			\
64 	     &(nfp_prog)->insns != &pos->l &&			\
65 	     &(nfp_prog)->insns != &next->l &&			\
66 	     &(nfp_prog)->insns != &next2->l;			\
67 	     pos = nfp_meta_next(pos),				\
68 	     next = nfp_meta_next(pos),				\
69 	     next2 = nfp_meta_next(next))
70 
71 static bool
72 nfp_meta_has_prev(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
73 {
74 	return meta->l.prev != &nfp_prog->insns;
75 }
76 
77 static void nfp_prog_push(struct nfp_prog *nfp_prog, u64 insn)
78 {
79 	if (nfp_prog->__prog_alloc_len / sizeof(u64) == nfp_prog->prog_len) {
80 		pr_warn("instruction limit reached (%u NFP instructions)\n",
81 			nfp_prog->prog_len);
82 		nfp_prog->error = -ENOSPC;
83 		return;
84 	}
85 
86 	nfp_prog->prog[nfp_prog->prog_len] = insn;
87 	nfp_prog->prog_len++;
88 }
89 
90 static unsigned int nfp_prog_current_offset(struct nfp_prog *nfp_prog)
91 {
92 	return nfp_prog->prog_len;
93 }
94 
95 static bool
96 nfp_prog_confirm_current_offset(struct nfp_prog *nfp_prog, unsigned int off)
97 {
98 	/* If there is a recorded error we may have dropped instructions;
99 	 * that doesn't have to be due to translator bug, and the translation
100 	 * will fail anyway, so just return OK.
101 	 */
102 	if (nfp_prog->error)
103 		return true;
104 	return !WARN_ON_ONCE(nfp_prog_current_offset(nfp_prog) != off);
105 }
106 
107 /* --- Emitters --- */
108 static void
109 __emit_cmd(struct nfp_prog *nfp_prog, enum cmd_tgt_map op,
110 	   u8 mode, u8 xfer, u8 areg, u8 breg, u8 size, enum cmd_ctx_swap ctx,
111 	   bool indir)
112 {
113 	u64 insn;
114 
115 	insn =	FIELD_PREP(OP_CMD_A_SRC, areg) |
116 		FIELD_PREP(OP_CMD_CTX, ctx) |
117 		FIELD_PREP(OP_CMD_B_SRC, breg) |
118 		FIELD_PREP(OP_CMD_TOKEN, cmd_tgt_act[op].token) |
119 		FIELD_PREP(OP_CMD_XFER, xfer) |
120 		FIELD_PREP(OP_CMD_CNT, size) |
121 		FIELD_PREP(OP_CMD_SIG, ctx != CMD_CTX_NO_SWAP) |
122 		FIELD_PREP(OP_CMD_TGT_CMD, cmd_tgt_act[op].tgt_cmd) |
123 		FIELD_PREP(OP_CMD_INDIR, indir) |
124 		FIELD_PREP(OP_CMD_MODE, mode);
125 
126 	nfp_prog_push(nfp_prog, insn);
127 }
128 
129 static void
130 emit_cmd_any(struct nfp_prog *nfp_prog, enum cmd_tgt_map op, u8 mode, u8 xfer,
131 	     swreg lreg, swreg rreg, u8 size, enum cmd_ctx_swap ctx, bool indir)
132 {
133 	struct nfp_insn_re_regs reg;
134 	int err;
135 
136 	err = swreg_to_restricted(reg_none(), lreg, rreg, &reg, false);
137 	if (err) {
138 		nfp_prog->error = err;
139 		return;
140 	}
141 	if (reg.swap) {
142 		pr_err("cmd can't swap arguments\n");
143 		nfp_prog->error = -EFAULT;
144 		return;
145 	}
146 	if (reg.dst_lmextn || reg.src_lmextn) {
147 		pr_err("cmd can't use LMextn\n");
148 		nfp_prog->error = -EFAULT;
149 		return;
150 	}
151 
152 	__emit_cmd(nfp_prog, op, mode, xfer, reg.areg, reg.breg, size, ctx,
153 		   indir);
154 }
155 
156 static void
157 emit_cmd(struct nfp_prog *nfp_prog, enum cmd_tgt_map op, u8 mode, u8 xfer,
158 	 swreg lreg, swreg rreg, u8 size, enum cmd_ctx_swap ctx)
159 {
160 	emit_cmd_any(nfp_prog, op, mode, xfer, lreg, rreg, size, ctx, false);
161 }
162 
163 static void
164 emit_cmd_indir(struct nfp_prog *nfp_prog, enum cmd_tgt_map op, u8 mode, u8 xfer,
165 	       swreg lreg, swreg rreg, u8 size, enum cmd_ctx_swap ctx)
166 {
167 	emit_cmd_any(nfp_prog, op, mode, xfer, lreg, rreg, size, ctx, true);
168 }
169 
170 static void
171 __emit_br(struct nfp_prog *nfp_prog, enum br_mask mask, enum br_ev_pip ev_pip,
172 	  enum br_ctx_signal_state css, u16 addr, u8 defer)
173 {
174 	u16 addr_lo, addr_hi;
175 	u64 insn;
176 
177 	addr_lo = addr & (OP_BR_ADDR_LO >> __bf_shf(OP_BR_ADDR_LO));
178 	addr_hi = addr != addr_lo;
179 
180 	insn = OP_BR_BASE |
181 		FIELD_PREP(OP_BR_MASK, mask) |
182 		FIELD_PREP(OP_BR_EV_PIP, ev_pip) |
183 		FIELD_PREP(OP_BR_CSS, css) |
184 		FIELD_PREP(OP_BR_DEFBR, defer) |
185 		FIELD_PREP(OP_BR_ADDR_LO, addr_lo) |
186 		FIELD_PREP(OP_BR_ADDR_HI, addr_hi);
187 
188 	nfp_prog_push(nfp_prog, insn);
189 }
190 
191 static void
192 emit_br_relo(struct nfp_prog *nfp_prog, enum br_mask mask, u16 addr, u8 defer,
193 	     enum nfp_relo_type relo)
194 {
195 	if (mask == BR_UNC && defer > 2) {
196 		pr_err("BUG: branch defer out of bounds %d\n", defer);
197 		nfp_prog->error = -EFAULT;
198 		return;
199 	}
200 
201 	__emit_br(nfp_prog, mask,
202 		  mask != BR_UNC ? BR_EV_PIP_COND : BR_EV_PIP_UNCOND,
203 		  BR_CSS_NONE, addr, defer);
204 
205 	nfp_prog->prog[nfp_prog->prog_len - 1] |=
206 		FIELD_PREP(OP_RELO_TYPE, relo);
207 }
208 
209 static void
210 emit_br(struct nfp_prog *nfp_prog, enum br_mask mask, u16 addr, u8 defer)
211 {
212 	emit_br_relo(nfp_prog, mask, addr, defer, RELO_BR_REL);
213 }
214 
215 static void
216 __emit_br_bit(struct nfp_prog *nfp_prog, u16 areg, u16 breg, u16 addr, u8 defer,
217 	      bool set, bool src_lmextn)
218 {
219 	u16 addr_lo, addr_hi;
220 	u64 insn;
221 
222 	addr_lo = addr & (OP_BR_BIT_ADDR_LO >> __bf_shf(OP_BR_BIT_ADDR_LO));
223 	addr_hi = addr != addr_lo;
224 
225 	insn = OP_BR_BIT_BASE |
226 		FIELD_PREP(OP_BR_BIT_A_SRC, areg) |
227 		FIELD_PREP(OP_BR_BIT_B_SRC, breg) |
228 		FIELD_PREP(OP_BR_BIT_BV, set) |
229 		FIELD_PREP(OP_BR_BIT_DEFBR, defer) |
230 		FIELD_PREP(OP_BR_BIT_ADDR_LO, addr_lo) |
231 		FIELD_PREP(OP_BR_BIT_ADDR_HI, addr_hi) |
232 		FIELD_PREP(OP_BR_BIT_SRC_LMEXTN, src_lmextn);
233 
234 	nfp_prog_push(nfp_prog, insn);
235 }
236 
237 static void
238 emit_br_bit_relo(struct nfp_prog *nfp_prog, swreg src, u8 bit, u16 addr,
239 		 u8 defer, bool set, enum nfp_relo_type relo)
240 {
241 	struct nfp_insn_re_regs reg;
242 	int err;
243 
244 	/* NOTE: The bit to test is specified as an rotation amount, such that
245 	 *	 the bit to test will be placed on the MSB of the result when
246 	 *	 doing a rotate right. For bit X, we need right rotate X + 1.
247 	 */
248 	bit += 1;
249 
250 	err = swreg_to_restricted(reg_none(), src, reg_imm(bit), &reg, false);
251 	if (err) {
252 		nfp_prog->error = err;
253 		return;
254 	}
255 
256 	__emit_br_bit(nfp_prog, reg.areg, reg.breg, addr, defer, set,
257 		      reg.src_lmextn);
258 
259 	nfp_prog->prog[nfp_prog->prog_len - 1] |=
260 		FIELD_PREP(OP_RELO_TYPE, relo);
261 }
262 
263 static void
264 emit_br_bset(struct nfp_prog *nfp_prog, swreg src, u8 bit, u16 addr, u8 defer)
265 {
266 	emit_br_bit_relo(nfp_prog, src, bit, addr, defer, true, RELO_BR_REL);
267 }
268 
269 static void
270 __emit_immed(struct nfp_prog *nfp_prog, u16 areg, u16 breg, u16 imm_hi,
271 	     enum immed_width width, bool invert,
272 	     enum immed_shift shift, bool wr_both,
273 	     bool dst_lmextn, bool src_lmextn)
274 {
275 	u64 insn;
276 
277 	insn = OP_IMMED_BASE |
278 		FIELD_PREP(OP_IMMED_A_SRC, areg) |
279 		FIELD_PREP(OP_IMMED_B_SRC, breg) |
280 		FIELD_PREP(OP_IMMED_IMM, imm_hi) |
281 		FIELD_PREP(OP_IMMED_WIDTH, width) |
282 		FIELD_PREP(OP_IMMED_INV, invert) |
283 		FIELD_PREP(OP_IMMED_SHIFT, shift) |
284 		FIELD_PREP(OP_IMMED_WR_AB, wr_both) |
285 		FIELD_PREP(OP_IMMED_SRC_LMEXTN, src_lmextn) |
286 		FIELD_PREP(OP_IMMED_DST_LMEXTN, dst_lmextn);
287 
288 	nfp_prog_push(nfp_prog, insn);
289 }
290 
291 static void
292 emit_immed(struct nfp_prog *nfp_prog, swreg dst, u16 imm,
293 	   enum immed_width width, bool invert, enum immed_shift shift)
294 {
295 	struct nfp_insn_ur_regs reg;
296 	int err;
297 
298 	if (swreg_type(dst) == NN_REG_IMM) {
299 		nfp_prog->error = -EFAULT;
300 		return;
301 	}
302 
303 	err = swreg_to_unrestricted(dst, dst, reg_imm(imm & 0xff), &reg);
304 	if (err) {
305 		nfp_prog->error = err;
306 		return;
307 	}
308 
309 	/* Use reg.dst when destination is No-Dest. */
310 	__emit_immed(nfp_prog,
311 		     swreg_type(dst) == NN_REG_NONE ? reg.dst : reg.areg,
312 		     reg.breg, imm >> 8, width, invert, shift,
313 		     reg.wr_both, reg.dst_lmextn, reg.src_lmextn);
314 }
315 
316 static void
317 __emit_shf(struct nfp_prog *nfp_prog, u16 dst, enum alu_dst_ab dst_ab,
318 	   enum shf_sc sc, u8 shift,
319 	   u16 areg, enum shf_op op, u16 breg, bool i8, bool sw, bool wr_both,
320 	   bool dst_lmextn, bool src_lmextn)
321 {
322 	u64 insn;
323 
324 	if (!FIELD_FIT(OP_SHF_SHIFT, shift)) {
325 		nfp_prog->error = -EFAULT;
326 		return;
327 	}
328 
329 	if (sc == SHF_SC_L_SHF)
330 		shift = 32 - shift;
331 
332 	insn = OP_SHF_BASE |
333 		FIELD_PREP(OP_SHF_A_SRC, areg) |
334 		FIELD_PREP(OP_SHF_SC, sc) |
335 		FIELD_PREP(OP_SHF_B_SRC, breg) |
336 		FIELD_PREP(OP_SHF_I8, i8) |
337 		FIELD_PREP(OP_SHF_SW, sw) |
338 		FIELD_PREP(OP_SHF_DST, dst) |
339 		FIELD_PREP(OP_SHF_SHIFT, shift) |
340 		FIELD_PREP(OP_SHF_OP, op) |
341 		FIELD_PREP(OP_SHF_DST_AB, dst_ab) |
342 		FIELD_PREP(OP_SHF_WR_AB, wr_both) |
343 		FIELD_PREP(OP_SHF_SRC_LMEXTN, src_lmextn) |
344 		FIELD_PREP(OP_SHF_DST_LMEXTN, dst_lmextn);
345 
346 	nfp_prog_push(nfp_prog, insn);
347 }
348 
349 static void
350 emit_shf(struct nfp_prog *nfp_prog, swreg dst,
351 	 swreg lreg, enum shf_op op, swreg rreg, enum shf_sc sc, u8 shift)
352 {
353 	struct nfp_insn_re_regs reg;
354 	int err;
355 
356 	err = swreg_to_restricted(dst, lreg, rreg, &reg, true);
357 	if (err) {
358 		nfp_prog->error = err;
359 		return;
360 	}
361 
362 	__emit_shf(nfp_prog, reg.dst, reg.dst_ab, sc, shift,
363 		   reg.areg, op, reg.breg, reg.i8, reg.swap, reg.wr_both,
364 		   reg.dst_lmextn, reg.src_lmextn);
365 }
366 
367 static void
368 emit_shf_indir(struct nfp_prog *nfp_prog, swreg dst,
369 	       swreg lreg, enum shf_op op, swreg rreg, enum shf_sc sc)
370 {
371 	if (sc == SHF_SC_R_ROT) {
372 		pr_err("indirect shift is not allowed on rotation\n");
373 		nfp_prog->error = -EFAULT;
374 		return;
375 	}
376 
377 	emit_shf(nfp_prog, dst, lreg, op, rreg, sc, 0);
378 }
379 
380 static void
381 __emit_alu(struct nfp_prog *nfp_prog, u16 dst, enum alu_dst_ab dst_ab,
382 	   u16 areg, enum alu_op op, u16 breg, bool swap, bool wr_both,
383 	   bool dst_lmextn, bool src_lmextn)
384 {
385 	u64 insn;
386 
387 	insn = OP_ALU_BASE |
388 		FIELD_PREP(OP_ALU_A_SRC, areg) |
389 		FIELD_PREP(OP_ALU_B_SRC, breg) |
390 		FIELD_PREP(OP_ALU_DST, dst) |
391 		FIELD_PREP(OP_ALU_SW, swap) |
392 		FIELD_PREP(OP_ALU_OP, op) |
393 		FIELD_PREP(OP_ALU_DST_AB, dst_ab) |
394 		FIELD_PREP(OP_ALU_WR_AB, wr_both) |
395 		FIELD_PREP(OP_ALU_SRC_LMEXTN, src_lmextn) |
396 		FIELD_PREP(OP_ALU_DST_LMEXTN, dst_lmextn);
397 
398 	nfp_prog_push(nfp_prog, insn);
399 }
400 
401 static void
402 emit_alu(struct nfp_prog *nfp_prog, swreg dst,
403 	 swreg lreg, enum alu_op op, swreg rreg)
404 {
405 	struct nfp_insn_ur_regs reg;
406 	int err;
407 
408 	err = swreg_to_unrestricted(dst, lreg, rreg, &reg);
409 	if (err) {
410 		nfp_prog->error = err;
411 		return;
412 	}
413 
414 	__emit_alu(nfp_prog, reg.dst, reg.dst_ab,
415 		   reg.areg, op, reg.breg, reg.swap, reg.wr_both,
416 		   reg.dst_lmextn, reg.src_lmextn);
417 }
418 
419 static void
420 __emit_mul(struct nfp_prog *nfp_prog, enum alu_dst_ab dst_ab, u16 areg,
421 	   enum mul_type type, enum mul_step step, u16 breg, bool swap,
422 	   bool wr_both, bool dst_lmextn, bool src_lmextn)
423 {
424 	u64 insn;
425 
426 	insn = OP_MUL_BASE |
427 		FIELD_PREP(OP_MUL_A_SRC, areg) |
428 		FIELD_PREP(OP_MUL_B_SRC, breg) |
429 		FIELD_PREP(OP_MUL_STEP, step) |
430 		FIELD_PREP(OP_MUL_DST_AB, dst_ab) |
431 		FIELD_PREP(OP_MUL_SW, swap) |
432 		FIELD_PREP(OP_MUL_TYPE, type) |
433 		FIELD_PREP(OP_MUL_WR_AB, wr_both) |
434 		FIELD_PREP(OP_MUL_SRC_LMEXTN, src_lmextn) |
435 		FIELD_PREP(OP_MUL_DST_LMEXTN, dst_lmextn);
436 
437 	nfp_prog_push(nfp_prog, insn);
438 }
439 
440 static void
441 emit_mul(struct nfp_prog *nfp_prog, swreg lreg, enum mul_type type,
442 	 enum mul_step step, swreg rreg)
443 {
444 	struct nfp_insn_ur_regs reg;
445 	u16 areg;
446 	int err;
447 
448 	if (type == MUL_TYPE_START && step != MUL_STEP_NONE) {
449 		nfp_prog->error = -EINVAL;
450 		return;
451 	}
452 
453 	if (step == MUL_LAST || step == MUL_LAST_2) {
454 		/* When type is step and step Number is LAST or LAST2, left
455 		 * source is used as destination.
456 		 */
457 		err = swreg_to_unrestricted(lreg, reg_none(), rreg, &reg);
458 		areg = reg.dst;
459 	} else {
460 		err = swreg_to_unrestricted(reg_none(), lreg, rreg, &reg);
461 		areg = reg.areg;
462 	}
463 
464 	if (err) {
465 		nfp_prog->error = err;
466 		return;
467 	}
468 
469 	__emit_mul(nfp_prog, reg.dst_ab, areg, type, step, reg.breg, reg.swap,
470 		   reg.wr_both, reg.dst_lmextn, reg.src_lmextn);
471 }
472 
473 static void
474 __emit_ld_field(struct nfp_prog *nfp_prog, enum shf_sc sc,
475 		u8 areg, u8 bmask, u8 breg, u8 shift, bool imm8,
476 		bool zero, bool swap, bool wr_both,
477 		bool dst_lmextn, bool src_lmextn)
478 {
479 	u64 insn;
480 
481 	insn = OP_LDF_BASE |
482 		FIELD_PREP(OP_LDF_A_SRC, areg) |
483 		FIELD_PREP(OP_LDF_SC, sc) |
484 		FIELD_PREP(OP_LDF_B_SRC, breg) |
485 		FIELD_PREP(OP_LDF_I8, imm8) |
486 		FIELD_PREP(OP_LDF_SW, swap) |
487 		FIELD_PREP(OP_LDF_ZF, zero) |
488 		FIELD_PREP(OP_LDF_BMASK, bmask) |
489 		FIELD_PREP(OP_LDF_SHF, shift) |
490 		FIELD_PREP(OP_LDF_WR_AB, wr_both) |
491 		FIELD_PREP(OP_LDF_SRC_LMEXTN, src_lmextn) |
492 		FIELD_PREP(OP_LDF_DST_LMEXTN, dst_lmextn);
493 
494 	nfp_prog_push(nfp_prog, insn);
495 }
496 
497 static void
498 emit_ld_field_any(struct nfp_prog *nfp_prog, swreg dst, u8 bmask, swreg src,
499 		  enum shf_sc sc, u8 shift, bool zero)
500 {
501 	struct nfp_insn_re_regs reg;
502 	int err;
503 
504 	/* Note: ld_field is special as it uses one of the src regs as dst */
505 	err = swreg_to_restricted(dst, dst, src, &reg, true);
506 	if (err) {
507 		nfp_prog->error = err;
508 		return;
509 	}
510 
511 	__emit_ld_field(nfp_prog, sc, reg.areg, bmask, reg.breg, shift,
512 			reg.i8, zero, reg.swap, reg.wr_both,
513 			reg.dst_lmextn, reg.src_lmextn);
514 }
515 
516 static void
517 emit_ld_field(struct nfp_prog *nfp_prog, swreg dst, u8 bmask, swreg src,
518 	      enum shf_sc sc, u8 shift)
519 {
520 	emit_ld_field_any(nfp_prog, dst, bmask, src, sc, shift, false);
521 }
522 
523 static void
524 __emit_lcsr(struct nfp_prog *nfp_prog, u16 areg, u16 breg, bool wr, u16 addr,
525 	    bool dst_lmextn, bool src_lmextn)
526 {
527 	u64 insn;
528 
529 	insn = OP_LCSR_BASE |
530 		FIELD_PREP(OP_LCSR_A_SRC, areg) |
531 		FIELD_PREP(OP_LCSR_B_SRC, breg) |
532 		FIELD_PREP(OP_LCSR_WRITE, wr) |
533 		FIELD_PREP(OP_LCSR_ADDR, addr / 4) |
534 		FIELD_PREP(OP_LCSR_SRC_LMEXTN, src_lmextn) |
535 		FIELD_PREP(OP_LCSR_DST_LMEXTN, dst_lmextn);
536 
537 	nfp_prog_push(nfp_prog, insn);
538 }
539 
540 static void emit_csr_wr(struct nfp_prog *nfp_prog, swreg src, u16 addr)
541 {
542 	struct nfp_insn_ur_regs reg;
543 	int err;
544 
545 	/* This instruction takes immeds instead of reg_none() for the ignored
546 	 * operand, but we can't encode 2 immeds in one instr with our normal
547 	 * swreg infra so if param is an immed, we encode as reg_none() and
548 	 * copy the immed to both operands.
549 	 */
550 	if (swreg_type(src) == NN_REG_IMM) {
551 		err = swreg_to_unrestricted(reg_none(), src, reg_none(), &reg);
552 		reg.breg = reg.areg;
553 	} else {
554 		err = swreg_to_unrestricted(reg_none(), src, reg_imm(0), &reg);
555 	}
556 	if (err) {
557 		nfp_prog->error = err;
558 		return;
559 	}
560 
561 	__emit_lcsr(nfp_prog, reg.areg, reg.breg, true, addr,
562 		    false, reg.src_lmextn);
563 }
564 
565 /* CSR value is read in following immed[gpr, 0] */
566 static void __emit_csr_rd(struct nfp_prog *nfp_prog, u16 addr)
567 {
568 	__emit_lcsr(nfp_prog, 0, 0, false, addr, false, false);
569 }
570 
571 static void emit_nop(struct nfp_prog *nfp_prog)
572 {
573 	__emit_immed(nfp_prog, UR_REG_IMM, UR_REG_IMM, 0, 0, 0, 0, 0, 0, 0);
574 }
575 
576 /* --- Wrappers --- */
577 static bool pack_immed(u32 imm, u16 *val, enum immed_shift *shift)
578 {
579 	if (!(imm & 0xffff0000)) {
580 		*val = imm;
581 		*shift = IMMED_SHIFT_0B;
582 	} else if (!(imm & 0xff0000ff)) {
583 		*val = imm >> 8;
584 		*shift = IMMED_SHIFT_1B;
585 	} else if (!(imm & 0x0000ffff)) {
586 		*val = imm >> 16;
587 		*shift = IMMED_SHIFT_2B;
588 	} else {
589 		return false;
590 	}
591 
592 	return true;
593 }
594 
595 static void wrp_immed(struct nfp_prog *nfp_prog, swreg dst, u32 imm)
596 {
597 	enum immed_shift shift;
598 	u16 val;
599 
600 	if (pack_immed(imm, &val, &shift)) {
601 		emit_immed(nfp_prog, dst, val, IMMED_WIDTH_ALL, false, shift);
602 	} else if (pack_immed(~imm, &val, &shift)) {
603 		emit_immed(nfp_prog, dst, val, IMMED_WIDTH_ALL, true, shift);
604 	} else {
605 		emit_immed(nfp_prog, dst, imm & 0xffff, IMMED_WIDTH_ALL,
606 			   false, IMMED_SHIFT_0B);
607 		emit_immed(nfp_prog, dst, imm >> 16, IMMED_WIDTH_WORD,
608 			   false, IMMED_SHIFT_2B);
609 	}
610 }
611 
612 static void
613 wrp_immed_relo(struct nfp_prog *nfp_prog, swreg dst, u32 imm,
614 	       enum nfp_relo_type relo)
615 {
616 	if (imm > 0xffff) {
617 		pr_err("relocation of a large immediate!\n");
618 		nfp_prog->error = -EFAULT;
619 		return;
620 	}
621 	emit_immed(nfp_prog, dst, imm, IMMED_WIDTH_ALL, false, IMMED_SHIFT_0B);
622 
623 	nfp_prog->prog[nfp_prog->prog_len - 1] |=
624 		FIELD_PREP(OP_RELO_TYPE, relo);
625 }
626 
627 /* ur_load_imm_any() - encode immediate or use tmp register (unrestricted)
628  * If the @imm is small enough encode it directly in operand and return
629  * otherwise load @imm to a spare register and return its encoding.
630  */
631 static swreg ur_load_imm_any(struct nfp_prog *nfp_prog, u32 imm, swreg tmp_reg)
632 {
633 	if (FIELD_FIT(UR_REG_IMM_MAX, imm))
634 		return reg_imm(imm);
635 
636 	wrp_immed(nfp_prog, tmp_reg, imm);
637 	return tmp_reg;
638 }
639 
640 /* re_load_imm_any() - encode immediate or use tmp register (restricted)
641  * If the @imm is small enough encode it directly in operand and return
642  * otherwise load @imm to a spare register and return its encoding.
643  */
644 static swreg re_load_imm_any(struct nfp_prog *nfp_prog, u32 imm, swreg tmp_reg)
645 {
646 	if (FIELD_FIT(RE_REG_IMM_MAX, imm))
647 		return reg_imm(imm);
648 
649 	wrp_immed(nfp_prog, tmp_reg, imm);
650 	return tmp_reg;
651 }
652 
653 static void wrp_nops(struct nfp_prog *nfp_prog, unsigned int count)
654 {
655 	while (count--)
656 		emit_nop(nfp_prog);
657 }
658 
659 static void wrp_mov(struct nfp_prog *nfp_prog, swreg dst, swreg src)
660 {
661 	emit_alu(nfp_prog, dst, reg_none(), ALU_OP_NONE, src);
662 }
663 
664 static void wrp_reg_mov(struct nfp_prog *nfp_prog, u16 dst, u16 src)
665 {
666 	wrp_mov(nfp_prog, reg_both(dst), reg_b(src));
667 }
668 
669 /* wrp_reg_subpart() - load @field_len bytes from @offset of @src, write the
670  * result to @dst from low end.
671  */
672 static void
673 wrp_reg_subpart(struct nfp_prog *nfp_prog, swreg dst, swreg src, u8 field_len,
674 		u8 offset)
675 {
676 	enum shf_sc sc = offset ? SHF_SC_R_SHF : SHF_SC_NONE;
677 	u8 mask = (1 << field_len) - 1;
678 
679 	emit_ld_field_any(nfp_prog, dst, mask, src, sc, offset * 8, true);
680 }
681 
682 /* wrp_reg_or_subpart() - load @field_len bytes from low end of @src, or the
683  * result to @dst from offset, there is no change on the other bits of @dst.
684  */
685 static void
686 wrp_reg_or_subpart(struct nfp_prog *nfp_prog, swreg dst, swreg src,
687 		   u8 field_len, u8 offset)
688 {
689 	enum shf_sc sc = offset ? SHF_SC_L_SHF : SHF_SC_NONE;
690 	u8 mask = ((1 << field_len) - 1) << offset;
691 
692 	emit_ld_field(nfp_prog, dst, mask, src, sc, 32 - offset * 8);
693 }
694 
695 static void
696 addr40_offset(struct nfp_prog *nfp_prog, u8 src_gpr, swreg offset,
697 	      swreg *rega, swreg *regb)
698 {
699 	if (offset == reg_imm(0)) {
700 		*rega = reg_a(src_gpr);
701 		*regb = reg_b(src_gpr + 1);
702 		return;
703 	}
704 
705 	emit_alu(nfp_prog, imm_a(nfp_prog), reg_a(src_gpr), ALU_OP_ADD, offset);
706 	emit_alu(nfp_prog, imm_b(nfp_prog), reg_b(src_gpr + 1), ALU_OP_ADD_C,
707 		 reg_imm(0));
708 	*rega = imm_a(nfp_prog);
709 	*regb = imm_b(nfp_prog);
710 }
711 
712 /* NFP has Command Push Pull bus which supports bluk memory operations. */
713 static int nfp_cpp_memcpy(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
714 {
715 	bool descending_seq = meta->ldst_gather_len < 0;
716 	s16 len = abs(meta->ldst_gather_len);
717 	swreg src_base, off;
718 	bool src_40bit_addr;
719 	unsigned int i;
720 	u8 xfer_num;
721 
722 	off = re_load_imm_any(nfp_prog, meta->insn.off, imm_b(nfp_prog));
723 	src_40bit_addr = meta->ptr.type == PTR_TO_MAP_VALUE;
724 	src_base = reg_a(meta->insn.src_reg * 2);
725 	xfer_num = round_up(len, 4) / 4;
726 
727 	if (src_40bit_addr)
728 		addr40_offset(nfp_prog, meta->insn.src_reg * 2, off, &src_base,
729 			      &off);
730 
731 	/* Setup PREV_ALU fields to override memory read length. */
732 	if (len > 32)
733 		wrp_immed(nfp_prog, reg_none(),
734 			  CMD_OVE_LEN | FIELD_PREP(CMD_OV_LEN, xfer_num - 1));
735 
736 	/* Memory read from source addr into transfer-in registers. */
737 	emit_cmd_any(nfp_prog, CMD_TGT_READ32_SWAP,
738 		     src_40bit_addr ? CMD_MODE_40b_BA : CMD_MODE_32b, 0,
739 		     src_base, off, xfer_num - 1, CMD_CTX_SWAP, len > 32);
740 
741 	/* Move from transfer-in to transfer-out. */
742 	for (i = 0; i < xfer_num; i++)
743 		wrp_mov(nfp_prog, reg_xfer(i), reg_xfer(i));
744 
745 	off = re_load_imm_any(nfp_prog, meta->paired_st->off, imm_b(nfp_prog));
746 
747 	if (len <= 8) {
748 		/* Use single direct_ref write8. */
749 		emit_cmd(nfp_prog, CMD_TGT_WRITE8_SWAP, CMD_MODE_32b, 0,
750 			 reg_a(meta->paired_st->dst_reg * 2), off, len - 1,
751 			 CMD_CTX_SWAP);
752 	} else if (len <= 32 && IS_ALIGNED(len, 4)) {
753 		/* Use single direct_ref write32. */
754 		emit_cmd(nfp_prog, CMD_TGT_WRITE32_SWAP, CMD_MODE_32b, 0,
755 			 reg_a(meta->paired_st->dst_reg * 2), off, xfer_num - 1,
756 			 CMD_CTX_SWAP);
757 	} else if (len <= 32) {
758 		/* Use single indirect_ref write8. */
759 		wrp_immed(nfp_prog, reg_none(),
760 			  CMD_OVE_LEN | FIELD_PREP(CMD_OV_LEN, len - 1));
761 		emit_cmd_indir(nfp_prog, CMD_TGT_WRITE8_SWAP, CMD_MODE_32b, 0,
762 			       reg_a(meta->paired_st->dst_reg * 2), off,
763 			       len - 1, CMD_CTX_SWAP);
764 	} else if (IS_ALIGNED(len, 4)) {
765 		/* Use single indirect_ref write32. */
766 		wrp_immed(nfp_prog, reg_none(),
767 			  CMD_OVE_LEN | FIELD_PREP(CMD_OV_LEN, xfer_num - 1));
768 		emit_cmd_indir(nfp_prog, CMD_TGT_WRITE32_SWAP, CMD_MODE_32b, 0,
769 			       reg_a(meta->paired_st->dst_reg * 2), off,
770 			       xfer_num - 1, CMD_CTX_SWAP);
771 	} else if (len <= 40) {
772 		/* Use one direct_ref write32 to write the first 32-bytes, then
773 		 * another direct_ref write8 to write the remaining bytes.
774 		 */
775 		emit_cmd(nfp_prog, CMD_TGT_WRITE32_SWAP, CMD_MODE_32b, 0,
776 			 reg_a(meta->paired_st->dst_reg * 2), off, 7,
777 			 CMD_CTX_SWAP);
778 
779 		off = re_load_imm_any(nfp_prog, meta->paired_st->off + 32,
780 				      imm_b(nfp_prog));
781 		emit_cmd(nfp_prog, CMD_TGT_WRITE8_SWAP, CMD_MODE_32b, 8,
782 			 reg_a(meta->paired_st->dst_reg * 2), off, len - 33,
783 			 CMD_CTX_SWAP);
784 	} else {
785 		/* Use one indirect_ref write32 to write 4-bytes aligned length,
786 		 * then another direct_ref write8 to write the remaining bytes.
787 		 */
788 		u8 new_off;
789 
790 		wrp_immed(nfp_prog, reg_none(),
791 			  CMD_OVE_LEN | FIELD_PREP(CMD_OV_LEN, xfer_num - 2));
792 		emit_cmd_indir(nfp_prog, CMD_TGT_WRITE32_SWAP, CMD_MODE_32b, 0,
793 			       reg_a(meta->paired_st->dst_reg * 2), off,
794 			       xfer_num - 2, CMD_CTX_SWAP);
795 		new_off = meta->paired_st->off + (xfer_num - 1) * 4;
796 		off = re_load_imm_any(nfp_prog, new_off, imm_b(nfp_prog));
797 		emit_cmd(nfp_prog, CMD_TGT_WRITE8_SWAP, CMD_MODE_32b,
798 			 xfer_num - 1, reg_a(meta->paired_st->dst_reg * 2), off,
799 			 (len & 0x3) - 1, CMD_CTX_SWAP);
800 	}
801 
802 	/* TODO: The following extra load is to make sure data flow be identical
803 	 *  before and after we do memory copy optimization.
804 	 *
805 	 *  The load destination register is not guaranteed to be dead, so we
806 	 *  need to make sure it is loaded with the value the same as before
807 	 *  this transformation.
808 	 *
809 	 *  These extra loads could be removed once we have accurate register
810 	 *  usage information.
811 	 */
812 	if (descending_seq)
813 		xfer_num = 0;
814 	else if (BPF_SIZE(meta->insn.code) != BPF_DW)
815 		xfer_num = xfer_num - 1;
816 	else
817 		xfer_num = xfer_num - 2;
818 
819 	switch (BPF_SIZE(meta->insn.code)) {
820 	case BPF_B:
821 		wrp_reg_subpart(nfp_prog, reg_both(meta->insn.dst_reg * 2),
822 				reg_xfer(xfer_num), 1,
823 				IS_ALIGNED(len, 4) ? 3 : (len & 3) - 1);
824 		break;
825 	case BPF_H:
826 		wrp_reg_subpart(nfp_prog, reg_both(meta->insn.dst_reg * 2),
827 				reg_xfer(xfer_num), 2, (len & 3) ^ 2);
828 		break;
829 	case BPF_W:
830 		wrp_mov(nfp_prog, reg_both(meta->insn.dst_reg * 2),
831 			reg_xfer(0));
832 		break;
833 	case BPF_DW:
834 		wrp_mov(nfp_prog, reg_both(meta->insn.dst_reg * 2),
835 			reg_xfer(xfer_num));
836 		wrp_mov(nfp_prog, reg_both(meta->insn.dst_reg * 2 + 1),
837 			reg_xfer(xfer_num + 1));
838 		break;
839 	}
840 
841 	if (BPF_SIZE(meta->insn.code) != BPF_DW)
842 		wrp_immed(nfp_prog, reg_both(meta->insn.dst_reg * 2 + 1), 0);
843 
844 	return 0;
845 }
846 
847 static int
848 data_ld(struct nfp_prog *nfp_prog, swreg offset, u8 dst_gpr, int size)
849 {
850 	unsigned int i;
851 	u16 shift, sz;
852 
853 	/* We load the value from the address indicated in @offset and then
854 	 * shift out the data we don't need.  Note: this is big endian!
855 	 */
856 	sz = max(size, 4);
857 	shift = size < 4 ? 4 - size : 0;
858 
859 	emit_cmd(nfp_prog, CMD_TGT_READ8, CMD_MODE_32b, 0,
860 		 pptr_reg(nfp_prog), offset, sz - 1, CMD_CTX_SWAP);
861 
862 	i = 0;
863 	if (shift)
864 		emit_shf(nfp_prog, reg_both(dst_gpr), reg_none(), SHF_OP_NONE,
865 			 reg_xfer(0), SHF_SC_R_SHF, shift * 8);
866 	else
867 		for (; i * 4 < size; i++)
868 			wrp_mov(nfp_prog, reg_both(dst_gpr + i), reg_xfer(i));
869 
870 	if (i < 2)
871 		wrp_immed(nfp_prog, reg_both(dst_gpr + 1), 0);
872 
873 	return 0;
874 }
875 
876 static int
877 data_ld_host_order(struct nfp_prog *nfp_prog, u8 dst_gpr,
878 		   swreg lreg, swreg rreg, int size, enum cmd_mode mode)
879 {
880 	unsigned int i;
881 	u8 mask, sz;
882 
883 	/* We load the value from the address indicated in rreg + lreg and then
884 	 * mask out the data we don't need.  Note: this is little endian!
885 	 */
886 	sz = max(size, 4);
887 	mask = size < 4 ? GENMASK(size - 1, 0) : 0;
888 
889 	emit_cmd(nfp_prog, CMD_TGT_READ32_SWAP, mode, 0,
890 		 lreg, rreg, sz / 4 - 1, CMD_CTX_SWAP);
891 
892 	i = 0;
893 	if (mask)
894 		emit_ld_field_any(nfp_prog, reg_both(dst_gpr), mask,
895 				  reg_xfer(0), SHF_SC_NONE, 0, true);
896 	else
897 		for (; i * 4 < size; i++)
898 			wrp_mov(nfp_prog, reg_both(dst_gpr + i), reg_xfer(i));
899 
900 	if (i < 2)
901 		wrp_immed(nfp_prog, reg_both(dst_gpr + 1), 0);
902 
903 	return 0;
904 }
905 
906 static int
907 data_ld_host_order_addr32(struct nfp_prog *nfp_prog, u8 src_gpr, swreg offset,
908 			  u8 dst_gpr, u8 size)
909 {
910 	return data_ld_host_order(nfp_prog, dst_gpr, reg_a(src_gpr), offset,
911 				  size, CMD_MODE_32b);
912 }
913 
914 static int
915 data_ld_host_order_addr40(struct nfp_prog *nfp_prog, u8 src_gpr, swreg offset,
916 			  u8 dst_gpr, u8 size)
917 {
918 	swreg rega, regb;
919 
920 	addr40_offset(nfp_prog, src_gpr, offset, &rega, &regb);
921 
922 	return data_ld_host_order(nfp_prog, dst_gpr, rega, regb,
923 				  size, CMD_MODE_40b_BA);
924 }
925 
926 static int
927 construct_data_ind_ld(struct nfp_prog *nfp_prog, u16 offset, u16 src, u8 size)
928 {
929 	swreg tmp_reg;
930 
931 	/* Calculate the true offset (src_reg + imm) */
932 	tmp_reg = ur_load_imm_any(nfp_prog, offset, imm_b(nfp_prog));
933 	emit_alu(nfp_prog, imm_both(nfp_prog), reg_a(src), ALU_OP_ADD, tmp_reg);
934 
935 	/* Check packet length (size guaranteed to fit b/c it's u8) */
936 	emit_alu(nfp_prog, imm_a(nfp_prog),
937 		 imm_a(nfp_prog), ALU_OP_ADD, reg_imm(size));
938 	emit_alu(nfp_prog, reg_none(),
939 		 plen_reg(nfp_prog), ALU_OP_SUB, imm_a(nfp_prog));
940 	emit_br_relo(nfp_prog, BR_BLO, BR_OFF_RELO, 0, RELO_BR_GO_ABORT);
941 
942 	/* Load data */
943 	return data_ld(nfp_prog, imm_b(nfp_prog), 0, size);
944 }
945 
946 static int construct_data_ld(struct nfp_prog *nfp_prog, u16 offset, u8 size)
947 {
948 	swreg tmp_reg;
949 
950 	/* Check packet length */
951 	tmp_reg = ur_load_imm_any(nfp_prog, offset + size, imm_a(nfp_prog));
952 	emit_alu(nfp_prog, reg_none(), plen_reg(nfp_prog), ALU_OP_SUB, tmp_reg);
953 	emit_br_relo(nfp_prog, BR_BLO, BR_OFF_RELO, 0, RELO_BR_GO_ABORT);
954 
955 	/* Load data */
956 	tmp_reg = re_load_imm_any(nfp_prog, offset, imm_b(nfp_prog));
957 	return data_ld(nfp_prog, tmp_reg, 0, size);
958 }
959 
960 static int
961 data_stx_host_order(struct nfp_prog *nfp_prog, u8 dst_gpr, swreg offset,
962 		    u8 src_gpr, u8 size)
963 {
964 	unsigned int i;
965 
966 	for (i = 0; i * 4 < size; i++)
967 		wrp_mov(nfp_prog, reg_xfer(i), reg_a(src_gpr + i));
968 
969 	emit_cmd(nfp_prog, CMD_TGT_WRITE8_SWAP, CMD_MODE_32b, 0,
970 		 reg_a(dst_gpr), offset, size - 1, CMD_CTX_SWAP);
971 
972 	return 0;
973 }
974 
975 static int
976 data_st_host_order(struct nfp_prog *nfp_prog, u8 dst_gpr, swreg offset,
977 		   u64 imm, u8 size)
978 {
979 	wrp_immed(nfp_prog, reg_xfer(0), imm);
980 	if (size == 8)
981 		wrp_immed(nfp_prog, reg_xfer(1), imm >> 32);
982 
983 	emit_cmd(nfp_prog, CMD_TGT_WRITE8_SWAP, CMD_MODE_32b, 0,
984 		 reg_a(dst_gpr), offset, size - 1, CMD_CTX_SWAP);
985 
986 	return 0;
987 }
988 
989 typedef int
990 (*lmem_step)(struct nfp_prog *nfp_prog, u8 gpr, u8 gpr_byte, s32 off,
991 	     unsigned int size, bool first, bool new_gpr, bool last, bool lm3,
992 	     bool needs_inc);
993 
994 static int
995 wrp_lmem_load(struct nfp_prog *nfp_prog, u8 dst, u8 dst_byte, s32 off,
996 	      unsigned int size, bool first, bool new_gpr, bool last, bool lm3,
997 	      bool needs_inc)
998 {
999 	bool should_inc = needs_inc && new_gpr && !last;
1000 	u32 idx, src_byte;
1001 	enum shf_sc sc;
1002 	swreg reg;
1003 	int shf;
1004 	u8 mask;
1005 
1006 	if (WARN_ON_ONCE(dst_byte + size > 4 || off % 4 + size > 4))
1007 		return -EOPNOTSUPP;
1008 
1009 	idx = off / 4;
1010 
1011 	/* Move the entire word */
1012 	if (size == 4) {
1013 		wrp_mov(nfp_prog, reg_both(dst),
1014 			should_inc ? reg_lm_inc(3) : reg_lm(lm3 ? 3 : 0, idx));
1015 		return 0;
1016 	}
1017 
1018 	if (WARN_ON_ONCE(lm3 && idx > RE_REG_LM_IDX_MAX))
1019 		return -EOPNOTSUPP;
1020 
1021 	src_byte = off % 4;
1022 
1023 	mask = (1 << size) - 1;
1024 	mask <<= dst_byte;
1025 
1026 	if (WARN_ON_ONCE(mask > 0xf))
1027 		return -EOPNOTSUPP;
1028 
1029 	shf = abs(src_byte - dst_byte) * 8;
1030 	if (src_byte == dst_byte) {
1031 		sc = SHF_SC_NONE;
1032 	} else if (src_byte < dst_byte) {
1033 		shf = 32 - shf;
1034 		sc = SHF_SC_L_SHF;
1035 	} else {
1036 		sc = SHF_SC_R_SHF;
1037 	}
1038 
1039 	/* ld_field can address fewer indexes, if offset too large do RMW.
1040 	 * Because we RMV twice we waste 2 cycles on unaligned 8 byte writes.
1041 	 */
1042 	if (idx <= RE_REG_LM_IDX_MAX) {
1043 		reg = reg_lm(lm3 ? 3 : 0, idx);
1044 	} else {
1045 		reg = imm_a(nfp_prog);
1046 		/* If it's not the first part of the load and we start a new GPR
1047 		 * that means we are loading a second part of the LMEM word into
1048 		 * a new GPR.  IOW we've already looked that LMEM word and
1049 		 * therefore it has been loaded into imm_a().
1050 		 */
1051 		if (first || !new_gpr)
1052 			wrp_mov(nfp_prog, reg, reg_lm(0, idx));
1053 	}
1054 
1055 	emit_ld_field_any(nfp_prog, reg_both(dst), mask, reg, sc, shf, new_gpr);
1056 
1057 	if (should_inc)
1058 		wrp_mov(nfp_prog, reg_none(), reg_lm_inc(3));
1059 
1060 	return 0;
1061 }
1062 
1063 static int
1064 wrp_lmem_store(struct nfp_prog *nfp_prog, u8 src, u8 src_byte, s32 off,
1065 	       unsigned int size, bool first, bool new_gpr, bool last, bool lm3,
1066 	       bool needs_inc)
1067 {
1068 	bool should_inc = needs_inc && new_gpr && !last;
1069 	u32 idx, dst_byte;
1070 	enum shf_sc sc;
1071 	swreg reg;
1072 	int shf;
1073 	u8 mask;
1074 
1075 	if (WARN_ON_ONCE(src_byte + size > 4 || off % 4 + size > 4))
1076 		return -EOPNOTSUPP;
1077 
1078 	idx = off / 4;
1079 
1080 	/* Move the entire word */
1081 	if (size == 4) {
1082 		wrp_mov(nfp_prog,
1083 			should_inc ? reg_lm_inc(3) : reg_lm(lm3 ? 3 : 0, idx),
1084 			reg_b(src));
1085 		return 0;
1086 	}
1087 
1088 	if (WARN_ON_ONCE(lm3 && idx > RE_REG_LM_IDX_MAX))
1089 		return -EOPNOTSUPP;
1090 
1091 	dst_byte = off % 4;
1092 
1093 	mask = (1 << size) - 1;
1094 	mask <<= dst_byte;
1095 
1096 	if (WARN_ON_ONCE(mask > 0xf))
1097 		return -EOPNOTSUPP;
1098 
1099 	shf = abs(src_byte - dst_byte) * 8;
1100 	if (src_byte == dst_byte) {
1101 		sc = SHF_SC_NONE;
1102 	} else if (src_byte < dst_byte) {
1103 		shf = 32 - shf;
1104 		sc = SHF_SC_L_SHF;
1105 	} else {
1106 		sc = SHF_SC_R_SHF;
1107 	}
1108 
1109 	/* ld_field can address fewer indexes, if offset too large do RMW.
1110 	 * Because we RMV twice we waste 2 cycles on unaligned 8 byte writes.
1111 	 */
1112 	if (idx <= RE_REG_LM_IDX_MAX) {
1113 		reg = reg_lm(lm3 ? 3 : 0, idx);
1114 	} else {
1115 		reg = imm_a(nfp_prog);
1116 		/* Only first and last LMEM locations are going to need RMW,
1117 		 * the middle location will be overwritten fully.
1118 		 */
1119 		if (first || last)
1120 			wrp_mov(nfp_prog, reg, reg_lm(0, idx));
1121 	}
1122 
1123 	emit_ld_field(nfp_prog, reg, mask, reg_b(src), sc, shf);
1124 
1125 	if (new_gpr || last) {
1126 		if (idx > RE_REG_LM_IDX_MAX)
1127 			wrp_mov(nfp_prog, reg_lm(0, idx), reg);
1128 		if (should_inc)
1129 			wrp_mov(nfp_prog, reg_none(), reg_lm_inc(3));
1130 	}
1131 
1132 	return 0;
1133 }
1134 
1135 static int
1136 mem_op_stack(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
1137 	     unsigned int size, unsigned int ptr_off, u8 gpr, u8 ptr_gpr,
1138 	     bool clr_gpr, lmem_step step)
1139 {
1140 	s32 off = nfp_prog->stack_depth + meta->insn.off + ptr_off;
1141 	bool first = true, last;
1142 	bool needs_inc = false;
1143 	swreg stack_off_reg;
1144 	u8 prev_gpr = 255;
1145 	u32 gpr_byte = 0;
1146 	bool lm3 = true;
1147 	int ret;
1148 
1149 	if (meta->ptr_not_const) {
1150 		/* Use of the last encountered ptr_off is OK, they all have
1151 		 * the same alignment.  Depend on low bits of value being
1152 		 * discarded when written to LMaddr register.
1153 		 */
1154 		stack_off_reg = ur_load_imm_any(nfp_prog, meta->insn.off,
1155 						stack_imm(nfp_prog));
1156 
1157 		emit_alu(nfp_prog, imm_b(nfp_prog),
1158 			 reg_a(ptr_gpr), ALU_OP_ADD, stack_off_reg);
1159 
1160 		needs_inc = true;
1161 	} else if (off + size <= 64) {
1162 		/* We can reach bottom 64B with LMaddr0 */
1163 		lm3 = false;
1164 	} else if (round_down(off, 32) == round_down(off + size - 1, 32)) {
1165 		/* We have to set up a new pointer.  If we know the offset
1166 		 * and the entire access falls into a single 32 byte aligned
1167 		 * window we won't have to increment the LM pointer.
1168 		 * The 32 byte alignment is imporant because offset is ORed in
1169 		 * not added when doing *l$indexN[off].
1170 		 */
1171 		stack_off_reg = ur_load_imm_any(nfp_prog, round_down(off, 32),
1172 						stack_imm(nfp_prog));
1173 		emit_alu(nfp_prog, imm_b(nfp_prog),
1174 			 stack_reg(nfp_prog), ALU_OP_ADD, stack_off_reg);
1175 
1176 		off %= 32;
1177 	} else {
1178 		stack_off_reg = ur_load_imm_any(nfp_prog, round_down(off, 4),
1179 						stack_imm(nfp_prog));
1180 
1181 		emit_alu(nfp_prog, imm_b(nfp_prog),
1182 			 stack_reg(nfp_prog), ALU_OP_ADD, stack_off_reg);
1183 
1184 		needs_inc = true;
1185 	}
1186 	if (lm3) {
1187 		emit_csr_wr(nfp_prog, imm_b(nfp_prog), NFP_CSR_ACT_LM_ADDR3);
1188 		/* For size < 4 one slot will be filled by zeroing of upper. */
1189 		wrp_nops(nfp_prog, clr_gpr && size < 8 ? 2 : 3);
1190 	}
1191 
1192 	if (clr_gpr && size < 8)
1193 		wrp_immed(nfp_prog, reg_both(gpr + 1), 0);
1194 
1195 	while (size) {
1196 		u32 slice_end;
1197 		u8 slice_size;
1198 
1199 		slice_size = min(size, 4 - gpr_byte);
1200 		slice_end = min(off + slice_size, round_up(off + 1, 4));
1201 		slice_size = slice_end - off;
1202 
1203 		last = slice_size == size;
1204 
1205 		if (needs_inc)
1206 			off %= 4;
1207 
1208 		ret = step(nfp_prog, gpr, gpr_byte, off, slice_size,
1209 			   first, gpr != prev_gpr, last, lm3, needs_inc);
1210 		if (ret)
1211 			return ret;
1212 
1213 		prev_gpr = gpr;
1214 		first = false;
1215 
1216 		gpr_byte += slice_size;
1217 		if (gpr_byte >= 4) {
1218 			gpr_byte -= 4;
1219 			gpr++;
1220 		}
1221 
1222 		size -= slice_size;
1223 		off += slice_size;
1224 	}
1225 
1226 	return 0;
1227 }
1228 
1229 static void
1230 wrp_alu_imm(struct nfp_prog *nfp_prog, u8 dst, enum alu_op alu_op, u32 imm)
1231 {
1232 	swreg tmp_reg;
1233 
1234 	if (alu_op == ALU_OP_AND) {
1235 		if (!imm)
1236 			wrp_immed(nfp_prog, reg_both(dst), 0);
1237 		if (!imm || !~imm)
1238 			return;
1239 	}
1240 	if (alu_op == ALU_OP_OR) {
1241 		if (!~imm)
1242 			wrp_immed(nfp_prog, reg_both(dst), ~0U);
1243 		if (!imm || !~imm)
1244 			return;
1245 	}
1246 	if (alu_op == ALU_OP_XOR) {
1247 		if (!~imm)
1248 			emit_alu(nfp_prog, reg_both(dst), reg_none(),
1249 				 ALU_OP_NOT, reg_b(dst));
1250 		if (!imm || !~imm)
1251 			return;
1252 	}
1253 
1254 	tmp_reg = ur_load_imm_any(nfp_prog, imm, imm_b(nfp_prog));
1255 	emit_alu(nfp_prog, reg_both(dst), reg_a(dst), alu_op, tmp_reg);
1256 }
1257 
1258 static int
1259 wrp_alu64_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
1260 	      enum alu_op alu_op, bool skip)
1261 {
1262 	const struct bpf_insn *insn = &meta->insn;
1263 	u64 imm = insn->imm; /* sign extend */
1264 
1265 	if (skip) {
1266 		meta->skip = true;
1267 		return 0;
1268 	}
1269 
1270 	wrp_alu_imm(nfp_prog, insn->dst_reg * 2, alu_op, imm & ~0U);
1271 	wrp_alu_imm(nfp_prog, insn->dst_reg * 2 + 1, alu_op, imm >> 32);
1272 
1273 	return 0;
1274 }
1275 
1276 static int
1277 wrp_alu64_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
1278 	      enum alu_op alu_op)
1279 {
1280 	u8 dst = meta->insn.dst_reg * 2, src = meta->insn.src_reg * 2;
1281 
1282 	emit_alu(nfp_prog, reg_both(dst), reg_a(dst), alu_op, reg_b(src));
1283 	emit_alu(nfp_prog, reg_both(dst + 1),
1284 		 reg_a(dst + 1), alu_op, reg_b(src + 1));
1285 
1286 	return 0;
1287 }
1288 
1289 static int
1290 wrp_alu32_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
1291 	      enum alu_op alu_op, bool skip)
1292 {
1293 	const struct bpf_insn *insn = &meta->insn;
1294 
1295 	if (skip) {
1296 		meta->skip = true;
1297 		return 0;
1298 	}
1299 
1300 	wrp_alu_imm(nfp_prog, insn->dst_reg * 2, alu_op, insn->imm);
1301 	wrp_immed(nfp_prog, reg_both(insn->dst_reg * 2 + 1), 0);
1302 
1303 	return 0;
1304 }
1305 
1306 static int
1307 wrp_alu32_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
1308 	      enum alu_op alu_op)
1309 {
1310 	u8 dst = meta->insn.dst_reg * 2, src = meta->insn.src_reg * 2;
1311 
1312 	emit_alu(nfp_prog, reg_both(dst), reg_a(dst), alu_op, reg_b(src));
1313 	wrp_immed(nfp_prog, reg_both(meta->insn.dst_reg * 2 + 1), 0);
1314 
1315 	return 0;
1316 }
1317 
1318 static void
1319 wrp_test_reg_one(struct nfp_prog *nfp_prog, u8 dst, enum alu_op alu_op, u8 src,
1320 		 enum br_mask br_mask, u16 off)
1321 {
1322 	emit_alu(nfp_prog, reg_none(), reg_a(dst), alu_op, reg_b(src));
1323 	emit_br(nfp_prog, br_mask, off, 0);
1324 }
1325 
1326 static int
1327 wrp_test_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
1328 	     enum alu_op alu_op, enum br_mask br_mask)
1329 {
1330 	const struct bpf_insn *insn = &meta->insn;
1331 
1332 	wrp_test_reg_one(nfp_prog, insn->dst_reg * 2, alu_op,
1333 			 insn->src_reg * 2, br_mask, insn->off);
1334 	wrp_test_reg_one(nfp_prog, insn->dst_reg * 2 + 1, alu_op,
1335 			 insn->src_reg * 2 + 1, br_mask, insn->off);
1336 
1337 	return 0;
1338 }
1339 
1340 static const struct jmp_code_map {
1341 	enum br_mask br_mask;
1342 	bool swap;
1343 } jmp_code_map[] = {
1344 	[BPF_JGT >> 4]	= { BR_BLO, true },
1345 	[BPF_JGE >> 4]	= { BR_BHS, false },
1346 	[BPF_JLT >> 4]	= { BR_BLO, false },
1347 	[BPF_JLE >> 4]	= { BR_BHS, true },
1348 	[BPF_JSGT >> 4]	= { BR_BLT, true },
1349 	[BPF_JSGE >> 4]	= { BR_BGE, false },
1350 	[BPF_JSLT >> 4]	= { BR_BLT, false },
1351 	[BPF_JSLE >> 4]	= { BR_BGE, true },
1352 };
1353 
1354 static const struct jmp_code_map *nfp_jmp_code_get(struct nfp_insn_meta *meta)
1355 {
1356 	unsigned int op;
1357 
1358 	op = BPF_OP(meta->insn.code) >> 4;
1359 	/* br_mask of 0 is BR_BEQ which we don't use in jump code table */
1360 	if (WARN_ONCE(op >= ARRAY_SIZE(jmp_code_map) ||
1361 		      !jmp_code_map[op].br_mask,
1362 		      "no code found for jump instruction"))
1363 		return NULL;
1364 
1365 	return &jmp_code_map[op];
1366 }
1367 
1368 static int cmp_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1369 {
1370 	const struct bpf_insn *insn = &meta->insn;
1371 	u64 imm = insn->imm; /* sign extend */
1372 	const struct jmp_code_map *code;
1373 	enum alu_op alu_op, carry_op;
1374 	u8 reg = insn->dst_reg * 2;
1375 	swreg tmp_reg;
1376 
1377 	code = nfp_jmp_code_get(meta);
1378 	if (!code)
1379 		return -EINVAL;
1380 
1381 	alu_op = meta->jump_neg_op ? ALU_OP_ADD : ALU_OP_SUB;
1382 	carry_op = meta->jump_neg_op ? ALU_OP_ADD_C : ALU_OP_SUB_C;
1383 
1384 	tmp_reg = ur_load_imm_any(nfp_prog, imm & ~0U, imm_b(nfp_prog));
1385 	if (!code->swap)
1386 		emit_alu(nfp_prog, reg_none(), reg_a(reg), alu_op, tmp_reg);
1387 	else
1388 		emit_alu(nfp_prog, reg_none(), tmp_reg, alu_op, reg_a(reg));
1389 
1390 	tmp_reg = ur_load_imm_any(nfp_prog, imm >> 32, imm_b(nfp_prog));
1391 	if (!code->swap)
1392 		emit_alu(nfp_prog, reg_none(),
1393 			 reg_a(reg + 1), carry_op, tmp_reg);
1394 	else
1395 		emit_alu(nfp_prog, reg_none(),
1396 			 tmp_reg, carry_op, reg_a(reg + 1));
1397 
1398 	emit_br(nfp_prog, code->br_mask, insn->off, 0);
1399 
1400 	return 0;
1401 }
1402 
1403 static int cmp_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1404 {
1405 	const struct bpf_insn *insn = &meta->insn;
1406 	const struct jmp_code_map *code;
1407 	u8 areg, breg;
1408 
1409 	code = nfp_jmp_code_get(meta);
1410 	if (!code)
1411 		return -EINVAL;
1412 
1413 	areg = insn->dst_reg * 2;
1414 	breg = insn->src_reg * 2;
1415 
1416 	if (code->swap) {
1417 		areg ^= breg;
1418 		breg ^= areg;
1419 		areg ^= breg;
1420 	}
1421 
1422 	emit_alu(nfp_prog, reg_none(), reg_a(areg), ALU_OP_SUB, reg_b(breg));
1423 	emit_alu(nfp_prog, reg_none(),
1424 		 reg_a(areg + 1), ALU_OP_SUB_C, reg_b(breg + 1));
1425 	emit_br(nfp_prog, code->br_mask, insn->off, 0);
1426 
1427 	return 0;
1428 }
1429 
1430 static void wrp_end32(struct nfp_prog *nfp_prog, swreg reg_in, u8 gpr_out)
1431 {
1432 	emit_ld_field(nfp_prog, reg_both(gpr_out), 0xf, reg_in,
1433 		      SHF_SC_R_ROT, 8);
1434 	emit_ld_field(nfp_prog, reg_both(gpr_out), 0x5, reg_a(gpr_out),
1435 		      SHF_SC_R_ROT, 16);
1436 }
1437 
1438 static void
1439 wrp_mul_u32(struct nfp_prog *nfp_prog, swreg dst_hi, swreg dst_lo, swreg lreg,
1440 	    swreg rreg, bool gen_high_half)
1441 {
1442 	emit_mul(nfp_prog, lreg, MUL_TYPE_START, MUL_STEP_NONE, rreg);
1443 	emit_mul(nfp_prog, lreg, MUL_TYPE_STEP_32x32, MUL_STEP_1, rreg);
1444 	emit_mul(nfp_prog, lreg, MUL_TYPE_STEP_32x32, MUL_STEP_2, rreg);
1445 	emit_mul(nfp_prog, lreg, MUL_TYPE_STEP_32x32, MUL_STEP_3, rreg);
1446 	emit_mul(nfp_prog, lreg, MUL_TYPE_STEP_32x32, MUL_STEP_4, rreg);
1447 	emit_mul(nfp_prog, dst_lo, MUL_TYPE_STEP_32x32, MUL_LAST, reg_none());
1448 	if (gen_high_half)
1449 		emit_mul(nfp_prog, dst_hi, MUL_TYPE_STEP_32x32, MUL_LAST_2,
1450 			 reg_none());
1451 	else
1452 		wrp_immed(nfp_prog, dst_hi, 0);
1453 }
1454 
1455 static void
1456 wrp_mul_u16(struct nfp_prog *nfp_prog, swreg dst_hi, swreg dst_lo, swreg lreg,
1457 	    swreg rreg)
1458 {
1459 	emit_mul(nfp_prog, lreg, MUL_TYPE_START, MUL_STEP_NONE, rreg);
1460 	emit_mul(nfp_prog, lreg, MUL_TYPE_STEP_16x16, MUL_STEP_1, rreg);
1461 	emit_mul(nfp_prog, lreg, MUL_TYPE_STEP_16x16, MUL_STEP_2, rreg);
1462 	emit_mul(nfp_prog, dst_lo, MUL_TYPE_STEP_16x16, MUL_LAST, reg_none());
1463 }
1464 
1465 static int
1466 wrp_mul(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
1467 	bool gen_high_half, bool ropnd_from_reg)
1468 {
1469 	swreg multiplier, multiplicand, dst_hi, dst_lo;
1470 	const struct bpf_insn *insn = &meta->insn;
1471 	u32 lopnd_max, ropnd_max;
1472 	u8 dst_reg;
1473 
1474 	dst_reg = insn->dst_reg;
1475 	multiplicand = reg_a(dst_reg * 2);
1476 	dst_hi = reg_both(dst_reg * 2 + 1);
1477 	dst_lo = reg_both(dst_reg * 2);
1478 	lopnd_max = meta->umax_dst;
1479 	if (ropnd_from_reg) {
1480 		multiplier = reg_b(insn->src_reg * 2);
1481 		ropnd_max = meta->umax_src;
1482 	} else {
1483 		u32 imm = insn->imm;
1484 
1485 		multiplier = ur_load_imm_any(nfp_prog, imm, imm_b(nfp_prog));
1486 		ropnd_max = imm;
1487 	}
1488 	if (lopnd_max > U16_MAX || ropnd_max > U16_MAX)
1489 		wrp_mul_u32(nfp_prog, dst_hi, dst_lo, multiplicand, multiplier,
1490 			    gen_high_half);
1491 	else
1492 		wrp_mul_u16(nfp_prog, dst_hi, dst_lo, multiplicand, multiplier);
1493 
1494 	return 0;
1495 }
1496 
1497 static int wrp_div_imm(struct nfp_prog *nfp_prog, u8 dst, u64 imm)
1498 {
1499 	swreg dst_both = reg_both(dst), dst_a = reg_a(dst), dst_b = reg_a(dst);
1500 	struct reciprocal_value rvalue;
1501 	swreg tmp_b = imm_b(nfp_prog);
1502 	swreg magic;
1503 
1504 	if (imm > U32_MAX) {
1505 		wrp_immed(nfp_prog, dst_both, 0);
1506 		return 0;
1507 	}
1508 
1509 	rvalue = reciprocal_value(imm);
1510 	magic = ur_load_imm_any(nfp_prog, rvalue.m, imm_b(nfp_prog));
1511 	wrp_mul_u32(nfp_prog, imm_both(nfp_prog), reg_none(), dst_a, magic,
1512 		    true);
1513 	emit_alu(nfp_prog, dst_both, dst_a, ALU_OP_SUB, tmp_b);
1514 	emit_shf(nfp_prog, dst_both, reg_none(), SHF_OP_NONE, dst_b,
1515 		 SHF_SC_R_SHF, rvalue.sh1);
1516 	emit_alu(nfp_prog, dst_both, dst_a, ALU_OP_ADD, tmp_b);
1517 	emit_shf(nfp_prog, dst_both, reg_none(), SHF_OP_NONE, dst_b,
1518 		 SHF_SC_R_SHF, rvalue.sh2);
1519 
1520 	return 0;
1521 }
1522 
1523 static int adjust_head(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1524 {
1525 	swreg tmp = imm_a(nfp_prog), tmp_len = imm_b(nfp_prog);
1526 	struct nfp_bpf_cap_adjust_head *adjust_head;
1527 	u32 ret_einval, end;
1528 
1529 	adjust_head = &nfp_prog->bpf->adjust_head;
1530 
1531 	/* Optimized version - 5 vs 14 cycles */
1532 	if (nfp_prog->adjust_head_location != UINT_MAX) {
1533 		if (WARN_ON_ONCE(nfp_prog->adjust_head_location != meta->n))
1534 			return -EINVAL;
1535 
1536 		emit_alu(nfp_prog, pptr_reg(nfp_prog),
1537 			 reg_a(2 * 2), ALU_OP_ADD, pptr_reg(nfp_prog));
1538 		emit_alu(nfp_prog, plen_reg(nfp_prog),
1539 			 plen_reg(nfp_prog), ALU_OP_SUB, reg_a(2 * 2));
1540 		emit_alu(nfp_prog, pv_len(nfp_prog),
1541 			 pv_len(nfp_prog), ALU_OP_SUB, reg_a(2 * 2));
1542 
1543 		wrp_immed(nfp_prog, reg_both(0), 0);
1544 		wrp_immed(nfp_prog, reg_both(1), 0);
1545 
1546 		/* TODO: when adjust head is guaranteed to succeed we can
1547 		 * also eliminate the following if (r0 == 0) branch.
1548 		 */
1549 
1550 		return 0;
1551 	}
1552 
1553 	ret_einval = nfp_prog_current_offset(nfp_prog) + 14;
1554 	end = ret_einval + 2;
1555 
1556 	/* We need to use a temp because offset is just a part of the pkt ptr */
1557 	emit_alu(nfp_prog, tmp,
1558 		 reg_a(2 * 2), ALU_OP_ADD_2B, pptr_reg(nfp_prog));
1559 
1560 	/* Validate result will fit within FW datapath constraints */
1561 	emit_alu(nfp_prog, reg_none(),
1562 		 tmp, ALU_OP_SUB, reg_imm(adjust_head->off_min));
1563 	emit_br(nfp_prog, BR_BLO, ret_einval, 0);
1564 	emit_alu(nfp_prog, reg_none(),
1565 		 reg_imm(adjust_head->off_max), ALU_OP_SUB, tmp);
1566 	emit_br(nfp_prog, BR_BLO, ret_einval, 0);
1567 
1568 	/* Validate the length is at least ETH_HLEN */
1569 	emit_alu(nfp_prog, tmp_len,
1570 		 plen_reg(nfp_prog), ALU_OP_SUB, reg_a(2 * 2));
1571 	emit_alu(nfp_prog, reg_none(),
1572 		 tmp_len, ALU_OP_SUB, reg_imm(ETH_HLEN));
1573 	emit_br(nfp_prog, BR_BMI, ret_einval, 0);
1574 
1575 	/* Load the ret code */
1576 	wrp_immed(nfp_prog, reg_both(0), 0);
1577 	wrp_immed(nfp_prog, reg_both(1), 0);
1578 
1579 	/* Modify the packet metadata */
1580 	emit_ld_field(nfp_prog, pptr_reg(nfp_prog), 0x3, tmp, SHF_SC_NONE, 0);
1581 
1582 	/* Skip over the -EINVAL ret code (defer 2) */
1583 	emit_br(nfp_prog, BR_UNC, end, 2);
1584 
1585 	emit_alu(nfp_prog, plen_reg(nfp_prog),
1586 		 plen_reg(nfp_prog), ALU_OP_SUB, reg_a(2 * 2));
1587 	emit_alu(nfp_prog, pv_len(nfp_prog),
1588 		 pv_len(nfp_prog), ALU_OP_SUB, reg_a(2 * 2));
1589 
1590 	/* return -EINVAL target */
1591 	if (!nfp_prog_confirm_current_offset(nfp_prog, ret_einval))
1592 		return -EINVAL;
1593 
1594 	wrp_immed(nfp_prog, reg_both(0), -22);
1595 	wrp_immed(nfp_prog, reg_both(1), ~0);
1596 
1597 	if (!nfp_prog_confirm_current_offset(nfp_prog, end))
1598 		return -EINVAL;
1599 
1600 	return 0;
1601 }
1602 
1603 static int
1604 map_call_stack_common(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1605 {
1606 	bool load_lm_ptr;
1607 	u32 ret_tgt;
1608 	s64 lm_off;
1609 
1610 	/* We only have to reload LM0 if the key is not at start of stack */
1611 	lm_off = nfp_prog->stack_depth;
1612 	lm_off += meta->arg2.reg.var_off.value + meta->arg2.reg.off;
1613 	load_lm_ptr = meta->arg2.var_off || lm_off;
1614 
1615 	/* Set LM0 to start of key */
1616 	if (load_lm_ptr)
1617 		emit_csr_wr(nfp_prog, reg_b(2 * 2), NFP_CSR_ACT_LM_ADDR0);
1618 	if (meta->func_id == BPF_FUNC_map_update_elem)
1619 		emit_csr_wr(nfp_prog, reg_b(3 * 2), NFP_CSR_ACT_LM_ADDR2);
1620 
1621 	emit_br_relo(nfp_prog, BR_UNC, BR_OFF_RELO + meta->func_id,
1622 		     2, RELO_BR_HELPER);
1623 	ret_tgt = nfp_prog_current_offset(nfp_prog) + 2;
1624 
1625 	/* Load map ID into A0 */
1626 	wrp_mov(nfp_prog, reg_a(0), reg_a(2));
1627 
1628 	/* Load the return address into B0 */
1629 	wrp_immed_relo(nfp_prog, reg_b(0), ret_tgt, RELO_IMMED_REL);
1630 
1631 	if (!nfp_prog_confirm_current_offset(nfp_prog, ret_tgt))
1632 		return -EINVAL;
1633 
1634 	/* Reset the LM0 pointer */
1635 	if (!load_lm_ptr)
1636 		return 0;
1637 
1638 	emit_csr_wr(nfp_prog, stack_reg(nfp_prog), NFP_CSR_ACT_LM_ADDR0);
1639 	wrp_nops(nfp_prog, 3);
1640 
1641 	return 0;
1642 }
1643 
1644 static int
1645 nfp_get_prandom_u32(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1646 {
1647 	__emit_csr_rd(nfp_prog, NFP_CSR_PSEUDO_RND_NUM);
1648 	/* CSR value is read in following immed[gpr, 0] */
1649 	emit_immed(nfp_prog, reg_both(0), 0,
1650 		   IMMED_WIDTH_ALL, false, IMMED_SHIFT_0B);
1651 	emit_immed(nfp_prog, reg_both(1), 0,
1652 		   IMMED_WIDTH_ALL, false, IMMED_SHIFT_0B);
1653 	return 0;
1654 }
1655 
1656 static int
1657 nfp_perf_event_output(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1658 {
1659 	swreg ptr_type;
1660 	u32 ret_tgt;
1661 
1662 	ptr_type = ur_load_imm_any(nfp_prog, meta->arg1.type, imm_a(nfp_prog));
1663 
1664 	ret_tgt = nfp_prog_current_offset(nfp_prog) + 3;
1665 
1666 	emit_br_relo(nfp_prog, BR_UNC, BR_OFF_RELO + meta->func_id,
1667 		     2, RELO_BR_HELPER);
1668 
1669 	/* Load ptr type into A1 */
1670 	wrp_mov(nfp_prog, reg_a(1), ptr_type);
1671 
1672 	/* Load the return address into B0 */
1673 	wrp_immed_relo(nfp_prog, reg_b(0), ret_tgt, RELO_IMMED_REL);
1674 
1675 	if (!nfp_prog_confirm_current_offset(nfp_prog, ret_tgt))
1676 		return -EINVAL;
1677 
1678 	return 0;
1679 }
1680 
1681 static int
1682 nfp_queue_select(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1683 {
1684 	u32 jmp_tgt;
1685 
1686 	jmp_tgt = nfp_prog_current_offset(nfp_prog) + 5;
1687 
1688 	/* Make sure the queue id fits into FW field */
1689 	emit_alu(nfp_prog, reg_none(), reg_a(meta->insn.src_reg * 2),
1690 		 ALU_OP_AND_NOT_B, reg_imm(0xff));
1691 	emit_br(nfp_prog, BR_BEQ, jmp_tgt, 2);
1692 
1693 	/* Set the 'queue selected' bit and the queue value */
1694 	emit_shf(nfp_prog, pv_qsel_set(nfp_prog),
1695 		 pv_qsel_set(nfp_prog), SHF_OP_OR, reg_imm(1),
1696 		 SHF_SC_L_SHF, PKT_VEL_QSEL_SET_BIT);
1697 	emit_ld_field(nfp_prog,
1698 		      pv_qsel_val(nfp_prog), 0x1, reg_b(meta->insn.src_reg * 2),
1699 		      SHF_SC_NONE, 0);
1700 	/* Delay slots end here, we will jump over next instruction if queue
1701 	 * value fits into the field.
1702 	 */
1703 	emit_ld_field(nfp_prog,
1704 		      pv_qsel_val(nfp_prog), 0x1, reg_imm(NFP_NET_RXR_MAX),
1705 		      SHF_SC_NONE, 0);
1706 
1707 	if (!nfp_prog_confirm_current_offset(nfp_prog, jmp_tgt))
1708 		return -EINVAL;
1709 
1710 	return 0;
1711 }
1712 
1713 /* --- Callbacks --- */
1714 static int mov_reg64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1715 {
1716 	const struct bpf_insn *insn = &meta->insn;
1717 	u8 dst = insn->dst_reg * 2;
1718 	u8 src = insn->src_reg * 2;
1719 
1720 	if (insn->src_reg == BPF_REG_10) {
1721 		swreg stack_depth_reg;
1722 
1723 		stack_depth_reg = ur_load_imm_any(nfp_prog,
1724 						  nfp_prog->stack_depth,
1725 						  stack_imm(nfp_prog));
1726 		emit_alu(nfp_prog, reg_both(dst),
1727 			 stack_reg(nfp_prog), ALU_OP_ADD, stack_depth_reg);
1728 		wrp_immed(nfp_prog, reg_both(dst + 1), 0);
1729 	} else {
1730 		wrp_reg_mov(nfp_prog, dst, src);
1731 		wrp_reg_mov(nfp_prog, dst + 1, src + 1);
1732 	}
1733 
1734 	return 0;
1735 }
1736 
1737 static int mov_imm64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1738 {
1739 	u64 imm = meta->insn.imm; /* sign extend */
1740 
1741 	wrp_immed(nfp_prog, reg_both(meta->insn.dst_reg * 2), imm & ~0U);
1742 	wrp_immed(nfp_prog, reg_both(meta->insn.dst_reg * 2 + 1), imm >> 32);
1743 
1744 	return 0;
1745 }
1746 
1747 static int xor_reg64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1748 {
1749 	return wrp_alu64_reg(nfp_prog, meta, ALU_OP_XOR);
1750 }
1751 
1752 static int xor_imm64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1753 {
1754 	return wrp_alu64_imm(nfp_prog, meta, ALU_OP_XOR, !meta->insn.imm);
1755 }
1756 
1757 static int and_reg64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1758 {
1759 	return wrp_alu64_reg(nfp_prog, meta, ALU_OP_AND);
1760 }
1761 
1762 static int and_imm64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1763 {
1764 	return wrp_alu64_imm(nfp_prog, meta, ALU_OP_AND, !~meta->insn.imm);
1765 }
1766 
1767 static int or_reg64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1768 {
1769 	return wrp_alu64_reg(nfp_prog, meta, ALU_OP_OR);
1770 }
1771 
1772 static int or_imm64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1773 {
1774 	return wrp_alu64_imm(nfp_prog, meta, ALU_OP_OR, !meta->insn.imm);
1775 }
1776 
1777 static int add_reg64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1778 {
1779 	const struct bpf_insn *insn = &meta->insn;
1780 
1781 	emit_alu(nfp_prog, reg_both(insn->dst_reg * 2),
1782 		 reg_a(insn->dst_reg * 2), ALU_OP_ADD,
1783 		 reg_b(insn->src_reg * 2));
1784 	emit_alu(nfp_prog, reg_both(insn->dst_reg * 2 + 1),
1785 		 reg_a(insn->dst_reg * 2 + 1), ALU_OP_ADD_C,
1786 		 reg_b(insn->src_reg * 2 + 1));
1787 
1788 	return 0;
1789 }
1790 
1791 static int add_imm64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1792 {
1793 	const struct bpf_insn *insn = &meta->insn;
1794 	u64 imm = insn->imm; /* sign extend */
1795 
1796 	wrp_alu_imm(nfp_prog, insn->dst_reg * 2, ALU_OP_ADD, imm & ~0U);
1797 	wrp_alu_imm(nfp_prog, insn->dst_reg * 2 + 1, ALU_OP_ADD_C, imm >> 32);
1798 
1799 	return 0;
1800 }
1801 
1802 static int sub_reg64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1803 {
1804 	const struct bpf_insn *insn = &meta->insn;
1805 
1806 	emit_alu(nfp_prog, reg_both(insn->dst_reg * 2),
1807 		 reg_a(insn->dst_reg * 2), ALU_OP_SUB,
1808 		 reg_b(insn->src_reg * 2));
1809 	emit_alu(nfp_prog, reg_both(insn->dst_reg * 2 + 1),
1810 		 reg_a(insn->dst_reg * 2 + 1), ALU_OP_SUB_C,
1811 		 reg_b(insn->src_reg * 2 + 1));
1812 
1813 	return 0;
1814 }
1815 
1816 static int sub_imm64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1817 {
1818 	const struct bpf_insn *insn = &meta->insn;
1819 	u64 imm = insn->imm; /* sign extend */
1820 
1821 	wrp_alu_imm(nfp_prog, insn->dst_reg * 2, ALU_OP_SUB, imm & ~0U);
1822 	wrp_alu_imm(nfp_prog, insn->dst_reg * 2 + 1, ALU_OP_SUB_C, imm >> 32);
1823 
1824 	return 0;
1825 }
1826 
1827 static int mul_reg64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1828 {
1829 	return wrp_mul(nfp_prog, meta, true, true);
1830 }
1831 
1832 static int mul_imm64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1833 {
1834 	return wrp_mul(nfp_prog, meta, true, false);
1835 }
1836 
1837 static int div_imm64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1838 {
1839 	const struct bpf_insn *insn = &meta->insn;
1840 
1841 	return wrp_div_imm(nfp_prog, insn->dst_reg * 2, insn->imm);
1842 }
1843 
1844 static int div_reg64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1845 {
1846 	/* NOTE: verifier hook has rejected cases for which verifier doesn't
1847 	 * know whether the source operand is constant or not.
1848 	 */
1849 	return wrp_div_imm(nfp_prog, meta->insn.dst_reg * 2, meta->umin_src);
1850 }
1851 
1852 static int neg_reg64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1853 {
1854 	const struct bpf_insn *insn = &meta->insn;
1855 
1856 	emit_alu(nfp_prog, reg_both(insn->dst_reg * 2), reg_imm(0),
1857 		 ALU_OP_SUB, reg_b(insn->dst_reg * 2));
1858 	emit_alu(nfp_prog, reg_both(insn->dst_reg * 2 + 1), reg_imm(0),
1859 		 ALU_OP_SUB_C, reg_b(insn->dst_reg * 2 + 1));
1860 
1861 	return 0;
1862 }
1863 
1864 /* Pseudo code:
1865  *   if shift_amt >= 32
1866  *     dst_high = dst_low << shift_amt[4:0]
1867  *     dst_low = 0;
1868  *   else
1869  *     dst_high = (dst_high, dst_low) >> (32 - shift_amt)
1870  *     dst_low = dst_low << shift_amt
1871  *
1872  * The indirect shift will use the same logic at runtime.
1873  */
1874 static int __shl_imm64(struct nfp_prog *nfp_prog, u8 dst, u8 shift_amt)
1875 {
1876 	if (shift_amt < 32) {
1877 		emit_shf(nfp_prog, reg_both(dst + 1), reg_a(dst + 1),
1878 			 SHF_OP_NONE, reg_b(dst), SHF_SC_R_DSHF,
1879 			 32 - shift_amt);
1880 		emit_shf(nfp_prog, reg_both(dst), reg_none(), SHF_OP_NONE,
1881 			 reg_b(dst), SHF_SC_L_SHF, shift_amt);
1882 	} else if (shift_amt == 32) {
1883 		wrp_reg_mov(nfp_prog, dst + 1, dst);
1884 		wrp_immed(nfp_prog, reg_both(dst), 0);
1885 	} else if (shift_amt > 32) {
1886 		emit_shf(nfp_prog, reg_both(dst + 1), reg_none(), SHF_OP_NONE,
1887 			 reg_b(dst), SHF_SC_L_SHF, shift_amt - 32);
1888 		wrp_immed(nfp_prog, reg_both(dst), 0);
1889 	}
1890 
1891 	return 0;
1892 }
1893 
1894 static int shl_imm64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1895 {
1896 	const struct bpf_insn *insn = &meta->insn;
1897 	u8 dst = insn->dst_reg * 2;
1898 
1899 	return __shl_imm64(nfp_prog, dst, insn->imm);
1900 }
1901 
1902 static void shl_reg64_lt32_high(struct nfp_prog *nfp_prog, u8 dst, u8 src)
1903 {
1904 	emit_alu(nfp_prog, imm_both(nfp_prog), reg_imm(32), ALU_OP_SUB,
1905 		 reg_b(src));
1906 	emit_alu(nfp_prog, reg_none(), imm_a(nfp_prog), ALU_OP_OR, reg_imm(0));
1907 	emit_shf_indir(nfp_prog, reg_both(dst + 1), reg_a(dst + 1), SHF_OP_NONE,
1908 		       reg_b(dst), SHF_SC_R_DSHF);
1909 }
1910 
1911 /* NOTE: for indirect left shift, HIGH part should be calculated first. */
1912 static void shl_reg64_lt32_low(struct nfp_prog *nfp_prog, u8 dst, u8 src)
1913 {
1914 	emit_alu(nfp_prog, reg_none(), reg_a(src), ALU_OP_OR, reg_imm(0));
1915 	emit_shf_indir(nfp_prog, reg_both(dst), reg_none(), SHF_OP_NONE,
1916 		       reg_b(dst), SHF_SC_L_SHF);
1917 }
1918 
1919 static void shl_reg64_lt32(struct nfp_prog *nfp_prog, u8 dst, u8 src)
1920 {
1921 	shl_reg64_lt32_high(nfp_prog, dst, src);
1922 	shl_reg64_lt32_low(nfp_prog, dst, src);
1923 }
1924 
1925 static void shl_reg64_ge32(struct nfp_prog *nfp_prog, u8 dst, u8 src)
1926 {
1927 	emit_alu(nfp_prog, reg_none(), reg_a(src), ALU_OP_OR, reg_imm(0));
1928 	emit_shf_indir(nfp_prog, reg_both(dst + 1), reg_none(), SHF_OP_NONE,
1929 		       reg_b(dst), SHF_SC_L_SHF);
1930 	wrp_immed(nfp_prog, reg_both(dst), 0);
1931 }
1932 
1933 static int shl_reg64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1934 {
1935 	const struct bpf_insn *insn = &meta->insn;
1936 	u64 umin, umax;
1937 	u8 dst, src;
1938 
1939 	dst = insn->dst_reg * 2;
1940 	umin = meta->umin_src;
1941 	umax = meta->umax_src;
1942 	if (umin == umax)
1943 		return __shl_imm64(nfp_prog, dst, umin);
1944 
1945 	src = insn->src_reg * 2;
1946 	if (umax < 32) {
1947 		shl_reg64_lt32(nfp_prog, dst, src);
1948 	} else if (umin >= 32) {
1949 		shl_reg64_ge32(nfp_prog, dst, src);
1950 	} else {
1951 		/* Generate different instruction sequences depending on runtime
1952 		 * value of shift amount.
1953 		 */
1954 		u16 label_ge32, label_end;
1955 
1956 		label_ge32 = nfp_prog_current_offset(nfp_prog) + 7;
1957 		emit_br_bset(nfp_prog, reg_a(src), 5, label_ge32, 0);
1958 
1959 		shl_reg64_lt32_high(nfp_prog, dst, src);
1960 		label_end = nfp_prog_current_offset(nfp_prog) + 6;
1961 		emit_br(nfp_prog, BR_UNC, label_end, 2);
1962 		/* shl_reg64_lt32_low packed in delay slot. */
1963 		shl_reg64_lt32_low(nfp_prog, dst, src);
1964 
1965 		if (!nfp_prog_confirm_current_offset(nfp_prog, label_ge32))
1966 			return -EINVAL;
1967 		shl_reg64_ge32(nfp_prog, dst, src);
1968 
1969 		if (!nfp_prog_confirm_current_offset(nfp_prog, label_end))
1970 			return -EINVAL;
1971 	}
1972 
1973 	return 0;
1974 }
1975 
1976 /* Pseudo code:
1977  *   if shift_amt >= 32
1978  *     dst_high = 0;
1979  *     dst_low = dst_high >> shift_amt[4:0]
1980  *   else
1981  *     dst_high = dst_high >> shift_amt
1982  *     dst_low = (dst_high, dst_low) >> shift_amt
1983  *
1984  * The indirect shift will use the same logic at runtime.
1985  */
1986 static int __shr_imm64(struct nfp_prog *nfp_prog, u8 dst, u8 shift_amt)
1987 {
1988 	if (shift_amt < 32) {
1989 		emit_shf(nfp_prog, reg_both(dst), reg_a(dst + 1), SHF_OP_NONE,
1990 			 reg_b(dst), SHF_SC_R_DSHF, shift_amt);
1991 		emit_shf(nfp_prog, reg_both(dst + 1), reg_none(), SHF_OP_NONE,
1992 			 reg_b(dst + 1), SHF_SC_R_SHF, shift_amt);
1993 	} else if (shift_amt == 32) {
1994 		wrp_reg_mov(nfp_prog, dst, dst + 1);
1995 		wrp_immed(nfp_prog, reg_both(dst + 1), 0);
1996 	} else if (shift_amt > 32) {
1997 		emit_shf(nfp_prog, reg_both(dst), reg_none(), SHF_OP_NONE,
1998 			 reg_b(dst + 1), SHF_SC_R_SHF, shift_amt - 32);
1999 		wrp_immed(nfp_prog, reg_both(dst + 1), 0);
2000 	}
2001 
2002 	return 0;
2003 }
2004 
2005 static int shr_imm64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2006 {
2007 	const struct bpf_insn *insn = &meta->insn;
2008 	u8 dst = insn->dst_reg * 2;
2009 
2010 	return __shr_imm64(nfp_prog, dst, insn->imm);
2011 }
2012 
2013 /* NOTE: for indirect right shift, LOW part should be calculated first. */
2014 static void shr_reg64_lt32_high(struct nfp_prog *nfp_prog, u8 dst, u8 src)
2015 {
2016 	emit_alu(nfp_prog, reg_none(), reg_a(src), ALU_OP_OR, reg_imm(0));
2017 	emit_shf_indir(nfp_prog, reg_both(dst + 1), reg_none(), SHF_OP_NONE,
2018 		       reg_b(dst + 1), SHF_SC_R_SHF);
2019 }
2020 
2021 static void shr_reg64_lt32_low(struct nfp_prog *nfp_prog, u8 dst, u8 src)
2022 {
2023 	emit_alu(nfp_prog, reg_none(), reg_a(src), ALU_OP_OR, reg_imm(0));
2024 	emit_shf_indir(nfp_prog, reg_both(dst), reg_a(dst + 1), SHF_OP_NONE,
2025 		       reg_b(dst), SHF_SC_R_DSHF);
2026 }
2027 
2028 static void shr_reg64_lt32(struct nfp_prog *nfp_prog, u8 dst, u8 src)
2029 {
2030 	shr_reg64_lt32_low(nfp_prog, dst, src);
2031 	shr_reg64_lt32_high(nfp_prog, dst, src);
2032 }
2033 
2034 static void shr_reg64_ge32(struct nfp_prog *nfp_prog, u8 dst, u8 src)
2035 {
2036 	emit_alu(nfp_prog, reg_none(), reg_a(src), ALU_OP_OR, reg_imm(0));
2037 	emit_shf_indir(nfp_prog, reg_both(dst), reg_none(), SHF_OP_NONE,
2038 		       reg_b(dst + 1), SHF_SC_R_SHF);
2039 	wrp_immed(nfp_prog, reg_both(dst + 1), 0);
2040 }
2041 
2042 static int shr_reg64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2043 {
2044 	const struct bpf_insn *insn = &meta->insn;
2045 	u64 umin, umax;
2046 	u8 dst, src;
2047 
2048 	dst = insn->dst_reg * 2;
2049 	umin = meta->umin_src;
2050 	umax = meta->umax_src;
2051 	if (umin == umax)
2052 		return __shr_imm64(nfp_prog, dst, umin);
2053 
2054 	src = insn->src_reg * 2;
2055 	if (umax < 32) {
2056 		shr_reg64_lt32(nfp_prog, dst, src);
2057 	} else if (umin >= 32) {
2058 		shr_reg64_ge32(nfp_prog, dst, src);
2059 	} else {
2060 		/* Generate different instruction sequences depending on runtime
2061 		 * value of shift amount.
2062 		 */
2063 		u16 label_ge32, label_end;
2064 
2065 		label_ge32 = nfp_prog_current_offset(nfp_prog) + 6;
2066 		emit_br_bset(nfp_prog, reg_a(src), 5, label_ge32, 0);
2067 		shr_reg64_lt32_low(nfp_prog, dst, src);
2068 		label_end = nfp_prog_current_offset(nfp_prog) + 6;
2069 		emit_br(nfp_prog, BR_UNC, label_end, 2);
2070 		/* shr_reg64_lt32_high packed in delay slot. */
2071 		shr_reg64_lt32_high(nfp_prog, dst, src);
2072 
2073 		if (!nfp_prog_confirm_current_offset(nfp_prog, label_ge32))
2074 			return -EINVAL;
2075 		shr_reg64_ge32(nfp_prog, dst, src);
2076 
2077 		if (!nfp_prog_confirm_current_offset(nfp_prog, label_end))
2078 			return -EINVAL;
2079 	}
2080 
2081 	return 0;
2082 }
2083 
2084 /* Code logic is the same as __shr_imm64 except ashr requires signedness bit
2085  * told through PREV_ALU result.
2086  */
2087 static int __ashr_imm64(struct nfp_prog *nfp_prog, u8 dst, u8 shift_amt)
2088 {
2089 	if (shift_amt < 32) {
2090 		emit_shf(nfp_prog, reg_both(dst), reg_a(dst + 1), SHF_OP_NONE,
2091 			 reg_b(dst), SHF_SC_R_DSHF, shift_amt);
2092 		/* Set signedness bit. */
2093 		emit_alu(nfp_prog, reg_none(), reg_a(dst + 1), ALU_OP_OR,
2094 			 reg_imm(0));
2095 		emit_shf(nfp_prog, reg_both(dst + 1), reg_none(), SHF_OP_ASHR,
2096 			 reg_b(dst + 1), SHF_SC_R_SHF, shift_amt);
2097 	} else if (shift_amt == 32) {
2098 		/* NOTE: this also helps setting signedness bit. */
2099 		wrp_reg_mov(nfp_prog, dst, dst + 1);
2100 		emit_shf(nfp_prog, reg_both(dst + 1), reg_none(), SHF_OP_ASHR,
2101 			 reg_b(dst + 1), SHF_SC_R_SHF, 31);
2102 	} else if (shift_amt > 32) {
2103 		emit_alu(nfp_prog, reg_none(), reg_a(dst + 1), ALU_OP_OR,
2104 			 reg_imm(0));
2105 		emit_shf(nfp_prog, reg_both(dst), reg_none(), SHF_OP_ASHR,
2106 			 reg_b(dst + 1), SHF_SC_R_SHF, shift_amt - 32);
2107 		emit_shf(nfp_prog, reg_both(dst + 1), reg_none(), SHF_OP_ASHR,
2108 			 reg_b(dst + 1), SHF_SC_R_SHF, 31);
2109 	}
2110 
2111 	return 0;
2112 }
2113 
2114 static int ashr_imm64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2115 {
2116 	const struct bpf_insn *insn = &meta->insn;
2117 	u8 dst = insn->dst_reg * 2;
2118 
2119 	return __ashr_imm64(nfp_prog, dst, insn->imm);
2120 }
2121 
2122 static void ashr_reg64_lt32_high(struct nfp_prog *nfp_prog, u8 dst, u8 src)
2123 {
2124 	/* NOTE: the first insn will set both indirect shift amount (source A)
2125 	 * and signedness bit (MSB of result).
2126 	 */
2127 	emit_alu(nfp_prog, reg_none(), reg_a(src), ALU_OP_OR, reg_b(dst + 1));
2128 	emit_shf_indir(nfp_prog, reg_both(dst + 1), reg_none(), SHF_OP_ASHR,
2129 		       reg_b(dst + 1), SHF_SC_R_SHF);
2130 }
2131 
2132 static void ashr_reg64_lt32_low(struct nfp_prog *nfp_prog, u8 dst, u8 src)
2133 {
2134 	/* NOTE: it is the same as logic shift because we don't need to shift in
2135 	 * signedness bit when the shift amount is less than 32.
2136 	 */
2137 	return shr_reg64_lt32_low(nfp_prog, dst, src);
2138 }
2139 
2140 static void ashr_reg64_lt32(struct nfp_prog *nfp_prog, u8 dst, u8 src)
2141 {
2142 	ashr_reg64_lt32_low(nfp_prog, dst, src);
2143 	ashr_reg64_lt32_high(nfp_prog, dst, src);
2144 }
2145 
2146 static void ashr_reg64_ge32(struct nfp_prog *nfp_prog, u8 dst, u8 src)
2147 {
2148 	emit_alu(nfp_prog, reg_none(), reg_a(src), ALU_OP_OR, reg_b(dst + 1));
2149 	emit_shf_indir(nfp_prog, reg_both(dst), reg_none(), SHF_OP_ASHR,
2150 		       reg_b(dst + 1), SHF_SC_R_SHF);
2151 	emit_shf(nfp_prog, reg_both(dst + 1), reg_none(), SHF_OP_ASHR,
2152 		 reg_b(dst + 1), SHF_SC_R_SHF, 31);
2153 }
2154 
2155 /* Like ashr_imm64, but need to use indirect shift. */
2156 static int ashr_reg64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2157 {
2158 	const struct bpf_insn *insn = &meta->insn;
2159 	u64 umin, umax;
2160 	u8 dst, src;
2161 
2162 	dst = insn->dst_reg * 2;
2163 	umin = meta->umin_src;
2164 	umax = meta->umax_src;
2165 	if (umin == umax)
2166 		return __ashr_imm64(nfp_prog, dst, umin);
2167 
2168 	src = insn->src_reg * 2;
2169 	if (umax < 32) {
2170 		ashr_reg64_lt32(nfp_prog, dst, src);
2171 	} else if (umin >= 32) {
2172 		ashr_reg64_ge32(nfp_prog, dst, src);
2173 	} else {
2174 		u16 label_ge32, label_end;
2175 
2176 		label_ge32 = nfp_prog_current_offset(nfp_prog) + 6;
2177 		emit_br_bset(nfp_prog, reg_a(src), 5, label_ge32, 0);
2178 		ashr_reg64_lt32_low(nfp_prog, dst, src);
2179 		label_end = nfp_prog_current_offset(nfp_prog) + 6;
2180 		emit_br(nfp_prog, BR_UNC, label_end, 2);
2181 		/* ashr_reg64_lt32_high packed in delay slot. */
2182 		ashr_reg64_lt32_high(nfp_prog, dst, src);
2183 
2184 		if (!nfp_prog_confirm_current_offset(nfp_prog, label_ge32))
2185 			return -EINVAL;
2186 		ashr_reg64_ge32(nfp_prog, dst, src);
2187 
2188 		if (!nfp_prog_confirm_current_offset(nfp_prog, label_end))
2189 			return -EINVAL;
2190 	}
2191 
2192 	return 0;
2193 }
2194 
2195 static int mov_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2196 {
2197 	const struct bpf_insn *insn = &meta->insn;
2198 
2199 	wrp_reg_mov(nfp_prog, insn->dst_reg * 2,  insn->src_reg * 2);
2200 	wrp_immed(nfp_prog, reg_both(insn->dst_reg * 2 + 1), 0);
2201 
2202 	return 0;
2203 }
2204 
2205 static int mov_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2206 {
2207 	const struct bpf_insn *insn = &meta->insn;
2208 
2209 	wrp_immed(nfp_prog, reg_both(insn->dst_reg * 2), insn->imm);
2210 	wrp_immed(nfp_prog, reg_both(insn->dst_reg * 2 + 1), 0);
2211 
2212 	return 0;
2213 }
2214 
2215 static int xor_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2216 {
2217 	return wrp_alu32_reg(nfp_prog, meta, ALU_OP_XOR);
2218 }
2219 
2220 static int xor_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2221 {
2222 	return wrp_alu32_imm(nfp_prog, meta, ALU_OP_XOR, !~meta->insn.imm);
2223 }
2224 
2225 static int and_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2226 {
2227 	return wrp_alu32_reg(nfp_prog, meta, ALU_OP_AND);
2228 }
2229 
2230 static int and_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2231 {
2232 	return wrp_alu32_imm(nfp_prog, meta, ALU_OP_AND, !~meta->insn.imm);
2233 }
2234 
2235 static int or_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2236 {
2237 	return wrp_alu32_reg(nfp_prog, meta, ALU_OP_OR);
2238 }
2239 
2240 static int or_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2241 {
2242 	return wrp_alu32_imm(nfp_prog, meta, ALU_OP_OR, !meta->insn.imm);
2243 }
2244 
2245 static int add_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2246 {
2247 	return wrp_alu32_reg(nfp_prog, meta, ALU_OP_ADD);
2248 }
2249 
2250 static int add_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2251 {
2252 	return wrp_alu32_imm(nfp_prog, meta, ALU_OP_ADD, !meta->insn.imm);
2253 }
2254 
2255 static int sub_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2256 {
2257 	return wrp_alu32_reg(nfp_prog, meta, ALU_OP_SUB);
2258 }
2259 
2260 static int sub_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2261 {
2262 	return wrp_alu32_imm(nfp_prog, meta, ALU_OP_SUB, !meta->insn.imm);
2263 }
2264 
2265 static int mul_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2266 {
2267 	return wrp_mul(nfp_prog, meta, false, true);
2268 }
2269 
2270 static int mul_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2271 {
2272 	return wrp_mul(nfp_prog, meta, false, false);
2273 }
2274 
2275 static int div_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2276 {
2277 	return div_reg64(nfp_prog, meta);
2278 }
2279 
2280 static int div_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2281 {
2282 	return div_imm64(nfp_prog, meta);
2283 }
2284 
2285 static int neg_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2286 {
2287 	u8 dst = meta->insn.dst_reg * 2;
2288 
2289 	emit_alu(nfp_prog, reg_both(dst), reg_imm(0), ALU_OP_SUB, reg_b(dst));
2290 	wrp_immed(nfp_prog, reg_both(meta->insn.dst_reg * 2 + 1), 0);
2291 
2292 	return 0;
2293 }
2294 
2295 static int shl_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2296 {
2297 	const struct bpf_insn *insn = &meta->insn;
2298 
2299 	if (!insn->imm)
2300 		return 1; /* TODO: zero shift means indirect */
2301 
2302 	emit_shf(nfp_prog, reg_both(insn->dst_reg * 2),
2303 		 reg_none(), SHF_OP_NONE, reg_b(insn->dst_reg * 2),
2304 		 SHF_SC_L_SHF, insn->imm);
2305 	wrp_immed(nfp_prog, reg_both(insn->dst_reg * 2 + 1), 0);
2306 
2307 	return 0;
2308 }
2309 
2310 static int end_reg32(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2311 {
2312 	const struct bpf_insn *insn = &meta->insn;
2313 	u8 gpr = insn->dst_reg * 2;
2314 
2315 	switch (insn->imm) {
2316 	case 16:
2317 		emit_ld_field(nfp_prog, reg_both(gpr), 0x9, reg_b(gpr),
2318 			      SHF_SC_R_ROT, 8);
2319 		emit_ld_field(nfp_prog, reg_both(gpr), 0xe, reg_a(gpr),
2320 			      SHF_SC_R_SHF, 16);
2321 
2322 		wrp_immed(nfp_prog, reg_both(gpr + 1), 0);
2323 		break;
2324 	case 32:
2325 		wrp_end32(nfp_prog, reg_a(gpr), gpr);
2326 		wrp_immed(nfp_prog, reg_both(gpr + 1), 0);
2327 		break;
2328 	case 64:
2329 		wrp_mov(nfp_prog, imm_a(nfp_prog), reg_b(gpr + 1));
2330 
2331 		wrp_end32(nfp_prog, reg_a(gpr), gpr + 1);
2332 		wrp_end32(nfp_prog, imm_a(nfp_prog), gpr);
2333 		break;
2334 	}
2335 
2336 	return 0;
2337 }
2338 
2339 static int imm_ld8_part2(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2340 {
2341 	struct nfp_insn_meta *prev = nfp_meta_prev(meta);
2342 	u32 imm_lo, imm_hi;
2343 	u8 dst;
2344 
2345 	dst = prev->insn.dst_reg * 2;
2346 	imm_lo = prev->insn.imm;
2347 	imm_hi = meta->insn.imm;
2348 
2349 	wrp_immed(nfp_prog, reg_both(dst), imm_lo);
2350 
2351 	/* mov is always 1 insn, load imm may be two, so try to use mov */
2352 	if (imm_hi == imm_lo)
2353 		wrp_mov(nfp_prog, reg_both(dst + 1), reg_a(dst));
2354 	else
2355 		wrp_immed(nfp_prog, reg_both(dst + 1), imm_hi);
2356 
2357 	return 0;
2358 }
2359 
2360 static int imm_ld8(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2361 {
2362 	meta->double_cb = imm_ld8_part2;
2363 	return 0;
2364 }
2365 
2366 static int data_ld1(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2367 {
2368 	return construct_data_ld(nfp_prog, meta->insn.imm, 1);
2369 }
2370 
2371 static int data_ld2(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2372 {
2373 	return construct_data_ld(nfp_prog, meta->insn.imm, 2);
2374 }
2375 
2376 static int data_ld4(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2377 {
2378 	return construct_data_ld(nfp_prog, meta->insn.imm, 4);
2379 }
2380 
2381 static int data_ind_ld1(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2382 {
2383 	return construct_data_ind_ld(nfp_prog, meta->insn.imm,
2384 				     meta->insn.src_reg * 2, 1);
2385 }
2386 
2387 static int data_ind_ld2(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2388 {
2389 	return construct_data_ind_ld(nfp_prog, meta->insn.imm,
2390 				     meta->insn.src_reg * 2, 2);
2391 }
2392 
2393 static int data_ind_ld4(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2394 {
2395 	return construct_data_ind_ld(nfp_prog, meta->insn.imm,
2396 				     meta->insn.src_reg * 2, 4);
2397 }
2398 
2399 static int
2400 mem_ldx_stack(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
2401 	      unsigned int size, unsigned int ptr_off)
2402 {
2403 	return mem_op_stack(nfp_prog, meta, size, ptr_off,
2404 			    meta->insn.dst_reg * 2, meta->insn.src_reg * 2,
2405 			    true, wrp_lmem_load);
2406 }
2407 
2408 static int mem_ldx_skb(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
2409 		       u8 size)
2410 {
2411 	swreg dst = reg_both(meta->insn.dst_reg * 2);
2412 
2413 	switch (meta->insn.off) {
2414 	case offsetof(struct __sk_buff, len):
2415 		if (size != FIELD_SIZEOF(struct __sk_buff, len))
2416 			return -EOPNOTSUPP;
2417 		wrp_mov(nfp_prog, dst, plen_reg(nfp_prog));
2418 		break;
2419 	case offsetof(struct __sk_buff, data):
2420 		if (size != FIELD_SIZEOF(struct __sk_buff, data))
2421 			return -EOPNOTSUPP;
2422 		wrp_mov(nfp_prog, dst, pptr_reg(nfp_prog));
2423 		break;
2424 	case offsetof(struct __sk_buff, data_end):
2425 		if (size != FIELD_SIZEOF(struct __sk_buff, data_end))
2426 			return -EOPNOTSUPP;
2427 		emit_alu(nfp_prog, dst,
2428 			 plen_reg(nfp_prog), ALU_OP_ADD, pptr_reg(nfp_prog));
2429 		break;
2430 	default:
2431 		return -EOPNOTSUPP;
2432 	}
2433 
2434 	wrp_immed(nfp_prog, reg_both(meta->insn.dst_reg * 2 + 1), 0);
2435 
2436 	return 0;
2437 }
2438 
2439 static int mem_ldx_xdp(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
2440 		       u8 size)
2441 {
2442 	swreg dst = reg_both(meta->insn.dst_reg * 2);
2443 
2444 	switch (meta->insn.off) {
2445 	case offsetof(struct xdp_md, data):
2446 		if (size != FIELD_SIZEOF(struct xdp_md, data))
2447 			return -EOPNOTSUPP;
2448 		wrp_mov(nfp_prog, dst, pptr_reg(nfp_prog));
2449 		break;
2450 	case offsetof(struct xdp_md, data_end):
2451 		if (size != FIELD_SIZEOF(struct xdp_md, data_end))
2452 			return -EOPNOTSUPP;
2453 		emit_alu(nfp_prog, dst,
2454 			 plen_reg(nfp_prog), ALU_OP_ADD, pptr_reg(nfp_prog));
2455 		break;
2456 	default:
2457 		return -EOPNOTSUPP;
2458 	}
2459 
2460 	wrp_immed(nfp_prog, reg_both(meta->insn.dst_reg * 2 + 1), 0);
2461 
2462 	return 0;
2463 }
2464 
2465 static int
2466 mem_ldx_data(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
2467 	     unsigned int size)
2468 {
2469 	swreg tmp_reg;
2470 
2471 	tmp_reg = re_load_imm_any(nfp_prog, meta->insn.off, imm_b(nfp_prog));
2472 
2473 	return data_ld_host_order_addr32(nfp_prog, meta->insn.src_reg * 2,
2474 					 tmp_reg, meta->insn.dst_reg * 2, size);
2475 }
2476 
2477 static int
2478 mem_ldx_emem(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
2479 	     unsigned int size)
2480 {
2481 	swreg tmp_reg;
2482 
2483 	tmp_reg = re_load_imm_any(nfp_prog, meta->insn.off, imm_b(nfp_prog));
2484 
2485 	return data_ld_host_order_addr40(nfp_prog, meta->insn.src_reg * 2,
2486 					 tmp_reg, meta->insn.dst_reg * 2, size);
2487 }
2488 
2489 static void
2490 mem_ldx_data_init_pktcache(struct nfp_prog *nfp_prog,
2491 			   struct nfp_insn_meta *meta)
2492 {
2493 	s16 range_start = meta->pkt_cache.range_start;
2494 	s16 range_end = meta->pkt_cache.range_end;
2495 	swreg src_base, off;
2496 	u8 xfer_num, len;
2497 	bool indir;
2498 
2499 	off = re_load_imm_any(nfp_prog, range_start, imm_b(nfp_prog));
2500 	src_base = reg_a(meta->insn.src_reg * 2);
2501 	len = range_end - range_start;
2502 	xfer_num = round_up(len, REG_WIDTH) / REG_WIDTH;
2503 
2504 	indir = len > 8 * REG_WIDTH;
2505 	/* Setup PREV_ALU for indirect mode. */
2506 	if (indir)
2507 		wrp_immed(nfp_prog, reg_none(),
2508 			  CMD_OVE_LEN | FIELD_PREP(CMD_OV_LEN, xfer_num - 1));
2509 
2510 	/* Cache memory into transfer-in registers. */
2511 	emit_cmd_any(nfp_prog, CMD_TGT_READ32_SWAP, CMD_MODE_32b, 0, src_base,
2512 		     off, xfer_num - 1, CMD_CTX_SWAP, indir);
2513 }
2514 
2515 static int
2516 mem_ldx_data_from_pktcache_unaligned(struct nfp_prog *nfp_prog,
2517 				     struct nfp_insn_meta *meta,
2518 				     unsigned int size)
2519 {
2520 	s16 range_start = meta->pkt_cache.range_start;
2521 	s16 insn_off = meta->insn.off - range_start;
2522 	swreg dst_lo, dst_hi, src_lo, src_mid;
2523 	u8 dst_gpr = meta->insn.dst_reg * 2;
2524 	u8 len_lo = size, len_mid = 0;
2525 	u8 idx = insn_off / REG_WIDTH;
2526 	u8 off = insn_off % REG_WIDTH;
2527 
2528 	dst_hi = reg_both(dst_gpr + 1);
2529 	dst_lo = reg_both(dst_gpr);
2530 	src_lo = reg_xfer(idx);
2531 
2532 	/* The read length could involve as many as three registers. */
2533 	if (size > REG_WIDTH - off) {
2534 		/* Calculate the part in the second register. */
2535 		len_lo = REG_WIDTH - off;
2536 		len_mid = size - len_lo;
2537 
2538 		/* Calculate the part in the third register. */
2539 		if (size > 2 * REG_WIDTH - off)
2540 			len_mid = REG_WIDTH;
2541 	}
2542 
2543 	wrp_reg_subpart(nfp_prog, dst_lo, src_lo, len_lo, off);
2544 
2545 	if (!len_mid) {
2546 		wrp_immed(nfp_prog, dst_hi, 0);
2547 		return 0;
2548 	}
2549 
2550 	src_mid = reg_xfer(idx + 1);
2551 
2552 	if (size <= REG_WIDTH) {
2553 		wrp_reg_or_subpart(nfp_prog, dst_lo, src_mid, len_mid, len_lo);
2554 		wrp_immed(nfp_prog, dst_hi, 0);
2555 	} else {
2556 		swreg src_hi = reg_xfer(idx + 2);
2557 
2558 		wrp_reg_or_subpart(nfp_prog, dst_lo, src_mid,
2559 				   REG_WIDTH - len_lo, len_lo);
2560 		wrp_reg_subpart(nfp_prog, dst_hi, src_mid, len_lo,
2561 				REG_WIDTH - len_lo);
2562 		wrp_reg_or_subpart(nfp_prog, dst_hi, src_hi, REG_WIDTH - len_lo,
2563 				   len_lo);
2564 	}
2565 
2566 	return 0;
2567 }
2568 
2569 static int
2570 mem_ldx_data_from_pktcache_aligned(struct nfp_prog *nfp_prog,
2571 				   struct nfp_insn_meta *meta,
2572 				   unsigned int size)
2573 {
2574 	swreg dst_lo, dst_hi, src_lo;
2575 	u8 dst_gpr, idx;
2576 
2577 	idx = (meta->insn.off - meta->pkt_cache.range_start) / REG_WIDTH;
2578 	dst_gpr = meta->insn.dst_reg * 2;
2579 	dst_hi = reg_both(dst_gpr + 1);
2580 	dst_lo = reg_both(dst_gpr);
2581 	src_lo = reg_xfer(idx);
2582 
2583 	if (size < REG_WIDTH) {
2584 		wrp_reg_subpart(nfp_prog, dst_lo, src_lo, size, 0);
2585 		wrp_immed(nfp_prog, dst_hi, 0);
2586 	} else if (size == REG_WIDTH) {
2587 		wrp_mov(nfp_prog, dst_lo, src_lo);
2588 		wrp_immed(nfp_prog, dst_hi, 0);
2589 	} else {
2590 		swreg src_hi = reg_xfer(idx + 1);
2591 
2592 		wrp_mov(nfp_prog, dst_lo, src_lo);
2593 		wrp_mov(nfp_prog, dst_hi, src_hi);
2594 	}
2595 
2596 	return 0;
2597 }
2598 
2599 static int
2600 mem_ldx_data_from_pktcache(struct nfp_prog *nfp_prog,
2601 			   struct nfp_insn_meta *meta, unsigned int size)
2602 {
2603 	u8 off = meta->insn.off - meta->pkt_cache.range_start;
2604 
2605 	if (IS_ALIGNED(off, REG_WIDTH))
2606 		return mem_ldx_data_from_pktcache_aligned(nfp_prog, meta, size);
2607 
2608 	return mem_ldx_data_from_pktcache_unaligned(nfp_prog, meta, size);
2609 }
2610 
2611 static int
2612 mem_ldx(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
2613 	unsigned int size)
2614 {
2615 	if (meta->ldst_gather_len)
2616 		return nfp_cpp_memcpy(nfp_prog, meta);
2617 
2618 	if (meta->ptr.type == PTR_TO_CTX) {
2619 		if (nfp_prog->type == BPF_PROG_TYPE_XDP)
2620 			return mem_ldx_xdp(nfp_prog, meta, size);
2621 		else
2622 			return mem_ldx_skb(nfp_prog, meta, size);
2623 	}
2624 
2625 	if (meta->ptr.type == PTR_TO_PACKET) {
2626 		if (meta->pkt_cache.range_end) {
2627 			if (meta->pkt_cache.do_init)
2628 				mem_ldx_data_init_pktcache(nfp_prog, meta);
2629 
2630 			return mem_ldx_data_from_pktcache(nfp_prog, meta, size);
2631 		} else {
2632 			return mem_ldx_data(nfp_prog, meta, size);
2633 		}
2634 	}
2635 
2636 	if (meta->ptr.type == PTR_TO_STACK)
2637 		return mem_ldx_stack(nfp_prog, meta, size,
2638 				     meta->ptr.off + meta->ptr.var_off.value);
2639 
2640 	if (meta->ptr.type == PTR_TO_MAP_VALUE)
2641 		return mem_ldx_emem(nfp_prog, meta, size);
2642 
2643 	return -EOPNOTSUPP;
2644 }
2645 
2646 static int mem_ldx1(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2647 {
2648 	return mem_ldx(nfp_prog, meta, 1);
2649 }
2650 
2651 static int mem_ldx2(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2652 {
2653 	return mem_ldx(nfp_prog, meta, 2);
2654 }
2655 
2656 static int mem_ldx4(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2657 {
2658 	return mem_ldx(nfp_prog, meta, 4);
2659 }
2660 
2661 static int mem_ldx8(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2662 {
2663 	return mem_ldx(nfp_prog, meta, 8);
2664 }
2665 
2666 static int
2667 mem_st_data(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
2668 	    unsigned int size)
2669 {
2670 	u64 imm = meta->insn.imm; /* sign extend */
2671 	swreg off_reg;
2672 
2673 	off_reg = re_load_imm_any(nfp_prog, meta->insn.off, imm_b(nfp_prog));
2674 
2675 	return data_st_host_order(nfp_prog, meta->insn.dst_reg * 2, off_reg,
2676 				  imm, size);
2677 }
2678 
2679 static int mem_st(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
2680 		  unsigned int size)
2681 {
2682 	if (meta->ptr.type == PTR_TO_PACKET)
2683 		return mem_st_data(nfp_prog, meta, size);
2684 
2685 	return -EOPNOTSUPP;
2686 }
2687 
2688 static int mem_st1(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2689 {
2690 	return mem_st(nfp_prog, meta, 1);
2691 }
2692 
2693 static int mem_st2(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2694 {
2695 	return mem_st(nfp_prog, meta, 2);
2696 }
2697 
2698 static int mem_st4(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2699 {
2700 	return mem_st(nfp_prog, meta, 4);
2701 }
2702 
2703 static int mem_st8(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2704 {
2705 	return mem_st(nfp_prog, meta, 8);
2706 }
2707 
2708 static int
2709 mem_stx_data(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
2710 	     unsigned int size)
2711 {
2712 	swreg off_reg;
2713 
2714 	off_reg = re_load_imm_any(nfp_prog, meta->insn.off, imm_b(nfp_prog));
2715 
2716 	return data_stx_host_order(nfp_prog, meta->insn.dst_reg * 2, off_reg,
2717 				   meta->insn.src_reg * 2, size);
2718 }
2719 
2720 static int
2721 mem_stx_stack(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
2722 	      unsigned int size, unsigned int ptr_off)
2723 {
2724 	return mem_op_stack(nfp_prog, meta, size, ptr_off,
2725 			    meta->insn.src_reg * 2, meta->insn.dst_reg * 2,
2726 			    false, wrp_lmem_store);
2727 }
2728 
2729 static int mem_stx_xdp(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2730 {
2731 	switch (meta->insn.off) {
2732 	case offsetof(struct xdp_md, rx_queue_index):
2733 		return nfp_queue_select(nfp_prog, meta);
2734 	}
2735 
2736 	WARN_ON_ONCE(1); /* verifier should have rejected bad accesses */
2737 	return -EOPNOTSUPP;
2738 }
2739 
2740 static int
2741 mem_stx(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
2742 	unsigned int size)
2743 {
2744 	if (meta->ptr.type == PTR_TO_PACKET)
2745 		return mem_stx_data(nfp_prog, meta, size);
2746 
2747 	if (meta->ptr.type == PTR_TO_STACK)
2748 		return mem_stx_stack(nfp_prog, meta, size,
2749 				     meta->ptr.off + meta->ptr.var_off.value);
2750 
2751 	return -EOPNOTSUPP;
2752 }
2753 
2754 static int mem_stx1(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2755 {
2756 	return mem_stx(nfp_prog, meta, 1);
2757 }
2758 
2759 static int mem_stx2(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2760 {
2761 	return mem_stx(nfp_prog, meta, 2);
2762 }
2763 
2764 static int mem_stx4(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2765 {
2766 	if (meta->ptr.type == PTR_TO_CTX)
2767 		if (nfp_prog->type == BPF_PROG_TYPE_XDP)
2768 			return mem_stx_xdp(nfp_prog, meta);
2769 	return mem_stx(nfp_prog, meta, 4);
2770 }
2771 
2772 static int mem_stx8(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2773 {
2774 	return mem_stx(nfp_prog, meta, 8);
2775 }
2776 
2777 static int
2778 mem_xadd(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta, bool is64)
2779 {
2780 	u8 dst_gpr = meta->insn.dst_reg * 2;
2781 	u8 src_gpr = meta->insn.src_reg * 2;
2782 	unsigned int full_add, out;
2783 	swreg addra, addrb, off;
2784 
2785 	off = ur_load_imm_any(nfp_prog, meta->insn.off, imm_b(nfp_prog));
2786 
2787 	/* We can fit 16 bits into command immediate, if we know the immediate
2788 	 * is guaranteed to either always or never fit into 16 bit we only
2789 	 * generate code to handle that particular case, otherwise generate
2790 	 * code for both.
2791 	 */
2792 	out = nfp_prog_current_offset(nfp_prog);
2793 	full_add = nfp_prog_current_offset(nfp_prog);
2794 
2795 	if (meta->insn.off) {
2796 		out += 2;
2797 		full_add += 2;
2798 	}
2799 	if (meta->xadd_maybe_16bit) {
2800 		out += 3;
2801 		full_add += 3;
2802 	}
2803 	if (meta->xadd_over_16bit)
2804 		out += 2 + is64;
2805 	if (meta->xadd_maybe_16bit && meta->xadd_over_16bit) {
2806 		out += 5;
2807 		full_add += 5;
2808 	}
2809 
2810 	/* Generate the branch for choosing add_imm vs add */
2811 	if (meta->xadd_maybe_16bit && meta->xadd_over_16bit) {
2812 		swreg max_imm = imm_a(nfp_prog);
2813 
2814 		wrp_immed(nfp_prog, max_imm, 0xffff);
2815 		emit_alu(nfp_prog, reg_none(),
2816 			 max_imm, ALU_OP_SUB, reg_b(src_gpr));
2817 		emit_alu(nfp_prog, reg_none(),
2818 			 reg_imm(0), ALU_OP_SUB_C, reg_b(src_gpr + 1));
2819 		emit_br(nfp_prog, BR_BLO, full_add, meta->insn.off ? 2 : 0);
2820 		/* defer for add */
2821 	}
2822 
2823 	/* If insn has an offset add to the address */
2824 	if (!meta->insn.off) {
2825 		addra = reg_a(dst_gpr);
2826 		addrb = reg_b(dst_gpr + 1);
2827 	} else {
2828 		emit_alu(nfp_prog, imma_a(nfp_prog),
2829 			 reg_a(dst_gpr), ALU_OP_ADD, off);
2830 		emit_alu(nfp_prog, imma_b(nfp_prog),
2831 			 reg_a(dst_gpr + 1), ALU_OP_ADD_C, reg_imm(0));
2832 		addra = imma_a(nfp_prog);
2833 		addrb = imma_b(nfp_prog);
2834 	}
2835 
2836 	/* Generate the add_imm if 16 bits are possible */
2837 	if (meta->xadd_maybe_16bit) {
2838 		swreg prev_alu = imm_a(nfp_prog);
2839 
2840 		wrp_immed(nfp_prog, prev_alu,
2841 			  FIELD_PREP(CMD_OVE_DATA, 2) |
2842 			  CMD_OVE_LEN |
2843 			  FIELD_PREP(CMD_OV_LEN, 0x8 | is64 << 2));
2844 		wrp_reg_or_subpart(nfp_prog, prev_alu, reg_b(src_gpr), 2, 2);
2845 		emit_cmd_indir(nfp_prog, CMD_TGT_ADD_IMM, CMD_MODE_40b_BA, 0,
2846 			       addra, addrb, 0, CMD_CTX_NO_SWAP);
2847 
2848 		if (meta->xadd_over_16bit)
2849 			emit_br(nfp_prog, BR_UNC, out, 0);
2850 	}
2851 
2852 	if (!nfp_prog_confirm_current_offset(nfp_prog, full_add))
2853 		return -EINVAL;
2854 
2855 	/* Generate the add if 16 bits are not guaranteed */
2856 	if (meta->xadd_over_16bit) {
2857 		emit_cmd(nfp_prog, CMD_TGT_ADD, CMD_MODE_40b_BA, 0,
2858 			 addra, addrb, is64 << 2,
2859 			 is64 ? CMD_CTX_SWAP_DEFER2 : CMD_CTX_SWAP_DEFER1);
2860 
2861 		wrp_mov(nfp_prog, reg_xfer(0), reg_a(src_gpr));
2862 		if (is64)
2863 			wrp_mov(nfp_prog, reg_xfer(1), reg_a(src_gpr + 1));
2864 	}
2865 
2866 	if (!nfp_prog_confirm_current_offset(nfp_prog, out))
2867 		return -EINVAL;
2868 
2869 	return 0;
2870 }
2871 
2872 static int mem_xadd4(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2873 {
2874 	return mem_xadd(nfp_prog, meta, false);
2875 }
2876 
2877 static int mem_xadd8(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2878 {
2879 	return mem_xadd(nfp_prog, meta, true);
2880 }
2881 
2882 static int jump(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2883 {
2884 	emit_br(nfp_prog, BR_UNC, meta->insn.off, 0);
2885 
2886 	return 0;
2887 }
2888 
2889 static int jeq_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2890 {
2891 	const struct bpf_insn *insn = &meta->insn;
2892 	u64 imm = insn->imm; /* sign extend */
2893 	swreg or1, or2, tmp_reg;
2894 
2895 	or1 = reg_a(insn->dst_reg * 2);
2896 	or2 = reg_b(insn->dst_reg * 2 + 1);
2897 
2898 	if (imm & ~0U) {
2899 		tmp_reg = ur_load_imm_any(nfp_prog, imm & ~0U, imm_b(nfp_prog));
2900 		emit_alu(nfp_prog, imm_a(nfp_prog),
2901 			 reg_a(insn->dst_reg * 2), ALU_OP_XOR, tmp_reg);
2902 		or1 = imm_a(nfp_prog);
2903 	}
2904 
2905 	if (imm >> 32) {
2906 		tmp_reg = ur_load_imm_any(nfp_prog, imm >> 32, imm_b(nfp_prog));
2907 		emit_alu(nfp_prog, imm_b(nfp_prog),
2908 			 reg_a(insn->dst_reg * 2 + 1), ALU_OP_XOR, tmp_reg);
2909 		or2 = imm_b(nfp_prog);
2910 	}
2911 
2912 	emit_alu(nfp_prog, reg_none(), or1, ALU_OP_OR, or2);
2913 	emit_br(nfp_prog, BR_BEQ, insn->off, 0);
2914 
2915 	return 0;
2916 }
2917 
2918 static int jset_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2919 {
2920 	const struct bpf_insn *insn = &meta->insn;
2921 	u64 imm = insn->imm; /* sign extend */
2922 	swreg tmp_reg;
2923 
2924 	if (!imm) {
2925 		meta->skip = true;
2926 		return 0;
2927 	}
2928 
2929 	if (imm & ~0U) {
2930 		tmp_reg = ur_load_imm_any(nfp_prog, imm & ~0U, imm_b(nfp_prog));
2931 		emit_alu(nfp_prog, reg_none(),
2932 			 reg_a(insn->dst_reg * 2), ALU_OP_AND, tmp_reg);
2933 		emit_br(nfp_prog, BR_BNE, insn->off, 0);
2934 	}
2935 
2936 	if (imm >> 32) {
2937 		tmp_reg = ur_load_imm_any(nfp_prog, imm >> 32, imm_b(nfp_prog));
2938 		emit_alu(nfp_prog, reg_none(),
2939 			 reg_a(insn->dst_reg * 2 + 1), ALU_OP_AND, tmp_reg);
2940 		emit_br(nfp_prog, BR_BNE, insn->off, 0);
2941 	}
2942 
2943 	return 0;
2944 }
2945 
2946 static int jne_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2947 {
2948 	const struct bpf_insn *insn = &meta->insn;
2949 	u64 imm = insn->imm; /* sign extend */
2950 	swreg tmp_reg;
2951 
2952 	if (!imm) {
2953 		emit_alu(nfp_prog, reg_none(), reg_a(insn->dst_reg * 2),
2954 			 ALU_OP_OR, reg_b(insn->dst_reg * 2 + 1));
2955 		emit_br(nfp_prog, BR_BNE, insn->off, 0);
2956 		return 0;
2957 	}
2958 
2959 	tmp_reg = ur_load_imm_any(nfp_prog, imm & ~0U, imm_b(nfp_prog));
2960 	emit_alu(nfp_prog, reg_none(),
2961 		 reg_a(insn->dst_reg * 2), ALU_OP_XOR, tmp_reg);
2962 	emit_br(nfp_prog, BR_BNE, insn->off, 0);
2963 
2964 	tmp_reg = ur_load_imm_any(nfp_prog, imm >> 32, imm_b(nfp_prog));
2965 	emit_alu(nfp_prog, reg_none(),
2966 		 reg_a(insn->dst_reg * 2 + 1), ALU_OP_XOR, tmp_reg);
2967 	emit_br(nfp_prog, BR_BNE, insn->off, 0);
2968 
2969 	return 0;
2970 }
2971 
2972 static int jeq_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2973 {
2974 	const struct bpf_insn *insn = &meta->insn;
2975 
2976 	emit_alu(nfp_prog, imm_a(nfp_prog), reg_a(insn->dst_reg * 2),
2977 		 ALU_OP_XOR, reg_b(insn->src_reg * 2));
2978 	emit_alu(nfp_prog, imm_b(nfp_prog), reg_a(insn->dst_reg * 2 + 1),
2979 		 ALU_OP_XOR, reg_b(insn->src_reg * 2 + 1));
2980 	emit_alu(nfp_prog, reg_none(),
2981 		 imm_a(nfp_prog), ALU_OP_OR, imm_b(nfp_prog));
2982 	emit_br(nfp_prog, BR_BEQ, insn->off, 0);
2983 
2984 	return 0;
2985 }
2986 
2987 static int jset_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2988 {
2989 	return wrp_test_reg(nfp_prog, meta, ALU_OP_AND, BR_BNE);
2990 }
2991 
2992 static int jne_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2993 {
2994 	return wrp_test_reg(nfp_prog, meta, ALU_OP_XOR, BR_BNE);
2995 }
2996 
2997 static int call(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2998 {
2999 	switch (meta->insn.imm) {
3000 	case BPF_FUNC_xdp_adjust_head:
3001 		return adjust_head(nfp_prog, meta);
3002 	case BPF_FUNC_map_lookup_elem:
3003 	case BPF_FUNC_map_update_elem:
3004 	case BPF_FUNC_map_delete_elem:
3005 		return map_call_stack_common(nfp_prog, meta);
3006 	case BPF_FUNC_get_prandom_u32:
3007 		return nfp_get_prandom_u32(nfp_prog, meta);
3008 	case BPF_FUNC_perf_event_output:
3009 		return nfp_perf_event_output(nfp_prog, meta);
3010 	default:
3011 		WARN_ONCE(1, "verifier allowed unsupported function\n");
3012 		return -EOPNOTSUPP;
3013 	}
3014 }
3015 
3016 static int goto_out(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
3017 {
3018 	emit_br_relo(nfp_prog, BR_UNC, BR_OFF_RELO, 0, RELO_BR_GO_OUT);
3019 
3020 	return 0;
3021 }
3022 
3023 static const instr_cb_t instr_cb[256] = {
3024 	[BPF_ALU64 | BPF_MOV | BPF_X] =	mov_reg64,
3025 	[BPF_ALU64 | BPF_MOV | BPF_K] =	mov_imm64,
3026 	[BPF_ALU64 | BPF_XOR | BPF_X] =	xor_reg64,
3027 	[BPF_ALU64 | BPF_XOR | BPF_K] =	xor_imm64,
3028 	[BPF_ALU64 | BPF_AND | BPF_X] =	and_reg64,
3029 	[BPF_ALU64 | BPF_AND | BPF_K] =	and_imm64,
3030 	[BPF_ALU64 | BPF_OR | BPF_X] =	or_reg64,
3031 	[BPF_ALU64 | BPF_OR | BPF_K] =	or_imm64,
3032 	[BPF_ALU64 | BPF_ADD | BPF_X] =	add_reg64,
3033 	[BPF_ALU64 | BPF_ADD | BPF_K] =	add_imm64,
3034 	[BPF_ALU64 | BPF_SUB | BPF_X] =	sub_reg64,
3035 	[BPF_ALU64 | BPF_SUB | BPF_K] =	sub_imm64,
3036 	[BPF_ALU64 | BPF_MUL | BPF_X] =	mul_reg64,
3037 	[BPF_ALU64 | BPF_MUL | BPF_K] =	mul_imm64,
3038 	[BPF_ALU64 | BPF_DIV | BPF_X] =	div_reg64,
3039 	[BPF_ALU64 | BPF_DIV | BPF_K] =	div_imm64,
3040 	[BPF_ALU64 | BPF_NEG] =		neg_reg64,
3041 	[BPF_ALU64 | BPF_LSH | BPF_X] =	shl_reg64,
3042 	[BPF_ALU64 | BPF_LSH | BPF_K] =	shl_imm64,
3043 	[BPF_ALU64 | BPF_RSH | BPF_X] =	shr_reg64,
3044 	[BPF_ALU64 | BPF_RSH | BPF_K] =	shr_imm64,
3045 	[BPF_ALU64 | BPF_ARSH | BPF_X] = ashr_reg64,
3046 	[BPF_ALU64 | BPF_ARSH | BPF_K] = ashr_imm64,
3047 	[BPF_ALU | BPF_MOV | BPF_X] =	mov_reg,
3048 	[BPF_ALU | BPF_MOV | BPF_K] =	mov_imm,
3049 	[BPF_ALU | BPF_XOR | BPF_X] =	xor_reg,
3050 	[BPF_ALU | BPF_XOR | BPF_K] =	xor_imm,
3051 	[BPF_ALU | BPF_AND | BPF_X] =	and_reg,
3052 	[BPF_ALU | BPF_AND | BPF_K] =	and_imm,
3053 	[BPF_ALU | BPF_OR | BPF_X] =	or_reg,
3054 	[BPF_ALU | BPF_OR | BPF_K] =	or_imm,
3055 	[BPF_ALU | BPF_ADD | BPF_X] =	add_reg,
3056 	[BPF_ALU | BPF_ADD | BPF_K] =	add_imm,
3057 	[BPF_ALU | BPF_SUB | BPF_X] =	sub_reg,
3058 	[BPF_ALU | BPF_SUB | BPF_K] =	sub_imm,
3059 	[BPF_ALU | BPF_MUL | BPF_X] =	mul_reg,
3060 	[BPF_ALU | BPF_MUL | BPF_K] =	mul_imm,
3061 	[BPF_ALU | BPF_DIV | BPF_X] =	div_reg,
3062 	[BPF_ALU | BPF_DIV | BPF_K] =	div_imm,
3063 	[BPF_ALU | BPF_NEG] =		neg_reg,
3064 	[BPF_ALU | BPF_LSH | BPF_K] =	shl_imm,
3065 	[BPF_ALU | BPF_END | BPF_X] =	end_reg32,
3066 	[BPF_LD | BPF_IMM | BPF_DW] =	imm_ld8,
3067 	[BPF_LD | BPF_ABS | BPF_B] =	data_ld1,
3068 	[BPF_LD | BPF_ABS | BPF_H] =	data_ld2,
3069 	[BPF_LD | BPF_ABS | BPF_W] =	data_ld4,
3070 	[BPF_LD | BPF_IND | BPF_B] =	data_ind_ld1,
3071 	[BPF_LD | BPF_IND | BPF_H] =	data_ind_ld2,
3072 	[BPF_LD | BPF_IND | BPF_W] =	data_ind_ld4,
3073 	[BPF_LDX | BPF_MEM | BPF_B] =	mem_ldx1,
3074 	[BPF_LDX | BPF_MEM | BPF_H] =	mem_ldx2,
3075 	[BPF_LDX | BPF_MEM | BPF_W] =	mem_ldx4,
3076 	[BPF_LDX | BPF_MEM | BPF_DW] =	mem_ldx8,
3077 	[BPF_STX | BPF_MEM | BPF_B] =	mem_stx1,
3078 	[BPF_STX | BPF_MEM | BPF_H] =	mem_stx2,
3079 	[BPF_STX | BPF_MEM | BPF_W] =	mem_stx4,
3080 	[BPF_STX | BPF_MEM | BPF_DW] =	mem_stx8,
3081 	[BPF_STX | BPF_XADD | BPF_W] =	mem_xadd4,
3082 	[BPF_STX | BPF_XADD | BPF_DW] =	mem_xadd8,
3083 	[BPF_ST | BPF_MEM | BPF_B] =	mem_st1,
3084 	[BPF_ST | BPF_MEM | BPF_H] =	mem_st2,
3085 	[BPF_ST | BPF_MEM | BPF_W] =	mem_st4,
3086 	[BPF_ST | BPF_MEM | BPF_DW] =	mem_st8,
3087 	[BPF_JMP | BPF_JA | BPF_K] =	jump,
3088 	[BPF_JMP | BPF_JEQ | BPF_K] =	jeq_imm,
3089 	[BPF_JMP | BPF_JGT | BPF_K] =	cmp_imm,
3090 	[BPF_JMP | BPF_JGE | BPF_K] =	cmp_imm,
3091 	[BPF_JMP | BPF_JLT | BPF_K] =	cmp_imm,
3092 	[BPF_JMP | BPF_JLE | BPF_K] =	cmp_imm,
3093 	[BPF_JMP | BPF_JSGT | BPF_K] =  cmp_imm,
3094 	[BPF_JMP | BPF_JSGE | BPF_K] =  cmp_imm,
3095 	[BPF_JMP | BPF_JSLT | BPF_K] =  cmp_imm,
3096 	[BPF_JMP | BPF_JSLE | BPF_K] =  cmp_imm,
3097 	[BPF_JMP | BPF_JSET | BPF_K] =	jset_imm,
3098 	[BPF_JMP | BPF_JNE | BPF_K] =	jne_imm,
3099 	[BPF_JMP | BPF_JEQ | BPF_X] =	jeq_reg,
3100 	[BPF_JMP | BPF_JGT | BPF_X] =	cmp_reg,
3101 	[BPF_JMP | BPF_JGE | BPF_X] =	cmp_reg,
3102 	[BPF_JMP | BPF_JLT | BPF_X] =	cmp_reg,
3103 	[BPF_JMP | BPF_JLE | BPF_X] =	cmp_reg,
3104 	[BPF_JMP | BPF_JSGT | BPF_X] =  cmp_reg,
3105 	[BPF_JMP | BPF_JSGE | BPF_X] =  cmp_reg,
3106 	[BPF_JMP | BPF_JSLT | BPF_X] =  cmp_reg,
3107 	[BPF_JMP | BPF_JSLE | BPF_X] =  cmp_reg,
3108 	[BPF_JMP | BPF_JSET | BPF_X] =	jset_reg,
3109 	[BPF_JMP | BPF_JNE | BPF_X] =	jne_reg,
3110 	[BPF_JMP | BPF_CALL] =		call,
3111 	[BPF_JMP | BPF_EXIT] =		goto_out,
3112 };
3113 
3114 /* --- Assembler logic --- */
3115 static int nfp_fixup_branches(struct nfp_prog *nfp_prog)
3116 {
3117 	struct nfp_insn_meta *meta, *jmp_dst;
3118 	u32 idx, br_idx;
3119 
3120 	list_for_each_entry(meta, &nfp_prog->insns, l) {
3121 		if (meta->skip)
3122 			continue;
3123 		if (meta->insn.code == (BPF_JMP | BPF_CALL))
3124 			continue;
3125 		if (BPF_CLASS(meta->insn.code) != BPF_JMP)
3126 			continue;
3127 
3128 		if (list_is_last(&meta->l, &nfp_prog->insns))
3129 			br_idx = nfp_prog->last_bpf_off;
3130 		else
3131 			br_idx = list_next_entry(meta, l)->off - 1;
3132 
3133 		if (!nfp_is_br(nfp_prog->prog[br_idx])) {
3134 			pr_err("Fixup found block not ending in branch %d %02x %016llx!!\n",
3135 			       br_idx, meta->insn.code, nfp_prog->prog[br_idx]);
3136 			return -ELOOP;
3137 		}
3138 		/* Leave special branches for later */
3139 		if (FIELD_GET(OP_RELO_TYPE, nfp_prog->prog[br_idx]) !=
3140 		    RELO_BR_REL)
3141 			continue;
3142 
3143 		if (!meta->jmp_dst) {
3144 			pr_err("Non-exit jump doesn't have destination info recorded!!\n");
3145 			return -ELOOP;
3146 		}
3147 
3148 		jmp_dst = meta->jmp_dst;
3149 
3150 		if (jmp_dst->skip) {
3151 			pr_err("Branch landing on removed instruction!!\n");
3152 			return -ELOOP;
3153 		}
3154 
3155 		for (idx = meta->off; idx <= br_idx; idx++) {
3156 			if (!nfp_is_br(nfp_prog->prog[idx]))
3157 				continue;
3158 			br_set_offset(&nfp_prog->prog[idx], jmp_dst->off);
3159 		}
3160 	}
3161 
3162 	return 0;
3163 }
3164 
3165 static void nfp_intro(struct nfp_prog *nfp_prog)
3166 {
3167 	wrp_immed(nfp_prog, plen_reg(nfp_prog), GENMASK(13, 0));
3168 	emit_alu(nfp_prog, plen_reg(nfp_prog),
3169 		 plen_reg(nfp_prog), ALU_OP_AND, pv_len(nfp_prog));
3170 }
3171 
3172 static void nfp_outro_tc_da(struct nfp_prog *nfp_prog)
3173 {
3174 	/* TC direct-action mode:
3175 	 *   0,1   ok        NOT SUPPORTED[1]
3176 	 *   2   drop  0x22 -> drop,  count as stat1
3177 	 *   4,5 nuke  0x02 -> drop
3178 	 *   7  redir  0x44 -> redir, count as stat2
3179 	 *   * unspec  0x11 -> pass,  count as stat0
3180 	 *
3181 	 * [1] We can't support OK and RECLASSIFY because we can't tell TC
3182 	 *     the exact decision made.  We are forced to support UNSPEC
3183 	 *     to handle aborts so that's the only one we handle for passing
3184 	 *     packets up the stack.
3185 	 */
3186 	/* Target for aborts */
3187 	nfp_prog->tgt_abort = nfp_prog_current_offset(nfp_prog);
3188 
3189 	emit_br_relo(nfp_prog, BR_UNC, BR_OFF_RELO, 2, RELO_BR_NEXT_PKT);
3190 
3191 	wrp_mov(nfp_prog, reg_a(0), NFP_BPF_ABI_FLAGS);
3192 	emit_ld_field(nfp_prog, reg_a(0), 0xc, reg_imm(0x11), SHF_SC_L_SHF, 16);
3193 
3194 	/* Target for normal exits */
3195 	nfp_prog->tgt_out = nfp_prog_current_offset(nfp_prog);
3196 
3197 	/* if R0 > 7 jump to abort */
3198 	emit_alu(nfp_prog, reg_none(), reg_imm(7), ALU_OP_SUB, reg_b(0));
3199 	emit_br(nfp_prog, BR_BLO, nfp_prog->tgt_abort, 0);
3200 	wrp_mov(nfp_prog, reg_a(0), NFP_BPF_ABI_FLAGS);
3201 
3202 	wrp_immed(nfp_prog, reg_b(2), 0x41221211);
3203 	wrp_immed(nfp_prog, reg_b(3), 0x41001211);
3204 
3205 	emit_shf(nfp_prog, reg_a(1),
3206 		 reg_none(), SHF_OP_NONE, reg_b(0), SHF_SC_L_SHF, 2);
3207 
3208 	emit_alu(nfp_prog, reg_none(), reg_a(1), ALU_OP_OR, reg_imm(0));
3209 	emit_shf(nfp_prog, reg_a(2),
3210 		 reg_imm(0xf), SHF_OP_AND, reg_b(2), SHF_SC_R_SHF, 0);
3211 
3212 	emit_alu(nfp_prog, reg_none(), reg_a(1), ALU_OP_OR, reg_imm(0));
3213 	emit_shf(nfp_prog, reg_b(2),
3214 		 reg_imm(0xf), SHF_OP_AND, reg_b(3), SHF_SC_R_SHF, 0);
3215 
3216 	emit_br_relo(nfp_prog, BR_UNC, BR_OFF_RELO, 2, RELO_BR_NEXT_PKT);
3217 
3218 	emit_shf(nfp_prog, reg_b(2),
3219 		 reg_a(2), SHF_OP_OR, reg_b(2), SHF_SC_L_SHF, 4);
3220 	emit_ld_field(nfp_prog, reg_a(0), 0xc, reg_b(2), SHF_SC_L_SHF, 16);
3221 }
3222 
3223 static void nfp_outro_xdp(struct nfp_prog *nfp_prog)
3224 {
3225 	/* XDP return codes:
3226 	 *   0 aborted  0x82 -> drop,  count as stat3
3227 	 *   1    drop  0x22 -> drop,  count as stat1
3228 	 *   2    pass  0x11 -> pass,  count as stat0
3229 	 *   3      tx  0x44 -> redir, count as stat2
3230 	 *   * unknown  0x82 -> drop,  count as stat3
3231 	 */
3232 	/* Target for aborts */
3233 	nfp_prog->tgt_abort = nfp_prog_current_offset(nfp_prog);
3234 
3235 	emit_br_relo(nfp_prog, BR_UNC, BR_OFF_RELO, 2, RELO_BR_NEXT_PKT);
3236 
3237 	wrp_mov(nfp_prog, reg_a(0), NFP_BPF_ABI_FLAGS);
3238 	emit_ld_field(nfp_prog, reg_a(0), 0xc, reg_imm(0x82), SHF_SC_L_SHF, 16);
3239 
3240 	/* Target for normal exits */
3241 	nfp_prog->tgt_out = nfp_prog_current_offset(nfp_prog);
3242 
3243 	/* if R0 > 3 jump to abort */
3244 	emit_alu(nfp_prog, reg_none(), reg_imm(3), ALU_OP_SUB, reg_b(0));
3245 	emit_br(nfp_prog, BR_BLO, nfp_prog->tgt_abort, 0);
3246 
3247 	wrp_immed(nfp_prog, reg_b(2), 0x44112282);
3248 
3249 	emit_shf(nfp_prog, reg_a(1),
3250 		 reg_none(), SHF_OP_NONE, reg_b(0), SHF_SC_L_SHF, 3);
3251 
3252 	emit_alu(nfp_prog, reg_none(), reg_a(1), ALU_OP_OR, reg_imm(0));
3253 	emit_shf(nfp_prog, reg_b(2),
3254 		 reg_imm(0xff), SHF_OP_AND, reg_b(2), SHF_SC_R_SHF, 0);
3255 
3256 	emit_br_relo(nfp_prog, BR_UNC, BR_OFF_RELO, 2, RELO_BR_NEXT_PKT);
3257 
3258 	wrp_mov(nfp_prog, reg_a(0), NFP_BPF_ABI_FLAGS);
3259 	emit_ld_field(nfp_prog, reg_a(0), 0xc, reg_b(2), SHF_SC_L_SHF, 16);
3260 }
3261 
3262 static void nfp_outro(struct nfp_prog *nfp_prog)
3263 {
3264 	switch (nfp_prog->type) {
3265 	case BPF_PROG_TYPE_SCHED_CLS:
3266 		nfp_outro_tc_da(nfp_prog);
3267 		break;
3268 	case BPF_PROG_TYPE_XDP:
3269 		nfp_outro_xdp(nfp_prog);
3270 		break;
3271 	default:
3272 		WARN_ON(1);
3273 	}
3274 }
3275 
3276 static int nfp_translate(struct nfp_prog *nfp_prog)
3277 {
3278 	struct nfp_insn_meta *meta;
3279 	int err;
3280 
3281 	nfp_intro(nfp_prog);
3282 	if (nfp_prog->error)
3283 		return nfp_prog->error;
3284 
3285 	list_for_each_entry(meta, &nfp_prog->insns, l) {
3286 		instr_cb_t cb = instr_cb[meta->insn.code];
3287 
3288 		meta->off = nfp_prog_current_offset(nfp_prog);
3289 
3290 		if (meta->skip) {
3291 			nfp_prog->n_translated++;
3292 			continue;
3293 		}
3294 
3295 		if (nfp_meta_has_prev(nfp_prog, meta) &&
3296 		    nfp_meta_prev(meta)->double_cb)
3297 			cb = nfp_meta_prev(meta)->double_cb;
3298 		if (!cb)
3299 			return -ENOENT;
3300 		err = cb(nfp_prog, meta);
3301 		if (err)
3302 			return err;
3303 		if (nfp_prog->error)
3304 			return nfp_prog->error;
3305 
3306 		nfp_prog->n_translated++;
3307 	}
3308 
3309 	nfp_prog->last_bpf_off = nfp_prog_current_offset(nfp_prog) - 1;
3310 
3311 	nfp_outro(nfp_prog);
3312 	if (nfp_prog->error)
3313 		return nfp_prog->error;
3314 
3315 	wrp_nops(nfp_prog, NFP_USTORE_PREFETCH_WINDOW);
3316 	if (nfp_prog->error)
3317 		return nfp_prog->error;
3318 
3319 	return nfp_fixup_branches(nfp_prog);
3320 }
3321 
3322 /* --- Optimizations --- */
3323 static void nfp_bpf_opt_reg_init(struct nfp_prog *nfp_prog)
3324 {
3325 	struct nfp_insn_meta *meta;
3326 
3327 	list_for_each_entry(meta, &nfp_prog->insns, l) {
3328 		struct bpf_insn insn = meta->insn;
3329 
3330 		/* Programs converted from cBPF start with register xoring */
3331 		if (insn.code == (BPF_ALU64 | BPF_XOR | BPF_X) &&
3332 		    insn.src_reg == insn.dst_reg)
3333 			continue;
3334 
3335 		/* Programs start with R6 = R1 but we ignore the skb pointer */
3336 		if (insn.code == (BPF_ALU64 | BPF_MOV | BPF_X) &&
3337 		    insn.src_reg == 1 && insn.dst_reg == 6)
3338 			meta->skip = true;
3339 
3340 		/* Return as soon as something doesn't match */
3341 		if (!meta->skip)
3342 			return;
3343 	}
3344 }
3345 
3346 /* abs(insn.imm) will fit better into unrestricted reg immediate -
3347  * convert add/sub of a negative number into a sub/add of a positive one.
3348  */
3349 static void nfp_bpf_opt_neg_add_sub(struct nfp_prog *nfp_prog)
3350 {
3351 	struct nfp_insn_meta *meta;
3352 
3353 	list_for_each_entry(meta, &nfp_prog->insns, l) {
3354 		struct bpf_insn insn = meta->insn;
3355 
3356 		if (meta->skip)
3357 			continue;
3358 
3359 		if (BPF_CLASS(insn.code) != BPF_ALU &&
3360 		    BPF_CLASS(insn.code) != BPF_ALU64 &&
3361 		    BPF_CLASS(insn.code) != BPF_JMP)
3362 			continue;
3363 		if (BPF_SRC(insn.code) != BPF_K)
3364 			continue;
3365 		if (insn.imm >= 0)
3366 			continue;
3367 
3368 		if (BPF_CLASS(insn.code) == BPF_JMP) {
3369 			switch (BPF_OP(insn.code)) {
3370 			case BPF_JGE:
3371 			case BPF_JSGE:
3372 			case BPF_JLT:
3373 			case BPF_JSLT:
3374 				meta->jump_neg_op = true;
3375 				break;
3376 			default:
3377 				continue;
3378 			}
3379 		} else {
3380 			if (BPF_OP(insn.code) == BPF_ADD)
3381 				insn.code = BPF_CLASS(insn.code) | BPF_SUB;
3382 			else if (BPF_OP(insn.code) == BPF_SUB)
3383 				insn.code = BPF_CLASS(insn.code) | BPF_ADD;
3384 			else
3385 				continue;
3386 
3387 			meta->insn.code = insn.code | BPF_K;
3388 		}
3389 
3390 		meta->insn.imm = -insn.imm;
3391 	}
3392 }
3393 
3394 /* Remove masking after load since our load guarantees this is not needed */
3395 static void nfp_bpf_opt_ld_mask(struct nfp_prog *nfp_prog)
3396 {
3397 	struct nfp_insn_meta *meta1, *meta2;
3398 	const s32 exp_mask[] = {
3399 		[BPF_B] = 0x000000ffU,
3400 		[BPF_H] = 0x0000ffffU,
3401 		[BPF_W] = 0xffffffffU,
3402 	};
3403 
3404 	nfp_for_each_insn_walk2(nfp_prog, meta1, meta2) {
3405 		struct bpf_insn insn, next;
3406 
3407 		insn = meta1->insn;
3408 		next = meta2->insn;
3409 
3410 		if (BPF_CLASS(insn.code) != BPF_LD)
3411 			continue;
3412 		if (BPF_MODE(insn.code) != BPF_ABS &&
3413 		    BPF_MODE(insn.code) != BPF_IND)
3414 			continue;
3415 
3416 		if (next.code != (BPF_ALU64 | BPF_AND | BPF_K))
3417 			continue;
3418 
3419 		if (!exp_mask[BPF_SIZE(insn.code)])
3420 			continue;
3421 		if (exp_mask[BPF_SIZE(insn.code)] != next.imm)
3422 			continue;
3423 
3424 		if (next.src_reg || next.dst_reg)
3425 			continue;
3426 
3427 		if (meta2->flags & FLAG_INSN_IS_JUMP_DST)
3428 			continue;
3429 
3430 		meta2->skip = true;
3431 	}
3432 }
3433 
3434 static void nfp_bpf_opt_ld_shift(struct nfp_prog *nfp_prog)
3435 {
3436 	struct nfp_insn_meta *meta1, *meta2, *meta3;
3437 
3438 	nfp_for_each_insn_walk3(nfp_prog, meta1, meta2, meta3) {
3439 		struct bpf_insn insn, next1, next2;
3440 
3441 		insn = meta1->insn;
3442 		next1 = meta2->insn;
3443 		next2 = meta3->insn;
3444 
3445 		if (BPF_CLASS(insn.code) != BPF_LD)
3446 			continue;
3447 		if (BPF_MODE(insn.code) != BPF_ABS &&
3448 		    BPF_MODE(insn.code) != BPF_IND)
3449 			continue;
3450 		if (BPF_SIZE(insn.code) != BPF_W)
3451 			continue;
3452 
3453 		if (!(next1.code == (BPF_LSH | BPF_K | BPF_ALU64) &&
3454 		      next2.code == (BPF_RSH | BPF_K | BPF_ALU64)) &&
3455 		    !(next1.code == (BPF_RSH | BPF_K | BPF_ALU64) &&
3456 		      next2.code == (BPF_LSH | BPF_K | BPF_ALU64)))
3457 			continue;
3458 
3459 		if (next1.src_reg || next1.dst_reg ||
3460 		    next2.src_reg || next2.dst_reg)
3461 			continue;
3462 
3463 		if (next1.imm != 0x20 || next2.imm != 0x20)
3464 			continue;
3465 
3466 		if (meta2->flags & FLAG_INSN_IS_JUMP_DST ||
3467 		    meta3->flags & FLAG_INSN_IS_JUMP_DST)
3468 			continue;
3469 
3470 		meta2->skip = true;
3471 		meta3->skip = true;
3472 	}
3473 }
3474 
3475 /* load/store pair that forms memory copy sould look like the following:
3476  *
3477  *   ld_width R, [addr_src + offset_src]
3478  *   st_width [addr_dest + offset_dest], R
3479  *
3480  * The destination register of load and source register of store should
3481  * be the same, load and store should also perform at the same width.
3482  * If either of addr_src or addr_dest is stack pointer, we don't do the
3483  * CPP optimization as stack is modelled by registers on NFP.
3484  */
3485 static bool
3486 curr_pair_is_memcpy(struct nfp_insn_meta *ld_meta,
3487 		    struct nfp_insn_meta *st_meta)
3488 {
3489 	struct bpf_insn *ld = &ld_meta->insn;
3490 	struct bpf_insn *st = &st_meta->insn;
3491 
3492 	if (!is_mbpf_load(ld_meta) || !is_mbpf_store(st_meta))
3493 		return false;
3494 
3495 	if (ld_meta->ptr.type != PTR_TO_PACKET &&
3496 	    ld_meta->ptr.type != PTR_TO_MAP_VALUE)
3497 		return false;
3498 
3499 	if (st_meta->ptr.type != PTR_TO_PACKET)
3500 		return false;
3501 
3502 	if (BPF_SIZE(ld->code) != BPF_SIZE(st->code))
3503 		return false;
3504 
3505 	if (ld->dst_reg != st->src_reg)
3506 		return false;
3507 
3508 	/* There is jump to the store insn in this pair. */
3509 	if (st_meta->flags & FLAG_INSN_IS_JUMP_DST)
3510 		return false;
3511 
3512 	return true;
3513 }
3514 
3515 /* Currently, we only support chaining load/store pairs if:
3516  *
3517  *  - Their address base registers are the same.
3518  *  - Their address offsets are in the same order.
3519  *  - They operate at the same memory width.
3520  *  - There is no jump into the middle of them.
3521  */
3522 static bool
3523 curr_pair_chain_with_previous(struct nfp_insn_meta *ld_meta,
3524 			      struct nfp_insn_meta *st_meta,
3525 			      struct bpf_insn *prev_ld,
3526 			      struct bpf_insn *prev_st)
3527 {
3528 	u8 prev_size, curr_size, prev_ld_base, prev_st_base, prev_ld_dst;
3529 	struct bpf_insn *ld = &ld_meta->insn;
3530 	struct bpf_insn *st = &st_meta->insn;
3531 	s16 prev_ld_off, prev_st_off;
3532 
3533 	/* This pair is the start pair. */
3534 	if (!prev_ld)
3535 		return true;
3536 
3537 	prev_size = BPF_LDST_BYTES(prev_ld);
3538 	curr_size = BPF_LDST_BYTES(ld);
3539 	prev_ld_base = prev_ld->src_reg;
3540 	prev_st_base = prev_st->dst_reg;
3541 	prev_ld_dst = prev_ld->dst_reg;
3542 	prev_ld_off = prev_ld->off;
3543 	prev_st_off = prev_st->off;
3544 
3545 	if (ld->dst_reg != prev_ld_dst)
3546 		return false;
3547 
3548 	if (ld->src_reg != prev_ld_base || st->dst_reg != prev_st_base)
3549 		return false;
3550 
3551 	if (curr_size != prev_size)
3552 		return false;
3553 
3554 	/* There is jump to the head of this pair. */
3555 	if (ld_meta->flags & FLAG_INSN_IS_JUMP_DST)
3556 		return false;
3557 
3558 	/* Both in ascending order. */
3559 	if (prev_ld_off + prev_size == ld->off &&
3560 	    prev_st_off + prev_size == st->off)
3561 		return true;
3562 
3563 	/* Both in descending order. */
3564 	if (ld->off + curr_size == prev_ld_off &&
3565 	    st->off + curr_size == prev_st_off)
3566 		return true;
3567 
3568 	return false;
3569 }
3570 
3571 /* Return TRUE if cross memory access happens. Cross memory access means
3572  * store area is overlapping with load area that a later load might load
3573  * the value from previous store, for this case we can't treat the sequence
3574  * as an memory copy.
3575  */
3576 static bool
3577 cross_mem_access(struct bpf_insn *ld, struct nfp_insn_meta *head_ld_meta,
3578 		 struct nfp_insn_meta *head_st_meta)
3579 {
3580 	s16 head_ld_off, head_st_off, ld_off;
3581 
3582 	/* Different pointer types does not overlap. */
3583 	if (head_ld_meta->ptr.type != head_st_meta->ptr.type)
3584 		return false;
3585 
3586 	/* load and store are both PTR_TO_PACKET, check ID info.  */
3587 	if (head_ld_meta->ptr.id != head_st_meta->ptr.id)
3588 		return true;
3589 
3590 	/* Canonicalize the offsets. Turn all of them against the original
3591 	 * base register.
3592 	 */
3593 	head_ld_off = head_ld_meta->insn.off + head_ld_meta->ptr.off;
3594 	head_st_off = head_st_meta->insn.off + head_st_meta->ptr.off;
3595 	ld_off = ld->off + head_ld_meta->ptr.off;
3596 
3597 	/* Ascending order cross. */
3598 	if (ld_off > head_ld_off &&
3599 	    head_ld_off < head_st_off && ld_off >= head_st_off)
3600 		return true;
3601 
3602 	/* Descending order cross. */
3603 	if (ld_off < head_ld_off &&
3604 	    head_ld_off > head_st_off && ld_off <= head_st_off)
3605 		return true;
3606 
3607 	return false;
3608 }
3609 
3610 /* This pass try to identify the following instructoin sequences.
3611  *
3612  *   load R, [regA + offA]
3613  *   store [regB + offB], R
3614  *   load R, [regA + offA + const_imm_A]
3615  *   store [regB + offB + const_imm_A], R
3616  *   load R, [regA + offA + 2 * const_imm_A]
3617  *   store [regB + offB + 2 * const_imm_A], R
3618  *   ...
3619  *
3620  * Above sequence is typically generated by compiler when lowering
3621  * memcpy. NFP prefer using CPP instructions to accelerate it.
3622  */
3623 static void nfp_bpf_opt_ldst_gather(struct nfp_prog *nfp_prog)
3624 {
3625 	struct nfp_insn_meta *head_ld_meta = NULL;
3626 	struct nfp_insn_meta *head_st_meta = NULL;
3627 	struct nfp_insn_meta *meta1, *meta2;
3628 	struct bpf_insn *prev_ld = NULL;
3629 	struct bpf_insn *prev_st = NULL;
3630 	u8 count = 0;
3631 
3632 	nfp_for_each_insn_walk2(nfp_prog, meta1, meta2) {
3633 		struct bpf_insn *ld = &meta1->insn;
3634 		struct bpf_insn *st = &meta2->insn;
3635 
3636 		/* Reset record status if any of the following if true:
3637 		 *   - The current insn pair is not load/store.
3638 		 *   - The load/store pair doesn't chain with previous one.
3639 		 *   - The chained load/store pair crossed with previous pair.
3640 		 *   - The chained load/store pair has a total size of memory
3641 		 *     copy beyond 128 bytes which is the maximum length a
3642 		 *     single NFP CPP command can transfer.
3643 		 */
3644 		if (!curr_pair_is_memcpy(meta1, meta2) ||
3645 		    !curr_pair_chain_with_previous(meta1, meta2, prev_ld,
3646 						   prev_st) ||
3647 		    (head_ld_meta && (cross_mem_access(ld, head_ld_meta,
3648 						       head_st_meta) ||
3649 				      head_ld_meta->ldst_gather_len >= 128))) {
3650 			if (!count)
3651 				continue;
3652 
3653 			if (count > 1) {
3654 				s16 prev_ld_off = prev_ld->off;
3655 				s16 prev_st_off = prev_st->off;
3656 				s16 head_ld_off = head_ld_meta->insn.off;
3657 
3658 				if (prev_ld_off < head_ld_off) {
3659 					head_ld_meta->insn.off = prev_ld_off;
3660 					head_st_meta->insn.off = prev_st_off;
3661 					head_ld_meta->ldst_gather_len =
3662 						-head_ld_meta->ldst_gather_len;
3663 				}
3664 
3665 				head_ld_meta->paired_st = &head_st_meta->insn;
3666 				head_st_meta->skip = true;
3667 			} else {
3668 				head_ld_meta->ldst_gather_len = 0;
3669 			}
3670 
3671 			/* If the chain is ended by an load/store pair then this
3672 			 * could serve as the new head of the the next chain.
3673 			 */
3674 			if (curr_pair_is_memcpy(meta1, meta2)) {
3675 				head_ld_meta = meta1;
3676 				head_st_meta = meta2;
3677 				head_ld_meta->ldst_gather_len =
3678 					BPF_LDST_BYTES(ld);
3679 				meta1 = nfp_meta_next(meta1);
3680 				meta2 = nfp_meta_next(meta2);
3681 				prev_ld = ld;
3682 				prev_st = st;
3683 				count = 1;
3684 			} else {
3685 				head_ld_meta = NULL;
3686 				head_st_meta = NULL;
3687 				prev_ld = NULL;
3688 				prev_st = NULL;
3689 				count = 0;
3690 			}
3691 
3692 			continue;
3693 		}
3694 
3695 		if (!head_ld_meta) {
3696 			head_ld_meta = meta1;
3697 			head_st_meta = meta2;
3698 		} else {
3699 			meta1->skip = true;
3700 			meta2->skip = true;
3701 		}
3702 
3703 		head_ld_meta->ldst_gather_len += BPF_LDST_BYTES(ld);
3704 		meta1 = nfp_meta_next(meta1);
3705 		meta2 = nfp_meta_next(meta2);
3706 		prev_ld = ld;
3707 		prev_st = st;
3708 		count++;
3709 	}
3710 }
3711 
3712 static void nfp_bpf_opt_pkt_cache(struct nfp_prog *nfp_prog)
3713 {
3714 	struct nfp_insn_meta *meta, *range_node = NULL;
3715 	s16 range_start = 0, range_end = 0;
3716 	bool cache_avail = false;
3717 	struct bpf_insn *insn;
3718 	s32 range_ptr_off = 0;
3719 	u32 range_ptr_id = 0;
3720 
3721 	list_for_each_entry(meta, &nfp_prog->insns, l) {
3722 		if (meta->flags & FLAG_INSN_IS_JUMP_DST)
3723 			cache_avail = false;
3724 
3725 		if (meta->skip)
3726 			continue;
3727 
3728 		insn = &meta->insn;
3729 
3730 		if (is_mbpf_store_pkt(meta) ||
3731 		    insn->code == (BPF_JMP | BPF_CALL) ||
3732 		    is_mbpf_classic_store_pkt(meta) ||
3733 		    is_mbpf_classic_load(meta)) {
3734 			cache_avail = false;
3735 			continue;
3736 		}
3737 
3738 		if (!is_mbpf_load(meta))
3739 			continue;
3740 
3741 		if (meta->ptr.type != PTR_TO_PACKET || meta->ldst_gather_len) {
3742 			cache_avail = false;
3743 			continue;
3744 		}
3745 
3746 		if (!cache_avail) {
3747 			cache_avail = true;
3748 			if (range_node)
3749 				goto end_current_then_start_new;
3750 			goto start_new;
3751 		}
3752 
3753 		/* Check ID to make sure two reads share the same
3754 		 * variable offset against PTR_TO_PACKET, and check OFF
3755 		 * to make sure they also share the same constant
3756 		 * offset.
3757 		 *
3758 		 * OFFs don't really need to be the same, because they
3759 		 * are the constant offsets against PTR_TO_PACKET, so
3760 		 * for different OFFs, we could canonicalize them to
3761 		 * offsets against original packet pointer. We don't
3762 		 * support this.
3763 		 */
3764 		if (meta->ptr.id == range_ptr_id &&
3765 		    meta->ptr.off == range_ptr_off) {
3766 			s16 new_start = range_start;
3767 			s16 end, off = insn->off;
3768 			s16 new_end = range_end;
3769 			bool changed = false;
3770 
3771 			if (off < range_start) {
3772 				new_start = off;
3773 				changed = true;
3774 			}
3775 
3776 			end = off + BPF_LDST_BYTES(insn);
3777 			if (end > range_end) {
3778 				new_end = end;
3779 				changed = true;
3780 			}
3781 
3782 			if (!changed)
3783 				continue;
3784 
3785 			if (new_end - new_start <= 64) {
3786 				/* Install new range. */
3787 				range_start = new_start;
3788 				range_end = new_end;
3789 				continue;
3790 			}
3791 		}
3792 
3793 end_current_then_start_new:
3794 		range_node->pkt_cache.range_start = range_start;
3795 		range_node->pkt_cache.range_end = range_end;
3796 start_new:
3797 		range_node = meta;
3798 		range_node->pkt_cache.do_init = true;
3799 		range_ptr_id = range_node->ptr.id;
3800 		range_ptr_off = range_node->ptr.off;
3801 		range_start = insn->off;
3802 		range_end = insn->off + BPF_LDST_BYTES(insn);
3803 	}
3804 
3805 	if (range_node) {
3806 		range_node->pkt_cache.range_start = range_start;
3807 		range_node->pkt_cache.range_end = range_end;
3808 	}
3809 
3810 	list_for_each_entry(meta, &nfp_prog->insns, l) {
3811 		if (meta->skip)
3812 			continue;
3813 
3814 		if (is_mbpf_load_pkt(meta) && !meta->ldst_gather_len) {
3815 			if (meta->pkt_cache.do_init) {
3816 				range_start = meta->pkt_cache.range_start;
3817 				range_end = meta->pkt_cache.range_end;
3818 			} else {
3819 				meta->pkt_cache.range_start = range_start;
3820 				meta->pkt_cache.range_end = range_end;
3821 			}
3822 		}
3823 	}
3824 }
3825 
3826 static int nfp_bpf_optimize(struct nfp_prog *nfp_prog)
3827 {
3828 	nfp_bpf_opt_reg_init(nfp_prog);
3829 
3830 	nfp_bpf_opt_neg_add_sub(nfp_prog);
3831 	nfp_bpf_opt_ld_mask(nfp_prog);
3832 	nfp_bpf_opt_ld_shift(nfp_prog);
3833 	nfp_bpf_opt_ldst_gather(nfp_prog);
3834 	nfp_bpf_opt_pkt_cache(nfp_prog);
3835 
3836 	return 0;
3837 }
3838 
3839 static int nfp_bpf_replace_map_ptrs(struct nfp_prog *nfp_prog)
3840 {
3841 	struct nfp_insn_meta *meta1, *meta2;
3842 	struct nfp_bpf_map *nfp_map;
3843 	struct bpf_map *map;
3844 
3845 	nfp_for_each_insn_walk2(nfp_prog, meta1, meta2) {
3846 		if (meta1->skip || meta2->skip)
3847 			continue;
3848 
3849 		if (meta1->insn.code != (BPF_LD | BPF_IMM | BPF_DW) ||
3850 		    meta1->insn.src_reg != BPF_PSEUDO_MAP_FD)
3851 			continue;
3852 
3853 		map = (void *)(unsigned long)((u32)meta1->insn.imm |
3854 					      (u64)meta2->insn.imm << 32);
3855 		if (bpf_map_offload_neutral(map))
3856 			continue;
3857 		nfp_map = map_to_offmap(map)->dev_priv;
3858 
3859 		meta1->insn.imm = nfp_map->tid;
3860 		meta2->insn.imm = 0;
3861 	}
3862 
3863 	return 0;
3864 }
3865 
3866 static int nfp_bpf_ustore_calc(u64 *prog, unsigned int len)
3867 {
3868 	__le64 *ustore = (__force __le64 *)prog;
3869 	int i;
3870 
3871 	for (i = 0; i < len; i++) {
3872 		int err;
3873 
3874 		err = nfp_ustore_check_valid_no_ecc(prog[i]);
3875 		if (err)
3876 			return err;
3877 
3878 		ustore[i] = cpu_to_le64(nfp_ustore_calc_ecc_insn(prog[i]));
3879 	}
3880 
3881 	return 0;
3882 }
3883 
3884 static void nfp_bpf_prog_trim(struct nfp_prog *nfp_prog)
3885 {
3886 	void *prog;
3887 
3888 	prog = kvmalloc_array(nfp_prog->prog_len, sizeof(u64), GFP_KERNEL);
3889 	if (!prog)
3890 		return;
3891 
3892 	nfp_prog->__prog_alloc_len = nfp_prog->prog_len * sizeof(u64);
3893 	memcpy(prog, nfp_prog->prog, nfp_prog->__prog_alloc_len);
3894 	kvfree(nfp_prog->prog);
3895 	nfp_prog->prog = prog;
3896 }
3897 
3898 int nfp_bpf_jit(struct nfp_prog *nfp_prog)
3899 {
3900 	int ret;
3901 
3902 	ret = nfp_bpf_replace_map_ptrs(nfp_prog);
3903 	if (ret)
3904 		return ret;
3905 
3906 	ret = nfp_bpf_optimize(nfp_prog);
3907 	if (ret)
3908 		return ret;
3909 
3910 	ret = nfp_translate(nfp_prog);
3911 	if (ret) {
3912 		pr_err("Translation failed with error %d (translated: %u)\n",
3913 		       ret, nfp_prog->n_translated);
3914 		return -EINVAL;
3915 	}
3916 
3917 	nfp_bpf_prog_trim(nfp_prog);
3918 
3919 	return ret;
3920 }
3921 
3922 void nfp_bpf_jit_prepare(struct nfp_prog *nfp_prog, unsigned int cnt)
3923 {
3924 	struct nfp_insn_meta *meta;
3925 
3926 	/* Another pass to record jump information. */
3927 	list_for_each_entry(meta, &nfp_prog->insns, l) {
3928 		u64 code = meta->insn.code;
3929 
3930 		if (BPF_CLASS(code) == BPF_JMP && BPF_OP(code) != BPF_EXIT &&
3931 		    BPF_OP(code) != BPF_CALL) {
3932 			struct nfp_insn_meta *dst_meta;
3933 			unsigned short dst_indx;
3934 
3935 			dst_indx = meta->n + 1 + meta->insn.off;
3936 			dst_meta = nfp_bpf_goto_meta(nfp_prog, meta, dst_indx,
3937 						     cnt);
3938 
3939 			meta->jmp_dst = dst_meta;
3940 			dst_meta->flags |= FLAG_INSN_IS_JUMP_DST;
3941 		}
3942 	}
3943 }
3944 
3945 bool nfp_bpf_supported_opcode(u8 code)
3946 {
3947 	return !!instr_cb[code];
3948 }
3949 
3950 void *nfp_bpf_relo_for_vnic(struct nfp_prog *nfp_prog, struct nfp_bpf_vnic *bv)
3951 {
3952 	unsigned int i;
3953 	u64 *prog;
3954 	int err;
3955 
3956 	prog = kmemdup(nfp_prog->prog, nfp_prog->prog_len * sizeof(u64),
3957 		       GFP_KERNEL);
3958 	if (!prog)
3959 		return ERR_PTR(-ENOMEM);
3960 
3961 	for (i = 0; i < nfp_prog->prog_len; i++) {
3962 		enum nfp_relo_type special;
3963 		u32 val;
3964 
3965 		special = FIELD_GET(OP_RELO_TYPE, prog[i]);
3966 		switch (special) {
3967 		case RELO_NONE:
3968 			continue;
3969 		case RELO_BR_REL:
3970 			br_add_offset(&prog[i], bv->start_off);
3971 			break;
3972 		case RELO_BR_GO_OUT:
3973 			br_set_offset(&prog[i],
3974 				      nfp_prog->tgt_out + bv->start_off);
3975 			break;
3976 		case RELO_BR_GO_ABORT:
3977 			br_set_offset(&prog[i],
3978 				      nfp_prog->tgt_abort + bv->start_off);
3979 			break;
3980 		case RELO_BR_NEXT_PKT:
3981 			br_set_offset(&prog[i], bv->tgt_done);
3982 			break;
3983 		case RELO_BR_HELPER:
3984 			val = br_get_offset(prog[i]);
3985 			val -= BR_OFF_RELO;
3986 			switch (val) {
3987 			case BPF_FUNC_map_lookup_elem:
3988 				val = nfp_prog->bpf->helpers.map_lookup;
3989 				break;
3990 			case BPF_FUNC_map_update_elem:
3991 				val = nfp_prog->bpf->helpers.map_update;
3992 				break;
3993 			case BPF_FUNC_map_delete_elem:
3994 				val = nfp_prog->bpf->helpers.map_delete;
3995 				break;
3996 			case BPF_FUNC_perf_event_output:
3997 				val = nfp_prog->bpf->helpers.perf_event_output;
3998 				break;
3999 			default:
4000 				pr_err("relocation of unknown helper %d\n",
4001 				       val);
4002 				err = -EINVAL;
4003 				goto err_free_prog;
4004 			}
4005 			br_set_offset(&prog[i], val);
4006 			break;
4007 		case RELO_IMMED_REL:
4008 			immed_add_value(&prog[i], bv->start_off);
4009 			break;
4010 		}
4011 
4012 		prog[i] &= ~OP_RELO_TYPE;
4013 	}
4014 
4015 	err = nfp_bpf_ustore_calc(prog, nfp_prog->prog_len);
4016 	if (err)
4017 		goto err_free_prog;
4018 
4019 	return prog;
4020 
4021 err_free_prog:
4022 	kfree(prog);
4023 	return ERR_PTR(err);
4024 }
4025