1 /*
2  * Copyright (C) 2016-2017 Netronome Systems, Inc.
3  *
4  * This software is dual licensed under the GNU General License Version 2,
5  * June 1991 as shown in the file COPYING in the top-level directory of this
6  * source tree or the BSD 2-Clause License provided below.  You have the
7  * option to license this software under the complete terms of either license.
8  *
9  * The BSD 2-Clause License:
10  *
11  *     Redistribution and use in source and binary forms, with or
12  *     without modification, are permitted provided that the following
13  *     conditions are met:
14  *
15  *      1. Redistributions of source code must retain the above
16  *         copyright notice, this list of conditions and the following
17  *         disclaimer.
18  *
19  *      2. Redistributions in binary form must reproduce the above
20  *         copyright notice, this list of conditions and the following
21  *         disclaimer in the documentation and/or other materials
22  *         provided with the distribution.
23  *
24  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31  * SOFTWARE.
32  */
33 
34 #define pr_fmt(fmt)	"NFP net bpf: " fmt
35 
36 #include <linux/bug.h>
37 #include <linux/kernel.h>
38 #include <linux/bpf.h>
39 #include <linux/filter.h>
40 #include <linux/pkt_cls.h>
41 #include <linux/unistd.h>
42 
43 #include "main.h"
44 #include "../nfp_asm.h"
45 
46 /* --- NFP prog --- */
47 /* Foreach "multiple" entries macros provide pos and next<n> pointers.
48  * It's safe to modify the next pointers (but not pos).
49  */
50 #define nfp_for_each_insn_walk2(nfp_prog, pos, next)			\
51 	for (pos = list_first_entry(&(nfp_prog)->insns, typeof(*pos), l), \
52 	     next = list_next_entry(pos, l);			\
53 	     &(nfp_prog)->insns != &pos->l &&			\
54 	     &(nfp_prog)->insns != &next->l;			\
55 	     pos = nfp_meta_next(pos),				\
56 	     next = nfp_meta_next(pos))
57 
58 #define nfp_for_each_insn_walk3(nfp_prog, pos, next, next2)		\
59 	for (pos = list_first_entry(&(nfp_prog)->insns, typeof(*pos), l), \
60 	     next = list_next_entry(pos, l),			\
61 	     next2 = list_next_entry(next, l);			\
62 	     &(nfp_prog)->insns != &pos->l &&			\
63 	     &(nfp_prog)->insns != &next->l &&			\
64 	     &(nfp_prog)->insns != &next2->l;			\
65 	     pos = nfp_meta_next(pos),				\
66 	     next = nfp_meta_next(pos),				\
67 	     next2 = nfp_meta_next(next))
68 
69 static bool
70 nfp_meta_has_prev(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
71 {
72 	return meta->l.prev != &nfp_prog->insns;
73 }
74 
75 static void nfp_prog_push(struct nfp_prog *nfp_prog, u64 insn)
76 {
77 	if (nfp_prog->__prog_alloc_len == nfp_prog->prog_len) {
78 		nfp_prog->error = -ENOSPC;
79 		return;
80 	}
81 
82 	nfp_prog->prog[nfp_prog->prog_len] = insn;
83 	nfp_prog->prog_len++;
84 }
85 
86 static unsigned int nfp_prog_current_offset(struct nfp_prog *nfp_prog)
87 {
88 	return nfp_prog->prog_len;
89 }
90 
91 static bool
92 nfp_prog_confirm_current_offset(struct nfp_prog *nfp_prog, unsigned int off)
93 {
94 	/* If there is a recorded error we may have dropped instructions;
95 	 * that doesn't have to be due to translator bug, and the translation
96 	 * will fail anyway, so just return OK.
97 	 */
98 	if (nfp_prog->error)
99 		return true;
100 	return !WARN_ON_ONCE(nfp_prog_current_offset(nfp_prog) != off);
101 }
102 
103 /* --- Emitters --- */
104 static void
105 __emit_cmd(struct nfp_prog *nfp_prog, enum cmd_tgt_map op,
106 	   u8 mode, u8 xfer, u8 areg, u8 breg, u8 size, bool sync, bool indir)
107 {
108 	enum cmd_ctx_swap ctx;
109 	u64 insn;
110 
111 	if (sync)
112 		ctx = CMD_CTX_SWAP;
113 	else
114 		ctx = CMD_CTX_NO_SWAP;
115 
116 	insn =	FIELD_PREP(OP_CMD_A_SRC, areg) |
117 		FIELD_PREP(OP_CMD_CTX, ctx) |
118 		FIELD_PREP(OP_CMD_B_SRC, breg) |
119 		FIELD_PREP(OP_CMD_TOKEN, cmd_tgt_act[op].token) |
120 		FIELD_PREP(OP_CMD_XFER, xfer) |
121 		FIELD_PREP(OP_CMD_CNT, size) |
122 		FIELD_PREP(OP_CMD_SIG, sync) |
123 		FIELD_PREP(OP_CMD_TGT_CMD, cmd_tgt_act[op].tgt_cmd) |
124 		FIELD_PREP(OP_CMD_INDIR, indir) |
125 		FIELD_PREP(OP_CMD_MODE, mode);
126 
127 	nfp_prog_push(nfp_prog, insn);
128 }
129 
130 static void
131 emit_cmd_any(struct nfp_prog *nfp_prog, enum cmd_tgt_map op, u8 mode, u8 xfer,
132 	     swreg lreg, swreg rreg, u8 size, bool sync, bool indir)
133 {
134 	struct nfp_insn_re_regs reg;
135 	int err;
136 
137 	err = swreg_to_restricted(reg_none(), lreg, rreg, &reg, false);
138 	if (err) {
139 		nfp_prog->error = err;
140 		return;
141 	}
142 	if (reg.swap) {
143 		pr_err("cmd can't swap arguments\n");
144 		nfp_prog->error = -EFAULT;
145 		return;
146 	}
147 	if (reg.dst_lmextn || reg.src_lmextn) {
148 		pr_err("cmd can't use LMextn\n");
149 		nfp_prog->error = -EFAULT;
150 		return;
151 	}
152 
153 	__emit_cmd(nfp_prog, op, mode, xfer, reg.areg, reg.breg, size, sync,
154 		   indir);
155 }
156 
157 static void
158 emit_cmd(struct nfp_prog *nfp_prog, enum cmd_tgt_map op, u8 mode, u8 xfer,
159 	 swreg lreg, swreg rreg, u8 size, bool sync)
160 {
161 	emit_cmd_any(nfp_prog, op, mode, xfer, lreg, rreg, size, sync, false);
162 }
163 
164 static void
165 emit_cmd_indir(struct nfp_prog *nfp_prog, enum cmd_tgt_map op, u8 mode, u8 xfer,
166 	       swreg lreg, swreg rreg, u8 size, bool sync)
167 {
168 	emit_cmd_any(nfp_prog, op, mode, xfer, lreg, rreg, size, sync, true);
169 }
170 
171 static void
172 __emit_br(struct nfp_prog *nfp_prog, enum br_mask mask, enum br_ev_pip ev_pip,
173 	  enum br_ctx_signal_state css, u16 addr, u8 defer)
174 {
175 	u16 addr_lo, addr_hi;
176 	u64 insn;
177 
178 	addr_lo = addr & (OP_BR_ADDR_LO >> __bf_shf(OP_BR_ADDR_LO));
179 	addr_hi = addr != addr_lo;
180 
181 	insn = OP_BR_BASE |
182 		FIELD_PREP(OP_BR_MASK, mask) |
183 		FIELD_PREP(OP_BR_EV_PIP, ev_pip) |
184 		FIELD_PREP(OP_BR_CSS, css) |
185 		FIELD_PREP(OP_BR_DEFBR, defer) |
186 		FIELD_PREP(OP_BR_ADDR_LO, addr_lo) |
187 		FIELD_PREP(OP_BR_ADDR_HI, addr_hi);
188 
189 	nfp_prog_push(nfp_prog, insn);
190 }
191 
192 static void
193 emit_br_relo(struct nfp_prog *nfp_prog, enum br_mask mask, u16 addr, u8 defer,
194 	     enum nfp_relo_type relo)
195 {
196 	if (mask == BR_UNC && defer > 2) {
197 		pr_err("BUG: branch defer out of bounds %d\n", defer);
198 		nfp_prog->error = -EFAULT;
199 		return;
200 	}
201 
202 	__emit_br(nfp_prog, mask,
203 		  mask != BR_UNC ? BR_EV_PIP_COND : BR_EV_PIP_UNCOND,
204 		  BR_CSS_NONE, addr, defer);
205 
206 	nfp_prog->prog[nfp_prog->prog_len - 1] |=
207 		FIELD_PREP(OP_RELO_TYPE, relo);
208 }
209 
210 static void
211 emit_br(struct nfp_prog *nfp_prog, enum br_mask mask, u16 addr, u8 defer)
212 {
213 	emit_br_relo(nfp_prog, mask, addr, defer, RELO_BR_REL);
214 }
215 
216 static void
217 __emit_immed(struct nfp_prog *nfp_prog, u16 areg, u16 breg, u16 imm_hi,
218 	     enum immed_width width, bool invert,
219 	     enum immed_shift shift, bool wr_both,
220 	     bool dst_lmextn, bool src_lmextn)
221 {
222 	u64 insn;
223 
224 	insn = OP_IMMED_BASE |
225 		FIELD_PREP(OP_IMMED_A_SRC, areg) |
226 		FIELD_PREP(OP_IMMED_B_SRC, breg) |
227 		FIELD_PREP(OP_IMMED_IMM, imm_hi) |
228 		FIELD_PREP(OP_IMMED_WIDTH, width) |
229 		FIELD_PREP(OP_IMMED_INV, invert) |
230 		FIELD_PREP(OP_IMMED_SHIFT, shift) |
231 		FIELD_PREP(OP_IMMED_WR_AB, wr_both) |
232 		FIELD_PREP(OP_IMMED_SRC_LMEXTN, src_lmextn) |
233 		FIELD_PREP(OP_IMMED_DST_LMEXTN, dst_lmextn);
234 
235 	nfp_prog_push(nfp_prog, insn);
236 }
237 
238 static void
239 emit_immed(struct nfp_prog *nfp_prog, swreg dst, u16 imm,
240 	   enum immed_width width, bool invert, enum immed_shift shift)
241 {
242 	struct nfp_insn_ur_regs reg;
243 	int err;
244 
245 	if (swreg_type(dst) == NN_REG_IMM) {
246 		nfp_prog->error = -EFAULT;
247 		return;
248 	}
249 
250 	err = swreg_to_unrestricted(dst, dst, reg_imm(imm & 0xff), &reg);
251 	if (err) {
252 		nfp_prog->error = err;
253 		return;
254 	}
255 
256 	/* Use reg.dst when destination is No-Dest. */
257 	__emit_immed(nfp_prog,
258 		     swreg_type(dst) == NN_REG_NONE ? reg.dst : reg.areg,
259 		     reg.breg, imm >> 8, width, invert, shift,
260 		     reg.wr_both, reg.dst_lmextn, reg.src_lmextn);
261 }
262 
263 static void
264 __emit_shf(struct nfp_prog *nfp_prog, u16 dst, enum alu_dst_ab dst_ab,
265 	   enum shf_sc sc, u8 shift,
266 	   u16 areg, enum shf_op op, u16 breg, bool i8, bool sw, bool wr_both,
267 	   bool dst_lmextn, bool src_lmextn)
268 {
269 	u64 insn;
270 
271 	if (!FIELD_FIT(OP_SHF_SHIFT, shift)) {
272 		nfp_prog->error = -EFAULT;
273 		return;
274 	}
275 
276 	if (sc == SHF_SC_L_SHF)
277 		shift = 32 - shift;
278 
279 	insn = OP_SHF_BASE |
280 		FIELD_PREP(OP_SHF_A_SRC, areg) |
281 		FIELD_PREP(OP_SHF_SC, sc) |
282 		FIELD_PREP(OP_SHF_B_SRC, breg) |
283 		FIELD_PREP(OP_SHF_I8, i8) |
284 		FIELD_PREP(OP_SHF_SW, sw) |
285 		FIELD_PREP(OP_SHF_DST, dst) |
286 		FIELD_PREP(OP_SHF_SHIFT, shift) |
287 		FIELD_PREP(OP_SHF_OP, op) |
288 		FIELD_PREP(OP_SHF_DST_AB, dst_ab) |
289 		FIELD_PREP(OP_SHF_WR_AB, wr_both) |
290 		FIELD_PREP(OP_SHF_SRC_LMEXTN, src_lmextn) |
291 		FIELD_PREP(OP_SHF_DST_LMEXTN, dst_lmextn);
292 
293 	nfp_prog_push(nfp_prog, insn);
294 }
295 
296 static void
297 emit_shf(struct nfp_prog *nfp_prog, swreg dst,
298 	 swreg lreg, enum shf_op op, swreg rreg, enum shf_sc sc, u8 shift)
299 {
300 	struct nfp_insn_re_regs reg;
301 	int err;
302 
303 	err = swreg_to_restricted(dst, lreg, rreg, &reg, true);
304 	if (err) {
305 		nfp_prog->error = err;
306 		return;
307 	}
308 
309 	__emit_shf(nfp_prog, reg.dst, reg.dst_ab, sc, shift,
310 		   reg.areg, op, reg.breg, reg.i8, reg.swap, reg.wr_both,
311 		   reg.dst_lmextn, reg.src_lmextn);
312 }
313 
314 static void
315 __emit_alu(struct nfp_prog *nfp_prog, u16 dst, enum alu_dst_ab dst_ab,
316 	   u16 areg, enum alu_op op, u16 breg, bool swap, bool wr_both,
317 	   bool dst_lmextn, bool src_lmextn)
318 {
319 	u64 insn;
320 
321 	insn = OP_ALU_BASE |
322 		FIELD_PREP(OP_ALU_A_SRC, areg) |
323 		FIELD_PREP(OP_ALU_B_SRC, breg) |
324 		FIELD_PREP(OP_ALU_DST, dst) |
325 		FIELD_PREP(OP_ALU_SW, swap) |
326 		FIELD_PREP(OP_ALU_OP, op) |
327 		FIELD_PREP(OP_ALU_DST_AB, dst_ab) |
328 		FIELD_PREP(OP_ALU_WR_AB, wr_both) |
329 		FIELD_PREP(OP_ALU_SRC_LMEXTN, src_lmextn) |
330 		FIELD_PREP(OP_ALU_DST_LMEXTN, dst_lmextn);
331 
332 	nfp_prog_push(nfp_prog, insn);
333 }
334 
335 static void
336 emit_alu(struct nfp_prog *nfp_prog, swreg dst,
337 	 swreg lreg, enum alu_op op, swreg rreg)
338 {
339 	struct nfp_insn_ur_regs reg;
340 	int err;
341 
342 	err = swreg_to_unrestricted(dst, lreg, rreg, &reg);
343 	if (err) {
344 		nfp_prog->error = err;
345 		return;
346 	}
347 
348 	__emit_alu(nfp_prog, reg.dst, reg.dst_ab,
349 		   reg.areg, op, reg.breg, reg.swap, reg.wr_both,
350 		   reg.dst_lmextn, reg.src_lmextn);
351 }
352 
353 static void
354 __emit_ld_field(struct nfp_prog *nfp_prog, enum shf_sc sc,
355 		u8 areg, u8 bmask, u8 breg, u8 shift, bool imm8,
356 		bool zero, bool swap, bool wr_both,
357 		bool dst_lmextn, bool src_lmextn)
358 {
359 	u64 insn;
360 
361 	insn = OP_LDF_BASE |
362 		FIELD_PREP(OP_LDF_A_SRC, areg) |
363 		FIELD_PREP(OP_LDF_SC, sc) |
364 		FIELD_PREP(OP_LDF_B_SRC, breg) |
365 		FIELD_PREP(OP_LDF_I8, imm8) |
366 		FIELD_PREP(OP_LDF_SW, swap) |
367 		FIELD_PREP(OP_LDF_ZF, zero) |
368 		FIELD_PREP(OP_LDF_BMASK, bmask) |
369 		FIELD_PREP(OP_LDF_SHF, shift) |
370 		FIELD_PREP(OP_LDF_WR_AB, wr_both) |
371 		FIELD_PREP(OP_LDF_SRC_LMEXTN, src_lmextn) |
372 		FIELD_PREP(OP_LDF_DST_LMEXTN, dst_lmextn);
373 
374 	nfp_prog_push(nfp_prog, insn);
375 }
376 
377 static void
378 emit_ld_field_any(struct nfp_prog *nfp_prog, swreg dst, u8 bmask, swreg src,
379 		  enum shf_sc sc, u8 shift, bool zero)
380 {
381 	struct nfp_insn_re_regs reg;
382 	int err;
383 
384 	/* Note: ld_field is special as it uses one of the src regs as dst */
385 	err = swreg_to_restricted(dst, dst, src, &reg, true);
386 	if (err) {
387 		nfp_prog->error = err;
388 		return;
389 	}
390 
391 	__emit_ld_field(nfp_prog, sc, reg.areg, bmask, reg.breg, shift,
392 			reg.i8, zero, reg.swap, reg.wr_both,
393 			reg.dst_lmextn, reg.src_lmextn);
394 }
395 
396 static void
397 emit_ld_field(struct nfp_prog *nfp_prog, swreg dst, u8 bmask, swreg src,
398 	      enum shf_sc sc, u8 shift)
399 {
400 	emit_ld_field_any(nfp_prog, dst, bmask, src, sc, shift, false);
401 }
402 
403 static void
404 __emit_lcsr(struct nfp_prog *nfp_prog, u16 areg, u16 breg, bool wr, u16 addr,
405 	    bool dst_lmextn, bool src_lmextn)
406 {
407 	u64 insn;
408 
409 	insn = OP_LCSR_BASE |
410 		FIELD_PREP(OP_LCSR_A_SRC, areg) |
411 		FIELD_PREP(OP_LCSR_B_SRC, breg) |
412 		FIELD_PREP(OP_LCSR_WRITE, wr) |
413 		FIELD_PREP(OP_LCSR_ADDR, addr) |
414 		FIELD_PREP(OP_LCSR_SRC_LMEXTN, src_lmextn) |
415 		FIELD_PREP(OP_LCSR_DST_LMEXTN, dst_lmextn);
416 
417 	nfp_prog_push(nfp_prog, insn);
418 }
419 
420 static void emit_csr_wr(struct nfp_prog *nfp_prog, swreg src, u16 addr)
421 {
422 	struct nfp_insn_ur_regs reg;
423 	int err;
424 
425 	/* This instruction takes immeds instead of reg_none() for the ignored
426 	 * operand, but we can't encode 2 immeds in one instr with our normal
427 	 * swreg infra so if param is an immed, we encode as reg_none() and
428 	 * copy the immed to both operands.
429 	 */
430 	if (swreg_type(src) == NN_REG_IMM) {
431 		err = swreg_to_unrestricted(reg_none(), src, reg_none(), &reg);
432 		reg.breg = reg.areg;
433 	} else {
434 		err = swreg_to_unrestricted(reg_none(), src, reg_imm(0), &reg);
435 	}
436 	if (err) {
437 		nfp_prog->error = err;
438 		return;
439 	}
440 
441 	__emit_lcsr(nfp_prog, reg.areg, reg.breg, true, addr / 4,
442 		    false, reg.src_lmextn);
443 }
444 
445 static void emit_nop(struct nfp_prog *nfp_prog)
446 {
447 	__emit_immed(nfp_prog, UR_REG_IMM, UR_REG_IMM, 0, 0, 0, 0, 0, 0, 0);
448 }
449 
450 /* --- Wrappers --- */
451 static bool pack_immed(u32 imm, u16 *val, enum immed_shift *shift)
452 {
453 	if (!(imm & 0xffff0000)) {
454 		*val = imm;
455 		*shift = IMMED_SHIFT_0B;
456 	} else if (!(imm & 0xff0000ff)) {
457 		*val = imm >> 8;
458 		*shift = IMMED_SHIFT_1B;
459 	} else if (!(imm & 0x0000ffff)) {
460 		*val = imm >> 16;
461 		*shift = IMMED_SHIFT_2B;
462 	} else {
463 		return false;
464 	}
465 
466 	return true;
467 }
468 
469 static void wrp_immed(struct nfp_prog *nfp_prog, swreg dst, u32 imm)
470 {
471 	enum immed_shift shift;
472 	u16 val;
473 
474 	if (pack_immed(imm, &val, &shift)) {
475 		emit_immed(nfp_prog, dst, val, IMMED_WIDTH_ALL, false, shift);
476 	} else if (pack_immed(~imm, &val, &shift)) {
477 		emit_immed(nfp_prog, dst, val, IMMED_WIDTH_ALL, true, shift);
478 	} else {
479 		emit_immed(nfp_prog, dst, imm & 0xffff, IMMED_WIDTH_ALL,
480 			   false, IMMED_SHIFT_0B);
481 		emit_immed(nfp_prog, dst, imm >> 16, IMMED_WIDTH_WORD,
482 			   false, IMMED_SHIFT_2B);
483 	}
484 }
485 
486 /* ur_load_imm_any() - encode immediate or use tmp register (unrestricted)
487  * If the @imm is small enough encode it directly in operand and return
488  * otherwise load @imm to a spare register and return its encoding.
489  */
490 static swreg ur_load_imm_any(struct nfp_prog *nfp_prog, u32 imm, swreg tmp_reg)
491 {
492 	if (FIELD_FIT(UR_REG_IMM_MAX, imm))
493 		return reg_imm(imm);
494 
495 	wrp_immed(nfp_prog, tmp_reg, imm);
496 	return tmp_reg;
497 }
498 
499 /* re_load_imm_any() - encode immediate or use tmp register (restricted)
500  * If the @imm is small enough encode it directly in operand and return
501  * otherwise load @imm to a spare register and return its encoding.
502  */
503 static swreg re_load_imm_any(struct nfp_prog *nfp_prog, u32 imm, swreg tmp_reg)
504 {
505 	if (FIELD_FIT(RE_REG_IMM_MAX, imm))
506 		return reg_imm(imm);
507 
508 	wrp_immed(nfp_prog, tmp_reg, imm);
509 	return tmp_reg;
510 }
511 
512 static void wrp_nops(struct nfp_prog *nfp_prog, unsigned int count)
513 {
514 	while (count--)
515 		emit_nop(nfp_prog);
516 }
517 
518 static void wrp_mov(struct nfp_prog *nfp_prog, swreg dst, swreg src)
519 {
520 	emit_alu(nfp_prog, dst, reg_none(), ALU_OP_NONE, src);
521 }
522 
523 static void wrp_reg_mov(struct nfp_prog *nfp_prog, u16 dst, u16 src)
524 {
525 	wrp_mov(nfp_prog, reg_both(dst), reg_b(src));
526 }
527 
528 /* wrp_reg_subpart() - load @field_len bytes from @offset of @src, write the
529  * result to @dst from low end.
530  */
531 static void
532 wrp_reg_subpart(struct nfp_prog *nfp_prog, swreg dst, swreg src, u8 field_len,
533 		u8 offset)
534 {
535 	enum shf_sc sc = offset ? SHF_SC_R_SHF : SHF_SC_NONE;
536 	u8 mask = (1 << field_len) - 1;
537 
538 	emit_ld_field_any(nfp_prog, dst, mask, src, sc, offset * 8, true);
539 }
540 
541 /* NFP has Command Push Pull bus which supports bluk memory operations. */
542 static int nfp_cpp_memcpy(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
543 {
544 	bool descending_seq = meta->ldst_gather_len < 0;
545 	s16 len = abs(meta->ldst_gather_len);
546 	swreg src_base, off;
547 	unsigned int i;
548 	u8 xfer_num;
549 
550 	off = re_load_imm_any(nfp_prog, meta->insn.off, imm_b(nfp_prog));
551 	src_base = reg_a(meta->insn.src_reg * 2);
552 	xfer_num = round_up(len, 4) / 4;
553 
554 	/* Setup PREV_ALU fields to override memory read length. */
555 	if (len > 32)
556 		wrp_immed(nfp_prog, reg_none(),
557 			  CMD_OVE_LEN | FIELD_PREP(CMD_OV_LEN, xfer_num - 1));
558 
559 	/* Memory read from source addr into transfer-in registers. */
560 	emit_cmd_any(nfp_prog, CMD_TGT_READ32_SWAP, CMD_MODE_32b, 0, src_base,
561 		     off, xfer_num - 1, true, len > 32);
562 
563 	/* Move from transfer-in to transfer-out. */
564 	for (i = 0; i < xfer_num; i++)
565 		wrp_mov(nfp_prog, reg_xfer(i), reg_xfer(i));
566 
567 	off = re_load_imm_any(nfp_prog, meta->paired_st->off, imm_b(nfp_prog));
568 
569 	if (len <= 8) {
570 		/* Use single direct_ref write8. */
571 		emit_cmd(nfp_prog, CMD_TGT_WRITE8_SWAP, CMD_MODE_32b, 0,
572 			 reg_a(meta->paired_st->dst_reg * 2), off, len - 1,
573 			 true);
574 	} else if (len <= 32 && IS_ALIGNED(len, 4)) {
575 		/* Use single direct_ref write32. */
576 		emit_cmd(nfp_prog, CMD_TGT_WRITE32_SWAP, CMD_MODE_32b, 0,
577 			 reg_a(meta->paired_st->dst_reg * 2), off, xfer_num - 1,
578 			 true);
579 	} else if (len <= 32) {
580 		/* Use single indirect_ref write8. */
581 		wrp_immed(nfp_prog, reg_none(),
582 			  CMD_OVE_LEN | FIELD_PREP(CMD_OV_LEN, len - 1));
583 		emit_cmd_indir(nfp_prog, CMD_TGT_WRITE8_SWAP, CMD_MODE_32b, 0,
584 			       reg_a(meta->paired_st->dst_reg * 2), off,
585 			       len - 1, true);
586 	} else if (IS_ALIGNED(len, 4)) {
587 		/* Use single indirect_ref write32. */
588 		wrp_immed(nfp_prog, reg_none(),
589 			  CMD_OVE_LEN | FIELD_PREP(CMD_OV_LEN, xfer_num - 1));
590 		emit_cmd_indir(nfp_prog, CMD_TGT_WRITE32_SWAP, CMD_MODE_32b, 0,
591 			       reg_a(meta->paired_st->dst_reg * 2), off,
592 			       xfer_num - 1, true);
593 	} else if (len <= 40) {
594 		/* Use one direct_ref write32 to write the first 32-bytes, then
595 		 * another direct_ref write8 to write the remaining bytes.
596 		 */
597 		emit_cmd(nfp_prog, CMD_TGT_WRITE32_SWAP, CMD_MODE_32b, 0,
598 			 reg_a(meta->paired_st->dst_reg * 2), off, 7,
599 			 true);
600 
601 		off = re_load_imm_any(nfp_prog, meta->paired_st->off + 32,
602 				      imm_b(nfp_prog));
603 		emit_cmd(nfp_prog, CMD_TGT_WRITE8_SWAP, CMD_MODE_32b, 8,
604 			 reg_a(meta->paired_st->dst_reg * 2), off, len - 33,
605 			 true);
606 	} else {
607 		/* Use one indirect_ref write32 to write 4-bytes aligned length,
608 		 * then another direct_ref write8 to write the remaining bytes.
609 		 */
610 		u8 new_off;
611 
612 		wrp_immed(nfp_prog, reg_none(),
613 			  CMD_OVE_LEN | FIELD_PREP(CMD_OV_LEN, xfer_num - 2));
614 		emit_cmd_indir(nfp_prog, CMD_TGT_WRITE32_SWAP, CMD_MODE_32b, 0,
615 			       reg_a(meta->paired_st->dst_reg * 2), off,
616 			       xfer_num - 2, true);
617 		new_off = meta->paired_st->off + (xfer_num - 1) * 4;
618 		off = re_load_imm_any(nfp_prog, new_off, imm_b(nfp_prog));
619 		emit_cmd(nfp_prog, CMD_TGT_WRITE8_SWAP, CMD_MODE_32b,
620 			 xfer_num - 1, reg_a(meta->paired_st->dst_reg * 2), off,
621 			 (len & 0x3) - 1, true);
622 	}
623 
624 	/* TODO: The following extra load is to make sure data flow be identical
625 	 *  before and after we do memory copy optimization.
626 	 *
627 	 *  The load destination register is not guaranteed to be dead, so we
628 	 *  need to make sure it is loaded with the value the same as before
629 	 *  this transformation.
630 	 *
631 	 *  These extra loads could be removed once we have accurate register
632 	 *  usage information.
633 	 */
634 	if (descending_seq)
635 		xfer_num = 0;
636 	else if (BPF_SIZE(meta->insn.code) != BPF_DW)
637 		xfer_num = xfer_num - 1;
638 	else
639 		xfer_num = xfer_num - 2;
640 
641 	switch (BPF_SIZE(meta->insn.code)) {
642 	case BPF_B:
643 		wrp_reg_subpart(nfp_prog, reg_both(meta->insn.dst_reg * 2),
644 				reg_xfer(xfer_num), 1,
645 				IS_ALIGNED(len, 4) ? 3 : (len & 3) - 1);
646 		break;
647 	case BPF_H:
648 		wrp_reg_subpart(nfp_prog, reg_both(meta->insn.dst_reg * 2),
649 				reg_xfer(xfer_num), 2, (len & 3) ^ 2);
650 		break;
651 	case BPF_W:
652 		wrp_mov(nfp_prog, reg_both(meta->insn.dst_reg * 2),
653 			reg_xfer(0));
654 		break;
655 	case BPF_DW:
656 		wrp_mov(nfp_prog, reg_both(meta->insn.dst_reg * 2),
657 			reg_xfer(xfer_num));
658 		wrp_mov(nfp_prog, reg_both(meta->insn.dst_reg * 2 + 1),
659 			reg_xfer(xfer_num + 1));
660 		break;
661 	}
662 
663 	if (BPF_SIZE(meta->insn.code) != BPF_DW)
664 		wrp_immed(nfp_prog, reg_both(meta->insn.dst_reg * 2 + 1), 0);
665 
666 	return 0;
667 }
668 
669 static int
670 data_ld(struct nfp_prog *nfp_prog, swreg offset, u8 dst_gpr, int size)
671 {
672 	unsigned int i;
673 	u16 shift, sz;
674 
675 	/* We load the value from the address indicated in @offset and then
676 	 * shift out the data we don't need.  Note: this is big endian!
677 	 */
678 	sz = max(size, 4);
679 	shift = size < 4 ? 4 - size : 0;
680 
681 	emit_cmd(nfp_prog, CMD_TGT_READ8, CMD_MODE_32b, 0,
682 		 pptr_reg(nfp_prog), offset, sz - 1, true);
683 
684 	i = 0;
685 	if (shift)
686 		emit_shf(nfp_prog, reg_both(dst_gpr), reg_none(), SHF_OP_NONE,
687 			 reg_xfer(0), SHF_SC_R_SHF, shift * 8);
688 	else
689 		for (; i * 4 < size; i++)
690 			wrp_mov(nfp_prog, reg_both(dst_gpr + i), reg_xfer(i));
691 
692 	if (i < 2)
693 		wrp_immed(nfp_prog, reg_both(dst_gpr + 1), 0);
694 
695 	return 0;
696 }
697 
698 static int
699 data_ld_host_order(struct nfp_prog *nfp_prog, u8 src_gpr, swreg offset,
700 		   u8 dst_gpr, int size)
701 {
702 	unsigned int i;
703 	u8 mask, sz;
704 
705 	/* We load the value from the address indicated in @offset and then
706 	 * mask out the data we don't need.  Note: this is little endian!
707 	 */
708 	sz = max(size, 4);
709 	mask = size < 4 ? GENMASK(size - 1, 0) : 0;
710 
711 	emit_cmd(nfp_prog, CMD_TGT_READ32_SWAP, CMD_MODE_32b, 0,
712 		 reg_a(src_gpr), offset, sz / 4 - 1, true);
713 
714 	i = 0;
715 	if (mask)
716 		emit_ld_field_any(nfp_prog, reg_both(dst_gpr), mask,
717 				  reg_xfer(0), SHF_SC_NONE, 0, true);
718 	else
719 		for (; i * 4 < size; i++)
720 			wrp_mov(nfp_prog, reg_both(dst_gpr + i), reg_xfer(i));
721 
722 	if (i < 2)
723 		wrp_immed(nfp_prog, reg_both(dst_gpr + 1), 0);
724 
725 	return 0;
726 }
727 
728 static int
729 construct_data_ind_ld(struct nfp_prog *nfp_prog, u16 offset, u16 src, u8 size)
730 {
731 	swreg tmp_reg;
732 
733 	/* Calculate the true offset (src_reg + imm) */
734 	tmp_reg = ur_load_imm_any(nfp_prog, offset, imm_b(nfp_prog));
735 	emit_alu(nfp_prog, imm_both(nfp_prog), reg_a(src), ALU_OP_ADD, tmp_reg);
736 
737 	/* Check packet length (size guaranteed to fit b/c it's u8) */
738 	emit_alu(nfp_prog, imm_a(nfp_prog),
739 		 imm_a(nfp_prog), ALU_OP_ADD, reg_imm(size));
740 	emit_alu(nfp_prog, reg_none(),
741 		 plen_reg(nfp_prog), ALU_OP_SUB, imm_a(nfp_prog));
742 	emit_br_relo(nfp_prog, BR_BLO, 0, 0, RELO_BR_GO_ABORT);
743 
744 	/* Load data */
745 	return data_ld(nfp_prog, imm_b(nfp_prog), 0, size);
746 }
747 
748 static int construct_data_ld(struct nfp_prog *nfp_prog, u16 offset, u8 size)
749 {
750 	swreg tmp_reg;
751 
752 	/* Check packet length */
753 	tmp_reg = ur_load_imm_any(nfp_prog, offset + size, imm_a(nfp_prog));
754 	emit_alu(nfp_prog, reg_none(), plen_reg(nfp_prog), ALU_OP_SUB, tmp_reg);
755 	emit_br_relo(nfp_prog, BR_BLO, 0, 0, RELO_BR_GO_ABORT);
756 
757 	/* Load data */
758 	tmp_reg = re_load_imm_any(nfp_prog, offset, imm_b(nfp_prog));
759 	return data_ld(nfp_prog, tmp_reg, 0, size);
760 }
761 
762 static int
763 data_stx_host_order(struct nfp_prog *nfp_prog, u8 dst_gpr, swreg offset,
764 		    u8 src_gpr, u8 size)
765 {
766 	unsigned int i;
767 
768 	for (i = 0; i * 4 < size; i++)
769 		wrp_mov(nfp_prog, reg_xfer(i), reg_a(src_gpr + i));
770 
771 	emit_cmd(nfp_prog, CMD_TGT_WRITE8_SWAP, CMD_MODE_32b, 0,
772 		 reg_a(dst_gpr), offset, size - 1, true);
773 
774 	return 0;
775 }
776 
777 static int
778 data_st_host_order(struct nfp_prog *nfp_prog, u8 dst_gpr, swreg offset,
779 		   u64 imm, u8 size)
780 {
781 	wrp_immed(nfp_prog, reg_xfer(0), imm);
782 	if (size == 8)
783 		wrp_immed(nfp_prog, reg_xfer(1), imm >> 32);
784 
785 	emit_cmd(nfp_prog, CMD_TGT_WRITE8_SWAP, CMD_MODE_32b, 0,
786 		 reg_a(dst_gpr), offset, size - 1, true);
787 
788 	return 0;
789 }
790 
791 typedef int
792 (*lmem_step)(struct nfp_prog *nfp_prog, u8 gpr, u8 gpr_byte, s32 off,
793 	     unsigned int size, bool first, bool new_gpr, bool last, bool lm3,
794 	     bool needs_inc);
795 
796 static int
797 wrp_lmem_load(struct nfp_prog *nfp_prog, u8 dst, u8 dst_byte, s32 off,
798 	      unsigned int size, bool first, bool new_gpr, bool last, bool lm3,
799 	      bool needs_inc)
800 {
801 	bool should_inc = needs_inc && new_gpr && !last;
802 	u32 idx, src_byte;
803 	enum shf_sc sc;
804 	swreg reg;
805 	int shf;
806 	u8 mask;
807 
808 	if (WARN_ON_ONCE(dst_byte + size > 4 || off % 4 + size > 4))
809 		return -EOPNOTSUPP;
810 
811 	idx = off / 4;
812 
813 	/* Move the entire word */
814 	if (size == 4) {
815 		wrp_mov(nfp_prog, reg_both(dst),
816 			should_inc ? reg_lm_inc(3) : reg_lm(lm3 ? 3 : 0, idx));
817 		return 0;
818 	}
819 
820 	if (WARN_ON_ONCE(lm3 && idx > RE_REG_LM_IDX_MAX))
821 		return -EOPNOTSUPP;
822 
823 	src_byte = off % 4;
824 
825 	mask = (1 << size) - 1;
826 	mask <<= dst_byte;
827 
828 	if (WARN_ON_ONCE(mask > 0xf))
829 		return -EOPNOTSUPP;
830 
831 	shf = abs(src_byte - dst_byte) * 8;
832 	if (src_byte == dst_byte) {
833 		sc = SHF_SC_NONE;
834 	} else if (src_byte < dst_byte) {
835 		shf = 32 - shf;
836 		sc = SHF_SC_L_SHF;
837 	} else {
838 		sc = SHF_SC_R_SHF;
839 	}
840 
841 	/* ld_field can address fewer indexes, if offset too large do RMW.
842 	 * Because we RMV twice we waste 2 cycles on unaligned 8 byte writes.
843 	 */
844 	if (idx <= RE_REG_LM_IDX_MAX) {
845 		reg = reg_lm(lm3 ? 3 : 0, idx);
846 	} else {
847 		reg = imm_a(nfp_prog);
848 		/* If it's not the first part of the load and we start a new GPR
849 		 * that means we are loading a second part of the LMEM word into
850 		 * a new GPR.  IOW we've already looked that LMEM word and
851 		 * therefore it has been loaded into imm_a().
852 		 */
853 		if (first || !new_gpr)
854 			wrp_mov(nfp_prog, reg, reg_lm(0, idx));
855 	}
856 
857 	emit_ld_field_any(nfp_prog, reg_both(dst), mask, reg, sc, shf, new_gpr);
858 
859 	if (should_inc)
860 		wrp_mov(nfp_prog, reg_none(), reg_lm_inc(3));
861 
862 	return 0;
863 }
864 
865 static int
866 wrp_lmem_store(struct nfp_prog *nfp_prog, u8 src, u8 src_byte, s32 off,
867 	       unsigned int size, bool first, bool new_gpr, bool last, bool lm3,
868 	       bool needs_inc)
869 {
870 	bool should_inc = needs_inc && new_gpr && !last;
871 	u32 idx, dst_byte;
872 	enum shf_sc sc;
873 	swreg reg;
874 	int shf;
875 	u8 mask;
876 
877 	if (WARN_ON_ONCE(src_byte + size > 4 || off % 4 + size > 4))
878 		return -EOPNOTSUPP;
879 
880 	idx = off / 4;
881 
882 	/* Move the entire word */
883 	if (size == 4) {
884 		wrp_mov(nfp_prog,
885 			should_inc ? reg_lm_inc(3) : reg_lm(lm3 ? 3 : 0, idx),
886 			reg_b(src));
887 		return 0;
888 	}
889 
890 	if (WARN_ON_ONCE(lm3 && idx > RE_REG_LM_IDX_MAX))
891 		return -EOPNOTSUPP;
892 
893 	dst_byte = off % 4;
894 
895 	mask = (1 << size) - 1;
896 	mask <<= dst_byte;
897 
898 	if (WARN_ON_ONCE(mask > 0xf))
899 		return -EOPNOTSUPP;
900 
901 	shf = abs(src_byte - dst_byte) * 8;
902 	if (src_byte == dst_byte) {
903 		sc = SHF_SC_NONE;
904 	} else if (src_byte < dst_byte) {
905 		shf = 32 - shf;
906 		sc = SHF_SC_L_SHF;
907 	} else {
908 		sc = SHF_SC_R_SHF;
909 	}
910 
911 	/* ld_field can address fewer indexes, if offset too large do RMW.
912 	 * Because we RMV twice we waste 2 cycles on unaligned 8 byte writes.
913 	 */
914 	if (idx <= RE_REG_LM_IDX_MAX) {
915 		reg = reg_lm(lm3 ? 3 : 0, idx);
916 	} else {
917 		reg = imm_a(nfp_prog);
918 		/* Only first and last LMEM locations are going to need RMW,
919 		 * the middle location will be overwritten fully.
920 		 */
921 		if (first || last)
922 			wrp_mov(nfp_prog, reg, reg_lm(0, idx));
923 	}
924 
925 	emit_ld_field(nfp_prog, reg, mask, reg_b(src), sc, shf);
926 
927 	if (new_gpr || last) {
928 		if (idx > RE_REG_LM_IDX_MAX)
929 			wrp_mov(nfp_prog, reg_lm(0, idx), reg);
930 		if (should_inc)
931 			wrp_mov(nfp_prog, reg_none(), reg_lm_inc(3));
932 	}
933 
934 	return 0;
935 }
936 
937 static int
938 mem_op_stack(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
939 	     unsigned int size, unsigned int ptr_off, u8 gpr, u8 ptr_gpr,
940 	     bool clr_gpr, lmem_step step)
941 {
942 	s32 off = nfp_prog->stack_depth + meta->insn.off + ptr_off;
943 	bool first = true, last;
944 	bool needs_inc = false;
945 	swreg stack_off_reg;
946 	u8 prev_gpr = 255;
947 	u32 gpr_byte = 0;
948 	bool lm3 = true;
949 	int ret;
950 
951 	if (meta->ptr_not_const) {
952 		/* Use of the last encountered ptr_off is OK, they all have
953 		 * the same alignment.  Depend on low bits of value being
954 		 * discarded when written to LMaddr register.
955 		 */
956 		stack_off_reg = ur_load_imm_any(nfp_prog, meta->insn.off,
957 						stack_imm(nfp_prog));
958 
959 		emit_alu(nfp_prog, imm_b(nfp_prog),
960 			 reg_a(ptr_gpr), ALU_OP_ADD, stack_off_reg);
961 
962 		needs_inc = true;
963 	} else if (off + size <= 64) {
964 		/* We can reach bottom 64B with LMaddr0 */
965 		lm3 = false;
966 	} else if (round_down(off, 32) == round_down(off + size - 1, 32)) {
967 		/* We have to set up a new pointer.  If we know the offset
968 		 * and the entire access falls into a single 32 byte aligned
969 		 * window we won't have to increment the LM pointer.
970 		 * The 32 byte alignment is imporant because offset is ORed in
971 		 * not added when doing *l$indexN[off].
972 		 */
973 		stack_off_reg = ur_load_imm_any(nfp_prog, round_down(off, 32),
974 						stack_imm(nfp_prog));
975 		emit_alu(nfp_prog, imm_b(nfp_prog),
976 			 stack_reg(nfp_prog), ALU_OP_ADD, stack_off_reg);
977 
978 		off %= 32;
979 	} else {
980 		stack_off_reg = ur_load_imm_any(nfp_prog, round_down(off, 4),
981 						stack_imm(nfp_prog));
982 
983 		emit_alu(nfp_prog, imm_b(nfp_prog),
984 			 stack_reg(nfp_prog), ALU_OP_ADD, stack_off_reg);
985 
986 		needs_inc = true;
987 	}
988 	if (lm3) {
989 		emit_csr_wr(nfp_prog, imm_b(nfp_prog), NFP_CSR_ACT_LM_ADDR3);
990 		/* For size < 4 one slot will be filled by zeroing of upper. */
991 		wrp_nops(nfp_prog, clr_gpr && size < 8 ? 2 : 3);
992 	}
993 
994 	if (clr_gpr && size < 8)
995 		wrp_immed(nfp_prog, reg_both(gpr + 1), 0);
996 
997 	while (size) {
998 		u32 slice_end;
999 		u8 slice_size;
1000 
1001 		slice_size = min(size, 4 - gpr_byte);
1002 		slice_end = min(off + slice_size, round_up(off + 1, 4));
1003 		slice_size = slice_end - off;
1004 
1005 		last = slice_size == size;
1006 
1007 		if (needs_inc)
1008 			off %= 4;
1009 
1010 		ret = step(nfp_prog, gpr, gpr_byte, off, slice_size,
1011 			   first, gpr != prev_gpr, last, lm3, needs_inc);
1012 		if (ret)
1013 			return ret;
1014 
1015 		prev_gpr = gpr;
1016 		first = false;
1017 
1018 		gpr_byte += slice_size;
1019 		if (gpr_byte >= 4) {
1020 			gpr_byte -= 4;
1021 			gpr++;
1022 		}
1023 
1024 		size -= slice_size;
1025 		off += slice_size;
1026 	}
1027 
1028 	return 0;
1029 }
1030 
1031 static void
1032 wrp_alu_imm(struct nfp_prog *nfp_prog, u8 dst, enum alu_op alu_op, u32 imm)
1033 {
1034 	swreg tmp_reg;
1035 
1036 	if (alu_op == ALU_OP_AND) {
1037 		if (!imm)
1038 			wrp_immed(nfp_prog, reg_both(dst), 0);
1039 		if (!imm || !~imm)
1040 			return;
1041 	}
1042 	if (alu_op == ALU_OP_OR) {
1043 		if (!~imm)
1044 			wrp_immed(nfp_prog, reg_both(dst), ~0U);
1045 		if (!imm || !~imm)
1046 			return;
1047 	}
1048 	if (alu_op == ALU_OP_XOR) {
1049 		if (!~imm)
1050 			emit_alu(nfp_prog, reg_both(dst), reg_none(),
1051 				 ALU_OP_NOT, reg_b(dst));
1052 		if (!imm || !~imm)
1053 			return;
1054 	}
1055 
1056 	tmp_reg = ur_load_imm_any(nfp_prog, imm, imm_b(nfp_prog));
1057 	emit_alu(nfp_prog, reg_both(dst), reg_a(dst), alu_op, tmp_reg);
1058 }
1059 
1060 static int
1061 wrp_alu64_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
1062 	      enum alu_op alu_op, bool skip)
1063 {
1064 	const struct bpf_insn *insn = &meta->insn;
1065 	u64 imm = insn->imm; /* sign extend */
1066 
1067 	if (skip) {
1068 		meta->skip = true;
1069 		return 0;
1070 	}
1071 
1072 	wrp_alu_imm(nfp_prog, insn->dst_reg * 2, alu_op, imm & ~0U);
1073 	wrp_alu_imm(nfp_prog, insn->dst_reg * 2 + 1, alu_op, imm >> 32);
1074 
1075 	return 0;
1076 }
1077 
1078 static int
1079 wrp_alu64_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
1080 	      enum alu_op alu_op)
1081 {
1082 	u8 dst = meta->insn.dst_reg * 2, src = meta->insn.src_reg * 2;
1083 
1084 	emit_alu(nfp_prog, reg_both(dst), reg_a(dst), alu_op, reg_b(src));
1085 	emit_alu(nfp_prog, reg_both(dst + 1),
1086 		 reg_a(dst + 1), alu_op, reg_b(src + 1));
1087 
1088 	return 0;
1089 }
1090 
1091 static int
1092 wrp_alu32_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
1093 	      enum alu_op alu_op, bool skip)
1094 {
1095 	const struct bpf_insn *insn = &meta->insn;
1096 
1097 	if (skip) {
1098 		meta->skip = true;
1099 		return 0;
1100 	}
1101 
1102 	wrp_alu_imm(nfp_prog, insn->dst_reg * 2, alu_op, insn->imm);
1103 	wrp_immed(nfp_prog, reg_both(insn->dst_reg * 2 + 1), 0);
1104 
1105 	return 0;
1106 }
1107 
1108 static int
1109 wrp_alu32_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
1110 	      enum alu_op alu_op)
1111 {
1112 	u8 dst = meta->insn.dst_reg * 2, src = meta->insn.src_reg * 2;
1113 
1114 	emit_alu(nfp_prog, reg_both(dst), reg_a(dst), alu_op, reg_b(src));
1115 	wrp_immed(nfp_prog, reg_both(meta->insn.dst_reg * 2 + 1), 0);
1116 
1117 	return 0;
1118 }
1119 
1120 static void
1121 wrp_test_reg_one(struct nfp_prog *nfp_prog, u8 dst, enum alu_op alu_op, u8 src,
1122 		 enum br_mask br_mask, u16 off)
1123 {
1124 	emit_alu(nfp_prog, reg_none(), reg_a(dst), alu_op, reg_b(src));
1125 	emit_br(nfp_prog, br_mask, off, 0);
1126 }
1127 
1128 static int
1129 wrp_test_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
1130 	     enum alu_op alu_op, enum br_mask br_mask)
1131 {
1132 	const struct bpf_insn *insn = &meta->insn;
1133 
1134 	wrp_test_reg_one(nfp_prog, insn->dst_reg * 2, alu_op,
1135 			 insn->src_reg * 2, br_mask, insn->off);
1136 	wrp_test_reg_one(nfp_prog, insn->dst_reg * 2 + 1, alu_op,
1137 			 insn->src_reg * 2 + 1, br_mask, insn->off);
1138 
1139 	return 0;
1140 }
1141 
1142 static int
1143 wrp_cmp_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
1144 	    enum br_mask br_mask, bool swap)
1145 {
1146 	const struct bpf_insn *insn = &meta->insn;
1147 	u64 imm = insn->imm; /* sign extend */
1148 	u8 reg = insn->dst_reg * 2;
1149 	swreg tmp_reg;
1150 
1151 	tmp_reg = ur_load_imm_any(nfp_prog, imm & ~0U, imm_b(nfp_prog));
1152 	if (!swap)
1153 		emit_alu(nfp_prog, reg_none(), reg_a(reg), ALU_OP_SUB, tmp_reg);
1154 	else
1155 		emit_alu(nfp_prog, reg_none(), tmp_reg, ALU_OP_SUB, reg_a(reg));
1156 
1157 	tmp_reg = ur_load_imm_any(nfp_prog, imm >> 32, imm_b(nfp_prog));
1158 	if (!swap)
1159 		emit_alu(nfp_prog, reg_none(),
1160 			 reg_a(reg + 1), ALU_OP_SUB_C, tmp_reg);
1161 	else
1162 		emit_alu(nfp_prog, reg_none(),
1163 			 tmp_reg, ALU_OP_SUB_C, reg_a(reg + 1));
1164 
1165 	emit_br(nfp_prog, br_mask, insn->off, 0);
1166 
1167 	return 0;
1168 }
1169 
1170 static int
1171 wrp_cmp_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
1172 	    enum br_mask br_mask, bool swap)
1173 {
1174 	const struct bpf_insn *insn = &meta->insn;
1175 	u8 areg, breg;
1176 
1177 	areg = insn->dst_reg * 2;
1178 	breg = insn->src_reg * 2;
1179 
1180 	if (swap) {
1181 		areg ^= breg;
1182 		breg ^= areg;
1183 		areg ^= breg;
1184 	}
1185 
1186 	emit_alu(nfp_prog, reg_none(), reg_a(areg), ALU_OP_SUB, reg_b(breg));
1187 	emit_alu(nfp_prog, reg_none(),
1188 		 reg_a(areg + 1), ALU_OP_SUB_C, reg_b(breg + 1));
1189 	emit_br(nfp_prog, br_mask, insn->off, 0);
1190 
1191 	return 0;
1192 }
1193 
1194 static void wrp_end32(struct nfp_prog *nfp_prog, swreg reg_in, u8 gpr_out)
1195 {
1196 	emit_ld_field(nfp_prog, reg_both(gpr_out), 0xf, reg_in,
1197 		      SHF_SC_R_ROT, 8);
1198 	emit_ld_field(nfp_prog, reg_both(gpr_out), 0x5, reg_a(gpr_out),
1199 		      SHF_SC_R_ROT, 16);
1200 }
1201 
1202 static int adjust_head(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1203 {
1204 	swreg tmp = imm_a(nfp_prog), tmp_len = imm_b(nfp_prog);
1205 	struct nfp_bpf_cap_adjust_head *adjust_head;
1206 	u32 ret_einval, end;
1207 
1208 	adjust_head = &nfp_prog->bpf->adjust_head;
1209 
1210 	/* Optimized version - 5 vs 14 cycles */
1211 	if (nfp_prog->adjust_head_location != UINT_MAX) {
1212 		if (WARN_ON_ONCE(nfp_prog->adjust_head_location != meta->n))
1213 			return -EINVAL;
1214 
1215 		emit_alu(nfp_prog, pptr_reg(nfp_prog),
1216 			 reg_a(2 * 2), ALU_OP_ADD, pptr_reg(nfp_prog));
1217 		emit_alu(nfp_prog, plen_reg(nfp_prog),
1218 			 plen_reg(nfp_prog), ALU_OP_SUB, reg_a(2 * 2));
1219 		emit_alu(nfp_prog, pv_len(nfp_prog),
1220 			 pv_len(nfp_prog), ALU_OP_SUB, reg_a(2 * 2));
1221 
1222 		wrp_immed(nfp_prog, reg_both(0), 0);
1223 		wrp_immed(nfp_prog, reg_both(1), 0);
1224 
1225 		/* TODO: when adjust head is guaranteed to succeed we can
1226 		 * also eliminate the following if (r0 == 0) branch.
1227 		 */
1228 
1229 		return 0;
1230 	}
1231 
1232 	ret_einval = nfp_prog_current_offset(nfp_prog) + 14;
1233 	end = ret_einval + 2;
1234 
1235 	/* We need to use a temp because offset is just a part of the pkt ptr */
1236 	emit_alu(nfp_prog, tmp,
1237 		 reg_a(2 * 2), ALU_OP_ADD_2B, pptr_reg(nfp_prog));
1238 
1239 	/* Validate result will fit within FW datapath constraints */
1240 	emit_alu(nfp_prog, reg_none(),
1241 		 tmp, ALU_OP_SUB, reg_imm(adjust_head->off_min));
1242 	emit_br(nfp_prog, BR_BLO, ret_einval, 0);
1243 	emit_alu(nfp_prog, reg_none(),
1244 		 reg_imm(adjust_head->off_max), ALU_OP_SUB, tmp);
1245 	emit_br(nfp_prog, BR_BLO, ret_einval, 0);
1246 
1247 	/* Validate the length is at least ETH_HLEN */
1248 	emit_alu(nfp_prog, tmp_len,
1249 		 plen_reg(nfp_prog), ALU_OP_SUB, reg_a(2 * 2));
1250 	emit_alu(nfp_prog, reg_none(),
1251 		 tmp_len, ALU_OP_SUB, reg_imm(ETH_HLEN));
1252 	emit_br(nfp_prog, BR_BMI, ret_einval, 0);
1253 
1254 	/* Load the ret code */
1255 	wrp_immed(nfp_prog, reg_both(0), 0);
1256 	wrp_immed(nfp_prog, reg_both(1), 0);
1257 
1258 	/* Modify the packet metadata */
1259 	emit_ld_field(nfp_prog, pptr_reg(nfp_prog), 0x3, tmp, SHF_SC_NONE, 0);
1260 
1261 	/* Skip over the -EINVAL ret code (defer 2) */
1262 	emit_br(nfp_prog, BR_UNC, end, 2);
1263 
1264 	emit_alu(nfp_prog, plen_reg(nfp_prog),
1265 		 plen_reg(nfp_prog), ALU_OP_SUB, reg_a(2 * 2));
1266 	emit_alu(nfp_prog, pv_len(nfp_prog),
1267 		 pv_len(nfp_prog), ALU_OP_SUB, reg_a(2 * 2));
1268 
1269 	/* return -EINVAL target */
1270 	if (!nfp_prog_confirm_current_offset(nfp_prog, ret_einval))
1271 		return -EINVAL;
1272 
1273 	wrp_immed(nfp_prog, reg_both(0), -22);
1274 	wrp_immed(nfp_prog, reg_both(1), ~0);
1275 
1276 	if (!nfp_prog_confirm_current_offset(nfp_prog, end))
1277 		return -EINVAL;
1278 
1279 	return 0;
1280 }
1281 
1282 /* --- Callbacks --- */
1283 static int mov_reg64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1284 {
1285 	const struct bpf_insn *insn = &meta->insn;
1286 	u8 dst = insn->dst_reg * 2;
1287 	u8 src = insn->src_reg * 2;
1288 
1289 	if (insn->src_reg == BPF_REG_10) {
1290 		swreg stack_depth_reg;
1291 
1292 		stack_depth_reg = ur_load_imm_any(nfp_prog,
1293 						  nfp_prog->stack_depth,
1294 						  stack_imm(nfp_prog));
1295 		emit_alu(nfp_prog, reg_both(dst),
1296 			 stack_reg(nfp_prog), ALU_OP_ADD, stack_depth_reg);
1297 		wrp_immed(nfp_prog, reg_both(dst + 1), 0);
1298 	} else {
1299 		wrp_reg_mov(nfp_prog, dst, src);
1300 		wrp_reg_mov(nfp_prog, dst + 1, src + 1);
1301 	}
1302 
1303 	return 0;
1304 }
1305 
1306 static int mov_imm64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1307 {
1308 	u64 imm = meta->insn.imm; /* sign extend */
1309 
1310 	wrp_immed(nfp_prog, reg_both(meta->insn.dst_reg * 2), imm & ~0U);
1311 	wrp_immed(nfp_prog, reg_both(meta->insn.dst_reg * 2 + 1), imm >> 32);
1312 
1313 	return 0;
1314 }
1315 
1316 static int xor_reg64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1317 {
1318 	return wrp_alu64_reg(nfp_prog, meta, ALU_OP_XOR);
1319 }
1320 
1321 static int xor_imm64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1322 {
1323 	return wrp_alu64_imm(nfp_prog, meta, ALU_OP_XOR, !meta->insn.imm);
1324 }
1325 
1326 static int and_reg64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1327 {
1328 	return wrp_alu64_reg(nfp_prog, meta, ALU_OP_AND);
1329 }
1330 
1331 static int and_imm64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1332 {
1333 	return wrp_alu64_imm(nfp_prog, meta, ALU_OP_AND, !~meta->insn.imm);
1334 }
1335 
1336 static int or_reg64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1337 {
1338 	return wrp_alu64_reg(nfp_prog, meta, ALU_OP_OR);
1339 }
1340 
1341 static int or_imm64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1342 {
1343 	return wrp_alu64_imm(nfp_prog, meta, ALU_OP_OR, !meta->insn.imm);
1344 }
1345 
1346 static int add_reg64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1347 {
1348 	const struct bpf_insn *insn = &meta->insn;
1349 
1350 	emit_alu(nfp_prog, reg_both(insn->dst_reg * 2),
1351 		 reg_a(insn->dst_reg * 2), ALU_OP_ADD,
1352 		 reg_b(insn->src_reg * 2));
1353 	emit_alu(nfp_prog, reg_both(insn->dst_reg * 2 + 1),
1354 		 reg_a(insn->dst_reg * 2 + 1), ALU_OP_ADD_C,
1355 		 reg_b(insn->src_reg * 2 + 1));
1356 
1357 	return 0;
1358 }
1359 
1360 static int add_imm64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1361 {
1362 	const struct bpf_insn *insn = &meta->insn;
1363 	u64 imm = insn->imm; /* sign extend */
1364 
1365 	wrp_alu_imm(nfp_prog, insn->dst_reg * 2, ALU_OP_ADD, imm & ~0U);
1366 	wrp_alu_imm(nfp_prog, insn->dst_reg * 2 + 1, ALU_OP_ADD_C, imm >> 32);
1367 
1368 	return 0;
1369 }
1370 
1371 static int sub_reg64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1372 {
1373 	const struct bpf_insn *insn = &meta->insn;
1374 
1375 	emit_alu(nfp_prog, reg_both(insn->dst_reg * 2),
1376 		 reg_a(insn->dst_reg * 2), ALU_OP_SUB,
1377 		 reg_b(insn->src_reg * 2));
1378 	emit_alu(nfp_prog, reg_both(insn->dst_reg * 2 + 1),
1379 		 reg_a(insn->dst_reg * 2 + 1), ALU_OP_SUB_C,
1380 		 reg_b(insn->src_reg * 2 + 1));
1381 
1382 	return 0;
1383 }
1384 
1385 static int sub_imm64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1386 {
1387 	const struct bpf_insn *insn = &meta->insn;
1388 	u64 imm = insn->imm; /* sign extend */
1389 
1390 	wrp_alu_imm(nfp_prog, insn->dst_reg * 2, ALU_OP_SUB, imm & ~0U);
1391 	wrp_alu_imm(nfp_prog, insn->dst_reg * 2 + 1, ALU_OP_SUB_C, imm >> 32);
1392 
1393 	return 0;
1394 }
1395 
1396 static int neg_reg64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1397 {
1398 	const struct bpf_insn *insn = &meta->insn;
1399 
1400 	emit_alu(nfp_prog, reg_both(insn->dst_reg * 2), reg_imm(0),
1401 		 ALU_OP_SUB, reg_b(insn->dst_reg * 2));
1402 	emit_alu(nfp_prog, reg_both(insn->dst_reg * 2 + 1), reg_imm(0),
1403 		 ALU_OP_SUB_C, reg_b(insn->dst_reg * 2 + 1));
1404 
1405 	return 0;
1406 }
1407 
1408 static int shl_imm64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1409 {
1410 	const struct bpf_insn *insn = &meta->insn;
1411 	u8 dst = insn->dst_reg * 2;
1412 
1413 	if (insn->imm < 32) {
1414 		emit_shf(nfp_prog, reg_both(dst + 1),
1415 			 reg_a(dst + 1), SHF_OP_NONE, reg_b(dst),
1416 			 SHF_SC_R_DSHF, 32 - insn->imm);
1417 		emit_shf(nfp_prog, reg_both(dst),
1418 			 reg_none(), SHF_OP_NONE, reg_b(dst),
1419 			 SHF_SC_L_SHF, insn->imm);
1420 	} else if (insn->imm == 32) {
1421 		wrp_reg_mov(nfp_prog, dst + 1, dst);
1422 		wrp_immed(nfp_prog, reg_both(dst), 0);
1423 	} else if (insn->imm > 32) {
1424 		emit_shf(nfp_prog, reg_both(dst + 1),
1425 			 reg_none(), SHF_OP_NONE, reg_b(dst),
1426 			 SHF_SC_L_SHF, insn->imm - 32);
1427 		wrp_immed(nfp_prog, reg_both(dst), 0);
1428 	}
1429 
1430 	return 0;
1431 }
1432 
1433 static int shr_imm64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1434 {
1435 	const struct bpf_insn *insn = &meta->insn;
1436 	u8 dst = insn->dst_reg * 2;
1437 
1438 	if (insn->imm < 32) {
1439 		emit_shf(nfp_prog, reg_both(dst),
1440 			 reg_a(dst + 1), SHF_OP_NONE, reg_b(dst),
1441 			 SHF_SC_R_DSHF, insn->imm);
1442 		emit_shf(nfp_prog, reg_both(dst + 1),
1443 			 reg_none(), SHF_OP_NONE, reg_b(dst + 1),
1444 			 SHF_SC_R_SHF, insn->imm);
1445 	} else if (insn->imm == 32) {
1446 		wrp_reg_mov(nfp_prog, dst, dst + 1);
1447 		wrp_immed(nfp_prog, reg_both(dst + 1), 0);
1448 	} else if (insn->imm > 32) {
1449 		emit_shf(nfp_prog, reg_both(dst),
1450 			 reg_none(), SHF_OP_NONE, reg_b(dst + 1),
1451 			 SHF_SC_R_SHF, insn->imm - 32);
1452 		wrp_immed(nfp_prog, reg_both(dst + 1), 0);
1453 	}
1454 
1455 	return 0;
1456 }
1457 
1458 static int mov_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1459 {
1460 	const struct bpf_insn *insn = &meta->insn;
1461 
1462 	wrp_reg_mov(nfp_prog, insn->dst_reg * 2,  insn->src_reg * 2);
1463 	wrp_immed(nfp_prog, reg_both(insn->dst_reg * 2 + 1), 0);
1464 
1465 	return 0;
1466 }
1467 
1468 static int mov_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1469 {
1470 	const struct bpf_insn *insn = &meta->insn;
1471 
1472 	wrp_immed(nfp_prog, reg_both(insn->dst_reg * 2), insn->imm);
1473 	wrp_immed(nfp_prog, reg_both(insn->dst_reg * 2 + 1), 0);
1474 
1475 	return 0;
1476 }
1477 
1478 static int xor_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1479 {
1480 	return wrp_alu32_reg(nfp_prog, meta, ALU_OP_XOR);
1481 }
1482 
1483 static int xor_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1484 {
1485 	return wrp_alu32_imm(nfp_prog, meta, ALU_OP_XOR, !~meta->insn.imm);
1486 }
1487 
1488 static int and_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1489 {
1490 	return wrp_alu32_reg(nfp_prog, meta, ALU_OP_AND);
1491 }
1492 
1493 static int and_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1494 {
1495 	return wrp_alu32_imm(nfp_prog, meta, ALU_OP_AND, !~meta->insn.imm);
1496 }
1497 
1498 static int or_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1499 {
1500 	return wrp_alu32_reg(nfp_prog, meta, ALU_OP_OR);
1501 }
1502 
1503 static int or_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1504 {
1505 	return wrp_alu32_imm(nfp_prog, meta, ALU_OP_OR, !meta->insn.imm);
1506 }
1507 
1508 static int add_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1509 {
1510 	return wrp_alu32_reg(nfp_prog, meta, ALU_OP_ADD);
1511 }
1512 
1513 static int add_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1514 {
1515 	return wrp_alu32_imm(nfp_prog, meta, ALU_OP_ADD, !meta->insn.imm);
1516 }
1517 
1518 static int sub_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1519 {
1520 	return wrp_alu32_reg(nfp_prog, meta, ALU_OP_SUB);
1521 }
1522 
1523 static int sub_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1524 {
1525 	return wrp_alu32_imm(nfp_prog, meta, ALU_OP_SUB, !meta->insn.imm);
1526 }
1527 
1528 static int neg_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1529 {
1530 	u8 dst = meta->insn.dst_reg * 2;
1531 
1532 	emit_alu(nfp_prog, reg_both(dst), reg_imm(0), ALU_OP_SUB, reg_b(dst));
1533 	wrp_immed(nfp_prog, reg_both(meta->insn.dst_reg * 2 + 1), 0);
1534 
1535 	return 0;
1536 }
1537 
1538 static int shl_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1539 {
1540 	const struct bpf_insn *insn = &meta->insn;
1541 
1542 	if (!insn->imm)
1543 		return 1; /* TODO: zero shift means indirect */
1544 
1545 	emit_shf(nfp_prog, reg_both(insn->dst_reg * 2),
1546 		 reg_none(), SHF_OP_NONE, reg_b(insn->dst_reg * 2),
1547 		 SHF_SC_L_SHF, insn->imm);
1548 	wrp_immed(nfp_prog, reg_both(insn->dst_reg * 2 + 1), 0);
1549 
1550 	return 0;
1551 }
1552 
1553 static int end_reg32(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1554 {
1555 	const struct bpf_insn *insn = &meta->insn;
1556 	u8 gpr = insn->dst_reg * 2;
1557 
1558 	switch (insn->imm) {
1559 	case 16:
1560 		emit_ld_field(nfp_prog, reg_both(gpr), 0x9, reg_b(gpr),
1561 			      SHF_SC_R_ROT, 8);
1562 		emit_ld_field(nfp_prog, reg_both(gpr), 0xe, reg_a(gpr),
1563 			      SHF_SC_R_SHF, 16);
1564 
1565 		wrp_immed(nfp_prog, reg_both(gpr + 1), 0);
1566 		break;
1567 	case 32:
1568 		wrp_end32(nfp_prog, reg_a(gpr), gpr);
1569 		wrp_immed(nfp_prog, reg_both(gpr + 1), 0);
1570 		break;
1571 	case 64:
1572 		wrp_mov(nfp_prog, imm_a(nfp_prog), reg_b(gpr + 1));
1573 
1574 		wrp_end32(nfp_prog, reg_a(gpr), gpr + 1);
1575 		wrp_end32(nfp_prog, imm_a(nfp_prog), gpr);
1576 		break;
1577 	}
1578 
1579 	return 0;
1580 }
1581 
1582 static int imm_ld8_part2(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1583 {
1584 	struct nfp_insn_meta *prev = nfp_meta_prev(meta);
1585 	u32 imm_lo, imm_hi;
1586 	u8 dst;
1587 
1588 	dst = prev->insn.dst_reg * 2;
1589 	imm_lo = prev->insn.imm;
1590 	imm_hi = meta->insn.imm;
1591 
1592 	wrp_immed(nfp_prog, reg_both(dst), imm_lo);
1593 
1594 	/* mov is always 1 insn, load imm may be two, so try to use mov */
1595 	if (imm_hi == imm_lo)
1596 		wrp_mov(nfp_prog, reg_both(dst + 1), reg_a(dst));
1597 	else
1598 		wrp_immed(nfp_prog, reg_both(dst + 1), imm_hi);
1599 
1600 	return 0;
1601 }
1602 
1603 static int imm_ld8(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1604 {
1605 	meta->double_cb = imm_ld8_part2;
1606 	return 0;
1607 }
1608 
1609 static int data_ld1(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1610 {
1611 	return construct_data_ld(nfp_prog, meta->insn.imm, 1);
1612 }
1613 
1614 static int data_ld2(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1615 {
1616 	return construct_data_ld(nfp_prog, meta->insn.imm, 2);
1617 }
1618 
1619 static int data_ld4(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1620 {
1621 	return construct_data_ld(nfp_prog, meta->insn.imm, 4);
1622 }
1623 
1624 static int data_ind_ld1(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1625 {
1626 	return construct_data_ind_ld(nfp_prog, meta->insn.imm,
1627 				     meta->insn.src_reg * 2, 1);
1628 }
1629 
1630 static int data_ind_ld2(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1631 {
1632 	return construct_data_ind_ld(nfp_prog, meta->insn.imm,
1633 				     meta->insn.src_reg * 2, 2);
1634 }
1635 
1636 static int data_ind_ld4(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1637 {
1638 	return construct_data_ind_ld(nfp_prog, meta->insn.imm,
1639 				     meta->insn.src_reg * 2, 4);
1640 }
1641 
1642 static int
1643 mem_ldx_stack(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
1644 	      unsigned int size, unsigned int ptr_off)
1645 {
1646 	return mem_op_stack(nfp_prog, meta, size, ptr_off,
1647 			    meta->insn.dst_reg * 2, meta->insn.src_reg * 2,
1648 			    true, wrp_lmem_load);
1649 }
1650 
1651 static int mem_ldx_skb(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
1652 		       u8 size)
1653 {
1654 	swreg dst = reg_both(meta->insn.dst_reg * 2);
1655 
1656 	switch (meta->insn.off) {
1657 	case offsetof(struct __sk_buff, len):
1658 		if (size != FIELD_SIZEOF(struct __sk_buff, len))
1659 			return -EOPNOTSUPP;
1660 		wrp_mov(nfp_prog, dst, plen_reg(nfp_prog));
1661 		break;
1662 	case offsetof(struct __sk_buff, data):
1663 		if (size != FIELD_SIZEOF(struct __sk_buff, data))
1664 			return -EOPNOTSUPP;
1665 		wrp_mov(nfp_prog, dst, pptr_reg(nfp_prog));
1666 		break;
1667 	case offsetof(struct __sk_buff, data_end):
1668 		if (size != FIELD_SIZEOF(struct __sk_buff, data_end))
1669 			return -EOPNOTSUPP;
1670 		emit_alu(nfp_prog, dst,
1671 			 plen_reg(nfp_prog), ALU_OP_ADD, pptr_reg(nfp_prog));
1672 		break;
1673 	default:
1674 		return -EOPNOTSUPP;
1675 	}
1676 
1677 	wrp_immed(nfp_prog, reg_both(meta->insn.dst_reg * 2 + 1), 0);
1678 
1679 	return 0;
1680 }
1681 
1682 static int mem_ldx_xdp(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
1683 		       u8 size)
1684 {
1685 	swreg dst = reg_both(meta->insn.dst_reg * 2);
1686 
1687 	switch (meta->insn.off) {
1688 	case offsetof(struct xdp_md, data):
1689 		if (size != FIELD_SIZEOF(struct xdp_md, data))
1690 			return -EOPNOTSUPP;
1691 		wrp_mov(nfp_prog, dst, pptr_reg(nfp_prog));
1692 		break;
1693 	case offsetof(struct xdp_md, data_end):
1694 		if (size != FIELD_SIZEOF(struct xdp_md, data_end))
1695 			return -EOPNOTSUPP;
1696 		emit_alu(nfp_prog, dst,
1697 			 plen_reg(nfp_prog), ALU_OP_ADD, pptr_reg(nfp_prog));
1698 		break;
1699 	default:
1700 		return -EOPNOTSUPP;
1701 	}
1702 
1703 	wrp_immed(nfp_prog, reg_both(meta->insn.dst_reg * 2 + 1), 0);
1704 
1705 	return 0;
1706 }
1707 
1708 static int
1709 mem_ldx_data(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
1710 	     unsigned int size)
1711 {
1712 	swreg tmp_reg;
1713 
1714 	tmp_reg = re_load_imm_any(nfp_prog, meta->insn.off, imm_b(nfp_prog));
1715 
1716 	return data_ld_host_order(nfp_prog, meta->insn.src_reg * 2, tmp_reg,
1717 				  meta->insn.dst_reg * 2, size);
1718 }
1719 
1720 static int
1721 mem_ldx(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
1722 	unsigned int size)
1723 {
1724 	if (meta->ldst_gather_len)
1725 		return nfp_cpp_memcpy(nfp_prog, meta);
1726 
1727 	if (meta->ptr.type == PTR_TO_CTX) {
1728 		if (nfp_prog->type == BPF_PROG_TYPE_XDP)
1729 			return mem_ldx_xdp(nfp_prog, meta, size);
1730 		else
1731 			return mem_ldx_skb(nfp_prog, meta, size);
1732 	}
1733 
1734 	if (meta->ptr.type == PTR_TO_PACKET)
1735 		return mem_ldx_data(nfp_prog, meta, size);
1736 
1737 	if (meta->ptr.type == PTR_TO_STACK)
1738 		return mem_ldx_stack(nfp_prog, meta, size,
1739 				     meta->ptr.off + meta->ptr.var_off.value);
1740 
1741 	return -EOPNOTSUPP;
1742 }
1743 
1744 static int mem_ldx1(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1745 {
1746 	return mem_ldx(nfp_prog, meta, 1);
1747 }
1748 
1749 static int mem_ldx2(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1750 {
1751 	return mem_ldx(nfp_prog, meta, 2);
1752 }
1753 
1754 static int mem_ldx4(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1755 {
1756 	return mem_ldx(nfp_prog, meta, 4);
1757 }
1758 
1759 static int mem_ldx8(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1760 {
1761 	return mem_ldx(nfp_prog, meta, 8);
1762 }
1763 
1764 static int
1765 mem_st_data(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
1766 	    unsigned int size)
1767 {
1768 	u64 imm = meta->insn.imm; /* sign extend */
1769 	swreg off_reg;
1770 
1771 	off_reg = re_load_imm_any(nfp_prog, meta->insn.off, imm_b(nfp_prog));
1772 
1773 	return data_st_host_order(nfp_prog, meta->insn.dst_reg * 2, off_reg,
1774 				  imm, size);
1775 }
1776 
1777 static int mem_st(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
1778 		  unsigned int size)
1779 {
1780 	if (meta->ptr.type == PTR_TO_PACKET)
1781 		return mem_st_data(nfp_prog, meta, size);
1782 
1783 	return -EOPNOTSUPP;
1784 }
1785 
1786 static int mem_st1(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1787 {
1788 	return mem_st(nfp_prog, meta, 1);
1789 }
1790 
1791 static int mem_st2(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1792 {
1793 	return mem_st(nfp_prog, meta, 2);
1794 }
1795 
1796 static int mem_st4(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1797 {
1798 	return mem_st(nfp_prog, meta, 4);
1799 }
1800 
1801 static int mem_st8(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1802 {
1803 	return mem_st(nfp_prog, meta, 8);
1804 }
1805 
1806 static int
1807 mem_stx_data(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
1808 	     unsigned int size)
1809 {
1810 	swreg off_reg;
1811 
1812 	off_reg = re_load_imm_any(nfp_prog, meta->insn.off, imm_b(nfp_prog));
1813 
1814 	return data_stx_host_order(nfp_prog, meta->insn.dst_reg * 2, off_reg,
1815 				   meta->insn.src_reg * 2, size);
1816 }
1817 
1818 static int
1819 mem_stx_stack(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
1820 	      unsigned int size, unsigned int ptr_off)
1821 {
1822 	return mem_op_stack(nfp_prog, meta, size, ptr_off,
1823 			    meta->insn.src_reg * 2, meta->insn.dst_reg * 2,
1824 			    false, wrp_lmem_store);
1825 }
1826 
1827 static int
1828 mem_stx(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
1829 	unsigned int size)
1830 {
1831 	if (meta->ptr.type == PTR_TO_PACKET)
1832 		return mem_stx_data(nfp_prog, meta, size);
1833 
1834 	if (meta->ptr.type == PTR_TO_STACK)
1835 		return mem_stx_stack(nfp_prog, meta, size,
1836 				     meta->ptr.off + meta->ptr.var_off.value);
1837 
1838 	return -EOPNOTSUPP;
1839 }
1840 
1841 static int mem_stx1(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1842 {
1843 	return mem_stx(nfp_prog, meta, 1);
1844 }
1845 
1846 static int mem_stx2(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1847 {
1848 	return mem_stx(nfp_prog, meta, 2);
1849 }
1850 
1851 static int mem_stx4(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1852 {
1853 	return mem_stx(nfp_prog, meta, 4);
1854 }
1855 
1856 static int mem_stx8(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1857 {
1858 	return mem_stx(nfp_prog, meta, 8);
1859 }
1860 
1861 static int jump(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1862 {
1863 	emit_br(nfp_prog, BR_UNC, meta->insn.off, 0);
1864 
1865 	return 0;
1866 }
1867 
1868 static int jeq_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1869 {
1870 	const struct bpf_insn *insn = &meta->insn;
1871 	u64 imm = insn->imm; /* sign extend */
1872 	swreg or1, or2, tmp_reg;
1873 
1874 	or1 = reg_a(insn->dst_reg * 2);
1875 	or2 = reg_b(insn->dst_reg * 2 + 1);
1876 
1877 	if (imm & ~0U) {
1878 		tmp_reg = ur_load_imm_any(nfp_prog, imm & ~0U, imm_b(nfp_prog));
1879 		emit_alu(nfp_prog, imm_a(nfp_prog),
1880 			 reg_a(insn->dst_reg * 2), ALU_OP_XOR, tmp_reg);
1881 		or1 = imm_a(nfp_prog);
1882 	}
1883 
1884 	if (imm >> 32) {
1885 		tmp_reg = ur_load_imm_any(nfp_prog, imm >> 32, imm_b(nfp_prog));
1886 		emit_alu(nfp_prog, imm_b(nfp_prog),
1887 			 reg_a(insn->dst_reg * 2 + 1), ALU_OP_XOR, tmp_reg);
1888 		or2 = imm_b(nfp_prog);
1889 	}
1890 
1891 	emit_alu(nfp_prog, reg_none(), or1, ALU_OP_OR, or2);
1892 	emit_br(nfp_prog, BR_BEQ, insn->off, 0);
1893 
1894 	return 0;
1895 }
1896 
1897 static int jgt_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1898 {
1899 	return wrp_cmp_imm(nfp_prog, meta, BR_BLO, true);
1900 }
1901 
1902 static int jge_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1903 {
1904 	return wrp_cmp_imm(nfp_prog, meta, BR_BHS, false);
1905 }
1906 
1907 static int jlt_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1908 {
1909 	return wrp_cmp_imm(nfp_prog, meta, BR_BLO, false);
1910 }
1911 
1912 static int jle_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1913 {
1914 	return wrp_cmp_imm(nfp_prog, meta, BR_BHS, true);
1915 }
1916 
1917 static int jset_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1918 {
1919 	const struct bpf_insn *insn = &meta->insn;
1920 	u64 imm = insn->imm; /* sign extend */
1921 	swreg tmp_reg;
1922 
1923 	if (!imm) {
1924 		meta->skip = true;
1925 		return 0;
1926 	}
1927 
1928 	if (imm & ~0U) {
1929 		tmp_reg = ur_load_imm_any(nfp_prog, imm & ~0U, imm_b(nfp_prog));
1930 		emit_alu(nfp_prog, reg_none(),
1931 			 reg_a(insn->dst_reg * 2), ALU_OP_AND, tmp_reg);
1932 		emit_br(nfp_prog, BR_BNE, insn->off, 0);
1933 	}
1934 
1935 	if (imm >> 32) {
1936 		tmp_reg = ur_load_imm_any(nfp_prog, imm >> 32, imm_b(nfp_prog));
1937 		emit_alu(nfp_prog, reg_none(),
1938 			 reg_a(insn->dst_reg * 2 + 1), ALU_OP_AND, tmp_reg);
1939 		emit_br(nfp_prog, BR_BNE, insn->off, 0);
1940 	}
1941 
1942 	return 0;
1943 }
1944 
1945 static int jne_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1946 {
1947 	const struct bpf_insn *insn = &meta->insn;
1948 	u64 imm = insn->imm; /* sign extend */
1949 	swreg tmp_reg;
1950 
1951 	if (!imm) {
1952 		emit_alu(nfp_prog, reg_none(), reg_a(insn->dst_reg * 2),
1953 			 ALU_OP_OR, reg_b(insn->dst_reg * 2 + 1));
1954 		emit_br(nfp_prog, BR_BNE, insn->off, 0);
1955 		return 0;
1956 	}
1957 
1958 	tmp_reg = ur_load_imm_any(nfp_prog, imm & ~0U, imm_b(nfp_prog));
1959 	emit_alu(nfp_prog, reg_none(),
1960 		 reg_a(insn->dst_reg * 2), ALU_OP_XOR, tmp_reg);
1961 	emit_br(nfp_prog, BR_BNE, insn->off, 0);
1962 
1963 	tmp_reg = ur_load_imm_any(nfp_prog, imm >> 32, imm_b(nfp_prog));
1964 	emit_alu(nfp_prog, reg_none(),
1965 		 reg_a(insn->dst_reg * 2 + 1), ALU_OP_XOR, tmp_reg);
1966 	emit_br(nfp_prog, BR_BNE, insn->off, 0);
1967 
1968 	return 0;
1969 }
1970 
1971 static int jeq_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1972 {
1973 	const struct bpf_insn *insn = &meta->insn;
1974 
1975 	emit_alu(nfp_prog, imm_a(nfp_prog), reg_a(insn->dst_reg * 2),
1976 		 ALU_OP_XOR, reg_b(insn->src_reg * 2));
1977 	emit_alu(nfp_prog, imm_b(nfp_prog), reg_a(insn->dst_reg * 2 + 1),
1978 		 ALU_OP_XOR, reg_b(insn->src_reg * 2 + 1));
1979 	emit_alu(nfp_prog, reg_none(),
1980 		 imm_a(nfp_prog), ALU_OP_OR, imm_b(nfp_prog));
1981 	emit_br(nfp_prog, BR_BEQ, insn->off, 0);
1982 
1983 	return 0;
1984 }
1985 
1986 static int jgt_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1987 {
1988 	return wrp_cmp_reg(nfp_prog, meta, BR_BLO, true);
1989 }
1990 
1991 static int jge_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1992 {
1993 	return wrp_cmp_reg(nfp_prog, meta, BR_BHS, false);
1994 }
1995 
1996 static int jlt_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1997 {
1998 	return wrp_cmp_reg(nfp_prog, meta, BR_BLO, false);
1999 }
2000 
2001 static int jle_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2002 {
2003 	return wrp_cmp_reg(nfp_prog, meta, BR_BHS, true);
2004 }
2005 
2006 static int jset_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2007 {
2008 	return wrp_test_reg(nfp_prog, meta, ALU_OP_AND, BR_BNE);
2009 }
2010 
2011 static int jne_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2012 {
2013 	return wrp_test_reg(nfp_prog, meta, ALU_OP_XOR, BR_BNE);
2014 }
2015 
2016 static int call(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2017 {
2018 	switch (meta->insn.imm) {
2019 	case BPF_FUNC_xdp_adjust_head:
2020 		return adjust_head(nfp_prog, meta);
2021 	default:
2022 		WARN_ONCE(1, "verifier allowed unsupported function\n");
2023 		return -EOPNOTSUPP;
2024 	}
2025 }
2026 
2027 static int goto_out(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2028 {
2029 	emit_br_relo(nfp_prog, BR_UNC, 0, 0, RELO_BR_GO_OUT);
2030 
2031 	return 0;
2032 }
2033 
2034 static const instr_cb_t instr_cb[256] = {
2035 	[BPF_ALU64 | BPF_MOV | BPF_X] =	mov_reg64,
2036 	[BPF_ALU64 | BPF_MOV | BPF_K] =	mov_imm64,
2037 	[BPF_ALU64 | BPF_XOR | BPF_X] =	xor_reg64,
2038 	[BPF_ALU64 | BPF_XOR | BPF_K] =	xor_imm64,
2039 	[BPF_ALU64 | BPF_AND | BPF_X] =	and_reg64,
2040 	[BPF_ALU64 | BPF_AND | BPF_K] =	and_imm64,
2041 	[BPF_ALU64 | BPF_OR | BPF_X] =	or_reg64,
2042 	[BPF_ALU64 | BPF_OR | BPF_K] =	or_imm64,
2043 	[BPF_ALU64 | BPF_ADD | BPF_X] =	add_reg64,
2044 	[BPF_ALU64 | BPF_ADD | BPF_K] =	add_imm64,
2045 	[BPF_ALU64 | BPF_SUB | BPF_X] =	sub_reg64,
2046 	[BPF_ALU64 | BPF_SUB | BPF_K] =	sub_imm64,
2047 	[BPF_ALU64 | BPF_NEG] =		neg_reg64,
2048 	[BPF_ALU64 | BPF_LSH | BPF_K] =	shl_imm64,
2049 	[BPF_ALU64 | BPF_RSH | BPF_K] =	shr_imm64,
2050 	[BPF_ALU | BPF_MOV | BPF_X] =	mov_reg,
2051 	[BPF_ALU | BPF_MOV | BPF_K] =	mov_imm,
2052 	[BPF_ALU | BPF_XOR | BPF_X] =	xor_reg,
2053 	[BPF_ALU | BPF_XOR | BPF_K] =	xor_imm,
2054 	[BPF_ALU | BPF_AND | BPF_X] =	and_reg,
2055 	[BPF_ALU | BPF_AND | BPF_K] =	and_imm,
2056 	[BPF_ALU | BPF_OR | BPF_X] =	or_reg,
2057 	[BPF_ALU | BPF_OR | BPF_K] =	or_imm,
2058 	[BPF_ALU | BPF_ADD | BPF_X] =	add_reg,
2059 	[BPF_ALU | BPF_ADD | BPF_K] =	add_imm,
2060 	[BPF_ALU | BPF_SUB | BPF_X] =	sub_reg,
2061 	[BPF_ALU | BPF_SUB | BPF_K] =	sub_imm,
2062 	[BPF_ALU | BPF_NEG] =		neg_reg,
2063 	[BPF_ALU | BPF_LSH | BPF_K] =	shl_imm,
2064 	[BPF_ALU | BPF_END | BPF_X] =	end_reg32,
2065 	[BPF_LD | BPF_IMM | BPF_DW] =	imm_ld8,
2066 	[BPF_LD | BPF_ABS | BPF_B] =	data_ld1,
2067 	[BPF_LD | BPF_ABS | BPF_H] =	data_ld2,
2068 	[BPF_LD | BPF_ABS | BPF_W] =	data_ld4,
2069 	[BPF_LD | BPF_IND | BPF_B] =	data_ind_ld1,
2070 	[BPF_LD | BPF_IND | BPF_H] =	data_ind_ld2,
2071 	[BPF_LD | BPF_IND | BPF_W] =	data_ind_ld4,
2072 	[BPF_LDX | BPF_MEM | BPF_B] =	mem_ldx1,
2073 	[BPF_LDX | BPF_MEM | BPF_H] =	mem_ldx2,
2074 	[BPF_LDX | BPF_MEM | BPF_W] =	mem_ldx4,
2075 	[BPF_LDX | BPF_MEM | BPF_DW] =	mem_ldx8,
2076 	[BPF_STX | BPF_MEM | BPF_B] =	mem_stx1,
2077 	[BPF_STX | BPF_MEM | BPF_H] =	mem_stx2,
2078 	[BPF_STX | BPF_MEM | BPF_W] =	mem_stx4,
2079 	[BPF_STX | BPF_MEM | BPF_DW] =	mem_stx8,
2080 	[BPF_ST | BPF_MEM | BPF_B] =	mem_st1,
2081 	[BPF_ST | BPF_MEM | BPF_H] =	mem_st2,
2082 	[BPF_ST | BPF_MEM | BPF_W] =	mem_st4,
2083 	[BPF_ST | BPF_MEM | BPF_DW] =	mem_st8,
2084 	[BPF_JMP | BPF_JA | BPF_K] =	jump,
2085 	[BPF_JMP | BPF_JEQ | BPF_K] =	jeq_imm,
2086 	[BPF_JMP | BPF_JGT | BPF_K] =	jgt_imm,
2087 	[BPF_JMP | BPF_JGE | BPF_K] =	jge_imm,
2088 	[BPF_JMP | BPF_JLT | BPF_K] =	jlt_imm,
2089 	[BPF_JMP | BPF_JLE | BPF_K] =	jle_imm,
2090 	[BPF_JMP | BPF_JSET | BPF_K] =	jset_imm,
2091 	[BPF_JMP | BPF_JNE | BPF_K] =	jne_imm,
2092 	[BPF_JMP | BPF_JEQ | BPF_X] =	jeq_reg,
2093 	[BPF_JMP | BPF_JGT | BPF_X] =	jgt_reg,
2094 	[BPF_JMP | BPF_JGE | BPF_X] =	jge_reg,
2095 	[BPF_JMP | BPF_JLT | BPF_X] =	jlt_reg,
2096 	[BPF_JMP | BPF_JLE | BPF_X] =	jle_reg,
2097 	[BPF_JMP | BPF_JSET | BPF_X] =	jset_reg,
2098 	[BPF_JMP | BPF_JNE | BPF_X] =	jne_reg,
2099 	[BPF_JMP | BPF_CALL] =		call,
2100 	[BPF_JMP | BPF_EXIT] =		goto_out,
2101 };
2102 
2103 /* --- Assembler logic --- */
2104 static int nfp_fixup_branches(struct nfp_prog *nfp_prog)
2105 {
2106 	struct nfp_insn_meta *meta, *jmp_dst;
2107 	u32 idx, br_idx;
2108 
2109 	list_for_each_entry(meta, &nfp_prog->insns, l) {
2110 		if (meta->skip)
2111 			continue;
2112 		if (meta->insn.code == (BPF_JMP | BPF_CALL))
2113 			continue;
2114 		if (BPF_CLASS(meta->insn.code) != BPF_JMP)
2115 			continue;
2116 
2117 		if (list_is_last(&meta->l, &nfp_prog->insns))
2118 			br_idx = nfp_prog->last_bpf_off;
2119 		else
2120 			br_idx = list_next_entry(meta, l)->off - 1;
2121 
2122 		if (!nfp_is_br(nfp_prog->prog[br_idx])) {
2123 			pr_err("Fixup found block not ending in branch %d %02x %016llx!!\n",
2124 			       br_idx, meta->insn.code, nfp_prog->prog[br_idx]);
2125 			return -ELOOP;
2126 		}
2127 		/* Leave special branches for later */
2128 		if (FIELD_GET(OP_RELO_TYPE, nfp_prog->prog[br_idx]) !=
2129 		    RELO_BR_REL)
2130 			continue;
2131 
2132 		if (!meta->jmp_dst) {
2133 			pr_err("Non-exit jump doesn't have destination info recorded!!\n");
2134 			return -ELOOP;
2135 		}
2136 
2137 		jmp_dst = meta->jmp_dst;
2138 
2139 		if (jmp_dst->skip) {
2140 			pr_err("Branch landing on removed instruction!!\n");
2141 			return -ELOOP;
2142 		}
2143 
2144 		for (idx = meta->off; idx <= br_idx; idx++) {
2145 			if (!nfp_is_br(nfp_prog->prog[idx]))
2146 				continue;
2147 			br_set_offset(&nfp_prog->prog[idx], jmp_dst->off);
2148 		}
2149 	}
2150 
2151 	return 0;
2152 }
2153 
2154 static void nfp_intro(struct nfp_prog *nfp_prog)
2155 {
2156 	wrp_immed(nfp_prog, plen_reg(nfp_prog), GENMASK(13, 0));
2157 	emit_alu(nfp_prog, plen_reg(nfp_prog),
2158 		 plen_reg(nfp_prog), ALU_OP_AND, pv_len(nfp_prog));
2159 }
2160 
2161 static void nfp_outro_tc_da(struct nfp_prog *nfp_prog)
2162 {
2163 	/* TC direct-action mode:
2164 	 *   0,1   ok        NOT SUPPORTED[1]
2165 	 *   2   drop  0x22 -> drop,  count as stat1
2166 	 *   4,5 nuke  0x02 -> drop
2167 	 *   7  redir  0x44 -> redir, count as stat2
2168 	 *   * unspec  0x11 -> pass,  count as stat0
2169 	 *
2170 	 * [1] We can't support OK and RECLASSIFY because we can't tell TC
2171 	 *     the exact decision made.  We are forced to support UNSPEC
2172 	 *     to handle aborts so that's the only one we handle for passing
2173 	 *     packets up the stack.
2174 	 */
2175 	/* Target for aborts */
2176 	nfp_prog->tgt_abort = nfp_prog_current_offset(nfp_prog);
2177 
2178 	emit_br_relo(nfp_prog, BR_UNC, 0, 2, RELO_BR_NEXT_PKT);
2179 
2180 	wrp_mov(nfp_prog, reg_a(0), NFP_BPF_ABI_FLAGS);
2181 	emit_ld_field(nfp_prog, reg_a(0), 0xc, reg_imm(0x11), SHF_SC_L_SHF, 16);
2182 
2183 	/* Target for normal exits */
2184 	nfp_prog->tgt_out = nfp_prog_current_offset(nfp_prog);
2185 
2186 	/* if R0 > 7 jump to abort */
2187 	emit_alu(nfp_prog, reg_none(), reg_imm(7), ALU_OP_SUB, reg_b(0));
2188 	emit_br(nfp_prog, BR_BLO, nfp_prog->tgt_abort, 0);
2189 	wrp_mov(nfp_prog, reg_a(0), NFP_BPF_ABI_FLAGS);
2190 
2191 	wrp_immed(nfp_prog, reg_b(2), 0x41221211);
2192 	wrp_immed(nfp_prog, reg_b(3), 0x41001211);
2193 
2194 	emit_shf(nfp_prog, reg_a(1),
2195 		 reg_none(), SHF_OP_NONE, reg_b(0), SHF_SC_L_SHF, 2);
2196 
2197 	emit_alu(nfp_prog, reg_none(), reg_a(1), ALU_OP_OR, reg_imm(0));
2198 	emit_shf(nfp_prog, reg_a(2),
2199 		 reg_imm(0xf), SHF_OP_AND, reg_b(2), SHF_SC_R_SHF, 0);
2200 
2201 	emit_alu(nfp_prog, reg_none(), reg_a(1), ALU_OP_OR, reg_imm(0));
2202 	emit_shf(nfp_prog, reg_b(2),
2203 		 reg_imm(0xf), SHF_OP_AND, reg_b(3), SHF_SC_R_SHF, 0);
2204 
2205 	emit_br_relo(nfp_prog, BR_UNC, 0, 2, RELO_BR_NEXT_PKT);
2206 
2207 	emit_shf(nfp_prog, reg_b(2),
2208 		 reg_a(2), SHF_OP_OR, reg_b(2), SHF_SC_L_SHF, 4);
2209 	emit_ld_field(nfp_prog, reg_a(0), 0xc, reg_b(2), SHF_SC_L_SHF, 16);
2210 }
2211 
2212 static void nfp_outro_xdp(struct nfp_prog *nfp_prog)
2213 {
2214 	/* XDP return codes:
2215 	 *   0 aborted  0x82 -> drop,  count as stat3
2216 	 *   1    drop  0x22 -> drop,  count as stat1
2217 	 *   2    pass  0x11 -> pass,  count as stat0
2218 	 *   3      tx  0x44 -> redir, count as stat2
2219 	 *   * unknown  0x82 -> drop,  count as stat3
2220 	 */
2221 	/* Target for aborts */
2222 	nfp_prog->tgt_abort = nfp_prog_current_offset(nfp_prog);
2223 
2224 	emit_br_relo(nfp_prog, BR_UNC, 0, 2, RELO_BR_NEXT_PKT);
2225 
2226 	wrp_mov(nfp_prog, reg_a(0), NFP_BPF_ABI_FLAGS);
2227 	emit_ld_field(nfp_prog, reg_a(0), 0xc, reg_imm(0x82), SHF_SC_L_SHF, 16);
2228 
2229 	/* Target for normal exits */
2230 	nfp_prog->tgt_out = nfp_prog_current_offset(nfp_prog);
2231 
2232 	/* if R0 > 3 jump to abort */
2233 	emit_alu(nfp_prog, reg_none(), reg_imm(3), ALU_OP_SUB, reg_b(0));
2234 	emit_br(nfp_prog, BR_BLO, nfp_prog->tgt_abort, 0);
2235 
2236 	wrp_immed(nfp_prog, reg_b(2), 0x44112282);
2237 
2238 	emit_shf(nfp_prog, reg_a(1),
2239 		 reg_none(), SHF_OP_NONE, reg_b(0), SHF_SC_L_SHF, 3);
2240 
2241 	emit_alu(nfp_prog, reg_none(), reg_a(1), ALU_OP_OR, reg_imm(0));
2242 	emit_shf(nfp_prog, reg_b(2),
2243 		 reg_imm(0xff), SHF_OP_AND, reg_b(2), SHF_SC_R_SHF, 0);
2244 
2245 	emit_br_relo(nfp_prog, BR_UNC, 0, 2, RELO_BR_NEXT_PKT);
2246 
2247 	wrp_mov(nfp_prog, reg_a(0), NFP_BPF_ABI_FLAGS);
2248 	emit_ld_field(nfp_prog, reg_a(0), 0xc, reg_b(2), SHF_SC_L_SHF, 16);
2249 }
2250 
2251 static void nfp_outro(struct nfp_prog *nfp_prog)
2252 {
2253 	switch (nfp_prog->type) {
2254 	case BPF_PROG_TYPE_SCHED_CLS:
2255 		nfp_outro_tc_da(nfp_prog);
2256 		break;
2257 	case BPF_PROG_TYPE_XDP:
2258 		nfp_outro_xdp(nfp_prog);
2259 		break;
2260 	default:
2261 		WARN_ON(1);
2262 	}
2263 }
2264 
2265 static int nfp_translate(struct nfp_prog *nfp_prog)
2266 {
2267 	struct nfp_insn_meta *meta;
2268 	int err;
2269 
2270 	nfp_intro(nfp_prog);
2271 	if (nfp_prog->error)
2272 		return nfp_prog->error;
2273 
2274 	list_for_each_entry(meta, &nfp_prog->insns, l) {
2275 		instr_cb_t cb = instr_cb[meta->insn.code];
2276 
2277 		meta->off = nfp_prog_current_offset(nfp_prog);
2278 
2279 		if (meta->skip) {
2280 			nfp_prog->n_translated++;
2281 			continue;
2282 		}
2283 
2284 		if (nfp_meta_has_prev(nfp_prog, meta) &&
2285 		    nfp_meta_prev(meta)->double_cb)
2286 			cb = nfp_meta_prev(meta)->double_cb;
2287 		if (!cb)
2288 			return -ENOENT;
2289 		err = cb(nfp_prog, meta);
2290 		if (err)
2291 			return err;
2292 
2293 		nfp_prog->n_translated++;
2294 	}
2295 
2296 	nfp_prog->last_bpf_off = nfp_prog_current_offset(nfp_prog) - 1;
2297 
2298 	nfp_outro(nfp_prog);
2299 	if (nfp_prog->error)
2300 		return nfp_prog->error;
2301 
2302 	wrp_nops(nfp_prog, NFP_USTORE_PREFETCH_WINDOW);
2303 	if (nfp_prog->error)
2304 		return nfp_prog->error;
2305 
2306 	return nfp_fixup_branches(nfp_prog);
2307 }
2308 
2309 /* --- Optimizations --- */
2310 static void nfp_bpf_opt_reg_init(struct nfp_prog *nfp_prog)
2311 {
2312 	struct nfp_insn_meta *meta;
2313 
2314 	list_for_each_entry(meta, &nfp_prog->insns, l) {
2315 		struct bpf_insn insn = meta->insn;
2316 
2317 		/* Programs converted from cBPF start with register xoring */
2318 		if (insn.code == (BPF_ALU64 | BPF_XOR | BPF_X) &&
2319 		    insn.src_reg == insn.dst_reg)
2320 			continue;
2321 
2322 		/* Programs start with R6 = R1 but we ignore the skb pointer */
2323 		if (insn.code == (BPF_ALU64 | BPF_MOV | BPF_X) &&
2324 		    insn.src_reg == 1 && insn.dst_reg == 6)
2325 			meta->skip = true;
2326 
2327 		/* Return as soon as something doesn't match */
2328 		if (!meta->skip)
2329 			return;
2330 	}
2331 }
2332 
2333 /* Remove masking after load since our load guarantees this is not needed */
2334 static void nfp_bpf_opt_ld_mask(struct nfp_prog *nfp_prog)
2335 {
2336 	struct nfp_insn_meta *meta1, *meta2;
2337 	const s32 exp_mask[] = {
2338 		[BPF_B] = 0x000000ffU,
2339 		[BPF_H] = 0x0000ffffU,
2340 		[BPF_W] = 0xffffffffU,
2341 	};
2342 
2343 	nfp_for_each_insn_walk2(nfp_prog, meta1, meta2) {
2344 		struct bpf_insn insn, next;
2345 
2346 		insn = meta1->insn;
2347 		next = meta2->insn;
2348 
2349 		if (BPF_CLASS(insn.code) != BPF_LD)
2350 			continue;
2351 		if (BPF_MODE(insn.code) != BPF_ABS &&
2352 		    BPF_MODE(insn.code) != BPF_IND)
2353 			continue;
2354 
2355 		if (next.code != (BPF_ALU64 | BPF_AND | BPF_K))
2356 			continue;
2357 
2358 		if (!exp_mask[BPF_SIZE(insn.code)])
2359 			continue;
2360 		if (exp_mask[BPF_SIZE(insn.code)] != next.imm)
2361 			continue;
2362 
2363 		if (next.src_reg || next.dst_reg)
2364 			continue;
2365 
2366 		if (meta2->flags & FLAG_INSN_IS_JUMP_DST)
2367 			continue;
2368 
2369 		meta2->skip = true;
2370 	}
2371 }
2372 
2373 static void nfp_bpf_opt_ld_shift(struct nfp_prog *nfp_prog)
2374 {
2375 	struct nfp_insn_meta *meta1, *meta2, *meta3;
2376 
2377 	nfp_for_each_insn_walk3(nfp_prog, meta1, meta2, meta3) {
2378 		struct bpf_insn insn, next1, next2;
2379 
2380 		insn = meta1->insn;
2381 		next1 = meta2->insn;
2382 		next2 = meta3->insn;
2383 
2384 		if (BPF_CLASS(insn.code) != BPF_LD)
2385 			continue;
2386 		if (BPF_MODE(insn.code) != BPF_ABS &&
2387 		    BPF_MODE(insn.code) != BPF_IND)
2388 			continue;
2389 		if (BPF_SIZE(insn.code) != BPF_W)
2390 			continue;
2391 
2392 		if (!(next1.code == (BPF_LSH | BPF_K | BPF_ALU64) &&
2393 		      next2.code == (BPF_RSH | BPF_K | BPF_ALU64)) &&
2394 		    !(next1.code == (BPF_RSH | BPF_K | BPF_ALU64) &&
2395 		      next2.code == (BPF_LSH | BPF_K | BPF_ALU64)))
2396 			continue;
2397 
2398 		if (next1.src_reg || next1.dst_reg ||
2399 		    next2.src_reg || next2.dst_reg)
2400 			continue;
2401 
2402 		if (next1.imm != 0x20 || next2.imm != 0x20)
2403 			continue;
2404 
2405 		if (meta2->flags & FLAG_INSN_IS_JUMP_DST ||
2406 		    meta3->flags & FLAG_INSN_IS_JUMP_DST)
2407 			continue;
2408 
2409 		meta2->skip = true;
2410 		meta3->skip = true;
2411 	}
2412 }
2413 
2414 /* load/store pair that forms memory copy sould look like the following:
2415  *
2416  *   ld_width R, [addr_src + offset_src]
2417  *   st_width [addr_dest + offset_dest], R
2418  *
2419  * The destination register of load and source register of store should
2420  * be the same, load and store should also perform at the same width.
2421  * If either of addr_src or addr_dest is stack pointer, we don't do the
2422  * CPP optimization as stack is modelled by registers on NFP.
2423  */
2424 static bool
2425 curr_pair_is_memcpy(struct nfp_insn_meta *ld_meta,
2426 		    struct nfp_insn_meta *st_meta)
2427 {
2428 	struct bpf_insn *ld = &ld_meta->insn;
2429 	struct bpf_insn *st = &st_meta->insn;
2430 
2431 	if (!is_mbpf_load(ld_meta) || !is_mbpf_store(st_meta))
2432 		return false;
2433 
2434 	if (ld_meta->ptr.type != PTR_TO_PACKET)
2435 		return false;
2436 
2437 	if (st_meta->ptr.type != PTR_TO_PACKET)
2438 		return false;
2439 
2440 	if (BPF_SIZE(ld->code) != BPF_SIZE(st->code))
2441 		return false;
2442 
2443 	if (ld->dst_reg != st->src_reg)
2444 		return false;
2445 
2446 	/* There is jump to the store insn in this pair. */
2447 	if (st_meta->flags & FLAG_INSN_IS_JUMP_DST)
2448 		return false;
2449 
2450 	return true;
2451 }
2452 
2453 /* Currently, we only support chaining load/store pairs if:
2454  *
2455  *  - Their address base registers are the same.
2456  *  - Their address offsets are in the same order.
2457  *  - They operate at the same memory width.
2458  *  - There is no jump into the middle of them.
2459  */
2460 static bool
2461 curr_pair_chain_with_previous(struct nfp_insn_meta *ld_meta,
2462 			      struct nfp_insn_meta *st_meta,
2463 			      struct bpf_insn *prev_ld,
2464 			      struct bpf_insn *prev_st)
2465 {
2466 	u8 prev_size, curr_size, prev_ld_base, prev_st_base, prev_ld_dst;
2467 	struct bpf_insn *ld = &ld_meta->insn;
2468 	struct bpf_insn *st = &st_meta->insn;
2469 	s16 prev_ld_off, prev_st_off;
2470 
2471 	/* This pair is the start pair. */
2472 	if (!prev_ld)
2473 		return true;
2474 
2475 	prev_size = BPF_LDST_BYTES(prev_ld);
2476 	curr_size = BPF_LDST_BYTES(ld);
2477 	prev_ld_base = prev_ld->src_reg;
2478 	prev_st_base = prev_st->dst_reg;
2479 	prev_ld_dst = prev_ld->dst_reg;
2480 	prev_ld_off = prev_ld->off;
2481 	prev_st_off = prev_st->off;
2482 
2483 	if (ld->dst_reg != prev_ld_dst)
2484 		return false;
2485 
2486 	if (ld->src_reg != prev_ld_base || st->dst_reg != prev_st_base)
2487 		return false;
2488 
2489 	if (curr_size != prev_size)
2490 		return false;
2491 
2492 	/* There is jump to the head of this pair. */
2493 	if (ld_meta->flags & FLAG_INSN_IS_JUMP_DST)
2494 		return false;
2495 
2496 	/* Both in ascending order. */
2497 	if (prev_ld_off + prev_size == ld->off &&
2498 	    prev_st_off + prev_size == st->off)
2499 		return true;
2500 
2501 	/* Both in descending order. */
2502 	if (ld->off + curr_size == prev_ld_off &&
2503 	    st->off + curr_size == prev_st_off)
2504 		return true;
2505 
2506 	return false;
2507 }
2508 
2509 /* Return TRUE if cross memory access happens. Cross memory access means
2510  * store area is overlapping with load area that a later load might load
2511  * the value from previous store, for this case we can't treat the sequence
2512  * as an memory copy.
2513  */
2514 static bool
2515 cross_mem_access(struct bpf_insn *ld, struct nfp_insn_meta *head_ld_meta,
2516 		 struct nfp_insn_meta *head_st_meta)
2517 {
2518 	s16 head_ld_off, head_st_off, ld_off;
2519 
2520 	/* Different pointer types does not overlap. */
2521 	if (head_ld_meta->ptr.type != head_st_meta->ptr.type)
2522 		return false;
2523 
2524 	/* load and store are both PTR_TO_PACKET, check ID info.  */
2525 	if (head_ld_meta->ptr.id != head_st_meta->ptr.id)
2526 		return true;
2527 
2528 	/* Canonicalize the offsets. Turn all of them against the original
2529 	 * base register.
2530 	 */
2531 	head_ld_off = head_ld_meta->insn.off + head_ld_meta->ptr.off;
2532 	head_st_off = head_st_meta->insn.off + head_st_meta->ptr.off;
2533 	ld_off = ld->off + head_ld_meta->ptr.off;
2534 
2535 	/* Ascending order cross. */
2536 	if (ld_off > head_ld_off &&
2537 	    head_ld_off < head_st_off && ld_off >= head_st_off)
2538 		return true;
2539 
2540 	/* Descending order cross. */
2541 	if (ld_off < head_ld_off &&
2542 	    head_ld_off > head_st_off && ld_off <= head_st_off)
2543 		return true;
2544 
2545 	return false;
2546 }
2547 
2548 /* This pass try to identify the following instructoin sequences.
2549  *
2550  *   load R, [regA + offA]
2551  *   store [regB + offB], R
2552  *   load R, [regA + offA + const_imm_A]
2553  *   store [regB + offB + const_imm_A], R
2554  *   load R, [regA + offA + 2 * const_imm_A]
2555  *   store [regB + offB + 2 * const_imm_A], R
2556  *   ...
2557  *
2558  * Above sequence is typically generated by compiler when lowering
2559  * memcpy. NFP prefer using CPP instructions to accelerate it.
2560  */
2561 static void nfp_bpf_opt_ldst_gather(struct nfp_prog *nfp_prog)
2562 {
2563 	struct nfp_insn_meta *head_ld_meta = NULL;
2564 	struct nfp_insn_meta *head_st_meta = NULL;
2565 	struct nfp_insn_meta *meta1, *meta2;
2566 	struct bpf_insn *prev_ld = NULL;
2567 	struct bpf_insn *prev_st = NULL;
2568 	u8 count = 0;
2569 
2570 	nfp_for_each_insn_walk2(nfp_prog, meta1, meta2) {
2571 		struct bpf_insn *ld = &meta1->insn;
2572 		struct bpf_insn *st = &meta2->insn;
2573 
2574 		/* Reset record status if any of the following if true:
2575 		 *   - The current insn pair is not load/store.
2576 		 *   - The load/store pair doesn't chain with previous one.
2577 		 *   - The chained load/store pair crossed with previous pair.
2578 		 *   - The chained load/store pair has a total size of memory
2579 		 *     copy beyond 128 bytes which is the maximum length a
2580 		 *     single NFP CPP command can transfer.
2581 		 */
2582 		if (!curr_pair_is_memcpy(meta1, meta2) ||
2583 		    !curr_pair_chain_with_previous(meta1, meta2, prev_ld,
2584 						   prev_st) ||
2585 		    (head_ld_meta && (cross_mem_access(ld, head_ld_meta,
2586 						       head_st_meta) ||
2587 				      head_ld_meta->ldst_gather_len >= 128))) {
2588 			if (!count)
2589 				continue;
2590 
2591 			if (count > 1) {
2592 				s16 prev_ld_off = prev_ld->off;
2593 				s16 prev_st_off = prev_st->off;
2594 				s16 head_ld_off = head_ld_meta->insn.off;
2595 
2596 				if (prev_ld_off < head_ld_off) {
2597 					head_ld_meta->insn.off = prev_ld_off;
2598 					head_st_meta->insn.off = prev_st_off;
2599 					head_ld_meta->ldst_gather_len =
2600 						-head_ld_meta->ldst_gather_len;
2601 				}
2602 
2603 				head_ld_meta->paired_st = &head_st_meta->insn;
2604 				head_st_meta->skip = true;
2605 			} else {
2606 				head_ld_meta->ldst_gather_len = 0;
2607 			}
2608 
2609 			/* If the chain is ended by an load/store pair then this
2610 			 * could serve as the new head of the the next chain.
2611 			 */
2612 			if (curr_pair_is_memcpy(meta1, meta2)) {
2613 				head_ld_meta = meta1;
2614 				head_st_meta = meta2;
2615 				head_ld_meta->ldst_gather_len =
2616 					BPF_LDST_BYTES(ld);
2617 				meta1 = nfp_meta_next(meta1);
2618 				meta2 = nfp_meta_next(meta2);
2619 				prev_ld = ld;
2620 				prev_st = st;
2621 				count = 1;
2622 			} else {
2623 				head_ld_meta = NULL;
2624 				head_st_meta = NULL;
2625 				prev_ld = NULL;
2626 				prev_st = NULL;
2627 				count = 0;
2628 			}
2629 
2630 			continue;
2631 		}
2632 
2633 		if (!head_ld_meta) {
2634 			head_ld_meta = meta1;
2635 			head_st_meta = meta2;
2636 		} else {
2637 			meta1->skip = true;
2638 			meta2->skip = true;
2639 		}
2640 
2641 		head_ld_meta->ldst_gather_len += BPF_LDST_BYTES(ld);
2642 		meta1 = nfp_meta_next(meta1);
2643 		meta2 = nfp_meta_next(meta2);
2644 		prev_ld = ld;
2645 		prev_st = st;
2646 		count++;
2647 	}
2648 }
2649 
2650 static int nfp_bpf_optimize(struct nfp_prog *nfp_prog)
2651 {
2652 	nfp_bpf_opt_reg_init(nfp_prog);
2653 
2654 	nfp_bpf_opt_ld_mask(nfp_prog);
2655 	nfp_bpf_opt_ld_shift(nfp_prog);
2656 	nfp_bpf_opt_ldst_gather(nfp_prog);
2657 
2658 	return 0;
2659 }
2660 
2661 static int nfp_bpf_ustore_calc(u64 *prog, unsigned int len)
2662 {
2663 	__le64 *ustore = (__force __le64 *)prog;
2664 	int i;
2665 
2666 	for (i = 0; i < len; i++) {
2667 		int err;
2668 
2669 		err = nfp_ustore_check_valid_no_ecc(prog[i]);
2670 		if (err)
2671 			return err;
2672 
2673 		ustore[i] = cpu_to_le64(nfp_ustore_calc_ecc_insn(prog[i]));
2674 	}
2675 
2676 	return 0;
2677 }
2678 
2679 int nfp_bpf_jit(struct nfp_prog *nfp_prog)
2680 {
2681 	int ret;
2682 
2683 	ret = nfp_bpf_optimize(nfp_prog);
2684 	if (ret)
2685 		return ret;
2686 
2687 	ret = nfp_translate(nfp_prog);
2688 	if (ret) {
2689 		pr_err("Translation failed with error %d (translated: %u)\n",
2690 		       ret, nfp_prog->n_translated);
2691 		return -EINVAL;
2692 	}
2693 
2694 	return ret;
2695 }
2696 
2697 void nfp_bpf_jit_prepare(struct nfp_prog *nfp_prog, unsigned int cnt)
2698 {
2699 	struct nfp_insn_meta *meta;
2700 
2701 	/* Another pass to record jump information. */
2702 	list_for_each_entry(meta, &nfp_prog->insns, l) {
2703 		u64 code = meta->insn.code;
2704 
2705 		if (BPF_CLASS(code) == BPF_JMP && BPF_OP(code) != BPF_EXIT &&
2706 		    BPF_OP(code) != BPF_CALL) {
2707 			struct nfp_insn_meta *dst_meta;
2708 			unsigned short dst_indx;
2709 
2710 			dst_indx = meta->n + 1 + meta->insn.off;
2711 			dst_meta = nfp_bpf_goto_meta(nfp_prog, meta, dst_indx,
2712 						     cnt);
2713 
2714 			meta->jmp_dst = dst_meta;
2715 			dst_meta->flags |= FLAG_INSN_IS_JUMP_DST;
2716 		}
2717 	}
2718 }
2719 
2720 void *nfp_bpf_relo_for_vnic(struct nfp_prog *nfp_prog, struct nfp_bpf_vnic *bv)
2721 {
2722 	unsigned int i;
2723 	u64 *prog;
2724 	int err;
2725 
2726 	prog = kmemdup(nfp_prog->prog, nfp_prog->prog_len * sizeof(u64),
2727 		       GFP_KERNEL);
2728 	if (!prog)
2729 		return ERR_PTR(-ENOMEM);
2730 
2731 	for (i = 0; i < nfp_prog->prog_len; i++) {
2732 		enum nfp_relo_type special;
2733 
2734 		special = FIELD_GET(OP_RELO_TYPE, prog[i]);
2735 		switch (special) {
2736 		case RELO_NONE:
2737 			continue;
2738 		case RELO_BR_REL:
2739 			br_add_offset(&prog[i], bv->start_off);
2740 			break;
2741 		case RELO_BR_GO_OUT:
2742 			br_set_offset(&prog[i],
2743 				      nfp_prog->tgt_out + bv->start_off);
2744 			break;
2745 		case RELO_BR_GO_ABORT:
2746 			br_set_offset(&prog[i],
2747 				      nfp_prog->tgt_abort + bv->start_off);
2748 			break;
2749 		case RELO_BR_NEXT_PKT:
2750 			br_set_offset(&prog[i], bv->tgt_done);
2751 			break;
2752 		}
2753 
2754 		prog[i] &= ~OP_RELO_TYPE;
2755 	}
2756 
2757 	err = nfp_bpf_ustore_calc(prog, nfp_prog->prog_len);
2758 	if (err)
2759 		goto err_free_prog;
2760 
2761 	return prog;
2762 
2763 err_free_prog:
2764 	kfree(prog);
2765 	return ERR_PTR(err);
2766 }
2767