1 /*
2  * Copyright (C) 2016-2017 Netronome Systems, Inc.
3  *
4  * This software is dual licensed under the GNU General License Version 2,
5  * June 1991 as shown in the file COPYING in the top-level directory of this
6  * source tree or the BSD 2-Clause License provided below.  You have the
7  * option to license this software under the complete terms of either license.
8  *
9  * The BSD 2-Clause License:
10  *
11  *     Redistribution and use in source and binary forms, with or
12  *     without modification, are permitted provided that the following
13  *     conditions are met:
14  *
15  *      1. Redistributions of source code must retain the above
16  *         copyright notice, this list of conditions and the following
17  *         disclaimer.
18  *
19  *      2. Redistributions in binary form must reproduce the above
20  *         copyright notice, this list of conditions and the following
21  *         disclaimer in the documentation and/or other materials
22  *         provided with the distribution.
23  *
24  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31  * SOFTWARE.
32  */
33 
34 #define pr_fmt(fmt)	"NFP net bpf: " fmt
35 
36 #include <linux/bug.h>
37 #include <linux/kernel.h>
38 #include <linux/bpf.h>
39 #include <linux/filter.h>
40 #include <linux/pkt_cls.h>
41 #include <linux/unistd.h>
42 
43 #include "main.h"
44 #include "../nfp_asm.h"
45 
46 /* --- NFP prog --- */
47 /* Foreach "multiple" entries macros provide pos and next<n> pointers.
48  * It's safe to modify the next pointers (but not pos).
49  */
50 #define nfp_for_each_insn_walk2(nfp_prog, pos, next)			\
51 	for (pos = list_first_entry(&(nfp_prog)->insns, typeof(*pos), l), \
52 	     next = list_next_entry(pos, l);			\
53 	     &(nfp_prog)->insns != &pos->l &&			\
54 	     &(nfp_prog)->insns != &next->l;			\
55 	     pos = nfp_meta_next(pos),				\
56 	     next = nfp_meta_next(pos))
57 
58 #define nfp_for_each_insn_walk3(nfp_prog, pos, next, next2)		\
59 	for (pos = list_first_entry(&(nfp_prog)->insns, typeof(*pos), l), \
60 	     next = list_next_entry(pos, l),			\
61 	     next2 = list_next_entry(next, l);			\
62 	     &(nfp_prog)->insns != &pos->l &&			\
63 	     &(nfp_prog)->insns != &next->l &&			\
64 	     &(nfp_prog)->insns != &next2->l;			\
65 	     pos = nfp_meta_next(pos),				\
66 	     next = nfp_meta_next(pos),				\
67 	     next2 = nfp_meta_next(next))
68 
69 static bool
70 nfp_meta_has_prev(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
71 {
72 	return meta->l.prev != &nfp_prog->insns;
73 }
74 
75 static void nfp_prog_push(struct nfp_prog *nfp_prog, u64 insn)
76 {
77 	if (nfp_prog->__prog_alloc_len == nfp_prog->prog_len) {
78 		nfp_prog->error = -ENOSPC;
79 		return;
80 	}
81 
82 	nfp_prog->prog[nfp_prog->prog_len] = insn;
83 	nfp_prog->prog_len++;
84 }
85 
86 static unsigned int nfp_prog_current_offset(struct nfp_prog *nfp_prog)
87 {
88 	return nfp_prog->start_off + nfp_prog->prog_len;
89 }
90 
91 static bool
92 nfp_prog_confirm_current_offset(struct nfp_prog *nfp_prog, unsigned int off)
93 {
94 	/* If there is a recorded error we may have dropped instructions;
95 	 * that doesn't have to be due to translator bug, and the translation
96 	 * will fail anyway, so just return OK.
97 	 */
98 	if (nfp_prog->error)
99 		return true;
100 	return !WARN_ON_ONCE(nfp_prog_current_offset(nfp_prog) != off);
101 }
102 
103 static unsigned int
104 nfp_prog_offset_to_index(struct nfp_prog *nfp_prog, unsigned int offset)
105 {
106 	return offset - nfp_prog->start_off;
107 }
108 
109 /* --- Emitters --- */
110 static void
111 __emit_cmd(struct nfp_prog *nfp_prog, enum cmd_tgt_map op,
112 	   u8 mode, u8 xfer, u8 areg, u8 breg, u8 size, bool sync, bool indir)
113 {
114 	enum cmd_ctx_swap ctx;
115 	u64 insn;
116 
117 	if (sync)
118 		ctx = CMD_CTX_SWAP;
119 	else
120 		ctx = CMD_CTX_NO_SWAP;
121 
122 	insn =	FIELD_PREP(OP_CMD_A_SRC, areg) |
123 		FIELD_PREP(OP_CMD_CTX, ctx) |
124 		FIELD_PREP(OP_CMD_B_SRC, breg) |
125 		FIELD_PREP(OP_CMD_TOKEN, cmd_tgt_act[op].token) |
126 		FIELD_PREP(OP_CMD_XFER, xfer) |
127 		FIELD_PREP(OP_CMD_CNT, size) |
128 		FIELD_PREP(OP_CMD_SIG, sync) |
129 		FIELD_PREP(OP_CMD_TGT_CMD, cmd_tgt_act[op].tgt_cmd) |
130 		FIELD_PREP(OP_CMD_INDIR, indir) |
131 		FIELD_PREP(OP_CMD_MODE, mode);
132 
133 	nfp_prog_push(nfp_prog, insn);
134 }
135 
136 static void
137 emit_cmd_any(struct nfp_prog *nfp_prog, enum cmd_tgt_map op, u8 mode, u8 xfer,
138 	     swreg lreg, swreg rreg, u8 size, bool sync, bool indir)
139 {
140 	struct nfp_insn_re_regs reg;
141 	int err;
142 
143 	err = swreg_to_restricted(reg_none(), lreg, rreg, &reg, false);
144 	if (err) {
145 		nfp_prog->error = err;
146 		return;
147 	}
148 	if (reg.swap) {
149 		pr_err("cmd can't swap arguments\n");
150 		nfp_prog->error = -EFAULT;
151 		return;
152 	}
153 	if (reg.dst_lmextn || reg.src_lmextn) {
154 		pr_err("cmd can't use LMextn\n");
155 		nfp_prog->error = -EFAULT;
156 		return;
157 	}
158 
159 	__emit_cmd(nfp_prog, op, mode, xfer, reg.areg, reg.breg, size, sync,
160 		   indir);
161 }
162 
163 static void
164 emit_cmd(struct nfp_prog *nfp_prog, enum cmd_tgt_map op, u8 mode, u8 xfer,
165 	 swreg lreg, swreg rreg, u8 size, bool sync)
166 {
167 	emit_cmd_any(nfp_prog, op, mode, xfer, lreg, rreg, size, sync, false);
168 }
169 
170 static void
171 emit_cmd_indir(struct nfp_prog *nfp_prog, enum cmd_tgt_map op, u8 mode, u8 xfer,
172 	       swreg lreg, swreg rreg, u8 size, bool sync)
173 {
174 	emit_cmd_any(nfp_prog, op, mode, xfer, lreg, rreg, size, sync, true);
175 }
176 
177 static void
178 __emit_br(struct nfp_prog *nfp_prog, enum br_mask mask, enum br_ev_pip ev_pip,
179 	  enum br_ctx_signal_state css, u16 addr, u8 defer)
180 {
181 	u16 addr_lo, addr_hi;
182 	u64 insn;
183 
184 	addr_lo = addr & (OP_BR_ADDR_LO >> __bf_shf(OP_BR_ADDR_LO));
185 	addr_hi = addr != addr_lo;
186 
187 	insn = OP_BR_BASE |
188 		FIELD_PREP(OP_BR_MASK, mask) |
189 		FIELD_PREP(OP_BR_EV_PIP, ev_pip) |
190 		FIELD_PREP(OP_BR_CSS, css) |
191 		FIELD_PREP(OP_BR_DEFBR, defer) |
192 		FIELD_PREP(OP_BR_ADDR_LO, addr_lo) |
193 		FIELD_PREP(OP_BR_ADDR_HI, addr_hi);
194 
195 	nfp_prog_push(nfp_prog, insn);
196 }
197 
198 static void emit_br_def(struct nfp_prog *nfp_prog, u16 addr, u8 defer)
199 {
200 	if (defer > 2) {
201 		pr_err("BUG: branch defer out of bounds %d\n", defer);
202 		nfp_prog->error = -EFAULT;
203 		return;
204 	}
205 	__emit_br(nfp_prog, BR_UNC, BR_EV_PIP_UNCOND, BR_CSS_NONE, addr, defer);
206 }
207 
208 static void
209 emit_br(struct nfp_prog *nfp_prog, enum br_mask mask, u16 addr, u8 defer)
210 {
211 	__emit_br(nfp_prog, mask,
212 		  mask != BR_UNC ? BR_EV_PIP_COND : BR_EV_PIP_UNCOND,
213 		  BR_CSS_NONE, addr, defer);
214 }
215 
216 static void
217 __emit_immed(struct nfp_prog *nfp_prog, u16 areg, u16 breg, u16 imm_hi,
218 	     enum immed_width width, bool invert,
219 	     enum immed_shift shift, bool wr_both,
220 	     bool dst_lmextn, bool src_lmextn)
221 {
222 	u64 insn;
223 
224 	insn = OP_IMMED_BASE |
225 		FIELD_PREP(OP_IMMED_A_SRC, areg) |
226 		FIELD_PREP(OP_IMMED_B_SRC, breg) |
227 		FIELD_PREP(OP_IMMED_IMM, imm_hi) |
228 		FIELD_PREP(OP_IMMED_WIDTH, width) |
229 		FIELD_PREP(OP_IMMED_INV, invert) |
230 		FIELD_PREP(OP_IMMED_SHIFT, shift) |
231 		FIELD_PREP(OP_IMMED_WR_AB, wr_both) |
232 		FIELD_PREP(OP_IMMED_SRC_LMEXTN, src_lmextn) |
233 		FIELD_PREP(OP_IMMED_DST_LMEXTN, dst_lmextn);
234 
235 	nfp_prog_push(nfp_prog, insn);
236 }
237 
238 static void
239 emit_immed(struct nfp_prog *nfp_prog, swreg dst, u16 imm,
240 	   enum immed_width width, bool invert, enum immed_shift shift)
241 {
242 	struct nfp_insn_ur_regs reg;
243 	int err;
244 
245 	if (swreg_type(dst) == NN_REG_IMM) {
246 		nfp_prog->error = -EFAULT;
247 		return;
248 	}
249 
250 	err = swreg_to_unrestricted(dst, dst, reg_imm(imm & 0xff), &reg);
251 	if (err) {
252 		nfp_prog->error = err;
253 		return;
254 	}
255 
256 	/* Use reg.dst when destination is No-Dest. */
257 	__emit_immed(nfp_prog,
258 		     swreg_type(dst) == NN_REG_NONE ? reg.dst : reg.areg,
259 		     reg.breg, imm >> 8, width, invert, shift,
260 		     reg.wr_both, reg.dst_lmextn, reg.src_lmextn);
261 }
262 
263 static void
264 __emit_shf(struct nfp_prog *nfp_prog, u16 dst, enum alu_dst_ab dst_ab,
265 	   enum shf_sc sc, u8 shift,
266 	   u16 areg, enum shf_op op, u16 breg, bool i8, bool sw, bool wr_both,
267 	   bool dst_lmextn, bool src_lmextn)
268 {
269 	u64 insn;
270 
271 	if (!FIELD_FIT(OP_SHF_SHIFT, shift)) {
272 		nfp_prog->error = -EFAULT;
273 		return;
274 	}
275 
276 	if (sc == SHF_SC_L_SHF)
277 		shift = 32 - shift;
278 
279 	insn = OP_SHF_BASE |
280 		FIELD_PREP(OP_SHF_A_SRC, areg) |
281 		FIELD_PREP(OP_SHF_SC, sc) |
282 		FIELD_PREP(OP_SHF_B_SRC, breg) |
283 		FIELD_PREP(OP_SHF_I8, i8) |
284 		FIELD_PREP(OP_SHF_SW, sw) |
285 		FIELD_PREP(OP_SHF_DST, dst) |
286 		FIELD_PREP(OP_SHF_SHIFT, shift) |
287 		FIELD_PREP(OP_SHF_OP, op) |
288 		FIELD_PREP(OP_SHF_DST_AB, dst_ab) |
289 		FIELD_PREP(OP_SHF_WR_AB, wr_both) |
290 		FIELD_PREP(OP_SHF_SRC_LMEXTN, src_lmextn) |
291 		FIELD_PREP(OP_SHF_DST_LMEXTN, dst_lmextn);
292 
293 	nfp_prog_push(nfp_prog, insn);
294 }
295 
296 static void
297 emit_shf(struct nfp_prog *nfp_prog, swreg dst,
298 	 swreg lreg, enum shf_op op, swreg rreg, enum shf_sc sc, u8 shift)
299 {
300 	struct nfp_insn_re_regs reg;
301 	int err;
302 
303 	err = swreg_to_restricted(dst, lreg, rreg, &reg, true);
304 	if (err) {
305 		nfp_prog->error = err;
306 		return;
307 	}
308 
309 	__emit_shf(nfp_prog, reg.dst, reg.dst_ab, sc, shift,
310 		   reg.areg, op, reg.breg, reg.i8, reg.swap, reg.wr_both,
311 		   reg.dst_lmextn, reg.src_lmextn);
312 }
313 
314 static void
315 __emit_alu(struct nfp_prog *nfp_prog, u16 dst, enum alu_dst_ab dst_ab,
316 	   u16 areg, enum alu_op op, u16 breg, bool swap, bool wr_both,
317 	   bool dst_lmextn, bool src_lmextn)
318 {
319 	u64 insn;
320 
321 	insn = OP_ALU_BASE |
322 		FIELD_PREP(OP_ALU_A_SRC, areg) |
323 		FIELD_PREP(OP_ALU_B_SRC, breg) |
324 		FIELD_PREP(OP_ALU_DST, dst) |
325 		FIELD_PREP(OP_ALU_SW, swap) |
326 		FIELD_PREP(OP_ALU_OP, op) |
327 		FIELD_PREP(OP_ALU_DST_AB, dst_ab) |
328 		FIELD_PREP(OP_ALU_WR_AB, wr_both) |
329 		FIELD_PREP(OP_ALU_SRC_LMEXTN, src_lmextn) |
330 		FIELD_PREP(OP_ALU_DST_LMEXTN, dst_lmextn);
331 
332 	nfp_prog_push(nfp_prog, insn);
333 }
334 
335 static void
336 emit_alu(struct nfp_prog *nfp_prog, swreg dst,
337 	 swreg lreg, enum alu_op op, swreg rreg)
338 {
339 	struct nfp_insn_ur_regs reg;
340 	int err;
341 
342 	err = swreg_to_unrestricted(dst, lreg, rreg, &reg);
343 	if (err) {
344 		nfp_prog->error = err;
345 		return;
346 	}
347 
348 	__emit_alu(nfp_prog, reg.dst, reg.dst_ab,
349 		   reg.areg, op, reg.breg, reg.swap, reg.wr_both,
350 		   reg.dst_lmextn, reg.src_lmextn);
351 }
352 
353 static void
354 __emit_ld_field(struct nfp_prog *nfp_prog, enum shf_sc sc,
355 		u8 areg, u8 bmask, u8 breg, u8 shift, bool imm8,
356 		bool zero, bool swap, bool wr_both,
357 		bool dst_lmextn, bool src_lmextn)
358 {
359 	u64 insn;
360 
361 	insn = OP_LDF_BASE |
362 		FIELD_PREP(OP_LDF_A_SRC, areg) |
363 		FIELD_PREP(OP_LDF_SC, sc) |
364 		FIELD_PREP(OP_LDF_B_SRC, breg) |
365 		FIELD_PREP(OP_LDF_I8, imm8) |
366 		FIELD_PREP(OP_LDF_SW, swap) |
367 		FIELD_PREP(OP_LDF_ZF, zero) |
368 		FIELD_PREP(OP_LDF_BMASK, bmask) |
369 		FIELD_PREP(OP_LDF_SHF, shift) |
370 		FIELD_PREP(OP_LDF_WR_AB, wr_both) |
371 		FIELD_PREP(OP_LDF_SRC_LMEXTN, src_lmextn) |
372 		FIELD_PREP(OP_LDF_DST_LMEXTN, dst_lmextn);
373 
374 	nfp_prog_push(nfp_prog, insn);
375 }
376 
377 static void
378 emit_ld_field_any(struct nfp_prog *nfp_prog, swreg dst, u8 bmask, swreg src,
379 		  enum shf_sc sc, u8 shift, bool zero)
380 {
381 	struct nfp_insn_re_regs reg;
382 	int err;
383 
384 	/* Note: ld_field is special as it uses one of the src regs as dst */
385 	err = swreg_to_restricted(dst, dst, src, &reg, true);
386 	if (err) {
387 		nfp_prog->error = err;
388 		return;
389 	}
390 
391 	__emit_ld_field(nfp_prog, sc, reg.areg, bmask, reg.breg, shift,
392 			reg.i8, zero, reg.swap, reg.wr_both,
393 			reg.dst_lmextn, reg.src_lmextn);
394 }
395 
396 static void
397 emit_ld_field(struct nfp_prog *nfp_prog, swreg dst, u8 bmask, swreg src,
398 	      enum shf_sc sc, u8 shift)
399 {
400 	emit_ld_field_any(nfp_prog, dst, bmask, src, sc, shift, false);
401 }
402 
403 static void
404 __emit_lcsr(struct nfp_prog *nfp_prog, u16 areg, u16 breg, bool wr, u16 addr,
405 	    bool dst_lmextn, bool src_lmextn)
406 {
407 	u64 insn;
408 
409 	insn = OP_LCSR_BASE |
410 		FIELD_PREP(OP_LCSR_A_SRC, areg) |
411 		FIELD_PREP(OP_LCSR_B_SRC, breg) |
412 		FIELD_PREP(OP_LCSR_WRITE, wr) |
413 		FIELD_PREP(OP_LCSR_ADDR, addr) |
414 		FIELD_PREP(OP_LCSR_SRC_LMEXTN, src_lmextn) |
415 		FIELD_PREP(OP_LCSR_DST_LMEXTN, dst_lmextn);
416 
417 	nfp_prog_push(nfp_prog, insn);
418 }
419 
420 static void emit_csr_wr(struct nfp_prog *nfp_prog, swreg src, u16 addr)
421 {
422 	struct nfp_insn_ur_regs reg;
423 	int err;
424 
425 	/* This instruction takes immeds instead of reg_none() for the ignored
426 	 * operand, but we can't encode 2 immeds in one instr with our normal
427 	 * swreg infra so if param is an immed, we encode as reg_none() and
428 	 * copy the immed to both operands.
429 	 */
430 	if (swreg_type(src) == NN_REG_IMM) {
431 		err = swreg_to_unrestricted(reg_none(), src, reg_none(), &reg);
432 		reg.breg = reg.areg;
433 	} else {
434 		err = swreg_to_unrestricted(reg_none(), src, reg_imm(0), &reg);
435 	}
436 	if (err) {
437 		nfp_prog->error = err;
438 		return;
439 	}
440 
441 	__emit_lcsr(nfp_prog, reg.areg, reg.breg, true, addr / 4,
442 		    false, reg.src_lmextn);
443 }
444 
445 static void emit_nop(struct nfp_prog *nfp_prog)
446 {
447 	__emit_immed(nfp_prog, UR_REG_IMM, UR_REG_IMM, 0, 0, 0, 0, 0, 0, 0);
448 }
449 
450 /* --- Wrappers --- */
451 static bool pack_immed(u32 imm, u16 *val, enum immed_shift *shift)
452 {
453 	if (!(imm & 0xffff0000)) {
454 		*val = imm;
455 		*shift = IMMED_SHIFT_0B;
456 	} else if (!(imm & 0xff0000ff)) {
457 		*val = imm >> 8;
458 		*shift = IMMED_SHIFT_1B;
459 	} else if (!(imm & 0x0000ffff)) {
460 		*val = imm >> 16;
461 		*shift = IMMED_SHIFT_2B;
462 	} else {
463 		return false;
464 	}
465 
466 	return true;
467 }
468 
469 static void wrp_immed(struct nfp_prog *nfp_prog, swreg dst, u32 imm)
470 {
471 	enum immed_shift shift;
472 	u16 val;
473 
474 	if (pack_immed(imm, &val, &shift)) {
475 		emit_immed(nfp_prog, dst, val, IMMED_WIDTH_ALL, false, shift);
476 	} else if (pack_immed(~imm, &val, &shift)) {
477 		emit_immed(nfp_prog, dst, val, IMMED_WIDTH_ALL, true, shift);
478 	} else {
479 		emit_immed(nfp_prog, dst, imm & 0xffff, IMMED_WIDTH_ALL,
480 			   false, IMMED_SHIFT_0B);
481 		emit_immed(nfp_prog, dst, imm >> 16, IMMED_WIDTH_WORD,
482 			   false, IMMED_SHIFT_2B);
483 	}
484 }
485 
486 /* ur_load_imm_any() - encode immediate or use tmp register (unrestricted)
487  * If the @imm is small enough encode it directly in operand and return
488  * otherwise load @imm to a spare register and return its encoding.
489  */
490 static swreg ur_load_imm_any(struct nfp_prog *nfp_prog, u32 imm, swreg tmp_reg)
491 {
492 	if (FIELD_FIT(UR_REG_IMM_MAX, imm))
493 		return reg_imm(imm);
494 
495 	wrp_immed(nfp_prog, tmp_reg, imm);
496 	return tmp_reg;
497 }
498 
499 /* re_load_imm_any() - encode immediate or use tmp register (restricted)
500  * If the @imm is small enough encode it directly in operand and return
501  * otherwise load @imm to a spare register and return its encoding.
502  */
503 static swreg re_load_imm_any(struct nfp_prog *nfp_prog, u32 imm, swreg tmp_reg)
504 {
505 	if (FIELD_FIT(RE_REG_IMM_MAX, imm))
506 		return reg_imm(imm);
507 
508 	wrp_immed(nfp_prog, tmp_reg, imm);
509 	return tmp_reg;
510 }
511 
512 static void wrp_nops(struct nfp_prog *nfp_prog, unsigned int count)
513 {
514 	while (count--)
515 		emit_nop(nfp_prog);
516 }
517 
518 static void
519 wrp_br_special(struct nfp_prog *nfp_prog, enum br_mask mask,
520 	       enum br_special special)
521 {
522 	emit_br(nfp_prog, mask, 0, 0);
523 
524 	nfp_prog->prog[nfp_prog->prog_len - 1] |=
525 		FIELD_PREP(OP_BR_SPECIAL, special);
526 }
527 
528 static void wrp_mov(struct nfp_prog *nfp_prog, swreg dst, swreg src)
529 {
530 	emit_alu(nfp_prog, dst, reg_none(), ALU_OP_NONE, src);
531 }
532 
533 static void wrp_reg_mov(struct nfp_prog *nfp_prog, u16 dst, u16 src)
534 {
535 	wrp_mov(nfp_prog, reg_both(dst), reg_b(src));
536 }
537 
538 /* wrp_reg_subpart() - load @field_len bytes from @offset of @src, write the
539  * result to @dst from low end.
540  */
541 static void
542 wrp_reg_subpart(struct nfp_prog *nfp_prog, swreg dst, swreg src, u8 field_len,
543 		u8 offset)
544 {
545 	enum shf_sc sc = offset ? SHF_SC_R_SHF : SHF_SC_NONE;
546 	u8 mask = (1 << field_len) - 1;
547 
548 	emit_ld_field_any(nfp_prog, dst, mask, src, sc, offset * 8, true);
549 }
550 
551 /* NFP has Command Push Pull bus which supports bluk memory operations. */
552 static int nfp_cpp_memcpy(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
553 {
554 	bool descending_seq = meta->ldst_gather_len < 0;
555 	s16 len = abs(meta->ldst_gather_len);
556 	swreg src_base, off;
557 	unsigned int i;
558 	u8 xfer_num;
559 
560 	off = re_load_imm_any(nfp_prog, meta->insn.off, imm_b(nfp_prog));
561 	src_base = reg_a(meta->insn.src_reg * 2);
562 	xfer_num = round_up(len, 4) / 4;
563 
564 	/* Setup PREV_ALU fields to override memory read length. */
565 	if (len > 32)
566 		wrp_immed(nfp_prog, reg_none(),
567 			  CMD_OVE_LEN | FIELD_PREP(CMD_OV_LEN, xfer_num - 1));
568 
569 	/* Memory read from source addr into transfer-in registers. */
570 	emit_cmd_any(nfp_prog, CMD_TGT_READ32_SWAP, CMD_MODE_32b, 0, src_base,
571 		     off, xfer_num - 1, true, len > 32);
572 
573 	/* Move from transfer-in to transfer-out. */
574 	for (i = 0; i < xfer_num; i++)
575 		wrp_mov(nfp_prog, reg_xfer(i), reg_xfer(i));
576 
577 	off = re_load_imm_any(nfp_prog, meta->paired_st->off, imm_b(nfp_prog));
578 
579 	if (len <= 8) {
580 		/* Use single direct_ref write8. */
581 		emit_cmd(nfp_prog, CMD_TGT_WRITE8_SWAP, CMD_MODE_32b, 0,
582 			 reg_a(meta->paired_st->dst_reg * 2), off, len - 1,
583 			 true);
584 	} else if (len <= 32 && IS_ALIGNED(len, 4)) {
585 		/* Use single direct_ref write32. */
586 		emit_cmd(nfp_prog, CMD_TGT_WRITE32_SWAP, CMD_MODE_32b, 0,
587 			 reg_a(meta->paired_st->dst_reg * 2), off, xfer_num - 1,
588 			 true);
589 	} else if (len <= 32) {
590 		/* Use single indirect_ref write8. */
591 		wrp_immed(nfp_prog, reg_none(),
592 			  CMD_OVE_LEN | FIELD_PREP(CMD_OV_LEN, len - 1));
593 		emit_cmd_indir(nfp_prog, CMD_TGT_WRITE8_SWAP, CMD_MODE_32b, 0,
594 			       reg_a(meta->paired_st->dst_reg * 2), off,
595 			       len - 1, true);
596 	} else if (IS_ALIGNED(len, 4)) {
597 		/* Use single indirect_ref write32. */
598 		wrp_immed(nfp_prog, reg_none(),
599 			  CMD_OVE_LEN | FIELD_PREP(CMD_OV_LEN, xfer_num - 1));
600 		emit_cmd_indir(nfp_prog, CMD_TGT_WRITE32_SWAP, CMD_MODE_32b, 0,
601 			       reg_a(meta->paired_st->dst_reg * 2), off,
602 			       xfer_num - 1, true);
603 	} else if (len <= 40) {
604 		/* Use one direct_ref write32 to write the first 32-bytes, then
605 		 * another direct_ref write8 to write the remaining bytes.
606 		 */
607 		emit_cmd(nfp_prog, CMD_TGT_WRITE32_SWAP, CMD_MODE_32b, 0,
608 			 reg_a(meta->paired_st->dst_reg * 2), off, 7,
609 			 true);
610 
611 		off = re_load_imm_any(nfp_prog, meta->paired_st->off + 32,
612 				      imm_b(nfp_prog));
613 		emit_cmd(nfp_prog, CMD_TGT_WRITE8_SWAP, CMD_MODE_32b, 8,
614 			 reg_a(meta->paired_st->dst_reg * 2), off, len - 33,
615 			 true);
616 	} else {
617 		/* Use one indirect_ref write32 to write 4-bytes aligned length,
618 		 * then another direct_ref write8 to write the remaining bytes.
619 		 */
620 		u8 new_off;
621 
622 		wrp_immed(nfp_prog, reg_none(),
623 			  CMD_OVE_LEN | FIELD_PREP(CMD_OV_LEN, xfer_num - 2));
624 		emit_cmd_indir(nfp_prog, CMD_TGT_WRITE32_SWAP, CMD_MODE_32b, 0,
625 			       reg_a(meta->paired_st->dst_reg * 2), off,
626 			       xfer_num - 2, true);
627 		new_off = meta->paired_st->off + (xfer_num - 1) * 4;
628 		off = re_load_imm_any(nfp_prog, new_off, imm_b(nfp_prog));
629 		emit_cmd(nfp_prog, CMD_TGT_WRITE8_SWAP, CMD_MODE_32b,
630 			 xfer_num - 1, reg_a(meta->paired_st->dst_reg * 2), off,
631 			 (len & 0x3) - 1, true);
632 	}
633 
634 	/* TODO: The following extra load is to make sure data flow be identical
635 	 *  before and after we do memory copy optimization.
636 	 *
637 	 *  The load destination register is not guaranteed to be dead, so we
638 	 *  need to make sure it is loaded with the value the same as before
639 	 *  this transformation.
640 	 *
641 	 *  These extra loads could be removed once we have accurate register
642 	 *  usage information.
643 	 */
644 	if (descending_seq)
645 		xfer_num = 0;
646 	else if (BPF_SIZE(meta->insn.code) != BPF_DW)
647 		xfer_num = xfer_num - 1;
648 	else
649 		xfer_num = xfer_num - 2;
650 
651 	switch (BPF_SIZE(meta->insn.code)) {
652 	case BPF_B:
653 		wrp_reg_subpart(nfp_prog, reg_both(meta->insn.dst_reg * 2),
654 				reg_xfer(xfer_num), 1,
655 				IS_ALIGNED(len, 4) ? 3 : (len & 3) - 1);
656 		break;
657 	case BPF_H:
658 		wrp_reg_subpart(nfp_prog, reg_both(meta->insn.dst_reg * 2),
659 				reg_xfer(xfer_num), 2, (len & 3) ^ 2);
660 		break;
661 	case BPF_W:
662 		wrp_mov(nfp_prog, reg_both(meta->insn.dst_reg * 2),
663 			reg_xfer(0));
664 		break;
665 	case BPF_DW:
666 		wrp_mov(nfp_prog, reg_both(meta->insn.dst_reg * 2),
667 			reg_xfer(xfer_num));
668 		wrp_mov(nfp_prog, reg_both(meta->insn.dst_reg * 2 + 1),
669 			reg_xfer(xfer_num + 1));
670 		break;
671 	}
672 
673 	if (BPF_SIZE(meta->insn.code) != BPF_DW)
674 		wrp_immed(nfp_prog, reg_both(meta->insn.dst_reg * 2 + 1), 0);
675 
676 	return 0;
677 }
678 
679 static int
680 data_ld(struct nfp_prog *nfp_prog, swreg offset, u8 dst_gpr, int size)
681 {
682 	unsigned int i;
683 	u16 shift, sz;
684 
685 	/* We load the value from the address indicated in @offset and then
686 	 * shift out the data we don't need.  Note: this is big endian!
687 	 */
688 	sz = max(size, 4);
689 	shift = size < 4 ? 4 - size : 0;
690 
691 	emit_cmd(nfp_prog, CMD_TGT_READ8, CMD_MODE_32b, 0,
692 		 pptr_reg(nfp_prog), offset, sz - 1, true);
693 
694 	i = 0;
695 	if (shift)
696 		emit_shf(nfp_prog, reg_both(dst_gpr), reg_none(), SHF_OP_NONE,
697 			 reg_xfer(0), SHF_SC_R_SHF, shift * 8);
698 	else
699 		for (; i * 4 < size; i++)
700 			wrp_mov(nfp_prog, reg_both(dst_gpr + i), reg_xfer(i));
701 
702 	if (i < 2)
703 		wrp_immed(nfp_prog, reg_both(dst_gpr + 1), 0);
704 
705 	return 0;
706 }
707 
708 static int
709 data_ld_host_order(struct nfp_prog *nfp_prog, u8 src_gpr, swreg offset,
710 		   u8 dst_gpr, int size)
711 {
712 	unsigned int i;
713 	u8 mask, sz;
714 
715 	/* We load the value from the address indicated in @offset and then
716 	 * mask out the data we don't need.  Note: this is little endian!
717 	 */
718 	sz = max(size, 4);
719 	mask = size < 4 ? GENMASK(size - 1, 0) : 0;
720 
721 	emit_cmd(nfp_prog, CMD_TGT_READ32_SWAP, CMD_MODE_32b, 0,
722 		 reg_a(src_gpr), offset, sz / 4 - 1, true);
723 
724 	i = 0;
725 	if (mask)
726 		emit_ld_field_any(nfp_prog, reg_both(dst_gpr), mask,
727 				  reg_xfer(0), SHF_SC_NONE, 0, true);
728 	else
729 		for (; i * 4 < size; i++)
730 			wrp_mov(nfp_prog, reg_both(dst_gpr + i), reg_xfer(i));
731 
732 	if (i < 2)
733 		wrp_immed(nfp_prog, reg_both(dst_gpr + 1), 0);
734 
735 	return 0;
736 }
737 
738 static int
739 construct_data_ind_ld(struct nfp_prog *nfp_prog, u16 offset, u16 src, u8 size)
740 {
741 	swreg tmp_reg;
742 
743 	/* Calculate the true offset (src_reg + imm) */
744 	tmp_reg = ur_load_imm_any(nfp_prog, offset, imm_b(nfp_prog));
745 	emit_alu(nfp_prog, imm_both(nfp_prog), reg_a(src), ALU_OP_ADD, tmp_reg);
746 
747 	/* Check packet length (size guaranteed to fit b/c it's u8) */
748 	emit_alu(nfp_prog, imm_a(nfp_prog),
749 		 imm_a(nfp_prog), ALU_OP_ADD, reg_imm(size));
750 	emit_alu(nfp_prog, reg_none(),
751 		 plen_reg(nfp_prog), ALU_OP_SUB, imm_a(nfp_prog));
752 	wrp_br_special(nfp_prog, BR_BLO, OP_BR_GO_ABORT);
753 
754 	/* Load data */
755 	return data_ld(nfp_prog, imm_b(nfp_prog), 0, size);
756 }
757 
758 static int construct_data_ld(struct nfp_prog *nfp_prog, u16 offset, u8 size)
759 {
760 	swreg tmp_reg;
761 
762 	/* Check packet length */
763 	tmp_reg = ur_load_imm_any(nfp_prog, offset + size, imm_a(nfp_prog));
764 	emit_alu(nfp_prog, reg_none(), plen_reg(nfp_prog), ALU_OP_SUB, tmp_reg);
765 	wrp_br_special(nfp_prog, BR_BLO, OP_BR_GO_ABORT);
766 
767 	/* Load data */
768 	tmp_reg = re_load_imm_any(nfp_prog, offset, imm_b(nfp_prog));
769 	return data_ld(nfp_prog, tmp_reg, 0, size);
770 }
771 
772 static int
773 data_stx_host_order(struct nfp_prog *nfp_prog, u8 dst_gpr, swreg offset,
774 		    u8 src_gpr, u8 size)
775 {
776 	unsigned int i;
777 
778 	for (i = 0; i * 4 < size; i++)
779 		wrp_mov(nfp_prog, reg_xfer(i), reg_a(src_gpr + i));
780 
781 	emit_cmd(nfp_prog, CMD_TGT_WRITE8_SWAP, CMD_MODE_32b, 0,
782 		 reg_a(dst_gpr), offset, size - 1, true);
783 
784 	return 0;
785 }
786 
787 static int
788 data_st_host_order(struct nfp_prog *nfp_prog, u8 dst_gpr, swreg offset,
789 		   u64 imm, u8 size)
790 {
791 	wrp_immed(nfp_prog, reg_xfer(0), imm);
792 	if (size == 8)
793 		wrp_immed(nfp_prog, reg_xfer(1), imm >> 32);
794 
795 	emit_cmd(nfp_prog, CMD_TGT_WRITE8_SWAP, CMD_MODE_32b, 0,
796 		 reg_a(dst_gpr), offset, size - 1, true);
797 
798 	return 0;
799 }
800 
801 typedef int
802 (*lmem_step)(struct nfp_prog *nfp_prog, u8 gpr, u8 gpr_byte, s32 off,
803 	     unsigned int size, bool first, bool new_gpr, bool last, bool lm3,
804 	     bool needs_inc);
805 
806 static int
807 wrp_lmem_load(struct nfp_prog *nfp_prog, u8 dst, u8 dst_byte, s32 off,
808 	      unsigned int size, bool first, bool new_gpr, bool last, bool lm3,
809 	      bool needs_inc)
810 {
811 	bool should_inc = needs_inc && new_gpr && !last;
812 	u32 idx, src_byte;
813 	enum shf_sc sc;
814 	swreg reg;
815 	int shf;
816 	u8 mask;
817 
818 	if (WARN_ON_ONCE(dst_byte + size > 4 || off % 4 + size > 4))
819 		return -EOPNOTSUPP;
820 
821 	idx = off / 4;
822 
823 	/* Move the entire word */
824 	if (size == 4) {
825 		wrp_mov(nfp_prog, reg_both(dst),
826 			should_inc ? reg_lm_inc(3) : reg_lm(lm3 ? 3 : 0, idx));
827 		return 0;
828 	}
829 
830 	if (WARN_ON_ONCE(lm3 && idx > RE_REG_LM_IDX_MAX))
831 		return -EOPNOTSUPP;
832 
833 	src_byte = off % 4;
834 
835 	mask = (1 << size) - 1;
836 	mask <<= dst_byte;
837 
838 	if (WARN_ON_ONCE(mask > 0xf))
839 		return -EOPNOTSUPP;
840 
841 	shf = abs(src_byte - dst_byte) * 8;
842 	if (src_byte == dst_byte) {
843 		sc = SHF_SC_NONE;
844 	} else if (src_byte < dst_byte) {
845 		shf = 32 - shf;
846 		sc = SHF_SC_L_SHF;
847 	} else {
848 		sc = SHF_SC_R_SHF;
849 	}
850 
851 	/* ld_field can address fewer indexes, if offset too large do RMW.
852 	 * Because we RMV twice we waste 2 cycles on unaligned 8 byte writes.
853 	 */
854 	if (idx <= RE_REG_LM_IDX_MAX) {
855 		reg = reg_lm(lm3 ? 3 : 0, idx);
856 	} else {
857 		reg = imm_a(nfp_prog);
858 		/* If it's not the first part of the load and we start a new GPR
859 		 * that means we are loading a second part of the LMEM word into
860 		 * a new GPR.  IOW we've already looked that LMEM word and
861 		 * therefore it has been loaded into imm_a().
862 		 */
863 		if (first || !new_gpr)
864 			wrp_mov(nfp_prog, reg, reg_lm(0, idx));
865 	}
866 
867 	emit_ld_field_any(nfp_prog, reg_both(dst), mask, reg, sc, shf, new_gpr);
868 
869 	if (should_inc)
870 		wrp_mov(nfp_prog, reg_none(), reg_lm_inc(3));
871 
872 	return 0;
873 }
874 
875 static int
876 wrp_lmem_store(struct nfp_prog *nfp_prog, u8 src, u8 src_byte, s32 off,
877 	       unsigned int size, bool first, bool new_gpr, bool last, bool lm3,
878 	       bool needs_inc)
879 {
880 	bool should_inc = needs_inc && new_gpr && !last;
881 	u32 idx, dst_byte;
882 	enum shf_sc sc;
883 	swreg reg;
884 	int shf;
885 	u8 mask;
886 
887 	if (WARN_ON_ONCE(src_byte + size > 4 || off % 4 + size > 4))
888 		return -EOPNOTSUPP;
889 
890 	idx = off / 4;
891 
892 	/* Move the entire word */
893 	if (size == 4) {
894 		wrp_mov(nfp_prog,
895 			should_inc ? reg_lm_inc(3) : reg_lm(lm3 ? 3 : 0, idx),
896 			reg_b(src));
897 		return 0;
898 	}
899 
900 	if (WARN_ON_ONCE(lm3 && idx > RE_REG_LM_IDX_MAX))
901 		return -EOPNOTSUPP;
902 
903 	dst_byte = off % 4;
904 
905 	mask = (1 << size) - 1;
906 	mask <<= dst_byte;
907 
908 	if (WARN_ON_ONCE(mask > 0xf))
909 		return -EOPNOTSUPP;
910 
911 	shf = abs(src_byte - dst_byte) * 8;
912 	if (src_byte == dst_byte) {
913 		sc = SHF_SC_NONE;
914 	} else if (src_byte < dst_byte) {
915 		shf = 32 - shf;
916 		sc = SHF_SC_L_SHF;
917 	} else {
918 		sc = SHF_SC_R_SHF;
919 	}
920 
921 	/* ld_field can address fewer indexes, if offset too large do RMW.
922 	 * Because we RMV twice we waste 2 cycles on unaligned 8 byte writes.
923 	 */
924 	if (idx <= RE_REG_LM_IDX_MAX) {
925 		reg = reg_lm(lm3 ? 3 : 0, idx);
926 	} else {
927 		reg = imm_a(nfp_prog);
928 		/* Only first and last LMEM locations are going to need RMW,
929 		 * the middle location will be overwritten fully.
930 		 */
931 		if (first || last)
932 			wrp_mov(nfp_prog, reg, reg_lm(0, idx));
933 	}
934 
935 	emit_ld_field(nfp_prog, reg, mask, reg_b(src), sc, shf);
936 
937 	if (new_gpr || last) {
938 		if (idx > RE_REG_LM_IDX_MAX)
939 			wrp_mov(nfp_prog, reg_lm(0, idx), reg);
940 		if (should_inc)
941 			wrp_mov(nfp_prog, reg_none(), reg_lm_inc(3));
942 	}
943 
944 	return 0;
945 }
946 
947 static int
948 mem_op_stack(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
949 	     unsigned int size, unsigned int ptr_off, u8 gpr, u8 ptr_gpr,
950 	     bool clr_gpr, lmem_step step)
951 {
952 	s32 off = nfp_prog->stack_depth + meta->insn.off + ptr_off;
953 	bool first = true, last;
954 	bool needs_inc = false;
955 	swreg stack_off_reg;
956 	u8 prev_gpr = 255;
957 	u32 gpr_byte = 0;
958 	bool lm3 = true;
959 	int ret;
960 
961 	if (meta->ptr_not_const) {
962 		/* Use of the last encountered ptr_off is OK, they all have
963 		 * the same alignment.  Depend on low bits of value being
964 		 * discarded when written to LMaddr register.
965 		 */
966 		stack_off_reg = ur_load_imm_any(nfp_prog, meta->insn.off,
967 						stack_imm(nfp_prog));
968 
969 		emit_alu(nfp_prog, imm_b(nfp_prog),
970 			 reg_a(ptr_gpr), ALU_OP_ADD, stack_off_reg);
971 
972 		needs_inc = true;
973 	} else if (off + size <= 64) {
974 		/* We can reach bottom 64B with LMaddr0 */
975 		lm3 = false;
976 	} else if (round_down(off, 32) == round_down(off + size - 1, 32)) {
977 		/* We have to set up a new pointer.  If we know the offset
978 		 * and the entire access falls into a single 32 byte aligned
979 		 * window we won't have to increment the LM pointer.
980 		 * The 32 byte alignment is imporant because offset is ORed in
981 		 * not added when doing *l$indexN[off].
982 		 */
983 		stack_off_reg = ur_load_imm_any(nfp_prog, round_down(off, 32),
984 						stack_imm(nfp_prog));
985 		emit_alu(nfp_prog, imm_b(nfp_prog),
986 			 stack_reg(nfp_prog), ALU_OP_ADD, stack_off_reg);
987 
988 		off %= 32;
989 	} else {
990 		stack_off_reg = ur_load_imm_any(nfp_prog, round_down(off, 4),
991 						stack_imm(nfp_prog));
992 
993 		emit_alu(nfp_prog, imm_b(nfp_prog),
994 			 stack_reg(nfp_prog), ALU_OP_ADD, stack_off_reg);
995 
996 		needs_inc = true;
997 	}
998 	if (lm3) {
999 		emit_csr_wr(nfp_prog, imm_b(nfp_prog), NFP_CSR_ACT_LM_ADDR3);
1000 		/* For size < 4 one slot will be filled by zeroing of upper. */
1001 		wrp_nops(nfp_prog, clr_gpr && size < 8 ? 2 : 3);
1002 	}
1003 
1004 	if (clr_gpr && size < 8)
1005 		wrp_immed(nfp_prog, reg_both(gpr + 1), 0);
1006 
1007 	while (size) {
1008 		u32 slice_end;
1009 		u8 slice_size;
1010 
1011 		slice_size = min(size, 4 - gpr_byte);
1012 		slice_end = min(off + slice_size, round_up(off + 1, 4));
1013 		slice_size = slice_end - off;
1014 
1015 		last = slice_size == size;
1016 
1017 		if (needs_inc)
1018 			off %= 4;
1019 
1020 		ret = step(nfp_prog, gpr, gpr_byte, off, slice_size,
1021 			   first, gpr != prev_gpr, last, lm3, needs_inc);
1022 		if (ret)
1023 			return ret;
1024 
1025 		prev_gpr = gpr;
1026 		first = false;
1027 
1028 		gpr_byte += slice_size;
1029 		if (gpr_byte >= 4) {
1030 			gpr_byte -= 4;
1031 			gpr++;
1032 		}
1033 
1034 		size -= slice_size;
1035 		off += slice_size;
1036 	}
1037 
1038 	return 0;
1039 }
1040 
1041 static void
1042 wrp_alu_imm(struct nfp_prog *nfp_prog, u8 dst, enum alu_op alu_op, u32 imm)
1043 {
1044 	swreg tmp_reg;
1045 
1046 	if (alu_op == ALU_OP_AND) {
1047 		if (!imm)
1048 			wrp_immed(nfp_prog, reg_both(dst), 0);
1049 		if (!imm || !~imm)
1050 			return;
1051 	}
1052 	if (alu_op == ALU_OP_OR) {
1053 		if (!~imm)
1054 			wrp_immed(nfp_prog, reg_both(dst), ~0U);
1055 		if (!imm || !~imm)
1056 			return;
1057 	}
1058 	if (alu_op == ALU_OP_XOR) {
1059 		if (!~imm)
1060 			emit_alu(nfp_prog, reg_both(dst), reg_none(),
1061 				 ALU_OP_NOT, reg_b(dst));
1062 		if (!imm || !~imm)
1063 			return;
1064 	}
1065 
1066 	tmp_reg = ur_load_imm_any(nfp_prog, imm, imm_b(nfp_prog));
1067 	emit_alu(nfp_prog, reg_both(dst), reg_a(dst), alu_op, tmp_reg);
1068 }
1069 
1070 static int
1071 wrp_alu64_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
1072 	      enum alu_op alu_op, bool skip)
1073 {
1074 	const struct bpf_insn *insn = &meta->insn;
1075 	u64 imm = insn->imm; /* sign extend */
1076 
1077 	if (skip) {
1078 		meta->skip = true;
1079 		return 0;
1080 	}
1081 
1082 	wrp_alu_imm(nfp_prog, insn->dst_reg * 2, alu_op, imm & ~0U);
1083 	wrp_alu_imm(nfp_prog, insn->dst_reg * 2 + 1, alu_op, imm >> 32);
1084 
1085 	return 0;
1086 }
1087 
1088 static int
1089 wrp_alu64_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
1090 	      enum alu_op alu_op)
1091 {
1092 	u8 dst = meta->insn.dst_reg * 2, src = meta->insn.src_reg * 2;
1093 
1094 	emit_alu(nfp_prog, reg_both(dst), reg_a(dst), alu_op, reg_b(src));
1095 	emit_alu(nfp_prog, reg_both(dst + 1),
1096 		 reg_a(dst + 1), alu_op, reg_b(src + 1));
1097 
1098 	return 0;
1099 }
1100 
1101 static int
1102 wrp_alu32_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
1103 	      enum alu_op alu_op, bool skip)
1104 {
1105 	const struct bpf_insn *insn = &meta->insn;
1106 
1107 	if (skip) {
1108 		meta->skip = true;
1109 		return 0;
1110 	}
1111 
1112 	wrp_alu_imm(nfp_prog, insn->dst_reg * 2, alu_op, insn->imm);
1113 	wrp_immed(nfp_prog, reg_both(insn->dst_reg * 2 + 1), 0);
1114 
1115 	return 0;
1116 }
1117 
1118 static int
1119 wrp_alu32_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
1120 	      enum alu_op alu_op)
1121 {
1122 	u8 dst = meta->insn.dst_reg * 2, src = meta->insn.src_reg * 2;
1123 
1124 	emit_alu(nfp_prog, reg_both(dst), reg_a(dst), alu_op, reg_b(src));
1125 	wrp_immed(nfp_prog, reg_both(meta->insn.dst_reg * 2 + 1), 0);
1126 
1127 	return 0;
1128 }
1129 
1130 static void
1131 wrp_test_reg_one(struct nfp_prog *nfp_prog, u8 dst, enum alu_op alu_op, u8 src,
1132 		 enum br_mask br_mask, u16 off)
1133 {
1134 	emit_alu(nfp_prog, reg_none(), reg_a(dst), alu_op, reg_b(src));
1135 	emit_br(nfp_prog, br_mask, off, 0);
1136 }
1137 
1138 static int
1139 wrp_test_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
1140 	     enum alu_op alu_op, enum br_mask br_mask)
1141 {
1142 	const struct bpf_insn *insn = &meta->insn;
1143 
1144 	wrp_test_reg_one(nfp_prog, insn->dst_reg * 2, alu_op,
1145 			 insn->src_reg * 2, br_mask, insn->off);
1146 	wrp_test_reg_one(nfp_prog, insn->dst_reg * 2 + 1, alu_op,
1147 			 insn->src_reg * 2 + 1, br_mask, insn->off);
1148 
1149 	return 0;
1150 }
1151 
1152 static int
1153 wrp_cmp_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
1154 	    enum br_mask br_mask, bool swap)
1155 {
1156 	const struct bpf_insn *insn = &meta->insn;
1157 	u64 imm = insn->imm; /* sign extend */
1158 	u8 reg = insn->dst_reg * 2;
1159 	swreg tmp_reg;
1160 
1161 	tmp_reg = ur_load_imm_any(nfp_prog, imm & ~0U, imm_b(nfp_prog));
1162 	if (!swap)
1163 		emit_alu(nfp_prog, reg_none(), reg_a(reg), ALU_OP_SUB, tmp_reg);
1164 	else
1165 		emit_alu(nfp_prog, reg_none(), tmp_reg, ALU_OP_SUB, reg_a(reg));
1166 
1167 	tmp_reg = ur_load_imm_any(nfp_prog, imm >> 32, imm_b(nfp_prog));
1168 	if (!swap)
1169 		emit_alu(nfp_prog, reg_none(),
1170 			 reg_a(reg + 1), ALU_OP_SUB_C, tmp_reg);
1171 	else
1172 		emit_alu(nfp_prog, reg_none(),
1173 			 tmp_reg, ALU_OP_SUB_C, reg_a(reg + 1));
1174 
1175 	emit_br(nfp_prog, br_mask, insn->off, 0);
1176 
1177 	return 0;
1178 }
1179 
1180 static int
1181 wrp_cmp_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
1182 	    enum br_mask br_mask, bool swap)
1183 {
1184 	const struct bpf_insn *insn = &meta->insn;
1185 	u8 areg, breg;
1186 
1187 	areg = insn->dst_reg * 2;
1188 	breg = insn->src_reg * 2;
1189 
1190 	if (swap) {
1191 		areg ^= breg;
1192 		breg ^= areg;
1193 		areg ^= breg;
1194 	}
1195 
1196 	emit_alu(nfp_prog, reg_none(), reg_a(areg), ALU_OP_SUB, reg_b(breg));
1197 	emit_alu(nfp_prog, reg_none(),
1198 		 reg_a(areg + 1), ALU_OP_SUB_C, reg_b(breg + 1));
1199 	emit_br(nfp_prog, br_mask, insn->off, 0);
1200 
1201 	return 0;
1202 }
1203 
1204 static void wrp_end32(struct nfp_prog *nfp_prog, swreg reg_in, u8 gpr_out)
1205 {
1206 	emit_ld_field(nfp_prog, reg_both(gpr_out), 0xf, reg_in,
1207 		      SHF_SC_R_ROT, 8);
1208 	emit_ld_field(nfp_prog, reg_both(gpr_out), 0x5, reg_a(gpr_out),
1209 		      SHF_SC_R_ROT, 16);
1210 }
1211 
1212 static int adjust_head(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1213 {
1214 	swreg tmp = imm_a(nfp_prog), tmp_len = imm_b(nfp_prog);
1215 	struct nfp_bpf_cap_adjust_head *adjust_head;
1216 	u32 ret_einval, end;
1217 
1218 	adjust_head = &nfp_prog->bpf->adjust_head;
1219 
1220 	ret_einval = nfp_prog_current_offset(nfp_prog) + 14;
1221 	end = ret_einval + 2;
1222 
1223 	/* We need to use a temp because offset is just a part of the pkt ptr */
1224 	emit_alu(nfp_prog, tmp,
1225 		 reg_a(2 * 2), ALU_OP_ADD_2B, pptr_reg(nfp_prog));
1226 
1227 	/* Validate result will fit within FW datapath constraints */
1228 	emit_alu(nfp_prog, reg_none(),
1229 		 tmp, ALU_OP_SUB, reg_imm(adjust_head->off_min));
1230 	emit_br(nfp_prog, BR_BLO, ret_einval, 0);
1231 	emit_alu(nfp_prog, reg_none(),
1232 		 reg_imm(adjust_head->off_max), ALU_OP_SUB, tmp);
1233 	emit_br(nfp_prog, BR_BLO, ret_einval, 0);
1234 
1235 	/* Validate the length is at least ETH_HLEN */
1236 	emit_alu(nfp_prog, tmp_len,
1237 		 plen_reg(nfp_prog), ALU_OP_SUB, reg_a(2 * 2));
1238 	emit_alu(nfp_prog, reg_none(),
1239 		 tmp_len, ALU_OP_SUB, reg_imm(ETH_HLEN));
1240 	emit_br(nfp_prog, BR_BMI, ret_einval, 0);
1241 
1242 	/* Load the ret code */
1243 	wrp_immed(nfp_prog, reg_both(0), 0);
1244 	wrp_immed(nfp_prog, reg_both(1), 0);
1245 
1246 	/* Modify the packet metadata */
1247 	emit_ld_field(nfp_prog, pptr_reg(nfp_prog), 0x3, tmp, SHF_SC_NONE, 0);
1248 
1249 	/* Skip over the -EINVAL ret code (defer 2) */
1250 	emit_br_def(nfp_prog, end, 2);
1251 
1252 	emit_alu(nfp_prog, plen_reg(nfp_prog),
1253 		 plen_reg(nfp_prog), ALU_OP_SUB, reg_a(2 * 2));
1254 	emit_alu(nfp_prog, pv_len(nfp_prog),
1255 		 pv_len(nfp_prog), ALU_OP_SUB, reg_a(2 * 2));
1256 
1257 	/* return -EINVAL target */
1258 	if (!nfp_prog_confirm_current_offset(nfp_prog, ret_einval))
1259 		return -EINVAL;
1260 
1261 	wrp_immed(nfp_prog, reg_both(0), -22);
1262 	wrp_immed(nfp_prog, reg_both(1), ~0);
1263 
1264 	if (!nfp_prog_confirm_current_offset(nfp_prog, end))
1265 		return -EINVAL;
1266 
1267 	return 0;
1268 }
1269 
1270 /* --- Callbacks --- */
1271 static int mov_reg64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1272 {
1273 	const struct bpf_insn *insn = &meta->insn;
1274 	u8 dst = insn->dst_reg * 2;
1275 	u8 src = insn->src_reg * 2;
1276 
1277 	if (insn->src_reg == BPF_REG_10) {
1278 		swreg stack_depth_reg;
1279 
1280 		stack_depth_reg = ur_load_imm_any(nfp_prog,
1281 						  nfp_prog->stack_depth,
1282 						  stack_imm(nfp_prog));
1283 		emit_alu(nfp_prog, reg_both(dst),
1284 			 stack_reg(nfp_prog), ALU_OP_ADD, stack_depth_reg);
1285 		wrp_immed(nfp_prog, reg_both(dst + 1), 0);
1286 	} else {
1287 		wrp_reg_mov(nfp_prog, dst, src);
1288 		wrp_reg_mov(nfp_prog, dst + 1, src + 1);
1289 	}
1290 
1291 	return 0;
1292 }
1293 
1294 static int mov_imm64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1295 {
1296 	u64 imm = meta->insn.imm; /* sign extend */
1297 
1298 	wrp_immed(nfp_prog, reg_both(meta->insn.dst_reg * 2), imm & ~0U);
1299 	wrp_immed(nfp_prog, reg_both(meta->insn.dst_reg * 2 + 1), imm >> 32);
1300 
1301 	return 0;
1302 }
1303 
1304 static int xor_reg64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1305 {
1306 	return wrp_alu64_reg(nfp_prog, meta, ALU_OP_XOR);
1307 }
1308 
1309 static int xor_imm64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1310 {
1311 	return wrp_alu64_imm(nfp_prog, meta, ALU_OP_XOR, !meta->insn.imm);
1312 }
1313 
1314 static int and_reg64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1315 {
1316 	return wrp_alu64_reg(nfp_prog, meta, ALU_OP_AND);
1317 }
1318 
1319 static int and_imm64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1320 {
1321 	return wrp_alu64_imm(nfp_prog, meta, ALU_OP_AND, !~meta->insn.imm);
1322 }
1323 
1324 static int or_reg64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1325 {
1326 	return wrp_alu64_reg(nfp_prog, meta, ALU_OP_OR);
1327 }
1328 
1329 static int or_imm64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1330 {
1331 	return wrp_alu64_imm(nfp_prog, meta, ALU_OP_OR, !meta->insn.imm);
1332 }
1333 
1334 static int add_reg64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1335 {
1336 	const struct bpf_insn *insn = &meta->insn;
1337 
1338 	emit_alu(nfp_prog, reg_both(insn->dst_reg * 2),
1339 		 reg_a(insn->dst_reg * 2), ALU_OP_ADD,
1340 		 reg_b(insn->src_reg * 2));
1341 	emit_alu(nfp_prog, reg_both(insn->dst_reg * 2 + 1),
1342 		 reg_a(insn->dst_reg * 2 + 1), ALU_OP_ADD_C,
1343 		 reg_b(insn->src_reg * 2 + 1));
1344 
1345 	return 0;
1346 }
1347 
1348 static int add_imm64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1349 {
1350 	const struct bpf_insn *insn = &meta->insn;
1351 	u64 imm = insn->imm; /* sign extend */
1352 
1353 	wrp_alu_imm(nfp_prog, insn->dst_reg * 2, ALU_OP_ADD, imm & ~0U);
1354 	wrp_alu_imm(nfp_prog, insn->dst_reg * 2 + 1, ALU_OP_ADD_C, imm >> 32);
1355 
1356 	return 0;
1357 }
1358 
1359 static int sub_reg64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1360 {
1361 	const struct bpf_insn *insn = &meta->insn;
1362 
1363 	emit_alu(nfp_prog, reg_both(insn->dst_reg * 2),
1364 		 reg_a(insn->dst_reg * 2), ALU_OP_SUB,
1365 		 reg_b(insn->src_reg * 2));
1366 	emit_alu(nfp_prog, reg_both(insn->dst_reg * 2 + 1),
1367 		 reg_a(insn->dst_reg * 2 + 1), ALU_OP_SUB_C,
1368 		 reg_b(insn->src_reg * 2 + 1));
1369 
1370 	return 0;
1371 }
1372 
1373 static int sub_imm64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1374 {
1375 	const struct bpf_insn *insn = &meta->insn;
1376 	u64 imm = insn->imm; /* sign extend */
1377 
1378 	wrp_alu_imm(nfp_prog, insn->dst_reg * 2, ALU_OP_SUB, imm & ~0U);
1379 	wrp_alu_imm(nfp_prog, insn->dst_reg * 2 + 1, ALU_OP_SUB_C, imm >> 32);
1380 
1381 	return 0;
1382 }
1383 
1384 static int neg_reg64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1385 {
1386 	const struct bpf_insn *insn = &meta->insn;
1387 
1388 	emit_alu(nfp_prog, reg_both(insn->dst_reg * 2), reg_imm(0),
1389 		 ALU_OP_SUB, reg_b(insn->dst_reg * 2));
1390 	emit_alu(nfp_prog, reg_both(insn->dst_reg * 2 + 1), reg_imm(0),
1391 		 ALU_OP_SUB_C, reg_b(insn->dst_reg * 2 + 1));
1392 
1393 	return 0;
1394 }
1395 
1396 static int shl_imm64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1397 {
1398 	const struct bpf_insn *insn = &meta->insn;
1399 	u8 dst = insn->dst_reg * 2;
1400 
1401 	if (insn->imm < 32) {
1402 		emit_shf(nfp_prog, reg_both(dst + 1),
1403 			 reg_a(dst + 1), SHF_OP_NONE, reg_b(dst),
1404 			 SHF_SC_R_DSHF, 32 - insn->imm);
1405 		emit_shf(nfp_prog, reg_both(dst),
1406 			 reg_none(), SHF_OP_NONE, reg_b(dst),
1407 			 SHF_SC_L_SHF, insn->imm);
1408 	} else if (insn->imm == 32) {
1409 		wrp_reg_mov(nfp_prog, dst + 1, dst);
1410 		wrp_immed(nfp_prog, reg_both(dst), 0);
1411 	} else if (insn->imm > 32) {
1412 		emit_shf(nfp_prog, reg_both(dst + 1),
1413 			 reg_none(), SHF_OP_NONE, reg_b(dst),
1414 			 SHF_SC_L_SHF, insn->imm - 32);
1415 		wrp_immed(nfp_prog, reg_both(dst), 0);
1416 	}
1417 
1418 	return 0;
1419 }
1420 
1421 static int shr_imm64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1422 {
1423 	const struct bpf_insn *insn = &meta->insn;
1424 	u8 dst = insn->dst_reg * 2;
1425 
1426 	if (insn->imm < 32) {
1427 		emit_shf(nfp_prog, reg_both(dst),
1428 			 reg_a(dst + 1), SHF_OP_NONE, reg_b(dst),
1429 			 SHF_SC_R_DSHF, insn->imm);
1430 		emit_shf(nfp_prog, reg_both(dst + 1),
1431 			 reg_none(), SHF_OP_NONE, reg_b(dst + 1),
1432 			 SHF_SC_R_SHF, insn->imm);
1433 	} else if (insn->imm == 32) {
1434 		wrp_reg_mov(nfp_prog, dst, dst + 1);
1435 		wrp_immed(nfp_prog, reg_both(dst + 1), 0);
1436 	} else if (insn->imm > 32) {
1437 		emit_shf(nfp_prog, reg_both(dst),
1438 			 reg_none(), SHF_OP_NONE, reg_b(dst + 1),
1439 			 SHF_SC_R_SHF, insn->imm - 32);
1440 		wrp_immed(nfp_prog, reg_both(dst + 1), 0);
1441 	}
1442 
1443 	return 0;
1444 }
1445 
1446 static int mov_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1447 {
1448 	const struct bpf_insn *insn = &meta->insn;
1449 
1450 	wrp_reg_mov(nfp_prog, insn->dst_reg * 2,  insn->src_reg * 2);
1451 	wrp_immed(nfp_prog, reg_both(insn->dst_reg * 2 + 1), 0);
1452 
1453 	return 0;
1454 }
1455 
1456 static int mov_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1457 {
1458 	const struct bpf_insn *insn = &meta->insn;
1459 
1460 	wrp_immed(nfp_prog, reg_both(insn->dst_reg * 2), insn->imm);
1461 	wrp_immed(nfp_prog, reg_both(insn->dst_reg * 2 + 1), 0);
1462 
1463 	return 0;
1464 }
1465 
1466 static int xor_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1467 {
1468 	return wrp_alu32_reg(nfp_prog, meta, ALU_OP_XOR);
1469 }
1470 
1471 static int xor_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1472 {
1473 	return wrp_alu32_imm(nfp_prog, meta, ALU_OP_XOR, !~meta->insn.imm);
1474 }
1475 
1476 static int and_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1477 {
1478 	return wrp_alu32_reg(nfp_prog, meta, ALU_OP_AND);
1479 }
1480 
1481 static int and_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1482 {
1483 	return wrp_alu32_imm(nfp_prog, meta, ALU_OP_AND, !~meta->insn.imm);
1484 }
1485 
1486 static int or_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1487 {
1488 	return wrp_alu32_reg(nfp_prog, meta, ALU_OP_OR);
1489 }
1490 
1491 static int or_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1492 {
1493 	return wrp_alu32_imm(nfp_prog, meta, ALU_OP_OR, !meta->insn.imm);
1494 }
1495 
1496 static int add_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1497 {
1498 	return wrp_alu32_reg(nfp_prog, meta, ALU_OP_ADD);
1499 }
1500 
1501 static int add_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1502 {
1503 	return wrp_alu32_imm(nfp_prog, meta, ALU_OP_ADD, !meta->insn.imm);
1504 }
1505 
1506 static int sub_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1507 {
1508 	return wrp_alu32_reg(nfp_prog, meta, ALU_OP_SUB);
1509 }
1510 
1511 static int sub_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1512 {
1513 	return wrp_alu32_imm(nfp_prog, meta, ALU_OP_SUB, !meta->insn.imm);
1514 }
1515 
1516 static int neg_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1517 {
1518 	u8 dst = meta->insn.dst_reg * 2;
1519 
1520 	emit_alu(nfp_prog, reg_both(dst), reg_imm(0), ALU_OP_SUB, reg_b(dst));
1521 	wrp_immed(nfp_prog, reg_both(meta->insn.dst_reg * 2 + 1), 0);
1522 
1523 	return 0;
1524 }
1525 
1526 static int shl_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1527 {
1528 	const struct bpf_insn *insn = &meta->insn;
1529 
1530 	if (!insn->imm)
1531 		return 1; /* TODO: zero shift means indirect */
1532 
1533 	emit_shf(nfp_prog, reg_both(insn->dst_reg * 2),
1534 		 reg_none(), SHF_OP_NONE, reg_b(insn->dst_reg * 2),
1535 		 SHF_SC_L_SHF, insn->imm);
1536 	wrp_immed(nfp_prog, reg_both(insn->dst_reg * 2 + 1), 0);
1537 
1538 	return 0;
1539 }
1540 
1541 static int end_reg32(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1542 {
1543 	const struct bpf_insn *insn = &meta->insn;
1544 	u8 gpr = insn->dst_reg * 2;
1545 
1546 	switch (insn->imm) {
1547 	case 16:
1548 		emit_ld_field(nfp_prog, reg_both(gpr), 0x9, reg_b(gpr),
1549 			      SHF_SC_R_ROT, 8);
1550 		emit_ld_field(nfp_prog, reg_both(gpr), 0xe, reg_a(gpr),
1551 			      SHF_SC_R_SHF, 16);
1552 
1553 		wrp_immed(nfp_prog, reg_both(gpr + 1), 0);
1554 		break;
1555 	case 32:
1556 		wrp_end32(nfp_prog, reg_a(gpr), gpr);
1557 		wrp_immed(nfp_prog, reg_both(gpr + 1), 0);
1558 		break;
1559 	case 64:
1560 		wrp_mov(nfp_prog, imm_a(nfp_prog), reg_b(gpr + 1));
1561 
1562 		wrp_end32(nfp_prog, reg_a(gpr), gpr + 1);
1563 		wrp_end32(nfp_prog, imm_a(nfp_prog), gpr);
1564 		break;
1565 	}
1566 
1567 	return 0;
1568 }
1569 
1570 static int imm_ld8_part2(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1571 {
1572 	struct nfp_insn_meta *prev = nfp_meta_prev(meta);
1573 	u32 imm_lo, imm_hi;
1574 	u8 dst;
1575 
1576 	dst = prev->insn.dst_reg * 2;
1577 	imm_lo = prev->insn.imm;
1578 	imm_hi = meta->insn.imm;
1579 
1580 	wrp_immed(nfp_prog, reg_both(dst), imm_lo);
1581 
1582 	/* mov is always 1 insn, load imm may be two, so try to use mov */
1583 	if (imm_hi == imm_lo)
1584 		wrp_mov(nfp_prog, reg_both(dst + 1), reg_a(dst));
1585 	else
1586 		wrp_immed(nfp_prog, reg_both(dst + 1), imm_hi);
1587 
1588 	return 0;
1589 }
1590 
1591 static int imm_ld8(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1592 {
1593 	meta->double_cb = imm_ld8_part2;
1594 	return 0;
1595 }
1596 
1597 static int data_ld1(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1598 {
1599 	return construct_data_ld(nfp_prog, meta->insn.imm, 1);
1600 }
1601 
1602 static int data_ld2(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1603 {
1604 	return construct_data_ld(nfp_prog, meta->insn.imm, 2);
1605 }
1606 
1607 static int data_ld4(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1608 {
1609 	return construct_data_ld(nfp_prog, meta->insn.imm, 4);
1610 }
1611 
1612 static int data_ind_ld1(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1613 {
1614 	return construct_data_ind_ld(nfp_prog, meta->insn.imm,
1615 				     meta->insn.src_reg * 2, 1);
1616 }
1617 
1618 static int data_ind_ld2(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1619 {
1620 	return construct_data_ind_ld(nfp_prog, meta->insn.imm,
1621 				     meta->insn.src_reg * 2, 2);
1622 }
1623 
1624 static int data_ind_ld4(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1625 {
1626 	return construct_data_ind_ld(nfp_prog, meta->insn.imm,
1627 				     meta->insn.src_reg * 2, 4);
1628 }
1629 
1630 static int
1631 mem_ldx_stack(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
1632 	      unsigned int size, unsigned int ptr_off)
1633 {
1634 	return mem_op_stack(nfp_prog, meta, size, ptr_off,
1635 			    meta->insn.dst_reg * 2, meta->insn.src_reg * 2,
1636 			    true, wrp_lmem_load);
1637 }
1638 
1639 static int mem_ldx_skb(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
1640 		       u8 size)
1641 {
1642 	swreg dst = reg_both(meta->insn.dst_reg * 2);
1643 
1644 	switch (meta->insn.off) {
1645 	case offsetof(struct __sk_buff, len):
1646 		if (size != FIELD_SIZEOF(struct __sk_buff, len))
1647 			return -EOPNOTSUPP;
1648 		wrp_mov(nfp_prog, dst, plen_reg(nfp_prog));
1649 		break;
1650 	case offsetof(struct __sk_buff, data):
1651 		if (size != FIELD_SIZEOF(struct __sk_buff, data))
1652 			return -EOPNOTSUPP;
1653 		wrp_mov(nfp_prog, dst, pptr_reg(nfp_prog));
1654 		break;
1655 	case offsetof(struct __sk_buff, data_end):
1656 		if (size != FIELD_SIZEOF(struct __sk_buff, data_end))
1657 			return -EOPNOTSUPP;
1658 		emit_alu(nfp_prog, dst,
1659 			 plen_reg(nfp_prog), ALU_OP_ADD, pptr_reg(nfp_prog));
1660 		break;
1661 	default:
1662 		return -EOPNOTSUPP;
1663 	}
1664 
1665 	wrp_immed(nfp_prog, reg_both(meta->insn.dst_reg * 2 + 1), 0);
1666 
1667 	return 0;
1668 }
1669 
1670 static int mem_ldx_xdp(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
1671 		       u8 size)
1672 {
1673 	swreg dst = reg_both(meta->insn.dst_reg * 2);
1674 
1675 	switch (meta->insn.off) {
1676 	case offsetof(struct xdp_md, data):
1677 		if (size != FIELD_SIZEOF(struct xdp_md, data))
1678 			return -EOPNOTSUPP;
1679 		wrp_mov(nfp_prog, dst, pptr_reg(nfp_prog));
1680 		break;
1681 	case offsetof(struct xdp_md, data_end):
1682 		if (size != FIELD_SIZEOF(struct xdp_md, data_end))
1683 			return -EOPNOTSUPP;
1684 		emit_alu(nfp_prog, dst,
1685 			 plen_reg(nfp_prog), ALU_OP_ADD, pptr_reg(nfp_prog));
1686 		break;
1687 	default:
1688 		return -EOPNOTSUPP;
1689 	}
1690 
1691 	wrp_immed(nfp_prog, reg_both(meta->insn.dst_reg * 2 + 1), 0);
1692 
1693 	return 0;
1694 }
1695 
1696 static int
1697 mem_ldx_data(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
1698 	     unsigned int size)
1699 {
1700 	swreg tmp_reg;
1701 
1702 	tmp_reg = re_load_imm_any(nfp_prog, meta->insn.off, imm_b(nfp_prog));
1703 
1704 	return data_ld_host_order(nfp_prog, meta->insn.src_reg * 2, tmp_reg,
1705 				  meta->insn.dst_reg * 2, size);
1706 }
1707 
1708 static int
1709 mem_ldx(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
1710 	unsigned int size)
1711 {
1712 	if (meta->ldst_gather_len)
1713 		return nfp_cpp_memcpy(nfp_prog, meta);
1714 
1715 	if (meta->ptr.type == PTR_TO_CTX) {
1716 		if (nfp_prog->type == BPF_PROG_TYPE_XDP)
1717 			return mem_ldx_xdp(nfp_prog, meta, size);
1718 		else
1719 			return mem_ldx_skb(nfp_prog, meta, size);
1720 	}
1721 
1722 	if (meta->ptr.type == PTR_TO_PACKET)
1723 		return mem_ldx_data(nfp_prog, meta, size);
1724 
1725 	if (meta->ptr.type == PTR_TO_STACK)
1726 		return mem_ldx_stack(nfp_prog, meta, size,
1727 				     meta->ptr.off + meta->ptr.var_off.value);
1728 
1729 	return -EOPNOTSUPP;
1730 }
1731 
1732 static int mem_ldx1(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1733 {
1734 	return mem_ldx(nfp_prog, meta, 1);
1735 }
1736 
1737 static int mem_ldx2(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1738 {
1739 	return mem_ldx(nfp_prog, meta, 2);
1740 }
1741 
1742 static int mem_ldx4(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1743 {
1744 	return mem_ldx(nfp_prog, meta, 4);
1745 }
1746 
1747 static int mem_ldx8(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1748 {
1749 	return mem_ldx(nfp_prog, meta, 8);
1750 }
1751 
1752 static int
1753 mem_st_data(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
1754 	    unsigned int size)
1755 {
1756 	u64 imm = meta->insn.imm; /* sign extend */
1757 	swreg off_reg;
1758 
1759 	off_reg = re_load_imm_any(nfp_prog, meta->insn.off, imm_b(nfp_prog));
1760 
1761 	return data_st_host_order(nfp_prog, meta->insn.dst_reg * 2, off_reg,
1762 				  imm, size);
1763 }
1764 
1765 static int mem_st(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
1766 		  unsigned int size)
1767 {
1768 	if (meta->ptr.type == PTR_TO_PACKET)
1769 		return mem_st_data(nfp_prog, meta, size);
1770 
1771 	return -EOPNOTSUPP;
1772 }
1773 
1774 static int mem_st1(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1775 {
1776 	return mem_st(nfp_prog, meta, 1);
1777 }
1778 
1779 static int mem_st2(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1780 {
1781 	return mem_st(nfp_prog, meta, 2);
1782 }
1783 
1784 static int mem_st4(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1785 {
1786 	return mem_st(nfp_prog, meta, 4);
1787 }
1788 
1789 static int mem_st8(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1790 {
1791 	return mem_st(nfp_prog, meta, 8);
1792 }
1793 
1794 static int
1795 mem_stx_data(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
1796 	     unsigned int size)
1797 {
1798 	swreg off_reg;
1799 
1800 	off_reg = re_load_imm_any(nfp_prog, meta->insn.off, imm_b(nfp_prog));
1801 
1802 	return data_stx_host_order(nfp_prog, meta->insn.dst_reg * 2, off_reg,
1803 				   meta->insn.src_reg * 2, size);
1804 }
1805 
1806 static int
1807 mem_stx_stack(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
1808 	      unsigned int size, unsigned int ptr_off)
1809 {
1810 	return mem_op_stack(nfp_prog, meta, size, ptr_off,
1811 			    meta->insn.src_reg * 2, meta->insn.dst_reg * 2,
1812 			    false, wrp_lmem_store);
1813 }
1814 
1815 static int
1816 mem_stx(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
1817 	unsigned int size)
1818 {
1819 	if (meta->ptr.type == PTR_TO_PACKET)
1820 		return mem_stx_data(nfp_prog, meta, size);
1821 
1822 	if (meta->ptr.type == PTR_TO_STACK)
1823 		return mem_stx_stack(nfp_prog, meta, size,
1824 				     meta->ptr.off + meta->ptr.var_off.value);
1825 
1826 	return -EOPNOTSUPP;
1827 }
1828 
1829 static int mem_stx1(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1830 {
1831 	return mem_stx(nfp_prog, meta, 1);
1832 }
1833 
1834 static int mem_stx2(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1835 {
1836 	return mem_stx(nfp_prog, meta, 2);
1837 }
1838 
1839 static int mem_stx4(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1840 {
1841 	return mem_stx(nfp_prog, meta, 4);
1842 }
1843 
1844 static int mem_stx8(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1845 {
1846 	return mem_stx(nfp_prog, meta, 8);
1847 }
1848 
1849 static int jump(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1850 {
1851 	emit_br(nfp_prog, BR_UNC, meta->insn.off, 0);
1852 
1853 	return 0;
1854 }
1855 
1856 static int jeq_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1857 {
1858 	const struct bpf_insn *insn = &meta->insn;
1859 	u64 imm = insn->imm; /* sign extend */
1860 	swreg or1, or2, tmp_reg;
1861 
1862 	or1 = reg_a(insn->dst_reg * 2);
1863 	or2 = reg_b(insn->dst_reg * 2 + 1);
1864 
1865 	if (imm & ~0U) {
1866 		tmp_reg = ur_load_imm_any(nfp_prog, imm & ~0U, imm_b(nfp_prog));
1867 		emit_alu(nfp_prog, imm_a(nfp_prog),
1868 			 reg_a(insn->dst_reg * 2), ALU_OP_XOR, tmp_reg);
1869 		or1 = imm_a(nfp_prog);
1870 	}
1871 
1872 	if (imm >> 32) {
1873 		tmp_reg = ur_load_imm_any(nfp_prog, imm >> 32, imm_b(nfp_prog));
1874 		emit_alu(nfp_prog, imm_b(nfp_prog),
1875 			 reg_a(insn->dst_reg * 2 + 1), ALU_OP_XOR, tmp_reg);
1876 		or2 = imm_b(nfp_prog);
1877 	}
1878 
1879 	emit_alu(nfp_prog, reg_none(), or1, ALU_OP_OR, or2);
1880 	emit_br(nfp_prog, BR_BEQ, insn->off, 0);
1881 
1882 	return 0;
1883 }
1884 
1885 static int jgt_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1886 {
1887 	return wrp_cmp_imm(nfp_prog, meta, BR_BLO, true);
1888 }
1889 
1890 static int jge_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1891 {
1892 	return wrp_cmp_imm(nfp_prog, meta, BR_BHS, false);
1893 }
1894 
1895 static int jlt_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1896 {
1897 	return wrp_cmp_imm(nfp_prog, meta, BR_BLO, false);
1898 }
1899 
1900 static int jle_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1901 {
1902 	return wrp_cmp_imm(nfp_prog, meta, BR_BHS, true);
1903 }
1904 
1905 static int jset_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1906 {
1907 	const struct bpf_insn *insn = &meta->insn;
1908 	u64 imm = insn->imm; /* sign extend */
1909 	swreg tmp_reg;
1910 
1911 	if (!imm) {
1912 		meta->skip = true;
1913 		return 0;
1914 	}
1915 
1916 	if (imm & ~0U) {
1917 		tmp_reg = ur_load_imm_any(nfp_prog, imm & ~0U, imm_b(nfp_prog));
1918 		emit_alu(nfp_prog, reg_none(),
1919 			 reg_a(insn->dst_reg * 2), ALU_OP_AND, tmp_reg);
1920 		emit_br(nfp_prog, BR_BNE, insn->off, 0);
1921 	}
1922 
1923 	if (imm >> 32) {
1924 		tmp_reg = ur_load_imm_any(nfp_prog, imm >> 32, imm_b(nfp_prog));
1925 		emit_alu(nfp_prog, reg_none(),
1926 			 reg_a(insn->dst_reg * 2 + 1), ALU_OP_AND, tmp_reg);
1927 		emit_br(nfp_prog, BR_BNE, insn->off, 0);
1928 	}
1929 
1930 	return 0;
1931 }
1932 
1933 static int jne_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1934 {
1935 	const struct bpf_insn *insn = &meta->insn;
1936 	u64 imm = insn->imm; /* sign extend */
1937 	swreg tmp_reg;
1938 
1939 	if (!imm) {
1940 		emit_alu(nfp_prog, reg_none(), reg_a(insn->dst_reg * 2),
1941 			 ALU_OP_OR, reg_b(insn->dst_reg * 2 + 1));
1942 		emit_br(nfp_prog, BR_BNE, insn->off, 0);
1943 		return 0;
1944 	}
1945 
1946 	tmp_reg = ur_load_imm_any(nfp_prog, imm & ~0U, imm_b(nfp_prog));
1947 	emit_alu(nfp_prog, reg_none(),
1948 		 reg_a(insn->dst_reg * 2), ALU_OP_XOR, tmp_reg);
1949 	emit_br(nfp_prog, BR_BNE, insn->off, 0);
1950 
1951 	tmp_reg = ur_load_imm_any(nfp_prog, imm >> 32, imm_b(nfp_prog));
1952 	emit_alu(nfp_prog, reg_none(),
1953 		 reg_a(insn->dst_reg * 2 + 1), ALU_OP_XOR, tmp_reg);
1954 	emit_br(nfp_prog, BR_BNE, insn->off, 0);
1955 
1956 	return 0;
1957 }
1958 
1959 static int jeq_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1960 {
1961 	const struct bpf_insn *insn = &meta->insn;
1962 
1963 	emit_alu(nfp_prog, imm_a(nfp_prog), reg_a(insn->dst_reg * 2),
1964 		 ALU_OP_XOR, reg_b(insn->src_reg * 2));
1965 	emit_alu(nfp_prog, imm_b(nfp_prog), reg_a(insn->dst_reg * 2 + 1),
1966 		 ALU_OP_XOR, reg_b(insn->src_reg * 2 + 1));
1967 	emit_alu(nfp_prog, reg_none(),
1968 		 imm_a(nfp_prog), ALU_OP_OR, imm_b(nfp_prog));
1969 	emit_br(nfp_prog, BR_BEQ, insn->off, 0);
1970 
1971 	return 0;
1972 }
1973 
1974 static int jgt_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1975 {
1976 	return wrp_cmp_reg(nfp_prog, meta, BR_BLO, true);
1977 }
1978 
1979 static int jge_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1980 {
1981 	return wrp_cmp_reg(nfp_prog, meta, BR_BHS, false);
1982 }
1983 
1984 static int jlt_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1985 {
1986 	return wrp_cmp_reg(nfp_prog, meta, BR_BLO, false);
1987 }
1988 
1989 static int jle_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1990 {
1991 	return wrp_cmp_reg(nfp_prog, meta, BR_BHS, true);
1992 }
1993 
1994 static int jset_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1995 {
1996 	return wrp_test_reg(nfp_prog, meta, ALU_OP_AND, BR_BNE);
1997 }
1998 
1999 static int jne_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2000 {
2001 	return wrp_test_reg(nfp_prog, meta, ALU_OP_XOR, BR_BNE);
2002 }
2003 
2004 static int call(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2005 {
2006 	switch (meta->insn.imm) {
2007 	case BPF_FUNC_xdp_adjust_head:
2008 		return adjust_head(nfp_prog, meta);
2009 	default:
2010 		WARN_ONCE(1, "verifier allowed unsupported function\n");
2011 		return -EOPNOTSUPP;
2012 	}
2013 }
2014 
2015 static int goto_out(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2016 {
2017 	wrp_br_special(nfp_prog, BR_UNC, OP_BR_GO_OUT);
2018 
2019 	return 0;
2020 }
2021 
2022 static const instr_cb_t instr_cb[256] = {
2023 	[BPF_ALU64 | BPF_MOV | BPF_X] =	mov_reg64,
2024 	[BPF_ALU64 | BPF_MOV | BPF_K] =	mov_imm64,
2025 	[BPF_ALU64 | BPF_XOR | BPF_X] =	xor_reg64,
2026 	[BPF_ALU64 | BPF_XOR | BPF_K] =	xor_imm64,
2027 	[BPF_ALU64 | BPF_AND | BPF_X] =	and_reg64,
2028 	[BPF_ALU64 | BPF_AND | BPF_K] =	and_imm64,
2029 	[BPF_ALU64 | BPF_OR | BPF_X] =	or_reg64,
2030 	[BPF_ALU64 | BPF_OR | BPF_K] =	or_imm64,
2031 	[BPF_ALU64 | BPF_ADD | BPF_X] =	add_reg64,
2032 	[BPF_ALU64 | BPF_ADD | BPF_K] =	add_imm64,
2033 	[BPF_ALU64 | BPF_SUB | BPF_X] =	sub_reg64,
2034 	[BPF_ALU64 | BPF_SUB | BPF_K] =	sub_imm64,
2035 	[BPF_ALU64 | BPF_NEG] =		neg_reg64,
2036 	[BPF_ALU64 | BPF_LSH | BPF_K] =	shl_imm64,
2037 	[BPF_ALU64 | BPF_RSH | BPF_K] =	shr_imm64,
2038 	[BPF_ALU | BPF_MOV | BPF_X] =	mov_reg,
2039 	[BPF_ALU | BPF_MOV | BPF_K] =	mov_imm,
2040 	[BPF_ALU | BPF_XOR | BPF_X] =	xor_reg,
2041 	[BPF_ALU | BPF_XOR | BPF_K] =	xor_imm,
2042 	[BPF_ALU | BPF_AND | BPF_X] =	and_reg,
2043 	[BPF_ALU | BPF_AND | BPF_K] =	and_imm,
2044 	[BPF_ALU | BPF_OR | BPF_X] =	or_reg,
2045 	[BPF_ALU | BPF_OR | BPF_K] =	or_imm,
2046 	[BPF_ALU | BPF_ADD | BPF_X] =	add_reg,
2047 	[BPF_ALU | BPF_ADD | BPF_K] =	add_imm,
2048 	[BPF_ALU | BPF_SUB | BPF_X] =	sub_reg,
2049 	[BPF_ALU | BPF_SUB | BPF_K] =	sub_imm,
2050 	[BPF_ALU | BPF_NEG] =		neg_reg,
2051 	[BPF_ALU | BPF_LSH | BPF_K] =	shl_imm,
2052 	[BPF_ALU | BPF_END | BPF_X] =	end_reg32,
2053 	[BPF_LD | BPF_IMM | BPF_DW] =	imm_ld8,
2054 	[BPF_LD | BPF_ABS | BPF_B] =	data_ld1,
2055 	[BPF_LD | BPF_ABS | BPF_H] =	data_ld2,
2056 	[BPF_LD | BPF_ABS | BPF_W] =	data_ld4,
2057 	[BPF_LD | BPF_IND | BPF_B] =	data_ind_ld1,
2058 	[BPF_LD | BPF_IND | BPF_H] =	data_ind_ld2,
2059 	[BPF_LD | BPF_IND | BPF_W] =	data_ind_ld4,
2060 	[BPF_LDX | BPF_MEM | BPF_B] =	mem_ldx1,
2061 	[BPF_LDX | BPF_MEM | BPF_H] =	mem_ldx2,
2062 	[BPF_LDX | BPF_MEM | BPF_W] =	mem_ldx4,
2063 	[BPF_LDX | BPF_MEM | BPF_DW] =	mem_ldx8,
2064 	[BPF_STX | BPF_MEM | BPF_B] =	mem_stx1,
2065 	[BPF_STX | BPF_MEM | BPF_H] =	mem_stx2,
2066 	[BPF_STX | BPF_MEM | BPF_W] =	mem_stx4,
2067 	[BPF_STX | BPF_MEM | BPF_DW] =	mem_stx8,
2068 	[BPF_ST | BPF_MEM | BPF_B] =	mem_st1,
2069 	[BPF_ST | BPF_MEM | BPF_H] =	mem_st2,
2070 	[BPF_ST | BPF_MEM | BPF_W] =	mem_st4,
2071 	[BPF_ST | BPF_MEM | BPF_DW] =	mem_st8,
2072 	[BPF_JMP | BPF_JA | BPF_K] =	jump,
2073 	[BPF_JMP | BPF_JEQ | BPF_K] =	jeq_imm,
2074 	[BPF_JMP | BPF_JGT | BPF_K] =	jgt_imm,
2075 	[BPF_JMP | BPF_JGE | BPF_K] =	jge_imm,
2076 	[BPF_JMP | BPF_JLT | BPF_K] =	jlt_imm,
2077 	[BPF_JMP | BPF_JLE | BPF_K] =	jle_imm,
2078 	[BPF_JMP | BPF_JSET | BPF_K] =	jset_imm,
2079 	[BPF_JMP | BPF_JNE | BPF_K] =	jne_imm,
2080 	[BPF_JMP | BPF_JEQ | BPF_X] =	jeq_reg,
2081 	[BPF_JMP | BPF_JGT | BPF_X] =	jgt_reg,
2082 	[BPF_JMP | BPF_JGE | BPF_X] =	jge_reg,
2083 	[BPF_JMP | BPF_JLT | BPF_X] =	jlt_reg,
2084 	[BPF_JMP | BPF_JLE | BPF_X] =	jle_reg,
2085 	[BPF_JMP | BPF_JSET | BPF_X] =	jset_reg,
2086 	[BPF_JMP | BPF_JNE | BPF_X] =	jne_reg,
2087 	[BPF_JMP | BPF_CALL] =		call,
2088 	[BPF_JMP | BPF_EXIT] =		goto_out,
2089 };
2090 
2091 /* --- Misc code --- */
2092 static void br_set_offset(u64 *instr, u16 offset)
2093 {
2094 	u16 addr_lo, addr_hi;
2095 
2096 	addr_lo = offset & (OP_BR_ADDR_LO >> __bf_shf(OP_BR_ADDR_LO));
2097 	addr_hi = offset != addr_lo;
2098 	*instr &= ~(OP_BR_ADDR_HI | OP_BR_ADDR_LO);
2099 	*instr |= FIELD_PREP(OP_BR_ADDR_HI, addr_hi);
2100 	*instr |= FIELD_PREP(OP_BR_ADDR_LO, addr_lo);
2101 }
2102 
2103 /* --- Assembler logic --- */
2104 static int nfp_fixup_branches(struct nfp_prog *nfp_prog)
2105 {
2106 	struct nfp_insn_meta *meta, *jmp_dst;
2107 	u32 idx, br_idx;
2108 
2109 	list_for_each_entry(meta, &nfp_prog->insns, l) {
2110 		if (meta->skip)
2111 			continue;
2112 		if (meta->insn.code == (BPF_JMP | BPF_CALL))
2113 			continue;
2114 		if (BPF_CLASS(meta->insn.code) != BPF_JMP)
2115 			continue;
2116 
2117 		if (list_is_last(&meta->l, &nfp_prog->insns))
2118 			idx = nfp_prog->last_bpf_off;
2119 		else
2120 			idx = list_next_entry(meta, l)->off - 1;
2121 
2122 		br_idx = nfp_prog_offset_to_index(nfp_prog, idx);
2123 
2124 		if (!nfp_is_br(nfp_prog->prog[br_idx])) {
2125 			pr_err("Fixup found block not ending in branch %d %02x %016llx!!\n",
2126 			       br_idx, meta->insn.code, nfp_prog->prog[br_idx]);
2127 			return -ELOOP;
2128 		}
2129 		/* Leave special branches for later */
2130 		if (FIELD_GET(OP_BR_SPECIAL, nfp_prog->prog[br_idx]))
2131 			continue;
2132 
2133 		if (!meta->jmp_dst) {
2134 			pr_err("Non-exit jump doesn't have destination info recorded!!\n");
2135 			return -ELOOP;
2136 		}
2137 
2138 		jmp_dst = meta->jmp_dst;
2139 
2140 		if (jmp_dst->skip) {
2141 			pr_err("Branch landing on removed instruction!!\n");
2142 			return -ELOOP;
2143 		}
2144 
2145 		for (idx = nfp_prog_offset_to_index(nfp_prog, meta->off);
2146 		     idx <= br_idx; idx++) {
2147 			if (!nfp_is_br(nfp_prog->prog[idx]))
2148 				continue;
2149 			br_set_offset(&nfp_prog->prog[idx], jmp_dst->off);
2150 		}
2151 	}
2152 
2153 	/* Fixup 'goto out's separately, they can be scattered around */
2154 	for (br_idx = 0; br_idx < nfp_prog->prog_len; br_idx++) {
2155 		enum br_special special;
2156 
2157 		if ((nfp_prog->prog[br_idx] & OP_BR_BASE_MASK) != OP_BR_BASE)
2158 			continue;
2159 
2160 		special = FIELD_GET(OP_BR_SPECIAL, nfp_prog->prog[br_idx]);
2161 		switch (special) {
2162 		case OP_BR_NORMAL:
2163 			break;
2164 		case OP_BR_GO_OUT:
2165 			br_set_offset(&nfp_prog->prog[br_idx],
2166 				      nfp_prog->tgt_out);
2167 			break;
2168 		case OP_BR_GO_ABORT:
2169 			br_set_offset(&nfp_prog->prog[br_idx],
2170 				      nfp_prog->tgt_abort);
2171 			break;
2172 		}
2173 
2174 		nfp_prog->prog[br_idx] &= ~OP_BR_SPECIAL;
2175 	}
2176 
2177 	return 0;
2178 }
2179 
2180 static void nfp_intro(struct nfp_prog *nfp_prog)
2181 {
2182 	wrp_immed(nfp_prog, plen_reg(nfp_prog), GENMASK(13, 0));
2183 	emit_alu(nfp_prog, plen_reg(nfp_prog),
2184 		 plen_reg(nfp_prog), ALU_OP_AND, pv_len(nfp_prog));
2185 }
2186 
2187 static void nfp_outro_tc_da(struct nfp_prog *nfp_prog)
2188 {
2189 	/* TC direct-action mode:
2190 	 *   0,1   ok        NOT SUPPORTED[1]
2191 	 *   2   drop  0x22 -> drop,  count as stat1
2192 	 *   4,5 nuke  0x02 -> drop
2193 	 *   7  redir  0x44 -> redir, count as stat2
2194 	 *   * unspec  0x11 -> pass,  count as stat0
2195 	 *
2196 	 * [1] We can't support OK and RECLASSIFY because we can't tell TC
2197 	 *     the exact decision made.  We are forced to support UNSPEC
2198 	 *     to handle aborts so that's the only one we handle for passing
2199 	 *     packets up the stack.
2200 	 */
2201 	/* Target for aborts */
2202 	nfp_prog->tgt_abort = nfp_prog_current_offset(nfp_prog);
2203 
2204 	emit_br_def(nfp_prog, nfp_prog->tgt_done, 2);
2205 
2206 	wrp_mov(nfp_prog, reg_a(0), NFP_BPF_ABI_FLAGS);
2207 	emit_ld_field(nfp_prog, reg_a(0), 0xc, reg_imm(0x11), SHF_SC_L_SHF, 16);
2208 
2209 	/* Target for normal exits */
2210 	nfp_prog->tgt_out = nfp_prog_current_offset(nfp_prog);
2211 
2212 	/* if R0 > 7 jump to abort */
2213 	emit_alu(nfp_prog, reg_none(), reg_imm(7), ALU_OP_SUB, reg_b(0));
2214 	emit_br(nfp_prog, BR_BLO, nfp_prog->tgt_abort, 0);
2215 	wrp_mov(nfp_prog, reg_a(0), NFP_BPF_ABI_FLAGS);
2216 
2217 	wrp_immed(nfp_prog, reg_b(2), 0x41221211);
2218 	wrp_immed(nfp_prog, reg_b(3), 0x41001211);
2219 
2220 	emit_shf(nfp_prog, reg_a(1),
2221 		 reg_none(), SHF_OP_NONE, reg_b(0), SHF_SC_L_SHF, 2);
2222 
2223 	emit_alu(nfp_prog, reg_none(), reg_a(1), ALU_OP_OR, reg_imm(0));
2224 	emit_shf(nfp_prog, reg_a(2),
2225 		 reg_imm(0xf), SHF_OP_AND, reg_b(2), SHF_SC_R_SHF, 0);
2226 
2227 	emit_alu(nfp_prog, reg_none(), reg_a(1), ALU_OP_OR, reg_imm(0));
2228 	emit_shf(nfp_prog, reg_b(2),
2229 		 reg_imm(0xf), SHF_OP_AND, reg_b(3), SHF_SC_R_SHF, 0);
2230 
2231 	emit_br_def(nfp_prog, nfp_prog->tgt_done, 2);
2232 
2233 	emit_shf(nfp_prog, reg_b(2),
2234 		 reg_a(2), SHF_OP_OR, reg_b(2), SHF_SC_L_SHF, 4);
2235 	emit_ld_field(nfp_prog, reg_a(0), 0xc, reg_b(2), SHF_SC_L_SHF, 16);
2236 }
2237 
2238 static void nfp_outro_xdp(struct nfp_prog *nfp_prog)
2239 {
2240 	/* XDP return codes:
2241 	 *   0 aborted  0x82 -> drop,  count as stat3
2242 	 *   1    drop  0x22 -> drop,  count as stat1
2243 	 *   2    pass  0x11 -> pass,  count as stat0
2244 	 *   3      tx  0x44 -> redir, count as stat2
2245 	 *   * unknown  0x82 -> drop,  count as stat3
2246 	 */
2247 	/* Target for aborts */
2248 	nfp_prog->tgt_abort = nfp_prog_current_offset(nfp_prog);
2249 
2250 	emit_br_def(nfp_prog, nfp_prog->tgt_done, 2);
2251 
2252 	wrp_mov(nfp_prog, reg_a(0), NFP_BPF_ABI_FLAGS);
2253 	emit_ld_field(nfp_prog, reg_a(0), 0xc, reg_imm(0x82), SHF_SC_L_SHF, 16);
2254 
2255 	/* Target for normal exits */
2256 	nfp_prog->tgt_out = nfp_prog_current_offset(nfp_prog);
2257 
2258 	/* if R0 > 3 jump to abort */
2259 	emit_alu(nfp_prog, reg_none(), reg_imm(3), ALU_OP_SUB, reg_b(0));
2260 	emit_br(nfp_prog, BR_BLO, nfp_prog->tgt_abort, 0);
2261 
2262 	wrp_immed(nfp_prog, reg_b(2), 0x44112282);
2263 
2264 	emit_shf(nfp_prog, reg_a(1),
2265 		 reg_none(), SHF_OP_NONE, reg_b(0), SHF_SC_L_SHF, 3);
2266 
2267 	emit_alu(nfp_prog, reg_none(), reg_a(1), ALU_OP_OR, reg_imm(0));
2268 	emit_shf(nfp_prog, reg_b(2),
2269 		 reg_imm(0xff), SHF_OP_AND, reg_b(2), SHF_SC_R_SHF, 0);
2270 
2271 	emit_br_def(nfp_prog, nfp_prog->tgt_done, 2);
2272 
2273 	wrp_mov(nfp_prog, reg_a(0), NFP_BPF_ABI_FLAGS);
2274 	emit_ld_field(nfp_prog, reg_a(0), 0xc, reg_b(2), SHF_SC_L_SHF, 16);
2275 }
2276 
2277 static void nfp_outro(struct nfp_prog *nfp_prog)
2278 {
2279 	switch (nfp_prog->type) {
2280 	case BPF_PROG_TYPE_SCHED_CLS:
2281 		nfp_outro_tc_da(nfp_prog);
2282 		break;
2283 	case BPF_PROG_TYPE_XDP:
2284 		nfp_outro_xdp(nfp_prog);
2285 		break;
2286 	default:
2287 		WARN_ON(1);
2288 	}
2289 }
2290 
2291 static int nfp_translate(struct nfp_prog *nfp_prog)
2292 {
2293 	struct nfp_insn_meta *meta;
2294 	int err;
2295 
2296 	nfp_intro(nfp_prog);
2297 	if (nfp_prog->error)
2298 		return nfp_prog->error;
2299 
2300 	list_for_each_entry(meta, &nfp_prog->insns, l) {
2301 		instr_cb_t cb = instr_cb[meta->insn.code];
2302 
2303 		meta->off = nfp_prog_current_offset(nfp_prog);
2304 
2305 		if (meta->skip) {
2306 			nfp_prog->n_translated++;
2307 			continue;
2308 		}
2309 
2310 		if (nfp_meta_has_prev(nfp_prog, meta) &&
2311 		    nfp_meta_prev(meta)->double_cb)
2312 			cb = nfp_meta_prev(meta)->double_cb;
2313 		if (!cb)
2314 			return -ENOENT;
2315 		err = cb(nfp_prog, meta);
2316 		if (err)
2317 			return err;
2318 
2319 		nfp_prog->n_translated++;
2320 	}
2321 
2322 	nfp_prog->last_bpf_off = nfp_prog_current_offset(nfp_prog) - 1;
2323 
2324 	nfp_outro(nfp_prog);
2325 	if (nfp_prog->error)
2326 		return nfp_prog->error;
2327 
2328 	wrp_nops(nfp_prog, NFP_USTORE_PREFETCH_WINDOW);
2329 	if (nfp_prog->error)
2330 		return nfp_prog->error;
2331 
2332 	return nfp_fixup_branches(nfp_prog);
2333 }
2334 
2335 /* --- Optimizations --- */
2336 static void nfp_bpf_opt_reg_init(struct nfp_prog *nfp_prog)
2337 {
2338 	struct nfp_insn_meta *meta;
2339 
2340 	list_for_each_entry(meta, &nfp_prog->insns, l) {
2341 		struct bpf_insn insn = meta->insn;
2342 
2343 		/* Programs converted from cBPF start with register xoring */
2344 		if (insn.code == (BPF_ALU64 | BPF_XOR | BPF_X) &&
2345 		    insn.src_reg == insn.dst_reg)
2346 			continue;
2347 
2348 		/* Programs start with R6 = R1 but we ignore the skb pointer */
2349 		if (insn.code == (BPF_ALU64 | BPF_MOV | BPF_X) &&
2350 		    insn.src_reg == 1 && insn.dst_reg == 6)
2351 			meta->skip = true;
2352 
2353 		/* Return as soon as something doesn't match */
2354 		if (!meta->skip)
2355 			return;
2356 	}
2357 }
2358 
2359 /* Remove masking after load since our load guarantees this is not needed */
2360 static void nfp_bpf_opt_ld_mask(struct nfp_prog *nfp_prog)
2361 {
2362 	struct nfp_insn_meta *meta1, *meta2;
2363 	const s32 exp_mask[] = {
2364 		[BPF_B] = 0x000000ffU,
2365 		[BPF_H] = 0x0000ffffU,
2366 		[BPF_W] = 0xffffffffU,
2367 	};
2368 
2369 	nfp_for_each_insn_walk2(nfp_prog, meta1, meta2) {
2370 		struct bpf_insn insn, next;
2371 
2372 		insn = meta1->insn;
2373 		next = meta2->insn;
2374 
2375 		if (BPF_CLASS(insn.code) != BPF_LD)
2376 			continue;
2377 		if (BPF_MODE(insn.code) != BPF_ABS &&
2378 		    BPF_MODE(insn.code) != BPF_IND)
2379 			continue;
2380 
2381 		if (next.code != (BPF_ALU64 | BPF_AND | BPF_K))
2382 			continue;
2383 
2384 		if (!exp_mask[BPF_SIZE(insn.code)])
2385 			continue;
2386 		if (exp_mask[BPF_SIZE(insn.code)] != next.imm)
2387 			continue;
2388 
2389 		if (next.src_reg || next.dst_reg)
2390 			continue;
2391 
2392 		if (meta2->flags & FLAG_INSN_IS_JUMP_DST)
2393 			continue;
2394 
2395 		meta2->skip = true;
2396 	}
2397 }
2398 
2399 static void nfp_bpf_opt_ld_shift(struct nfp_prog *nfp_prog)
2400 {
2401 	struct nfp_insn_meta *meta1, *meta2, *meta3;
2402 
2403 	nfp_for_each_insn_walk3(nfp_prog, meta1, meta2, meta3) {
2404 		struct bpf_insn insn, next1, next2;
2405 
2406 		insn = meta1->insn;
2407 		next1 = meta2->insn;
2408 		next2 = meta3->insn;
2409 
2410 		if (BPF_CLASS(insn.code) != BPF_LD)
2411 			continue;
2412 		if (BPF_MODE(insn.code) != BPF_ABS &&
2413 		    BPF_MODE(insn.code) != BPF_IND)
2414 			continue;
2415 		if (BPF_SIZE(insn.code) != BPF_W)
2416 			continue;
2417 
2418 		if (!(next1.code == (BPF_LSH | BPF_K | BPF_ALU64) &&
2419 		      next2.code == (BPF_RSH | BPF_K | BPF_ALU64)) &&
2420 		    !(next1.code == (BPF_RSH | BPF_K | BPF_ALU64) &&
2421 		      next2.code == (BPF_LSH | BPF_K | BPF_ALU64)))
2422 			continue;
2423 
2424 		if (next1.src_reg || next1.dst_reg ||
2425 		    next2.src_reg || next2.dst_reg)
2426 			continue;
2427 
2428 		if (next1.imm != 0x20 || next2.imm != 0x20)
2429 			continue;
2430 
2431 		if (meta2->flags & FLAG_INSN_IS_JUMP_DST ||
2432 		    meta3->flags & FLAG_INSN_IS_JUMP_DST)
2433 			continue;
2434 
2435 		meta2->skip = true;
2436 		meta3->skip = true;
2437 	}
2438 }
2439 
2440 /* load/store pair that forms memory copy sould look like the following:
2441  *
2442  *   ld_width R, [addr_src + offset_src]
2443  *   st_width [addr_dest + offset_dest], R
2444  *
2445  * The destination register of load and source register of store should
2446  * be the same, load and store should also perform at the same width.
2447  * If either of addr_src or addr_dest is stack pointer, we don't do the
2448  * CPP optimization as stack is modelled by registers on NFP.
2449  */
2450 static bool
2451 curr_pair_is_memcpy(struct nfp_insn_meta *ld_meta,
2452 		    struct nfp_insn_meta *st_meta)
2453 {
2454 	struct bpf_insn *ld = &ld_meta->insn;
2455 	struct bpf_insn *st = &st_meta->insn;
2456 
2457 	if (!is_mbpf_load(ld_meta) || !is_mbpf_store(st_meta))
2458 		return false;
2459 
2460 	if (ld_meta->ptr.type != PTR_TO_PACKET)
2461 		return false;
2462 
2463 	if (st_meta->ptr.type != PTR_TO_PACKET)
2464 		return false;
2465 
2466 	if (BPF_SIZE(ld->code) != BPF_SIZE(st->code))
2467 		return false;
2468 
2469 	if (ld->dst_reg != st->src_reg)
2470 		return false;
2471 
2472 	/* There is jump to the store insn in this pair. */
2473 	if (st_meta->flags & FLAG_INSN_IS_JUMP_DST)
2474 		return false;
2475 
2476 	return true;
2477 }
2478 
2479 /* Currently, we only support chaining load/store pairs if:
2480  *
2481  *  - Their address base registers are the same.
2482  *  - Their address offsets are in the same order.
2483  *  - They operate at the same memory width.
2484  *  - There is no jump into the middle of them.
2485  */
2486 static bool
2487 curr_pair_chain_with_previous(struct nfp_insn_meta *ld_meta,
2488 			      struct nfp_insn_meta *st_meta,
2489 			      struct bpf_insn *prev_ld,
2490 			      struct bpf_insn *prev_st)
2491 {
2492 	u8 prev_size, curr_size, prev_ld_base, prev_st_base, prev_ld_dst;
2493 	struct bpf_insn *ld = &ld_meta->insn;
2494 	struct bpf_insn *st = &st_meta->insn;
2495 	s16 prev_ld_off, prev_st_off;
2496 
2497 	/* This pair is the start pair. */
2498 	if (!prev_ld)
2499 		return true;
2500 
2501 	prev_size = BPF_LDST_BYTES(prev_ld);
2502 	curr_size = BPF_LDST_BYTES(ld);
2503 	prev_ld_base = prev_ld->src_reg;
2504 	prev_st_base = prev_st->dst_reg;
2505 	prev_ld_dst = prev_ld->dst_reg;
2506 	prev_ld_off = prev_ld->off;
2507 	prev_st_off = prev_st->off;
2508 
2509 	if (ld->dst_reg != prev_ld_dst)
2510 		return false;
2511 
2512 	if (ld->src_reg != prev_ld_base || st->dst_reg != prev_st_base)
2513 		return false;
2514 
2515 	if (curr_size != prev_size)
2516 		return false;
2517 
2518 	/* There is jump to the head of this pair. */
2519 	if (ld_meta->flags & FLAG_INSN_IS_JUMP_DST)
2520 		return false;
2521 
2522 	/* Both in ascending order. */
2523 	if (prev_ld_off + prev_size == ld->off &&
2524 	    prev_st_off + prev_size == st->off)
2525 		return true;
2526 
2527 	/* Both in descending order. */
2528 	if (ld->off + curr_size == prev_ld_off &&
2529 	    st->off + curr_size == prev_st_off)
2530 		return true;
2531 
2532 	return false;
2533 }
2534 
2535 /* Return TRUE if cross memory access happens. Cross memory access means
2536  * store area is overlapping with load area that a later load might load
2537  * the value from previous store, for this case we can't treat the sequence
2538  * as an memory copy.
2539  */
2540 static bool
2541 cross_mem_access(struct bpf_insn *ld, struct nfp_insn_meta *head_ld_meta,
2542 		 struct nfp_insn_meta *head_st_meta)
2543 {
2544 	s16 head_ld_off, head_st_off, ld_off;
2545 
2546 	/* Different pointer types does not overlap. */
2547 	if (head_ld_meta->ptr.type != head_st_meta->ptr.type)
2548 		return false;
2549 
2550 	/* load and store are both PTR_TO_PACKET, check ID info.  */
2551 	if (head_ld_meta->ptr.id != head_st_meta->ptr.id)
2552 		return true;
2553 
2554 	/* Canonicalize the offsets. Turn all of them against the original
2555 	 * base register.
2556 	 */
2557 	head_ld_off = head_ld_meta->insn.off + head_ld_meta->ptr.off;
2558 	head_st_off = head_st_meta->insn.off + head_st_meta->ptr.off;
2559 	ld_off = ld->off + head_ld_meta->ptr.off;
2560 
2561 	/* Ascending order cross. */
2562 	if (ld_off > head_ld_off &&
2563 	    head_ld_off < head_st_off && ld_off >= head_st_off)
2564 		return true;
2565 
2566 	/* Descending order cross. */
2567 	if (ld_off < head_ld_off &&
2568 	    head_ld_off > head_st_off && ld_off <= head_st_off)
2569 		return true;
2570 
2571 	return false;
2572 }
2573 
2574 /* This pass try to identify the following instructoin sequences.
2575  *
2576  *   load R, [regA + offA]
2577  *   store [regB + offB], R
2578  *   load R, [regA + offA + const_imm_A]
2579  *   store [regB + offB + const_imm_A], R
2580  *   load R, [regA + offA + 2 * const_imm_A]
2581  *   store [regB + offB + 2 * const_imm_A], R
2582  *   ...
2583  *
2584  * Above sequence is typically generated by compiler when lowering
2585  * memcpy. NFP prefer using CPP instructions to accelerate it.
2586  */
2587 static void nfp_bpf_opt_ldst_gather(struct nfp_prog *nfp_prog)
2588 {
2589 	struct nfp_insn_meta *head_ld_meta = NULL;
2590 	struct nfp_insn_meta *head_st_meta = NULL;
2591 	struct nfp_insn_meta *meta1, *meta2;
2592 	struct bpf_insn *prev_ld = NULL;
2593 	struct bpf_insn *prev_st = NULL;
2594 	u8 count = 0;
2595 
2596 	nfp_for_each_insn_walk2(nfp_prog, meta1, meta2) {
2597 		struct bpf_insn *ld = &meta1->insn;
2598 		struct bpf_insn *st = &meta2->insn;
2599 
2600 		/* Reset record status if any of the following if true:
2601 		 *   - The current insn pair is not load/store.
2602 		 *   - The load/store pair doesn't chain with previous one.
2603 		 *   - The chained load/store pair crossed with previous pair.
2604 		 *   - The chained load/store pair has a total size of memory
2605 		 *     copy beyond 128 bytes which is the maximum length a
2606 		 *     single NFP CPP command can transfer.
2607 		 */
2608 		if (!curr_pair_is_memcpy(meta1, meta2) ||
2609 		    !curr_pair_chain_with_previous(meta1, meta2, prev_ld,
2610 						   prev_st) ||
2611 		    (head_ld_meta && (cross_mem_access(ld, head_ld_meta,
2612 						       head_st_meta) ||
2613 				      head_ld_meta->ldst_gather_len >= 128))) {
2614 			if (!count)
2615 				continue;
2616 
2617 			if (count > 1) {
2618 				s16 prev_ld_off = prev_ld->off;
2619 				s16 prev_st_off = prev_st->off;
2620 				s16 head_ld_off = head_ld_meta->insn.off;
2621 
2622 				if (prev_ld_off < head_ld_off) {
2623 					head_ld_meta->insn.off = prev_ld_off;
2624 					head_st_meta->insn.off = prev_st_off;
2625 					head_ld_meta->ldst_gather_len =
2626 						-head_ld_meta->ldst_gather_len;
2627 				}
2628 
2629 				head_ld_meta->paired_st = &head_st_meta->insn;
2630 				head_st_meta->skip = true;
2631 			} else {
2632 				head_ld_meta->ldst_gather_len = 0;
2633 			}
2634 
2635 			/* If the chain is ended by an load/store pair then this
2636 			 * could serve as the new head of the the next chain.
2637 			 */
2638 			if (curr_pair_is_memcpy(meta1, meta2)) {
2639 				head_ld_meta = meta1;
2640 				head_st_meta = meta2;
2641 				head_ld_meta->ldst_gather_len =
2642 					BPF_LDST_BYTES(ld);
2643 				meta1 = nfp_meta_next(meta1);
2644 				meta2 = nfp_meta_next(meta2);
2645 				prev_ld = ld;
2646 				prev_st = st;
2647 				count = 1;
2648 			} else {
2649 				head_ld_meta = NULL;
2650 				head_st_meta = NULL;
2651 				prev_ld = NULL;
2652 				prev_st = NULL;
2653 				count = 0;
2654 			}
2655 
2656 			continue;
2657 		}
2658 
2659 		if (!head_ld_meta) {
2660 			head_ld_meta = meta1;
2661 			head_st_meta = meta2;
2662 		} else {
2663 			meta1->skip = true;
2664 			meta2->skip = true;
2665 		}
2666 
2667 		head_ld_meta->ldst_gather_len += BPF_LDST_BYTES(ld);
2668 		meta1 = nfp_meta_next(meta1);
2669 		meta2 = nfp_meta_next(meta2);
2670 		prev_ld = ld;
2671 		prev_st = st;
2672 		count++;
2673 	}
2674 }
2675 
2676 static int nfp_bpf_optimize(struct nfp_prog *nfp_prog)
2677 {
2678 	nfp_bpf_opt_reg_init(nfp_prog);
2679 
2680 	nfp_bpf_opt_ld_mask(nfp_prog);
2681 	nfp_bpf_opt_ld_shift(nfp_prog);
2682 	nfp_bpf_opt_ldst_gather(nfp_prog);
2683 
2684 	return 0;
2685 }
2686 
2687 static int nfp_bpf_ustore_calc(struct nfp_prog *nfp_prog, __le64 *ustore)
2688 {
2689 	int i;
2690 
2691 	for (i = 0; i < nfp_prog->prog_len; i++) {
2692 		int err;
2693 
2694 		err = nfp_ustore_check_valid_no_ecc(nfp_prog->prog[i]);
2695 		if (err)
2696 			return err;
2697 
2698 		nfp_prog->prog[i] = nfp_ustore_calc_ecc_insn(nfp_prog->prog[i]);
2699 
2700 		ustore[i] = cpu_to_le64(nfp_prog->prog[i]);
2701 	}
2702 
2703 	return 0;
2704 }
2705 
2706 int nfp_bpf_jit(struct nfp_prog *nfp_prog)
2707 {
2708 	int ret;
2709 
2710 	ret = nfp_bpf_optimize(nfp_prog);
2711 	if (ret)
2712 		return ret;
2713 
2714 	ret = nfp_translate(nfp_prog);
2715 	if (ret) {
2716 		pr_err("Translation failed with error %d (translated: %u)\n",
2717 		       ret, nfp_prog->n_translated);
2718 		return -EINVAL;
2719 	}
2720 
2721 	return nfp_bpf_ustore_calc(nfp_prog, (__force __le64 *)nfp_prog->prog);
2722 }
2723