xref: /openbmc/linux/drivers/net/ethernet/neterion/s2io.c (revision f677b30b487ca3763c3de3f1b4d8c976c2961cd1)
1 /************************************************************************
2  * s2io.c: A Linux PCI-X Ethernet driver for Neterion 10GbE Server NIC
3  * Copyright(c) 2002-2010 Exar Corp.
4  *
5  * This software may be used and distributed according to the terms of
6  * the GNU General Public License (GPL), incorporated herein by reference.
7  * Drivers based on or derived from this code fall under the GPL and must
8  * retain the authorship, copyright and license notice.  This file is not
9  * a complete program and may only be used when the entire operating
10  * system is licensed under the GPL.
11  * See the file COPYING in this distribution for more information.
12  *
13  * Credits:
14  * Jeff Garzik		: For pointing out the improper error condition
15  *			  check in the s2io_xmit routine and also some
16  *			  issues in the Tx watch dog function. Also for
17  *			  patiently answering all those innumerable
18  *			  questions regaring the 2.6 porting issues.
19  * Stephen Hemminger	: Providing proper 2.6 porting mechanism for some
20  *			  macros available only in 2.6 Kernel.
21  * Francois Romieu	: For pointing out all code part that were
22  *			  deprecated and also styling related comments.
23  * Grant Grundler	: For helping me get rid of some Architecture
24  *			  dependent code.
25  * Christopher Hellwig	: Some more 2.6 specific issues in the driver.
26  *
27  * The module loadable parameters that are supported by the driver and a brief
28  * explanation of all the variables.
29  *
30  * rx_ring_num : This can be used to program the number of receive rings used
31  * in the driver.
32  * rx_ring_sz: This defines the number of receive blocks each ring can have.
33  *     This is also an array of size 8.
34  * rx_ring_mode: This defines the operation mode of all 8 rings. The valid
35  *		values are 1, 2.
36  * tx_fifo_num: This defines the number of Tx FIFOs thats used int the driver.
37  * tx_fifo_len: This too is an array of 8. Each element defines the number of
38  * Tx descriptors that can be associated with each corresponding FIFO.
39  * intr_type: This defines the type of interrupt. The values can be 0(INTA),
40  *     2(MSI_X). Default value is '2(MSI_X)'
41  * lro_max_pkts: This parameter defines maximum number of packets can be
42  *     aggregated as a single large packet
43  * napi: This parameter used to enable/disable NAPI (polling Rx)
44  *     Possible values '1' for enable and '0' for disable. Default is '1'
45  * ufo: This parameter used to enable/disable UDP Fragmentation Offload(UFO)
46  *      Possible values '1' for enable and '0' for disable. Default is '0'
47  * vlan_tag_strip: This can be used to enable or disable vlan stripping.
48  *                 Possible values '1' for enable , '0' for disable.
49  *                 Default is '2' - which means disable in promisc mode
50  *                 and enable in non-promiscuous mode.
51  * multiq: This parameter used to enable/disable MULTIQUEUE support.
52  *      Possible values '1' for enable and '0' for disable. Default is '0'
53  ************************************************************************/
54 
55 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
56 
57 #include <linux/module.h>
58 #include <linux/types.h>
59 #include <linux/errno.h>
60 #include <linux/ioport.h>
61 #include <linux/pci.h>
62 #include <linux/dma-mapping.h>
63 #include <linux/kernel.h>
64 #include <linux/netdevice.h>
65 #include <linux/etherdevice.h>
66 #include <linux/mdio.h>
67 #include <linux/skbuff.h>
68 #include <linux/init.h>
69 #include <linux/delay.h>
70 #include <linux/stddef.h>
71 #include <linux/ioctl.h>
72 #include <linux/timex.h>
73 #include <linux/ethtool.h>
74 #include <linux/workqueue.h>
75 #include <linux/if_vlan.h>
76 #include <linux/ip.h>
77 #include <linux/tcp.h>
78 #include <linux/uaccess.h>
79 #include <linux/io.h>
80 #include <linux/slab.h>
81 #include <linux/prefetch.h>
82 #include <net/tcp.h>
83 #include <net/checksum.h>
84 
85 #include <asm/div64.h>
86 #include <asm/irq.h>
87 
88 /* local include */
89 #include "s2io.h"
90 #include "s2io-regs.h"
91 
92 #define DRV_VERSION "2.0.26.28"
93 
94 /* S2io Driver name & version. */
95 static const char s2io_driver_name[] = "Neterion";
96 static const char s2io_driver_version[] = DRV_VERSION;
97 
98 static const int rxd_size[2] = {32, 48};
99 static const int rxd_count[2] = {127, 85};
100 
101 static inline int RXD_IS_UP2DT(struct RxD_t *rxdp)
102 {
103 	int ret;
104 
105 	ret = ((!(rxdp->Control_1 & RXD_OWN_XENA)) &&
106 	       (GET_RXD_MARKER(rxdp->Control_2) != THE_RXD_MARK));
107 
108 	return ret;
109 }
110 
111 /*
112  * Cards with following subsystem_id have a link state indication
113  * problem, 600B, 600C, 600D, 640B, 640C and 640D.
114  * macro below identifies these cards given the subsystem_id.
115  */
116 #define CARDS_WITH_FAULTY_LINK_INDICATORS(dev_type, subid)		\
117 	(dev_type == XFRAME_I_DEVICE) ?					\
118 	((((subid >= 0x600B) && (subid <= 0x600D)) ||			\
119 	  ((subid >= 0x640B) && (subid <= 0x640D))) ? 1 : 0) : 0
120 
121 #define LINK_IS_UP(val64) (!(val64 & (ADAPTER_STATUS_RMAC_REMOTE_FAULT | \
122 				      ADAPTER_STATUS_RMAC_LOCAL_FAULT)))
123 
124 static inline int is_s2io_card_up(const struct s2io_nic *sp)
125 {
126 	return test_bit(__S2IO_STATE_CARD_UP, &sp->state);
127 }
128 
129 /* Ethtool related variables and Macros. */
130 static const char s2io_gstrings[][ETH_GSTRING_LEN] = {
131 	"Register test\t(offline)",
132 	"Eeprom test\t(offline)",
133 	"Link test\t(online)",
134 	"RLDRAM test\t(offline)",
135 	"BIST Test\t(offline)"
136 };
137 
138 static const char ethtool_xena_stats_keys[][ETH_GSTRING_LEN] = {
139 	{"tmac_frms"},
140 	{"tmac_data_octets"},
141 	{"tmac_drop_frms"},
142 	{"tmac_mcst_frms"},
143 	{"tmac_bcst_frms"},
144 	{"tmac_pause_ctrl_frms"},
145 	{"tmac_ttl_octets"},
146 	{"tmac_ucst_frms"},
147 	{"tmac_nucst_frms"},
148 	{"tmac_any_err_frms"},
149 	{"tmac_ttl_less_fb_octets"},
150 	{"tmac_vld_ip_octets"},
151 	{"tmac_vld_ip"},
152 	{"tmac_drop_ip"},
153 	{"tmac_icmp"},
154 	{"tmac_rst_tcp"},
155 	{"tmac_tcp"},
156 	{"tmac_udp"},
157 	{"rmac_vld_frms"},
158 	{"rmac_data_octets"},
159 	{"rmac_fcs_err_frms"},
160 	{"rmac_drop_frms"},
161 	{"rmac_vld_mcst_frms"},
162 	{"rmac_vld_bcst_frms"},
163 	{"rmac_in_rng_len_err_frms"},
164 	{"rmac_out_rng_len_err_frms"},
165 	{"rmac_long_frms"},
166 	{"rmac_pause_ctrl_frms"},
167 	{"rmac_unsup_ctrl_frms"},
168 	{"rmac_ttl_octets"},
169 	{"rmac_accepted_ucst_frms"},
170 	{"rmac_accepted_nucst_frms"},
171 	{"rmac_discarded_frms"},
172 	{"rmac_drop_events"},
173 	{"rmac_ttl_less_fb_octets"},
174 	{"rmac_ttl_frms"},
175 	{"rmac_usized_frms"},
176 	{"rmac_osized_frms"},
177 	{"rmac_frag_frms"},
178 	{"rmac_jabber_frms"},
179 	{"rmac_ttl_64_frms"},
180 	{"rmac_ttl_65_127_frms"},
181 	{"rmac_ttl_128_255_frms"},
182 	{"rmac_ttl_256_511_frms"},
183 	{"rmac_ttl_512_1023_frms"},
184 	{"rmac_ttl_1024_1518_frms"},
185 	{"rmac_ip"},
186 	{"rmac_ip_octets"},
187 	{"rmac_hdr_err_ip"},
188 	{"rmac_drop_ip"},
189 	{"rmac_icmp"},
190 	{"rmac_tcp"},
191 	{"rmac_udp"},
192 	{"rmac_err_drp_udp"},
193 	{"rmac_xgmii_err_sym"},
194 	{"rmac_frms_q0"},
195 	{"rmac_frms_q1"},
196 	{"rmac_frms_q2"},
197 	{"rmac_frms_q3"},
198 	{"rmac_frms_q4"},
199 	{"rmac_frms_q5"},
200 	{"rmac_frms_q6"},
201 	{"rmac_frms_q7"},
202 	{"rmac_full_q0"},
203 	{"rmac_full_q1"},
204 	{"rmac_full_q2"},
205 	{"rmac_full_q3"},
206 	{"rmac_full_q4"},
207 	{"rmac_full_q5"},
208 	{"rmac_full_q6"},
209 	{"rmac_full_q7"},
210 	{"rmac_pause_cnt"},
211 	{"rmac_xgmii_data_err_cnt"},
212 	{"rmac_xgmii_ctrl_err_cnt"},
213 	{"rmac_accepted_ip"},
214 	{"rmac_err_tcp"},
215 	{"rd_req_cnt"},
216 	{"new_rd_req_cnt"},
217 	{"new_rd_req_rtry_cnt"},
218 	{"rd_rtry_cnt"},
219 	{"wr_rtry_rd_ack_cnt"},
220 	{"wr_req_cnt"},
221 	{"new_wr_req_cnt"},
222 	{"new_wr_req_rtry_cnt"},
223 	{"wr_rtry_cnt"},
224 	{"wr_disc_cnt"},
225 	{"rd_rtry_wr_ack_cnt"},
226 	{"txp_wr_cnt"},
227 	{"txd_rd_cnt"},
228 	{"txd_wr_cnt"},
229 	{"rxd_rd_cnt"},
230 	{"rxd_wr_cnt"},
231 	{"txf_rd_cnt"},
232 	{"rxf_wr_cnt"}
233 };
234 
235 static const char ethtool_enhanced_stats_keys[][ETH_GSTRING_LEN] = {
236 	{"rmac_ttl_1519_4095_frms"},
237 	{"rmac_ttl_4096_8191_frms"},
238 	{"rmac_ttl_8192_max_frms"},
239 	{"rmac_ttl_gt_max_frms"},
240 	{"rmac_osized_alt_frms"},
241 	{"rmac_jabber_alt_frms"},
242 	{"rmac_gt_max_alt_frms"},
243 	{"rmac_vlan_frms"},
244 	{"rmac_len_discard"},
245 	{"rmac_fcs_discard"},
246 	{"rmac_pf_discard"},
247 	{"rmac_da_discard"},
248 	{"rmac_red_discard"},
249 	{"rmac_rts_discard"},
250 	{"rmac_ingm_full_discard"},
251 	{"link_fault_cnt"}
252 };
253 
254 static const char ethtool_driver_stats_keys[][ETH_GSTRING_LEN] = {
255 	{"\n DRIVER STATISTICS"},
256 	{"single_bit_ecc_errs"},
257 	{"double_bit_ecc_errs"},
258 	{"parity_err_cnt"},
259 	{"serious_err_cnt"},
260 	{"soft_reset_cnt"},
261 	{"fifo_full_cnt"},
262 	{"ring_0_full_cnt"},
263 	{"ring_1_full_cnt"},
264 	{"ring_2_full_cnt"},
265 	{"ring_3_full_cnt"},
266 	{"ring_4_full_cnt"},
267 	{"ring_5_full_cnt"},
268 	{"ring_6_full_cnt"},
269 	{"ring_7_full_cnt"},
270 	{"alarm_transceiver_temp_high"},
271 	{"alarm_transceiver_temp_low"},
272 	{"alarm_laser_bias_current_high"},
273 	{"alarm_laser_bias_current_low"},
274 	{"alarm_laser_output_power_high"},
275 	{"alarm_laser_output_power_low"},
276 	{"warn_transceiver_temp_high"},
277 	{"warn_transceiver_temp_low"},
278 	{"warn_laser_bias_current_high"},
279 	{"warn_laser_bias_current_low"},
280 	{"warn_laser_output_power_high"},
281 	{"warn_laser_output_power_low"},
282 	{"lro_aggregated_pkts"},
283 	{"lro_flush_both_count"},
284 	{"lro_out_of_sequence_pkts"},
285 	{"lro_flush_due_to_max_pkts"},
286 	{"lro_avg_aggr_pkts"},
287 	{"mem_alloc_fail_cnt"},
288 	{"pci_map_fail_cnt"},
289 	{"watchdog_timer_cnt"},
290 	{"mem_allocated"},
291 	{"mem_freed"},
292 	{"link_up_cnt"},
293 	{"link_down_cnt"},
294 	{"link_up_time"},
295 	{"link_down_time"},
296 	{"tx_tcode_buf_abort_cnt"},
297 	{"tx_tcode_desc_abort_cnt"},
298 	{"tx_tcode_parity_err_cnt"},
299 	{"tx_tcode_link_loss_cnt"},
300 	{"tx_tcode_list_proc_err_cnt"},
301 	{"rx_tcode_parity_err_cnt"},
302 	{"rx_tcode_abort_cnt"},
303 	{"rx_tcode_parity_abort_cnt"},
304 	{"rx_tcode_rda_fail_cnt"},
305 	{"rx_tcode_unkn_prot_cnt"},
306 	{"rx_tcode_fcs_err_cnt"},
307 	{"rx_tcode_buf_size_err_cnt"},
308 	{"rx_tcode_rxd_corrupt_cnt"},
309 	{"rx_tcode_unkn_err_cnt"},
310 	{"tda_err_cnt"},
311 	{"pfc_err_cnt"},
312 	{"pcc_err_cnt"},
313 	{"tti_err_cnt"},
314 	{"tpa_err_cnt"},
315 	{"sm_err_cnt"},
316 	{"lso_err_cnt"},
317 	{"mac_tmac_err_cnt"},
318 	{"mac_rmac_err_cnt"},
319 	{"xgxs_txgxs_err_cnt"},
320 	{"xgxs_rxgxs_err_cnt"},
321 	{"rc_err_cnt"},
322 	{"prc_pcix_err_cnt"},
323 	{"rpa_err_cnt"},
324 	{"rda_err_cnt"},
325 	{"rti_err_cnt"},
326 	{"mc_err_cnt"}
327 };
328 
329 #define S2IO_XENA_STAT_LEN	ARRAY_SIZE(ethtool_xena_stats_keys)
330 #define S2IO_ENHANCED_STAT_LEN	ARRAY_SIZE(ethtool_enhanced_stats_keys)
331 #define S2IO_DRIVER_STAT_LEN	ARRAY_SIZE(ethtool_driver_stats_keys)
332 
333 #define XFRAME_I_STAT_LEN (S2IO_XENA_STAT_LEN + S2IO_DRIVER_STAT_LEN)
334 #define XFRAME_II_STAT_LEN (XFRAME_I_STAT_LEN + S2IO_ENHANCED_STAT_LEN)
335 
336 #define XFRAME_I_STAT_STRINGS_LEN (XFRAME_I_STAT_LEN * ETH_GSTRING_LEN)
337 #define XFRAME_II_STAT_STRINGS_LEN (XFRAME_II_STAT_LEN * ETH_GSTRING_LEN)
338 
339 #define S2IO_TEST_LEN	ARRAY_SIZE(s2io_gstrings)
340 #define S2IO_STRINGS_LEN	(S2IO_TEST_LEN * ETH_GSTRING_LEN)
341 
342 #define S2IO_TIMER_CONF(timer, handle, arg, exp)	\
343 	init_timer(&timer);				\
344 	timer.function = handle;			\
345 	timer.data = (unsigned long)arg;		\
346 	mod_timer(&timer, (jiffies + exp))		\
347 
348 /* copy mac addr to def_mac_addr array */
349 static void do_s2io_copy_mac_addr(struct s2io_nic *sp, int offset, u64 mac_addr)
350 {
351 	sp->def_mac_addr[offset].mac_addr[5] = (u8) (mac_addr);
352 	sp->def_mac_addr[offset].mac_addr[4] = (u8) (mac_addr >> 8);
353 	sp->def_mac_addr[offset].mac_addr[3] = (u8) (mac_addr >> 16);
354 	sp->def_mac_addr[offset].mac_addr[2] = (u8) (mac_addr >> 24);
355 	sp->def_mac_addr[offset].mac_addr[1] = (u8) (mac_addr >> 32);
356 	sp->def_mac_addr[offset].mac_addr[0] = (u8) (mac_addr >> 40);
357 }
358 
359 /*
360  * Constants to be programmed into the Xena's registers, to configure
361  * the XAUI.
362  */
363 
364 #define	END_SIGN	0x0
365 static const u64 herc_act_dtx_cfg[] = {
366 	/* Set address */
367 	0x8000051536750000ULL, 0x80000515367500E0ULL,
368 	/* Write data */
369 	0x8000051536750004ULL, 0x80000515367500E4ULL,
370 	/* Set address */
371 	0x80010515003F0000ULL, 0x80010515003F00E0ULL,
372 	/* Write data */
373 	0x80010515003F0004ULL, 0x80010515003F00E4ULL,
374 	/* Set address */
375 	0x801205150D440000ULL, 0x801205150D4400E0ULL,
376 	/* Write data */
377 	0x801205150D440004ULL, 0x801205150D4400E4ULL,
378 	/* Set address */
379 	0x80020515F2100000ULL, 0x80020515F21000E0ULL,
380 	/* Write data */
381 	0x80020515F2100004ULL, 0x80020515F21000E4ULL,
382 	/* Done */
383 	END_SIGN
384 };
385 
386 static const u64 xena_dtx_cfg[] = {
387 	/* Set address */
388 	0x8000051500000000ULL, 0x80000515000000E0ULL,
389 	/* Write data */
390 	0x80000515D9350004ULL, 0x80000515D93500E4ULL,
391 	/* Set address */
392 	0x8001051500000000ULL, 0x80010515000000E0ULL,
393 	/* Write data */
394 	0x80010515001E0004ULL, 0x80010515001E00E4ULL,
395 	/* Set address */
396 	0x8002051500000000ULL, 0x80020515000000E0ULL,
397 	/* Write data */
398 	0x80020515F2100004ULL, 0x80020515F21000E4ULL,
399 	END_SIGN
400 };
401 
402 /*
403  * Constants for Fixing the MacAddress problem seen mostly on
404  * Alpha machines.
405  */
406 static const u64 fix_mac[] = {
407 	0x0060000000000000ULL, 0x0060600000000000ULL,
408 	0x0040600000000000ULL, 0x0000600000000000ULL,
409 	0x0020600000000000ULL, 0x0060600000000000ULL,
410 	0x0020600000000000ULL, 0x0060600000000000ULL,
411 	0x0020600000000000ULL, 0x0060600000000000ULL,
412 	0x0020600000000000ULL, 0x0060600000000000ULL,
413 	0x0020600000000000ULL, 0x0060600000000000ULL,
414 	0x0020600000000000ULL, 0x0060600000000000ULL,
415 	0x0020600000000000ULL, 0x0060600000000000ULL,
416 	0x0020600000000000ULL, 0x0060600000000000ULL,
417 	0x0020600000000000ULL, 0x0060600000000000ULL,
418 	0x0020600000000000ULL, 0x0060600000000000ULL,
419 	0x0020600000000000ULL, 0x0000600000000000ULL,
420 	0x0040600000000000ULL, 0x0060600000000000ULL,
421 	END_SIGN
422 };
423 
424 MODULE_LICENSE("GPL");
425 MODULE_VERSION(DRV_VERSION);
426 
427 
428 /* Module Loadable parameters. */
429 S2IO_PARM_INT(tx_fifo_num, FIFO_DEFAULT_NUM);
430 S2IO_PARM_INT(rx_ring_num, 1);
431 S2IO_PARM_INT(multiq, 0);
432 S2IO_PARM_INT(rx_ring_mode, 1);
433 S2IO_PARM_INT(use_continuous_tx_intrs, 1);
434 S2IO_PARM_INT(rmac_pause_time, 0x100);
435 S2IO_PARM_INT(mc_pause_threshold_q0q3, 187);
436 S2IO_PARM_INT(mc_pause_threshold_q4q7, 187);
437 S2IO_PARM_INT(shared_splits, 0);
438 S2IO_PARM_INT(tmac_util_period, 5);
439 S2IO_PARM_INT(rmac_util_period, 5);
440 S2IO_PARM_INT(l3l4hdr_size, 128);
441 /* 0 is no steering, 1 is Priority steering, 2 is Default steering */
442 S2IO_PARM_INT(tx_steering_type, TX_DEFAULT_STEERING);
443 /* Frequency of Rx desc syncs expressed as power of 2 */
444 S2IO_PARM_INT(rxsync_frequency, 3);
445 /* Interrupt type. Values can be 0(INTA), 2(MSI_X) */
446 S2IO_PARM_INT(intr_type, 2);
447 /* Large receive offload feature */
448 
449 /* Max pkts to be aggregated by LRO at one time. If not specified,
450  * aggregation happens until we hit max IP pkt size(64K)
451  */
452 S2IO_PARM_INT(lro_max_pkts, 0xFFFF);
453 S2IO_PARM_INT(indicate_max_pkts, 0);
454 
455 S2IO_PARM_INT(napi, 1);
456 S2IO_PARM_INT(ufo, 0);
457 S2IO_PARM_INT(vlan_tag_strip, NO_STRIP_IN_PROMISC);
458 
459 static unsigned int tx_fifo_len[MAX_TX_FIFOS] =
460 {DEFAULT_FIFO_0_LEN, [1 ...(MAX_TX_FIFOS - 1)] = DEFAULT_FIFO_1_7_LEN};
461 static unsigned int rx_ring_sz[MAX_RX_RINGS] =
462 {[0 ...(MAX_RX_RINGS - 1)] = SMALL_BLK_CNT};
463 static unsigned int rts_frm_len[MAX_RX_RINGS] =
464 {[0 ...(MAX_RX_RINGS - 1)] = 0 };
465 
466 module_param_array(tx_fifo_len, uint, NULL, 0);
467 module_param_array(rx_ring_sz, uint, NULL, 0);
468 module_param_array(rts_frm_len, uint, NULL, 0);
469 
470 /*
471  * S2IO device table.
472  * This table lists all the devices that this driver supports.
473  */
474 static DEFINE_PCI_DEVICE_TABLE(s2io_tbl) = {
475 	{PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_WIN,
476 	 PCI_ANY_ID, PCI_ANY_ID},
477 	{PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_UNI,
478 	 PCI_ANY_ID, PCI_ANY_ID},
479 	{PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_WIN,
480 	 PCI_ANY_ID, PCI_ANY_ID},
481 	{PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_UNI,
482 	 PCI_ANY_ID, PCI_ANY_ID},
483 	{0,}
484 };
485 
486 MODULE_DEVICE_TABLE(pci, s2io_tbl);
487 
488 static const struct pci_error_handlers s2io_err_handler = {
489 	.error_detected = s2io_io_error_detected,
490 	.slot_reset = s2io_io_slot_reset,
491 	.resume = s2io_io_resume,
492 };
493 
494 static struct pci_driver s2io_driver = {
495 	.name = "S2IO",
496 	.id_table = s2io_tbl,
497 	.probe = s2io_init_nic,
498 	.remove = s2io_rem_nic,
499 	.err_handler = &s2io_err_handler,
500 };
501 
502 /* A simplifier macro used both by init and free shared_mem Fns(). */
503 #define TXD_MEM_PAGE_CNT(len, per_each) ((len+per_each - 1) / per_each)
504 
505 /* netqueue manipulation helper functions */
506 static inline void s2io_stop_all_tx_queue(struct s2io_nic *sp)
507 {
508 	if (!sp->config.multiq) {
509 		int i;
510 
511 		for (i = 0; i < sp->config.tx_fifo_num; i++)
512 			sp->mac_control.fifos[i].queue_state = FIFO_QUEUE_STOP;
513 	}
514 	netif_tx_stop_all_queues(sp->dev);
515 }
516 
517 static inline void s2io_stop_tx_queue(struct s2io_nic *sp, int fifo_no)
518 {
519 	if (!sp->config.multiq)
520 		sp->mac_control.fifos[fifo_no].queue_state =
521 			FIFO_QUEUE_STOP;
522 
523 	netif_tx_stop_all_queues(sp->dev);
524 }
525 
526 static inline void s2io_start_all_tx_queue(struct s2io_nic *sp)
527 {
528 	if (!sp->config.multiq) {
529 		int i;
530 
531 		for (i = 0; i < sp->config.tx_fifo_num; i++)
532 			sp->mac_control.fifos[i].queue_state = FIFO_QUEUE_START;
533 	}
534 	netif_tx_start_all_queues(sp->dev);
535 }
536 
537 static inline void s2io_start_tx_queue(struct s2io_nic *sp, int fifo_no)
538 {
539 	if (!sp->config.multiq)
540 		sp->mac_control.fifos[fifo_no].queue_state =
541 			FIFO_QUEUE_START;
542 
543 	netif_tx_start_all_queues(sp->dev);
544 }
545 
546 static inline void s2io_wake_all_tx_queue(struct s2io_nic *sp)
547 {
548 	if (!sp->config.multiq) {
549 		int i;
550 
551 		for (i = 0; i < sp->config.tx_fifo_num; i++)
552 			sp->mac_control.fifos[i].queue_state = FIFO_QUEUE_START;
553 	}
554 	netif_tx_wake_all_queues(sp->dev);
555 }
556 
557 static inline void s2io_wake_tx_queue(
558 	struct fifo_info *fifo, int cnt, u8 multiq)
559 {
560 
561 	if (multiq) {
562 		if (cnt && __netif_subqueue_stopped(fifo->dev, fifo->fifo_no))
563 			netif_wake_subqueue(fifo->dev, fifo->fifo_no);
564 	} else if (cnt && (fifo->queue_state == FIFO_QUEUE_STOP)) {
565 		if (netif_queue_stopped(fifo->dev)) {
566 			fifo->queue_state = FIFO_QUEUE_START;
567 			netif_wake_queue(fifo->dev);
568 		}
569 	}
570 }
571 
572 /**
573  * init_shared_mem - Allocation and Initialization of Memory
574  * @nic: Device private variable.
575  * Description: The function allocates all the memory areas shared
576  * between the NIC and the driver. This includes Tx descriptors,
577  * Rx descriptors and the statistics block.
578  */
579 
580 static int init_shared_mem(struct s2io_nic *nic)
581 {
582 	u32 size;
583 	void *tmp_v_addr, *tmp_v_addr_next;
584 	dma_addr_t tmp_p_addr, tmp_p_addr_next;
585 	struct RxD_block *pre_rxd_blk = NULL;
586 	int i, j, blk_cnt;
587 	int lst_size, lst_per_page;
588 	struct net_device *dev = nic->dev;
589 	unsigned long tmp;
590 	struct buffAdd *ba;
591 	struct config_param *config = &nic->config;
592 	struct mac_info *mac_control = &nic->mac_control;
593 	unsigned long long mem_allocated = 0;
594 
595 	/* Allocation and initialization of TXDLs in FIFOs */
596 	size = 0;
597 	for (i = 0; i < config->tx_fifo_num; i++) {
598 		struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
599 
600 		size += tx_cfg->fifo_len;
601 	}
602 	if (size > MAX_AVAILABLE_TXDS) {
603 		DBG_PRINT(ERR_DBG,
604 			  "Too many TxDs requested: %d, max supported: %d\n",
605 			  size, MAX_AVAILABLE_TXDS);
606 		return -EINVAL;
607 	}
608 
609 	size = 0;
610 	for (i = 0; i < config->tx_fifo_num; i++) {
611 		struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
612 
613 		size = tx_cfg->fifo_len;
614 		/*
615 		 * Legal values are from 2 to 8192
616 		 */
617 		if (size < 2) {
618 			DBG_PRINT(ERR_DBG, "Fifo %d: Invalid length (%d) - "
619 				  "Valid lengths are 2 through 8192\n",
620 				  i, size);
621 			return -EINVAL;
622 		}
623 	}
624 
625 	lst_size = (sizeof(struct TxD) * config->max_txds);
626 	lst_per_page = PAGE_SIZE / lst_size;
627 
628 	for (i = 0; i < config->tx_fifo_num; i++) {
629 		struct fifo_info *fifo = &mac_control->fifos[i];
630 		struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
631 		int fifo_len = tx_cfg->fifo_len;
632 		int list_holder_size = fifo_len * sizeof(struct list_info_hold);
633 
634 		fifo->list_info = kzalloc(list_holder_size, GFP_KERNEL);
635 		if (!fifo->list_info) {
636 			DBG_PRINT(INFO_DBG, "Malloc failed for list_info\n");
637 			return -ENOMEM;
638 		}
639 		mem_allocated += list_holder_size;
640 	}
641 	for (i = 0; i < config->tx_fifo_num; i++) {
642 		int page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len,
643 						lst_per_page);
644 		struct fifo_info *fifo = &mac_control->fifos[i];
645 		struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
646 
647 		fifo->tx_curr_put_info.offset = 0;
648 		fifo->tx_curr_put_info.fifo_len = tx_cfg->fifo_len - 1;
649 		fifo->tx_curr_get_info.offset = 0;
650 		fifo->tx_curr_get_info.fifo_len = tx_cfg->fifo_len - 1;
651 		fifo->fifo_no = i;
652 		fifo->nic = nic;
653 		fifo->max_txds = MAX_SKB_FRAGS + 2;
654 		fifo->dev = dev;
655 
656 		for (j = 0; j < page_num; j++) {
657 			int k = 0;
658 			dma_addr_t tmp_p;
659 			void *tmp_v;
660 			tmp_v = pci_alloc_consistent(nic->pdev,
661 						     PAGE_SIZE, &tmp_p);
662 			if (!tmp_v) {
663 				DBG_PRINT(INFO_DBG,
664 					  "pci_alloc_consistent failed for TxDL\n");
665 				return -ENOMEM;
666 			}
667 			/* If we got a zero DMA address(can happen on
668 			 * certain platforms like PPC), reallocate.
669 			 * Store virtual address of page we don't want,
670 			 * to be freed later.
671 			 */
672 			if (!tmp_p) {
673 				mac_control->zerodma_virt_addr = tmp_v;
674 				DBG_PRINT(INIT_DBG,
675 					  "%s: Zero DMA address for TxDL. "
676 					  "Virtual address %p\n",
677 					  dev->name, tmp_v);
678 				tmp_v = pci_alloc_consistent(nic->pdev,
679 							     PAGE_SIZE, &tmp_p);
680 				if (!tmp_v) {
681 					DBG_PRINT(INFO_DBG,
682 						  "pci_alloc_consistent failed for TxDL\n");
683 					return -ENOMEM;
684 				}
685 				mem_allocated += PAGE_SIZE;
686 			}
687 			while (k < lst_per_page) {
688 				int l = (j * lst_per_page) + k;
689 				if (l == tx_cfg->fifo_len)
690 					break;
691 				fifo->list_info[l].list_virt_addr =
692 					tmp_v + (k * lst_size);
693 				fifo->list_info[l].list_phy_addr =
694 					tmp_p + (k * lst_size);
695 				k++;
696 			}
697 		}
698 	}
699 
700 	for (i = 0; i < config->tx_fifo_num; i++) {
701 		struct fifo_info *fifo = &mac_control->fifos[i];
702 		struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
703 
704 		size = tx_cfg->fifo_len;
705 		fifo->ufo_in_band_v = kcalloc(size, sizeof(u64), GFP_KERNEL);
706 		if (!fifo->ufo_in_band_v)
707 			return -ENOMEM;
708 		mem_allocated += (size * sizeof(u64));
709 	}
710 
711 	/* Allocation and initialization of RXDs in Rings */
712 	size = 0;
713 	for (i = 0; i < config->rx_ring_num; i++) {
714 		struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
715 		struct ring_info *ring = &mac_control->rings[i];
716 
717 		if (rx_cfg->num_rxd % (rxd_count[nic->rxd_mode] + 1)) {
718 			DBG_PRINT(ERR_DBG, "%s: Ring%d RxD count is not a "
719 				  "multiple of RxDs per Block\n",
720 				  dev->name, i);
721 			return FAILURE;
722 		}
723 		size += rx_cfg->num_rxd;
724 		ring->block_count = rx_cfg->num_rxd /
725 			(rxd_count[nic->rxd_mode] + 1);
726 		ring->pkt_cnt = rx_cfg->num_rxd - ring->block_count;
727 	}
728 	if (nic->rxd_mode == RXD_MODE_1)
729 		size = (size * (sizeof(struct RxD1)));
730 	else
731 		size = (size * (sizeof(struct RxD3)));
732 
733 	for (i = 0; i < config->rx_ring_num; i++) {
734 		struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
735 		struct ring_info *ring = &mac_control->rings[i];
736 
737 		ring->rx_curr_get_info.block_index = 0;
738 		ring->rx_curr_get_info.offset = 0;
739 		ring->rx_curr_get_info.ring_len = rx_cfg->num_rxd - 1;
740 		ring->rx_curr_put_info.block_index = 0;
741 		ring->rx_curr_put_info.offset = 0;
742 		ring->rx_curr_put_info.ring_len = rx_cfg->num_rxd - 1;
743 		ring->nic = nic;
744 		ring->ring_no = i;
745 
746 		blk_cnt = rx_cfg->num_rxd / (rxd_count[nic->rxd_mode] + 1);
747 		/*  Allocating all the Rx blocks */
748 		for (j = 0; j < blk_cnt; j++) {
749 			struct rx_block_info *rx_blocks;
750 			int l;
751 
752 			rx_blocks = &ring->rx_blocks[j];
753 			size = SIZE_OF_BLOCK;	/* size is always page size */
754 			tmp_v_addr = pci_alloc_consistent(nic->pdev, size,
755 							  &tmp_p_addr);
756 			if (tmp_v_addr == NULL) {
757 				/*
758 				 * In case of failure, free_shared_mem()
759 				 * is called, which should free any
760 				 * memory that was alloced till the
761 				 * failure happened.
762 				 */
763 				rx_blocks->block_virt_addr = tmp_v_addr;
764 				return -ENOMEM;
765 			}
766 			mem_allocated += size;
767 			memset(tmp_v_addr, 0, size);
768 
769 			size = sizeof(struct rxd_info) *
770 				rxd_count[nic->rxd_mode];
771 			rx_blocks->block_virt_addr = tmp_v_addr;
772 			rx_blocks->block_dma_addr = tmp_p_addr;
773 			rx_blocks->rxds = kmalloc(size,  GFP_KERNEL);
774 			if (!rx_blocks->rxds)
775 				return -ENOMEM;
776 			mem_allocated += size;
777 			for (l = 0; l < rxd_count[nic->rxd_mode]; l++) {
778 				rx_blocks->rxds[l].virt_addr =
779 					rx_blocks->block_virt_addr +
780 					(rxd_size[nic->rxd_mode] * l);
781 				rx_blocks->rxds[l].dma_addr =
782 					rx_blocks->block_dma_addr +
783 					(rxd_size[nic->rxd_mode] * l);
784 			}
785 		}
786 		/* Interlinking all Rx Blocks */
787 		for (j = 0; j < blk_cnt; j++) {
788 			int next = (j + 1) % blk_cnt;
789 			tmp_v_addr = ring->rx_blocks[j].block_virt_addr;
790 			tmp_v_addr_next = ring->rx_blocks[next].block_virt_addr;
791 			tmp_p_addr = ring->rx_blocks[j].block_dma_addr;
792 			tmp_p_addr_next = ring->rx_blocks[next].block_dma_addr;
793 
794 			pre_rxd_blk = tmp_v_addr;
795 			pre_rxd_blk->reserved_2_pNext_RxD_block =
796 				(unsigned long)tmp_v_addr_next;
797 			pre_rxd_blk->pNext_RxD_Blk_physical =
798 				(u64)tmp_p_addr_next;
799 		}
800 	}
801 	if (nic->rxd_mode == RXD_MODE_3B) {
802 		/*
803 		 * Allocation of Storages for buffer addresses in 2BUFF mode
804 		 * and the buffers as well.
805 		 */
806 		for (i = 0; i < config->rx_ring_num; i++) {
807 			struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
808 			struct ring_info *ring = &mac_control->rings[i];
809 
810 			blk_cnt = rx_cfg->num_rxd /
811 				(rxd_count[nic->rxd_mode] + 1);
812 			size = sizeof(struct buffAdd *) * blk_cnt;
813 			ring->ba = kmalloc(size, GFP_KERNEL);
814 			if (!ring->ba)
815 				return -ENOMEM;
816 			mem_allocated += size;
817 			for (j = 0; j < blk_cnt; j++) {
818 				int k = 0;
819 
820 				size = sizeof(struct buffAdd) *
821 					(rxd_count[nic->rxd_mode] + 1);
822 				ring->ba[j] = kmalloc(size, GFP_KERNEL);
823 				if (!ring->ba[j])
824 					return -ENOMEM;
825 				mem_allocated += size;
826 				while (k != rxd_count[nic->rxd_mode]) {
827 					ba = &ring->ba[j][k];
828 					size = BUF0_LEN + ALIGN_SIZE;
829 					ba->ba_0_org = kmalloc(size, GFP_KERNEL);
830 					if (!ba->ba_0_org)
831 						return -ENOMEM;
832 					mem_allocated += size;
833 					tmp = (unsigned long)ba->ba_0_org;
834 					tmp += ALIGN_SIZE;
835 					tmp &= ~((unsigned long)ALIGN_SIZE);
836 					ba->ba_0 = (void *)tmp;
837 
838 					size = BUF1_LEN + ALIGN_SIZE;
839 					ba->ba_1_org = kmalloc(size, GFP_KERNEL);
840 					if (!ba->ba_1_org)
841 						return -ENOMEM;
842 					mem_allocated += size;
843 					tmp = (unsigned long)ba->ba_1_org;
844 					tmp += ALIGN_SIZE;
845 					tmp &= ~((unsigned long)ALIGN_SIZE);
846 					ba->ba_1 = (void *)tmp;
847 					k++;
848 				}
849 			}
850 		}
851 	}
852 
853 	/* Allocation and initialization of Statistics block */
854 	size = sizeof(struct stat_block);
855 	mac_control->stats_mem =
856 		pci_alloc_consistent(nic->pdev, size,
857 				     &mac_control->stats_mem_phy);
858 
859 	if (!mac_control->stats_mem) {
860 		/*
861 		 * In case of failure, free_shared_mem() is called, which
862 		 * should free any memory that was alloced till the
863 		 * failure happened.
864 		 */
865 		return -ENOMEM;
866 	}
867 	mem_allocated += size;
868 	mac_control->stats_mem_sz = size;
869 
870 	tmp_v_addr = mac_control->stats_mem;
871 	mac_control->stats_info = tmp_v_addr;
872 	memset(tmp_v_addr, 0, size);
873 	DBG_PRINT(INIT_DBG, "%s: Ring Mem PHY: 0x%llx\n",
874 		dev_name(&nic->pdev->dev), (unsigned long long)tmp_p_addr);
875 	mac_control->stats_info->sw_stat.mem_allocated += mem_allocated;
876 	return SUCCESS;
877 }
878 
879 /**
880  * free_shared_mem - Free the allocated Memory
881  * @nic:  Device private variable.
882  * Description: This function is to free all memory locations allocated by
883  * the init_shared_mem() function and return it to the kernel.
884  */
885 
886 static void free_shared_mem(struct s2io_nic *nic)
887 {
888 	int i, j, blk_cnt, size;
889 	void *tmp_v_addr;
890 	dma_addr_t tmp_p_addr;
891 	int lst_size, lst_per_page;
892 	struct net_device *dev;
893 	int page_num = 0;
894 	struct config_param *config;
895 	struct mac_info *mac_control;
896 	struct stat_block *stats;
897 	struct swStat *swstats;
898 
899 	if (!nic)
900 		return;
901 
902 	dev = nic->dev;
903 
904 	config = &nic->config;
905 	mac_control = &nic->mac_control;
906 	stats = mac_control->stats_info;
907 	swstats = &stats->sw_stat;
908 
909 	lst_size = sizeof(struct TxD) * config->max_txds;
910 	lst_per_page = PAGE_SIZE / lst_size;
911 
912 	for (i = 0; i < config->tx_fifo_num; i++) {
913 		struct fifo_info *fifo = &mac_control->fifos[i];
914 		struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
915 
916 		page_num = TXD_MEM_PAGE_CNT(tx_cfg->fifo_len, lst_per_page);
917 		for (j = 0; j < page_num; j++) {
918 			int mem_blks = (j * lst_per_page);
919 			struct list_info_hold *fli;
920 
921 			if (!fifo->list_info)
922 				return;
923 
924 			fli = &fifo->list_info[mem_blks];
925 			if (!fli->list_virt_addr)
926 				break;
927 			pci_free_consistent(nic->pdev, PAGE_SIZE,
928 					    fli->list_virt_addr,
929 					    fli->list_phy_addr);
930 			swstats->mem_freed += PAGE_SIZE;
931 		}
932 		/* If we got a zero DMA address during allocation,
933 		 * free the page now
934 		 */
935 		if (mac_control->zerodma_virt_addr) {
936 			pci_free_consistent(nic->pdev, PAGE_SIZE,
937 					    mac_control->zerodma_virt_addr,
938 					    (dma_addr_t)0);
939 			DBG_PRINT(INIT_DBG,
940 				  "%s: Freeing TxDL with zero DMA address. "
941 				  "Virtual address %p\n",
942 				  dev->name, mac_control->zerodma_virt_addr);
943 			swstats->mem_freed += PAGE_SIZE;
944 		}
945 		kfree(fifo->list_info);
946 		swstats->mem_freed += tx_cfg->fifo_len *
947 			sizeof(struct list_info_hold);
948 	}
949 
950 	size = SIZE_OF_BLOCK;
951 	for (i = 0; i < config->rx_ring_num; i++) {
952 		struct ring_info *ring = &mac_control->rings[i];
953 
954 		blk_cnt = ring->block_count;
955 		for (j = 0; j < blk_cnt; j++) {
956 			tmp_v_addr = ring->rx_blocks[j].block_virt_addr;
957 			tmp_p_addr = ring->rx_blocks[j].block_dma_addr;
958 			if (tmp_v_addr == NULL)
959 				break;
960 			pci_free_consistent(nic->pdev, size,
961 					    tmp_v_addr, tmp_p_addr);
962 			swstats->mem_freed += size;
963 			kfree(ring->rx_blocks[j].rxds);
964 			swstats->mem_freed += sizeof(struct rxd_info) *
965 				rxd_count[nic->rxd_mode];
966 		}
967 	}
968 
969 	if (nic->rxd_mode == RXD_MODE_3B) {
970 		/* Freeing buffer storage addresses in 2BUFF mode. */
971 		for (i = 0; i < config->rx_ring_num; i++) {
972 			struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
973 			struct ring_info *ring = &mac_control->rings[i];
974 
975 			blk_cnt = rx_cfg->num_rxd /
976 				(rxd_count[nic->rxd_mode] + 1);
977 			for (j = 0; j < blk_cnt; j++) {
978 				int k = 0;
979 				if (!ring->ba[j])
980 					continue;
981 				while (k != rxd_count[nic->rxd_mode]) {
982 					struct buffAdd *ba = &ring->ba[j][k];
983 					kfree(ba->ba_0_org);
984 					swstats->mem_freed +=
985 						BUF0_LEN + ALIGN_SIZE;
986 					kfree(ba->ba_1_org);
987 					swstats->mem_freed +=
988 						BUF1_LEN + ALIGN_SIZE;
989 					k++;
990 				}
991 				kfree(ring->ba[j]);
992 				swstats->mem_freed += sizeof(struct buffAdd) *
993 					(rxd_count[nic->rxd_mode] + 1);
994 			}
995 			kfree(ring->ba);
996 			swstats->mem_freed += sizeof(struct buffAdd *) *
997 				blk_cnt;
998 		}
999 	}
1000 
1001 	for (i = 0; i < nic->config.tx_fifo_num; i++) {
1002 		struct fifo_info *fifo = &mac_control->fifos[i];
1003 		struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
1004 
1005 		if (fifo->ufo_in_band_v) {
1006 			swstats->mem_freed += tx_cfg->fifo_len *
1007 				sizeof(u64);
1008 			kfree(fifo->ufo_in_band_v);
1009 		}
1010 	}
1011 
1012 	if (mac_control->stats_mem) {
1013 		swstats->mem_freed += mac_control->stats_mem_sz;
1014 		pci_free_consistent(nic->pdev,
1015 				    mac_control->stats_mem_sz,
1016 				    mac_control->stats_mem,
1017 				    mac_control->stats_mem_phy);
1018 	}
1019 }
1020 
1021 /**
1022  * s2io_verify_pci_mode -
1023  */
1024 
1025 static int s2io_verify_pci_mode(struct s2io_nic *nic)
1026 {
1027 	struct XENA_dev_config __iomem *bar0 = nic->bar0;
1028 	register u64 val64 = 0;
1029 	int     mode;
1030 
1031 	val64 = readq(&bar0->pci_mode);
1032 	mode = (u8)GET_PCI_MODE(val64);
1033 
1034 	if (val64 & PCI_MODE_UNKNOWN_MODE)
1035 		return -1;      /* Unknown PCI mode */
1036 	return mode;
1037 }
1038 
1039 #define NEC_VENID   0x1033
1040 #define NEC_DEVID   0x0125
1041 static int s2io_on_nec_bridge(struct pci_dev *s2io_pdev)
1042 {
1043 	struct pci_dev *tdev = NULL;
1044 	for_each_pci_dev(tdev) {
1045 		if (tdev->vendor == NEC_VENID && tdev->device == NEC_DEVID) {
1046 			if (tdev->bus == s2io_pdev->bus->parent) {
1047 				pci_dev_put(tdev);
1048 				return 1;
1049 			}
1050 		}
1051 	}
1052 	return 0;
1053 }
1054 
1055 static int bus_speed[8] = {33, 133, 133, 200, 266, 133, 200, 266};
1056 /**
1057  * s2io_print_pci_mode -
1058  */
1059 static int s2io_print_pci_mode(struct s2io_nic *nic)
1060 {
1061 	struct XENA_dev_config __iomem *bar0 = nic->bar0;
1062 	register u64 val64 = 0;
1063 	int	mode;
1064 	struct config_param *config = &nic->config;
1065 	const char *pcimode;
1066 
1067 	val64 = readq(&bar0->pci_mode);
1068 	mode = (u8)GET_PCI_MODE(val64);
1069 
1070 	if (val64 & PCI_MODE_UNKNOWN_MODE)
1071 		return -1;	/* Unknown PCI mode */
1072 
1073 	config->bus_speed = bus_speed[mode];
1074 
1075 	if (s2io_on_nec_bridge(nic->pdev)) {
1076 		DBG_PRINT(ERR_DBG, "%s: Device is on PCI-E bus\n",
1077 			  nic->dev->name);
1078 		return mode;
1079 	}
1080 
1081 	switch (mode) {
1082 	case PCI_MODE_PCI_33:
1083 		pcimode = "33MHz PCI bus";
1084 		break;
1085 	case PCI_MODE_PCI_66:
1086 		pcimode = "66MHz PCI bus";
1087 		break;
1088 	case PCI_MODE_PCIX_M1_66:
1089 		pcimode = "66MHz PCIX(M1) bus";
1090 		break;
1091 	case PCI_MODE_PCIX_M1_100:
1092 		pcimode = "100MHz PCIX(M1) bus";
1093 		break;
1094 	case PCI_MODE_PCIX_M1_133:
1095 		pcimode = "133MHz PCIX(M1) bus";
1096 		break;
1097 	case PCI_MODE_PCIX_M2_66:
1098 		pcimode = "133MHz PCIX(M2) bus";
1099 		break;
1100 	case PCI_MODE_PCIX_M2_100:
1101 		pcimode = "200MHz PCIX(M2) bus";
1102 		break;
1103 	case PCI_MODE_PCIX_M2_133:
1104 		pcimode = "266MHz PCIX(M2) bus";
1105 		break;
1106 	default:
1107 		pcimode = "unsupported bus!";
1108 		mode = -1;
1109 	}
1110 
1111 	DBG_PRINT(ERR_DBG, "%s: Device is on %d bit %s\n",
1112 		  nic->dev->name, val64 & PCI_MODE_32_BITS ? 32 : 64, pcimode);
1113 
1114 	return mode;
1115 }
1116 
1117 /**
1118  *  init_tti - Initialization transmit traffic interrupt scheme
1119  *  @nic: device private variable
1120  *  @link: link status (UP/DOWN) used to enable/disable continuous
1121  *  transmit interrupts
1122  *  Description: The function configures transmit traffic interrupts
1123  *  Return Value:  SUCCESS on success and
1124  *  '-1' on failure
1125  */
1126 
1127 static int init_tti(struct s2io_nic *nic, int link)
1128 {
1129 	struct XENA_dev_config __iomem *bar0 = nic->bar0;
1130 	register u64 val64 = 0;
1131 	int i;
1132 	struct config_param *config = &nic->config;
1133 
1134 	for (i = 0; i < config->tx_fifo_num; i++) {
1135 		/*
1136 		 * TTI Initialization. Default Tx timer gets us about
1137 		 * 250 interrupts per sec. Continuous interrupts are enabled
1138 		 * by default.
1139 		 */
1140 		if (nic->device_type == XFRAME_II_DEVICE) {
1141 			int count = (nic->config.bus_speed * 125)/2;
1142 			val64 = TTI_DATA1_MEM_TX_TIMER_VAL(count);
1143 		} else
1144 			val64 = TTI_DATA1_MEM_TX_TIMER_VAL(0x2078);
1145 
1146 		val64 |= TTI_DATA1_MEM_TX_URNG_A(0xA) |
1147 			TTI_DATA1_MEM_TX_URNG_B(0x10) |
1148 			TTI_DATA1_MEM_TX_URNG_C(0x30) |
1149 			TTI_DATA1_MEM_TX_TIMER_AC_EN;
1150 		if (i == 0)
1151 			if (use_continuous_tx_intrs && (link == LINK_UP))
1152 				val64 |= TTI_DATA1_MEM_TX_TIMER_CI_EN;
1153 		writeq(val64, &bar0->tti_data1_mem);
1154 
1155 		if (nic->config.intr_type == MSI_X) {
1156 			val64 = TTI_DATA2_MEM_TX_UFC_A(0x10) |
1157 				TTI_DATA2_MEM_TX_UFC_B(0x100) |
1158 				TTI_DATA2_MEM_TX_UFC_C(0x200) |
1159 				TTI_DATA2_MEM_TX_UFC_D(0x300);
1160 		} else {
1161 			if ((nic->config.tx_steering_type ==
1162 			     TX_DEFAULT_STEERING) &&
1163 			    (config->tx_fifo_num > 1) &&
1164 			    (i >= nic->udp_fifo_idx) &&
1165 			    (i < (nic->udp_fifo_idx +
1166 				  nic->total_udp_fifos)))
1167 				val64 = TTI_DATA2_MEM_TX_UFC_A(0x50) |
1168 					TTI_DATA2_MEM_TX_UFC_B(0x80) |
1169 					TTI_DATA2_MEM_TX_UFC_C(0x100) |
1170 					TTI_DATA2_MEM_TX_UFC_D(0x120);
1171 			else
1172 				val64 = TTI_DATA2_MEM_TX_UFC_A(0x10) |
1173 					TTI_DATA2_MEM_TX_UFC_B(0x20) |
1174 					TTI_DATA2_MEM_TX_UFC_C(0x40) |
1175 					TTI_DATA2_MEM_TX_UFC_D(0x80);
1176 		}
1177 
1178 		writeq(val64, &bar0->tti_data2_mem);
1179 
1180 		val64 = TTI_CMD_MEM_WE |
1181 			TTI_CMD_MEM_STROBE_NEW_CMD |
1182 			TTI_CMD_MEM_OFFSET(i);
1183 		writeq(val64, &bar0->tti_command_mem);
1184 
1185 		if (wait_for_cmd_complete(&bar0->tti_command_mem,
1186 					  TTI_CMD_MEM_STROBE_NEW_CMD,
1187 					  S2IO_BIT_RESET) != SUCCESS)
1188 			return FAILURE;
1189 	}
1190 
1191 	return SUCCESS;
1192 }
1193 
1194 /**
1195  *  init_nic - Initialization of hardware
1196  *  @nic: device private variable
1197  *  Description: The function sequentially configures every block
1198  *  of the H/W from their reset values.
1199  *  Return Value:  SUCCESS on success and
1200  *  '-1' on failure (endian settings incorrect).
1201  */
1202 
1203 static int init_nic(struct s2io_nic *nic)
1204 {
1205 	struct XENA_dev_config __iomem *bar0 = nic->bar0;
1206 	struct net_device *dev = nic->dev;
1207 	register u64 val64 = 0;
1208 	void __iomem *add;
1209 	u32 time;
1210 	int i, j;
1211 	int dtx_cnt = 0;
1212 	unsigned long long mem_share;
1213 	int mem_size;
1214 	struct config_param *config = &nic->config;
1215 	struct mac_info *mac_control = &nic->mac_control;
1216 
1217 	/* to set the swapper controle on the card */
1218 	if (s2io_set_swapper(nic)) {
1219 		DBG_PRINT(ERR_DBG, "ERROR: Setting Swapper failed\n");
1220 		return -EIO;
1221 	}
1222 
1223 	/*
1224 	 * Herc requires EOI to be removed from reset before XGXS, so..
1225 	 */
1226 	if (nic->device_type & XFRAME_II_DEVICE) {
1227 		val64 = 0xA500000000ULL;
1228 		writeq(val64, &bar0->sw_reset);
1229 		msleep(500);
1230 		val64 = readq(&bar0->sw_reset);
1231 	}
1232 
1233 	/* Remove XGXS from reset state */
1234 	val64 = 0;
1235 	writeq(val64, &bar0->sw_reset);
1236 	msleep(500);
1237 	val64 = readq(&bar0->sw_reset);
1238 
1239 	/* Ensure that it's safe to access registers by checking
1240 	 * RIC_RUNNING bit is reset. Check is valid only for XframeII.
1241 	 */
1242 	if (nic->device_type == XFRAME_II_DEVICE) {
1243 		for (i = 0; i < 50; i++) {
1244 			val64 = readq(&bar0->adapter_status);
1245 			if (!(val64 & ADAPTER_STATUS_RIC_RUNNING))
1246 				break;
1247 			msleep(10);
1248 		}
1249 		if (i == 50)
1250 			return -ENODEV;
1251 	}
1252 
1253 	/*  Enable Receiving broadcasts */
1254 	add = &bar0->mac_cfg;
1255 	val64 = readq(&bar0->mac_cfg);
1256 	val64 |= MAC_RMAC_BCAST_ENABLE;
1257 	writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1258 	writel((u32)val64, add);
1259 	writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1260 	writel((u32) (val64 >> 32), (add + 4));
1261 
1262 	/* Read registers in all blocks */
1263 	val64 = readq(&bar0->mac_int_mask);
1264 	val64 = readq(&bar0->mc_int_mask);
1265 	val64 = readq(&bar0->xgxs_int_mask);
1266 
1267 	/*  Set MTU */
1268 	val64 = dev->mtu;
1269 	writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
1270 
1271 	if (nic->device_type & XFRAME_II_DEVICE) {
1272 		while (herc_act_dtx_cfg[dtx_cnt] != END_SIGN) {
1273 			SPECIAL_REG_WRITE(herc_act_dtx_cfg[dtx_cnt],
1274 					  &bar0->dtx_control, UF);
1275 			if (dtx_cnt & 0x1)
1276 				msleep(1); /* Necessary!! */
1277 			dtx_cnt++;
1278 		}
1279 	} else {
1280 		while (xena_dtx_cfg[dtx_cnt] != END_SIGN) {
1281 			SPECIAL_REG_WRITE(xena_dtx_cfg[dtx_cnt],
1282 					  &bar0->dtx_control, UF);
1283 			val64 = readq(&bar0->dtx_control);
1284 			dtx_cnt++;
1285 		}
1286 	}
1287 
1288 	/*  Tx DMA Initialization */
1289 	val64 = 0;
1290 	writeq(val64, &bar0->tx_fifo_partition_0);
1291 	writeq(val64, &bar0->tx_fifo_partition_1);
1292 	writeq(val64, &bar0->tx_fifo_partition_2);
1293 	writeq(val64, &bar0->tx_fifo_partition_3);
1294 
1295 	for (i = 0, j = 0; i < config->tx_fifo_num; i++) {
1296 		struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
1297 
1298 		val64 |= vBIT(tx_cfg->fifo_len - 1, ((j * 32) + 19), 13) |
1299 			vBIT(tx_cfg->fifo_priority, ((j * 32) + 5), 3);
1300 
1301 		if (i == (config->tx_fifo_num - 1)) {
1302 			if (i % 2 == 0)
1303 				i++;
1304 		}
1305 
1306 		switch (i) {
1307 		case 1:
1308 			writeq(val64, &bar0->tx_fifo_partition_0);
1309 			val64 = 0;
1310 			j = 0;
1311 			break;
1312 		case 3:
1313 			writeq(val64, &bar0->tx_fifo_partition_1);
1314 			val64 = 0;
1315 			j = 0;
1316 			break;
1317 		case 5:
1318 			writeq(val64, &bar0->tx_fifo_partition_2);
1319 			val64 = 0;
1320 			j = 0;
1321 			break;
1322 		case 7:
1323 			writeq(val64, &bar0->tx_fifo_partition_3);
1324 			val64 = 0;
1325 			j = 0;
1326 			break;
1327 		default:
1328 			j++;
1329 			break;
1330 		}
1331 	}
1332 
1333 	/*
1334 	 * Disable 4 PCCs for Xena1, 2 and 3 as per H/W bug
1335 	 * SXE-008 TRANSMIT DMA ARBITRATION ISSUE.
1336 	 */
1337 	if ((nic->device_type == XFRAME_I_DEVICE) && (nic->pdev->revision < 4))
1338 		writeq(PCC_ENABLE_FOUR, &bar0->pcc_enable);
1339 
1340 	val64 = readq(&bar0->tx_fifo_partition_0);
1341 	DBG_PRINT(INIT_DBG, "Fifo partition at: 0x%p is: 0x%llx\n",
1342 		  &bar0->tx_fifo_partition_0, (unsigned long long)val64);
1343 
1344 	/*
1345 	 * Initialization of Tx_PA_CONFIG register to ignore packet
1346 	 * integrity checking.
1347 	 */
1348 	val64 = readq(&bar0->tx_pa_cfg);
1349 	val64 |= TX_PA_CFG_IGNORE_FRM_ERR |
1350 		TX_PA_CFG_IGNORE_SNAP_OUI |
1351 		TX_PA_CFG_IGNORE_LLC_CTRL |
1352 		TX_PA_CFG_IGNORE_L2_ERR;
1353 	writeq(val64, &bar0->tx_pa_cfg);
1354 
1355 	/* Rx DMA intialization. */
1356 	val64 = 0;
1357 	for (i = 0; i < config->rx_ring_num; i++) {
1358 		struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
1359 
1360 		val64 |= vBIT(rx_cfg->ring_priority, (5 + (i * 8)), 3);
1361 	}
1362 	writeq(val64, &bar0->rx_queue_priority);
1363 
1364 	/*
1365 	 * Allocating equal share of memory to all the
1366 	 * configured Rings.
1367 	 */
1368 	val64 = 0;
1369 	if (nic->device_type & XFRAME_II_DEVICE)
1370 		mem_size = 32;
1371 	else
1372 		mem_size = 64;
1373 
1374 	for (i = 0; i < config->rx_ring_num; i++) {
1375 		switch (i) {
1376 		case 0:
1377 			mem_share = (mem_size / config->rx_ring_num +
1378 				     mem_size % config->rx_ring_num);
1379 			val64 |= RX_QUEUE_CFG_Q0_SZ(mem_share);
1380 			continue;
1381 		case 1:
1382 			mem_share = (mem_size / config->rx_ring_num);
1383 			val64 |= RX_QUEUE_CFG_Q1_SZ(mem_share);
1384 			continue;
1385 		case 2:
1386 			mem_share = (mem_size / config->rx_ring_num);
1387 			val64 |= RX_QUEUE_CFG_Q2_SZ(mem_share);
1388 			continue;
1389 		case 3:
1390 			mem_share = (mem_size / config->rx_ring_num);
1391 			val64 |= RX_QUEUE_CFG_Q3_SZ(mem_share);
1392 			continue;
1393 		case 4:
1394 			mem_share = (mem_size / config->rx_ring_num);
1395 			val64 |= RX_QUEUE_CFG_Q4_SZ(mem_share);
1396 			continue;
1397 		case 5:
1398 			mem_share = (mem_size / config->rx_ring_num);
1399 			val64 |= RX_QUEUE_CFG_Q5_SZ(mem_share);
1400 			continue;
1401 		case 6:
1402 			mem_share = (mem_size / config->rx_ring_num);
1403 			val64 |= RX_QUEUE_CFG_Q6_SZ(mem_share);
1404 			continue;
1405 		case 7:
1406 			mem_share = (mem_size / config->rx_ring_num);
1407 			val64 |= RX_QUEUE_CFG_Q7_SZ(mem_share);
1408 			continue;
1409 		}
1410 	}
1411 	writeq(val64, &bar0->rx_queue_cfg);
1412 
1413 	/*
1414 	 * Filling Tx round robin registers
1415 	 * as per the number of FIFOs for equal scheduling priority
1416 	 */
1417 	switch (config->tx_fifo_num) {
1418 	case 1:
1419 		val64 = 0x0;
1420 		writeq(val64, &bar0->tx_w_round_robin_0);
1421 		writeq(val64, &bar0->tx_w_round_robin_1);
1422 		writeq(val64, &bar0->tx_w_round_robin_2);
1423 		writeq(val64, &bar0->tx_w_round_robin_3);
1424 		writeq(val64, &bar0->tx_w_round_robin_4);
1425 		break;
1426 	case 2:
1427 		val64 = 0x0001000100010001ULL;
1428 		writeq(val64, &bar0->tx_w_round_robin_0);
1429 		writeq(val64, &bar0->tx_w_round_robin_1);
1430 		writeq(val64, &bar0->tx_w_round_robin_2);
1431 		writeq(val64, &bar0->tx_w_round_robin_3);
1432 		val64 = 0x0001000100000000ULL;
1433 		writeq(val64, &bar0->tx_w_round_robin_4);
1434 		break;
1435 	case 3:
1436 		val64 = 0x0001020001020001ULL;
1437 		writeq(val64, &bar0->tx_w_round_robin_0);
1438 		val64 = 0x0200010200010200ULL;
1439 		writeq(val64, &bar0->tx_w_round_robin_1);
1440 		val64 = 0x0102000102000102ULL;
1441 		writeq(val64, &bar0->tx_w_round_robin_2);
1442 		val64 = 0x0001020001020001ULL;
1443 		writeq(val64, &bar0->tx_w_round_robin_3);
1444 		val64 = 0x0200010200000000ULL;
1445 		writeq(val64, &bar0->tx_w_round_robin_4);
1446 		break;
1447 	case 4:
1448 		val64 = 0x0001020300010203ULL;
1449 		writeq(val64, &bar0->tx_w_round_robin_0);
1450 		writeq(val64, &bar0->tx_w_round_robin_1);
1451 		writeq(val64, &bar0->tx_w_round_robin_2);
1452 		writeq(val64, &bar0->tx_w_round_robin_3);
1453 		val64 = 0x0001020300000000ULL;
1454 		writeq(val64, &bar0->tx_w_round_robin_4);
1455 		break;
1456 	case 5:
1457 		val64 = 0x0001020304000102ULL;
1458 		writeq(val64, &bar0->tx_w_round_robin_0);
1459 		val64 = 0x0304000102030400ULL;
1460 		writeq(val64, &bar0->tx_w_round_robin_1);
1461 		val64 = 0x0102030400010203ULL;
1462 		writeq(val64, &bar0->tx_w_round_robin_2);
1463 		val64 = 0x0400010203040001ULL;
1464 		writeq(val64, &bar0->tx_w_round_robin_3);
1465 		val64 = 0x0203040000000000ULL;
1466 		writeq(val64, &bar0->tx_w_round_robin_4);
1467 		break;
1468 	case 6:
1469 		val64 = 0x0001020304050001ULL;
1470 		writeq(val64, &bar0->tx_w_round_robin_0);
1471 		val64 = 0x0203040500010203ULL;
1472 		writeq(val64, &bar0->tx_w_round_robin_1);
1473 		val64 = 0x0405000102030405ULL;
1474 		writeq(val64, &bar0->tx_w_round_robin_2);
1475 		val64 = 0x0001020304050001ULL;
1476 		writeq(val64, &bar0->tx_w_round_robin_3);
1477 		val64 = 0x0203040500000000ULL;
1478 		writeq(val64, &bar0->tx_w_round_robin_4);
1479 		break;
1480 	case 7:
1481 		val64 = 0x0001020304050600ULL;
1482 		writeq(val64, &bar0->tx_w_round_robin_0);
1483 		val64 = 0x0102030405060001ULL;
1484 		writeq(val64, &bar0->tx_w_round_robin_1);
1485 		val64 = 0x0203040506000102ULL;
1486 		writeq(val64, &bar0->tx_w_round_robin_2);
1487 		val64 = 0x0304050600010203ULL;
1488 		writeq(val64, &bar0->tx_w_round_robin_3);
1489 		val64 = 0x0405060000000000ULL;
1490 		writeq(val64, &bar0->tx_w_round_robin_4);
1491 		break;
1492 	case 8:
1493 		val64 = 0x0001020304050607ULL;
1494 		writeq(val64, &bar0->tx_w_round_robin_0);
1495 		writeq(val64, &bar0->tx_w_round_robin_1);
1496 		writeq(val64, &bar0->tx_w_round_robin_2);
1497 		writeq(val64, &bar0->tx_w_round_robin_3);
1498 		val64 = 0x0001020300000000ULL;
1499 		writeq(val64, &bar0->tx_w_round_robin_4);
1500 		break;
1501 	}
1502 
1503 	/* Enable all configured Tx FIFO partitions */
1504 	val64 = readq(&bar0->tx_fifo_partition_0);
1505 	val64 |= (TX_FIFO_PARTITION_EN);
1506 	writeq(val64, &bar0->tx_fifo_partition_0);
1507 
1508 	/* Filling the Rx round robin registers as per the
1509 	 * number of Rings and steering based on QoS with
1510 	 * equal priority.
1511 	 */
1512 	switch (config->rx_ring_num) {
1513 	case 1:
1514 		val64 = 0x0;
1515 		writeq(val64, &bar0->rx_w_round_robin_0);
1516 		writeq(val64, &bar0->rx_w_round_robin_1);
1517 		writeq(val64, &bar0->rx_w_round_robin_2);
1518 		writeq(val64, &bar0->rx_w_round_robin_3);
1519 		writeq(val64, &bar0->rx_w_round_robin_4);
1520 
1521 		val64 = 0x8080808080808080ULL;
1522 		writeq(val64, &bar0->rts_qos_steering);
1523 		break;
1524 	case 2:
1525 		val64 = 0x0001000100010001ULL;
1526 		writeq(val64, &bar0->rx_w_round_robin_0);
1527 		writeq(val64, &bar0->rx_w_round_robin_1);
1528 		writeq(val64, &bar0->rx_w_round_robin_2);
1529 		writeq(val64, &bar0->rx_w_round_robin_3);
1530 		val64 = 0x0001000100000000ULL;
1531 		writeq(val64, &bar0->rx_w_round_robin_4);
1532 
1533 		val64 = 0x8080808040404040ULL;
1534 		writeq(val64, &bar0->rts_qos_steering);
1535 		break;
1536 	case 3:
1537 		val64 = 0x0001020001020001ULL;
1538 		writeq(val64, &bar0->rx_w_round_robin_0);
1539 		val64 = 0x0200010200010200ULL;
1540 		writeq(val64, &bar0->rx_w_round_robin_1);
1541 		val64 = 0x0102000102000102ULL;
1542 		writeq(val64, &bar0->rx_w_round_robin_2);
1543 		val64 = 0x0001020001020001ULL;
1544 		writeq(val64, &bar0->rx_w_round_robin_3);
1545 		val64 = 0x0200010200000000ULL;
1546 		writeq(val64, &bar0->rx_w_round_robin_4);
1547 
1548 		val64 = 0x8080804040402020ULL;
1549 		writeq(val64, &bar0->rts_qos_steering);
1550 		break;
1551 	case 4:
1552 		val64 = 0x0001020300010203ULL;
1553 		writeq(val64, &bar0->rx_w_round_robin_0);
1554 		writeq(val64, &bar0->rx_w_round_robin_1);
1555 		writeq(val64, &bar0->rx_w_round_robin_2);
1556 		writeq(val64, &bar0->rx_w_round_robin_3);
1557 		val64 = 0x0001020300000000ULL;
1558 		writeq(val64, &bar0->rx_w_round_robin_4);
1559 
1560 		val64 = 0x8080404020201010ULL;
1561 		writeq(val64, &bar0->rts_qos_steering);
1562 		break;
1563 	case 5:
1564 		val64 = 0x0001020304000102ULL;
1565 		writeq(val64, &bar0->rx_w_round_robin_0);
1566 		val64 = 0x0304000102030400ULL;
1567 		writeq(val64, &bar0->rx_w_round_robin_1);
1568 		val64 = 0x0102030400010203ULL;
1569 		writeq(val64, &bar0->rx_w_round_robin_2);
1570 		val64 = 0x0400010203040001ULL;
1571 		writeq(val64, &bar0->rx_w_round_robin_3);
1572 		val64 = 0x0203040000000000ULL;
1573 		writeq(val64, &bar0->rx_w_round_robin_4);
1574 
1575 		val64 = 0x8080404020201008ULL;
1576 		writeq(val64, &bar0->rts_qos_steering);
1577 		break;
1578 	case 6:
1579 		val64 = 0x0001020304050001ULL;
1580 		writeq(val64, &bar0->rx_w_round_robin_0);
1581 		val64 = 0x0203040500010203ULL;
1582 		writeq(val64, &bar0->rx_w_round_robin_1);
1583 		val64 = 0x0405000102030405ULL;
1584 		writeq(val64, &bar0->rx_w_round_robin_2);
1585 		val64 = 0x0001020304050001ULL;
1586 		writeq(val64, &bar0->rx_w_round_robin_3);
1587 		val64 = 0x0203040500000000ULL;
1588 		writeq(val64, &bar0->rx_w_round_robin_4);
1589 
1590 		val64 = 0x8080404020100804ULL;
1591 		writeq(val64, &bar0->rts_qos_steering);
1592 		break;
1593 	case 7:
1594 		val64 = 0x0001020304050600ULL;
1595 		writeq(val64, &bar0->rx_w_round_robin_0);
1596 		val64 = 0x0102030405060001ULL;
1597 		writeq(val64, &bar0->rx_w_round_robin_1);
1598 		val64 = 0x0203040506000102ULL;
1599 		writeq(val64, &bar0->rx_w_round_robin_2);
1600 		val64 = 0x0304050600010203ULL;
1601 		writeq(val64, &bar0->rx_w_round_robin_3);
1602 		val64 = 0x0405060000000000ULL;
1603 		writeq(val64, &bar0->rx_w_round_robin_4);
1604 
1605 		val64 = 0x8080402010080402ULL;
1606 		writeq(val64, &bar0->rts_qos_steering);
1607 		break;
1608 	case 8:
1609 		val64 = 0x0001020304050607ULL;
1610 		writeq(val64, &bar0->rx_w_round_robin_0);
1611 		writeq(val64, &bar0->rx_w_round_robin_1);
1612 		writeq(val64, &bar0->rx_w_round_robin_2);
1613 		writeq(val64, &bar0->rx_w_round_robin_3);
1614 		val64 = 0x0001020300000000ULL;
1615 		writeq(val64, &bar0->rx_w_round_robin_4);
1616 
1617 		val64 = 0x8040201008040201ULL;
1618 		writeq(val64, &bar0->rts_qos_steering);
1619 		break;
1620 	}
1621 
1622 	/* UDP Fix */
1623 	val64 = 0;
1624 	for (i = 0; i < 8; i++)
1625 		writeq(val64, &bar0->rts_frm_len_n[i]);
1626 
1627 	/* Set the default rts frame length for the rings configured */
1628 	val64 = MAC_RTS_FRM_LEN_SET(dev->mtu+22);
1629 	for (i = 0 ; i < config->rx_ring_num ; i++)
1630 		writeq(val64, &bar0->rts_frm_len_n[i]);
1631 
1632 	/* Set the frame length for the configured rings
1633 	 * desired by the user
1634 	 */
1635 	for (i = 0; i < config->rx_ring_num; i++) {
1636 		/* If rts_frm_len[i] == 0 then it is assumed that user not
1637 		 * specified frame length steering.
1638 		 * If the user provides the frame length then program
1639 		 * the rts_frm_len register for those values or else
1640 		 * leave it as it is.
1641 		 */
1642 		if (rts_frm_len[i] != 0) {
1643 			writeq(MAC_RTS_FRM_LEN_SET(rts_frm_len[i]),
1644 			       &bar0->rts_frm_len_n[i]);
1645 		}
1646 	}
1647 
1648 	/* Disable differentiated services steering logic */
1649 	for (i = 0; i < 64; i++) {
1650 		if (rts_ds_steer(nic, i, 0) == FAILURE) {
1651 			DBG_PRINT(ERR_DBG,
1652 				  "%s: rts_ds_steer failed on codepoint %d\n",
1653 				  dev->name, i);
1654 			return -ENODEV;
1655 		}
1656 	}
1657 
1658 	/* Program statistics memory */
1659 	writeq(mac_control->stats_mem_phy, &bar0->stat_addr);
1660 
1661 	if (nic->device_type == XFRAME_II_DEVICE) {
1662 		val64 = STAT_BC(0x320);
1663 		writeq(val64, &bar0->stat_byte_cnt);
1664 	}
1665 
1666 	/*
1667 	 * Initializing the sampling rate for the device to calculate the
1668 	 * bandwidth utilization.
1669 	 */
1670 	val64 = MAC_TX_LINK_UTIL_VAL(tmac_util_period) |
1671 		MAC_RX_LINK_UTIL_VAL(rmac_util_period);
1672 	writeq(val64, &bar0->mac_link_util);
1673 
1674 	/*
1675 	 * Initializing the Transmit and Receive Traffic Interrupt
1676 	 * Scheme.
1677 	 */
1678 
1679 	/* Initialize TTI */
1680 	if (SUCCESS != init_tti(nic, nic->last_link_state))
1681 		return -ENODEV;
1682 
1683 	/* RTI Initialization */
1684 	if (nic->device_type == XFRAME_II_DEVICE) {
1685 		/*
1686 		 * Programmed to generate Apprx 500 Intrs per
1687 		 * second
1688 		 */
1689 		int count = (nic->config.bus_speed * 125)/4;
1690 		val64 = RTI_DATA1_MEM_RX_TIMER_VAL(count);
1691 	} else
1692 		val64 = RTI_DATA1_MEM_RX_TIMER_VAL(0xFFF);
1693 	val64 |= RTI_DATA1_MEM_RX_URNG_A(0xA) |
1694 		RTI_DATA1_MEM_RX_URNG_B(0x10) |
1695 		RTI_DATA1_MEM_RX_URNG_C(0x30) |
1696 		RTI_DATA1_MEM_RX_TIMER_AC_EN;
1697 
1698 	writeq(val64, &bar0->rti_data1_mem);
1699 
1700 	val64 = RTI_DATA2_MEM_RX_UFC_A(0x1) |
1701 		RTI_DATA2_MEM_RX_UFC_B(0x2) ;
1702 	if (nic->config.intr_type == MSI_X)
1703 		val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x20) |
1704 			  RTI_DATA2_MEM_RX_UFC_D(0x40));
1705 	else
1706 		val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x40) |
1707 			  RTI_DATA2_MEM_RX_UFC_D(0x80));
1708 	writeq(val64, &bar0->rti_data2_mem);
1709 
1710 	for (i = 0; i < config->rx_ring_num; i++) {
1711 		val64 = RTI_CMD_MEM_WE |
1712 			RTI_CMD_MEM_STROBE_NEW_CMD |
1713 			RTI_CMD_MEM_OFFSET(i);
1714 		writeq(val64, &bar0->rti_command_mem);
1715 
1716 		/*
1717 		 * Once the operation completes, the Strobe bit of the
1718 		 * command register will be reset. We poll for this
1719 		 * particular condition. We wait for a maximum of 500ms
1720 		 * for the operation to complete, if it's not complete
1721 		 * by then we return error.
1722 		 */
1723 		time = 0;
1724 		while (true) {
1725 			val64 = readq(&bar0->rti_command_mem);
1726 			if (!(val64 & RTI_CMD_MEM_STROBE_NEW_CMD))
1727 				break;
1728 
1729 			if (time > 10) {
1730 				DBG_PRINT(ERR_DBG, "%s: RTI init failed\n",
1731 					  dev->name);
1732 				return -ENODEV;
1733 			}
1734 			time++;
1735 			msleep(50);
1736 		}
1737 	}
1738 
1739 	/*
1740 	 * Initializing proper values as Pause threshold into all
1741 	 * the 8 Queues on Rx side.
1742 	 */
1743 	writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q0q3);
1744 	writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q4q7);
1745 
1746 	/* Disable RMAC PAD STRIPPING */
1747 	add = &bar0->mac_cfg;
1748 	val64 = readq(&bar0->mac_cfg);
1749 	val64 &= ~(MAC_CFG_RMAC_STRIP_PAD);
1750 	writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1751 	writel((u32) (val64), add);
1752 	writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1753 	writel((u32) (val64 >> 32), (add + 4));
1754 	val64 = readq(&bar0->mac_cfg);
1755 
1756 	/* Enable FCS stripping by adapter */
1757 	add = &bar0->mac_cfg;
1758 	val64 = readq(&bar0->mac_cfg);
1759 	val64 |= MAC_CFG_RMAC_STRIP_FCS;
1760 	if (nic->device_type == XFRAME_II_DEVICE)
1761 		writeq(val64, &bar0->mac_cfg);
1762 	else {
1763 		writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1764 		writel((u32) (val64), add);
1765 		writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1766 		writel((u32) (val64 >> 32), (add + 4));
1767 	}
1768 
1769 	/*
1770 	 * Set the time value to be inserted in the pause frame
1771 	 * generated by xena.
1772 	 */
1773 	val64 = readq(&bar0->rmac_pause_cfg);
1774 	val64 &= ~(RMAC_PAUSE_HG_PTIME(0xffff));
1775 	val64 |= RMAC_PAUSE_HG_PTIME(nic->mac_control.rmac_pause_time);
1776 	writeq(val64, &bar0->rmac_pause_cfg);
1777 
1778 	/*
1779 	 * Set the Threshold Limit for Generating the pause frame
1780 	 * If the amount of data in any Queue exceeds ratio of
1781 	 * (mac_control.mc_pause_threshold_q0q3 or q4q7)/256
1782 	 * pause frame is generated
1783 	 */
1784 	val64 = 0;
1785 	for (i = 0; i < 4; i++) {
1786 		val64 |= (((u64)0xFF00 |
1787 			   nic->mac_control.mc_pause_threshold_q0q3)
1788 			  << (i * 2 * 8));
1789 	}
1790 	writeq(val64, &bar0->mc_pause_thresh_q0q3);
1791 
1792 	val64 = 0;
1793 	for (i = 0; i < 4; i++) {
1794 		val64 |= (((u64)0xFF00 |
1795 			   nic->mac_control.mc_pause_threshold_q4q7)
1796 			  << (i * 2 * 8));
1797 	}
1798 	writeq(val64, &bar0->mc_pause_thresh_q4q7);
1799 
1800 	/*
1801 	 * TxDMA will stop Read request if the number of read split has
1802 	 * exceeded the limit pointed by shared_splits
1803 	 */
1804 	val64 = readq(&bar0->pic_control);
1805 	val64 |= PIC_CNTL_SHARED_SPLITS(shared_splits);
1806 	writeq(val64, &bar0->pic_control);
1807 
1808 	if (nic->config.bus_speed == 266) {
1809 		writeq(TXREQTO_VAL(0x7f) | TXREQTO_EN, &bar0->txreqtimeout);
1810 		writeq(0x0, &bar0->read_retry_delay);
1811 		writeq(0x0, &bar0->write_retry_delay);
1812 	}
1813 
1814 	/*
1815 	 * Programming the Herc to split every write transaction
1816 	 * that does not start on an ADB to reduce disconnects.
1817 	 */
1818 	if (nic->device_type == XFRAME_II_DEVICE) {
1819 		val64 = FAULT_BEHAVIOUR | EXT_REQ_EN |
1820 			MISC_LINK_STABILITY_PRD(3);
1821 		writeq(val64, &bar0->misc_control);
1822 		val64 = readq(&bar0->pic_control2);
1823 		val64 &= ~(s2BIT(13)|s2BIT(14)|s2BIT(15));
1824 		writeq(val64, &bar0->pic_control2);
1825 	}
1826 	if (strstr(nic->product_name, "CX4")) {
1827 		val64 = TMAC_AVG_IPG(0x17);
1828 		writeq(val64, &bar0->tmac_avg_ipg);
1829 	}
1830 
1831 	return SUCCESS;
1832 }
1833 #define LINK_UP_DOWN_INTERRUPT		1
1834 #define MAC_RMAC_ERR_TIMER		2
1835 
1836 static int s2io_link_fault_indication(struct s2io_nic *nic)
1837 {
1838 	if (nic->device_type == XFRAME_II_DEVICE)
1839 		return LINK_UP_DOWN_INTERRUPT;
1840 	else
1841 		return MAC_RMAC_ERR_TIMER;
1842 }
1843 
1844 /**
1845  *  do_s2io_write_bits -  update alarm bits in alarm register
1846  *  @value: alarm bits
1847  *  @flag: interrupt status
1848  *  @addr: address value
1849  *  Description: update alarm bits in alarm register
1850  *  Return Value:
1851  *  NONE.
1852  */
1853 static void do_s2io_write_bits(u64 value, int flag, void __iomem *addr)
1854 {
1855 	u64 temp64;
1856 
1857 	temp64 = readq(addr);
1858 
1859 	if (flag == ENABLE_INTRS)
1860 		temp64 &= ~((u64)value);
1861 	else
1862 		temp64 |= ((u64)value);
1863 	writeq(temp64, addr);
1864 }
1865 
1866 static void en_dis_err_alarms(struct s2io_nic *nic, u16 mask, int flag)
1867 {
1868 	struct XENA_dev_config __iomem *bar0 = nic->bar0;
1869 	register u64 gen_int_mask = 0;
1870 	u64 interruptible;
1871 
1872 	writeq(DISABLE_ALL_INTRS, &bar0->general_int_mask);
1873 	if (mask & TX_DMA_INTR) {
1874 		gen_int_mask |= TXDMA_INT_M;
1875 
1876 		do_s2io_write_bits(TXDMA_TDA_INT | TXDMA_PFC_INT |
1877 				   TXDMA_PCC_INT | TXDMA_TTI_INT |
1878 				   TXDMA_LSO_INT | TXDMA_TPA_INT |
1879 				   TXDMA_SM_INT, flag, &bar0->txdma_int_mask);
1880 
1881 		do_s2io_write_bits(PFC_ECC_DB_ERR | PFC_SM_ERR_ALARM |
1882 				   PFC_MISC_0_ERR | PFC_MISC_1_ERR |
1883 				   PFC_PCIX_ERR | PFC_ECC_SG_ERR, flag,
1884 				   &bar0->pfc_err_mask);
1885 
1886 		do_s2io_write_bits(TDA_Fn_ECC_DB_ERR | TDA_SM0_ERR_ALARM |
1887 				   TDA_SM1_ERR_ALARM | TDA_Fn_ECC_SG_ERR |
1888 				   TDA_PCIX_ERR, flag, &bar0->tda_err_mask);
1889 
1890 		do_s2io_write_bits(PCC_FB_ECC_DB_ERR | PCC_TXB_ECC_DB_ERR |
1891 				   PCC_SM_ERR_ALARM | PCC_WR_ERR_ALARM |
1892 				   PCC_N_SERR | PCC_6_COF_OV_ERR |
1893 				   PCC_7_COF_OV_ERR | PCC_6_LSO_OV_ERR |
1894 				   PCC_7_LSO_OV_ERR | PCC_FB_ECC_SG_ERR |
1895 				   PCC_TXB_ECC_SG_ERR,
1896 				   flag, &bar0->pcc_err_mask);
1897 
1898 		do_s2io_write_bits(TTI_SM_ERR_ALARM | TTI_ECC_SG_ERR |
1899 				   TTI_ECC_DB_ERR, flag, &bar0->tti_err_mask);
1900 
1901 		do_s2io_write_bits(LSO6_ABORT | LSO7_ABORT |
1902 				   LSO6_SM_ERR_ALARM | LSO7_SM_ERR_ALARM |
1903 				   LSO6_SEND_OFLOW | LSO7_SEND_OFLOW,
1904 				   flag, &bar0->lso_err_mask);
1905 
1906 		do_s2io_write_bits(TPA_SM_ERR_ALARM | TPA_TX_FRM_DROP,
1907 				   flag, &bar0->tpa_err_mask);
1908 
1909 		do_s2io_write_bits(SM_SM_ERR_ALARM, flag, &bar0->sm_err_mask);
1910 	}
1911 
1912 	if (mask & TX_MAC_INTR) {
1913 		gen_int_mask |= TXMAC_INT_M;
1914 		do_s2io_write_bits(MAC_INT_STATUS_TMAC_INT, flag,
1915 				   &bar0->mac_int_mask);
1916 		do_s2io_write_bits(TMAC_TX_BUF_OVRN | TMAC_TX_SM_ERR |
1917 				   TMAC_ECC_SG_ERR | TMAC_ECC_DB_ERR |
1918 				   TMAC_DESC_ECC_SG_ERR | TMAC_DESC_ECC_DB_ERR,
1919 				   flag, &bar0->mac_tmac_err_mask);
1920 	}
1921 
1922 	if (mask & TX_XGXS_INTR) {
1923 		gen_int_mask |= TXXGXS_INT_M;
1924 		do_s2io_write_bits(XGXS_INT_STATUS_TXGXS, flag,
1925 				   &bar0->xgxs_int_mask);
1926 		do_s2io_write_bits(TXGXS_ESTORE_UFLOW | TXGXS_TX_SM_ERR |
1927 				   TXGXS_ECC_SG_ERR | TXGXS_ECC_DB_ERR,
1928 				   flag, &bar0->xgxs_txgxs_err_mask);
1929 	}
1930 
1931 	if (mask & RX_DMA_INTR) {
1932 		gen_int_mask |= RXDMA_INT_M;
1933 		do_s2io_write_bits(RXDMA_INT_RC_INT_M | RXDMA_INT_RPA_INT_M |
1934 				   RXDMA_INT_RDA_INT_M | RXDMA_INT_RTI_INT_M,
1935 				   flag, &bar0->rxdma_int_mask);
1936 		do_s2io_write_bits(RC_PRCn_ECC_DB_ERR | RC_FTC_ECC_DB_ERR |
1937 				   RC_PRCn_SM_ERR_ALARM | RC_FTC_SM_ERR_ALARM |
1938 				   RC_PRCn_ECC_SG_ERR | RC_FTC_ECC_SG_ERR |
1939 				   RC_RDA_FAIL_WR_Rn, flag, &bar0->rc_err_mask);
1940 		do_s2io_write_bits(PRC_PCI_AB_RD_Rn | PRC_PCI_AB_WR_Rn |
1941 				   PRC_PCI_AB_F_WR_Rn | PRC_PCI_DP_RD_Rn |
1942 				   PRC_PCI_DP_WR_Rn | PRC_PCI_DP_F_WR_Rn, flag,
1943 				   &bar0->prc_pcix_err_mask);
1944 		do_s2io_write_bits(RPA_SM_ERR_ALARM | RPA_CREDIT_ERR |
1945 				   RPA_ECC_SG_ERR | RPA_ECC_DB_ERR, flag,
1946 				   &bar0->rpa_err_mask);
1947 		do_s2io_write_bits(RDA_RXDn_ECC_DB_ERR | RDA_FRM_ECC_DB_N_AERR |
1948 				   RDA_SM1_ERR_ALARM | RDA_SM0_ERR_ALARM |
1949 				   RDA_RXD_ECC_DB_SERR | RDA_RXDn_ECC_SG_ERR |
1950 				   RDA_FRM_ECC_SG_ERR |
1951 				   RDA_MISC_ERR|RDA_PCIX_ERR,
1952 				   flag, &bar0->rda_err_mask);
1953 		do_s2io_write_bits(RTI_SM_ERR_ALARM |
1954 				   RTI_ECC_SG_ERR | RTI_ECC_DB_ERR,
1955 				   flag, &bar0->rti_err_mask);
1956 	}
1957 
1958 	if (mask & RX_MAC_INTR) {
1959 		gen_int_mask |= RXMAC_INT_M;
1960 		do_s2io_write_bits(MAC_INT_STATUS_RMAC_INT, flag,
1961 				   &bar0->mac_int_mask);
1962 		interruptible = (RMAC_RX_BUFF_OVRN | RMAC_RX_SM_ERR |
1963 				 RMAC_UNUSED_INT | RMAC_SINGLE_ECC_ERR |
1964 				 RMAC_DOUBLE_ECC_ERR);
1965 		if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER)
1966 			interruptible |= RMAC_LINK_STATE_CHANGE_INT;
1967 		do_s2io_write_bits(interruptible,
1968 				   flag, &bar0->mac_rmac_err_mask);
1969 	}
1970 
1971 	if (mask & RX_XGXS_INTR) {
1972 		gen_int_mask |= RXXGXS_INT_M;
1973 		do_s2io_write_bits(XGXS_INT_STATUS_RXGXS, flag,
1974 				   &bar0->xgxs_int_mask);
1975 		do_s2io_write_bits(RXGXS_ESTORE_OFLOW | RXGXS_RX_SM_ERR, flag,
1976 				   &bar0->xgxs_rxgxs_err_mask);
1977 	}
1978 
1979 	if (mask & MC_INTR) {
1980 		gen_int_mask |= MC_INT_M;
1981 		do_s2io_write_bits(MC_INT_MASK_MC_INT,
1982 				   flag, &bar0->mc_int_mask);
1983 		do_s2io_write_bits(MC_ERR_REG_SM_ERR | MC_ERR_REG_ECC_ALL_SNG |
1984 				   MC_ERR_REG_ECC_ALL_DBL | PLL_LOCK_N, flag,
1985 				   &bar0->mc_err_mask);
1986 	}
1987 	nic->general_int_mask = gen_int_mask;
1988 
1989 	/* Remove this line when alarm interrupts are enabled */
1990 	nic->general_int_mask = 0;
1991 }
1992 
1993 /**
1994  *  en_dis_able_nic_intrs - Enable or Disable the interrupts
1995  *  @nic: device private variable,
1996  *  @mask: A mask indicating which Intr block must be modified and,
1997  *  @flag: A flag indicating whether to enable or disable the Intrs.
1998  *  Description: This function will either disable or enable the interrupts
1999  *  depending on the flag argument. The mask argument can be used to
2000  *  enable/disable any Intr block.
2001  *  Return Value: NONE.
2002  */
2003 
2004 static void en_dis_able_nic_intrs(struct s2io_nic *nic, u16 mask, int flag)
2005 {
2006 	struct XENA_dev_config __iomem *bar0 = nic->bar0;
2007 	register u64 temp64 = 0, intr_mask = 0;
2008 
2009 	intr_mask = nic->general_int_mask;
2010 
2011 	/*  Top level interrupt classification */
2012 	/*  PIC Interrupts */
2013 	if (mask & TX_PIC_INTR) {
2014 		/*  Enable PIC Intrs in the general intr mask register */
2015 		intr_mask |= TXPIC_INT_M;
2016 		if (flag == ENABLE_INTRS) {
2017 			/*
2018 			 * If Hercules adapter enable GPIO otherwise
2019 			 * disable all PCIX, Flash, MDIO, IIC and GPIO
2020 			 * interrupts for now.
2021 			 * TODO
2022 			 */
2023 			if (s2io_link_fault_indication(nic) ==
2024 			    LINK_UP_DOWN_INTERRUPT) {
2025 				do_s2io_write_bits(PIC_INT_GPIO, flag,
2026 						   &bar0->pic_int_mask);
2027 				do_s2io_write_bits(GPIO_INT_MASK_LINK_UP, flag,
2028 						   &bar0->gpio_int_mask);
2029 			} else
2030 				writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
2031 		} else if (flag == DISABLE_INTRS) {
2032 			/*
2033 			 * Disable PIC Intrs in the general
2034 			 * intr mask register
2035 			 */
2036 			writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
2037 		}
2038 	}
2039 
2040 	/*  Tx traffic interrupts */
2041 	if (mask & TX_TRAFFIC_INTR) {
2042 		intr_mask |= TXTRAFFIC_INT_M;
2043 		if (flag == ENABLE_INTRS) {
2044 			/*
2045 			 * Enable all the Tx side interrupts
2046 			 * writing 0 Enables all 64 TX interrupt levels
2047 			 */
2048 			writeq(0x0, &bar0->tx_traffic_mask);
2049 		} else if (flag == DISABLE_INTRS) {
2050 			/*
2051 			 * Disable Tx Traffic Intrs in the general intr mask
2052 			 * register.
2053 			 */
2054 			writeq(DISABLE_ALL_INTRS, &bar0->tx_traffic_mask);
2055 		}
2056 	}
2057 
2058 	/*  Rx traffic interrupts */
2059 	if (mask & RX_TRAFFIC_INTR) {
2060 		intr_mask |= RXTRAFFIC_INT_M;
2061 		if (flag == ENABLE_INTRS) {
2062 			/* writing 0 Enables all 8 RX interrupt levels */
2063 			writeq(0x0, &bar0->rx_traffic_mask);
2064 		} else if (flag == DISABLE_INTRS) {
2065 			/*
2066 			 * Disable Rx Traffic Intrs in the general intr mask
2067 			 * register.
2068 			 */
2069 			writeq(DISABLE_ALL_INTRS, &bar0->rx_traffic_mask);
2070 		}
2071 	}
2072 
2073 	temp64 = readq(&bar0->general_int_mask);
2074 	if (flag == ENABLE_INTRS)
2075 		temp64 &= ~((u64)intr_mask);
2076 	else
2077 		temp64 = DISABLE_ALL_INTRS;
2078 	writeq(temp64, &bar0->general_int_mask);
2079 
2080 	nic->general_int_mask = readq(&bar0->general_int_mask);
2081 }
2082 
2083 /**
2084  *  verify_pcc_quiescent- Checks for PCC quiescent state
2085  *  Return: 1 If PCC is quiescence
2086  *          0 If PCC is not quiescence
2087  */
2088 static int verify_pcc_quiescent(struct s2io_nic *sp, int flag)
2089 {
2090 	int ret = 0, herc;
2091 	struct XENA_dev_config __iomem *bar0 = sp->bar0;
2092 	u64 val64 = readq(&bar0->adapter_status);
2093 
2094 	herc = (sp->device_type == XFRAME_II_DEVICE);
2095 
2096 	if (flag == false) {
2097 		if ((!herc && (sp->pdev->revision >= 4)) || herc) {
2098 			if (!(val64 & ADAPTER_STATUS_RMAC_PCC_IDLE))
2099 				ret = 1;
2100 		} else {
2101 			if (!(val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE))
2102 				ret = 1;
2103 		}
2104 	} else {
2105 		if ((!herc && (sp->pdev->revision >= 4)) || herc) {
2106 			if (((val64 & ADAPTER_STATUS_RMAC_PCC_IDLE) ==
2107 			     ADAPTER_STATUS_RMAC_PCC_IDLE))
2108 				ret = 1;
2109 		} else {
2110 			if (((val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE) ==
2111 			     ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE))
2112 				ret = 1;
2113 		}
2114 	}
2115 
2116 	return ret;
2117 }
2118 /**
2119  *  verify_xena_quiescence - Checks whether the H/W is ready
2120  *  Description: Returns whether the H/W is ready to go or not. Depending
2121  *  on whether adapter enable bit was written or not the comparison
2122  *  differs and the calling function passes the input argument flag to
2123  *  indicate this.
2124  *  Return: 1 If xena is quiescence
2125  *          0 If Xena is not quiescence
2126  */
2127 
2128 static int verify_xena_quiescence(struct s2io_nic *sp)
2129 {
2130 	int  mode;
2131 	struct XENA_dev_config __iomem *bar0 = sp->bar0;
2132 	u64 val64 = readq(&bar0->adapter_status);
2133 	mode = s2io_verify_pci_mode(sp);
2134 
2135 	if (!(val64 & ADAPTER_STATUS_TDMA_READY)) {
2136 		DBG_PRINT(ERR_DBG, "TDMA is not ready!\n");
2137 		return 0;
2138 	}
2139 	if (!(val64 & ADAPTER_STATUS_RDMA_READY)) {
2140 		DBG_PRINT(ERR_DBG, "RDMA is not ready!\n");
2141 		return 0;
2142 	}
2143 	if (!(val64 & ADAPTER_STATUS_PFC_READY)) {
2144 		DBG_PRINT(ERR_DBG, "PFC is not ready!\n");
2145 		return 0;
2146 	}
2147 	if (!(val64 & ADAPTER_STATUS_TMAC_BUF_EMPTY)) {
2148 		DBG_PRINT(ERR_DBG, "TMAC BUF is not empty!\n");
2149 		return 0;
2150 	}
2151 	if (!(val64 & ADAPTER_STATUS_PIC_QUIESCENT)) {
2152 		DBG_PRINT(ERR_DBG, "PIC is not QUIESCENT!\n");
2153 		return 0;
2154 	}
2155 	if (!(val64 & ADAPTER_STATUS_MC_DRAM_READY)) {
2156 		DBG_PRINT(ERR_DBG, "MC_DRAM is not ready!\n");
2157 		return 0;
2158 	}
2159 	if (!(val64 & ADAPTER_STATUS_MC_QUEUES_READY)) {
2160 		DBG_PRINT(ERR_DBG, "MC_QUEUES is not ready!\n");
2161 		return 0;
2162 	}
2163 	if (!(val64 & ADAPTER_STATUS_M_PLL_LOCK)) {
2164 		DBG_PRINT(ERR_DBG, "M_PLL is not locked!\n");
2165 		return 0;
2166 	}
2167 
2168 	/*
2169 	 * In PCI 33 mode, the P_PLL is not used, and therefore,
2170 	 * the the P_PLL_LOCK bit in the adapter_status register will
2171 	 * not be asserted.
2172 	 */
2173 	if (!(val64 & ADAPTER_STATUS_P_PLL_LOCK) &&
2174 	    sp->device_type == XFRAME_II_DEVICE &&
2175 	    mode != PCI_MODE_PCI_33) {
2176 		DBG_PRINT(ERR_DBG, "P_PLL is not locked!\n");
2177 		return 0;
2178 	}
2179 	if (!((val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ==
2180 	      ADAPTER_STATUS_RC_PRC_QUIESCENT)) {
2181 		DBG_PRINT(ERR_DBG, "RC_PRC is not QUIESCENT!\n");
2182 		return 0;
2183 	}
2184 	return 1;
2185 }
2186 
2187 /**
2188  * fix_mac_address -  Fix for Mac addr problem on Alpha platforms
2189  * @sp: Pointer to device specifc structure
2190  * Description :
2191  * New procedure to clear mac address reading  problems on Alpha platforms
2192  *
2193  */
2194 
2195 static void fix_mac_address(struct s2io_nic *sp)
2196 {
2197 	struct XENA_dev_config __iomem *bar0 = sp->bar0;
2198 	int i = 0;
2199 
2200 	while (fix_mac[i] != END_SIGN) {
2201 		writeq(fix_mac[i++], &bar0->gpio_control);
2202 		udelay(10);
2203 		(void) readq(&bar0->gpio_control);
2204 	}
2205 }
2206 
2207 /**
2208  *  start_nic - Turns the device on
2209  *  @nic : device private variable.
2210  *  Description:
2211  *  This function actually turns the device on. Before this  function is
2212  *  called,all Registers are configured from their reset states
2213  *  and shared memory is allocated but the NIC is still quiescent. On
2214  *  calling this function, the device interrupts are cleared and the NIC is
2215  *  literally switched on by writing into the adapter control register.
2216  *  Return Value:
2217  *  SUCCESS on success and -1 on failure.
2218  */
2219 
2220 static int start_nic(struct s2io_nic *nic)
2221 {
2222 	struct XENA_dev_config __iomem *bar0 = nic->bar0;
2223 	struct net_device *dev = nic->dev;
2224 	register u64 val64 = 0;
2225 	u16 subid, i;
2226 	struct config_param *config = &nic->config;
2227 	struct mac_info *mac_control = &nic->mac_control;
2228 
2229 	/*  PRC Initialization and configuration */
2230 	for (i = 0; i < config->rx_ring_num; i++) {
2231 		struct ring_info *ring = &mac_control->rings[i];
2232 
2233 		writeq((u64)ring->rx_blocks[0].block_dma_addr,
2234 		       &bar0->prc_rxd0_n[i]);
2235 
2236 		val64 = readq(&bar0->prc_ctrl_n[i]);
2237 		if (nic->rxd_mode == RXD_MODE_1)
2238 			val64 |= PRC_CTRL_RC_ENABLED;
2239 		else
2240 			val64 |= PRC_CTRL_RC_ENABLED | PRC_CTRL_RING_MODE_3;
2241 		if (nic->device_type == XFRAME_II_DEVICE)
2242 			val64 |= PRC_CTRL_GROUP_READS;
2243 		val64 &= ~PRC_CTRL_RXD_BACKOFF_INTERVAL(0xFFFFFF);
2244 		val64 |= PRC_CTRL_RXD_BACKOFF_INTERVAL(0x1000);
2245 		writeq(val64, &bar0->prc_ctrl_n[i]);
2246 	}
2247 
2248 	if (nic->rxd_mode == RXD_MODE_3B) {
2249 		/* Enabling 2 buffer mode by writing into Rx_pa_cfg reg. */
2250 		val64 = readq(&bar0->rx_pa_cfg);
2251 		val64 |= RX_PA_CFG_IGNORE_L2_ERR;
2252 		writeq(val64, &bar0->rx_pa_cfg);
2253 	}
2254 
2255 	if (vlan_tag_strip == 0) {
2256 		val64 = readq(&bar0->rx_pa_cfg);
2257 		val64 &= ~RX_PA_CFG_STRIP_VLAN_TAG;
2258 		writeq(val64, &bar0->rx_pa_cfg);
2259 		nic->vlan_strip_flag = 0;
2260 	}
2261 
2262 	/*
2263 	 * Enabling MC-RLDRAM. After enabling the device, we timeout
2264 	 * for around 100ms, which is approximately the time required
2265 	 * for the device to be ready for operation.
2266 	 */
2267 	val64 = readq(&bar0->mc_rldram_mrs);
2268 	val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE | MC_RLDRAM_MRS_ENABLE;
2269 	SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
2270 	val64 = readq(&bar0->mc_rldram_mrs);
2271 
2272 	msleep(100);	/* Delay by around 100 ms. */
2273 
2274 	/* Enabling ECC Protection. */
2275 	val64 = readq(&bar0->adapter_control);
2276 	val64 &= ~ADAPTER_ECC_EN;
2277 	writeq(val64, &bar0->adapter_control);
2278 
2279 	/*
2280 	 * Verify if the device is ready to be enabled, if so enable
2281 	 * it.
2282 	 */
2283 	val64 = readq(&bar0->adapter_status);
2284 	if (!verify_xena_quiescence(nic)) {
2285 		DBG_PRINT(ERR_DBG, "%s: device is not ready, "
2286 			  "Adapter status reads: 0x%llx\n",
2287 			  dev->name, (unsigned long long)val64);
2288 		return FAILURE;
2289 	}
2290 
2291 	/*
2292 	 * With some switches, link might be already up at this point.
2293 	 * Because of this weird behavior, when we enable laser,
2294 	 * we may not get link. We need to handle this. We cannot
2295 	 * figure out which switch is misbehaving. So we are forced to
2296 	 * make a global change.
2297 	 */
2298 
2299 	/* Enabling Laser. */
2300 	val64 = readq(&bar0->adapter_control);
2301 	val64 |= ADAPTER_EOI_TX_ON;
2302 	writeq(val64, &bar0->adapter_control);
2303 
2304 	if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
2305 		/*
2306 		 * Dont see link state interrupts initially on some switches,
2307 		 * so directly scheduling the link state task here.
2308 		 */
2309 		schedule_work(&nic->set_link_task);
2310 	}
2311 	/* SXE-002: Initialize link and activity LED */
2312 	subid = nic->pdev->subsystem_device;
2313 	if (((subid & 0xFF) >= 0x07) &&
2314 	    (nic->device_type == XFRAME_I_DEVICE)) {
2315 		val64 = readq(&bar0->gpio_control);
2316 		val64 |= 0x0000800000000000ULL;
2317 		writeq(val64, &bar0->gpio_control);
2318 		val64 = 0x0411040400000000ULL;
2319 		writeq(val64, (void __iomem *)bar0 + 0x2700);
2320 	}
2321 
2322 	return SUCCESS;
2323 }
2324 /**
2325  * s2io_txdl_getskb - Get the skb from txdl, unmap and return skb
2326  */
2327 static struct sk_buff *s2io_txdl_getskb(struct fifo_info *fifo_data,
2328 					struct TxD *txdlp, int get_off)
2329 {
2330 	struct s2io_nic *nic = fifo_data->nic;
2331 	struct sk_buff *skb;
2332 	struct TxD *txds;
2333 	u16 j, frg_cnt;
2334 
2335 	txds = txdlp;
2336 	if (txds->Host_Control == (u64)(long)fifo_data->ufo_in_band_v) {
2337 		pci_unmap_single(nic->pdev, (dma_addr_t)txds->Buffer_Pointer,
2338 				 sizeof(u64), PCI_DMA_TODEVICE);
2339 		txds++;
2340 	}
2341 
2342 	skb = (struct sk_buff *)((unsigned long)txds->Host_Control);
2343 	if (!skb) {
2344 		memset(txdlp, 0, (sizeof(struct TxD) * fifo_data->max_txds));
2345 		return NULL;
2346 	}
2347 	pci_unmap_single(nic->pdev, (dma_addr_t)txds->Buffer_Pointer,
2348 			 skb_headlen(skb), PCI_DMA_TODEVICE);
2349 	frg_cnt = skb_shinfo(skb)->nr_frags;
2350 	if (frg_cnt) {
2351 		txds++;
2352 		for (j = 0; j < frg_cnt; j++, txds++) {
2353 			const skb_frag_t *frag = &skb_shinfo(skb)->frags[j];
2354 			if (!txds->Buffer_Pointer)
2355 				break;
2356 			pci_unmap_page(nic->pdev,
2357 				       (dma_addr_t)txds->Buffer_Pointer,
2358 				       skb_frag_size(frag), PCI_DMA_TODEVICE);
2359 		}
2360 	}
2361 	memset(txdlp, 0, (sizeof(struct TxD) * fifo_data->max_txds));
2362 	return skb;
2363 }
2364 
2365 /**
2366  *  free_tx_buffers - Free all queued Tx buffers
2367  *  @nic : device private variable.
2368  *  Description:
2369  *  Free all queued Tx buffers.
2370  *  Return Value: void
2371  */
2372 
2373 static void free_tx_buffers(struct s2io_nic *nic)
2374 {
2375 	struct net_device *dev = nic->dev;
2376 	struct sk_buff *skb;
2377 	struct TxD *txdp;
2378 	int i, j;
2379 	int cnt = 0;
2380 	struct config_param *config = &nic->config;
2381 	struct mac_info *mac_control = &nic->mac_control;
2382 	struct stat_block *stats = mac_control->stats_info;
2383 	struct swStat *swstats = &stats->sw_stat;
2384 
2385 	for (i = 0; i < config->tx_fifo_num; i++) {
2386 		struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
2387 		struct fifo_info *fifo = &mac_control->fifos[i];
2388 		unsigned long flags;
2389 
2390 		spin_lock_irqsave(&fifo->tx_lock, flags);
2391 		for (j = 0; j < tx_cfg->fifo_len; j++) {
2392 			txdp = fifo->list_info[j].list_virt_addr;
2393 			skb = s2io_txdl_getskb(&mac_control->fifos[i], txdp, j);
2394 			if (skb) {
2395 				swstats->mem_freed += skb->truesize;
2396 				dev_kfree_skb(skb);
2397 				cnt++;
2398 			}
2399 		}
2400 		DBG_PRINT(INTR_DBG,
2401 			  "%s: forcibly freeing %d skbs on FIFO%d\n",
2402 			  dev->name, cnt, i);
2403 		fifo->tx_curr_get_info.offset = 0;
2404 		fifo->tx_curr_put_info.offset = 0;
2405 		spin_unlock_irqrestore(&fifo->tx_lock, flags);
2406 	}
2407 }
2408 
2409 /**
2410  *   stop_nic -  To stop the nic
2411  *   @nic ; device private variable.
2412  *   Description:
2413  *   This function does exactly the opposite of what the start_nic()
2414  *   function does. This function is called to stop the device.
2415  *   Return Value:
2416  *   void.
2417  */
2418 
2419 static void stop_nic(struct s2io_nic *nic)
2420 {
2421 	struct XENA_dev_config __iomem *bar0 = nic->bar0;
2422 	register u64 val64 = 0;
2423 	u16 interruptible;
2424 
2425 	/*  Disable all interrupts */
2426 	en_dis_err_alarms(nic, ENA_ALL_INTRS, DISABLE_INTRS);
2427 	interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
2428 	interruptible |= TX_PIC_INTR;
2429 	en_dis_able_nic_intrs(nic, interruptible, DISABLE_INTRS);
2430 
2431 	/* Clearing Adapter_En bit of ADAPTER_CONTROL Register */
2432 	val64 = readq(&bar0->adapter_control);
2433 	val64 &= ~(ADAPTER_CNTL_EN);
2434 	writeq(val64, &bar0->adapter_control);
2435 }
2436 
2437 /**
2438  *  fill_rx_buffers - Allocates the Rx side skbs
2439  *  @ring_info: per ring structure
2440  *  @from_card_up: If this is true, we will map the buffer to get
2441  *     the dma address for buf0 and buf1 to give it to the card.
2442  *     Else we will sync the already mapped buffer to give it to the card.
2443  *  Description:
2444  *  The function allocates Rx side skbs and puts the physical
2445  *  address of these buffers into the RxD buffer pointers, so that the NIC
2446  *  can DMA the received frame into these locations.
2447  *  The NIC supports 3 receive modes, viz
2448  *  1. single buffer,
2449  *  2. three buffer and
2450  *  3. Five buffer modes.
2451  *  Each mode defines how many fragments the received frame will be split
2452  *  up into by the NIC. The frame is split into L3 header, L4 Header,
2453  *  L4 payload in three buffer mode and in 5 buffer mode, L4 payload itself
2454  *  is split into 3 fragments. As of now only single buffer mode is
2455  *  supported.
2456  *   Return Value:
2457  *  SUCCESS on success or an appropriate -ve value on failure.
2458  */
2459 static int fill_rx_buffers(struct s2io_nic *nic, struct ring_info *ring,
2460 			   int from_card_up)
2461 {
2462 	struct sk_buff *skb;
2463 	struct RxD_t *rxdp;
2464 	int off, size, block_no, block_no1;
2465 	u32 alloc_tab = 0;
2466 	u32 alloc_cnt;
2467 	u64 tmp;
2468 	struct buffAdd *ba;
2469 	struct RxD_t *first_rxdp = NULL;
2470 	u64 Buffer0_ptr = 0, Buffer1_ptr = 0;
2471 	int rxd_index = 0;
2472 	struct RxD1 *rxdp1;
2473 	struct RxD3 *rxdp3;
2474 	struct swStat *swstats = &ring->nic->mac_control.stats_info->sw_stat;
2475 
2476 	alloc_cnt = ring->pkt_cnt - ring->rx_bufs_left;
2477 
2478 	block_no1 = ring->rx_curr_get_info.block_index;
2479 	while (alloc_tab < alloc_cnt) {
2480 		block_no = ring->rx_curr_put_info.block_index;
2481 
2482 		off = ring->rx_curr_put_info.offset;
2483 
2484 		rxdp = ring->rx_blocks[block_no].rxds[off].virt_addr;
2485 
2486 		rxd_index = off + 1;
2487 		if (block_no)
2488 			rxd_index += (block_no * ring->rxd_count);
2489 
2490 		if ((block_no == block_no1) &&
2491 		    (off == ring->rx_curr_get_info.offset) &&
2492 		    (rxdp->Host_Control)) {
2493 			DBG_PRINT(INTR_DBG, "%s: Get and Put info equated\n",
2494 				  ring->dev->name);
2495 			goto end;
2496 		}
2497 		if (off && (off == ring->rxd_count)) {
2498 			ring->rx_curr_put_info.block_index++;
2499 			if (ring->rx_curr_put_info.block_index ==
2500 			    ring->block_count)
2501 				ring->rx_curr_put_info.block_index = 0;
2502 			block_no = ring->rx_curr_put_info.block_index;
2503 			off = 0;
2504 			ring->rx_curr_put_info.offset = off;
2505 			rxdp = ring->rx_blocks[block_no].block_virt_addr;
2506 			DBG_PRINT(INTR_DBG, "%s: Next block at: %p\n",
2507 				  ring->dev->name, rxdp);
2508 
2509 		}
2510 
2511 		if ((rxdp->Control_1 & RXD_OWN_XENA) &&
2512 		    ((ring->rxd_mode == RXD_MODE_3B) &&
2513 		     (rxdp->Control_2 & s2BIT(0)))) {
2514 			ring->rx_curr_put_info.offset = off;
2515 			goto end;
2516 		}
2517 		/* calculate size of skb based on ring mode */
2518 		size = ring->mtu +
2519 			HEADER_ETHERNET_II_802_3_SIZE +
2520 			HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
2521 		if (ring->rxd_mode == RXD_MODE_1)
2522 			size += NET_IP_ALIGN;
2523 		else
2524 			size = ring->mtu + ALIGN_SIZE + BUF0_LEN + 4;
2525 
2526 		/* allocate skb */
2527 		skb = netdev_alloc_skb(nic->dev, size);
2528 		if (!skb) {
2529 			DBG_PRINT(INFO_DBG, "%s: Could not allocate skb\n",
2530 				  ring->dev->name);
2531 			if (first_rxdp) {
2532 				wmb();
2533 				first_rxdp->Control_1 |= RXD_OWN_XENA;
2534 			}
2535 			swstats->mem_alloc_fail_cnt++;
2536 
2537 			return -ENOMEM ;
2538 		}
2539 		swstats->mem_allocated += skb->truesize;
2540 
2541 		if (ring->rxd_mode == RXD_MODE_1) {
2542 			/* 1 buffer mode - normal operation mode */
2543 			rxdp1 = (struct RxD1 *)rxdp;
2544 			memset(rxdp, 0, sizeof(struct RxD1));
2545 			skb_reserve(skb, NET_IP_ALIGN);
2546 			rxdp1->Buffer0_ptr =
2547 				pci_map_single(ring->pdev, skb->data,
2548 					       size - NET_IP_ALIGN,
2549 					       PCI_DMA_FROMDEVICE);
2550 			if (pci_dma_mapping_error(nic->pdev,
2551 						  rxdp1->Buffer0_ptr))
2552 				goto pci_map_failed;
2553 
2554 			rxdp->Control_2 =
2555 				SET_BUFFER0_SIZE_1(size - NET_IP_ALIGN);
2556 			rxdp->Host_Control = (unsigned long)skb;
2557 		} else if (ring->rxd_mode == RXD_MODE_3B) {
2558 			/*
2559 			 * 2 buffer mode -
2560 			 * 2 buffer mode provides 128
2561 			 * byte aligned receive buffers.
2562 			 */
2563 
2564 			rxdp3 = (struct RxD3 *)rxdp;
2565 			/* save buffer pointers to avoid frequent dma mapping */
2566 			Buffer0_ptr = rxdp3->Buffer0_ptr;
2567 			Buffer1_ptr = rxdp3->Buffer1_ptr;
2568 			memset(rxdp, 0, sizeof(struct RxD3));
2569 			/* restore the buffer pointers for dma sync*/
2570 			rxdp3->Buffer0_ptr = Buffer0_ptr;
2571 			rxdp3->Buffer1_ptr = Buffer1_ptr;
2572 
2573 			ba = &ring->ba[block_no][off];
2574 			skb_reserve(skb, BUF0_LEN);
2575 			tmp = (u64)(unsigned long)skb->data;
2576 			tmp += ALIGN_SIZE;
2577 			tmp &= ~ALIGN_SIZE;
2578 			skb->data = (void *) (unsigned long)tmp;
2579 			skb_reset_tail_pointer(skb);
2580 
2581 			if (from_card_up) {
2582 				rxdp3->Buffer0_ptr =
2583 					pci_map_single(ring->pdev, ba->ba_0,
2584 						       BUF0_LEN,
2585 						       PCI_DMA_FROMDEVICE);
2586 				if (pci_dma_mapping_error(nic->pdev,
2587 							  rxdp3->Buffer0_ptr))
2588 					goto pci_map_failed;
2589 			} else
2590 				pci_dma_sync_single_for_device(ring->pdev,
2591 							       (dma_addr_t)rxdp3->Buffer0_ptr,
2592 							       BUF0_LEN,
2593 							       PCI_DMA_FROMDEVICE);
2594 
2595 			rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
2596 			if (ring->rxd_mode == RXD_MODE_3B) {
2597 				/* Two buffer mode */
2598 
2599 				/*
2600 				 * Buffer2 will have L3/L4 header plus
2601 				 * L4 payload
2602 				 */
2603 				rxdp3->Buffer2_ptr = pci_map_single(ring->pdev,
2604 								    skb->data,
2605 								    ring->mtu + 4,
2606 								    PCI_DMA_FROMDEVICE);
2607 
2608 				if (pci_dma_mapping_error(nic->pdev,
2609 							  rxdp3->Buffer2_ptr))
2610 					goto pci_map_failed;
2611 
2612 				if (from_card_up) {
2613 					rxdp3->Buffer1_ptr =
2614 						pci_map_single(ring->pdev,
2615 							       ba->ba_1,
2616 							       BUF1_LEN,
2617 							       PCI_DMA_FROMDEVICE);
2618 
2619 					if (pci_dma_mapping_error(nic->pdev,
2620 								  rxdp3->Buffer1_ptr)) {
2621 						pci_unmap_single(ring->pdev,
2622 								 (dma_addr_t)(unsigned long)
2623 								 skb->data,
2624 								 ring->mtu + 4,
2625 								 PCI_DMA_FROMDEVICE);
2626 						goto pci_map_failed;
2627 					}
2628 				}
2629 				rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
2630 				rxdp->Control_2 |= SET_BUFFER2_SIZE_3
2631 					(ring->mtu + 4);
2632 			}
2633 			rxdp->Control_2 |= s2BIT(0);
2634 			rxdp->Host_Control = (unsigned long) (skb);
2635 		}
2636 		if (alloc_tab & ((1 << rxsync_frequency) - 1))
2637 			rxdp->Control_1 |= RXD_OWN_XENA;
2638 		off++;
2639 		if (off == (ring->rxd_count + 1))
2640 			off = 0;
2641 		ring->rx_curr_put_info.offset = off;
2642 
2643 		rxdp->Control_2 |= SET_RXD_MARKER;
2644 		if (!(alloc_tab & ((1 << rxsync_frequency) - 1))) {
2645 			if (first_rxdp) {
2646 				wmb();
2647 				first_rxdp->Control_1 |= RXD_OWN_XENA;
2648 			}
2649 			first_rxdp = rxdp;
2650 		}
2651 		ring->rx_bufs_left += 1;
2652 		alloc_tab++;
2653 	}
2654 
2655 end:
2656 	/* Transfer ownership of first descriptor to adapter just before
2657 	 * exiting. Before that, use memory barrier so that ownership
2658 	 * and other fields are seen by adapter correctly.
2659 	 */
2660 	if (first_rxdp) {
2661 		wmb();
2662 		first_rxdp->Control_1 |= RXD_OWN_XENA;
2663 	}
2664 
2665 	return SUCCESS;
2666 
2667 pci_map_failed:
2668 	swstats->pci_map_fail_cnt++;
2669 	swstats->mem_freed += skb->truesize;
2670 	dev_kfree_skb_irq(skb);
2671 	return -ENOMEM;
2672 }
2673 
2674 static void free_rxd_blk(struct s2io_nic *sp, int ring_no, int blk)
2675 {
2676 	struct net_device *dev = sp->dev;
2677 	int j;
2678 	struct sk_buff *skb;
2679 	struct RxD_t *rxdp;
2680 	struct RxD1 *rxdp1;
2681 	struct RxD3 *rxdp3;
2682 	struct mac_info *mac_control = &sp->mac_control;
2683 	struct stat_block *stats = mac_control->stats_info;
2684 	struct swStat *swstats = &stats->sw_stat;
2685 
2686 	for (j = 0 ; j < rxd_count[sp->rxd_mode]; j++) {
2687 		rxdp = mac_control->rings[ring_no].
2688 			rx_blocks[blk].rxds[j].virt_addr;
2689 		skb = (struct sk_buff *)((unsigned long)rxdp->Host_Control);
2690 		if (!skb)
2691 			continue;
2692 		if (sp->rxd_mode == RXD_MODE_1) {
2693 			rxdp1 = (struct RxD1 *)rxdp;
2694 			pci_unmap_single(sp->pdev,
2695 					 (dma_addr_t)rxdp1->Buffer0_ptr,
2696 					 dev->mtu +
2697 					 HEADER_ETHERNET_II_802_3_SIZE +
2698 					 HEADER_802_2_SIZE + HEADER_SNAP_SIZE,
2699 					 PCI_DMA_FROMDEVICE);
2700 			memset(rxdp, 0, sizeof(struct RxD1));
2701 		} else if (sp->rxd_mode == RXD_MODE_3B) {
2702 			rxdp3 = (struct RxD3 *)rxdp;
2703 			pci_unmap_single(sp->pdev,
2704 					 (dma_addr_t)rxdp3->Buffer0_ptr,
2705 					 BUF0_LEN,
2706 					 PCI_DMA_FROMDEVICE);
2707 			pci_unmap_single(sp->pdev,
2708 					 (dma_addr_t)rxdp3->Buffer1_ptr,
2709 					 BUF1_LEN,
2710 					 PCI_DMA_FROMDEVICE);
2711 			pci_unmap_single(sp->pdev,
2712 					 (dma_addr_t)rxdp3->Buffer2_ptr,
2713 					 dev->mtu + 4,
2714 					 PCI_DMA_FROMDEVICE);
2715 			memset(rxdp, 0, sizeof(struct RxD3));
2716 		}
2717 		swstats->mem_freed += skb->truesize;
2718 		dev_kfree_skb(skb);
2719 		mac_control->rings[ring_no].rx_bufs_left -= 1;
2720 	}
2721 }
2722 
2723 /**
2724  *  free_rx_buffers - Frees all Rx buffers
2725  *  @sp: device private variable.
2726  *  Description:
2727  *  This function will free all Rx buffers allocated by host.
2728  *  Return Value:
2729  *  NONE.
2730  */
2731 
2732 static void free_rx_buffers(struct s2io_nic *sp)
2733 {
2734 	struct net_device *dev = sp->dev;
2735 	int i, blk = 0, buf_cnt = 0;
2736 	struct config_param *config = &sp->config;
2737 	struct mac_info *mac_control = &sp->mac_control;
2738 
2739 	for (i = 0; i < config->rx_ring_num; i++) {
2740 		struct ring_info *ring = &mac_control->rings[i];
2741 
2742 		for (blk = 0; blk < rx_ring_sz[i]; blk++)
2743 			free_rxd_blk(sp, i, blk);
2744 
2745 		ring->rx_curr_put_info.block_index = 0;
2746 		ring->rx_curr_get_info.block_index = 0;
2747 		ring->rx_curr_put_info.offset = 0;
2748 		ring->rx_curr_get_info.offset = 0;
2749 		ring->rx_bufs_left = 0;
2750 		DBG_PRINT(INIT_DBG, "%s: Freed 0x%x Rx Buffers on ring%d\n",
2751 			  dev->name, buf_cnt, i);
2752 	}
2753 }
2754 
2755 static int s2io_chk_rx_buffers(struct s2io_nic *nic, struct ring_info *ring)
2756 {
2757 	if (fill_rx_buffers(nic, ring, 0) == -ENOMEM) {
2758 		DBG_PRINT(INFO_DBG, "%s: Out of memory in Rx Intr!!\n",
2759 			  ring->dev->name);
2760 	}
2761 	return 0;
2762 }
2763 
2764 /**
2765  * s2io_poll - Rx interrupt handler for NAPI support
2766  * @napi : pointer to the napi structure.
2767  * @budget : The number of packets that were budgeted to be processed
2768  * during  one pass through the 'Poll" function.
2769  * Description:
2770  * Comes into picture only if NAPI support has been incorporated. It does
2771  * the same thing that rx_intr_handler does, but not in a interrupt context
2772  * also It will process only a given number of packets.
2773  * Return value:
2774  * 0 on success and 1 if there are No Rx packets to be processed.
2775  */
2776 
2777 static int s2io_poll_msix(struct napi_struct *napi, int budget)
2778 {
2779 	struct ring_info *ring = container_of(napi, struct ring_info, napi);
2780 	struct net_device *dev = ring->dev;
2781 	int pkts_processed = 0;
2782 	u8 __iomem *addr = NULL;
2783 	u8 val8 = 0;
2784 	struct s2io_nic *nic = netdev_priv(dev);
2785 	struct XENA_dev_config __iomem *bar0 = nic->bar0;
2786 	int budget_org = budget;
2787 
2788 	if (unlikely(!is_s2io_card_up(nic)))
2789 		return 0;
2790 
2791 	pkts_processed = rx_intr_handler(ring, budget);
2792 	s2io_chk_rx_buffers(nic, ring);
2793 
2794 	if (pkts_processed < budget_org) {
2795 		napi_complete(napi);
2796 		/*Re Enable MSI-Rx Vector*/
2797 		addr = (u8 __iomem *)&bar0->xmsi_mask_reg;
2798 		addr += 7 - ring->ring_no;
2799 		val8 = (ring->ring_no == 0) ? 0x3f : 0xbf;
2800 		writeb(val8, addr);
2801 		val8 = readb(addr);
2802 	}
2803 	return pkts_processed;
2804 }
2805 
2806 static int s2io_poll_inta(struct napi_struct *napi, int budget)
2807 {
2808 	struct s2io_nic *nic = container_of(napi, struct s2io_nic, napi);
2809 	int pkts_processed = 0;
2810 	int ring_pkts_processed, i;
2811 	struct XENA_dev_config __iomem *bar0 = nic->bar0;
2812 	int budget_org = budget;
2813 	struct config_param *config = &nic->config;
2814 	struct mac_info *mac_control = &nic->mac_control;
2815 
2816 	if (unlikely(!is_s2io_card_up(nic)))
2817 		return 0;
2818 
2819 	for (i = 0; i < config->rx_ring_num; i++) {
2820 		struct ring_info *ring = &mac_control->rings[i];
2821 		ring_pkts_processed = rx_intr_handler(ring, budget);
2822 		s2io_chk_rx_buffers(nic, ring);
2823 		pkts_processed += ring_pkts_processed;
2824 		budget -= ring_pkts_processed;
2825 		if (budget <= 0)
2826 			break;
2827 	}
2828 	if (pkts_processed < budget_org) {
2829 		napi_complete(napi);
2830 		/* Re enable the Rx interrupts for the ring */
2831 		writeq(0, &bar0->rx_traffic_mask);
2832 		readl(&bar0->rx_traffic_mask);
2833 	}
2834 	return pkts_processed;
2835 }
2836 
2837 #ifdef CONFIG_NET_POLL_CONTROLLER
2838 /**
2839  * s2io_netpoll - netpoll event handler entry point
2840  * @dev : pointer to the device structure.
2841  * Description:
2842  * 	This function will be called by upper layer to check for events on the
2843  * interface in situations where interrupts are disabled. It is used for
2844  * specific in-kernel networking tasks, such as remote consoles and kernel
2845  * debugging over the network (example netdump in RedHat).
2846  */
2847 static void s2io_netpoll(struct net_device *dev)
2848 {
2849 	struct s2io_nic *nic = netdev_priv(dev);
2850 	const int irq = nic->pdev->irq;
2851 	struct XENA_dev_config __iomem *bar0 = nic->bar0;
2852 	u64 val64 = 0xFFFFFFFFFFFFFFFFULL;
2853 	int i;
2854 	struct config_param *config = &nic->config;
2855 	struct mac_info *mac_control = &nic->mac_control;
2856 
2857 	if (pci_channel_offline(nic->pdev))
2858 		return;
2859 
2860 	disable_irq(irq);
2861 
2862 	writeq(val64, &bar0->rx_traffic_int);
2863 	writeq(val64, &bar0->tx_traffic_int);
2864 
2865 	/* we need to free up the transmitted skbufs or else netpoll will
2866 	 * run out of skbs and will fail and eventually netpoll application such
2867 	 * as netdump will fail.
2868 	 */
2869 	for (i = 0; i < config->tx_fifo_num; i++)
2870 		tx_intr_handler(&mac_control->fifos[i]);
2871 
2872 	/* check for received packet and indicate up to network */
2873 	for (i = 0; i < config->rx_ring_num; i++) {
2874 		struct ring_info *ring = &mac_control->rings[i];
2875 
2876 		rx_intr_handler(ring, 0);
2877 	}
2878 
2879 	for (i = 0; i < config->rx_ring_num; i++) {
2880 		struct ring_info *ring = &mac_control->rings[i];
2881 
2882 		if (fill_rx_buffers(nic, ring, 0) == -ENOMEM) {
2883 			DBG_PRINT(INFO_DBG,
2884 				  "%s: Out of memory in Rx Netpoll!!\n",
2885 				  dev->name);
2886 			break;
2887 		}
2888 	}
2889 	enable_irq(irq);
2890 }
2891 #endif
2892 
2893 /**
2894  *  rx_intr_handler - Rx interrupt handler
2895  *  @ring_info: per ring structure.
2896  *  @budget: budget for napi processing.
2897  *  Description:
2898  *  If the interrupt is because of a received frame or if the
2899  *  receive ring contains fresh as yet un-processed frames,this function is
2900  *  called. It picks out the RxD at which place the last Rx processing had
2901  *  stopped and sends the skb to the OSM's Rx handler and then increments
2902  *  the offset.
2903  *  Return Value:
2904  *  No. of napi packets processed.
2905  */
2906 static int rx_intr_handler(struct ring_info *ring_data, int budget)
2907 {
2908 	int get_block, put_block;
2909 	struct rx_curr_get_info get_info, put_info;
2910 	struct RxD_t *rxdp;
2911 	struct sk_buff *skb;
2912 	int pkt_cnt = 0, napi_pkts = 0;
2913 	int i;
2914 	struct RxD1 *rxdp1;
2915 	struct RxD3 *rxdp3;
2916 
2917 	get_info = ring_data->rx_curr_get_info;
2918 	get_block = get_info.block_index;
2919 	memcpy(&put_info, &ring_data->rx_curr_put_info, sizeof(put_info));
2920 	put_block = put_info.block_index;
2921 	rxdp = ring_data->rx_blocks[get_block].rxds[get_info.offset].virt_addr;
2922 
2923 	while (RXD_IS_UP2DT(rxdp)) {
2924 		/*
2925 		 * If your are next to put index then it's
2926 		 * FIFO full condition
2927 		 */
2928 		if ((get_block == put_block) &&
2929 		    (get_info.offset + 1) == put_info.offset) {
2930 			DBG_PRINT(INTR_DBG, "%s: Ring Full\n",
2931 				  ring_data->dev->name);
2932 			break;
2933 		}
2934 		skb = (struct sk_buff *)((unsigned long)rxdp->Host_Control);
2935 		if (skb == NULL) {
2936 			DBG_PRINT(ERR_DBG, "%s: NULL skb in Rx Intr\n",
2937 				  ring_data->dev->name);
2938 			return 0;
2939 		}
2940 		if (ring_data->rxd_mode == RXD_MODE_1) {
2941 			rxdp1 = (struct RxD1 *)rxdp;
2942 			pci_unmap_single(ring_data->pdev, (dma_addr_t)
2943 					 rxdp1->Buffer0_ptr,
2944 					 ring_data->mtu +
2945 					 HEADER_ETHERNET_II_802_3_SIZE +
2946 					 HEADER_802_2_SIZE +
2947 					 HEADER_SNAP_SIZE,
2948 					 PCI_DMA_FROMDEVICE);
2949 		} else if (ring_data->rxd_mode == RXD_MODE_3B) {
2950 			rxdp3 = (struct RxD3 *)rxdp;
2951 			pci_dma_sync_single_for_cpu(ring_data->pdev,
2952 						    (dma_addr_t)rxdp3->Buffer0_ptr,
2953 						    BUF0_LEN,
2954 						    PCI_DMA_FROMDEVICE);
2955 			pci_unmap_single(ring_data->pdev,
2956 					 (dma_addr_t)rxdp3->Buffer2_ptr,
2957 					 ring_data->mtu + 4,
2958 					 PCI_DMA_FROMDEVICE);
2959 		}
2960 		prefetch(skb->data);
2961 		rx_osm_handler(ring_data, rxdp);
2962 		get_info.offset++;
2963 		ring_data->rx_curr_get_info.offset = get_info.offset;
2964 		rxdp = ring_data->rx_blocks[get_block].
2965 			rxds[get_info.offset].virt_addr;
2966 		if (get_info.offset == rxd_count[ring_data->rxd_mode]) {
2967 			get_info.offset = 0;
2968 			ring_data->rx_curr_get_info.offset = get_info.offset;
2969 			get_block++;
2970 			if (get_block == ring_data->block_count)
2971 				get_block = 0;
2972 			ring_data->rx_curr_get_info.block_index = get_block;
2973 			rxdp = ring_data->rx_blocks[get_block].block_virt_addr;
2974 		}
2975 
2976 		if (ring_data->nic->config.napi) {
2977 			budget--;
2978 			napi_pkts++;
2979 			if (!budget)
2980 				break;
2981 		}
2982 		pkt_cnt++;
2983 		if ((indicate_max_pkts) && (pkt_cnt > indicate_max_pkts))
2984 			break;
2985 	}
2986 	if (ring_data->lro) {
2987 		/* Clear all LRO sessions before exiting */
2988 		for (i = 0; i < MAX_LRO_SESSIONS; i++) {
2989 			struct lro *lro = &ring_data->lro0_n[i];
2990 			if (lro->in_use) {
2991 				update_L3L4_header(ring_data->nic, lro);
2992 				queue_rx_frame(lro->parent, lro->vlan_tag);
2993 				clear_lro_session(lro);
2994 			}
2995 		}
2996 	}
2997 	return napi_pkts;
2998 }
2999 
3000 /**
3001  *  tx_intr_handler - Transmit interrupt handler
3002  *  @nic : device private variable
3003  *  Description:
3004  *  If an interrupt was raised to indicate DMA complete of the
3005  *  Tx packet, this function is called. It identifies the last TxD
3006  *  whose buffer was freed and frees all skbs whose data have already
3007  *  DMA'ed into the NICs internal memory.
3008  *  Return Value:
3009  *  NONE
3010  */
3011 
3012 static void tx_intr_handler(struct fifo_info *fifo_data)
3013 {
3014 	struct s2io_nic *nic = fifo_data->nic;
3015 	struct tx_curr_get_info get_info, put_info;
3016 	struct sk_buff *skb = NULL;
3017 	struct TxD *txdlp;
3018 	int pkt_cnt = 0;
3019 	unsigned long flags = 0;
3020 	u8 err_mask;
3021 	struct stat_block *stats = nic->mac_control.stats_info;
3022 	struct swStat *swstats = &stats->sw_stat;
3023 
3024 	if (!spin_trylock_irqsave(&fifo_data->tx_lock, flags))
3025 		return;
3026 
3027 	get_info = fifo_data->tx_curr_get_info;
3028 	memcpy(&put_info, &fifo_data->tx_curr_put_info, sizeof(put_info));
3029 	txdlp = fifo_data->list_info[get_info.offset].list_virt_addr;
3030 	while ((!(txdlp->Control_1 & TXD_LIST_OWN_XENA)) &&
3031 	       (get_info.offset != put_info.offset) &&
3032 	       (txdlp->Host_Control)) {
3033 		/* Check for TxD errors */
3034 		if (txdlp->Control_1 & TXD_T_CODE) {
3035 			unsigned long long err;
3036 			err = txdlp->Control_1 & TXD_T_CODE;
3037 			if (err & 0x1) {
3038 				swstats->parity_err_cnt++;
3039 			}
3040 
3041 			/* update t_code statistics */
3042 			err_mask = err >> 48;
3043 			switch (err_mask) {
3044 			case 2:
3045 				swstats->tx_buf_abort_cnt++;
3046 				break;
3047 
3048 			case 3:
3049 				swstats->tx_desc_abort_cnt++;
3050 				break;
3051 
3052 			case 7:
3053 				swstats->tx_parity_err_cnt++;
3054 				break;
3055 
3056 			case 10:
3057 				swstats->tx_link_loss_cnt++;
3058 				break;
3059 
3060 			case 15:
3061 				swstats->tx_list_proc_err_cnt++;
3062 				break;
3063 			}
3064 		}
3065 
3066 		skb = s2io_txdl_getskb(fifo_data, txdlp, get_info.offset);
3067 		if (skb == NULL) {
3068 			spin_unlock_irqrestore(&fifo_data->tx_lock, flags);
3069 			DBG_PRINT(ERR_DBG, "%s: NULL skb in Tx Free Intr\n",
3070 				  __func__);
3071 			return;
3072 		}
3073 		pkt_cnt++;
3074 
3075 		/* Updating the statistics block */
3076 		swstats->mem_freed += skb->truesize;
3077 		dev_kfree_skb_irq(skb);
3078 
3079 		get_info.offset++;
3080 		if (get_info.offset == get_info.fifo_len + 1)
3081 			get_info.offset = 0;
3082 		txdlp = fifo_data->list_info[get_info.offset].list_virt_addr;
3083 		fifo_data->tx_curr_get_info.offset = get_info.offset;
3084 	}
3085 
3086 	s2io_wake_tx_queue(fifo_data, pkt_cnt, nic->config.multiq);
3087 
3088 	spin_unlock_irqrestore(&fifo_data->tx_lock, flags);
3089 }
3090 
3091 /**
3092  *  s2io_mdio_write - Function to write in to MDIO registers
3093  *  @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
3094  *  @addr     : address value
3095  *  @value    : data value
3096  *  @dev      : pointer to net_device structure
3097  *  Description:
3098  *  This function is used to write values to the MDIO registers
3099  *  NONE
3100  */
3101 static void s2io_mdio_write(u32 mmd_type, u64 addr, u16 value,
3102 			    struct net_device *dev)
3103 {
3104 	u64 val64;
3105 	struct s2io_nic *sp = netdev_priv(dev);
3106 	struct XENA_dev_config __iomem *bar0 = sp->bar0;
3107 
3108 	/* address transaction */
3109 	val64 = MDIO_MMD_INDX_ADDR(addr) |
3110 		MDIO_MMD_DEV_ADDR(mmd_type) |
3111 		MDIO_MMS_PRT_ADDR(0x0);
3112 	writeq(val64, &bar0->mdio_control);
3113 	val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3114 	writeq(val64, &bar0->mdio_control);
3115 	udelay(100);
3116 
3117 	/* Data transaction */
3118 	val64 = MDIO_MMD_INDX_ADDR(addr) |
3119 		MDIO_MMD_DEV_ADDR(mmd_type) |
3120 		MDIO_MMS_PRT_ADDR(0x0) |
3121 		MDIO_MDIO_DATA(value) |
3122 		MDIO_OP(MDIO_OP_WRITE_TRANS);
3123 	writeq(val64, &bar0->mdio_control);
3124 	val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3125 	writeq(val64, &bar0->mdio_control);
3126 	udelay(100);
3127 
3128 	val64 = MDIO_MMD_INDX_ADDR(addr) |
3129 		MDIO_MMD_DEV_ADDR(mmd_type) |
3130 		MDIO_MMS_PRT_ADDR(0x0) |
3131 		MDIO_OP(MDIO_OP_READ_TRANS);
3132 	writeq(val64, &bar0->mdio_control);
3133 	val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3134 	writeq(val64, &bar0->mdio_control);
3135 	udelay(100);
3136 }
3137 
3138 /**
3139  *  s2io_mdio_read - Function to write in to MDIO registers
3140  *  @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
3141  *  @addr     : address value
3142  *  @dev      : pointer to net_device structure
3143  *  Description:
3144  *  This function is used to read values to the MDIO registers
3145  *  NONE
3146  */
3147 static u64 s2io_mdio_read(u32 mmd_type, u64 addr, struct net_device *dev)
3148 {
3149 	u64 val64 = 0x0;
3150 	u64 rval64 = 0x0;
3151 	struct s2io_nic *sp = netdev_priv(dev);
3152 	struct XENA_dev_config __iomem *bar0 = sp->bar0;
3153 
3154 	/* address transaction */
3155 	val64 = val64 | (MDIO_MMD_INDX_ADDR(addr)
3156 			 | MDIO_MMD_DEV_ADDR(mmd_type)
3157 			 | MDIO_MMS_PRT_ADDR(0x0));
3158 	writeq(val64, &bar0->mdio_control);
3159 	val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3160 	writeq(val64, &bar0->mdio_control);
3161 	udelay(100);
3162 
3163 	/* Data transaction */
3164 	val64 = MDIO_MMD_INDX_ADDR(addr) |
3165 		MDIO_MMD_DEV_ADDR(mmd_type) |
3166 		MDIO_MMS_PRT_ADDR(0x0) |
3167 		MDIO_OP(MDIO_OP_READ_TRANS);
3168 	writeq(val64, &bar0->mdio_control);
3169 	val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3170 	writeq(val64, &bar0->mdio_control);
3171 	udelay(100);
3172 
3173 	/* Read the value from regs */
3174 	rval64 = readq(&bar0->mdio_control);
3175 	rval64 = rval64 & 0xFFFF0000;
3176 	rval64 = rval64 >> 16;
3177 	return rval64;
3178 }
3179 
3180 /**
3181  *  s2io_chk_xpak_counter - Function to check the status of the xpak counters
3182  *  @counter      : counter value to be updated
3183  *  @flag         : flag to indicate the status
3184  *  @type         : counter type
3185  *  Description:
3186  *  This function is to check the status of the xpak counters value
3187  *  NONE
3188  */
3189 
3190 static void s2io_chk_xpak_counter(u64 *counter, u64 * regs_stat, u32 index,
3191 				  u16 flag, u16 type)
3192 {
3193 	u64 mask = 0x3;
3194 	u64 val64;
3195 	int i;
3196 	for (i = 0; i < index; i++)
3197 		mask = mask << 0x2;
3198 
3199 	if (flag > 0) {
3200 		*counter = *counter + 1;
3201 		val64 = *regs_stat & mask;
3202 		val64 = val64 >> (index * 0x2);
3203 		val64 = val64 + 1;
3204 		if (val64 == 3) {
3205 			switch (type) {
3206 			case 1:
3207 				DBG_PRINT(ERR_DBG,
3208 					  "Take Xframe NIC out of service.\n");
3209 				DBG_PRINT(ERR_DBG,
3210 "Excessive temperatures may result in premature transceiver failure.\n");
3211 				break;
3212 			case 2:
3213 				DBG_PRINT(ERR_DBG,
3214 					  "Take Xframe NIC out of service.\n");
3215 				DBG_PRINT(ERR_DBG,
3216 "Excessive bias currents may indicate imminent laser diode failure.\n");
3217 				break;
3218 			case 3:
3219 				DBG_PRINT(ERR_DBG,
3220 					  "Take Xframe NIC out of service.\n");
3221 				DBG_PRINT(ERR_DBG,
3222 "Excessive laser output power may saturate far-end receiver.\n");
3223 				break;
3224 			default:
3225 				DBG_PRINT(ERR_DBG,
3226 					  "Incorrect XPAK Alarm type\n");
3227 			}
3228 			val64 = 0x0;
3229 		}
3230 		val64 = val64 << (index * 0x2);
3231 		*regs_stat = (*regs_stat & (~mask)) | (val64);
3232 
3233 	} else {
3234 		*regs_stat = *regs_stat & (~mask);
3235 	}
3236 }
3237 
3238 /**
3239  *  s2io_updt_xpak_counter - Function to update the xpak counters
3240  *  @dev         : pointer to net_device struct
3241  *  Description:
3242  *  This function is to upate the status of the xpak counters value
3243  *  NONE
3244  */
3245 static void s2io_updt_xpak_counter(struct net_device *dev)
3246 {
3247 	u16 flag  = 0x0;
3248 	u16 type  = 0x0;
3249 	u16 val16 = 0x0;
3250 	u64 val64 = 0x0;
3251 	u64 addr  = 0x0;
3252 
3253 	struct s2io_nic *sp = netdev_priv(dev);
3254 	struct stat_block *stats = sp->mac_control.stats_info;
3255 	struct xpakStat *xstats = &stats->xpak_stat;
3256 
3257 	/* Check the communication with the MDIO slave */
3258 	addr = MDIO_CTRL1;
3259 	val64 = 0x0;
3260 	val64 = s2io_mdio_read(MDIO_MMD_PMAPMD, addr, dev);
3261 	if ((val64 == 0xFFFF) || (val64 == 0x0000)) {
3262 		DBG_PRINT(ERR_DBG,
3263 			  "ERR: MDIO slave access failed - Returned %llx\n",
3264 			  (unsigned long long)val64);
3265 		return;
3266 	}
3267 
3268 	/* Check for the expected value of control reg 1 */
3269 	if (val64 != MDIO_CTRL1_SPEED10G) {
3270 		DBG_PRINT(ERR_DBG, "Incorrect value at PMA address 0x0000 - "
3271 			  "Returned: %llx- Expected: 0x%x\n",
3272 			  (unsigned long long)val64, MDIO_CTRL1_SPEED10G);
3273 		return;
3274 	}
3275 
3276 	/* Loading the DOM register to MDIO register */
3277 	addr = 0xA100;
3278 	s2io_mdio_write(MDIO_MMD_PMAPMD, addr, val16, dev);
3279 	val64 = s2io_mdio_read(MDIO_MMD_PMAPMD, addr, dev);
3280 
3281 	/* Reading the Alarm flags */
3282 	addr = 0xA070;
3283 	val64 = 0x0;
3284 	val64 = s2io_mdio_read(MDIO_MMD_PMAPMD, addr, dev);
3285 
3286 	flag = CHECKBIT(val64, 0x7);
3287 	type = 1;
3288 	s2io_chk_xpak_counter(&xstats->alarm_transceiver_temp_high,
3289 			      &xstats->xpak_regs_stat,
3290 			      0x0, flag, type);
3291 
3292 	if (CHECKBIT(val64, 0x6))
3293 		xstats->alarm_transceiver_temp_low++;
3294 
3295 	flag = CHECKBIT(val64, 0x3);
3296 	type = 2;
3297 	s2io_chk_xpak_counter(&xstats->alarm_laser_bias_current_high,
3298 			      &xstats->xpak_regs_stat,
3299 			      0x2, flag, type);
3300 
3301 	if (CHECKBIT(val64, 0x2))
3302 		xstats->alarm_laser_bias_current_low++;
3303 
3304 	flag = CHECKBIT(val64, 0x1);
3305 	type = 3;
3306 	s2io_chk_xpak_counter(&xstats->alarm_laser_output_power_high,
3307 			      &xstats->xpak_regs_stat,
3308 			      0x4, flag, type);
3309 
3310 	if (CHECKBIT(val64, 0x0))
3311 		xstats->alarm_laser_output_power_low++;
3312 
3313 	/* Reading the Warning flags */
3314 	addr = 0xA074;
3315 	val64 = 0x0;
3316 	val64 = s2io_mdio_read(MDIO_MMD_PMAPMD, addr, dev);
3317 
3318 	if (CHECKBIT(val64, 0x7))
3319 		xstats->warn_transceiver_temp_high++;
3320 
3321 	if (CHECKBIT(val64, 0x6))
3322 		xstats->warn_transceiver_temp_low++;
3323 
3324 	if (CHECKBIT(val64, 0x3))
3325 		xstats->warn_laser_bias_current_high++;
3326 
3327 	if (CHECKBIT(val64, 0x2))
3328 		xstats->warn_laser_bias_current_low++;
3329 
3330 	if (CHECKBIT(val64, 0x1))
3331 		xstats->warn_laser_output_power_high++;
3332 
3333 	if (CHECKBIT(val64, 0x0))
3334 		xstats->warn_laser_output_power_low++;
3335 }
3336 
3337 /**
3338  *  wait_for_cmd_complete - waits for a command to complete.
3339  *  @sp : private member of the device structure, which is a pointer to the
3340  *  s2io_nic structure.
3341  *  Description: Function that waits for a command to Write into RMAC
3342  *  ADDR DATA registers to be completed and returns either success or
3343  *  error depending on whether the command was complete or not.
3344  *  Return value:
3345  *   SUCCESS on success and FAILURE on failure.
3346  */
3347 
3348 static int wait_for_cmd_complete(void __iomem *addr, u64 busy_bit,
3349 				 int bit_state)
3350 {
3351 	int ret = FAILURE, cnt = 0, delay = 1;
3352 	u64 val64;
3353 
3354 	if ((bit_state != S2IO_BIT_RESET) && (bit_state != S2IO_BIT_SET))
3355 		return FAILURE;
3356 
3357 	do {
3358 		val64 = readq(addr);
3359 		if (bit_state == S2IO_BIT_RESET) {
3360 			if (!(val64 & busy_bit)) {
3361 				ret = SUCCESS;
3362 				break;
3363 			}
3364 		} else {
3365 			if (val64 & busy_bit) {
3366 				ret = SUCCESS;
3367 				break;
3368 			}
3369 		}
3370 
3371 		if (in_interrupt())
3372 			mdelay(delay);
3373 		else
3374 			msleep(delay);
3375 
3376 		if (++cnt >= 10)
3377 			delay = 50;
3378 	} while (cnt < 20);
3379 	return ret;
3380 }
3381 /**
3382  * check_pci_device_id - Checks if the device id is supported
3383  * @id : device id
3384  * Description: Function to check if the pci device id is supported by driver.
3385  * Return value: Actual device id if supported else PCI_ANY_ID
3386  */
3387 static u16 check_pci_device_id(u16 id)
3388 {
3389 	switch (id) {
3390 	case PCI_DEVICE_ID_HERC_WIN:
3391 	case PCI_DEVICE_ID_HERC_UNI:
3392 		return XFRAME_II_DEVICE;
3393 	case PCI_DEVICE_ID_S2IO_UNI:
3394 	case PCI_DEVICE_ID_S2IO_WIN:
3395 		return XFRAME_I_DEVICE;
3396 	default:
3397 		return PCI_ANY_ID;
3398 	}
3399 }
3400 
3401 /**
3402  *  s2io_reset - Resets the card.
3403  *  @sp : private member of the device structure.
3404  *  Description: Function to Reset the card. This function then also
3405  *  restores the previously saved PCI configuration space registers as
3406  *  the card reset also resets the configuration space.
3407  *  Return value:
3408  *  void.
3409  */
3410 
3411 static void s2io_reset(struct s2io_nic *sp)
3412 {
3413 	struct XENA_dev_config __iomem *bar0 = sp->bar0;
3414 	u64 val64;
3415 	u16 subid, pci_cmd;
3416 	int i;
3417 	u16 val16;
3418 	unsigned long long up_cnt, down_cnt, up_time, down_time, reset_cnt;
3419 	unsigned long long mem_alloc_cnt, mem_free_cnt, watchdog_cnt;
3420 	struct stat_block *stats;
3421 	struct swStat *swstats;
3422 
3423 	DBG_PRINT(INIT_DBG, "%s: Resetting XFrame card %s\n",
3424 		  __func__, pci_name(sp->pdev));
3425 
3426 	/* Back up  the PCI-X CMD reg, dont want to lose MMRBC, OST settings */
3427 	pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER, &(pci_cmd));
3428 
3429 	val64 = SW_RESET_ALL;
3430 	writeq(val64, &bar0->sw_reset);
3431 	if (strstr(sp->product_name, "CX4"))
3432 		msleep(750);
3433 	msleep(250);
3434 	for (i = 0; i < S2IO_MAX_PCI_CONFIG_SPACE_REINIT; i++) {
3435 
3436 		/* Restore the PCI state saved during initialization. */
3437 		pci_restore_state(sp->pdev);
3438 		pci_save_state(sp->pdev);
3439 		pci_read_config_word(sp->pdev, 0x2, &val16);
3440 		if (check_pci_device_id(val16) != (u16)PCI_ANY_ID)
3441 			break;
3442 		msleep(200);
3443 	}
3444 
3445 	if (check_pci_device_id(val16) == (u16)PCI_ANY_ID)
3446 		DBG_PRINT(ERR_DBG, "%s SW_Reset failed!\n", __func__);
3447 
3448 	pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER, pci_cmd);
3449 
3450 	s2io_init_pci(sp);
3451 
3452 	/* Set swapper to enable I/O register access */
3453 	s2io_set_swapper(sp);
3454 
3455 	/* restore mac_addr entries */
3456 	do_s2io_restore_unicast_mc(sp);
3457 
3458 	/* Restore the MSIX table entries from local variables */
3459 	restore_xmsi_data(sp);
3460 
3461 	/* Clear certain PCI/PCI-X fields after reset */
3462 	if (sp->device_type == XFRAME_II_DEVICE) {
3463 		/* Clear "detected parity error" bit */
3464 		pci_write_config_word(sp->pdev, PCI_STATUS, 0x8000);
3465 
3466 		/* Clearing PCIX Ecc status register */
3467 		pci_write_config_dword(sp->pdev, 0x68, 0x7C);
3468 
3469 		/* Clearing PCI_STATUS error reflected here */
3470 		writeq(s2BIT(62), &bar0->txpic_int_reg);
3471 	}
3472 
3473 	/* Reset device statistics maintained by OS */
3474 	memset(&sp->stats, 0, sizeof(struct net_device_stats));
3475 
3476 	stats = sp->mac_control.stats_info;
3477 	swstats = &stats->sw_stat;
3478 
3479 	/* save link up/down time/cnt, reset/memory/watchdog cnt */
3480 	up_cnt = swstats->link_up_cnt;
3481 	down_cnt = swstats->link_down_cnt;
3482 	up_time = swstats->link_up_time;
3483 	down_time = swstats->link_down_time;
3484 	reset_cnt = swstats->soft_reset_cnt;
3485 	mem_alloc_cnt = swstats->mem_allocated;
3486 	mem_free_cnt = swstats->mem_freed;
3487 	watchdog_cnt = swstats->watchdog_timer_cnt;
3488 
3489 	memset(stats, 0, sizeof(struct stat_block));
3490 
3491 	/* restore link up/down time/cnt, reset/memory/watchdog cnt */
3492 	swstats->link_up_cnt = up_cnt;
3493 	swstats->link_down_cnt = down_cnt;
3494 	swstats->link_up_time = up_time;
3495 	swstats->link_down_time = down_time;
3496 	swstats->soft_reset_cnt = reset_cnt;
3497 	swstats->mem_allocated = mem_alloc_cnt;
3498 	swstats->mem_freed = mem_free_cnt;
3499 	swstats->watchdog_timer_cnt = watchdog_cnt;
3500 
3501 	/* SXE-002: Configure link and activity LED to turn it off */
3502 	subid = sp->pdev->subsystem_device;
3503 	if (((subid & 0xFF) >= 0x07) &&
3504 	    (sp->device_type == XFRAME_I_DEVICE)) {
3505 		val64 = readq(&bar0->gpio_control);
3506 		val64 |= 0x0000800000000000ULL;
3507 		writeq(val64, &bar0->gpio_control);
3508 		val64 = 0x0411040400000000ULL;
3509 		writeq(val64, (void __iomem *)bar0 + 0x2700);
3510 	}
3511 
3512 	/*
3513 	 * Clear spurious ECC interrupts that would have occurred on
3514 	 * XFRAME II cards after reset.
3515 	 */
3516 	if (sp->device_type == XFRAME_II_DEVICE) {
3517 		val64 = readq(&bar0->pcc_err_reg);
3518 		writeq(val64, &bar0->pcc_err_reg);
3519 	}
3520 
3521 	sp->device_enabled_once = false;
3522 }
3523 
3524 /**
3525  *  s2io_set_swapper - to set the swapper controle on the card
3526  *  @sp : private member of the device structure,
3527  *  pointer to the s2io_nic structure.
3528  *  Description: Function to set the swapper control on the card
3529  *  correctly depending on the 'endianness' of the system.
3530  *  Return value:
3531  *  SUCCESS on success and FAILURE on failure.
3532  */
3533 
3534 static int s2io_set_swapper(struct s2io_nic *sp)
3535 {
3536 	struct net_device *dev = sp->dev;
3537 	struct XENA_dev_config __iomem *bar0 = sp->bar0;
3538 	u64 val64, valt, valr;
3539 
3540 	/*
3541 	 * Set proper endian settings and verify the same by reading
3542 	 * the PIF Feed-back register.
3543 	 */
3544 
3545 	val64 = readq(&bar0->pif_rd_swapper_fb);
3546 	if (val64 != 0x0123456789ABCDEFULL) {
3547 		int i = 0;
3548 		static const u64 value[] = {
3549 			0xC30000C3C30000C3ULL,	/* FE=1, SE=1 */
3550 			0x8100008181000081ULL,	/* FE=1, SE=0 */
3551 			0x4200004242000042ULL,	/* FE=0, SE=1 */
3552 			0			/* FE=0, SE=0 */
3553 		};
3554 
3555 		while (i < 4) {
3556 			writeq(value[i], &bar0->swapper_ctrl);
3557 			val64 = readq(&bar0->pif_rd_swapper_fb);
3558 			if (val64 == 0x0123456789ABCDEFULL)
3559 				break;
3560 			i++;
3561 		}
3562 		if (i == 4) {
3563 			DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, "
3564 				  "feedback read %llx\n",
3565 				  dev->name, (unsigned long long)val64);
3566 			return FAILURE;
3567 		}
3568 		valr = value[i];
3569 	} else {
3570 		valr = readq(&bar0->swapper_ctrl);
3571 	}
3572 
3573 	valt = 0x0123456789ABCDEFULL;
3574 	writeq(valt, &bar0->xmsi_address);
3575 	val64 = readq(&bar0->xmsi_address);
3576 
3577 	if (val64 != valt) {
3578 		int i = 0;
3579 		static const u64 value[] = {
3580 			0x00C3C30000C3C300ULL,	/* FE=1, SE=1 */
3581 			0x0081810000818100ULL,	/* FE=1, SE=0 */
3582 			0x0042420000424200ULL,	/* FE=0, SE=1 */
3583 			0			/* FE=0, SE=0 */
3584 		};
3585 
3586 		while (i < 4) {
3587 			writeq((value[i] | valr), &bar0->swapper_ctrl);
3588 			writeq(valt, &bar0->xmsi_address);
3589 			val64 = readq(&bar0->xmsi_address);
3590 			if (val64 == valt)
3591 				break;
3592 			i++;
3593 		}
3594 		if (i == 4) {
3595 			unsigned long long x = val64;
3596 			DBG_PRINT(ERR_DBG,
3597 				  "Write failed, Xmsi_addr reads:0x%llx\n", x);
3598 			return FAILURE;
3599 		}
3600 	}
3601 	val64 = readq(&bar0->swapper_ctrl);
3602 	val64 &= 0xFFFF000000000000ULL;
3603 
3604 #ifdef __BIG_ENDIAN
3605 	/*
3606 	 * The device by default set to a big endian format, so a
3607 	 * big endian driver need not set anything.
3608 	 */
3609 	val64 |= (SWAPPER_CTRL_TXP_FE |
3610 		  SWAPPER_CTRL_TXP_SE |
3611 		  SWAPPER_CTRL_TXD_R_FE |
3612 		  SWAPPER_CTRL_TXD_W_FE |
3613 		  SWAPPER_CTRL_TXF_R_FE |
3614 		  SWAPPER_CTRL_RXD_R_FE |
3615 		  SWAPPER_CTRL_RXD_W_FE |
3616 		  SWAPPER_CTRL_RXF_W_FE |
3617 		  SWAPPER_CTRL_XMSI_FE |
3618 		  SWAPPER_CTRL_STATS_FE |
3619 		  SWAPPER_CTRL_STATS_SE);
3620 	if (sp->config.intr_type == INTA)
3621 		val64 |= SWAPPER_CTRL_XMSI_SE;
3622 	writeq(val64, &bar0->swapper_ctrl);
3623 #else
3624 	/*
3625 	 * Initially we enable all bits to make it accessible by the
3626 	 * driver, then we selectively enable only those bits that
3627 	 * we want to set.
3628 	 */
3629 	val64 |= (SWAPPER_CTRL_TXP_FE |
3630 		  SWAPPER_CTRL_TXP_SE |
3631 		  SWAPPER_CTRL_TXD_R_FE |
3632 		  SWAPPER_CTRL_TXD_R_SE |
3633 		  SWAPPER_CTRL_TXD_W_FE |
3634 		  SWAPPER_CTRL_TXD_W_SE |
3635 		  SWAPPER_CTRL_TXF_R_FE |
3636 		  SWAPPER_CTRL_RXD_R_FE |
3637 		  SWAPPER_CTRL_RXD_R_SE |
3638 		  SWAPPER_CTRL_RXD_W_FE |
3639 		  SWAPPER_CTRL_RXD_W_SE |
3640 		  SWAPPER_CTRL_RXF_W_FE |
3641 		  SWAPPER_CTRL_XMSI_FE |
3642 		  SWAPPER_CTRL_STATS_FE |
3643 		  SWAPPER_CTRL_STATS_SE);
3644 	if (sp->config.intr_type == INTA)
3645 		val64 |= SWAPPER_CTRL_XMSI_SE;
3646 	writeq(val64, &bar0->swapper_ctrl);
3647 #endif
3648 	val64 = readq(&bar0->swapper_ctrl);
3649 
3650 	/*
3651 	 * Verifying if endian settings are accurate by reading a
3652 	 * feedback register.
3653 	 */
3654 	val64 = readq(&bar0->pif_rd_swapper_fb);
3655 	if (val64 != 0x0123456789ABCDEFULL) {
3656 		/* Endian settings are incorrect, calls for another dekko. */
3657 		DBG_PRINT(ERR_DBG,
3658 			  "%s: Endian settings are wrong, feedback read %llx\n",
3659 			  dev->name, (unsigned long long)val64);
3660 		return FAILURE;
3661 	}
3662 
3663 	return SUCCESS;
3664 }
3665 
3666 static int wait_for_msix_trans(struct s2io_nic *nic, int i)
3667 {
3668 	struct XENA_dev_config __iomem *bar0 = nic->bar0;
3669 	u64 val64;
3670 	int ret = 0, cnt = 0;
3671 
3672 	do {
3673 		val64 = readq(&bar0->xmsi_access);
3674 		if (!(val64 & s2BIT(15)))
3675 			break;
3676 		mdelay(1);
3677 		cnt++;
3678 	} while (cnt < 5);
3679 	if (cnt == 5) {
3680 		DBG_PRINT(ERR_DBG, "XMSI # %d Access failed\n", i);
3681 		ret = 1;
3682 	}
3683 
3684 	return ret;
3685 }
3686 
3687 static void restore_xmsi_data(struct s2io_nic *nic)
3688 {
3689 	struct XENA_dev_config __iomem *bar0 = nic->bar0;
3690 	u64 val64;
3691 	int i, msix_index;
3692 
3693 	if (nic->device_type == XFRAME_I_DEVICE)
3694 		return;
3695 
3696 	for (i = 0; i < MAX_REQUESTED_MSI_X; i++) {
3697 		msix_index = (i) ? ((i-1) * 8 + 1) : 0;
3698 		writeq(nic->msix_info[i].addr, &bar0->xmsi_address);
3699 		writeq(nic->msix_info[i].data, &bar0->xmsi_data);
3700 		val64 = (s2BIT(7) | s2BIT(15) | vBIT(msix_index, 26, 6));
3701 		writeq(val64, &bar0->xmsi_access);
3702 		if (wait_for_msix_trans(nic, msix_index)) {
3703 			DBG_PRINT(ERR_DBG, "%s: index: %d failed\n",
3704 				  __func__, msix_index);
3705 			continue;
3706 		}
3707 	}
3708 }
3709 
3710 static void store_xmsi_data(struct s2io_nic *nic)
3711 {
3712 	struct XENA_dev_config __iomem *bar0 = nic->bar0;
3713 	u64 val64, addr, data;
3714 	int i, msix_index;
3715 
3716 	if (nic->device_type == XFRAME_I_DEVICE)
3717 		return;
3718 
3719 	/* Store and display */
3720 	for (i = 0; i < MAX_REQUESTED_MSI_X; i++) {
3721 		msix_index = (i) ? ((i-1) * 8 + 1) : 0;
3722 		val64 = (s2BIT(15) | vBIT(msix_index, 26, 6));
3723 		writeq(val64, &bar0->xmsi_access);
3724 		if (wait_for_msix_trans(nic, msix_index)) {
3725 			DBG_PRINT(ERR_DBG, "%s: index: %d failed\n",
3726 				  __func__, msix_index);
3727 			continue;
3728 		}
3729 		addr = readq(&bar0->xmsi_address);
3730 		data = readq(&bar0->xmsi_data);
3731 		if (addr && data) {
3732 			nic->msix_info[i].addr = addr;
3733 			nic->msix_info[i].data = data;
3734 		}
3735 	}
3736 }
3737 
3738 static int s2io_enable_msi_x(struct s2io_nic *nic)
3739 {
3740 	struct XENA_dev_config __iomem *bar0 = nic->bar0;
3741 	u64 rx_mat;
3742 	u16 msi_control; /* Temp variable */
3743 	int ret, i, j, msix_indx = 1;
3744 	int size;
3745 	struct stat_block *stats = nic->mac_control.stats_info;
3746 	struct swStat *swstats = &stats->sw_stat;
3747 
3748 	size = nic->num_entries * sizeof(struct msix_entry);
3749 	nic->entries = kzalloc(size, GFP_KERNEL);
3750 	if (!nic->entries) {
3751 		DBG_PRINT(INFO_DBG, "%s: Memory allocation failed\n",
3752 			  __func__);
3753 		swstats->mem_alloc_fail_cnt++;
3754 		return -ENOMEM;
3755 	}
3756 	swstats->mem_allocated += size;
3757 
3758 	size = nic->num_entries * sizeof(struct s2io_msix_entry);
3759 	nic->s2io_entries = kzalloc(size, GFP_KERNEL);
3760 	if (!nic->s2io_entries) {
3761 		DBG_PRINT(INFO_DBG, "%s: Memory allocation failed\n",
3762 			  __func__);
3763 		swstats->mem_alloc_fail_cnt++;
3764 		kfree(nic->entries);
3765 		swstats->mem_freed
3766 			+= (nic->num_entries * sizeof(struct msix_entry));
3767 		return -ENOMEM;
3768 	}
3769 	swstats->mem_allocated += size;
3770 
3771 	nic->entries[0].entry = 0;
3772 	nic->s2io_entries[0].entry = 0;
3773 	nic->s2io_entries[0].in_use = MSIX_FLG;
3774 	nic->s2io_entries[0].type = MSIX_ALARM_TYPE;
3775 	nic->s2io_entries[0].arg = &nic->mac_control.fifos;
3776 
3777 	for (i = 1; i < nic->num_entries; i++) {
3778 		nic->entries[i].entry = ((i - 1) * 8) + 1;
3779 		nic->s2io_entries[i].entry = ((i - 1) * 8) + 1;
3780 		nic->s2io_entries[i].arg = NULL;
3781 		nic->s2io_entries[i].in_use = 0;
3782 	}
3783 
3784 	rx_mat = readq(&bar0->rx_mat);
3785 	for (j = 0; j < nic->config.rx_ring_num; j++) {
3786 		rx_mat |= RX_MAT_SET(j, msix_indx);
3787 		nic->s2io_entries[j+1].arg = &nic->mac_control.rings[j];
3788 		nic->s2io_entries[j+1].type = MSIX_RING_TYPE;
3789 		nic->s2io_entries[j+1].in_use = MSIX_FLG;
3790 		msix_indx += 8;
3791 	}
3792 	writeq(rx_mat, &bar0->rx_mat);
3793 	readq(&bar0->rx_mat);
3794 
3795 	ret = pci_enable_msix(nic->pdev, nic->entries, nic->num_entries);
3796 	/* We fail init if error or we get less vectors than min required */
3797 	if (ret) {
3798 		DBG_PRINT(ERR_DBG, "Enabling MSI-X failed\n");
3799 		kfree(nic->entries);
3800 		swstats->mem_freed += nic->num_entries *
3801 			sizeof(struct msix_entry);
3802 		kfree(nic->s2io_entries);
3803 		swstats->mem_freed += nic->num_entries *
3804 			sizeof(struct s2io_msix_entry);
3805 		nic->entries = NULL;
3806 		nic->s2io_entries = NULL;
3807 		return -ENOMEM;
3808 	}
3809 
3810 	/*
3811 	 * To enable MSI-X, MSI also needs to be enabled, due to a bug
3812 	 * in the herc NIC. (Temp change, needs to be removed later)
3813 	 */
3814 	pci_read_config_word(nic->pdev, 0x42, &msi_control);
3815 	msi_control |= 0x1; /* Enable MSI */
3816 	pci_write_config_word(nic->pdev, 0x42, msi_control);
3817 
3818 	return 0;
3819 }
3820 
3821 /* Handle software interrupt used during MSI(X) test */
3822 static irqreturn_t s2io_test_intr(int irq, void *dev_id)
3823 {
3824 	struct s2io_nic *sp = dev_id;
3825 
3826 	sp->msi_detected = 1;
3827 	wake_up(&sp->msi_wait);
3828 
3829 	return IRQ_HANDLED;
3830 }
3831 
3832 /* Test interrupt path by forcing a a software IRQ */
3833 static int s2io_test_msi(struct s2io_nic *sp)
3834 {
3835 	struct pci_dev *pdev = sp->pdev;
3836 	struct XENA_dev_config __iomem *bar0 = sp->bar0;
3837 	int err;
3838 	u64 val64, saved64;
3839 
3840 	err = request_irq(sp->entries[1].vector, s2io_test_intr, 0,
3841 			  sp->name, sp);
3842 	if (err) {
3843 		DBG_PRINT(ERR_DBG, "%s: PCI %s: cannot assign irq %d\n",
3844 			  sp->dev->name, pci_name(pdev), pdev->irq);
3845 		return err;
3846 	}
3847 
3848 	init_waitqueue_head(&sp->msi_wait);
3849 	sp->msi_detected = 0;
3850 
3851 	saved64 = val64 = readq(&bar0->scheduled_int_ctrl);
3852 	val64 |= SCHED_INT_CTRL_ONE_SHOT;
3853 	val64 |= SCHED_INT_CTRL_TIMER_EN;
3854 	val64 |= SCHED_INT_CTRL_INT2MSI(1);
3855 	writeq(val64, &bar0->scheduled_int_ctrl);
3856 
3857 	wait_event_timeout(sp->msi_wait, sp->msi_detected, HZ/10);
3858 
3859 	if (!sp->msi_detected) {
3860 		/* MSI(X) test failed, go back to INTx mode */
3861 		DBG_PRINT(ERR_DBG, "%s: PCI %s: No interrupt was generated "
3862 			  "using MSI(X) during test\n",
3863 			  sp->dev->name, pci_name(pdev));
3864 
3865 		err = -EOPNOTSUPP;
3866 	}
3867 
3868 	free_irq(sp->entries[1].vector, sp);
3869 
3870 	writeq(saved64, &bar0->scheduled_int_ctrl);
3871 
3872 	return err;
3873 }
3874 
3875 static void remove_msix_isr(struct s2io_nic *sp)
3876 {
3877 	int i;
3878 	u16 msi_control;
3879 
3880 	for (i = 0; i < sp->num_entries; i++) {
3881 		if (sp->s2io_entries[i].in_use == MSIX_REGISTERED_SUCCESS) {
3882 			int vector = sp->entries[i].vector;
3883 			void *arg = sp->s2io_entries[i].arg;
3884 			free_irq(vector, arg);
3885 		}
3886 	}
3887 
3888 	kfree(sp->entries);
3889 	kfree(sp->s2io_entries);
3890 	sp->entries = NULL;
3891 	sp->s2io_entries = NULL;
3892 
3893 	pci_read_config_word(sp->pdev, 0x42, &msi_control);
3894 	msi_control &= 0xFFFE; /* Disable MSI */
3895 	pci_write_config_word(sp->pdev, 0x42, msi_control);
3896 
3897 	pci_disable_msix(sp->pdev);
3898 }
3899 
3900 static void remove_inta_isr(struct s2io_nic *sp)
3901 {
3902 	free_irq(sp->pdev->irq, sp->dev);
3903 }
3904 
3905 /* ********************************************************* *
3906  * Functions defined below concern the OS part of the driver *
3907  * ********************************************************* */
3908 
3909 /**
3910  *  s2io_open - open entry point of the driver
3911  *  @dev : pointer to the device structure.
3912  *  Description:
3913  *  This function is the open entry point of the driver. It mainly calls a
3914  *  function to allocate Rx buffers and inserts them into the buffer
3915  *  descriptors and then enables the Rx part of the NIC.
3916  *  Return value:
3917  *  0 on success and an appropriate (-)ve integer as defined in errno.h
3918  *   file on failure.
3919  */
3920 
3921 static int s2io_open(struct net_device *dev)
3922 {
3923 	struct s2io_nic *sp = netdev_priv(dev);
3924 	struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
3925 	int err = 0;
3926 
3927 	/*
3928 	 * Make sure you have link off by default every time
3929 	 * Nic is initialized
3930 	 */
3931 	netif_carrier_off(dev);
3932 	sp->last_link_state = 0;
3933 
3934 	/* Initialize H/W and enable interrupts */
3935 	err = s2io_card_up(sp);
3936 	if (err) {
3937 		DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
3938 			  dev->name);
3939 		goto hw_init_failed;
3940 	}
3941 
3942 	if (do_s2io_prog_unicast(dev, dev->dev_addr) == FAILURE) {
3943 		DBG_PRINT(ERR_DBG, "Set Mac Address Failed\n");
3944 		s2io_card_down(sp);
3945 		err = -ENODEV;
3946 		goto hw_init_failed;
3947 	}
3948 	s2io_start_all_tx_queue(sp);
3949 	return 0;
3950 
3951 hw_init_failed:
3952 	if (sp->config.intr_type == MSI_X) {
3953 		if (sp->entries) {
3954 			kfree(sp->entries);
3955 			swstats->mem_freed += sp->num_entries *
3956 				sizeof(struct msix_entry);
3957 		}
3958 		if (sp->s2io_entries) {
3959 			kfree(sp->s2io_entries);
3960 			swstats->mem_freed += sp->num_entries *
3961 				sizeof(struct s2io_msix_entry);
3962 		}
3963 	}
3964 	return err;
3965 }
3966 
3967 /**
3968  *  s2io_close -close entry point of the driver
3969  *  @dev : device pointer.
3970  *  Description:
3971  *  This is the stop entry point of the driver. It needs to undo exactly
3972  *  whatever was done by the open entry point,thus it's usually referred to
3973  *  as the close function.Among other things this function mainly stops the
3974  *  Rx side of the NIC and frees all the Rx buffers in the Rx rings.
3975  *  Return value:
3976  *  0 on success and an appropriate (-)ve integer as defined in errno.h
3977  *  file on failure.
3978  */
3979 
3980 static int s2io_close(struct net_device *dev)
3981 {
3982 	struct s2io_nic *sp = netdev_priv(dev);
3983 	struct config_param *config = &sp->config;
3984 	u64 tmp64;
3985 	int offset;
3986 
3987 	/* Return if the device is already closed               *
3988 	 *  Can happen when s2io_card_up failed in change_mtu    *
3989 	 */
3990 	if (!is_s2io_card_up(sp))
3991 		return 0;
3992 
3993 	s2io_stop_all_tx_queue(sp);
3994 	/* delete all populated mac entries */
3995 	for (offset = 1; offset < config->max_mc_addr; offset++) {
3996 		tmp64 = do_s2io_read_unicast_mc(sp, offset);
3997 		if (tmp64 != S2IO_DISABLE_MAC_ENTRY)
3998 			do_s2io_delete_unicast_mc(sp, tmp64);
3999 	}
4000 
4001 	s2io_card_down(sp);
4002 
4003 	return 0;
4004 }
4005 
4006 /**
4007  *  s2io_xmit - Tx entry point of te driver
4008  *  @skb : the socket buffer containing the Tx data.
4009  *  @dev : device pointer.
4010  *  Description :
4011  *  This function is the Tx entry point of the driver. S2IO NIC supports
4012  *  certain protocol assist features on Tx side, namely  CSO, S/G, LSO.
4013  *  NOTE: when device can't queue the pkt,just the trans_start variable will
4014  *  not be upadted.
4015  *  Return value:
4016  *  0 on success & 1 on failure.
4017  */
4018 
4019 static netdev_tx_t s2io_xmit(struct sk_buff *skb, struct net_device *dev)
4020 {
4021 	struct s2io_nic *sp = netdev_priv(dev);
4022 	u16 frg_cnt, frg_len, i, queue, queue_len, put_off, get_off;
4023 	register u64 val64;
4024 	struct TxD *txdp;
4025 	struct TxFIFO_element __iomem *tx_fifo;
4026 	unsigned long flags = 0;
4027 	u16 vlan_tag = 0;
4028 	struct fifo_info *fifo = NULL;
4029 	int do_spin_lock = 1;
4030 	int offload_type;
4031 	int enable_per_list_interrupt = 0;
4032 	struct config_param *config = &sp->config;
4033 	struct mac_info *mac_control = &sp->mac_control;
4034 	struct stat_block *stats = mac_control->stats_info;
4035 	struct swStat *swstats = &stats->sw_stat;
4036 
4037 	DBG_PRINT(TX_DBG, "%s: In Neterion Tx routine\n", dev->name);
4038 
4039 	if (unlikely(skb->len <= 0)) {
4040 		DBG_PRINT(TX_DBG, "%s: Buffer has no data..\n", dev->name);
4041 		dev_kfree_skb_any(skb);
4042 		return NETDEV_TX_OK;
4043 	}
4044 
4045 	if (!is_s2io_card_up(sp)) {
4046 		DBG_PRINT(TX_DBG, "%s: Card going down for reset\n",
4047 			  dev->name);
4048 		dev_kfree_skb(skb);
4049 		return NETDEV_TX_OK;
4050 	}
4051 
4052 	queue = 0;
4053 	if (vlan_tx_tag_present(skb))
4054 		vlan_tag = vlan_tx_tag_get(skb);
4055 	if (sp->config.tx_steering_type == TX_DEFAULT_STEERING) {
4056 		if (skb->protocol == htons(ETH_P_IP)) {
4057 			struct iphdr *ip;
4058 			struct tcphdr *th;
4059 			ip = ip_hdr(skb);
4060 
4061 			if (!ip_is_fragment(ip)) {
4062 				th = (struct tcphdr *)(((unsigned char *)ip) +
4063 						       ip->ihl*4);
4064 
4065 				if (ip->protocol == IPPROTO_TCP) {
4066 					queue_len = sp->total_tcp_fifos;
4067 					queue = (ntohs(th->source) +
4068 						 ntohs(th->dest)) &
4069 						sp->fifo_selector[queue_len - 1];
4070 					if (queue >= queue_len)
4071 						queue = queue_len - 1;
4072 				} else if (ip->protocol == IPPROTO_UDP) {
4073 					queue_len = sp->total_udp_fifos;
4074 					queue = (ntohs(th->source) +
4075 						 ntohs(th->dest)) &
4076 						sp->fifo_selector[queue_len - 1];
4077 					if (queue >= queue_len)
4078 						queue = queue_len - 1;
4079 					queue += sp->udp_fifo_idx;
4080 					if (skb->len > 1024)
4081 						enable_per_list_interrupt = 1;
4082 					do_spin_lock = 0;
4083 				}
4084 			}
4085 		}
4086 	} else if (sp->config.tx_steering_type == TX_PRIORITY_STEERING)
4087 		/* get fifo number based on skb->priority value */
4088 		queue = config->fifo_mapping
4089 			[skb->priority & (MAX_TX_FIFOS - 1)];
4090 	fifo = &mac_control->fifos[queue];
4091 
4092 	if (do_spin_lock)
4093 		spin_lock_irqsave(&fifo->tx_lock, flags);
4094 	else {
4095 		if (unlikely(!spin_trylock_irqsave(&fifo->tx_lock, flags)))
4096 			return NETDEV_TX_LOCKED;
4097 	}
4098 
4099 	if (sp->config.multiq) {
4100 		if (__netif_subqueue_stopped(dev, fifo->fifo_no)) {
4101 			spin_unlock_irqrestore(&fifo->tx_lock, flags);
4102 			return NETDEV_TX_BUSY;
4103 		}
4104 	} else if (unlikely(fifo->queue_state == FIFO_QUEUE_STOP)) {
4105 		if (netif_queue_stopped(dev)) {
4106 			spin_unlock_irqrestore(&fifo->tx_lock, flags);
4107 			return NETDEV_TX_BUSY;
4108 		}
4109 	}
4110 
4111 	put_off = (u16)fifo->tx_curr_put_info.offset;
4112 	get_off = (u16)fifo->tx_curr_get_info.offset;
4113 	txdp = fifo->list_info[put_off].list_virt_addr;
4114 
4115 	queue_len = fifo->tx_curr_put_info.fifo_len + 1;
4116 	/* Avoid "put" pointer going beyond "get" pointer */
4117 	if (txdp->Host_Control ||
4118 	    ((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
4119 		DBG_PRINT(TX_DBG, "Error in xmit, No free TXDs.\n");
4120 		s2io_stop_tx_queue(sp, fifo->fifo_no);
4121 		dev_kfree_skb(skb);
4122 		spin_unlock_irqrestore(&fifo->tx_lock, flags);
4123 		return NETDEV_TX_OK;
4124 	}
4125 
4126 	offload_type = s2io_offload_type(skb);
4127 	if (offload_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)) {
4128 		txdp->Control_1 |= TXD_TCP_LSO_EN;
4129 		txdp->Control_1 |= TXD_TCP_LSO_MSS(s2io_tcp_mss(skb));
4130 	}
4131 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
4132 		txdp->Control_2 |= (TXD_TX_CKO_IPV4_EN |
4133 				    TXD_TX_CKO_TCP_EN |
4134 				    TXD_TX_CKO_UDP_EN);
4135 	}
4136 	txdp->Control_1 |= TXD_GATHER_CODE_FIRST;
4137 	txdp->Control_1 |= TXD_LIST_OWN_XENA;
4138 	txdp->Control_2 |= TXD_INT_NUMBER(fifo->fifo_no);
4139 	if (enable_per_list_interrupt)
4140 		if (put_off & (queue_len >> 5))
4141 			txdp->Control_2 |= TXD_INT_TYPE_PER_LIST;
4142 	if (vlan_tag) {
4143 		txdp->Control_2 |= TXD_VLAN_ENABLE;
4144 		txdp->Control_2 |= TXD_VLAN_TAG(vlan_tag);
4145 	}
4146 
4147 	frg_len = skb_headlen(skb);
4148 	if (offload_type == SKB_GSO_UDP) {
4149 		int ufo_size;
4150 
4151 		ufo_size = s2io_udp_mss(skb);
4152 		ufo_size &= ~7;
4153 		txdp->Control_1 |= TXD_UFO_EN;
4154 		txdp->Control_1 |= TXD_UFO_MSS(ufo_size);
4155 		txdp->Control_1 |= TXD_BUFFER0_SIZE(8);
4156 #ifdef __BIG_ENDIAN
4157 		/* both variants do cpu_to_be64(be32_to_cpu(...)) */
4158 		fifo->ufo_in_band_v[put_off] =
4159 			(__force u64)skb_shinfo(skb)->ip6_frag_id;
4160 #else
4161 		fifo->ufo_in_band_v[put_off] =
4162 			(__force u64)skb_shinfo(skb)->ip6_frag_id << 32;
4163 #endif
4164 		txdp->Host_Control = (unsigned long)fifo->ufo_in_band_v;
4165 		txdp->Buffer_Pointer = pci_map_single(sp->pdev,
4166 						      fifo->ufo_in_band_v,
4167 						      sizeof(u64),
4168 						      PCI_DMA_TODEVICE);
4169 		if (pci_dma_mapping_error(sp->pdev, txdp->Buffer_Pointer))
4170 			goto pci_map_failed;
4171 		txdp++;
4172 	}
4173 
4174 	txdp->Buffer_Pointer = pci_map_single(sp->pdev, skb->data,
4175 					      frg_len, PCI_DMA_TODEVICE);
4176 	if (pci_dma_mapping_error(sp->pdev, txdp->Buffer_Pointer))
4177 		goto pci_map_failed;
4178 
4179 	txdp->Host_Control = (unsigned long)skb;
4180 	txdp->Control_1 |= TXD_BUFFER0_SIZE(frg_len);
4181 	if (offload_type == SKB_GSO_UDP)
4182 		txdp->Control_1 |= TXD_UFO_EN;
4183 
4184 	frg_cnt = skb_shinfo(skb)->nr_frags;
4185 	/* For fragmented SKB. */
4186 	for (i = 0; i < frg_cnt; i++) {
4187 		const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4188 		/* A '0' length fragment will be ignored */
4189 		if (!skb_frag_size(frag))
4190 			continue;
4191 		txdp++;
4192 		txdp->Buffer_Pointer = (u64)skb_frag_dma_map(&sp->pdev->dev,
4193 							     frag, 0,
4194 							     skb_frag_size(frag),
4195 							     DMA_TO_DEVICE);
4196 		txdp->Control_1 = TXD_BUFFER0_SIZE(skb_frag_size(frag));
4197 		if (offload_type == SKB_GSO_UDP)
4198 			txdp->Control_1 |= TXD_UFO_EN;
4199 	}
4200 	txdp->Control_1 |= TXD_GATHER_CODE_LAST;
4201 
4202 	if (offload_type == SKB_GSO_UDP)
4203 		frg_cnt++; /* as Txd0 was used for inband header */
4204 
4205 	tx_fifo = mac_control->tx_FIFO_start[queue];
4206 	val64 = fifo->list_info[put_off].list_phy_addr;
4207 	writeq(val64, &tx_fifo->TxDL_Pointer);
4208 
4209 	val64 = (TX_FIFO_LAST_TXD_NUM(frg_cnt) | TX_FIFO_FIRST_LIST |
4210 		 TX_FIFO_LAST_LIST);
4211 	if (offload_type)
4212 		val64 |= TX_FIFO_SPECIAL_FUNC;
4213 
4214 	writeq(val64, &tx_fifo->List_Control);
4215 
4216 	mmiowb();
4217 
4218 	put_off++;
4219 	if (put_off == fifo->tx_curr_put_info.fifo_len + 1)
4220 		put_off = 0;
4221 	fifo->tx_curr_put_info.offset = put_off;
4222 
4223 	/* Avoid "put" pointer going beyond "get" pointer */
4224 	if (((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
4225 		swstats->fifo_full_cnt++;
4226 		DBG_PRINT(TX_DBG,
4227 			  "No free TxDs for xmit, Put: 0x%x Get:0x%x\n",
4228 			  put_off, get_off);
4229 		s2io_stop_tx_queue(sp, fifo->fifo_no);
4230 	}
4231 	swstats->mem_allocated += skb->truesize;
4232 	spin_unlock_irqrestore(&fifo->tx_lock, flags);
4233 
4234 	if (sp->config.intr_type == MSI_X)
4235 		tx_intr_handler(fifo);
4236 
4237 	return NETDEV_TX_OK;
4238 
4239 pci_map_failed:
4240 	swstats->pci_map_fail_cnt++;
4241 	s2io_stop_tx_queue(sp, fifo->fifo_no);
4242 	swstats->mem_freed += skb->truesize;
4243 	dev_kfree_skb(skb);
4244 	spin_unlock_irqrestore(&fifo->tx_lock, flags);
4245 	return NETDEV_TX_OK;
4246 }
4247 
4248 static void
4249 s2io_alarm_handle(unsigned long data)
4250 {
4251 	struct s2io_nic *sp = (struct s2io_nic *)data;
4252 	struct net_device *dev = sp->dev;
4253 
4254 	s2io_handle_errors(dev);
4255 	mod_timer(&sp->alarm_timer, jiffies + HZ / 2);
4256 }
4257 
4258 static irqreturn_t s2io_msix_ring_handle(int irq, void *dev_id)
4259 {
4260 	struct ring_info *ring = (struct ring_info *)dev_id;
4261 	struct s2io_nic *sp = ring->nic;
4262 	struct XENA_dev_config __iomem *bar0 = sp->bar0;
4263 
4264 	if (unlikely(!is_s2io_card_up(sp)))
4265 		return IRQ_HANDLED;
4266 
4267 	if (sp->config.napi) {
4268 		u8 __iomem *addr = NULL;
4269 		u8 val8 = 0;
4270 
4271 		addr = (u8 __iomem *)&bar0->xmsi_mask_reg;
4272 		addr += (7 - ring->ring_no);
4273 		val8 = (ring->ring_no == 0) ? 0x7f : 0xff;
4274 		writeb(val8, addr);
4275 		val8 = readb(addr);
4276 		napi_schedule(&ring->napi);
4277 	} else {
4278 		rx_intr_handler(ring, 0);
4279 		s2io_chk_rx_buffers(sp, ring);
4280 	}
4281 
4282 	return IRQ_HANDLED;
4283 }
4284 
4285 static irqreturn_t s2io_msix_fifo_handle(int irq, void *dev_id)
4286 {
4287 	int i;
4288 	struct fifo_info *fifos = (struct fifo_info *)dev_id;
4289 	struct s2io_nic *sp = fifos->nic;
4290 	struct XENA_dev_config __iomem *bar0 = sp->bar0;
4291 	struct config_param *config  = &sp->config;
4292 	u64 reason;
4293 
4294 	if (unlikely(!is_s2io_card_up(sp)))
4295 		return IRQ_NONE;
4296 
4297 	reason = readq(&bar0->general_int_status);
4298 	if (unlikely(reason == S2IO_MINUS_ONE))
4299 		/* Nothing much can be done. Get out */
4300 		return IRQ_HANDLED;
4301 
4302 	if (reason & (GEN_INTR_TXPIC | GEN_INTR_TXTRAFFIC)) {
4303 		writeq(S2IO_MINUS_ONE, &bar0->general_int_mask);
4304 
4305 		if (reason & GEN_INTR_TXPIC)
4306 			s2io_txpic_intr_handle(sp);
4307 
4308 		if (reason & GEN_INTR_TXTRAFFIC)
4309 			writeq(S2IO_MINUS_ONE, &bar0->tx_traffic_int);
4310 
4311 		for (i = 0; i < config->tx_fifo_num; i++)
4312 			tx_intr_handler(&fifos[i]);
4313 
4314 		writeq(sp->general_int_mask, &bar0->general_int_mask);
4315 		readl(&bar0->general_int_status);
4316 		return IRQ_HANDLED;
4317 	}
4318 	/* The interrupt was not raised by us */
4319 	return IRQ_NONE;
4320 }
4321 
4322 static void s2io_txpic_intr_handle(struct s2io_nic *sp)
4323 {
4324 	struct XENA_dev_config __iomem *bar0 = sp->bar0;
4325 	u64 val64;
4326 
4327 	val64 = readq(&bar0->pic_int_status);
4328 	if (val64 & PIC_INT_GPIO) {
4329 		val64 = readq(&bar0->gpio_int_reg);
4330 		if ((val64 & GPIO_INT_REG_LINK_DOWN) &&
4331 		    (val64 & GPIO_INT_REG_LINK_UP)) {
4332 			/*
4333 			 * This is unstable state so clear both up/down
4334 			 * interrupt and adapter to re-evaluate the link state.
4335 			 */
4336 			val64 |= GPIO_INT_REG_LINK_DOWN;
4337 			val64 |= GPIO_INT_REG_LINK_UP;
4338 			writeq(val64, &bar0->gpio_int_reg);
4339 			val64 = readq(&bar0->gpio_int_mask);
4340 			val64 &= ~(GPIO_INT_MASK_LINK_UP |
4341 				   GPIO_INT_MASK_LINK_DOWN);
4342 			writeq(val64, &bar0->gpio_int_mask);
4343 		} else if (val64 & GPIO_INT_REG_LINK_UP) {
4344 			val64 = readq(&bar0->adapter_status);
4345 			/* Enable Adapter */
4346 			val64 = readq(&bar0->adapter_control);
4347 			val64 |= ADAPTER_CNTL_EN;
4348 			writeq(val64, &bar0->adapter_control);
4349 			val64 |= ADAPTER_LED_ON;
4350 			writeq(val64, &bar0->adapter_control);
4351 			if (!sp->device_enabled_once)
4352 				sp->device_enabled_once = 1;
4353 
4354 			s2io_link(sp, LINK_UP);
4355 			/*
4356 			 * unmask link down interrupt and mask link-up
4357 			 * intr
4358 			 */
4359 			val64 = readq(&bar0->gpio_int_mask);
4360 			val64 &= ~GPIO_INT_MASK_LINK_DOWN;
4361 			val64 |= GPIO_INT_MASK_LINK_UP;
4362 			writeq(val64, &bar0->gpio_int_mask);
4363 
4364 		} else if (val64 & GPIO_INT_REG_LINK_DOWN) {
4365 			val64 = readq(&bar0->adapter_status);
4366 			s2io_link(sp, LINK_DOWN);
4367 			/* Link is down so unmaks link up interrupt */
4368 			val64 = readq(&bar0->gpio_int_mask);
4369 			val64 &= ~GPIO_INT_MASK_LINK_UP;
4370 			val64 |= GPIO_INT_MASK_LINK_DOWN;
4371 			writeq(val64, &bar0->gpio_int_mask);
4372 
4373 			/* turn off LED */
4374 			val64 = readq(&bar0->adapter_control);
4375 			val64 = val64 & (~ADAPTER_LED_ON);
4376 			writeq(val64, &bar0->adapter_control);
4377 		}
4378 	}
4379 	val64 = readq(&bar0->gpio_int_mask);
4380 }
4381 
4382 /**
4383  *  do_s2io_chk_alarm_bit - Check for alarm and incrment the counter
4384  *  @value: alarm bits
4385  *  @addr: address value
4386  *  @cnt: counter variable
4387  *  Description: Check for alarm and increment the counter
4388  *  Return Value:
4389  *  1 - if alarm bit set
4390  *  0 - if alarm bit is not set
4391  */
4392 static int do_s2io_chk_alarm_bit(u64 value, void __iomem *addr,
4393 				 unsigned long long *cnt)
4394 {
4395 	u64 val64;
4396 	val64 = readq(addr);
4397 	if (val64 & value) {
4398 		writeq(val64, addr);
4399 		(*cnt)++;
4400 		return 1;
4401 	}
4402 	return 0;
4403 
4404 }
4405 
4406 /**
4407  *  s2io_handle_errors - Xframe error indication handler
4408  *  @nic: device private variable
4409  *  Description: Handle alarms such as loss of link, single or
4410  *  double ECC errors, critical and serious errors.
4411  *  Return Value:
4412  *  NONE
4413  */
4414 static void s2io_handle_errors(void *dev_id)
4415 {
4416 	struct net_device *dev = (struct net_device *)dev_id;
4417 	struct s2io_nic *sp = netdev_priv(dev);
4418 	struct XENA_dev_config __iomem *bar0 = sp->bar0;
4419 	u64 temp64 = 0, val64 = 0;
4420 	int i = 0;
4421 
4422 	struct swStat *sw_stat = &sp->mac_control.stats_info->sw_stat;
4423 	struct xpakStat *stats = &sp->mac_control.stats_info->xpak_stat;
4424 
4425 	if (!is_s2io_card_up(sp))
4426 		return;
4427 
4428 	if (pci_channel_offline(sp->pdev))
4429 		return;
4430 
4431 	memset(&sw_stat->ring_full_cnt, 0,
4432 	       sizeof(sw_stat->ring_full_cnt));
4433 
4434 	/* Handling the XPAK counters update */
4435 	if (stats->xpak_timer_count < 72000) {
4436 		/* waiting for an hour */
4437 		stats->xpak_timer_count++;
4438 	} else {
4439 		s2io_updt_xpak_counter(dev);
4440 		/* reset the count to zero */
4441 		stats->xpak_timer_count = 0;
4442 	}
4443 
4444 	/* Handling link status change error Intr */
4445 	if (s2io_link_fault_indication(sp) == MAC_RMAC_ERR_TIMER) {
4446 		val64 = readq(&bar0->mac_rmac_err_reg);
4447 		writeq(val64, &bar0->mac_rmac_err_reg);
4448 		if (val64 & RMAC_LINK_STATE_CHANGE_INT)
4449 			schedule_work(&sp->set_link_task);
4450 	}
4451 
4452 	/* In case of a serious error, the device will be Reset. */
4453 	if (do_s2io_chk_alarm_bit(SERR_SOURCE_ANY, &bar0->serr_source,
4454 				  &sw_stat->serious_err_cnt))
4455 		goto reset;
4456 
4457 	/* Check for data parity error */
4458 	if (do_s2io_chk_alarm_bit(GPIO_INT_REG_DP_ERR_INT, &bar0->gpio_int_reg,
4459 				  &sw_stat->parity_err_cnt))
4460 		goto reset;
4461 
4462 	/* Check for ring full counter */
4463 	if (sp->device_type == XFRAME_II_DEVICE) {
4464 		val64 = readq(&bar0->ring_bump_counter1);
4465 		for (i = 0; i < 4; i++) {
4466 			temp64 = (val64 & vBIT(0xFFFF, (i*16), 16));
4467 			temp64 >>= 64 - ((i+1)*16);
4468 			sw_stat->ring_full_cnt[i] += temp64;
4469 		}
4470 
4471 		val64 = readq(&bar0->ring_bump_counter2);
4472 		for (i = 0; i < 4; i++) {
4473 			temp64 = (val64 & vBIT(0xFFFF, (i*16), 16));
4474 			temp64 >>= 64 - ((i+1)*16);
4475 			sw_stat->ring_full_cnt[i+4] += temp64;
4476 		}
4477 	}
4478 
4479 	val64 = readq(&bar0->txdma_int_status);
4480 	/*check for pfc_err*/
4481 	if (val64 & TXDMA_PFC_INT) {
4482 		if (do_s2io_chk_alarm_bit(PFC_ECC_DB_ERR | PFC_SM_ERR_ALARM |
4483 					  PFC_MISC_0_ERR | PFC_MISC_1_ERR |
4484 					  PFC_PCIX_ERR,
4485 					  &bar0->pfc_err_reg,
4486 					  &sw_stat->pfc_err_cnt))
4487 			goto reset;
4488 		do_s2io_chk_alarm_bit(PFC_ECC_SG_ERR,
4489 				      &bar0->pfc_err_reg,
4490 				      &sw_stat->pfc_err_cnt);
4491 	}
4492 
4493 	/*check for tda_err*/
4494 	if (val64 & TXDMA_TDA_INT) {
4495 		if (do_s2io_chk_alarm_bit(TDA_Fn_ECC_DB_ERR |
4496 					  TDA_SM0_ERR_ALARM |
4497 					  TDA_SM1_ERR_ALARM,
4498 					  &bar0->tda_err_reg,
4499 					  &sw_stat->tda_err_cnt))
4500 			goto reset;
4501 		do_s2io_chk_alarm_bit(TDA_Fn_ECC_SG_ERR | TDA_PCIX_ERR,
4502 				      &bar0->tda_err_reg,
4503 				      &sw_stat->tda_err_cnt);
4504 	}
4505 	/*check for pcc_err*/
4506 	if (val64 & TXDMA_PCC_INT) {
4507 		if (do_s2io_chk_alarm_bit(PCC_SM_ERR_ALARM | PCC_WR_ERR_ALARM |
4508 					  PCC_N_SERR | PCC_6_COF_OV_ERR |
4509 					  PCC_7_COF_OV_ERR | PCC_6_LSO_OV_ERR |
4510 					  PCC_7_LSO_OV_ERR | PCC_FB_ECC_DB_ERR |
4511 					  PCC_TXB_ECC_DB_ERR,
4512 					  &bar0->pcc_err_reg,
4513 					  &sw_stat->pcc_err_cnt))
4514 			goto reset;
4515 		do_s2io_chk_alarm_bit(PCC_FB_ECC_SG_ERR | PCC_TXB_ECC_SG_ERR,
4516 				      &bar0->pcc_err_reg,
4517 				      &sw_stat->pcc_err_cnt);
4518 	}
4519 
4520 	/*check for tti_err*/
4521 	if (val64 & TXDMA_TTI_INT) {
4522 		if (do_s2io_chk_alarm_bit(TTI_SM_ERR_ALARM,
4523 					  &bar0->tti_err_reg,
4524 					  &sw_stat->tti_err_cnt))
4525 			goto reset;
4526 		do_s2io_chk_alarm_bit(TTI_ECC_SG_ERR | TTI_ECC_DB_ERR,
4527 				      &bar0->tti_err_reg,
4528 				      &sw_stat->tti_err_cnt);
4529 	}
4530 
4531 	/*check for lso_err*/
4532 	if (val64 & TXDMA_LSO_INT) {
4533 		if (do_s2io_chk_alarm_bit(LSO6_ABORT | LSO7_ABORT |
4534 					  LSO6_SM_ERR_ALARM | LSO7_SM_ERR_ALARM,
4535 					  &bar0->lso_err_reg,
4536 					  &sw_stat->lso_err_cnt))
4537 			goto reset;
4538 		do_s2io_chk_alarm_bit(LSO6_SEND_OFLOW | LSO7_SEND_OFLOW,
4539 				      &bar0->lso_err_reg,
4540 				      &sw_stat->lso_err_cnt);
4541 	}
4542 
4543 	/*check for tpa_err*/
4544 	if (val64 & TXDMA_TPA_INT) {
4545 		if (do_s2io_chk_alarm_bit(TPA_SM_ERR_ALARM,
4546 					  &bar0->tpa_err_reg,
4547 					  &sw_stat->tpa_err_cnt))
4548 			goto reset;
4549 		do_s2io_chk_alarm_bit(TPA_TX_FRM_DROP,
4550 				      &bar0->tpa_err_reg,
4551 				      &sw_stat->tpa_err_cnt);
4552 	}
4553 
4554 	/*check for sm_err*/
4555 	if (val64 & TXDMA_SM_INT) {
4556 		if (do_s2io_chk_alarm_bit(SM_SM_ERR_ALARM,
4557 					  &bar0->sm_err_reg,
4558 					  &sw_stat->sm_err_cnt))
4559 			goto reset;
4560 	}
4561 
4562 	val64 = readq(&bar0->mac_int_status);
4563 	if (val64 & MAC_INT_STATUS_TMAC_INT) {
4564 		if (do_s2io_chk_alarm_bit(TMAC_TX_BUF_OVRN | TMAC_TX_SM_ERR,
4565 					  &bar0->mac_tmac_err_reg,
4566 					  &sw_stat->mac_tmac_err_cnt))
4567 			goto reset;
4568 		do_s2io_chk_alarm_bit(TMAC_ECC_SG_ERR | TMAC_ECC_DB_ERR |
4569 				      TMAC_DESC_ECC_SG_ERR |
4570 				      TMAC_DESC_ECC_DB_ERR,
4571 				      &bar0->mac_tmac_err_reg,
4572 				      &sw_stat->mac_tmac_err_cnt);
4573 	}
4574 
4575 	val64 = readq(&bar0->xgxs_int_status);
4576 	if (val64 & XGXS_INT_STATUS_TXGXS) {
4577 		if (do_s2io_chk_alarm_bit(TXGXS_ESTORE_UFLOW | TXGXS_TX_SM_ERR,
4578 					  &bar0->xgxs_txgxs_err_reg,
4579 					  &sw_stat->xgxs_txgxs_err_cnt))
4580 			goto reset;
4581 		do_s2io_chk_alarm_bit(TXGXS_ECC_SG_ERR | TXGXS_ECC_DB_ERR,
4582 				      &bar0->xgxs_txgxs_err_reg,
4583 				      &sw_stat->xgxs_txgxs_err_cnt);
4584 	}
4585 
4586 	val64 = readq(&bar0->rxdma_int_status);
4587 	if (val64 & RXDMA_INT_RC_INT_M) {
4588 		if (do_s2io_chk_alarm_bit(RC_PRCn_ECC_DB_ERR |
4589 					  RC_FTC_ECC_DB_ERR |
4590 					  RC_PRCn_SM_ERR_ALARM |
4591 					  RC_FTC_SM_ERR_ALARM,
4592 					  &bar0->rc_err_reg,
4593 					  &sw_stat->rc_err_cnt))
4594 			goto reset;
4595 		do_s2io_chk_alarm_bit(RC_PRCn_ECC_SG_ERR |
4596 				      RC_FTC_ECC_SG_ERR |
4597 				      RC_RDA_FAIL_WR_Rn, &bar0->rc_err_reg,
4598 				      &sw_stat->rc_err_cnt);
4599 		if (do_s2io_chk_alarm_bit(PRC_PCI_AB_RD_Rn |
4600 					  PRC_PCI_AB_WR_Rn |
4601 					  PRC_PCI_AB_F_WR_Rn,
4602 					  &bar0->prc_pcix_err_reg,
4603 					  &sw_stat->prc_pcix_err_cnt))
4604 			goto reset;
4605 		do_s2io_chk_alarm_bit(PRC_PCI_DP_RD_Rn |
4606 				      PRC_PCI_DP_WR_Rn |
4607 				      PRC_PCI_DP_F_WR_Rn,
4608 				      &bar0->prc_pcix_err_reg,
4609 				      &sw_stat->prc_pcix_err_cnt);
4610 	}
4611 
4612 	if (val64 & RXDMA_INT_RPA_INT_M) {
4613 		if (do_s2io_chk_alarm_bit(RPA_SM_ERR_ALARM | RPA_CREDIT_ERR,
4614 					  &bar0->rpa_err_reg,
4615 					  &sw_stat->rpa_err_cnt))
4616 			goto reset;
4617 		do_s2io_chk_alarm_bit(RPA_ECC_SG_ERR | RPA_ECC_DB_ERR,
4618 				      &bar0->rpa_err_reg,
4619 				      &sw_stat->rpa_err_cnt);
4620 	}
4621 
4622 	if (val64 & RXDMA_INT_RDA_INT_M) {
4623 		if (do_s2io_chk_alarm_bit(RDA_RXDn_ECC_DB_ERR |
4624 					  RDA_FRM_ECC_DB_N_AERR |
4625 					  RDA_SM1_ERR_ALARM |
4626 					  RDA_SM0_ERR_ALARM |
4627 					  RDA_RXD_ECC_DB_SERR,
4628 					  &bar0->rda_err_reg,
4629 					  &sw_stat->rda_err_cnt))
4630 			goto reset;
4631 		do_s2io_chk_alarm_bit(RDA_RXDn_ECC_SG_ERR |
4632 				      RDA_FRM_ECC_SG_ERR |
4633 				      RDA_MISC_ERR |
4634 				      RDA_PCIX_ERR,
4635 				      &bar0->rda_err_reg,
4636 				      &sw_stat->rda_err_cnt);
4637 	}
4638 
4639 	if (val64 & RXDMA_INT_RTI_INT_M) {
4640 		if (do_s2io_chk_alarm_bit(RTI_SM_ERR_ALARM,
4641 					  &bar0->rti_err_reg,
4642 					  &sw_stat->rti_err_cnt))
4643 			goto reset;
4644 		do_s2io_chk_alarm_bit(RTI_ECC_SG_ERR | RTI_ECC_DB_ERR,
4645 				      &bar0->rti_err_reg,
4646 				      &sw_stat->rti_err_cnt);
4647 	}
4648 
4649 	val64 = readq(&bar0->mac_int_status);
4650 	if (val64 & MAC_INT_STATUS_RMAC_INT) {
4651 		if (do_s2io_chk_alarm_bit(RMAC_RX_BUFF_OVRN | RMAC_RX_SM_ERR,
4652 					  &bar0->mac_rmac_err_reg,
4653 					  &sw_stat->mac_rmac_err_cnt))
4654 			goto reset;
4655 		do_s2io_chk_alarm_bit(RMAC_UNUSED_INT |
4656 				      RMAC_SINGLE_ECC_ERR |
4657 				      RMAC_DOUBLE_ECC_ERR,
4658 				      &bar0->mac_rmac_err_reg,
4659 				      &sw_stat->mac_rmac_err_cnt);
4660 	}
4661 
4662 	val64 = readq(&bar0->xgxs_int_status);
4663 	if (val64 & XGXS_INT_STATUS_RXGXS) {
4664 		if (do_s2io_chk_alarm_bit(RXGXS_ESTORE_OFLOW | RXGXS_RX_SM_ERR,
4665 					  &bar0->xgxs_rxgxs_err_reg,
4666 					  &sw_stat->xgxs_rxgxs_err_cnt))
4667 			goto reset;
4668 	}
4669 
4670 	val64 = readq(&bar0->mc_int_status);
4671 	if (val64 & MC_INT_STATUS_MC_INT) {
4672 		if (do_s2io_chk_alarm_bit(MC_ERR_REG_SM_ERR,
4673 					  &bar0->mc_err_reg,
4674 					  &sw_stat->mc_err_cnt))
4675 			goto reset;
4676 
4677 		/* Handling Ecc errors */
4678 		if (val64 & (MC_ERR_REG_ECC_ALL_SNG | MC_ERR_REG_ECC_ALL_DBL)) {
4679 			writeq(val64, &bar0->mc_err_reg);
4680 			if (val64 & MC_ERR_REG_ECC_ALL_DBL) {
4681 				sw_stat->double_ecc_errs++;
4682 				if (sp->device_type != XFRAME_II_DEVICE) {
4683 					/*
4684 					 * Reset XframeI only if critical error
4685 					 */
4686 					if (val64 &
4687 					    (MC_ERR_REG_MIRI_ECC_DB_ERR_0 |
4688 					     MC_ERR_REG_MIRI_ECC_DB_ERR_1))
4689 						goto reset;
4690 				}
4691 			} else
4692 				sw_stat->single_ecc_errs++;
4693 		}
4694 	}
4695 	return;
4696 
4697 reset:
4698 	s2io_stop_all_tx_queue(sp);
4699 	schedule_work(&sp->rst_timer_task);
4700 	sw_stat->soft_reset_cnt++;
4701 }
4702 
4703 /**
4704  *  s2io_isr - ISR handler of the device .
4705  *  @irq: the irq of the device.
4706  *  @dev_id: a void pointer to the dev structure of the NIC.
4707  *  Description:  This function is the ISR handler of the device. It
4708  *  identifies the reason for the interrupt and calls the relevant
4709  *  service routines. As a contongency measure, this ISR allocates the
4710  *  recv buffers, if their numbers are below the panic value which is
4711  *  presently set to 25% of the original number of rcv buffers allocated.
4712  *  Return value:
4713  *   IRQ_HANDLED: will be returned if IRQ was handled by this routine
4714  *   IRQ_NONE: will be returned if interrupt is not from our device
4715  */
4716 static irqreturn_t s2io_isr(int irq, void *dev_id)
4717 {
4718 	struct net_device *dev = (struct net_device *)dev_id;
4719 	struct s2io_nic *sp = netdev_priv(dev);
4720 	struct XENA_dev_config __iomem *bar0 = sp->bar0;
4721 	int i;
4722 	u64 reason = 0;
4723 	struct mac_info *mac_control;
4724 	struct config_param *config;
4725 
4726 	/* Pretend we handled any irq's from a disconnected card */
4727 	if (pci_channel_offline(sp->pdev))
4728 		return IRQ_NONE;
4729 
4730 	if (!is_s2io_card_up(sp))
4731 		return IRQ_NONE;
4732 
4733 	config = &sp->config;
4734 	mac_control = &sp->mac_control;
4735 
4736 	/*
4737 	 * Identify the cause for interrupt and call the appropriate
4738 	 * interrupt handler. Causes for the interrupt could be;
4739 	 * 1. Rx of packet.
4740 	 * 2. Tx complete.
4741 	 * 3. Link down.
4742 	 */
4743 	reason = readq(&bar0->general_int_status);
4744 
4745 	if (unlikely(reason == S2IO_MINUS_ONE))
4746 		return IRQ_HANDLED;	/* Nothing much can be done. Get out */
4747 
4748 	if (reason &
4749 	    (GEN_INTR_RXTRAFFIC | GEN_INTR_TXTRAFFIC | GEN_INTR_TXPIC)) {
4750 		writeq(S2IO_MINUS_ONE, &bar0->general_int_mask);
4751 
4752 		if (config->napi) {
4753 			if (reason & GEN_INTR_RXTRAFFIC) {
4754 				napi_schedule(&sp->napi);
4755 				writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_mask);
4756 				writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
4757 				readl(&bar0->rx_traffic_int);
4758 			}
4759 		} else {
4760 			/*
4761 			 * rx_traffic_int reg is an R1 register, writing all 1's
4762 			 * will ensure that the actual interrupt causing bit
4763 			 * get's cleared and hence a read can be avoided.
4764 			 */
4765 			if (reason & GEN_INTR_RXTRAFFIC)
4766 				writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
4767 
4768 			for (i = 0; i < config->rx_ring_num; i++) {
4769 				struct ring_info *ring = &mac_control->rings[i];
4770 
4771 				rx_intr_handler(ring, 0);
4772 			}
4773 		}
4774 
4775 		/*
4776 		 * tx_traffic_int reg is an R1 register, writing all 1's
4777 		 * will ensure that the actual interrupt causing bit get's
4778 		 * cleared and hence a read can be avoided.
4779 		 */
4780 		if (reason & GEN_INTR_TXTRAFFIC)
4781 			writeq(S2IO_MINUS_ONE, &bar0->tx_traffic_int);
4782 
4783 		for (i = 0; i < config->tx_fifo_num; i++)
4784 			tx_intr_handler(&mac_control->fifos[i]);
4785 
4786 		if (reason & GEN_INTR_TXPIC)
4787 			s2io_txpic_intr_handle(sp);
4788 
4789 		/*
4790 		 * Reallocate the buffers from the interrupt handler itself.
4791 		 */
4792 		if (!config->napi) {
4793 			for (i = 0; i < config->rx_ring_num; i++) {
4794 				struct ring_info *ring = &mac_control->rings[i];
4795 
4796 				s2io_chk_rx_buffers(sp, ring);
4797 			}
4798 		}
4799 		writeq(sp->general_int_mask, &bar0->general_int_mask);
4800 		readl(&bar0->general_int_status);
4801 
4802 		return IRQ_HANDLED;
4803 
4804 	} else if (!reason) {
4805 		/* The interrupt was not raised by us */
4806 		return IRQ_NONE;
4807 	}
4808 
4809 	return IRQ_HANDLED;
4810 }
4811 
4812 /**
4813  * s2io_updt_stats -
4814  */
4815 static void s2io_updt_stats(struct s2io_nic *sp)
4816 {
4817 	struct XENA_dev_config __iomem *bar0 = sp->bar0;
4818 	u64 val64;
4819 	int cnt = 0;
4820 
4821 	if (is_s2io_card_up(sp)) {
4822 		/* Apprx 30us on a 133 MHz bus */
4823 		val64 = SET_UPDT_CLICKS(10) |
4824 			STAT_CFG_ONE_SHOT_EN | STAT_CFG_STAT_EN;
4825 		writeq(val64, &bar0->stat_cfg);
4826 		do {
4827 			udelay(100);
4828 			val64 = readq(&bar0->stat_cfg);
4829 			if (!(val64 & s2BIT(0)))
4830 				break;
4831 			cnt++;
4832 			if (cnt == 5)
4833 				break; /* Updt failed */
4834 		} while (1);
4835 	}
4836 }
4837 
4838 /**
4839  *  s2io_get_stats - Updates the device statistics structure.
4840  *  @dev : pointer to the device structure.
4841  *  Description:
4842  *  This function updates the device statistics structure in the s2io_nic
4843  *  structure and returns a pointer to the same.
4844  *  Return value:
4845  *  pointer to the updated net_device_stats structure.
4846  */
4847 static struct net_device_stats *s2io_get_stats(struct net_device *dev)
4848 {
4849 	struct s2io_nic *sp = netdev_priv(dev);
4850 	struct mac_info *mac_control = &sp->mac_control;
4851 	struct stat_block *stats = mac_control->stats_info;
4852 	u64 delta;
4853 
4854 	/* Configure Stats for immediate updt */
4855 	s2io_updt_stats(sp);
4856 
4857 	/* A device reset will cause the on-adapter statistics to be zero'ed.
4858 	 * This can be done while running by changing the MTU.  To prevent the
4859 	 * system from having the stats zero'ed, the driver keeps a copy of the
4860 	 * last update to the system (which is also zero'ed on reset).  This
4861 	 * enables the driver to accurately know the delta between the last
4862 	 * update and the current update.
4863 	 */
4864 	delta = ((u64) le32_to_cpu(stats->rmac_vld_frms_oflow) << 32 |
4865 		le32_to_cpu(stats->rmac_vld_frms)) - sp->stats.rx_packets;
4866 	sp->stats.rx_packets += delta;
4867 	dev->stats.rx_packets += delta;
4868 
4869 	delta = ((u64) le32_to_cpu(stats->tmac_frms_oflow) << 32 |
4870 		le32_to_cpu(stats->tmac_frms)) - sp->stats.tx_packets;
4871 	sp->stats.tx_packets += delta;
4872 	dev->stats.tx_packets += delta;
4873 
4874 	delta = ((u64) le32_to_cpu(stats->rmac_data_octets_oflow) << 32 |
4875 		le32_to_cpu(stats->rmac_data_octets)) - sp->stats.rx_bytes;
4876 	sp->stats.rx_bytes += delta;
4877 	dev->stats.rx_bytes += delta;
4878 
4879 	delta = ((u64) le32_to_cpu(stats->tmac_data_octets_oflow) << 32 |
4880 		le32_to_cpu(stats->tmac_data_octets)) - sp->stats.tx_bytes;
4881 	sp->stats.tx_bytes += delta;
4882 	dev->stats.tx_bytes += delta;
4883 
4884 	delta = le64_to_cpu(stats->rmac_drop_frms) - sp->stats.rx_errors;
4885 	sp->stats.rx_errors += delta;
4886 	dev->stats.rx_errors += delta;
4887 
4888 	delta = ((u64) le32_to_cpu(stats->tmac_any_err_frms_oflow) << 32 |
4889 		le32_to_cpu(stats->tmac_any_err_frms)) - sp->stats.tx_errors;
4890 	sp->stats.tx_errors += delta;
4891 	dev->stats.tx_errors += delta;
4892 
4893 	delta = le64_to_cpu(stats->rmac_drop_frms) - sp->stats.rx_dropped;
4894 	sp->stats.rx_dropped += delta;
4895 	dev->stats.rx_dropped += delta;
4896 
4897 	delta = le64_to_cpu(stats->tmac_drop_frms) - sp->stats.tx_dropped;
4898 	sp->stats.tx_dropped += delta;
4899 	dev->stats.tx_dropped += delta;
4900 
4901 	/* The adapter MAC interprets pause frames as multicast packets, but
4902 	 * does not pass them up.  This erroneously increases the multicast
4903 	 * packet count and needs to be deducted when the multicast frame count
4904 	 * is queried.
4905 	 */
4906 	delta = (u64) le32_to_cpu(stats->rmac_vld_mcst_frms_oflow) << 32 |
4907 		le32_to_cpu(stats->rmac_vld_mcst_frms);
4908 	delta -= le64_to_cpu(stats->rmac_pause_ctrl_frms);
4909 	delta -= sp->stats.multicast;
4910 	sp->stats.multicast += delta;
4911 	dev->stats.multicast += delta;
4912 
4913 	delta = ((u64) le32_to_cpu(stats->rmac_usized_frms_oflow) << 32 |
4914 		le32_to_cpu(stats->rmac_usized_frms)) +
4915 		le64_to_cpu(stats->rmac_long_frms) - sp->stats.rx_length_errors;
4916 	sp->stats.rx_length_errors += delta;
4917 	dev->stats.rx_length_errors += delta;
4918 
4919 	delta = le64_to_cpu(stats->rmac_fcs_err_frms) - sp->stats.rx_crc_errors;
4920 	sp->stats.rx_crc_errors += delta;
4921 	dev->stats.rx_crc_errors += delta;
4922 
4923 	return &dev->stats;
4924 }
4925 
4926 /**
4927  *  s2io_set_multicast - entry point for multicast address enable/disable.
4928  *  @dev : pointer to the device structure
4929  *  Description:
4930  *  This function is a driver entry point which gets called by the kernel
4931  *  whenever multicast addresses must be enabled/disabled. This also gets
4932  *  called to set/reset promiscuous mode. Depending on the deivce flag, we
4933  *  determine, if multicast address must be enabled or if promiscuous mode
4934  *  is to be disabled etc.
4935  *  Return value:
4936  *  void.
4937  */
4938 
4939 static void s2io_set_multicast(struct net_device *dev)
4940 {
4941 	int i, j, prev_cnt;
4942 	struct netdev_hw_addr *ha;
4943 	struct s2io_nic *sp = netdev_priv(dev);
4944 	struct XENA_dev_config __iomem *bar0 = sp->bar0;
4945 	u64 val64 = 0, multi_mac = 0x010203040506ULL, mask =
4946 		0xfeffffffffffULL;
4947 	u64 dis_addr = S2IO_DISABLE_MAC_ENTRY, mac_addr = 0;
4948 	void __iomem *add;
4949 	struct config_param *config = &sp->config;
4950 
4951 	if ((dev->flags & IFF_ALLMULTI) && (!sp->m_cast_flg)) {
4952 		/*  Enable all Multicast addresses */
4953 		writeq(RMAC_ADDR_DATA0_MEM_ADDR(multi_mac),
4954 		       &bar0->rmac_addr_data0_mem);
4955 		writeq(RMAC_ADDR_DATA1_MEM_MASK(mask),
4956 		       &bar0->rmac_addr_data1_mem);
4957 		val64 = RMAC_ADDR_CMD_MEM_WE |
4958 			RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4959 			RMAC_ADDR_CMD_MEM_OFFSET(config->max_mc_addr - 1);
4960 		writeq(val64, &bar0->rmac_addr_cmd_mem);
4961 		/* Wait till command completes */
4962 		wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4963 				      RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
4964 				      S2IO_BIT_RESET);
4965 
4966 		sp->m_cast_flg = 1;
4967 		sp->all_multi_pos = config->max_mc_addr - 1;
4968 	} else if ((dev->flags & IFF_ALLMULTI) && (sp->m_cast_flg)) {
4969 		/*  Disable all Multicast addresses */
4970 		writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
4971 		       &bar0->rmac_addr_data0_mem);
4972 		writeq(RMAC_ADDR_DATA1_MEM_MASK(0x0),
4973 		       &bar0->rmac_addr_data1_mem);
4974 		val64 = RMAC_ADDR_CMD_MEM_WE |
4975 			RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4976 			RMAC_ADDR_CMD_MEM_OFFSET(sp->all_multi_pos);
4977 		writeq(val64, &bar0->rmac_addr_cmd_mem);
4978 		/* Wait till command completes */
4979 		wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4980 				      RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
4981 				      S2IO_BIT_RESET);
4982 
4983 		sp->m_cast_flg = 0;
4984 		sp->all_multi_pos = 0;
4985 	}
4986 
4987 	if ((dev->flags & IFF_PROMISC) && (!sp->promisc_flg)) {
4988 		/*  Put the NIC into promiscuous mode */
4989 		add = &bar0->mac_cfg;
4990 		val64 = readq(&bar0->mac_cfg);
4991 		val64 |= MAC_CFG_RMAC_PROM_ENABLE;
4992 
4993 		writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4994 		writel((u32)val64, add);
4995 		writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4996 		writel((u32) (val64 >> 32), (add + 4));
4997 
4998 		if (vlan_tag_strip != 1) {
4999 			val64 = readq(&bar0->rx_pa_cfg);
5000 			val64 &= ~RX_PA_CFG_STRIP_VLAN_TAG;
5001 			writeq(val64, &bar0->rx_pa_cfg);
5002 			sp->vlan_strip_flag = 0;
5003 		}
5004 
5005 		val64 = readq(&bar0->mac_cfg);
5006 		sp->promisc_flg = 1;
5007 		DBG_PRINT(INFO_DBG, "%s: entered promiscuous mode\n",
5008 			  dev->name);
5009 	} else if (!(dev->flags & IFF_PROMISC) && (sp->promisc_flg)) {
5010 		/*  Remove the NIC from promiscuous mode */
5011 		add = &bar0->mac_cfg;
5012 		val64 = readq(&bar0->mac_cfg);
5013 		val64 &= ~MAC_CFG_RMAC_PROM_ENABLE;
5014 
5015 		writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
5016 		writel((u32)val64, add);
5017 		writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
5018 		writel((u32) (val64 >> 32), (add + 4));
5019 
5020 		if (vlan_tag_strip != 0) {
5021 			val64 = readq(&bar0->rx_pa_cfg);
5022 			val64 |= RX_PA_CFG_STRIP_VLAN_TAG;
5023 			writeq(val64, &bar0->rx_pa_cfg);
5024 			sp->vlan_strip_flag = 1;
5025 		}
5026 
5027 		val64 = readq(&bar0->mac_cfg);
5028 		sp->promisc_flg = 0;
5029 		DBG_PRINT(INFO_DBG, "%s: left promiscuous mode\n", dev->name);
5030 	}
5031 
5032 	/*  Update individual M_CAST address list */
5033 	if ((!sp->m_cast_flg) && netdev_mc_count(dev)) {
5034 		if (netdev_mc_count(dev) >
5035 		    (config->max_mc_addr - config->max_mac_addr)) {
5036 			DBG_PRINT(ERR_DBG,
5037 				  "%s: No more Rx filters can be added - "
5038 				  "please enable ALL_MULTI instead\n",
5039 				  dev->name);
5040 			return;
5041 		}
5042 
5043 		prev_cnt = sp->mc_addr_count;
5044 		sp->mc_addr_count = netdev_mc_count(dev);
5045 
5046 		/* Clear out the previous list of Mc in the H/W. */
5047 		for (i = 0; i < prev_cnt; i++) {
5048 			writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
5049 			       &bar0->rmac_addr_data0_mem);
5050 			writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
5051 			       &bar0->rmac_addr_data1_mem);
5052 			val64 = RMAC_ADDR_CMD_MEM_WE |
5053 				RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5054 				RMAC_ADDR_CMD_MEM_OFFSET
5055 				(config->mc_start_offset + i);
5056 			writeq(val64, &bar0->rmac_addr_cmd_mem);
5057 
5058 			/* Wait for command completes */
5059 			if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
5060 						  RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5061 						  S2IO_BIT_RESET)) {
5062 				DBG_PRINT(ERR_DBG,
5063 					  "%s: Adding Multicasts failed\n",
5064 					  dev->name);
5065 				return;
5066 			}
5067 		}
5068 
5069 		/* Create the new Rx filter list and update the same in H/W. */
5070 		i = 0;
5071 		netdev_for_each_mc_addr(ha, dev) {
5072 			mac_addr = 0;
5073 			for (j = 0; j < ETH_ALEN; j++) {
5074 				mac_addr |= ha->addr[j];
5075 				mac_addr <<= 8;
5076 			}
5077 			mac_addr >>= 8;
5078 			writeq(RMAC_ADDR_DATA0_MEM_ADDR(mac_addr),
5079 			       &bar0->rmac_addr_data0_mem);
5080 			writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
5081 			       &bar0->rmac_addr_data1_mem);
5082 			val64 = RMAC_ADDR_CMD_MEM_WE |
5083 				RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5084 				RMAC_ADDR_CMD_MEM_OFFSET
5085 				(i + config->mc_start_offset);
5086 			writeq(val64, &bar0->rmac_addr_cmd_mem);
5087 
5088 			/* Wait for command completes */
5089 			if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
5090 						  RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5091 						  S2IO_BIT_RESET)) {
5092 				DBG_PRINT(ERR_DBG,
5093 					  "%s: Adding Multicasts failed\n",
5094 					  dev->name);
5095 				return;
5096 			}
5097 			i++;
5098 		}
5099 	}
5100 }
5101 
5102 /* read from CAM unicast & multicast addresses and store it in
5103  * def_mac_addr structure
5104  */
5105 static void do_s2io_store_unicast_mc(struct s2io_nic *sp)
5106 {
5107 	int offset;
5108 	u64 mac_addr = 0x0;
5109 	struct config_param *config = &sp->config;
5110 
5111 	/* store unicast & multicast mac addresses */
5112 	for (offset = 0; offset < config->max_mc_addr; offset++) {
5113 		mac_addr = do_s2io_read_unicast_mc(sp, offset);
5114 		/* if read fails disable the entry */
5115 		if (mac_addr == FAILURE)
5116 			mac_addr = S2IO_DISABLE_MAC_ENTRY;
5117 		do_s2io_copy_mac_addr(sp, offset, mac_addr);
5118 	}
5119 }
5120 
5121 /* restore unicast & multicast MAC to CAM from def_mac_addr structure */
5122 static void do_s2io_restore_unicast_mc(struct s2io_nic *sp)
5123 {
5124 	int offset;
5125 	struct config_param *config = &sp->config;
5126 	/* restore unicast mac address */
5127 	for (offset = 0; offset < config->max_mac_addr; offset++)
5128 		do_s2io_prog_unicast(sp->dev,
5129 				     sp->def_mac_addr[offset].mac_addr);
5130 
5131 	/* restore multicast mac address */
5132 	for (offset = config->mc_start_offset;
5133 	     offset < config->max_mc_addr; offset++)
5134 		do_s2io_add_mc(sp, sp->def_mac_addr[offset].mac_addr);
5135 }
5136 
5137 /* add a multicast MAC address to CAM */
5138 static int do_s2io_add_mc(struct s2io_nic *sp, u8 *addr)
5139 {
5140 	int i;
5141 	u64 mac_addr = 0;
5142 	struct config_param *config = &sp->config;
5143 
5144 	for (i = 0; i < ETH_ALEN; i++) {
5145 		mac_addr <<= 8;
5146 		mac_addr |= addr[i];
5147 	}
5148 	if ((0ULL == mac_addr) || (mac_addr == S2IO_DISABLE_MAC_ENTRY))
5149 		return SUCCESS;
5150 
5151 	/* check if the multicast mac already preset in CAM */
5152 	for (i = config->mc_start_offset; i < config->max_mc_addr; i++) {
5153 		u64 tmp64;
5154 		tmp64 = do_s2io_read_unicast_mc(sp, i);
5155 		if (tmp64 == S2IO_DISABLE_MAC_ENTRY) /* CAM entry is empty */
5156 			break;
5157 
5158 		if (tmp64 == mac_addr)
5159 			return SUCCESS;
5160 	}
5161 	if (i == config->max_mc_addr) {
5162 		DBG_PRINT(ERR_DBG,
5163 			  "CAM full no space left for multicast MAC\n");
5164 		return FAILURE;
5165 	}
5166 	/* Update the internal structure with this new mac address */
5167 	do_s2io_copy_mac_addr(sp, i, mac_addr);
5168 
5169 	return do_s2io_add_mac(sp, mac_addr, i);
5170 }
5171 
5172 /* add MAC address to CAM */
5173 static int do_s2io_add_mac(struct s2io_nic *sp, u64 addr, int off)
5174 {
5175 	u64 val64;
5176 	struct XENA_dev_config __iomem *bar0 = sp->bar0;
5177 
5178 	writeq(RMAC_ADDR_DATA0_MEM_ADDR(addr),
5179 	       &bar0->rmac_addr_data0_mem);
5180 
5181 	val64 =	RMAC_ADDR_CMD_MEM_WE | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5182 		RMAC_ADDR_CMD_MEM_OFFSET(off);
5183 	writeq(val64, &bar0->rmac_addr_cmd_mem);
5184 
5185 	/* Wait till command completes */
5186 	if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
5187 				  RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5188 				  S2IO_BIT_RESET)) {
5189 		DBG_PRINT(INFO_DBG, "do_s2io_add_mac failed\n");
5190 		return FAILURE;
5191 	}
5192 	return SUCCESS;
5193 }
5194 /* deletes a specified unicast/multicast mac entry from CAM */
5195 static int do_s2io_delete_unicast_mc(struct s2io_nic *sp, u64 addr)
5196 {
5197 	int offset;
5198 	u64 dis_addr = S2IO_DISABLE_MAC_ENTRY, tmp64;
5199 	struct config_param *config = &sp->config;
5200 
5201 	for (offset = 1;
5202 	     offset < config->max_mc_addr; offset++) {
5203 		tmp64 = do_s2io_read_unicast_mc(sp, offset);
5204 		if (tmp64 == addr) {
5205 			/* disable the entry by writing  0xffffffffffffULL */
5206 			if (do_s2io_add_mac(sp, dis_addr, offset) ==  FAILURE)
5207 				return FAILURE;
5208 			/* store the new mac list from CAM */
5209 			do_s2io_store_unicast_mc(sp);
5210 			return SUCCESS;
5211 		}
5212 	}
5213 	DBG_PRINT(ERR_DBG, "MAC address 0x%llx not found in CAM\n",
5214 		  (unsigned long long)addr);
5215 	return FAILURE;
5216 }
5217 
5218 /* read mac entries from CAM */
5219 static u64 do_s2io_read_unicast_mc(struct s2io_nic *sp, int offset)
5220 {
5221 	u64 tmp64 = 0xffffffffffff0000ULL, val64;
5222 	struct XENA_dev_config __iomem *bar0 = sp->bar0;
5223 
5224 	/* read mac addr */
5225 	val64 =	RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5226 		RMAC_ADDR_CMD_MEM_OFFSET(offset);
5227 	writeq(val64, &bar0->rmac_addr_cmd_mem);
5228 
5229 	/* Wait till command completes */
5230 	if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
5231 				  RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5232 				  S2IO_BIT_RESET)) {
5233 		DBG_PRINT(INFO_DBG, "do_s2io_read_unicast_mc failed\n");
5234 		return FAILURE;
5235 	}
5236 	tmp64 = readq(&bar0->rmac_addr_data0_mem);
5237 
5238 	return tmp64 >> 16;
5239 }
5240 
5241 /**
5242  * s2io_set_mac_addr - driver entry point
5243  */
5244 
5245 static int s2io_set_mac_addr(struct net_device *dev, void *p)
5246 {
5247 	struct sockaddr *addr = p;
5248 
5249 	if (!is_valid_ether_addr(addr->sa_data))
5250 		return -EADDRNOTAVAIL;
5251 
5252 	memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
5253 
5254 	/* store the MAC address in CAM */
5255 	return do_s2io_prog_unicast(dev, dev->dev_addr);
5256 }
5257 /**
5258  *  do_s2io_prog_unicast - Programs the Xframe mac address
5259  *  @dev : pointer to the device structure.
5260  *  @addr: a uchar pointer to the new mac address which is to be set.
5261  *  Description : This procedure will program the Xframe to receive
5262  *  frames with new Mac Address
5263  *  Return value: SUCCESS on success and an appropriate (-)ve integer
5264  *  as defined in errno.h file on failure.
5265  */
5266 
5267 static int do_s2io_prog_unicast(struct net_device *dev, u8 *addr)
5268 {
5269 	struct s2io_nic *sp = netdev_priv(dev);
5270 	register u64 mac_addr = 0, perm_addr = 0;
5271 	int i;
5272 	u64 tmp64;
5273 	struct config_param *config = &sp->config;
5274 
5275 	/*
5276 	 * Set the new MAC address as the new unicast filter and reflect this
5277 	 * change on the device address registered with the OS. It will be
5278 	 * at offset 0.
5279 	 */
5280 	for (i = 0; i < ETH_ALEN; i++) {
5281 		mac_addr <<= 8;
5282 		mac_addr |= addr[i];
5283 		perm_addr <<= 8;
5284 		perm_addr |= sp->def_mac_addr[0].mac_addr[i];
5285 	}
5286 
5287 	/* check if the dev_addr is different than perm_addr */
5288 	if (mac_addr == perm_addr)
5289 		return SUCCESS;
5290 
5291 	/* check if the mac already preset in CAM */
5292 	for (i = 1; i < config->max_mac_addr; i++) {
5293 		tmp64 = do_s2io_read_unicast_mc(sp, i);
5294 		if (tmp64 == S2IO_DISABLE_MAC_ENTRY) /* CAM entry is empty */
5295 			break;
5296 
5297 		if (tmp64 == mac_addr) {
5298 			DBG_PRINT(INFO_DBG,
5299 				  "MAC addr:0x%llx already present in CAM\n",
5300 				  (unsigned long long)mac_addr);
5301 			return SUCCESS;
5302 		}
5303 	}
5304 	if (i == config->max_mac_addr) {
5305 		DBG_PRINT(ERR_DBG, "CAM full no space left for Unicast MAC\n");
5306 		return FAILURE;
5307 	}
5308 	/* Update the internal structure with this new mac address */
5309 	do_s2io_copy_mac_addr(sp, i, mac_addr);
5310 
5311 	return do_s2io_add_mac(sp, mac_addr, i);
5312 }
5313 
5314 /**
5315  * s2io_ethtool_sset - Sets different link parameters.
5316  * @sp : private member of the device structure, which is a pointer to the  * s2io_nic structure.
5317  * @info: pointer to the structure with parameters given by ethtool to set
5318  * link information.
5319  * Description:
5320  * The function sets different link parameters provided by the user onto
5321  * the NIC.
5322  * Return value:
5323  * 0 on success.
5324  */
5325 
5326 static int s2io_ethtool_sset(struct net_device *dev,
5327 			     struct ethtool_cmd *info)
5328 {
5329 	struct s2io_nic *sp = netdev_priv(dev);
5330 	if ((info->autoneg == AUTONEG_ENABLE) ||
5331 	    (ethtool_cmd_speed(info) != SPEED_10000) ||
5332 	    (info->duplex != DUPLEX_FULL))
5333 		return -EINVAL;
5334 	else {
5335 		s2io_close(sp->dev);
5336 		s2io_open(sp->dev);
5337 	}
5338 
5339 	return 0;
5340 }
5341 
5342 /**
5343  * s2io_ethtol_gset - Return link specific information.
5344  * @sp : private member of the device structure, pointer to the
5345  *      s2io_nic structure.
5346  * @info : pointer to the structure with parameters given by ethtool
5347  * to return link information.
5348  * Description:
5349  * Returns link specific information like speed, duplex etc.. to ethtool.
5350  * Return value :
5351  * return 0 on success.
5352  */
5353 
5354 static int s2io_ethtool_gset(struct net_device *dev, struct ethtool_cmd *info)
5355 {
5356 	struct s2io_nic *sp = netdev_priv(dev);
5357 	info->supported = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
5358 	info->advertising = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
5359 	info->port = PORT_FIBRE;
5360 
5361 	/* info->transceiver */
5362 	info->transceiver = XCVR_EXTERNAL;
5363 
5364 	if (netif_carrier_ok(sp->dev)) {
5365 		ethtool_cmd_speed_set(info, SPEED_10000);
5366 		info->duplex = DUPLEX_FULL;
5367 	} else {
5368 		ethtool_cmd_speed_set(info, -1);
5369 		info->duplex = -1;
5370 	}
5371 
5372 	info->autoneg = AUTONEG_DISABLE;
5373 	return 0;
5374 }
5375 
5376 /**
5377  * s2io_ethtool_gdrvinfo - Returns driver specific information.
5378  * @sp : private member of the device structure, which is a pointer to the
5379  * s2io_nic structure.
5380  * @info : pointer to the structure with parameters given by ethtool to
5381  * return driver information.
5382  * Description:
5383  * Returns driver specefic information like name, version etc.. to ethtool.
5384  * Return value:
5385  *  void
5386  */
5387 
5388 static void s2io_ethtool_gdrvinfo(struct net_device *dev,
5389 				  struct ethtool_drvinfo *info)
5390 {
5391 	struct s2io_nic *sp = netdev_priv(dev);
5392 
5393 	strlcpy(info->driver, s2io_driver_name, sizeof(info->driver));
5394 	strlcpy(info->version, s2io_driver_version, sizeof(info->version));
5395 	strlcpy(info->bus_info, pci_name(sp->pdev), sizeof(info->bus_info));
5396 	info->regdump_len = XENA_REG_SPACE;
5397 	info->eedump_len = XENA_EEPROM_SPACE;
5398 }
5399 
5400 /**
5401  *  s2io_ethtool_gregs - dumps the entire space of Xfame into the buffer.
5402  *  @sp: private member of the device structure, which is a pointer to the
5403  *  s2io_nic structure.
5404  *  @regs : pointer to the structure with parameters given by ethtool for
5405  *  dumping the registers.
5406  *  @reg_space: The input argumnet into which all the registers are dumped.
5407  *  Description:
5408  *  Dumps the entire register space of xFrame NIC into the user given
5409  *  buffer area.
5410  * Return value :
5411  * void .
5412  */
5413 
5414 static void s2io_ethtool_gregs(struct net_device *dev,
5415 			       struct ethtool_regs *regs, void *space)
5416 {
5417 	int i;
5418 	u64 reg;
5419 	u8 *reg_space = (u8 *)space;
5420 	struct s2io_nic *sp = netdev_priv(dev);
5421 
5422 	regs->len = XENA_REG_SPACE;
5423 	regs->version = sp->pdev->subsystem_device;
5424 
5425 	for (i = 0; i < regs->len; i += 8) {
5426 		reg = readq(sp->bar0 + i);
5427 		memcpy((reg_space + i), &reg, 8);
5428 	}
5429 }
5430 
5431 /*
5432  *  s2io_set_led - control NIC led
5433  */
5434 static void s2io_set_led(struct s2io_nic *sp, bool on)
5435 {
5436 	struct XENA_dev_config __iomem *bar0 = sp->bar0;
5437 	u16 subid = sp->pdev->subsystem_device;
5438 	u64 val64;
5439 
5440 	if ((sp->device_type == XFRAME_II_DEVICE) ||
5441 	    ((subid & 0xFF) >= 0x07)) {
5442 		val64 = readq(&bar0->gpio_control);
5443 		if (on)
5444 			val64 |= GPIO_CTRL_GPIO_0;
5445 		else
5446 			val64 &= ~GPIO_CTRL_GPIO_0;
5447 
5448 		writeq(val64, &bar0->gpio_control);
5449 	} else {
5450 		val64 = readq(&bar0->adapter_control);
5451 		if (on)
5452 			val64 |= ADAPTER_LED_ON;
5453 		else
5454 			val64 &= ~ADAPTER_LED_ON;
5455 
5456 		writeq(val64, &bar0->adapter_control);
5457 	}
5458 
5459 }
5460 
5461 /**
5462  * s2io_ethtool_set_led - To physically identify the nic on the system.
5463  * @dev : network device
5464  * @state: led setting
5465  *
5466  * Description: Used to physically identify the NIC on the system.
5467  * The Link LED will blink for a time specified by the user for
5468  * identification.
5469  * NOTE: The Link has to be Up to be able to blink the LED. Hence
5470  * identification is possible only if it's link is up.
5471  */
5472 
5473 static int s2io_ethtool_set_led(struct net_device *dev,
5474 				enum ethtool_phys_id_state state)
5475 {
5476 	struct s2io_nic *sp = netdev_priv(dev);
5477 	struct XENA_dev_config __iomem *bar0 = sp->bar0;
5478 	u16 subid = sp->pdev->subsystem_device;
5479 
5480 	if ((sp->device_type == XFRAME_I_DEVICE) && ((subid & 0xFF) < 0x07)) {
5481 		u64 val64 = readq(&bar0->adapter_control);
5482 		if (!(val64 & ADAPTER_CNTL_EN)) {
5483 			pr_err("Adapter Link down, cannot blink LED\n");
5484 			return -EAGAIN;
5485 		}
5486 	}
5487 
5488 	switch (state) {
5489 	case ETHTOOL_ID_ACTIVE:
5490 		sp->adapt_ctrl_org = readq(&bar0->gpio_control);
5491 		return 1;	/* cycle on/off once per second */
5492 
5493 	case ETHTOOL_ID_ON:
5494 		s2io_set_led(sp, true);
5495 		break;
5496 
5497 	case ETHTOOL_ID_OFF:
5498 		s2io_set_led(sp, false);
5499 		break;
5500 
5501 	case ETHTOOL_ID_INACTIVE:
5502 		if (CARDS_WITH_FAULTY_LINK_INDICATORS(sp->device_type, subid))
5503 			writeq(sp->adapt_ctrl_org, &bar0->gpio_control);
5504 	}
5505 
5506 	return 0;
5507 }
5508 
5509 static void s2io_ethtool_gringparam(struct net_device *dev,
5510 				    struct ethtool_ringparam *ering)
5511 {
5512 	struct s2io_nic *sp = netdev_priv(dev);
5513 	int i, tx_desc_count = 0, rx_desc_count = 0;
5514 
5515 	if (sp->rxd_mode == RXD_MODE_1) {
5516 		ering->rx_max_pending = MAX_RX_DESC_1;
5517 		ering->rx_jumbo_max_pending = MAX_RX_DESC_1;
5518 	} else {
5519 		ering->rx_max_pending = MAX_RX_DESC_2;
5520 		ering->rx_jumbo_max_pending = MAX_RX_DESC_2;
5521 	}
5522 
5523 	ering->tx_max_pending = MAX_TX_DESC;
5524 
5525 	for (i = 0; i < sp->config.rx_ring_num; i++)
5526 		rx_desc_count += sp->config.rx_cfg[i].num_rxd;
5527 	ering->rx_pending = rx_desc_count;
5528 	ering->rx_jumbo_pending = rx_desc_count;
5529 
5530 	for (i = 0; i < sp->config.tx_fifo_num; i++)
5531 		tx_desc_count += sp->config.tx_cfg[i].fifo_len;
5532 	ering->tx_pending = tx_desc_count;
5533 	DBG_PRINT(INFO_DBG, "max txds: %d\n", sp->config.max_txds);
5534 }
5535 
5536 /**
5537  * s2io_ethtool_getpause_data -Pause frame frame generation and reception.
5538  * @sp : private member of the device structure, which is a pointer to the
5539  *	s2io_nic structure.
5540  * @ep : pointer to the structure with pause parameters given by ethtool.
5541  * Description:
5542  * Returns the Pause frame generation and reception capability of the NIC.
5543  * Return value:
5544  *  void
5545  */
5546 static void s2io_ethtool_getpause_data(struct net_device *dev,
5547 				       struct ethtool_pauseparam *ep)
5548 {
5549 	u64 val64;
5550 	struct s2io_nic *sp = netdev_priv(dev);
5551 	struct XENA_dev_config __iomem *bar0 = sp->bar0;
5552 
5553 	val64 = readq(&bar0->rmac_pause_cfg);
5554 	if (val64 & RMAC_PAUSE_GEN_ENABLE)
5555 		ep->tx_pause = true;
5556 	if (val64 & RMAC_PAUSE_RX_ENABLE)
5557 		ep->rx_pause = true;
5558 	ep->autoneg = false;
5559 }
5560 
5561 /**
5562  * s2io_ethtool_setpause_data -  set/reset pause frame generation.
5563  * @sp : private member of the device structure, which is a pointer to the
5564  *      s2io_nic structure.
5565  * @ep : pointer to the structure with pause parameters given by ethtool.
5566  * Description:
5567  * It can be used to set or reset Pause frame generation or reception
5568  * support of the NIC.
5569  * Return value:
5570  * int, returns 0 on Success
5571  */
5572 
5573 static int s2io_ethtool_setpause_data(struct net_device *dev,
5574 				      struct ethtool_pauseparam *ep)
5575 {
5576 	u64 val64;
5577 	struct s2io_nic *sp = netdev_priv(dev);
5578 	struct XENA_dev_config __iomem *bar0 = sp->bar0;
5579 
5580 	val64 = readq(&bar0->rmac_pause_cfg);
5581 	if (ep->tx_pause)
5582 		val64 |= RMAC_PAUSE_GEN_ENABLE;
5583 	else
5584 		val64 &= ~RMAC_PAUSE_GEN_ENABLE;
5585 	if (ep->rx_pause)
5586 		val64 |= RMAC_PAUSE_RX_ENABLE;
5587 	else
5588 		val64 &= ~RMAC_PAUSE_RX_ENABLE;
5589 	writeq(val64, &bar0->rmac_pause_cfg);
5590 	return 0;
5591 }
5592 
5593 /**
5594  * read_eeprom - reads 4 bytes of data from user given offset.
5595  * @sp : private member of the device structure, which is a pointer to the
5596  *      s2io_nic structure.
5597  * @off : offset at which the data must be written
5598  * @data : Its an output parameter where the data read at the given
5599  *	offset is stored.
5600  * Description:
5601  * Will read 4 bytes of data from the user given offset and return the
5602  * read data.
5603  * NOTE: Will allow to read only part of the EEPROM visible through the
5604  *   I2C bus.
5605  * Return value:
5606  *  -1 on failure and 0 on success.
5607  */
5608 
5609 #define S2IO_DEV_ID		5
5610 static int read_eeprom(struct s2io_nic *sp, int off, u64 *data)
5611 {
5612 	int ret = -1;
5613 	u32 exit_cnt = 0;
5614 	u64 val64;
5615 	struct XENA_dev_config __iomem *bar0 = sp->bar0;
5616 
5617 	if (sp->device_type == XFRAME_I_DEVICE) {
5618 		val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) |
5619 			I2C_CONTROL_ADDR(off) |
5620 			I2C_CONTROL_BYTE_CNT(0x3) |
5621 			I2C_CONTROL_READ |
5622 			I2C_CONTROL_CNTL_START;
5623 		SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
5624 
5625 		while (exit_cnt < 5) {
5626 			val64 = readq(&bar0->i2c_control);
5627 			if (I2C_CONTROL_CNTL_END(val64)) {
5628 				*data = I2C_CONTROL_GET_DATA(val64);
5629 				ret = 0;
5630 				break;
5631 			}
5632 			msleep(50);
5633 			exit_cnt++;
5634 		}
5635 	}
5636 
5637 	if (sp->device_type == XFRAME_II_DEVICE) {
5638 		val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
5639 			SPI_CONTROL_BYTECNT(0x3) |
5640 			SPI_CONTROL_CMD(0x3) | SPI_CONTROL_ADDR(off);
5641 		SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5642 		val64 |= SPI_CONTROL_REQ;
5643 		SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5644 		while (exit_cnt < 5) {
5645 			val64 = readq(&bar0->spi_control);
5646 			if (val64 & SPI_CONTROL_NACK) {
5647 				ret = 1;
5648 				break;
5649 			} else if (val64 & SPI_CONTROL_DONE) {
5650 				*data = readq(&bar0->spi_data);
5651 				*data &= 0xffffff;
5652 				ret = 0;
5653 				break;
5654 			}
5655 			msleep(50);
5656 			exit_cnt++;
5657 		}
5658 	}
5659 	return ret;
5660 }
5661 
5662 /**
5663  *  write_eeprom - actually writes the relevant part of the data value.
5664  *  @sp : private member of the device structure, which is a pointer to the
5665  *       s2io_nic structure.
5666  *  @off : offset at which the data must be written
5667  *  @data : The data that is to be written
5668  *  @cnt : Number of bytes of the data that are actually to be written into
5669  *  the Eeprom. (max of 3)
5670  * Description:
5671  *  Actually writes the relevant part of the data value into the Eeprom
5672  *  through the I2C bus.
5673  * Return value:
5674  *  0 on success, -1 on failure.
5675  */
5676 
5677 static int write_eeprom(struct s2io_nic *sp, int off, u64 data, int cnt)
5678 {
5679 	int exit_cnt = 0, ret = -1;
5680 	u64 val64;
5681 	struct XENA_dev_config __iomem *bar0 = sp->bar0;
5682 
5683 	if (sp->device_type == XFRAME_I_DEVICE) {
5684 		val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) |
5685 			I2C_CONTROL_ADDR(off) |
5686 			I2C_CONTROL_BYTE_CNT(cnt) |
5687 			I2C_CONTROL_SET_DATA((u32)data) |
5688 			I2C_CONTROL_CNTL_START;
5689 		SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
5690 
5691 		while (exit_cnt < 5) {
5692 			val64 = readq(&bar0->i2c_control);
5693 			if (I2C_CONTROL_CNTL_END(val64)) {
5694 				if (!(val64 & I2C_CONTROL_NACK))
5695 					ret = 0;
5696 				break;
5697 			}
5698 			msleep(50);
5699 			exit_cnt++;
5700 		}
5701 	}
5702 
5703 	if (sp->device_type == XFRAME_II_DEVICE) {
5704 		int write_cnt = (cnt == 8) ? 0 : cnt;
5705 		writeq(SPI_DATA_WRITE(data, (cnt << 3)), &bar0->spi_data);
5706 
5707 		val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
5708 			SPI_CONTROL_BYTECNT(write_cnt) |
5709 			SPI_CONTROL_CMD(0x2) | SPI_CONTROL_ADDR(off);
5710 		SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5711 		val64 |= SPI_CONTROL_REQ;
5712 		SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5713 		while (exit_cnt < 5) {
5714 			val64 = readq(&bar0->spi_control);
5715 			if (val64 & SPI_CONTROL_NACK) {
5716 				ret = 1;
5717 				break;
5718 			} else if (val64 & SPI_CONTROL_DONE) {
5719 				ret = 0;
5720 				break;
5721 			}
5722 			msleep(50);
5723 			exit_cnt++;
5724 		}
5725 	}
5726 	return ret;
5727 }
5728 static void s2io_vpd_read(struct s2io_nic *nic)
5729 {
5730 	u8 *vpd_data;
5731 	u8 data;
5732 	int i = 0, cnt, len, fail = 0;
5733 	int vpd_addr = 0x80;
5734 	struct swStat *swstats = &nic->mac_control.stats_info->sw_stat;
5735 
5736 	if (nic->device_type == XFRAME_II_DEVICE) {
5737 		strcpy(nic->product_name, "Xframe II 10GbE network adapter");
5738 		vpd_addr = 0x80;
5739 	} else {
5740 		strcpy(nic->product_name, "Xframe I 10GbE network adapter");
5741 		vpd_addr = 0x50;
5742 	}
5743 	strcpy(nic->serial_num, "NOT AVAILABLE");
5744 
5745 	vpd_data = kmalloc(256, GFP_KERNEL);
5746 	if (!vpd_data) {
5747 		swstats->mem_alloc_fail_cnt++;
5748 		return;
5749 	}
5750 	swstats->mem_allocated += 256;
5751 
5752 	for (i = 0; i < 256; i += 4) {
5753 		pci_write_config_byte(nic->pdev, (vpd_addr + 2), i);
5754 		pci_read_config_byte(nic->pdev,  (vpd_addr + 2), &data);
5755 		pci_write_config_byte(nic->pdev, (vpd_addr + 3), 0);
5756 		for (cnt = 0; cnt < 5; cnt++) {
5757 			msleep(2);
5758 			pci_read_config_byte(nic->pdev, (vpd_addr + 3), &data);
5759 			if (data == 0x80)
5760 				break;
5761 		}
5762 		if (cnt >= 5) {
5763 			DBG_PRINT(ERR_DBG, "Read of VPD data failed\n");
5764 			fail = 1;
5765 			break;
5766 		}
5767 		pci_read_config_dword(nic->pdev,  (vpd_addr + 4),
5768 				      (u32 *)&vpd_data[i]);
5769 	}
5770 
5771 	if (!fail) {
5772 		/* read serial number of adapter */
5773 		for (cnt = 0; cnt < 252; cnt++) {
5774 			if ((vpd_data[cnt] == 'S') &&
5775 			    (vpd_data[cnt+1] == 'N')) {
5776 				len = vpd_data[cnt+2];
5777 				if (len < min(VPD_STRING_LEN, 256-cnt-2)) {
5778 					memcpy(nic->serial_num,
5779 					       &vpd_data[cnt + 3],
5780 					       len);
5781 					memset(nic->serial_num+len,
5782 					       0,
5783 					       VPD_STRING_LEN-len);
5784 					break;
5785 				}
5786 			}
5787 		}
5788 	}
5789 
5790 	if ((!fail) && (vpd_data[1] < VPD_STRING_LEN)) {
5791 		len = vpd_data[1];
5792 		memcpy(nic->product_name, &vpd_data[3], len);
5793 		nic->product_name[len] = 0;
5794 	}
5795 	kfree(vpd_data);
5796 	swstats->mem_freed += 256;
5797 }
5798 
5799 /**
5800  *  s2io_ethtool_geeprom  - reads the value stored in the Eeprom.
5801  *  @sp : private member of the device structure, which is a pointer to the *       s2io_nic structure.
5802  *  @eeprom : pointer to the user level structure provided by ethtool,
5803  *  containing all relevant information.
5804  *  @data_buf : user defined value to be written into Eeprom.
5805  *  Description: Reads the values stored in the Eeprom at given offset
5806  *  for a given length. Stores these values int the input argument data
5807  *  buffer 'data_buf' and returns these to the caller (ethtool.)
5808  *  Return value:
5809  *  int  0 on success
5810  */
5811 
5812 static int s2io_ethtool_geeprom(struct net_device *dev,
5813 				struct ethtool_eeprom *eeprom, u8 * data_buf)
5814 {
5815 	u32 i, valid;
5816 	u64 data;
5817 	struct s2io_nic *sp = netdev_priv(dev);
5818 
5819 	eeprom->magic = sp->pdev->vendor | (sp->pdev->device << 16);
5820 
5821 	if ((eeprom->offset + eeprom->len) > (XENA_EEPROM_SPACE))
5822 		eeprom->len = XENA_EEPROM_SPACE - eeprom->offset;
5823 
5824 	for (i = 0; i < eeprom->len; i += 4) {
5825 		if (read_eeprom(sp, (eeprom->offset + i), &data)) {
5826 			DBG_PRINT(ERR_DBG, "Read of EEPROM failed\n");
5827 			return -EFAULT;
5828 		}
5829 		valid = INV(data);
5830 		memcpy((data_buf + i), &valid, 4);
5831 	}
5832 	return 0;
5833 }
5834 
5835 /**
5836  *  s2io_ethtool_seeprom - tries to write the user provided value in Eeprom
5837  *  @sp : private member of the device structure, which is a pointer to the
5838  *  s2io_nic structure.
5839  *  @eeprom : pointer to the user level structure provided by ethtool,
5840  *  containing all relevant information.
5841  *  @data_buf ; user defined value to be written into Eeprom.
5842  *  Description:
5843  *  Tries to write the user provided value in the Eeprom, at the offset
5844  *  given by the user.
5845  *  Return value:
5846  *  0 on success, -EFAULT on failure.
5847  */
5848 
5849 static int s2io_ethtool_seeprom(struct net_device *dev,
5850 				struct ethtool_eeprom *eeprom,
5851 				u8 *data_buf)
5852 {
5853 	int len = eeprom->len, cnt = 0;
5854 	u64 valid = 0, data;
5855 	struct s2io_nic *sp = netdev_priv(dev);
5856 
5857 	if (eeprom->magic != (sp->pdev->vendor | (sp->pdev->device << 16))) {
5858 		DBG_PRINT(ERR_DBG,
5859 			  "ETHTOOL_WRITE_EEPROM Err: "
5860 			  "Magic value is wrong, it is 0x%x should be 0x%x\n",
5861 			  (sp->pdev->vendor | (sp->pdev->device << 16)),
5862 			  eeprom->magic);
5863 		return -EFAULT;
5864 	}
5865 
5866 	while (len) {
5867 		data = (u32)data_buf[cnt] & 0x000000FF;
5868 		if (data)
5869 			valid = (u32)(data << 24);
5870 		else
5871 			valid = data;
5872 
5873 		if (write_eeprom(sp, (eeprom->offset + cnt), valid, 0)) {
5874 			DBG_PRINT(ERR_DBG,
5875 				  "ETHTOOL_WRITE_EEPROM Err: "
5876 				  "Cannot write into the specified offset\n");
5877 			return -EFAULT;
5878 		}
5879 		cnt++;
5880 		len--;
5881 	}
5882 
5883 	return 0;
5884 }
5885 
5886 /**
5887  * s2io_register_test - reads and writes into all clock domains.
5888  * @sp : private member of the device structure, which is a pointer to the
5889  * s2io_nic structure.
5890  * @data : variable that returns the result of each of the test conducted b
5891  * by the driver.
5892  * Description:
5893  * Read and write into all clock domains. The NIC has 3 clock domains,
5894  * see that registers in all the three regions are accessible.
5895  * Return value:
5896  * 0 on success.
5897  */
5898 
5899 static int s2io_register_test(struct s2io_nic *sp, uint64_t *data)
5900 {
5901 	struct XENA_dev_config __iomem *bar0 = sp->bar0;
5902 	u64 val64 = 0, exp_val;
5903 	int fail = 0;
5904 
5905 	val64 = readq(&bar0->pif_rd_swapper_fb);
5906 	if (val64 != 0x123456789abcdefULL) {
5907 		fail = 1;
5908 		DBG_PRINT(INFO_DBG, "Read Test level %d fails\n", 1);
5909 	}
5910 
5911 	val64 = readq(&bar0->rmac_pause_cfg);
5912 	if (val64 != 0xc000ffff00000000ULL) {
5913 		fail = 1;
5914 		DBG_PRINT(INFO_DBG, "Read Test level %d fails\n", 2);
5915 	}
5916 
5917 	val64 = readq(&bar0->rx_queue_cfg);
5918 	if (sp->device_type == XFRAME_II_DEVICE)
5919 		exp_val = 0x0404040404040404ULL;
5920 	else
5921 		exp_val = 0x0808080808080808ULL;
5922 	if (val64 != exp_val) {
5923 		fail = 1;
5924 		DBG_PRINT(INFO_DBG, "Read Test level %d fails\n", 3);
5925 	}
5926 
5927 	val64 = readq(&bar0->xgxs_efifo_cfg);
5928 	if (val64 != 0x000000001923141EULL) {
5929 		fail = 1;
5930 		DBG_PRINT(INFO_DBG, "Read Test level %d fails\n", 4);
5931 	}
5932 
5933 	val64 = 0x5A5A5A5A5A5A5A5AULL;
5934 	writeq(val64, &bar0->xmsi_data);
5935 	val64 = readq(&bar0->xmsi_data);
5936 	if (val64 != 0x5A5A5A5A5A5A5A5AULL) {
5937 		fail = 1;
5938 		DBG_PRINT(ERR_DBG, "Write Test level %d fails\n", 1);
5939 	}
5940 
5941 	val64 = 0xA5A5A5A5A5A5A5A5ULL;
5942 	writeq(val64, &bar0->xmsi_data);
5943 	val64 = readq(&bar0->xmsi_data);
5944 	if (val64 != 0xA5A5A5A5A5A5A5A5ULL) {
5945 		fail = 1;
5946 		DBG_PRINT(ERR_DBG, "Write Test level %d fails\n", 2);
5947 	}
5948 
5949 	*data = fail;
5950 	return fail;
5951 }
5952 
5953 /**
5954  * s2io_eeprom_test - to verify that EEprom in the xena can be programmed.
5955  * @sp : private member of the device structure, which is a pointer to the
5956  * s2io_nic structure.
5957  * @data:variable that returns the result of each of the test conducted by
5958  * the driver.
5959  * Description:
5960  * Verify that EEPROM in the xena can be programmed using I2C_CONTROL
5961  * register.
5962  * Return value:
5963  * 0 on success.
5964  */
5965 
5966 static int s2io_eeprom_test(struct s2io_nic *sp, uint64_t *data)
5967 {
5968 	int fail = 0;
5969 	u64 ret_data, org_4F0, org_7F0;
5970 	u8 saved_4F0 = 0, saved_7F0 = 0;
5971 	struct net_device *dev = sp->dev;
5972 
5973 	/* Test Write Error at offset 0 */
5974 	/* Note that SPI interface allows write access to all areas
5975 	 * of EEPROM. Hence doing all negative testing only for Xframe I.
5976 	 */
5977 	if (sp->device_type == XFRAME_I_DEVICE)
5978 		if (!write_eeprom(sp, 0, 0, 3))
5979 			fail = 1;
5980 
5981 	/* Save current values at offsets 0x4F0 and 0x7F0 */
5982 	if (!read_eeprom(sp, 0x4F0, &org_4F0))
5983 		saved_4F0 = 1;
5984 	if (!read_eeprom(sp, 0x7F0, &org_7F0))
5985 		saved_7F0 = 1;
5986 
5987 	/* Test Write at offset 4f0 */
5988 	if (write_eeprom(sp, 0x4F0, 0x012345, 3))
5989 		fail = 1;
5990 	if (read_eeprom(sp, 0x4F0, &ret_data))
5991 		fail = 1;
5992 
5993 	if (ret_data != 0x012345) {
5994 		DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x4F0. "
5995 			  "Data written %llx Data read %llx\n",
5996 			  dev->name, (unsigned long long)0x12345,
5997 			  (unsigned long long)ret_data);
5998 		fail = 1;
5999 	}
6000 
6001 	/* Reset the EEPROM data go FFFF */
6002 	write_eeprom(sp, 0x4F0, 0xFFFFFF, 3);
6003 
6004 	/* Test Write Request Error at offset 0x7c */
6005 	if (sp->device_type == XFRAME_I_DEVICE)
6006 		if (!write_eeprom(sp, 0x07C, 0, 3))
6007 			fail = 1;
6008 
6009 	/* Test Write Request at offset 0x7f0 */
6010 	if (write_eeprom(sp, 0x7F0, 0x012345, 3))
6011 		fail = 1;
6012 	if (read_eeprom(sp, 0x7F0, &ret_data))
6013 		fail = 1;
6014 
6015 	if (ret_data != 0x012345) {
6016 		DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x7F0. "
6017 			  "Data written %llx Data read %llx\n",
6018 			  dev->name, (unsigned long long)0x12345,
6019 			  (unsigned long long)ret_data);
6020 		fail = 1;
6021 	}
6022 
6023 	/* Reset the EEPROM data go FFFF */
6024 	write_eeprom(sp, 0x7F0, 0xFFFFFF, 3);
6025 
6026 	if (sp->device_type == XFRAME_I_DEVICE) {
6027 		/* Test Write Error at offset 0x80 */
6028 		if (!write_eeprom(sp, 0x080, 0, 3))
6029 			fail = 1;
6030 
6031 		/* Test Write Error at offset 0xfc */
6032 		if (!write_eeprom(sp, 0x0FC, 0, 3))
6033 			fail = 1;
6034 
6035 		/* Test Write Error at offset 0x100 */
6036 		if (!write_eeprom(sp, 0x100, 0, 3))
6037 			fail = 1;
6038 
6039 		/* Test Write Error at offset 4ec */
6040 		if (!write_eeprom(sp, 0x4EC, 0, 3))
6041 			fail = 1;
6042 	}
6043 
6044 	/* Restore values at offsets 0x4F0 and 0x7F0 */
6045 	if (saved_4F0)
6046 		write_eeprom(sp, 0x4F0, org_4F0, 3);
6047 	if (saved_7F0)
6048 		write_eeprom(sp, 0x7F0, org_7F0, 3);
6049 
6050 	*data = fail;
6051 	return fail;
6052 }
6053 
6054 /**
6055  * s2io_bist_test - invokes the MemBist test of the card .
6056  * @sp : private member of the device structure, which is a pointer to the
6057  * s2io_nic structure.
6058  * @data:variable that returns the result of each of the test conducted by
6059  * the driver.
6060  * Description:
6061  * This invokes the MemBist test of the card. We give around
6062  * 2 secs time for the Test to complete. If it's still not complete
6063  * within this peiod, we consider that the test failed.
6064  * Return value:
6065  * 0 on success and -1 on failure.
6066  */
6067 
6068 static int s2io_bist_test(struct s2io_nic *sp, uint64_t *data)
6069 {
6070 	u8 bist = 0;
6071 	int cnt = 0, ret = -1;
6072 
6073 	pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
6074 	bist |= PCI_BIST_START;
6075 	pci_write_config_word(sp->pdev, PCI_BIST, bist);
6076 
6077 	while (cnt < 20) {
6078 		pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
6079 		if (!(bist & PCI_BIST_START)) {
6080 			*data = (bist & PCI_BIST_CODE_MASK);
6081 			ret = 0;
6082 			break;
6083 		}
6084 		msleep(100);
6085 		cnt++;
6086 	}
6087 
6088 	return ret;
6089 }
6090 
6091 /**
6092  * s2io_link_test - verifies the link state of the nic
6093  * @sp ; private member of the device structure, which is a pointer to the
6094  * s2io_nic structure.
6095  * @data: variable that returns the result of each of the test conducted by
6096  * the driver.
6097  * Description:
6098  * The function verifies the link state of the NIC and updates the input
6099  * argument 'data' appropriately.
6100  * Return value:
6101  * 0 on success.
6102  */
6103 
6104 static int s2io_link_test(struct s2io_nic *sp, uint64_t *data)
6105 {
6106 	struct XENA_dev_config __iomem *bar0 = sp->bar0;
6107 	u64 val64;
6108 
6109 	val64 = readq(&bar0->adapter_status);
6110 	if (!(LINK_IS_UP(val64)))
6111 		*data = 1;
6112 	else
6113 		*data = 0;
6114 
6115 	return *data;
6116 }
6117 
6118 /**
6119  * s2io_rldram_test - offline test for access to the RldRam chip on the NIC
6120  * @sp: private member of the device structure, which is a pointer to the
6121  * s2io_nic structure.
6122  * @data: variable that returns the result of each of the test
6123  * conducted by the driver.
6124  * Description:
6125  *  This is one of the offline test that tests the read and write
6126  *  access to the RldRam chip on the NIC.
6127  * Return value:
6128  *  0 on success.
6129  */
6130 
6131 static int s2io_rldram_test(struct s2io_nic *sp, uint64_t *data)
6132 {
6133 	struct XENA_dev_config __iomem *bar0 = sp->bar0;
6134 	u64 val64;
6135 	int cnt, iteration = 0, test_fail = 0;
6136 
6137 	val64 = readq(&bar0->adapter_control);
6138 	val64 &= ~ADAPTER_ECC_EN;
6139 	writeq(val64, &bar0->adapter_control);
6140 
6141 	val64 = readq(&bar0->mc_rldram_test_ctrl);
6142 	val64 |= MC_RLDRAM_TEST_MODE;
6143 	SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
6144 
6145 	val64 = readq(&bar0->mc_rldram_mrs);
6146 	val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE;
6147 	SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
6148 
6149 	val64 |= MC_RLDRAM_MRS_ENABLE;
6150 	SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
6151 
6152 	while (iteration < 2) {
6153 		val64 = 0x55555555aaaa0000ULL;
6154 		if (iteration == 1)
6155 			val64 ^= 0xFFFFFFFFFFFF0000ULL;
6156 		writeq(val64, &bar0->mc_rldram_test_d0);
6157 
6158 		val64 = 0xaaaa5a5555550000ULL;
6159 		if (iteration == 1)
6160 			val64 ^= 0xFFFFFFFFFFFF0000ULL;
6161 		writeq(val64, &bar0->mc_rldram_test_d1);
6162 
6163 		val64 = 0x55aaaaaaaa5a0000ULL;
6164 		if (iteration == 1)
6165 			val64 ^= 0xFFFFFFFFFFFF0000ULL;
6166 		writeq(val64, &bar0->mc_rldram_test_d2);
6167 
6168 		val64 = (u64) (0x0000003ffffe0100ULL);
6169 		writeq(val64, &bar0->mc_rldram_test_add);
6170 
6171 		val64 = MC_RLDRAM_TEST_MODE |
6172 			MC_RLDRAM_TEST_WRITE |
6173 			MC_RLDRAM_TEST_GO;
6174 		SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
6175 
6176 		for (cnt = 0; cnt < 5; cnt++) {
6177 			val64 = readq(&bar0->mc_rldram_test_ctrl);
6178 			if (val64 & MC_RLDRAM_TEST_DONE)
6179 				break;
6180 			msleep(200);
6181 		}
6182 
6183 		if (cnt == 5)
6184 			break;
6185 
6186 		val64 = MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_GO;
6187 		SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
6188 
6189 		for (cnt = 0; cnt < 5; cnt++) {
6190 			val64 = readq(&bar0->mc_rldram_test_ctrl);
6191 			if (val64 & MC_RLDRAM_TEST_DONE)
6192 				break;
6193 			msleep(500);
6194 		}
6195 
6196 		if (cnt == 5)
6197 			break;
6198 
6199 		val64 = readq(&bar0->mc_rldram_test_ctrl);
6200 		if (!(val64 & MC_RLDRAM_TEST_PASS))
6201 			test_fail = 1;
6202 
6203 		iteration++;
6204 	}
6205 
6206 	*data = test_fail;
6207 
6208 	/* Bring the adapter out of test mode */
6209 	SPECIAL_REG_WRITE(0, &bar0->mc_rldram_test_ctrl, LF);
6210 
6211 	return test_fail;
6212 }
6213 
6214 /**
6215  *  s2io_ethtool_test - conducts 6 tsets to determine the health of card.
6216  *  @sp : private member of the device structure, which is a pointer to the
6217  *  s2io_nic structure.
6218  *  @ethtest : pointer to a ethtool command specific structure that will be
6219  *  returned to the user.
6220  *  @data : variable that returns the result of each of the test
6221  * conducted by the driver.
6222  * Description:
6223  *  This function conducts 6 tests ( 4 offline and 2 online) to determine
6224  *  the health of the card.
6225  * Return value:
6226  *  void
6227  */
6228 
6229 static void s2io_ethtool_test(struct net_device *dev,
6230 			      struct ethtool_test *ethtest,
6231 			      uint64_t *data)
6232 {
6233 	struct s2io_nic *sp = netdev_priv(dev);
6234 	int orig_state = netif_running(sp->dev);
6235 
6236 	if (ethtest->flags == ETH_TEST_FL_OFFLINE) {
6237 		/* Offline Tests. */
6238 		if (orig_state)
6239 			s2io_close(sp->dev);
6240 
6241 		if (s2io_register_test(sp, &data[0]))
6242 			ethtest->flags |= ETH_TEST_FL_FAILED;
6243 
6244 		s2io_reset(sp);
6245 
6246 		if (s2io_rldram_test(sp, &data[3]))
6247 			ethtest->flags |= ETH_TEST_FL_FAILED;
6248 
6249 		s2io_reset(sp);
6250 
6251 		if (s2io_eeprom_test(sp, &data[1]))
6252 			ethtest->flags |= ETH_TEST_FL_FAILED;
6253 
6254 		if (s2io_bist_test(sp, &data[4]))
6255 			ethtest->flags |= ETH_TEST_FL_FAILED;
6256 
6257 		if (orig_state)
6258 			s2io_open(sp->dev);
6259 
6260 		data[2] = 0;
6261 	} else {
6262 		/* Online Tests. */
6263 		if (!orig_state) {
6264 			DBG_PRINT(ERR_DBG, "%s: is not up, cannot run test\n",
6265 				  dev->name);
6266 			data[0] = -1;
6267 			data[1] = -1;
6268 			data[2] = -1;
6269 			data[3] = -1;
6270 			data[4] = -1;
6271 		}
6272 
6273 		if (s2io_link_test(sp, &data[2]))
6274 			ethtest->flags |= ETH_TEST_FL_FAILED;
6275 
6276 		data[0] = 0;
6277 		data[1] = 0;
6278 		data[3] = 0;
6279 		data[4] = 0;
6280 	}
6281 }
6282 
6283 static void s2io_get_ethtool_stats(struct net_device *dev,
6284 				   struct ethtool_stats *estats,
6285 				   u64 *tmp_stats)
6286 {
6287 	int i = 0, k;
6288 	struct s2io_nic *sp = netdev_priv(dev);
6289 	struct stat_block *stats = sp->mac_control.stats_info;
6290 	struct swStat *swstats = &stats->sw_stat;
6291 	struct xpakStat *xstats = &stats->xpak_stat;
6292 
6293 	s2io_updt_stats(sp);
6294 	tmp_stats[i++] =
6295 		(u64)le32_to_cpu(stats->tmac_frms_oflow) << 32  |
6296 		le32_to_cpu(stats->tmac_frms);
6297 	tmp_stats[i++] =
6298 		(u64)le32_to_cpu(stats->tmac_data_octets_oflow) << 32 |
6299 		le32_to_cpu(stats->tmac_data_octets);
6300 	tmp_stats[i++] = le64_to_cpu(stats->tmac_drop_frms);
6301 	tmp_stats[i++] =
6302 		(u64)le32_to_cpu(stats->tmac_mcst_frms_oflow) << 32 |
6303 		le32_to_cpu(stats->tmac_mcst_frms);
6304 	tmp_stats[i++] =
6305 		(u64)le32_to_cpu(stats->tmac_bcst_frms_oflow) << 32 |
6306 		le32_to_cpu(stats->tmac_bcst_frms);
6307 	tmp_stats[i++] = le64_to_cpu(stats->tmac_pause_ctrl_frms);
6308 	tmp_stats[i++] =
6309 		(u64)le32_to_cpu(stats->tmac_ttl_octets_oflow) << 32 |
6310 		le32_to_cpu(stats->tmac_ttl_octets);
6311 	tmp_stats[i++] =
6312 		(u64)le32_to_cpu(stats->tmac_ucst_frms_oflow) << 32 |
6313 		le32_to_cpu(stats->tmac_ucst_frms);
6314 	tmp_stats[i++] =
6315 		(u64)le32_to_cpu(stats->tmac_nucst_frms_oflow) << 32 |
6316 		le32_to_cpu(stats->tmac_nucst_frms);
6317 	tmp_stats[i++] =
6318 		(u64)le32_to_cpu(stats->tmac_any_err_frms_oflow) << 32 |
6319 		le32_to_cpu(stats->tmac_any_err_frms);
6320 	tmp_stats[i++] = le64_to_cpu(stats->tmac_ttl_less_fb_octets);
6321 	tmp_stats[i++] = le64_to_cpu(stats->tmac_vld_ip_octets);
6322 	tmp_stats[i++] =
6323 		(u64)le32_to_cpu(stats->tmac_vld_ip_oflow) << 32 |
6324 		le32_to_cpu(stats->tmac_vld_ip);
6325 	tmp_stats[i++] =
6326 		(u64)le32_to_cpu(stats->tmac_drop_ip_oflow) << 32 |
6327 		le32_to_cpu(stats->tmac_drop_ip);
6328 	tmp_stats[i++] =
6329 		(u64)le32_to_cpu(stats->tmac_icmp_oflow) << 32 |
6330 		le32_to_cpu(stats->tmac_icmp);
6331 	tmp_stats[i++] =
6332 		(u64)le32_to_cpu(stats->tmac_rst_tcp_oflow) << 32 |
6333 		le32_to_cpu(stats->tmac_rst_tcp);
6334 	tmp_stats[i++] = le64_to_cpu(stats->tmac_tcp);
6335 	tmp_stats[i++] = (u64)le32_to_cpu(stats->tmac_udp_oflow) << 32 |
6336 		le32_to_cpu(stats->tmac_udp);
6337 	tmp_stats[i++] =
6338 		(u64)le32_to_cpu(stats->rmac_vld_frms_oflow) << 32 |
6339 		le32_to_cpu(stats->rmac_vld_frms);
6340 	tmp_stats[i++] =
6341 		(u64)le32_to_cpu(stats->rmac_data_octets_oflow) << 32 |
6342 		le32_to_cpu(stats->rmac_data_octets);
6343 	tmp_stats[i++] = le64_to_cpu(stats->rmac_fcs_err_frms);
6344 	tmp_stats[i++] = le64_to_cpu(stats->rmac_drop_frms);
6345 	tmp_stats[i++] =
6346 		(u64)le32_to_cpu(stats->rmac_vld_mcst_frms_oflow) << 32 |
6347 		le32_to_cpu(stats->rmac_vld_mcst_frms);
6348 	tmp_stats[i++] =
6349 		(u64)le32_to_cpu(stats->rmac_vld_bcst_frms_oflow) << 32 |
6350 		le32_to_cpu(stats->rmac_vld_bcst_frms);
6351 	tmp_stats[i++] = le32_to_cpu(stats->rmac_in_rng_len_err_frms);
6352 	tmp_stats[i++] = le32_to_cpu(stats->rmac_out_rng_len_err_frms);
6353 	tmp_stats[i++] = le64_to_cpu(stats->rmac_long_frms);
6354 	tmp_stats[i++] = le64_to_cpu(stats->rmac_pause_ctrl_frms);
6355 	tmp_stats[i++] = le64_to_cpu(stats->rmac_unsup_ctrl_frms);
6356 	tmp_stats[i++] =
6357 		(u64)le32_to_cpu(stats->rmac_ttl_octets_oflow) << 32 |
6358 		le32_to_cpu(stats->rmac_ttl_octets);
6359 	tmp_stats[i++] =
6360 		(u64)le32_to_cpu(stats->rmac_accepted_ucst_frms_oflow) << 32
6361 		| le32_to_cpu(stats->rmac_accepted_ucst_frms);
6362 	tmp_stats[i++] =
6363 		(u64)le32_to_cpu(stats->rmac_accepted_nucst_frms_oflow)
6364 		<< 32 | le32_to_cpu(stats->rmac_accepted_nucst_frms);
6365 	tmp_stats[i++] =
6366 		(u64)le32_to_cpu(stats->rmac_discarded_frms_oflow) << 32 |
6367 		le32_to_cpu(stats->rmac_discarded_frms);
6368 	tmp_stats[i++] =
6369 		(u64)le32_to_cpu(stats->rmac_drop_events_oflow)
6370 		<< 32 | le32_to_cpu(stats->rmac_drop_events);
6371 	tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_less_fb_octets);
6372 	tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_frms);
6373 	tmp_stats[i++] =
6374 		(u64)le32_to_cpu(stats->rmac_usized_frms_oflow) << 32 |
6375 		le32_to_cpu(stats->rmac_usized_frms);
6376 	tmp_stats[i++] =
6377 		(u64)le32_to_cpu(stats->rmac_osized_frms_oflow) << 32 |
6378 		le32_to_cpu(stats->rmac_osized_frms);
6379 	tmp_stats[i++] =
6380 		(u64)le32_to_cpu(stats->rmac_frag_frms_oflow) << 32 |
6381 		le32_to_cpu(stats->rmac_frag_frms);
6382 	tmp_stats[i++] =
6383 		(u64)le32_to_cpu(stats->rmac_jabber_frms_oflow) << 32 |
6384 		le32_to_cpu(stats->rmac_jabber_frms);
6385 	tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_64_frms);
6386 	tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_65_127_frms);
6387 	tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_128_255_frms);
6388 	tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_256_511_frms);
6389 	tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_512_1023_frms);
6390 	tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_1024_1518_frms);
6391 	tmp_stats[i++] =
6392 		(u64)le32_to_cpu(stats->rmac_ip_oflow) << 32 |
6393 		le32_to_cpu(stats->rmac_ip);
6394 	tmp_stats[i++] = le64_to_cpu(stats->rmac_ip_octets);
6395 	tmp_stats[i++] = le32_to_cpu(stats->rmac_hdr_err_ip);
6396 	tmp_stats[i++] =
6397 		(u64)le32_to_cpu(stats->rmac_drop_ip_oflow) << 32 |
6398 		le32_to_cpu(stats->rmac_drop_ip);
6399 	tmp_stats[i++] =
6400 		(u64)le32_to_cpu(stats->rmac_icmp_oflow) << 32 |
6401 		le32_to_cpu(stats->rmac_icmp);
6402 	tmp_stats[i++] = le64_to_cpu(stats->rmac_tcp);
6403 	tmp_stats[i++] =
6404 		(u64)le32_to_cpu(stats->rmac_udp_oflow) << 32 |
6405 		le32_to_cpu(stats->rmac_udp);
6406 	tmp_stats[i++] =
6407 		(u64)le32_to_cpu(stats->rmac_err_drp_udp_oflow) << 32 |
6408 		le32_to_cpu(stats->rmac_err_drp_udp);
6409 	tmp_stats[i++] = le64_to_cpu(stats->rmac_xgmii_err_sym);
6410 	tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q0);
6411 	tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q1);
6412 	tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q2);
6413 	tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q3);
6414 	tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q4);
6415 	tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q5);
6416 	tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q6);
6417 	tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q7);
6418 	tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q0);
6419 	tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q1);
6420 	tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q2);
6421 	tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q3);
6422 	tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q4);
6423 	tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q5);
6424 	tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q6);
6425 	tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q7);
6426 	tmp_stats[i++] =
6427 		(u64)le32_to_cpu(stats->rmac_pause_cnt_oflow) << 32 |
6428 		le32_to_cpu(stats->rmac_pause_cnt);
6429 	tmp_stats[i++] = le64_to_cpu(stats->rmac_xgmii_data_err_cnt);
6430 	tmp_stats[i++] = le64_to_cpu(stats->rmac_xgmii_ctrl_err_cnt);
6431 	tmp_stats[i++] =
6432 		(u64)le32_to_cpu(stats->rmac_accepted_ip_oflow) << 32 |
6433 		le32_to_cpu(stats->rmac_accepted_ip);
6434 	tmp_stats[i++] = le32_to_cpu(stats->rmac_err_tcp);
6435 	tmp_stats[i++] = le32_to_cpu(stats->rd_req_cnt);
6436 	tmp_stats[i++] = le32_to_cpu(stats->new_rd_req_cnt);
6437 	tmp_stats[i++] = le32_to_cpu(stats->new_rd_req_rtry_cnt);
6438 	tmp_stats[i++] = le32_to_cpu(stats->rd_rtry_cnt);
6439 	tmp_stats[i++] = le32_to_cpu(stats->wr_rtry_rd_ack_cnt);
6440 	tmp_stats[i++] = le32_to_cpu(stats->wr_req_cnt);
6441 	tmp_stats[i++] = le32_to_cpu(stats->new_wr_req_cnt);
6442 	tmp_stats[i++] = le32_to_cpu(stats->new_wr_req_rtry_cnt);
6443 	tmp_stats[i++] = le32_to_cpu(stats->wr_rtry_cnt);
6444 	tmp_stats[i++] = le32_to_cpu(stats->wr_disc_cnt);
6445 	tmp_stats[i++] = le32_to_cpu(stats->rd_rtry_wr_ack_cnt);
6446 	tmp_stats[i++] = le32_to_cpu(stats->txp_wr_cnt);
6447 	tmp_stats[i++] = le32_to_cpu(stats->txd_rd_cnt);
6448 	tmp_stats[i++] = le32_to_cpu(stats->txd_wr_cnt);
6449 	tmp_stats[i++] = le32_to_cpu(stats->rxd_rd_cnt);
6450 	tmp_stats[i++] = le32_to_cpu(stats->rxd_wr_cnt);
6451 	tmp_stats[i++] = le32_to_cpu(stats->txf_rd_cnt);
6452 	tmp_stats[i++] = le32_to_cpu(stats->rxf_wr_cnt);
6453 
6454 	/* Enhanced statistics exist only for Hercules */
6455 	if (sp->device_type == XFRAME_II_DEVICE) {
6456 		tmp_stats[i++] =
6457 			le64_to_cpu(stats->rmac_ttl_1519_4095_frms);
6458 		tmp_stats[i++] =
6459 			le64_to_cpu(stats->rmac_ttl_4096_8191_frms);
6460 		tmp_stats[i++] =
6461 			le64_to_cpu(stats->rmac_ttl_8192_max_frms);
6462 		tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_gt_max_frms);
6463 		tmp_stats[i++] = le64_to_cpu(stats->rmac_osized_alt_frms);
6464 		tmp_stats[i++] = le64_to_cpu(stats->rmac_jabber_alt_frms);
6465 		tmp_stats[i++] = le64_to_cpu(stats->rmac_gt_max_alt_frms);
6466 		tmp_stats[i++] = le64_to_cpu(stats->rmac_vlan_frms);
6467 		tmp_stats[i++] = le32_to_cpu(stats->rmac_len_discard);
6468 		tmp_stats[i++] = le32_to_cpu(stats->rmac_fcs_discard);
6469 		tmp_stats[i++] = le32_to_cpu(stats->rmac_pf_discard);
6470 		tmp_stats[i++] = le32_to_cpu(stats->rmac_da_discard);
6471 		tmp_stats[i++] = le32_to_cpu(stats->rmac_red_discard);
6472 		tmp_stats[i++] = le32_to_cpu(stats->rmac_rts_discard);
6473 		tmp_stats[i++] = le32_to_cpu(stats->rmac_ingm_full_discard);
6474 		tmp_stats[i++] = le32_to_cpu(stats->link_fault_cnt);
6475 	}
6476 
6477 	tmp_stats[i++] = 0;
6478 	tmp_stats[i++] = swstats->single_ecc_errs;
6479 	tmp_stats[i++] = swstats->double_ecc_errs;
6480 	tmp_stats[i++] = swstats->parity_err_cnt;
6481 	tmp_stats[i++] = swstats->serious_err_cnt;
6482 	tmp_stats[i++] = swstats->soft_reset_cnt;
6483 	tmp_stats[i++] = swstats->fifo_full_cnt;
6484 	for (k = 0; k < MAX_RX_RINGS; k++)
6485 		tmp_stats[i++] = swstats->ring_full_cnt[k];
6486 	tmp_stats[i++] = xstats->alarm_transceiver_temp_high;
6487 	tmp_stats[i++] = xstats->alarm_transceiver_temp_low;
6488 	tmp_stats[i++] = xstats->alarm_laser_bias_current_high;
6489 	tmp_stats[i++] = xstats->alarm_laser_bias_current_low;
6490 	tmp_stats[i++] = xstats->alarm_laser_output_power_high;
6491 	tmp_stats[i++] = xstats->alarm_laser_output_power_low;
6492 	tmp_stats[i++] = xstats->warn_transceiver_temp_high;
6493 	tmp_stats[i++] = xstats->warn_transceiver_temp_low;
6494 	tmp_stats[i++] = xstats->warn_laser_bias_current_high;
6495 	tmp_stats[i++] = xstats->warn_laser_bias_current_low;
6496 	tmp_stats[i++] = xstats->warn_laser_output_power_high;
6497 	tmp_stats[i++] = xstats->warn_laser_output_power_low;
6498 	tmp_stats[i++] = swstats->clubbed_frms_cnt;
6499 	tmp_stats[i++] = swstats->sending_both;
6500 	tmp_stats[i++] = swstats->outof_sequence_pkts;
6501 	tmp_stats[i++] = swstats->flush_max_pkts;
6502 	if (swstats->num_aggregations) {
6503 		u64 tmp = swstats->sum_avg_pkts_aggregated;
6504 		int count = 0;
6505 		/*
6506 		 * Since 64-bit divide does not work on all platforms,
6507 		 * do repeated subtraction.
6508 		 */
6509 		while (tmp >= swstats->num_aggregations) {
6510 			tmp -= swstats->num_aggregations;
6511 			count++;
6512 		}
6513 		tmp_stats[i++] = count;
6514 	} else
6515 		tmp_stats[i++] = 0;
6516 	tmp_stats[i++] = swstats->mem_alloc_fail_cnt;
6517 	tmp_stats[i++] = swstats->pci_map_fail_cnt;
6518 	tmp_stats[i++] = swstats->watchdog_timer_cnt;
6519 	tmp_stats[i++] = swstats->mem_allocated;
6520 	tmp_stats[i++] = swstats->mem_freed;
6521 	tmp_stats[i++] = swstats->link_up_cnt;
6522 	tmp_stats[i++] = swstats->link_down_cnt;
6523 	tmp_stats[i++] = swstats->link_up_time;
6524 	tmp_stats[i++] = swstats->link_down_time;
6525 
6526 	tmp_stats[i++] = swstats->tx_buf_abort_cnt;
6527 	tmp_stats[i++] = swstats->tx_desc_abort_cnt;
6528 	tmp_stats[i++] = swstats->tx_parity_err_cnt;
6529 	tmp_stats[i++] = swstats->tx_link_loss_cnt;
6530 	tmp_stats[i++] = swstats->tx_list_proc_err_cnt;
6531 
6532 	tmp_stats[i++] = swstats->rx_parity_err_cnt;
6533 	tmp_stats[i++] = swstats->rx_abort_cnt;
6534 	tmp_stats[i++] = swstats->rx_parity_abort_cnt;
6535 	tmp_stats[i++] = swstats->rx_rda_fail_cnt;
6536 	tmp_stats[i++] = swstats->rx_unkn_prot_cnt;
6537 	tmp_stats[i++] = swstats->rx_fcs_err_cnt;
6538 	tmp_stats[i++] = swstats->rx_buf_size_err_cnt;
6539 	tmp_stats[i++] = swstats->rx_rxd_corrupt_cnt;
6540 	tmp_stats[i++] = swstats->rx_unkn_err_cnt;
6541 	tmp_stats[i++] = swstats->tda_err_cnt;
6542 	tmp_stats[i++] = swstats->pfc_err_cnt;
6543 	tmp_stats[i++] = swstats->pcc_err_cnt;
6544 	tmp_stats[i++] = swstats->tti_err_cnt;
6545 	tmp_stats[i++] = swstats->tpa_err_cnt;
6546 	tmp_stats[i++] = swstats->sm_err_cnt;
6547 	tmp_stats[i++] = swstats->lso_err_cnt;
6548 	tmp_stats[i++] = swstats->mac_tmac_err_cnt;
6549 	tmp_stats[i++] = swstats->mac_rmac_err_cnt;
6550 	tmp_stats[i++] = swstats->xgxs_txgxs_err_cnt;
6551 	tmp_stats[i++] = swstats->xgxs_rxgxs_err_cnt;
6552 	tmp_stats[i++] = swstats->rc_err_cnt;
6553 	tmp_stats[i++] = swstats->prc_pcix_err_cnt;
6554 	tmp_stats[i++] = swstats->rpa_err_cnt;
6555 	tmp_stats[i++] = swstats->rda_err_cnt;
6556 	tmp_stats[i++] = swstats->rti_err_cnt;
6557 	tmp_stats[i++] = swstats->mc_err_cnt;
6558 }
6559 
6560 static int s2io_ethtool_get_regs_len(struct net_device *dev)
6561 {
6562 	return XENA_REG_SPACE;
6563 }
6564 
6565 
6566 static int s2io_get_eeprom_len(struct net_device *dev)
6567 {
6568 	return XENA_EEPROM_SPACE;
6569 }
6570 
6571 static int s2io_get_sset_count(struct net_device *dev, int sset)
6572 {
6573 	struct s2io_nic *sp = netdev_priv(dev);
6574 
6575 	switch (sset) {
6576 	case ETH_SS_TEST:
6577 		return S2IO_TEST_LEN;
6578 	case ETH_SS_STATS:
6579 		switch (sp->device_type) {
6580 		case XFRAME_I_DEVICE:
6581 			return XFRAME_I_STAT_LEN;
6582 		case XFRAME_II_DEVICE:
6583 			return XFRAME_II_STAT_LEN;
6584 		default:
6585 			return 0;
6586 		}
6587 	default:
6588 		return -EOPNOTSUPP;
6589 	}
6590 }
6591 
6592 static void s2io_ethtool_get_strings(struct net_device *dev,
6593 				     u32 stringset, u8 *data)
6594 {
6595 	int stat_size = 0;
6596 	struct s2io_nic *sp = netdev_priv(dev);
6597 
6598 	switch (stringset) {
6599 	case ETH_SS_TEST:
6600 		memcpy(data, s2io_gstrings, S2IO_STRINGS_LEN);
6601 		break;
6602 	case ETH_SS_STATS:
6603 		stat_size = sizeof(ethtool_xena_stats_keys);
6604 		memcpy(data, &ethtool_xena_stats_keys, stat_size);
6605 		if (sp->device_type == XFRAME_II_DEVICE) {
6606 			memcpy(data + stat_size,
6607 			       &ethtool_enhanced_stats_keys,
6608 			       sizeof(ethtool_enhanced_stats_keys));
6609 			stat_size += sizeof(ethtool_enhanced_stats_keys);
6610 		}
6611 
6612 		memcpy(data + stat_size, &ethtool_driver_stats_keys,
6613 		       sizeof(ethtool_driver_stats_keys));
6614 	}
6615 }
6616 
6617 static int s2io_set_features(struct net_device *dev, netdev_features_t features)
6618 {
6619 	struct s2io_nic *sp = netdev_priv(dev);
6620 	netdev_features_t changed = (features ^ dev->features) & NETIF_F_LRO;
6621 
6622 	if (changed && netif_running(dev)) {
6623 		int rc;
6624 
6625 		s2io_stop_all_tx_queue(sp);
6626 		s2io_card_down(sp);
6627 		dev->features = features;
6628 		rc = s2io_card_up(sp);
6629 		if (rc)
6630 			s2io_reset(sp);
6631 		else
6632 			s2io_start_all_tx_queue(sp);
6633 
6634 		return rc ? rc : 1;
6635 	}
6636 
6637 	return 0;
6638 }
6639 
6640 static const struct ethtool_ops netdev_ethtool_ops = {
6641 	.get_settings = s2io_ethtool_gset,
6642 	.set_settings = s2io_ethtool_sset,
6643 	.get_drvinfo = s2io_ethtool_gdrvinfo,
6644 	.get_regs_len = s2io_ethtool_get_regs_len,
6645 	.get_regs = s2io_ethtool_gregs,
6646 	.get_link = ethtool_op_get_link,
6647 	.get_eeprom_len = s2io_get_eeprom_len,
6648 	.get_eeprom = s2io_ethtool_geeprom,
6649 	.set_eeprom = s2io_ethtool_seeprom,
6650 	.get_ringparam = s2io_ethtool_gringparam,
6651 	.get_pauseparam = s2io_ethtool_getpause_data,
6652 	.set_pauseparam = s2io_ethtool_setpause_data,
6653 	.self_test = s2io_ethtool_test,
6654 	.get_strings = s2io_ethtool_get_strings,
6655 	.set_phys_id = s2io_ethtool_set_led,
6656 	.get_ethtool_stats = s2io_get_ethtool_stats,
6657 	.get_sset_count = s2io_get_sset_count,
6658 };
6659 
6660 /**
6661  *  s2io_ioctl - Entry point for the Ioctl
6662  *  @dev :  Device pointer.
6663  *  @ifr :  An IOCTL specefic structure, that can contain a pointer to
6664  *  a proprietary structure used to pass information to the driver.
6665  *  @cmd :  This is used to distinguish between the different commands that
6666  *  can be passed to the IOCTL functions.
6667  *  Description:
6668  *  Currently there are no special functionality supported in IOCTL, hence
6669  *  function always return EOPNOTSUPPORTED
6670  */
6671 
6672 static int s2io_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
6673 {
6674 	return -EOPNOTSUPP;
6675 }
6676 
6677 /**
6678  *  s2io_change_mtu - entry point to change MTU size for the device.
6679  *   @dev : device pointer.
6680  *   @new_mtu : the new MTU size for the device.
6681  *   Description: A driver entry point to change MTU size for the device.
6682  *   Before changing the MTU the device must be stopped.
6683  *  Return value:
6684  *   0 on success and an appropriate (-)ve integer as defined in errno.h
6685  *   file on failure.
6686  */
6687 
6688 static int s2io_change_mtu(struct net_device *dev, int new_mtu)
6689 {
6690 	struct s2io_nic *sp = netdev_priv(dev);
6691 	int ret = 0;
6692 
6693 	if ((new_mtu < MIN_MTU) || (new_mtu > S2IO_JUMBO_SIZE)) {
6694 		DBG_PRINT(ERR_DBG, "%s: MTU size is invalid.\n", dev->name);
6695 		return -EPERM;
6696 	}
6697 
6698 	dev->mtu = new_mtu;
6699 	if (netif_running(dev)) {
6700 		s2io_stop_all_tx_queue(sp);
6701 		s2io_card_down(sp);
6702 		ret = s2io_card_up(sp);
6703 		if (ret) {
6704 			DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n",
6705 				  __func__);
6706 			return ret;
6707 		}
6708 		s2io_wake_all_tx_queue(sp);
6709 	} else { /* Device is down */
6710 		struct XENA_dev_config __iomem *bar0 = sp->bar0;
6711 		u64 val64 = new_mtu;
6712 
6713 		writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
6714 	}
6715 
6716 	return ret;
6717 }
6718 
6719 /**
6720  * s2io_set_link - Set the LInk status
6721  * @data: long pointer to device private structue
6722  * Description: Sets the link status for the adapter
6723  */
6724 
6725 static void s2io_set_link(struct work_struct *work)
6726 {
6727 	struct s2io_nic *nic = container_of(work, struct s2io_nic,
6728 					    set_link_task);
6729 	struct net_device *dev = nic->dev;
6730 	struct XENA_dev_config __iomem *bar0 = nic->bar0;
6731 	register u64 val64;
6732 	u16 subid;
6733 
6734 	rtnl_lock();
6735 
6736 	if (!netif_running(dev))
6737 		goto out_unlock;
6738 
6739 	if (test_and_set_bit(__S2IO_STATE_LINK_TASK, &(nic->state))) {
6740 		/* The card is being reset, no point doing anything */
6741 		goto out_unlock;
6742 	}
6743 
6744 	subid = nic->pdev->subsystem_device;
6745 	if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
6746 		/*
6747 		 * Allow a small delay for the NICs self initiated
6748 		 * cleanup to complete.
6749 		 */
6750 		msleep(100);
6751 	}
6752 
6753 	val64 = readq(&bar0->adapter_status);
6754 	if (LINK_IS_UP(val64)) {
6755 		if (!(readq(&bar0->adapter_control) & ADAPTER_CNTL_EN)) {
6756 			if (verify_xena_quiescence(nic)) {
6757 				val64 = readq(&bar0->adapter_control);
6758 				val64 |= ADAPTER_CNTL_EN;
6759 				writeq(val64, &bar0->adapter_control);
6760 				if (CARDS_WITH_FAULTY_LINK_INDICATORS(
6761 					    nic->device_type, subid)) {
6762 					val64 = readq(&bar0->gpio_control);
6763 					val64 |= GPIO_CTRL_GPIO_0;
6764 					writeq(val64, &bar0->gpio_control);
6765 					val64 = readq(&bar0->gpio_control);
6766 				} else {
6767 					val64 |= ADAPTER_LED_ON;
6768 					writeq(val64, &bar0->adapter_control);
6769 				}
6770 				nic->device_enabled_once = true;
6771 			} else {
6772 				DBG_PRINT(ERR_DBG,
6773 					  "%s: Error: device is not Quiescent\n",
6774 					  dev->name);
6775 				s2io_stop_all_tx_queue(nic);
6776 			}
6777 		}
6778 		val64 = readq(&bar0->adapter_control);
6779 		val64 |= ADAPTER_LED_ON;
6780 		writeq(val64, &bar0->adapter_control);
6781 		s2io_link(nic, LINK_UP);
6782 	} else {
6783 		if (CARDS_WITH_FAULTY_LINK_INDICATORS(nic->device_type,
6784 						      subid)) {
6785 			val64 = readq(&bar0->gpio_control);
6786 			val64 &= ~GPIO_CTRL_GPIO_0;
6787 			writeq(val64, &bar0->gpio_control);
6788 			val64 = readq(&bar0->gpio_control);
6789 		}
6790 		/* turn off LED */
6791 		val64 = readq(&bar0->adapter_control);
6792 		val64 = val64 & (~ADAPTER_LED_ON);
6793 		writeq(val64, &bar0->adapter_control);
6794 		s2io_link(nic, LINK_DOWN);
6795 	}
6796 	clear_bit(__S2IO_STATE_LINK_TASK, &(nic->state));
6797 
6798 out_unlock:
6799 	rtnl_unlock();
6800 }
6801 
6802 static int set_rxd_buffer_pointer(struct s2io_nic *sp, struct RxD_t *rxdp,
6803 				  struct buffAdd *ba,
6804 				  struct sk_buff **skb, u64 *temp0, u64 *temp1,
6805 				  u64 *temp2, int size)
6806 {
6807 	struct net_device *dev = sp->dev;
6808 	struct swStat *stats = &sp->mac_control.stats_info->sw_stat;
6809 
6810 	if ((sp->rxd_mode == RXD_MODE_1) && (rxdp->Host_Control == 0)) {
6811 		struct RxD1 *rxdp1 = (struct RxD1 *)rxdp;
6812 		/* allocate skb */
6813 		if (*skb) {
6814 			DBG_PRINT(INFO_DBG, "SKB is not NULL\n");
6815 			/*
6816 			 * As Rx frame are not going to be processed,
6817 			 * using same mapped address for the Rxd
6818 			 * buffer pointer
6819 			 */
6820 			rxdp1->Buffer0_ptr = *temp0;
6821 		} else {
6822 			*skb = netdev_alloc_skb(dev, size);
6823 			if (!(*skb)) {
6824 				DBG_PRINT(INFO_DBG,
6825 					  "%s: Out of memory to allocate %s\n",
6826 					  dev->name, "1 buf mode SKBs");
6827 				stats->mem_alloc_fail_cnt++;
6828 				return -ENOMEM ;
6829 			}
6830 			stats->mem_allocated += (*skb)->truesize;
6831 			/* storing the mapped addr in a temp variable
6832 			 * such it will be used for next rxd whose
6833 			 * Host Control is NULL
6834 			 */
6835 			rxdp1->Buffer0_ptr = *temp0 =
6836 				pci_map_single(sp->pdev, (*skb)->data,
6837 					       size - NET_IP_ALIGN,
6838 					       PCI_DMA_FROMDEVICE);
6839 			if (pci_dma_mapping_error(sp->pdev, rxdp1->Buffer0_ptr))
6840 				goto memalloc_failed;
6841 			rxdp->Host_Control = (unsigned long) (*skb);
6842 		}
6843 	} else if ((sp->rxd_mode == RXD_MODE_3B) && (rxdp->Host_Control == 0)) {
6844 		struct RxD3 *rxdp3 = (struct RxD3 *)rxdp;
6845 		/* Two buffer Mode */
6846 		if (*skb) {
6847 			rxdp3->Buffer2_ptr = *temp2;
6848 			rxdp3->Buffer0_ptr = *temp0;
6849 			rxdp3->Buffer1_ptr = *temp1;
6850 		} else {
6851 			*skb = netdev_alloc_skb(dev, size);
6852 			if (!(*skb)) {
6853 				DBG_PRINT(INFO_DBG,
6854 					  "%s: Out of memory to allocate %s\n",
6855 					  dev->name,
6856 					  "2 buf mode SKBs");
6857 				stats->mem_alloc_fail_cnt++;
6858 				return -ENOMEM;
6859 			}
6860 			stats->mem_allocated += (*skb)->truesize;
6861 			rxdp3->Buffer2_ptr = *temp2 =
6862 				pci_map_single(sp->pdev, (*skb)->data,
6863 					       dev->mtu + 4,
6864 					       PCI_DMA_FROMDEVICE);
6865 			if (pci_dma_mapping_error(sp->pdev, rxdp3->Buffer2_ptr))
6866 				goto memalloc_failed;
6867 			rxdp3->Buffer0_ptr = *temp0 =
6868 				pci_map_single(sp->pdev, ba->ba_0, BUF0_LEN,
6869 					       PCI_DMA_FROMDEVICE);
6870 			if (pci_dma_mapping_error(sp->pdev,
6871 						  rxdp3->Buffer0_ptr)) {
6872 				pci_unmap_single(sp->pdev,
6873 						 (dma_addr_t)rxdp3->Buffer2_ptr,
6874 						 dev->mtu + 4,
6875 						 PCI_DMA_FROMDEVICE);
6876 				goto memalloc_failed;
6877 			}
6878 			rxdp->Host_Control = (unsigned long) (*skb);
6879 
6880 			/* Buffer-1 will be dummy buffer not used */
6881 			rxdp3->Buffer1_ptr = *temp1 =
6882 				pci_map_single(sp->pdev, ba->ba_1, BUF1_LEN,
6883 					       PCI_DMA_FROMDEVICE);
6884 			if (pci_dma_mapping_error(sp->pdev,
6885 						  rxdp3->Buffer1_ptr)) {
6886 				pci_unmap_single(sp->pdev,
6887 						 (dma_addr_t)rxdp3->Buffer0_ptr,
6888 						 BUF0_LEN, PCI_DMA_FROMDEVICE);
6889 				pci_unmap_single(sp->pdev,
6890 						 (dma_addr_t)rxdp3->Buffer2_ptr,
6891 						 dev->mtu + 4,
6892 						 PCI_DMA_FROMDEVICE);
6893 				goto memalloc_failed;
6894 			}
6895 		}
6896 	}
6897 	return 0;
6898 
6899 memalloc_failed:
6900 	stats->pci_map_fail_cnt++;
6901 	stats->mem_freed += (*skb)->truesize;
6902 	dev_kfree_skb(*skb);
6903 	return -ENOMEM;
6904 }
6905 
6906 static void set_rxd_buffer_size(struct s2io_nic *sp, struct RxD_t *rxdp,
6907 				int size)
6908 {
6909 	struct net_device *dev = sp->dev;
6910 	if (sp->rxd_mode == RXD_MODE_1) {
6911 		rxdp->Control_2 = SET_BUFFER0_SIZE_1(size - NET_IP_ALIGN);
6912 	} else if (sp->rxd_mode == RXD_MODE_3B) {
6913 		rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
6914 		rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
6915 		rxdp->Control_2 |= SET_BUFFER2_SIZE_3(dev->mtu + 4);
6916 	}
6917 }
6918 
6919 static  int rxd_owner_bit_reset(struct s2io_nic *sp)
6920 {
6921 	int i, j, k, blk_cnt = 0, size;
6922 	struct config_param *config = &sp->config;
6923 	struct mac_info *mac_control = &sp->mac_control;
6924 	struct net_device *dev = sp->dev;
6925 	struct RxD_t *rxdp = NULL;
6926 	struct sk_buff *skb = NULL;
6927 	struct buffAdd *ba = NULL;
6928 	u64 temp0_64 = 0, temp1_64 = 0, temp2_64 = 0;
6929 
6930 	/* Calculate the size based on ring mode */
6931 	size = dev->mtu + HEADER_ETHERNET_II_802_3_SIZE +
6932 		HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
6933 	if (sp->rxd_mode == RXD_MODE_1)
6934 		size += NET_IP_ALIGN;
6935 	else if (sp->rxd_mode == RXD_MODE_3B)
6936 		size = dev->mtu + ALIGN_SIZE + BUF0_LEN + 4;
6937 
6938 	for (i = 0; i < config->rx_ring_num; i++) {
6939 		struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
6940 		struct ring_info *ring = &mac_control->rings[i];
6941 
6942 		blk_cnt = rx_cfg->num_rxd / (rxd_count[sp->rxd_mode] + 1);
6943 
6944 		for (j = 0; j < blk_cnt; j++) {
6945 			for (k = 0; k < rxd_count[sp->rxd_mode]; k++) {
6946 				rxdp = ring->rx_blocks[j].rxds[k].virt_addr;
6947 				if (sp->rxd_mode == RXD_MODE_3B)
6948 					ba = &ring->ba[j][k];
6949 				if (set_rxd_buffer_pointer(sp, rxdp, ba, &skb,
6950 							   &temp0_64,
6951 							   &temp1_64,
6952 							   &temp2_64,
6953 							   size) == -ENOMEM) {
6954 					return 0;
6955 				}
6956 
6957 				set_rxd_buffer_size(sp, rxdp, size);
6958 				wmb();
6959 				/* flip the Ownership bit to Hardware */
6960 				rxdp->Control_1 |= RXD_OWN_XENA;
6961 			}
6962 		}
6963 	}
6964 	return 0;
6965 
6966 }
6967 
6968 static int s2io_add_isr(struct s2io_nic *sp)
6969 {
6970 	int ret = 0;
6971 	struct net_device *dev = sp->dev;
6972 	int err = 0;
6973 
6974 	if (sp->config.intr_type == MSI_X)
6975 		ret = s2io_enable_msi_x(sp);
6976 	if (ret) {
6977 		DBG_PRINT(ERR_DBG, "%s: Defaulting to INTA\n", dev->name);
6978 		sp->config.intr_type = INTA;
6979 	}
6980 
6981 	/*
6982 	 * Store the values of the MSIX table in
6983 	 * the struct s2io_nic structure
6984 	 */
6985 	store_xmsi_data(sp);
6986 
6987 	/* After proper initialization of H/W, register ISR */
6988 	if (sp->config.intr_type == MSI_X) {
6989 		int i, msix_rx_cnt = 0;
6990 
6991 		for (i = 0; i < sp->num_entries; i++) {
6992 			if (sp->s2io_entries[i].in_use == MSIX_FLG) {
6993 				if (sp->s2io_entries[i].type ==
6994 				    MSIX_RING_TYPE) {
6995 					sprintf(sp->desc[i], "%s:MSI-X-%d-RX",
6996 						dev->name, i);
6997 					err = request_irq(sp->entries[i].vector,
6998 							  s2io_msix_ring_handle,
6999 							  0,
7000 							  sp->desc[i],
7001 							  sp->s2io_entries[i].arg);
7002 				} else if (sp->s2io_entries[i].type ==
7003 					   MSIX_ALARM_TYPE) {
7004 					sprintf(sp->desc[i], "%s:MSI-X-%d-TX",
7005 						dev->name, i);
7006 					err = request_irq(sp->entries[i].vector,
7007 							  s2io_msix_fifo_handle,
7008 							  0,
7009 							  sp->desc[i],
7010 							  sp->s2io_entries[i].arg);
7011 
7012 				}
7013 				/* if either data or addr is zero print it. */
7014 				if (!(sp->msix_info[i].addr &&
7015 				      sp->msix_info[i].data)) {
7016 					DBG_PRINT(ERR_DBG,
7017 						  "%s @Addr:0x%llx Data:0x%llx\n",
7018 						  sp->desc[i],
7019 						  (unsigned long long)
7020 						  sp->msix_info[i].addr,
7021 						  (unsigned long long)
7022 						  ntohl(sp->msix_info[i].data));
7023 				} else
7024 					msix_rx_cnt++;
7025 				if (err) {
7026 					remove_msix_isr(sp);
7027 
7028 					DBG_PRINT(ERR_DBG,
7029 						  "%s:MSI-X-%d registration "
7030 						  "failed\n", dev->name, i);
7031 
7032 					DBG_PRINT(ERR_DBG,
7033 						  "%s: Defaulting to INTA\n",
7034 						  dev->name);
7035 					sp->config.intr_type = INTA;
7036 					break;
7037 				}
7038 				sp->s2io_entries[i].in_use =
7039 					MSIX_REGISTERED_SUCCESS;
7040 			}
7041 		}
7042 		if (!err) {
7043 			pr_info("MSI-X-RX %d entries enabled\n", --msix_rx_cnt);
7044 			DBG_PRINT(INFO_DBG,
7045 				  "MSI-X-TX entries enabled through alarm vector\n");
7046 		}
7047 	}
7048 	if (sp->config.intr_type == INTA) {
7049 		err = request_irq(sp->pdev->irq, s2io_isr, IRQF_SHARED,
7050 				  sp->name, dev);
7051 		if (err) {
7052 			DBG_PRINT(ERR_DBG, "%s: ISR registration failed\n",
7053 				  dev->name);
7054 			return -1;
7055 		}
7056 	}
7057 	return 0;
7058 }
7059 
7060 static void s2io_rem_isr(struct s2io_nic *sp)
7061 {
7062 	if (sp->config.intr_type == MSI_X)
7063 		remove_msix_isr(sp);
7064 	else
7065 		remove_inta_isr(sp);
7066 }
7067 
7068 static void do_s2io_card_down(struct s2io_nic *sp, int do_io)
7069 {
7070 	int cnt = 0;
7071 	struct XENA_dev_config __iomem *bar0 = sp->bar0;
7072 	register u64 val64 = 0;
7073 	struct config_param *config;
7074 	config = &sp->config;
7075 
7076 	if (!is_s2io_card_up(sp))
7077 		return;
7078 
7079 	del_timer_sync(&sp->alarm_timer);
7080 	/* If s2io_set_link task is executing, wait till it completes. */
7081 	while (test_and_set_bit(__S2IO_STATE_LINK_TASK, &(sp->state)))
7082 		msleep(50);
7083 	clear_bit(__S2IO_STATE_CARD_UP, &sp->state);
7084 
7085 	/* Disable napi */
7086 	if (sp->config.napi) {
7087 		int off = 0;
7088 		if (config->intr_type ==  MSI_X) {
7089 			for (; off < sp->config.rx_ring_num; off++)
7090 				napi_disable(&sp->mac_control.rings[off].napi);
7091 		}
7092 		else
7093 			napi_disable(&sp->napi);
7094 	}
7095 
7096 	/* disable Tx and Rx traffic on the NIC */
7097 	if (do_io)
7098 		stop_nic(sp);
7099 
7100 	s2io_rem_isr(sp);
7101 
7102 	/* stop the tx queue, indicate link down */
7103 	s2io_link(sp, LINK_DOWN);
7104 
7105 	/* Check if the device is Quiescent and then Reset the NIC */
7106 	while (do_io) {
7107 		/* As per the HW requirement we need to replenish the
7108 		 * receive buffer to avoid the ring bump. Since there is
7109 		 * no intention of processing the Rx frame at this pointwe are
7110 		 * just setting the ownership bit of rxd in Each Rx
7111 		 * ring to HW and set the appropriate buffer size
7112 		 * based on the ring mode
7113 		 */
7114 		rxd_owner_bit_reset(sp);
7115 
7116 		val64 = readq(&bar0->adapter_status);
7117 		if (verify_xena_quiescence(sp)) {
7118 			if (verify_pcc_quiescent(sp, sp->device_enabled_once))
7119 				break;
7120 		}
7121 
7122 		msleep(50);
7123 		cnt++;
7124 		if (cnt == 10) {
7125 			DBG_PRINT(ERR_DBG, "Device not Quiescent - "
7126 				  "adapter status reads 0x%llx\n",
7127 				  (unsigned long long)val64);
7128 			break;
7129 		}
7130 	}
7131 	if (do_io)
7132 		s2io_reset(sp);
7133 
7134 	/* Free all Tx buffers */
7135 	free_tx_buffers(sp);
7136 
7137 	/* Free all Rx buffers */
7138 	free_rx_buffers(sp);
7139 
7140 	clear_bit(__S2IO_STATE_LINK_TASK, &(sp->state));
7141 }
7142 
7143 static void s2io_card_down(struct s2io_nic *sp)
7144 {
7145 	do_s2io_card_down(sp, 1);
7146 }
7147 
7148 static int s2io_card_up(struct s2io_nic *sp)
7149 {
7150 	int i, ret = 0;
7151 	struct config_param *config;
7152 	struct mac_info *mac_control;
7153 	struct net_device *dev = sp->dev;
7154 	u16 interruptible;
7155 
7156 	/* Initialize the H/W I/O registers */
7157 	ret = init_nic(sp);
7158 	if (ret != 0) {
7159 		DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
7160 			  dev->name);
7161 		if (ret != -EIO)
7162 			s2io_reset(sp);
7163 		return ret;
7164 	}
7165 
7166 	/*
7167 	 * Initializing the Rx buffers. For now we are considering only 1
7168 	 * Rx ring and initializing buffers into 30 Rx blocks
7169 	 */
7170 	config = &sp->config;
7171 	mac_control = &sp->mac_control;
7172 
7173 	for (i = 0; i < config->rx_ring_num; i++) {
7174 		struct ring_info *ring = &mac_control->rings[i];
7175 
7176 		ring->mtu = dev->mtu;
7177 		ring->lro = !!(dev->features & NETIF_F_LRO);
7178 		ret = fill_rx_buffers(sp, ring, 1);
7179 		if (ret) {
7180 			DBG_PRINT(ERR_DBG, "%s: Out of memory in Open\n",
7181 				  dev->name);
7182 			s2io_reset(sp);
7183 			free_rx_buffers(sp);
7184 			return -ENOMEM;
7185 		}
7186 		DBG_PRINT(INFO_DBG, "Buf in ring:%d is %d:\n", i,
7187 			  ring->rx_bufs_left);
7188 	}
7189 
7190 	/* Initialise napi */
7191 	if (config->napi) {
7192 		if (config->intr_type ==  MSI_X) {
7193 			for (i = 0; i < sp->config.rx_ring_num; i++)
7194 				napi_enable(&sp->mac_control.rings[i].napi);
7195 		} else {
7196 			napi_enable(&sp->napi);
7197 		}
7198 	}
7199 
7200 	/* Maintain the state prior to the open */
7201 	if (sp->promisc_flg)
7202 		sp->promisc_flg = 0;
7203 	if (sp->m_cast_flg) {
7204 		sp->m_cast_flg = 0;
7205 		sp->all_multi_pos = 0;
7206 	}
7207 
7208 	/* Setting its receive mode */
7209 	s2io_set_multicast(dev);
7210 
7211 	if (dev->features & NETIF_F_LRO) {
7212 		/* Initialize max aggregatable pkts per session based on MTU */
7213 		sp->lro_max_aggr_per_sess = ((1<<16) - 1) / dev->mtu;
7214 		/* Check if we can use (if specified) user provided value */
7215 		if (lro_max_pkts < sp->lro_max_aggr_per_sess)
7216 			sp->lro_max_aggr_per_sess = lro_max_pkts;
7217 	}
7218 
7219 	/* Enable Rx Traffic and interrupts on the NIC */
7220 	if (start_nic(sp)) {
7221 		DBG_PRINT(ERR_DBG, "%s: Starting NIC failed\n", dev->name);
7222 		s2io_reset(sp);
7223 		free_rx_buffers(sp);
7224 		return -ENODEV;
7225 	}
7226 
7227 	/* Add interrupt service routine */
7228 	if (s2io_add_isr(sp) != 0) {
7229 		if (sp->config.intr_type == MSI_X)
7230 			s2io_rem_isr(sp);
7231 		s2io_reset(sp);
7232 		free_rx_buffers(sp);
7233 		return -ENODEV;
7234 	}
7235 
7236 	S2IO_TIMER_CONF(sp->alarm_timer, s2io_alarm_handle, sp, (HZ/2));
7237 
7238 	set_bit(__S2IO_STATE_CARD_UP, &sp->state);
7239 
7240 	/*  Enable select interrupts */
7241 	en_dis_err_alarms(sp, ENA_ALL_INTRS, ENABLE_INTRS);
7242 	if (sp->config.intr_type != INTA) {
7243 		interruptible = TX_TRAFFIC_INTR | TX_PIC_INTR;
7244 		en_dis_able_nic_intrs(sp, interruptible, ENABLE_INTRS);
7245 	} else {
7246 		interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
7247 		interruptible |= TX_PIC_INTR;
7248 		en_dis_able_nic_intrs(sp, interruptible, ENABLE_INTRS);
7249 	}
7250 
7251 	return 0;
7252 }
7253 
7254 /**
7255  * s2io_restart_nic - Resets the NIC.
7256  * @data : long pointer to the device private structure
7257  * Description:
7258  * This function is scheduled to be run by the s2io_tx_watchdog
7259  * function after 0.5 secs to reset the NIC. The idea is to reduce
7260  * the run time of the watch dog routine which is run holding a
7261  * spin lock.
7262  */
7263 
7264 static void s2io_restart_nic(struct work_struct *work)
7265 {
7266 	struct s2io_nic *sp = container_of(work, struct s2io_nic, rst_timer_task);
7267 	struct net_device *dev = sp->dev;
7268 
7269 	rtnl_lock();
7270 
7271 	if (!netif_running(dev))
7272 		goto out_unlock;
7273 
7274 	s2io_card_down(sp);
7275 	if (s2io_card_up(sp)) {
7276 		DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n", dev->name);
7277 	}
7278 	s2io_wake_all_tx_queue(sp);
7279 	DBG_PRINT(ERR_DBG, "%s: was reset by Tx watchdog timer\n", dev->name);
7280 out_unlock:
7281 	rtnl_unlock();
7282 }
7283 
7284 /**
7285  *  s2io_tx_watchdog - Watchdog for transmit side.
7286  *  @dev : Pointer to net device structure
7287  *  Description:
7288  *  This function is triggered if the Tx Queue is stopped
7289  *  for a pre-defined amount of time when the Interface is still up.
7290  *  If the Interface is jammed in such a situation, the hardware is
7291  *  reset (by s2io_close) and restarted again (by s2io_open) to
7292  *  overcome any problem that might have been caused in the hardware.
7293  *  Return value:
7294  *  void
7295  */
7296 
7297 static void s2io_tx_watchdog(struct net_device *dev)
7298 {
7299 	struct s2io_nic *sp = netdev_priv(dev);
7300 	struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
7301 
7302 	if (netif_carrier_ok(dev)) {
7303 		swstats->watchdog_timer_cnt++;
7304 		schedule_work(&sp->rst_timer_task);
7305 		swstats->soft_reset_cnt++;
7306 	}
7307 }
7308 
7309 /**
7310  *   rx_osm_handler - To perform some OS related operations on SKB.
7311  *   @sp: private member of the device structure,pointer to s2io_nic structure.
7312  *   @skb : the socket buffer pointer.
7313  *   @len : length of the packet
7314  *   @cksum : FCS checksum of the frame.
7315  *   @ring_no : the ring from which this RxD was extracted.
7316  *   Description:
7317  *   This function is called by the Rx interrupt serivce routine to perform
7318  *   some OS related operations on the SKB before passing it to the upper
7319  *   layers. It mainly checks if the checksum is OK, if so adds it to the
7320  *   SKBs cksum variable, increments the Rx packet count and passes the SKB
7321  *   to the upper layer. If the checksum is wrong, it increments the Rx
7322  *   packet error count, frees the SKB and returns error.
7323  *   Return value:
7324  *   SUCCESS on success and -1 on failure.
7325  */
7326 static int rx_osm_handler(struct ring_info *ring_data, struct RxD_t * rxdp)
7327 {
7328 	struct s2io_nic *sp = ring_data->nic;
7329 	struct net_device *dev = ring_data->dev;
7330 	struct sk_buff *skb = (struct sk_buff *)
7331 		((unsigned long)rxdp->Host_Control);
7332 	int ring_no = ring_data->ring_no;
7333 	u16 l3_csum, l4_csum;
7334 	unsigned long long err = rxdp->Control_1 & RXD_T_CODE;
7335 	struct lro *uninitialized_var(lro);
7336 	u8 err_mask;
7337 	struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
7338 
7339 	skb->dev = dev;
7340 
7341 	if (err) {
7342 		/* Check for parity error */
7343 		if (err & 0x1)
7344 			swstats->parity_err_cnt++;
7345 
7346 		err_mask = err >> 48;
7347 		switch (err_mask) {
7348 		case 1:
7349 			swstats->rx_parity_err_cnt++;
7350 			break;
7351 
7352 		case 2:
7353 			swstats->rx_abort_cnt++;
7354 			break;
7355 
7356 		case 3:
7357 			swstats->rx_parity_abort_cnt++;
7358 			break;
7359 
7360 		case 4:
7361 			swstats->rx_rda_fail_cnt++;
7362 			break;
7363 
7364 		case 5:
7365 			swstats->rx_unkn_prot_cnt++;
7366 			break;
7367 
7368 		case 6:
7369 			swstats->rx_fcs_err_cnt++;
7370 			break;
7371 
7372 		case 7:
7373 			swstats->rx_buf_size_err_cnt++;
7374 			break;
7375 
7376 		case 8:
7377 			swstats->rx_rxd_corrupt_cnt++;
7378 			break;
7379 
7380 		case 15:
7381 			swstats->rx_unkn_err_cnt++;
7382 			break;
7383 		}
7384 		/*
7385 		 * Drop the packet if bad transfer code. Exception being
7386 		 * 0x5, which could be due to unsupported IPv6 extension header.
7387 		 * In this case, we let stack handle the packet.
7388 		 * Note that in this case, since checksum will be incorrect,
7389 		 * stack will validate the same.
7390 		 */
7391 		if (err_mask != 0x5) {
7392 			DBG_PRINT(ERR_DBG, "%s: Rx error Value: 0x%x\n",
7393 				  dev->name, err_mask);
7394 			dev->stats.rx_crc_errors++;
7395 			swstats->mem_freed
7396 				+= skb->truesize;
7397 			dev_kfree_skb(skb);
7398 			ring_data->rx_bufs_left -= 1;
7399 			rxdp->Host_Control = 0;
7400 			return 0;
7401 		}
7402 	}
7403 
7404 	rxdp->Host_Control = 0;
7405 	if (sp->rxd_mode == RXD_MODE_1) {
7406 		int len = RXD_GET_BUFFER0_SIZE_1(rxdp->Control_2);
7407 
7408 		skb_put(skb, len);
7409 	} else if (sp->rxd_mode == RXD_MODE_3B) {
7410 		int get_block = ring_data->rx_curr_get_info.block_index;
7411 		int get_off = ring_data->rx_curr_get_info.offset;
7412 		int buf0_len = RXD_GET_BUFFER0_SIZE_3(rxdp->Control_2);
7413 		int buf2_len = RXD_GET_BUFFER2_SIZE_3(rxdp->Control_2);
7414 		unsigned char *buff = skb_push(skb, buf0_len);
7415 
7416 		struct buffAdd *ba = &ring_data->ba[get_block][get_off];
7417 		memcpy(buff, ba->ba_0, buf0_len);
7418 		skb_put(skb, buf2_len);
7419 	}
7420 
7421 	if ((rxdp->Control_1 & TCP_OR_UDP_FRAME) &&
7422 	    ((!ring_data->lro) ||
7423 	     (ring_data->lro && (!(rxdp->Control_1 & RXD_FRAME_IP_FRAG)))) &&
7424 	    (dev->features & NETIF_F_RXCSUM)) {
7425 		l3_csum = RXD_GET_L3_CKSUM(rxdp->Control_1);
7426 		l4_csum = RXD_GET_L4_CKSUM(rxdp->Control_1);
7427 		if ((l3_csum == L3_CKSUM_OK) && (l4_csum == L4_CKSUM_OK)) {
7428 			/*
7429 			 * NIC verifies if the Checksum of the received
7430 			 * frame is Ok or not and accordingly returns
7431 			 * a flag in the RxD.
7432 			 */
7433 			skb->ip_summed = CHECKSUM_UNNECESSARY;
7434 			if (ring_data->lro) {
7435 				u32 tcp_len = 0;
7436 				u8 *tcp;
7437 				int ret = 0;
7438 
7439 				ret = s2io_club_tcp_session(ring_data,
7440 							    skb->data, &tcp,
7441 							    &tcp_len, &lro,
7442 							    rxdp, sp);
7443 				switch (ret) {
7444 				case 3: /* Begin anew */
7445 					lro->parent = skb;
7446 					goto aggregate;
7447 				case 1: /* Aggregate */
7448 					lro_append_pkt(sp, lro, skb, tcp_len);
7449 					goto aggregate;
7450 				case 4: /* Flush session */
7451 					lro_append_pkt(sp, lro, skb, tcp_len);
7452 					queue_rx_frame(lro->parent,
7453 						       lro->vlan_tag);
7454 					clear_lro_session(lro);
7455 					swstats->flush_max_pkts++;
7456 					goto aggregate;
7457 				case 2: /* Flush both */
7458 					lro->parent->data_len = lro->frags_len;
7459 					swstats->sending_both++;
7460 					queue_rx_frame(lro->parent,
7461 						       lro->vlan_tag);
7462 					clear_lro_session(lro);
7463 					goto send_up;
7464 				case 0: /* sessions exceeded */
7465 				case -1: /* non-TCP or not L2 aggregatable */
7466 				case 5: /*
7467 					 * First pkt in session not
7468 					 * L3/L4 aggregatable
7469 					 */
7470 					break;
7471 				default:
7472 					DBG_PRINT(ERR_DBG,
7473 						  "%s: Samadhana!!\n",
7474 						  __func__);
7475 					BUG();
7476 				}
7477 			}
7478 		} else {
7479 			/*
7480 			 * Packet with erroneous checksum, let the
7481 			 * upper layers deal with it.
7482 			 */
7483 			skb_checksum_none_assert(skb);
7484 		}
7485 	} else
7486 		skb_checksum_none_assert(skb);
7487 
7488 	swstats->mem_freed += skb->truesize;
7489 send_up:
7490 	skb_record_rx_queue(skb, ring_no);
7491 	queue_rx_frame(skb, RXD_GET_VLAN_TAG(rxdp->Control_2));
7492 aggregate:
7493 	sp->mac_control.rings[ring_no].rx_bufs_left -= 1;
7494 	return SUCCESS;
7495 }
7496 
7497 /**
7498  *  s2io_link - stops/starts the Tx queue.
7499  *  @sp : private member of the device structure, which is a pointer to the
7500  *  s2io_nic structure.
7501  *  @link : inidicates whether link is UP/DOWN.
7502  *  Description:
7503  *  This function stops/starts the Tx queue depending on whether the link
7504  *  status of the NIC is is down or up. This is called by the Alarm
7505  *  interrupt handler whenever a link change interrupt comes up.
7506  *  Return value:
7507  *  void.
7508  */
7509 
7510 static void s2io_link(struct s2io_nic *sp, int link)
7511 {
7512 	struct net_device *dev = sp->dev;
7513 	struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
7514 
7515 	if (link != sp->last_link_state) {
7516 		init_tti(sp, link);
7517 		if (link == LINK_DOWN) {
7518 			DBG_PRINT(ERR_DBG, "%s: Link down\n", dev->name);
7519 			s2io_stop_all_tx_queue(sp);
7520 			netif_carrier_off(dev);
7521 			if (swstats->link_up_cnt)
7522 				swstats->link_up_time =
7523 					jiffies - sp->start_time;
7524 			swstats->link_down_cnt++;
7525 		} else {
7526 			DBG_PRINT(ERR_DBG, "%s: Link Up\n", dev->name);
7527 			if (swstats->link_down_cnt)
7528 				swstats->link_down_time =
7529 					jiffies - sp->start_time;
7530 			swstats->link_up_cnt++;
7531 			netif_carrier_on(dev);
7532 			s2io_wake_all_tx_queue(sp);
7533 		}
7534 	}
7535 	sp->last_link_state = link;
7536 	sp->start_time = jiffies;
7537 }
7538 
7539 /**
7540  *  s2io_init_pci -Initialization of PCI and PCI-X configuration registers .
7541  *  @sp : private member of the device structure, which is a pointer to the
7542  *  s2io_nic structure.
7543  *  Description:
7544  *  This function initializes a few of the PCI and PCI-X configuration registers
7545  *  with recommended values.
7546  *  Return value:
7547  *  void
7548  */
7549 
7550 static void s2io_init_pci(struct s2io_nic *sp)
7551 {
7552 	u16 pci_cmd = 0, pcix_cmd = 0;
7553 
7554 	/* Enable Data Parity Error Recovery in PCI-X command register. */
7555 	pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
7556 			     &(pcix_cmd));
7557 	pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
7558 			      (pcix_cmd | 1));
7559 	pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
7560 			     &(pcix_cmd));
7561 
7562 	/* Set the PErr Response bit in PCI command register. */
7563 	pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
7564 	pci_write_config_word(sp->pdev, PCI_COMMAND,
7565 			      (pci_cmd | PCI_COMMAND_PARITY));
7566 	pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
7567 }
7568 
7569 static int s2io_verify_parm(struct pci_dev *pdev, u8 *dev_intr_type,
7570 			    u8 *dev_multiq)
7571 {
7572 	int i;
7573 
7574 	if ((tx_fifo_num > MAX_TX_FIFOS) || (tx_fifo_num < 1)) {
7575 		DBG_PRINT(ERR_DBG, "Requested number of tx fifos "
7576 			  "(%d) not supported\n", tx_fifo_num);
7577 
7578 		if (tx_fifo_num < 1)
7579 			tx_fifo_num = 1;
7580 		else
7581 			tx_fifo_num = MAX_TX_FIFOS;
7582 
7583 		DBG_PRINT(ERR_DBG, "Default to %d tx fifos\n", tx_fifo_num);
7584 	}
7585 
7586 	if (multiq)
7587 		*dev_multiq = multiq;
7588 
7589 	if (tx_steering_type && (1 == tx_fifo_num)) {
7590 		if (tx_steering_type != TX_DEFAULT_STEERING)
7591 			DBG_PRINT(ERR_DBG,
7592 				  "Tx steering is not supported with "
7593 				  "one fifo. Disabling Tx steering.\n");
7594 		tx_steering_type = NO_STEERING;
7595 	}
7596 
7597 	if ((tx_steering_type < NO_STEERING) ||
7598 	    (tx_steering_type > TX_DEFAULT_STEERING)) {
7599 		DBG_PRINT(ERR_DBG,
7600 			  "Requested transmit steering not supported\n");
7601 		DBG_PRINT(ERR_DBG, "Disabling transmit steering\n");
7602 		tx_steering_type = NO_STEERING;
7603 	}
7604 
7605 	if (rx_ring_num > MAX_RX_RINGS) {
7606 		DBG_PRINT(ERR_DBG,
7607 			  "Requested number of rx rings not supported\n");
7608 		DBG_PRINT(ERR_DBG, "Default to %d rx rings\n",
7609 			  MAX_RX_RINGS);
7610 		rx_ring_num = MAX_RX_RINGS;
7611 	}
7612 
7613 	if ((*dev_intr_type != INTA) && (*dev_intr_type != MSI_X)) {
7614 		DBG_PRINT(ERR_DBG, "Wrong intr_type requested. "
7615 			  "Defaulting to INTA\n");
7616 		*dev_intr_type = INTA;
7617 	}
7618 
7619 	if ((*dev_intr_type == MSI_X) &&
7620 	    ((pdev->device != PCI_DEVICE_ID_HERC_WIN) &&
7621 	     (pdev->device != PCI_DEVICE_ID_HERC_UNI))) {
7622 		DBG_PRINT(ERR_DBG, "Xframe I does not support MSI_X. "
7623 			  "Defaulting to INTA\n");
7624 		*dev_intr_type = INTA;
7625 	}
7626 
7627 	if ((rx_ring_mode != 1) && (rx_ring_mode != 2)) {
7628 		DBG_PRINT(ERR_DBG, "Requested ring mode not supported\n");
7629 		DBG_PRINT(ERR_DBG, "Defaulting to 1-buffer mode\n");
7630 		rx_ring_mode = 1;
7631 	}
7632 
7633 	for (i = 0; i < MAX_RX_RINGS; i++)
7634 		if (rx_ring_sz[i] > MAX_RX_BLOCKS_PER_RING) {
7635 			DBG_PRINT(ERR_DBG, "Requested rx ring size not "
7636 				  "supported\nDefaulting to %d\n",
7637 				  MAX_RX_BLOCKS_PER_RING);
7638 			rx_ring_sz[i] = MAX_RX_BLOCKS_PER_RING;
7639 		}
7640 
7641 	return SUCCESS;
7642 }
7643 
7644 /**
7645  * rts_ds_steer - Receive traffic steering based on IPv4 or IPv6 TOS
7646  * or Traffic class respectively.
7647  * @nic: device private variable
7648  * Description: The function configures the receive steering to
7649  * desired receive ring.
7650  * Return Value:  SUCCESS on success and
7651  * '-1' on failure (endian settings incorrect).
7652  */
7653 static int rts_ds_steer(struct s2io_nic *nic, u8 ds_codepoint, u8 ring)
7654 {
7655 	struct XENA_dev_config __iomem *bar0 = nic->bar0;
7656 	register u64 val64 = 0;
7657 
7658 	if (ds_codepoint > 63)
7659 		return FAILURE;
7660 
7661 	val64 = RTS_DS_MEM_DATA(ring);
7662 	writeq(val64, &bar0->rts_ds_mem_data);
7663 
7664 	val64 = RTS_DS_MEM_CTRL_WE |
7665 		RTS_DS_MEM_CTRL_STROBE_NEW_CMD |
7666 		RTS_DS_MEM_CTRL_OFFSET(ds_codepoint);
7667 
7668 	writeq(val64, &bar0->rts_ds_mem_ctrl);
7669 
7670 	return wait_for_cmd_complete(&bar0->rts_ds_mem_ctrl,
7671 				     RTS_DS_MEM_CTRL_STROBE_CMD_BEING_EXECUTED,
7672 				     S2IO_BIT_RESET);
7673 }
7674 
7675 static const struct net_device_ops s2io_netdev_ops = {
7676 	.ndo_open	        = s2io_open,
7677 	.ndo_stop	        = s2io_close,
7678 	.ndo_get_stats	        = s2io_get_stats,
7679 	.ndo_start_xmit    	= s2io_xmit,
7680 	.ndo_validate_addr	= eth_validate_addr,
7681 	.ndo_set_rx_mode	= s2io_set_multicast,
7682 	.ndo_do_ioctl	   	= s2io_ioctl,
7683 	.ndo_set_mac_address    = s2io_set_mac_addr,
7684 	.ndo_change_mtu	   	= s2io_change_mtu,
7685 	.ndo_set_features	= s2io_set_features,
7686 	.ndo_tx_timeout	   	= s2io_tx_watchdog,
7687 #ifdef CONFIG_NET_POLL_CONTROLLER
7688 	.ndo_poll_controller    = s2io_netpoll,
7689 #endif
7690 };
7691 
7692 /**
7693  *  s2io_init_nic - Initialization of the adapter .
7694  *  @pdev : structure containing the PCI related information of the device.
7695  *  @pre: List of PCI devices supported by the driver listed in s2io_tbl.
7696  *  Description:
7697  *  The function initializes an adapter identified by the pci_dec structure.
7698  *  All OS related initialization including memory and device structure and
7699  *  initlaization of the device private variable is done. Also the swapper
7700  *  control register is initialized to enable read and write into the I/O
7701  *  registers of the device.
7702  *  Return value:
7703  *  returns 0 on success and negative on failure.
7704  */
7705 
7706 static int
7707 s2io_init_nic(struct pci_dev *pdev, const struct pci_device_id *pre)
7708 {
7709 	struct s2io_nic *sp;
7710 	struct net_device *dev;
7711 	int i, j, ret;
7712 	int dma_flag = false;
7713 	u32 mac_up, mac_down;
7714 	u64 val64 = 0, tmp64 = 0;
7715 	struct XENA_dev_config __iomem *bar0 = NULL;
7716 	u16 subid;
7717 	struct config_param *config;
7718 	struct mac_info *mac_control;
7719 	int mode;
7720 	u8 dev_intr_type = intr_type;
7721 	u8 dev_multiq = 0;
7722 
7723 	ret = s2io_verify_parm(pdev, &dev_intr_type, &dev_multiq);
7724 	if (ret)
7725 		return ret;
7726 
7727 	ret = pci_enable_device(pdev);
7728 	if (ret) {
7729 		DBG_PRINT(ERR_DBG,
7730 			  "%s: pci_enable_device failed\n", __func__);
7731 		return ret;
7732 	}
7733 
7734 	if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
7735 		DBG_PRINT(INIT_DBG, "%s: Using 64bit DMA\n", __func__);
7736 		dma_flag = true;
7737 		if (pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64))) {
7738 			DBG_PRINT(ERR_DBG,
7739 				  "Unable to obtain 64bit DMA "
7740 				  "for consistent allocations\n");
7741 			pci_disable_device(pdev);
7742 			return -ENOMEM;
7743 		}
7744 	} else if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(32))) {
7745 		DBG_PRINT(INIT_DBG, "%s: Using 32bit DMA\n", __func__);
7746 	} else {
7747 		pci_disable_device(pdev);
7748 		return -ENOMEM;
7749 	}
7750 	ret = pci_request_regions(pdev, s2io_driver_name);
7751 	if (ret) {
7752 		DBG_PRINT(ERR_DBG, "%s: Request Regions failed - %x\n",
7753 			  __func__, ret);
7754 		pci_disable_device(pdev);
7755 		return -ENODEV;
7756 	}
7757 	if (dev_multiq)
7758 		dev = alloc_etherdev_mq(sizeof(struct s2io_nic), tx_fifo_num);
7759 	else
7760 		dev = alloc_etherdev(sizeof(struct s2io_nic));
7761 	if (dev == NULL) {
7762 		pci_disable_device(pdev);
7763 		pci_release_regions(pdev);
7764 		return -ENODEV;
7765 	}
7766 
7767 	pci_set_master(pdev);
7768 	pci_set_drvdata(pdev, dev);
7769 	SET_NETDEV_DEV(dev, &pdev->dev);
7770 
7771 	/*  Private member variable initialized to s2io NIC structure */
7772 	sp = netdev_priv(dev);
7773 	sp->dev = dev;
7774 	sp->pdev = pdev;
7775 	sp->high_dma_flag = dma_flag;
7776 	sp->device_enabled_once = false;
7777 	if (rx_ring_mode == 1)
7778 		sp->rxd_mode = RXD_MODE_1;
7779 	if (rx_ring_mode == 2)
7780 		sp->rxd_mode = RXD_MODE_3B;
7781 
7782 	sp->config.intr_type = dev_intr_type;
7783 
7784 	if ((pdev->device == PCI_DEVICE_ID_HERC_WIN) ||
7785 	    (pdev->device == PCI_DEVICE_ID_HERC_UNI))
7786 		sp->device_type = XFRAME_II_DEVICE;
7787 	else
7788 		sp->device_type = XFRAME_I_DEVICE;
7789 
7790 
7791 	/* Initialize some PCI/PCI-X fields of the NIC. */
7792 	s2io_init_pci(sp);
7793 
7794 	/*
7795 	 * Setting the device configuration parameters.
7796 	 * Most of these parameters can be specified by the user during
7797 	 * module insertion as they are module loadable parameters. If
7798 	 * these parameters are not not specified during load time, they
7799 	 * are initialized with default values.
7800 	 */
7801 	config = &sp->config;
7802 	mac_control = &sp->mac_control;
7803 
7804 	config->napi = napi;
7805 	config->tx_steering_type = tx_steering_type;
7806 
7807 	/* Tx side parameters. */
7808 	if (config->tx_steering_type == TX_PRIORITY_STEERING)
7809 		config->tx_fifo_num = MAX_TX_FIFOS;
7810 	else
7811 		config->tx_fifo_num = tx_fifo_num;
7812 
7813 	/* Initialize the fifos used for tx steering */
7814 	if (config->tx_fifo_num < 5) {
7815 		if (config->tx_fifo_num  == 1)
7816 			sp->total_tcp_fifos = 1;
7817 		else
7818 			sp->total_tcp_fifos = config->tx_fifo_num - 1;
7819 		sp->udp_fifo_idx = config->tx_fifo_num - 1;
7820 		sp->total_udp_fifos = 1;
7821 		sp->other_fifo_idx = sp->total_tcp_fifos - 1;
7822 	} else {
7823 		sp->total_tcp_fifos = (tx_fifo_num - FIFO_UDP_MAX_NUM -
7824 				       FIFO_OTHER_MAX_NUM);
7825 		sp->udp_fifo_idx = sp->total_tcp_fifos;
7826 		sp->total_udp_fifos = FIFO_UDP_MAX_NUM;
7827 		sp->other_fifo_idx = sp->udp_fifo_idx + FIFO_UDP_MAX_NUM;
7828 	}
7829 
7830 	config->multiq = dev_multiq;
7831 	for (i = 0; i < config->tx_fifo_num; i++) {
7832 		struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
7833 
7834 		tx_cfg->fifo_len = tx_fifo_len[i];
7835 		tx_cfg->fifo_priority = i;
7836 	}
7837 
7838 	/* mapping the QoS priority to the configured fifos */
7839 	for (i = 0; i < MAX_TX_FIFOS; i++)
7840 		config->fifo_mapping[i] = fifo_map[config->tx_fifo_num - 1][i];
7841 
7842 	/* map the hashing selector table to the configured fifos */
7843 	for (i = 0; i < config->tx_fifo_num; i++)
7844 		sp->fifo_selector[i] = fifo_selector[i];
7845 
7846 
7847 	config->tx_intr_type = TXD_INT_TYPE_UTILZ;
7848 	for (i = 0; i < config->tx_fifo_num; i++) {
7849 		struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
7850 
7851 		tx_cfg->f_no_snoop = (NO_SNOOP_TXD | NO_SNOOP_TXD_BUFFER);
7852 		if (tx_cfg->fifo_len < 65) {
7853 			config->tx_intr_type = TXD_INT_TYPE_PER_LIST;
7854 			break;
7855 		}
7856 	}
7857 	/* + 2 because one Txd for skb->data and one Txd for UFO */
7858 	config->max_txds = MAX_SKB_FRAGS + 2;
7859 
7860 	/* Rx side parameters. */
7861 	config->rx_ring_num = rx_ring_num;
7862 	for (i = 0; i < config->rx_ring_num; i++) {
7863 		struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
7864 		struct ring_info *ring = &mac_control->rings[i];
7865 
7866 		rx_cfg->num_rxd = rx_ring_sz[i] * (rxd_count[sp->rxd_mode] + 1);
7867 		rx_cfg->ring_priority = i;
7868 		ring->rx_bufs_left = 0;
7869 		ring->rxd_mode = sp->rxd_mode;
7870 		ring->rxd_count = rxd_count[sp->rxd_mode];
7871 		ring->pdev = sp->pdev;
7872 		ring->dev = sp->dev;
7873 	}
7874 
7875 	for (i = 0; i < rx_ring_num; i++) {
7876 		struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
7877 
7878 		rx_cfg->ring_org = RING_ORG_BUFF1;
7879 		rx_cfg->f_no_snoop = (NO_SNOOP_RXD | NO_SNOOP_RXD_BUFFER);
7880 	}
7881 
7882 	/*  Setting Mac Control parameters */
7883 	mac_control->rmac_pause_time = rmac_pause_time;
7884 	mac_control->mc_pause_threshold_q0q3 = mc_pause_threshold_q0q3;
7885 	mac_control->mc_pause_threshold_q4q7 = mc_pause_threshold_q4q7;
7886 
7887 
7888 	/*  initialize the shared memory used by the NIC and the host */
7889 	if (init_shared_mem(sp)) {
7890 		DBG_PRINT(ERR_DBG, "%s: Memory allocation failed\n", dev->name);
7891 		ret = -ENOMEM;
7892 		goto mem_alloc_failed;
7893 	}
7894 
7895 	sp->bar0 = pci_ioremap_bar(pdev, 0);
7896 	if (!sp->bar0) {
7897 		DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem1\n",
7898 			  dev->name);
7899 		ret = -ENOMEM;
7900 		goto bar0_remap_failed;
7901 	}
7902 
7903 	sp->bar1 = pci_ioremap_bar(pdev, 2);
7904 	if (!sp->bar1) {
7905 		DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem2\n",
7906 			  dev->name);
7907 		ret = -ENOMEM;
7908 		goto bar1_remap_failed;
7909 	}
7910 
7911 	/* Initializing the BAR1 address as the start of the FIFO pointer. */
7912 	for (j = 0; j < MAX_TX_FIFOS; j++) {
7913 		mac_control->tx_FIFO_start[j] = sp->bar1 + (j * 0x00020000);
7914 	}
7915 
7916 	/*  Driver entry points */
7917 	dev->netdev_ops = &s2io_netdev_ops;
7918 	SET_ETHTOOL_OPS(dev, &netdev_ethtool_ops);
7919 	dev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM |
7920 		NETIF_F_TSO | NETIF_F_TSO6 |
7921 		NETIF_F_RXCSUM | NETIF_F_LRO;
7922 	dev->features |= dev->hw_features |
7923 		NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX;
7924 	if (sp->device_type & XFRAME_II_DEVICE) {
7925 		dev->hw_features |= NETIF_F_UFO;
7926 		if (ufo)
7927 			dev->features |= NETIF_F_UFO;
7928 	}
7929 	if (sp->high_dma_flag == true)
7930 		dev->features |= NETIF_F_HIGHDMA;
7931 	dev->watchdog_timeo = WATCH_DOG_TIMEOUT;
7932 	INIT_WORK(&sp->rst_timer_task, s2io_restart_nic);
7933 	INIT_WORK(&sp->set_link_task, s2io_set_link);
7934 
7935 	pci_save_state(sp->pdev);
7936 
7937 	/* Setting swapper control on the NIC, for proper reset operation */
7938 	if (s2io_set_swapper(sp)) {
7939 		DBG_PRINT(ERR_DBG, "%s: swapper settings are wrong\n",
7940 			  dev->name);
7941 		ret = -EAGAIN;
7942 		goto set_swap_failed;
7943 	}
7944 
7945 	/* Verify if the Herc works on the slot its placed into */
7946 	if (sp->device_type & XFRAME_II_DEVICE) {
7947 		mode = s2io_verify_pci_mode(sp);
7948 		if (mode < 0) {
7949 			DBG_PRINT(ERR_DBG, "%s: Unsupported PCI bus mode\n",
7950 				  __func__);
7951 			ret = -EBADSLT;
7952 			goto set_swap_failed;
7953 		}
7954 	}
7955 
7956 	if (sp->config.intr_type == MSI_X) {
7957 		sp->num_entries = config->rx_ring_num + 1;
7958 		ret = s2io_enable_msi_x(sp);
7959 
7960 		if (!ret) {
7961 			ret = s2io_test_msi(sp);
7962 			/* rollback MSI-X, will re-enable during add_isr() */
7963 			remove_msix_isr(sp);
7964 		}
7965 		if (ret) {
7966 
7967 			DBG_PRINT(ERR_DBG,
7968 				  "MSI-X requested but failed to enable\n");
7969 			sp->config.intr_type = INTA;
7970 		}
7971 	}
7972 
7973 	if (config->intr_type ==  MSI_X) {
7974 		for (i = 0; i < config->rx_ring_num ; i++) {
7975 			struct ring_info *ring = &mac_control->rings[i];
7976 
7977 			netif_napi_add(dev, &ring->napi, s2io_poll_msix, 64);
7978 		}
7979 	} else {
7980 		netif_napi_add(dev, &sp->napi, s2io_poll_inta, 64);
7981 	}
7982 
7983 	/* Not needed for Herc */
7984 	if (sp->device_type & XFRAME_I_DEVICE) {
7985 		/*
7986 		 * Fix for all "FFs" MAC address problems observed on
7987 		 * Alpha platforms
7988 		 */
7989 		fix_mac_address(sp);
7990 		s2io_reset(sp);
7991 	}
7992 
7993 	/*
7994 	 * MAC address initialization.
7995 	 * For now only one mac address will be read and used.
7996 	 */
7997 	bar0 = sp->bar0;
7998 	val64 = RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
7999 		RMAC_ADDR_CMD_MEM_OFFSET(0 + S2IO_MAC_ADDR_START_OFFSET);
8000 	writeq(val64, &bar0->rmac_addr_cmd_mem);
8001 	wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
8002 			      RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
8003 			      S2IO_BIT_RESET);
8004 	tmp64 = readq(&bar0->rmac_addr_data0_mem);
8005 	mac_down = (u32)tmp64;
8006 	mac_up = (u32) (tmp64 >> 32);
8007 
8008 	sp->def_mac_addr[0].mac_addr[3] = (u8) (mac_up);
8009 	sp->def_mac_addr[0].mac_addr[2] = (u8) (mac_up >> 8);
8010 	sp->def_mac_addr[0].mac_addr[1] = (u8) (mac_up >> 16);
8011 	sp->def_mac_addr[0].mac_addr[0] = (u8) (mac_up >> 24);
8012 	sp->def_mac_addr[0].mac_addr[5] = (u8) (mac_down >> 16);
8013 	sp->def_mac_addr[0].mac_addr[4] = (u8) (mac_down >> 24);
8014 
8015 	/*  Set the factory defined MAC address initially   */
8016 	dev->addr_len = ETH_ALEN;
8017 	memcpy(dev->dev_addr, sp->def_mac_addr, ETH_ALEN);
8018 
8019 	/* initialize number of multicast & unicast MAC entries variables */
8020 	if (sp->device_type == XFRAME_I_DEVICE) {
8021 		config->max_mc_addr = S2IO_XENA_MAX_MC_ADDRESSES;
8022 		config->max_mac_addr = S2IO_XENA_MAX_MAC_ADDRESSES;
8023 		config->mc_start_offset = S2IO_XENA_MC_ADDR_START_OFFSET;
8024 	} else if (sp->device_type == XFRAME_II_DEVICE) {
8025 		config->max_mc_addr = S2IO_HERC_MAX_MC_ADDRESSES;
8026 		config->max_mac_addr = S2IO_HERC_MAX_MAC_ADDRESSES;
8027 		config->mc_start_offset = S2IO_HERC_MC_ADDR_START_OFFSET;
8028 	}
8029 
8030 	/* store mac addresses from CAM to s2io_nic structure */
8031 	do_s2io_store_unicast_mc(sp);
8032 
8033 	/* Configure MSIX vector for number of rings configured plus one */
8034 	if ((sp->device_type == XFRAME_II_DEVICE) &&
8035 	    (config->intr_type == MSI_X))
8036 		sp->num_entries = config->rx_ring_num + 1;
8037 
8038 	/* Store the values of the MSIX table in the s2io_nic structure */
8039 	store_xmsi_data(sp);
8040 	/* reset Nic and bring it to known state */
8041 	s2io_reset(sp);
8042 
8043 	/*
8044 	 * Initialize link state flags
8045 	 * and the card state parameter
8046 	 */
8047 	sp->state = 0;
8048 
8049 	/* Initialize spinlocks */
8050 	for (i = 0; i < sp->config.tx_fifo_num; i++) {
8051 		struct fifo_info *fifo = &mac_control->fifos[i];
8052 
8053 		spin_lock_init(&fifo->tx_lock);
8054 	}
8055 
8056 	/*
8057 	 * SXE-002: Configure link and activity LED to init state
8058 	 * on driver load.
8059 	 */
8060 	subid = sp->pdev->subsystem_device;
8061 	if ((subid & 0xFF) >= 0x07) {
8062 		val64 = readq(&bar0->gpio_control);
8063 		val64 |= 0x0000800000000000ULL;
8064 		writeq(val64, &bar0->gpio_control);
8065 		val64 = 0x0411040400000000ULL;
8066 		writeq(val64, (void __iomem *)bar0 + 0x2700);
8067 		val64 = readq(&bar0->gpio_control);
8068 	}
8069 
8070 	sp->rx_csum = 1;	/* Rx chksum verify enabled by default */
8071 
8072 	if (register_netdev(dev)) {
8073 		DBG_PRINT(ERR_DBG, "Device registration failed\n");
8074 		ret = -ENODEV;
8075 		goto register_failed;
8076 	}
8077 	s2io_vpd_read(sp);
8078 	DBG_PRINT(ERR_DBG, "Copyright(c) 2002-2010 Exar Corp.\n");
8079 	DBG_PRINT(ERR_DBG, "%s: Neterion %s (rev %d)\n", dev->name,
8080 		  sp->product_name, pdev->revision);
8081 	DBG_PRINT(ERR_DBG, "%s: Driver version %s\n", dev->name,
8082 		  s2io_driver_version);
8083 	DBG_PRINT(ERR_DBG, "%s: MAC Address: %pM\n", dev->name, dev->dev_addr);
8084 	DBG_PRINT(ERR_DBG, "Serial number: %s\n", sp->serial_num);
8085 	if (sp->device_type & XFRAME_II_DEVICE) {
8086 		mode = s2io_print_pci_mode(sp);
8087 		if (mode < 0) {
8088 			ret = -EBADSLT;
8089 			unregister_netdev(dev);
8090 			goto set_swap_failed;
8091 		}
8092 	}
8093 	switch (sp->rxd_mode) {
8094 	case RXD_MODE_1:
8095 		DBG_PRINT(ERR_DBG, "%s: 1-Buffer receive mode enabled\n",
8096 			  dev->name);
8097 		break;
8098 	case RXD_MODE_3B:
8099 		DBG_PRINT(ERR_DBG, "%s: 2-Buffer receive mode enabled\n",
8100 			  dev->name);
8101 		break;
8102 	}
8103 
8104 	switch (sp->config.napi) {
8105 	case 0:
8106 		DBG_PRINT(ERR_DBG, "%s: NAPI disabled\n", dev->name);
8107 		break;
8108 	case 1:
8109 		DBG_PRINT(ERR_DBG, "%s: NAPI enabled\n", dev->name);
8110 		break;
8111 	}
8112 
8113 	DBG_PRINT(ERR_DBG, "%s: Using %d Tx fifo(s)\n", dev->name,
8114 		  sp->config.tx_fifo_num);
8115 
8116 	DBG_PRINT(ERR_DBG, "%s: Using %d Rx ring(s)\n", dev->name,
8117 		  sp->config.rx_ring_num);
8118 
8119 	switch (sp->config.intr_type) {
8120 	case INTA:
8121 		DBG_PRINT(ERR_DBG, "%s: Interrupt type INTA\n", dev->name);
8122 		break;
8123 	case MSI_X:
8124 		DBG_PRINT(ERR_DBG, "%s: Interrupt type MSI-X\n", dev->name);
8125 		break;
8126 	}
8127 	if (sp->config.multiq) {
8128 		for (i = 0; i < sp->config.tx_fifo_num; i++) {
8129 			struct fifo_info *fifo = &mac_control->fifos[i];
8130 
8131 			fifo->multiq = config->multiq;
8132 		}
8133 		DBG_PRINT(ERR_DBG, "%s: Multiqueue support enabled\n",
8134 			  dev->name);
8135 	} else
8136 		DBG_PRINT(ERR_DBG, "%s: Multiqueue support disabled\n",
8137 			  dev->name);
8138 
8139 	switch (sp->config.tx_steering_type) {
8140 	case NO_STEERING:
8141 		DBG_PRINT(ERR_DBG, "%s: No steering enabled for transmit\n",
8142 			  dev->name);
8143 		break;
8144 	case TX_PRIORITY_STEERING:
8145 		DBG_PRINT(ERR_DBG,
8146 			  "%s: Priority steering enabled for transmit\n",
8147 			  dev->name);
8148 		break;
8149 	case TX_DEFAULT_STEERING:
8150 		DBG_PRINT(ERR_DBG,
8151 			  "%s: Default steering enabled for transmit\n",
8152 			  dev->name);
8153 	}
8154 
8155 	DBG_PRINT(ERR_DBG, "%s: Large receive offload enabled\n",
8156 		  dev->name);
8157 	if (ufo)
8158 		DBG_PRINT(ERR_DBG,
8159 			  "%s: UDP Fragmentation Offload(UFO) enabled\n",
8160 			  dev->name);
8161 	/* Initialize device name */
8162 	sprintf(sp->name, "%s Neterion %s", dev->name, sp->product_name);
8163 
8164 	if (vlan_tag_strip)
8165 		sp->vlan_strip_flag = 1;
8166 	else
8167 		sp->vlan_strip_flag = 0;
8168 
8169 	/*
8170 	 * Make Link state as off at this point, when the Link change
8171 	 * interrupt comes the state will be automatically changed to
8172 	 * the right state.
8173 	 */
8174 	netif_carrier_off(dev);
8175 
8176 	return 0;
8177 
8178 register_failed:
8179 set_swap_failed:
8180 	iounmap(sp->bar1);
8181 bar1_remap_failed:
8182 	iounmap(sp->bar0);
8183 bar0_remap_failed:
8184 mem_alloc_failed:
8185 	free_shared_mem(sp);
8186 	pci_disable_device(pdev);
8187 	pci_release_regions(pdev);
8188 	free_netdev(dev);
8189 
8190 	return ret;
8191 }
8192 
8193 /**
8194  * s2io_rem_nic - Free the PCI device
8195  * @pdev: structure containing the PCI related information of the device.
8196  * Description: This function is called by the Pci subsystem to release a
8197  * PCI device and free up all resource held up by the device. This could
8198  * be in response to a Hot plug event or when the driver is to be removed
8199  * from memory.
8200  */
8201 
8202 static void s2io_rem_nic(struct pci_dev *pdev)
8203 {
8204 	struct net_device *dev = pci_get_drvdata(pdev);
8205 	struct s2io_nic *sp;
8206 
8207 	if (dev == NULL) {
8208 		DBG_PRINT(ERR_DBG, "Driver Data is NULL!!\n");
8209 		return;
8210 	}
8211 
8212 	sp = netdev_priv(dev);
8213 
8214 	cancel_work_sync(&sp->rst_timer_task);
8215 	cancel_work_sync(&sp->set_link_task);
8216 
8217 	unregister_netdev(dev);
8218 
8219 	free_shared_mem(sp);
8220 	iounmap(sp->bar0);
8221 	iounmap(sp->bar1);
8222 	pci_release_regions(pdev);
8223 	free_netdev(dev);
8224 	pci_disable_device(pdev);
8225 }
8226 
8227 /**
8228  * s2io_starter - Entry point for the driver
8229  * Description: This function is the entry point for the driver. It verifies
8230  * the module loadable parameters and initializes PCI configuration space.
8231  */
8232 
8233 static int __init s2io_starter(void)
8234 {
8235 	return pci_register_driver(&s2io_driver);
8236 }
8237 
8238 /**
8239  * s2io_closer - Cleanup routine for the driver
8240  * Description: This function is the cleanup routine for the driver. It
8241  * unregisters the driver.
8242  */
8243 
8244 static __exit void s2io_closer(void)
8245 {
8246 	pci_unregister_driver(&s2io_driver);
8247 	DBG_PRINT(INIT_DBG, "cleanup done\n");
8248 }
8249 
8250 module_init(s2io_starter);
8251 module_exit(s2io_closer);
8252 
8253 static int check_L2_lro_capable(u8 *buffer, struct iphdr **ip,
8254 				struct tcphdr **tcp, struct RxD_t *rxdp,
8255 				struct s2io_nic *sp)
8256 {
8257 	int ip_off;
8258 	u8 l2_type = (u8)((rxdp->Control_1 >> 37) & 0x7), ip_len;
8259 
8260 	if (!(rxdp->Control_1 & RXD_FRAME_PROTO_TCP)) {
8261 		DBG_PRINT(INIT_DBG,
8262 			  "%s: Non-TCP frames not supported for LRO\n",
8263 			  __func__);
8264 		return -1;
8265 	}
8266 
8267 	/* Checking for DIX type or DIX type with VLAN */
8268 	if ((l2_type == 0) || (l2_type == 4)) {
8269 		ip_off = HEADER_ETHERNET_II_802_3_SIZE;
8270 		/*
8271 		 * If vlan stripping is disabled and the frame is VLAN tagged,
8272 		 * shift the offset by the VLAN header size bytes.
8273 		 */
8274 		if ((!sp->vlan_strip_flag) &&
8275 		    (rxdp->Control_1 & RXD_FRAME_VLAN_TAG))
8276 			ip_off += HEADER_VLAN_SIZE;
8277 	} else {
8278 		/* LLC, SNAP etc are considered non-mergeable */
8279 		return -1;
8280 	}
8281 
8282 	*ip = (struct iphdr *)(buffer + ip_off);
8283 	ip_len = (u8)((*ip)->ihl);
8284 	ip_len <<= 2;
8285 	*tcp = (struct tcphdr *)((unsigned long)*ip + ip_len);
8286 
8287 	return 0;
8288 }
8289 
8290 static int check_for_socket_match(struct lro *lro, struct iphdr *ip,
8291 				  struct tcphdr *tcp)
8292 {
8293 	DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__);
8294 	if ((lro->iph->saddr != ip->saddr) ||
8295 	    (lro->iph->daddr != ip->daddr) ||
8296 	    (lro->tcph->source != tcp->source) ||
8297 	    (lro->tcph->dest != tcp->dest))
8298 		return -1;
8299 	return 0;
8300 }
8301 
8302 static inline int get_l4_pyld_length(struct iphdr *ip, struct tcphdr *tcp)
8303 {
8304 	return ntohs(ip->tot_len) - (ip->ihl << 2) - (tcp->doff << 2);
8305 }
8306 
8307 static void initiate_new_session(struct lro *lro, u8 *l2h,
8308 				 struct iphdr *ip, struct tcphdr *tcp,
8309 				 u32 tcp_pyld_len, u16 vlan_tag)
8310 {
8311 	DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__);
8312 	lro->l2h = l2h;
8313 	lro->iph = ip;
8314 	lro->tcph = tcp;
8315 	lro->tcp_next_seq = tcp_pyld_len + ntohl(tcp->seq);
8316 	lro->tcp_ack = tcp->ack_seq;
8317 	lro->sg_num = 1;
8318 	lro->total_len = ntohs(ip->tot_len);
8319 	lro->frags_len = 0;
8320 	lro->vlan_tag = vlan_tag;
8321 	/*
8322 	 * Check if we saw TCP timestamp.
8323 	 * Other consistency checks have already been done.
8324 	 */
8325 	if (tcp->doff == 8) {
8326 		__be32 *ptr;
8327 		ptr = (__be32 *)(tcp+1);
8328 		lro->saw_ts = 1;
8329 		lro->cur_tsval = ntohl(*(ptr+1));
8330 		lro->cur_tsecr = *(ptr+2);
8331 	}
8332 	lro->in_use = 1;
8333 }
8334 
8335 static void update_L3L4_header(struct s2io_nic *sp, struct lro *lro)
8336 {
8337 	struct iphdr *ip = lro->iph;
8338 	struct tcphdr *tcp = lro->tcph;
8339 	struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
8340 
8341 	DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__);
8342 
8343 	/* Update L3 header */
8344 	csum_replace2(&ip->check, ip->tot_len, htons(lro->total_len));
8345 	ip->tot_len = htons(lro->total_len);
8346 
8347 	/* Update L4 header */
8348 	tcp->ack_seq = lro->tcp_ack;
8349 	tcp->window = lro->window;
8350 
8351 	/* Update tsecr field if this session has timestamps enabled */
8352 	if (lro->saw_ts) {
8353 		__be32 *ptr = (__be32 *)(tcp + 1);
8354 		*(ptr+2) = lro->cur_tsecr;
8355 	}
8356 
8357 	/* Update counters required for calculation of
8358 	 * average no. of packets aggregated.
8359 	 */
8360 	swstats->sum_avg_pkts_aggregated += lro->sg_num;
8361 	swstats->num_aggregations++;
8362 }
8363 
8364 static void aggregate_new_rx(struct lro *lro, struct iphdr *ip,
8365 			     struct tcphdr *tcp, u32 l4_pyld)
8366 {
8367 	DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__);
8368 	lro->total_len += l4_pyld;
8369 	lro->frags_len += l4_pyld;
8370 	lro->tcp_next_seq += l4_pyld;
8371 	lro->sg_num++;
8372 
8373 	/* Update ack seq no. and window ad(from this pkt) in LRO object */
8374 	lro->tcp_ack = tcp->ack_seq;
8375 	lro->window = tcp->window;
8376 
8377 	if (lro->saw_ts) {
8378 		__be32 *ptr;
8379 		/* Update tsecr and tsval from this packet */
8380 		ptr = (__be32 *)(tcp+1);
8381 		lro->cur_tsval = ntohl(*(ptr+1));
8382 		lro->cur_tsecr = *(ptr + 2);
8383 	}
8384 }
8385 
8386 static int verify_l3_l4_lro_capable(struct lro *l_lro, struct iphdr *ip,
8387 				    struct tcphdr *tcp, u32 tcp_pyld_len)
8388 {
8389 	u8 *ptr;
8390 
8391 	DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__);
8392 
8393 	if (!tcp_pyld_len) {
8394 		/* Runt frame or a pure ack */
8395 		return -1;
8396 	}
8397 
8398 	if (ip->ihl != 5) /* IP has options */
8399 		return -1;
8400 
8401 	/* If we see CE codepoint in IP header, packet is not mergeable */
8402 	if (INET_ECN_is_ce(ipv4_get_dsfield(ip)))
8403 		return -1;
8404 
8405 	/* If we see ECE or CWR flags in TCP header, packet is not mergeable */
8406 	if (tcp->urg || tcp->psh || tcp->rst ||
8407 	    tcp->syn || tcp->fin ||
8408 	    tcp->ece || tcp->cwr || !tcp->ack) {
8409 		/*
8410 		 * Currently recognize only the ack control word and
8411 		 * any other control field being set would result in
8412 		 * flushing the LRO session
8413 		 */
8414 		return -1;
8415 	}
8416 
8417 	/*
8418 	 * Allow only one TCP timestamp option. Don't aggregate if
8419 	 * any other options are detected.
8420 	 */
8421 	if (tcp->doff != 5 && tcp->doff != 8)
8422 		return -1;
8423 
8424 	if (tcp->doff == 8) {
8425 		ptr = (u8 *)(tcp + 1);
8426 		while (*ptr == TCPOPT_NOP)
8427 			ptr++;
8428 		if (*ptr != TCPOPT_TIMESTAMP || *(ptr+1) != TCPOLEN_TIMESTAMP)
8429 			return -1;
8430 
8431 		/* Ensure timestamp value increases monotonically */
8432 		if (l_lro)
8433 			if (l_lro->cur_tsval > ntohl(*((__be32 *)(ptr+2))))
8434 				return -1;
8435 
8436 		/* timestamp echo reply should be non-zero */
8437 		if (*((__be32 *)(ptr+6)) == 0)
8438 			return -1;
8439 	}
8440 
8441 	return 0;
8442 }
8443 
8444 static int s2io_club_tcp_session(struct ring_info *ring_data, u8 *buffer,
8445 				 u8 **tcp, u32 *tcp_len, struct lro **lro,
8446 				 struct RxD_t *rxdp, struct s2io_nic *sp)
8447 {
8448 	struct iphdr *ip;
8449 	struct tcphdr *tcph;
8450 	int ret = 0, i;
8451 	u16 vlan_tag = 0;
8452 	struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
8453 
8454 	ret = check_L2_lro_capable(buffer, &ip, (struct tcphdr **)tcp,
8455 				   rxdp, sp);
8456 	if (ret)
8457 		return ret;
8458 
8459 	DBG_PRINT(INFO_DBG, "IP Saddr: %x Daddr: %x\n", ip->saddr, ip->daddr);
8460 
8461 	vlan_tag = RXD_GET_VLAN_TAG(rxdp->Control_2);
8462 	tcph = (struct tcphdr *)*tcp;
8463 	*tcp_len = get_l4_pyld_length(ip, tcph);
8464 	for (i = 0; i < MAX_LRO_SESSIONS; i++) {
8465 		struct lro *l_lro = &ring_data->lro0_n[i];
8466 		if (l_lro->in_use) {
8467 			if (check_for_socket_match(l_lro, ip, tcph))
8468 				continue;
8469 			/* Sock pair matched */
8470 			*lro = l_lro;
8471 
8472 			if ((*lro)->tcp_next_seq != ntohl(tcph->seq)) {
8473 				DBG_PRINT(INFO_DBG, "%s: Out of sequence. "
8474 					  "expected 0x%x, actual 0x%x\n",
8475 					  __func__,
8476 					  (*lro)->tcp_next_seq,
8477 					  ntohl(tcph->seq));
8478 
8479 				swstats->outof_sequence_pkts++;
8480 				ret = 2;
8481 				break;
8482 			}
8483 
8484 			if (!verify_l3_l4_lro_capable(l_lro, ip, tcph,
8485 						      *tcp_len))
8486 				ret = 1; /* Aggregate */
8487 			else
8488 				ret = 2; /* Flush both */
8489 			break;
8490 		}
8491 	}
8492 
8493 	if (ret == 0) {
8494 		/* Before searching for available LRO objects,
8495 		 * check if the pkt is L3/L4 aggregatable. If not
8496 		 * don't create new LRO session. Just send this
8497 		 * packet up.
8498 		 */
8499 		if (verify_l3_l4_lro_capable(NULL, ip, tcph, *tcp_len))
8500 			return 5;
8501 
8502 		for (i = 0; i < MAX_LRO_SESSIONS; i++) {
8503 			struct lro *l_lro = &ring_data->lro0_n[i];
8504 			if (!(l_lro->in_use)) {
8505 				*lro = l_lro;
8506 				ret = 3; /* Begin anew */
8507 				break;
8508 			}
8509 		}
8510 	}
8511 
8512 	if (ret == 0) { /* sessions exceeded */
8513 		DBG_PRINT(INFO_DBG, "%s: All LRO sessions already in use\n",
8514 			  __func__);
8515 		*lro = NULL;
8516 		return ret;
8517 	}
8518 
8519 	switch (ret) {
8520 	case 3:
8521 		initiate_new_session(*lro, buffer, ip, tcph, *tcp_len,
8522 				     vlan_tag);
8523 		break;
8524 	case 2:
8525 		update_L3L4_header(sp, *lro);
8526 		break;
8527 	case 1:
8528 		aggregate_new_rx(*lro, ip, tcph, *tcp_len);
8529 		if ((*lro)->sg_num == sp->lro_max_aggr_per_sess) {
8530 			update_L3L4_header(sp, *lro);
8531 			ret = 4; /* Flush the LRO */
8532 		}
8533 		break;
8534 	default:
8535 		DBG_PRINT(ERR_DBG, "%s: Don't know, can't say!!\n", __func__);
8536 		break;
8537 	}
8538 
8539 	return ret;
8540 }
8541 
8542 static void clear_lro_session(struct lro *lro)
8543 {
8544 	static u16 lro_struct_size = sizeof(struct lro);
8545 
8546 	memset(lro, 0, lro_struct_size);
8547 }
8548 
8549 static void queue_rx_frame(struct sk_buff *skb, u16 vlan_tag)
8550 {
8551 	struct net_device *dev = skb->dev;
8552 	struct s2io_nic *sp = netdev_priv(dev);
8553 
8554 	skb->protocol = eth_type_trans(skb, dev);
8555 	if (vlan_tag && sp->vlan_strip_flag)
8556 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag);
8557 	if (sp->config.napi)
8558 		netif_receive_skb(skb);
8559 	else
8560 		netif_rx(skb);
8561 }
8562 
8563 static void lro_append_pkt(struct s2io_nic *sp, struct lro *lro,
8564 			   struct sk_buff *skb, u32 tcp_len)
8565 {
8566 	struct sk_buff *first = lro->parent;
8567 	struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
8568 
8569 	first->len += tcp_len;
8570 	first->data_len = lro->frags_len;
8571 	skb_pull(skb, (skb->len - tcp_len));
8572 	if (skb_shinfo(first)->frag_list)
8573 		lro->last_frag->next = skb;
8574 	else
8575 		skb_shinfo(first)->frag_list = skb;
8576 	first->truesize += skb->truesize;
8577 	lro->last_frag = skb;
8578 	swstats->clubbed_frms_cnt++;
8579 }
8580 
8581 /**
8582  * s2io_io_error_detected - called when PCI error is detected
8583  * @pdev: Pointer to PCI device
8584  * @state: The current pci connection state
8585  *
8586  * This function is called after a PCI bus error affecting
8587  * this device has been detected.
8588  */
8589 static pci_ers_result_t s2io_io_error_detected(struct pci_dev *pdev,
8590 					       pci_channel_state_t state)
8591 {
8592 	struct net_device *netdev = pci_get_drvdata(pdev);
8593 	struct s2io_nic *sp = netdev_priv(netdev);
8594 
8595 	netif_device_detach(netdev);
8596 
8597 	if (state == pci_channel_io_perm_failure)
8598 		return PCI_ERS_RESULT_DISCONNECT;
8599 
8600 	if (netif_running(netdev)) {
8601 		/* Bring down the card, while avoiding PCI I/O */
8602 		do_s2io_card_down(sp, 0);
8603 	}
8604 	pci_disable_device(pdev);
8605 
8606 	return PCI_ERS_RESULT_NEED_RESET;
8607 }
8608 
8609 /**
8610  * s2io_io_slot_reset - called after the pci bus has been reset.
8611  * @pdev: Pointer to PCI device
8612  *
8613  * Restart the card from scratch, as if from a cold-boot.
8614  * At this point, the card has exprienced a hard reset,
8615  * followed by fixups by BIOS, and has its config space
8616  * set up identically to what it was at cold boot.
8617  */
8618 static pci_ers_result_t s2io_io_slot_reset(struct pci_dev *pdev)
8619 {
8620 	struct net_device *netdev = pci_get_drvdata(pdev);
8621 	struct s2io_nic *sp = netdev_priv(netdev);
8622 
8623 	if (pci_enable_device(pdev)) {
8624 		pr_err("Cannot re-enable PCI device after reset.\n");
8625 		return PCI_ERS_RESULT_DISCONNECT;
8626 	}
8627 
8628 	pci_set_master(pdev);
8629 	s2io_reset(sp);
8630 
8631 	return PCI_ERS_RESULT_RECOVERED;
8632 }
8633 
8634 /**
8635  * s2io_io_resume - called when traffic can start flowing again.
8636  * @pdev: Pointer to PCI device
8637  *
8638  * This callback is called when the error recovery driver tells
8639  * us that its OK to resume normal operation.
8640  */
8641 static void s2io_io_resume(struct pci_dev *pdev)
8642 {
8643 	struct net_device *netdev = pci_get_drvdata(pdev);
8644 	struct s2io_nic *sp = netdev_priv(netdev);
8645 
8646 	if (netif_running(netdev)) {
8647 		if (s2io_card_up(sp)) {
8648 			pr_err("Can't bring device back up after reset.\n");
8649 			return;
8650 		}
8651 
8652 		if (s2io_set_mac_addr(netdev, netdev->dev_addr) == FAILURE) {
8653 			s2io_card_down(sp);
8654 			pr_err("Can't restore mac addr after reset.\n");
8655 			return;
8656 		}
8657 	}
8658 
8659 	netif_device_attach(netdev);
8660 	netif_tx_wake_all_queues(netdev);
8661 }
8662