1 /************************************************************************ 2 * s2io.c: A Linux PCI-X Ethernet driver for Neterion 10GbE Server NIC 3 * Copyright(c) 2002-2010 Exar Corp. 4 * 5 * This software may be used and distributed according to the terms of 6 * the GNU General Public License (GPL), incorporated herein by reference. 7 * Drivers based on or derived from this code fall under the GPL and must 8 * retain the authorship, copyright and license notice. This file is not 9 * a complete program and may only be used when the entire operating 10 * system is licensed under the GPL. 11 * See the file COPYING in this distribution for more information. 12 * 13 * Credits: 14 * Jeff Garzik : For pointing out the improper error condition 15 * check in the s2io_xmit routine and also some 16 * issues in the Tx watch dog function. Also for 17 * patiently answering all those innumerable 18 * questions regaring the 2.6 porting issues. 19 * Stephen Hemminger : Providing proper 2.6 porting mechanism for some 20 * macros available only in 2.6 Kernel. 21 * Francois Romieu : For pointing out all code part that were 22 * deprecated and also styling related comments. 23 * Grant Grundler : For helping me get rid of some Architecture 24 * dependent code. 25 * Christopher Hellwig : Some more 2.6 specific issues in the driver. 26 * 27 * The module loadable parameters that are supported by the driver and a brief 28 * explanation of all the variables. 29 * 30 * rx_ring_num : This can be used to program the number of receive rings used 31 * in the driver. 32 * rx_ring_sz: This defines the number of receive blocks each ring can have. 33 * This is also an array of size 8. 34 * rx_ring_mode: This defines the operation mode of all 8 rings. The valid 35 * values are 1, 2. 36 * tx_fifo_num: This defines the number of Tx FIFOs thats used int the driver. 37 * tx_fifo_len: This too is an array of 8. Each element defines the number of 38 * Tx descriptors that can be associated with each corresponding FIFO. 39 * intr_type: This defines the type of interrupt. The values can be 0(INTA), 40 * 2(MSI_X). Default value is '2(MSI_X)' 41 * lro_max_pkts: This parameter defines maximum number of packets can be 42 * aggregated as a single large packet 43 * napi: This parameter used to enable/disable NAPI (polling Rx) 44 * Possible values '1' for enable and '0' for disable. Default is '1' 45 * ufo: This parameter used to enable/disable UDP Fragmentation Offload(UFO) 46 * Possible values '1' for enable and '0' for disable. Default is '0' 47 * vlan_tag_strip: This can be used to enable or disable vlan stripping. 48 * Possible values '1' for enable , '0' for disable. 49 * Default is '2' - which means disable in promisc mode 50 * and enable in non-promiscuous mode. 51 * multiq: This parameter used to enable/disable MULTIQUEUE support. 52 * Possible values '1' for enable and '0' for disable. Default is '0' 53 ************************************************************************/ 54 55 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 56 57 #include <linux/module.h> 58 #include <linux/types.h> 59 #include <linux/errno.h> 60 #include <linux/ioport.h> 61 #include <linux/pci.h> 62 #include <linux/dma-mapping.h> 63 #include <linux/kernel.h> 64 #include <linux/netdevice.h> 65 #include <linux/etherdevice.h> 66 #include <linux/mdio.h> 67 #include <linux/skbuff.h> 68 #include <linux/init.h> 69 #include <linux/delay.h> 70 #include <linux/stddef.h> 71 #include <linux/ioctl.h> 72 #include <linux/timex.h> 73 #include <linux/ethtool.h> 74 #include <linux/workqueue.h> 75 #include <linux/if_vlan.h> 76 #include <linux/ip.h> 77 #include <linux/tcp.h> 78 #include <linux/uaccess.h> 79 #include <linux/io.h> 80 #include <linux/slab.h> 81 #include <linux/prefetch.h> 82 #include <net/tcp.h> 83 #include <net/checksum.h> 84 85 #include <asm/div64.h> 86 #include <asm/irq.h> 87 88 /* local include */ 89 #include "s2io.h" 90 #include "s2io-regs.h" 91 92 #define DRV_VERSION "2.0.26.28" 93 94 /* S2io Driver name & version. */ 95 static const char s2io_driver_name[] = "Neterion"; 96 static const char s2io_driver_version[] = DRV_VERSION; 97 98 static const int rxd_size[2] = {32, 48}; 99 static const int rxd_count[2] = {127, 85}; 100 101 static inline int RXD_IS_UP2DT(struct RxD_t *rxdp) 102 { 103 int ret; 104 105 ret = ((!(rxdp->Control_1 & RXD_OWN_XENA)) && 106 (GET_RXD_MARKER(rxdp->Control_2) != THE_RXD_MARK)); 107 108 return ret; 109 } 110 111 /* 112 * Cards with following subsystem_id have a link state indication 113 * problem, 600B, 600C, 600D, 640B, 640C and 640D. 114 * macro below identifies these cards given the subsystem_id. 115 */ 116 #define CARDS_WITH_FAULTY_LINK_INDICATORS(dev_type, subid) \ 117 (dev_type == XFRAME_I_DEVICE) ? \ 118 ((((subid >= 0x600B) && (subid <= 0x600D)) || \ 119 ((subid >= 0x640B) && (subid <= 0x640D))) ? 1 : 0) : 0 120 121 #define LINK_IS_UP(val64) (!(val64 & (ADAPTER_STATUS_RMAC_REMOTE_FAULT | \ 122 ADAPTER_STATUS_RMAC_LOCAL_FAULT))) 123 124 static inline int is_s2io_card_up(const struct s2io_nic *sp) 125 { 126 return test_bit(__S2IO_STATE_CARD_UP, &sp->state); 127 } 128 129 /* Ethtool related variables and Macros. */ 130 static const char s2io_gstrings[][ETH_GSTRING_LEN] = { 131 "Register test\t(offline)", 132 "Eeprom test\t(offline)", 133 "Link test\t(online)", 134 "RLDRAM test\t(offline)", 135 "BIST Test\t(offline)" 136 }; 137 138 static const char ethtool_xena_stats_keys[][ETH_GSTRING_LEN] = { 139 {"tmac_frms"}, 140 {"tmac_data_octets"}, 141 {"tmac_drop_frms"}, 142 {"tmac_mcst_frms"}, 143 {"tmac_bcst_frms"}, 144 {"tmac_pause_ctrl_frms"}, 145 {"tmac_ttl_octets"}, 146 {"tmac_ucst_frms"}, 147 {"tmac_nucst_frms"}, 148 {"tmac_any_err_frms"}, 149 {"tmac_ttl_less_fb_octets"}, 150 {"tmac_vld_ip_octets"}, 151 {"tmac_vld_ip"}, 152 {"tmac_drop_ip"}, 153 {"tmac_icmp"}, 154 {"tmac_rst_tcp"}, 155 {"tmac_tcp"}, 156 {"tmac_udp"}, 157 {"rmac_vld_frms"}, 158 {"rmac_data_octets"}, 159 {"rmac_fcs_err_frms"}, 160 {"rmac_drop_frms"}, 161 {"rmac_vld_mcst_frms"}, 162 {"rmac_vld_bcst_frms"}, 163 {"rmac_in_rng_len_err_frms"}, 164 {"rmac_out_rng_len_err_frms"}, 165 {"rmac_long_frms"}, 166 {"rmac_pause_ctrl_frms"}, 167 {"rmac_unsup_ctrl_frms"}, 168 {"rmac_ttl_octets"}, 169 {"rmac_accepted_ucst_frms"}, 170 {"rmac_accepted_nucst_frms"}, 171 {"rmac_discarded_frms"}, 172 {"rmac_drop_events"}, 173 {"rmac_ttl_less_fb_octets"}, 174 {"rmac_ttl_frms"}, 175 {"rmac_usized_frms"}, 176 {"rmac_osized_frms"}, 177 {"rmac_frag_frms"}, 178 {"rmac_jabber_frms"}, 179 {"rmac_ttl_64_frms"}, 180 {"rmac_ttl_65_127_frms"}, 181 {"rmac_ttl_128_255_frms"}, 182 {"rmac_ttl_256_511_frms"}, 183 {"rmac_ttl_512_1023_frms"}, 184 {"rmac_ttl_1024_1518_frms"}, 185 {"rmac_ip"}, 186 {"rmac_ip_octets"}, 187 {"rmac_hdr_err_ip"}, 188 {"rmac_drop_ip"}, 189 {"rmac_icmp"}, 190 {"rmac_tcp"}, 191 {"rmac_udp"}, 192 {"rmac_err_drp_udp"}, 193 {"rmac_xgmii_err_sym"}, 194 {"rmac_frms_q0"}, 195 {"rmac_frms_q1"}, 196 {"rmac_frms_q2"}, 197 {"rmac_frms_q3"}, 198 {"rmac_frms_q4"}, 199 {"rmac_frms_q5"}, 200 {"rmac_frms_q6"}, 201 {"rmac_frms_q7"}, 202 {"rmac_full_q0"}, 203 {"rmac_full_q1"}, 204 {"rmac_full_q2"}, 205 {"rmac_full_q3"}, 206 {"rmac_full_q4"}, 207 {"rmac_full_q5"}, 208 {"rmac_full_q6"}, 209 {"rmac_full_q7"}, 210 {"rmac_pause_cnt"}, 211 {"rmac_xgmii_data_err_cnt"}, 212 {"rmac_xgmii_ctrl_err_cnt"}, 213 {"rmac_accepted_ip"}, 214 {"rmac_err_tcp"}, 215 {"rd_req_cnt"}, 216 {"new_rd_req_cnt"}, 217 {"new_rd_req_rtry_cnt"}, 218 {"rd_rtry_cnt"}, 219 {"wr_rtry_rd_ack_cnt"}, 220 {"wr_req_cnt"}, 221 {"new_wr_req_cnt"}, 222 {"new_wr_req_rtry_cnt"}, 223 {"wr_rtry_cnt"}, 224 {"wr_disc_cnt"}, 225 {"rd_rtry_wr_ack_cnt"}, 226 {"txp_wr_cnt"}, 227 {"txd_rd_cnt"}, 228 {"txd_wr_cnt"}, 229 {"rxd_rd_cnt"}, 230 {"rxd_wr_cnt"}, 231 {"txf_rd_cnt"}, 232 {"rxf_wr_cnt"} 233 }; 234 235 static const char ethtool_enhanced_stats_keys[][ETH_GSTRING_LEN] = { 236 {"rmac_ttl_1519_4095_frms"}, 237 {"rmac_ttl_4096_8191_frms"}, 238 {"rmac_ttl_8192_max_frms"}, 239 {"rmac_ttl_gt_max_frms"}, 240 {"rmac_osized_alt_frms"}, 241 {"rmac_jabber_alt_frms"}, 242 {"rmac_gt_max_alt_frms"}, 243 {"rmac_vlan_frms"}, 244 {"rmac_len_discard"}, 245 {"rmac_fcs_discard"}, 246 {"rmac_pf_discard"}, 247 {"rmac_da_discard"}, 248 {"rmac_red_discard"}, 249 {"rmac_rts_discard"}, 250 {"rmac_ingm_full_discard"}, 251 {"link_fault_cnt"} 252 }; 253 254 static const char ethtool_driver_stats_keys[][ETH_GSTRING_LEN] = { 255 {"\n DRIVER STATISTICS"}, 256 {"single_bit_ecc_errs"}, 257 {"double_bit_ecc_errs"}, 258 {"parity_err_cnt"}, 259 {"serious_err_cnt"}, 260 {"soft_reset_cnt"}, 261 {"fifo_full_cnt"}, 262 {"ring_0_full_cnt"}, 263 {"ring_1_full_cnt"}, 264 {"ring_2_full_cnt"}, 265 {"ring_3_full_cnt"}, 266 {"ring_4_full_cnt"}, 267 {"ring_5_full_cnt"}, 268 {"ring_6_full_cnt"}, 269 {"ring_7_full_cnt"}, 270 {"alarm_transceiver_temp_high"}, 271 {"alarm_transceiver_temp_low"}, 272 {"alarm_laser_bias_current_high"}, 273 {"alarm_laser_bias_current_low"}, 274 {"alarm_laser_output_power_high"}, 275 {"alarm_laser_output_power_low"}, 276 {"warn_transceiver_temp_high"}, 277 {"warn_transceiver_temp_low"}, 278 {"warn_laser_bias_current_high"}, 279 {"warn_laser_bias_current_low"}, 280 {"warn_laser_output_power_high"}, 281 {"warn_laser_output_power_low"}, 282 {"lro_aggregated_pkts"}, 283 {"lro_flush_both_count"}, 284 {"lro_out_of_sequence_pkts"}, 285 {"lro_flush_due_to_max_pkts"}, 286 {"lro_avg_aggr_pkts"}, 287 {"mem_alloc_fail_cnt"}, 288 {"pci_map_fail_cnt"}, 289 {"watchdog_timer_cnt"}, 290 {"mem_allocated"}, 291 {"mem_freed"}, 292 {"link_up_cnt"}, 293 {"link_down_cnt"}, 294 {"link_up_time"}, 295 {"link_down_time"}, 296 {"tx_tcode_buf_abort_cnt"}, 297 {"tx_tcode_desc_abort_cnt"}, 298 {"tx_tcode_parity_err_cnt"}, 299 {"tx_tcode_link_loss_cnt"}, 300 {"tx_tcode_list_proc_err_cnt"}, 301 {"rx_tcode_parity_err_cnt"}, 302 {"rx_tcode_abort_cnt"}, 303 {"rx_tcode_parity_abort_cnt"}, 304 {"rx_tcode_rda_fail_cnt"}, 305 {"rx_tcode_unkn_prot_cnt"}, 306 {"rx_tcode_fcs_err_cnt"}, 307 {"rx_tcode_buf_size_err_cnt"}, 308 {"rx_tcode_rxd_corrupt_cnt"}, 309 {"rx_tcode_unkn_err_cnt"}, 310 {"tda_err_cnt"}, 311 {"pfc_err_cnt"}, 312 {"pcc_err_cnt"}, 313 {"tti_err_cnt"}, 314 {"tpa_err_cnt"}, 315 {"sm_err_cnt"}, 316 {"lso_err_cnt"}, 317 {"mac_tmac_err_cnt"}, 318 {"mac_rmac_err_cnt"}, 319 {"xgxs_txgxs_err_cnt"}, 320 {"xgxs_rxgxs_err_cnt"}, 321 {"rc_err_cnt"}, 322 {"prc_pcix_err_cnt"}, 323 {"rpa_err_cnt"}, 324 {"rda_err_cnt"}, 325 {"rti_err_cnt"}, 326 {"mc_err_cnt"} 327 }; 328 329 #define S2IO_XENA_STAT_LEN ARRAY_SIZE(ethtool_xena_stats_keys) 330 #define S2IO_ENHANCED_STAT_LEN ARRAY_SIZE(ethtool_enhanced_stats_keys) 331 #define S2IO_DRIVER_STAT_LEN ARRAY_SIZE(ethtool_driver_stats_keys) 332 333 #define XFRAME_I_STAT_LEN (S2IO_XENA_STAT_LEN + S2IO_DRIVER_STAT_LEN) 334 #define XFRAME_II_STAT_LEN (XFRAME_I_STAT_LEN + S2IO_ENHANCED_STAT_LEN) 335 336 #define XFRAME_I_STAT_STRINGS_LEN (XFRAME_I_STAT_LEN * ETH_GSTRING_LEN) 337 #define XFRAME_II_STAT_STRINGS_LEN (XFRAME_II_STAT_LEN * ETH_GSTRING_LEN) 338 339 #define S2IO_TEST_LEN ARRAY_SIZE(s2io_gstrings) 340 #define S2IO_STRINGS_LEN (S2IO_TEST_LEN * ETH_GSTRING_LEN) 341 342 #define S2IO_TIMER_CONF(timer, handle, arg, exp) \ 343 init_timer(&timer); \ 344 timer.function = handle; \ 345 timer.data = (unsigned long)arg; \ 346 mod_timer(&timer, (jiffies + exp)) \ 347 348 /* copy mac addr to def_mac_addr array */ 349 static void do_s2io_copy_mac_addr(struct s2io_nic *sp, int offset, u64 mac_addr) 350 { 351 sp->def_mac_addr[offset].mac_addr[5] = (u8) (mac_addr); 352 sp->def_mac_addr[offset].mac_addr[4] = (u8) (mac_addr >> 8); 353 sp->def_mac_addr[offset].mac_addr[3] = (u8) (mac_addr >> 16); 354 sp->def_mac_addr[offset].mac_addr[2] = (u8) (mac_addr >> 24); 355 sp->def_mac_addr[offset].mac_addr[1] = (u8) (mac_addr >> 32); 356 sp->def_mac_addr[offset].mac_addr[0] = (u8) (mac_addr >> 40); 357 } 358 359 /* 360 * Constants to be programmed into the Xena's registers, to configure 361 * the XAUI. 362 */ 363 364 #define END_SIGN 0x0 365 static const u64 herc_act_dtx_cfg[] = { 366 /* Set address */ 367 0x8000051536750000ULL, 0x80000515367500E0ULL, 368 /* Write data */ 369 0x8000051536750004ULL, 0x80000515367500E4ULL, 370 /* Set address */ 371 0x80010515003F0000ULL, 0x80010515003F00E0ULL, 372 /* Write data */ 373 0x80010515003F0004ULL, 0x80010515003F00E4ULL, 374 /* Set address */ 375 0x801205150D440000ULL, 0x801205150D4400E0ULL, 376 /* Write data */ 377 0x801205150D440004ULL, 0x801205150D4400E4ULL, 378 /* Set address */ 379 0x80020515F2100000ULL, 0x80020515F21000E0ULL, 380 /* Write data */ 381 0x80020515F2100004ULL, 0x80020515F21000E4ULL, 382 /* Done */ 383 END_SIGN 384 }; 385 386 static const u64 xena_dtx_cfg[] = { 387 /* Set address */ 388 0x8000051500000000ULL, 0x80000515000000E0ULL, 389 /* Write data */ 390 0x80000515D9350004ULL, 0x80000515D93500E4ULL, 391 /* Set address */ 392 0x8001051500000000ULL, 0x80010515000000E0ULL, 393 /* Write data */ 394 0x80010515001E0004ULL, 0x80010515001E00E4ULL, 395 /* Set address */ 396 0x8002051500000000ULL, 0x80020515000000E0ULL, 397 /* Write data */ 398 0x80020515F2100004ULL, 0x80020515F21000E4ULL, 399 END_SIGN 400 }; 401 402 /* 403 * Constants for Fixing the MacAddress problem seen mostly on 404 * Alpha machines. 405 */ 406 static const u64 fix_mac[] = { 407 0x0060000000000000ULL, 0x0060600000000000ULL, 408 0x0040600000000000ULL, 0x0000600000000000ULL, 409 0x0020600000000000ULL, 0x0060600000000000ULL, 410 0x0020600000000000ULL, 0x0060600000000000ULL, 411 0x0020600000000000ULL, 0x0060600000000000ULL, 412 0x0020600000000000ULL, 0x0060600000000000ULL, 413 0x0020600000000000ULL, 0x0060600000000000ULL, 414 0x0020600000000000ULL, 0x0060600000000000ULL, 415 0x0020600000000000ULL, 0x0060600000000000ULL, 416 0x0020600000000000ULL, 0x0060600000000000ULL, 417 0x0020600000000000ULL, 0x0060600000000000ULL, 418 0x0020600000000000ULL, 0x0060600000000000ULL, 419 0x0020600000000000ULL, 0x0000600000000000ULL, 420 0x0040600000000000ULL, 0x0060600000000000ULL, 421 END_SIGN 422 }; 423 424 MODULE_LICENSE("GPL"); 425 MODULE_VERSION(DRV_VERSION); 426 427 428 /* Module Loadable parameters. */ 429 S2IO_PARM_INT(tx_fifo_num, FIFO_DEFAULT_NUM); 430 S2IO_PARM_INT(rx_ring_num, 1); 431 S2IO_PARM_INT(multiq, 0); 432 S2IO_PARM_INT(rx_ring_mode, 1); 433 S2IO_PARM_INT(use_continuous_tx_intrs, 1); 434 S2IO_PARM_INT(rmac_pause_time, 0x100); 435 S2IO_PARM_INT(mc_pause_threshold_q0q3, 187); 436 S2IO_PARM_INT(mc_pause_threshold_q4q7, 187); 437 S2IO_PARM_INT(shared_splits, 0); 438 S2IO_PARM_INT(tmac_util_period, 5); 439 S2IO_PARM_INT(rmac_util_period, 5); 440 S2IO_PARM_INT(l3l4hdr_size, 128); 441 /* 0 is no steering, 1 is Priority steering, 2 is Default steering */ 442 S2IO_PARM_INT(tx_steering_type, TX_DEFAULT_STEERING); 443 /* Frequency of Rx desc syncs expressed as power of 2 */ 444 S2IO_PARM_INT(rxsync_frequency, 3); 445 /* Interrupt type. Values can be 0(INTA), 2(MSI_X) */ 446 S2IO_PARM_INT(intr_type, 2); 447 /* Large receive offload feature */ 448 449 /* Max pkts to be aggregated by LRO at one time. If not specified, 450 * aggregation happens until we hit max IP pkt size(64K) 451 */ 452 S2IO_PARM_INT(lro_max_pkts, 0xFFFF); 453 S2IO_PARM_INT(indicate_max_pkts, 0); 454 455 S2IO_PARM_INT(napi, 1); 456 S2IO_PARM_INT(ufo, 0); 457 S2IO_PARM_INT(vlan_tag_strip, NO_STRIP_IN_PROMISC); 458 459 static unsigned int tx_fifo_len[MAX_TX_FIFOS] = 460 {DEFAULT_FIFO_0_LEN, [1 ...(MAX_TX_FIFOS - 1)] = DEFAULT_FIFO_1_7_LEN}; 461 static unsigned int rx_ring_sz[MAX_RX_RINGS] = 462 {[0 ...(MAX_RX_RINGS - 1)] = SMALL_BLK_CNT}; 463 static unsigned int rts_frm_len[MAX_RX_RINGS] = 464 {[0 ...(MAX_RX_RINGS - 1)] = 0 }; 465 466 module_param_array(tx_fifo_len, uint, NULL, 0); 467 module_param_array(rx_ring_sz, uint, NULL, 0); 468 module_param_array(rts_frm_len, uint, NULL, 0); 469 470 /* 471 * S2IO device table. 472 * This table lists all the devices that this driver supports. 473 */ 474 static DEFINE_PCI_DEVICE_TABLE(s2io_tbl) = { 475 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_WIN, 476 PCI_ANY_ID, PCI_ANY_ID}, 477 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_UNI, 478 PCI_ANY_ID, PCI_ANY_ID}, 479 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_WIN, 480 PCI_ANY_ID, PCI_ANY_ID}, 481 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_UNI, 482 PCI_ANY_ID, PCI_ANY_ID}, 483 {0,} 484 }; 485 486 MODULE_DEVICE_TABLE(pci, s2io_tbl); 487 488 static const struct pci_error_handlers s2io_err_handler = { 489 .error_detected = s2io_io_error_detected, 490 .slot_reset = s2io_io_slot_reset, 491 .resume = s2io_io_resume, 492 }; 493 494 static struct pci_driver s2io_driver = { 495 .name = "S2IO", 496 .id_table = s2io_tbl, 497 .probe = s2io_init_nic, 498 .remove = s2io_rem_nic, 499 .err_handler = &s2io_err_handler, 500 }; 501 502 /* A simplifier macro used both by init and free shared_mem Fns(). */ 503 #define TXD_MEM_PAGE_CNT(len, per_each) ((len+per_each - 1) / per_each) 504 505 /* netqueue manipulation helper functions */ 506 static inline void s2io_stop_all_tx_queue(struct s2io_nic *sp) 507 { 508 if (!sp->config.multiq) { 509 int i; 510 511 for (i = 0; i < sp->config.tx_fifo_num; i++) 512 sp->mac_control.fifos[i].queue_state = FIFO_QUEUE_STOP; 513 } 514 netif_tx_stop_all_queues(sp->dev); 515 } 516 517 static inline void s2io_stop_tx_queue(struct s2io_nic *sp, int fifo_no) 518 { 519 if (!sp->config.multiq) 520 sp->mac_control.fifos[fifo_no].queue_state = 521 FIFO_QUEUE_STOP; 522 523 netif_tx_stop_all_queues(sp->dev); 524 } 525 526 static inline void s2io_start_all_tx_queue(struct s2io_nic *sp) 527 { 528 if (!sp->config.multiq) { 529 int i; 530 531 for (i = 0; i < sp->config.tx_fifo_num; i++) 532 sp->mac_control.fifos[i].queue_state = FIFO_QUEUE_START; 533 } 534 netif_tx_start_all_queues(sp->dev); 535 } 536 537 static inline void s2io_start_tx_queue(struct s2io_nic *sp, int fifo_no) 538 { 539 if (!sp->config.multiq) 540 sp->mac_control.fifos[fifo_no].queue_state = 541 FIFO_QUEUE_START; 542 543 netif_tx_start_all_queues(sp->dev); 544 } 545 546 static inline void s2io_wake_all_tx_queue(struct s2io_nic *sp) 547 { 548 if (!sp->config.multiq) { 549 int i; 550 551 for (i = 0; i < sp->config.tx_fifo_num; i++) 552 sp->mac_control.fifos[i].queue_state = FIFO_QUEUE_START; 553 } 554 netif_tx_wake_all_queues(sp->dev); 555 } 556 557 static inline void s2io_wake_tx_queue( 558 struct fifo_info *fifo, int cnt, u8 multiq) 559 { 560 561 if (multiq) { 562 if (cnt && __netif_subqueue_stopped(fifo->dev, fifo->fifo_no)) 563 netif_wake_subqueue(fifo->dev, fifo->fifo_no); 564 } else if (cnt && (fifo->queue_state == FIFO_QUEUE_STOP)) { 565 if (netif_queue_stopped(fifo->dev)) { 566 fifo->queue_state = FIFO_QUEUE_START; 567 netif_wake_queue(fifo->dev); 568 } 569 } 570 } 571 572 /** 573 * init_shared_mem - Allocation and Initialization of Memory 574 * @nic: Device private variable. 575 * Description: The function allocates all the memory areas shared 576 * between the NIC and the driver. This includes Tx descriptors, 577 * Rx descriptors and the statistics block. 578 */ 579 580 static int init_shared_mem(struct s2io_nic *nic) 581 { 582 u32 size; 583 void *tmp_v_addr, *tmp_v_addr_next; 584 dma_addr_t tmp_p_addr, tmp_p_addr_next; 585 struct RxD_block *pre_rxd_blk = NULL; 586 int i, j, blk_cnt; 587 int lst_size, lst_per_page; 588 struct net_device *dev = nic->dev; 589 unsigned long tmp; 590 struct buffAdd *ba; 591 struct config_param *config = &nic->config; 592 struct mac_info *mac_control = &nic->mac_control; 593 unsigned long long mem_allocated = 0; 594 595 /* Allocation and initialization of TXDLs in FIFOs */ 596 size = 0; 597 for (i = 0; i < config->tx_fifo_num; i++) { 598 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i]; 599 600 size += tx_cfg->fifo_len; 601 } 602 if (size > MAX_AVAILABLE_TXDS) { 603 DBG_PRINT(ERR_DBG, 604 "Too many TxDs requested: %d, max supported: %d\n", 605 size, MAX_AVAILABLE_TXDS); 606 return -EINVAL; 607 } 608 609 size = 0; 610 for (i = 0; i < config->tx_fifo_num; i++) { 611 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i]; 612 613 size = tx_cfg->fifo_len; 614 /* 615 * Legal values are from 2 to 8192 616 */ 617 if (size < 2) { 618 DBG_PRINT(ERR_DBG, "Fifo %d: Invalid length (%d) - " 619 "Valid lengths are 2 through 8192\n", 620 i, size); 621 return -EINVAL; 622 } 623 } 624 625 lst_size = (sizeof(struct TxD) * config->max_txds); 626 lst_per_page = PAGE_SIZE / lst_size; 627 628 for (i = 0; i < config->tx_fifo_num; i++) { 629 struct fifo_info *fifo = &mac_control->fifos[i]; 630 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i]; 631 int fifo_len = tx_cfg->fifo_len; 632 int list_holder_size = fifo_len * sizeof(struct list_info_hold); 633 634 fifo->list_info = kzalloc(list_holder_size, GFP_KERNEL); 635 if (!fifo->list_info) { 636 DBG_PRINT(INFO_DBG, "Malloc failed for list_info\n"); 637 return -ENOMEM; 638 } 639 mem_allocated += list_holder_size; 640 } 641 for (i = 0; i < config->tx_fifo_num; i++) { 642 int page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len, 643 lst_per_page); 644 struct fifo_info *fifo = &mac_control->fifos[i]; 645 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i]; 646 647 fifo->tx_curr_put_info.offset = 0; 648 fifo->tx_curr_put_info.fifo_len = tx_cfg->fifo_len - 1; 649 fifo->tx_curr_get_info.offset = 0; 650 fifo->tx_curr_get_info.fifo_len = tx_cfg->fifo_len - 1; 651 fifo->fifo_no = i; 652 fifo->nic = nic; 653 fifo->max_txds = MAX_SKB_FRAGS + 2; 654 fifo->dev = dev; 655 656 for (j = 0; j < page_num; j++) { 657 int k = 0; 658 dma_addr_t tmp_p; 659 void *tmp_v; 660 tmp_v = pci_alloc_consistent(nic->pdev, 661 PAGE_SIZE, &tmp_p); 662 if (!tmp_v) { 663 DBG_PRINT(INFO_DBG, 664 "pci_alloc_consistent failed for TxDL\n"); 665 return -ENOMEM; 666 } 667 /* If we got a zero DMA address(can happen on 668 * certain platforms like PPC), reallocate. 669 * Store virtual address of page we don't want, 670 * to be freed later. 671 */ 672 if (!tmp_p) { 673 mac_control->zerodma_virt_addr = tmp_v; 674 DBG_PRINT(INIT_DBG, 675 "%s: Zero DMA address for TxDL. " 676 "Virtual address %p\n", 677 dev->name, tmp_v); 678 tmp_v = pci_alloc_consistent(nic->pdev, 679 PAGE_SIZE, &tmp_p); 680 if (!tmp_v) { 681 DBG_PRINT(INFO_DBG, 682 "pci_alloc_consistent failed for TxDL\n"); 683 return -ENOMEM; 684 } 685 mem_allocated += PAGE_SIZE; 686 } 687 while (k < lst_per_page) { 688 int l = (j * lst_per_page) + k; 689 if (l == tx_cfg->fifo_len) 690 break; 691 fifo->list_info[l].list_virt_addr = 692 tmp_v + (k * lst_size); 693 fifo->list_info[l].list_phy_addr = 694 tmp_p + (k * lst_size); 695 k++; 696 } 697 } 698 } 699 700 for (i = 0; i < config->tx_fifo_num; i++) { 701 struct fifo_info *fifo = &mac_control->fifos[i]; 702 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i]; 703 704 size = tx_cfg->fifo_len; 705 fifo->ufo_in_band_v = kcalloc(size, sizeof(u64), GFP_KERNEL); 706 if (!fifo->ufo_in_band_v) 707 return -ENOMEM; 708 mem_allocated += (size * sizeof(u64)); 709 } 710 711 /* Allocation and initialization of RXDs in Rings */ 712 size = 0; 713 for (i = 0; i < config->rx_ring_num; i++) { 714 struct rx_ring_config *rx_cfg = &config->rx_cfg[i]; 715 struct ring_info *ring = &mac_control->rings[i]; 716 717 if (rx_cfg->num_rxd % (rxd_count[nic->rxd_mode] + 1)) { 718 DBG_PRINT(ERR_DBG, "%s: Ring%d RxD count is not a " 719 "multiple of RxDs per Block\n", 720 dev->name, i); 721 return FAILURE; 722 } 723 size += rx_cfg->num_rxd; 724 ring->block_count = rx_cfg->num_rxd / 725 (rxd_count[nic->rxd_mode] + 1); 726 ring->pkt_cnt = rx_cfg->num_rxd - ring->block_count; 727 } 728 if (nic->rxd_mode == RXD_MODE_1) 729 size = (size * (sizeof(struct RxD1))); 730 else 731 size = (size * (sizeof(struct RxD3))); 732 733 for (i = 0; i < config->rx_ring_num; i++) { 734 struct rx_ring_config *rx_cfg = &config->rx_cfg[i]; 735 struct ring_info *ring = &mac_control->rings[i]; 736 737 ring->rx_curr_get_info.block_index = 0; 738 ring->rx_curr_get_info.offset = 0; 739 ring->rx_curr_get_info.ring_len = rx_cfg->num_rxd - 1; 740 ring->rx_curr_put_info.block_index = 0; 741 ring->rx_curr_put_info.offset = 0; 742 ring->rx_curr_put_info.ring_len = rx_cfg->num_rxd - 1; 743 ring->nic = nic; 744 ring->ring_no = i; 745 746 blk_cnt = rx_cfg->num_rxd / (rxd_count[nic->rxd_mode] + 1); 747 /* Allocating all the Rx blocks */ 748 for (j = 0; j < blk_cnt; j++) { 749 struct rx_block_info *rx_blocks; 750 int l; 751 752 rx_blocks = &ring->rx_blocks[j]; 753 size = SIZE_OF_BLOCK; /* size is always page size */ 754 tmp_v_addr = pci_alloc_consistent(nic->pdev, size, 755 &tmp_p_addr); 756 if (tmp_v_addr == NULL) { 757 /* 758 * In case of failure, free_shared_mem() 759 * is called, which should free any 760 * memory that was alloced till the 761 * failure happened. 762 */ 763 rx_blocks->block_virt_addr = tmp_v_addr; 764 return -ENOMEM; 765 } 766 mem_allocated += size; 767 memset(tmp_v_addr, 0, size); 768 769 size = sizeof(struct rxd_info) * 770 rxd_count[nic->rxd_mode]; 771 rx_blocks->block_virt_addr = tmp_v_addr; 772 rx_blocks->block_dma_addr = tmp_p_addr; 773 rx_blocks->rxds = kmalloc(size, GFP_KERNEL); 774 if (!rx_blocks->rxds) 775 return -ENOMEM; 776 mem_allocated += size; 777 for (l = 0; l < rxd_count[nic->rxd_mode]; l++) { 778 rx_blocks->rxds[l].virt_addr = 779 rx_blocks->block_virt_addr + 780 (rxd_size[nic->rxd_mode] * l); 781 rx_blocks->rxds[l].dma_addr = 782 rx_blocks->block_dma_addr + 783 (rxd_size[nic->rxd_mode] * l); 784 } 785 } 786 /* Interlinking all Rx Blocks */ 787 for (j = 0; j < blk_cnt; j++) { 788 int next = (j + 1) % blk_cnt; 789 tmp_v_addr = ring->rx_blocks[j].block_virt_addr; 790 tmp_v_addr_next = ring->rx_blocks[next].block_virt_addr; 791 tmp_p_addr = ring->rx_blocks[j].block_dma_addr; 792 tmp_p_addr_next = ring->rx_blocks[next].block_dma_addr; 793 794 pre_rxd_blk = tmp_v_addr; 795 pre_rxd_blk->reserved_2_pNext_RxD_block = 796 (unsigned long)tmp_v_addr_next; 797 pre_rxd_blk->pNext_RxD_Blk_physical = 798 (u64)tmp_p_addr_next; 799 } 800 } 801 if (nic->rxd_mode == RXD_MODE_3B) { 802 /* 803 * Allocation of Storages for buffer addresses in 2BUFF mode 804 * and the buffers as well. 805 */ 806 for (i = 0; i < config->rx_ring_num; i++) { 807 struct rx_ring_config *rx_cfg = &config->rx_cfg[i]; 808 struct ring_info *ring = &mac_control->rings[i]; 809 810 blk_cnt = rx_cfg->num_rxd / 811 (rxd_count[nic->rxd_mode] + 1); 812 size = sizeof(struct buffAdd *) * blk_cnt; 813 ring->ba = kmalloc(size, GFP_KERNEL); 814 if (!ring->ba) 815 return -ENOMEM; 816 mem_allocated += size; 817 for (j = 0; j < blk_cnt; j++) { 818 int k = 0; 819 820 size = sizeof(struct buffAdd) * 821 (rxd_count[nic->rxd_mode] + 1); 822 ring->ba[j] = kmalloc(size, GFP_KERNEL); 823 if (!ring->ba[j]) 824 return -ENOMEM; 825 mem_allocated += size; 826 while (k != rxd_count[nic->rxd_mode]) { 827 ba = &ring->ba[j][k]; 828 size = BUF0_LEN + ALIGN_SIZE; 829 ba->ba_0_org = kmalloc(size, GFP_KERNEL); 830 if (!ba->ba_0_org) 831 return -ENOMEM; 832 mem_allocated += size; 833 tmp = (unsigned long)ba->ba_0_org; 834 tmp += ALIGN_SIZE; 835 tmp &= ~((unsigned long)ALIGN_SIZE); 836 ba->ba_0 = (void *)tmp; 837 838 size = BUF1_LEN + ALIGN_SIZE; 839 ba->ba_1_org = kmalloc(size, GFP_KERNEL); 840 if (!ba->ba_1_org) 841 return -ENOMEM; 842 mem_allocated += size; 843 tmp = (unsigned long)ba->ba_1_org; 844 tmp += ALIGN_SIZE; 845 tmp &= ~((unsigned long)ALIGN_SIZE); 846 ba->ba_1 = (void *)tmp; 847 k++; 848 } 849 } 850 } 851 } 852 853 /* Allocation and initialization of Statistics block */ 854 size = sizeof(struct stat_block); 855 mac_control->stats_mem = 856 pci_alloc_consistent(nic->pdev, size, 857 &mac_control->stats_mem_phy); 858 859 if (!mac_control->stats_mem) { 860 /* 861 * In case of failure, free_shared_mem() is called, which 862 * should free any memory that was alloced till the 863 * failure happened. 864 */ 865 return -ENOMEM; 866 } 867 mem_allocated += size; 868 mac_control->stats_mem_sz = size; 869 870 tmp_v_addr = mac_control->stats_mem; 871 mac_control->stats_info = tmp_v_addr; 872 memset(tmp_v_addr, 0, size); 873 DBG_PRINT(INIT_DBG, "%s: Ring Mem PHY: 0x%llx\n", 874 dev_name(&nic->pdev->dev), (unsigned long long)tmp_p_addr); 875 mac_control->stats_info->sw_stat.mem_allocated += mem_allocated; 876 return SUCCESS; 877 } 878 879 /** 880 * free_shared_mem - Free the allocated Memory 881 * @nic: Device private variable. 882 * Description: This function is to free all memory locations allocated by 883 * the init_shared_mem() function and return it to the kernel. 884 */ 885 886 static void free_shared_mem(struct s2io_nic *nic) 887 { 888 int i, j, blk_cnt, size; 889 void *tmp_v_addr; 890 dma_addr_t tmp_p_addr; 891 int lst_size, lst_per_page; 892 struct net_device *dev; 893 int page_num = 0; 894 struct config_param *config; 895 struct mac_info *mac_control; 896 struct stat_block *stats; 897 struct swStat *swstats; 898 899 if (!nic) 900 return; 901 902 dev = nic->dev; 903 904 config = &nic->config; 905 mac_control = &nic->mac_control; 906 stats = mac_control->stats_info; 907 swstats = &stats->sw_stat; 908 909 lst_size = sizeof(struct TxD) * config->max_txds; 910 lst_per_page = PAGE_SIZE / lst_size; 911 912 for (i = 0; i < config->tx_fifo_num; i++) { 913 struct fifo_info *fifo = &mac_control->fifos[i]; 914 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i]; 915 916 page_num = TXD_MEM_PAGE_CNT(tx_cfg->fifo_len, lst_per_page); 917 for (j = 0; j < page_num; j++) { 918 int mem_blks = (j * lst_per_page); 919 struct list_info_hold *fli; 920 921 if (!fifo->list_info) 922 return; 923 924 fli = &fifo->list_info[mem_blks]; 925 if (!fli->list_virt_addr) 926 break; 927 pci_free_consistent(nic->pdev, PAGE_SIZE, 928 fli->list_virt_addr, 929 fli->list_phy_addr); 930 swstats->mem_freed += PAGE_SIZE; 931 } 932 /* If we got a zero DMA address during allocation, 933 * free the page now 934 */ 935 if (mac_control->zerodma_virt_addr) { 936 pci_free_consistent(nic->pdev, PAGE_SIZE, 937 mac_control->zerodma_virt_addr, 938 (dma_addr_t)0); 939 DBG_PRINT(INIT_DBG, 940 "%s: Freeing TxDL with zero DMA address. " 941 "Virtual address %p\n", 942 dev->name, mac_control->zerodma_virt_addr); 943 swstats->mem_freed += PAGE_SIZE; 944 } 945 kfree(fifo->list_info); 946 swstats->mem_freed += tx_cfg->fifo_len * 947 sizeof(struct list_info_hold); 948 } 949 950 size = SIZE_OF_BLOCK; 951 for (i = 0; i < config->rx_ring_num; i++) { 952 struct ring_info *ring = &mac_control->rings[i]; 953 954 blk_cnt = ring->block_count; 955 for (j = 0; j < blk_cnt; j++) { 956 tmp_v_addr = ring->rx_blocks[j].block_virt_addr; 957 tmp_p_addr = ring->rx_blocks[j].block_dma_addr; 958 if (tmp_v_addr == NULL) 959 break; 960 pci_free_consistent(nic->pdev, size, 961 tmp_v_addr, tmp_p_addr); 962 swstats->mem_freed += size; 963 kfree(ring->rx_blocks[j].rxds); 964 swstats->mem_freed += sizeof(struct rxd_info) * 965 rxd_count[nic->rxd_mode]; 966 } 967 } 968 969 if (nic->rxd_mode == RXD_MODE_3B) { 970 /* Freeing buffer storage addresses in 2BUFF mode. */ 971 for (i = 0; i < config->rx_ring_num; i++) { 972 struct rx_ring_config *rx_cfg = &config->rx_cfg[i]; 973 struct ring_info *ring = &mac_control->rings[i]; 974 975 blk_cnt = rx_cfg->num_rxd / 976 (rxd_count[nic->rxd_mode] + 1); 977 for (j = 0; j < blk_cnt; j++) { 978 int k = 0; 979 if (!ring->ba[j]) 980 continue; 981 while (k != rxd_count[nic->rxd_mode]) { 982 struct buffAdd *ba = &ring->ba[j][k]; 983 kfree(ba->ba_0_org); 984 swstats->mem_freed += 985 BUF0_LEN + ALIGN_SIZE; 986 kfree(ba->ba_1_org); 987 swstats->mem_freed += 988 BUF1_LEN + ALIGN_SIZE; 989 k++; 990 } 991 kfree(ring->ba[j]); 992 swstats->mem_freed += sizeof(struct buffAdd) * 993 (rxd_count[nic->rxd_mode] + 1); 994 } 995 kfree(ring->ba); 996 swstats->mem_freed += sizeof(struct buffAdd *) * 997 blk_cnt; 998 } 999 } 1000 1001 for (i = 0; i < nic->config.tx_fifo_num; i++) { 1002 struct fifo_info *fifo = &mac_control->fifos[i]; 1003 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i]; 1004 1005 if (fifo->ufo_in_band_v) { 1006 swstats->mem_freed += tx_cfg->fifo_len * 1007 sizeof(u64); 1008 kfree(fifo->ufo_in_band_v); 1009 } 1010 } 1011 1012 if (mac_control->stats_mem) { 1013 swstats->mem_freed += mac_control->stats_mem_sz; 1014 pci_free_consistent(nic->pdev, 1015 mac_control->stats_mem_sz, 1016 mac_control->stats_mem, 1017 mac_control->stats_mem_phy); 1018 } 1019 } 1020 1021 /** 1022 * s2io_verify_pci_mode - 1023 */ 1024 1025 static int s2io_verify_pci_mode(struct s2io_nic *nic) 1026 { 1027 struct XENA_dev_config __iomem *bar0 = nic->bar0; 1028 register u64 val64 = 0; 1029 int mode; 1030 1031 val64 = readq(&bar0->pci_mode); 1032 mode = (u8)GET_PCI_MODE(val64); 1033 1034 if (val64 & PCI_MODE_UNKNOWN_MODE) 1035 return -1; /* Unknown PCI mode */ 1036 return mode; 1037 } 1038 1039 #define NEC_VENID 0x1033 1040 #define NEC_DEVID 0x0125 1041 static int s2io_on_nec_bridge(struct pci_dev *s2io_pdev) 1042 { 1043 struct pci_dev *tdev = NULL; 1044 for_each_pci_dev(tdev) { 1045 if (tdev->vendor == NEC_VENID && tdev->device == NEC_DEVID) { 1046 if (tdev->bus == s2io_pdev->bus->parent) { 1047 pci_dev_put(tdev); 1048 return 1; 1049 } 1050 } 1051 } 1052 return 0; 1053 } 1054 1055 static int bus_speed[8] = {33, 133, 133, 200, 266, 133, 200, 266}; 1056 /** 1057 * s2io_print_pci_mode - 1058 */ 1059 static int s2io_print_pci_mode(struct s2io_nic *nic) 1060 { 1061 struct XENA_dev_config __iomem *bar0 = nic->bar0; 1062 register u64 val64 = 0; 1063 int mode; 1064 struct config_param *config = &nic->config; 1065 const char *pcimode; 1066 1067 val64 = readq(&bar0->pci_mode); 1068 mode = (u8)GET_PCI_MODE(val64); 1069 1070 if (val64 & PCI_MODE_UNKNOWN_MODE) 1071 return -1; /* Unknown PCI mode */ 1072 1073 config->bus_speed = bus_speed[mode]; 1074 1075 if (s2io_on_nec_bridge(nic->pdev)) { 1076 DBG_PRINT(ERR_DBG, "%s: Device is on PCI-E bus\n", 1077 nic->dev->name); 1078 return mode; 1079 } 1080 1081 switch (mode) { 1082 case PCI_MODE_PCI_33: 1083 pcimode = "33MHz PCI bus"; 1084 break; 1085 case PCI_MODE_PCI_66: 1086 pcimode = "66MHz PCI bus"; 1087 break; 1088 case PCI_MODE_PCIX_M1_66: 1089 pcimode = "66MHz PCIX(M1) bus"; 1090 break; 1091 case PCI_MODE_PCIX_M1_100: 1092 pcimode = "100MHz PCIX(M1) bus"; 1093 break; 1094 case PCI_MODE_PCIX_M1_133: 1095 pcimode = "133MHz PCIX(M1) bus"; 1096 break; 1097 case PCI_MODE_PCIX_M2_66: 1098 pcimode = "133MHz PCIX(M2) bus"; 1099 break; 1100 case PCI_MODE_PCIX_M2_100: 1101 pcimode = "200MHz PCIX(M2) bus"; 1102 break; 1103 case PCI_MODE_PCIX_M2_133: 1104 pcimode = "266MHz PCIX(M2) bus"; 1105 break; 1106 default: 1107 pcimode = "unsupported bus!"; 1108 mode = -1; 1109 } 1110 1111 DBG_PRINT(ERR_DBG, "%s: Device is on %d bit %s\n", 1112 nic->dev->name, val64 & PCI_MODE_32_BITS ? 32 : 64, pcimode); 1113 1114 return mode; 1115 } 1116 1117 /** 1118 * init_tti - Initialization transmit traffic interrupt scheme 1119 * @nic: device private variable 1120 * @link: link status (UP/DOWN) used to enable/disable continuous 1121 * transmit interrupts 1122 * Description: The function configures transmit traffic interrupts 1123 * Return Value: SUCCESS on success and 1124 * '-1' on failure 1125 */ 1126 1127 static int init_tti(struct s2io_nic *nic, int link) 1128 { 1129 struct XENA_dev_config __iomem *bar0 = nic->bar0; 1130 register u64 val64 = 0; 1131 int i; 1132 struct config_param *config = &nic->config; 1133 1134 for (i = 0; i < config->tx_fifo_num; i++) { 1135 /* 1136 * TTI Initialization. Default Tx timer gets us about 1137 * 250 interrupts per sec. Continuous interrupts are enabled 1138 * by default. 1139 */ 1140 if (nic->device_type == XFRAME_II_DEVICE) { 1141 int count = (nic->config.bus_speed * 125)/2; 1142 val64 = TTI_DATA1_MEM_TX_TIMER_VAL(count); 1143 } else 1144 val64 = TTI_DATA1_MEM_TX_TIMER_VAL(0x2078); 1145 1146 val64 |= TTI_DATA1_MEM_TX_URNG_A(0xA) | 1147 TTI_DATA1_MEM_TX_URNG_B(0x10) | 1148 TTI_DATA1_MEM_TX_URNG_C(0x30) | 1149 TTI_DATA1_MEM_TX_TIMER_AC_EN; 1150 if (i == 0) 1151 if (use_continuous_tx_intrs && (link == LINK_UP)) 1152 val64 |= TTI_DATA1_MEM_TX_TIMER_CI_EN; 1153 writeq(val64, &bar0->tti_data1_mem); 1154 1155 if (nic->config.intr_type == MSI_X) { 1156 val64 = TTI_DATA2_MEM_TX_UFC_A(0x10) | 1157 TTI_DATA2_MEM_TX_UFC_B(0x100) | 1158 TTI_DATA2_MEM_TX_UFC_C(0x200) | 1159 TTI_DATA2_MEM_TX_UFC_D(0x300); 1160 } else { 1161 if ((nic->config.tx_steering_type == 1162 TX_DEFAULT_STEERING) && 1163 (config->tx_fifo_num > 1) && 1164 (i >= nic->udp_fifo_idx) && 1165 (i < (nic->udp_fifo_idx + 1166 nic->total_udp_fifos))) 1167 val64 = TTI_DATA2_MEM_TX_UFC_A(0x50) | 1168 TTI_DATA2_MEM_TX_UFC_B(0x80) | 1169 TTI_DATA2_MEM_TX_UFC_C(0x100) | 1170 TTI_DATA2_MEM_TX_UFC_D(0x120); 1171 else 1172 val64 = TTI_DATA2_MEM_TX_UFC_A(0x10) | 1173 TTI_DATA2_MEM_TX_UFC_B(0x20) | 1174 TTI_DATA2_MEM_TX_UFC_C(0x40) | 1175 TTI_DATA2_MEM_TX_UFC_D(0x80); 1176 } 1177 1178 writeq(val64, &bar0->tti_data2_mem); 1179 1180 val64 = TTI_CMD_MEM_WE | 1181 TTI_CMD_MEM_STROBE_NEW_CMD | 1182 TTI_CMD_MEM_OFFSET(i); 1183 writeq(val64, &bar0->tti_command_mem); 1184 1185 if (wait_for_cmd_complete(&bar0->tti_command_mem, 1186 TTI_CMD_MEM_STROBE_NEW_CMD, 1187 S2IO_BIT_RESET) != SUCCESS) 1188 return FAILURE; 1189 } 1190 1191 return SUCCESS; 1192 } 1193 1194 /** 1195 * init_nic - Initialization of hardware 1196 * @nic: device private variable 1197 * Description: The function sequentially configures every block 1198 * of the H/W from their reset values. 1199 * Return Value: SUCCESS on success and 1200 * '-1' on failure (endian settings incorrect). 1201 */ 1202 1203 static int init_nic(struct s2io_nic *nic) 1204 { 1205 struct XENA_dev_config __iomem *bar0 = nic->bar0; 1206 struct net_device *dev = nic->dev; 1207 register u64 val64 = 0; 1208 void __iomem *add; 1209 u32 time; 1210 int i, j; 1211 int dtx_cnt = 0; 1212 unsigned long long mem_share; 1213 int mem_size; 1214 struct config_param *config = &nic->config; 1215 struct mac_info *mac_control = &nic->mac_control; 1216 1217 /* to set the swapper controle on the card */ 1218 if (s2io_set_swapper(nic)) { 1219 DBG_PRINT(ERR_DBG, "ERROR: Setting Swapper failed\n"); 1220 return -EIO; 1221 } 1222 1223 /* 1224 * Herc requires EOI to be removed from reset before XGXS, so.. 1225 */ 1226 if (nic->device_type & XFRAME_II_DEVICE) { 1227 val64 = 0xA500000000ULL; 1228 writeq(val64, &bar0->sw_reset); 1229 msleep(500); 1230 val64 = readq(&bar0->sw_reset); 1231 } 1232 1233 /* Remove XGXS from reset state */ 1234 val64 = 0; 1235 writeq(val64, &bar0->sw_reset); 1236 msleep(500); 1237 val64 = readq(&bar0->sw_reset); 1238 1239 /* Ensure that it's safe to access registers by checking 1240 * RIC_RUNNING bit is reset. Check is valid only for XframeII. 1241 */ 1242 if (nic->device_type == XFRAME_II_DEVICE) { 1243 for (i = 0; i < 50; i++) { 1244 val64 = readq(&bar0->adapter_status); 1245 if (!(val64 & ADAPTER_STATUS_RIC_RUNNING)) 1246 break; 1247 msleep(10); 1248 } 1249 if (i == 50) 1250 return -ENODEV; 1251 } 1252 1253 /* Enable Receiving broadcasts */ 1254 add = &bar0->mac_cfg; 1255 val64 = readq(&bar0->mac_cfg); 1256 val64 |= MAC_RMAC_BCAST_ENABLE; 1257 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key); 1258 writel((u32)val64, add); 1259 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key); 1260 writel((u32) (val64 >> 32), (add + 4)); 1261 1262 /* Read registers in all blocks */ 1263 val64 = readq(&bar0->mac_int_mask); 1264 val64 = readq(&bar0->mc_int_mask); 1265 val64 = readq(&bar0->xgxs_int_mask); 1266 1267 /* Set MTU */ 1268 val64 = dev->mtu; 1269 writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len); 1270 1271 if (nic->device_type & XFRAME_II_DEVICE) { 1272 while (herc_act_dtx_cfg[dtx_cnt] != END_SIGN) { 1273 SPECIAL_REG_WRITE(herc_act_dtx_cfg[dtx_cnt], 1274 &bar0->dtx_control, UF); 1275 if (dtx_cnt & 0x1) 1276 msleep(1); /* Necessary!! */ 1277 dtx_cnt++; 1278 } 1279 } else { 1280 while (xena_dtx_cfg[dtx_cnt] != END_SIGN) { 1281 SPECIAL_REG_WRITE(xena_dtx_cfg[dtx_cnt], 1282 &bar0->dtx_control, UF); 1283 val64 = readq(&bar0->dtx_control); 1284 dtx_cnt++; 1285 } 1286 } 1287 1288 /* Tx DMA Initialization */ 1289 val64 = 0; 1290 writeq(val64, &bar0->tx_fifo_partition_0); 1291 writeq(val64, &bar0->tx_fifo_partition_1); 1292 writeq(val64, &bar0->tx_fifo_partition_2); 1293 writeq(val64, &bar0->tx_fifo_partition_3); 1294 1295 for (i = 0, j = 0; i < config->tx_fifo_num; i++) { 1296 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i]; 1297 1298 val64 |= vBIT(tx_cfg->fifo_len - 1, ((j * 32) + 19), 13) | 1299 vBIT(tx_cfg->fifo_priority, ((j * 32) + 5), 3); 1300 1301 if (i == (config->tx_fifo_num - 1)) { 1302 if (i % 2 == 0) 1303 i++; 1304 } 1305 1306 switch (i) { 1307 case 1: 1308 writeq(val64, &bar0->tx_fifo_partition_0); 1309 val64 = 0; 1310 j = 0; 1311 break; 1312 case 3: 1313 writeq(val64, &bar0->tx_fifo_partition_1); 1314 val64 = 0; 1315 j = 0; 1316 break; 1317 case 5: 1318 writeq(val64, &bar0->tx_fifo_partition_2); 1319 val64 = 0; 1320 j = 0; 1321 break; 1322 case 7: 1323 writeq(val64, &bar0->tx_fifo_partition_3); 1324 val64 = 0; 1325 j = 0; 1326 break; 1327 default: 1328 j++; 1329 break; 1330 } 1331 } 1332 1333 /* 1334 * Disable 4 PCCs for Xena1, 2 and 3 as per H/W bug 1335 * SXE-008 TRANSMIT DMA ARBITRATION ISSUE. 1336 */ 1337 if ((nic->device_type == XFRAME_I_DEVICE) && (nic->pdev->revision < 4)) 1338 writeq(PCC_ENABLE_FOUR, &bar0->pcc_enable); 1339 1340 val64 = readq(&bar0->tx_fifo_partition_0); 1341 DBG_PRINT(INIT_DBG, "Fifo partition at: 0x%p is: 0x%llx\n", 1342 &bar0->tx_fifo_partition_0, (unsigned long long)val64); 1343 1344 /* 1345 * Initialization of Tx_PA_CONFIG register to ignore packet 1346 * integrity checking. 1347 */ 1348 val64 = readq(&bar0->tx_pa_cfg); 1349 val64 |= TX_PA_CFG_IGNORE_FRM_ERR | 1350 TX_PA_CFG_IGNORE_SNAP_OUI | 1351 TX_PA_CFG_IGNORE_LLC_CTRL | 1352 TX_PA_CFG_IGNORE_L2_ERR; 1353 writeq(val64, &bar0->tx_pa_cfg); 1354 1355 /* Rx DMA intialization. */ 1356 val64 = 0; 1357 for (i = 0; i < config->rx_ring_num; i++) { 1358 struct rx_ring_config *rx_cfg = &config->rx_cfg[i]; 1359 1360 val64 |= vBIT(rx_cfg->ring_priority, (5 + (i * 8)), 3); 1361 } 1362 writeq(val64, &bar0->rx_queue_priority); 1363 1364 /* 1365 * Allocating equal share of memory to all the 1366 * configured Rings. 1367 */ 1368 val64 = 0; 1369 if (nic->device_type & XFRAME_II_DEVICE) 1370 mem_size = 32; 1371 else 1372 mem_size = 64; 1373 1374 for (i = 0; i < config->rx_ring_num; i++) { 1375 switch (i) { 1376 case 0: 1377 mem_share = (mem_size / config->rx_ring_num + 1378 mem_size % config->rx_ring_num); 1379 val64 |= RX_QUEUE_CFG_Q0_SZ(mem_share); 1380 continue; 1381 case 1: 1382 mem_share = (mem_size / config->rx_ring_num); 1383 val64 |= RX_QUEUE_CFG_Q1_SZ(mem_share); 1384 continue; 1385 case 2: 1386 mem_share = (mem_size / config->rx_ring_num); 1387 val64 |= RX_QUEUE_CFG_Q2_SZ(mem_share); 1388 continue; 1389 case 3: 1390 mem_share = (mem_size / config->rx_ring_num); 1391 val64 |= RX_QUEUE_CFG_Q3_SZ(mem_share); 1392 continue; 1393 case 4: 1394 mem_share = (mem_size / config->rx_ring_num); 1395 val64 |= RX_QUEUE_CFG_Q4_SZ(mem_share); 1396 continue; 1397 case 5: 1398 mem_share = (mem_size / config->rx_ring_num); 1399 val64 |= RX_QUEUE_CFG_Q5_SZ(mem_share); 1400 continue; 1401 case 6: 1402 mem_share = (mem_size / config->rx_ring_num); 1403 val64 |= RX_QUEUE_CFG_Q6_SZ(mem_share); 1404 continue; 1405 case 7: 1406 mem_share = (mem_size / config->rx_ring_num); 1407 val64 |= RX_QUEUE_CFG_Q7_SZ(mem_share); 1408 continue; 1409 } 1410 } 1411 writeq(val64, &bar0->rx_queue_cfg); 1412 1413 /* 1414 * Filling Tx round robin registers 1415 * as per the number of FIFOs for equal scheduling priority 1416 */ 1417 switch (config->tx_fifo_num) { 1418 case 1: 1419 val64 = 0x0; 1420 writeq(val64, &bar0->tx_w_round_robin_0); 1421 writeq(val64, &bar0->tx_w_round_robin_1); 1422 writeq(val64, &bar0->tx_w_round_robin_2); 1423 writeq(val64, &bar0->tx_w_round_robin_3); 1424 writeq(val64, &bar0->tx_w_round_robin_4); 1425 break; 1426 case 2: 1427 val64 = 0x0001000100010001ULL; 1428 writeq(val64, &bar0->tx_w_round_robin_0); 1429 writeq(val64, &bar0->tx_w_round_robin_1); 1430 writeq(val64, &bar0->tx_w_round_robin_2); 1431 writeq(val64, &bar0->tx_w_round_robin_3); 1432 val64 = 0x0001000100000000ULL; 1433 writeq(val64, &bar0->tx_w_round_robin_4); 1434 break; 1435 case 3: 1436 val64 = 0x0001020001020001ULL; 1437 writeq(val64, &bar0->tx_w_round_robin_0); 1438 val64 = 0x0200010200010200ULL; 1439 writeq(val64, &bar0->tx_w_round_robin_1); 1440 val64 = 0x0102000102000102ULL; 1441 writeq(val64, &bar0->tx_w_round_robin_2); 1442 val64 = 0x0001020001020001ULL; 1443 writeq(val64, &bar0->tx_w_round_robin_3); 1444 val64 = 0x0200010200000000ULL; 1445 writeq(val64, &bar0->tx_w_round_robin_4); 1446 break; 1447 case 4: 1448 val64 = 0x0001020300010203ULL; 1449 writeq(val64, &bar0->tx_w_round_robin_0); 1450 writeq(val64, &bar0->tx_w_round_robin_1); 1451 writeq(val64, &bar0->tx_w_round_robin_2); 1452 writeq(val64, &bar0->tx_w_round_robin_3); 1453 val64 = 0x0001020300000000ULL; 1454 writeq(val64, &bar0->tx_w_round_robin_4); 1455 break; 1456 case 5: 1457 val64 = 0x0001020304000102ULL; 1458 writeq(val64, &bar0->tx_w_round_robin_0); 1459 val64 = 0x0304000102030400ULL; 1460 writeq(val64, &bar0->tx_w_round_robin_1); 1461 val64 = 0x0102030400010203ULL; 1462 writeq(val64, &bar0->tx_w_round_robin_2); 1463 val64 = 0x0400010203040001ULL; 1464 writeq(val64, &bar0->tx_w_round_robin_3); 1465 val64 = 0x0203040000000000ULL; 1466 writeq(val64, &bar0->tx_w_round_robin_4); 1467 break; 1468 case 6: 1469 val64 = 0x0001020304050001ULL; 1470 writeq(val64, &bar0->tx_w_round_robin_0); 1471 val64 = 0x0203040500010203ULL; 1472 writeq(val64, &bar0->tx_w_round_robin_1); 1473 val64 = 0x0405000102030405ULL; 1474 writeq(val64, &bar0->tx_w_round_robin_2); 1475 val64 = 0x0001020304050001ULL; 1476 writeq(val64, &bar0->tx_w_round_robin_3); 1477 val64 = 0x0203040500000000ULL; 1478 writeq(val64, &bar0->tx_w_round_robin_4); 1479 break; 1480 case 7: 1481 val64 = 0x0001020304050600ULL; 1482 writeq(val64, &bar0->tx_w_round_robin_0); 1483 val64 = 0x0102030405060001ULL; 1484 writeq(val64, &bar0->tx_w_round_robin_1); 1485 val64 = 0x0203040506000102ULL; 1486 writeq(val64, &bar0->tx_w_round_robin_2); 1487 val64 = 0x0304050600010203ULL; 1488 writeq(val64, &bar0->tx_w_round_robin_3); 1489 val64 = 0x0405060000000000ULL; 1490 writeq(val64, &bar0->tx_w_round_robin_4); 1491 break; 1492 case 8: 1493 val64 = 0x0001020304050607ULL; 1494 writeq(val64, &bar0->tx_w_round_robin_0); 1495 writeq(val64, &bar0->tx_w_round_robin_1); 1496 writeq(val64, &bar0->tx_w_round_robin_2); 1497 writeq(val64, &bar0->tx_w_round_robin_3); 1498 val64 = 0x0001020300000000ULL; 1499 writeq(val64, &bar0->tx_w_round_robin_4); 1500 break; 1501 } 1502 1503 /* Enable all configured Tx FIFO partitions */ 1504 val64 = readq(&bar0->tx_fifo_partition_0); 1505 val64 |= (TX_FIFO_PARTITION_EN); 1506 writeq(val64, &bar0->tx_fifo_partition_0); 1507 1508 /* Filling the Rx round robin registers as per the 1509 * number of Rings and steering based on QoS with 1510 * equal priority. 1511 */ 1512 switch (config->rx_ring_num) { 1513 case 1: 1514 val64 = 0x0; 1515 writeq(val64, &bar0->rx_w_round_robin_0); 1516 writeq(val64, &bar0->rx_w_round_robin_1); 1517 writeq(val64, &bar0->rx_w_round_robin_2); 1518 writeq(val64, &bar0->rx_w_round_robin_3); 1519 writeq(val64, &bar0->rx_w_round_robin_4); 1520 1521 val64 = 0x8080808080808080ULL; 1522 writeq(val64, &bar0->rts_qos_steering); 1523 break; 1524 case 2: 1525 val64 = 0x0001000100010001ULL; 1526 writeq(val64, &bar0->rx_w_round_robin_0); 1527 writeq(val64, &bar0->rx_w_round_robin_1); 1528 writeq(val64, &bar0->rx_w_round_robin_2); 1529 writeq(val64, &bar0->rx_w_round_robin_3); 1530 val64 = 0x0001000100000000ULL; 1531 writeq(val64, &bar0->rx_w_round_robin_4); 1532 1533 val64 = 0x8080808040404040ULL; 1534 writeq(val64, &bar0->rts_qos_steering); 1535 break; 1536 case 3: 1537 val64 = 0x0001020001020001ULL; 1538 writeq(val64, &bar0->rx_w_round_robin_0); 1539 val64 = 0x0200010200010200ULL; 1540 writeq(val64, &bar0->rx_w_round_robin_1); 1541 val64 = 0x0102000102000102ULL; 1542 writeq(val64, &bar0->rx_w_round_robin_2); 1543 val64 = 0x0001020001020001ULL; 1544 writeq(val64, &bar0->rx_w_round_robin_3); 1545 val64 = 0x0200010200000000ULL; 1546 writeq(val64, &bar0->rx_w_round_robin_4); 1547 1548 val64 = 0x8080804040402020ULL; 1549 writeq(val64, &bar0->rts_qos_steering); 1550 break; 1551 case 4: 1552 val64 = 0x0001020300010203ULL; 1553 writeq(val64, &bar0->rx_w_round_robin_0); 1554 writeq(val64, &bar0->rx_w_round_robin_1); 1555 writeq(val64, &bar0->rx_w_round_robin_2); 1556 writeq(val64, &bar0->rx_w_round_robin_3); 1557 val64 = 0x0001020300000000ULL; 1558 writeq(val64, &bar0->rx_w_round_robin_4); 1559 1560 val64 = 0x8080404020201010ULL; 1561 writeq(val64, &bar0->rts_qos_steering); 1562 break; 1563 case 5: 1564 val64 = 0x0001020304000102ULL; 1565 writeq(val64, &bar0->rx_w_round_robin_0); 1566 val64 = 0x0304000102030400ULL; 1567 writeq(val64, &bar0->rx_w_round_robin_1); 1568 val64 = 0x0102030400010203ULL; 1569 writeq(val64, &bar0->rx_w_round_robin_2); 1570 val64 = 0x0400010203040001ULL; 1571 writeq(val64, &bar0->rx_w_round_robin_3); 1572 val64 = 0x0203040000000000ULL; 1573 writeq(val64, &bar0->rx_w_round_robin_4); 1574 1575 val64 = 0x8080404020201008ULL; 1576 writeq(val64, &bar0->rts_qos_steering); 1577 break; 1578 case 6: 1579 val64 = 0x0001020304050001ULL; 1580 writeq(val64, &bar0->rx_w_round_robin_0); 1581 val64 = 0x0203040500010203ULL; 1582 writeq(val64, &bar0->rx_w_round_robin_1); 1583 val64 = 0x0405000102030405ULL; 1584 writeq(val64, &bar0->rx_w_round_robin_2); 1585 val64 = 0x0001020304050001ULL; 1586 writeq(val64, &bar0->rx_w_round_robin_3); 1587 val64 = 0x0203040500000000ULL; 1588 writeq(val64, &bar0->rx_w_round_robin_4); 1589 1590 val64 = 0x8080404020100804ULL; 1591 writeq(val64, &bar0->rts_qos_steering); 1592 break; 1593 case 7: 1594 val64 = 0x0001020304050600ULL; 1595 writeq(val64, &bar0->rx_w_round_robin_0); 1596 val64 = 0x0102030405060001ULL; 1597 writeq(val64, &bar0->rx_w_round_robin_1); 1598 val64 = 0x0203040506000102ULL; 1599 writeq(val64, &bar0->rx_w_round_robin_2); 1600 val64 = 0x0304050600010203ULL; 1601 writeq(val64, &bar0->rx_w_round_robin_3); 1602 val64 = 0x0405060000000000ULL; 1603 writeq(val64, &bar0->rx_w_round_robin_4); 1604 1605 val64 = 0x8080402010080402ULL; 1606 writeq(val64, &bar0->rts_qos_steering); 1607 break; 1608 case 8: 1609 val64 = 0x0001020304050607ULL; 1610 writeq(val64, &bar0->rx_w_round_robin_0); 1611 writeq(val64, &bar0->rx_w_round_robin_1); 1612 writeq(val64, &bar0->rx_w_round_robin_2); 1613 writeq(val64, &bar0->rx_w_round_robin_3); 1614 val64 = 0x0001020300000000ULL; 1615 writeq(val64, &bar0->rx_w_round_robin_4); 1616 1617 val64 = 0x8040201008040201ULL; 1618 writeq(val64, &bar0->rts_qos_steering); 1619 break; 1620 } 1621 1622 /* UDP Fix */ 1623 val64 = 0; 1624 for (i = 0; i < 8; i++) 1625 writeq(val64, &bar0->rts_frm_len_n[i]); 1626 1627 /* Set the default rts frame length for the rings configured */ 1628 val64 = MAC_RTS_FRM_LEN_SET(dev->mtu+22); 1629 for (i = 0 ; i < config->rx_ring_num ; i++) 1630 writeq(val64, &bar0->rts_frm_len_n[i]); 1631 1632 /* Set the frame length for the configured rings 1633 * desired by the user 1634 */ 1635 for (i = 0; i < config->rx_ring_num; i++) { 1636 /* If rts_frm_len[i] == 0 then it is assumed that user not 1637 * specified frame length steering. 1638 * If the user provides the frame length then program 1639 * the rts_frm_len register for those values or else 1640 * leave it as it is. 1641 */ 1642 if (rts_frm_len[i] != 0) { 1643 writeq(MAC_RTS_FRM_LEN_SET(rts_frm_len[i]), 1644 &bar0->rts_frm_len_n[i]); 1645 } 1646 } 1647 1648 /* Disable differentiated services steering logic */ 1649 for (i = 0; i < 64; i++) { 1650 if (rts_ds_steer(nic, i, 0) == FAILURE) { 1651 DBG_PRINT(ERR_DBG, 1652 "%s: rts_ds_steer failed on codepoint %d\n", 1653 dev->name, i); 1654 return -ENODEV; 1655 } 1656 } 1657 1658 /* Program statistics memory */ 1659 writeq(mac_control->stats_mem_phy, &bar0->stat_addr); 1660 1661 if (nic->device_type == XFRAME_II_DEVICE) { 1662 val64 = STAT_BC(0x320); 1663 writeq(val64, &bar0->stat_byte_cnt); 1664 } 1665 1666 /* 1667 * Initializing the sampling rate for the device to calculate the 1668 * bandwidth utilization. 1669 */ 1670 val64 = MAC_TX_LINK_UTIL_VAL(tmac_util_period) | 1671 MAC_RX_LINK_UTIL_VAL(rmac_util_period); 1672 writeq(val64, &bar0->mac_link_util); 1673 1674 /* 1675 * Initializing the Transmit and Receive Traffic Interrupt 1676 * Scheme. 1677 */ 1678 1679 /* Initialize TTI */ 1680 if (SUCCESS != init_tti(nic, nic->last_link_state)) 1681 return -ENODEV; 1682 1683 /* RTI Initialization */ 1684 if (nic->device_type == XFRAME_II_DEVICE) { 1685 /* 1686 * Programmed to generate Apprx 500 Intrs per 1687 * second 1688 */ 1689 int count = (nic->config.bus_speed * 125)/4; 1690 val64 = RTI_DATA1_MEM_RX_TIMER_VAL(count); 1691 } else 1692 val64 = RTI_DATA1_MEM_RX_TIMER_VAL(0xFFF); 1693 val64 |= RTI_DATA1_MEM_RX_URNG_A(0xA) | 1694 RTI_DATA1_MEM_RX_URNG_B(0x10) | 1695 RTI_DATA1_MEM_RX_URNG_C(0x30) | 1696 RTI_DATA1_MEM_RX_TIMER_AC_EN; 1697 1698 writeq(val64, &bar0->rti_data1_mem); 1699 1700 val64 = RTI_DATA2_MEM_RX_UFC_A(0x1) | 1701 RTI_DATA2_MEM_RX_UFC_B(0x2) ; 1702 if (nic->config.intr_type == MSI_X) 1703 val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x20) | 1704 RTI_DATA2_MEM_RX_UFC_D(0x40)); 1705 else 1706 val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x40) | 1707 RTI_DATA2_MEM_RX_UFC_D(0x80)); 1708 writeq(val64, &bar0->rti_data2_mem); 1709 1710 for (i = 0; i < config->rx_ring_num; i++) { 1711 val64 = RTI_CMD_MEM_WE | 1712 RTI_CMD_MEM_STROBE_NEW_CMD | 1713 RTI_CMD_MEM_OFFSET(i); 1714 writeq(val64, &bar0->rti_command_mem); 1715 1716 /* 1717 * Once the operation completes, the Strobe bit of the 1718 * command register will be reset. We poll for this 1719 * particular condition. We wait for a maximum of 500ms 1720 * for the operation to complete, if it's not complete 1721 * by then we return error. 1722 */ 1723 time = 0; 1724 while (true) { 1725 val64 = readq(&bar0->rti_command_mem); 1726 if (!(val64 & RTI_CMD_MEM_STROBE_NEW_CMD)) 1727 break; 1728 1729 if (time > 10) { 1730 DBG_PRINT(ERR_DBG, "%s: RTI init failed\n", 1731 dev->name); 1732 return -ENODEV; 1733 } 1734 time++; 1735 msleep(50); 1736 } 1737 } 1738 1739 /* 1740 * Initializing proper values as Pause threshold into all 1741 * the 8 Queues on Rx side. 1742 */ 1743 writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q0q3); 1744 writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q4q7); 1745 1746 /* Disable RMAC PAD STRIPPING */ 1747 add = &bar0->mac_cfg; 1748 val64 = readq(&bar0->mac_cfg); 1749 val64 &= ~(MAC_CFG_RMAC_STRIP_PAD); 1750 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key); 1751 writel((u32) (val64), add); 1752 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key); 1753 writel((u32) (val64 >> 32), (add + 4)); 1754 val64 = readq(&bar0->mac_cfg); 1755 1756 /* Enable FCS stripping by adapter */ 1757 add = &bar0->mac_cfg; 1758 val64 = readq(&bar0->mac_cfg); 1759 val64 |= MAC_CFG_RMAC_STRIP_FCS; 1760 if (nic->device_type == XFRAME_II_DEVICE) 1761 writeq(val64, &bar0->mac_cfg); 1762 else { 1763 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key); 1764 writel((u32) (val64), add); 1765 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key); 1766 writel((u32) (val64 >> 32), (add + 4)); 1767 } 1768 1769 /* 1770 * Set the time value to be inserted in the pause frame 1771 * generated by xena. 1772 */ 1773 val64 = readq(&bar0->rmac_pause_cfg); 1774 val64 &= ~(RMAC_PAUSE_HG_PTIME(0xffff)); 1775 val64 |= RMAC_PAUSE_HG_PTIME(nic->mac_control.rmac_pause_time); 1776 writeq(val64, &bar0->rmac_pause_cfg); 1777 1778 /* 1779 * Set the Threshold Limit for Generating the pause frame 1780 * If the amount of data in any Queue exceeds ratio of 1781 * (mac_control.mc_pause_threshold_q0q3 or q4q7)/256 1782 * pause frame is generated 1783 */ 1784 val64 = 0; 1785 for (i = 0; i < 4; i++) { 1786 val64 |= (((u64)0xFF00 | 1787 nic->mac_control.mc_pause_threshold_q0q3) 1788 << (i * 2 * 8)); 1789 } 1790 writeq(val64, &bar0->mc_pause_thresh_q0q3); 1791 1792 val64 = 0; 1793 for (i = 0; i < 4; i++) { 1794 val64 |= (((u64)0xFF00 | 1795 nic->mac_control.mc_pause_threshold_q4q7) 1796 << (i * 2 * 8)); 1797 } 1798 writeq(val64, &bar0->mc_pause_thresh_q4q7); 1799 1800 /* 1801 * TxDMA will stop Read request if the number of read split has 1802 * exceeded the limit pointed by shared_splits 1803 */ 1804 val64 = readq(&bar0->pic_control); 1805 val64 |= PIC_CNTL_SHARED_SPLITS(shared_splits); 1806 writeq(val64, &bar0->pic_control); 1807 1808 if (nic->config.bus_speed == 266) { 1809 writeq(TXREQTO_VAL(0x7f) | TXREQTO_EN, &bar0->txreqtimeout); 1810 writeq(0x0, &bar0->read_retry_delay); 1811 writeq(0x0, &bar0->write_retry_delay); 1812 } 1813 1814 /* 1815 * Programming the Herc to split every write transaction 1816 * that does not start on an ADB to reduce disconnects. 1817 */ 1818 if (nic->device_type == XFRAME_II_DEVICE) { 1819 val64 = FAULT_BEHAVIOUR | EXT_REQ_EN | 1820 MISC_LINK_STABILITY_PRD(3); 1821 writeq(val64, &bar0->misc_control); 1822 val64 = readq(&bar0->pic_control2); 1823 val64 &= ~(s2BIT(13)|s2BIT(14)|s2BIT(15)); 1824 writeq(val64, &bar0->pic_control2); 1825 } 1826 if (strstr(nic->product_name, "CX4")) { 1827 val64 = TMAC_AVG_IPG(0x17); 1828 writeq(val64, &bar0->tmac_avg_ipg); 1829 } 1830 1831 return SUCCESS; 1832 } 1833 #define LINK_UP_DOWN_INTERRUPT 1 1834 #define MAC_RMAC_ERR_TIMER 2 1835 1836 static int s2io_link_fault_indication(struct s2io_nic *nic) 1837 { 1838 if (nic->device_type == XFRAME_II_DEVICE) 1839 return LINK_UP_DOWN_INTERRUPT; 1840 else 1841 return MAC_RMAC_ERR_TIMER; 1842 } 1843 1844 /** 1845 * do_s2io_write_bits - update alarm bits in alarm register 1846 * @value: alarm bits 1847 * @flag: interrupt status 1848 * @addr: address value 1849 * Description: update alarm bits in alarm register 1850 * Return Value: 1851 * NONE. 1852 */ 1853 static void do_s2io_write_bits(u64 value, int flag, void __iomem *addr) 1854 { 1855 u64 temp64; 1856 1857 temp64 = readq(addr); 1858 1859 if (flag == ENABLE_INTRS) 1860 temp64 &= ~((u64)value); 1861 else 1862 temp64 |= ((u64)value); 1863 writeq(temp64, addr); 1864 } 1865 1866 static void en_dis_err_alarms(struct s2io_nic *nic, u16 mask, int flag) 1867 { 1868 struct XENA_dev_config __iomem *bar0 = nic->bar0; 1869 register u64 gen_int_mask = 0; 1870 u64 interruptible; 1871 1872 writeq(DISABLE_ALL_INTRS, &bar0->general_int_mask); 1873 if (mask & TX_DMA_INTR) { 1874 gen_int_mask |= TXDMA_INT_M; 1875 1876 do_s2io_write_bits(TXDMA_TDA_INT | TXDMA_PFC_INT | 1877 TXDMA_PCC_INT | TXDMA_TTI_INT | 1878 TXDMA_LSO_INT | TXDMA_TPA_INT | 1879 TXDMA_SM_INT, flag, &bar0->txdma_int_mask); 1880 1881 do_s2io_write_bits(PFC_ECC_DB_ERR | PFC_SM_ERR_ALARM | 1882 PFC_MISC_0_ERR | PFC_MISC_1_ERR | 1883 PFC_PCIX_ERR | PFC_ECC_SG_ERR, flag, 1884 &bar0->pfc_err_mask); 1885 1886 do_s2io_write_bits(TDA_Fn_ECC_DB_ERR | TDA_SM0_ERR_ALARM | 1887 TDA_SM1_ERR_ALARM | TDA_Fn_ECC_SG_ERR | 1888 TDA_PCIX_ERR, flag, &bar0->tda_err_mask); 1889 1890 do_s2io_write_bits(PCC_FB_ECC_DB_ERR | PCC_TXB_ECC_DB_ERR | 1891 PCC_SM_ERR_ALARM | PCC_WR_ERR_ALARM | 1892 PCC_N_SERR | PCC_6_COF_OV_ERR | 1893 PCC_7_COF_OV_ERR | PCC_6_LSO_OV_ERR | 1894 PCC_7_LSO_OV_ERR | PCC_FB_ECC_SG_ERR | 1895 PCC_TXB_ECC_SG_ERR, 1896 flag, &bar0->pcc_err_mask); 1897 1898 do_s2io_write_bits(TTI_SM_ERR_ALARM | TTI_ECC_SG_ERR | 1899 TTI_ECC_DB_ERR, flag, &bar0->tti_err_mask); 1900 1901 do_s2io_write_bits(LSO6_ABORT | LSO7_ABORT | 1902 LSO6_SM_ERR_ALARM | LSO7_SM_ERR_ALARM | 1903 LSO6_SEND_OFLOW | LSO7_SEND_OFLOW, 1904 flag, &bar0->lso_err_mask); 1905 1906 do_s2io_write_bits(TPA_SM_ERR_ALARM | TPA_TX_FRM_DROP, 1907 flag, &bar0->tpa_err_mask); 1908 1909 do_s2io_write_bits(SM_SM_ERR_ALARM, flag, &bar0->sm_err_mask); 1910 } 1911 1912 if (mask & TX_MAC_INTR) { 1913 gen_int_mask |= TXMAC_INT_M; 1914 do_s2io_write_bits(MAC_INT_STATUS_TMAC_INT, flag, 1915 &bar0->mac_int_mask); 1916 do_s2io_write_bits(TMAC_TX_BUF_OVRN | TMAC_TX_SM_ERR | 1917 TMAC_ECC_SG_ERR | TMAC_ECC_DB_ERR | 1918 TMAC_DESC_ECC_SG_ERR | TMAC_DESC_ECC_DB_ERR, 1919 flag, &bar0->mac_tmac_err_mask); 1920 } 1921 1922 if (mask & TX_XGXS_INTR) { 1923 gen_int_mask |= TXXGXS_INT_M; 1924 do_s2io_write_bits(XGXS_INT_STATUS_TXGXS, flag, 1925 &bar0->xgxs_int_mask); 1926 do_s2io_write_bits(TXGXS_ESTORE_UFLOW | TXGXS_TX_SM_ERR | 1927 TXGXS_ECC_SG_ERR | TXGXS_ECC_DB_ERR, 1928 flag, &bar0->xgxs_txgxs_err_mask); 1929 } 1930 1931 if (mask & RX_DMA_INTR) { 1932 gen_int_mask |= RXDMA_INT_M; 1933 do_s2io_write_bits(RXDMA_INT_RC_INT_M | RXDMA_INT_RPA_INT_M | 1934 RXDMA_INT_RDA_INT_M | RXDMA_INT_RTI_INT_M, 1935 flag, &bar0->rxdma_int_mask); 1936 do_s2io_write_bits(RC_PRCn_ECC_DB_ERR | RC_FTC_ECC_DB_ERR | 1937 RC_PRCn_SM_ERR_ALARM | RC_FTC_SM_ERR_ALARM | 1938 RC_PRCn_ECC_SG_ERR | RC_FTC_ECC_SG_ERR | 1939 RC_RDA_FAIL_WR_Rn, flag, &bar0->rc_err_mask); 1940 do_s2io_write_bits(PRC_PCI_AB_RD_Rn | PRC_PCI_AB_WR_Rn | 1941 PRC_PCI_AB_F_WR_Rn | PRC_PCI_DP_RD_Rn | 1942 PRC_PCI_DP_WR_Rn | PRC_PCI_DP_F_WR_Rn, flag, 1943 &bar0->prc_pcix_err_mask); 1944 do_s2io_write_bits(RPA_SM_ERR_ALARM | RPA_CREDIT_ERR | 1945 RPA_ECC_SG_ERR | RPA_ECC_DB_ERR, flag, 1946 &bar0->rpa_err_mask); 1947 do_s2io_write_bits(RDA_RXDn_ECC_DB_ERR | RDA_FRM_ECC_DB_N_AERR | 1948 RDA_SM1_ERR_ALARM | RDA_SM0_ERR_ALARM | 1949 RDA_RXD_ECC_DB_SERR | RDA_RXDn_ECC_SG_ERR | 1950 RDA_FRM_ECC_SG_ERR | 1951 RDA_MISC_ERR|RDA_PCIX_ERR, 1952 flag, &bar0->rda_err_mask); 1953 do_s2io_write_bits(RTI_SM_ERR_ALARM | 1954 RTI_ECC_SG_ERR | RTI_ECC_DB_ERR, 1955 flag, &bar0->rti_err_mask); 1956 } 1957 1958 if (mask & RX_MAC_INTR) { 1959 gen_int_mask |= RXMAC_INT_M; 1960 do_s2io_write_bits(MAC_INT_STATUS_RMAC_INT, flag, 1961 &bar0->mac_int_mask); 1962 interruptible = (RMAC_RX_BUFF_OVRN | RMAC_RX_SM_ERR | 1963 RMAC_UNUSED_INT | RMAC_SINGLE_ECC_ERR | 1964 RMAC_DOUBLE_ECC_ERR); 1965 if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) 1966 interruptible |= RMAC_LINK_STATE_CHANGE_INT; 1967 do_s2io_write_bits(interruptible, 1968 flag, &bar0->mac_rmac_err_mask); 1969 } 1970 1971 if (mask & RX_XGXS_INTR) { 1972 gen_int_mask |= RXXGXS_INT_M; 1973 do_s2io_write_bits(XGXS_INT_STATUS_RXGXS, flag, 1974 &bar0->xgxs_int_mask); 1975 do_s2io_write_bits(RXGXS_ESTORE_OFLOW | RXGXS_RX_SM_ERR, flag, 1976 &bar0->xgxs_rxgxs_err_mask); 1977 } 1978 1979 if (mask & MC_INTR) { 1980 gen_int_mask |= MC_INT_M; 1981 do_s2io_write_bits(MC_INT_MASK_MC_INT, 1982 flag, &bar0->mc_int_mask); 1983 do_s2io_write_bits(MC_ERR_REG_SM_ERR | MC_ERR_REG_ECC_ALL_SNG | 1984 MC_ERR_REG_ECC_ALL_DBL | PLL_LOCK_N, flag, 1985 &bar0->mc_err_mask); 1986 } 1987 nic->general_int_mask = gen_int_mask; 1988 1989 /* Remove this line when alarm interrupts are enabled */ 1990 nic->general_int_mask = 0; 1991 } 1992 1993 /** 1994 * en_dis_able_nic_intrs - Enable or Disable the interrupts 1995 * @nic: device private variable, 1996 * @mask: A mask indicating which Intr block must be modified and, 1997 * @flag: A flag indicating whether to enable or disable the Intrs. 1998 * Description: This function will either disable or enable the interrupts 1999 * depending on the flag argument. The mask argument can be used to 2000 * enable/disable any Intr block. 2001 * Return Value: NONE. 2002 */ 2003 2004 static void en_dis_able_nic_intrs(struct s2io_nic *nic, u16 mask, int flag) 2005 { 2006 struct XENA_dev_config __iomem *bar0 = nic->bar0; 2007 register u64 temp64 = 0, intr_mask = 0; 2008 2009 intr_mask = nic->general_int_mask; 2010 2011 /* Top level interrupt classification */ 2012 /* PIC Interrupts */ 2013 if (mask & TX_PIC_INTR) { 2014 /* Enable PIC Intrs in the general intr mask register */ 2015 intr_mask |= TXPIC_INT_M; 2016 if (flag == ENABLE_INTRS) { 2017 /* 2018 * If Hercules adapter enable GPIO otherwise 2019 * disable all PCIX, Flash, MDIO, IIC and GPIO 2020 * interrupts for now. 2021 * TODO 2022 */ 2023 if (s2io_link_fault_indication(nic) == 2024 LINK_UP_DOWN_INTERRUPT) { 2025 do_s2io_write_bits(PIC_INT_GPIO, flag, 2026 &bar0->pic_int_mask); 2027 do_s2io_write_bits(GPIO_INT_MASK_LINK_UP, flag, 2028 &bar0->gpio_int_mask); 2029 } else 2030 writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask); 2031 } else if (flag == DISABLE_INTRS) { 2032 /* 2033 * Disable PIC Intrs in the general 2034 * intr mask register 2035 */ 2036 writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask); 2037 } 2038 } 2039 2040 /* Tx traffic interrupts */ 2041 if (mask & TX_TRAFFIC_INTR) { 2042 intr_mask |= TXTRAFFIC_INT_M; 2043 if (flag == ENABLE_INTRS) { 2044 /* 2045 * Enable all the Tx side interrupts 2046 * writing 0 Enables all 64 TX interrupt levels 2047 */ 2048 writeq(0x0, &bar0->tx_traffic_mask); 2049 } else if (flag == DISABLE_INTRS) { 2050 /* 2051 * Disable Tx Traffic Intrs in the general intr mask 2052 * register. 2053 */ 2054 writeq(DISABLE_ALL_INTRS, &bar0->tx_traffic_mask); 2055 } 2056 } 2057 2058 /* Rx traffic interrupts */ 2059 if (mask & RX_TRAFFIC_INTR) { 2060 intr_mask |= RXTRAFFIC_INT_M; 2061 if (flag == ENABLE_INTRS) { 2062 /* writing 0 Enables all 8 RX interrupt levels */ 2063 writeq(0x0, &bar0->rx_traffic_mask); 2064 } else if (flag == DISABLE_INTRS) { 2065 /* 2066 * Disable Rx Traffic Intrs in the general intr mask 2067 * register. 2068 */ 2069 writeq(DISABLE_ALL_INTRS, &bar0->rx_traffic_mask); 2070 } 2071 } 2072 2073 temp64 = readq(&bar0->general_int_mask); 2074 if (flag == ENABLE_INTRS) 2075 temp64 &= ~((u64)intr_mask); 2076 else 2077 temp64 = DISABLE_ALL_INTRS; 2078 writeq(temp64, &bar0->general_int_mask); 2079 2080 nic->general_int_mask = readq(&bar0->general_int_mask); 2081 } 2082 2083 /** 2084 * verify_pcc_quiescent- Checks for PCC quiescent state 2085 * Return: 1 If PCC is quiescence 2086 * 0 If PCC is not quiescence 2087 */ 2088 static int verify_pcc_quiescent(struct s2io_nic *sp, int flag) 2089 { 2090 int ret = 0, herc; 2091 struct XENA_dev_config __iomem *bar0 = sp->bar0; 2092 u64 val64 = readq(&bar0->adapter_status); 2093 2094 herc = (sp->device_type == XFRAME_II_DEVICE); 2095 2096 if (flag == false) { 2097 if ((!herc && (sp->pdev->revision >= 4)) || herc) { 2098 if (!(val64 & ADAPTER_STATUS_RMAC_PCC_IDLE)) 2099 ret = 1; 2100 } else { 2101 if (!(val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE)) 2102 ret = 1; 2103 } 2104 } else { 2105 if ((!herc && (sp->pdev->revision >= 4)) || herc) { 2106 if (((val64 & ADAPTER_STATUS_RMAC_PCC_IDLE) == 2107 ADAPTER_STATUS_RMAC_PCC_IDLE)) 2108 ret = 1; 2109 } else { 2110 if (((val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE) == 2111 ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE)) 2112 ret = 1; 2113 } 2114 } 2115 2116 return ret; 2117 } 2118 /** 2119 * verify_xena_quiescence - Checks whether the H/W is ready 2120 * Description: Returns whether the H/W is ready to go or not. Depending 2121 * on whether adapter enable bit was written or not the comparison 2122 * differs and the calling function passes the input argument flag to 2123 * indicate this. 2124 * Return: 1 If xena is quiescence 2125 * 0 If Xena is not quiescence 2126 */ 2127 2128 static int verify_xena_quiescence(struct s2io_nic *sp) 2129 { 2130 int mode; 2131 struct XENA_dev_config __iomem *bar0 = sp->bar0; 2132 u64 val64 = readq(&bar0->adapter_status); 2133 mode = s2io_verify_pci_mode(sp); 2134 2135 if (!(val64 & ADAPTER_STATUS_TDMA_READY)) { 2136 DBG_PRINT(ERR_DBG, "TDMA is not ready!\n"); 2137 return 0; 2138 } 2139 if (!(val64 & ADAPTER_STATUS_RDMA_READY)) { 2140 DBG_PRINT(ERR_DBG, "RDMA is not ready!\n"); 2141 return 0; 2142 } 2143 if (!(val64 & ADAPTER_STATUS_PFC_READY)) { 2144 DBG_PRINT(ERR_DBG, "PFC is not ready!\n"); 2145 return 0; 2146 } 2147 if (!(val64 & ADAPTER_STATUS_TMAC_BUF_EMPTY)) { 2148 DBG_PRINT(ERR_DBG, "TMAC BUF is not empty!\n"); 2149 return 0; 2150 } 2151 if (!(val64 & ADAPTER_STATUS_PIC_QUIESCENT)) { 2152 DBG_PRINT(ERR_DBG, "PIC is not QUIESCENT!\n"); 2153 return 0; 2154 } 2155 if (!(val64 & ADAPTER_STATUS_MC_DRAM_READY)) { 2156 DBG_PRINT(ERR_DBG, "MC_DRAM is not ready!\n"); 2157 return 0; 2158 } 2159 if (!(val64 & ADAPTER_STATUS_MC_QUEUES_READY)) { 2160 DBG_PRINT(ERR_DBG, "MC_QUEUES is not ready!\n"); 2161 return 0; 2162 } 2163 if (!(val64 & ADAPTER_STATUS_M_PLL_LOCK)) { 2164 DBG_PRINT(ERR_DBG, "M_PLL is not locked!\n"); 2165 return 0; 2166 } 2167 2168 /* 2169 * In PCI 33 mode, the P_PLL is not used, and therefore, 2170 * the the P_PLL_LOCK bit in the adapter_status register will 2171 * not be asserted. 2172 */ 2173 if (!(val64 & ADAPTER_STATUS_P_PLL_LOCK) && 2174 sp->device_type == XFRAME_II_DEVICE && 2175 mode != PCI_MODE_PCI_33) { 2176 DBG_PRINT(ERR_DBG, "P_PLL is not locked!\n"); 2177 return 0; 2178 } 2179 if (!((val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) == 2180 ADAPTER_STATUS_RC_PRC_QUIESCENT)) { 2181 DBG_PRINT(ERR_DBG, "RC_PRC is not QUIESCENT!\n"); 2182 return 0; 2183 } 2184 return 1; 2185 } 2186 2187 /** 2188 * fix_mac_address - Fix for Mac addr problem on Alpha platforms 2189 * @sp: Pointer to device specifc structure 2190 * Description : 2191 * New procedure to clear mac address reading problems on Alpha platforms 2192 * 2193 */ 2194 2195 static void fix_mac_address(struct s2io_nic *sp) 2196 { 2197 struct XENA_dev_config __iomem *bar0 = sp->bar0; 2198 int i = 0; 2199 2200 while (fix_mac[i] != END_SIGN) { 2201 writeq(fix_mac[i++], &bar0->gpio_control); 2202 udelay(10); 2203 (void) readq(&bar0->gpio_control); 2204 } 2205 } 2206 2207 /** 2208 * start_nic - Turns the device on 2209 * @nic : device private variable. 2210 * Description: 2211 * This function actually turns the device on. Before this function is 2212 * called,all Registers are configured from their reset states 2213 * and shared memory is allocated but the NIC is still quiescent. On 2214 * calling this function, the device interrupts are cleared and the NIC is 2215 * literally switched on by writing into the adapter control register. 2216 * Return Value: 2217 * SUCCESS on success and -1 on failure. 2218 */ 2219 2220 static int start_nic(struct s2io_nic *nic) 2221 { 2222 struct XENA_dev_config __iomem *bar0 = nic->bar0; 2223 struct net_device *dev = nic->dev; 2224 register u64 val64 = 0; 2225 u16 subid, i; 2226 struct config_param *config = &nic->config; 2227 struct mac_info *mac_control = &nic->mac_control; 2228 2229 /* PRC Initialization and configuration */ 2230 for (i = 0; i < config->rx_ring_num; i++) { 2231 struct ring_info *ring = &mac_control->rings[i]; 2232 2233 writeq((u64)ring->rx_blocks[0].block_dma_addr, 2234 &bar0->prc_rxd0_n[i]); 2235 2236 val64 = readq(&bar0->prc_ctrl_n[i]); 2237 if (nic->rxd_mode == RXD_MODE_1) 2238 val64 |= PRC_CTRL_RC_ENABLED; 2239 else 2240 val64 |= PRC_CTRL_RC_ENABLED | PRC_CTRL_RING_MODE_3; 2241 if (nic->device_type == XFRAME_II_DEVICE) 2242 val64 |= PRC_CTRL_GROUP_READS; 2243 val64 &= ~PRC_CTRL_RXD_BACKOFF_INTERVAL(0xFFFFFF); 2244 val64 |= PRC_CTRL_RXD_BACKOFF_INTERVAL(0x1000); 2245 writeq(val64, &bar0->prc_ctrl_n[i]); 2246 } 2247 2248 if (nic->rxd_mode == RXD_MODE_3B) { 2249 /* Enabling 2 buffer mode by writing into Rx_pa_cfg reg. */ 2250 val64 = readq(&bar0->rx_pa_cfg); 2251 val64 |= RX_PA_CFG_IGNORE_L2_ERR; 2252 writeq(val64, &bar0->rx_pa_cfg); 2253 } 2254 2255 if (vlan_tag_strip == 0) { 2256 val64 = readq(&bar0->rx_pa_cfg); 2257 val64 &= ~RX_PA_CFG_STRIP_VLAN_TAG; 2258 writeq(val64, &bar0->rx_pa_cfg); 2259 nic->vlan_strip_flag = 0; 2260 } 2261 2262 /* 2263 * Enabling MC-RLDRAM. After enabling the device, we timeout 2264 * for around 100ms, which is approximately the time required 2265 * for the device to be ready for operation. 2266 */ 2267 val64 = readq(&bar0->mc_rldram_mrs); 2268 val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE | MC_RLDRAM_MRS_ENABLE; 2269 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF); 2270 val64 = readq(&bar0->mc_rldram_mrs); 2271 2272 msleep(100); /* Delay by around 100 ms. */ 2273 2274 /* Enabling ECC Protection. */ 2275 val64 = readq(&bar0->adapter_control); 2276 val64 &= ~ADAPTER_ECC_EN; 2277 writeq(val64, &bar0->adapter_control); 2278 2279 /* 2280 * Verify if the device is ready to be enabled, if so enable 2281 * it. 2282 */ 2283 val64 = readq(&bar0->adapter_status); 2284 if (!verify_xena_quiescence(nic)) { 2285 DBG_PRINT(ERR_DBG, "%s: device is not ready, " 2286 "Adapter status reads: 0x%llx\n", 2287 dev->name, (unsigned long long)val64); 2288 return FAILURE; 2289 } 2290 2291 /* 2292 * With some switches, link might be already up at this point. 2293 * Because of this weird behavior, when we enable laser, 2294 * we may not get link. We need to handle this. We cannot 2295 * figure out which switch is misbehaving. So we are forced to 2296 * make a global change. 2297 */ 2298 2299 /* Enabling Laser. */ 2300 val64 = readq(&bar0->adapter_control); 2301 val64 |= ADAPTER_EOI_TX_ON; 2302 writeq(val64, &bar0->adapter_control); 2303 2304 if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) { 2305 /* 2306 * Dont see link state interrupts initially on some switches, 2307 * so directly scheduling the link state task here. 2308 */ 2309 schedule_work(&nic->set_link_task); 2310 } 2311 /* SXE-002: Initialize link and activity LED */ 2312 subid = nic->pdev->subsystem_device; 2313 if (((subid & 0xFF) >= 0x07) && 2314 (nic->device_type == XFRAME_I_DEVICE)) { 2315 val64 = readq(&bar0->gpio_control); 2316 val64 |= 0x0000800000000000ULL; 2317 writeq(val64, &bar0->gpio_control); 2318 val64 = 0x0411040400000000ULL; 2319 writeq(val64, (void __iomem *)bar0 + 0x2700); 2320 } 2321 2322 return SUCCESS; 2323 } 2324 /** 2325 * s2io_txdl_getskb - Get the skb from txdl, unmap and return skb 2326 */ 2327 static struct sk_buff *s2io_txdl_getskb(struct fifo_info *fifo_data, 2328 struct TxD *txdlp, int get_off) 2329 { 2330 struct s2io_nic *nic = fifo_data->nic; 2331 struct sk_buff *skb; 2332 struct TxD *txds; 2333 u16 j, frg_cnt; 2334 2335 txds = txdlp; 2336 if (txds->Host_Control == (u64)(long)fifo_data->ufo_in_band_v) { 2337 pci_unmap_single(nic->pdev, (dma_addr_t)txds->Buffer_Pointer, 2338 sizeof(u64), PCI_DMA_TODEVICE); 2339 txds++; 2340 } 2341 2342 skb = (struct sk_buff *)((unsigned long)txds->Host_Control); 2343 if (!skb) { 2344 memset(txdlp, 0, (sizeof(struct TxD) * fifo_data->max_txds)); 2345 return NULL; 2346 } 2347 pci_unmap_single(nic->pdev, (dma_addr_t)txds->Buffer_Pointer, 2348 skb_headlen(skb), PCI_DMA_TODEVICE); 2349 frg_cnt = skb_shinfo(skb)->nr_frags; 2350 if (frg_cnt) { 2351 txds++; 2352 for (j = 0; j < frg_cnt; j++, txds++) { 2353 const skb_frag_t *frag = &skb_shinfo(skb)->frags[j]; 2354 if (!txds->Buffer_Pointer) 2355 break; 2356 pci_unmap_page(nic->pdev, 2357 (dma_addr_t)txds->Buffer_Pointer, 2358 skb_frag_size(frag), PCI_DMA_TODEVICE); 2359 } 2360 } 2361 memset(txdlp, 0, (sizeof(struct TxD) * fifo_data->max_txds)); 2362 return skb; 2363 } 2364 2365 /** 2366 * free_tx_buffers - Free all queued Tx buffers 2367 * @nic : device private variable. 2368 * Description: 2369 * Free all queued Tx buffers. 2370 * Return Value: void 2371 */ 2372 2373 static void free_tx_buffers(struct s2io_nic *nic) 2374 { 2375 struct net_device *dev = nic->dev; 2376 struct sk_buff *skb; 2377 struct TxD *txdp; 2378 int i, j; 2379 int cnt = 0; 2380 struct config_param *config = &nic->config; 2381 struct mac_info *mac_control = &nic->mac_control; 2382 struct stat_block *stats = mac_control->stats_info; 2383 struct swStat *swstats = &stats->sw_stat; 2384 2385 for (i = 0; i < config->tx_fifo_num; i++) { 2386 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i]; 2387 struct fifo_info *fifo = &mac_control->fifos[i]; 2388 unsigned long flags; 2389 2390 spin_lock_irqsave(&fifo->tx_lock, flags); 2391 for (j = 0; j < tx_cfg->fifo_len; j++) { 2392 txdp = fifo->list_info[j].list_virt_addr; 2393 skb = s2io_txdl_getskb(&mac_control->fifos[i], txdp, j); 2394 if (skb) { 2395 swstats->mem_freed += skb->truesize; 2396 dev_kfree_skb(skb); 2397 cnt++; 2398 } 2399 } 2400 DBG_PRINT(INTR_DBG, 2401 "%s: forcibly freeing %d skbs on FIFO%d\n", 2402 dev->name, cnt, i); 2403 fifo->tx_curr_get_info.offset = 0; 2404 fifo->tx_curr_put_info.offset = 0; 2405 spin_unlock_irqrestore(&fifo->tx_lock, flags); 2406 } 2407 } 2408 2409 /** 2410 * stop_nic - To stop the nic 2411 * @nic ; device private variable. 2412 * Description: 2413 * This function does exactly the opposite of what the start_nic() 2414 * function does. This function is called to stop the device. 2415 * Return Value: 2416 * void. 2417 */ 2418 2419 static void stop_nic(struct s2io_nic *nic) 2420 { 2421 struct XENA_dev_config __iomem *bar0 = nic->bar0; 2422 register u64 val64 = 0; 2423 u16 interruptible; 2424 2425 /* Disable all interrupts */ 2426 en_dis_err_alarms(nic, ENA_ALL_INTRS, DISABLE_INTRS); 2427 interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR; 2428 interruptible |= TX_PIC_INTR; 2429 en_dis_able_nic_intrs(nic, interruptible, DISABLE_INTRS); 2430 2431 /* Clearing Adapter_En bit of ADAPTER_CONTROL Register */ 2432 val64 = readq(&bar0->adapter_control); 2433 val64 &= ~(ADAPTER_CNTL_EN); 2434 writeq(val64, &bar0->adapter_control); 2435 } 2436 2437 /** 2438 * fill_rx_buffers - Allocates the Rx side skbs 2439 * @ring_info: per ring structure 2440 * @from_card_up: If this is true, we will map the buffer to get 2441 * the dma address for buf0 and buf1 to give it to the card. 2442 * Else we will sync the already mapped buffer to give it to the card. 2443 * Description: 2444 * The function allocates Rx side skbs and puts the physical 2445 * address of these buffers into the RxD buffer pointers, so that the NIC 2446 * can DMA the received frame into these locations. 2447 * The NIC supports 3 receive modes, viz 2448 * 1. single buffer, 2449 * 2. three buffer and 2450 * 3. Five buffer modes. 2451 * Each mode defines how many fragments the received frame will be split 2452 * up into by the NIC. The frame is split into L3 header, L4 Header, 2453 * L4 payload in three buffer mode and in 5 buffer mode, L4 payload itself 2454 * is split into 3 fragments. As of now only single buffer mode is 2455 * supported. 2456 * Return Value: 2457 * SUCCESS on success or an appropriate -ve value on failure. 2458 */ 2459 static int fill_rx_buffers(struct s2io_nic *nic, struct ring_info *ring, 2460 int from_card_up) 2461 { 2462 struct sk_buff *skb; 2463 struct RxD_t *rxdp; 2464 int off, size, block_no, block_no1; 2465 u32 alloc_tab = 0; 2466 u32 alloc_cnt; 2467 u64 tmp; 2468 struct buffAdd *ba; 2469 struct RxD_t *first_rxdp = NULL; 2470 u64 Buffer0_ptr = 0, Buffer1_ptr = 0; 2471 int rxd_index = 0; 2472 struct RxD1 *rxdp1; 2473 struct RxD3 *rxdp3; 2474 struct swStat *swstats = &ring->nic->mac_control.stats_info->sw_stat; 2475 2476 alloc_cnt = ring->pkt_cnt - ring->rx_bufs_left; 2477 2478 block_no1 = ring->rx_curr_get_info.block_index; 2479 while (alloc_tab < alloc_cnt) { 2480 block_no = ring->rx_curr_put_info.block_index; 2481 2482 off = ring->rx_curr_put_info.offset; 2483 2484 rxdp = ring->rx_blocks[block_no].rxds[off].virt_addr; 2485 2486 rxd_index = off + 1; 2487 if (block_no) 2488 rxd_index += (block_no * ring->rxd_count); 2489 2490 if ((block_no == block_no1) && 2491 (off == ring->rx_curr_get_info.offset) && 2492 (rxdp->Host_Control)) { 2493 DBG_PRINT(INTR_DBG, "%s: Get and Put info equated\n", 2494 ring->dev->name); 2495 goto end; 2496 } 2497 if (off && (off == ring->rxd_count)) { 2498 ring->rx_curr_put_info.block_index++; 2499 if (ring->rx_curr_put_info.block_index == 2500 ring->block_count) 2501 ring->rx_curr_put_info.block_index = 0; 2502 block_no = ring->rx_curr_put_info.block_index; 2503 off = 0; 2504 ring->rx_curr_put_info.offset = off; 2505 rxdp = ring->rx_blocks[block_no].block_virt_addr; 2506 DBG_PRINT(INTR_DBG, "%s: Next block at: %p\n", 2507 ring->dev->name, rxdp); 2508 2509 } 2510 2511 if ((rxdp->Control_1 & RXD_OWN_XENA) && 2512 ((ring->rxd_mode == RXD_MODE_3B) && 2513 (rxdp->Control_2 & s2BIT(0)))) { 2514 ring->rx_curr_put_info.offset = off; 2515 goto end; 2516 } 2517 /* calculate size of skb based on ring mode */ 2518 size = ring->mtu + 2519 HEADER_ETHERNET_II_802_3_SIZE + 2520 HEADER_802_2_SIZE + HEADER_SNAP_SIZE; 2521 if (ring->rxd_mode == RXD_MODE_1) 2522 size += NET_IP_ALIGN; 2523 else 2524 size = ring->mtu + ALIGN_SIZE + BUF0_LEN + 4; 2525 2526 /* allocate skb */ 2527 skb = netdev_alloc_skb(nic->dev, size); 2528 if (!skb) { 2529 DBG_PRINT(INFO_DBG, "%s: Could not allocate skb\n", 2530 ring->dev->name); 2531 if (first_rxdp) { 2532 wmb(); 2533 first_rxdp->Control_1 |= RXD_OWN_XENA; 2534 } 2535 swstats->mem_alloc_fail_cnt++; 2536 2537 return -ENOMEM ; 2538 } 2539 swstats->mem_allocated += skb->truesize; 2540 2541 if (ring->rxd_mode == RXD_MODE_1) { 2542 /* 1 buffer mode - normal operation mode */ 2543 rxdp1 = (struct RxD1 *)rxdp; 2544 memset(rxdp, 0, sizeof(struct RxD1)); 2545 skb_reserve(skb, NET_IP_ALIGN); 2546 rxdp1->Buffer0_ptr = 2547 pci_map_single(ring->pdev, skb->data, 2548 size - NET_IP_ALIGN, 2549 PCI_DMA_FROMDEVICE); 2550 if (pci_dma_mapping_error(nic->pdev, 2551 rxdp1->Buffer0_ptr)) 2552 goto pci_map_failed; 2553 2554 rxdp->Control_2 = 2555 SET_BUFFER0_SIZE_1(size - NET_IP_ALIGN); 2556 rxdp->Host_Control = (unsigned long)skb; 2557 } else if (ring->rxd_mode == RXD_MODE_3B) { 2558 /* 2559 * 2 buffer mode - 2560 * 2 buffer mode provides 128 2561 * byte aligned receive buffers. 2562 */ 2563 2564 rxdp3 = (struct RxD3 *)rxdp; 2565 /* save buffer pointers to avoid frequent dma mapping */ 2566 Buffer0_ptr = rxdp3->Buffer0_ptr; 2567 Buffer1_ptr = rxdp3->Buffer1_ptr; 2568 memset(rxdp, 0, sizeof(struct RxD3)); 2569 /* restore the buffer pointers for dma sync*/ 2570 rxdp3->Buffer0_ptr = Buffer0_ptr; 2571 rxdp3->Buffer1_ptr = Buffer1_ptr; 2572 2573 ba = &ring->ba[block_no][off]; 2574 skb_reserve(skb, BUF0_LEN); 2575 tmp = (u64)(unsigned long)skb->data; 2576 tmp += ALIGN_SIZE; 2577 tmp &= ~ALIGN_SIZE; 2578 skb->data = (void *) (unsigned long)tmp; 2579 skb_reset_tail_pointer(skb); 2580 2581 if (from_card_up) { 2582 rxdp3->Buffer0_ptr = 2583 pci_map_single(ring->pdev, ba->ba_0, 2584 BUF0_LEN, 2585 PCI_DMA_FROMDEVICE); 2586 if (pci_dma_mapping_error(nic->pdev, 2587 rxdp3->Buffer0_ptr)) 2588 goto pci_map_failed; 2589 } else 2590 pci_dma_sync_single_for_device(ring->pdev, 2591 (dma_addr_t)rxdp3->Buffer0_ptr, 2592 BUF0_LEN, 2593 PCI_DMA_FROMDEVICE); 2594 2595 rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN); 2596 if (ring->rxd_mode == RXD_MODE_3B) { 2597 /* Two buffer mode */ 2598 2599 /* 2600 * Buffer2 will have L3/L4 header plus 2601 * L4 payload 2602 */ 2603 rxdp3->Buffer2_ptr = pci_map_single(ring->pdev, 2604 skb->data, 2605 ring->mtu + 4, 2606 PCI_DMA_FROMDEVICE); 2607 2608 if (pci_dma_mapping_error(nic->pdev, 2609 rxdp3->Buffer2_ptr)) 2610 goto pci_map_failed; 2611 2612 if (from_card_up) { 2613 rxdp3->Buffer1_ptr = 2614 pci_map_single(ring->pdev, 2615 ba->ba_1, 2616 BUF1_LEN, 2617 PCI_DMA_FROMDEVICE); 2618 2619 if (pci_dma_mapping_error(nic->pdev, 2620 rxdp3->Buffer1_ptr)) { 2621 pci_unmap_single(ring->pdev, 2622 (dma_addr_t)(unsigned long) 2623 skb->data, 2624 ring->mtu + 4, 2625 PCI_DMA_FROMDEVICE); 2626 goto pci_map_failed; 2627 } 2628 } 2629 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1); 2630 rxdp->Control_2 |= SET_BUFFER2_SIZE_3 2631 (ring->mtu + 4); 2632 } 2633 rxdp->Control_2 |= s2BIT(0); 2634 rxdp->Host_Control = (unsigned long) (skb); 2635 } 2636 if (alloc_tab & ((1 << rxsync_frequency) - 1)) 2637 rxdp->Control_1 |= RXD_OWN_XENA; 2638 off++; 2639 if (off == (ring->rxd_count + 1)) 2640 off = 0; 2641 ring->rx_curr_put_info.offset = off; 2642 2643 rxdp->Control_2 |= SET_RXD_MARKER; 2644 if (!(alloc_tab & ((1 << rxsync_frequency) - 1))) { 2645 if (first_rxdp) { 2646 wmb(); 2647 first_rxdp->Control_1 |= RXD_OWN_XENA; 2648 } 2649 first_rxdp = rxdp; 2650 } 2651 ring->rx_bufs_left += 1; 2652 alloc_tab++; 2653 } 2654 2655 end: 2656 /* Transfer ownership of first descriptor to adapter just before 2657 * exiting. Before that, use memory barrier so that ownership 2658 * and other fields are seen by adapter correctly. 2659 */ 2660 if (first_rxdp) { 2661 wmb(); 2662 first_rxdp->Control_1 |= RXD_OWN_XENA; 2663 } 2664 2665 return SUCCESS; 2666 2667 pci_map_failed: 2668 swstats->pci_map_fail_cnt++; 2669 swstats->mem_freed += skb->truesize; 2670 dev_kfree_skb_irq(skb); 2671 return -ENOMEM; 2672 } 2673 2674 static void free_rxd_blk(struct s2io_nic *sp, int ring_no, int blk) 2675 { 2676 struct net_device *dev = sp->dev; 2677 int j; 2678 struct sk_buff *skb; 2679 struct RxD_t *rxdp; 2680 struct RxD1 *rxdp1; 2681 struct RxD3 *rxdp3; 2682 struct mac_info *mac_control = &sp->mac_control; 2683 struct stat_block *stats = mac_control->stats_info; 2684 struct swStat *swstats = &stats->sw_stat; 2685 2686 for (j = 0 ; j < rxd_count[sp->rxd_mode]; j++) { 2687 rxdp = mac_control->rings[ring_no]. 2688 rx_blocks[blk].rxds[j].virt_addr; 2689 skb = (struct sk_buff *)((unsigned long)rxdp->Host_Control); 2690 if (!skb) 2691 continue; 2692 if (sp->rxd_mode == RXD_MODE_1) { 2693 rxdp1 = (struct RxD1 *)rxdp; 2694 pci_unmap_single(sp->pdev, 2695 (dma_addr_t)rxdp1->Buffer0_ptr, 2696 dev->mtu + 2697 HEADER_ETHERNET_II_802_3_SIZE + 2698 HEADER_802_2_SIZE + HEADER_SNAP_SIZE, 2699 PCI_DMA_FROMDEVICE); 2700 memset(rxdp, 0, sizeof(struct RxD1)); 2701 } else if (sp->rxd_mode == RXD_MODE_3B) { 2702 rxdp3 = (struct RxD3 *)rxdp; 2703 pci_unmap_single(sp->pdev, 2704 (dma_addr_t)rxdp3->Buffer0_ptr, 2705 BUF0_LEN, 2706 PCI_DMA_FROMDEVICE); 2707 pci_unmap_single(sp->pdev, 2708 (dma_addr_t)rxdp3->Buffer1_ptr, 2709 BUF1_LEN, 2710 PCI_DMA_FROMDEVICE); 2711 pci_unmap_single(sp->pdev, 2712 (dma_addr_t)rxdp3->Buffer2_ptr, 2713 dev->mtu + 4, 2714 PCI_DMA_FROMDEVICE); 2715 memset(rxdp, 0, sizeof(struct RxD3)); 2716 } 2717 swstats->mem_freed += skb->truesize; 2718 dev_kfree_skb(skb); 2719 mac_control->rings[ring_no].rx_bufs_left -= 1; 2720 } 2721 } 2722 2723 /** 2724 * free_rx_buffers - Frees all Rx buffers 2725 * @sp: device private variable. 2726 * Description: 2727 * This function will free all Rx buffers allocated by host. 2728 * Return Value: 2729 * NONE. 2730 */ 2731 2732 static void free_rx_buffers(struct s2io_nic *sp) 2733 { 2734 struct net_device *dev = sp->dev; 2735 int i, blk = 0, buf_cnt = 0; 2736 struct config_param *config = &sp->config; 2737 struct mac_info *mac_control = &sp->mac_control; 2738 2739 for (i = 0; i < config->rx_ring_num; i++) { 2740 struct ring_info *ring = &mac_control->rings[i]; 2741 2742 for (blk = 0; blk < rx_ring_sz[i]; blk++) 2743 free_rxd_blk(sp, i, blk); 2744 2745 ring->rx_curr_put_info.block_index = 0; 2746 ring->rx_curr_get_info.block_index = 0; 2747 ring->rx_curr_put_info.offset = 0; 2748 ring->rx_curr_get_info.offset = 0; 2749 ring->rx_bufs_left = 0; 2750 DBG_PRINT(INIT_DBG, "%s: Freed 0x%x Rx Buffers on ring%d\n", 2751 dev->name, buf_cnt, i); 2752 } 2753 } 2754 2755 static int s2io_chk_rx_buffers(struct s2io_nic *nic, struct ring_info *ring) 2756 { 2757 if (fill_rx_buffers(nic, ring, 0) == -ENOMEM) { 2758 DBG_PRINT(INFO_DBG, "%s: Out of memory in Rx Intr!!\n", 2759 ring->dev->name); 2760 } 2761 return 0; 2762 } 2763 2764 /** 2765 * s2io_poll - Rx interrupt handler for NAPI support 2766 * @napi : pointer to the napi structure. 2767 * @budget : The number of packets that were budgeted to be processed 2768 * during one pass through the 'Poll" function. 2769 * Description: 2770 * Comes into picture only if NAPI support has been incorporated. It does 2771 * the same thing that rx_intr_handler does, but not in a interrupt context 2772 * also It will process only a given number of packets. 2773 * Return value: 2774 * 0 on success and 1 if there are No Rx packets to be processed. 2775 */ 2776 2777 static int s2io_poll_msix(struct napi_struct *napi, int budget) 2778 { 2779 struct ring_info *ring = container_of(napi, struct ring_info, napi); 2780 struct net_device *dev = ring->dev; 2781 int pkts_processed = 0; 2782 u8 __iomem *addr = NULL; 2783 u8 val8 = 0; 2784 struct s2io_nic *nic = netdev_priv(dev); 2785 struct XENA_dev_config __iomem *bar0 = nic->bar0; 2786 int budget_org = budget; 2787 2788 if (unlikely(!is_s2io_card_up(nic))) 2789 return 0; 2790 2791 pkts_processed = rx_intr_handler(ring, budget); 2792 s2io_chk_rx_buffers(nic, ring); 2793 2794 if (pkts_processed < budget_org) { 2795 napi_complete(napi); 2796 /*Re Enable MSI-Rx Vector*/ 2797 addr = (u8 __iomem *)&bar0->xmsi_mask_reg; 2798 addr += 7 - ring->ring_no; 2799 val8 = (ring->ring_no == 0) ? 0x3f : 0xbf; 2800 writeb(val8, addr); 2801 val8 = readb(addr); 2802 } 2803 return pkts_processed; 2804 } 2805 2806 static int s2io_poll_inta(struct napi_struct *napi, int budget) 2807 { 2808 struct s2io_nic *nic = container_of(napi, struct s2io_nic, napi); 2809 int pkts_processed = 0; 2810 int ring_pkts_processed, i; 2811 struct XENA_dev_config __iomem *bar0 = nic->bar0; 2812 int budget_org = budget; 2813 struct config_param *config = &nic->config; 2814 struct mac_info *mac_control = &nic->mac_control; 2815 2816 if (unlikely(!is_s2io_card_up(nic))) 2817 return 0; 2818 2819 for (i = 0; i < config->rx_ring_num; i++) { 2820 struct ring_info *ring = &mac_control->rings[i]; 2821 ring_pkts_processed = rx_intr_handler(ring, budget); 2822 s2io_chk_rx_buffers(nic, ring); 2823 pkts_processed += ring_pkts_processed; 2824 budget -= ring_pkts_processed; 2825 if (budget <= 0) 2826 break; 2827 } 2828 if (pkts_processed < budget_org) { 2829 napi_complete(napi); 2830 /* Re enable the Rx interrupts for the ring */ 2831 writeq(0, &bar0->rx_traffic_mask); 2832 readl(&bar0->rx_traffic_mask); 2833 } 2834 return pkts_processed; 2835 } 2836 2837 #ifdef CONFIG_NET_POLL_CONTROLLER 2838 /** 2839 * s2io_netpoll - netpoll event handler entry point 2840 * @dev : pointer to the device structure. 2841 * Description: 2842 * This function will be called by upper layer to check for events on the 2843 * interface in situations where interrupts are disabled. It is used for 2844 * specific in-kernel networking tasks, such as remote consoles and kernel 2845 * debugging over the network (example netdump in RedHat). 2846 */ 2847 static void s2io_netpoll(struct net_device *dev) 2848 { 2849 struct s2io_nic *nic = netdev_priv(dev); 2850 const int irq = nic->pdev->irq; 2851 struct XENA_dev_config __iomem *bar0 = nic->bar0; 2852 u64 val64 = 0xFFFFFFFFFFFFFFFFULL; 2853 int i; 2854 struct config_param *config = &nic->config; 2855 struct mac_info *mac_control = &nic->mac_control; 2856 2857 if (pci_channel_offline(nic->pdev)) 2858 return; 2859 2860 disable_irq(irq); 2861 2862 writeq(val64, &bar0->rx_traffic_int); 2863 writeq(val64, &bar0->tx_traffic_int); 2864 2865 /* we need to free up the transmitted skbufs or else netpoll will 2866 * run out of skbs and will fail and eventually netpoll application such 2867 * as netdump will fail. 2868 */ 2869 for (i = 0; i < config->tx_fifo_num; i++) 2870 tx_intr_handler(&mac_control->fifos[i]); 2871 2872 /* check for received packet and indicate up to network */ 2873 for (i = 0; i < config->rx_ring_num; i++) { 2874 struct ring_info *ring = &mac_control->rings[i]; 2875 2876 rx_intr_handler(ring, 0); 2877 } 2878 2879 for (i = 0; i < config->rx_ring_num; i++) { 2880 struct ring_info *ring = &mac_control->rings[i]; 2881 2882 if (fill_rx_buffers(nic, ring, 0) == -ENOMEM) { 2883 DBG_PRINT(INFO_DBG, 2884 "%s: Out of memory in Rx Netpoll!!\n", 2885 dev->name); 2886 break; 2887 } 2888 } 2889 enable_irq(irq); 2890 } 2891 #endif 2892 2893 /** 2894 * rx_intr_handler - Rx interrupt handler 2895 * @ring_info: per ring structure. 2896 * @budget: budget for napi processing. 2897 * Description: 2898 * If the interrupt is because of a received frame or if the 2899 * receive ring contains fresh as yet un-processed frames,this function is 2900 * called. It picks out the RxD at which place the last Rx processing had 2901 * stopped and sends the skb to the OSM's Rx handler and then increments 2902 * the offset. 2903 * Return Value: 2904 * No. of napi packets processed. 2905 */ 2906 static int rx_intr_handler(struct ring_info *ring_data, int budget) 2907 { 2908 int get_block, put_block; 2909 struct rx_curr_get_info get_info, put_info; 2910 struct RxD_t *rxdp; 2911 struct sk_buff *skb; 2912 int pkt_cnt = 0, napi_pkts = 0; 2913 int i; 2914 struct RxD1 *rxdp1; 2915 struct RxD3 *rxdp3; 2916 2917 get_info = ring_data->rx_curr_get_info; 2918 get_block = get_info.block_index; 2919 memcpy(&put_info, &ring_data->rx_curr_put_info, sizeof(put_info)); 2920 put_block = put_info.block_index; 2921 rxdp = ring_data->rx_blocks[get_block].rxds[get_info.offset].virt_addr; 2922 2923 while (RXD_IS_UP2DT(rxdp)) { 2924 /* 2925 * If your are next to put index then it's 2926 * FIFO full condition 2927 */ 2928 if ((get_block == put_block) && 2929 (get_info.offset + 1) == put_info.offset) { 2930 DBG_PRINT(INTR_DBG, "%s: Ring Full\n", 2931 ring_data->dev->name); 2932 break; 2933 } 2934 skb = (struct sk_buff *)((unsigned long)rxdp->Host_Control); 2935 if (skb == NULL) { 2936 DBG_PRINT(ERR_DBG, "%s: NULL skb in Rx Intr\n", 2937 ring_data->dev->name); 2938 return 0; 2939 } 2940 if (ring_data->rxd_mode == RXD_MODE_1) { 2941 rxdp1 = (struct RxD1 *)rxdp; 2942 pci_unmap_single(ring_data->pdev, (dma_addr_t) 2943 rxdp1->Buffer0_ptr, 2944 ring_data->mtu + 2945 HEADER_ETHERNET_II_802_3_SIZE + 2946 HEADER_802_2_SIZE + 2947 HEADER_SNAP_SIZE, 2948 PCI_DMA_FROMDEVICE); 2949 } else if (ring_data->rxd_mode == RXD_MODE_3B) { 2950 rxdp3 = (struct RxD3 *)rxdp; 2951 pci_dma_sync_single_for_cpu(ring_data->pdev, 2952 (dma_addr_t)rxdp3->Buffer0_ptr, 2953 BUF0_LEN, 2954 PCI_DMA_FROMDEVICE); 2955 pci_unmap_single(ring_data->pdev, 2956 (dma_addr_t)rxdp3->Buffer2_ptr, 2957 ring_data->mtu + 4, 2958 PCI_DMA_FROMDEVICE); 2959 } 2960 prefetch(skb->data); 2961 rx_osm_handler(ring_data, rxdp); 2962 get_info.offset++; 2963 ring_data->rx_curr_get_info.offset = get_info.offset; 2964 rxdp = ring_data->rx_blocks[get_block]. 2965 rxds[get_info.offset].virt_addr; 2966 if (get_info.offset == rxd_count[ring_data->rxd_mode]) { 2967 get_info.offset = 0; 2968 ring_data->rx_curr_get_info.offset = get_info.offset; 2969 get_block++; 2970 if (get_block == ring_data->block_count) 2971 get_block = 0; 2972 ring_data->rx_curr_get_info.block_index = get_block; 2973 rxdp = ring_data->rx_blocks[get_block].block_virt_addr; 2974 } 2975 2976 if (ring_data->nic->config.napi) { 2977 budget--; 2978 napi_pkts++; 2979 if (!budget) 2980 break; 2981 } 2982 pkt_cnt++; 2983 if ((indicate_max_pkts) && (pkt_cnt > indicate_max_pkts)) 2984 break; 2985 } 2986 if (ring_data->lro) { 2987 /* Clear all LRO sessions before exiting */ 2988 for (i = 0; i < MAX_LRO_SESSIONS; i++) { 2989 struct lro *lro = &ring_data->lro0_n[i]; 2990 if (lro->in_use) { 2991 update_L3L4_header(ring_data->nic, lro); 2992 queue_rx_frame(lro->parent, lro->vlan_tag); 2993 clear_lro_session(lro); 2994 } 2995 } 2996 } 2997 return napi_pkts; 2998 } 2999 3000 /** 3001 * tx_intr_handler - Transmit interrupt handler 3002 * @nic : device private variable 3003 * Description: 3004 * If an interrupt was raised to indicate DMA complete of the 3005 * Tx packet, this function is called. It identifies the last TxD 3006 * whose buffer was freed and frees all skbs whose data have already 3007 * DMA'ed into the NICs internal memory. 3008 * Return Value: 3009 * NONE 3010 */ 3011 3012 static void tx_intr_handler(struct fifo_info *fifo_data) 3013 { 3014 struct s2io_nic *nic = fifo_data->nic; 3015 struct tx_curr_get_info get_info, put_info; 3016 struct sk_buff *skb = NULL; 3017 struct TxD *txdlp; 3018 int pkt_cnt = 0; 3019 unsigned long flags = 0; 3020 u8 err_mask; 3021 struct stat_block *stats = nic->mac_control.stats_info; 3022 struct swStat *swstats = &stats->sw_stat; 3023 3024 if (!spin_trylock_irqsave(&fifo_data->tx_lock, flags)) 3025 return; 3026 3027 get_info = fifo_data->tx_curr_get_info; 3028 memcpy(&put_info, &fifo_data->tx_curr_put_info, sizeof(put_info)); 3029 txdlp = fifo_data->list_info[get_info.offset].list_virt_addr; 3030 while ((!(txdlp->Control_1 & TXD_LIST_OWN_XENA)) && 3031 (get_info.offset != put_info.offset) && 3032 (txdlp->Host_Control)) { 3033 /* Check for TxD errors */ 3034 if (txdlp->Control_1 & TXD_T_CODE) { 3035 unsigned long long err; 3036 err = txdlp->Control_1 & TXD_T_CODE; 3037 if (err & 0x1) { 3038 swstats->parity_err_cnt++; 3039 } 3040 3041 /* update t_code statistics */ 3042 err_mask = err >> 48; 3043 switch (err_mask) { 3044 case 2: 3045 swstats->tx_buf_abort_cnt++; 3046 break; 3047 3048 case 3: 3049 swstats->tx_desc_abort_cnt++; 3050 break; 3051 3052 case 7: 3053 swstats->tx_parity_err_cnt++; 3054 break; 3055 3056 case 10: 3057 swstats->tx_link_loss_cnt++; 3058 break; 3059 3060 case 15: 3061 swstats->tx_list_proc_err_cnt++; 3062 break; 3063 } 3064 } 3065 3066 skb = s2io_txdl_getskb(fifo_data, txdlp, get_info.offset); 3067 if (skb == NULL) { 3068 spin_unlock_irqrestore(&fifo_data->tx_lock, flags); 3069 DBG_PRINT(ERR_DBG, "%s: NULL skb in Tx Free Intr\n", 3070 __func__); 3071 return; 3072 } 3073 pkt_cnt++; 3074 3075 /* Updating the statistics block */ 3076 swstats->mem_freed += skb->truesize; 3077 dev_kfree_skb_irq(skb); 3078 3079 get_info.offset++; 3080 if (get_info.offset == get_info.fifo_len + 1) 3081 get_info.offset = 0; 3082 txdlp = fifo_data->list_info[get_info.offset].list_virt_addr; 3083 fifo_data->tx_curr_get_info.offset = get_info.offset; 3084 } 3085 3086 s2io_wake_tx_queue(fifo_data, pkt_cnt, nic->config.multiq); 3087 3088 spin_unlock_irqrestore(&fifo_data->tx_lock, flags); 3089 } 3090 3091 /** 3092 * s2io_mdio_write - Function to write in to MDIO registers 3093 * @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS) 3094 * @addr : address value 3095 * @value : data value 3096 * @dev : pointer to net_device structure 3097 * Description: 3098 * This function is used to write values to the MDIO registers 3099 * NONE 3100 */ 3101 static void s2io_mdio_write(u32 mmd_type, u64 addr, u16 value, 3102 struct net_device *dev) 3103 { 3104 u64 val64; 3105 struct s2io_nic *sp = netdev_priv(dev); 3106 struct XENA_dev_config __iomem *bar0 = sp->bar0; 3107 3108 /* address transaction */ 3109 val64 = MDIO_MMD_INDX_ADDR(addr) | 3110 MDIO_MMD_DEV_ADDR(mmd_type) | 3111 MDIO_MMS_PRT_ADDR(0x0); 3112 writeq(val64, &bar0->mdio_control); 3113 val64 = val64 | MDIO_CTRL_START_TRANS(0xE); 3114 writeq(val64, &bar0->mdio_control); 3115 udelay(100); 3116 3117 /* Data transaction */ 3118 val64 = MDIO_MMD_INDX_ADDR(addr) | 3119 MDIO_MMD_DEV_ADDR(mmd_type) | 3120 MDIO_MMS_PRT_ADDR(0x0) | 3121 MDIO_MDIO_DATA(value) | 3122 MDIO_OP(MDIO_OP_WRITE_TRANS); 3123 writeq(val64, &bar0->mdio_control); 3124 val64 = val64 | MDIO_CTRL_START_TRANS(0xE); 3125 writeq(val64, &bar0->mdio_control); 3126 udelay(100); 3127 3128 val64 = MDIO_MMD_INDX_ADDR(addr) | 3129 MDIO_MMD_DEV_ADDR(mmd_type) | 3130 MDIO_MMS_PRT_ADDR(0x0) | 3131 MDIO_OP(MDIO_OP_READ_TRANS); 3132 writeq(val64, &bar0->mdio_control); 3133 val64 = val64 | MDIO_CTRL_START_TRANS(0xE); 3134 writeq(val64, &bar0->mdio_control); 3135 udelay(100); 3136 } 3137 3138 /** 3139 * s2io_mdio_read - Function to write in to MDIO registers 3140 * @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS) 3141 * @addr : address value 3142 * @dev : pointer to net_device structure 3143 * Description: 3144 * This function is used to read values to the MDIO registers 3145 * NONE 3146 */ 3147 static u64 s2io_mdio_read(u32 mmd_type, u64 addr, struct net_device *dev) 3148 { 3149 u64 val64 = 0x0; 3150 u64 rval64 = 0x0; 3151 struct s2io_nic *sp = netdev_priv(dev); 3152 struct XENA_dev_config __iomem *bar0 = sp->bar0; 3153 3154 /* address transaction */ 3155 val64 = val64 | (MDIO_MMD_INDX_ADDR(addr) 3156 | MDIO_MMD_DEV_ADDR(mmd_type) 3157 | MDIO_MMS_PRT_ADDR(0x0)); 3158 writeq(val64, &bar0->mdio_control); 3159 val64 = val64 | MDIO_CTRL_START_TRANS(0xE); 3160 writeq(val64, &bar0->mdio_control); 3161 udelay(100); 3162 3163 /* Data transaction */ 3164 val64 = MDIO_MMD_INDX_ADDR(addr) | 3165 MDIO_MMD_DEV_ADDR(mmd_type) | 3166 MDIO_MMS_PRT_ADDR(0x0) | 3167 MDIO_OP(MDIO_OP_READ_TRANS); 3168 writeq(val64, &bar0->mdio_control); 3169 val64 = val64 | MDIO_CTRL_START_TRANS(0xE); 3170 writeq(val64, &bar0->mdio_control); 3171 udelay(100); 3172 3173 /* Read the value from regs */ 3174 rval64 = readq(&bar0->mdio_control); 3175 rval64 = rval64 & 0xFFFF0000; 3176 rval64 = rval64 >> 16; 3177 return rval64; 3178 } 3179 3180 /** 3181 * s2io_chk_xpak_counter - Function to check the status of the xpak counters 3182 * @counter : counter value to be updated 3183 * @flag : flag to indicate the status 3184 * @type : counter type 3185 * Description: 3186 * This function is to check the status of the xpak counters value 3187 * NONE 3188 */ 3189 3190 static void s2io_chk_xpak_counter(u64 *counter, u64 * regs_stat, u32 index, 3191 u16 flag, u16 type) 3192 { 3193 u64 mask = 0x3; 3194 u64 val64; 3195 int i; 3196 for (i = 0; i < index; i++) 3197 mask = mask << 0x2; 3198 3199 if (flag > 0) { 3200 *counter = *counter + 1; 3201 val64 = *regs_stat & mask; 3202 val64 = val64 >> (index * 0x2); 3203 val64 = val64 + 1; 3204 if (val64 == 3) { 3205 switch (type) { 3206 case 1: 3207 DBG_PRINT(ERR_DBG, 3208 "Take Xframe NIC out of service.\n"); 3209 DBG_PRINT(ERR_DBG, 3210 "Excessive temperatures may result in premature transceiver failure.\n"); 3211 break; 3212 case 2: 3213 DBG_PRINT(ERR_DBG, 3214 "Take Xframe NIC out of service.\n"); 3215 DBG_PRINT(ERR_DBG, 3216 "Excessive bias currents may indicate imminent laser diode failure.\n"); 3217 break; 3218 case 3: 3219 DBG_PRINT(ERR_DBG, 3220 "Take Xframe NIC out of service.\n"); 3221 DBG_PRINT(ERR_DBG, 3222 "Excessive laser output power may saturate far-end receiver.\n"); 3223 break; 3224 default: 3225 DBG_PRINT(ERR_DBG, 3226 "Incorrect XPAK Alarm type\n"); 3227 } 3228 val64 = 0x0; 3229 } 3230 val64 = val64 << (index * 0x2); 3231 *regs_stat = (*regs_stat & (~mask)) | (val64); 3232 3233 } else { 3234 *regs_stat = *regs_stat & (~mask); 3235 } 3236 } 3237 3238 /** 3239 * s2io_updt_xpak_counter - Function to update the xpak counters 3240 * @dev : pointer to net_device struct 3241 * Description: 3242 * This function is to upate the status of the xpak counters value 3243 * NONE 3244 */ 3245 static void s2io_updt_xpak_counter(struct net_device *dev) 3246 { 3247 u16 flag = 0x0; 3248 u16 type = 0x0; 3249 u16 val16 = 0x0; 3250 u64 val64 = 0x0; 3251 u64 addr = 0x0; 3252 3253 struct s2io_nic *sp = netdev_priv(dev); 3254 struct stat_block *stats = sp->mac_control.stats_info; 3255 struct xpakStat *xstats = &stats->xpak_stat; 3256 3257 /* Check the communication with the MDIO slave */ 3258 addr = MDIO_CTRL1; 3259 val64 = 0x0; 3260 val64 = s2io_mdio_read(MDIO_MMD_PMAPMD, addr, dev); 3261 if ((val64 == 0xFFFF) || (val64 == 0x0000)) { 3262 DBG_PRINT(ERR_DBG, 3263 "ERR: MDIO slave access failed - Returned %llx\n", 3264 (unsigned long long)val64); 3265 return; 3266 } 3267 3268 /* Check for the expected value of control reg 1 */ 3269 if (val64 != MDIO_CTRL1_SPEED10G) { 3270 DBG_PRINT(ERR_DBG, "Incorrect value at PMA address 0x0000 - " 3271 "Returned: %llx- Expected: 0x%x\n", 3272 (unsigned long long)val64, MDIO_CTRL1_SPEED10G); 3273 return; 3274 } 3275 3276 /* Loading the DOM register to MDIO register */ 3277 addr = 0xA100; 3278 s2io_mdio_write(MDIO_MMD_PMAPMD, addr, val16, dev); 3279 val64 = s2io_mdio_read(MDIO_MMD_PMAPMD, addr, dev); 3280 3281 /* Reading the Alarm flags */ 3282 addr = 0xA070; 3283 val64 = 0x0; 3284 val64 = s2io_mdio_read(MDIO_MMD_PMAPMD, addr, dev); 3285 3286 flag = CHECKBIT(val64, 0x7); 3287 type = 1; 3288 s2io_chk_xpak_counter(&xstats->alarm_transceiver_temp_high, 3289 &xstats->xpak_regs_stat, 3290 0x0, flag, type); 3291 3292 if (CHECKBIT(val64, 0x6)) 3293 xstats->alarm_transceiver_temp_low++; 3294 3295 flag = CHECKBIT(val64, 0x3); 3296 type = 2; 3297 s2io_chk_xpak_counter(&xstats->alarm_laser_bias_current_high, 3298 &xstats->xpak_regs_stat, 3299 0x2, flag, type); 3300 3301 if (CHECKBIT(val64, 0x2)) 3302 xstats->alarm_laser_bias_current_low++; 3303 3304 flag = CHECKBIT(val64, 0x1); 3305 type = 3; 3306 s2io_chk_xpak_counter(&xstats->alarm_laser_output_power_high, 3307 &xstats->xpak_regs_stat, 3308 0x4, flag, type); 3309 3310 if (CHECKBIT(val64, 0x0)) 3311 xstats->alarm_laser_output_power_low++; 3312 3313 /* Reading the Warning flags */ 3314 addr = 0xA074; 3315 val64 = 0x0; 3316 val64 = s2io_mdio_read(MDIO_MMD_PMAPMD, addr, dev); 3317 3318 if (CHECKBIT(val64, 0x7)) 3319 xstats->warn_transceiver_temp_high++; 3320 3321 if (CHECKBIT(val64, 0x6)) 3322 xstats->warn_transceiver_temp_low++; 3323 3324 if (CHECKBIT(val64, 0x3)) 3325 xstats->warn_laser_bias_current_high++; 3326 3327 if (CHECKBIT(val64, 0x2)) 3328 xstats->warn_laser_bias_current_low++; 3329 3330 if (CHECKBIT(val64, 0x1)) 3331 xstats->warn_laser_output_power_high++; 3332 3333 if (CHECKBIT(val64, 0x0)) 3334 xstats->warn_laser_output_power_low++; 3335 } 3336 3337 /** 3338 * wait_for_cmd_complete - waits for a command to complete. 3339 * @sp : private member of the device structure, which is a pointer to the 3340 * s2io_nic structure. 3341 * Description: Function that waits for a command to Write into RMAC 3342 * ADDR DATA registers to be completed and returns either success or 3343 * error depending on whether the command was complete or not. 3344 * Return value: 3345 * SUCCESS on success and FAILURE on failure. 3346 */ 3347 3348 static int wait_for_cmd_complete(void __iomem *addr, u64 busy_bit, 3349 int bit_state) 3350 { 3351 int ret = FAILURE, cnt = 0, delay = 1; 3352 u64 val64; 3353 3354 if ((bit_state != S2IO_BIT_RESET) && (bit_state != S2IO_BIT_SET)) 3355 return FAILURE; 3356 3357 do { 3358 val64 = readq(addr); 3359 if (bit_state == S2IO_BIT_RESET) { 3360 if (!(val64 & busy_bit)) { 3361 ret = SUCCESS; 3362 break; 3363 } 3364 } else { 3365 if (val64 & busy_bit) { 3366 ret = SUCCESS; 3367 break; 3368 } 3369 } 3370 3371 if (in_interrupt()) 3372 mdelay(delay); 3373 else 3374 msleep(delay); 3375 3376 if (++cnt >= 10) 3377 delay = 50; 3378 } while (cnt < 20); 3379 return ret; 3380 } 3381 /** 3382 * check_pci_device_id - Checks if the device id is supported 3383 * @id : device id 3384 * Description: Function to check if the pci device id is supported by driver. 3385 * Return value: Actual device id if supported else PCI_ANY_ID 3386 */ 3387 static u16 check_pci_device_id(u16 id) 3388 { 3389 switch (id) { 3390 case PCI_DEVICE_ID_HERC_WIN: 3391 case PCI_DEVICE_ID_HERC_UNI: 3392 return XFRAME_II_DEVICE; 3393 case PCI_DEVICE_ID_S2IO_UNI: 3394 case PCI_DEVICE_ID_S2IO_WIN: 3395 return XFRAME_I_DEVICE; 3396 default: 3397 return PCI_ANY_ID; 3398 } 3399 } 3400 3401 /** 3402 * s2io_reset - Resets the card. 3403 * @sp : private member of the device structure. 3404 * Description: Function to Reset the card. This function then also 3405 * restores the previously saved PCI configuration space registers as 3406 * the card reset also resets the configuration space. 3407 * Return value: 3408 * void. 3409 */ 3410 3411 static void s2io_reset(struct s2io_nic *sp) 3412 { 3413 struct XENA_dev_config __iomem *bar0 = sp->bar0; 3414 u64 val64; 3415 u16 subid, pci_cmd; 3416 int i; 3417 u16 val16; 3418 unsigned long long up_cnt, down_cnt, up_time, down_time, reset_cnt; 3419 unsigned long long mem_alloc_cnt, mem_free_cnt, watchdog_cnt; 3420 struct stat_block *stats; 3421 struct swStat *swstats; 3422 3423 DBG_PRINT(INIT_DBG, "%s: Resetting XFrame card %s\n", 3424 __func__, pci_name(sp->pdev)); 3425 3426 /* Back up the PCI-X CMD reg, dont want to lose MMRBC, OST settings */ 3427 pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER, &(pci_cmd)); 3428 3429 val64 = SW_RESET_ALL; 3430 writeq(val64, &bar0->sw_reset); 3431 if (strstr(sp->product_name, "CX4")) 3432 msleep(750); 3433 msleep(250); 3434 for (i = 0; i < S2IO_MAX_PCI_CONFIG_SPACE_REINIT; i++) { 3435 3436 /* Restore the PCI state saved during initialization. */ 3437 pci_restore_state(sp->pdev); 3438 pci_save_state(sp->pdev); 3439 pci_read_config_word(sp->pdev, 0x2, &val16); 3440 if (check_pci_device_id(val16) != (u16)PCI_ANY_ID) 3441 break; 3442 msleep(200); 3443 } 3444 3445 if (check_pci_device_id(val16) == (u16)PCI_ANY_ID) 3446 DBG_PRINT(ERR_DBG, "%s SW_Reset failed!\n", __func__); 3447 3448 pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER, pci_cmd); 3449 3450 s2io_init_pci(sp); 3451 3452 /* Set swapper to enable I/O register access */ 3453 s2io_set_swapper(sp); 3454 3455 /* restore mac_addr entries */ 3456 do_s2io_restore_unicast_mc(sp); 3457 3458 /* Restore the MSIX table entries from local variables */ 3459 restore_xmsi_data(sp); 3460 3461 /* Clear certain PCI/PCI-X fields after reset */ 3462 if (sp->device_type == XFRAME_II_DEVICE) { 3463 /* Clear "detected parity error" bit */ 3464 pci_write_config_word(sp->pdev, PCI_STATUS, 0x8000); 3465 3466 /* Clearing PCIX Ecc status register */ 3467 pci_write_config_dword(sp->pdev, 0x68, 0x7C); 3468 3469 /* Clearing PCI_STATUS error reflected here */ 3470 writeq(s2BIT(62), &bar0->txpic_int_reg); 3471 } 3472 3473 /* Reset device statistics maintained by OS */ 3474 memset(&sp->stats, 0, sizeof(struct net_device_stats)); 3475 3476 stats = sp->mac_control.stats_info; 3477 swstats = &stats->sw_stat; 3478 3479 /* save link up/down time/cnt, reset/memory/watchdog cnt */ 3480 up_cnt = swstats->link_up_cnt; 3481 down_cnt = swstats->link_down_cnt; 3482 up_time = swstats->link_up_time; 3483 down_time = swstats->link_down_time; 3484 reset_cnt = swstats->soft_reset_cnt; 3485 mem_alloc_cnt = swstats->mem_allocated; 3486 mem_free_cnt = swstats->mem_freed; 3487 watchdog_cnt = swstats->watchdog_timer_cnt; 3488 3489 memset(stats, 0, sizeof(struct stat_block)); 3490 3491 /* restore link up/down time/cnt, reset/memory/watchdog cnt */ 3492 swstats->link_up_cnt = up_cnt; 3493 swstats->link_down_cnt = down_cnt; 3494 swstats->link_up_time = up_time; 3495 swstats->link_down_time = down_time; 3496 swstats->soft_reset_cnt = reset_cnt; 3497 swstats->mem_allocated = mem_alloc_cnt; 3498 swstats->mem_freed = mem_free_cnt; 3499 swstats->watchdog_timer_cnt = watchdog_cnt; 3500 3501 /* SXE-002: Configure link and activity LED to turn it off */ 3502 subid = sp->pdev->subsystem_device; 3503 if (((subid & 0xFF) >= 0x07) && 3504 (sp->device_type == XFRAME_I_DEVICE)) { 3505 val64 = readq(&bar0->gpio_control); 3506 val64 |= 0x0000800000000000ULL; 3507 writeq(val64, &bar0->gpio_control); 3508 val64 = 0x0411040400000000ULL; 3509 writeq(val64, (void __iomem *)bar0 + 0x2700); 3510 } 3511 3512 /* 3513 * Clear spurious ECC interrupts that would have occurred on 3514 * XFRAME II cards after reset. 3515 */ 3516 if (sp->device_type == XFRAME_II_DEVICE) { 3517 val64 = readq(&bar0->pcc_err_reg); 3518 writeq(val64, &bar0->pcc_err_reg); 3519 } 3520 3521 sp->device_enabled_once = false; 3522 } 3523 3524 /** 3525 * s2io_set_swapper - to set the swapper controle on the card 3526 * @sp : private member of the device structure, 3527 * pointer to the s2io_nic structure. 3528 * Description: Function to set the swapper control on the card 3529 * correctly depending on the 'endianness' of the system. 3530 * Return value: 3531 * SUCCESS on success and FAILURE on failure. 3532 */ 3533 3534 static int s2io_set_swapper(struct s2io_nic *sp) 3535 { 3536 struct net_device *dev = sp->dev; 3537 struct XENA_dev_config __iomem *bar0 = sp->bar0; 3538 u64 val64, valt, valr; 3539 3540 /* 3541 * Set proper endian settings and verify the same by reading 3542 * the PIF Feed-back register. 3543 */ 3544 3545 val64 = readq(&bar0->pif_rd_swapper_fb); 3546 if (val64 != 0x0123456789ABCDEFULL) { 3547 int i = 0; 3548 static const u64 value[] = { 3549 0xC30000C3C30000C3ULL, /* FE=1, SE=1 */ 3550 0x8100008181000081ULL, /* FE=1, SE=0 */ 3551 0x4200004242000042ULL, /* FE=0, SE=1 */ 3552 0 /* FE=0, SE=0 */ 3553 }; 3554 3555 while (i < 4) { 3556 writeq(value[i], &bar0->swapper_ctrl); 3557 val64 = readq(&bar0->pif_rd_swapper_fb); 3558 if (val64 == 0x0123456789ABCDEFULL) 3559 break; 3560 i++; 3561 } 3562 if (i == 4) { 3563 DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, " 3564 "feedback read %llx\n", 3565 dev->name, (unsigned long long)val64); 3566 return FAILURE; 3567 } 3568 valr = value[i]; 3569 } else { 3570 valr = readq(&bar0->swapper_ctrl); 3571 } 3572 3573 valt = 0x0123456789ABCDEFULL; 3574 writeq(valt, &bar0->xmsi_address); 3575 val64 = readq(&bar0->xmsi_address); 3576 3577 if (val64 != valt) { 3578 int i = 0; 3579 static const u64 value[] = { 3580 0x00C3C30000C3C300ULL, /* FE=1, SE=1 */ 3581 0x0081810000818100ULL, /* FE=1, SE=0 */ 3582 0x0042420000424200ULL, /* FE=0, SE=1 */ 3583 0 /* FE=0, SE=0 */ 3584 }; 3585 3586 while (i < 4) { 3587 writeq((value[i] | valr), &bar0->swapper_ctrl); 3588 writeq(valt, &bar0->xmsi_address); 3589 val64 = readq(&bar0->xmsi_address); 3590 if (val64 == valt) 3591 break; 3592 i++; 3593 } 3594 if (i == 4) { 3595 unsigned long long x = val64; 3596 DBG_PRINT(ERR_DBG, 3597 "Write failed, Xmsi_addr reads:0x%llx\n", x); 3598 return FAILURE; 3599 } 3600 } 3601 val64 = readq(&bar0->swapper_ctrl); 3602 val64 &= 0xFFFF000000000000ULL; 3603 3604 #ifdef __BIG_ENDIAN 3605 /* 3606 * The device by default set to a big endian format, so a 3607 * big endian driver need not set anything. 3608 */ 3609 val64 |= (SWAPPER_CTRL_TXP_FE | 3610 SWAPPER_CTRL_TXP_SE | 3611 SWAPPER_CTRL_TXD_R_FE | 3612 SWAPPER_CTRL_TXD_W_FE | 3613 SWAPPER_CTRL_TXF_R_FE | 3614 SWAPPER_CTRL_RXD_R_FE | 3615 SWAPPER_CTRL_RXD_W_FE | 3616 SWAPPER_CTRL_RXF_W_FE | 3617 SWAPPER_CTRL_XMSI_FE | 3618 SWAPPER_CTRL_STATS_FE | 3619 SWAPPER_CTRL_STATS_SE); 3620 if (sp->config.intr_type == INTA) 3621 val64 |= SWAPPER_CTRL_XMSI_SE; 3622 writeq(val64, &bar0->swapper_ctrl); 3623 #else 3624 /* 3625 * Initially we enable all bits to make it accessible by the 3626 * driver, then we selectively enable only those bits that 3627 * we want to set. 3628 */ 3629 val64 |= (SWAPPER_CTRL_TXP_FE | 3630 SWAPPER_CTRL_TXP_SE | 3631 SWAPPER_CTRL_TXD_R_FE | 3632 SWAPPER_CTRL_TXD_R_SE | 3633 SWAPPER_CTRL_TXD_W_FE | 3634 SWAPPER_CTRL_TXD_W_SE | 3635 SWAPPER_CTRL_TXF_R_FE | 3636 SWAPPER_CTRL_RXD_R_FE | 3637 SWAPPER_CTRL_RXD_R_SE | 3638 SWAPPER_CTRL_RXD_W_FE | 3639 SWAPPER_CTRL_RXD_W_SE | 3640 SWAPPER_CTRL_RXF_W_FE | 3641 SWAPPER_CTRL_XMSI_FE | 3642 SWAPPER_CTRL_STATS_FE | 3643 SWAPPER_CTRL_STATS_SE); 3644 if (sp->config.intr_type == INTA) 3645 val64 |= SWAPPER_CTRL_XMSI_SE; 3646 writeq(val64, &bar0->swapper_ctrl); 3647 #endif 3648 val64 = readq(&bar0->swapper_ctrl); 3649 3650 /* 3651 * Verifying if endian settings are accurate by reading a 3652 * feedback register. 3653 */ 3654 val64 = readq(&bar0->pif_rd_swapper_fb); 3655 if (val64 != 0x0123456789ABCDEFULL) { 3656 /* Endian settings are incorrect, calls for another dekko. */ 3657 DBG_PRINT(ERR_DBG, 3658 "%s: Endian settings are wrong, feedback read %llx\n", 3659 dev->name, (unsigned long long)val64); 3660 return FAILURE; 3661 } 3662 3663 return SUCCESS; 3664 } 3665 3666 static int wait_for_msix_trans(struct s2io_nic *nic, int i) 3667 { 3668 struct XENA_dev_config __iomem *bar0 = nic->bar0; 3669 u64 val64; 3670 int ret = 0, cnt = 0; 3671 3672 do { 3673 val64 = readq(&bar0->xmsi_access); 3674 if (!(val64 & s2BIT(15))) 3675 break; 3676 mdelay(1); 3677 cnt++; 3678 } while (cnt < 5); 3679 if (cnt == 5) { 3680 DBG_PRINT(ERR_DBG, "XMSI # %d Access failed\n", i); 3681 ret = 1; 3682 } 3683 3684 return ret; 3685 } 3686 3687 static void restore_xmsi_data(struct s2io_nic *nic) 3688 { 3689 struct XENA_dev_config __iomem *bar0 = nic->bar0; 3690 u64 val64; 3691 int i, msix_index; 3692 3693 if (nic->device_type == XFRAME_I_DEVICE) 3694 return; 3695 3696 for (i = 0; i < MAX_REQUESTED_MSI_X; i++) { 3697 msix_index = (i) ? ((i-1) * 8 + 1) : 0; 3698 writeq(nic->msix_info[i].addr, &bar0->xmsi_address); 3699 writeq(nic->msix_info[i].data, &bar0->xmsi_data); 3700 val64 = (s2BIT(7) | s2BIT(15) | vBIT(msix_index, 26, 6)); 3701 writeq(val64, &bar0->xmsi_access); 3702 if (wait_for_msix_trans(nic, msix_index)) { 3703 DBG_PRINT(ERR_DBG, "%s: index: %d failed\n", 3704 __func__, msix_index); 3705 continue; 3706 } 3707 } 3708 } 3709 3710 static void store_xmsi_data(struct s2io_nic *nic) 3711 { 3712 struct XENA_dev_config __iomem *bar0 = nic->bar0; 3713 u64 val64, addr, data; 3714 int i, msix_index; 3715 3716 if (nic->device_type == XFRAME_I_DEVICE) 3717 return; 3718 3719 /* Store and display */ 3720 for (i = 0; i < MAX_REQUESTED_MSI_X; i++) { 3721 msix_index = (i) ? ((i-1) * 8 + 1) : 0; 3722 val64 = (s2BIT(15) | vBIT(msix_index, 26, 6)); 3723 writeq(val64, &bar0->xmsi_access); 3724 if (wait_for_msix_trans(nic, msix_index)) { 3725 DBG_PRINT(ERR_DBG, "%s: index: %d failed\n", 3726 __func__, msix_index); 3727 continue; 3728 } 3729 addr = readq(&bar0->xmsi_address); 3730 data = readq(&bar0->xmsi_data); 3731 if (addr && data) { 3732 nic->msix_info[i].addr = addr; 3733 nic->msix_info[i].data = data; 3734 } 3735 } 3736 } 3737 3738 static int s2io_enable_msi_x(struct s2io_nic *nic) 3739 { 3740 struct XENA_dev_config __iomem *bar0 = nic->bar0; 3741 u64 rx_mat; 3742 u16 msi_control; /* Temp variable */ 3743 int ret, i, j, msix_indx = 1; 3744 int size; 3745 struct stat_block *stats = nic->mac_control.stats_info; 3746 struct swStat *swstats = &stats->sw_stat; 3747 3748 size = nic->num_entries * sizeof(struct msix_entry); 3749 nic->entries = kzalloc(size, GFP_KERNEL); 3750 if (!nic->entries) { 3751 DBG_PRINT(INFO_DBG, "%s: Memory allocation failed\n", 3752 __func__); 3753 swstats->mem_alloc_fail_cnt++; 3754 return -ENOMEM; 3755 } 3756 swstats->mem_allocated += size; 3757 3758 size = nic->num_entries * sizeof(struct s2io_msix_entry); 3759 nic->s2io_entries = kzalloc(size, GFP_KERNEL); 3760 if (!nic->s2io_entries) { 3761 DBG_PRINT(INFO_DBG, "%s: Memory allocation failed\n", 3762 __func__); 3763 swstats->mem_alloc_fail_cnt++; 3764 kfree(nic->entries); 3765 swstats->mem_freed 3766 += (nic->num_entries * sizeof(struct msix_entry)); 3767 return -ENOMEM; 3768 } 3769 swstats->mem_allocated += size; 3770 3771 nic->entries[0].entry = 0; 3772 nic->s2io_entries[0].entry = 0; 3773 nic->s2io_entries[0].in_use = MSIX_FLG; 3774 nic->s2io_entries[0].type = MSIX_ALARM_TYPE; 3775 nic->s2io_entries[0].arg = &nic->mac_control.fifos; 3776 3777 for (i = 1; i < nic->num_entries; i++) { 3778 nic->entries[i].entry = ((i - 1) * 8) + 1; 3779 nic->s2io_entries[i].entry = ((i - 1) * 8) + 1; 3780 nic->s2io_entries[i].arg = NULL; 3781 nic->s2io_entries[i].in_use = 0; 3782 } 3783 3784 rx_mat = readq(&bar0->rx_mat); 3785 for (j = 0; j < nic->config.rx_ring_num; j++) { 3786 rx_mat |= RX_MAT_SET(j, msix_indx); 3787 nic->s2io_entries[j+1].arg = &nic->mac_control.rings[j]; 3788 nic->s2io_entries[j+1].type = MSIX_RING_TYPE; 3789 nic->s2io_entries[j+1].in_use = MSIX_FLG; 3790 msix_indx += 8; 3791 } 3792 writeq(rx_mat, &bar0->rx_mat); 3793 readq(&bar0->rx_mat); 3794 3795 ret = pci_enable_msix(nic->pdev, nic->entries, nic->num_entries); 3796 /* We fail init if error or we get less vectors than min required */ 3797 if (ret) { 3798 DBG_PRINT(ERR_DBG, "Enabling MSI-X failed\n"); 3799 kfree(nic->entries); 3800 swstats->mem_freed += nic->num_entries * 3801 sizeof(struct msix_entry); 3802 kfree(nic->s2io_entries); 3803 swstats->mem_freed += nic->num_entries * 3804 sizeof(struct s2io_msix_entry); 3805 nic->entries = NULL; 3806 nic->s2io_entries = NULL; 3807 return -ENOMEM; 3808 } 3809 3810 /* 3811 * To enable MSI-X, MSI also needs to be enabled, due to a bug 3812 * in the herc NIC. (Temp change, needs to be removed later) 3813 */ 3814 pci_read_config_word(nic->pdev, 0x42, &msi_control); 3815 msi_control |= 0x1; /* Enable MSI */ 3816 pci_write_config_word(nic->pdev, 0x42, msi_control); 3817 3818 return 0; 3819 } 3820 3821 /* Handle software interrupt used during MSI(X) test */ 3822 static irqreturn_t s2io_test_intr(int irq, void *dev_id) 3823 { 3824 struct s2io_nic *sp = dev_id; 3825 3826 sp->msi_detected = 1; 3827 wake_up(&sp->msi_wait); 3828 3829 return IRQ_HANDLED; 3830 } 3831 3832 /* Test interrupt path by forcing a a software IRQ */ 3833 static int s2io_test_msi(struct s2io_nic *sp) 3834 { 3835 struct pci_dev *pdev = sp->pdev; 3836 struct XENA_dev_config __iomem *bar0 = sp->bar0; 3837 int err; 3838 u64 val64, saved64; 3839 3840 err = request_irq(sp->entries[1].vector, s2io_test_intr, 0, 3841 sp->name, sp); 3842 if (err) { 3843 DBG_PRINT(ERR_DBG, "%s: PCI %s: cannot assign irq %d\n", 3844 sp->dev->name, pci_name(pdev), pdev->irq); 3845 return err; 3846 } 3847 3848 init_waitqueue_head(&sp->msi_wait); 3849 sp->msi_detected = 0; 3850 3851 saved64 = val64 = readq(&bar0->scheduled_int_ctrl); 3852 val64 |= SCHED_INT_CTRL_ONE_SHOT; 3853 val64 |= SCHED_INT_CTRL_TIMER_EN; 3854 val64 |= SCHED_INT_CTRL_INT2MSI(1); 3855 writeq(val64, &bar0->scheduled_int_ctrl); 3856 3857 wait_event_timeout(sp->msi_wait, sp->msi_detected, HZ/10); 3858 3859 if (!sp->msi_detected) { 3860 /* MSI(X) test failed, go back to INTx mode */ 3861 DBG_PRINT(ERR_DBG, "%s: PCI %s: No interrupt was generated " 3862 "using MSI(X) during test\n", 3863 sp->dev->name, pci_name(pdev)); 3864 3865 err = -EOPNOTSUPP; 3866 } 3867 3868 free_irq(sp->entries[1].vector, sp); 3869 3870 writeq(saved64, &bar0->scheduled_int_ctrl); 3871 3872 return err; 3873 } 3874 3875 static void remove_msix_isr(struct s2io_nic *sp) 3876 { 3877 int i; 3878 u16 msi_control; 3879 3880 for (i = 0; i < sp->num_entries; i++) { 3881 if (sp->s2io_entries[i].in_use == MSIX_REGISTERED_SUCCESS) { 3882 int vector = sp->entries[i].vector; 3883 void *arg = sp->s2io_entries[i].arg; 3884 free_irq(vector, arg); 3885 } 3886 } 3887 3888 kfree(sp->entries); 3889 kfree(sp->s2io_entries); 3890 sp->entries = NULL; 3891 sp->s2io_entries = NULL; 3892 3893 pci_read_config_word(sp->pdev, 0x42, &msi_control); 3894 msi_control &= 0xFFFE; /* Disable MSI */ 3895 pci_write_config_word(sp->pdev, 0x42, msi_control); 3896 3897 pci_disable_msix(sp->pdev); 3898 } 3899 3900 static void remove_inta_isr(struct s2io_nic *sp) 3901 { 3902 free_irq(sp->pdev->irq, sp->dev); 3903 } 3904 3905 /* ********************************************************* * 3906 * Functions defined below concern the OS part of the driver * 3907 * ********************************************************* */ 3908 3909 /** 3910 * s2io_open - open entry point of the driver 3911 * @dev : pointer to the device structure. 3912 * Description: 3913 * This function is the open entry point of the driver. It mainly calls a 3914 * function to allocate Rx buffers and inserts them into the buffer 3915 * descriptors and then enables the Rx part of the NIC. 3916 * Return value: 3917 * 0 on success and an appropriate (-)ve integer as defined in errno.h 3918 * file on failure. 3919 */ 3920 3921 static int s2io_open(struct net_device *dev) 3922 { 3923 struct s2io_nic *sp = netdev_priv(dev); 3924 struct swStat *swstats = &sp->mac_control.stats_info->sw_stat; 3925 int err = 0; 3926 3927 /* 3928 * Make sure you have link off by default every time 3929 * Nic is initialized 3930 */ 3931 netif_carrier_off(dev); 3932 sp->last_link_state = 0; 3933 3934 /* Initialize H/W and enable interrupts */ 3935 err = s2io_card_up(sp); 3936 if (err) { 3937 DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n", 3938 dev->name); 3939 goto hw_init_failed; 3940 } 3941 3942 if (do_s2io_prog_unicast(dev, dev->dev_addr) == FAILURE) { 3943 DBG_PRINT(ERR_DBG, "Set Mac Address Failed\n"); 3944 s2io_card_down(sp); 3945 err = -ENODEV; 3946 goto hw_init_failed; 3947 } 3948 s2io_start_all_tx_queue(sp); 3949 return 0; 3950 3951 hw_init_failed: 3952 if (sp->config.intr_type == MSI_X) { 3953 if (sp->entries) { 3954 kfree(sp->entries); 3955 swstats->mem_freed += sp->num_entries * 3956 sizeof(struct msix_entry); 3957 } 3958 if (sp->s2io_entries) { 3959 kfree(sp->s2io_entries); 3960 swstats->mem_freed += sp->num_entries * 3961 sizeof(struct s2io_msix_entry); 3962 } 3963 } 3964 return err; 3965 } 3966 3967 /** 3968 * s2io_close -close entry point of the driver 3969 * @dev : device pointer. 3970 * Description: 3971 * This is the stop entry point of the driver. It needs to undo exactly 3972 * whatever was done by the open entry point,thus it's usually referred to 3973 * as the close function.Among other things this function mainly stops the 3974 * Rx side of the NIC and frees all the Rx buffers in the Rx rings. 3975 * Return value: 3976 * 0 on success and an appropriate (-)ve integer as defined in errno.h 3977 * file on failure. 3978 */ 3979 3980 static int s2io_close(struct net_device *dev) 3981 { 3982 struct s2io_nic *sp = netdev_priv(dev); 3983 struct config_param *config = &sp->config; 3984 u64 tmp64; 3985 int offset; 3986 3987 /* Return if the device is already closed * 3988 * Can happen when s2io_card_up failed in change_mtu * 3989 */ 3990 if (!is_s2io_card_up(sp)) 3991 return 0; 3992 3993 s2io_stop_all_tx_queue(sp); 3994 /* delete all populated mac entries */ 3995 for (offset = 1; offset < config->max_mc_addr; offset++) { 3996 tmp64 = do_s2io_read_unicast_mc(sp, offset); 3997 if (tmp64 != S2IO_DISABLE_MAC_ENTRY) 3998 do_s2io_delete_unicast_mc(sp, tmp64); 3999 } 4000 4001 s2io_card_down(sp); 4002 4003 return 0; 4004 } 4005 4006 /** 4007 * s2io_xmit - Tx entry point of te driver 4008 * @skb : the socket buffer containing the Tx data. 4009 * @dev : device pointer. 4010 * Description : 4011 * This function is the Tx entry point of the driver. S2IO NIC supports 4012 * certain protocol assist features on Tx side, namely CSO, S/G, LSO. 4013 * NOTE: when device can't queue the pkt,just the trans_start variable will 4014 * not be upadted. 4015 * Return value: 4016 * 0 on success & 1 on failure. 4017 */ 4018 4019 static netdev_tx_t s2io_xmit(struct sk_buff *skb, struct net_device *dev) 4020 { 4021 struct s2io_nic *sp = netdev_priv(dev); 4022 u16 frg_cnt, frg_len, i, queue, queue_len, put_off, get_off; 4023 register u64 val64; 4024 struct TxD *txdp; 4025 struct TxFIFO_element __iomem *tx_fifo; 4026 unsigned long flags = 0; 4027 u16 vlan_tag = 0; 4028 struct fifo_info *fifo = NULL; 4029 int do_spin_lock = 1; 4030 int offload_type; 4031 int enable_per_list_interrupt = 0; 4032 struct config_param *config = &sp->config; 4033 struct mac_info *mac_control = &sp->mac_control; 4034 struct stat_block *stats = mac_control->stats_info; 4035 struct swStat *swstats = &stats->sw_stat; 4036 4037 DBG_PRINT(TX_DBG, "%s: In Neterion Tx routine\n", dev->name); 4038 4039 if (unlikely(skb->len <= 0)) { 4040 DBG_PRINT(TX_DBG, "%s: Buffer has no data..\n", dev->name); 4041 dev_kfree_skb_any(skb); 4042 return NETDEV_TX_OK; 4043 } 4044 4045 if (!is_s2io_card_up(sp)) { 4046 DBG_PRINT(TX_DBG, "%s: Card going down for reset\n", 4047 dev->name); 4048 dev_kfree_skb(skb); 4049 return NETDEV_TX_OK; 4050 } 4051 4052 queue = 0; 4053 if (vlan_tx_tag_present(skb)) 4054 vlan_tag = vlan_tx_tag_get(skb); 4055 if (sp->config.tx_steering_type == TX_DEFAULT_STEERING) { 4056 if (skb->protocol == htons(ETH_P_IP)) { 4057 struct iphdr *ip; 4058 struct tcphdr *th; 4059 ip = ip_hdr(skb); 4060 4061 if (!ip_is_fragment(ip)) { 4062 th = (struct tcphdr *)(((unsigned char *)ip) + 4063 ip->ihl*4); 4064 4065 if (ip->protocol == IPPROTO_TCP) { 4066 queue_len = sp->total_tcp_fifos; 4067 queue = (ntohs(th->source) + 4068 ntohs(th->dest)) & 4069 sp->fifo_selector[queue_len - 1]; 4070 if (queue >= queue_len) 4071 queue = queue_len - 1; 4072 } else if (ip->protocol == IPPROTO_UDP) { 4073 queue_len = sp->total_udp_fifos; 4074 queue = (ntohs(th->source) + 4075 ntohs(th->dest)) & 4076 sp->fifo_selector[queue_len - 1]; 4077 if (queue >= queue_len) 4078 queue = queue_len - 1; 4079 queue += sp->udp_fifo_idx; 4080 if (skb->len > 1024) 4081 enable_per_list_interrupt = 1; 4082 do_spin_lock = 0; 4083 } 4084 } 4085 } 4086 } else if (sp->config.tx_steering_type == TX_PRIORITY_STEERING) 4087 /* get fifo number based on skb->priority value */ 4088 queue = config->fifo_mapping 4089 [skb->priority & (MAX_TX_FIFOS - 1)]; 4090 fifo = &mac_control->fifos[queue]; 4091 4092 if (do_spin_lock) 4093 spin_lock_irqsave(&fifo->tx_lock, flags); 4094 else { 4095 if (unlikely(!spin_trylock_irqsave(&fifo->tx_lock, flags))) 4096 return NETDEV_TX_LOCKED; 4097 } 4098 4099 if (sp->config.multiq) { 4100 if (__netif_subqueue_stopped(dev, fifo->fifo_no)) { 4101 spin_unlock_irqrestore(&fifo->tx_lock, flags); 4102 return NETDEV_TX_BUSY; 4103 } 4104 } else if (unlikely(fifo->queue_state == FIFO_QUEUE_STOP)) { 4105 if (netif_queue_stopped(dev)) { 4106 spin_unlock_irqrestore(&fifo->tx_lock, flags); 4107 return NETDEV_TX_BUSY; 4108 } 4109 } 4110 4111 put_off = (u16)fifo->tx_curr_put_info.offset; 4112 get_off = (u16)fifo->tx_curr_get_info.offset; 4113 txdp = fifo->list_info[put_off].list_virt_addr; 4114 4115 queue_len = fifo->tx_curr_put_info.fifo_len + 1; 4116 /* Avoid "put" pointer going beyond "get" pointer */ 4117 if (txdp->Host_Control || 4118 ((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) { 4119 DBG_PRINT(TX_DBG, "Error in xmit, No free TXDs.\n"); 4120 s2io_stop_tx_queue(sp, fifo->fifo_no); 4121 dev_kfree_skb(skb); 4122 spin_unlock_irqrestore(&fifo->tx_lock, flags); 4123 return NETDEV_TX_OK; 4124 } 4125 4126 offload_type = s2io_offload_type(skb); 4127 if (offload_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)) { 4128 txdp->Control_1 |= TXD_TCP_LSO_EN; 4129 txdp->Control_1 |= TXD_TCP_LSO_MSS(s2io_tcp_mss(skb)); 4130 } 4131 if (skb->ip_summed == CHECKSUM_PARTIAL) { 4132 txdp->Control_2 |= (TXD_TX_CKO_IPV4_EN | 4133 TXD_TX_CKO_TCP_EN | 4134 TXD_TX_CKO_UDP_EN); 4135 } 4136 txdp->Control_1 |= TXD_GATHER_CODE_FIRST; 4137 txdp->Control_1 |= TXD_LIST_OWN_XENA; 4138 txdp->Control_2 |= TXD_INT_NUMBER(fifo->fifo_no); 4139 if (enable_per_list_interrupt) 4140 if (put_off & (queue_len >> 5)) 4141 txdp->Control_2 |= TXD_INT_TYPE_PER_LIST; 4142 if (vlan_tag) { 4143 txdp->Control_2 |= TXD_VLAN_ENABLE; 4144 txdp->Control_2 |= TXD_VLAN_TAG(vlan_tag); 4145 } 4146 4147 frg_len = skb_headlen(skb); 4148 if (offload_type == SKB_GSO_UDP) { 4149 int ufo_size; 4150 4151 ufo_size = s2io_udp_mss(skb); 4152 ufo_size &= ~7; 4153 txdp->Control_1 |= TXD_UFO_EN; 4154 txdp->Control_1 |= TXD_UFO_MSS(ufo_size); 4155 txdp->Control_1 |= TXD_BUFFER0_SIZE(8); 4156 #ifdef __BIG_ENDIAN 4157 /* both variants do cpu_to_be64(be32_to_cpu(...)) */ 4158 fifo->ufo_in_band_v[put_off] = 4159 (__force u64)skb_shinfo(skb)->ip6_frag_id; 4160 #else 4161 fifo->ufo_in_band_v[put_off] = 4162 (__force u64)skb_shinfo(skb)->ip6_frag_id << 32; 4163 #endif 4164 txdp->Host_Control = (unsigned long)fifo->ufo_in_band_v; 4165 txdp->Buffer_Pointer = pci_map_single(sp->pdev, 4166 fifo->ufo_in_band_v, 4167 sizeof(u64), 4168 PCI_DMA_TODEVICE); 4169 if (pci_dma_mapping_error(sp->pdev, txdp->Buffer_Pointer)) 4170 goto pci_map_failed; 4171 txdp++; 4172 } 4173 4174 txdp->Buffer_Pointer = pci_map_single(sp->pdev, skb->data, 4175 frg_len, PCI_DMA_TODEVICE); 4176 if (pci_dma_mapping_error(sp->pdev, txdp->Buffer_Pointer)) 4177 goto pci_map_failed; 4178 4179 txdp->Host_Control = (unsigned long)skb; 4180 txdp->Control_1 |= TXD_BUFFER0_SIZE(frg_len); 4181 if (offload_type == SKB_GSO_UDP) 4182 txdp->Control_1 |= TXD_UFO_EN; 4183 4184 frg_cnt = skb_shinfo(skb)->nr_frags; 4185 /* For fragmented SKB. */ 4186 for (i = 0; i < frg_cnt; i++) { 4187 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 4188 /* A '0' length fragment will be ignored */ 4189 if (!skb_frag_size(frag)) 4190 continue; 4191 txdp++; 4192 txdp->Buffer_Pointer = (u64)skb_frag_dma_map(&sp->pdev->dev, 4193 frag, 0, 4194 skb_frag_size(frag), 4195 DMA_TO_DEVICE); 4196 txdp->Control_1 = TXD_BUFFER0_SIZE(skb_frag_size(frag)); 4197 if (offload_type == SKB_GSO_UDP) 4198 txdp->Control_1 |= TXD_UFO_EN; 4199 } 4200 txdp->Control_1 |= TXD_GATHER_CODE_LAST; 4201 4202 if (offload_type == SKB_GSO_UDP) 4203 frg_cnt++; /* as Txd0 was used for inband header */ 4204 4205 tx_fifo = mac_control->tx_FIFO_start[queue]; 4206 val64 = fifo->list_info[put_off].list_phy_addr; 4207 writeq(val64, &tx_fifo->TxDL_Pointer); 4208 4209 val64 = (TX_FIFO_LAST_TXD_NUM(frg_cnt) | TX_FIFO_FIRST_LIST | 4210 TX_FIFO_LAST_LIST); 4211 if (offload_type) 4212 val64 |= TX_FIFO_SPECIAL_FUNC; 4213 4214 writeq(val64, &tx_fifo->List_Control); 4215 4216 mmiowb(); 4217 4218 put_off++; 4219 if (put_off == fifo->tx_curr_put_info.fifo_len + 1) 4220 put_off = 0; 4221 fifo->tx_curr_put_info.offset = put_off; 4222 4223 /* Avoid "put" pointer going beyond "get" pointer */ 4224 if (((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) { 4225 swstats->fifo_full_cnt++; 4226 DBG_PRINT(TX_DBG, 4227 "No free TxDs for xmit, Put: 0x%x Get:0x%x\n", 4228 put_off, get_off); 4229 s2io_stop_tx_queue(sp, fifo->fifo_no); 4230 } 4231 swstats->mem_allocated += skb->truesize; 4232 spin_unlock_irqrestore(&fifo->tx_lock, flags); 4233 4234 if (sp->config.intr_type == MSI_X) 4235 tx_intr_handler(fifo); 4236 4237 return NETDEV_TX_OK; 4238 4239 pci_map_failed: 4240 swstats->pci_map_fail_cnt++; 4241 s2io_stop_tx_queue(sp, fifo->fifo_no); 4242 swstats->mem_freed += skb->truesize; 4243 dev_kfree_skb(skb); 4244 spin_unlock_irqrestore(&fifo->tx_lock, flags); 4245 return NETDEV_TX_OK; 4246 } 4247 4248 static void 4249 s2io_alarm_handle(unsigned long data) 4250 { 4251 struct s2io_nic *sp = (struct s2io_nic *)data; 4252 struct net_device *dev = sp->dev; 4253 4254 s2io_handle_errors(dev); 4255 mod_timer(&sp->alarm_timer, jiffies + HZ / 2); 4256 } 4257 4258 static irqreturn_t s2io_msix_ring_handle(int irq, void *dev_id) 4259 { 4260 struct ring_info *ring = (struct ring_info *)dev_id; 4261 struct s2io_nic *sp = ring->nic; 4262 struct XENA_dev_config __iomem *bar0 = sp->bar0; 4263 4264 if (unlikely(!is_s2io_card_up(sp))) 4265 return IRQ_HANDLED; 4266 4267 if (sp->config.napi) { 4268 u8 __iomem *addr = NULL; 4269 u8 val8 = 0; 4270 4271 addr = (u8 __iomem *)&bar0->xmsi_mask_reg; 4272 addr += (7 - ring->ring_no); 4273 val8 = (ring->ring_no == 0) ? 0x7f : 0xff; 4274 writeb(val8, addr); 4275 val8 = readb(addr); 4276 napi_schedule(&ring->napi); 4277 } else { 4278 rx_intr_handler(ring, 0); 4279 s2io_chk_rx_buffers(sp, ring); 4280 } 4281 4282 return IRQ_HANDLED; 4283 } 4284 4285 static irqreturn_t s2io_msix_fifo_handle(int irq, void *dev_id) 4286 { 4287 int i; 4288 struct fifo_info *fifos = (struct fifo_info *)dev_id; 4289 struct s2io_nic *sp = fifos->nic; 4290 struct XENA_dev_config __iomem *bar0 = sp->bar0; 4291 struct config_param *config = &sp->config; 4292 u64 reason; 4293 4294 if (unlikely(!is_s2io_card_up(sp))) 4295 return IRQ_NONE; 4296 4297 reason = readq(&bar0->general_int_status); 4298 if (unlikely(reason == S2IO_MINUS_ONE)) 4299 /* Nothing much can be done. Get out */ 4300 return IRQ_HANDLED; 4301 4302 if (reason & (GEN_INTR_TXPIC | GEN_INTR_TXTRAFFIC)) { 4303 writeq(S2IO_MINUS_ONE, &bar0->general_int_mask); 4304 4305 if (reason & GEN_INTR_TXPIC) 4306 s2io_txpic_intr_handle(sp); 4307 4308 if (reason & GEN_INTR_TXTRAFFIC) 4309 writeq(S2IO_MINUS_ONE, &bar0->tx_traffic_int); 4310 4311 for (i = 0; i < config->tx_fifo_num; i++) 4312 tx_intr_handler(&fifos[i]); 4313 4314 writeq(sp->general_int_mask, &bar0->general_int_mask); 4315 readl(&bar0->general_int_status); 4316 return IRQ_HANDLED; 4317 } 4318 /* The interrupt was not raised by us */ 4319 return IRQ_NONE; 4320 } 4321 4322 static void s2io_txpic_intr_handle(struct s2io_nic *sp) 4323 { 4324 struct XENA_dev_config __iomem *bar0 = sp->bar0; 4325 u64 val64; 4326 4327 val64 = readq(&bar0->pic_int_status); 4328 if (val64 & PIC_INT_GPIO) { 4329 val64 = readq(&bar0->gpio_int_reg); 4330 if ((val64 & GPIO_INT_REG_LINK_DOWN) && 4331 (val64 & GPIO_INT_REG_LINK_UP)) { 4332 /* 4333 * This is unstable state so clear both up/down 4334 * interrupt and adapter to re-evaluate the link state. 4335 */ 4336 val64 |= GPIO_INT_REG_LINK_DOWN; 4337 val64 |= GPIO_INT_REG_LINK_UP; 4338 writeq(val64, &bar0->gpio_int_reg); 4339 val64 = readq(&bar0->gpio_int_mask); 4340 val64 &= ~(GPIO_INT_MASK_LINK_UP | 4341 GPIO_INT_MASK_LINK_DOWN); 4342 writeq(val64, &bar0->gpio_int_mask); 4343 } else if (val64 & GPIO_INT_REG_LINK_UP) { 4344 val64 = readq(&bar0->adapter_status); 4345 /* Enable Adapter */ 4346 val64 = readq(&bar0->adapter_control); 4347 val64 |= ADAPTER_CNTL_EN; 4348 writeq(val64, &bar0->adapter_control); 4349 val64 |= ADAPTER_LED_ON; 4350 writeq(val64, &bar0->adapter_control); 4351 if (!sp->device_enabled_once) 4352 sp->device_enabled_once = 1; 4353 4354 s2io_link(sp, LINK_UP); 4355 /* 4356 * unmask link down interrupt and mask link-up 4357 * intr 4358 */ 4359 val64 = readq(&bar0->gpio_int_mask); 4360 val64 &= ~GPIO_INT_MASK_LINK_DOWN; 4361 val64 |= GPIO_INT_MASK_LINK_UP; 4362 writeq(val64, &bar0->gpio_int_mask); 4363 4364 } else if (val64 & GPIO_INT_REG_LINK_DOWN) { 4365 val64 = readq(&bar0->adapter_status); 4366 s2io_link(sp, LINK_DOWN); 4367 /* Link is down so unmaks link up interrupt */ 4368 val64 = readq(&bar0->gpio_int_mask); 4369 val64 &= ~GPIO_INT_MASK_LINK_UP; 4370 val64 |= GPIO_INT_MASK_LINK_DOWN; 4371 writeq(val64, &bar0->gpio_int_mask); 4372 4373 /* turn off LED */ 4374 val64 = readq(&bar0->adapter_control); 4375 val64 = val64 & (~ADAPTER_LED_ON); 4376 writeq(val64, &bar0->adapter_control); 4377 } 4378 } 4379 val64 = readq(&bar0->gpio_int_mask); 4380 } 4381 4382 /** 4383 * do_s2io_chk_alarm_bit - Check for alarm and incrment the counter 4384 * @value: alarm bits 4385 * @addr: address value 4386 * @cnt: counter variable 4387 * Description: Check for alarm and increment the counter 4388 * Return Value: 4389 * 1 - if alarm bit set 4390 * 0 - if alarm bit is not set 4391 */ 4392 static int do_s2io_chk_alarm_bit(u64 value, void __iomem *addr, 4393 unsigned long long *cnt) 4394 { 4395 u64 val64; 4396 val64 = readq(addr); 4397 if (val64 & value) { 4398 writeq(val64, addr); 4399 (*cnt)++; 4400 return 1; 4401 } 4402 return 0; 4403 4404 } 4405 4406 /** 4407 * s2io_handle_errors - Xframe error indication handler 4408 * @nic: device private variable 4409 * Description: Handle alarms such as loss of link, single or 4410 * double ECC errors, critical and serious errors. 4411 * Return Value: 4412 * NONE 4413 */ 4414 static void s2io_handle_errors(void *dev_id) 4415 { 4416 struct net_device *dev = (struct net_device *)dev_id; 4417 struct s2io_nic *sp = netdev_priv(dev); 4418 struct XENA_dev_config __iomem *bar0 = sp->bar0; 4419 u64 temp64 = 0, val64 = 0; 4420 int i = 0; 4421 4422 struct swStat *sw_stat = &sp->mac_control.stats_info->sw_stat; 4423 struct xpakStat *stats = &sp->mac_control.stats_info->xpak_stat; 4424 4425 if (!is_s2io_card_up(sp)) 4426 return; 4427 4428 if (pci_channel_offline(sp->pdev)) 4429 return; 4430 4431 memset(&sw_stat->ring_full_cnt, 0, 4432 sizeof(sw_stat->ring_full_cnt)); 4433 4434 /* Handling the XPAK counters update */ 4435 if (stats->xpak_timer_count < 72000) { 4436 /* waiting for an hour */ 4437 stats->xpak_timer_count++; 4438 } else { 4439 s2io_updt_xpak_counter(dev); 4440 /* reset the count to zero */ 4441 stats->xpak_timer_count = 0; 4442 } 4443 4444 /* Handling link status change error Intr */ 4445 if (s2io_link_fault_indication(sp) == MAC_RMAC_ERR_TIMER) { 4446 val64 = readq(&bar0->mac_rmac_err_reg); 4447 writeq(val64, &bar0->mac_rmac_err_reg); 4448 if (val64 & RMAC_LINK_STATE_CHANGE_INT) 4449 schedule_work(&sp->set_link_task); 4450 } 4451 4452 /* In case of a serious error, the device will be Reset. */ 4453 if (do_s2io_chk_alarm_bit(SERR_SOURCE_ANY, &bar0->serr_source, 4454 &sw_stat->serious_err_cnt)) 4455 goto reset; 4456 4457 /* Check for data parity error */ 4458 if (do_s2io_chk_alarm_bit(GPIO_INT_REG_DP_ERR_INT, &bar0->gpio_int_reg, 4459 &sw_stat->parity_err_cnt)) 4460 goto reset; 4461 4462 /* Check for ring full counter */ 4463 if (sp->device_type == XFRAME_II_DEVICE) { 4464 val64 = readq(&bar0->ring_bump_counter1); 4465 for (i = 0; i < 4; i++) { 4466 temp64 = (val64 & vBIT(0xFFFF, (i*16), 16)); 4467 temp64 >>= 64 - ((i+1)*16); 4468 sw_stat->ring_full_cnt[i] += temp64; 4469 } 4470 4471 val64 = readq(&bar0->ring_bump_counter2); 4472 for (i = 0; i < 4; i++) { 4473 temp64 = (val64 & vBIT(0xFFFF, (i*16), 16)); 4474 temp64 >>= 64 - ((i+1)*16); 4475 sw_stat->ring_full_cnt[i+4] += temp64; 4476 } 4477 } 4478 4479 val64 = readq(&bar0->txdma_int_status); 4480 /*check for pfc_err*/ 4481 if (val64 & TXDMA_PFC_INT) { 4482 if (do_s2io_chk_alarm_bit(PFC_ECC_DB_ERR | PFC_SM_ERR_ALARM | 4483 PFC_MISC_0_ERR | PFC_MISC_1_ERR | 4484 PFC_PCIX_ERR, 4485 &bar0->pfc_err_reg, 4486 &sw_stat->pfc_err_cnt)) 4487 goto reset; 4488 do_s2io_chk_alarm_bit(PFC_ECC_SG_ERR, 4489 &bar0->pfc_err_reg, 4490 &sw_stat->pfc_err_cnt); 4491 } 4492 4493 /*check for tda_err*/ 4494 if (val64 & TXDMA_TDA_INT) { 4495 if (do_s2io_chk_alarm_bit(TDA_Fn_ECC_DB_ERR | 4496 TDA_SM0_ERR_ALARM | 4497 TDA_SM1_ERR_ALARM, 4498 &bar0->tda_err_reg, 4499 &sw_stat->tda_err_cnt)) 4500 goto reset; 4501 do_s2io_chk_alarm_bit(TDA_Fn_ECC_SG_ERR | TDA_PCIX_ERR, 4502 &bar0->tda_err_reg, 4503 &sw_stat->tda_err_cnt); 4504 } 4505 /*check for pcc_err*/ 4506 if (val64 & TXDMA_PCC_INT) { 4507 if (do_s2io_chk_alarm_bit(PCC_SM_ERR_ALARM | PCC_WR_ERR_ALARM | 4508 PCC_N_SERR | PCC_6_COF_OV_ERR | 4509 PCC_7_COF_OV_ERR | PCC_6_LSO_OV_ERR | 4510 PCC_7_LSO_OV_ERR | PCC_FB_ECC_DB_ERR | 4511 PCC_TXB_ECC_DB_ERR, 4512 &bar0->pcc_err_reg, 4513 &sw_stat->pcc_err_cnt)) 4514 goto reset; 4515 do_s2io_chk_alarm_bit(PCC_FB_ECC_SG_ERR | PCC_TXB_ECC_SG_ERR, 4516 &bar0->pcc_err_reg, 4517 &sw_stat->pcc_err_cnt); 4518 } 4519 4520 /*check for tti_err*/ 4521 if (val64 & TXDMA_TTI_INT) { 4522 if (do_s2io_chk_alarm_bit(TTI_SM_ERR_ALARM, 4523 &bar0->tti_err_reg, 4524 &sw_stat->tti_err_cnt)) 4525 goto reset; 4526 do_s2io_chk_alarm_bit(TTI_ECC_SG_ERR | TTI_ECC_DB_ERR, 4527 &bar0->tti_err_reg, 4528 &sw_stat->tti_err_cnt); 4529 } 4530 4531 /*check for lso_err*/ 4532 if (val64 & TXDMA_LSO_INT) { 4533 if (do_s2io_chk_alarm_bit(LSO6_ABORT | LSO7_ABORT | 4534 LSO6_SM_ERR_ALARM | LSO7_SM_ERR_ALARM, 4535 &bar0->lso_err_reg, 4536 &sw_stat->lso_err_cnt)) 4537 goto reset; 4538 do_s2io_chk_alarm_bit(LSO6_SEND_OFLOW | LSO7_SEND_OFLOW, 4539 &bar0->lso_err_reg, 4540 &sw_stat->lso_err_cnt); 4541 } 4542 4543 /*check for tpa_err*/ 4544 if (val64 & TXDMA_TPA_INT) { 4545 if (do_s2io_chk_alarm_bit(TPA_SM_ERR_ALARM, 4546 &bar0->tpa_err_reg, 4547 &sw_stat->tpa_err_cnt)) 4548 goto reset; 4549 do_s2io_chk_alarm_bit(TPA_TX_FRM_DROP, 4550 &bar0->tpa_err_reg, 4551 &sw_stat->tpa_err_cnt); 4552 } 4553 4554 /*check for sm_err*/ 4555 if (val64 & TXDMA_SM_INT) { 4556 if (do_s2io_chk_alarm_bit(SM_SM_ERR_ALARM, 4557 &bar0->sm_err_reg, 4558 &sw_stat->sm_err_cnt)) 4559 goto reset; 4560 } 4561 4562 val64 = readq(&bar0->mac_int_status); 4563 if (val64 & MAC_INT_STATUS_TMAC_INT) { 4564 if (do_s2io_chk_alarm_bit(TMAC_TX_BUF_OVRN | TMAC_TX_SM_ERR, 4565 &bar0->mac_tmac_err_reg, 4566 &sw_stat->mac_tmac_err_cnt)) 4567 goto reset; 4568 do_s2io_chk_alarm_bit(TMAC_ECC_SG_ERR | TMAC_ECC_DB_ERR | 4569 TMAC_DESC_ECC_SG_ERR | 4570 TMAC_DESC_ECC_DB_ERR, 4571 &bar0->mac_tmac_err_reg, 4572 &sw_stat->mac_tmac_err_cnt); 4573 } 4574 4575 val64 = readq(&bar0->xgxs_int_status); 4576 if (val64 & XGXS_INT_STATUS_TXGXS) { 4577 if (do_s2io_chk_alarm_bit(TXGXS_ESTORE_UFLOW | TXGXS_TX_SM_ERR, 4578 &bar0->xgxs_txgxs_err_reg, 4579 &sw_stat->xgxs_txgxs_err_cnt)) 4580 goto reset; 4581 do_s2io_chk_alarm_bit(TXGXS_ECC_SG_ERR | TXGXS_ECC_DB_ERR, 4582 &bar0->xgxs_txgxs_err_reg, 4583 &sw_stat->xgxs_txgxs_err_cnt); 4584 } 4585 4586 val64 = readq(&bar0->rxdma_int_status); 4587 if (val64 & RXDMA_INT_RC_INT_M) { 4588 if (do_s2io_chk_alarm_bit(RC_PRCn_ECC_DB_ERR | 4589 RC_FTC_ECC_DB_ERR | 4590 RC_PRCn_SM_ERR_ALARM | 4591 RC_FTC_SM_ERR_ALARM, 4592 &bar0->rc_err_reg, 4593 &sw_stat->rc_err_cnt)) 4594 goto reset; 4595 do_s2io_chk_alarm_bit(RC_PRCn_ECC_SG_ERR | 4596 RC_FTC_ECC_SG_ERR | 4597 RC_RDA_FAIL_WR_Rn, &bar0->rc_err_reg, 4598 &sw_stat->rc_err_cnt); 4599 if (do_s2io_chk_alarm_bit(PRC_PCI_AB_RD_Rn | 4600 PRC_PCI_AB_WR_Rn | 4601 PRC_PCI_AB_F_WR_Rn, 4602 &bar0->prc_pcix_err_reg, 4603 &sw_stat->prc_pcix_err_cnt)) 4604 goto reset; 4605 do_s2io_chk_alarm_bit(PRC_PCI_DP_RD_Rn | 4606 PRC_PCI_DP_WR_Rn | 4607 PRC_PCI_DP_F_WR_Rn, 4608 &bar0->prc_pcix_err_reg, 4609 &sw_stat->prc_pcix_err_cnt); 4610 } 4611 4612 if (val64 & RXDMA_INT_RPA_INT_M) { 4613 if (do_s2io_chk_alarm_bit(RPA_SM_ERR_ALARM | RPA_CREDIT_ERR, 4614 &bar0->rpa_err_reg, 4615 &sw_stat->rpa_err_cnt)) 4616 goto reset; 4617 do_s2io_chk_alarm_bit(RPA_ECC_SG_ERR | RPA_ECC_DB_ERR, 4618 &bar0->rpa_err_reg, 4619 &sw_stat->rpa_err_cnt); 4620 } 4621 4622 if (val64 & RXDMA_INT_RDA_INT_M) { 4623 if (do_s2io_chk_alarm_bit(RDA_RXDn_ECC_DB_ERR | 4624 RDA_FRM_ECC_DB_N_AERR | 4625 RDA_SM1_ERR_ALARM | 4626 RDA_SM0_ERR_ALARM | 4627 RDA_RXD_ECC_DB_SERR, 4628 &bar0->rda_err_reg, 4629 &sw_stat->rda_err_cnt)) 4630 goto reset; 4631 do_s2io_chk_alarm_bit(RDA_RXDn_ECC_SG_ERR | 4632 RDA_FRM_ECC_SG_ERR | 4633 RDA_MISC_ERR | 4634 RDA_PCIX_ERR, 4635 &bar0->rda_err_reg, 4636 &sw_stat->rda_err_cnt); 4637 } 4638 4639 if (val64 & RXDMA_INT_RTI_INT_M) { 4640 if (do_s2io_chk_alarm_bit(RTI_SM_ERR_ALARM, 4641 &bar0->rti_err_reg, 4642 &sw_stat->rti_err_cnt)) 4643 goto reset; 4644 do_s2io_chk_alarm_bit(RTI_ECC_SG_ERR | RTI_ECC_DB_ERR, 4645 &bar0->rti_err_reg, 4646 &sw_stat->rti_err_cnt); 4647 } 4648 4649 val64 = readq(&bar0->mac_int_status); 4650 if (val64 & MAC_INT_STATUS_RMAC_INT) { 4651 if (do_s2io_chk_alarm_bit(RMAC_RX_BUFF_OVRN | RMAC_RX_SM_ERR, 4652 &bar0->mac_rmac_err_reg, 4653 &sw_stat->mac_rmac_err_cnt)) 4654 goto reset; 4655 do_s2io_chk_alarm_bit(RMAC_UNUSED_INT | 4656 RMAC_SINGLE_ECC_ERR | 4657 RMAC_DOUBLE_ECC_ERR, 4658 &bar0->mac_rmac_err_reg, 4659 &sw_stat->mac_rmac_err_cnt); 4660 } 4661 4662 val64 = readq(&bar0->xgxs_int_status); 4663 if (val64 & XGXS_INT_STATUS_RXGXS) { 4664 if (do_s2io_chk_alarm_bit(RXGXS_ESTORE_OFLOW | RXGXS_RX_SM_ERR, 4665 &bar0->xgxs_rxgxs_err_reg, 4666 &sw_stat->xgxs_rxgxs_err_cnt)) 4667 goto reset; 4668 } 4669 4670 val64 = readq(&bar0->mc_int_status); 4671 if (val64 & MC_INT_STATUS_MC_INT) { 4672 if (do_s2io_chk_alarm_bit(MC_ERR_REG_SM_ERR, 4673 &bar0->mc_err_reg, 4674 &sw_stat->mc_err_cnt)) 4675 goto reset; 4676 4677 /* Handling Ecc errors */ 4678 if (val64 & (MC_ERR_REG_ECC_ALL_SNG | MC_ERR_REG_ECC_ALL_DBL)) { 4679 writeq(val64, &bar0->mc_err_reg); 4680 if (val64 & MC_ERR_REG_ECC_ALL_DBL) { 4681 sw_stat->double_ecc_errs++; 4682 if (sp->device_type != XFRAME_II_DEVICE) { 4683 /* 4684 * Reset XframeI only if critical error 4685 */ 4686 if (val64 & 4687 (MC_ERR_REG_MIRI_ECC_DB_ERR_0 | 4688 MC_ERR_REG_MIRI_ECC_DB_ERR_1)) 4689 goto reset; 4690 } 4691 } else 4692 sw_stat->single_ecc_errs++; 4693 } 4694 } 4695 return; 4696 4697 reset: 4698 s2io_stop_all_tx_queue(sp); 4699 schedule_work(&sp->rst_timer_task); 4700 sw_stat->soft_reset_cnt++; 4701 } 4702 4703 /** 4704 * s2io_isr - ISR handler of the device . 4705 * @irq: the irq of the device. 4706 * @dev_id: a void pointer to the dev structure of the NIC. 4707 * Description: This function is the ISR handler of the device. It 4708 * identifies the reason for the interrupt and calls the relevant 4709 * service routines. As a contongency measure, this ISR allocates the 4710 * recv buffers, if their numbers are below the panic value which is 4711 * presently set to 25% of the original number of rcv buffers allocated. 4712 * Return value: 4713 * IRQ_HANDLED: will be returned if IRQ was handled by this routine 4714 * IRQ_NONE: will be returned if interrupt is not from our device 4715 */ 4716 static irqreturn_t s2io_isr(int irq, void *dev_id) 4717 { 4718 struct net_device *dev = (struct net_device *)dev_id; 4719 struct s2io_nic *sp = netdev_priv(dev); 4720 struct XENA_dev_config __iomem *bar0 = sp->bar0; 4721 int i; 4722 u64 reason = 0; 4723 struct mac_info *mac_control; 4724 struct config_param *config; 4725 4726 /* Pretend we handled any irq's from a disconnected card */ 4727 if (pci_channel_offline(sp->pdev)) 4728 return IRQ_NONE; 4729 4730 if (!is_s2io_card_up(sp)) 4731 return IRQ_NONE; 4732 4733 config = &sp->config; 4734 mac_control = &sp->mac_control; 4735 4736 /* 4737 * Identify the cause for interrupt and call the appropriate 4738 * interrupt handler. Causes for the interrupt could be; 4739 * 1. Rx of packet. 4740 * 2. Tx complete. 4741 * 3. Link down. 4742 */ 4743 reason = readq(&bar0->general_int_status); 4744 4745 if (unlikely(reason == S2IO_MINUS_ONE)) 4746 return IRQ_HANDLED; /* Nothing much can be done. Get out */ 4747 4748 if (reason & 4749 (GEN_INTR_RXTRAFFIC | GEN_INTR_TXTRAFFIC | GEN_INTR_TXPIC)) { 4750 writeq(S2IO_MINUS_ONE, &bar0->general_int_mask); 4751 4752 if (config->napi) { 4753 if (reason & GEN_INTR_RXTRAFFIC) { 4754 napi_schedule(&sp->napi); 4755 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_mask); 4756 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int); 4757 readl(&bar0->rx_traffic_int); 4758 } 4759 } else { 4760 /* 4761 * rx_traffic_int reg is an R1 register, writing all 1's 4762 * will ensure that the actual interrupt causing bit 4763 * get's cleared and hence a read can be avoided. 4764 */ 4765 if (reason & GEN_INTR_RXTRAFFIC) 4766 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int); 4767 4768 for (i = 0; i < config->rx_ring_num; i++) { 4769 struct ring_info *ring = &mac_control->rings[i]; 4770 4771 rx_intr_handler(ring, 0); 4772 } 4773 } 4774 4775 /* 4776 * tx_traffic_int reg is an R1 register, writing all 1's 4777 * will ensure that the actual interrupt causing bit get's 4778 * cleared and hence a read can be avoided. 4779 */ 4780 if (reason & GEN_INTR_TXTRAFFIC) 4781 writeq(S2IO_MINUS_ONE, &bar0->tx_traffic_int); 4782 4783 for (i = 0; i < config->tx_fifo_num; i++) 4784 tx_intr_handler(&mac_control->fifos[i]); 4785 4786 if (reason & GEN_INTR_TXPIC) 4787 s2io_txpic_intr_handle(sp); 4788 4789 /* 4790 * Reallocate the buffers from the interrupt handler itself. 4791 */ 4792 if (!config->napi) { 4793 for (i = 0; i < config->rx_ring_num; i++) { 4794 struct ring_info *ring = &mac_control->rings[i]; 4795 4796 s2io_chk_rx_buffers(sp, ring); 4797 } 4798 } 4799 writeq(sp->general_int_mask, &bar0->general_int_mask); 4800 readl(&bar0->general_int_status); 4801 4802 return IRQ_HANDLED; 4803 4804 } else if (!reason) { 4805 /* The interrupt was not raised by us */ 4806 return IRQ_NONE; 4807 } 4808 4809 return IRQ_HANDLED; 4810 } 4811 4812 /** 4813 * s2io_updt_stats - 4814 */ 4815 static void s2io_updt_stats(struct s2io_nic *sp) 4816 { 4817 struct XENA_dev_config __iomem *bar0 = sp->bar0; 4818 u64 val64; 4819 int cnt = 0; 4820 4821 if (is_s2io_card_up(sp)) { 4822 /* Apprx 30us on a 133 MHz bus */ 4823 val64 = SET_UPDT_CLICKS(10) | 4824 STAT_CFG_ONE_SHOT_EN | STAT_CFG_STAT_EN; 4825 writeq(val64, &bar0->stat_cfg); 4826 do { 4827 udelay(100); 4828 val64 = readq(&bar0->stat_cfg); 4829 if (!(val64 & s2BIT(0))) 4830 break; 4831 cnt++; 4832 if (cnt == 5) 4833 break; /* Updt failed */ 4834 } while (1); 4835 } 4836 } 4837 4838 /** 4839 * s2io_get_stats - Updates the device statistics structure. 4840 * @dev : pointer to the device structure. 4841 * Description: 4842 * This function updates the device statistics structure in the s2io_nic 4843 * structure and returns a pointer to the same. 4844 * Return value: 4845 * pointer to the updated net_device_stats structure. 4846 */ 4847 static struct net_device_stats *s2io_get_stats(struct net_device *dev) 4848 { 4849 struct s2io_nic *sp = netdev_priv(dev); 4850 struct mac_info *mac_control = &sp->mac_control; 4851 struct stat_block *stats = mac_control->stats_info; 4852 u64 delta; 4853 4854 /* Configure Stats for immediate updt */ 4855 s2io_updt_stats(sp); 4856 4857 /* A device reset will cause the on-adapter statistics to be zero'ed. 4858 * This can be done while running by changing the MTU. To prevent the 4859 * system from having the stats zero'ed, the driver keeps a copy of the 4860 * last update to the system (which is also zero'ed on reset). This 4861 * enables the driver to accurately know the delta between the last 4862 * update and the current update. 4863 */ 4864 delta = ((u64) le32_to_cpu(stats->rmac_vld_frms_oflow) << 32 | 4865 le32_to_cpu(stats->rmac_vld_frms)) - sp->stats.rx_packets; 4866 sp->stats.rx_packets += delta; 4867 dev->stats.rx_packets += delta; 4868 4869 delta = ((u64) le32_to_cpu(stats->tmac_frms_oflow) << 32 | 4870 le32_to_cpu(stats->tmac_frms)) - sp->stats.tx_packets; 4871 sp->stats.tx_packets += delta; 4872 dev->stats.tx_packets += delta; 4873 4874 delta = ((u64) le32_to_cpu(stats->rmac_data_octets_oflow) << 32 | 4875 le32_to_cpu(stats->rmac_data_octets)) - sp->stats.rx_bytes; 4876 sp->stats.rx_bytes += delta; 4877 dev->stats.rx_bytes += delta; 4878 4879 delta = ((u64) le32_to_cpu(stats->tmac_data_octets_oflow) << 32 | 4880 le32_to_cpu(stats->tmac_data_octets)) - sp->stats.tx_bytes; 4881 sp->stats.tx_bytes += delta; 4882 dev->stats.tx_bytes += delta; 4883 4884 delta = le64_to_cpu(stats->rmac_drop_frms) - sp->stats.rx_errors; 4885 sp->stats.rx_errors += delta; 4886 dev->stats.rx_errors += delta; 4887 4888 delta = ((u64) le32_to_cpu(stats->tmac_any_err_frms_oflow) << 32 | 4889 le32_to_cpu(stats->tmac_any_err_frms)) - sp->stats.tx_errors; 4890 sp->stats.tx_errors += delta; 4891 dev->stats.tx_errors += delta; 4892 4893 delta = le64_to_cpu(stats->rmac_drop_frms) - sp->stats.rx_dropped; 4894 sp->stats.rx_dropped += delta; 4895 dev->stats.rx_dropped += delta; 4896 4897 delta = le64_to_cpu(stats->tmac_drop_frms) - sp->stats.tx_dropped; 4898 sp->stats.tx_dropped += delta; 4899 dev->stats.tx_dropped += delta; 4900 4901 /* The adapter MAC interprets pause frames as multicast packets, but 4902 * does not pass them up. This erroneously increases the multicast 4903 * packet count and needs to be deducted when the multicast frame count 4904 * is queried. 4905 */ 4906 delta = (u64) le32_to_cpu(stats->rmac_vld_mcst_frms_oflow) << 32 | 4907 le32_to_cpu(stats->rmac_vld_mcst_frms); 4908 delta -= le64_to_cpu(stats->rmac_pause_ctrl_frms); 4909 delta -= sp->stats.multicast; 4910 sp->stats.multicast += delta; 4911 dev->stats.multicast += delta; 4912 4913 delta = ((u64) le32_to_cpu(stats->rmac_usized_frms_oflow) << 32 | 4914 le32_to_cpu(stats->rmac_usized_frms)) + 4915 le64_to_cpu(stats->rmac_long_frms) - sp->stats.rx_length_errors; 4916 sp->stats.rx_length_errors += delta; 4917 dev->stats.rx_length_errors += delta; 4918 4919 delta = le64_to_cpu(stats->rmac_fcs_err_frms) - sp->stats.rx_crc_errors; 4920 sp->stats.rx_crc_errors += delta; 4921 dev->stats.rx_crc_errors += delta; 4922 4923 return &dev->stats; 4924 } 4925 4926 /** 4927 * s2io_set_multicast - entry point for multicast address enable/disable. 4928 * @dev : pointer to the device structure 4929 * Description: 4930 * This function is a driver entry point which gets called by the kernel 4931 * whenever multicast addresses must be enabled/disabled. This also gets 4932 * called to set/reset promiscuous mode. Depending on the deivce flag, we 4933 * determine, if multicast address must be enabled or if promiscuous mode 4934 * is to be disabled etc. 4935 * Return value: 4936 * void. 4937 */ 4938 4939 static void s2io_set_multicast(struct net_device *dev) 4940 { 4941 int i, j, prev_cnt; 4942 struct netdev_hw_addr *ha; 4943 struct s2io_nic *sp = netdev_priv(dev); 4944 struct XENA_dev_config __iomem *bar0 = sp->bar0; 4945 u64 val64 = 0, multi_mac = 0x010203040506ULL, mask = 4946 0xfeffffffffffULL; 4947 u64 dis_addr = S2IO_DISABLE_MAC_ENTRY, mac_addr = 0; 4948 void __iomem *add; 4949 struct config_param *config = &sp->config; 4950 4951 if ((dev->flags & IFF_ALLMULTI) && (!sp->m_cast_flg)) { 4952 /* Enable all Multicast addresses */ 4953 writeq(RMAC_ADDR_DATA0_MEM_ADDR(multi_mac), 4954 &bar0->rmac_addr_data0_mem); 4955 writeq(RMAC_ADDR_DATA1_MEM_MASK(mask), 4956 &bar0->rmac_addr_data1_mem); 4957 val64 = RMAC_ADDR_CMD_MEM_WE | 4958 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD | 4959 RMAC_ADDR_CMD_MEM_OFFSET(config->max_mc_addr - 1); 4960 writeq(val64, &bar0->rmac_addr_cmd_mem); 4961 /* Wait till command completes */ 4962 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem, 4963 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING, 4964 S2IO_BIT_RESET); 4965 4966 sp->m_cast_flg = 1; 4967 sp->all_multi_pos = config->max_mc_addr - 1; 4968 } else if ((dev->flags & IFF_ALLMULTI) && (sp->m_cast_flg)) { 4969 /* Disable all Multicast addresses */ 4970 writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr), 4971 &bar0->rmac_addr_data0_mem); 4972 writeq(RMAC_ADDR_DATA1_MEM_MASK(0x0), 4973 &bar0->rmac_addr_data1_mem); 4974 val64 = RMAC_ADDR_CMD_MEM_WE | 4975 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD | 4976 RMAC_ADDR_CMD_MEM_OFFSET(sp->all_multi_pos); 4977 writeq(val64, &bar0->rmac_addr_cmd_mem); 4978 /* Wait till command completes */ 4979 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem, 4980 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING, 4981 S2IO_BIT_RESET); 4982 4983 sp->m_cast_flg = 0; 4984 sp->all_multi_pos = 0; 4985 } 4986 4987 if ((dev->flags & IFF_PROMISC) && (!sp->promisc_flg)) { 4988 /* Put the NIC into promiscuous mode */ 4989 add = &bar0->mac_cfg; 4990 val64 = readq(&bar0->mac_cfg); 4991 val64 |= MAC_CFG_RMAC_PROM_ENABLE; 4992 4993 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key); 4994 writel((u32)val64, add); 4995 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key); 4996 writel((u32) (val64 >> 32), (add + 4)); 4997 4998 if (vlan_tag_strip != 1) { 4999 val64 = readq(&bar0->rx_pa_cfg); 5000 val64 &= ~RX_PA_CFG_STRIP_VLAN_TAG; 5001 writeq(val64, &bar0->rx_pa_cfg); 5002 sp->vlan_strip_flag = 0; 5003 } 5004 5005 val64 = readq(&bar0->mac_cfg); 5006 sp->promisc_flg = 1; 5007 DBG_PRINT(INFO_DBG, "%s: entered promiscuous mode\n", 5008 dev->name); 5009 } else if (!(dev->flags & IFF_PROMISC) && (sp->promisc_flg)) { 5010 /* Remove the NIC from promiscuous mode */ 5011 add = &bar0->mac_cfg; 5012 val64 = readq(&bar0->mac_cfg); 5013 val64 &= ~MAC_CFG_RMAC_PROM_ENABLE; 5014 5015 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key); 5016 writel((u32)val64, add); 5017 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key); 5018 writel((u32) (val64 >> 32), (add + 4)); 5019 5020 if (vlan_tag_strip != 0) { 5021 val64 = readq(&bar0->rx_pa_cfg); 5022 val64 |= RX_PA_CFG_STRIP_VLAN_TAG; 5023 writeq(val64, &bar0->rx_pa_cfg); 5024 sp->vlan_strip_flag = 1; 5025 } 5026 5027 val64 = readq(&bar0->mac_cfg); 5028 sp->promisc_flg = 0; 5029 DBG_PRINT(INFO_DBG, "%s: left promiscuous mode\n", dev->name); 5030 } 5031 5032 /* Update individual M_CAST address list */ 5033 if ((!sp->m_cast_flg) && netdev_mc_count(dev)) { 5034 if (netdev_mc_count(dev) > 5035 (config->max_mc_addr - config->max_mac_addr)) { 5036 DBG_PRINT(ERR_DBG, 5037 "%s: No more Rx filters can be added - " 5038 "please enable ALL_MULTI instead\n", 5039 dev->name); 5040 return; 5041 } 5042 5043 prev_cnt = sp->mc_addr_count; 5044 sp->mc_addr_count = netdev_mc_count(dev); 5045 5046 /* Clear out the previous list of Mc in the H/W. */ 5047 for (i = 0; i < prev_cnt; i++) { 5048 writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr), 5049 &bar0->rmac_addr_data0_mem); 5050 writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL), 5051 &bar0->rmac_addr_data1_mem); 5052 val64 = RMAC_ADDR_CMD_MEM_WE | 5053 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD | 5054 RMAC_ADDR_CMD_MEM_OFFSET 5055 (config->mc_start_offset + i); 5056 writeq(val64, &bar0->rmac_addr_cmd_mem); 5057 5058 /* Wait for command completes */ 5059 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem, 5060 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING, 5061 S2IO_BIT_RESET)) { 5062 DBG_PRINT(ERR_DBG, 5063 "%s: Adding Multicasts failed\n", 5064 dev->name); 5065 return; 5066 } 5067 } 5068 5069 /* Create the new Rx filter list and update the same in H/W. */ 5070 i = 0; 5071 netdev_for_each_mc_addr(ha, dev) { 5072 mac_addr = 0; 5073 for (j = 0; j < ETH_ALEN; j++) { 5074 mac_addr |= ha->addr[j]; 5075 mac_addr <<= 8; 5076 } 5077 mac_addr >>= 8; 5078 writeq(RMAC_ADDR_DATA0_MEM_ADDR(mac_addr), 5079 &bar0->rmac_addr_data0_mem); 5080 writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL), 5081 &bar0->rmac_addr_data1_mem); 5082 val64 = RMAC_ADDR_CMD_MEM_WE | 5083 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD | 5084 RMAC_ADDR_CMD_MEM_OFFSET 5085 (i + config->mc_start_offset); 5086 writeq(val64, &bar0->rmac_addr_cmd_mem); 5087 5088 /* Wait for command completes */ 5089 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem, 5090 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING, 5091 S2IO_BIT_RESET)) { 5092 DBG_PRINT(ERR_DBG, 5093 "%s: Adding Multicasts failed\n", 5094 dev->name); 5095 return; 5096 } 5097 i++; 5098 } 5099 } 5100 } 5101 5102 /* read from CAM unicast & multicast addresses and store it in 5103 * def_mac_addr structure 5104 */ 5105 static void do_s2io_store_unicast_mc(struct s2io_nic *sp) 5106 { 5107 int offset; 5108 u64 mac_addr = 0x0; 5109 struct config_param *config = &sp->config; 5110 5111 /* store unicast & multicast mac addresses */ 5112 for (offset = 0; offset < config->max_mc_addr; offset++) { 5113 mac_addr = do_s2io_read_unicast_mc(sp, offset); 5114 /* if read fails disable the entry */ 5115 if (mac_addr == FAILURE) 5116 mac_addr = S2IO_DISABLE_MAC_ENTRY; 5117 do_s2io_copy_mac_addr(sp, offset, mac_addr); 5118 } 5119 } 5120 5121 /* restore unicast & multicast MAC to CAM from def_mac_addr structure */ 5122 static void do_s2io_restore_unicast_mc(struct s2io_nic *sp) 5123 { 5124 int offset; 5125 struct config_param *config = &sp->config; 5126 /* restore unicast mac address */ 5127 for (offset = 0; offset < config->max_mac_addr; offset++) 5128 do_s2io_prog_unicast(sp->dev, 5129 sp->def_mac_addr[offset].mac_addr); 5130 5131 /* restore multicast mac address */ 5132 for (offset = config->mc_start_offset; 5133 offset < config->max_mc_addr; offset++) 5134 do_s2io_add_mc(sp, sp->def_mac_addr[offset].mac_addr); 5135 } 5136 5137 /* add a multicast MAC address to CAM */ 5138 static int do_s2io_add_mc(struct s2io_nic *sp, u8 *addr) 5139 { 5140 int i; 5141 u64 mac_addr = 0; 5142 struct config_param *config = &sp->config; 5143 5144 for (i = 0; i < ETH_ALEN; i++) { 5145 mac_addr <<= 8; 5146 mac_addr |= addr[i]; 5147 } 5148 if ((0ULL == mac_addr) || (mac_addr == S2IO_DISABLE_MAC_ENTRY)) 5149 return SUCCESS; 5150 5151 /* check if the multicast mac already preset in CAM */ 5152 for (i = config->mc_start_offset; i < config->max_mc_addr; i++) { 5153 u64 tmp64; 5154 tmp64 = do_s2io_read_unicast_mc(sp, i); 5155 if (tmp64 == S2IO_DISABLE_MAC_ENTRY) /* CAM entry is empty */ 5156 break; 5157 5158 if (tmp64 == mac_addr) 5159 return SUCCESS; 5160 } 5161 if (i == config->max_mc_addr) { 5162 DBG_PRINT(ERR_DBG, 5163 "CAM full no space left for multicast MAC\n"); 5164 return FAILURE; 5165 } 5166 /* Update the internal structure with this new mac address */ 5167 do_s2io_copy_mac_addr(sp, i, mac_addr); 5168 5169 return do_s2io_add_mac(sp, mac_addr, i); 5170 } 5171 5172 /* add MAC address to CAM */ 5173 static int do_s2io_add_mac(struct s2io_nic *sp, u64 addr, int off) 5174 { 5175 u64 val64; 5176 struct XENA_dev_config __iomem *bar0 = sp->bar0; 5177 5178 writeq(RMAC_ADDR_DATA0_MEM_ADDR(addr), 5179 &bar0->rmac_addr_data0_mem); 5180 5181 val64 = RMAC_ADDR_CMD_MEM_WE | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD | 5182 RMAC_ADDR_CMD_MEM_OFFSET(off); 5183 writeq(val64, &bar0->rmac_addr_cmd_mem); 5184 5185 /* Wait till command completes */ 5186 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem, 5187 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING, 5188 S2IO_BIT_RESET)) { 5189 DBG_PRINT(INFO_DBG, "do_s2io_add_mac failed\n"); 5190 return FAILURE; 5191 } 5192 return SUCCESS; 5193 } 5194 /* deletes a specified unicast/multicast mac entry from CAM */ 5195 static int do_s2io_delete_unicast_mc(struct s2io_nic *sp, u64 addr) 5196 { 5197 int offset; 5198 u64 dis_addr = S2IO_DISABLE_MAC_ENTRY, tmp64; 5199 struct config_param *config = &sp->config; 5200 5201 for (offset = 1; 5202 offset < config->max_mc_addr; offset++) { 5203 tmp64 = do_s2io_read_unicast_mc(sp, offset); 5204 if (tmp64 == addr) { 5205 /* disable the entry by writing 0xffffffffffffULL */ 5206 if (do_s2io_add_mac(sp, dis_addr, offset) == FAILURE) 5207 return FAILURE; 5208 /* store the new mac list from CAM */ 5209 do_s2io_store_unicast_mc(sp); 5210 return SUCCESS; 5211 } 5212 } 5213 DBG_PRINT(ERR_DBG, "MAC address 0x%llx not found in CAM\n", 5214 (unsigned long long)addr); 5215 return FAILURE; 5216 } 5217 5218 /* read mac entries from CAM */ 5219 static u64 do_s2io_read_unicast_mc(struct s2io_nic *sp, int offset) 5220 { 5221 u64 tmp64 = 0xffffffffffff0000ULL, val64; 5222 struct XENA_dev_config __iomem *bar0 = sp->bar0; 5223 5224 /* read mac addr */ 5225 val64 = RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD | 5226 RMAC_ADDR_CMD_MEM_OFFSET(offset); 5227 writeq(val64, &bar0->rmac_addr_cmd_mem); 5228 5229 /* Wait till command completes */ 5230 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem, 5231 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING, 5232 S2IO_BIT_RESET)) { 5233 DBG_PRINT(INFO_DBG, "do_s2io_read_unicast_mc failed\n"); 5234 return FAILURE; 5235 } 5236 tmp64 = readq(&bar0->rmac_addr_data0_mem); 5237 5238 return tmp64 >> 16; 5239 } 5240 5241 /** 5242 * s2io_set_mac_addr - driver entry point 5243 */ 5244 5245 static int s2io_set_mac_addr(struct net_device *dev, void *p) 5246 { 5247 struct sockaddr *addr = p; 5248 5249 if (!is_valid_ether_addr(addr->sa_data)) 5250 return -EADDRNOTAVAIL; 5251 5252 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len); 5253 5254 /* store the MAC address in CAM */ 5255 return do_s2io_prog_unicast(dev, dev->dev_addr); 5256 } 5257 /** 5258 * do_s2io_prog_unicast - Programs the Xframe mac address 5259 * @dev : pointer to the device structure. 5260 * @addr: a uchar pointer to the new mac address which is to be set. 5261 * Description : This procedure will program the Xframe to receive 5262 * frames with new Mac Address 5263 * Return value: SUCCESS on success and an appropriate (-)ve integer 5264 * as defined in errno.h file on failure. 5265 */ 5266 5267 static int do_s2io_prog_unicast(struct net_device *dev, u8 *addr) 5268 { 5269 struct s2io_nic *sp = netdev_priv(dev); 5270 register u64 mac_addr = 0, perm_addr = 0; 5271 int i; 5272 u64 tmp64; 5273 struct config_param *config = &sp->config; 5274 5275 /* 5276 * Set the new MAC address as the new unicast filter and reflect this 5277 * change on the device address registered with the OS. It will be 5278 * at offset 0. 5279 */ 5280 for (i = 0; i < ETH_ALEN; i++) { 5281 mac_addr <<= 8; 5282 mac_addr |= addr[i]; 5283 perm_addr <<= 8; 5284 perm_addr |= sp->def_mac_addr[0].mac_addr[i]; 5285 } 5286 5287 /* check if the dev_addr is different than perm_addr */ 5288 if (mac_addr == perm_addr) 5289 return SUCCESS; 5290 5291 /* check if the mac already preset in CAM */ 5292 for (i = 1; i < config->max_mac_addr; i++) { 5293 tmp64 = do_s2io_read_unicast_mc(sp, i); 5294 if (tmp64 == S2IO_DISABLE_MAC_ENTRY) /* CAM entry is empty */ 5295 break; 5296 5297 if (tmp64 == mac_addr) { 5298 DBG_PRINT(INFO_DBG, 5299 "MAC addr:0x%llx already present in CAM\n", 5300 (unsigned long long)mac_addr); 5301 return SUCCESS; 5302 } 5303 } 5304 if (i == config->max_mac_addr) { 5305 DBG_PRINT(ERR_DBG, "CAM full no space left for Unicast MAC\n"); 5306 return FAILURE; 5307 } 5308 /* Update the internal structure with this new mac address */ 5309 do_s2io_copy_mac_addr(sp, i, mac_addr); 5310 5311 return do_s2io_add_mac(sp, mac_addr, i); 5312 } 5313 5314 /** 5315 * s2io_ethtool_sset - Sets different link parameters. 5316 * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure. 5317 * @info: pointer to the structure with parameters given by ethtool to set 5318 * link information. 5319 * Description: 5320 * The function sets different link parameters provided by the user onto 5321 * the NIC. 5322 * Return value: 5323 * 0 on success. 5324 */ 5325 5326 static int s2io_ethtool_sset(struct net_device *dev, 5327 struct ethtool_cmd *info) 5328 { 5329 struct s2io_nic *sp = netdev_priv(dev); 5330 if ((info->autoneg == AUTONEG_ENABLE) || 5331 (ethtool_cmd_speed(info) != SPEED_10000) || 5332 (info->duplex != DUPLEX_FULL)) 5333 return -EINVAL; 5334 else { 5335 s2io_close(sp->dev); 5336 s2io_open(sp->dev); 5337 } 5338 5339 return 0; 5340 } 5341 5342 /** 5343 * s2io_ethtol_gset - Return link specific information. 5344 * @sp : private member of the device structure, pointer to the 5345 * s2io_nic structure. 5346 * @info : pointer to the structure with parameters given by ethtool 5347 * to return link information. 5348 * Description: 5349 * Returns link specific information like speed, duplex etc.. to ethtool. 5350 * Return value : 5351 * return 0 on success. 5352 */ 5353 5354 static int s2io_ethtool_gset(struct net_device *dev, struct ethtool_cmd *info) 5355 { 5356 struct s2io_nic *sp = netdev_priv(dev); 5357 info->supported = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE); 5358 info->advertising = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE); 5359 info->port = PORT_FIBRE; 5360 5361 /* info->transceiver */ 5362 info->transceiver = XCVR_EXTERNAL; 5363 5364 if (netif_carrier_ok(sp->dev)) { 5365 ethtool_cmd_speed_set(info, SPEED_10000); 5366 info->duplex = DUPLEX_FULL; 5367 } else { 5368 ethtool_cmd_speed_set(info, -1); 5369 info->duplex = -1; 5370 } 5371 5372 info->autoneg = AUTONEG_DISABLE; 5373 return 0; 5374 } 5375 5376 /** 5377 * s2io_ethtool_gdrvinfo - Returns driver specific information. 5378 * @sp : private member of the device structure, which is a pointer to the 5379 * s2io_nic structure. 5380 * @info : pointer to the structure with parameters given by ethtool to 5381 * return driver information. 5382 * Description: 5383 * Returns driver specefic information like name, version etc.. to ethtool. 5384 * Return value: 5385 * void 5386 */ 5387 5388 static void s2io_ethtool_gdrvinfo(struct net_device *dev, 5389 struct ethtool_drvinfo *info) 5390 { 5391 struct s2io_nic *sp = netdev_priv(dev); 5392 5393 strlcpy(info->driver, s2io_driver_name, sizeof(info->driver)); 5394 strlcpy(info->version, s2io_driver_version, sizeof(info->version)); 5395 strlcpy(info->bus_info, pci_name(sp->pdev), sizeof(info->bus_info)); 5396 info->regdump_len = XENA_REG_SPACE; 5397 info->eedump_len = XENA_EEPROM_SPACE; 5398 } 5399 5400 /** 5401 * s2io_ethtool_gregs - dumps the entire space of Xfame into the buffer. 5402 * @sp: private member of the device structure, which is a pointer to the 5403 * s2io_nic structure. 5404 * @regs : pointer to the structure with parameters given by ethtool for 5405 * dumping the registers. 5406 * @reg_space: The input argumnet into which all the registers are dumped. 5407 * Description: 5408 * Dumps the entire register space of xFrame NIC into the user given 5409 * buffer area. 5410 * Return value : 5411 * void . 5412 */ 5413 5414 static void s2io_ethtool_gregs(struct net_device *dev, 5415 struct ethtool_regs *regs, void *space) 5416 { 5417 int i; 5418 u64 reg; 5419 u8 *reg_space = (u8 *)space; 5420 struct s2io_nic *sp = netdev_priv(dev); 5421 5422 regs->len = XENA_REG_SPACE; 5423 regs->version = sp->pdev->subsystem_device; 5424 5425 for (i = 0; i < regs->len; i += 8) { 5426 reg = readq(sp->bar0 + i); 5427 memcpy((reg_space + i), ®, 8); 5428 } 5429 } 5430 5431 /* 5432 * s2io_set_led - control NIC led 5433 */ 5434 static void s2io_set_led(struct s2io_nic *sp, bool on) 5435 { 5436 struct XENA_dev_config __iomem *bar0 = sp->bar0; 5437 u16 subid = sp->pdev->subsystem_device; 5438 u64 val64; 5439 5440 if ((sp->device_type == XFRAME_II_DEVICE) || 5441 ((subid & 0xFF) >= 0x07)) { 5442 val64 = readq(&bar0->gpio_control); 5443 if (on) 5444 val64 |= GPIO_CTRL_GPIO_0; 5445 else 5446 val64 &= ~GPIO_CTRL_GPIO_0; 5447 5448 writeq(val64, &bar0->gpio_control); 5449 } else { 5450 val64 = readq(&bar0->adapter_control); 5451 if (on) 5452 val64 |= ADAPTER_LED_ON; 5453 else 5454 val64 &= ~ADAPTER_LED_ON; 5455 5456 writeq(val64, &bar0->adapter_control); 5457 } 5458 5459 } 5460 5461 /** 5462 * s2io_ethtool_set_led - To physically identify the nic on the system. 5463 * @dev : network device 5464 * @state: led setting 5465 * 5466 * Description: Used to physically identify the NIC on the system. 5467 * The Link LED will blink for a time specified by the user for 5468 * identification. 5469 * NOTE: The Link has to be Up to be able to blink the LED. Hence 5470 * identification is possible only if it's link is up. 5471 */ 5472 5473 static int s2io_ethtool_set_led(struct net_device *dev, 5474 enum ethtool_phys_id_state state) 5475 { 5476 struct s2io_nic *sp = netdev_priv(dev); 5477 struct XENA_dev_config __iomem *bar0 = sp->bar0; 5478 u16 subid = sp->pdev->subsystem_device; 5479 5480 if ((sp->device_type == XFRAME_I_DEVICE) && ((subid & 0xFF) < 0x07)) { 5481 u64 val64 = readq(&bar0->adapter_control); 5482 if (!(val64 & ADAPTER_CNTL_EN)) { 5483 pr_err("Adapter Link down, cannot blink LED\n"); 5484 return -EAGAIN; 5485 } 5486 } 5487 5488 switch (state) { 5489 case ETHTOOL_ID_ACTIVE: 5490 sp->adapt_ctrl_org = readq(&bar0->gpio_control); 5491 return 1; /* cycle on/off once per second */ 5492 5493 case ETHTOOL_ID_ON: 5494 s2io_set_led(sp, true); 5495 break; 5496 5497 case ETHTOOL_ID_OFF: 5498 s2io_set_led(sp, false); 5499 break; 5500 5501 case ETHTOOL_ID_INACTIVE: 5502 if (CARDS_WITH_FAULTY_LINK_INDICATORS(sp->device_type, subid)) 5503 writeq(sp->adapt_ctrl_org, &bar0->gpio_control); 5504 } 5505 5506 return 0; 5507 } 5508 5509 static void s2io_ethtool_gringparam(struct net_device *dev, 5510 struct ethtool_ringparam *ering) 5511 { 5512 struct s2io_nic *sp = netdev_priv(dev); 5513 int i, tx_desc_count = 0, rx_desc_count = 0; 5514 5515 if (sp->rxd_mode == RXD_MODE_1) { 5516 ering->rx_max_pending = MAX_RX_DESC_1; 5517 ering->rx_jumbo_max_pending = MAX_RX_DESC_1; 5518 } else { 5519 ering->rx_max_pending = MAX_RX_DESC_2; 5520 ering->rx_jumbo_max_pending = MAX_RX_DESC_2; 5521 } 5522 5523 ering->tx_max_pending = MAX_TX_DESC; 5524 5525 for (i = 0; i < sp->config.rx_ring_num; i++) 5526 rx_desc_count += sp->config.rx_cfg[i].num_rxd; 5527 ering->rx_pending = rx_desc_count; 5528 ering->rx_jumbo_pending = rx_desc_count; 5529 5530 for (i = 0; i < sp->config.tx_fifo_num; i++) 5531 tx_desc_count += sp->config.tx_cfg[i].fifo_len; 5532 ering->tx_pending = tx_desc_count; 5533 DBG_PRINT(INFO_DBG, "max txds: %d\n", sp->config.max_txds); 5534 } 5535 5536 /** 5537 * s2io_ethtool_getpause_data -Pause frame frame generation and reception. 5538 * @sp : private member of the device structure, which is a pointer to the 5539 * s2io_nic structure. 5540 * @ep : pointer to the structure with pause parameters given by ethtool. 5541 * Description: 5542 * Returns the Pause frame generation and reception capability of the NIC. 5543 * Return value: 5544 * void 5545 */ 5546 static void s2io_ethtool_getpause_data(struct net_device *dev, 5547 struct ethtool_pauseparam *ep) 5548 { 5549 u64 val64; 5550 struct s2io_nic *sp = netdev_priv(dev); 5551 struct XENA_dev_config __iomem *bar0 = sp->bar0; 5552 5553 val64 = readq(&bar0->rmac_pause_cfg); 5554 if (val64 & RMAC_PAUSE_GEN_ENABLE) 5555 ep->tx_pause = true; 5556 if (val64 & RMAC_PAUSE_RX_ENABLE) 5557 ep->rx_pause = true; 5558 ep->autoneg = false; 5559 } 5560 5561 /** 5562 * s2io_ethtool_setpause_data - set/reset pause frame generation. 5563 * @sp : private member of the device structure, which is a pointer to the 5564 * s2io_nic structure. 5565 * @ep : pointer to the structure with pause parameters given by ethtool. 5566 * Description: 5567 * It can be used to set or reset Pause frame generation or reception 5568 * support of the NIC. 5569 * Return value: 5570 * int, returns 0 on Success 5571 */ 5572 5573 static int s2io_ethtool_setpause_data(struct net_device *dev, 5574 struct ethtool_pauseparam *ep) 5575 { 5576 u64 val64; 5577 struct s2io_nic *sp = netdev_priv(dev); 5578 struct XENA_dev_config __iomem *bar0 = sp->bar0; 5579 5580 val64 = readq(&bar0->rmac_pause_cfg); 5581 if (ep->tx_pause) 5582 val64 |= RMAC_PAUSE_GEN_ENABLE; 5583 else 5584 val64 &= ~RMAC_PAUSE_GEN_ENABLE; 5585 if (ep->rx_pause) 5586 val64 |= RMAC_PAUSE_RX_ENABLE; 5587 else 5588 val64 &= ~RMAC_PAUSE_RX_ENABLE; 5589 writeq(val64, &bar0->rmac_pause_cfg); 5590 return 0; 5591 } 5592 5593 /** 5594 * read_eeprom - reads 4 bytes of data from user given offset. 5595 * @sp : private member of the device structure, which is a pointer to the 5596 * s2io_nic structure. 5597 * @off : offset at which the data must be written 5598 * @data : Its an output parameter where the data read at the given 5599 * offset is stored. 5600 * Description: 5601 * Will read 4 bytes of data from the user given offset and return the 5602 * read data. 5603 * NOTE: Will allow to read only part of the EEPROM visible through the 5604 * I2C bus. 5605 * Return value: 5606 * -1 on failure and 0 on success. 5607 */ 5608 5609 #define S2IO_DEV_ID 5 5610 static int read_eeprom(struct s2io_nic *sp, int off, u64 *data) 5611 { 5612 int ret = -1; 5613 u32 exit_cnt = 0; 5614 u64 val64; 5615 struct XENA_dev_config __iomem *bar0 = sp->bar0; 5616 5617 if (sp->device_type == XFRAME_I_DEVICE) { 5618 val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) | 5619 I2C_CONTROL_ADDR(off) | 5620 I2C_CONTROL_BYTE_CNT(0x3) | 5621 I2C_CONTROL_READ | 5622 I2C_CONTROL_CNTL_START; 5623 SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF); 5624 5625 while (exit_cnt < 5) { 5626 val64 = readq(&bar0->i2c_control); 5627 if (I2C_CONTROL_CNTL_END(val64)) { 5628 *data = I2C_CONTROL_GET_DATA(val64); 5629 ret = 0; 5630 break; 5631 } 5632 msleep(50); 5633 exit_cnt++; 5634 } 5635 } 5636 5637 if (sp->device_type == XFRAME_II_DEVICE) { 5638 val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 | 5639 SPI_CONTROL_BYTECNT(0x3) | 5640 SPI_CONTROL_CMD(0x3) | SPI_CONTROL_ADDR(off); 5641 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF); 5642 val64 |= SPI_CONTROL_REQ; 5643 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF); 5644 while (exit_cnt < 5) { 5645 val64 = readq(&bar0->spi_control); 5646 if (val64 & SPI_CONTROL_NACK) { 5647 ret = 1; 5648 break; 5649 } else if (val64 & SPI_CONTROL_DONE) { 5650 *data = readq(&bar0->spi_data); 5651 *data &= 0xffffff; 5652 ret = 0; 5653 break; 5654 } 5655 msleep(50); 5656 exit_cnt++; 5657 } 5658 } 5659 return ret; 5660 } 5661 5662 /** 5663 * write_eeprom - actually writes the relevant part of the data value. 5664 * @sp : private member of the device structure, which is a pointer to the 5665 * s2io_nic structure. 5666 * @off : offset at which the data must be written 5667 * @data : The data that is to be written 5668 * @cnt : Number of bytes of the data that are actually to be written into 5669 * the Eeprom. (max of 3) 5670 * Description: 5671 * Actually writes the relevant part of the data value into the Eeprom 5672 * through the I2C bus. 5673 * Return value: 5674 * 0 on success, -1 on failure. 5675 */ 5676 5677 static int write_eeprom(struct s2io_nic *sp, int off, u64 data, int cnt) 5678 { 5679 int exit_cnt = 0, ret = -1; 5680 u64 val64; 5681 struct XENA_dev_config __iomem *bar0 = sp->bar0; 5682 5683 if (sp->device_type == XFRAME_I_DEVICE) { 5684 val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) | 5685 I2C_CONTROL_ADDR(off) | 5686 I2C_CONTROL_BYTE_CNT(cnt) | 5687 I2C_CONTROL_SET_DATA((u32)data) | 5688 I2C_CONTROL_CNTL_START; 5689 SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF); 5690 5691 while (exit_cnt < 5) { 5692 val64 = readq(&bar0->i2c_control); 5693 if (I2C_CONTROL_CNTL_END(val64)) { 5694 if (!(val64 & I2C_CONTROL_NACK)) 5695 ret = 0; 5696 break; 5697 } 5698 msleep(50); 5699 exit_cnt++; 5700 } 5701 } 5702 5703 if (sp->device_type == XFRAME_II_DEVICE) { 5704 int write_cnt = (cnt == 8) ? 0 : cnt; 5705 writeq(SPI_DATA_WRITE(data, (cnt << 3)), &bar0->spi_data); 5706 5707 val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 | 5708 SPI_CONTROL_BYTECNT(write_cnt) | 5709 SPI_CONTROL_CMD(0x2) | SPI_CONTROL_ADDR(off); 5710 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF); 5711 val64 |= SPI_CONTROL_REQ; 5712 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF); 5713 while (exit_cnt < 5) { 5714 val64 = readq(&bar0->spi_control); 5715 if (val64 & SPI_CONTROL_NACK) { 5716 ret = 1; 5717 break; 5718 } else if (val64 & SPI_CONTROL_DONE) { 5719 ret = 0; 5720 break; 5721 } 5722 msleep(50); 5723 exit_cnt++; 5724 } 5725 } 5726 return ret; 5727 } 5728 static void s2io_vpd_read(struct s2io_nic *nic) 5729 { 5730 u8 *vpd_data; 5731 u8 data; 5732 int i = 0, cnt, len, fail = 0; 5733 int vpd_addr = 0x80; 5734 struct swStat *swstats = &nic->mac_control.stats_info->sw_stat; 5735 5736 if (nic->device_type == XFRAME_II_DEVICE) { 5737 strcpy(nic->product_name, "Xframe II 10GbE network adapter"); 5738 vpd_addr = 0x80; 5739 } else { 5740 strcpy(nic->product_name, "Xframe I 10GbE network adapter"); 5741 vpd_addr = 0x50; 5742 } 5743 strcpy(nic->serial_num, "NOT AVAILABLE"); 5744 5745 vpd_data = kmalloc(256, GFP_KERNEL); 5746 if (!vpd_data) { 5747 swstats->mem_alloc_fail_cnt++; 5748 return; 5749 } 5750 swstats->mem_allocated += 256; 5751 5752 for (i = 0; i < 256; i += 4) { 5753 pci_write_config_byte(nic->pdev, (vpd_addr + 2), i); 5754 pci_read_config_byte(nic->pdev, (vpd_addr + 2), &data); 5755 pci_write_config_byte(nic->pdev, (vpd_addr + 3), 0); 5756 for (cnt = 0; cnt < 5; cnt++) { 5757 msleep(2); 5758 pci_read_config_byte(nic->pdev, (vpd_addr + 3), &data); 5759 if (data == 0x80) 5760 break; 5761 } 5762 if (cnt >= 5) { 5763 DBG_PRINT(ERR_DBG, "Read of VPD data failed\n"); 5764 fail = 1; 5765 break; 5766 } 5767 pci_read_config_dword(nic->pdev, (vpd_addr + 4), 5768 (u32 *)&vpd_data[i]); 5769 } 5770 5771 if (!fail) { 5772 /* read serial number of adapter */ 5773 for (cnt = 0; cnt < 252; cnt++) { 5774 if ((vpd_data[cnt] == 'S') && 5775 (vpd_data[cnt+1] == 'N')) { 5776 len = vpd_data[cnt+2]; 5777 if (len < min(VPD_STRING_LEN, 256-cnt-2)) { 5778 memcpy(nic->serial_num, 5779 &vpd_data[cnt + 3], 5780 len); 5781 memset(nic->serial_num+len, 5782 0, 5783 VPD_STRING_LEN-len); 5784 break; 5785 } 5786 } 5787 } 5788 } 5789 5790 if ((!fail) && (vpd_data[1] < VPD_STRING_LEN)) { 5791 len = vpd_data[1]; 5792 memcpy(nic->product_name, &vpd_data[3], len); 5793 nic->product_name[len] = 0; 5794 } 5795 kfree(vpd_data); 5796 swstats->mem_freed += 256; 5797 } 5798 5799 /** 5800 * s2io_ethtool_geeprom - reads the value stored in the Eeprom. 5801 * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure. 5802 * @eeprom : pointer to the user level structure provided by ethtool, 5803 * containing all relevant information. 5804 * @data_buf : user defined value to be written into Eeprom. 5805 * Description: Reads the values stored in the Eeprom at given offset 5806 * for a given length. Stores these values int the input argument data 5807 * buffer 'data_buf' and returns these to the caller (ethtool.) 5808 * Return value: 5809 * int 0 on success 5810 */ 5811 5812 static int s2io_ethtool_geeprom(struct net_device *dev, 5813 struct ethtool_eeprom *eeprom, u8 * data_buf) 5814 { 5815 u32 i, valid; 5816 u64 data; 5817 struct s2io_nic *sp = netdev_priv(dev); 5818 5819 eeprom->magic = sp->pdev->vendor | (sp->pdev->device << 16); 5820 5821 if ((eeprom->offset + eeprom->len) > (XENA_EEPROM_SPACE)) 5822 eeprom->len = XENA_EEPROM_SPACE - eeprom->offset; 5823 5824 for (i = 0; i < eeprom->len; i += 4) { 5825 if (read_eeprom(sp, (eeprom->offset + i), &data)) { 5826 DBG_PRINT(ERR_DBG, "Read of EEPROM failed\n"); 5827 return -EFAULT; 5828 } 5829 valid = INV(data); 5830 memcpy((data_buf + i), &valid, 4); 5831 } 5832 return 0; 5833 } 5834 5835 /** 5836 * s2io_ethtool_seeprom - tries to write the user provided value in Eeprom 5837 * @sp : private member of the device structure, which is a pointer to the 5838 * s2io_nic structure. 5839 * @eeprom : pointer to the user level structure provided by ethtool, 5840 * containing all relevant information. 5841 * @data_buf ; user defined value to be written into Eeprom. 5842 * Description: 5843 * Tries to write the user provided value in the Eeprom, at the offset 5844 * given by the user. 5845 * Return value: 5846 * 0 on success, -EFAULT on failure. 5847 */ 5848 5849 static int s2io_ethtool_seeprom(struct net_device *dev, 5850 struct ethtool_eeprom *eeprom, 5851 u8 *data_buf) 5852 { 5853 int len = eeprom->len, cnt = 0; 5854 u64 valid = 0, data; 5855 struct s2io_nic *sp = netdev_priv(dev); 5856 5857 if (eeprom->magic != (sp->pdev->vendor | (sp->pdev->device << 16))) { 5858 DBG_PRINT(ERR_DBG, 5859 "ETHTOOL_WRITE_EEPROM Err: " 5860 "Magic value is wrong, it is 0x%x should be 0x%x\n", 5861 (sp->pdev->vendor | (sp->pdev->device << 16)), 5862 eeprom->magic); 5863 return -EFAULT; 5864 } 5865 5866 while (len) { 5867 data = (u32)data_buf[cnt] & 0x000000FF; 5868 if (data) 5869 valid = (u32)(data << 24); 5870 else 5871 valid = data; 5872 5873 if (write_eeprom(sp, (eeprom->offset + cnt), valid, 0)) { 5874 DBG_PRINT(ERR_DBG, 5875 "ETHTOOL_WRITE_EEPROM Err: " 5876 "Cannot write into the specified offset\n"); 5877 return -EFAULT; 5878 } 5879 cnt++; 5880 len--; 5881 } 5882 5883 return 0; 5884 } 5885 5886 /** 5887 * s2io_register_test - reads and writes into all clock domains. 5888 * @sp : private member of the device structure, which is a pointer to the 5889 * s2io_nic structure. 5890 * @data : variable that returns the result of each of the test conducted b 5891 * by the driver. 5892 * Description: 5893 * Read and write into all clock domains. The NIC has 3 clock domains, 5894 * see that registers in all the three regions are accessible. 5895 * Return value: 5896 * 0 on success. 5897 */ 5898 5899 static int s2io_register_test(struct s2io_nic *sp, uint64_t *data) 5900 { 5901 struct XENA_dev_config __iomem *bar0 = sp->bar0; 5902 u64 val64 = 0, exp_val; 5903 int fail = 0; 5904 5905 val64 = readq(&bar0->pif_rd_swapper_fb); 5906 if (val64 != 0x123456789abcdefULL) { 5907 fail = 1; 5908 DBG_PRINT(INFO_DBG, "Read Test level %d fails\n", 1); 5909 } 5910 5911 val64 = readq(&bar0->rmac_pause_cfg); 5912 if (val64 != 0xc000ffff00000000ULL) { 5913 fail = 1; 5914 DBG_PRINT(INFO_DBG, "Read Test level %d fails\n", 2); 5915 } 5916 5917 val64 = readq(&bar0->rx_queue_cfg); 5918 if (sp->device_type == XFRAME_II_DEVICE) 5919 exp_val = 0x0404040404040404ULL; 5920 else 5921 exp_val = 0x0808080808080808ULL; 5922 if (val64 != exp_val) { 5923 fail = 1; 5924 DBG_PRINT(INFO_DBG, "Read Test level %d fails\n", 3); 5925 } 5926 5927 val64 = readq(&bar0->xgxs_efifo_cfg); 5928 if (val64 != 0x000000001923141EULL) { 5929 fail = 1; 5930 DBG_PRINT(INFO_DBG, "Read Test level %d fails\n", 4); 5931 } 5932 5933 val64 = 0x5A5A5A5A5A5A5A5AULL; 5934 writeq(val64, &bar0->xmsi_data); 5935 val64 = readq(&bar0->xmsi_data); 5936 if (val64 != 0x5A5A5A5A5A5A5A5AULL) { 5937 fail = 1; 5938 DBG_PRINT(ERR_DBG, "Write Test level %d fails\n", 1); 5939 } 5940 5941 val64 = 0xA5A5A5A5A5A5A5A5ULL; 5942 writeq(val64, &bar0->xmsi_data); 5943 val64 = readq(&bar0->xmsi_data); 5944 if (val64 != 0xA5A5A5A5A5A5A5A5ULL) { 5945 fail = 1; 5946 DBG_PRINT(ERR_DBG, "Write Test level %d fails\n", 2); 5947 } 5948 5949 *data = fail; 5950 return fail; 5951 } 5952 5953 /** 5954 * s2io_eeprom_test - to verify that EEprom in the xena can be programmed. 5955 * @sp : private member of the device structure, which is a pointer to the 5956 * s2io_nic structure. 5957 * @data:variable that returns the result of each of the test conducted by 5958 * the driver. 5959 * Description: 5960 * Verify that EEPROM in the xena can be programmed using I2C_CONTROL 5961 * register. 5962 * Return value: 5963 * 0 on success. 5964 */ 5965 5966 static int s2io_eeprom_test(struct s2io_nic *sp, uint64_t *data) 5967 { 5968 int fail = 0; 5969 u64 ret_data, org_4F0, org_7F0; 5970 u8 saved_4F0 = 0, saved_7F0 = 0; 5971 struct net_device *dev = sp->dev; 5972 5973 /* Test Write Error at offset 0 */ 5974 /* Note that SPI interface allows write access to all areas 5975 * of EEPROM. Hence doing all negative testing only for Xframe I. 5976 */ 5977 if (sp->device_type == XFRAME_I_DEVICE) 5978 if (!write_eeprom(sp, 0, 0, 3)) 5979 fail = 1; 5980 5981 /* Save current values at offsets 0x4F0 and 0x7F0 */ 5982 if (!read_eeprom(sp, 0x4F0, &org_4F0)) 5983 saved_4F0 = 1; 5984 if (!read_eeprom(sp, 0x7F0, &org_7F0)) 5985 saved_7F0 = 1; 5986 5987 /* Test Write at offset 4f0 */ 5988 if (write_eeprom(sp, 0x4F0, 0x012345, 3)) 5989 fail = 1; 5990 if (read_eeprom(sp, 0x4F0, &ret_data)) 5991 fail = 1; 5992 5993 if (ret_data != 0x012345) { 5994 DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x4F0. " 5995 "Data written %llx Data read %llx\n", 5996 dev->name, (unsigned long long)0x12345, 5997 (unsigned long long)ret_data); 5998 fail = 1; 5999 } 6000 6001 /* Reset the EEPROM data go FFFF */ 6002 write_eeprom(sp, 0x4F0, 0xFFFFFF, 3); 6003 6004 /* Test Write Request Error at offset 0x7c */ 6005 if (sp->device_type == XFRAME_I_DEVICE) 6006 if (!write_eeprom(sp, 0x07C, 0, 3)) 6007 fail = 1; 6008 6009 /* Test Write Request at offset 0x7f0 */ 6010 if (write_eeprom(sp, 0x7F0, 0x012345, 3)) 6011 fail = 1; 6012 if (read_eeprom(sp, 0x7F0, &ret_data)) 6013 fail = 1; 6014 6015 if (ret_data != 0x012345) { 6016 DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x7F0. " 6017 "Data written %llx Data read %llx\n", 6018 dev->name, (unsigned long long)0x12345, 6019 (unsigned long long)ret_data); 6020 fail = 1; 6021 } 6022 6023 /* Reset the EEPROM data go FFFF */ 6024 write_eeprom(sp, 0x7F0, 0xFFFFFF, 3); 6025 6026 if (sp->device_type == XFRAME_I_DEVICE) { 6027 /* Test Write Error at offset 0x80 */ 6028 if (!write_eeprom(sp, 0x080, 0, 3)) 6029 fail = 1; 6030 6031 /* Test Write Error at offset 0xfc */ 6032 if (!write_eeprom(sp, 0x0FC, 0, 3)) 6033 fail = 1; 6034 6035 /* Test Write Error at offset 0x100 */ 6036 if (!write_eeprom(sp, 0x100, 0, 3)) 6037 fail = 1; 6038 6039 /* Test Write Error at offset 4ec */ 6040 if (!write_eeprom(sp, 0x4EC, 0, 3)) 6041 fail = 1; 6042 } 6043 6044 /* Restore values at offsets 0x4F0 and 0x7F0 */ 6045 if (saved_4F0) 6046 write_eeprom(sp, 0x4F0, org_4F0, 3); 6047 if (saved_7F0) 6048 write_eeprom(sp, 0x7F0, org_7F0, 3); 6049 6050 *data = fail; 6051 return fail; 6052 } 6053 6054 /** 6055 * s2io_bist_test - invokes the MemBist test of the card . 6056 * @sp : private member of the device structure, which is a pointer to the 6057 * s2io_nic structure. 6058 * @data:variable that returns the result of each of the test conducted by 6059 * the driver. 6060 * Description: 6061 * This invokes the MemBist test of the card. We give around 6062 * 2 secs time for the Test to complete. If it's still not complete 6063 * within this peiod, we consider that the test failed. 6064 * Return value: 6065 * 0 on success and -1 on failure. 6066 */ 6067 6068 static int s2io_bist_test(struct s2io_nic *sp, uint64_t *data) 6069 { 6070 u8 bist = 0; 6071 int cnt = 0, ret = -1; 6072 6073 pci_read_config_byte(sp->pdev, PCI_BIST, &bist); 6074 bist |= PCI_BIST_START; 6075 pci_write_config_word(sp->pdev, PCI_BIST, bist); 6076 6077 while (cnt < 20) { 6078 pci_read_config_byte(sp->pdev, PCI_BIST, &bist); 6079 if (!(bist & PCI_BIST_START)) { 6080 *data = (bist & PCI_BIST_CODE_MASK); 6081 ret = 0; 6082 break; 6083 } 6084 msleep(100); 6085 cnt++; 6086 } 6087 6088 return ret; 6089 } 6090 6091 /** 6092 * s2io_link_test - verifies the link state of the nic 6093 * @sp ; private member of the device structure, which is a pointer to the 6094 * s2io_nic structure. 6095 * @data: variable that returns the result of each of the test conducted by 6096 * the driver. 6097 * Description: 6098 * The function verifies the link state of the NIC and updates the input 6099 * argument 'data' appropriately. 6100 * Return value: 6101 * 0 on success. 6102 */ 6103 6104 static int s2io_link_test(struct s2io_nic *sp, uint64_t *data) 6105 { 6106 struct XENA_dev_config __iomem *bar0 = sp->bar0; 6107 u64 val64; 6108 6109 val64 = readq(&bar0->adapter_status); 6110 if (!(LINK_IS_UP(val64))) 6111 *data = 1; 6112 else 6113 *data = 0; 6114 6115 return *data; 6116 } 6117 6118 /** 6119 * s2io_rldram_test - offline test for access to the RldRam chip on the NIC 6120 * @sp: private member of the device structure, which is a pointer to the 6121 * s2io_nic structure. 6122 * @data: variable that returns the result of each of the test 6123 * conducted by the driver. 6124 * Description: 6125 * This is one of the offline test that tests the read and write 6126 * access to the RldRam chip on the NIC. 6127 * Return value: 6128 * 0 on success. 6129 */ 6130 6131 static int s2io_rldram_test(struct s2io_nic *sp, uint64_t *data) 6132 { 6133 struct XENA_dev_config __iomem *bar0 = sp->bar0; 6134 u64 val64; 6135 int cnt, iteration = 0, test_fail = 0; 6136 6137 val64 = readq(&bar0->adapter_control); 6138 val64 &= ~ADAPTER_ECC_EN; 6139 writeq(val64, &bar0->adapter_control); 6140 6141 val64 = readq(&bar0->mc_rldram_test_ctrl); 6142 val64 |= MC_RLDRAM_TEST_MODE; 6143 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF); 6144 6145 val64 = readq(&bar0->mc_rldram_mrs); 6146 val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE; 6147 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF); 6148 6149 val64 |= MC_RLDRAM_MRS_ENABLE; 6150 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF); 6151 6152 while (iteration < 2) { 6153 val64 = 0x55555555aaaa0000ULL; 6154 if (iteration == 1) 6155 val64 ^= 0xFFFFFFFFFFFF0000ULL; 6156 writeq(val64, &bar0->mc_rldram_test_d0); 6157 6158 val64 = 0xaaaa5a5555550000ULL; 6159 if (iteration == 1) 6160 val64 ^= 0xFFFFFFFFFFFF0000ULL; 6161 writeq(val64, &bar0->mc_rldram_test_d1); 6162 6163 val64 = 0x55aaaaaaaa5a0000ULL; 6164 if (iteration == 1) 6165 val64 ^= 0xFFFFFFFFFFFF0000ULL; 6166 writeq(val64, &bar0->mc_rldram_test_d2); 6167 6168 val64 = (u64) (0x0000003ffffe0100ULL); 6169 writeq(val64, &bar0->mc_rldram_test_add); 6170 6171 val64 = MC_RLDRAM_TEST_MODE | 6172 MC_RLDRAM_TEST_WRITE | 6173 MC_RLDRAM_TEST_GO; 6174 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF); 6175 6176 for (cnt = 0; cnt < 5; cnt++) { 6177 val64 = readq(&bar0->mc_rldram_test_ctrl); 6178 if (val64 & MC_RLDRAM_TEST_DONE) 6179 break; 6180 msleep(200); 6181 } 6182 6183 if (cnt == 5) 6184 break; 6185 6186 val64 = MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_GO; 6187 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF); 6188 6189 for (cnt = 0; cnt < 5; cnt++) { 6190 val64 = readq(&bar0->mc_rldram_test_ctrl); 6191 if (val64 & MC_RLDRAM_TEST_DONE) 6192 break; 6193 msleep(500); 6194 } 6195 6196 if (cnt == 5) 6197 break; 6198 6199 val64 = readq(&bar0->mc_rldram_test_ctrl); 6200 if (!(val64 & MC_RLDRAM_TEST_PASS)) 6201 test_fail = 1; 6202 6203 iteration++; 6204 } 6205 6206 *data = test_fail; 6207 6208 /* Bring the adapter out of test mode */ 6209 SPECIAL_REG_WRITE(0, &bar0->mc_rldram_test_ctrl, LF); 6210 6211 return test_fail; 6212 } 6213 6214 /** 6215 * s2io_ethtool_test - conducts 6 tsets to determine the health of card. 6216 * @sp : private member of the device structure, which is a pointer to the 6217 * s2io_nic structure. 6218 * @ethtest : pointer to a ethtool command specific structure that will be 6219 * returned to the user. 6220 * @data : variable that returns the result of each of the test 6221 * conducted by the driver. 6222 * Description: 6223 * This function conducts 6 tests ( 4 offline and 2 online) to determine 6224 * the health of the card. 6225 * Return value: 6226 * void 6227 */ 6228 6229 static void s2io_ethtool_test(struct net_device *dev, 6230 struct ethtool_test *ethtest, 6231 uint64_t *data) 6232 { 6233 struct s2io_nic *sp = netdev_priv(dev); 6234 int orig_state = netif_running(sp->dev); 6235 6236 if (ethtest->flags == ETH_TEST_FL_OFFLINE) { 6237 /* Offline Tests. */ 6238 if (orig_state) 6239 s2io_close(sp->dev); 6240 6241 if (s2io_register_test(sp, &data[0])) 6242 ethtest->flags |= ETH_TEST_FL_FAILED; 6243 6244 s2io_reset(sp); 6245 6246 if (s2io_rldram_test(sp, &data[3])) 6247 ethtest->flags |= ETH_TEST_FL_FAILED; 6248 6249 s2io_reset(sp); 6250 6251 if (s2io_eeprom_test(sp, &data[1])) 6252 ethtest->flags |= ETH_TEST_FL_FAILED; 6253 6254 if (s2io_bist_test(sp, &data[4])) 6255 ethtest->flags |= ETH_TEST_FL_FAILED; 6256 6257 if (orig_state) 6258 s2io_open(sp->dev); 6259 6260 data[2] = 0; 6261 } else { 6262 /* Online Tests. */ 6263 if (!orig_state) { 6264 DBG_PRINT(ERR_DBG, "%s: is not up, cannot run test\n", 6265 dev->name); 6266 data[0] = -1; 6267 data[1] = -1; 6268 data[2] = -1; 6269 data[3] = -1; 6270 data[4] = -1; 6271 } 6272 6273 if (s2io_link_test(sp, &data[2])) 6274 ethtest->flags |= ETH_TEST_FL_FAILED; 6275 6276 data[0] = 0; 6277 data[1] = 0; 6278 data[3] = 0; 6279 data[4] = 0; 6280 } 6281 } 6282 6283 static void s2io_get_ethtool_stats(struct net_device *dev, 6284 struct ethtool_stats *estats, 6285 u64 *tmp_stats) 6286 { 6287 int i = 0, k; 6288 struct s2io_nic *sp = netdev_priv(dev); 6289 struct stat_block *stats = sp->mac_control.stats_info; 6290 struct swStat *swstats = &stats->sw_stat; 6291 struct xpakStat *xstats = &stats->xpak_stat; 6292 6293 s2io_updt_stats(sp); 6294 tmp_stats[i++] = 6295 (u64)le32_to_cpu(stats->tmac_frms_oflow) << 32 | 6296 le32_to_cpu(stats->tmac_frms); 6297 tmp_stats[i++] = 6298 (u64)le32_to_cpu(stats->tmac_data_octets_oflow) << 32 | 6299 le32_to_cpu(stats->tmac_data_octets); 6300 tmp_stats[i++] = le64_to_cpu(stats->tmac_drop_frms); 6301 tmp_stats[i++] = 6302 (u64)le32_to_cpu(stats->tmac_mcst_frms_oflow) << 32 | 6303 le32_to_cpu(stats->tmac_mcst_frms); 6304 tmp_stats[i++] = 6305 (u64)le32_to_cpu(stats->tmac_bcst_frms_oflow) << 32 | 6306 le32_to_cpu(stats->tmac_bcst_frms); 6307 tmp_stats[i++] = le64_to_cpu(stats->tmac_pause_ctrl_frms); 6308 tmp_stats[i++] = 6309 (u64)le32_to_cpu(stats->tmac_ttl_octets_oflow) << 32 | 6310 le32_to_cpu(stats->tmac_ttl_octets); 6311 tmp_stats[i++] = 6312 (u64)le32_to_cpu(stats->tmac_ucst_frms_oflow) << 32 | 6313 le32_to_cpu(stats->tmac_ucst_frms); 6314 tmp_stats[i++] = 6315 (u64)le32_to_cpu(stats->tmac_nucst_frms_oflow) << 32 | 6316 le32_to_cpu(stats->tmac_nucst_frms); 6317 tmp_stats[i++] = 6318 (u64)le32_to_cpu(stats->tmac_any_err_frms_oflow) << 32 | 6319 le32_to_cpu(stats->tmac_any_err_frms); 6320 tmp_stats[i++] = le64_to_cpu(stats->tmac_ttl_less_fb_octets); 6321 tmp_stats[i++] = le64_to_cpu(stats->tmac_vld_ip_octets); 6322 tmp_stats[i++] = 6323 (u64)le32_to_cpu(stats->tmac_vld_ip_oflow) << 32 | 6324 le32_to_cpu(stats->tmac_vld_ip); 6325 tmp_stats[i++] = 6326 (u64)le32_to_cpu(stats->tmac_drop_ip_oflow) << 32 | 6327 le32_to_cpu(stats->tmac_drop_ip); 6328 tmp_stats[i++] = 6329 (u64)le32_to_cpu(stats->tmac_icmp_oflow) << 32 | 6330 le32_to_cpu(stats->tmac_icmp); 6331 tmp_stats[i++] = 6332 (u64)le32_to_cpu(stats->tmac_rst_tcp_oflow) << 32 | 6333 le32_to_cpu(stats->tmac_rst_tcp); 6334 tmp_stats[i++] = le64_to_cpu(stats->tmac_tcp); 6335 tmp_stats[i++] = (u64)le32_to_cpu(stats->tmac_udp_oflow) << 32 | 6336 le32_to_cpu(stats->tmac_udp); 6337 tmp_stats[i++] = 6338 (u64)le32_to_cpu(stats->rmac_vld_frms_oflow) << 32 | 6339 le32_to_cpu(stats->rmac_vld_frms); 6340 tmp_stats[i++] = 6341 (u64)le32_to_cpu(stats->rmac_data_octets_oflow) << 32 | 6342 le32_to_cpu(stats->rmac_data_octets); 6343 tmp_stats[i++] = le64_to_cpu(stats->rmac_fcs_err_frms); 6344 tmp_stats[i++] = le64_to_cpu(stats->rmac_drop_frms); 6345 tmp_stats[i++] = 6346 (u64)le32_to_cpu(stats->rmac_vld_mcst_frms_oflow) << 32 | 6347 le32_to_cpu(stats->rmac_vld_mcst_frms); 6348 tmp_stats[i++] = 6349 (u64)le32_to_cpu(stats->rmac_vld_bcst_frms_oflow) << 32 | 6350 le32_to_cpu(stats->rmac_vld_bcst_frms); 6351 tmp_stats[i++] = le32_to_cpu(stats->rmac_in_rng_len_err_frms); 6352 tmp_stats[i++] = le32_to_cpu(stats->rmac_out_rng_len_err_frms); 6353 tmp_stats[i++] = le64_to_cpu(stats->rmac_long_frms); 6354 tmp_stats[i++] = le64_to_cpu(stats->rmac_pause_ctrl_frms); 6355 tmp_stats[i++] = le64_to_cpu(stats->rmac_unsup_ctrl_frms); 6356 tmp_stats[i++] = 6357 (u64)le32_to_cpu(stats->rmac_ttl_octets_oflow) << 32 | 6358 le32_to_cpu(stats->rmac_ttl_octets); 6359 tmp_stats[i++] = 6360 (u64)le32_to_cpu(stats->rmac_accepted_ucst_frms_oflow) << 32 6361 | le32_to_cpu(stats->rmac_accepted_ucst_frms); 6362 tmp_stats[i++] = 6363 (u64)le32_to_cpu(stats->rmac_accepted_nucst_frms_oflow) 6364 << 32 | le32_to_cpu(stats->rmac_accepted_nucst_frms); 6365 tmp_stats[i++] = 6366 (u64)le32_to_cpu(stats->rmac_discarded_frms_oflow) << 32 | 6367 le32_to_cpu(stats->rmac_discarded_frms); 6368 tmp_stats[i++] = 6369 (u64)le32_to_cpu(stats->rmac_drop_events_oflow) 6370 << 32 | le32_to_cpu(stats->rmac_drop_events); 6371 tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_less_fb_octets); 6372 tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_frms); 6373 tmp_stats[i++] = 6374 (u64)le32_to_cpu(stats->rmac_usized_frms_oflow) << 32 | 6375 le32_to_cpu(stats->rmac_usized_frms); 6376 tmp_stats[i++] = 6377 (u64)le32_to_cpu(stats->rmac_osized_frms_oflow) << 32 | 6378 le32_to_cpu(stats->rmac_osized_frms); 6379 tmp_stats[i++] = 6380 (u64)le32_to_cpu(stats->rmac_frag_frms_oflow) << 32 | 6381 le32_to_cpu(stats->rmac_frag_frms); 6382 tmp_stats[i++] = 6383 (u64)le32_to_cpu(stats->rmac_jabber_frms_oflow) << 32 | 6384 le32_to_cpu(stats->rmac_jabber_frms); 6385 tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_64_frms); 6386 tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_65_127_frms); 6387 tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_128_255_frms); 6388 tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_256_511_frms); 6389 tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_512_1023_frms); 6390 tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_1024_1518_frms); 6391 tmp_stats[i++] = 6392 (u64)le32_to_cpu(stats->rmac_ip_oflow) << 32 | 6393 le32_to_cpu(stats->rmac_ip); 6394 tmp_stats[i++] = le64_to_cpu(stats->rmac_ip_octets); 6395 tmp_stats[i++] = le32_to_cpu(stats->rmac_hdr_err_ip); 6396 tmp_stats[i++] = 6397 (u64)le32_to_cpu(stats->rmac_drop_ip_oflow) << 32 | 6398 le32_to_cpu(stats->rmac_drop_ip); 6399 tmp_stats[i++] = 6400 (u64)le32_to_cpu(stats->rmac_icmp_oflow) << 32 | 6401 le32_to_cpu(stats->rmac_icmp); 6402 tmp_stats[i++] = le64_to_cpu(stats->rmac_tcp); 6403 tmp_stats[i++] = 6404 (u64)le32_to_cpu(stats->rmac_udp_oflow) << 32 | 6405 le32_to_cpu(stats->rmac_udp); 6406 tmp_stats[i++] = 6407 (u64)le32_to_cpu(stats->rmac_err_drp_udp_oflow) << 32 | 6408 le32_to_cpu(stats->rmac_err_drp_udp); 6409 tmp_stats[i++] = le64_to_cpu(stats->rmac_xgmii_err_sym); 6410 tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q0); 6411 tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q1); 6412 tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q2); 6413 tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q3); 6414 tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q4); 6415 tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q5); 6416 tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q6); 6417 tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q7); 6418 tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q0); 6419 tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q1); 6420 tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q2); 6421 tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q3); 6422 tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q4); 6423 tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q5); 6424 tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q6); 6425 tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q7); 6426 tmp_stats[i++] = 6427 (u64)le32_to_cpu(stats->rmac_pause_cnt_oflow) << 32 | 6428 le32_to_cpu(stats->rmac_pause_cnt); 6429 tmp_stats[i++] = le64_to_cpu(stats->rmac_xgmii_data_err_cnt); 6430 tmp_stats[i++] = le64_to_cpu(stats->rmac_xgmii_ctrl_err_cnt); 6431 tmp_stats[i++] = 6432 (u64)le32_to_cpu(stats->rmac_accepted_ip_oflow) << 32 | 6433 le32_to_cpu(stats->rmac_accepted_ip); 6434 tmp_stats[i++] = le32_to_cpu(stats->rmac_err_tcp); 6435 tmp_stats[i++] = le32_to_cpu(stats->rd_req_cnt); 6436 tmp_stats[i++] = le32_to_cpu(stats->new_rd_req_cnt); 6437 tmp_stats[i++] = le32_to_cpu(stats->new_rd_req_rtry_cnt); 6438 tmp_stats[i++] = le32_to_cpu(stats->rd_rtry_cnt); 6439 tmp_stats[i++] = le32_to_cpu(stats->wr_rtry_rd_ack_cnt); 6440 tmp_stats[i++] = le32_to_cpu(stats->wr_req_cnt); 6441 tmp_stats[i++] = le32_to_cpu(stats->new_wr_req_cnt); 6442 tmp_stats[i++] = le32_to_cpu(stats->new_wr_req_rtry_cnt); 6443 tmp_stats[i++] = le32_to_cpu(stats->wr_rtry_cnt); 6444 tmp_stats[i++] = le32_to_cpu(stats->wr_disc_cnt); 6445 tmp_stats[i++] = le32_to_cpu(stats->rd_rtry_wr_ack_cnt); 6446 tmp_stats[i++] = le32_to_cpu(stats->txp_wr_cnt); 6447 tmp_stats[i++] = le32_to_cpu(stats->txd_rd_cnt); 6448 tmp_stats[i++] = le32_to_cpu(stats->txd_wr_cnt); 6449 tmp_stats[i++] = le32_to_cpu(stats->rxd_rd_cnt); 6450 tmp_stats[i++] = le32_to_cpu(stats->rxd_wr_cnt); 6451 tmp_stats[i++] = le32_to_cpu(stats->txf_rd_cnt); 6452 tmp_stats[i++] = le32_to_cpu(stats->rxf_wr_cnt); 6453 6454 /* Enhanced statistics exist only for Hercules */ 6455 if (sp->device_type == XFRAME_II_DEVICE) { 6456 tmp_stats[i++] = 6457 le64_to_cpu(stats->rmac_ttl_1519_4095_frms); 6458 tmp_stats[i++] = 6459 le64_to_cpu(stats->rmac_ttl_4096_8191_frms); 6460 tmp_stats[i++] = 6461 le64_to_cpu(stats->rmac_ttl_8192_max_frms); 6462 tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_gt_max_frms); 6463 tmp_stats[i++] = le64_to_cpu(stats->rmac_osized_alt_frms); 6464 tmp_stats[i++] = le64_to_cpu(stats->rmac_jabber_alt_frms); 6465 tmp_stats[i++] = le64_to_cpu(stats->rmac_gt_max_alt_frms); 6466 tmp_stats[i++] = le64_to_cpu(stats->rmac_vlan_frms); 6467 tmp_stats[i++] = le32_to_cpu(stats->rmac_len_discard); 6468 tmp_stats[i++] = le32_to_cpu(stats->rmac_fcs_discard); 6469 tmp_stats[i++] = le32_to_cpu(stats->rmac_pf_discard); 6470 tmp_stats[i++] = le32_to_cpu(stats->rmac_da_discard); 6471 tmp_stats[i++] = le32_to_cpu(stats->rmac_red_discard); 6472 tmp_stats[i++] = le32_to_cpu(stats->rmac_rts_discard); 6473 tmp_stats[i++] = le32_to_cpu(stats->rmac_ingm_full_discard); 6474 tmp_stats[i++] = le32_to_cpu(stats->link_fault_cnt); 6475 } 6476 6477 tmp_stats[i++] = 0; 6478 tmp_stats[i++] = swstats->single_ecc_errs; 6479 tmp_stats[i++] = swstats->double_ecc_errs; 6480 tmp_stats[i++] = swstats->parity_err_cnt; 6481 tmp_stats[i++] = swstats->serious_err_cnt; 6482 tmp_stats[i++] = swstats->soft_reset_cnt; 6483 tmp_stats[i++] = swstats->fifo_full_cnt; 6484 for (k = 0; k < MAX_RX_RINGS; k++) 6485 tmp_stats[i++] = swstats->ring_full_cnt[k]; 6486 tmp_stats[i++] = xstats->alarm_transceiver_temp_high; 6487 tmp_stats[i++] = xstats->alarm_transceiver_temp_low; 6488 tmp_stats[i++] = xstats->alarm_laser_bias_current_high; 6489 tmp_stats[i++] = xstats->alarm_laser_bias_current_low; 6490 tmp_stats[i++] = xstats->alarm_laser_output_power_high; 6491 tmp_stats[i++] = xstats->alarm_laser_output_power_low; 6492 tmp_stats[i++] = xstats->warn_transceiver_temp_high; 6493 tmp_stats[i++] = xstats->warn_transceiver_temp_low; 6494 tmp_stats[i++] = xstats->warn_laser_bias_current_high; 6495 tmp_stats[i++] = xstats->warn_laser_bias_current_low; 6496 tmp_stats[i++] = xstats->warn_laser_output_power_high; 6497 tmp_stats[i++] = xstats->warn_laser_output_power_low; 6498 tmp_stats[i++] = swstats->clubbed_frms_cnt; 6499 tmp_stats[i++] = swstats->sending_both; 6500 tmp_stats[i++] = swstats->outof_sequence_pkts; 6501 tmp_stats[i++] = swstats->flush_max_pkts; 6502 if (swstats->num_aggregations) { 6503 u64 tmp = swstats->sum_avg_pkts_aggregated; 6504 int count = 0; 6505 /* 6506 * Since 64-bit divide does not work on all platforms, 6507 * do repeated subtraction. 6508 */ 6509 while (tmp >= swstats->num_aggregations) { 6510 tmp -= swstats->num_aggregations; 6511 count++; 6512 } 6513 tmp_stats[i++] = count; 6514 } else 6515 tmp_stats[i++] = 0; 6516 tmp_stats[i++] = swstats->mem_alloc_fail_cnt; 6517 tmp_stats[i++] = swstats->pci_map_fail_cnt; 6518 tmp_stats[i++] = swstats->watchdog_timer_cnt; 6519 tmp_stats[i++] = swstats->mem_allocated; 6520 tmp_stats[i++] = swstats->mem_freed; 6521 tmp_stats[i++] = swstats->link_up_cnt; 6522 tmp_stats[i++] = swstats->link_down_cnt; 6523 tmp_stats[i++] = swstats->link_up_time; 6524 tmp_stats[i++] = swstats->link_down_time; 6525 6526 tmp_stats[i++] = swstats->tx_buf_abort_cnt; 6527 tmp_stats[i++] = swstats->tx_desc_abort_cnt; 6528 tmp_stats[i++] = swstats->tx_parity_err_cnt; 6529 tmp_stats[i++] = swstats->tx_link_loss_cnt; 6530 tmp_stats[i++] = swstats->tx_list_proc_err_cnt; 6531 6532 tmp_stats[i++] = swstats->rx_parity_err_cnt; 6533 tmp_stats[i++] = swstats->rx_abort_cnt; 6534 tmp_stats[i++] = swstats->rx_parity_abort_cnt; 6535 tmp_stats[i++] = swstats->rx_rda_fail_cnt; 6536 tmp_stats[i++] = swstats->rx_unkn_prot_cnt; 6537 tmp_stats[i++] = swstats->rx_fcs_err_cnt; 6538 tmp_stats[i++] = swstats->rx_buf_size_err_cnt; 6539 tmp_stats[i++] = swstats->rx_rxd_corrupt_cnt; 6540 tmp_stats[i++] = swstats->rx_unkn_err_cnt; 6541 tmp_stats[i++] = swstats->tda_err_cnt; 6542 tmp_stats[i++] = swstats->pfc_err_cnt; 6543 tmp_stats[i++] = swstats->pcc_err_cnt; 6544 tmp_stats[i++] = swstats->tti_err_cnt; 6545 tmp_stats[i++] = swstats->tpa_err_cnt; 6546 tmp_stats[i++] = swstats->sm_err_cnt; 6547 tmp_stats[i++] = swstats->lso_err_cnt; 6548 tmp_stats[i++] = swstats->mac_tmac_err_cnt; 6549 tmp_stats[i++] = swstats->mac_rmac_err_cnt; 6550 tmp_stats[i++] = swstats->xgxs_txgxs_err_cnt; 6551 tmp_stats[i++] = swstats->xgxs_rxgxs_err_cnt; 6552 tmp_stats[i++] = swstats->rc_err_cnt; 6553 tmp_stats[i++] = swstats->prc_pcix_err_cnt; 6554 tmp_stats[i++] = swstats->rpa_err_cnt; 6555 tmp_stats[i++] = swstats->rda_err_cnt; 6556 tmp_stats[i++] = swstats->rti_err_cnt; 6557 tmp_stats[i++] = swstats->mc_err_cnt; 6558 } 6559 6560 static int s2io_ethtool_get_regs_len(struct net_device *dev) 6561 { 6562 return XENA_REG_SPACE; 6563 } 6564 6565 6566 static int s2io_get_eeprom_len(struct net_device *dev) 6567 { 6568 return XENA_EEPROM_SPACE; 6569 } 6570 6571 static int s2io_get_sset_count(struct net_device *dev, int sset) 6572 { 6573 struct s2io_nic *sp = netdev_priv(dev); 6574 6575 switch (sset) { 6576 case ETH_SS_TEST: 6577 return S2IO_TEST_LEN; 6578 case ETH_SS_STATS: 6579 switch (sp->device_type) { 6580 case XFRAME_I_DEVICE: 6581 return XFRAME_I_STAT_LEN; 6582 case XFRAME_II_DEVICE: 6583 return XFRAME_II_STAT_LEN; 6584 default: 6585 return 0; 6586 } 6587 default: 6588 return -EOPNOTSUPP; 6589 } 6590 } 6591 6592 static void s2io_ethtool_get_strings(struct net_device *dev, 6593 u32 stringset, u8 *data) 6594 { 6595 int stat_size = 0; 6596 struct s2io_nic *sp = netdev_priv(dev); 6597 6598 switch (stringset) { 6599 case ETH_SS_TEST: 6600 memcpy(data, s2io_gstrings, S2IO_STRINGS_LEN); 6601 break; 6602 case ETH_SS_STATS: 6603 stat_size = sizeof(ethtool_xena_stats_keys); 6604 memcpy(data, ðtool_xena_stats_keys, stat_size); 6605 if (sp->device_type == XFRAME_II_DEVICE) { 6606 memcpy(data + stat_size, 6607 ðtool_enhanced_stats_keys, 6608 sizeof(ethtool_enhanced_stats_keys)); 6609 stat_size += sizeof(ethtool_enhanced_stats_keys); 6610 } 6611 6612 memcpy(data + stat_size, ðtool_driver_stats_keys, 6613 sizeof(ethtool_driver_stats_keys)); 6614 } 6615 } 6616 6617 static int s2io_set_features(struct net_device *dev, netdev_features_t features) 6618 { 6619 struct s2io_nic *sp = netdev_priv(dev); 6620 netdev_features_t changed = (features ^ dev->features) & NETIF_F_LRO; 6621 6622 if (changed && netif_running(dev)) { 6623 int rc; 6624 6625 s2io_stop_all_tx_queue(sp); 6626 s2io_card_down(sp); 6627 dev->features = features; 6628 rc = s2io_card_up(sp); 6629 if (rc) 6630 s2io_reset(sp); 6631 else 6632 s2io_start_all_tx_queue(sp); 6633 6634 return rc ? rc : 1; 6635 } 6636 6637 return 0; 6638 } 6639 6640 static const struct ethtool_ops netdev_ethtool_ops = { 6641 .get_settings = s2io_ethtool_gset, 6642 .set_settings = s2io_ethtool_sset, 6643 .get_drvinfo = s2io_ethtool_gdrvinfo, 6644 .get_regs_len = s2io_ethtool_get_regs_len, 6645 .get_regs = s2io_ethtool_gregs, 6646 .get_link = ethtool_op_get_link, 6647 .get_eeprom_len = s2io_get_eeprom_len, 6648 .get_eeprom = s2io_ethtool_geeprom, 6649 .set_eeprom = s2io_ethtool_seeprom, 6650 .get_ringparam = s2io_ethtool_gringparam, 6651 .get_pauseparam = s2io_ethtool_getpause_data, 6652 .set_pauseparam = s2io_ethtool_setpause_data, 6653 .self_test = s2io_ethtool_test, 6654 .get_strings = s2io_ethtool_get_strings, 6655 .set_phys_id = s2io_ethtool_set_led, 6656 .get_ethtool_stats = s2io_get_ethtool_stats, 6657 .get_sset_count = s2io_get_sset_count, 6658 }; 6659 6660 /** 6661 * s2io_ioctl - Entry point for the Ioctl 6662 * @dev : Device pointer. 6663 * @ifr : An IOCTL specefic structure, that can contain a pointer to 6664 * a proprietary structure used to pass information to the driver. 6665 * @cmd : This is used to distinguish between the different commands that 6666 * can be passed to the IOCTL functions. 6667 * Description: 6668 * Currently there are no special functionality supported in IOCTL, hence 6669 * function always return EOPNOTSUPPORTED 6670 */ 6671 6672 static int s2io_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) 6673 { 6674 return -EOPNOTSUPP; 6675 } 6676 6677 /** 6678 * s2io_change_mtu - entry point to change MTU size for the device. 6679 * @dev : device pointer. 6680 * @new_mtu : the new MTU size for the device. 6681 * Description: A driver entry point to change MTU size for the device. 6682 * Before changing the MTU the device must be stopped. 6683 * Return value: 6684 * 0 on success and an appropriate (-)ve integer as defined in errno.h 6685 * file on failure. 6686 */ 6687 6688 static int s2io_change_mtu(struct net_device *dev, int new_mtu) 6689 { 6690 struct s2io_nic *sp = netdev_priv(dev); 6691 int ret = 0; 6692 6693 if ((new_mtu < MIN_MTU) || (new_mtu > S2IO_JUMBO_SIZE)) { 6694 DBG_PRINT(ERR_DBG, "%s: MTU size is invalid.\n", dev->name); 6695 return -EPERM; 6696 } 6697 6698 dev->mtu = new_mtu; 6699 if (netif_running(dev)) { 6700 s2io_stop_all_tx_queue(sp); 6701 s2io_card_down(sp); 6702 ret = s2io_card_up(sp); 6703 if (ret) { 6704 DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n", 6705 __func__); 6706 return ret; 6707 } 6708 s2io_wake_all_tx_queue(sp); 6709 } else { /* Device is down */ 6710 struct XENA_dev_config __iomem *bar0 = sp->bar0; 6711 u64 val64 = new_mtu; 6712 6713 writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len); 6714 } 6715 6716 return ret; 6717 } 6718 6719 /** 6720 * s2io_set_link - Set the LInk status 6721 * @data: long pointer to device private structue 6722 * Description: Sets the link status for the adapter 6723 */ 6724 6725 static void s2io_set_link(struct work_struct *work) 6726 { 6727 struct s2io_nic *nic = container_of(work, struct s2io_nic, 6728 set_link_task); 6729 struct net_device *dev = nic->dev; 6730 struct XENA_dev_config __iomem *bar0 = nic->bar0; 6731 register u64 val64; 6732 u16 subid; 6733 6734 rtnl_lock(); 6735 6736 if (!netif_running(dev)) 6737 goto out_unlock; 6738 6739 if (test_and_set_bit(__S2IO_STATE_LINK_TASK, &(nic->state))) { 6740 /* The card is being reset, no point doing anything */ 6741 goto out_unlock; 6742 } 6743 6744 subid = nic->pdev->subsystem_device; 6745 if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) { 6746 /* 6747 * Allow a small delay for the NICs self initiated 6748 * cleanup to complete. 6749 */ 6750 msleep(100); 6751 } 6752 6753 val64 = readq(&bar0->adapter_status); 6754 if (LINK_IS_UP(val64)) { 6755 if (!(readq(&bar0->adapter_control) & ADAPTER_CNTL_EN)) { 6756 if (verify_xena_quiescence(nic)) { 6757 val64 = readq(&bar0->adapter_control); 6758 val64 |= ADAPTER_CNTL_EN; 6759 writeq(val64, &bar0->adapter_control); 6760 if (CARDS_WITH_FAULTY_LINK_INDICATORS( 6761 nic->device_type, subid)) { 6762 val64 = readq(&bar0->gpio_control); 6763 val64 |= GPIO_CTRL_GPIO_0; 6764 writeq(val64, &bar0->gpio_control); 6765 val64 = readq(&bar0->gpio_control); 6766 } else { 6767 val64 |= ADAPTER_LED_ON; 6768 writeq(val64, &bar0->adapter_control); 6769 } 6770 nic->device_enabled_once = true; 6771 } else { 6772 DBG_PRINT(ERR_DBG, 6773 "%s: Error: device is not Quiescent\n", 6774 dev->name); 6775 s2io_stop_all_tx_queue(nic); 6776 } 6777 } 6778 val64 = readq(&bar0->adapter_control); 6779 val64 |= ADAPTER_LED_ON; 6780 writeq(val64, &bar0->adapter_control); 6781 s2io_link(nic, LINK_UP); 6782 } else { 6783 if (CARDS_WITH_FAULTY_LINK_INDICATORS(nic->device_type, 6784 subid)) { 6785 val64 = readq(&bar0->gpio_control); 6786 val64 &= ~GPIO_CTRL_GPIO_0; 6787 writeq(val64, &bar0->gpio_control); 6788 val64 = readq(&bar0->gpio_control); 6789 } 6790 /* turn off LED */ 6791 val64 = readq(&bar0->adapter_control); 6792 val64 = val64 & (~ADAPTER_LED_ON); 6793 writeq(val64, &bar0->adapter_control); 6794 s2io_link(nic, LINK_DOWN); 6795 } 6796 clear_bit(__S2IO_STATE_LINK_TASK, &(nic->state)); 6797 6798 out_unlock: 6799 rtnl_unlock(); 6800 } 6801 6802 static int set_rxd_buffer_pointer(struct s2io_nic *sp, struct RxD_t *rxdp, 6803 struct buffAdd *ba, 6804 struct sk_buff **skb, u64 *temp0, u64 *temp1, 6805 u64 *temp2, int size) 6806 { 6807 struct net_device *dev = sp->dev; 6808 struct swStat *stats = &sp->mac_control.stats_info->sw_stat; 6809 6810 if ((sp->rxd_mode == RXD_MODE_1) && (rxdp->Host_Control == 0)) { 6811 struct RxD1 *rxdp1 = (struct RxD1 *)rxdp; 6812 /* allocate skb */ 6813 if (*skb) { 6814 DBG_PRINT(INFO_DBG, "SKB is not NULL\n"); 6815 /* 6816 * As Rx frame are not going to be processed, 6817 * using same mapped address for the Rxd 6818 * buffer pointer 6819 */ 6820 rxdp1->Buffer0_ptr = *temp0; 6821 } else { 6822 *skb = netdev_alloc_skb(dev, size); 6823 if (!(*skb)) { 6824 DBG_PRINT(INFO_DBG, 6825 "%s: Out of memory to allocate %s\n", 6826 dev->name, "1 buf mode SKBs"); 6827 stats->mem_alloc_fail_cnt++; 6828 return -ENOMEM ; 6829 } 6830 stats->mem_allocated += (*skb)->truesize; 6831 /* storing the mapped addr in a temp variable 6832 * such it will be used for next rxd whose 6833 * Host Control is NULL 6834 */ 6835 rxdp1->Buffer0_ptr = *temp0 = 6836 pci_map_single(sp->pdev, (*skb)->data, 6837 size - NET_IP_ALIGN, 6838 PCI_DMA_FROMDEVICE); 6839 if (pci_dma_mapping_error(sp->pdev, rxdp1->Buffer0_ptr)) 6840 goto memalloc_failed; 6841 rxdp->Host_Control = (unsigned long) (*skb); 6842 } 6843 } else if ((sp->rxd_mode == RXD_MODE_3B) && (rxdp->Host_Control == 0)) { 6844 struct RxD3 *rxdp3 = (struct RxD3 *)rxdp; 6845 /* Two buffer Mode */ 6846 if (*skb) { 6847 rxdp3->Buffer2_ptr = *temp2; 6848 rxdp3->Buffer0_ptr = *temp0; 6849 rxdp3->Buffer1_ptr = *temp1; 6850 } else { 6851 *skb = netdev_alloc_skb(dev, size); 6852 if (!(*skb)) { 6853 DBG_PRINT(INFO_DBG, 6854 "%s: Out of memory to allocate %s\n", 6855 dev->name, 6856 "2 buf mode SKBs"); 6857 stats->mem_alloc_fail_cnt++; 6858 return -ENOMEM; 6859 } 6860 stats->mem_allocated += (*skb)->truesize; 6861 rxdp3->Buffer2_ptr = *temp2 = 6862 pci_map_single(sp->pdev, (*skb)->data, 6863 dev->mtu + 4, 6864 PCI_DMA_FROMDEVICE); 6865 if (pci_dma_mapping_error(sp->pdev, rxdp3->Buffer2_ptr)) 6866 goto memalloc_failed; 6867 rxdp3->Buffer0_ptr = *temp0 = 6868 pci_map_single(sp->pdev, ba->ba_0, BUF0_LEN, 6869 PCI_DMA_FROMDEVICE); 6870 if (pci_dma_mapping_error(sp->pdev, 6871 rxdp3->Buffer0_ptr)) { 6872 pci_unmap_single(sp->pdev, 6873 (dma_addr_t)rxdp3->Buffer2_ptr, 6874 dev->mtu + 4, 6875 PCI_DMA_FROMDEVICE); 6876 goto memalloc_failed; 6877 } 6878 rxdp->Host_Control = (unsigned long) (*skb); 6879 6880 /* Buffer-1 will be dummy buffer not used */ 6881 rxdp3->Buffer1_ptr = *temp1 = 6882 pci_map_single(sp->pdev, ba->ba_1, BUF1_LEN, 6883 PCI_DMA_FROMDEVICE); 6884 if (pci_dma_mapping_error(sp->pdev, 6885 rxdp3->Buffer1_ptr)) { 6886 pci_unmap_single(sp->pdev, 6887 (dma_addr_t)rxdp3->Buffer0_ptr, 6888 BUF0_LEN, PCI_DMA_FROMDEVICE); 6889 pci_unmap_single(sp->pdev, 6890 (dma_addr_t)rxdp3->Buffer2_ptr, 6891 dev->mtu + 4, 6892 PCI_DMA_FROMDEVICE); 6893 goto memalloc_failed; 6894 } 6895 } 6896 } 6897 return 0; 6898 6899 memalloc_failed: 6900 stats->pci_map_fail_cnt++; 6901 stats->mem_freed += (*skb)->truesize; 6902 dev_kfree_skb(*skb); 6903 return -ENOMEM; 6904 } 6905 6906 static void set_rxd_buffer_size(struct s2io_nic *sp, struct RxD_t *rxdp, 6907 int size) 6908 { 6909 struct net_device *dev = sp->dev; 6910 if (sp->rxd_mode == RXD_MODE_1) { 6911 rxdp->Control_2 = SET_BUFFER0_SIZE_1(size - NET_IP_ALIGN); 6912 } else if (sp->rxd_mode == RXD_MODE_3B) { 6913 rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN); 6914 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1); 6915 rxdp->Control_2 |= SET_BUFFER2_SIZE_3(dev->mtu + 4); 6916 } 6917 } 6918 6919 static int rxd_owner_bit_reset(struct s2io_nic *sp) 6920 { 6921 int i, j, k, blk_cnt = 0, size; 6922 struct config_param *config = &sp->config; 6923 struct mac_info *mac_control = &sp->mac_control; 6924 struct net_device *dev = sp->dev; 6925 struct RxD_t *rxdp = NULL; 6926 struct sk_buff *skb = NULL; 6927 struct buffAdd *ba = NULL; 6928 u64 temp0_64 = 0, temp1_64 = 0, temp2_64 = 0; 6929 6930 /* Calculate the size based on ring mode */ 6931 size = dev->mtu + HEADER_ETHERNET_II_802_3_SIZE + 6932 HEADER_802_2_SIZE + HEADER_SNAP_SIZE; 6933 if (sp->rxd_mode == RXD_MODE_1) 6934 size += NET_IP_ALIGN; 6935 else if (sp->rxd_mode == RXD_MODE_3B) 6936 size = dev->mtu + ALIGN_SIZE + BUF0_LEN + 4; 6937 6938 for (i = 0; i < config->rx_ring_num; i++) { 6939 struct rx_ring_config *rx_cfg = &config->rx_cfg[i]; 6940 struct ring_info *ring = &mac_control->rings[i]; 6941 6942 blk_cnt = rx_cfg->num_rxd / (rxd_count[sp->rxd_mode] + 1); 6943 6944 for (j = 0; j < blk_cnt; j++) { 6945 for (k = 0; k < rxd_count[sp->rxd_mode]; k++) { 6946 rxdp = ring->rx_blocks[j].rxds[k].virt_addr; 6947 if (sp->rxd_mode == RXD_MODE_3B) 6948 ba = &ring->ba[j][k]; 6949 if (set_rxd_buffer_pointer(sp, rxdp, ba, &skb, 6950 &temp0_64, 6951 &temp1_64, 6952 &temp2_64, 6953 size) == -ENOMEM) { 6954 return 0; 6955 } 6956 6957 set_rxd_buffer_size(sp, rxdp, size); 6958 wmb(); 6959 /* flip the Ownership bit to Hardware */ 6960 rxdp->Control_1 |= RXD_OWN_XENA; 6961 } 6962 } 6963 } 6964 return 0; 6965 6966 } 6967 6968 static int s2io_add_isr(struct s2io_nic *sp) 6969 { 6970 int ret = 0; 6971 struct net_device *dev = sp->dev; 6972 int err = 0; 6973 6974 if (sp->config.intr_type == MSI_X) 6975 ret = s2io_enable_msi_x(sp); 6976 if (ret) { 6977 DBG_PRINT(ERR_DBG, "%s: Defaulting to INTA\n", dev->name); 6978 sp->config.intr_type = INTA; 6979 } 6980 6981 /* 6982 * Store the values of the MSIX table in 6983 * the struct s2io_nic structure 6984 */ 6985 store_xmsi_data(sp); 6986 6987 /* After proper initialization of H/W, register ISR */ 6988 if (sp->config.intr_type == MSI_X) { 6989 int i, msix_rx_cnt = 0; 6990 6991 for (i = 0; i < sp->num_entries; i++) { 6992 if (sp->s2io_entries[i].in_use == MSIX_FLG) { 6993 if (sp->s2io_entries[i].type == 6994 MSIX_RING_TYPE) { 6995 sprintf(sp->desc[i], "%s:MSI-X-%d-RX", 6996 dev->name, i); 6997 err = request_irq(sp->entries[i].vector, 6998 s2io_msix_ring_handle, 6999 0, 7000 sp->desc[i], 7001 sp->s2io_entries[i].arg); 7002 } else if (sp->s2io_entries[i].type == 7003 MSIX_ALARM_TYPE) { 7004 sprintf(sp->desc[i], "%s:MSI-X-%d-TX", 7005 dev->name, i); 7006 err = request_irq(sp->entries[i].vector, 7007 s2io_msix_fifo_handle, 7008 0, 7009 sp->desc[i], 7010 sp->s2io_entries[i].arg); 7011 7012 } 7013 /* if either data or addr is zero print it. */ 7014 if (!(sp->msix_info[i].addr && 7015 sp->msix_info[i].data)) { 7016 DBG_PRINT(ERR_DBG, 7017 "%s @Addr:0x%llx Data:0x%llx\n", 7018 sp->desc[i], 7019 (unsigned long long) 7020 sp->msix_info[i].addr, 7021 (unsigned long long) 7022 ntohl(sp->msix_info[i].data)); 7023 } else 7024 msix_rx_cnt++; 7025 if (err) { 7026 remove_msix_isr(sp); 7027 7028 DBG_PRINT(ERR_DBG, 7029 "%s:MSI-X-%d registration " 7030 "failed\n", dev->name, i); 7031 7032 DBG_PRINT(ERR_DBG, 7033 "%s: Defaulting to INTA\n", 7034 dev->name); 7035 sp->config.intr_type = INTA; 7036 break; 7037 } 7038 sp->s2io_entries[i].in_use = 7039 MSIX_REGISTERED_SUCCESS; 7040 } 7041 } 7042 if (!err) { 7043 pr_info("MSI-X-RX %d entries enabled\n", --msix_rx_cnt); 7044 DBG_PRINT(INFO_DBG, 7045 "MSI-X-TX entries enabled through alarm vector\n"); 7046 } 7047 } 7048 if (sp->config.intr_type == INTA) { 7049 err = request_irq(sp->pdev->irq, s2io_isr, IRQF_SHARED, 7050 sp->name, dev); 7051 if (err) { 7052 DBG_PRINT(ERR_DBG, "%s: ISR registration failed\n", 7053 dev->name); 7054 return -1; 7055 } 7056 } 7057 return 0; 7058 } 7059 7060 static void s2io_rem_isr(struct s2io_nic *sp) 7061 { 7062 if (sp->config.intr_type == MSI_X) 7063 remove_msix_isr(sp); 7064 else 7065 remove_inta_isr(sp); 7066 } 7067 7068 static void do_s2io_card_down(struct s2io_nic *sp, int do_io) 7069 { 7070 int cnt = 0; 7071 struct XENA_dev_config __iomem *bar0 = sp->bar0; 7072 register u64 val64 = 0; 7073 struct config_param *config; 7074 config = &sp->config; 7075 7076 if (!is_s2io_card_up(sp)) 7077 return; 7078 7079 del_timer_sync(&sp->alarm_timer); 7080 /* If s2io_set_link task is executing, wait till it completes. */ 7081 while (test_and_set_bit(__S2IO_STATE_LINK_TASK, &(sp->state))) 7082 msleep(50); 7083 clear_bit(__S2IO_STATE_CARD_UP, &sp->state); 7084 7085 /* Disable napi */ 7086 if (sp->config.napi) { 7087 int off = 0; 7088 if (config->intr_type == MSI_X) { 7089 for (; off < sp->config.rx_ring_num; off++) 7090 napi_disable(&sp->mac_control.rings[off].napi); 7091 } 7092 else 7093 napi_disable(&sp->napi); 7094 } 7095 7096 /* disable Tx and Rx traffic on the NIC */ 7097 if (do_io) 7098 stop_nic(sp); 7099 7100 s2io_rem_isr(sp); 7101 7102 /* stop the tx queue, indicate link down */ 7103 s2io_link(sp, LINK_DOWN); 7104 7105 /* Check if the device is Quiescent and then Reset the NIC */ 7106 while (do_io) { 7107 /* As per the HW requirement we need to replenish the 7108 * receive buffer to avoid the ring bump. Since there is 7109 * no intention of processing the Rx frame at this pointwe are 7110 * just setting the ownership bit of rxd in Each Rx 7111 * ring to HW and set the appropriate buffer size 7112 * based on the ring mode 7113 */ 7114 rxd_owner_bit_reset(sp); 7115 7116 val64 = readq(&bar0->adapter_status); 7117 if (verify_xena_quiescence(sp)) { 7118 if (verify_pcc_quiescent(sp, sp->device_enabled_once)) 7119 break; 7120 } 7121 7122 msleep(50); 7123 cnt++; 7124 if (cnt == 10) { 7125 DBG_PRINT(ERR_DBG, "Device not Quiescent - " 7126 "adapter status reads 0x%llx\n", 7127 (unsigned long long)val64); 7128 break; 7129 } 7130 } 7131 if (do_io) 7132 s2io_reset(sp); 7133 7134 /* Free all Tx buffers */ 7135 free_tx_buffers(sp); 7136 7137 /* Free all Rx buffers */ 7138 free_rx_buffers(sp); 7139 7140 clear_bit(__S2IO_STATE_LINK_TASK, &(sp->state)); 7141 } 7142 7143 static void s2io_card_down(struct s2io_nic *sp) 7144 { 7145 do_s2io_card_down(sp, 1); 7146 } 7147 7148 static int s2io_card_up(struct s2io_nic *sp) 7149 { 7150 int i, ret = 0; 7151 struct config_param *config; 7152 struct mac_info *mac_control; 7153 struct net_device *dev = sp->dev; 7154 u16 interruptible; 7155 7156 /* Initialize the H/W I/O registers */ 7157 ret = init_nic(sp); 7158 if (ret != 0) { 7159 DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n", 7160 dev->name); 7161 if (ret != -EIO) 7162 s2io_reset(sp); 7163 return ret; 7164 } 7165 7166 /* 7167 * Initializing the Rx buffers. For now we are considering only 1 7168 * Rx ring and initializing buffers into 30 Rx blocks 7169 */ 7170 config = &sp->config; 7171 mac_control = &sp->mac_control; 7172 7173 for (i = 0; i < config->rx_ring_num; i++) { 7174 struct ring_info *ring = &mac_control->rings[i]; 7175 7176 ring->mtu = dev->mtu; 7177 ring->lro = !!(dev->features & NETIF_F_LRO); 7178 ret = fill_rx_buffers(sp, ring, 1); 7179 if (ret) { 7180 DBG_PRINT(ERR_DBG, "%s: Out of memory in Open\n", 7181 dev->name); 7182 s2io_reset(sp); 7183 free_rx_buffers(sp); 7184 return -ENOMEM; 7185 } 7186 DBG_PRINT(INFO_DBG, "Buf in ring:%d is %d:\n", i, 7187 ring->rx_bufs_left); 7188 } 7189 7190 /* Initialise napi */ 7191 if (config->napi) { 7192 if (config->intr_type == MSI_X) { 7193 for (i = 0; i < sp->config.rx_ring_num; i++) 7194 napi_enable(&sp->mac_control.rings[i].napi); 7195 } else { 7196 napi_enable(&sp->napi); 7197 } 7198 } 7199 7200 /* Maintain the state prior to the open */ 7201 if (sp->promisc_flg) 7202 sp->promisc_flg = 0; 7203 if (sp->m_cast_flg) { 7204 sp->m_cast_flg = 0; 7205 sp->all_multi_pos = 0; 7206 } 7207 7208 /* Setting its receive mode */ 7209 s2io_set_multicast(dev); 7210 7211 if (dev->features & NETIF_F_LRO) { 7212 /* Initialize max aggregatable pkts per session based on MTU */ 7213 sp->lro_max_aggr_per_sess = ((1<<16) - 1) / dev->mtu; 7214 /* Check if we can use (if specified) user provided value */ 7215 if (lro_max_pkts < sp->lro_max_aggr_per_sess) 7216 sp->lro_max_aggr_per_sess = lro_max_pkts; 7217 } 7218 7219 /* Enable Rx Traffic and interrupts on the NIC */ 7220 if (start_nic(sp)) { 7221 DBG_PRINT(ERR_DBG, "%s: Starting NIC failed\n", dev->name); 7222 s2io_reset(sp); 7223 free_rx_buffers(sp); 7224 return -ENODEV; 7225 } 7226 7227 /* Add interrupt service routine */ 7228 if (s2io_add_isr(sp) != 0) { 7229 if (sp->config.intr_type == MSI_X) 7230 s2io_rem_isr(sp); 7231 s2io_reset(sp); 7232 free_rx_buffers(sp); 7233 return -ENODEV; 7234 } 7235 7236 S2IO_TIMER_CONF(sp->alarm_timer, s2io_alarm_handle, sp, (HZ/2)); 7237 7238 set_bit(__S2IO_STATE_CARD_UP, &sp->state); 7239 7240 /* Enable select interrupts */ 7241 en_dis_err_alarms(sp, ENA_ALL_INTRS, ENABLE_INTRS); 7242 if (sp->config.intr_type != INTA) { 7243 interruptible = TX_TRAFFIC_INTR | TX_PIC_INTR; 7244 en_dis_able_nic_intrs(sp, interruptible, ENABLE_INTRS); 7245 } else { 7246 interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR; 7247 interruptible |= TX_PIC_INTR; 7248 en_dis_able_nic_intrs(sp, interruptible, ENABLE_INTRS); 7249 } 7250 7251 return 0; 7252 } 7253 7254 /** 7255 * s2io_restart_nic - Resets the NIC. 7256 * @data : long pointer to the device private structure 7257 * Description: 7258 * This function is scheduled to be run by the s2io_tx_watchdog 7259 * function after 0.5 secs to reset the NIC. The idea is to reduce 7260 * the run time of the watch dog routine which is run holding a 7261 * spin lock. 7262 */ 7263 7264 static void s2io_restart_nic(struct work_struct *work) 7265 { 7266 struct s2io_nic *sp = container_of(work, struct s2io_nic, rst_timer_task); 7267 struct net_device *dev = sp->dev; 7268 7269 rtnl_lock(); 7270 7271 if (!netif_running(dev)) 7272 goto out_unlock; 7273 7274 s2io_card_down(sp); 7275 if (s2io_card_up(sp)) { 7276 DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n", dev->name); 7277 } 7278 s2io_wake_all_tx_queue(sp); 7279 DBG_PRINT(ERR_DBG, "%s: was reset by Tx watchdog timer\n", dev->name); 7280 out_unlock: 7281 rtnl_unlock(); 7282 } 7283 7284 /** 7285 * s2io_tx_watchdog - Watchdog for transmit side. 7286 * @dev : Pointer to net device structure 7287 * Description: 7288 * This function is triggered if the Tx Queue is stopped 7289 * for a pre-defined amount of time when the Interface is still up. 7290 * If the Interface is jammed in such a situation, the hardware is 7291 * reset (by s2io_close) and restarted again (by s2io_open) to 7292 * overcome any problem that might have been caused in the hardware. 7293 * Return value: 7294 * void 7295 */ 7296 7297 static void s2io_tx_watchdog(struct net_device *dev) 7298 { 7299 struct s2io_nic *sp = netdev_priv(dev); 7300 struct swStat *swstats = &sp->mac_control.stats_info->sw_stat; 7301 7302 if (netif_carrier_ok(dev)) { 7303 swstats->watchdog_timer_cnt++; 7304 schedule_work(&sp->rst_timer_task); 7305 swstats->soft_reset_cnt++; 7306 } 7307 } 7308 7309 /** 7310 * rx_osm_handler - To perform some OS related operations on SKB. 7311 * @sp: private member of the device structure,pointer to s2io_nic structure. 7312 * @skb : the socket buffer pointer. 7313 * @len : length of the packet 7314 * @cksum : FCS checksum of the frame. 7315 * @ring_no : the ring from which this RxD was extracted. 7316 * Description: 7317 * This function is called by the Rx interrupt serivce routine to perform 7318 * some OS related operations on the SKB before passing it to the upper 7319 * layers. It mainly checks if the checksum is OK, if so adds it to the 7320 * SKBs cksum variable, increments the Rx packet count and passes the SKB 7321 * to the upper layer. If the checksum is wrong, it increments the Rx 7322 * packet error count, frees the SKB and returns error. 7323 * Return value: 7324 * SUCCESS on success and -1 on failure. 7325 */ 7326 static int rx_osm_handler(struct ring_info *ring_data, struct RxD_t * rxdp) 7327 { 7328 struct s2io_nic *sp = ring_data->nic; 7329 struct net_device *dev = ring_data->dev; 7330 struct sk_buff *skb = (struct sk_buff *) 7331 ((unsigned long)rxdp->Host_Control); 7332 int ring_no = ring_data->ring_no; 7333 u16 l3_csum, l4_csum; 7334 unsigned long long err = rxdp->Control_1 & RXD_T_CODE; 7335 struct lro *uninitialized_var(lro); 7336 u8 err_mask; 7337 struct swStat *swstats = &sp->mac_control.stats_info->sw_stat; 7338 7339 skb->dev = dev; 7340 7341 if (err) { 7342 /* Check for parity error */ 7343 if (err & 0x1) 7344 swstats->parity_err_cnt++; 7345 7346 err_mask = err >> 48; 7347 switch (err_mask) { 7348 case 1: 7349 swstats->rx_parity_err_cnt++; 7350 break; 7351 7352 case 2: 7353 swstats->rx_abort_cnt++; 7354 break; 7355 7356 case 3: 7357 swstats->rx_parity_abort_cnt++; 7358 break; 7359 7360 case 4: 7361 swstats->rx_rda_fail_cnt++; 7362 break; 7363 7364 case 5: 7365 swstats->rx_unkn_prot_cnt++; 7366 break; 7367 7368 case 6: 7369 swstats->rx_fcs_err_cnt++; 7370 break; 7371 7372 case 7: 7373 swstats->rx_buf_size_err_cnt++; 7374 break; 7375 7376 case 8: 7377 swstats->rx_rxd_corrupt_cnt++; 7378 break; 7379 7380 case 15: 7381 swstats->rx_unkn_err_cnt++; 7382 break; 7383 } 7384 /* 7385 * Drop the packet if bad transfer code. Exception being 7386 * 0x5, which could be due to unsupported IPv6 extension header. 7387 * In this case, we let stack handle the packet. 7388 * Note that in this case, since checksum will be incorrect, 7389 * stack will validate the same. 7390 */ 7391 if (err_mask != 0x5) { 7392 DBG_PRINT(ERR_DBG, "%s: Rx error Value: 0x%x\n", 7393 dev->name, err_mask); 7394 dev->stats.rx_crc_errors++; 7395 swstats->mem_freed 7396 += skb->truesize; 7397 dev_kfree_skb(skb); 7398 ring_data->rx_bufs_left -= 1; 7399 rxdp->Host_Control = 0; 7400 return 0; 7401 } 7402 } 7403 7404 rxdp->Host_Control = 0; 7405 if (sp->rxd_mode == RXD_MODE_1) { 7406 int len = RXD_GET_BUFFER0_SIZE_1(rxdp->Control_2); 7407 7408 skb_put(skb, len); 7409 } else if (sp->rxd_mode == RXD_MODE_3B) { 7410 int get_block = ring_data->rx_curr_get_info.block_index; 7411 int get_off = ring_data->rx_curr_get_info.offset; 7412 int buf0_len = RXD_GET_BUFFER0_SIZE_3(rxdp->Control_2); 7413 int buf2_len = RXD_GET_BUFFER2_SIZE_3(rxdp->Control_2); 7414 unsigned char *buff = skb_push(skb, buf0_len); 7415 7416 struct buffAdd *ba = &ring_data->ba[get_block][get_off]; 7417 memcpy(buff, ba->ba_0, buf0_len); 7418 skb_put(skb, buf2_len); 7419 } 7420 7421 if ((rxdp->Control_1 & TCP_OR_UDP_FRAME) && 7422 ((!ring_data->lro) || 7423 (ring_data->lro && (!(rxdp->Control_1 & RXD_FRAME_IP_FRAG)))) && 7424 (dev->features & NETIF_F_RXCSUM)) { 7425 l3_csum = RXD_GET_L3_CKSUM(rxdp->Control_1); 7426 l4_csum = RXD_GET_L4_CKSUM(rxdp->Control_1); 7427 if ((l3_csum == L3_CKSUM_OK) && (l4_csum == L4_CKSUM_OK)) { 7428 /* 7429 * NIC verifies if the Checksum of the received 7430 * frame is Ok or not and accordingly returns 7431 * a flag in the RxD. 7432 */ 7433 skb->ip_summed = CHECKSUM_UNNECESSARY; 7434 if (ring_data->lro) { 7435 u32 tcp_len = 0; 7436 u8 *tcp; 7437 int ret = 0; 7438 7439 ret = s2io_club_tcp_session(ring_data, 7440 skb->data, &tcp, 7441 &tcp_len, &lro, 7442 rxdp, sp); 7443 switch (ret) { 7444 case 3: /* Begin anew */ 7445 lro->parent = skb; 7446 goto aggregate; 7447 case 1: /* Aggregate */ 7448 lro_append_pkt(sp, lro, skb, tcp_len); 7449 goto aggregate; 7450 case 4: /* Flush session */ 7451 lro_append_pkt(sp, lro, skb, tcp_len); 7452 queue_rx_frame(lro->parent, 7453 lro->vlan_tag); 7454 clear_lro_session(lro); 7455 swstats->flush_max_pkts++; 7456 goto aggregate; 7457 case 2: /* Flush both */ 7458 lro->parent->data_len = lro->frags_len; 7459 swstats->sending_both++; 7460 queue_rx_frame(lro->parent, 7461 lro->vlan_tag); 7462 clear_lro_session(lro); 7463 goto send_up; 7464 case 0: /* sessions exceeded */ 7465 case -1: /* non-TCP or not L2 aggregatable */ 7466 case 5: /* 7467 * First pkt in session not 7468 * L3/L4 aggregatable 7469 */ 7470 break; 7471 default: 7472 DBG_PRINT(ERR_DBG, 7473 "%s: Samadhana!!\n", 7474 __func__); 7475 BUG(); 7476 } 7477 } 7478 } else { 7479 /* 7480 * Packet with erroneous checksum, let the 7481 * upper layers deal with it. 7482 */ 7483 skb_checksum_none_assert(skb); 7484 } 7485 } else 7486 skb_checksum_none_assert(skb); 7487 7488 swstats->mem_freed += skb->truesize; 7489 send_up: 7490 skb_record_rx_queue(skb, ring_no); 7491 queue_rx_frame(skb, RXD_GET_VLAN_TAG(rxdp->Control_2)); 7492 aggregate: 7493 sp->mac_control.rings[ring_no].rx_bufs_left -= 1; 7494 return SUCCESS; 7495 } 7496 7497 /** 7498 * s2io_link - stops/starts the Tx queue. 7499 * @sp : private member of the device structure, which is a pointer to the 7500 * s2io_nic structure. 7501 * @link : inidicates whether link is UP/DOWN. 7502 * Description: 7503 * This function stops/starts the Tx queue depending on whether the link 7504 * status of the NIC is is down or up. This is called by the Alarm 7505 * interrupt handler whenever a link change interrupt comes up. 7506 * Return value: 7507 * void. 7508 */ 7509 7510 static void s2io_link(struct s2io_nic *sp, int link) 7511 { 7512 struct net_device *dev = sp->dev; 7513 struct swStat *swstats = &sp->mac_control.stats_info->sw_stat; 7514 7515 if (link != sp->last_link_state) { 7516 init_tti(sp, link); 7517 if (link == LINK_DOWN) { 7518 DBG_PRINT(ERR_DBG, "%s: Link down\n", dev->name); 7519 s2io_stop_all_tx_queue(sp); 7520 netif_carrier_off(dev); 7521 if (swstats->link_up_cnt) 7522 swstats->link_up_time = 7523 jiffies - sp->start_time; 7524 swstats->link_down_cnt++; 7525 } else { 7526 DBG_PRINT(ERR_DBG, "%s: Link Up\n", dev->name); 7527 if (swstats->link_down_cnt) 7528 swstats->link_down_time = 7529 jiffies - sp->start_time; 7530 swstats->link_up_cnt++; 7531 netif_carrier_on(dev); 7532 s2io_wake_all_tx_queue(sp); 7533 } 7534 } 7535 sp->last_link_state = link; 7536 sp->start_time = jiffies; 7537 } 7538 7539 /** 7540 * s2io_init_pci -Initialization of PCI and PCI-X configuration registers . 7541 * @sp : private member of the device structure, which is a pointer to the 7542 * s2io_nic structure. 7543 * Description: 7544 * This function initializes a few of the PCI and PCI-X configuration registers 7545 * with recommended values. 7546 * Return value: 7547 * void 7548 */ 7549 7550 static void s2io_init_pci(struct s2io_nic *sp) 7551 { 7552 u16 pci_cmd = 0, pcix_cmd = 0; 7553 7554 /* Enable Data Parity Error Recovery in PCI-X command register. */ 7555 pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER, 7556 &(pcix_cmd)); 7557 pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER, 7558 (pcix_cmd | 1)); 7559 pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER, 7560 &(pcix_cmd)); 7561 7562 /* Set the PErr Response bit in PCI command register. */ 7563 pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd); 7564 pci_write_config_word(sp->pdev, PCI_COMMAND, 7565 (pci_cmd | PCI_COMMAND_PARITY)); 7566 pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd); 7567 } 7568 7569 static int s2io_verify_parm(struct pci_dev *pdev, u8 *dev_intr_type, 7570 u8 *dev_multiq) 7571 { 7572 int i; 7573 7574 if ((tx_fifo_num > MAX_TX_FIFOS) || (tx_fifo_num < 1)) { 7575 DBG_PRINT(ERR_DBG, "Requested number of tx fifos " 7576 "(%d) not supported\n", tx_fifo_num); 7577 7578 if (tx_fifo_num < 1) 7579 tx_fifo_num = 1; 7580 else 7581 tx_fifo_num = MAX_TX_FIFOS; 7582 7583 DBG_PRINT(ERR_DBG, "Default to %d tx fifos\n", tx_fifo_num); 7584 } 7585 7586 if (multiq) 7587 *dev_multiq = multiq; 7588 7589 if (tx_steering_type && (1 == tx_fifo_num)) { 7590 if (tx_steering_type != TX_DEFAULT_STEERING) 7591 DBG_PRINT(ERR_DBG, 7592 "Tx steering is not supported with " 7593 "one fifo. Disabling Tx steering.\n"); 7594 tx_steering_type = NO_STEERING; 7595 } 7596 7597 if ((tx_steering_type < NO_STEERING) || 7598 (tx_steering_type > TX_DEFAULT_STEERING)) { 7599 DBG_PRINT(ERR_DBG, 7600 "Requested transmit steering not supported\n"); 7601 DBG_PRINT(ERR_DBG, "Disabling transmit steering\n"); 7602 tx_steering_type = NO_STEERING; 7603 } 7604 7605 if (rx_ring_num > MAX_RX_RINGS) { 7606 DBG_PRINT(ERR_DBG, 7607 "Requested number of rx rings not supported\n"); 7608 DBG_PRINT(ERR_DBG, "Default to %d rx rings\n", 7609 MAX_RX_RINGS); 7610 rx_ring_num = MAX_RX_RINGS; 7611 } 7612 7613 if ((*dev_intr_type != INTA) && (*dev_intr_type != MSI_X)) { 7614 DBG_PRINT(ERR_DBG, "Wrong intr_type requested. " 7615 "Defaulting to INTA\n"); 7616 *dev_intr_type = INTA; 7617 } 7618 7619 if ((*dev_intr_type == MSI_X) && 7620 ((pdev->device != PCI_DEVICE_ID_HERC_WIN) && 7621 (pdev->device != PCI_DEVICE_ID_HERC_UNI))) { 7622 DBG_PRINT(ERR_DBG, "Xframe I does not support MSI_X. " 7623 "Defaulting to INTA\n"); 7624 *dev_intr_type = INTA; 7625 } 7626 7627 if ((rx_ring_mode != 1) && (rx_ring_mode != 2)) { 7628 DBG_PRINT(ERR_DBG, "Requested ring mode not supported\n"); 7629 DBG_PRINT(ERR_DBG, "Defaulting to 1-buffer mode\n"); 7630 rx_ring_mode = 1; 7631 } 7632 7633 for (i = 0; i < MAX_RX_RINGS; i++) 7634 if (rx_ring_sz[i] > MAX_RX_BLOCKS_PER_RING) { 7635 DBG_PRINT(ERR_DBG, "Requested rx ring size not " 7636 "supported\nDefaulting to %d\n", 7637 MAX_RX_BLOCKS_PER_RING); 7638 rx_ring_sz[i] = MAX_RX_BLOCKS_PER_RING; 7639 } 7640 7641 return SUCCESS; 7642 } 7643 7644 /** 7645 * rts_ds_steer - Receive traffic steering based on IPv4 or IPv6 TOS 7646 * or Traffic class respectively. 7647 * @nic: device private variable 7648 * Description: The function configures the receive steering to 7649 * desired receive ring. 7650 * Return Value: SUCCESS on success and 7651 * '-1' on failure (endian settings incorrect). 7652 */ 7653 static int rts_ds_steer(struct s2io_nic *nic, u8 ds_codepoint, u8 ring) 7654 { 7655 struct XENA_dev_config __iomem *bar0 = nic->bar0; 7656 register u64 val64 = 0; 7657 7658 if (ds_codepoint > 63) 7659 return FAILURE; 7660 7661 val64 = RTS_DS_MEM_DATA(ring); 7662 writeq(val64, &bar0->rts_ds_mem_data); 7663 7664 val64 = RTS_DS_MEM_CTRL_WE | 7665 RTS_DS_MEM_CTRL_STROBE_NEW_CMD | 7666 RTS_DS_MEM_CTRL_OFFSET(ds_codepoint); 7667 7668 writeq(val64, &bar0->rts_ds_mem_ctrl); 7669 7670 return wait_for_cmd_complete(&bar0->rts_ds_mem_ctrl, 7671 RTS_DS_MEM_CTRL_STROBE_CMD_BEING_EXECUTED, 7672 S2IO_BIT_RESET); 7673 } 7674 7675 static const struct net_device_ops s2io_netdev_ops = { 7676 .ndo_open = s2io_open, 7677 .ndo_stop = s2io_close, 7678 .ndo_get_stats = s2io_get_stats, 7679 .ndo_start_xmit = s2io_xmit, 7680 .ndo_validate_addr = eth_validate_addr, 7681 .ndo_set_rx_mode = s2io_set_multicast, 7682 .ndo_do_ioctl = s2io_ioctl, 7683 .ndo_set_mac_address = s2io_set_mac_addr, 7684 .ndo_change_mtu = s2io_change_mtu, 7685 .ndo_set_features = s2io_set_features, 7686 .ndo_tx_timeout = s2io_tx_watchdog, 7687 #ifdef CONFIG_NET_POLL_CONTROLLER 7688 .ndo_poll_controller = s2io_netpoll, 7689 #endif 7690 }; 7691 7692 /** 7693 * s2io_init_nic - Initialization of the adapter . 7694 * @pdev : structure containing the PCI related information of the device. 7695 * @pre: List of PCI devices supported by the driver listed in s2io_tbl. 7696 * Description: 7697 * The function initializes an adapter identified by the pci_dec structure. 7698 * All OS related initialization including memory and device structure and 7699 * initlaization of the device private variable is done. Also the swapper 7700 * control register is initialized to enable read and write into the I/O 7701 * registers of the device. 7702 * Return value: 7703 * returns 0 on success and negative on failure. 7704 */ 7705 7706 static int 7707 s2io_init_nic(struct pci_dev *pdev, const struct pci_device_id *pre) 7708 { 7709 struct s2io_nic *sp; 7710 struct net_device *dev; 7711 int i, j, ret; 7712 int dma_flag = false; 7713 u32 mac_up, mac_down; 7714 u64 val64 = 0, tmp64 = 0; 7715 struct XENA_dev_config __iomem *bar0 = NULL; 7716 u16 subid; 7717 struct config_param *config; 7718 struct mac_info *mac_control; 7719 int mode; 7720 u8 dev_intr_type = intr_type; 7721 u8 dev_multiq = 0; 7722 7723 ret = s2io_verify_parm(pdev, &dev_intr_type, &dev_multiq); 7724 if (ret) 7725 return ret; 7726 7727 ret = pci_enable_device(pdev); 7728 if (ret) { 7729 DBG_PRINT(ERR_DBG, 7730 "%s: pci_enable_device failed\n", __func__); 7731 return ret; 7732 } 7733 7734 if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) { 7735 DBG_PRINT(INIT_DBG, "%s: Using 64bit DMA\n", __func__); 7736 dma_flag = true; 7737 if (pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64))) { 7738 DBG_PRINT(ERR_DBG, 7739 "Unable to obtain 64bit DMA " 7740 "for consistent allocations\n"); 7741 pci_disable_device(pdev); 7742 return -ENOMEM; 7743 } 7744 } else if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(32))) { 7745 DBG_PRINT(INIT_DBG, "%s: Using 32bit DMA\n", __func__); 7746 } else { 7747 pci_disable_device(pdev); 7748 return -ENOMEM; 7749 } 7750 ret = pci_request_regions(pdev, s2io_driver_name); 7751 if (ret) { 7752 DBG_PRINT(ERR_DBG, "%s: Request Regions failed - %x\n", 7753 __func__, ret); 7754 pci_disable_device(pdev); 7755 return -ENODEV; 7756 } 7757 if (dev_multiq) 7758 dev = alloc_etherdev_mq(sizeof(struct s2io_nic), tx_fifo_num); 7759 else 7760 dev = alloc_etherdev(sizeof(struct s2io_nic)); 7761 if (dev == NULL) { 7762 pci_disable_device(pdev); 7763 pci_release_regions(pdev); 7764 return -ENODEV; 7765 } 7766 7767 pci_set_master(pdev); 7768 pci_set_drvdata(pdev, dev); 7769 SET_NETDEV_DEV(dev, &pdev->dev); 7770 7771 /* Private member variable initialized to s2io NIC structure */ 7772 sp = netdev_priv(dev); 7773 sp->dev = dev; 7774 sp->pdev = pdev; 7775 sp->high_dma_flag = dma_flag; 7776 sp->device_enabled_once = false; 7777 if (rx_ring_mode == 1) 7778 sp->rxd_mode = RXD_MODE_1; 7779 if (rx_ring_mode == 2) 7780 sp->rxd_mode = RXD_MODE_3B; 7781 7782 sp->config.intr_type = dev_intr_type; 7783 7784 if ((pdev->device == PCI_DEVICE_ID_HERC_WIN) || 7785 (pdev->device == PCI_DEVICE_ID_HERC_UNI)) 7786 sp->device_type = XFRAME_II_DEVICE; 7787 else 7788 sp->device_type = XFRAME_I_DEVICE; 7789 7790 7791 /* Initialize some PCI/PCI-X fields of the NIC. */ 7792 s2io_init_pci(sp); 7793 7794 /* 7795 * Setting the device configuration parameters. 7796 * Most of these parameters can be specified by the user during 7797 * module insertion as they are module loadable parameters. If 7798 * these parameters are not not specified during load time, they 7799 * are initialized with default values. 7800 */ 7801 config = &sp->config; 7802 mac_control = &sp->mac_control; 7803 7804 config->napi = napi; 7805 config->tx_steering_type = tx_steering_type; 7806 7807 /* Tx side parameters. */ 7808 if (config->tx_steering_type == TX_PRIORITY_STEERING) 7809 config->tx_fifo_num = MAX_TX_FIFOS; 7810 else 7811 config->tx_fifo_num = tx_fifo_num; 7812 7813 /* Initialize the fifos used for tx steering */ 7814 if (config->tx_fifo_num < 5) { 7815 if (config->tx_fifo_num == 1) 7816 sp->total_tcp_fifos = 1; 7817 else 7818 sp->total_tcp_fifos = config->tx_fifo_num - 1; 7819 sp->udp_fifo_idx = config->tx_fifo_num - 1; 7820 sp->total_udp_fifos = 1; 7821 sp->other_fifo_idx = sp->total_tcp_fifos - 1; 7822 } else { 7823 sp->total_tcp_fifos = (tx_fifo_num - FIFO_UDP_MAX_NUM - 7824 FIFO_OTHER_MAX_NUM); 7825 sp->udp_fifo_idx = sp->total_tcp_fifos; 7826 sp->total_udp_fifos = FIFO_UDP_MAX_NUM; 7827 sp->other_fifo_idx = sp->udp_fifo_idx + FIFO_UDP_MAX_NUM; 7828 } 7829 7830 config->multiq = dev_multiq; 7831 for (i = 0; i < config->tx_fifo_num; i++) { 7832 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i]; 7833 7834 tx_cfg->fifo_len = tx_fifo_len[i]; 7835 tx_cfg->fifo_priority = i; 7836 } 7837 7838 /* mapping the QoS priority to the configured fifos */ 7839 for (i = 0; i < MAX_TX_FIFOS; i++) 7840 config->fifo_mapping[i] = fifo_map[config->tx_fifo_num - 1][i]; 7841 7842 /* map the hashing selector table to the configured fifos */ 7843 for (i = 0; i < config->tx_fifo_num; i++) 7844 sp->fifo_selector[i] = fifo_selector[i]; 7845 7846 7847 config->tx_intr_type = TXD_INT_TYPE_UTILZ; 7848 for (i = 0; i < config->tx_fifo_num; i++) { 7849 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i]; 7850 7851 tx_cfg->f_no_snoop = (NO_SNOOP_TXD | NO_SNOOP_TXD_BUFFER); 7852 if (tx_cfg->fifo_len < 65) { 7853 config->tx_intr_type = TXD_INT_TYPE_PER_LIST; 7854 break; 7855 } 7856 } 7857 /* + 2 because one Txd for skb->data and one Txd for UFO */ 7858 config->max_txds = MAX_SKB_FRAGS + 2; 7859 7860 /* Rx side parameters. */ 7861 config->rx_ring_num = rx_ring_num; 7862 for (i = 0; i < config->rx_ring_num; i++) { 7863 struct rx_ring_config *rx_cfg = &config->rx_cfg[i]; 7864 struct ring_info *ring = &mac_control->rings[i]; 7865 7866 rx_cfg->num_rxd = rx_ring_sz[i] * (rxd_count[sp->rxd_mode] + 1); 7867 rx_cfg->ring_priority = i; 7868 ring->rx_bufs_left = 0; 7869 ring->rxd_mode = sp->rxd_mode; 7870 ring->rxd_count = rxd_count[sp->rxd_mode]; 7871 ring->pdev = sp->pdev; 7872 ring->dev = sp->dev; 7873 } 7874 7875 for (i = 0; i < rx_ring_num; i++) { 7876 struct rx_ring_config *rx_cfg = &config->rx_cfg[i]; 7877 7878 rx_cfg->ring_org = RING_ORG_BUFF1; 7879 rx_cfg->f_no_snoop = (NO_SNOOP_RXD | NO_SNOOP_RXD_BUFFER); 7880 } 7881 7882 /* Setting Mac Control parameters */ 7883 mac_control->rmac_pause_time = rmac_pause_time; 7884 mac_control->mc_pause_threshold_q0q3 = mc_pause_threshold_q0q3; 7885 mac_control->mc_pause_threshold_q4q7 = mc_pause_threshold_q4q7; 7886 7887 7888 /* initialize the shared memory used by the NIC and the host */ 7889 if (init_shared_mem(sp)) { 7890 DBG_PRINT(ERR_DBG, "%s: Memory allocation failed\n", dev->name); 7891 ret = -ENOMEM; 7892 goto mem_alloc_failed; 7893 } 7894 7895 sp->bar0 = pci_ioremap_bar(pdev, 0); 7896 if (!sp->bar0) { 7897 DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem1\n", 7898 dev->name); 7899 ret = -ENOMEM; 7900 goto bar0_remap_failed; 7901 } 7902 7903 sp->bar1 = pci_ioremap_bar(pdev, 2); 7904 if (!sp->bar1) { 7905 DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem2\n", 7906 dev->name); 7907 ret = -ENOMEM; 7908 goto bar1_remap_failed; 7909 } 7910 7911 /* Initializing the BAR1 address as the start of the FIFO pointer. */ 7912 for (j = 0; j < MAX_TX_FIFOS; j++) { 7913 mac_control->tx_FIFO_start[j] = sp->bar1 + (j * 0x00020000); 7914 } 7915 7916 /* Driver entry points */ 7917 dev->netdev_ops = &s2io_netdev_ops; 7918 SET_ETHTOOL_OPS(dev, &netdev_ethtool_ops); 7919 dev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | 7920 NETIF_F_TSO | NETIF_F_TSO6 | 7921 NETIF_F_RXCSUM | NETIF_F_LRO; 7922 dev->features |= dev->hw_features | 7923 NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX; 7924 if (sp->device_type & XFRAME_II_DEVICE) { 7925 dev->hw_features |= NETIF_F_UFO; 7926 if (ufo) 7927 dev->features |= NETIF_F_UFO; 7928 } 7929 if (sp->high_dma_flag == true) 7930 dev->features |= NETIF_F_HIGHDMA; 7931 dev->watchdog_timeo = WATCH_DOG_TIMEOUT; 7932 INIT_WORK(&sp->rst_timer_task, s2io_restart_nic); 7933 INIT_WORK(&sp->set_link_task, s2io_set_link); 7934 7935 pci_save_state(sp->pdev); 7936 7937 /* Setting swapper control on the NIC, for proper reset operation */ 7938 if (s2io_set_swapper(sp)) { 7939 DBG_PRINT(ERR_DBG, "%s: swapper settings are wrong\n", 7940 dev->name); 7941 ret = -EAGAIN; 7942 goto set_swap_failed; 7943 } 7944 7945 /* Verify if the Herc works on the slot its placed into */ 7946 if (sp->device_type & XFRAME_II_DEVICE) { 7947 mode = s2io_verify_pci_mode(sp); 7948 if (mode < 0) { 7949 DBG_PRINT(ERR_DBG, "%s: Unsupported PCI bus mode\n", 7950 __func__); 7951 ret = -EBADSLT; 7952 goto set_swap_failed; 7953 } 7954 } 7955 7956 if (sp->config.intr_type == MSI_X) { 7957 sp->num_entries = config->rx_ring_num + 1; 7958 ret = s2io_enable_msi_x(sp); 7959 7960 if (!ret) { 7961 ret = s2io_test_msi(sp); 7962 /* rollback MSI-X, will re-enable during add_isr() */ 7963 remove_msix_isr(sp); 7964 } 7965 if (ret) { 7966 7967 DBG_PRINT(ERR_DBG, 7968 "MSI-X requested but failed to enable\n"); 7969 sp->config.intr_type = INTA; 7970 } 7971 } 7972 7973 if (config->intr_type == MSI_X) { 7974 for (i = 0; i < config->rx_ring_num ; i++) { 7975 struct ring_info *ring = &mac_control->rings[i]; 7976 7977 netif_napi_add(dev, &ring->napi, s2io_poll_msix, 64); 7978 } 7979 } else { 7980 netif_napi_add(dev, &sp->napi, s2io_poll_inta, 64); 7981 } 7982 7983 /* Not needed for Herc */ 7984 if (sp->device_type & XFRAME_I_DEVICE) { 7985 /* 7986 * Fix for all "FFs" MAC address problems observed on 7987 * Alpha platforms 7988 */ 7989 fix_mac_address(sp); 7990 s2io_reset(sp); 7991 } 7992 7993 /* 7994 * MAC address initialization. 7995 * For now only one mac address will be read and used. 7996 */ 7997 bar0 = sp->bar0; 7998 val64 = RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD | 7999 RMAC_ADDR_CMD_MEM_OFFSET(0 + S2IO_MAC_ADDR_START_OFFSET); 8000 writeq(val64, &bar0->rmac_addr_cmd_mem); 8001 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem, 8002 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING, 8003 S2IO_BIT_RESET); 8004 tmp64 = readq(&bar0->rmac_addr_data0_mem); 8005 mac_down = (u32)tmp64; 8006 mac_up = (u32) (tmp64 >> 32); 8007 8008 sp->def_mac_addr[0].mac_addr[3] = (u8) (mac_up); 8009 sp->def_mac_addr[0].mac_addr[2] = (u8) (mac_up >> 8); 8010 sp->def_mac_addr[0].mac_addr[1] = (u8) (mac_up >> 16); 8011 sp->def_mac_addr[0].mac_addr[0] = (u8) (mac_up >> 24); 8012 sp->def_mac_addr[0].mac_addr[5] = (u8) (mac_down >> 16); 8013 sp->def_mac_addr[0].mac_addr[4] = (u8) (mac_down >> 24); 8014 8015 /* Set the factory defined MAC address initially */ 8016 dev->addr_len = ETH_ALEN; 8017 memcpy(dev->dev_addr, sp->def_mac_addr, ETH_ALEN); 8018 8019 /* initialize number of multicast & unicast MAC entries variables */ 8020 if (sp->device_type == XFRAME_I_DEVICE) { 8021 config->max_mc_addr = S2IO_XENA_MAX_MC_ADDRESSES; 8022 config->max_mac_addr = S2IO_XENA_MAX_MAC_ADDRESSES; 8023 config->mc_start_offset = S2IO_XENA_MC_ADDR_START_OFFSET; 8024 } else if (sp->device_type == XFRAME_II_DEVICE) { 8025 config->max_mc_addr = S2IO_HERC_MAX_MC_ADDRESSES; 8026 config->max_mac_addr = S2IO_HERC_MAX_MAC_ADDRESSES; 8027 config->mc_start_offset = S2IO_HERC_MC_ADDR_START_OFFSET; 8028 } 8029 8030 /* store mac addresses from CAM to s2io_nic structure */ 8031 do_s2io_store_unicast_mc(sp); 8032 8033 /* Configure MSIX vector for number of rings configured plus one */ 8034 if ((sp->device_type == XFRAME_II_DEVICE) && 8035 (config->intr_type == MSI_X)) 8036 sp->num_entries = config->rx_ring_num + 1; 8037 8038 /* Store the values of the MSIX table in the s2io_nic structure */ 8039 store_xmsi_data(sp); 8040 /* reset Nic and bring it to known state */ 8041 s2io_reset(sp); 8042 8043 /* 8044 * Initialize link state flags 8045 * and the card state parameter 8046 */ 8047 sp->state = 0; 8048 8049 /* Initialize spinlocks */ 8050 for (i = 0; i < sp->config.tx_fifo_num; i++) { 8051 struct fifo_info *fifo = &mac_control->fifos[i]; 8052 8053 spin_lock_init(&fifo->tx_lock); 8054 } 8055 8056 /* 8057 * SXE-002: Configure link and activity LED to init state 8058 * on driver load. 8059 */ 8060 subid = sp->pdev->subsystem_device; 8061 if ((subid & 0xFF) >= 0x07) { 8062 val64 = readq(&bar0->gpio_control); 8063 val64 |= 0x0000800000000000ULL; 8064 writeq(val64, &bar0->gpio_control); 8065 val64 = 0x0411040400000000ULL; 8066 writeq(val64, (void __iomem *)bar0 + 0x2700); 8067 val64 = readq(&bar0->gpio_control); 8068 } 8069 8070 sp->rx_csum = 1; /* Rx chksum verify enabled by default */ 8071 8072 if (register_netdev(dev)) { 8073 DBG_PRINT(ERR_DBG, "Device registration failed\n"); 8074 ret = -ENODEV; 8075 goto register_failed; 8076 } 8077 s2io_vpd_read(sp); 8078 DBG_PRINT(ERR_DBG, "Copyright(c) 2002-2010 Exar Corp.\n"); 8079 DBG_PRINT(ERR_DBG, "%s: Neterion %s (rev %d)\n", dev->name, 8080 sp->product_name, pdev->revision); 8081 DBG_PRINT(ERR_DBG, "%s: Driver version %s\n", dev->name, 8082 s2io_driver_version); 8083 DBG_PRINT(ERR_DBG, "%s: MAC Address: %pM\n", dev->name, dev->dev_addr); 8084 DBG_PRINT(ERR_DBG, "Serial number: %s\n", sp->serial_num); 8085 if (sp->device_type & XFRAME_II_DEVICE) { 8086 mode = s2io_print_pci_mode(sp); 8087 if (mode < 0) { 8088 ret = -EBADSLT; 8089 unregister_netdev(dev); 8090 goto set_swap_failed; 8091 } 8092 } 8093 switch (sp->rxd_mode) { 8094 case RXD_MODE_1: 8095 DBG_PRINT(ERR_DBG, "%s: 1-Buffer receive mode enabled\n", 8096 dev->name); 8097 break; 8098 case RXD_MODE_3B: 8099 DBG_PRINT(ERR_DBG, "%s: 2-Buffer receive mode enabled\n", 8100 dev->name); 8101 break; 8102 } 8103 8104 switch (sp->config.napi) { 8105 case 0: 8106 DBG_PRINT(ERR_DBG, "%s: NAPI disabled\n", dev->name); 8107 break; 8108 case 1: 8109 DBG_PRINT(ERR_DBG, "%s: NAPI enabled\n", dev->name); 8110 break; 8111 } 8112 8113 DBG_PRINT(ERR_DBG, "%s: Using %d Tx fifo(s)\n", dev->name, 8114 sp->config.tx_fifo_num); 8115 8116 DBG_PRINT(ERR_DBG, "%s: Using %d Rx ring(s)\n", dev->name, 8117 sp->config.rx_ring_num); 8118 8119 switch (sp->config.intr_type) { 8120 case INTA: 8121 DBG_PRINT(ERR_DBG, "%s: Interrupt type INTA\n", dev->name); 8122 break; 8123 case MSI_X: 8124 DBG_PRINT(ERR_DBG, "%s: Interrupt type MSI-X\n", dev->name); 8125 break; 8126 } 8127 if (sp->config.multiq) { 8128 for (i = 0; i < sp->config.tx_fifo_num; i++) { 8129 struct fifo_info *fifo = &mac_control->fifos[i]; 8130 8131 fifo->multiq = config->multiq; 8132 } 8133 DBG_PRINT(ERR_DBG, "%s: Multiqueue support enabled\n", 8134 dev->name); 8135 } else 8136 DBG_PRINT(ERR_DBG, "%s: Multiqueue support disabled\n", 8137 dev->name); 8138 8139 switch (sp->config.tx_steering_type) { 8140 case NO_STEERING: 8141 DBG_PRINT(ERR_DBG, "%s: No steering enabled for transmit\n", 8142 dev->name); 8143 break; 8144 case TX_PRIORITY_STEERING: 8145 DBG_PRINT(ERR_DBG, 8146 "%s: Priority steering enabled for transmit\n", 8147 dev->name); 8148 break; 8149 case TX_DEFAULT_STEERING: 8150 DBG_PRINT(ERR_DBG, 8151 "%s: Default steering enabled for transmit\n", 8152 dev->name); 8153 } 8154 8155 DBG_PRINT(ERR_DBG, "%s: Large receive offload enabled\n", 8156 dev->name); 8157 if (ufo) 8158 DBG_PRINT(ERR_DBG, 8159 "%s: UDP Fragmentation Offload(UFO) enabled\n", 8160 dev->name); 8161 /* Initialize device name */ 8162 sprintf(sp->name, "%s Neterion %s", dev->name, sp->product_name); 8163 8164 if (vlan_tag_strip) 8165 sp->vlan_strip_flag = 1; 8166 else 8167 sp->vlan_strip_flag = 0; 8168 8169 /* 8170 * Make Link state as off at this point, when the Link change 8171 * interrupt comes the state will be automatically changed to 8172 * the right state. 8173 */ 8174 netif_carrier_off(dev); 8175 8176 return 0; 8177 8178 register_failed: 8179 set_swap_failed: 8180 iounmap(sp->bar1); 8181 bar1_remap_failed: 8182 iounmap(sp->bar0); 8183 bar0_remap_failed: 8184 mem_alloc_failed: 8185 free_shared_mem(sp); 8186 pci_disable_device(pdev); 8187 pci_release_regions(pdev); 8188 pci_set_drvdata(pdev, NULL); 8189 free_netdev(dev); 8190 8191 return ret; 8192 } 8193 8194 /** 8195 * s2io_rem_nic - Free the PCI device 8196 * @pdev: structure containing the PCI related information of the device. 8197 * Description: This function is called by the Pci subsystem to release a 8198 * PCI device and free up all resource held up by the device. This could 8199 * be in response to a Hot plug event or when the driver is to be removed 8200 * from memory. 8201 */ 8202 8203 static void s2io_rem_nic(struct pci_dev *pdev) 8204 { 8205 struct net_device *dev = pci_get_drvdata(pdev); 8206 struct s2io_nic *sp; 8207 8208 if (dev == NULL) { 8209 DBG_PRINT(ERR_DBG, "Driver Data is NULL!!\n"); 8210 return; 8211 } 8212 8213 sp = netdev_priv(dev); 8214 8215 cancel_work_sync(&sp->rst_timer_task); 8216 cancel_work_sync(&sp->set_link_task); 8217 8218 unregister_netdev(dev); 8219 8220 free_shared_mem(sp); 8221 iounmap(sp->bar0); 8222 iounmap(sp->bar1); 8223 pci_release_regions(pdev); 8224 pci_set_drvdata(pdev, NULL); 8225 free_netdev(dev); 8226 pci_disable_device(pdev); 8227 } 8228 8229 /** 8230 * s2io_starter - Entry point for the driver 8231 * Description: This function is the entry point for the driver. It verifies 8232 * the module loadable parameters and initializes PCI configuration space. 8233 */ 8234 8235 static int __init s2io_starter(void) 8236 { 8237 return pci_register_driver(&s2io_driver); 8238 } 8239 8240 /** 8241 * s2io_closer - Cleanup routine for the driver 8242 * Description: This function is the cleanup routine for the driver. It 8243 * unregisters the driver. 8244 */ 8245 8246 static __exit void s2io_closer(void) 8247 { 8248 pci_unregister_driver(&s2io_driver); 8249 DBG_PRINT(INIT_DBG, "cleanup done\n"); 8250 } 8251 8252 module_init(s2io_starter); 8253 module_exit(s2io_closer); 8254 8255 static int check_L2_lro_capable(u8 *buffer, struct iphdr **ip, 8256 struct tcphdr **tcp, struct RxD_t *rxdp, 8257 struct s2io_nic *sp) 8258 { 8259 int ip_off; 8260 u8 l2_type = (u8)((rxdp->Control_1 >> 37) & 0x7), ip_len; 8261 8262 if (!(rxdp->Control_1 & RXD_FRAME_PROTO_TCP)) { 8263 DBG_PRINT(INIT_DBG, 8264 "%s: Non-TCP frames not supported for LRO\n", 8265 __func__); 8266 return -1; 8267 } 8268 8269 /* Checking for DIX type or DIX type with VLAN */ 8270 if ((l2_type == 0) || (l2_type == 4)) { 8271 ip_off = HEADER_ETHERNET_II_802_3_SIZE; 8272 /* 8273 * If vlan stripping is disabled and the frame is VLAN tagged, 8274 * shift the offset by the VLAN header size bytes. 8275 */ 8276 if ((!sp->vlan_strip_flag) && 8277 (rxdp->Control_1 & RXD_FRAME_VLAN_TAG)) 8278 ip_off += HEADER_VLAN_SIZE; 8279 } else { 8280 /* LLC, SNAP etc are considered non-mergeable */ 8281 return -1; 8282 } 8283 8284 *ip = (struct iphdr *)(buffer + ip_off); 8285 ip_len = (u8)((*ip)->ihl); 8286 ip_len <<= 2; 8287 *tcp = (struct tcphdr *)((unsigned long)*ip + ip_len); 8288 8289 return 0; 8290 } 8291 8292 static int check_for_socket_match(struct lro *lro, struct iphdr *ip, 8293 struct tcphdr *tcp) 8294 { 8295 DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__); 8296 if ((lro->iph->saddr != ip->saddr) || 8297 (lro->iph->daddr != ip->daddr) || 8298 (lro->tcph->source != tcp->source) || 8299 (lro->tcph->dest != tcp->dest)) 8300 return -1; 8301 return 0; 8302 } 8303 8304 static inline int get_l4_pyld_length(struct iphdr *ip, struct tcphdr *tcp) 8305 { 8306 return ntohs(ip->tot_len) - (ip->ihl << 2) - (tcp->doff << 2); 8307 } 8308 8309 static void initiate_new_session(struct lro *lro, u8 *l2h, 8310 struct iphdr *ip, struct tcphdr *tcp, 8311 u32 tcp_pyld_len, u16 vlan_tag) 8312 { 8313 DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__); 8314 lro->l2h = l2h; 8315 lro->iph = ip; 8316 lro->tcph = tcp; 8317 lro->tcp_next_seq = tcp_pyld_len + ntohl(tcp->seq); 8318 lro->tcp_ack = tcp->ack_seq; 8319 lro->sg_num = 1; 8320 lro->total_len = ntohs(ip->tot_len); 8321 lro->frags_len = 0; 8322 lro->vlan_tag = vlan_tag; 8323 /* 8324 * Check if we saw TCP timestamp. 8325 * Other consistency checks have already been done. 8326 */ 8327 if (tcp->doff == 8) { 8328 __be32 *ptr; 8329 ptr = (__be32 *)(tcp+1); 8330 lro->saw_ts = 1; 8331 lro->cur_tsval = ntohl(*(ptr+1)); 8332 lro->cur_tsecr = *(ptr+2); 8333 } 8334 lro->in_use = 1; 8335 } 8336 8337 static void update_L3L4_header(struct s2io_nic *sp, struct lro *lro) 8338 { 8339 struct iphdr *ip = lro->iph; 8340 struct tcphdr *tcp = lro->tcph; 8341 struct swStat *swstats = &sp->mac_control.stats_info->sw_stat; 8342 8343 DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__); 8344 8345 /* Update L3 header */ 8346 csum_replace2(&ip->check, ip->tot_len, htons(lro->total_len)); 8347 ip->tot_len = htons(lro->total_len); 8348 8349 /* Update L4 header */ 8350 tcp->ack_seq = lro->tcp_ack; 8351 tcp->window = lro->window; 8352 8353 /* Update tsecr field if this session has timestamps enabled */ 8354 if (lro->saw_ts) { 8355 __be32 *ptr = (__be32 *)(tcp + 1); 8356 *(ptr+2) = lro->cur_tsecr; 8357 } 8358 8359 /* Update counters required for calculation of 8360 * average no. of packets aggregated. 8361 */ 8362 swstats->sum_avg_pkts_aggregated += lro->sg_num; 8363 swstats->num_aggregations++; 8364 } 8365 8366 static void aggregate_new_rx(struct lro *lro, struct iphdr *ip, 8367 struct tcphdr *tcp, u32 l4_pyld) 8368 { 8369 DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__); 8370 lro->total_len += l4_pyld; 8371 lro->frags_len += l4_pyld; 8372 lro->tcp_next_seq += l4_pyld; 8373 lro->sg_num++; 8374 8375 /* Update ack seq no. and window ad(from this pkt) in LRO object */ 8376 lro->tcp_ack = tcp->ack_seq; 8377 lro->window = tcp->window; 8378 8379 if (lro->saw_ts) { 8380 __be32 *ptr; 8381 /* Update tsecr and tsval from this packet */ 8382 ptr = (__be32 *)(tcp+1); 8383 lro->cur_tsval = ntohl(*(ptr+1)); 8384 lro->cur_tsecr = *(ptr + 2); 8385 } 8386 } 8387 8388 static int verify_l3_l4_lro_capable(struct lro *l_lro, struct iphdr *ip, 8389 struct tcphdr *tcp, u32 tcp_pyld_len) 8390 { 8391 u8 *ptr; 8392 8393 DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__); 8394 8395 if (!tcp_pyld_len) { 8396 /* Runt frame or a pure ack */ 8397 return -1; 8398 } 8399 8400 if (ip->ihl != 5) /* IP has options */ 8401 return -1; 8402 8403 /* If we see CE codepoint in IP header, packet is not mergeable */ 8404 if (INET_ECN_is_ce(ipv4_get_dsfield(ip))) 8405 return -1; 8406 8407 /* If we see ECE or CWR flags in TCP header, packet is not mergeable */ 8408 if (tcp->urg || tcp->psh || tcp->rst || 8409 tcp->syn || tcp->fin || 8410 tcp->ece || tcp->cwr || !tcp->ack) { 8411 /* 8412 * Currently recognize only the ack control word and 8413 * any other control field being set would result in 8414 * flushing the LRO session 8415 */ 8416 return -1; 8417 } 8418 8419 /* 8420 * Allow only one TCP timestamp option. Don't aggregate if 8421 * any other options are detected. 8422 */ 8423 if (tcp->doff != 5 && tcp->doff != 8) 8424 return -1; 8425 8426 if (tcp->doff == 8) { 8427 ptr = (u8 *)(tcp + 1); 8428 while (*ptr == TCPOPT_NOP) 8429 ptr++; 8430 if (*ptr != TCPOPT_TIMESTAMP || *(ptr+1) != TCPOLEN_TIMESTAMP) 8431 return -1; 8432 8433 /* Ensure timestamp value increases monotonically */ 8434 if (l_lro) 8435 if (l_lro->cur_tsval > ntohl(*((__be32 *)(ptr+2)))) 8436 return -1; 8437 8438 /* timestamp echo reply should be non-zero */ 8439 if (*((__be32 *)(ptr+6)) == 0) 8440 return -1; 8441 } 8442 8443 return 0; 8444 } 8445 8446 static int s2io_club_tcp_session(struct ring_info *ring_data, u8 *buffer, 8447 u8 **tcp, u32 *tcp_len, struct lro **lro, 8448 struct RxD_t *rxdp, struct s2io_nic *sp) 8449 { 8450 struct iphdr *ip; 8451 struct tcphdr *tcph; 8452 int ret = 0, i; 8453 u16 vlan_tag = 0; 8454 struct swStat *swstats = &sp->mac_control.stats_info->sw_stat; 8455 8456 ret = check_L2_lro_capable(buffer, &ip, (struct tcphdr **)tcp, 8457 rxdp, sp); 8458 if (ret) 8459 return ret; 8460 8461 DBG_PRINT(INFO_DBG, "IP Saddr: %x Daddr: %x\n", ip->saddr, ip->daddr); 8462 8463 vlan_tag = RXD_GET_VLAN_TAG(rxdp->Control_2); 8464 tcph = (struct tcphdr *)*tcp; 8465 *tcp_len = get_l4_pyld_length(ip, tcph); 8466 for (i = 0; i < MAX_LRO_SESSIONS; i++) { 8467 struct lro *l_lro = &ring_data->lro0_n[i]; 8468 if (l_lro->in_use) { 8469 if (check_for_socket_match(l_lro, ip, tcph)) 8470 continue; 8471 /* Sock pair matched */ 8472 *lro = l_lro; 8473 8474 if ((*lro)->tcp_next_seq != ntohl(tcph->seq)) { 8475 DBG_PRINT(INFO_DBG, "%s: Out of sequence. " 8476 "expected 0x%x, actual 0x%x\n", 8477 __func__, 8478 (*lro)->tcp_next_seq, 8479 ntohl(tcph->seq)); 8480 8481 swstats->outof_sequence_pkts++; 8482 ret = 2; 8483 break; 8484 } 8485 8486 if (!verify_l3_l4_lro_capable(l_lro, ip, tcph, 8487 *tcp_len)) 8488 ret = 1; /* Aggregate */ 8489 else 8490 ret = 2; /* Flush both */ 8491 break; 8492 } 8493 } 8494 8495 if (ret == 0) { 8496 /* Before searching for available LRO objects, 8497 * check if the pkt is L3/L4 aggregatable. If not 8498 * don't create new LRO session. Just send this 8499 * packet up. 8500 */ 8501 if (verify_l3_l4_lro_capable(NULL, ip, tcph, *tcp_len)) 8502 return 5; 8503 8504 for (i = 0; i < MAX_LRO_SESSIONS; i++) { 8505 struct lro *l_lro = &ring_data->lro0_n[i]; 8506 if (!(l_lro->in_use)) { 8507 *lro = l_lro; 8508 ret = 3; /* Begin anew */ 8509 break; 8510 } 8511 } 8512 } 8513 8514 if (ret == 0) { /* sessions exceeded */ 8515 DBG_PRINT(INFO_DBG, "%s: All LRO sessions already in use\n", 8516 __func__); 8517 *lro = NULL; 8518 return ret; 8519 } 8520 8521 switch (ret) { 8522 case 3: 8523 initiate_new_session(*lro, buffer, ip, tcph, *tcp_len, 8524 vlan_tag); 8525 break; 8526 case 2: 8527 update_L3L4_header(sp, *lro); 8528 break; 8529 case 1: 8530 aggregate_new_rx(*lro, ip, tcph, *tcp_len); 8531 if ((*lro)->sg_num == sp->lro_max_aggr_per_sess) { 8532 update_L3L4_header(sp, *lro); 8533 ret = 4; /* Flush the LRO */ 8534 } 8535 break; 8536 default: 8537 DBG_PRINT(ERR_DBG, "%s: Don't know, can't say!!\n", __func__); 8538 break; 8539 } 8540 8541 return ret; 8542 } 8543 8544 static void clear_lro_session(struct lro *lro) 8545 { 8546 static u16 lro_struct_size = sizeof(struct lro); 8547 8548 memset(lro, 0, lro_struct_size); 8549 } 8550 8551 static void queue_rx_frame(struct sk_buff *skb, u16 vlan_tag) 8552 { 8553 struct net_device *dev = skb->dev; 8554 struct s2io_nic *sp = netdev_priv(dev); 8555 8556 skb->protocol = eth_type_trans(skb, dev); 8557 if (vlan_tag && sp->vlan_strip_flag) 8558 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag); 8559 if (sp->config.napi) 8560 netif_receive_skb(skb); 8561 else 8562 netif_rx(skb); 8563 } 8564 8565 static void lro_append_pkt(struct s2io_nic *sp, struct lro *lro, 8566 struct sk_buff *skb, u32 tcp_len) 8567 { 8568 struct sk_buff *first = lro->parent; 8569 struct swStat *swstats = &sp->mac_control.stats_info->sw_stat; 8570 8571 first->len += tcp_len; 8572 first->data_len = lro->frags_len; 8573 skb_pull(skb, (skb->len - tcp_len)); 8574 if (skb_shinfo(first)->frag_list) 8575 lro->last_frag->next = skb; 8576 else 8577 skb_shinfo(first)->frag_list = skb; 8578 first->truesize += skb->truesize; 8579 lro->last_frag = skb; 8580 swstats->clubbed_frms_cnt++; 8581 } 8582 8583 /** 8584 * s2io_io_error_detected - called when PCI error is detected 8585 * @pdev: Pointer to PCI device 8586 * @state: The current pci connection state 8587 * 8588 * This function is called after a PCI bus error affecting 8589 * this device has been detected. 8590 */ 8591 static pci_ers_result_t s2io_io_error_detected(struct pci_dev *pdev, 8592 pci_channel_state_t state) 8593 { 8594 struct net_device *netdev = pci_get_drvdata(pdev); 8595 struct s2io_nic *sp = netdev_priv(netdev); 8596 8597 netif_device_detach(netdev); 8598 8599 if (state == pci_channel_io_perm_failure) 8600 return PCI_ERS_RESULT_DISCONNECT; 8601 8602 if (netif_running(netdev)) { 8603 /* Bring down the card, while avoiding PCI I/O */ 8604 do_s2io_card_down(sp, 0); 8605 } 8606 pci_disable_device(pdev); 8607 8608 return PCI_ERS_RESULT_NEED_RESET; 8609 } 8610 8611 /** 8612 * s2io_io_slot_reset - called after the pci bus has been reset. 8613 * @pdev: Pointer to PCI device 8614 * 8615 * Restart the card from scratch, as if from a cold-boot. 8616 * At this point, the card has exprienced a hard reset, 8617 * followed by fixups by BIOS, and has its config space 8618 * set up identically to what it was at cold boot. 8619 */ 8620 static pci_ers_result_t s2io_io_slot_reset(struct pci_dev *pdev) 8621 { 8622 struct net_device *netdev = pci_get_drvdata(pdev); 8623 struct s2io_nic *sp = netdev_priv(netdev); 8624 8625 if (pci_enable_device(pdev)) { 8626 pr_err("Cannot re-enable PCI device after reset.\n"); 8627 return PCI_ERS_RESULT_DISCONNECT; 8628 } 8629 8630 pci_set_master(pdev); 8631 s2io_reset(sp); 8632 8633 return PCI_ERS_RESULT_RECOVERED; 8634 } 8635 8636 /** 8637 * s2io_io_resume - called when traffic can start flowing again. 8638 * @pdev: Pointer to PCI device 8639 * 8640 * This callback is called when the error recovery driver tells 8641 * us that its OK to resume normal operation. 8642 */ 8643 static void s2io_io_resume(struct pci_dev *pdev) 8644 { 8645 struct net_device *netdev = pci_get_drvdata(pdev); 8646 struct s2io_nic *sp = netdev_priv(netdev); 8647 8648 if (netif_running(netdev)) { 8649 if (s2io_card_up(sp)) { 8650 pr_err("Can't bring device back up after reset.\n"); 8651 return; 8652 } 8653 8654 if (s2io_set_mac_addr(netdev, netdev->dev_addr) == FAILURE) { 8655 s2io_card_down(sp); 8656 pr_err("Can't restore mac addr after reset.\n"); 8657 return; 8658 } 8659 } 8660 8661 netif_device_attach(netdev); 8662 netif_tx_wake_all_queues(netdev); 8663 } 8664