1 /************************************************************************
2  * s2io.c: A Linux PCI-X Ethernet driver for Neterion 10GbE Server NIC
3  * Copyright(c) 2002-2010 Exar Corp.
4  *
5  * This software may be used and distributed according to the terms of
6  * the GNU General Public License (GPL), incorporated herein by reference.
7  * Drivers based on or derived from this code fall under the GPL and must
8  * retain the authorship, copyright and license notice.  This file is not
9  * a complete program and may only be used when the entire operating
10  * system is licensed under the GPL.
11  * See the file COPYING in this distribution for more information.
12  *
13  * Credits:
14  * Jeff Garzik		: For pointing out the improper error condition
15  *			  check in the s2io_xmit routine and also some
16  *			  issues in the Tx watch dog function. Also for
17  *			  patiently answering all those innumerable
18  *			  questions regaring the 2.6 porting issues.
19  * Stephen Hemminger	: Providing proper 2.6 porting mechanism for some
20  *			  macros available only in 2.6 Kernel.
21  * Francois Romieu	: For pointing out all code part that were
22  *			  deprecated and also styling related comments.
23  * Grant Grundler	: For helping me get rid of some Architecture
24  *			  dependent code.
25  * Christopher Hellwig	: Some more 2.6 specific issues in the driver.
26  *
27  * The module loadable parameters that are supported by the driver and a brief
28  * explanation of all the variables.
29  *
30  * rx_ring_num : This can be used to program the number of receive rings used
31  * in the driver.
32  * rx_ring_sz: This defines the number of receive blocks each ring can have.
33  *     This is also an array of size 8.
34  * rx_ring_mode: This defines the operation mode of all 8 rings. The valid
35  *		values are 1, 2.
36  * tx_fifo_num: This defines the number of Tx FIFOs thats used int the driver.
37  * tx_fifo_len: This too is an array of 8. Each element defines the number of
38  * Tx descriptors that can be associated with each corresponding FIFO.
39  * intr_type: This defines the type of interrupt. The values can be 0(INTA),
40  *     2(MSI_X). Default value is '2(MSI_X)'
41  * lro_max_pkts: This parameter defines maximum number of packets can be
42  *     aggregated as a single large packet
43  * napi: This parameter used to enable/disable NAPI (polling Rx)
44  *     Possible values '1' for enable and '0' for disable. Default is '1'
45  * ufo: This parameter used to enable/disable UDP Fragmentation Offload(UFO)
46  *      Possible values '1' for enable and '0' for disable. Default is '0'
47  * vlan_tag_strip: This can be used to enable or disable vlan stripping.
48  *                 Possible values '1' for enable , '0' for disable.
49  *                 Default is '2' - which means disable in promisc mode
50  *                 and enable in non-promiscuous mode.
51  * multiq: This parameter used to enable/disable MULTIQUEUE support.
52  *      Possible values '1' for enable and '0' for disable. Default is '0'
53  ************************************************************************/
54 
55 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
56 
57 #include <linux/module.h>
58 #include <linux/types.h>
59 #include <linux/errno.h>
60 #include <linux/ioport.h>
61 #include <linux/pci.h>
62 #include <linux/dma-mapping.h>
63 #include <linux/kernel.h>
64 #include <linux/netdevice.h>
65 #include <linux/etherdevice.h>
66 #include <linux/mdio.h>
67 #include <linux/skbuff.h>
68 #include <linux/init.h>
69 #include <linux/delay.h>
70 #include <linux/stddef.h>
71 #include <linux/ioctl.h>
72 #include <linux/timex.h>
73 #include <linux/ethtool.h>
74 #include <linux/workqueue.h>
75 #include <linux/if_vlan.h>
76 #include <linux/ip.h>
77 #include <linux/tcp.h>
78 #include <linux/uaccess.h>
79 #include <linux/io.h>
80 #include <linux/slab.h>
81 #include <linux/prefetch.h>
82 #include <net/tcp.h>
83 
84 #include <asm/div64.h>
85 #include <asm/irq.h>
86 
87 /* local include */
88 #include "s2io.h"
89 #include "s2io-regs.h"
90 
91 #define DRV_VERSION "2.0.26.28"
92 
93 /* S2io Driver name & version. */
94 static const char s2io_driver_name[] = "Neterion";
95 static const char s2io_driver_version[] = DRV_VERSION;
96 
97 static const int rxd_size[2] = {32, 48};
98 static const int rxd_count[2] = {127, 85};
99 
100 static inline int RXD_IS_UP2DT(struct RxD_t *rxdp)
101 {
102 	int ret;
103 
104 	ret = ((!(rxdp->Control_1 & RXD_OWN_XENA)) &&
105 	       (GET_RXD_MARKER(rxdp->Control_2) != THE_RXD_MARK));
106 
107 	return ret;
108 }
109 
110 /*
111  * Cards with following subsystem_id have a link state indication
112  * problem, 600B, 600C, 600D, 640B, 640C and 640D.
113  * macro below identifies these cards given the subsystem_id.
114  */
115 #define CARDS_WITH_FAULTY_LINK_INDICATORS(dev_type, subid)		\
116 	(dev_type == XFRAME_I_DEVICE) ?					\
117 	((((subid >= 0x600B) && (subid <= 0x600D)) ||			\
118 	  ((subid >= 0x640B) && (subid <= 0x640D))) ? 1 : 0) : 0
119 
120 #define LINK_IS_UP(val64) (!(val64 & (ADAPTER_STATUS_RMAC_REMOTE_FAULT | \
121 				      ADAPTER_STATUS_RMAC_LOCAL_FAULT)))
122 
123 static inline int is_s2io_card_up(const struct s2io_nic *sp)
124 {
125 	return test_bit(__S2IO_STATE_CARD_UP, &sp->state);
126 }
127 
128 /* Ethtool related variables and Macros. */
129 static const char s2io_gstrings[][ETH_GSTRING_LEN] = {
130 	"Register test\t(offline)",
131 	"Eeprom test\t(offline)",
132 	"Link test\t(online)",
133 	"RLDRAM test\t(offline)",
134 	"BIST Test\t(offline)"
135 };
136 
137 static const char ethtool_xena_stats_keys[][ETH_GSTRING_LEN] = {
138 	{"tmac_frms"},
139 	{"tmac_data_octets"},
140 	{"tmac_drop_frms"},
141 	{"tmac_mcst_frms"},
142 	{"tmac_bcst_frms"},
143 	{"tmac_pause_ctrl_frms"},
144 	{"tmac_ttl_octets"},
145 	{"tmac_ucst_frms"},
146 	{"tmac_nucst_frms"},
147 	{"tmac_any_err_frms"},
148 	{"tmac_ttl_less_fb_octets"},
149 	{"tmac_vld_ip_octets"},
150 	{"tmac_vld_ip"},
151 	{"tmac_drop_ip"},
152 	{"tmac_icmp"},
153 	{"tmac_rst_tcp"},
154 	{"tmac_tcp"},
155 	{"tmac_udp"},
156 	{"rmac_vld_frms"},
157 	{"rmac_data_octets"},
158 	{"rmac_fcs_err_frms"},
159 	{"rmac_drop_frms"},
160 	{"rmac_vld_mcst_frms"},
161 	{"rmac_vld_bcst_frms"},
162 	{"rmac_in_rng_len_err_frms"},
163 	{"rmac_out_rng_len_err_frms"},
164 	{"rmac_long_frms"},
165 	{"rmac_pause_ctrl_frms"},
166 	{"rmac_unsup_ctrl_frms"},
167 	{"rmac_ttl_octets"},
168 	{"rmac_accepted_ucst_frms"},
169 	{"rmac_accepted_nucst_frms"},
170 	{"rmac_discarded_frms"},
171 	{"rmac_drop_events"},
172 	{"rmac_ttl_less_fb_octets"},
173 	{"rmac_ttl_frms"},
174 	{"rmac_usized_frms"},
175 	{"rmac_osized_frms"},
176 	{"rmac_frag_frms"},
177 	{"rmac_jabber_frms"},
178 	{"rmac_ttl_64_frms"},
179 	{"rmac_ttl_65_127_frms"},
180 	{"rmac_ttl_128_255_frms"},
181 	{"rmac_ttl_256_511_frms"},
182 	{"rmac_ttl_512_1023_frms"},
183 	{"rmac_ttl_1024_1518_frms"},
184 	{"rmac_ip"},
185 	{"rmac_ip_octets"},
186 	{"rmac_hdr_err_ip"},
187 	{"rmac_drop_ip"},
188 	{"rmac_icmp"},
189 	{"rmac_tcp"},
190 	{"rmac_udp"},
191 	{"rmac_err_drp_udp"},
192 	{"rmac_xgmii_err_sym"},
193 	{"rmac_frms_q0"},
194 	{"rmac_frms_q1"},
195 	{"rmac_frms_q2"},
196 	{"rmac_frms_q3"},
197 	{"rmac_frms_q4"},
198 	{"rmac_frms_q5"},
199 	{"rmac_frms_q6"},
200 	{"rmac_frms_q7"},
201 	{"rmac_full_q0"},
202 	{"rmac_full_q1"},
203 	{"rmac_full_q2"},
204 	{"rmac_full_q3"},
205 	{"rmac_full_q4"},
206 	{"rmac_full_q5"},
207 	{"rmac_full_q6"},
208 	{"rmac_full_q7"},
209 	{"rmac_pause_cnt"},
210 	{"rmac_xgmii_data_err_cnt"},
211 	{"rmac_xgmii_ctrl_err_cnt"},
212 	{"rmac_accepted_ip"},
213 	{"rmac_err_tcp"},
214 	{"rd_req_cnt"},
215 	{"new_rd_req_cnt"},
216 	{"new_rd_req_rtry_cnt"},
217 	{"rd_rtry_cnt"},
218 	{"wr_rtry_rd_ack_cnt"},
219 	{"wr_req_cnt"},
220 	{"new_wr_req_cnt"},
221 	{"new_wr_req_rtry_cnt"},
222 	{"wr_rtry_cnt"},
223 	{"wr_disc_cnt"},
224 	{"rd_rtry_wr_ack_cnt"},
225 	{"txp_wr_cnt"},
226 	{"txd_rd_cnt"},
227 	{"txd_wr_cnt"},
228 	{"rxd_rd_cnt"},
229 	{"rxd_wr_cnt"},
230 	{"txf_rd_cnt"},
231 	{"rxf_wr_cnt"}
232 };
233 
234 static const char ethtool_enhanced_stats_keys[][ETH_GSTRING_LEN] = {
235 	{"rmac_ttl_1519_4095_frms"},
236 	{"rmac_ttl_4096_8191_frms"},
237 	{"rmac_ttl_8192_max_frms"},
238 	{"rmac_ttl_gt_max_frms"},
239 	{"rmac_osized_alt_frms"},
240 	{"rmac_jabber_alt_frms"},
241 	{"rmac_gt_max_alt_frms"},
242 	{"rmac_vlan_frms"},
243 	{"rmac_len_discard"},
244 	{"rmac_fcs_discard"},
245 	{"rmac_pf_discard"},
246 	{"rmac_da_discard"},
247 	{"rmac_red_discard"},
248 	{"rmac_rts_discard"},
249 	{"rmac_ingm_full_discard"},
250 	{"link_fault_cnt"}
251 };
252 
253 static const char ethtool_driver_stats_keys[][ETH_GSTRING_LEN] = {
254 	{"\n DRIVER STATISTICS"},
255 	{"single_bit_ecc_errs"},
256 	{"double_bit_ecc_errs"},
257 	{"parity_err_cnt"},
258 	{"serious_err_cnt"},
259 	{"soft_reset_cnt"},
260 	{"fifo_full_cnt"},
261 	{"ring_0_full_cnt"},
262 	{"ring_1_full_cnt"},
263 	{"ring_2_full_cnt"},
264 	{"ring_3_full_cnt"},
265 	{"ring_4_full_cnt"},
266 	{"ring_5_full_cnt"},
267 	{"ring_6_full_cnt"},
268 	{"ring_7_full_cnt"},
269 	{"alarm_transceiver_temp_high"},
270 	{"alarm_transceiver_temp_low"},
271 	{"alarm_laser_bias_current_high"},
272 	{"alarm_laser_bias_current_low"},
273 	{"alarm_laser_output_power_high"},
274 	{"alarm_laser_output_power_low"},
275 	{"warn_transceiver_temp_high"},
276 	{"warn_transceiver_temp_low"},
277 	{"warn_laser_bias_current_high"},
278 	{"warn_laser_bias_current_low"},
279 	{"warn_laser_output_power_high"},
280 	{"warn_laser_output_power_low"},
281 	{"lro_aggregated_pkts"},
282 	{"lro_flush_both_count"},
283 	{"lro_out_of_sequence_pkts"},
284 	{"lro_flush_due_to_max_pkts"},
285 	{"lro_avg_aggr_pkts"},
286 	{"mem_alloc_fail_cnt"},
287 	{"pci_map_fail_cnt"},
288 	{"watchdog_timer_cnt"},
289 	{"mem_allocated"},
290 	{"mem_freed"},
291 	{"link_up_cnt"},
292 	{"link_down_cnt"},
293 	{"link_up_time"},
294 	{"link_down_time"},
295 	{"tx_tcode_buf_abort_cnt"},
296 	{"tx_tcode_desc_abort_cnt"},
297 	{"tx_tcode_parity_err_cnt"},
298 	{"tx_tcode_link_loss_cnt"},
299 	{"tx_tcode_list_proc_err_cnt"},
300 	{"rx_tcode_parity_err_cnt"},
301 	{"rx_tcode_abort_cnt"},
302 	{"rx_tcode_parity_abort_cnt"},
303 	{"rx_tcode_rda_fail_cnt"},
304 	{"rx_tcode_unkn_prot_cnt"},
305 	{"rx_tcode_fcs_err_cnt"},
306 	{"rx_tcode_buf_size_err_cnt"},
307 	{"rx_tcode_rxd_corrupt_cnt"},
308 	{"rx_tcode_unkn_err_cnt"},
309 	{"tda_err_cnt"},
310 	{"pfc_err_cnt"},
311 	{"pcc_err_cnt"},
312 	{"tti_err_cnt"},
313 	{"tpa_err_cnt"},
314 	{"sm_err_cnt"},
315 	{"lso_err_cnt"},
316 	{"mac_tmac_err_cnt"},
317 	{"mac_rmac_err_cnt"},
318 	{"xgxs_txgxs_err_cnt"},
319 	{"xgxs_rxgxs_err_cnt"},
320 	{"rc_err_cnt"},
321 	{"prc_pcix_err_cnt"},
322 	{"rpa_err_cnt"},
323 	{"rda_err_cnt"},
324 	{"rti_err_cnt"},
325 	{"mc_err_cnt"}
326 };
327 
328 #define S2IO_XENA_STAT_LEN	ARRAY_SIZE(ethtool_xena_stats_keys)
329 #define S2IO_ENHANCED_STAT_LEN	ARRAY_SIZE(ethtool_enhanced_stats_keys)
330 #define S2IO_DRIVER_STAT_LEN	ARRAY_SIZE(ethtool_driver_stats_keys)
331 
332 #define XFRAME_I_STAT_LEN (S2IO_XENA_STAT_LEN + S2IO_DRIVER_STAT_LEN)
333 #define XFRAME_II_STAT_LEN (XFRAME_I_STAT_LEN + S2IO_ENHANCED_STAT_LEN)
334 
335 #define XFRAME_I_STAT_STRINGS_LEN (XFRAME_I_STAT_LEN * ETH_GSTRING_LEN)
336 #define XFRAME_II_STAT_STRINGS_LEN (XFRAME_II_STAT_LEN * ETH_GSTRING_LEN)
337 
338 #define S2IO_TEST_LEN	ARRAY_SIZE(s2io_gstrings)
339 #define S2IO_STRINGS_LEN	(S2IO_TEST_LEN * ETH_GSTRING_LEN)
340 
341 #define S2IO_TIMER_CONF(timer, handle, arg, exp)	\
342 	init_timer(&timer);				\
343 	timer.function = handle;			\
344 	timer.data = (unsigned long)arg;		\
345 	mod_timer(&timer, (jiffies + exp))		\
346 
347 /* copy mac addr to def_mac_addr array */
348 static void do_s2io_copy_mac_addr(struct s2io_nic *sp, int offset, u64 mac_addr)
349 {
350 	sp->def_mac_addr[offset].mac_addr[5] = (u8) (mac_addr);
351 	sp->def_mac_addr[offset].mac_addr[4] = (u8) (mac_addr >> 8);
352 	sp->def_mac_addr[offset].mac_addr[3] = (u8) (mac_addr >> 16);
353 	sp->def_mac_addr[offset].mac_addr[2] = (u8) (mac_addr >> 24);
354 	sp->def_mac_addr[offset].mac_addr[1] = (u8) (mac_addr >> 32);
355 	sp->def_mac_addr[offset].mac_addr[0] = (u8) (mac_addr >> 40);
356 }
357 
358 /*
359  * Constants to be programmed into the Xena's registers, to configure
360  * the XAUI.
361  */
362 
363 #define	END_SIGN	0x0
364 static const u64 herc_act_dtx_cfg[] = {
365 	/* Set address */
366 	0x8000051536750000ULL, 0x80000515367500E0ULL,
367 	/* Write data */
368 	0x8000051536750004ULL, 0x80000515367500E4ULL,
369 	/* Set address */
370 	0x80010515003F0000ULL, 0x80010515003F00E0ULL,
371 	/* Write data */
372 	0x80010515003F0004ULL, 0x80010515003F00E4ULL,
373 	/* Set address */
374 	0x801205150D440000ULL, 0x801205150D4400E0ULL,
375 	/* Write data */
376 	0x801205150D440004ULL, 0x801205150D4400E4ULL,
377 	/* Set address */
378 	0x80020515F2100000ULL, 0x80020515F21000E0ULL,
379 	/* Write data */
380 	0x80020515F2100004ULL, 0x80020515F21000E4ULL,
381 	/* Done */
382 	END_SIGN
383 };
384 
385 static const u64 xena_dtx_cfg[] = {
386 	/* Set address */
387 	0x8000051500000000ULL, 0x80000515000000E0ULL,
388 	/* Write data */
389 	0x80000515D9350004ULL, 0x80000515D93500E4ULL,
390 	/* Set address */
391 	0x8001051500000000ULL, 0x80010515000000E0ULL,
392 	/* Write data */
393 	0x80010515001E0004ULL, 0x80010515001E00E4ULL,
394 	/* Set address */
395 	0x8002051500000000ULL, 0x80020515000000E0ULL,
396 	/* Write data */
397 	0x80020515F2100004ULL, 0x80020515F21000E4ULL,
398 	END_SIGN
399 };
400 
401 /*
402  * Constants for Fixing the MacAddress problem seen mostly on
403  * Alpha machines.
404  */
405 static const u64 fix_mac[] = {
406 	0x0060000000000000ULL, 0x0060600000000000ULL,
407 	0x0040600000000000ULL, 0x0000600000000000ULL,
408 	0x0020600000000000ULL, 0x0060600000000000ULL,
409 	0x0020600000000000ULL, 0x0060600000000000ULL,
410 	0x0020600000000000ULL, 0x0060600000000000ULL,
411 	0x0020600000000000ULL, 0x0060600000000000ULL,
412 	0x0020600000000000ULL, 0x0060600000000000ULL,
413 	0x0020600000000000ULL, 0x0060600000000000ULL,
414 	0x0020600000000000ULL, 0x0060600000000000ULL,
415 	0x0020600000000000ULL, 0x0060600000000000ULL,
416 	0x0020600000000000ULL, 0x0060600000000000ULL,
417 	0x0020600000000000ULL, 0x0060600000000000ULL,
418 	0x0020600000000000ULL, 0x0000600000000000ULL,
419 	0x0040600000000000ULL, 0x0060600000000000ULL,
420 	END_SIGN
421 };
422 
423 MODULE_LICENSE("GPL");
424 MODULE_VERSION(DRV_VERSION);
425 
426 
427 /* Module Loadable parameters. */
428 S2IO_PARM_INT(tx_fifo_num, FIFO_DEFAULT_NUM);
429 S2IO_PARM_INT(rx_ring_num, 1);
430 S2IO_PARM_INT(multiq, 0);
431 S2IO_PARM_INT(rx_ring_mode, 1);
432 S2IO_PARM_INT(use_continuous_tx_intrs, 1);
433 S2IO_PARM_INT(rmac_pause_time, 0x100);
434 S2IO_PARM_INT(mc_pause_threshold_q0q3, 187);
435 S2IO_PARM_INT(mc_pause_threshold_q4q7, 187);
436 S2IO_PARM_INT(shared_splits, 0);
437 S2IO_PARM_INT(tmac_util_period, 5);
438 S2IO_PARM_INT(rmac_util_period, 5);
439 S2IO_PARM_INT(l3l4hdr_size, 128);
440 /* 0 is no steering, 1 is Priority steering, 2 is Default steering */
441 S2IO_PARM_INT(tx_steering_type, TX_DEFAULT_STEERING);
442 /* Frequency of Rx desc syncs expressed as power of 2 */
443 S2IO_PARM_INT(rxsync_frequency, 3);
444 /* Interrupt type. Values can be 0(INTA), 2(MSI_X) */
445 S2IO_PARM_INT(intr_type, 2);
446 /* Large receive offload feature */
447 
448 /* Max pkts to be aggregated by LRO at one time. If not specified,
449  * aggregation happens until we hit max IP pkt size(64K)
450  */
451 S2IO_PARM_INT(lro_max_pkts, 0xFFFF);
452 S2IO_PARM_INT(indicate_max_pkts, 0);
453 
454 S2IO_PARM_INT(napi, 1);
455 S2IO_PARM_INT(ufo, 0);
456 S2IO_PARM_INT(vlan_tag_strip, NO_STRIP_IN_PROMISC);
457 
458 static unsigned int tx_fifo_len[MAX_TX_FIFOS] =
459 {DEFAULT_FIFO_0_LEN, [1 ...(MAX_TX_FIFOS - 1)] = DEFAULT_FIFO_1_7_LEN};
460 static unsigned int rx_ring_sz[MAX_RX_RINGS] =
461 {[0 ...(MAX_RX_RINGS - 1)] = SMALL_BLK_CNT};
462 static unsigned int rts_frm_len[MAX_RX_RINGS] =
463 {[0 ...(MAX_RX_RINGS - 1)] = 0 };
464 
465 module_param_array(tx_fifo_len, uint, NULL, 0);
466 module_param_array(rx_ring_sz, uint, NULL, 0);
467 module_param_array(rts_frm_len, uint, NULL, 0);
468 
469 /*
470  * S2IO device table.
471  * This table lists all the devices that this driver supports.
472  */
473 static DEFINE_PCI_DEVICE_TABLE(s2io_tbl) = {
474 	{PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_WIN,
475 	 PCI_ANY_ID, PCI_ANY_ID},
476 	{PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_UNI,
477 	 PCI_ANY_ID, PCI_ANY_ID},
478 	{PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_WIN,
479 	 PCI_ANY_ID, PCI_ANY_ID},
480 	{PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_UNI,
481 	 PCI_ANY_ID, PCI_ANY_ID},
482 	{0,}
483 };
484 
485 MODULE_DEVICE_TABLE(pci, s2io_tbl);
486 
487 static const struct pci_error_handlers s2io_err_handler = {
488 	.error_detected = s2io_io_error_detected,
489 	.slot_reset = s2io_io_slot_reset,
490 	.resume = s2io_io_resume,
491 };
492 
493 static struct pci_driver s2io_driver = {
494 	.name = "S2IO",
495 	.id_table = s2io_tbl,
496 	.probe = s2io_init_nic,
497 	.remove = s2io_rem_nic,
498 	.err_handler = &s2io_err_handler,
499 };
500 
501 /* A simplifier macro used both by init and free shared_mem Fns(). */
502 #define TXD_MEM_PAGE_CNT(len, per_each) ((len+per_each - 1) / per_each)
503 
504 /* netqueue manipulation helper functions */
505 static inline void s2io_stop_all_tx_queue(struct s2io_nic *sp)
506 {
507 	if (!sp->config.multiq) {
508 		int i;
509 
510 		for (i = 0; i < sp->config.tx_fifo_num; i++)
511 			sp->mac_control.fifos[i].queue_state = FIFO_QUEUE_STOP;
512 	}
513 	netif_tx_stop_all_queues(sp->dev);
514 }
515 
516 static inline void s2io_stop_tx_queue(struct s2io_nic *sp, int fifo_no)
517 {
518 	if (!sp->config.multiq)
519 		sp->mac_control.fifos[fifo_no].queue_state =
520 			FIFO_QUEUE_STOP;
521 
522 	netif_tx_stop_all_queues(sp->dev);
523 }
524 
525 static inline void s2io_start_all_tx_queue(struct s2io_nic *sp)
526 {
527 	if (!sp->config.multiq) {
528 		int i;
529 
530 		for (i = 0; i < sp->config.tx_fifo_num; i++)
531 			sp->mac_control.fifos[i].queue_state = FIFO_QUEUE_START;
532 	}
533 	netif_tx_start_all_queues(sp->dev);
534 }
535 
536 static inline void s2io_start_tx_queue(struct s2io_nic *sp, int fifo_no)
537 {
538 	if (!sp->config.multiq)
539 		sp->mac_control.fifos[fifo_no].queue_state =
540 			FIFO_QUEUE_START;
541 
542 	netif_tx_start_all_queues(sp->dev);
543 }
544 
545 static inline void s2io_wake_all_tx_queue(struct s2io_nic *sp)
546 {
547 	if (!sp->config.multiq) {
548 		int i;
549 
550 		for (i = 0; i < sp->config.tx_fifo_num; i++)
551 			sp->mac_control.fifos[i].queue_state = FIFO_QUEUE_START;
552 	}
553 	netif_tx_wake_all_queues(sp->dev);
554 }
555 
556 static inline void s2io_wake_tx_queue(
557 	struct fifo_info *fifo, int cnt, u8 multiq)
558 {
559 
560 	if (multiq) {
561 		if (cnt && __netif_subqueue_stopped(fifo->dev, fifo->fifo_no))
562 			netif_wake_subqueue(fifo->dev, fifo->fifo_no);
563 	} else if (cnt && (fifo->queue_state == FIFO_QUEUE_STOP)) {
564 		if (netif_queue_stopped(fifo->dev)) {
565 			fifo->queue_state = FIFO_QUEUE_START;
566 			netif_wake_queue(fifo->dev);
567 		}
568 	}
569 }
570 
571 /**
572  * init_shared_mem - Allocation and Initialization of Memory
573  * @nic: Device private variable.
574  * Description: The function allocates all the memory areas shared
575  * between the NIC and the driver. This includes Tx descriptors,
576  * Rx descriptors and the statistics block.
577  */
578 
579 static int init_shared_mem(struct s2io_nic *nic)
580 {
581 	u32 size;
582 	void *tmp_v_addr, *tmp_v_addr_next;
583 	dma_addr_t tmp_p_addr, tmp_p_addr_next;
584 	struct RxD_block *pre_rxd_blk = NULL;
585 	int i, j, blk_cnt;
586 	int lst_size, lst_per_page;
587 	struct net_device *dev = nic->dev;
588 	unsigned long tmp;
589 	struct buffAdd *ba;
590 	struct config_param *config = &nic->config;
591 	struct mac_info *mac_control = &nic->mac_control;
592 	unsigned long long mem_allocated = 0;
593 
594 	/* Allocation and initialization of TXDLs in FIFOs */
595 	size = 0;
596 	for (i = 0; i < config->tx_fifo_num; i++) {
597 		struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
598 
599 		size += tx_cfg->fifo_len;
600 	}
601 	if (size > MAX_AVAILABLE_TXDS) {
602 		DBG_PRINT(ERR_DBG,
603 			  "Too many TxDs requested: %d, max supported: %d\n",
604 			  size, MAX_AVAILABLE_TXDS);
605 		return -EINVAL;
606 	}
607 
608 	size = 0;
609 	for (i = 0; i < config->tx_fifo_num; i++) {
610 		struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
611 
612 		size = tx_cfg->fifo_len;
613 		/*
614 		 * Legal values are from 2 to 8192
615 		 */
616 		if (size < 2) {
617 			DBG_PRINT(ERR_DBG, "Fifo %d: Invalid length (%d) - "
618 				  "Valid lengths are 2 through 8192\n",
619 				  i, size);
620 			return -EINVAL;
621 		}
622 	}
623 
624 	lst_size = (sizeof(struct TxD) * config->max_txds);
625 	lst_per_page = PAGE_SIZE / lst_size;
626 
627 	for (i = 0; i < config->tx_fifo_num; i++) {
628 		struct fifo_info *fifo = &mac_control->fifos[i];
629 		struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
630 		int fifo_len = tx_cfg->fifo_len;
631 		int list_holder_size = fifo_len * sizeof(struct list_info_hold);
632 
633 		fifo->list_info = kzalloc(list_holder_size, GFP_KERNEL);
634 		if (!fifo->list_info) {
635 			DBG_PRINT(INFO_DBG, "Malloc failed for list_info\n");
636 			return -ENOMEM;
637 		}
638 		mem_allocated += list_holder_size;
639 	}
640 	for (i = 0; i < config->tx_fifo_num; i++) {
641 		int page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len,
642 						lst_per_page);
643 		struct fifo_info *fifo = &mac_control->fifos[i];
644 		struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
645 
646 		fifo->tx_curr_put_info.offset = 0;
647 		fifo->tx_curr_put_info.fifo_len = tx_cfg->fifo_len - 1;
648 		fifo->tx_curr_get_info.offset = 0;
649 		fifo->tx_curr_get_info.fifo_len = tx_cfg->fifo_len - 1;
650 		fifo->fifo_no = i;
651 		fifo->nic = nic;
652 		fifo->max_txds = MAX_SKB_FRAGS + 2;
653 		fifo->dev = dev;
654 
655 		for (j = 0; j < page_num; j++) {
656 			int k = 0;
657 			dma_addr_t tmp_p;
658 			void *tmp_v;
659 			tmp_v = pci_alloc_consistent(nic->pdev,
660 						     PAGE_SIZE, &tmp_p);
661 			if (!tmp_v) {
662 				DBG_PRINT(INFO_DBG,
663 					  "pci_alloc_consistent failed for TxDL\n");
664 				return -ENOMEM;
665 			}
666 			/* If we got a zero DMA address(can happen on
667 			 * certain platforms like PPC), reallocate.
668 			 * Store virtual address of page we don't want,
669 			 * to be freed later.
670 			 */
671 			if (!tmp_p) {
672 				mac_control->zerodma_virt_addr = tmp_v;
673 				DBG_PRINT(INIT_DBG,
674 					  "%s: Zero DMA address for TxDL. "
675 					  "Virtual address %p\n",
676 					  dev->name, tmp_v);
677 				tmp_v = pci_alloc_consistent(nic->pdev,
678 							     PAGE_SIZE, &tmp_p);
679 				if (!tmp_v) {
680 					DBG_PRINT(INFO_DBG,
681 						  "pci_alloc_consistent failed for TxDL\n");
682 					return -ENOMEM;
683 				}
684 				mem_allocated += PAGE_SIZE;
685 			}
686 			while (k < lst_per_page) {
687 				int l = (j * lst_per_page) + k;
688 				if (l == tx_cfg->fifo_len)
689 					break;
690 				fifo->list_info[l].list_virt_addr =
691 					tmp_v + (k * lst_size);
692 				fifo->list_info[l].list_phy_addr =
693 					tmp_p + (k * lst_size);
694 				k++;
695 			}
696 		}
697 	}
698 
699 	for (i = 0; i < config->tx_fifo_num; i++) {
700 		struct fifo_info *fifo = &mac_control->fifos[i];
701 		struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
702 
703 		size = tx_cfg->fifo_len;
704 		fifo->ufo_in_band_v = kcalloc(size, sizeof(u64), GFP_KERNEL);
705 		if (!fifo->ufo_in_band_v)
706 			return -ENOMEM;
707 		mem_allocated += (size * sizeof(u64));
708 	}
709 
710 	/* Allocation and initialization of RXDs in Rings */
711 	size = 0;
712 	for (i = 0; i < config->rx_ring_num; i++) {
713 		struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
714 		struct ring_info *ring = &mac_control->rings[i];
715 
716 		if (rx_cfg->num_rxd % (rxd_count[nic->rxd_mode] + 1)) {
717 			DBG_PRINT(ERR_DBG, "%s: Ring%d RxD count is not a "
718 				  "multiple of RxDs per Block\n",
719 				  dev->name, i);
720 			return FAILURE;
721 		}
722 		size += rx_cfg->num_rxd;
723 		ring->block_count = rx_cfg->num_rxd /
724 			(rxd_count[nic->rxd_mode] + 1);
725 		ring->pkt_cnt = rx_cfg->num_rxd - ring->block_count;
726 	}
727 	if (nic->rxd_mode == RXD_MODE_1)
728 		size = (size * (sizeof(struct RxD1)));
729 	else
730 		size = (size * (sizeof(struct RxD3)));
731 
732 	for (i = 0; i < config->rx_ring_num; i++) {
733 		struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
734 		struct ring_info *ring = &mac_control->rings[i];
735 
736 		ring->rx_curr_get_info.block_index = 0;
737 		ring->rx_curr_get_info.offset = 0;
738 		ring->rx_curr_get_info.ring_len = rx_cfg->num_rxd - 1;
739 		ring->rx_curr_put_info.block_index = 0;
740 		ring->rx_curr_put_info.offset = 0;
741 		ring->rx_curr_put_info.ring_len = rx_cfg->num_rxd - 1;
742 		ring->nic = nic;
743 		ring->ring_no = i;
744 
745 		blk_cnt = rx_cfg->num_rxd / (rxd_count[nic->rxd_mode] + 1);
746 		/*  Allocating all the Rx blocks */
747 		for (j = 0; j < blk_cnt; j++) {
748 			struct rx_block_info *rx_blocks;
749 			int l;
750 
751 			rx_blocks = &ring->rx_blocks[j];
752 			size = SIZE_OF_BLOCK;	/* size is always page size */
753 			tmp_v_addr = pci_alloc_consistent(nic->pdev, size,
754 							  &tmp_p_addr);
755 			if (tmp_v_addr == NULL) {
756 				/*
757 				 * In case of failure, free_shared_mem()
758 				 * is called, which should free any
759 				 * memory that was alloced till the
760 				 * failure happened.
761 				 */
762 				rx_blocks->block_virt_addr = tmp_v_addr;
763 				return -ENOMEM;
764 			}
765 			mem_allocated += size;
766 			memset(tmp_v_addr, 0, size);
767 
768 			size = sizeof(struct rxd_info) *
769 				rxd_count[nic->rxd_mode];
770 			rx_blocks->block_virt_addr = tmp_v_addr;
771 			rx_blocks->block_dma_addr = tmp_p_addr;
772 			rx_blocks->rxds = kmalloc(size,  GFP_KERNEL);
773 			if (!rx_blocks->rxds)
774 				return -ENOMEM;
775 			mem_allocated += size;
776 			for (l = 0; l < rxd_count[nic->rxd_mode]; l++) {
777 				rx_blocks->rxds[l].virt_addr =
778 					rx_blocks->block_virt_addr +
779 					(rxd_size[nic->rxd_mode] * l);
780 				rx_blocks->rxds[l].dma_addr =
781 					rx_blocks->block_dma_addr +
782 					(rxd_size[nic->rxd_mode] * l);
783 			}
784 		}
785 		/* Interlinking all Rx Blocks */
786 		for (j = 0; j < blk_cnt; j++) {
787 			int next = (j + 1) % blk_cnt;
788 			tmp_v_addr = ring->rx_blocks[j].block_virt_addr;
789 			tmp_v_addr_next = ring->rx_blocks[next].block_virt_addr;
790 			tmp_p_addr = ring->rx_blocks[j].block_dma_addr;
791 			tmp_p_addr_next = ring->rx_blocks[next].block_dma_addr;
792 
793 			pre_rxd_blk = tmp_v_addr;
794 			pre_rxd_blk->reserved_2_pNext_RxD_block =
795 				(unsigned long)tmp_v_addr_next;
796 			pre_rxd_blk->pNext_RxD_Blk_physical =
797 				(u64)tmp_p_addr_next;
798 		}
799 	}
800 	if (nic->rxd_mode == RXD_MODE_3B) {
801 		/*
802 		 * Allocation of Storages for buffer addresses in 2BUFF mode
803 		 * and the buffers as well.
804 		 */
805 		for (i = 0; i < config->rx_ring_num; i++) {
806 			struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
807 			struct ring_info *ring = &mac_control->rings[i];
808 
809 			blk_cnt = rx_cfg->num_rxd /
810 				(rxd_count[nic->rxd_mode] + 1);
811 			size = sizeof(struct buffAdd *) * blk_cnt;
812 			ring->ba = kmalloc(size, GFP_KERNEL);
813 			if (!ring->ba)
814 				return -ENOMEM;
815 			mem_allocated += size;
816 			for (j = 0; j < blk_cnt; j++) {
817 				int k = 0;
818 
819 				size = sizeof(struct buffAdd) *
820 					(rxd_count[nic->rxd_mode] + 1);
821 				ring->ba[j] = kmalloc(size, GFP_KERNEL);
822 				if (!ring->ba[j])
823 					return -ENOMEM;
824 				mem_allocated += size;
825 				while (k != rxd_count[nic->rxd_mode]) {
826 					ba = &ring->ba[j][k];
827 					size = BUF0_LEN + ALIGN_SIZE;
828 					ba->ba_0_org = kmalloc(size, GFP_KERNEL);
829 					if (!ba->ba_0_org)
830 						return -ENOMEM;
831 					mem_allocated += size;
832 					tmp = (unsigned long)ba->ba_0_org;
833 					tmp += ALIGN_SIZE;
834 					tmp &= ~((unsigned long)ALIGN_SIZE);
835 					ba->ba_0 = (void *)tmp;
836 
837 					size = BUF1_LEN + ALIGN_SIZE;
838 					ba->ba_1_org = kmalloc(size, GFP_KERNEL);
839 					if (!ba->ba_1_org)
840 						return -ENOMEM;
841 					mem_allocated += size;
842 					tmp = (unsigned long)ba->ba_1_org;
843 					tmp += ALIGN_SIZE;
844 					tmp &= ~((unsigned long)ALIGN_SIZE);
845 					ba->ba_1 = (void *)tmp;
846 					k++;
847 				}
848 			}
849 		}
850 	}
851 
852 	/* Allocation and initialization of Statistics block */
853 	size = sizeof(struct stat_block);
854 	mac_control->stats_mem =
855 		pci_alloc_consistent(nic->pdev, size,
856 				     &mac_control->stats_mem_phy);
857 
858 	if (!mac_control->stats_mem) {
859 		/*
860 		 * In case of failure, free_shared_mem() is called, which
861 		 * should free any memory that was alloced till the
862 		 * failure happened.
863 		 */
864 		return -ENOMEM;
865 	}
866 	mem_allocated += size;
867 	mac_control->stats_mem_sz = size;
868 
869 	tmp_v_addr = mac_control->stats_mem;
870 	mac_control->stats_info = tmp_v_addr;
871 	memset(tmp_v_addr, 0, size);
872 	DBG_PRINT(INIT_DBG, "%s: Ring Mem PHY: 0x%llx\n",
873 		dev_name(&nic->pdev->dev), (unsigned long long)tmp_p_addr);
874 	mac_control->stats_info->sw_stat.mem_allocated += mem_allocated;
875 	return SUCCESS;
876 }
877 
878 /**
879  * free_shared_mem - Free the allocated Memory
880  * @nic:  Device private variable.
881  * Description: This function is to free all memory locations allocated by
882  * the init_shared_mem() function and return it to the kernel.
883  */
884 
885 static void free_shared_mem(struct s2io_nic *nic)
886 {
887 	int i, j, blk_cnt, size;
888 	void *tmp_v_addr;
889 	dma_addr_t tmp_p_addr;
890 	int lst_size, lst_per_page;
891 	struct net_device *dev;
892 	int page_num = 0;
893 	struct config_param *config;
894 	struct mac_info *mac_control;
895 	struct stat_block *stats;
896 	struct swStat *swstats;
897 
898 	if (!nic)
899 		return;
900 
901 	dev = nic->dev;
902 
903 	config = &nic->config;
904 	mac_control = &nic->mac_control;
905 	stats = mac_control->stats_info;
906 	swstats = &stats->sw_stat;
907 
908 	lst_size = sizeof(struct TxD) * config->max_txds;
909 	lst_per_page = PAGE_SIZE / lst_size;
910 
911 	for (i = 0; i < config->tx_fifo_num; i++) {
912 		struct fifo_info *fifo = &mac_control->fifos[i];
913 		struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
914 
915 		page_num = TXD_MEM_PAGE_CNT(tx_cfg->fifo_len, lst_per_page);
916 		for (j = 0; j < page_num; j++) {
917 			int mem_blks = (j * lst_per_page);
918 			struct list_info_hold *fli;
919 
920 			if (!fifo->list_info)
921 				return;
922 
923 			fli = &fifo->list_info[mem_blks];
924 			if (!fli->list_virt_addr)
925 				break;
926 			pci_free_consistent(nic->pdev, PAGE_SIZE,
927 					    fli->list_virt_addr,
928 					    fli->list_phy_addr);
929 			swstats->mem_freed += PAGE_SIZE;
930 		}
931 		/* If we got a zero DMA address during allocation,
932 		 * free the page now
933 		 */
934 		if (mac_control->zerodma_virt_addr) {
935 			pci_free_consistent(nic->pdev, PAGE_SIZE,
936 					    mac_control->zerodma_virt_addr,
937 					    (dma_addr_t)0);
938 			DBG_PRINT(INIT_DBG,
939 				  "%s: Freeing TxDL with zero DMA address. "
940 				  "Virtual address %p\n",
941 				  dev->name, mac_control->zerodma_virt_addr);
942 			swstats->mem_freed += PAGE_SIZE;
943 		}
944 		kfree(fifo->list_info);
945 		swstats->mem_freed += tx_cfg->fifo_len *
946 			sizeof(struct list_info_hold);
947 	}
948 
949 	size = SIZE_OF_BLOCK;
950 	for (i = 0; i < config->rx_ring_num; i++) {
951 		struct ring_info *ring = &mac_control->rings[i];
952 
953 		blk_cnt = ring->block_count;
954 		for (j = 0; j < blk_cnt; j++) {
955 			tmp_v_addr = ring->rx_blocks[j].block_virt_addr;
956 			tmp_p_addr = ring->rx_blocks[j].block_dma_addr;
957 			if (tmp_v_addr == NULL)
958 				break;
959 			pci_free_consistent(nic->pdev, size,
960 					    tmp_v_addr, tmp_p_addr);
961 			swstats->mem_freed += size;
962 			kfree(ring->rx_blocks[j].rxds);
963 			swstats->mem_freed += sizeof(struct rxd_info) *
964 				rxd_count[nic->rxd_mode];
965 		}
966 	}
967 
968 	if (nic->rxd_mode == RXD_MODE_3B) {
969 		/* Freeing buffer storage addresses in 2BUFF mode. */
970 		for (i = 0; i < config->rx_ring_num; i++) {
971 			struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
972 			struct ring_info *ring = &mac_control->rings[i];
973 
974 			blk_cnt = rx_cfg->num_rxd /
975 				(rxd_count[nic->rxd_mode] + 1);
976 			for (j = 0; j < blk_cnt; j++) {
977 				int k = 0;
978 				if (!ring->ba[j])
979 					continue;
980 				while (k != rxd_count[nic->rxd_mode]) {
981 					struct buffAdd *ba = &ring->ba[j][k];
982 					kfree(ba->ba_0_org);
983 					swstats->mem_freed +=
984 						BUF0_LEN + ALIGN_SIZE;
985 					kfree(ba->ba_1_org);
986 					swstats->mem_freed +=
987 						BUF1_LEN + ALIGN_SIZE;
988 					k++;
989 				}
990 				kfree(ring->ba[j]);
991 				swstats->mem_freed += sizeof(struct buffAdd) *
992 					(rxd_count[nic->rxd_mode] + 1);
993 			}
994 			kfree(ring->ba);
995 			swstats->mem_freed += sizeof(struct buffAdd *) *
996 				blk_cnt;
997 		}
998 	}
999 
1000 	for (i = 0; i < nic->config.tx_fifo_num; i++) {
1001 		struct fifo_info *fifo = &mac_control->fifos[i];
1002 		struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
1003 
1004 		if (fifo->ufo_in_band_v) {
1005 			swstats->mem_freed += tx_cfg->fifo_len *
1006 				sizeof(u64);
1007 			kfree(fifo->ufo_in_band_v);
1008 		}
1009 	}
1010 
1011 	if (mac_control->stats_mem) {
1012 		swstats->mem_freed += mac_control->stats_mem_sz;
1013 		pci_free_consistent(nic->pdev,
1014 				    mac_control->stats_mem_sz,
1015 				    mac_control->stats_mem,
1016 				    mac_control->stats_mem_phy);
1017 	}
1018 }
1019 
1020 /**
1021  * s2io_verify_pci_mode -
1022  */
1023 
1024 static int s2io_verify_pci_mode(struct s2io_nic *nic)
1025 {
1026 	struct XENA_dev_config __iomem *bar0 = nic->bar0;
1027 	register u64 val64 = 0;
1028 	int     mode;
1029 
1030 	val64 = readq(&bar0->pci_mode);
1031 	mode = (u8)GET_PCI_MODE(val64);
1032 
1033 	if (val64 & PCI_MODE_UNKNOWN_MODE)
1034 		return -1;      /* Unknown PCI mode */
1035 	return mode;
1036 }
1037 
1038 #define NEC_VENID   0x1033
1039 #define NEC_DEVID   0x0125
1040 static int s2io_on_nec_bridge(struct pci_dev *s2io_pdev)
1041 {
1042 	struct pci_dev *tdev = NULL;
1043 	for_each_pci_dev(tdev) {
1044 		if (tdev->vendor == NEC_VENID && tdev->device == NEC_DEVID) {
1045 			if (tdev->bus == s2io_pdev->bus->parent) {
1046 				pci_dev_put(tdev);
1047 				return 1;
1048 			}
1049 		}
1050 	}
1051 	return 0;
1052 }
1053 
1054 static int bus_speed[8] = {33, 133, 133, 200, 266, 133, 200, 266};
1055 /**
1056  * s2io_print_pci_mode -
1057  */
1058 static int s2io_print_pci_mode(struct s2io_nic *nic)
1059 {
1060 	struct XENA_dev_config __iomem *bar0 = nic->bar0;
1061 	register u64 val64 = 0;
1062 	int	mode;
1063 	struct config_param *config = &nic->config;
1064 	const char *pcimode;
1065 
1066 	val64 = readq(&bar0->pci_mode);
1067 	mode = (u8)GET_PCI_MODE(val64);
1068 
1069 	if (val64 & PCI_MODE_UNKNOWN_MODE)
1070 		return -1;	/* Unknown PCI mode */
1071 
1072 	config->bus_speed = bus_speed[mode];
1073 
1074 	if (s2io_on_nec_bridge(nic->pdev)) {
1075 		DBG_PRINT(ERR_DBG, "%s: Device is on PCI-E bus\n",
1076 			  nic->dev->name);
1077 		return mode;
1078 	}
1079 
1080 	switch (mode) {
1081 	case PCI_MODE_PCI_33:
1082 		pcimode = "33MHz PCI bus";
1083 		break;
1084 	case PCI_MODE_PCI_66:
1085 		pcimode = "66MHz PCI bus";
1086 		break;
1087 	case PCI_MODE_PCIX_M1_66:
1088 		pcimode = "66MHz PCIX(M1) bus";
1089 		break;
1090 	case PCI_MODE_PCIX_M1_100:
1091 		pcimode = "100MHz PCIX(M1) bus";
1092 		break;
1093 	case PCI_MODE_PCIX_M1_133:
1094 		pcimode = "133MHz PCIX(M1) bus";
1095 		break;
1096 	case PCI_MODE_PCIX_M2_66:
1097 		pcimode = "133MHz PCIX(M2) bus";
1098 		break;
1099 	case PCI_MODE_PCIX_M2_100:
1100 		pcimode = "200MHz PCIX(M2) bus";
1101 		break;
1102 	case PCI_MODE_PCIX_M2_133:
1103 		pcimode = "266MHz PCIX(M2) bus";
1104 		break;
1105 	default:
1106 		pcimode = "unsupported bus!";
1107 		mode = -1;
1108 	}
1109 
1110 	DBG_PRINT(ERR_DBG, "%s: Device is on %d bit %s\n",
1111 		  nic->dev->name, val64 & PCI_MODE_32_BITS ? 32 : 64, pcimode);
1112 
1113 	return mode;
1114 }
1115 
1116 /**
1117  *  init_tti - Initialization transmit traffic interrupt scheme
1118  *  @nic: device private variable
1119  *  @link: link status (UP/DOWN) used to enable/disable continuous
1120  *  transmit interrupts
1121  *  Description: The function configures transmit traffic interrupts
1122  *  Return Value:  SUCCESS on success and
1123  *  '-1' on failure
1124  */
1125 
1126 static int init_tti(struct s2io_nic *nic, int link)
1127 {
1128 	struct XENA_dev_config __iomem *bar0 = nic->bar0;
1129 	register u64 val64 = 0;
1130 	int i;
1131 	struct config_param *config = &nic->config;
1132 
1133 	for (i = 0; i < config->tx_fifo_num; i++) {
1134 		/*
1135 		 * TTI Initialization. Default Tx timer gets us about
1136 		 * 250 interrupts per sec. Continuous interrupts are enabled
1137 		 * by default.
1138 		 */
1139 		if (nic->device_type == XFRAME_II_DEVICE) {
1140 			int count = (nic->config.bus_speed * 125)/2;
1141 			val64 = TTI_DATA1_MEM_TX_TIMER_VAL(count);
1142 		} else
1143 			val64 = TTI_DATA1_MEM_TX_TIMER_VAL(0x2078);
1144 
1145 		val64 |= TTI_DATA1_MEM_TX_URNG_A(0xA) |
1146 			TTI_DATA1_MEM_TX_URNG_B(0x10) |
1147 			TTI_DATA1_MEM_TX_URNG_C(0x30) |
1148 			TTI_DATA1_MEM_TX_TIMER_AC_EN;
1149 		if (i == 0)
1150 			if (use_continuous_tx_intrs && (link == LINK_UP))
1151 				val64 |= TTI_DATA1_MEM_TX_TIMER_CI_EN;
1152 		writeq(val64, &bar0->tti_data1_mem);
1153 
1154 		if (nic->config.intr_type == MSI_X) {
1155 			val64 = TTI_DATA2_MEM_TX_UFC_A(0x10) |
1156 				TTI_DATA2_MEM_TX_UFC_B(0x100) |
1157 				TTI_DATA2_MEM_TX_UFC_C(0x200) |
1158 				TTI_DATA2_MEM_TX_UFC_D(0x300);
1159 		} else {
1160 			if ((nic->config.tx_steering_type ==
1161 			     TX_DEFAULT_STEERING) &&
1162 			    (config->tx_fifo_num > 1) &&
1163 			    (i >= nic->udp_fifo_idx) &&
1164 			    (i < (nic->udp_fifo_idx +
1165 				  nic->total_udp_fifos)))
1166 				val64 = TTI_DATA2_MEM_TX_UFC_A(0x50) |
1167 					TTI_DATA2_MEM_TX_UFC_B(0x80) |
1168 					TTI_DATA2_MEM_TX_UFC_C(0x100) |
1169 					TTI_DATA2_MEM_TX_UFC_D(0x120);
1170 			else
1171 				val64 = TTI_DATA2_MEM_TX_UFC_A(0x10) |
1172 					TTI_DATA2_MEM_TX_UFC_B(0x20) |
1173 					TTI_DATA2_MEM_TX_UFC_C(0x40) |
1174 					TTI_DATA2_MEM_TX_UFC_D(0x80);
1175 		}
1176 
1177 		writeq(val64, &bar0->tti_data2_mem);
1178 
1179 		val64 = TTI_CMD_MEM_WE |
1180 			TTI_CMD_MEM_STROBE_NEW_CMD |
1181 			TTI_CMD_MEM_OFFSET(i);
1182 		writeq(val64, &bar0->tti_command_mem);
1183 
1184 		if (wait_for_cmd_complete(&bar0->tti_command_mem,
1185 					  TTI_CMD_MEM_STROBE_NEW_CMD,
1186 					  S2IO_BIT_RESET) != SUCCESS)
1187 			return FAILURE;
1188 	}
1189 
1190 	return SUCCESS;
1191 }
1192 
1193 /**
1194  *  init_nic - Initialization of hardware
1195  *  @nic: device private variable
1196  *  Description: The function sequentially configures every block
1197  *  of the H/W from their reset values.
1198  *  Return Value:  SUCCESS on success and
1199  *  '-1' on failure (endian settings incorrect).
1200  */
1201 
1202 static int init_nic(struct s2io_nic *nic)
1203 {
1204 	struct XENA_dev_config __iomem *bar0 = nic->bar0;
1205 	struct net_device *dev = nic->dev;
1206 	register u64 val64 = 0;
1207 	void __iomem *add;
1208 	u32 time;
1209 	int i, j;
1210 	int dtx_cnt = 0;
1211 	unsigned long long mem_share;
1212 	int mem_size;
1213 	struct config_param *config = &nic->config;
1214 	struct mac_info *mac_control = &nic->mac_control;
1215 
1216 	/* to set the swapper controle on the card */
1217 	if (s2io_set_swapper(nic)) {
1218 		DBG_PRINT(ERR_DBG, "ERROR: Setting Swapper failed\n");
1219 		return -EIO;
1220 	}
1221 
1222 	/*
1223 	 * Herc requires EOI to be removed from reset before XGXS, so..
1224 	 */
1225 	if (nic->device_type & XFRAME_II_DEVICE) {
1226 		val64 = 0xA500000000ULL;
1227 		writeq(val64, &bar0->sw_reset);
1228 		msleep(500);
1229 		val64 = readq(&bar0->sw_reset);
1230 	}
1231 
1232 	/* Remove XGXS from reset state */
1233 	val64 = 0;
1234 	writeq(val64, &bar0->sw_reset);
1235 	msleep(500);
1236 	val64 = readq(&bar0->sw_reset);
1237 
1238 	/* Ensure that it's safe to access registers by checking
1239 	 * RIC_RUNNING bit is reset. Check is valid only for XframeII.
1240 	 */
1241 	if (nic->device_type == XFRAME_II_DEVICE) {
1242 		for (i = 0; i < 50; i++) {
1243 			val64 = readq(&bar0->adapter_status);
1244 			if (!(val64 & ADAPTER_STATUS_RIC_RUNNING))
1245 				break;
1246 			msleep(10);
1247 		}
1248 		if (i == 50)
1249 			return -ENODEV;
1250 	}
1251 
1252 	/*  Enable Receiving broadcasts */
1253 	add = &bar0->mac_cfg;
1254 	val64 = readq(&bar0->mac_cfg);
1255 	val64 |= MAC_RMAC_BCAST_ENABLE;
1256 	writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1257 	writel((u32)val64, add);
1258 	writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1259 	writel((u32) (val64 >> 32), (add + 4));
1260 
1261 	/* Read registers in all blocks */
1262 	val64 = readq(&bar0->mac_int_mask);
1263 	val64 = readq(&bar0->mc_int_mask);
1264 	val64 = readq(&bar0->xgxs_int_mask);
1265 
1266 	/*  Set MTU */
1267 	val64 = dev->mtu;
1268 	writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
1269 
1270 	if (nic->device_type & XFRAME_II_DEVICE) {
1271 		while (herc_act_dtx_cfg[dtx_cnt] != END_SIGN) {
1272 			SPECIAL_REG_WRITE(herc_act_dtx_cfg[dtx_cnt],
1273 					  &bar0->dtx_control, UF);
1274 			if (dtx_cnt & 0x1)
1275 				msleep(1); /* Necessary!! */
1276 			dtx_cnt++;
1277 		}
1278 	} else {
1279 		while (xena_dtx_cfg[dtx_cnt] != END_SIGN) {
1280 			SPECIAL_REG_WRITE(xena_dtx_cfg[dtx_cnt],
1281 					  &bar0->dtx_control, UF);
1282 			val64 = readq(&bar0->dtx_control);
1283 			dtx_cnt++;
1284 		}
1285 	}
1286 
1287 	/*  Tx DMA Initialization */
1288 	val64 = 0;
1289 	writeq(val64, &bar0->tx_fifo_partition_0);
1290 	writeq(val64, &bar0->tx_fifo_partition_1);
1291 	writeq(val64, &bar0->tx_fifo_partition_2);
1292 	writeq(val64, &bar0->tx_fifo_partition_3);
1293 
1294 	for (i = 0, j = 0; i < config->tx_fifo_num; i++) {
1295 		struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
1296 
1297 		val64 |= vBIT(tx_cfg->fifo_len - 1, ((j * 32) + 19), 13) |
1298 			vBIT(tx_cfg->fifo_priority, ((j * 32) + 5), 3);
1299 
1300 		if (i == (config->tx_fifo_num - 1)) {
1301 			if (i % 2 == 0)
1302 				i++;
1303 		}
1304 
1305 		switch (i) {
1306 		case 1:
1307 			writeq(val64, &bar0->tx_fifo_partition_0);
1308 			val64 = 0;
1309 			j = 0;
1310 			break;
1311 		case 3:
1312 			writeq(val64, &bar0->tx_fifo_partition_1);
1313 			val64 = 0;
1314 			j = 0;
1315 			break;
1316 		case 5:
1317 			writeq(val64, &bar0->tx_fifo_partition_2);
1318 			val64 = 0;
1319 			j = 0;
1320 			break;
1321 		case 7:
1322 			writeq(val64, &bar0->tx_fifo_partition_3);
1323 			val64 = 0;
1324 			j = 0;
1325 			break;
1326 		default:
1327 			j++;
1328 			break;
1329 		}
1330 	}
1331 
1332 	/*
1333 	 * Disable 4 PCCs for Xena1, 2 and 3 as per H/W bug
1334 	 * SXE-008 TRANSMIT DMA ARBITRATION ISSUE.
1335 	 */
1336 	if ((nic->device_type == XFRAME_I_DEVICE) && (nic->pdev->revision < 4))
1337 		writeq(PCC_ENABLE_FOUR, &bar0->pcc_enable);
1338 
1339 	val64 = readq(&bar0->tx_fifo_partition_0);
1340 	DBG_PRINT(INIT_DBG, "Fifo partition at: 0x%p is: 0x%llx\n",
1341 		  &bar0->tx_fifo_partition_0, (unsigned long long)val64);
1342 
1343 	/*
1344 	 * Initialization of Tx_PA_CONFIG register to ignore packet
1345 	 * integrity checking.
1346 	 */
1347 	val64 = readq(&bar0->tx_pa_cfg);
1348 	val64 |= TX_PA_CFG_IGNORE_FRM_ERR |
1349 		TX_PA_CFG_IGNORE_SNAP_OUI |
1350 		TX_PA_CFG_IGNORE_LLC_CTRL |
1351 		TX_PA_CFG_IGNORE_L2_ERR;
1352 	writeq(val64, &bar0->tx_pa_cfg);
1353 
1354 	/* Rx DMA intialization. */
1355 	val64 = 0;
1356 	for (i = 0; i < config->rx_ring_num; i++) {
1357 		struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
1358 
1359 		val64 |= vBIT(rx_cfg->ring_priority, (5 + (i * 8)), 3);
1360 	}
1361 	writeq(val64, &bar0->rx_queue_priority);
1362 
1363 	/*
1364 	 * Allocating equal share of memory to all the
1365 	 * configured Rings.
1366 	 */
1367 	val64 = 0;
1368 	if (nic->device_type & XFRAME_II_DEVICE)
1369 		mem_size = 32;
1370 	else
1371 		mem_size = 64;
1372 
1373 	for (i = 0; i < config->rx_ring_num; i++) {
1374 		switch (i) {
1375 		case 0:
1376 			mem_share = (mem_size / config->rx_ring_num +
1377 				     mem_size % config->rx_ring_num);
1378 			val64 |= RX_QUEUE_CFG_Q0_SZ(mem_share);
1379 			continue;
1380 		case 1:
1381 			mem_share = (mem_size / config->rx_ring_num);
1382 			val64 |= RX_QUEUE_CFG_Q1_SZ(mem_share);
1383 			continue;
1384 		case 2:
1385 			mem_share = (mem_size / config->rx_ring_num);
1386 			val64 |= RX_QUEUE_CFG_Q2_SZ(mem_share);
1387 			continue;
1388 		case 3:
1389 			mem_share = (mem_size / config->rx_ring_num);
1390 			val64 |= RX_QUEUE_CFG_Q3_SZ(mem_share);
1391 			continue;
1392 		case 4:
1393 			mem_share = (mem_size / config->rx_ring_num);
1394 			val64 |= RX_QUEUE_CFG_Q4_SZ(mem_share);
1395 			continue;
1396 		case 5:
1397 			mem_share = (mem_size / config->rx_ring_num);
1398 			val64 |= RX_QUEUE_CFG_Q5_SZ(mem_share);
1399 			continue;
1400 		case 6:
1401 			mem_share = (mem_size / config->rx_ring_num);
1402 			val64 |= RX_QUEUE_CFG_Q6_SZ(mem_share);
1403 			continue;
1404 		case 7:
1405 			mem_share = (mem_size / config->rx_ring_num);
1406 			val64 |= RX_QUEUE_CFG_Q7_SZ(mem_share);
1407 			continue;
1408 		}
1409 	}
1410 	writeq(val64, &bar0->rx_queue_cfg);
1411 
1412 	/*
1413 	 * Filling Tx round robin registers
1414 	 * as per the number of FIFOs for equal scheduling priority
1415 	 */
1416 	switch (config->tx_fifo_num) {
1417 	case 1:
1418 		val64 = 0x0;
1419 		writeq(val64, &bar0->tx_w_round_robin_0);
1420 		writeq(val64, &bar0->tx_w_round_robin_1);
1421 		writeq(val64, &bar0->tx_w_round_robin_2);
1422 		writeq(val64, &bar0->tx_w_round_robin_3);
1423 		writeq(val64, &bar0->tx_w_round_robin_4);
1424 		break;
1425 	case 2:
1426 		val64 = 0x0001000100010001ULL;
1427 		writeq(val64, &bar0->tx_w_round_robin_0);
1428 		writeq(val64, &bar0->tx_w_round_robin_1);
1429 		writeq(val64, &bar0->tx_w_round_robin_2);
1430 		writeq(val64, &bar0->tx_w_round_robin_3);
1431 		val64 = 0x0001000100000000ULL;
1432 		writeq(val64, &bar0->tx_w_round_robin_4);
1433 		break;
1434 	case 3:
1435 		val64 = 0x0001020001020001ULL;
1436 		writeq(val64, &bar0->tx_w_round_robin_0);
1437 		val64 = 0x0200010200010200ULL;
1438 		writeq(val64, &bar0->tx_w_round_robin_1);
1439 		val64 = 0x0102000102000102ULL;
1440 		writeq(val64, &bar0->tx_w_round_robin_2);
1441 		val64 = 0x0001020001020001ULL;
1442 		writeq(val64, &bar0->tx_w_round_robin_3);
1443 		val64 = 0x0200010200000000ULL;
1444 		writeq(val64, &bar0->tx_w_round_robin_4);
1445 		break;
1446 	case 4:
1447 		val64 = 0x0001020300010203ULL;
1448 		writeq(val64, &bar0->tx_w_round_robin_0);
1449 		writeq(val64, &bar0->tx_w_round_robin_1);
1450 		writeq(val64, &bar0->tx_w_round_robin_2);
1451 		writeq(val64, &bar0->tx_w_round_robin_3);
1452 		val64 = 0x0001020300000000ULL;
1453 		writeq(val64, &bar0->tx_w_round_robin_4);
1454 		break;
1455 	case 5:
1456 		val64 = 0x0001020304000102ULL;
1457 		writeq(val64, &bar0->tx_w_round_robin_0);
1458 		val64 = 0x0304000102030400ULL;
1459 		writeq(val64, &bar0->tx_w_round_robin_1);
1460 		val64 = 0x0102030400010203ULL;
1461 		writeq(val64, &bar0->tx_w_round_robin_2);
1462 		val64 = 0x0400010203040001ULL;
1463 		writeq(val64, &bar0->tx_w_round_robin_3);
1464 		val64 = 0x0203040000000000ULL;
1465 		writeq(val64, &bar0->tx_w_round_robin_4);
1466 		break;
1467 	case 6:
1468 		val64 = 0x0001020304050001ULL;
1469 		writeq(val64, &bar0->tx_w_round_robin_0);
1470 		val64 = 0x0203040500010203ULL;
1471 		writeq(val64, &bar0->tx_w_round_robin_1);
1472 		val64 = 0x0405000102030405ULL;
1473 		writeq(val64, &bar0->tx_w_round_robin_2);
1474 		val64 = 0x0001020304050001ULL;
1475 		writeq(val64, &bar0->tx_w_round_robin_3);
1476 		val64 = 0x0203040500000000ULL;
1477 		writeq(val64, &bar0->tx_w_round_robin_4);
1478 		break;
1479 	case 7:
1480 		val64 = 0x0001020304050600ULL;
1481 		writeq(val64, &bar0->tx_w_round_robin_0);
1482 		val64 = 0x0102030405060001ULL;
1483 		writeq(val64, &bar0->tx_w_round_robin_1);
1484 		val64 = 0x0203040506000102ULL;
1485 		writeq(val64, &bar0->tx_w_round_robin_2);
1486 		val64 = 0x0304050600010203ULL;
1487 		writeq(val64, &bar0->tx_w_round_robin_3);
1488 		val64 = 0x0405060000000000ULL;
1489 		writeq(val64, &bar0->tx_w_round_robin_4);
1490 		break;
1491 	case 8:
1492 		val64 = 0x0001020304050607ULL;
1493 		writeq(val64, &bar0->tx_w_round_robin_0);
1494 		writeq(val64, &bar0->tx_w_round_robin_1);
1495 		writeq(val64, &bar0->tx_w_round_robin_2);
1496 		writeq(val64, &bar0->tx_w_round_robin_3);
1497 		val64 = 0x0001020300000000ULL;
1498 		writeq(val64, &bar0->tx_w_round_robin_4);
1499 		break;
1500 	}
1501 
1502 	/* Enable all configured Tx FIFO partitions */
1503 	val64 = readq(&bar0->tx_fifo_partition_0);
1504 	val64 |= (TX_FIFO_PARTITION_EN);
1505 	writeq(val64, &bar0->tx_fifo_partition_0);
1506 
1507 	/* Filling the Rx round robin registers as per the
1508 	 * number of Rings and steering based on QoS with
1509 	 * equal priority.
1510 	 */
1511 	switch (config->rx_ring_num) {
1512 	case 1:
1513 		val64 = 0x0;
1514 		writeq(val64, &bar0->rx_w_round_robin_0);
1515 		writeq(val64, &bar0->rx_w_round_robin_1);
1516 		writeq(val64, &bar0->rx_w_round_robin_2);
1517 		writeq(val64, &bar0->rx_w_round_robin_3);
1518 		writeq(val64, &bar0->rx_w_round_robin_4);
1519 
1520 		val64 = 0x8080808080808080ULL;
1521 		writeq(val64, &bar0->rts_qos_steering);
1522 		break;
1523 	case 2:
1524 		val64 = 0x0001000100010001ULL;
1525 		writeq(val64, &bar0->rx_w_round_robin_0);
1526 		writeq(val64, &bar0->rx_w_round_robin_1);
1527 		writeq(val64, &bar0->rx_w_round_robin_2);
1528 		writeq(val64, &bar0->rx_w_round_robin_3);
1529 		val64 = 0x0001000100000000ULL;
1530 		writeq(val64, &bar0->rx_w_round_robin_4);
1531 
1532 		val64 = 0x8080808040404040ULL;
1533 		writeq(val64, &bar0->rts_qos_steering);
1534 		break;
1535 	case 3:
1536 		val64 = 0x0001020001020001ULL;
1537 		writeq(val64, &bar0->rx_w_round_robin_0);
1538 		val64 = 0x0200010200010200ULL;
1539 		writeq(val64, &bar0->rx_w_round_robin_1);
1540 		val64 = 0x0102000102000102ULL;
1541 		writeq(val64, &bar0->rx_w_round_robin_2);
1542 		val64 = 0x0001020001020001ULL;
1543 		writeq(val64, &bar0->rx_w_round_robin_3);
1544 		val64 = 0x0200010200000000ULL;
1545 		writeq(val64, &bar0->rx_w_round_robin_4);
1546 
1547 		val64 = 0x8080804040402020ULL;
1548 		writeq(val64, &bar0->rts_qos_steering);
1549 		break;
1550 	case 4:
1551 		val64 = 0x0001020300010203ULL;
1552 		writeq(val64, &bar0->rx_w_round_robin_0);
1553 		writeq(val64, &bar0->rx_w_round_robin_1);
1554 		writeq(val64, &bar0->rx_w_round_robin_2);
1555 		writeq(val64, &bar0->rx_w_round_robin_3);
1556 		val64 = 0x0001020300000000ULL;
1557 		writeq(val64, &bar0->rx_w_round_robin_4);
1558 
1559 		val64 = 0x8080404020201010ULL;
1560 		writeq(val64, &bar0->rts_qos_steering);
1561 		break;
1562 	case 5:
1563 		val64 = 0x0001020304000102ULL;
1564 		writeq(val64, &bar0->rx_w_round_robin_0);
1565 		val64 = 0x0304000102030400ULL;
1566 		writeq(val64, &bar0->rx_w_round_robin_1);
1567 		val64 = 0x0102030400010203ULL;
1568 		writeq(val64, &bar0->rx_w_round_robin_2);
1569 		val64 = 0x0400010203040001ULL;
1570 		writeq(val64, &bar0->rx_w_round_robin_3);
1571 		val64 = 0x0203040000000000ULL;
1572 		writeq(val64, &bar0->rx_w_round_robin_4);
1573 
1574 		val64 = 0x8080404020201008ULL;
1575 		writeq(val64, &bar0->rts_qos_steering);
1576 		break;
1577 	case 6:
1578 		val64 = 0x0001020304050001ULL;
1579 		writeq(val64, &bar0->rx_w_round_robin_0);
1580 		val64 = 0x0203040500010203ULL;
1581 		writeq(val64, &bar0->rx_w_round_robin_1);
1582 		val64 = 0x0405000102030405ULL;
1583 		writeq(val64, &bar0->rx_w_round_robin_2);
1584 		val64 = 0x0001020304050001ULL;
1585 		writeq(val64, &bar0->rx_w_round_robin_3);
1586 		val64 = 0x0203040500000000ULL;
1587 		writeq(val64, &bar0->rx_w_round_robin_4);
1588 
1589 		val64 = 0x8080404020100804ULL;
1590 		writeq(val64, &bar0->rts_qos_steering);
1591 		break;
1592 	case 7:
1593 		val64 = 0x0001020304050600ULL;
1594 		writeq(val64, &bar0->rx_w_round_robin_0);
1595 		val64 = 0x0102030405060001ULL;
1596 		writeq(val64, &bar0->rx_w_round_robin_1);
1597 		val64 = 0x0203040506000102ULL;
1598 		writeq(val64, &bar0->rx_w_round_robin_2);
1599 		val64 = 0x0304050600010203ULL;
1600 		writeq(val64, &bar0->rx_w_round_robin_3);
1601 		val64 = 0x0405060000000000ULL;
1602 		writeq(val64, &bar0->rx_w_round_robin_4);
1603 
1604 		val64 = 0x8080402010080402ULL;
1605 		writeq(val64, &bar0->rts_qos_steering);
1606 		break;
1607 	case 8:
1608 		val64 = 0x0001020304050607ULL;
1609 		writeq(val64, &bar0->rx_w_round_robin_0);
1610 		writeq(val64, &bar0->rx_w_round_robin_1);
1611 		writeq(val64, &bar0->rx_w_round_robin_2);
1612 		writeq(val64, &bar0->rx_w_round_robin_3);
1613 		val64 = 0x0001020300000000ULL;
1614 		writeq(val64, &bar0->rx_w_round_robin_4);
1615 
1616 		val64 = 0x8040201008040201ULL;
1617 		writeq(val64, &bar0->rts_qos_steering);
1618 		break;
1619 	}
1620 
1621 	/* UDP Fix */
1622 	val64 = 0;
1623 	for (i = 0; i < 8; i++)
1624 		writeq(val64, &bar0->rts_frm_len_n[i]);
1625 
1626 	/* Set the default rts frame length for the rings configured */
1627 	val64 = MAC_RTS_FRM_LEN_SET(dev->mtu+22);
1628 	for (i = 0 ; i < config->rx_ring_num ; i++)
1629 		writeq(val64, &bar0->rts_frm_len_n[i]);
1630 
1631 	/* Set the frame length for the configured rings
1632 	 * desired by the user
1633 	 */
1634 	for (i = 0; i < config->rx_ring_num; i++) {
1635 		/* If rts_frm_len[i] == 0 then it is assumed that user not
1636 		 * specified frame length steering.
1637 		 * If the user provides the frame length then program
1638 		 * the rts_frm_len register for those values or else
1639 		 * leave it as it is.
1640 		 */
1641 		if (rts_frm_len[i] != 0) {
1642 			writeq(MAC_RTS_FRM_LEN_SET(rts_frm_len[i]),
1643 			       &bar0->rts_frm_len_n[i]);
1644 		}
1645 	}
1646 
1647 	/* Disable differentiated services steering logic */
1648 	for (i = 0; i < 64; i++) {
1649 		if (rts_ds_steer(nic, i, 0) == FAILURE) {
1650 			DBG_PRINT(ERR_DBG,
1651 				  "%s: rts_ds_steer failed on codepoint %d\n",
1652 				  dev->name, i);
1653 			return -ENODEV;
1654 		}
1655 	}
1656 
1657 	/* Program statistics memory */
1658 	writeq(mac_control->stats_mem_phy, &bar0->stat_addr);
1659 
1660 	if (nic->device_type == XFRAME_II_DEVICE) {
1661 		val64 = STAT_BC(0x320);
1662 		writeq(val64, &bar0->stat_byte_cnt);
1663 	}
1664 
1665 	/*
1666 	 * Initializing the sampling rate for the device to calculate the
1667 	 * bandwidth utilization.
1668 	 */
1669 	val64 = MAC_TX_LINK_UTIL_VAL(tmac_util_period) |
1670 		MAC_RX_LINK_UTIL_VAL(rmac_util_period);
1671 	writeq(val64, &bar0->mac_link_util);
1672 
1673 	/*
1674 	 * Initializing the Transmit and Receive Traffic Interrupt
1675 	 * Scheme.
1676 	 */
1677 
1678 	/* Initialize TTI */
1679 	if (SUCCESS != init_tti(nic, nic->last_link_state))
1680 		return -ENODEV;
1681 
1682 	/* RTI Initialization */
1683 	if (nic->device_type == XFRAME_II_DEVICE) {
1684 		/*
1685 		 * Programmed to generate Apprx 500 Intrs per
1686 		 * second
1687 		 */
1688 		int count = (nic->config.bus_speed * 125)/4;
1689 		val64 = RTI_DATA1_MEM_RX_TIMER_VAL(count);
1690 	} else
1691 		val64 = RTI_DATA1_MEM_RX_TIMER_VAL(0xFFF);
1692 	val64 |= RTI_DATA1_MEM_RX_URNG_A(0xA) |
1693 		RTI_DATA1_MEM_RX_URNG_B(0x10) |
1694 		RTI_DATA1_MEM_RX_URNG_C(0x30) |
1695 		RTI_DATA1_MEM_RX_TIMER_AC_EN;
1696 
1697 	writeq(val64, &bar0->rti_data1_mem);
1698 
1699 	val64 = RTI_DATA2_MEM_RX_UFC_A(0x1) |
1700 		RTI_DATA2_MEM_RX_UFC_B(0x2) ;
1701 	if (nic->config.intr_type == MSI_X)
1702 		val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x20) |
1703 			  RTI_DATA2_MEM_RX_UFC_D(0x40));
1704 	else
1705 		val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x40) |
1706 			  RTI_DATA2_MEM_RX_UFC_D(0x80));
1707 	writeq(val64, &bar0->rti_data2_mem);
1708 
1709 	for (i = 0; i < config->rx_ring_num; i++) {
1710 		val64 = RTI_CMD_MEM_WE |
1711 			RTI_CMD_MEM_STROBE_NEW_CMD |
1712 			RTI_CMD_MEM_OFFSET(i);
1713 		writeq(val64, &bar0->rti_command_mem);
1714 
1715 		/*
1716 		 * Once the operation completes, the Strobe bit of the
1717 		 * command register will be reset. We poll for this
1718 		 * particular condition. We wait for a maximum of 500ms
1719 		 * for the operation to complete, if it's not complete
1720 		 * by then we return error.
1721 		 */
1722 		time = 0;
1723 		while (true) {
1724 			val64 = readq(&bar0->rti_command_mem);
1725 			if (!(val64 & RTI_CMD_MEM_STROBE_NEW_CMD))
1726 				break;
1727 
1728 			if (time > 10) {
1729 				DBG_PRINT(ERR_DBG, "%s: RTI init failed\n",
1730 					  dev->name);
1731 				return -ENODEV;
1732 			}
1733 			time++;
1734 			msleep(50);
1735 		}
1736 	}
1737 
1738 	/*
1739 	 * Initializing proper values as Pause threshold into all
1740 	 * the 8 Queues on Rx side.
1741 	 */
1742 	writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q0q3);
1743 	writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q4q7);
1744 
1745 	/* Disable RMAC PAD STRIPPING */
1746 	add = &bar0->mac_cfg;
1747 	val64 = readq(&bar0->mac_cfg);
1748 	val64 &= ~(MAC_CFG_RMAC_STRIP_PAD);
1749 	writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1750 	writel((u32) (val64), add);
1751 	writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1752 	writel((u32) (val64 >> 32), (add + 4));
1753 	val64 = readq(&bar0->mac_cfg);
1754 
1755 	/* Enable FCS stripping by adapter */
1756 	add = &bar0->mac_cfg;
1757 	val64 = readq(&bar0->mac_cfg);
1758 	val64 |= MAC_CFG_RMAC_STRIP_FCS;
1759 	if (nic->device_type == XFRAME_II_DEVICE)
1760 		writeq(val64, &bar0->mac_cfg);
1761 	else {
1762 		writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1763 		writel((u32) (val64), add);
1764 		writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1765 		writel((u32) (val64 >> 32), (add + 4));
1766 	}
1767 
1768 	/*
1769 	 * Set the time value to be inserted in the pause frame
1770 	 * generated by xena.
1771 	 */
1772 	val64 = readq(&bar0->rmac_pause_cfg);
1773 	val64 &= ~(RMAC_PAUSE_HG_PTIME(0xffff));
1774 	val64 |= RMAC_PAUSE_HG_PTIME(nic->mac_control.rmac_pause_time);
1775 	writeq(val64, &bar0->rmac_pause_cfg);
1776 
1777 	/*
1778 	 * Set the Threshold Limit for Generating the pause frame
1779 	 * If the amount of data in any Queue exceeds ratio of
1780 	 * (mac_control.mc_pause_threshold_q0q3 or q4q7)/256
1781 	 * pause frame is generated
1782 	 */
1783 	val64 = 0;
1784 	for (i = 0; i < 4; i++) {
1785 		val64 |= (((u64)0xFF00 |
1786 			   nic->mac_control.mc_pause_threshold_q0q3)
1787 			  << (i * 2 * 8));
1788 	}
1789 	writeq(val64, &bar0->mc_pause_thresh_q0q3);
1790 
1791 	val64 = 0;
1792 	for (i = 0; i < 4; i++) {
1793 		val64 |= (((u64)0xFF00 |
1794 			   nic->mac_control.mc_pause_threshold_q4q7)
1795 			  << (i * 2 * 8));
1796 	}
1797 	writeq(val64, &bar0->mc_pause_thresh_q4q7);
1798 
1799 	/*
1800 	 * TxDMA will stop Read request if the number of read split has
1801 	 * exceeded the limit pointed by shared_splits
1802 	 */
1803 	val64 = readq(&bar0->pic_control);
1804 	val64 |= PIC_CNTL_SHARED_SPLITS(shared_splits);
1805 	writeq(val64, &bar0->pic_control);
1806 
1807 	if (nic->config.bus_speed == 266) {
1808 		writeq(TXREQTO_VAL(0x7f) | TXREQTO_EN, &bar0->txreqtimeout);
1809 		writeq(0x0, &bar0->read_retry_delay);
1810 		writeq(0x0, &bar0->write_retry_delay);
1811 	}
1812 
1813 	/*
1814 	 * Programming the Herc to split every write transaction
1815 	 * that does not start on an ADB to reduce disconnects.
1816 	 */
1817 	if (nic->device_type == XFRAME_II_DEVICE) {
1818 		val64 = FAULT_BEHAVIOUR | EXT_REQ_EN |
1819 			MISC_LINK_STABILITY_PRD(3);
1820 		writeq(val64, &bar0->misc_control);
1821 		val64 = readq(&bar0->pic_control2);
1822 		val64 &= ~(s2BIT(13)|s2BIT(14)|s2BIT(15));
1823 		writeq(val64, &bar0->pic_control2);
1824 	}
1825 	if (strstr(nic->product_name, "CX4")) {
1826 		val64 = TMAC_AVG_IPG(0x17);
1827 		writeq(val64, &bar0->tmac_avg_ipg);
1828 	}
1829 
1830 	return SUCCESS;
1831 }
1832 #define LINK_UP_DOWN_INTERRUPT		1
1833 #define MAC_RMAC_ERR_TIMER		2
1834 
1835 static int s2io_link_fault_indication(struct s2io_nic *nic)
1836 {
1837 	if (nic->device_type == XFRAME_II_DEVICE)
1838 		return LINK_UP_DOWN_INTERRUPT;
1839 	else
1840 		return MAC_RMAC_ERR_TIMER;
1841 }
1842 
1843 /**
1844  *  do_s2io_write_bits -  update alarm bits in alarm register
1845  *  @value: alarm bits
1846  *  @flag: interrupt status
1847  *  @addr: address value
1848  *  Description: update alarm bits in alarm register
1849  *  Return Value:
1850  *  NONE.
1851  */
1852 static void do_s2io_write_bits(u64 value, int flag, void __iomem *addr)
1853 {
1854 	u64 temp64;
1855 
1856 	temp64 = readq(addr);
1857 
1858 	if (flag == ENABLE_INTRS)
1859 		temp64 &= ~((u64)value);
1860 	else
1861 		temp64 |= ((u64)value);
1862 	writeq(temp64, addr);
1863 }
1864 
1865 static void en_dis_err_alarms(struct s2io_nic *nic, u16 mask, int flag)
1866 {
1867 	struct XENA_dev_config __iomem *bar0 = nic->bar0;
1868 	register u64 gen_int_mask = 0;
1869 	u64 interruptible;
1870 
1871 	writeq(DISABLE_ALL_INTRS, &bar0->general_int_mask);
1872 	if (mask & TX_DMA_INTR) {
1873 		gen_int_mask |= TXDMA_INT_M;
1874 
1875 		do_s2io_write_bits(TXDMA_TDA_INT | TXDMA_PFC_INT |
1876 				   TXDMA_PCC_INT | TXDMA_TTI_INT |
1877 				   TXDMA_LSO_INT | TXDMA_TPA_INT |
1878 				   TXDMA_SM_INT, flag, &bar0->txdma_int_mask);
1879 
1880 		do_s2io_write_bits(PFC_ECC_DB_ERR | PFC_SM_ERR_ALARM |
1881 				   PFC_MISC_0_ERR | PFC_MISC_1_ERR |
1882 				   PFC_PCIX_ERR | PFC_ECC_SG_ERR, flag,
1883 				   &bar0->pfc_err_mask);
1884 
1885 		do_s2io_write_bits(TDA_Fn_ECC_DB_ERR | TDA_SM0_ERR_ALARM |
1886 				   TDA_SM1_ERR_ALARM | TDA_Fn_ECC_SG_ERR |
1887 				   TDA_PCIX_ERR, flag, &bar0->tda_err_mask);
1888 
1889 		do_s2io_write_bits(PCC_FB_ECC_DB_ERR | PCC_TXB_ECC_DB_ERR |
1890 				   PCC_SM_ERR_ALARM | PCC_WR_ERR_ALARM |
1891 				   PCC_N_SERR | PCC_6_COF_OV_ERR |
1892 				   PCC_7_COF_OV_ERR | PCC_6_LSO_OV_ERR |
1893 				   PCC_7_LSO_OV_ERR | PCC_FB_ECC_SG_ERR |
1894 				   PCC_TXB_ECC_SG_ERR,
1895 				   flag, &bar0->pcc_err_mask);
1896 
1897 		do_s2io_write_bits(TTI_SM_ERR_ALARM | TTI_ECC_SG_ERR |
1898 				   TTI_ECC_DB_ERR, flag, &bar0->tti_err_mask);
1899 
1900 		do_s2io_write_bits(LSO6_ABORT | LSO7_ABORT |
1901 				   LSO6_SM_ERR_ALARM | LSO7_SM_ERR_ALARM |
1902 				   LSO6_SEND_OFLOW | LSO7_SEND_OFLOW,
1903 				   flag, &bar0->lso_err_mask);
1904 
1905 		do_s2io_write_bits(TPA_SM_ERR_ALARM | TPA_TX_FRM_DROP,
1906 				   flag, &bar0->tpa_err_mask);
1907 
1908 		do_s2io_write_bits(SM_SM_ERR_ALARM, flag, &bar0->sm_err_mask);
1909 	}
1910 
1911 	if (mask & TX_MAC_INTR) {
1912 		gen_int_mask |= TXMAC_INT_M;
1913 		do_s2io_write_bits(MAC_INT_STATUS_TMAC_INT, flag,
1914 				   &bar0->mac_int_mask);
1915 		do_s2io_write_bits(TMAC_TX_BUF_OVRN | TMAC_TX_SM_ERR |
1916 				   TMAC_ECC_SG_ERR | TMAC_ECC_DB_ERR |
1917 				   TMAC_DESC_ECC_SG_ERR | TMAC_DESC_ECC_DB_ERR,
1918 				   flag, &bar0->mac_tmac_err_mask);
1919 	}
1920 
1921 	if (mask & TX_XGXS_INTR) {
1922 		gen_int_mask |= TXXGXS_INT_M;
1923 		do_s2io_write_bits(XGXS_INT_STATUS_TXGXS, flag,
1924 				   &bar0->xgxs_int_mask);
1925 		do_s2io_write_bits(TXGXS_ESTORE_UFLOW | TXGXS_TX_SM_ERR |
1926 				   TXGXS_ECC_SG_ERR | TXGXS_ECC_DB_ERR,
1927 				   flag, &bar0->xgxs_txgxs_err_mask);
1928 	}
1929 
1930 	if (mask & RX_DMA_INTR) {
1931 		gen_int_mask |= RXDMA_INT_M;
1932 		do_s2io_write_bits(RXDMA_INT_RC_INT_M | RXDMA_INT_RPA_INT_M |
1933 				   RXDMA_INT_RDA_INT_M | RXDMA_INT_RTI_INT_M,
1934 				   flag, &bar0->rxdma_int_mask);
1935 		do_s2io_write_bits(RC_PRCn_ECC_DB_ERR | RC_FTC_ECC_DB_ERR |
1936 				   RC_PRCn_SM_ERR_ALARM | RC_FTC_SM_ERR_ALARM |
1937 				   RC_PRCn_ECC_SG_ERR | RC_FTC_ECC_SG_ERR |
1938 				   RC_RDA_FAIL_WR_Rn, flag, &bar0->rc_err_mask);
1939 		do_s2io_write_bits(PRC_PCI_AB_RD_Rn | PRC_PCI_AB_WR_Rn |
1940 				   PRC_PCI_AB_F_WR_Rn | PRC_PCI_DP_RD_Rn |
1941 				   PRC_PCI_DP_WR_Rn | PRC_PCI_DP_F_WR_Rn, flag,
1942 				   &bar0->prc_pcix_err_mask);
1943 		do_s2io_write_bits(RPA_SM_ERR_ALARM | RPA_CREDIT_ERR |
1944 				   RPA_ECC_SG_ERR | RPA_ECC_DB_ERR, flag,
1945 				   &bar0->rpa_err_mask);
1946 		do_s2io_write_bits(RDA_RXDn_ECC_DB_ERR | RDA_FRM_ECC_DB_N_AERR |
1947 				   RDA_SM1_ERR_ALARM | RDA_SM0_ERR_ALARM |
1948 				   RDA_RXD_ECC_DB_SERR | RDA_RXDn_ECC_SG_ERR |
1949 				   RDA_FRM_ECC_SG_ERR |
1950 				   RDA_MISC_ERR|RDA_PCIX_ERR,
1951 				   flag, &bar0->rda_err_mask);
1952 		do_s2io_write_bits(RTI_SM_ERR_ALARM |
1953 				   RTI_ECC_SG_ERR | RTI_ECC_DB_ERR,
1954 				   flag, &bar0->rti_err_mask);
1955 	}
1956 
1957 	if (mask & RX_MAC_INTR) {
1958 		gen_int_mask |= RXMAC_INT_M;
1959 		do_s2io_write_bits(MAC_INT_STATUS_RMAC_INT, flag,
1960 				   &bar0->mac_int_mask);
1961 		interruptible = (RMAC_RX_BUFF_OVRN | RMAC_RX_SM_ERR |
1962 				 RMAC_UNUSED_INT | RMAC_SINGLE_ECC_ERR |
1963 				 RMAC_DOUBLE_ECC_ERR);
1964 		if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER)
1965 			interruptible |= RMAC_LINK_STATE_CHANGE_INT;
1966 		do_s2io_write_bits(interruptible,
1967 				   flag, &bar0->mac_rmac_err_mask);
1968 	}
1969 
1970 	if (mask & RX_XGXS_INTR) {
1971 		gen_int_mask |= RXXGXS_INT_M;
1972 		do_s2io_write_bits(XGXS_INT_STATUS_RXGXS, flag,
1973 				   &bar0->xgxs_int_mask);
1974 		do_s2io_write_bits(RXGXS_ESTORE_OFLOW | RXGXS_RX_SM_ERR, flag,
1975 				   &bar0->xgxs_rxgxs_err_mask);
1976 	}
1977 
1978 	if (mask & MC_INTR) {
1979 		gen_int_mask |= MC_INT_M;
1980 		do_s2io_write_bits(MC_INT_MASK_MC_INT,
1981 				   flag, &bar0->mc_int_mask);
1982 		do_s2io_write_bits(MC_ERR_REG_SM_ERR | MC_ERR_REG_ECC_ALL_SNG |
1983 				   MC_ERR_REG_ECC_ALL_DBL | PLL_LOCK_N, flag,
1984 				   &bar0->mc_err_mask);
1985 	}
1986 	nic->general_int_mask = gen_int_mask;
1987 
1988 	/* Remove this line when alarm interrupts are enabled */
1989 	nic->general_int_mask = 0;
1990 }
1991 
1992 /**
1993  *  en_dis_able_nic_intrs - Enable or Disable the interrupts
1994  *  @nic: device private variable,
1995  *  @mask: A mask indicating which Intr block must be modified and,
1996  *  @flag: A flag indicating whether to enable or disable the Intrs.
1997  *  Description: This function will either disable or enable the interrupts
1998  *  depending on the flag argument. The mask argument can be used to
1999  *  enable/disable any Intr block.
2000  *  Return Value: NONE.
2001  */
2002 
2003 static void en_dis_able_nic_intrs(struct s2io_nic *nic, u16 mask, int flag)
2004 {
2005 	struct XENA_dev_config __iomem *bar0 = nic->bar0;
2006 	register u64 temp64 = 0, intr_mask = 0;
2007 
2008 	intr_mask = nic->general_int_mask;
2009 
2010 	/*  Top level interrupt classification */
2011 	/*  PIC Interrupts */
2012 	if (mask & TX_PIC_INTR) {
2013 		/*  Enable PIC Intrs in the general intr mask register */
2014 		intr_mask |= TXPIC_INT_M;
2015 		if (flag == ENABLE_INTRS) {
2016 			/*
2017 			 * If Hercules adapter enable GPIO otherwise
2018 			 * disable all PCIX, Flash, MDIO, IIC and GPIO
2019 			 * interrupts for now.
2020 			 * TODO
2021 			 */
2022 			if (s2io_link_fault_indication(nic) ==
2023 			    LINK_UP_DOWN_INTERRUPT) {
2024 				do_s2io_write_bits(PIC_INT_GPIO, flag,
2025 						   &bar0->pic_int_mask);
2026 				do_s2io_write_bits(GPIO_INT_MASK_LINK_UP, flag,
2027 						   &bar0->gpio_int_mask);
2028 			} else
2029 				writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
2030 		} else if (flag == DISABLE_INTRS) {
2031 			/*
2032 			 * Disable PIC Intrs in the general
2033 			 * intr mask register
2034 			 */
2035 			writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
2036 		}
2037 	}
2038 
2039 	/*  Tx traffic interrupts */
2040 	if (mask & TX_TRAFFIC_INTR) {
2041 		intr_mask |= TXTRAFFIC_INT_M;
2042 		if (flag == ENABLE_INTRS) {
2043 			/*
2044 			 * Enable all the Tx side interrupts
2045 			 * writing 0 Enables all 64 TX interrupt levels
2046 			 */
2047 			writeq(0x0, &bar0->tx_traffic_mask);
2048 		} else if (flag == DISABLE_INTRS) {
2049 			/*
2050 			 * Disable Tx Traffic Intrs in the general intr mask
2051 			 * register.
2052 			 */
2053 			writeq(DISABLE_ALL_INTRS, &bar0->tx_traffic_mask);
2054 		}
2055 	}
2056 
2057 	/*  Rx traffic interrupts */
2058 	if (mask & RX_TRAFFIC_INTR) {
2059 		intr_mask |= RXTRAFFIC_INT_M;
2060 		if (flag == ENABLE_INTRS) {
2061 			/* writing 0 Enables all 8 RX interrupt levels */
2062 			writeq(0x0, &bar0->rx_traffic_mask);
2063 		} else if (flag == DISABLE_INTRS) {
2064 			/*
2065 			 * Disable Rx Traffic Intrs in the general intr mask
2066 			 * register.
2067 			 */
2068 			writeq(DISABLE_ALL_INTRS, &bar0->rx_traffic_mask);
2069 		}
2070 	}
2071 
2072 	temp64 = readq(&bar0->general_int_mask);
2073 	if (flag == ENABLE_INTRS)
2074 		temp64 &= ~((u64)intr_mask);
2075 	else
2076 		temp64 = DISABLE_ALL_INTRS;
2077 	writeq(temp64, &bar0->general_int_mask);
2078 
2079 	nic->general_int_mask = readq(&bar0->general_int_mask);
2080 }
2081 
2082 /**
2083  *  verify_pcc_quiescent- Checks for PCC quiescent state
2084  *  Return: 1 If PCC is quiescence
2085  *          0 If PCC is not quiescence
2086  */
2087 static int verify_pcc_quiescent(struct s2io_nic *sp, int flag)
2088 {
2089 	int ret = 0, herc;
2090 	struct XENA_dev_config __iomem *bar0 = sp->bar0;
2091 	u64 val64 = readq(&bar0->adapter_status);
2092 
2093 	herc = (sp->device_type == XFRAME_II_DEVICE);
2094 
2095 	if (flag == false) {
2096 		if ((!herc && (sp->pdev->revision >= 4)) || herc) {
2097 			if (!(val64 & ADAPTER_STATUS_RMAC_PCC_IDLE))
2098 				ret = 1;
2099 		} else {
2100 			if (!(val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE))
2101 				ret = 1;
2102 		}
2103 	} else {
2104 		if ((!herc && (sp->pdev->revision >= 4)) || herc) {
2105 			if (((val64 & ADAPTER_STATUS_RMAC_PCC_IDLE) ==
2106 			     ADAPTER_STATUS_RMAC_PCC_IDLE))
2107 				ret = 1;
2108 		} else {
2109 			if (((val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE) ==
2110 			     ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE))
2111 				ret = 1;
2112 		}
2113 	}
2114 
2115 	return ret;
2116 }
2117 /**
2118  *  verify_xena_quiescence - Checks whether the H/W is ready
2119  *  Description: Returns whether the H/W is ready to go or not. Depending
2120  *  on whether adapter enable bit was written or not the comparison
2121  *  differs and the calling function passes the input argument flag to
2122  *  indicate this.
2123  *  Return: 1 If xena is quiescence
2124  *          0 If Xena is not quiescence
2125  */
2126 
2127 static int verify_xena_quiescence(struct s2io_nic *sp)
2128 {
2129 	int  mode;
2130 	struct XENA_dev_config __iomem *bar0 = sp->bar0;
2131 	u64 val64 = readq(&bar0->adapter_status);
2132 	mode = s2io_verify_pci_mode(sp);
2133 
2134 	if (!(val64 & ADAPTER_STATUS_TDMA_READY)) {
2135 		DBG_PRINT(ERR_DBG, "TDMA is not ready!\n");
2136 		return 0;
2137 	}
2138 	if (!(val64 & ADAPTER_STATUS_RDMA_READY)) {
2139 		DBG_PRINT(ERR_DBG, "RDMA is not ready!\n");
2140 		return 0;
2141 	}
2142 	if (!(val64 & ADAPTER_STATUS_PFC_READY)) {
2143 		DBG_PRINT(ERR_DBG, "PFC is not ready!\n");
2144 		return 0;
2145 	}
2146 	if (!(val64 & ADAPTER_STATUS_TMAC_BUF_EMPTY)) {
2147 		DBG_PRINT(ERR_DBG, "TMAC BUF is not empty!\n");
2148 		return 0;
2149 	}
2150 	if (!(val64 & ADAPTER_STATUS_PIC_QUIESCENT)) {
2151 		DBG_PRINT(ERR_DBG, "PIC is not QUIESCENT!\n");
2152 		return 0;
2153 	}
2154 	if (!(val64 & ADAPTER_STATUS_MC_DRAM_READY)) {
2155 		DBG_PRINT(ERR_DBG, "MC_DRAM is not ready!\n");
2156 		return 0;
2157 	}
2158 	if (!(val64 & ADAPTER_STATUS_MC_QUEUES_READY)) {
2159 		DBG_PRINT(ERR_DBG, "MC_QUEUES is not ready!\n");
2160 		return 0;
2161 	}
2162 	if (!(val64 & ADAPTER_STATUS_M_PLL_LOCK)) {
2163 		DBG_PRINT(ERR_DBG, "M_PLL is not locked!\n");
2164 		return 0;
2165 	}
2166 
2167 	/*
2168 	 * In PCI 33 mode, the P_PLL is not used, and therefore,
2169 	 * the the P_PLL_LOCK bit in the adapter_status register will
2170 	 * not be asserted.
2171 	 */
2172 	if (!(val64 & ADAPTER_STATUS_P_PLL_LOCK) &&
2173 	    sp->device_type == XFRAME_II_DEVICE &&
2174 	    mode != PCI_MODE_PCI_33) {
2175 		DBG_PRINT(ERR_DBG, "P_PLL is not locked!\n");
2176 		return 0;
2177 	}
2178 	if (!((val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ==
2179 	      ADAPTER_STATUS_RC_PRC_QUIESCENT)) {
2180 		DBG_PRINT(ERR_DBG, "RC_PRC is not QUIESCENT!\n");
2181 		return 0;
2182 	}
2183 	return 1;
2184 }
2185 
2186 /**
2187  * fix_mac_address -  Fix for Mac addr problem on Alpha platforms
2188  * @sp: Pointer to device specifc structure
2189  * Description :
2190  * New procedure to clear mac address reading  problems on Alpha platforms
2191  *
2192  */
2193 
2194 static void fix_mac_address(struct s2io_nic *sp)
2195 {
2196 	struct XENA_dev_config __iomem *bar0 = sp->bar0;
2197 	int i = 0;
2198 
2199 	while (fix_mac[i] != END_SIGN) {
2200 		writeq(fix_mac[i++], &bar0->gpio_control);
2201 		udelay(10);
2202 		(void) readq(&bar0->gpio_control);
2203 	}
2204 }
2205 
2206 /**
2207  *  start_nic - Turns the device on
2208  *  @nic : device private variable.
2209  *  Description:
2210  *  This function actually turns the device on. Before this  function is
2211  *  called,all Registers are configured from their reset states
2212  *  and shared memory is allocated but the NIC is still quiescent. On
2213  *  calling this function, the device interrupts are cleared and the NIC is
2214  *  literally switched on by writing into the adapter control register.
2215  *  Return Value:
2216  *  SUCCESS on success and -1 on failure.
2217  */
2218 
2219 static int start_nic(struct s2io_nic *nic)
2220 {
2221 	struct XENA_dev_config __iomem *bar0 = nic->bar0;
2222 	struct net_device *dev = nic->dev;
2223 	register u64 val64 = 0;
2224 	u16 subid, i;
2225 	struct config_param *config = &nic->config;
2226 	struct mac_info *mac_control = &nic->mac_control;
2227 
2228 	/*  PRC Initialization and configuration */
2229 	for (i = 0; i < config->rx_ring_num; i++) {
2230 		struct ring_info *ring = &mac_control->rings[i];
2231 
2232 		writeq((u64)ring->rx_blocks[0].block_dma_addr,
2233 		       &bar0->prc_rxd0_n[i]);
2234 
2235 		val64 = readq(&bar0->prc_ctrl_n[i]);
2236 		if (nic->rxd_mode == RXD_MODE_1)
2237 			val64 |= PRC_CTRL_RC_ENABLED;
2238 		else
2239 			val64 |= PRC_CTRL_RC_ENABLED | PRC_CTRL_RING_MODE_3;
2240 		if (nic->device_type == XFRAME_II_DEVICE)
2241 			val64 |= PRC_CTRL_GROUP_READS;
2242 		val64 &= ~PRC_CTRL_RXD_BACKOFF_INTERVAL(0xFFFFFF);
2243 		val64 |= PRC_CTRL_RXD_BACKOFF_INTERVAL(0x1000);
2244 		writeq(val64, &bar0->prc_ctrl_n[i]);
2245 	}
2246 
2247 	if (nic->rxd_mode == RXD_MODE_3B) {
2248 		/* Enabling 2 buffer mode by writing into Rx_pa_cfg reg. */
2249 		val64 = readq(&bar0->rx_pa_cfg);
2250 		val64 |= RX_PA_CFG_IGNORE_L2_ERR;
2251 		writeq(val64, &bar0->rx_pa_cfg);
2252 	}
2253 
2254 	if (vlan_tag_strip == 0) {
2255 		val64 = readq(&bar0->rx_pa_cfg);
2256 		val64 &= ~RX_PA_CFG_STRIP_VLAN_TAG;
2257 		writeq(val64, &bar0->rx_pa_cfg);
2258 		nic->vlan_strip_flag = 0;
2259 	}
2260 
2261 	/*
2262 	 * Enabling MC-RLDRAM. After enabling the device, we timeout
2263 	 * for around 100ms, which is approximately the time required
2264 	 * for the device to be ready for operation.
2265 	 */
2266 	val64 = readq(&bar0->mc_rldram_mrs);
2267 	val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE | MC_RLDRAM_MRS_ENABLE;
2268 	SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
2269 	val64 = readq(&bar0->mc_rldram_mrs);
2270 
2271 	msleep(100);	/* Delay by around 100 ms. */
2272 
2273 	/* Enabling ECC Protection. */
2274 	val64 = readq(&bar0->adapter_control);
2275 	val64 &= ~ADAPTER_ECC_EN;
2276 	writeq(val64, &bar0->adapter_control);
2277 
2278 	/*
2279 	 * Verify if the device is ready to be enabled, if so enable
2280 	 * it.
2281 	 */
2282 	val64 = readq(&bar0->adapter_status);
2283 	if (!verify_xena_quiescence(nic)) {
2284 		DBG_PRINT(ERR_DBG, "%s: device is not ready, "
2285 			  "Adapter status reads: 0x%llx\n",
2286 			  dev->name, (unsigned long long)val64);
2287 		return FAILURE;
2288 	}
2289 
2290 	/*
2291 	 * With some switches, link might be already up at this point.
2292 	 * Because of this weird behavior, when we enable laser,
2293 	 * we may not get link. We need to handle this. We cannot
2294 	 * figure out which switch is misbehaving. So we are forced to
2295 	 * make a global change.
2296 	 */
2297 
2298 	/* Enabling Laser. */
2299 	val64 = readq(&bar0->adapter_control);
2300 	val64 |= ADAPTER_EOI_TX_ON;
2301 	writeq(val64, &bar0->adapter_control);
2302 
2303 	if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
2304 		/*
2305 		 * Dont see link state interrupts initially on some switches,
2306 		 * so directly scheduling the link state task here.
2307 		 */
2308 		schedule_work(&nic->set_link_task);
2309 	}
2310 	/* SXE-002: Initialize link and activity LED */
2311 	subid = nic->pdev->subsystem_device;
2312 	if (((subid & 0xFF) >= 0x07) &&
2313 	    (nic->device_type == XFRAME_I_DEVICE)) {
2314 		val64 = readq(&bar0->gpio_control);
2315 		val64 |= 0x0000800000000000ULL;
2316 		writeq(val64, &bar0->gpio_control);
2317 		val64 = 0x0411040400000000ULL;
2318 		writeq(val64, (void __iomem *)bar0 + 0x2700);
2319 	}
2320 
2321 	return SUCCESS;
2322 }
2323 /**
2324  * s2io_txdl_getskb - Get the skb from txdl, unmap and return skb
2325  */
2326 static struct sk_buff *s2io_txdl_getskb(struct fifo_info *fifo_data,
2327 					struct TxD *txdlp, int get_off)
2328 {
2329 	struct s2io_nic *nic = fifo_data->nic;
2330 	struct sk_buff *skb;
2331 	struct TxD *txds;
2332 	u16 j, frg_cnt;
2333 
2334 	txds = txdlp;
2335 	if (txds->Host_Control == (u64)(long)fifo_data->ufo_in_band_v) {
2336 		pci_unmap_single(nic->pdev, (dma_addr_t)txds->Buffer_Pointer,
2337 				 sizeof(u64), PCI_DMA_TODEVICE);
2338 		txds++;
2339 	}
2340 
2341 	skb = (struct sk_buff *)((unsigned long)txds->Host_Control);
2342 	if (!skb) {
2343 		memset(txdlp, 0, (sizeof(struct TxD) * fifo_data->max_txds));
2344 		return NULL;
2345 	}
2346 	pci_unmap_single(nic->pdev, (dma_addr_t)txds->Buffer_Pointer,
2347 			 skb_headlen(skb), PCI_DMA_TODEVICE);
2348 	frg_cnt = skb_shinfo(skb)->nr_frags;
2349 	if (frg_cnt) {
2350 		txds++;
2351 		for (j = 0; j < frg_cnt; j++, txds++) {
2352 			const skb_frag_t *frag = &skb_shinfo(skb)->frags[j];
2353 			if (!txds->Buffer_Pointer)
2354 				break;
2355 			pci_unmap_page(nic->pdev,
2356 				       (dma_addr_t)txds->Buffer_Pointer,
2357 				       skb_frag_size(frag), PCI_DMA_TODEVICE);
2358 		}
2359 	}
2360 	memset(txdlp, 0, (sizeof(struct TxD) * fifo_data->max_txds));
2361 	return skb;
2362 }
2363 
2364 /**
2365  *  free_tx_buffers - Free all queued Tx buffers
2366  *  @nic : device private variable.
2367  *  Description:
2368  *  Free all queued Tx buffers.
2369  *  Return Value: void
2370  */
2371 
2372 static void free_tx_buffers(struct s2io_nic *nic)
2373 {
2374 	struct net_device *dev = nic->dev;
2375 	struct sk_buff *skb;
2376 	struct TxD *txdp;
2377 	int i, j;
2378 	int cnt = 0;
2379 	struct config_param *config = &nic->config;
2380 	struct mac_info *mac_control = &nic->mac_control;
2381 	struct stat_block *stats = mac_control->stats_info;
2382 	struct swStat *swstats = &stats->sw_stat;
2383 
2384 	for (i = 0; i < config->tx_fifo_num; i++) {
2385 		struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
2386 		struct fifo_info *fifo = &mac_control->fifos[i];
2387 		unsigned long flags;
2388 
2389 		spin_lock_irqsave(&fifo->tx_lock, flags);
2390 		for (j = 0; j < tx_cfg->fifo_len; j++) {
2391 			txdp = fifo->list_info[j].list_virt_addr;
2392 			skb = s2io_txdl_getskb(&mac_control->fifos[i], txdp, j);
2393 			if (skb) {
2394 				swstats->mem_freed += skb->truesize;
2395 				dev_kfree_skb(skb);
2396 				cnt++;
2397 			}
2398 		}
2399 		DBG_PRINT(INTR_DBG,
2400 			  "%s: forcibly freeing %d skbs on FIFO%d\n",
2401 			  dev->name, cnt, i);
2402 		fifo->tx_curr_get_info.offset = 0;
2403 		fifo->tx_curr_put_info.offset = 0;
2404 		spin_unlock_irqrestore(&fifo->tx_lock, flags);
2405 	}
2406 }
2407 
2408 /**
2409  *   stop_nic -  To stop the nic
2410  *   @nic ; device private variable.
2411  *   Description:
2412  *   This function does exactly the opposite of what the start_nic()
2413  *   function does. This function is called to stop the device.
2414  *   Return Value:
2415  *   void.
2416  */
2417 
2418 static void stop_nic(struct s2io_nic *nic)
2419 {
2420 	struct XENA_dev_config __iomem *bar0 = nic->bar0;
2421 	register u64 val64 = 0;
2422 	u16 interruptible;
2423 
2424 	/*  Disable all interrupts */
2425 	en_dis_err_alarms(nic, ENA_ALL_INTRS, DISABLE_INTRS);
2426 	interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
2427 	interruptible |= TX_PIC_INTR;
2428 	en_dis_able_nic_intrs(nic, interruptible, DISABLE_INTRS);
2429 
2430 	/* Clearing Adapter_En bit of ADAPTER_CONTROL Register */
2431 	val64 = readq(&bar0->adapter_control);
2432 	val64 &= ~(ADAPTER_CNTL_EN);
2433 	writeq(val64, &bar0->adapter_control);
2434 }
2435 
2436 /**
2437  *  fill_rx_buffers - Allocates the Rx side skbs
2438  *  @ring_info: per ring structure
2439  *  @from_card_up: If this is true, we will map the buffer to get
2440  *     the dma address for buf0 and buf1 to give it to the card.
2441  *     Else we will sync the already mapped buffer to give it to the card.
2442  *  Description:
2443  *  The function allocates Rx side skbs and puts the physical
2444  *  address of these buffers into the RxD buffer pointers, so that the NIC
2445  *  can DMA the received frame into these locations.
2446  *  The NIC supports 3 receive modes, viz
2447  *  1. single buffer,
2448  *  2. three buffer and
2449  *  3. Five buffer modes.
2450  *  Each mode defines how many fragments the received frame will be split
2451  *  up into by the NIC. The frame is split into L3 header, L4 Header,
2452  *  L4 payload in three buffer mode and in 5 buffer mode, L4 payload itself
2453  *  is split into 3 fragments. As of now only single buffer mode is
2454  *  supported.
2455  *   Return Value:
2456  *  SUCCESS on success or an appropriate -ve value on failure.
2457  */
2458 static int fill_rx_buffers(struct s2io_nic *nic, struct ring_info *ring,
2459 			   int from_card_up)
2460 {
2461 	struct sk_buff *skb;
2462 	struct RxD_t *rxdp;
2463 	int off, size, block_no, block_no1;
2464 	u32 alloc_tab = 0;
2465 	u32 alloc_cnt;
2466 	u64 tmp;
2467 	struct buffAdd *ba;
2468 	struct RxD_t *first_rxdp = NULL;
2469 	u64 Buffer0_ptr = 0, Buffer1_ptr = 0;
2470 	int rxd_index = 0;
2471 	struct RxD1 *rxdp1;
2472 	struct RxD3 *rxdp3;
2473 	struct swStat *swstats = &ring->nic->mac_control.stats_info->sw_stat;
2474 
2475 	alloc_cnt = ring->pkt_cnt - ring->rx_bufs_left;
2476 
2477 	block_no1 = ring->rx_curr_get_info.block_index;
2478 	while (alloc_tab < alloc_cnt) {
2479 		block_no = ring->rx_curr_put_info.block_index;
2480 
2481 		off = ring->rx_curr_put_info.offset;
2482 
2483 		rxdp = ring->rx_blocks[block_no].rxds[off].virt_addr;
2484 
2485 		rxd_index = off + 1;
2486 		if (block_no)
2487 			rxd_index += (block_no * ring->rxd_count);
2488 
2489 		if ((block_no == block_no1) &&
2490 		    (off == ring->rx_curr_get_info.offset) &&
2491 		    (rxdp->Host_Control)) {
2492 			DBG_PRINT(INTR_DBG, "%s: Get and Put info equated\n",
2493 				  ring->dev->name);
2494 			goto end;
2495 		}
2496 		if (off && (off == ring->rxd_count)) {
2497 			ring->rx_curr_put_info.block_index++;
2498 			if (ring->rx_curr_put_info.block_index ==
2499 			    ring->block_count)
2500 				ring->rx_curr_put_info.block_index = 0;
2501 			block_no = ring->rx_curr_put_info.block_index;
2502 			off = 0;
2503 			ring->rx_curr_put_info.offset = off;
2504 			rxdp = ring->rx_blocks[block_no].block_virt_addr;
2505 			DBG_PRINT(INTR_DBG, "%s: Next block at: %p\n",
2506 				  ring->dev->name, rxdp);
2507 
2508 		}
2509 
2510 		if ((rxdp->Control_1 & RXD_OWN_XENA) &&
2511 		    ((ring->rxd_mode == RXD_MODE_3B) &&
2512 		     (rxdp->Control_2 & s2BIT(0)))) {
2513 			ring->rx_curr_put_info.offset = off;
2514 			goto end;
2515 		}
2516 		/* calculate size of skb based on ring mode */
2517 		size = ring->mtu +
2518 			HEADER_ETHERNET_II_802_3_SIZE +
2519 			HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
2520 		if (ring->rxd_mode == RXD_MODE_1)
2521 			size += NET_IP_ALIGN;
2522 		else
2523 			size = ring->mtu + ALIGN_SIZE + BUF0_LEN + 4;
2524 
2525 		/* allocate skb */
2526 		skb = netdev_alloc_skb(nic->dev, size);
2527 		if (!skb) {
2528 			DBG_PRINT(INFO_DBG, "%s: Could not allocate skb\n",
2529 				  ring->dev->name);
2530 			if (first_rxdp) {
2531 				wmb();
2532 				first_rxdp->Control_1 |= RXD_OWN_XENA;
2533 			}
2534 			swstats->mem_alloc_fail_cnt++;
2535 
2536 			return -ENOMEM ;
2537 		}
2538 		swstats->mem_allocated += skb->truesize;
2539 
2540 		if (ring->rxd_mode == RXD_MODE_1) {
2541 			/* 1 buffer mode - normal operation mode */
2542 			rxdp1 = (struct RxD1 *)rxdp;
2543 			memset(rxdp, 0, sizeof(struct RxD1));
2544 			skb_reserve(skb, NET_IP_ALIGN);
2545 			rxdp1->Buffer0_ptr =
2546 				pci_map_single(ring->pdev, skb->data,
2547 					       size - NET_IP_ALIGN,
2548 					       PCI_DMA_FROMDEVICE);
2549 			if (pci_dma_mapping_error(nic->pdev,
2550 						  rxdp1->Buffer0_ptr))
2551 				goto pci_map_failed;
2552 
2553 			rxdp->Control_2 =
2554 				SET_BUFFER0_SIZE_1(size - NET_IP_ALIGN);
2555 			rxdp->Host_Control = (unsigned long)skb;
2556 		} else if (ring->rxd_mode == RXD_MODE_3B) {
2557 			/*
2558 			 * 2 buffer mode -
2559 			 * 2 buffer mode provides 128
2560 			 * byte aligned receive buffers.
2561 			 */
2562 
2563 			rxdp3 = (struct RxD3 *)rxdp;
2564 			/* save buffer pointers to avoid frequent dma mapping */
2565 			Buffer0_ptr = rxdp3->Buffer0_ptr;
2566 			Buffer1_ptr = rxdp3->Buffer1_ptr;
2567 			memset(rxdp, 0, sizeof(struct RxD3));
2568 			/* restore the buffer pointers for dma sync*/
2569 			rxdp3->Buffer0_ptr = Buffer0_ptr;
2570 			rxdp3->Buffer1_ptr = Buffer1_ptr;
2571 
2572 			ba = &ring->ba[block_no][off];
2573 			skb_reserve(skb, BUF0_LEN);
2574 			tmp = (u64)(unsigned long)skb->data;
2575 			tmp += ALIGN_SIZE;
2576 			tmp &= ~ALIGN_SIZE;
2577 			skb->data = (void *) (unsigned long)tmp;
2578 			skb_reset_tail_pointer(skb);
2579 
2580 			if (from_card_up) {
2581 				rxdp3->Buffer0_ptr =
2582 					pci_map_single(ring->pdev, ba->ba_0,
2583 						       BUF0_LEN,
2584 						       PCI_DMA_FROMDEVICE);
2585 				if (pci_dma_mapping_error(nic->pdev,
2586 							  rxdp3->Buffer0_ptr))
2587 					goto pci_map_failed;
2588 			} else
2589 				pci_dma_sync_single_for_device(ring->pdev,
2590 							       (dma_addr_t)rxdp3->Buffer0_ptr,
2591 							       BUF0_LEN,
2592 							       PCI_DMA_FROMDEVICE);
2593 
2594 			rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
2595 			if (ring->rxd_mode == RXD_MODE_3B) {
2596 				/* Two buffer mode */
2597 
2598 				/*
2599 				 * Buffer2 will have L3/L4 header plus
2600 				 * L4 payload
2601 				 */
2602 				rxdp3->Buffer2_ptr = pci_map_single(ring->pdev,
2603 								    skb->data,
2604 								    ring->mtu + 4,
2605 								    PCI_DMA_FROMDEVICE);
2606 
2607 				if (pci_dma_mapping_error(nic->pdev,
2608 							  rxdp3->Buffer2_ptr))
2609 					goto pci_map_failed;
2610 
2611 				if (from_card_up) {
2612 					rxdp3->Buffer1_ptr =
2613 						pci_map_single(ring->pdev,
2614 							       ba->ba_1,
2615 							       BUF1_LEN,
2616 							       PCI_DMA_FROMDEVICE);
2617 
2618 					if (pci_dma_mapping_error(nic->pdev,
2619 								  rxdp3->Buffer1_ptr)) {
2620 						pci_unmap_single(ring->pdev,
2621 								 (dma_addr_t)(unsigned long)
2622 								 skb->data,
2623 								 ring->mtu + 4,
2624 								 PCI_DMA_FROMDEVICE);
2625 						goto pci_map_failed;
2626 					}
2627 				}
2628 				rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
2629 				rxdp->Control_2 |= SET_BUFFER2_SIZE_3
2630 					(ring->mtu + 4);
2631 			}
2632 			rxdp->Control_2 |= s2BIT(0);
2633 			rxdp->Host_Control = (unsigned long) (skb);
2634 		}
2635 		if (alloc_tab & ((1 << rxsync_frequency) - 1))
2636 			rxdp->Control_1 |= RXD_OWN_XENA;
2637 		off++;
2638 		if (off == (ring->rxd_count + 1))
2639 			off = 0;
2640 		ring->rx_curr_put_info.offset = off;
2641 
2642 		rxdp->Control_2 |= SET_RXD_MARKER;
2643 		if (!(alloc_tab & ((1 << rxsync_frequency) - 1))) {
2644 			if (first_rxdp) {
2645 				wmb();
2646 				first_rxdp->Control_1 |= RXD_OWN_XENA;
2647 			}
2648 			first_rxdp = rxdp;
2649 		}
2650 		ring->rx_bufs_left += 1;
2651 		alloc_tab++;
2652 	}
2653 
2654 end:
2655 	/* Transfer ownership of first descriptor to adapter just before
2656 	 * exiting. Before that, use memory barrier so that ownership
2657 	 * and other fields are seen by adapter correctly.
2658 	 */
2659 	if (first_rxdp) {
2660 		wmb();
2661 		first_rxdp->Control_1 |= RXD_OWN_XENA;
2662 	}
2663 
2664 	return SUCCESS;
2665 
2666 pci_map_failed:
2667 	swstats->pci_map_fail_cnt++;
2668 	swstats->mem_freed += skb->truesize;
2669 	dev_kfree_skb_irq(skb);
2670 	return -ENOMEM;
2671 }
2672 
2673 static void free_rxd_blk(struct s2io_nic *sp, int ring_no, int blk)
2674 {
2675 	struct net_device *dev = sp->dev;
2676 	int j;
2677 	struct sk_buff *skb;
2678 	struct RxD_t *rxdp;
2679 	struct RxD1 *rxdp1;
2680 	struct RxD3 *rxdp3;
2681 	struct mac_info *mac_control = &sp->mac_control;
2682 	struct stat_block *stats = mac_control->stats_info;
2683 	struct swStat *swstats = &stats->sw_stat;
2684 
2685 	for (j = 0 ; j < rxd_count[sp->rxd_mode]; j++) {
2686 		rxdp = mac_control->rings[ring_no].
2687 			rx_blocks[blk].rxds[j].virt_addr;
2688 		skb = (struct sk_buff *)((unsigned long)rxdp->Host_Control);
2689 		if (!skb)
2690 			continue;
2691 		if (sp->rxd_mode == RXD_MODE_1) {
2692 			rxdp1 = (struct RxD1 *)rxdp;
2693 			pci_unmap_single(sp->pdev,
2694 					 (dma_addr_t)rxdp1->Buffer0_ptr,
2695 					 dev->mtu +
2696 					 HEADER_ETHERNET_II_802_3_SIZE +
2697 					 HEADER_802_2_SIZE + HEADER_SNAP_SIZE,
2698 					 PCI_DMA_FROMDEVICE);
2699 			memset(rxdp, 0, sizeof(struct RxD1));
2700 		} else if (sp->rxd_mode == RXD_MODE_3B) {
2701 			rxdp3 = (struct RxD3 *)rxdp;
2702 			pci_unmap_single(sp->pdev,
2703 					 (dma_addr_t)rxdp3->Buffer0_ptr,
2704 					 BUF0_LEN,
2705 					 PCI_DMA_FROMDEVICE);
2706 			pci_unmap_single(sp->pdev,
2707 					 (dma_addr_t)rxdp3->Buffer1_ptr,
2708 					 BUF1_LEN,
2709 					 PCI_DMA_FROMDEVICE);
2710 			pci_unmap_single(sp->pdev,
2711 					 (dma_addr_t)rxdp3->Buffer2_ptr,
2712 					 dev->mtu + 4,
2713 					 PCI_DMA_FROMDEVICE);
2714 			memset(rxdp, 0, sizeof(struct RxD3));
2715 		}
2716 		swstats->mem_freed += skb->truesize;
2717 		dev_kfree_skb(skb);
2718 		mac_control->rings[ring_no].rx_bufs_left -= 1;
2719 	}
2720 }
2721 
2722 /**
2723  *  free_rx_buffers - Frees all Rx buffers
2724  *  @sp: device private variable.
2725  *  Description:
2726  *  This function will free all Rx buffers allocated by host.
2727  *  Return Value:
2728  *  NONE.
2729  */
2730 
2731 static void free_rx_buffers(struct s2io_nic *sp)
2732 {
2733 	struct net_device *dev = sp->dev;
2734 	int i, blk = 0, buf_cnt = 0;
2735 	struct config_param *config = &sp->config;
2736 	struct mac_info *mac_control = &sp->mac_control;
2737 
2738 	for (i = 0; i < config->rx_ring_num; i++) {
2739 		struct ring_info *ring = &mac_control->rings[i];
2740 
2741 		for (blk = 0; blk < rx_ring_sz[i]; blk++)
2742 			free_rxd_blk(sp, i, blk);
2743 
2744 		ring->rx_curr_put_info.block_index = 0;
2745 		ring->rx_curr_get_info.block_index = 0;
2746 		ring->rx_curr_put_info.offset = 0;
2747 		ring->rx_curr_get_info.offset = 0;
2748 		ring->rx_bufs_left = 0;
2749 		DBG_PRINT(INIT_DBG, "%s: Freed 0x%x Rx Buffers on ring%d\n",
2750 			  dev->name, buf_cnt, i);
2751 	}
2752 }
2753 
2754 static int s2io_chk_rx_buffers(struct s2io_nic *nic, struct ring_info *ring)
2755 {
2756 	if (fill_rx_buffers(nic, ring, 0) == -ENOMEM) {
2757 		DBG_PRINT(INFO_DBG, "%s: Out of memory in Rx Intr!!\n",
2758 			  ring->dev->name);
2759 	}
2760 	return 0;
2761 }
2762 
2763 /**
2764  * s2io_poll - Rx interrupt handler for NAPI support
2765  * @napi : pointer to the napi structure.
2766  * @budget : The number of packets that were budgeted to be processed
2767  * during  one pass through the 'Poll" function.
2768  * Description:
2769  * Comes into picture only if NAPI support has been incorporated. It does
2770  * the same thing that rx_intr_handler does, but not in a interrupt context
2771  * also It will process only a given number of packets.
2772  * Return value:
2773  * 0 on success and 1 if there are No Rx packets to be processed.
2774  */
2775 
2776 static int s2io_poll_msix(struct napi_struct *napi, int budget)
2777 {
2778 	struct ring_info *ring = container_of(napi, struct ring_info, napi);
2779 	struct net_device *dev = ring->dev;
2780 	int pkts_processed = 0;
2781 	u8 __iomem *addr = NULL;
2782 	u8 val8 = 0;
2783 	struct s2io_nic *nic = netdev_priv(dev);
2784 	struct XENA_dev_config __iomem *bar0 = nic->bar0;
2785 	int budget_org = budget;
2786 
2787 	if (unlikely(!is_s2io_card_up(nic)))
2788 		return 0;
2789 
2790 	pkts_processed = rx_intr_handler(ring, budget);
2791 	s2io_chk_rx_buffers(nic, ring);
2792 
2793 	if (pkts_processed < budget_org) {
2794 		napi_complete(napi);
2795 		/*Re Enable MSI-Rx Vector*/
2796 		addr = (u8 __iomem *)&bar0->xmsi_mask_reg;
2797 		addr += 7 - ring->ring_no;
2798 		val8 = (ring->ring_no == 0) ? 0x3f : 0xbf;
2799 		writeb(val8, addr);
2800 		val8 = readb(addr);
2801 	}
2802 	return pkts_processed;
2803 }
2804 
2805 static int s2io_poll_inta(struct napi_struct *napi, int budget)
2806 {
2807 	struct s2io_nic *nic = container_of(napi, struct s2io_nic, napi);
2808 	int pkts_processed = 0;
2809 	int ring_pkts_processed, i;
2810 	struct XENA_dev_config __iomem *bar0 = nic->bar0;
2811 	int budget_org = budget;
2812 	struct config_param *config = &nic->config;
2813 	struct mac_info *mac_control = &nic->mac_control;
2814 
2815 	if (unlikely(!is_s2io_card_up(nic)))
2816 		return 0;
2817 
2818 	for (i = 0; i < config->rx_ring_num; i++) {
2819 		struct ring_info *ring = &mac_control->rings[i];
2820 		ring_pkts_processed = rx_intr_handler(ring, budget);
2821 		s2io_chk_rx_buffers(nic, ring);
2822 		pkts_processed += ring_pkts_processed;
2823 		budget -= ring_pkts_processed;
2824 		if (budget <= 0)
2825 			break;
2826 	}
2827 	if (pkts_processed < budget_org) {
2828 		napi_complete(napi);
2829 		/* Re enable the Rx interrupts for the ring */
2830 		writeq(0, &bar0->rx_traffic_mask);
2831 		readl(&bar0->rx_traffic_mask);
2832 	}
2833 	return pkts_processed;
2834 }
2835 
2836 #ifdef CONFIG_NET_POLL_CONTROLLER
2837 /**
2838  * s2io_netpoll - netpoll event handler entry point
2839  * @dev : pointer to the device structure.
2840  * Description:
2841  * 	This function will be called by upper layer to check for events on the
2842  * interface in situations where interrupts are disabled. It is used for
2843  * specific in-kernel networking tasks, such as remote consoles and kernel
2844  * debugging over the network (example netdump in RedHat).
2845  */
2846 static void s2io_netpoll(struct net_device *dev)
2847 {
2848 	struct s2io_nic *nic = netdev_priv(dev);
2849 	const int irq = nic->pdev->irq;
2850 	struct XENA_dev_config __iomem *bar0 = nic->bar0;
2851 	u64 val64 = 0xFFFFFFFFFFFFFFFFULL;
2852 	int i;
2853 	struct config_param *config = &nic->config;
2854 	struct mac_info *mac_control = &nic->mac_control;
2855 
2856 	if (pci_channel_offline(nic->pdev))
2857 		return;
2858 
2859 	disable_irq(irq);
2860 
2861 	writeq(val64, &bar0->rx_traffic_int);
2862 	writeq(val64, &bar0->tx_traffic_int);
2863 
2864 	/* we need to free up the transmitted skbufs or else netpoll will
2865 	 * run out of skbs and will fail and eventually netpoll application such
2866 	 * as netdump will fail.
2867 	 */
2868 	for (i = 0; i < config->tx_fifo_num; i++)
2869 		tx_intr_handler(&mac_control->fifos[i]);
2870 
2871 	/* check for received packet and indicate up to network */
2872 	for (i = 0; i < config->rx_ring_num; i++) {
2873 		struct ring_info *ring = &mac_control->rings[i];
2874 
2875 		rx_intr_handler(ring, 0);
2876 	}
2877 
2878 	for (i = 0; i < config->rx_ring_num; i++) {
2879 		struct ring_info *ring = &mac_control->rings[i];
2880 
2881 		if (fill_rx_buffers(nic, ring, 0) == -ENOMEM) {
2882 			DBG_PRINT(INFO_DBG,
2883 				  "%s: Out of memory in Rx Netpoll!!\n",
2884 				  dev->name);
2885 			break;
2886 		}
2887 	}
2888 	enable_irq(irq);
2889 }
2890 #endif
2891 
2892 /**
2893  *  rx_intr_handler - Rx interrupt handler
2894  *  @ring_info: per ring structure.
2895  *  @budget: budget for napi processing.
2896  *  Description:
2897  *  If the interrupt is because of a received frame or if the
2898  *  receive ring contains fresh as yet un-processed frames,this function is
2899  *  called. It picks out the RxD at which place the last Rx processing had
2900  *  stopped and sends the skb to the OSM's Rx handler and then increments
2901  *  the offset.
2902  *  Return Value:
2903  *  No. of napi packets processed.
2904  */
2905 static int rx_intr_handler(struct ring_info *ring_data, int budget)
2906 {
2907 	int get_block, put_block;
2908 	struct rx_curr_get_info get_info, put_info;
2909 	struct RxD_t *rxdp;
2910 	struct sk_buff *skb;
2911 	int pkt_cnt = 0, napi_pkts = 0;
2912 	int i;
2913 	struct RxD1 *rxdp1;
2914 	struct RxD3 *rxdp3;
2915 
2916 	get_info = ring_data->rx_curr_get_info;
2917 	get_block = get_info.block_index;
2918 	memcpy(&put_info, &ring_data->rx_curr_put_info, sizeof(put_info));
2919 	put_block = put_info.block_index;
2920 	rxdp = ring_data->rx_blocks[get_block].rxds[get_info.offset].virt_addr;
2921 
2922 	while (RXD_IS_UP2DT(rxdp)) {
2923 		/*
2924 		 * If your are next to put index then it's
2925 		 * FIFO full condition
2926 		 */
2927 		if ((get_block == put_block) &&
2928 		    (get_info.offset + 1) == put_info.offset) {
2929 			DBG_PRINT(INTR_DBG, "%s: Ring Full\n",
2930 				  ring_data->dev->name);
2931 			break;
2932 		}
2933 		skb = (struct sk_buff *)((unsigned long)rxdp->Host_Control);
2934 		if (skb == NULL) {
2935 			DBG_PRINT(ERR_DBG, "%s: NULL skb in Rx Intr\n",
2936 				  ring_data->dev->name);
2937 			return 0;
2938 		}
2939 		if (ring_data->rxd_mode == RXD_MODE_1) {
2940 			rxdp1 = (struct RxD1 *)rxdp;
2941 			pci_unmap_single(ring_data->pdev, (dma_addr_t)
2942 					 rxdp1->Buffer0_ptr,
2943 					 ring_data->mtu +
2944 					 HEADER_ETHERNET_II_802_3_SIZE +
2945 					 HEADER_802_2_SIZE +
2946 					 HEADER_SNAP_SIZE,
2947 					 PCI_DMA_FROMDEVICE);
2948 		} else if (ring_data->rxd_mode == RXD_MODE_3B) {
2949 			rxdp3 = (struct RxD3 *)rxdp;
2950 			pci_dma_sync_single_for_cpu(ring_data->pdev,
2951 						    (dma_addr_t)rxdp3->Buffer0_ptr,
2952 						    BUF0_LEN,
2953 						    PCI_DMA_FROMDEVICE);
2954 			pci_unmap_single(ring_data->pdev,
2955 					 (dma_addr_t)rxdp3->Buffer2_ptr,
2956 					 ring_data->mtu + 4,
2957 					 PCI_DMA_FROMDEVICE);
2958 		}
2959 		prefetch(skb->data);
2960 		rx_osm_handler(ring_data, rxdp);
2961 		get_info.offset++;
2962 		ring_data->rx_curr_get_info.offset = get_info.offset;
2963 		rxdp = ring_data->rx_blocks[get_block].
2964 			rxds[get_info.offset].virt_addr;
2965 		if (get_info.offset == rxd_count[ring_data->rxd_mode]) {
2966 			get_info.offset = 0;
2967 			ring_data->rx_curr_get_info.offset = get_info.offset;
2968 			get_block++;
2969 			if (get_block == ring_data->block_count)
2970 				get_block = 0;
2971 			ring_data->rx_curr_get_info.block_index = get_block;
2972 			rxdp = ring_data->rx_blocks[get_block].block_virt_addr;
2973 		}
2974 
2975 		if (ring_data->nic->config.napi) {
2976 			budget--;
2977 			napi_pkts++;
2978 			if (!budget)
2979 				break;
2980 		}
2981 		pkt_cnt++;
2982 		if ((indicate_max_pkts) && (pkt_cnt > indicate_max_pkts))
2983 			break;
2984 	}
2985 	if (ring_data->lro) {
2986 		/* Clear all LRO sessions before exiting */
2987 		for (i = 0; i < MAX_LRO_SESSIONS; i++) {
2988 			struct lro *lro = &ring_data->lro0_n[i];
2989 			if (lro->in_use) {
2990 				update_L3L4_header(ring_data->nic, lro);
2991 				queue_rx_frame(lro->parent, lro->vlan_tag);
2992 				clear_lro_session(lro);
2993 			}
2994 		}
2995 	}
2996 	return napi_pkts;
2997 }
2998 
2999 /**
3000  *  tx_intr_handler - Transmit interrupt handler
3001  *  @nic : device private variable
3002  *  Description:
3003  *  If an interrupt was raised to indicate DMA complete of the
3004  *  Tx packet, this function is called. It identifies the last TxD
3005  *  whose buffer was freed and frees all skbs whose data have already
3006  *  DMA'ed into the NICs internal memory.
3007  *  Return Value:
3008  *  NONE
3009  */
3010 
3011 static void tx_intr_handler(struct fifo_info *fifo_data)
3012 {
3013 	struct s2io_nic *nic = fifo_data->nic;
3014 	struct tx_curr_get_info get_info, put_info;
3015 	struct sk_buff *skb = NULL;
3016 	struct TxD *txdlp;
3017 	int pkt_cnt = 0;
3018 	unsigned long flags = 0;
3019 	u8 err_mask;
3020 	struct stat_block *stats = nic->mac_control.stats_info;
3021 	struct swStat *swstats = &stats->sw_stat;
3022 
3023 	if (!spin_trylock_irqsave(&fifo_data->tx_lock, flags))
3024 		return;
3025 
3026 	get_info = fifo_data->tx_curr_get_info;
3027 	memcpy(&put_info, &fifo_data->tx_curr_put_info, sizeof(put_info));
3028 	txdlp = fifo_data->list_info[get_info.offset].list_virt_addr;
3029 	while ((!(txdlp->Control_1 & TXD_LIST_OWN_XENA)) &&
3030 	       (get_info.offset != put_info.offset) &&
3031 	       (txdlp->Host_Control)) {
3032 		/* Check for TxD errors */
3033 		if (txdlp->Control_1 & TXD_T_CODE) {
3034 			unsigned long long err;
3035 			err = txdlp->Control_1 & TXD_T_CODE;
3036 			if (err & 0x1) {
3037 				swstats->parity_err_cnt++;
3038 			}
3039 
3040 			/* update t_code statistics */
3041 			err_mask = err >> 48;
3042 			switch (err_mask) {
3043 			case 2:
3044 				swstats->tx_buf_abort_cnt++;
3045 				break;
3046 
3047 			case 3:
3048 				swstats->tx_desc_abort_cnt++;
3049 				break;
3050 
3051 			case 7:
3052 				swstats->tx_parity_err_cnt++;
3053 				break;
3054 
3055 			case 10:
3056 				swstats->tx_link_loss_cnt++;
3057 				break;
3058 
3059 			case 15:
3060 				swstats->tx_list_proc_err_cnt++;
3061 				break;
3062 			}
3063 		}
3064 
3065 		skb = s2io_txdl_getskb(fifo_data, txdlp, get_info.offset);
3066 		if (skb == NULL) {
3067 			spin_unlock_irqrestore(&fifo_data->tx_lock, flags);
3068 			DBG_PRINT(ERR_DBG, "%s: NULL skb in Tx Free Intr\n",
3069 				  __func__);
3070 			return;
3071 		}
3072 		pkt_cnt++;
3073 
3074 		/* Updating the statistics block */
3075 		swstats->mem_freed += skb->truesize;
3076 		dev_kfree_skb_irq(skb);
3077 
3078 		get_info.offset++;
3079 		if (get_info.offset == get_info.fifo_len + 1)
3080 			get_info.offset = 0;
3081 		txdlp = fifo_data->list_info[get_info.offset].list_virt_addr;
3082 		fifo_data->tx_curr_get_info.offset = get_info.offset;
3083 	}
3084 
3085 	s2io_wake_tx_queue(fifo_data, pkt_cnt, nic->config.multiq);
3086 
3087 	spin_unlock_irqrestore(&fifo_data->tx_lock, flags);
3088 }
3089 
3090 /**
3091  *  s2io_mdio_write - Function to write in to MDIO registers
3092  *  @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
3093  *  @addr     : address value
3094  *  @value    : data value
3095  *  @dev      : pointer to net_device structure
3096  *  Description:
3097  *  This function is used to write values to the MDIO registers
3098  *  NONE
3099  */
3100 static void s2io_mdio_write(u32 mmd_type, u64 addr, u16 value,
3101 			    struct net_device *dev)
3102 {
3103 	u64 val64;
3104 	struct s2io_nic *sp = netdev_priv(dev);
3105 	struct XENA_dev_config __iomem *bar0 = sp->bar0;
3106 
3107 	/* address transaction */
3108 	val64 = MDIO_MMD_INDX_ADDR(addr) |
3109 		MDIO_MMD_DEV_ADDR(mmd_type) |
3110 		MDIO_MMS_PRT_ADDR(0x0);
3111 	writeq(val64, &bar0->mdio_control);
3112 	val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3113 	writeq(val64, &bar0->mdio_control);
3114 	udelay(100);
3115 
3116 	/* Data transaction */
3117 	val64 = MDIO_MMD_INDX_ADDR(addr) |
3118 		MDIO_MMD_DEV_ADDR(mmd_type) |
3119 		MDIO_MMS_PRT_ADDR(0x0) |
3120 		MDIO_MDIO_DATA(value) |
3121 		MDIO_OP(MDIO_OP_WRITE_TRANS);
3122 	writeq(val64, &bar0->mdio_control);
3123 	val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3124 	writeq(val64, &bar0->mdio_control);
3125 	udelay(100);
3126 
3127 	val64 = MDIO_MMD_INDX_ADDR(addr) |
3128 		MDIO_MMD_DEV_ADDR(mmd_type) |
3129 		MDIO_MMS_PRT_ADDR(0x0) |
3130 		MDIO_OP(MDIO_OP_READ_TRANS);
3131 	writeq(val64, &bar0->mdio_control);
3132 	val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3133 	writeq(val64, &bar0->mdio_control);
3134 	udelay(100);
3135 }
3136 
3137 /**
3138  *  s2io_mdio_read - Function to write in to MDIO registers
3139  *  @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
3140  *  @addr     : address value
3141  *  @dev      : pointer to net_device structure
3142  *  Description:
3143  *  This function is used to read values to the MDIO registers
3144  *  NONE
3145  */
3146 static u64 s2io_mdio_read(u32 mmd_type, u64 addr, struct net_device *dev)
3147 {
3148 	u64 val64 = 0x0;
3149 	u64 rval64 = 0x0;
3150 	struct s2io_nic *sp = netdev_priv(dev);
3151 	struct XENA_dev_config __iomem *bar0 = sp->bar0;
3152 
3153 	/* address transaction */
3154 	val64 = val64 | (MDIO_MMD_INDX_ADDR(addr)
3155 			 | MDIO_MMD_DEV_ADDR(mmd_type)
3156 			 | MDIO_MMS_PRT_ADDR(0x0));
3157 	writeq(val64, &bar0->mdio_control);
3158 	val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3159 	writeq(val64, &bar0->mdio_control);
3160 	udelay(100);
3161 
3162 	/* Data transaction */
3163 	val64 = MDIO_MMD_INDX_ADDR(addr) |
3164 		MDIO_MMD_DEV_ADDR(mmd_type) |
3165 		MDIO_MMS_PRT_ADDR(0x0) |
3166 		MDIO_OP(MDIO_OP_READ_TRANS);
3167 	writeq(val64, &bar0->mdio_control);
3168 	val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3169 	writeq(val64, &bar0->mdio_control);
3170 	udelay(100);
3171 
3172 	/* Read the value from regs */
3173 	rval64 = readq(&bar0->mdio_control);
3174 	rval64 = rval64 & 0xFFFF0000;
3175 	rval64 = rval64 >> 16;
3176 	return rval64;
3177 }
3178 
3179 /**
3180  *  s2io_chk_xpak_counter - Function to check the status of the xpak counters
3181  *  @counter      : counter value to be updated
3182  *  @flag         : flag to indicate the status
3183  *  @type         : counter type
3184  *  Description:
3185  *  This function is to check the status of the xpak counters value
3186  *  NONE
3187  */
3188 
3189 static void s2io_chk_xpak_counter(u64 *counter, u64 * regs_stat, u32 index,
3190 				  u16 flag, u16 type)
3191 {
3192 	u64 mask = 0x3;
3193 	u64 val64;
3194 	int i;
3195 	for (i = 0; i < index; i++)
3196 		mask = mask << 0x2;
3197 
3198 	if (flag > 0) {
3199 		*counter = *counter + 1;
3200 		val64 = *regs_stat & mask;
3201 		val64 = val64 >> (index * 0x2);
3202 		val64 = val64 + 1;
3203 		if (val64 == 3) {
3204 			switch (type) {
3205 			case 1:
3206 				DBG_PRINT(ERR_DBG,
3207 					  "Take Xframe NIC out of service.\n");
3208 				DBG_PRINT(ERR_DBG,
3209 "Excessive temperatures may result in premature transceiver failure.\n");
3210 				break;
3211 			case 2:
3212 				DBG_PRINT(ERR_DBG,
3213 					  "Take Xframe NIC out of service.\n");
3214 				DBG_PRINT(ERR_DBG,
3215 "Excessive bias currents may indicate imminent laser diode failure.\n");
3216 				break;
3217 			case 3:
3218 				DBG_PRINT(ERR_DBG,
3219 					  "Take Xframe NIC out of service.\n");
3220 				DBG_PRINT(ERR_DBG,
3221 "Excessive laser output power may saturate far-end receiver.\n");
3222 				break;
3223 			default:
3224 				DBG_PRINT(ERR_DBG,
3225 					  "Incorrect XPAK Alarm type\n");
3226 			}
3227 			val64 = 0x0;
3228 		}
3229 		val64 = val64 << (index * 0x2);
3230 		*regs_stat = (*regs_stat & (~mask)) | (val64);
3231 
3232 	} else {
3233 		*regs_stat = *regs_stat & (~mask);
3234 	}
3235 }
3236 
3237 /**
3238  *  s2io_updt_xpak_counter - Function to update the xpak counters
3239  *  @dev         : pointer to net_device struct
3240  *  Description:
3241  *  This function is to upate the status of the xpak counters value
3242  *  NONE
3243  */
3244 static void s2io_updt_xpak_counter(struct net_device *dev)
3245 {
3246 	u16 flag  = 0x0;
3247 	u16 type  = 0x0;
3248 	u16 val16 = 0x0;
3249 	u64 val64 = 0x0;
3250 	u64 addr  = 0x0;
3251 
3252 	struct s2io_nic *sp = netdev_priv(dev);
3253 	struct stat_block *stats = sp->mac_control.stats_info;
3254 	struct xpakStat *xstats = &stats->xpak_stat;
3255 
3256 	/* Check the communication with the MDIO slave */
3257 	addr = MDIO_CTRL1;
3258 	val64 = 0x0;
3259 	val64 = s2io_mdio_read(MDIO_MMD_PMAPMD, addr, dev);
3260 	if ((val64 == 0xFFFF) || (val64 == 0x0000)) {
3261 		DBG_PRINT(ERR_DBG,
3262 			  "ERR: MDIO slave access failed - Returned %llx\n",
3263 			  (unsigned long long)val64);
3264 		return;
3265 	}
3266 
3267 	/* Check for the expected value of control reg 1 */
3268 	if (val64 != MDIO_CTRL1_SPEED10G) {
3269 		DBG_PRINT(ERR_DBG, "Incorrect value at PMA address 0x0000 - "
3270 			  "Returned: %llx- Expected: 0x%x\n",
3271 			  (unsigned long long)val64, MDIO_CTRL1_SPEED10G);
3272 		return;
3273 	}
3274 
3275 	/* Loading the DOM register to MDIO register */
3276 	addr = 0xA100;
3277 	s2io_mdio_write(MDIO_MMD_PMAPMD, addr, val16, dev);
3278 	val64 = s2io_mdio_read(MDIO_MMD_PMAPMD, addr, dev);
3279 
3280 	/* Reading the Alarm flags */
3281 	addr = 0xA070;
3282 	val64 = 0x0;
3283 	val64 = s2io_mdio_read(MDIO_MMD_PMAPMD, addr, dev);
3284 
3285 	flag = CHECKBIT(val64, 0x7);
3286 	type = 1;
3287 	s2io_chk_xpak_counter(&xstats->alarm_transceiver_temp_high,
3288 			      &xstats->xpak_regs_stat,
3289 			      0x0, flag, type);
3290 
3291 	if (CHECKBIT(val64, 0x6))
3292 		xstats->alarm_transceiver_temp_low++;
3293 
3294 	flag = CHECKBIT(val64, 0x3);
3295 	type = 2;
3296 	s2io_chk_xpak_counter(&xstats->alarm_laser_bias_current_high,
3297 			      &xstats->xpak_regs_stat,
3298 			      0x2, flag, type);
3299 
3300 	if (CHECKBIT(val64, 0x2))
3301 		xstats->alarm_laser_bias_current_low++;
3302 
3303 	flag = CHECKBIT(val64, 0x1);
3304 	type = 3;
3305 	s2io_chk_xpak_counter(&xstats->alarm_laser_output_power_high,
3306 			      &xstats->xpak_regs_stat,
3307 			      0x4, flag, type);
3308 
3309 	if (CHECKBIT(val64, 0x0))
3310 		xstats->alarm_laser_output_power_low++;
3311 
3312 	/* Reading the Warning flags */
3313 	addr = 0xA074;
3314 	val64 = 0x0;
3315 	val64 = s2io_mdio_read(MDIO_MMD_PMAPMD, addr, dev);
3316 
3317 	if (CHECKBIT(val64, 0x7))
3318 		xstats->warn_transceiver_temp_high++;
3319 
3320 	if (CHECKBIT(val64, 0x6))
3321 		xstats->warn_transceiver_temp_low++;
3322 
3323 	if (CHECKBIT(val64, 0x3))
3324 		xstats->warn_laser_bias_current_high++;
3325 
3326 	if (CHECKBIT(val64, 0x2))
3327 		xstats->warn_laser_bias_current_low++;
3328 
3329 	if (CHECKBIT(val64, 0x1))
3330 		xstats->warn_laser_output_power_high++;
3331 
3332 	if (CHECKBIT(val64, 0x0))
3333 		xstats->warn_laser_output_power_low++;
3334 }
3335 
3336 /**
3337  *  wait_for_cmd_complete - waits for a command to complete.
3338  *  @sp : private member of the device structure, which is a pointer to the
3339  *  s2io_nic structure.
3340  *  Description: Function that waits for a command to Write into RMAC
3341  *  ADDR DATA registers to be completed and returns either success or
3342  *  error depending on whether the command was complete or not.
3343  *  Return value:
3344  *   SUCCESS on success and FAILURE on failure.
3345  */
3346 
3347 static int wait_for_cmd_complete(void __iomem *addr, u64 busy_bit,
3348 				 int bit_state)
3349 {
3350 	int ret = FAILURE, cnt = 0, delay = 1;
3351 	u64 val64;
3352 
3353 	if ((bit_state != S2IO_BIT_RESET) && (bit_state != S2IO_BIT_SET))
3354 		return FAILURE;
3355 
3356 	do {
3357 		val64 = readq(addr);
3358 		if (bit_state == S2IO_BIT_RESET) {
3359 			if (!(val64 & busy_bit)) {
3360 				ret = SUCCESS;
3361 				break;
3362 			}
3363 		} else {
3364 			if (val64 & busy_bit) {
3365 				ret = SUCCESS;
3366 				break;
3367 			}
3368 		}
3369 
3370 		if (in_interrupt())
3371 			mdelay(delay);
3372 		else
3373 			msleep(delay);
3374 
3375 		if (++cnt >= 10)
3376 			delay = 50;
3377 	} while (cnt < 20);
3378 	return ret;
3379 }
3380 /**
3381  * check_pci_device_id - Checks if the device id is supported
3382  * @id : device id
3383  * Description: Function to check if the pci device id is supported by driver.
3384  * Return value: Actual device id if supported else PCI_ANY_ID
3385  */
3386 static u16 check_pci_device_id(u16 id)
3387 {
3388 	switch (id) {
3389 	case PCI_DEVICE_ID_HERC_WIN:
3390 	case PCI_DEVICE_ID_HERC_UNI:
3391 		return XFRAME_II_DEVICE;
3392 	case PCI_DEVICE_ID_S2IO_UNI:
3393 	case PCI_DEVICE_ID_S2IO_WIN:
3394 		return XFRAME_I_DEVICE;
3395 	default:
3396 		return PCI_ANY_ID;
3397 	}
3398 }
3399 
3400 /**
3401  *  s2io_reset - Resets the card.
3402  *  @sp : private member of the device structure.
3403  *  Description: Function to Reset the card. This function then also
3404  *  restores the previously saved PCI configuration space registers as
3405  *  the card reset also resets the configuration space.
3406  *  Return value:
3407  *  void.
3408  */
3409 
3410 static void s2io_reset(struct s2io_nic *sp)
3411 {
3412 	struct XENA_dev_config __iomem *bar0 = sp->bar0;
3413 	u64 val64;
3414 	u16 subid, pci_cmd;
3415 	int i;
3416 	u16 val16;
3417 	unsigned long long up_cnt, down_cnt, up_time, down_time, reset_cnt;
3418 	unsigned long long mem_alloc_cnt, mem_free_cnt, watchdog_cnt;
3419 	struct stat_block *stats;
3420 	struct swStat *swstats;
3421 
3422 	DBG_PRINT(INIT_DBG, "%s: Resetting XFrame card %s\n",
3423 		  __func__, pci_name(sp->pdev));
3424 
3425 	/* Back up  the PCI-X CMD reg, dont want to lose MMRBC, OST settings */
3426 	pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER, &(pci_cmd));
3427 
3428 	val64 = SW_RESET_ALL;
3429 	writeq(val64, &bar0->sw_reset);
3430 	if (strstr(sp->product_name, "CX4"))
3431 		msleep(750);
3432 	msleep(250);
3433 	for (i = 0; i < S2IO_MAX_PCI_CONFIG_SPACE_REINIT; i++) {
3434 
3435 		/* Restore the PCI state saved during initialization. */
3436 		pci_restore_state(sp->pdev);
3437 		pci_save_state(sp->pdev);
3438 		pci_read_config_word(sp->pdev, 0x2, &val16);
3439 		if (check_pci_device_id(val16) != (u16)PCI_ANY_ID)
3440 			break;
3441 		msleep(200);
3442 	}
3443 
3444 	if (check_pci_device_id(val16) == (u16)PCI_ANY_ID)
3445 		DBG_PRINT(ERR_DBG, "%s SW_Reset failed!\n", __func__);
3446 
3447 	pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER, pci_cmd);
3448 
3449 	s2io_init_pci(sp);
3450 
3451 	/* Set swapper to enable I/O register access */
3452 	s2io_set_swapper(sp);
3453 
3454 	/* restore mac_addr entries */
3455 	do_s2io_restore_unicast_mc(sp);
3456 
3457 	/* Restore the MSIX table entries from local variables */
3458 	restore_xmsi_data(sp);
3459 
3460 	/* Clear certain PCI/PCI-X fields after reset */
3461 	if (sp->device_type == XFRAME_II_DEVICE) {
3462 		/* Clear "detected parity error" bit */
3463 		pci_write_config_word(sp->pdev, PCI_STATUS, 0x8000);
3464 
3465 		/* Clearing PCIX Ecc status register */
3466 		pci_write_config_dword(sp->pdev, 0x68, 0x7C);
3467 
3468 		/* Clearing PCI_STATUS error reflected here */
3469 		writeq(s2BIT(62), &bar0->txpic_int_reg);
3470 	}
3471 
3472 	/* Reset device statistics maintained by OS */
3473 	memset(&sp->stats, 0, sizeof(struct net_device_stats));
3474 
3475 	stats = sp->mac_control.stats_info;
3476 	swstats = &stats->sw_stat;
3477 
3478 	/* save link up/down time/cnt, reset/memory/watchdog cnt */
3479 	up_cnt = swstats->link_up_cnt;
3480 	down_cnt = swstats->link_down_cnt;
3481 	up_time = swstats->link_up_time;
3482 	down_time = swstats->link_down_time;
3483 	reset_cnt = swstats->soft_reset_cnt;
3484 	mem_alloc_cnt = swstats->mem_allocated;
3485 	mem_free_cnt = swstats->mem_freed;
3486 	watchdog_cnt = swstats->watchdog_timer_cnt;
3487 
3488 	memset(stats, 0, sizeof(struct stat_block));
3489 
3490 	/* restore link up/down time/cnt, reset/memory/watchdog cnt */
3491 	swstats->link_up_cnt = up_cnt;
3492 	swstats->link_down_cnt = down_cnt;
3493 	swstats->link_up_time = up_time;
3494 	swstats->link_down_time = down_time;
3495 	swstats->soft_reset_cnt = reset_cnt;
3496 	swstats->mem_allocated = mem_alloc_cnt;
3497 	swstats->mem_freed = mem_free_cnt;
3498 	swstats->watchdog_timer_cnt = watchdog_cnt;
3499 
3500 	/* SXE-002: Configure link and activity LED to turn it off */
3501 	subid = sp->pdev->subsystem_device;
3502 	if (((subid & 0xFF) >= 0x07) &&
3503 	    (sp->device_type == XFRAME_I_DEVICE)) {
3504 		val64 = readq(&bar0->gpio_control);
3505 		val64 |= 0x0000800000000000ULL;
3506 		writeq(val64, &bar0->gpio_control);
3507 		val64 = 0x0411040400000000ULL;
3508 		writeq(val64, (void __iomem *)bar0 + 0x2700);
3509 	}
3510 
3511 	/*
3512 	 * Clear spurious ECC interrupts that would have occurred on
3513 	 * XFRAME II cards after reset.
3514 	 */
3515 	if (sp->device_type == XFRAME_II_DEVICE) {
3516 		val64 = readq(&bar0->pcc_err_reg);
3517 		writeq(val64, &bar0->pcc_err_reg);
3518 	}
3519 
3520 	sp->device_enabled_once = false;
3521 }
3522 
3523 /**
3524  *  s2io_set_swapper - to set the swapper controle on the card
3525  *  @sp : private member of the device structure,
3526  *  pointer to the s2io_nic structure.
3527  *  Description: Function to set the swapper control on the card
3528  *  correctly depending on the 'endianness' of the system.
3529  *  Return value:
3530  *  SUCCESS on success and FAILURE on failure.
3531  */
3532 
3533 static int s2io_set_swapper(struct s2io_nic *sp)
3534 {
3535 	struct net_device *dev = sp->dev;
3536 	struct XENA_dev_config __iomem *bar0 = sp->bar0;
3537 	u64 val64, valt, valr;
3538 
3539 	/*
3540 	 * Set proper endian settings and verify the same by reading
3541 	 * the PIF Feed-back register.
3542 	 */
3543 
3544 	val64 = readq(&bar0->pif_rd_swapper_fb);
3545 	if (val64 != 0x0123456789ABCDEFULL) {
3546 		int i = 0;
3547 		static const u64 value[] = {
3548 			0xC30000C3C30000C3ULL,	/* FE=1, SE=1 */
3549 			0x8100008181000081ULL,	/* FE=1, SE=0 */
3550 			0x4200004242000042ULL,	/* FE=0, SE=1 */
3551 			0			/* FE=0, SE=0 */
3552 		};
3553 
3554 		while (i < 4) {
3555 			writeq(value[i], &bar0->swapper_ctrl);
3556 			val64 = readq(&bar0->pif_rd_swapper_fb);
3557 			if (val64 == 0x0123456789ABCDEFULL)
3558 				break;
3559 			i++;
3560 		}
3561 		if (i == 4) {
3562 			DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, "
3563 				  "feedback read %llx\n",
3564 				  dev->name, (unsigned long long)val64);
3565 			return FAILURE;
3566 		}
3567 		valr = value[i];
3568 	} else {
3569 		valr = readq(&bar0->swapper_ctrl);
3570 	}
3571 
3572 	valt = 0x0123456789ABCDEFULL;
3573 	writeq(valt, &bar0->xmsi_address);
3574 	val64 = readq(&bar0->xmsi_address);
3575 
3576 	if (val64 != valt) {
3577 		int i = 0;
3578 		static const u64 value[] = {
3579 			0x00C3C30000C3C300ULL,	/* FE=1, SE=1 */
3580 			0x0081810000818100ULL,	/* FE=1, SE=0 */
3581 			0x0042420000424200ULL,	/* FE=0, SE=1 */
3582 			0			/* FE=0, SE=0 */
3583 		};
3584 
3585 		while (i < 4) {
3586 			writeq((value[i] | valr), &bar0->swapper_ctrl);
3587 			writeq(valt, &bar0->xmsi_address);
3588 			val64 = readq(&bar0->xmsi_address);
3589 			if (val64 == valt)
3590 				break;
3591 			i++;
3592 		}
3593 		if (i == 4) {
3594 			unsigned long long x = val64;
3595 			DBG_PRINT(ERR_DBG,
3596 				  "Write failed, Xmsi_addr reads:0x%llx\n", x);
3597 			return FAILURE;
3598 		}
3599 	}
3600 	val64 = readq(&bar0->swapper_ctrl);
3601 	val64 &= 0xFFFF000000000000ULL;
3602 
3603 #ifdef __BIG_ENDIAN
3604 	/*
3605 	 * The device by default set to a big endian format, so a
3606 	 * big endian driver need not set anything.
3607 	 */
3608 	val64 |= (SWAPPER_CTRL_TXP_FE |
3609 		  SWAPPER_CTRL_TXP_SE |
3610 		  SWAPPER_CTRL_TXD_R_FE |
3611 		  SWAPPER_CTRL_TXD_W_FE |
3612 		  SWAPPER_CTRL_TXF_R_FE |
3613 		  SWAPPER_CTRL_RXD_R_FE |
3614 		  SWAPPER_CTRL_RXD_W_FE |
3615 		  SWAPPER_CTRL_RXF_W_FE |
3616 		  SWAPPER_CTRL_XMSI_FE |
3617 		  SWAPPER_CTRL_STATS_FE |
3618 		  SWAPPER_CTRL_STATS_SE);
3619 	if (sp->config.intr_type == INTA)
3620 		val64 |= SWAPPER_CTRL_XMSI_SE;
3621 	writeq(val64, &bar0->swapper_ctrl);
3622 #else
3623 	/*
3624 	 * Initially we enable all bits to make it accessible by the
3625 	 * driver, then we selectively enable only those bits that
3626 	 * we want to set.
3627 	 */
3628 	val64 |= (SWAPPER_CTRL_TXP_FE |
3629 		  SWAPPER_CTRL_TXP_SE |
3630 		  SWAPPER_CTRL_TXD_R_FE |
3631 		  SWAPPER_CTRL_TXD_R_SE |
3632 		  SWAPPER_CTRL_TXD_W_FE |
3633 		  SWAPPER_CTRL_TXD_W_SE |
3634 		  SWAPPER_CTRL_TXF_R_FE |
3635 		  SWAPPER_CTRL_RXD_R_FE |
3636 		  SWAPPER_CTRL_RXD_R_SE |
3637 		  SWAPPER_CTRL_RXD_W_FE |
3638 		  SWAPPER_CTRL_RXD_W_SE |
3639 		  SWAPPER_CTRL_RXF_W_FE |
3640 		  SWAPPER_CTRL_XMSI_FE |
3641 		  SWAPPER_CTRL_STATS_FE |
3642 		  SWAPPER_CTRL_STATS_SE);
3643 	if (sp->config.intr_type == INTA)
3644 		val64 |= SWAPPER_CTRL_XMSI_SE;
3645 	writeq(val64, &bar0->swapper_ctrl);
3646 #endif
3647 	val64 = readq(&bar0->swapper_ctrl);
3648 
3649 	/*
3650 	 * Verifying if endian settings are accurate by reading a
3651 	 * feedback register.
3652 	 */
3653 	val64 = readq(&bar0->pif_rd_swapper_fb);
3654 	if (val64 != 0x0123456789ABCDEFULL) {
3655 		/* Endian settings are incorrect, calls for another dekko. */
3656 		DBG_PRINT(ERR_DBG,
3657 			  "%s: Endian settings are wrong, feedback read %llx\n",
3658 			  dev->name, (unsigned long long)val64);
3659 		return FAILURE;
3660 	}
3661 
3662 	return SUCCESS;
3663 }
3664 
3665 static int wait_for_msix_trans(struct s2io_nic *nic, int i)
3666 {
3667 	struct XENA_dev_config __iomem *bar0 = nic->bar0;
3668 	u64 val64;
3669 	int ret = 0, cnt = 0;
3670 
3671 	do {
3672 		val64 = readq(&bar0->xmsi_access);
3673 		if (!(val64 & s2BIT(15)))
3674 			break;
3675 		mdelay(1);
3676 		cnt++;
3677 	} while (cnt < 5);
3678 	if (cnt == 5) {
3679 		DBG_PRINT(ERR_DBG, "XMSI # %d Access failed\n", i);
3680 		ret = 1;
3681 	}
3682 
3683 	return ret;
3684 }
3685 
3686 static void restore_xmsi_data(struct s2io_nic *nic)
3687 {
3688 	struct XENA_dev_config __iomem *bar0 = nic->bar0;
3689 	u64 val64;
3690 	int i, msix_index;
3691 
3692 	if (nic->device_type == XFRAME_I_DEVICE)
3693 		return;
3694 
3695 	for (i = 0; i < MAX_REQUESTED_MSI_X; i++) {
3696 		msix_index = (i) ? ((i-1) * 8 + 1) : 0;
3697 		writeq(nic->msix_info[i].addr, &bar0->xmsi_address);
3698 		writeq(nic->msix_info[i].data, &bar0->xmsi_data);
3699 		val64 = (s2BIT(7) | s2BIT(15) | vBIT(msix_index, 26, 6));
3700 		writeq(val64, &bar0->xmsi_access);
3701 		if (wait_for_msix_trans(nic, msix_index)) {
3702 			DBG_PRINT(ERR_DBG, "%s: index: %d failed\n",
3703 				  __func__, msix_index);
3704 			continue;
3705 		}
3706 	}
3707 }
3708 
3709 static void store_xmsi_data(struct s2io_nic *nic)
3710 {
3711 	struct XENA_dev_config __iomem *bar0 = nic->bar0;
3712 	u64 val64, addr, data;
3713 	int i, msix_index;
3714 
3715 	if (nic->device_type == XFRAME_I_DEVICE)
3716 		return;
3717 
3718 	/* Store and display */
3719 	for (i = 0; i < MAX_REQUESTED_MSI_X; i++) {
3720 		msix_index = (i) ? ((i-1) * 8 + 1) : 0;
3721 		val64 = (s2BIT(15) | vBIT(msix_index, 26, 6));
3722 		writeq(val64, &bar0->xmsi_access);
3723 		if (wait_for_msix_trans(nic, msix_index)) {
3724 			DBG_PRINT(ERR_DBG, "%s: index: %d failed\n",
3725 				  __func__, msix_index);
3726 			continue;
3727 		}
3728 		addr = readq(&bar0->xmsi_address);
3729 		data = readq(&bar0->xmsi_data);
3730 		if (addr && data) {
3731 			nic->msix_info[i].addr = addr;
3732 			nic->msix_info[i].data = data;
3733 		}
3734 	}
3735 }
3736 
3737 static int s2io_enable_msi_x(struct s2io_nic *nic)
3738 {
3739 	struct XENA_dev_config __iomem *bar0 = nic->bar0;
3740 	u64 rx_mat;
3741 	u16 msi_control; /* Temp variable */
3742 	int ret, i, j, msix_indx = 1;
3743 	int size;
3744 	struct stat_block *stats = nic->mac_control.stats_info;
3745 	struct swStat *swstats = &stats->sw_stat;
3746 
3747 	size = nic->num_entries * sizeof(struct msix_entry);
3748 	nic->entries = kzalloc(size, GFP_KERNEL);
3749 	if (!nic->entries) {
3750 		DBG_PRINT(INFO_DBG, "%s: Memory allocation failed\n",
3751 			  __func__);
3752 		swstats->mem_alloc_fail_cnt++;
3753 		return -ENOMEM;
3754 	}
3755 	swstats->mem_allocated += size;
3756 
3757 	size = nic->num_entries * sizeof(struct s2io_msix_entry);
3758 	nic->s2io_entries = kzalloc(size, GFP_KERNEL);
3759 	if (!nic->s2io_entries) {
3760 		DBG_PRINT(INFO_DBG, "%s: Memory allocation failed\n",
3761 			  __func__);
3762 		swstats->mem_alloc_fail_cnt++;
3763 		kfree(nic->entries);
3764 		swstats->mem_freed
3765 			+= (nic->num_entries * sizeof(struct msix_entry));
3766 		return -ENOMEM;
3767 	}
3768 	swstats->mem_allocated += size;
3769 
3770 	nic->entries[0].entry = 0;
3771 	nic->s2io_entries[0].entry = 0;
3772 	nic->s2io_entries[0].in_use = MSIX_FLG;
3773 	nic->s2io_entries[0].type = MSIX_ALARM_TYPE;
3774 	nic->s2io_entries[0].arg = &nic->mac_control.fifos;
3775 
3776 	for (i = 1; i < nic->num_entries; i++) {
3777 		nic->entries[i].entry = ((i - 1) * 8) + 1;
3778 		nic->s2io_entries[i].entry = ((i - 1) * 8) + 1;
3779 		nic->s2io_entries[i].arg = NULL;
3780 		nic->s2io_entries[i].in_use = 0;
3781 	}
3782 
3783 	rx_mat = readq(&bar0->rx_mat);
3784 	for (j = 0; j < nic->config.rx_ring_num; j++) {
3785 		rx_mat |= RX_MAT_SET(j, msix_indx);
3786 		nic->s2io_entries[j+1].arg = &nic->mac_control.rings[j];
3787 		nic->s2io_entries[j+1].type = MSIX_RING_TYPE;
3788 		nic->s2io_entries[j+1].in_use = MSIX_FLG;
3789 		msix_indx += 8;
3790 	}
3791 	writeq(rx_mat, &bar0->rx_mat);
3792 	readq(&bar0->rx_mat);
3793 
3794 	ret = pci_enable_msix(nic->pdev, nic->entries, nic->num_entries);
3795 	/* We fail init if error or we get less vectors than min required */
3796 	if (ret) {
3797 		DBG_PRINT(ERR_DBG, "Enabling MSI-X failed\n");
3798 		kfree(nic->entries);
3799 		swstats->mem_freed += nic->num_entries *
3800 			sizeof(struct msix_entry);
3801 		kfree(nic->s2io_entries);
3802 		swstats->mem_freed += nic->num_entries *
3803 			sizeof(struct s2io_msix_entry);
3804 		nic->entries = NULL;
3805 		nic->s2io_entries = NULL;
3806 		return -ENOMEM;
3807 	}
3808 
3809 	/*
3810 	 * To enable MSI-X, MSI also needs to be enabled, due to a bug
3811 	 * in the herc NIC. (Temp change, needs to be removed later)
3812 	 */
3813 	pci_read_config_word(nic->pdev, 0x42, &msi_control);
3814 	msi_control |= 0x1; /* Enable MSI */
3815 	pci_write_config_word(nic->pdev, 0x42, msi_control);
3816 
3817 	return 0;
3818 }
3819 
3820 /* Handle software interrupt used during MSI(X) test */
3821 static irqreturn_t s2io_test_intr(int irq, void *dev_id)
3822 {
3823 	struct s2io_nic *sp = dev_id;
3824 
3825 	sp->msi_detected = 1;
3826 	wake_up(&sp->msi_wait);
3827 
3828 	return IRQ_HANDLED;
3829 }
3830 
3831 /* Test interrupt path by forcing a a software IRQ */
3832 static int s2io_test_msi(struct s2io_nic *sp)
3833 {
3834 	struct pci_dev *pdev = sp->pdev;
3835 	struct XENA_dev_config __iomem *bar0 = sp->bar0;
3836 	int err;
3837 	u64 val64, saved64;
3838 
3839 	err = request_irq(sp->entries[1].vector, s2io_test_intr, 0,
3840 			  sp->name, sp);
3841 	if (err) {
3842 		DBG_PRINT(ERR_DBG, "%s: PCI %s: cannot assign irq %d\n",
3843 			  sp->dev->name, pci_name(pdev), pdev->irq);
3844 		return err;
3845 	}
3846 
3847 	init_waitqueue_head(&sp->msi_wait);
3848 	sp->msi_detected = 0;
3849 
3850 	saved64 = val64 = readq(&bar0->scheduled_int_ctrl);
3851 	val64 |= SCHED_INT_CTRL_ONE_SHOT;
3852 	val64 |= SCHED_INT_CTRL_TIMER_EN;
3853 	val64 |= SCHED_INT_CTRL_INT2MSI(1);
3854 	writeq(val64, &bar0->scheduled_int_ctrl);
3855 
3856 	wait_event_timeout(sp->msi_wait, sp->msi_detected, HZ/10);
3857 
3858 	if (!sp->msi_detected) {
3859 		/* MSI(X) test failed, go back to INTx mode */
3860 		DBG_PRINT(ERR_DBG, "%s: PCI %s: No interrupt was generated "
3861 			  "using MSI(X) during test\n",
3862 			  sp->dev->name, pci_name(pdev));
3863 
3864 		err = -EOPNOTSUPP;
3865 	}
3866 
3867 	free_irq(sp->entries[1].vector, sp);
3868 
3869 	writeq(saved64, &bar0->scheduled_int_ctrl);
3870 
3871 	return err;
3872 }
3873 
3874 static void remove_msix_isr(struct s2io_nic *sp)
3875 {
3876 	int i;
3877 	u16 msi_control;
3878 
3879 	for (i = 0; i < sp->num_entries; i++) {
3880 		if (sp->s2io_entries[i].in_use == MSIX_REGISTERED_SUCCESS) {
3881 			int vector = sp->entries[i].vector;
3882 			void *arg = sp->s2io_entries[i].arg;
3883 			free_irq(vector, arg);
3884 		}
3885 	}
3886 
3887 	kfree(sp->entries);
3888 	kfree(sp->s2io_entries);
3889 	sp->entries = NULL;
3890 	sp->s2io_entries = NULL;
3891 
3892 	pci_read_config_word(sp->pdev, 0x42, &msi_control);
3893 	msi_control &= 0xFFFE; /* Disable MSI */
3894 	pci_write_config_word(sp->pdev, 0x42, msi_control);
3895 
3896 	pci_disable_msix(sp->pdev);
3897 }
3898 
3899 static void remove_inta_isr(struct s2io_nic *sp)
3900 {
3901 	free_irq(sp->pdev->irq, sp->dev);
3902 }
3903 
3904 /* ********************************************************* *
3905  * Functions defined below concern the OS part of the driver *
3906  * ********************************************************* */
3907 
3908 /**
3909  *  s2io_open - open entry point of the driver
3910  *  @dev : pointer to the device structure.
3911  *  Description:
3912  *  This function is the open entry point of the driver. It mainly calls a
3913  *  function to allocate Rx buffers and inserts them into the buffer
3914  *  descriptors and then enables the Rx part of the NIC.
3915  *  Return value:
3916  *  0 on success and an appropriate (-)ve integer as defined in errno.h
3917  *   file on failure.
3918  */
3919 
3920 static int s2io_open(struct net_device *dev)
3921 {
3922 	struct s2io_nic *sp = netdev_priv(dev);
3923 	struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
3924 	int err = 0;
3925 
3926 	/*
3927 	 * Make sure you have link off by default every time
3928 	 * Nic is initialized
3929 	 */
3930 	netif_carrier_off(dev);
3931 	sp->last_link_state = 0;
3932 
3933 	/* Initialize H/W and enable interrupts */
3934 	err = s2io_card_up(sp);
3935 	if (err) {
3936 		DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
3937 			  dev->name);
3938 		goto hw_init_failed;
3939 	}
3940 
3941 	if (do_s2io_prog_unicast(dev, dev->dev_addr) == FAILURE) {
3942 		DBG_PRINT(ERR_DBG, "Set Mac Address Failed\n");
3943 		s2io_card_down(sp);
3944 		err = -ENODEV;
3945 		goto hw_init_failed;
3946 	}
3947 	s2io_start_all_tx_queue(sp);
3948 	return 0;
3949 
3950 hw_init_failed:
3951 	if (sp->config.intr_type == MSI_X) {
3952 		if (sp->entries) {
3953 			kfree(sp->entries);
3954 			swstats->mem_freed += sp->num_entries *
3955 				sizeof(struct msix_entry);
3956 		}
3957 		if (sp->s2io_entries) {
3958 			kfree(sp->s2io_entries);
3959 			swstats->mem_freed += sp->num_entries *
3960 				sizeof(struct s2io_msix_entry);
3961 		}
3962 	}
3963 	return err;
3964 }
3965 
3966 /**
3967  *  s2io_close -close entry point of the driver
3968  *  @dev : device pointer.
3969  *  Description:
3970  *  This is the stop entry point of the driver. It needs to undo exactly
3971  *  whatever was done by the open entry point,thus it's usually referred to
3972  *  as the close function.Among other things this function mainly stops the
3973  *  Rx side of the NIC and frees all the Rx buffers in the Rx rings.
3974  *  Return value:
3975  *  0 on success and an appropriate (-)ve integer as defined in errno.h
3976  *  file on failure.
3977  */
3978 
3979 static int s2io_close(struct net_device *dev)
3980 {
3981 	struct s2io_nic *sp = netdev_priv(dev);
3982 	struct config_param *config = &sp->config;
3983 	u64 tmp64;
3984 	int offset;
3985 
3986 	/* Return if the device is already closed               *
3987 	 *  Can happen when s2io_card_up failed in change_mtu    *
3988 	 */
3989 	if (!is_s2io_card_up(sp))
3990 		return 0;
3991 
3992 	s2io_stop_all_tx_queue(sp);
3993 	/* delete all populated mac entries */
3994 	for (offset = 1; offset < config->max_mc_addr; offset++) {
3995 		tmp64 = do_s2io_read_unicast_mc(sp, offset);
3996 		if (tmp64 != S2IO_DISABLE_MAC_ENTRY)
3997 			do_s2io_delete_unicast_mc(sp, tmp64);
3998 	}
3999 
4000 	s2io_card_down(sp);
4001 
4002 	return 0;
4003 }
4004 
4005 /**
4006  *  s2io_xmit - Tx entry point of te driver
4007  *  @skb : the socket buffer containing the Tx data.
4008  *  @dev : device pointer.
4009  *  Description :
4010  *  This function is the Tx entry point of the driver. S2IO NIC supports
4011  *  certain protocol assist features on Tx side, namely  CSO, S/G, LSO.
4012  *  NOTE: when device can't queue the pkt,just the trans_start variable will
4013  *  not be upadted.
4014  *  Return value:
4015  *  0 on success & 1 on failure.
4016  */
4017 
4018 static netdev_tx_t s2io_xmit(struct sk_buff *skb, struct net_device *dev)
4019 {
4020 	struct s2io_nic *sp = netdev_priv(dev);
4021 	u16 frg_cnt, frg_len, i, queue, queue_len, put_off, get_off;
4022 	register u64 val64;
4023 	struct TxD *txdp;
4024 	struct TxFIFO_element __iomem *tx_fifo;
4025 	unsigned long flags = 0;
4026 	u16 vlan_tag = 0;
4027 	struct fifo_info *fifo = NULL;
4028 	int do_spin_lock = 1;
4029 	int offload_type;
4030 	int enable_per_list_interrupt = 0;
4031 	struct config_param *config = &sp->config;
4032 	struct mac_info *mac_control = &sp->mac_control;
4033 	struct stat_block *stats = mac_control->stats_info;
4034 	struct swStat *swstats = &stats->sw_stat;
4035 
4036 	DBG_PRINT(TX_DBG, "%s: In Neterion Tx routine\n", dev->name);
4037 
4038 	if (unlikely(skb->len <= 0)) {
4039 		DBG_PRINT(TX_DBG, "%s: Buffer has no data..\n", dev->name);
4040 		dev_kfree_skb_any(skb);
4041 		return NETDEV_TX_OK;
4042 	}
4043 
4044 	if (!is_s2io_card_up(sp)) {
4045 		DBG_PRINT(TX_DBG, "%s: Card going down for reset\n",
4046 			  dev->name);
4047 		dev_kfree_skb(skb);
4048 		return NETDEV_TX_OK;
4049 	}
4050 
4051 	queue = 0;
4052 	if (vlan_tx_tag_present(skb))
4053 		vlan_tag = vlan_tx_tag_get(skb);
4054 	if (sp->config.tx_steering_type == TX_DEFAULT_STEERING) {
4055 		if (skb->protocol == htons(ETH_P_IP)) {
4056 			struct iphdr *ip;
4057 			struct tcphdr *th;
4058 			ip = ip_hdr(skb);
4059 
4060 			if (!ip_is_fragment(ip)) {
4061 				th = (struct tcphdr *)(((unsigned char *)ip) +
4062 						       ip->ihl*4);
4063 
4064 				if (ip->protocol == IPPROTO_TCP) {
4065 					queue_len = sp->total_tcp_fifos;
4066 					queue = (ntohs(th->source) +
4067 						 ntohs(th->dest)) &
4068 						sp->fifo_selector[queue_len - 1];
4069 					if (queue >= queue_len)
4070 						queue = queue_len - 1;
4071 				} else if (ip->protocol == IPPROTO_UDP) {
4072 					queue_len = sp->total_udp_fifos;
4073 					queue = (ntohs(th->source) +
4074 						 ntohs(th->dest)) &
4075 						sp->fifo_selector[queue_len - 1];
4076 					if (queue >= queue_len)
4077 						queue = queue_len - 1;
4078 					queue += sp->udp_fifo_idx;
4079 					if (skb->len > 1024)
4080 						enable_per_list_interrupt = 1;
4081 					do_spin_lock = 0;
4082 				}
4083 			}
4084 		}
4085 	} else if (sp->config.tx_steering_type == TX_PRIORITY_STEERING)
4086 		/* get fifo number based on skb->priority value */
4087 		queue = config->fifo_mapping
4088 			[skb->priority & (MAX_TX_FIFOS - 1)];
4089 	fifo = &mac_control->fifos[queue];
4090 
4091 	if (do_spin_lock)
4092 		spin_lock_irqsave(&fifo->tx_lock, flags);
4093 	else {
4094 		if (unlikely(!spin_trylock_irqsave(&fifo->tx_lock, flags)))
4095 			return NETDEV_TX_LOCKED;
4096 	}
4097 
4098 	if (sp->config.multiq) {
4099 		if (__netif_subqueue_stopped(dev, fifo->fifo_no)) {
4100 			spin_unlock_irqrestore(&fifo->tx_lock, flags);
4101 			return NETDEV_TX_BUSY;
4102 		}
4103 	} else if (unlikely(fifo->queue_state == FIFO_QUEUE_STOP)) {
4104 		if (netif_queue_stopped(dev)) {
4105 			spin_unlock_irqrestore(&fifo->tx_lock, flags);
4106 			return NETDEV_TX_BUSY;
4107 		}
4108 	}
4109 
4110 	put_off = (u16)fifo->tx_curr_put_info.offset;
4111 	get_off = (u16)fifo->tx_curr_get_info.offset;
4112 	txdp = fifo->list_info[put_off].list_virt_addr;
4113 
4114 	queue_len = fifo->tx_curr_put_info.fifo_len + 1;
4115 	/* Avoid "put" pointer going beyond "get" pointer */
4116 	if (txdp->Host_Control ||
4117 	    ((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
4118 		DBG_PRINT(TX_DBG, "Error in xmit, No free TXDs.\n");
4119 		s2io_stop_tx_queue(sp, fifo->fifo_no);
4120 		dev_kfree_skb(skb);
4121 		spin_unlock_irqrestore(&fifo->tx_lock, flags);
4122 		return NETDEV_TX_OK;
4123 	}
4124 
4125 	offload_type = s2io_offload_type(skb);
4126 	if (offload_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)) {
4127 		txdp->Control_1 |= TXD_TCP_LSO_EN;
4128 		txdp->Control_1 |= TXD_TCP_LSO_MSS(s2io_tcp_mss(skb));
4129 	}
4130 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
4131 		txdp->Control_2 |= (TXD_TX_CKO_IPV4_EN |
4132 				    TXD_TX_CKO_TCP_EN |
4133 				    TXD_TX_CKO_UDP_EN);
4134 	}
4135 	txdp->Control_1 |= TXD_GATHER_CODE_FIRST;
4136 	txdp->Control_1 |= TXD_LIST_OWN_XENA;
4137 	txdp->Control_2 |= TXD_INT_NUMBER(fifo->fifo_no);
4138 	if (enable_per_list_interrupt)
4139 		if (put_off & (queue_len >> 5))
4140 			txdp->Control_2 |= TXD_INT_TYPE_PER_LIST;
4141 	if (vlan_tag) {
4142 		txdp->Control_2 |= TXD_VLAN_ENABLE;
4143 		txdp->Control_2 |= TXD_VLAN_TAG(vlan_tag);
4144 	}
4145 
4146 	frg_len = skb_headlen(skb);
4147 	if (offload_type == SKB_GSO_UDP) {
4148 		int ufo_size;
4149 
4150 		ufo_size = s2io_udp_mss(skb);
4151 		ufo_size &= ~7;
4152 		txdp->Control_1 |= TXD_UFO_EN;
4153 		txdp->Control_1 |= TXD_UFO_MSS(ufo_size);
4154 		txdp->Control_1 |= TXD_BUFFER0_SIZE(8);
4155 #ifdef __BIG_ENDIAN
4156 		/* both variants do cpu_to_be64(be32_to_cpu(...)) */
4157 		fifo->ufo_in_band_v[put_off] =
4158 			(__force u64)skb_shinfo(skb)->ip6_frag_id;
4159 #else
4160 		fifo->ufo_in_band_v[put_off] =
4161 			(__force u64)skb_shinfo(skb)->ip6_frag_id << 32;
4162 #endif
4163 		txdp->Host_Control = (unsigned long)fifo->ufo_in_band_v;
4164 		txdp->Buffer_Pointer = pci_map_single(sp->pdev,
4165 						      fifo->ufo_in_band_v,
4166 						      sizeof(u64),
4167 						      PCI_DMA_TODEVICE);
4168 		if (pci_dma_mapping_error(sp->pdev, txdp->Buffer_Pointer))
4169 			goto pci_map_failed;
4170 		txdp++;
4171 	}
4172 
4173 	txdp->Buffer_Pointer = pci_map_single(sp->pdev, skb->data,
4174 					      frg_len, PCI_DMA_TODEVICE);
4175 	if (pci_dma_mapping_error(sp->pdev, txdp->Buffer_Pointer))
4176 		goto pci_map_failed;
4177 
4178 	txdp->Host_Control = (unsigned long)skb;
4179 	txdp->Control_1 |= TXD_BUFFER0_SIZE(frg_len);
4180 	if (offload_type == SKB_GSO_UDP)
4181 		txdp->Control_1 |= TXD_UFO_EN;
4182 
4183 	frg_cnt = skb_shinfo(skb)->nr_frags;
4184 	/* For fragmented SKB. */
4185 	for (i = 0; i < frg_cnt; i++) {
4186 		const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4187 		/* A '0' length fragment will be ignored */
4188 		if (!skb_frag_size(frag))
4189 			continue;
4190 		txdp++;
4191 		txdp->Buffer_Pointer = (u64)skb_frag_dma_map(&sp->pdev->dev,
4192 							     frag, 0,
4193 							     skb_frag_size(frag),
4194 							     DMA_TO_DEVICE);
4195 		txdp->Control_1 = TXD_BUFFER0_SIZE(skb_frag_size(frag));
4196 		if (offload_type == SKB_GSO_UDP)
4197 			txdp->Control_1 |= TXD_UFO_EN;
4198 	}
4199 	txdp->Control_1 |= TXD_GATHER_CODE_LAST;
4200 
4201 	if (offload_type == SKB_GSO_UDP)
4202 		frg_cnt++; /* as Txd0 was used for inband header */
4203 
4204 	tx_fifo = mac_control->tx_FIFO_start[queue];
4205 	val64 = fifo->list_info[put_off].list_phy_addr;
4206 	writeq(val64, &tx_fifo->TxDL_Pointer);
4207 
4208 	val64 = (TX_FIFO_LAST_TXD_NUM(frg_cnt) | TX_FIFO_FIRST_LIST |
4209 		 TX_FIFO_LAST_LIST);
4210 	if (offload_type)
4211 		val64 |= TX_FIFO_SPECIAL_FUNC;
4212 
4213 	writeq(val64, &tx_fifo->List_Control);
4214 
4215 	mmiowb();
4216 
4217 	put_off++;
4218 	if (put_off == fifo->tx_curr_put_info.fifo_len + 1)
4219 		put_off = 0;
4220 	fifo->tx_curr_put_info.offset = put_off;
4221 
4222 	/* Avoid "put" pointer going beyond "get" pointer */
4223 	if (((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
4224 		swstats->fifo_full_cnt++;
4225 		DBG_PRINT(TX_DBG,
4226 			  "No free TxDs for xmit, Put: 0x%x Get:0x%x\n",
4227 			  put_off, get_off);
4228 		s2io_stop_tx_queue(sp, fifo->fifo_no);
4229 	}
4230 	swstats->mem_allocated += skb->truesize;
4231 	spin_unlock_irqrestore(&fifo->tx_lock, flags);
4232 
4233 	if (sp->config.intr_type == MSI_X)
4234 		tx_intr_handler(fifo);
4235 
4236 	return NETDEV_TX_OK;
4237 
4238 pci_map_failed:
4239 	swstats->pci_map_fail_cnt++;
4240 	s2io_stop_tx_queue(sp, fifo->fifo_no);
4241 	swstats->mem_freed += skb->truesize;
4242 	dev_kfree_skb(skb);
4243 	spin_unlock_irqrestore(&fifo->tx_lock, flags);
4244 	return NETDEV_TX_OK;
4245 }
4246 
4247 static void
4248 s2io_alarm_handle(unsigned long data)
4249 {
4250 	struct s2io_nic *sp = (struct s2io_nic *)data;
4251 	struct net_device *dev = sp->dev;
4252 
4253 	s2io_handle_errors(dev);
4254 	mod_timer(&sp->alarm_timer, jiffies + HZ / 2);
4255 }
4256 
4257 static irqreturn_t s2io_msix_ring_handle(int irq, void *dev_id)
4258 {
4259 	struct ring_info *ring = (struct ring_info *)dev_id;
4260 	struct s2io_nic *sp = ring->nic;
4261 	struct XENA_dev_config __iomem *bar0 = sp->bar0;
4262 
4263 	if (unlikely(!is_s2io_card_up(sp)))
4264 		return IRQ_HANDLED;
4265 
4266 	if (sp->config.napi) {
4267 		u8 __iomem *addr = NULL;
4268 		u8 val8 = 0;
4269 
4270 		addr = (u8 __iomem *)&bar0->xmsi_mask_reg;
4271 		addr += (7 - ring->ring_no);
4272 		val8 = (ring->ring_no == 0) ? 0x7f : 0xff;
4273 		writeb(val8, addr);
4274 		val8 = readb(addr);
4275 		napi_schedule(&ring->napi);
4276 	} else {
4277 		rx_intr_handler(ring, 0);
4278 		s2io_chk_rx_buffers(sp, ring);
4279 	}
4280 
4281 	return IRQ_HANDLED;
4282 }
4283 
4284 static irqreturn_t s2io_msix_fifo_handle(int irq, void *dev_id)
4285 {
4286 	int i;
4287 	struct fifo_info *fifos = (struct fifo_info *)dev_id;
4288 	struct s2io_nic *sp = fifos->nic;
4289 	struct XENA_dev_config __iomem *bar0 = sp->bar0;
4290 	struct config_param *config  = &sp->config;
4291 	u64 reason;
4292 
4293 	if (unlikely(!is_s2io_card_up(sp)))
4294 		return IRQ_NONE;
4295 
4296 	reason = readq(&bar0->general_int_status);
4297 	if (unlikely(reason == S2IO_MINUS_ONE))
4298 		/* Nothing much can be done. Get out */
4299 		return IRQ_HANDLED;
4300 
4301 	if (reason & (GEN_INTR_TXPIC | GEN_INTR_TXTRAFFIC)) {
4302 		writeq(S2IO_MINUS_ONE, &bar0->general_int_mask);
4303 
4304 		if (reason & GEN_INTR_TXPIC)
4305 			s2io_txpic_intr_handle(sp);
4306 
4307 		if (reason & GEN_INTR_TXTRAFFIC)
4308 			writeq(S2IO_MINUS_ONE, &bar0->tx_traffic_int);
4309 
4310 		for (i = 0; i < config->tx_fifo_num; i++)
4311 			tx_intr_handler(&fifos[i]);
4312 
4313 		writeq(sp->general_int_mask, &bar0->general_int_mask);
4314 		readl(&bar0->general_int_status);
4315 		return IRQ_HANDLED;
4316 	}
4317 	/* The interrupt was not raised by us */
4318 	return IRQ_NONE;
4319 }
4320 
4321 static void s2io_txpic_intr_handle(struct s2io_nic *sp)
4322 {
4323 	struct XENA_dev_config __iomem *bar0 = sp->bar0;
4324 	u64 val64;
4325 
4326 	val64 = readq(&bar0->pic_int_status);
4327 	if (val64 & PIC_INT_GPIO) {
4328 		val64 = readq(&bar0->gpio_int_reg);
4329 		if ((val64 & GPIO_INT_REG_LINK_DOWN) &&
4330 		    (val64 & GPIO_INT_REG_LINK_UP)) {
4331 			/*
4332 			 * This is unstable state so clear both up/down
4333 			 * interrupt and adapter to re-evaluate the link state.
4334 			 */
4335 			val64 |= GPIO_INT_REG_LINK_DOWN;
4336 			val64 |= GPIO_INT_REG_LINK_UP;
4337 			writeq(val64, &bar0->gpio_int_reg);
4338 			val64 = readq(&bar0->gpio_int_mask);
4339 			val64 &= ~(GPIO_INT_MASK_LINK_UP |
4340 				   GPIO_INT_MASK_LINK_DOWN);
4341 			writeq(val64, &bar0->gpio_int_mask);
4342 		} else if (val64 & GPIO_INT_REG_LINK_UP) {
4343 			val64 = readq(&bar0->adapter_status);
4344 			/* Enable Adapter */
4345 			val64 = readq(&bar0->adapter_control);
4346 			val64 |= ADAPTER_CNTL_EN;
4347 			writeq(val64, &bar0->adapter_control);
4348 			val64 |= ADAPTER_LED_ON;
4349 			writeq(val64, &bar0->adapter_control);
4350 			if (!sp->device_enabled_once)
4351 				sp->device_enabled_once = 1;
4352 
4353 			s2io_link(sp, LINK_UP);
4354 			/*
4355 			 * unmask link down interrupt and mask link-up
4356 			 * intr
4357 			 */
4358 			val64 = readq(&bar0->gpio_int_mask);
4359 			val64 &= ~GPIO_INT_MASK_LINK_DOWN;
4360 			val64 |= GPIO_INT_MASK_LINK_UP;
4361 			writeq(val64, &bar0->gpio_int_mask);
4362 
4363 		} else if (val64 & GPIO_INT_REG_LINK_DOWN) {
4364 			val64 = readq(&bar0->adapter_status);
4365 			s2io_link(sp, LINK_DOWN);
4366 			/* Link is down so unmaks link up interrupt */
4367 			val64 = readq(&bar0->gpio_int_mask);
4368 			val64 &= ~GPIO_INT_MASK_LINK_UP;
4369 			val64 |= GPIO_INT_MASK_LINK_DOWN;
4370 			writeq(val64, &bar0->gpio_int_mask);
4371 
4372 			/* turn off LED */
4373 			val64 = readq(&bar0->adapter_control);
4374 			val64 = val64 & (~ADAPTER_LED_ON);
4375 			writeq(val64, &bar0->adapter_control);
4376 		}
4377 	}
4378 	val64 = readq(&bar0->gpio_int_mask);
4379 }
4380 
4381 /**
4382  *  do_s2io_chk_alarm_bit - Check for alarm and incrment the counter
4383  *  @value: alarm bits
4384  *  @addr: address value
4385  *  @cnt: counter variable
4386  *  Description: Check for alarm and increment the counter
4387  *  Return Value:
4388  *  1 - if alarm bit set
4389  *  0 - if alarm bit is not set
4390  */
4391 static int do_s2io_chk_alarm_bit(u64 value, void __iomem *addr,
4392 				 unsigned long long *cnt)
4393 {
4394 	u64 val64;
4395 	val64 = readq(addr);
4396 	if (val64 & value) {
4397 		writeq(val64, addr);
4398 		(*cnt)++;
4399 		return 1;
4400 	}
4401 	return 0;
4402 
4403 }
4404 
4405 /**
4406  *  s2io_handle_errors - Xframe error indication handler
4407  *  @nic: device private variable
4408  *  Description: Handle alarms such as loss of link, single or
4409  *  double ECC errors, critical and serious errors.
4410  *  Return Value:
4411  *  NONE
4412  */
4413 static void s2io_handle_errors(void *dev_id)
4414 {
4415 	struct net_device *dev = (struct net_device *)dev_id;
4416 	struct s2io_nic *sp = netdev_priv(dev);
4417 	struct XENA_dev_config __iomem *bar0 = sp->bar0;
4418 	u64 temp64 = 0, val64 = 0;
4419 	int i = 0;
4420 
4421 	struct swStat *sw_stat = &sp->mac_control.stats_info->sw_stat;
4422 	struct xpakStat *stats = &sp->mac_control.stats_info->xpak_stat;
4423 
4424 	if (!is_s2io_card_up(sp))
4425 		return;
4426 
4427 	if (pci_channel_offline(sp->pdev))
4428 		return;
4429 
4430 	memset(&sw_stat->ring_full_cnt, 0,
4431 	       sizeof(sw_stat->ring_full_cnt));
4432 
4433 	/* Handling the XPAK counters update */
4434 	if (stats->xpak_timer_count < 72000) {
4435 		/* waiting for an hour */
4436 		stats->xpak_timer_count++;
4437 	} else {
4438 		s2io_updt_xpak_counter(dev);
4439 		/* reset the count to zero */
4440 		stats->xpak_timer_count = 0;
4441 	}
4442 
4443 	/* Handling link status change error Intr */
4444 	if (s2io_link_fault_indication(sp) == MAC_RMAC_ERR_TIMER) {
4445 		val64 = readq(&bar0->mac_rmac_err_reg);
4446 		writeq(val64, &bar0->mac_rmac_err_reg);
4447 		if (val64 & RMAC_LINK_STATE_CHANGE_INT)
4448 			schedule_work(&sp->set_link_task);
4449 	}
4450 
4451 	/* In case of a serious error, the device will be Reset. */
4452 	if (do_s2io_chk_alarm_bit(SERR_SOURCE_ANY, &bar0->serr_source,
4453 				  &sw_stat->serious_err_cnt))
4454 		goto reset;
4455 
4456 	/* Check for data parity error */
4457 	if (do_s2io_chk_alarm_bit(GPIO_INT_REG_DP_ERR_INT, &bar0->gpio_int_reg,
4458 				  &sw_stat->parity_err_cnt))
4459 		goto reset;
4460 
4461 	/* Check for ring full counter */
4462 	if (sp->device_type == XFRAME_II_DEVICE) {
4463 		val64 = readq(&bar0->ring_bump_counter1);
4464 		for (i = 0; i < 4; i++) {
4465 			temp64 = (val64 & vBIT(0xFFFF, (i*16), 16));
4466 			temp64 >>= 64 - ((i+1)*16);
4467 			sw_stat->ring_full_cnt[i] += temp64;
4468 		}
4469 
4470 		val64 = readq(&bar0->ring_bump_counter2);
4471 		for (i = 0; i < 4; i++) {
4472 			temp64 = (val64 & vBIT(0xFFFF, (i*16), 16));
4473 			temp64 >>= 64 - ((i+1)*16);
4474 			sw_stat->ring_full_cnt[i+4] += temp64;
4475 		}
4476 	}
4477 
4478 	val64 = readq(&bar0->txdma_int_status);
4479 	/*check for pfc_err*/
4480 	if (val64 & TXDMA_PFC_INT) {
4481 		if (do_s2io_chk_alarm_bit(PFC_ECC_DB_ERR | PFC_SM_ERR_ALARM |
4482 					  PFC_MISC_0_ERR | PFC_MISC_1_ERR |
4483 					  PFC_PCIX_ERR,
4484 					  &bar0->pfc_err_reg,
4485 					  &sw_stat->pfc_err_cnt))
4486 			goto reset;
4487 		do_s2io_chk_alarm_bit(PFC_ECC_SG_ERR,
4488 				      &bar0->pfc_err_reg,
4489 				      &sw_stat->pfc_err_cnt);
4490 	}
4491 
4492 	/*check for tda_err*/
4493 	if (val64 & TXDMA_TDA_INT) {
4494 		if (do_s2io_chk_alarm_bit(TDA_Fn_ECC_DB_ERR |
4495 					  TDA_SM0_ERR_ALARM |
4496 					  TDA_SM1_ERR_ALARM,
4497 					  &bar0->tda_err_reg,
4498 					  &sw_stat->tda_err_cnt))
4499 			goto reset;
4500 		do_s2io_chk_alarm_bit(TDA_Fn_ECC_SG_ERR | TDA_PCIX_ERR,
4501 				      &bar0->tda_err_reg,
4502 				      &sw_stat->tda_err_cnt);
4503 	}
4504 	/*check for pcc_err*/
4505 	if (val64 & TXDMA_PCC_INT) {
4506 		if (do_s2io_chk_alarm_bit(PCC_SM_ERR_ALARM | PCC_WR_ERR_ALARM |
4507 					  PCC_N_SERR | PCC_6_COF_OV_ERR |
4508 					  PCC_7_COF_OV_ERR | PCC_6_LSO_OV_ERR |
4509 					  PCC_7_LSO_OV_ERR | PCC_FB_ECC_DB_ERR |
4510 					  PCC_TXB_ECC_DB_ERR,
4511 					  &bar0->pcc_err_reg,
4512 					  &sw_stat->pcc_err_cnt))
4513 			goto reset;
4514 		do_s2io_chk_alarm_bit(PCC_FB_ECC_SG_ERR | PCC_TXB_ECC_SG_ERR,
4515 				      &bar0->pcc_err_reg,
4516 				      &sw_stat->pcc_err_cnt);
4517 	}
4518 
4519 	/*check for tti_err*/
4520 	if (val64 & TXDMA_TTI_INT) {
4521 		if (do_s2io_chk_alarm_bit(TTI_SM_ERR_ALARM,
4522 					  &bar0->tti_err_reg,
4523 					  &sw_stat->tti_err_cnt))
4524 			goto reset;
4525 		do_s2io_chk_alarm_bit(TTI_ECC_SG_ERR | TTI_ECC_DB_ERR,
4526 				      &bar0->tti_err_reg,
4527 				      &sw_stat->tti_err_cnt);
4528 	}
4529 
4530 	/*check for lso_err*/
4531 	if (val64 & TXDMA_LSO_INT) {
4532 		if (do_s2io_chk_alarm_bit(LSO6_ABORT | LSO7_ABORT |
4533 					  LSO6_SM_ERR_ALARM | LSO7_SM_ERR_ALARM,
4534 					  &bar0->lso_err_reg,
4535 					  &sw_stat->lso_err_cnt))
4536 			goto reset;
4537 		do_s2io_chk_alarm_bit(LSO6_SEND_OFLOW | LSO7_SEND_OFLOW,
4538 				      &bar0->lso_err_reg,
4539 				      &sw_stat->lso_err_cnt);
4540 	}
4541 
4542 	/*check for tpa_err*/
4543 	if (val64 & TXDMA_TPA_INT) {
4544 		if (do_s2io_chk_alarm_bit(TPA_SM_ERR_ALARM,
4545 					  &bar0->tpa_err_reg,
4546 					  &sw_stat->tpa_err_cnt))
4547 			goto reset;
4548 		do_s2io_chk_alarm_bit(TPA_TX_FRM_DROP,
4549 				      &bar0->tpa_err_reg,
4550 				      &sw_stat->tpa_err_cnt);
4551 	}
4552 
4553 	/*check for sm_err*/
4554 	if (val64 & TXDMA_SM_INT) {
4555 		if (do_s2io_chk_alarm_bit(SM_SM_ERR_ALARM,
4556 					  &bar0->sm_err_reg,
4557 					  &sw_stat->sm_err_cnt))
4558 			goto reset;
4559 	}
4560 
4561 	val64 = readq(&bar0->mac_int_status);
4562 	if (val64 & MAC_INT_STATUS_TMAC_INT) {
4563 		if (do_s2io_chk_alarm_bit(TMAC_TX_BUF_OVRN | TMAC_TX_SM_ERR,
4564 					  &bar0->mac_tmac_err_reg,
4565 					  &sw_stat->mac_tmac_err_cnt))
4566 			goto reset;
4567 		do_s2io_chk_alarm_bit(TMAC_ECC_SG_ERR | TMAC_ECC_DB_ERR |
4568 				      TMAC_DESC_ECC_SG_ERR |
4569 				      TMAC_DESC_ECC_DB_ERR,
4570 				      &bar0->mac_tmac_err_reg,
4571 				      &sw_stat->mac_tmac_err_cnt);
4572 	}
4573 
4574 	val64 = readq(&bar0->xgxs_int_status);
4575 	if (val64 & XGXS_INT_STATUS_TXGXS) {
4576 		if (do_s2io_chk_alarm_bit(TXGXS_ESTORE_UFLOW | TXGXS_TX_SM_ERR,
4577 					  &bar0->xgxs_txgxs_err_reg,
4578 					  &sw_stat->xgxs_txgxs_err_cnt))
4579 			goto reset;
4580 		do_s2io_chk_alarm_bit(TXGXS_ECC_SG_ERR | TXGXS_ECC_DB_ERR,
4581 				      &bar0->xgxs_txgxs_err_reg,
4582 				      &sw_stat->xgxs_txgxs_err_cnt);
4583 	}
4584 
4585 	val64 = readq(&bar0->rxdma_int_status);
4586 	if (val64 & RXDMA_INT_RC_INT_M) {
4587 		if (do_s2io_chk_alarm_bit(RC_PRCn_ECC_DB_ERR |
4588 					  RC_FTC_ECC_DB_ERR |
4589 					  RC_PRCn_SM_ERR_ALARM |
4590 					  RC_FTC_SM_ERR_ALARM,
4591 					  &bar0->rc_err_reg,
4592 					  &sw_stat->rc_err_cnt))
4593 			goto reset;
4594 		do_s2io_chk_alarm_bit(RC_PRCn_ECC_SG_ERR |
4595 				      RC_FTC_ECC_SG_ERR |
4596 				      RC_RDA_FAIL_WR_Rn, &bar0->rc_err_reg,
4597 				      &sw_stat->rc_err_cnt);
4598 		if (do_s2io_chk_alarm_bit(PRC_PCI_AB_RD_Rn |
4599 					  PRC_PCI_AB_WR_Rn |
4600 					  PRC_PCI_AB_F_WR_Rn,
4601 					  &bar0->prc_pcix_err_reg,
4602 					  &sw_stat->prc_pcix_err_cnt))
4603 			goto reset;
4604 		do_s2io_chk_alarm_bit(PRC_PCI_DP_RD_Rn |
4605 				      PRC_PCI_DP_WR_Rn |
4606 				      PRC_PCI_DP_F_WR_Rn,
4607 				      &bar0->prc_pcix_err_reg,
4608 				      &sw_stat->prc_pcix_err_cnt);
4609 	}
4610 
4611 	if (val64 & RXDMA_INT_RPA_INT_M) {
4612 		if (do_s2io_chk_alarm_bit(RPA_SM_ERR_ALARM | RPA_CREDIT_ERR,
4613 					  &bar0->rpa_err_reg,
4614 					  &sw_stat->rpa_err_cnt))
4615 			goto reset;
4616 		do_s2io_chk_alarm_bit(RPA_ECC_SG_ERR | RPA_ECC_DB_ERR,
4617 				      &bar0->rpa_err_reg,
4618 				      &sw_stat->rpa_err_cnt);
4619 	}
4620 
4621 	if (val64 & RXDMA_INT_RDA_INT_M) {
4622 		if (do_s2io_chk_alarm_bit(RDA_RXDn_ECC_DB_ERR |
4623 					  RDA_FRM_ECC_DB_N_AERR |
4624 					  RDA_SM1_ERR_ALARM |
4625 					  RDA_SM0_ERR_ALARM |
4626 					  RDA_RXD_ECC_DB_SERR,
4627 					  &bar0->rda_err_reg,
4628 					  &sw_stat->rda_err_cnt))
4629 			goto reset;
4630 		do_s2io_chk_alarm_bit(RDA_RXDn_ECC_SG_ERR |
4631 				      RDA_FRM_ECC_SG_ERR |
4632 				      RDA_MISC_ERR |
4633 				      RDA_PCIX_ERR,
4634 				      &bar0->rda_err_reg,
4635 				      &sw_stat->rda_err_cnt);
4636 	}
4637 
4638 	if (val64 & RXDMA_INT_RTI_INT_M) {
4639 		if (do_s2io_chk_alarm_bit(RTI_SM_ERR_ALARM,
4640 					  &bar0->rti_err_reg,
4641 					  &sw_stat->rti_err_cnt))
4642 			goto reset;
4643 		do_s2io_chk_alarm_bit(RTI_ECC_SG_ERR | RTI_ECC_DB_ERR,
4644 				      &bar0->rti_err_reg,
4645 				      &sw_stat->rti_err_cnt);
4646 	}
4647 
4648 	val64 = readq(&bar0->mac_int_status);
4649 	if (val64 & MAC_INT_STATUS_RMAC_INT) {
4650 		if (do_s2io_chk_alarm_bit(RMAC_RX_BUFF_OVRN | RMAC_RX_SM_ERR,
4651 					  &bar0->mac_rmac_err_reg,
4652 					  &sw_stat->mac_rmac_err_cnt))
4653 			goto reset;
4654 		do_s2io_chk_alarm_bit(RMAC_UNUSED_INT |
4655 				      RMAC_SINGLE_ECC_ERR |
4656 				      RMAC_DOUBLE_ECC_ERR,
4657 				      &bar0->mac_rmac_err_reg,
4658 				      &sw_stat->mac_rmac_err_cnt);
4659 	}
4660 
4661 	val64 = readq(&bar0->xgxs_int_status);
4662 	if (val64 & XGXS_INT_STATUS_RXGXS) {
4663 		if (do_s2io_chk_alarm_bit(RXGXS_ESTORE_OFLOW | RXGXS_RX_SM_ERR,
4664 					  &bar0->xgxs_rxgxs_err_reg,
4665 					  &sw_stat->xgxs_rxgxs_err_cnt))
4666 			goto reset;
4667 	}
4668 
4669 	val64 = readq(&bar0->mc_int_status);
4670 	if (val64 & MC_INT_STATUS_MC_INT) {
4671 		if (do_s2io_chk_alarm_bit(MC_ERR_REG_SM_ERR,
4672 					  &bar0->mc_err_reg,
4673 					  &sw_stat->mc_err_cnt))
4674 			goto reset;
4675 
4676 		/* Handling Ecc errors */
4677 		if (val64 & (MC_ERR_REG_ECC_ALL_SNG | MC_ERR_REG_ECC_ALL_DBL)) {
4678 			writeq(val64, &bar0->mc_err_reg);
4679 			if (val64 & MC_ERR_REG_ECC_ALL_DBL) {
4680 				sw_stat->double_ecc_errs++;
4681 				if (sp->device_type != XFRAME_II_DEVICE) {
4682 					/*
4683 					 * Reset XframeI only if critical error
4684 					 */
4685 					if (val64 &
4686 					    (MC_ERR_REG_MIRI_ECC_DB_ERR_0 |
4687 					     MC_ERR_REG_MIRI_ECC_DB_ERR_1))
4688 						goto reset;
4689 				}
4690 			} else
4691 				sw_stat->single_ecc_errs++;
4692 		}
4693 	}
4694 	return;
4695 
4696 reset:
4697 	s2io_stop_all_tx_queue(sp);
4698 	schedule_work(&sp->rst_timer_task);
4699 	sw_stat->soft_reset_cnt++;
4700 }
4701 
4702 /**
4703  *  s2io_isr - ISR handler of the device .
4704  *  @irq: the irq of the device.
4705  *  @dev_id: a void pointer to the dev structure of the NIC.
4706  *  Description:  This function is the ISR handler of the device. It
4707  *  identifies the reason for the interrupt and calls the relevant
4708  *  service routines. As a contongency measure, this ISR allocates the
4709  *  recv buffers, if their numbers are below the panic value which is
4710  *  presently set to 25% of the original number of rcv buffers allocated.
4711  *  Return value:
4712  *   IRQ_HANDLED: will be returned if IRQ was handled by this routine
4713  *   IRQ_NONE: will be returned if interrupt is not from our device
4714  */
4715 static irqreturn_t s2io_isr(int irq, void *dev_id)
4716 {
4717 	struct net_device *dev = (struct net_device *)dev_id;
4718 	struct s2io_nic *sp = netdev_priv(dev);
4719 	struct XENA_dev_config __iomem *bar0 = sp->bar0;
4720 	int i;
4721 	u64 reason = 0;
4722 	struct mac_info *mac_control;
4723 	struct config_param *config;
4724 
4725 	/* Pretend we handled any irq's from a disconnected card */
4726 	if (pci_channel_offline(sp->pdev))
4727 		return IRQ_NONE;
4728 
4729 	if (!is_s2io_card_up(sp))
4730 		return IRQ_NONE;
4731 
4732 	config = &sp->config;
4733 	mac_control = &sp->mac_control;
4734 
4735 	/*
4736 	 * Identify the cause for interrupt and call the appropriate
4737 	 * interrupt handler. Causes for the interrupt could be;
4738 	 * 1. Rx of packet.
4739 	 * 2. Tx complete.
4740 	 * 3. Link down.
4741 	 */
4742 	reason = readq(&bar0->general_int_status);
4743 
4744 	if (unlikely(reason == S2IO_MINUS_ONE))
4745 		return IRQ_HANDLED;	/* Nothing much can be done. Get out */
4746 
4747 	if (reason &
4748 	    (GEN_INTR_RXTRAFFIC | GEN_INTR_TXTRAFFIC | GEN_INTR_TXPIC)) {
4749 		writeq(S2IO_MINUS_ONE, &bar0->general_int_mask);
4750 
4751 		if (config->napi) {
4752 			if (reason & GEN_INTR_RXTRAFFIC) {
4753 				napi_schedule(&sp->napi);
4754 				writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_mask);
4755 				writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
4756 				readl(&bar0->rx_traffic_int);
4757 			}
4758 		} else {
4759 			/*
4760 			 * rx_traffic_int reg is an R1 register, writing all 1's
4761 			 * will ensure that the actual interrupt causing bit
4762 			 * get's cleared and hence a read can be avoided.
4763 			 */
4764 			if (reason & GEN_INTR_RXTRAFFIC)
4765 				writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
4766 
4767 			for (i = 0; i < config->rx_ring_num; i++) {
4768 				struct ring_info *ring = &mac_control->rings[i];
4769 
4770 				rx_intr_handler(ring, 0);
4771 			}
4772 		}
4773 
4774 		/*
4775 		 * tx_traffic_int reg is an R1 register, writing all 1's
4776 		 * will ensure that the actual interrupt causing bit get's
4777 		 * cleared and hence a read can be avoided.
4778 		 */
4779 		if (reason & GEN_INTR_TXTRAFFIC)
4780 			writeq(S2IO_MINUS_ONE, &bar0->tx_traffic_int);
4781 
4782 		for (i = 0; i < config->tx_fifo_num; i++)
4783 			tx_intr_handler(&mac_control->fifos[i]);
4784 
4785 		if (reason & GEN_INTR_TXPIC)
4786 			s2io_txpic_intr_handle(sp);
4787 
4788 		/*
4789 		 * Reallocate the buffers from the interrupt handler itself.
4790 		 */
4791 		if (!config->napi) {
4792 			for (i = 0; i < config->rx_ring_num; i++) {
4793 				struct ring_info *ring = &mac_control->rings[i];
4794 
4795 				s2io_chk_rx_buffers(sp, ring);
4796 			}
4797 		}
4798 		writeq(sp->general_int_mask, &bar0->general_int_mask);
4799 		readl(&bar0->general_int_status);
4800 
4801 		return IRQ_HANDLED;
4802 
4803 	} else if (!reason) {
4804 		/* The interrupt was not raised by us */
4805 		return IRQ_NONE;
4806 	}
4807 
4808 	return IRQ_HANDLED;
4809 }
4810 
4811 /**
4812  * s2io_updt_stats -
4813  */
4814 static void s2io_updt_stats(struct s2io_nic *sp)
4815 {
4816 	struct XENA_dev_config __iomem *bar0 = sp->bar0;
4817 	u64 val64;
4818 	int cnt = 0;
4819 
4820 	if (is_s2io_card_up(sp)) {
4821 		/* Apprx 30us on a 133 MHz bus */
4822 		val64 = SET_UPDT_CLICKS(10) |
4823 			STAT_CFG_ONE_SHOT_EN | STAT_CFG_STAT_EN;
4824 		writeq(val64, &bar0->stat_cfg);
4825 		do {
4826 			udelay(100);
4827 			val64 = readq(&bar0->stat_cfg);
4828 			if (!(val64 & s2BIT(0)))
4829 				break;
4830 			cnt++;
4831 			if (cnt == 5)
4832 				break; /* Updt failed */
4833 		} while (1);
4834 	}
4835 }
4836 
4837 /**
4838  *  s2io_get_stats - Updates the device statistics structure.
4839  *  @dev : pointer to the device structure.
4840  *  Description:
4841  *  This function updates the device statistics structure in the s2io_nic
4842  *  structure and returns a pointer to the same.
4843  *  Return value:
4844  *  pointer to the updated net_device_stats structure.
4845  */
4846 static struct net_device_stats *s2io_get_stats(struct net_device *dev)
4847 {
4848 	struct s2io_nic *sp = netdev_priv(dev);
4849 	struct mac_info *mac_control = &sp->mac_control;
4850 	struct stat_block *stats = mac_control->stats_info;
4851 	u64 delta;
4852 
4853 	/* Configure Stats for immediate updt */
4854 	s2io_updt_stats(sp);
4855 
4856 	/* A device reset will cause the on-adapter statistics to be zero'ed.
4857 	 * This can be done while running by changing the MTU.  To prevent the
4858 	 * system from having the stats zero'ed, the driver keeps a copy of the
4859 	 * last update to the system (which is also zero'ed on reset).  This
4860 	 * enables the driver to accurately know the delta between the last
4861 	 * update and the current update.
4862 	 */
4863 	delta = ((u64) le32_to_cpu(stats->rmac_vld_frms_oflow) << 32 |
4864 		le32_to_cpu(stats->rmac_vld_frms)) - sp->stats.rx_packets;
4865 	sp->stats.rx_packets += delta;
4866 	dev->stats.rx_packets += delta;
4867 
4868 	delta = ((u64) le32_to_cpu(stats->tmac_frms_oflow) << 32 |
4869 		le32_to_cpu(stats->tmac_frms)) - sp->stats.tx_packets;
4870 	sp->stats.tx_packets += delta;
4871 	dev->stats.tx_packets += delta;
4872 
4873 	delta = ((u64) le32_to_cpu(stats->rmac_data_octets_oflow) << 32 |
4874 		le32_to_cpu(stats->rmac_data_octets)) - sp->stats.rx_bytes;
4875 	sp->stats.rx_bytes += delta;
4876 	dev->stats.rx_bytes += delta;
4877 
4878 	delta = ((u64) le32_to_cpu(stats->tmac_data_octets_oflow) << 32 |
4879 		le32_to_cpu(stats->tmac_data_octets)) - sp->stats.tx_bytes;
4880 	sp->stats.tx_bytes += delta;
4881 	dev->stats.tx_bytes += delta;
4882 
4883 	delta = le64_to_cpu(stats->rmac_drop_frms) - sp->stats.rx_errors;
4884 	sp->stats.rx_errors += delta;
4885 	dev->stats.rx_errors += delta;
4886 
4887 	delta = ((u64) le32_to_cpu(stats->tmac_any_err_frms_oflow) << 32 |
4888 		le32_to_cpu(stats->tmac_any_err_frms)) - sp->stats.tx_errors;
4889 	sp->stats.tx_errors += delta;
4890 	dev->stats.tx_errors += delta;
4891 
4892 	delta = le64_to_cpu(stats->rmac_drop_frms) - sp->stats.rx_dropped;
4893 	sp->stats.rx_dropped += delta;
4894 	dev->stats.rx_dropped += delta;
4895 
4896 	delta = le64_to_cpu(stats->tmac_drop_frms) - sp->stats.tx_dropped;
4897 	sp->stats.tx_dropped += delta;
4898 	dev->stats.tx_dropped += delta;
4899 
4900 	/* The adapter MAC interprets pause frames as multicast packets, but
4901 	 * does not pass them up.  This erroneously increases the multicast
4902 	 * packet count and needs to be deducted when the multicast frame count
4903 	 * is queried.
4904 	 */
4905 	delta = (u64) le32_to_cpu(stats->rmac_vld_mcst_frms_oflow) << 32 |
4906 		le32_to_cpu(stats->rmac_vld_mcst_frms);
4907 	delta -= le64_to_cpu(stats->rmac_pause_ctrl_frms);
4908 	delta -= sp->stats.multicast;
4909 	sp->stats.multicast += delta;
4910 	dev->stats.multicast += delta;
4911 
4912 	delta = ((u64) le32_to_cpu(stats->rmac_usized_frms_oflow) << 32 |
4913 		le32_to_cpu(stats->rmac_usized_frms)) +
4914 		le64_to_cpu(stats->rmac_long_frms) - sp->stats.rx_length_errors;
4915 	sp->stats.rx_length_errors += delta;
4916 	dev->stats.rx_length_errors += delta;
4917 
4918 	delta = le64_to_cpu(stats->rmac_fcs_err_frms) - sp->stats.rx_crc_errors;
4919 	sp->stats.rx_crc_errors += delta;
4920 	dev->stats.rx_crc_errors += delta;
4921 
4922 	return &dev->stats;
4923 }
4924 
4925 /**
4926  *  s2io_set_multicast - entry point for multicast address enable/disable.
4927  *  @dev : pointer to the device structure
4928  *  Description:
4929  *  This function is a driver entry point which gets called by the kernel
4930  *  whenever multicast addresses must be enabled/disabled. This also gets
4931  *  called to set/reset promiscuous mode. Depending on the deivce flag, we
4932  *  determine, if multicast address must be enabled or if promiscuous mode
4933  *  is to be disabled etc.
4934  *  Return value:
4935  *  void.
4936  */
4937 
4938 static void s2io_set_multicast(struct net_device *dev)
4939 {
4940 	int i, j, prev_cnt;
4941 	struct netdev_hw_addr *ha;
4942 	struct s2io_nic *sp = netdev_priv(dev);
4943 	struct XENA_dev_config __iomem *bar0 = sp->bar0;
4944 	u64 val64 = 0, multi_mac = 0x010203040506ULL, mask =
4945 		0xfeffffffffffULL;
4946 	u64 dis_addr = S2IO_DISABLE_MAC_ENTRY, mac_addr = 0;
4947 	void __iomem *add;
4948 	struct config_param *config = &sp->config;
4949 
4950 	if ((dev->flags & IFF_ALLMULTI) && (!sp->m_cast_flg)) {
4951 		/*  Enable all Multicast addresses */
4952 		writeq(RMAC_ADDR_DATA0_MEM_ADDR(multi_mac),
4953 		       &bar0->rmac_addr_data0_mem);
4954 		writeq(RMAC_ADDR_DATA1_MEM_MASK(mask),
4955 		       &bar0->rmac_addr_data1_mem);
4956 		val64 = RMAC_ADDR_CMD_MEM_WE |
4957 			RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4958 			RMAC_ADDR_CMD_MEM_OFFSET(config->max_mc_addr - 1);
4959 		writeq(val64, &bar0->rmac_addr_cmd_mem);
4960 		/* Wait till command completes */
4961 		wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4962 				      RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
4963 				      S2IO_BIT_RESET);
4964 
4965 		sp->m_cast_flg = 1;
4966 		sp->all_multi_pos = config->max_mc_addr - 1;
4967 	} else if ((dev->flags & IFF_ALLMULTI) && (sp->m_cast_flg)) {
4968 		/*  Disable all Multicast addresses */
4969 		writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
4970 		       &bar0->rmac_addr_data0_mem);
4971 		writeq(RMAC_ADDR_DATA1_MEM_MASK(0x0),
4972 		       &bar0->rmac_addr_data1_mem);
4973 		val64 = RMAC_ADDR_CMD_MEM_WE |
4974 			RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4975 			RMAC_ADDR_CMD_MEM_OFFSET(sp->all_multi_pos);
4976 		writeq(val64, &bar0->rmac_addr_cmd_mem);
4977 		/* Wait till command completes */
4978 		wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4979 				      RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
4980 				      S2IO_BIT_RESET);
4981 
4982 		sp->m_cast_flg = 0;
4983 		sp->all_multi_pos = 0;
4984 	}
4985 
4986 	if ((dev->flags & IFF_PROMISC) && (!sp->promisc_flg)) {
4987 		/*  Put the NIC into promiscuous mode */
4988 		add = &bar0->mac_cfg;
4989 		val64 = readq(&bar0->mac_cfg);
4990 		val64 |= MAC_CFG_RMAC_PROM_ENABLE;
4991 
4992 		writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4993 		writel((u32)val64, add);
4994 		writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4995 		writel((u32) (val64 >> 32), (add + 4));
4996 
4997 		if (vlan_tag_strip != 1) {
4998 			val64 = readq(&bar0->rx_pa_cfg);
4999 			val64 &= ~RX_PA_CFG_STRIP_VLAN_TAG;
5000 			writeq(val64, &bar0->rx_pa_cfg);
5001 			sp->vlan_strip_flag = 0;
5002 		}
5003 
5004 		val64 = readq(&bar0->mac_cfg);
5005 		sp->promisc_flg = 1;
5006 		DBG_PRINT(INFO_DBG, "%s: entered promiscuous mode\n",
5007 			  dev->name);
5008 	} else if (!(dev->flags & IFF_PROMISC) && (sp->promisc_flg)) {
5009 		/*  Remove the NIC from promiscuous mode */
5010 		add = &bar0->mac_cfg;
5011 		val64 = readq(&bar0->mac_cfg);
5012 		val64 &= ~MAC_CFG_RMAC_PROM_ENABLE;
5013 
5014 		writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
5015 		writel((u32)val64, add);
5016 		writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
5017 		writel((u32) (val64 >> 32), (add + 4));
5018 
5019 		if (vlan_tag_strip != 0) {
5020 			val64 = readq(&bar0->rx_pa_cfg);
5021 			val64 |= RX_PA_CFG_STRIP_VLAN_TAG;
5022 			writeq(val64, &bar0->rx_pa_cfg);
5023 			sp->vlan_strip_flag = 1;
5024 		}
5025 
5026 		val64 = readq(&bar0->mac_cfg);
5027 		sp->promisc_flg = 0;
5028 		DBG_PRINT(INFO_DBG, "%s: left promiscuous mode\n", dev->name);
5029 	}
5030 
5031 	/*  Update individual M_CAST address list */
5032 	if ((!sp->m_cast_flg) && netdev_mc_count(dev)) {
5033 		if (netdev_mc_count(dev) >
5034 		    (config->max_mc_addr - config->max_mac_addr)) {
5035 			DBG_PRINT(ERR_DBG,
5036 				  "%s: No more Rx filters can be added - "
5037 				  "please enable ALL_MULTI instead\n",
5038 				  dev->name);
5039 			return;
5040 		}
5041 
5042 		prev_cnt = sp->mc_addr_count;
5043 		sp->mc_addr_count = netdev_mc_count(dev);
5044 
5045 		/* Clear out the previous list of Mc in the H/W. */
5046 		for (i = 0; i < prev_cnt; i++) {
5047 			writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
5048 			       &bar0->rmac_addr_data0_mem);
5049 			writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
5050 			       &bar0->rmac_addr_data1_mem);
5051 			val64 = RMAC_ADDR_CMD_MEM_WE |
5052 				RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5053 				RMAC_ADDR_CMD_MEM_OFFSET
5054 				(config->mc_start_offset + i);
5055 			writeq(val64, &bar0->rmac_addr_cmd_mem);
5056 
5057 			/* Wait for command completes */
5058 			if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
5059 						  RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5060 						  S2IO_BIT_RESET)) {
5061 				DBG_PRINT(ERR_DBG,
5062 					  "%s: Adding Multicasts failed\n",
5063 					  dev->name);
5064 				return;
5065 			}
5066 		}
5067 
5068 		/* Create the new Rx filter list and update the same in H/W. */
5069 		i = 0;
5070 		netdev_for_each_mc_addr(ha, dev) {
5071 			mac_addr = 0;
5072 			for (j = 0; j < ETH_ALEN; j++) {
5073 				mac_addr |= ha->addr[j];
5074 				mac_addr <<= 8;
5075 			}
5076 			mac_addr >>= 8;
5077 			writeq(RMAC_ADDR_DATA0_MEM_ADDR(mac_addr),
5078 			       &bar0->rmac_addr_data0_mem);
5079 			writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
5080 			       &bar0->rmac_addr_data1_mem);
5081 			val64 = RMAC_ADDR_CMD_MEM_WE |
5082 				RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5083 				RMAC_ADDR_CMD_MEM_OFFSET
5084 				(i + config->mc_start_offset);
5085 			writeq(val64, &bar0->rmac_addr_cmd_mem);
5086 
5087 			/* Wait for command completes */
5088 			if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
5089 						  RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5090 						  S2IO_BIT_RESET)) {
5091 				DBG_PRINT(ERR_DBG,
5092 					  "%s: Adding Multicasts failed\n",
5093 					  dev->name);
5094 				return;
5095 			}
5096 			i++;
5097 		}
5098 	}
5099 }
5100 
5101 /* read from CAM unicast & multicast addresses and store it in
5102  * def_mac_addr structure
5103  */
5104 static void do_s2io_store_unicast_mc(struct s2io_nic *sp)
5105 {
5106 	int offset;
5107 	u64 mac_addr = 0x0;
5108 	struct config_param *config = &sp->config;
5109 
5110 	/* store unicast & multicast mac addresses */
5111 	for (offset = 0; offset < config->max_mc_addr; offset++) {
5112 		mac_addr = do_s2io_read_unicast_mc(sp, offset);
5113 		/* if read fails disable the entry */
5114 		if (mac_addr == FAILURE)
5115 			mac_addr = S2IO_DISABLE_MAC_ENTRY;
5116 		do_s2io_copy_mac_addr(sp, offset, mac_addr);
5117 	}
5118 }
5119 
5120 /* restore unicast & multicast MAC to CAM from def_mac_addr structure */
5121 static void do_s2io_restore_unicast_mc(struct s2io_nic *sp)
5122 {
5123 	int offset;
5124 	struct config_param *config = &sp->config;
5125 	/* restore unicast mac address */
5126 	for (offset = 0; offset < config->max_mac_addr; offset++)
5127 		do_s2io_prog_unicast(sp->dev,
5128 				     sp->def_mac_addr[offset].mac_addr);
5129 
5130 	/* restore multicast mac address */
5131 	for (offset = config->mc_start_offset;
5132 	     offset < config->max_mc_addr; offset++)
5133 		do_s2io_add_mc(sp, sp->def_mac_addr[offset].mac_addr);
5134 }
5135 
5136 /* add a multicast MAC address to CAM */
5137 static int do_s2io_add_mc(struct s2io_nic *sp, u8 *addr)
5138 {
5139 	int i;
5140 	u64 mac_addr = 0;
5141 	struct config_param *config = &sp->config;
5142 
5143 	for (i = 0; i < ETH_ALEN; i++) {
5144 		mac_addr <<= 8;
5145 		mac_addr |= addr[i];
5146 	}
5147 	if ((0ULL == mac_addr) || (mac_addr == S2IO_DISABLE_MAC_ENTRY))
5148 		return SUCCESS;
5149 
5150 	/* check if the multicast mac already preset in CAM */
5151 	for (i = config->mc_start_offset; i < config->max_mc_addr; i++) {
5152 		u64 tmp64;
5153 		tmp64 = do_s2io_read_unicast_mc(sp, i);
5154 		if (tmp64 == S2IO_DISABLE_MAC_ENTRY) /* CAM entry is empty */
5155 			break;
5156 
5157 		if (tmp64 == mac_addr)
5158 			return SUCCESS;
5159 	}
5160 	if (i == config->max_mc_addr) {
5161 		DBG_PRINT(ERR_DBG,
5162 			  "CAM full no space left for multicast MAC\n");
5163 		return FAILURE;
5164 	}
5165 	/* Update the internal structure with this new mac address */
5166 	do_s2io_copy_mac_addr(sp, i, mac_addr);
5167 
5168 	return do_s2io_add_mac(sp, mac_addr, i);
5169 }
5170 
5171 /* add MAC address to CAM */
5172 static int do_s2io_add_mac(struct s2io_nic *sp, u64 addr, int off)
5173 {
5174 	u64 val64;
5175 	struct XENA_dev_config __iomem *bar0 = sp->bar0;
5176 
5177 	writeq(RMAC_ADDR_DATA0_MEM_ADDR(addr),
5178 	       &bar0->rmac_addr_data0_mem);
5179 
5180 	val64 =	RMAC_ADDR_CMD_MEM_WE | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5181 		RMAC_ADDR_CMD_MEM_OFFSET(off);
5182 	writeq(val64, &bar0->rmac_addr_cmd_mem);
5183 
5184 	/* Wait till command completes */
5185 	if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
5186 				  RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5187 				  S2IO_BIT_RESET)) {
5188 		DBG_PRINT(INFO_DBG, "do_s2io_add_mac failed\n");
5189 		return FAILURE;
5190 	}
5191 	return SUCCESS;
5192 }
5193 /* deletes a specified unicast/multicast mac entry from CAM */
5194 static int do_s2io_delete_unicast_mc(struct s2io_nic *sp, u64 addr)
5195 {
5196 	int offset;
5197 	u64 dis_addr = S2IO_DISABLE_MAC_ENTRY, tmp64;
5198 	struct config_param *config = &sp->config;
5199 
5200 	for (offset = 1;
5201 	     offset < config->max_mc_addr; offset++) {
5202 		tmp64 = do_s2io_read_unicast_mc(sp, offset);
5203 		if (tmp64 == addr) {
5204 			/* disable the entry by writing  0xffffffffffffULL */
5205 			if (do_s2io_add_mac(sp, dis_addr, offset) ==  FAILURE)
5206 				return FAILURE;
5207 			/* store the new mac list from CAM */
5208 			do_s2io_store_unicast_mc(sp);
5209 			return SUCCESS;
5210 		}
5211 	}
5212 	DBG_PRINT(ERR_DBG, "MAC address 0x%llx not found in CAM\n",
5213 		  (unsigned long long)addr);
5214 	return FAILURE;
5215 }
5216 
5217 /* read mac entries from CAM */
5218 static u64 do_s2io_read_unicast_mc(struct s2io_nic *sp, int offset)
5219 {
5220 	u64 tmp64 = 0xffffffffffff0000ULL, val64;
5221 	struct XENA_dev_config __iomem *bar0 = sp->bar0;
5222 
5223 	/* read mac addr */
5224 	val64 =	RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5225 		RMAC_ADDR_CMD_MEM_OFFSET(offset);
5226 	writeq(val64, &bar0->rmac_addr_cmd_mem);
5227 
5228 	/* Wait till command completes */
5229 	if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
5230 				  RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5231 				  S2IO_BIT_RESET)) {
5232 		DBG_PRINT(INFO_DBG, "do_s2io_read_unicast_mc failed\n");
5233 		return FAILURE;
5234 	}
5235 	tmp64 = readq(&bar0->rmac_addr_data0_mem);
5236 
5237 	return tmp64 >> 16;
5238 }
5239 
5240 /**
5241  * s2io_set_mac_addr - driver entry point
5242  */
5243 
5244 static int s2io_set_mac_addr(struct net_device *dev, void *p)
5245 {
5246 	struct sockaddr *addr = p;
5247 
5248 	if (!is_valid_ether_addr(addr->sa_data))
5249 		return -EADDRNOTAVAIL;
5250 
5251 	memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
5252 
5253 	/* store the MAC address in CAM */
5254 	return do_s2io_prog_unicast(dev, dev->dev_addr);
5255 }
5256 /**
5257  *  do_s2io_prog_unicast - Programs the Xframe mac address
5258  *  @dev : pointer to the device structure.
5259  *  @addr: a uchar pointer to the new mac address which is to be set.
5260  *  Description : This procedure will program the Xframe to receive
5261  *  frames with new Mac Address
5262  *  Return value: SUCCESS on success and an appropriate (-)ve integer
5263  *  as defined in errno.h file on failure.
5264  */
5265 
5266 static int do_s2io_prog_unicast(struct net_device *dev, u8 *addr)
5267 {
5268 	struct s2io_nic *sp = netdev_priv(dev);
5269 	register u64 mac_addr = 0, perm_addr = 0;
5270 	int i;
5271 	u64 tmp64;
5272 	struct config_param *config = &sp->config;
5273 
5274 	/*
5275 	 * Set the new MAC address as the new unicast filter and reflect this
5276 	 * change on the device address registered with the OS. It will be
5277 	 * at offset 0.
5278 	 */
5279 	for (i = 0; i < ETH_ALEN; i++) {
5280 		mac_addr <<= 8;
5281 		mac_addr |= addr[i];
5282 		perm_addr <<= 8;
5283 		perm_addr |= sp->def_mac_addr[0].mac_addr[i];
5284 	}
5285 
5286 	/* check if the dev_addr is different than perm_addr */
5287 	if (mac_addr == perm_addr)
5288 		return SUCCESS;
5289 
5290 	/* check if the mac already preset in CAM */
5291 	for (i = 1; i < config->max_mac_addr; i++) {
5292 		tmp64 = do_s2io_read_unicast_mc(sp, i);
5293 		if (tmp64 == S2IO_DISABLE_MAC_ENTRY) /* CAM entry is empty */
5294 			break;
5295 
5296 		if (tmp64 == mac_addr) {
5297 			DBG_PRINT(INFO_DBG,
5298 				  "MAC addr:0x%llx already present in CAM\n",
5299 				  (unsigned long long)mac_addr);
5300 			return SUCCESS;
5301 		}
5302 	}
5303 	if (i == config->max_mac_addr) {
5304 		DBG_PRINT(ERR_DBG, "CAM full no space left for Unicast MAC\n");
5305 		return FAILURE;
5306 	}
5307 	/* Update the internal structure with this new mac address */
5308 	do_s2io_copy_mac_addr(sp, i, mac_addr);
5309 
5310 	return do_s2io_add_mac(sp, mac_addr, i);
5311 }
5312 
5313 /**
5314  * s2io_ethtool_sset - Sets different link parameters.
5315  * @sp : private member of the device structure, which is a pointer to the  * s2io_nic structure.
5316  * @info: pointer to the structure with parameters given by ethtool to set
5317  * link information.
5318  * Description:
5319  * The function sets different link parameters provided by the user onto
5320  * the NIC.
5321  * Return value:
5322  * 0 on success.
5323  */
5324 
5325 static int s2io_ethtool_sset(struct net_device *dev,
5326 			     struct ethtool_cmd *info)
5327 {
5328 	struct s2io_nic *sp = netdev_priv(dev);
5329 	if ((info->autoneg == AUTONEG_ENABLE) ||
5330 	    (ethtool_cmd_speed(info) != SPEED_10000) ||
5331 	    (info->duplex != DUPLEX_FULL))
5332 		return -EINVAL;
5333 	else {
5334 		s2io_close(sp->dev);
5335 		s2io_open(sp->dev);
5336 	}
5337 
5338 	return 0;
5339 }
5340 
5341 /**
5342  * s2io_ethtol_gset - Return link specific information.
5343  * @sp : private member of the device structure, pointer to the
5344  *      s2io_nic structure.
5345  * @info : pointer to the structure with parameters given by ethtool
5346  * to return link information.
5347  * Description:
5348  * Returns link specific information like speed, duplex etc.. to ethtool.
5349  * Return value :
5350  * return 0 on success.
5351  */
5352 
5353 static int s2io_ethtool_gset(struct net_device *dev, struct ethtool_cmd *info)
5354 {
5355 	struct s2io_nic *sp = netdev_priv(dev);
5356 	info->supported = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
5357 	info->advertising = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
5358 	info->port = PORT_FIBRE;
5359 
5360 	/* info->transceiver */
5361 	info->transceiver = XCVR_EXTERNAL;
5362 
5363 	if (netif_carrier_ok(sp->dev)) {
5364 		ethtool_cmd_speed_set(info, SPEED_10000);
5365 		info->duplex = DUPLEX_FULL;
5366 	} else {
5367 		ethtool_cmd_speed_set(info, -1);
5368 		info->duplex = -1;
5369 	}
5370 
5371 	info->autoneg = AUTONEG_DISABLE;
5372 	return 0;
5373 }
5374 
5375 /**
5376  * s2io_ethtool_gdrvinfo - Returns driver specific information.
5377  * @sp : private member of the device structure, which is a pointer to the
5378  * s2io_nic structure.
5379  * @info : pointer to the structure with parameters given by ethtool to
5380  * return driver information.
5381  * Description:
5382  * Returns driver specefic information like name, version etc.. to ethtool.
5383  * Return value:
5384  *  void
5385  */
5386 
5387 static void s2io_ethtool_gdrvinfo(struct net_device *dev,
5388 				  struct ethtool_drvinfo *info)
5389 {
5390 	struct s2io_nic *sp = netdev_priv(dev);
5391 
5392 	strlcpy(info->driver, s2io_driver_name, sizeof(info->driver));
5393 	strlcpy(info->version, s2io_driver_version, sizeof(info->version));
5394 	strlcpy(info->bus_info, pci_name(sp->pdev), sizeof(info->bus_info));
5395 	info->regdump_len = XENA_REG_SPACE;
5396 	info->eedump_len = XENA_EEPROM_SPACE;
5397 }
5398 
5399 /**
5400  *  s2io_ethtool_gregs - dumps the entire space of Xfame into the buffer.
5401  *  @sp: private member of the device structure, which is a pointer to the
5402  *  s2io_nic structure.
5403  *  @regs : pointer to the structure with parameters given by ethtool for
5404  *  dumping the registers.
5405  *  @reg_space: The input argumnet into which all the registers are dumped.
5406  *  Description:
5407  *  Dumps the entire register space of xFrame NIC into the user given
5408  *  buffer area.
5409  * Return value :
5410  * void .
5411  */
5412 
5413 static void s2io_ethtool_gregs(struct net_device *dev,
5414 			       struct ethtool_regs *regs, void *space)
5415 {
5416 	int i;
5417 	u64 reg;
5418 	u8 *reg_space = (u8 *)space;
5419 	struct s2io_nic *sp = netdev_priv(dev);
5420 
5421 	regs->len = XENA_REG_SPACE;
5422 	regs->version = sp->pdev->subsystem_device;
5423 
5424 	for (i = 0; i < regs->len; i += 8) {
5425 		reg = readq(sp->bar0 + i);
5426 		memcpy((reg_space + i), &reg, 8);
5427 	}
5428 }
5429 
5430 /*
5431  *  s2io_set_led - control NIC led
5432  */
5433 static void s2io_set_led(struct s2io_nic *sp, bool on)
5434 {
5435 	struct XENA_dev_config __iomem *bar0 = sp->bar0;
5436 	u16 subid = sp->pdev->subsystem_device;
5437 	u64 val64;
5438 
5439 	if ((sp->device_type == XFRAME_II_DEVICE) ||
5440 	    ((subid & 0xFF) >= 0x07)) {
5441 		val64 = readq(&bar0->gpio_control);
5442 		if (on)
5443 			val64 |= GPIO_CTRL_GPIO_0;
5444 		else
5445 			val64 &= ~GPIO_CTRL_GPIO_0;
5446 
5447 		writeq(val64, &bar0->gpio_control);
5448 	} else {
5449 		val64 = readq(&bar0->adapter_control);
5450 		if (on)
5451 			val64 |= ADAPTER_LED_ON;
5452 		else
5453 			val64 &= ~ADAPTER_LED_ON;
5454 
5455 		writeq(val64, &bar0->adapter_control);
5456 	}
5457 
5458 }
5459 
5460 /**
5461  * s2io_ethtool_set_led - To physically identify the nic on the system.
5462  * @dev : network device
5463  * @state: led setting
5464  *
5465  * Description: Used to physically identify the NIC on the system.
5466  * The Link LED will blink for a time specified by the user for
5467  * identification.
5468  * NOTE: The Link has to be Up to be able to blink the LED. Hence
5469  * identification is possible only if it's link is up.
5470  */
5471 
5472 static int s2io_ethtool_set_led(struct net_device *dev,
5473 				enum ethtool_phys_id_state state)
5474 {
5475 	struct s2io_nic *sp = netdev_priv(dev);
5476 	struct XENA_dev_config __iomem *bar0 = sp->bar0;
5477 	u16 subid = sp->pdev->subsystem_device;
5478 
5479 	if ((sp->device_type == XFRAME_I_DEVICE) && ((subid & 0xFF) < 0x07)) {
5480 		u64 val64 = readq(&bar0->adapter_control);
5481 		if (!(val64 & ADAPTER_CNTL_EN)) {
5482 			pr_err("Adapter Link down, cannot blink LED\n");
5483 			return -EAGAIN;
5484 		}
5485 	}
5486 
5487 	switch (state) {
5488 	case ETHTOOL_ID_ACTIVE:
5489 		sp->adapt_ctrl_org = readq(&bar0->gpio_control);
5490 		return 1;	/* cycle on/off once per second */
5491 
5492 	case ETHTOOL_ID_ON:
5493 		s2io_set_led(sp, true);
5494 		break;
5495 
5496 	case ETHTOOL_ID_OFF:
5497 		s2io_set_led(sp, false);
5498 		break;
5499 
5500 	case ETHTOOL_ID_INACTIVE:
5501 		if (CARDS_WITH_FAULTY_LINK_INDICATORS(sp->device_type, subid))
5502 			writeq(sp->adapt_ctrl_org, &bar0->gpio_control);
5503 	}
5504 
5505 	return 0;
5506 }
5507 
5508 static void s2io_ethtool_gringparam(struct net_device *dev,
5509 				    struct ethtool_ringparam *ering)
5510 {
5511 	struct s2io_nic *sp = netdev_priv(dev);
5512 	int i, tx_desc_count = 0, rx_desc_count = 0;
5513 
5514 	if (sp->rxd_mode == RXD_MODE_1) {
5515 		ering->rx_max_pending = MAX_RX_DESC_1;
5516 		ering->rx_jumbo_max_pending = MAX_RX_DESC_1;
5517 	} else {
5518 		ering->rx_max_pending = MAX_RX_DESC_2;
5519 		ering->rx_jumbo_max_pending = MAX_RX_DESC_2;
5520 	}
5521 
5522 	ering->tx_max_pending = MAX_TX_DESC;
5523 
5524 	for (i = 0; i < sp->config.rx_ring_num; i++)
5525 		rx_desc_count += sp->config.rx_cfg[i].num_rxd;
5526 	ering->rx_pending = rx_desc_count;
5527 	ering->rx_jumbo_pending = rx_desc_count;
5528 
5529 	for (i = 0; i < sp->config.tx_fifo_num; i++)
5530 		tx_desc_count += sp->config.tx_cfg[i].fifo_len;
5531 	ering->tx_pending = tx_desc_count;
5532 	DBG_PRINT(INFO_DBG, "max txds: %d\n", sp->config.max_txds);
5533 }
5534 
5535 /**
5536  * s2io_ethtool_getpause_data -Pause frame frame generation and reception.
5537  * @sp : private member of the device structure, which is a pointer to the
5538  *	s2io_nic structure.
5539  * @ep : pointer to the structure with pause parameters given by ethtool.
5540  * Description:
5541  * Returns the Pause frame generation and reception capability of the NIC.
5542  * Return value:
5543  *  void
5544  */
5545 static void s2io_ethtool_getpause_data(struct net_device *dev,
5546 				       struct ethtool_pauseparam *ep)
5547 {
5548 	u64 val64;
5549 	struct s2io_nic *sp = netdev_priv(dev);
5550 	struct XENA_dev_config __iomem *bar0 = sp->bar0;
5551 
5552 	val64 = readq(&bar0->rmac_pause_cfg);
5553 	if (val64 & RMAC_PAUSE_GEN_ENABLE)
5554 		ep->tx_pause = true;
5555 	if (val64 & RMAC_PAUSE_RX_ENABLE)
5556 		ep->rx_pause = true;
5557 	ep->autoneg = false;
5558 }
5559 
5560 /**
5561  * s2io_ethtool_setpause_data -  set/reset pause frame generation.
5562  * @sp : private member of the device structure, which is a pointer to the
5563  *      s2io_nic structure.
5564  * @ep : pointer to the structure with pause parameters given by ethtool.
5565  * Description:
5566  * It can be used to set or reset Pause frame generation or reception
5567  * support of the NIC.
5568  * Return value:
5569  * int, returns 0 on Success
5570  */
5571 
5572 static int s2io_ethtool_setpause_data(struct net_device *dev,
5573 				      struct ethtool_pauseparam *ep)
5574 {
5575 	u64 val64;
5576 	struct s2io_nic *sp = netdev_priv(dev);
5577 	struct XENA_dev_config __iomem *bar0 = sp->bar0;
5578 
5579 	val64 = readq(&bar0->rmac_pause_cfg);
5580 	if (ep->tx_pause)
5581 		val64 |= RMAC_PAUSE_GEN_ENABLE;
5582 	else
5583 		val64 &= ~RMAC_PAUSE_GEN_ENABLE;
5584 	if (ep->rx_pause)
5585 		val64 |= RMAC_PAUSE_RX_ENABLE;
5586 	else
5587 		val64 &= ~RMAC_PAUSE_RX_ENABLE;
5588 	writeq(val64, &bar0->rmac_pause_cfg);
5589 	return 0;
5590 }
5591 
5592 /**
5593  * read_eeprom - reads 4 bytes of data from user given offset.
5594  * @sp : private member of the device structure, which is a pointer to the
5595  *      s2io_nic structure.
5596  * @off : offset at which the data must be written
5597  * @data : Its an output parameter where the data read at the given
5598  *	offset is stored.
5599  * Description:
5600  * Will read 4 bytes of data from the user given offset and return the
5601  * read data.
5602  * NOTE: Will allow to read only part of the EEPROM visible through the
5603  *   I2C bus.
5604  * Return value:
5605  *  -1 on failure and 0 on success.
5606  */
5607 
5608 #define S2IO_DEV_ID		5
5609 static int read_eeprom(struct s2io_nic *sp, int off, u64 *data)
5610 {
5611 	int ret = -1;
5612 	u32 exit_cnt = 0;
5613 	u64 val64;
5614 	struct XENA_dev_config __iomem *bar0 = sp->bar0;
5615 
5616 	if (sp->device_type == XFRAME_I_DEVICE) {
5617 		val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) |
5618 			I2C_CONTROL_ADDR(off) |
5619 			I2C_CONTROL_BYTE_CNT(0x3) |
5620 			I2C_CONTROL_READ |
5621 			I2C_CONTROL_CNTL_START;
5622 		SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
5623 
5624 		while (exit_cnt < 5) {
5625 			val64 = readq(&bar0->i2c_control);
5626 			if (I2C_CONTROL_CNTL_END(val64)) {
5627 				*data = I2C_CONTROL_GET_DATA(val64);
5628 				ret = 0;
5629 				break;
5630 			}
5631 			msleep(50);
5632 			exit_cnt++;
5633 		}
5634 	}
5635 
5636 	if (sp->device_type == XFRAME_II_DEVICE) {
5637 		val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
5638 			SPI_CONTROL_BYTECNT(0x3) |
5639 			SPI_CONTROL_CMD(0x3) | SPI_CONTROL_ADDR(off);
5640 		SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5641 		val64 |= SPI_CONTROL_REQ;
5642 		SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5643 		while (exit_cnt < 5) {
5644 			val64 = readq(&bar0->spi_control);
5645 			if (val64 & SPI_CONTROL_NACK) {
5646 				ret = 1;
5647 				break;
5648 			} else if (val64 & SPI_CONTROL_DONE) {
5649 				*data = readq(&bar0->spi_data);
5650 				*data &= 0xffffff;
5651 				ret = 0;
5652 				break;
5653 			}
5654 			msleep(50);
5655 			exit_cnt++;
5656 		}
5657 	}
5658 	return ret;
5659 }
5660 
5661 /**
5662  *  write_eeprom - actually writes the relevant part of the data value.
5663  *  @sp : private member of the device structure, which is a pointer to the
5664  *       s2io_nic structure.
5665  *  @off : offset at which the data must be written
5666  *  @data : The data that is to be written
5667  *  @cnt : Number of bytes of the data that are actually to be written into
5668  *  the Eeprom. (max of 3)
5669  * Description:
5670  *  Actually writes the relevant part of the data value into the Eeprom
5671  *  through the I2C bus.
5672  * Return value:
5673  *  0 on success, -1 on failure.
5674  */
5675 
5676 static int write_eeprom(struct s2io_nic *sp, int off, u64 data, int cnt)
5677 {
5678 	int exit_cnt = 0, ret = -1;
5679 	u64 val64;
5680 	struct XENA_dev_config __iomem *bar0 = sp->bar0;
5681 
5682 	if (sp->device_type == XFRAME_I_DEVICE) {
5683 		val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) |
5684 			I2C_CONTROL_ADDR(off) |
5685 			I2C_CONTROL_BYTE_CNT(cnt) |
5686 			I2C_CONTROL_SET_DATA((u32)data) |
5687 			I2C_CONTROL_CNTL_START;
5688 		SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
5689 
5690 		while (exit_cnt < 5) {
5691 			val64 = readq(&bar0->i2c_control);
5692 			if (I2C_CONTROL_CNTL_END(val64)) {
5693 				if (!(val64 & I2C_CONTROL_NACK))
5694 					ret = 0;
5695 				break;
5696 			}
5697 			msleep(50);
5698 			exit_cnt++;
5699 		}
5700 	}
5701 
5702 	if (sp->device_type == XFRAME_II_DEVICE) {
5703 		int write_cnt = (cnt == 8) ? 0 : cnt;
5704 		writeq(SPI_DATA_WRITE(data, (cnt << 3)), &bar0->spi_data);
5705 
5706 		val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
5707 			SPI_CONTROL_BYTECNT(write_cnt) |
5708 			SPI_CONTROL_CMD(0x2) | SPI_CONTROL_ADDR(off);
5709 		SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5710 		val64 |= SPI_CONTROL_REQ;
5711 		SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5712 		while (exit_cnt < 5) {
5713 			val64 = readq(&bar0->spi_control);
5714 			if (val64 & SPI_CONTROL_NACK) {
5715 				ret = 1;
5716 				break;
5717 			} else if (val64 & SPI_CONTROL_DONE) {
5718 				ret = 0;
5719 				break;
5720 			}
5721 			msleep(50);
5722 			exit_cnt++;
5723 		}
5724 	}
5725 	return ret;
5726 }
5727 static void s2io_vpd_read(struct s2io_nic *nic)
5728 {
5729 	u8 *vpd_data;
5730 	u8 data;
5731 	int i = 0, cnt, len, fail = 0;
5732 	int vpd_addr = 0x80;
5733 	struct swStat *swstats = &nic->mac_control.stats_info->sw_stat;
5734 
5735 	if (nic->device_type == XFRAME_II_DEVICE) {
5736 		strcpy(nic->product_name, "Xframe II 10GbE network adapter");
5737 		vpd_addr = 0x80;
5738 	} else {
5739 		strcpy(nic->product_name, "Xframe I 10GbE network adapter");
5740 		vpd_addr = 0x50;
5741 	}
5742 	strcpy(nic->serial_num, "NOT AVAILABLE");
5743 
5744 	vpd_data = kmalloc(256, GFP_KERNEL);
5745 	if (!vpd_data) {
5746 		swstats->mem_alloc_fail_cnt++;
5747 		return;
5748 	}
5749 	swstats->mem_allocated += 256;
5750 
5751 	for (i = 0; i < 256; i += 4) {
5752 		pci_write_config_byte(nic->pdev, (vpd_addr + 2), i);
5753 		pci_read_config_byte(nic->pdev,  (vpd_addr + 2), &data);
5754 		pci_write_config_byte(nic->pdev, (vpd_addr + 3), 0);
5755 		for (cnt = 0; cnt < 5; cnt++) {
5756 			msleep(2);
5757 			pci_read_config_byte(nic->pdev, (vpd_addr + 3), &data);
5758 			if (data == 0x80)
5759 				break;
5760 		}
5761 		if (cnt >= 5) {
5762 			DBG_PRINT(ERR_DBG, "Read of VPD data failed\n");
5763 			fail = 1;
5764 			break;
5765 		}
5766 		pci_read_config_dword(nic->pdev,  (vpd_addr + 4),
5767 				      (u32 *)&vpd_data[i]);
5768 	}
5769 
5770 	if (!fail) {
5771 		/* read serial number of adapter */
5772 		for (cnt = 0; cnt < 252; cnt++) {
5773 			if ((vpd_data[cnt] == 'S') &&
5774 			    (vpd_data[cnt+1] == 'N')) {
5775 				len = vpd_data[cnt+2];
5776 				if (len < min(VPD_STRING_LEN, 256-cnt-2)) {
5777 					memcpy(nic->serial_num,
5778 					       &vpd_data[cnt + 3],
5779 					       len);
5780 					memset(nic->serial_num+len,
5781 					       0,
5782 					       VPD_STRING_LEN-len);
5783 					break;
5784 				}
5785 			}
5786 		}
5787 	}
5788 
5789 	if ((!fail) && (vpd_data[1] < VPD_STRING_LEN)) {
5790 		len = vpd_data[1];
5791 		memcpy(nic->product_name, &vpd_data[3], len);
5792 		nic->product_name[len] = 0;
5793 	}
5794 	kfree(vpd_data);
5795 	swstats->mem_freed += 256;
5796 }
5797 
5798 /**
5799  *  s2io_ethtool_geeprom  - reads the value stored in the Eeprom.
5800  *  @sp : private member of the device structure, which is a pointer to the *       s2io_nic structure.
5801  *  @eeprom : pointer to the user level structure provided by ethtool,
5802  *  containing all relevant information.
5803  *  @data_buf : user defined value to be written into Eeprom.
5804  *  Description: Reads the values stored in the Eeprom at given offset
5805  *  for a given length. Stores these values int the input argument data
5806  *  buffer 'data_buf' and returns these to the caller (ethtool.)
5807  *  Return value:
5808  *  int  0 on success
5809  */
5810 
5811 static int s2io_ethtool_geeprom(struct net_device *dev,
5812 				struct ethtool_eeprom *eeprom, u8 * data_buf)
5813 {
5814 	u32 i, valid;
5815 	u64 data;
5816 	struct s2io_nic *sp = netdev_priv(dev);
5817 
5818 	eeprom->magic = sp->pdev->vendor | (sp->pdev->device << 16);
5819 
5820 	if ((eeprom->offset + eeprom->len) > (XENA_EEPROM_SPACE))
5821 		eeprom->len = XENA_EEPROM_SPACE - eeprom->offset;
5822 
5823 	for (i = 0; i < eeprom->len; i += 4) {
5824 		if (read_eeprom(sp, (eeprom->offset + i), &data)) {
5825 			DBG_PRINT(ERR_DBG, "Read of EEPROM failed\n");
5826 			return -EFAULT;
5827 		}
5828 		valid = INV(data);
5829 		memcpy((data_buf + i), &valid, 4);
5830 	}
5831 	return 0;
5832 }
5833 
5834 /**
5835  *  s2io_ethtool_seeprom - tries to write the user provided value in Eeprom
5836  *  @sp : private member of the device structure, which is a pointer to the
5837  *  s2io_nic structure.
5838  *  @eeprom : pointer to the user level structure provided by ethtool,
5839  *  containing all relevant information.
5840  *  @data_buf ; user defined value to be written into Eeprom.
5841  *  Description:
5842  *  Tries to write the user provided value in the Eeprom, at the offset
5843  *  given by the user.
5844  *  Return value:
5845  *  0 on success, -EFAULT on failure.
5846  */
5847 
5848 static int s2io_ethtool_seeprom(struct net_device *dev,
5849 				struct ethtool_eeprom *eeprom,
5850 				u8 *data_buf)
5851 {
5852 	int len = eeprom->len, cnt = 0;
5853 	u64 valid = 0, data;
5854 	struct s2io_nic *sp = netdev_priv(dev);
5855 
5856 	if (eeprom->magic != (sp->pdev->vendor | (sp->pdev->device << 16))) {
5857 		DBG_PRINT(ERR_DBG,
5858 			  "ETHTOOL_WRITE_EEPROM Err: "
5859 			  "Magic value is wrong, it is 0x%x should be 0x%x\n",
5860 			  (sp->pdev->vendor | (sp->pdev->device << 16)),
5861 			  eeprom->magic);
5862 		return -EFAULT;
5863 	}
5864 
5865 	while (len) {
5866 		data = (u32)data_buf[cnt] & 0x000000FF;
5867 		if (data)
5868 			valid = (u32)(data << 24);
5869 		else
5870 			valid = data;
5871 
5872 		if (write_eeprom(sp, (eeprom->offset + cnt), valid, 0)) {
5873 			DBG_PRINT(ERR_DBG,
5874 				  "ETHTOOL_WRITE_EEPROM Err: "
5875 				  "Cannot write into the specified offset\n");
5876 			return -EFAULT;
5877 		}
5878 		cnt++;
5879 		len--;
5880 	}
5881 
5882 	return 0;
5883 }
5884 
5885 /**
5886  * s2io_register_test - reads and writes into all clock domains.
5887  * @sp : private member of the device structure, which is a pointer to the
5888  * s2io_nic structure.
5889  * @data : variable that returns the result of each of the test conducted b
5890  * by the driver.
5891  * Description:
5892  * Read and write into all clock domains. The NIC has 3 clock domains,
5893  * see that registers in all the three regions are accessible.
5894  * Return value:
5895  * 0 on success.
5896  */
5897 
5898 static int s2io_register_test(struct s2io_nic *sp, uint64_t *data)
5899 {
5900 	struct XENA_dev_config __iomem *bar0 = sp->bar0;
5901 	u64 val64 = 0, exp_val;
5902 	int fail = 0;
5903 
5904 	val64 = readq(&bar0->pif_rd_swapper_fb);
5905 	if (val64 != 0x123456789abcdefULL) {
5906 		fail = 1;
5907 		DBG_PRINT(INFO_DBG, "Read Test level %d fails\n", 1);
5908 	}
5909 
5910 	val64 = readq(&bar0->rmac_pause_cfg);
5911 	if (val64 != 0xc000ffff00000000ULL) {
5912 		fail = 1;
5913 		DBG_PRINT(INFO_DBG, "Read Test level %d fails\n", 2);
5914 	}
5915 
5916 	val64 = readq(&bar0->rx_queue_cfg);
5917 	if (sp->device_type == XFRAME_II_DEVICE)
5918 		exp_val = 0x0404040404040404ULL;
5919 	else
5920 		exp_val = 0x0808080808080808ULL;
5921 	if (val64 != exp_val) {
5922 		fail = 1;
5923 		DBG_PRINT(INFO_DBG, "Read Test level %d fails\n", 3);
5924 	}
5925 
5926 	val64 = readq(&bar0->xgxs_efifo_cfg);
5927 	if (val64 != 0x000000001923141EULL) {
5928 		fail = 1;
5929 		DBG_PRINT(INFO_DBG, "Read Test level %d fails\n", 4);
5930 	}
5931 
5932 	val64 = 0x5A5A5A5A5A5A5A5AULL;
5933 	writeq(val64, &bar0->xmsi_data);
5934 	val64 = readq(&bar0->xmsi_data);
5935 	if (val64 != 0x5A5A5A5A5A5A5A5AULL) {
5936 		fail = 1;
5937 		DBG_PRINT(ERR_DBG, "Write Test level %d fails\n", 1);
5938 	}
5939 
5940 	val64 = 0xA5A5A5A5A5A5A5A5ULL;
5941 	writeq(val64, &bar0->xmsi_data);
5942 	val64 = readq(&bar0->xmsi_data);
5943 	if (val64 != 0xA5A5A5A5A5A5A5A5ULL) {
5944 		fail = 1;
5945 		DBG_PRINT(ERR_DBG, "Write Test level %d fails\n", 2);
5946 	}
5947 
5948 	*data = fail;
5949 	return fail;
5950 }
5951 
5952 /**
5953  * s2io_eeprom_test - to verify that EEprom in the xena can be programmed.
5954  * @sp : private member of the device structure, which is a pointer to the
5955  * s2io_nic structure.
5956  * @data:variable that returns the result of each of the test conducted by
5957  * the driver.
5958  * Description:
5959  * Verify that EEPROM in the xena can be programmed using I2C_CONTROL
5960  * register.
5961  * Return value:
5962  * 0 on success.
5963  */
5964 
5965 static int s2io_eeprom_test(struct s2io_nic *sp, uint64_t *data)
5966 {
5967 	int fail = 0;
5968 	u64 ret_data, org_4F0, org_7F0;
5969 	u8 saved_4F0 = 0, saved_7F0 = 0;
5970 	struct net_device *dev = sp->dev;
5971 
5972 	/* Test Write Error at offset 0 */
5973 	/* Note that SPI interface allows write access to all areas
5974 	 * of EEPROM. Hence doing all negative testing only for Xframe I.
5975 	 */
5976 	if (sp->device_type == XFRAME_I_DEVICE)
5977 		if (!write_eeprom(sp, 0, 0, 3))
5978 			fail = 1;
5979 
5980 	/* Save current values at offsets 0x4F0 and 0x7F0 */
5981 	if (!read_eeprom(sp, 0x4F0, &org_4F0))
5982 		saved_4F0 = 1;
5983 	if (!read_eeprom(sp, 0x7F0, &org_7F0))
5984 		saved_7F0 = 1;
5985 
5986 	/* Test Write at offset 4f0 */
5987 	if (write_eeprom(sp, 0x4F0, 0x012345, 3))
5988 		fail = 1;
5989 	if (read_eeprom(sp, 0x4F0, &ret_data))
5990 		fail = 1;
5991 
5992 	if (ret_data != 0x012345) {
5993 		DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x4F0. "
5994 			  "Data written %llx Data read %llx\n",
5995 			  dev->name, (unsigned long long)0x12345,
5996 			  (unsigned long long)ret_data);
5997 		fail = 1;
5998 	}
5999 
6000 	/* Reset the EEPROM data go FFFF */
6001 	write_eeprom(sp, 0x4F0, 0xFFFFFF, 3);
6002 
6003 	/* Test Write Request Error at offset 0x7c */
6004 	if (sp->device_type == XFRAME_I_DEVICE)
6005 		if (!write_eeprom(sp, 0x07C, 0, 3))
6006 			fail = 1;
6007 
6008 	/* Test Write Request at offset 0x7f0 */
6009 	if (write_eeprom(sp, 0x7F0, 0x012345, 3))
6010 		fail = 1;
6011 	if (read_eeprom(sp, 0x7F0, &ret_data))
6012 		fail = 1;
6013 
6014 	if (ret_data != 0x012345) {
6015 		DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x7F0. "
6016 			  "Data written %llx Data read %llx\n",
6017 			  dev->name, (unsigned long long)0x12345,
6018 			  (unsigned long long)ret_data);
6019 		fail = 1;
6020 	}
6021 
6022 	/* Reset the EEPROM data go FFFF */
6023 	write_eeprom(sp, 0x7F0, 0xFFFFFF, 3);
6024 
6025 	if (sp->device_type == XFRAME_I_DEVICE) {
6026 		/* Test Write Error at offset 0x80 */
6027 		if (!write_eeprom(sp, 0x080, 0, 3))
6028 			fail = 1;
6029 
6030 		/* Test Write Error at offset 0xfc */
6031 		if (!write_eeprom(sp, 0x0FC, 0, 3))
6032 			fail = 1;
6033 
6034 		/* Test Write Error at offset 0x100 */
6035 		if (!write_eeprom(sp, 0x100, 0, 3))
6036 			fail = 1;
6037 
6038 		/* Test Write Error at offset 4ec */
6039 		if (!write_eeprom(sp, 0x4EC, 0, 3))
6040 			fail = 1;
6041 	}
6042 
6043 	/* Restore values at offsets 0x4F0 and 0x7F0 */
6044 	if (saved_4F0)
6045 		write_eeprom(sp, 0x4F0, org_4F0, 3);
6046 	if (saved_7F0)
6047 		write_eeprom(sp, 0x7F0, org_7F0, 3);
6048 
6049 	*data = fail;
6050 	return fail;
6051 }
6052 
6053 /**
6054  * s2io_bist_test - invokes the MemBist test of the card .
6055  * @sp : private member of the device structure, which is a pointer to the
6056  * s2io_nic structure.
6057  * @data:variable that returns the result of each of the test conducted by
6058  * the driver.
6059  * Description:
6060  * This invokes the MemBist test of the card. We give around
6061  * 2 secs time for the Test to complete. If it's still not complete
6062  * within this peiod, we consider that the test failed.
6063  * Return value:
6064  * 0 on success and -1 on failure.
6065  */
6066 
6067 static int s2io_bist_test(struct s2io_nic *sp, uint64_t *data)
6068 {
6069 	u8 bist = 0;
6070 	int cnt = 0, ret = -1;
6071 
6072 	pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
6073 	bist |= PCI_BIST_START;
6074 	pci_write_config_word(sp->pdev, PCI_BIST, bist);
6075 
6076 	while (cnt < 20) {
6077 		pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
6078 		if (!(bist & PCI_BIST_START)) {
6079 			*data = (bist & PCI_BIST_CODE_MASK);
6080 			ret = 0;
6081 			break;
6082 		}
6083 		msleep(100);
6084 		cnt++;
6085 	}
6086 
6087 	return ret;
6088 }
6089 
6090 /**
6091  * s2io_link_test - verifies the link state of the nic
6092  * @sp ; private member of the device structure, which is a pointer to the
6093  * s2io_nic structure.
6094  * @data: variable that returns the result of each of the test conducted by
6095  * the driver.
6096  * Description:
6097  * The function verifies the link state of the NIC and updates the input
6098  * argument 'data' appropriately.
6099  * Return value:
6100  * 0 on success.
6101  */
6102 
6103 static int s2io_link_test(struct s2io_nic *sp, uint64_t *data)
6104 {
6105 	struct XENA_dev_config __iomem *bar0 = sp->bar0;
6106 	u64 val64;
6107 
6108 	val64 = readq(&bar0->adapter_status);
6109 	if (!(LINK_IS_UP(val64)))
6110 		*data = 1;
6111 	else
6112 		*data = 0;
6113 
6114 	return *data;
6115 }
6116 
6117 /**
6118  * s2io_rldram_test - offline test for access to the RldRam chip on the NIC
6119  * @sp: private member of the device structure, which is a pointer to the
6120  * s2io_nic structure.
6121  * @data: variable that returns the result of each of the test
6122  * conducted by the driver.
6123  * Description:
6124  *  This is one of the offline test that tests the read and write
6125  *  access to the RldRam chip on the NIC.
6126  * Return value:
6127  *  0 on success.
6128  */
6129 
6130 static int s2io_rldram_test(struct s2io_nic *sp, uint64_t *data)
6131 {
6132 	struct XENA_dev_config __iomem *bar0 = sp->bar0;
6133 	u64 val64;
6134 	int cnt, iteration = 0, test_fail = 0;
6135 
6136 	val64 = readq(&bar0->adapter_control);
6137 	val64 &= ~ADAPTER_ECC_EN;
6138 	writeq(val64, &bar0->adapter_control);
6139 
6140 	val64 = readq(&bar0->mc_rldram_test_ctrl);
6141 	val64 |= MC_RLDRAM_TEST_MODE;
6142 	SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
6143 
6144 	val64 = readq(&bar0->mc_rldram_mrs);
6145 	val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE;
6146 	SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
6147 
6148 	val64 |= MC_RLDRAM_MRS_ENABLE;
6149 	SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
6150 
6151 	while (iteration < 2) {
6152 		val64 = 0x55555555aaaa0000ULL;
6153 		if (iteration == 1)
6154 			val64 ^= 0xFFFFFFFFFFFF0000ULL;
6155 		writeq(val64, &bar0->mc_rldram_test_d0);
6156 
6157 		val64 = 0xaaaa5a5555550000ULL;
6158 		if (iteration == 1)
6159 			val64 ^= 0xFFFFFFFFFFFF0000ULL;
6160 		writeq(val64, &bar0->mc_rldram_test_d1);
6161 
6162 		val64 = 0x55aaaaaaaa5a0000ULL;
6163 		if (iteration == 1)
6164 			val64 ^= 0xFFFFFFFFFFFF0000ULL;
6165 		writeq(val64, &bar0->mc_rldram_test_d2);
6166 
6167 		val64 = (u64) (0x0000003ffffe0100ULL);
6168 		writeq(val64, &bar0->mc_rldram_test_add);
6169 
6170 		val64 = MC_RLDRAM_TEST_MODE |
6171 			MC_RLDRAM_TEST_WRITE |
6172 			MC_RLDRAM_TEST_GO;
6173 		SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
6174 
6175 		for (cnt = 0; cnt < 5; cnt++) {
6176 			val64 = readq(&bar0->mc_rldram_test_ctrl);
6177 			if (val64 & MC_RLDRAM_TEST_DONE)
6178 				break;
6179 			msleep(200);
6180 		}
6181 
6182 		if (cnt == 5)
6183 			break;
6184 
6185 		val64 = MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_GO;
6186 		SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
6187 
6188 		for (cnt = 0; cnt < 5; cnt++) {
6189 			val64 = readq(&bar0->mc_rldram_test_ctrl);
6190 			if (val64 & MC_RLDRAM_TEST_DONE)
6191 				break;
6192 			msleep(500);
6193 		}
6194 
6195 		if (cnt == 5)
6196 			break;
6197 
6198 		val64 = readq(&bar0->mc_rldram_test_ctrl);
6199 		if (!(val64 & MC_RLDRAM_TEST_PASS))
6200 			test_fail = 1;
6201 
6202 		iteration++;
6203 	}
6204 
6205 	*data = test_fail;
6206 
6207 	/* Bring the adapter out of test mode */
6208 	SPECIAL_REG_WRITE(0, &bar0->mc_rldram_test_ctrl, LF);
6209 
6210 	return test_fail;
6211 }
6212 
6213 /**
6214  *  s2io_ethtool_test - conducts 6 tsets to determine the health of card.
6215  *  @sp : private member of the device structure, which is a pointer to the
6216  *  s2io_nic structure.
6217  *  @ethtest : pointer to a ethtool command specific structure that will be
6218  *  returned to the user.
6219  *  @data : variable that returns the result of each of the test
6220  * conducted by the driver.
6221  * Description:
6222  *  This function conducts 6 tests ( 4 offline and 2 online) to determine
6223  *  the health of the card.
6224  * Return value:
6225  *  void
6226  */
6227 
6228 static void s2io_ethtool_test(struct net_device *dev,
6229 			      struct ethtool_test *ethtest,
6230 			      uint64_t *data)
6231 {
6232 	struct s2io_nic *sp = netdev_priv(dev);
6233 	int orig_state = netif_running(sp->dev);
6234 
6235 	if (ethtest->flags == ETH_TEST_FL_OFFLINE) {
6236 		/* Offline Tests. */
6237 		if (orig_state)
6238 			s2io_close(sp->dev);
6239 
6240 		if (s2io_register_test(sp, &data[0]))
6241 			ethtest->flags |= ETH_TEST_FL_FAILED;
6242 
6243 		s2io_reset(sp);
6244 
6245 		if (s2io_rldram_test(sp, &data[3]))
6246 			ethtest->flags |= ETH_TEST_FL_FAILED;
6247 
6248 		s2io_reset(sp);
6249 
6250 		if (s2io_eeprom_test(sp, &data[1]))
6251 			ethtest->flags |= ETH_TEST_FL_FAILED;
6252 
6253 		if (s2io_bist_test(sp, &data[4]))
6254 			ethtest->flags |= ETH_TEST_FL_FAILED;
6255 
6256 		if (orig_state)
6257 			s2io_open(sp->dev);
6258 
6259 		data[2] = 0;
6260 	} else {
6261 		/* Online Tests. */
6262 		if (!orig_state) {
6263 			DBG_PRINT(ERR_DBG, "%s: is not up, cannot run test\n",
6264 				  dev->name);
6265 			data[0] = -1;
6266 			data[1] = -1;
6267 			data[2] = -1;
6268 			data[3] = -1;
6269 			data[4] = -1;
6270 		}
6271 
6272 		if (s2io_link_test(sp, &data[2]))
6273 			ethtest->flags |= ETH_TEST_FL_FAILED;
6274 
6275 		data[0] = 0;
6276 		data[1] = 0;
6277 		data[3] = 0;
6278 		data[4] = 0;
6279 	}
6280 }
6281 
6282 static void s2io_get_ethtool_stats(struct net_device *dev,
6283 				   struct ethtool_stats *estats,
6284 				   u64 *tmp_stats)
6285 {
6286 	int i = 0, k;
6287 	struct s2io_nic *sp = netdev_priv(dev);
6288 	struct stat_block *stats = sp->mac_control.stats_info;
6289 	struct swStat *swstats = &stats->sw_stat;
6290 	struct xpakStat *xstats = &stats->xpak_stat;
6291 
6292 	s2io_updt_stats(sp);
6293 	tmp_stats[i++] =
6294 		(u64)le32_to_cpu(stats->tmac_frms_oflow) << 32  |
6295 		le32_to_cpu(stats->tmac_frms);
6296 	tmp_stats[i++] =
6297 		(u64)le32_to_cpu(stats->tmac_data_octets_oflow) << 32 |
6298 		le32_to_cpu(stats->tmac_data_octets);
6299 	tmp_stats[i++] = le64_to_cpu(stats->tmac_drop_frms);
6300 	tmp_stats[i++] =
6301 		(u64)le32_to_cpu(stats->tmac_mcst_frms_oflow) << 32 |
6302 		le32_to_cpu(stats->tmac_mcst_frms);
6303 	tmp_stats[i++] =
6304 		(u64)le32_to_cpu(stats->tmac_bcst_frms_oflow) << 32 |
6305 		le32_to_cpu(stats->tmac_bcst_frms);
6306 	tmp_stats[i++] = le64_to_cpu(stats->tmac_pause_ctrl_frms);
6307 	tmp_stats[i++] =
6308 		(u64)le32_to_cpu(stats->tmac_ttl_octets_oflow) << 32 |
6309 		le32_to_cpu(stats->tmac_ttl_octets);
6310 	tmp_stats[i++] =
6311 		(u64)le32_to_cpu(stats->tmac_ucst_frms_oflow) << 32 |
6312 		le32_to_cpu(stats->tmac_ucst_frms);
6313 	tmp_stats[i++] =
6314 		(u64)le32_to_cpu(stats->tmac_nucst_frms_oflow) << 32 |
6315 		le32_to_cpu(stats->tmac_nucst_frms);
6316 	tmp_stats[i++] =
6317 		(u64)le32_to_cpu(stats->tmac_any_err_frms_oflow) << 32 |
6318 		le32_to_cpu(stats->tmac_any_err_frms);
6319 	tmp_stats[i++] = le64_to_cpu(stats->tmac_ttl_less_fb_octets);
6320 	tmp_stats[i++] = le64_to_cpu(stats->tmac_vld_ip_octets);
6321 	tmp_stats[i++] =
6322 		(u64)le32_to_cpu(stats->tmac_vld_ip_oflow) << 32 |
6323 		le32_to_cpu(stats->tmac_vld_ip);
6324 	tmp_stats[i++] =
6325 		(u64)le32_to_cpu(stats->tmac_drop_ip_oflow) << 32 |
6326 		le32_to_cpu(stats->tmac_drop_ip);
6327 	tmp_stats[i++] =
6328 		(u64)le32_to_cpu(stats->tmac_icmp_oflow) << 32 |
6329 		le32_to_cpu(stats->tmac_icmp);
6330 	tmp_stats[i++] =
6331 		(u64)le32_to_cpu(stats->tmac_rst_tcp_oflow) << 32 |
6332 		le32_to_cpu(stats->tmac_rst_tcp);
6333 	tmp_stats[i++] = le64_to_cpu(stats->tmac_tcp);
6334 	tmp_stats[i++] = (u64)le32_to_cpu(stats->tmac_udp_oflow) << 32 |
6335 		le32_to_cpu(stats->tmac_udp);
6336 	tmp_stats[i++] =
6337 		(u64)le32_to_cpu(stats->rmac_vld_frms_oflow) << 32 |
6338 		le32_to_cpu(stats->rmac_vld_frms);
6339 	tmp_stats[i++] =
6340 		(u64)le32_to_cpu(stats->rmac_data_octets_oflow) << 32 |
6341 		le32_to_cpu(stats->rmac_data_octets);
6342 	tmp_stats[i++] = le64_to_cpu(stats->rmac_fcs_err_frms);
6343 	tmp_stats[i++] = le64_to_cpu(stats->rmac_drop_frms);
6344 	tmp_stats[i++] =
6345 		(u64)le32_to_cpu(stats->rmac_vld_mcst_frms_oflow) << 32 |
6346 		le32_to_cpu(stats->rmac_vld_mcst_frms);
6347 	tmp_stats[i++] =
6348 		(u64)le32_to_cpu(stats->rmac_vld_bcst_frms_oflow) << 32 |
6349 		le32_to_cpu(stats->rmac_vld_bcst_frms);
6350 	tmp_stats[i++] = le32_to_cpu(stats->rmac_in_rng_len_err_frms);
6351 	tmp_stats[i++] = le32_to_cpu(stats->rmac_out_rng_len_err_frms);
6352 	tmp_stats[i++] = le64_to_cpu(stats->rmac_long_frms);
6353 	tmp_stats[i++] = le64_to_cpu(stats->rmac_pause_ctrl_frms);
6354 	tmp_stats[i++] = le64_to_cpu(stats->rmac_unsup_ctrl_frms);
6355 	tmp_stats[i++] =
6356 		(u64)le32_to_cpu(stats->rmac_ttl_octets_oflow) << 32 |
6357 		le32_to_cpu(stats->rmac_ttl_octets);
6358 	tmp_stats[i++] =
6359 		(u64)le32_to_cpu(stats->rmac_accepted_ucst_frms_oflow) << 32
6360 		| le32_to_cpu(stats->rmac_accepted_ucst_frms);
6361 	tmp_stats[i++] =
6362 		(u64)le32_to_cpu(stats->rmac_accepted_nucst_frms_oflow)
6363 		<< 32 | le32_to_cpu(stats->rmac_accepted_nucst_frms);
6364 	tmp_stats[i++] =
6365 		(u64)le32_to_cpu(stats->rmac_discarded_frms_oflow) << 32 |
6366 		le32_to_cpu(stats->rmac_discarded_frms);
6367 	tmp_stats[i++] =
6368 		(u64)le32_to_cpu(stats->rmac_drop_events_oflow)
6369 		<< 32 | le32_to_cpu(stats->rmac_drop_events);
6370 	tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_less_fb_octets);
6371 	tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_frms);
6372 	tmp_stats[i++] =
6373 		(u64)le32_to_cpu(stats->rmac_usized_frms_oflow) << 32 |
6374 		le32_to_cpu(stats->rmac_usized_frms);
6375 	tmp_stats[i++] =
6376 		(u64)le32_to_cpu(stats->rmac_osized_frms_oflow) << 32 |
6377 		le32_to_cpu(stats->rmac_osized_frms);
6378 	tmp_stats[i++] =
6379 		(u64)le32_to_cpu(stats->rmac_frag_frms_oflow) << 32 |
6380 		le32_to_cpu(stats->rmac_frag_frms);
6381 	tmp_stats[i++] =
6382 		(u64)le32_to_cpu(stats->rmac_jabber_frms_oflow) << 32 |
6383 		le32_to_cpu(stats->rmac_jabber_frms);
6384 	tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_64_frms);
6385 	tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_65_127_frms);
6386 	tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_128_255_frms);
6387 	tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_256_511_frms);
6388 	tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_512_1023_frms);
6389 	tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_1024_1518_frms);
6390 	tmp_stats[i++] =
6391 		(u64)le32_to_cpu(stats->rmac_ip_oflow) << 32 |
6392 		le32_to_cpu(stats->rmac_ip);
6393 	tmp_stats[i++] = le64_to_cpu(stats->rmac_ip_octets);
6394 	tmp_stats[i++] = le32_to_cpu(stats->rmac_hdr_err_ip);
6395 	tmp_stats[i++] =
6396 		(u64)le32_to_cpu(stats->rmac_drop_ip_oflow) << 32 |
6397 		le32_to_cpu(stats->rmac_drop_ip);
6398 	tmp_stats[i++] =
6399 		(u64)le32_to_cpu(stats->rmac_icmp_oflow) << 32 |
6400 		le32_to_cpu(stats->rmac_icmp);
6401 	tmp_stats[i++] = le64_to_cpu(stats->rmac_tcp);
6402 	tmp_stats[i++] =
6403 		(u64)le32_to_cpu(stats->rmac_udp_oflow) << 32 |
6404 		le32_to_cpu(stats->rmac_udp);
6405 	tmp_stats[i++] =
6406 		(u64)le32_to_cpu(stats->rmac_err_drp_udp_oflow) << 32 |
6407 		le32_to_cpu(stats->rmac_err_drp_udp);
6408 	tmp_stats[i++] = le64_to_cpu(stats->rmac_xgmii_err_sym);
6409 	tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q0);
6410 	tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q1);
6411 	tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q2);
6412 	tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q3);
6413 	tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q4);
6414 	tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q5);
6415 	tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q6);
6416 	tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q7);
6417 	tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q0);
6418 	tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q1);
6419 	tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q2);
6420 	tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q3);
6421 	tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q4);
6422 	tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q5);
6423 	tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q6);
6424 	tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q7);
6425 	tmp_stats[i++] =
6426 		(u64)le32_to_cpu(stats->rmac_pause_cnt_oflow) << 32 |
6427 		le32_to_cpu(stats->rmac_pause_cnt);
6428 	tmp_stats[i++] = le64_to_cpu(stats->rmac_xgmii_data_err_cnt);
6429 	tmp_stats[i++] = le64_to_cpu(stats->rmac_xgmii_ctrl_err_cnt);
6430 	tmp_stats[i++] =
6431 		(u64)le32_to_cpu(stats->rmac_accepted_ip_oflow) << 32 |
6432 		le32_to_cpu(stats->rmac_accepted_ip);
6433 	tmp_stats[i++] = le32_to_cpu(stats->rmac_err_tcp);
6434 	tmp_stats[i++] = le32_to_cpu(stats->rd_req_cnt);
6435 	tmp_stats[i++] = le32_to_cpu(stats->new_rd_req_cnt);
6436 	tmp_stats[i++] = le32_to_cpu(stats->new_rd_req_rtry_cnt);
6437 	tmp_stats[i++] = le32_to_cpu(stats->rd_rtry_cnt);
6438 	tmp_stats[i++] = le32_to_cpu(stats->wr_rtry_rd_ack_cnt);
6439 	tmp_stats[i++] = le32_to_cpu(stats->wr_req_cnt);
6440 	tmp_stats[i++] = le32_to_cpu(stats->new_wr_req_cnt);
6441 	tmp_stats[i++] = le32_to_cpu(stats->new_wr_req_rtry_cnt);
6442 	tmp_stats[i++] = le32_to_cpu(stats->wr_rtry_cnt);
6443 	tmp_stats[i++] = le32_to_cpu(stats->wr_disc_cnt);
6444 	tmp_stats[i++] = le32_to_cpu(stats->rd_rtry_wr_ack_cnt);
6445 	tmp_stats[i++] = le32_to_cpu(stats->txp_wr_cnt);
6446 	tmp_stats[i++] = le32_to_cpu(stats->txd_rd_cnt);
6447 	tmp_stats[i++] = le32_to_cpu(stats->txd_wr_cnt);
6448 	tmp_stats[i++] = le32_to_cpu(stats->rxd_rd_cnt);
6449 	tmp_stats[i++] = le32_to_cpu(stats->rxd_wr_cnt);
6450 	tmp_stats[i++] = le32_to_cpu(stats->txf_rd_cnt);
6451 	tmp_stats[i++] = le32_to_cpu(stats->rxf_wr_cnt);
6452 
6453 	/* Enhanced statistics exist only for Hercules */
6454 	if (sp->device_type == XFRAME_II_DEVICE) {
6455 		tmp_stats[i++] =
6456 			le64_to_cpu(stats->rmac_ttl_1519_4095_frms);
6457 		tmp_stats[i++] =
6458 			le64_to_cpu(stats->rmac_ttl_4096_8191_frms);
6459 		tmp_stats[i++] =
6460 			le64_to_cpu(stats->rmac_ttl_8192_max_frms);
6461 		tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_gt_max_frms);
6462 		tmp_stats[i++] = le64_to_cpu(stats->rmac_osized_alt_frms);
6463 		tmp_stats[i++] = le64_to_cpu(stats->rmac_jabber_alt_frms);
6464 		tmp_stats[i++] = le64_to_cpu(stats->rmac_gt_max_alt_frms);
6465 		tmp_stats[i++] = le64_to_cpu(stats->rmac_vlan_frms);
6466 		tmp_stats[i++] = le32_to_cpu(stats->rmac_len_discard);
6467 		tmp_stats[i++] = le32_to_cpu(stats->rmac_fcs_discard);
6468 		tmp_stats[i++] = le32_to_cpu(stats->rmac_pf_discard);
6469 		tmp_stats[i++] = le32_to_cpu(stats->rmac_da_discard);
6470 		tmp_stats[i++] = le32_to_cpu(stats->rmac_red_discard);
6471 		tmp_stats[i++] = le32_to_cpu(stats->rmac_rts_discard);
6472 		tmp_stats[i++] = le32_to_cpu(stats->rmac_ingm_full_discard);
6473 		tmp_stats[i++] = le32_to_cpu(stats->link_fault_cnt);
6474 	}
6475 
6476 	tmp_stats[i++] = 0;
6477 	tmp_stats[i++] = swstats->single_ecc_errs;
6478 	tmp_stats[i++] = swstats->double_ecc_errs;
6479 	tmp_stats[i++] = swstats->parity_err_cnt;
6480 	tmp_stats[i++] = swstats->serious_err_cnt;
6481 	tmp_stats[i++] = swstats->soft_reset_cnt;
6482 	tmp_stats[i++] = swstats->fifo_full_cnt;
6483 	for (k = 0; k < MAX_RX_RINGS; k++)
6484 		tmp_stats[i++] = swstats->ring_full_cnt[k];
6485 	tmp_stats[i++] = xstats->alarm_transceiver_temp_high;
6486 	tmp_stats[i++] = xstats->alarm_transceiver_temp_low;
6487 	tmp_stats[i++] = xstats->alarm_laser_bias_current_high;
6488 	tmp_stats[i++] = xstats->alarm_laser_bias_current_low;
6489 	tmp_stats[i++] = xstats->alarm_laser_output_power_high;
6490 	tmp_stats[i++] = xstats->alarm_laser_output_power_low;
6491 	tmp_stats[i++] = xstats->warn_transceiver_temp_high;
6492 	tmp_stats[i++] = xstats->warn_transceiver_temp_low;
6493 	tmp_stats[i++] = xstats->warn_laser_bias_current_high;
6494 	tmp_stats[i++] = xstats->warn_laser_bias_current_low;
6495 	tmp_stats[i++] = xstats->warn_laser_output_power_high;
6496 	tmp_stats[i++] = xstats->warn_laser_output_power_low;
6497 	tmp_stats[i++] = swstats->clubbed_frms_cnt;
6498 	tmp_stats[i++] = swstats->sending_both;
6499 	tmp_stats[i++] = swstats->outof_sequence_pkts;
6500 	tmp_stats[i++] = swstats->flush_max_pkts;
6501 	if (swstats->num_aggregations) {
6502 		u64 tmp = swstats->sum_avg_pkts_aggregated;
6503 		int count = 0;
6504 		/*
6505 		 * Since 64-bit divide does not work on all platforms,
6506 		 * do repeated subtraction.
6507 		 */
6508 		while (tmp >= swstats->num_aggregations) {
6509 			tmp -= swstats->num_aggregations;
6510 			count++;
6511 		}
6512 		tmp_stats[i++] = count;
6513 	} else
6514 		tmp_stats[i++] = 0;
6515 	tmp_stats[i++] = swstats->mem_alloc_fail_cnt;
6516 	tmp_stats[i++] = swstats->pci_map_fail_cnt;
6517 	tmp_stats[i++] = swstats->watchdog_timer_cnt;
6518 	tmp_stats[i++] = swstats->mem_allocated;
6519 	tmp_stats[i++] = swstats->mem_freed;
6520 	tmp_stats[i++] = swstats->link_up_cnt;
6521 	tmp_stats[i++] = swstats->link_down_cnt;
6522 	tmp_stats[i++] = swstats->link_up_time;
6523 	tmp_stats[i++] = swstats->link_down_time;
6524 
6525 	tmp_stats[i++] = swstats->tx_buf_abort_cnt;
6526 	tmp_stats[i++] = swstats->tx_desc_abort_cnt;
6527 	tmp_stats[i++] = swstats->tx_parity_err_cnt;
6528 	tmp_stats[i++] = swstats->tx_link_loss_cnt;
6529 	tmp_stats[i++] = swstats->tx_list_proc_err_cnt;
6530 
6531 	tmp_stats[i++] = swstats->rx_parity_err_cnt;
6532 	tmp_stats[i++] = swstats->rx_abort_cnt;
6533 	tmp_stats[i++] = swstats->rx_parity_abort_cnt;
6534 	tmp_stats[i++] = swstats->rx_rda_fail_cnt;
6535 	tmp_stats[i++] = swstats->rx_unkn_prot_cnt;
6536 	tmp_stats[i++] = swstats->rx_fcs_err_cnt;
6537 	tmp_stats[i++] = swstats->rx_buf_size_err_cnt;
6538 	tmp_stats[i++] = swstats->rx_rxd_corrupt_cnt;
6539 	tmp_stats[i++] = swstats->rx_unkn_err_cnt;
6540 	tmp_stats[i++] = swstats->tda_err_cnt;
6541 	tmp_stats[i++] = swstats->pfc_err_cnt;
6542 	tmp_stats[i++] = swstats->pcc_err_cnt;
6543 	tmp_stats[i++] = swstats->tti_err_cnt;
6544 	tmp_stats[i++] = swstats->tpa_err_cnt;
6545 	tmp_stats[i++] = swstats->sm_err_cnt;
6546 	tmp_stats[i++] = swstats->lso_err_cnt;
6547 	tmp_stats[i++] = swstats->mac_tmac_err_cnt;
6548 	tmp_stats[i++] = swstats->mac_rmac_err_cnt;
6549 	tmp_stats[i++] = swstats->xgxs_txgxs_err_cnt;
6550 	tmp_stats[i++] = swstats->xgxs_rxgxs_err_cnt;
6551 	tmp_stats[i++] = swstats->rc_err_cnt;
6552 	tmp_stats[i++] = swstats->prc_pcix_err_cnt;
6553 	tmp_stats[i++] = swstats->rpa_err_cnt;
6554 	tmp_stats[i++] = swstats->rda_err_cnt;
6555 	tmp_stats[i++] = swstats->rti_err_cnt;
6556 	tmp_stats[i++] = swstats->mc_err_cnt;
6557 }
6558 
6559 static int s2io_ethtool_get_regs_len(struct net_device *dev)
6560 {
6561 	return XENA_REG_SPACE;
6562 }
6563 
6564 
6565 static int s2io_get_eeprom_len(struct net_device *dev)
6566 {
6567 	return XENA_EEPROM_SPACE;
6568 }
6569 
6570 static int s2io_get_sset_count(struct net_device *dev, int sset)
6571 {
6572 	struct s2io_nic *sp = netdev_priv(dev);
6573 
6574 	switch (sset) {
6575 	case ETH_SS_TEST:
6576 		return S2IO_TEST_LEN;
6577 	case ETH_SS_STATS:
6578 		switch (sp->device_type) {
6579 		case XFRAME_I_DEVICE:
6580 			return XFRAME_I_STAT_LEN;
6581 		case XFRAME_II_DEVICE:
6582 			return XFRAME_II_STAT_LEN;
6583 		default:
6584 			return 0;
6585 		}
6586 	default:
6587 		return -EOPNOTSUPP;
6588 	}
6589 }
6590 
6591 static void s2io_ethtool_get_strings(struct net_device *dev,
6592 				     u32 stringset, u8 *data)
6593 {
6594 	int stat_size = 0;
6595 	struct s2io_nic *sp = netdev_priv(dev);
6596 
6597 	switch (stringset) {
6598 	case ETH_SS_TEST:
6599 		memcpy(data, s2io_gstrings, S2IO_STRINGS_LEN);
6600 		break;
6601 	case ETH_SS_STATS:
6602 		stat_size = sizeof(ethtool_xena_stats_keys);
6603 		memcpy(data, &ethtool_xena_stats_keys, stat_size);
6604 		if (sp->device_type == XFRAME_II_DEVICE) {
6605 			memcpy(data + stat_size,
6606 			       &ethtool_enhanced_stats_keys,
6607 			       sizeof(ethtool_enhanced_stats_keys));
6608 			stat_size += sizeof(ethtool_enhanced_stats_keys);
6609 		}
6610 
6611 		memcpy(data + stat_size, &ethtool_driver_stats_keys,
6612 		       sizeof(ethtool_driver_stats_keys));
6613 	}
6614 }
6615 
6616 static int s2io_set_features(struct net_device *dev, netdev_features_t features)
6617 {
6618 	struct s2io_nic *sp = netdev_priv(dev);
6619 	netdev_features_t changed = (features ^ dev->features) & NETIF_F_LRO;
6620 
6621 	if (changed && netif_running(dev)) {
6622 		int rc;
6623 
6624 		s2io_stop_all_tx_queue(sp);
6625 		s2io_card_down(sp);
6626 		dev->features = features;
6627 		rc = s2io_card_up(sp);
6628 		if (rc)
6629 			s2io_reset(sp);
6630 		else
6631 			s2io_start_all_tx_queue(sp);
6632 
6633 		return rc ? rc : 1;
6634 	}
6635 
6636 	return 0;
6637 }
6638 
6639 static const struct ethtool_ops netdev_ethtool_ops = {
6640 	.get_settings = s2io_ethtool_gset,
6641 	.set_settings = s2io_ethtool_sset,
6642 	.get_drvinfo = s2io_ethtool_gdrvinfo,
6643 	.get_regs_len = s2io_ethtool_get_regs_len,
6644 	.get_regs = s2io_ethtool_gregs,
6645 	.get_link = ethtool_op_get_link,
6646 	.get_eeprom_len = s2io_get_eeprom_len,
6647 	.get_eeprom = s2io_ethtool_geeprom,
6648 	.set_eeprom = s2io_ethtool_seeprom,
6649 	.get_ringparam = s2io_ethtool_gringparam,
6650 	.get_pauseparam = s2io_ethtool_getpause_data,
6651 	.set_pauseparam = s2io_ethtool_setpause_data,
6652 	.self_test = s2io_ethtool_test,
6653 	.get_strings = s2io_ethtool_get_strings,
6654 	.set_phys_id = s2io_ethtool_set_led,
6655 	.get_ethtool_stats = s2io_get_ethtool_stats,
6656 	.get_sset_count = s2io_get_sset_count,
6657 };
6658 
6659 /**
6660  *  s2io_ioctl - Entry point for the Ioctl
6661  *  @dev :  Device pointer.
6662  *  @ifr :  An IOCTL specefic structure, that can contain a pointer to
6663  *  a proprietary structure used to pass information to the driver.
6664  *  @cmd :  This is used to distinguish between the different commands that
6665  *  can be passed to the IOCTL functions.
6666  *  Description:
6667  *  Currently there are no special functionality supported in IOCTL, hence
6668  *  function always return EOPNOTSUPPORTED
6669  */
6670 
6671 static int s2io_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
6672 {
6673 	return -EOPNOTSUPP;
6674 }
6675 
6676 /**
6677  *  s2io_change_mtu - entry point to change MTU size for the device.
6678  *   @dev : device pointer.
6679  *   @new_mtu : the new MTU size for the device.
6680  *   Description: A driver entry point to change MTU size for the device.
6681  *   Before changing the MTU the device must be stopped.
6682  *  Return value:
6683  *   0 on success and an appropriate (-)ve integer as defined in errno.h
6684  *   file on failure.
6685  */
6686 
6687 static int s2io_change_mtu(struct net_device *dev, int new_mtu)
6688 {
6689 	struct s2io_nic *sp = netdev_priv(dev);
6690 	int ret = 0;
6691 
6692 	if ((new_mtu < MIN_MTU) || (new_mtu > S2IO_JUMBO_SIZE)) {
6693 		DBG_PRINT(ERR_DBG, "%s: MTU size is invalid.\n", dev->name);
6694 		return -EPERM;
6695 	}
6696 
6697 	dev->mtu = new_mtu;
6698 	if (netif_running(dev)) {
6699 		s2io_stop_all_tx_queue(sp);
6700 		s2io_card_down(sp);
6701 		ret = s2io_card_up(sp);
6702 		if (ret) {
6703 			DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n",
6704 				  __func__);
6705 			return ret;
6706 		}
6707 		s2io_wake_all_tx_queue(sp);
6708 	} else { /* Device is down */
6709 		struct XENA_dev_config __iomem *bar0 = sp->bar0;
6710 		u64 val64 = new_mtu;
6711 
6712 		writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
6713 	}
6714 
6715 	return ret;
6716 }
6717 
6718 /**
6719  * s2io_set_link - Set the LInk status
6720  * @data: long pointer to device private structue
6721  * Description: Sets the link status for the adapter
6722  */
6723 
6724 static void s2io_set_link(struct work_struct *work)
6725 {
6726 	struct s2io_nic *nic = container_of(work, struct s2io_nic,
6727 					    set_link_task);
6728 	struct net_device *dev = nic->dev;
6729 	struct XENA_dev_config __iomem *bar0 = nic->bar0;
6730 	register u64 val64;
6731 	u16 subid;
6732 
6733 	rtnl_lock();
6734 
6735 	if (!netif_running(dev))
6736 		goto out_unlock;
6737 
6738 	if (test_and_set_bit(__S2IO_STATE_LINK_TASK, &(nic->state))) {
6739 		/* The card is being reset, no point doing anything */
6740 		goto out_unlock;
6741 	}
6742 
6743 	subid = nic->pdev->subsystem_device;
6744 	if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
6745 		/*
6746 		 * Allow a small delay for the NICs self initiated
6747 		 * cleanup to complete.
6748 		 */
6749 		msleep(100);
6750 	}
6751 
6752 	val64 = readq(&bar0->adapter_status);
6753 	if (LINK_IS_UP(val64)) {
6754 		if (!(readq(&bar0->adapter_control) & ADAPTER_CNTL_EN)) {
6755 			if (verify_xena_quiescence(nic)) {
6756 				val64 = readq(&bar0->adapter_control);
6757 				val64 |= ADAPTER_CNTL_EN;
6758 				writeq(val64, &bar0->adapter_control);
6759 				if (CARDS_WITH_FAULTY_LINK_INDICATORS(
6760 					    nic->device_type, subid)) {
6761 					val64 = readq(&bar0->gpio_control);
6762 					val64 |= GPIO_CTRL_GPIO_0;
6763 					writeq(val64, &bar0->gpio_control);
6764 					val64 = readq(&bar0->gpio_control);
6765 				} else {
6766 					val64 |= ADAPTER_LED_ON;
6767 					writeq(val64, &bar0->adapter_control);
6768 				}
6769 				nic->device_enabled_once = true;
6770 			} else {
6771 				DBG_PRINT(ERR_DBG,
6772 					  "%s: Error: device is not Quiescent\n",
6773 					  dev->name);
6774 				s2io_stop_all_tx_queue(nic);
6775 			}
6776 		}
6777 		val64 = readq(&bar0->adapter_control);
6778 		val64 |= ADAPTER_LED_ON;
6779 		writeq(val64, &bar0->adapter_control);
6780 		s2io_link(nic, LINK_UP);
6781 	} else {
6782 		if (CARDS_WITH_FAULTY_LINK_INDICATORS(nic->device_type,
6783 						      subid)) {
6784 			val64 = readq(&bar0->gpio_control);
6785 			val64 &= ~GPIO_CTRL_GPIO_0;
6786 			writeq(val64, &bar0->gpio_control);
6787 			val64 = readq(&bar0->gpio_control);
6788 		}
6789 		/* turn off LED */
6790 		val64 = readq(&bar0->adapter_control);
6791 		val64 = val64 & (~ADAPTER_LED_ON);
6792 		writeq(val64, &bar0->adapter_control);
6793 		s2io_link(nic, LINK_DOWN);
6794 	}
6795 	clear_bit(__S2IO_STATE_LINK_TASK, &(nic->state));
6796 
6797 out_unlock:
6798 	rtnl_unlock();
6799 }
6800 
6801 static int set_rxd_buffer_pointer(struct s2io_nic *sp, struct RxD_t *rxdp,
6802 				  struct buffAdd *ba,
6803 				  struct sk_buff **skb, u64 *temp0, u64 *temp1,
6804 				  u64 *temp2, int size)
6805 {
6806 	struct net_device *dev = sp->dev;
6807 	struct swStat *stats = &sp->mac_control.stats_info->sw_stat;
6808 
6809 	if ((sp->rxd_mode == RXD_MODE_1) && (rxdp->Host_Control == 0)) {
6810 		struct RxD1 *rxdp1 = (struct RxD1 *)rxdp;
6811 		/* allocate skb */
6812 		if (*skb) {
6813 			DBG_PRINT(INFO_DBG, "SKB is not NULL\n");
6814 			/*
6815 			 * As Rx frame are not going to be processed,
6816 			 * using same mapped address for the Rxd
6817 			 * buffer pointer
6818 			 */
6819 			rxdp1->Buffer0_ptr = *temp0;
6820 		} else {
6821 			*skb = netdev_alloc_skb(dev, size);
6822 			if (!(*skb)) {
6823 				DBG_PRINT(INFO_DBG,
6824 					  "%s: Out of memory to allocate %s\n",
6825 					  dev->name, "1 buf mode SKBs");
6826 				stats->mem_alloc_fail_cnt++;
6827 				return -ENOMEM ;
6828 			}
6829 			stats->mem_allocated += (*skb)->truesize;
6830 			/* storing the mapped addr in a temp variable
6831 			 * such it will be used for next rxd whose
6832 			 * Host Control is NULL
6833 			 */
6834 			rxdp1->Buffer0_ptr = *temp0 =
6835 				pci_map_single(sp->pdev, (*skb)->data,
6836 					       size - NET_IP_ALIGN,
6837 					       PCI_DMA_FROMDEVICE);
6838 			if (pci_dma_mapping_error(sp->pdev, rxdp1->Buffer0_ptr))
6839 				goto memalloc_failed;
6840 			rxdp->Host_Control = (unsigned long) (*skb);
6841 		}
6842 	} else if ((sp->rxd_mode == RXD_MODE_3B) && (rxdp->Host_Control == 0)) {
6843 		struct RxD3 *rxdp3 = (struct RxD3 *)rxdp;
6844 		/* Two buffer Mode */
6845 		if (*skb) {
6846 			rxdp3->Buffer2_ptr = *temp2;
6847 			rxdp3->Buffer0_ptr = *temp0;
6848 			rxdp3->Buffer1_ptr = *temp1;
6849 		} else {
6850 			*skb = netdev_alloc_skb(dev, size);
6851 			if (!(*skb)) {
6852 				DBG_PRINT(INFO_DBG,
6853 					  "%s: Out of memory to allocate %s\n",
6854 					  dev->name,
6855 					  "2 buf mode SKBs");
6856 				stats->mem_alloc_fail_cnt++;
6857 				return -ENOMEM;
6858 			}
6859 			stats->mem_allocated += (*skb)->truesize;
6860 			rxdp3->Buffer2_ptr = *temp2 =
6861 				pci_map_single(sp->pdev, (*skb)->data,
6862 					       dev->mtu + 4,
6863 					       PCI_DMA_FROMDEVICE);
6864 			if (pci_dma_mapping_error(sp->pdev, rxdp3->Buffer2_ptr))
6865 				goto memalloc_failed;
6866 			rxdp3->Buffer0_ptr = *temp0 =
6867 				pci_map_single(sp->pdev, ba->ba_0, BUF0_LEN,
6868 					       PCI_DMA_FROMDEVICE);
6869 			if (pci_dma_mapping_error(sp->pdev,
6870 						  rxdp3->Buffer0_ptr)) {
6871 				pci_unmap_single(sp->pdev,
6872 						 (dma_addr_t)rxdp3->Buffer2_ptr,
6873 						 dev->mtu + 4,
6874 						 PCI_DMA_FROMDEVICE);
6875 				goto memalloc_failed;
6876 			}
6877 			rxdp->Host_Control = (unsigned long) (*skb);
6878 
6879 			/* Buffer-1 will be dummy buffer not used */
6880 			rxdp3->Buffer1_ptr = *temp1 =
6881 				pci_map_single(sp->pdev, ba->ba_1, BUF1_LEN,
6882 					       PCI_DMA_FROMDEVICE);
6883 			if (pci_dma_mapping_error(sp->pdev,
6884 						  rxdp3->Buffer1_ptr)) {
6885 				pci_unmap_single(sp->pdev,
6886 						 (dma_addr_t)rxdp3->Buffer0_ptr,
6887 						 BUF0_LEN, PCI_DMA_FROMDEVICE);
6888 				pci_unmap_single(sp->pdev,
6889 						 (dma_addr_t)rxdp3->Buffer2_ptr,
6890 						 dev->mtu + 4,
6891 						 PCI_DMA_FROMDEVICE);
6892 				goto memalloc_failed;
6893 			}
6894 		}
6895 	}
6896 	return 0;
6897 
6898 memalloc_failed:
6899 	stats->pci_map_fail_cnt++;
6900 	stats->mem_freed += (*skb)->truesize;
6901 	dev_kfree_skb(*skb);
6902 	return -ENOMEM;
6903 }
6904 
6905 static void set_rxd_buffer_size(struct s2io_nic *sp, struct RxD_t *rxdp,
6906 				int size)
6907 {
6908 	struct net_device *dev = sp->dev;
6909 	if (sp->rxd_mode == RXD_MODE_1) {
6910 		rxdp->Control_2 = SET_BUFFER0_SIZE_1(size - NET_IP_ALIGN);
6911 	} else if (sp->rxd_mode == RXD_MODE_3B) {
6912 		rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
6913 		rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
6914 		rxdp->Control_2 |= SET_BUFFER2_SIZE_3(dev->mtu + 4);
6915 	}
6916 }
6917 
6918 static  int rxd_owner_bit_reset(struct s2io_nic *sp)
6919 {
6920 	int i, j, k, blk_cnt = 0, size;
6921 	struct config_param *config = &sp->config;
6922 	struct mac_info *mac_control = &sp->mac_control;
6923 	struct net_device *dev = sp->dev;
6924 	struct RxD_t *rxdp = NULL;
6925 	struct sk_buff *skb = NULL;
6926 	struct buffAdd *ba = NULL;
6927 	u64 temp0_64 = 0, temp1_64 = 0, temp2_64 = 0;
6928 
6929 	/* Calculate the size based on ring mode */
6930 	size = dev->mtu + HEADER_ETHERNET_II_802_3_SIZE +
6931 		HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
6932 	if (sp->rxd_mode == RXD_MODE_1)
6933 		size += NET_IP_ALIGN;
6934 	else if (sp->rxd_mode == RXD_MODE_3B)
6935 		size = dev->mtu + ALIGN_SIZE + BUF0_LEN + 4;
6936 
6937 	for (i = 0; i < config->rx_ring_num; i++) {
6938 		struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
6939 		struct ring_info *ring = &mac_control->rings[i];
6940 
6941 		blk_cnt = rx_cfg->num_rxd / (rxd_count[sp->rxd_mode] + 1);
6942 
6943 		for (j = 0; j < blk_cnt; j++) {
6944 			for (k = 0; k < rxd_count[sp->rxd_mode]; k++) {
6945 				rxdp = ring->rx_blocks[j].rxds[k].virt_addr;
6946 				if (sp->rxd_mode == RXD_MODE_3B)
6947 					ba = &ring->ba[j][k];
6948 				if (set_rxd_buffer_pointer(sp, rxdp, ba, &skb,
6949 							   &temp0_64,
6950 							   &temp1_64,
6951 							   &temp2_64,
6952 							   size) == -ENOMEM) {
6953 					return 0;
6954 				}
6955 
6956 				set_rxd_buffer_size(sp, rxdp, size);
6957 				wmb();
6958 				/* flip the Ownership bit to Hardware */
6959 				rxdp->Control_1 |= RXD_OWN_XENA;
6960 			}
6961 		}
6962 	}
6963 	return 0;
6964 
6965 }
6966 
6967 static int s2io_add_isr(struct s2io_nic *sp)
6968 {
6969 	int ret = 0;
6970 	struct net_device *dev = sp->dev;
6971 	int err = 0;
6972 
6973 	if (sp->config.intr_type == MSI_X)
6974 		ret = s2io_enable_msi_x(sp);
6975 	if (ret) {
6976 		DBG_PRINT(ERR_DBG, "%s: Defaulting to INTA\n", dev->name);
6977 		sp->config.intr_type = INTA;
6978 	}
6979 
6980 	/*
6981 	 * Store the values of the MSIX table in
6982 	 * the struct s2io_nic structure
6983 	 */
6984 	store_xmsi_data(sp);
6985 
6986 	/* After proper initialization of H/W, register ISR */
6987 	if (sp->config.intr_type == MSI_X) {
6988 		int i, msix_rx_cnt = 0;
6989 
6990 		for (i = 0; i < sp->num_entries; i++) {
6991 			if (sp->s2io_entries[i].in_use == MSIX_FLG) {
6992 				if (sp->s2io_entries[i].type ==
6993 				    MSIX_RING_TYPE) {
6994 					sprintf(sp->desc[i], "%s:MSI-X-%d-RX",
6995 						dev->name, i);
6996 					err = request_irq(sp->entries[i].vector,
6997 							  s2io_msix_ring_handle,
6998 							  0,
6999 							  sp->desc[i],
7000 							  sp->s2io_entries[i].arg);
7001 				} else if (sp->s2io_entries[i].type ==
7002 					   MSIX_ALARM_TYPE) {
7003 					sprintf(sp->desc[i], "%s:MSI-X-%d-TX",
7004 						dev->name, i);
7005 					err = request_irq(sp->entries[i].vector,
7006 							  s2io_msix_fifo_handle,
7007 							  0,
7008 							  sp->desc[i],
7009 							  sp->s2io_entries[i].arg);
7010 
7011 				}
7012 				/* if either data or addr is zero print it. */
7013 				if (!(sp->msix_info[i].addr &&
7014 				      sp->msix_info[i].data)) {
7015 					DBG_PRINT(ERR_DBG,
7016 						  "%s @Addr:0x%llx Data:0x%llx\n",
7017 						  sp->desc[i],
7018 						  (unsigned long long)
7019 						  sp->msix_info[i].addr,
7020 						  (unsigned long long)
7021 						  ntohl(sp->msix_info[i].data));
7022 				} else
7023 					msix_rx_cnt++;
7024 				if (err) {
7025 					remove_msix_isr(sp);
7026 
7027 					DBG_PRINT(ERR_DBG,
7028 						  "%s:MSI-X-%d registration "
7029 						  "failed\n", dev->name, i);
7030 
7031 					DBG_PRINT(ERR_DBG,
7032 						  "%s: Defaulting to INTA\n",
7033 						  dev->name);
7034 					sp->config.intr_type = INTA;
7035 					break;
7036 				}
7037 				sp->s2io_entries[i].in_use =
7038 					MSIX_REGISTERED_SUCCESS;
7039 			}
7040 		}
7041 		if (!err) {
7042 			pr_info("MSI-X-RX %d entries enabled\n", --msix_rx_cnt);
7043 			DBG_PRINT(INFO_DBG,
7044 				  "MSI-X-TX entries enabled through alarm vector\n");
7045 		}
7046 	}
7047 	if (sp->config.intr_type == INTA) {
7048 		err = request_irq(sp->pdev->irq, s2io_isr, IRQF_SHARED,
7049 				  sp->name, dev);
7050 		if (err) {
7051 			DBG_PRINT(ERR_DBG, "%s: ISR registration failed\n",
7052 				  dev->name);
7053 			return -1;
7054 		}
7055 	}
7056 	return 0;
7057 }
7058 
7059 static void s2io_rem_isr(struct s2io_nic *sp)
7060 {
7061 	if (sp->config.intr_type == MSI_X)
7062 		remove_msix_isr(sp);
7063 	else
7064 		remove_inta_isr(sp);
7065 }
7066 
7067 static void do_s2io_card_down(struct s2io_nic *sp, int do_io)
7068 {
7069 	int cnt = 0;
7070 	struct XENA_dev_config __iomem *bar0 = sp->bar0;
7071 	register u64 val64 = 0;
7072 	struct config_param *config;
7073 	config = &sp->config;
7074 
7075 	if (!is_s2io_card_up(sp))
7076 		return;
7077 
7078 	del_timer_sync(&sp->alarm_timer);
7079 	/* If s2io_set_link task is executing, wait till it completes. */
7080 	while (test_and_set_bit(__S2IO_STATE_LINK_TASK, &(sp->state)))
7081 		msleep(50);
7082 	clear_bit(__S2IO_STATE_CARD_UP, &sp->state);
7083 
7084 	/* Disable napi */
7085 	if (sp->config.napi) {
7086 		int off = 0;
7087 		if (config->intr_type ==  MSI_X) {
7088 			for (; off < sp->config.rx_ring_num; off++)
7089 				napi_disable(&sp->mac_control.rings[off].napi);
7090 		}
7091 		else
7092 			napi_disable(&sp->napi);
7093 	}
7094 
7095 	/* disable Tx and Rx traffic on the NIC */
7096 	if (do_io)
7097 		stop_nic(sp);
7098 
7099 	s2io_rem_isr(sp);
7100 
7101 	/* stop the tx queue, indicate link down */
7102 	s2io_link(sp, LINK_DOWN);
7103 
7104 	/* Check if the device is Quiescent and then Reset the NIC */
7105 	while (do_io) {
7106 		/* As per the HW requirement we need to replenish the
7107 		 * receive buffer to avoid the ring bump. Since there is
7108 		 * no intention of processing the Rx frame at this pointwe are
7109 		 * just setting the ownership bit of rxd in Each Rx
7110 		 * ring to HW and set the appropriate buffer size
7111 		 * based on the ring mode
7112 		 */
7113 		rxd_owner_bit_reset(sp);
7114 
7115 		val64 = readq(&bar0->adapter_status);
7116 		if (verify_xena_quiescence(sp)) {
7117 			if (verify_pcc_quiescent(sp, sp->device_enabled_once))
7118 				break;
7119 		}
7120 
7121 		msleep(50);
7122 		cnt++;
7123 		if (cnt == 10) {
7124 			DBG_PRINT(ERR_DBG, "Device not Quiescent - "
7125 				  "adapter status reads 0x%llx\n",
7126 				  (unsigned long long)val64);
7127 			break;
7128 		}
7129 	}
7130 	if (do_io)
7131 		s2io_reset(sp);
7132 
7133 	/* Free all Tx buffers */
7134 	free_tx_buffers(sp);
7135 
7136 	/* Free all Rx buffers */
7137 	free_rx_buffers(sp);
7138 
7139 	clear_bit(__S2IO_STATE_LINK_TASK, &(sp->state));
7140 }
7141 
7142 static void s2io_card_down(struct s2io_nic *sp)
7143 {
7144 	do_s2io_card_down(sp, 1);
7145 }
7146 
7147 static int s2io_card_up(struct s2io_nic *sp)
7148 {
7149 	int i, ret = 0;
7150 	struct config_param *config;
7151 	struct mac_info *mac_control;
7152 	struct net_device *dev = sp->dev;
7153 	u16 interruptible;
7154 
7155 	/* Initialize the H/W I/O registers */
7156 	ret = init_nic(sp);
7157 	if (ret != 0) {
7158 		DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
7159 			  dev->name);
7160 		if (ret != -EIO)
7161 			s2io_reset(sp);
7162 		return ret;
7163 	}
7164 
7165 	/*
7166 	 * Initializing the Rx buffers. For now we are considering only 1
7167 	 * Rx ring and initializing buffers into 30 Rx blocks
7168 	 */
7169 	config = &sp->config;
7170 	mac_control = &sp->mac_control;
7171 
7172 	for (i = 0; i < config->rx_ring_num; i++) {
7173 		struct ring_info *ring = &mac_control->rings[i];
7174 
7175 		ring->mtu = dev->mtu;
7176 		ring->lro = !!(dev->features & NETIF_F_LRO);
7177 		ret = fill_rx_buffers(sp, ring, 1);
7178 		if (ret) {
7179 			DBG_PRINT(ERR_DBG, "%s: Out of memory in Open\n",
7180 				  dev->name);
7181 			s2io_reset(sp);
7182 			free_rx_buffers(sp);
7183 			return -ENOMEM;
7184 		}
7185 		DBG_PRINT(INFO_DBG, "Buf in ring:%d is %d:\n", i,
7186 			  ring->rx_bufs_left);
7187 	}
7188 
7189 	/* Initialise napi */
7190 	if (config->napi) {
7191 		if (config->intr_type ==  MSI_X) {
7192 			for (i = 0; i < sp->config.rx_ring_num; i++)
7193 				napi_enable(&sp->mac_control.rings[i].napi);
7194 		} else {
7195 			napi_enable(&sp->napi);
7196 		}
7197 	}
7198 
7199 	/* Maintain the state prior to the open */
7200 	if (sp->promisc_flg)
7201 		sp->promisc_flg = 0;
7202 	if (sp->m_cast_flg) {
7203 		sp->m_cast_flg = 0;
7204 		sp->all_multi_pos = 0;
7205 	}
7206 
7207 	/* Setting its receive mode */
7208 	s2io_set_multicast(dev);
7209 
7210 	if (dev->features & NETIF_F_LRO) {
7211 		/* Initialize max aggregatable pkts per session based on MTU */
7212 		sp->lro_max_aggr_per_sess = ((1<<16) - 1) / dev->mtu;
7213 		/* Check if we can use (if specified) user provided value */
7214 		if (lro_max_pkts < sp->lro_max_aggr_per_sess)
7215 			sp->lro_max_aggr_per_sess = lro_max_pkts;
7216 	}
7217 
7218 	/* Enable Rx Traffic and interrupts on the NIC */
7219 	if (start_nic(sp)) {
7220 		DBG_PRINT(ERR_DBG, "%s: Starting NIC failed\n", dev->name);
7221 		s2io_reset(sp);
7222 		free_rx_buffers(sp);
7223 		return -ENODEV;
7224 	}
7225 
7226 	/* Add interrupt service routine */
7227 	if (s2io_add_isr(sp) != 0) {
7228 		if (sp->config.intr_type == MSI_X)
7229 			s2io_rem_isr(sp);
7230 		s2io_reset(sp);
7231 		free_rx_buffers(sp);
7232 		return -ENODEV;
7233 	}
7234 
7235 	S2IO_TIMER_CONF(sp->alarm_timer, s2io_alarm_handle, sp, (HZ/2));
7236 
7237 	set_bit(__S2IO_STATE_CARD_UP, &sp->state);
7238 
7239 	/*  Enable select interrupts */
7240 	en_dis_err_alarms(sp, ENA_ALL_INTRS, ENABLE_INTRS);
7241 	if (sp->config.intr_type != INTA) {
7242 		interruptible = TX_TRAFFIC_INTR | TX_PIC_INTR;
7243 		en_dis_able_nic_intrs(sp, interruptible, ENABLE_INTRS);
7244 	} else {
7245 		interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
7246 		interruptible |= TX_PIC_INTR;
7247 		en_dis_able_nic_intrs(sp, interruptible, ENABLE_INTRS);
7248 	}
7249 
7250 	return 0;
7251 }
7252 
7253 /**
7254  * s2io_restart_nic - Resets the NIC.
7255  * @data : long pointer to the device private structure
7256  * Description:
7257  * This function is scheduled to be run by the s2io_tx_watchdog
7258  * function after 0.5 secs to reset the NIC. The idea is to reduce
7259  * the run time of the watch dog routine which is run holding a
7260  * spin lock.
7261  */
7262 
7263 static void s2io_restart_nic(struct work_struct *work)
7264 {
7265 	struct s2io_nic *sp = container_of(work, struct s2io_nic, rst_timer_task);
7266 	struct net_device *dev = sp->dev;
7267 
7268 	rtnl_lock();
7269 
7270 	if (!netif_running(dev))
7271 		goto out_unlock;
7272 
7273 	s2io_card_down(sp);
7274 	if (s2io_card_up(sp)) {
7275 		DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n", dev->name);
7276 	}
7277 	s2io_wake_all_tx_queue(sp);
7278 	DBG_PRINT(ERR_DBG, "%s: was reset by Tx watchdog timer\n", dev->name);
7279 out_unlock:
7280 	rtnl_unlock();
7281 }
7282 
7283 /**
7284  *  s2io_tx_watchdog - Watchdog for transmit side.
7285  *  @dev : Pointer to net device structure
7286  *  Description:
7287  *  This function is triggered if the Tx Queue is stopped
7288  *  for a pre-defined amount of time when the Interface is still up.
7289  *  If the Interface is jammed in such a situation, the hardware is
7290  *  reset (by s2io_close) and restarted again (by s2io_open) to
7291  *  overcome any problem that might have been caused in the hardware.
7292  *  Return value:
7293  *  void
7294  */
7295 
7296 static void s2io_tx_watchdog(struct net_device *dev)
7297 {
7298 	struct s2io_nic *sp = netdev_priv(dev);
7299 	struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
7300 
7301 	if (netif_carrier_ok(dev)) {
7302 		swstats->watchdog_timer_cnt++;
7303 		schedule_work(&sp->rst_timer_task);
7304 		swstats->soft_reset_cnt++;
7305 	}
7306 }
7307 
7308 /**
7309  *   rx_osm_handler - To perform some OS related operations on SKB.
7310  *   @sp: private member of the device structure,pointer to s2io_nic structure.
7311  *   @skb : the socket buffer pointer.
7312  *   @len : length of the packet
7313  *   @cksum : FCS checksum of the frame.
7314  *   @ring_no : the ring from which this RxD was extracted.
7315  *   Description:
7316  *   This function is called by the Rx interrupt serivce routine to perform
7317  *   some OS related operations on the SKB before passing it to the upper
7318  *   layers. It mainly checks if the checksum is OK, if so adds it to the
7319  *   SKBs cksum variable, increments the Rx packet count and passes the SKB
7320  *   to the upper layer. If the checksum is wrong, it increments the Rx
7321  *   packet error count, frees the SKB and returns error.
7322  *   Return value:
7323  *   SUCCESS on success and -1 on failure.
7324  */
7325 static int rx_osm_handler(struct ring_info *ring_data, struct RxD_t * rxdp)
7326 {
7327 	struct s2io_nic *sp = ring_data->nic;
7328 	struct net_device *dev = ring_data->dev;
7329 	struct sk_buff *skb = (struct sk_buff *)
7330 		((unsigned long)rxdp->Host_Control);
7331 	int ring_no = ring_data->ring_no;
7332 	u16 l3_csum, l4_csum;
7333 	unsigned long long err = rxdp->Control_1 & RXD_T_CODE;
7334 	struct lro *uninitialized_var(lro);
7335 	u8 err_mask;
7336 	struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
7337 
7338 	skb->dev = dev;
7339 
7340 	if (err) {
7341 		/* Check for parity error */
7342 		if (err & 0x1)
7343 			swstats->parity_err_cnt++;
7344 
7345 		err_mask = err >> 48;
7346 		switch (err_mask) {
7347 		case 1:
7348 			swstats->rx_parity_err_cnt++;
7349 			break;
7350 
7351 		case 2:
7352 			swstats->rx_abort_cnt++;
7353 			break;
7354 
7355 		case 3:
7356 			swstats->rx_parity_abort_cnt++;
7357 			break;
7358 
7359 		case 4:
7360 			swstats->rx_rda_fail_cnt++;
7361 			break;
7362 
7363 		case 5:
7364 			swstats->rx_unkn_prot_cnt++;
7365 			break;
7366 
7367 		case 6:
7368 			swstats->rx_fcs_err_cnt++;
7369 			break;
7370 
7371 		case 7:
7372 			swstats->rx_buf_size_err_cnt++;
7373 			break;
7374 
7375 		case 8:
7376 			swstats->rx_rxd_corrupt_cnt++;
7377 			break;
7378 
7379 		case 15:
7380 			swstats->rx_unkn_err_cnt++;
7381 			break;
7382 		}
7383 		/*
7384 		 * Drop the packet if bad transfer code. Exception being
7385 		 * 0x5, which could be due to unsupported IPv6 extension header.
7386 		 * In this case, we let stack handle the packet.
7387 		 * Note that in this case, since checksum will be incorrect,
7388 		 * stack will validate the same.
7389 		 */
7390 		if (err_mask != 0x5) {
7391 			DBG_PRINT(ERR_DBG, "%s: Rx error Value: 0x%x\n",
7392 				  dev->name, err_mask);
7393 			dev->stats.rx_crc_errors++;
7394 			swstats->mem_freed
7395 				+= skb->truesize;
7396 			dev_kfree_skb(skb);
7397 			ring_data->rx_bufs_left -= 1;
7398 			rxdp->Host_Control = 0;
7399 			return 0;
7400 		}
7401 	}
7402 
7403 	rxdp->Host_Control = 0;
7404 	if (sp->rxd_mode == RXD_MODE_1) {
7405 		int len = RXD_GET_BUFFER0_SIZE_1(rxdp->Control_2);
7406 
7407 		skb_put(skb, len);
7408 	} else if (sp->rxd_mode == RXD_MODE_3B) {
7409 		int get_block = ring_data->rx_curr_get_info.block_index;
7410 		int get_off = ring_data->rx_curr_get_info.offset;
7411 		int buf0_len = RXD_GET_BUFFER0_SIZE_3(rxdp->Control_2);
7412 		int buf2_len = RXD_GET_BUFFER2_SIZE_3(rxdp->Control_2);
7413 		unsigned char *buff = skb_push(skb, buf0_len);
7414 
7415 		struct buffAdd *ba = &ring_data->ba[get_block][get_off];
7416 		memcpy(buff, ba->ba_0, buf0_len);
7417 		skb_put(skb, buf2_len);
7418 	}
7419 
7420 	if ((rxdp->Control_1 & TCP_OR_UDP_FRAME) &&
7421 	    ((!ring_data->lro) ||
7422 	     (ring_data->lro && (!(rxdp->Control_1 & RXD_FRAME_IP_FRAG)))) &&
7423 	    (dev->features & NETIF_F_RXCSUM)) {
7424 		l3_csum = RXD_GET_L3_CKSUM(rxdp->Control_1);
7425 		l4_csum = RXD_GET_L4_CKSUM(rxdp->Control_1);
7426 		if ((l3_csum == L3_CKSUM_OK) && (l4_csum == L4_CKSUM_OK)) {
7427 			/*
7428 			 * NIC verifies if the Checksum of the received
7429 			 * frame is Ok or not and accordingly returns
7430 			 * a flag in the RxD.
7431 			 */
7432 			skb->ip_summed = CHECKSUM_UNNECESSARY;
7433 			if (ring_data->lro) {
7434 				u32 tcp_len = 0;
7435 				u8 *tcp;
7436 				int ret = 0;
7437 
7438 				ret = s2io_club_tcp_session(ring_data,
7439 							    skb->data, &tcp,
7440 							    &tcp_len, &lro,
7441 							    rxdp, sp);
7442 				switch (ret) {
7443 				case 3: /* Begin anew */
7444 					lro->parent = skb;
7445 					goto aggregate;
7446 				case 1: /* Aggregate */
7447 					lro_append_pkt(sp, lro, skb, tcp_len);
7448 					goto aggregate;
7449 				case 4: /* Flush session */
7450 					lro_append_pkt(sp, lro, skb, tcp_len);
7451 					queue_rx_frame(lro->parent,
7452 						       lro->vlan_tag);
7453 					clear_lro_session(lro);
7454 					swstats->flush_max_pkts++;
7455 					goto aggregate;
7456 				case 2: /* Flush both */
7457 					lro->parent->data_len = lro->frags_len;
7458 					swstats->sending_both++;
7459 					queue_rx_frame(lro->parent,
7460 						       lro->vlan_tag);
7461 					clear_lro_session(lro);
7462 					goto send_up;
7463 				case 0: /* sessions exceeded */
7464 				case -1: /* non-TCP or not L2 aggregatable */
7465 				case 5: /*
7466 					 * First pkt in session not
7467 					 * L3/L4 aggregatable
7468 					 */
7469 					break;
7470 				default:
7471 					DBG_PRINT(ERR_DBG,
7472 						  "%s: Samadhana!!\n",
7473 						  __func__);
7474 					BUG();
7475 				}
7476 			}
7477 		} else {
7478 			/*
7479 			 * Packet with erroneous checksum, let the
7480 			 * upper layers deal with it.
7481 			 */
7482 			skb_checksum_none_assert(skb);
7483 		}
7484 	} else
7485 		skb_checksum_none_assert(skb);
7486 
7487 	swstats->mem_freed += skb->truesize;
7488 send_up:
7489 	skb_record_rx_queue(skb, ring_no);
7490 	queue_rx_frame(skb, RXD_GET_VLAN_TAG(rxdp->Control_2));
7491 aggregate:
7492 	sp->mac_control.rings[ring_no].rx_bufs_left -= 1;
7493 	return SUCCESS;
7494 }
7495 
7496 /**
7497  *  s2io_link - stops/starts the Tx queue.
7498  *  @sp : private member of the device structure, which is a pointer to the
7499  *  s2io_nic structure.
7500  *  @link : inidicates whether link is UP/DOWN.
7501  *  Description:
7502  *  This function stops/starts the Tx queue depending on whether the link
7503  *  status of the NIC is is down or up. This is called by the Alarm
7504  *  interrupt handler whenever a link change interrupt comes up.
7505  *  Return value:
7506  *  void.
7507  */
7508 
7509 static void s2io_link(struct s2io_nic *sp, int link)
7510 {
7511 	struct net_device *dev = sp->dev;
7512 	struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
7513 
7514 	if (link != sp->last_link_state) {
7515 		init_tti(sp, link);
7516 		if (link == LINK_DOWN) {
7517 			DBG_PRINT(ERR_DBG, "%s: Link down\n", dev->name);
7518 			s2io_stop_all_tx_queue(sp);
7519 			netif_carrier_off(dev);
7520 			if (swstats->link_up_cnt)
7521 				swstats->link_up_time =
7522 					jiffies - sp->start_time;
7523 			swstats->link_down_cnt++;
7524 		} else {
7525 			DBG_PRINT(ERR_DBG, "%s: Link Up\n", dev->name);
7526 			if (swstats->link_down_cnt)
7527 				swstats->link_down_time =
7528 					jiffies - sp->start_time;
7529 			swstats->link_up_cnt++;
7530 			netif_carrier_on(dev);
7531 			s2io_wake_all_tx_queue(sp);
7532 		}
7533 	}
7534 	sp->last_link_state = link;
7535 	sp->start_time = jiffies;
7536 }
7537 
7538 /**
7539  *  s2io_init_pci -Initialization of PCI and PCI-X configuration registers .
7540  *  @sp : private member of the device structure, which is a pointer to the
7541  *  s2io_nic structure.
7542  *  Description:
7543  *  This function initializes a few of the PCI and PCI-X configuration registers
7544  *  with recommended values.
7545  *  Return value:
7546  *  void
7547  */
7548 
7549 static void s2io_init_pci(struct s2io_nic *sp)
7550 {
7551 	u16 pci_cmd = 0, pcix_cmd = 0;
7552 
7553 	/* Enable Data Parity Error Recovery in PCI-X command register. */
7554 	pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
7555 			     &(pcix_cmd));
7556 	pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
7557 			      (pcix_cmd | 1));
7558 	pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
7559 			     &(pcix_cmd));
7560 
7561 	/* Set the PErr Response bit in PCI command register. */
7562 	pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
7563 	pci_write_config_word(sp->pdev, PCI_COMMAND,
7564 			      (pci_cmd | PCI_COMMAND_PARITY));
7565 	pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
7566 }
7567 
7568 static int s2io_verify_parm(struct pci_dev *pdev, u8 *dev_intr_type,
7569 			    u8 *dev_multiq)
7570 {
7571 	int i;
7572 
7573 	if ((tx_fifo_num > MAX_TX_FIFOS) || (tx_fifo_num < 1)) {
7574 		DBG_PRINT(ERR_DBG, "Requested number of tx fifos "
7575 			  "(%d) not supported\n", tx_fifo_num);
7576 
7577 		if (tx_fifo_num < 1)
7578 			tx_fifo_num = 1;
7579 		else
7580 			tx_fifo_num = MAX_TX_FIFOS;
7581 
7582 		DBG_PRINT(ERR_DBG, "Default to %d tx fifos\n", tx_fifo_num);
7583 	}
7584 
7585 	if (multiq)
7586 		*dev_multiq = multiq;
7587 
7588 	if (tx_steering_type && (1 == tx_fifo_num)) {
7589 		if (tx_steering_type != TX_DEFAULT_STEERING)
7590 			DBG_PRINT(ERR_DBG,
7591 				  "Tx steering is not supported with "
7592 				  "one fifo. Disabling Tx steering.\n");
7593 		tx_steering_type = NO_STEERING;
7594 	}
7595 
7596 	if ((tx_steering_type < NO_STEERING) ||
7597 	    (tx_steering_type > TX_DEFAULT_STEERING)) {
7598 		DBG_PRINT(ERR_DBG,
7599 			  "Requested transmit steering not supported\n");
7600 		DBG_PRINT(ERR_DBG, "Disabling transmit steering\n");
7601 		tx_steering_type = NO_STEERING;
7602 	}
7603 
7604 	if (rx_ring_num > MAX_RX_RINGS) {
7605 		DBG_PRINT(ERR_DBG,
7606 			  "Requested number of rx rings not supported\n");
7607 		DBG_PRINT(ERR_DBG, "Default to %d rx rings\n",
7608 			  MAX_RX_RINGS);
7609 		rx_ring_num = MAX_RX_RINGS;
7610 	}
7611 
7612 	if ((*dev_intr_type != INTA) && (*dev_intr_type != MSI_X)) {
7613 		DBG_PRINT(ERR_DBG, "Wrong intr_type requested. "
7614 			  "Defaulting to INTA\n");
7615 		*dev_intr_type = INTA;
7616 	}
7617 
7618 	if ((*dev_intr_type == MSI_X) &&
7619 	    ((pdev->device != PCI_DEVICE_ID_HERC_WIN) &&
7620 	     (pdev->device != PCI_DEVICE_ID_HERC_UNI))) {
7621 		DBG_PRINT(ERR_DBG, "Xframe I does not support MSI_X. "
7622 			  "Defaulting to INTA\n");
7623 		*dev_intr_type = INTA;
7624 	}
7625 
7626 	if ((rx_ring_mode != 1) && (rx_ring_mode != 2)) {
7627 		DBG_PRINT(ERR_DBG, "Requested ring mode not supported\n");
7628 		DBG_PRINT(ERR_DBG, "Defaulting to 1-buffer mode\n");
7629 		rx_ring_mode = 1;
7630 	}
7631 
7632 	for (i = 0; i < MAX_RX_RINGS; i++)
7633 		if (rx_ring_sz[i] > MAX_RX_BLOCKS_PER_RING) {
7634 			DBG_PRINT(ERR_DBG, "Requested rx ring size not "
7635 				  "supported\nDefaulting to %d\n",
7636 				  MAX_RX_BLOCKS_PER_RING);
7637 			rx_ring_sz[i] = MAX_RX_BLOCKS_PER_RING;
7638 		}
7639 
7640 	return SUCCESS;
7641 }
7642 
7643 /**
7644  * rts_ds_steer - Receive traffic steering based on IPv4 or IPv6 TOS
7645  * or Traffic class respectively.
7646  * @nic: device private variable
7647  * Description: The function configures the receive steering to
7648  * desired receive ring.
7649  * Return Value:  SUCCESS on success and
7650  * '-1' on failure (endian settings incorrect).
7651  */
7652 static int rts_ds_steer(struct s2io_nic *nic, u8 ds_codepoint, u8 ring)
7653 {
7654 	struct XENA_dev_config __iomem *bar0 = nic->bar0;
7655 	register u64 val64 = 0;
7656 
7657 	if (ds_codepoint > 63)
7658 		return FAILURE;
7659 
7660 	val64 = RTS_DS_MEM_DATA(ring);
7661 	writeq(val64, &bar0->rts_ds_mem_data);
7662 
7663 	val64 = RTS_DS_MEM_CTRL_WE |
7664 		RTS_DS_MEM_CTRL_STROBE_NEW_CMD |
7665 		RTS_DS_MEM_CTRL_OFFSET(ds_codepoint);
7666 
7667 	writeq(val64, &bar0->rts_ds_mem_ctrl);
7668 
7669 	return wait_for_cmd_complete(&bar0->rts_ds_mem_ctrl,
7670 				     RTS_DS_MEM_CTRL_STROBE_CMD_BEING_EXECUTED,
7671 				     S2IO_BIT_RESET);
7672 }
7673 
7674 static const struct net_device_ops s2io_netdev_ops = {
7675 	.ndo_open	        = s2io_open,
7676 	.ndo_stop	        = s2io_close,
7677 	.ndo_get_stats	        = s2io_get_stats,
7678 	.ndo_start_xmit    	= s2io_xmit,
7679 	.ndo_validate_addr	= eth_validate_addr,
7680 	.ndo_set_rx_mode	= s2io_set_multicast,
7681 	.ndo_do_ioctl	   	= s2io_ioctl,
7682 	.ndo_set_mac_address    = s2io_set_mac_addr,
7683 	.ndo_change_mtu	   	= s2io_change_mtu,
7684 	.ndo_set_features	= s2io_set_features,
7685 	.ndo_tx_timeout	   	= s2io_tx_watchdog,
7686 #ifdef CONFIG_NET_POLL_CONTROLLER
7687 	.ndo_poll_controller    = s2io_netpoll,
7688 #endif
7689 };
7690 
7691 /**
7692  *  s2io_init_nic - Initialization of the adapter .
7693  *  @pdev : structure containing the PCI related information of the device.
7694  *  @pre: List of PCI devices supported by the driver listed in s2io_tbl.
7695  *  Description:
7696  *  The function initializes an adapter identified by the pci_dec structure.
7697  *  All OS related initialization including memory and device structure and
7698  *  initlaization of the device private variable is done. Also the swapper
7699  *  control register is initialized to enable read and write into the I/O
7700  *  registers of the device.
7701  *  Return value:
7702  *  returns 0 on success and negative on failure.
7703  */
7704 
7705 static int
7706 s2io_init_nic(struct pci_dev *pdev, const struct pci_device_id *pre)
7707 {
7708 	struct s2io_nic *sp;
7709 	struct net_device *dev;
7710 	int i, j, ret;
7711 	int dma_flag = false;
7712 	u32 mac_up, mac_down;
7713 	u64 val64 = 0, tmp64 = 0;
7714 	struct XENA_dev_config __iomem *bar0 = NULL;
7715 	u16 subid;
7716 	struct config_param *config;
7717 	struct mac_info *mac_control;
7718 	int mode;
7719 	u8 dev_intr_type = intr_type;
7720 	u8 dev_multiq = 0;
7721 
7722 	ret = s2io_verify_parm(pdev, &dev_intr_type, &dev_multiq);
7723 	if (ret)
7724 		return ret;
7725 
7726 	ret = pci_enable_device(pdev);
7727 	if (ret) {
7728 		DBG_PRINT(ERR_DBG,
7729 			  "%s: pci_enable_device failed\n", __func__);
7730 		return ret;
7731 	}
7732 
7733 	if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
7734 		DBG_PRINT(INIT_DBG, "%s: Using 64bit DMA\n", __func__);
7735 		dma_flag = true;
7736 		if (pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64))) {
7737 			DBG_PRINT(ERR_DBG,
7738 				  "Unable to obtain 64bit DMA "
7739 				  "for consistent allocations\n");
7740 			pci_disable_device(pdev);
7741 			return -ENOMEM;
7742 		}
7743 	} else if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(32))) {
7744 		DBG_PRINT(INIT_DBG, "%s: Using 32bit DMA\n", __func__);
7745 	} else {
7746 		pci_disable_device(pdev);
7747 		return -ENOMEM;
7748 	}
7749 	ret = pci_request_regions(pdev, s2io_driver_name);
7750 	if (ret) {
7751 		DBG_PRINT(ERR_DBG, "%s: Request Regions failed - %x\n",
7752 			  __func__, ret);
7753 		pci_disable_device(pdev);
7754 		return -ENODEV;
7755 	}
7756 	if (dev_multiq)
7757 		dev = alloc_etherdev_mq(sizeof(struct s2io_nic), tx_fifo_num);
7758 	else
7759 		dev = alloc_etherdev(sizeof(struct s2io_nic));
7760 	if (dev == NULL) {
7761 		pci_disable_device(pdev);
7762 		pci_release_regions(pdev);
7763 		return -ENODEV;
7764 	}
7765 
7766 	pci_set_master(pdev);
7767 	pci_set_drvdata(pdev, dev);
7768 	SET_NETDEV_DEV(dev, &pdev->dev);
7769 
7770 	/*  Private member variable initialized to s2io NIC structure */
7771 	sp = netdev_priv(dev);
7772 	sp->dev = dev;
7773 	sp->pdev = pdev;
7774 	sp->high_dma_flag = dma_flag;
7775 	sp->device_enabled_once = false;
7776 	if (rx_ring_mode == 1)
7777 		sp->rxd_mode = RXD_MODE_1;
7778 	if (rx_ring_mode == 2)
7779 		sp->rxd_mode = RXD_MODE_3B;
7780 
7781 	sp->config.intr_type = dev_intr_type;
7782 
7783 	if ((pdev->device == PCI_DEVICE_ID_HERC_WIN) ||
7784 	    (pdev->device == PCI_DEVICE_ID_HERC_UNI))
7785 		sp->device_type = XFRAME_II_DEVICE;
7786 	else
7787 		sp->device_type = XFRAME_I_DEVICE;
7788 
7789 
7790 	/* Initialize some PCI/PCI-X fields of the NIC. */
7791 	s2io_init_pci(sp);
7792 
7793 	/*
7794 	 * Setting the device configuration parameters.
7795 	 * Most of these parameters can be specified by the user during
7796 	 * module insertion as they are module loadable parameters. If
7797 	 * these parameters are not not specified during load time, they
7798 	 * are initialized with default values.
7799 	 */
7800 	config = &sp->config;
7801 	mac_control = &sp->mac_control;
7802 
7803 	config->napi = napi;
7804 	config->tx_steering_type = tx_steering_type;
7805 
7806 	/* Tx side parameters. */
7807 	if (config->tx_steering_type == TX_PRIORITY_STEERING)
7808 		config->tx_fifo_num = MAX_TX_FIFOS;
7809 	else
7810 		config->tx_fifo_num = tx_fifo_num;
7811 
7812 	/* Initialize the fifos used for tx steering */
7813 	if (config->tx_fifo_num < 5) {
7814 		if (config->tx_fifo_num  == 1)
7815 			sp->total_tcp_fifos = 1;
7816 		else
7817 			sp->total_tcp_fifos = config->tx_fifo_num - 1;
7818 		sp->udp_fifo_idx = config->tx_fifo_num - 1;
7819 		sp->total_udp_fifos = 1;
7820 		sp->other_fifo_idx = sp->total_tcp_fifos - 1;
7821 	} else {
7822 		sp->total_tcp_fifos = (tx_fifo_num - FIFO_UDP_MAX_NUM -
7823 				       FIFO_OTHER_MAX_NUM);
7824 		sp->udp_fifo_idx = sp->total_tcp_fifos;
7825 		sp->total_udp_fifos = FIFO_UDP_MAX_NUM;
7826 		sp->other_fifo_idx = sp->udp_fifo_idx + FIFO_UDP_MAX_NUM;
7827 	}
7828 
7829 	config->multiq = dev_multiq;
7830 	for (i = 0; i < config->tx_fifo_num; i++) {
7831 		struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
7832 
7833 		tx_cfg->fifo_len = tx_fifo_len[i];
7834 		tx_cfg->fifo_priority = i;
7835 	}
7836 
7837 	/* mapping the QoS priority to the configured fifos */
7838 	for (i = 0; i < MAX_TX_FIFOS; i++)
7839 		config->fifo_mapping[i] = fifo_map[config->tx_fifo_num - 1][i];
7840 
7841 	/* map the hashing selector table to the configured fifos */
7842 	for (i = 0; i < config->tx_fifo_num; i++)
7843 		sp->fifo_selector[i] = fifo_selector[i];
7844 
7845 
7846 	config->tx_intr_type = TXD_INT_TYPE_UTILZ;
7847 	for (i = 0; i < config->tx_fifo_num; i++) {
7848 		struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
7849 
7850 		tx_cfg->f_no_snoop = (NO_SNOOP_TXD | NO_SNOOP_TXD_BUFFER);
7851 		if (tx_cfg->fifo_len < 65) {
7852 			config->tx_intr_type = TXD_INT_TYPE_PER_LIST;
7853 			break;
7854 		}
7855 	}
7856 	/* + 2 because one Txd for skb->data and one Txd for UFO */
7857 	config->max_txds = MAX_SKB_FRAGS + 2;
7858 
7859 	/* Rx side parameters. */
7860 	config->rx_ring_num = rx_ring_num;
7861 	for (i = 0; i < config->rx_ring_num; i++) {
7862 		struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
7863 		struct ring_info *ring = &mac_control->rings[i];
7864 
7865 		rx_cfg->num_rxd = rx_ring_sz[i] * (rxd_count[sp->rxd_mode] + 1);
7866 		rx_cfg->ring_priority = i;
7867 		ring->rx_bufs_left = 0;
7868 		ring->rxd_mode = sp->rxd_mode;
7869 		ring->rxd_count = rxd_count[sp->rxd_mode];
7870 		ring->pdev = sp->pdev;
7871 		ring->dev = sp->dev;
7872 	}
7873 
7874 	for (i = 0; i < rx_ring_num; i++) {
7875 		struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
7876 
7877 		rx_cfg->ring_org = RING_ORG_BUFF1;
7878 		rx_cfg->f_no_snoop = (NO_SNOOP_RXD | NO_SNOOP_RXD_BUFFER);
7879 	}
7880 
7881 	/*  Setting Mac Control parameters */
7882 	mac_control->rmac_pause_time = rmac_pause_time;
7883 	mac_control->mc_pause_threshold_q0q3 = mc_pause_threshold_q0q3;
7884 	mac_control->mc_pause_threshold_q4q7 = mc_pause_threshold_q4q7;
7885 
7886 
7887 	/*  initialize the shared memory used by the NIC and the host */
7888 	if (init_shared_mem(sp)) {
7889 		DBG_PRINT(ERR_DBG, "%s: Memory allocation failed\n", dev->name);
7890 		ret = -ENOMEM;
7891 		goto mem_alloc_failed;
7892 	}
7893 
7894 	sp->bar0 = pci_ioremap_bar(pdev, 0);
7895 	if (!sp->bar0) {
7896 		DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem1\n",
7897 			  dev->name);
7898 		ret = -ENOMEM;
7899 		goto bar0_remap_failed;
7900 	}
7901 
7902 	sp->bar1 = pci_ioremap_bar(pdev, 2);
7903 	if (!sp->bar1) {
7904 		DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem2\n",
7905 			  dev->name);
7906 		ret = -ENOMEM;
7907 		goto bar1_remap_failed;
7908 	}
7909 
7910 	/* Initializing the BAR1 address as the start of the FIFO pointer. */
7911 	for (j = 0; j < MAX_TX_FIFOS; j++) {
7912 		mac_control->tx_FIFO_start[j] = sp->bar1 + (j * 0x00020000);
7913 	}
7914 
7915 	/*  Driver entry points */
7916 	dev->netdev_ops = &s2io_netdev_ops;
7917 	SET_ETHTOOL_OPS(dev, &netdev_ethtool_ops);
7918 	dev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM |
7919 		NETIF_F_TSO | NETIF_F_TSO6 |
7920 		NETIF_F_RXCSUM | NETIF_F_LRO;
7921 	dev->features |= dev->hw_features |
7922 		NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
7923 	if (sp->device_type & XFRAME_II_DEVICE) {
7924 		dev->hw_features |= NETIF_F_UFO;
7925 		if (ufo)
7926 			dev->features |= NETIF_F_UFO;
7927 	}
7928 	if (sp->high_dma_flag == true)
7929 		dev->features |= NETIF_F_HIGHDMA;
7930 	dev->watchdog_timeo = WATCH_DOG_TIMEOUT;
7931 	INIT_WORK(&sp->rst_timer_task, s2io_restart_nic);
7932 	INIT_WORK(&sp->set_link_task, s2io_set_link);
7933 
7934 	pci_save_state(sp->pdev);
7935 
7936 	/* Setting swapper control on the NIC, for proper reset operation */
7937 	if (s2io_set_swapper(sp)) {
7938 		DBG_PRINT(ERR_DBG, "%s: swapper settings are wrong\n",
7939 			  dev->name);
7940 		ret = -EAGAIN;
7941 		goto set_swap_failed;
7942 	}
7943 
7944 	/* Verify if the Herc works on the slot its placed into */
7945 	if (sp->device_type & XFRAME_II_DEVICE) {
7946 		mode = s2io_verify_pci_mode(sp);
7947 		if (mode < 0) {
7948 			DBG_PRINT(ERR_DBG, "%s: Unsupported PCI bus mode\n",
7949 				  __func__);
7950 			ret = -EBADSLT;
7951 			goto set_swap_failed;
7952 		}
7953 	}
7954 
7955 	if (sp->config.intr_type == MSI_X) {
7956 		sp->num_entries = config->rx_ring_num + 1;
7957 		ret = s2io_enable_msi_x(sp);
7958 
7959 		if (!ret) {
7960 			ret = s2io_test_msi(sp);
7961 			/* rollback MSI-X, will re-enable during add_isr() */
7962 			remove_msix_isr(sp);
7963 		}
7964 		if (ret) {
7965 
7966 			DBG_PRINT(ERR_DBG,
7967 				  "MSI-X requested but failed to enable\n");
7968 			sp->config.intr_type = INTA;
7969 		}
7970 	}
7971 
7972 	if (config->intr_type ==  MSI_X) {
7973 		for (i = 0; i < config->rx_ring_num ; i++) {
7974 			struct ring_info *ring = &mac_control->rings[i];
7975 
7976 			netif_napi_add(dev, &ring->napi, s2io_poll_msix, 64);
7977 		}
7978 	} else {
7979 		netif_napi_add(dev, &sp->napi, s2io_poll_inta, 64);
7980 	}
7981 
7982 	/* Not needed for Herc */
7983 	if (sp->device_type & XFRAME_I_DEVICE) {
7984 		/*
7985 		 * Fix for all "FFs" MAC address problems observed on
7986 		 * Alpha platforms
7987 		 */
7988 		fix_mac_address(sp);
7989 		s2io_reset(sp);
7990 	}
7991 
7992 	/*
7993 	 * MAC address initialization.
7994 	 * For now only one mac address will be read and used.
7995 	 */
7996 	bar0 = sp->bar0;
7997 	val64 = RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
7998 		RMAC_ADDR_CMD_MEM_OFFSET(0 + S2IO_MAC_ADDR_START_OFFSET);
7999 	writeq(val64, &bar0->rmac_addr_cmd_mem);
8000 	wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
8001 			      RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
8002 			      S2IO_BIT_RESET);
8003 	tmp64 = readq(&bar0->rmac_addr_data0_mem);
8004 	mac_down = (u32)tmp64;
8005 	mac_up = (u32) (tmp64 >> 32);
8006 
8007 	sp->def_mac_addr[0].mac_addr[3] = (u8) (mac_up);
8008 	sp->def_mac_addr[0].mac_addr[2] = (u8) (mac_up >> 8);
8009 	sp->def_mac_addr[0].mac_addr[1] = (u8) (mac_up >> 16);
8010 	sp->def_mac_addr[0].mac_addr[0] = (u8) (mac_up >> 24);
8011 	sp->def_mac_addr[0].mac_addr[5] = (u8) (mac_down >> 16);
8012 	sp->def_mac_addr[0].mac_addr[4] = (u8) (mac_down >> 24);
8013 
8014 	/*  Set the factory defined MAC address initially   */
8015 	dev->addr_len = ETH_ALEN;
8016 	memcpy(dev->dev_addr, sp->def_mac_addr, ETH_ALEN);
8017 	memcpy(dev->perm_addr, dev->dev_addr, ETH_ALEN);
8018 
8019 	/* initialize number of multicast & unicast MAC entries variables */
8020 	if (sp->device_type == XFRAME_I_DEVICE) {
8021 		config->max_mc_addr = S2IO_XENA_MAX_MC_ADDRESSES;
8022 		config->max_mac_addr = S2IO_XENA_MAX_MAC_ADDRESSES;
8023 		config->mc_start_offset = S2IO_XENA_MC_ADDR_START_OFFSET;
8024 	} else if (sp->device_type == XFRAME_II_DEVICE) {
8025 		config->max_mc_addr = S2IO_HERC_MAX_MC_ADDRESSES;
8026 		config->max_mac_addr = S2IO_HERC_MAX_MAC_ADDRESSES;
8027 		config->mc_start_offset = S2IO_HERC_MC_ADDR_START_OFFSET;
8028 	}
8029 
8030 	/* store mac addresses from CAM to s2io_nic structure */
8031 	do_s2io_store_unicast_mc(sp);
8032 
8033 	/* Configure MSIX vector for number of rings configured plus one */
8034 	if ((sp->device_type == XFRAME_II_DEVICE) &&
8035 	    (config->intr_type == MSI_X))
8036 		sp->num_entries = config->rx_ring_num + 1;
8037 
8038 	/* Store the values of the MSIX table in the s2io_nic structure */
8039 	store_xmsi_data(sp);
8040 	/* reset Nic and bring it to known state */
8041 	s2io_reset(sp);
8042 
8043 	/*
8044 	 * Initialize link state flags
8045 	 * and the card state parameter
8046 	 */
8047 	sp->state = 0;
8048 
8049 	/* Initialize spinlocks */
8050 	for (i = 0; i < sp->config.tx_fifo_num; i++) {
8051 		struct fifo_info *fifo = &mac_control->fifos[i];
8052 
8053 		spin_lock_init(&fifo->tx_lock);
8054 	}
8055 
8056 	/*
8057 	 * SXE-002: Configure link and activity LED to init state
8058 	 * on driver load.
8059 	 */
8060 	subid = sp->pdev->subsystem_device;
8061 	if ((subid & 0xFF) >= 0x07) {
8062 		val64 = readq(&bar0->gpio_control);
8063 		val64 |= 0x0000800000000000ULL;
8064 		writeq(val64, &bar0->gpio_control);
8065 		val64 = 0x0411040400000000ULL;
8066 		writeq(val64, (void __iomem *)bar0 + 0x2700);
8067 		val64 = readq(&bar0->gpio_control);
8068 	}
8069 
8070 	sp->rx_csum = 1;	/* Rx chksum verify enabled by default */
8071 
8072 	if (register_netdev(dev)) {
8073 		DBG_PRINT(ERR_DBG, "Device registration failed\n");
8074 		ret = -ENODEV;
8075 		goto register_failed;
8076 	}
8077 	s2io_vpd_read(sp);
8078 	DBG_PRINT(ERR_DBG, "Copyright(c) 2002-2010 Exar Corp.\n");
8079 	DBG_PRINT(ERR_DBG, "%s: Neterion %s (rev %d)\n", dev->name,
8080 		  sp->product_name, pdev->revision);
8081 	DBG_PRINT(ERR_DBG, "%s: Driver version %s\n", dev->name,
8082 		  s2io_driver_version);
8083 	DBG_PRINT(ERR_DBG, "%s: MAC Address: %pM\n", dev->name, dev->dev_addr);
8084 	DBG_PRINT(ERR_DBG, "Serial number: %s\n", sp->serial_num);
8085 	if (sp->device_type & XFRAME_II_DEVICE) {
8086 		mode = s2io_print_pci_mode(sp);
8087 		if (mode < 0) {
8088 			ret = -EBADSLT;
8089 			unregister_netdev(dev);
8090 			goto set_swap_failed;
8091 		}
8092 	}
8093 	switch (sp->rxd_mode) {
8094 	case RXD_MODE_1:
8095 		DBG_PRINT(ERR_DBG, "%s: 1-Buffer receive mode enabled\n",
8096 			  dev->name);
8097 		break;
8098 	case RXD_MODE_3B:
8099 		DBG_PRINT(ERR_DBG, "%s: 2-Buffer receive mode enabled\n",
8100 			  dev->name);
8101 		break;
8102 	}
8103 
8104 	switch (sp->config.napi) {
8105 	case 0:
8106 		DBG_PRINT(ERR_DBG, "%s: NAPI disabled\n", dev->name);
8107 		break;
8108 	case 1:
8109 		DBG_PRINT(ERR_DBG, "%s: NAPI enabled\n", dev->name);
8110 		break;
8111 	}
8112 
8113 	DBG_PRINT(ERR_DBG, "%s: Using %d Tx fifo(s)\n", dev->name,
8114 		  sp->config.tx_fifo_num);
8115 
8116 	DBG_PRINT(ERR_DBG, "%s: Using %d Rx ring(s)\n", dev->name,
8117 		  sp->config.rx_ring_num);
8118 
8119 	switch (sp->config.intr_type) {
8120 	case INTA:
8121 		DBG_PRINT(ERR_DBG, "%s: Interrupt type INTA\n", dev->name);
8122 		break;
8123 	case MSI_X:
8124 		DBG_PRINT(ERR_DBG, "%s: Interrupt type MSI-X\n", dev->name);
8125 		break;
8126 	}
8127 	if (sp->config.multiq) {
8128 		for (i = 0; i < sp->config.tx_fifo_num; i++) {
8129 			struct fifo_info *fifo = &mac_control->fifos[i];
8130 
8131 			fifo->multiq = config->multiq;
8132 		}
8133 		DBG_PRINT(ERR_DBG, "%s: Multiqueue support enabled\n",
8134 			  dev->name);
8135 	} else
8136 		DBG_PRINT(ERR_DBG, "%s: Multiqueue support disabled\n",
8137 			  dev->name);
8138 
8139 	switch (sp->config.tx_steering_type) {
8140 	case NO_STEERING:
8141 		DBG_PRINT(ERR_DBG, "%s: No steering enabled for transmit\n",
8142 			  dev->name);
8143 		break;
8144 	case TX_PRIORITY_STEERING:
8145 		DBG_PRINT(ERR_DBG,
8146 			  "%s: Priority steering enabled for transmit\n",
8147 			  dev->name);
8148 		break;
8149 	case TX_DEFAULT_STEERING:
8150 		DBG_PRINT(ERR_DBG,
8151 			  "%s: Default steering enabled for transmit\n",
8152 			  dev->name);
8153 	}
8154 
8155 	DBG_PRINT(ERR_DBG, "%s: Large receive offload enabled\n",
8156 		  dev->name);
8157 	if (ufo)
8158 		DBG_PRINT(ERR_DBG,
8159 			  "%s: UDP Fragmentation Offload(UFO) enabled\n",
8160 			  dev->name);
8161 	/* Initialize device name */
8162 	sprintf(sp->name, "%s Neterion %s", dev->name, sp->product_name);
8163 
8164 	if (vlan_tag_strip)
8165 		sp->vlan_strip_flag = 1;
8166 	else
8167 		sp->vlan_strip_flag = 0;
8168 
8169 	/*
8170 	 * Make Link state as off at this point, when the Link change
8171 	 * interrupt comes the state will be automatically changed to
8172 	 * the right state.
8173 	 */
8174 	netif_carrier_off(dev);
8175 
8176 	return 0;
8177 
8178 register_failed:
8179 set_swap_failed:
8180 	iounmap(sp->bar1);
8181 bar1_remap_failed:
8182 	iounmap(sp->bar0);
8183 bar0_remap_failed:
8184 mem_alloc_failed:
8185 	free_shared_mem(sp);
8186 	pci_disable_device(pdev);
8187 	pci_release_regions(pdev);
8188 	pci_set_drvdata(pdev, NULL);
8189 	free_netdev(dev);
8190 
8191 	return ret;
8192 }
8193 
8194 /**
8195  * s2io_rem_nic - Free the PCI device
8196  * @pdev: structure containing the PCI related information of the device.
8197  * Description: This function is called by the Pci subsystem to release a
8198  * PCI device and free up all resource held up by the device. This could
8199  * be in response to a Hot plug event or when the driver is to be removed
8200  * from memory.
8201  */
8202 
8203 static void s2io_rem_nic(struct pci_dev *pdev)
8204 {
8205 	struct net_device *dev = pci_get_drvdata(pdev);
8206 	struct s2io_nic *sp;
8207 
8208 	if (dev == NULL) {
8209 		DBG_PRINT(ERR_DBG, "Driver Data is NULL!!\n");
8210 		return;
8211 	}
8212 
8213 	sp = netdev_priv(dev);
8214 
8215 	cancel_work_sync(&sp->rst_timer_task);
8216 	cancel_work_sync(&sp->set_link_task);
8217 
8218 	unregister_netdev(dev);
8219 
8220 	free_shared_mem(sp);
8221 	iounmap(sp->bar0);
8222 	iounmap(sp->bar1);
8223 	pci_release_regions(pdev);
8224 	pci_set_drvdata(pdev, NULL);
8225 	free_netdev(dev);
8226 	pci_disable_device(pdev);
8227 }
8228 
8229 /**
8230  * s2io_starter - Entry point for the driver
8231  * Description: This function is the entry point for the driver. It verifies
8232  * the module loadable parameters and initializes PCI configuration space.
8233  */
8234 
8235 static int __init s2io_starter(void)
8236 {
8237 	return pci_register_driver(&s2io_driver);
8238 }
8239 
8240 /**
8241  * s2io_closer - Cleanup routine for the driver
8242  * Description: This function is the cleanup routine for the driver. It
8243  * unregisters the driver.
8244  */
8245 
8246 static __exit void s2io_closer(void)
8247 {
8248 	pci_unregister_driver(&s2io_driver);
8249 	DBG_PRINT(INIT_DBG, "cleanup done\n");
8250 }
8251 
8252 module_init(s2io_starter);
8253 module_exit(s2io_closer);
8254 
8255 static int check_L2_lro_capable(u8 *buffer, struct iphdr **ip,
8256 				struct tcphdr **tcp, struct RxD_t *rxdp,
8257 				struct s2io_nic *sp)
8258 {
8259 	int ip_off;
8260 	u8 l2_type = (u8)((rxdp->Control_1 >> 37) & 0x7), ip_len;
8261 
8262 	if (!(rxdp->Control_1 & RXD_FRAME_PROTO_TCP)) {
8263 		DBG_PRINT(INIT_DBG,
8264 			  "%s: Non-TCP frames not supported for LRO\n",
8265 			  __func__);
8266 		return -1;
8267 	}
8268 
8269 	/* Checking for DIX type or DIX type with VLAN */
8270 	if ((l2_type == 0) || (l2_type == 4)) {
8271 		ip_off = HEADER_ETHERNET_II_802_3_SIZE;
8272 		/*
8273 		 * If vlan stripping is disabled and the frame is VLAN tagged,
8274 		 * shift the offset by the VLAN header size bytes.
8275 		 */
8276 		if ((!sp->vlan_strip_flag) &&
8277 		    (rxdp->Control_1 & RXD_FRAME_VLAN_TAG))
8278 			ip_off += HEADER_VLAN_SIZE;
8279 	} else {
8280 		/* LLC, SNAP etc are considered non-mergeable */
8281 		return -1;
8282 	}
8283 
8284 	*ip = (struct iphdr *)(buffer + ip_off);
8285 	ip_len = (u8)((*ip)->ihl);
8286 	ip_len <<= 2;
8287 	*tcp = (struct tcphdr *)((unsigned long)*ip + ip_len);
8288 
8289 	return 0;
8290 }
8291 
8292 static int check_for_socket_match(struct lro *lro, struct iphdr *ip,
8293 				  struct tcphdr *tcp)
8294 {
8295 	DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__);
8296 	if ((lro->iph->saddr != ip->saddr) ||
8297 	    (lro->iph->daddr != ip->daddr) ||
8298 	    (lro->tcph->source != tcp->source) ||
8299 	    (lro->tcph->dest != tcp->dest))
8300 		return -1;
8301 	return 0;
8302 }
8303 
8304 static inline int get_l4_pyld_length(struct iphdr *ip, struct tcphdr *tcp)
8305 {
8306 	return ntohs(ip->tot_len) - (ip->ihl << 2) - (tcp->doff << 2);
8307 }
8308 
8309 static void initiate_new_session(struct lro *lro, u8 *l2h,
8310 				 struct iphdr *ip, struct tcphdr *tcp,
8311 				 u32 tcp_pyld_len, u16 vlan_tag)
8312 {
8313 	DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__);
8314 	lro->l2h = l2h;
8315 	lro->iph = ip;
8316 	lro->tcph = tcp;
8317 	lro->tcp_next_seq = tcp_pyld_len + ntohl(tcp->seq);
8318 	lro->tcp_ack = tcp->ack_seq;
8319 	lro->sg_num = 1;
8320 	lro->total_len = ntohs(ip->tot_len);
8321 	lro->frags_len = 0;
8322 	lro->vlan_tag = vlan_tag;
8323 	/*
8324 	 * Check if we saw TCP timestamp.
8325 	 * Other consistency checks have already been done.
8326 	 */
8327 	if (tcp->doff == 8) {
8328 		__be32 *ptr;
8329 		ptr = (__be32 *)(tcp+1);
8330 		lro->saw_ts = 1;
8331 		lro->cur_tsval = ntohl(*(ptr+1));
8332 		lro->cur_tsecr = *(ptr+2);
8333 	}
8334 	lro->in_use = 1;
8335 }
8336 
8337 static void update_L3L4_header(struct s2io_nic *sp, struct lro *lro)
8338 {
8339 	struct iphdr *ip = lro->iph;
8340 	struct tcphdr *tcp = lro->tcph;
8341 	__sum16 nchk;
8342 	struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
8343 
8344 	DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__);
8345 
8346 	/* Update L3 header */
8347 	ip->tot_len = htons(lro->total_len);
8348 	ip->check = 0;
8349 	nchk = ip_fast_csum((u8 *)lro->iph, ip->ihl);
8350 	ip->check = nchk;
8351 
8352 	/* Update L4 header */
8353 	tcp->ack_seq = lro->tcp_ack;
8354 	tcp->window = lro->window;
8355 
8356 	/* Update tsecr field if this session has timestamps enabled */
8357 	if (lro->saw_ts) {
8358 		__be32 *ptr = (__be32 *)(tcp + 1);
8359 		*(ptr+2) = lro->cur_tsecr;
8360 	}
8361 
8362 	/* Update counters required for calculation of
8363 	 * average no. of packets aggregated.
8364 	 */
8365 	swstats->sum_avg_pkts_aggregated += lro->sg_num;
8366 	swstats->num_aggregations++;
8367 }
8368 
8369 static void aggregate_new_rx(struct lro *lro, struct iphdr *ip,
8370 			     struct tcphdr *tcp, u32 l4_pyld)
8371 {
8372 	DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__);
8373 	lro->total_len += l4_pyld;
8374 	lro->frags_len += l4_pyld;
8375 	lro->tcp_next_seq += l4_pyld;
8376 	lro->sg_num++;
8377 
8378 	/* Update ack seq no. and window ad(from this pkt) in LRO object */
8379 	lro->tcp_ack = tcp->ack_seq;
8380 	lro->window = tcp->window;
8381 
8382 	if (lro->saw_ts) {
8383 		__be32 *ptr;
8384 		/* Update tsecr and tsval from this packet */
8385 		ptr = (__be32 *)(tcp+1);
8386 		lro->cur_tsval = ntohl(*(ptr+1));
8387 		lro->cur_tsecr = *(ptr + 2);
8388 	}
8389 }
8390 
8391 static int verify_l3_l4_lro_capable(struct lro *l_lro, struct iphdr *ip,
8392 				    struct tcphdr *tcp, u32 tcp_pyld_len)
8393 {
8394 	u8 *ptr;
8395 
8396 	DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__);
8397 
8398 	if (!tcp_pyld_len) {
8399 		/* Runt frame or a pure ack */
8400 		return -1;
8401 	}
8402 
8403 	if (ip->ihl != 5) /* IP has options */
8404 		return -1;
8405 
8406 	/* If we see CE codepoint in IP header, packet is not mergeable */
8407 	if (INET_ECN_is_ce(ipv4_get_dsfield(ip)))
8408 		return -1;
8409 
8410 	/* If we see ECE or CWR flags in TCP header, packet is not mergeable */
8411 	if (tcp->urg || tcp->psh || tcp->rst ||
8412 	    tcp->syn || tcp->fin ||
8413 	    tcp->ece || tcp->cwr || !tcp->ack) {
8414 		/*
8415 		 * Currently recognize only the ack control word and
8416 		 * any other control field being set would result in
8417 		 * flushing the LRO session
8418 		 */
8419 		return -1;
8420 	}
8421 
8422 	/*
8423 	 * Allow only one TCP timestamp option. Don't aggregate if
8424 	 * any other options are detected.
8425 	 */
8426 	if (tcp->doff != 5 && tcp->doff != 8)
8427 		return -1;
8428 
8429 	if (tcp->doff == 8) {
8430 		ptr = (u8 *)(tcp + 1);
8431 		while (*ptr == TCPOPT_NOP)
8432 			ptr++;
8433 		if (*ptr != TCPOPT_TIMESTAMP || *(ptr+1) != TCPOLEN_TIMESTAMP)
8434 			return -1;
8435 
8436 		/* Ensure timestamp value increases monotonically */
8437 		if (l_lro)
8438 			if (l_lro->cur_tsval > ntohl(*((__be32 *)(ptr+2))))
8439 				return -1;
8440 
8441 		/* timestamp echo reply should be non-zero */
8442 		if (*((__be32 *)(ptr+6)) == 0)
8443 			return -1;
8444 	}
8445 
8446 	return 0;
8447 }
8448 
8449 static int s2io_club_tcp_session(struct ring_info *ring_data, u8 *buffer,
8450 				 u8 **tcp, u32 *tcp_len, struct lro **lro,
8451 				 struct RxD_t *rxdp, struct s2io_nic *sp)
8452 {
8453 	struct iphdr *ip;
8454 	struct tcphdr *tcph;
8455 	int ret = 0, i;
8456 	u16 vlan_tag = 0;
8457 	struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
8458 
8459 	ret = check_L2_lro_capable(buffer, &ip, (struct tcphdr **)tcp,
8460 				   rxdp, sp);
8461 	if (ret)
8462 		return ret;
8463 
8464 	DBG_PRINT(INFO_DBG, "IP Saddr: %x Daddr: %x\n", ip->saddr, ip->daddr);
8465 
8466 	vlan_tag = RXD_GET_VLAN_TAG(rxdp->Control_2);
8467 	tcph = (struct tcphdr *)*tcp;
8468 	*tcp_len = get_l4_pyld_length(ip, tcph);
8469 	for (i = 0; i < MAX_LRO_SESSIONS; i++) {
8470 		struct lro *l_lro = &ring_data->lro0_n[i];
8471 		if (l_lro->in_use) {
8472 			if (check_for_socket_match(l_lro, ip, tcph))
8473 				continue;
8474 			/* Sock pair matched */
8475 			*lro = l_lro;
8476 
8477 			if ((*lro)->tcp_next_seq != ntohl(tcph->seq)) {
8478 				DBG_PRINT(INFO_DBG, "%s: Out of sequence. "
8479 					  "expected 0x%x, actual 0x%x\n",
8480 					  __func__,
8481 					  (*lro)->tcp_next_seq,
8482 					  ntohl(tcph->seq));
8483 
8484 				swstats->outof_sequence_pkts++;
8485 				ret = 2;
8486 				break;
8487 			}
8488 
8489 			if (!verify_l3_l4_lro_capable(l_lro, ip, tcph,
8490 						      *tcp_len))
8491 				ret = 1; /* Aggregate */
8492 			else
8493 				ret = 2; /* Flush both */
8494 			break;
8495 		}
8496 	}
8497 
8498 	if (ret == 0) {
8499 		/* Before searching for available LRO objects,
8500 		 * check if the pkt is L3/L4 aggregatable. If not
8501 		 * don't create new LRO session. Just send this
8502 		 * packet up.
8503 		 */
8504 		if (verify_l3_l4_lro_capable(NULL, ip, tcph, *tcp_len))
8505 			return 5;
8506 
8507 		for (i = 0; i < MAX_LRO_SESSIONS; i++) {
8508 			struct lro *l_lro = &ring_data->lro0_n[i];
8509 			if (!(l_lro->in_use)) {
8510 				*lro = l_lro;
8511 				ret = 3; /* Begin anew */
8512 				break;
8513 			}
8514 		}
8515 	}
8516 
8517 	if (ret == 0) { /* sessions exceeded */
8518 		DBG_PRINT(INFO_DBG, "%s: All LRO sessions already in use\n",
8519 			  __func__);
8520 		*lro = NULL;
8521 		return ret;
8522 	}
8523 
8524 	switch (ret) {
8525 	case 3:
8526 		initiate_new_session(*lro, buffer, ip, tcph, *tcp_len,
8527 				     vlan_tag);
8528 		break;
8529 	case 2:
8530 		update_L3L4_header(sp, *lro);
8531 		break;
8532 	case 1:
8533 		aggregate_new_rx(*lro, ip, tcph, *tcp_len);
8534 		if ((*lro)->sg_num == sp->lro_max_aggr_per_sess) {
8535 			update_L3L4_header(sp, *lro);
8536 			ret = 4; /* Flush the LRO */
8537 		}
8538 		break;
8539 	default:
8540 		DBG_PRINT(ERR_DBG, "%s: Don't know, can't say!!\n", __func__);
8541 		break;
8542 	}
8543 
8544 	return ret;
8545 }
8546 
8547 static void clear_lro_session(struct lro *lro)
8548 {
8549 	static u16 lro_struct_size = sizeof(struct lro);
8550 
8551 	memset(lro, 0, lro_struct_size);
8552 }
8553 
8554 static void queue_rx_frame(struct sk_buff *skb, u16 vlan_tag)
8555 {
8556 	struct net_device *dev = skb->dev;
8557 	struct s2io_nic *sp = netdev_priv(dev);
8558 
8559 	skb->protocol = eth_type_trans(skb, dev);
8560 	if (vlan_tag && sp->vlan_strip_flag)
8561 		__vlan_hwaccel_put_tag(skb, vlan_tag);
8562 	if (sp->config.napi)
8563 		netif_receive_skb(skb);
8564 	else
8565 		netif_rx(skb);
8566 }
8567 
8568 static void lro_append_pkt(struct s2io_nic *sp, struct lro *lro,
8569 			   struct sk_buff *skb, u32 tcp_len)
8570 {
8571 	struct sk_buff *first = lro->parent;
8572 	struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
8573 
8574 	first->len += tcp_len;
8575 	first->data_len = lro->frags_len;
8576 	skb_pull(skb, (skb->len - tcp_len));
8577 	if (skb_shinfo(first)->frag_list)
8578 		lro->last_frag->next = skb;
8579 	else
8580 		skb_shinfo(first)->frag_list = skb;
8581 	first->truesize += skb->truesize;
8582 	lro->last_frag = skb;
8583 	swstats->clubbed_frms_cnt++;
8584 }
8585 
8586 /**
8587  * s2io_io_error_detected - called when PCI error is detected
8588  * @pdev: Pointer to PCI device
8589  * @state: The current pci connection state
8590  *
8591  * This function is called after a PCI bus error affecting
8592  * this device has been detected.
8593  */
8594 static pci_ers_result_t s2io_io_error_detected(struct pci_dev *pdev,
8595 					       pci_channel_state_t state)
8596 {
8597 	struct net_device *netdev = pci_get_drvdata(pdev);
8598 	struct s2io_nic *sp = netdev_priv(netdev);
8599 
8600 	netif_device_detach(netdev);
8601 
8602 	if (state == pci_channel_io_perm_failure)
8603 		return PCI_ERS_RESULT_DISCONNECT;
8604 
8605 	if (netif_running(netdev)) {
8606 		/* Bring down the card, while avoiding PCI I/O */
8607 		do_s2io_card_down(sp, 0);
8608 	}
8609 	pci_disable_device(pdev);
8610 
8611 	return PCI_ERS_RESULT_NEED_RESET;
8612 }
8613 
8614 /**
8615  * s2io_io_slot_reset - called after the pci bus has been reset.
8616  * @pdev: Pointer to PCI device
8617  *
8618  * Restart the card from scratch, as if from a cold-boot.
8619  * At this point, the card has exprienced a hard reset,
8620  * followed by fixups by BIOS, and has its config space
8621  * set up identically to what it was at cold boot.
8622  */
8623 static pci_ers_result_t s2io_io_slot_reset(struct pci_dev *pdev)
8624 {
8625 	struct net_device *netdev = pci_get_drvdata(pdev);
8626 	struct s2io_nic *sp = netdev_priv(netdev);
8627 
8628 	if (pci_enable_device(pdev)) {
8629 		pr_err("Cannot re-enable PCI device after reset.\n");
8630 		return PCI_ERS_RESULT_DISCONNECT;
8631 	}
8632 
8633 	pci_set_master(pdev);
8634 	s2io_reset(sp);
8635 
8636 	return PCI_ERS_RESULT_RECOVERED;
8637 }
8638 
8639 /**
8640  * s2io_io_resume - called when traffic can start flowing again.
8641  * @pdev: Pointer to PCI device
8642  *
8643  * This callback is called when the error recovery driver tells
8644  * us that its OK to resume normal operation.
8645  */
8646 static void s2io_io_resume(struct pci_dev *pdev)
8647 {
8648 	struct net_device *netdev = pci_get_drvdata(pdev);
8649 	struct s2io_nic *sp = netdev_priv(netdev);
8650 
8651 	if (netif_running(netdev)) {
8652 		if (s2io_card_up(sp)) {
8653 			pr_err("Can't bring device back up after reset.\n");
8654 			return;
8655 		}
8656 
8657 		if (s2io_set_mac_addr(netdev, netdev->dev_addr) == FAILURE) {
8658 			s2io_card_down(sp);
8659 			pr_err("Can't restore mac addr after reset.\n");
8660 			return;
8661 		}
8662 	}
8663 
8664 	netif_device_attach(netdev);
8665 	netif_tx_wake_all_queues(netdev);
8666 }
8667