1 /************************************************************************ 2 * s2io.c: A Linux PCI-X Ethernet driver for Neterion 10GbE Server NIC 3 * Copyright(c) 2002-2010 Exar Corp. 4 * 5 * This software may be used and distributed according to the terms of 6 * the GNU General Public License (GPL), incorporated herein by reference. 7 * Drivers based on or derived from this code fall under the GPL and must 8 * retain the authorship, copyright and license notice. This file is not 9 * a complete program and may only be used when the entire operating 10 * system is licensed under the GPL. 11 * See the file COPYING in this distribution for more information. 12 * 13 * Credits: 14 * Jeff Garzik : For pointing out the improper error condition 15 * check in the s2io_xmit routine and also some 16 * issues in the Tx watch dog function. Also for 17 * patiently answering all those innumerable 18 * questions regaring the 2.6 porting issues. 19 * Stephen Hemminger : Providing proper 2.6 porting mechanism for some 20 * macros available only in 2.6 Kernel. 21 * Francois Romieu : For pointing out all code part that were 22 * deprecated and also styling related comments. 23 * Grant Grundler : For helping me get rid of some Architecture 24 * dependent code. 25 * Christopher Hellwig : Some more 2.6 specific issues in the driver. 26 * 27 * The module loadable parameters that are supported by the driver and a brief 28 * explanation of all the variables. 29 * 30 * rx_ring_num : This can be used to program the number of receive rings used 31 * in the driver. 32 * rx_ring_sz: This defines the number of receive blocks each ring can have. 33 * This is also an array of size 8. 34 * rx_ring_mode: This defines the operation mode of all 8 rings. The valid 35 * values are 1, 2. 36 * tx_fifo_num: This defines the number of Tx FIFOs thats used int the driver. 37 * tx_fifo_len: This too is an array of 8. Each element defines the number of 38 * Tx descriptors that can be associated with each corresponding FIFO. 39 * intr_type: This defines the type of interrupt. The values can be 0(INTA), 40 * 2(MSI_X). Default value is '2(MSI_X)' 41 * lro_max_pkts: This parameter defines maximum number of packets can be 42 * aggregated as a single large packet 43 * napi: This parameter used to enable/disable NAPI (polling Rx) 44 * Possible values '1' for enable and '0' for disable. Default is '1' 45 * ufo: This parameter used to enable/disable UDP Fragmentation Offload(UFO) 46 * Possible values '1' for enable and '0' for disable. Default is '0' 47 * vlan_tag_strip: This can be used to enable or disable vlan stripping. 48 * Possible values '1' for enable , '0' for disable. 49 * Default is '2' - which means disable in promisc mode 50 * and enable in non-promiscuous mode. 51 * multiq: This parameter used to enable/disable MULTIQUEUE support. 52 * Possible values '1' for enable and '0' for disable. Default is '0' 53 ************************************************************************/ 54 55 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 56 57 #include <linux/module.h> 58 #include <linux/types.h> 59 #include <linux/errno.h> 60 #include <linux/ioport.h> 61 #include <linux/pci.h> 62 #include <linux/dma-mapping.h> 63 #include <linux/kernel.h> 64 #include <linux/netdevice.h> 65 #include <linux/etherdevice.h> 66 #include <linux/mdio.h> 67 #include <linux/skbuff.h> 68 #include <linux/init.h> 69 #include <linux/delay.h> 70 #include <linux/stddef.h> 71 #include <linux/ioctl.h> 72 #include <linux/timex.h> 73 #include <linux/ethtool.h> 74 #include <linux/workqueue.h> 75 #include <linux/if_vlan.h> 76 #include <linux/ip.h> 77 #include <linux/tcp.h> 78 #include <linux/uaccess.h> 79 #include <linux/io.h> 80 #include <linux/slab.h> 81 #include <linux/prefetch.h> 82 #include <net/tcp.h> 83 84 #include <asm/div64.h> 85 #include <asm/irq.h> 86 87 /* local include */ 88 #include "s2io.h" 89 #include "s2io-regs.h" 90 91 #define DRV_VERSION "2.0.26.28" 92 93 /* S2io Driver name & version. */ 94 static const char s2io_driver_name[] = "Neterion"; 95 static const char s2io_driver_version[] = DRV_VERSION; 96 97 static const int rxd_size[2] = {32, 48}; 98 static const int rxd_count[2] = {127, 85}; 99 100 static inline int RXD_IS_UP2DT(struct RxD_t *rxdp) 101 { 102 int ret; 103 104 ret = ((!(rxdp->Control_1 & RXD_OWN_XENA)) && 105 (GET_RXD_MARKER(rxdp->Control_2) != THE_RXD_MARK)); 106 107 return ret; 108 } 109 110 /* 111 * Cards with following subsystem_id have a link state indication 112 * problem, 600B, 600C, 600D, 640B, 640C and 640D. 113 * macro below identifies these cards given the subsystem_id. 114 */ 115 #define CARDS_WITH_FAULTY_LINK_INDICATORS(dev_type, subid) \ 116 (dev_type == XFRAME_I_DEVICE) ? \ 117 ((((subid >= 0x600B) && (subid <= 0x600D)) || \ 118 ((subid >= 0x640B) && (subid <= 0x640D))) ? 1 : 0) : 0 119 120 #define LINK_IS_UP(val64) (!(val64 & (ADAPTER_STATUS_RMAC_REMOTE_FAULT | \ 121 ADAPTER_STATUS_RMAC_LOCAL_FAULT))) 122 123 static inline int is_s2io_card_up(const struct s2io_nic *sp) 124 { 125 return test_bit(__S2IO_STATE_CARD_UP, &sp->state); 126 } 127 128 /* Ethtool related variables and Macros. */ 129 static const char s2io_gstrings[][ETH_GSTRING_LEN] = { 130 "Register test\t(offline)", 131 "Eeprom test\t(offline)", 132 "Link test\t(online)", 133 "RLDRAM test\t(offline)", 134 "BIST Test\t(offline)" 135 }; 136 137 static const char ethtool_xena_stats_keys[][ETH_GSTRING_LEN] = { 138 {"tmac_frms"}, 139 {"tmac_data_octets"}, 140 {"tmac_drop_frms"}, 141 {"tmac_mcst_frms"}, 142 {"tmac_bcst_frms"}, 143 {"tmac_pause_ctrl_frms"}, 144 {"tmac_ttl_octets"}, 145 {"tmac_ucst_frms"}, 146 {"tmac_nucst_frms"}, 147 {"tmac_any_err_frms"}, 148 {"tmac_ttl_less_fb_octets"}, 149 {"tmac_vld_ip_octets"}, 150 {"tmac_vld_ip"}, 151 {"tmac_drop_ip"}, 152 {"tmac_icmp"}, 153 {"tmac_rst_tcp"}, 154 {"tmac_tcp"}, 155 {"tmac_udp"}, 156 {"rmac_vld_frms"}, 157 {"rmac_data_octets"}, 158 {"rmac_fcs_err_frms"}, 159 {"rmac_drop_frms"}, 160 {"rmac_vld_mcst_frms"}, 161 {"rmac_vld_bcst_frms"}, 162 {"rmac_in_rng_len_err_frms"}, 163 {"rmac_out_rng_len_err_frms"}, 164 {"rmac_long_frms"}, 165 {"rmac_pause_ctrl_frms"}, 166 {"rmac_unsup_ctrl_frms"}, 167 {"rmac_ttl_octets"}, 168 {"rmac_accepted_ucst_frms"}, 169 {"rmac_accepted_nucst_frms"}, 170 {"rmac_discarded_frms"}, 171 {"rmac_drop_events"}, 172 {"rmac_ttl_less_fb_octets"}, 173 {"rmac_ttl_frms"}, 174 {"rmac_usized_frms"}, 175 {"rmac_osized_frms"}, 176 {"rmac_frag_frms"}, 177 {"rmac_jabber_frms"}, 178 {"rmac_ttl_64_frms"}, 179 {"rmac_ttl_65_127_frms"}, 180 {"rmac_ttl_128_255_frms"}, 181 {"rmac_ttl_256_511_frms"}, 182 {"rmac_ttl_512_1023_frms"}, 183 {"rmac_ttl_1024_1518_frms"}, 184 {"rmac_ip"}, 185 {"rmac_ip_octets"}, 186 {"rmac_hdr_err_ip"}, 187 {"rmac_drop_ip"}, 188 {"rmac_icmp"}, 189 {"rmac_tcp"}, 190 {"rmac_udp"}, 191 {"rmac_err_drp_udp"}, 192 {"rmac_xgmii_err_sym"}, 193 {"rmac_frms_q0"}, 194 {"rmac_frms_q1"}, 195 {"rmac_frms_q2"}, 196 {"rmac_frms_q3"}, 197 {"rmac_frms_q4"}, 198 {"rmac_frms_q5"}, 199 {"rmac_frms_q6"}, 200 {"rmac_frms_q7"}, 201 {"rmac_full_q0"}, 202 {"rmac_full_q1"}, 203 {"rmac_full_q2"}, 204 {"rmac_full_q3"}, 205 {"rmac_full_q4"}, 206 {"rmac_full_q5"}, 207 {"rmac_full_q6"}, 208 {"rmac_full_q7"}, 209 {"rmac_pause_cnt"}, 210 {"rmac_xgmii_data_err_cnt"}, 211 {"rmac_xgmii_ctrl_err_cnt"}, 212 {"rmac_accepted_ip"}, 213 {"rmac_err_tcp"}, 214 {"rd_req_cnt"}, 215 {"new_rd_req_cnt"}, 216 {"new_rd_req_rtry_cnt"}, 217 {"rd_rtry_cnt"}, 218 {"wr_rtry_rd_ack_cnt"}, 219 {"wr_req_cnt"}, 220 {"new_wr_req_cnt"}, 221 {"new_wr_req_rtry_cnt"}, 222 {"wr_rtry_cnt"}, 223 {"wr_disc_cnt"}, 224 {"rd_rtry_wr_ack_cnt"}, 225 {"txp_wr_cnt"}, 226 {"txd_rd_cnt"}, 227 {"txd_wr_cnt"}, 228 {"rxd_rd_cnt"}, 229 {"rxd_wr_cnt"}, 230 {"txf_rd_cnt"}, 231 {"rxf_wr_cnt"} 232 }; 233 234 static const char ethtool_enhanced_stats_keys[][ETH_GSTRING_LEN] = { 235 {"rmac_ttl_1519_4095_frms"}, 236 {"rmac_ttl_4096_8191_frms"}, 237 {"rmac_ttl_8192_max_frms"}, 238 {"rmac_ttl_gt_max_frms"}, 239 {"rmac_osized_alt_frms"}, 240 {"rmac_jabber_alt_frms"}, 241 {"rmac_gt_max_alt_frms"}, 242 {"rmac_vlan_frms"}, 243 {"rmac_len_discard"}, 244 {"rmac_fcs_discard"}, 245 {"rmac_pf_discard"}, 246 {"rmac_da_discard"}, 247 {"rmac_red_discard"}, 248 {"rmac_rts_discard"}, 249 {"rmac_ingm_full_discard"}, 250 {"link_fault_cnt"} 251 }; 252 253 static const char ethtool_driver_stats_keys[][ETH_GSTRING_LEN] = { 254 {"\n DRIVER STATISTICS"}, 255 {"single_bit_ecc_errs"}, 256 {"double_bit_ecc_errs"}, 257 {"parity_err_cnt"}, 258 {"serious_err_cnt"}, 259 {"soft_reset_cnt"}, 260 {"fifo_full_cnt"}, 261 {"ring_0_full_cnt"}, 262 {"ring_1_full_cnt"}, 263 {"ring_2_full_cnt"}, 264 {"ring_3_full_cnt"}, 265 {"ring_4_full_cnt"}, 266 {"ring_5_full_cnt"}, 267 {"ring_6_full_cnt"}, 268 {"ring_7_full_cnt"}, 269 {"alarm_transceiver_temp_high"}, 270 {"alarm_transceiver_temp_low"}, 271 {"alarm_laser_bias_current_high"}, 272 {"alarm_laser_bias_current_low"}, 273 {"alarm_laser_output_power_high"}, 274 {"alarm_laser_output_power_low"}, 275 {"warn_transceiver_temp_high"}, 276 {"warn_transceiver_temp_low"}, 277 {"warn_laser_bias_current_high"}, 278 {"warn_laser_bias_current_low"}, 279 {"warn_laser_output_power_high"}, 280 {"warn_laser_output_power_low"}, 281 {"lro_aggregated_pkts"}, 282 {"lro_flush_both_count"}, 283 {"lro_out_of_sequence_pkts"}, 284 {"lro_flush_due_to_max_pkts"}, 285 {"lro_avg_aggr_pkts"}, 286 {"mem_alloc_fail_cnt"}, 287 {"pci_map_fail_cnt"}, 288 {"watchdog_timer_cnt"}, 289 {"mem_allocated"}, 290 {"mem_freed"}, 291 {"link_up_cnt"}, 292 {"link_down_cnt"}, 293 {"link_up_time"}, 294 {"link_down_time"}, 295 {"tx_tcode_buf_abort_cnt"}, 296 {"tx_tcode_desc_abort_cnt"}, 297 {"tx_tcode_parity_err_cnt"}, 298 {"tx_tcode_link_loss_cnt"}, 299 {"tx_tcode_list_proc_err_cnt"}, 300 {"rx_tcode_parity_err_cnt"}, 301 {"rx_tcode_abort_cnt"}, 302 {"rx_tcode_parity_abort_cnt"}, 303 {"rx_tcode_rda_fail_cnt"}, 304 {"rx_tcode_unkn_prot_cnt"}, 305 {"rx_tcode_fcs_err_cnt"}, 306 {"rx_tcode_buf_size_err_cnt"}, 307 {"rx_tcode_rxd_corrupt_cnt"}, 308 {"rx_tcode_unkn_err_cnt"}, 309 {"tda_err_cnt"}, 310 {"pfc_err_cnt"}, 311 {"pcc_err_cnt"}, 312 {"tti_err_cnt"}, 313 {"tpa_err_cnt"}, 314 {"sm_err_cnt"}, 315 {"lso_err_cnt"}, 316 {"mac_tmac_err_cnt"}, 317 {"mac_rmac_err_cnt"}, 318 {"xgxs_txgxs_err_cnt"}, 319 {"xgxs_rxgxs_err_cnt"}, 320 {"rc_err_cnt"}, 321 {"prc_pcix_err_cnt"}, 322 {"rpa_err_cnt"}, 323 {"rda_err_cnt"}, 324 {"rti_err_cnt"}, 325 {"mc_err_cnt"} 326 }; 327 328 #define S2IO_XENA_STAT_LEN ARRAY_SIZE(ethtool_xena_stats_keys) 329 #define S2IO_ENHANCED_STAT_LEN ARRAY_SIZE(ethtool_enhanced_stats_keys) 330 #define S2IO_DRIVER_STAT_LEN ARRAY_SIZE(ethtool_driver_stats_keys) 331 332 #define XFRAME_I_STAT_LEN (S2IO_XENA_STAT_LEN + S2IO_DRIVER_STAT_LEN) 333 #define XFRAME_II_STAT_LEN (XFRAME_I_STAT_LEN + S2IO_ENHANCED_STAT_LEN) 334 335 #define XFRAME_I_STAT_STRINGS_LEN (XFRAME_I_STAT_LEN * ETH_GSTRING_LEN) 336 #define XFRAME_II_STAT_STRINGS_LEN (XFRAME_II_STAT_LEN * ETH_GSTRING_LEN) 337 338 #define S2IO_TEST_LEN ARRAY_SIZE(s2io_gstrings) 339 #define S2IO_STRINGS_LEN (S2IO_TEST_LEN * ETH_GSTRING_LEN) 340 341 #define S2IO_TIMER_CONF(timer, handle, arg, exp) \ 342 init_timer(&timer); \ 343 timer.function = handle; \ 344 timer.data = (unsigned long)arg; \ 345 mod_timer(&timer, (jiffies + exp)) \ 346 347 /* copy mac addr to def_mac_addr array */ 348 static void do_s2io_copy_mac_addr(struct s2io_nic *sp, int offset, u64 mac_addr) 349 { 350 sp->def_mac_addr[offset].mac_addr[5] = (u8) (mac_addr); 351 sp->def_mac_addr[offset].mac_addr[4] = (u8) (mac_addr >> 8); 352 sp->def_mac_addr[offset].mac_addr[3] = (u8) (mac_addr >> 16); 353 sp->def_mac_addr[offset].mac_addr[2] = (u8) (mac_addr >> 24); 354 sp->def_mac_addr[offset].mac_addr[1] = (u8) (mac_addr >> 32); 355 sp->def_mac_addr[offset].mac_addr[0] = (u8) (mac_addr >> 40); 356 } 357 358 /* 359 * Constants to be programmed into the Xena's registers, to configure 360 * the XAUI. 361 */ 362 363 #define END_SIGN 0x0 364 static const u64 herc_act_dtx_cfg[] = { 365 /* Set address */ 366 0x8000051536750000ULL, 0x80000515367500E0ULL, 367 /* Write data */ 368 0x8000051536750004ULL, 0x80000515367500E4ULL, 369 /* Set address */ 370 0x80010515003F0000ULL, 0x80010515003F00E0ULL, 371 /* Write data */ 372 0x80010515003F0004ULL, 0x80010515003F00E4ULL, 373 /* Set address */ 374 0x801205150D440000ULL, 0x801205150D4400E0ULL, 375 /* Write data */ 376 0x801205150D440004ULL, 0x801205150D4400E4ULL, 377 /* Set address */ 378 0x80020515F2100000ULL, 0x80020515F21000E0ULL, 379 /* Write data */ 380 0x80020515F2100004ULL, 0x80020515F21000E4ULL, 381 /* Done */ 382 END_SIGN 383 }; 384 385 static const u64 xena_dtx_cfg[] = { 386 /* Set address */ 387 0x8000051500000000ULL, 0x80000515000000E0ULL, 388 /* Write data */ 389 0x80000515D9350004ULL, 0x80000515D93500E4ULL, 390 /* Set address */ 391 0x8001051500000000ULL, 0x80010515000000E0ULL, 392 /* Write data */ 393 0x80010515001E0004ULL, 0x80010515001E00E4ULL, 394 /* Set address */ 395 0x8002051500000000ULL, 0x80020515000000E0ULL, 396 /* Write data */ 397 0x80020515F2100004ULL, 0x80020515F21000E4ULL, 398 END_SIGN 399 }; 400 401 /* 402 * Constants for Fixing the MacAddress problem seen mostly on 403 * Alpha machines. 404 */ 405 static const u64 fix_mac[] = { 406 0x0060000000000000ULL, 0x0060600000000000ULL, 407 0x0040600000000000ULL, 0x0000600000000000ULL, 408 0x0020600000000000ULL, 0x0060600000000000ULL, 409 0x0020600000000000ULL, 0x0060600000000000ULL, 410 0x0020600000000000ULL, 0x0060600000000000ULL, 411 0x0020600000000000ULL, 0x0060600000000000ULL, 412 0x0020600000000000ULL, 0x0060600000000000ULL, 413 0x0020600000000000ULL, 0x0060600000000000ULL, 414 0x0020600000000000ULL, 0x0060600000000000ULL, 415 0x0020600000000000ULL, 0x0060600000000000ULL, 416 0x0020600000000000ULL, 0x0060600000000000ULL, 417 0x0020600000000000ULL, 0x0060600000000000ULL, 418 0x0020600000000000ULL, 0x0000600000000000ULL, 419 0x0040600000000000ULL, 0x0060600000000000ULL, 420 END_SIGN 421 }; 422 423 MODULE_LICENSE("GPL"); 424 MODULE_VERSION(DRV_VERSION); 425 426 427 /* Module Loadable parameters. */ 428 S2IO_PARM_INT(tx_fifo_num, FIFO_DEFAULT_NUM); 429 S2IO_PARM_INT(rx_ring_num, 1); 430 S2IO_PARM_INT(multiq, 0); 431 S2IO_PARM_INT(rx_ring_mode, 1); 432 S2IO_PARM_INT(use_continuous_tx_intrs, 1); 433 S2IO_PARM_INT(rmac_pause_time, 0x100); 434 S2IO_PARM_INT(mc_pause_threshold_q0q3, 187); 435 S2IO_PARM_INT(mc_pause_threshold_q4q7, 187); 436 S2IO_PARM_INT(shared_splits, 0); 437 S2IO_PARM_INT(tmac_util_period, 5); 438 S2IO_PARM_INT(rmac_util_period, 5); 439 S2IO_PARM_INT(l3l4hdr_size, 128); 440 /* 0 is no steering, 1 is Priority steering, 2 is Default steering */ 441 S2IO_PARM_INT(tx_steering_type, TX_DEFAULT_STEERING); 442 /* Frequency of Rx desc syncs expressed as power of 2 */ 443 S2IO_PARM_INT(rxsync_frequency, 3); 444 /* Interrupt type. Values can be 0(INTA), 2(MSI_X) */ 445 S2IO_PARM_INT(intr_type, 2); 446 /* Large receive offload feature */ 447 448 /* Max pkts to be aggregated by LRO at one time. If not specified, 449 * aggregation happens until we hit max IP pkt size(64K) 450 */ 451 S2IO_PARM_INT(lro_max_pkts, 0xFFFF); 452 S2IO_PARM_INT(indicate_max_pkts, 0); 453 454 S2IO_PARM_INT(napi, 1); 455 S2IO_PARM_INT(ufo, 0); 456 S2IO_PARM_INT(vlan_tag_strip, NO_STRIP_IN_PROMISC); 457 458 static unsigned int tx_fifo_len[MAX_TX_FIFOS] = 459 {DEFAULT_FIFO_0_LEN, [1 ...(MAX_TX_FIFOS - 1)] = DEFAULT_FIFO_1_7_LEN}; 460 static unsigned int rx_ring_sz[MAX_RX_RINGS] = 461 {[0 ...(MAX_RX_RINGS - 1)] = SMALL_BLK_CNT}; 462 static unsigned int rts_frm_len[MAX_RX_RINGS] = 463 {[0 ...(MAX_RX_RINGS - 1)] = 0 }; 464 465 module_param_array(tx_fifo_len, uint, NULL, 0); 466 module_param_array(rx_ring_sz, uint, NULL, 0); 467 module_param_array(rts_frm_len, uint, NULL, 0); 468 469 /* 470 * S2IO device table. 471 * This table lists all the devices that this driver supports. 472 */ 473 static DEFINE_PCI_DEVICE_TABLE(s2io_tbl) = { 474 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_WIN, 475 PCI_ANY_ID, PCI_ANY_ID}, 476 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_UNI, 477 PCI_ANY_ID, PCI_ANY_ID}, 478 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_WIN, 479 PCI_ANY_ID, PCI_ANY_ID}, 480 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_UNI, 481 PCI_ANY_ID, PCI_ANY_ID}, 482 {0,} 483 }; 484 485 MODULE_DEVICE_TABLE(pci, s2io_tbl); 486 487 static struct pci_error_handlers s2io_err_handler = { 488 .error_detected = s2io_io_error_detected, 489 .slot_reset = s2io_io_slot_reset, 490 .resume = s2io_io_resume, 491 }; 492 493 static struct pci_driver s2io_driver = { 494 .name = "S2IO", 495 .id_table = s2io_tbl, 496 .probe = s2io_init_nic, 497 .remove = __devexit_p(s2io_rem_nic), 498 .err_handler = &s2io_err_handler, 499 }; 500 501 /* A simplifier macro used both by init and free shared_mem Fns(). */ 502 #define TXD_MEM_PAGE_CNT(len, per_each) ((len+per_each - 1) / per_each) 503 504 /* netqueue manipulation helper functions */ 505 static inline void s2io_stop_all_tx_queue(struct s2io_nic *sp) 506 { 507 if (!sp->config.multiq) { 508 int i; 509 510 for (i = 0; i < sp->config.tx_fifo_num; i++) 511 sp->mac_control.fifos[i].queue_state = FIFO_QUEUE_STOP; 512 } 513 netif_tx_stop_all_queues(sp->dev); 514 } 515 516 static inline void s2io_stop_tx_queue(struct s2io_nic *sp, int fifo_no) 517 { 518 if (!sp->config.multiq) 519 sp->mac_control.fifos[fifo_no].queue_state = 520 FIFO_QUEUE_STOP; 521 522 netif_tx_stop_all_queues(sp->dev); 523 } 524 525 static inline void s2io_start_all_tx_queue(struct s2io_nic *sp) 526 { 527 if (!sp->config.multiq) { 528 int i; 529 530 for (i = 0; i < sp->config.tx_fifo_num; i++) 531 sp->mac_control.fifos[i].queue_state = FIFO_QUEUE_START; 532 } 533 netif_tx_start_all_queues(sp->dev); 534 } 535 536 static inline void s2io_start_tx_queue(struct s2io_nic *sp, int fifo_no) 537 { 538 if (!sp->config.multiq) 539 sp->mac_control.fifos[fifo_no].queue_state = 540 FIFO_QUEUE_START; 541 542 netif_tx_start_all_queues(sp->dev); 543 } 544 545 static inline void s2io_wake_all_tx_queue(struct s2io_nic *sp) 546 { 547 if (!sp->config.multiq) { 548 int i; 549 550 for (i = 0; i < sp->config.tx_fifo_num; i++) 551 sp->mac_control.fifos[i].queue_state = FIFO_QUEUE_START; 552 } 553 netif_tx_wake_all_queues(sp->dev); 554 } 555 556 static inline void s2io_wake_tx_queue( 557 struct fifo_info *fifo, int cnt, u8 multiq) 558 { 559 560 if (multiq) { 561 if (cnt && __netif_subqueue_stopped(fifo->dev, fifo->fifo_no)) 562 netif_wake_subqueue(fifo->dev, fifo->fifo_no); 563 } else if (cnt && (fifo->queue_state == FIFO_QUEUE_STOP)) { 564 if (netif_queue_stopped(fifo->dev)) { 565 fifo->queue_state = FIFO_QUEUE_START; 566 netif_wake_queue(fifo->dev); 567 } 568 } 569 } 570 571 /** 572 * init_shared_mem - Allocation and Initialization of Memory 573 * @nic: Device private variable. 574 * Description: The function allocates all the memory areas shared 575 * between the NIC and the driver. This includes Tx descriptors, 576 * Rx descriptors and the statistics block. 577 */ 578 579 static int init_shared_mem(struct s2io_nic *nic) 580 { 581 u32 size; 582 void *tmp_v_addr, *tmp_v_addr_next; 583 dma_addr_t tmp_p_addr, tmp_p_addr_next; 584 struct RxD_block *pre_rxd_blk = NULL; 585 int i, j, blk_cnt; 586 int lst_size, lst_per_page; 587 struct net_device *dev = nic->dev; 588 unsigned long tmp; 589 struct buffAdd *ba; 590 struct config_param *config = &nic->config; 591 struct mac_info *mac_control = &nic->mac_control; 592 unsigned long long mem_allocated = 0; 593 594 /* Allocation and initialization of TXDLs in FIFOs */ 595 size = 0; 596 for (i = 0; i < config->tx_fifo_num; i++) { 597 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i]; 598 599 size += tx_cfg->fifo_len; 600 } 601 if (size > MAX_AVAILABLE_TXDS) { 602 DBG_PRINT(ERR_DBG, 603 "Too many TxDs requested: %d, max supported: %d\n", 604 size, MAX_AVAILABLE_TXDS); 605 return -EINVAL; 606 } 607 608 size = 0; 609 for (i = 0; i < config->tx_fifo_num; i++) { 610 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i]; 611 612 size = tx_cfg->fifo_len; 613 /* 614 * Legal values are from 2 to 8192 615 */ 616 if (size < 2) { 617 DBG_PRINT(ERR_DBG, "Fifo %d: Invalid length (%d) - " 618 "Valid lengths are 2 through 8192\n", 619 i, size); 620 return -EINVAL; 621 } 622 } 623 624 lst_size = (sizeof(struct TxD) * config->max_txds); 625 lst_per_page = PAGE_SIZE / lst_size; 626 627 for (i = 0; i < config->tx_fifo_num; i++) { 628 struct fifo_info *fifo = &mac_control->fifos[i]; 629 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i]; 630 int fifo_len = tx_cfg->fifo_len; 631 int list_holder_size = fifo_len * sizeof(struct list_info_hold); 632 633 fifo->list_info = kzalloc(list_holder_size, GFP_KERNEL); 634 if (!fifo->list_info) { 635 DBG_PRINT(INFO_DBG, "Malloc failed for list_info\n"); 636 return -ENOMEM; 637 } 638 mem_allocated += list_holder_size; 639 } 640 for (i = 0; i < config->tx_fifo_num; i++) { 641 int page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len, 642 lst_per_page); 643 struct fifo_info *fifo = &mac_control->fifos[i]; 644 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i]; 645 646 fifo->tx_curr_put_info.offset = 0; 647 fifo->tx_curr_put_info.fifo_len = tx_cfg->fifo_len - 1; 648 fifo->tx_curr_get_info.offset = 0; 649 fifo->tx_curr_get_info.fifo_len = tx_cfg->fifo_len - 1; 650 fifo->fifo_no = i; 651 fifo->nic = nic; 652 fifo->max_txds = MAX_SKB_FRAGS + 2; 653 fifo->dev = dev; 654 655 for (j = 0; j < page_num; j++) { 656 int k = 0; 657 dma_addr_t tmp_p; 658 void *tmp_v; 659 tmp_v = pci_alloc_consistent(nic->pdev, 660 PAGE_SIZE, &tmp_p); 661 if (!tmp_v) { 662 DBG_PRINT(INFO_DBG, 663 "pci_alloc_consistent failed for TxDL\n"); 664 return -ENOMEM; 665 } 666 /* If we got a zero DMA address(can happen on 667 * certain platforms like PPC), reallocate. 668 * Store virtual address of page we don't want, 669 * to be freed later. 670 */ 671 if (!tmp_p) { 672 mac_control->zerodma_virt_addr = tmp_v; 673 DBG_PRINT(INIT_DBG, 674 "%s: Zero DMA address for TxDL. " 675 "Virtual address %p\n", 676 dev->name, tmp_v); 677 tmp_v = pci_alloc_consistent(nic->pdev, 678 PAGE_SIZE, &tmp_p); 679 if (!tmp_v) { 680 DBG_PRINT(INFO_DBG, 681 "pci_alloc_consistent failed for TxDL\n"); 682 return -ENOMEM; 683 } 684 mem_allocated += PAGE_SIZE; 685 } 686 while (k < lst_per_page) { 687 int l = (j * lst_per_page) + k; 688 if (l == tx_cfg->fifo_len) 689 break; 690 fifo->list_info[l].list_virt_addr = 691 tmp_v + (k * lst_size); 692 fifo->list_info[l].list_phy_addr = 693 tmp_p + (k * lst_size); 694 k++; 695 } 696 } 697 } 698 699 for (i = 0; i < config->tx_fifo_num; i++) { 700 struct fifo_info *fifo = &mac_control->fifos[i]; 701 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i]; 702 703 size = tx_cfg->fifo_len; 704 fifo->ufo_in_band_v = kcalloc(size, sizeof(u64), GFP_KERNEL); 705 if (!fifo->ufo_in_band_v) 706 return -ENOMEM; 707 mem_allocated += (size * sizeof(u64)); 708 } 709 710 /* Allocation and initialization of RXDs in Rings */ 711 size = 0; 712 for (i = 0; i < config->rx_ring_num; i++) { 713 struct rx_ring_config *rx_cfg = &config->rx_cfg[i]; 714 struct ring_info *ring = &mac_control->rings[i]; 715 716 if (rx_cfg->num_rxd % (rxd_count[nic->rxd_mode] + 1)) { 717 DBG_PRINT(ERR_DBG, "%s: Ring%d RxD count is not a " 718 "multiple of RxDs per Block\n", 719 dev->name, i); 720 return FAILURE; 721 } 722 size += rx_cfg->num_rxd; 723 ring->block_count = rx_cfg->num_rxd / 724 (rxd_count[nic->rxd_mode] + 1); 725 ring->pkt_cnt = rx_cfg->num_rxd - ring->block_count; 726 } 727 if (nic->rxd_mode == RXD_MODE_1) 728 size = (size * (sizeof(struct RxD1))); 729 else 730 size = (size * (sizeof(struct RxD3))); 731 732 for (i = 0; i < config->rx_ring_num; i++) { 733 struct rx_ring_config *rx_cfg = &config->rx_cfg[i]; 734 struct ring_info *ring = &mac_control->rings[i]; 735 736 ring->rx_curr_get_info.block_index = 0; 737 ring->rx_curr_get_info.offset = 0; 738 ring->rx_curr_get_info.ring_len = rx_cfg->num_rxd - 1; 739 ring->rx_curr_put_info.block_index = 0; 740 ring->rx_curr_put_info.offset = 0; 741 ring->rx_curr_put_info.ring_len = rx_cfg->num_rxd - 1; 742 ring->nic = nic; 743 ring->ring_no = i; 744 745 blk_cnt = rx_cfg->num_rxd / (rxd_count[nic->rxd_mode] + 1); 746 /* Allocating all the Rx blocks */ 747 for (j = 0; j < blk_cnt; j++) { 748 struct rx_block_info *rx_blocks; 749 int l; 750 751 rx_blocks = &ring->rx_blocks[j]; 752 size = SIZE_OF_BLOCK; /* size is always page size */ 753 tmp_v_addr = pci_alloc_consistent(nic->pdev, size, 754 &tmp_p_addr); 755 if (tmp_v_addr == NULL) { 756 /* 757 * In case of failure, free_shared_mem() 758 * is called, which should free any 759 * memory that was alloced till the 760 * failure happened. 761 */ 762 rx_blocks->block_virt_addr = tmp_v_addr; 763 return -ENOMEM; 764 } 765 mem_allocated += size; 766 memset(tmp_v_addr, 0, size); 767 768 size = sizeof(struct rxd_info) * 769 rxd_count[nic->rxd_mode]; 770 rx_blocks->block_virt_addr = tmp_v_addr; 771 rx_blocks->block_dma_addr = tmp_p_addr; 772 rx_blocks->rxds = kmalloc(size, GFP_KERNEL); 773 if (!rx_blocks->rxds) 774 return -ENOMEM; 775 mem_allocated += size; 776 for (l = 0; l < rxd_count[nic->rxd_mode]; l++) { 777 rx_blocks->rxds[l].virt_addr = 778 rx_blocks->block_virt_addr + 779 (rxd_size[nic->rxd_mode] * l); 780 rx_blocks->rxds[l].dma_addr = 781 rx_blocks->block_dma_addr + 782 (rxd_size[nic->rxd_mode] * l); 783 } 784 } 785 /* Interlinking all Rx Blocks */ 786 for (j = 0; j < blk_cnt; j++) { 787 int next = (j + 1) % blk_cnt; 788 tmp_v_addr = ring->rx_blocks[j].block_virt_addr; 789 tmp_v_addr_next = ring->rx_blocks[next].block_virt_addr; 790 tmp_p_addr = ring->rx_blocks[j].block_dma_addr; 791 tmp_p_addr_next = ring->rx_blocks[next].block_dma_addr; 792 793 pre_rxd_blk = tmp_v_addr; 794 pre_rxd_blk->reserved_2_pNext_RxD_block = 795 (unsigned long)tmp_v_addr_next; 796 pre_rxd_blk->pNext_RxD_Blk_physical = 797 (u64)tmp_p_addr_next; 798 } 799 } 800 if (nic->rxd_mode == RXD_MODE_3B) { 801 /* 802 * Allocation of Storages for buffer addresses in 2BUFF mode 803 * and the buffers as well. 804 */ 805 for (i = 0; i < config->rx_ring_num; i++) { 806 struct rx_ring_config *rx_cfg = &config->rx_cfg[i]; 807 struct ring_info *ring = &mac_control->rings[i]; 808 809 blk_cnt = rx_cfg->num_rxd / 810 (rxd_count[nic->rxd_mode] + 1); 811 size = sizeof(struct buffAdd *) * blk_cnt; 812 ring->ba = kmalloc(size, GFP_KERNEL); 813 if (!ring->ba) 814 return -ENOMEM; 815 mem_allocated += size; 816 for (j = 0; j < blk_cnt; j++) { 817 int k = 0; 818 819 size = sizeof(struct buffAdd) * 820 (rxd_count[nic->rxd_mode] + 1); 821 ring->ba[j] = kmalloc(size, GFP_KERNEL); 822 if (!ring->ba[j]) 823 return -ENOMEM; 824 mem_allocated += size; 825 while (k != rxd_count[nic->rxd_mode]) { 826 ba = &ring->ba[j][k]; 827 size = BUF0_LEN + ALIGN_SIZE; 828 ba->ba_0_org = kmalloc(size, GFP_KERNEL); 829 if (!ba->ba_0_org) 830 return -ENOMEM; 831 mem_allocated += size; 832 tmp = (unsigned long)ba->ba_0_org; 833 tmp += ALIGN_SIZE; 834 tmp &= ~((unsigned long)ALIGN_SIZE); 835 ba->ba_0 = (void *)tmp; 836 837 size = BUF1_LEN + ALIGN_SIZE; 838 ba->ba_1_org = kmalloc(size, GFP_KERNEL); 839 if (!ba->ba_1_org) 840 return -ENOMEM; 841 mem_allocated += size; 842 tmp = (unsigned long)ba->ba_1_org; 843 tmp += ALIGN_SIZE; 844 tmp &= ~((unsigned long)ALIGN_SIZE); 845 ba->ba_1 = (void *)tmp; 846 k++; 847 } 848 } 849 } 850 } 851 852 /* Allocation and initialization of Statistics block */ 853 size = sizeof(struct stat_block); 854 mac_control->stats_mem = 855 pci_alloc_consistent(nic->pdev, size, 856 &mac_control->stats_mem_phy); 857 858 if (!mac_control->stats_mem) { 859 /* 860 * In case of failure, free_shared_mem() is called, which 861 * should free any memory that was alloced till the 862 * failure happened. 863 */ 864 return -ENOMEM; 865 } 866 mem_allocated += size; 867 mac_control->stats_mem_sz = size; 868 869 tmp_v_addr = mac_control->stats_mem; 870 mac_control->stats_info = tmp_v_addr; 871 memset(tmp_v_addr, 0, size); 872 DBG_PRINT(INIT_DBG, "%s: Ring Mem PHY: 0x%llx\n", 873 dev_name(&nic->pdev->dev), (unsigned long long)tmp_p_addr); 874 mac_control->stats_info->sw_stat.mem_allocated += mem_allocated; 875 return SUCCESS; 876 } 877 878 /** 879 * free_shared_mem - Free the allocated Memory 880 * @nic: Device private variable. 881 * Description: This function is to free all memory locations allocated by 882 * the init_shared_mem() function and return it to the kernel. 883 */ 884 885 static void free_shared_mem(struct s2io_nic *nic) 886 { 887 int i, j, blk_cnt, size; 888 void *tmp_v_addr; 889 dma_addr_t tmp_p_addr; 890 int lst_size, lst_per_page; 891 struct net_device *dev; 892 int page_num = 0; 893 struct config_param *config; 894 struct mac_info *mac_control; 895 struct stat_block *stats; 896 struct swStat *swstats; 897 898 if (!nic) 899 return; 900 901 dev = nic->dev; 902 903 config = &nic->config; 904 mac_control = &nic->mac_control; 905 stats = mac_control->stats_info; 906 swstats = &stats->sw_stat; 907 908 lst_size = sizeof(struct TxD) * config->max_txds; 909 lst_per_page = PAGE_SIZE / lst_size; 910 911 for (i = 0; i < config->tx_fifo_num; i++) { 912 struct fifo_info *fifo = &mac_control->fifos[i]; 913 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i]; 914 915 page_num = TXD_MEM_PAGE_CNT(tx_cfg->fifo_len, lst_per_page); 916 for (j = 0; j < page_num; j++) { 917 int mem_blks = (j * lst_per_page); 918 struct list_info_hold *fli; 919 920 if (!fifo->list_info) 921 return; 922 923 fli = &fifo->list_info[mem_blks]; 924 if (!fli->list_virt_addr) 925 break; 926 pci_free_consistent(nic->pdev, PAGE_SIZE, 927 fli->list_virt_addr, 928 fli->list_phy_addr); 929 swstats->mem_freed += PAGE_SIZE; 930 } 931 /* If we got a zero DMA address during allocation, 932 * free the page now 933 */ 934 if (mac_control->zerodma_virt_addr) { 935 pci_free_consistent(nic->pdev, PAGE_SIZE, 936 mac_control->zerodma_virt_addr, 937 (dma_addr_t)0); 938 DBG_PRINT(INIT_DBG, 939 "%s: Freeing TxDL with zero DMA address. " 940 "Virtual address %p\n", 941 dev->name, mac_control->zerodma_virt_addr); 942 swstats->mem_freed += PAGE_SIZE; 943 } 944 kfree(fifo->list_info); 945 swstats->mem_freed += tx_cfg->fifo_len * 946 sizeof(struct list_info_hold); 947 } 948 949 size = SIZE_OF_BLOCK; 950 for (i = 0; i < config->rx_ring_num; i++) { 951 struct ring_info *ring = &mac_control->rings[i]; 952 953 blk_cnt = ring->block_count; 954 for (j = 0; j < blk_cnt; j++) { 955 tmp_v_addr = ring->rx_blocks[j].block_virt_addr; 956 tmp_p_addr = ring->rx_blocks[j].block_dma_addr; 957 if (tmp_v_addr == NULL) 958 break; 959 pci_free_consistent(nic->pdev, size, 960 tmp_v_addr, tmp_p_addr); 961 swstats->mem_freed += size; 962 kfree(ring->rx_blocks[j].rxds); 963 swstats->mem_freed += sizeof(struct rxd_info) * 964 rxd_count[nic->rxd_mode]; 965 } 966 } 967 968 if (nic->rxd_mode == RXD_MODE_3B) { 969 /* Freeing buffer storage addresses in 2BUFF mode. */ 970 for (i = 0; i < config->rx_ring_num; i++) { 971 struct rx_ring_config *rx_cfg = &config->rx_cfg[i]; 972 struct ring_info *ring = &mac_control->rings[i]; 973 974 blk_cnt = rx_cfg->num_rxd / 975 (rxd_count[nic->rxd_mode] + 1); 976 for (j = 0; j < blk_cnt; j++) { 977 int k = 0; 978 if (!ring->ba[j]) 979 continue; 980 while (k != rxd_count[nic->rxd_mode]) { 981 struct buffAdd *ba = &ring->ba[j][k]; 982 kfree(ba->ba_0_org); 983 swstats->mem_freed += 984 BUF0_LEN + ALIGN_SIZE; 985 kfree(ba->ba_1_org); 986 swstats->mem_freed += 987 BUF1_LEN + ALIGN_SIZE; 988 k++; 989 } 990 kfree(ring->ba[j]); 991 swstats->mem_freed += sizeof(struct buffAdd) * 992 (rxd_count[nic->rxd_mode] + 1); 993 } 994 kfree(ring->ba); 995 swstats->mem_freed += sizeof(struct buffAdd *) * 996 blk_cnt; 997 } 998 } 999 1000 for (i = 0; i < nic->config.tx_fifo_num; i++) { 1001 struct fifo_info *fifo = &mac_control->fifos[i]; 1002 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i]; 1003 1004 if (fifo->ufo_in_band_v) { 1005 swstats->mem_freed += tx_cfg->fifo_len * 1006 sizeof(u64); 1007 kfree(fifo->ufo_in_band_v); 1008 } 1009 } 1010 1011 if (mac_control->stats_mem) { 1012 swstats->mem_freed += mac_control->stats_mem_sz; 1013 pci_free_consistent(nic->pdev, 1014 mac_control->stats_mem_sz, 1015 mac_control->stats_mem, 1016 mac_control->stats_mem_phy); 1017 } 1018 } 1019 1020 /** 1021 * s2io_verify_pci_mode - 1022 */ 1023 1024 static int s2io_verify_pci_mode(struct s2io_nic *nic) 1025 { 1026 struct XENA_dev_config __iomem *bar0 = nic->bar0; 1027 register u64 val64 = 0; 1028 int mode; 1029 1030 val64 = readq(&bar0->pci_mode); 1031 mode = (u8)GET_PCI_MODE(val64); 1032 1033 if (val64 & PCI_MODE_UNKNOWN_MODE) 1034 return -1; /* Unknown PCI mode */ 1035 return mode; 1036 } 1037 1038 #define NEC_VENID 0x1033 1039 #define NEC_DEVID 0x0125 1040 static int s2io_on_nec_bridge(struct pci_dev *s2io_pdev) 1041 { 1042 struct pci_dev *tdev = NULL; 1043 while ((tdev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, tdev)) != NULL) { 1044 if (tdev->vendor == NEC_VENID && tdev->device == NEC_DEVID) { 1045 if (tdev->bus == s2io_pdev->bus->parent) { 1046 pci_dev_put(tdev); 1047 return 1; 1048 } 1049 } 1050 } 1051 return 0; 1052 } 1053 1054 static int bus_speed[8] = {33, 133, 133, 200, 266, 133, 200, 266}; 1055 /** 1056 * s2io_print_pci_mode - 1057 */ 1058 static int s2io_print_pci_mode(struct s2io_nic *nic) 1059 { 1060 struct XENA_dev_config __iomem *bar0 = nic->bar0; 1061 register u64 val64 = 0; 1062 int mode; 1063 struct config_param *config = &nic->config; 1064 const char *pcimode; 1065 1066 val64 = readq(&bar0->pci_mode); 1067 mode = (u8)GET_PCI_MODE(val64); 1068 1069 if (val64 & PCI_MODE_UNKNOWN_MODE) 1070 return -1; /* Unknown PCI mode */ 1071 1072 config->bus_speed = bus_speed[mode]; 1073 1074 if (s2io_on_nec_bridge(nic->pdev)) { 1075 DBG_PRINT(ERR_DBG, "%s: Device is on PCI-E bus\n", 1076 nic->dev->name); 1077 return mode; 1078 } 1079 1080 switch (mode) { 1081 case PCI_MODE_PCI_33: 1082 pcimode = "33MHz PCI bus"; 1083 break; 1084 case PCI_MODE_PCI_66: 1085 pcimode = "66MHz PCI bus"; 1086 break; 1087 case PCI_MODE_PCIX_M1_66: 1088 pcimode = "66MHz PCIX(M1) bus"; 1089 break; 1090 case PCI_MODE_PCIX_M1_100: 1091 pcimode = "100MHz PCIX(M1) bus"; 1092 break; 1093 case PCI_MODE_PCIX_M1_133: 1094 pcimode = "133MHz PCIX(M1) bus"; 1095 break; 1096 case PCI_MODE_PCIX_M2_66: 1097 pcimode = "133MHz PCIX(M2) bus"; 1098 break; 1099 case PCI_MODE_PCIX_M2_100: 1100 pcimode = "200MHz PCIX(M2) bus"; 1101 break; 1102 case PCI_MODE_PCIX_M2_133: 1103 pcimode = "266MHz PCIX(M2) bus"; 1104 break; 1105 default: 1106 pcimode = "unsupported bus!"; 1107 mode = -1; 1108 } 1109 1110 DBG_PRINT(ERR_DBG, "%s: Device is on %d bit %s\n", 1111 nic->dev->name, val64 & PCI_MODE_32_BITS ? 32 : 64, pcimode); 1112 1113 return mode; 1114 } 1115 1116 /** 1117 * init_tti - Initialization transmit traffic interrupt scheme 1118 * @nic: device private variable 1119 * @link: link status (UP/DOWN) used to enable/disable continuous 1120 * transmit interrupts 1121 * Description: The function configures transmit traffic interrupts 1122 * Return Value: SUCCESS on success and 1123 * '-1' on failure 1124 */ 1125 1126 static int init_tti(struct s2io_nic *nic, int link) 1127 { 1128 struct XENA_dev_config __iomem *bar0 = nic->bar0; 1129 register u64 val64 = 0; 1130 int i; 1131 struct config_param *config = &nic->config; 1132 1133 for (i = 0; i < config->tx_fifo_num; i++) { 1134 /* 1135 * TTI Initialization. Default Tx timer gets us about 1136 * 250 interrupts per sec. Continuous interrupts are enabled 1137 * by default. 1138 */ 1139 if (nic->device_type == XFRAME_II_DEVICE) { 1140 int count = (nic->config.bus_speed * 125)/2; 1141 val64 = TTI_DATA1_MEM_TX_TIMER_VAL(count); 1142 } else 1143 val64 = TTI_DATA1_MEM_TX_TIMER_VAL(0x2078); 1144 1145 val64 |= TTI_DATA1_MEM_TX_URNG_A(0xA) | 1146 TTI_DATA1_MEM_TX_URNG_B(0x10) | 1147 TTI_DATA1_MEM_TX_URNG_C(0x30) | 1148 TTI_DATA1_MEM_TX_TIMER_AC_EN; 1149 if (i == 0) 1150 if (use_continuous_tx_intrs && (link == LINK_UP)) 1151 val64 |= TTI_DATA1_MEM_TX_TIMER_CI_EN; 1152 writeq(val64, &bar0->tti_data1_mem); 1153 1154 if (nic->config.intr_type == MSI_X) { 1155 val64 = TTI_DATA2_MEM_TX_UFC_A(0x10) | 1156 TTI_DATA2_MEM_TX_UFC_B(0x100) | 1157 TTI_DATA2_MEM_TX_UFC_C(0x200) | 1158 TTI_DATA2_MEM_TX_UFC_D(0x300); 1159 } else { 1160 if ((nic->config.tx_steering_type == 1161 TX_DEFAULT_STEERING) && 1162 (config->tx_fifo_num > 1) && 1163 (i >= nic->udp_fifo_idx) && 1164 (i < (nic->udp_fifo_idx + 1165 nic->total_udp_fifos))) 1166 val64 = TTI_DATA2_MEM_TX_UFC_A(0x50) | 1167 TTI_DATA2_MEM_TX_UFC_B(0x80) | 1168 TTI_DATA2_MEM_TX_UFC_C(0x100) | 1169 TTI_DATA2_MEM_TX_UFC_D(0x120); 1170 else 1171 val64 = TTI_DATA2_MEM_TX_UFC_A(0x10) | 1172 TTI_DATA2_MEM_TX_UFC_B(0x20) | 1173 TTI_DATA2_MEM_TX_UFC_C(0x40) | 1174 TTI_DATA2_MEM_TX_UFC_D(0x80); 1175 } 1176 1177 writeq(val64, &bar0->tti_data2_mem); 1178 1179 val64 = TTI_CMD_MEM_WE | 1180 TTI_CMD_MEM_STROBE_NEW_CMD | 1181 TTI_CMD_MEM_OFFSET(i); 1182 writeq(val64, &bar0->tti_command_mem); 1183 1184 if (wait_for_cmd_complete(&bar0->tti_command_mem, 1185 TTI_CMD_MEM_STROBE_NEW_CMD, 1186 S2IO_BIT_RESET) != SUCCESS) 1187 return FAILURE; 1188 } 1189 1190 return SUCCESS; 1191 } 1192 1193 /** 1194 * init_nic - Initialization of hardware 1195 * @nic: device private variable 1196 * Description: The function sequentially configures every block 1197 * of the H/W from their reset values. 1198 * Return Value: SUCCESS on success and 1199 * '-1' on failure (endian settings incorrect). 1200 */ 1201 1202 static int init_nic(struct s2io_nic *nic) 1203 { 1204 struct XENA_dev_config __iomem *bar0 = nic->bar0; 1205 struct net_device *dev = nic->dev; 1206 register u64 val64 = 0; 1207 void __iomem *add; 1208 u32 time; 1209 int i, j; 1210 int dtx_cnt = 0; 1211 unsigned long long mem_share; 1212 int mem_size; 1213 struct config_param *config = &nic->config; 1214 struct mac_info *mac_control = &nic->mac_control; 1215 1216 /* to set the swapper controle on the card */ 1217 if (s2io_set_swapper(nic)) { 1218 DBG_PRINT(ERR_DBG, "ERROR: Setting Swapper failed\n"); 1219 return -EIO; 1220 } 1221 1222 /* 1223 * Herc requires EOI to be removed from reset before XGXS, so.. 1224 */ 1225 if (nic->device_type & XFRAME_II_DEVICE) { 1226 val64 = 0xA500000000ULL; 1227 writeq(val64, &bar0->sw_reset); 1228 msleep(500); 1229 val64 = readq(&bar0->sw_reset); 1230 } 1231 1232 /* Remove XGXS from reset state */ 1233 val64 = 0; 1234 writeq(val64, &bar0->sw_reset); 1235 msleep(500); 1236 val64 = readq(&bar0->sw_reset); 1237 1238 /* Ensure that it's safe to access registers by checking 1239 * RIC_RUNNING bit is reset. Check is valid only for XframeII. 1240 */ 1241 if (nic->device_type == XFRAME_II_DEVICE) { 1242 for (i = 0; i < 50; i++) { 1243 val64 = readq(&bar0->adapter_status); 1244 if (!(val64 & ADAPTER_STATUS_RIC_RUNNING)) 1245 break; 1246 msleep(10); 1247 } 1248 if (i == 50) 1249 return -ENODEV; 1250 } 1251 1252 /* Enable Receiving broadcasts */ 1253 add = &bar0->mac_cfg; 1254 val64 = readq(&bar0->mac_cfg); 1255 val64 |= MAC_RMAC_BCAST_ENABLE; 1256 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key); 1257 writel((u32)val64, add); 1258 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key); 1259 writel((u32) (val64 >> 32), (add + 4)); 1260 1261 /* Read registers in all blocks */ 1262 val64 = readq(&bar0->mac_int_mask); 1263 val64 = readq(&bar0->mc_int_mask); 1264 val64 = readq(&bar0->xgxs_int_mask); 1265 1266 /* Set MTU */ 1267 val64 = dev->mtu; 1268 writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len); 1269 1270 if (nic->device_type & XFRAME_II_DEVICE) { 1271 while (herc_act_dtx_cfg[dtx_cnt] != END_SIGN) { 1272 SPECIAL_REG_WRITE(herc_act_dtx_cfg[dtx_cnt], 1273 &bar0->dtx_control, UF); 1274 if (dtx_cnt & 0x1) 1275 msleep(1); /* Necessary!! */ 1276 dtx_cnt++; 1277 } 1278 } else { 1279 while (xena_dtx_cfg[dtx_cnt] != END_SIGN) { 1280 SPECIAL_REG_WRITE(xena_dtx_cfg[dtx_cnt], 1281 &bar0->dtx_control, UF); 1282 val64 = readq(&bar0->dtx_control); 1283 dtx_cnt++; 1284 } 1285 } 1286 1287 /* Tx DMA Initialization */ 1288 val64 = 0; 1289 writeq(val64, &bar0->tx_fifo_partition_0); 1290 writeq(val64, &bar0->tx_fifo_partition_1); 1291 writeq(val64, &bar0->tx_fifo_partition_2); 1292 writeq(val64, &bar0->tx_fifo_partition_3); 1293 1294 for (i = 0, j = 0; i < config->tx_fifo_num; i++) { 1295 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i]; 1296 1297 val64 |= vBIT(tx_cfg->fifo_len - 1, ((j * 32) + 19), 13) | 1298 vBIT(tx_cfg->fifo_priority, ((j * 32) + 5), 3); 1299 1300 if (i == (config->tx_fifo_num - 1)) { 1301 if (i % 2 == 0) 1302 i++; 1303 } 1304 1305 switch (i) { 1306 case 1: 1307 writeq(val64, &bar0->tx_fifo_partition_0); 1308 val64 = 0; 1309 j = 0; 1310 break; 1311 case 3: 1312 writeq(val64, &bar0->tx_fifo_partition_1); 1313 val64 = 0; 1314 j = 0; 1315 break; 1316 case 5: 1317 writeq(val64, &bar0->tx_fifo_partition_2); 1318 val64 = 0; 1319 j = 0; 1320 break; 1321 case 7: 1322 writeq(val64, &bar0->tx_fifo_partition_3); 1323 val64 = 0; 1324 j = 0; 1325 break; 1326 default: 1327 j++; 1328 break; 1329 } 1330 } 1331 1332 /* 1333 * Disable 4 PCCs for Xena1, 2 and 3 as per H/W bug 1334 * SXE-008 TRANSMIT DMA ARBITRATION ISSUE. 1335 */ 1336 if ((nic->device_type == XFRAME_I_DEVICE) && (nic->pdev->revision < 4)) 1337 writeq(PCC_ENABLE_FOUR, &bar0->pcc_enable); 1338 1339 val64 = readq(&bar0->tx_fifo_partition_0); 1340 DBG_PRINT(INIT_DBG, "Fifo partition at: 0x%p is: 0x%llx\n", 1341 &bar0->tx_fifo_partition_0, (unsigned long long)val64); 1342 1343 /* 1344 * Initialization of Tx_PA_CONFIG register to ignore packet 1345 * integrity checking. 1346 */ 1347 val64 = readq(&bar0->tx_pa_cfg); 1348 val64 |= TX_PA_CFG_IGNORE_FRM_ERR | 1349 TX_PA_CFG_IGNORE_SNAP_OUI | 1350 TX_PA_CFG_IGNORE_LLC_CTRL | 1351 TX_PA_CFG_IGNORE_L2_ERR; 1352 writeq(val64, &bar0->tx_pa_cfg); 1353 1354 /* Rx DMA intialization. */ 1355 val64 = 0; 1356 for (i = 0; i < config->rx_ring_num; i++) { 1357 struct rx_ring_config *rx_cfg = &config->rx_cfg[i]; 1358 1359 val64 |= vBIT(rx_cfg->ring_priority, (5 + (i * 8)), 3); 1360 } 1361 writeq(val64, &bar0->rx_queue_priority); 1362 1363 /* 1364 * Allocating equal share of memory to all the 1365 * configured Rings. 1366 */ 1367 val64 = 0; 1368 if (nic->device_type & XFRAME_II_DEVICE) 1369 mem_size = 32; 1370 else 1371 mem_size = 64; 1372 1373 for (i = 0; i < config->rx_ring_num; i++) { 1374 switch (i) { 1375 case 0: 1376 mem_share = (mem_size / config->rx_ring_num + 1377 mem_size % config->rx_ring_num); 1378 val64 |= RX_QUEUE_CFG_Q0_SZ(mem_share); 1379 continue; 1380 case 1: 1381 mem_share = (mem_size / config->rx_ring_num); 1382 val64 |= RX_QUEUE_CFG_Q1_SZ(mem_share); 1383 continue; 1384 case 2: 1385 mem_share = (mem_size / config->rx_ring_num); 1386 val64 |= RX_QUEUE_CFG_Q2_SZ(mem_share); 1387 continue; 1388 case 3: 1389 mem_share = (mem_size / config->rx_ring_num); 1390 val64 |= RX_QUEUE_CFG_Q3_SZ(mem_share); 1391 continue; 1392 case 4: 1393 mem_share = (mem_size / config->rx_ring_num); 1394 val64 |= RX_QUEUE_CFG_Q4_SZ(mem_share); 1395 continue; 1396 case 5: 1397 mem_share = (mem_size / config->rx_ring_num); 1398 val64 |= RX_QUEUE_CFG_Q5_SZ(mem_share); 1399 continue; 1400 case 6: 1401 mem_share = (mem_size / config->rx_ring_num); 1402 val64 |= RX_QUEUE_CFG_Q6_SZ(mem_share); 1403 continue; 1404 case 7: 1405 mem_share = (mem_size / config->rx_ring_num); 1406 val64 |= RX_QUEUE_CFG_Q7_SZ(mem_share); 1407 continue; 1408 } 1409 } 1410 writeq(val64, &bar0->rx_queue_cfg); 1411 1412 /* 1413 * Filling Tx round robin registers 1414 * as per the number of FIFOs for equal scheduling priority 1415 */ 1416 switch (config->tx_fifo_num) { 1417 case 1: 1418 val64 = 0x0; 1419 writeq(val64, &bar0->tx_w_round_robin_0); 1420 writeq(val64, &bar0->tx_w_round_robin_1); 1421 writeq(val64, &bar0->tx_w_round_robin_2); 1422 writeq(val64, &bar0->tx_w_round_robin_3); 1423 writeq(val64, &bar0->tx_w_round_robin_4); 1424 break; 1425 case 2: 1426 val64 = 0x0001000100010001ULL; 1427 writeq(val64, &bar0->tx_w_round_robin_0); 1428 writeq(val64, &bar0->tx_w_round_robin_1); 1429 writeq(val64, &bar0->tx_w_round_robin_2); 1430 writeq(val64, &bar0->tx_w_round_robin_3); 1431 val64 = 0x0001000100000000ULL; 1432 writeq(val64, &bar0->tx_w_round_robin_4); 1433 break; 1434 case 3: 1435 val64 = 0x0001020001020001ULL; 1436 writeq(val64, &bar0->tx_w_round_robin_0); 1437 val64 = 0x0200010200010200ULL; 1438 writeq(val64, &bar0->tx_w_round_robin_1); 1439 val64 = 0x0102000102000102ULL; 1440 writeq(val64, &bar0->tx_w_round_robin_2); 1441 val64 = 0x0001020001020001ULL; 1442 writeq(val64, &bar0->tx_w_round_robin_3); 1443 val64 = 0x0200010200000000ULL; 1444 writeq(val64, &bar0->tx_w_round_robin_4); 1445 break; 1446 case 4: 1447 val64 = 0x0001020300010203ULL; 1448 writeq(val64, &bar0->tx_w_round_robin_0); 1449 writeq(val64, &bar0->tx_w_round_robin_1); 1450 writeq(val64, &bar0->tx_w_round_robin_2); 1451 writeq(val64, &bar0->tx_w_round_robin_3); 1452 val64 = 0x0001020300000000ULL; 1453 writeq(val64, &bar0->tx_w_round_robin_4); 1454 break; 1455 case 5: 1456 val64 = 0x0001020304000102ULL; 1457 writeq(val64, &bar0->tx_w_round_robin_0); 1458 val64 = 0x0304000102030400ULL; 1459 writeq(val64, &bar0->tx_w_round_robin_1); 1460 val64 = 0x0102030400010203ULL; 1461 writeq(val64, &bar0->tx_w_round_robin_2); 1462 val64 = 0x0400010203040001ULL; 1463 writeq(val64, &bar0->tx_w_round_robin_3); 1464 val64 = 0x0203040000000000ULL; 1465 writeq(val64, &bar0->tx_w_round_robin_4); 1466 break; 1467 case 6: 1468 val64 = 0x0001020304050001ULL; 1469 writeq(val64, &bar0->tx_w_round_robin_0); 1470 val64 = 0x0203040500010203ULL; 1471 writeq(val64, &bar0->tx_w_round_robin_1); 1472 val64 = 0x0405000102030405ULL; 1473 writeq(val64, &bar0->tx_w_round_robin_2); 1474 val64 = 0x0001020304050001ULL; 1475 writeq(val64, &bar0->tx_w_round_robin_3); 1476 val64 = 0x0203040500000000ULL; 1477 writeq(val64, &bar0->tx_w_round_robin_4); 1478 break; 1479 case 7: 1480 val64 = 0x0001020304050600ULL; 1481 writeq(val64, &bar0->tx_w_round_robin_0); 1482 val64 = 0x0102030405060001ULL; 1483 writeq(val64, &bar0->tx_w_round_robin_1); 1484 val64 = 0x0203040506000102ULL; 1485 writeq(val64, &bar0->tx_w_round_robin_2); 1486 val64 = 0x0304050600010203ULL; 1487 writeq(val64, &bar0->tx_w_round_robin_3); 1488 val64 = 0x0405060000000000ULL; 1489 writeq(val64, &bar0->tx_w_round_robin_4); 1490 break; 1491 case 8: 1492 val64 = 0x0001020304050607ULL; 1493 writeq(val64, &bar0->tx_w_round_robin_0); 1494 writeq(val64, &bar0->tx_w_round_robin_1); 1495 writeq(val64, &bar0->tx_w_round_robin_2); 1496 writeq(val64, &bar0->tx_w_round_robin_3); 1497 val64 = 0x0001020300000000ULL; 1498 writeq(val64, &bar0->tx_w_round_robin_4); 1499 break; 1500 } 1501 1502 /* Enable all configured Tx FIFO partitions */ 1503 val64 = readq(&bar0->tx_fifo_partition_0); 1504 val64 |= (TX_FIFO_PARTITION_EN); 1505 writeq(val64, &bar0->tx_fifo_partition_0); 1506 1507 /* Filling the Rx round robin registers as per the 1508 * number of Rings and steering based on QoS with 1509 * equal priority. 1510 */ 1511 switch (config->rx_ring_num) { 1512 case 1: 1513 val64 = 0x0; 1514 writeq(val64, &bar0->rx_w_round_robin_0); 1515 writeq(val64, &bar0->rx_w_round_robin_1); 1516 writeq(val64, &bar0->rx_w_round_robin_2); 1517 writeq(val64, &bar0->rx_w_round_robin_3); 1518 writeq(val64, &bar0->rx_w_round_robin_4); 1519 1520 val64 = 0x8080808080808080ULL; 1521 writeq(val64, &bar0->rts_qos_steering); 1522 break; 1523 case 2: 1524 val64 = 0x0001000100010001ULL; 1525 writeq(val64, &bar0->rx_w_round_robin_0); 1526 writeq(val64, &bar0->rx_w_round_robin_1); 1527 writeq(val64, &bar0->rx_w_round_robin_2); 1528 writeq(val64, &bar0->rx_w_round_robin_3); 1529 val64 = 0x0001000100000000ULL; 1530 writeq(val64, &bar0->rx_w_round_robin_4); 1531 1532 val64 = 0x8080808040404040ULL; 1533 writeq(val64, &bar0->rts_qos_steering); 1534 break; 1535 case 3: 1536 val64 = 0x0001020001020001ULL; 1537 writeq(val64, &bar0->rx_w_round_robin_0); 1538 val64 = 0x0200010200010200ULL; 1539 writeq(val64, &bar0->rx_w_round_robin_1); 1540 val64 = 0x0102000102000102ULL; 1541 writeq(val64, &bar0->rx_w_round_robin_2); 1542 val64 = 0x0001020001020001ULL; 1543 writeq(val64, &bar0->rx_w_round_robin_3); 1544 val64 = 0x0200010200000000ULL; 1545 writeq(val64, &bar0->rx_w_round_robin_4); 1546 1547 val64 = 0x8080804040402020ULL; 1548 writeq(val64, &bar0->rts_qos_steering); 1549 break; 1550 case 4: 1551 val64 = 0x0001020300010203ULL; 1552 writeq(val64, &bar0->rx_w_round_robin_0); 1553 writeq(val64, &bar0->rx_w_round_robin_1); 1554 writeq(val64, &bar0->rx_w_round_robin_2); 1555 writeq(val64, &bar0->rx_w_round_robin_3); 1556 val64 = 0x0001020300000000ULL; 1557 writeq(val64, &bar0->rx_w_round_robin_4); 1558 1559 val64 = 0x8080404020201010ULL; 1560 writeq(val64, &bar0->rts_qos_steering); 1561 break; 1562 case 5: 1563 val64 = 0x0001020304000102ULL; 1564 writeq(val64, &bar0->rx_w_round_robin_0); 1565 val64 = 0x0304000102030400ULL; 1566 writeq(val64, &bar0->rx_w_round_robin_1); 1567 val64 = 0x0102030400010203ULL; 1568 writeq(val64, &bar0->rx_w_round_robin_2); 1569 val64 = 0x0400010203040001ULL; 1570 writeq(val64, &bar0->rx_w_round_robin_3); 1571 val64 = 0x0203040000000000ULL; 1572 writeq(val64, &bar0->rx_w_round_robin_4); 1573 1574 val64 = 0x8080404020201008ULL; 1575 writeq(val64, &bar0->rts_qos_steering); 1576 break; 1577 case 6: 1578 val64 = 0x0001020304050001ULL; 1579 writeq(val64, &bar0->rx_w_round_robin_0); 1580 val64 = 0x0203040500010203ULL; 1581 writeq(val64, &bar0->rx_w_round_robin_1); 1582 val64 = 0x0405000102030405ULL; 1583 writeq(val64, &bar0->rx_w_round_robin_2); 1584 val64 = 0x0001020304050001ULL; 1585 writeq(val64, &bar0->rx_w_round_robin_3); 1586 val64 = 0x0203040500000000ULL; 1587 writeq(val64, &bar0->rx_w_round_robin_4); 1588 1589 val64 = 0x8080404020100804ULL; 1590 writeq(val64, &bar0->rts_qos_steering); 1591 break; 1592 case 7: 1593 val64 = 0x0001020304050600ULL; 1594 writeq(val64, &bar0->rx_w_round_robin_0); 1595 val64 = 0x0102030405060001ULL; 1596 writeq(val64, &bar0->rx_w_round_robin_1); 1597 val64 = 0x0203040506000102ULL; 1598 writeq(val64, &bar0->rx_w_round_robin_2); 1599 val64 = 0x0304050600010203ULL; 1600 writeq(val64, &bar0->rx_w_round_robin_3); 1601 val64 = 0x0405060000000000ULL; 1602 writeq(val64, &bar0->rx_w_round_robin_4); 1603 1604 val64 = 0x8080402010080402ULL; 1605 writeq(val64, &bar0->rts_qos_steering); 1606 break; 1607 case 8: 1608 val64 = 0x0001020304050607ULL; 1609 writeq(val64, &bar0->rx_w_round_robin_0); 1610 writeq(val64, &bar0->rx_w_round_robin_1); 1611 writeq(val64, &bar0->rx_w_round_robin_2); 1612 writeq(val64, &bar0->rx_w_round_robin_3); 1613 val64 = 0x0001020300000000ULL; 1614 writeq(val64, &bar0->rx_w_round_robin_4); 1615 1616 val64 = 0x8040201008040201ULL; 1617 writeq(val64, &bar0->rts_qos_steering); 1618 break; 1619 } 1620 1621 /* UDP Fix */ 1622 val64 = 0; 1623 for (i = 0; i < 8; i++) 1624 writeq(val64, &bar0->rts_frm_len_n[i]); 1625 1626 /* Set the default rts frame length for the rings configured */ 1627 val64 = MAC_RTS_FRM_LEN_SET(dev->mtu+22); 1628 for (i = 0 ; i < config->rx_ring_num ; i++) 1629 writeq(val64, &bar0->rts_frm_len_n[i]); 1630 1631 /* Set the frame length for the configured rings 1632 * desired by the user 1633 */ 1634 for (i = 0; i < config->rx_ring_num; i++) { 1635 /* If rts_frm_len[i] == 0 then it is assumed that user not 1636 * specified frame length steering. 1637 * If the user provides the frame length then program 1638 * the rts_frm_len register for those values or else 1639 * leave it as it is. 1640 */ 1641 if (rts_frm_len[i] != 0) { 1642 writeq(MAC_RTS_FRM_LEN_SET(rts_frm_len[i]), 1643 &bar0->rts_frm_len_n[i]); 1644 } 1645 } 1646 1647 /* Disable differentiated services steering logic */ 1648 for (i = 0; i < 64; i++) { 1649 if (rts_ds_steer(nic, i, 0) == FAILURE) { 1650 DBG_PRINT(ERR_DBG, 1651 "%s: rts_ds_steer failed on codepoint %d\n", 1652 dev->name, i); 1653 return -ENODEV; 1654 } 1655 } 1656 1657 /* Program statistics memory */ 1658 writeq(mac_control->stats_mem_phy, &bar0->stat_addr); 1659 1660 if (nic->device_type == XFRAME_II_DEVICE) { 1661 val64 = STAT_BC(0x320); 1662 writeq(val64, &bar0->stat_byte_cnt); 1663 } 1664 1665 /* 1666 * Initializing the sampling rate for the device to calculate the 1667 * bandwidth utilization. 1668 */ 1669 val64 = MAC_TX_LINK_UTIL_VAL(tmac_util_period) | 1670 MAC_RX_LINK_UTIL_VAL(rmac_util_period); 1671 writeq(val64, &bar0->mac_link_util); 1672 1673 /* 1674 * Initializing the Transmit and Receive Traffic Interrupt 1675 * Scheme. 1676 */ 1677 1678 /* Initialize TTI */ 1679 if (SUCCESS != init_tti(nic, nic->last_link_state)) 1680 return -ENODEV; 1681 1682 /* RTI Initialization */ 1683 if (nic->device_type == XFRAME_II_DEVICE) { 1684 /* 1685 * Programmed to generate Apprx 500 Intrs per 1686 * second 1687 */ 1688 int count = (nic->config.bus_speed * 125)/4; 1689 val64 = RTI_DATA1_MEM_RX_TIMER_VAL(count); 1690 } else 1691 val64 = RTI_DATA1_MEM_RX_TIMER_VAL(0xFFF); 1692 val64 |= RTI_DATA1_MEM_RX_URNG_A(0xA) | 1693 RTI_DATA1_MEM_RX_URNG_B(0x10) | 1694 RTI_DATA1_MEM_RX_URNG_C(0x30) | 1695 RTI_DATA1_MEM_RX_TIMER_AC_EN; 1696 1697 writeq(val64, &bar0->rti_data1_mem); 1698 1699 val64 = RTI_DATA2_MEM_RX_UFC_A(0x1) | 1700 RTI_DATA2_MEM_RX_UFC_B(0x2) ; 1701 if (nic->config.intr_type == MSI_X) 1702 val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x20) | 1703 RTI_DATA2_MEM_RX_UFC_D(0x40)); 1704 else 1705 val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x40) | 1706 RTI_DATA2_MEM_RX_UFC_D(0x80)); 1707 writeq(val64, &bar0->rti_data2_mem); 1708 1709 for (i = 0; i < config->rx_ring_num; i++) { 1710 val64 = RTI_CMD_MEM_WE | 1711 RTI_CMD_MEM_STROBE_NEW_CMD | 1712 RTI_CMD_MEM_OFFSET(i); 1713 writeq(val64, &bar0->rti_command_mem); 1714 1715 /* 1716 * Once the operation completes, the Strobe bit of the 1717 * command register will be reset. We poll for this 1718 * particular condition. We wait for a maximum of 500ms 1719 * for the operation to complete, if it's not complete 1720 * by then we return error. 1721 */ 1722 time = 0; 1723 while (true) { 1724 val64 = readq(&bar0->rti_command_mem); 1725 if (!(val64 & RTI_CMD_MEM_STROBE_NEW_CMD)) 1726 break; 1727 1728 if (time > 10) { 1729 DBG_PRINT(ERR_DBG, "%s: RTI init failed\n", 1730 dev->name); 1731 return -ENODEV; 1732 } 1733 time++; 1734 msleep(50); 1735 } 1736 } 1737 1738 /* 1739 * Initializing proper values as Pause threshold into all 1740 * the 8 Queues on Rx side. 1741 */ 1742 writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q0q3); 1743 writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q4q7); 1744 1745 /* Disable RMAC PAD STRIPPING */ 1746 add = &bar0->mac_cfg; 1747 val64 = readq(&bar0->mac_cfg); 1748 val64 &= ~(MAC_CFG_RMAC_STRIP_PAD); 1749 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key); 1750 writel((u32) (val64), add); 1751 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key); 1752 writel((u32) (val64 >> 32), (add + 4)); 1753 val64 = readq(&bar0->mac_cfg); 1754 1755 /* Enable FCS stripping by adapter */ 1756 add = &bar0->mac_cfg; 1757 val64 = readq(&bar0->mac_cfg); 1758 val64 |= MAC_CFG_RMAC_STRIP_FCS; 1759 if (nic->device_type == XFRAME_II_DEVICE) 1760 writeq(val64, &bar0->mac_cfg); 1761 else { 1762 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key); 1763 writel((u32) (val64), add); 1764 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key); 1765 writel((u32) (val64 >> 32), (add + 4)); 1766 } 1767 1768 /* 1769 * Set the time value to be inserted in the pause frame 1770 * generated by xena. 1771 */ 1772 val64 = readq(&bar0->rmac_pause_cfg); 1773 val64 &= ~(RMAC_PAUSE_HG_PTIME(0xffff)); 1774 val64 |= RMAC_PAUSE_HG_PTIME(nic->mac_control.rmac_pause_time); 1775 writeq(val64, &bar0->rmac_pause_cfg); 1776 1777 /* 1778 * Set the Threshold Limit for Generating the pause frame 1779 * If the amount of data in any Queue exceeds ratio of 1780 * (mac_control.mc_pause_threshold_q0q3 or q4q7)/256 1781 * pause frame is generated 1782 */ 1783 val64 = 0; 1784 for (i = 0; i < 4; i++) { 1785 val64 |= (((u64)0xFF00 | 1786 nic->mac_control.mc_pause_threshold_q0q3) 1787 << (i * 2 * 8)); 1788 } 1789 writeq(val64, &bar0->mc_pause_thresh_q0q3); 1790 1791 val64 = 0; 1792 for (i = 0; i < 4; i++) { 1793 val64 |= (((u64)0xFF00 | 1794 nic->mac_control.mc_pause_threshold_q4q7) 1795 << (i * 2 * 8)); 1796 } 1797 writeq(val64, &bar0->mc_pause_thresh_q4q7); 1798 1799 /* 1800 * TxDMA will stop Read request if the number of read split has 1801 * exceeded the limit pointed by shared_splits 1802 */ 1803 val64 = readq(&bar0->pic_control); 1804 val64 |= PIC_CNTL_SHARED_SPLITS(shared_splits); 1805 writeq(val64, &bar0->pic_control); 1806 1807 if (nic->config.bus_speed == 266) { 1808 writeq(TXREQTO_VAL(0x7f) | TXREQTO_EN, &bar0->txreqtimeout); 1809 writeq(0x0, &bar0->read_retry_delay); 1810 writeq(0x0, &bar0->write_retry_delay); 1811 } 1812 1813 /* 1814 * Programming the Herc to split every write transaction 1815 * that does not start on an ADB to reduce disconnects. 1816 */ 1817 if (nic->device_type == XFRAME_II_DEVICE) { 1818 val64 = FAULT_BEHAVIOUR | EXT_REQ_EN | 1819 MISC_LINK_STABILITY_PRD(3); 1820 writeq(val64, &bar0->misc_control); 1821 val64 = readq(&bar0->pic_control2); 1822 val64 &= ~(s2BIT(13)|s2BIT(14)|s2BIT(15)); 1823 writeq(val64, &bar0->pic_control2); 1824 } 1825 if (strstr(nic->product_name, "CX4")) { 1826 val64 = TMAC_AVG_IPG(0x17); 1827 writeq(val64, &bar0->tmac_avg_ipg); 1828 } 1829 1830 return SUCCESS; 1831 } 1832 #define LINK_UP_DOWN_INTERRUPT 1 1833 #define MAC_RMAC_ERR_TIMER 2 1834 1835 static int s2io_link_fault_indication(struct s2io_nic *nic) 1836 { 1837 if (nic->device_type == XFRAME_II_DEVICE) 1838 return LINK_UP_DOWN_INTERRUPT; 1839 else 1840 return MAC_RMAC_ERR_TIMER; 1841 } 1842 1843 /** 1844 * do_s2io_write_bits - update alarm bits in alarm register 1845 * @value: alarm bits 1846 * @flag: interrupt status 1847 * @addr: address value 1848 * Description: update alarm bits in alarm register 1849 * Return Value: 1850 * NONE. 1851 */ 1852 static void do_s2io_write_bits(u64 value, int flag, void __iomem *addr) 1853 { 1854 u64 temp64; 1855 1856 temp64 = readq(addr); 1857 1858 if (flag == ENABLE_INTRS) 1859 temp64 &= ~((u64)value); 1860 else 1861 temp64 |= ((u64)value); 1862 writeq(temp64, addr); 1863 } 1864 1865 static void en_dis_err_alarms(struct s2io_nic *nic, u16 mask, int flag) 1866 { 1867 struct XENA_dev_config __iomem *bar0 = nic->bar0; 1868 register u64 gen_int_mask = 0; 1869 u64 interruptible; 1870 1871 writeq(DISABLE_ALL_INTRS, &bar0->general_int_mask); 1872 if (mask & TX_DMA_INTR) { 1873 gen_int_mask |= TXDMA_INT_M; 1874 1875 do_s2io_write_bits(TXDMA_TDA_INT | TXDMA_PFC_INT | 1876 TXDMA_PCC_INT | TXDMA_TTI_INT | 1877 TXDMA_LSO_INT | TXDMA_TPA_INT | 1878 TXDMA_SM_INT, flag, &bar0->txdma_int_mask); 1879 1880 do_s2io_write_bits(PFC_ECC_DB_ERR | PFC_SM_ERR_ALARM | 1881 PFC_MISC_0_ERR | PFC_MISC_1_ERR | 1882 PFC_PCIX_ERR | PFC_ECC_SG_ERR, flag, 1883 &bar0->pfc_err_mask); 1884 1885 do_s2io_write_bits(TDA_Fn_ECC_DB_ERR | TDA_SM0_ERR_ALARM | 1886 TDA_SM1_ERR_ALARM | TDA_Fn_ECC_SG_ERR | 1887 TDA_PCIX_ERR, flag, &bar0->tda_err_mask); 1888 1889 do_s2io_write_bits(PCC_FB_ECC_DB_ERR | PCC_TXB_ECC_DB_ERR | 1890 PCC_SM_ERR_ALARM | PCC_WR_ERR_ALARM | 1891 PCC_N_SERR | PCC_6_COF_OV_ERR | 1892 PCC_7_COF_OV_ERR | PCC_6_LSO_OV_ERR | 1893 PCC_7_LSO_OV_ERR | PCC_FB_ECC_SG_ERR | 1894 PCC_TXB_ECC_SG_ERR, 1895 flag, &bar0->pcc_err_mask); 1896 1897 do_s2io_write_bits(TTI_SM_ERR_ALARM | TTI_ECC_SG_ERR | 1898 TTI_ECC_DB_ERR, flag, &bar0->tti_err_mask); 1899 1900 do_s2io_write_bits(LSO6_ABORT | LSO7_ABORT | 1901 LSO6_SM_ERR_ALARM | LSO7_SM_ERR_ALARM | 1902 LSO6_SEND_OFLOW | LSO7_SEND_OFLOW, 1903 flag, &bar0->lso_err_mask); 1904 1905 do_s2io_write_bits(TPA_SM_ERR_ALARM | TPA_TX_FRM_DROP, 1906 flag, &bar0->tpa_err_mask); 1907 1908 do_s2io_write_bits(SM_SM_ERR_ALARM, flag, &bar0->sm_err_mask); 1909 } 1910 1911 if (mask & TX_MAC_INTR) { 1912 gen_int_mask |= TXMAC_INT_M; 1913 do_s2io_write_bits(MAC_INT_STATUS_TMAC_INT, flag, 1914 &bar0->mac_int_mask); 1915 do_s2io_write_bits(TMAC_TX_BUF_OVRN | TMAC_TX_SM_ERR | 1916 TMAC_ECC_SG_ERR | TMAC_ECC_DB_ERR | 1917 TMAC_DESC_ECC_SG_ERR | TMAC_DESC_ECC_DB_ERR, 1918 flag, &bar0->mac_tmac_err_mask); 1919 } 1920 1921 if (mask & TX_XGXS_INTR) { 1922 gen_int_mask |= TXXGXS_INT_M; 1923 do_s2io_write_bits(XGXS_INT_STATUS_TXGXS, flag, 1924 &bar0->xgxs_int_mask); 1925 do_s2io_write_bits(TXGXS_ESTORE_UFLOW | TXGXS_TX_SM_ERR | 1926 TXGXS_ECC_SG_ERR | TXGXS_ECC_DB_ERR, 1927 flag, &bar0->xgxs_txgxs_err_mask); 1928 } 1929 1930 if (mask & RX_DMA_INTR) { 1931 gen_int_mask |= RXDMA_INT_M; 1932 do_s2io_write_bits(RXDMA_INT_RC_INT_M | RXDMA_INT_RPA_INT_M | 1933 RXDMA_INT_RDA_INT_M | RXDMA_INT_RTI_INT_M, 1934 flag, &bar0->rxdma_int_mask); 1935 do_s2io_write_bits(RC_PRCn_ECC_DB_ERR | RC_FTC_ECC_DB_ERR | 1936 RC_PRCn_SM_ERR_ALARM | RC_FTC_SM_ERR_ALARM | 1937 RC_PRCn_ECC_SG_ERR | RC_FTC_ECC_SG_ERR | 1938 RC_RDA_FAIL_WR_Rn, flag, &bar0->rc_err_mask); 1939 do_s2io_write_bits(PRC_PCI_AB_RD_Rn | PRC_PCI_AB_WR_Rn | 1940 PRC_PCI_AB_F_WR_Rn | PRC_PCI_DP_RD_Rn | 1941 PRC_PCI_DP_WR_Rn | PRC_PCI_DP_F_WR_Rn, flag, 1942 &bar0->prc_pcix_err_mask); 1943 do_s2io_write_bits(RPA_SM_ERR_ALARM | RPA_CREDIT_ERR | 1944 RPA_ECC_SG_ERR | RPA_ECC_DB_ERR, flag, 1945 &bar0->rpa_err_mask); 1946 do_s2io_write_bits(RDA_RXDn_ECC_DB_ERR | RDA_FRM_ECC_DB_N_AERR | 1947 RDA_SM1_ERR_ALARM | RDA_SM0_ERR_ALARM | 1948 RDA_RXD_ECC_DB_SERR | RDA_RXDn_ECC_SG_ERR | 1949 RDA_FRM_ECC_SG_ERR | 1950 RDA_MISC_ERR|RDA_PCIX_ERR, 1951 flag, &bar0->rda_err_mask); 1952 do_s2io_write_bits(RTI_SM_ERR_ALARM | 1953 RTI_ECC_SG_ERR | RTI_ECC_DB_ERR, 1954 flag, &bar0->rti_err_mask); 1955 } 1956 1957 if (mask & RX_MAC_INTR) { 1958 gen_int_mask |= RXMAC_INT_M; 1959 do_s2io_write_bits(MAC_INT_STATUS_RMAC_INT, flag, 1960 &bar0->mac_int_mask); 1961 interruptible = (RMAC_RX_BUFF_OVRN | RMAC_RX_SM_ERR | 1962 RMAC_UNUSED_INT | RMAC_SINGLE_ECC_ERR | 1963 RMAC_DOUBLE_ECC_ERR); 1964 if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) 1965 interruptible |= RMAC_LINK_STATE_CHANGE_INT; 1966 do_s2io_write_bits(interruptible, 1967 flag, &bar0->mac_rmac_err_mask); 1968 } 1969 1970 if (mask & RX_XGXS_INTR) { 1971 gen_int_mask |= RXXGXS_INT_M; 1972 do_s2io_write_bits(XGXS_INT_STATUS_RXGXS, flag, 1973 &bar0->xgxs_int_mask); 1974 do_s2io_write_bits(RXGXS_ESTORE_OFLOW | RXGXS_RX_SM_ERR, flag, 1975 &bar0->xgxs_rxgxs_err_mask); 1976 } 1977 1978 if (mask & MC_INTR) { 1979 gen_int_mask |= MC_INT_M; 1980 do_s2io_write_bits(MC_INT_MASK_MC_INT, 1981 flag, &bar0->mc_int_mask); 1982 do_s2io_write_bits(MC_ERR_REG_SM_ERR | MC_ERR_REG_ECC_ALL_SNG | 1983 MC_ERR_REG_ECC_ALL_DBL | PLL_LOCK_N, flag, 1984 &bar0->mc_err_mask); 1985 } 1986 nic->general_int_mask = gen_int_mask; 1987 1988 /* Remove this line when alarm interrupts are enabled */ 1989 nic->general_int_mask = 0; 1990 } 1991 1992 /** 1993 * en_dis_able_nic_intrs - Enable or Disable the interrupts 1994 * @nic: device private variable, 1995 * @mask: A mask indicating which Intr block must be modified and, 1996 * @flag: A flag indicating whether to enable or disable the Intrs. 1997 * Description: This function will either disable or enable the interrupts 1998 * depending on the flag argument. The mask argument can be used to 1999 * enable/disable any Intr block. 2000 * Return Value: NONE. 2001 */ 2002 2003 static void en_dis_able_nic_intrs(struct s2io_nic *nic, u16 mask, int flag) 2004 { 2005 struct XENA_dev_config __iomem *bar0 = nic->bar0; 2006 register u64 temp64 = 0, intr_mask = 0; 2007 2008 intr_mask = nic->general_int_mask; 2009 2010 /* Top level interrupt classification */ 2011 /* PIC Interrupts */ 2012 if (mask & TX_PIC_INTR) { 2013 /* Enable PIC Intrs in the general intr mask register */ 2014 intr_mask |= TXPIC_INT_M; 2015 if (flag == ENABLE_INTRS) { 2016 /* 2017 * If Hercules adapter enable GPIO otherwise 2018 * disable all PCIX, Flash, MDIO, IIC and GPIO 2019 * interrupts for now. 2020 * TODO 2021 */ 2022 if (s2io_link_fault_indication(nic) == 2023 LINK_UP_DOWN_INTERRUPT) { 2024 do_s2io_write_bits(PIC_INT_GPIO, flag, 2025 &bar0->pic_int_mask); 2026 do_s2io_write_bits(GPIO_INT_MASK_LINK_UP, flag, 2027 &bar0->gpio_int_mask); 2028 } else 2029 writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask); 2030 } else if (flag == DISABLE_INTRS) { 2031 /* 2032 * Disable PIC Intrs in the general 2033 * intr mask register 2034 */ 2035 writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask); 2036 } 2037 } 2038 2039 /* Tx traffic interrupts */ 2040 if (mask & TX_TRAFFIC_INTR) { 2041 intr_mask |= TXTRAFFIC_INT_M; 2042 if (flag == ENABLE_INTRS) { 2043 /* 2044 * Enable all the Tx side interrupts 2045 * writing 0 Enables all 64 TX interrupt levels 2046 */ 2047 writeq(0x0, &bar0->tx_traffic_mask); 2048 } else if (flag == DISABLE_INTRS) { 2049 /* 2050 * Disable Tx Traffic Intrs in the general intr mask 2051 * register. 2052 */ 2053 writeq(DISABLE_ALL_INTRS, &bar0->tx_traffic_mask); 2054 } 2055 } 2056 2057 /* Rx traffic interrupts */ 2058 if (mask & RX_TRAFFIC_INTR) { 2059 intr_mask |= RXTRAFFIC_INT_M; 2060 if (flag == ENABLE_INTRS) { 2061 /* writing 0 Enables all 8 RX interrupt levels */ 2062 writeq(0x0, &bar0->rx_traffic_mask); 2063 } else if (flag == DISABLE_INTRS) { 2064 /* 2065 * Disable Rx Traffic Intrs in the general intr mask 2066 * register. 2067 */ 2068 writeq(DISABLE_ALL_INTRS, &bar0->rx_traffic_mask); 2069 } 2070 } 2071 2072 temp64 = readq(&bar0->general_int_mask); 2073 if (flag == ENABLE_INTRS) 2074 temp64 &= ~((u64)intr_mask); 2075 else 2076 temp64 = DISABLE_ALL_INTRS; 2077 writeq(temp64, &bar0->general_int_mask); 2078 2079 nic->general_int_mask = readq(&bar0->general_int_mask); 2080 } 2081 2082 /** 2083 * verify_pcc_quiescent- Checks for PCC quiescent state 2084 * Return: 1 If PCC is quiescence 2085 * 0 If PCC is not quiescence 2086 */ 2087 static int verify_pcc_quiescent(struct s2io_nic *sp, int flag) 2088 { 2089 int ret = 0, herc; 2090 struct XENA_dev_config __iomem *bar0 = sp->bar0; 2091 u64 val64 = readq(&bar0->adapter_status); 2092 2093 herc = (sp->device_type == XFRAME_II_DEVICE); 2094 2095 if (flag == false) { 2096 if ((!herc && (sp->pdev->revision >= 4)) || herc) { 2097 if (!(val64 & ADAPTER_STATUS_RMAC_PCC_IDLE)) 2098 ret = 1; 2099 } else { 2100 if (!(val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE)) 2101 ret = 1; 2102 } 2103 } else { 2104 if ((!herc && (sp->pdev->revision >= 4)) || herc) { 2105 if (((val64 & ADAPTER_STATUS_RMAC_PCC_IDLE) == 2106 ADAPTER_STATUS_RMAC_PCC_IDLE)) 2107 ret = 1; 2108 } else { 2109 if (((val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE) == 2110 ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE)) 2111 ret = 1; 2112 } 2113 } 2114 2115 return ret; 2116 } 2117 /** 2118 * verify_xena_quiescence - Checks whether the H/W is ready 2119 * Description: Returns whether the H/W is ready to go or not. Depending 2120 * on whether adapter enable bit was written or not the comparison 2121 * differs and the calling function passes the input argument flag to 2122 * indicate this. 2123 * Return: 1 If xena is quiescence 2124 * 0 If Xena is not quiescence 2125 */ 2126 2127 static int verify_xena_quiescence(struct s2io_nic *sp) 2128 { 2129 int mode; 2130 struct XENA_dev_config __iomem *bar0 = sp->bar0; 2131 u64 val64 = readq(&bar0->adapter_status); 2132 mode = s2io_verify_pci_mode(sp); 2133 2134 if (!(val64 & ADAPTER_STATUS_TDMA_READY)) { 2135 DBG_PRINT(ERR_DBG, "TDMA is not ready!\n"); 2136 return 0; 2137 } 2138 if (!(val64 & ADAPTER_STATUS_RDMA_READY)) { 2139 DBG_PRINT(ERR_DBG, "RDMA is not ready!\n"); 2140 return 0; 2141 } 2142 if (!(val64 & ADAPTER_STATUS_PFC_READY)) { 2143 DBG_PRINT(ERR_DBG, "PFC is not ready!\n"); 2144 return 0; 2145 } 2146 if (!(val64 & ADAPTER_STATUS_TMAC_BUF_EMPTY)) { 2147 DBG_PRINT(ERR_DBG, "TMAC BUF is not empty!\n"); 2148 return 0; 2149 } 2150 if (!(val64 & ADAPTER_STATUS_PIC_QUIESCENT)) { 2151 DBG_PRINT(ERR_DBG, "PIC is not QUIESCENT!\n"); 2152 return 0; 2153 } 2154 if (!(val64 & ADAPTER_STATUS_MC_DRAM_READY)) { 2155 DBG_PRINT(ERR_DBG, "MC_DRAM is not ready!\n"); 2156 return 0; 2157 } 2158 if (!(val64 & ADAPTER_STATUS_MC_QUEUES_READY)) { 2159 DBG_PRINT(ERR_DBG, "MC_QUEUES is not ready!\n"); 2160 return 0; 2161 } 2162 if (!(val64 & ADAPTER_STATUS_M_PLL_LOCK)) { 2163 DBG_PRINT(ERR_DBG, "M_PLL is not locked!\n"); 2164 return 0; 2165 } 2166 2167 /* 2168 * In PCI 33 mode, the P_PLL is not used, and therefore, 2169 * the the P_PLL_LOCK bit in the adapter_status register will 2170 * not be asserted. 2171 */ 2172 if (!(val64 & ADAPTER_STATUS_P_PLL_LOCK) && 2173 sp->device_type == XFRAME_II_DEVICE && 2174 mode != PCI_MODE_PCI_33) { 2175 DBG_PRINT(ERR_DBG, "P_PLL is not locked!\n"); 2176 return 0; 2177 } 2178 if (!((val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) == 2179 ADAPTER_STATUS_RC_PRC_QUIESCENT)) { 2180 DBG_PRINT(ERR_DBG, "RC_PRC is not QUIESCENT!\n"); 2181 return 0; 2182 } 2183 return 1; 2184 } 2185 2186 /** 2187 * fix_mac_address - Fix for Mac addr problem on Alpha platforms 2188 * @sp: Pointer to device specifc structure 2189 * Description : 2190 * New procedure to clear mac address reading problems on Alpha platforms 2191 * 2192 */ 2193 2194 static void fix_mac_address(struct s2io_nic *sp) 2195 { 2196 struct XENA_dev_config __iomem *bar0 = sp->bar0; 2197 int i = 0; 2198 2199 while (fix_mac[i] != END_SIGN) { 2200 writeq(fix_mac[i++], &bar0->gpio_control); 2201 udelay(10); 2202 (void) readq(&bar0->gpio_control); 2203 } 2204 } 2205 2206 /** 2207 * start_nic - Turns the device on 2208 * @nic : device private variable. 2209 * Description: 2210 * This function actually turns the device on. Before this function is 2211 * called,all Registers are configured from their reset states 2212 * and shared memory is allocated but the NIC is still quiescent. On 2213 * calling this function, the device interrupts are cleared and the NIC is 2214 * literally switched on by writing into the adapter control register. 2215 * Return Value: 2216 * SUCCESS on success and -1 on failure. 2217 */ 2218 2219 static int start_nic(struct s2io_nic *nic) 2220 { 2221 struct XENA_dev_config __iomem *bar0 = nic->bar0; 2222 struct net_device *dev = nic->dev; 2223 register u64 val64 = 0; 2224 u16 subid, i; 2225 struct config_param *config = &nic->config; 2226 struct mac_info *mac_control = &nic->mac_control; 2227 2228 /* PRC Initialization and configuration */ 2229 for (i = 0; i < config->rx_ring_num; i++) { 2230 struct ring_info *ring = &mac_control->rings[i]; 2231 2232 writeq((u64)ring->rx_blocks[0].block_dma_addr, 2233 &bar0->prc_rxd0_n[i]); 2234 2235 val64 = readq(&bar0->prc_ctrl_n[i]); 2236 if (nic->rxd_mode == RXD_MODE_1) 2237 val64 |= PRC_CTRL_RC_ENABLED; 2238 else 2239 val64 |= PRC_CTRL_RC_ENABLED | PRC_CTRL_RING_MODE_3; 2240 if (nic->device_type == XFRAME_II_DEVICE) 2241 val64 |= PRC_CTRL_GROUP_READS; 2242 val64 &= ~PRC_CTRL_RXD_BACKOFF_INTERVAL(0xFFFFFF); 2243 val64 |= PRC_CTRL_RXD_BACKOFF_INTERVAL(0x1000); 2244 writeq(val64, &bar0->prc_ctrl_n[i]); 2245 } 2246 2247 if (nic->rxd_mode == RXD_MODE_3B) { 2248 /* Enabling 2 buffer mode by writing into Rx_pa_cfg reg. */ 2249 val64 = readq(&bar0->rx_pa_cfg); 2250 val64 |= RX_PA_CFG_IGNORE_L2_ERR; 2251 writeq(val64, &bar0->rx_pa_cfg); 2252 } 2253 2254 if (vlan_tag_strip == 0) { 2255 val64 = readq(&bar0->rx_pa_cfg); 2256 val64 &= ~RX_PA_CFG_STRIP_VLAN_TAG; 2257 writeq(val64, &bar0->rx_pa_cfg); 2258 nic->vlan_strip_flag = 0; 2259 } 2260 2261 /* 2262 * Enabling MC-RLDRAM. After enabling the device, we timeout 2263 * for around 100ms, which is approximately the time required 2264 * for the device to be ready for operation. 2265 */ 2266 val64 = readq(&bar0->mc_rldram_mrs); 2267 val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE | MC_RLDRAM_MRS_ENABLE; 2268 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF); 2269 val64 = readq(&bar0->mc_rldram_mrs); 2270 2271 msleep(100); /* Delay by around 100 ms. */ 2272 2273 /* Enabling ECC Protection. */ 2274 val64 = readq(&bar0->adapter_control); 2275 val64 &= ~ADAPTER_ECC_EN; 2276 writeq(val64, &bar0->adapter_control); 2277 2278 /* 2279 * Verify if the device is ready to be enabled, if so enable 2280 * it. 2281 */ 2282 val64 = readq(&bar0->adapter_status); 2283 if (!verify_xena_quiescence(nic)) { 2284 DBG_PRINT(ERR_DBG, "%s: device is not ready, " 2285 "Adapter status reads: 0x%llx\n", 2286 dev->name, (unsigned long long)val64); 2287 return FAILURE; 2288 } 2289 2290 /* 2291 * With some switches, link might be already up at this point. 2292 * Because of this weird behavior, when we enable laser, 2293 * we may not get link. We need to handle this. We cannot 2294 * figure out which switch is misbehaving. So we are forced to 2295 * make a global change. 2296 */ 2297 2298 /* Enabling Laser. */ 2299 val64 = readq(&bar0->adapter_control); 2300 val64 |= ADAPTER_EOI_TX_ON; 2301 writeq(val64, &bar0->adapter_control); 2302 2303 if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) { 2304 /* 2305 * Dont see link state interrupts initially on some switches, 2306 * so directly scheduling the link state task here. 2307 */ 2308 schedule_work(&nic->set_link_task); 2309 } 2310 /* SXE-002: Initialize link and activity LED */ 2311 subid = nic->pdev->subsystem_device; 2312 if (((subid & 0xFF) >= 0x07) && 2313 (nic->device_type == XFRAME_I_DEVICE)) { 2314 val64 = readq(&bar0->gpio_control); 2315 val64 |= 0x0000800000000000ULL; 2316 writeq(val64, &bar0->gpio_control); 2317 val64 = 0x0411040400000000ULL; 2318 writeq(val64, (void __iomem *)bar0 + 0x2700); 2319 } 2320 2321 return SUCCESS; 2322 } 2323 /** 2324 * s2io_txdl_getskb - Get the skb from txdl, unmap and return skb 2325 */ 2326 static struct sk_buff *s2io_txdl_getskb(struct fifo_info *fifo_data, 2327 struct TxD *txdlp, int get_off) 2328 { 2329 struct s2io_nic *nic = fifo_data->nic; 2330 struct sk_buff *skb; 2331 struct TxD *txds; 2332 u16 j, frg_cnt; 2333 2334 txds = txdlp; 2335 if (txds->Host_Control == (u64)(long)fifo_data->ufo_in_band_v) { 2336 pci_unmap_single(nic->pdev, (dma_addr_t)txds->Buffer_Pointer, 2337 sizeof(u64), PCI_DMA_TODEVICE); 2338 txds++; 2339 } 2340 2341 skb = (struct sk_buff *)((unsigned long)txds->Host_Control); 2342 if (!skb) { 2343 memset(txdlp, 0, (sizeof(struct TxD) * fifo_data->max_txds)); 2344 return NULL; 2345 } 2346 pci_unmap_single(nic->pdev, (dma_addr_t)txds->Buffer_Pointer, 2347 skb_headlen(skb), PCI_DMA_TODEVICE); 2348 frg_cnt = skb_shinfo(skb)->nr_frags; 2349 if (frg_cnt) { 2350 txds++; 2351 for (j = 0; j < frg_cnt; j++, txds++) { 2352 const skb_frag_t *frag = &skb_shinfo(skb)->frags[j]; 2353 if (!txds->Buffer_Pointer) 2354 break; 2355 pci_unmap_page(nic->pdev, 2356 (dma_addr_t)txds->Buffer_Pointer, 2357 skb_frag_size(frag), PCI_DMA_TODEVICE); 2358 } 2359 } 2360 memset(txdlp, 0, (sizeof(struct TxD) * fifo_data->max_txds)); 2361 return skb; 2362 } 2363 2364 /** 2365 * free_tx_buffers - Free all queued Tx buffers 2366 * @nic : device private variable. 2367 * Description: 2368 * Free all queued Tx buffers. 2369 * Return Value: void 2370 */ 2371 2372 static void free_tx_buffers(struct s2io_nic *nic) 2373 { 2374 struct net_device *dev = nic->dev; 2375 struct sk_buff *skb; 2376 struct TxD *txdp; 2377 int i, j; 2378 int cnt = 0; 2379 struct config_param *config = &nic->config; 2380 struct mac_info *mac_control = &nic->mac_control; 2381 struct stat_block *stats = mac_control->stats_info; 2382 struct swStat *swstats = &stats->sw_stat; 2383 2384 for (i = 0; i < config->tx_fifo_num; i++) { 2385 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i]; 2386 struct fifo_info *fifo = &mac_control->fifos[i]; 2387 unsigned long flags; 2388 2389 spin_lock_irqsave(&fifo->tx_lock, flags); 2390 for (j = 0; j < tx_cfg->fifo_len; j++) { 2391 txdp = fifo->list_info[j].list_virt_addr; 2392 skb = s2io_txdl_getskb(&mac_control->fifos[i], txdp, j); 2393 if (skb) { 2394 swstats->mem_freed += skb->truesize; 2395 dev_kfree_skb(skb); 2396 cnt++; 2397 } 2398 } 2399 DBG_PRINT(INTR_DBG, 2400 "%s: forcibly freeing %d skbs on FIFO%d\n", 2401 dev->name, cnt, i); 2402 fifo->tx_curr_get_info.offset = 0; 2403 fifo->tx_curr_put_info.offset = 0; 2404 spin_unlock_irqrestore(&fifo->tx_lock, flags); 2405 } 2406 } 2407 2408 /** 2409 * stop_nic - To stop the nic 2410 * @nic ; device private variable. 2411 * Description: 2412 * This function does exactly the opposite of what the start_nic() 2413 * function does. This function is called to stop the device. 2414 * Return Value: 2415 * void. 2416 */ 2417 2418 static void stop_nic(struct s2io_nic *nic) 2419 { 2420 struct XENA_dev_config __iomem *bar0 = nic->bar0; 2421 register u64 val64 = 0; 2422 u16 interruptible; 2423 2424 /* Disable all interrupts */ 2425 en_dis_err_alarms(nic, ENA_ALL_INTRS, DISABLE_INTRS); 2426 interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR; 2427 interruptible |= TX_PIC_INTR; 2428 en_dis_able_nic_intrs(nic, interruptible, DISABLE_INTRS); 2429 2430 /* Clearing Adapter_En bit of ADAPTER_CONTROL Register */ 2431 val64 = readq(&bar0->adapter_control); 2432 val64 &= ~(ADAPTER_CNTL_EN); 2433 writeq(val64, &bar0->adapter_control); 2434 } 2435 2436 /** 2437 * fill_rx_buffers - Allocates the Rx side skbs 2438 * @ring_info: per ring structure 2439 * @from_card_up: If this is true, we will map the buffer to get 2440 * the dma address for buf0 and buf1 to give it to the card. 2441 * Else we will sync the already mapped buffer to give it to the card. 2442 * Description: 2443 * The function allocates Rx side skbs and puts the physical 2444 * address of these buffers into the RxD buffer pointers, so that the NIC 2445 * can DMA the received frame into these locations. 2446 * The NIC supports 3 receive modes, viz 2447 * 1. single buffer, 2448 * 2. three buffer and 2449 * 3. Five buffer modes. 2450 * Each mode defines how many fragments the received frame will be split 2451 * up into by the NIC. The frame is split into L3 header, L4 Header, 2452 * L4 payload in three buffer mode and in 5 buffer mode, L4 payload itself 2453 * is split into 3 fragments. As of now only single buffer mode is 2454 * supported. 2455 * Return Value: 2456 * SUCCESS on success or an appropriate -ve value on failure. 2457 */ 2458 static int fill_rx_buffers(struct s2io_nic *nic, struct ring_info *ring, 2459 int from_card_up) 2460 { 2461 struct sk_buff *skb; 2462 struct RxD_t *rxdp; 2463 int off, size, block_no, block_no1; 2464 u32 alloc_tab = 0; 2465 u32 alloc_cnt; 2466 u64 tmp; 2467 struct buffAdd *ba; 2468 struct RxD_t *first_rxdp = NULL; 2469 u64 Buffer0_ptr = 0, Buffer1_ptr = 0; 2470 int rxd_index = 0; 2471 struct RxD1 *rxdp1; 2472 struct RxD3 *rxdp3; 2473 struct swStat *swstats = &ring->nic->mac_control.stats_info->sw_stat; 2474 2475 alloc_cnt = ring->pkt_cnt - ring->rx_bufs_left; 2476 2477 block_no1 = ring->rx_curr_get_info.block_index; 2478 while (alloc_tab < alloc_cnt) { 2479 block_no = ring->rx_curr_put_info.block_index; 2480 2481 off = ring->rx_curr_put_info.offset; 2482 2483 rxdp = ring->rx_blocks[block_no].rxds[off].virt_addr; 2484 2485 rxd_index = off + 1; 2486 if (block_no) 2487 rxd_index += (block_no * ring->rxd_count); 2488 2489 if ((block_no == block_no1) && 2490 (off == ring->rx_curr_get_info.offset) && 2491 (rxdp->Host_Control)) { 2492 DBG_PRINT(INTR_DBG, "%s: Get and Put info equated\n", 2493 ring->dev->name); 2494 goto end; 2495 } 2496 if (off && (off == ring->rxd_count)) { 2497 ring->rx_curr_put_info.block_index++; 2498 if (ring->rx_curr_put_info.block_index == 2499 ring->block_count) 2500 ring->rx_curr_put_info.block_index = 0; 2501 block_no = ring->rx_curr_put_info.block_index; 2502 off = 0; 2503 ring->rx_curr_put_info.offset = off; 2504 rxdp = ring->rx_blocks[block_no].block_virt_addr; 2505 DBG_PRINT(INTR_DBG, "%s: Next block at: %p\n", 2506 ring->dev->name, rxdp); 2507 2508 } 2509 2510 if ((rxdp->Control_1 & RXD_OWN_XENA) && 2511 ((ring->rxd_mode == RXD_MODE_3B) && 2512 (rxdp->Control_2 & s2BIT(0)))) { 2513 ring->rx_curr_put_info.offset = off; 2514 goto end; 2515 } 2516 /* calculate size of skb based on ring mode */ 2517 size = ring->mtu + 2518 HEADER_ETHERNET_II_802_3_SIZE + 2519 HEADER_802_2_SIZE + HEADER_SNAP_SIZE; 2520 if (ring->rxd_mode == RXD_MODE_1) 2521 size += NET_IP_ALIGN; 2522 else 2523 size = ring->mtu + ALIGN_SIZE + BUF0_LEN + 4; 2524 2525 /* allocate skb */ 2526 skb = netdev_alloc_skb(nic->dev, size); 2527 if (!skb) { 2528 DBG_PRINT(INFO_DBG, "%s: Could not allocate skb\n", 2529 ring->dev->name); 2530 if (first_rxdp) { 2531 wmb(); 2532 first_rxdp->Control_1 |= RXD_OWN_XENA; 2533 } 2534 swstats->mem_alloc_fail_cnt++; 2535 2536 return -ENOMEM ; 2537 } 2538 swstats->mem_allocated += skb->truesize; 2539 2540 if (ring->rxd_mode == RXD_MODE_1) { 2541 /* 1 buffer mode - normal operation mode */ 2542 rxdp1 = (struct RxD1 *)rxdp; 2543 memset(rxdp, 0, sizeof(struct RxD1)); 2544 skb_reserve(skb, NET_IP_ALIGN); 2545 rxdp1->Buffer0_ptr = 2546 pci_map_single(ring->pdev, skb->data, 2547 size - NET_IP_ALIGN, 2548 PCI_DMA_FROMDEVICE); 2549 if (pci_dma_mapping_error(nic->pdev, 2550 rxdp1->Buffer0_ptr)) 2551 goto pci_map_failed; 2552 2553 rxdp->Control_2 = 2554 SET_BUFFER0_SIZE_1(size - NET_IP_ALIGN); 2555 rxdp->Host_Control = (unsigned long)skb; 2556 } else if (ring->rxd_mode == RXD_MODE_3B) { 2557 /* 2558 * 2 buffer mode - 2559 * 2 buffer mode provides 128 2560 * byte aligned receive buffers. 2561 */ 2562 2563 rxdp3 = (struct RxD3 *)rxdp; 2564 /* save buffer pointers to avoid frequent dma mapping */ 2565 Buffer0_ptr = rxdp3->Buffer0_ptr; 2566 Buffer1_ptr = rxdp3->Buffer1_ptr; 2567 memset(rxdp, 0, sizeof(struct RxD3)); 2568 /* restore the buffer pointers for dma sync*/ 2569 rxdp3->Buffer0_ptr = Buffer0_ptr; 2570 rxdp3->Buffer1_ptr = Buffer1_ptr; 2571 2572 ba = &ring->ba[block_no][off]; 2573 skb_reserve(skb, BUF0_LEN); 2574 tmp = (u64)(unsigned long)skb->data; 2575 tmp += ALIGN_SIZE; 2576 tmp &= ~ALIGN_SIZE; 2577 skb->data = (void *) (unsigned long)tmp; 2578 skb_reset_tail_pointer(skb); 2579 2580 if (from_card_up) { 2581 rxdp3->Buffer0_ptr = 2582 pci_map_single(ring->pdev, ba->ba_0, 2583 BUF0_LEN, 2584 PCI_DMA_FROMDEVICE); 2585 if (pci_dma_mapping_error(nic->pdev, 2586 rxdp3->Buffer0_ptr)) 2587 goto pci_map_failed; 2588 } else 2589 pci_dma_sync_single_for_device(ring->pdev, 2590 (dma_addr_t)rxdp3->Buffer0_ptr, 2591 BUF0_LEN, 2592 PCI_DMA_FROMDEVICE); 2593 2594 rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN); 2595 if (ring->rxd_mode == RXD_MODE_3B) { 2596 /* Two buffer mode */ 2597 2598 /* 2599 * Buffer2 will have L3/L4 header plus 2600 * L4 payload 2601 */ 2602 rxdp3->Buffer2_ptr = pci_map_single(ring->pdev, 2603 skb->data, 2604 ring->mtu + 4, 2605 PCI_DMA_FROMDEVICE); 2606 2607 if (pci_dma_mapping_error(nic->pdev, 2608 rxdp3->Buffer2_ptr)) 2609 goto pci_map_failed; 2610 2611 if (from_card_up) { 2612 rxdp3->Buffer1_ptr = 2613 pci_map_single(ring->pdev, 2614 ba->ba_1, 2615 BUF1_LEN, 2616 PCI_DMA_FROMDEVICE); 2617 2618 if (pci_dma_mapping_error(nic->pdev, 2619 rxdp3->Buffer1_ptr)) { 2620 pci_unmap_single(ring->pdev, 2621 (dma_addr_t)(unsigned long) 2622 skb->data, 2623 ring->mtu + 4, 2624 PCI_DMA_FROMDEVICE); 2625 goto pci_map_failed; 2626 } 2627 } 2628 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1); 2629 rxdp->Control_2 |= SET_BUFFER2_SIZE_3 2630 (ring->mtu + 4); 2631 } 2632 rxdp->Control_2 |= s2BIT(0); 2633 rxdp->Host_Control = (unsigned long) (skb); 2634 } 2635 if (alloc_tab & ((1 << rxsync_frequency) - 1)) 2636 rxdp->Control_1 |= RXD_OWN_XENA; 2637 off++; 2638 if (off == (ring->rxd_count + 1)) 2639 off = 0; 2640 ring->rx_curr_put_info.offset = off; 2641 2642 rxdp->Control_2 |= SET_RXD_MARKER; 2643 if (!(alloc_tab & ((1 << rxsync_frequency) - 1))) { 2644 if (first_rxdp) { 2645 wmb(); 2646 first_rxdp->Control_1 |= RXD_OWN_XENA; 2647 } 2648 first_rxdp = rxdp; 2649 } 2650 ring->rx_bufs_left += 1; 2651 alloc_tab++; 2652 } 2653 2654 end: 2655 /* Transfer ownership of first descriptor to adapter just before 2656 * exiting. Before that, use memory barrier so that ownership 2657 * and other fields are seen by adapter correctly. 2658 */ 2659 if (first_rxdp) { 2660 wmb(); 2661 first_rxdp->Control_1 |= RXD_OWN_XENA; 2662 } 2663 2664 return SUCCESS; 2665 2666 pci_map_failed: 2667 swstats->pci_map_fail_cnt++; 2668 swstats->mem_freed += skb->truesize; 2669 dev_kfree_skb_irq(skb); 2670 return -ENOMEM; 2671 } 2672 2673 static void free_rxd_blk(struct s2io_nic *sp, int ring_no, int blk) 2674 { 2675 struct net_device *dev = sp->dev; 2676 int j; 2677 struct sk_buff *skb; 2678 struct RxD_t *rxdp; 2679 struct RxD1 *rxdp1; 2680 struct RxD3 *rxdp3; 2681 struct mac_info *mac_control = &sp->mac_control; 2682 struct stat_block *stats = mac_control->stats_info; 2683 struct swStat *swstats = &stats->sw_stat; 2684 2685 for (j = 0 ; j < rxd_count[sp->rxd_mode]; j++) { 2686 rxdp = mac_control->rings[ring_no]. 2687 rx_blocks[blk].rxds[j].virt_addr; 2688 skb = (struct sk_buff *)((unsigned long)rxdp->Host_Control); 2689 if (!skb) 2690 continue; 2691 if (sp->rxd_mode == RXD_MODE_1) { 2692 rxdp1 = (struct RxD1 *)rxdp; 2693 pci_unmap_single(sp->pdev, 2694 (dma_addr_t)rxdp1->Buffer0_ptr, 2695 dev->mtu + 2696 HEADER_ETHERNET_II_802_3_SIZE + 2697 HEADER_802_2_SIZE + HEADER_SNAP_SIZE, 2698 PCI_DMA_FROMDEVICE); 2699 memset(rxdp, 0, sizeof(struct RxD1)); 2700 } else if (sp->rxd_mode == RXD_MODE_3B) { 2701 rxdp3 = (struct RxD3 *)rxdp; 2702 pci_unmap_single(sp->pdev, 2703 (dma_addr_t)rxdp3->Buffer0_ptr, 2704 BUF0_LEN, 2705 PCI_DMA_FROMDEVICE); 2706 pci_unmap_single(sp->pdev, 2707 (dma_addr_t)rxdp3->Buffer1_ptr, 2708 BUF1_LEN, 2709 PCI_DMA_FROMDEVICE); 2710 pci_unmap_single(sp->pdev, 2711 (dma_addr_t)rxdp3->Buffer2_ptr, 2712 dev->mtu + 4, 2713 PCI_DMA_FROMDEVICE); 2714 memset(rxdp, 0, sizeof(struct RxD3)); 2715 } 2716 swstats->mem_freed += skb->truesize; 2717 dev_kfree_skb(skb); 2718 mac_control->rings[ring_no].rx_bufs_left -= 1; 2719 } 2720 } 2721 2722 /** 2723 * free_rx_buffers - Frees all Rx buffers 2724 * @sp: device private variable. 2725 * Description: 2726 * This function will free all Rx buffers allocated by host. 2727 * Return Value: 2728 * NONE. 2729 */ 2730 2731 static void free_rx_buffers(struct s2io_nic *sp) 2732 { 2733 struct net_device *dev = sp->dev; 2734 int i, blk = 0, buf_cnt = 0; 2735 struct config_param *config = &sp->config; 2736 struct mac_info *mac_control = &sp->mac_control; 2737 2738 for (i = 0; i < config->rx_ring_num; i++) { 2739 struct ring_info *ring = &mac_control->rings[i]; 2740 2741 for (blk = 0; blk < rx_ring_sz[i]; blk++) 2742 free_rxd_blk(sp, i, blk); 2743 2744 ring->rx_curr_put_info.block_index = 0; 2745 ring->rx_curr_get_info.block_index = 0; 2746 ring->rx_curr_put_info.offset = 0; 2747 ring->rx_curr_get_info.offset = 0; 2748 ring->rx_bufs_left = 0; 2749 DBG_PRINT(INIT_DBG, "%s: Freed 0x%x Rx Buffers on ring%d\n", 2750 dev->name, buf_cnt, i); 2751 } 2752 } 2753 2754 static int s2io_chk_rx_buffers(struct s2io_nic *nic, struct ring_info *ring) 2755 { 2756 if (fill_rx_buffers(nic, ring, 0) == -ENOMEM) { 2757 DBG_PRINT(INFO_DBG, "%s: Out of memory in Rx Intr!!\n", 2758 ring->dev->name); 2759 } 2760 return 0; 2761 } 2762 2763 /** 2764 * s2io_poll - Rx interrupt handler for NAPI support 2765 * @napi : pointer to the napi structure. 2766 * @budget : The number of packets that were budgeted to be processed 2767 * during one pass through the 'Poll" function. 2768 * Description: 2769 * Comes into picture only if NAPI support has been incorporated. It does 2770 * the same thing that rx_intr_handler does, but not in a interrupt context 2771 * also It will process only a given number of packets. 2772 * Return value: 2773 * 0 on success and 1 if there are No Rx packets to be processed. 2774 */ 2775 2776 static int s2io_poll_msix(struct napi_struct *napi, int budget) 2777 { 2778 struct ring_info *ring = container_of(napi, struct ring_info, napi); 2779 struct net_device *dev = ring->dev; 2780 int pkts_processed = 0; 2781 u8 __iomem *addr = NULL; 2782 u8 val8 = 0; 2783 struct s2io_nic *nic = netdev_priv(dev); 2784 struct XENA_dev_config __iomem *bar0 = nic->bar0; 2785 int budget_org = budget; 2786 2787 if (unlikely(!is_s2io_card_up(nic))) 2788 return 0; 2789 2790 pkts_processed = rx_intr_handler(ring, budget); 2791 s2io_chk_rx_buffers(nic, ring); 2792 2793 if (pkts_processed < budget_org) { 2794 napi_complete(napi); 2795 /*Re Enable MSI-Rx Vector*/ 2796 addr = (u8 __iomem *)&bar0->xmsi_mask_reg; 2797 addr += 7 - ring->ring_no; 2798 val8 = (ring->ring_no == 0) ? 0x3f : 0xbf; 2799 writeb(val8, addr); 2800 val8 = readb(addr); 2801 } 2802 return pkts_processed; 2803 } 2804 2805 static int s2io_poll_inta(struct napi_struct *napi, int budget) 2806 { 2807 struct s2io_nic *nic = container_of(napi, struct s2io_nic, napi); 2808 int pkts_processed = 0; 2809 int ring_pkts_processed, i; 2810 struct XENA_dev_config __iomem *bar0 = nic->bar0; 2811 int budget_org = budget; 2812 struct config_param *config = &nic->config; 2813 struct mac_info *mac_control = &nic->mac_control; 2814 2815 if (unlikely(!is_s2io_card_up(nic))) 2816 return 0; 2817 2818 for (i = 0; i < config->rx_ring_num; i++) { 2819 struct ring_info *ring = &mac_control->rings[i]; 2820 ring_pkts_processed = rx_intr_handler(ring, budget); 2821 s2io_chk_rx_buffers(nic, ring); 2822 pkts_processed += ring_pkts_processed; 2823 budget -= ring_pkts_processed; 2824 if (budget <= 0) 2825 break; 2826 } 2827 if (pkts_processed < budget_org) { 2828 napi_complete(napi); 2829 /* Re enable the Rx interrupts for the ring */ 2830 writeq(0, &bar0->rx_traffic_mask); 2831 readl(&bar0->rx_traffic_mask); 2832 } 2833 return pkts_processed; 2834 } 2835 2836 #ifdef CONFIG_NET_POLL_CONTROLLER 2837 /** 2838 * s2io_netpoll - netpoll event handler entry point 2839 * @dev : pointer to the device structure. 2840 * Description: 2841 * This function will be called by upper layer to check for events on the 2842 * interface in situations where interrupts are disabled. It is used for 2843 * specific in-kernel networking tasks, such as remote consoles and kernel 2844 * debugging over the network (example netdump in RedHat). 2845 */ 2846 static void s2io_netpoll(struct net_device *dev) 2847 { 2848 struct s2io_nic *nic = netdev_priv(dev); 2849 struct XENA_dev_config __iomem *bar0 = nic->bar0; 2850 u64 val64 = 0xFFFFFFFFFFFFFFFFULL; 2851 int i; 2852 struct config_param *config = &nic->config; 2853 struct mac_info *mac_control = &nic->mac_control; 2854 2855 if (pci_channel_offline(nic->pdev)) 2856 return; 2857 2858 disable_irq(dev->irq); 2859 2860 writeq(val64, &bar0->rx_traffic_int); 2861 writeq(val64, &bar0->tx_traffic_int); 2862 2863 /* we need to free up the transmitted skbufs or else netpoll will 2864 * run out of skbs and will fail and eventually netpoll application such 2865 * as netdump will fail. 2866 */ 2867 for (i = 0; i < config->tx_fifo_num; i++) 2868 tx_intr_handler(&mac_control->fifos[i]); 2869 2870 /* check for received packet and indicate up to network */ 2871 for (i = 0; i < config->rx_ring_num; i++) { 2872 struct ring_info *ring = &mac_control->rings[i]; 2873 2874 rx_intr_handler(ring, 0); 2875 } 2876 2877 for (i = 0; i < config->rx_ring_num; i++) { 2878 struct ring_info *ring = &mac_control->rings[i]; 2879 2880 if (fill_rx_buffers(nic, ring, 0) == -ENOMEM) { 2881 DBG_PRINT(INFO_DBG, 2882 "%s: Out of memory in Rx Netpoll!!\n", 2883 dev->name); 2884 break; 2885 } 2886 } 2887 enable_irq(dev->irq); 2888 } 2889 #endif 2890 2891 /** 2892 * rx_intr_handler - Rx interrupt handler 2893 * @ring_info: per ring structure. 2894 * @budget: budget for napi processing. 2895 * Description: 2896 * If the interrupt is because of a received frame or if the 2897 * receive ring contains fresh as yet un-processed frames,this function is 2898 * called. It picks out the RxD at which place the last Rx processing had 2899 * stopped and sends the skb to the OSM's Rx handler and then increments 2900 * the offset. 2901 * Return Value: 2902 * No. of napi packets processed. 2903 */ 2904 static int rx_intr_handler(struct ring_info *ring_data, int budget) 2905 { 2906 int get_block, put_block; 2907 struct rx_curr_get_info get_info, put_info; 2908 struct RxD_t *rxdp; 2909 struct sk_buff *skb; 2910 int pkt_cnt = 0, napi_pkts = 0; 2911 int i; 2912 struct RxD1 *rxdp1; 2913 struct RxD3 *rxdp3; 2914 2915 get_info = ring_data->rx_curr_get_info; 2916 get_block = get_info.block_index; 2917 memcpy(&put_info, &ring_data->rx_curr_put_info, sizeof(put_info)); 2918 put_block = put_info.block_index; 2919 rxdp = ring_data->rx_blocks[get_block].rxds[get_info.offset].virt_addr; 2920 2921 while (RXD_IS_UP2DT(rxdp)) { 2922 /* 2923 * If your are next to put index then it's 2924 * FIFO full condition 2925 */ 2926 if ((get_block == put_block) && 2927 (get_info.offset + 1) == put_info.offset) { 2928 DBG_PRINT(INTR_DBG, "%s: Ring Full\n", 2929 ring_data->dev->name); 2930 break; 2931 } 2932 skb = (struct sk_buff *)((unsigned long)rxdp->Host_Control); 2933 if (skb == NULL) { 2934 DBG_PRINT(ERR_DBG, "%s: NULL skb in Rx Intr\n", 2935 ring_data->dev->name); 2936 return 0; 2937 } 2938 if (ring_data->rxd_mode == RXD_MODE_1) { 2939 rxdp1 = (struct RxD1 *)rxdp; 2940 pci_unmap_single(ring_data->pdev, (dma_addr_t) 2941 rxdp1->Buffer0_ptr, 2942 ring_data->mtu + 2943 HEADER_ETHERNET_II_802_3_SIZE + 2944 HEADER_802_2_SIZE + 2945 HEADER_SNAP_SIZE, 2946 PCI_DMA_FROMDEVICE); 2947 } else if (ring_data->rxd_mode == RXD_MODE_3B) { 2948 rxdp3 = (struct RxD3 *)rxdp; 2949 pci_dma_sync_single_for_cpu(ring_data->pdev, 2950 (dma_addr_t)rxdp3->Buffer0_ptr, 2951 BUF0_LEN, 2952 PCI_DMA_FROMDEVICE); 2953 pci_unmap_single(ring_data->pdev, 2954 (dma_addr_t)rxdp3->Buffer2_ptr, 2955 ring_data->mtu + 4, 2956 PCI_DMA_FROMDEVICE); 2957 } 2958 prefetch(skb->data); 2959 rx_osm_handler(ring_data, rxdp); 2960 get_info.offset++; 2961 ring_data->rx_curr_get_info.offset = get_info.offset; 2962 rxdp = ring_data->rx_blocks[get_block]. 2963 rxds[get_info.offset].virt_addr; 2964 if (get_info.offset == rxd_count[ring_data->rxd_mode]) { 2965 get_info.offset = 0; 2966 ring_data->rx_curr_get_info.offset = get_info.offset; 2967 get_block++; 2968 if (get_block == ring_data->block_count) 2969 get_block = 0; 2970 ring_data->rx_curr_get_info.block_index = get_block; 2971 rxdp = ring_data->rx_blocks[get_block].block_virt_addr; 2972 } 2973 2974 if (ring_data->nic->config.napi) { 2975 budget--; 2976 napi_pkts++; 2977 if (!budget) 2978 break; 2979 } 2980 pkt_cnt++; 2981 if ((indicate_max_pkts) && (pkt_cnt > indicate_max_pkts)) 2982 break; 2983 } 2984 if (ring_data->lro) { 2985 /* Clear all LRO sessions before exiting */ 2986 for (i = 0; i < MAX_LRO_SESSIONS; i++) { 2987 struct lro *lro = &ring_data->lro0_n[i]; 2988 if (lro->in_use) { 2989 update_L3L4_header(ring_data->nic, lro); 2990 queue_rx_frame(lro->parent, lro->vlan_tag); 2991 clear_lro_session(lro); 2992 } 2993 } 2994 } 2995 return napi_pkts; 2996 } 2997 2998 /** 2999 * tx_intr_handler - Transmit interrupt handler 3000 * @nic : device private variable 3001 * Description: 3002 * If an interrupt was raised to indicate DMA complete of the 3003 * Tx packet, this function is called. It identifies the last TxD 3004 * whose buffer was freed and frees all skbs whose data have already 3005 * DMA'ed into the NICs internal memory. 3006 * Return Value: 3007 * NONE 3008 */ 3009 3010 static void tx_intr_handler(struct fifo_info *fifo_data) 3011 { 3012 struct s2io_nic *nic = fifo_data->nic; 3013 struct tx_curr_get_info get_info, put_info; 3014 struct sk_buff *skb = NULL; 3015 struct TxD *txdlp; 3016 int pkt_cnt = 0; 3017 unsigned long flags = 0; 3018 u8 err_mask; 3019 struct stat_block *stats = nic->mac_control.stats_info; 3020 struct swStat *swstats = &stats->sw_stat; 3021 3022 if (!spin_trylock_irqsave(&fifo_data->tx_lock, flags)) 3023 return; 3024 3025 get_info = fifo_data->tx_curr_get_info; 3026 memcpy(&put_info, &fifo_data->tx_curr_put_info, sizeof(put_info)); 3027 txdlp = fifo_data->list_info[get_info.offset].list_virt_addr; 3028 while ((!(txdlp->Control_1 & TXD_LIST_OWN_XENA)) && 3029 (get_info.offset != put_info.offset) && 3030 (txdlp->Host_Control)) { 3031 /* Check for TxD errors */ 3032 if (txdlp->Control_1 & TXD_T_CODE) { 3033 unsigned long long err; 3034 err = txdlp->Control_1 & TXD_T_CODE; 3035 if (err & 0x1) { 3036 swstats->parity_err_cnt++; 3037 } 3038 3039 /* update t_code statistics */ 3040 err_mask = err >> 48; 3041 switch (err_mask) { 3042 case 2: 3043 swstats->tx_buf_abort_cnt++; 3044 break; 3045 3046 case 3: 3047 swstats->tx_desc_abort_cnt++; 3048 break; 3049 3050 case 7: 3051 swstats->tx_parity_err_cnt++; 3052 break; 3053 3054 case 10: 3055 swstats->tx_link_loss_cnt++; 3056 break; 3057 3058 case 15: 3059 swstats->tx_list_proc_err_cnt++; 3060 break; 3061 } 3062 } 3063 3064 skb = s2io_txdl_getskb(fifo_data, txdlp, get_info.offset); 3065 if (skb == NULL) { 3066 spin_unlock_irqrestore(&fifo_data->tx_lock, flags); 3067 DBG_PRINT(ERR_DBG, "%s: NULL skb in Tx Free Intr\n", 3068 __func__); 3069 return; 3070 } 3071 pkt_cnt++; 3072 3073 /* Updating the statistics block */ 3074 swstats->mem_freed += skb->truesize; 3075 dev_kfree_skb_irq(skb); 3076 3077 get_info.offset++; 3078 if (get_info.offset == get_info.fifo_len + 1) 3079 get_info.offset = 0; 3080 txdlp = fifo_data->list_info[get_info.offset].list_virt_addr; 3081 fifo_data->tx_curr_get_info.offset = get_info.offset; 3082 } 3083 3084 s2io_wake_tx_queue(fifo_data, pkt_cnt, nic->config.multiq); 3085 3086 spin_unlock_irqrestore(&fifo_data->tx_lock, flags); 3087 } 3088 3089 /** 3090 * s2io_mdio_write - Function to write in to MDIO registers 3091 * @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS) 3092 * @addr : address value 3093 * @value : data value 3094 * @dev : pointer to net_device structure 3095 * Description: 3096 * This function is used to write values to the MDIO registers 3097 * NONE 3098 */ 3099 static void s2io_mdio_write(u32 mmd_type, u64 addr, u16 value, 3100 struct net_device *dev) 3101 { 3102 u64 val64; 3103 struct s2io_nic *sp = netdev_priv(dev); 3104 struct XENA_dev_config __iomem *bar0 = sp->bar0; 3105 3106 /* address transaction */ 3107 val64 = MDIO_MMD_INDX_ADDR(addr) | 3108 MDIO_MMD_DEV_ADDR(mmd_type) | 3109 MDIO_MMS_PRT_ADDR(0x0); 3110 writeq(val64, &bar0->mdio_control); 3111 val64 = val64 | MDIO_CTRL_START_TRANS(0xE); 3112 writeq(val64, &bar0->mdio_control); 3113 udelay(100); 3114 3115 /* Data transaction */ 3116 val64 = MDIO_MMD_INDX_ADDR(addr) | 3117 MDIO_MMD_DEV_ADDR(mmd_type) | 3118 MDIO_MMS_PRT_ADDR(0x0) | 3119 MDIO_MDIO_DATA(value) | 3120 MDIO_OP(MDIO_OP_WRITE_TRANS); 3121 writeq(val64, &bar0->mdio_control); 3122 val64 = val64 | MDIO_CTRL_START_TRANS(0xE); 3123 writeq(val64, &bar0->mdio_control); 3124 udelay(100); 3125 3126 val64 = MDIO_MMD_INDX_ADDR(addr) | 3127 MDIO_MMD_DEV_ADDR(mmd_type) | 3128 MDIO_MMS_PRT_ADDR(0x0) | 3129 MDIO_OP(MDIO_OP_READ_TRANS); 3130 writeq(val64, &bar0->mdio_control); 3131 val64 = val64 | MDIO_CTRL_START_TRANS(0xE); 3132 writeq(val64, &bar0->mdio_control); 3133 udelay(100); 3134 } 3135 3136 /** 3137 * s2io_mdio_read - Function to write in to MDIO registers 3138 * @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS) 3139 * @addr : address value 3140 * @dev : pointer to net_device structure 3141 * Description: 3142 * This function is used to read values to the MDIO registers 3143 * NONE 3144 */ 3145 static u64 s2io_mdio_read(u32 mmd_type, u64 addr, struct net_device *dev) 3146 { 3147 u64 val64 = 0x0; 3148 u64 rval64 = 0x0; 3149 struct s2io_nic *sp = netdev_priv(dev); 3150 struct XENA_dev_config __iomem *bar0 = sp->bar0; 3151 3152 /* address transaction */ 3153 val64 = val64 | (MDIO_MMD_INDX_ADDR(addr) 3154 | MDIO_MMD_DEV_ADDR(mmd_type) 3155 | MDIO_MMS_PRT_ADDR(0x0)); 3156 writeq(val64, &bar0->mdio_control); 3157 val64 = val64 | MDIO_CTRL_START_TRANS(0xE); 3158 writeq(val64, &bar0->mdio_control); 3159 udelay(100); 3160 3161 /* Data transaction */ 3162 val64 = MDIO_MMD_INDX_ADDR(addr) | 3163 MDIO_MMD_DEV_ADDR(mmd_type) | 3164 MDIO_MMS_PRT_ADDR(0x0) | 3165 MDIO_OP(MDIO_OP_READ_TRANS); 3166 writeq(val64, &bar0->mdio_control); 3167 val64 = val64 | MDIO_CTRL_START_TRANS(0xE); 3168 writeq(val64, &bar0->mdio_control); 3169 udelay(100); 3170 3171 /* Read the value from regs */ 3172 rval64 = readq(&bar0->mdio_control); 3173 rval64 = rval64 & 0xFFFF0000; 3174 rval64 = rval64 >> 16; 3175 return rval64; 3176 } 3177 3178 /** 3179 * s2io_chk_xpak_counter - Function to check the status of the xpak counters 3180 * @counter : counter value to be updated 3181 * @flag : flag to indicate the status 3182 * @type : counter type 3183 * Description: 3184 * This function is to check the status of the xpak counters value 3185 * NONE 3186 */ 3187 3188 static void s2io_chk_xpak_counter(u64 *counter, u64 * regs_stat, u32 index, 3189 u16 flag, u16 type) 3190 { 3191 u64 mask = 0x3; 3192 u64 val64; 3193 int i; 3194 for (i = 0; i < index; i++) 3195 mask = mask << 0x2; 3196 3197 if (flag > 0) { 3198 *counter = *counter + 1; 3199 val64 = *regs_stat & mask; 3200 val64 = val64 >> (index * 0x2); 3201 val64 = val64 + 1; 3202 if (val64 == 3) { 3203 switch (type) { 3204 case 1: 3205 DBG_PRINT(ERR_DBG, 3206 "Take Xframe NIC out of service.\n"); 3207 DBG_PRINT(ERR_DBG, 3208 "Excessive temperatures may result in premature transceiver failure.\n"); 3209 break; 3210 case 2: 3211 DBG_PRINT(ERR_DBG, 3212 "Take Xframe NIC out of service.\n"); 3213 DBG_PRINT(ERR_DBG, 3214 "Excessive bias currents may indicate imminent laser diode failure.\n"); 3215 break; 3216 case 3: 3217 DBG_PRINT(ERR_DBG, 3218 "Take Xframe NIC out of service.\n"); 3219 DBG_PRINT(ERR_DBG, 3220 "Excessive laser output power may saturate far-end receiver.\n"); 3221 break; 3222 default: 3223 DBG_PRINT(ERR_DBG, 3224 "Incorrect XPAK Alarm type\n"); 3225 } 3226 val64 = 0x0; 3227 } 3228 val64 = val64 << (index * 0x2); 3229 *regs_stat = (*regs_stat & (~mask)) | (val64); 3230 3231 } else { 3232 *regs_stat = *regs_stat & (~mask); 3233 } 3234 } 3235 3236 /** 3237 * s2io_updt_xpak_counter - Function to update the xpak counters 3238 * @dev : pointer to net_device struct 3239 * Description: 3240 * This function is to upate the status of the xpak counters value 3241 * NONE 3242 */ 3243 static void s2io_updt_xpak_counter(struct net_device *dev) 3244 { 3245 u16 flag = 0x0; 3246 u16 type = 0x0; 3247 u16 val16 = 0x0; 3248 u64 val64 = 0x0; 3249 u64 addr = 0x0; 3250 3251 struct s2io_nic *sp = netdev_priv(dev); 3252 struct stat_block *stats = sp->mac_control.stats_info; 3253 struct xpakStat *xstats = &stats->xpak_stat; 3254 3255 /* Check the communication with the MDIO slave */ 3256 addr = MDIO_CTRL1; 3257 val64 = 0x0; 3258 val64 = s2io_mdio_read(MDIO_MMD_PMAPMD, addr, dev); 3259 if ((val64 == 0xFFFF) || (val64 == 0x0000)) { 3260 DBG_PRINT(ERR_DBG, 3261 "ERR: MDIO slave access failed - Returned %llx\n", 3262 (unsigned long long)val64); 3263 return; 3264 } 3265 3266 /* Check for the expected value of control reg 1 */ 3267 if (val64 != MDIO_CTRL1_SPEED10G) { 3268 DBG_PRINT(ERR_DBG, "Incorrect value at PMA address 0x0000 - " 3269 "Returned: %llx- Expected: 0x%x\n", 3270 (unsigned long long)val64, MDIO_CTRL1_SPEED10G); 3271 return; 3272 } 3273 3274 /* Loading the DOM register to MDIO register */ 3275 addr = 0xA100; 3276 s2io_mdio_write(MDIO_MMD_PMAPMD, addr, val16, dev); 3277 val64 = s2io_mdio_read(MDIO_MMD_PMAPMD, addr, dev); 3278 3279 /* Reading the Alarm flags */ 3280 addr = 0xA070; 3281 val64 = 0x0; 3282 val64 = s2io_mdio_read(MDIO_MMD_PMAPMD, addr, dev); 3283 3284 flag = CHECKBIT(val64, 0x7); 3285 type = 1; 3286 s2io_chk_xpak_counter(&xstats->alarm_transceiver_temp_high, 3287 &xstats->xpak_regs_stat, 3288 0x0, flag, type); 3289 3290 if (CHECKBIT(val64, 0x6)) 3291 xstats->alarm_transceiver_temp_low++; 3292 3293 flag = CHECKBIT(val64, 0x3); 3294 type = 2; 3295 s2io_chk_xpak_counter(&xstats->alarm_laser_bias_current_high, 3296 &xstats->xpak_regs_stat, 3297 0x2, flag, type); 3298 3299 if (CHECKBIT(val64, 0x2)) 3300 xstats->alarm_laser_bias_current_low++; 3301 3302 flag = CHECKBIT(val64, 0x1); 3303 type = 3; 3304 s2io_chk_xpak_counter(&xstats->alarm_laser_output_power_high, 3305 &xstats->xpak_regs_stat, 3306 0x4, flag, type); 3307 3308 if (CHECKBIT(val64, 0x0)) 3309 xstats->alarm_laser_output_power_low++; 3310 3311 /* Reading the Warning flags */ 3312 addr = 0xA074; 3313 val64 = 0x0; 3314 val64 = s2io_mdio_read(MDIO_MMD_PMAPMD, addr, dev); 3315 3316 if (CHECKBIT(val64, 0x7)) 3317 xstats->warn_transceiver_temp_high++; 3318 3319 if (CHECKBIT(val64, 0x6)) 3320 xstats->warn_transceiver_temp_low++; 3321 3322 if (CHECKBIT(val64, 0x3)) 3323 xstats->warn_laser_bias_current_high++; 3324 3325 if (CHECKBIT(val64, 0x2)) 3326 xstats->warn_laser_bias_current_low++; 3327 3328 if (CHECKBIT(val64, 0x1)) 3329 xstats->warn_laser_output_power_high++; 3330 3331 if (CHECKBIT(val64, 0x0)) 3332 xstats->warn_laser_output_power_low++; 3333 } 3334 3335 /** 3336 * wait_for_cmd_complete - waits for a command to complete. 3337 * @sp : private member of the device structure, which is a pointer to the 3338 * s2io_nic structure. 3339 * Description: Function that waits for a command to Write into RMAC 3340 * ADDR DATA registers to be completed and returns either success or 3341 * error depending on whether the command was complete or not. 3342 * Return value: 3343 * SUCCESS on success and FAILURE on failure. 3344 */ 3345 3346 static int wait_for_cmd_complete(void __iomem *addr, u64 busy_bit, 3347 int bit_state) 3348 { 3349 int ret = FAILURE, cnt = 0, delay = 1; 3350 u64 val64; 3351 3352 if ((bit_state != S2IO_BIT_RESET) && (bit_state != S2IO_BIT_SET)) 3353 return FAILURE; 3354 3355 do { 3356 val64 = readq(addr); 3357 if (bit_state == S2IO_BIT_RESET) { 3358 if (!(val64 & busy_bit)) { 3359 ret = SUCCESS; 3360 break; 3361 } 3362 } else { 3363 if (val64 & busy_bit) { 3364 ret = SUCCESS; 3365 break; 3366 } 3367 } 3368 3369 if (in_interrupt()) 3370 mdelay(delay); 3371 else 3372 msleep(delay); 3373 3374 if (++cnt >= 10) 3375 delay = 50; 3376 } while (cnt < 20); 3377 return ret; 3378 } 3379 /* 3380 * check_pci_device_id - Checks if the device id is supported 3381 * @id : device id 3382 * Description: Function to check if the pci device id is supported by driver. 3383 * Return value: Actual device id if supported else PCI_ANY_ID 3384 */ 3385 static u16 check_pci_device_id(u16 id) 3386 { 3387 switch (id) { 3388 case PCI_DEVICE_ID_HERC_WIN: 3389 case PCI_DEVICE_ID_HERC_UNI: 3390 return XFRAME_II_DEVICE; 3391 case PCI_DEVICE_ID_S2IO_UNI: 3392 case PCI_DEVICE_ID_S2IO_WIN: 3393 return XFRAME_I_DEVICE; 3394 default: 3395 return PCI_ANY_ID; 3396 } 3397 } 3398 3399 /** 3400 * s2io_reset - Resets the card. 3401 * @sp : private member of the device structure. 3402 * Description: Function to Reset the card. This function then also 3403 * restores the previously saved PCI configuration space registers as 3404 * the card reset also resets the configuration space. 3405 * Return value: 3406 * void. 3407 */ 3408 3409 static void s2io_reset(struct s2io_nic *sp) 3410 { 3411 struct XENA_dev_config __iomem *bar0 = sp->bar0; 3412 u64 val64; 3413 u16 subid, pci_cmd; 3414 int i; 3415 u16 val16; 3416 unsigned long long up_cnt, down_cnt, up_time, down_time, reset_cnt; 3417 unsigned long long mem_alloc_cnt, mem_free_cnt, watchdog_cnt; 3418 struct stat_block *stats; 3419 struct swStat *swstats; 3420 3421 DBG_PRINT(INIT_DBG, "%s: Resetting XFrame card %s\n", 3422 __func__, pci_name(sp->pdev)); 3423 3424 /* Back up the PCI-X CMD reg, dont want to lose MMRBC, OST settings */ 3425 pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER, &(pci_cmd)); 3426 3427 val64 = SW_RESET_ALL; 3428 writeq(val64, &bar0->sw_reset); 3429 if (strstr(sp->product_name, "CX4")) 3430 msleep(750); 3431 msleep(250); 3432 for (i = 0; i < S2IO_MAX_PCI_CONFIG_SPACE_REINIT; i++) { 3433 3434 /* Restore the PCI state saved during initialization. */ 3435 pci_restore_state(sp->pdev); 3436 pci_save_state(sp->pdev); 3437 pci_read_config_word(sp->pdev, 0x2, &val16); 3438 if (check_pci_device_id(val16) != (u16)PCI_ANY_ID) 3439 break; 3440 msleep(200); 3441 } 3442 3443 if (check_pci_device_id(val16) == (u16)PCI_ANY_ID) 3444 DBG_PRINT(ERR_DBG, "%s SW_Reset failed!\n", __func__); 3445 3446 pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER, pci_cmd); 3447 3448 s2io_init_pci(sp); 3449 3450 /* Set swapper to enable I/O register access */ 3451 s2io_set_swapper(sp); 3452 3453 /* restore mac_addr entries */ 3454 do_s2io_restore_unicast_mc(sp); 3455 3456 /* Restore the MSIX table entries from local variables */ 3457 restore_xmsi_data(sp); 3458 3459 /* Clear certain PCI/PCI-X fields after reset */ 3460 if (sp->device_type == XFRAME_II_DEVICE) { 3461 /* Clear "detected parity error" bit */ 3462 pci_write_config_word(sp->pdev, PCI_STATUS, 0x8000); 3463 3464 /* Clearing PCIX Ecc status register */ 3465 pci_write_config_dword(sp->pdev, 0x68, 0x7C); 3466 3467 /* Clearing PCI_STATUS error reflected here */ 3468 writeq(s2BIT(62), &bar0->txpic_int_reg); 3469 } 3470 3471 /* Reset device statistics maintained by OS */ 3472 memset(&sp->stats, 0, sizeof(struct net_device_stats)); 3473 3474 stats = sp->mac_control.stats_info; 3475 swstats = &stats->sw_stat; 3476 3477 /* save link up/down time/cnt, reset/memory/watchdog cnt */ 3478 up_cnt = swstats->link_up_cnt; 3479 down_cnt = swstats->link_down_cnt; 3480 up_time = swstats->link_up_time; 3481 down_time = swstats->link_down_time; 3482 reset_cnt = swstats->soft_reset_cnt; 3483 mem_alloc_cnt = swstats->mem_allocated; 3484 mem_free_cnt = swstats->mem_freed; 3485 watchdog_cnt = swstats->watchdog_timer_cnt; 3486 3487 memset(stats, 0, sizeof(struct stat_block)); 3488 3489 /* restore link up/down time/cnt, reset/memory/watchdog cnt */ 3490 swstats->link_up_cnt = up_cnt; 3491 swstats->link_down_cnt = down_cnt; 3492 swstats->link_up_time = up_time; 3493 swstats->link_down_time = down_time; 3494 swstats->soft_reset_cnt = reset_cnt; 3495 swstats->mem_allocated = mem_alloc_cnt; 3496 swstats->mem_freed = mem_free_cnt; 3497 swstats->watchdog_timer_cnt = watchdog_cnt; 3498 3499 /* SXE-002: Configure link and activity LED to turn it off */ 3500 subid = sp->pdev->subsystem_device; 3501 if (((subid & 0xFF) >= 0x07) && 3502 (sp->device_type == XFRAME_I_DEVICE)) { 3503 val64 = readq(&bar0->gpio_control); 3504 val64 |= 0x0000800000000000ULL; 3505 writeq(val64, &bar0->gpio_control); 3506 val64 = 0x0411040400000000ULL; 3507 writeq(val64, (void __iomem *)bar0 + 0x2700); 3508 } 3509 3510 /* 3511 * Clear spurious ECC interrupts that would have occurred on 3512 * XFRAME II cards after reset. 3513 */ 3514 if (sp->device_type == XFRAME_II_DEVICE) { 3515 val64 = readq(&bar0->pcc_err_reg); 3516 writeq(val64, &bar0->pcc_err_reg); 3517 } 3518 3519 sp->device_enabled_once = false; 3520 } 3521 3522 /** 3523 * s2io_set_swapper - to set the swapper controle on the card 3524 * @sp : private member of the device structure, 3525 * pointer to the s2io_nic structure. 3526 * Description: Function to set the swapper control on the card 3527 * correctly depending on the 'endianness' of the system. 3528 * Return value: 3529 * SUCCESS on success and FAILURE on failure. 3530 */ 3531 3532 static int s2io_set_swapper(struct s2io_nic *sp) 3533 { 3534 struct net_device *dev = sp->dev; 3535 struct XENA_dev_config __iomem *bar0 = sp->bar0; 3536 u64 val64, valt, valr; 3537 3538 /* 3539 * Set proper endian settings and verify the same by reading 3540 * the PIF Feed-back register. 3541 */ 3542 3543 val64 = readq(&bar0->pif_rd_swapper_fb); 3544 if (val64 != 0x0123456789ABCDEFULL) { 3545 int i = 0; 3546 static const u64 value[] = { 3547 0xC30000C3C30000C3ULL, /* FE=1, SE=1 */ 3548 0x8100008181000081ULL, /* FE=1, SE=0 */ 3549 0x4200004242000042ULL, /* FE=0, SE=1 */ 3550 0 /* FE=0, SE=0 */ 3551 }; 3552 3553 while (i < 4) { 3554 writeq(value[i], &bar0->swapper_ctrl); 3555 val64 = readq(&bar0->pif_rd_swapper_fb); 3556 if (val64 == 0x0123456789ABCDEFULL) 3557 break; 3558 i++; 3559 } 3560 if (i == 4) { 3561 DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, " 3562 "feedback read %llx\n", 3563 dev->name, (unsigned long long)val64); 3564 return FAILURE; 3565 } 3566 valr = value[i]; 3567 } else { 3568 valr = readq(&bar0->swapper_ctrl); 3569 } 3570 3571 valt = 0x0123456789ABCDEFULL; 3572 writeq(valt, &bar0->xmsi_address); 3573 val64 = readq(&bar0->xmsi_address); 3574 3575 if (val64 != valt) { 3576 int i = 0; 3577 static const u64 value[] = { 3578 0x00C3C30000C3C300ULL, /* FE=1, SE=1 */ 3579 0x0081810000818100ULL, /* FE=1, SE=0 */ 3580 0x0042420000424200ULL, /* FE=0, SE=1 */ 3581 0 /* FE=0, SE=0 */ 3582 }; 3583 3584 while (i < 4) { 3585 writeq((value[i] | valr), &bar0->swapper_ctrl); 3586 writeq(valt, &bar0->xmsi_address); 3587 val64 = readq(&bar0->xmsi_address); 3588 if (val64 == valt) 3589 break; 3590 i++; 3591 } 3592 if (i == 4) { 3593 unsigned long long x = val64; 3594 DBG_PRINT(ERR_DBG, 3595 "Write failed, Xmsi_addr reads:0x%llx\n", x); 3596 return FAILURE; 3597 } 3598 } 3599 val64 = readq(&bar0->swapper_ctrl); 3600 val64 &= 0xFFFF000000000000ULL; 3601 3602 #ifdef __BIG_ENDIAN 3603 /* 3604 * The device by default set to a big endian format, so a 3605 * big endian driver need not set anything. 3606 */ 3607 val64 |= (SWAPPER_CTRL_TXP_FE | 3608 SWAPPER_CTRL_TXP_SE | 3609 SWAPPER_CTRL_TXD_R_FE | 3610 SWAPPER_CTRL_TXD_W_FE | 3611 SWAPPER_CTRL_TXF_R_FE | 3612 SWAPPER_CTRL_RXD_R_FE | 3613 SWAPPER_CTRL_RXD_W_FE | 3614 SWAPPER_CTRL_RXF_W_FE | 3615 SWAPPER_CTRL_XMSI_FE | 3616 SWAPPER_CTRL_STATS_FE | 3617 SWAPPER_CTRL_STATS_SE); 3618 if (sp->config.intr_type == INTA) 3619 val64 |= SWAPPER_CTRL_XMSI_SE; 3620 writeq(val64, &bar0->swapper_ctrl); 3621 #else 3622 /* 3623 * Initially we enable all bits to make it accessible by the 3624 * driver, then we selectively enable only those bits that 3625 * we want to set. 3626 */ 3627 val64 |= (SWAPPER_CTRL_TXP_FE | 3628 SWAPPER_CTRL_TXP_SE | 3629 SWAPPER_CTRL_TXD_R_FE | 3630 SWAPPER_CTRL_TXD_R_SE | 3631 SWAPPER_CTRL_TXD_W_FE | 3632 SWAPPER_CTRL_TXD_W_SE | 3633 SWAPPER_CTRL_TXF_R_FE | 3634 SWAPPER_CTRL_RXD_R_FE | 3635 SWAPPER_CTRL_RXD_R_SE | 3636 SWAPPER_CTRL_RXD_W_FE | 3637 SWAPPER_CTRL_RXD_W_SE | 3638 SWAPPER_CTRL_RXF_W_FE | 3639 SWAPPER_CTRL_XMSI_FE | 3640 SWAPPER_CTRL_STATS_FE | 3641 SWAPPER_CTRL_STATS_SE); 3642 if (sp->config.intr_type == INTA) 3643 val64 |= SWAPPER_CTRL_XMSI_SE; 3644 writeq(val64, &bar0->swapper_ctrl); 3645 #endif 3646 val64 = readq(&bar0->swapper_ctrl); 3647 3648 /* 3649 * Verifying if endian settings are accurate by reading a 3650 * feedback register. 3651 */ 3652 val64 = readq(&bar0->pif_rd_swapper_fb); 3653 if (val64 != 0x0123456789ABCDEFULL) { 3654 /* Endian settings are incorrect, calls for another dekko. */ 3655 DBG_PRINT(ERR_DBG, 3656 "%s: Endian settings are wrong, feedback read %llx\n", 3657 dev->name, (unsigned long long)val64); 3658 return FAILURE; 3659 } 3660 3661 return SUCCESS; 3662 } 3663 3664 static int wait_for_msix_trans(struct s2io_nic *nic, int i) 3665 { 3666 struct XENA_dev_config __iomem *bar0 = nic->bar0; 3667 u64 val64; 3668 int ret = 0, cnt = 0; 3669 3670 do { 3671 val64 = readq(&bar0->xmsi_access); 3672 if (!(val64 & s2BIT(15))) 3673 break; 3674 mdelay(1); 3675 cnt++; 3676 } while (cnt < 5); 3677 if (cnt == 5) { 3678 DBG_PRINT(ERR_DBG, "XMSI # %d Access failed\n", i); 3679 ret = 1; 3680 } 3681 3682 return ret; 3683 } 3684 3685 static void restore_xmsi_data(struct s2io_nic *nic) 3686 { 3687 struct XENA_dev_config __iomem *bar0 = nic->bar0; 3688 u64 val64; 3689 int i, msix_index; 3690 3691 if (nic->device_type == XFRAME_I_DEVICE) 3692 return; 3693 3694 for (i = 0; i < MAX_REQUESTED_MSI_X; i++) { 3695 msix_index = (i) ? ((i-1) * 8 + 1) : 0; 3696 writeq(nic->msix_info[i].addr, &bar0->xmsi_address); 3697 writeq(nic->msix_info[i].data, &bar0->xmsi_data); 3698 val64 = (s2BIT(7) | s2BIT(15) | vBIT(msix_index, 26, 6)); 3699 writeq(val64, &bar0->xmsi_access); 3700 if (wait_for_msix_trans(nic, msix_index)) { 3701 DBG_PRINT(ERR_DBG, "%s: index: %d failed\n", 3702 __func__, msix_index); 3703 continue; 3704 } 3705 } 3706 } 3707 3708 static void store_xmsi_data(struct s2io_nic *nic) 3709 { 3710 struct XENA_dev_config __iomem *bar0 = nic->bar0; 3711 u64 val64, addr, data; 3712 int i, msix_index; 3713 3714 if (nic->device_type == XFRAME_I_DEVICE) 3715 return; 3716 3717 /* Store and display */ 3718 for (i = 0; i < MAX_REQUESTED_MSI_X; i++) { 3719 msix_index = (i) ? ((i-1) * 8 + 1) : 0; 3720 val64 = (s2BIT(15) | vBIT(msix_index, 26, 6)); 3721 writeq(val64, &bar0->xmsi_access); 3722 if (wait_for_msix_trans(nic, msix_index)) { 3723 DBG_PRINT(ERR_DBG, "%s: index: %d failed\n", 3724 __func__, msix_index); 3725 continue; 3726 } 3727 addr = readq(&bar0->xmsi_address); 3728 data = readq(&bar0->xmsi_data); 3729 if (addr && data) { 3730 nic->msix_info[i].addr = addr; 3731 nic->msix_info[i].data = data; 3732 } 3733 } 3734 } 3735 3736 static int s2io_enable_msi_x(struct s2io_nic *nic) 3737 { 3738 struct XENA_dev_config __iomem *bar0 = nic->bar0; 3739 u64 rx_mat; 3740 u16 msi_control; /* Temp variable */ 3741 int ret, i, j, msix_indx = 1; 3742 int size; 3743 struct stat_block *stats = nic->mac_control.stats_info; 3744 struct swStat *swstats = &stats->sw_stat; 3745 3746 size = nic->num_entries * sizeof(struct msix_entry); 3747 nic->entries = kzalloc(size, GFP_KERNEL); 3748 if (!nic->entries) { 3749 DBG_PRINT(INFO_DBG, "%s: Memory allocation failed\n", 3750 __func__); 3751 swstats->mem_alloc_fail_cnt++; 3752 return -ENOMEM; 3753 } 3754 swstats->mem_allocated += size; 3755 3756 size = nic->num_entries * sizeof(struct s2io_msix_entry); 3757 nic->s2io_entries = kzalloc(size, GFP_KERNEL); 3758 if (!nic->s2io_entries) { 3759 DBG_PRINT(INFO_DBG, "%s: Memory allocation failed\n", 3760 __func__); 3761 swstats->mem_alloc_fail_cnt++; 3762 kfree(nic->entries); 3763 swstats->mem_freed 3764 += (nic->num_entries * sizeof(struct msix_entry)); 3765 return -ENOMEM; 3766 } 3767 swstats->mem_allocated += size; 3768 3769 nic->entries[0].entry = 0; 3770 nic->s2io_entries[0].entry = 0; 3771 nic->s2io_entries[0].in_use = MSIX_FLG; 3772 nic->s2io_entries[0].type = MSIX_ALARM_TYPE; 3773 nic->s2io_entries[0].arg = &nic->mac_control.fifos; 3774 3775 for (i = 1; i < nic->num_entries; i++) { 3776 nic->entries[i].entry = ((i - 1) * 8) + 1; 3777 nic->s2io_entries[i].entry = ((i - 1) * 8) + 1; 3778 nic->s2io_entries[i].arg = NULL; 3779 nic->s2io_entries[i].in_use = 0; 3780 } 3781 3782 rx_mat = readq(&bar0->rx_mat); 3783 for (j = 0; j < nic->config.rx_ring_num; j++) { 3784 rx_mat |= RX_MAT_SET(j, msix_indx); 3785 nic->s2io_entries[j+1].arg = &nic->mac_control.rings[j]; 3786 nic->s2io_entries[j+1].type = MSIX_RING_TYPE; 3787 nic->s2io_entries[j+1].in_use = MSIX_FLG; 3788 msix_indx += 8; 3789 } 3790 writeq(rx_mat, &bar0->rx_mat); 3791 readq(&bar0->rx_mat); 3792 3793 ret = pci_enable_msix(nic->pdev, nic->entries, nic->num_entries); 3794 /* We fail init if error or we get less vectors than min required */ 3795 if (ret) { 3796 DBG_PRINT(ERR_DBG, "Enabling MSI-X failed\n"); 3797 kfree(nic->entries); 3798 swstats->mem_freed += nic->num_entries * 3799 sizeof(struct msix_entry); 3800 kfree(nic->s2io_entries); 3801 swstats->mem_freed += nic->num_entries * 3802 sizeof(struct s2io_msix_entry); 3803 nic->entries = NULL; 3804 nic->s2io_entries = NULL; 3805 return -ENOMEM; 3806 } 3807 3808 /* 3809 * To enable MSI-X, MSI also needs to be enabled, due to a bug 3810 * in the herc NIC. (Temp change, needs to be removed later) 3811 */ 3812 pci_read_config_word(nic->pdev, 0x42, &msi_control); 3813 msi_control |= 0x1; /* Enable MSI */ 3814 pci_write_config_word(nic->pdev, 0x42, msi_control); 3815 3816 return 0; 3817 } 3818 3819 /* Handle software interrupt used during MSI(X) test */ 3820 static irqreturn_t s2io_test_intr(int irq, void *dev_id) 3821 { 3822 struct s2io_nic *sp = dev_id; 3823 3824 sp->msi_detected = 1; 3825 wake_up(&sp->msi_wait); 3826 3827 return IRQ_HANDLED; 3828 } 3829 3830 /* Test interrupt path by forcing a a software IRQ */ 3831 static int s2io_test_msi(struct s2io_nic *sp) 3832 { 3833 struct pci_dev *pdev = sp->pdev; 3834 struct XENA_dev_config __iomem *bar0 = sp->bar0; 3835 int err; 3836 u64 val64, saved64; 3837 3838 err = request_irq(sp->entries[1].vector, s2io_test_intr, 0, 3839 sp->name, sp); 3840 if (err) { 3841 DBG_PRINT(ERR_DBG, "%s: PCI %s: cannot assign irq %d\n", 3842 sp->dev->name, pci_name(pdev), pdev->irq); 3843 return err; 3844 } 3845 3846 init_waitqueue_head(&sp->msi_wait); 3847 sp->msi_detected = 0; 3848 3849 saved64 = val64 = readq(&bar0->scheduled_int_ctrl); 3850 val64 |= SCHED_INT_CTRL_ONE_SHOT; 3851 val64 |= SCHED_INT_CTRL_TIMER_EN; 3852 val64 |= SCHED_INT_CTRL_INT2MSI(1); 3853 writeq(val64, &bar0->scheduled_int_ctrl); 3854 3855 wait_event_timeout(sp->msi_wait, sp->msi_detected, HZ/10); 3856 3857 if (!sp->msi_detected) { 3858 /* MSI(X) test failed, go back to INTx mode */ 3859 DBG_PRINT(ERR_DBG, "%s: PCI %s: No interrupt was generated " 3860 "using MSI(X) during test\n", 3861 sp->dev->name, pci_name(pdev)); 3862 3863 err = -EOPNOTSUPP; 3864 } 3865 3866 free_irq(sp->entries[1].vector, sp); 3867 3868 writeq(saved64, &bar0->scheduled_int_ctrl); 3869 3870 return err; 3871 } 3872 3873 static void remove_msix_isr(struct s2io_nic *sp) 3874 { 3875 int i; 3876 u16 msi_control; 3877 3878 for (i = 0; i < sp->num_entries; i++) { 3879 if (sp->s2io_entries[i].in_use == MSIX_REGISTERED_SUCCESS) { 3880 int vector = sp->entries[i].vector; 3881 void *arg = sp->s2io_entries[i].arg; 3882 free_irq(vector, arg); 3883 } 3884 } 3885 3886 kfree(sp->entries); 3887 kfree(sp->s2io_entries); 3888 sp->entries = NULL; 3889 sp->s2io_entries = NULL; 3890 3891 pci_read_config_word(sp->pdev, 0x42, &msi_control); 3892 msi_control &= 0xFFFE; /* Disable MSI */ 3893 pci_write_config_word(sp->pdev, 0x42, msi_control); 3894 3895 pci_disable_msix(sp->pdev); 3896 } 3897 3898 static void remove_inta_isr(struct s2io_nic *sp) 3899 { 3900 struct net_device *dev = sp->dev; 3901 3902 free_irq(sp->pdev->irq, dev); 3903 } 3904 3905 /* ********************************************************* * 3906 * Functions defined below concern the OS part of the driver * 3907 * ********************************************************* */ 3908 3909 /** 3910 * s2io_open - open entry point of the driver 3911 * @dev : pointer to the device structure. 3912 * Description: 3913 * This function is the open entry point of the driver. It mainly calls a 3914 * function to allocate Rx buffers and inserts them into the buffer 3915 * descriptors and then enables the Rx part of the NIC. 3916 * Return value: 3917 * 0 on success and an appropriate (-)ve integer as defined in errno.h 3918 * file on failure. 3919 */ 3920 3921 static int s2io_open(struct net_device *dev) 3922 { 3923 struct s2io_nic *sp = netdev_priv(dev); 3924 struct swStat *swstats = &sp->mac_control.stats_info->sw_stat; 3925 int err = 0; 3926 3927 /* 3928 * Make sure you have link off by default every time 3929 * Nic is initialized 3930 */ 3931 netif_carrier_off(dev); 3932 sp->last_link_state = 0; 3933 3934 /* Initialize H/W and enable interrupts */ 3935 err = s2io_card_up(sp); 3936 if (err) { 3937 DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n", 3938 dev->name); 3939 goto hw_init_failed; 3940 } 3941 3942 if (do_s2io_prog_unicast(dev, dev->dev_addr) == FAILURE) { 3943 DBG_PRINT(ERR_DBG, "Set Mac Address Failed\n"); 3944 s2io_card_down(sp); 3945 err = -ENODEV; 3946 goto hw_init_failed; 3947 } 3948 s2io_start_all_tx_queue(sp); 3949 return 0; 3950 3951 hw_init_failed: 3952 if (sp->config.intr_type == MSI_X) { 3953 if (sp->entries) { 3954 kfree(sp->entries); 3955 swstats->mem_freed += sp->num_entries * 3956 sizeof(struct msix_entry); 3957 } 3958 if (sp->s2io_entries) { 3959 kfree(sp->s2io_entries); 3960 swstats->mem_freed += sp->num_entries * 3961 sizeof(struct s2io_msix_entry); 3962 } 3963 } 3964 return err; 3965 } 3966 3967 /** 3968 * s2io_close -close entry point of the driver 3969 * @dev : device pointer. 3970 * Description: 3971 * This is the stop entry point of the driver. It needs to undo exactly 3972 * whatever was done by the open entry point,thus it's usually referred to 3973 * as the close function.Among other things this function mainly stops the 3974 * Rx side of the NIC and frees all the Rx buffers in the Rx rings. 3975 * Return value: 3976 * 0 on success and an appropriate (-)ve integer as defined in errno.h 3977 * file on failure. 3978 */ 3979 3980 static int s2io_close(struct net_device *dev) 3981 { 3982 struct s2io_nic *sp = netdev_priv(dev); 3983 struct config_param *config = &sp->config; 3984 u64 tmp64; 3985 int offset; 3986 3987 /* Return if the device is already closed * 3988 * Can happen when s2io_card_up failed in change_mtu * 3989 */ 3990 if (!is_s2io_card_up(sp)) 3991 return 0; 3992 3993 s2io_stop_all_tx_queue(sp); 3994 /* delete all populated mac entries */ 3995 for (offset = 1; offset < config->max_mc_addr; offset++) { 3996 tmp64 = do_s2io_read_unicast_mc(sp, offset); 3997 if (tmp64 != S2IO_DISABLE_MAC_ENTRY) 3998 do_s2io_delete_unicast_mc(sp, tmp64); 3999 } 4000 4001 s2io_card_down(sp); 4002 4003 return 0; 4004 } 4005 4006 /** 4007 * s2io_xmit - Tx entry point of te driver 4008 * @skb : the socket buffer containing the Tx data. 4009 * @dev : device pointer. 4010 * Description : 4011 * This function is the Tx entry point of the driver. S2IO NIC supports 4012 * certain protocol assist features on Tx side, namely CSO, S/G, LSO. 4013 * NOTE: when device can't queue the pkt,just the trans_start variable will 4014 * not be upadted. 4015 * Return value: 4016 * 0 on success & 1 on failure. 4017 */ 4018 4019 static netdev_tx_t s2io_xmit(struct sk_buff *skb, struct net_device *dev) 4020 { 4021 struct s2io_nic *sp = netdev_priv(dev); 4022 u16 frg_cnt, frg_len, i, queue, queue_len, put_off, get_off; 4023 register u64 val64; 4024 struct TxD *txdp; 4025 struct TxFIFO_element __iomem *tx_fifo; 4026 unsigned long flags = 0; 4027 u16 vlan_tag = 0; 4028 struct fifo_info *fifo = NULL; 4029 int do_spin_lock = 1; 4030 int offload_type; 4031 int enable_per_list_interrupt = 0; 4032 struct config_param *config = &sp->config; 4033 struct mac_info *mac_control = &sp->mac_control; 4034 struct stat_block *stats = mac_control->stats_info; 4035 struct swStat *swstats = &stats->sw_stat; 4036 4037 DBG_PRINT(TX_DBG, "%s: In Neterion Tx routine\n", dev->name); 4038 4039 if (unlikely(skb->len <= 0)) { 4040 DBG_PRINT(TX_DBG, "%s: Buffer has no data..\n", dev->name); 4041 dev_kfree_skb_any(skb); 4042 return NETDEV_TX_OK; 4043 } 4044 4045 if (!is_s2io_card_up(sp)) { 4046 DBG_PRINT(TX_DBG, "%s: Card going down for reset\n", 4047 dev->name); 4048 dev_kfree_skb(skb); 4049 return NETDEV_TX_OK; 4050 } 4051 4052 queue = 0; 4053 if (vlan_tx_tag_present(skb)) 4054 vlan_tag = vlan_tx_tag_get(skb); 4055 if (sp->config.tx_steering_type == TX_DEFAULT_STEERING) { 4056 if (skb->protocol == htons(ETH_P_IP)) { 4057 struct iphdr *ip; 4058 struct tcphdr *th; 4059 ip = ip_hdr(skb); 4060 4061 if (!ip_is_fragment(ip)) { 4062 th = (struct tcphdr *)(((unsigned char *)ip) + 4063 ip->ihl*4); 4064 4065 if (ip->protocol == IPPROTO_TCP) { 4066 queue_len = sp->total_tcp_fifos; 4067 queue = (ntohs(th->source) + 4068 ntohs(th->dest)) & 4069 sp->fifo_selector[queue_len - 1]; 4070 if (queue >= queue_len) 4071 queue = queue_len - 1; 4072 } else if (ip->protocol == IPPROTO_UDP) { 4073 queue_len = sp->total_udp_fifos; 4074 queue = (ntohs(th->source) + 4075 ntohs(th->dest)) & 4076 sp->fifo_selector[queue_len - 1]; 4077 if (queue >= queue_len) 4078 queue = queue_len - 1; 4079 queue += sp->udp_fifo_idx; 4080 if (skb->len > 1024) 4081 enable_per_list_interrupt = 1; 4082 do_spin_lock = 0; 4083 } 4084 } 4085 } 4086 } else if (sp->config.tx_steering_type == TX_PRIORITY_STEERING) 4087 /* get fifo number based on skb->priority value */ 4088 queue = config->fifo_mapping 4089 [skb->priority & (MAX_TX_FIFOS - 1)]; 4090 fifo = &mac_control->fifos[queue]; 4091 4092 if (do_spin_lock) 4093 spin_lock_irqsave(&fifo->tx_lock, flags); 4094 else { 4095 if (unlikely(!spin_trylock_irqsave(&fifo->tx_lock, flags))) 4096 return NETDEV_TX_LOCKED; 4097 } 4098 4099 if (sp->config.multiq) { 4100 if (__netif_subqueue_stopped(dev, fifo->fifo_no)) { 4101 spin_unlock_irqrestore(&fifo->tx_lock, flags); 4102 return NETDEV_TX_BUSY; 4103 } 4104 } else if (unlikely(fifo->queue_state == FIFO_QUEUE_STOP)) { 4105 if (netif_queue_stopped(dev)) { 4106 spin_unlock_irqrestore(&fifo->tx_lock, flags); 4107 return NETDEV_TX_BUSY; 4108 } 4109 } 4110 4111 put_off = (u16)fifo->tx_curr_put_info.offset; 4112 get_off = (u16)fifo->tx_curr_get_info.offset; 4113 txdp = fifo->list_info[put_off].list_virt_addr; 4114 4115 queue_len = fifo->tx_curr_put_info.fifo_len + 1; 4116 /* Avoid "put" pointer going beyond "get" pointer */ 4117 if (txdp->Host_Control || 4118 ((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) { 4119 DBG_PRINT(TX_DBG, "Error in xmit, No free TXDs.\n"); 4120 s2io_stop_tx_queue(sp, fifo->fifo_no); 4121 dev_kfree_skb(skb); 4122 spin_unlock_irqrestore(&fifo->tx_lock, flags); 4123 return NETDEV_TX_OK; 4124 } 4125 4126 offload_type = s2io_offload_type(skb); 4127 if (offload_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)) { 4128 txdp->Control_1 |= TXD_TCP_LSO_EN; 4129 txdp->Control_1 |= TXD_TCP_LSO_MSS(s2io_tcp_mss(skb)); 4130 } 4131 if (skb->ip_summed == CHECKSUM_PARTIAL) { 4132 txdp->Control_2 |= (TXD_TX_CKO_IPV4_EN | 4133 TXD_TX_CKO_TCP_EN | 4134 TXD_TX_CKO_UDP_EN); 4135 } 4136 txdp->Control_1 |= TXD_GATHER_CODE_FIRST; 4137 txdp->Control_1 |= TXD_LIST_OWN_XENA; 4138 txdp->Control_2 |= TXD_INT_NUMBER(fifo->fifo_no); 4139 if (enable_per_list_interrupt) 4140 if (put_off & (queue_len >> 5)) 4141 txdp->Control_2 |= TXD_INT_TYPE_PER_LIST; 4142 if (vlan_tag) { 4143 txdp->Control_2 |= TXD_VLAN_ENABLE; 4144 txdp->Control_2 |= TXD_VLAN_TAG(vlan_tag); 4145 } 4146 4147 frg_len = skb_headlen(skb); 4148 if (offload_type == SKB_GSO_UDP) { 4149 int ufo_size; 4150 4151 ufo_size = s2io_udp_mss(skb); 4152 ufo_size &= ~7; 4153 txdp->Control_1 |= TXD_UFO_EN; 4154 txdp->Control_1 |= TXD_UFO_MSS(ufo_size); 4155 txdp->Control_1 |= TXD_BUFFER0_SIZE(8); 4156 #ifdef __BIG_ENDIAN 4157 /* both variants do cpu_to_be64(be32_to_cpu(...)) */ 4158 fifo->ufo_in_band_v[put_off] = 4159 (__force u64)skb_shinfo(skb)->ip6_frag_id; 4160 #else 4161 fifo->ufo_in_band_v[put_off] = 4162 (__force u64)skb_shinfo(skb)->ip6_frag_id << 32; 4163 #endif 4164 txdp->Host_Control = (unsigned long)fifo->ufo_in_band_v; 4165 txdp->Buffer_Pointer = pci_map_single(sp->pdev, 4166 fifo->ufo_in_band_v, 4167 sizeof(u64), 4168 PCI_DMA_TODEVICE); 4169 if (pci_dma_mapping_error(sp->pdev, txdp->Buffer_Pointer)) 4170 goto pci_map_failed; 4171 txdp++; 4172 } 4173 4174 txdp->Buffer_Pointer = pci_map_single(sp->pdev, skb->data, 4175 frg_len, PCI_DMA_TODEVICE); 4176 if (pci_dma_mapping_error(sp->pdev, txdp->Buffer_Pointer)) 4177 goto pci_map_failed; 4178 4179 txdp->Host_Control = (unsigned long)skb; 4180 txdp->Control_1 |= TXD_BUFFER0_SIZE(frg_len); 4181 if (offload_type == SKB_GSO_UDP) 4182 txdp->Control_1 |= TXD_UFO_EN; 4183 4184 frg_cnt = skb_shinfo(skb)->nr_frags; 4185 /* For fragmented SKB. */ 4186 for (i = 0; i < frg_cnt; i++) { 4187 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 4188 /* A '0' length fragment will be ignored */ 4189 if (!skb_frag_size(frag)) 4190 continue; 4191 txdp++; 4192 txdp->Buffer_Pointer = (u64)skb_frag_dma_map(&sp->pdev->dev, 4193 frag, 0, 4194 skb_frag_size(frag), 4195 DMA_TO_DEVICE); 4196 txdp->Control_1 = TXD_BUFFER0_SIZE(skb_frag_size(frag)); 4197 if (offload_type == SKB_GSO_UDP) 4198 txdp->Control_1 |= TXD_UFO_EN; 4199 } 4200 txdp->Control_1 |= TXD_GATHER_CODE_LAST; 4201 4202 if (offload_type == SKB_GSO_UDP) 4203 frg_cnt++; /* as Txd0 was used for inband header */ 4204 4205 tx_fifo = mac_control->tx_FIFO_start[queue]; 4206 val64 = fifo->list_info[put_off].list_phy_addr; 4207 writeq(val64, &tx_fifo->TxDL_Pointer); 4208 4209 val64 = (TX_FIFO_LAST_TXD_NUM(frg_cnt) | TX_FIFO_FIRST_LIST | 4210 TX_FIFO_LAST_LIST); 4211 if (offload_type) 4212 val64 |= TX_FIFO_SPECIAL_FUNC; 4213 4214 writeq(val64, &tx_fifo->List_Control); 4215 4216 mmiowb(); 4217 4218 put_off++; 4219 if (put_off == fifo->tx_curr_put_info.fifo_len + 1) 4220 put_off = 0; 4221 fifo->tx_curr_put_info.offset = put_off; 4222 4223 /* Avoid "put" pointer going beyond "get" pointer */ 4224 if (((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) { 4225 swstats->fifo_full_cnt++; 4226 DBG_PRINT(TX_DBG, 4227 "No free TxDs for xmit, Put: 0x%x Get:0x%x\n", 4228 put_off, get_off); 4229 s2io_stop_tx_queue(sp, fifo->fifo_no); 4230 } 4231 swstats->mem_allocated += skb->truesize; 4232 spin_unlock_irqrestore(&fifo->tx_lock, flags); 4233 4234 if (sp->config.intr_type == MSI_X) 4235 tx_intr_handler(fifo); 4236 4237 return NETDEV_TX_OK; 4238 4239 pci_map_failed: 4240 swstats->pci_map_fail_cnt++; 4241 s2io_stop_tx_queue(sp, fifo->fifo_no); 4242 swstats->mem_freed += skb->truesize; 4243 dev_kfree_skb(skb); 4244 spin_unlock_irqrestore(&fifo->tx_lock, flags); 4245 return NETDEV_TX_OK; 4246 } 4247 4248 static void 4249 s2io_alarm_handle(unsigned long data) 4250 { 4251 struct s2io_nic *sp = (struct s2io_nic *)data; 4252 struct net_device *dev = sp->dev; 4253 4254 s2io_handle_errors(dev); 4255 mod_timer(&sp->alarm_timer, jiffies + HZ / 2); 4256 } 4257 4258 static irqreturn_t s2io_msix_ring_handle(int irq, void *dev_id) 4259 { 4260 struct ring_info *ring = (struct ring_info *)dev_id; 4261 struct s2io_nic *sp = ring->nic; 4262 struct XENA_dev_config __iomem *bar0 = sp->bar0; 4263 4264 if (unlikely(!is_s2io_card_up(sp))) 4265 return IRQ_HANDLED; 4266 4267 if (sp->config.napi) { 4268 u8 __iomem *addr = NULL; 4269 u8 val8 = 0; 4270 4271 addr = (u8 __iomem *)&bar0->xmsi_mask_reg; 4272 addr += (7 - ring->ring_no); 4273 val8 = (ring->ring_no == 0) ? 0x7f : 0xff; 4274 writeb(val8, addr); 4275 val8 = readb(addr); 4276 napi_schedule(&ring->napi); 4277 } else { 4278 rx_intr_handler(ring, 0); 4279 s2io_chk_rx_buffers(sp, ring); 4280 } 4281 4282 return IRQ_HANDLED; 4283 } 4284 4285 static irqreturn_t s2io_msix_fifo_handle(int irq, void *dev_id) 4286 { 4287 int i; 4288 struct fifo_info *fifos = (struct fifo_info *)dev_id; 4289 struct s2io_nic *sp = fifos->nic; 4290 struct XENA_dev_config __iomem *bar0 = sp->bar0; 4291 struct config_param *config = &sp->config; 4292 u64 reason; 4293 4294 if (unlikely(!is_s2io_card_up(sp))) 4295 return IRQ_NONE; 4296 4297 reason = readq(&bar0->general_int_status); 4298 if (unlikely(reason == S2IO_MINUS_ONE)) 4299 /* Nothing much can be done. Get out */ 4300 return IRQ_HANDLED; 4301 4302 if (reason & (GEN_INTR_TXPIC | GEN_INTR_TXTRAFFIC)) { 4303 writeq(S2IO_MINUS_ONE, &bar0->general_int_mask); 4304 4305 if (reason & GEN_INTR_TXPIC) 4306 s2io_txpic_intr_handle(sp); 4307 4308 if (reason & GEN_INTR_TXTRAFFIC) 4309 writeq(S2IO_MINUS_ONE, &bar0->tx_traffic_int); 4310 4311 for (i = 0; i < config->tx_fifo_num; i++) 4312 tx_intr_handler(&fifos[i]); 4313 4314 writeq(sp->general_int_mask, &bar0->general_int_mask); 4315 readl(&bar0->general_int_status); 4316 return IRQ_HANDLED; 4317 } 4318 /* The interrupt was not raised by us */ 4319 return IRQ_NONE; 4320 } 4321 4322 static void s2io_txpic_intr_handle(struct s2io_nic *sp) 4323 { 4324 struct XENA_dev_config __iomem *bar0 = sp->bar0; 4325 u64 val64; 4326 4327 val64 = readq(&bar0->pic_int_status); 4328 if (val64 & PIC_INT_GPIO) { 4329 val64 = readq(&bar0->gpio_int_reg); 4330 if ((val64 & GPIO_INT_REG_LINK_DOWN) && 4331 (val64 & GPIO_INT_REG_LINK_UP)) { 4332 /* 4333 * This is unstable state so clear both up/down 4334 * interrupt and adapter to re-evaluate the link state. 4335 */ 4336 val64 |= GPIO_INT_REG_LINK_DOWN; 4337 val64 |= GPIO_INT_REG_LINK_UP; 4338 writeq(val64, &bar0->gpio_int_reg); 4339 val64 = readq(&bar0->gpio_int_mask); 4340 val64 &= ~(GPIO_INT_MASK_LINK_UP | 4341 GPIO_INT_MASK_LINK_DOWN); 4342 writeq(val64, &bar0->gpio_int_mask); 4343 } else if (val64 & GPIO_INT_REG_LINK_UP) { 4344 val64 = readq(&bar0->adapter_status); 4345 /* Enable Adapter */ 4346 val64 = readq(&bar0->adapter_control); 4347 val64 |= ADAPTER_CNTL_EN; 4348 writeq(val64, &bar0->adapter_control); 4349 val64 |= ADAPTER_LED_ON; 4350 writeq(val64, &bar0->adapter_control); 4351 if (!sp->device_enabled_once) 4352 sp->device_enabled_once = 1; 4353 4354 s2io_link(sp, LINK_UP); 4355 /* 4356 * unmask link down interrupt and mask link-up 4357 * intr 4358 */ 4359 val64 = readq(&bar0->gpio_int_mask); 4360 val64 &= ~GPIO_INT_MASK_LINK_DOWN; 4361 val64 |= GPIO_INT_MASK_LINK_UP; 4362 writeq(val64, &bar0->gpio_int_mask); 4363 4364 } else if (val64 & GPIO_INT_REG_LINK_DOWN) { 4365 val64 = readq(&bar0->adapter_status); 4366 s2io_link(sp, LINK_DOWN); 4367 /* Link is down so unmaks link up interrupt */ 4368 val64 = readq(&bar0->gpio_int_mask); 4369 val64 &= ~GPIO_INT_MASK_LINK_UP; 4370 val64 |= GPIO_INT_MASK_LINK_DOWN; 4371 writeq(val64, &bar0->gpio_int_mask); 4372 4373 /* turn off LED */ 4374 val64 = readq(&bar0->adapter_control); 4375 val64 = val64 & (~ADAPTER_LED_ON); 4376 writeq(val64, &bar0->adapter_control); 4377 } 4378 } 4379 val64 = readq(&bar0->gpio_int_mask); 4380 } 4381 4382 /** 4383 * do_s2io_chk_alarm_bit - Check for alarm and incrment the counter 4384 * @value: alarm bits 4385 * @addr: address value 4386 * @cnt: counter variable 4387 * Description: Check for alarm and increment the counter 4388 * Return Value: 4389 * 1 - if alarm bit set 4390 * 0 - if alarm bit is not set 4391 */ 4392 static int do_s2io_chk_alarm_bit(u64 value, void __iomem *addr, 4393 unsigned long long *cnt) 4394 { 4395 u64 val64; 4396 val64 = readq(addr); 4397 if (val64 & value) { 4398 writeq(val64, addr); 4399 (*cnt)++; 4400 return 1; 4401 } 4402 return 0; 4403 4404 } 4405 4406 /** 4407 * s2io_handle_errors - Xframe error indication handler 4408 * @nic: device private variable 4409 * Description: Handle alarms such as loss of link, single or 4410 * double ECC errors, critical and serious errors. 4411 * Return Value: 4412 * NONE 4413 */ 4414 static void s2io_handle_errors(void *dev_id) 4415 { 4416 struct net_device *dev = (struct net_device *)dev_id; 4417 struct s2io_nic *sp = netdev_priv(dev); 4418 struct XENA_dev_config __iomem *bar0 = sp->bar0; 4419 u64 temp64 = 0, val64 = 0; 4420 int i = 0; 4421 4422 struct swStat *sw_stat = &sp->mac_control.stats_info->sw_stat; 4423 struct xpakStat *stats = &sp->mac_control.stats_info->xpak_stat; 4424 4425 if (!is_s2io_card_up(sp)) 4426 return; 4427 4428 if (pci_channel_offline(sp->pdev)) 4429 return; 4430 4431 memset(&sw_stat->ring_full_cnt, 0, 4432 sizeof(sw_stat->ring_full_cnt)); 4433 4434 /* Handling the XPAK counters update */ 4435 if (stats->xpak_timer_count < 72000) { 4436 /* waiting for an hour */ 4437 stats->xpak_timer_count++; 4438 } else { 4439 s2io_updt_xpak_counter(dev); 4440 /* reset the count to zero */ 4441 stats->xpak_timer_count = 0; 4442 } 4443 4444 /* Handling link status change error Intr */ 4445 if (s2io_link_fault_indication(sp) == MAC_RMAC_ERR_TIMER) { 4446 val64 = readq(&bar0->mac_rmac_err_reg); 4447 writeq(val64, &bar0->mac_rmac_err_reg); 4448 if (val64 & RMAC_LINK_STATE_CHANGE_INT) 4449 schedule_work(&sp->set_link_task); 4450 } 4451 4452 /* In case of a serious error, the device will be Reset. */ 4453 if (do_s2io_chk_alarm_bit(SERR_SOURCE_ANY, &bar0->serr_source, 4454 &sw_stat->serious_err_cnt)) 4455 goto reset; 4456 4457 /* Check for data parity error */ 4458 if (do_s2io_chk_alarm_bit(GPIO_INT_REG_DP_ERR_INT, &bar0->gpio_int_reg, 4459 &sw_stat->parity_err_cnt)) 4460 goto reset; 4461 4462 /* Check for ring full counter */ 4463 if (sp->device_type == XFRAME_II_DEVICE) { 4464 val64 = readq(&bar0->ring_bump_counter1); 4465 for (i = 0; i < 4; i++) { 4466 temp64 = (val64 & vBIT(0xFFFF, (i*16), 16)); 4467 temp64 >>= 64 - ((i+1)*16); 4468 sw_stat->ring_full_cnt[i] += temp64; 4469 } 4470 4471 val64 = readq(&bar0->ring_bump_counter2); 4472 for (i = 0; i < 4; i++) { 4473 temp64 = (val64 & vBIT(0xFFFF, (i*16), 16)); 4474 temp64 >>= 64 - ((i+1)*16); 4475 sw_stat->ring_full_cnt[i+4] += temp64; 4476 } 4477 } 4478 4479 val64 = readq(&bar0->txdma_int_status); 4480 /*check for pfc_err*/ 4481 if (val64 & TXDMA_PFC_INT) { 4482 if (do_s2io_chk_alarm_bit(PFC_ECC_DB_ERR | PFC_SM_ERR_ALARM | 4483 PFC_MISC_0_ERR | PFC_MISC_1_ERR | 4484 PFC_PCIX_ERR, 4485 &bar0->pfc_err_reg, 4486 &sw_stat->pfc_err_cnt)) 4487 goto reset; 4488 do_s2io_chk_alarm_bit(PFC_ECC_SG_ERR, 4489 &bar0->pfc_err_reg, 4490 &sw_stat->pfc_err_cnt); 4491 } 4492 4493 /*check for tda_err*/ 4494 if (val64 & TXDMA_TDA_INT) { 4495 if (do_s2io_chk_alarm_bit(TDA_Fn_ECC_DB_ERR | 4496 TDA_SM0_ERR_ALARM | 4497 TDA_SM1_ERR_ALARM, 4498 &bar0->tda_err_reg, 4499 &sw_stat->tda_err_cnt)) 4500 goto reset; 4501 do_s2io_chk_alarm_bit(TDA_Fn_ECC_SG_ERR | TDA_PCIX_ERR, 4502 &bar0->tda_err_reg, 4503 &sw_stat->tda_err_cnt); 4504 } 4505 /*check for pcc_err*/ 4506 if (val64 & TXDMA_PCC_INT) { 4507 if (do_s2io_chk_alarm_bit(PCC_SM_ERR_ALARM | PCC_WR_ERR_ALARM | 4508 PCC_N_SERR | PCC_6_COF_OV_ERR | 4509 PCC_7_COF_OV_ERR | PCC_6_LSO_OV_ERR | 4510 PCC_7_LSO_OV_ERR | PCC_FB_ECC_DB_ERR | 4511 PCC_TXB_ECC_DB_ERR, 4512 &bar0->pcc_err_reg, 4513 &sw_stat->pcc_err_cnt)) 4514 goto reset; 4515 do_s2io_chk_alarm_bit(PCC_FB_ECC_SG_ERR | PCC_TXB_ECC_SG_ERR, 4516 &bar0->pcc_err_reg, 4517 &sw_stat->pcc_err_cnt); 4518 } 4519 4520 /*check for tti_err*/ 4521 if (val64 & TXDMA_TTI_INT) { 4522 if (do_s2io_chk_alarm_bit(TTI_SM_ERR_ALARM, 4523 &bar0->tti_err_reg, 4524 &sw_stat->tti_err_cnt)) 4525 goto reset; 4526 do_s2io_chk_alarm_bit(TTI_ECC_SG_ERR | TTI_ECC_DB_ERR, 4527 &bar0->tti_err_reg, 4528 &sw_stat->tti_err_cnt); 4529 } 4530 4531 /*check for lso_err*/ 4532 if (val64 & TXDMA_LSO_INT) { 4533 if (do_s2io_chk_alarm_bit(LSO6_ABORT | LSO7_ABORT | 4534 LSO6_SM_ERR_ALARM | LSO7_SM_ERR_ALARM, 4535 &bar0->lso_err_reg, 4536 &sw_stat->lso_err_cnt)) 4537 goto reset; 4538 do_s2io_chk_alarm_bit(LSO6_SEND_OFLOW | LSO7_SEND_OFLOW, 4539 &bar0->lso_err_reg, 4540 &sw_stat->lso_err_cnt); 4541 } 4542 4543 /*check for tpa_err*/ 4544 if (val64 & TXDMA_TPA_INT) { 4545 if (do_s2io_chk_alarm_bit(TPA_SM_ERR_ALARM, 4546 &bar0->tpa_err_reg, 4547 &sw_stat->tpa_err_cnt)) 4548 goto reset; 4549 do_s2io_chk_alarm_bit(TPA_TX_FRM_DROP, 4550 &bar0->tpa_err_reg, 4551 &sw_stat->tpa_err_cnt); 4552 } 4553 4554 /*check for sm_err*/ 4555 if (val64 & TXDMA_SM_INT) { 4556 if (do_s2io_chk_alarm_bit(SM_SM_ERR_ALARM, 4557 &bar0->sm_err_reg, 4558 &sw_stat->sm_err_cnt)) 4559 goto reset; 4560 } 4561 4562 val64 = readq(&bar0->mac_int_status); 4563 if (val64 & MAC_INT_STATUS_TMAC_INT) { 4564 if (do_s2io_chk_alarm_bit(TMAC_TX_BUF_OVRN | TMAC_TX_SM_ERR, 4565 &bar0->mac_tmac_err_reg, 4566 &sw_stat->mac_tmac_err_cnt)) 4567 goto reset; 4568 do_s2io_chk_alarm_bit(TMAC_ECC_SG_ERR | TMAC_ECC_DB_ERR | 4569 TMAC_DESC_ECC_SG_ERR | 4570 TMAC_DESC_ECC_DB_ERR, 4571 &bar0->mac_tmac_err_reg, 4572 &sw_stat->mac_tmac_err_cnt); 4573 } 4574 4575 val64 = readq(&bar0->xgxs_int_status); 4576 if (val64 & XGXS_INT_STATUS_TXGXS) { 4577 if (do_s2io_chk_alarm_bit(TXGXS_ESTORE_UFLOW | TXGXS_TX_SM_ERR, 4578 &bar0->xgxs_txgxs_err_reg, 4579 &sw_stat->xgxs_txgxs_err_cnt)) 4580 goto reset; 4581 do_s2io_chk_alarm_bit(TXGXS_ECC_SG_ERR | TXGXS_ECC_DB_ERR, 4582 &bar0->xgxs_txgxs_err_reg, 4583 &sw_stat->xgxs_txgxs_err_cnt); 4584 } 4585 4586 val64 = readq(&bar0->rxdma_int_status); 4587 if (val64 & RXDMA_INT_RC_INT_M) { 4588 if (do_s2io_chk_alarm_bit(RC_PRCn_ECC_DB_ERR | 4589 RC_FTC_ECC_DB_ERR | 4590 RC_PRCn_SM_ERR_ALARM | 4591 RC_FTC_SM_ERR_ALARM, 4592 &bar0->rc_err_reg, 4593 &sw_stat->rc_err_cnt)) 4594 goto reset; 4595 do_s2io_chk_alarm_bit(RC_PRCn_ECC_SG_ERR | 4596 RC_FTC_ECC_SG_ERR | 4597 RC_RDA_FAIL_WR_Rn, &bar0->rc_err_reg, 4598 &sw_stat->rc_err_cnt); 4599 if (do_s2io_chk_alarm_bit(PRC_PCI_AB_RD_Rn | 4600 PRC_PCI_AB_WR_Rn | 4601 PRC_PCI_AB_F_WR_Rn, 4602 &bar0->prc_pcix_err_reg, 4603 &sw_stat->prc_pcix_err_cnt)) 4604 goto reset; 4605 do_s2io_chk_alarm_bit(PRC_PCI_DP_RD_Rn | 4606 PRC_PCI_DP_WR_Rn | 4607 PRC_PCI_DP_F_WR_Rn, 4608 &bar0->prc_pcix_err_reg, 4609 &sw_stat->prc_pcix_err_cnt); 4610 } 4611 4612 if (val64 & RXDMA_INT_RPA_INT_M) { 4613 if (do_s2io_chk_alarm_bit(RPA_SM_ERR_ALARM | RPA_CREDIT_ERR, 4614 &bar0->rpa_err_reg, 4615 &sw_stat->rpa_err_cnt)) 4616 goto reset; 4617 do_s2io_chk_alarm_bit(RPA_ECC_SG_ERR | RPA_ECC_DB_ERR, 4618 &bar0->rpa_err_reg, 4619 &sw_stat->rpa_err_cnt); 4620 } 4621 4622 if (val64 & RXDMA_INT_RDA_INT_M) { 4623 if (do_s2io_chk_alarm_bit(RDA_RXDn_ECC_DB_ERR | 4624 RDA_FRM_ECC_DB_N_AERR | 4625 RDA_SM1_ERR_ALARM | 4626 RDA_SM0_ERR_ALARM | 4627 RDA_RXD_ECC_DB_SERR, 4628 &bar0->rda_err_reg, 4629 &sw_stat->rda_err_cnt)) 4630 goto reset; 4631 do_s2io_chk_alarm_bit(RDA_RXDn_ECC_SG_ERR | 4632 RDA_FRM_ECC_SG_ERR | 4633 RDA_MISC_ERR | 4634 RDA_PCIX_ERR, 4635 &bar0->rda_err_reg, 4636 &sw_stat->rda_err_cnt); 4637 } 4638 4639 if (val64 & RXDMA_INT_RTI_INT_M) { 4640 if (do_s2io_chk_alarm_bit(RTI_SM_ERR_ALARM, 4641 &bar0->rti_err_reg, 4642 &sw_stat->rti_err_cnt)) 4643 goto reset; 4644 do_s2io_chk_alarm_bit(RTI_ECC_SG_ERR | RTI_ECC_DB_ERR, 4645 &bar0->rti_err_reg, 4646 &sw_stat->rti_err_cnt); 4647 } 4648 4649 val64 = readq(&bar0->mac_int_status); 4650 if (val64 & MAC_INT_STATUS_RMAC_INT) { 4651 if (do_s2io_chk_alarm_bit(RMAC_RX_BUFF_OVRN | RMAC_RX_SM_ERR, 4652 &bar0->mac_rmac_err_reg, 4653 &sw_stat->mac_rmac_err_cnt)) 4654 goto reset; 4655 do_s2io_chk_alarm_bit(RMAC_UNUSED_INT | 4656 RMAC_SINGLE_ECC_ERR | 4657 RMAC_DOUBLE_ECC_ERR, 4658 &bar0->mac_rmac_err_reg, 4659 &sw_stat->mac_rmac_err_cnt); 4660 } 4661 4662 val64 = readq(&bar0->xgxs_int_status); 4663 if (val64 & XGXS_INT_STATUS_RXGXS) { 4664 if (do_s2io_chk_alarm_bit(RXGXS_ESTORE_OFLOW | RXGXS_RX_SM_ERR, 4665 &bar0->xgxs_rxgxs_err_reg, 4666 &sw_stat->xgxs_rxgxs_err_cnt)) 4667 goto reset; 4668 } 4669 4670 val64 = readq(&bar0->mc_int_status); 4671 if (val64 & MC_INT_STATUS_MC_INT) { 4672 if (do_s2io_chk_alarm_bit(MC_ERR_REG_SM_ERR, 4673 &bar0->mc_err_reg, 4674 &sw_stat->mc_err_cnt)) 4675 goto reset; 4676 4677 /* Handling Ecc errors */ 4678 if (val64 & (MC_ERR_REG_ECC_ALL_SNG | MC_ERR_REG_ECC_ALL_DBL)) { 4679 writeq(val64, &bar0->mc_err_reg); 4680 if (val64 & MC_ERR_REG_ECC_ALL_DBL) { 4681 sw_stat->double_ecc_errs++; 4682 if (sp->device_type != XFRAME_II_DEVICE) { 4683 /* 4684 * Reset XframeI only if critical error 4685 */ 4686 if (val64 & 4687 (MC_ERR_REG_MIRI_ECC_DB_ERR_0 | 4688 MC_ERR_REG_MIRI_ECC_DB_ERR_1)) 4689 goto reset; 4690 } 4691 } else 4692 sw_stat->single_ecc_errs++; 4693 } 4694 } 4695 return; 4696 4697 reset: 4698 s2io_stop_all_tx_queue(sp); 4699 schedule_work(&sp->rst_timer_task); 4700 sw_stat->soft_reset_cnt++; 4701 } 4702 4703 /** 4704 * s2io_isr - ISR handler of the device . 4705 * @irq: the irq of the device. 4706 * @dev_id: a void pointer to the dev structure of the NIC. 4707 * Description: This function is the ISR handler of the device. It 4708 * identifies the reason for the interrupt and calls the relevant 4709 * service routines. As a contongency measure, this ISR allocates the 4710 * recv buffers, if their numbers are below the panic value which is 4711 * presently set to 25% of the original number of rcv buffers allocated. 4712 * Return value: 4713 * IRQ_HANDLED: will be returned if IRQ was handled by this routine 4714 * IRQ_NONE: will be returned if interrupt is not from our device 4715 */ 4716 static irqreturn_t s2io_isr(int irq, void *dev_id) 4717 { 4718 struct net_device *dev = (struct net_device *)dev_id; 4719 struct s2io_nic *sp = netdev_priv(dev); 4720 struct XENA_dev_config __iomem *bar0 = sp->bar0; 4721 int i; 4722 u64 reason = 0; 4723 struct mac_info *mac_control; 4724 struct config_param *config; 4725 4726 /* Pretend we handled any irq's from a disconnected card */ 4727 if (pci_channel_offline(sp->pdev)) 4728 return IRQ_NONE; 4729 4730 if (!is_s2io_card_up(sp)) 4731 return IRQ_NONE; 4732 4733 config = &sp->config; 4734 mac_control = &sp->mac_control; 4735 4736 /* 4737 * Identify the cause for interrupt and call the appropriate 4738 * interrupt handler. Causes for the interrupt could be; 4739 * 1. Rx of packet. 4740 * 2. Tx complete. 4741 * 3. Link down. 4742 */ 4743 reason = readq(&bar0->general_int_status); 4744 4745 if (unlikely(reason == S2IO_MINUS_ONE)) 4746 return IRQ_HANDLED; /* Nothing much can be done. Get out */ 4747 4748 if (reason & 4749 (GEN_INTR_RXTRAFFIC | GEN_INTR_TXTRAFFIC | GEN_INTR_TXPIC)) { 4750 writeq(S2IO_MINUS_ONE, &bar0->general_int_mask); 4751 4752 if (config->napi) { 4753 if (reason & GEN_INTR_RXTRAFFIC) { 4754 napi_schedule(&sp->napi); 4755 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_mask); 4756 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int); 4757 readl(&bar0->rx_traffic_int); 4758 } 4759 } else { 4760 /* 4761 * rx_traffic_int reg is an R1 register, writing all 1's 4762 * will ensure that the actual interrupt causing bit 4763 * get's cleared and hence a read can be avoided. 4764 */ 4765 if (reason & GEN_INTR_RXTRAFFIC) 4766 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int); 4767 4768 for (i = 0; i < config->rx_ring_num; i++) { 4769 struct ring_info *ring = &mac_control->rings[i]; 4770 4771 rx_intr_handler(ring, 0); 4772 } 4773 } 4774 4775 /* 4776 * tx_traffic_int reg is an R1 register, writing all 1's 4777 * will ensure that the actual interrupt causing bit get's 4778 * cleared and hence a read can be avoided. 4779 */ 4780 if (reason & GEN_INTR_TXTRAFFIC) 4781 writeq(S2IO_MINUS_ONE, &bar0->tx_traffic_int); 4782 4783 for (i = 0; i < config->tx_fifo_num; i++) 4784 tx_intr_handler(&mac_control->fifos[i]); 4785 4786 if (reason & GEN_INTR_TXPIC) 4787 s2io_txpic_intr_handle(sp); 4788 4789 /* 4790 * Reallocate the buffers from the interrupt handler itself. 4791 */ 4792 if (!config->napi) { 4793 for (i = 0; i < config->rx_ring_num; i++) { 4794 struct ring_info *ring = &mac_control->rings[i]; 4795 4796 s2io_chk_rx_buffers(sp, ring); 4797 } 4798 } 4799 writeq(sp->general_int_mask, &bar0->general_int_mask); 4800 readl(&bar0->general_int_status); 4801 4802 return IRQ_HANDLED; 4803 4804 } else if (!reason) { 4805 /* The interrupt was not raised by us */ 4806 return IRQ_NONE; 4807 } 4808 4809 return IRQ_HANDLED; 4810 } 4811 4812 /** 4813 * s2io_updt_stats - 4814 */ 4815 static void s2io_updt_stats(struct s2io_nic *sp) 4816 { 4817 struct XENA_dev_config __iomem *bar0 = sp->bar0; 4818 u64 val64; 4819 int cnt = 0; 4820 4821 if (is_s2io_card_up(sp)) { 4822 /* Apprx 30us on a 133 MHz bus */ 4823 val64 = SET_UPDT_CLICKS(10) | 4824 STAT_CFG_ONE_SHOT_EN | STAT_CFG_STAT_EN; 4825 writeq(val64, &bar0->stat_cfg); 4826 do { 4827 udelay(100); 4828 val64 = readq(&bar0->stat_cfg); 4829 if (!(val64 & s2BIT(0))) 4830 break; 4831 cnt++; 4832 if (cnt == 5) 4833 break; /* Updt failed */ 4834 } while (1); 4835 } 4836 } 4837 4838 /** 4839 * s2io_get_stats - Updates the device statistics structure. 4840 * @dev : pointer to the device structure. 4841 * Description: 4842 * This function updates the device statistics structure in the s2io_nic 4843 * structure and returns a pointer to the same. 4844 * Return value: 4845 * pointer to the updated net_device_stats structure. 4846 */ 4847 static struct net_device_stats *s2io_get_stats(struct net_device *dev) 4848 { 4849 struct s2io_nic *sp = netdev_priv(dev); 4850 struct mac_info *mac_control = &sp->mac_control; 4851 struct stat_block *stats = mac_control->stats_info; 4852 u64 delta; 4853 4854 /* Configure Stats for immediate updt */ 4855 s2io_updt_stats(sp); 4856 4857 /* A device reset will cause the on-adapter statistics to be zero'ed. 4858 * This can be done while running by changing the MTU. To prevent the 4859 * system from having the stats zero'ed, the driver keeps a copy of the 4860 * last update to the system (which is also zero'ed on reset). This 4861 * enables the driver to accurately know the delta between the last 4862 * update and the current update. 4863 */ 4864 delta = ((u64) le32_to_cpu(stats->rmac_vld_frms_oflow) << 32 | 4865 le32_to_cpu(stats->rmac_vld_frms)) - sp->stats.rx_packets; 4866 sp->stats.rx_packets += delta; 4867 dev->stats.rx_packets += delta; 4868 4869 delta = ((u64) le32_to_cpu(stats->tmac_frms_oflow) << 32 | 4870 le32_to_cpu(stats->tmac_frms)) - sp->stats.tx_packets; 4871 sp->stats.tx_packets += delta; 4872 dev->stats.tx_packets += delta; 4873 4874 delta = ((u64) le32_to_cpu(stats->rmac_data_octets_oflow) << 32 | 4875 le32_to_cpu(stats->rmac_data_octets)) - sp->stats.rx_bytes; 4876 sp->stats.rx_bytes += delta; 4877 dev->stats.rx_bytes += delta; 4878 4879 delta = ((u64) le32_to_cpu(stats->tmac_data_octets_oflow) << 32 | 4880 le32_to_cpu(stats->tmac_data_octets)) - sp->stats.tx_bytes; 4881 sp->stats.tx_bytes += delta; 4882 dev->stats.tx_bytes += delta; 4883 4884 delta = le64_to_cpu(stats->rmac_drop_frms) - sp->stats.rx_errors; 4885 sp->stats.rx_errors += delta; 4886 dev->stats.rx_errors += delta; 4887 4888 delta = ((u64) le32_to_cpu(stats->tmac_any_err_frms_oflow) << 32 | 4889 le32_to_cpu(stats->tmac_any_err_frms)) - sp->stats.tx_errors; 4890 sp->stats.tx_errors += delta; 4891 dev->stats.tx_errors += delta; 4892 4893 delta = le64_to_cpu(stats->rmac_drop_frms) - sp->stats.rx_dropped; 4894 sp->stats.rx_dropped += delta; 4895 dev->stats.rx_dropped += delta; 4896 4897 delta = le64_to_cpu(stats->tmac_drop_frms) - sp->stats.tx_dropped; 4898 sp->stats.tx_dropped += delta; 4899 dev->stats.tx_dropped += delta; 4900 4901 /* The adapter MAC interprets pause frames as multicast packets, but 4902 * does not pass them up. This erroneously increases the multicast 4903 * packet count and needs to be deducted when the multicast frame count 4904 * is queried. 4905 */ 4906 delta = (u64) le32_to_cpu(stats->rmac_vld_mcst_frms_oflow) << 32 | 4907 le32_to_cpu(stats->rmac_vld_mcst_frms); 4908 delta -= le64_to_cpu(stats->rmac_pause_ctrl_frms); 4909 delta -= sp->stats.multicast; 4910 sp->stats.multicast += delta; 4911 dev->stats.multicast += delta; 4912 4913 delta = ((u64) le32_to_cpu(stats->rmac_usized_frms_oflow) << 32 | 4914 le32_to_cpu(stats->rmac_usized_frms)) + 4915 le64_to_cpu(stats->rmac_long_frms) - sp->stats.rx_length_errors; 4916 sp->stats.rx_length_errors += delta; 4917 dev->stats.rx_length_errors += delta; 4918 4919 delta = le64_to_cpu(stats->rmac_fcs_err_frms) - sp->stats.rx_crc_errors; 4920 sp->stats.rx_crc_errors += delta; 4921 dev->stats.rx_crc_errors += delta; 4922 4923 return &dev->stats; 4924 } 4925 4926 /** 4927 * s2io_set_multicast - entry point for multicast address enable/disable. 4928 * @dev : pointer to the device structure 4929 * Description: 4930 * This function is a driver entry point which gets called by the kernel 4931 * whenever multicast addresses must be enabled/disabled. This also gets 4932 * called to set/reset promiscuous mode. Depending on the deivce flag, we 4933 * determine, if multicast address must be enabled or if promiscuous mode 4934 * is to be disabled etc. 4935 * Return value: 4936 * void. 4937 */ 4938 4939 static void s2io_set_multicast(struct net_device *dev) 4940 { 4941 int i, j, prev_cnt; 4942 struct netdev_hw_addr *ha; 4943 struct s2io_nic *sp = netdev_priv(dev); 4944 struct XENA_dev_config __iomem *bar0 = sp->bar0; 4945 u64 val64 = 0, multi_mac = 0x010203040506ULL, mask = 4946 0xfeffffffffffULL; 4947 u64 dis_addr = S2IO_DISABLE_MAC_ENTRY, mac_addr = 0; 4948 void __iomem *add; 4949 struct config_param *config = &sp->config; 4950 4951 if ((dev->flags & IFF_ALLMULTI) && (!sp->m_cast_flg)) { 4952 /* Enable all Multicast addresses */ 4953 writeq(RMAC_ADDR_DATA0_MEM_ADDR(multi_mac), 4954 &bar0->rmac_addr_data0_mem); 4955 writeq(RMAC_ADDR_DATA1_MEM_MASK(mask), 4956 &bar0->rmac_addr_data1_mem); 4957 val64 = RMAC_ADDR_CMD_MEM_WE | 4958 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD | 4959 RMAC_ADDR_CMD_MEM_OFFSET(config->max_mc_addr - 1); 4960 writeq(val64, &bar0->rmac_addr_cmd_mem); 4961 /* Wait till command completes */ 4962 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem, 4963 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING, 4964 S2IO_BIT_RESET); 4965 4966 sp->m_cast_flg = 1; 4967 sp->all_multi_pos = config->max_mc_addr - 1; 4968 } else if ((dev->flags & IFF_ALLMULTI) && (sp->m_cast_flg)) { 4969 /* Disable all Multicast addresses */ 4970 writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr), 4971 &bar0->rmac_addr_data0_mem); 4972 writeq(RMAC_ADDR_DATA1_MEM_MASK(0x0), 4973 &bar0->rmac_addr_data1_mem); 4974 val64 = RMAC_ADDR_CMD_MEM_WE | 4975 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD | 4976 RMAC_ADDR_CMD_MEM_OFFSET(sp->all_multi_pos); 4977 writeq(val64, &bar0->rmac_addr_cmd_mem); 4978 /* Wait till command completes */ 4979 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem, 4980 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING, 4981 S2IO_BIT_RESET); 4982 4983 sp->m_cast_flg = 0; 4984 sp->all_multi_pos = 0; 4985 } 4986 4987 if ((dev->flags & IFF_PROMISC) && (!sp->promisc_flg)) { 4988 /* Put the NIC into promiscuous mode */ 4989 add = &bar0->mac_cfg; 4990 val64 = readq(&bar0->mac_cfg); 4991 val64 |= MAC_CFG_RMAC_PROM_ENABLE; 4992 4993 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key); 4994 writel((u32)val64, add); 4995 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key); 4996 writel((u32) (val64 >> 32), (add + 4)); 4997 4998 if (vlan_tag_strip != 1) { 4999 val64 = readq(&bar0->rx_pa_cfg); 5000 val64 &= ~RX_PA_CFG_STRIP_VLAN_TAG; 5001 writeq(val64, &bar0->rx_pa_cfg); 5002 sp->vlan_strip_flag = 0; 5003 } 5004 5005 val64 = readq(&bar0->mac_cfg); 5006 sp->promisc_flg = 1; 5007 DBG_PRINT(INFO_DBG, "%s: entered promiscuous mode\n", 5008 dev->name); 5009 } else if (!(dev->flags & IFF_PROMISC) && (sp->promisc_flg)) { 5010 /* Remove the NIC from promiscuous mode */ 5011 add = &bar0->mac_cfg; 5012 val64 = readq(&bar0->mac_cfg); 5013 val64 &= ~MAC_CFG_RMAC_PROM_ENABLE; 5014 5015 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key); 5016 writel((u32)val64, add); 5017 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key); 5018 writel((u32) (val64 >> 32), (add + 4)); 5019 5020 if (vlan_tag_strip != 0) { 5021 val64 = readq(&bar0->rx_pa_cfg); 5022 val64 |= RX_PA_CFG_STRIP_VLAN_TAG; 5023 writeq(val64, &bar0->rx_pa_cfg); 5024 sp->vlan_strip_flag = 1; 5025 } 5026 5027 val64 = readq(&bar0->mac_cfg); 5028 sp->promisc_flg = 0; 5029 DBG_PRINT(INFO_DBG, "%s: left promiscuous mode\n", dev->name); 5030 } 5031 5032 /* Update individual M_CAST address list */ 5033 if ((!sp->m_cast_flg) && netdev_mc_count(dev)) { 5034 if (netdev_mc_count(dev) > 5035 (config->max_mc_addr - config->max_mac_addr)) { 5036 DBG_PRINT(ERR_DBG, 5037 "%s: No more Rx filters can be added - " 5038 "please enable ALL_MULTI instead\n", 5039 dev->name); 5040 return; 5041 } 5042 5043 prev_cnt = sp->mc_addr_count; 5044 sp->mc_addr_count = netdev_mc_count(dev); 5045 5046 /* Clear out the previous list of Mc in the H/W. */ 5047 for (i = 0; i < prev_cnt; i++) { 5048 writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr), 5049 &bar0->rmac_addr_data0_mem); 5050 writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL), 5051 &bar0->rmac_addr_data1_mem); 5052 val64 = RMAC_ADDR_CMD_MEM_WE | 5053 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD | 5054 RMAC_ADDR_CMD_MEM_OFFSET 5055 (config->mc_start_offset + i); 5056 writeq(val64, &bar0->rmac_addr_cmd_mem); 5057 5058 /* Wait for command completes */ 5059 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem, 5060 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING, 5061 S2IO_BIT_RESET)) { 5062 DBG_PRINT(ERR_DBG, 5063 "%s: Adding Multicasts failed\n", 5064 dev->name); 5065 return; 5066 } 5067 } 5068 5069 /* Create the new Rx filter list and update the same in H/W. */ 5070 i = 0; 5071 netdev_for_each_mc_addr(ha, dev) { 5072 mac_addr = 0; 5073 for (j = 0; j < ETH_ALEN; j++) { 5074 mac_addr |= ha->addr[j]; 5075 mac_addr <<= 8; 5076 } 5077 mac_addr >>= 8; 5078 writeq(RMAC_ADDR_DATA0_MEM_ADDR(mac_addr), 5079 &bar0->rmac_addr_data0_mem); 5080 writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL), 5081 &bar0->rmac_addr_data1_mem); 5082 val64 = RMAC_ADDR_CMD_MEM_WE | 5083 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD | 5084 RMAC_ADDR_CMD_MEM_OFFSET 5085 (i + config->mc_start_offset); 5086 writeq(val64, &bar0->rmac_addr_cmd_mem); 5087 5088 /* Wait for command completes */ 5089 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem, 5090 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING, 5091 S2IO_BIT_RESET)) { 5092 DBG_PRINT(ERR_DBG, 5093 "%s: Adding Multicasts failed\n", 5094 dev->name); 5095 return; 5096 } 5097 i++; 5098 } 5099 } 5100 } 5101 5102 /* read from CAM unicast & multicast addresses and store it in 5103 * def_mac_addr structure 5104 */ 5105 static void do_s2io_store_unicast_mc(struct s2io_nic *sp) 5106 { 5107 int offset; 5108 u64 mac_addr = 0x0; 5109 struct config_param *config = &sp->config; 5110 5111 /* store unicast & multicast mac addresses */ 5112 for (offset = 0; offset < config->max_mc_addr; offset++) { 5113 mac_addr = do_s2io_read_unicast_mc(sp, offset); 5114 /* if read fails disable the entry */ 5115 if (mac_addr == FAILURE) 5116 mac_addr = S2IO_DISABLE_MAC_ENTRY; 5117 do_s2io_copy_mac_addr(sp, offset, mac_addr); 5118 } 5119 } 5120 5121 /* restore unicast & multicast MAC to CAM from def_mac_addr structure */ 5122 static void do_s2io_restore_unicast_mc(struct s2io_nic *sp) 5123 { 5124 int offset; 5125 struct config_param *config = &sp->config; 5126 /* restore unicast mac address */ 5127 for (offset = 0; offset < config->max_mac_addr; offset++) 5128 do_s2io_prog_unicast(sp->dev, 5129 sp->def_mac_addr[offset].mac_addr); 5130 5131 /* restore multicast mac address */ 5132 for (offset = config->mc_start_offset; 5133 offset < config->max_mc_addr; offset++) 5134 do_s2io_add_mc(sp, sp->def_mac_addr[offset].mac_addr); 5135 } 5136 5137 /* add a multicast MAC address to CAM */ 5138 static int do_s2io_add_mc(struct s2io_nic *sp, u8 *addr) 5139 { 5140 int i; 5141 u64 mac_addr = 0; 5142 struct config_param *config = &sp->config; 5143 5144 for (i = 0; i < ETH_ALEN; i++) { 5145 mac_addr <<= 8; 5146 mac_addr |= addr[i]; 5147 } 5148 if ((0ULL == mac_addr) || (mac_addr == S2IO_DISABLE_MAC_ENTRY)) 5149 return SUCCESS; 5150 5151 /* check if the multicast mac already preset in CAM */ 5152 for (i = config->mc_start_offset; i < config->max_mc_addr; i++) { 5153 u64 tmp64; 5154 tmp64 = do_s2io_read_unicast_mc(sp, i); 5155 if (tmp64 == S2IO_DISABLE_MAC_ENTRY) /* CAM entry is empty */ 5156 break; 5157 5158 if (tmp64 == mac_addr) 5159 return SUCCESS; 5160 } 5161 if (i == config->max_mc_addr) { 5162 DBG_PRINT(ERR_DBG, 5163 "CAM full no space left for multicast MAC\n"); 5164 return FAILURE; 5165 } 5166 /* Update the internal structure with this new mac address */ 5167 do_s2io_copy_mac_addr(sp, i, mac_addr); 5168 5169 return do_s2io_add_mac(sp, mac_addr, i); 5170 } 5171 5172 /* add MAC address to CAM */ 5173 static int do_s2io_add_mac(struct s2io_nic *sp, u64 addr, int off) 5174 { 5175 u64 val64; 5176 struct XENA_dev_config __iomem *bar0 = sp->bar0; 5177 5178 writeq(RMAC_ADDR_DATA0_MEM_ADDR(addr), 5179 &bar0->rmac_addr_data0_mem); 5180 5181 val64 = RMAC_ADDR_CMD_MEM_WE | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD | 5182 RMAC_ADDR_CMD_MEM_OFFSET(off); 5183 writeq(val64, &bar0->rmac_addr_cmd_mem); 5184 5185 /* Wait till command completes */ 5186 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem, 5187 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING, 5188 S2IO_BIT_RESET)) { 5189 DBG_PRINT(INFO_DBG, "do_s2io_add_mac failed\n"); 5190 return FAILURE; 5191 } 5192 return SUCCESS; 5193 } 5194 /* deletes a specified unicast/multicast mac entry from CAM */ 5195 static int do_s2io_delete_unicast_mc(struct s2io_nic *sp, u64 addr) 5196 { 5197 int offset; 5198 u64 dis_addr = S2IO_DISABLE_MAC_ENTRY, tmp64; 5199 struct config_param *config = &sp->config; 5200 5201 for (offset = 1; 5202 offset < config->max_mc_addr; offset++) { 5203 tmp64 = do_s2io_read_unicast_mc(sp, offset); 5204 if (tmp64 == addr) { 5205 /* disable the entry by writing 0xffffffffffffULL */ 5206 if (do_s2io_add_mac(sp, dis_addr, offset) == FAILURE) 5207 return FAILURE; 5208 /* store the new mac list from CAM */ 5209 do_s2io_store_unicast_mc(sp); 5210 return SUCCESS; 5211 } 5212 } 5213 DBG_PRINT(ERR_DBG, "MAC address 0x%llx not found in CAM\n", 5214 (unsigned long long)addr); 5215 return FAILURE; 5216 } 5217 5218 /* read mac entries from CAM */ 5219 static u64 do_s2io_read_unicast_mc(struct s2io_nic *sp, int offset) 5220 { 5221 u64 tmp64 = 0xffffffffffff0000ULL, val64; 5222 struct XENA_dev_config __iomem *bar0 = sp->bar0; 5223 5224 /* read mac addr */ 5225 val64 = RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD | 5226 RMAC_ADDR_CMD_MEM_OFFSET(offset); 5227 writeq(val64, &bar0->rmac_addr_cmd_mem); 5228 5229 /* Wait till command completes */ 5230 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem, 5231 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING, 5232 S2IO_BIT_RESET)) { 5233 DBG_PRINT(INFO_DBG, "do_s2io_read_unicast_mc failed\n"); 5234 return FAILURE; 5235 } 5236 tmp64 = readq(&bar0->rmac_addr_data0_mem); 5237 5238 return tmp64 >> 16; 5239 } 5240 5241 /** 5242 * s2io_set_mac_addr driver entry point 5243 */ 5244 5245 static int s2io_set_mac_addr(struct net_device *dev, void *p) 5246 { 5247 struct sockaddr *addr = p; 5248 5249 if (!is_valid_ether_addr(addr->sa_data)) 5250 return -EADDRNOTAVAIL; 5251 5252 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len); 5253 5254 /* store the MAC address in CAM */ 5255 return do_s2io_prog_unicast(dev, dev->dev_addr); 5256 } 5257 /** 5258 * do_s2io_prog_unicast - Programs the Xframe mac address 5259 * @dev : pointer to the device structure. 5260 * @addr: a uchar pointer to the new mac address which is to be set. 5261 * Description : This procedure will program the Xframe to receive 5262 * frames with new Mac Address 5263 * Return value: SUCCESS on success and an appropriate (-)ve integer 5264 * as defined in errno.h file on failure. 5265 */ 5266 5267 static int do_s2io_prog_unicast(struct net_device *dev, u8 *addr) 5268 { 5269 struct s2io_nic *sp = netdev_priv(dev); 5270 register u64 mac_addr = 0, perm_addr = 0; 5271 int i; 5272 u64 tmp64; 5273 struct config_param *config = &sp->config; 5274 5275 /* 5276 * Set the new MAC address as the new unicast filter and reflect this 5277 * change on the device address registered with the OS. It will be 5278 * at offset 0. 5279 */ 5280 for (i = 0; i < ETH_ALEN; i++) { 5281 mac_addr <<= 8; 5282 mac_addr |= addr[i]; 5283 perm_addr <<= 8; 5284 perm_addr |= sp->def_mac_addr[0].mac_addr[i]; 5285 } 5286 5287 /* check if the dev_addr is different than perm_addr */ 5288 if (mac_addr == perm_addr) 5289 return SUCCESS; 5290 5291 /* check if the mac already preset in CAM */ 5292 for (i = 1; i < config->max_mac_addr; i++) { 5293 tmp64 = do_s2io_read_unicast_mc(sp, i); 5294 if (tmp64 == S2IO_DISABLE_MAC_ENTRY) /* CAM entry is empty */ 5295 break; 5296 5297 if (tmp64 == mac_addr) { 5298 DBG_PRINT(INFO_DBG, 5299 "MAC addr:0x%llx already present in CAM\n", 5300 (unsigned long long)mac_addr); 5301 return SUCCESS; 5302 } 5303 } 5304 if (i == config->max_mac_addr) { 5305 DBG_PRINT(ERR_DBG, "CAM full no space left for Unicast MAC\n"); 5306 return FAILURE; 5307 } 5308 /* Update the internal structure with this new mac address */ 5309 do_s2io_copy_mac_addr(sp, i, mac_addr); 5310 5311 return do_s2io_add_mac(sp, mac_addr, i); 5312 } 5313 5314 /** 5315 * s2io_ethtool_sset - Sets different link parameters. 5316 * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure. 5317 * @info: pointer to the structure with parameters given by ethtool to set 5318 * link information. 5319 * Description: 5320 * The function sets different link parameters provided by the user onto 5321 * the NIC. 5322 * Return value: 5323 * 0 on success. 5324 */ 5325 5326 static int s2io_ethtool_sset(struct net_device *dev, 5327 struct ethtool_cmd *info) 5328 { 5329 struct s2io_nic *sp = netdev_priv(dev); 5330 if ((info->autoneg == AUTONEG_ENABLE) || 5331 (ethtool_cmd_speed(info) != SPEED_10000) || 5332 (info->duplex != DUPLEX_FULL)) 5333 return -EINVAL; 5334 else { 5335 s2io_close(sp->dev); 5336 s2io_open(sp->dev); 5337 } 5338 5339 return 0; 5340 } 5341 5342 /** 5343 * s2io_ethtol_gset - Return link specific information. 5344 * @sp : private member of the device structure, pointer to the 5345 * s2io_nic structure. 5346 * @info : pointer to the structure with parameters given by ethtool 5347 * to return link information. 5348 * Description: 5349 * Returns link specific information like speed, duplex etc.. to ethtool. 5350 * Return value : 5351 * return 0 on success. 5352 */ 5353 5354 static int s2io_ethtool_gset(struct net_device *dev, struct ethtool_cmd *info) 5355 { 5356 struct s2io_nic *sp = netdev_priv(dev); 5357 info->supported = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE); 5358 info->advertising = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE); 5359 info->port = PORT_FIBRE; 5360 5361 /* info->transceiver */ 5362 info->transceiver = XCVR_EXTERNAL; 5363 5364 if (netif_carrier_ok(sp->dev)) { 5365 ethtool_cmd_speed_set(info, SPEED_10000); 5366 info->duplex = DUPLEX_FULL; 5367 } else { 5368 ethtool_cmd_speed_set(info, -1); 5369 info->duplex = -1; 5370 } 5371 5372 info->autoneg = AUTONEG_DISABLE; 5373 return 0; 5374 } 5375 5376 /** 5377 * s2io_ethtool_gdrvinfo - Returns driver specific information. 5378 * @sp : private member of the device structure, which is a pointer to the 5379 * s2io_nic structure. 5380 * @info : pointer to the structure with parameters given by ethtool to 5381 * return driver information. 5382 * Description: 5383 * Returns driver specefic information like name, version etc.. to ethtool. 5384 * Return value: 5385 * void 5386 */ 5387 5388 static void s2io_ethtool_gdrvinfo(struct net_device *dev, 5389 struct ethtool_drvinfo *info) 5390 { 5391 struct s2io_nic *sp = netdev_priv(dev); 5392 5393 strlcpy(info->driver, s2io_driver_name, sizeof(info->driver)); 5394 strlcpy(info->version, s2io_driver_version, sizeof(info->version)); 5395 strlcpy(info->bus_info, pci_name(sp->pdev), sizeof(info->bus_info)); 5396 info->regdump_len = XENA_REG_SPACE; 5397 info->eedump_len = XENA_EEPROM_SPACE; 5398 } 5399 5400 /** 5401 * s2io_ethtool_gregs - dumps the entire space of Xfame into the buffer. 5402 * @sp: private member of the device structure, which is a pointer to the 5403 * s2io_nic structure. 5404 * @regs : pointer to the structure with parameters given by ethtool for 5405 * dumping the registers. 5406 * @reg_space: The input argumnet into which all the registers are dumped. 5407 * Description: 5408 * Dumps the entire register space of xFrame NIC into the user given 5409 * buffer area. 5410 * Return value : 5411 * void . 5412 */ 5413 5414 static void s2io_ethtool_gregs(struct net_device *dev, 5415 struct ethtool_regs *regs, void *space) 5416 { 5417 int i; 5418 u64 reg; 5419 u8 *reg_space = (u8 *)space; 5420 struct s2io_nic *sp = netdev_priv(dev); 5421 5422 regs->len = XENA_REG_SPACE; 5423 regs->version = sp->pdev->subsystem_device; 5424 5425 for (i = 0; i < regs->len; i += 8) { 5426 reg = readq(sp->bar0 + i); 5427 memcpy((reg_space + i), ®, 8); 5428 } 5429 } 5430 5431 /* 5432 * s2io_set_led - control NIC led 5433 */ 5434 static void s2io_set_led(struct s2io_nic *sp, bool on) 5435 { 5436 struct XENA_dev_config __iomem *bar0 = sp->bar0; 5437 u16 subid = sp->pdev->subsystem_device; 5438 u64 val64; 5439 5440 if ((sp->device_type == XFRAME_II_DEVICE) || 5441 ((subid & 0xFF) >= 0x07)) { 5442 val64 = readq(&bar0->gpio_control); 5443 if (on) 5444 val64 |= GPIO_CTRL_GPIO_0; 5445 else 5446 val64 &= ~GPIO_CTRL_GPIO_0; 5447 5448 writeq(val64, &bar0->gpio_control); 5449 } else { 5450 val64 = readq(&bar0->adapter_control); 5451 if (on) 5452 val64 |= ADAPTER_LED_ON; 5453 else 5454 val64 &= ~ADAPTER_LED_ON; 5455 5456 writeq(val64, &bar0->adapter_control); 5457 } 5458 5459 } 5460 5461 /** 5462 * s2io_ethtool_set_led - To physically identify the nic on the system. 5463 * @dev : network device 5464 * @state: led setting 5465 * 5466 * Description: Used to physically identify the NIC on the system. 5467 * The Link LED will blink for a time specified by the user for 5468 * identification. 5469 * NOTE: The Link has to be Up to be able to blink the LED. Hence 5470 * identification is possible only if it's link is up. 5471 */ 5472 5473 static int s2io_ethtool_set_led(struct net_device *dev, 5474 enum ethtool_phys_id_state state) 5475 { 5476 struct s2io_nic *sp = netdev_priv(dev); 5477 struct XENA_dev_config __iomem *bar0 = sp->bar0; 5478 u16 subid = sp->pdev->subsystem_device; 5479 5480 if ((sp->device_type == XFRAME_I_DEVICE) && ((subid & 0xFF) < 0x07)) { 5481 u64 val64 = readq(&bar0->adapter_control); 5482 if (!(val64 & ADAPTER_CNTL_EN)) { 5483 pr_err("Adapter Link down, cannot blink LED\n"); 5484 return -EAGAIN; 5485 } 5486 } 5487 5488 switch (state) { 5489 case ETHTOOL_ID_ACTIVE: 5490 sp->adapt_ctrl_org = readq(&bar0->gpio_control); 5491 return 1; /* cycle on/off once per second */ 5492 5493 case ETHTOOL_ID_ON: 5494 s2io_set_led(sp, true); 5495 break; 5496 5497 case ETHTOOL_ID_OFF: 5498 s2io_set_led(sp, false); 5499 break; 5500 5501 case ETHTOOL_ID_INACTIVE: 5502 if (CARDS_WITH_FAULTY_LINK_INDICATORS(sp->device_type, subid)) 5503 writeq(sp->adapt_ctrl_org, &bar0->gpio_control); 5504 } 5505 5506 return 0; 5507 } 5508 5509 static void s2io_ethtool_gringparam(struct net_device *dev, 5510 struct ethtool_ringparam *ering) 5511 { 5512 struct s2io_nic *sp = netdev_priv(dev); 5513 int i, tx_desc_count = 0, rx_desc_count = 0; 5514 5515 if (sp->rxd_mode == RXD_MODE_1) { 5516 ering->rx_max_pending = MAX_RX_DESC_1; 5517 ering->rx_jumbo_max_pending = MAX_RX_DESC_1; 5518 } else { 5519 ering->rx_max_pending = MAX_RX_DESC_2; 5520 ering->rx_jumbo_max_pending = MAX_RX_DESC_2; 5521 } 5522 5523 ering->tx_max_pending = MAX_TX_DESC; 5524 5525 for (i = 0; i < sp->config.rx_ring_num; i++) 5526 rx_desc_count += sp->config.rx_cfg[i].num_rxd; 5527 ering->rx_pending = rx_desc_count; 5528 ering->rx_jumbo_pending = rx_desc_count; 5529 5530 for (i = 0; i < sp->config.tx_fifo_num; i++) 5531 tx_desc_count += sp->config.tx_cfg[i].fifo_len; 5532 ering->tx_pending = tx_desc_count; 5533 DBG_PRINT(INFO_DBG, "max txds: %d\n", sp->config.max_txds); 5534 } 5535 5536 /** 5537 * s2io_ethtool_getpause_data -Pause frame frame generation and reception. 5538 * @sp : private member of the device structure, which is a pointer to the 5539 * s2io_nic structure. 5540 * @ep : pointer to the structure with pause parameters given by ethtool. 5541 * Description: 5542 * Returns the Pause frame generation and reception capability of the NIC. 5543 * Return value: 5544 * void 5545 */ 5546 static void s2io_ethtool_getpause_data(struct net_device *dev, 5547 struct ethtool_pauseparam *ep) 5548 { 5549 u64 val64; 5550 struct s2io_nic *sp = netdev_priv(dev); 5551 struct XENA_dev_config __iomem *bar0 = sp->bar0; 5552 5553 val64 = readq(&bar0->rmac_pause_cfg); 5554 if (val64 & RMAC_PAUSE_GEN_ENABLE) 5555 ep->tx_pause = true; 5556 if (val64 & RMAC_PAUSE_RX_ENABLE) 5557 ep->rx_pause = true; 5558 ep->autoneg = false; 5559 } 5560 5561 /** 5562 * s2io_ethtool_setpause_data - set/reset pause frame generation. 5563 * @sp : private member of the device structure, which is a pointer to the 5564 * s2io_nic structure. 5565 * @ep : pointer to the structure with pause parameters given by ethtool. 5566 * Description: 5567 * It can be used to set or reset Pause frame generation or reception 5568 * support of the NIC. 5569 * Return value: 5570 * int, returns 0 on Success 5571 */ 5572 5573 static int s2io_ethtool_setpause_data(struct net_device *dev, 5574 struct ethtool_pauseparam *ep) 5575 { 5576 u64 val64; 5577 struct s2io_nic *sp = netdev_priv(dev); 5578 struct XENA_dev_config __iomem *bar0 = sp->bar0; 5579 5580 val64 = readq(&bar0->rmac_pause_cfg); 5581 if (ep->tx_pause) 5582 val64 |= RMAC_PAUSE_GEN_ENABLE; 5583 else 5584 val64 &= ~RMAC_PAUSE_GEN_ENABLE; 5585 if (ep->rx_pause) 5586 val64 |= RMAC_PAUSE_RX_ENABLE; 5587 else 5588 val64 &= ~RMAC_PAUSE_RX_ENABLE; 5589 writeq(val64, &bar0->rmac_pause_cfg); 5590 return 0; 5591 } 5592 5593 /** 5594 * read_eeprom - reads 4 bytes of data from user given offset. 5595 * @sp : private member of the device structure, which is a pointer to the 5596 * s2io_nic structure. 5597 * @off : offset at which the data must be written 5598 * @data : Its an output parameter where the data read at the given 5599 * offset is stored. 5600 * Description: 5601 * Will read 4 bytes of data from the user given offset and return the 5602 * read data. 5603 * NOTE: Will allow to read only part of the EEPROM visible through the 5604 * I2C bus. 5605 * Return value: 5606 * -1 on failure and 0 on success. 5607 */ 5608 5609 #define S2IO_DEV_ID 5 5610 static int read_eeprom(struct s2io_nic *sp, int off, u64 *data) 5611 { 5612 int ret = -1; 5613 u32 exit_cnt = 0; 5614 u64 val64; 5615 struct XENA_dev_config __iomem *bar0 = sp->bar0; 5616 5617 if (sp->device_type == XFRAME_I_DEVICE) { 5618 val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) | 5619 I2C_CONTROL_ADDR(off) | 5620 I2C_CONTROL_BYTE_CNT(0x3) | 5621 I2C_CONTROL_READ | 5622 I2C_CONTROL_CNTL_START; 5623 SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF); 5624 5625 while (exit_cnt < 5) { 5626 val64 = readq(&bar0->i2c_control); 5627 if (I2C_CONTROL_CNTL_END(val64)) { 5628 *data = I2C_CONTROL_GET_DATA(val64); 5629 ret = 0; 5630 break; 5631 } 5632 msleep(50); 5633 exit_cnt++; 5634 } 5635 } 5636 5637 if (sp->device_type == XFRAME_II_DEVICE) { 5638 val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 | 5639 SPI_CONTROL_BYTECNT(0x3) | 5640 SPI_CONTROL_CMD(0x3) | SPI_CONTROL_ADDR(off); 5641 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF); 5642 val64 |= SPI_CONTROL_REQ; 5643 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF); 5644 while (exit_cnt < 5) { 5645 val64 = readq(&bar0->spi_control); 5646 if (val64 & SPI_CONTROL_NACK) { 5647 ret = 1; 5648 break; 5649 } else if (val64 & SPI_CONTROL_DONE) { 5650 *data = readq(&bar0->spi_data); 5651 *data &= 0xffffff; 5652 ret = 0; 5653 break; 5654 } 5655 msleep(50); 5656 exit_cnt++; 5657 } 5658 } 5659 return ret; 5660 } 5661 5662 /** 5663 * write_eeprom - actually writes the relevant part of the data value. 5664 * @sp : private member of the device structure, which is a pointer to the 5665 * s2io_nic structure. 5666 * @off : offset at which the data must be written 5667 * @data : The data that is to be written 5668 * @cnt : Number of bytes of the data that are actually to be written into 5669 * the Eeprom. (max of 3) 5670 * Description: 5671 * Actually writes the relevant part of the data value into the Eeprom 5672 * through the I2C bus. 5673 * Return value: 5674 * 0 on success, -1 on failure. 5675 */ 5676 5677 static int write_eeprom(struct s2io_nic *sp, int off, u64 data, int cnt) 5678 { 5679 int exit_cnt = 0, ret = -1; 5680 u64 val64; 5681 struct XENA_dev_config __iomem *bar0 = sp->bar0; 5682 5683 if (sp->device_type == XFRAME_I_DEVICE) { 5684 val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) | 5685 I2C_CONTROL_ADDR(off) | 5686 I2C_CONTROL_BYTE_CNT(cnt) | 5687 I2C_CONTROL_SET_DATA((u32)data) | 5688 I2C_CONTROL_CNTL_START; 5689 SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF); 5690 5691 while (exit_cnt < 5) { 5692 val64 = readq(&bar0->i2c_control); 5693 if (I2C_CONTROL_CNTL_END(val64)) { 5694 if (!(val64 & I2C_CONTROL_NACK)) 5695 ret = 0; 5696 break; 5697 } 5698 msleep(50); 5699 exit_cnt++; 5700 } 5701 } 5702 5703 if (sp->device_type == XFRAME_II_DEVICE) { 5704 int write_cnt = (cnt == 8) ? 0 : cnt; 5705 writeq(SPI_DATA_WRITE(data, (cnt << 3)), &bar0->spi_data); 5706 5707 val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 | 5708 SPI_CONTROL_BYTECNT(write_cnt) | 5709 SPI_CONTROL_CMD(0x2) | SPI_CONTROL_ADDR(off); 5710 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF); 5711 val64 |= SPI_CONTROL_REQ; 5712 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF); 5713 while (exit_cnt < 5) { 5714 val64 = readq(&bar0->spi_control); 5715 if (val64 & SPI_CONTROL_NACK) { 5716 ret = 1; 5717 break; 5718 } else if (val64 & SPI_CONTROL_DONE) { 5719 ret = 0; 5720 break; 5721 } 5722 msleep(50); 5723 exit_cnt++; 5724 } 5725 } 5726 return ret; 5727 } 5728 static void s2io_vpd_read(struct s2io_nic *nic) 5729 { 5730 u8 *vpd_data; 5731 u8 data; 5732 int i = 0, cnt, len, fail = 0; 5733 int vpd_addr = 0x80; 5734 struct swStat *swstats = &nic->mac_control.stats_info->sw_stat; 5735 5736 if (nic->device_type == XFRAME_II_DEVICE) { 5737 strcpy(nic->product_name, "Xframe II 10GbE network adapter"); 5738 vpd_addr = 0x80; 5739 } else { 5740 strcpy(nic->product_name, "Xframe I 10GbE network adapter"); 5741 vpd_addr = 0x50; 5742 } 5743 strcpy(nic->serial_num, "NOT AVAILABLE"); 5744 5745 vpd_data = kmalloc(256, GFP_KERNEL); 5746 if (!vpd_data) { 5747 swstats->mem_alloc_fail_cnt++; 5748 return; 5749 } 5750 swstats->mem_allocated += 256; 5751 5752 for (i = 0; i < 256; i += 4) { 5753 pci_write_config_byte(nic->pdev, (vpd_addr + 2), i); 5754 pci_read_config_byte(nic->pdev, (vpd_addr + 2), &data); 5755 pci_write_config_byte(nic->pdev, (vpd_addr + 3), 0); 5756 for (cnt = 0; cnt < 5; cnt++) { 5757 msleep(2); 5758 pci_read_config_byte(nic->pdev, (vpd_addr + 3), &data); 5759 if (data == 0x80) 5760 break; 5761 } 5762 if (cnt >= 5) { 5763 DBG_PRINT(ERR_DBG, "Read of VPD data failed\n"); 5764 fail = 1; 5765 break; 5766 } 5767 pci_read_config_dword(nic->pdev, (vpd_addr + 4), 5768 (u32 *)&vpd_data[i]); 5769 } 5770 5771 if (!fail) { 5772 /* read serial number of adapter */ 5773 for (cnt = 0; cnt < 252; cnt++) { 5774 if ((vpd_data[cnt] == 'S') && 5775 (vpd_data[cnt+1] == 'N')) { 5776 len = vpd_data[cnt+2]; 5777 if (len < min(VPD_STRING_LEN, 256-cnt-2)) { 5778 memcpy(nic->serial_num, 5779 &vpd_data[cnt + 3], 5780 len); 5781 memset(nic->serial_num+len, 5782 0, 5783 VPD_STRING_LEN-len); 5784 break; 5785 } 5786 } 5787 } 5788 } 5789 5790 if ((!fail) && (vpd_data[1] < VPD_STRING_LEN)) { 5791 len = vpd_data[1]; 5792 memcpy(nic->product_name, &vpd_data[3], len); 5793 nic->product_name[len] = 0; 5794 } 5795 kfree(vpd_data); 5796 swstats->mem_freed += 256; 5797 } 5798 5799 /** 5800 * s2io_ethtool_geeprom - reads the value stored in the Eeprom. 5801 * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure. 5802 * @eeprom : pointer to the user level structure provided by ethtool, 5803 * containing all relevant information. 5804 * @data_buf : user defined value to be written into Eeprom. 5805 * Description: Reads the values stored in the Eeprom at given offset 5806 * for a given length. Stores these values int the input argument data 5807 * buffer 'data_buf' and returns these to the caller (ethtool.) 5808 * Return value: 5809 * int 0 on success 5810 */ 5811 5812 static int s2io_ethtool_geeprom(struct net_device *dev, 5813 struct ethtool_eeprom *eeprom, u8 * data_buf) 5814 { 5815 u32 i, valid; 5816 u64 data; 5817 struct s2io_nic *sp = netdev_priv(dev); 5818 5819 eeprom->magic = sp->pdev->vendor | (sp->pdev->device << 16); 5820 5821 if ((eeprom->offset + eeprom->len) > (XENA_EEPROM_SPACE)) 5822 eeprom->len = XENA_EEPROM_SPACE - eeprom->offset; 5823 5824 for (i = 0; i < eeprom->len; i += 4) { 5825 if (read_eeprom(sp, (eeprom->offset + i), &data)) { 5826 DBG_PRINT(ERR_DBG, "Read of EEPROM failed\n"); 5827 return -EFAULT; 5828 } 5829 valid = INV(data); 5830 memcpy((data_buf + i), &valid, 4); 5831 } 5832 return 0; 5833 } 5834 5835 /** 5836 * s2io_ethtool_seeprom - tries to write the user provided value in Eeprom 5837 * @sp : private member of the device structure, which is a pointer to the 5838 * s2io_nic structure. 5839 * @eeprom : pointer to the user level structure provided by ethtool, 5840 * containing all relevant information. 5841 * @data_buf ; user defined value to be written into Eeprom. 5842 * Description: 5843 * Tries to write the user provided value in the Eeprom, at the offset 5844 * given by the user. 5845 * Return value: 5846 * 0 on success, -EFAULT on failure. 5847 */ 5848 5849 static int s2io_ethtool_seeprom(struct net_device *dev, 5850 struct ethtool_eeprom *eeprom, 5851 u8 *data_buf) 5852 { 5853 int len = eeprom->len, cnt = 0; 5854 u64 valid = 0, data; 5855 struct s2io_nic *sp = netdev_priv(dev); 5856 5857 if (eeprom->magic != (sp->pdev->vendor | (sp->pdev->device << 16))) { 5858 DBG_PRINT(ERR_DBG, 5859 "ETHTOOL_WRITE_EEPROM Err: " 5860 "Magic value is wrong, it is 0x%x should be 0x%x\n", 5861 (sp->pdev->vendor | (sp->pdev->device << 16)), 5862 eeprom->magic); 5863 return -EFAULT; 5864 } 5865 5866 while (len) { 5867 data = (u32)data_buf[cnt] & 0x000000FF; 5868 if (data) 5869 valid = (u32)(data << 24); 5870 else 5871 valid = data; 5872 5873 if (write_eeprom(sp, (eeprom->offset + cnt), valid, 0)) { 5874 DBG_PRINT(ERR_DBG, 5875 "ETHTOOL_WRITE_EEPROM Err: " 5876 "Cannot write into the specified offset\n"); 5877 return -EFAULT; 5878 } 5879 cnt++; 5880 len--; 5881 } 5882 5883 return 0; 5884 } 5885 5886 /** 5887 * s2io_register_test - reads and writes into all clock domains. 5888 * @sp : private member of the device structure, which is a pointer to the 5889 * s2io_nic structure. 5890 * @data : variable that returns the result of each of the test conducted b 5891 * by the driver. 5892 * Description: 5893 * Read and write into all clock domains. The NIC has 3 clock domains, 5894 * see that registers in all the three regions are accessible. 5895 * Return value: 5896 * 0 on success. 5897 */ 5898 5899 static int s2io_register_test(struct s2io_nic *sp, uint64_t *data) 5900 { 5901 struct XENA_dev_config __iomem *bar0 = sp->bar0; 5902 u64 val64 = 0, exp_val; 5903 int fail = 0; 5904 5905 val64 = readq(&bar0->pif_rd_swapper_fb); 5906 if (val64 != 0x123456789abcdefULL) { 5907 fail = 1; 5908 DBG_PRINT(INFO_DBG, "Read Test level %d fails\n", 1); 5909 } 5910 5911 val64 = readq(&bar0->rmac_pause_cfg); 5912 if (val64 != 0xc000ffff00000000ULL) { 5913 fail = 1; 5914 DBG_PRINT(INFO_DBG, "Read Test level %d fails\n", 2); 5915 } 5916 5917 val64 = readq(&bar0->rx_queue_cfg); 5918 if (sp->device_type == XFRAME_II_DEVICE) 5919 exp_val = 0x0404040404040404ULL; 5920 else 5921 exp_val = 0x0808080808080808ULL; 5922 if (val64 != exp_val) { 5923 fail = 1; 5924 DBG_PRINT(INFO_DBG, "Read Test level %d fails\n", 3); 5925 } 5926 5927 val64 = readq(&bar0->xgxs_efifo_cfg); 5928 if (val64 != 0x000000001923141EULL) { 5929 fail = 1; 5930 DBG_PRINT(INFO_DBG, "Read Test level %d fails\n", 4); 5931 } 5932 5933 val64 = 0x5A5A5A5A5A5A5A5AULL; 5934 writeq(val64, &bar0->xmsi_data); 5935 val64 = readq(&bar0->xmsi_data); 5936 if (val64 != 0x5A5A5A5A5A5A5A5AULL) { 5937 fail = 1; 5938 DBG_PRINT(ERR_DBG, "Write Test level %d fails\n", 1); 5939 } 5940 5941 val64 = 0xA5A5A5A5A5A5A5A5ULL; 5942 writeq(val64, &bar0->xmsi_data); 5943 val64 = readq(&bar0->xmsi_data); 5944 if (val64 != 0xA5A5A5A5A5A5A5A5ULL) { 5945 fail = 1; 5946 DBG_PRINT(ERR_DBG, "Write Test level %d fails\n", 2); 5947 } 5948 5949 *data = fail; 5950 return fail; 5951 } 5952 5953 /** 5954 * s2io_eeprom_test - to verify that EEprom in the xena can be programmed. 5955 * @sp : private member of the device structure, which is a pointer to the 5956 * s2io_nic structure. 5957 * @data:variable that returns the result of each of the test conducted by 5958 * the driver. 5959 * Description: 5960 * Verify that EEPROM in the xena can be programmed using I2C_CONTROL 5961 * register. 5962 * Return value: 5963 * 0 on success. 5964 */ 5965 5966 static int s2io_eeprom_test(struct s2io_nic *sp, uint64_t *data) 5967 { 5968 int fail = 0; 5969 u64 ret_data, org_4F0, org_7F0; 5970 u8 saved_4F0 = 0, saved_7F0 = 0; 5971 struct net_device *dev = sp->dev; 5972 5973 /* Test Write Error at offset 0 */ 5974 /* Note that SPI interface allows write access to all areas 5975 * of EEPROM. Hence doing all negative testing only for Xframe I. 5976 */ 5977 if (sp->device_type == XFRAME_I_DEVICE) 5978 if (!write_eeprom(sp, 0, 0, 3)) 5979 fail = 1; 5980 5981 /* Save current values at offsets 0x4F0 and 0x7F0 */ 5982 if (!read_eeprom(sp, 0x4F0, &org_4F0)) 5983 saved_4F0 = 1; 5984 if (!read_eeprom(sp, 0x7F0, &org_7F0)) 5985 saved_7F0 = 1; 5986 5987 /* Test Write at offset 4f0 */ 5988 if (write_eeprom(sp, 0x4F0, 0x012345, 3)) 5989 fail = 1; 5990 if (read_eeprom(sp, 0x4F0, &ret_data)) 5991 fail = 1; 5992 5993 if (ret_data != 0x012345) { 5994 DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x4F0. " 5995 "Data written %llx Data read %llx\n", 5996 dev->name, (unsigned long long)0x12345, 5997 (unsigned long long)ret_data); 5998 fail = 1; 5999 } 6000 6001 /* Reset the EEPROM data go FFFF */ 6002 write_eeprom(sp, 0x4F0, 0xFFFFFF, 3); 6003 6004 /* Test Write Request Error at offset 0x7c */ 6005 if (sp->device_type == XFRAME_I_DEVICE) 6006 if (!write_eeprom(sp, 0x07C, 0, 3)) 6007 fail = 1; 6008 6009 /* Test Write Request at offset 0x7f0 */ 6010 if (write_eeprom(sp, 0x7F0, 0x012345, 3)) 6011 fail = 1; 6012 if (read_eeprom(sp, 0x7F0, &ret_data)) 6013 fail = 1; 6014 6015 if (ret_data != 0x012345) { 6016 DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x7F0. " 6017 "Data written %llx Data read %llx\n", 6018 dev->name, (unsigned long long)0x12345, 6019 (unsigned long long)ret_data); 6020 fail = 1; 6021 } 6022 6023 /* Reset the EEPROM data go FFFF */ 6024 write_eeprom(sp, 0x7F0, 0xFFFFFF, 3); 6025 6026 if (sp->device_type == XFRAME_I_DEVICE) { 6027 /* Test Write Error at offset 0x80 */ 6028 if (!write_eeprom(sp, 0x080, 0, 3)) 6029 fail = 1; 6030 6031 /* Test Write Error at offset 0xfc */ 6032 if (!write_eeprom(sp, 0x0FC, 0, 3)) 6033 fail = 1; 6034 6035 /* Test Write Error at offset 0x100 */ 6036 if (!write_eeprom(sp, 0x100, 0, 3)) 6037 fail = 1; 6038 6039 /* Test Write Error at offset 4ec */ 6040 if (!write_eeprom(sp, 0x4EC, 0, 3)) 6041 fail = 1; 6042 } 6043 6044 /* Restore values at offsets 0x4F0 and 0x7F0 */ 6045 if (saved_4F0) 6046 write_eeprom(sp, 0x4F0, org_4F0, 3); 6047 if (saved_7F0) 6048 write_eeprom(sp, 0x7F0, org_7F0, 3); 6049 6050 *data = fail; 6051 return fail; 6052 } 6053 6054 /** 6055 * s2io_bist_test - invokes the MemBist test of the card . 6056 * @sp : private member of the device structure, which is a pointer to the 6057 * s2io_nic structure. 6058 * @data:variable that returns the result of each of the test conducted by 6059 * the driver. 6060 * Description: 6061 * This invokes the MemBist test of the card. We give around 6062 * 2 secs time for the Test to complete. If it's still not complete 6063 * within this peiod, we consider that the test failed. 6064 * Return value: 6065 * 0 on success and -1 on failure. 6066 */ 6067 6068 static int s2io_bist_test(struct s2io_nic *sp, uint64_t *data) 6069 { 6070 u8 bist = 0; 6071 int cnt = 0, ret = -1; 6072 6073 pci_read_config_byte(sp->pdev, PCI_BIST, &bist); 6074 bist |= PCI_BIST_START; 6075 pci_write_config_word(sp->pdev, PCI_BIST, bist); 6076 6077 while (cnt < 20) { 6078 pci_read_config_byte(sp->pdev, PCI_BIST, &bist); 6079 if (!(bist & PCI_BIST_START)) { 6080 *data = (bist & PCI_BIST_CODE_MASK); 6081 ret = 0; 6082 break; 6083 } 6084 msleep(100); 6085 cnt++; 6086 } 6087 6088 return ret; 6089 } 6090 6091 /** 6092 * s2io-link_test - verifies the link state of the nic 6093 * @sp ; private member of the device structure, which is a pointer to the 6094 * s2io_nic structure. 6095 * @data: variable that returns the result of each of the test conducted by 6096 * the driver. 6097 * Description: 6098 * The function verifies the link state of the NIC and updates the input 6099 * argument 'data' appropriately. 6100 * Return value: 6101 * 0 on success. 6102 */ 6103 6104 static int s2io_link_test(struct s2io_nic *sp, uint64_t *data) 6105 { 6106 struct XENA_dev_config __iomem *bar0 = sp->bar0; 6107 u64 val64; 6108 6109 val64 = readq(&bar0->adapter_status); 6110 if (!(LINK_IS_UP(val64))) 6111 *data = 1; 6112 else 6113 *data = 0; 6114 6115 return *data; 6116 } 6117 6118 /** 6119 * s2io_rldram_test - offline test for access to the RldRam chip on the NIC 6120 * @sp - private member of the device structure, which is a pointer to the 6121 * s2io_nic structure. 6122 * @data - variable that returns the result of each of the test 6123 * conducted by the driver. 6124 * Description: 6125 * This is one of the offline test that tests the read and write 6126 * access to the RldRam chip on the NIC. 6127 * Return value: 6128 * 0 on success. 6129 */ 6130 6131 static int s2io_rldram_test(struct s2io_nic *sp, uint64_t *data) 6132 { 6133 struct XENA_dev_config __iomem *bar0 = sp->bar0; 6134 u64 val64; 6135 int cnt, iteration = 0, test_fail = 0; 6136 6137 val64 = readq(&bar0->adapter_control); 6138 val64 &= ~ADAPTER_ECC_EN; 6139 writeq(val64, &bar0->adapter_control); 6140 6141 val64 = readq(&bar0->mc_rldram_test_ctrl); 6142 val64 |= MC_RLDRAM_TEST_MODE; 6143 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF); 6144 6145 val64 = readq(&bar0->mc_rldram_mrs); 6146 val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE; 6147 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF); 6148 6149 val64 |= MC_RLDRAM_MRS_ENABLE; 6150 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF); 6151 6152 while (iteration < 2) { 6153 val64 = 0x55555555aaaa0000ULL; 6154 if (iteration == 1) 6155 val64 ^= 0xFFFFFFFFFFFF0000ULL; 6156 writeq(val64, &bar0->mc_rldram_test_d0); 6157 6158 val64 = 0xaaaa5a5555550000ULL; 6159 if (iteration == 1) 6160 val64 ^= 0xFFFFFFFFFFFF0000ULL; 6161 writeq(val64, &bar0->mc_rldram_test_d1); 6162 6163 val64 = 0x55aaaaaaaa5a0000ULL; 6164 if (iteration == 1) 6165 val64 ^= 0xFFFFFFFFFFFF0000ULL; 6166 writeq(val64, &bar0->mc_rldram_test_d2); 6167 6168 val64 = (u64) (0x0000003ffffe0100ULL); 6169 writeq(val64, &bar0->mc_rldram_test_add); 6170 6171 val64 = MC_RLDRAM_TEST_MODE | 6172 MC_RLDRAM_TEST_WRITE | 6173 MC_RLDRAM_TEST_GO; 6174 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF); 6175 6176 for (cnt = 0; cnt < 5; cnt++) { 6177 val64 = readq(&bar0->mc_rldram_test_ctrl); 6178 if (val64 & MC_RLDRAM_TEST_DONE) 6179 break; 6180 msleep(200); 6181 } 6182 6183 if (cnt == 5) 6184 break; 6185 6186 val64 = MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_GO; 6187 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF); 6188 6189 for (cnt = 0; cnt < 5; cnt++) { 6190 val64 = readq(&bar0->mc_rldram_test_ctrl); 6191 if (val64 & MC_RLDRAM_TEST_DONE) 6192 break; 6193 msleep(500); 6194 } 6195 6196 if (cnt == 5) 6197 break; 6198 6199 val64 = readq(&bar0->mc_rldram_test_ctrl); 6200 if (!(val64 & MC_RLDRAM_TEST_PASS)) 6201 test_fail = 1; 6202 6203 iteration++; 6204 } 6205 6206 *data = test_fail; 6207 6208 /* Bring the adapter out of test mode */ 6209 SPECIAL_REG_WRITE(0, &bar0->mc_rldram_test_ctrl, LF); 6210 6211 return test_fail; 6212 } 6213 6214 /** 6215 * s2io_ethtool_test - conducts 6 tsets to determine the health of card. 6216 * @sp : private member of the device structure, which is a pointer to the 6217 * s2io_nic structure. 6218 * @ethtest : pointer to a ethtool command specific structure that will be 6219 * returned to the user. 6220 * @data : variable that returns the result of each of the test 6221 * conducted by the driver. 6222 * Description: 6223 * This function conducts 6 tests ( 4 offline and 2 online) to determine 6224 * the health of the card. 6225 * Return value: 6226 * void 6227 */ 6228 6229 static void s2io_ethtool_test(struct net_device *dev, 6230 struct ethtool_test *ethtest, 6231 uint64_t *data) 6232 { 6233 struct s2io_nic *sp = netdev_priv(dev); 6234 int orig_state = netif_running(sp->dev); 6235 6236 if (ethtest->flags == ETH_TEST_FL_OFFLINE) { 6237 /* Offline Tests. */ 6238 if (orig_state) 6239 s2io_close(sp->dev); 6240 6241 if (s2io_register_test(sp, &data[0])) 6242 ethtest->flags |= ETH_TEST_FL_FAILED; 6243 6244 s2io_reset(sp); 6245 6246 if (s2io_rldram_test(sp, &data[3])) 6247 ethtest->flags |= ETH_TEST_FL_FAILED; 6248 6249 s2io_reset(sp); 6250 6251 if (s2io_eeprom_test(sp, &data[1])) 6252 ethtest->flags |= ETH_TEST_FL_FAILED; 6253 6254 if (s2io_bist_test(sp, &data[4])) 6255 ethtest->flags |= ETH_TEST_FL_FAILED; 6256 6257 if (orig_state) 6258 s2io_open(sp->dev); 6259 6260 data[2] = 0; 6261 } else { 6262 /* Online Tests. */ 6263 if (!orig_state) { 6264 DBG_PRINT(ERR_DBG, "%s: is not up, cannot run test\n", 6265 dev->name); 6266 data[0] = -1; 6267 data[1] = -1; 6268 data[2] = -1; 6269 data[3] = -1; 6270 data[4] = -1; 6271 } 6272 6273 if (s2io_link_test(sp, &data[2])) 6274 ethtest->flags |= ETH_TEST_FL_FAILED; 6275 6276 data[0] = 0; 6277 data[1] = 0; 6278 data[3] = 0; 6279 data[4] = 0; 6280 } 6281 } 6282 6283 static void s2io_get_ethtool_stats(struct net_device *dev, 6284 struct ethtool_stats *estats, 6285 u64 *tmp_stats) 6286 { 6287 int i = 0, k; 6288 struct s2io_nic *sp = netdev_priv(dev); 6289 struct stat_block *stats = sp->mac_control.stats_info; 6290 struct swStat *swstats = &stats->sw_stat; 6291 struct xpakStat *xstats = &stats->xpak_stat; 6292 6293 s2io_updt_stats(sp); 6294 tmp_stats[i++] = 6295 (u64)le32_to_cpu(stats->tmac_frms_oflow) << 32 | 6296 le32_to_cpu(stats->tmac_frms); 6297 tmp_stats[i++] = 6298 (u64)le32_to_cpu(stats->tmac_data_octets_oflow) << 32 | 6299 le32_to_cpu(stats->tmac_data_octets); 6300 tmp_stats[i++] = le64_to_cpu(stats->tmac_drop_frms); 6301 tmp_stats[i++] = 6302 (u64)le32_to_cpu(stats->tmac_mcst_frms_oflow) << 32 | 6303 le32_to_cpu(stats->tmac_mcst_frms); 6304 tmp_stats[i++] = 6305 (u64)le32_to_cpu(stats->tmac_bcst_frms_oflow) << 32 | 6306 le32_to_cpu(stats->tmac_bcst_frms); 6307 tmp_stats[i++] = le64_to_cpu(stats->tmac_pause_ctrl_frms); 6308 tmp_stats[i++] = 6309 (u64)le32_to_cpu(stats->tmac_ttl_octets_oflow) << 32 | 6310 le32_to_cpu(stats->tmac_ttl_octets); 6311 tmp_stats[i++] = 6312 (u64)le32_to_cpu(stats->tmac_ucst_frms_oflow) << 32 | 6313 le32_to_cpu(stats->tmac_ucst_frms); 6314 tmp_stats[i++] = 6315 (u64)le32_to_cpu(stats->tmac_nucst_frms_oflow) << 32 | 6316 le32_to_cpu(stats->tmac_nucst_frms); 6317 tmp_stats[i++] = 6318 (u64)le32_to_cpu(stats->tmac_any_err_frms_oflow) << 32 | 6319 le32_to_cpu(stats->tmac_any_err_frms); 6320 tmp_stats[i++] = le64_to_cpu(stats->tmac_ttl_less_fb_octets); 6321 tmp_stats[i++] = le64_to_cpu(stats->tmac_vld_ip_octets); 6322 tmp_stats[i++] = 6323 (u64)le32_to_cpu(stats->tmac_vld_ip_oflow) << 32 | 6324 le32_to_cpu(stats->tmac_vld_ip); 6325 tmp_stats[i++] = 6326 (u64)le32_to_cpu(stats->tmac_drop_ip_oflow) << 32 | 6327 le32_to_cpu(stats->tmac_drop_ip); 6328 tmp_stats[i++] = 6329 (u64)le32_to_cpu(stats->tmac_icmp_oflow) << 32 | 6330 le32_to_cpu(stats->tmac_icmp); 6331 tmp_stats[i++] = 6332 (u64)le32_to_cpu(stats->tmac_rst_tcp_oflow) << 32 | 6333 le32_to_cpu(stats->tmac_rst_tcp); 6334 tmp_stats[i++] = le64_to_cpu(stats->tmac_tcp); 6335 tmp_stats[i++] = (u64)le32_to_cpu(stats->tmac_udp_oflow) << 32 | 6336 le32_to_cpu(stats->tmac_udp); 6337 tmp_stats[i++] = 6338 (u64)le32_to_cpu(stats->rmac_vld_frms_oflow) << 32 | 6339 le32_to_cpu(stats->rmac_vld_frms); 6340 tmp_stats[i++] = 6341 (u64)le32_to_cpu(stats->rmac_data_octets_oflow) << 32 | 6342 le32_to_cpu(stats->rmac_data_octets); 6343 tmp_stats[i++] = le64_to_cpu(stats->rmac_fcs_err_frms); 6344 tmp_stats[i++] = le64_to_cpu(stats->rmac_drop_frms); 6345 tmp_stats[i++] = 6346 (u64)le32_to_cpu(stats->rmac_vld_mcst_frms_oflow) << 32 | 6347 le32_to_cpu(stats->rmac_vld_mcst_frms); 6348 tmp_stats[i++] = 6349 (u64)le32_to_cpu(stats->rmac_vld_bcst_frms_oflow) << 32 | 6350 le32_to_cpu(stats->rmac_vld_bcst_frms); 6351 tmp_stats[i++] = le32_to_cpu(stats->rmac_in_rng_len_err_frms); 6352 tmp_stats[i++] = le32_to_cpu(stats->rmac_out_rng_len_err_frms); 6353 tmp_stats[i++] = le64_to_cpu(stats->rmac_long_frms); 6354 tmp_stats[i++] = le64_to_cpu(stats->rmac_pause_ctrl_frms); 6355 tmp_stats[i++] = le64_to_cpu(stats->rmac_unsup_ctrl_frms); 6356 tmp_stats[i++] = 6357 (u64)le32_to_cpu(stats->rmac_ttl_octets_oflow) << 32 | 6358 le32_to_cpu(stats->rmac_ttl_octets); 6359 tmp_stats[i++] = 6360 (u64)le32_to_cpu(stats->rmac_accepted_ucst_frms_oflow) << 32 6361 | le32_to_cpu(stats->rmac_accepted_ucst_frms); 6362 tmp_stats[i++] = 6363 (u64)le32_to_cpu(stats->rmac_accepted_nucst_frms_oflow) 6364 << 32 | le32_to_cpu(stats->rmac_accepted_nucst_frms); 6365 tmp_stats[i++] = 6366 (u64)le32_to_cpu(stats->rmac_discarded_frms_oflow) << 32 | 6367 le32_to_cpu(stats->rmac_discarded_frms); 6368 tmp_stats[i++] = 6369 (u64)le32_to_cpu(stats->rmac_drop_events_oflow) 6370 << 32 | le32_to_cpu(stats->rmac_drop_events); 6371 tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_less_fb_octets); 6372 tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_frms); 6373 tmp_stats[i++] = 6374 (u64)le32_to_cpu(stats->rmac_usized_frms_oflow) << 32 | 6375 le32_to_cpu(stats->rmac_usized_frms); 6376 tmp_stats[i++] = 6377 (u64)le32_to_cpu(stats->rmac_osized_frms_oflow) << 32 | 6378 le32_to_cpu(stats->rmac_osized_frms); 6379 tmp_stats[i++] = 6380 (u64)le32_to_cpu(stats->rmac_frag_frms_oflow) << 32 | 6381 le32_to_cpu(stats->rmac_frag_frms); 6382 tmp_stats[i++] = 6383 (u64)le32_to_cpu(stats->rmac_jabber_frms_oflow) << 32 | 6384 le32_to_cpu(stats->rmac_jabber_frms); 6385 tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_64_frms); 6386 tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_65_127_frms); 6387 tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_128_255_frms); 6388 tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_256_511_frms); 6389 tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_512_1023_frms); 6390 tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_1024_1518_frms); 6391 tmp_stats[i++] = 6392 (u64)le32_to_cpu(stats->rmac_ip_oflow) << 32 | 6393 le32_to_cpu(stats->rmac_ip); 6394 tmp_stats[i++] = le64_to_cpu(stats->rmac_ip_octets); 6395 tmp_stats[i++] = le32_to_cpu(stats->rmac_hdr_err_ip); 6396 tmp_stats[i++] = 6397 (u64)le32_to_cpu(stats->rmac_drop_ip_oflow) << 32 | 6398 le32_to_cpu(stats->rmac_drop_ip); 6399 tmp_stats[i++] = 6400 (u64)le32_to_cpu(stats->rmac_icmp_oflow) << 32 | 6401 le32_to_cpu(stats->rmac_icmp); 6402 tmp_stats[i++] = le64_to_cpu(stats->rmac_tcp); 6403 tmp_stats[i++] = 6404 (u64)le32_to_cpu(stats->rmac_udp_oflow) << 32 | 6405 le32_to_cpu(stats->rmac_udp); 6406 tmp_stats[i++] = 6407 (u64)le32_to_cpu(stats->rmac_err_drp_udp_oflow) << 32 | 6408 le32_to_cpu(stats->rmac_err_drp_udp); 6409 tmp_stats[i++] = le64_to_cpu(stats->rmac_xgmii_err_sym); 6410 tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q0); 6411 tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q1); 6412 tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q2); 6413 tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q3); 6414 tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q4); 6415 tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q5); 6416 tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q6); 6417 tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q7); 6418 tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q0); 6419 tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q1); 6420 tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q2); 6421 tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q3); 6422 tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q4); 6423 tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q5); 6424 tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q6); 6425 tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q7); 6426 tmp_stats[i++] = 6427 (u64)le32_to_cpu(stats->rmac_pause_cnt_oflow) << 32 | 6428 le32_to_cpu(stats->rmac_pause_cnt); 6429 tmp_stats[i++] = le64_to_cpu(stats->rmac_xgmii_data_err_cnt); 6430 tmp_stats[i++] = le64_to_cpu(stats->rmac_xgmii_ctrl_err_cnt); 6431 tmp_stats[i++] = 6432 (u64)le32_to_cpu(stats->rmac_accepted_ip_oflow) << 32 | 6433 le32_to_cpu(stats->rmac_accepted_ip); 6434 tmp_stats[i++] = le32_to_cpu(stats->rmac_err_tcp); 6435 tmp_stats[i++] = le32_to_cpu(stats->rd_req_cnt); 6436 tmp_stats[i++] = le32_to_cpu(stats->new_rd_req_cnt); 6437 tmp_stats[i++] = le32_to_cpu(stats->new_rd_req_rtry_cnt); 6438 tmp_stats[i++] = le32_to_cpu(stats->rd_rtry_cnt); 6439 tmp_stats[i++] = le32_to_cpu(stats->wr_rtry_rd_ack_cnt); 6440 tmp_stats[i++] = le32_to_cpu(stats->wr_req_cnt); 6441 tmp_stats[i++] = le32_to_cpu(stats->new_wr_req_cnt); 6442 tmp_stats[i++] = le32_to_cpu(stats->new_wr_req_rtry_cnt); 6443 tmp_stats[i++] = le32_to_cpu(stats->wr_rtry_cnt); 6444 tmp_stats[i++] = le32_to_cpu(stats->wr_disc_cnt); 6445 tmp_stats[i++] = le32_to_cpu(stats->rd_rtry_wr_ack_cnt); 6446 tmp_stats[i++] = le32_to_cpu(stats->txp_wr_cnt); 6447 tmp_stats[i++] = le32_to_cpu(stats->txd_rd_cnt); 6448 tmp_stats[i++] = le32_to_cpu(stats->txd_wr_cnt); 6449 tmp_stats[i++] = le32_to_cpu(stats->rxd_rd_cnt); 6450 tmp_stats[i++] = le32_to_cpu(stats->rxd_wr_cnt); 6451 tmp_stats[i++] = le32_to_cpu(stats->txf_rd_cnt); 6452 tmp_stats[i++] = le32_to_cpu(stats->rxf_wr_cnt); 6453 6454 /* Enhanced statistics exist only for Hercules */ 6455 if (sp->device_type == XFRAME_II_DEVICE) { 6456 tmp_stats[i++] = 6457 le64_to_cpu(stats->rmac_ttl_1519_4095_frms); 6458 tmp_stats[i++] = 6459 le64_to_cpu(stats->rmac_ttl_4096_8191_frms); 6460 tmp_stats[i++] = 6461 le64_to_cpu(stats->rmac_ttl_8192_max_frms); 6462 tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_gt_max_frms); 6463 tmp_stats[i++] = le64_to_cpu(stats->rmac_osized_alt_frms); 6464 tmp_stats[i++] = le64_to_cpu(stats->rmac_jabber_alt_frms); 6465 tmp_stats[i++] = le64_to_cpu(stats->rmac_gt_max_alt_frms); 6466 tmp_stats[i++] = le64_to_cpu(stats->rmac_vlan_frms); 6467 tmp_stats[i++] = le32_to_cpu(stats->rmac_len_discard); 6468 tmp_stats[i++] = le32_to_cpu(stats->rmac_fcs_discard); 6469 tmp_stats[i++] = le32_to_cpu(stats->rmac_pf_discard); 6470 tmp_stats[i++] = le32_to_cpu(stats->rmac_da_discard); 6471 tmp_stats[i++] = le32_to_cpu(stats->rmac_red_discard); 6472 tmp_stats[i++] = le32_to_cpu(stats->rmac_rts_discard); 6473 tmp_stats[i++] = le32_to_cpu(stats->rmac_ingm_full_discard); 6474 tmp_stats[i++] = le32_to_cpu(stats->link_fault_cnt); 6475 } 6476 6477 tmp_stats[i++] = 0; 6478 tmp_stats[i++] = swstats->single_ecc_errs; 6479 tmp_stats[i++] = swstats->double_ecc_errs; 6480 tmp_stats[i++] = swstats->parity_err_cnt; 6481 tmp_stats[i++] = swstats->serious_err_cnt; 6482 tmp_stats[i++] = swstats->soft_reset_cnt; 6483 tmp_stats[i++] = swstats->fifo_full_cnt; 6484 for (k = 0; k < MAX_RX_RINGS; k++) 6485 tmp_stats[i++] = swstats->ring_full_cnt[k]; 6486 tmp_stats[i++] = xstats->alarm_transceiver_temp_high; 6487 tmp_stats[i++] = xstats->alarm_transceiver_temp_low; 6488 tmp_stats[i++] = xstats->alarm_laser_bias_current_high; 6489 tmp_stats[i++] = xstats->alarm_laser_bias_current_low; 6490 tmp_stats[i++] = xstats->alarm_laser_output_power_high; 6491 tmp_stats[i++] = xstats->alarm_laser_output_power_low; 6492 tmp_stats[i++] = xstats->warn_transceiver_temp_high; 6493 tmp_stats[i++] = xstats->warn_transceiver_temp_low; 6494 tmp_stats[i++] = xstats->warn_laser_bias_current_high; 6495 tmp_stats[i++] = xstats->warn_laser_bias_current_low; 6496 tmp_stats[i++] = xstats->warn_laser_output_power_high; 6497 tmp_stats[i++] = xstats->warn_laser_output_power_low; 6498 tmp_stats[i++] = swstats->clubbed_frms_cnt; 6499 tmp_stats[i++] = swstats->sending_both; 6500 tmp_stats[i++] = swstats->outof_sequence_pkts; 6501 tmp_stats[i++] = swstats->flush_max_pkts; 6502 if (swstats->num_aggregations) { 6503 u64 tmp = swstats->sum_avg_pkts_aggregated; 6504 int count = 0; 6505 /* 6506 * Since 64-bit divide does not work on all platforms, 6507 * do repeated subtraction. 6508 */ 6509 while (tmp >= swstats->num_aggregations) { 6510 tmp -= swstats->num_aggregations; 6511 count++; 6512 } 6513 tmp_stats[i++] = count; 6514 } else 6515 tmp_stats[i++] = 0; 6516 tmp_stats[i++] = swstats->mem_alloc_fail_cnt; 6517 tmp_stats[i++] = swstats->pci_map_fail_cnt; 6518 tmp_stats[i++] = swstats->watchdog_timer_cnt; 6519 tmp_stats[i++] = swstats->mem_allocated; 6520 tmp_stats[i++] = swstats->mem_freed; 6521 tmp_stats[i++] = swstats->link_up_cnt; 6522 tmp_stats[i++] = swstats->link_down_cnt; 6523 tmp_stats[i++] = swstats->link_up_time; 6524 tmp_stats[i++] = swstats->link_down_time; 6525 6526 tmp_stats[i++] = swstats->tx_buf_abort_cnt; 6527 tmp_stats[i++] = swstats->tx_desc_abort_cnt; 6528 tmp_stats[i++] = swstats->tx_parity_err_cnt; 6529 tmp_stats[i++] = swstats->tx_link_loss_cnt; 6530 tmp_stats[i++] = swstats->tx_list_proc_err_cnt; 6531 6532 tmp_stats[i++] = swstats->rx_parity_err_cnt; 6533 tmp_stats[i++] = swstats->rx_abort_cnt; 6534 tmp_stats[i++] = swstats->rx_parity_abort_cnt; 6535 tmp_stats[i++] = swstats->rx_rda_fail_cnt; 6536 tmp_stats[i++] = swstats->rx_unkn_prot_cnt; 6537 tmp_stats[i++] = swstats->rx_fcs_err_cnt; 6538 tmp_stats[i++] = swstats->rx_buf_size_err_cnt; 6539 tmp_stats[i++] = swstats->rx_rxd_corrupt_cnt; 6540 tmp_stats[i++] = swstats->rx_unkn_err_cnt; 6541 tmp_stats[i++] = swstats->tda_err_cnt; 6542 tmp_stats[i++] = swstats->pfc_err_cnt; 6543 tmp_stats[i++] = swstats->pcc_err_cnt; 6544 tmp_stats[i++] = swstats->tti_err_cnt; 6545 tmp_stats[i++] = swstats->tpa_err_cnt; 6546 tmp_stats[i++] = swstats->sm_err_cnt; 6547 tmp_stats[i++] = swstats->lso_err_cnt; 6548 tmp_stats[i++] = swstats->mac_tmac_err_cnt; 6549 tmp_stats[i++] = swstats->mac_rmac_err_cnt; 6550 tmp_stats[i++] = swstats->xgxs_txgxs_err_cnt; 6551 tmp_stats[i++] = swstats->xgxs_rxgxs_err_cnt; 6552 tmp_stats[i++] = swstats->rc_err_cnt; 6553 tmp_stats[i++] = swstats->prc_pcix_err_cnt; 6554 tmp_stats[i++] = swstats->rpa_err_cnt; 6555 tmp_stats[i++] = swstats->rda_err_cnt; 6556 tmp_stats[i++] = swstats->rti_err_cnt; 6557 tmp_stats[i++] = swstats->mc_err_cnt; 6558 } 6559 6560 static int s2io_ethtool_get_regs_len(struct net_device *dev) 6561 { 6562 return XENA_REG_SPACE; 6563 } 6564 6565 6566 static int s2io_get_eeprom_len(struct net_device *dev) 6567 { 6568 return XENA_EEPROM_SPACE; 6569 } 6570 6571 static int s2io_get_sset_count(struct net_device *dev, int sset) 6572 { 6573 struct s2io_nic *sp = netdev_priv(dev); 6574 6575 switch (sset) { 6576 case ETH_SS_TEST: 6577 return S2IO_TEST_LEN; 6578 case ETH_SS_STATS: 6579 switch (sp->device_type) { 6580 case XFRAME_I_DEVICE: 6581 return XFRAME_I_STAT_LEN; 6582 case XFRAME_II_DEVICE: 6583 return XFRAME_II_STAT_LEN; 6584 default: 6585 return 0; 6586 } 6587 default: 6588 return -EOPNOTSUPP; 6589 } 6590 } 6591 6592 static void s2io_ethtool_get_strings(struct net_device *dev, 6593 u32 stringset, u8 *data) 6594 { 6595 int stat_size = 0; 6596 struct s2io_nic *sp = netdev_priv(dev); 6597 6598 switch (stringset) { 6599 case ETH_SS_TEST: 6600 memcpy(data, s2io_gstrings, S2IO_STRINGS_LEN); 6601 break; 6602 case ETH_SS_STATS: 6603 stat_size = sizeof(ethtool_xena_stats_keys); 6604 memcpy(data, ðtool_xena_stats_keys, stat_size); 6605 if (sp->device_type == XFRAME_II_DEVICE) { 6606 memcpy(data + stat_size, 6607 ðtool_enhanced_stats_keys, 6608 sizeof(ethtool_enhanced_stats_keys)); 6609 stat_size += sizeof(ethtool_enhanced_stats_keys); 6610 } 6611 6612 memcpy(data + stat_size, ðtool_driver_stats_keys, 6613 sizeof(ethtool_driver_stats_keys)); 6614 } 6615 } 6616 6617 static int s2io_set_features(struct net_device *dev, netdev_features_t features) 6618 { 6619 struct s2io_nic *sp = netdev_priv(dev); 6620 netdev_features_t changed = (features ^ dev->features) & NETIF_F_LRO; 6621 6622 if (changed && netif_running(dev)) { 6623 int rc; 6624 6625 s2io_stop_all_tx_queue(sp); 6626 s2io_card_down(sp); 6627 dev->features = features; 6628 rc = s2io_card_up(sp); 6629 if (rc) 6630 s2io_reset(sp); 6631 else 6632 s2io_start_all_tx_queue(sp); 6633 6634 return rc ? rc : 1; 6635 } 6636 6637 return 0; 6638 } 6639 6640 static const struct ethtool_ops netdev_ethtool_ops = { 6641 .get_settings = s2io_ethtool_gset, 6642 .set_settings = s2io_ethtool_sset, 6643 .get_drvinfo = s2io_ethtool_gdrvinfo, 6644 .get_regs_len = s2io_ethtool_get_regs_len, 6645 .get_regs = s2io_ethtool_gregs, 6646 .get_link = ethtool_op_get_link, 6647 .get_eeprom_len = s2io_get_eeprom_len, 6648 .get_eeprom = s2io_ethtool_geeprom, 6649 .set_eeprom = s2io_ethtool_seeprom, 6650 .get_ringparam = s2io_ethtool_gringparam, 6651 .get_pauseparam = s2io_ethtool_getpause_data, 6652 .set_pauseparam = s2io_ethtool_setpause_data, 6653 .self_test = s2io_ethtool_test, 6654 .get_strings = s2io_ethtool_get_strings, 6655 .set_phys_id = s2io_ethtool_set_led, 6656 .get_ethtool_stats = s2io_get_ethtool_stats, 6657 .get_sset_count = s2io_get_sset_count, 6658 }; 6659 6660 /** 6661 * s2io_ioctl - Entry point for the Ioctl 6662 * @dev : Device pointer. 6663 * @ifr : An IOCTL specefic structure, that can contain a pointer to 6664 * a proprietary structure used to pass information to the driver. 6665 * @cmd : This is used to distinguish between the different commands that 6666 * can be passed to the IOCTL functions. 6667 * Description: 6668 * Currently there are no special functionality supported in IOCTL, hence 6669 * function always return EOPNOTSUPPORTED 6670 */ 6671 6672 static int s2io_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) 6673 { 6674 return -EOPNOTSUPP; 6675 } 6676 6677 /** 6678 * s2io_change_mtu - entry point to change MTU size for the device. 6679 * @dev : device pointer. 6680 * @new_mtu : the new MTU size for the device. 6681 * Description: A driver entry point to change MTU size for the device. 6682 * Before changing the MTU the device must be stopped. 6683 * Return value: 6684 * 0 on success and an appropriate (-)ve integer as defined in errno.h 6685 * file on failure. 6686 */ 6687 6688 static int s2io_change_mtu(struct net_device *dev, int new_mtu) 6689 { 6690 struct s2io_nic *sp = netdev_priv(dev); 6691 int ret = 0; 6692 6693 if ((new_mtu < MIN_MTU) || (new_mtu > S2IO_JUMBO_SIZE)) { 6694 DBG_PRINT(ERR_DBG, "%s: MTU size is invalid.\n", dev->name); 6695 return -EPERM; 6696 } 6697 6698 dev->mtu = new_mtu; 6699 if (netif_running(dev)) { 6700 s2io_stop_all_tx_queue(sp); 6701 s2io_card_down(sp); 6702 ret = s2io_card_up(sp); 6703 if (ret) { 6704 DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n", 6705 __func__); 6706 return ret; 6707 } 6708 s2io_wake_all_tx_queue(sp); 6709 } else { /* Device is down */ 6710 struct XENA_dev_config __iomem *bar0 = sp->bar0; 6711 u64 val64 = new_mtu; 6712 6713 writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len); 6714 } 6715 6716 return ret; 6717 } 6718 6719 /** 6720 * s2io_set_link - Set the LInk status 6721 * @data: long pointer to device private structue 6722 * Description: Sets the link status for the adapter 6723 */ 6724 6725 static void s2io_set_link(struct work_struct *work) 6726 { 6727 struct s2io_nic *nic = container_of(work, struct s2io_nic, 6728 set_link_task); 6729 struct net_device *dev = nic->dev; 6730 struct XENA_dev_config __iomem *bar0 = nic->bar0; 6731 register u64 val64; 6732 u16 subid; 6733 6734 rtnl_lock(); 6735 6736 if (!netif_running(dev)) 6737 goto out_unlock; 6738 6739 if (test_and_set_bit(__S2IO_STATE_LINK_TASK, &(nic->state))) { 6740 /* The card is being reset, no point doing anything */ 6741 goto out_unlock; 6742 } 6743 6744 subid = nic->pdev->subsystem_device; 6745 if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) { 6746 /* 6747 * Allow a small delay for the NICs self initiated 6748 * cleanup to complete. 6749 */ 6750 msleep(100); 6751 } 6752 6753 val64 = readq(&bar0->adapter_status); 6754 if (LINK_IS_UP(val64)) { 6755 if (!(readq(&bar0->adapter_control) & ADAPTER_CNTL_EN)) { 6756 if (verify_xena_quiescence(nic)) { 6757 val64 = readq(&bar0->adapter_control); 6758 val64 |= ADAPTER_CNTL_EN; 6759 writeq(val64, &bar0->adapter_control); 6760 if (CARDS_WITH_FAULTY_LINK_INDICATORS( 6761 nic->device_type, subid)) { 6762 val64 = readq(&bar0->gpio_control); 6763 val64 |= GPIO_CTRL_GPIO_0; 6764 writeq(val64, &bar0->gpio_control); 6765 val64 = readq(&bar0->gpio_control); 6766 } else { 6767 val64 |= ADAPTER_LED_ON; 6768 writeq(val64, &bar0->adapter_control); 6769 } 6770 nic->device_enabled_once = true; 6771 } else { 6772 DBG_PRINT(ERR_DBG, 6773 "%s: Error: device is not Quiescent\n", 6774 dev->name); 6775 s2io_stop_all_tx_queue(nic); 6776 } 6777 } 6778 val64 = readq(&bar0->adapter_control); 6779 val64 |= ADAPTER_LED_ON; 6780 writeq(val64, &bar0->adapter_control); 6781 s2io_link(nic, LINK_UP); 6782 } else { 6783 if (CARDS_WITH_FAULTY_LINK_INDICATORS(nic->device_type, 6784 subid)) { 6785 val64 = readq(&bar0->gpio_control); 6786 val64 &= ~GPIO_CTRL_GPIO_0; 6787 writeq(val64, &bar0->gpio_control); 6788 val64 = readq(&bar0->gpio_control); 6789 } 6790 /* turn off LED */ 6791 val64 = readq(&bar0->adapter_control); 6792 val64 = val64 & (~ADAPTER_LED_ON); 6793 writeq(val64, &bar0->adapter_control); 6794 s2io_link(nic, LINK_DOWN); 6795 } 6796 clear_bit(__S2IO_STATE_LINK_TASK, &(nic->state)); 6797 6798 out_unlock: 6799 rtnl_unlock(); 6800 } 6801 6802 static int set_rxd_buffer_pointer(struct s2io_nic *sp, struct RxD_t *rxdp, 6803 struct buffAdd *ba, 6804 struct sk_buff **skb, u64 *temp0, u64 *temp1, 6805 u64 *temp2, int size) 6806 { 6807 struct net_device *dev = sp->dev; 6808 struct swStat *stats = &sp->mac_control.stats_info->sw_stat; 6809 6810 if ((sp->rxd_mode == RXD_MODE_1) && (rxdp->Host_Control == 0)) { 6811 struct RxD1 *rxdp1 = (struct RxD1 *)rxdp; 6812 /* allocate skb */ 6813 if (*skb) { 6814 DBG_PRINT(INFO_DBG, "SKB is not NULL\n"); 6815 /* 6816 * As Rx frame are not going to be processed, 6817 * using same mapped address for the Rxd 6818 * buffer pointer 6819 */ 6820 rxdp1->Buffer0_ptr = *temp0; 6821 } else { 6822 *skb = netdev_alloc_skb(dev, size); 6823 if (!(*skb)) { 6824 DBG_PRINT(INFO_DBG, 6825 "%s: Out of memory to allocate %s\n", 6826 dev->name, "1 buf mode SKBs"); 6827 stats->mem_alloc_fail_cnt++; 6828 return -ENOMEM ; 6829 } 6830 stats->mem_allocated += (*skb)->truesize; 6831 /* storing the mapped addr in a temp variable 6832 * such it will be used for next rxd whose 6833 * Host Control is NULL 6834 */ 6835 rxdp1->Buffer0_ptr = *temp0 = 6836 pci_map_single(sp->pdev, (*skb)->data, 6837 size - NET_IP_ALIGN, 6838 PCI_DMA_FROMDEVICE); 6839 if (pci_dma_mapping_error(sp->pdev, rxdp1->Buffer0_ptr)) 6840 goto memalloc_failed; 6841 rxdp->Host_Control = (unsigned long) (*skb); 6842 } 6843 } else if ((sp->rxd_mode == RXD_MODE_3B) && (rxdp->Host_Control == 0)) { 6844 struct RxD3 *rxdp3 = (struct RxD3 *)rxdp; 6845 /* Two buffer Mode */ 6846 if (*skb) { 6847 rxdp3->Buffer2_ptr = *temp2; 6848 rxdp3->Buffer0_ptr = *temp0; 6849 rxdp3->Buffer1_ptr = *temp1; 6850 } else { 6851 *skb = netdev_alloc_skb(dev, size); 6852 if (!(*skb)) { 6853 DBG_PRINT(INFO_DBG, 6854 "%s: Out of memory to allocate %s\n", 6855 dev->name, 6856 "2 buf mode SKBs"); 6857 stats->mem_alloc_fail_cnt++; 6858 return -ENOMEM; 6859 } 6860 stats->mem_allocated += (*skb)->truesize; 6861 rxdp3->Buffer2_ptr = *temp2 = 6862 pci_map_single(sp->pdev, (*skb)->data, 6863 dev->mtu + 4, 6864 PCI_DMA_FROMDEVICE); 6865 if (pci_dma_mapping_error(sp->pdev, rxdp3->Buffer2_ptr)) 6866 goto memalloc_failed; 6867 rxdp3->Buffer0_ptr = *temp0 = 6868 pci_map_single(sp->pdev, ba->ba_0, BUF0_LEN, 6869 PCI_DMA_FROMDEVICE); 6870 if (pci_dma_mapping_error(sp->pdev, 6871 rxdp3->Buffer0_ptr)) { 6872 pci_unmap_single(sp->pdev, 6873 (dma_addr_t)rxdp3->Buffer2_ptr, 6874 dev->mtu + 4, 6875 PCI_DMA_FROMDEVICE); 6876 goto memalloc_failed; 6877 } 6878 rxdp->Host_Control = (unsigned long) (*skb); 6879 6880 /* Buffer-1 will be dummy buffer not used */ 6881 rxdp3->Buffer1_ptr = *temp1 = 6882 pci_map_single(sp->pdev, ba->ba_1, BUF1_LEN, 6883 PCI_DMA_FROMDEVICE); 6884 if (pci_dma_mapping_error(sp->pdev, 6885 rxdp3->Buffer1_ptr)) { 6886 pci_unmap_single(sp->pdev, 6887 (dma_addr_t)rxdp3->Buffer0_ptr, 6888 BUF0_LEN, PCI_DMA_FROMDEVICE); 6889 pci_unmap_single(sp->pdev, 6890 (dma_addr_t)rxdp3->Buffer2_ptr, 6891 dev->mtu + 4, 6892 PCI_DMA_FROMDEVICE); 6893 goto memalloc_failed; 6894 } 6895 } 6896 } 6897 return 0; 6898 6899 memalloc_failed: 6900 stats->pci_map_fail_cnt++; 6901 stats->mem_freed += (*skb)->truesize; 6902 dev_kfree_skb(*skb); 6903 return -ENOMEM; 6904 } 6905 6906 static void set_rxd_buffer_size(struct s2io_nic *sp, struct RxD_t *rxdp, 6907 int size) 6908 { 6909 struct net_device *dev = sp->dev; 6910 if (sp->rxd_mode == RXD_MODE_1) { 6911 rxdp->Control_2 = SET_BUFFER0_SIZE_1(size - NET_IP_ALIGN); 6912 } else if (sp->rxd_mode == RXD_MODE_3B) { 6913 rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN); 6914 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1); 6915 rxdp->Control_2 |= SET_BUFFER2_SIZE_3(dev->mtu + 4); 6916 } 6917 } 6918 6919 static int rxd_owner_bit_reset(struct s2io_nic *sp) 6920 { 6921 int i, j, k, blk_cnt = 0, size; 6922 struct config_param *config = &sp->config; 6923 struct mac_info *mac_control = &sp->mac_control; 6924 struct net_device *dev = sp->dev; 6925 struct RxD_t *rxdp = NULL; 6926 struct sk_buff *skb = NULL; 6927 struct buffAdd *ba = NULL; 6928 u64 temp0_64 = 0, temp1_64 = 0, temp2_64 = 0; 6929 6930 /* Calculate the size based on ring mode */ 6931 size = dev->mtu + HEADER_ETHERNET_II_802_3_SIZE + 6932 HEADER_802_2_SIZE + HEADER_SNAP_SIZE; 6933 if (sp->rxd_mode == RXD_MODE_1) 6934 size += NET_IP_ALIGN; 6935 else if (sp->rxd_mode == RXD_MODE_3B) 6936 size = dev->mtu + ALIGN_SIZE + BUF0_LEN + 4; 6937 6938 for (i = 0; i < config->rx_ring_num; i++) { 6939 struct rx_ring_config *rx_cfg = &config->rx_cfg[i]; 6940 struct ring_info *ring = &mac_control->rings[i]; 6941 6942 blk_cnt = rx_cfg->num_rxd / (rxd_count[sp->rxd_mode] + 1); 6943 6944 for (j = 0; j < blk_cnt; j++) { 6945 for (k = 0; k < rxd_count[sp->rxd_mode]; k++) { 6946 rxdp = ring->rx_blocks[j].rxds[k].virt_addr; 6947 if (sp->rxd_mode == RXD_MODE_3B) 6948 ba = &ring->ba[j][k]; 6949 if (set_rxd_buffer_pointer(sp, rxdp, ba, &skb, 6950 (u64 *)&temp0_64, 6951 (u64 *)&temp1_64, 6952 (u64 *)&temp2_64, 6953 size) == -ENOMEM) { 6954 return 0; 6955 } 6956 6957 set_rxd_buffer_size(sp, rxdp, size); 6958 wmb(); 6959 /* flip the Ownership bit to Hardware */ 6960 rxdp->Control_1 |= RXD_OWN_XENA; 6961 } 6962 } 6963 } 6964 return 0; 6965 6966 } 6967 6968 static int s2io_add_isr(struct s2io_nic *sp) 6969 { 6970 int ret = 0; 6971 struct net_device *dev = sp->dev; 6972 int err = 0; 6973 6974 if (sp->config.intr_type == MSI_X) 6975 ret = s2io_enable_msi_x(sp); 6976 if (ret) { 6977 DBG_PRINT(ERR_DBG, "%s: Defaulting to INTA\n", dev->name); 6978 sp->config.intr_type = INTA; 6979 } 6980 6981 /* 6982 * Store the values of the MSIX table in 6983 * the struct s2io_nic structure 6984 */ 6985 store_xmsi_data(sp); 6986 6987 /* After proper initialization of H/W, register ISR */ 6988 if (sp->config.intr_type == MSI_X) { 6989 int i, msix_rx_cnt = 0; 6990 6991 for (i = 0; i < sp->num_entries; i++) { 6992 if (sp->s2io_entries[i].in_use == MSIX_FLG) { 6993 if (sp->s2io_entries[i].type == 6994 MSIX_RING_TYPE) { 6995 sprintf(sp->desc[i], "%s:MSI-X-%d-RX", 6996 dev->name, i); 6997 err = request_irq(sp->entries[i].vector, 6998 s2io_msix_ring_handle, 6999 0, 7000 sp->desc[i], 7001 sp->s2io_entries[i].arg); 7002 } else if (sp->s2io_entries[i].type == 7003 MSIX_ALARM_TYPE) { 7004 sprintf(sp->desc[i], "%s:MSI-X-%d-TX", 7005 dev->name, i); 7006 err = request_irq(sp->entries[i].vector, 7007 s2io_msix_fifo_handle, 7008 0, 7009 sp->desc[i], 7010 sp->s2io_entries[i].arg); 7011 7012 } 7013 /* if either data or addr is zero print it. */ 7014 if (!(sp->msix_info[i].addr && 7015 sp->msix_info[i].data)) { 7016 DBG_PRINT(ERR_DBG, 7017 "%s @Addr:0x%llx Data:0x%llx\n", 7018 sp->desc[i], 7019 (unsigned long long) 7020 sp->msix_info[i].addr, 7021 (unsigned long long) 7022 ntohl(sp->msix_info[i].data)); 7023 } else 7024 msix_rx_cnt++; 7025 if (err) { 7026 remove_msix_isr(sp); 7027 7028 DBG_PRINT(ERR_DBG, 7029 "%s:MSI-X-%d registration " 7030 "failed\n", dev->name, i); 7031 7032 DBG_PRINT(ERR_DBG, 7033 "%s: Defaulting to INTA\n", 7034 dev->name); 7035 sp->config.intr_type = INTA; 7036 break; 7037 } 7038 sp->s2io_entries[i].in_use = 7039 MSIX_REGISTERED_SUCCESS; 7040 } 7041 } 7042 if (!err) { 7043 pr_info("MSI-X-RX %d entries enabled\n", --msix_rx_cnt); 7044 DBG_PRINT(INFO_DBG, 7045 "MSI-X-TX entries enabled through alarm vector\n"); 7046 } 7047 } 7048 if (sp->config.intr_type == INTA) { 7049 err = request_irq((int)sp->pdev->irq, s2io_isr, IRQF_SHARED, 7050 sp->name, dev); 7051 if (err) { 7052 DBG_PRINT(ERR_DBG, "%s: ISR registration failed\n", 7053 dev->name); 7054 return -1; 7055 } 7056 } 7057 return 0; 7058 } 7059 7060 static void s2io_rem_isr(struct s2io_nic *sp) 7061 { 7062 if (sp->config.intr_type == MSI_X) 7063 remove_msix_isr(sp); 7064 else 7065 remove_inta_isr(sp); 7066 } 7067 7068 static void do_s2io_card_down(struct s2io_nic *sp, int do_io) 7069 { 7070 int cnt = 0; 7071 struct XENA_dev_config __iomem *bar0 = sp->bar0; 7072 register u64 val64 = 0; 7073 struct config_param *config; 7074 config = &sp->config; 7075 7076 if (!is_s2io_card_up(sp)) 7077 return; 7078 7079 del_timer_sync(&sp->alarm_timer); 7080 /* If s2io_set_link task is executing, wait till it completes. */ 7081 while (test_and_set_bit(__S2IO_STATE_LINK_TASK, &(sp->state))) 7082 msleep(50); 7083 clear_bit(__S2IO_STATE_CARD_UP, &sp->state); 7084 7085 /* Disable napi */ 7086 if (sp->config.napi) { 7087 int off = 0; 7088 if (config->intr_type == MSI_X) { 7089 for (; off < sp->config.rx_ring_num; off++) 7090 napi_disable(&sp->mac_control.rings[off].napi); 7091 } 7092 else 7093 napi_disable(&sp->napi); 7094 } 7095 7096 /* disable Tx and Rx traffic on the NIC */ 7097 if (do_io) 7098 stop_nic(sp); 7099 7100 s2io_rem_isr(sp); 7101 7102 /* stop the tx queue, indicate link down */ 7103 s2io_link(sp, LINK_DOWN); 7104 7105 /* Check if the device is Quiescent and then Reset the NIC */ 7106 while (do_io) { 7107 /* As per the HW requirement we need to replenish the 7108 * receive buffer to avoid the ring bump. Since there is 7109 * no intention of processing the Rx frame at this pointwe are 7110 * just setting the ownership bit of rxd in Each Rx 7111 * ring to HW and set the appropriate buffer size 7112 * based on the ring mode 7113 */ 7114 rxd_owner_bit_reset(sp); 7115 7116 val64 = readq(&bar0->adapter_status); 7117 if (verify_xena_quiescence(sp)) { 7118 if (verify_pcc_quiescent(sp, sp->device_enabled_once)) 7119 break; 7120 } 7121 7122 msleep(50); 7123 cnt++; 7124 if (cnt == 10) { 7125 DBG_PRINT(ERR_DBG, "Device not Quiescent - " 7126 "adapter status reads 0x%llx\n", 7127 (unsigned long long)val64); 7128 break; 7129 } 7130 } 7131 if (do_io) 7132 s2io_reset(sp); 7133 7134 /* Free all Tx buffers */ 7135 free_tx_buffers(sp); 7136 7137 /* Free all Rx buffers */ 7138 free_rx_buffers(sp); 7139 7140 clear_bit(__S2IO_STATE_LINK_TASK, &(sp->state)); 7141 } 7142 7143 static void s2io_card_down(struct s2io_nic *sp) 7144 { 7145 do_s2io_card_down(sp, 1); 7146 } 7147 7148 static int s2io_card_up(struct s2io_nic *sp) 7149 { 7150 int i, ret = 0; 7151 struct config_param *config; 7152 struct mac_info *mac_control; 7153 struct net_device *dev = (struct net_device *)sp->dev; 7154 u16 interruptible; 7155 7156 /* Initialize the H/W I/O registers */ 7157 ret = init_nic(sp); 7158 if (ret != 0) { 7159 DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n", 7160 dev->name); 7161 if (ret != -EIO) 7162 s2io_reset(sp); 7163 return ret; 7164 } 7165 7166 /* 7167 * Initializing the Rx buffers. For now we are considering only 1 7168 * Rx ring and initializing buffers into 30 Rx blocks 7169 */ 7170 config = &sp->config; 7171 mac_control = &sp->mac_control; 7172 7173 for (i = 0; i < config->rx_ring_num; i++) { 7174 struct ring_info *ring = &mac_control->rings[i]; 7175 7176 ring->mtu = dev->mtu; 7177 ring->lro = !!(dev->features & NETIF_F_LRO); 7178 ret = fill_rx_buffers(sp, ring, 1); 7179 if (ret) { 7180 DBG_PRINT(ERR_DBG, "%s: Out of memory in Open\n", 7181 dev->name); 7182 s2io_reset(sp); 7183 free_rx_buffers(sp); 7184 return -ENOMEM; 7185 } 7186 DBG_PRINT(INFO_DBG, "Buf in ring:%d is %d:\n", i, 7187 ring->rx_bufs_left); 7188 } 7189 7190 /* Initialise napi */ 7191 if (config->napi) { 7192 if (config->intr_type == MSI_X) { 7193 for (i = 0; i < sp->config.rx_ring_num; i++) 7194 napi_enable(&sp->mac_control.rings[i].napi); 7195 } else { 7196 napi_enable(&sp->napi); 7197 } 7198 } 7199 7200 /* Maintain the state prior to the open */ 7201 if (sp->promisc_flg) 7202 sp->promisc_flg = 0; 7203 if (sp->m_cast_flg) { 7204 sp->m_cast_flg = 0; 7205 sp->all_multi_pos = 0; 7206 } 7207 7208 /* Setting its receive mode */ 7209 s2io_set_multicast(dev); 7210 7211 if (dev->features & NETIF_F_LRO) { 7212 /* Initialize max aggregatable pkts per session based on MTU */ 7213 sp->lro_max_aggr_per_sess = ((1<<16) - 1) / dev->mtu; 7214 /* Check if we can use (if specified) user provided value */ 7215 if (lro_max_pkts < sp->lro_max_aggr_per_sess) 7216 sp->lro_max_aggr_per_sess = lro_max_pkts; 7217 } 7218 7219 /* Enable Rx Traffic and interrupts on the NIC */ 7220 if (start_nic(sp)) { 7221 DBG_PRINT(ERR_DBG, "%s: Starting NIC failed\n", dev->name); 7222 s2io_reset(sp); 7223 free_rx_buffers(sp); 7224 return -ENODEV; 7225 } 7226 7227 /* Add interrupt service routine */ 7228 if (s2io_add_isr(sp) != 0) { 7229 if (sp->config.intr_type == MSI_X) 7230 s2io_rem_isr(sp); 7231 s2io_reset(sp); 7232 free_rx_buffers(sp); 7233 return -ENODEV; 7234 } 7235 7236 S2IO_TIMER_CONF(sp->alarm_timer, s2io_alarm_handle, sp, (HZ/2)); 7237 7238 set_bit(__S2IO_STATE_CARD_UP, &sp->state); 7239 7240 /* Enable select interrupts */ 7241 en_dis_err_alarms(sp, ENA_ALL_INTRS, ENABLE_INTRS); 7242 if (sp->config.intr_type != INTA) { 7243 interruptible = TX_TRAFFIC_INTR | TX_PIC_INTR; 7244 en_dis_able_nic_intrs(sp, interruptible, ENABLE_INTRS); 7245 } else { 7246 interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR; 7247 interruptible |= TX_PIC_INTR; 7248 en_dis_able_nic_intrs(sp, interruptible, ENABLE_INTRS); 7249 } 7250 7251 return 0; 7252 } 7253 7254 /** 7255 * s2io_restart_nic - Resets the NIC. 7256 * @data : long pointer to the device private structure 7257 * Description: 7258 * This function is scheduled to be run by the s2io_tx_watchdog 7259 * function after 0.5 secs to reset the NIC. The idea is to reduce 7260 * the run time of the watch dog routine which is run holding a 7261 * spin lock. 7262 */ 7263 7264 static void s2io_restart_nic(struct work_struct *work) 7265 { 7266 struct s2io_nic *sp = container_of(work, struct s2io_nic, rst_timer_task); 7267 struct net_device *dev = sp->dev; 7268 7269 rtnl_lock(); 7270 7271 if (!netif_running(dev)) 7272 goto out_unlock; 7273 7274 s2io_card_down(sp); 7275 if (s2io_card_up(sp)) { 7276 DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n", dev->name); 7277 } 7278 s2io_wake_all_tx_queue(sp); 7279 DBG_PRINT(ERR_DBG, "%s: was reset by Tx watchdog timer\n", dev->name); 7280 out_unlock: 7281 rtnl_unlock(); 7282 } 7283 7284 /** 7285 * s2io_tx_watchdog - Watchdog for transmit side. 7286 * @dev : Pointer to net device structure 7287 * Description: 7288 * This function is triggered if the Tx Queue is stopped 7289 * for a pre-defined amount of time when the Interface is still up. 7290 * If the Interface is jammed in such a situation, the hardware is 7291 * reset (by s2io_close) and restarted again (by s2io_open) to 7292 * overcome any problem that might have been caused in the hardware. 7293 * Return value: 7294 * void 7295 */ 7296 7297 static void s2io_tx_watchdog(struct net_device *dev) 7298 { 7299 struct s2io_nic *sp = netdev_priv(dev); 7300 struct swStat *swstats = &sp->mac_control.stats_info->sw_stat; 7301 7302 if (netif_carrier_ok(dev)) { 7303 swstats->watchdog_timer_cnt++; 7304 schedule_work(&sp->rst_timer_task); 7305 swstats->soft_reset_cnt++; 7306 } 7307 } 7308 7309 /** 7310 * rx_osm_handler - To perform some OS related operations on SKB. 7311 * @sp: private member of the device structure,pointer to s2io_nic structure. 7312 * @skb : the socket buffer pointer. 7313 * @len : length of the packet 7314 * @cksum : FCS checksum of the frame. 7315 * @ring_no : the ring from which this RxD was extracted. 7316 * Description: 7317 * This function is called by the Rx interrupt serivce routine to perform 7318 * some OS related operations on the SKB before passing it to the upper 7319 * layers. It mainly checks if the checksum is OK, if so adds it to the 7320 * SKBs cksum variable, increments the Rx packet count and passes the SKB 7321 * to the upper layer. If the checksum is wrong, it increments the Rx 7322 * packet error count, frees the SKB and returns error. 7323 * Return value: 7324 * SUCCESS on success and -1 on failure. 7325 */ 7326 static int rx_osm_handler(struct ring_info *ring_data, struct RxD_t * rxdp) 7327 { 7328 struct s2io_nic *sp = ring_data->nic; 7329 struct net_device *dev = (struct net_device *)ring_data->dev; 7330 struct sk_buff *skb = (struct sk_buff *) 7331 ((unsigned long)rxdp->Host_Control); 7332 int ring_no = ring_data->ring_no; 7333 u16 l3_csum, l4_csum; 7334 unsigned long long err = rxdp->Control_1 & RXD_T_CODE; 7335 struct lro *uninitialized_var(lro); 7336 u8 err_mask; 7337 struct swStat *swstats = &sp->mac_control.stats_info->sw_stat; 7338 7339 skb->dev = dev; 7340 7341 if (err) { 7342 /* Check for parity error */ 7343 if (err & 0x1) 7344 swstats->parity_err_cnt++; 7345 7346 err_mask = err >> 48; 7347 switch (err_mask) { 7348 case 1: 7349 swstats->rx_parity_err_cnt++; 7350 break; 7351 7352 case 2: 7353 swstats->rx_abort_cnt++; 7354 break; 7355 7356 case 3: 7357 swstats->rx_parity_abort_cnt++; 7358 break; 7359 7360 case 4: 7361 swstats->rx_rda_fail_cnt++; 7362 break; 7363 7364 case 5: 7365 swstats->rx_unkn_prot_cnt++; 7366 break; 7367 7368 case 6: 7369 swstats->rx_fcs_err_cnt++; 7370 break; 7371 7372 case 7: 7373 swstats->rx_buf_size_err_cnt++; 7374 break; 7375 7376 case 8: 7377 swstats->rx_rxd_corrupt_cnt++; 7378 break; 7379 7380 case 15: 7381 swstats->rx_unkn_err_cnt++; 7382 break; 7383 } 7384 /* 7385 * Drop the packet if bad transfer code. Exception being 7386 * 0x5, which could be due to unsupported IPv6 extension header. 7387 * In this case, we let stack handle the packet. 7388 * Note that in this case, since checksum will be incorrect, 7389 * stack will validate the same. 7390 */ 7391 if (err_mask != 0x5) { 7392 DBG_PRINT(ERR_DBG, "%s: Rx error Value: 0x%x\n", 7393 dev->name, err_mask); 7394 dev->stats.rx_crc_errors++; 7395 swstats->mem_freed 7396 += skb->truesize; 7397 dev_kfree_skb(skb); 7398 ring_data->rx_bufs_left -= 1; 7399 rxdp->Host_Control = 0; 7400 return 0; 7401 } 7402 } 7403 7404 rxdp->Host_Control = 0; 7405 if (sp->rxd_mode == RXD_MODE_1) { 7406 int len = RXD_GET_BUFFER0_SIZE_1(rxdp->Control_2); 7407 7408 skb_put(skb, len); 7409 } else if (sp->rxd_mode == RXD_MODE_3B) { 7410 int get_block = ring_data->rx_curr_get_info.block_index; 7411 int get_off = ring_data->rx_curr_get_info.offset; 7412 int buf0_len = RXD_GET_BUFFER0_SIZE_3(rxdp->Control_2); 7413 int buf2_len = RXD_GET_BUFFER2_SIZE_3(rxdp->Control_2); 7414 unsigned char *buff = skb_push(skb, buf0_len); 7415 7416 struct buffAdd *ba = &ring_data->ba[get_block][get_off]; 7417 memcpy(buff, ba->ba_0, buf0_len); 7418 skb_put(skb, buf2_len); 7419 } 7420 7421 if ((rxdp->Control_1 & TCP_OR_UDP_FRAME) && 7422 ((!ring_data->lro) || 7423 (ring_data->lro && (!(rxdp->Control_1 & RXD_FRAME_IP_FRAG)))) && 7424 (dev->features & NETIF_F_RXCSUM)) { 7425 l3_csum = RXD_GET_L3_CKSUM(rxdp->Control_1); 7426 l4_csum = RXD_GET_L4_CKSUM(rxdp->Control_1); 7427 if ((l3_csum == L3_CKSUM_OK) && (l4_csum == L4_CKSUM_OK)) { 7428 /* 7429 * NIC verifies if the Checksum of the received 7430 * frame is Ok or not and accordingly returns 7431 * a flag in the RxD. 7432 */ 7433 skb->ip_summed = CHECKSUM_UNNECESSARY; 7434 if (ring_data->lro) { 7435 u32 tcp_len = 0; 7436 u8 *tcp; 7437 int ret = 0; 7438 7439 ret = s2io_club_tcp_session(ring_data, 7440 skb->data, &tcp, 7441 &tcp_len, &lro, 7442 rxdp, sp); 7443 switch (ret) { 7444 case 3: /* Begin anew */ 7445 lro->parent = skb; 7446 goto aggregate; 7447 case 1: /* Aggregate */ 7448 lro_append_pkt(sp, lro, skb, tcp_len); 7449 goto aggregate; 7450 case 4: /* Flush session */ 7451 lro_append_pkt(sp, lro, skb, tcp_len); 7452 queue_rx_frame(lro->parent, 7453 lro->vlan_tag); 7454 clear_lro_session(lro); 7455 swstats->flush_max_pkts++; 7456 goto aggregate; 7457 case 2: /* Flush both */ 7458 lro->parent->data_len = lro->frags_len; 7459 swstats->sending_both++; 7460 queue_rx_frame(lro->parent, 7461 lro->vlan_tag); 7462 clear_lro_session(lro); 7463 goto send_up; 7464 case 0: /* sessions exceeded */ 7465 case -1: /* non-TCP or not L2 aggregatable */ 7466 case 5: /* 7467 * First pkt in session not 7468 * L3/L4 aggregatable 7469 */ 7470 break; 7471 default: 7472 DBG_PRINT(ERR_DBG, 7473 "%s: Samadhana!!\n", 7474 __func__); 7475 BUG(); 7476 } 7477 } 7478 } else { 7479 /* 7480 * Packet with erroneous checksum, let the 7481 * upper layers deal with it. 7482 */ 7483 skb_checksum_none_assert(skb); 7484 } 7485 } else 7486 skb_checksum_none_assert(skb); 7487 7488 swstats->mem_freed += skb->truesize; 7489 send_up: 7490 skb_record_rx_queue(skb, ring_no); 7491 queue_rx_frame(skb, RXD_GET_VLAN_TAG(rxdp->Control_2)); 7492 aggregate: 7493 sp->mac_control.rings[ring_no].rx_bufs_left -= 1; 7494 return SUCCESS; 7495 } 7496 7497 /** 7498 * s2io_link - stops/starts the Tx queue. 7499 * @sp : private member of the device structure, which is a pointer to the 7500 * s2io_nic structure. 7501 * @link : inidicates whether link is UP/DOWN. 7502 * Description: 7503 * This function stops/starts the Tx queue depending on whether the link 7504 * status of the NIC is is down or up. This is called by the Alarm 7505 * interrupt handler whenever a link change interrupt comes up. 7506 * Return value: 7507 * void. 7508 */ 7509 7510 static void s2io_link(struct s2io_nic *sp, int link) 7511 { 7512 struct net_device *dev = (struct net_device *)sp->dev; 7513 struct swStat *swstats = &sp->mac_control.stats_info->sw_stat; 7514 7515 if (link != sp->last_link_state) { 7516 init_tti(sp, link); 7517 if (link == LINK_DOWN) { 7518 DBG_PRINT(ERR_DBG, "%s: Link down\n", dev->name); 7519 s2io_stop_all_tx_queue(sp); 7520 netif_carrier_off(dev); 7521 if (swstats->link_up_cnt) 7522 swstats->link_up_time = 7523 jiffies - sp->start_time; 7524 swstats->link_down_cnt++; 7525 } else { 7526 DBG_PRINT(ERR_DBG, "%s: Link Up\n", dev->name); 7527 if (swstats->link_down_cnt) 7528 swstats->link_down_time = 7529 jiffies - sp->start_time; 7530 swstats->link_up_cnt++; 7531 netif_carrier_on(dev); 7532 s2io_wake_all_tx_queue(sp); 7533 } 7534 } 7535 sp->last_link_state = link; 7536 sp->start_time = jiffies; 7537 } 7538 7539 /** 7540 * s2io_init_pci -Initialization of PCI and PCI-X configuration registers . 7541 * @sp : private member of the device structure, which is a pointer to the 7542 * s2io_nic structure. 7543 * Description: 7544 * This function initializes a few of the PCI and PCI-X configuration registers 7545 * with recommended values. 7546 * Return value: 7547 * void 7548 */ 7549 7550 static void s2io_init_pci(struct s2io_nic *sp) 7551 { 7552 u16 pci_cmd = 0, pcix_cmd = 0; 7553 7554 /* Enable Data Parity Error Recovery in PCI-X command register. */ 7555 pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER, 7556 &(pcix_cmd)); 7557 pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER, 7558 (pcix_cmd | 1)); 7559 pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER, 7560 &(pcix_cmd)); 7561 7562 /* Set the PErr Response bit in PCI command register. */ 7563 pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd); 7564 pci_write_config_word(sp->pdev, PCI_COMMAND, 7565 (pci_cmd | PCI_COMMAND_PARITY)); 7566 pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd); 7567 } 7568 7569 static int s2io_verify_parm(struct pci_dev *pdev, u8 *dev_intr_type, 7570 u8 *dev_multiq) 7571 { 7572 int i; 7573 7574 if ((tx_fifo_num > MAX_TX_FIFOS) || (tx_fifo_num < 1)) { 7575 DBG_PRINT(ERR_DBG, "Requested number of tx fifos " 7576 "(%d) not supported\n", tx_fifo_num); 7577 7578 if (tx_fifo_num < 1) 7579 tx_fifo_num = 1; 7580 else 7581 tx_fifo_num = MAX_TX_FIFOS; 7582 7583 DBG_PRINT(ERR_DBG, "Default to %d tx fifos\n", tx_fifo_num); 7584 } 7585 7586 if (multiq) 7587 *dev_multiq = multiq; 7588 7589 if (tx_steering_type && (1 == tx_fifo_num)) { 7590 if (tx_steering_type != TX_DEFAULT_STEERING) 7591 DBG_PRINT(ERR_DBG, 7592 "Tx steering is not supported with " 7593 "one fifo. Disabling Tx steering.\n"); 7594 tx_steering_type = NO_STEERING; 7595 } 7596 7597 if ((tx_steering_type < NO_STEERING) || 7598 (tx_steering_type > TX_DEFAULT_STEERING)) { 7599 DBG_PRINT(ERR_DBG, 7600 "Requested transmit steering not supported\n"); 7601 DBG_PRINT(ERR_DBG, "Disabling transmit steering\n"); 7602 tx_steering_type = NO_STEERING; 7603 } 7604 7605 if (rx_ring_num > MAX_RX_RINGS) { 7606 DBG_PRINT(ERR_DBG, 7607 "Requested number of rx rings not supported\n"); 7608 DBG_PRINT(ERR_DBG, "Default to %d rx rings\n", 7609 MAX_RX_RINGS); 7610 rx_ring_num = MAX_RX_RINGS; 7611 } 7612 7613 if ((*dev_intr_type != INTA) && (*dev_intr_type != MSI_X)) { 7614 DBG_PRINT(ERR_DBG, "Wrong intr_type requested. " 7615 "Defaulting to INTA\n"); 7616 *dev_intr_type = INTA; 7617 } 7618 7619 if ((*dev_intr_type == MSI_X) && 7620 ((pdev->device != PCI_DEVICE_ID_HERC_WIN) && 7621 (pdev->device != PCI_DEVICE_ID_HERC_UNI))) { 7622 DBG_PRINT(ERR_DBG, "Xframe I does not support MSI_X. " 7623 "Defaulting to INTA\n"); 7624 *dev_intr_type = INTA; 7625 } 7626 7627 if ((rx_ring_mode != 1) && (rx_ring_mode != 2)) { 7628 DBG_PRINT(ERR_DBG, "Requested ring mode not supported\n"); 7629 DBG_PRINT(ERR_DBG, "Defaulting to 1-buffer mode\n"); 7630 rx_ring_mode = 1; 7631 } 7632 7633 for (i = 0; i < MAX_RX_RINGS; i++) 7634 if (rx_ring_sz[i] > MAX_RX_BLOCKS_PER_RING) { 7635 DBG_PRINT(ERR_DBG, "Requested rx ring size not " 7636 "supported\nDefaulting to %d\n", 7637 MAX_RX_BLOCKS_PER_RING); 7638 rx_ring_sz[i] = MAX_RX_BLOCKS_PER_RING; 7639 } 7640 7641 return SUCCESS; 7642 } 7643 7644 /** 7645 * rts_ds_steer - Receive traffic steering based on IPv4 or IPv6 TOS 7646 * or Traffic class respectively. 7647 * @nic: device private variable 7648 * Description: The function configures the receive steering to 7649 * desired receive ring. 7650 * Return Value: SUCCESS on success and 7651 * '-1' on failure (endian settings incorrect). 7652 */ 7653 static int rts_ds_steer(struct s2io_nic *nic, u8 ds_codepoint, u8 ring) 7654 { 7655 struct XENA_dev_config __iomem *bar0 = nic->bar0; 7656 register u64 val64 = 0; 7657 7658 if (ds_codepoint > 63) 7659 return FAILURE; 7660 7661 val64 = RTS_DS_MEM_DATA(ring); 7662 writeq(val64, &bar0->rts_ds_mem_data); 7663 7664 val64 = RTS_DS_MEM_CTRL_WE | 7665 RTS_DS_MEM_CTRL_STROBE_NEW_CMD | 7666 RTS_DS_MEM_CTRL_OFFSET(ds_codepoint); 7667 7668 writeq(val64, &bar0->rts_ds_mem_ctrl); 7669 7670 return wait_for_cmd_complete(&bar0->rts_ds_mem_ctrl, 7671 RTS_DS_MEM_CTRL_STROBE_CMD_BEING_EXECUTED, 7672 S2IO_BIT_RESET); 7673 } 7674 7675 static const struct net_device_ops s2io_netdev_ops = { 7676 .ndo_open = s2io_open, 7677 .ndo_stop = s2io_close, 7678 .ndo_get_stats = s2io_get_stats, 7679 .ndo_start_xmit = s2io_xmit, 7680 .ndo_validate_addr = eth_validate_addr, 7681 .ndo_set_rx_mode = s2io_set_multicast, 7682 .ndo_do_ioctl = s2io_ioctl, 7683 .ndo_set_mac_address = s2io_set_mac_addr, 7684 .ndo_change_mtu = s2io_change_mtu, 7685 .ndo_set_features = s2io_set_features, 7686 .ndo_tx_timeout = s2io_tx_watchdog, 7687 #ifdef CONFIG_NET_POLL_CONTROLLER 7688 .ndo_poll_controller = s2io_netpoll, 7689 #endif 7690 }; 7691 7692 /** 7693 * s2io_init_nic - Initialization of the adapter . 7694 * @pdev : structure containing the PCI related information of the device. 7695 * @pre: List of PCI devices supported by the driver listed in s2io_tbl. 7696 * Description: 7697 * The function initializes an adapter identified by the pci_dec structure. 7698 * All OS related initialization including memory and device structure and 7699 * initlaization of the device private variable is done. Also the swapper 7700 * control register is initialized to enable read and write into the I/O 7701 * registers of the device. 7702 * Return value: 7703 * returns 0 on success and negative on failure. 7704 */ 7705 7706 static int __devinit 7707 s2io_init_nic(struct pci_dev *pdev, const struct pci_device_id *pre) 7708 { 7709 struct s2io_nic *sp; 7710 struct net_device *dev; 7711 int i, j, ret; 7712 int dma_flag = false; 7713 u32 mac_up, mac_down; 7714 u64 val64 = 0, tmp64 = 0; 7715 struct XENA_dev_config __iomem *bar0 = NULL; 7716 u16 subid; 7717 struct config_param *config; 7718 struct mac_info *mac_control; 7719 int mode; 7720 u8 dev_intr_type = intr_type; 7721 u8 dev_multiq = 0; 7722 7723 ret = s2io_verify_parm(pdev, &dev_intr_type, &dev_multiq); 7724 if (ret) 7725 return ret; 7726 7727 ret = pci_enable_device(pdev); 7728 if (ret) { 7729 DBG_PRINT(ERR_DBG, 7730 "%s: pci_enable_device failed\n", __func__); 7731 return ret; 7732 } 7733 7734 if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) { 7735 DBG_PRINT(INIT_DBG, "%s: Using 64bit DMA\n", __func__); 7736 dma_flag = true; 7737 if (pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64))) { 7738 DBG_PRINT(ERR_DBG, 7739 "Unable to obtain 64bit DMA " 7740 "for consistent allocations\n"); 7741 pci_disable_device(pdev); 7742 return -ENOMEM; 7743 } 7744 } else if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(32))) { 7745 DBG_PRINT(INIT_DBG, "%s: Using 32bit DMA\n", __func__); 7746 } else { 7747 pci_disable_device(pdev); 7748 return -ENOMEM; 7749 } 7750 ret = pci_request_regions(pdev, s2io_driver_name); 7751 if (ret) { 7752 DBG_PRINT(ERR_DBG, "%s: Request Regions failed - %x\n", 7753 __func__, ret); 7754 pci_disable_device(pdev); 7755 return -ENODEV; 7756 } 7757 if (dev_multiq) 7758 dev = alloc_etherdev_mq(sizeof(struct s2io_nic), tx_fifo_num); 7759 else 7760 dev = alloc_etherdev(sizeof(struct s2io_nic)); 7761 if (dev == NULL) { 7762 pci_disable_device(pdev); 7763 pci_release_regions(pdev); 7764 return -ENODEV; 7765 } 7766 7767 pci_set_master(pdev); 7768 pci_set_drvdata(pdev, dev); 7769 SET_NETDEV_DEV(dev, &pdev->dev); 7770 7771 /* Private member variable initialized to s2io NIC structure */ 7772 sp = netdev_priv(dev); 7773 sp->dev = dev; 7774 sp->pdev = pdev; 7775 sp->high_dma_flag = dma_flag; 7776 sp->device_enabled_once = false; 7777 if (rx_ring_mode == 1) 7778 sp->rxd_mode = RXD_MODE_1; 7779 if (rx_ring_mode == 2) 7780 sp->rxd_mode = RXD_MODE_3B; 7781 7782 sp->config.intr_type = dev_intr_type; 7783 7784 if ((pdev->device == PCI_DEVICE_ID_HERC_WIN) || 7785 (pdev->device == PCI_DEVICE_ID_HERC_UNI)) 7786 sp->device_type = XFRAME_II_DEVICE; 7787 else 7788 sp->device_type = XFRAME_I_DEVICE; 7789 7790 7791 /* Initialize some PCI/PCI-X fields of the NIC. */ 7792 s2io_init_pci(sp); 7793 7794 /* 7795 * Setting the device configuration parameters. 7796 * Most of these parameters can be specified by the user during 7797 * module insertion as they are module loadable parameters. If 7798 * these parameters are not not specified during load time, they 7799 * are initialized with default values. 7800 */ 7801 config = &sp->config; 7802 mac_control = &sp->mac_control; 7803 7804 config->napi = napi; 7805 config->tx_steering_type = tx_steering_type; 7806 7807 /* Tx side parameters. */ 7808 if (config->tx_steering_type == TX_PRIORITY_STEERING) 7809 config->tx_fifo_num = MAX_TX_FIFOS; 7810 else 7811 config->tx_fifo_num = tx_fifo_num; 7812 7813 /* Initialize the fifos used for tx steering */ 7814 if (config->tx_fifo_num < 5) { 7815 if (config->tx_fifo_num == 1) 7816 sp->total_tcp_fifos = 1; 7817 else 7818 sp->total_tcp_fifos = config->tx_fifo_num - 1; 7819 sp->udp_fifo_idx = config->tx_fifo_num - 1; 7820 sp->total_udp_fifos = 1; 7821 sp->other_fifo_idx = sp->total_tcp_fifos - 1; 7822 } else { 7823 sp->total_tcp_fifos = (tx_fifo_num - FIFO_UDP_MAX_NUM - 7824 FIFO_OTHER_MAX_NUM); 7825 sp->udp_fifo_idx = sp->total_tcp_fifos; 7826 sp->total_udp_fifos = FIFO_UDP_MAX_NUM; 7827 sp->other_fifo_idx = sp->udp_fifo_idx + FIFO_UDP_MAX_NUM; 7828 } 7829 7830 config->multiq = dev_multiq; 7831 for (i = 0; i < config->tx_fifo_num; i++) { 7832 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i]; 7833 7834 tx_cfg->fifo_len = tx_fifo_len[i]; 7835 tx_cfg->fifo_priority = i; 7836 } 7837 7838 /* mapping the QoS priority to the configured fifos */ 7839 for (i = 0; i < MAX_TX_FIFOS; i++) 7840 config->fifo_mapping[i] = fifo_map[config->tx_fifo_num - 1][i]; 7841 7842 /* map the hashing selector table to the configured fifos */ 7843 for (i = 0; i < config->tx_fifo_num; i++) 7844 sp->fifo_selector[i] = fifo_selector[i]; 7845 7846 7847 config->tx_intr_type = TXD_INT_TYPE_UTILZ; 7848 for (i = 0; i < config->tx_fifo_num; i++) { 7849 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i]; 7850 7851 tx_cfg->f_no_snoop = (NO_SNOOP_TXD | NO_SNOOP_TXD_BUFFER); 7852 if (tx_cfg->fifo_len < 65) { 7853 config->tx_intr_type = TXD_INT_TYPE_PER_LIST; 7854 break; 7855 } 7856 } 7857 /* + 2 because one Txd for skb->data and one Txd for UFO */ 7858 config->max_txds = MAX_SKB_FRAGS + 2; 7859 7860 /* Rx side parameters. */ 7861 config->rx_ring_num = rx_ring_num; 7862 for (i = 0; i < config->rx_ring_num; i++) { 7863 struct rx_ring_config *rx_cfg = &config->rx_cfg[i]; 7864 struct ring_info *ring = &mac_control->rings[i]; 7865 7866 rx_cfg->num_rxd = rx_ring_sz[i] * (rxd_count[sp->rxd_mode] + 1); 7867 rx_cfg->ring_priority = i; 7868 ring->rx_bufs_left = 0; 7869 ring->rxd_mode = sp->rxd_mode; 7870 ring->rxd_count = rxd_count[sp->rxd_mode]; 7871 ring->pdev = sp->pdev; 7872 ring->dev = sp->dev; 7873 } 7874 7875 for (i = 0; i < rx_ring_num; i++) { 7876 struct rx_ring_config *rx_cfg = &config->rx_cfg[i]; 7877 7878 rx_cfg->ring_org = RING_ORG_BUFF1; 7879 rx_cfg->f_no_snoop = (NO_SNOOP_RXD | NO_SNOOP_RXD_BUFFER); 7880 } 7881 7882 /* Setting Mac Control parameters */ 7883 mac_control->rmac_pause_time = rmac_pause_time; 7884 mac_control->mc_pause_threshold_q0q3 = mc_pause_threshold_q0q3; 7885 mac_control->mc_pause_threshold_q4q7 = mc_pause_threshold_q4q7; 7886 7887 7888 /* initialize the shared memory used by the NIC and the host */ 7889 if (init_shared_mem(sp)) { 7890 DBG_PRINT(ERR_DBG, "%s: Memory allocation failed\n", dev->name); 7891 ret = -ENOMEM; 7892 goto mem_alloc_failed; 7893 } 7894 7895 sp->bar0 = pci_ioremap_bar(pdev, 0); 7896 if (!sp->bar0) { 7897 DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem1\n", 7898 dev->name); 7899 ret = -ENOMEM; 7900 goto bar0_remap_failed; 7901 } 7902 7903 sp->bar1 = pci_ioremap_bar(pdev, 2); 7904 if (!sp->bar1) { 7905 DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem2\n", 7906 dev->name); 7907 ret = -ENOMEM; 7908 goto bar1_remap_failed; 7909 } 7910 7911 dev->irq = pdev->irq; 7912 dev->base_addr = (unsigned long)sp->bar0; 7913 7914 /* Initializing the BAR1 address as the start of the FIFO pointer. */ 7915 for (j = 0; j < MAX_TX_FIFOS; j++) { 7916 mac_control->tx_FIFO_start[j] = sp->bar1 + (j * 0x00020000); 7917 } 7918 7919 /* Driver entry points */ 7920 dev->netdev_ops = &s2io_netdev_ops; 7921 SET_ETHTOOL_OPS(dev, &netdev_ethtool_ops); 7922 dev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | 7923 NETIF_F_TSO | NETIF_F_TSO6 | 7924 NETIF_F_RXCSUM | NETIF_F_LRO; 7925 dev->features |= dev->hw_features | 7926 NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX; 7927 if (sp->device_type & XFRAME_II_DEVICE) { 7928 dev->hw_features |= NETIF_F_UFO; 7929 if (ufo) 7930 dev->features |= NETIF_F_UFO; 7931 } 7932 if (sp->high_dma_flag == true) 7933 dev->features |= NETIF_F_HIGHDMA; 7934 dev->watchdog_timeo = WATCH_DOG_TIMEOUT; 7935 INIT_WORK(&sp->rst_timer_task, s2io_restart_nic); 7936 INIT_WORK(&sp->set_link_task, s2io_set_link); 7937 7938 pci_save_state(sp->pdev); 7939 7940 /* Setting swapper control on the NIC, for proper reset operation */ 7941 if (s2io_set_swapper(sp)) { 7942 DBG_PRINT(ERR_DBG, "%s: swapper settings are wrong\n", 7943 dev->name); 7944 ret = -EAGAIN; 7945 goto set_swap_failed; 7946 } 7947 7948 /* Verify if the Herc works on the slot its placed into */ 7949 if (sp->device_type & XFRAME_II_DEVICE) { 7950 mode = s2io_verify_pci_mode(sp); 7951 if (mode < 0) { 7952 DBG_PRINT(ERR_DBG, "%s: Unsupported PCI bus mode\n", 7953 __func__); 7954 ret = -EBADSLT; 7955 goto set_swap_failed; 7956 } 7957 } 7958 7959 if (sp->config.intr_type == MSI_X) { 7960 sp->num_entries = config->rx_ring_num + 1; 7961 ret = s2io_enable_msi_x(sp); 7962 7963 if (!ret) { 7964 ret = s2io_test_msi(sp); 7965 /* rollback MSI-X, will re-enable during add_isr() */ 7966 remove_msix_isr(sp); 7967 } 7968 if (ret) { 7969 7970 DBG_PRINT(ERR_DBG, 7971 "MSI-X requested but failed to enable\n"); 7972 sp->config.intr_type = INTA; 7973 } 7974 } 7975 7976 if (config->intr_type == MSI_X) { 7977 for (i = 0; i < config->rx_ring_num ; i++) { 7978 struct ring_info *ring = &mac_control->rings[i]; 7979 7980 netif_napi_add(dev, &ring->napi, s2io_poll_msix, 64); 7981 } 7982 } else { 7983 netif_napi_add(dev, &sp->napi, s2io_poll_inta, 64); 7984 } 7985 7986 /* Not needed for Herc */ 7987 if (sp->device_type & XFRAME_I_DEVICE) { 7988 /* 7989 * Fix for all "FFs" MAC address problems observed on 7990 * Alpha platforms 7991 */ 7992 fix_mac_address(sp); 7993 s2io_reset(sp); 7994 } 7995 7996 /* 7997 * MAC address initialization. 7998 * For now only one mac address will be read and used. 7999 */ 8000 bar0 = sp->bar0; 8001 val64 = RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD | 8002 RMAC_ADDR_CMD_MEM_OFFSET(0 + S2IO_MAC_ADDR_START_OFFSET); 8003 writeq(val64, &bar0->rmac_addr_cmd_mem); 8004 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem, 8005 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING, 8006 S2IO_BIT_RESET); 8007 tmp64 = readq(&bar0->rmac_addr_data0_mem); 8008 mac_down = (u32)tmp64; 8009 mac_up = (u32) (tmp64 >> 32); 8010 8011 sp->def_mac_addr[0].mac_addr[3] = (u8) (mac_up); 8012 sp->def_mac_addr[0].mac_addr[2] = (u8) (mac_up >> 8); 8013 sp->def_mac_addr[0].mac_addr[1] = (u8) (mac_up >> 16); 8014 sp->def_mac_addr[0].mac_addr[0] = (u8) (mac_up >> 24); 8015 sp->def_mac_addr[0].mac_addr[5] = (u8) (mac_down >> 16); 8016 sp->def_mac_addr[0].mac_addr[4] = (u8) (mac_down >> 24); 8017 8018 /* Set the factory defined MAC address initially */ 8019 dev->addr_len = ETH_ALEN; 8020 memcpy(dev->dev_addr, sp->def_mac_addr, ETH_ALEN); 8021 memcpy(dev->perm_addr, dev->dev_addr, ETH_ALEN); 8022 8023 /* initialize number of multicast & unicast MAC entries variables */ 8024 if (sp->device_type == XFRAME_I_DEVICE) { 8025 config->max_mc_addr = S2IO_XENA_MAX_MC_ADDRESSES; 8026 config->max_mac_addr = S2IO_XENA_MAX_MAC_ADDRESSES; 8027 config->mc_start_offset = S2IO_XENA_MC_ADDR_START_OFFSET; 8028 } else if (sp->device_type == XFRAME_II_DEVICE) { 8029 config->max_mc_addr = S2IO_HERC_MAX_MC_ADDRESSES; 8030 config->max_mac_addr = S2IO_HERC_MAX_MAC_ADDRESSES; 8031 config->mc_start_offset = S2IO_HERC_MC_ADDR_START_OFFSET; 8032 } 8033 8034 /* store mac addresses from CAM to s2io_nic structure */ 8035 do_s2io_store_unicast_mc(sp); 8036 8037 /* Configure MSIX vector for number of rings configured plus one */ 8038 if ((sp->device_type == XFRAME_II_DEVICE) && 8039 (config->intr_type == MSI_X)) 8040 sp->num_entries = config->rx_ring_num + 1; 8041 8042 /* Store the values of the MSIX table in the s2io_nic structure */ 8043 store_xmsi_data(sp); 8044 /* reset Nic and bring it to known state */ 8045 s2io_reset(sp); 8046 8047 /* 8048 * Initialize link state flags 8049 * and the card state parameter 8050 */ 8051 sp->state = 0; 8052 8053 /* Initialize spinlocks */ 8054 for (i = 0; i < sp->config.tx_fifo_num; i++) { 8055 struct fifo_info *fifo = &mac_control->fifos[i]; 8056 8057 spin_lock_init(&fifo->tx_lock); 8058 } 8059 8060 /* 8061 * SXE-002: Configure link and activity LED to init state 8062 * on driver load. 8063 */ 8064 subid = sp->pdev->subsystem_device; 8065 if ((subid & 0xFF) >= 0x07) { 8066 val64 = readq(&bar0->gpio_control); 8067 val64 |= 0x0000800000000000ULL; 8068 writeq(val64, &bar0->gpio_control); 8069 val64 = 0x0411040400000000ULL; 8070 writeq(val64, (void __iomem *)bar0 + 0x2700); 8071 val64 = readq(&bar0->gpio_control); 8072 } 8073 8074 sp->rx_csum = 1; /* Rx chksum verify enabled by default */ 8075 8076 if (register_netdev(dev)) { 8077 DBG_PRINT(ERR_DBG, "Device registration failed\n"); 8078 ret = -ENODEV; 8079 goto register_failed; 8080 } 8081 s2io_vpd_read(sp); 8082 DBG_PRINT(ERR_DBG, "Copyright(c) 2002-2010 Exar Corp.\n"); 8083 DBG_PRINT(ERR_DBG, "%s: Neterion %s (rev %d)\n", dev->name, 8084 sp->product_name, pdev->revision); 8085 DBG_PRINT(ERR_DBG, "%s: Driver version %s\n", dev->name, 8086 s2io_driver_version); 8087 DBG_PRINT(ERR_DBG, "%s: MAC Address: %pM\n", dev->name, dev->dev_addr); 8088 DBG_PRINT(ERR_DBG, "Serial number: %s\n", sp->serial_num); 8089 if (sp->device_type & XFRAME_II_DEVICE) { 8090 mode = s2io_print_pci_mode(sp); 8091 if (mode < 0) { 8092 ret = -EBADSLT; 8093 unregister_netdev(dev); 8094 goto set_swap_failed; 8095 } 8096 } 8097 switch (sp->rxd_mode) { 8098 case RXD_MODE_1: 8099 DBG_PRINT(ERR_DBG, "%s: 1-Buffer receive mode enabled\n", 8100 dev->name); 8101 break; 8102 case RXD_MODE_3B: 8103 DBG_PRINT(ERR_DBG, "%s: 2-Buffer receive mode enabled\n", 8104 dev->name); 8105 break; 8106 } 8107 8108 switch (sp->config.napi) { 8109 case 0: 8110 DBG_PRINT(ERR_DBG, "%s: NAPI disabled\n", dev->name); 8111 break; 8112 case 1: 8113 DBG_PRINT(ERR_DBG, "%s: NAPI enabled\n", dev->name); 8114 break; 8115 } 8116 8117 DBG_PRINT(ERR_DBG, "%s: Using %d Tx fifo(s)\n", dev->name, 8118 sp->config.tx_fifo_num); 8119 8120 DBG_PRINT(ERR_DBG, "%s: Using %d Rx ring(s)\n", dev->name, 8121 sp->config.rx_ring_num); 8122 8123 switch (sp->config.intr_type) { 8124 case INTA: 8125 DBG_PRINT(ERR_DBG, "%s: Interrupt type INTA\n", dev->name); 8126 break; 8127 case MSI_X: 8128 DBG_PRINT(ERR_DBG, "%s: Interrupt type MSI-X\n", dev->name); 8129 break; 8130 } 8131 if (sp->config.multiq) { 8132 for (i = 0; i < sp->config.tx_fifo_num; i++) { 8133 struct fifo_info *fifo = &mac_control->fifos[i]; 8134 8135 fifo->multiq = config->multiq; 8136 } 8137 DBG_PRINT(ERR_DBG, "%s: Multiqueue support enabled\n", 8138 dev->name); 8139 } else 8140 DBG_PRINT(ERR_DBG, "%s: Multiqueue support disabled\n", 8141 dev->name); 8142 8143 switch (sp->config.tx_steering_type) { 8144 case NO_STEERING: 8145 DBG_PRINT(ERR_DBG, "%s: No steering enabled for transmit\n", 8146 dev->name); 8147 break; 8148 case TX_PRIORITY_STEERING: 8149 DBG_PRINT(ERR_DBG, 8150 "%s: Priority steering enabled for transmit\n", 8151 dev->name); 8152 break; 8153 case TX_DEFAULT_STEERING: 8154 DBG_PRINT(ERR_DBG, 8155 "%s: Default steering enabled for transmit\n", 8156 dev->name); 8157 } 8158 8159 DBG_PRINT(ERR_DBG, "%s: Large receive offload enabled\n", 8160 dev->name); 8161 if (ufo) 8162 DBG_PRINT(ERR_DBG, 8163 "%s: UDP Fragmentation Offload(UFO) enabled\n", 8164 dev->name); 8165 /* Initialize device name */ 8166 sprintf(sp->name, "%s Neterion %s", dev->name, sp->product_name); 8167 8168 if (vlan_tag_strip) 8169 sp->vlan_strip_flag = 1; 8170 else 8171 sp->vlan_strip_flag = 0; 8172 8173 /* 8174 * Make Link state as off at this point, when the Link change 8175 * interrupt comes the state will be automatically changed to 8176 * the right state. 8177 */ 8178 netif_carrier_off(dev); 8179 8180 return 0; 8181 8182 register_failed: 8183 set_swap_failed: 8184 iounmap(sp->bar1); 8185 bar1_remap_failed: 8186 iounmap(sp->bar0); 8187 bar0_remap_failed: 8188 mem_alloc_failed: 8189 free_shared_mem(sp); 8190 pci_disable_device(pdev); 8191 pci_release_regions(pdev); 8192 pci_set_drvdata(pdev, NULL); 8193 free_netdev(dev); 8194 8195 return ret; 8196 } 8197 8198 /** 8199 * s2io_rem_nic - Free the PCI device 8200 * @pdev: structure containing the PCI related information of the device. 8201 * Description: This function is called by the Pci subsystem to release a 8202 * PCI device and free up all resource held up by the device. This could 8203 * be in response to a Hot plug event or when the driver is to be removed 8204 * from memory. 8205 */ 8206 8207 static void __devexit s2io_rem_nic(struct pci_dev *pdev) 8208 { 8209 struct net_device *dev = pci_get_drvdata(pdev); 8210 struct s2io_nic *sp; 8211 8212 if (dev == NULL) { 8213 DBG_PRINT(ERR_DBG, "Driver Data is NULL!!\n"); 8214 return; 8215 } 8216 8217 sp = netdev_priv(dev); 8218 8219 cancel_work_sync(&sp->rst_timer_task); 8220 cancel_work_sync(&sp->set_link_task); 8221 8222 unregister_netdev(dev); 8223 8224 free_shared_mem(sp); 8225 iounmap(sp->bar0); 8226 iounmap(sp->bar1); 8227 pci_release_regions(pdev); 8228 pci_set_drvdata(pdev, NULL); 8229 free_netdev(dev); 8230 pci_disable_device(pdev); 8231 } 8232 8233 /** 8234 * s2io_starter - Entry point for the driver 8235 * Description: This function is the entry point for the driver. It verifies 8236 * the module loadable parameters and initializes PCI configuration space. 8237 */ 8238 8239 static int __init s2io_starter(void) 8240 { 8241 return pci_register_driver(&s2io_driver); 8242 } 8243 8244 /** 8245 * s2io_closer - Cleanup routine for the driver 8246 * Description: This function is the cleanup routine for the driver. It unregist * ers the driver. 8247 */ 8248 8249 static __exit void s2io_closer(void) 8250 { 8251 pci_unregister_driver(&s2io_driver); 8252 DBG_PRINT(INIT_DBG, "cleanup done\n"); 8253 } 8254 8255 module_init(s2io_starter); 8256 module_exit(s2io_closer); 8257 8258 static int check_L2_lro_capable(u8 *buffer, struct iphdr **ip, 8259 struct tcphdr **tcp, struct RxD_t *rxdp, 8260 struct s2io_nic *sp) 8261 { 8262 int ip_off; 8263 u8 l2_type = (u8)((rxdp->Control_1 >> 37) & 0x7), ip_len; 8264 8265 if (!(rxdp->Control_1 & RXD_FRAME_PROTO_TCP)) { 8266 DBG_PRINT(INIT_DBG, 8267 "%s: Non-TCP frames not supported for LRO\n", 8268 __func__); 8269 return -1; 8270 } 8271 8272 /* Checking for DIX type or DIX type with VLAN */ 8273 if ((l2_type == 0) || (l2_type == 4)) { 8274 ip_off = HEADER_ETHERNET_II_802_3_SIZE; 8275 /* 8276 * If vlan stripping is disabled and the frame is VLAN tagged, 8277 * shift the offset by the VLAN header size bytes. 8278 */ 8279 if ((!sp->vlan_strip_flag) && 8280 (rxdp->Control_1 & RXD_FRAME_VLAN_TAG)) 8281 ip_off += HEADER_VLAN_SIZE; 8282 } else { 8283 /* LLC, SNAP etc are considered non-mergeable */ 8284 return -1; 8285 } 8286 8287 *ip = (struct iphdr *)((u8 *)buffer + ip_off); 8288 ip_len = (u8)((*ip)->ihl); 8289 ip_len <<= 2; 8290 *tcp = (struct tcphdr *)((unsigned long)*ip + ip_len); 8291 8292 return 0; 8293 } 8294 8295 static int check_for_socket_match(struct lro *lro, struct iphdr *ip, 8296 struct tcphdr *tcp) 8297 { 8298 DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__); 8299 if ((lro->iph->saddr != ip->saddr) || 8300 (lro->iph->daddr != ip->daddr) || 8301 (lro->tcph->source != tcp->source) || 8302 (lro->tcph->dest != tcp->dest)) 8303 return -1; 8304 return 0; 8305 } 8306 8307 static inline int get_l4_pyld_length(struct iphdr *ip, struct tcphdr *tcp) 8308 { 8309 return ntohs(ip->tot_len) - (ip->ihl << 2) - (tcp->doff << 2); 8310 } 8311 8312 static void initiate_new_session(struct lro *lro, u8 *l2h, 8313 struct iphdr *ip, struct tcphdr *tcp, 8314 u32 tcp_pyld_len, u16 vlan_tag) 8315 { 8316 DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__); 8317 lro->l2h = l2h; 8318 lro->iph = ip; 8319 lro->tcph = tcp; 8320 lro->tcp_next_seq = tcp_pyld_len + ntohl(tcp->seq); 8321 lro->tcp_ack = tcp->ack_seq; 8322 lro->sg_num = 1; 8323 lro->total_len = ntohs(ip->tot_len); 8324 lro->frags_len = 0; 8325 lro->vlan_tag = vlan_tag; 8326 /* 8327 * Check if we saw TCP timestamp. 8328 * Other consistency checks have already been done. 8329 */ 8330 if (tcp->doff == 8) { 8331 __be32 *ptr; 8332 ptr = (__be32 *)(tcp+1); 8333 lro->saw_ts = 1; 8334 lro->cur_tsval = ntohl(*(ptr+1)); 8335 lro->cur_tsecr = *(ptr+2); 8336 } 8337 lro->in_use = 1; 8338 } 8339 8340 static void update_L3L4_header(struct s2io_nic *sp, struct lro *lro) 8341 { 8342 struct iphdr *ip = lro->iph; 8343 struct tcphdr *tcp = lro->tcph; 8344 __sum16 nchk; 8345 struct swStat *swstats = &sp->mac_control.stats_info->sw_stat; 8346 8347 DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__); 8348 8349 /* Update L3 header */ 8350 ip->tot_len = htons(lro->total_len); 8351 ip->check = 0; 8352 nchk = ip_fast_csum((u8 *)lro->iph, ip->ihl); 8353 ip->check = nchk; 8354 8355 /* Update L4 header */ 8356 tcp->ack_seq = lro->tcp_ack; 8357 tcp->window = lro->window; 8358 8359 /* Update tsecr field if this session has timestamps enabled */ 8360 if (lro->saw_ts) { 8361 __be32 *ptr = (__be32 *)(tcp + 1); 8362 *(ptr+2) = lro->cur_tsecr; 8363 } 8364 8365 /* Update counters required for calculation of 8366 * average no. of packets aggregated. 8367 */ 8368 swstats->sum_avg_pkts_aggregated += lro->sg_num; 8369 swstats->num_aggregations++; 8370 } 8371 8372 static void aggregate_new_rx(struct lro *lro, struct iphdr *ip, 8373 struct tcphdr *tcp, u32 l4_pyld) 8374 { 8375 DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__); 8376 lro->total_len += l4_pyld; 8377 lro->frags_len += l4_pyld; 8378 lro->tcp_next_seq += l4_pyld; 8379 lro->sg_num++; 8380 8381 /* Update ack seq no. and window ad(from this pkt) in LRO object */ 8382 lro->tcp_ack = tcp->ack_seq; 8383 lro->window = tcp->window; 8384 8385 if (lro->saw_ts) { 8386 __be32 *ptr; 8387 /* Update tsecr and tsval from this packet */ 8388 ptr = (__be32 *)(tcp+1); 8389 lro->cur_tsval = ntohl(*(ptr+1)); 8390 lro->cur_tsecr = *(ptr + 2); 8391 } 8392 } 8393 8394 static int verify_l3_l4_lro_capable(struct lro *l_lro, struct iphdr *ip, 8395 struct tcphdr *tcp, u32 tcp_pyld_len) 8396 { 8397 u8 *ptr; 8398 8399 DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__); 8400 8401 if (!tcp_pyld_len) { 8402 /* Runt frame or a pure ack */ 8403 return -1; 8404 } 8405 8406 if (ip->ihl != 5) /* IP has options */ 8407 return -1; 8408 8409 /* If we see CE codepoint in IP header, packet is not mergeable */ 8410 if (INET_ECN_is_ce(ipv4_get_dsfield(ip))) 8411 return -1; 8412 8413 /* If we see ECE or CWR flags in TCP header, packet is not mergeable */ 8414 if (tcp->urg || tcp->psh || tcp->rst || 8415 tcp->syn || tcp->fin || 8416 tcp->ece || tcp->cwr || !tcp->ack) { 8417 /* 8418 * Currently recognize only the ack control word and 8419 * any other control field being set would result in 8420 * flushing the LRO session 8421 */ 8422 return -1; 8423 } 8424 8425 /* 8426 * Allow only one TCP timestamp option. Don't aggregate if 8427 * any other options are detected. 8428 */ 8429 if (tcp->doff != 5 && tcp->doff != 8) 8430 return -1; 8431 8432 if (tcp->doff == 8) { 8433 ptr = (u8 *)(tcp + 1); 8434 while (*ptr == TCPOPT_NOP) 8435 ptr++; 8436 if (*ptr != TCPOPT_TIMESTAMP || *(ptr+1) != TCPOLEN_TIMESTAMP) 8437 return -1; 8438 8439 /* Ensure timestamp value increases monotonically */ 8440 if (l_lro) 8441 if (l_lro->cur_tsval > ntohl(*((__be32 *)(ptr+2)))) 8442 return -1; 8443 8444 /* timestamp echo reply should be non-zero */ 8445 if (*((__be32 *)(ptr+6)) == 0) 8446 return -1; 8447 } 8448 8449 return 0; 8450 } 8451 8452 static int s2io_club_tcp_session(struct ring_info *ring_data, u8 *buffer, 8453 u8 **tcp, u32 *tcp_len, struct lro **lro, 8454 struct RxD_t *rxdp, struct s2io_nic *sp) 8455 { 8456 struct iphdr *ip; 8457 struct tcphdr *tcph; 8458 int ret = 0, i; 8459 u16 vlan_tag = 0; 8460 struct swStat *swstats = &sp->mac_control.stats_info->sw_stat; 8461 8462 ret = check_L2_lro_capable(buffer, &ip, (struct tcphdr **)tcp, 8463 rxdp, sp); 8464 if (ret) 8465 return ret; 8466 8467 DBG_PRINT(INFO_DBG, "IP Saddr: %x Daddr: %x\n", ip->saddr, ip->daddr); 8468 8469 vlan_tag = RXD_GET_VLAN_TAG(rxdp->Control_2); 8470 tcph = (struct tcphdr *)*tcp; 8471 *tcp_len = get_l4_pyld_length(ip, tcph); 8472 for (i = 0; i < MAX_LRO_SESSIONS; i++) { 8473 struct lro *l_lro = &ring_data->lro0_n[i]; 8474 if (l_lro->in_use) { 8475 if (check_for_socket_match(l_lro, ip, tcph)) 8476 continue; 8477 /* Sock pair matched */ 8478 *lro = l_lro; 8479 8480 if ((*lro)->tcp_next_seq != ntohl(tcph->seq)) { 8481 DBG_PRINT(INFO_DBG, "%s: Out of sequence. " 8482 "expected 0x%x, actual 0x%x\n", 8483 __func__, 8484 (*lro)->tcp_next_seq, 8485 ntohl(tcph->seq)); 8486 8487 swstats->outof_sequence_pkts++; 8488 ret = 2; 8489 break; 8490 } 8491 8492 if (!verify_l3_l4_lro_capable(l_lro, ip, tcph, 8493 *tcp_len)) 8494 ret = 1; /* Aggregate */ 8495 else 8496 ret = 2; /* Flush both */ 8497 break; 8498 } 8499 } 8500 8501 if (ret == 0) { 8502 /* Before searching for available LRO objects, 8503 * check if the pkt is L3/L4 aggregatable. If not 8504 * don't create new LRO session. Just send this 8505 * packet up. 8506 */ 8507 if (verify_l3_l4_lro_capable(NULL, ip, tcph, *tcp_len)) 8508 return 5; 8509 8510 for (i = 0; i < MAX_LRO_SESSIONS; i++) { 8511 struct lro *l_lro = &ring_data->lro0_n[i]; 8512 if (!(l_lro->in_use)) { 8513 *lro = l_lro; 8514 ret = 3; /* Begin anew */ 8515 break; 8516 } 8517 } 8518 } 8519 8520 if (ret == 0) { /* sessions exceeded */ 8521 DBG_PRINT(INFO_DBG, "%s: All LRO sessions already in use\n", 8522 __func__); 8523 *lro = NULL; 8524 return ret; 8525 } 8526 8527 switch (ret) { 8528 case 3: 8529 initiate_new_session(*lro, buffer, ip, tcph, *tcp_len, 8530 vlan_tag); 8531 break; 8532 case 2: 8533 update_L3L4_header(sp, *lro); 8534 break; 8535 case 1: 8536 aggregate_new_rx(*lro, ip, tcph, *tcp_len); 8537 if ((*lro)->sg_num == sp->lro_max_aggr_per_sess) { 8538 update_L3L4_header(sp, *lro); 8539 ret = 4; /* Flush the LRO */ 8540 } 8541 break; 8542 default: 8543 DBG_PRINT(ERR_DBG, "%s: Don't know, can't say!!\n", __func__); 8544 break; 8545 } 8546 8547 return ret; 8548 } 8549 8550 static void clear_lro_session(struct lro *lro) 8551 { 8552 static u16 lro_struct_size = sizeof(struct lro); 8553 8554 memset(lro, 0, lro_struct_size); 8555 } 8556 8557 static void queue_rx_frame(struct sk_buff *skb, u16 vlan_tag) 8558 { 8559 struct net_device *dev = skb->dev; 8560 struct s2io_nic *sp = netdev_priv(dev); 8561 8562 skb->protocol = eth_type_trans(skb, dev); 8563 if (vlan_tag && sp->vlan_strip_flag) 8564 __vlan_hwaccel_put_tag(skb, vlan_tag); 8565 if (sp->config.napi) 8566 netif_receive_skb(skb); 8567 else 8568 netif_rx(skb); 8569 } 8570 8571 static void lro_append_pkt(struct s2io_nic *sp, struct lro *lro, 8572 struct sk_buff *skb, u32 tcp_len) 8573 { 8574 struct sk_buff *first = lro->parent; 8575 struct swStat *swstats = &sp->mac_control.stats_info->sw_stat; 8576 8577 first->len += tcp_len; 8578 first->data_len = lro->frags_len; 8579 skb_pull(skb, (skb->len - tcp_len)); 8580 if (skb_shinfo(first)->frag_list) 8581 lro->last_frag->next = skb; 8582 else 8583 skb_shinfo(first)->frag_list = skb; 8584 first->truesize += skb->truesize; 8585 lro->last_frag = skb; 8586 swstats->clubbed_frms_cnt++; 8587 } 8588 8589 /** 8590 * s2io_io_error_detected - called when PCI error is detected 8591 * @pdev: Pointer to PCI device 8592 * @state: The current pci connection state 8593 * 8594 * This function is called after a PCI bus error affecting 8595 * this device has been detected. 8596 */ 8597 static pci_ers_result_t s2io_io_error_detected(struct pci_dev *pdev, 8598 pci_channel_state_t state) 8599 { 8600 struct net_device *netdev = pci_get_drvdata(pdev); 8601 struct s2io_nic *sp = netdev_priv(netdev); 8602 8603 netif_device_detach(netdev); 8604 8605 if (state == pci_channel_io_perm_failure) 8606 return PCI_ERS_RESULT_DISCONNECT; 8607 8608 if (netif_running(netdev)) { 8609 /* Bring down the card, while avoiding PCI I/O */ 8610 do_s2io_card_down(sp, 0); 8611 } 8612 pci_disable_device(pdev); 8613 8614 return PCI_ERS_RESULT_NEED_RESET; 8615 } 8616 8617 /** 8618 * s2io_io_slot_reset - called after the pci bus has been reset. 8619 * @pdev: Pointer to PCI device 8620 * 8621 * Restart the card from scratch, as if from a cold-boot. 8622 * At this point, the card has exprienced a hard reset, 8623 * followed by fixups by BIOS, and has its config space 8624 * set up identically to what it was at cold boot. 8625 */ 8626 static pci_ers_result_t s2io_io_slot_reset(struct pci_dev *pdev) 8627 { 8628 struct net_device *netdev = pci_get_drvdata(pdev); 8629 struct s2io_nic *sp = netdev_priv(netdev); 8630 8631 if (pci_enable_device(pdev)) { 8632 pr_err("Cannot re-enable PCI device after reset.\n"); 8633 return PCI_ERS_RESULT_DISCONNECT; 8634 } 8635 8636 pci_set_master(pdev); 8637 s2io_reset(sp); 8638 8639 return PCI_ERS_RESULT_RECOVERED; 8640 } 8641 8642 /** 8643 * s2io_io_resume - called when traffic can start flowing again. 8644 * @pdev: Pointer to PCI device 8645 * 8646 * This callback is called when the error recovery driver tells 8647 * us that its OK to resume normal operation. 8648 */ 8649 static void s2io_io_resume(struct pci_dev *pdev) 8650 { 8651 struct net_device *netdev = pci_get_drvdata(pdev); 8652 struct s2io_nic *sp = netdev_priv(netdev); 8653 8654 if (netif_running(netdev)) { 8655 if (s2io_card_up(sp)) { 8656 pr_err("Can't bring device back up after reset.\n"); 8657 return; 8658 } 8659 8660 if (s2io_set_mac_addr(netdev, netdev->dev_addr) == FAILURE) { 8661 s2io_card_down(sp); 8662 pr_err("Can't restore mac addr after reset.\n"); 8663 return; 8664 } 8665 } 8666 8667 netif_device_attach(netdev); 8668 netif_tx_wake_all_queues(netdev); 8669 } 8670