1 /************************************************************************
2  * s2io.c: A Linux PCI-X Ethernet driver for Neterion 10GbE Server NIC
3  * Copyright(c) 2002-2010 Exar Corp.
4  *
5  * This software may be used and distributed according to the terms of
6  * the GNU General Public License (GPL), incorporated herein by reference.
7  * Drivers based on or derived from this code fall under the GPL and must
8  * retain the authorship, copyright and license notice.  This file is not
9  * a complete program and may only be used when the entire operating
10  * system is licensed under the GPL.
11  * See the file COPYING in this distribution for more information.
12  *
13  * Credits:
14  * Jeff Garzik		: For pointing out the improper error condition
15  *			  check in the s2io_xmit routine and also some
16  *			  issues in the Tx watch dog function. Also for
17  *			  patiently answering all those innumerable
18  *			  questions regaring the 2.6 porting issues.
19  * Stephen Hemminger	: Providing proper 2.6 porting mechanism for some
20  *			  macros available only in 2.6 Kernel.
21  * Francois Romieu	: For pointing out all code part that were
22  *			  deprecated and also styling related comments.
23  * Grant Grundler	: For helping me get rid of some Architecture
24  *			  dependent code.
25  * Christopher Hellwig	: Some more 2.6 specific issues in the driver.
26  *
27  * The module loadable parameters that are supported by the driver and a brief
28  * explanation of all the variables.
29  *
30  * rx_ring_num : This can be used to program the number of receive rings used
31  * in the driver.
32  * rx_ring_sz: This defines the number of receive blocks each ring can have.
33  *     This is also an array of size 8.
34  * rx_ring_mode: This defines the operation mode of all 8 rings. The valid
35  *		values are 1, 2.
36  * tx_fifo_num: This defines the number of Tx FIFOs thats used int the driver.
37  * tx_fifo_len: This too is an array of 8. Each element defines the number of
38  * Tx descriptors that can be associated with each corresponding FIFO.
39  * intr_type: This defines the type of interrupt. The values can be 0(INTA),
40  *     2(MSI_X). Default value is '2(MSI_X)'
41  * lro_max_pkts: This parameter defines maximum number of packets can be
42  *     aggregated as a single large packet
43  * napi: This parameter used to enable/disable NAPI (polling Rx)
44  *     Possible values '1' for enable and '0' for disable. Default is '1'
45  * vlan_tag_strip: This can be used to enable or disable vlan stripping.
46  *                 Possible values '1' for enable , '0' for disable.
47  *                 Default is '2' - which means disable in promisc mode
48  *                 and enable in non-promiscuous mode.
49  * multiq: This parameter used to enable/disable MULTIQUEUE support.
50  *      Possible values '1' for enable and '0' for disable. Default is '0'
51  ************************************************************************/
52 
53 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
54 
55 #include <linux/module.h>
56 #include <linux/types.h>
57 #include <linux/errno.h>
58 #include <linux/ioport.h>
59 #include <linux/pci.h>
60 #include <linux/dma-mapping.h>
61 #include <linux/kernel.h>
62 #include <linux/netdevice.h>
63 #include <linux/etherdevice.h>
64 #include <linux/mdio.h>
65 #include <linux/skbuff.h>
66 #include <linux/init.h>
67 #include <linux/delay.h>
68 #include <linux/stddef.h>
69 #include <linux/ioctl.h>
70 #include <linux/timex.h>
71 #include <linux/ethtool.h>
72 #include <linux/workqueue.h>
73 #include <linux/if_vlan.h>
74 #include <linux/ip.h>
75 #include <linux/tcp.h>
76 #include <linux/uaccess.h>
77 #include <linux/io.h>
78 #include <linux/io-64-nonatomic-lo-hi.h>
79 #include <linux/slab.h>
80 #include <linux/prefetch.h>
81 #include <net/tcp.h>
82 #include <net/checksum.h>
83 
84 #include <asm/div64.h>
85 #include <asm/irq.h>
86 
87 /* local include */
88 #include "s2io.h"
89 #include "s2io-regs.h"
90 
91 #define DRV_VERSION "2.0.26.28"
92 
93 /* S2io Driver name & version. */
94 static const char s2io_driver_name[] = "Neterion";
95 static const char s2io_driver_version[] = DRV_VERSION;
96 
97 static const int rxd_size[2] = {32, 48};
98 static const int rxd_count[2] = {127, 85};
99 
100 static inline int RXD_IS_UP2DT(struct RxD_t *rxdp)
101 {
102 	int ret;
103 
104 	ret = ((!(rxdp->Control_1 & RXD_OWN_XENA)) &&
105 	       (GET_RXD_MARKER(rxdp->Control_2) != THE_RXD_MARK));
106 
107 	return ret;
108 }
109 
110 /*
111  * Cards with following subsystem_id have a link state indication
112  * problem, 600B, 600C, 600D, 640B, 640C and 640D.
113  * macro below identifies these cards given the subsystem_id.
114  */
115 #define CARDS_WITH_FAULTY_LINK_INDICATORS(dev_type, subid)		\
116 	(dev_type == XFRAME_I_DEVICE) ?					\
117 	((((subid >= 0x600B) && (subid <= 0x600D)) ||			\
118 	  ((subid >= 0x640B) && (subid <= 0x640D))) ? 1 : 0) : 0
119 
120 #define LINK_IS_UP(val64) (!(val64 & (ADAPTER_STATUS_RMAC_REMOTE_FAULT | \
121 				      ADAPTER_STATUS_RMAC_LOCAL_FAULT)))
122 
123 static inline int is_s2io_card_up(const struct s2io_nic *sp)
124 {
125 	return test_bit(__S2IO_STATE_CARD_UP, &sp->state);
126 }
127 
128 /* Ethtool related variables and Macros. */
129 static const char s2io_gstrings[][ETH_GSTRING_LEN] = {
130 	"Register test\t(offline)",
131 	"Eeprom test\t(offline)",
132 	"Link test\t(online)",
133 	"RLDRAM test\t(offline)",
134 	"BIST Test\t(offline)"
135 };
136 
137 static const char ethtool_xena_stats_keys[][ETH_GSTRING_LEN] = {
138 	{"tmac_frms"},
139 	{"tmac_data_octets"},
140 	{"tmac_drop_frms"},
141 	{"tmac_mcst_frms"},
142 	{"tmac_bcst_frms"},
143 	{"tmac_pause_ctrl_frms"},
144 	{"tmac_ttl_octets"},
145 	{"tmac_ucst_frms"},
146 	{"tmac_nucst_frms"},
147 	{"tmac_any_err_frms"},
148 	{"tmac_ttl_less_fb_octets"},
149 	{"tmac_vld_ip_octets"},
150 	{"tmac_vld_ip"},
151 	{"tmac_drop_ip"},
152 	{"tmac_icmp"},
153 	{"tmac_rst_tcp"},
154 	{"tmac_tcp"},
155 	{"tmac_udp"},
156 	{"rmac_vld_frms"},
157 	{"rmac_data_octets"},
158 	{"rmac_fcs_err_frms"},
159 	{"rmac_drop_frms"},
160 	{"rmac_vld_mcst_frms"},
161 	{"rmac_vld_bcst_frms"},
162 	{"rmac_in_rng_len_err_frms"},
163 	{"rmac_out_rng_len_err_frms"},
164 	{"rmac_long_frms"},
165 	{"rmac_pause_ctrl_frms"},
166 	{"rmac_unsup_ctrl_frms"},
167 	{"rmac_ttl_octets"},
168 	{"rmac_accepted_ucst_frms"},
169 	{"rmac_accepted_nucst_frms"},
170 	{"rmac_discarded_frms"},
171 	{"rmac_drop_events"},
172 	{"rmac_ttl_less_fb_octets"},
173 	{"rmac_ttl_frms"},
174 	{"rmac_usized_frms"},
175 	{"rmac_osized_frms"},
176 	{"rmac_frag_frms"},
177 	{"rmac_jabber_frms"},
178 	{"rmac_ttl_64_frms"},
179 	{"rmac_ttl_65_127_frms"},
180 	{"rmac_ttl_128_255_frms"},
181 	{"rmac_ttl_256_511_frms"},
182 	{"rmac_ttl_512_1023_frms"},
183 	{"rmac_ttl_1024_1518_frms"},
184 	{"rmac_ip"},
185 	{"rmac_ip_octets"},
186 	{"rmac_hdr_err_ip"},
187 	{"rmac_drop_ip"},
188 	{"rmac_icmp"},
189 	{"rmac_tcp"},
190 	{"rmac_udp"},
191 	{"rmac_err_drp_udp"},
192 	{"rmac_xgmii_err_sym"},
193 	{"rmac_frms_q0"},
194 	{"rmac_frms_q1"},
195 	{"rmac_frms_q2"},
196 	{"rmac_frms_q3"},
197 	{"rmac_frms_q4"},
198 	{"rmac_frms_q5"},
199 	{"rmac_frms_q6"},
200 	{"rmac_frms_q7"},
201 	{"rmac_full_q0"},
202 	{"rmac_full_q1"},
203 	{"rmac_full_q2"},
204 	{"rmac_full_q3"},
205 	{"rmac_full_q4"},
206 	{"rmac_full_q5"},
207 	{"rmac_full_q6"},
208 	{"rmac_full_q7"},
209 	{"rmac_pause_cnt"},
210 	{"rmac_xgmii_data_err_cnt"},
211 	{"rmac_xgmii_ctrl_err_cnt"},
212 	{"rmac_accepted_ip"},
213 	{"rmac_err_tcp"},
214 	{"rd_req_cnt"},
215 	{"new_rd_req_cnt"},
216 	{"new_rd_req_rtry_cnt"},
217 	{"rd_rtry_cnt"},
218 	{"wr_rtry_rd_ack_cnt"},
219 	{"wr_req_cnt"},
220 	{"new_wr_req_cnt"},
221 	{"new_wr_req_rtry_cnt"},
222 	{"wr_rtry_cnt"},
223 	{"wr_disc_cnt"},
224 	{"rd_rtry_wr_ack_cnt"},
225 	{"txp_wr_cnt"},
226 	{"txd_rd_cnt"},
227 	{"txd_wr_cnt"},
228 	{"rxd_rd_cnt"},
229 	{"rxd_wr_cnt"},
230 	{"txf_rd_cnt"},
231 	{"rxf_wr_cnt"}
232 };
233 
234 static const char ethtool_enhanced_stats_keys[][ETH_GSTRING_LEN] = {
235 	{"rmac_ttl_1519_4095_frms"},
236 	{"rmac_ttl_4096_8191_frms"},
237 	{"rmac_ttl_8192_max_frms"},
238 	{"rmac_ttl_gt_max_frms"},
239 	{"rmac_osized_alt_frms"},
240 	{"rmac_jabber_alt_frms"},
241 	{"rmac_gt_max_alt_frms"},
242 	{"rmac_vlan_frms"},
243 	{"rmac_len_discard"},
244 	{"rmac_fcs_discard"},
245 	{"rmac_pf_discard"},
246 	{"rmac_da_discard"},
247 	{"rmac_red_discard"},
248 	{"rmac_rts_discard"},
249 	{"rmac_ingm_full_discard"},
250 	{"link_fault_cnt"}
251 };
252 
253 static const char ethtool_driver_stats_keys[][ETH_GSTRING_LEN] = {
254 	{"\n DRIVER STATISTICS"},
255 	{"single_bit_ecc_errs"},
256 	{"double_bit_ecc_errs"},
257 	{"parity_err_cnt"},
258 	{"serious_err_cnt"},
259 	{"soft_reset_cnt"},
260 	{"fifo_full_cnt"},
261 	{"ring_0_full_cnt"},
262 	{"ring_1_full_cnt"},
263 	{"ring_2_full_cnt"},
264 	{"ring_3_full_cnt"},
265 	{"ring_4_full_cnt"},
266 	{"ring_5_full_cnt"},
267 	{"ring_6_full_cnt"},
268 	{"ring_7_full_cnt"},
269 	{"alarm_transceiver_temp_high"},
270 	{"alarm_transceiver_temp_low"},
271 	{"alarm_laser_bias_current_high"},
272 	{"alarm_laser_bias_current_low"},
273 	{"alarm_laser_output_power_high"},
274 	{"alarm_laser_output_power_low"},
275 	{"warn_transceiver_temp_high"},
276 	{"warn_transceiver_temp_low"},
277 	{"warn_laser_bias_current_high"},
278 	{"warn_laser_bias_current_low"},
279 	{"warn_laser_output_power_high"},
280 	{"warn_laser_output_power_low"},
281 	{"lro_aggregated_pkts"},
282 	{"lro_flush_both_count"},
283 	{"lro_out_of_sequence_pkts"},
284 	{"lro_flush_due_to_max_pkts"},
285 	{"lro_avg_aggr_pkts"},
286 	{"mem_alloc_fail_cnt"},
287 	{"pci_map_fail_cnt"},
288 	{"watchdog_timer_cnt"},
289 	{"mem_allocated"},
290 	{"mem_freed"},
291 	{"link_up_cnt"},
292 	{"link_down_cnt"},
293 	{"link_up_time"},
294 	{"link_down_time"},
295 	{"tx_tcode_buf_abort_cnt"},
296 	{"tx_tcode_desc_abort_cnt"},
297 	{"tx_tcode_parity_err_cnt"},
298 	{"tx_tcode_link_loss_cnt"},
299 	{"tx_tcode_list_proc_err_cnt"},
300 	{"rx_tcode_parity_err_cnt"},
301 	{"rx_tcode_abort_cnt"},
302 	{"rx_tcode_parity_abort_cnt"},
303 	{"rx_tcode_rda_fail_cnt"},
304 	{"rx_tcode_unkn_prot_cnt"},
305 	{"rx_tcode_fcs_err_cnt"},
306 	{"rx_tcode_buf_size_err_cnt"},
307 	{"rx_tcode_rxd_corrupt_cnt"},
308 	{"rx_tcode_unkn_err_cnt"},
309 	{"tda_err_cnt"},
310 	{"pfc_err_cnt"},
311 	{"pcc_err_cnt"},
312 	{"tti_err_cnt"},
313 	{"tpa_err_cnt"},
314 	{"sm_err_cnt"},
315 	{"lso_err_cnt"},
316 	{"mac_tmac_err_cnt"},
317 	{"mac_rmac_err_cnt"},
318 	{"xgxs_txgxs_err_cnt"},
319 	{"xgxs_rxgxs_err_cnt"},
320 	{"rc_err_cnt"},
321 	{"prc_pcix_err_cnt"},
322 	{"rpa_err_cnt"},
323 	{"rda_err_cnt"},
324 	{"rti_err_cnt"},
325 	{"mc_err_cnt"}
326 };
327 
328 #define S2IO_XENA_STAT_LEN	ARRAY_SIZE(ethtool_xena_stats_keys)
329 #define S2IO_ENHANCED_STAT_LEN	ARRAY_SIZE(ethtool_enhanced_stats_keys)
330 #define S2IO_DRIVER_STAT_LEN	ARRAY_SIZE(ethtool_driver_stats_keys)
331 
332 #define XFRAME_I_STAT_LEN (S2IO_XENA_STAT_LEN + S2IO_DRIVER_STAT_LEN)
333 #define XFRAME_II_STAT_LEN (XFRAME_I_STAT_LEN + S2IO_ENHANCED_STAT_LEN)
334 
335 #define XFRAME_I_STAT_STRINGS_LEN (XFRAME_I_STAT_LEN * ETH_GSTRING_LEN)
336 #define XFRAME_II_STAT_STRINGS_LEN (XFRAME_II_STAT_LEN * ETH_GSTRING_LEN)
337 
338 #define S2IO_TEST_LEN	ARRAY_SIZE(s2io_gstrings)
339 #define S2IO_STRINGS_LEN	(S2IO_TEST_LEN * ETH_GSTRING_LEN)
340 
341 /* copy mac addr to def_mac_addr array */
342 static void do_s2io_copy_mac_addr(struct s2io_nic *sp, int offset, u64 mac_addr)
343 {
344 	sp->def_mac_addr[offset].mac_addr[5] = (u8) (mac_addr);
345 	sp->def_mac_addr[offset].mac_addr[4] = (u8) (mac_addr >> 8);
346 	sp->def_mac_addr[offset].mac_addr[3] = (u8) (mac_addr >> 16);
347 	sp->def_mac_addr[offset].mac_addr[2] = (u8) (mac_addr >> 24);
348 	sp->def_mac_addr[offset].mac_addr[1] = (u8) (mac_addr >> 32);
349 	sp->def_mac_addr[offset].mac_addr[0] = (u8) (mac_addr >> 40);
350 }
351 
352 /*
353  * Constants to be programmed into the Xena's registers, to configure
354  * the XAUI.
355  */
356 
357 #define	END_SIGN	0x0
358 static const u64 herc_act_dtx_cfg[] = {
359 	/* Set address */
360 	0x8000051536750000ULL, 0x80000515367500E0ULL,
361 	/* Write data */
362 	0x8000051536750004ULL, 0x80000515367500E4ULL,
363 	/* Set address */
364 	0x80010515003F0000ULL, 0x80010515003F00E0ULL,
365 	/* Write data */
366 	0x80010515003F0004ULL, 0x80010515003F00E4ULL,
367 	/* Set address */
368 	0x801205150D440000ULL, 0x801205150D4400E0ULL,
369 	/* Write data */
370 	0x801205150D440004ULL, 0x801205150D4400E4ULL,
371 	/* Set address */
372 	0x80020515F2100000ULL, 0x80020515F21000E0ULL,
373 	/* Write data */
374 	0x80020515F2100004ULL, 0x80020515F21000E4ULL,
375 	/* Done */
376 	END_SIGN
377 };
378 
379 static const u64 xena_dtx_cfg[] = {
380 	/* Set address */
381 	0x8000051500000000ULL, 0x80000515000000E0ULL,
382 	/* Write data */
383 	0x80000515D9350004ULL, 0x80000515D93500E4ULL,
384 	/* Set address */
385 	0x8001051500000000ULL, 0x80010515000000E0ULL,
386 	/* Write data */
387 	0x80010515001E0004ULL, 0x80010515001E00E4ULL,
388 	/* Set address */
389 	0x8002051500000000ULL, 0x80020515000000E0ULL,
390 	/* Write data */
391 	0x80020515F2100004ULL, 0x80020515F21000E4ULL,
392 	END_SIGN
393 };
394 
395 /*
396  * Constants for Fixing the MacAddress problem seen mostly on
397  * Alpha machines.
398  */
399 static const u64 fix_mac[] = {
400 	0x0060000000000000ULL, 0x0060600000000000ULL,
401 	0x0040600000000000ULL, 0x0000600000000000ULL,
402 	0x0020600000000000ULL, 0x0060600000000000ULL,
403 	0x0020600000000000ULL, 0x0060600000000000ULL,
404 	0x0020600000000000ULL, 0x0060600000000000ULL,
405 	0x0020600000000000ULL, 0x0060600000000000ULL,
406 	0x0020600000000000ULL, 0x0060600000000000ULL,
407 	0x0020600000000000ULL, 0x0060600000000000ULL,
408 	0x0020600000000000ULL, 0x0060600000000000ULL,
409 	0x0020600000000000ULL, 0x0060600000000000ULL,
410 	0x0020600000000000ULL, 0x0060600000000000ULL,
411 	0x0020600000000000ULL, 0x0060600000000000ULL,
412 	0x0020600000000000ULL, 0x0000600000000000ULL,
413 	0x0040600000000000ULL, 0x0060600000000000ULL,
414 	END_SIGN
415 };
416 
417 MODULE_LICENSE("GPL");
418 MODULE_VERSION(DRV_VERSION);
419 
420 
421 /* Module Loadable parameters. */
422 S2IO_PARM_INT(tx_fifo_num, FIFO_DEFAULT_NUM);
423 S2IO_PARM_INT(rx_ring_num, 1);
424 S2IO_PARM_INT(multiq, 0);
425 S2IO_PARM_INT(rx_ring_mode, 1);
426 S2IO_PARM_INT(use_continuous_tx_intrs, 1);
427 S2IO_PARM_INT(rmac_pause_time, 0x100);
428 S2IO_PARM_INT(mc_pause_threshold_q0q3, 187);
429 S2IO_PARM_INT(mc_pause_threshold_q4q7, 187);
430 S2IO_PARM_INT(shared_splits, 0);
431 S2IO_PARM_INT(tmac_util_period, 5);
432 S2IO_PARM_INT(rmac_util_period, 5);
433 S2IO_PARM_INT(l3l4hdr_size, 128);
434 /* 0 is no steering, 1 is Priority steering, 2 is Default steering */
435 S2IO_PARM_INT(tx_steering_type, TX_DEFAULT_STEERING);
436 /* Frequency of Rx desc syncs expressed as power of 2 */
437 S2IO_PARM_INT(rxsync_frequency, 3);
438 /* Interrupt type. Values can be 0(INTA), 2(MSI_X) */
439 S2IO_PARM_INT(intr_type, 2);
440 /* Large receive offload feature */
441 
442 /* Max pkts to be aggregated by LRO at one time. If not specified,
443  * aggregation happens until we hit max IP pkt size(64K)
444  */
445 S2IO_PARM_INT(lro_max_pkts, 0xFFFF);
446 S2IO_PARM_INT(indicate_max_pkts, 0);
447 
448 S2IO_PARM_INT(napi, 1);
449 S2IO_PARM_INT(vlan_tag_strip, NO_STRIP_IN_PROMISC);
450 
451 static unsigned int tx_fifo_len[MAX_TX_FIFOS] =
452 {DEFAULT_FIFO_0_LEN, [1 ...(MAX_TX_FIFOS - 1)] = DEFAULT_FIFO_1_7_LEN};
453 static unsigned int rx_ring_sz[MAX_RX_RINGS] =
454 {[0 ...(MAX_RX_RINGS - 1)] = SMALL_BLK_CNT};
455 static unsigned int rts_frm_len[MAX_RX_RINGS] =
456 {[0 ...(MAX_RX_RINGS - 1)] = 0 };
457 
458 module_param_array(tx_fifo_len, uint, NULL, 0);
459 module_param_array(rx_ring_sz, uint, NULL, 0);
460 module_param_array(rts_frm_len, uint, NULL, 0);
461 
462 /*
463  * S2IO device table.
464  * This table lists all the devices that this driver supports.
465  */
466 static const struct pci_device_id s2io_tbl[] = {
467 	{PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_WIN,
468 	 PCI_ANY_ID, PCI_ANY_ID},
469 	{PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_UNI,
470 	 PCI_ANY_ID, PCI_ANY_ID},
471 	{PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_WIN,
472 	 PCI_ANY_ID, PCI_ANY_ID},
473 	{PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_UNI,
474 	 PCI_ANY_ID, PCI_ANY_ID},
475 	{0,}
476 };
477 
478 MODULE_DEVICE_TABLE(pci, s2io_tbl);
479 
480 static const struct pci_error_handlers s2io_err_handler = {
481 	.error_detected = s2io_io_error_detected,
482 	.slot_reset = s2io_io_slot_reset,
483 	.resume = s2io_io_resume,
484 };
485 
486 static struct pci_driver s2io_driver = {
487 	.name = "S2IO",
488 	.id_table = s2io_tbl,
489 	.probe = s2io_init_nic,
490 	.remove = s2io_rem_nic,
491 	.err_handler = &s2io_err_handler,
492 };
493 
494 /* A simplifier macro used both by init and free shared_mem Fns(). */
495 #define TXD_MEM_PAGE_CNT(len, per_each) DIV_ROUND_UP(len, per_each)
496 
497 /* netqueue manipulation helper functions */
498 static inline void s2io_stop_all_tx_queue(struct s2io_nic *sp)
499 {
500 	if (!sp->config.multiq) {
501 		int i;
502 
503 		for (i = 0; i < sp->config.tx_fifo_num; i++)
504 			sp->mac_control.fifos[i].queue_state = FIFO_QUEUE_STOP;
505 	}
506 	netif_tx_stop_all_queues(sp->dev);
507 }
508 
509 static inline void s2io_stop_tx_queue(struct s2io_nic *sp, int fifo_no)
510 {
511 	if (!sp->config.multiq)
512 		sp->mac_control.fifos[fifo_no].queue_state =
513 			FIFO_QUEUE_STOP;
514 
515 	netif_tx_stop_all_queues(sp->dev);
516 }
517 
518 static inline void s2io_start_all_tx_queue(struct s2io_nic *sp)
519 {
520 	if (!sp->config.multiq) {
521 		int i;
522 
523 		for (i = 0; i < sp->config.tx_fifo_num; i++)
524 			sp->mac_control.fifos[i].queue_state = FIFO_QUEUE_START;
525 	}
526 	netif_tx_start_all_queues(sp->dev);
527 }
528 
529 static inline void s2io_wake_all_tx_queue(struct s2io_nic *sp)
530 {
531 	if (!sp->config.multiq) {
532 		int i;
533 
534 		for (i = 0; i < sp->config.tx_fifo_num; i++)
535 			sp->mac_control.fifos[i].queue_state = FIFO_QUEUE_START;
536 	}
537 	netif_tx_wake_all_queues(sp->dev);
538 }
539 
540 static inline void s2io_wake_tx_queue(
541 	struct fifo_info *fifo, int cnt, u8 multiq)
542 {
543 
544 	if (multiq) {
545 		if (cnt && __netif_subqueue_stopped(fifo->dev, fifo->fifo_no))
546 			netif_wake_subqueue(fifo->dev, fifo->fifo_no);
547 	} else if (cnt && (fifo->queue_state == FIFO_QUEUE_STOP)) {
548 		if (netif_queue_stopped(fifo->dev)) {
549 			fifo->queue_state = FIFO_QUEUE_START;
550 			netif_wake_queue(fifo->dev);
551 		}
552 	}
553 }
554 
555 /**
556  * init_shared_mem - Allocation and Initialization of Memory
557  * @nic: Device private variable.
558  * Description: The function allocates all the memory areas shared
559  * between the NIC and the driver. This includes Tx descriptors,
560  * Rx descriptors and the statistics block.
561  */
562 
563 static int init_shared_mem(struct s2io_nic *nic)
564 {
565 	u32 size;
566 	void *tmp_v_addr, *tmp_v_addr_next;
567 	dma_addr_t tmp_p_addr, tmp_p_addr_next;
568 	struct RxD_block *pre_rxd_blk = NULL;
569 	int i, j, blk_cnt;
570 	int lst_size, lst_per_page;
571 	struct net_device *dev = nic->dev;
572 	unsigned long tmp;
573 	struct buffAdd *ba;
574 	struct config_param *config = &nic->config;
575 	struct mac_info *mac_control = &nic->mac_control;
576 	unsigned long long mem_allocated = 0;
577 
578 	/* Allocation and initialization of TXDLs in FIFOs */
579 	size = 0;
580 	for (i = 0; i < config->tx_fifo_num; i++) {
581 		struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
582 
583 		size += tx_cfg->fifo_len;
584 	}
585 	if (size > MAX_AVAILABLE_TXDS) {
586 		DBG_PRINT(ERR_DBG,
587 			  "Too many TxDs requested: %d, max supported: %d\n",
588 			  size, MAX_AVAILABLE_TXDS);
589 		return -EINVAL;
590 	}
591 
592 	size = 0;
593 	for (i = 0; i < config->tx_fifo_num; i++) {
594 		struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
595 
596 		size = tx_cfg->fifo_len;
597 		/*
598 		 * Legal values are from 2 to 8192
599 		 */
600 		if (size < 2) {
601 			DBG_PRINT(ERR_DBG, "Fifo %d: Invalid length (%d) - "
602 				  "Valid lengths are 2 through 8192\n",
603 				  i, size);
604 			return -EINVAL;
605 		}
606 	}
607 
608 	lst_size = (sizeof(struct TxD) * config->max_txds);
609 	lst_per_page = PAGE_SIZE / lst_size;
610 
611 	for (i = 0; i < config->tx_fifo_num; i++) {
612 		struct fifo_info *fifo = &mac_control->fifos[i];
613 		struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
614 		int fifo_len = tx_cfg->fifo_len;
615 		int list_holder_size = fifo_len * sizeof(struct list_info_hold);
616 
617 		fifo->list_info = kzalloc(list_holder_size, GFP_KERNEL);
618 		if (!fifo->list_info) {
619 			DBG_PRINT(INFO_DBG, "Malloc failed for list_info\n");
620 			return -ENOMEM;
621 		}
622 		mem_allocated += list_holder_size;
623 	}
624 	for (i = 0; i < config->tx_fifo_num; i++) {
625 		int page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len,
626 						lst_per_page);
627 		struct fifo_info *fifo = &mac_control->fifos[i];
628 		struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
629 
630 		fifo->tx_curr_put_info.offset = 0;
631 		fifo->tx_curr_put_info.fifo_len = tx_cfg->fifo_len - 1;
632 		fifo->tx_curr_get_info.offset = 0;
633 		fifo->tx_curr_get_info.fifo_len = tx_cfg->fifo_len - 1;
634 		fifo->fifo_no = i;
635 		fifo->nic = nic;
636 		fifo->max_txds = MAX_SKB_FRAGS + 2;
637 		fifo->dev = dev;
638 
639 		for (j = 0; j < page_num; j++) {
640 			int k = 0;
641 			dma_addr_t tmp_p;
642 			void *tmp_v;
643 			tmp_v = dma_alloc_coherent(&nic->pdev->dev, PAGE_SIZE,
644 						   &tmp_p, GFP_KERNEL);
645 			if (!tmp_v) {
646 				DBG_PRINT(INFO_DBG,
647 					  "dma_alloc_coherent failed for TxDL\n");
648 				return -ENOMEM;
649 			}
650 			/* If we got a zero DMA address(can happen on
651 			 * certain platforms like PPC), reallocate.
652 			 * Store virtual address of page we don't want,
653 			 * to be freed later.
654 			 */
655 			if (!tmp_p) {
656 				mac_control->zerodma_virt_addr = tmp_v;
657 				DBG_PRINT(INIT_DBG,
658 					  "%s: Zero DMA address for TxDL. "
659 					  "Virtual address %p\n",
660 					  dev->name, tmp_v);
661 				tmp_v = dma_alloc_coherent(&nic->pdev->dev,
662 							   PAGE_SIZE, &tmp_p,
663 							   GFP_KERNEL);
664 				if (!tmp_v) {
665 					DBG_PRINT(INFO_DBG,
666 						  "dma_alloc_coherent failed for TxDL\n");
667 					return -ENOMEM;
668 				}
669 				mem_allocated += PAGE_SIZE;
670 			}
671 			while (k < lst_per_page) {
672 				int l = (j * lst_per_page) + k;
673 				if (l == tx_cfg->fifo_len)
674 					break;
675 				fifo->list_info[l].list_virt_addr =
676 					tmp_v + (k * lst_size);
677 				fifo->list_info[l].list_phy_addr =
678 					tmp_p + (k * lst_size);
679 				k++;
680 			}
681 		}
682 	}
683 
684 	for (i = 0; i < config->tx_fifo_num; i++) {
685 		struct fifo_info *fifo = &mac_control->fifos[i];
686 		struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
687 
688 		size = tx_cfg->fifo_len;
689 		fifo->ufo_in_band_v = kcalloc(size, sizeof(u64), GFP_KERNEL);
690 		if (!fifo->ufo_in_band_v)
691 			return -ENOMEM;
692 		mem_allocated += (size * sizeof(u64));
693 	}
694 
695 	/* Allocation and initialization of RXDs in Rings */
696 	size = 0;
697 	for (i = 0; i < config->rx_ring_num; i++) {
698 		struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
699 		struct ring_info *ring = &mac_control->rings[i];
700 
701 		if (rx_cfg->num_rxd % (rxd_count[nic->rxd_mode] + 1)) {
702 			DBG_PRINT(ERR_DBG, "%s: Ring%d RxD count is not a "
703 				  "multiple of RxDs per Block\n",
704 				  dev->name, i);
705 			return FAILURE;
706 		}
707 		size += rx_cfg->num_rxd;
708 		ring->block_count = rx_cfg->num_rxd /
709 			(rxd_count[nic->rxd_mode] + 1);
710 		ring->pkt_cnt = rx_cfg->num_rxd - ring->block_count;
711 	}
712 	if (nic->rxd_mode == RXD_MODE_1)
713 		size = (size * (sizeof(struct RxD1)));
714 	else
715 		size = (size * (sizeof(struct RxD3)));
716 
717 	for (i = 0; i < config->rx_ring_num; i++) {
718 		struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
719 		struct ring_info *ring = &mac_control->rings[i];
720 
721 		ring->rx_curr_get_info.block_index = 0;
722 		ring->rx_curr_get_info.offset = 0;
723 		ring->rx_curr_get_info.ring_len = rx_cfg->num_rxd - 1;
724 		ring->rx_curr_put_info.block_index = 0;
725 		ring->rx_curr_put_info.offset = 0;
726 		ring->rx_curr_put_info.ring_len = rx_cfg->num_rxd - 1;
727 		ring->nic = nic;
728 		ring->ring_no = i;
729 
730 		blk_cnt = rx_cfg->num_rxd / (rxd_count[nic->rxd_mode] + 1);
731 		/*  Allocating all the Rx blocks */
732 		for (j = 0; j < blk_cnt; j++) {
733 			struct rx_block_info *rx_blocks;
734 			int l;
735 
736 			rx_blocks = &ring->rx_blocks[j];
737 			size = SIZE_OF_BLOCK;	/* size is always page size */
738 			tmp_v_addr = dma_alloc_coherent(&nic->pdev->dev, size,
739 							&tmp_p_addr, GFP_KERNEL);
740 			if (tmp_v_addr == NULL) {
741 				/*
742 				 * In case of failure, free_shared_mem()
743 				 * is called, which should free any
744 				 * memory that was alloced till the
745 				 * failure happened.
746 				 */
747 				rx_blocks->block_virt_addr = tmp_v_addr;
748 				return -ENOMEM;
749 			}
750 			mem_allocated += size;
751 
752 			size = sizeof(struct rxd_info) *
753 				rxd_count[nic->rxd_mode];
754 			rx_blocks->block_virt_addr = tmp_v_addr;
755 			rx_blocks->block_dma_addr = tmp_p_addr;
756 			rx_blocks->rxds = kmalloc(size,  GFP_KERNEL);
757 			if (!rx_blocks->rxds)
758 				return -ENOMEM;
759 			mem_allocated += size;
760 			for (l = 0; l < rxd_count[nic->rxd_mode]; l++) {
761 				rx_blocks->rxds[l].virt_addr =
762 					rx_blocks->block_virt_addr +
763 					(rxd_size[nic->rxd_mode] * l);
764 				rx_blocks->rxds[l].dma_addr =
765 					rx_blocks->block_dma_addr +
766 					(rxd_size[nic->rxd_mode] * l);
767 			}
768 		}
769 		/* Interlinking all Rx Blocks */
770 		for (j = 0; j < blk_cnt; j++) {
771 			int next = (j + 1) % blk_cnt;
772 			tmp_v_addr = ring->rx_blocks[j].block_virt_addr;
773 			tmp_v_addr_next = ring->rx_blocks[next].block_virt_addr;
774 			tmp_p_addr = ring->rx_blocks[j].block_dma_addr;
775 			tmp_p_addr_next = ring->rx_blocks[next].block_dma_addr;
776 
777 			pre_rxd_blk = tmp_v_addr;
778 			pre_rxd_blk->reserved_2_pNext_RxD_block =
779 				(unsigned long)tmp_v_addr_next;
780 			pre_rxd_blk->pNext_RxD_Blk_physical =
781 				(u64)tmp_p_addr_next;
782 		}
783 	}
784 	if (nic->rxd_mode == RXD_MODE_3B) {
785 		/*
786 		 * Allocation of Storages for buffer addresses in 2BUFF mode
787 		 * and the buffers as well.
788 		 */
789 		for (i = 0; i < config->rx_ring_num; i++) {
790 			struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
791 			struct ring_info *ring = &mac_control->rings[i];
792 
793 			blk_cnt = rx_cfg->num_rxd /
794 				(rxd_count[nic->rxd_mode] + 1);
795 			size = sizeof(struct buffAdd *) * blk_cnt;
796 			ring->ba = kmalloc(size, GFP_KERNEL);
797 			if (!ring->ba)
798 				return -ENOMEM;
799 			mem_allocated += size;
800 			for (j = 0; j < blk_cnt; j++) {
801 				int k = 0;
802 
803 				size = sizeof(struct buffAdd) *
804 					(rxd_count[nic->rxd_mode] + 1);
805 				ring->ba[j] = kmalloc(size, GFP_KERNEL);
806 				if (!ring->ba[j])
807 					return -ENOMEM;
808 				mem_allocated += size;
809 				while (k != rxd_count[nic->rxd_mode]) {
810 					ba = &ring->ba[j][k];
811 					size = BUF0_LEN + ALIGN_SIZE;
812 					ba->ba_0_org = kmalloc(size, GFP_KERNEL);
813 					if (!ba->ba_0_org)
814 						return -ENOMEM;
815 					mem_allocated += size;
816 					tmp = (unsigned long)ba->ba_0_org;
817 					tmp += ALIGN_SIZE;
818 					tmp &= ~((unsigned long)ALIGN_SIZE);
819 					ba->ba_0 = (void *)tmp;
820 
821 					size = BUF1_LEN + ALIGN_SIZE;
822 					ba->ba_1_org = kmalloc(size, GFP_KERNEL);
823 					if (!ba->ba_1_org)
824 						return -ENOMEM;
825 					mem_allocated += size;
826 					tmp = (unsigned long)ba->ba_1_org;
827 					tmp += ALIGN_SIZE;
828 					tmp &= ~((unsigned long)ALIGN_SIZE);
829 					ba->ba_1 = (void *)tmp;
830 					k++;
831 				}
832 			}
833 		}
834 	}
835 
836 	/* Allocation and initialization of Statistics block */
837 	size = sizeof(struct stat_block);
838 	mac_control->stats_mem =
839 		dma_alloc_coherent(&nic->pdev->dev, size,
840 				   &mac_control->stats_mem_phy, GFP_KERNEL);
841 
842 	if (!mac_control->stats_mem) {
843 		/*
844 		 * In case of failure, free_shared_mem() is called, which
845 		 * should free any memory that was alloced till the
846 		 * failure happened.
847 		 */
848 		return -ENOMEM;
849 	}
850 	mem_allocated += size;
851 	mac_control->stats_mem_sz = size;
852 
853 	tmp_v_addr = mac_control->stats_mem;
854 	mac_control->stats_info = tmp_v_addr;
855 	memset(tmp_v_addr, 0, size);
856 	DBG_PRINT(INIT_DBG, "%s: Ring Mem PHY: 0x%llx\n",
857 		dev_name(&nic->pdev->dev), (unsigned long long)tmp_p_addr);
858 	mac_control->stats_info->sw_stat.mem_allocated += mem_allocated;
859 	return SUCCESS;
860 }
861 
862 /**
863  * free_shared_mem - Free the allocated Memory
864  * @nic:  Device private variable.
865  * Description: This function is to free all memory locations allocated by
866  * the init_shared_mem() function and return it to the kernel.
867  */
868 
869 static void free_shared_mem(struct s2io_nic *nic)
870 {
871 	int i, j, blk_cnt, size;
872 	void *tmp_v_addr;
873 	dma_addr_t tmp_p_addr;
874 	int lst_size, lst_per_page;
875 	struct net_device *dev;
876 	int page_num = 0;
877 	struct config_param *config;
878 	struct mac_info *mac_control;
879 	struct stat_block *stats;
880 	struct swStat *swstats;
881 
882 	if (!nic)
883 		return;
884 
885 	dev = nic->dev;
886 
887 	config = &nic->config;
888 	mac_control = &nic->mac_control;
889 	stats = mac_control->stats_info;
890 	swstats = &stats->sw_stat;
891 
892 	lst_size = sizeof(struct TxD) * config->max_txds;
893 	lst_per_page = PAGE_SIZE / lst_size;
894 
895 	for (i = 0; i < config->tx_fifo_num; i++) {
896 		struct fifo_info *fifo = &mac_control->fifos[i];
897 		struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
898 
899 		page_num = TXD_MEM_PAGE_CNT(tx_cfg->fifo_len, lst_per_page);
900 		for (j = 0; j < page_num; j++) {
901 			int mem_blks = (j * lst_per_page);
902 			struct list_info_hold *fli;
903 
904 			if (!fifo->list_info)
905 				return;
906 
907 			fli = &fifo->list_info[mem_blks];
908 			if (!fli->list_virt_addr)
909 				break;
910 			dma_free_coherent(&nic->pdev->dev, PAGE_SIZE,
911 					  fli->list_virt_addr,
912 					  fli->list_phy_addr);
913 			swstats->mem_freed += PAGE_SIZE;
914 		}
915 		/* If we got a zero DMA address during allocation,
916 		 * free the page now
917 		 */
918 		if (mac_control->zerodma_virt_addr) {
919 			dma_free_coherent(&nic->pdev->dev, PAGE_SIZE,
920 					  mac_control->zerodma_virt_addr,
921 					  (dma_addr_t)0);
922 			DBG_PRINT(INIT_DBG,
923 				  "%s: Freeing TxDL with zero DMA address. "
924 				  "Virtual address %p\n",
925 				  dev->name, mac_control->zerodma_virt_addr);
926 			swstats->mem_freed += PAGE_SIZE;
927 		}
928 		kfree(fifo->list_info);
929 		swstats->mem_freed += tx_cfg->fifo_len *
930 			sizeof(struct list_info_hold);
931 	}
932 
933 	size = SIZE_OF_BLOCK;
934 	for (i = 0; i < config->rx_ring_num; i++) {
935 		struct ring_info *ring = &mac_control->rings[i];
936 
937 		blk_cnt = ring->block_count;
938 		for (j = 0; j < blk_cnt; j++) {
939 			tmp_v_addr = ring->rx_blocks[j].block_virt_addr;
940 			tmp_p_addr = ring->rx_blocks[j].block_dma_addr;
941 			if (tmp_v_addr == NULL)
942 				break;
943 			dma_free_coherent(&nic->pdev->dev, size, tmp_v_addr,
944 					  tmp_p_addr);
945 			swstats->mem_freed += size;
946 			kfree(ring->rx_blocks[j].rxds);
947 			swstats->mem_freed += sizeof(struct rxd_info) *
948 				rxd_count[nic->rxd_mode];
949 		}
950 	}
951 
952 	if (nic->rxd_mode == RXD_MODE_3B) {
953 		/* Freeing buffer storage addresses in 2BUFF mode. */
954 		for (i = 0; i < config->rx_ring_num; i++) {
955 			struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
956 			struct ring_info *ring = &mac_control->rings[i];
957 
958 			blk_cnt = rx_cfg->num_rxd /
959 				(rxd_count[nic->rxd_mode] + 1);
960 			for (j = 0; j < blk_cnt; j++) {
961 				int k = 0;
962 				if (!ring->ba[j])
963 					continue;
964 				while (k != rxd_count[nic->rxd_mode]) {
965 					struct buffAdd *ba = &ring->ba[j][k];
966 					kfree(ba->ba_0_org);
967 					swstats->mem_freed +=
968 						BUF0_LEN + ALIGN_SIZE;
969 					kfree(ba->ba_1_org);
970 					swstats->mem_freed +=
971 						BUF1_LEN + ALIGN_SIZE;
972 					k++;
973 				}
974 				kfree(ring->ba[j]);
975 				swstats->mem_freed += sizeof(struct buffAdd) *
976 					(rxd_count[nic->rxd_mode] + 1);
977 			}
978 			kfree(ring->ba);
979 			swstats->mem_freed += sizeof(struct buffAdd *) *
980 				blk_cnt;
981 		}
982 	}
983 
984 	for (i = 0; i < nic->config.tx_fifo_num; i++) {
985 		struct fifo_info *fifo = &mac_control->fifos[i];
986 		struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
987 
988 		if (fifo->ufo_in_band_v) {
989 			swstats->mem_freed += tx_cfg->fifo_len *
990 				sizeof(u64);
991 			kfree(fifo->ufo_in_band_v);
992 		}
993 	}
994 
995 	if (mac_control->stats_mem) {
996 		swstats->mem_freed += mac_control->stats_mem_sz;
997 		dma_free_coherent(&nic->pdev->dev, mac_control->stats_mem_sz,
998 				  mac_control->stats_mem,
999 				  mac_control->stats_mem_phy);
1000 	}
1001 }
1002 
1003 /*
1004  * s2io_verify_pci_mode -
1005  */
1006 
1007 static int s2io_verify_pci_mode(struct s2io_nic *nic)
1008 {
1009 	struct XENA_dev_config __iomem *bar0 = nic->bar0;
1010 	register u64 val64 = 0;
1011 	int     mode;
1012 
1013 	val64 = readq(&bar0->pci_mode);
1014 	mode = (u8)GET_PCI_MODE(val64);
1015 
1016 	if (val64 & PCI_MODE_UNKNOWN_MODE)
1017 		return -1;      /* Unknown PCI mode */
1018 	return mode;
1019 }
1020 
1021 #define NEC_VENID   0x1033
1022 #define NEC_DEVID   0x0125
1023 static int s2io_on_nec_bridge(struct pci_dev *s2io_pdev)
1024 {
1025 	struct pci_dev *tdev = NULL;
1026 	for_each_pci_dev(tdev) {
1027 		if (tdev->vendor == NEC_VENID && tdev->device == NEC_DEVID) {
1028 			if (tdev->bus == s2io_pdev->bus->parent) {
1029 				pci_dev_put(tdev);
1030 				return 1;
1031 			}
1032 		}
1033 	}
1034 	return 0;
1035 }
1036 
1037 static int bus_speed[8] = {33, 133, 133, 200, 266, 133, 200, 266};
1038 /*
1039  * s2io_print_pci_mode -
1040  */
1041 static int s2io_print_pci_mode(struct s2io_nic *nic)
1042 {
1043 	struct XENA_dev_config __iomem *bar0 = nic->bar0;
1044 	register u64 val64 = 0;
1045 	int	mode;
1046 	struct config_param *config = &nic->config;
1047 	const char *pcimode;
1048 
1049 	val64 = readq(&bar0->pci_mode);
1050 	mode = (u8)GET_PCI_MODE(val64);
1051 
1052 	if (val64 & PCI_MODE_UNKNOWN_MODE)
1053 		return -1;	/* Unknown PCI mode */
1054 
1055 	config->bus_speed = bus_speed[mode];
1056 
1057 	if (s2io_on_nec_bridge(nic->pdev)) {
1058 		DBG_PRINT(ERR_DBG, "%s: Device is on PCI-E bus\n",
1059 			  nic->dev->name);
1060 		return mode;
1061 	}
1062 
1063 	switch (mode) {
1064 	case PCI_MODE_PCI_33:
1065 		pcimode = "33MHz PCI bus";
1066 		break;
1067 	case PCI_MODE_PCI_66:
1068 		pcimode = "66MHz PCI bus";
1069 		break;
1070 	case PCI_MODE_PCIX_M1_66:
1071 		pcimode = "66MHz PCIX(M1) bus";
1072 		break;
1073 	case PCI_MODE_PCIX_M1_100:
1074 		pcimode = "100MHz PCIX(M1) bus";
1075 		break;
1076 	case PCI_MODE_PCIX_M1_133:
1077 		pcimode = "133MHz PCIX(M1) bus";
1078 		break;
1079 	case PCI_MODE_PCIX_M2_66:
1080 		pcimode = "133MHz PCIX(M2) bus";
1081 		break;
1082 	case PCI_MODE_PCIX_M2_100:
1083 		pcimode = "200MHz PCIX(M2) bus";
1084 		break;
1085 	case PCI_MODE_PCIX_M2_133:
1086 		pcimode = "266MHz PCIX(M2) bus";
1087 		break;
1088 	default:
1089 		pcimode = "unsupported bus!";
1090 		mode = -1;
1091 	}
1092 
1093 	DBG_PRINT(ERR_DBG, "%s: Device is on %d bit %s\n",
1094 		  nic->dev->name, val64 & PCI_MODE_32_BITS ? 32 : 64, pcimode);
1095 
1096 	return mode;
1097 }
1098 
1099 /**
1100  *  init_tti - Initialization transmit traffic interrupt scheme
1101  *  @nic: device private variable
1102  *  @link: link status (UP/DOWN) used to enable/disable continuous
1103  *  transmit interrupts
1104  *  @may_sleep: parameter indicates if sleeping when waiting for
1105  *  command complete
1106  *  Description: The function configures transmit traffic interrupts
1107  *  Return Value:  SUCCESS on success and
1108  *  '-1' on failure
1109  */
1110 
1111 static int init_tti(struct s2io_nic *nic, int link, bool may_sleep)
1112 {
1113 	struct XENA_dev_config __iomem *bar0 = nic->bar0;
1114 	register u64 val64 = 0;
1115 	int i;
1116 	struct config_param *config = &nic->config;
1117 
1118 	for (i = 0; i < config->tx_fifo_num; i++) {
1119 		/*
1120 		 * TTI Initialization. Default Tx timer gets us about
1121 		 * 250 interrupts per sec. Continuous interrupts are enabled
1122 		 * by default.
1123 		 */
1124 		if (nic->device_type == XFRAME_II_DEVICE) {
1125 			int count = (nic->config.bus_speed * 125)/2;
1126 			val64 = TTI_DATA1_MEM_TX_TIMER_VAL(count);
1127 		} else
1128 			val64 = TTI_DATA1_MEM_TX_TIMER_VAL(0x2078);
1129 
1130 		val64 |= TTI_DATA1_MEM_TX_URNG_A(0xA) |
1131 			TTI_DATA1_MEM_TX_URNG_B(0x10) |
1132 			TTI_DATA1_MEM_TX_URNG_C(0x30) |
1133 			TTI_DATA1_MEM_TX_TIMER_AC_EN;
1134 		if (i == 0)
1135 			if (use_continuous_tx_intrs && (link == LINK_UP))
1136 				val64 |= TTI_DATA1_MEM_TX_TIMER_CI_EN;
1137 		writeq(val64, &bar0->tti_data1_mem);
1138 
1139 		if (nic->config.intr_type == MSI_X) {
1140 			val64 = TTI_DATA2_MEM_TX_UFC_A(0x10) |
1141 				TTI_DATA2_MEM_TX_UFC_B(0x100) |
1142 				TTI_DATA2_MEM_TX_UFC_C(0x200) |
1143 				TTI_DATA2_MEM_TX_UFC_D(0x300);
1144 		} else {
1145 			if ((nic->config.tx_steering_type ==
1146 			     TX_DEFAULT_STEERING) &&
1147 			    (config->tx_fifo_num > 1) &&
1148 			    (i >= nic->udp_fifo_idx) &&
1149 			    (i < (nic->udp_fifo_idx +
1150 				  nic->total_udp_fifos)))
1151 				val64 = TTI_DATA2_MEM_TX_UFC_A(0x50) |
1152 					TTI_DATA2_MEM_TX_UFC_B(0x80) |
1153 					TTI_DATA2_MEM_TX_UFC_C(0x100) |
1154 					TTI_DATA2_MEM_TX_UFC_D(0x120);
1155 			else
1156 				val64 = TTI_DATA2_MEM_TX_UFC_A(0x10) |
1157 					TTI_DATA2_MEM_TX_UFC_B(0x20) |
1158 					TTI_DATA2_MEM_TX_UFC_C(0x40) |
1159 					TTI_DATA2_MEM_TX_UFC_D(0x80);
1160 		}
1161 
1162 		writeq(val64, &bar0->tti_data2_mem);
1163 
1164 		val64 = TTI_CMD_MEM_WE |
1165 			TTI_CMD_MEM_STROBE_NEW_CMD |
1166 			TTI_CMD_MEM_OFFSET(i);
1167 		writeq(val64, &bar0->tti_command_mem);
1168 
1169 		if (wait_for_cmd_complete(&bar0->tti_command_mem,
1170 					  TTI_CMD_MEM_STROBE_NEW_CMD,
1171 					  S2IO_BIT_RESET, may_sleep) != SUCCESS)
1172 			return FAILURE;
1173 	}
1174 
1175 	return SUCCESS;
1176 }
1177 
1178 /**
1179  *  init_nic - Initialization of hardware
1180  *  @nic: device private variable
1181  *  Description: The function sequentially configures every block
1182  *  of the H/W from their reset values.
1183  *  Return Value:  SUCCESS on success and
1184  *  '-1' on failure (endian settings incorrect).
1185  */
1186 
1187 static int init_nic(struct s2io_nic *nic)
1188 {
1189 	struct XENA_dev_config __iomem *bar0 = nic->bar0;
1190 	struct net_device *dev = nic->dev;
1191 	register u64 val64 = 0;
1192 	void __iomem *add;
1193 	u32 time;
1194 	int i, j;
1195 	int dtx_cnt = 0;
1196 	unsigned long long mem_share;
1197 	int mem_size;
1198 	struct config_param *config = &nic->config;
1199 	struct mac_info *mac_control = &nic->mac_control;
1200 
1201 	/* to set the swapper controle on the card */
1202 	if (s2io_set_swapper(nic)) {
1203 		DBG_PRINT(ERR_DBG, "ERROR: Setting Swapper failed\n");
1204 		return -EIO;
1205 	}
1206 
1207 	/*
1208 	 * Herc requires EOI to be removed from reset before XGXS, so..
1209 	 */
1210 	if (nic->device_type & XFRAME_II_DEVICE) {
1211 		val64 = 0xA500000000ULL;
1212 		writeq(val64, &bar0->sw_reset);
1213 		msleep(500);
1214 		val64 = readq(&bar0->sw_reset);
1215 	}
1216 
1217 	/* Remove XGXS from reset state */
1218 	val64 = 0;
1219 	writeq(val64, &bar0->sw_reset);
1220 	msleep(500);
1221 	val64 = readq(&bar0->sw_reset);
1222 
1223 	/* Ensure that it's safe to access registers by checking
1224 	 * RIC_RUNNING bit is reset. Check is valid only for XframeII.
1225 	 */
1226 	if (nic->device_type == XFRAME_II_DEVICE) {
1227 		for (i = 0; i < 50; i++) {
1228 			val64 = readq(&bar0->adapter_status);
1229 			if (!(val64 & ADAPTER_STATUS_RIC_RUNNING))
1230 				break;
1231 			msleep(10);
1232 		}
1233 		if (i == 50)
1234 			return -ENODEV;
1235 	}
1236 
1237 	/*  Enable Receiving broadcasts */
1238 	add = &bar0->mac_cfg;
1239 	val64 = readq(&bar0->mac_cfg);
1240 	val64 |= MAC_RMAC_BCAST_ENABLE;
1241 	writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1242 	writel((u32)val64, add);
1243 	writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1244 	writel((u32) (val64 >> 32), (add + 4));
1245 
1246 	/* Read registers in all blocks */
1247 	val64 = readq(&bar0->mac_int_mask);
1248 	val64 = readq(&bar0->mc_int_mask);
1249 	val64 = readq(&bar0->xgxs_int_mask);
1250 
1251 	/*  Set MTU */
1252 	val64 = dev->mtu;
1253 	writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
1254 
1255 	if (nic->device_type & XFRAME_II_DEVICE) {
1256 		while (herc_act_dtx_cfg[dtx_cnt] != END_SIGN) {
1257 			SPECIAL_REG_WRITE(herc_act_dtx_cfg[dtx_cnt],
1258 					  &bar0->dtx_control, UF);
1259 			if (dtx_cnt & 0x1)
1260 				msleep(1); /* Necessary!! */
1261 			dtx_cnt++;
1262 		}
1263 	} else {
1264 		while (xena_dtx_cfg[dtx_cnt] != END_SIGN) {
1265 			SPECIAL_REG_WRITE(xena_dtx_cfg[dtx_cnt],
1266 					  &bar0->dtx_control, UF);
1267 			val64 = readq(&bar0->dtx_control);
1268 			dtx_cnt++;
1269 		}
1270 	}
1271 
1272 	/*  Tx DMA Initialization */
1273 	val64 = 0;
1274 	writeq(val64, &bar0->tx_fifo_partition_0);
1275 	writeq(val64, &bar0->tx_fifo_partition_1);
1276 	writeq(val64, &bar0->tx_fifo_partition_2);
1277 	writeq(val64, &bar0->tx_fifo_partition_3);
1278 
1279 	for (i = 0, j = 0; i < config->tx_fifo_num; i++) {
1280 		struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
1281 
1282 		val64 |= vBIT(tx_cfg->fifo_len - 1, ((j * 32) + 19), 13) |
1283 			vBIT(tx_cfg->fifo_priority, ((j * 32) + 5), 3);
1284 
1285 		if (i == (config->tx_fifo_num - 1)) {
1286 			if (i % 2 == 0)
1287 				i++;
1288 		}
1289 
1290 		switch (i) {
1291 		case 1:
1292 			writeq(val64, &bar0->tx_fifo_partition_0);
1293 			val64 = 0;
1294 			j = 0;
1295 			break;
1296 		case 3:
1297 			writeq(val64, &bar0->tx_fifo_partition_1);
1298 			val64 = 0;
1299 			j = 0;
1300 			break;
1301 		case 5:
1302 			writeq(val64, &bar0->tx_fifo_partition_2);
1303 			val64 = 0;
1304 			j = 0;
1305 			break;
1306 		case 7:
1307 			writeq(val64, &bar0->tx_fifo_partition_3);
1308 			val64 = 0;
1309 			j = 0;
1310 			break;
1311 		default:
1312 			j++;
1313 			break;
1314 		}
1315 	}
1316 
1317 	/*
1318 	 * Disable 4 PCCs for Xena1, 2 and 3 as per H/W bug
1319 	 * SXE-008 TRANSMIT DMA ARBITRATION ISSUE.
1320 	 */
1321 	if ((nic->device_type == XFRAME_I_DEVICE) && (nic->pdev->revision < 4))
1322 		writeq(PCC_ENABLE_FOUR, &bar0->pcc_enable);
1323 
1324 	val64 = readq(&bar0->tx_fifo_partition_0);
1325 	DBG_PRINT(INIT_DBG, "Fifo partition at: 0x%p is: 0x%llx\n",
1326 		  &bar0->tx_fifo_partition_0, (unsigned long long)val64);
1327 
1328 	/*
1329 	 * Initialization of Tx_PA_CONFIG register to ignore packet
1330 	 * integrity checking.
1331 	 */
1332 	val64 = readq(&bar0->tx_pa_cfg);
1333 	val64 |= TX_PA_CFG_IGNORE_FRM_ERR |
1334 		TX_PA_CFG_IGNORE_SNAP_OUI |
1335 		TX_PA_CFG_IGNORE_LLC_CTRL |
1336 		TX_PA_CFG_IGNORE_L2_ERR;
1337 	writeq(val64, &bar0->tx_pa_cfg);
1338 
1339 	/* Rx DMA initialization. */
1340 	val64 = 0;
1341 	for (i = 0; i < config->rx_ring_num; i++) {
1342 		struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
1343 
1344 		val64 |= vBIT(rx_cfg->ring_priority, (5 + (i * 8)), 3);
1345 	}
1346 	writeq(val64, &bar0->rx_queue_priority);
1347 
1348 	/*
1349 	 * Allocating equal share of memory to all the
1350 	 * configured Rings.
1351 	 */
1352 	val64 = 0;
1353 	if (nic->device_type & XFRAME_II_DEVICE)
1354 		mem_size = 32;
1355 	else
1356 		mem_size = 64;
1357 
1358 	for (i = 0; i < config->rx_ring_num; i++) {
1359 		switch (i) {
1360 		case 0:
1361 			mem_share = (mem_size / config->rx_ring_num +
1362 				     mem_size % config->rx_ring_num);
1363 			val64 |= RX_QUEUE_CFG_Q0_SZ(mem_share);
1364 			continue;
1365 		case 1:
1366 			mem_share = (mem_size / config->rx_ring_num);
1367 			val64 |= RX_QUEUE_CFG_Q1_SZ(mem_share);
1368 			continue;
1369 		case 2:
1370 			mem_share = (mem_size / config->rx_ring_num);
1371 			val64 |= RX_QUEUE_CFG_Q2_SZ(mem_share);
1372 			continue;
1373 		case 3:
1374 			mem_share = (mem_size / config->rx_ring_num);
1375 			val64 |= RX_QUEUE_CFG_Q3_SZ(mem_share);
1376 			continue;
1377 		case 4:
1378 			mem_share = (mem_size / config->rx_ring_num);
1379 			val64 |= RX_QUEUE_CFG_Q4_SZ(mem_share);
1380 			continue;
1381 		case 5:
1382 			mem_share = (mem_size / config->rx_ring_num);
1383 			val64 |= RX_QUEUE_CFG_Q5_SZ(mem_share);
1384 			continue;
1385 		case 6:
1386 			mem_share = (mem_size / config->rx_ring_num);
1387 			val64 |= RX_QUEUE_CFG_Q6_SZ(mem_share);
1388 			continue;
1389 		case 7:
1390 			mem_share = (mem_size / config->rx_ring_num);
1391 			val64 |= RX_QUEUE_CFG_Q7_SZ(mem_share);
1392 			continue;
1393 		}
1394 	}
1395 	writeq(val64, &bar0->rx_queue_cfg);
1396 
1397 	/*
1398 	 * Filling Tx round robin registers
1399 	 * as per the number of FIFOs for equal scheduling priority
1400 	 */
1401 	switch (config->tx_fifo_num) {
1402 	case 1:
1403 		val64 = 0x0;
1404 		writeq(val64, &bar0->tx_w_round_robin_0);
1405 		writeq(val64, &bar0->tx_w_round_robin_1);
1406 		writeq(val64, &bar0->tx_w_round_robin_2);
1407 		writeq(val64, &bar0->tx_w_round_robin_3);
1408 		writeq(val64, &bar0->tx_w_round_robin_4);
1409 		break;
1410 	case 2:
1411 		val64 = 0x0001000100010001ULL;
1412 		writeq(val64, &bar0->tx_w_round_robin_0);
1413 		writeq(val64, &bar0->tx_w_round_robin_1);
1414 		writeq(val64, &bar0->tx_w_round_robin_2);
1415 		writeq(val64, &bar0->tx_w_round_robin_3);
1416 		val64 = 0x0001000100000000ULL;
1417 		writeq(val64, &bar0->tx_w_round_robin_4);
1418 		break;
1419 	case 3:
1420 		val64 = 0x0001020001020001ULL;
1421 		writeq(val64, &bar0->tx_w_round_robin_0);
1422 		val64 = 0x0200010200010200ULL;
1423 		writeq(val64, &bar0->tx_w_round_robin_1);
1424 		val64 = 0x0102000102000102ULL;
1425 		writeq(val64, &bar0->tx_w_round_robin_2);
1426 		val64 = 0x0001020001020001ULL;
1427 		writeq(val64, &bar0->tx_w_round_robin_3);
1428 		val64 = 0x0200010200000000ULL;
1429 		writeq(val64, &bar0->tx_w_round_robin_4);
1430 		break;
1431 	case 4:
1432 		val64 = 0x0001020300010203ULL;
1433 		writeq(val64, &bar0->tx_w_round_robin_0);
1434 		writeq(val64, &bar0->tx_w_round_robin_1);
1435 		writeq(val64, &bar0->tx_w_round_robin_2);
1436 		writeq(val64, &bar0->tx_w_round_robin_3);
1437 		val64 = 0x0001020300000000ULL;
1438 		writeq(val64, &bar0->tx_w_round_robin_4);
1439 		break;
1440 	case 5:
1441 		val64 = 0x0001020304000102ULL;
1442 		writeq(val64, &bar0->tx_w_round_robin_0);
1443 		val64 = 0x0304000102030400ULL;
1444 		writeq(val64, &bar0->tx_w_round_robin_1);
1445 		val64 = 0x0102030400010203ULL;
1446 		writeq(val64, &bar0->tx_w_round_robin_2);
1447 		val64 = 0x0400010203040001ULL;
1448 		writeq(val64, &bar0->tx_w_round_robin_3);
1449 		val64 = 0x0203040000000000ULL;
1450 		writeq(val64, &bar0->tx_w_round_robin_4);
1451 		break;
1452 	case 6:
1453 		val64 = 0x0001020304050001ULL;
1454 		writeq(val64, &bar0->tx_w_round_robin_0);
1455 		val64 = 0x0203040500010203ULL;
1456 		writeq(val64, &bar0->tx_w_round_robin_1);
1457 		val64 = 0x0405000102030405ULL;
1458 		writeq(val64, &bar0->tx_w_round_robin_2);
1459 		val64 = 0x0001020304050001ULL;
1460 		writeq(val64, &bar0->tx_w_round_robin_3);
1461 		val64 = 0x0203040500000000ULL;
1462 		writeq(val64, &bar0->tx_w_round_robin_4);
1463 		break;
1464 	case 7:
1465 		val64 = 0x0001020304050600ULL;
1466 		writeq(val64, &bar0->tx_w_round_robin_0);
1467 		val64 = 0x0102030405060001ULL;
1468 		writeq(val64, &bar0->tx_w_round_robin_1);
1469 		val64 = 0x0203040506000102ULL;
1470 		writeq(val64, &bar0->tx_w_round_robin_2);
1471 		val64 = 0x0304050600010203ULL;
1472 		writeq(val64, &bar0->tx_w_round_robin_3);
1473 		val64 = 0x0405060000000000ULL;
1474 		writeq(val64, &bar0->tx_w_round_robin_4);
1475 		break;
1476 	case 8:
1477 		val64 = 0x0001020304050607ULL;
1478 		writeq(val64, &bar0->tx_w_round_robin_0);
1479 		writeq(val64, &bar0->tx_w_round_robin_1);
1480 		writeq(val64, &bar0->tx_w_round_robin_2);
1481 		writeq(val64, &bar0->tx_w_round_robin_3);
1482 		val64 = 0x0001020300000000ULL;
1483 		writeq(val64, &bar0->tx_w_round_robin_4);
1484 		break;
1485 	}
1486 
1487 	/* Enable all configured Tx FIFO partitions */
1488 	val64 = readq(&bar0->tx_fifo_partition_0);
1489 	val64 |= (TX_FIFO_PARTITION_EN);
1490 	writeq(val64, &bar0->tx_fifo_partition_0);
1491 
1492 	/* Filling the Rx round robin registers as per the
1493 	 * number of Rings and steering based on QoS with
1494 	 * equal priority.
1495 	 */
1496 	switch (config->rx_ring_num) {
1497 	case 1:
1498 		val64 = 0x0;
1499 		writeq(val64, &bar0->rx_w_round_robin_0);
1500 		writeq(val64, &bar0->rx_w_round_robin_1);
1501 		writeq(val64, &bar0->rx_w_round_robin_2);
1502 		writeq(val64, &bar0->rx_w_round_robin_3);
1503 		writeq(val64, &bar0->rx_w_round_robin_4);
1504 
1505 		val64 = 0x8080808080808080ULL;
1506 		writeq(val64, &bar0->rts_qos_steering);
1507 		break;
1508 	case 2:
1509 		val64 = 0x0001000100010001ULL;
1510 		writeq(val64, &bar0->rx_w_round_robin_0);
1511 		writeq(val64, &bar0->rx_w_round_robin_1);
1512 		writeq(val64, &bar0->rx_w_round_robin_2);
1513 		writeq(val64, &bar0->rx_w_round_robin_3);
1514 		val64 = 0x0001000100000000ULL;
1515 		writeq(val64, &bar0->rx_w_round_robin_4);
1516 
1517 		val64 = 0x8080808040404040ULL;
1518 		writeq(val64, &bar0->rts_qos_steering);
1519 		break;
1520 	case 3:
1521 		val64 = 0x0001020001020001ULL;
1522 		writeq(val64, &bar0->rx_w_round_robin_0);
1523 		val64 = 0x0200010200010200ULL;
1524 		writeq(val64, &bar0->rx_w_round_robin_1);
1525 		val64 = 0x0102000102000102ULL;
1526 		writeq(val64, &bar0->rx_w_round_robin_2);
1527 		val64 = 0x0001020001020001ULL;
1528 		writeq(val64, &bar0->rx_w_round_robin_3);
1529 		val64 = 0x0200010200000000ULL;
1530 		writeq(val64, &bar0->rx_w_round_robin_4);
1531 
1532 		val64 = 0x8080804040402020ULL;
1533 		writeq(val64, &bar0->rts_qos_steering);
1534 		break;
1535 	case 4:
1536 		val64 = 0x0001020300010203ULL;
1537 		writeq(val64, &bar0->rx_w_round_robin_0);
1538 		writeq(val64, &bar0->rx_w_round_robin_1);
1539 		writeq(val64, &bar0->rx_w_round_robin_2);
1540 		writeq(val64, &bar0->rx_w_round_robin_3);
1541 		val64 = 0x0001020300000000ULL;
1542 		writeq(val64, &bar0->rx_w_round_robin_4);
1543 
1544 		val64 = 0x8080404020201010ULL;
1545 		writeq(val64, &bar0->rts_qos_steering);
1546 		break;
1547 	case 5:
1548 		val64 = 0x0001020304000102ULL;
1549 		writeq(val64, &bar0->rx_w_round_robin_0);
1550 		val64 = 0x0304000102030400ULL;
1551 		writeq(val64, &bar0->rx_w_round_robin_1);
1552 		val64 = 0x0102030400010203ULL;
1553 		writeq(val64, &bar0->rx_w_round_robin_2);
1554 		val64 = 0x0400010203040001ULL;
1555 		writeq(val64, &bar0->rx_w_round_robin_3);
1556 		val64 = 0x0203040000000000ULL;
1557 		writeq(val64, &bar0->rx_w_round_robin_4);
1558 
1559 		val64 = 0x8080404020201008ULL;
1560 		writeq(val64, &bar0->rts_qos_steering);
1561 		break;
1562 	case 6:
1563 		val64 = 0x0001020304050001ULL;
1564 		writeq(val64, &bar0->rx_w_round_robin_0);
1565 		val64 = 0x0203040500010203ULL;
1566 		writeq(val64, &bar0->rx_w_round_robin_1);
1567 		val64 = 0x0405000102030405ULL;
1568 		writeq(val64, &bar0->rx_w_round_robin_2);
1569 		val64 = 0x0001020304050001ULL;
1570 		writeq(val64, &bar0->rx_w_round_robin_3);
1571 		val64 = 0x0203040500000000ULL;
1572 		writeq(val64, &bar0->rx_w_round_robin_4);
1573 
1574 		val64 = 0x8080404020100804ULL;
1575 		writeq(val64, &bar0->rts_qos_steering);
1576 		break;
1577 	case 7:
1578 		val64 = 0x0001020304050600ULL;
1579 		writeq(val64, &bar0->rx_w_round_robin_0);
1580 		val64 = 0x0102030405060001ULL;
1581 		writeq(val64, &bar0->rx_w_round_robin_1);
1582 		val64 = 0x0203040506000102ULL;
1583 		writeq(val64, &bar0->rx_w_round_robin_2);
1584 		val64 = 0x0304050600010203ULL;
1585 		writeq(val64, &bar0->rx_w_round_robin_3);
1586 		val64 = 0x0405060000000000ULL;
1587 		writeq(val64, &bar0->rx_w_round_robin_4);
1588 
1589 		val64 = 0x8080402010080402ULL;
1590 		writeq(val64, &bar0->rts_qos_steering);
1591 		break;
1592 	case 8:
1593 		val64 = 0x0001020304050607ULL;
1594 		writeq(val64, &bar0->rx_w_round_robin_0);
1595 		writeq(val64, &bar0->rx_w_round_robin_1);
1596 		writeq(val64, &bar0->rx_w_round_robin_2);
1597 		writeq(val64, &bar0->rx_w_round_robin_3);
1598 		val64 = 0x0001020300000000ULL;
1599 		writeq(val64, &bar0->rx_w_round_robin_4);
1600 
1601 		val64 = 0x8040201008040201ULL;
1602 		writeq(val64, &bar0->rts_qos_steering);
1603 		break;
1604 	}
1605 
1606 	/* UDP Fix */
1607 	val64 = 0;
1608 	for (i = 0; i < 8; i++)
1609 		writeq(val64, &bar0->rts_frm_len_n[i]);
1610 
1611 	/* Set the default rts frame length for the rings configured */
1612 	val64 = MAC_RTS_FRM_LEN_SET(dev->mtu+22);
1613 	for (i = 0 ; i < config->rx_ring_num ; i++)
1614 		writeq(val64, &bar0->rts_frm_len_n[i]);
1615 
1616 	/* Set the frame length for the configured rings
1617 	 * desired by the user
1618 	 */
1619 	for (i = 0; i < config->rx_ring_num; i++) {
1620 		/* If rts_frm_len[i] == 0 then it is assumed that user not
1621 		 * specified frame length steering.
1622 		 * If the user provides the frame length then program
1623 		 * the rts_frm_len register for those values or else
1624 		 * leave it as it is.
1625 		 */
1626 		if (rts_frm_len[i] != 0) {
1627 			writeq(MAC_RTS_FRM_LEN_SET(rts_frm_len[i]),
1628 			       &bar0->rts_frm_len_n[i]);
1629 		}
1630 	}
1631 
1632 	/* Disable differentiated services steering logic */
1633 	for (i = 0; i < 64; i++) {
1634 		if (rts_ds_steer(nic, i, 0) == FAILURE) {
1635 			DBG_PRINT(ERR_DBG,
1636 				  "%s: rts_ds_steer failed on codepoint %d\n",
1637 				  dev->name, i);
1638 			return -ENODEV;
1639 		}
1640 	}
1641 
1642 	/* Program statistics memory */
1643 	writeq(mac_control->stats_mem_phy, &bar0->stat_addr);
1644 
1645 	if (nic->device_type == XFRAME_II_DEVICE) {
1646 		val64 = STAT_BC(0x320);
1647 		writeq(val64, &bar0->stat_byte_cnt);
1648 	}
1649 
1650 	/*
1651 	 * Initializing the sampling rate for the device to calculate the
1652 	 * bandwidth utilization.
1653 	 */
1654 	val64 = MAC_TX_LINK_UTIL_VAL(tmac_util_period) |
1655 		MAC_RX_LINK_UTIL_VAL(rmac_util_period);
1656 	writeq(val64, &bar0->mac_link_util);
1657 
1658 	/*
1659 	 * Initializing the Transmit and Receive Traffic Interrupt
1660 	 * Scheme.
1661 	 */
1662 
1663 	/* Initialize TTI */
1664 	if (SUCCESS != init_tti(nic, nic->last_link_state, true))
1665 		return -ENODEV;
1666 
1667 	/* RTI Initialization */
1668 	if (nic->device_type == XFRAME_II_DEVICE) {
1669 		/*
1670 		 * Programmed to generate Apprx 500 Intrs per
1671 		 * second
1672 		 */
1673 		int count = (nic->config.bus_speed * 125)/4;
1674 		val64 = RTI_DATA1_MEM_RX_TIMER_VAL(count);
1675 	} else
1676 		val64 = RTI_DATA1_MEM_RX_TIMER_VAL(0xFFF);
1677 	val64 |= RTI_DATA1_MEM_RX_URNG_A(0xA) |
1678 		RTI_DATA1_MEM_RX_URNG_B(0x10) |
1679 		RTI_DATA1_MEM_RX_URNG_C(0x30) |
1680 		RTI_DATA1_MEM_RX_TIMER_AC_EN;
1681 
1682 	writeq(val64, &bar0->rti_data1_mem);
1683 
1684 	val64 = RTI_DATA2_MEM_RX_UFC_A(0x1) |
1685 		RTI_DATA2_MEM_RX_UFC_B(0x2) ;
1686 	if (nic->config.intr_type == MSI_X)
1687 		val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x20) |
1688 			  RTI_DATA2_MEM_RX_UFC_D(0x40));
1689 	else
1690 		val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x40) |
1691 			  RTI_DATA2_MEM_RX_UFC_D(0x80));
1692 	writeq(val64, &bar0->rti_data2_mem);
1693 
1694 	for (i = 0; i < config->rx_ring_num; i++) {
1695 		val64 = RTI_CMD_MEM_WE |
1696 			RTI_CMD_MEM_STROBE_NEW_CMD |
1697 			RTI_CMD_MEM_OFFSET(i);
1698 		writeq(val64, &bar0->rti_command_mem);
1699 
1700 		/*
1701 		 * Once the operation completes, the Strobe bit of the
1702 		 * command register will be reset. We poll for this
1703 		 * particular condition. We wait for a maximum of 500ms
1704 		 * for the operation to complete, if it's not complete
1705 		 * by then we return error.
1706 		 */
1707 		time = 0;
1708 		while (true) {
1709 			val64 = readq(&bar0->rti_command_mem);
1710 			if (!(val64 & RTI_CMD_MEM_STROBE_NEW_CMD))
1711 				break;
1712 
1713 			if (time > 10) {
1714 				DBG_PRINT(ERR_DBG, "%s: RTI init failed\n",
1715 					  dev->name);
1716 				return -ENODEV;
1717 			}
1718 			time++;
1719 			msleep(50);
1720 		}
1721 	}
1722 
1723 	/*
1724 	 * Initializing proper values as Pause threshold into all
1725 	 * the 8 Queues on Rx side.
1726 	 */
1727 	writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q0q3);
1728 	writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q4q7);
1729 
1730 	/* Disable RMAC PAD STRIPPING */
1731 	add = &bar0->mac_cfg;
1732 	val64 = readq(&bar0->mac_cfg);
1733 	val64 &= ~(MAC_CFG_RMAC_STRIP_PAD);
1734 	writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1735 	writel((u32) (val64), add);
1736 	writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1737 	writel((u32) (val64 >> 32), (add + 4));
1738 	val64 = readq(&bar0->mac_cfg);
1739 
1740 	/* Enable FCS stripping by adapter */
1741 	add = &bar0->mac_cfg;
1742 	val64 = readq(&bar0->mac_cfg);
1743 	val64 |= MAC_CFG_RMAC_STRIP_FCS;
1744 	if (nic->device_type == XFRAME_II_DEVICE)
1745 		writeq(val64, &bar0->mac_cfg);
1746 	else {
1747 		writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1748 		writel((u32) (val64), add);
1749 		writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1750 		writel((u32) (val64 >> 32), (add + 4));
1751 	}
1752 
1753 	/*
1754 	 * Set the time value to be inserted in the pause frame
1755 	 * generated by xena.
1756 	 */
1757 	val64 = readq(&bar0->rmac_pause_cfg);
1758 	val64 &= ~(RMAC_PAUSE_HG_PTIME(0xffff));
1759 	val64 |= RMAC_PAUSE_HG_PTIME(nic->mac_control.rmac_pause_time);
1760 	writeq(val64, &bar0->rmac_pause_cfg);
1761 
1762 	/*
1763 	 * Set the Threshold Limit for Generating the pause frame
1764 	 * If the amount of data in any Queue exceeds ratio of
1765 	 * (mac_control.mc_pause_threshold_q0q3 or q4q7)/256
1766 	 * pause frame is generated
1767 	 */
1768 	val64 = 0;
1769 	for (i = 0; i < 4; i++) {
1770 		val64 |= (((u64)0xFF00 |
1771 			   nic->mac_control.mc_pause_threshold_q0q3)
1772 			  << (i * 2 * 8));
1773 	}
1774 	writeq(val64, &bar0->mc_pause_thresh_q0q3);
1775 
1776 	val64 = 0;
1777 	for (i = 0; i < 4; i++) {
1778 		val64 |= (((u64)0xFF00 |
1779 			   nic->mac_control.mc_pause_threshold_q4q7)
1780 			  << (i * 2 * 8));
1781 	}
1782 	writeq(val64, &bar0->mc_pause_thresh_q4q7);
1783 
1784 	/*
1785 	 * TxDMA will stop Read request if the number of read split has
1786 	 * exceeded the limit pointed by shared_splits
1787 	 */
1788 	val64 = readq(&bar0->pic_control);
1789 	val64 |= PIC_CNTL_SHARED_SPLITS(shared_splits);
1790 	writeq(val64, &bar0->pic_control);
1791 
1792 	if (nic->config.bus_speed == 266) {
1793 		writeq(TXREQTO_VAL(0x7f) | TXREQTO_EN, &bar0->txreqtimeout);
1794 		writeq(0x0, &bar0->read_retry_delay);
1795 		writeq(0x0, &bar0->write_retry_delay);
1796 	}
1797 
1798 	/*
1799 	 * Programming the Herc to split every write transaction
1800 	 * that does not start on an ADB to reduce disconnects.
1801 	 */
1802 	if (nic->device_type == XFRAME_II_DEVICE) {
1803 		val64 = FAULT_BEHAVIOUR | EXT_REQ_EN |
1804 			MISC_LINK_STABILITY_PRD(3);
1805 		writeq(val64, &bar0->misc_control);
1806 		val64 = readq(&bar0->pic_control2);
1807 		val64 &= ~(s2BIT(13)|s2BIT(14)|s2BIT(15));
1808 		writeq(val64, &bar0->pic_control2);
1809 	}
1810 	if (strstr(nic->product_name, "CX4")) {
1811 		val64 = TMAC_AVG_IPG(0x17);
1812 		writeq(val64, &bar0->tmac_avg_ipg);
1813 	}
1814 
1815 	return SUCCESS;
1816 }
1817 #define LINK_UP_DOWN_INTERRUPT		1
1818 #define MAC_RMAC_ERR_TIMER		2
1819 
1820 static int s2io_link_fault_indication(struct s2io_nic *nic)
1821 {
1822 	if (nic->device_type == XFRAME_II_DEVICE)
1823 		return LINK_UP_DOWN_INTERRUPT;
1824 	else
1825 		return MAC_RMAC_ERR_TIMER;
1826 }
1827 
1828 /**
1829  *  do_s2io_write_bits -  update alarm bits in alarm register
1830  *  @value: alarm bits
1831  *  @flag: interrupt status
1832  *  @addr: address value
1833  *  Description: update alarm bits in alarm register
1834  *  Return Value:
1835  *  NONE.
1836  */
1837 static void do_s2io_write_bits(u64 value, int flag, void __iomem *addr)
1838 {
1839 	u64 temp64;
1840 
1841 	temp64 = readq(addr);
1842 
1843 	if (flag == ENABLE_INTRS)
1844 		temp64 &= ~((u64)value);
1845 	else
1846 		temp64 |= ((u64)value);
1847 	writeq(temp64, addr);
1848 }
1849 
1850 static void en_dis_err_alarms(struct s2io_nic *nic, u16 mask, int flag)
1851 {
1852 	struct XENA_dev_config __iomem *bar0 = nic->bar0;
1853 	register u64 gen_int_mask = 0;
1854 	u64 interruptible;
1855 
1856 	writeq(DISABLE_ALL_INTRS, &bar0->general_int_mask);
1857 	if (mask & TX_DMA_INTR) {
1858 		gen_int_mask |= TXDMA_INT_M;
1859 
1860 		do_s2io_write_bits(TXDMA_TDA_INT | TXDMA_PFC_INT |
1861 				   TXDMA_PCC_INT | TXDMA_TTI_INT |
1862 				   TXDMA_LSO_INT | TXDMA_TPA_INT |
1863 				   TXDMA_SM_INT, flag, &bar0->txdma_int_mask);
1864 
1865 		do_s2io_write_bits(PFC_ECC_DB_ERR | PFC_SM_ERR_ALARM |
1866 				   PFC_MISC_0_ERR | PFC_MISC_1_ERR |
1867 				   PFC_PCIX_ERR | PFC_ECC_SG_ERR, flag,
1868 				   &bar0->pfc_err_mask);
1869 
1870 		do_s2io_write_bits(TDA_Fn_ECC_DB_ERR | TDA_SM0_ERR_ALARM |
1871 				   TDA_SM1_ERR_ALARM | TDA_Fn_ECC_SG_ERR |
1872 				   TDA_PCIX_ERR, flag, &bar0->tda_err_mask);
1873 
1874 		do_s2io_write_bits(PCC_FB_ECC_DB_ERR | PCC_TXB_ECC_DB_ERR |
1875 				   PCC_SM_ERR_ALARM | PCC_WR_ERR_ALARM |
1876 				   PCC_N_SERR | PCC_6_COF_OV_ERR |
1877 				   PCC_7_COF_OV_ERR | PCC_6_LSO_OV_ERR |
1878 				   PCC_7_LSO_OV_ERR | PCC_FB_ECC_SG_ERR |
1879 				   PCC_TXB_ECC_SG_ERR,
1880 				   flag, &bar0->pcc_err_mask);
1881 
1882 		do_s2io_write_bits(TTI_SM_ERR_ALARM | TTI_ECC_SG_ERR |
1883 				   TTI_ECC_DB_ERR, flag, &bar0->tti_err_mask);
1884 
1885 		do_s2io_write_bits(LSO6_ABORT | LSO7_ABORT |
1886 				   LSO6_SM_ERR_ALARM | LSO7_SM_ERR_ALARM |
1887 				   LSO6_SEND_OFLOW | LSO7_SEND_OFLOW,
1888 				   flag, &bar0->lso_err_mask);
1889 
1890 		do_s2io_write_bits(TPA_SM_ERR_ALARM | TPA_TX_FRM_DROP,
1891 				   flag, &bar0->tpa_err_mask);
1892 
1893 		do_s2io_write_bits(SM_SM_ERR_ALARM, flag, &bar0->sm_err_mask);
1894 	}
1895 
1896 	if (mask & TX_MAC_INTR) {
1897 		gen_int_mask |= TXMAC_INT_M;
1898 		do_s2io_write_bits(MAC_INT_STATUS_TMAC_INT, flag,
1899 				   &bar0->mac_int_mask);
1900 		do_s2io_write_bits(TMAC_TX_BUF_OVRN | TMAC_TX_SM_ERR |
1901 				   TMAC_ECC_SG_ERR | TMAC_ECC_DB_ERR |
1902 				   TMAC_DESC_ECC_SG_ERR | TMAC_DESC_ECC_DB_ERR,
1903 				   flag, &bar0->mac_tmac_err_mask);
1904 	}
1905 
1906 	if (mask & TX_XGXS_INTR) {
1907 		gen_int_mask |= TXXGXS_INT_M;
1908 		do_s2io_write_bits(XGXS_INT_STATUS_TXGXS, flag,
1909 				   &bar0->xgxs_int_mask);
1910 		do_s2io_write_bits(TXGXS_ESTORE_UFLOW | TXGXS_TX_SM_ERR |
1911 				   TXGXS_ECC_SG_ERR | TXGXS_ECC_DB_ERR,
1912 				   flag, &bar0->xgxs_txgxs_err_mask);
1913 	}
1914 
1915 	if (mask & RX_DMA_INTR) {
1916 		gen_int_mask |= RXDMA_INT_M;
1917 		do_s2io_write_bits(RXDMA_INT_RC_INT_M | RXDMA_INT_RPA_INT_M |
1918 				   RXDMA_INT_RDA_INT_M | RXDMA_INT_RTI_INT_M,
1919 				   flag, &bar0->rxdma_int_mask);
1920 		do_s2io_write_bits(RC_PRCn_ECC_DB_ERR | RC_FTC_ECC_DB_ERR |
1921 				   RC_PRCn_SM_ERR_ALARM | RC_FTC_SM_ERR_ALARM |
1922 				   RC_PRCn_ECC_SG_ERR | RC_FTC_ECC_SG_ERR |
1923 				   RC_RDA_FAIL_WR_Rn, flag, &bar0->rc_err_mask);
1924 		do_s2io_write_bits(PRC_PCI_AB_RD_Rn | PRC_PCI_AB_WR_Rn |
1925 				   PRC_PCI_AB_F_WR_Rn | PRC_PCI_DP_RD_Rn |
1926 				   PRC_PCI_DP_WR_Rn | PRC_PCI_DP_F_WR_Rn, flag,
1927 				   &bar0->prc_pcix_err_mask);
1928 		do_s2io_write_bits(RPA_SM_ERR_ALARM | RPA_CREDIT_ERR |
1929 				   RPA_ECC_SG_ERR | RPA_ECC_DB_ERR, flag,
1930 				   &bar0->rpa_err_mask);
1931 		do_s2io_write_bits(RDA_RXDn_ECC_DB_ERR | RDA_FRM_ECC_DB_N_AERR |
1932 				   RDA_SM1_ERR_ALARM | RDA_SM0_ERR_ALARM |
1933 				   RDA_RXD_ECC_DB_SERR | RDA_RXDn_ECC_SG_ERR |
1934 				   RDA_FRM_ECC_SG_ERR |
1935 				   RDA_MISC_ERR|RDA_PCIX_ERR,
1936 				   flag, &bar0->rda_err_mask);
1937 		do_s2io_write_bits(RTI_SM_ERR_ALARM |
1938 				   RTI_ECC_SG_ERR | RTI_ECC_DB_ERR,
1939 				   flag, &bar0->rti_err_mask);
1940 	}
1941 
1942 	if (mask & RX_MAC_INTR) {
1943 		gen_int_mask |= RXMAC_INT_M;
1944 		do_s2io_write_bits(MAC_INT_STATUS_RMAC_INT, flag,
1945 				   &bar0->mac_int_mask);
1946 		interruptible = (RMAC_RX_BUFF_OVRN | RMAC_RX_SM_ERR |
1947 				 RMAC_UNUSED_INT | RMAC_SINGLE_ECC_ERR |
1948 				 RMAC_DOUBLE_ECC_ERR);
1949 		if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER)
1950 			interruptible |= RMAC_LINK_STATE_CHANGE_INT;
1951 		do_s2io_write_bits(interruptible,
1952 				   flag, &bar0->mac_rmac_err_mask);
1953 	}
1954 
1955 	if (mask & RX_XGXS_INTR) {
1956 		gen_int_mask |= RXXGXS_INT_M;
1957 		do_s2io_write_bits(XGXS_INT_STATUS_RXGXS, flag,
1958 				   &bar0->xgxs_int_mask);
1959 		do_s2io_write_bits(RXGXS_ESTORE_OFLOW | RXGXS_RX_SM_ERR, flag,
1960 				   &bar0->xgxs_rxgxs_err_mask);
1961 	}
1962 
1963 	if (mask & MC_INTR) {
1964 		gen_int_mask |= MC_INT_M;
1965 		do_s2io_write_bits(MC_INT_MASK_MC_INT,
1966 				   flag, &bar0->mc_int_mask);
1967 		do_s2io_write_bits(MC_ERR_REG_SM_ERR | MC_ERR_REG_ECC_ALL_SNG |
1968 				   MC_ERR_REG_ECC_ALL_DBL | PLL_LOCK_N, flag,
1969 				   &bar0->mc_err_mask);
1970 	}
1971 	nic->general_int_mask = gen_int_mask;
1972 
1973 	/* Remove this line when alarm interrupts are enabled */
1974 	nic->general_int_mask = 0;
1975 }
1976 
1977 /**
1978  *  en_dis_able_nic_intrs - Enable or Disable the interrupts
1979  *  @nic: device private variable,
1980  *  @mask: A mask indicating which Intr block must be modified and,
1981  *  @flag: A flag indicating whether to enable or disable the Intrs.
1982  *  Description: This function will either disable or enable the interrupts
1983  *  depending on the flag argument. The mask argument can be used to
1984  *  enable/disable any Intr block.
1985  *  Return Value: NONE.
1986  */
1987 
1988 static void en_dis_able_nic_intrs(struct s2io_nic *nic, u16 mask, int flag)
1989 {
1990 	struct XENA_dev_config __iomem *bar0 = nic->bar0;
1991 	register u64 temp64 = 0, intr_mask = 0;
1992 
1993 	intr_mask = nic->general_int_mask;
1994 
1995 	/*  Top level interrupt classification */
1996 	/*  PIC Interrupts */
1997 	if (mask & TX_PIC_INTR) {
1998 		/*  Enable PIC Intrs in the general intr mask register */
1999 		intr_mask |= TXPIC_INT_M;
2000 		if (flag == ENABLE_INTRS) {
2001 			/*
2002 			 * If Hercules adapter enable GPIO otherwise
2003 			 * disable all PCIX, Flash, MDIO, IIC and GPIO
2004 			 * interrupts for now.
2005 			 * TODO
2006 			 */
2007 			if (s2io_link_fault_indication(nic) ==
2008 			    LINK_UP_DOWN_INTERRUPT) {
2009 				do_s2io_write_bits(PIC_INT_GPIO, flag,
2010 						   &bar0->pic_int_mask);
2011 				do_s2io_write_bits(GPIO_INT_MASK_LINK_UP, flag,
2012 						   &bar0->gpio_int_mask);
2013 			} else
2014 				writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
2015 		} else if (flag == DISABLE_INTRS) {
2016 			/*
2017 			 * Disable PIC Intrs in the general
2018 			 * intr mask register
2019 			 */
2020 			writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
2021 		}
2022 	}
2023 
2024 	/*  Tx traffic interrupts */
2025 	if (mask & TX_TRAFFIC_INTR) {
2026 		intr_mask |= TXTRAFFIC_INT_M;
2027 		if (flag == ENABLE_INTRS) {
2028 			/*
2029 			 * Enable all the Tx side interrupts
2030 			 * writing 0 Enables all 64 TX interrupt levels
2031 			 */
2032 			writeq(0x0, &bar0->tx_traffic_mask);
2033 		} else if (flag == DISABLE_INTRS) {
2034 			/*
2035 			 * Disable Tx Traffic Intrs in the general intr mask
2036 			 * register.
2037 			 */
2038 			writeq(DISABLE_ALL_INTRS, &bar0->tx_traffic_mask);
2039 		}
2040 	}
2041 
2042 	/*  Rx traffic interrupts */
2043 	if (mask & RX_TRAFFIC_INTR) {
2044 		intr_mask |= RXTRAFFIC_INT_M;
2045 		if (flag == ENABLE_INTRS) {
2046 			/* writing 0 Enables all 8 RX interrupt levels */
2047 			writeq(0x0, &bar0->rx_traffic_mask);
2048 		} else if (flag == DISABLE_INTRS) {
2049 			/*
2050 			 * Disable Rx Traffic Intrs in the general intr mask
2051 			 * register.
2052 			 */
2053 			writeq(DISABLE_ALL_INTRS, &bar0->rx_traffic_mask);
2054 		}
2055 	}
2056 
2057 	temp64 = readq(&bar0->general_int_mask);
2058 	if (flag == ENABLE_INTRS)
2059 		temp64 &= ~((u64)intr_mask);
2060 	else
2061 		temp64 = DISABLE_ALL_INTRS;
2062 	writeq(temp64, &bar0->general_int_mask);
2063 
2064 	nic->general_int_mask = readq(&bar0->general_int_mask);
2065 }
2066 
2067 /**
2068  *  verify_pcc_quiescent- Checks for PCC quiescent state
2069  *  @sp : private member of the device structure, which is a pointer to the
2070  *  s2io_nic structure.
2071  *  @flag: boolean controlling function path
2072  *  Return: 1 If PCC is quiescence
2073  *          0 If PCC is not quiescence
2074  */
2075 static int verify_pcc_quiescent(struct s2io_nic *sp, int flag)
2076 {
2077 	int ret = 0, herc;
2078 	struct XENA_dev_config __iomem *bar0 = sp->bar0;
2079 	u64 val64 = readq(&bar0->adapter_status);
2080 
2081 	herc = (sp->device_type == XFRAME_II_DEVICE);
2082 
2083 	if (flag == false) {
2084 		if ((!herc && (sp->pdev->revision >= 4)) || herc) {
2085 			if (!(val64 & ADAPTER_STATUS_RMAC_PCC_IDLE))
2086 				ret = 1;
2087 		} else {
2088 			if (!(val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE))
2089 				ret = 1;
2090 		}
2091 	} else {
2092 		if ((!herc && (sp->pdev->revision >= 4)) || herc) {
2093 			if (((val64 & ADAPTER_STATUS_RMAC_PCC_IDLE) ==
2094 			     ADAPTER_STATUS_RMAC_PCC_IDLE))
2095 				ret = 1;
2096 		} else {
2097 			if (((val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE) ==
2098 			     ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE))
2099 				ret = 1;
2100 		}
2101 	}
2102 
2103 	return ret;
2104 }
2105 /**
2106  *  verify_xena_quiescence - Checks whether the H/W is ready
2107  *  @sp : private member of the device structure, which is a pointer to the
2108  *  s2io_nic structure.
2109  *  Description: Returns whether the H/W is ready to go or not. Depending
2110  *  on whether adapter enable bit was written or not the comparison
2111  *  differs and the calling function passes the input argument flag to
2112  *  indicate this.
2113  *  Return: 1 If xena is quiescence
2114  *          0 If Xena is not quiescence
2115  */
2116 
2117 static int verify_xena_quiescence(struct s2io_nic *sp)
2118 {
2119 	int  mode;
2120 	struct XENA_dev_config __iomem *bar0 = sp->bar0;
2121 	u64 val64 = readq(&bar0->adapter_status);
2122 	mode = s2io_verify_pci_mode(sp);
2123 
2124 	if (!(val64 & ADAPTER_STATUS_TDMA_READY)) {
2125 		DBG_PRINT(ERR_DBG, "TDMA is not ready!\n");
2126 		return 0;
2127 	}
2128 	if (!(val64 & ADAPTER_STATUS_RDMA_READY)) {
2129 		DBG_PRINT(ERR_DBG, "RDMA is not ready!\n");
2130 		return 0;
2131 	}
2132 	if (!(val64 & ADAPTER_STATUS_PFC_READY)) {
2133 		DBG_PRINT(ERR_DBG, "PFC is not ready!\n");
2134 		return 0;
2135 	}
2136 	if (!(val64 & ADAPTER_STATUS_TMAC_BUF_EMPTY)) {
2137 		DBG_PRINT(ERR_DBG, "TMAC BUF is not empty!\n");
2138 		return 0;
2139 	}
2140 	if (!(val64 & ADAPTER_STATUS_PIC_QUIESCENT)) {
2141 		DBG_PRINT(ERR_DBG, "PIC is not QUIESCENT!\n");
2142 		return 0;
2143 	}
2144 	if (!(val64 & ADAPTER_STATUS_MC_DRAM_READY)) {
2145 		DBG_PRINT(ERR_DBG, "MC_DRAM is not ready!\n");
2146 		return 0;
2147 	}
2148 	if (!(val64 & ADAPTER_STATUS_MC_QUEUES_READY)) {
2149 		DBG_PRINT(ERR_DBG, "MC_QUEUES is not ready!\n");
2150 		return 0;
2151 	}
2152 	if (!(val64 & ADAPTER_STATUS_M_PLL_LOCK)) {
2153 		DBG_PRINT(ERR_DBG, "M_PLL is not locked!\n");
2154 		return 0;
2155 	}
2156 
2157 	/*
2158 	 * In PCI 33 mode, the P_PLL is not used, and therefore,
2159 	 * the the P_PLL_LOCK bit in the adapter_status register will
2160 	 * not be asserted.
2161 	 */
2162 	if (!(val64 & ADAPTER_STATUS_P_PLL_LOCK) &&
2163 	    sp->device_type == XFRAME_II_DEVICE &&
2164 	    mode != PCI_MODE_PCI_33) {
2165 		DBG_PRINT(ERR_DBG, "P_PLL is not locked!\n");
2166 		return 0;
2167 	}
2168 	if (!((val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ==
2169 	      ADAPTER_STATUS_RC_PRC_QUIESCENT)) {
2170 		DBG_PRINT(ERR_DBG, "RC_PRC is not QUIESCENT!\n");
2171 		return 0;
2172 	}
2173 	return 1;
2174 }
2175 
2176 /**
2177  * fix_mac_address -  Fix for Mac addr problem on Alpha platforms
2178  * @sp: Pointer to device specifc structure
2179  * Description :
2180  * New procedure to clear mac address reading  problems on Alpha platforms
2181  *
2182  */
2183 
2184 static void fix_mac_address(struct s2io_nic *sp)
2185 {
2186 	struct XENA_dev_config __iomem *bar0 = sp->bar0;
2187 	int i = 0;
2188 
2189 	while (fix_mac[i] != END_SIGN) {
2190 		writeq(fix_mac[i++], &bar0->gpio_control);
2191 		udelay(10);
2192 		(void) readq(&bar0->gpio_control);
2193 	}
2194 }
2195 
2196 /**
2197  *  start_nic - Turns the device on
2198  *  @nic : device private variable.
2199  *  Description:
2200  *  This function actually turns the device on. Before this  function is
2201  *  called,all Registers are configured from their reset states
2202  *  and shared memory is allocated but the NIC is still quiescent. On
2203  *  calling this function, the device interrupts are cleared and the NIC is
2204  *  literally switched on by writing into the adapter control register.
2205  *  Return Value:
2206  *  SUCCESS on success and -1 on failure.
2207  */
2208 
2209 static int start_nic(struct s2io_nic *nic)
2210 {
2211 	struct XENA_dev_config __iomem *bar0 = nic->bar0;
2212 	struct net_device *dev = nic->dev;
2213 	register u64 val64 = 0;
2214 	u16 subid, i;
2215 	struct config_param *config = &nic->config;
2216 	struct mac_info *mac_control = &nic->mac_control;
2217 
2218 	/*  PRC Initialization and configuration */
2219 	for (i = 0; i < config->rx_ring_num; i++) {
2220 		struct ring_info *ring = &mac_control->rings[i];
2221 
2222 		writeq((u64)ring->rx_blocks[0].block_dma_addr,
2223 		       &bar0->prc_rxd0_n[i]);
2224 
2225 		val64 = readq(&bar0->prc_ctrl_n[i]);
2226 		if (nic->rxd_mode == RXD_MODE_1)
2227 			val64 |= PRC_CTRL_RC_ENABLED;
2228 		else
2229 			val64 |= PRC_CTRL_RC_ENABLED | PRC_CTRL_RING_MODE_3;
2230 		if (nic->device_type == XFRAME_II_DEVICE)
2231 			val64 |= PRC_CTRL_GROUP_READS;
2232 		val64 &= ~PRC_CTRL_RXD_BACKOFF_INTERVAL(0xFFFFFF);
2233 		val64 |= PRC_CTRL_RXD_BACKOFF_INTERVAL(0x1000);
2234 		writeq(val64, &bar0->prc_ctrl_n[i]);
2235 	}
2236 
2237 	if (nic->rxd_mode == RXD_MODE_3B) {
2238 		/* Enabling 2 buffer mode by writing into Rx_pa_cfg reg. */
2239 		val64 = readq(&bar0->rx_pa_cfg);
2240 		val64 |= RX_PA_CFG_IGNORE_L2_ERR;
2241 		writeq(val64, &bar0->rx_pa_cfg);
2242 	}
2243 
2244 	if (vlan_tag_strip == 0) {
2245 		val64 = readq(&bar0->rx_pa_cfg);
2246 		val64 &= ~RX_PA_CFG_STRIP_VLAN_TAG;
2247 		writeq(val64, &bar0->rx_pa_cfg);
2248 		nic->vlan_strip_flag = 0;
2249 	}
2250 
2251 	/*
2252 	 * Enabling MC-RLDRAM. After enabling the device, we timeout
2253 	 * for around 100ms, which is approximately the time required
2254 	 * for the device to be ready for operation.
2255 	 */
2256 	val64 = readq(&bar0->mc_rldram_mrs);
2257 	val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE | MC_RLDRAM_MRS_ENABLE;
2258 	SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
2259 	val64 = readq(&bar0->mc_rldram_mrs);
2260 
2261 	msleep(100);	/* Delay by around 100 ms. */
2262 
2263 	/* Enabling ECC Protection. */
2264 	val64 = readq(&bar0->adapter_control);
2265 	val64 &= ~ADAPTER_ECC_EN;
2266 	writeq(val64, &bar0->adapter_control);
2267 
2268 	/*
2269 	 * Verify if the device is ready to be enabled, if so enable
2270 	 * it.
2271 	 */
2272 	val64 = readq(&bar0->adapter_status);
2273 	if (!verify_xena_quiescence(nic)) {
2274 		DBG_PRINT(ERR_DBG, "%s: device is not ready, "
2275 			  "Adapter status reads: 0x%llx\n",
2276 			  dev->name, (unsigned long long)val64);
2277 		return FAILURE;
2278 	}
2279 
2280 	/*
2281 	 * With some switches, link might be already up at this point.
2282 	 * Because of this weird behavior, when we enable laser,
2283 	 * we may not get link. We need to handle this. We cannot
2284 	 * figure out which switch is misbehaving. So we are forced to
2285 	 * make a global change.
2286 	 */
2287 
2288 	/* Enabling Laser. */
2289 	val64 = readq(&bar0->adapter_control);
2290 	val64 |= ADAPTER_EOI_TX_ON;
2291 	writeq(val64, &bar0->adapter_control);
2292 
2293 	if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
2294 		/*
2295 		 * Dont see link state interrupts initially on some switches,
2296 		 * so directly scheduling the link state task here.
2297 		 */
2298 		schedule_work(&nic->set_link_task);
2299 	}
2300 	/* SXE-002: Initialize link and activity LED */
2301 	subid = nic->pdev->subsystem_device;
2302 	if (((subid & 0xFF) >= 0x07) &&
2303 	    (nic->device_type == XFRAME_I_DEVICE)) {
2304 		val64 = readq(&bar0->gpio_control);
2305 		val64 |= 0x0000800000000000ULL;
2306 		writeq(val64, &bar0->gpio_control);
2307 		val64 = 0x0411040400000000ULL;
2308 		writeq(val64, (void __iomem *)bar0 + 0x2700);
2309 	}
2310 
2311 	return SUCCESS;
2312 }
2313 /**
2314  * s2io_txdl_getskb - Get the skb from txdl, unmap and return skb
2315  * @fifo_data: fifo data pointer
2316  * @txdlp: descriptor
2317  * @get_off: unused
2318  */
2319 static struct sk_buff *s2io_txdl_getskb(struct fifo_info *fifo_data,
2320 					struct TxD *txdlp, int get_off)
2321 {
2322 	struct s2io_nic *nic = fifo_data->nic;
2323 	struct sk_buff *skb;
2324 	struct TxD *txds;
2325 	u16 j, frg_cnt;
2326 
2327 	txds = txdlp;
2328 	if (txds->Host_Control == (u64)(long)fifo_data->ufo_in_band_v) {
2329 		dma_unmap_single(&nic->pdev->dev,
2330 				 (dma_addr_t)txds->Buffer_Pointer,
2331 				 sizeof(u64), DMA_TO_DEVICE);
2332 		txds++;
2333 	}
2334 
2335 	skb = (struct sk_buff *)((unsigned long)txds->Host_Control);
2336 	if (!skb) {
2337 		memset(txdlp, 0, (sizeof(struct TxD) * fifo_data->max_txds));
2338 		return NULL;
2339 	}
2340 	dma_unmap_single(&nic->pdev->dev, (dma_addr_t)txds->Buffer_Pointer,
2341 			 skb_headlen(skb), DMA_TO_DEVICE);
2342 	frg_cnt = skb_shinfo(skb)->nr_frags;
2343 	if (frg_cnt) {
2344 		txds++;
2345 		for (j = 0; j < frg_cnt; j++, txds++) {
2346 			const skb_frag_t *frag = &skb_shinfo(skb)->frags[j];
2347 			if (!txds->Buffer_Pointer)
2348 				break;
2349 			dma_unmap_page(&nic->pdev->dev,
2350 				       (dma_addr_t)txds->Buffer_Pointer,
2351 				       skb_frag_size(frag), DMA_TO_DEVICE);
2352 		}
2353 	}
2354 	memset(txdlp, 0, (sizeof(struct TxD) * fifo_data->max_txds));
2355 	return skb;
2356 }
2357 
2358 /**
2359  *  free_tx_buffers - Free all queued Tx buffers
2360  *  @nic : device private variable.
2361  *  Description:
2362  *  Free all queued Tx buffers.
2363  *  Return Value: void
2364  */
2365 
2366 static void free_tx_buffers(struct s2io_nic *nic)
2367 {
2368 	struct net_device *dev = nic->dev;
2369 	struct sk_buff *skb;
2370 	struct TxD *txdp;
2371 	int i, j;
2372 	int cnt = 0;
2373 	struct config_param *config = &nic->config;
2374 	struct mac_info *mac_control = &nic->mac_control;
2375 	struct stat_block *stats = mac_control->stats_info;
2376 	struct swStat *swstats = &stats->sw_stat;
2377 
2378 	for (i = 0; i < config->tx_fifo_num; i++) {
2379 		struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
2380 		struct fifo_info *fifo = &mac_control->fifos[i];
2381 		unsigned long flags;
2382 
2383 		spin_lock_irqsave(&fifo->tx_lock, flags);
2384 		for (j = 0; j < tx_cfg->fifo_len; j++) {
2385 			txdp = fifo->list_info[j].list_virt_addr;
2386 			skb = s2io_txdl_getskb(&mac_control->fifos[i], txdp, j);
2387 			if (skb) {
2388 				swstats->mem_freed += skb->truesize;
2389 				dev_kfree_skb(skb);
2390 				cnt++;
2391 			}
2392 		}
2393 		DBG_PRINT(INTR_DBG,
2394 			  "%s: forcibly freeing %d skbs on FIFO%d\n",
2395 			  dev->name, cnt, i);
2396 		fifo->tx_curr_get_info.offset = 0;
2397 		fifo->tx_curr_put_info.offset = 0;
2398 		spin_unlock_irqrestore(&fifo->tx_lock, flags);
2399 	}
2400 }
2401 
2402 /**
2403  *   stop_nic -  To stop the nic
2404  *   @nic : device private variable.
2405  *   Description:
2406  *   This function does exactly the opposite of what the start_nic()
2407  *   function does. This function is called to stop the device.
2408  *   Return Value:
2409  *   void.
2410  */
2411 
2412 static void stop_nic(struct s2io_nic *nic)
2413 {
2414 	struct XENA_dev_config __iomem *bar0 = nic->bar0;
2415 	register u64 val64 = 0;
2416 	u16 interruptible;
2417 
2418 	/*  Disable all interrupts */
2419 	en_dis_err_alarms(nic, ENA_ALL_INTRS, DISABLE_INTRS);
2420 	interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
2421 	interruptible |= TX_PIC_INTR;
2422 	en_dis_able_nic_intrs(nic, interruptible, DISABLE_INTRS);
2423 
2424 	/* Clearing Adapter_En bit of ADAPTER_CONTROL Register */
2425 	val64 = readq(&bar0->adapter_control);
2426 	val64 &= ~(ADAPTER_CNTL_EN);
2427 	writeq(val64, &bar0->adapter_control);
2428 }
2429 
2430 /**
2431  *  fill_rx_buffers - Allocates the Rx side skbs
2432  *  @nic : device private variable.
2433  *  @ring: per ring structure
2434  *  @from_card_up: If this is true, we will map the buffer to get
2435  *     the dma address for buf0 and buf1 to give it to the card.
2436  *     Else we will sync the already mapped buffer to give it to the card.
2437  *  Description:
2438  *  The function allocates Rx side skbs and puts the physical
2439  *  address of these buffers into the RxD buffer pointers, so that the NIC
2440  *  can DMA the received frame into these locations.
2441  *  The NIC supports 3 receive modes, viz
2442  *  1. single buffer,
2443  *  2. three buffer and
2444  *  3. Five buffer modes.
2445  *  Each mode defines how many fragments the received frame will be split
2446  *  up into by the NIC. The frame is split into L3 header, L4 Header,
2447  *  L4 payload in three buffer mode and in 5 buffer mode, L4 payload itself
2448  *  is split into 3 fragments. As of now only single buffer mode is
2449  *  supported.
2450  *   Return Value:
2451  *  SUCCESS on success or an appropriate -ve value on failure.
2452  */
2453 static int fill_rx_buffers(struct s2io_nic *nic, struct ring_info *ring,
2454 			   int from_card_up)
2455 {
2456 	struct sk_buff *skb;
2457 	struct RxD_t *rxdp;
2458 	int off, size, block_no, block_no1;
2459 	u32 alloc_tab = 0;
2460 	u32 alloc_cnt;
2461 	u64 tmp;
2462 	struct buffAdd *ba;
2463 	struct RxD_t *first_rxdp = NULL;
2464 	u64 Buffer0_ptr = 0, Buffer1_ptr = 0;
2465 	struct RxD1 *rxdp1;
2466 	struct RxD3 *rxdp3;
2467 	struct swStat *swstats = &ring->nic->mac_control.stats_info->sw_stat;
2468 
2469 	alloc_cnt = ring->pkt_cnt - ring->rx_bufs_left;
2470 
2471 	block_no1 = ring->rx_curr_get_info.block_index;
2472 	while (alloc_tab < alloc_cnt) {
2473 		block_no = ring->rx_curr_put_info.block_index;
2474 
2475 		off = ring->rx_curr_put_info.offset;
2476 
2477 		rxdp = ring->rx_blocks[block_no].rxds[off].virt_addr;
2478 
2479 		if ((block_no == block_no1) &&
2480 		    (off == ring->rx_curr_get_info.offset) &&
2481 		    (rxdp->Host_Control)) {
2482 			DBG_PRINT(INTR_DBG, "%s: Get and Put info equated\n",
2483 				  ring->dev->name);
2484 			goto end;
2485 		}
2486 		if (off && (off == ring->rxd_count)) {
2487 			ring->rx_curr_put_info.block_index++;
2488 			if (ring->rx_curr_put_info.block_index ==
2489 			    ring->block_count)
2490 				ring->rx_curr_put_info.block_index = 0;
2491 			block_no = ring->rx_curr_put_info.block_index;
2492 			off = 0;
2493 			ring->rx_curr_put_info.offset = off;
2494 			rxdp = ring->rx_blocks[block_no].block_virt_addr;
2495 			DBG_PRINT(INTR_DBG, "%s: Next block at: %p\n",
2496 				  ring->dev->name, rxdp);
2497 
2498 		}
2499 
2500 		if ((rxdp->Control_1 & RXD_OWN_XENA) &&
2501 		    ((ring->rxd_mode == RXD_MODE_3B) &&
2502 		     (rxdp->Control_2 & s2BIT(0)))) {
2503 			ring->rx_curr_put_info.offset = off;
2504 			goto end;
2505 		}
2506 		/* calculate size of skb based on ring mode */
2507 		size = ring->mtu +
2508 			HEADER_ETHERNET_II_802_3_SIZE +
2509 			HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
2510 		if (ring->rxd_mode == RXD_MODE_1)
2511 			size += NET_IP_ALIGN;
2512 		else
2513 			size = ring->mtu + ALIGN_SIZE + BUF0_LEN + 4;
2514 
2515 		/* allocate skb */
2516 		skb = netdev_alloc_skb(nic->dev, size);
2517 		if (!skb) {
2518 			DBG_PRINT(INFO_DBG, "%s: Could not allocate skb\n",
2519 				  ring->dev->name);
2520 			if (first_rxdp) {
2521 				dma_wmb();
2522 				first_rxdp->Control_1 |= RXD_OWN_XENA;
2523 			}
2524 			swstats->mem_alloc_fail_cnt++;
2525 
2526 			return -ENOMEM ;
2527 		}
2528 		swstats->mem_allocated += skb->truesize;
2529 
2530 		if (ring->rxd_mode == RXD_MODE_1) {
2531 			/* 1 buffer mode - normal operation mode */
2532 			rxdp1 = (struct RxD1 *)rxdp;
2533 			memset(rxdp, 0, sizeof(struct RxD1));
2534 			skb_reserve(skb, NET_IP_ALIGN);
2535 			rxdp1->Buffer0_ptr =
2536 				dma_map_single(&ring->pdev->dev, skb->data,
2537 					       size - NET_IP_ALIGN,
2538 					       DMA_FROM_DEVICE);
2539 			if (dma_mapping_error(&nic->pdev->dev, rxdp1->Buffer0_ptr))
2540 				goto pci_map_failed;
2541 
2542 			rxdp->Control_2 =
2543 				SET_BUFFER0_SIZE_1(size - NET_IP_ALIGN);
2544 			rxdp->Host_Control = (unsigned long)skb;
2545 		} else if (ring->rxd_mode == RXD_MODE_3B) {
2546 			/*
2547 			 * 2 buffer mode -
2548 			 * 2 buffer mode provides 128
2549 			 * byte aligned receive buffers.
2550 			 */
2551 
2552 			rxdp3 = (struct RxD3 *)rxdp;
2553 			/* save buffer pointers to avoid frequent dma mapping */
2554 			Buffer0_ptr = rxdp3->Buffer0_ptr;
2555 			Buffer1_ptr = rxdp3->Buffer1_ptr;
2556 			memset(rxdp, 0, sizeof(struct RxD3));
2557 			/* restore the buffer pointers for dma sync*/
2558 			rxdp3->Buffer0_ptr = Buffer0_ptr;
2559 			rxdp3->Buffer1_ptr = Buffer1_ptr;
2560 
2561 			ba = &ring->ba[block_no][off];
2562 			skb_reserve(skb, BUF0_LEN);
2563 			tmp = (u64)(unsigned long)skb->data;
2564 			tmp += ALIGN_SIZE;
2565 			tmp &= ~ALIGN_SIZE;
2566 			skb->data = (void *) (unsigned long)tmp;
2567 			skb_reset_tail_pointer(skb);
2568 
2569 			if (from_card_up) {
2570 				rxdp3->Buffer0_ptr =
2571 					dma_map_single(&ring->pdev->dev,
2572 						       ba->ba_0, BUF0_LEN,
2573 						       DMA_FROM_DEVICE);
2574 				if (dma_mapping_error(&nic->pdev->dev, rxdp3->Buffer0_ptr))
2575 					goto pci_map_failed;
2576 			} else
2577 				dma_sync_single_for_device(&ring->pdev->dev,
2578 							   (dma_addr_t)rxdp3->Buffer0_ptr,
2579 							   BUF0_LEN,
2580 							   DMA_FROM_DEVICE);
2581 
2582 			rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
2583 			if (ring->rxd_mode == RXD_MODE_3B) {
2584 				/* Two buffer mode */
2585 
2586 				/*
2587 				 * Buffer2 will have L3/L4 header plus
2588 				 * L4 payload
2589 				 */
2590 				rxdp3->Buffer2_ptr = dma_map_single(&ring->pdev->dev,
2591 								    skb->data,
2592 								    ring->mtu + 4,
2593 								    DMA_FROM_DEVICE);
2594 
2595 				if (dma_mapping_error(&nic->pdev->dev, rxdp3->Buffer2_ptr))
2596 					goto pci_map_failed;
2597 
2598 				if (from_card_up) {
2599 					rxdp3->Buffer1_ptr =
2600 						dma_map_single(&ring->pdev->dev,
2601 							       ba->ba_1,
2602 							       BUF1_LEN,
2603 							       DMA_FROM_DEVICE);
2604 
2605 					if (dma_mapping_error(&nic->pdev->dev,
2606 							      rxdp3->Buffer1_ptr)) {
2607 						dma_unmap_single(&ring->pdev->dev,
2608 								 (dma_addr_t)(unsigned long)
2609 								 skb->data,
2610 								 ring->mtu + 4,
2611 								 DMA_FROM_DEVICE);
2612 						goto pci_map_failed;
2613 					}
2614 				}
2615 				rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
2616 				rxdp->Control_2 |= SET_BUFFER2_SIZE_3
2617 					(ring->mtu + 4);
2618 			}
2619 			rxdp->Control_2 |= s2BIT(0);
2620 			rxdp->Host_Control = (unsigned long) (skb);
2621 		}
2622 		if (alloc_tab & ((1 << rxsync_frequency) - 1))
2623 			rxdp->Control_1 |= RXD_OWN_XENA;
2624 		off++;
2625 		if (off == (ring->rxd_count + 1))
2626 			off = 0;
2627 		ring->rx_curr_put_info.offset = off;
2628 
2629 		rxdp->Control_2 |= SET_RXD_MARKER;
2630 		if (!(alloc_tab & ((1 << rxsync_frequency) - 1))) {
2631 			if (first_rxdp) {
2632 				dma_wmb();
2633 				first_rxdp->Control_1 |= RXD_OWN_XENA;
2634 			}
2635 			first_rxdp = rxdp;
2636 		}
2637 		ring->rx_bufs_left += 1;
2638 		alloc_tab++;
2639 	}
2640 
2641 end:
2642 	/* Transfer ownership of first descriptor to adapter just before
2643 	 * exiting. Before that, use memory barrier so that ownership
2644 	 * and other fields are seen by adapter correctly.
2645 	 */
2646 	if (first_rxdp) {
2647 		dma_wmb();
2648 		first_rxdp->Control_1 |= RXD_OWN_XENA;
2649 	}
2650 
2651 	return SUCCESS;
2652 
2653 pci_map_failed:
2654 	swstats->pci_map_fail_cnt++;
2655 	swstats->mem_freed += skb->truesize;
2656 	dev_kfree_skb_irq(skb);
2657 	return -ENOMEM;
2658 }
2659 
2660 static void free_rxd_blk(struct s2io_nic *sp, int ring_no, int blk)
2661 {
2662 	struct net_device *dev = sp->dev;
2663 	int j;
2664 	struct sk_buff *skb;
2665 	struct RxD_t *rxdp;
2666 	struct RxD1 *rxdp1;
2667 	struct RxD3 *rxdp3;
2668 	struct mac_info *mac_control = &sp->mac_control;
2669 	struct stat_block *stats = mac_control->stats_info;
2670 	struct swStat *swstats = &stats->sw_stat;
2671 
2672 	for (j = 0 ; j < rxd_count[sp->rxd_mode]; j++) {
2673 		rxdp = mac_control->rings[ring_no].
2674 			rx_blocks[blk].rxds[j].virt_addr;
2675 		skb = (struct sk_buff *)((unsigned long)rxdp->Host_Control);
2676 		if (!skb)
2677 			continue;
2678 		if (sp->rxd_mode == RXD_MODE_1) {
2679 			rxdp1 = (struct RxD1 *)rxdp;
2680 			dma_unmap_single(&sp->pdev->dev,
2681 					 (dma_addr_t)rxdp1->Buffer0_ptr,
2682 					 dev->mtu +
2683 					 HEADER_ETHERNET_II_802_3_SIZE +
2684 					 HEADER_802_2_SIZE + HEADER_SNAP_SIZE,
2685 					 DMA_FROM_DEVICE);
2686 			memset(rxdp, 0, sizeof(struct RxD1));
2687 		} else if (sp->rxd_mode == RXD_MODE_3B) {
2688 			rxdp3 = (struct RxD3 *)rxdp;
2689 			dma_unmap_single(&sp->pdev->dev,
2690 					 (dma_addr_t)rxdp3->Buffer0_ptr,
2691 					 BUF0_LEN, DMA_FROM_DEVICE);
2692 			dma_unmap_single(&sp->pdev->dev,
2693 					 (dma_addr_t)rxdp3->Buffer1_ptr,
2694 					 BUF1_LEN, DMA_FROM_DEVICE);
2695 			dma_unmap_single(&sp->pdev->dev,
2696 					 (dma_addr_t)rxdp3->Buffer2_ptr,
2697 					 dev->mtu + 4, DMA_FROM_DEVICE);
2698 			memset(rxdp, 0, sizeof(struct RxD3));
2699 		}
2700 		swstats->mem_freed += skb->truesize;
2701 		dev_kfree_skb(skb);
2702 		mac_control->rings[ring_no].rx_bufs_left -= 1;
2703 	}
2704 }
2705 
2706 /**
2707  *  free_rx_buffers - Frees all Rx buffers
2708  *  @sp: device private variable.
2709  *  Description:
2710  *  This function will free all Rx buffers allocated by host.
2711  *  Return Value:
2712  *  NONE.
2713  */
2714 
2715 static void free_rx_buffers(struct s2io_nic *sp)
2716 {
2717 	struct net_device *dev = sp->dev;
2718 	int i, blk = 0, buf_cnt = 0;
2719 	struct config_param *config = &sp->config;
2720 	struct mac_info *mac_control = &sp->mac_control;
2721 
2722 	for (i = 0; i < config->rx_ring_num; i++) {
2723 		struct ring_info *ring = &mac_control->rings[i];
2724 
2725 		for (blk = 0; blk < rx_ring_sz[i]; blk++)
2726 			free_rxd_blk(sp, i, blk);
2727 
2728 		ring->rx_curr_put_info.block_index = 0;
2729 		ring->rx_curr_get_info.block_index = 0;
2730 		ring->rx_curr_put_info.offset = 0;
2731 		ring->rx_curr_get_info.offset = 0;
2732 		ring->rx_bufs_left = 0;
2733 		DBG_PRINT(INIT_DBG, "%s: Freed 0x%x Rx Buffers on ring%d\n",
2734 			  dev->name, buf_cnt, i);
2735 	}
2736 }
2737 
2738 static int s2io_chk_rx_buffers(struct s2io_nic *nic, struct ring_info *ring)
2739 {
2740 	if (fill_rx_buffers(nic, ring, 0) == -ENOMEM) {
2741 		DBG_PRINT(INFO_DBG, "%s: Out of memory in Rx Intr!!\n",
2742 			  ring->dev->name);
2743 	}
2744 	return 0;
2745 }
2746 
2747 /**
2748  * s2io_poll_msix - Rx interrupt handler for NAPI support
2749  * @napi : pointer to the napi structure.
2750  * @budget : The number of packets that were budgeted to be processed
2751  * during  one pass through the 'Poll" function.
2752  * Description:
2753  * Comes into picture only if NAPI support has been incorporated. It does
2754  * the same thing that rx_intr_handler does, but not in a interrupt context
2755  * also It will process only a given number of packets.
2756  * Return value:
2757  * 0 on success and 1 if there are No Rx packets to be processed.
2758  */
2759 
2760 static int s2io_poll_msix(struct napi_struct *napi, int budget)
2761 {
2762 	struct ring_info *ring = container_of(napi, struct ring_info, napi);
2763 	struct net_device *dev = ring->dev;
2764 	int pkts_processed = 0;
2765 	u8 __iomem *addr = NULL;
2766 	u8 val8 = 0;
2767 	struct s2io_nic *nic = netdev_priv(dev);
2768 	struct XENA_dev_config __iomem *bar0 = nic->bar0;
2769 	int budget_org = budget;
2770 
2771 	if (unlikely(!is_s2io_card_up(nic)))
2772 		return 0;
2773 
2774 	pkts_processed = rx_intr_handler(ring, budget);
2775 	s2io_chk_rx_buffers(nic, ring);
2776 
2777 	if (pkts_processed < budget_org) {
2778 		napi_complete_done(napi, pkts_processed);
2779 		/*Re Enable MSI-Rx Vector*/
2780 		addr = (u8 __iomem *)&bar0->xmsi_mask_reg;
2781 		addr += 7 - ring->ring_no;
2782 		val8 = (ring->ring_no == 0) ? 0x3f : 0xbf;
2783 		writeb(val8, addr);
2784 		val8 = readb(addr);
2785 	}
2786 	return pkts_processed;
2787 }
2788 
2789 static int s2io_poll_inta(struct napi_struct *napi, int budget)
2790 {
2791 	struct s2io_nic *nic = container_of(napi, struct s2io_nic, napi);
2792 	int pkts_processed = 0;
2793 	int ring_pkts_processed, i;
2794 	struct XENA_dev_config __iomem *bar0 = nic->bar0;
2795 	int budget_org = budget;
2796 	struct config_param *config = &nic->config;
2797 	struct mac_info *mac_control = &nic->mac_control;
2798 
2799 	if (unlikely(!is_s2io_card_up(nic)))
2800 		return 0;
2801 
2802 	for (i = 0; i < config->rx_ring_num; i++) {
2803 		struct ring_info *ring = &mac_control->rings[i];
2804 		ring_pkts_processed = rx_intr_handler(ring, budget);
2805 		s2io_chk_rx_buffers(nic, ring);
2806 		pkts_processed += ring_pkts_processed;
2807 		budget -= ring_pkts_processed;
2808 		if (budget <= 0)
2809 			break;
2810 	}
2811 	if (pkts_processed < budget_org) {
2812 		napi_complete_done(napi, pkts_processed);
2813 		/* Re enable the Rx interrupts for the ring */
2814 		writeq(0, &bar0->rx_traffic_mask);
2815 		readl(&bar0->rx_traffic_mask);
2816 	}
2817 	return pkts_processed;
2818 }
2819 
2820 #ifdef CONFIG_NET_POLL_CONTROLLER
2821 /**
2822  * s2io_netpoll - netpoll event handler entry point
2823  * @dev : pointer to the device structure.
2824  * Description:
2825  * 	This function will be called by upper layer to check for events on the
2826  * interface in situations where interrupts are disabled. It is used for
2827  * specific in-kernel networking tasks, such as remote consoles and kernel
2828  * debugging over the network (example netdump in RedHat).
2829  */
2830 static void s2io_netpoll(struct net_device *dev)
2831 {
2832 	struct s2io_nic *nic = netdev_priv(dev);
2833 	const int irq = nic->pdev->irq;
2834 	struct XENA_dev_config __iomem *bar0 = nic->bar0;
2835 	u64 val64 = 0xFFFFFFFFFFFFFFFFULL;
2836 	int i;
2837 	struct config_param *config = &nic->config;
2838 	struct mac_info *mac_control = &nic->mac_control;
2839 
2840 	if (pci_channel_offline(nic->pdev))
2841 		return;
2842 
2843 	disable_irq(irq);
2844 
2845 	writeq(val64, &bar0->rx_traffic_int);
2846 	writeq(val64, &bar0->tx_traffic_int);
2847 
2848 	/* we need to free up the transmitted skbufs or else netpoll will
2849 	 * run out of skbs and will fail and eventually netpoll application such
2850 	 * as netdump will fail.
2851 	 */
2852 	for (i = 0; i < config->tx_fifo_num; i++)
2853 		tx_intr_handler(&mac_control->fifos[i]);
2854 
2855 	/* check for received packet and indicate up to network */
2856 	for (i = 0; i < config->rx_ring_num; i++) {
2857 		struct ring_info *ring = &mac_control->rings[i];
2858 
2859 		rx_intr_handler(ring, 0);
2860 	}
2861 
2862 	for (i = 0; i < config->rx_ring_num; i++) {
2863 		struct ring_info *ring = &mac_control->rings[i];
2864 
2865 		if (fill_rx_buffers(nic, ring, 0) == -ENOMEM) {
2866 			DBG_PRINT(INFO_DBG,
2867 				  "%s: Out of memory in Rx Netpoll!!\n",
2868 				  dev->name);
2869 			break;
2870 		}
2871 	}
2872 	enable_irq(irq);
2873 }
2874 #endif
2875 
2876 /**
2877  *  rx_intr_handler - Rx interrupt handler
2878  *  @ring_data: per ring structure.
2879  *  @budget: budget for napi processing.
2880  *  Description:
2881  *  If the interrupt is because of a received frame or if the
2882  *  receive ring contains fresh as yet un-processed frames,this function is
2883  *  called. It picks out the RxD at which place the last Rx processing had
2884  *  stopped and sends the skb to the OSM's Rx handler and then increments
2885  *  the offset.
2886  *  Return Value:
2887  *  No. of napi packets processed.
2888  */
2889 static int rx_intr_handler(struct ring_info *ring_data, int budget)
2890 {
2891 	int get_block, put_block;
2892 	struct rx_curr_get_info get_info, put_info;
2893 	struct RxD_t *rxdp;
2894 	struct sk_buff *skb;
2895 	int pkt_cnt = 0, napi_pkts = 0;
2896 	int i;
2897 	struct RxD1 *rxdp1;
2898 	struct RxD3 *rxdp3;
2899 
2900 	if (budget <= 0)
2901 		return napi_pkts;
2902 
2903 	get_info = ring_data->rx_curr_get_info;
2904 	get_block = get_info.block_index;
2905 	memcpy(&put_info, &ring_data->rx_curr_put_info, sizeof(put_info));
2906 	put_block = put_info.block_index;
2907 	rxdp = ring_data->rx_blocks[get_block].rxds[get_info.offset].virt_addr;
2908 
2909 	while (RXD_IS_UP2DT(rxdp)) {
2910 		/*
2911 		 * If your are next to put index then it's
2912 		 * FIFO full condition
2913 		 */
2914 		if ((get_block == put_block) &&
2915 		    (get_info.offset + 1) == put_info.offset) {
2916 			DBG_PRINT(INTR_DBG, "%s: Ring Full\n",
2917 				  ring_data->dev->name);
2918 			break;
2919 		}
2920 		skb = (struct sk_buff *)((unsigned long)rxdp->Host_Control);
2921 		if (skb == NULL) {
2922 			DBG_PRINT(ERR_DBG, "%s: NULL skb in Rx Intr\n",
2923 				  ring_data->dev->name);
2924 			return 0;
2925 		}
2926 		if (ring_data->rxd_mode == RXD_MODE_1) {
2927 			rxdp1 = (struct RxD1 *)rxdp;
2928 			dma_unmap_single(&ring_data->pdev->dev,
2929 					 (dma_addr_t)rxdp1->Buffer0_ptr,
2930 					 ring_data->mtu +
2931 					 HEADER_ETHERNET_II_802_3_SIZE +
2932 					 HEADER_802_2_SIZE +
2933 					 HEADER_SNAP_SIZE,
2934 					 DMA_FROM_DEVICE);
2935 		} else if (ring_data->rxd_mode == RXD_MODE_3B) {
2936 			rxdp3 = (struct RxD3 *)rxdp;
2937 			dma_sync_single_for_cpu(&ring_data->pdev->dev,
2938 						(dma_addr_t)rxdp3->Buffer0_ptr,
2939 						BUF0_LEN, DMA_FROM_DEVICE);
2940 			dma_unmap_single(&ring_data->pdev->dev,
2941 					 (dma_addr_t)rxdp3->Buffer2_ptr,
2942 					 ring_data->mtu + 4, DMA_FROM_DEVICE);
2943 		}
2944 		prefetch(skb->data);
2945 		rx_osm_handler(ring_data, rxdp);
2946 		get_info.offset++;
2947 		ring_data->rx_curr_get_info.offset = get_info.offset;
2948 		rxdp = ring_data->rx_blocks[get_block].
2949 			rxds[get_info.offset].virt_addr;
2950 		if (get_info.offset == rxd_count[ring_data->rxd_mode]) {
2951 			get_info.offset = 0;
2952 			ring_data->rx_curr_get_info.offset = get_info.offset;
2953 			get_block++;
2954 			if (get_block == ring_data->block_count)
2955 				get_block = 0;
2956 			ring_data->rx_curr_get_info.block_index = get_block;
2957 			rxdp = ring_data->rx_blocks[get_block].block_virt_addr;
2958 		}
2959 
2960 		if (ring_data->nic->config.napi) {
2961 			budget--;
2962 			napi_pkts++;
2963 			if (!budget)
2964 				break;
2965 		}
2966 		pkt_cnt++;
2967 		if ((indicate_max_pkts) && (pkt_cnt > indicate_max_pkts))
2968 			break;
2969 	}
2970 	if (ring_data->lro) {
2971 		/* Clear all LRO sessions before exiting */
2972 		for (i = 0; i < MAX_LRO_SESSIONS; i++) {
2973 			struct lro *lro = &ring_data->lro0_n[i];
2974 			if (lro->in_use) {
2975 				update_L3L4_header(ring_data->nic, lro);
2976 				queue_rx_frame(lro->parent, lro->vlan_tag);
2977 				clear_lro_session(lro);
2978 			}
2979 		}
2980 	}
2981 	return napi_pkts;
2982 }
2983 
2984 /**
2985  *  tx_intr_handler - Transmit interrupt handler
2986  *  @fifo_data : fifo data pointer
2987  *  Description:
2988  *  If an interrupt was raised to indicate DMA complete of the
2989  *  Tx packet, this function is called. It identifies the last TxD
2990  *  whose buffer was freed and frees all skbs whose data have already
2991  *  DMA'ed into the NICs internal memory.
2992  *  Return Value:
2993  *  NONE
2994  */
2995 
2996 static void tx_intr_handler(struct fifo_info *fifo_data)
2997 {
2998 	struct s2io_nic *nic = fifo_data->nic;
2999 	struct tx_curr_get_info get_info, put_info;
3000 	struct sk_buff *skb = NULL;
3001 	struct TxD *txdlp;
3002 	int pkt_cnt = 0;
3003 	unsigned long flags = 0;
3004 	u8 err_mask;
3005 	struct stat_block *stats = nic->mac_control.stats_info;
3006 	struct swStat *swstats = &stats->sw_stat;
3007 
3008 	if (!spin_trylock_irqsave(&fifo_data->tx_lock, flags))
3009 		return;
3010 
3011 	get_info = fifo_data->tx_curr_get_info;
3012 	memcpy(&put_info, &fifo_data->tx_curr_put_info, sizeof(put_info));
3013 	txdlp = fifo_data->list_info[get_info.offset].list_virt_addr;
3014 	while ((!(txdlp->Control_1 & TXD_LIST_OWN_XENA)) &&
3015 	       (get_info.offset != put_info.offset) &&
3016 	       (txdlp->Host_Control)) {
3017 		/* Check for TxD errors */
3018 		if (txdlp->Control_1 & TXD_T_CODE) {
3019 			unsigned long long err;
3020 			err = txdlp->Control_1 & TXD_T_CODE;
3021 			if (err & 0x1) {
3022 				swstats->parity_err_cnt++;
3023 			}
3024 
3025 			/* update t_code statistics */
3026 			err_mask = err >> 48;
3027 			switch (err_mask) {
3028 			case 2:
3029 				swstats->tx_buf_abort_cnt++;
3030 				break;
3031 
3032 			case 3:
3033 				swstats->tx_desc_abort_cnt++;
3034 				break;
3035 
3036 			case 7:
3037 				swstats->tx_parity_err_cnt++;
3038 				break;
3039 
3040 			case 10:
3041 				swstats->tx_link_loss_cnt++;
3042 				break;
3043 
3044 			case 15:
3045 				swstats->tx_list_proc_err_cnt++;
3046 				break;
3047 			}
3048 		}
3049 
3050 		skb = s2io_txdl_getskb(fifo_data, txdlp, get_info.offset);
3051 		if (skb == NULL) {
3052 			spin_unlock_irqrestore(&fifo_data->tx_lock, flags);
3053 			DBG_PRINT(ERR_DBG, "%s: NULL skb in Tx Free Intr\n",
3054 				  __func__);
3055 			return;
3056 		}
3057 		pkt_cnt++;
3058 
3059 		/* Updating the statistics block */
3060 		swstats->mem_freed += skb->truesize;
3061 		dev_consume_skb_irq(skb);
3062 
3063 		get_info.offset++;
3064 		if (get_info.offset == get_info.fifo_len + 1)
3065 			get_info.offset = 0;
3066 		txdlp = fifo_data->list_info[get_info.offset].list_virt_addr;
3067 		fifo_data->tx_curr_get_info.offset = get_info.offset;
3068 	}
3069 
3070 	s2io_wake_tx_queue(fifo_data, pkt_cnt, nic->config.multiq);
3071 
3072 	spin_unlock_irqrestore(&fifo_data->tx_lock, flags);
3073 }
3074 
3075 /**
3076  *  s2io_mdio_write - Function to write in to MDIO registers
3077  *  @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
3078  *  @addr     : address value
3079  *  @value    : data value
3080  *  @dev      : pointer to net_device structure
3081  *  Description:
3082  *  This function is used to write values to the MDIO registers
3083  *  NONE
3084  */
3085 static void s2io_mdio_write(u32 mmd_type, u64 addr, u16 value,
3086 			    struct net_device *dev)
3087 {
3088 	u64 val64;
3089 	struct s2io_nic *sp = netdev_priv(dev);
3090 	struct XENA_dev_config __iomem *bar0 = sp->bar0;
3091 
3092 	/* address transaction */
3093 	val64 = MDIO_MMD_INDX_ADDR(addr) |
3094 		MDIO_MMD_DEV_ADDR(mmd_type) |
3095 		MDIO_MMS_PRT_ADDR(0x0);
3096 	writeq(val64, &bar0->mdio_control);
3097 	val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3098 	writeq(val64, &bar0->mdio_control);
3099 	udelay(100);
3100 
3101 	/* Data transaction */
3102 	val64 = MDIO_MMD_INDX_ADDR(addr) |
3103 		MDIO_MMD_DEV_ADDR(mmd_type) |
3104 		MDIO_MMS_PRT_ADDR(0x0) |
3105 		MDIO_MDIO_DATA(value) |
3106 		MDIO_OP(MDIO_OP_WRITE_TRANS);
3107 	writeq(val64, &bar0->mdio_control);
3108 	val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3109 	writeq(val64, &bar0->mdio_control);
3110 	udelay(100);
3111 
3112 	val64 = MDIO_MMD_INDX_ADDR(addr) |
3113 		MDIO_MMD_DEV_ADDR(mmd_type) |
3114 		MDIO_MMS_PRT_ADDR(0x0) |
3115 		MDIO_OP(MDIO_OP_READ_TRANS);
3116 	writeq(val64, &bar0->mdio_control);
3117 	val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3118 	writeq(val64, &bar0->mdio_control);
3119 	udelay(100);
3120 }
3121 
3122 /**
3123  *  s2io_mdio_read - Function to write in to MDIO registers
3124  *  @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
3125  *  @addr     : address value
3126  *  @dev      : pointer to net_device structure
3127  *  Description:
3128  *  This function is used to read values to the MDIO registers
3129  *  NONE
3130  */
3131 static u64 s2io_mdio_read(u32 mmd_type, u64 addr, struct net_device *dev)
3132 {
3133 	u64 val64 = 0x0;
3134 	u64 rval64 = 0x0;
3135 	struct s2io_nic *sp = netdev_priv(dev);
3136 	struct XENA_dev_config __iomem *bar0 = sp->bar0;
3137 
3138 	/* address transaction */
3139 	val64 = val64 | (MDIO_MMD_INDX_ADDR(addr)
3140 			 | MDIO_MMD_DEV_ADDR(mmd_type)
3141 			 | MDIO_MMS_PRT_ADDR(0x0));
3142 	writeq(val64, &bar0->mdio_control);
3143 	val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3144 	writeq(val64, &bar0->mdio_control);
3145 	udelay(100);
3146 
3147 	/* Data transaction */
3148 	val64 = MDIO_MMD_INDX_ADDR(addr) |
3149 		MDIO_MMD_DEV_ADDR(mmd_type) |
3150 		MDIO_MMS_PRT_ADDR(0x0) |
3151 		MDIO_OP(MDIO_OP_READ_TRANS);
3152 	writeq(val64, &bar0->mdio_control);
3153 	val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3154 	writeq(val64, &bar0->mdio_control);
3155 	udelay(100);
3156 
3157 	/* Read the value from regs */
3158 	rval64 = readq(&bar0->mdio_control);
3159 	rval64 = rval64 & 0xFFFF0000;
3160 	rval64 = rval64 >> 16;
3161 	return rval64;
3162 }
3163 
3164 /**
3165  *  s2io_chk_xpak_counter - Function to check the status of the xpak counters
3166  *  @counter      : counter value to be updated
3167  *  @regs_stat    : registers status
3168  *  @index        : index
3169  *  @flag         : flag to indicate the status
3170  *  @type         : counter type
3171  *  Description:
3172  *  This function is to check the status of the xpak counters value
3173  *  NONE
3174  */
3175 
3176 static void s2io_chk_xpak_counter(u64 *counter, u64 * regs_stat, u32 index,
3177 				  u16 flag, u16 type)
3178 {
3179 	u64 mask = 0x3;
3180 	u64 val64;
3181 	int i;
3182 	for (i = 0; i < index; i++)
3183 		mask = mask << 0x2;
3184 
3185 	if (flag > 0) {
3186 		*counter = *counter + 1;
3187 		val64 = *regs_stat & mask;
3188 		val64 = val64 >> (index * 0x2);
3189 		val64 = val64 + 1;
3190 		if (val64 == 3) {
3191 			switch (type) {
3192 			case 1:
3193 				DBG_PRINT(ERR_DBG,
3194 					  "Take Xframe NIC out of service.\n");
3195 				DBG_PRINT(ERR_DBG,
3196 "Excessive temperatures may result in premature transceiver failure.\n");
3197 				break;
3198 			case 2:
3199 				DBG_PRINT(ERR_DBG,
3200 					  "Take Xframe NIC out of service.\n");
3201 				DBG_PRINT(ERR_DBG,
3202 "Excessive bias currents may indicate imminent laser diode failure.\n");
3203 				break;
3204 			case 3:
3205 				DBG_PRINT(ERR_DBG,
3206 					  "Take Xframe NIC out of service.\n");
3207 				DBG_PRINT(ERR_DBG,
3208 "Excessive laser output power may saturate far-end receiver.\n");
3209 				break;
3210 			default:
3211 				DBG_PRINT(ERR_DBG,
3212 					  "Incorrect XPAK Alarm type\n");
3213 			}
3214 			val64 = 0x0;
3215 		}
3216 		val64 = val64 << (index * 0x2);
3217 		*regs_stat = (*regs_stat & (~mask)) | (val64);
3218 
3219 	} else {
3220 		*regs_stat = *regs_stat & (~mask);
3221 	}
3222 }
3223 
3224 /**
3225  *  s2io_updt_xpak_counter - Function to update the xpak counters
3226  *  @dev         : pointer to net_device struct
3227  *  Description:
3228  *  This function is to upate the status of the xpak counters value
3229  *  NONE
3230  */
3231 static void s2io_updt_xpak_counter(struct net_device *dev)
3232 {
3233 	u16 flag  = 0x0;
3234 	u16 type  = 0x0;
3235 	u16 val16 = 0x0;
3236 	u64 val64 = 0x0;
3237 	u64 addr  = 0x0;
3238 
3239 	struct s2io_nic *sp = netdev_priv(dev);
3240 	struct stat_block *stats = sp->mac_control.stats_info;
3241 	struct xpakStat *xstats = &stats->xpak_stat;
3242 
3243 	/* Check the communication with the MDIO slave */
3244 	addr = MDIO_CTRL1;
3245 	val64 = 0x0;
3246 	val64 = s2io_mdio_read(MDIO_MMD_PMAPMD, addr, dev);
3247 	if ((val64 == 0xFFFF) || (val64 == 0x0000)) {
3248 		DBG_PRINT(ERR_DBG,
3249 			  "ERR: MDIO slave access failed - Returned %llx\n",
3250 			  (unsigned long long)val64);
3251 		return;
3252 	}
3253 
3254 	/* Check for the expected value of control reg 1 */
3255 	if (val64 != MDIO_CTRL1_SPEED10G) {
3256 		DBG_PRINT(ERR_DBG, "Incorrect value at PMA address 0x0000 - "
3257 			  "Returned: %llx- Expected: 0x%x\n",
3258 			  (unsigned long long)val64, MDIO_CTRL1_SPEED10G);
3259 		return;
3260 	}
3261 
3262 	/* Loading the DOM register to MDIO register */
3263 	addr = 0xA100;
3264 	s2io_mdio_write(MDIO_MMD_PMAPMD, addr, val16, dev);
3265 	val64 = s2io_mdio_read(MDIO_MMD_PMAPMD, addr, dev);
3266 
3267 	/* Reading the Alarm flags */
3268 	addr = 0xA070;
3269 	val64 = 0x0;
3270 	val64 = s2io_mdio_read(MDIO_MMD_PMAPMD, addr, dev);
3271 
3272 	flag = CHECKBIT(val64, 0x7);
3273 	type = 1;
3274 	s2io_chk_xpak_counter(&xstats->alarm_transceiver_temp_high,
3275 			      &xstats->xpak_regs_stat,
3276 			      0x0, flag, type);
3277 
3278 	if (CHECKBIT(val64, 0x6))
3279 		xstats->alarm_transceiver_temp_low++;
3280 
3281 	flag = CHECKBIT(val64, 0x3);
3282 	type = 2;
3283 	s2io_chk_xpak_counter(&xstats->alarm_laser_bias_current_high,
3284 			      &xstats->xpak_regs_stat,
3285 			      0x2, flag, type);
3286 
3287 	if (CHECKBIT(val64, 0x2))
3288 		xstats->alarm_laser_bias_current_low++;
3289 
3290 	flag = CHECKBIT(val64, 0x1);
3291 	type = 3;
3292 	s2io_chk_xpak_counter(&xstats->alarm_laser_output_power_high,
3293 			      &xstats->xpak_regs_stat,
3294 			      0x4, flag, type);
3295 
3296 	if (CHECKBIT(val64, 0x0))
3297 		xstats->alarm_laser_output_power_low++;
3298 
3299 	/* Reading the Warning flags */
3300 	addr = 0xA074;
3301 	val64 = 0x0;
3302 	val64 = s2io_mdio_read(MDIO_MMD_PMAPMD, addr, dev);
3303 
3304 	if (CHECKBIT(val64, 0x7))
3305 		xstats->warn_transceiver_temp_high++;
3306 
3307 	if (CHECKBIT(val64, 0x6))
3308 		xstats->warn_transceiver_temp_low++;
3309 
3310 	if (CHECKBIT(val64, 0x3))
3311 		xstats->warn_laser_bias_current_high++;
3312 
3313 	if (CHECKBIT(val64, 0x2))
3314 		xstats->warn_laser_bias_current_low++;
3315 
3316 	if (CHECKBIT(val64, 0x1))
3317 		xstats->warn_laser_output_power_high++;
3318 
3319 	if (CHECKBIT(val64, 0x0))
3320 		xstats->warn_laser_output_power_low++;
3321 }
3322 
3323 /**
3324  *  wait_for_cmd_complete - waits for a command to complete.
3325  *  @addr: address
3326  *  @busy_bit: bit to check for busy
3327  *  @bit_state: state to check
3328  *  @may_sleep: parameter indicates if sleeping when waiting for
3329  *  command complete
3330  *  Description: Function that waits for a command to Write into RMAC
3331  *  ADDR DATA registers to be completed and returns either success or
3332  *  error depending on whether the command was complete or not.
3333  *  Return value:
3334  *   SUCCESS on success and FAILURE on failure.
3335  */
3336 
3337 static int wait_for_cmd_complete(void __iomem *addr, u64 busy_bit,
3338 				 int bit_state, bool may_sleep)
3339 {
3340 	int ret = FAILURE, cnt = 0, delay = 1;
3341 	u64 val64;
3342 
3343 	if ((bit_state != S2IO_BIT_RESET) && (bit_state != S2IO_BIT_SET))
3344 		return FAILURE;
3345 
3346 	do {
3347 		val64 = readq(addr);
3348 		if (bit_state == S2IO_BIT_RESET) {
3349 			if (!(val64 & busy_bit)) {
3350 				ret = SUCCESS;
3351 				break;
3352 			}
3353 		} else {
3354 			if (val64 & busy_bit) {
3355 				ret = SUCCESS;
3356 				break;
3357 			}
3358 		}
3359 
3360 		if (!may_sleep)
3361 			mdelay(delay);
3362 		else
3363 			msleep(delay);
3364 
3365 		if (++cnt >= 10)
3366 			delay = 50;
3367 	} while (cnt < 20);
3368 	return ret;
3369 }
3370 /**
3371  * check_pci_device_id - Checks if the device id is supported
3372  * @id : device id
3373  * Description: Function to check if the pci device id is supported by driver.
3374  * Return value: Actual device id if supported else PCI_ANY_ID
3375  */
3376 static u16 check_pci_device_id(u16 id)
3377 {
3378 	switch (id) {
3379 	case PCI_DEVICE_ID_HERC_WIN:
3380 	case PCI_DEVICE_ID_HERC_UNI:
3381 		return XFRAME_II_DEVICE;
3382 	case PCI_DEVICE_ID_S2IO_UNI:
3383 	case PCI_DEVICE_ID_S2IO_WIN:
3384 		return XFRAME_I_DEVICE;
3385 	default:
3386 		return PCI_ANY_ID;
3387 	}
3388 }
3389 
3390 /**
3391  *  s2io_reset - Resets the card.
3392  *  @sp : private member of the device structure.
3393  *  Description: Function to Reset the card. This function then also
3394  *  restores the previously saved PCI configuration space registers as
3395  *  the card reset also resets the configuration space.
3396  *  Return value:
3397  *  void.
3398  */
3399 
3400 static void s2io_reset(struct s2io_nic *sp)
3401 {
3402 	struct XENA_dev_config __iomem *bar0 = sp->bar0;
3403 	u64 val64;
3404 	u16 subid, pci_cmd;
3405 	int i;
3406 	u16 val16;
3407 	unsigned long long up_cnt, down_cnt, up_time, down_time, reset_cnt;
3408 	unsigned long long mem_alloc_cnt, mem_free_cnt, watchdog_cnt;
3409 	struct stat_block *stats;
3410 	struct swStat *swstats;
3411 
3412 	DBG_PRINT(INIT_DBG, "%s: Resetting XFrame card %s\n",
3413 		  __func__, pci_name(sp->pdev));
3414 
3415 	/* Back up  the PCI-X CMD reg, dont want to lose MMRBC, OST settings */
3416 	pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER, &(pci_cmd));
3417 
3418 	val64 = SW_RESET_ALL;
3419 	writeq(val64, &bar0->sw_reset);
3420 	if (strstr(sp->product_name, "CX4"))
3421 		msleep(750);
3422 	msleep(250);
3423 	for (i = 0; i < S2IO_MAX_PCI_CONFIG_SPACE_REINIT; i++) {
3424 
3425 		/* Restore the PCI state saved during initialization. */
3426 		pci_restore_state(sp->pdev);
3427 		pci_save_state(sp->pdev);
3428 		pci_read_config_word(sp->pdev, 0x2, &val16);
3429 		if (check_pci_device_id(val16) != (u16)PCI_ANY_ID)
3430 			break;
3431 		msleep(200);
3432 	}
3433 
3434 	if (check_pci_device_id(val16) == (u16)PCI_ANY_ID)
3435 		DBG_PRINT(ERR_DBG, "%s SW_Reset failed!\n", __func__);
3436 
3437 	pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER, pci_cmd);
3438 
3439 	s2io_init_pci(sp);
3440 
3441 	/* Set swapper to enable I/O register access */
3442 	s2io_set_swapper(sp);
3443 
3444 	/* restore mac_addr entries */
3445 	do_s2io_restore_unicast_mc(sp);
3446 
3447 	/* Restore the MSIX table entries from local variables */
3448 	restore_xmsi_data(sp);
3449 
3450 	/* Clear certain PCI/PCI-X fields after reset */
3451 	if (sp->device_type == XFRAME_II_DEVICE) {
3452 		/* Clear "detected parity error" bit */
3453 		pci_write_config_word(sp->pdev, PCI_STATUS, 0x8000);
3454 
3455 		/* Clearing PCIX Ecc status register */
3456 		pci_write_config_dword(sp->pdev, 0x68, 0x7C);
3457 
3458 		/* Clearing PCI_STATUS error reflected here */
3459 		writeq(s2BIT(62), &bar0->txpic_int_reg);
3460 	}
3461 
3462 	/* Reset device statistics maintained by OS */
3463 	memset(&sp->stats, 0, sizeof(struct net_device_stats));
3464 
3465 	stats = sp->mac_control.stats_info;
3466 	swstats = &stats->sw_stat;
3467 
3468 	/* save link up/down time/cnt, reset/memory/watchdog cnt */
3469 	up_cnt = swstats->link_up_cnt;
3470 	down_cnt = swstats->link_down_cnt;
3471 	up_time = swstats->link_up_time;
3472 	down_time = swstats->link_down_time;
3473 	reset_cnt = swstats->soft_reset_cnt;
3474 	mem_alloc_cnt = swstats->mem_allocated;
3475 	mem_free_cnt = swstats->mem_freed;
3476 	watchdog_cnt = swstats->watchdog_timer_cnt;
3477 
3478 	memset(stats, 0, sizeof(struct stat_block));
3479 
3480 	/* restore link up/down time/cnt, reset/memory/watchdog cnt */
3481 	swstats->link_up_cnt = up_cnt;
3482 	swstats->link_down_cnt = down_cnt;
3483 	swstats->link_up_time = up_time;
3484 	swstats->link_down_time = down_time;
3485 	swstats->soft_reset_cnt = reset_cnt;
3486 	swstats->mem_allocated = mem_alloc_cnt;
3487 	swstats->mem_freed = mem_free_cnt;
3488 	swstats->watchdog_timer_cnt = watchdog_cnt;
3489 
3490 	/* SXE-002: Configure link and activity LED to turn it off */
3491 	subid = sp->pdev->subsystem_device;
3492 	if (((subid & 0xFF) >= 0x07) &&
3493 	    (sp->device_type == XFRAME_I_DEVICE)) {
3494 		val64 = readq(&bar0->gpio_control);
3495 		val64 |= 0x0000800000000000ULL;
3496 		writeq(val64, &bar0->gpio_control);
3497 		val64 = 0x0411040400000000ULL;
3498 		writeq(val64, (void __iomem *)bar0 + 0x2700);
3499 	}
3500 
3501 	/*
3502 	 * Clear spurious ECC interrupts that would have occurred on
3503 	 * XFRAME II cards after reset.
3504 	 */
3505 	if (sp->device_type == XFRAME_II_DEVICE) {
3506 		val64 = readq(&bar0->pcc_err_reg);
3507 		writeq(val64, &bar0->pcc_err_reg);
3508 	}
3509 
3510 	sp->device_enabled_once = false;
3511 }
3512 
3513 /**
3514  *  s2io_set_swapper - to set the swapper controle on the card
3515  *  @sp : private member of the device structure,
3516  *  pointer to the s2io_nic structure.
3517  *  Description: Function to set the swapper control on the card
3518  *  correctly depending on the 'endianness' of the system.
3519  *  Return value:
3520  *  SUCCESS on success and FAILURE on failure.
3521  */
3522 
3523 static int s2io_set_swapper(struct s2io_nic *sp)
3524 {
3525 	struct net_device *dev = sp->dev;
3526 	struct XENA_dev_config __iomem *bar0 = sp->bar0;
3527 	u64 val64, valt, valr;
3528 
3529 	/*
3530 	 * Set proper endian settings and verify the same by reading
3531 	 * the PIF Feed-back register.
3532 	 */
3533 
3534 	val64 = readq(&bar0->pif_rd_swapper_fb);
3535 	if (val64 != 0x0123456789ABCDEFULL) {
3536 		int i = 0;
3537 		static const u64 value[] = {
3538 			0xC30000C3C30000C3ULL,	/* FE=1, SE=1 */
3539 			0x8100008181000081ULL,	/* FE=1, SE=0 */
3540 			0x4200004242000042ULL,	/* FE=0, SE=1 */
3541 			0			/* FE=0, SE=0 */
3542 		};
3543 
3544 		while (i < 4) {
3545 			writeq(value[i], &bar0->swapper_ctrl);
3546 			val64 = readq(&bar0->pif_rd_swapper_fb);
3547 			if (val64 == 0x0123456789ABCDEFULL)
3548 				break;
3549 			i++;
3550 		}
3551 		if (i == 4) {
3552 			DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, "
3553 				  "feedback read %llx\n",
3554 				  dev->name, (unsigned long long)val64);
3555 			return FAILURE;
3556 		}
3557 		valr = value[i];
3558 	} else {
3559 		valr = readq(&bar0->swapper_ctrl);
3560 	}
3561 
3562 	valt = 0x0123456789ABCDEFULL;
3563 	writeq(valt, &bar0->xmsi_address);
3564 	val64 = readq(&bar0->xmsi_address);
3565 
3566 	if (val64 != valt) {
3567 		int i = 0;
3568 		static const u64 value[] = {
3569 			0x00C3C30000C3C300ULL,	/* FE=1, SE=1 */
3570 			0x0081810000818100ULL,	/* FE=1, SE=0 */
3571 			0x0042420000424200ULL,	/* FE=0, SE=1 */
3572 			0			/* FE=0, SE=0 */
3573 		};
3574 
3575 		while (i < 4) {
3576 			writeq((value[i] | valr), &bar0->swapper_ctrl);
3577 			writeq(valt, &bar0->xmsi_address);
3578 			val64 = readq(&bar0->xmsi_address);
3579 			if (val64 == valt)
3580 				break;
3581 			i++;
3582 		}
3583 		if (i == 4) {
3584 			unsigned long long x = val64;
3585 			DBG_PRINT(ERR_DBG,
3586 				  "Write failed, Xmsi_addr reads:0x%llx\n", x);
3587 			return FAILURE;
3588 		}
3589 	}
3590 	val64 = readq(&bar0->swapper_ctrl);
3591 	val64 &= 0xFFFF000000000000ULL;
3592 
3593 #ifdef __BIG_ENDIAN
3594 	/*
3595 	 * The device by default set to a big endian format, so a
3596 	 * big endian driver need not set anything.
3597 	 */
3598 	val64 |= (SWAPPER_CTRL_TXP_FE |
3599 		  SWAPPER_CTRL_TXP_SE |
3600 		  SWAPPER_CTRL_TXD_R_FE |
3601 		  SWAPPER_CTRL_TXD_W_FE |
3602 		  SWAPPER_CTRL_TXF_R_FE |
3603 		  SWAPPER_CTRL_RXD_R_FE |
3604 		  SWAPPER_CTRL_RXD_W_FE |
3605 		  SWAPPER_CTRL_RXF_W_FE |
3606 		  SWAPPER_CTRL_XMSI_FE |
3607 		  SWAPPER_CTRL_STATS_FE |
3608 		  SWAPPER_CTRL_STATS_SE);
3609 	if (sp->config.intr_type == INTA)
3610 		val64 |= SWAPPER_CTRL_XMSI_SE;
3611 	writeq(val64, &bar0->swapper_ctrl);
3612 #else
3613 	/*
3614 	 * Initially we enable all bits to make it accessible by the
3615 	 * driver, then we selectively enable only those bits that
3616 	 * we want to set.
3617 	 */
3618 	val64 |= (SWAPPER_CTRL_TXP_FE |
3619 		  SWAPPER_CTRL_TXP_SE |
3620 		  SWAPPER_CTRL_TXD_R_FE |
3621 		  SWAPPER_CTRL_TXD_R_SE |
3622 		  SWAPPER_CTRL_TXD_W_FE |
3623 		  SWAPPER_CTRL_TXD_W_SE |
3624 		  SWAPPER_CTRL_TXF_R_FE |
3625 		  SWAPPER_CTRL_RXD_R_FE |
3626 		  SWAPPER_CTRL_RXD_R_SE |
3627 		  SWAPPER_CTRL_RXD_W_FE |
3628 		  SWAPPER_CTRL_RXD_W_SE |
3629 		  SWAPPER_CTRL_RXF_W_FE |
3630 		  SWAPPER_CTRL_XMSI_FE |
3631 		  SWAPPER_CTRL_STATS_FE |
3632 		  SWAPPER_CTRL_STATS_SE);
3633 	if (sp->config.intr_type == INTA)
3634 		val64 |= SWAPPER_CTRL_XMSI_SE;
3635 	writeq(val64, &bar0->swapper_ctrl);
3636 #endif
3637 	val64 = readq(&bar0->swapper_ctrl);
3638 
3639 	/*
3640 	 * Verifying if endian settings are accurate by reading a
3641 	 * feedback register.
3642 	 */
3643 	val64 = readq(&bar0->pif_rd_swapper_fb);
3644 	if (val64 != 0x0123456789ABCDEFULL) {
3645 		/* Endian settings are incorrect, calls for another dekko. */
3646 		DBG_PRINT(ERR_DBG,
3647 			  "%s: Endian settings are wrong, feedback read %llx\n",
3648 			  dev->name, (unsigned long long)val64);
3649 		return FAILURE;
3650 	}
3651 
3652 	return SUCCESS;
3653 }
3654 
3655 static int wait_for_msix_trans(struct s2io_nic *nic, int i)
3656 {
3657 	struct XENA_dev_config __iomem *bar0 = nic->bar0;
3658 	u64 val64;
3659 	int ret = 0, cnt = 0;
3660 
3661 	do {
3662 		val64 = readq(&bar0->xmsi_access);
3663 		if (!(val64 & s2BIT(15)))
3664 			break;
3665 		mdelay(1);
3666 		cnt++;
3667 	} while (cnt < 5);
3668 	if (cnt == 5) {
3669 		DBG_PRINT(ERR_DBG, "XMSI # %d Access failed\n", i);
3670 		ret = 1;
3671 	}
3672 
3673 	return ret;
3674 }
3675 
3676 static void restore_xmsi_data(struct s2io_nic *nic)
3677 {
3678 	struct XENA_dev_config __iomem *bar0 = nic->bar0;
3679 	u64 val64;
3680 	int i, msix_index;
3681 
3682 	if (nic->device_type == XFRAME_I_DEVICE)
3683 		return;
3684 
3685 	for (i = 0; i < MAX_REQUESTED_MSI_X; i++) {
3686 		msix_index = (i) ? ((i-1) * 8 + 1) : 0;
3687 		writeq(nic->msix_info[i].addr, &bar0->xmsi_address);
3688 		writeq(nic->msix_info[i].data, &bar0->xmsi_data);
3689 		val64 = (s2BIT(7) | s2BIT(15) | vBIT(msix_index, 26, 6));
3690 		writeq(val64, &bar0->xmsi_access);
3691 		if (wait_for_msix_trans(nic, msix_index))
3692 			DBG_PRINT(ERR_DBG, "%s: index: %d failed\n",
3693 				  __func__, msix_index);
3694 	}
3695 }
3696 
3697 static void store_xmsi_data(struct s2io_nic *nic)
3698 {
3699 	struct XENA_dev_config __iomem *bar0 = nic->bar0;
3700 	u64 val64, addr, data;
3701 	int i, msix_index;
3702 
3703 	if (nic->device_type == XFRAME_I_DEVICE)
3704 		return;
3705 
3706 	/* Store and display */
3707 	for (i = 0; i < MAX_REQUESTED_MSI_X; i++) {
3708 		msix_index = (i) ? ((i-1) * 8 + 1) : 0;
3709 		val64 = (s2BIT(15) | vBIT(msix_index, 26, 6));
3710 		writeq(val64, &bar0->xmsi_access);
3711 		if (wait_for_msix_trans(nic, msix_index)) {
3712 			DBG_PRINT(ERR_DBG, "%s: index: %d failed\n",
3713 				  __func__, msix_index);
3714 			continue;
3715 		}
3716 		addr = readq(&bar0->xmsi_address);
3717 		data = readq(&bar0->xmsi_data);
3718 		if (addr && data) {
3719 			nic->msix_info[i].addr = addr;
3720 			nic->msix_info[i].data = data;
3721 		}
3722 	}
3723 }
3724 
3725 static int s2io_enable_msi_x(struct s2io_nic *nic)
3726 {
3727 	struct XENA_dev_config __iomem *bar0 = nic->bar0;
3728 	u64 rx_mat;
3729 	u16 msi_control; /* Temp variable */
3730 	int ret, i, j, msix_indx = 1;
3731 	int size;
3732 	struct stat_block *stats = nic->mac_control.stats_info;
3733 	struct swStat *swstats = &stats->sw_stat;
3734 
3735 	size = nic->num_entries * sizeof(struct msix_entry);
3736 	nic->entries = kzalloc(size, GFP_KERNEL);
3737 	if (!nic->entries) {
3738 		DBG_PRINT(INFO_DBG, "%s: Memory allocation failed\n",
3739 			  __func__);
3740 		swstats->mem_alloc_fail_cnt++;
3741 		return -ENOMEM;
3742 	}
3743 	swstats->mem_allocated += size;
3744 
3745 	size = nic->num_entries * sizeof(struct s2io_msix_entry);
3746 	nic->s2io_entries = kzalloc(size, GFP_KERNEL);
3747 	if (!nic->s2io_entries) {
3748 		DBG_PRINT(INFO_DBG, "%s: Memory allocation failed\n",
3749 			  __func__);
3750 		swstats->mem_alloc_fail_cnt++;
3751 		kfree(nic->entries);
3752 		swstats->mem_freed
3753 			+= (nic->num_entries * sizeof(struct msix_entry));
3754 		return -ENOMEM;
3755 	}
3756 	swstats->mem_allocated += size;
3757 
3758 	nic->entries[0].entry = 0;
3759 	nic->s2io_entries[0].entry = 0;
3760 	nic->s2io_entries[0].in_use = MSIX_FLG;
3761 	nic->s2io_entries[0].type = MSIX_ALARM_TYPE;
3762 	nic->s2io_entries[0].arg = &nic->mac_control.fifos;
3763 
3764 	for (i = 1; i < nic->num_entries; i++) {
3765 		nic->entries[i].entry = ((i - 1) * 8) + 1;
3766 		nic->s2io_entries[i].entry = ((i - 1) * 8) + 1;
3767 		nic->s2io_entries[i].arg = NULL;
3768 		nic->s2io_entries[i].in_use = 0;
3769 	}
3770 
3771 	rx_mat = readq(&bar0->rx_mat);
3772 	for (j = 0; j < nic->config.rx_ring_num; j++) {
3773 		rx_mat |= RX_MAT_SET(j, msix_indx);
3774 		nic->s2io_entries[j+1].arg = &nic->mac_control.rings[j];
3775 		nic->s2io_entries[j+1].type = MSIX_RING_TYPE;
3776 		nic->s2io_entries[j+1].in_use = MSIX_FLG;
3777 		msix_indx += 8;
3778 	}
3779 	writeq(rx_mat, &bar0->rx_mat);
3780 	readq(&bar0->rx_mat);
3781 
3782 	ret = pci_enable_msix_range(nic->pdev, nic->entries,
3783 				    nic->num_entries, nic->num_entries);
3784 	/* We fail init if error or we get less vectors than min required */
3785 	if (ret < 0) {
3786 		DBG_PRINT(ERR_DBG, "Enabling MSI-X failed\n");
3787 		kfree(nic->entries);
3788 		swstats->mem_freed += nic->num_entries *
3789 			sizeof(struct msix_entry);
3790 		kfree(nic->s2io_entries);
3791 		swstats->mem_freed += nic->num_entries *
3792 			sizeof(struct s2io_msix_entry);
3793 		nic->entries = NULL;
3794 		nic->s2io_entries = NULL;
3795 		return -ENOMEM;
3796 	}
3797 
3798 	/*
3799 	 * To enable MSI-X, MSI also needs to be enabled, due to a bug
3800 	 * in the herc NIC. (Temp change, needs to be removed later)
3801 	 */
3802 	pci_read_config_word(nic->pdev, 0x42, &msi_control);
3803 	msi_control |= 0x1; /* Enable MSI */
3804 	pci_write_config_word(nic->pdev, 0x42, msi_control);
3805 
3806 	return 0;
3807 }
3808 
3809 /* Handle software interrupt used during MSI(X) test */
3810 static irqreturn_t s2io_test_intr(int irq, void *dev_id)
3811 {
3812 	struct s2io_nic *sp = dev_id;
3813 
3814 	sp->msi_detected = 1;
3815 	wake_up(&sp->msi_wait);
3816 
3817 	return IRQ_HANDLED;
3818 }
3819 
3820 /* Test interrupt path by forcing a a software IRQ */
3821 static int s2io_test_msi(struct s2io_nic *sp)
3822 {
3823 	struct pci_dev *pdev = sp->pdev;
3824 	struct XENA_dev_config __iomem *bar0 = sp->bar0;
3825 	int err;
3826 	u64 val64, saved64;
3827 
3828 	err = request_irq(sp->entries[1].vector, s2io_test_intr, 0,
3829 			  sp->name, sp);
3830 	if (err) {
3831 		DBG_PRINT(ERR_DBG, "%s: PCI %s: cannot assign irq %d\n",
3832 			  sp->dev->name, pci_name(pdev), pdev->irq);
3833 		return err;
3834 	}
3835 
3836 	init_waitqueue_head(&sp->msi_wait);
3837 	sp->msi_detected = 0;
3838 
3839 	saved64 = val64 = readq(&bar0->scheduled_int_ctrl);
3840 	val64 |= SCHED_INT_CTRL_ONE_SHOT;
3841 	val64 |= SCHED_INT_CTRL_TIMER_EN;
3842 	val64 |= SCHED_INT_CTRL_INT2MSI(1);
3843 	writeq(val64, &bar0->scheduled_int_ctrl);
3844 
3845 	wait_event_timeout(sp->msi_wait, sp->msi_detected, HZ/10);
3846 
3847 	if (!sp->msi_detected) {
3848 		/* MSI(X) test failed, go back to INTx mode */
3849 		DBG_PRINT(ERR_DBG, "%s: PCI %s: No interrupt was generated "
3850 			  "using MSI(X) during test\n",
3851 			  sp->dev->name, pci_name(pdev));
3852 
3853 		err = -EOPNOTSUPP;
3854 	}
3855 
3856 	free_irq(sp->entries[1].vector, sp);
3857 
3858 	writeq(saved64, &bar0->scheduled_int_ctrl);
3859 
3860 	return err;
3861 }
3862 
3863 static void remove_msix_isr(struct s2io_nic *sp)
3864 {
3865 	int i;
3866 	u16 msi_control;
3867 
3868 	for (i = 0; i < sp->num_entries; i++) {
3869 		if (sp->s2io_entries[i].in_use == MSIX_REGISTERED_SUCCESS) {
3870 			int vector = sp->entries[i].vector;
3871 			void *arg = sp->s2io_entries[i].arg;
3872 			free_irq(vector, arg);
3873 		}
3874 	}
3875 
3876 	kfree(sp->entries);
3877 	kfree(sp->s2io_entries);
3878 	sp->entries = NULL;
3879 	sp->s2io_entries = NULL;
3880 
3881 	pci_read_config_word(sp->pdev, 0x42, &msi_control);
3882 	msi_control &= 0xFFFE; /* Disable MSI */
3883 	pci_write_config_word(sp->pdev, 0x42, msi_control);
3884 
3885 	pci_disable_msix(sp->pdev);
3886 }
3887 
3888 static void remove_inta_isr(struct s2io_nic *sp)
3889 {
3890 	free_irq(sp->pdev->irq, sp->dev);
3891 }
3892 
3893 /* ********************************************************* *
3894  * Functions defined below concern the OS part of the driver *
3895  * ********************************************************* */
3896 
3897 /**
3898  *  s2io_open - open entry point of the driver
3899  *  @dev : pointer to the device structure.
3900  *  Description:
3901  *  This function is the open entry point of the driver. It mainly calls a
3902  *  function to allocate Rx buffers and inserts them into the buffer
3903  *  descriptors and then enables the Rx part of the NIC.
3904  *  Return value:
3905  *  0 on success and an appropriate (-)ve integer as defined in errno.h
3906  *   file on failure.
3907  */
3908 
3909 static int s2io_open(struct net_device *dev)
3910 {
3911 	struct s2io_nic *sp = netdev_priv(dev);
3912 	struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
3913 	int err = 0;
3914 
3915 	/*
3916 	 * Make sure you have link off by default every time
3917 	 * Nic is initialized
3918 	 */
3919 	netif_carrier_off(dev);
3920 	sp->last_link_state = 0;
3921 
3922 	/* Initialize H/W and enable interrupts */
3923 	err = s2io_card_up(sp);
3924 	if (err) {
3925 		DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
3926 			  dev->name);
3927 		goto hw_init_failed;
3928 	}
3929 
3930 	if (do_s2io_prog_unicast(dev, dev->dev_addr) == FAILURE) {
3931 		DBG_PRINT(ERR_DBG, "Set Mac Address Failed\n");
3932 		s2io_card_down(sp);
3933 		err = -ENODEV;
3934 		goto hw_init_failed;
3935 	}
3936 	s2io_start_all_tx_queue(sp);
3937 	return 0;
3938 
3939 hw_init_failed:
3940 	if (sp->config.intr_type == MSI_X) {
3941 		if (sp->entries) {
3942 			kfree(sp->entries);
3943 			swstats->mem_freed += sp->num_entries *
3944 				sizeof(struct msix_entry);
3945 		}
3946 		if (sp->s2io_entries) {
3947 			kfree(sp->s2io_entries);
3948 			swstats->mem_freed += sp->num_entries *
3949 				sizeof(struct s2io_msix_entry);
3950 		}
3951 	}
3952 	return err;
3953 }
3954 
3955 /**
3956  *  s2io_close -close entry point of the driver
3957  *  @dev : device pointer.
3958  *  Description:
3959  *  This is the stop entry point of the driver. It needs to undo exactly
3960  *  whatever was done by the open entry point,thus it's usually referred to
3961  *  as the close function.Among other things this function mainly stops the
3962  *  Rx side of the NIC and frees all the Rx buffers in the Rx rings.
3963  *  Return value:
3964  *  0 on success and an appropriate (-)ve integer as defined in errno.h
3965  *  file on failure.
3966  */
3967 
3968 static int s2io_close(struct net_device *dev)
3969 {
3970 	struct s2io_nic *sp = netdev_priv(dev);
3971 	struct config_param *config = &sp->config;
3972 	u64 tmp64;
3973 	int offset;
3974 
3975 	/* Return if the device is already closed               *
3976 	 *  Can happen when s2io_card_up failed in change_mtu    *
3977 	 */
3978 	if (!is_s2io_card_up(sp))
3979 		return 0;
3980 
3981 	s2io_stop_all_tx_queue(sp);
3982 	/* delete all populated mac entries */
3983 	for (offset = 1; offset < config->max_mc_addr; offset++) {
3984 		tmp64 = do_s2io_read_unicast_mc(sp, offset);
3985 		if (tmp64 != S2IO_DISABLE_MAC_ENTRY)
3986 			do_s2io_delete_unicast_mc(sp, tmp64);
3987 	}
3988 
3989 	s2io_card_down(sp);
3990 
3991 	return 0;
3992 }
3993 
3994 /**
3995  *  s2io_xmit - Tx entry point of te driver
3996  *  @skb : the socket buffer containing the Tx data.
3997  *  @dev : device pointer.
3998  *  Description :
3999  *  This function is the Tx entry point of the driver. S2IO NIC supports
4000  *  certain protocol assist features on Tx side, namely  CSO, S/G, LSO.
4001  *  NOTE: when device can't queue the pkt,just the trans_start variable will
4002  *  not be upadted.
4003  *  Return value:
4004  *  0 on success & 1 on failure.
4005  */
4006 
4007 static netdev_tx_t s2io_xmit(struct sk_buff *skb, struct net_device *dev)
4008 {
4009 	struct s2io_nic *sp = netdev_priv(dev);
4010 	u16 frg_cnt, frg_len, i, queue, queue_len, put_off, get_off;
4011 	register u64 val64;
4012 	struct TxD *txdp;
4013 	struct TxFIFO_element __iomem *tx_fifo;
4014 	unsigned long flags = 0;
4015 	u16 vlan_tag = 0;
4016 	struct fifo_info *fifo = NULL;
4017 	int offload_type;
4018 	int enable_per_list_interrupt = 0;
4019 	struct config_param *config = &sp->config;
4020 	struct mac_info *mac_control = &sp->mac_control;
4021 	struct stat_block *stats = mac_control->stats_info;
4022 	struct swStat *swstats = &stats->sw_stat;
4023 
4024 	DBG_PRINT(TX_DBG, "%s: In Neterion Tx routine\n", dev->name);
4025 
4026 	if (unlikely(skb->len <= 0)) {
4027 		DBG_PRINT(TX_DBG, "%s: Buffer has no data..\n", dev->name);
4028 		dev_kfree_skb_any(skb);
4029 		return NETDEV_TX_OK;
4030 	}
4031 
4032 	if (!is_s2io_card_up(sp)) {
4033 		DBG_PRINT(TX_DBG, "%s: Card going down for reset\n",
4034 			  dev->name);
4035 		dev_kfree_skb_any(skb);
4036 		return NETDEV_TX_OK;
4037 	}
4038 
4039 	queue = 0;
4040 	if (skb_vlan_tag_present(skb))
4041 		vlan_tag = skb_vlan_tag_get(skb);
4042 	if (sp->config.tx_steering_type == TX_DEFAULT_STEERING) {
4043 		if (skb->protocol == htons(ETH_P_IP)) {
4044 			struct iphdr *ip;
4045 			struct tcphdr *th;
4046 			ip = ip_hdr(skb);
4047 
4048 			if (!ip_is_fragment(ip)) {
4049 				th = (struct tcphdr *)(((unsigned char *)ip) +
4050 						       ip->ihl*4);
4051 
4052 				if (ip->protocol == IPPROTO_TCP) {
4053 					queue_len = sp->total_tcp_fifos;
4054 					queue = (ntohs(th->source) +
4055 						 ntohs(th->dest)) &
4056 						sp->fifo_selector[queue_len - 1];
4057 					if (queue >= queue_len)
4058 						queue = queue_len - 1;
4059 				} else if (ip->protocol == IPPROTO_UDP) {
4060 					queue_len = sp->total_udp_fifos;
4061 					queue = (ntohs(th->source) +
4062 						 ntohs(th->dest)) &
4063 						sp->fifo_selector[queue_len - 1];
4064 					if (queue >= queue_len)
4065 						queue = queue_len - 1;
4066 					queue += sp->udp_fifo_idx;
4067 					if (skb->len > 1024)
4068 						enable_per_list_interrupt = 1;
4069 				}
4070 			}
4071 		}
4072 	} else if (sp->config.tx_steering_type == TX_PRIORITY_STEERING)
4073 		/* get fifo number based on skb->priority value */
4074 		queue = config->fifo_mapping
4075 			[skb->priority & (MAX_TX_FIFOS - 1)];
4076 	fifo = &mac_control->fifos[queue];
4077 
4078 	spin_lock_irqsave(&fifo->tx_lock, flags);
4079 
4080 	if (sp->config.multiq) {
4081 		if (__netif_subqueue_stopped(dev, fifo->fifo_no)) {
4082 			spin_unlock_irqrestore(&fifo->tx_lock, flags);
4083 			return NETDEV_TX_BUSY;
4084 		}
4085 	} else if (unlikely(fifo->queue_state == FIFO_QUEUE_STOP)) {
4086 		if (netif_queue_stopped(dev)) {
4087 			spin_unlock_irqrestore(&fifo->tx_lock, flags);
4088 			return NETDEV_TX_BUSY;
4089 		}
4090 	}
4091 
4092 	put_off = (u16)fifo->tx_curr_put_info.offset;
4093 	get_off = (u16)fifo->tx_curr_get_info.offset;
4094 	txdp = fifo->list_info[put_off].list_virt_addr;
4095 
4096 	queue_len = fifo->tx_curr_put_info.fifo_len + 1;
4097 	/* Avoid "put" pointer going beyond "get" pointer */
4098 	if (txdp->Host_Control ||
4099 	    ((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
4100 		DBG_PRINT(TX_DBG, "Error in xmit, No free TXDs.\n");
4101 		s2io_stop_tx_queue(sp, fifo->fifo_no);
4102 		dev_kfree_skb_any(skb);
4103 		spin_unlock_irqrestore(&fifo->tx_lock, flags);
4104 		return NETDEV_TX_OK;
4105 	}
4106 
4107 	offload_type = s2io_offload_type(skb);
4108 	if (offload_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)) {
4109 		txdp->Control_1 |= TXD_TCP_LSO_EN;
4110 		txdp->Control_1 |= TXD_TCP_LSO_MSS(s2io_tcp_mss(skb));
4111 	}
4112 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
4113 		txdp->Control_2 |= (TXD_TX_CKO_IPV4_EN |
4114 				    TXD_TX_CKO_TCP_EN |
4115 				    TXD_TX_CKO_UDP_EN);
4116 	}
4117 	txdp->Control_1 |= TXD_GATHER_CODE_FIRST;
4118 	txdp->Control_1 |= TXD_LIST_OWN_XENA;
4119 	txdp->Control_2 |= TXD_INT_NUMBER(fifo->fifo_no);
4120 	if (enable_per_list_interrupt)
4121 		if (put_off & (queue_len >> 5))
4122 			txdp->Control_2 |= TXD_INT_TYPE_PER_LIST;
4123 	if (vlan_tag) {
4124 		txdp->Control_2 |= TXD_VLAN_ENABLE;
4125 		txdp->Control_2 |= TXD_VLAN_TAG(vlan_tag);
4126 	}
4127 
4128 	frg_len = skb_headlen(skb);
4129 	txdp->Buffer_Pointer = dma_map_single(&sp->pdev->dev, skb->data,
4130 					      frg_len, DMA_TO_DEVICE);
4131 	if (dma_mapping_error(&sp->pdev->dev, txdp->Buffer_Pointer))
4132 		goto pci_map_failed;
4133 
4134 	txdp->Host_Control = (unsigned long)skb;
4135 	txdp->Control_1 |= TXD_BUFFER0_SIZE(frg_len);
4136 
4137 	frg_cnt = skb_shinfo(skb)->nr_frags;
4138 	/* For fragmented SKB. */
4139 	for (i = 0; i < frg_cnt; i++) {
4140 		const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4141 		/* A '0' length fragment will be ignored */
4142 		if (!skb_frag_size(frag))
4143 			continue;
4144 		txdp++;
4145 		txdp->Buffer_Pointer = (u64)skb_frag_dma_map(&sp->pdev->dev,
4146 							     frag, 0,
4147 							     skb_frag_size(frag),
4148 							     DMA_TO_DEVICE);
4149 		txdp->Control_1 = TXD_BUFFER0_SIZE(skb_frag_size(frag));
4150 	}
4151 	txdp->Control_1 |= TXD_GATHER_CODE_LAST;
4152 
4153 	tx_fifo = mac_control->tx_FIFO_start[queue];
4154 	val64 = fifo->list_info[put_off].list_phy_addr;
4155 	writeq(val64, &tx_fifo->TxDL_Pointer);
4156 
4157 	val64 = (TX_FIFO_LAST_TXD_NUM(frg_cnt) | TX_FIFO_FIRST_LIST |
4158 		 TX_FIFO_LAST_LIST);
4159 	if (offload_type)
4160 		val64 |= TX_FIFO_SPECIAL_FUNC;
4161 
4162 	writeq(val64, &tx_fifo->List_Control);
4163 
4164 	put_off++;
4165 	if (put_off == fifo->tx_curr_put_info.fifo_len + 1)
4166 		put_off = 0;
4167 	fifo->tx_curr_put_info.offset = put_off;
4168 
4169 	/* Avoid "put" pointer going beyond "get" pointer */
4170 	if (((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
4171 		swstats->fifo_full_cnt++;
4172 		DBG_PRINT(TX_DBG,
4173 			  "No free TxDs for xmit, Put: 0x%x Get:0x%x\n",
4174 			  put_off, get_off);
4175 		s2io_stop_tx_queue(sp, fifo->fifo_no);
4176 	}
4177 	swstats->mem_allocated += skb->truesize;
4178 	spin_unlock_irqrestore(&fifo->tx_lock, flags);
4179 
4180 	if (sp->config.intr_type == MSI_X)
4181 		tx_intr_handler(fifo);
4182 
4183 	return NETDEV_TX_OK;
4184 
4185 pci_map_failed:
4186 	swstats->pci_map_fail_cnt++;
4187 	s2io_stop_tx_queue(sp, fifo->fifo_no);
4188 	swstats->mem_freed += skb->truesize;
4189 	dev_kfree_skb_any(skb);
4190 	spin_unlock_irqrestore(&fifo->tx_lock, flags);
4191 	return NETDEV_TX_OK;
4192 }
4193 
4194 static void
4195 s2io_alarm_handle(struct timer_list *t)
4196 {
4197 	struct s2io_nic *sp = from_timer(sp, t, alarm_timer);
4198 	struct net_device *dev = sp->dev;
4199 
4200 	s2io_handle_errors(dev);
4201 	mod_timer(&sp->alarm_timer, jiffies + HZ / 2);
4202 }
4203 
4204 static irqreturn_t s2io_msix_ring_handle(int irq, void *dev_id)
4205 {
4206 	struct ring_info *ring = (struct ring_info *)dev_id;
4207 	struct s2io_nic *sp = ring->nic;
4208 	struct XENA_dev_config __iomem *bar0 = sp->bar0;
4209 
4210 	if (unlikely(!is_s2io_card_up(sp)))
4211 		return IRQ_HANDLED;
4212 
4213 	if (sp->config.napi) {
4214 		u8 __iomem *addr = NULL;
4215 		u8 val8 = 0;
4216 
4217 		addr = (u8 __iomem *)&bar0->xmsi_mask_reg;
4218 		addr += (7 - ring->ring_no);
4219 		val8 = (ring->ring_no == 0) ? 0x7f : 0xff;
4220 		writeb(val8, addr);
4221 		val8 = readb(addr);
4222 		napi_schedule(&ring->napi);
4223 	} else {
4224 		rx_intr_handler(ring, 0);
4225 		s2io_chk_rx_buffers(sp, ring);
4226 	}
4227 
4228 	return IRQ_HANDLED;
4229 }
4230 
4231 static irqreturn_t s2io_msix_fifo_handle(int irq, void *dev_id)
4232 {
4233 	int i;
4234 	struct fifo_info *fifos = (struct fifo_info *)dev_id;
4235 	struct s2io_nic *sp = fifos->nic;
4236 	struct XENA_dev_config __iomem *bar0 = sp->bar0;
4237 	struct config_param *config  = &sp->config;
4238 	u64 reason;
4239 
4240 	if (unlikely(!is_s2io_card_up(sp)))
4241 		return IRQ_NONE;
4242 
4243 	reason = readq(&bar0->general_int_status);
4244 	if (unlikely(reason == S2IO_MINUS_ONE))
4245 		/* Nothing much can be done. Get out */
4246 		return IRQ_HANDLED;
4247 
4248 	if (reason & (GEN_INTR_TXPIC | GEN_INTR_TXTRAFFIC)) {
4249 		writeq(S2IO_MINUS_ONE, &bar0->general_int_mask);
4250 
4251 		if (reason & GEN_INTR_TXPIC)
4252 			s2io_txpic_intr_handle(sp);
4253 
4254 		if (reason & GEN_INTR_TXTRAFFIC)
4255 			writeq(S2IO_MINUS_ONE, &bar0->tx_traffic_int);
4256 
4257 		for (i = 0; i < config->tx_fifo_num; i++)
4258 			tx_intr_handler(&fifos[i]);
4259 
4260 		writeq(sp->general_int_mask, &bar0->general_int_mask);
4261 		readl(&bar0->general_int_status);
4262 		return IRQ_HANDLED;
4263 	}
4264 	/* The interrupt was not raised by us */
4265 	return IRQ_NONE;
4266 }
4267 
4268 static void s2io_txpic_intr_handle(struct s2io_nic *sp)
4269 {
4270 	struct XENA_dev_config __iomem *bar0 = sp->bar0;
4271 	u64 val64;
4272 
4273 	val64 = readq(&bar0->pic_int_status);
4274 	if (val64 & PIC_INT_GPIO) {
4275 		val64 = readq(&bar0->gpio_int_reg);
4276 		if ((val64 & GPIO_INT_REG_LINK_DOWN) &&
4277 		    (val64 & GPIO_INT_REG_LINK_UP)) {
4278 			/*
4279 			 * This is unstable state so clear both up/down
4280 			 * interrupt and adapter to re-evaluate the link state.
4281 			 */
4282 			val64 |= GPIO_INT_REG_LINK_DOWN;
4283 			val64 |= GPIO_INT_REG_LINK_UP;
4284 			writeq(val64, &bar0->gpio_int_reg);
4285 			val64 = readq(&bar0->gpio_int_mask);
4286 			val64 &= ~(GPIO_INT_MASK_LINK_UP |
4287 				   GPIO_INT_MASK_LINK_DOWN);
4288 			writeq(val64, &bar0->gpio_int_mask);
4289 		} else if (val64 & GPIO_INT_REG_LINK_UP) {
4290 			val64 = readq(&bar0->adapter_status);
4291 			/* Enable Adapter */
4292 			val64 = readq(&bar0->adapter_control);
4293 			val64 |= ADAPTER_CNTL_EN;
4294 			writeq(val64, &bar0->adapter_control);
4295 			val64 |= ADAPTER_LED_ON;
4296 			writeq(val64, &bar0->adapter_control);
4297 			if (!sp->device_enabled_once)
4298 				sp->device_enabled_once = 1;
4299 
4300 			s2io_link(sp, LINK_UP);
4301 			/*
4302 			 * unmask link down interrupt and mask link-up
4303 			 * intr
4304 			 */
4305 			val64 = readq(&bar0->gpio_int_mask);
4306 			val64 &= ~GPIO_INT_MASK_LINK_DOWN;
4307 			val64 |= GPIO_INT_MASK_LINK_UP;
4308 			writeq(val64, &bar0->gpio_int_mask);
4309 
4310 		} else if (val64 & GPIO_INT_REG_LINK_DOWN) {
4311 			val64 = readq(&bar0->adapter_status);
4312 			s2io_link(sp, LINK_DOWN);
4313 			/* Link is down so unmaks link up interrupt */
4314 			val64 = readq(&bar0->gpio_int_mask);
4315 			val64 &= ~GPIO_INT_MASK_LINK_UP;
4316 			val64 |= GPIO_INT_MASK_LINK_DOWN;
4317 			writeq(val64, &bar0->gpio_int_mask);
4318 
4319 			/* turn off LED */
4320 			val64 = readq(&bar0->adapter_control);
4321 			val64 = val64 & (~ADAPTER_LED_ON);
4322 			writeq(val64, &bar0->adapter_control);
4323 		}
4324 	}
4325 	val64 = readq(&bar0->gpio_int_mask);
4326 }
4327 
4328 /**
4329  *  do_s2io_chk_alarm_bit - Check for alarm and incrment the counter
4330  *  @value: alarm bits
4331  *  @addr: address value
4332  *  @cnt: counter variable
4333  *  Description: Check for alarm and increment the counter
4334  *  Return Value:
4335  *  1 - if alarm bit set
4336  *  0 - if alarm bit is not set
4337  */
4338 static int do_s2io_chk_alarm_bit(u64 value, void __iomem *addr,
4339 				 unsigned long long *cnt)
4340 {
4341 	u64 val64;
4342 	val64 = readq(addr);
4343 	if (val64 & value) {
4344 		writeq(val64, addr);
4345 		(*cnt)++;
4346 		return 1;
4347 	}
4348 	return 0;
4349 
4350 }
4351 
4352 /**
4353  *  s2io_handle_errors - Xframe error indication handler
4354  *  @dev_id: opaque handle to dev
4355  *  Description: Handle alarms such as loss of link, single or
4356  *  double ECC errors, critical and serious errors.
4357  *  Return Value:
4358  *  NONE
4359  */
4360 static void s2io_handle_errors(void *dev_id)
4361 {
4362 	struct net_device *dev = (struct net_device *)dev_id;
4363 	struct s2io_nic *sp = netdev_priv(dev);
4364 	struct XENA_dev_config __iomem *bar0 = sp->bar0;
4365 	u64 temp64 = 0, val64 = 0;
4366 	int i = 0;
4367 
4368 	struct swStat *sw_stat = &sp->mac_control.stats_info->sw_stat;
4369 	struct xpakStat *stats = &sp->mac_control.stats_info->xpak_stat;
4370 
4371 	if (!is_s2io_card_up(sp))
4372 		return;
4373 
4374 	if (pci_channel_offline(sp->pdev))
4375 		return;
4376 
4377 	memset(&sw_stat->ring_full_cnt, 0,
4378 	       sizeof(sw_stat->ring_full_cnt));
4379 
4380 	/* Handling the XPAK counters update */
4381 	if (stats->xpak_timer_count < 72000) {
4382 		/* waiting for an hour */
4383 		stats->xpak_timer_count++;
4384 	} else {
4385 		s2io_updt_xpak_counter(dev);
4386 		/* reset the count to zero */
4387 		stats->xpak_timer_count = 0;
4388 	}
4389 
4390 	/* Handling link status change error Intr */
4391 	if (s2io_link_fault_indication(sp) == MAC_RMAC_ERR_TIMER) {
4392 		val64 = readq(&bar0->mac_rmac_err_reg);
4393 		writeq(val64, &bar0->mac_rmac_err_reg);
4394 		if (val64 & RMAC_LINK_STATE_CHANGE_INT)
4395 			schedule_work(&sp->set_link_task);
4396 	}
4397 
4398 	/* In case of a serious error, the device will be Reset. */
4399 	if (do_s2io_chk_alarm_bit(SERR_SOURCE_ANY, &bar0->serr_source,
4400 				  &sw_stat->serious_err_cnt))
4401 		goto reset;
4402 
4403 	/* Check for data parity error */
4404 	if (do_s2io_chk_alarm_bit(GPIO_INT_REG_DP_ERR_INT, &bar0->gpio_int_reg,
4405 				  &sw_stat->parity_err_cnt))
4406 		goto reset;
4407 
4408 	/* Check for ring full counter */
4409 	if (sp->device_type == XFRAME_II_DEVICE) {
4410 		val64 = readq(&bar0->ring_bump_counter1);
4411 		for (i = 0; i < 4; i++) {
4412 			temp64 = (val64 & vBIT(0xFFFF, (i*16), 16));
4413 			temp64 >>= 64 - ((i+1)*16);
4414 			sw_stat->ring_full_cnt[i] += temp64;
4415 		}
4416 
4417 		val64 = readq(&bar0->ring_bump_counter2);
4418 		for (i = 0; i < 4; i++) {
4419 			temp64 = (val64 & vBIT(0xFFFF, (i*16), 16));
4420 			temp64 >>= 64 - ((i+1)*16);
4421 			sw_stat->ring_full_cnt[i+4] += temp64;
4422 		}
4423 	}
4424 
4425 	val64 = readq(&bar0->txdma_int_status);
4426 	/*check for pfc_err*/
4427 	if (val64 & TXDMA_PFC_INT) {
4428 		if (do_s2io_chk_alarm_bit(PFC_ECC_DB_ERR | PFC_SM_ERR_ALARM |
4429 					  PFC_MISC_0_ERR | PFC_MISC_1_ERR |
4430 					  PFC_PCIX_ERR,
4431 					  &bar0->pfc_err_reg,
4432 					  &sw_stat->pfc_err_cnt))
4433 			goto reset;
4434 		do_s2io_chk_alarm_bit(PFC_ECC_SG_ERR,
4435 				      &bar0->pfc_err_reg,
4436 				      &sw_stat->pfc_err_cnt);
4437 	}
4438 
4439 	/*check for tda_err*/
4440 	if (val64 & TXDMA_TDA_INT) {
4441 		if (do_s2io_chk_alarm_bit(TDA_Fn_ECC_DB_ERR |
4442 					  TDA_SM0_ERR_ALARM |
4443 					  TDA_SM1_ERR_ALARM,
4444 					  &bar0->tda_err_reg,
4445 					  &sw_stat->tda_err_cnt))
4446 			goto reset;
4447 		do_s2io_chk_alarm_bit(TDA_Fn_ECC_SG_ERR | TDA_PCIX_ERR,
4448 				      &bar0->tda_err_reg,
4449 				      &sw_stat->tda_err_cnt);
4450 	}
4451 	/*check for pcc_err*/
4452 	if (val64 & TXDMA_PCC_INT) {
4453 		if (do_s2io_chk_alarm_bit(PCC_SM_ERR_ALARM | PCC_WR_ERR_ALARM |
4454 					  PCC_N_SERR | PCC_6_COF_OV_ERR |
4455 					  PCC_7_COF_OV_ERR | PCC_6_LSO_OV_ERR |
4456 					  PCC_7_LSO_OV_ERR | PCC_FB_ECC_DB_ERR |
4457 					  PCC_TXB_ECC_DB_ERR,
4458 					  &bar0->pcc_err_reg,
4459 					  &sw_stat->pcc_err_cnt))
4460 			goto reset;
4461 		do_s2io_chk_alarm_bit(PCC_FB_ECC_SG_ERR | PCC_TXB_ECC_SG_ERR,
4462 				      &bar0->pcc_err_reg,
4463 				      &sw_stat->pcc_err_cnt);
4464 	}
4465 
4466 	/*check for tti_err*/
4467 	if (val64 & TXDMA_TTI_INT) {
4468 		if (do_s2io_chk_alarm_bit(TTI_SM_ERR_ALARM,
4469 					  &bar0->tti_err_reg,
4470 					  &sw_stat->tti_err_cnt))
4471 			goto reset;
4472 		do_s2io_chk_alarm_bit(TTI_ECC_SG_ERR | TTI_ECC_DB_ERR,
4473 				      &bar0->tti_err_reg,
4474 				      &sw_stat->tti_err_cnt);
4475 	}
4476 
4477 	/*check for lso_err*/
4478 	if (val64 & TXDMA_LSO_INT) {
4479 		if (do_s2io_chk_alarm_bit(LSO6_ABORT | LSO7_ABORT |
4480 					  LSO6_SM_ERR_ALARM | LSO7_SM_ERR_ALARM,
4481 					  &bar0->lso_err_reg,
4482 					  &sw_stat->lso_err_cnt))
4483 			goto reset;
4484 		do_s2io_chk_alarm_bit(LSO6_SEND_OFLOW | LSO7_SEND_OFLOW,
4485 				      &bar0->lso_err_reg,
4486 				      &sw_stat->lso_err_cnt);
4487 	}
4488 
4489 	/*check for tpa_err*/
4490 	if (val64 & TXDMA_TPA_INT) {
4491 		if (do_s2io_chk_alarm_bit(TPA_SM_ERR_ALARM,
4492 					  &bar0->tpa_err_reg,
4493 					  &sw_stat->tpa_err_cnt))
4494 			goto reset;
4495 		do_s2io_chk_alarm_bit(TPA_TX_FRM_DROP,
4496 				      &bar0->tpa_err_reg,
4497 				      &sw_stat->tpa_err_cnt);
4498 	}
4499 
4500 	/*check for sm_err*/
4501 	if (val64 & TXDMA_SM_INT) {
4502 		if (do_s2io_chk_alarm_bit(SM_SM_ERR_ALARM,
4503 					  &bar0->sm_err_reg,
4504 					  &sw_stat->sm_err_cnt))
4505 			goto reset;
4506 	}
4507 
4508 	val64 = readq(&bar0->mac_int_status);
4509 	if (val64 & MAC_INT_STATUS_TMAC_INT) {
4510 		if (do_s2io_chk_alarm_bit(TMAC_TX_BUF_OVRN | TMAC_TX_SM_ERR,
4511 					  &bar0->mac_tmac_err_reg,
4512 					  &sw_stat->mac_tmac_err_cnt))
4513 			goto reset;
4514 		do_s2io_chk_alarm_bit(TMAC_ECC_SG_ERR | TMAC_ECC_DB_ERR |
4515 				      TMAC_DESC_ECC_SG_ERR |
4516 				      TMAC_DESC_ECC_DB_ERR,
4517 				      &bar0->mac_tmac_err_reg,
4518 				      &sw_stat->mac_tmac_err_cnt);
4519 	}
4520 
4521 	val64 = readq(&bar0->xgxs_int_status);
4522 	if (val64 & XGXS_INT_STATUS_TXGXS) {
4523 		if (do_s2io_chk_alarm_bit(TXGXS_ESTORE_UFLOW | TXGXS_TX_SM_ERR,
4524 					  &bar0->xgxs_txgxs_err_reg,
4525 					  &sw_stat->xgxs_txgxs_err_cnt))
4526 			goto reset;
4527 		do_s2io_chk_alarm_bit(TXGXS_ECC_SG_ERR | TXGXS_ECC_DB_ERR,
4528 				      &bar0->xgxs_txgxs_err_reg,
4529 				      &sw_stat->xgxs_txgxs_err_cnt);
4530 	}
4531 
4532 	val64 = readq(&bar0->rxdma_int_status);
4533 	if (val64 & RXDMA_INT_RC_INT_M) {
4534 		if (do_s2io_chk_alarm_bit(RC_PRCn_ECC_DB_ERR |
4535 					  RC_FTC_ECC_DB_ERR |
4536 					  RC_PRCn_SM_ERR_ALARM |
4537 					  RC_FTC_SM_ERR_ALARM,
4538 					  &bar0->rc_err_reg,
4539 					  &sw_stat->rc_err_cnt))
4540 			goto reset;
4541 		do_s2io_chk_alarm_bit(RC_PRCn_ECC_SG_ERR |
4542 				      RC_FTC_ECC_SG_ERR |
4543 				      RC_RDA_FAIL_WR_Rn, &bar0->rc_err_reg,
4544 				      &sw_stat->rc_err_cnt);
4545 		if (do_s2io_chk_alarm_bit(PRC_PCI_AB_RD_Rn |
4546 					  PRC_PCI_AB_WR_Rn |
4547 					  PRC_PCI_AB_F_WR_Rn,
4548 					  &bar0->prc_pcix_err_reg,
4549 					  &sw_stat->prc_pcix_err_cnt))
4550 			goto reset;
4551 		do_s2io_chk_alarm_bit(PRC_PCI_DP_RD_Rn |
4552 				      PRC_PCI_DP_WR_Rn |
4553 				      PRC_PCI_DP_F_WR_Rn,
4554 				      &bar0->prc_pcix_err_reg,
4555 				      &sw_stat->prc_pcix_err_cnt);
4556 	}
4557 
4558 	if (val64 & RXDMA_INT_RPA_INT_M) {
4559 		if (do_s2io_chk_alarm_bit(RPA_SM_ERR_ALARM | RPA_CREDIT_ERR,
4560 					  &bar0->rpa_err_reg,
4561 					  &sw_stat->rpa_err_cnt))
4562 			goto reset;
4563 		do_s2io_chk_alarm_bit(RPA_ECC_SG_ERR | RPA_ECC_DB_ERR,
4564 				      &bar0->rpa_err_reg,
4565 				      &sw_stat->rpa_err_cnt);
4566 	}
4567 
4568 	if (val64 & RXDMA_INT_RDA_INT_M) {
4569 		if (do_s2io_chk_alarm_bit(RDA_RXDn_ECC_DB_ERR |
4570 					  RDA_FRM_ECC_DB_N_AERR |
4571 					  RDA_SM1_ERR_ALARM |
4572 					  RDA_SM0_ERR_ALARM |
4573 					  RDA_RXD_ECC_DB_SERR,
4574 					  &bar0->rda_err_reg,
4575 					  &sw_stat->rda_err_cnt))
4576 			goto reset;
4577 		do_s2io_chk_alarm_bit(RDA_RXDn_ECC_SG_ERR |
4578 				      RDA_FRM_ECC_SG_ERR |
4579 				      RDA_MISC_ERR |
4580 				      RDA_PCIX_ERR,
4581 				      &bar0->rda_err_reg,
4582 				      &sw_stat->rda_err_cnt);
4583 	}
4584 
4585 	if (val64 & RXDMA_INT_RTI_INT_M) {
4586 		if (do_s2io_chk_alarm_bit(RTI_SM_ERR_ALARM,
4587 					  &bar0->rti_err_reg,
4588 					  &sw_stat->rti_err_cnt))
4589 			goto reset;
4590 		do_s2io_chk_alarm_bit(RTI_ECC_SG_ERR | RTI_ECC_DB_ERR,
4591 				      &bar0->rti_err_reg,
4592 				      &sw_stat->rti_err_cnt);
4593 	}
4594 
4595 	val64 = readq(&bar0->mac_int_status);
4596 	if (val64 & MAC_INT_STATUS_RMAC_INT) {
4597 		if (do_s2io_chk_alarm_bit(RMAC_RX_BUFF_OVRN | RMAC_RX_SM_ERR,
4598 					  &bar0->mac_rmac_err_reg,
4599 					  &sw_stat->mac_rmac_err_cnt))
4600 			goto reset;
4601 		do_s2io_chk_alarm_bit(RMAC_UNUSED_INT |
4602 				      RMAC_SINGLE_ECC_ERR |
4603 				      RMAC_DOUBLE_ECC_ERR,
4604 				      &bar0->mac_rmac_err_reg,
4605 				      &sw_stat->mac_rmac_err_cnt);
4606 	}
4607 
4608 	val64 = readq(&bar0->xgxs_int_status);
4609 	if (val64 & XGXS_INT_STATUS_RXGXS) {
4610 		if (do_s2io_chk_alarm_bit(RXGXS_ESTORE_OFLOW | RXGXS_RX_SM_ERR,
4611 					  &bar0->xgxs_rxgxs_err_reg,
4612 					  &sw_stat->xgxs_rxgxs_err_cnt))
4613 			goto reset;
4614 	}
4615 
4616 	val64 = readq(&bar0->mc_int_status);
4617 	if (val64 & MC_INT_STATUS_MC_INT) {
4618 		if (do_s2io_chk_alarm_bit(MC_ERR_REG_SM_ERR,
4619 					  &bar0->mc_err_reg,
4620 					  &sw_stat->mc_err_cnt))
4621 			goto reset;
4622 
4623 		/* Handling Ecc errors */
4624 		if (val64 & (MC_ERR_REG_ECC_ALL_SNG | MC_ERR_REG_ECC_ALL_DBL)) {
4625 			writeq(val64, &bar0->mc_err_reg);
4626 			if (val64 & MC_ERR_REG_ECC_ALL_DBL) {
4627 				sw_stat->double_ecc_errs++;
4628 				if (sp->device_type != XFRAME_II_DEVICE) {
4629 					/*
4630 					 * Reset XframeI only if critical error
4631 					 */
4632 					if (val64 &
4633 					    (MC_ERR_REG_MIRI_ECC_DB_ERR_0 |
4634 					     MC_ERR_REG_MIRI_ECC_DB_ERR_1))
4635 						goto reset;
4636 				}
4637 			} else
4638 				sw_stat->single_ecc_errs++;
4639 		}
4640 	}
4641 	return;
4642 
4643 reset:
4644 	s2io_stop_all_tx_queue(sp);
4645 	schedule_work(&sp->rst_timer_task);
4646 	sw_stat->soft_reset_cnt++;
4647 }
4648 
4649 /**
4650  *  s2io_isr - ISR handler of the device .
4651  *  @irq: the irq of the device.
4652  *  @dev_id: a void pointer to the dev structure of the NIC.
4653  *  Description:  This function is the ISR handler of the device. It
4654  *  identifies the reason for the interrupt and calls the relevant
4655  *  service routines. As a contongency measure, this ISR allocates the
4656  *  recv buffers, if their numbers are below the panic value which is
4657  *  presently set to 25% of the original number of rcv buffers allocated.
4658  *  Return value:
4659  *   IRQ_HANDLED: will be returned if IRQ was handled by this routine
4660  *   IRQ_NONE: will be returned if interrupt is not from our device
4661  */
4662 static irqreturn_t s2io_isr(int irq, void *dev_id)
4663 {
4664 	struct net_device *dev = (struct net_device *)dev_id;
4665 	struct s2io_nic *sp = netdev_priv(dev);
4666 	struct XENA_dev_config __iomem *bar0 = sp->bar0;
4667 	int i;
4668 	u64 reason = 0;
4669 	struct mac_info *mac_control;
4670 	struct config_param *config;
4671 
4672 	/* Pretend we handled any irq's from a disconnected card */
4673 	if (pci_channel_offline(sp->pdev))
4674 		return IRQ_NONE;
4675 
4676 	if (!is_s2io_card_up(sp))
4677 		return IRQ_NONE;
4678 
4679 	config = &sp->config;
4680 	mac_control = &sp->mac_control;
4681 
4682 	/*
4683 	 * Identify the cause for interrupt and call the appropriate
4684 	 * interrupt handler. Causes for the interrupt could be;
4685 	 * 1. Rx of packet.
4686 	 * 2. Tx complete.
4687 	 * 3. Link down.
4688 	 */
4689 	reason = readq(&bar0->general_int_status);
4690 
4691 	if (unlikely(reason == S2IO_MINUS_ONE))
4692 		return IRQ_HANDLED;	/* Nothing much can be done. Get out */
4693 
4694 	if (reason &
4695 	    (GEN_INTR_RXTRAFFIC | GEN_INTR_TXTRAFFIC | GEN_INTR_TXPIC)) {
4696 		writeq(S2IO_MINUS_ONE, &bar0->general_int_mask);
4697 
4698 		if (config->napi) {
4699 			if (reason & GEN_INTR_RXTRAFFIC) {
4700 				napi_schedule(&sp->napi);
4701 				writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_mask);
4702 				writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
4703 				readl(&bar0->rx_traffic_int);
4704 			}
4705 		} else {
4706 			/*
4707 			 * rx_traffic_int reg is an R1 register, writing all 1's
4708 			 * will ensure that the actual interrupt causing bit
4709 			 * get's cleared and hence a read can be avoided.
4710 			 */
4711 			if (reason & GEN_INTR_RXTRAFFIC)
4712 				writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
4713 
4714 			for (i = 0; i < config->rx_ring_num; i++) {
4715 				struct ring_info *ring = &mac_control->rings[i];
4716 
4717 				rx_intr_handler(ring, 0);
4718 			}
4719 		}
4720 
4721 		/*
4722 		 * tx_traffic_int reg is an R1 register, writing all 1's
4723 		 * will ensure that the actual interrupt causing bit get's
4724 		 * cleared and hence a read can be avoided.
4725 		 */
4726 		if (reason & GEN_INTR_TXTRAFFIC)
4727 			writeq(S2IO_MINUS_ONE, &bar0->tx_traffic_int);
4728 
4729 		for (i = 0; i < config->tx_fifo_num; i++)
4730 			tx_intr_handler(&mac_control->fifos[i]);
4731 
4732 		if (reason & GEN_INTR_TXPIC)
4733 			s2io_txpic_intr_handle(sp);
4734 
4735 		/*
4736 		 * Reallocate the buffers from the interrupt handler itself.
4737 		 */
4738 		if (!config->napi) {
4739 			for (i = 0; i < config->rx_ring_num; i++) {
4740 				struct ring_info *ring = &mac_control->rings[i];
4741 
4742 				s2io_chk_rx_buffers(sp, ring);
4743 			}
4744 		}
4745 		writeq(sp->general_int_mask, &bar0->general_int_mask);
4746 		readl(&bar0->general_int_status);
4747 
4748 		return IRQ_HANDLED;
4749 
4750 	} else if (!reason) {
4751 		/* The interrupt was not raised by us */
4752 		return IRQ_NONE;
4753 	}
4754 
4755 	return IRQ_HANDLED;
4756 }
4757 
4758 /*
4759  * s2io_updt_stats -
4760  */
4761 static void s2io_updt_stats(struct s2io_nic *sp)
4762 {
4763 	struct XENA_dev_config __iomem *bar0 = sp->bar0;
4764 	u64 val64;
4765 	int cnt = 0;
4766 
4767 	if (is_s2io_card_up(sp)) {
4768 		/* Apprx 30us on a 133 MHz bus */
4769 		val64 = SET_UPDT_CLICKS(10) |
4770 			STAT_CFG_ONE_SHOT_EN | STAT_CFG_STAT_EN;
4771 		writeq(val64, &bar0->stat_cfg);
4772 		do {
4773 			udelay(100);
4774 			val64 = readq(&bar0->stat_cfg);
4775 			if (!(val64 & s2BIT(0)))
4776 				break;
4777 			cnt++;
4778 			if (cnt == 5)
4779 				break; /* Updt failed */
4780 		} while (1);
4781 	}
4782 }
4783 
4784 /**
4785  *  s2io_get_stats - Updates the device statistics structure.
4786  *  @dev : pointer to the device structure.
4787  *  Description:
4788  *  This function updates the device statistics structure in the s2io_nic
4789  *  structure and returns a pointer to the same.
4790  *  Return value:
4791  *  pointer to the updated net_device_stats structure.
4792  */
4793 static struct net_device_stats *s2io_get_stats(struct net_device *dev)
4794 {
4795 	struct s2io_nic *sp = netdev_priv(dev);
4796 	struct mac_info *mac_control = &sp->mac_control;
4797 	struct stat_block *stats = mac_control->stats_info;
4798 	u64 delta;
4799 
4800 	/* Configure Stats for immediate updt */
4801 	s2io_updt_stats(sp);
4802 
4803 	/* A device reset will cause the on-adapter statistics to be zero'ed.
4804 	 * This can be done while running by changing the MTU.  To prevent the
4805 	 * system from having the stats zero'ed, the driver keeps a copy of the
4806 	 * last update to the system (which is also zero'ed on reset).  This
4807 	 * enables the driver to accurately know the delta between the last
4808 	 * update and the current update.
4809 	 */
4810 	delta = ((u64) le32_to_cpu(stats->rmac_vld_frms_oflow) << 32 |
4811 		le32_to_cpu(stats->rmac_vld_frms)) - sp->stats.rx_packets;
4812 	sp->stats.rx_packets += delta;
4813 	dev->stats.rx_packets += delta;
4814 
4815 	delta = ((u64) le32_to_cpu(stats->tmac_frms_oflow) << 32 |
4816 		le32_to_cpu(stats->tmac_frms)) - sp->stats.tx_packets;
4817 	sp->stats.tx_packets += delta;
4818 	dev->stats.tx_packets += delta;
4819 
4820 	delta = ((u64) le32_to_cpu(stats->rmac_data_octets_oflow) << 32 |
4821 		le32_to_cpu(stats->rmac_data_octets)) - sp->stats.rx_bytes;
4822 	sp->stats.rx_bytes += delta;
4823 	dev->stats.rx_bytes += delta;
4824 
4825 	delta = ((u64) le32_to_cpu(stats->tmac_data_octets_oflow) << 32 |
4826 		le32_to_cpu(stats->tmac_data_octets)) - sp->stats.tx_bytes;
4827 	sp->stats.tx_bytes += delta;
4828 	dev->stats.tx_bytes += delta;
4829 
4830 	delta = le64_to_cpu(stats->rmac_drop_frms) - sp->stats.rx_errors;
4831 	sp->stats.rx_errors += delta;
4832 	dev->stats.rx_errors += delta;
4833 
4834 	delta = ((u64) le32_to_cpu(stats->tmac_any_err_frms_oflow) << 32 |
4835 		le32_to_cpu(stats->tmac_any_err_frms)) - sp->stats.tx_errors;
4836 	sp->stats.tx_errors += delta;
4837 	dev->stats.tx_errors += delta;
4838 
4839 	delta = le64_to_cpu(stats->rmac_drop_frms) - sp->stats.rx_dropped;
4840 	sp->stats.rx_dropped += delta;
4841 	dev->stats.rx_dropped += delta;
4842 
4843 	delta = le64_to_cpu(stats->tmac_drop_frms) - sp->stats.tx_dropped;
4844 	sp->stats.tx_dropped += delta;
4845 	dev->stats.tx_dropped += delta;
4846 
4847 	/* The adapter MAC interprets pause frames as multicast packets, but
4848 	 * does not pass them up.  This erroneously increases the multicast
4849 	 * packet count and needs to be deducted when the multicast frame count
4850 	 * is queried.
4851 	 */
4852 	delta = (u64) le32_to_cpu(stats->rmac_vld_mcst_frms_oflow) << 32 |
4853 		le32_to_cpu(stats->rmac_vld_mcst_frms);
4854 	delta -= le64_to_cpu(stats->rmac_pause_ctrl_frms);
4855 	delta -= sp->stats.multicast;
4856 	sp->stats.multicast += delta;
4857 	dev->stats.multicast += delta;
4858 
4859 	delta = ((u64) le32_to_cpu(stats->rmac_usized_frms_oflow) << 32 |
4860 		le32_to_cpu(stats->rmac_usized_frms)) +
4861 		le64_to_cpu(stats->rmac_long_frms) - sp->stats.rx_length_errors;
4862 	sp->stats.rx_length_errors += delta;
4863 	dev->stats.rx_length_errors += delta;
4864 
4865 	delta = le64_to_cpu(stats->rmac_fcs_err_frms) - sp->stats.rx_crc_errors;
4866 	sp->stats.rx_crc_errors += delta;
4867 	dev->stats.rx_crc_errors += delta;
4868 
4869 	return &dev->stats;
4870 }
4871 
4872 /**
4873  *  s2io_set_multicast - entry point for multicast address enable/disable.
4874  *  @dev : pointer to the device structure
4875  *  @may_sleep: parameter indicates if sleeping when waiting for command
4876  *  complete
4877  *  Description:
4878  *  This function is a driver entry point which gets called by the kernel
4879  *  whenever multicast addresses must be enabled/disabled. This also gets
4880  *  called to set/reset promiscuous mode. Depending on the deivce flag, we
4881  *  determine, if multicast address must be enabled or if promiscuous mode
4882  *  is to be disabled etc.
4883  *  Return value:
4884  *  void.
4885  */
4886 static void s2io_set_multicast(struct net_device *dev, bool may_sleep)
4887 {
4888 	int i, j, prev_cnt;
4889 	struct netdev_hw_addr *ha;
4890 	struct s2io_nic *sp = netdev_priv(dev);
4891 	struct XENA_dev_config __iomem *bar0 = sp->bar0;
4892 	u64 val64 = 0, multi_mac = 0x010203040506ULL, mask =
4893 		0xfeffffffffffULL;
4894 	u64 dis_addr = S2IO_DISABLE_MAC_ENTRY, mac_addr = 0;
4895 	void __iomem *add;
4896 	struct config_param *config = &sp->config;
4897 
4898 	if ((dev->flags & IFF_ALLMULTI) && (!sp->m_cast_flg)) {
4899 		/*  Enable all Multicast addresses */
4900 		writeq(RMAC_ADDR_DATA0_MEM_ADDR(multi_mac),
4901 		       &bar0->rmac_addr_data0_mem);
4902 		writeq(RMAC_ADDR_DATA1_MEM_MASK(mask),
4903 		       &bar0->rmac_addr_data1_mem);
4904 		val64 = RMAC_ADDR_CMD_MEM_WE |
4905 			RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4906 			RMAC_ADDR_CMD_MEM_OFFSET(config->max_mc_addr - 1);
4907 		writeq(val64, &bar0->rmac_addr_cmd_mem);
4908 		/* Wait till command completes */
4909 		wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4910 				      RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
4911 				      S2IO_BIT_RESET, may_sleep);
4912 
4913 		sp->m_cast_flg = 1;
4914 		sp->all_multi_pos = config->max_mc_addr - 1;
4915 	} else if ((dev->flags & IFF_ALLMULTI) && (sp->m_cast_flg)) {
4916 		/*  Disable all Multicast addresses */
4917 		writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
4918 		       &bar0->rmac_addr_data0_mem);
4919 		writeq(RMAC_ADDR_DATA1_MEM_MASK(0x0),
4920 		       &bar0->rmac_addr_data1_mem);
4921 		val64 = RMAC_ADDR_CMD_MEM_WE |
4922 			RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4923 			RMAC_ADDR_CMD_MEM_OFFSET(sp->all_multi_pos);
4924 		writeq(val64, &bar0->rmac_addr_cmd_mem);
4925 		/* Wait till command completes */
4926 		wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4927 				      RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
4928 				      S2IO_BIT_RESET, may_sleep);
4929 
4930 		sp->m_cast_flg = 0;
4931 		sp->all_multi_pos = 0;
4932 	}
4933 
4934 	if ((dev->flags & IFF_PROMISC) && (!sp->promisc_flg)) {
4935 		/*  Put the NIC into promiscuous mode */
4936 		add = &bar0->mac_cfg;
4937 		val64 = readq(&bar0->mac_cfg);
4938 		val64 |= MAC_CFG_RMAC_PROM_ENABLE;
4939 
4940 		writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4941 		writel((u32)val64, add);
4942 		writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4943 		writel((u32) (val64 >> 32), (add + 4));
4944 
4945 		if (vlan_tag_strip != 1) {
4946 			val64 = readq(&bar0->rx_pa_cfg);
4947 			val64 &= ~RX_PA_CFG_STRIP_VLAN_TAG;
4948 			writeq(val64, &bar0->rx_pa_cfg);
4949 			sp->vlan_strip_flag = 0;
4950 		}
4951 
4952 		val64 = readq(&bar0->mac_cfg);
4953 		sp->promisc_flg = 1;
4954 		DBG_PRINT(INFO_DBG, "%s: entered promiscuous mode\n",
4955 			  dev->name);
4956 	} else if (!(dev->flags & IFF_PROMISC) && (sp->promisc_flg)) {
4957 		/*  Remove the NIC from promiscuous mode */
4958 		add = &bar0->mac_cfg;
4959 		val64 = readq(&bar0->mac_cfg);
4960 		val64 &= ~MAC_CFG_RMAC_PROM_ENABLE;
4961 
4962 		writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4963 		writel((u32)val64, add);
4964 		writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4965 		writel((u32) (val64 >> 32), (add + 4));
4966 
4967 		if (vlan_tag_strip != 0) {
4968 			val64 = readq(&bar0->rx_pa_cfg);
4969 			val64 |= RX_PA_CFG_STRIP_VLAN_TAG;
4970 			writeq(val64, &bar0->rx_pa_cfg);
4971 			sp->vlan_strip_flag = 1;
4972 		}
4973 
4974 		val64 = readq(&bar0->mac_cfg);
4975 		sp->promisc_flg = 0;
4976 		DBG_PRINT(INFO_DBG, "%s: left promiscuous mode\n", dev->name);
4977 	}
4978 
4979 	/*  Update individual M_CAST address list */
4980 	if ((!sp->m_cast_flg) && netdev_mc_count(dev)) {
4981 		if (netdev_mc_count(dev) >
4982 		    (config->max_mc_addr - config->max_mac_addr)) {
4983 			DBG_PRINT(ERR_DBG,
4984 				  "%s: No more Rx filters can be added - "
4985 				  "please enable ALL_MULTI instead\n",
4986 				  dev->name);
4987 			return;
4988 		}
4989 
4990 		prev_cnt = sp->mc_addr_count;
4991 		sp->mc_addr_count = netdev_mc_count(dev);
4992 
4993 		/* Clear out the previous list of Mc in the H/W. */
4994 		for (i = 0; i < prev_cnt; i++) {
4995 			writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
4996 			       &bar0->rmac_addr_data0_mem);
4997 			writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
4998 			       &bar0->rmac_addr_data1_mem);
4999 			val64 = RMAC_ADDR_CMD_MEM_WE |
5000 				RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5001 				RMAC_ADDR_CMD_MEM_OFFSET
5002 				(config->mc_start_offset + i);
5003 			writeq(val64, &bar0->rmac_addr_cmd_mem);
5004 
5005 			/* Wait for command completes */
5006 			if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
5007 						  RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5008 						  S2IO_BIT_RESET, may_sleep)) {
5009 				DBG_PRINT(ERR_DBG,
5010 					  "%s: Adding Multicasts failed\n",
5011 					  dev->name);
5012 				return;
5013 			}
5014 		}
5015 
5016 		/* Create the new Rx filter list and update the same in H/W. */
5017 		i = 0;
5018 		netdev_for_each_mc_addr(ha, dev) {
5019 			mac_addr = 0;
5020 			for (j = 0; j < ETH_ALEN; j++) {
5021 				mac_addr |= ha->addr[j];
5022 				mac_addr <<= 8;
5023 			}
5024 			mac_addr >>= 8;
5025 			writeq(RMAC_ADDR_DATA0_MEM_ADDR(mac_addr),
5026 			       &bar0->rmac_addr_data0_mem);
5027 			writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
5028 			       &bar0->rmac_addr_data1_mem);
5029 			val64 = RMAC_ADDR_CMD_MEM_WE |
5030 				RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5031 				RMAC_ADDR_CMD_MEM_OFFSET
5032 				(i + config->mc_start_offset);
5033 			writeq(val64, &bar0->rmac_addr_cmd_mem);
5034 
5035 			/* Wait for command completes */
5036 			if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
5037 						  RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5038 						  S2IO_BIT_RESET, may_sleep)) {
5039 				DBG_PRINT(ERR_DBG,
5040 					  "%s: Adding Multicasts failed\n",
5041 					  dev->name);
5042 				return;
5043 			}
5044 			i++;
5045 		}
5046 	}
5047 }
5048 
5049 /* NDO wrapper for s2io_set_multicast */
5050 static void s2io_ndo_set_multicast(struct net_device *dev)
5051 {
5052 	s2io_set_multicast(dev, false);
5053 }
5054 
5055 /* read from CAM unicast & multicast addresses and store it in
5056  * def_mac_addr structure
5057  */
5058 static void do_s2io_store_unicast_mc(struct s2io_nic *sp)
5059 {
5060 	int offset;
5061 	u64 mac_addr = 0x0;
5062 	struct config_param *config = &sp->config;
5063 
5064 	/* store unicast & multicast mac addresses */
5065 	for (offset = 0; offset < config->max_mc_addr; offset++) {
5066 		mac_addr = do_s2io_read_unicast_mc(sp, offset);
5067 		/* if read fails disable the entry */
5068 		if (mac_addr == FAILURE)
5069 			mac_addr = S2IO_DISABLE_MAC_ENTRY;
5070 		do_s2io_copy_mac_addr(sp, offset, mac_addr);
5071 	}
5072 }
5073 
5074 /* restore unicast & multicast MAC to CAM from def_mac_addr structure */
5075 static void do_s2io_restore_unicast_mc(struct s2io_nic *sp)
5076 {
5077 	int offset;
5078 	struct config_param *config = &sp->config;
5079 	/* restore unicast mac address */
5080 	for (offset = 0; offset < config->max_mac_addr; offset++)
5081 		do_s2io_prog_unicast(sp->dev,
5082 				     sp->def_mac_addr[offset].mac_addr);
5083 
5084 	/* restore multicast mac address */
5085 	for (offset = config->mc_start_offset;
5086 	     offset < config->max_mc_addr; offset++)
5087 		do_s2io_add_mc(sp, sp->def_mac_addr[offset].mac_addr);
5088 }
5089 
5090 /* add a multicast MAC address to CAM */
5091 static int do_s2io_add_mc(struct s2io_nic *sp, u8 *addr)
5092 {
5093 	int i;
5094 	u64 mac_addr = 0;
5095 	struct config_param *config = &sp->config;
5096 
5097 	for (i = 0; i < ETH_ALEN; i++) {
5098 		mac_addr <<= 8;
5099 		mac_addr |= addr[i];
5100 	}
5101 	if ((0ULL == mac_addr) || (mac_addr == S2IO_DISABLE_MAC_ENTRY))
5102 		return SUCCESS;
5103 
5104 	/* check if the multicast mac already preset in CAM */
5105 	for (i = config->mc_start_offset; i < config->max_mc_addr; i++) {
5106 		u64 tmp64;
5107 		tmp64 = do_s2io_read_unicast_mc(sp, i);
5108 		if (tmp64 == S2IO_DISABLE_MAC_ENTRY) /* CAM entry is empty */
5109 			break;
5110 
5111 		if (tmp64 == mac_addr)
5112 			return SUCCESS;
5113 	}
5114 	if (i == config->max_mc_addr) {
5115 		DBG_PRINT(ERR_DBG,
5116 			  "CAM full no space left for multicast MAC\n");
5117 		return FAILURE;
5118 	}
5119 	/* Update the internal structure with this new mac address */
5120 	do_s2io_copy_mac_addr(sp, i, mac_addr);
5121 
5122 	return do_s2io_add_mac(sp, mac_addr, i);
5123 }
5124 
5125 /* add MAC address to CAM */
5126 static int do_s2io_add_mac(struct s2io_nic *sp, u64 addr, int off)
5127 {
5128 	u64 val64;
5129 	struct XENA_dev_config __iomem *bar0 = sp->bar0;
5130 
5131 	writeq(RMAC_ADDR_DATA0_MEM_ADDR(addr),
5132 	       &bar0->rmac_addr_data0_mem);
5133 
5134 	val64 =	RMAC_ADDR_CMD_MEM_WE | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5135 		RMAC_ADDR_CMD_MEM_OFFSET(off);
5136 	writeq(val64, &bar0->rmac_addr_cmd_mem);
5137 
5138 	/* Wait till command completes */
5139 	if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
5140 				  RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5141 				  S2IO_BIT_RESET, true)) {
5142 		DBG_PRINT(INFO_DBG, "do_s2io_add_mac failed\n");
5143 		return FAILURE;
5144 	}
5145 	return SUCCESS;
5146 }
5147 /* deletes a specified unicast/multicast mac entry from CAM */
5148 static int do_s2io_delete_unicast_mc(struct s2io_nic *sp, u64 addr)
5149 {
5150 	int offset;
5151 	u64 dis_addr = S2IO_DISABLE_MAC_ENTRY, tmp64;
5152 	struct config_param *config = &sp->config;
5153 
5154 	for (offset = 1;
5155 	     offset < config->max_mc_addr; offset++) {
5156 		tmp64 = do_s2io_read_unicast_mc(sp, offset);
5157 		if (tmp64 == addr) {
5158 			/* disable the entry by writing  0xffffffffffffULL */
5159 			if (do_s2io_add_mac(sp, dis_addr, offset) ==  FAILURE)
5160 				return FAILURE;
5161 			/* store the new mac list from CAM */
5162 			do_s2io_store_unicast_mc(sp);
5163 			return SUCCESS;
5164 		}
5165 	}
5166 	DBG_PRINT(ERR_DBG, "MAC address 0x%llx not found in CAM\n",
5167 		  (unsigned long long)addr);
5168 	return FAILURE;
5169 }
5170 
5171 /* read mac entries from CAM */
5172 static u64 do_s2io_read_unicast_mc(struct s2io_nic *sp, int offset)
5173 {
5174 	u64 tmp64, val64;
5175 	struct XENA_dev_config __iomem *bar0 = sp->bar0;
5176 
5177 	/* read mac addr */
5178 	val64 =	RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5179 		RMAC_ADDR_CMD_MEM_OFFSET(offset);
5180 	writeq(val64, &bar0->rmac_addr_cmd_mem);
5181 
5182 	/* Wait till command completes */
5183 	if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
5184 				  RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5185 				  S2IO_BIT_RESET, true)) {
5186 		DBG_PRINT(INFO_DBG, "do_s2io_read_unicast_mc failed\n");
5187 		return FAILURE;
5188 	}
5189 	tmp64 = readq(&bar0->rmac_addr_data0_mem);
5190 
5191 	return tmp64 >> 16;
5192 }
5193 
5194 /*
5195  * s2io_set_mac_addr - driver entry point
5196  */
5197 
5198 static int s2io_set_mac_addr(struct net_device *dev, void *p)
5199 {
5200 	struct sockaddr *addr = p;
5201 
5202 	if (!is_valid_ether_addr(addr->sa_data))
5203 		return -EADDRNOTAVAIL;
5204 
5205 	memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
5206 
5207 	/* store the MAC address in CAM */
5208 	return do_s2io_prog_unicast(dev, dev->dev_addr);
5209 }
5210 /**
5211  *  do_s2io_prog_unicast - Programs the Xframe mac address
5212  *  @dev : pointer to the device structure.
5213  *  @addr: a uchar pointer to the new mac address which is to be set.
5214  *  Description : This procedure will program the Xframe to receive
5215  *  frames with new Mac Address
5216  *  Return value: SUCCESS on success and an appropriate (-)ve integer
5217  *  as defined in errno.h file on failure.
5218  */
5219 
5220 static int do_s2io_prog_unicast(struct net_device *dev, u8 *addr)
5221 {
5222 	struct s2io_nic *sp = netdev_priv(dev);
5223 	register u64 mac_addr = 0, perm_addr = 0;
5224 	int i;
5225 	u64 tmp64;
5226 	struct config_param *config = &sp->config;
5227 
5228 	/*
5229 	 * Set the new MAC address as the new unicast filter and reflect this
5230 	 * change on the device address registered with the OS. It will be
5231 	 * at offset 0.
5232 	 */
5233 	for (i = 0; i < ETH_ALEN; i++) {
5234 		mac_addr <<= 8;
5235 		mac_addr |= addr[i];
5236 		perm_addr <<= 8;
5237 		perm_addr |= sp->def_mac_addr[0].mac_addr[i];
5238 	}
5239 
5240 	/* check if the dev_addr is different than perm_addr */
5241 	if (mac_addr == perm_addr)
5242 		return SUCCESS;
5243 
5244 	/* check if the mac already preset in CAM */
5245 	for (i = 1; i < config->max_mac_addr; i++) {
5246 		tmp64 = do_s2io_read_unicast_mc(sp, i);
5247 		if (tmp64 == S2IO_DISABLE_MAC_ENTRY) /* CAM entry is empty */
5248 			break;
5249 
5250 		if (tmp64 == mac_addr) {
5251 			DBG_PRINT(INFO_DBG,
5252 				  "MAC addr:0x%llx already present in CAM\n",
5253 				  (unsigned long long)mac_addr);
5254 			return SUCCESS;
5255 		}
5256 	}
5257 	if (i == config->max_mac_addr) {
5258 		DBG_PRINT(ERR_DBG, "CAM full no space left for Unicast MAC\n");
5259 		return FAILURE;
5260 	}
5261 	/* Update the internal structure with this new mac address */
5262 	do_s2io_copy_mac_addr(sp, i, mac_addr);
5263 
5264 	return do_s2io_add_mac(sp, mac_addr, i);
5265 }
5266 
5267 /**
5268  * s2io_ethtool_set_link_ksettings - Sets different link parameters.
5269  * @dev : pointer to netdev
5270  * @cmd: pointer to the structure with parameters given by ethtool to set
5271  * link information.
5272  * Description:
5273  * The function sets different link parameters provided by the user onto
5274  * the NIC.
5275  * Return value:
5276  * 0 on success.
5277  */
5278 
5279 static int
5280 s2io_ethtool_set_link_ksettings(struct net_device *dev,
5281 				const struct ethtool_link_ksettings *cmd)
5282 {
5283 	struct s2io_nic *sp = netdev_priv(dev);
5284 	if ((cmd->base.autoneg == AUTONEG_ENABLE) ||
5285 	    (cmd->base.speed != SPEED_10000) ||
5286 	    (cmd->base.duplex != DUPLEX_FULL))
5287 		return -EINVAL;
5288 	else {
5289 		s2io_close(sp->dev);
5290 		s2io_open(sp->dev);
5291 	}
5292 
5293 	return 0;
5294 }
5295 
5296 /**
5297  * s2io_ethtool_get_link_ksettings - Return link specific information.
5298  * @dev: pointer to netdev
5299  * @cmd : pointer to the structure with parameters given by ethtool
5300  * to return link information.
5301  * Description:
5302  * Returns link specific information like speed, duplex etc.. to ethtool.
5303  * Return value :
5304  * return 0 on success.
5305  */
5306 
5307 static int
5308 s2io_ethtool_get_link_ksettings(struct net_device *dev,
5309 				struct ethtool_link_ksettings *cmd)
5310 {
5311 	struct s2io_nic *sp = netdev_priv(dev);
5312 
5313 	ethtool_link_ksettings_zero_link_mode(cmd, supported);
5314 	ethtool_link_ksettings_add_link_mode(cmd, supported, 10000baseT_Full);
5315 	ethtool_link_ksettings_add_link_mode(cmd, supported, FIBRE);
5316 
5317 	ethtool_link_ksettings_zero_link_mode(cmd, advertising);
5318 	ethtool_link_ksettings_add_link_mode(cmd, advertising, 10000baseT_Full);
5319 	ethtool_link_ksettings_add_link_mode(cmd, advertising, FIBRE);
5320 
5321 	cmd->base.port = PORT_FIBRE;
5322 
5323 	if (netif_carrier_ok(sp->dev)) {
5324 		cmd->base.speed = SPEED_10000;
5325 		cmd->base.duplex = DUPLEX_FULL;
5326 	} else {
5327 		cmd->base.speed = SPEED_UNKNOWN;
5328 		cmd->base.duplex = DUPLEX_UNKNOWN;
5329 	}
5330 
5331 	cmd->base.autoneg = AUTONEG_DISABLE;
5332 	return 0;
5333 }
5334 
5335 /**
5336  * s2io_ethtool_gdrvinfo - Returns driver specific information.
5337  * @dev: pointer to netdev
5338  * @info : pointer to the structure with parameters given by ethtool to
5339  * return driver information.
5340  * Description:
5341  * Returns driver specefic information like name, version etc.. to ethtool.
5342  * Return value:
5343  *  void
5344  */
5345 
5346 static void s2io_ethtool_gdrvinfo(struct net_device *dev,
5347 				  struct ethtool_drvinfo *info)
5348 {
5349 	struct s2io_nic *sp = netdev_priv(dev);
5350 
5351 	strlcpy(info->driver, s2io_driver_name, sizeof(info->driver));
5352 	strlcpy(info->version, s2io_driver_version, sizeof(info->version));
5353 	strlcpy(info->bus_info, pci_name(sp->pdev), sizeof(info->bus_info));
5354 }
5355 
5356 /**
5357  *  s2io_ethtool_gregs - dumps the entire space of Xfame into the buffer.
5358  *  @dev: pointer to netdev
5359  *  @regs : pointer to the structure with parameters given by ethtool for
5360  *          dumping the registers.
5361  *  @space: The input argument into which all the registers are dumped.
5362  *  Description:
5363  *  Dumps the entire register space of xFrame NIC into the user given
5364  *  buffer area.
5365  * Return value :
5366  * void .
5367  */
5368 
5369 static void s2io_ethtool_gregs(struct net_device *dev,
5370 			       struct ethtool_regs *regs, void *space)
5371 {
5372 	int i;
5373 	u64 reg;
5374 	u8 *reg_space = (u8 *)space;
5375 	struct s2io_nic *sp = netdev_priv(dev);
5376 
5377 	regs->len = XENA_REG_SPACE;
5378 	regs->version = sp->pdev->subsystem_device;
5379 
5380 	for (i = 0; i < regs->len; i += 8) {
5381 		reg = readq(sp->bar0 + i);
5382 		memcpy((reg_space + i), &reg, 8);
5383 	}
5384 }
5385 
5386 /*
5387  *  s2io_set_led - control NIC led
5388  */
5389 static void s2io_set_led(struct s2io_nic *sp, bool on)
5390 {
5391 	struct XENA_dev_config __iomem *bar0 = sp->bar0;
5392 	u16 subid = sp->pdev->subsystem_device;
5393 	u64 val64;
5394 
5395 	if ((sp->device_type == XFRAME_II_DEVICE) ||
5396 	    ((subid & 0xFF) >= 0x07)) {
5397 		val64 = readq(&bar0->gpio_control);
5398 		if (on)
5399 			val64 |= GPIO_CTRL_GPIO_0;
5400 		else
5401 			val64 &= ~GPIO_CTRL_GPIO_0;
5402 
5403 		writeq(val64, &bar0->gpio_control);
5404 	} else {
5405 		val64 = readq(&bar0->adapter_control);
5406 		if (on)
5407 			val64 |= ADAPTER_LED_ON;
5408 		else
5409 			val64 &= ~ADAPTER_LED_ON;
5410 
5411 		writeq(val64, &bar0->adapter_control);
5412 	}
5413 
5414 }
5415 
5416 /**
5417  * s2io_ethtool_set_led - To physically identify the nic on the system.
5418  * @dev : network device
5419  * @state: led setting
5420  *
5421  * Description: Used to physically identify the NIC on the system.
5422  * The Link LED will blink for a time specified by the user for
5423  * identification.
5424  * NOTE: The Link has to be Up to be able to blink the LED. Hence
5425  * identification is possible only if it's link is up.
5426  */
5427 
5428 static int s2io_ethtool_set_led(struct net_device *dev,
5429 				enum ethtool_phys_id_state state)
5430 {
5431 	struct s2io_nic *sp = netdev_priv(dev);
5432 	struct XENA_dev_config __iomem *bar0 = sp->bar0;
5433 	u16 subid = sp->pdev->subsystem_device;
5434 
5435 	if ((sp->device_type == XFRAME_I_DEVICE) && ((subid & 0xFF) < 0x07)) {
5436 		u64 val64 = readq(&bar0->adapter_control);
5437 		if (!(val64 & ADAPTER_CNTL_EN)) {
5438 			pr_err("Adapter Link down, cannot blink LED\n");
5439 			return -EAGAIN;
5440 		}
5441 	}
5442 
5443 	switch (state) {
5444 	case ETHTOOL_ID_ACTIVE:
5445 		sp->adapt_ctrl_org = readq(&bar0->gpio_control);
5446 		return 1;	/* cycle on/off once per second */
5447 
5448 	case ETHTOOL_ID_ON:
5449 		s2io_set_led(sp, true);
5450 		break;
5451 
5452 	case ETHTOOL_ID_OFF:
5453 		s2io_set_led(sp, false);
5454 		break;
5455 
5456 	case ETHTOOL_ID_INACTIVE:
5457 		if (CARDS_WITH_FAULTY_LINK_INDICATORS(sp->device_type, subid))
5458 			writeq(sp->adapt_ctrl_org, &bar0->gpio_control);
5459 	}
5460 
5461 	return 0;
5462 }
5463 
5464 static void s2io_ethtool_gringparam(struct net_device *dev,
5465 				    struct ethtool_ringparam *ering)
5466 {
5467 	struct s2io_nic *sp = netdev_priv(dev);
5468 	int i, tx_desc_count = 0, rx_desc_count = 0;
5469 
5470 	if (sp->rxd_mode == RXD_MODE_1) {
5471 		ering->rx_max_pending = MAX_RX_DESC_1;
5472 		ering->rx_jumbo_max_pending = MAX_RX_DESC_1;
5473 	} else {
5474 		ering->rx_max_pending = MAX_RX_DESC_2;
5475 		ering->rx_jumbo_max_pending = MAX_RX_DESC_2;
5476 	}
5477 
5478 	ering->tx_max_pending = MAX_TX_DESC;
5479 
5480 	for (i = 0; i < sp->config.rx_ring_num; i++)
5481 		rx_desc_count += sp->config.rx_cfg[i].num_rxd;
5482 	ering->rx_pending = rx_desc_count;
5483 	ering->rx_jumbo_pending = rx_desc_count;
5484 
5485 	for (i = 0; i < sp->config.tx_fifo_num; i++)
5486 		tx_desc_count += sp->config.tx_cfg[i].fifo_len;
5487 	ering->tx_pending = tx_desc_count;
5488 	DBG_PRINT(INFO_DBG, "max txds: %d\n", sp->config.max_txds);
5489 }
5490 
5491 /**
5492  * s2io_ethtool_getpause_data -Pause frame frame generation and reception.
5493  * @dev: pointer to netdev
5494  * @ep : pointer to the structure with pause parameters given by ethtool.
5495  * Description:
5496  * Returns the Pause frame generation and reception capability of the NIC.
5497  * Return value:
5498  *  void
5499  */
5500 static void s2io_ethtool_getpause_data(struct net_device *dev,
5501 				       struct ethtool_pauseparam *ep)
5502 {
5503 	u64 val64;
5504 	struct s2io_nic *sp = netdev_priv(dev);
5505 	struct XENA_dev_config __iomem *bar0 = sp->bar0;
5506 
5507 	val64 = readq(&bar0->rmac_pause_cfg);
5508 	if (val64 & RMAC_PAUSE_GEN_ENABLE)
5509 		ep->tx_pause = true;
5510 	if (val64 & RMAC_PAUSE_RX_ENABLE)
5511 		ep->rx_pause = true;
5512 	ep->autoneg = false;
5513 }
5514 
5515 /**
5516  * s2io_ethtool_setpause_data -  set/reset pause frame generation.
5517  * @dev: pointer to netdev
5518  * @ep : pointer to the structure with pause parameters given by ethtool.
5519  * Description:
5520  * It can be used to set or reset Pause frame generation or reception
5521  * support of the NIC.
5522  * Return value:
5523  * int, returns 0 on Success
5524  */
5525 
5526 static int s2io_ethtool_setpause_data(struct net_device *dev,
5527 				      struct ethtool_pauseparam *ep)
5528 {
5529 	u64 val64;
5530 	struct s2io_nic *sp = netdev_priv(dev);
5531 	struct XENA_dev_config __iomem *bar0 = sp->bar0;
5532 
5533 	val64 = readq(&bar0->rmac_pause_cfg);
5534 	if (ep->tx_pause)
5535 		val64 |= RMAC_PAUSE_GEN_ENABLE;
5536 	else
5537 		val64 &= ~RMAC_PAUSE_GEN_ENABLE;
5538 	if (ep->rx_pause)
5539 		val64 |= RMAC_PAUSE_RX_ENABLE;
5540 	else
5541 		val64 &= ~RMAC_PAUSE_RX_ENABLE;
5542 	writeq(val64, &bar0->rmac_pause_cfg);
5543 	return 0;
5544 }
5545 
5546 #define S2IO_DEV_ID		5
5547 /**
5548  * read_eeprom - reads 4 bytes of data from user given offset.
5549  * @sp : private member of the device structure, which is a pointer to the
5550  *      s2io_nic structure.
5551  * @off : offset at which the data must be written
5552  * @data : Its an output parameter where the data read at the given
5553  *	offset is stored.
5554  * Description:
5555  * Will read 4 bytes of data from the user given offset and return the
5556  * read data.
5557  * NOTE: Will allow to read only part of the EEPROM visible through the
5558  *   I2C bus.
5559  * Return value:
5560  *  -1 on failure and 0 on success.
5561  */
5562 static int read_eeprom(struct s2io_nic *sp, int off, u64 *data)
5563 {
5564 	int ret = -1;
5565 	u32 exit_cnt = 0;
5566 	u64 val64;
5567 	struct XENA_dev_config __iomem *bar0 = sp->bar0;
5568 
5569 	if (sp->device_type == XFRAME_I_DEVICE) {
5570 		val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) |
5571 			I2C_CONTROL_ADDR(off) |
5572 			I2C_CONTROL_BYTE_CNT(0x3) |
5573 			I2C_CONTROL_READ |
5574 			I2C_CONTROL_CNTL_START;
5575 		SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
5576 
5577 		while (exit_cnt < 5) {
5578 			val64 = readq(&bar0->i2c_control);
5579 			if (I2C_CONTROL_CNTL_END(val64)) {
5580 				*data = I2C_CONTROL_GET_DATA(val64);
5581 				ret = 0;
5582 				break;
5583 			}
5584 			msleep(50);
5585 			exit_cnt++;
5586 		}
5587 	}
5588 
5589 	if (sp->device_type == XFRAME_II_DEVICE) {
5590 		val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
5591 			SPI_CONTROL_BYTECNT(0x3) |
5592 			SPI_CONTROL_CMD(0x3) | SPI_CONTROL_ADDR(off);
5593 		SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5594 		val64 |= SPI_CONTROL_REQ;
5595 		SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5596 		while (exit_cnt < 5) {
5597 			val64 = readq(&bar0->spi_control);
5598 			if (val64 & SPI_CONTROL_NACK) {
5599 				ret = 1;
5600 				break;
5601 			} else if (val64 & SPI_CONTROL_DONE) {
5602 				*data = readq(&bar0->spi_data);
5603 				*data &= 0xffffff;
5604 				ret = 0;
5605 				break;
5606 			}
5607 			msleep(50);
5608 			exit_cnt++;
5609 		}
5610 	}
5611 	return ret;
5612 }
5613 
5614 /**
5615  *  write_eeprom - actually writes the relevant part of the data value.
5616  *  @sp : private member of the device structure, which is a pointer to the
5617  *       s2io_nic structure.
5618  *  @off : offset at which the data must be written
5619  *  @data : The data that is to be written
5620  *  @cnt : Number of bytes of the data that are actually to be written into
5621  *  the Eeprom. (max of 3)
5622  * Description:
5623  *  Actually writes the relevant part of the data value into the Eeprom
5624  *  through the I2C bus.
5625  * Return value:
5626  *  0 on success, -1 on failure.
5627  */
5628 
5629 static int write_eeprom(struct s2io_nic *sp, int off, u64 data, int cnt)
5630 {
5631 	int exit_cnt = 0, ret = -1;
5632 	u64 val64;
5633 	struct XENA_dev_config __iomem *bar0 = sp->bar0;
5634 
5635 	if (sp->device_type == XFRAME_I_DEVICE) {
5636 		val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) |
5637 			I2C_CONTROL_ADDR(off) |
5638 			I2C_CONTROL_BYTE_CNT(cnt) |
5639 			I2C_CONTROL_SET_DATA((u32)data) |
5640 			I2C_CONTROL_CNTL_START;
5641 		SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
5642 
5643 		while (exit_cnt < 5) {
5644 			val64 = readq(&bar0->i2c_control);
5645 			if (I2C_CONTROL_CNTL_END(val64)) {
5646 				if (!(val64 & I2C_CONTROL_NACK))
5647 					ret = 0;
5648 				break;
5649 			}
5650 			msleep(50);
5651 			exit_cnt++;
5652 		}
5653 	}
5654 
5655 	if (sp->device_type == XFRAME_II_DEVICE) {
5656 		int write_cnt = (cnt == 8) ? 0 : cnt;
5657 		writeq(SPI_DATA_WRITE(data, (cnt << 3)), &bar0->spi_data);
5658 
5659 		val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
5660 			SPI_CONTROL_BYTECNT(write_cnt) |
5661 			SPI_CONTROL_CMD(0x2) | SPI_CONTROL_ADDR(off);
5662 		SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5663 		val64 |= SPI_CONTROL_REQ;
5664 		SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5665 		while (exit_cnt < 5) {
5666 			val64 = readq(&bar0->spi_control);
5667 			if (val64 & SPI_CONTROL_NACK) {
5668 				ret = 1;
5669 				break;
5670 			} else if (val64 & SPI_CONTROL_DONE) {
5671 				ret = 0;
5672 				break;
5673 			}
5674 			msleep(50);
5675 			exit_cnt++;
5676 		}
5677 	}
5678 	return ret;
5679 }
5680 static void s2io_vpd_read(struct s2io_nic *nic)
5681 {
5682 	u8 *vpd_data;
5683 	u8 data;
5684 	int i = 0, cnt, len, fail = 0;
5685 	int vpd_addr = 0x80;
5686 	struct swStat *swstats = &nic->mac_control.stats_info->sw_stat;
5687 
5688 	if (nic->device_type == XFRAME_II_DEVICE) {
5689 		strcpy(nic->product_name, "Xframe II 10GbE network adapter");
5690 		vpd_addr = 0x80;
5691 	} else {
5692 		strcpy(nic->product_name, "Xframe I 10GbE network adapter");
5693 		vpd_addr = 0x50;
5694 	}
5695 	strcpy(nic->serial_num, "NOT AVAILABLE");
5696 
5697 	vpd_data = kmalloc(256, GFP_KERNEL);
5698 	if (!vpd_data) {
5699 		swstats->mem_alloc_fail_cnt++;
5700 		return;
5701 	}
5702 	swstats->mem_allocated += 256;
5703 
5704 	for (i = 0; i < 256; i += 4) {
5705 		pci_write_config_byte(nic->pdev, (vpd_addr + 2), i);
5706 		pci_read_config_byte(nic->pdev,  (vpd_addr + 2), &data);
5707 		pci_write_config_byte(nic->pdev, (vpd_addr + 3), 0);
5708 		for (cnt = 0; cnt < 5; cnt++) {
5709 			msleep(2);
5710 			pci_read_config_byte(nic->pdev, (vpd_addr + 3), &data);
5711 			if (data == 0x80)
5712 				break;
5713 		}
5714 		if (cnt >= 5) {
5715 			DBG_PRINT(ERR_DBG, "Read of VPD data failed\n");
5716 			fail = 1;
5717 			break;
5718 		}
5719 		pci_read_config_dword(nic->pdev,  (vpd_addr + 4),
5720 				      (u32 *)&vpd_data[i]);
5721 	}
5722 
5723 	if (!fail) {
5724 		/* read serial number of adapter */
5725 		for (cnt = 0; cnt < 252; cnt++) {
5726 			if ((vpd_data[cnt] == 'S') &&
5727 			    (vpd_data[cnt+1] == 'N')) {
5728 				len = vpd_data[cnt+2];
5729 				if (len < min(VPD_STRING_LEN, 256-cnt-2)) {
5730 					memcpy(nic->serial_num,
5731 					       &vpd_data[cnt + 3],
5732 					       len);
5733 					memset(nic->serial_num+len,
5734 					       0,
5735 					       VPD_STRING_LEN-len);
5736 					break;
5737 				}
5738 			}
5739 		}
5740 	}
5741 
5742 	if ((!fail) && (vpd_data[1] < VPD_STRING_LEN)) {
5743 		len = vpd_data[1];
5744 		memcpy(nic->product_name, &vpd_data[3], len);
5745 		nic->product_name[len] = 0;
5746 	}
5747 	kfree(vpd_data);
5748 	swstats->mem_freed += 256;
5749 }
5750 
5751 /**
5752  *  s2io_ethtool_geeprom  - reads the value stored in the Eeprom.
5753  *  @dev: pointer to netdev
5754  *  @eeprom : pointer to the user level structure provided by ethtool,
5755  *  containing all relevant information.
5756  *  @data_buf : user defined value to be written into Eeprom.
5757  *  Description: Reads the values stored in the Eeprom at given offset
5758  *  for a given length. Stores these values int the input argument data
5759  *  buffer 'data_buf' and returns these to the caller (ethtool.)
5760  *  Return value:
5761  *  int  0 on success
5762  */
5763 
5764 static int s2io_ethtool_geeprom(struct net_device *dev,
5765 				struct ethtool_eeprom *eeprom, u8 * data_buf)
5766 {
5767 	u32 i, valid;
5768 	u64 data;
5769 	struct s2io_nic *sp = netdev_priv(dev);
5770 
5771 	eeprom->magic = sp->pdev->vendor | (sp->pdev->device << 16);
5772 
5773 	if ((eeprom->offset + eeprom->len) > (XENA_EEPROM_SPACE))
5774 		eeprom->len = XENA_EEPROM_SPACE - eeprom->offset;
5775 
5776 	for (i = 0; i < eeprom->len; i += 4) {
5777 		if (read_eeprom(sp, (eeprom->offset + i), &data)) {
5778 			DBG_PRINT(ERR_DBG, "Read of EEPROM failed\n");
5779 			return -EFAULT;
5780 		}
5781 		valid = INV(data);
5782 		memcpy((data_buf + i), &valid, 4);
5783 	}
5784 	return 0;
5785 }
5786 
5787 /**
5788  *  s2io_ethtool_seeprom - tries to write the user provided value in Eeprom
5789  *  @dev: pointer to netdev
5790  *  @eeprom : pointer to the user level structure provided by ethtool,
5791  *  containing all relevant information.
5792  *  @data_buf : user defined value to be written into Eeprom.
5793  *  Description:
5794  *  Tries to write the user provided value in the Eeprom, at the offset
5795  *  given by the user.
5796  *  Return value:
5797  *  0 on success, -EFAULT on failure.
5798  */
5799 
5800 static int s2io_ethtool_seeprom(struct net_device *dev,
5801 				struct ethtool_eeprom *eeprom,
5802 				u8 *data_buf)
5803 {
5804 	int len = eeprom->len, cnt = 0;
5805 	u64 valid = 0, data;
5806 	struct s2io_nic *sp = netdev_priv(dev);
5807 
5808 	if (eeprom->magic != (sp->pdev->vendor | (sp->pdev->device << 16))) {
5809 		DBG_PRINT(ERR_DBG,
5810 			  "ETHTOOL_WRITE_EEPROM Err: "
5811 			  "Magic value is wrong, it is 0x%x should be 0x%x\n",
5812 			  (sp->pdev->vendor | (sp->pdev->device << 16)),
5813 			  eeprom->magic);
5814 		return -EFAULT;
5815 	}
5816 
5817 	while (len) {
5818 		data = (u32)data_buf[cnt] & 0x000000FF;
5819 		if (data)
5820 			valid = (u32)(data << 24);
5821 		else
5822 			valid = data;
5823 
5824 		if (write_eeprom(sp, (eeprom->offset + cnt), valid, 0)) {
5825 			DBG_PRINT(ERR_DBG,
5826 				  "ETHTOOL_WRITE_EEPROM Err: "
5827 				  "Cannot write into the specified offset\n");
5828 			return -EFAULT;
5829 		}
5830 		cnt++;
5831 		len--;
5832 	}
5833 
5834 	return 0;
5835 }
5836 
5837 /**
5838  * s2io_register_test - reads and writes into all clock domains.
5839  * @sp : private member of the device structure, which is a pointer to the
5840  * s2io_nic structure.
5841  * @data : variable that returns the result of each of the test conducted b
5842  * by the driver.
5843  * Description:
5844  * Read and write into all clock domains. The NIC has 3 clock domains,
5845  * see that registers in all the three regions are accessible.
5846  * Return value:
5847  * 0 on success.
5848  */
5849 
5850 static int s2io_register_test(struct s2io_nic *sp, uint64_t *data)
5851 {
5852 	struct XENA_dev_config __iomem *bar0 = sp->bar0;
5853 	u64 val64 = 0, exp_val;
5854 	int fail = 0;
5855 
5856 	val64 = readq(&bar0->pif_rd_swapper_fb);
5857 	if (val64 != 0x123456789abcdefULL) {
5858 		fail = 1;
5859 		DBG_PRINT(INFO_DBG, "Read Test level %d fails\n", 1);
5860 	}
5861 
5862 	val64 = readq(&bar0->rmac_pause_cfg);
5863 	if (val64 != 0xc000ffff00000000ULL) {
5864 		fail = 1;
5865 		DBG_PRINT(INFO_DBG, "Read Test level %d fails\n", 2);
5866 	}
5867 
5868 	val64 = readq(&bar0->rx_queue_cfg);
5869 	if (sp->device_type == XFRAME_II_DEVICE)
5870 		exp_val = 0x0404040404040404ULL;
5871 	else
5872 		exp_val = 0x0808080808080808ULL;
5873 	if (val64 != exp_val) {
5874 		fail = 1;
5875 		DBG_PRINT(INFO_DBG, "Read Test level %d fails\n", 3);
5876 	}
5877 
5878 	val64 = readq(&bar0->xgxs_efifo_cfg);
5879 	if (val64 != 0x000000001923141EULL) {
5880 		fail = 1;
5881 		DBG_PRINT(INFO_DBG, "Read Test level %d fails\n", 4);
5882 	}
5883 
5884 	val64 = 0x5A5A5A5A5A5A5A5AULL;
5885 	writeq(val64, &bar0->xmsi_data);
5886 	val64 = readq(&bar0->xmsi_data);
5887 	if (val64 != 0x5A5A5A5A5A5A5A5AULL) {
5888 		fail = 1;
5889 		DBG_PRINT(ERR_DBG, "Write Test level %d fails\n", 1);
5890 	}
5891 
5892 	val64 = 0xA5A5A5A5A5A5A5A5ULL;
5893 	writeq(val64, &bar0->xmsi_data);
5894 	val64 = readq(&bar0->xmsi_data);
5895 	if (val64 != 0xA5A5A5A5A5A5A5A5ULL) {
5896 		fail = 1;
5897 		DBG_PRINT(ERR_DBG, "Write Test level %d fails\n", 2);
5898 	}
5899 
5900 	*data = fail;
5901 	return fail;
5902 }
5903 
5904 /**
5905  * s2io_eeprom_test - to verify that EEprom in the xena can be programmed.
5906  * @sp : private member of the device structure, which is a pointer to the
5907  * s2io_nic structure.
5908  * @data:variable that returns the result of each of the test conducted by
5909  * the driver.
5910  * Description:
5911  * Verify that EEPROM in the xena can be programmed using I2C_CONTROL
5912  * register.
5913  * Return value:
5914  * 0 on success.
5915  */
5916 
5917 static int s2io_eeprom_test(struct s2io_nic *sp, uint64_t *data)
5918 {
5919 	int fail = 0;
5920 	u64 ret_data, org_4F0, org_7F0;
5921 	u8 saved_4F0 = 0, saved_7F0 = 0;
5922 	struct net_device *dev = sp->dev;
5923 
5924 	/* Test Write Error at offset 0 */
5925 	/* Note that SPI interface allows write access to all areas
5926 	 * of EEPROM. Hence doing all negative testing only for Xframe I.
5927 	 */
5928 	if (sp->device_type == XFRAME_I_DEVICE)
5929 		if (!write_eeprom(sp, 0, 0, 3))
5930 			fail = 1;
5931 
5932 	/* Save current values at offsets 0x4F0 and 0x7F0 */
5933 	if (!read_eeprom(sp, 0x4F0, &org_4F0))
5934 		saved_4F0 = 1;
5935 	if (!read_eeprom(sp, 0x7F0, &org_7F0))
5936 		saved_7F0 = 1;
5937 
5938 	/* Test Write at offset 4f0 */
5939 	if (write_eeprom(sp, 0x4F0, 0x012345, 3))
5940 		fail = 1;
5941 	if (read_eeprom(sp, 0x4F0, &ret_data))
5942 		fail = 1;
5943 
5944 	if (ret_data != 0x012345) {
5945 		DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x4F0. "
5946 			  "Data written %llx Data read %llx\n",
5947 			  dev->name, (unsigned long long)0x12345,
5948 			  (unsigned long long)ret_data);
5949 		fail = 1;
5950 	}
5951 
5952 	/* Reset the EEPROM data go FFFF */
5953 	write_eeprom(sp, 0x4F0, 0xFFFFFF, 3);
5954 
5955 	/* Test Write Request Error at offset 0x7c */
5956 	if (sp->device_type == XFRAME_I_DEVICE)
5957 		if (!write_eeprom(sp, 0x07C, 0, 3))
5958 			fail = 1;
5959 
5960 	/* Test Write Request at offset 0x7f0 */
5961 	if (write_eeprom(sp, 0x7F0, 0x012345, 3))
5962 		fail = 1;
5963 	if (read_eeprom(sp, 0x7F0, &ret_data))
5964 		fail = 1;
5965 
5966 	if (ret_data != 0x012345) {
5967 		DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x7F0. "
5968 			  "Data written %llx Data read %llx\n",
5969 			  dev->name, (unsigned long long)0x12345,
5970 			  (unsigned long long)ret_data);
5971 		fail = 1;
5972 	}
5973 
5974 	/* Reset the EEPROM data go FFFF */
5975 	write_eeprom(sp, 0x7F0, 0xFFFFFF, 3);
5976 
5977 	if (sp->device_type == XFRAME_I_DEVICE) {
5978 		/* Test Write Error at offset 0x80 */
5979 		if (!write_eeprom(sp, 0x080, 0, 3))
5980 			fail = 1;
5981 
5982 		/* Test Write Error at offset 0xfc */
5983 		if (!write_eeprom(sp, 0x0FC, 0, 3))
5984 			fail = 1;
5985 
5986 		/* Test Write Error at offset 0x100 */
5987 		if (!write_eeprom(sp, 0x100, 0, 3))
5988 			fail = 1;
5989 
5990 		/* Test Write Error at offset 4ec */
5991 		if (!write_eeprom(sp, 0x4EC, 0, 3))
5992 			fail = 1;
5993 	}
5994 
5995 	/* Restore values at offsets 0x4F0 and 0x7F0 */
5996 	if (saved_4F0)
5997 		write_eeprom(sp, 0x4F0, org_4F0, 3);
5998 	if (saved_7F0)
5999 		write_eeprom(sp, 0x7F0, org_7F0, 3);
6000 
6001 	*data = fail;
6002 	return fail;
6003 }
6004 
6005 /**
6006  * s2io_bist_test - invokes the MemBist test of the card .
6007  * @sp : private member of the device structure, which is a pointer to the
6008  * s2io_nic structure.
6009  * @data:variable that returns the result of each of the test conducted by
6010  * the driver.
6011  * Description:
6012  * This invokes the MemBist test of the card. We give around
6013  * 2 secs time for the Test to complete. If it's still not complete
6014  * within this peiod, we consider that the test failed.
6015  * Return value:
6016  * 0 on success and -1 on failure.
6017  */
6018 
6019 static int s2io_bist_test(struct s2io_nic *sp, uint64_t *data)
6020 {
6021 	u8 bist = 0;
6022 	int cnt = 0, ret = -1;
6023 
6024 	pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
6025 	bist |= PCI_BIST_START;
6026 	pci_write_config_word(sp->pdev, PCI_BIST, bist);
6027 
6028 	while (cnt < 20) {
6029 		pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
6030 		if (!(bist & PCI_BIST_START)) {
6031 			*data = (bist & PCI_BIST_CODE_MASK);
6032 			ret = 0;
6033 			break;
6034 		}
6035 		msleep(100);
6036 		cnt++;
6037 	}
6038 
6039 	return ret;
6040 }
6041 
6042 /**
6043  * s2io_link_test - verifies the link state of the nic
6044  * @sp: private member of the device structure, which is a pointer to the
6045  * s2io_nic structure.
6046  * @data: variable that returns the result of each of the test conducted by
6047  * the driver.
6048  * Description:
6049  * The function verifies the link state of the NIC and updates the input
6050  * argument 'data' appropriately.
6051  * Return value:
6052  * 0 on success.
6053  */
6054 
6055 static int s2io_link_test(struct s2io_nic *sp, uint64_t *data)
6056 {
6057 	struct XENA_dev_config __iomem *bar0 = sp->bar0;
6058 	u64 val64;
6059 
6060 	val64 = readq(&bar0->adapter_status);
6061 	if (!(LINK_IS_UP(val64)))
6062 		*data = 1;
6063 	else
6064 		*data = 0;
6065 
6066 	return *data;
6067 }
6068 
6069 /**
6070  * s2io_rldram_test - offline test for access to the RldRam chip on the NIC
6071  * @sp: private member of the device structure, which is a pointer to the
6072  * s2io_nic structure.
6073  * @data: variable that returns the result of each of the test
6074  * conducted by the driver.
6075  * Description:
6076  *  This is one of the offline test that tests the read and write
6077  *  access to the RldRam chip on the NIC.
6078  * Return value:
6079  *  0 on success.
6080  */
6081 
6082 static int s2io_rldram_test(struct s2io_nic *sp, uint64_t *data)
6083 {
6084 	struct XENA_dev_config __iomem *bar0 = sp->bar0;
6085 	u64 val64;
6086 	int cnt, iteration = 0, test_fail = 0;
6087 
6088 	val64 = readq(&bar0->adapter_control);
6089 	val64 &= ~ADAPTER_ECC_EN;
6090 	writeq(val64, &bar0->adapter_control);
6091 
6092 	val64 = readq(&bar0->mc_rldram_test_ctrl);
6093 	val64 |= MC_RLDRAM_TEST_MODE;
6094 	SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
6095 
6096 	val64 = readq(&bar0->mc_rldram_mrs);
6097 	val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE;
6098 	SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
6099 
6100 	val64 |= MC_RLDRAM_MRS_ENABLE;
6101 	SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
6102 
6103 	while (iteration < 2) {
6104 		val64 = 0x55555555aaaa0000ULL;
6105 		if (iteration == 1)
6106 			val64 ^= 0xFFFFFFFFFFFF0000ULL;
6107 		writeq(val64, &bar0->mc_rldram_test_d0);
6108 
6109 		val64 = 0xaaaa5a5555550000ULL;
6110 		if (iteration == 1)
6111 			val64 ^= 0xFFFFFFFFFFFF0000ULL;
6112 		writeq(val64, &bar0->mc_rldram_test_d1);
6113 
6114 		val64 = 0x55aaaaaaaa5a0000ULL;
6115 		if (iteration == 1)
6116 			val64 ^= 0xFFFFFFFFFFFF0000ULL;
6117 		writeq(val64, &bar0->mc_rldram_test_d2);
6118 
6119 		val64 = (u64) (0x0000003ffffe0100ULL);
6120 		writeq(val64, &bar0->mc_rldram_test_add);
6121 
6122 		val64 = MC_RLDRAM_TEST_MODE |
6123 			MC_RLDRAM_TEST_WRITE |
6124 			MC_RLDRAM_TEST_GO;
6125 		SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
6126 
6127 		for (cnt = 0; cnt < 5; cnt++) {
6128 			val64 = readq(&bar0->mc_rldram_test_ctrl);
6129 			if (val64 & MC_RLDRAM_TEST_DONE)
6130 				break;
6131 			msleep(200);
6132 		}
6133 
6134 		if (cnt == 5)
6135 			break;
6136 
6137 		val64 = MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_GO;
6138 		SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
6139 
6140 		for (cnt = 0; cnt < 5; cnt++) {
6141 			val64 = readq(&bar0->mc_rldram_test_ctrl);
6142 			if (val64 & MC_RLDRAM_TEST_DONE)
6143 				break;
6144 			msleep(500);
6145 		}
6146 
6147 		if (cnt == 5)
6148 			break;
6149 
6150 		val64 = readq(&bar0->mc_rldram_test_ctrl);
6151 		if (!(val64 & MC_RLDRAM_TEST_PASS))
6152 			test_fail = 1;
6153 
6154 		iteration++;
6155 	}
6156 
6157 	*data = test_fail;
6158 
6159 	/* Bring the adapter out of test mode */
6160 	SPECIAL_REG_WRITE(0, &bar0->mc_rldram_test_ctrl, LF);
6161 
6162 	return test_fail;
6163 }
6164 
6165 /**
6166  *  s2io_ethtool_test - conducts 6 tsets to determine the health of card.
6167  *  @dev: pointer to netdev
6168  *  @ethtest : pointer to a ethtool command specific structure that will be
6169  *  returned to the user.
6170  *  @data : variable that returns the result of each of the test
6171  * conducted by the driver.
6172  * Description:
6173  *  This function conducts 6 tests ( 4 offline and 2 online) to determine
6174  *  the health of the card.
6175  * Return value:
6176  *  void
6177  */
6178 
6179 static void s2io_ethtool_test(struct net_device *dev,
6180 			      struct ethtool_test *ethtest,
6181 			      uint64_t *data)
6182 {
6183 	struct s2io_nic *sp = netdev_priv(dev);
6184 	int orig_state = netif_running(sp->dev);
6185 
6186 	if (ethtest->flags == ETH_TEST_FL_OFFLINE) {
6187 		/* Offline Tests. */
6188 		if (orig_state)
6189 			s2io_close(sp->dev);
6190 
6191 		if (s2io_register_test(sp, &data[0]))
6192 			ethtest->flags |= ETH_TEST_FL_FAILED;
6193 
6194 		s2io_reset(sp);
6195 
6196 		if (s2io_rldram_test(sp, &data[3]))
6197 			ethtest->flags |= ETH_TEST_FL_FAILED;
6198 
6199 		s2io_reset(sp);
6200 
6201 		if (s2io_eeprom_test(sp, &data[1]))
6202 			ethtest->flags |= ETH_TEST_FL_FAILED;
6203 
6204 		if (s2io_bist_test(sp, &data[4]))
6205 			ethtest->flags |= ETH_TEST_FL_FAILED;
6206 
6207 		if (orig_state)
6208 			s2io_open(sp->dev);
6209 
6210 		data[2] = 0;
6211 	} else {
6212 		/* Online Tests. */
6213 		if (!orig_state) {
6214 			DBG_PRINT(ERR_DBG, "%s: is not up, cannot run test\n",
6215 				  dev->name);
6216 			data[0] = -1;
6217 			data[1] = -1;
6218 			data[2] = -1;
6219 			data[3] = -1;
6220 			data[4] = -1;
6221 		}
6222 
6223 		if (s2io_link_test(sp, &data[2]))
6224 			ethtest->flags |= ETH_TEST_FL_FAILED;
6225 
6226 		data[0] = 0;
6227 		data[1] = 0;
6228 		data[3] = 0;
6229 		data[4] = 0;
6230 	}
6231 }
6232 
6233 static void s2io_get_ethtool_stats(struct net_device *dev,
6234 				   struct ethtool_stats *estats,
6235 				   u64 *tmp_stats)
6236 {
6237 	int i = 0, k;
6238 	struct s2io_nic *sp = netdev_priv(dev);
6239 	struct stat_block *stats = sp->mac_control.stats_info;
6240 	struct swStat *swstats = &stats->sw_stat;
6241 	struct xpakStat *xstats = &stats->xpak_stat;
6242 
6243 	s2io_updt_stats(sp);
6244 	tmp_stats[i++] =
6245 		(u64)le32_to_cpu(stats->tmac_frms_oflow) << 32  |
6246 		le32_to_cpu(stats->tmac_frms);
6247 	tmp_stats[i++] =
6248 		(u64)le32_to_cpu(stats->tmac_data_octets_oflow) << 32 |
6249 		le32_to_cpu(stats->tmac_data_octets);
6250 	tmp_stats[i++] = le64_to_cpu(stats->tmac_drop_frms);
6251 	tmp_stats[i++] =
6252 		(u64)le32_to_cpu(stats->tmac_mcst_frms_oflow) << 32 |
6253 		le32_to_cpu(stats->tmac_mcst_frms);
6254 	tmp_stats[i++] =
6255 		(u64)le32_to_cpu(stats->tmac_bcst_frms_oflow) << 32 |
6256 		le32_to_cpu(stats->tmac_bcst_frms);
6257 	tmp_stats[i++] = le64_to_cpu(stats->tmac_pause_ctrl_frms);
6258 	tmp_stats[i++] =
6259 		(u64)le32_to_cpu(stats->tmac_ttl_octets_oflow) << 32 |
6260 		le32_to_cpu(stats->tmac_ttl_octets);
6261 	tmp_stats[i++] =
6262 		(u64)le32_to_cpu(stats->tmac_ucst_frms_oflow) << 32 |
6263 		le32_to_cpu(stats->tmac_ucst_frms);
6264 	tmp_stats[i++] =
6265 		(u64)le32_to_cpu(stats->tmac_nucst_frms_oflow) << 32 |
6266 		le32_to_cpu(stats->tmac_nucst_frms);
6267 	tmp_stats[i++] =
6268 		(u64)le32_to_cpu(stats->tmac_any_err_frms_oflow) << 32 |
6269 		le32_to_cpu(stats->tmac_any_err_frms);
6270 	tmp_stats[i++] = le64_to_cpu(stats->tmac_ttl_less_fb_octets);
6271 	tmp_stats[i++] = le64_to_cpu(stats->tmac_vld_ip_octets);
6272 	tmp_stats[i++] =
6273 		(u64)le32_to_cpu(stats->tmac_vld_ip_oflow) << 32 |
6274 		le32_to_cpu(stats->tmac_vld_ip);
6275 	tmp_stats[i++] =
6276 		(u64)le32_to_cpu(stats->tmac_drop_ip_oflow) << 32 |
6277 		le32_to_cpu(stats->tmac_drop_ip);
6278 	tmp_stats[i++] =
6279 		(u64)le32_to_cpu(stats->tmac_icmp_oflow) << 32 |
6280 		le32_to_cpu(stats->tmac_icmp);
6281 	tmp_stats[i++] =
6282 		(u64)le32_to_cpu(stats->tmac_rst_tcp_oflow) << 32 |
6283 		le32_to_cpu(stats->tmac_rst_tcp);
6284 	tmp_stats[i++] = le64_to_cpu(stats->tmac_tcp);
6285 	tmp_stats[i++] = (u64)le32_to_cpu(stats->tmac_udp_oflow) << 32 |
6286 		le32_to_cpu(stats->tmac_udp);
6287 	tmp_stats[i++] =
6288 		(u64)le32_to_cpu(stats->rmac_vld_frms_oflow) << 32 |
6289 		le32_to_cpu(stats->rmac_vld_frms);
6290 	tmp_stats[i++] =
6291 		(u64)le32_to_cpu(stats->rmac_data_octets_oflow) << 32 |
6292 		le32_to_cpu(stats->rmac_data_octets);
6293 	tmp_stats[i++] = le64_to_cpu(stats->rmac_fcs_err_frms);
6294 	tmp_stats[i++] = le64_to_cpu(stats->rmac_drop_frms);
6295 	tmp_stats[i++] =
6296 		(u64)le32_to_cpu(stats->rmac_vld_mcst_frms_oflow) << 32 |
6297 		le32_to_cpu(stats->rmac_vld_mcst_frms);
6298 	tmp_stats[i++] =
6299 		(u64)le32_to_cpu(stats->rmac_vld_bcst_frms_oflow) << 32 |
6300 		le32_to_cpu(stats->rmac_vld_bcst_frms);
6301 	tmp_stats[i++] = le32_to_cpu(stats->rmac_in_rng_len_err_frms);
6302 	tmp_stats[i++] = le32_to_cpu(stats->rmac_out_rng_len_err_frms);
6303 	tmp_stats[i++] = le64_to_cpu(stats->rmac_long_frms);
6304 	tmp_stats[i++] = le64_to_cpu(stats->rmac_pause_ctrl_frms);
6305 	tmp_stats[i++] = le64_to_cpu(stats->rmac_unsup_ctrl_frms);
6306 	tmp_stats[i++] =
6307 		(u64)le32_to_cpu(stats->rmac_ttl_octets_oflow) << 32 |
6308 		le32_to_cpu(stats->rmac_ttl_octets);
6309 	tmp_stats[i++] =
6310 		(u64)le32_to_cpu(stats->rmac_accepted_ucst_frms_oflow) << 32
6311 		| le32_to_cpu(stats->rmac_accepted_ucst_frms);
6312 	tmp_stats[i++] =
6313 		(u64)le32_to_cpu(stats->rmac_accepted_nucst_frms_oflow)
6314 		<< 32 | le32_to_cpu(stats->rmac_accepted_nucst_frms);
6315 	tmp_stats[i++] =
6316 		(u64)le32_to_cpu(stats->rmac_discarded_frms_oflow) << 32 |
6317 		le32_to_cpu(stats->rmac_discarded_frms);
6318 	tmp_stats[i++] =
6319 		(u64)le32_to_cpu(stats->rmac_drop_events_oflow)
6320 		<< 32 | le32_to_cpu(stats->rmac_drop_events);
6321 	tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_less_fb_octets);
6322 	tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_frms);
6323 	tmp_stats[i++] =
6324 		(u64)le32_to_cpu(stats->rmac_usized_frms_oflow) << 32 |
6325 		le32_to_cpu(stats->rmac_usized_frms);
6326 	tmp_stats[i++] =
6327 		(u64)le32_to_cpu(stats->rmac_osized_frms_oflow) << 32 |
6328 		le32_to_cpu(stats->rmac_osized_frms);
6329 	tmp_stats[i++] =
6330 		(u64)le32_to_cpu(stats->rmac_frag_frms_oflow) << 32 |
6331 		le32_to_cpu(stats->rmac_frag_frms);
6332 	tmp_stats[i++] =
6333 		(u64)le32_to_cpu(stats->rmac_jabber_frms_oflow) << 32 |
6334 		le32_to_cpu(stats->rmac_jabber_frms);
6335 	tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_64_frms);
6336 	tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_65_127_frms);
6337 	tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_128_255_frms);
6338 	tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_256_511_frms);
6339 	tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_512_1023_frms);
6340 	tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_1024_1518_frms);
6341 	tmp_stats[i++] =
6342 		(u64)le32_to_cpu(stats->rmac_ip_oflow) << 32 |
6343 		le32_to_cpu(stats->rmac_ip);
6344 	tmp_stats[i++] = le64_to_cpu(stats->rmac_ip_octets);
6345 	tmp_stats[i++] = le32_to_cpu(stats->rmac_hdr_err_ip);
6346 	tmp_stats[i++] =
6347 		(u64)le32_to_cpu(stats->rmac_drop_ip_oflow) << 32 |
6348 		le32_to_cpu(stats->rmac_drop_ip);
6349 	tmp_stats[i++] =
6350 		(u64)le32_to_cpu(stats->rmac_icmp_oflow) << 32 |
6351 		le32_to_cpu(stats->rmac_icmp);
6352 	tmp_stats[i++] = le64_to_cpu(stats->rmac_tcp);
6353 	tmp_stats[i++] =
6354 		(u64)le32_to_cpu(stats->rmac_udp_oflow) << 32 |
6355 		le32_to_cpu(stats->rmac_udp);
6356 	tmp_stats[i++] =
6357 		(u64)le32_to_cpu(stats->rmac_err_drp_udp_oflow) << 32 |
6358 		le32_to_cpu(stats->rmac_err_drp_udp);
6359 	tmp_stats[i++] = le64_to_cpu(stats->rmac_xgmii_err_sym);
6360 	tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q0);
6361 	tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q1);
6362 	tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q2);
6363 	tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q3);
6364 	tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q4);
6365 	tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q5);
6366 	tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q6);
6367 	tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q7);
6368 	tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q0);
6369 	tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q1);
6370 	tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q2);
6371 	tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q3);
6372 	tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q4);
6373 	tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q5);
6374 	tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q6);
6375 	tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q7);
6376 	tmp_stats[i++] =
6377 		(u64)le32_to_cpu(stats->rmac_pause_cnt_oflow) << 32 |
6378 		le32_to_cpu(stats->rmac_pause_cnt);
6379 	tmp_stats[i++] = le64_to_cpu(stats->rmac_xgmii_data_err_cnt);
6380 	tmp_stats[i++] = le64_to_cpu(stats->rmac_xgmii_ctrl_err_cnt);
6381 	tmp_stats[i++] =
6382 		(u64)le32_to_cpu(stats->rmac_accepted_ip_oflow) << 32 |
6383 		le32_to_cpu(stats->rmac_accepted_ip);
6384 	tmp_stats[i++] = le32_to_cpu(stats->rmac_err_tcp);
6385 	tmp_stats[i++] = le32_to_cpu(stats->rd_req_cnt);
6386 	tmp_stats[i++] = le32_to_cpu(stats->new_rd_req_cnt);
6387 	tmp_stats[i++] = le32_to_cpu(stats->new_rd_req_rtry_cnt);
6388 	tmp_stats[i++] = le32_to_cpu(stats->rd_rtry_cnt);
6389 	tmp_stats[i++] = le32_to_cpu(stats->wr_rtry_rd_ack_cnt);
6390 	tmp_stats[i++] = le32_to_cpu(stats->wr_req_cnt);
6391 	tmp_stats[i++] = le32_to_cpu(stats->new_wr_req_cnt);
6392 	tmp_stats[i++] = le32_to_cpu(stats->new_wr_req_rtry_cnt);
6393 	tmp_stats[i++] = le32_to_cpu(stats->wr_rtry_cnt);
6394 	tmp_stats[i++] = le32_to_cpu(stats->wr_disc_cnt);
6395 	tmp_stats[i++] = le32_to_cpu(stats->rd_rtry_wr_ack_cnt);
6396 	tmp_stats[i++] = le32_to_cpu(stats->txp_wr_cnt);
6397 	tmp_stats[i++] = le32_to_cpu(stats->txd_rd_cnt);
6398 	tmp_stats[i++] = le32_to_cpu(stats->txd_wr_cnt);
6399 	tmp_stats[i++] = le32_to_cpu(stats->rxd_rd_cnt);
6400 	tmp_stats[i++] = le32_to_cpu(stats->rxd_wr_cnt);
6401 	tmp_stats[i++] = le32_to_cpu(stats->txf_rd_cnt);
6402 	tmp_stats[i++] = le32_to_cpu(stats->rxf_wr_cnt);
6403 
6404 	/* Enhanced statistics exist only for Hercules */
6405 	if (sp->device_type == XFRAME_II_DEVICE) {
6406 		tmp_stats[i++] =
6407 			le64_to_cpu(stats->rmac_ttl_1519_4095_frms);
6408 		tmp_stats[i++] =
6409 			le64_to_cpu(stats->rmac_ttl_4096_8191_frms);
6410 		tmp_stats[i++] =
6411 			le64_to_cpu(stats->rmac_ttl_8192_max_frms);
6412 		tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_gt_max_frms);
6413 		tmp_stats[i++] = le64_to_cpu(stats->rmac_osized_alt_frms);
6414 		tmp_stats[i++] = le64_to_cpu(stats->rmac_jabber_alt_frms);
6415 		tmp_stats[i++] = le64_to_cpu(stats->rmac_gt_max_alt_frms);
6416 		tmp_stats[i++] = le64_to_cpu(stats->rmac_vlan_frms);
6417 		tmp_stats[i++] = le32_to_cpu(stats->rmac_len_discard);
6418 		tmp_stats[i++] = le32_to_cpu(stats->rmac_fcs_discard);
6419 		tmp_stats[i++] = le32_to_cpu(stats->rmac_pf_discard);
6420 		tmp_stats[i++] = le32_to_cpu(stats->rmac_da_discard);
6421 		tmp_stats[i++] = le32_to_cpu(stats->rmac_red_discard);
6422 		tmp_stats[i++] = le32_to_cpu(stats->rmac_rts_discard);
6423 		tmp_stats[i++] = le32_to_cpu(stats->rmac_ingm_full_discard);
6424 		tmp_stats[i++] = le32_to_cpu(stats->link_fault_cnt);
6425 	}
6426 
6427 	tmp_stats[i++] = 0;
6428 	tmp_stats[i++] = swstats->single_ecc_errs;
6429 	tmp_stats[i++] = swstats->double_ecc_errs;
6430 	tmp_stats[i++] = swstats->parity_err_cnt;
6431 	tmp_stats[i++] = swstats->serious_err_cnt;
6432 	tmp_stats[i++] = swstats->soft_reset_cnt;
6433 	tmp_stats[i++] = swstats->fifo_full_cnt;
6434 	for (k = 0; k < MAX_RX_RINGS; k++)
6435 		tmp_stats[i++] = swstats->ring_full_cnt[k];
6436 	tmp_stats[i++] = xstats->alarm_transceiver_temp_high;
6437 	tmp_stats[i++] = xstats->alarm_transceiver_temp_low;
6438 	tmp_stats[i++] = xstats->alarm_laser_bias_current_high;
6439 	tmp_stats[i++] = xstats->alarm_laser_bias_current_low;
6440 	tmp_stats[i++] = xstats->alarm_laser_output_power_high;
6441 	tmp_stats[i++] = xstats->alarm_laser_output_power_low;
6442 	tmp_stats[i++] = xstats->warn_transceiver_temp_high;
6443 	tmp_stats[i++] = xstats->warn_transceiver_temp_low;
6444 	tmp_stats[i++] = xstats->warn_laser_bias_current_high;
6445 	tmp_stats[i++] = xstats->warn_laser_bias_current_low;
6446 	tmp_stats[i++] = xstats->warn_laser_output_power_high;
6447 	tmp_stats[i++] = xstats->warn_laser_output_power_low;
6448 	tmp_stats[i++] = swstats->clubbed_frms_cnt;
6449 	tmp_stats[i++] = swstats->sending_both;
6450 	tmp_stats[i++] = swstats->outof_sequence_pkts;
6451 	tmp_stats[i++] = swstats->flush_max_pkts;
6452 	if (swstats->num_aggregations) {
6453 		u64 tmp = swstats->sum_avg_pkts_aggregated;
6454 		int count = 0;
6455 		/*
6456 		 * Since 64-bit divide does not work on all platforms,
6457 		 * do repeated subtraction.
6458 		 */
6459 		while (tmp >= swstats->num_aggregations) {
6460 			tmp -= swstats->num_aggregations;
6461 			count++;
6462 		}
6463 		tmp_stats[i++] = count;
6464 	} else
6465 		tmp_stats[i++] = 0;
6466 	tmp_stats[i++] = swstats->mem_alloc_fail_cnt;
6467 	tmp_stats[i++] = swstats->pci_map_fail_cnt;
6468 	tmp_stats[i++] = swstats->watchdog_timer_cnt;
6469 	tmp_stats[i++] = swstats->mem_allocated;
6470 	tmp_stats[i++] = swstats->mem_freed;
6471 	tmp_stats[i++] = swstats->link_up_cnt;
6472 	tmp_stats[i++] = swstats->link_down_cnt;
6473 	tmp_stats[i++] = swstats->link_up_time;
6474 	tmp_stats[i++] = swstats->link_down_time;
6475 
6476 	tmp_stats[i++] = swstats->tx_buf_abort_cnt;
6477 	tmp_stats[i++] = swstats->tx_desc_abort_cnt;
6478 	tmp_stats[i++] = swstats->tx_parity_err_cnt;
6479 	tmp_stats[i++] = swstats->tx_link_loss_cnt;
6480 	tmp_stats[i++] = swstats->tx_list_proc_err_cnt;
6481 
6482 	tmp_stats[i++] = swstats->rx_parity_err_cnt;
6483 	tmp_stats[i++] = swstats->rx_abort_cnt;
6484 	tmp_stats[i++] = swstats->rx_parity_abort_cnt;
6485 	tmp_stats[i++] = swstats->rx_rda_fail_cnt;
6486 	tmp_stats[i++] = swstats->rx_unkn_prot_cnt;
6487 	tmp_stats[i++] = swstats->rx_fcs_err_cnt;
6488 	tmp_stats[i++] = swstats->rx_buf_size_err_cnt;
6489 	tmp_stats[i++] = swstats->rx_rxd_corrupt_cnt;
6490 	tmp_stats[i++] = swstats->rx_unkn_err_cnt;
6491 	tmp_stats[i++] = swstats->tda_err_cnt;
6492 	tmp_stats[i++] = swstats->pfc_err_cnt;
6493 	tmp_stats[i++] = swstats->pcc_err_cnt;
6494 	tmp_stats[i++] = swstats->tti_err_cnt;
6495 	tmp_stats[i++] = swstats->tpa_err_cnt;
6496 	tmp_stats[i++] = swstats->sm_err_cnt;
6497 	tmp_stats[i++] = swstats->lso_err_cnt;
6498 	tmp_stats[i++] = swstats->mac_tmac_err_cnt;
6499 	tmp_stats[i++] = swstats->mac_rmac_err_cnt;
6500 	tmp_stats[i++] = swstats->xgxs_txgxs_err_cnt;
6501 	tmp_stats[i++] = swstats->xgxs_rxgxs_err_cnt;
6502 	tmp_stats[i++] = swstats->rc_err_cnt;
6503 	tmp_stats[i++] = swstats->prc_pcix_err_cnt;
6504 	tmp_stats[i++] = swstats->rpa_err_cnt;
6505 	tmp_stats[i++] = swstats->rda_err_cnt;
6506 	tmp_stats[i++] = swstats->rti_err_cnt;
6507 	tmp_stats[i++] = swstats->mc_err_cnt;
6508 }
6509 
6510 static int s2io_ethtool_get_regs_len(struct net_device *dev)
6511 {
6512 	return XENA_REG_SPACE;
6513 }
6514 
6515 
6516 static int s2io_get_eeprom_len(struct net_device *dev)
6517 {
6518 	return XENA_EEPROM_SPACE;
6519 }
6520 
6521 static int s2io_get_sset_count(struct net_device *dev, int sset)
6522 {
6523 	struct s2io_nic *sp = netdev_priv(dev);
6524 
6525 	switch (sset) {
6526 	case ETH_SS_TEST:
6527 		return S2IO_TEST_LEN;
6528 	case ETH_SS_STATS:
6529 		switch (sp->device_type) {
6530 		case XFRAME_I_DEVICE:
6531 			return XFRAME_I_STAT_LEN;
6532 		case XFRAME_II_DEVICE:
6533 			return XFRAME_II_STAT_LEN;
6534 		default:
6535 			return 0;
6536 		}
6537 	default:
6538 		return -EOPNOTSUPP;
6539 	}
6540 }
6541 
6542 static void s2io_ethtool_get_strings(struct net_device *dev,
6543 				     u32 stringset, u8 *data)
6544 {
6545 	int stat_size = 0;
6546 	struct s2io_nic *sp = netdev_priv(dev);
6547 
6548 	switch (stringset) {
6549 	case ETH_SS_TEST:
6550 		memcpy(data, s2io_gstrings, S2IO_STRINGS_LEN);
6551 		break;
6552 	case ETH_SS_STATS:
6553 		stat_size = sizeof(ethtool_xena_stats_keys);
6554 		memcpy(data, &ethtool_xena_stats_keys, stat_size);
6555 		if (sp->device_type == XFRAME_II_DEVICE) {
6556 			memcpy(data + stat_size,
6557 			       &ethtool_enhanced_stats_keys,
6558 			       sizeof(ethtool_enhanced_stats_keys));
6559 			stat_size += sizeof(ethtool_enhanced_stats_keys);
6560 		}
6561 
6562 		memcpy(data + stat_size, &ethtool_driver_stats_keys,
6563 		       sizeof(ethtool_driver_stats_keys));
6564 	}
6565 }
6566 
6567 static int s2io_set_features(struct net_device *dev, netdev_features_t features)
6568 {
6569 	struct s2io_nic *sp = netdev_priv(dev);
6570 	netdev_features_t changed = (features ^ dev->features) & NETIF_F_LRO;
6571 
6572 	if (changed && netif_running(dev)) {
6573 		int rc;
6574 
6575 		s2io_stop_all_tx_queue(sp);
6576 		s2io_card_down(sp);
6577 		dev->features = features;
6578 		rc = s2io_card_up(sp);
6579 		if (rc)
6580 			s2io_reset(sp);
6581 		else
6582 			s2io_start_all_tx_queue(sp);
6583 
6584 		return rc ? rc : 1;
6585 	}
6586 
6587 	return 0;
6588 }
6589 
6590 static const struct ethtool_ops netdev_ethtool_ops = {
6591 	.get_drvinfo = s2io_ethtool_gdrvinfo,
6592 	.get_regs_len = s2io_ethtool_get_regs_len,
6593 	.get_regs = s2io_ethtool_gregs,
6594 	.get_link = ethtool_op_get_link,
6595 	.get_eeprom_len = s2io_get_eeprom_len,
6596 	.get_eeprom = s2io_ethtool_geeprom,
6597 	.set_eeprom = s2io_ethtool_seeprom,
6598 	.get_ringparam = s2io_ethtool_gringparam,
6599 	.get_pauseparam = s2io_ethtool_getpause_data,
6600 	.set_pauseparam = s2io_ethtool_setpause_data,
6601 	.self_test = s2io_ethtool_test,
6602 	.get_strings = s2io_ethtool_get_strings,
6603 	.set_phys_id = s2io_ethtool_set_led,
6604 	.get_ethtool_stats = s2io_get_ethtool_stats,
6605 	.get_sset_count = s2io_get_sset_count,
6606 	.get_link_ksettings = s2io_ethtool_get_link_ksettings,
6607 	.set_link_ksettings = s2io_ethtool_set_link_ksettings,
6608 };
6609 
6610 /**
6611  *  s2io_ioctl - Entry point for the Ioctl
6612  *  @dev :  Device pointer.
6613  *  @rq :  An IOCTL specefic structure, that can contain a pointer to
6614  *  a proprietary structure used to pass information to the driver.
6615  *  @cmd :  This is used to distinguish between the different commands that
6616  *  can be passed to the IOCTL functions.
6617  *  Description:
6618  *  Currently there are no special functionality supported in IOCTL, hence
6619  *  function always return EOPNOTSUPPORTED
6620  */
6621 
6622 static int s2io_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
6623 {
6624 	return -EOPNOTSUPP;
6625 }
6626 
6627 /**
6628  *  s2io_change_mtu - entry point to change MTU size for the device.
6629  *   @dev : device pointer.
6630  *   @new_mtu : the new MTU size for the device.
6631  *   Description: A driver entry point to change MTU size for the device.
6632  *   Before changing the MTU the device must be stopped.
6633  *  Return value:
6634  *   0 on success and an appropriate (-)ve integer as defined in errno.h
6635  *   file on failure.
6636  */
6637 
6638 static int s2io_change_mtu(struct net_device *dev, int new_mtu)
6639 {
6640 	struct s2io_nic *sp = netdev_priv(dev);
6641 	int ret = 0;
6642 
6643 	dev->mtu = new_mtu;
6644 	if (netif_running(dev)) {
6645 		s2io_stop_all_tx_queue(sp);
6646 		s2io_card_down(sp);
6647 		ret = s2io_card_up(sp);
6648 		if (ret) {
6649 			DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n",
6650 				  __func__);
6651 			return ret;
6652 		}
6653 		s2io_wake_all_tx_queue(sp);
6654 	} else { /* Device is down */
6655 		struct XENA_dev_config __iomem *bar0 = sp->bar0;
6656 		u64 val64 = new_mtu;
6657 
6658 		writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
6659 	}
6660 
6661 	return ret;
6662 }
6663 
6664 /**
6665  * s2io_set_link - Set the LInk status
6666  * @work: work struct containing a pointer to device private structure
6667  * Description: Sets the link status for the adapter
6668  */
6669 
6670 static void s2io_set_link(struct work_struct *work)
6671 {
6672 	struct s2io_nic *nic = container_of(work, struct s2io_nic,
6673 					    set_link_task);
6674 	struct net_device *dev = nic->dev;
6675 	struct XENA_dev_config __iomem *bar0 = nic->bar0;
6676 	register u64 val64;
6677 	u16 subid;
6678 
6679 	rtnl_lock();
6680 
6681 	if (!netif_running(dev))
6682 		goto out_unlock;
6683 
6684 	if (test_and_set_bit(__S2IO_STATE_LINK_TASK, &(nic->state))) {
6685 		/* The card is being reset, no point doing anything */
6686 		goto out_unlock;
6687 	}
6688 
6689 	subid = nic->pdev->subsystem_device;
6690 	if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
6691 		/*
6692 		 * Allow a small delay for the NICs self initiated
6693 		 * cleanup to complete.
6694 		 */
6695 		msleep(100);
6696 	}
6697 
6698 	val64 = readq(&bar0->adapter_status);
6699 	if (LINK_IS_UP(val64)) {
6700 		if (!(readq(&bar0->adapter_control) & ADAPTER_CNTL_EN)) {
6701 			if (verify_xena_quiescence(nic)) {
6702 				val64 = readq(&bar0->adapter_control);
6703 				val64 |= ADAPTER_CNTL_EN;
6704 				writeq(val64, &bar0->adapter_control);
6705 				if (CARDS_WITH_FAULTY_LINK_INDICATORS(
6706 					    nic->device_type, subid)) {
6707 					val64 = readq(&bar0->gpio_control);
6708 					val64 |= GPIO_CTRL_GPIO_0;
6709 					writeq(val64, &bar0->gpio_control);
6710 					val64 = readq(&bar0->gpio_control);
6711 				} else {
6712 					val64 |= ADAPTER_LED_ON;
6713 					writeq(val64, &bar0->adapter_control);
6714 				}
6715 				nic->device_enabled_once = true;
6716 			} else {
6717 				DBG_PRINT(ERR_DBG,
6718 					  "%s: Error: device is not Quiescent\n",
6719 					  dev->name);
6720 				s2io_stop_all_tx_queue(nic);
6721 			}
6722 		}
6723 		val64 = readq(&bar0->adapter_control);
6724 		val64 |= ADAPTER_LED_ON;
6725 		writeq(val64, &bar0->adapter_control);
6726 		s2io_link(nic, LINK_UP);
6727 	} else {
6728 		if (CARDS_WITH_FAULTY_LINK_INDICATORS(nic->device_type,
6729 						      subid)) {
6730 			val64 = readq(&bar0->gpio_control);
6731 			val64 &= ~GPIO_CTRL_GPIO_0;
6732 			writeq(val64, &bar0->gpio_control);
6733 			val64 = readq(&bar0->gpio_control);
6734 		}
6735 		/* turn off LED */
6736 		val64 = readq(&bar0->adapter_control);
6737 		val64 = val64 & (~ADAPTER_LED_ON);
6738 		writeq(val64, &bar0->adapter_control);
6739 		s2io_link(nic, LINK_DOWN);
6740 	}
6741 	clear_bit(__S2IO_STATE_LINK_TASK, &(nic->state));
6742 
6743 out_unlock:
6744 	rtnl_unlock();
6745 }
6746 
6747 static int set_rxd_buffer_pointer(struct s2io_nic *sp, struct RxD_t *rxdp,
6748 				  struct buffAdd *ba,
6749 				  struct sk_buff **skb, u64 *temp0, u64 *temp1,
6750 				  u64 *temp2, int size)
6751 {
6752 	struct net_device *dev = sp->dev;
6753 	struct swStat *stats = &sp->mac_control.stats_info->sw_stat;
6754 
6755 	if ((sp->rxd_mode == RXD_MODE_1) && (rxdp->Host_Control == 0)) {
6756 		struct RxD1 *rxdp1 = (struct RxD1 *)rxdp;
6757 		/* allocate skb */
6758 		if (*skb) {
6759 			DBG_PRINT(INFO_DBG, "SKB is not NULL\n");
6760 			/*
6761 			 * As Rx frame are not going to be processed,
6762 			 * using same mapped address for the Rxd
6763 			 * buffer pointer
6764 			 */
6765 			rxdp1->Buffer0_ptr = *temp0;
6766 		} else {
6767 			*skb = netdev_alloc_skb(dev, size);
6768 			if (!(*skb)) {
6769 				DBG_PRINT(INFO_DBG,
6770 					  "%s: Out of memory to allocate %s\n",
6771 					  dev->name, "1 buf mode SKBs");
6772 				stats->mem_alloc_fail_cnt++;
6773 				return -ENOMEM ;
6774 			}
6775 			stats->mem_allocated += (*skb)->truesize;
6776 			/* storing the mapped addr in a temp variable
6777 			 * such it will be used for next rxd whose
6778 			 * Host Control is NULL
6779 			 */
6780 			rxdp1->Buffer0_ptr = *temp0 =
6781 				dma_map_single(&sp->pdev->dev, (*skb)->data,
6782 					       size - NET_IP_ALIGN,
6783 					       DMA_FROM_DEVICE);
6784 			if (dma_mapping_error(&sp->pdev->dev, rxdp1->Buffer0_ptr))
6785 				goto memalloc_failed;
6786 			rxdp->Host_Control = (unsigned long) (*skb);
6787 		}
6788 	} else if ((sp->rxd_mode == RXD_MODE_3B) && (rxdp->Host_Control == 0)) {
6789 		struct RxD3 *rxdp3 = (struct RxD3 *)rxdp;
6790 		/* Two buffer Mode */
6791 		if (*skb) {
6792 			rxdp3->Buffer2_ptr = *temp2;
6793 			rxdp3->Buffer0_ptr = *temp0;
6794 			rxdp3->Buffer1_ptr = *temp1;
6795 		} else {
6796 			*skb = netdev_alloc_skb(dev, size);
6797 			if (!(*skb)) {
6798 				DBG_PRINT(INFO_DBG,
6799 					  "%s: Out of memory to allocate %s\n",
6800 					  dev->name,
6801 					  "2 buf mode SKBs");
6802 				stats->mem_alloc_fail_cnt++;
6803 				return -ENOMEM;
6804 			}
6805 			stats->mem_allocated += (*skb)->truesize;
6806 			rxdp3->Buffer2_ptr = *temp2 =
6807 				dma_map_single(&sp->pdev->dev, (*skb)->data,
6808 					       dev->mtu + 4, DMA_FROM_DEVICE);
6809 			if (dma_mapping_error(&sp->pdev->dev, rxdp3->Buffer2_ptr))
6810 				goto memalloc_failed;
6811 			rxdp3->Buffer0_ptr = *temp0 =
6812 				dma_map_single(&sp->pdev->dev, ba->ba_0,
6813 					       BUF0_LEN, DMA_FROM_DEVICE);
6814 			if (dma_mapping_error(&sp->pdev->dev, rxdp3->Buffer0_ptr)) {
6815 				dma_unmap_single(&sp->pdev->dev,
6816 						 (dma_addr_t)rxdp3->Buffer2_ptr,
6817 						 dev->mtu + 4,
6818 						 DMA_FROM_DEVICE);
6819 				goto memalloc_failed;
6820 			}
6821 			rxdp->Host_Control = (unsigned long) (*skb);
6822 
6823 			/* Buffer-1 will be dummy buffer not used */
6824 			rxdp3->Buffer1_ptr = *temp1 =
6825 				dma_map_single(&sp->pdev->dev, ba->ba_1,
6826 					       BUF1_LEN, DMA_FROM_DEVICE);
6827 			if (dma_mapping_error(&sp->pdev->dev, rxdp3->Buffer1_ptr)) {
6828 				dma_unmap_single(&sp->pdev->dev,
6829 						 (dma_addr_t)rxdp3->Buffer0_ptr,
6830 						 BUF0_LEN, DMA_FROM_DEVICE);
6831 				dma_unmap_single(&sp->pdev->dev,
6832 						 (dma_addr_t)rxdp3->Buffer2_ptr,
6833 						 dev->mtu + 4,
6834 						 DMA_FROM_DEVICE);
6835 				goto memalloc_failed;
6836 			}
6837 		}
6838 	}
6839 	return 0;
6840 
6841 memalloc_failed:
6842 	stats->pci_map_fail_cnt++;
6843 	stats->mem_freed += (*skb)->truesize;
6844 	dev_kfree_skb(*skb);
6845 	return -ENOMEM;
6846 }
6847 
6848 static void set_rxd_buffer_size(struct s2io_nic *sp, struct RxD_t *rxdp,
6849 				int size)
6850 {
6851 	struct net_device *dev = sp->dev;
6852 	if (sp->rxd_mode == RXD_MODE_1) {
6853 		rxdp->Control_2 = SET_BUFFER0_SIZE_1(size - NET_IP_ALIGN);
6854 	} else if (sp->rxd_mode == RXD_MODE_3B) {
6855 		rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
6856 		rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
6857 		rxdp->Control_2 |= SET_BUFFER2_SIZE_3(dev->mtu + 4);
6858 	}
6859 }
6860 
6861 static  int rxd_owner_bit_reset(struct s2io_nic *sp)
6862 {
6863 	int i, j, k, blk_cnt = 0, size;
6864 	struct config_param *config = &sp->config;
6865 	struct mac_info *mac_control = &sp->mac_control;
6866 	struct net_device *dev = sp->dev;
6867 	struct RxD_t *rxdp = NULL;
6868 	struct sk_buff *skb = NULL;
6869 	struct buffAdd *ba = NULL;
6870 	u64 temp0_64 = 0, temp1_64 = 0, temp2_64 = 0;
6871 
6872 	/* Calculate the size based on ring mode */
6873 	size = dev->mtu + HEADER_ETHERNET_II_802_3_SIZE +
6874 		HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
6875 	if (sp->rxd_mode == RXD_MODE_1)
6876 		size += NET_IP_ALIGN;
6877 	else if (sp->rxd_mode == RXD_MODE_3B)
6878 		size = dev->mtu + ALIGN_SIZE + BUF0_LEN + 4;
6879 
6880 	for (i = 0; i < config->rx_ring_num; i++) {
6881 		struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
6882 		struct ring_info *ring = &mac_control->rings[i];
6883 
6884 		blk_cnt = rx_cfg->num_rxd / (rxd_count[sp->rxd_mode] + 1);
6885 
6886 		for (j = 0; j < blk_cnt; j++) {
6887 			for (k = 0; k < rxd_count[sp->rxd_mode]; k++) {
6888 				rxdp = ring->rx_blocks[j].rxds[k].virt_addr;
6889 				if (sp->rxd_mode == RXD_MODE_3B)
6890 					ba = &ring->ba[j][k];
6891 				if (set_rxd_buffer_pointer(sp, rxdp, ba, &skb,
6892 							   &temp0_64,
6893 							   &temp1_64,
6894 							   &temp2_64,
6895 							   size) == -ENOMEM) {
6896 					return 0;
6897 				}
6898 
6899 				set_rxd_buffer_size(sp, rxdp, size);
6900 				dma_wmb();
6901 				/* flip the Ownership bit to Hardware */
6902 				rxdp->Control_1 |= RXD_OWN_XENA;
6903 			}
6904 		}
6905 	}
6906 	return 0;
6907 
6908 }
6909 
6910 static int s2io_add_isr(struct s2io_nic *sp)
6911 {
6912 	int ret = 0;
6913 	struct net_device *dev = sp->dev;
6914 	int err = 0;
6915 
6916 	if (sp->config.intr_type == MSI_X)
6917 		ret = s2io_enable_msi_x(sp);
6918 	if (ret) {
6919 		DBG_PRINT(ERR_DBG, "%s: Defaulting to INTA\n", dev->name);
6920 		sp->config.intr_type = INTA;
6921 	}
6922 
6923 	/*
6924 	 * Store the values of the MSIX table in
6925 	 * the struct s2io_nic structure
6926 	 */
6927 	store_xmsi_data(sp);
6928 
6929 	/* After proper initialization of H/W, register ISR */
6930 	if (sp->config.intr_type == MSI_X) {
6931 		int i, msix_rx_cnt = 0;
6932 
6933 		for (i = 0; i < sp->num_entries; i++) {
6934 			if (sp->s2io_entries[i].in_use == MSIX_FLG) {
6935 				if (sp->s2io_entries[i].type ==
6936 				    MSIX_RING_TYPE) {
6937 					snprintf(sp->desc[i],
6938 						sizeof(sp->desc[i]),
6939 						"%s:MSI-X-%d-RX",
6940 						dev->name, i);
6941 					err = request_irq(sp->entries[i].vector,
6942 							  s2io_msix_ring_handle,
6943 							  0,
6944 							  sp->desc[i],
6945 							  sp->s2io_entries[i].arg);
6946 				} else if (sp->s2io_entries[i].type ==
6947 					   MSIX_ALARM_TYPE) {
6948 					snprintf(sp->desc[i],
6949 						sizeof(sp->desc[i]),
6950 						"%s:MSI-X-%d-TX",
6951 						dev->name, i);
6952 					err = request_irq(sp->entries[i].vector,
6953 							  s2io_msix_fifo_handle,
6954 							  0,
6955 							  sp->desc[i],
6956 							  sp->s2io_entries[i].arg);
6957 
6958 				}
6959 				/* if either data or addr is zero print it. */
6960 				if (!(sp->msix_info[i].addr &&
6961 				      sp->msix_info[i].data)) {
6962 					DBG_PRINT(ERR_DBG,
6963 						  "%s @Addr:0x%llx Data:0x%llx\n",
6964 						  sp->desc[i],
6965 						  (unsigned long long)
6966 						  sp->msix_info[i].addr,
6967 						  (unsigned long long)
6968 						  ntohl(sp->msix_info[i].data));
6969 				} else
6970 					msix_rx_cnt++;
6971 				if (err) {
6972 					remove_msix_isr(sp);
6973 
6974 					DBG_PRINT(ERR_DBG,
6975 						  "%s:MSI-X-%d registration "
6976 						  "failed\n", dev->name, i);
6977 
6978 					DBG_PRINT(ERR_DBG,
6979 						  "%s: Defaulting to INTA\n",
6980 						  dev->name);
6981 					sp->config.intr_type = INTA;
6982 					break;
6983 				}
6984 				sp->s2io_entries[i].in_use =
6985 					MSIX_REGISTERED_SUCCESS;
6986 			}
6987 		}
6988 		if (!err) {
6989 			pr_info("MSI-X-RX %d entries enabled\n", --msix_rx_cnt);
6990 			DBG_PRINT(INFO_DBG,
6991 				  "MSI-X-TX entries enabled through alarm vector\n");
6992 		}
6993 	}
6994 	if (sp->config.intr_type == INTA) {
6995 		err = request_irq(sp->pdev->irq, s2io_isr, IRQF_SHARED,
6996 				  sp->name, dev);
6997 		if (err) {
6998 			DBG_PRINT(ERR_DBG, "%s: ISR registration failed\n",
6999 				  dev->name);
7000 			return -1;
7001 		}
7002 	}
7003 	return 0;
7004 }
7005 
7006 static void s2io_rem_isr(struct s2io_nic *sp)
7007 {
7008 	if (sp->config.intr_type == MSI_X)
7009 		remove_msix_isr(sp);
7010 	else
7011 		remove_inta_isr(sp);
7012 }
7013 
7014 static void do_s2io_card_down(struct s2io_nic *sp, int do_io)
7015 {
7016 	int cnt = 0;
7017 	struct XENA_dev_config __iomem *bar0 = sp->bar0;
7018 	register u64 val64 = 0;
7019 	struct config_param *config;
7020 	config = &sp->config;
7021 
7022 	if (!is_s2io_card_up(sp))
7023 		return;
7024 
7025 	del_timer_sync(&sp->alarm_timer);
7026 	/* If s2io_set_link task is executing, wait till it completes. */
7027 	while (test_and_set_bit(__S2IO_STATE_LINK_TASK, &(sp->state)))
7028 		msleep(50);
7029 	clear_bit(__S2IO_STATE_CARD_UP, &sp->state);
7030 
7031 	/* Disable napi */
7032 	if (sp->config.napi) {
7033 		int off = 0;
7034 		if (config->intr_type ==  MSI_X) {
7035 			for (; off < sp->config.rx_ring_num; off++)
7036 				napi_disable(&sp->mac_control.rings[off].napi);
7037 		}
7038 		else
7039 			napi_disable(&sp->napi);
7040 	}
7041 
7042 	/* disable Tx and Rx traffic on the NIC */
7043 	if (do_io)
7044 		stop_nic(sp);
7045 
7046 	s2io_rem_isr(sp);
7047 
7048 	/* stop the tx queue, indicate link down */
7049 	s2io_link(sp, LINK_DOWN);
7050 
7051 	/* Check if the device is Quiescent and then Reset the NIC */
7052 	while (do_io) {
7053 		/* As per the HW requirement we need to replenish the
7054 		 * receive buffer to avoid the ring bump. Since there is
7055 		 * no intention of processing the Rx frame at this pointwe are
7056 		 * just setting the ownership bit of rxd in Each Rx
7057 		 * ring to HW and set the appropriate buffer size
7058 		 * based on the ring mode
7059 		 */
7060 		rxd_owner_bit_reset(sp);
7061 
7062 		val64 = readq(&bar0->adapter_status);
7063 		if (verify_xena_quiescence(sp)) {
7064 			if (verify_pcc_quiescent(sp, sp->device_enabled_once))
7065 				break;
7066 		}
7067 
7068 		msleep(50);
7069 		cnt++;
7070 		if (cnt == 10) {
7071 			DBG_PRINT(ERR_DBG, "Device not Quiescent - "
7072 				  "adapter status reads 0x%llx\n",
7073 				  (unsigned long long)val64);
7074 			break;
7075 		}
7076 	}
7077 	if (do_io)
7078 		s2io_reset(sp);
7079 
7080 	/* Free all Tx buffers */
7081 	free_tx_buffers(sp);
7082 
7083 	/* Free all Rx buffers */
7084 	free_rx_buffers(sp);
7085 
7086 	clear_bit(__S2IO_STATE_LINK_TASK, &(sp->state));
7087 }
7088 
7089 static void s2io_card_down(struct s2io_nic *sp)
7090 {
7091 	do_s2io_card_down(sp, 1);
7092 }
7093 
7094 static int s2io_card_up(struct s2io_nic *sp)
7095 {
7096 	int i, ret = 0;
7097 	struct config_param *config;
7098 	struct mac_info *mac_control;
7099 	struct net_device *dev = sp->dev;
7100 	u16 interruptible;
7101 
7102 	/* Initialize the H/W I/O registers */
7103 	ret = init_nic(sp);
7104 	if (ret != 0) {
7105 		DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
7106 			  dev->name);
7107 		if (ret != -EIO)
7108 			s2io_reset(sp);
7109 		return ret;
7110 	}
7111 
7112 	/*
7113 	 * Initializing the Rx buffers. For now we are considering only 1
7114 	 * Rx ring and initializing buffers into 30 Rx blocks
7115 	 */
7116 	config = &sp->config;
7117 	mac_control = &sp->mac_control;
7118 
7119 	for (i = 0; i < config->rx_ring_num; i++) {
7120 		struct ring_info *ring = &mac_control->rings[i];
7121 
7122 		ring->mtu = dev->mtu;
7123 		ring->lro = !!(dev->features & NETIF_F_LRO);
7124 		ret = fill_rx_buffers(sp, ring, 1);
7125 		if (ret) {
7126 			DBG_PRINT(ERR_DBG, "%s: Out of memory in Open\n",
7127 				  dev->name);
7128 			s2io_reset(sp);
7129 			free_rx_buffers(sp);
7130 			return -ENOMEM;
7131 		}
7132 		DBG_PRINT(INFO_DBG, "Buf in ring:%d is %d:\n", i,
7133 			  ring->rx_bufs_left);
7134 	}
7135 
7136 	/* Initialise napi */
7137 	if (config->napi) {
7138 		if (config->intr_type ==  MSI_X) {
7139 			for (i = 0; i < sp->config.rx_ring_num; i++)
7140 				napi_enable(&sp->mac_control.rings[i].napi);
7141 		} else {
7142 			napi_enable(&sp->napi);
7143 		}
7144 	}
7145 
7146 	/* Maintain the state prior to the open */
7147 	if (sp->promisc_flg)
7148 		sp->promisc_flg = 0;
7149 	if (sp->m_cast_flg) {
7150 		sp->m_cast_flg = 0;
7151 		sp->all_multi_pos = 0;
7152 	}
7153 
7154 	/* Setting its receive mode */
7155 	s2io_set_multicast(dev, true);
7156 
7157 	if (dev->features & NETIF_F_LRO) {
7158 		/* Initialize max aggregatable pkts per session based on MTU */
7159 		sp->lro_max_aggr_per_sess = ((1<<16) - 1) / dev->mtu;
7160 		/* Check if we can use (if specified) user provided value */
7161 		if (lro_max_pkts < sp->lro_max_aggr_per_sess)
7162 			sp->lro_max_aggr_per_sess = lro_max_pkts;
7163 	}
7164 
7165 	/* Enable Rx Traffic and interrupts on the NIC */
7166 	if (start_nic(sp)) {
7167 		DBG_PRINT(ERR_DBG, "%s: Starting NIC failed\n", dev->name);
7168 		s2io_reset(sp);
7169 		free_rx_buffers(sp);
7170 		return -ENODEV;
7171 	}
7172 
7173 	/* Add interrupt service routine */
7174 	if (s2io_add_isr(sp) != 0) {
7175 		if (sp->config.intr_type == MSI_X)
7176 			s2io_rem_isr(sp);
7177 		s2io_reset(sp);
7178 		free_rx_buffers(sp);
7179 		return -ENODEV;
7180 	}
7181 
7182 	timer_setup(&sp->alarm_timer, s2io_alarm_handle, 0);
7183 	mod_timer(&sp->alarm_timer, jiffies + HZ / 2);
7184 
7185 	set_bit(__S2IO_STATE_CARD_UP, &sp->state);
7186 
7187 	/*  Enable select interrupts */
7188 	en_dis_err_alarms(sp, ENA_ALL_INTRS, ENABLE_INTRS);
7189 	if (sp->config.intr_type != INTA) {
7190 		interruptible = TX_TRAFFIC_INTR | TX_PIC_INTR;
7191 		en_dis_able_nic_intrs(sp, interruptible, ENABLE_INTRS);
7192 	} else {
7193 		interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
7194 		interruptible |= TX_PIC_INTR;
7195 		en_dis_able_nic_intrs(sp, interruptible, ENABLE_INTRS);
7196 	}
7197 
7198 	return 0;
7199 }
7200 
7201 /**
7202  * s2io_restart_nic - Resets the NIC.
7203  * @work : work struct containing a pointer to the device private structure
7204  * Description:
7205  * This function is scheduled to be run by the s2io_tx_watchdog
7206  * function after 0.5 secs to reset the NIC. The idea is to reduce
7207  * the run time of the watch dog routine which is run holding a
7208  * spin lock.
7209  */
7210 
7211 static void s2io_restart_nic(struct work_struct *work)
7212 {
7213 	struct s2io_nic *sp = container_of(work, struct s2io_nic, rst_timer_task);
7214 	struct net_device *dev = sp->dev;
7215 
7216 	rtnl_lock();
7217 
7218 	if (!netif_running(dev))
7219 		goto out_unlock;
7220 
7221 	s2io_card_down(sp);
7222 	if (s2io_card_up(sp)) {
7223 		DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n", dev->name);
7224 	}
7225 	s2io_wake_all_tx_queue(sp);
7226 	DBG_PRINT(ERR_DBG, "%s: was reset by Tx watchdog timer\n", dev->name);
7227 out_unlock:
7228 	rtnl_unlock();
7229 }
7230 
7231 /**
7232  *  s2io_tx_watchdog - Watchdog for transmit side.
7233  *  @dev : Pointer to net device structure
7234  *  @txqueue: index of the hanging queue
7235  *  Description:
7236  *  This function is triggered if the Tx Queue is stopped
7237  *  for a pre-defined amount of time when the Interface is still up.
7238  *  If the Interface is jammed in such a situation, the hardware is
7239  *  reset (by s2io_close) and restarted again (by s2io_open) to
7240  *  overcome any problem that might have been caused in the hardware.
7241  *  Return value:
7242  *  void
7243  */
7244 
7245 static void s2io_tx_watchdog(struct net_device *dev, unsigned int txqueue)
7246 {
7247 	struct s2io_nic *sp = netdev_priv(dev);
7248 	struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
7249 
7250 	if (netif_carrier_ok(dev)) {
7251 		swstats->watchdog_timer_cnt++;
7252 		schedule_work(&sp->rst_timer_task);
7253 		swstats->soft_reset_cnt++;
7254 	}
7255 }
7256 
7257 /**
7258  *   rx_osm_handler - To perform some OS related operations on SKB.
7259  *   @ring_data : the ring from which this RxD was extracted.
7260  *   @rxdp: descriptor
7261  *   Description:
7262  *   This function is called by the Rx interrupt serivce routine to perform
7263  *   some OS related operations on the SKB before passing it to the upper
7264  *   layers. It mainly checks if the checksum is OK, if so adds it to the
7265  *   SKBs cksum variable, increments the Rx packet count and passes the SKB
7266  *   to the upper layer. If the checksum is wrong, it increments the Rx
7267  *   packet error count, frees the SKB and returns error.
7268  *   Return value:
7269  *   SUCCESS on success and -1 on failure.
7270  */
7271 static int rx_osm_handler(struct ring_info *ring_data, struct RxD_t * rxdp)
7272 {
7273 	struct s2io_nic *sp = ring_data->nic;
7274 	struct net_device *dev = ring_data->dev;
7275 	struct sk_buff *skb = (struct sk_buff *)
7276 		((unsigned long)rxdp->Host_Control);
7277 	int ring_no = ring_data->ring_no;
7278 	u16 l3_csum, l4_csum;
7279 	unsigned long long err = rxdp->Control_1 & RXD_T_CODE;
7280 	struct lro *lro;
7281 	u8 err_mask;
7282 	struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
7283 
7284 	skb->dev = dev;
7285 
7286 	if (err) {
7287 		/* Check for parity error */
7288 		if (err & 0x1)
7289 			swstats->parity_err_cnt++;
7290 
7291 		err_mask = err >> 48;
7292 		switch (err_mask) {
7293 		case 1:
7294 			swstats->rx_parity_err_cnt++;
7295 			break;
7296 
7297 		case 2:
7298 			swstats->rx_abort_cnt++;
7299 			break;
7300 
7301 		case 3:
7302 			swstats->rx_parity_abort_cnt++;
7303 			break;
7304 
7305 		case 4:
7306 			swstats->rx_rda_fail_cnt++;
7307 			break;
7308 
7309 		case 5:
7310 			swstats->rx_unkn_prot_cnt++;
7311 			break;
7312 
7313 		case 6:
7314 			swstats->rx_fcs_err_cnt++;
7315 			break;
7316 
7317 		case 7:
7318 			swstats->rx_buf_size_err_cnt++;
7319 			break;
7320 
7321 		case 8:
7322 			swstats->rx_rxd_corrupt_cnt++;
7323 			break;
7324 
7325 		case 15:
7326 			swstats->rx_unkn_err_cnt++;
7327 			break;
7328 		}
7329 		/*
7330 		 * Drop the packet if bad transfer code. Exception being
7331 		 * 0x5, which could be due to unsupported IPv6 extension header.
7332 		 * In this case, we let stack handle the packet.
7333 		 * Note that in this case, since checksum will be incorrect,
7334 		 * stack will validate the same.
7335 		 */
7336 		if (err_mask != 0x5) {
7337 			DBG_PRINT(ERR_DBG, "%s: Rx error Value: 0x%x\n",
7338 				  dev->name, err_mask);
7339 			dev->stats.rx_crc_errors++;
7340 			swstats->mem_freed
7341 				+= skb->truesize;
7342 			dev_kfree_skb(skb);
7343 			ring_data->rx_bufs_left -= 1;
7344 			rxdp->Host_Control = 0;
7345 			return 0;
7346 		}
7347 	}
7348 
7349 	rxdp->Host_Control = 0;
7350 	if (sp->rxd_mode == RXD_MODE_1) {
7351 		int len = RXD_GET_BUFFER0_SIZE_1(rxdp->Control_2);
7352 
7353 		skb_put(skb, len);
7354 	} else if (sp->rxd_mode == RXD_MODE_3B) {
7355 		int get_block = ring_data->rx_curr_get_info.block_index;
7356 		int get_off = ring_data->rx_curr_get_info.offset;
7357 		int buf0_len = RXD_GET_BUFFER0_SIZE_3(rxdp->Control_2);
7358 		int buf2_len = RXD_GET_BUFFER2_SIZE_3(rxdp->Control_2);
7359 		unsigned char *buff = skb_push(skb, buf0_len);
7360 
7361 		struct buffAdd *ba = &ring_data->ba[get_block][get_off];
7362 		memcpy(buff, ba->ba_0, buf0_len);
7363 		skb_put(skb, buf2_len);
7364 	}
7365 
7366 	if ((rxdp->Control_1 & TCP_OR_UDP_FRAME) &&
7367 	    ((!ring_data->lro) ||
7368 	     (!(rxdp->Control_1 & RXD_FRAME_IP_FRAG))) &&
7369 	    (dev->features & NETIF_F_RXCSUM)) {
7370 		l3_csum = RXD_GET_L3_CKSUM(rxdp->Control_1);
7371 		l4_csum = RXD_GET_L4_CKSUM(rxdp->Control_1);
7372 		if ((l3_csum == L3_CKSUM_OK) && (l4_csum == L4_CKSUM_OK)) {
7373 			/*
7374 			 * NIC verifies if the Checksum of the received
7375 			 * frame is Ok or not and accordingly returns
7376 			 * a flag in the RxD.
7377 			 */
7378 			skb->ip_summed = CHECKSUM_UNNECESSARY;
7379 			if (ring_data->lro) {
7380 				u32 tcp_len = 0;
7381 				u8 *tcp;
7382 				int ret = 0;
7383 
7384 				ret = s2io_club_tcp_session(ring_data,
7385 							    skb->data, &tcp,
7386 							    &tcp_len, &lro,
7387 							    rxdp, sp);
7388 				switch (ret) {
7389 				case 3: /* Begin anew */
7390 					lro->parent = skb;
7391 					goto aggregate;
7392 				case 1: /* Aggregate */
7393 					lro_append_pkt(sp, lro, skb, tcp_len);
7394 					goto aggregate;
7395 				case 4: /* Flush session */
7396 					lro_append_pkt(sp, lro, skb, tcp_len);
7397 					queue_rx_frame(lro->parent,
7398 						       lro->vlan_tag);
7399 					clear_lro_session(lro);
7400 					swstats->flush_max_pkts++;
7401 					goto aggregate;
7402 				case 2: /* Flush both */
7403 					lro->parent->data_len = lro->frags_len;
7404 					swstats->sending_both++;
7405 					queue_rx_frame(lro->parent,
7406 						       lro->vlan_tag);
7407 					clear_lro_session(lro);
7408 					goto send_up;
7409 				case 0: /* sessions exceeded */
7410 				case -1: /* non-TCP or not L2 aggregatable */
7411 				case 5: /*
7412 					 * First pkt in session not
7413 					 * L3/L4 aggregatable
7414 					 */
7415 					break;
7416 				default:
7417 					DBG_PRINT(ERR_DBG,
7418 						  "%s: Samadhana!!\n",
7419 						  __func__);
7420 					BUG();
7421 				}
7422 			}
7423 		} else {
7424 			/*
7425 			 * Packet with erroneous checksum, let the
7426 			 * upper layers deal with it.
7427 			 */
7428 			skb_checksum_none_assert(skb);
7429 		}
7430 	} else
7431 		skb_checksum_none_assert(skb);
7432 
7433 	swstats->mem_freed += skb->truesize;
7434 send_up:
7435 	skb_record_rx_queue(skb, ring_no);
7436 	queue_rx_frame(skb, RXD_GET_VLAN_TAG(rxdp->Control_2));
7437 aggregate:
7438 	sp->mac_control.rings[ring_no].rx_bufs_left -= 1;
7439 	return SUCCESS;
7440 }
7441 
7442 /**
7443  *  s2io_link - stops/starts the Tx queue.
7444  *  @sp : private member of the device structure, which is a pointer to the
7445  *  s2io_nic structure.
7446  *  @link : inidicates whether link is UP/DOWN.
7447  *  Description:
7448  *  This function stops/starts the Tx queue depending on whether the link
7449  *  status of the NIC is is down or up. This is called by the Alarm
7450  *  interrupt handler whenever a link change interrupt comes up.
7451  *  Return value:
7452  *  void.
7453  */
7454 
7455 static void s2io_link(struct s2io_nic *sp, int link)
7456 {
7457 	struct net_device *dev = sp->dev;
7458 	struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
7459 
7460 	if (link != sp->last_link_state) {
7461 		init_tti(sp, link, false);
7462 		if (link == LINK_DOWN) {
7463 			DBG_PRINT(ERR_DBG, "%s: Link down\n", dev->name);
7464 			s2io_stop_all_tx_queue(sp);
7465 			netif_carrier_off(dev);
7466 			if (swstats->link_up_cnt)
7467 				swstats->link_up_time =
7468 					jiffies - sp->start_time;
7469 			swstats->link_down_cnt++;
7470 		} else {
7471 			DBG_PRINT(ERR_DBG, "%s: Link Up\n", dev->name);
7472 			if (swstats->link_down_cnt)
7473 				swstats->link_down_time =
7474 					jiffies - sp->start_time;
7475 			swstats->link_up_cnt++;
7476 			netif_carrier_on(dev);
7477 			s2io_wake_all_tx_queue(sp);
7478 		}
7479 	}
7480 	sp->last_link_state = link;
7481 	sp->start_time = jiffies;
7482 }
7483 
7484 /**
7485  *  s2io_init_pci -Initialization of PCI and PCI-X configuration registers .
7486  *  @sp : private member of the device structure, which is a pointer to the
7487  *  s2io_nic structure.
7488  *  Description:
7489  *  This function initializes a few of the PCI and PCI-X configuration registers
7490  *  with recommended values.
7491  *  Return value:
7492  *  void
7493  */
7494 
7495 static void s2io_init_pci(struct s2io_nic *sp)
7496 {
7497 	u16 pci_cmd = 0, pcix_cmd = 0;
7498 
7499 	/* Enable Data Parity Error Recovery in PCI-X command register. */
7500 	pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
7501 			     &(pcix_cmd));
7502 	pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
7503 			      (pcix_cmd | 1));
7504 	pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
7505 			     &(pcix_cmd));
7506 
7507 	/* Set the PErr Response bit in PCI command register. */
7508 	pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
7509 	pci_write_config_word(sp->pdev, PCI_COMMAND,
7510 			      (pci_cmd | PCI_COMMAND_PARITY));
7511 	pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
7512 }
7513 
7514 static int s2io_verify_parm(struct pci_dev *pdev, u8 *dev_intr_type,
7515 			    u8 *dev_multiq)
7516 {
7517 	int i;
7518 
7519 	if ((tx_fifo_num > MAX_TX_FIFOS) || (tx_fifo_num < 1)) {
7520 		DBG_PRINT(ERR_DBG, "Requested number of tx fifos "
7521 			  "(%d) not supported\n", tx_fifo_num);
7522 
7523 		if (tx_fifo_num < 1)
7524 			tx_fifo_num = 1;
7525 		else
7526 			tx_fifo_num = MAX_TX_FIFOS;
7527 
7528 		DBG_PRINT(ERR_DBG, "Default to %d tx fifos\n", tx_fifo_num);
7529 	}
7530 
7531 	if (multiq)
7532 		*dev_multiq = multiq;
7533 
7534 	if (tx_steering_type && (1 == tx_fifo_num)) {
7535 		if (tx_steering_type != TX_DEFAULT_STEERING)
7536 			DBG_PRINT(ERR_DBG,
7537 				  "Tx steering is not supported with "
7538 				  "one fifo. Disabling Tx steering.\n");
7539 		tx_steering_type = NO_STEERING;
7540 	}
7541 
7542 	if ((tx_steering_type < NO_STEERING) ||
7543 	    (tx_steering_type > TX_DEFAULT_STEERING)) {
7544 		DBG_PRINT(ERR_DBG,
7545 			  "Requested transmit steering not supported\n");
7546 		DBG_PRINT(ERR_DBG, "Disabling transmit steering\n");
7547 		tx_steering_type = NO_STEERING;
7548 	}
7549 
7550 	if (rx_ring_num > MAX_RX_RINGS) {
7551 		DBG_PRINT(ERR_DBG,
7552 			  "Requested number of rx rings not supported\n");
7553 		DBG_PRINT(ERR_DBG, "Default to %d rx rings\n",
7554 			  MAX_RX_RINGS);
7555 		rx_ring_num = MAX_RX_RINGS;
7556 	}
7557 
7558 	if ((*dev_intr_type != INTA) && (*dev_intr_type != MSI_X)) {
7559 		DBG_PRINT(ERR_DBG, "Wrong intr_type requested. "
7560 			  "Defaulting to INTA\n");
7561 		*dev_intr_type = INTA;
7562 	}
7563 
7564 	if ((*dev_intr_type == MSI_X) &&
7565 	    ((pdev->device != PCI_DEVICE_ID_HERC_WIN) &&
7566 	     (pdev->device != PCI_DEVICE_ID_HERC_UNI))) {
7567 		DBG_PRINT(ERR_DBG, "Xframe I does not support MSI_X. "
7568 			  "Defaulting to INTA\n");
7569 		*dev_intr_type = INTA;
7570 	}
7571 
7572 	if ((rx_ring_mode != 1) && (rx_ring_mode != 2)) {
7573 		DBG_PRINT(ERR_DBG, "Requested ring mode not supported\n");
7574 		DBG_PRINT(ERR_DBG, "Defaulting to 1-buffer mode\n");
7575 		rx_ring_mode = 1;
7576 	}
7577 
7578 	for (i = 0; i < MAX_RX_RINGS; i++)
7579 		if (rx_ring_sz[i] > MAX_RX_BLOCKS_PER_RING) {
7580 			DBG_PRINT(ERR_DBG, "Requested rx ring size not "
7581 				  "supported\nDefaulting to %d\n",
7582 				  MAX_RX_BLOCKS_PER_RING);
7583 			rx_ring_sz[i] = MAX_RX_BLOCKS_PER_RING;
7584 		}
7585 
7586 	return SUCCESS;
7587 }
7588 
7589 /**
7590  * rts_ds_steer - Receive traffic steering based on IPv4 or IPv6 TOS or Traffic class respectively.
7591  * @nic: device private variable
7592  * @ds_codepoint: data
7593  * @ring: ring index
7594  * Description: The function configures the receive steering to
7595  * desired receive ring.
7596  * Return Value:  SUCCESS on success and
7597  * '-1' on failure (endian settings incorrect).
7598  */
7599 static int rts_ds_steer(struct s2io_nic *nic, u8 ds_codepoint, u8 ring)
7600 {
7601 	struct XENA_dev_config __iomem *bar0 = nic->bar0;
7602 	register u64 val64 = 0;
7603 
7604 	if (ds_codepoint > 63)
7605 		return FAILURE;
7606 
7607 	val64 = RTS_DS_MEM_DATA(ring);
7608 	writeq(val64, &bar0->rts_ds_mem_data);
7609 
7610 	val64 = RTS_DS_MEM_CTRL_WE |
7611 		RTS_DS_MEM_CTRL_STROBE_NEW_CMD |
7612 		RTS_DS_MEM_CTRL_OFFSET(ds_codepoint);
7613 
7614 	writeq(val64, &bar0->rts_ds_mem_ctrl);
7615 
7616 	return wait_for_cmd_complete(&bar0->rts_ds_mem_ctrl,
7617 				     RTS_DS_MEM_CTRL_STROBE_CMD_BEING_EXECUTED,
7618 				     S2IO_BIT_RESET, true);
7619 }
7620 
7621 static const struct net_device_ops s2io_netdev_ops = {
7622 	.ndo_open	        = s2io_open,
7623 	.ndo_stop	        = s2io_close,
7624 	.ndo_get_stats	        = s2io_get_stats,
7625 	.ndo_start_xmit    	= s2io_xmit,
7626 	.ndo_validate_addr	= eth_validate_addr,
7627 	.ndo_set_rx_mode	= s2io_ndo_set_multicast,
7628 	.ndo_eth_ioctl		= s2io_ioctl,
7629 	.ndo_set_mac_address    = s2io_set_mac_addr,
7630 	.ndo_change_mtu	   	= s2io_change_mtu,
7631 	.ndo_set_features	= s2io_set_features,
7632 	.ndo_tx_timeout	   	= s2io_tx_watchdog,
7633 #ifdef CONFIG_NET_POLL_CONTROLLER
7634 	.ndo_poll_controller    = s2io_netpoll,
7635 #endif
7636 };
7637 
7638 /**
7639  *  s2io_init_nic - Initialization of the adapter .
7640  *  @pdev : structure containing the PCI related information of the device.
7641  *  @pre: List of PCI devices supported by the driver listed in s2io_tbl.
7642  *  Description:
7643  *  The function initializes an adapter identified by the pci_dec structure.
7644  *  All OS related initialization including memory and device structure and
7645  *  initlaization of the device private variable is done. Also the swapper
7646  *  control register is initialized to enable read and write into the I/O
7647  *  registers of the device.
7648  *  Return value:
7649  *  returns 0 on success and negative on failure.
7650  */
7651 
7652 static int
7653 s2io_init_nic(struct pci_dev *pdev, const struct pci_device_id *pre)
7654 {
7655 	struct s2io_nic *sp;
7656 	struct net_device *dev;
7657 	int i, j, ret;
7658 	int dma_flag = false;
7659 	u32 mac_up, mac_down;
7660 	u64 val64 = 0, tmp64 = 0;
7661 	struct XENA_dev_config __iomem *bar0 = NULL;
7662 	u16 subid;
7663 	struct config_param *config;
7664 	struct mac_info *mac_control;
7665 	int mode;
7666 	u8 dev_intr_type = intr_type;
7667 	u8 dev_multiq = 0;
7668 
7669 	ret = s2io_verify_parm(pdev, &dev_intr_type, &dev_multiq);
7670 	if (ret)
7671 		return ret;
7672 
7673 	ret = pci_enable_device(pdev);
7674 	if (ret) {
7675 		DBG_PRINT(ERR_DBG,
7676 			  "%s: pci_enable_device failed\n", __func__);
7677 		return ret;
7678 	}
7679 
7680 	if (!dma_set_mask(&pdev->dev, DMA_BIT_MASK(64))) {
7681 		DBG_PRINT(INIT_DBG, "%s: Using 64bit DMA\n", __func__);
7682 		dma_flag = true;
7683 		if (dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64))) {
7684 			DBG_PRINT(ERR_DBG,
7685 				  "Unable to obtain 64bit DMA for coherent allocations\n");
7686 			pci_disable_device(pdev);
7687 			return -ENOMEM;
7688 		}
7689 	} else if (!dma_set_mask(&pdev->dev, DMA_BIT_MASK(32))) {
7690 		DBG_PRINT(INIT_DBG, "%s: Using 32bit DMA\n", __func__);
7691 	} else {
7692 		pci_disable_device(pdev);
7693 		return -ENOMEM;
7694 	}
7695 	ret = pci_request_regions(pdev, s2io_driver_name);
7696 	if (ret) {
7697 		DBG_PRINT(ERR_DBG, "%s: Request Regions failed - %x\n",
7698 			  __func__, ret);
7699 		pci_disable_device(pdev);
7700 		return -ENODEV;
7701 	}
7702 	if (dev_multiq)
7703 		dev = alloc_etherdev_mq(sizeof(struct s2io_nic), tx_fifo_num);
7704 	else
7705 		dev = alloc_etherdev(sizeof(struct s2io_nic));
7706 	if (dev == NULL) {
7707 		pci_disable_device(pdev);
7708 		pci_release_regions(pdev);
7709 		return -ENODEV;
7710 	}
7711 
7712 	pci_set_master(pdev);
7713 	pci_set_drvdata(pdev, dev);
7714 	SET_NETDEV_DEV(dev, &pdev->dev);
7715 
7716 	/*  Private member variable initialized to s2io NIC structure */
7717 	sp = netdev_priv(dev);
7718 	sp->dev = dev;
7719 	sp->pdev = pdev;
7720 	sp->high_dma_flag = dma_flag;
7721 	sp->device_enabled_once = false;
7722 	if (rx_ring_mode == 1)
7723 		sp->rxd_mode = RXD_MODE_1;
7724 	if (rx_ring_mode == 2)
7725 		sp->rxd_mode = RXD_MODE_3B;
7726 
7727 	sp->config.intr_type = dev_intr_type;
7728 
7729 	if ((pdev->device == PCI_DEVICE_ID_HERC_WIN) ||
7730 	    (pdev->device == PCI_DEVICE_ID_HERC_UNI))
7731 		sp->device_type = XFRAME_II_DEVICE;
7732 	else
7733 		sp->device_type = XFRAME_I_DEVICE;
7734 
7735 
7736 	/* Initialize some PCI/PCI-X fields of the NIC. */
7737 	s2io_init_pci(sp);
7738 
7739 	/*
7740 	 * Setting the device configuration parameters.
7741 	 * Most of these parameters can be specified by the user during
7742 	 * module insertion as they are module loadable parameters. If
7743 	 * these parameters are not not specified during load time, they
7744 	 * are initialized with default values.
7745 	 */
7746 	config = &sp->config;
7747 	mac_control = &sp->mac_control;
7748 
7749 	config->napi = napi;
7750 	config->tx_steering_type = tx_steering_type;
7751 
7752 	/* Tx side parameters. */
7753 	if (config->tx_steering_type == TX_PRIORITY_STEERING)
7754 		config->tx_fifo_num = MAX_TX_FIFOS;
7755 	else
7756 		config->tx_fifo_num = tx_fifo_num;
7757 
7758 	/* Initialize the fifos used for tx steering */
7759 	if (config->tx_fifo_num < 5) {
7760 		if (config->tx_fifo_num  == 1)
7761 			sp->total_tcp_fifos = 1;
7762 		else
7763 			sp->total_tcp_fifos = config->tx_fifo_num - 1;
7764 		sp->udp_fifo_idx = config->tx_fifo_num - 1;
7765 		sp->total_udp_fifos = 1;
7766 		sp->other_fifo_idx = sp->total_tcp_fifos - 1;
7767 	} else {
7768 		sp->total_tcp_fifos = (tx_fifo_num - FIFO_UDP_MAX_NUM -
7769 				       FIFO_OTHER_MAX_NUM);
7770 		sp->udp_fifo_idx = sp->total_tcp_fifos;
7771 		sp->total_udp_fifos = FIFO_UDP_MAX_NUM;
7772 		sp->other_fifo_idx = sp->udp_fifo_idx + FIFO_UDP_MAX_NUM;
7773 	}
7774 
7775 	config->multiq = dev_multiq;
7776 	for (i = 0; i < config->tx_fifo_num; i++) {
7777 		struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
7778 
7779 		tx_cfg->fifo_len = tx_fifo_len[i];
7780 		tx_cfg->fifo_priority = i;
7781 	}
7782 
7783 	/* mapping the QoS priority to the configured fifos */
7784 	for (i = 0; i < MAX_TX_FIFOS; i++)
7785 		config->fifo_mapping[i] = fifo_map[config->tx_fifo_num - 1][i];
7786 
7787 	/* map the hashing selector table to the configured fifos */
7788 	for (i = 0; i < config->tx_fifo_num; i++)
7789 		sp->fifo_selector[i] = fifo_selector[i];
7790 
7791 
7792 	config->tx_intr_type = TXD_INT_TYPE_UTILZ;
7793 	for (i = 0; i < config->tx_fifo_num; i++) {
7794 		struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
7795 
7796 		tx_cfg->f_no_snoop = (NO_SNOOP_TXD | NO_SNOOP_TXD_BUFFER);
7797 		if (tx_cfg->fifo_len < 65) {
7798 			config->tx_intr_type = TXD_INT_TYPE_PER_LIST;
7799 			break;
7800 		}
7801 	}
7802 	/* + 2 because one Txd for skb->data and one Txd for UFO */
7803 	config->max_txds = MAX_SKB_FRAGS + 2;
7804 
7805 	/* Rx side parameters. */
7806 	config->rx_ring_num = rx_ring_num;
7807 	for (i = 0; i < config->rx_ring_num; i++) {
7808 		struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
7809 		struct ring_info *ring = &mac_control->rings[i];
7810 
7811 		rx_cfg->num_rxd = rx_ring_sz[i] * (rxd_count[sp->rxd_mode] + 1);
7812 		rx_cfg->ring_priority = i;
7813 		ring->rx_bufs_left = 0;
7814 		ring->rxd_mode = sp->rxd_mode;
7815 		ring->rxd_count = rxd_count[sp->rxd_mode];
7816 		ring->pdev = sp->pdev;
7817 		ring->dev = sp->dev;
7818 	}
7819 
7820 	for (i = 0; i < rx_ring_num; i++) {
7821 		struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
7822 
7823 		rx_cfg->ring_org = RING_ORG_BUFF1;
7824 		rx_cfg->f_no_snoop = (NO_SNOOP_RXD | NO_SNOOP_RXD_BUFFER);
7825 	}
7826 
7827 	/*  Setting Mac Control parameters */
7828 	mac_control->rmac_pause_time = rmac_pause_time;
7829 	mac_control->mc_pause_threshold_q0q3 = mc_pause_threshold_q0q3;
7830 	mac_control->mc_pause_threshold_q4q7 = mc_pause_threshold_q4q7;
7831 
7832 
7833 	/*  initialize the shared memory used by the NIC and the host */
7834 	if (init_shared_mem(sp)) {
7835 		DBG_PRINT(ERR_DBG, "%s: Memory allocation failed\n", dev->name);
7836 		ret = -ENOMEM;
7837 		goto mem_alloc_failed;
7838 	}
7839 
7840 	sp->bar0 = pci_ioremap_bar(pdev, 0);
7841 	if (!sp->bar0) {
7842 		DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem1\n",
7843 			  dev->name);
7844 		ret = -ENOMEM;
7845 		goto bar0_remap_failed;
7846 	}
7847 
7848 	sp->bar1 = pci_ioremap_bar(pdev, 2);
7849 	if (!sp->bar1) {
7850 		DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem2\n",
7851 			  dev->name);
7852 		ret = -ENOMEM;
7853 		goto bar1_remap_failed;
7854 	}
7855 
7856 	/* Initializing the BAR1 address as the start of the FIFO pointer. */
7857 	for (j = 0; j < MAX_TX_FIFOS; j++) {
7858 		mac_control->tx_FIFO_start[j] = sp->bar1 + (j * 0x00020000);
7859 	}
7860 
7861 	/*  Driver entry points */
7862 	dev->netdev_ops = &s2io_netdev_ops;
7863 	dev->ethtool_ops = &netdev_ethtool_ops;
7864 	dev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM |
7865 		NETIF_F_TSO | NETIF_F_TSO6 |
7866 		NETIF_F_RXCSUM | NETIF_F_LRO;
7867 	dev->features |= dev->hw_features |
7868 		NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX;
7869 	if (sp->high_dma_flag == true)
7870 		dev->features |= NETIF_F_HIGHDMA;
7871 	dev->watchdog_timeo = WATCH_DOG_TIMEOUT;
7872 	INIT_WORK(&sp->rst_timer_task, s2io_restart_nic);
7873 	INIT_WORK(&sp->set_link_task, s2io_set_link);
7874 
7875 	pci_save_state(sp->pdev);
7876 
7877 	/* Setting swapper control on the NIC, for proper reset operation */
7878 	if (s2io_set_swapper(sp)) {
7879 		DBG_PRINT(ERR_DBG, "%s: swapper settings are wrong\n",
7880 			  dev->name);
7881 		ret = -EAGAIN;
7882 		goto set_swap_failed;
7883 	}
7884 
7885 	/* Verify if the Herc works on the slot its placed into */
7886 	if (sp->device_type & XFRAME_II_DEVICE) {
7887 		mode = s2io_verify_pci_mode(sp);
7888 		if (mode < 0) {
7889 			DBG_PRINT(ERR_DBG, "%s: Unsupported PCI bus mode\n",
7890 				  __func__);
7891 			ret = -EBADSLT;
7892 			goto set_swap_failed;
7893 		}
7894 	}
7895 
7896 	if (sp->config.intr_type == MSI_X) {
7897 		sp->num_entries = config->rx_ring_num + 1;
7898 		ret = s2io_enable_msi_x(sp);
7899 
7900 		if (!ret) {
7901 			ret = s2io_test_msi(sp);
7902 			/* rollback MSI-X, will re-enable during add_isr() */
7903 			remove_msix_isr(sp);
7904 		}
7905 		if (ret) {
7906 
7907 			DBG_PRINT(ERR_DBG,
7908 				  "MSI-X requested but failed to enable\n");
7909 			sp->config.intr_type = INTA;
7910 		}
7911 	}
7912 
7913 	if (config->intr_type ==  MSI_X) {
7914 		for (i = 0; i < config->rx_ring_num ; i++) {
7915 			struct ring_info *ring = &mac_control->rings[i];
7916 
7917 			netif_napi_add(dev, &ring->napi, s2io_poll_msix, 64);
7918 		}
7919 	} else {
7920 		netif_napi_add(dev, &sp->napi, s2io_poll_inta, 64);
7921 	}
7922 
7923 	/* Not needed for Herc */
7924 	if (sp->device_type & XFRAME_I_DEVICE) {
7925 		/*
7926 		 * Fix for all "FFs" MAC address problems observed on
7927 		 * Alpha platforms
7928 		 */
7929 		fix_mac_address(sp);
7930 		s2io_reset(sp);
7931 	}
7932 
7933 	/*
7934 	 * MAC address initialization.
7935 	 * For now only one mac address will be read and used.
7936 	 */
7937 	bar0 = sp->bar0;
7938 	val64 = RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
7939 		RMAC_ADDR_CMD_MEM_OFFSET(0 + S2IO_MAC_ADDR_START_OFFSET);
7940 	writeq(val64, &bar0->rmac_addr_cmd_mem);
7941 	wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
7942 			      RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
7943 			      S2IO_BIT_RESET, true);
7944 	tmp64 = readq(&bar0->rmac_addr_data0_mem);
7945 	mac_down = (u32)tmp64;
7946 	mac_up = (u32) (tmp64 >> 32);
7947 
7948 	sp->def_mac_addr[0].mac_addr[3] = (u8) (mac_up);
7949 	sp->def_mac_addr[0].mac_addr[2] = (u8) (mac_up >> 8);
7950 	sp->def_mac_addr[0].mac_addr[1] = (u8) (mac_up >> 16);
7951 	sp->def_mac_addr[0].mac_addr[0] = (u8) (mac_up >> 24);
7952 	sp->def_mac_addr[0].mac_addr[5] = (u8) (mac_down >> 16);
7953 	sp->def_mac_addr[0].mac_addr[4] = (u8) (mac_down >> 24);
7954 
7955 	/*  Set the factory defined MAC address initially   */
7956 	dev->addr_len = ETH_ALEN;
7957 	memcpy(dev->dev_addr, sp->def_mac_addr, ETH_ALEN);
7958 
7959 	/* initialize number of multicast & unicast MAC entries variables */
7960 	if (sp->device_type == XFRAME_I_DEVICE) {
7961 		config->max_mc_addr = S2IO_XENA_MAX_MC_ADDRESSES;
7962 		config->max_mac_addr = S2IO_XENA_MAX_MAC_ADDRESSES;
7963 		config->mc_start_offset = S2IO_XENA_MC_ADDR_START_OFFSET;
7964 	} else if (sp->device_type == XFRAME_II_DEVICE) {
7965 		config->max_mc_addr = S2IO_HERC_MAX_MC_ADDRESSES;
7966 		config->max_mac_addr = S2IO_HERC_MAX_MAC_ADDRESSES;
7967 		config->mc_start_offset = S2IO_HERC_MC_ADDR_START_OFFSET;
7968 	}
7969 
7970 	/* MTU range: 46 - 9600 */
7971 	dev->min_mtu = MIN_MTU;
7972 	dev->max_mtu = S2IO_JUMBO_SIZE;
7973 
7974 	/* store mac addresses from CAM to s2io_nic structure */
7975 	do_s2io_store_unicast_mc(sp);
7976 
7977 	/* Configure MSIX vector for number of rings configured plus one */
7978 	if ((sp->device_type == XFRAME_II_DEVICE) &&
7979 	    (config->intr_type == MSI_X))
7980 		sp->num_entries = config->rx_ring_num + 1;
7981 
7982 	/* Store the values of the MSIX table in the s2io_nic structure */
7983 	store_xmsi_data(sp);
7984 	/* reset Nic and bring it to known state */
7985 	s2io_reset(sp);
7986 
7987 	/*
7988 	 * Initialize link state flags
7989 	 * and the card state parameter
7990 	 */
7991 	sp->state = 0;
7992 
7993 	/* Initialize spinlocks */
7994 	for (i = 0; i < sp->config.tx_fifo_num; i++) {
7995 		struct fifo_info *fifo = &mac_control->fifos[i];
7996 
7997 		spin_lock_init(&fifo->tx_lock);
7998 	}
7999 
8000 	/*
8001 	 * SXE-002: Configure link and activity LED to init state
8002 	 * on driver load.
8003 	 */
8004 	subid = sp->pdev->subsystem_device;
8005 	if ((subid & 0xFF) >= 0x07) {
8006 		val64 = readq(&bar0->gpio_control);
8007 		val64 |= 0x0000800000000000ULL;
8008 		writeq(val64, &bar0->gpio_control);
8009 		val64 = 0x0411040400000000ULL;
8010 		writeq(val64, (void __iomem *)bar0 + 0x2700);
8011 		val64 = readq(&bar0->gpio_control);
8012 	}
8013 
8014 	sp->rx_csum = 1;	/* Rx chksum verify enabled by default */
8015 
8016 	if (register_netdev(dev)) {
8017 		DBG_PRINT(ERR_DBG, "Device registration failed\n");
8018 		ret = -ENODEV;
8019 		goto register_failed;
8020 	}
8021 	s2io_vpd_read(sp);
8022 	DBG_PRINT(ERR_DBG, "Copyright(c) 2002-2010 Exar Corp.\n");
8023 	DBG_PRINT(ERR_DBG, "%s: Neterion %s (rev %d)\n", dev->name,
8024 		  sp->product_name, pdev->revision);
8025 	DBG_PRINT(ERR_DBG, "%s: Driver version %s\n", dev->name,
8026 		  s2io_driver_version);
8027 	DBG_PRINT(ERR_DBG, "%s: MAC Address: %pM\n", dev->name, dev->dev_addr);
8028 	DBG_PRINT(ERR_DBG, "Serial number: %s\n", sp->serial_num);
8029 	if (sp->device_type & XFRAME_II_DEVICE) {
8030 		mode = s2io_print_pci_mode(sp);
8031 		if (mode < 0) {
8032 			ret = -EBADSLT;
8033 			unregister_netdev(dev);
8034 			goto set_swap_failed;
8035 		}
8036 	}
8037 	switch (sp->rxd_mode) {
8038 	case RXD_MODE_1:
8039 		DBG_PRINT(ERR_DBG, "%s: 1-Buffer receive mode enabled\n",
8040 			  dev->name);
8041 		break;
8042 	case RXD_MODE_3B:
8043 		DBG_PRINT(ERR_DBG, "%s: 2-Buffer receive mode enabled\n",
8044 			  dev->name);
8045 		break;
8046 	}
8047 
8048 	switch (sp->config.napi) {
8049 	case 0:
8050 		DBG_PRINT(ERR_DBG, "%s: NAPI disabled\n", dev->name);
8051 		break;
8052 	case 1:
8053 		DBG_PRINT(ERR_DBG, "%s: NAPI enabled\n", dev->name);
8054 		break;
8055 	}
8056 
8057 	DBG_PRINT(ERR_DBG, "%s: Using %d Tx fifo(s)\n", dev->name,
8058 		  sp->config.tx_fifo_num);
8059 
8060 	DBG_PRINT(ERR_DBG, "%s: Using %d Rx ring(s)\n", dev->name,
8061 		  sp->config.rx_ring_num);
8062 
8063 	switch (sp->config.intr_type) {
8064 	case INTA:
8065 		DBG_PRINT(ERR_DBG, "%s: Interrupt type INTA\n", dev->name);
8066 		break;
8067 	case MSI_X:
8068 		DBG_PRINT(ERR_DBG, "%s: Interrupt type MSI-X\n", dev->name);
8069 		break;
8070 	}
8071 	if (sp->config.multiq) {
8072 		for (i = 0; i < sp->config.tx_fifo_num; i++) {
8073 			struct fifo_info *fifo = &mac_control->fifos[i];
8074 
8075 			fifo->multiq = config->multiq;
8076 		}
8077 		DBG_PRINT(ERR_DBG, "%s: Multiqueue support enabled\n",
8078 			  dev->name);
8079 	} else
8080 		DBG_PRINT(ERR_DBG, "%s: Multiqueue support disabled\n",
8081 			  dev->name);
8082 
8083 	switch (sp->config.tx_steering_type) {
8084 	case NO_STEERING:
8085 		DBG_PRINT(ERR_DBG, "%s: No steering enabled for transmit\n",
8086 			  dev->name);
8087 		break;
8088 	case TX_PRIORITY_STEERING:
8089 		DBG_PRINT(ERR_DBG,
8090 			  "%s: Priority steering enabled for transmit\n",
8091 			  dev->name);
8092 		break;
8093 	case TX_DEFAULT_STEERING:
8094 		DBG_PRINT(ERR_DBG,
8095 			  "%s: Default steering enabled for transmit\n",
8096 			  dev->name);
8097 	}
8098 
8099 	DBG_PRINT(ERR_DBG, "%s: Large receive offload enabled\n",
8100 		  dev->name);
8101 	/* Initialize device name */
8102 	snprintf(sp->name, sizeof(sp->name), "%s Neterion %s", dev->name,
8103 		 sp->product_name);
8104 
8105 	if (vlan_tag_strip)
8106 		sp->vlan_strip_flag = 1;
8107 	else
8108 		sp->vlan_strip_flag = 0;
8109 
8110 	/*
8111 	 * Make Link state as off at this point, when the Link change
8112 	 * interrupt comes the state will be automatically changed to
8113 	 * the right state.
8114 	 */
8115 	netif_carrier_off(dev);
8116 
8117 	return 0;
8118 
8119 register_failed:
8120 set_swap_failed:
8121 	iounmap(sp->bar1);
8122 bar1_remap_failed:
8123 	iounmap(sp->bar0);
8124 bar0_remap_failed:
8125 mem_alloc_failed:
8126 	free_shared_mem(sp);
8127 	pci_disable_device(pdev);
8128 	pci_release_regions(pdev);
8129 	free_netdev(dev);
8130 
8131 	return ret;
8132 }
8133 
8134 /**
8135  * s2io_rem_nic - Free the PCI device
8136  * @pdev: structure containing the PCI related information of the device.
8137  * Description: This function is called by the Pci subsystem to release a
8138  * PCI device and free up all resource held up by the device. This could
8139  * be in response to a Hot plug event or when the driver is to be removed
8140  * from memory.
8141  */
8142 
8143 static void s2io_rem_nic(struct pci_dev *pdev)
8144 {
8145 	struct net_device *dev = pci_get_drvdata(pdev);
8146 	struct s2io_nic *sp;
8147 
8148 	if (dev == NULL) {
8149 		DBG_PRINT(ERR_DBG, "Driver Data is NULL!!\n");
8150 		return;
8151 	}
8152 
8153 	sp = netdev_priv(dev);
8154 
8155 	cancel_work_sync(&sp->rst_timer_task);
8156 	cancel_work_sync(&sp->set_link_task);
8157 
8158 	unregister_netdev(dev);
8159 
8160 	free_shared_mem(sp);
8161 	iounmap(sp->bar0);
8162 	iounmap(sp->bar1);
8163 	pci_release_regions(pdev);
8164 	free_netdev(dev);
8165 	pci_disable_device(pdev);
8166 }
8167 
8168 module_pci_driver(s2io_driver);
8169 
8170 static int check_L2_lro_capable(u8 *buffer, struct iphdr **ip,
8171 				struct tcphdr **tcp, struct RxD_t *rxdp,
8172 				struct s2io_nic *sp)
8173 {
8174 	int ip_off;
8175 	u8 l2_type = (u8)((rxdp->Control_1 >> 37) & 0x7), ip_len;
8176 
8177 	if (!(rxdp->Control_1 & RXD_FRAME_PROTO_TCP)) {
8178 		DBG_PRINT(INIT_DBG,
8179 			  "%s: Non-TCP frames not supported for LRO\n",
8180 			  __func__);
8181 		return -1;
8182 	}
8183 
8184 	/* Checking for DIX type or DIX type with VLAN */
8185 	if ((l2_type == 0) || (l2_type == 4)) {
8186 		ip_off = HEADER_ETHERNET_II_802_3_SIZE;
8187 		/*
8188 		 * If vlan stripping is disabled and the frame is VLAN tagged,
8189 		 * shift the offset by the VLAN header size bytes.
8190 		 */
8191 		if ((!sp->vlan_strip_flag) &&
8192 		    (rxdp->Control_1 & RXD_FRAME_VLAN_TAG))
8193 			ip_off += HEADER_VLAN_SIZE;
8194 	} else {
8195 		/* LLC, SNAP etc are considered non-mergeable */
8196 		return -1;
8197 	}
8198 
8199 	*ip = (struct iphdr *)(buffer + ip_off);
8200 	ip_len = (u8)((*ip)->ihl);
8201 	ip_len <<= 2;
8202 	*tcp = (struct tcphdr *)((unsigned long)*ip + ip_len);
8203 
8204 	return 0;
8205 }
8206 
8207 static int check_for_socket_match(struct lro *lro, struct iphdr *ip,
8208 				  struct tcphdr *tcp)
8209 {
8210 	DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__);
8211 	if ((lro->iph->saddr != ip->saddr) ||
8212 	    (lro->iph->daddr != ip->daddr) ||
8213 	    (lro->tcph->source != tcp->source) ||
8214 	    (lro->tcph->dest != tcp->dest))
8215 		return -1;
8216 	return 0;
8217 }
8218 
8219 static inline int get_l4_pyld_length(struct iphdr *ip, struct tcphdr *tcp)
8220 {
8221 	return ntohs(ip->tot_len) - (ip->ihl << 2) - (tcp->doff << 2);
8222 }
8223 
8224 static void initiate_new_session(struct lro *lro, u8 *l2h,
8225 				 struct iphdr *ip, struct tcphdr *tcp,
8226 				 u32 tcp_pyld_len, u16 vlan_tag)
8227 {
8228 	DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__);
8229 	lro->l2h = l2h;
8230 	lro->iph = ip;
8231 	lro->tcph = tcp;
8232 	lro->tcp_next_seq = tcp_pyld_len + ntohl(tcp->seq);
8233 	lro->tcp_ack = tcp->ack_seq;
8234 	lro->sg_num = 1;
8235 	lro->total_len = ntohs(ip->tot_len);
8236 	lro->frags_len = 0;
8237 	lro->vlan_tag = vlan_tag;
8238 	/*
8239 	 * Check if we saw TCP timestamp.
8240 	 * Other consistency checks have already been done.
8241 	 */
8242 	if (tcp->doff == 8) {
8243 		__be32 *ptr;
8244 		ptr = (__be32 *)(tcp+1);
8245 		lro->saw_ts = 1;
8246 		lro->cur_tsval = ntohl(*(ptr+1));
8247 		lro->cur_tsecr = *(ptr+2);
8248 	}
8249 	lro->in_use = 1;
8250 }
8251 
8252 static void update_L3L4_header(struct s2io_nic *sp, struct lro *lro)
8253 {
8254 	struct iphdr *ip = lro->iph;
8255 	struct tcphdr *tcp = lro->tcph;
8256 	struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
8257 
8258 	DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__);
8259 
8260 	/* Update L3 header */
8261 	csum_replace2(&ip->check, ip->tot_len, htons(lro->total_len));
8262 	ip->tot_len = htons(lro->total_len);
8263 
8264 	/* Update L4 header */
8265 	tcp->ack_seq = lro->tcp_ack;
8266 	tcp->window = lro->window;
8267 
8268 	/* Update tsecr field if this session has timestamps enabled */
8269 	if (lro->saw_ts) {
8270 		__be32 *ptr = (__be32 *)(tcp + 1);
8271 		*(ptr+2) = lro->cur_tsecr;
8272 	}
8273 
8274 	/* Update counters required for calculation of
8275 	 * average no. of packets aggregated.
8276 	 */
8277 	swstats->sum_avg_pkts_aggregated += lro->sg_num;
8278 	swstats->num_aggregations++;
8279 }
8280 
8281 static void aggregate_new_rx(struct lro *lro, struct iphdr *ip,
8282 			     struct tcphdr *tcp, u32 l4_pyld)
8283 {
8284 	DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__);
8285 	lro->total_len += l4_pyld;
8286 	lro->frags_len += l4_pyld;
8287 	lro->tcp_next_seq += l4_pyld;
8288 	lro->sg_num++;
8289 
8290 	/* Update ack seq no. and window ad(from this pkt) in LRO object */
8291 	lro->tcp_ack = tcp->ack_seq;
8292 	lro->window = tcp->window;
8293 
8294 	if (lro->saw_ts) {
8295 		__be32 *ptr;
8296 		/* Update tsecr and tsval from this packet */
8297 		ptr = (__be32 *)(tcp+1);
8298 		lro->cur_tsval = ntohl(*(ptr+1));
8299 		lro->cur_tsecr = *(ptr + 2);
8300 	}
8301 }
8302 
8303 static int verify_l3_l4_lro_capable(struct lro *l_lro, struct iphdr *ip,
8304 				    struct tcphdr *tcp, u32 tcp_pyld_len)
8305 {
8306 	u8 *ptr;
8307 
8308 	DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__);
8309 
8310 	if (!tcp_pyld_len) {
8311 		/* Runt frame or a pure ack */
8312 		return -1;
8313 	}
8314 
8315 	if (ip->ihl != 5) /* IP has options */
8316 		return -1;
8317 
8318 	/* If we see CE codepoint in IP header, packet is not mergeable */
8319 	if (INET_ECN_is_ce(ipv4_get_dsfield(ip)))
8320 		return -1;
8321 
8322 	/* If we see ECE or CWR flags in TCP header, packet is not mergeable */
8323 	if (tcp->urg || tcp->psh || tcp->rst ||
8324 	    tcp->syn || tcp->fin ||
8325 	    tcp->ece || tcp->cwr || !tcp->ack) {
8326 		/*
8327 		 * Currently recognize only the ack control word and
8328 		 * any other control field being set would result in
8329 		 * flushing the LRO session
8330 		 */
8331 		return -1;
8332 	}
8333 
8334 	/*
8335 	 * Allow only one TCP timestamp option. Don't aggregate if
8336 	 * any other options are detected.
8337 	 */
8338 	if (tcp->doff != 5 && tcp->doff != 8)
8339 		return -1;
8340 
8341 	if (tcp->doff == 8) {
8342 		ptr = (u8 *)(tcp + 1);
8343 		while (*ptr == TCPOPT_NOP)
8344 			ptr++;
8345 		if (*ptr != TCPOPT_TIMESTAMP || *(ptr+1) != TCPOLEN_TIMESTAMP)
8346 			return -1;
8347 
8348 		/* Ensure timestamp value increases monotonically */
8349 		if (l_lro)
8350 			if (l_lro->cur_tsval > ntohl(*((__be32 *)(ptr+2))))
8351 				return -1;
8352 
8353 		/* timestamp echo reply should be non-zero */
8354 		if (*((__be32 *)(ptr+6)) == 0)
8355 			return -1;
8356 	}
8357 
8358 	return 0;
8359 }
8360 
8361 static int s2io_club_tcp_session(struct ring_info *ring_data, u8 *buffer,
8362 				 u8 **tcp, u32 *tcp_len, struct lro **lro,
8363 				 struct RxD_t *rxdp, struct s2io_nic *sp)
8364 {
8365 	struct iphdr *ip;
8366 	struct tcphdr *tcph;
8367 	int ret = 0, i;
8368 	u16 vlan_tag = 0;
8369 	struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
8370 
8371 	ret = check_L2_lro_capable(buffer, &ip, (struct tcphdr **)tcp,
8372 				   rxdp, sp);
8373 	if (ret)
8374 		return ret;
8375 
8376 	DBG_PRINT(INFO_DBG, "IP Saddr: %x Daddr: %x\n", ip->saddr, ip->daddr);
8377 
8378 	vlan_tag = RXD_GET_VLAN_TAG(rxdp->Control_2);
8379 	tcph = (struct tcphdr *)*tcp;
8380 	*tcp_len = get_l4_pyld_length(ip, tcph);
8381 	for (i = 0; i < MAX_LRO_SESSIONS; i++) {
8382 		struct lro *l_lro = &ring_data->lro0_n[i];
8383 		if (l_lro->in_use) {
8384 			if (check_for_socket_match(l_lro, ip, tcph))
8385 				continue;
8386 			/* Sock pair matched */
8387 			*lro = l_lro;
8388 
8389 			if ((*lro)->tcp_next_seq != ntohl(tcph->seq)) {
8390 				DBG_PRINT(INFO_DBG, "%s: Out of sequence. "
8391 					  "expected 0x%x, actual 0x%x\n",
8392 					  __func__,
8393 					  (*lro)->tcp_next_seq,
8394 					  ntohl(tcph->seq));
8395 
8396 				swstats->outof_sequence_pkts++;
8397 				ret = 2;
8398 				break;
8399 			}
8400 
8401 			if (!verify_l3_l4_lro_capable(l_lro, ip, tcph,
8402 						      *tcp_len))
8403 				ret = 1; /* Aggregate */
8404 			else
8405 				ret = 2; /* Flush both */
8406 			break;
8407 		}
8408 	}
8409 
8410 	if (ret == 0) {
8411 		/* Before searching for available LRO objects,
8412 		 * check if the pkt is L3/L4 aggregatable. If not
8413 		 * don't create new LRO session. Just send this
8414 		 * packet up.
8415 		 */
8416 		if (verify_l3_l4_lro_capable(NULL, ip, tcph, *tcp_len))
8417 			return 5;
8418 
8419 		for (i = 0; i < MAX_LRO_SESSIONS; i++) {
8420 			struct lro *l_lro = &ring_data->lro0_n[i];
8421 			if (!(l_lro->in_use)) {
8422 				*lro = l_lro;
8423 				ret = 3; /* Begin anew */
8424 				break;
8425 			}
8426 		}
8427 	}
8428 
8429 	if (ret == 0) { /* sessions exceeded */
8430 		DBG_PRINT(INFO_DBG, "%s: All LRO sessions already in use\n",
8431 			  __func__);
8432 		*lro = NULL;
8433 		return ret;
8434 	}
8435 
8436 	switch (ret) {
8437 	case 3:
8438 		initiate_new_session(*lro, buffer, ip, tcph, *tcp_len,
8439 				     vlan_tag);
8440 		break;
8441 	case 2:
8442 		update_L3L4_header(sp, *lro);
8443 		break;
8444 	case 1:
8445 		aggregate_new_rx(*lro, ip, tcph, *tcp_len);
8446 		if ((*lro)->sg_num == sp->lro_max_aggr_per_sess) {
8447 			update_L3L4_header(sp, *lro);
8448 			ret = 4; /* Flush the LRO */
8449 		}
8450 		break;
8451 	default:
8452 		DBG_PRINT(ERR_DBG, "%s: Don't know, can't say!!\n", __func__);
8453 		break;
8454 	}
8455 
8456 	return ret;
8457 }
8458 
8459 static void clear_lro_session(struct lro *lro)
8460 {
8461 	static u16 lro_struct_size = sizeof(struct lro);
8462 
8463 	memset(lro, 0, lro_struct_size);
8464 }
8465 
8466 static void queue_rx_frame(struct sk_buff *skb, u16 vlan_tag)
8467 {
8468 	struct net_device *dev = skb->dev;
8469 	struct s2io_nic *sp = netdev_priv(dev);
8470 
8471 	skb->protocol = eth_type_trans(skb, dev);
8472 	if (vlan_tag && sp->vlan_strip_flag)
8473 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag);
8474 	if (sp->config.napi)
8475 		netif_receive_skb(skb);
8476 	else
8477 		netif_rx(skb);
8478 }
8479 
8480 static void lro_append_pkt(struct s2io_nic *sp, struct lro *lro,
8481 			   struct sk_buff *skb, u32 tcp_len)
8482 {
8483 	struct sk_buff *first = lro->parent;
8484 	struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
8485 
8486 	first->len += tcp_len;
8487 	first->data_len = lro->frags_len;
8488 	skb_pull(skb, (skb->len - tcp_len));
8489 	if (skb_shinfo(first)->frag_list)
8490 		lro->last_frag->next = skb;
8491 	else
8492 		skb_shinfo(first)->frag_list = skb;
8493 	first->truesize += skb->truesize;
8494 	lro->last_frag = skb;
8495 	swstats->clubbed_frms_cnt++;
8496 }
8497 
8498 /**
8499  * s2io_io_error_detected - called when PCI error is detected
8500  * @pdev: Pointer to PCI device
8501  * @state: The current pci connection state
8502  *
8503  * This function is called after a PCI bus error affecting
8504  * this device has been detected.
8505  */
8506 static pci_ers_result_t s2io_io_error_detected(struct pci_dev *pdev,
8507 					       pci_channel_state_t state)
8508 {
8509 	struct net_device *netdev = pci_get_drvdata(pdev);
8510 	struct s2io_nic *sp = netdev_priv(netdev);
8511 
8512 	netif_device_detach(netdev);
8513 
8514 	if (state == pci_channel_io_perm_failure)
8515 		return PCI_ERS_RESULT_DISCONNECT;
8516 
8517 	if (netif_running(netdev)) {
8518 		/* Bring down the card, while avoiding PCI I/O */
8519 		do_s2io_card_down(sp, 0);
8520 	}
8521 	pci_disable_device(pdev);
8522 
8523 	return PCI_ERS_RESULT_NEED_RESET;
8524 }
8525 
8526 /**
8527  * s2io_io_slot_reset - called after the pci bus has been reset.
8528  * @pdev: Pointer to PCI device
8529  *
8530  * Restart the card from scratch, as if from a cold-boot.
8531  * At this point, the card has exprienced a hard reset,
8532  * followed by fixups by BIOS, and has its config space
8533  * set up identically to what it was at cold boot.
8534  */
8535 static pci_ers_result_t s2io_io_slot_reset(struct pci_dev *pdev)
8536 {
8537 	struct net_device *netdev = pci_get_drvdata(pdev);
8538 	struct s2io_nic *sp = netdev_priv(netdev);
8539 
8540 	if (pci_enable_device(pdev)) {
8541 		pr_err("Cannot re-enable PCI device after reset.\n");
8542 		return PCI_ERS_RESULT_DISCONNECT;
8543 	}
8544 
8545 	pci_set_master(pdev);
8546 	s2io_reset(sp);
8547 
8548 	return PCI_ERS_RESULT_RECOVERED;
8549 }
8550 
8551 /**
8552  * s2io_io_resume - called when traffic can start flowing again.
8553  * @pdev: Pointer to PCI device
8554  *
8555  * This callback is called when the error recovery driver tells
8556  * us that its OK to resume normal operation.
8557  */
8558 static void s2io_io_resume(struct pci_dev *pdev)
8559 {
8560 	struct net_device *netdev = pci_get_drvdata(pdev);
8561 	struct s2io_nic *sp = netdev_priv(netdev);
8562 
8563 	if (netif_running(netdev)) {
8564 		if (s2io_card_up(sp)) {
8565 			pr_err("Can't bring device back up after reset.\n");
8566 			return;
8567 		}
8568 
8569 		if (s2io_set_mac_addr(netdev, netdev->dev_addr) == FAILURE) {
8570 			s2io_card_down(sp);
8571 			pr_err("Can't restore mac addr after reset.\n");
8572 			return;
8573 		}
8574 	}
8575 
8576 	netif_device_attach(netdev);
8577 	netif_tx_wake_all_queues(netdev);
8578 }
8579