1 /************************************************************************ 2 * s2io.c: A Linux PCI-X Ethernet driver for Neterion 10GbE Server NIC 3 * Copyright(c) 2002-2010 Exar Corp. 4 * 5 * This software may be used and distributed according to the terms of 6 * the GNU General Public License (GPL), incorporated herein by reference. 7 * Drivers based on or derived from this code fall under the GPL and must 8 * retain the authorship, copyright and license notice. This file is not 9 * a complete program and may only be used when the entire operating 10 * system is licensed under the GPL. 11 * See the file COPYING in this distribution for more information. 12 * 13 * Credits: 14 * Jeff Garzik : For pointing out the improper error condition 15 * check in the s2io_xmit routine and also some 16 * issues in the Tx watch dog function. Also for 17 * patiently answering all those innumerable 18 * questions regaring the 2.6 porting issues. 19 * Stephen Hemminger : Providing proper 2.6 porting mechanism for some 20 * macros available only in 2.6 Kernel. 21 * Francois Romieu : For pointing out all code part that were 22 * deprecated and also styling related comments. 23 * Grant Grundler : For helping me get rid of some Architecture 24 * dependent code. 25 * Christopher Hellwig : Some more 2.6 specific issues in the driver. 26 * 27 * The module loadable parameters that are supported by the driver and a brief 28 * explanation of all the variables. 29 * 30 * rx_ring_num : This can be used to program the number of receive rings used 31 * in the driver. 32 * rx_ring_sz: This defines the number of receive blocks each ring can have. 33 * This is also an array of size 8. 34 * rx_ring_mode: This defines the operation mode of all 8 rings. The valid 35 * values are 1, 2. 36 * tx_fifo_num: This defines the number of Tx FIFOs thats used int the driver. 37 * tx_fifo_len: This too is an array of 8. Each element defines the number of 38 * Tx descriptors that can be associated with each corresponding FIFO. 39 * intr_type: This defines the type of interrupt. The values can be 0(INTA), 40 * 2(MSI_X). Default value is '2(MSI_X)' 41 * lro_max_pkts: This parameter defines maximum number of packets can be 42 * aggregated as a single large packet 43 * napi: This parameter used to enable/disable NAPI (polling Rx) 44 * Possible values '1' for enable and '0' for disable. Default is '1' 45 * ufo: This parameter used to enable/disable UDP Fragmentation Offload(UFO) 46 * Possible values '1' for enable and '0' for disable. Default is '0' 47 * vlan_tag_strip: This can be used to enable or disable vlan stripping. 48 * Possible values '1' for enable , '0' for disable. 49 * Default is '2' - which means disable in promisc mode 50 * and enable in non-promiscuous mode. 51 * multiq: This parameter used to enable/disable MULTIQUEUE support. 52 * Possible values '1' for enable and '0' for disable. Default is '0' 53 ************************************************************************/ 54 55 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 56 57 #include <linux/module.h> 58 #include <linux/types.h> 59 #include <linux/errno.h> 60 #include <linux/ioport.h> 61 #include <linux/pci.h> 62 #include <linux/dma-mapping.h> 63 #include <linux/kernel.h> 64 #include <linux/netdevice.h> 65 #include <linux/etherdevice.h> 66 #include <linux/mdio.h> 67 #include <linux/skbuff.h> 68 #include <linux/init.h> 69 #include <linux/delay.h> 70 #include <linux/stddef.h> 71 #include <linux/ioctl.h> 72 #include <linux/timex.h> 73 #include <linux/ethtool.h> 74 #include <linux/workqueue.h> 75 #include <linux/if_vlan.h> 76 #include <linux/ip.h> 77 #include <linux/tcp.h> 78 #include <linux/uaccess.h> 79 #include <linux/io.h> 80 #include <linux/slab.h> 81 #include <linux/prefetch.h> 82 #include <net/tcp.h> 83 #include <net/checksum.h> 84 85 #include <asm/div64.h> 86 #include <asm/irq.h> 87 88 /* local include */ 89 #include "s2io.h" 90 #include "s2io-regs.h" 91 92 #define DRV_VERSION "2.0.26.28" 93 94 /* S2io Driver name & version. */ 95 static const char s2io_driver_name[] = "Neterion"; 96 static const char s2io_driver_version[] = DRV_VERSION; 97 98 static const int rxd_size[2] = {32, 48}; 99 static const int rxd_count[2] = {127, 85}; 100 101 static inline int RXD_IS_UP2DT(struct RxD_t *rxdp) 102 { 103 int ret; 104 105 ret = ((!(rxdp->Control_1 & RXD_OWN_XENA)) && 106 (GET_RXD_MARKER(rxdp->Control_2) != THE_RXD_MARK)); 107 108 return ret; 109 } 110 111 /* 112 * Cards with following subsystem_id have a link state indication 113 * problem, 600B, 600C, 600D, 640B, 640C and 640D. 114 * macro below identifies these cards given the subsystem_id. 115 */ 116 #define CARDS_WITH_FAULTY_LINK_INDICATORS(dev_type, subid) \ 117 (dev_type == XFRAME_I_DEVICE) ? \ 118 ((((subid >= 0x600B) && (subid <= 0x600D)) || \ 119 ((subid >= 0x640B) && (subid <= 0x640D))) ? 1 : 0) : 0 120 121 #define LINK_IS_UP(val64) (!(val64 & (ADAPTER_STATUS_RMAC_REMOTE_FAULT | \ 122 ADAPTER_STATUS_RMAC_LOCAL_FAULT))) 123 124 static inline int is_s2io_card_up(const struct s2io_nic *sp) 125 { 126 return test_bit(__S2IO_STATE_CARD_UP, &sp->state); 127 } 128 129 /* Ethtool related variables and Macros. */ 130 static const char s2io_gstrings[][ETH_GSTRING_LEN] = { 131 "Register test\t(offline)", 132 "Eeprom test\t(offline)", 133 "Link test\t(online)", 134 "RLDRAM test\t(offline)", 135 "BIST Test\t(offline)" 136 }; 137 138 static const char ethtool_xena_stats_keys[][ETH_GSTRING_LEN] = { 139 {"tmac_frms"}, 140 {"tmac_data_octets"}, 141 {"tmac_drop_frms"}, 142 {"tmac_mcst_frms"}, 143 {"tmac_bcst_frms"}, 144 {"tmac_pause_ctrl_frms"}, 145 {"tmac_ttl_octets"}, 146 {"tmac_ucst_frms"}, 147 {"tmac_nucst_frms"}, 148 {"tmac_any_err_frms"}, 149 {"tmac_ttl_less_fb_octets"}, 150 {"tmac_vld_ip_octets"}, 151 {"tmac_vld_ip"}, 152 {"tmac_drop_ip"}, 153 {"tmac_icmp"}, 154 {"tmac_rst_tcp"}, 155 {"tmac_tcp"}, 156 {"tmac_udp"}, 157 {"rmac_vld_frms"}, 158 {"rmac_data_octets"}, 159 {"rmac_fcs_err_frms"}, 160 {"rmac_drop_frms"}, 161 {"rmac_vld_mcst_frms"}, 162 {"rmac_vld_bcst_frms"}, 163 {"rmac_in_rng_len_err_frms"}, 164 {"rmac_out_rng_len_err_frms"}, 165 {"rmac_long_frms"}, 166 {"rmac_pause_ctrl_frms"}, 167 {"rmac_unsup_ctrl_frms"}, 168 {"rmac_ttl_octets"}, 169 {"rmac_accepted_ucst_frms"}, 170 {"rmac_accepted_nucst_frms"}, 171 {"rmac_discarded_frms"}, 172 {"rmac_drop_events"}, 173 {"rmac_ttl_less_fb_octets"}, 174 {"rmac_ttl_frms"}, 175 {"rmac_usized_frms"}, 176 {"rmac_osized_frms"}, 177 {"rmac_frag_frms"}, 178 {"rmac_jabber_frms"}, 179 {"rmac_ttl_64_frms"}, 180 {"rmac_ttl_65_127_frms"}, 181 {"rmac_ttl_128_255_frms"}, 182 {"rmac_ttl_256_511_frms"}, 183 {"rmac_ttl_512_1023_frms"}, 184 {"rmac_ttl_1024_1518_frms"}, 185 {"rmac_ip"}, 186 {"rmac_ip_octets"}, 187 {"rmac_hdr_err_ip"}, 188 {"rmac_drop_ip"}, 189 {"rmac_icmp"}, 190 {"rmac_tcp"}, 191 {"rmac_udp"}, 192 {"rmac_err_drp_udp"}, 193 {"rmac_xgmii_err_sym"}, 194 {"rmac_frms_q0"}, 195 {"rmac_frms_q1"}, 196 {"rmac_frms_q2"}, 197 {"rmac_frms_q3"}, 198 {"rmac_frms_q4"}, 199 {"rmac_frms_q5"}, 200 {"rmac_frms_q6"}, 201 {"rmac_frms_q7"}, 202 {"rmac_full_q0"}, 203 {"rmac_full_q1"}, 204 {"rmac_full_q2"}, 205 {"rmac_full_q3"}, 206 {"rmac_full_q4"}, 207 {"rmac_full_q5"}, 208 {"rmac_full_q6"}, 209 {"rmac_full_q7"}, 210 {"rmac_pause_cnt"}, 211 {"rmac_xgmii_data_err_cnt"}, 212 {"rmac_xgmii_ctrl_err_cnt"}, 213 {"rmac_accepted_ip"}, 214 {"rmac_err_tcp"}, 215 {"rd_req_cnt"}, 216 {"new_rd_req_cnt"}, 217 {"new_rd_req_rtry_cnt"}, 218 {"rd_rtry_cnt"}, 219 {"wr_rtry_rd_ack_cnt"}, 220 {"wr_req_cnt"}, 221 {"new_wr_req_cnt"}, 222 {"new_wr_req_rtry_cnt"}, 223 {"wr_rtry_cnt"}, 224 {"wr_disc_cnt"}, 225 {"rd_rtry_wr_ack_cnt"}, 226 {"txp_wr_cnt"}, 227 {"txd_rd_cnt"}, 228 {"txd_wr_cnt"}, 229 {"rxd_rd_cnt"}, 230 {"rxd_wr_cnt"}, 231 {"txf_rd_cnt"}, 232 {"rxf_wr_cnt"} 233 }; 234 235 static const char ethtool_enhanced_stats_keys[][ETH_GSTRING_LEN] = { 236 {"rmac_ttl_1519_4095_frms"}, 237 {"rmac_ttl_4096_8191_frms"}, 238 {"rmac_ttl_8192_max_frms"}, 239 {"rmac_ttl_gt_max_frms"}, 240 {"rmac_osized_alt_frms"}, 241 {"rmac_jabber_alt_frms"}, 242 {"rmac_gt_max_alt_frms"}, 243 {"rmac_vlan_frms"}, 244 {"rmac_len_discard"}, 245 {"rmac_fcs_discard"}, 246 {"rmac_pf_discard"}, 247 {"rmac_da_discard"}, 248 {"rmac_red_discard"}, 249 {"rmac_rts_discard"}, 250 {"rmac_ingm_full_discard"}, 251 {"link_fault_cnt"} 252 }; 253 254 static const char ethtool_driver_stats_keys[][ETH_GSTRING_LEN] = { 255 {"\n DRIVER STATISTICS"}, 256 {"single_bit_ecc_errs"}, 257 {"double_bit_ecc_errs"}, 258 {"parity_err_cnt"}, 259 {"serious_err_cnt"}, 260 {"soft_reset_cnt"}, 261 {"fifo_full_cnt"}, 262 {"ring_0_full_cnt"}, 263 {"ring_1_full_cnt"}, 264 {"ring_2_full_cnt"}, 265 {"ring_3_full_cnt"}, 266 {"ring_4_full_cnt"}, 267 {"ring_5_full_cnt"}, 268 {"ring_6_full_cnt"}, 269 {"ring_7_full_cnt"}, 270 {"alarm_transceiver_temp_high"}, 271 {"alarm_transceiver_temp_low"}, 272 {"alarm_laser_bias_current_high"}, 273 {"alarm_laser_bias_current_low"}, 274 {"alarm_laser_output_power_high"}, 275 {"alarm_laser_output_power_low"}, 276 {"warn_transceiver_temp_high"}, 277 {"warn_transceiver_temp_low"}, 278 {"warn_laser_bias_current_high"}, 279 {"warn_laser_bias_current_low"}, 280 {"warn_laser_output_power_high"}, 281 {"warn_laser_output_power_low"}, 282 {"lro_aggregated_pkts"}, 283 {"lro_flush_both_count"}, 284 {"lro_out_of_sequence_pkts"}, 285 {"lro_flush_due_to_max_pkts"}, 286 {"lro_avg_aggr_pkts"}, 287 {"mem_alloc_fail_cnt"}, 288 {"pci_map_fail_cnt"}, 289 {"watchdog_timer_cnt"}, 290 {"mem_allocated"}, 291 {"mem_freed"}, 292 {"link_up_cnt"}, 293 {"link_down_cnt"}, 294 {"link_up_time"}, 295 {"link_down_time"}, 296 {"tx_tcode_buf_abort_cnt"}, 297 {"tx_tcode_desc_abort_cnt"}, 298 {"tx_tcode_parity_err_cnt"}, 299 {"tx_tcode_link_loss_cnt"}, 300 {"tx_tcode_list_proc_err_cnt"}, 301 {"rx_tcode_parity_err_cnt"}, 302 {"rx_tcode_abort_cnt"}, 303 {"rx_tcode_parity_abort_cnt"}, 304 {"rx_tcode_rda_fail_cnt"}, 305 {"rx_tcode_unkn_prot_cnt"}, 306 {"rx_tcode_fcs_err_cnt"}, 307 {"rx_tcode_buf_size_err_cnt"}, 308 {"rx_tcode_rxd_corrupt_cnt"}, 309 {"rx_tcode_unkn_err_cnt"}, 310 {"tda_err_cnt"}, 311 {"pfc_err_cnt"}, 312 {"pcc_err_cnt"}, 313 {"tti_err_cnt"}, 314 {"tpa_err_cnt"}, 315 {"sm_err_cnt"}, 316 {"lso_err_cnt"}, 317 {"mac_tmac_err_cnt"}, 318 {"mac_rmac_err_cnt"}, 319 {"xgxs_txgxs_err_cnt"}, 320 {"xgxs_rxgxs_err_cnt"}, 321 {"rc_err_cnt"}, 322 {"prc_pcix_err_cnt"}, 323 {"rpa_err_cnt"}, 324 {"rda_err_cnt"}, 325 {"rti_err_cnt"}, 326 {"mc_err_cnt"} 327 }; 328 329 #define S2IO_XENA_STAT_LEN ARRAY_SIZE(ethtool_xena_stats_keys) 330 #define S2IO_ENHANCED_STAT_LEN ARRAY_SIZE(ethtool_enhanced_stats_keys) 331 #define S2IO_DRIVER_STAT_LEN ARRAY_SIZE(ethtool_driver_stats_keys) 332 333 #define XFRAME_I_STAT_LEN (S2IO_XENA_STAT_LEN + S2IO_DRIVER_STAT_LEN) 334 #define XFRAME_II_STAT_LEN (XFRAME_I_STAT_LEN + S2IO_ENHANCED_STAT_LEN) 335 336 #define XFRAME_I_STAT_STRINGS_LEN (XFRAME_I_STAT_LEN * ETH_GSTRING_LEN) 337 #define XFRAME_II_STAT_STRINGS_LEN (XFRAME_II_STAT_LEN * ETH_GSTRING_LEN) 338 339 #define S2IO_TEST_LEN ARRAY_SIZE(s2io_gstrings) 340 #define S2IO_STRINGS_LEN (S2IO_TEST_LEN * ETH_GSTRING_LEN) 341 342 #define S2IO_TIMER_CONF(timer, handle, arg, exp) \ 343 init_timer(&timer); \ 344 timer.function = handle; \ 345 timer.data = (unsigned long)arg; \ 346 mod_timer(&timer, (jiffies + exp)) \ 347 348 /* copy mac addr to def_mac_addr array */ 349 static void do_s2io_copy_mac_addr(struct s2io_nic *sp, int offset, u64 mac_addr) 350 { 351 sp->def_mac_addr[offset].mac_addr[5] = (u8) (mac_addr); 352 sp->def_mac_addr[offset].mac_addr[4] = (u8) (mac_addr >> 8); 353 sp->def_mac_addr[offset].mac_addr[3] = (u8) (mac_addr >> 16); 354 sp->def_mac_addr[offset].mac_addr[2] = (u8) (mac_addr >> 24); 355 sp->def_mac_addr[offset].mac_addr[1] = (u8) (mac_addr >> 32); 356 sp->def_mac_addr[offset].mac_addr[0] = (u8) (mac_addr >> 40); 357 } 358 359 /* 360 * Constants to be programmed into the Xena's registers, to configure 361 * the XAUI. 362 */ 363 364 #define END_SIGN 0x0 365 static const u64 herc_act_dtx_cfg[] = { 366 /* Set address */ 367 0x8000051536750000ULL, 0x80000515367500E0ULL, 368 /* Write data */ 369 0x8000051536750004ULL, 0x80000515367500E4ULL, 370 /* Set address */ 371 0x80010515003F0000ULL, 0x80010515003F00E0ULL, 372 /* Write data */ 373 0x80010515003F0004ULL, 0x80010515003F00E4ULL, 374 /* Set address */ 375 0x801205150D440000ULL, 0x801205150D4400E0ULL, 376 /* Write data */ 377 0x801205150D440004ULL, 0x801205150D4400E4ULL, 378 /* Set address */ 379 0x80020515F2100000ULL, 0x80020515F21000E0ULL, 380 /* Write data */ 381 0x80020515F2100004ULL, 0x80020515F21000E4ULL, 382 /* Done */ 383 END_SIGN 384 }; 385 386 static const u64 xena_dtx_cfg[] = { 387 /* Set address */ 388 0x8000051500000000ULL, 0x80000515000000E0ULL, 389 /* Write data */ 390 0x80000515D9350004ULL, 0x80000515D93500E4ULL, 391 /* Set address */ 392 0x8001051500000000ULL, 0x80010515000000E0ULL, 393 /* Write data */ 394 0x80010515001E0004ULL, 0x80010515001E00E4ULL, 395 /* Set address */ 396 0x8002051500000000ULL, 0x80020515000000E0ULL, 397 /* Write data */ 398 0x80020515F2100004ULL, 0x80020515F21000E4ULL, 399 END_SIGN 400 }; 401 402 /* 403 * Constants for Fixing the MacAddress problem seen mostly on 404 * Alpha machines. 405 */ 406 static const u64 fix_mac[] = { 407 0x0060000000000000ULL, 0x0060600000000000ULL, 408 0x0040600000000000ULL, 0x0000600000000000ULL, 409 0x0020600000000000ULL, 0x0060600000000000ULL, 410 0x0020600000000000ULL, 0x0060600000000000ULL, 411 0x0020600000000000ULL, 0x0060600000000000ULL, 412 0x0020600000000000ULL, 0x0060600000000000ULL, 413 0x0020600000000000ULL, 0x0060600000000000ULL, 414 0x0020600000000000ULL, 0x0060600000000000ULL, 415 0x0020600000000000ULL, 0x0060600000000000ULL, 416 0x0020600000000000ULL, 0x0060600000000000ULL, 417 0x0020600000000000ULL, 0x0060600000000000ULL, 418 0x0020600000000000ULL, 0x0060600000000000ULL, 419 0x0020600000000000ULL, 0x0000600000000000ULL, 420 0x0040600000000000ULL, 0x0060600000000000ULL, 421 END_SIGN 422 }; 423 424 MODULE_LICENSE("GPL"); 425 MODULE_VERSION(DRV_VERSION); 426 427 428 /* Module Loadable parameters. */ 429 S2IO_PARM_INT(tx_fifo_num, FIFO_DEFAULT_NUM); 430 S2IO_PARM_INT(rx_ring_num, 1); 431 S2IO_PARM_INT(multiq, 0); 432 S2IO_PARM_INT(rx_ring_mode, 1); 433 S2IO_PARM_INT(use_continuous_tx_intrs, 1); 434 S2IO_PARM_INT(rmac_pause_time, 0x100); 435 S2IO_PARM_INT(mc_pause_threshold_q0q3, 187); 436 S2IO_PARM_INT(mc_pause_threshold_q4q7, 187); 437 S2IO_PARM_INT(shared_splits, 0); 438 S2IO_PARM_INT(tmac_util_period, 5); 439 S2IO_PARM_INT(rmac_util_period, 5); 440 S2IO_PARM_INT(l3l4hdr_size, 128); 441 /* 0 is no steering, 1 is Priority steering, 2 is Default steering */ 442 S2IO_PARM_INT(tx_steering_type, TX_DEFAULT_STEERING); 443 /* Frequency of Rx desc syncs expressed as power of 2 */ 444 S2IO_PARM_INT(rxsync_frequency, 3); 445 /* Interrupt type. Values can be 0(INTA), 2(MSI_X) */ 446 S2IO_PARM_INT(intr_type, 2); 447 /* Large receive offload feature */ 448 449 /* Max pkts to be aggregated by LRO at one time. If not specified, 450 * aggregation happens until we hit max IP pkt size(64K) 451 */ 452 S2IO_PARM_INT(lro_max_pkts, 0xFFFF); 453 S2IO_PARM_INT(indicate_max_pkts, 0); 454 455 S2IO_PARM_INT(napi, 1); 456 S2IO_PARM_INT(ufo, 0); 457 S2IO_PARM_INT(vlan_tag_strip, NO_STRIP_IN_PROMISC); 458 459 static unsigned int tx_fifo_len[MAX_TX_FIFOS] = 460 {DEFAULT_FIFO_0_LEN, [1 ...(MAX_TX_FIFOS - 1)] = DEFAULT_FIFO_1_7_LEN}; 461 static unsigned int rx_ring_sz[MAX_RX_RINGS] = 462 {[0 ...(MAX_RX_RINGS - 1)] = SMALL_BLK_CNT}; 463 static unsigned int rts_frm_len[MAX_RX_RINGS] = 464 {[0 ...(MAX_RX_RINGS - 1)] = 0 }; 465 466 module_param_array(tx_fifo_len, uint, NULL, 0); 467 module_param_array(rx_ring_sz, uint, NULL, 0); 468 module_param_array(rts_frm_len, uint, NULL, 0); 469 470 /* 471 * S2IO device table. 472 * This table lists all the devices that this driver supports. 473 */ 474 static const struct pci_device_id s2io_tbl[] = { 475 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_WIN, 476 PCI_ANY_ID, PCI_ANY_ID}, 477 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_UNI, 478 PCI_ANY_ID, PCI_ANY_ID}, 479 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_WIN, 480 PCI_ANY_ID, PCI_ANY_ID}, 481 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_UNI, 482 PCI_ANY_ID, PCI_ANY_ID}, 483 {0,} 484 }; 485 486 MODULE_DEVICE_TABLE(pci, s2io_tbl); 487 488 static const struct pci_error_handlers s2io_err_handler = { 489 .error_detected = s2io_io_error_detected, 490 .slot_reset = s2io_io_slot_reset, 491 .resume = s2io_io_resume, 492 }; 493 494 static struct pci_driver s2io_driver = { 495 .name = "S2IO", 496 .id_table = s2io_tbl, 497 .probe = s2io_init_nic, 498 .remove = s2io_rem_nic, 499 .err_handler = &s2io_err_handler, 500 }; 501 502 /* A simplifier macro used both by init and free shared_mem Fns(). */ 503 #define TXD_MEM_PAGE_CNT(len, per_each) ((len+per_each - 1) / per_each) 504 505 /* netqueue manipulation helper functions */ 506 static inline void s2io_stop_all_tx_queue(struct s2io_nic *sp) 507 { 508 if (!sp->config.multiq) { 509 int i; 510 511 for (i = 0; i < sp->config.tx_fifo_num; i++) 512 sp->mac_control.fifos[i].queue_state = FIFO_QUEUE_STOP; 513 } 514 netif_tx_stop_all_queues(sp->dev); 515 } 516 517 static inline void s2io_stop_tx_queue(struct s2io_nic *sp, int fifo_no) 518 { 519 if (!sp->config.multiq) 520 sp->mac_control.fifos[fifo_no].queue_state = 521 FIFO_QUEUE_STOP; 522 523 netif_tx_stop_all_queues(sp->dev); 524 } 525 526 static inline void s2io_start_all_tx_queue(struct s2io_nic *sp) 527 { 528 if (!sp->config.multiq) { 529 int i; 530 531 for (i = 0; i < sp->config.tx_fifo_num; i++) 532 sp->mac_control.fifos[i].queue_state = FIFO_QUEUE_START; 533 } 534 netif_tx_start_all_queues(sp->dev); 535 } 536 537 static inline void s2io_wake_all_tx_queue(struct s2io_nic *sp) 538 { 539 if (!sp->config.multiq) { 540 int i; 541 542 for (i = 0; i < sp->config.tx_fifo_num; i++) 543 sp->mac_control.fifos[i].queue_state = FIFO_QUEUE_START; 544 } 545 netif_tx_wake_all_queues(sp->dev); 546 } 547 548 static inline void s2io_wake_tx_queue( 549 struct fifo_info *fifo, int cnt, u8 multiq) 550 { 551 552 if (multiq) { 553 if (cnt && __netif_subqueue_stopped(fifo->dev, fifo->fifo_no)) 554 netif_wake_subqueue(fifo->dev, fifo->fifo_no); 555 } else if (cnt && (fifo->queue_state == FIFO_QUEUE_STOP)) { 556 if (netif_queue_stopped(fifo->dev)) { 557 fifo->queue_state = FIFO_QUEUE_START; 558 netif_wake_queue(fifo->dev); 559 } 560 } 561 } 562 563 /** 564 * init_shared_mem - Allocation and Initialization of Memory 565 * @nic: Device private variable. 566 * Description: The function allocates all the memory areas shared 567 * between the NIC and the driver. This includes Tx descriptors, 568 * Rx descriptors and the statistics block. 569 */ 570 571 static int init_shared_mem(struct s2io_nic *nic) 572 { 573 u32 size; 574 void *tmp_v_addr, *tmp_v_addr_next; 575 dma_addr_t tmp_p_addr, tmp_p_addr_next; 576 struct RxD_block *pre_rxd_blk = NULL; 577 int i, j, blk_cnt; 578 int lst_size, lst_per_page; 579 struct net_device *dev = nic->dev; 580 unsigned long tmp; 581 struct buffAdd *ba; 582 struct config_param *config = &nic->config; 583 struct mac_info *mac_control = &nic->mac_control; 584 unsigned long long mem_allocated = 0; 585 586 /* Allocation and initialization of TXDLs in FIFOs */ 587 size = 0; 588 for (i = 0; i < config->tx_fifo_num; i++) { 589 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i]; 590 591 size += tx_cfg->fifo_len; 592 } 593 if (size > MAX_AVAILABLE_TXDS) { 594 DBG_PRINT(ERR_DBG, 595 "Too many TxDs requested: %d, max supported: %d\n", 596 size, MAX_AVAILABLE_TXDS); 597 return -EINVAL; 598 } 599 600 size = 0; 601 for (i = 0; i < config->tx_fifo_num; i++) { 602 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i]; 603 604 size = tx_cfg->fifo_len; 605 /* 606 * Legal values are from 2 to 8192 607 */ 608 if (size < 2) { 609 DBG_PRINT(ERR_DBG, "Fifo %d: Invalid length (%d) - " 610 "Valid lengths are 2 through 8192\n", 611 i, size); 612 return -EINVAL; 613 } 614 } 615 616 lst_size = (sizeof(struct TxD) * config->max_txds); 617 lst_per_page = PAGE_SIZE / lst_size; 618 619 for (i = 0; i < config->tx_fifo_num; i++) { 620 struct fifo_info *fifo = &mac_control->fifos[i]; 621 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i]; 622 int fifo_len = tx_cfg->fifo_len; 623 int list_holder_size = fifo_len * sizeof(struct list_info_hold); 624 625 fifo->list_info = kzalloc(list_holder_size, GFP_KERNEL); 626 if (!fifo->list_info) { 627 DBG_PRINT(INFO_DBG, "Malloc failed for list_info\n"); 628 return -ENOMEM; 629 } 630 mem_allocated += list_holder_size; 631 } 632 for (i = 0; i < config->tx_fifo_num; i++) { 633 int page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len, 634 lst_per_page); 635 struct fifo_info *fifo = &mac_control->fifos[i]; 636 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i]; 637 638 fifo->tx_curr_put_info.offset = 0; 639 fifo->tx_curr_put_info.fifo_len = tx_cfg->fifo_len - 1; 640 fifo->tx_curr_get_info.offset = 0; 641 fifo->tx_curr_get_info.fifo_len = tx_cfg->fifo_len - 1; 642 fifo->fifo_no = i; 643 fifo->nic = nic; 644 fifo->max_txds = MAX_SKB_FRAGS + 2; 645 fifo->dev = dev; 646 647 for (j = 0; j < page_num; j++) { 648 int k = 0; 649 dma_addr_t tmp_p; 650 void *tmp_v; 651 tmp_v = pci_alloc_consistent(nic->pdev, 652 PAGE_SIZE, &tmp_p); 653 if (!tmp_v) { 654 DBG_PRINT(INFO_DBG, 655 "pci_alloc_consistent failed for TxDL\n"); 656 return -ENOMEM; 657 } 658 /* If we got a zero DMA address(can happen on 659 * certain platforms like PPC), reallocate. 660 * Store virtual address of page we don't want, 661 * to be freed later. 662 */ 663 if (!tmp_p) { 664 mac_control->zerodma_virt_addr = tmp_v; 665 DBG_PRINT(INIT_DBG, 666 "%s: Zero DMA address for TxDL. " 667 "Virtual address %p\n", 668 dev->name, tmp_v); 669 tmp_v = pci_alloc_consistent(nic->pdev, 670 PAGE_SIZE, &tmp_p); 671 if (!tmp_v) { 672 DBG_PRINT(INFO_DBG, 673 "pci_alloc_consistent failed for TxDL\n"); 674 return -ENOMEM; 675 } 676 mem_allocated += PAGE_SIZE; 677 } 678 while (k < lst_per_page) { 679 int l = (j * lst_per_page) + k; 680 if (l == tx_cfg->fifo_len) 681 break; 682 fifo->list_info[l].list_virt_addr = 683 tmp_v + (k * lst_size); 684 fifo->list_info[l].list_phy_addr = 685 tmp_p + (k * lst_size); 686 k++; 687 } 688 } 689 } 690 691 for (i = 0; i < config->tx_fifo_num; i++) { 692 struct fifo_info *fifo = &mac_control->fifos[i]; 693 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i]; 694 695 size = tx_cfg->fifo_len; 696 fifo->ufo_in_band_v = kcalloc(size, sizeof(u64), GFP_KERNEL); 697 if (!fifo->ufo_in_band_v) 698 return -ENOMEM; 699 mem_allocated += (size * sizeof(u64)); 700 } 701 702 /* Allocation and initialization of RXDs in Rings */ 703 size = 0; 704 for (i = 0; i < config->rx_ring_num; i++) { 705 struct rx_ring_config *rx_cfg = &config->rx_cfg[i]; 706 struct ring_info *ring = &mac_control->rings[i]; 707 708 if (rx_cfg->num_rxd % (rxd_count[nic->rxd_mode] + 1)) { 709 DBG_PRINT(ERR_DBG, "%s: Ring%d RxD count is not a " 710 "multiple of RxDs per Block\n", 711 dev->name, i); 712 return FAILURE; 713 } 714 size += rx_cfg->num_rxd; 715 ring->block_count = rx_cfg->num_rxd / 716 (rxd_count[nic->rxd_mode] + 1); 717 ring->pkt_cnt = rx_cfg->num_rxd - ring->block_count; 718 } 719 if (nic->rxd_mode == RXD_MODE_1) 720 size = (size * (sizeof(struct RxD1))); 721 else 722 size = (size * (sizeof(struct RxD3))); 723 724 for (i = 0; i < config->rx_ring_num; i++) { 725 struct rx_ring_config *rx_cfg = &config->rx_cfg[i]; 726 struct ring_info *ring = &mac_control->rings[i]; 727 728 ring->rx_curr_get_info.block_index = 0; 729 ring->rx_curr_get_info.offset = 0; 730 ring->rx_curr_get_info.ring_len = rx_cfg->num_rxd - 1; 731 ring->rx_curr_put_info.block_index = 0; 732 ring->rx_curr_put_info.offset = 0; 733 ring->rx_curr_put_info.ring_len = rx_cfg->num_rxd - 1; 734 ring->nic = nic; 735 ring->ring_no = i; 736 737 blk_cnt = rx_cfg->num_rxd / (rxd_count[nic->rxd_mode] + 1); 738 /* Allocating all the Rx blocks */ 739 for (j = 0; j < blk_cnt; j++) { 740 struct rx_block_info *rx_blocks; 741 int l; 742 743 rx_blocks = &ring->rx_blocks[j]; 744 size = SIZE_OF_BLOCK; /* size is always page size */ 745 tmp_v_addr = pci_alloc_consistent(nic->pdev, size, 746 &tmp_p_addr); 747 if (tmp_v_addr == NULL) { 748 /* 749 * In case of failure, free_shared_mem() 750 * is called, which should free any 751 * memory that was alloced till the 752 * failure happened. 753 */ 754 rx_blocks->block_virt_addr = tmp_v_addr; 755 return -ENOMEM; 756 } 757 mem_allocated += size; 758 memset(tmp_v_addr, 0, size); 759 760 size = sizeof(struct rxd_info) * 761 rxd_count[nic->rxd_mode]; 762 rx_blocks->block_virt_addr = tmp_v_addr; 763 rx_blocks->block_dma_addr = tmp_p_addr; 764 rx_blocks->rxds = kmalloc(size, GFP_KERNEL); 765 if (!rx_blocks->rxds) 766 return -ENOMEM; 767 mem_allocated += size; 768 for (l = 0; l < rxd_count[nic->rxd_mode]; l++) { 769 rx_blocks->rxds[l].virt_addr = 770 rx_blocks->block_virt_addr + 771 (rxd_size[nic->rxd_mode] * l); 772 rx_blocks->rxds[l].dma_addr = 773 rx_blocks->block_dma_addr + 774 (rxd_size[nic->rxd_mode] * l); 775 } 776 } 777 /* Interlinking all Rx Blocks */ 778 for (j = 0; j < blk_cnt; j++) { 779 int next = (j + 1) % blk_cnt; 780 tmp_v_addr = ring->rx_blocks[j].block_virt_addr; 781 tmp_v_addr_next = ring->rx_blocks[next].block_virt_addr; 782 tmp_p_addr = ring->rx_blocks[j].block_dma_addr; 783 tmp_p_addr_next = ring->rx_blocks[next].block_dma_addr; 784 785 pre_rxd_blk = tmp_v_addr; 786 pre_rxd_blk->reserved_2_pNext_RxD_block = 787 (unsigned long)tmp_v_addr_next; 788 pre_rxd_blk->pNext_RxD_Blk_physical = 789 (u64)tmp_p_addr_next; 790 } 791 } 792 if (nic->rxd_mode == RXD_MODE_3B) { 793 /* 794 * Allocation of Storages for buffer addresses in 2BUFF mode 795 * and the buffers as well. 796 */ 797 for (i = 0; i < config->rx_ring_num; i++) { 798 struct rx_ring_config *rx_cfg = &config->rx_cfg[i]; 799 struct ring_info *ring = &mac_control->rings[i]; 800 801 blk_cnt = rx_cfg->num_rxd / 802 (rxd_count[nic->rxd_mode] + 1); 803 size = sizeof(struct buffAdd *) * blk_cnt; 804 ring->ba = kmalloc(size, GFP_KERNEL); 805 if (!ring->ba) 806 return -ENOMEM; 807 mem_allocated += size; 808 for (j = 0; j < blk_cnt; j++) { 809 int k = 0; 810 811 size = sizeof(struct buffAdd) * 812 (rxd_count[nic->rxd_mode] + 1); 813 ring->ba[j] = kmalloc(size, GFP_KERNEL); 814 if (!ring->ba[j]) 815 return -ENOMEM; 816 mem_allocated += size; 817 while (k != rxd_count[nic->rxd_mode]) { 818 ba = &ring->ba[j][k]; 819 size = BUF0_LEN + ALIGN_SIZE; 820 ba->ba_0_org = kmalloc(size, GFP_KERNEL); 821 if (!ba->ba_0_org) 822 return -ENOMEM; 823 mem_allocated += size; 824 tmp = (unsigned long)ba->ba_0_org; 825 tmp += ALIGN_SIZE; 826 tmp &= ~((unsigned long)ALIGN_SIZE); 827 ba->ba_0 = (void *)tmp; 828 829 size = BUF1_LEN + ALIGN_SIZE; 830 ba->ba_1_org = kmalloc(size, GFP_KERNEL); 831 if (!ba->ba_1_org) 832 return -ENOMEM; 833 mem_allocated += size; 834 tmp = (unsigned long)ba->ba_1_org; 835 tmp += ALIGN_SIZE; 836 tmp &= ~((unsigned long)ALIGN_SIZE); 837 ba->ba_1 = (void *)tmp; 838 k++; 839 } 840 } 841 } 842 } 843 844 /* Allocation and initialization of Statistics block */ 845 size = sizeof(struct stat_block); 846 mac_control->stats_mem = 847 pci_alloc_consistent(nic->pdev, size, 848 &mac_control->stats_mem_phy); 849 850 if (!mac_control->stats_mem) { 851 /* 852 * In case of failure, free_shared_mem() is called, which 853 * should free any memory that was alloced till the 854 * failure happened. 855 */ 856 return -ENOMEM; 857 } 858 mem_allocated += size; 859 mac_control->stats_mem_sz = size; 860 861 tmp_v_addr = mac_control->stats_mem; 862 mac_control->stats_info = tmp_v_addr; 863 memset(tmp_v_addr, 0, size); 864 DBG_PRINT(INIT_DBG, "%s: Ring Mem PHY: 0x%llx\n", 865 dev_name(&nic->pdev->dev), (unsigned long long)tmp_p_addr); 866 mac_control->stats_info->sw_stat.mem_allocated += mem_allocated; 867 return SUCCESS; 868 } 869 870 /** 871 * free_shared_mem - Free the allocated Memory 872 * @nic: Device private variable. 873 * Description: This function is to free all memory locations allocated by 874 * the init_shared_mem() function and return it to the kernel. 875 */ 876 877 static void free_shared_mem(struct s2io_nic *nic) 878 { 879 int i, j, blk_cnt, size; 880 void *tmp_v_addr; 881 dma_addr_t tmp_p_addr; 882 int lst_size, lst_per_page; 883 struct net_device *dev; 884 int page_num = 0; 885 struct config_param *config; 886 struct mac_info *mac_control; 887 struct stat_block *stats; 888 struct swStat *swstats; 889 890 if (!nic) 891 return; 892 893 dev = nic->dev; 894 895 config = &nic->config; 896 mac_control = &nic->mac_control; 897 stats = mac_control->stats_info; 898 swstats = &stats->sw_stat; 899 900 lst_size = sizeof(struct TxD) * config->max_txds; 901 lst_per_page = PAGE_SIZE / lst_size; 902 903 for (i = 0; i < config->tx_fifo_num; i++) { 904 struct fifo_info *fifo = &mac_control->fifos[i]; 905 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i]; 906 907 page_num = TXD_MEM_PAGE_CNT(tx_cfg->fifo_len, lst_per_page); 908 for (j = 0; j < page_num; j++) { 909 int mem_blks = (j * lst_per_page); 910 struct list_info_hold *fli; 911 912 if (!fifo->list_info) 913 return; 914 915 fli = &fifo->list_info[mem_blks]; 916 if (!fli->list_virt_addr) 917 break; 918 pci_free_consistent(nic->pdev, PAGE_SIZE, 919 fli->list_virt_addr, 920 fli->list_phy_addr); 921 swstats->mem_freed += PAGE_SIZE; 922 } 923 /* If we got a zero DMA address during allocation, 924 * free the page now 925 */ 926 if (mac_control->zerodma_virt_addr) { 927 pci_free_consistent(nic->pdev, PAGE_SIZE, 928 mac_control->zerodma_virt_addr, 929 (dma_addr_t)0); 930 DBG_PRINT(INIT_DBG, 931 "%s: Freeing TxDL with zero DMA address. " 932 "Virtual address %p\n", 933 dev->name, mac_control->zerodma_virt_addr); 934 swstats->mem_freed += PAGE_SIZE; 935 } 936 kfree(fifo->list_info); 937 swstats->mem_freed += tx_cfg->fifo_len * 938 sizeof(struct list_info_hold); 939 } 940 941 size = SIZE_OF_BLOCK; 942 for (i = 0; i < config->rx_ring_num; i++) { 943 struct ring_info *ring = &mac_control->rings[i]; 944 945 blk_cnt = ring->block_count; 946 for (j = 0; j < blk_cnt; j++) { 947 tmp_v_addr = ring->rx_blocks[j].block_virt_addr; 948 tmp_p_addr = ring->rx_blocks[j].block_dma_addr; 949 if (tmp_v_addr == NULL) 950 break; 951 pci_free_consistent(nic->pdev, size, 952 tmp_v_addr, tmp_p_addr); 953 swstats->mem_freed += size; 954 kfree(ring->rx_blocks[j].rxds); 955 swstats->mem_freed += sizeof(struct rxd_info) * 956 rxd_count[nic->rxd_mode]; 957 } 958 } 959 960 if (nic->rxd_mode == RXD_MODE_3B) { 961 /* Freeing buffer storage addresses in 2BUFF mode. */ 962 for (i = 0; i < config->rx_ring_num; i++) { 963 struct rx_ring_config *rx_cfg = &config->rx_cfg[i]; 964 struct ring_info *ring = &mac_control->rings[i]; 965 966 blk_cnt = rx_cfg->num_rxd / 967 (rxd_count[nic->rxd_mode] + 1); 968 for (j = 0; j < blk_cnt; j++) { 969 int k = 0; 970 if (!ring->ba[j]) 971 continue; 972 while (k != rxd_count[nic->rxd_mode]) { 973 struct buffAdd *ba = &ring->ba[j][k]; 974 kfree(ba->ba_0_org); 975 swstats->mem_freed += 976 BUF0_LEN + ALIGN_SIZE; 977 kfree(ba->ba_1_org); 978 swstats->mem_freed += 979 BUF1_LEN + ALIGN_SIZE; 980 k++; 981 } 982 kfree(ring->ba[j]); 983 swstats->mem_freed += sizeof(struct buffAdd) * 984 (rxd_count[nic->rxd_mode] + 1); 985 } 986 kfree(ring->ba); 987 swstats->mem_freed += sizeof(struct buffAdd *) * 988 blk_cnt; 989 } 990 } 991 992 for (i = 0; i < nic->config.tx_fifo_num; i++) { 993 struct fifo_info *fifo = &mac_control->fifos[i]; 994 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i]; 995 996 if (fifo->ufo_in_band_v) { 997 swstats->mem_freed += tx_cfg->fifo_len * 998 sizeof(u64); 999 kfree(fifo->ufo_in_band_v); 1000 } 1001 } 1002 1003 if (mac_control->stats_mem) { 1004 swstats->mem_freed += mac_control->stats_mem_sz; 1005 pci_free_consistent(nic->pdev, 1006 mac_control->stats_mem_sz, 1007 mac_control->stats_mem, 1008 mac_control->stats_mem_phy); 1009 } 1010 } 1011 1012 /** 1013 * s2io_verify_pci_mode - 1014 */ 1015 1016 static int s2io_verify_pci_mode(struct s2io_nic *nic) 1017 { 1018 struct XENA_dev_config __iomem *bar0 = nic->bar0; 1019 register u64 val64 = 0; 1020 int mode; 1021 1022 val64 = readq(&bar0->pci_mode); 1023 mode = (u8)GET_PCI_MODE(val64); 1024 1025 if (val64 & PCI_MODE_UNKNOWN_MODE) 1026 return -1; /* Unknown PCI mode */ 1027 return mode; 1028 } 1029 1030 #define NEC_VENID 0x1033 1031 #define NEC_DEVID 0x0125 1032 static int s2io_on_nec_bridge(struct pci_dev *s2io_pdev) 1033 { 1034 struct pci_dev *tdev = NULL; 1035 for_each_pci_dev(tdev) { 1036 if (tdev->vendor == NEC_VENID && tdev->device == NEC_DEVID) { 1037 if (tdev->bus == s2io_pdev->bus->parent) { 1038 pci_dev_put(tdev); 1039 return 1; 1040 } 1041 } 1042 } 1043 return 0; 1044 } 1045 1046 static int bus_speed[8] = {33, 133, 133, 200, 266, 133, 200, 266}; 1047 /** 1048 * s2io_print_pci_mode - 1049 */ 1050 static int s2io_print_pci_mode(struct s2io_nic *nic) 1051 { 1052 struct XENA_dev_config __iomem *bar0 = nic->bar0; 1053 register u64 val64 = 0; 1054 int mode; 1055 struct config_param *config = &nic->config; 1056 const char *pcimode; 1057 1058 val64 = readq(&bar0->pci_mode); 1059 mode = (u8)GET_PCI_MODE(val64); 1060 1061 if (val64 & PCI_MODE_UNKNOWN_MODE) 1062 return -1; /* Unknown PCI mode */ 1063 1064 config->bus_speed = bus_speed[mode]; 1065 1066 if (s2io_on_nec_bridge(nic->pdev)) { 1067 DBG_PRINT(ERR_DBG, "%s: Device is on PCI-E bus\n", 1068 nic->dev->name); 1069 return mode; 1070 } 1071 1072 switch (mode) { 1073 case PCI_MODE_PCI_33: 1074 pcimode = "33MHz PCI bus"; 1075 break; 1076 case PCI_MODE_PCI_66: 1077 pcimode = "66MHz PCI bus"; 1078 break; 1079 case PCI_MODE_PCIX_M1_66: 1080 pcimode = "66MHz PCIX(M1) bus"; 1081 break; 1082 case PCI_MODE_PCIX_M1_100: 1083 pcimode = "100MHz PCIX(M1) bus"; 1084 break; 1085 case PCI_MODE_PCIX_M1_133: 1086 pcimode = "133MHz PCIX(M1) bus"; 1087 break; 1088 case PCI_MODE_PCIX_M2_66: 1089 pcimode = "133MHz PCIX(M2) bus"; 1090 break; 1091 case PCI_MODE_PCIX_M2_100: 1092 pcimode = "200MHz PCIX(M2) bus"; 1093 break; 1094 case PCI_MODE_PCIX_M2_133: 1095 pcimode = "266MHz PCIX(M2) bus"; 1096 break; 1097 default: 1098 pcimode = "unsupported bus!"; 1099 mode = -1; 1100 } 1101 1102 DBG_PRINT(ERR_DBG, "%s: Device is on %d bit %s\n", 1103 nic->dev->name, val64 & PCI_MODE_32_BITS ? 32 : 64, pcimode); 1104 1105 return mode; 1106 } 1107 1108 /** 1109 * init_tti - Initialization transmit traffic interrupt scheme 1110 * @nic: device private variable 1111 * @link: link status (UP/DOWN) used to enable/disable continuous 1112 * transmit interrupts 1113 * Description: The function configures transmit traffic interrupts 1114 * Return Value: SUCCESS on success and 1115 * '-1' on failure 1116 */ 1117 1118 static int init_tti(struct s2io_nic *nic, int link) 1119 { 1120 struct XENA_dev_config __iomem *bar0 = nic->bar0; 1121 register u64 val64 = 0; 1122 int i; 1123 struct config_param *config = &nic->config; 1124 1125 for (i = 0; i < config->tx_fifo_num; i++) { 1126 /* 1127 * TTI Initialization. Default Tx timer gets us about 1128 * 250 interrupts per sec. Continuous interrupts are enabled 1129 * by default. 1130 */ 1131 if (nic->device_type == XFRAME_II_DEVICE) { 1132 int count = (nic->config.bus_speed * 125)/2; 1133 val64 = TTI_DATA1_MEM_TX_TIMER_VAL(count); 1134 } else 1135 val64 = TTI_DATA1_MEM_TX_TIMER_VAL(0x2078); 1136 1137 val64 |= TTI_DATA1_MEM_TX_URNG_A(0xA) | 1138 TTI_DATA1_MEM_TX_URNG_B(0x10) | 1139 TTI_DATA1_MEM_TX_URNG_C(0x30) | 1140 TTI_DATA1_MEM_TX_TIMER_AC_EN; 1141 if (i == 0) 1142 if (use_continuous_tx_intrs && (link == LINK_UP)) 1143 val64 |= TTI_DATA1_MEM_TX_TIMER_CI_EN; 1144 writeq(val64, &bar0->tti_data1_mem); 1145 1146 if (nic->config.intr_type == MSI_X) { 1147 val64 = TTI_DATA2_MEM_TX_UFC_A(0x10) | 1148 TTI_DATA2_MEM_TX_UFC_B(0x100) | 1149 TTI_DATA2_MEM_TX_UFC_C(0x200) | 1150 TTI_DATA2_MEM_TX_UFC_D(0x300); 1151 } else { 1152 if ((nic->config.tx_steering_type == 1153 TX_DEFAULT_STEERING) && 1154 (config->tx_fifo_num > 1) && 1155 (i >= nic->udp_fifo_idx) && 1156 (i < (nic->udp_fifo_idx + 1157 nic->total_udp_fifos))) 1158 val64 = TTI_DATA2_MEM_TX_UFC_A(0x50) | 1159 TTI_DATA2_MEM_TX_UFC_B(0x80) | 1160 TTI_DATA2_MEM_TX_UFC_C(0x100) | 1161 TTI_DATA2_MEM_TX_UFC_D(0x120); 1162 else 1163 val64 = TTI_DATA2_MEM_TX_UFC_A(0x10) | 1164 TTI_DATA2_MEM_TX_UFC_B(0x20) | 1165 TTI_DATA2_MEM_TX_UFC_C(0x40) | 1166 TTI_DATA2_MEM_TX_UFC_D(0x80); 1167 } 1168 1169 writeq(val64, &bar0->tti_data2_mem); 1170 1171 val64 = TTI_CMD_MEM_WE | 1172 TTI_CMD_MEM_STROBE_NEW_CMD | 1173 TTI_CMD_MEM_OFFSET(i); 1174 writeq(val64, &bar0->tti_command_mem); 1175 1176 if (wait_for_cmd_complete(&bar0->tti_command_mem, 1177 TTI_CMD_MEM_STROBE_NEW_CMD, 1178 S2IO_BIT_RESET) != SUCCESS) 1179 return FAILURE; 1180 } 1181 1182 return SUCCESS; 1183 } 1184 1185 /** 1186 * init_nic - Initialization of hardware 1187 * @nic: device private variable 1188 * Description: The function sequentially configures every block 1189 * of the H/W from their reset values. 1190 * Return Value: SUCCESS on success and 1191 * '-1' on failure (endian settings incorrect). 1192 */ 1193 1194 static int init_nic(struct s2io_nic *nic) 1195 { 1196 struct XENA_dev_config __iomem *bar0 = nic->bar0; 1197 struct net_device *dev = nic->dev; 1198 register u64 val64 = 0; 1199 void __iomem *add; 1200 u32 time; 1201 int i, j; 1202 int dtx_cnt = 0; 1203 unsigned long long mem_share; 1204 int mem_size; 1205 struct config_param *config = &nic->config; 1206 struct mac_info *mac_control = &nic->mac_control; 1207 1208 /* to set the swapper controle on the card */ 1209 if (s2io_set_swapper(nic)) { 1210 DBG_PRINT(ERR_DBG, "ERROR: Setting Swapper failed\n"); 1211 return -EIO; 1212 } 1213 1214 /* 1215 * Herc requires EOI to be removed from reset before XGXS, so.. 1216 */ 1217 if (nic->device_type & XFRAME_II_DEVICE) { 1218 val64 = 0xA500000000ULL; 1219 writeq(val64, &bar0->sw_reset); 1220 msleep(500); 1221 val64 = readq(&bar0->sw_reset); 1222 } 1223 1224 /* Remove XGXS from reset state */ 1225 val64 = 0; 1226 writeq(val64, &bar0->sw_reset); 1227 msleep(500); 1228 val64 = readq(&bar0->sw_reset); 1229 1230 /* Ensure that it's safe to access registers by checking 1231 * RIC_RUNNING bit is reset. Check is valid only for XframeII. 1232 */ 1233 if (nic->device_type == XFRAME_II_DEVICE) { 1234 for (i = 0; i < 50; i++) { 1235 val64 = readq(&bar0->adapter_status); 1236 if (!(val64 & ADAPTER_STATUS_RIC_RUNNING)) 1237 break; 1238 msleep(10); 1239 } 1240 if (i == 50) 1241 return -ENODEV; 1242 } 1243 1244 /* Enable Receiving broadcasts */ 1245 add = &bar0->mac_cfg; 1246 val64 = readq(&bar0->mac_cfg); 1247 val64 |= MAC_RMAC_BCAST_ENABLE; 1248 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key); 1249 writel((u32)val64, add); 1250 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key); 1251 writel((u32) (val64 >> 32), (add + 4)); 1252 1253 /* Read registers in all blocks */ 1254 val64 = readq(&bar0->mac_int_mask); 1255 val64 = readq(&bar0->mc_int_mask); 1256 val64 = readq(&bar0->xgxs_int_mask); 1257 1258 /* Set MTU */ 1259 val64 = dev->mtu; 1260 writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len); 1261 1262 if (nic->device_type & XFRAME_II_DEVICE) { 1263 while (herc_act_dtx_cfg[dtx_cnt] != END_SIGN) { 1264 SPECIAL_REG_WRITE(herc_act_dtx_cfg[dtx_cnt], 1265 &bar0->dtx_control, UF); 1266 if (dtx_cnt & 0x1) 1267 msleep(1); /* Necessary!! */ 1268 dtx_cnt++; 1269 } 1270 } else { 1271 while (xena_dtx_cfg[dtx_cnt] != END_SIGN) { 1272 SPECIAL_REG_WRITE(xena_dtx_cfg[dtx_cnt], 1273 &bar0->dtx_control, UF); 1274 val64 = readq(&bar0->dtx_control); 1275 dtx_cnt++; 1276 } 1277 } 1278 1279 /* Tx DMA Initialization */ 1280 val64 = 0; 1281 writeq(val64, &bar0->tx_fifo_partition_0); 1282 writeq(val64, &bar0->tx_fifo_partition_1); 1283 writeq(val64, &bar0->tx_fifo_partition_2); 1284 writeq(val64, &bar0->tx_fifo_partition_3); 1285 1286 for (i = 0, j = 0; i < config->tx_fifo_num; i++) { 1287 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i]; 1288 1289 val64 |= vBIT(tx_cfg->fifo_len - 1, ((j * 32) + 19), 13) | 1290 vBIT(tx_cfg->fifo_priority, ((j * 32) + 5), 3); 1291 1292 if (i == (config->tx_fifo_num - 1)) { 1293 if (i % 2 == 0) 1294 i++; 1295 } 1296 1297 switch (i) { 1298 case 1: 1299 writeq(val64, &bar0->tx_fifo_partition_0); 1300 val64 = 0; 1301 j = 0; 1302 break; 1303 case 3: 1304 writeq(val64, &bar0->tx_fifo_partition_1); 1305 val64 = 0; 1306 j = 0; 1307 break; 1308 case 5: 1309 writeq(val64, &bar0->tx_fifo_partition_2); 1310 val64 = 0; 1311 j = 0; 1312 break; 1313 case 7: 1314 writeq(val64, &bar0->tx_fifo_partition_3); 1315 val64 = 0; 1316 j = 0; 1317 break; 1318 default: 1319 j++; 1320 break; 1321 } 1322 } 1323 1324 /* 1325 * Disable 4 PCCs for Xena1, 2 and 3 as per H/W bug 1326 * SXE-008 TRANSMIT DMA ARBITRATION ISSUE. 1327 */ 1328 if ((nic->device_type == XFRAME_I_DEVICE) && (nic->pdev->revision < 4)) 1329 writeq(PCC_ENABLE_FOUR, &bar0->pcc_enable); 1330 1331 val64 = readq(&bar0->tx_fifo_partition_0); 1332 DBG_PRINT(INIT_DBG, "Fifo partition at: 0x%p is: 0x%llx\n", 1333 &bar0->tx_fifo_partition_0, (unsigned long long)val64); 1334 1335 /* 1336 * Initialization of Tx_PA_CONFIG register to ignore packet 1337 * integrity checking. 1338 */ 1339 val64 = readq(&bar0->tx_pa_cfg); 1340 val64 |= TX_PA_CFG_IGNORE_FRM_ERR | 1341 TX_PA_CFG_IGNORE_SNAP_OUI | 1342 TX_PA_CFG_IGNORE_LLC_CTRL | 1343 TX_PA_CFG_IGNORE_L2_ERR; 1344 writeq(val64, &bar0->tx_pa_cfg); 1345 1346 /* Rx DMA initialization. */ 1347 val64 = 0; 1348 for (i = 0; i < config->rx_ring_num; i++) { 1349 struct rx_ring_config *rx_cfg = &config->rx_cfg[i]; 1350 1351 val64 |= vBIT(rx_cfg->ring_priority, (5 + (i * 8)), 3); 1352 } 1353 writeq(val64, &bar0->rx_queue_priority); 1354 1355 /* 1356 * Allocating equal share of memory to all the 1357 * configured Rings. 1358 */ 1359 val64 = 0; 1360 if (nic->device_type & XFRAME_II_DEVICE) 1361 mem_size = 32; 1362 else 1363 mem_size = 64; 1364 1365 for (i = 0; i < config->rx_ring_num; i++) { 1366 switch (i) { 1367 case 0: 1368 mem_share = (mem_size / config->rx_ring_num + 1369 mem_size % config->rx_ring_num); 1370 val64 |= RX_QUEUE_CFG_Q0_SZ(mem_share); 1371 continue; 1372 case 1: 1373 mem_share = (mem_size / config->rx_ring_num); 1374 val64 |= RX_QUEUE_CFG_Q1_SZ(mem_share); 1375 continue; 1376 case 2: 1377 mem_share = (mem_size / config->rx_ring_num); 1378 val64 |= RX_QUEUE_CFG_Q2_SZ(mem_share); 1379 continue; 1380 case 3: 1381 mem_share = (mem_size / config->rx_ring_num); 1382 val64 |= RX_QUEUE_CFG_Q3_SZ(mem_share); 1383 continue; 1384 case 4: 1385 mem_share = (mem_size / config->rx_ring_num); 1386 val64 |= RX_QUEUE_CFG_Q4_SZ(mem_share); 1387 continue; 1388 case 5: 1389 mem_share = (mem_size / config->rx_ring_num); 1390 val64 |= RX_QUEUE_CFG_Q5_SZ(mem_share); 1391 continue; 1392 case 6: 1393 mem_share = (mem_size / config->rx_ring_num); 1394 val64 |= RX_QUEUE_CFG_Q6_SZ(mem_share); 1395 continue; 1396 case 7: 1397 mem_share = (mem_size / config->rx_ring_num); 1398 val64 |= RX_QUEUE_CFG_Q7_SZ(mem_share); 1399 continue; 1400 } 1401 } 1402 writeq(val64, &bar0->rx_queue_cfg); 1403 1404 /* 1405 * Filling Tx round robin registers 1406 * as per the number of FIFOs for equal scheduling priority 1407 */ 1408 switch (config->tx_fifo_num) { 1409 case 1: 1410 val64 = 0x0; 1411 writeq(val64, &bar0->tx_w_round_robin_0); 1412 writeq(val64, &bar0->tx_w_round_robin_1); 1413 writeq(val64, &bar0->tx_w_round_robin_2); 1414 writeq(val64, &bar0->tx_w_round_robin_3); 1415 writeq(val64, &bar0->tx_w_round_robin_4); 1416 break; 1417 case 2: 1418 val64 = 0x0001000100010001ULL; 1419 writeq(val64, &bar0->tx_w_round_robin_0); 1420 writeq(val64, &bar0->tx_w_round_robin_1); 1421 writeq(val64, &bar0->tx_w_round_robin_2); 1422 writeq(val64, &bar0->tx_w_round_robin_3); 1423 val64 = 0x0001000100000000ULL; 1424 writeq(val64, &bar0->tx_w_round_robin_4); 1425 break; 1426 case 3: 1427 val64 = 0x0001020001020001ULL; 1428 writeq(val64, &bar0->tx_w_round_robin_0); 1429 val64 = 0x0200010200010200ULL; 1430 writeq(val64, &bar0->tx_w_round_robin_1); 1431 val64 = 0x0102000102000102ULL; 1432 writeq(val64, &bar0->tx_w_round_robin_2); 1433 val64 = 0x0001020001020001ULL; 1434 writeq(val64, &bar0->tx_w_round_robin_3); 1435 val64 = 0x0200010200000000ULL; 1436 writeq(val64, &bar0->tx_w_round_robin_4); 1437 break; 1438 case 4: 1439 val64 = 0x0001020300010203ULL; 1440 writeq(val64, &bar0->tx_w_round_robin_0); 1441 writeq(val64, &bar0->tx_w_round_robin_1); 1442 writeq(val64, &bar0->tx_w_round_robin_2); 1443 writeq(val64, &bar0->tx_w_round_robin_3); 1444 val64 = 0x0001020300000000ULL; 1445 writeq(val64, &bar0->tx_w_round_robin_4); 1446 break; 1447 case 5: 1448 val64 = 0x0001020304000102ULL; 1449 writeq(val64, &bar0->tx_w_round_robin_0); 1450 val64 = 0x0304000102030400ULL; 1451 writeq(val64, &bar0->tx_w_round_robin_1); 1452 val64 = 0x0102030400010203ULL; 1453 writeq(val64, &bar0->tx_w_round_robin_2); 1454 val64 = 0x0400010203040001ULL; 1455 writeq(val64, &bar0->tx_w_round_robin_3); 1456 val64 = 0x0203040000000000ULL; 1457 writeq(val64, &bar0->tx_w_round_robin_4); 1458 break; 1459 case 6: 1460 val64 = 0x0001020304050001ULL; 1461 writeq(val64, &bar0->tx_w_round_robin_0); 1462 val64 = 0x0203040500010203ULL; 1463 writeq(val64, &bar0->tx_w_round_robin_1); 1464 val64 = 0x0405000102030405ULL; 1465 writeq(val64, &bar0->tx_w_round_robin_2); 1466 val64 = 0x0001020304050001ULL; 1467 writeq(val64, &bar0->tx_w_round_robin_3); 1468 val64 = 0x0203040500000000ULL; 1469 writeq(val64, &bar0->tx_w_round_robin_4); 1470 break; 1471 case 7: 1472 val64 = 0x0001020304050600ULL; 1473 writeq(val64, &bar0->tx_w_round_robin_0); 1474 val64 = 0x0102030405060001ULL; 1475 writeq(val64, &bar0->tx_w_round_robin_1); 1476 val64 = 0x0203040506000102ULL; 1477 writeq(val64, &bar0->tx_w_round_robin_2); 1478 val64 = 0x0304050600010203ULL; 1479 writeq(val64, &bar0->tx_w_round_robin_3); 1480 val64 = 0x0405060000000000ULL; 1481 writeq(val64, &bar0->tx_w_round_robin_4); 1482 break; 1483 case 8: 1484 val64 = 0x0001020304050607ULL; 1485 writeq(val64, &bar0->tx_w_round_robin_0); 1486 writeq(val64, &bar0->tx_w_round_robin_1); 1487 writeq(val64, &bar0->tx_w_round_robin_2); 1488 writeq(val64, &bar0->tx_w_round_robin_3); 1489 val64 = 0x0001020300000000ULL; 1490 writeq(val64, &bar0->tx_w_round_robin_4); 1491 break; 1492 } 1493 1494 /* Enable all configured Tx FIFO partitions */ 1495 val64 = readq(&bar0->tx_fifo_partition_0); 1496 val64 |= (TX_FIFO_PARTITION_EN); 1497 writeq(val64, &bar0->tx_fifo_partition_0); 1498 1499 /* Filling the Rx round robin registers as per the 1500 * number of Rings and steering based on QoS with 1501 * equal priority. 1502 */ 1503 switch (config->rx_ring_num) { 1504 case 1: 1505 val64 = 0x0; 1506 writeq(val64, &bar0->rx_w_round_robin_0); 1507 writeq(val64, &bar0->rx_w_round_robin_1); 1508 writeq(val64, &bar0->rx_w_round_robin_2); 1509 writeq(val64, &bar0->rx_w_round_robin_3); 1510 writeq(val64, &bar0->rx_w_round_robin_4); 1511 1512 val64 = 0x8080808080808080ULL; 1513 writeq(val64, &bar0->rts_qos_steering); 1514 break; 1515 case 2: 1516 val64 = 0x0001000100010001ULL; 1517 writeq(val64, &bar0->rx_w_round_robin_0); 1518 writeq(val64, &bar0->rx_w_round_robin_1); 1519 writeq(val64, &bar0->rx_w_round_robin_2); 1520 writeq(val64, &bar0->rx_w_round_robin_3); 1521 val64 = 0x0001000100000000ULL; 1522 writeq(val64, &bar0->rx_w_round_robin_4); 1523 1524 val64 = 0x8080808040404040ULL; 1525 writeq(val64, &bar0->rts_qos_steering); 1526 break; 1527 case 3: 1528 val64 = 0x0001020001020001ULL; 1529 writeq(val64, &bar0->rx_w_round_robin_0); 1530 val64 = 0x0200010200010200ULL; 1531 writeq(val64, &bar0->rx_w_round_robin_1); 1532 val64 = 0x0102000102000102ULL; 1533 writeq(val64, &bar0->rx_w_round_robin_2); 1534 val64 = 0x0001020001020001ULL; 1535 writeq(val64, &bar0->rx_w_round_robin_3); 1536 val64 = 0x0200010200000000ULL; 1537 writeq(val64, &bar0->rx_w_round_robin_4); 1538 1539 val64 = 0x8080804040402020ULL; 1540 writeq(val64, &bar0->rts_qos_steering); 1541 break; 1542 case 4: 1543 val64 = 0x0001020300010203ULL; 1544 writeq(val64, &bar0->rx_w_round_robin_0); 1545 writeq(val64, &bar0->rx_w_round_robin_1); 1546 writeq(val64, &bar0->rx_w_round_robin_2); 1547 writeq(val64, &bar0->rx_w_round_robin_3); 1548 val64 = 0x0001020300000000ULL; 1549 writeq(val64, &bar0->rx_w_round_robin_4); 1550 1551 val64 = 0x8080404020201010ULL; 1552 writeq(val64, &bar0->rts_qos_steering); 1553 break; 1554 case 5: 1555 val64 = 0x0001020304000102ULL; 1556 writeq(val64, &bar0->rx_w_round_robin_0); 1557 val64 = 0x0304000102030400ULL; 1558 writeq(val64, &bar0->rx_w_round_robin_1); 1559 val64 = 0x0102030400010203ULL; 1560 writeq(val64, &bar0->rx_w_round_robin_2); 1561 val64 = 0x0400010203040001ULL; 1562 writeq(val64, &bar0->rx_w_round_robin_3); 1563 val64 = 0x0203040000000000ULL; 1564 writeq(val64, &bar0->rx_w_round_robin_4); 1565 1566 val64 = 0x8080404020201008ULL; 1567 writeq(val64, &bar0->rts_qos_steering); 1568 break; 1569 case 6: 1570 val64 = 0x0001020304050001ULL; 1571 writeq(val64, &bar0->rx_w_round_robin_0); 1572 val64 = 0x0203040500010203ULL; 1573 writeq(val64, &bar0->rx_w_round_robin_1); 1574 val64 = 0x0405000102030405ULL; 1575 writeq(val64, &bar0->rx_w_round_robin_2); 1576 val64 = 0x0001020304050001ULL; 1577 writeq(val64, &bar0->rx_w_round_robin_3); 1578 val64 = 0x0203040500000000ULL; 1579 writeq(val64, &bar0->rx_w_round_robin_4); 1580 1581 val64 = 0x8080404020100804ULL; 1582 writeq(val64, &bar0->rts_qos_steering); 1583 break; 1584 case 7: 1585 val64 = 0x0001020304050600ULL; 1586 writeq(val64, &bar0->rx_w_round_robin_0); 1587 val64 = 0x0102030405060001ULL; 1588 writeq(val64, &bar0->rx_w_round_robin_1); 1589 val64 = 0x0203040506000102ULL; 1590 writeq(val64, &bar0->rx_w_round_robin_2); 1591 val64 = 0x0304050600010203ULL; 1592 writeq(val64, &bar0->rx_w_round_robin_3); 1593 val64 = 0x0405060000000000ULL; 1594 writeq(val64, &bar0->rx_w_round_robin_4); 1595 1596 val64 = 0x8080402010080402ULL; 1597 writeq(val64, &bar0->rts_qos_steering); 1598 break; 1599 case 8: 1600 val64 = 0x0001020304050607ULL; 1601 writeq(val64, &bar0->rx_w_round_robin_0); 1602 writeq(val64, &bar0->rx_w_round_robin_1); 1603 writeq(val64, &bar0->rx_w_round_robin_2); 1604 writeq(val64, &bar0->rx_w_round_robin_3); 1605 val64 = 0x0001020300000000ULL; 1606 writeq(val64, &bar0->rx_w_round_robin_4); 1607 1608 val64 = 0x8040201008040201ULL; 1609 writeq(val64, &bar0->rts_qos_steering); 1610 break; 1611 } 1612 1613 /* UDP Fix */ 1614 val64 = 0; 1615 for (i = 0; i < 8; i++) 1616 writeq(val64, &bar0->rts_frm_len_n[i]); 1617 1618 /* Set the default rts frame length for the rings configured */ 1619 val64 = MAC_RTS_FRM_LEN_SET(dev->mtu+22); 1620 for (i = 0 ; i < config->rx_ring_num ; i++) 1621 writeq(val64, &bar0->rts_frm_len_n[i]); 1622 1623 /* Set the frame length for the configured rings 1624 * desired by the user 1625 */ 1626 for (i = 0; i < config->rx_ring_num; i++) { 1627 /* If rts_frm_len[i] == 0 then it is assumed that user not 1628 * specified frame length steering. 1629 * If the user provides the frame length then program 1630 * the rts_frm_len register for those values or else 1631 * leave it as it is. 1632 */ 1633 if (rts_frm_len[i] != 0) { 1634 writeq(MAC_RTS_FRM_LEN_SET(rts_frm_len[i]), 1635 &bar0->rts_frm_len_n[i]); 1636 } 1637 } 1638 1639 /* Disable differentiated services steering logic */ 1640 for (i = 0; i < 64; i++) { 1641 if (rts_ds_steer(nic, i, 0) == FAILURE) { 1642 DBG_PRINT(ERR_DBG, 1643 "%s: rts_ds_steer failed on codepoint %d\n", 1644 dev->name, i); 1645 return -ENODEV; 1646 } 1647 } 1648 1649 /* Program statistics memory */ 1650 writeq(mac_control->stats_mem_phy, &bar0->stat_addr); 1651 1652 if (nic->device_type == XFRAME_II_DEVICE) { 1653 val64 = STAT_BC(0x320); 1654 writeq(val64, &bar0->stat_byte_cnt); 1655 } 1656 1657 /* 1658 * Initializing the sampling rate for the device to calculate the 1659 * bandwidth utilization. 1660 */ 1661 val64 = MAC_TX_LINK_UTIL_VAL(tmac_util_period) | 1662 MAC_RX_LINK_UTIL_VAL(rmac_util_period); 1663 writeq(val64, &bar0->mac_link_util); 1664 1665 /* 1666 * Initializing the Transmit and Receive Traffic Interrupt 1667 * Scheme. 1668 */ 1669 1670 /* Initialize TTI */ 1671 if (SUCCESS != init_tti(nic, nic->last_link_state)) 1672 return -ENODEV; 1673 1674 /* RTI Initialization */ 1675 if (nic->device_type == XFRAME_II_DEVICE) { 1676 /* 1677 * Programmed to generate Apprx 500 Intrs per 1678 * second 1679 */ 1680 int count = (nic->config.bus_speed * 125)/4; 1681 val64 = RTI_DATA1_MEM_RX_TIMER_VAL(count); 1682 } else 1683 val64 = RTI_DATA1_MEM_RX_TIMER_VAL(0xFFF); 1684 val64 |= RTI_DATA1_MEM_RX_URNG_A(0xA) | 1685 RTI_DATA1_MEM_RX_URNG_B(0x10) | 1686 RTI_DATA1_MEM_RX_URNG_C(0x30) | 1687 RTI_DATA1_MEM_RX_TIMER_AC_EN; 1688 1689 writeq(val64, &bar0->rti_data1_mem); 1690 1691 val64 = RTI_DATA2_MEM_RX_UFC_A(0x1) | 1692 RTI_DATA2_MEM_RX_UFC_B(0x2) ; 1693 if (nic->config.intr_type == MSI_X) 1694 val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x20) | 1695 RTI_DATA2_MEM_RX_UFC_D(0x40)); 1696 else 1697 val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x40) | 1698 RTI_DATA2_MEM_RX_UFC_D(0x80)); 1699 writeq(val64, &bar0->rti_data2_mem); 1700 1701 for (i = 0; i < config->rx_ring_num; i++) { 1702 val64 = RTI_CMD_MEM_WE | 1703 RTI_CMD_MEM_STROBE_NEW_CMD | 1704 RTI_CMD_MEM_OFFSET(i); 1705 writeq(val64, &bar0->rti_command_mem); 1706 1707 /* 1708 * Once the operation completes, the Strobe bit of the 1709 * command register will be reset. We poll for this 1710 * particular condition. We wait for a maximum of 500ms 1711 * for the operation to complete, if it's not complete 1712 * by then we return error. 1713 */ 1714 time = 0; 1715 while (true) { 1716 val64 = readq(&bar0->rti_command_mem); 1717 if (!(val64 & RTI_CMD_MEM_STROBE_NEW_CMD)) 1718 break; 1719 1720 if (time > 10) { 1721 DBG_PRINT(ERR_DBG, "%s: RTI init failed\n", 1722 dev->name); 1723 return -ENODEV; 1724 } 1725 time++; 1726 msleep(50); 1727 } 1728 } 1729 1730 /* 1731 * Initializing proper values as Pause threshold into all 1732 * the 8 Queues on Rx side. 1733 */ 1734 writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q0q3); 1735 writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q4q7); 1736 1737 /* Disable RMAC PAD STRIPPING */ 1738 add = &bar0->mac_cfg; 1739 val64 = readq(&bar0->mac_cfg); 1740 val64 &= ~(MAC_CFG_RMAC_STRIP_PAD); 1741 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key); 1742 writel((u32) (val64), add); 1743 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key); 1744 writel((u32) (val64 >> 32), (add + 4)); 1745 val64 = readq(&bar0->mac_cfg); 1746 1747 /* Enable FCS stripping by adapter */ 1748 add = &bar0->mac_cfg; 1749 val64 = readq(&bar0->mac_cfg); 1750 val64 |= MAC_CFG_RMAC_STRIP_FCS; 1751 if (nic->device_type == XFRAME_II_DEVICE) 1752 writeq(val64, &bar0->mac_cfg); 1753 else { 1754 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key); 1755 writel((u32) (val64), add); 1756 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key); 1757 writel((u32) (val64 >> 32), (add + 4)); 1758 } 1759 1760 /* 1761 * Set the time value to be inserted in the pause frame 1762 * generated by xena. 1763 */ 1764 val64 = readq(&bar0->rmac_pause_cfg); 1765 val64 &= ~(RMAC_PAUSE_HG_PTIME(0xffff)); 1766 val64 |= RMAC_PAUSE_HG_PTIME(nic->mac_control.rmac_pause_time); 1767 writeq(val64, &bar0->rmac_pause_cfg); 1768 1769 /* 1770 * Set the Threshold Limit for Generating the pause frame 1771 * If the amount of data in any Queue exceeds ratio of 1772 * (mac_control.mc_pause_threshold_q0q3 or q4q7)/256 1773 * pause frame is generated 1774 */ 1775 val64 = 0; 1776 for (i = 0; i < 4; i++) { 1777 val64 |= (((u64)0xFF00 | 1778 nic->mac_control.mc_pause_threshold_q0q3) 1779 << (i * 2 * 8)); 1780 } 1781 writeq(val64, &bar0->mc_pause_thresh_q0q3); 1782 1783 val64 = 0; 1784 for (i = 0; i < 4; i++) { 1785 val64 |= (((u64)0xFF00 | 1786 nic->mac_control.mc_pause_threshold_q4q7) 1787 << (i * 2 * 8)); 1788 } 1789 writeq(val64, &bar0->mc_pause_thresh_q4q7); 1790 1791 /* 1792 * TxDMA will stop Read request if the number of read split has 1793 * exceeded the limit pointed by shared_splits 1794 */ 1795 val64 = readq(&bar0->pic_control); 1796 val64 |= PIC_CNTL_SHARED_SPLITS(shared_splits); 1797 writeq(val64, &bar0->pic_control); 1798 1799 if (nic->config.bus_speed == 266) { 1800 writeq(TXREQTO_VAL(0x7f) | TXREQTO_EN, &bar0->txreqtimeout); 1801 writeq(0x0, &bar0->read_retry_delay); 1802 writeq(0x0, &bar0->write_retry_delay); 1803 } 1804 1805 /* 1806 * Programming the Herc to split every write transaction 1807 * that does not start on an ADB to reduce disconnects. 1808 */ 1809 if (nic->device_type == XFRAME_II_DEVICE) { 1810 val64 = FAULT_BEHAVIOUR | EXT_REQ_EN | 1811 MISC_LINK_STABILITY_PRD(3); 1812 writeq(val64, &bar0->misc_control); 1813 val64 = readq(&bar0->pic_control2); 1814 val64 &= ~(s2BIT(13)|s2BIT(14)|s2BIT(15)); 1815 writeq(val64, &bar0->pic_control2); 1816 } 1817 if (strstr(nic->product_name, "CX4")) { 1818 val64 = TMAC_AVG_IPG(0x17); 1819 writeq(val64, &bar0->tmac_avg_ipg); 1820 } 1821 1822 return SUCCESS; 1823 } 1824 #define LINK_UP_DOWN_INTERRUPT 1 1825 #define MAC_RMAC_ERR_TIMER 2 1826 1827 static int s2io_link_fault_indication(struct s2io_nic *nic) 1828 { 1829 if (nic->device_type == XFRAME_II_DEVICE) 1830 return LINK_UP_DOWN_INTERRUPT; 1831 else 1832 return MAC_RMAC_ERR_TIMER; 1833 } 1834 1835 /** 1836 * do_s2io_write_bits - update alarm bits in alarm register 1837 * @value: alarm bits 1838 * @flag: interrupt status 1839 * @addr: address value 1840 * Description: update alarm bits in alarm register 1841 * Return Value: 1842 * NONE. 1843 */ 1844 static void do_s2io_write_bits(u64 value, int flag, void __iomem *addr) 1845 { 1846 u64 temp64; 1847 1848 temp64 = readq(addr); 1849 1850 if (flag == ENABLE_INTRS) 1851 temp64 &= ~((u64)value); 1852 else 1853 temp64 |= ((u64)value); 1854 writeq(temp64, addr); 1855 } 1856 1857 static void en_dis_err_alarms(struct s2io_nic *nic, u16 mask, int flag) 1858 { 1859 struct XENA_dev_config __iomem *bar0 = nic->bar0; 1860 register u64 gen_int_mask = 0; 1861 u64 interruptible; 1862 1863 writeq(DISABLE_ALL_INTRS, &bar0->general_int_mask); 1864 if (mask & TX_DMA_INTR) { 1865 gen_int_mask |= TXDMA_INT_M; 1866 1867 do_s2io_write_bits(TXDMA_TDA_INT | TXDMA_PFC_INT | 1868 TXDMA_PCC_INT | TXDMA_TTI_INT | 1869 TXDMA_LSO_INT | TXDMA_TPA_INT | 1870 TXDMA_SM_INT, flag, &bar0->txdma_int_mask); 1871 1872 do_s2io_write_bits(PFC_ECC_DB_ERR | PFC_SM_ERR_ALARM | 1873 PFC_MISC_0_ERR | PFC_MISC_1_ERR | 1874 PFC_PCIX_ERR | PFC_ECC_SG_ERR, flag, 1875 &bar0->pfc_err_mask); 1876 1877 do_s2io_write_bits(TDA_Fn_ECC_DB_ERR | TDA_SM0_ERR_ALARM | 1878 TDA_SM1_ERR_ALARM | TDA_Fn_ECC_SG_ERR | 1879 TDA_PCIX_ERR, flag, &bar0->tda_err_mask); 1880 1881 do_s2io_write_bits(PCC_FB_ECC_DB_ERR | PCC_TXB_ECC_DB_ERR | 1882 PCC_SM_ERR_ALARM | PCC_WR_ERR_ALARM | 1883 PCC_N_SERR | PCC_6_COF_OV_ERR | 1884 PCC_7_COF_OV_ERR | PCC_6_LSO_OV_ERR | 1885 PCC_7_LSO_OV_ERR | PCC_FB_ECC_SG_ERR | 1886 PCC_TXB_ECC_SG_ERR, 1887 flag, &bar0->pcc_err_mask); 1888 1889 do_s2io_write_bits(TTI_SM_ERR_ALARM | TTI_ECC_SG_ERR | 1890 TTI_ECC_DB_ERR, flag, &bar0->tti_err_mask); 1891 1892 do_s2io_write_bits(LSO6_ABORT | LSO7_ABORT | 1893 LSO6_SM_ERR_ALARM | LSO7_SM_ERR_ALARM | 1894 LSO6_SEND_OFLOW | LSO7_SEND_OFLOW, 1895 flag, &bar0->lso_err_mask); 1896 1897 do_s2io_write_bits(TPA_SM_ERR_ALARM | TPA_TX_FRM_DROP, 1898 flag, &bar0->tpa_err_mask); 1899 1900 do_s2io_write_bits(SM_SM_ERR_ALARM, flag, &bar0->sm_err_mask); 1901 } 1902 1903 if (mask & TX_MAC_INTR) { 1904 gen_int_mask |= TXMAC_INT_M; 1905 do_s2io_write_bits(MAC_INT_STATUS_TMAC_INT, flag, 1906 &bar0->mac_int_mask); 1907 do_s2io_write_bits(TMAC_TX_BUF_OVRN | TMAC_TX_SM_ERR | 1908 TMAC_ECC_SG_ERR | TMAC_ECC_DB_ERR | 1909 TMAC_DESC_ECC_SG_ERR | TMAC_DESC_ECC_DB_ERR, 1910 flag, &bar0->mac_tmac_err_mask); 1911 } 1912 1913 if (mask & TX_XGXS_INTR) { 1914 gen_int_mask |= TXXGXS_INT_M; 1915 do_s2io_write_bits(XGXS_INT_STATUS_TXGXS, flag, 1916 &bar0->xgxs_int_mask); 1917 do_s2io_write_bits(TXGXS_ESTORE_UFLOW | TXGXS_TX_SM_ERR | 1918 TXGXS_ECC_SG_ERR | TXGXS_ECC_DB_ERR, 1919 flag, &bar0->xgxs_txgxs_err_mask); 1920 } 1921 1922 if (mask & RX_DMA_INTR) { 1923 gen_int_mask |= RXDMA_INT_M; 1924 do_s2io_write_bits(RXDMA_INT_RC_INT_M | RXDMA_INT_RPA_INT_M | 1925 RXDMA_INT_RDA_INT_M | RXDMA_INT_RTI_INT_M, 1926 flag, &bar0->rxdma_int_mask); 1927 do_s2io_write_bits(RC_PRCn_ECC_DB_ERR | RC_FTC_ECC_DB_ERR | 1928 RC_PRCn_SM_ERR_ALARM | RC_FTC_SM_ERR_ALARM | 1929 RC_PRCn_ECC_SG_ERR | RC_FTC_ECC_SG_ERR | 1930 RC_RDA_FAIL_WR_Rn, flag, &bar0->rc_err_mask); 1931 do_s2io_write_bits(PRC_PCI_AB_RD_Rn | PRC_PCI_AB_WR_Rn | 1932 PRC_PCI_AB_F_WR_Rn | PRC_PCI_DP_RD_Rn | 1933 PRC_PCI_DP_WR_Rn | PRC_PCI_DP_F_WR_Rn, flag, 1934 &bar0->prc_pcix_err_mask); 1935 do_s2io_write_bits(RPA_SM_ERR_ALARM | RPA_CREDIT_ERR | 1936 RPA_ECC_SG_ERR | RPA_ECC_DB_ERR, flag, 1937 &bar0->rpa_err_mask); 1938 do_s2io_write_bits(RDA_RXDn_ECC_DB_ERR | RDA_FRM_ECC_DB_N_AERR | 1939 RDA_SM1_ERR_ALARM | RDA_SM0_ERR_ALARM | 1940 RDA_RXD_ECC_DB_SERR | RDA_RXDn_ECC_SG_ERR | 1941 RDA_FRM_ECC_SG_ERR | 1942 RDA_MISC_ERR|RDA_PCIX_ERR, 1943 flag, &bar0->rda_err_mask); 1944 do_s2io_write_bits(RTI_SM_ERR_ALARM | 1945 RTI_ECC_SG_ERR | RTI_ECC_DB_ERR, 1946 flag, &bar0->rti_err_mask); 1947 } 1948 1949 if (mask & RX_MAC_INTR) { 1950 gen_int_mask |= RXMAC_INT_M; 1951 do_s2io_write_bits(MAC_INT_STATUS_RMAC_INT, flag, 1952 &bar0->mac_int_mask); 1953 interruptible = (RMAC_RX_BUFF_OVRN | RMAC_RX_SM_ERR | 1954 RMAC_UNUSED_INT | RMAC_SINGLE_ECC_ERR | 1955 RMAC_DOUBLE_ECC_ERR); 1956 if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) 1957 interruptible |= RMAC_LINK_STATE_CHANGE_INT; 1958 do_s2io_write_bits(interruptible, 1959 flag, &bar0->mac_rmac_err_mask); 1960 } 1961 1962 if (mask & RX_XGXS_INTR) { 1963 gen_int_mask |= RXXGXS_INT_M; 1964 do_s2io_write_bits(XGXS_INT_STATUS_RXGXS, flag, 1965 &bar0->xgxs_int_mask); 1966 do_s2io_write_bits(RXGXS_ESTORE_OFLOW | RXGXS_RX_SM_ERR, flag, 1967 &bar0->xgxs_rxgxs_err_mask); 1968 } 1969 1970 if (mask & MC_INTR) { 1971 gen_int_mask |= MC_INT_M; 1972 do_s2io_write_bits(MC_INT_MASK_MC_INT, 1973 flag, &bar0->mc_int_mask); 1974 do_s2io_write_bits(MC_ERR_REG_SM_ERR | MC_ERR_REG_ECC_ALL_SNG | 1975 MC_ERR_REG_ECC_ALL_DBL | PLL_LOCK_N, flag, 1976 &bar0->mc_err_mask); 1977 } 1978 nic->general_int_mask = gen_int_mask; 1979 1980 /* Remove this line when alarm interrupts are enabled */ 1981 nic->general_int_mask = 0; 1982 } 1983 1984 /** 1985 * en_dis_able_nic_intrs - Enable or Disable the interrupts 1986 * @nic: device private variable, 1987 * @mask: A mask indicating which Intr block must be modified and, 1988 * @flag: A flag indicating whether to enable or disable the Intrs. 1989 * Description: This function will either disable or enable the interrupts 1990 * depending on the flag argument. The mask argument can be used to 1991 * enable/disable any Intr block. 1992 * Return Value: NONE. 1993 */ 1994 1995 static void en_dis_able_nic_intrs(struct s2io_nic *nic, u16 mask, int flag) 1996 { 1997 struct XENA_dev_config __iomem *bar0 = nic->bar0; 1998 register u64 temp64 = 0, intr_mask = 0; 1999 2000 intr_mask = nic->general_int_mask; 2001 2002 /* Top level interrupt classification */ 2003 /* PIC Interrupts */ 2004 if (mask & TX_PIC_INTR) { 2005 /* Enable PIC Intrs in the general intr mask register */ 2006 intr_mask |= TXPIC_INT_M; 2007 if (flag == ENABLE_INTRS) { 2008 /* 2009 * If Hercules adapter enable GPIO otherwise 2010 * disable all PCIX, Flash, MDIO, IIC and GPIO 2011 * interrupts for now. 2012 * TODO 2013 */ 2014 if (s2io_link_fault_indication(nic) == 2015 LINK_UP_DOWN_INTERRUPT) { 2016 do_s2io_write_bits(PIC_INT_GPIO, flag, 2017 &bar0->pic_int_mask); 2018 do_s2io_write_bits(GPIO_INT_MASK_LINK_UP, flag, 2019 &bar0->gpio_int_mask); 2020 } else 2021 writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask); 2022 } else if (flag == DISABLE_INTRS) { 2023 /* 2024 * Disable PIC Intrs in the general 2025 * intr mask register 2026 */ 2027 writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask); 2028 } 2029 } 2030 2031 /* Tx traffic interrupts */ 2032 if (mask & TX_TRAFFIC_INTR) { 2033 intr_mask |= TXTRAFFIC_INT_M; 2034 if (flag == ENABLE_INTRS) { 2035 /* 2036 * Enable all the Tx side interrupts 2037 * writing 0 Enables all 64 TX interrupt levels 2038 */ 2039 writeq(0x0, &bar0->tx_traffic_mask); 2040 } else if (flag == DISABLE_INTRS) { 2041 /* 2042 * Disable Tx Traffic Intrs in the general intr mask 2043 * register. 2044 */ 2045 writeq(DISABLE_ALL_INTRS, &bar0->tx_traffic_mask); 2046 } 2047 } 2048 2049 /* Rx traffic interrupts */ 2050 if (mask & RX_TRAFFIC_INTR) { 2051 intr_mask |= RXTRAFFIC_INT_M; 2052 if (flag == ENABLE_INTRS) { 2053 /* writing 0 Enables all 8 RX interrupt levels */ 2054 writeq(0x0, &bar0->rx_traffic_mask); 2055 } else if (flag == DISABLE_INTRS) { 2056 /* 2057 * Disable Rx Traffic Intrs in the general intr mask 2058 * register. 2059 */ 2060 writeq(DISABLE_ALL_INTRS, &bar0->rx_traffic_mask); 2061 } 2062 } 2063 2064 temp64 = readq(&bar0->general_int_mask); 2065 if (flag == ENABLE_INTRS) 2066 temp64 &= ~((u64)intr_mask); 2067 else 2068 temp64 = DISABLE_ALL_INTRS; 2069 writeq(temp64, &bar0->general_int_mask); 2070 2071 nic->general_int_mask = readq(&bar0->general_int_mask); 2072 } 2073 2074 /** 2075 * verify_pcc_quiescent- Checks for PCC quiescent state 2076 * Return: 1 If PCC is quiescence 2077 * 0 If PCC is not quiescence 2078 */ 2079 static int verify_pcc_quiescent(struct s2io_nic *sp, int flag) 2080 { 2081 int ret = 0, herc; 2082 struct XENA_dev_config __iomem *bar0 = sp->bar0; 2083 u64 val64 = readq(&bar0->adapter_status); 2084 2085 herc = (sp->device_type == XFRAME_II_DEVICE); 2086 2087 if (flag == false) { 2088 if ((!herc && (sp->pdev->revision >= 4)) || herc) { 2089 if (!(val64 & ADAPTER_STATUS_RMAC_PCC_IDLE)) 2090 ret = 1; 2091 } else { 2092 if (!(val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE)) 2093 ret = 1; 2094 } 2095 } else { 2096 if ((!herc && (sp->pdev->revision >= 4)) || herc) { 2097 if (((val64 & ADAPTER_STATUS_RMAC_PCC_IDLE) == 2098 ADAPTER_STATUS_RMAC_PCC_IDLE)) 2099 ret = 1; 2100 } else { 2101 if (((val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE) == 2102 ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE)) 2103 ret = 1; 2104 } 2105 } 2106 2107 return ret; 2108 } 2109 /** 2110 * verify_xena_quiescence - Checks whether the H/W is ready 2111 * Description: Returns whether the H/W is ready to go or not. Depending 2112 * on whether adapter enable bit was written or not the comparison 2113 * differs and the calling function passes the input argument flag to 2114 * indicate this. 2115 * Return: 1 If xena is quiescence 2116 * 0 If Xena is not quiescence 2117 */ 2118 2119 static int verify_xena_quiescence(struct s2io_nic *sp) 2120 { 2121 int mode; 2122 struct XENA_dev_config __iomem *bar0 = sp->bar0; 2123 u64 val64 = readq(&bar0->adapter_status); 2124 mode = s2io_verify_pci_mode(sp); 2125 2126 if (!(val64 & ADAPTER_STATUS_TDMA_READY)) { 2127 DBG_PRINT(ERR_DBG, "TDMA is not ready!\n"); 2128 return 0; 2129 } 2130 if (!(val64 & ADAPTER_STATUS_RDMA_READY)) { 2131 DBG_PRINT(ERR_DBG, "RDMA is not ready!\n"); 2132 return 0; 2133 } 2134 if (!(val64 & ADAPTER_STATUS_PFC_READY)) { 2135 DBG_PRINT(ERR_DBG, "PFC is not ready!\n"); 2136 return 0; 2137 } 2138 if (!(val64 & ADAPTER_STATUS_TMAC_BUF_EMPTY)) { 2139 DBG_PRINT(ERR_DBG, "TMAC BUF is not empty!\n"); 2140 return 0; 2141 } 2142 if (!(val64 & ADAPTER_STATUS_PIC_QUIESCENT)) { 2143 DBG_PRINT(ERR_DBG, "PIC is not QUIESCENT!\n"); 2144 return 0; 2145 } 2146 if (!(val64 & ADAPTER_STATUS_MC_DRAM_READY)) { 2147 DBG_PRINT(ERR_DBG, "MC_DRAM is not ready!\n"); 2148 return 0; 2149 } 2150 if (!(val64 & ADAPTER_STATUS_MC_QUEUES_READY)) { 2151 DBG_PRINT(ERR_DBG, "MC_QUEUES is not ready!\n"); 2152 return 0; 2153 } 2154 if (!(val64 & ADAPTER_STATUS_M_PLL_LOCK)) { 2155 DBG_PRINT(ERR_DBG, "M_PLL is not locked!\n"); 2156 return 0; 2157 } 2158 2159 /* 2160 * In PCI 33 mode, the P_PLL is not used, and therefore, 2161 * the the P_PLL_LOCK bit in the adapter_status register will 2162 * not be asserted. 2163 */ 2164 if (!(val64 & ADAPTER_STATUS_P_PLL_LOCK) && 2165 sp->device_type == XFRAME_II_DEVICE && 2166 mode != PCI_MODE_PCI_33) { 2167 DBG_PRINT(ERR_DBG, "P_PLL is not locked!\n"); 2168 return 0; 2169 } 2170 if (!((val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) == 2171 ADAPTER_STATUS_RC_PRC_QUIESCENT)) { 2172 DBG_PRINT(ERR_DBG, "RC_PRC is not QUIESCENT!\n"); 2173 return 0; 2174 } 2175 return 1; 2176 } 2177 2178 /** 2179 * fix_mac_address - Fix for Mac addr problem on Alpha platforms 2180 * @sp: Pointer to device specifc structure 2181 * Description : 2182 * New procedure to clear mac address reading problems on Alpha platforms 2183 * 2184 */ 2185 2186 static void fix_mac_address(struct s2io_nic *sp) 2187 { 2188 struct XENA_dev_config __iomem *bar0 = sp->bar0; 2189 int i = 0; 2190 2191 while (fix_mac[i] != END_SIGN) { 2192 writeq(fix_mac[i++], &bar0->gpio_control); 2193 udelay(10); 2194 (void) readq(&bar0->gpio_control); 2195 } 2196 } 2197 2198 /** 2199 * start_nic - Turns the device on 2200 * @nic : device private variable. 2201 * Description: 2202 * This function actually turns the device on. Before this function is 2203 * called,all Registers are configured from their reset states 2204 * and shared memory is allocated but the NIC is still quiescent. On 2205 * calling this function, the device interrupts are cleared and the NIC is 2206 * literally switched on by writing into the adapter control register. 2207 * Return Value: 2208 * SUCCESS on success and -1 on failure. 2209 */ 2210 2211 static int start_nic(struct s2io_nic *nic) 2212 { 2213 struct XENA_dev_config __iomem *bar0 = nic->bar0; 2214 struct net_device *dev = nic->dev; 2215 register u64 val64 = 0; 2216 u16 subid, i; 2217 struct config_param *config = &nic->config; 2218 struct mac_info *mac_control = &nic->mac_control; 2219 2220 /* PRC Initialization and configuration */ 2221 for (i = 0; i < config->rx_ring_num; i++) { 2222 struct ring_info *ring = &mac_control->rings[i]; 2223 2224 writeq((u64)ring->rx_blocks[0].block_dma_addr, 2225 &bar0->prc_rxd0_n[i]); 2226 2227 val64 = readq(&bar0->prc_ctrl_n[i]); 2228 if (nic->rxd_mode == RXD_MODE_1) 2229 val64 |= PRC_CTRL_RC_ENABLED; 2230 else 2231 val64 |= PRC_CTRL_RC_ENABLED | PRC_CTRL_RING_MODE_3; 2232 if (nic->device_type == XFRAME_II_DEVICE) 2233 val64 |= PRC_CTRL_GROUP_READS; 2234 val64 &= ~PRC_CTRL_RXD_BACKOFF_INTERVAL(0xFFFFFF); 2235 val64 |= PRC_CTRL_RXD_BACKOFF_INTERVAL(0x1000); 2236 writeq(val64, &bar0->prc_ctrl_n[i]); 2237 } 2238 2239 if (nic->rxd_mode == RXD_MODE_3B) { 2240 /* Enabling 2 buffer mode by writing into Rx_pa_cfg reg. */ 2241 val64 = readq(&bar0->rx_pa_cfg); 2242 val64 |= RX_PA_CFG_IGNORE_L2_ERR; 2243 writeq(val64, &bar0->rx_pa_cfg); 2244 } 2245 2246 if (vlan_tag_strip == 0) { 2247 val64 = readq(&bar0->rx_pa_cfg); 2248 val64 &= ~RX_PA_CFG_STRIP_VLAN_TAG; 2249 writeq(val64, &bar0->rx_pa_cfg); 2250 nic->vlan_strip_flag = 0; 2251 } 2252 2253 /* 2254 * Enabling MC-RLDRAM. After enabling the device, we timeout 2255 * for around 100ms, which is approximately the time required 2256 * for the device to be ready for operation. 2257 */ 2258 val64 = readq(&bar0->mc_rldram_mrs); 2259 val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE | MC_RLDRAM_MRS_ENABLE; 2260 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF); 2261 val64 = readq(&bar0->mc_rldram_mrs); 2262 2263 msleep(100); /* Delay by around 100 ms. */ 2264 2265 /* Enabling ECC Protection. */ 2266 val64 = readq(&bar0->adapter_control); 2267 val64 &= ~ADAPTER_ECC_EN; 2268 writeq(val64, &bar0->adapter_control); 2269 2270 /* 2271 * Verify if the device is ready to be enabled, if so enable 2272 * it. 2273 */ 2274 val64 = readq(&bar0->adapter_status); 2275 if (!verify_xena_quiescence(nic)) { 2276 DBG_PRINT(ERR_DBG, "%s: device is not ready, " 2277 "Adapter status reads: 0x%llx\n", 2278 dev->name, (unsigned long long)val64); 2279 return FAILURE; 2280 } 2281 2282 /* 2283 * With some switches, link might be already up at this point. 2284 * Because of this weird behavior, when we enable laser, 2285 * we may not get link. We need to handle this. We cannot 2286 * figure out which switch is misbehaving. So we are forced to 2287 * make a global change. 2288 */ 2289 2290 /* Enabling Laser. */ 2291 val64 = readq(&bar0->adapter_control); 2292 val64 |= ADAPTER_EOI_TX_ON; 2293 writeq(val64, &bar0->adapter_control); 2294 2295 if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) { 2296 /* 2297 * Dont see link state interrupts initially on some switches, 2298 * so directly scheduling the link state task here. 2299 */ 2300 schedule_work(&nic->set_link_task); 2301 } 2302 /* SXE-002: Initialize link and activity LED */ 2303 subid = nic->pdev->subsystem_device; 2304 if (((subid & 0xFF) >= 0x07) && 2305 (nic->device_type == XFRAME_I_DEVICE)) { 2306 val64 = readq(&bar0->gpio_control); 2307 val64 |= 0x0000800000000000ULL; 2308 writeq(val64, &bar0->gpio_control); 2309 val64 = 0x0411040400000000ULL; 2310 writeq(val64, (void __iomem *)bar0 + 0x2700); 2311 } 2312 2313 return SUCCESS; 2314 } 2315 /** 2316 * s2io_txdl_getskb - Get the skb from txdl, unmap and return skb 2317 */ 2318 static struct sk_buff *s2io_txdl_getskb(struct fifo_info *fifo_data, 2319 struct TxD *txdlp, int get_off) 2320 { 2321 struct s2io_nic *nic = fifo_data->nic; 2322 struct sk_buff *skb; 2323 struct TxD *txds; 2324 u16 j, frg_cnt; 2325 2326 txds = txdlp; 2327 if (txds->Host_Control == (u64)(long)fifo_data->ufo_in_band_v) { 2328 pci_unmap_single(nic->pdev, (dma_addr_t)txds->Buffer_Pointer, 2329 sizeof(u64), PCI_DMA_TODEVICE); 2330 txds++; 2331 } 2332 2333 skb = (struct sk_buff *)((unsigned long)txds->Host_Control); 2334 if (!skb) { 2335 memset(txdlp, 0, (sizeof(struct TxD) * fifo_data->max_txds)); 2336 return NULL; 2337 } 2338 pci_unmap_single(nic->pdev, (dma_addr_t)txds->Buffer_Pointer, 2339 skb_headlen(skb), PCI_DMA_TODEVICE); 2340 frg_cnt = skb_shinfo(skb)->nr_frags; 2341 if (frg_cnt) { 2342 txds++; 2343 for (j = 0; j < frg_cnt; j++, txds++) { 2344 const skb_frag_t *frag = &skb_shinfo(skb)->frags[j]; 2345 if (!txds->Buffer_Pointer) 2346 break; 2347 pci_unmap_page(nic->pdev, 2348 (dma_addr_t)txds->Buffer_Pointer, 2349 skb_frag_size(frag), PCI_DMA_TODEVICE); 2350 } 2351 } 2352 memset(txdlp, 0, (sizeof(struct TxD) * fifo_data->max_txds)); 2353 return skb; 2354 } 2355 2356 /** 2357 * free_tx_buffers - Free all queued Tx buffers 2358 * @nic : device private variable. 2359 * Description: 2360 * Free all queued Tx buffers. 2361 * Return Value: void 2362 */ 2363 2364 static void free_tx_buffers(struct s2io_nic *nic) 2365 { 2366 struct net_device *dev = nic->dev; 2367 struct sk_buff *skb; 2368 struct TxD *txdp; 2369 int i, j; 2370 int cnt = 0; 2371 struct config_param *config = &nic->config; 2372 struct mac_info *mac_control = &nic->mac_control; 2373 struct stat_block *stats = mac_control->stats_info; 2374 struct swStat *swstats = &stats->sw_stat; 2375 2376 for (i = 0; i < config->tx_fifo_num; i++) { 2377 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i]; 2378 struct fifo_info *fifo = &mac_control->fifos[i]; 2379 unsigned long flags; 2380 2381 spin_lock_irqsave(&fifo->tx_lock, flags); 2382 for (j = 0; j < tx_cfg->fifo_len; j++) { 2383 txdp = fifo->list_info[j].list_virt_addr; 2384 skb = s2io_txdl_getskb(&mac_control->fifos[i], txdp, j); 2385 if (skb) { 2386 swstats->mem_freed += skb->truesize; 2387 dev_kfree_skb(skb); 2388 cnt++; 2389 } 2390 } 2391 DBG_PRINT(INTR_DBG, 2392 "%s: forcibly freeing %d skbs on FIFO%d\n", 2393 dev->name, cnt, i); 2394 fifo->tx_curr_get_info.offset = 0; 2395 fifo->tx_curr_put_info.offset = 0; 2396 spin_unlock_irqrestore(&fifo->tx_lock, flags); 2397 } 2398 } 2399 2400 /** 2401 * stop_nic - To stop the nic 2402 * @nic ; device private variable. 2403 * Description: 2404 * This function does exactly the opposite of what the start_nic() 2405 * function does. This function is called to stop the device. 2406 * Return Value: 2407 * void. 2408 */ 2409 2410 static void stop_nic(struct s2io_nic *nic) 2411 { 2412 struct XENA_dev_config __iomem *bar0 = nic->bar0; 2413 register u64 val64 = 0; 2414 u16 interruptible; 2415 2416 /* Disable all interrupts */ 2417 en_dis_err_alarms(nic, ENA_ALL_INTRS, DISABLE_INTRS); 2418 interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR; 2419 interruptible |= TX_PIC_INTR; 2420 en_dis_able_nic_intrs(nic, interruptible, DISABLE_INTRS); 2421 2422 /* Clearing Adapter_En bit of ADAPTER_CONTROL Register */ 2423 val64 = readq(&bar0->adapter_control); 2424 val64 &= ~(ADAPTER_CNTL_EN); 2425 writeq(val64, &bar0->adapter_control); 2426 } 2427 2428 /** 2429 * fill_rx_buffers - Allocates the Rx side skbs 2430 * @ring_info: per ring structure 2431 * @from_card_up: If this is true, we will map the buffer to get 2432 * the dma address for buf0 and buf1 to give it to the card. 2433 * Else we will sync the already mapped buffer to give it to the card. 2434 * Description: 2435 * The function allocates Rx side skbs and puts the physical 2436 * address of these buffers into the RxD buffer pointers, so that the NIC 2437 * can DMA the received frame into these locations. 2438 * The NIC supports 3 receive modes, viz 2439 * 1. single buffer, 2440 * 2. three buffer and 2441 * 3. Five buffer modes. 2442 * Each mode defines how many fragments the received frame will be split 2443 * up into by the NIC. The frame is split into L3 header, L4 Header, 2444 * L4 payload in three buffer mode and in 5 buffer mode, L4 payload itself 2445 * is split into 3 fragments. As of now only single buffer mode is 2446 * supported. 2447 * Return Value: 2448 * SUCCESS on success or an appropriate -ve value on failure. 2449 */ 2450 static int fill_rx_buffers(struct s2io_nic *nic, struct ring_info *ring, 2451 int from_card_up) 2452 { 2453 struct sk_buff *skb; 2454 struct RxD_t *rxdp; 2455 int off, size, block_no, block_no1; 2456 u32 alloc_tab = 0; 2457 u32 alloc_cnt; 2458 u64 tmp; 2459 struct buffAdd *ba; 2460 struct RxD_t *first_rxdp = NULL; 2461 u64 Buffer0_ptr = 0, Buffer1_ptr = 0; 2462 int rxd_index = 0; 2463 struct RxD1 *rxdp1; 2464 struct RxD3 *rxdp3; 2465 struct swStat *swstats = &ring->nic->mac_control.stats_info->sw_stat; 2466 2467 alloc_cnt = ring->pkt_cnt - ring->rx_bufs_left; 2468 2469 block_no1 = ring->rx_curr_get_info.block_index; 2470 while (alloc_tab < alloc_cnt) { 2471 block_no = ring->rx_curr_put_info.block_index; 2472 2473 off = ring->rx_curr_put_info.offset; 2474 2475 rxdp = ring->rx_blocks[block_no].rxds[off].virt_addr; 2476 2477 rxd_index = off + 1; 2478 if (block_no) 2479 rxd_index += (block_no * ring->rxd_count); 2480 2481 if ((block_no == block_no1) && 2482 (off == ring->rx_curr_get_info.offset) && 2483 (rxdp->Host_Control)) { 2484 DBG_PRINT(INTR_DBG, "%s: Get and Put info equated\n", 2485 ring->dev->name); 2486 goto end; 2487 } 2488 if (off && (off == ring->rxd_count)) { 2489 ring->rx_curr_put_info.block_index++; 2490 if (ring->rx_curr_put_info.block_index == 2491 ring->block_count) 2492 ring->rx_curr_put_info.block_index = 0; 2493 block_no = ring->rx_curr_put_info.block_index; 2494 off = 0; 2495 ring->rx_curr_put_info.offset = off; 2496 rxdp = ring->rx_blocks[block_no].block_virt_addr; 2497 DBG_PRINT(INTR_DBG, "%s: Next block at: %p\n", 2498 ring->dev->name, rxdp); 2499 2500 } 2501 2502 if ((rxdp->Control_1 & RXD_OWN_XENA) && 2503 ((ring->rxd_mode == RXD_MODE_3B) && 2504 (rxdp->Control_2 & s2BIT(0)))) { 2505 ring->rx_curr_put_info.offset = off; 2506 goto end; 2507 } 2508 /* calculate size of skb based on ring mode */ 2509 size = ring->mtu + 2510 HEADER_ETHERNET_II_802_3_SIZE + 2511 HEADER_802_2_SIZE + HEADER_SNAP_SIZE; 2512 if (ring->rxd_mode == RXD_MODE_1) 2513 size += NET_IP_ALIGN; 2514 else 2515 size = ring->mtu + ALIGN_SIZE + BUF0_LEN + 4; 2516 2517 /* allocate skb */ 2518 skb = netdev_alloc_skb(nic->dev, size); 2519 if (!skb) { 2520 DBG_PRINT(INFO_DBG, "%s: Could not allocate skb\n", 2521 ring->dev->name); 2522 if (first_rxdp) { 2523 dma_wmb(); 2524 first_rxdp->Control_1 |= RXD_OWN_XENA; 2525 } 2526 swstats->mem_alloc_fail_cnt++; 2527 2528 return -ENOMEM ; 2529 } 2530 swstats->mem_allocated += skb->truesize; 2531 2532 if (ring->rxd_mode == RXD_MODE_1) { 2533 /* 1 buffer mode - normal operation mode */ 2534 rxdp1 = (struct RxD1 *)rxdp; 2535 memset(rxdp, 0, sizeof(struct RxD1)); 2536 skb_reserve(skb, NET_IP_ALIGN); 2537 rxdp1->Buffer0_ptr = 2538 pci_map_single(ring->pdev, skb->data, 2539 size - NET_IP_ALIGN, 2540 PCI_DMA_FROMDEVICE); 2541 if (pci_dma_mapping_error(nic->pdev, 2542 rxdp1->Buffer0_ptr)) 2543 goto pci_map_failed; 2544 2545 rxdp->Control_2 = 2546 SET_BUFFER0_SIZE_1(size - NET_IP_ALIGN); 2547 rxdp->Host_Control = (unsigned long)skb; 2548 } else if (ring->rxd_mode == RXD_MODE_3B) { 2549 /* 2550 * 2 buffer mode - 2551 * 2 buffer mode provides 128 2552 * byte aligned receive buffers. 2553 */ 2554 2555 rxdp3 = (struct RxD3 *)rxdp; 2556 /* save buffer pointers to avoid frequent dma mapping */ 2557 Buffer0_ptr = rxdp3->Buffer0_ptr; 2558 Buffer1_ptr = rxdp3->Buffer1_ptr; 2559 memset(rxdp, 0, sizeof(struct RxD3)); 2560 /* restore the buffer pointers for dma sync*/ 2561 rxdp3->Buffer0_ptr = Buffer0_ptr; 2562 rxdp3->Buffer1_ptr = Buffer1_ptr; 2563 2564 ba = &ring->ba[block_no][off]; 2565 skb_reserve(skb, BUF0_LEN); 2566 tmp = (u64)(unsigned long)skb->data; 2567 tmp += ALIGN_SIZE; 2568 tmp &= ~ALIGN_SIZE; 2569 skb->data = (void *) (unsigned long)tmp; 2570 skb_reset_tail_pointer(skb); 2571 2572 if (from_card_up) { 2573 rxdp3->Buffer0_ptr = 2574 pci_map_single(ring->pdev, ba->ba_0, 2575 BUF0_LEN, 2576 PCI_DMA_FROMDEVICE); 2577 if (pci_dma_mapping_error(nic->pdev, 2578 rxdp3->Buffer0_ptr)) 2579 goto pci_map_failed; 2580 } else 2581 pci_dma_sync_single_for_device(ring->pdev, 2582 (dma_addr_t)rxdp3->Buffer0_ptr, 2583 BUF0_LEN, 2584 PCI_DMA_FROMDEVICE); 2585 2586 rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN); 2587 if (ring->rxd_mode == RXD_MODE_3B) { 2588 /* Two buffer mode */ 2589 2590 /* 2591 * Buffer2 will have L3/L4 header plus 2592 * L4 payload 2593 */ 2594 rxdp3->Buffer2_ptr = pci_map_single(ring->pdev, 2595 skb->data, 2596 ring->mtu + 4, 2597 PCI_DMA_FROMDEVICE); 2598 2599 if (pci_dma_mapping_error(nic->pdev, 2600 rxdp3->Buffer2_ptr)) 2601 goto pci_map_failed; 2602 2603 if (from_card_up) { 2604 rxdp3->Buffer1_ptr = 2605 pci_map_single(ring->pdev, 2606 ba->ba_1, 2607 BUF1_LEN, 2608 PCI_DMA_FROMDEVICE); 2609 2610 if (pci_dma_mapping_error(nic->pdev, 2611 rxdp3->Buffer1_ptr)) { 2612 pci_unmap_single(ring->pdev, 2613 (dma_addr_t)(unsigned long) 2614 skb->data, 2615 ring->mtu + 4, 2616 PCI_DMA_FROMDEVICE); 2617 goto pci_map_failed; 2618 } 2619 } 2620 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1); 2621 rxdp->Control_2 |= SET_BUFFER2_SIZE_3 2622 (ring->mtu + 4); 2623 } 2624 rxdp->Control_2 |= s2BIT(0); 2625 rxdp->Host_Control = (unsigned long) (skb); 2626 } 2627 if (alloc_tab & ((1 << rxsync_frequency) - 1)) 2628 rxdp->Control_1 |= RXD_OWN_XENA; 2629 off++; 2630 if (off == (ring->rxd_count + 1)) 2631 off = 0; 2632 ring->rx_curr_put_info.offset = off; 2633 2634 rxdp->Control_2 |= SET_RXD_MARKER; 2635 if (!(alloc_tab & ((1 << rxsync_frequency) - 1))) { 2636 if (first_rxdp) { 2637 dma_wmb(); 2638 first_rxdp->Control_1 |= RXD_OWN_XENA; 2639 } 2640 first_rxdp = rxdp; 2641 } 2642 ring->rx_bufs_left += 1; 2643 alloc_tab++; 2644 } 2645 2646 end: 2647 /* Transfer ownership of first descriptor to adapter just before 2648 * exiting. Before that, use memory barrier so that ownership 2649 * and other fields are seen by adapter correctly. 2650 */ 2651 if (first_rxdp) { 2652 dma_wmb(); 2653 first_rxdp->Control_1 |= RXD_OWN_XENA; 2654 } 2655 2656 return SUCCESS; 2657 2658 pci_map_failed: 2659 swstats->pci_map_fail_cnt++; 2660 swstats->mem_freed += skb->truesize; 2661 dev_kfree_skb_irq(skb); 2662 return -ENOMEM; 2663 } 2664 2665 static void free_rxd_blk(struct s2io_nic *sp, int ring_no, int blk) 2666 { 2667 struct net_device *dev = sp->dev; 2668 int j; 2669 struct sk_buff *skb; 2670 struct RxD_t *rxdp; 2671 struct RxD1 *rxdp1; 2672 struct RxD3 *rxdp3; 2673 struct mac_info *mac_control = &sp->mac_control; 2674 struct stat_block *stats = mac_control->stats_info; 2675 struct swStat *swstats = &stats->sw_stat; 2676 2677 for (j = 0 ; j < rxd_count[sp->rxd_mode]; j++) { 2678 rxdp = mac_control->rings[ring_no]. 2679 rx_blocks[blk].rxds[j].virt_addr; 2680 skb = (struct sk_buff *)((unsigned long)rxdp->Host_Control); 2681 if (!skb) 2682 continue; 2683 if (sp->rxd_mode == RXD_MODE_1) { 2684 rxdp1 = (struct RxD1 *)rxdp; 2685 pci_unmap_single(sp->pdev, 2686 (dma_addr_t)rxdp1->Buffer0_ptr, 2687 dev->mtu + 2688 HEADER_ETHERNET_II_802_3_SIZE + 2689 HEADER_802_2_SIZE + HEADER_SNAP_SIZE, 2690 PCI_DMA_FROMDEVICE); 2691 memset(rxdp, 0, sizeof(struct RxD1)); 2692 } else if (sp->rxd_mode == RXD_MODE_3B) { 2693 rxdp3 = (struct RxD3 *)rxdp; 2694 pci_unmap_single(sp->pdev, 2695 (dma_addr_t)rxdp3->Buffer0_ptr, 2696 BUF0_LEN, 2697 PCI_DMA_FROMDEVICE); 2698 pci_unmap_single(sp->pdev, 2699 (dma_addr_t)rxdp3->Buffer1_ptr, 2700 BUF1_LEN, 2701 PCI_DMA_FROMDEVICE); 2702 pci_unmap_single(sp->pdev, 2703 (dma_addr_t)rxdp3->Buffer2_ptr, 2704 dev->mtu + 4, 2705 PCI_DMA_FROMDEVICE); 2706 memset(rxdp, 0, sizeof(struct RxD3)); 2707 } 2708 swstats->mem_freed += skb->truesize; 2709 dev_kfree_skb(skb); 2710 mac_control->rings[ring_no].rx_bufs_left -= 1; 2711 } 2712 } 2713 2714 /** 2715 * free_rx_buffers - Frees all Rx buffers 2716 * @sp: device private variable. 2717 * Description: 2718 * This function will free all Rx buffers allocated by host. 2719 * Return Value: 2720 * NONE. 2721 */ 2722 2723 static void free_rx_buffers(struct s2io_nic *sp) 2724 { 2725 struct net_device *dev = sp->dev; 2726 int i, blk = 0, buf_cnt = 0; 2727 struct config_param *config = &sp->config; 2728 struct mac_info *mac_control = &sp->mac_control; 2729 2730 for (i = 0; i < config->rx_ring_num; i++) { 2731 struct ring_info *ring = &mac_control->rings[i]; 2732 2733 for (blk = 0; blk < rx_ring_sz[i]; blk++) 2734 free_rxd_blk(sp, i, blk); 2735 2736 ring->rx_curr_put_info.block_index = 0; 2737 ring->rx_curr_get_info.block_index = 0; 2738 ring->rx_curr_put_info.offset = 0; 2739 ring->rx_curr_get_info.offset = 0; 2740 ring->rx_bufs_left = 0; 2741 DBG_PRINT(INIT_DBG, "%s: Freed 0x%x Rx Buffers on ring%d\n", 2742 dev->name, buf_cnt, i); 2743 } 2744 } 2745 2746 static int s2io_chk_rx_buffers(struct s2io_nic *nic, struct ring_info *ring) 2747 { 2748 if (fill_rx_buffers(nic, ring, 0) == -ENOMEM) { 2749 DBG_PRINT(INFO_DBG, "%s: Out of memory in Rx Intr!!\n", 2750 ring->dev->name); 2751 } 2752 return 0; 2753 } 2754 2755 /** 2756 * s2io_poll - Rx interrupt handler for NAPI support 2757 * @napi : pointer to the napi structure. 2758 * @budget : The number of packets that were budgeted to be processed 2759 * during one pass through the 'Poll" function. 2760 * Description: 2761 * Comes into picture only if NAPI support has been incorporated. It does 2762 * the same thing that rx_intr_handler does, but not in a interrupt context 2763 * also It will process only a given number of packets. 2764 * Return value: 2765 * 0 on success and 1 if there are No Rx packets to be processed. 2766 */ 2767 2768 static int s2io_poll_msix(struct napi_struct *napi, int budget) 2769 { 2770 struct ring_info *ring = container_of(napi, struct ring_info, napi); 2771 struct net_device *dev = ring->dev; 2772 int pkts_processed = 0; 2773 u8 __iomem *addr = NULL; 2774 u8 val8 = 0; 2775 struct s2io_nic *nic = netdev_priv(dev); 2776 struct XENA_dev_config __iomem *bar0 = nic->bar0; 2777 int budget_org = budget; 2778 2779 if (unlikely(!is_s2io_card_up(nic))) 2780 return 0; 2781 2782 pkts_processed = rx_intr_handler(ring, budget); 2783 s2io_chk_rx_buffers(nic, ring); 2784 2785 if (pkts_processed < budget_org) { 2786 napi_complete(napi); 2787 /*Re Enable MSI-Rx Vector*/ 2788 addr = (u8 __iomem *)&bar0->xmsi_mask_reg; 2789 addr += 7 - ring->ring_no; 2790 val8 = (ring->ring_no == 0) ? 0x3f : 0xbf; 2791 writeb(val8, addr); 2792 val8 = readb(addr); 2793 } 2794 return pkts_processed; 2795 } 2796 2797 static int s2io_poll_inta(struct napi_struct *napi, int budget) 2798 { 2799 struct s2io_nic *nic = container_of(napi, struct s2io_nic, napi); 2800 int pkts_processed = 0; 2801 int ring_pkts_processed, i; 2802 struct XENA_dev_config __iomem *bar0 = nic->bar0; 2803 int budget_org = budget; 2804 struct config_param *config = &nic->config; 2805 struct mac_info *mac_control = &nic->mac_control; 2806 2807 if (unlikely(!is_s2io_card_up(nic))) 2808 return 0; 2809 2810 for (i = 0; i < config->rx_ring_num; i++) { 2811 struct ring_info *ring = &mac_control->rings[i]; 2812 ring_pkts_processed = rx_intr_handler(ring, budget); 2813 s2io_chk_rx_buffers(nic, ring); 2814 pkts_processed += ring_pkts_processed; 2815 budget -= ring_pkts_processed; 2816 if (budget <= 0) 2817 break; 2818 } 2819 if (pkts_processed < budget_org) { 2820 napi_complete(napi); 2821 /* Re enable the Rx interrupts for the ring */ 2822 writeq(0, &bar0->rx_traffic_mask); 2823 readl(&bar0->rx_traffic_mask); 2824 } 2825 return pkts_processed; 2826 } 2827 2828 #ifdef CONFIG_NET_POLL_CONTROLLER 2829 /** 2830 * s2io_netpoll - netpoll event handler entry point 2831 * @dev : pointer to the device structure. 2832 * Description: 2833 * This function will be called by upper layer to check for events on the 2834 * interface in situations where interrupts are disabled. It is used for 2835 * specific in-kernel networking tasks, such as remote consoles and kernel 2836 * debugging over the network (example netdump in RedHat). 2837 */ 2838 static void s2io_netpoll(struct net_device *dev) 2839 { 2840 struct s2io_nic *nic = netdev_priv(dev); 2841 const int irq = nic->pdev->irq; 2842 struct XENA_dev_config __iomem *bar0 = nic->bar0; 2843 u64 val64 = 0xFFFFFFFFFFFFFFFFULL; 2844 int i; 2845 struct config_param *config = &nic->config; 2846 struct mac_info *mac_control = &nic->mac_control; 2847 2848 if (pci_channel_offline(nic->pdev)) 2849 return; 2850 2851 disable_irq(irq); 2852 2853 writeq(val64, &bar0->rx_traffic_int); 2854 writeq(val64, &bar0->tx_traffic_int); 2855 2856 /* we need to free up the transmitted skbufs or else netpoll will 2857 * run out of skbs and will fail and eventually netpoll application such 2858 * as netdump will fail. 2859 */ 2860 for (i = 0; i < config->tx_fifo_num; i++) 2861 tx_intr_handler(&mac_control->fifos[i]); 2862 2863 /* check for received packet and indicate up to network */ 2864 for (i = 0; i < config->rx_ring_num; i++) { 2865 struct ring_info *ring = &mac_control->rings[i]; 2866 2867 rx_intr_handler(ring, 0); 2868 } 2869 2870 for (i = 0; i < config->rx_ring_num; i++) { 2871 struct ring_info *ring = &mac_control->rings[i]; 2872 2873 if (fill_rx_buffers(nic, ring, 0) == -ENOMEM) { 2874 DBG_PRINT(INFO_DBG, 2875 "%s: Out of memory in Rx Netpoll!!\n", 2876 dev->name); 2877 break; 2878 } 2879 } 2880 enable_irq(irq); 2881 } 2882 #endif 2883 2884 /** 2885 * rx_intr_handler - Rx interrupt handler 2886 * @ring_info: per ring structure. 2887 * @budget: budget for napi processing. 2888 * Description: 2889 * If the interrupt is because of a received frame or if the 2890 * receive ring contains fresh as yet un-processed frames,this function is 2891 * called. It picks out the RxD at which place the last Rx processing had 2892 * stopped and sends the skb to the OSM's Rx handler and then increments 2893 * the offset. 2894 * Return Value: 2895 * No. of napi packets processed. 2896 */ 2897 static int rx_intr_handler(struct ring_info *ring_data, int budget) 2898 { 2899 int get_block, put_block; 2900 struct rx_curr_get_info get_info, put_info; 2901 struct RxD_t *rxdp; 2902 struct sk_buff *skb; 2903 int pkt_cnt = 0, napi_pkts = 0; 2904 int i; 2905 struct RxD1 *rxdp1; 2906 struct RxD3 *rxdp3; 2907 2908 if (budget <= 0) 2909 return napi_pkts; 2910 2911 get_info = ring_data->rx_curr_get_info; 2912 get_block = get_info.block_index; 2913 memcpy(&put_info, &ring_data->rx_curr_put_info, sizeof(put_info)); 2914 put_block = put_info.block_index; 2915 rxdp = ring_data->rx_blocks[get_block].rxds[get_info.offset].virt_addr; 2916 2917 while (RXD_IS_UP2DT(rxdp)) { 2918 /* 2919 * If your are next to put index then it's 2920 * FIFO full condition 2921 */ 2922 if ((get_block == put_block) && 2923 (get_info.offset + 1) == put_info.offset) { 2924 DBG_PRINT(INTR_DBG, "%s: Ring Full\n", 2925 ring_data->dev->name); 2926 break; 2927 } 2928 skb = (struct sk_buff *)((unsigned long)rxdp->Host_Control); 2929 if (skb == NULL) { 2930 DBG_PRINT(ERR_DBG, "%s: NULL skb in Rx Intr\n", 2931 ring_data->dev->name); 2932 return 0; 2933 } 2934 if (ring_data->rxd_mode == RXD_MODE_1) { 2935 rxdp1 = (struct RxD1 *)rxdp; 2936 pci_unmap_single(ring_data->pdev, (dma_addr_t) 2937 rxdp1->Buffer0_ptr, 2938 ring_data->mtu + 2939 HEADER_ETHERNET_II_802_3_SIZE + 2940 HEADER_802_2_SIZE + 2941 HEADER_SNAP_SIZE, 2942 PCI_DMA_FROMDEVICE); 2943 } else if (ring_data->rxd_mode == RXD_MODE_3B) { 2944 rxdp3 = (struct RxD3 *)rxdp; 2945 pci_dma_sync_single_for_cpu(ring_data->pdev, 2946 (dma_addr_t)rxdp3->Buffer0_ptr, 2947 BUF0_LEN, 2948 PCI_DMA_FROMDEVICE); 2949 pci_unmap_single(ring_data->pdev, 2950 (dma_addr_t)rxdp3->Buffer2_ptr, 2951 ring_data->mtu + 4, 2952 PCI_DMA_FROMDEVICE); 2953 } 2954 prefetch(skb->data); 2955 rx_osm_handler(ring_data, rxdp); 2956 get_info.offset++; 2957 ring_data->rx_curr_get_info.offset = get_info.offset; 2958 rxdp = ring_data->rx_blocks[get_block]. 2959 rxds[get_info.offset].virt_addr; 2960 if (get_info.offset == rxd_count[ring_data->rxd_mode]) { 2961 get_info.offset = 0; 2962 ring_data->rx_curr_get_info.offset = get_info.offset; 2963 get_block++; 2964 if (get_block == ring_data->block_count) 2965 get_block = 0; 2966 ring_data->rx_curr_get_info.block_index = get_block; 2967 rxdp = ring_data->rx_blocks[get_block].block_virt_addr; 2968 } 2969 2970 if (ring_data->nic->config.napi) { 2971 budget--; 2972 napi_pkts++; 2973 if (!budget) 2974 break; 2975 } 2976 pkt_cnt++; 2977 if ((indicate_max_pkts) && (pkt_cnt > indicate_max_pkts)) 2978 break; 2979 } 2980 if (ring_data->lro) { 2981 /* Clear all LRO sessions before exiting */ 2982 for (i = 0; i < MAX_LRO_SESSIONS; i++) { 2983 struct lro *lro = &ring_data->lro0_n[i]; 2984 if (lro->in_use) { 2985 update_L3L4_header(ring_data->nic, lro); 2986 queue_rx_frame(lro->parent, lro->vlan_tag); 2987 clear_lro_session(lro); 2988 } 2989 } 2990 } 2991 return napi_pkts; 2992 } 2993 2994 /** 2995 * tx_intr_handler - Transmit interrupt handler 2996 * @nic : device private variable 2997 * Description: 2998 * If an interrupt was raised to indicate DMA complete of the 2999 * Tx packet, this function is called. It identifies the last TxD 3000 * whose buffer was freed and frees all skbs whose data have already 3001 * DMA'ed into the NICs internal memory. 3002 * Return Value: 3003 * NONE 3004 */ 3005 3006 static void tx_intr_handler(struct fifo_info *fifo_data) 3007 { 3008 struct s2io_nic *nic = fifo_data->nic; 3009 struct tx_curr_get_info get_info, put_info; 3010 struct sk_buff *skb = NULL; 3011 struct TxD *txdlp; 3012 int pkt_cnt = 0; 3013 unsigned long flags = 0; 3014 u8 err_mask; 3015 struct stat_block *stats = nic->mac_control.stats_info; 3016 struct swStat *swstats = &stats->sw_stat; 3017 3018 if (!spin_trylock_irqsave(&fifo_data->tx_lock, flags)) 3019 return; 3020 3021 get_info = fifo_data->tx_curr_get_info; 3022 memcpy(&put_info, &fifo_data->tx_curr_put_info, sizeof(put_info)); 3023 txdlp = fifo_data->list_info[get_info.offset].list_virt_addr; 3024 while ((!(txdlp->Control_1 & TXD_LIST_OWN_XENA)) && 3025 (get_info.offset != put_info.offset) && 3026 (txdlp->Host_Control)) { 3027 /* Check for TxD errors */ 3028 if (txdlp->Control_1 & TXD_T_CODE) { 3029 unsigned long long err; 3030 err = txdlp->Control_1 & TXD_T_CODE; 3031 if (err & 0x1) { 3032 swstats->parity_err_cnt++; 3033 } 3034 3035 /* update t_code statistics */ 3036 err_mask = err >> 48; 3037 switch (err_mask) { 3038 case 2: 3039 swstats->tx_buf_abort_cnt++; 3040 break; 3041 3042 case 3: 3043 swstats->tx_desc_abort_cnt++; 3044 break; 3045 3046 case 7: 3047 swstats->tx_parity_err_cnt++; 3048 break; 3049 3050 case 10: 3051 swstats->tx_link_loss_cnt++; 3052 break; 3053 3054 case 15: 3055 swstats->tx_list_proc_err_cnt++; 3056 break; 3057 } 3058 } 3059 3060 skb = s2io_txdl_getskb(fifo_data, txdlp, get_info.offset); 3061 if (skb == NULL) { 3062 spin_unlock_irqrestore(&fifo_data->tx_lock, flags); 3063 DBG_PRINT(ERR_DBG, "%s: NULL skb in Tx Free Intr\n", 3064 __func__); 3065 return; 3066 } 3067 pkt_cnt++; 3068 3069 /* Updating the statistics block */ 3070 swstats->mem_freed += skb->truesize; 3071 dev_kfree_skb_irq(skb); 3072 3073 get_info.offset++; 3074 if (get_info.offset == get_info.fifo_len + 1) 3075 get_info.offset = 0; 3076 txdlp = fifo_data->list_info[get_info.offset].list_virt_addr; 3077 fifo_data->tx_curr_get_info.offset = get_info.offset; 3078 } 3079 3080 s2io_wake_tx_queue(fifo_data, pkt_cnt, nic->config.multiq); 3081 3082 spin_unlock_irqrestore(&fifo_data->tx_lock, flags); 3083 } 3084 3085 /** 3086 * s2io_mdio_write - Function to write in to MDIO registers 3087 * @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS) 3088 * @addr : address value 3089 * @value : data value 3090 * @dev : pointer to net_device structure 3091 * Description: 3092 * This function is used to write values to the MDIO registers 3093 * NONE 3094 */ 3095 static void s2io_mdio_write(u32 mmd_type, u64 addr, u16 value, 3096 struct net_device *dev) 3097 { 3098 u64 val64; 3099 struct s2io_nic *sp = netdev_priv(dev); 3100 struct XENA_dev_config __iomem *bar0 = sp->bar0; 3101 3102 /* address transaction */ 3103 val64 = MDIO_MMD_INDX_ADDR(addr) | 3104 MDIO_MMD_DEV_ADDR(mmd_type) | 3105 MDIO_MMS_PRT_ADDR(0x0); 3106 writeq(val64, &bar0->mdio_control); 3107 val64 = val64 | MDIO_CTRL_START_TRANS(0xE); 3108 writeq(val64, &bar0->mdio_control); 3109 udelay(100); 3110 3111 /* Data transaction */ 3112 val64 = MDIO_MMD_INDX_ADDR(addr) | 3113 MDIO_MMD_DEV_ADDR(mmd_type) | 3114 MDIO_MMS_PRT_ADDR(0x0) | 3115 MDIO_MDIO_DATA(value) | 3116 MDIO_OP(MDIO_OP_WRITE_TRANS); 3117 writeq(val64, &bar0->mdio_control); 3118 val64 = val64 | MDIO_CTRL_START_TRANS(0xE); 3119 writeq(val64, &bar0->mdio_control); 3120 udelay(100); 3121 3122 val64 = MDIO_MMD_INDX_ADDR(addr) | 3123 MDIO_MMD_DEV_ADDR(mmd_type) | 3124 MDIO_MMS_PRT_ADDR(0x0) | 3125 MDIO_OP(MDIO_OP_READ_TRANS); 3126 writeq(val64, &bar0->mdio_control); 3127 val64 = val64 | MDIO_CTRL_START_TRANS(0xE); 3128 writeq(val64, &bar0->mdio_control); 3129 udelay(100); 3130 } 3131 3132 /** 3133 * s2io_mdio_read - Function to write in to MDIO registers 3134 * @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS) 3135 * @addr : address value 3136 * @dev : pointer to net_device structure 3137 * Description: 3138 * This function is used to read values to the MDIO registers 3139 * NONE 3140 */ 3141 static u64 s2io_mdio_read(u32 mmd_type, u64 addr, struct net_device *dev) 3142 { 3143 u64 val64 = 0x0; 3144 u64 rval64 = 0x0; 3145 struct s2io_nic *sp = netdev_priv(dev); 3146 struct XENA_dev_config __iomem *bar0 = sp->bar0; 3147 3148 /* address transaction */ 3149 val64 = val64 | (MDIO_MMD_INDX_ADDR(addr) 3150 | MDIO_MMD_DEV_ADDR(mmd_type) 3151 | MDIO_MMS_PRT_ADDR(0x0)); 3152 writeq(val64, &bar0->mdio_control); 3153 val64 = val64 | MDIO_CTRL_START_TRANS(0xE); 3154 writeq(val64, &bar0->mdio_control); 3155 udelay(100); 3156 3157 /* Data transaction */ 3158 val64 = MDIO_MMD_INDX_ADDR(addr) | 3159 MDIO_MMD_DEV_ADDR(mmd_type) | 3160 MDIO_MMS_PRT_ADDR(0x0) | 3161 MDIO_OP(MDIO_OP_READ_TRANS); 3162 writeq(val64, &bar0->mdio_control); 3163 val64 = val64 | MDIO_CTRL_START_TRANS(0xE); 3164 writeq(val64, &bar0->mdio_control); 3165 udelay(100); 3166 3167 /* Read the value from regs */ 3168 rval64 = readq(&bar0->mdio_control); 3169 rval64 = rval64 & 0xFFFF0000; 3170 rval64 = rval64 >> 16; 3171 return rval64; 3172 } 3173 3174 /** 3175 * s2io_chk_xpak_counter - Function to check the status of the xpak counters 3176 * @counter : counter value to be updated 3177 * @flag : flag to indicate the status 3178 * @type : counter type 3179 * Description: 3180 * This function is to check the status of the xpak counters value 3181 * NONE 3182 */ 3183 3184 static void s2io_chk_xpak_counter(u64 *counter, u64 * regs_stat, u32 index, 3185 u16 flag, u16 type) 3186 { 3187 u64 mask = 0x3; 3188 u64 val64; 3189 int i; 3190 for (i = 0; i < index; i++) 3191 mask = mask << 0x2; 3192 3193 if (flag > 0) { 3194 *counter = *counter + 1; 3195 val64 = *regs_stat & mask; 3196 val64 = val64 >> (index * 0x2); 3197 val64 = val64 + 1; 3198 if (val64 == 3) { 3199 switch (type) { 3200 case 1: 3201 DBG_PRINT(ERR_DBG, 3202 "Take Xframe NIC out of service.\n"); 3203 DBG_PRINT(ERR_DBG, 3204 "Excessive temperatures may result in premature transceiver failure.\n"); 3205 break; 3206 case 2: 3207 DBG_PRINT(ERR_DBG, 3208 "Take Xframe NIC out of service.\n"); 3209 DBG_PRINT(ERR_DBG, 3210 "Excessive bias currents may indicate imminent laser diode failure.\n"); 3211 break; 3212 case 3: 3213 DBG_PRINT(ERR_DBG, 3214 "Take Xframe NIC out of service.\n"); 3215 DBG_PRINT(ERR_DBG, 3216 "Excessive laser output power may saturate far-end receiver.\n"); 3217 break; 3218 default: 3219 DBG_PRINT(ERR_DBG, 3220 "Incorrect XPAK Alarm type\n"); 3221 } 3222 val64 = 0x0; 3223 } 3224 val64 = val64 << (index * 0x2); 3225 *regs_stat = (*regs_stat & (~mask)) | (val64); 3226 3227 } else { 3228 *regs_stat = *regs_stat & (~mask); 3229 } 3230 } 3231 3232 /** 3233 * s2io_updt_xpak_counter - Function to update the xpak counters 3234 * @dev : pointer to net_device struct 3235 * Description: 3236 * This function is to upate the status of the xpak counters value 3237 * NONE 3238 */ 3239 static void s2io_updt_xpak_counter(struct net_device *dev) 3240 { 3241 u16 flag = 0x0; 3242 u16 type = 0x0; 3243 u16 val16 = 0x0; 3244 u64 val64 = 0x0; 3245 u64 addr = 0x0; 3246 3247 struct s2io_nic *sp = netdev_priv(dev); 3248 struct stat_block *stats = sp->mac_control.stats_info; 3249 struct xpakStat *xstats = &stats->xpak_stat; 3250 3251 /* Check the communication with the MDIO slave */ 3252 addr = MDIO_CTRL1; 3253 val64 = 0x0; 3254 val64 = s2io_mdio_read(MDIO_MMD_PMAPMD, addr, dev); 3255 if ((val64 == 0xFFFF) || (val64 == 0x0000)) { 3256 DBG_PRINT(ERR_DBG, 3257 "ERR: MDIO slave access failed - Returned %llx\n", 3258 (unsigned long long)val64); 3259 return; 3260 } 3261 3262 /* Check for the expected value of control reg 1 */ 3263 if (val64 != MDIO_CTRL1_SPEED10G) { 3264 DBG_PRINT(ERR_DBG, "Incorrect value at PMA address 0x0000 - " 3265 "Returned: %llx- Expected: 0x%x\n", 3266 (unsigned long long)val64, MDIO_CTRL1_SPEED10G); 3267 return; 3268 } 3269 3270 /* Loading the DOM register to MDIO register */ 3271 addr = 0xA100; 3272 s2io_mdio_write(MDIO_MMD_PMAPMD, addr, val16, dev); 3273 val64 = s2io_mdio_read(MDIO_MMD_PMAPMD, addr, dev); 3274 3275 /* Reading the Alarm flags */ 3276 addr = 0xA070; 3277 val64 = 0x0; 3278 val64 = s2io_mdio_read(MDIO_MMD_PMAPMD, addr, dev); 3279 3280 flag = CHECKBIT(val64, 0x7); 3281 type = 1; 3282 s2io_chk_xpak_counter(&xstats->alarm_transceiver_temp_high, 3283 &xstats->xpak_regs_stat, 3284 0x0, flag, type); 3285 3286 if (CHECKBIT(val64, 0x6)) 3287 xstats->alarm_transceiver_temp_low++; 3288 3289 flag = CHECKBIT(val64, 0x3); 3290 type = 2; 3291 s2io_chk_xpak_counter(&xstats->alarm_laser_bias_current_high, 3292 &xstats->xpak_regs_stat, 3293 0x2, flag, type); 3294 3295 if (CHECKBIT(val64, 0x2)) 3296 xstats->alarm_laser_bias_current_low++; 3297 3298 flag = CHECKBIT(val64, 0x1); 3299 type = 3; 3300 s2io_chk_xpak_counter(&xstats->alarm_laser_output_power_high, 3301 &xstats->xpak_regs_stat, 3302 0x4, flag, type); 3303 3304 if (CHECKBIT(val64, 0x0)) 3305 xstats->alarm_laser_output_power_low++; 3306 3307 /* Reading the Warning flags */ 3308 addr = 0xA074; 3309 val64 = 0x0; 3310 val64 = s2io_mdio_read(MDIO_MMD_PMAPMD, addr, dev); 3311 3312 if (CHECKBIT(val64, 0x7)) 3313 xstats->warn_transceiver_temp_high++; 3314 3315 if (CHECKBIT(val64, 0x6)) 3316 xstats->warn_transceiver_temp_low++; 3317 3318 if (CHECKBIT(val64, 0x3)) 3319 xstats->warn_laser_bias_current_high++; 3320 3321 if (CHECKBIT(val64, 0x2)) 3322 xstats->warn_laser_bias_current_low++; 3323 3324 if (CHECKBIT(val64, 0x1)) 3325 xstats->warn_laser_output_power_high++; 3326 3327 if (CHECKBIT(val64, 0x0)) 3328 xstats->warn_laser_output_power_low++; 3329 } 3330 3331 /** 3332 * wait_for_cmd_complete - waits for a command to complete. 3333 * @sp : private member of the device structure, which is a pointer to the 3334 * s2io_nic structure. 3335 * Description: Function that waits for a command to Write into RMAC 3336 * ADDR DATA registers to be completed and returns either success or 3337 * error depending on whether the command was complete or not. 3338 * Return value: 3339 * SUCCESS on success and FAILURE on failure. 3340 */ 3341 3342 static int wait_for_cmd_complete(void __iomem *addr, u64 busy_bit, 3343 int bit_state) 3344 { 3345 int ret = FAILURE, cnt = 0, delay = 1; 3346 u64 val64; 3347 3348 if ((bit_state != S2IO_BIT_RESET) && (bit_state != S2IO_BIT_SET)) 3349 return FAILURE; 3350 3351 do { 3352 val64 = readq(addr); 3353 if (bit_state == S2IO_BIT_RESET) { 3354 if (!(val64 & busy_bit)) { 3355 ret = SUCCESS; 3356 break; 3357 } 3358 } else { 3359 if (val64 & busy_bit) { 3360 ret = SUCCESS; 3361 break; 3362 } 3363 } 3364 3365 if (in_interrupt()) 3366 mdelay(delay); 3367 else 3368 msleep(delay); 3369 3370 if (++cnt >= 10) 3371 delay = 50; 3372 } while (cnt < 20); 3373 return ret; 3374 } 3375 /** 3376 * check_pci_device_id - Checks if the device id is supported 3377 * @id : device id 3378 * Description: Function to check if the pci device id is supported by driver. 3379 * Return value: Actual device id if supported else PCI_ANY_ID 3380 */ 3381 static u16 check_pci_device_id(u16 id) 3382 { 3383 switch (id) { 3384 case PCI_DEVICE_ID_HERC_WIN: 3385 case PCI_DEVICE_ID_HERC_UNI: 3386 return XFRAME_II_DEVICE; 3387 case PCI_DEVICE_ID_S2IO_UNI: 3388 case PCI_DEVICE_ID_S2IO_WIN: 3389 return XFRAME_I_DEVICE; 3390 default: 3391 return PCI_ANY_ID; 3392 } 3393 } 3394 3395 /** 3396 * s2io_reset - Resets the card. 3397 * @sp : private member of the device structure. 3398 * Description: Function to Reset the card. This function then also 3399 * restores the previously saved PCI configuration space registers as 3400 * the card reset also resets the configuration space. 3401 * Return value: 3402 * void. 3403 */ 3404 3405 static void s2io_reset(struct s2io_nic *sp) 3406 { 3407 struct XENA_dev_config __iomem *bar0 = sp->bar0; 3408 u64 val64; 3409 u16 subid, pci_cmd; 3410 int i; 3411 u16 val16; 3412 unsigned long long up_cnt, down_cnt, up_time, down_time, reset_cnt; 3413 unsigned long long mem_alloc_cnt, mem_free_cnt, watchdog_cnt; 3414 struct stat_block *stats; 3415 struct swStat *swstats; 3416 3417 DBG_PRINT(INIT_DBG, "%s: Resetting XFrame card %s\n", 3418 __func__, pci_name(sp->pdev)); 3419 3420 /* Back up the PCI-X CMD reg, dont want to lose MMRBC, OST settings */ 3421 pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER, &(pci_cmd)); 3422 3423 val64 = SW_RESET_ALL; 3424 writeq(val64, &bar0->sw_reset); 3425 if (strstr(sp->product_name, "CX4")) 3426 msleep(750); 3427 msleep(250); 3428 for (i = 0; i < S2IO_MAX_PCI_CONFIG_SPACE_REINIT; i++) { 3429 3430 /* Restore the PCI state saved during initialization. */ 3431 pci_restore_state(sp->pdev); 3432 pci_save_state(sp->pdev); 3433 pci_read_config_word(sp->pdev, 0x2, &val16); 3434 if (check_pci_device_id(val16) != (u16)PCI_ANY_ID) 3435 break; 3436 msleep(200); 3437 } 3438 3439 if (check_pci_device_id(val16) == (u16)PCI_ANY_ID) 3440 DBG_PRINT(ERR_DBG, "%s SW_Reset failed!\n", __func__); 3441 3442 pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER, pci_cmd); 3443 3444 s2io_init_pci(sp); 3445 3446 /* Set swapper to enable I/O register access */ 3447 s2io_set_swapper(sp); 3448 3449 /* restore mac_addr entries */ 3450 do_s2io_restore_unicast_mc(sp); 3451 3452 /* Restore the MSIX table entries from local variables */ 3453 restore_xmsi_data(sp); 3454 3455 /* Clear certain PCI/PCI-X fields after reset */ 3456 if (sp->device_type == XFRAME_II_DEVICE) { 3457 /* Clear "detected parity error" bit */ 3458 pci_write_config_word(sp->pdev, PCI_STATUS, 0x8000); 3459 3460 /* Clearing PCIX Ecc status register */ 3461 pci_write_config_dword(sp->pdev, 0x68, 0x7C); 3462 3463 /* Clearing PCI_STATUS error reflected here */ 3464 writeq(s2BIT(62), &bar0->txpic_int_reg); 3465 } 3466 3467 /* Reset device statistics maintained by OS */ 3468 memset(&sp->stats, 0, sizeof(struct net_device_stats)); 3469 3470 stats = sp->mac_control.stats_info; 3471 swstats = &stats->sw_stat; 3472 3473 /* save link up/down time/cnt, reset/memory/watchdog cnt */ 3474 up_cnt = swstats->link_up_cnt; 3475 down_cnt = swstats->link_down_cnt; 3476 up_time = swstats->link_up_time; 3477 down_time = swstats->link_down_time; 3478 reset_cnt = swstats->soft_reset_cnt; 3479 mem_alloc_cnt = swstats->mem_allocated; 3480 mem_free_cnt = swstats->mem_freed; 3481 watchdog_cnt = swstats->watchdog_timer_cnt; 3482 3483 memset(stats, 0, sizeof(struct stat_block)); 3484 3485 /* restore link up/down time/cnt, reset/memory/watchdog cnt */ 3486 swstats->link_up_cnt = up_cnt; 3487 swstats->link_down_cnt = down_cnt; 3488 swstats->link_up_time = up_time; 3489 swstats->link_down_time = down_time; 3490 swstats->soft_reset_cnt = reset_cnt; 3491 swstats->mem_allocated = mem_alloc_cnt; 3492 swstats->mem_freed = mem_free_cnt; 3493 swstats->watchdog_timer_cnt = watchdog_cnt; 3494 3495 /* SXE-002: Configure link and activity LED to turn it off */ 3496 subid = sp->pdev->subsystem_device; 3497 if (((subid & 0xFF) >= 0x07) && 3498 (sp->device_type == XFRAME_I_DEVICE)) { 3499 val64 = readq(&bar0->gpio_control); 3500 val64 |= 0x0000800000000000ULL; 3501 writeq(val64, &bar0->gpio_control); 3502 val64 = 0x0411040400000000ULL; 3503 writeq(val64, (void __iomem *)bar0 + 0x2700); 3504 } 3505 3506 /* 3507 * Clear spurious ECC interrupts that would have occurred on 3508 * XFRAME II cards after reset. 3509 */ 3510 if (sp->device_type == XFRAME_II_DEVICE) { 3511 val64 = readq(&bar0->pcc_err_reg); 3512 writeq(val64, &bar0->pcc_err_reg); 3513 } 3514 3515 sp->device_enabled_once = false; 3516 } 3517 3518 /** 3519 * s2io_set_swapper - to set the swapper controle on the card 3520 * @sp : private member of the device structure, 3521 * pointer to the s2io_nic structure. 3522 * Description: Function to set the swapper control on the card 3523 * correctly depending on the 'endianness' of the system. 3524 * Return value: 3525 * SUCCESS on success and FAILURE on failure. 3526 */ 3527 3528 static int s2io_set_swapper(struct s2io_nic *sp) 3529 { 3530 struct net_device *dev = sp->dev; 3531 struct XENA_dev_config __iomem *bar0 = sp->bar0; 3532 u64 val64, valt, valr; 3533 3534 /* 3535 * Set proper endian settings and verify the same by reading 3536 * the PIF Feed-back register. 3537 */ 3538 3539 val64 = readq(&bar0->pif_rd_swapper_fb); 3540 if (val64 != 0x0123456789ABCDEFULL) { 3541 int i = 0; 3542 static const u64 value[] = { 3543 0xC30000C3C30000C3ULL, /* FE=1, SE=1 */ 3544 0x8100008181000081ULL, /* FE=1, SE=0 */ 3545 0x4200004242000042ULL, /* FE=0, SE=1 */ 3546 0 /* FE=0, SE=0 */ 3547 }; 3548 3549 while (i < 4) { 3550 writeq(value[i], &bar0->swapper_ctrl); 3551 val64 = readq(&bar0->pif_rd_swapper_fb); 3552 if (val64 == 0x0123456789ABCDEFULL) 3553 break; 3554 i++; 3555 } 3556 if (i == 4) { 3557 DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, " 3558 "feedback read %llx\n", 3559 dev->name, (unsigned long long)val64); 3560 return FAILURE; 3561 } 3562 valr = value[i]; 3563 } else { 3564 valr = readq(&bar0->swapper_ctrl); 3565 } 3566 3567 valt = 0x0123456789ABCDEFULL; 3568 writeq(valt, &bar0->xmsi_address); 3569 val64 = readq(&bar0->xmsi_address); 3570 3571 if (val64 != valt) { 3572 int i = 0; 3573 static const u64 value[] = { 3574 0x00C3C30000C3C300ULL, /* FE=1, SE=1 */ 3575 0x0081810000818100ULL, /* FE=1, SE=0 */ 3576 0x0042420000424200ULL, /* FE=0, SE=1 */ 3577 0 /* FE=0, SE=0 */ 3578 }; 3579 3580 while (i < 4) { 3581 writeq((value[i] | valr), &bar0->swapper_ctrl); 3582 writeq(valt, &bar0->xmsi_address); 3583 val64 = readq(&bar0->xmsi_address); 3584 if (val64 == valt) 3585 break; 3586 i++; 3587 } 3588 if (i == 4) { 3589 unsigned long long x = val64; 3590 DBG_PRINT(ERR_DBG, 3591 "Write failed, Xmsi_addr reads:0x%llx\n", x); 3592 return FAILURE; 3593 } 3594 } 3595 val64 = readq(&bar0->swapper_ctrl); 3596 val64 &= 0xFFFF000000000000ULL; 3597 3598 #ifdef __BIG_ENDIAN 3599 /* 3600 * The device by default set to a big endian format, so a 3601 * big endian driver need not set anything. 3602 */ 3603 val64 |= (SWAPPER_CTRL_TXP_FE | 3604 SWAPPER_CTRL_TXP_SE | 3605 SWAPPER_CTRL_TXD_R_FE | 3606 SWAPPER_CTRL_TXD_W_FE | 3607 SWAPPER_CTRL_TXF_R_FE | 3608 SWAPPER_CTRL_RXD_R_FE | 3609 SWAPPER_CTRL_RXD_W_FE | 3610 SWAPPER_CTRL_RXF_W_FE | 3611 SWAPPER_CTRL_XMSI_FE | 3612 SWAPPER_CTRL_STATS_FE | 3613 SWAPPER_CTRL_STATS_SE); 3614 if (sp->config.intr_type == INTA) 3615 val64 |= SWAPPER_CTRL_XMSI_SE; 3616 writeq(val64, &bar0->swapper_ctrl); 3617 #else 3618 /* 3619 * Initially we enable all bits to make it accessible by the 3620 * driver, then we selectively enable only those bits that 3621 * we want to set. 3622 */ 3623 val64 |= (SWAPPER_CTRL_TXP_FE | 3624 SWAPPER_CTRL_TXP_SE | 3625 SWAPPER_CTRL_TXD_R_FE | 3626 SWAPPER_CTRL_TXD_R_SE | 3627 SWAPPER_CTRL_TXD_W_FE | 3628 SWAPPER_CTRL_TXD_W_SE | 3629 SWAPPER_CTRL_TXF_R_FE | 3630 SWAPPER_CTRL_RXD_R_FE | 3631 SWAPPER_CTRL_RXD_R_SE | 3632 SWAPPER_CTRL_RXD_W_FE | 3633 SWAPPER_CTRL_RXD_W_SE | 3634 SWAPPER_CTRL_RXF_W_FE | 3635 SWAPPER_CTRL_XMSI_FE | 3636 SWAPPER_CTRL_STATS_FE | 3637 SWAPPER_CTRL_STATS_SE); 3638 if (sp->config.intr_type == INTA) 3639 val64 |= SWAPPER_CTRL_XMSI_SE; 3640 writeq(val64, &bar0->swapper_ctrl); 3641 #endif 3642 val64 = readq(&bar0->swapper_ctrl); 3643 3644 /* 3645 * Verifying if endian settings are accurate by reading a 3646 * feedback register. 3647 */ 3648 val64 = readq(&bar0->pif_rd_swapper_fb); 3649 if (val64 != 0x0123456789ABCDEFULL) { 3650 /* Endian settings are incorrect, calls for another dekko. */ 3651 DBG_PRINT(ERR_DBG, 3652 "%s: Endian settings are wrong, feedback read %llx\n", 3653 dev->name, (unsigned long long)val64); 3654 return FAILURE; 3655 } 3656 3657 return SUCCESS; 3658 } 3659 3660 static int wait_for_msix_trans(struct s2io_nic *nic, int i) 3661 { 3662 struct XENA_dev_config __iomem *bar0 = nic->bar0; 3663 u64 val64; 3664 int ret = 0, cnt = 0; 3665 3666 do { 3667 val64 = readq(&bar0->xmsi_access); 3668 if (!(val64 & s2BIT(15))) 3669 break; 3670 mdelay(1); 3671 cnt++; 3672 } while (cnt < 5); 3673 if (cnt == 5) { 3674 DBG_PRINT(ERR_DBG, "XMSI # %d Access failed\n", i); 3675 ret = 1; 3676 } 3677 3678 return ret; 3679 } 3680 3681 static void restore_xmsi_data(struct s2io_nic *nic) 3682 { 3683 struct XENA_dev_config __iomem *bar0 = nic->bar0; 3684 u64 val64; 3685 int i, msix_index; 3686 3687 if (nic->device_type == XFRAME_I_DEVICE) 3688 return; 3689 3690 for (i = 0; i < MAX_REQUESTED_MSI_X; i++) { 3691 msix_index = (i) ? ((i-1) * 8 + 1) : 0; 3692 writeq(nic->msix_info[i].addr, &bar0->xmsi_address); 3693 writeq(nic->msix_info[i].data, &bar0->xmsi_data); 3694 val64 = (s2BIT(7) | s2BIT(15) | vBIT(msix_index, 26, 6)); 3695 writeq(val64, &bar0->xmsi_access); 3696 if (wait_for_msix_trans(nic, msix_index)) { 3697 DBG_PRINT(ERR_DBG, "%s: index: %d failed\n", 3698 __func__, msix_index); 3699 continue; 3700 } 3701 } 3702 } 3703 3704 static void store_xmsi_data(struct s2io_nic *nic) 3705 { 3706 struct XENA_dev_config __iomem *bar0 = nic->bar0; 3707 u64 val64, addr, data; 3708 int i, msix_index; 3709 3710 if (nic->device_type == XFRAME_I_DEVICE) 3711 return; 3712 3713 /* Store and display */ 3714 for (i = 0; i < MAX_REQUESTED_MSI_X; i++) { 3715 msix_index = (i) ? ((i-1) * 8 + 1) : 0; 3716 val64 = (s2BIT(15) | vBIT(msix_index, 26, 6)); 3717 writeq(val64, &bar0->xmsi_access); 3718 if (wait_for_msix_trans(nic, msix_index)) { 3719 DBG_PRINT(ERR_DBG, "%s: index: %d failed\n", 3720 __func__, msix_index); 3721 continue; 3722 } 3723 addr = readq(&bar0->xmsi_address); 3724 data = readq(&bar0->xmsi_data); 3725 if (addr && data) { 3726 nic->msix_info[i].addr = addr; 3727 nic->msix_info[i].data = data; 3728 } 3729 } 3730 } 3731 3732 static int s2io_enable_msi_x(struct s2io_nic *nic) 3733 { 3734 struct XENA_dev_config __iomem *bar0 = nic->bar0; 3735 u64 rx_mat; 3736 u16 msi_control; /* Temp variable */ 3737 int ret, i, j, msix_indx = 1; 3738 int size; 3739 struct stat_block *stats = nic->mac_control.stats_info; 3740 struct swStat *swstats = &stats->sw_stat; 3741 3742 size = nic->num_entries * sizeof(struct msix_entry); 3743 nic->entries = kzalloc(size, GFP_KERNEL); 3744 if (!nic->entries) { 3745 DBG_PRINT(INFO_DBG, "%s: Memory allocation failed\n", 3746 __func__); 3747 swstats->mem_alloc_fail_cnt++; 3748 return -ENOMEM; 3749 } 3750 swstats->mem_allocated += size; 3751 3752 size = nic->num_entries * sizeof(struct s2io_msix_entry); 3753 nic->s2io_entries = kzalloc(size, GFP_KERNEL); 3754 if (!nic->s2io_entries) { 3755 DBG_PRINT(INFO_DBG, "%s: Memory allocation failed\n", 3756 __func__); 3757 swstats->mem_alloc_fail_cnt++; 3758 kfree(nic->entries); 3759 swstats->mem_freed 3760 += (nic->num_entries * sizeof(struct msix_entry)); 3761 return -ENOMEM; 3762 } 3763 swstats->mem_allocated += size; 3764 3765 nic->entries[0].entry = 0; 3766 nic->s2io_entries[0].entry = 0; 3767 nic->s2io_entries[0].in_use = MSIX_FLG; 3768 nic->s2io_entries[0].type = MSIX_ALARM_TYPE; 3769 nic->s2io_entries[0].arg = &nic->mac_control.fifos; 3770 3771 for (i = 1; i < nic->num_entries; i++) { 3772 nic->entries[i].entry = ((i - 1) * 8) + 1; 3773 nic->s2io_entries[i].entry = ((i - 1) * 8) + 1; 3774 nic->s2io_entries[i].arg = NULL; 3775 nic->s2io_entries[i].in_use = 0; 3776 } 3777 3778 rx_mat = readq(&bar0->rx_mat); 3779 for (j = 0; j < nic->config.rx_ring_num; j++) { 3780 rx_mat |= RX_MAT_SET(j, msix_indx); 3781 nic->s2io_entries[j+1].arg = &nic->mac_control.rings[j]; 3782 nic->s2io_entries[j+1].type = MSIX_RING_TYPE; 3783 nic->s2io_entries[j+1].in_use = MSIX_FLG; 3784 msix_indx += 8; 3785 } 3786 writeq(rx_mat, &bar0->rx_mat); 3787 readq(&bar0->rx_mat); 3788 3789 ret = pci_enable_msix_range(nic->pdev, nic->entries, 3790 nic->num_entries, nic->num_entries); 3791 /* We fail init if error or we get less vectors than min required */ 3792 if (ret < 0) { 3793 DBG_PRINT(ERR_DBG, "Enabling MSI-X failed\n"); 3794 kfree(nic->entries); 3795 swstats->mem_freed += nic->num_entries * 3796 sizeof(struct msix_entry); 3797 kfree(nic->s2io_entries); 3798 swstats->mem_freed += nic->num_entries * 3799 sizeof(struct s2io_msix_entry); 3800 nic->entries = NULL; 3801 nic->s2io_entries = NULL; 3802 return -ENOMEM; 3803 } 3804 3805 /* 3806 * To enable MSI-X, MSI also needs to be enabled, due to a bug 3807 * in the herc NIC. (Temp change, needs to be removed later) 3808 */ 3809 pci_read_config_word(nic->pdev, 0x42, &msi_control); 3810 msi_control |= 0x1; /* Enable MSI */ 3811 pci_write_config_word(nic->pdev, 0x42, msi_control); 3812 3813 return 0; 3814 } 3815 3816 /* Handle software interrupt used during MSI(X) test */ 3817 static irqreturn_t s2io_test_intr(int irq, void *dev_id) 3818 { 3819 struct s2io_nic *sp = dev_id; 3820 3821 sp->msi_detected = 1; 3822 wake_up(&sp->msi_wait); 3823 3824 return IRQ_HANDLED; 3825 } 3826 3827 /* Test interrupt path by forcing a a software IRQ */ 3828 static int s2io_test_msi(struct s2io_nic *sp) 3829 { 3830 struct pci_dev *pdev = sp->pdev; 3831 struct XENA_dev_config __iomem *bar0 = sp->bar0; 3832 int err; 3833 u64 val64, saved64; 3834 3835 err = request_irq(sp->entries[1].vector, s2io_test_intr, 0, 3836 sp->name, sp); 3837 if (err) { 3838 DBG_PRINT(ERR_DBG, "%s: PCI %s: cannot assign irq %d\n", 3839 sp->dev->name, pci_name(pdev), pdev->irq); 3840 return err; 3841 } 3842 3843 init_waitqueue_head(&sp->msi_wait); 3844 sp->msi_detected = 0; 3845 3846 saved64 = val64 = readq(&bar0->scheduled_int_ctrl); 3847 val64 |= SCHED_INT_CTRL_ONE_SHOT; 3848 val64 |= SCHED_INT_CTRL_TIMER_EN; 3849 val64 |= SCHED_INT_CTRL_INT2MSI(1); 3850 writeq(val64, &bar0->scheduled_int_ctrl); 3851 3852 wait_event_timeout(sp->msi_wait, sp->msi_detected, HZ/10); 3853 3854 if (!sp->msi_detected) { 3855 /* MSI(X) test failed, go back to INTx mode */ 3856 DBG_PRINT(ERR_DBG, "%s: PCI %s: No interrupt was generated " 3857 "using MSI(X) during test\n", 3858 sp->dev->name, pci_name(pdev)); 3859 3860 err = -EOPNOTSUPP; 3861 } 3862 3863 free_irq(sp->entries[1].vector, sp); 3864 3865 writeq(saved64, &bar0->scheduled_int_ctrl); 3866 3867 return err; 3868 } 3869 3870 static void remove_msix_isr(struct s2io_nic *sp) 3871 { 3872 int i; 3873 u16 msi_control; 3874 3875 for (i = 0; i < sp->num_entries; i++) { 3876 if (sp->s2io_entries[i].in_use == MSIX_REGISTERED_SUCCESS) { 3877 int vector = sp->entries[i].vector; 3878 void *arg = sp->s2io_entries[i].arg; 3879 free_irq(vector, arg); 3880 } 3881 } 3882 3883 kfree(sp->entries); 3884 kfree(sp->s2io_entries); 3885 sp->entries = NULL; 3886 sp->s2io_entries = NULL; 3887 3888 pci_read_config_word(sp->pdev, 0x42, &msi_control); 3889 msi_control &= 0xFFFE; /* Disable MSI */ 3890 pci_write_config_word(sp->pdev, 0x42, msi_control); 3891 3892 pci_disable_msix(sp->pdev); 3893 } 3894 3895 static void remove_inta_isr(struct s2io_nic *sp) 3896 { 3897 free_irq(sp->pdev->irq, sp->dev); 3898 } 3899 3900 /* ********************************************************* * 3901 * Functions defined below concern the OS part of the driver * 3902 * ********************************************************* */ 3903 3904 /** 3905 * s2io_open - open entry point of the driver 3906 * @dev : pointer to the device structure. 3907 * Description: 3908 * This function is the open entry point of the driver. It mainly calls a 3909 * function to allocate Rx buffers and inserts them into the buffer 3910 * descriptors and then enables the Rx part of the NIC. 3911 * Return value: 3912 * 0 on success and an appropriate (-)ve integer as defined in errno.h 3913 * file on failure. 3914 */ 3915 3916 static int s2io_open(struct net_device *dev) 3917 { 3918 struct s2io_nic *sp = netdev_priv(dev); 3919 struct swStat *swstats = &sp->mac_control.stats_info->sw_stat; 3920 int err = 0; 3921 3922 /* 3923 * Make sure you have link off by default every time 3924 * Nic is initialized 3925 */ 3926 netif_carrier_off(dev); 3927 sp->last_link_state = 0; 3928 3929 /* Initialize H/W and enable interrupts */ 3930 err = s2io_card_up(sp); 3931 if (err) { 3932 DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n", 3933 dev->name); 3934 goto hw_init_failed; 3935 } 3936 3937 if (do_s2io_prog_unicast(dev, dev->dev_addr) == FAILURE) { 3938 DBG_PRINT(ERR_DBG, "Set Mac Address Failed\n"); 3939 s2io_card_down(sp); 3940 err = -ENODEV; 3941 goto hw_init_failed; 3942 } 3943 s2io_start_all_tx_queue(sp); 3944 return 0; 3945 3946 hw_init_failed: 3947 if (sp->config.intr_type == MSI_X) { 3948 if (sp->entries) { 3949 kfree(sp->entries); 3950 swstats->mem_freed += sp->num_entries * 3951 sizeof(struct msix_entry); 3952 } 3953 if (sp->s2io_entries) { 3954 kfree(sp->s2io_entries); 3955 swstats->mem_freed += sp->num_entries * 3956 sizeof(struct s2io_msix_entry); 3957 } 3958 } 3959 return err; 3960 } 3961 3962 /** 3963 * s2io_close -close entry point of the driver 3964 * @dev : device pointer. 3965 * Description: 3966 * This is the stop entry point of the driver. It needs to undo exactly 3967 * whatever was done by the open entry point,thus it's usually referred to 3968 * as the close function.Among other things this function mainly stops the 3969 * Rx side of the NIC and frees all the Rx buffers in the Rx rings. 3970 * Return value: 3971 * 0 on success and an appropriate (-)ve integer as defined in errno.h 3972 * file on failure. 3973 */ 3974 3975 static int s2io_close(struct net_device *dev) 3976 { 3977 struct s2io_nic *sp = netdev_priv(dev); 3978 struct config_param *config = &sp->config; 3979 u64 tmp64; 3980 int offset; 3981 3982 /* Return if the device is already closed * 3983 * Can happen when s2io_card_up failed in change_mtu * 3984 */ 3985 if (!is_s2io_card_up(sp)) 3986 return 0; 3987 3988 s2io_stop_all_tx_queue(sp); 3989 /* delete all populated mac entries */ 3990 for (offset = 1; offset < config->max_mc_addr; offset++) { 3991 tmp64 = do_s2io_read_unicast_mc(sp, offset); 3992 if (tmp64 != S2IO_DISABLE_MAC_ENTRY) 3993 do_s2io_delete_unicast_mc(sp, tmp64); 3994 } 3995 3996 s2io_card_down(sp); 3997 3998 return 0; 3999 } 4000 4001 /** 4002 * s2io_xmit - Tx entry point of te driver 4003 * @skb : the socket buffer containing the Tx data. 4004 * @dev : device pointer. 4005 * Description : 4006 * This function is the Tx entry point of the driver. S2IO NIC supports 4007 * certain protocol assist features on Tx side, namely CSO, S/G, LSO. 4008 * NOTE: when device can't queue the pkt,just the trans_start variable will 4009 * not be upadted. 4010 * Return value: 4011 * 0 on success & 1 on failure. 4012 */ 4013 4014 static netdev_tx_t s2io_xmit(struct sk_buff *skb, struct net_device *dev) 4015 { 4016 struct s2io_nic *sp = netdev_priv(dev); 4017 u16 frg_cnt, frg_len, i, queue, queue_len, put_off, get_off; 4018 register u64 val64; 4019 struct TxD *txdp; 4020 struct TxFIFO_element __iomem *tx_fifo; 4021 unsigned long flags = 0; 4022 u16 vlan_tag = 0; 4023 struct fifo_info *fifo = NULL; 4024 int offload_type; 4025 int enable_per_list_interrupt = 0; 4026 struct config_param *config = &sp->config; 4027 struct mac_info *mac_control = &sp->mac_control; 4028 struct stat_block *stats = mac_control->stats_info; 4029 struct swStat *swstats = &stats->sw_stat; 4030 4031 DBG_PRINT(TX_DBG, "%s: In Neterion Tx routine\n", dev->name); 4032 4033 if (unlikely(skb->len <= 0)) { 4034 DBG_PRINT(TX_DBG, "%s: Buffer has no data..\n", dev->name); 4035 dev_kfree_skb_any(skb); 4036 return NETDEV_TX_OK; 4037 } 4038 4039 if (!is_s2io_card_up(sp)) { 4040 DBG_PRINT(TX_DBG, "%s: Card going down for reset\n", 4041 dev->name); 4042 dev_kfree_skb_any(skb); 4043 return NETDEV_TX_OK; 4044 } 4045 4046 queue = 0; 4047 if (skb_vlan_tag_present(skb)) 4048 vlan_tag = skb_vlan_tag_get(skb); 4049 if (sp->config.tx_steering_type == TX_DEFAULT_STEERING) { 4050 if (skb->protocol == htons(ETH_P_IP)) { 4051 struct iphdr *ip; 4052 struct tcphdr *th; 4053 ip = ip_hdr(skb); 4054 4055 if (!ip_is_fragment(ip)) { 4056 th = (struct tcphdr *)(((unsigned char *)ip) + 4057 ip->ihl*4); 4058 4059 if (ip->protocol == IPPROTO_TCP) { 4060 queue_len = sp->total_tcp_fifos; 4061 queue = (ntohs(th->source) + 4062 ntohs(th->dest)) & 4063 sp->fifo_selector[queue_len - 1]; 4064 if (queue >= queue_len) 4065 queue = queue_len - 1; 4066 } else if (ip->protocol == IPPROTO_UDP) { 4067 queue_len = sp->total_udp_fifos; 4068 queue = (ntohs(th->source) + 4069 ntohs(th->dest)) & 4070 sp->fifo_selector[queue_len - 1]; 4071 if (queue >= queue_len) 4072 queue = queue_len - 1; 4073 queue += sp->udp_fifo_idx; 4074 if (skb->len > 1024) 4075 enable_per_list_interrupt = 1; 4076 } 4077 } 4078 } 4079 } else if (sp->config.tx_steering_type == TX_PRIORITY_STEERING) 4080 /* get fifo number based on skb->priority value */ 4081 queue = config->fifo_mapping 4082 [skb->priority & (MAX_TX_FIFOS - 1)]; 4083 fifo = &mac_control->fifos[queue]; 4084 4085 spin_lock_irqsave(&fifo->tx_lock, flags); 4086 4087 if (sp->config.multiq) { 4088 if (__netif_subqueue_stopped(dev, fifo->fifo_no)) { 4089 spin_unlock_irqrestore(&fifo->tx_lock, flags); 4090 return NETDEV_TX_BUSY; 4091 } 4092 } else if (unlikely(fifo->queue_state == FIFO_QUEUE_STOP)) { 4093 if (netif_queue_stopped(dev)) { 4094 spin_unlock_irqrestore(&fifo->tx_lock, flags); 4095 return NETDEV_TX_BUSY; 4096 } 4097 } 4098 4099 put_off = (u16)fifo->tx_curr_put_info.offset; 4100 get_off = (u16)fifo->tx_curr_get_info.offset; 4101 txdp = fifo->list_info[put_off].list_virt_addr; 4102 4103 queue_len = fifo->tx_curr_put_info.fifo_len + 1; 4104 /* Avoid "put" pointer going beyond "get" pointer */ 4105 if (txdp->Host_Control || 4106 ((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) { 4107 DBG_PRINT(TX_DBG, "Error in xmit, No free TXDs.\n"); 4108 s2io_stop_tx_queue(sp, fifo->fifo_no); 4109 dev_kfree_skb_any(skb); 4110 spin_unlock_irqrestore(&fifo->tx_lock, flags); 4111 return NETDEV_TX_OK; 4112 } 4113 4114 offload_type = s2io_offload_type(skb); 4115 if (offload_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)) { 4116 txdp->Control_1 |= TXD_TCP_LSO_EN; 4117 txdp->Control_1 |= TXD_TCP_LSO_MSS(s2io_tcp_mss(skb)); 4118 } 4119 if (skb->ip_summed == CHECKSUM_PARTIAL) { 4120 txdp->Control_2 |= (TXD_TX_CKO_IPV4_EN | 4121 TXD_TX_CKO_TCP_EN | 4122 TXD_TX_CKO_UDP_EN); 4123 } 4124 txdp->Control_1 |= TXD_GATHER_CODE_FIRST; 4125 txdp->Control_1 |= TXD_LIST_OWN_XENA; 4126 txdp->Control_2 |= TXD_INT_NUMBER(fifo->fifo_no); 4127 if (enable_per_list_interrupt) 4128 if (put_off & (queue_len >> 5)) 4129 txdp->Control_2 |= TXD_INT_TYPE_PER_LIST; 4130 if (vlan_tag) { 4131 txdp->Control_2 |= TXD_VLAN_ENABLE; 4132 txdp->Control_2 |= TXD_VLAN_TAG(vlan_tag); 4133 } 4134 4135 frg_len = skb_headlen(skb); 4136 if (offload_type == SKB_GSO_UDP) { 4137 int ufo_size; 4138 4139 ufo_size = s2io_udp_mss(skb); 4140 ufo_size &= ~7; 4141 txdp->Control_1 |= TXD_UFO_EN; 4142 txdp->Control_1 |= TXD_UFO_MSS(ufo_size); 4143 txdp->Control_1 |= TXD_BUFFER0_SIZE(8); 4144 #ifdef __BIG_ENDIAN 4145 /* both variants do cpu_to_be64(be32_to_cpu(...)) */ 4146 fifo->ufo_in_band_v[put_off] = 4147 (__force u64)skb_shinfo(skb)->ip6_frag_id; 4148 #else 4149 fifo->ufo_in_band_v[put_off] = 4150 (__force u64)skb_shinfo(skb)->ip6_frag_id << 32; 4151 #endif 4152 txdp->Host_Control = (unsigned long)fifo->ufo_in_band_v; 4153 txdp->Buffer_Pointer = pci_map_single(sp->pdev, 4154 fifo->ufo_in_band_v, 4155 sizeof(u64), 4156 PCI_DMA_TODEVICE); 4157 if (pci_dma_mapping_error(sp->pdev, txdp->Buffer_Pointer)) 4158 goto pci_map_failed; 4159 txdp++; 4160 } 4161 4162 txdp->Buffer_Pointer = pci_map_single(sp->pdev, skb->data, 4163 frg_len, PCI_DMA_TODEVICE); 4164 if (pci_dma_mapping_error(sp->pdev, txdp->Buffer_Pointer)) 4165 goto pci_map_failed; 4166 4167 txdp->Host_Control = (unsigned long)skb; 4168 txdp->Control_1 |= TXD_BUFFER0_SIZE(frg_len); 4169 if (offload_type == SKB_GSO_UDP) 4170 txdp->Control_1 |= TXD_UFO_EN; 4171 4172 frg_cnt = skb_shinfo(skb)->nr_frags; 4173 /* For fragmented SKB. */ 4174 for (i = 0; i < frg_cnt; i++) { 4175 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 4176 /* A '0' length fragment will be ignored */ 4177 if (!skb_frag_size(frag)) 4178 continue; 4179 txdp++; 4180 txdp->Buffer_Pointer = (u64)skb_frag_dma_map(&sp->pdev->dev, 4181 frag, 0, 4182 skb_frag_size(frag), 4183 DMA_TO_DEVICE); 4184 txdp->Control_1 = TXD_BUFFER0_SIZE(skb_frag_size(frag)); 4185 if (offload_type == SKB_GSO_UDP) 4186 txdp->Control_1 |= TXD_UFO_EN; 4187 } 4188 txdp->Control_1 |= TXD_GATHER_CODE_LAST; 4189 4190 if (offload_type == SKB_GSO_UDP) 4191 frg_cnt++; /* as Txd0 was used for inband header */ 4192 4193 tx_fifo = mac_control->tx_FIFO_start[queue]; 4194 val64 = fifo->list_info[put_off].list_phy_addr; 4195 writeq(val64, &tx_fifo->TxDL_Pointer); 4196 4197 val64 = (TX_FIFO_LAST_TXD_NUM(frg_cnt) | TX_FIFO_FIRST_LIST | 4198 TX_FIFO_LAST_LIST); 4199 if (offload_type) 4200 val64 |= TX_FIFO_SPECIAL_FUNC; 4201 4202 writeq(val64, &tx_fifo->List_Control); 4203 4204 mmiowb(); 4205 4206 put_off++; 4207 if (put_off == fifo->tx_curr_put_info.fifo_len + 1) 4208 put_off = 0; 4209 fifo->tx_curr_put_info.offset = put_off; 4210 4211 /* Avoid "put" pointer going beyond "get" pointer */ 4212 if (((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) { 4213 swstats->fifo_full_cnt++; 4214 DBG_PRINT(TX_DBG, 4215 "No free TxDs for xmit, Put: 0x%x Get:0x%x\n", 4216 put_off, get_off); 4217 s2io_stop_tx_queue(sp, fifo->fifo_no); 4218 } 4219 swstats->mem_allocated += skb->truesize; 4220 spin_unlock_irqrestore(&fifo->tx_lock, flags); 4221 4222 if (sp->config.intr_type == MSI_X) 4223 tx_intr_handler(fifo); 4224 4225 return NETDEV_TX_OK; 4226 4227 pci_map_failed: 4228 swstats->pci_map_fail_cnt++; 4229 s2io_stop_tx_queue(sp, fifo->fifo_no); 4230 swstats->mem_freed += skb->truesize; 4231 dev_kfree_skb_any(skb); 4232 spin_unlock_irqrestore(&fifo->tx_lock, flags); 4233 return NETDEV_TX_OK; 4234 } 4235 4236 static void 4237 s2io_alarm_handle(unsigned long data) 4238 { 4239 struct s2io_nic *sp = (struct s2io_nic *)data; 4240 struct net_device *dev = sp->dev; 4241 4242 s2io_handle_errors(dev); 4243 mod_timer(&sp->alarm_timer, jiffies + HZ / 2); 4244 } 4245 4246 static irqreturn_t s2io_msix_ring_handle(int irq, void *dev_id) 4247 { 4248 struct ring_info *ring = (struct ring_info *)dev_id; 4249 struct s2io_nic *sp = ring->nic; 4250 struct XENA_dev_config __iomem *bar0 = sp->bar0; 4251 4252 if (unlikely(!is_s2io_card_up(sp))) 4253 return IRQ_HANDLED; 4254 4255 if (sp->config.napi) { 4256 u8 __iomem *addr = NULL; 4257 u8 val8 = 0; 4258 4259 addr = (u8 __iomem *)&bar0->xmsi_mask_reg; 4260 addr += (7 - ring->ring_no); 4261 val8 = (ring->ring_no == 0) ? 0x7f : 0xff; 4262 writeb(val8, addr); 4263 val8 = readb(addr); 4264 napi_schedule(&ring->napi); 4265 } else { 4266 rx_intr_handler(ring, 0); 4267 s2io_chk_rx_buffers(sp, ring); 4268 } 4269 4270 return IRQ_HANDLED; 4271 } 4272 4273 static irqreturn_t s2io_msix_fifo_handle(int irq, void *dev_id) 4274 { 4275 int i; 4276 struct fifo_info *fifos = (struct fifo_info *)dev_id; 4277 struct s2io_nic *sp = fifos->nic; 4278 struct XENA_dev_config __iomem *bar0 = sp->bar0; 4279 struct config_param *config = &sp->config; 4280 u64 reason; 4281 4282 if (unlikely(!is_s2io_card_up(sp))) 4283 return IRQ_NONE; 4284 4285 reason = readq(&bar0->general_int_status); 4286 if (unlikely(reason == S2IO_MINUS_ONE)) 4287 /* Nothing much can be done. Get out */ 4288 return IRQ_HANDLED; 4289 4290 if (reason & (GEN_INTR_TXPIC | GEN_INTR_TXTRAFFIC)) { 4291 writeq(S2IO_MINUS_ONE, &bar0->general_int_mask); 4292 4293 if (reason & GEN_INTR_TXPIC) 4294 s2io_txpic_intr_handle(sp); 4295 4296 if (reason & GEN_INTR_TXTRAFFIC) 4297 writeq(S2IO_MINUS_ONE, &bar0->tx_traffic_int); 4298 4299 for (i = 0; i < config->tx_fifo_num; i++) 4300 tx_intr_handler(&fifos[i]); 4301 4302 writeq(sp->general_int_mask, &bar0->general_int_mask); 4303 readl(&bar0->general_int_status); 4304 return IRQ_HANDLED; 4305 } 4306 /* The interrupt was not raised by us */ 4307 return IRQ_NONE; 4308 } 4309 4310 static void s2io_txpic_intr_handle(struct s2io_nic *sp) 4311 { 4312 struct XENA_dev_config __iomem *bar0 = sp->bar0; 4313 u64 val64; 4314 4315 val64 = readq(&bar0->pic_int_status); 4316 if (val64 & PIC_INT_GPIO) { 4317 val64 = readq(&bar0->gpio_int_reg); 4318 if ((val64 & GPIO_INT_REG_LINK_DOWN) && 4319 (val64 & GPIO_INT_REG_LINK_UP)) { 4320 /* 4321 * This is unstable state so clear both up/down 4322 * interrupt and adapter to re-evaluate the link state. 4323 */ 4324 val64 |= GPIO_INT_REG_LINK_DOWN; 4325 val64 |= GPIO_INT_REG_LINK_UP; 4326 writeq(val64, &bar0->gpio_int_reg); 4327 val64 = readq(&bar0->gpio_int_mask); 4328 val64 &= ~(GPIO_INT_MASK_LINK_UP | 4329 GPIO_INT_MASK_LINK_DOWN); 4330 writeq(val64, &bar0->gpio_int_mask); 4331 } else if (val64 & GPIO_INT_REG_LINK_UP) { 4332 val64 = readq(&bar0->adapter_status); 4333 /* Enable Adapter */ 4334 val64 = readq(&bar0->adapter_control); 4335 val64 |= ADAPTER_CNTL_EN; 4336 writeq(val64, &bar0->adapter_control); 4337 val64 |= ADAPTER_LED_ON; 4338 writeq(val64, &bar0->adapter_control); 4339 if (!sp->device_enabled_once) 4340 sp->device_enabled_once = 1; 4341 4342 s2io_link(sp, LINK_UP); 4343 /* 4344 * unmask link down interrupt and mask link-up 4345 * intr 4346 */ 4347 val64 = readq(&bar0->gpio_int_mask); 4348 val64 &= ~GPIO_INT_MASK_LINK_DOWN; 4349 val64 |= GPIO_INT_MASK_LINK_UP; 4350 writeq(val64, &bar0->gpio_int_mask); 4351 4352 } else if (val64 & GPIO_INT_REG_LINK_DOWN) { 4353 val64 = readq(&bar0->adapter_status); 4354 s2io_link(sp, LINK_DOWN); 4355 /* Link is down so unmaks link up interrupt */ 4356 val64 = readq(&bar0->gpio_int_mask); 4357 val64 &= ~GPIO_INT_MASK_LINK_UP; 4358 val64 |= GPIO_INT_MASK_LINK_DOWN; 4359 writeq(val64, &bar0->gpio_int_mask); 4360 4361 /* turn off LED */ 4362 val64 = readq(&bar0->adapter_control); 4363 val64 = val64 & (~ADAPTER_LED_ON); 4364 writeq(val64, &bar0->adapter_control); 4365 } 4366 } 4367 val64 = readq(&bar0->gpio_int_mask); 4368 } 4369 4370 /** 4371 * do_s2io_chk_alarm_bit - Check for alarm and incrment the counter 4372 * @value: alarm bits 4373 * @addr: address value 4374 * @cnt: counter variable 4375 * Description: Check for alarm and increment the counter 4376 * Return Value: 4377 * 1 - if alarm bit set 4378 * 0 - if alarm bit is not set 4379 */ 4380 static int do_s2io_chk_alarm_bit(u64 value, void __iomem *addr, 4381 unsigned long long *cnt) 4382 { 4383 u64 val64; 4384 val64 = readq(addr); 4385 if (val64 & value) { 4386 writeq(val64, addr); 4387 (*cnt)++; 4388 return 1; 4389 } 4390 return 0; 4391 4392 } 4393 4394 /** 4395 * s2io_handle_errors - Xframe error indication handler 4396 * @nic: device private variable 4397 * Description: Handle alarms such as loss of link, single or 4398 * double ECC errors, critical and serious errors. 4399 * Return Value: 4400 * NONE 4401 */ 4402 static void s2io_handle_errors(void *dev_id) 4403 { 4404 struct net_device *dev = (struct net_device *)dev_id; 4405 struct s2io_nic *sp = netdev_priv(dev); 4406 struct XENA_dev_config __iomem *bar0 = sp->bar0; 4407 u64 temp64 = 0, val64 = 0; 4408 int i = 0; 4409 4410 struct swStat *sw_stat = &sp->mac_control.stats_info->sw_stat; 4411 struct xpakStat *stats = &sp->mac_control.stats_info->xpak_stat; 4412 4413 if (!is_s2io_card_up(sp)) 4414 return; 4415 4416 if (pci_channel_offline(sp->pdev)) 4417 return; 4418 4419 memset(&sw_stat->ring_full_cnt, 0, 4420 sizeof(sw_stat->ring_full_cnt)); 4421 4422 /* Handling the XPAK counters update */ 4423 if (stats->xpak_timer_count < 72000) { 4424 /* waiting for an hour */ 4425 stats->xpak_timer_count++; 4426 } else { 4427 s2io_updt_xpak_counter(dev); 4428 /* reset the count to zero */ 4429 stats->xpak_timer_count = 0; 4430 } 4431 4432 /* Handling link status change error Intr */ 4433 if (s2io_link_fault_indication(sp) == MAC_RMAC_ERR_TIMER) { 4434 val64 = readq(&bar0->mac_rmac_err_reg); 4435 writeq(val64, &bar0->mac_rmac_err_reg); 4436 if (val64 & RMAC_LINK_STATE_CHANGE_INT) 4437 schedule_work(&sp->set_link_task); 4438 } 4439 4440 /* In case of a serious error, the device will be Reset. */ 4441 if (do_s2io_chk_alarm_bit(SERR_SOURCE_ANY, &bar0->serr_source, 4442 &sw_stat->serious_err_cnt)) 4443 goto reset; 4444 4445 /* Check for data parity error */ 4446 if (do_s2io_chk_alarm_bit(GPIO_INT_REG_DP_ERR_INT, &bar0->gpio_int_reg, 4447 &sw_stat->parity_err_cnt)) 4448 goto reset; 4449 4450 /* Check for ring full counter */ 4451 if (sp->device_type == XFRAME_II_DEVICE) { 4452 val64 = readq(&bar0->ring_bump_counter1); 4453 for (i = 0; i < 4; i++) { 4454 temp64 = (val64 & vBIT(0xFFFF, (i*16), 16)); 4455 temp64 >>= 64 - ((i+1)*16); 4456 sw_stat->ring_full_cnt[i] += temp64; 4457 } 4458 4459 val64 = readq(&bar0->ring_bump_counter2); 4460 for (i = 0; i < 4; i++) { 4461 temp64 = (val64 & vBIT(0xFFFF, (i*16), 16)); 4462 temp64 >>= 64 - ((i+1)*16); 4463 sw_stat->ring_full_cnt[i+4] += temp64; 4464 } 4465 } 4466 4467 val64 = readq(&bar0->txdma_int_status); 4468 /*check for pfc_err*/ 4469 if (val64 & TXDMA_PFC_INT) { 4470 if (do_s2io_chk_alarm_bit(PFC_ECC_DB_ERR | PFC_SM_ERR_ALARM | 4471 PFC_MISC_0_ERR | PFC_MISC_1_ERR | 4472 PFC_PCIX_ERR, 4473 &bar0->pfc_err_reg, 4474 &sw_stat->pfc_err_cnt)) 4475 goto reset; 4476 do_s2io_chk_alarm_bit(PFC_ECC_SG_ERR, 4477 &bar0->pfc_err_reg, 4478 &sw_stat->pfc_err_cnt); 4479 } 4480 4481 /*check for tda_err*/ 4482 if (val64 & TXDMA_TDA_INT) { 4483 if (do_s2io_chk_alarm_bit(TDA_Fn_ECC_DB_ERR | 4484 TDA_SM0_ERR_ALARM | 4485 TDA_SM1_ERR_ALARM, 4486 &bar0->tda_err_reg, 4487 &sw_stat->tda_err_cnt)) 4488 goto reset; 4489 do_s2io_chk_alarm_bit(TDA_Fn_ECC_SG_ERR | TDA_PCIX_ERR, 4490 &bar0->tda_err_reg, 4491 &sw_stat->tda_err_cnt); 4492 } 4493 /*check for pcc_err*/ 4494 if (val64 & TXDMA_PCC_INT) { 4495 if (do_s2io_chk_alarm_bit(PCC_SM_ERR_ALARM | PCC_WR_ERR_ALARM | 4496 PCC_N_SERR | PCC_6_COF_OV_ERR | 4497 PCC_7_COF_OV_ERR | PCC_6_LSO_OV_ERR | 4498 PCC_7_LSO_OV_ERR | PCC_FB_ECC_DB_ERR | 4499 PCC_TXB_ECC_DB_ERR, 4500 &bar0->pcc_err_reg, 4501 &sw_stat->pcc_err_cnt)) 4502 goto reset; 4503 do_s2io_chk_alarm_bit(PCC_FB_ECC_SG_ERR | PCC_TXB_ECC_SG_ERR, 4504 &bar0->pcc_err_reg, 4505 &sw_stat->pcc_err_cnt); 4506 } 4507 4508 /*check for tti_err*/ 4509 if (val64 & TXDMA_TTI_INT) { 4510 if (do_s2io_chk_alarm_bit(TTI_SM_ERR_ALARM, 4511 &bar0->tti_err_reg, 4512 &sw_stat->tti_err_cnt)) 4513 goto reset; 4514 do_s2io_chk_alarm_bit(TTI_ECC_SG_ERR | TTI_ECC_DB_ERR, 4515 &bar0->tti_err_reg, 4516 &sw_stat->tti_err_cnt); 4517 } 4518 4519 /*check for lso_err*/ 4520 if (val64 & TXDMA_LSO_INT) { 4521 if (do_s2io_chk_alarm_bit(LSO6_ABORT | LSO7_ABORT | 4522 LSO6_SM_ERR_ALARM | LSO7_SM_ERR_ALARM, 4523 &bar0->lso_err_reg, 4524 &sw_stat->lso_err_cnt)) 4525 goto reset; 4526 do_s2io_chk_alarm_bit(LSO6_SEND_OFLOW | LSO7_SEND_OFLOW, 4527 &bar0->lso_err_reg, 4528 &sw_stat->lso_err_cnt); 4529 } 4530 4531 /*check for tpa_err*/ 4532 if (val64 & TXDMA_TPA_INT) { 4533 if (do_s2io_chk_alarm_bit(TPA_SM_ERR_ALARM, 4534 &bar0->tpa_err_reg, 4535 &sw_stat->tpa_err_cnt)) 4536 goto reset; 4537 do_s2io_chk_alarm_bit(TPA_TX_FRM_DROP, 4538 &bar0->tpa_err_reg, 4539 &sw_stat->tpa_err_cnt); 4540 } 4541 4542 /*check for sm_err*/ 4543 if (val64 & TXDMA_SM_INT) { 4544 if (do_s2io_chk_alarm_bit(SM_SM_ERR_ALARM, 4545 &bar0->sm_err_reg, 4546 &sw_stat->sm_err_cnt)) 4547 goto reset; 4548 } 4549 4550 val64 = readq(&bar0->mac_int_status); 4551 if (val64 & MAC_INT_STATUS_TMAC_INT) { 4552 if (do_s2io_chk_alarm_bit(TMAC_TX_BUF_OVRN | TMAC_TX_SM_ERR, 4553 &bar0->mac_tmac_err_reg, 4554 &sw_stat->mac_tmac_err_cnt)) 4555 goto reset; 4556 do_s2io_chk_alarm_bit(TMAC_ECC_SG_ERR | TMAC_ECC_DB_ERR | 4557 TMAC_DESC_ECC_SG_ERR | 4558 TMAC_DESC_ECC_DB_ERR, 4559 &bar0->mac_tmac_err_reg, 4560 &sw_stat->mac_tmac_err_cnt); 4561 } 4562 4563 val64 = readq(&bar0->xgxs_int_status); 4564 if (val64 & XGXS_INT_STATUS_TXGXS) { 4565 if (do_s2io_chk_alarm_bit(TXGXS_ESTORE_UFLOW | TXGXS_TX_SM_ERR, 4566 &bar0->xgxs_txgxs_err_reg, 4567 &sw_stat->xgxs_txgxs_err_cnt)) 4568 goto reset; 4569 do_s2io_chk_alarm_bit(TXGXS_ECC_SG_ERR | TXGXS_ECC_DB_ERR, 4570 &bar0->xgxs_txgxs_err_reg, 4571 &sw_stat->xgxs_txgxs_err_cnt); 4572 } 4573 4574 val64 = readq(&bar0->rxdma_int_status); 4575 if (val64 & RXDMA_INT_RC_INT_M) { 4576 if (do_s2io_chk_alarm_bit(RC_PRCn_ECC_DB_ERR | 4577 RC_FTC_ECC_DB_ERR | 4578 RC_PRCn_SM_ERR_ALARM | 4579 RC_FTC_SM_ERR_ALARM, 4580 &bar0->rc_err_reg, 4581 &sw_stat->rc_err_cnt)) 4582 goto reset; 4583 do_s2io_chk_alarm_bit(RC_PRCn_ECC_SG_ERR | 4584 RC_FTC_ECC_SG_ERR | 4585 RC_RDA_FAIL_WR_Rn, &bar0->rc_err_reg, 4586 &sw_stat->rc_err_cnt); 4587 if (do_s2io_chk_alarm_bit(PRC_PCI_AB_RD_Rn | 4588 PRC_PCI_AB_WR_Rn | 4589 PRC_PCI_AB_F_WR_Rn, 4590 &bar0->prc_pcix_err_reg, 4591 &sw_stat->prc_pcix_err_cnt)) 4592 goto reset; 4593 do_s2io_chk_alarm_bit(PRC_PCI_DP_RD_Rn | 4594 PRC_PCI_DP_WR_Rn | 4595 PRC_PCI_DP_F_WR_Rn, 4596 &bar0->prc_pcix_err_reg, 4597 &sw_stat->prc_pcix_err_cnt); 4598 } 4599 4600 if (val64 & RXDMA_INT_RPA_INT_M) { 4601 if (do_s2io_chk_alarm_bit(RPA_SM_ERR_ALARM | RPA_CREDIT_ERR, 4602 &bar0->rpa_err_reg, 4603 &sw_stat->rpa_err_cnt)) 4604 goto reset; 4605 do_s2io_chk_alarm_bit(RPA_ECC_SG_ERR | RPA_ECC_DB_ERR, 4606 &bar0->rpa_err_reg, 4607 &sw_stat->rpa_err_cnt); 4608 } 4609 4610 if (val64 & RXDMA_INT_RDA_INT_M) { 4611 if (do_s2io_chk_alarm_bit(RDA_RXDn_ECC_DB_ERR | 4612 RDA_FRM_ECC_DB_N_AERR | 4613 RDA_SM1_ERR_ALARM | 4614 RDA_SM0_ERR_ALARM | 4615 RDA_RXD_ECC_DB_SERR, 4616 &bar0->rda_err_reg, 4617 &sw_stat->rda_err_cnt)) 4618 goto reset; 4619 do_s2io_chk_alarm_bit(RDA_RXDn_ECC_SG_ERR | 4620 RDA_FRM_ECC_SG_ERR | 4621 RDA_MISC_ERR | 4622 RDA_PCIX_ERR, 4623 &bar0->rda_err_reg, 4624 &sw_stat->rda_err_cnt); 4625 } 4626 4627 if (val64 & RXDMA_INT_RTI_INT_M) { 4628 if (do_s2io_chk_alarm_bit(RTI_SM_ERR_ALARM, 4629 &bar0->rti_err_reg, 4630 &sw_stat->rti_err_cnt)) 4631 goto reset; 4632 do_s2io_chk_alarm_bit(RTI_ECC_SG_ERR | RTI_ECC_DB_ERR, 4633 &bar0->rti_err_reg, 4634 &sw_stat->rti_err_cnt); 4635 } 4636 4637 val64 = readq(&bar0->mac_int_status); 4638 if (val64 & MAC_INT_STATUS_RMAC_INT) { 4639 if (do_s2io_chk_alarm_bit(RMAC_RX_BUFF_OVRN | RMAC_RX_SM_ERR, 4640 &bar0->mac_rmac_err_reg, 4641 &sw_stat->mac_rmac_err_cnt)) 4642 goto reset; 4643 do_s2io_chk_alarm_bit(RMAC_UNUSED_INT | 4644 RMAC_SINGLE_ECC_ERR | 4645 RMAC_DOUBLE_ECC_ERR, 4646 &bar0->mac_rmac_err_reg, 4647 &sw_stat->mac_rmac_err_cnt); 4648 } 4649 4650 val64 = readq(&bar0->xgxs_int_status); 4651 if (val64 & XGXS_INT_STATUS_RXGXS) { 4652 if (do_s2io_chk_alarm_bit(RXGXS_ESTORE_OFLOW | RXGXS_RX_SM_ERR, 4653 &bar0->xgxs_rxgxs_err_reg, 4654 &sw_stat->xgxs_rxgxs_err_cnt)) 4655 goto reset; 4656 } 4657 4658 val64 = readq(&bar0->mc_int_status); 4659 if (val64 & MC_INT_STATUS_MC_INT) { 4660 if (do_s2io_chk_alarm_bit(MC_ERR_REG_SM_ERR, 4661 &bar0->mc_err_reg, 4662 &sw_stat->mc_err_cnt)) 4663 goto reset; 4664 4665 /* Handling Ecc errors */ 4666 if (val64 & (MC_ERR_REG_ECC_ALL_SNG | MC_ERR_REG_ECC_ALL_DBL)) { 4667 writeq(val64, &bar0->mc_err_reg); 4668 if (val64 & MC_ERR_REG_ECC_ALL_DBL) { 4669 sw_stat->double_ecc_errs++; 4670 if (sp->device_type != XFRAME_II_DEVICE) { 4671 /* 4672 * Reset XframeI only if critical error 4673 */ 4674 if (val64 & 4675 (MC_ERR_REG_MIRI_ECC_DB_ERR_0 | 4676 MC_ERR_REG_MIRI_ECC_DB_ERR_1)) 4677 goto reset; 4678 } 4679 } else 4680 sw_stat->single_ecc_errs++; 4681 } 4682 } 4683 return; 4684 4685 reset: 4686 s2io_stop_all_tx_queue(sp); 4687 schedule_work(&sp->rst_timer_task); 4688 sw_stat->soft_reset_cnt++; 4689 } 4690 4691 /** 4692 * s2io_isr - ISR handler of the device . 4693 * @irq: the irq of the device. 4694 * @dev_id: a void pointer to the dev structure of the NIC. 4695 * Description: This function is the ISR handler of the device. It 4696 * identifies the reason for the interrupt and calls the relevant 4697 * service routines. As a contongency measure, this ISR allocates the 4698 * recv buffers, if their numbers are below the panic value which is 4699 * presently set to 25% of the original number of rcv buffers allocated. 4700 * Return value: 4701 * IRQ_HANDLED: will be returned if IRQ was handled by this routine 4702 * IRQ_NONE: will be returned if interrupt is not from our device 4703 */ 4704 static irqreturn_t s2io_isr(int irq, void *dev_id) 4705 { 4706 struct net_device *dev = (struct net_device *)dev_id; 4707 struct s2io_nic *sp = netdev_priv(dev); 4708 struct XENA_dev_config __iomem *bar0 = sp->bar0; 4709 int i; 4710 u64 reason = 0; 4711 struct mac_info *mac_control; 4712 struct config_param *config; 4713 4714 /* Pretend we handled any irq's from a disconnected card */ 4715 if (pci_channel_offline(sp->pdev)) 4716 return IRQ_NONE; 4717 4718 if (!is_s2io_card_up(sp)) 4719 return IRQ_NONE; 4720 4721 config = &sp->config; 4722 mac_control = &sp->mac_control; 4723 4724 /* 4725 * Identify the cause for interrupt and call the appropriate 4726 * interrupt handler. Causes for the interrupt could be; 4727 * 1. Rx of packet. 4728 * 2. Tx complete. 4729 * 3. Link down. 4730 */ 4731 reason = readq(&bar0->general_int_status); 4732 4733 if (unlikely(reason == S2IO_MINUS_ONE)) 4734 return IRQ_HANDLED; /* Nothing much can be done. Get out */ 4735 4736 if (reason & 4737 (GEN_INTR_RXTRAFFIC | GEN_INTR_TXTRAFFIC | GEN_INTR_TXPIC)) { 4738 writeq(S2IO_MINUS_ONE, &bar0->general_int_mask); 4739 4740 if (config->napi) { 4741 if (reason & GEN_INTR_RXTRAFFIC) { 4742 napi_schedule(&sp->napi); 4743 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_mask); 4744 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int); 4745 readl(&bar0->rx_traffic_int); 4746 } 4747 } else { 4748 /* 4749 * rx_traffic_int reg is an R1 register, writing all 1's 4750 * will ensure that the actual interrupt causing bit 4751 * get's cleared and hence a read can be avoided. 4752 */ 4753 if (reason & GEN_INTR_RXTRAFFIC) 4754 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int); 4755 4756 for (i = 0; i < config->rx_ring_num; i++) { 4757 struct ring_info *ring = &mac_control->rings[i]; 4758 4759 rx_intr_handler(ring, 0); 4760 } 4761 } 4762 4763 /* 4764 * tx_traffic_int reg is an R1 register, writing all 1's 4765 * will ensure that the actual interrupt causing bit get's 4766 * cleared and hence a read can be avoided. 4767 */ 4768 if (reason & GEN_INTR_TXTRAFFIC) 4769 writeq(S2IO_MINUS_ONE, &bar0->tx_traffic_int); 4770 4771 for (i = 0; i < config->tx_fifo_num; i++) 4772 tx_intr_handler(&mac_control->fifos[i]); 4773 4774 if (reason & GEN_INTR_TXPIC) 4775 s2io_txpic_intr_handle(sp); 4776 4777 /* 4778 * Reallocate the buffers from the interrupt handler itself. 4779 */ 4780 if (!config->napi) { 4781 for (i = 0; i < config->rx_ring_num; i++) { 4782 struct ring_info *ring = &mac_control->rings[i]; 4783 4784 s2io_chk_rx_buffers(sp, ring); 4785 } 4786 } 4787 writeq(sp->general_int_mask, &bar0->general_int_mask); 4788 readl(&bar0->general_int_status); 4789 4790 return IRQ_HANDLED; 4791 4792 } else if (!reason) { 4793 /* The interrupt was not raised by us */ 4794 return IRQ_NONE; 4795 } 4796 4797 return IRQ_HANDLED; 4798 } 4799 4800 /** 4801 * s2io_updt_stats - 4802 */ 4803 static void s2io_updt_stats(struct s2io_nic *sp) 4804 { 4805 struct XENA_dev_config __iomem *bar0 = sp->bar0; 4806 u64 val64; 4807 int cnt = 0; 4808 4809 if (is_s2io_card_up(sp)) { 4810 /* Apprx 30us on a 133 MHz bus */ 4811 val64 = SET_UPDT_CLICKS(10) | 4812 STAT_CFG_ONE_SHOT_EN | STAT_CFG_STAT_EN; 4813 writeq(val64, &bar0->stat_cfg); 4814 do { 4815 udelay(100); 4816 val64 = readq(&bar0->stat_cfg); 4817 if (!(val64 & s2BIT(0))) 4818 break; 4819 cnt++; 4820 if (cnt == 5) 4821 break; /* Updt failed */ 4822 } while (1); 4823 } 4824 } 4825 4826 /** 4827 * s2io_get_stats - Updates the device statistics structure. 4828 * @dev : pointer to the device structure. 4829 * Description: 4830 * This function updates the device statistics structure in the s2io_nic 4831 * structure and returns a pointer to the same. 4832 * Return value: 4833 * pointer to the updated net_device_stats structure. 4834 */ 4835 static struct net_device_stats *s2io_get_stats(struct net_device *dev) 4836 { 4837 struct s2io_nic *sp = netdev_priv(dev); 4838 struct mac_info *mac_control = &sp->mac_control; 4839 struct stat_block *stats = mac_control->stats_info; 4840 u64 delta; 4841 4842 /* Configure Stats for immediate updt */ 4843 s2io_updt_stats(sp); 4844 4845 /* A device reset will cause the on-adapter statistics to be zero'ed. 4846 * This can be done while running by changing the MTU. To prevent the 4847 * system from having the stats zero'ed, the driver keeps a copy of the 4848 * last update to the system (which is also zero'ed on reset). This 4849 * enables the driver to accurately know the delta between the last 4850 * update and the current update. 4851 */ 4852 delta = ((u64) le32_to_cpu(stats->rmac_vld_frms_oflow) << 32 | 4853 le32_to_cpu(stats->rmac_vld_frms)) - sp->stats.rx_packets; 4854 sp->stats.rx_packets += delta; 4855 dev->stats.rx_packets += delta; 4856 4857 delta = ((u64) le32_to_cpu(stats->tmac_frms_oflow) << 32 | 4858 le32_to_cpu(stats->tmac_frms)) - sp->stats.tx_packets; 4859 sp->stats.tx_packets += delta; 4860 dev->stats.tx_packets += delta; 4861 4862 delta = ((u64) le32_to_cpu(stats->rmac_data_octets_oflow) << 32 | 4863 le32_to_cpu(stats->rmac_data_octets)) - sp->stats.rx_bytes; 4864 sp->stats.rx_bytes += delta; 4865 dev->stats.rx_bytes += delta; 4866 4867 delta = ((u64) le32_to_cpu(stats->tmac_data_octets_oflow) << 32 | 4868 le32_to_cpu(stats->tmac_data_octets)) - sp->stats.tx_bytes; 4869 sp->stats.tx_bytes += delta; 4870 dev->stats.tx_bytes += delta; 4871 4872 delta = le64_to_cpu(stats->rmac_drop_frms) - sp->stats.rx_errors; 4873 sp->stats.rx_errors += delta; 4874 dev->stats.rx_errors += delta; 4875 4876 delta = ((u64) le32_to_cpu(stats->tmac_any_err_frms_oflow) << 32 | 4877 le32_to_cpu(stats->tmac_any_err_frms)) - sp->stats.tx_errors; 4878 sp->stats.tx_errors += delta; 4879 dev->stats.tx_errors += delta; 4880 4881 delta = le64_to_cpu(stats->rmac_drop_frms) - sp->stats.rx_dropped; 4882 sp->stats.rx_dropped += delta; 4883 dev->stats.rx_dropped += delta; 4884 4885 delta = le64_to_cpu(stats->tmac_drop_frms) - sp->stats.tx_dropped; 4886 sp->stats.tx_dropped += delta; 4887 dev->stats.tx_dropped += delta; 4888 4889 /* The adapter MAC interprets pause frames as multicast packets, but 4890 * does not pass them up. This erroneously increases the multicast 4891 * packet count and needs to be deducted when the multicast frame count 4892 * is queried. 4893 */ 4894 delta = (u64) le32_to_cpu(stats->rmac_vld_mcst_frms_oflow) << 32 | 4895 le32_to_cpu(stats->rmac_vld_mcst_frms); 4896 delta -= le64_to_cpu(stats->rmac_pause_ctrl_frms); 4897 delta -= sp->stats.multicast; 4898 sp->stats.multicast += delta; 4899 dev->stats.multicast += delta; 4900 4901 delta = ((u64) le32_to_cpu(stats->rmac_usized_frms_oflow) << 32 | 4902 le32_to_cpu(stats->rmac_usized_frms)) + 4903 le64_to_cpu(stats->rmac_long_frms) - sp->stats.rx_length_errors; 4904 sp->stats.rx_length_errors += delta; 4905 dev->stats.rx_length_errors += delta; 4906 4907 delta = le64_to_cpu(stats->rmac_fcs_err_frms) - sp->stats.rx_crc_errors; 4908 sp->stats.rx_crc_errors += delta; 4909 dev->stats.rx_crc_errors += delta; 4910 4911 return &dev->stats; 4912 } 4913 4914 /** 4915 * s2io_set_multicast - entry point for multicast address enable/disable. 4916 * @dev : pointer to the device structure 4917 * Description: 4918 * This function is a driver entry point which gets called by the kernel 4919 * whenever multicast addresses must be enabled/disabled. This also gets 4920 * called to set/reset promiscuous mode. Depending on the deivce flag, we 4921 * determine, if multicast address must be enabled or if promiscuous mode 4922 * is to be disabled etc. 4923 * Return value: 4924 * void. 4925 */ 4926 4927 static void s2io_set_multicast(struct net_device *dev) 4928 { 4929 int i, j, prev_cnt; 4930 struct netdev_hw_addr *ha; 4931 struct s2io_nic *sp = netdev_priv(dev); 4932 struct XENA_dev_config __iomem *bar0 = sp->bar0; 4933 u64 val64 = 0, multi_mac = 0x010203040506ULL, mask = 4934 0xfeffffffffffULL; 4935 u64 dis_addr = S2IO_DISABLE_MAC_ENTRY, mac_addr = 0; 4936 void __iomem *add; 4937 struct config_param *config = &sp->config; 4938 4939 if ((dev->flags & IFF_ALLMULTI) && (!sp->m_cast_flg)) { 4940 /* Enable all Multicast addresses */ 4941 writeq(RMAC_ADDR_DATA0_MEM_ADDR(multi_mac), 4942 &bar0->rmac_addr_data0_mem); 4943 writeq(RMAC_ADDR_DATA1_MEM_MASK(mask), 4944 &bar0->rmac_addr_data1_mem); 4945 val64 = RMAC_ADDR_CMD_MEM_WE | 4946 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD | 4947 RMAC_ADDR_CMD_MEM_OFFSET(config->max_mc_addr - 1); 4948 writeq(val64, &bar0->rmac_addr_cmd_mem); 4949 /* Wait till command completes */ 4950 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem, 4951 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING, 4952 S2IO_BIT_RESET); 4953 4954 sp->m_cast_flg = 1; 4955 sp->all_multi_pos = config->max_mc_addr - 1; 4956 } else if ((dev->flags & IFF_ALLMULTI) && (sp->m_cast_flg)) { 4957 /* Disable all Multicast addresses */ 4958 writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr), 4959 &bar0->rmac_addr_data0_mem); 4960 writeq(RMAC_ADDR_DATA1_MEM_MASK(0x0), 4961 &bar0->rmac_addr_data1_mem); 4962 val64 = RMAC_ADDR_CMD_MEM_WE | 4963 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD | 4964 RMAC_ADDR_CMD_MEM_OFFSET(sp->all_multi_pos); 4965 writeq(val64, &bar0->rmac_addr_cmd_mem); 4966 /* Wait till command completes */ 4967 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem, 4968 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING, 4969 S2IO_BIT_RESET); 4970 4971 sp->m_cast_flg = 0; 4972 sp->all_multi_pos = 0; 4973 } 4974 4975 if ((dev->flags & IFF_PROMISC) && (!sp->promisc_flg)) { 4976 /* Put the NIC into promiscuous mode */ 4977 add = &bar0->mac_cfg; 4978 val64 = readq(&bar0->mac_cfg); 4979 val64 |= MAC_CFG_RMAC_PROM_ENABLE; 4980 4981 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key); 4982 writel((u32)val64, add); 4983 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key); 4984 writel((u32) (val64 >> 32), (add + 4)); 4985 4986 if (vlan_tag_strip != 1) { 4987 val64 = readq(&bar0->rx_pa_cfg); 4988 val64 &= ~RX_PA_CFG_STRIP_VLAN_TAG; 4989 writeq(val64, &bar0->rx_pa_cfg); 4990 sp->vlan_strip_flag = 0; 4991 } 4992 4993 val64 = readq(&bar0->mac_cfg); 4994 sp->promisc_flg = 1; 4995 DBG_PRINT(INFO_DBG, "%s: entered promiscuous mode\n", 4996 dev->name); 4997 } else if (!(dev->flags & IFF_PROMISC) && (sp->promisc_flg)) { 4998 /* Remove the NIC from promiscuous mode */ 4999 add = &bar0->mac_cfg; 5000 val64 = readq(&bar0->mac_cfg); 5001 val64 &= ~MAC_CFG_RMAC_PROM_ENABLE; 5002 5003 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key); 5004 writel((u32)val64, add); 5005 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key); 5006 writel((u32) (val64 >> 32), (add + 4)); 5007 5008 if (vlan_tag_strip != 0) { 5009 val64 = readq(&bar0->rx_pa_cfg); 5010 val64 |= RX_PA_CFG_STRIP_VLAN_TAG; 5011 writeq(val64, &bar0->rx_pa_cfg); 5012 sp->vlan_strip_flag = 1; 5013 } 5014 5015 val64 = readq(&bar0->mac_cfg); 5016 sp->promisc_flg = 0; 5017 DBG_PRINT(INFO_DBG, "%s: left promiscuous mode\n", dev->name); 5018 } 5019 5020 /* Update individual M_CAST address list */ 5021 if ((!sp->m_cast_flg) && netdev_mc_count(dev)) { 5022 if (netdev_mc_count(dev) > 5023 (config->max_mc_addr - config->max_mac_addr)) { 5024 DBG_PRINT(ERR_DBG, 5025 "%s: No more Rx filters can be added - " 5026 "please enable ALL_MULTI instead\n", 5027 dev->name); 5028 return; 5029 } 5030 5031 prev_cnt = sp->mc_addr_count; 5032 sp->mc_addr_count = netdev_mc_count(dev); 5033 5034 /* Clear out the previous list of Mc in the H/W. */ 5035 for (i = 0; i < prev_cnt; i++) { 5036 writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr), 5037 &bar0->rmac_addr_data0_mem); 5038 writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL), 5039 &bar0->rmac_addr_data1_mem); 5040 val64 = RMAC_ADDR_CMD_MEM_WE | 5041 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD | 5042 RMAC_ADDR_CMD_MEM_OFFSET 5043 (config->mc_start_offset + i); 5044 writeq(val64, &bar0->rmac_addr_cmd_mem); 5045 5046 /* Wait for command completes */ 5047 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem, 5048 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING, 5049 S2IO_BIT_RESET)) { 5050 DBG_PRINT(ERR_DBG, 5051 "%s: Adding Multicasts failed\n", 5052 dev->name); 5053 return; 5054 } 5055 } 5056 5057 /* Create the new Rx filter list and update the same in H/W. */ 5058 i = 0; 5059 netdev_for_each_mc_addr(ha, dev) { 5060 mac_addr = 0; 5061 for (j = 0; j < ETH_ALEN; j++) { 5062 mac_addr |= ha->addr[j]; 5063 mac_addr <<= 8; 5064 } 5065 mac_addr >>= 8; 5066 writeq(RMAC_ADDR_DATA0_MEM_ADDR(mac_addr), 5067 &bar0->rmac_addr_data0_mem); 5068 writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL), 5069 &bar0->rmac_addr_data1_mem); 5070 val64 = RMAC_ADDR_CMD_MEM_WE | 5071 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD | 5072 RMAC_ADDR_CMD_MEM_OFFSET 5073 (i + config->mc_start_offset); 5074 writeq(val64, &bar0->rmac_addr_cmd_mem); 5075 5076 /* Wait for command completes */ 5077 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem, 5078 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING, 5079 S2IO_BIT_RESET)) { 5080 DBG_PRINT(ERR_DBG, 5081 "%s: Adding Multicasts failed\n", 5082 dev->name); 5083 return; 5084 } 5085 i++; 5086 } 5087 } 5088 } 5089 5090 /* read from CAM unicast & multicast addresses and store it in 5091 * def_mac_addr structure 5092 */ 5093 static void do_s2io_store_unicast_mc(struct s2io_nic *sp) 5094 { 5095 int offset; 5096 u64 mac_addr = 0x0; 5097 struct config_param *config = &sp->config; 5098 5099 /* store unicast & multicast mac addresses */ 5100 for (offset = 0; offset < config->max_mc_addr; offset++) { 5101 mac_addr = do_s2io_read_unicast_mc(sp, offset); 5102 /* if read fails disable the entry */ 5103 if (mac_addr == FAILURE) 5104 mac_addr = S2IO_DISABLE_MAC_ENTRY; 5105 do_s2io_copy_mac_addr(sp, offset, mac_addr); 5106 } 5107 } 5108 5109 /* restore unicast & multicast MAC to CAM from def_mac_addr structure */ 5110 static void do_s2io_restore_unicast_mc(struct s2io_nic *sp) 5111 { 5112 int offset; 5113 struct config_param *config = &sp->config; 5114 /* restore unicast mac address */ 5115 for (offset = 0; offset < config->max_mac_addr; offset++) 5116 do_s2io_prog_unicast(sp->dev, 5117 sp->def_mac_addr[offset].mac_addr); 5118 5119 /* restore multicast mac address */ 5120 for (offset = config->mc_start_offset; 5121 offset < config->max_mc_addr; offset++) 5122 do_s2io_add_mc(sp, sp->def_mac_addr[offset].mac_addr); 5123 } 5124 5125 /* add a multicast MAC address to CAM */ 5126 static int do_s2io_add_mc(struct s2io_nic *sp, u8 *addr) 5127 { 5128 int i; 5129 u64 mac_addr = 0; 5130 struct config_param *config = &sp->config; 5131 5132 for (i = 0; i < ETH_ALEN; i++) { 5133 mac_addr <<= 8; 5134 mac_addr |= addr[i]; 5135 } 5136 if ((0ULL == mac_addr) || (mac_addr == S2IO_DISABLE_MAC_ENTRY)) 5137 return SUCCESS; 5138 5139 /* check if the multicast mac already preset in CAM */ 5140 for (i = config->mc_start_offset; i < config->max_mc_addr; i++) { 5141 u64 tmp64; 5142 tmp64 = do_s2io_read_unicast_mc(sp, i); 5143 if (tmp64 == S2IO_DISABLE_MAC_ENTRY) /* CAM entry is empty */ 5144 break; 5145 5146 if (tmp64 == mac_addr) 5147 return SUCCESS; 5148 } 5149 if (i == config->max_mc_addr) { 5150 DBG_PRINT(ERR_DBG, 5151 "CAM full no space left for multicast MAC\n"); 5152 return FAILURE; 5153 } 5154 /* Update the internal structure with this new mac address */ 5155 do_s2io_copy_mac_addr(sp, i, mac_addr); 5156 5157 return do_s2io_add_mac(sp, mac_addr, i); 5158 } 5159 5160 /* add MAC address to CAM */ 5161 static int do_s2io_add_mac(struct s2io_nic *sp, u64 addr, int off) 5162 { 5163 u64 val64; 5164 struct XENA_dev_config __iomem *bar0 = sp->bar0; 5165 5166 writeq(RMAC_ADDR_DATA0_MEM_ADDR(addr), 5167 &bar0->rmac_addr_data0_mem); 5168 5169 val64 = RMAC_ADDR_CMD_MEM_WE | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD | 5170 RMAC_ADDR_CMD_MEM_OFFSET(off); 5171 writeq(val64, &bar0->rmac_addr_cmd_mem); 5172 5173 /* Wait till command completes */ 5174 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem, 5175 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING, 5176 S2IO_BIT_RESET)) { 5177 DBG_PRINT(INFO_DBG, "do_s2io_add_mac failed\n"); 5178 return FAILURE; 5179 } 5180 return SUCCESS; 5181 } 5182 /* deletes a specified unicast/multicast mac entry from CAM */ 5183 static int do_s2io_delete_unicast_mc(struct s2io_nic *sp, u64 addr) 5184 { 5185 int offset; 5186 u64 dis_addr = S2IO_DISABLE_MAC_ENTRY, tmp64; 5187 struct config_param *config = &sp->config; 5188 5189 for (offset = 1; 5190 offset < config->max_mc_addr; offset++) { 5191 tmp64 = do_s2io_read_unicast_mc(sp, offset); 5192 if (tmp64 == addr) { 5193 /* disable the entry by writing 0xffffffffffffULL */ 5194 if (do_s2io_add_mac(sp, dis_addr, offset) == FAILURE) 5195 return FAILURE; 5196 /* store the new mac list from CAM */ 5197 do_s2io_store_unicast_mc(sp); 5198 return SUCCESS; 5199 } 5200 } 5201 DBG_PRINT(ERR_DBG, "MAC address 0x%llx not found in CAM\n", 5202 (unsigned long long)addr); 5203 return FAILURE; 5204 } 5205 5206 /* read mac entries from CAM */ 5207 static u64 do_s2io_read_unicast_mc(struct s2io_nic *sp, int offset) 5208 { 5209 u64 tmp64 = 0xffffffffffff0000ULL, val64; 5210 struct XENA_dev_config __iomem *bar0 = sp->bar0; 5211 5212 /* read mac addr */ 5213 val64 = RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD | 5214 RMAC_ADDR_CMD_MEM_OFFSET(offset); 5215 writeq(val64, &bar0->rmac_addr_cmd_mem); 5216 5217 /* Wait till command completes */ 5218 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem, 5219 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING, 5220 S2IO_BIT_RESET)) { 5221 DBG_PRINT(INFO_DBG, "do_s2io_read_unicast_mc failed\n"); 5222 return FAILURE; 5223 } 5224 tmp64 = readq(&bar0->rmac_addr_data0_mem); 5225 5226 return tmp64 >> 16; 5227 } 5228 5229 /** 5230 * s2io_set_mac_addr - driver entry point 5231 */ 5232 5233 static int s2io_set_mac_addr(struct net_device *dev, void *p) 5234 { 5235 struct sockaddr *addr = p; 5236 5237 if (!is_valid_ether_addr(addr->sa_data)) 5238 return -EADDRNOTAVAIL; 5239 5240 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len); 5241 5242 /* store the MAC address in CAM */ 5243 return do_s2io_prog_unicast(dev, dev->dev_addr); 5244 } 5245 /** 5246 * do_s2io_prog_unicast - Programs the Xframe mac address 5247 * @dev : pointer to the device structure. 5248 * @addr: a uchar pointer to the new mac address which is to be set. 5249 * Description : This procedure will program the Xframe to receive 5250 * frames with new Mac Address 5251 * Return value: SUCCESS on success and an appropriate (-)ve integer 5252 * as defined in errno.h file on failure. 5253 */ 5254 5255 static int do_s2io_prog_unicast(struct net_device *dev, u8 *addr) 5256 { 5257 struct s2io_nic *sp = netdev_priv(dev); 5258 register u64 mac_addr = 0, perm_addr = 0; 5259 int i; 5260 u64 tmp64; 5261 struct config_param *config = &sp->config; 5262 5263 /* 5264 * Set the new MAC address as the new unicast filter and reflect this 5265 * change on the device address registered with the OS. It will be 5266 * at offset 0. 5267 */ 5268 for (i = 0; i < ETH_ALEN; i++) { 5269 mac_addr <<= 8; 5270 mac_addr |= addr[i]; 5271 perm_addr <<= 8; 5272 perm_addr |= sp->def_mac_addr[0].mac_addr[i]; 5273 } 5274 5275 /* check if the dev_addr is different than perm_addr */ 5276 if (mac_addr == perm_addr) 5277 return SUCCESS; 5278 5279 /* check if the mac already preset in CAM */ 5280 for (i = 1; i < config->max_mac_addr; i++) { 5281 tmp64 = do_s2io_read_unicast_mc(sp, i); 5282 if (tmp64 == S2IO_DISABLE_MAC_ENTRY) /* CAM entry is empty */ 5283 break; 5284 5285 if (tmp64 == mac_addr) { 5286 DBG_PRINT(INFO_DBG, 5287 "MAC addr:0x%llx already present in CAM\n", 5288 (unsigned long long)mac_addr); 5289 return SUCCESS; 5290 } 5291 } 5292 if (i == config->max_mac_addr) { 5293 DBG_PRINT(ERR_DBG, "CAM full no space left for Unicast MAC\n"); 5294 return FAILURE; 5295 } 5296 /* Update the internal structure with this new mac address */ 5297 do_s2io_copy_mac_addr(sp, i, mac_addr); 5298 5299 return do_s2io_add_mac(sp, mac_addr, i); 5300 } 5301 5302 /** 5303 * s2io_ethtool_sset - Sets different link parameters. 5304 * @sp : private member of the device structure, which is a pointer to the 5305 * s2io_nic structure. 5306 * @info: pointer to the structure with parameters given by ethtool to set 5307 * link information. 5308 * Description: 5309 * The function sets different link parameters provided by the user onto 5310 * the NIC. 5311 * Return value: 5312 * 0 on success. 5313 */ 5314 5315 static int s2io_ethtool_sset(struct net_device *dev, 5316 struct ethtool_cmd *info) 5317 { 5318 struct s2io_nic *sp = netdev_priv(dev); 5319 if ((info->autoneg == AUTONEG_ENABLE) || 5320 (ethtool_cmd_speed(info) != SPEED_10000) || 5321 (info->duplex != DUPLEX_FULL)) 5322 return -EINVAL; 5323 else { 5324 s2io_close(sp->dev); 5325 s2io_open(sp->dev); 5326 } 5327 5328 return 0; 5329 } 5330 5331 /** 5332 * s2io_ethtol_gset - Return link specific information. 5333 * @sp : private member of the device structure, pointer to the 5334 * s2io_nic structure. 5335 * @info : pointer to the structure with parameters given by ethtool 5336 * to return link information. 5337 * Description: 5338 * Returns link specific information like speed, duplex etc.. to ethtool. 5339 * Return value : 5340 * return 0 on success. 5341 */ 5342 5343 static int s2io_ethtool_gset(struct net_device *dev, struct ethtool_cmd *info) 5344 { 5345 struct s2io_nic *sp = netdev_priv(dev); 5346 info->supported = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE); 5347 info->advertising = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE); 5348 info->port = PORT_FIBRE; 5349 5350 /* info->transceiver */ 5351 info->transceiver = XCVR_EXTERNAL; 5352 5353 if (netif_carrier_ok(sp->dev)) { 5354 ethtool_cmd_speed_set(info, SPEED_10000); 5355 info->duplex = DUPLEX_FULL; 5356 } else { 5357 ethtool_cmd_speed_set(info, SPEED_UNKNOWN); 5358 info->duplex = DUPLEX_UNKNOWN; 5359 } 5360 5361 info->autoneg = AUTONEG_DISABLE; 5362 return 0; 5363 } 5364 5365 /** 5366 * s2io_ethtool_gdrvinfo - Returns driver specific information. 5367 * @sp : private member of the device structure, which is a pointer to the 5368 * s2io_nic structure. 5369 * @info : pointer to the structure with parameters given by ethtool to 5370 * return driver information. 5371 * Description: 5372 * Returns driver specefic information like name, version etc.. to ethtool. 5373 * Return value: 5374 * void 5375 */ 5376 5377 static void s2io_ethtool_gdrvinfo(struct net_device *dev, 5378 struct ethtool_drvinfo *info) 5379 { 5380 struct s2io_nic *sp = netdev_priv(dev); 5381 5382 strlcpy(info->driver, s2io_driver_name, sizeof(info->driver)); 5383 strlcpy(info->version, s2io_driver_version, sizeof(info->version)); 5384 strlcpy(info->bus_info, pci_name(sp->pdev), sizeof(info->bus_info)); 5385 } 5386 5387 /** 5388 * s2io_ethtool_gregs - dumps the entire space of Xfame into the buffer. 5389 * @sp: private member of the device structure, which is a pointer to the 5390 * s2io_nic structure. 5391 * @regs : pointer to the structure with parameters given by ethtool for 5392 * dumping the registers. 5393 * @reg_space: The input argumnet into which all the registers are dumped. 5394 * Description: 5395 * Dumps the entire register space of xFrame NIC into the user given 5396 * buffer area. 5397 * Return value : 5398 * void . 5399 */ 5400 5401 static void s2io_ethtool_gregs(struct net_device *dev, 5402 struct ethtool_regs *regs, void *space) 5403 { 5404 int i; 5405 u64 reg; 5406 u8 *reg_space = (u8 *)space; 5407 struct s2io_nic *sp = netdev_priv(dev); 5408 5409 regs->len = XENA_REG_SPACE; 5410 regs->version = sp->pdev->subsystem_device; 5411 5412 for (i = 0; i < regs->len; i += 8) { 5413 reg = readq(sp->bar0 + i); 5414 memcpy((reg_space + i), ®, 8); 5415 } 5416 } 5417 5418 /* 5419 * s2io_set_led - control NIC led 5420 */ 5421 static void s2io_set_led(struct s2io_nic *sp, bool on) 5422 { 5423 struct XENA_dev_config __iomem *bar0 = sp->bar0; 5424 u16 subid = sp->pdev->subsystem_device; 5425 u64 val64; 5426 5427 if ((sp->device_type == XFRAME_II_DEVICE) || 5428 ((subid & 0xFF) >= 0x07)) { 5429 val64 = readq(&bar0->gpio_control); 5430 if (on) 5431 val64 |= GPIO_CTRL_GPIO_0; 5432 else 5433 val64 &= ~GPIO_CTRL_GPIO_0; 5434 5435 writeq(val64, &bar0->gpio_control); 5436 } else { 5437 val64 = readq(&bar0->adapter_control); 5438 if (on) 5439 val64 |= ADAPTER_LED_ON; 5440 else 5441 val64 &= ~ADAPTER_LED_ON; 5442 5443 writeq(val64, &bar0->adapter_control); 5444 } 5445 5446 } 5447 5448 /** 5449 * s2io_ethtool_set_led - To physically identify the nic on the system. 5450 * @dev : network device 5451 * @state: led setting 5452 * 5453 * Description: Used to physically identify the NIC on the system. 5454 * The Link LED will blink for a time specified by the user for 5455 * identification. 5456 * NOTE: The Link has to be Up to be able to blink the LED. Hence 5457 * identification is possible only if it's link is up. 5458 */ 5459 5460 static int s2io_ethtool_set_led(struct net_device *dev, 5461 enum ethtool_phys_id_state state) 5462 { 5463 struct s2io_nic *sp = netdev_priv(dev); 5464 struct XENA_dev_config __iomem *bar0 = sp->bar0; 5465 u16 subid = sp->pdev->subsystem_device; 5466 5467 if ((sp->device_type == XFRAME_I_DEVICE) && ((subid & 0xFF) < 0x07)) { 5468 u64 val64 = readq(&bar0->adapter_control); 5469 if (!(val64 & ADAPTER_CNTL_EN)) { 5470 pr_err("Adapter Link down, cannot blink LED\n"); 5471 return -EAGAIN; 5472 } 5473 } 5474 5475 switch (state) { 5476 case ETHTOOL_ID_ACTIVE: 5477 sp->adapt_ctrl_org = readq(&bar0->gpio_control); 5478 return 1; /* cycle on/off once per second */ 5479 5480 case ETHTOOL_ID_ON: 5481 s2io_set_led(sp, true); 5482 break; 5483 5484 case ETHTOOL_ID_OFF: 5485 s2io_set_led(sp, false); 5486 break; 5487 5488 case ETHTOOL_ID_INACTIVE: 5489 if (CARDS_WITH_FAULTY_LINK_INDICATORS(sp->device_type, subid)) 5490 writeq(sp->adapt_ctrl_org, &bar0->gpio_control); 5491 } 5492 5493 return 0; 5494 } 5495 5496 static void s2io_ethtool_gringparam(struct net_device *dev, 5497 struct ethtool_ringparam *ering) 5498 { 5499 struct s2io_nic *sp = netdev_priv(dev); 5500 int i, tx_desc_count = 0, rx_desc_count = 0; 5501 5502 if (sp->rxd_mode == RXD_MODE_1) { 5503 ering->rx_max_pending = MAX_RX_DESC_1; 5504 ering->rx_jumbo_max_pending = MAX_RX_DESC_1; 5505 } else { 5506 ering->rx_max_pending = MAX_RX_DESC_2; 5507 ering->rx_jumbo_max_pending = MAX_RX_DESC_2; 5508 } 5509 5510 ering->tx_max_pending = MAX_TX_DESC; 5511 5512 for (i = 0; i < sp->config.rx_ring_num; i++) 5513 rx_desc_count += sp->config.rx_cfg[i].num_rxd; 5514 ering->rx_pending = rx_desc_count; 5515 ering->rx_jumbo_pending = rx_desc_count; 5516 5517 for (i = 0; i < sp->config.tx_fifo_num; i++) 5518 tx_desc_count += sp->config.tx_cfg[i].fifo_len; 5519 ering->tx_pending = tx_desc_count; 5520 DBG_PRINT(INFO_DBG, "max txds: %d\n", sp->config.max_txds); 5521 } 5522 5523 /** 5524 * s2io_ethtool_getpause_data -Pause frame frame generation and reception. 5525 * @sp : private member of the device structure, which is a pointer to the 5526 * s2io_nic structure. 5527 * @ep : pointer to the structure with pause parameters given by ethtool. 5528 * Description: 5529 * Returns the Pause frame generation and reception capability of the NIC. 5530 * Return value: 5531 * void 5532 */ 5533 static void s2io_ethtool_getpause_data(struct net_device *dev, 5534 struct ethtool_pauseparam *ep) 5535 { 5536 u64 val64; 5537 struct s2io_nic *sp = netdev_priv(dev); 5538 struct XENA_dev_config __iomem *bar0 = sp->bar0; 5539 5540 val64 = readq(&bar0->rmac_pause_cfg); 5541 if (val64 & RMAC_PAUSE_GEN_ENABLE) 5542 ep->tx_pause = true; 5543 if (val64 & RMAC_PAUSE_RX_ENABLE) 5544 ep->rx_pause = true; 5545 ep->autoneg = false; 5546 } 5547 5548 /** 5549 * s2io_ethtool_setpause_data - set/reset pause frame generation. 5550 * @sp : private member of the device structure, which is a pointer to the 5551 * s2io_nic structure. 5552 * @ep : pointer to the structure with pause parameters given by ethtool. 5553 * Description: 5554 * It can be used to set or reset Pause frame generation or reception 5555 * support of the NIC. 5556 * Return value: 5557 * int, returns 0 on Success 5558 */ 5559 5560 static int s2io_ethtool_setpause_data(struct net_device *dev, 5561 struct ethtool_pauseparam *ep) 5562 { 5563 u64 val64; 5564 struct s2io_nic *sp = netdev_priv(dev); 5565 struct XENA_dev_config __iomem *bar0 = sp->bar0; 5566 5567 val64 = readq(&bar0->rmac_pause_cfg); 5568 if (ep->tx_pause) 5569 val64 |= RMAC_PAUSE_GEN_ENABLE; 5570 else 5571 val64 &= ~RMAC_PAUSE_GEN_ENABLE; 5572 if (ep->rx_pause) 5573 val64 |= RMAC_PAUSE_RX_ENABLE; 5574 else 5575 val64 &= ~RMAC_PAUSE_RX_ENABLE; 5576 writeq(val64, &bar0->rmac_pause_cfg); 5577 return 0; 5578 } 5579 5580 /** 5581 * read_eeprom - reads 4 bytes of data from user given offset. 5582 * @sp : private member of the device structure, which is a pointer to the 5583 * s2io_nic structure. 5584 * @off : offset at which the data must be written 5585 * @data : Its an output parameter where the data read at the given 5586 * offset is stored. 5587 * Description: 5588 * Will read 4 bytes of data from the user given offset and return the 5589 * read data. 5590 * NOTE: Will allow to read only part of the EEPROM visible through the 5591 * I2C bus. 5592 * Return value: 5593 * -1 on failure and 0 on success. 5594 */ 5595 5596 #define S2IO_DEV_ID 5 5597 static int read_eeprom(struct s2io_nic *sp, int off, u64 *data) 5598 { 5599 int ret = -1; 5600 u32 exit_cnt = 0; 5601 u64 val64; 5602 struct XENA_dev_config __iomem *bar0 = sp->bar0; 5603 5604 if (sp->device_type == XFRAME_I_DEVICE) { 5605 val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) | 5606 I2C_CONTROL_ADDR(off) | 5607 I2C_CONTROL_BYTE_CNT(0x3) | 5608 I2C_CONTROL_READ | 5609 I2C_CONTROL_CNTL_START; 5610 SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF); 5611 5612 while (exit_cnt < 5) { 5613 val64 = readq(&bar0->i2c_control); 5614 if (I2C_CONTROL_CNTL_END(val64)) { 5615 *data = I2C_CONTROL_GET_DATA(val64); 5616 ret = 0; 5617 break; 5618 } 5619 msleep(50); 5620 exit_cnt++; 5621 } 5622 } 5623 5624 if (sp->device_type == XFRAME_II_DEVICE) { 5625 val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 | 5626 SPI_CONTROL_BYTECNT(0x3) | 5627 SPI_CONTROL_CMD(0x3) | SPI_CONTROL_ADDR(off); 5628 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF); 5629 val64 |= SPI_CONTROL_REQ; 5630 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF); 5631 while (exit_cnt < 5) { 5632 val64 = readq(&bar0->spi_control); 5633 if (val64 & SPI_CONTROL_NACK) { 5634 ret = 1; 5635 break; 5636 } else if (val64 & SPI_CONTROL_DONE) { 5637 *data = readq(&bar0->spi_data); 5638 *data &= 0xffffff; 5639 ret = 0; 5640 break; 5641 } 5642 msleep(50); 5643 exit_cnt++; 5644 } 5645 } 5646 return ret; 5647 } 5648 5649 /** 5650 * write_eeprom - actually writes the relevant part of the data value. 5651 * @sp : private member of the device structure, which is a pointer to the 5652 * s2io_nic structure. 5653 * @off : offset at which the data must be written 5654 * @data : The data that is to be written 5655 * @cnt : Number of bytes of the data that are actually to be written into 5656 * the Eeprom. (max of 3) 5657 * Description: 5658 * Actually writes the relevant part of the data value into the Eeprom 5659 * through the I2C bus. 5660 * Return value: 5661 * 0 on success, -1 on failure. 5662 */ 5663 5664 static int write_eeprom(struct s2io_nic *sp, int off, u64 data, int cnt) 5665 { 5666 int exit_cnt = 0, ret = -1; 5667 u64 val64; 5668 struct XENA_dev_config __iomem *bar0 = sp->bar0; 5669 5670 if (sp->device_type == XFRAME_I_DEVICE) { 5671 val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) | 5672 I2C_CONTROL_ADDR(off) | 5673 I2C_CONTROL_BYTE_CNT(cnt) | 5674 I2C_CONTROL_SET_DATA((u32)data) | 5675 I2C_CONTROL_CNTL_START; 5676 SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF); 5677 5678 while (exit_cnt < 5) { 5679 val64 = readq(&bar0->i2c_control); 5680 if (I2C_CONTROL_CNTL_END(val64)) { 5681 if (!(val64 & I2C_CONTROL_NACK)) 5682 ret = 0; 5683 break; 5684 } 5685 msleep(50); 5686 exit_cnt++; 5687 } 5688 } 5689 5690 if (sp->device_type == XFRAME_II_DEVICE) { 5691 int write_cnt = (cnt == 8) ? 0 : cnt; 5692 writeq(SPI_DATA_WRITE(data, (cnt << 3)), &bar0->spi_data); 5693 5694 val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 | 5695 SPI_CONTROL_BYTECNT(write_cnt) | 5696 SPI_CONTROL_CMD(0x2) | SPI_CONTROL_ADDR(off); 5697 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF); 5698 val64 |= SPI_CONTROL_REQ; 5699 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF); 5700 while (exit_cnt < 5) { 5701 val64 = readq(&bar0->spi_control); 5702 if (val64 & SPI_CONTROL_NACK) { 5703 ret = 1; 5704 break; 5705 } else if (val64 & SPI_CONTROL_DONE) { 5706 ret = 0; 5707 break; 5708 } 5709 msleep(50); 5710 exit_cnt++; 5711 } 5712 } 5713 return ret; 5714 } 5715 static void s2io_vpd_read(struct s2io_nic *nic) 5716 { 5717 u8 *vpd_data; 5718 u8 data; 5719 int i = 0, cnt, len, fail = 0; 5720 int vpd_addr = 0x80; 5721 struct swStat *swstats = &nic->mac_control.stats_info->sw_stat; 5722 5723 if (nic->device_type == XFRAME_II_DEVICE) { 5724 strcpy(nic->product_name, "Xframe II 10GbE network adapter"); 5725 vpd_addr = 0x80; 5726 } else { 5727 strcpy(nic->product_name, "Xframe I 10GbE network adapter"); 5728 vpd_addr = 0x50; 5729 } 5730 strcpy(nic->serial_num, "NOT AVAILABLE"); 5731 5732 vpd_data = kmalloc(256, GFP_KERNEL); 5733 if (!vpd_data) { 5734 swstats->mem_alloc_fail_cnt++; 5735 return; 5736 } 5737 swstats->mem_allocated += 256; 5738 5739 for (i = 0; i < 256; i += 4) { 5740 pci_write_config_byte(nic->pdev, (vpd_addr + 2), i); 5741 pci_read_config_byte(nic->pdev, (vpd_addr + 2), &data); 5742 pci_write_config_byte(nic->pdev, (vpd_addr + 3), 0); 5743 for (cnt = 0; cnt < 5; cnt++) { 5744 msleep(2); 5745 pci_read_config_byte(nic->pdev, (vpd_addr + 3), &data); 5746 if (data == 0x80) 5747 break; 5748 } 5749 if (cnt >= 5) { 5750 DBG_PRINT(ERR_DBG, "Read of VPD data failed\n"); 5751 fail = 1; 5752 break; 5753 } 5754 pci_read_config_dword(nic->pdev, (vpd_addr + 4), 5755 (u32 *)&vpd_data[i]); 5756 } 5757 5758 if (!fail) { 5759 /* read serial number of adapter */ 5760 for (cnt = 0; cnt < 252; cnt++) { 5761 if ((vpd_data[cnt] == 'S') && 5762 (vpd_data[cnt+1] == 'N')) { 5763 len = vpd_data[cnt+2]; 5764 if (len < min(VPD_STRING_LEN, 256-cnt-2)) { 5765 memcpy(nic->serial_num, 5766 &vpd_data[cnt + 3], 5767 len); 5768 memset(nic->serial_num+len, 5769 0, 5770 VPD_STRING_LEN-len); 5771 break; 5772 } 5773 } 5774 } 5775 } 5776 5777 if ((!fail) && (vpd_data[1] < VPD_STRING_LEN)) { 5778 len = vpd_data[1]; 5779 memcpy(nic->product_name, &vpd_data[3], len); 5780 nic->product_name[len] = 0; 5781 } 5782 kfree(vpd_data); 5783 swstats->mem_freed += 256; 5784 } 5785 5786 /** 5787 * s2io_ethtool_geeprom - reads the value stored in the Eeprom. 5788 * @sp : private member of the device structure, which is a pointer to the 5789 * s2io_nic structure. 5790 * @eeprom : pointer to the user level structure provided by ethtool, 5791 * containing all relevant information. 5792 * @data_buf : user defined value to be written into Eeprom. 5793 * Description: Reads the values stored in the Eeprom at given offset 5794 * for a given length. Stores these values int the input argument data 5795 * buffer 'data_buf' and returns these to the caller (ethtool.) 5796 * Return value: 5797 * int 0 on success 5798 */ 5799 5800 static int s2io_ethtool_geeprom(struct net_device *dev, 5801 struct ethtool_eeprom *eeprom, u8 * data_buf) 5802 { 5803 u32 i, valid; 5804 u64 data; 5805 struct s2io_nic *sp = netdev_priv(dev); 5806 5807 eeprom->magic = sp->pdev->vendor | (sp->pdev->device << 16); 5808 5809 if ((eeprom->offset + eeprom->len) > (XENA_EEPROM_SPACE)) 5810 eeprom->len = XENA_EEPROM_SPACE - eeprom->offset; 5811 5812 for (i = 0; i < eeprom->len; i += 4) { 5813 if (read_eeprom(sp, (eeprom->offset + i), &data)) { 5814 DBG_PRINT(ERR_DBG, "Read of EEPROM failed\n"); 5815 return -EFAULT; 5816 } 5817 valid = INV(data); 5818 memcpy((data_buf + i), &valid, 4); 5819 } 5820 return 0; 5821 } 5822 5823 /** 5824 * s2io_ethtool_seeprom - tries to write the user provided value in Eeprom 5825 * @sp : private member of the device structure, which is a pointer to the 5826 * s2io_nic structure. 5827 * @eeprom : pointer to the user level structure provided by ethtool, 5828 * containing all relevant information. 5829 * @data_buf ; user defined value to be written into Eeprom. 5830 * Description: 5831 * Tries to write the user provided value in the Eeprom, at the offset 5832 * given by the user. 5833 * Return value: 5834 * 0 on success, -EFAULT on failure. 5835 */ 5836 5837 static int s2io_ethtool_seeprom(struct net_device *dev, 5838 struct ethtool_eeprom *eeprom, 5839 u8 *data_buf) 5840 { 5841 int len = eeprom->len, cnt = 0; 5842 u64 valid = 0, data; 5843 struct s2io_nic *sp = netdev_priv(dev); 5844 5845 if (eeprom->magic != (sp->pdev->vendor | (sp->pdev->device << 16))) { 5846 DBG_PRINT(ERR_DBG, 5847 "ETHTOOL_WRITE_EEPROM Err: " 5848 "Magic value is wrong, it is 0x%x should be 0x%x\n", 5849 (sp->pdev->vendor | (sp->pdev->device << 16)), 5850 eeprom->magic); 5851 return -EFAULT; 5852 } 5853 5854 while (len) { 5855 data = (u32)data_buf[cnt] & 0x000000FF; 5856 if (data) 5857 valid = (u32)(data << 24); 5858 else 5859 valid = data; 5860 5861 if (write_eeprom(sp, (eeprom->offset + cnt), valid, 0)) { 5862 DBG_PRINT(ERR_DBG, 5863 "ETHTOOL_WRITE_EEPROM Err: " 5864 "Cannot write into the specified offset\n"); 5865 return -EFAULT; 5866 } 5867 cnt++; 5868 len--; 5869 } 5870 5871 return 0; 5872 } 5873 5874 /** 5875 * s2io_register_test - reads and writes into all clock domains. 5876 * @sp : private member of the device structure, which is a pointer to the 5877 * s2io_nic structure. 5878 * @data : variable that returns the result of each of the test conducted b 5879 * by the driver. 5880 * Description: 5881 * Read and write into all clock domains. The NIC has 3 clock domains, 5882 * see that registers in all the three regions are accessible. 5883 * Return value: 5884 * 0 on success. 5885 */ 5886 5887 static int s2io_register_test(struct s2io_nic *sp, uint64_t *data) 5888 { 5889 struct XENA_dev_config __iomem *bar0 = sp->bar0; 5890 u64 val64 = 0, exp_val; 5891 int fail = 0; 5892 5893 val64 = readq(&bar0->pif_rd_swapper_fb); 5894 if (val64 != 0x123456789abcdefULL) { 5895 fail = 1; 5896 DBG_PRINT(INFO_DBG, "Read Test level %d fails\n", 1); 5897 } 5898 5899 val64 = readq(&bar0->rmac_pause_cfg); 5900 if (val64 != 0xc000ffff00000000ULL) { 5901 fail = 1; 5902 DBG_PRINT(INFO_DBG, "Read Test level %d fails\n", 2); 5903 } 5904 5905 val64 = readq(&bar0->rx_queue_cfg); 5906 if (sp->device_type == XFRAME_II_DEVICE) 5907 exp_val = 0x0404040404040404ULL; 5908 else 5909 exp_val = 0x0808080808080808ULL; 5910 if (val64 != exp_val) { 5911 fail = 1; 5912 DBG_PRINT(INFO_DBG, "Read Test level %d fails\n", 3); 5913 } 5914 5915 val64 = readq(&bar0->xgxs_efifo_cfg); 5916 if (val64 != 0x000000001923141EULL) { 5917 fail = 1; 5918 DBG_PRINT(INFO_DBG, "Read Test level %d fails\n", 4); 5919 } 5920 5921 val64 = 0x5A5A5A5A5A5A5A5AULL; 5922 writeq(val64, &bar0->xmsi_data); 5923 val64 = readq(&bar0->xmsi_data); 5924 if (val64 != 0x5A5A5A5A5A5A5A5AULL) { 5925 fail = 1; 5926 DBG_PRINT(ERR_DBG, "Write Test level %d fails\n", 1); 5927 } 5928 5929 val64 = 0xA5A5A5A5A5A5A5A5ULL; 5930 writeq(val64, &bar0->xmsi_data); 5931 val64 = readq(&bar0->xmsi_data); 5932 if (val64 != 0xA5A5A5A5A5A5A5A5ULL) { 5933 fail = 1; 5934 DBG_PRINT(ERR_DBG, "Write Test level %d fails\n", 2); 5935 } 5936 5937 *data = fail; 5938 return fail; 5939 } 5940 5941 /** 5942 * s2io_eeprom_test - to verify that EEprom in the xena can be programmed. 5943 * @sp : private member of the device structure, which is a pointer to the 5944 * s2io_nic structure. 5945 * @data:variable that returns the result of each of the test conducted by 5946 * the driver. 5947 * Description: 5948 * Verify that EEPROM in the xena can be programmed using I2C_CONTROL 5949 * register. 5950 * Return value: 5951 * 0 on success. 5952 */ 5953 5954 static int s2io_eeprom_test(struct s2io_nic *sp, uint64_t *data) 5955 { 5956 int fail = 0; 5957 u64 ret_data, org_4F0, org_7F0; 5958 u8 saved_4F0 = 0, saved_7F0 = 0; 5959 struct net_device *dev = sp->dev; 5960 5961 /* Test Write Error at offset 0 */ 5962 /* Note that SPI interface allows write access to all areas 5963 * of EEPROM. Hence doing all negative testing only for Xframe I. 5964 */ 5965 if (sp->device_type == XFRAME_I_DEVICE) 5966 if (!write_eeprom(sp, 0, 0, 3)) 5967 fail = 1; 5968 5969 /* Save current values at offsets 0x4F0 and 0x7F0 */ 5970 if (!read_eeprom(sp, 0x4F0, &org_4F0)) 5971 saved_4F0 = 1; 5972 if (!read_eeprom(sp, 0x7F0, &org_7F0)) 5973 saved_7F0 = 1; 5974 5975 /* Test Write at offset 4f0 */ 5976 if (write_eeprom(sp, 0x4F0, 0x012345, 3)) 5977 fail = 1; 5978 if (read_eeprom(sp, 0x4F0, &ret_data)) 5979 fail = 1; 5980 5981 if (ret_data != 0x012345) { 5982 DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x4F0. " 5983 "Data written %llx Data read %llx\n", 5984 dev->name, (unsigned long long)0x12345, 5985 (unsigned long long)ret_data); 5986 fail = 1; 5987 } 5988 5989 /* Reset the EEPROM data go FFFF */ 5990 write_eeprom(sp, 0x4F0, 0xFFFFFF, 3); 5991 5992 /* Test Write Request Error at offset 0x7c */ 5993 if (sp->device_type == XFRAME_I_DEVICE) 5994 if (!write_eeprom(sp, 0x07C, 0, 3)) 5995 fail = 1; 5996 5997 /* Test Write Request at offset 0x7f0 */ 5998 if (write_eeprom(sp, 0x7F0, 0x012345, 3)) 5999 fail = 1; 6000 if (read_eeprom(sp, 0x7F0, &ret_data)) 6001 fail = 1; 6002 6003 if (ret_data != 0x012345) { 6004 DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x7F0. " 6005 "Data written %llx Data read %llx\n", 6006 dev->name, (unsigned long long)0x12345, 6007 (unsigned long long)ret_data); 6008 fail = 1; 6009 } 6010 6011 /* Reset the EEPROM data go FFFF */ 6012 write_eeprom(sp, 0x7F0, 0xFFFFFF, 3); 6013 6014 if (sp->device_type == XFRAME_I_DEVICE) { 6015 /* Test Write Error at offset 0x80 */ 6016 if (!write_eeprom(sp, 0x080, 0, 3)) 6017 fail = 1; 6018 6019 /* Test Write Error at offset 0xfc */ 6020 if (!write_eeprom(sp, 0x0FC, 0, 3)) 6021 fail = 1; 6022 6023 /* Test Write Error at offset 0x100 */ 6024 if (!write_eeprom(sp, 0x100, 0, 3)) 6025 fail = 1; 6026 6027 /* Test Write Error at offset 4ec */ 6028 if (!write_eeprom(sp, 0x4EC, 0, 3)) 6029 fail = 1; 6030 } 6031 6032 /* Restore values at offsets 0x4F0 and 0x7F0 */ 6033 if (saved_4F0) 6034 write_eeprom(sp, 0x4F0, org_4F0, 3); 6035 if (saved_7F0) 6036 write_eeprom(sp, 0x7F0, org_7F0, 3); 6037 6038 *data = fail; 6039 return fail; 6040 } 6041 6042 /** 6043 * s2io_bist_test - invokes the MemBist test of the card . 6044 * @sp : private member of the device structure, which is a pointer to the 6045 * s2io_nic structure. 6046 * @data:variable that returns the result of each of the test conducted by 6047 * the driver. 6048 * Description: 6049 * This invokes the MemBist test of the card. We give around 6050 * 2 secs time for the Test to complete. If it's still not complete 6051 * within this peiod, we consider that the test failed. 6052 * Return value: 6053 * 0 on success and -1 on failure. 6054 */ 6055 6056 static int s2io_bist_test(struct s2io_nic *sp, uint64_t *data) 6057 { 6058 u8 bist = 0; 6059 int cnt = 0, ret = -1; 6060 6061 pci_read_config_byte(sp->pdev, PCI_BIST, &bist); 6062 bist |= PCI_BIST_START; 6063 pci_write_config_word(sp->pdev, PCI_BIST, bist); 6064 6065 while (cnt < 20) { 6066 pci_read_config_byte(sp->pdev, PCI_BIST, &bist); 6067 if (!(bist & PCI_BIST_START)) { 6068 *data = (bist & PCI_BIST_CODE_MASK); 6069 ret = 0; 6070 break; 6071 } 6072 msleep(100); 6073 cnt++; 6074 } 6075 6076 return ret; 6077 } 6078 6079 /** 6080 * s2io_link_test - verifies the link state of the nic 6081 * @sp ; private member of the device structure, which is a pointer to the 6082 * s2io_nic structure. 6083 * @data: variable that returns the result of each of the test conducted by 6084 * the driver. 6085 * Description: 6086 * The function verifies the link state of the NIC and updates the input 6087 * argument 'data' appropriately. 6088 * Return value: 6089 * 0 on success. 6090 */ 6091 6092 static int s2io_link_test(struct s2io_nic *sp, uint64_t *data) 6093 { 6094 struct XENA_dev_config __iomem *bar0 = sp->bar0; 6095 u64 val64; 6096 6097 val64 = readq(&bar0->adapter_status); 6098 if (!(LINK_IS_UP(val64))) 6099 *data = 1; 6100 else 6101 *data = 0; 6102 6103 return *data; 6104 } 6105 6106 /** 6107 * s2io_rldram_test - offline test for access to the RldRam chip on the NIC 6108 * @sp: private member of the device structure, which is a pointer to the 6109 * s2io_nic structure. 6110 * @data: variable that returns the result of each of the test 6111 * conducted by the driver. 6112 * Description: 6113 * This is one of the offline test that tests the read and write 6114 * access to the RldRam chip on the NIC. 6115 * Return value: 6116 * 0 on success. 6117 */ 6118 6119 static int s2io_rldram_test(struct s2io_nic *sp, uint64_t *data) 6120 { 6121 struct XENA_dev_config __iomem *bar0 = sp->bar0; 6122 u64 val64; 6123 int cnt, iteration = 0, test_fail = 0; 6124 6125 val64 = readq(&bar0->adapter_control); 6126 val64 &= ~ADAPTER_ECC_EN; 6127 writeq(val64, &bar0->adapter_control); 6128 6129 val64 = readq(&bar0->mc_rldram_test_ctrl); 6130 val64 |= MC_RLDRAM_TEST_MODE; 6131 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF); 6132 6133 val64 = readq(&bar0->mc_rldram_mrs); 6134 val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE; 6135 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF); 6136 6137 val64 |= MC_RLDRAM_MRS_ENABLE; 6138 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF); 6139 6140 while (iteration < 2) { 6141 val64 = 0x55555555aaaa0000ULL; 6142 if (iteration == 1) 6143 val64 ^= 0xFFFFFFFFFFFF0000ULL; 6144 writeq(val64, &bar0->mc_rldram_test_d0); 6145 6146 val64 = 0xaaaa5a5555550000ULL; 6147 if (iteration == 1) 6148 val64 ^= 0xFFFFFFFFFFFF0000ULL; 6149 writeq(val64, &bar0->mc_rldram_test_d1); 6150 6151 val64 = 0x55aaaaaaaa5a0000ULL; 6152 if (iteration == 1) 6153 val64 ^= 0xFFFFFFFFFFFF0000ULL; 6154 writeq(val64, &bar0->mc_rldram_test_d2); 6155 6156 val64 = (u64) (0x0000003ffffe0100ULL); 6157 writeq(val64, &bar0->mc_rldram_test_add); 6158 6159 val64 = MC_RLDRAM_TEST_MODE | 6160 MC_RLDRAM_TEST_WRITE | 6161 MC_RLDRAM_TEST_GO; 6162 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF); 6163 6164 for (cnt = 0; cnt < 5; cnt++) { 6165 val64 = readq(&bar0->mc_rldram_test_ctrl); 6166 if (val64 & MC_RLDRAM_TEST_DONE) 6167 break; 6168 msleep(200); 6169 } 6170 6171 if (cnt == 5) 6172 break; 6173 6174 val64 = MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_GO; 6175 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF); 6176 6177 for (cnt = 0; cnt < 5; cnt++) { 6178 val64 = readq(&bar0->mc_rldram_test_ctrl); 6179 if (val64 & MC_RLDRAM_TEST_DONE) 6180 break; 6181 msleep(500); 6182 } 6183 6184 if (cnt == 5) 6185 break; 6186 6187 val64 = readq(&bar0->mc_rldram_test_ctrl); 6188 if (!(val64 & MC_RLDRAM_TEST_PASS)) 6189 test_fail = 1; 6190 6191 iteration++; 6192 } 6193 6194 *data = test_fail; 6195 6196 /* Bring the adapter out of test mode */ 6197 SPECIAL_REG_WRITE(0, &bar0->mc_rldram_test_ctrl, LF); 6198 6199 return test_fail; 6200 } 6201 6202 /** 6203 * s2io_ethtool_test - conducts 6 tsets to determine the health of card. 6204 * @sp : private member of the device structure, which is a pointer to the 6205 * s2io_nic structure. 6206 * @ethtest : pointer to a ethtool command specific structure that will be 6207 * returned to the user. 6208 * @data : variable that returns the result of each of the test 6209 * conducted by the driver. 6210 * Description: 6211 * This function conducts 6 tests ( 4 offline and 2 online) to determine 6212 * the health of the card. 6213 * Return value: 6214 * void 6215 */ 6216 6217 static void s2io_ethtool_test(struct net_device *dev, 6218 struct ethtool_test *ethtest, 6219 uint64_t *data) 6220 { 6221 struct s2io_nic *sp = netdev_priv(dev); 6222 int orig_state = netif_running(sp->dev); 6223 6224 if (ethtest->flags == ETH_TEST_FL_OFFLINE) { 6225 /* Offline Tests. */ 6226 if (orig_state) 6227 s2io_close(sp->dev); 6228 6229 if (s2io_register_test(sp, &data[0])) 6230 ethtest->flags |= ETH_TEST_FL_FAILED; 6231 6232 s2io_reset(sp); 6233 6234 if (s2io_rldram_test(sp, &data[3])) 6235 ethtest->flags |= ETH_TEST_FL_FAILED; 6236 6237 s2io_reset(sp); 6238 6239 if (s2io_eeprom_test(sp, &data[1])) 6240 ethtest->flags |= ETH_TEST_FL_FAILED; 6241 6242 if (s2io_bist_test(sp, &data[4])) 6243 ethtest->flags |= ETH_TEST_FL_FAILED; 6244 6245 if (orig_state) 6246 s2io_open(sp->dev); 6247 6248 data[2] = 0; 6249 } else { 6250 /* Online Tests. */ 6251 if (!orig_state) { 6252 DBG_PRINT(ERR_DBG, "%s: is not up, cannot run test\n", 6253 dev->name); 6254 data[0] = -1; 6255 data[1] = -1; 6256 data[2] = -1; 6257 data[3] = -1; 6258 data[4] = -1; 6259 } 6260 6261 if (s2io_link_test(sp, &data[2])) 6262 ethtest->flags |= ETH_TEST_FL_FAILED; 6263 6264 data[0] = 0; 6265 data[1] = 0; 6266 data[3] = 0; 6267 data[4] = 0; 6268 } 6269 } 6270 6271 static void s2io_get_ethtool_stats(struct net_device *dev, 6272 struct ethtool_stats *estats, 6273 u64 *tmp_stats) 6274 { 6275 int i = 0, k; 6276 struct s2io_nic *sp = netdev_priv(dev); 6277 struct stat_block *stats = sp->mac_control.stats_info; 6278 struct swStat *swstats = &stats->sw_stat; 6279 struct xpakStat *xstats = &stats->xpak_stat; 6280 6281 s2io_updt_stats(sp); 6282 tmp_stats[i++] = 6283 (u64)le32_to_cpu(stats->tmac_frms_oflow) << 32 | 6284 le32_to_cpu(stats->tmac_frms); 6285 tmp_stats[i++] = 6286 (u64)le32_to_cpu(stats->tmac_data_octets_oflow) << 32 | 6287 le32_to_cpu(stats->tmac_data_octets); 6288 tmp_stats[i++] = le64_to_cpu(stats->tmac_drop_frms); 6289 tmp_stats[i++] = 6290 (u64)le32_to_cpu(stats->tmac_mcst_frms_oflow) << 32 | 6291 le32_to_cpu(stats->tmac_mcst_frms); 6292 tmp_stats[i++] = 6293 (u64)le32_to_cpu(stats->tmac_bcst_frms_oflow) << 32 | 6294 le32_to_cpu(stats->tmac_bcst_frms); 6295 tmp_stats[i++] = le64_to_cpu(stats->tmac_pause_ctrl_frms); 6296 tmp_stats[i++] = 6297 (u64)le32_to_cpu(stats->tmac_ttl_octets_oflow) << 32 | 6298 le32_to_cpu(stats->tmac_ttl_octets); 6299 tmp_stats[i++] = 6300 (u64)le32_to_cpu(stats->tmac_ucst_frms_oflow) << 32 | 6301 le32_to_cpu(stats->tmac_ucst_frms); 6302 tmp_stats[i++] = 6303 (u64)le32_to_cpu(stats->tmac_nucst_frms_oflow) << 32 | 6304 le32_to_cpu(stats->tmac_nucst_frms); 6305 tmp_stats[i++] = 6306 (u64)le32_to_cpu(stats->tmac_any_err_frms_oflow) << 32 | 6307 le32_to_cpu(stats->tmac_any_err_frms); 6308 tmp_stats[i++] = le64_to_cpu(stats->tmac_ttl_less_fb_octets); 6309 tmp_stats[i++] = le64_to_cpu(stats->tmac_vld_ip_octets); 6310 tmp_stats[i++] = 6311 (u64)le32_to_cpu(stats->tmac_vld_ip_oflow) << 32 | 6312 le32_to_cpu(stats->tmac_vld_ip); 6313 tmp_stats[i++] = 6314 (u64)le32_to_cpu(stats->tmac_drop_ip_oflow) << 32 | 6315 le32_to_cpu(stats->tmac_drop_ip); 6316 tmp_stats[i++] = 6317 (u64)le32_to_cpu(stats->tmac_icmp_oflow) << 32 | 6318 le32_to_cpu(stats->tmac_icmp); 6319 tmp_stats[i++] = 6320 (u64)le32_to_cpu(stats->tmac_rst_tcp_oflow) << 32 | 6321 le32_to_cpu(stats->tmac_rst_tcp); 6322 tmp_stats[i++] = le64_to_cpu(stats->tmac_tcp); 6323 tmp_stats[i++] = (u64)le32_to_cpu(stats->tmac_udp_oflow) << 32 | 6324 le32_to_cpu(stats->tmac_udp); 6325 tmp_stats[i++] = 6326 (u64)le32_to_cpu(stats->rmac_vld_frms_oflow) << 32 | 6327 le32_to_cpu(stats->rmac_vld_frms); 6328 tmp_stats[i++] = 6329 (u64)le32_to_cpu(stats->rmac_data_octets_oflow) << 32 | 6330 le32_to_cpu(stats->rmac_data_octets); 6331 tmp_stats[i++] = le64_to_cpu(stats->rmac_fcs_err_frms); 6332 tmp_stats[i++] = le64_to_cpu(stats->rmac_drop_frms); 6333 tmp_stats[i++] = 6334 (u64)le32_to_cpu(stats->rmac_vld_mcst_frms_oflow) << 32 | 6335 le32_to_cpu(stats->rmac_vld_mcst_frms); 6336 tmp_stats[i++] = 6337 (u64)le32_to_cpu(stats->rmac_vld_bcst_frms_oflow) << 32 | 6338 le32_to_cpu(stats->rmac_vld_bcst_frms); 6339 tmp_stats[i++] = le32_to_cpu(stats->rmac_in_rng_len_err_frms); 6340 tmp_stats[i++] = le32_to_cpu(stats->rmac_out_rng_len_err_frms); 6341 tmp_stats[i++] = le64_to_cpu(stats->rmac_long_frms); 6342 tmp_stats[i++] = le64_to_cpu(stats->rmac_pause_ctrl_frms); 6343 tmp_stats[i++] = le64_to_cpu(stats->rmac_unsup_ctrl_frms); 6344 tmp_stats[i++] = 6345 (u64)le32_to_cpu(stats->rmac_ttl_octets_oflow) << 32 | 6346 le32_to_cpu(stats->rmac_ttl_octets); 6347 tmp_stats[i++] = 6348 (u64)le32_to_cpu(stats->rmac_accepted_ucst_frms_oflow) << 32 6349 | le32_to_cpu(stats->rmac_accepted_ucst_frms); 6350 tmp_stats[i++] = 6351 (u64)le32_to_cpu(stats->rmac_accepted_nucst_frms_oflow) 6352 << 32 | le32_to_cpu(stats->rmac_accepted_nucst_frms); 6353 tmp_stats[i++] = 6354 (u64)le32_to_cpu(stats->rmac_discarded_frms_oflow) << 32 | 6355 le32_to_cpu(stats->rmac_discarded_frms); 6356 tmp_stats[i++] = 6357 (u64)le32_to_cpu(stats->rmac_drop_events_oflow) 6358 << 32 | le32_to_cpu(stats->rmac_drop_events); 6359 tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_less_fb_octets); 6360 tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_frms); 6361 tmp_stats[i++] = 6362 (u64)le32_to_cpu(stats->rmac_usized_frms_oflow) << 32 | 6363 le32_to_cpu(stats->rmac_usized_frms); 6364 tmp_stats[i++] = 6365 (u64)le32_to_cpu(stats->rmac_osized_frms_oflow) << 32 | 6366 le32_to_cpu(stats->rmac_osized_frms); 6367 tmp_stats[i++] = 6368 (u64)le32_to_cpu(stats->rmac_frag_frms_oflow) << 32 | 6369 le32_to_cpu(stats->rmac_frag_frms); 6370 tmp_stats[i++] = 6371 (u64)le32_to_cpu(stats->rmac_jabber_frms_oflow) << 32 | 6372 le32_to_cpu(stats->rmac_jabber_frms); 6373 tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_64_frms); 6374 tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_65_127_frms); 6375 tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_128_255_frms); 6376 tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_256_511_frms); 6377 tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_512_1023_frms); 6378 tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_1024_1518_frms); 6379 tmp_stats[i++] = 6380 (u64)le32_to_cpu(stats->rmac_ip_oflow) << 32 | 6381 le32_to_cpu(stats->rmac_ip); 6382 tmp_stats[i++] = le64_to_cpu(stats->rmac_ip_octets); 6383 tmp_stats[i++] = le32_to_cpu(stats->rmac_hdr_err_ip); 6384 tmp_stats[i++] = 6385 (u64)le32_to_cpu(stats->rmac_drop_ip_oflow) << 32 | 6386 le32_to_cpu(stats->rmac_drop_ip); 6387 tmp_stats[i++] = 6388 (u64)le32_to_cpu(stats->rmac_icmp_oflow) << 32 | 6389 le32_to_cpu(stats->rmac_icmp); 6390 tmp_stats[i++] = le64_to_cpu(stats->rmac_tcp); 6391 tmp_stats[i++] = 6392 (u64)le32_to_cpu(stats->rmac_udp_oflow) << 32 | 6393 le32_to_cpu(stats->rmac_udp); 6394 tmp_stats[i++] = 6395 (u64)le32_to_cpu(stats->rmac_err_drp_udp_oflow) << 32 | 6396 le32_to_cpu(stats->rmac_err_drp_udp); 6397 tmp_stats[i++] = le64_to_cpu(stats->rmac_xgmii_err_sym); 6398 tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q0); 6399 tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q1); 6400 tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q2); 6401 tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q3); 6402 tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q4); 6403 tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q5); 6404 tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q6); 6405 tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q7); 6406 tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q0); 6407 tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q1); 6408 tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q2); 6409 tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q3); 6410 tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q4); 6411 tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q5); 6412 tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q6); 6413 tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q7); 6414 tmp_stats[i++] = 6415 (u64)le32_to_cpu(stats->rmac_pause_cnt_oflow) << 32 | 6416 le32_to_cpu(stats->rmac_pause_cnt); 6417 tmp_stats[i++] = le64_to_cpu(stats->rmac_xgmii_data_err_cnt); 6418 tmp_stats[i++] = le64_to_cpu(stats->rmac_xgmii_ctrl_err_cnt); 6419 tmp_stats[i++] = 6420 (u64)le32_to_cpu(stats->rmac_accepted_ip_oflow) << 32 | 6421 le32_to_cpu(stats->rmac_accepted_ip); 6422 tmp_stats[i++] = le32_to_cpu(stats->rmac_err_tcp); 6423 tmp_stats[i++] = le32_to_cpu(stats->rd_req_cnt); 6424 tmp_stats[i++] = le32_to_cpu(stats->new_rd_req_cnt); 6425 tmp_stats[i++] = le32_to_cpu(stats->new_rd_req_rtry_cnt); 6426 tmp_stats[i++] = le32_to_cpu(stats->rd_rtry_cnt); 6427 tmp_stats[i++] = le32_to_cpu(stats->wr_rtry_rd_ack_cnt); 6428 tmp_stats[i++] = le32_to_cpu(stats->wr_req_cnt); 6429 tmp_stats[i++] = le32_to_cpu(stats->new_wr_req_cnt); 6430 tmp_stats[i++] = le32_to_cpu(stats->new_wr_req_rtry_cnt); 6431 tmp_stats[i++] = le32_to_cpu(stats->wr_rtry_cnt); 6432 tmp_stats[i++] = le32_to_cpu(stats->wr_disc_cnt); 6433 tmp_stats[i++] = le32_to_cpu(stats->rd_rtry_wr_ack_cnt); 6434 tmp_stats[i++] = le32_to_cpu(stats->txp_wr_cnt); 6435 tmp_stats[i++] = le32_to_cpu(stats->txd_rd_cnt); 6436 tmp_stats[i++] = le32_to_cpu(stats->txd_wr_cnt); 6437 tmp_stats[i++] = le32_to_cpu(stats->rxd_rd_cnt); 6438 tmp_stats[i++] = le32_to_cpu(stats->rxd_wr_cnt); 6439 tmp_stats[i++] = le32_to_cpu(stats->txf_rd_cnt); 6440 tmp_stats[i++] = le32_to_cpu(stats->rxf_wr_cnt); 6441 6442 /* Enhanced statistics exist only for Hercules */ 6443 if (sp->device_type == XFRAME_II_DEVICE) { 6444 tmp_stats[i++] = 6445 le64_to_cpu(stats->rmac_ttl_1519_4095_frms); 6446 tmp_stats[i++] = 6447 le64_to_cpu(stats->rmac_ttl_4096_8191_frms); 6448 tmp_stats[i++] = 6449 le64_to_cpu(stats->rmac_ttl_8192_max_frms); 6450 tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_gt_max_frms); 6451 tmp_stats[i++] = le64_to_cpu(stats->rmac_osized_alt_frms); 6452 tmp_stats[i++] = le64_to_cpu(stats->rmac_jabber_alt_frms); 6453 tmp_stats[i++] = le64_to_cpu(stats->rmac_gt_max_alt_frms); 6454 tmp_stats[i++] = le64_to_cpu(stats->rmac_vlan_frms); 6455 tmp_stats[i++] = le32_to_cpu(stats->rmac_len_discard); 6456 tmp_stats[i++] = le32_to_cpu(stats->rmac_fcs_discard); 6457 tmp_stats[i++] = le32_to_cpu(stats->rmac_pf_discard); 6458 tmp_stats[i++] = le32_to_cpu(stats->rmac_da_discard); 6459 tmp_stats[i++] = le32_to_cpu(stats->rmac_red_discard); 6460 tmp_stats[i++] = le32_to_cpu(stats->rmac_rts_discard); 6461 tmp_stats[i++] = le32_to_cpu(stats->rmac_ingm_full_discard); 6462 tmp_stats[i++] = le32_to_cpu(stats->link_fault_cnt); 6463 } 6464 6465 tmp_stats[i++] = 0; 6466 tmp_stats[i++] = swstats->single_ecc_errs; 6467 tmp_stats[i++] = swstats->double_ecc_errs; 6468 tmp_stats[i++] = swstats->parity_err_cnt; 6469 tmp_stats[i++] = swstats->serious_err_cnt; 6470 tmp_stats[i++] = swstats->soft_reset_cnt; 6471 tmp_stats[i++] = swstats->fifo_full_cnt; 6472 for (k = 0; k < MAX_RX_RINGS; k++) 6473 tmp_stats[i++] = swstats->ring_full_cnt[k]; 6474 tmp_stats[i++] = xstats->alarm_transceiver_temp_high; 6475 tmp_stats[i++] = xstats->alarm_transceiver_temp_low; 6476 tmp_stats[i++] = xstats->alarm_laser_bias_current_high; 6477 tmp_stats[i++] = xstats->alarm_laser_bias_current_low; 6478 tmp_stats[i++] = xstats->alarm_laser_output_power_high; 6479 tmp_stats[i++] = xstats->alarm_laser_output_power_low; 6480 tmp_stats[i++] = xstats->warn_transceiver_temp_high; 6481 tmp_stats[i++] = xstats->warn_transceiver_temp_low; 6482 tmp_stats[i++] = xstats->warn_laser_bias_current_high; 6483 tmp_stats[i++] = xstats->warn_laser_bias_current_low; 6484 tmp_stats[i++] = xstats->warn_laser_output_power_high; 6485 tmp_stats[i++] = xstats->warn_laser_output_power_low; 6486 tmp_stats[i++] = swstats->clubbed_frms_cnt; 6487 tmp_stats[i++] = swstats->sending_both; 6488 tmp_stats[i++] = swstats->outof_sequence_pkts; 6489 tmp_stats[i++] = swstats->flush_max_pkts; 6490 if (swstats->num_aggregations) { 6491 u64 tmp = swstats->sum_avg_pkts_aggregated; 6492 int count = 0; 6493 /* 6494 * Since 64-bit divide does not work on all platforms, 6495 * do repeated subtraction. 6496 */ 6497 while (tmp >= swstats->num_aggregations) { 6498 tmp -= swstats->num_aggregations; 6499 count++; 6500 } 6501 tmp_stats[i++] = count; 6502 } else 6503 tmp_stats[i++] = 0; 6504 tmp_stats[i++] = swstats->mem_alloc_fail_cnt; 6505 tmp_stats[i++] = swstats->pci_map_fail_cnt; 6506 tmp_stats[i++] = swstats->watchdog_timer_cnt; 6507 tmp_stats[i++] = swstats->mem_allocated; 6508 tmp_stats[i++] = swstats->mem_freed; 6509 tmp_stats[i++] = swstats->link_up_cnt; 6510 tmp_stats[i++] = swstats->link_down_cnt; 6511 tmp_stats[i++] = swstats->link_up_time; 6512 tmp_stats[i++] = swstats->link_down_time; 6513 6514 tmp_stats[i++] = swstats->tx_buf_abort_cnt; 6515 tmp_stats[i++] = swstats->tx_desc_abort_cnt; 6516 tmp_stats[i++] = swstats->tx_parity_err_cnt; 6517 tmp_stats[i++] = swstats->tx_link_loss_cnt; 6518 tmp_stats[i++] = swstats->tx_list_proc_err_cnt; 6519 6520 tmp_stats[i++] = swstats->rx_parity_err_cnt; 6521 tmp_stats[i++] = swstats->rx_abort_cnt; 6522 tmp_stats[i++] = swstats->rx_parity_abort_cnt; 6523 tmp_stats[i++] = swstats->rx_rda_fail_cnt; 6524 tmp_stats[i++] = swstats->rx_unkn_prot_cnt; 6525 tmp_stats[i++] = swstats->rx_fcs_err_cnt; 6526 tmp_stats[i++] = swstats->rx_buf_size_err_cnt; 6527 tmp_stats[i++] = swstats->rx_rxd_corrupt_cnt; 6528 tmp_stats[i++] = swstats->rx_unkn_err_cnt; 6529 tmp_stats[i++] = swstats->tda_err_cnt; 6530 tmp_stats[i++] = swstats->pfc_err_cnt; 6531 tmp_stats[i++] = swstats->pcc_err_cnt; 6532 tmp_stats[i++] = swstats->tti_err_cnt; 6533 tmp_stats[i++] = swstats->tpa_err_cnt; 6534 tmp_stats[i++] = swstats->sm_err_cnt; 6535 tmp_stats[i++] = swstats->lso_err_cnt; 6536 tmp_stats[i++] = swstats->mac_tmac_err_cnt; 6537 tmp_stats[i++] = swstats->mac_rmac_err_cnt; 6538 tmp_stats[i++] = swstats->xgxs_txgxs_err_cnt; 6539 tmp_stats[i++] = swstats->xgxs_rxgxs_err_cnt; 6540 tmp_stats[i++] = swstats->rc_err_cnt; 6541 tmp_stats[i++] = swstats->prc_pcix_err_cnt; 6542 tmp_stats[i++] = swstats->rpa_err_cnt; 6543 tmp_stats[i++] = swstats->rda_err_cnt; 6544 tmp_stats[i++] = swstats->rti_err_cnt; 6545 tmp_stats[i++] = swstats->mc_err_cnt; 6546 } 6547 6548 static int s2io_ethtool_get_regs_len(struct net_device *dev) 6549 { 6550 return XENA_REG_SPACE; 6551 } 6552 6553 6554 static int s2io_get_eeprom_len(struct net_device *dev) 6555 { 6556 return XENA_EEPROM_SPACE; 6557 } 6558 6559 static int s2io_get_sset_count(struct net_device *dev, int sset) 6560 { 6561 struct s2io_nic *sp = netdev_priv(dev); 6562 6563 switch (sset) { 6564 case ETH_SS_TEST: 6565 return S2IO_TEST_LEN; 6566 case ETH_SS_STATS: 6567 switch (sp->device_type) { 6568 case XFRAME_I_DEVICE: 6569 return XFRAME_I_STAT_LEN; 6570 case XFRAME_II_DEVICE: 6571 return XFRAME_II_STAT_LEN; 6572 default: 6573 return 0; 6574 } 6575 default: 6576 return -EOPNOTSUPP; 6577 } 6578 } 6579 6580 static void s2io_ethtool_get_strings(struct net_device *dev, 6581 u32 stringset, u8 *data) 6582 { 6583 int stat_size = 0; 6584 struct s2io_nic *sp = netdev_priv(dev); 6585 6586 switch (stringset) { 6587 case ETH_SS_TEST: 6588 memcpy(data, s2io_gstrings, S2IO_STRINGS_LEN); 6589 break; 6590 case ETH_SS_STATS: 6591 stat_size = sizeof(ethtool_xena_stats_keys); 6592 memcpy(data, ðtool_xena_stats_keys, stat_size); 6593 if (sp->device_type == XFRAME_II_DEVICE) { 6594 memcpy(data + stat_size, 6595 ðtool_enhanced_stats_keys, 6596 sizeof(ethtool_enhanced_stats_keys)); 6597 stat_size += sizeof(ethtool_enhanced_stats_keys); 6598 } 6599 6600 memcpy(data + stat_size, ðtool_driver_stats_keys, 6601 sizeof(ethtool_driver_stats_keys)); 6602 } 6603 } 6604 6605 static int s2io_set_features(struct net_device *dev, netdev_features_t features) 6606 { 6607 struct s2io_nic *sp = netdev_priv(dev); 6608 netdev_features_t changed = (features ^ dev->features) & NETIF_F_LRO; 6609 6610 if (changed && netif_running(dev)) { 6611 int rc; 6612 6613 s2io_stop_all_tx_queue(sp); 6614 s2io_card_down(sp); 6615 dev->features = features; 6616 rc = s2io_card_up(sp); 6617 if (rc) 6618 s2io_reset(sp); 6619 else 6620 s2io_start_all_tx_queue(sp); 6621 6622 return rc ? rc : 1; 6623 } 6624 6625 return 0; 6626 } 6627 6628 static const struct ethtool_ops netdev_ethtool_ops = { 6629 .get_settings = s2io_ethtool_gset, 6630 .set_settings = s2io_ethtool_sset, 6631 .get_drvinfo = s2io_ethtool_gdrvinfo, 6632 .get_regs_len = s2io_ethtool_get_regs_len, 6633 .get_regs = s2io_ethtool_gregs, 6634 .get_link = ethtool_op_get_link, 6635 .get_eeprom_len = s2io_get_eeprom_len, 6636 .get_eeprom = s2io_ethtool_geeprom, 6637 .set_eeprom = s2io_ethtool_seeprom, 6638 .get_ringparam = s2io_ethtool_gringparam, 6639 .get_pauseparam = s2io_ethtool_getpause_data, 6640 .set_pauseparam = s2io_ethtool_setpause_data, 6641 .self_test = s2io_ethtool_test, 6642 .get_strings = s2io_ethtool_get_strings, 6643 .set_phys_id = s2io_ethtool_set_led, 6644 .get_ethtool_stats = s2io_get_ethtool_stats, 6645 .get_sset_count = s2io_get_sset_count, 6646 }; 6647 6648 /** 6649 * s2io_ioctl - Entry point for the Ioctl 6650 * @dev : Device pointer. 6651 * @ifr : An IOCTL specefic structure, that can contain a pointer to 6652 * a proprietary structure used to pass information to the driver. 6653 * @cmd : This is used to distinguish between the different commands that 6654 * can be passed to the IOCTL functions. 6655 * Description: 6656 * Currently there are no special functionality supported in IOCTL, hence 6657 * function always return EOPNOTSUPPORTED 6658 */ 6659 6660 static int s2io_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) 6661 { 6662 return -EOPNOTSUPP; 6663 } 6664 6665 /** 6666 * s2io_change_mtu - entry point to change MTU size for the device. 6667 * @dev : device pointer. 6668 * @new_mtu : the new MTU size for the device. 6669 * Description: A driver entry point to change MTU size for the device. 6670 * Before changing the MTU the device must be stopped. 6671 * Return value: 6672 * 0 on success and an appropriate (-)ve integer as defined in errno.h 6673 * file on failure. 6674 */ 6675 6676 static int s2io_change_mtu(struct net_device *dev, int new_mtu) 6677 { 6678 struct s2io_nic *sp = netdev_priv(dev); 6679 int ret = 0; 6680 6681 dev->mtu = new_mtu; 6682 if (netif_running(dev)) { 6683 s2io_stop_all_tx_queue(sp); 6684 s2io_card_down(sp); 6685 ret = s2io_card_up(sp); 6686 if (ret) { 6687 DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n", 6688 __func__); 6689 return ret; 6690 } 6691 s2io_wake_all_tx_queue(sp); 6692 } else { /* Device is down */ 6693 struct XENA_dev_config __iomem *bar0 = sp->bar0; 6694 u64 val64 = new_mtu; 6695 6696 writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len); 6697 } 6698 6699 return ret; 6700 } 6701 6702 /** 6703 * s2io_set_link - Set the LInk status 6704 * @data: long pointer to device private structue 6705 * Description: Sets the link status for the adapter 6706 */ 6707 6708 static void s2io_set_link(struct work_struct *work) 6709 { 6710 struct s2io_nic *nic = container_of(work, struct s2io_nic, 6711 set_link_task); 6712 struct net_device *dev = nic->dev; 6713 struct XENA_dev_config __iomem *bar0 = nic->bar0; 6714 register u64 val64; 6715 u16 subid; 6716 6717 rtnl_lock(); 6718 6719 if (!netif_running(dev)) 6720 goto out_unlock; 6721 6722 if (test_and_set_bit(__S2IO_STATE_LINK_TASK, &(nic->state))) { 6723 /* The card is being reset, no point doing anything */ 6724 goto out_unlock; 6725 } 6726 6727 subid = nic->pdev->subsystem_device; 6728 if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) { 6729 /* 6730 * Allow a small delay for the NICs self initiated 6731 * cleanup to complete. 6732 */ 6733 msleep(100); 6734 } 6735 6736 val64 = readq(&bar0->adapter_status); 6737 if (LINK_IS_UP(val64)) { 6738 if (!(readq(&bar0->adapter_control) & ADAPTER_CNTL_EN)) { 6739 if (verify_xena_quiescence(nic)) { 6740 val64 = readq(&bar0->adapter_control); 6741 val64 |= ADAPTER_CNTL_EN; 6742 writeq(val64, &bar0->adapter_control); 6743 if (CARDS_WITH_FAULTY_LINK_INDICATORS( 6744 nic->device_type, subid)) { 6745 val64 = readq(&bar0->gpio_control); 6746 val64 |= GPIO_CTRL_GPIO_0; 6747 writeq(val64, &bar0->gpio_control); 6748 val64 = readq(&bar0->gpio_control); 6749 } else { 6750 val64 |= ADAPTER_LED_ON; 6751 writeq(val64, &bar0->adapter_control); 6752 } 6753 nic->device_enabled_once = true; 6754 } else { 6755 DBG_PRINT(ERR_DBG, 6756 "%s: Error: device is not Quiescent\n", 6757 dev->name); 6758 s2io_stop_all_tx_queue(nic); 6759 } 6760 } 6761 val64 = readq(&bar0->adapter_control); 6762 val64 |= ADAPTER_LED_ON; 6763 writeq(val64, &bar0->adapter_control); 6764 s2io_link(nic, LINK_UP); 6765 } else { 6766 if (CARDS_WITH_FAULTY_LINK_INDICATORS(nic->device_type, 6767 subid)) { 6768 val64 = readq(&bar0->gpio_control); 6769 val64 &= ~GPIO_CTRL_GPIO_0; 6770 writeq(val64, &bar0->gpio_control); 6771 val64 = readq(&bar0->gpio_control); 6772 } 6773 /* turn off LED */ 6774 val64 = readq(&bar0->adapter_control); 6775 val64 = val64 & (~ADAPTER_LED_ON); 6776 writeq(val64, &bar0->adapter_control); 6777 s2io_link(nic, LINK_DOWN); 6778 } 6779 clear_bit(__S2IO_STATE_LINK_TASK, &(nic->state)); 6780 6781 out_unlock: 6782 rtnl_unlock(); 6783 } 6784 6785 static int set_rxd_buffer_pointer(struct s2io_nic *sp, struct RxD_t *rxdp, 6786 struct buffAdd *ba, 6787 struct sk_buff **skb, u64 *temp0, u64 *temp1, 6788 u64 *temp2, int size) 6789 { 6790 struct net_device *dev = sp->dev; 6791 struct swStat *stats = &sp->mac_control.stats_info->sw_stat; 6792 6793 if ((sp->rxd_mode == RXD_MODE_1) && (rxdp->Host_Control == 0)) { 6794 struct RxD1 *rxdp1 = (struct RxD1 *)rxdp; 6795 /* allocate skb */ 6796 if (*skb) { 6797 DBG_PRINT(INFO_DBG, "SKB is not NULL\n"); 6798 /* 6799 * As Rx frame are not going to be processed, 6800 * using same mapped address for the Rxd 6801 * buffer pointer 6802 */ 6803 rxdp1->Buffer0_ptr = *temp0; 6804 } else { 6805 *skb = netdev_alloc_skb(dev, size); 6806 if (!(*skb)) { 6807 DBG_PRINT(INFO_DBG, 6808 "%s: Out of memory to allocate %s\n", 6809 dev->name, "1 buf mode SKBs"); 6810 stats->mem_alloc_fail_cnt++; 6811 return -ENOMEM ; 6812 } 6813 stats->mem_allocated += (*skb)->truesize; 6814 /* storing the mapped addr in a temp variable 6815 * such it will be used for next rxd whose 6816 * Host Control is NULL 6817 */ 6818 rxdp1->Buffer0_ptr = *temp0 = 6819 pci_map_single(sp->pdev, (*skb)->data, 6820 size - NET_IP_ALIGN, 6821 PCI_DMA_FROMDEVICE); 6822 if (pci_dma_mapping_error(sp->pdev, rxdp1->Buffer0_ptr)) 6823 goto memalloc_failed; 6824 rxdp->Host_Control = (unsigned long) (*skb); 6825 } 6826 } else if ((sp->rxd_mode == RXD_MODE_3B) && (rxdp->Host_Control == 0)) { 6827 struct RxD3 *rxdp3 = (struct RxD3 *)rxdp; 6828 /* Two buffer Mode */ 6829 if (*skb) { 6830 rxdp3->Buffer2_ptr = *temp2; 6831 rxdp3->Buffer0_ptr = *temp0; 6832 rxdp3->Buffer1_ptr = *temp1; 6833 } else { 6834 *skb = netdev_alloc_skb(dev, size); 6835 if (!(*skb)) { 6836 DBG_PRINT(INFO_DBG, 6837 "%s: Out of memory to allocate %s\n", 6838 dev->name, 6839 "2 buf mode SKBs"); 6840 stats->mem_alloc_fail_cnt++; 6841 return -ENOMEM; 6842 } 6843 stats->mem_allocated += (*skb)->truesize; 6844 rxdp3->Buffer2_ptr = *temp2 = 6845 pci_map_single(sp->pdev, (*skb)->data, 6846 dev->mtu + 4, 6847 PCI_DMA_FROMDEVICE); 6848 if (pci_dma_mapping_error(sp->pdev, rxdp3->Buffer2_ptr)) 6849 goto memalloc_failed; 6850 rxdp3->Buffer0_ptr = *temp0 = 6851 pci_map_single(sp->pdev, ba->ba_0, BUF0_LEN, 6852 PCI_DMA_FROMDEVICE); 6853 if (pci_dma_mapping_error(sp->pdev, 6854 rxdp3->Buffer0_ptr)) { 6855 pci_unmap_single(sp->pdev, 6856 (dma_addr_t)rxdp3->Buffer2_ptr, 6857 dev->mtu + 4, 6858 PCI_DMA_FROMDEVICE); 6859 goto memalloc_failed; 6860 } 6861 rxdp->Host_Control = (unsigned long) (*skb); 6862 6863 /* Buffer-1 will be dummy buffer not used */ 6864 rxdp3->Buffer1_ptr = *temp1 = 6865 pci_map_single(sp->pdev, ba->ba_1, BUF1_LEN, 6866 PCI_DMA_FROMDEVICE); 6867 if (pci_dma_mapping_error(sp->pdev, 6868 rxdp3->Buffer1_ptr)) { 6869 pci_unmap_single(sp->pdev, 6870 (dma_addr_t)rxdp3->Buffer0_ptr, 6871 BUF0_LEN, PCI_DMA_FROMDEVICE); 6872 pci_unmap_single(sp->pdev, 6873 (dma_addr_t)rxdp3->Buffer2_ptr, 6874 dev->mtu + 4, 6875 PCI_DMA_FROMDEVICE); 6876 goto memalloc_failed; 6877 } 6878 } 6879 } 6880 return 0; 6881 6882 memalloc_failed: 6883 stats->pci_map_fail_cnt++; 6884 stats->mem_freed += (*skb)->truesize; 6885 dev_kfree_skb(*skb); 6886 return -ENOMEM; 6887 } 6888 6889 static void set_rxd_buffer_size(struct s2io_nic *sp, struct RxD_t *rxdp, 6890 int size) 6891 { 6892 struct net_device *dev = sp->dev; 6893 if (sp->rxd_mode == RXD_MODE_1) { 6894 rxdp->Control_2 = SET_BUFFER0_SIZE_1(size - NET_IP_ALIGN); 6895 } else if (sp->rxd_mode == RXD_MODE_3B) { 6896 rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN); 6897 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1); 6898 rxdp->Control_2 |= SET_BUFFER2_SIZE_3(dev->mtu + 4); 6899 } 6900 } 6901 6902 static int rxd_owner_bit_reset(struct s2io_nic *sp) 6903 { 6904 int i, j, k, blk_cnt = 0, size; 6905 struct config_param *config = &sp->config; 6906 struct mac_info *mac_control = &sp->mac_control; 6907 struct net_device *dev = sp->dev; 6908 struct RxD_t *rxdp = NULL; 6909 struct sk_buff *skb = NULL; 6910 struct buffAdd *ba = NULL; 6911 u64 temp0_64 = 0, temp1_64 = 0, temp2_64 = 0; 6912 6913 /* Calculate the size based on ring mode */ 6914 size = dev->mtu + HEADER_ETHERNET_II_802_3_SIZE + 6915 HEADER_802_2_SIZE + HEADER_SNAP_SIZE; 6916 if (sp->rxd_mode == RXD_MODE_1) 6917 size += NET_IP_ALIGN; 6918 else if (sp->rxd_mode == RXD_MODE_3B) 6919 size = dev->mtu + ALIGN_SIZE + BUF0_LEN + 4; 6920 6921 for (i = 0; i < config->rx_ring_num; i++) { 6922 struct rx_ring_config *rx_cfg = &config->rx_cfg[i]; 6923 struct ring_info *ring = &mac_control->rings[i]; 6924 6925 blk_cnt = rx_cfg->num_rxd / (rxd_count[sp->rxd_mode] + 1); 6926 6927 for (j = 0; j < blk_cnt; j++) { 6928 for (k = 0; k < rxd_count[sp->rxd_mode]; k++) { 6929 rxdp = ring->rx_blocks[j].rxds[k].virt_addr; 6930 if (sp->rxd_mode == RXD_MODE_3B) 6931 ba = &ring->ba[j][k]; 6932 if (set_rxd_buffer_pointer(sp, rxdp, ba, &skb, 6933 &temp0_64, 6934 &temp1_64, 6935 &temp2_64, 6936 size) == -ENOMEM) { 6937 return 0; 6938 } 6939 6940 set_rxd_buffer_size(sp, rxdp, size); 6941 dma_wmb(); 6942 /* flip the Ownership bit to Hardware */ 6943 rxdp->Control_1 |= RXD_OWN_XENA; 6944 } 6945 } 6946 } 6947 return 0; 6948 6949 } 6950 6951 static int s2io_add_isr(struct s2io_nic *sp) 6952 { 6953 int ret = 0; 6954 struct net_device *dev = sp->dev; 6955 int err = 0; 6956 6957 if (sp->config.intr_type == MSI_X) 6958 ret = s2io_enable_msi_x(sp); 6959 if (ret) { 6960 DBG_PRINT(ERR_DBG, "%s: Defaulting to INTA\n", dev->name); 6961 sp->config.intr_type = INTA; 6962 } 6963 6964 /* 6965 * Store the values of the MSIX table in 6966 * the struct s2io_nic structure 6967 */ 6968 store_xmsi_data(sp); 6969 6970 /* After proper initialization of H/W, register ISR */ 6971 if (sp->config.intr_type == MSI_X) { 6972 int i, msix_rx_cnt = 0; 6973 6974 for (i = 0; i < sp->num_entries; i++) { 6975 if (sp->s2io_entries[i].in_use == MSIX_FLG) { 6976 if (sp->s2io_entries[i].type == 6977 MSIX_RING_TYPE) { 6978 snprintf(sp->desc[i], 6979 sizeof(sp->desc[i]), 6980 "%s:MSI-X-%d-RX", 6981 dev->name, i); 6982 err = request_irq(sp->entries[i].vector, 6983 s2io_msix_ring_handle, 6984 0, 6985 sp->desc[i], 6986 sp->s2io_entries[i].arg); 6987 } else if (sp->s2io_entries[i].type == 6988 MSIX_ALARM_TYPE) { 6989 snprintf(sp->desc[i], 6990 sizeof(sp->desc[i]), 6991 "%s:MSI-X-%d-TX", 6992 dev->name, i); 6993 err = request_irq(sp->entries[i].vector, 6994 s2io_msix_fifo_handle, 6995 0, 6996 sp->desc[i], 6997 sp->s2io_entries[i].arg); 6998 6999 } 7000 /* if either data or addr is zero print it. */ 7001 if (!(sp->msix_info[i].addr && 7002 sp->msix_info[i].data)) { 7003 DBG_PRINT(ERR_DBG, 7004 "%s @Addr:0x%llx Data:0x%llx\n", 7005 sp->desc[i], 7006 (unsigned long long) 7007 sp->msix_info[i].addr, 7008 (unsigned long long) 7009 ntohl(sp->msix_info[i].data)); 7010 } else 7011 msix_rx_cnt++; 7012 if (err) { 7013 remove_msix_isr(sp); 7014 7015 DBG_PRINT(ERR_DBG, 7016 "%s:MSI-X-%d registration " 7017 "failed\n", dev->name, i); 7018 7019 DBG_PRINT(ERR_DBG, 7020 "%s: Defaulting to INTA\n", 7021 dev->name); 7022 sp->config.intr_type = INTA; 7023 break; 7024 } 7025 sp->s2io_entries[i].in_use = 7026 MSIX_REGISTERED_SUCCESS; 7027 } 7028 } 7029 if (!err) { 7030 pr_info("MSI-X-RX %d entries enabled\n", --msix_rx_cnt); 7031 DBG_PRINT(INFO_DBG, 7032 "MSI-X-TX entries enabled through alarm vector\n"); 7033 } 7034 } 7035 if (sp->config.intr_type == INTA) { 7036 err = request_irq(sp->pdev->irq, s2io_isr, IRQF_SHARED, 7037 sp->name, dev); 7038 if (err) { 7039 DBG_PRINT(ERR_DBG, "%s: ISR registration failed\n", 7040 dev->name); 7041 return -1; 7042 } 7043 } 7044 return 0; 7045 } 7046 7047 static void s2io_rem_isr(struct s2io_nic *sp) 7048 { 7049 if (sp->config.intr_type == MSI_X) 7050 remove_msix_isr(sp); 7051 else 7052 remove_inta_isr(sp); 7053 } 7054 7055 static void do_s2io_card_down(struct s2io_nic *sp, int do_io) 7056 { 7057 int cnt = 0; 7058 struct XENA_dev_config __iomem *bar0 = sp->bar0; 7059 register u64 val64 = 0; 7060 struct config_param *config; 7061 config = &sp->config; 7062 7063 if (!is_s2io_card_up(sp)) 7064 return; 7065 7066 del_timer_sync(&sp->alarm_timer); 7067 /* If s2io_set_link task is executing, wait till it completes. */ 7068 while (test_and_set_bit(__S2IO_STATE_LINK_TASK, &(sp->state))) 7069 msleep(50); 7070 clear_bit(__S2IO_STATE_CARD_UP, &sp->state); 7071 7072 /* Disable napi */ 7073 if (sp->config.napi) { 7074 int off = 0; 7075 if (config->intr_type == MSI_X) { 7076 for (; off < sp->config.rx_ring_num; off++) 7077 napi_disable(&sp->mac_control.rings[off].napi); 7078 } 7079 else 7080 napi_disable(&sp->napi); 7081 } 7082 7083 /* disable Tx and Rx traffic on the NIC */ 7084 if (do_io) 7085 stop_nic(sp); 7086 7087 s2io_rem_isr(sp); 7088 7089 /* stop the tx queue, indicate link down */ 7090 s2io_link(sp, LINK_DOWN); 7091 7092 /* Check if the device is Quiescent and then Reset the NIC */ 7093 while (do_io) { 7094 /* As per the HW requirement we need to replenish the 7095 * receive buffer to avoid the ring bump. Since there is 7096 * no intention of processing the Rx frame at this pointwe are 7097 * just setting the ownership bit of rxd in Each Rx 7098 * ring to HW and set the appropriate buffer size 7099 * based on the ring mode 7100 */ 7101 rxd_owner_bit_reset(sp); 7102 7103 val64 = readq(&bar0->adapter_status); 7104 if (verify_xena_quiescence(sp)) { 7105 if (verify_pcc_quiescent(sp, sp->device_enabled_once)) 7106 break; 7107 } 7108 7109 msleep(50); 7110 cnt++; 7111 if (cnt == 10) { 7112 DBG_PRINT(ERR_DBG, "Device not Quiescent - " 7113 "adapter status reads 0x%llx\n", 7114 (unsigned long long)val64); 7115 break; 7116 } 7117 } 7118 if (do_io) 7119 s2io_reset(sp); 7120 7121 /* Free all Tx buffers */ 7122 free_tx_buffers(sp); 7123 7124 /* Free all Rx buffers */ 7125 free_rx_buffers(sp); 7126 7127 clear_bit(__S2IO_STATE_LINK_TASK, &(sp->state)); 7128 } 7129 7130 static void s2io_card_down(struct s2io_nic *sp) 7131 { 7132 do_s2io_card_down(sp, 1); 7133 } 7134 7135 static int s2io_card_up(struct s2io_nic *sp) 7136 { 7137 int i, ret = 0; 7138 struct config_param *config; 7139 struct mac_info *mac_control; 7140 struct net_device *dev = sp->dev; 7141 u16 interruptible; 7142 7143 /* Initialize the H/W I/O registers */ 7144 ret = init_nic(sp); 7145 if (ret != 0) { 7146 DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n", 7147 dev->name); 7148 if (ret != -EIO) 7149 s2io_reset(sp); 7150 return ret; 7151 } 7152 7153 /* 7154 * Initializing the Rx buffers. For now we are considering only 1 7155 * Rx ring and initializing buffers into 30 Rx blocks 7156 */ 7157 config = &sp->config; 7158 mac_control = &sp->mac_control; 7159 7160 for (i = 0; i < config->rx_ring_num; i++) { 7161 struct ring_info *ring = &mac_control->rings[i]; 7162 7163 ring->mtu = dev->mtu; 7164 ring->lro = !!(dev->features & NETIF_F_LRO); 7165 ret = fill_rx_buffers(sp, ring, 1); 7166 if (ret) { 7167 DBG_PRINT(ERR_DBG, "%s: Out of memory in Open\n", 7168 dev->name); 7169 s2io_reset(sp); 7170 free_rx_buffers(sp); 7171 return -ENOMEM; 7172 } 7173 DBG_PRINT(INFO_DBG, "Buf in ring:%d is %d:\n", i, 7174 ring->rx_bufs_left); 7175 } 7176 7177 /* Initialise napi */ 7178 if (config->napi) { 7179 if (config->intr_type == MSI_X) { 7180 for (i = 0; i < sp->config.rx_ring_num; i++) 7181 napi_enable(&sp->mac_control.rings[i].napi); 7182 } else { 7183 napi_enable(&sp->napi); 7184 } 7185 } 7186 7187 /* Maintain the state prior to the open */ 7188 if (sp->promisc_flg) 7189 sp->promisc_flg = 0; 7190 if (sp->m_cast_flg) { 7191 sp->m_cast_flg = 0; 7192 sp->all_multi_pos = 0; 7193 } 7194 7195 /* Setting its receive mode */ 7196 s2io_set_multicast(dev); 7197 7198 if (dev->features & NETIF_F_LRO) { 7199 /* Initialize max aggregatable pkts per session based on MTU */ 7200 sp->lro_max_aggr_per_sess = ((1<<16) - 1) / dev->mtu; 7201 /* Check if we can use (if specified) user provided value */ 7202 if (lro_max_pkts < sp->lro_max_aggr_per_sess) 7203 sp->lro_max_aggr_per_sess = lro_max_pkts; 7204 } 7205 7206 /* Enable Rx Traffic and interrupts on the NIC */ 7207 if (start_nic(sp)) { 7208 DBG_PRINT(ERR_DBG, "%s: Starting NIC failed\n", dev->name); 7209 s2io_reset(sp); 7210 free_rx_buffers(sp); 7211 return -ENODEV; 7212 } 7213 7214 /* Add interrupt service routine */ 7215 if (s2io_add_isr(sp) != 0) { 7216 if (sp->config.intr_type == MSI_X) 7217 s2io_rem_isr(sp); 7218 s2io_reset(sp); 7219 free_rx_buffers(sp); 7220 return -ENODEV; 7221 } 7222 7223 S2IO_TIMER_CONF(sp->alarm_timer, s2io_alarm_handle, sp, (HZ/2)); 7224 7225 set_bit(__S2IO_STATE_CARD_UP, &sp->state); 7226 7227 /* Enable select interrupts */ 7228 en_dis_err_alarms(sp, ENA_ALL_INTRS, ENABLE_INTRS); 7229 if (sp->config.intr_type != INTA) { 7230 interruptible = TX_TRAFFIC_INTR | TX_PIC_INTR; 7231 en_dis_able_nic_intrs(sp, interruptible, ENABLE_INTRS); 7232 } else { 7233 interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR; 7234 interruptible |= TX_PIC_INTR; 7235 en_dis_able_nic_intrs(sp, interruptible, ENABLE_INTRS); 7236 } 7237 7238 return 0; 7239 } 7240 7241 /** 7242 * s2io_restart_nic - Resets the NIC. 7243 * @data : long pointer to the device private structure 7244 * Description: 7245 * This function is scheduled to be run by the s2io_tx_watchdog 7246 * function after 0.5 secs to reset the NIC. The idea is to reduce 7247 * the run time of the watch dog routine which is run holding a 7248 * spin lock. 7249 */ 7250 7251 static void s2io_restart_nic(struct work_struct *work) 7252 { 7253 struct s2io_nic *sp = container_of(work, struct s2io_nic, rst_timer_task); 7254 struct net_device *dev = sp->dev; 7255 7256 rtnl_lock(); 7257 7258 if (!netif_running(dev)) 7259 goto out_unlock; 7260 7261 s2io_card_down(sp); 7262 if (s2io_card_up(sp)) { 7263 DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n", dev->name); 7264 } 7265 s2io_wake_all_tx_queue(sp); 7266 DBG_PRINT(ERR_DBG, "%s: was reset by Tx watchdog timer\n", dev->name); 7267 out_unlock: 7268 rtnl_unlock(); 7269 } 7270 7271 /** 7272 * s2io_tx_watchdog - Watchdog for transmit side. 7273 * @dev : Pointer to net device structure 7274 * Description: 7275 * This function is triggered if the Tx Queue is stopped 7276 * for a pre-defined amount of time when the Interface is still up. 7277 * If the Interface is jammed in such a situation, the hardware is 7278 * reset (by s2io_close) and restarted again (by s2io_open) to 7279 * overcome any problem that might have been caused in the hardware. 7280 * Return value: 7281 * void 7282 */ 7283 7284 static void s2io_tx_watchdog(struct net_device *dev) 7285 { 7286 struct s2io_nic *sp = netdev_priv(dev); 7287 struct swStat *swstats = &sp->mac_control.stats_info->sw_stat; 7288 7289 if (netif_carrier_ok(dev)) { 7290 swstats->watchdog_timer_cnt++; 7291 schedule_work(&sp->rst_timer_task); 7292 swstats->soft_reset_cnt++; 7293 } 7294 } 7295 7296 /** 7297 * rx_osm_handler - To perform some OS related operations on SKB. 7298 * @sp: private member of the device structure,pointer to s2io_nic structure. 7299 * @skb : the socket buffer pointer. 7300 * @len : length of the packet 7301 * @cksum : FCS checksum of the frame. 7302 * @ring_no : the ring from which this RxD was extracted. 7303 * Description: 7304 * This function is called by the Rx interrupt serivce routine to perform 7305 * some OS related operations on the SKB before passing it to the upper 7306 * layers. It mainly checks if the checksum is OK, if so adds it to the 7307 * SKBs cksum variable, increments the Rx packet count and passes the SKB 7308 * to the upper layer. If the checksum is wrong, it increments the Rx 7309 * packet error count, frees the SKB and returns error. 7310 * Return value: 7311 * SUCCESS on success and -1 on failure. 7312 */ 7313 static int rx_osm_handler(struct ring_info *ring_data, struct RxD_t * rxdp) 7314 { 7315 struct s2io_nic *sp = ring_data->nic; 7316 struct net_device *dev = ring_data->dev; 7317 struct sk_buff *skb = (struct sk_buff *) 7318 ((unsigned long)rxdp->Host_Control); 7319 int ring_no = ring_data->ring_no; 7320 u16 l3_csum, l4_csum; 7321 unsigned long long err = rxdp->Control_1 & RXD_T_CODE; 7322 struct lro *uninitialized_var(lro); 7323 u8 err_mask; 7324 struct swStat *swstats = &sp->mac_control.stats_info->sw_stat; 7325 7326 skb->dev = dev; 7327 7328 if (err) { 7329 /* Check for parity error */ 7330 if (err & 0x1) 7331 swstats->parity_err_cnt++; 7332 7333 err_mask = err >> 48; 7334 switch (err_mask) { 7335 case 1: 7336 swstats->rx_parity_err_cnt++; 7337 break; 7338 7339 case 2: 7340 swstats->rx_abort_cnt++; 7341 break; 7342 7343 case 3: 7344 swstats->rx_parity_abort_cnt++; 7345 break; 7346 7347 case 4: 7348 swstats->rx_rda_fail_cnt++; 7349 break; 7350 7351 case 5: 7352 swstats->rx_unkn_prot_cnt++; 7353 break; 7354 7355 case 6: 7356 swstats->rx_fcs_err_cnt++; 7357 break; 7358 7359 case 7: 7360 swstats->rx_buf_size_err_cnt++; 7361 break; 7362 7363 case 8: 7364 swstats->rx_rxd_corrupt_cnt++; 7365 break; 7366 7367 case 15: 7368 swstats->rx_unkn_err_cnt++; 7369 break; 7370 } 7371 /* 7372 * Drop the packet if bad transfer code. Exception being 7373 * 0x5, which could be due to unsupported IPv6 extension header. 7374 * In this case, we let stack handle the packet. 7375 * Note that in this case, since checksum will be incorrect, 7376 * stack will validate the same. 7377 */ 7378 if (err_mask != 0x5) { 7379 DBG_PRINT(ERR_DBG, "%s: Rx error Value: 0x%x\n", 7380 dev->name, err_mask); 7381 dev->stats.rx_crc_errors++; 7382 swstats->mem_freed 7383 += skb->truesize; 7384 dev_kfree_skb(skb); 7385 ring_data->rx_bufs_left -= 1; 7386 rxdp->Host_Control = 0; 7387 return 0; 7388 } 7389 } 7390 7391 rxdp->Host_Control = 0; 7392 if (sp->rxd_mode == RXD_MODE_1) { 7393 int len = RXD_GET_BUFFER0_SIZE_1(rxdp->Control_2); 7394 7395 skb_put(skb, len); 7396 } else if (sp->rxd_mode == RXD_MODE_3B) { 7397 int get_block = ring_data->rx_curr_get_info.block_index; 7398 int get_off = ring_data->rx_curr_get_info.offset; 7399 int buf0_len = RXD_GET_BUFFER0_SIZE_3(rxdp->Control_2); 7400 int buf2_len = RXD_GET_BUFFER2_SIZE_3(rxdp->Control_2); 7401 unsigned char *buff = skb_push(skb, buf0_len); 7402 7403 struct buffAdd *ba = &ring_data->ba[get_block][get_off]; 7404 memcpy(buff, ba->ba_0, buf0_len); 7405 skb_put(skb, buf2_len); 7406 } 7407 7408 if ((rxdp->Control_1 & TCP_OR_UDP_FRAME) && 7409 ((!ring_data->lro) || 7410 (!(rxdp->Control_1 & RXD_FRAME_IP_FRAG))) && 7411 (dev->features & NETIF_F_RXCSUM)) { 7412 l3_csum = RXD_GET_L3_CKSUM(rxdp->Control_1); 7413 l4_csum = RXD_GET_L4_CKSUM(rxdp->Control_1); 7414 if ((l3_csum == L3_CKSUM_OK) && (l4_csum == L4_CKSUM_OK)) { 7415 /* 7416 * NIC verifies if the Checksum of the received 7417 * frame is Ok or not and accordingly returns 7418 * a flag in the RxD. 7419 */ 7420 skb->ip_summed = CHECKSUM_UNNECESSARY; 7421 if (ring_data->lro) { 7422 u32 tcp_len = 0; 7423 u8 *tcp; 7424 int ret = 0; 7425 7426 ret = s2io_club_tcp_session(ring_data, 7427 skb->data, &tcp, 7428 &tcp_len, &lro, 7429 rxdp, sp); 7430 switch (ret) { 7431 case 3: /* Begin anew */ 7432 lro->parent = skb; 7433 goto aggregate; 7434 case 1: /* Aggregate */ 7435 lro_append_pkt(sp, lro, skb, tcp_len); 7436 goto aggregate; 7437 case 4: /* Flush session */ 7438 lro_append_pkt(sp, lro, skb, tcp_len); 7439 queue_rx_frame(lro->parent, 7440 lro->vlan_tag); 7441 clear_lro_session(lro); 7442 swstats->flush_max_pkts++; 7443 goto aggregate; 7444 case 2: /* Flush both */ 7445 lro->parent->data_len = lro->frags_len; 7446 swstats->sending_both++; 7447 queue_rx_frame(lro->parent, 7448 lro->vlan_tag); 7449 clear_lro_session(lro); 7450 goto send_up; 7451 case 0: /* sessions exceeded */ 7452 case -1: /* non-TCP or not L2 aggregatable */ 7453 case 5: /* 7454 * First pkt in session not 7455 * L3/L4 aggregatable 7456 */ 7457 break; 7458 default: 7459 DBG_PRINT(ERR_DBG, 7460 "%s: Samadhana!!\n", 7461 __func__); 7462 BUG(); 7463 } 7464 } 7465 } else { 7466 /* 7467 * Packet with erroneous checksum, let the 7468 * upper layers deal with it. 7469 */ 7470 skb_checksum_none_assert(skb); 7471 } 7472 } else 7473 skb_checksum_none_assert(skb); 7474 7475 swstats->mem_freed += skb->truesize; 7476 send_up: 7477 skb_record_rx_queue(skb, ring_no); 7478 queue_rx_frame(skb, RXD_GET_VLAN_TAG(rxdp->Control_2)); 7479 aggregate: 7480 sp->mac_control.rings[ring_no].rx_bufs_left -= 1; 7481 return SUCCESS; 7482 } 7483 7484 /** 7485 * s2io_link - stops/starts the Tx queue. 7486 * @sp : private member of the device structure, which is a pointer to the 7487 * s2io_nic structure. 7488 * @link : inidicates whether link is UP/DOWN. 7489 * Description: 7490 * This function stops/starts the Tx queue depending on whether the link 7491 * status of the NIC is is down or up. This is called by the Alarm 7492 * interrupt handler whenever a link change interrupt comes up. 7493 * Return value: 7494 * void. 7495 */ 7496 7497 static void s2io_link(struct s2io_nic *sp, int link) 7498 { 7499 struct net_device *dev = sp->dev; 7500 struct swStat *swstats = &sp->mac_control.stats_info->sw_stat; 7501 7502 if (link != sp->last_link_state) { 7503 init_tti(sp, link); 7504 if (link == LINK_DOWN) { 7505 DBG_PRINT(ERR_DBG, "%s: Link down\n", dev->name); 7506 s2io_stop_all_tx_queue(sp); 7507 netif_carrier_off(dev); 7508 if (swstats->link_up_cnt) 7509 swstats->link_up_time = 7510 jiffies - sp->start_time; 7511 swstats->link_down_cnt++; 7512 } else { 7513 DBG_PRINT(ERR_DBG, "%s: Link Up\n", dev->name); 7514 if (swstats->link_down_cnt) 7515 swstats->link_down_time = 7516 jiffies - sp->start_time; 7517 swstats->link_up_cnt++; 7518 netif_carrier_on(dev); 7519 s2io_wake_all_tx_queue(sp); 7520 } 7521 } 7522 sp->last_link_state = link; 7523 sp->start_time = jiffies; 7524 } 7525 7526 /** 7527 * s2io_init_pci -Initialization of PCI and PCI-X configuration registers . 7528 * @sp : private member of the device structure, which is a pointer to the 7529 * s2io_nic structure. 7530 * Description: 7531 * This function initializes a few of the PCI and PCI-X configuration registers 7532 * with recommended values. 7533 * Return value: 7534 * void 7535 */ 7536 7537 static void s2io_init_pci(struct s2io_nic *sp) 7538 { 7539 u16 pci_cmd = 0, pcix_cmd = 0; 7540 7541 /* Enable Data Parity Error Recovery in PCI-X command register. */ 7542 pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER, 7543 &(pcix_cmd)); 7544 pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER, 7545 (pcix_cmd | 1)); 7546 pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER, 7547 &(pcix_cmd)); 7548 7549 /* Set the PErr Response bit in PCI command register. */ 7550 pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd); 7551 pci_write_config_word(sp->pdev, PCI_COMMAND, 7552 (pci_cmd | PCI_COMMAND_PARITY)); 7553 pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd); 7554 } 7555 7556 static int s2io_verify_parm(struct pci_dev *pdev, u8 *dev_intr_type, 7557 u8 *dev_multiq) 7558 { 7559 int i; 7560 7561 if ((tx_fifo_num > MAX_TX_FIFOS) || (tx_fifo_num < 1)) { 7562 DBG_PRINT(ERR_DBG, "Requested number of tx fifos " 7563 "(%d) not supported\n", tx_fifo_num); 7564 7565 if (tx_fifo_num < 1) 7566 tx_fifo_num = 1; 7567 else 7568 tx_fifo_num = MAX_TX_FIFOS; 7569 7570 DBG_PRINT(ERR_DBG, "Default to %d tx fifos\n", tx_fifo_num); 7571 } 7572 7573 if (multiq) 7574 *dev_multiq = multiq; 7575 7576 if (tx_steering_type && (1 == tx_fifo_num)) { 7577 if (tx_steering_type != TX_DEFAULT_STEERING) 7578 DBG_PRINT(ERR_DBG, 7579 "Tx steering is not supported with " 7580 "one fifo. Disabling Tx steering.\n"); 7581 tx_steering_type = NO_STEERING; 7582 } 7583 7584 if ((tx_steering_type < NO_STEERING) || 7585 (tx_steering_type > TX_DEFAULT_STEERING)) { 7586 DBG_PRINT(ERR_DBG, 7587 "Requested transmit steering not supported\n"); 7588 DBG_PRINT(ERR_DBG, "Disabling transmit steering\n"); 7589 tx_steering_type = NO_STEERING; 7590 } 7591 7592 if (rx_ring_num > MAX_RX_RINGS) { 7593 DBG_PRINT(ERR_DBG, 7594 "Requested number of rx rings not supported\n"); 7595 DBG_PRINT(ERR_DBG, "Default to %d rx rings\n", 7596 MAX_RX_RINGS); 7597 rx_ring_num = MAX_RX_RINGS; 7598 } 7599 7600 if ((*dev_intr_type != INTA) && (*dev_intr_type != MSI_X)) { 7601 DBG_PRINT(ERR_DBG, "Wrong intr_type requested. " 7602 "Defaulting to INTA\n"); 7603 *dev_intr_type = INTA; 7604 } 7605 7606 if ((*dev_intr_type == MSI_X) && 7607 ((pdev->device != PCI_DEVICE_ID_HERC_WIN) && 7608 (pdev->device != PCI_DEVICE_ID_HERC_UNI))) { 7609 DBG_PRINT(ERR_DBG, "Xframe I does not support MSI_X. " 7610 "Defaulting to INTA\n"); 7611 *dev_intr_type = INTA; 7612 } 7613 7614 if ((rx_ring_mode != 1) && (rx_ring_mode != 2)) { 7615 DBG_PRINT(ERR_DBG, "Requested ring mode not supported\n"); 7616 DBG_PRINT(ERR_DBG, "Defaulting to 1-buffer mode\n"); 7617 rx_ring_mode = 1; 7618 } 7619 7620 for (i = 0; i < MAX_RX_RINGS; i++) 7621 if (rx_ring_sz[i] > MAX_RX_BLOCKS_PER_RING) { 7622 DBG_PRINT(ERR_DBG, "Requested rx ring size not " 7623 "supported\nDefaulting to %d\n", 7624 MAX_RX_BLOCKS_PER_RING); 7625 rx_ring_sz[i] = MAX_RX_BLOCKS_PER_RING; 7626 } 7627 7628 return SUCCESS; 7629 } 7630 7631 /** 7632 * rts_ds_steer - Receive traffic steering based on IPv4 or IPv6 TOS 7633 * or Traffic class respectively. 7634 * @nic: device private variable 7635 * Description: The function configures the receive steering to 7636 * desired receive ring. 7637 * Return Value: SUCCESS on success and 7638 * '-1' on failure (endian settings incorrect). 7639 */ 7640 static int rts_ds_steer(struct s2io_nic *nic, u8 ds_codepoint, u8 ring) 7641 { 7642 struct XENA_dev_config __iomem *bar0 = nic->bar0; 7643 register u64 val64 = 0; 7644 7645 if (ds_codepoint > 63) 7646 return FAILURE; 7647 7648 val64 = RTS_DS_MEM_DATA(ring); 7649 writeq(val64, &bar0->rts_ds_mem_data); 7650 7651 val64 = RTS_DS_MEM_CTRL_WE | 7652 RTS_DS_MEM_CTRL_STROBE_NEW_CMD | 7653 RTS_DS_MEM_CTRL_OFFSET(ds_codepoint); 7654 7655 writeq(val64, &bar0->rts_ds_mem_ctrl); 7656 7657 return wait_for_cmd_complete(&bar0->rts_ds_mem_ctrl, 7658 RTS_DS_MEM_CTRL_STROBE_CMD_BEING_EXECUTED, 7659 S2IO_BIT_RESET); 7660 } 7661 7662 static const struct net_device_ops s2io_netdev_ops = { 7663 .ndo_open = s2io_open, 7664 .ndo_stop = s2io_close, 7665 .ndo_get_stats = s2io_get_stats, 7666 .ndo_start_xmit = s2io_xmit, 7667 .ndo_validate_addr = eth_validate_addr, 7668 .ndo_set_rx_mode = s2io_set_multicast, 7669 .ndo_do_ioctl = s2io_ioctl, 7670 .ndo_set_mac_address = s2io_set_mac_addr, 7671 .ndo_change_mtu = s2io_change_mtu, 7672 .ndo_set_features = s2io_set_features, 7673 .ndo_tx_timeout = s2io_tx_watchdog, 7674 #ifdef CONFIG_NET_POLL_CONTROLLER 7675 .ndo_poll_controller = s2io_netpoll, 7676 #endif 7677 }; 7678 7679 /** 7680 * s2io_init_nic - Initialization of the adapter . 7681 * @pdev : structure containing the PCI related information of the device. 7682 * @pre: List of PCI devices supported by the driver listed in s2io_tbl. 7683 * Description: 7684 * The function initializes an adapter identified by the pci_dec structure. 7685 * All OS related initialization including memory and device structure and 7686 * initlaization of the device private variable is done. Also the swapper 7687 * control register is initialized to enable read and write into the I/O 7688 * registers of the device. 7689 * Return value: 7690 * returns 0 on success and negative on failure. 7691 */ 7692 7693 static int 7694 s2io_init_nic(struct pci_dev *pdev, const struct pci_device_id *pre) 7695 { 7696 struct s2io_nic *sp; 7697 struct net_device *dev; 7698 int i, j, ret; 7699 int dma_flag = false; 7700 u32 mac_up, mac_down; 7701 u64 val64 = 0, tmp64 = 0; 7702 struct XENA_dev_config __iomem *bar0 = NULL; 7703 u16 subid; 7704 struct config_param *config; 7705 struct mac_info *mac_control; 7706 int mode; 7707 u8 dev_intr_type = intr_type; 7708 u8 dev_multiq = 0; 7709 7710 ret = s2io_verify_parm(pdev, &dev_intr_type, &dev_multiq); 7711 if (ret) 7712 return ret; 7713 7714 ret = pci_enable_device(pdev); 7715 if (ret) { 7716 DBG_PRINT(ERR_DBG, 7717 "%s: pci_enable_device failed\n", __func__); 7718 return ret; 7719 } 7720 7721 if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) { 7722 DBG_PRINT(INIT_DBG, "%s: Using 64bit DMA\n", __func__); 7723 dma_flag = true; 7724 if (pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64))) { 7725 DBG_PRINT(ERR_DBG, 7726 "Unable to obtain 64bit DMA " 7727 "for consistent allocations\n"); 7728 pci_disable_device(pdev); 7729 return -ENOMEM; 7730 } 7731 } else if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(32))) { 7732 DBG_PRINT(INIT_DBG, "%s: Using 32bit DMA\n", __func__); 7733 } else { 7734 pci_disable_device(pdev); 7735 return -ENOMEM; 7736 } 7737 ret = pci_request_regions(pdev, s2io_driver_name); 7738 if (ret) { 7739 DBG_PRINT(ERR_DBG, "%s: Request Regions failed - %x\n", 7740 __func__, ret); 7741 pci_disable_device(pdev); 7742 return -ENODEV; 7743 } 7744 if (dev_multiq) 7745 dev = alloc_etherdev_mq(sizeof(struct s2io_nic), tx_fifo_num); 7746 else 7747 dev = alloc_etherdev(sizeof(struct s2io_nic)); 7748 if (dev == NULL) { 7749 pci_disable_device(pdev); 7750 pci_release_regions(pdev); 7751 return -ENODEV; 7752 } 7753 7754 pci_set_master(pdev); 7755 pci_set_drvdata(pdev, dev); 7756 SET_NETDEV_DEV(dev, &pdev->dev); 7757 7758 /* Private member variable initialized to s2io NIC structure */ 7759 sp = netdev_priv(dev); 7760 sp->dev = dev; 7761 sp->pdev = pdev; 7762 sp->high_dma_flag = dma_flag; 7763 sp->device_enabled_once = false; 7764 if (rx_ring_mode == 1) 7765 sp->rxd_mode = RXD_MODE_1; 7766 if (rx_ring_mode == 2) 7767 sp->rxd_mode = RXD_MODE_3B; 7768 7769 sp->config.intr_type = dev_intr_type; 7770 7771 if ((pdev->device == PCI_DEVICE_ID_HERC_WIN) || 7772 (pdev->device == PCI_DEVICE_ID_HERC_UNI)) 7773 sp->device_type = XFRAME_II_DEVICE; 7774 else 7775 sp->device_type = XFRAME_I_DEVICE; 7776 7777 7778 /* Initialize some PCI/PCI-X fields of the NIC. */ 7779 s2io_init_pci(sp); 7780 7781 /* 7782 * Setting the device configuration parameters. 7783 * Most of these parameters can be specified by the user during 7784 * module insertion as they are module loadable parameters. If 7785 * these parameters are not not specified during load time, they 7786 * are initialized with default values. 7787 */ 7788 config = &sp->config; 7789 mac_control = &sp->mac_control; 7790 7791 config->napi = napi; 7792 config->tx_steering_type = tx_steering_type; 7793 7794 /* Tx side parameters. */ 7795 if (config->tx_steering_type == TX_PRIORITY_STEERING) 7796 config->tx_fifo_num = MAX_TX_FIFOS; 7797 else 7798 config->tx_fifo_num = tx_fifo_num; 7799 7800 /* Initialize the fifos used for tx steering */ 7801 if (config->tx_fifo_num < 5) { 7802 if (config->tx_fifo_num == 1) 7803 sp->total_tcp_fifos = 1; 7804 else 7805 sp->total_tcp_fifos = config->tx_fifo_num - 1; 7806 sp->udp_fifo_idx = config->tx_fifo_num - 1; 7807 sp->total_udp_fifos = 1; 7808 sp->other_fifo_idx = sp->total_tcp_fifos - 1; 7809 } else { 7810 sp->total_tcp_fifos = (tx_fifo_num - FIFO_UDP_MAX_NUM - 7811 FIFO_OTHER_MAX_NUM); 7812 sp->udp_fifo_idx = sp->total_tcp_fifos; 7813 sp->total_udp_fifos = FIFO_UDP_MAX_NUM; 7814 sp->other_fifo_idx = sp->udp_fifo_idx + FIFO_UDP_MAX_NUM; 7815 } 7816 7817 config->multiq = dev_multiq; 7818 for (i = 0; i < config->tx_fifo_num; i++) { 7819 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i]; 7820 7821 tx_cfg->fifo_len = tx_fifo_len[i]; 7822 tx_cfg->fifo_priority = i; 7823 } 7824 7825 /* mapping the QoS priority to the configured fifos */ 7826 for (i = 0; i < MAX_TX_FIFOS; i++) 7827 config->fifo_mapping[i] = fifo_map[config->tx_fifo_num - 1][i]; 7828 7829 /* map the hashing selector table to the configured fifos */ 7830 for (i = 0; i < config->tx_fifo_num; i++) 7831 sp->fifo_selector[i] = fifo_selector[i]; 7832 7833 7834 config->tx_intr_type = TXD_INT_TYPE_UTILZ; 7835 for (i = 0; i < config->tx_fifo_num; i++) { 7836 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i]; 7837 7838 tx_cfg->f_no_snoop = (NO_SNOOP_TXD | NO_SNOOP_TXD_BUFFER); 7839 if (tx_cfg->fifo_len < 65) { 7840 config->tx_intr_type = TXD_INT_TYPE_PER_LIST; 7841 break; 7842 } 7843 } 7844 /* + 2 because one Txd for skb->data and one Txd for UFO */ 7845 config->max_txds = MAX_SKB_FRAGS + 2; 7846 7847 /* Rx side parameters. */ 7848 config->rx_ring_num = rx_ring_num; 7849 for (i = 0; i < config->rx_ring_num; i++) { 7850 struct rx_ring_config *rx_cfg = &config->rx_cfg[i]; 7851 struct ring_info *ring = &mac_control->rings[i]; 7852 7853 rx_cfg->num_rxd = rx_ring_sz[i] * (rxd_count[sp->rxd_mode] + 1); 7854 rx_cfg->ring_priority = i; 7855 ring->rx_bufs_left = 0; 7856 ring->rxd_mode = sp->rxd_mode; 7857 ring->rxd_count = rxd_count[sp->rxd_mode]; 7858 ring->pdev = sp->pdev; 7859 ring->dev = sp->dev; 7860 } 7861 7862 for (i = 0; i < rx_ring_num; i++) { 7863 struct rx_ring_config *rx_cfg = &config->rx_cfg[i]; 7864 7865 rx_cfg->ring_org = RING_ORG_BUFF1; 7866 rx_cfg->f_no_snoop = (NO_SNOOP_RXD | NO_SNOOP_RXD_BUFFER); 7867 } 7868 7869 /* Setting Mac Control parameters */ 7870 mac_control->rmac_pause_time = rmac_pause_time; 7871 mac_control->mc_pause_threshold_q0q3 = mc_pause_threshold_q0q3; 7872 mac_control->mc_pause_threshold_q4q7 = mc_pause_threshold_q4q7; 7873 7874 7875 /* initialize the shared memory used by the NIC and the host */ 7876 if (init_shared_mem(sp)) { 7877 DBG_PRINT(ERR_DBG, "%s: Memory allocation failed\n", dev->name); 7878 ret = -ENOMEM; 7879 goto mem_alloc_failed; 7880 } 7881 7882 sp->bar0 = pci_ioremap_bar(pdev, 0); 7883 if (!sp->bar0) { 7884 DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem1\n", 7885 dev->name); 7886 ret = -ENOMEM; 7887 goto bar0_remap_failed; 7888 } 7889 7890 sp->bar1 = pci_ioremap_bar(pdev, 2); 7891 if (!sp->bar1) { 7892 DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem2\n", 7893 dev->name); 7894 ret = -ENOMEM; 7895 goto bar1_remap_failed; 7896 } 7897 7898 /* Initializing the BAR1 address as the start of the FIFO pointer. */ 7899 for (j = 0; j < MAX_TX_FIFOS; j++) { 7900 mac_control->tx_FIFO_start[j] = sp->bar1 + (j * 0x00020000); 7901 } 7902 7903 /* Driver entry points */ 7904 dev->netdev_ops = &s2io_netdev_ops; 7905 dev->ethtool_ops = &netdev_ethtool_ops; 7906 dev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | 7907 NETIF_F_TSO | NETIF_F_TSO6 | 7908 NETIF_F_RXCSUM | NETIF_F_LRO; 7909 dev->features |= dev->hw_features | 7910 NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX; 7911 if (sp->device_type & XFRAME_II_DEVICE) { 7912 dev->hw_features |= NETIF_F_UFO; 7913 if (ufo) 7914 dev->features |= NETIF_F_UFO; 7915 } 7916 if (sp->high_dma_flag == true) 7917 dev->features |= NETIF_F_HIGHDMA; 7918 dev->watchdog_timeo = WATCH_DOG_TIMEOUT; 7919 INIT_WORK(&sp->rst_timer_task, s2io_restart_nic); 7920 INIT_WORK(&sp->set_link_task, s2io_set_link); 7921 7922 pci_save_state(sp->pdev); 7923 7924 /* Setting swapper control on the NIC, for proper reset operation */ 7925 if (s2io_set_swapper(sp)) { 7926 DBG_PRINT(ERR_DBG, "%s: swapper settings are wrong\n", 7927 dev->name); 7928 ret = -EAGAIN; 7929 goto set_swap_failed; 7930 } 7931 7932 /* Verify if the Herc works on the slot its placed into */ 7933 if (sp->device_type & XFRAME_II_DEVICE) { 7934 mode = s2io_verify_pci_mode(sp); 7935 if (mode < 0) { 7936 DBG_PRINT(ERR_DBG, "%s: Unsupported PCI bus mode\n", 7937 __func__); 7938 ret = -EBADSLT; 7939 goto set_swap_failed; 7940 } 7941 } 7942 7943 if (sp->config.intr_type == MSI_X) { 7944 sp->num_entries = config->rx_ring_num + 1; 7945 ret = s2io_enable_msi_x(sp); 7946 7947 if (!ret) { 7948 ret = s2io_test_msi(sp); 7949 /* rollback MSI-X, will re-enable during add_isr() */ 7950 remove_msix_isr(sp); 7951 } 7952 if (ret) { 7953 7954 DBG_PRINT(ERR_DBG, 7955 "MSI-X requested but failed to enable\n"); 7956 sp->config.intr_type = INTA; 7957 } 7958 } 7959 7960 if (config->intr_type == MSI_X) { 7961 for (i = 0; i < config->rx_ring_num ; i++) { 7962 struct ring_info *ring = &mac_control->rings[i]; 7963 7964 netif_napi_add(dev, &ring->napi, s2io_poll_msix, 64); 7965 } 7966 } else { 7967 netif_napi_add(dev, &sp->napi, s2io_poll_inta, 64); 7968 } 7969 7970 /* Not needed for Herc */ 7971 if (sp->device_type & XFRAME_I_DEVICE) { 7972 /* 7973 * Fix for all "FFs" MAC address problems observed on 7974 * Alpha platforms 7975 */ 7976 fix_mac_address(sp); 7977 s2io_reset(sp); 7978 } 7979 7980 /* 7981 * MAC address initialization. 7982 * For now only one mac address will be read and used. 7983 */ 7984 bar0 = sp->bar0; 7985 val64 = RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD | 7986 RMAC_ADDR_CMD_MEM_OFFSET(0 + S2IO_MAC_ADDR_START_OFFSET); 7987 writeq(val64, &bar0->rmac_addr_cmd_mem); 7988 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem, 7989 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING, 7990 S2IO_BIT_RESET); 7991 tmp64 = readq(&bar0->rmac_addr_data0_mem); 7992 mac_down = (u32)tmp64; 7993 mac_up = (u32) (tmp64 >> 32); 7994 7995 sp->def_mac_addr[0].mac_addr[3] = (u8) (mac_up); 7996 sp->def_mac_addr[0].mac_addr[2] = (u8) (mac_up >> 8); 7997 sp->def_mac_addr[0].mac_addr[1] = (u8) (mac_up >> 16); 7998 sp->def_mac_addr[0].mac_addr[0] = (u8) (mac_up >> 24); 7999 sp->def_mac_addr[0].mac_addr[5] = (u8) (mac_down >> 16); 8000 sp->def_mac_addr[0].mac_addr[4] = (u8) (mac_down >> 24); 8001 8002 /* Set the factory defined MAC address initially */ 8003 dev->addr_len = ETH_ALEN; 8004 memcpy(dev->dev_addr, sp->def_mac_addr, ETH_ALEN); 8005 8006 /* initialize number of multicast & unicast MAC entries variables */ 8007 if (sp->device_type == XFRAME_I_DEVICE) { 8008 config->max_mc_addr = S2IO_XENA_MAX_MC_ADDRESSES; 8009 config->max_mac_addr = S2IO_XENA_MAX_MAC_ADDRESSES; 8010 config->mc_start_offset = S2IO_XENA_MC_ADDR_START_OFFSET; 8011 } else if (sp->device_type == XFRAME_II_DEVICE) { 8012 config->max_mc_addr = S2IO_HERC_MAX_MC_ADDRESSES; 8013 config->max_mac_addr = S2IO_HERC_MAX_MAC_ADDRESSES; 8014 config->mc_start_offset = S2IO_HERC_MC_ADDR_START_OFFSET; 8015 } 8016 8017 /* MTU range: 46 - 9600 */ 8018 dev->min_mtu = MIN_MTU; 8019 dev->max_mtu = S2IO_JUMBO_SIZE; 8020 8021 /* store mac addresses from CAM to s2io_nic structure */ 8022 do_s2io_store_unicast_mc(sp); 8023 8024 /* Configure MSIX vector for number of rings configured plus one */ 8025 if ((sp->device_type == XFRAME_II_DEVICE) && 8026 (config->intr_type == MSI_X)) 8027 sp->num_entries = config->rx_ring_num + 1; 8028 8029 /* Store the values of the MSIX table in the s2io_nic structure */ 8030 store_xmsi_data(sp); 8031 /* reset Nic and bring it to known state */ 8032 s2io_reset(sp); 8033 8034 /* 8035 * Initialize link state flags 8036 * and the card state parameter 8037 */ 8038 sp->state = 0; 8039 8040 /* Initialize spinlocks */ 8041 for (i = 0; i < sp->config.tx_fifo_num; i++) { 8042 struct fifo_info *fifo = &mac_control->fifos[i]; 8043 8044 spin_lock_init(&fifo->tx_lock); 8045 } 8046 8047 /* 8048 * SXE-002: Configure link and activity LED to init state 8049 * on driver load. 8050 */ 8051 subid = sp->pdev->subsystem_device; 8052 if ((subid & 0xFF) >= 0x07) { 8053 val64 = readq(&bar0->gpio_control); 8054 val64 |= 0x0000800000000000ULL; 8055 writeq(val64, &bar0->gpio_control); 8056 val64 = 0x0411040400000000ULL; 8057 writeq(val64, (void __iomem *)bar0 + 0x2700); 8058 val64 = readq(&bar0->gpio_control); 8059 } 8060 8061 sp->rx_csum = 1; /* Rx chksum verify enabled by default */ 8062 8063 if (register_netdev(dev)) { 8064 DBG_PRINT(ERR_DBG, "Device registration failed\n"); 8065 ret = -ENODEV; 8066 goto register_failed; 8067 } 8068 s2io_vpd_read(sp); 8069 DBG_PRINT(ERR_DBG, "Copyright(c) 2002-2010 Exar Corp.\n"); 8070 DBG_PRINT(ERR_DBG, "%s: Neterion %s (rev %d)\n", dev->name, 8071 sp->product_name, pdev->revision); 8072 DBG_PRINT(ERR_DBG, "%s: Driver version %s\n", dev->name, 8073 s2io_driver_version); 8074 DBG_PRINT(ERR_DBG, "%s: MAC Address: %pM\n", dev->name, dev->dev_addr); 8075 DBG_PRINT(ERR_DBG, "Serial number: %s\n", sp->serial_num); 8076 if (sp->device_type & XFRAME_II_DEVICE) { 8077 mode = s2io_print_pci_mode(sp); 8078 if (mode < 0) { 8079 ret = -EBADSLT; 8080 unregister_netdev(dev); 8081 goto set_swap_failed; 8082 } 8083 } 8084 switch (sp->rxd_mode) { 8085 case RXD_MODE_1: 8086 DBG_PRINT(ERR_DBG, "%s: 1-Buffer receive mode enabled\n", 8087 dev->name); 8088 break; 8089 case RXD_MODE_3B: 8090 DBG_PRINT(ERR_DBG, "%s: 2-Buffer receive mode enabled\n", 8091 dev->name); 8092 break; 8093 } 8094 8095 switch (sp->config.napi) { 8096 case 0: 8097 DBG_PRINT(ERR_DBG, "%s: NAPI disabled\n", dev->name); 8098 break; 8099 case 1: 8100 DBG_PRINT(ERR_DBG, "%s: NAPI enabled\n", dev->name); 8101 break; 8102 } 8103 8104 DBG_PRINT(ERR_DBG, "%s: Using %d Tx fifo(s)\n", dev->name, 8105 sp->config.tx_fifo_num); 8106 8107 DBG_PRINT(ERR_DBG, "%s: Using %d Rx ring(s)\n", dev->name, 8108 sp->config.rx_ring_num); 8109 8110 switch (sp->config.intr_type) { 8111 case INTA: 8112 DBG_PRINT(ERR_DBG, "%s: Interrupt type INTA\n", dev->name); 8113 break; 8114 case MSI_X: 8115 DBG_PRINT(ERR_DBG, "%s: Interrupt type MSI-X\n", dev->name); 8116 break; 8117 } 8118 if (sp->config.multiq) { 8119 for (i = 0; i < sp->config.tx_fifo_num; i++) { 8120 struct fifo_info *fifo = &mac_control->fifos[i]; 8121 8122 fifo->multiq = config->multiq; 8123 } 8124 DBG_PRINT(ERR_DBG, "%s: Multiqueue support enabled\n", 8125 dev->name); 8126 } else 8127 DBG_PRINT(ERR_DBG, "%s: Multiqueue support disabled\n", 8128 dev->name); 8129 8130 switch (sp->config.tx_steering_type) { 8131 case NO_STEERING: 8132 DBG_PRINT(ERR_DBG, "%s: No steering enabled for transmit\n", 8133 dev->name); 8134 break; 8135 case TX_PRIORITY_STEERING: 8136 DBG_PRINT(ERR_DBG, 8137 "%s: Priority steering enabled for transmit\n", 8138 dev->name); 8139 break; 8140 case TX_DEFAULT_STEERING: 8141 DBG_PRINT(ERR_DBG, 8142 "%s: Default steering enabled for transmit\n", 8143 dev->name); 8144 } 8145 8146 DBG_PRINT(ERR_DBG, "%s: Large receive offload enabled\n", 8147 dev->name); 8148 if (ufo) 8149 DBG_PRINT(ERR_DBG, 8150 "%s: UDP Fragmentation Offload(UFO) enabled\n", 8151 dev->name); 8152 /* Initialize device name */ 8153 snprintf(sp->name, sizeof(sp->name), "%s Neterion %s", dev->name, 8154 sp->product_name); 8155 8156 if (vlan_tag_strip) 8157 sp->vlan_strip_flag = 1; 8158 else 8159 sp->vlan_strip_flag = 0; 8160 8161 /* 8162 * Make Link state as off at this point, when the Link change 8163 * interrupt comes the state will be automatically changed to 8164 * the right state. 8165 */ 8166 netif_carrier_off(dev); 8167 8168 return 0; 8169 8170 register_failed: 8171 set_swap_failed: 8172 iounmap(sp->bar1); 8173 bar1_remap_failed: 8174 iounmap(sp->bar0); 8175 bar0_remap_failed: 8176 mem_alloc_failed: 8177 free_shared_mem(sp); 8178 pci_disable_device(pdev); 8179 pci_release_regions(pdev); 8180 free_netdev(dev); 8181 8182 return ret; 8183 } 8184 8185 /** 8186 * s2io_rem_nic - Free the PCI device 8187 * @pdev: structure containing the PCI related information of the device. 8188 * Description: This function is called by the Pci subsystem to release a 8189 * PCI device and free up all resource held up by the device. This could 8190 * be in response to a Hot plug event or when the driver is to be removed 8191 * from memory. 8192 */ 8193 8194 static void s2io_rem_nic(struct pci_dev *pdev) 8195 { 8196 struct net_device *dev = pci_get_drvdata(pdev); 8197 struct s2io_nic *sp; 8198 8199 if (dev == NULL) { 8200 DBG_PRINT(ERR_DBG, "Driver Data is NULL!!\n"); 8201 return; 8202 } 8203 8204 sp = netdev_priv(dev); 8205 8206 cancel_work_sync(&sp->rst_timer_task); 8207 cancel_work_sync(&sp->set_link_task); 8208 8209 unregister_netdev(dev); 8210 8211 free_shared_mem(sp); 8212 iounmap(sp->bar0); 8213 iounmap(sp->bar1); 8214 pci_release_regions(pdev); 8215 free_netdev(dev); 8216 pci_disable_device(pdev); 8217 } 8218 8219 module_pci_driver(s2io_driver); 8220 8221 static int check_L2_lro_capable(u8 *buffer, struct iphdr **ip, 8222 struct tcphdr **tcp, struct RxD_t *rxdp, 8223 struct s2io_nic *sp) 8224 { 8225 int ip_off; 8226 u8 l2_type = (u8)((rxdp->Control_1 >> 37) & 0x7), ip_len; 8227 8228 if (!(rxdp->Control_1 & RXD_FRAME_PROTO_TCP)) { 8229 DBG_PRINT(INIT_DBG, 8230 "%s: Non-TCP frames not supported for LRO\n", 8231 __func__); 8232 return -1; 8233 } 8234 8235 /* Checking for DIX type or DIX type with VLAN */ 8236 if ((l2_type == 0) || (l2_type == 4)) { 8237 ip_off = HEADER_ETHERNET_II_802_3_SIZE; 8238 /* 8239 * If vlan stripping is disabled and the frame is VLAN tagged, 8240 * shift the offset by the VLAN header size bytes. 8241 */ 8242 if ((!sp->vlan_strip_flag) && 8243 (rxdp->Control_1 & RXD_FRAME_VLAN_TAG)) 8244 ip_off += HEADER_VLAN_SIZE; 8245 } else { 8246 /* LLC, SNAP etc are considered non-mergeable */ 8247 return -1; 8248 } 8249 8250 *ip = (struct iphdr *)(buffer + ip_off); 8251 ip_len = (u8)((*ip)->ihl); 8252 ip_len <<= 2; 8253 *tcp = (struct tcphdr *)((unsigned long)*ip + ip_len); 8254 8255 return 0; 8256 } 8257 8258 static int check_for_socket_match(struct lro *lro, struct iphdr *ip, 8259 struct tcphdr *tcp) 8260 { 8261 DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__); 8262 if ((lro->iph->saddr != ip->saddr) || 8263 (lro->iph->daddr != ip->daddr) || 8264 (lro->tcph->source != tcp->source) || 8265 (lro->tcph->dest != tcp->dest)) 8266 return -1; 8267 return 0; 8268 } 8269 8270 static inline int get_l4_pyld_length(struct iphdr *ip, struct tcphdr *tcp) 8271 { 8272 return ntohs(ip->tot_len) - (ip->ihl << 2) - (tcp->doff << 2); 8273 } 8274 8275 static void initiate_new_session(struct lro *lro, u8 *l2h, 8276 struct iphdr *ip, struct tcphdr *tcp, 8277 u32 tcp_pyld_len, u16 vlan_tag) 8278 { 8279 DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__); 8280 lro->l2h = l2h; 8281 lro->iph = ip; 8282 lro->tcph = tcp; 8283 lro->tcp_next_seq = tcp_pyld_len + ntohl(tcp->seq); 8284 lro->tcp_ack = tcp->ack_seq; 8285 lro->sg_num = 1; 8286 lro->total_len = ntohs(ip->tot_len); 8287 lro->frags_len = 0; 8288 lro->vlan_tag = vlan_tag; 8289 /* 8290 * Check if we saw TCP timestamp. 8291 * Other consistency checks have already been done. 8292 */ 8293 if (tcp->doff == 8) { 8294 __be32 *ptr; 8295 ptr = (__be32 *)(tcp+1); 8296 lro->saw_ts = 1; 8297 lro->cur_tsval = ntohl(*(ptr+1)); 8298 lro->cur_tsecr = *(ptr+2); 8299 } 8300 lro->in_use = 1; 8301 } 8302 8303 static void update_L3L4_header(struct s2io_nic *sp, struct lro *lro) 8304 { 8305 struct iphdr *ip = lro->iph; 8306 struct tcphdr *tcp = lro->tcph; 8307 struct swStat *swstats = &sp->mac_control.stats_info->sw_stat; 8308 8309 DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__); 8310 8311 /* Update L3 header */ 8312 csum_replace2(&ip->check, ip->tot_len, htons(lro->total_len)); 8313 ip->tot_len = htons(lro->total_len); 8314 8315 /* Update L4 header */ 8316 tcp->ack_seq = lro->tcp_ack; 8317 tcp->window = lro->window; 8318 8319 /* Update tsecr field if this session has timestamps enabled */ 8320 if (lro->saw_ts) { 8321 __be32 *ptr = (__be32 *)(tcp + 1); 8322 *(ptr+2) = lro->cur_tsecr; 8323 } 8324 8325 /* Update counters required for calculation of 8326 * average no. of packets aggregated. 8327 */ 8328 swstats->sum_avg_pkts_aggregated += lro->sg_num; 8329 swstats->num_aggregations++; 8330 } 8331 8332 static void aggregate_new_rx(struct lro *lro, struct iphdr *ip, 8333 struct tcphdr *tcp, u32 l4_pyld) 8334 { 8335 DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__); 8336 lro->total_len += l4_pyld; 8337 lro->frags_len += l4_pyld; 8338 lro->tcp_next_seq += l4_pyld; 8339 lro->sg_num++; 8340 8341 /* Update ack seq no. and window ad(from this pkt) in LRO object */ 8342 lro->tcp_ack = tcp->ack_seq; 8343 lro->window = tcp->window; 8344 8345 if (lro->saw_ts) { 8346 __be32 *ptr; 8347 /* Update tsecr and tsval from this packet */ 8348 ptr = (__be32 *)(tcp+1); 8349 lro->cur_tsval = ntohl(*(ptr+1)); 8350 lro->cur_tsecr = *(ptr + 2); 8351 } 8352 } 8353 8354 static int verify_l3_l4_lro_capable(struct lro *l_lro, struct iphdr *ip, 8355 struct tcphdr *tcp, u32 tcp_pyld_len) 8356 { 8357 u8 *ptr; 8358 8359 DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__); 8360 8361 if (!tcp_pyld_len) { 8362 /* Runt frame or a pure ack */ 8363 return -1; 8364 } 8365 8366 if (ip->ihl != 5) /* IP has options */ 8367 return -1; 8368 8369 /* If we see CE codepoint in IP header, packet is not mergeable */ 8370 if (INET_ECN_is_ce(ipv4_get_dsfield(ip))) 8371 return -1; 8372 8373 /* If we see ECE or CWR flags in TCP header, packet is not mergeable */ 8374 if (tcp->urg || tcp->psh || tcp->rst || 8375 tcp->syn || tcp->fin || 8376 tcp->ece || tcp->cwr || !tcp->ack) { 8377 /* 8378 * Currently recognize only the ack control word and 8379 * any other control field being set would result in 8380 * flushing the LRO session 8381 */ 8382 return -1; 8383 } 8384 8385 /* 8386 * Allow only one TCP timestamp option. Don't aggregate if 8387 * any other options are detected. 8388 */ 8389 if (tcp->doff != 5 && tcp->doff != 8) 8390 return -1; 8391 8392 if (tcp->doff == 8) { 8393 ptr = (u8 *)(tcp + 1); 8394 while (*ptr == TCPOPT_NOP) 8395 ptr++; 8396 if (*ptr != TCPOPT_TIMESTAMP || *(ptr+1) != TCPOLEN_TIMESTAMP) 8397 return -1; 8398 8399 /* Ensure timestamp value increases monotonically */ 8400 if (l_lro) 8401 if (l_lro->cur_tsval > ntohl(*((__be32 *)(ptr+2)))) 8402 return -1; 8403 8404 /* timestamp echo reply should be non-zero */ 8405 if (*((__be32 *)(ptr+6)) == 0) 8406 return -1; 8407 } 8408 8409 return 0; 8410 } 8411 8412 static int s2io_club_tcp_session(struct ring_info *ring_data, u8 *buffer, 8413 u8 **tcp, u32 *tcp_len, struct lro **lro, 8414 struct RxD_t *rxdp, struct s2io_nic *sp) 8415 { 8416 struct iphdr *ip; 8417 struct tcphdr *tcph; 8418 int ret = 0, i; 8419 u16 vlan_tag = 0; 8420 struct swStat *swstats = &sp->mac_control.stats_info->sw_stat; 8421 8422 ret = check_L2_lro_capable(buffer, &ip, (struct tcphdr **)tcp, 8423 rxdp, sp); 8424 if (ret) 8425 return ret; 8426 8427 DBG_PRINT(INFO_DBG, "IP Saddr: %x Daddr: %x\n", ip->saddr, ip->daddr); 8428 8429 vlan_tag = RXD_GET_VLAN_TAG(rxdp->Control_2); 8430 tcph = (struct tcphdr *)*tcp; 8431 *tcp_len = get_l4_pyld_length(ip, tcph); 8432 for (i = 0; i < MAX_LRO_SESSIONS; i++) { 8433 struct lro *l_lro = &ring_data->lro0_n[i]; 8434 if (l_lro->in_use) { 8435 if (check_for_socket_match(l_lro, ip, tcph)) 8436 continue; 8437 /* Sock pair matched */ 8438 *lro = l_lro; 8439 8440 if ((*lro)->tcp_next_seq != ntohl(tcph->seq)) { 8441 DBG_PRINT(INFO_DBG, "%s: Out of sequence. " 8442 "expected 0x%x, actual 0x%x\n", 8443 __func__, 8444 (*lro)->tcp_next_seq, 8445 ntohl(tcph->seq)); 8446 8447 swstats->outof_sequence_pkts++; 8448 ret = 2; 8449 break; 8450 } 8451 8452 if (!verify_l3_l4_lro_capable(l_lro, ip, tcph, 8453 *tcp_len)) 8454 ret = 1; /* Aggregate */ 8455 else 8456 ret = 2; /* Flush both */ 8457 break; 8458 } 8459 } 8460 8461 if (ret == 0) { 8462 /* Before searching for available LRO objects, 8463 * check if the pkt is L3/L4 aggregatable. If not 8464 * don't create new LRO session. Just send this 8465 * packet up. 8466 */ 8467 if (verify_l3_l4_lro_capable(NULL, ip, tcph, *tcp_len)) 8468 return 5; 8469 8470 for (i = 0; i < MAX_LRO_SESSIONS; i++) { 8471 struct lro *l_lro = &ring_data->lro0_n[i]; 8472 if (!(l_lro->in_use)) { 8473 *lro = l_lro; 8474 ret = 3; /* Begin anew */ 8475 break; 8476 } 8477 } 8478 } 8479 8480 if (ret == 0) { /* sessions exceeded */ 8481 DBG_PRINT(INFO_DBG, "%s: All LRO sessions already in use\n", 8482 __func__); 8483 *lro = NULL; 8484 return ret; 8485 } 8486 8487 switch (ret) { 8488 case 3: 8489 initiate_new_session(*lro, buffer, ip, tcph, *tcp_len, 8490 vlan_tag); 8491 break; 8492 case 2: 8493 update_L3L4_header(sp, *lro); 8494 break; 8495 case 1: 8496 aggregate_new_rx(*lro, ip, tcph, *tcp_len); 8497 if ((*lro)->sg_num == sp->lro_max_aggr_per_sess) { 8498 update_L3L4_header(sp, *lro); 8499 ret = 4; /* Flush the LRO */ 8500 } 8501 break; 8502 default: 8503 DBG_PRINT(ERR_DBG, "%s: Don't know, can't say!!\n", __func__); 8504 break; 8505 } 8506 8507 return ret; 8508 } 8509 8510 static void clear_lro_session(struct lro *lro) 8511 { 8512 static u16 lro_struct_size = sizeof(struct lro); 8513 8514 memset(lro, 0, lro_struct_size); 8515 } 8516 8517 static void queue_rx_frame(struct sk_buff *skb, u16 vlan_tag) 8518 { 8519 struct net_device *dev = skb->dev; 8520 struct s2io_nic *sp = netdev_priv(dev); 8521 8522 skb->protocol = eth_type_trans(skb, dev); 8523 if (vlan_tag && sp->vlan_strip_flag) 8524 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag); 8525 if (sp->config.napi) 8526 netif_receive_skb(skb); 8527 else 8528 netif_rx(skb); 8529 } 8530 8531 static void lro_append_pkt(struct s2io_nic *sp, struct lro *lro, 8532 struct sk_buff *skb, u32 tcp_len) 8533 { 8534 struct sk_buff *first = lro->parent; 8535 struct swStat *swstats = &sp->mac_control.stats_info->sw_stat; 8536 8537 first->len += tcp_len; 8538 first->data_len = lro->frags_len; 8539 skb_pull(skb, (skb->len - tcp_len)); 8540 if (skb_shinfo(first)->frag_list) 8541 lro->last_frag->next = skb; 8542 else 8543 skb_shinfo(first)->frag_list = skb; 8544 first->truesize += skb->truesize; 8545 lro->last_frag = skb; 8546 swstats->clubbed_frms_cnt++; 8547 } 8548 8549 /** 8550 * s2io_io_error_detected - called when PCI error is detected 8551 * @pdev: Pointer to PCI device 8552 * @state: The current pci connection state 8553 * 8554 * This function is called after a PCI bus error affecting 8555 * this device has been detected. 8556 */ 8557 static pci_ers_result_t s2io_io_error_detected(struct pci_dev *pdev, 8558 pci_channel_state_t state) 8559 { 8560 struct net_device *netdev = pci_get_drvdata(pdev); 8561 struct s2io_nic *sp = netdev_priv(netdev); 8562 8563 netif_device_detach(netdev); 8564 8565 if (state == pci_channel_io_perm_failure) 8566 return PCI_ERS_RESULT_DISCONNECT; 8567 8568 if (netif_running(netdev)) { 8569 /* Bring down the card, while avoiding PCI I/O */ 8570 do_s2io_card_down(sp, 0); 8571 } 8572 pci_disable_device(pdev); 8573 8574 return PCI_ERS_RESULT_NEED_RESET; 8575 } 8576 8577 /** 8578 * s2io_io_slot_reset - called after the pci bus has been reset. 8579 * @pdev: Pointer to PCI device 8580 * 8581 * Restart the card from scratch, as if from a cold-boot. 8582 * At this point, the card has exprienced a hard reset, 8583 * followed by fixups by BIOS, and has its config space 8584 * set up identically to what it was at cold boot. 8585 */ 8586 static pci_ers_result_t s2io_io_slot_reset(struct pci_dev *pdev) 8587 { 8588 struct net_device *netdev = pci_get_drvdata(pdev); 8589 struct s2io_nic *sp = netdev_priv(netdev); 8590 8591 if (pci_enable_device(pdev)) { 8592 pr_err("Cannot re-enable PCI device after reset.\n"); 8593 return PCI_ERS_RESULT_DISCONNECT; 8594 } 8595 8596 pci_set_master(pdev); 8597 s2io_reset(sp); 8598 8599 return PCI_ERS_RESULT_RECOVERED; 8600 } 8601 8602 /** 8603 * s2io_io_resume - called when traffic can start flowing again. 8604 * @pdev: Pointer to PCI device 8605 * 8606 * This callback is called when the error recovery driver tells 8607 * us that its OK to resume normal operation. 8608 */ 8609 static void s2io_io_resume(struct pci_dev *pdev) 8610 { 8611 struct net_device *netdev = pci_get_drvdata(pdev); 8612 struct s2io_nic *sp = netdev_priv(netdev); 8613 8614 if (netif_running(netdev)) { 8615 if (s2io_card_up(sp)) { 8616 pr_err("Can't bring device back up after reset.\n"); 8617 return; 8618 } 8619 8620 if (s2io_set_mac_addr(netdev, netdev->dev_addr) == FAILURE) { 8621 s2io_card_down(sp); 8622 pr_err("Can't restore mac addr after reset.\n"); 8623 return; 8624 } 8625 } 8626 8627 netif_device_attach(netdev); 8628 netif_tx_wake_all_queues(netdev); 8629 } 8630