xref: /openbmc/linux/drivers/net/ethernet/neterion/s2io.c (revision 6c870213d6f3a25981c10728f46294a3bed1703f)
1 /************************************************************************
2  * s2io.c: A Linux PCI-X Ethernet driver for Neterion 10GbE Server NIC
3  * Copyright(c) 2002-2010 Exar Corp.
4  *
5  * This software may be used and distributed according to the terms of
6  * the GNU General Public License (GPL), incorporated herein by reference.
7  * Drivers based on or derived from this code fall under the GPL and must
8  * retain the authorship, copyright and license notice.  This file is not
9  * a complete program and may only be used when the entire operating
10  * system is licensed under the GPL.
11  * See the file COPYING in this distribution for more information.
12  *
13  * Credits:
14  * Jeff Garzik		: For pointing out the improper error condition
15  *			  check in the s2io_xmit routine and also some
16  *			  issues in the Tx watch dog function. Also for
17  *			  patiently answering all those innumerable
18  *			  questions regaring the 2.6 porting issues.
19  * Stephen Hemminger	: Providing proper 2.6 porting mechanism for some
20  *			  macros available only in 2.6 Kernel.
21  * Francois Romieu	: For pointing out all code part that were
22  *			  deprecated and also styling related comments.
23  * Grant Grundler	: For helping me get rid of some Architecture
24  *			  dependent code.
25  * Christopher Hellwig	: Some more 2.6 specific issues in the driver.
26  *
27  * The module loadable parameters that are supported by the driver and a brief
28  * explanation of all the variables.
29  *
30  * rx_ring_num : This can be used to program the number of receive rings used
31  * in the driver.
32  * rx_ring_sz: This defines the number of receive blocks each ring can have.
33  *     This is also an array of size 8.
34  * rx_ring_mode: This defines the operation mode of all 8 rings. The valid
35  *		values are 1, 2.
36  * tx_fifo_num: This defines the number of Tx FIFOs thats used int the driver.
37  * tx_fifo_len: This too is an array of 8. Each element defines the number of
38  * Tx descriptors that can be associated with each corresponding FIFO.
39  * intr_type: This defines the type of interrupt. The values can be 0(INTA),
40  *     2(MSI_X). Default value is '2(MSI_X)'
41  * lro_max_pkts: This parameter defines maximum number of packets can be
42  *     aggregated as a single large packet
43  * napi: This parameter used to enable/disable NAPI (polling Rx)
44  *     Possible values '1' for enable and '0' for disable. Default is '1'
45  * ufo: This parameter used to enable/disable UDP Fragmentation Offload(UFO)
46  *      Possible values '1' for enable and '0' for disable. Default is '0'
47  * vlan_tag_strip: This can be used to enable or disable vlan stripping.
48  *                 Possible values '1' for enable , '0' for disable.
49  *                 Default is '2' - which means disable in promisc mode
50  *                 and enable in non-promiscuous mode.
51  * multiq: This parameter used to enable/disable MULTIQUEUE support.
52  *      Possible values '1' for enable and '0' for disable. Default is '0'
53  ************************************************************************/
54 
55 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
56 
57 #include <linux/module.h>
58 #include <linux/types.h>
59 #include <linux/errno.h>
60 #include <linux/ioport.h>
61 #include <linux/pci.h>
62 #include <linux/dma-mapping.h>
63 #include <linux/kernel.h>
64 #include <linux/netdevice.h>
65 #include <linux/etherdevice.h>
66 #include <linux/mdio.h>
67 #include <linux/skbuff.h>
68 #include <linux/init.h>
69 #include <linux/delay.h>
70 #include <linux/stddef.h>
71 #include <linux/ioctl.h>
72 #include <linux/timex.h>
73 #include <linux/ethtool.h>
74 #include <linux/workqueue.h>
75 #include <linux/if_vlan.h>
76 #include <linux/ip.h>
77 #include <linux/tcp.h>
78 #include <linux/uaccess.h>
79 #include <linux/io.h>
80 #include <linux/slab.h>
81 #include <linux/prefetch.h>
82 #include <net/tcp.h>
83 #include <net/checksum.h>
84 
85 #include <asm/div64.h>
86 #include <asm/irq.h>
87 
88 /* local include */
89 #include "s2io.h"
90 #include "s2io-regs.h"
91 
92 #define DRV_VERSION "2.0.26.28"
93 
94 /* S2io Driver name & version. */
95 static const char s2io_driver_name[] = "Neterion";
96 static const char s2io_driver_version[] = DRV_VERSION;
97 
98 static const int rxd_size[2] = {32, 48};
99 static const int rxd_count[2] = {127, 85};
100 
101 static inline int RXD_IS_UP2DT(struct RxD_t *rxdp)
102 {
103 	int ret;
104 
105 	ret = ((!(rxdp->Control_1 & RXD_OWN_XENA)) &&
106 	       (GET_RXD_MARKER(rxdp->Control_2) != THE_RXD_MARK));
107 
108 	return ret;
109 }
110 
111 /*
112  * Cards with following subsystem_id have a link state indication
113  * problem, 600B, 600C, 600D, 640B, 640C and 640D.
114  * macro below identifies these cards given the subsystem_id.
115  */
116 #define CARDS_WITH_FAULTY_LINK_INDICATORS(dev_type, subid)		\
117 	(dev_type == XFRAME_I_DEVICE) ?					\
118 	((((subid >= 0x600B) && (subid <= 0x600D)) ||			\
119 	  ((subid >= 0x640B) && (subid <= 0x640D))) ? 1 : 0) : 0
120 
121 #define LINK_IS_UP(val64) (!(val64 & (ADAPTER_STATUS_RMAC_REMOTE_FAULT | \
122 				      ADAPTER_STATUS_RMAC_LOCAL_FAULT)))
123 
124 static inline int is_s2io_card_up(const struct s2io_nic *sp)
125 {
126 	return test_bit(__S2IO_STATE_CARD_UP, &sp->state);
127 }
128 
129 /* Ethtool related variables and Macros. */
130 static const char s2io_gstrings[][ETH_GSTRING_LEN] = {
131 	"Register test\t(offline)",
132 	"Eeprom test\t(offline)",
133 	"Link test\t(online)",
134 	"RLDRAM test\t(offline)",
135 	"BIST Test\t(offline)"
136 };
137 
138 static const char ethtool_xena_stats_keys[][ETH_GSTRING_LEN] = {
139 	{"tmac_frms"},
140 	{"tmac_data_octets"},
141 	{"tmac_drop_frms"},
142 	{"tmac_mcst_frms"},
143 	{"tmac_bcst_frms"},
144 	{"tmac_pause_ctrl_frms"},
145 	{"tmac_ttl_octets"},
146 	{"tmac_ucst_frms"},
147 	{"tmac_nucst_frms"},
148 	{"tmac_any_err_frms"},
149 	{"tmac_ttl_less_fb_octets"},
150 	{"tmac_vld_ip_octets"},
151 	{"tmac_vld_ip"},
152 	{"tmac_drop_ip"},
153 	{"tmac_icmp"},
154 	{"tmac_rst_tcp"},
155 	{"tmac_tcp"},
156 	{"tmac_udp"},
157 	{"rmac_vld_frms"},
158 	{"rmac_data_octets"},
159 	{"rmac_fcs_err_frms"},
160 	{"rmac_drop_frms"},
161 	{"rmac_vld_mcst_frms"},
162 	{"rmac_vld_bcst_frms"},
163 	{"rmac_in_rng_len_err_frms"},
164 	{"rmac_out_rng_len_err_frms"},
165 	{"rmac_long_frms"},
166 	{"rmac_pause_ctrl_frms"},
167 	{"rmac_unsup_ctrl_frms"},
168 	{"rmac_ttl_octets"},
169 	{"rmac_accepted_ucst_frms"},
170 	{"rmac_accepted_nucst_frms"},
171 	{"rmac_discarded_frms"},
172 	{"rmac_drop_events"},
173 	{"rmac_ttl_less_fb_octets"},
174 	{"rmac_ttl_frms"},
175 	{"rmac_usized_frms"},
176 	{"rmac_osized_frms"},
177 	{"rmac_frag_frms"},
178 	{"rmac_jabber_frms"},
179 	{"rmac_ttl_64_frms"},
180 	{"rmac_ttl_65_127_frms"},
181 	{"rmac_ttl_128_255_frms"},
182 	{"rmac_ttl_256_511_frms"},
183 	{"rmac_ttl_512_1023_frms"},
184 	{"rmac_ttl_1024_1518_frms"},
185 	{"rmac_ip"},
186 	{"rmac_ip_octets"},
187 	{"rmac_hdr_err_ip"},
188 	{"rmac_drop_ip"},
189 	{"rmac_icmp"},
190 	{"rmac_tcp"},
191 	{"rmac_udp"},
192 	{"rmac_err_drp_udp"},
193 	{"rmac_xgmii_err_sym"},
194 	{"rmac_frms_q0"},
195 	{"rmac_frms_q1"},
196 	{"rmac_frms_q2"},
197 	{"rmac_frms_q3"},
198 	{"rmac_frms_q4"},
199 	{"rmac_frms_q5"},
200 	{"rmac_frms_q6"},
201 	{"rmac_frms_q7"},
202 	{"rmac_full_q0"},
203 	{"rmac_full_q1"},
204 	{"rmac_full_q2"},
205 	{"rmac_full_q3"},
206 	{"rmac_full_q4"},
207 	{"rmac_full_q5"},
208 	{"rmac_full_q6"},
209 	{"rmac_full_q7"},
210 	{"rmac_pause_cnt"},
211 	{"rmac_xgmii_data_err_cnt"},
212 	{"rmac_xgmii_ctrl_err_cnt"},
213 	{"rmac_accepted_ip"},
214 	{"rmac_err_tcp"},
215 	{"rd_req_cnt"},
216 	{"new_rd_req_cnt"},
217 	{"new_rd_req_rtry_cnt"},
218 	{"rd_rtry_cnt"},
219 	{"wr_rtry_rd_ack_cnt"},
220 	{"wr_req_cnt"},
221 	{"new_wr_req_cnt"},
222 	{"new_wr_req_rtry_cnt"},
223 	{"wr_rtry_cnt"},
224 	{"wr_disc_cnt"},
225 	{"rd_rtry_wr_ack_cnt"},
226 	{"txp_wr_cnt"},
227 	{"txd_rd_cnt"},
228 	{"txd_wr_cnt"},
229 	{"rxd_rd_cnt"},
230 	{"rxd_wr_cnt"},
231 	{"txf_rd_cnt"},
232 	{"rxf_wr_cnt"}
233 };
234 
235 static const char ethtool_enhanced_stats_keys[][ETH_GSTRING_LEN] = {
236 	{"rmac_ttl_1519_4095_frms"},
237 	{"rmac_ttl_4096_8191_frms"},
238 	{"rmac_ttl_8192_max_frms"},
239 	{"rmac_ttl_gt_max_frms"},
240 	{"rmac_osized_alt_frms"},
241 	{"rmac_jabber_alt_frms"},
242 	{"rmac_gt_max_alt_frms"},
243 	{"rmac_vlan_frms"},
244 	{"rmac_len_discard"},
245 	{"rmac_fcs_discard"},
246 	{"rmac_pf_discard"},
247 	{"rmac_da_discard"},
248 	{"rmac_red_discard"},
249 	{"rmac_rts_discard"},
250 	{"rmac_ingm_full_discard"},
251 	{"link_fault_cnt"}
252 };
253 
254 static const char ethtool_driver_stats_keys[][ETH_GSTRING_LEN] = {
255 	{"\n DRIVER STATISTICS"},
256 	{"single_bit_ecc_errs"},
257 	{"double_bit_ecc_errs"},
258 	{"parity_err_cnt"},
259 	{"serious_err_cnt"},
260 	{"soft_reset_cnt"},
261 	{"fifo_full_cnt"},
262 	{"ring_0_full_cnt"},
263 	{"ring_1_full_cnt"},
264 	{"ring_2_full_cnt"},
265 	{"ring_3_full_cnt"},
266 	{"ring_4_full_cnt"},
267 	{"ring_5_full_cnt"},
268 	{"ring_6_full_cnt"},
269 	{"ring_7_full_cnt"},
270 	{"alarm_transceiver_temp_high"},
271 	{"alarm_transceiver_temp_low"},
272 	{"alarm_laser_bias_current_high"},
273 	{"alarm_laser_bias_current_low"},
274 	{"alarm_laser_output_power_high"},
275 	{"alarm_laser_output_power_low"},
276 	{"warn_transceiver_temp_high"},
277 	{"warn_transceiver_temp_low"},
278 	{"warn_laser_bias_current_high"},
279 	{"warn_laser_bias_current_low"},
280 	{"warn_laser_output_power_high"},
281 	{"warn_laser_output_power_low"},
282 	{"lro_aggregated_pkts"},
283 	{"lro_flush_both_count"},
284 	{"lro_out_of_sequence_pkts"},
285 	{"lro_flush_due_to_max_pkts"},
286 	{"lro_avg_aggr_pkts"},
287 	{"mem_alloc_fail_cnt"},
288 	{"pci_map_fail_cnt"},
289 	{"watchdog_timer_cnt"},
290 	{"mem_allocated"},
291 	{"mem_freed"},
292 	{"link_up_cnt"},
293 	{"link_down_cnt"},
294 	{"link_up_time"},
295 	{"link_down_time"},
296 	{"tx_tcode_buf_abort_cnt"},
297 	{"tx_tcode_desc_abort_cnt"},
298 	{"tx_tcode_parity_err_cnt"},
299 	{"tx_tcode_link_loss_cnt"},
300 	{"tx_tcode_list_proc_err_cnt"},
301 	{"rx_tcode_parity_err_cnt"},
302 	{"rx_tcode_abort_cnt"},
303 	{"rx_tcode_parity_abort_cnt"},
304 	{"rx_tcode_rda_fail_cnt"},
305 	{"rx_tcode_unkn_prot_cnt"},
306 	{"rx_tcode_fcs_err_cnt"},
307 	{"rx_tcode_buf_size_err_cnt"},
308 	{"rx_tcode_rxd_corrupt_cnt"},
309 	{"rx_tcode_unkn_err_cnt"},
310 	{"tda_err_cnt"},
311 	{"pfc_err_cnt"},
312 	{"pcc_err_cnt"},
313 	{"tti_err_cnt"},
314 	{"tpa_err_cnt"},
315 	{"sm_err_cnt"},
316 	{"lso_err_cnt"},
317 	{"mac_tmac_err_cnt"},
318 	{"mac_rmac_err_cnt"},
319 	{"xgxs_txgxs_err_cnt"},
320 	{"xgxs_rxgxs_err_cnt"},
321 	{"rc_err_cnt"},
322 	{"prc_pcix_err_cnt"},
323 	{"rpa_err_cnt"},
324 	{"rda_err_cnt"},
325 	{"rti_err_cnt"},
326 	{"mc_err_cnt"}
327 };
328 
329 #define S2IO_XENA_STAT_LEN	ARRAY_SIZE(ethtool_xena_stats_keys)
330 #define S2IO_ENHANCED_STAT_LEN	ARRAY_SIZE(ethtool_enhanced_stats_keys)
331 #define S2IO_DRIVER_STAT_LEN	ARRAY_SIZE(ethtool_driver_stats_keys)
332 
333 #define XFRAME_I_STAT_LEN (S2IO_XENA_STAT_LEN + S2IO_DRIVER_STAT_LEN)
334 #define XFRAME_II_STAT_LEN (XFRAME_I_STAT_LEN + S2IO_ENHANCED_STAT_LEN)
335 
336 #define XFRAME_I_STAT_STRINGS_LEN (XFRAME_I_STAT_LEN * ETH_GSTRING_LEN)
337 #define XFRAME_II_STAT_STRINGS_LEN (XFRAME_II_STAT_LEN * ETH_GSTRING_LEN)
338 
339 #define S2IO_TEST_LEN	ARRAY_SIZE(s2io_gstrings)
340 #define S2IO_STRINGS_LEN	(S2IO_TEST_LEN * ETH_GSTRING_LEN)
341 
342 #define S2IO_TIMER_CONF(timer, handle, arg, exp)	\
343 	init_timer(&timer);				\
344 	timer.function = handle;			\
345 	timer.data = (unsigned long)arg;		\
346 	mod_timer(&timer, (jiffies + exp))		\
347 
348 /* copy mac addr to def_mac_addr array */
349 static void do_s2io_copy_mac_addr(struct s2io_nic *sp, int offset, u64 mac_addr)
350 {
351 	sp->def_mac_addr[offset].mac_addr[5] = (u8) (mac_addr);
352 	sp->def_mac_addr[offset].mac_addr[4] = (u8) (mac_addr >> 8);
353 	sp->def_mac_addr[offset].mac_addr[3] = (u8) (mac_addr >> 16);
354 	sp->def_mac_addr[offset].mac_addr[2] = (u8) (mac_addr >> 24);
355 	sp->def_mac_addr[offset].mac_addr[1] = (u8) (mac_addr >> 32);
356 	sp->def_mac_addr[offset].mac_addr[0] = (u8) (mac_addr >> 40);
357 }
358 
359 /*
360  * Constants to be programmed into the Xena's registers, to configure
361  * the XAUI.
362  */
363 
364 #define	END_SIGN	0x0
365 static const u64 herc_act_dtx_cfg[] = {
366 	/* Set address */
367 	0x8000051536750000ULL, 0x80000515367500E0ULL,
368 	/* Write data */
369 	0x8000051536750004ULL, 0x80000515367500E4ULL,
370 	/* Set address */
371 	0x80010515003F0000ULL, 0x80010515003F00E0ULL,
372 	/* Write data */
373 	0x80010515003F0004ULL, 0x80010515003F00E4ULL,
374 	/* Set address */
375 	0x801205150D440000ULL, 0x801205150D4400E0ULL,
376 	/* Write data */
377 	0x801205150D440004ULL, 0x801205150D4400E4ULL,
378 	/* Set address */
379 	0x80020515F2100000ULL, 0x80020515F21000E0ULL,
380 	/* Write data */
381 	0x80020515F2100004ULL, 0x80020515F21000E4ULL,
382 	/* Done */
383 	END_SIGN
384 };
385 
386 static const u64 xena_dtx_cfg[] = {
387 	/* Set address */
388 	0x8000051500000000ULL, 0x80000515000000E0ULL,
389 	/* Write data */
390 	0x80000515D9350004ULL, 0x80000515D93500E4ULL,
391 	/* Set address */
392 	0x8001051500000000ULL, 0x80010515000000E0ULL,
393 	/* Write data */
394 	0x80010515001E0004ULL, 0x80010515001E00E4ULL,
395 	/* Set address */
396 	0x8002051500000000ULL, 0x80020515000000E0ULL,
397 	/* Write data */
398 	0x80020515F2100004ULL, 0x80020515F21000E4ULL,
399 	END_SIGN
400 };
401 
402 /*
403  * Constants for Fixing the MacAddress problem seen mostly on
404  * Alpha machines.
405  */
406 static const u64 fix_mac[] = {
407 	0x0060000000000000ULL, 0x0060600000000000ULL,
408 	0x0040600000000000ULL, 0x0000600000000000ULL,
409 	0x0020600000000000ULL, 0x0060600000000000ULL,
410 	0x0020600000000000ULL, 0x0060600000000000ULL,
411 	0x0020600000000000ULL, 0x0060600000000000ULL,
412 	0x0020600000000000ULL, 0x0060600000000000ULL,
413 	0x0020600000000000ULL, 0x0060600000000000ULL,
414 	0x0020600000000000ULL, 0x0060600000000000ULL,
415 	0x0020600000000000ULL, 0x0060600000000000ULL,
416 	0x0020600000000000ULL, 0x0060600000000000ULL,
417 	0x0020600000000000ULL, 0x0060600000000000ULL,
418 	0x0020600000000000ULL, 0x0060600000000000ULL,
419 	0x0020600000000000ULL, 0x0000600000000000ULL,
420 	0x0040600000000000ULL, 0x0060600000000000ULL,
421 	END_SIGN
422 };
423 
424 MODULE_LICENSE("GPL");
425 MODULE_VERSION(DRV_VERSION);
426 
427 
428 /* Module Loadable parameters. */
429 S2IO_PARM_INT(tx_fifo_num, FIFO_DEFAULT_NUM);
430 S2IO_PARM_INT(rx_ring_num, 1);
431 S2IO_PARM_INT(multiq, 0);
432 S2IO_PARM_INT(rx_ring_mode, 1);
433 S2IO_PARM_INT(use_continuous_tx_intrs, 1);
434 S2IO_PARM_INT(rmac_pause_time, 0x100);
435 S2IO_PARM_INT(mc_pause_threshold_q0q3, 187);
436 S2IO_PARM_INT(mc_pause_threshold_q4q7, 187);
437 S2IO_PARM_INT(shared_splits, 0);
438 S2IO_PARM_INT(tmac_util_period, 5);
439 S2IO_PARM_INT(rmac_util_period, 5);
440 S2IO_PARM_INT(l3l4hdr_size, 128);
441 /* 0 is no steering, 1 is Priority steering, 2 is Default steering */
442 S2IO_PARM_INT(tx_steering_type, TX_DEFAULT_STEERING);
443 /* Frequency of Rx desc syncs expressed as power of 2 */
444 S2IO_PARM_INT(rxsync_frequency, 3);
445 /* Interrupt type. Values can be 0(INTA), 2(MSI_X) */
446 S2IO_PARM_INT(intr_type, 2);
447 /* Large receive offload feature */
448 
449 /* Max pkts to be aggregated by LRO at one time. If not specified,
450  * aggregation happens until we hit max IP pkt size(64K)
451  */
452 S2IO_PARM_INT(lro_max_pkts, 0xFFFF);
453 S2IO_PARM_INT(indicate_max_pkts, 0);
454 
455 S2IO_PARM_INT(napi, 1);
456 S2IO_PARM_INT(ufo, 0);
457 S2IO_PARM_INT(vlan_tag_strip, NO_STRIP_IN_PROMISC);
458 
459 static unsigned int tx_fifo_len[MAX_TX_FIFOS] =
460 {DEFAULT_FIFO_0_LEN, [1 ...(MAX_TX_FIFOS - 1)] = DEFAULT_FIFO_1_7_LEN};
461 static unsigned int rx_ring_sz[MAX_RX_RINGS] =
462 {[0 ...(MAX_RX_RINGS - 1)] = SMALL_BLK_CNT};
463 static unsigned int rts_frm_len[MAX_RX_RINGS] =
464 {[0 ...(MAX_RX_RINGS - 1)] = 0 };
465 
466 module_param_array(tx_fifo_len, uint, NULL, 0);
467 module_param_array(rx_ring_sz, uint, NULL, 0);
468 module_param_array(rts_frm_len, uint, NULL, 0);
469 
470 /*
471  * S2IO device table.
472  * This table lists all the devices that this driver supports.
473  */
474 static DEFINE_PCI_DEVICE_TABLE(s2io_tbl) = {
475 	{PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_WIN,
476 	 PCI_ANY_ID, PCI_ANY_ID},
477 	{PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_UNI,
478 	 PCI_ANY_ID, PCI_ANY_ID},
479 	{PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_WIN,
480 	 PCI_ANY_ID, PCI_ANY_ID},
481 	{PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_UNI,
482 	 PCI_ANY_ID, PCI_ANY_ID},
483 	{0,}
484 };
485 
486 MODULE_DEVICE_TABLE(pci, s2io_tbl);
487 
488 static const struct pci_error_handlers s2io_err_handler = {
489 	.error_detected = s2io_io_error_detected,
490 	.slot_reset = s2io_io_slot_reset,
491 	.resume = s2io_io_resume,
492 };
493 
494 static struct pci_driver s2io_driver = {
495 	.name = "S2IO",
496 	.id_table = s2io_tbl,
497 	.probe = s2io_init_nic,
498 	.remove = s2io_rem_nic,
499 	.err_handler = &s2io_err_handler,
500 };
501 
502 /* A simplifier macro used both by init and free shared_mem Fns(). */
503 #define TXD_MEM_PAGE_CNT(len, per_each) ((len+per_each - 1) / per_each)
504 
505 /* netqueue manipulation helper functions */
506 static inline void s2io_stop_all_tx_queue(struct s2io_nic *sp)
507 {
508 	if (!sp->config.multiq) {
509 		int i;
510 
511 		for (i = 0; i < sp->config.tx_fifo_num; i++)
512 			sp->mac_control.fifos[i].queue_state = FIFO_QUEUE_STOP;
513 	}
514 	netif_tx_stop_all_queues(sp->dev);
515 }
516 
517 static inline void s2io_stop_tx_queue(struct s2io_nic *sp, int fifo_no)
518 {
519 	if (!sp->config.multiq)
520 		sp->mac_control.fifos[fifo_no].queue_state =
521 			FIFO_QUEUE_STOP;
522 
523 	netif_tx_stop_all_queues(sp->dev);
524 }
525 
526 static inline void s2io_start_all_tx_queue(struct s2io_nic *sp)
527 {
528 	if (!sp->config.multiq) {
529 		int i;
530 
531 		for (i = 0; i < sp->config.tx_fifo_num; i++)
532 			sp->mac_control.fifos[i].queue_state = FIFO_QUEUE_START;
533 	}
534 	netif_tx_start_all_queues(sp->dev);
535 }
536 
537 static inline void s2io_start_tx_queue(struct s2io_nic *sp, int fifo_no)
538 {
539 	if (!sp->config.multiq)
540 		sp->mac_control.fifos[fifo_no].queue_state =
541 			FIFO_QUEUE_START;
542 
543 	netif_tx_start_all_queues(sp->dev);
544 }
545 
546 static inline void s2io_wake_all_tx_queue(struct s2io_nic *sp)
547 {
548 	if (!sp->config.multiq) {
549 		int i;
550 
551 		for (i = 0; i < sp->config.tx_fifo_num; i++)
552 			sp->mac_control.fifos[i].queue_state = FIFO_QUEUE_START;
553 	}
554 	netif_tx_wake_all_queues(sp->dev);
555 }
556 
557 static inline void s2io_wake_tx_queue(
558 	struct fifo_info *fifo, int cnt, u8 multiq)
559 {
560 
561 	if (multiq) {
562 		if (cnt && __netif_subqueue_stopped(fifo->dev, fifo->fifo_no))
563 			netif_wake_subqueue(fifo->dev, fifo->fifo_no);
564 	} else if (cnt && (fifo->queue_state == FIFO_QUEUE_STOP)) {
565 		if (netif_queue_stopped(fifo->dev)) {
566 			fifo->queue_state = FIFO_QUEUE_START;
567 			netif_wake_queue(fifo->dev);
568 		}
569 	}
570 }
571 
572 /**
573  * init_shared_mem - Allocation and Initialization of Memory
574  * @nic: Device private variable.
575  * Description: The function allocates all the memory areas shared
576  * between the NIC and the driver. This includes Tx descriptors,
577  * Rx descriptors and the statistics block.
578  */
579 
580 static int init_shared_mem(struct s2io_nic *nic)
581 {
582 	u32 size;
583 	void *tmp_v_addr, *tmp_v_addr_next;
584 	dma_addr_t tmp_p_addr, tmp_p_addr_next;
585 	struct RxD_block *pre_rxd_blk = NULL;
586 	int i, j, blk_cnt;
587 	int lst_size, lst_per_page;
588 	struct net_device *dev = nic->dev;
589 	unsigned long tmp;
590 	struct buffAdd *ba;
591 	struct config_param *config = &nic->config;
592 	struct mac_info *mac_control = &nic->mac_control;
593 	unsigned long long mem_allocated = 0;
594 
595 	/* Allocation and initialization of TXDLs in FIFOs */
596 	size = 0;
597 	for (i = 0; i < config->tx_fifo_num; i++) {
598 		struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
599 
600 		size += tx_cfg->fifo_len;
601 	}
602 	if (size > MAX_AVAILABLE_TXDS) {
603 		DBG_PRINT(ERR_DBG,
604 			  "Too many TxDs requested: %d, max supported: %d\n",
605 			  size, MAX_AVAILABLE_TXDS);
606 		return -EINVAL;
607 	}
608 
609 	size = 0;
610 	for (i = 0; i < config->tx_fifo_num; i++) {
611 		struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
612 
613 		size = tx_cfg->fifo_len;
614 		/*
615 		 * Legal values are from 2 to 8192
616 		 */
617 		if (size < 2) {
618 			DBG_PRINT(ERR_DBG, "Fifo %d: Invalid length (%d) - "
619 				  "Valid lengths are 2 through 8192\n",
620 				  i, size);
621 			return -EINVAL;
622 		}
623 	}
624 
625 	lst_size = (sizeof(struct TxD) * config->max_txds);
626 	lst_per_page = PAGE_SIZE / lst_size;
627 
628 	for (i = 0; i < config->tx_fifo_num; i++) {
629 		struct fifo_info *fifo = &mac_control->fifos[i];
630 		struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
631 		int fifo_len = tx_cfg->fifo_len;
632 		int list_holder_size = fifo_len * sizeof(struct list_info_hold);
633 
634 		fifo->list_info = kzalloc(list_holder_size, GFP_KERNEL);
635 		if (!fifo->list_info) {
636 			DBG_PRINT(INFO_DBG, "Malloc failed for list_info\n");
637 			return -ENOMEM;
638 		}
639 		mem_allocated += list_holder_size;
640 	}
641 	for (i = 0; i < config->tx_fifo_num; i++) {
642 		int page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len,
643 						lst_per_page);
644 		struct fifo_info *fifo = &mac_control->fifos[i];
645 		struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
646 
647 		fifo->tx_curr_put_info.offset = 0;
648 		fifo->tx_curr_put_info.fifo_len = tx_cfg->fifo_len - 1;
649 		fifo->tx_curr_get_info.offset = 0;
650 		fifo->tx_curr_get_info.fifo_len = tx_cfg->fifo_len - 1;
651 		fifo->fifo_no = i;
652 		fifo->nic = nic;
653 		fifo->max_txds = MAX_SKB_FRAGS + 2;
654 		fifo->dev = dev;
655 
656 		for (j = 0; j < page_num; j++) {
657 			int k = 0;
658 			dma_addr_t tmp_p;
659 			void *tmp_v;
660 			tmp_v = pci_alloc_consistent(nic->pdev,
661 						     PAGE_SIZE, &tmp_p);
662 			if (!tmp_v) {
663 				DBG_PRINT(INFO_DBG,
664 					  "pci_alloc_consistent failed for TxDL\n");
665 				return -ENOMEM;
666 			}
667 			/* If we got a zero DMA address(can happen on
668 			 * certain platforms like PPC), reallocate.
669 			 * Store virtual address of page we don't want,
670 			 * to be freed later.
671 			 */
672 			if (!tmp_p) {
673 				mac_control->zerodma_virt_addr = tmp_v;
674 				DBG_PRINT(INIT_DBG,
675 					  "%s: Zero DMA address for TxDL. "
676 					  "Virtual address %p\n",
677 					  dev->name, tmp_v);
678 				tmp_v = pci_alloc_consistent(nic->pdev,
679 							     PAGE_SIZE, &tmp_p);
680 				if (!tmp_v) {
681 					DBG_PRINT(INFO_DBG,
682 						  "pci_alloc_consistent failed for TxDL\n");
683 					return -ENOMEM;
684 				}
685 				mem_allocated += PAGE_SIZE;
686 			}
687 			while (k < lst_per_page) {
688 				int l = (j * lst_per_page) + k;
689 				if (l == tx_cfg->fifo_len)
690 					break;
691 				fifo->list_info[l].list_virt_addr =
692 					tmp_v + (k * lst_size);
693 				fifo->list_info[l].list_phy_addr =
694 					tmp_p + (k * lst_size);
695 				k++;
696 			}
697 		}
698 	}
699 
700 	for (i = 0; i < config->tx_fifo_num; i++) {
701 		struct fifo_info *fifo = &mac_control->fifos[i];
702 		struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
703 
704 		size = tx_cfg->fifo_len;
705 		fifo->ufo_in_band_v = kcalloc(size, sizeof(u64), GFP_KERNEL);
706 		if (!fifo->ufo_in_band_v)
707 			return -ENOMEM;
708 		mem_allocated += (size * sizeof(u64));
709 	}
710 
711 	/* Allocation and initialization of RXDs in Rings */
712 	size = 0;
713 	for (i = 0; i < config->rx_ring_num; i++) {
714 		struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
715 		struct ring_info *ring = &mac_control->rings[i];
716 
717 		if (rx_cfg->num_rxd % (rxd_count[nic->rxd_mode] + 1)) {
718 			DBG_PRINT(ERR_DBG, "%s: Ring%d RxD count is not a "
719 				  "multiple of RxDs per Block\n",
720 				  dev->name, i);
721 			return FAILURE;
722 		}
723 		size += rx_cfg->num_rxd;
724 		ring->block_count = rx_cfg->num_rxd /
725 			(rxd_count[nic->rxd_mode] + 1);
726 		ring->pkt_cnt = rx_cfg->num_rxd - ring->block_count;
727 	}
728 	if (nic->rxd_mode == RXD_MODE_1)
729 		size = (size * (sizeof(struct RxD1)));
730 	else
731 		size = (size * (sizeof(struct RxD3)));
732 
733 	for (i = 0; i < config->rx_ring_num; i++) {
734 		struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
735 		struct ring_info *ring = &mac_control->rings[i];
736 
737 		ring->rx_curr_get_info.block_index = 0;
738 		ring->rx_curr_get_info.offset = 0;
739 		ring->rx_curr_get_info.ring_len = rx_cfg->num_rxd - 1;
740 		ring->rx_curr_put_info.block_index = 0;
741 		ring->rx_curr_put_info.offset = 0;
742 		ring->rx_curr_put_info.ring_len = rx_cfg->num_rxd - 1;
743 		ring->nic = nic;
744 		ring->ring_no = i;
745 
746 		blk_cnt = rx_cfg->num_rxd / (rxd_count[nic->rxd_mode] + 1);
747 		/*  Allocating all the Rx blocks */
748 		for (j = 0; j < blk_cnt; j++) {
749 			struct rx_block_info *rx_blocks;
750 			int l;
751 
752 			rx_blocks = &ring->rx_blocks[j];
753 			size = SIZE_OF_BLOCK;	/* size is always page size */
754 			tmp_v_addr = pci_alloc_consistent(nic->pdev, size,
755 							  &tmp_p_addr);
756 			if (tmp_v_addr == NULL) {
757 				/*
758 				 * In case of failure, free_shared_mem()
759 				 * is called, which should free any
760 				 * memory that was alloced till the
761 				 * failure happened.
762 				 */
763 				rx_blocks->block_virt_addr = tmp_v_addr;
764 				return -ENOMEM;
765 			}
766 			mem_allocated += size;
767 			memset(tmp_v_addr, 0, size);
768 
769 			size = sizeof(struct rxd_info) *
770 				rxd_count[nic->rxd_mode];
771 			rx_blocks->block_virt_addr = tmp_v_addr;
772 			rx_blocks->block_dma_addr = tmp_p_addr;
773 			rx_blocks->rxds = kmalloc(size,  GFP_KERNEL);
774 			if (!rx_blocks->rxds)
775 				return -ENOMEM;
776 			mem_allocated += size;
777 			for (l = 0; l < rxd_count[nic->rxd_mode]; l++) {
778 				rx_blocks->rxds[l].virt_addr =
779 					rx_blocks->block_virt_addr +
780 					(rxd_size[nic->rxd_mode] * l);
781 				rx_blocks->rxds[l].dma_addr =
782 					rx_blocks->block_dma_addr +
783 					(rxd_size[nic->rxd_mode] * l);
784 			}
785 		}
786 		/* Interlinking all Rx Blocks */
787 		for (j = 0; j < blk_cnt; j++) {
788 			int next = (j + 1) % blk_cnt;
789 			tmp_v_addr = ring->rx_blocks[j].block_virt_addr;
790 			tmp_v_addr_next = ring->rx_blocks[next].block_virt_addr;
791 			tmp_p_addr = ring->rx_blocks[j].block_dma_addr;
792 			tmp_p_addr_next = ring->rx_blocks[next].block_dma_addr;
793 
794 			pre_rxd_blk = tmp_v_addr;
795 			pre_rxd_blk->reserved_2_pNext_RxD_block =
796 				(unsigned long)tmp_v_addr_next;
797 			pre_rxd_blk->pNext_RxD_Blk_physical =
798 				(u64)tmp_p_addr_next;
799 		}
800 	}
801 	if (nic->rxd_mode == RXD_MODE_3B) {
802 		/*
803 		 * Allocation of Storages for buffer addresses in 2BUFF mode
804 		 * and the buffers as well.
805 		 */
806 		for (i = 0; i < config->rx_ring_num; i++) {
807 			struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
808 			struct ring_info *ring = &mac_control->rings[i];
809 
810 			blk_cnt = rx_cfg->num_rxd /
811 				(rxd_count[nic->rxd_mode] + 1);
812 			size = sizeof(struct buffAdd *) * blk_cnt;
813 			ring->ba = kmalloc(size, GFP_KERNEL);
814 			if (!ring->ba)
815 				return -ENOMEM;
816 			mem_allocated += size;
817 			for (j = 0; j < blk_cnt; j++) {
818 				int k = 0;
819 
820 				size = sizeof(struct buffAdd) *
821 					(rxd_count[nic->rxd_mode] + 1);
822 				ring->ba[j] = kmalloc(size, GFP_KERNEL);
823 				if (!ring->ba[j])
824 					return -ENOMEM;
825 				mem_allocated += size;
826 				while (k != rxd_count[nic->rxd_mode]) {
827 					ba = &ring->ba[j][k];
828 					size = BUF0_LEN + ALIGN_SIZE;
829 					ba->ba_0_org = kmalloc(size, GFP_KERNEL);
830 					if (!ba->ba_0_org)
831 						return -ENOMEM;
832 					mem_allocated += size;
833 					tmp = (unsigned long)ba->ba_0_org;
834 					tmp += ALIGN_SIZE;
835 					tmp &= ~((unsigned long)ALIGN_SIZE);
836 					ba->ba_0 = (void *)tmp;
837 
838 					size = BUF1_LEN + ALIGN_SIZE;
839 					ba->ba_1_org = kmalloc(size, GFP_KERNEL);
840 					if (!ba->ba_1_org)
841 						return -ENOMEM;
842 					mem_allocated += size;
843 					tmp = (unsigned long)ba->ba_1_org;
844 					tmp += ALIGN_SIZE;
845 					tmp &= ~((unsigned long)ALIGN_SIZE);
846 					ba->ba_1 = (void *)tmp;
847 					k++;
848 				}
849 			}
850 		}
851 	}
852 
853 	/* Allocation and initialization of Statistics block */
854 	size = sizeof(struct stat_block);
855 	mac_control->stats_mem =
856 		pci_alloc_consistent(nic->pdev, size,
857 				     &mac_control->stats_mem_phy);
858 
859 	if (!mac_control->stats_mem) {
860 		/*
861 		 * In case of failure, free_shared_mem() is called, which
862 		 * should free any memory that was alloced till the
863 		 * failure happened.
864 		 */
865 		return -ENOMEM;
866 	}
867 	mem_allocated += size;
868 	mac_control->stats_mem_sz = size;
869 
870 	tmp_v_addr = mac_control->stats_mem;
871 	mac_control->stats_info = tmp_v_addr;
872 	memset(tmp_v_addr, 0, size);
873 	DBG_PRINT(INIT_DBG, "%s: Ring Mem PHY: 0x%llx\n",
874 		dev_name(&nic->pdev->dev), (unsigned long long)tmp_p_addr);
875 	mac_control->stats_info->sw_stat.mem_allocated += mem_allocated;
876 	return SUCCESS;
877 }
878 
879 /**
880  * free_shared_mem - Free the allocated Memory
881  * @nic:  Device private variable.
882  * Description: This function is to free all memory locations allocated by
883  * the init_shared_mem() function and return it to the kernel.
884  */
885 
886 static void free_shared_mem(struct s2io_nic *nic)
887 {
888 	int i, j, blk_cnt, size;
889 	void *tmp_v_addr;
890 	dma_addr_t tmp_p_addr;
891 	int lst_size, lst_per_page;
892 	struct net_device *dev;
893 	int page_num = 0;
894 	struct config_param *config;
895 	struct mac_info *mac_control;
896 	struct stat_block *stats;
897 	struct swStat *swstats;
898 
899 	if (!nic)
900 		return;
901 
902 	dev = nic->dev;
903 
904 	config = &nic->config;
905 	mac_control = &nic->mac_control;
906 	stats = mac_control->stats_info;
907 	swstats = &stats->sw_stat;
908 
909 	lst_size = sizeof(struct TxD) * config->max_txds;
910 	lst_per_page = PAGE_SIZE / lst_size;
911 
912 	for (i = 0; i < config->tx_fifo_num; i++) {
913 		struct fifo_info *fifo = &mac_control->fifos[i];
914 		struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
915 
916 		page_num = TXD_MEM_PAGE_CNT(tx_cfg->fifo_len, lst_per_page);
917 		for (j = 0; j < page_num; j++) {
918 			int mem_blks = (j * lst_per_page);
919 			struct list_info_hold *fli;
920 
921 			if (!fifo->list_info)
922 				return;
923 
924 			fli = &fifo->list_info[mem_blks];
925 			if (!fli->list_virt_addr)
926 				break;
927 			pci_free_consistent(nic->pdev, PAGE_SIZE,
928 					    fli->list_virt_addr,
929 					    fli->list_phy_addr);
930 			swstats->mem_freed += PAGE_SIZE;
931 		}
932 		/* If we got a zero DMA address during allocation,
933 		 * free the page now
934 		 */
935 		if (mac_control->zerodma_virt_addr) {
936 			pci_free_consistent(nic->pdev, PAGE_SIZE,
937 					    mac_control->zerodma_virt_addr,
938 					    (dma_addr_t)0);
939 			DBG_PRINT(INIT_DBG,
940 				  "%s: Freeing TxDL with zero DMA address. "
941 				  "Virtual address %p\n",
942 				  dev->name, mac_control->zerodma_virt_addr);
943 			swstats->mem_freed += PAGE_SIZE;
944 		}
945 		kfree(fifo->list_info);
946 		swstats->mem_freed += tx_cfg->fifo_len *
947 			sizeof(struct list_info_hold);
948 	}
949 
950 	size = SIZE_OF_BLOCK;
951 	for (i = 0; i < config->rx_ring_num; i++) {
952 		struct ring_info *ring = &mac_control->rings[i];
953 
954 		blk_cnt = ring->block_count;
955 		for (j = 0; j < blk_cnt; j++) {
956 			tmp_v_addr = ring->rx_blocks[j].block_virt_addr;
957 			tmp_p_addr = ring->rx_blocks[j].block_dma_addr;
958 			if (tmp_v_addr == NULL)
959 				break;
960 			pci_free_consistent(nic->pdev, size,
961 					    tmp_v_addr, tmp_p_addr);
962 			swstats->mem_freed += size;
963 			kfree(ring->rx_blocks[j].rxds);
964 			swstats->mem_freed += sizeof(struct rxd_info) *
965 				rxd_count[nic->rxd_mode];
966 		}
967 	}
968 
969 	if (nic->rxd_mode == RXD_MODE_3B) {
970 		/* Freeing buffer storage addresses in 2BUFF mode. */
971 		for (i = 0; i < config->rx_ring_num; i++) {
972 			struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
973 			struct ring_info *ring = &mac_control->rings[i];
974 
975 			blk_cnt = rx_cfg->num_rxd /
976 				(rxd_count[nic->rxd_mode] + 1);
977 			for (j = 0; j < blk_cnt; j++) {
978 				int k = 0;
979 				if (!ring->ba[j])
980 					continue;
981 				while (k != rxd_count[nic->rxd_mode]) {
982 					struct buffAdd *ba = &ring->ba[j][k];
983 					kfree(ba->ba_0_org);
984 					swstats->mem_freed +=
985 						BUF0_LEN + ALIGN_SIZE;
986 					kfree(ba->ba_1_org);
987 					swstats->mem_freed +=
988 						BUF1_LEN + ALIGN_SIZE;
989 					k++;
990 				}
991 				kfree(ring->ba[j]);
992 				swstats->mem_freed += sizeof(struct buffAdd) *
993 					(rxd_count[nic->rxd_mode] + 1);
994 			}
995 			kfree(ring->ba);
996 			swstats->mem_freed += sizeof(struct buffAdd *) *
997 				blk_cnt;
998 		}
999 	}
1000 
1001 	for (i = 0; i < nic->config.tx_fifo_num; i++) {
1002 		struct fifo_info *fifo = &mac_control->fifos[i];
1003 		struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
1004 
1005 		if (fifo->ufo_in_band_v) {
1006 			swstats->mem_freed += tx_cfg->fifo_len *
1007 				sizeof(u64);
1008 			kfree(fifo->ufo_in_band_v);
1009 		}
1010 	}
1011 
1012 	if (mac_control->stats_mem) {
1013 		swstats->mem_freed += mac_control->stats_mem_sz;
1014 		pci_free_consistent(nic->pdev,
1015 				    mac_control->stats_mem_sz,
1016 				    mac_control->stats_mem,
1017 				    mac_control->stats_mem_phy);
1018 	}
1019 }
1020 
1021 /**
1022  * s2io_verify_pci_mode -
1023  */
1024 
1025 static int s2io_verify_pci_mode(struct s2io_nic *nic)
1026 {
1027 	struct XENA_dev_config __iomem *bar0 = nic->bar0;
1028 	register u64 val64 = 0;
1029 	int     mode;
1030 
1031 	val64 = readq(&bar0->pci_mode);
1032 	mode = (u8)GET_PCI_MODE(val64);
1033 
1034 	if (val64 & PCI_MODE_UNKNOWN_MODE)
1035 		return -1;      /* Unknown PCI mode */
1036 	return mode;
1037 }
1038 
1039 #define NEC_VENID   0x1033
1040 #define NEC_DEVID   0x0125
1041 static int s2io_on_nec_bridge(struct pci_dev *s2io_pdev)
1042 {
1043 	struct pci_dev *tdev = NULL;
1044 	for_each_pci_dev(tdev) {
1045 		if (tdev->vendor == NEC_VENID && tdev->device == NEC_DEVID) {
1046 			if (tdev->bus == s2io_pdev->bus->parent) {
1047 				pci_dev_put(tdev);
1048 				return 1;
1049 			}
1050 		}
1051 	}
1052 	return 0;
1053 }
1054 
1055 static int bus_speed[8] = {33, 133, 133, 200, 266, 133, 200, 266};
1056 /**
1057  * s2io_print_pci_mode -
1058  */
1059 static int s2io_print_pci_mode(struct s2io_nic *nic)
1060 {
1061 	struct XENA_dev_config __iomem *bar0 = nic->bar0;
1062 	register u64 val64 = 0;
1063 	int	mode;
1064 	struct config_param *config = &nic->config;
1065 	const char *pcimode;
1066 
1067 	val64 = readq(&bar0->pci_mode);
1068 	mode = (u8)GET_PCI_MODE(val64);
1069 
1070 	if (val64 & PCI_MODE_UNKNOWN_MODE)
1071 		return -1;	/* Unknown PCI mode */
1072 
1073 	config->bus_speed = bus_speed[mode];
1074 
1075 	if (s2io_on_nec_bridge(nic->pdev)) {
1076 		DBG_PRINT(ERR_DBG, "%s: Device is on PCI-E bus\n",
1077 			  nic->dev->name);
1078 		return mode;
1079 	}
1080 
1081 	switch (mode) {
1082 	case PCI_MODE_PCI_33:
1083 		pcimode = "33MHz PCI bus";
1084 		break;
1085 	case PCI_MODE_PCI_66:
1086 		pcimode = "66MHz PCI bus";
1087 		break;
1088 	case PCI_MODE_PCIX_M1_66:
1089 		pcimode = "66MHz PCIX(M1) bus";
1090 		break;
1091 	case PCI_MODE_PCIX_M1_100:
1092 		pcimode = "100MHz PCIX(M1) bus";
1093 		break;
1094 	case PCI_MODE_PCIX_M1_133:
1095 		pcimode = "133MHz PCIX(M1) bus";
1096 		break;
1097 	case PCI_MODE_PCIX_M2_66:
1098 		pcimode = "133MHz PCIX(M2) bus";
1099 		break;
1100 	case PCI_MODE_PCIX_M2_100:
1101 		pcimode = "200MHz PCIX(M2) bus";
1102 		break;
1103 	case PCI_MODE_PCIX_M2_133:
1104 		pcimode = "266MHz PCIX(M2) bus";
1105 		break;
1106 	default:
1107 		pcimode = "unsupported bus!";
1108 		mode = -1;
1109 	}
1110 
1111 	DBG_PRINT(ERR_DBG, "%s: Device is on %d bit %s\n",
1112 		  nic->dev->name, val64 & PCI_MODE_32_BITS ? 32 : 64, pcimode);
1113 
1114 	return mode;
1115 }
1116 
1117 /**
1118  *  init_tti - Initialization transmit traffic interrupt scheme
1119  *  @nic: device private variable
1120  *  @link: link status (UP/DOWN) used to enable/disable continuous
1121  *  transmit interrupts
1122  *  Description: The function configures transmit traffic interrupts
1123  *  Return Value:  SUCCESS on success and
1124  *  '-1' on failure
1125  */
1126 
1127 static int init_tti(struct s2io_nic *nic, int link)
1128 {
1129 	struct XENA_dev_config __iomem *bar0 = nic->bar0;
1130 	register u64 val64 = 0;
1131 	int i;
1132 	struct config_param *config = &nic->config;
1133 
1134 	for (i = 0; i < config->tx_fifo_num; i++) {
1135 		/*
1136 		 * TTI Initialization. Default Tx timer gets us about
1137 		 * 250 interrupts per sec. Continuous interrupts are enabled
1138 		 * by default.
1139 		 */
1140 		if (nic->device_type == XFRAME_II_DEVICE) {
1141 			int count = (nic->config.bus_speed * 125)/2;
1142 			val64 = TTI_DATA1_MEM_TX_TIMER_VAL(count);
1143 		} else
1144 			val64 = TTI_DATA1_MEM_TX_TIMER_VAL(0x2078);
1145 
1146 		val64 |= TTI_DATA1_MEM_TX_URNG_A(0xA) |
1147 			TTI_DATA1_MEM_TX_URNG_B(0x10) |
1148 			TTI_DATA1_MEM_TX_URNG_C(0x30) |
1149 			TTI_DATA1_MEM_TX_TIMER_AC_EN;
1150 		if (i == 0)
1151 			if (use_continuous_tx_intrs && (link == LINK_UP))
1152 				val64 |= TTI_DATA1_MEM_TX_TIMER_CI_EN;
1153 		writeq(val64, &bar0->tti_data1_mem);
1154 
1155 		if (nic->config.intr_type == MSI_X) {
1156 			val64 = TTI_DATA2_MEM_TX_UFC_A(0x10) |
1157 				TTI_DATA2_MEM_TX_UFC_B(0x100) |
1158 				TTI_DATA2_MEM_TX_UFC_C(0x200) |
1159 				TTI_DATA2_MEM_TX_UFC_D(0x300);
1160 		} else {
1161 			if ((nic->config.tx_steering_type ==
1162 			     TX_DEFAULT_STEERING) &&
1163 			    (config->tx_fifo_num > 1) &&
1164 			    (i >= nic->udp_fifo_idx) &&
1165 			    (i < (nic->udp_fifo_idx +
1166 				  nic->total_udp_fifos)))
1167 				val64 = TTI_DATA2_MEM_TX_UFC_A(0x50) |
1168 					TTI_DATA2_MEM_TX_UFC_B(0x80) |
1169 					TTI_DATA2_MEM_TX_UFC_C(0x100) |
1170 					TTI_DATA2_MEM_TX_UFC_D(0x120);
1171 			else
1172 				val64 = TTI_DATA2_MEM_TX_UFC_A(0x10) |
1173 					TTI_DATA2_MEM_TX_UFC_B(0x20) |
1174 					TTI_DATA2_MEM_TX_UFC_C(0x40) |
1175 					TTI_DATA2_MEM_TX_UFC_D(0x80);
1176 		}
1177 
1178 		writeq(val64, &bar0->tti_data2_mem);
1179 
1180 		val64 = TTI_CMD_MEM_WE |
1181 			TTI_CMD_MEM_STROBE_NEW_CMD |
1182 			TTI_CMD_MEM_OFFSET(i);
1183 		writeq(val64, &bar0->tti_command_mem);
1184 
1185 		if (wait_for_cmd_complete(&bar0->tti_command_mem,
1186 					  TTI_CMD_MEM_STROBE_NEW_CMD,
1187 					  S2IO_BIT_RESET) != SUCCESS)
1188 			return FAILURE;
1189 	}
1190 
1191 	return SUCCESS;
1192 }
1193 
1194 /**
1195  *  init_nic - Initialization of hardware
1196  *  @nic: device private variable
1197  *  Description: The function sequentially configures every block
1198  *  of the H/W from their reset values.
1199  *  Return Value:  SUCCESS on success and
1200  *  '-1' on failure (endian settings incorrect).
1201  */
1202 
1203 static int init_nic(struct s2io_nic *nic)
1204 {
1205 	struct XENA_dev_config __iomem *bar0 = nic->bar0;
1206 	struct net_device *dev = nic->dev;
1207 	register u64 val64 = 0;
1208 	void __iomem *add;
1209 	u32 time;
1210 	int i, j;
1211 	int dtx_cnt = 0;
1212 	unsigned long long mem_share;
1213 	int mem_size;
1214 	struct config_param *config = &nic->config;
1215 	struct mac_info *mac_control = &nic->mac_control;
1216 
1217 	/* to set the swapper controle on the card */
1218 	if (s2io_set_swapper(nic)) {
1219 		DBG_PRINT(ERR_DBG, "ERROR: Setting Swapper failed\n");
1220 		return -EIO;
1221 	}
1222 
1223 	/*
1224 	 * Herc requires EOI to be removed from reset before XGXS, so..
1225 	 */
1226 	if (nic->device_type & XFRAME_II_DEVICE) {
1227 		val64 = 0xA500000000ULL;
1228 		writeq(val64, &bar0->sw_reset);
1229 		msleep(500);
1230 		val64 = readq(&bar0->sw_reset);
1231 	}
1232 
1233 	/* Remove XGXS from reset state */
1234 	val64 = 0;
1235 	writeq(val64, &bar0->sw_reset);
1236 	msleep(500);
1237 	val64 = readq(&bar0->sw_reset);
1238 
1239 	/* Ensure that it's safe to access registers by checking
1240 	 * RIC_RUNNING bit is reset. Check is valid only for XframeII.
1241 	 */
1242 	if (nic->device_type == XFRAME_II_DEVICE) {
1243 		for (i = 0; i < 50; i++) {
1244 			val64 = readq(&bar0->adapter_status);
1245 			if (!(val64 & ADAPTER_STATUS_RIC_RUNNING))
1246 				break;
1247 			msleep(10);
1248 		}
1249 		if (i == 50)
1250 			return -ENODEV;
1251 	}
1252 
1253 	/*  Enable Receiving broadcasts */
1254 	add = &bar0->mac_cfg;
1255 	val64 = readq(&bar0->mac_cfg);
1256 	val64 |= MAC_RMAC_BCAST_ENABLE;
1257 	writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1258 	writel((u32)val64, add);
1259 	writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1260 	writel((u32) (val64 >> 32), (add + 4));
1261 
1262 	/* Read registers in all blocks */
1263 	val64 = readq(&bar0->mac_int_mask);
1264 	val64 = readq(&bar0->mc_int_mask);
1265 	val64 = readq(&bar0->xgxs_int_mask);
1266 
1267 	/*  Set MTU */
1268 	val64 = dev->mtu;
1269 	writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
1270 
1271 	if (nic->device_type & XFRAME_II_DEVICE) {
1272 		while (herc_act_dtx_cfg[dtx_cnt] != END_SIGN) {
1273 			SPECIAL_REG_WRITE(herc_act_dtx_cfg[dtx_cnt],
1274 					  &bar0->dtx_control, UF);
1275 			if (dtx_cnt & 0x1)
1276 				msleep(1); /* Necessary!! */
1277 			dtx_cnt++;
1278 		}
1279 	} else {
1280 		while (xena_dtx_cfg[dtx_cnt] != END_SIGN) {
1281 			SPECIAL_REG_WRITE(xena_dtx_cfg[dtx_cnt],
1282 					  &bar0->dtx_control, UF);
1283 			val64 = readq(&bar0->dtx_control);
1284 			dtx_cnt++;
1285 		}
1286 	}
1287 
1288 	/*  Tx DMA Initialization */
1289 	val64 = 0;
1290 	writeq(val64, &bar0->tx_fifo_partition_0);
1291 	writeq(val64, &bar0->tx_fifo_partition_1);
1292 	writeq(val64, &bar0->tx_fifo_partition_2);
1293 	writeq(val64, &bar0->tx_fifo_partition_3);
1294 
1295 	for (i = 0, j = 0; i < config->tx_fifo_num; i++) {
1296 		struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
1297 
1298 		val64 |= vBIT(tx_cfg->fifo_len - 1, ((j * 32) + 19), 13) |
1299 			vBIT(tx_cfg->fifo_priority, ((j * 32) + 5), 3);
1300 
1301 		if (i == (config->tx_fifo_num - 1)) {
1302 			if (i % 2 == 0)
1303 				i++;
1304 		}
1305 
1306 		switch (i) {
1307 		case 1:
1308 			writeq(val64, &bar0->tx_fifo_partition_0);
1309 			val64 = 0;
1310 			j = 0;
1311 			break;
1312 		case 3:
1313 			writeq(val64, &bar0->tx_fifo_partition_1);
1314 			val64 = 0;
1315 			j = 0;
1316 			break;
1317 		case 5:
1318 			writeq(val64, &bar0->tx_fifo_partition_2);
1319 			val64 = 0;
1320 			j = 0;
1321 			break;
1322 		case 7:
1323 			writeq(val64, &bar0->tx_fifo_partition_3);
1324 			val64 = 0;
1325 			j = 0;
1326 			break;
1327 		default:
1328 			j++;
1329 			break;
1330 		}
1331 	}
1332 
1333 	/*
1334 	 * Disable 4 PCCs for Xena1, 2 and 3 as per H/W bug
1335 	 * SXE-008 TRANSMIT DMA ARBITRATION ISSUE.
1336 	 */
1337 	if ((nic->device_type == XFRAME_I_DEVICE) && (nic->pdev->revision < 4))
1338 		writeq(PCC_ENABLE_FOUR, &bar0->pcc_enable);
1339 
1340 	val64 = readq(&bar0->tx_fifo_partition_0);
1341 	DBG_PRINT(INIT_DBG, "Fifo partition at: 0x%p is: 0x%llx\n",
1342 		  &bar0->tx_fifo_partition_0, (unsigned long long)val64);
1343 
1344 	/*
1345 	 * Initialization of Tx_PA_CONFIG register to ignore packet
1346 	 * integrity checking.
1347 	 */
1348 	val64 = readq(&bar0->tx_pa_cfg);
1349 	val64 |= TX_PA_CFG_IGNORE_FRM_ERR |
1350 		TX_PA_CFG_IGNORE_SNAP_OUI |
1351 		TX_PA_CFG_IGNORE_LLC_CTRL |
1352 		TX_PA_CFG_IGNORE_L2_ERR;
1353 	writeq(val64, &bar0->tx_pa_cfg);
1354 
1355 	/* Rx DMA intialization. */
1356 	val64 = 0;
1357 	for (i = 0; i < config->rx_ring_num; i++) {
1358 		struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
1359 
1360 		val64 |= vBIT(rx_cfg->ring_priority, (5 + (i * 8)), 3);
1361 	}
1362 	writeq(val64, &bar0->rx_queue_priority);
1363 
1364 	/*
1365 	 * Allocating equal share of memory to all the
1366 	 * configured Rings.
1367 	 */
1368 	val64 = 0;
1369 	if (nic->device_type & XFRAME_II_DEVICE)
1370 		mem_size = 32;
1371 	else
1372 		mem_size = 64;
1373 
1374 	for (i = 0; i < config->rx_ring_num; i++) {
1375 		switch (i) {
1376 		case 0:
1377 			mem_share = (mem_size / config->rx_ring_num +
1378 				     mem_size % config->rx_ring_num);
1379 			val64 |= RX_QUEUE_CFG_Q0_SZ(mem_share);
1380 			continue;
1381 		case 1:
1382 			mem_share = (mem_size / config->rx_ring_num);
1383 			val64 |= RX_QUEUE_CFG_Q1_SZ(mem_share);
1384 			continue;
1385 		case 2:
1386 			mem_share = (mem_size / config->rx_ring_num);
1387 			val64 |= RX_QUEUE_CFG_Q2_SZ(mem_share);
1388 			continue;
1389 		case 3:
1390 			mem_share = (mem_size / config->rx_ring_num);
1391 			val64 |= RX_QUEUE_CFG_Q3_SZ(mem_share);
1392 			continue;
1393 		case 4:
1394 			mem_share = (mem_size / config->rx_ring_num);
1395 			val64 |= RX_QUEUE_CFG_Q4_SZ(mem_share);
1396 			continue;
1397 		case 5:
1398 			mem_share = (mem_size / config->rx_ring_num);
1399 			val64 |= RX_QUEUE_CFG_Q5_SZ(mem_share);
1400 			continue;
1401 		case 6:
1402 			mem_share = (mem_size / config->rx_ring_num);
1403 			val64 |= RX_QUEUE_CFG_Q6_SZ(mem_share);
1404 			continue;
1405 		case 7:
1406 			mem_share = (mem_size / config->rx_ring_num);
1407 			val64 |= RX_QUEUE_CFG_Q7_SZ(mem_share);
1408 			continue;
1409 		}
1410 	}
1411 	writeq(val64, &bar0->rx_queue_cfg);
1412 
1413 	/*
1414 	 * Filling Tx round robin registers
1415 	 * as per the number of FIFOs for equal scheduling priority
1416 	 */
1417 	switch (config->tx_fifo_num) {
1418 	case 1:
1419 		val64 = 0x0;
1420 		writeq(val64, &bar0->tx_w_round_robin_0);
1421 		writeq(val64, &bar0->tx_w_round_robin_1);
1422 		writeq(val64, &bar0->tx_w_round_robin_2);
1423 		writeq(val64, &bar0->tx_w_round_robin_3);
1424 		writeq(val64, &bar0->tx_w_round_robin_4);
1425 		break;
1426 	case 2:
1427 		val64 = 0x0001000100010001ULL;
1428 		writeq(val64, &bar0->tx_w_round_robin_0);
1429 		writeq(val64, &bar0->tx_w_round_robin_1);
1430 		writeq(val64, &bar0->tx_w_round_robin_2);
1431 		writeq(val64, &bar0->tx_w_round_robin_3);
1432 		val64 = 0x0001000100000000ULL;
1433 		writeq(val64, &bar0->tx_w_round_robin_4);
1434 		break;
1435 	case 3:
1436 		val64 = 0x0001020001020001ULL;
1437 		writeq(val64, &bar0->tx_w_round_robin_0);
1438 		val64 = 0x0200010200010200ULL;
1439 		writeq(val64, &bar0->tx_w_round_robin_1);
1440 		val64 = 0x0102000102000102ULL;
1441 		writeq(val64, &bar0->tx_w_round_robin_2);
1442 		val64 = 0x0001020001020001ULL;
1443 		writeq(val64, &bar0->tx_w_round_robin_3);
1444 		val64 = 0x0200010200000000ULL;
1445 		writeq(val64, &bar0->tx_w_round_robin_4);
1446 		break;
1447 	case 4:
1448 		val64 = 0x0001020300010203ULL;
1449 		writeq(val64, &bar0->tx_w_round_robin_0);
1450 		writeq(val64, &bar0->tx_w_round_robin_1);
1451 		writeq(val64, &bar0->tx_w_round_robin_2);
1452 		writeq(val64, &bar0->tx_w_round_robin_3);
1453 		val64 = 0x0001020300000000ULL;
1454 		writeq(val64, &bar0->tx_w_round_robin_4);
1455 		break;
1456 	case 5:
1457 		val64 = 0x0001020304000102ULL;
1458 		writeq(val64, &bar0->tx_w_round_robin_0);
1459 		val64 = 0x0304000102030400ULL;
1460 		writeq(val64, &bar0->tx_w_round_robin_1);
1461 		val64 = 0x0102030400010203ULL;
1462 		writeq(val64, &bar0->tx_w_round_robin_2);
1463 		val64 = 0x0400010203040001ULL;
1464 		writeq(val64, &bar0->tx_w_round_robin_3);
1465 		val64 = 0x0203040000000000ULL;
1466 		writeq(val64, &bar0->tx_w_round_robin_4);
1467 		break;
1468 	case 6:
1469 		val64 = 0x0001020304050001ULL;
1470 		writeq(val64, &bar0->tx_w_round_robin_0);
1471 		val64 = 0x0203040500010203ULL;
1472 		writeq(val64, &bar0->tx_w_round_robin_1);
1473 		val64 = 0x0405000102030405ULL;
1474 		writeq(val64, &bar0->tx_w_round_robin_2);
1475 		val64 = 0x0001020304050001ULL;
1476 		writeq(val64, &bar0->tx_w_round_robin_3);
1477 		val64 = 0x0203040500000000ULL;
1478 		writeq(val64, &bar0->tx_w_round_robin_4);
1479 		break;
1480 	case 7:
1481 		val64 = 0x0001020304050600ULL;
1482 		writeq(val64, &bar0->tx_w_round_robin_0);
1483 		val64 = 0x0102030405060001ULL;
1484 		writeq(val64, &bar0->tx_w_round_robin_1);
1485 		val64 = 0x0203040506000102ULL;
1486 		writeq(val64, &bar0->tx_w_round_robin_2);
1487 		val64 = 0x0304050600010203ULL;
1488 		writeq(val64, &bar0->tx_w_round_robin_3);
1489 		val64 = 0x0405060000000000ULL;
1490 		writeq(val64, &bar0->tx_w_round_robin_4);
1491 		break;
1492 	case 8:
1493 		val64 = 0x0001020304050607ULL;
1494 		writeq(val64, &bar0->tx_w_round_robin_0);
1495 		writeq(val64, &bar0->tx_w_round_robin_1);
1496 		writeq(val64, &bar0->tx_w_round_robin_2);
1497 		writeq(val64, &bar0->tx_w_round_robin_3);
1498 		val64 = 0x0001020300000000ULL;
1499 		writeq(val64, &bar0->tx_w_round_robin_4);
1500 		break;
1501 	}
1502 
1503 	/* Enable all configured Tx FIFO partitions */
1504 	val64 = readq(&bar0->tx_fifo_partition_0);
1505 	val64 |= (TX_FIFO_PARTITION_EN);
1506 	writeq(val64, &bar0->tx_fifo_partition_0);
1507 
1508 	/* Filling the Rx round robin registers as per the
1509 	 * number of Rings and steering based on QoS with
1510 	 * equal priority.
1511 	 */
1512 	switch (config->rx_ring_num) {
1513 	case 1:
1514 		val64 = 0x0;
1515 		writeq(val64, &bar0->rx_w_round_robin_0);
1516 		writeq(val64, &bar0->rx_w_round_robin_1);
1517 		writeq(val64, &bar0->rx_w_round_robin_2);
1518 		writeq(val64, &bar0->rx_w_round_robin_3);
1519 		writeq(val64, &bar0->rx_w_round_robin_4);
1520 
1521 		val64 = 0x8080808080808080ULL;
1522 		writeq(val64, &bar0->rts_qos_steering);
1523 		break;
1524 	case 2:
1525 		val64 = 0x0001000100010001ULL;
1526 		writeq(val64, &bar0->rx_w_round_robin_0);
1527 		writeq(val64, &bar0->rx_w_round_robin_1);
1528 		writeq(val64, &bar0->rx_w_round_robin_2);
1529 		writeq(val64, &bar0->rx_w_round_robin_3);
1530 		val64 = 0x0001000100000000ULL;
1531 		writeq(val64, &bar0->rx_w_round_robin_4);
1532 
1533 		val64 = 0x8080808040404040ULL;
1534 		writeq(val64, &bar0->rts_qos_steering);
1535 		break;
1536 	case 3:
1537 		val64 = 0x0001020001020001ULL;
1538 		writeq(val64, &bar0->rx_w_round_robin_0);
1539 		val64 = 0x0200010200010200ULL;
1540 		writeq(val64, &bar0->rx_w_round_robin_1);
1541 		val64 = 0x0102000102000102ULL;
1542 		writeq(val64, &bar0->rx_w_round_robin_2);
1543 		val64 = 0x0001020001020001ULL;
1544 		writeq(val64, &bar0->rx_w_round_robin_3);
1545 		val64 = 0x0200010200000000ULL;
1546 		writeq(val64, &bar0->rx_w_round_robin_4);
1547 
1548 		val64 = 0x8080804040402020ULL;
1549 		writeq(val64, &bar0->rts_qos_steering);
1550 		break;
1551 	case 4:
1552 		val64 = 0x0001020300010203ULL;
1553 		writeq(val64, &bar0->rx_w_round_robin_0);
1554 		writeq(val64, &bar0->rx_w_round_robin_1);
1555 		writeq(val64, &bar0->rx_w_round_robin_2);
1556 		writeq(val64, &bar0->rx_w_round_robin_3);
1557 		val64 = 0x0001020300000000ULL;
1558 		writeq(val64, &bar0->rx_w_round_robin_4);
1559 
1560 		val64 = 0x8080404020201010ULL;
1561 		writeq(val64, &bar0->rts_qos_steering);
1562 		break;
1563 	case 5:
1564 		val64 = 0x0001020304000102ULL;
1565 		writeq(val64, &bar0->rx_w_round_robin_0);
1566 		val64 = 0x0304000102030400ULL;
1567 		writeq(val64, &bar0->rx_w_round_robin_1);
1568 		val64 = 0x0102030400010203ULL;
1569 		writeq(val64, &bar0->rx_w_round_robin_2);
1570 		val64 = 0x0400010203040001ULL;
1571 		writeq(val64, &bar0->rx_w_round_robin_3);
1572 		val64 = 0x0203040000000000ULL;
1573 		writeq(val64, &bar0->rx_w_round_robin_4);
1574 
1575 		val64 = 0x8080404020201008ULL;
1576 		writeq(val64, &bar0->rts_qos_steering);
1577 		break;
1578 	case 6:
1579 		val64 = 0x0001020304050001ULL;
1580 		writeq(val64, &bar0->rx_w_round_robin_0);
1581 		val64 = 0x0203040500010203ULL;
1582 		writeq(val64, &bar0->rx_w_round_robin_1);
1583 		val64 = 0x0405000102030405ULL;
1584 		writeq(val64, &bar0->rx_w_round_robin_2);
1585 		val64 = 0x0001020304050001ULL;
1586 		writeq(val64, &bar0->rx_w_round_robin_3);
1587 		val64 = 0x0203040500000000ULL;
1588 		writeq(val64, &bar0->rx_w_round_robin_4);
1589 
1590 		val64 = 0x8080404020100804ULL;
1591 		writeq(val64, &bar0->rts_qos_steering);
1592 		break;
1593 	case 7:
1594 		val64 = 0x0001020304050600ULL;
1595 		writeq(val64, &bar0->rx_w_round_robin_0);
1596 		val64 = 0x0102030405060001ULL;
1597 		writeq(val64, &bar0->rx_w_round_robin_1);
1598 		val64 = 0x0203040506000102ULL;
1599 		writeq(val64, &bar0->rx_w_round_robin_2);
1600 		val64 = 0x0304050600010203ULL;
1601 		writeq(val64, &bar0->rx_w_round_robin_3);
1602 		val64 = 0x0405060000000000ULL;
1603 		writeq(val64, &bar0->rx_w_round_robin_4);
1604 
1605 		val64 = 0x8080402010080402ULL;
1606 		writeq(val64, &bar0->rts_qos_steering);
1607 		break;
1608 	case 8:
1609 		val64 = 0x0001020304050607ULL;
1610 		writeq(val64, &bar0->rx_w_round_robin_0);
1611 		writeq(val64, &bar0->rx_w_round_robin_1);
1612 		writeq(val64, &bar0->rx_w_round_robin_2);
1613 		writeq(val64, &bar0->rx_w_round_robin_3);
1614 		val64 = 0x0001020300000000ULL;
1615 		writeq(val64, &bar0->rx_w_round_robin_4);
1616 
1617 		val64 = 0x8040201008040201ULL;
1618 		writeq(val64, &bar0->rts_qos_steering);
1619 		break;
1620 	}
1621 
1622 	/* UDP Fix */
1623 	val64 = 0;
1624 	for (i = 0; i < 8; i++)
1625 		writeq(val64, &bar0->rts_frm_len_n[i]);
1626 
1627 	/* Set the default rts frame length for the rings configured */
1628 	val64 = MAC_RTS_FRM_LEN_SET(dev->mtu+22);
1629 	for (i = 0 ; i < config->rx_ring_num ; i++)
1630 		writeq(val64, &bar0->rts_frm_len_n[i]);
1631 
1632 	/* Set the frame length for the configured rings
1633 	 * desired by the user
1634 	 */
1635 	for (i = 0; i < config->rx_ring_num; i++) {
1636 		/* If rts_frm_len[i] == 0 then it is assumed that user not
1637 		 * specified frame length steering.
1638 		 * If the user provides the frame length then program
1639 		 * the rts_frm_len register for those values or else
1640 		 * leave it as it is.
1641 		 */
1642 		if (rts_frm_len[i] != 0) {
1643 			writeq(MAC_RTS_FRM_LEN_SET(rts_frm_len[i]),
1644 			       &bar0->rts_frm_len_n[i]);
1645 		}
1646 	}
1647 
1648 	/* Disable differentiated services steering logic */
1649 	for (i = 0; i < 64; i++) {
1650 		if (rts_ds_steer(nic, i, 0) == FAILURE) {
1651 			DBG_PRINT(ERR_DBG,
1652 				  "%s: rts_ds_steer failed on codepoint %d\n",
1653 				  dev->name, i);
1654 			return -ENODEV;
1655 		}
1656 	}
1657 
1658 	/* Program statistics memory */
1659 	writeq(mac_control->stats_mem_phy, &bar0->stat_addr);
1660 
1661 	if (nic->device_type == XFRAME_II_DEVICE) {
1662 		val64 = STAT_BC(0x320);
1663 		writeq(val64, &bar0->stat_byte_cnt);
1664 	}
1665 
1666 	/*
1667 	 * Initializing the sampling rate for the device to calculate the
1668 	 * bandwidth utilization.
1669 	 */
1670 	val64 = MAC_TX_LINK_UTIL_VAL(tmac_util_period) |
1671 		MAC_RX_LINK_UTIL_VAL(rmac_util_period);
1672 	writeq(val64, &bar0->mac_link_util);
1673 
1674 	/*
1675 	 * Initializing the Transmit and Receive Traffic Interrupt
1676 	 * Scheme.
1677 	 */
1678 
1679 	/* Initialize TTI */
1680 	if (SUCCESS != init_tti(nic, nic->last_link_state))
1681 		return -ENODEV;
1682 
1683 	/* RTI Initialization */
1684 	if (nic->device_type == XFRAME_II_DEVICE) {
1685 		/*
1686 		 * Programmed to generate Apprx 500 Intrs per
1687 		 * second
1688 		 */
1689 		int count = (nic->config.bus_speed * 125)/4;
1690 		val64 = RTI_DATA1_MEM_RX_TIMER_VAL(count);
1691 	} else
1692 		val64 = RTI_DATA1_MEM_RX_TIMER_VAL(0xFFF);
1693 	val64 |= RTI_DATA1_MEM_RX_URNG_A(0xA) |
1694 		RTI_DATA1_MEM_RX_URNG_B(0x10) |
1695 		RTI_DATA1_MEM_RX_URNG_C(0x30) |
1696 		RTI_DATA1_MEM_RX_TIMER_AC_EN;
1697 
1698 	writeq(val64, &bar0->rti_data1_mem);
1699 
1700 	val64 = RTI_DATA2_MEM_RX_UFC_A(0x1) |
1701 		RTI_DATA2_MEM_RX_UFC_B(0x2) ;
1702 	if (nic->config.intr_type == MSI_X)
1703 		val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x20) |
1704 			  RTI_DATA2_MEM_RX_UFC_D(0x40));
1705 	else
1706 		val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x40) |
1707 			  RTI_DATA2_MEM_RX_UFC_D(0x80));
1708 	writeq(val64, &bar0->rti_data2_mem);
1709 
1710 	for (i = 0; i < config->rx_ring_num; i++) {
1711 		val64 = RTI_CMD_MEM_WE |
1712 			RTI_CMD_MEM_STROBE_NEW_CMD |
1713 			RTI_CMD_MEM_OFFSET(i);
1714 		writeq(val64, &bar0->rti_command_mem);
1715 
1716 		/*
1717 		 * Once the operation completes, the Strobe bit of the
1718 		 * command register will be reset. We poll for this
1719 		 * particular condition. We wait for a maximum of 500ms
1720 		 * for the operation to complete, if it's not complete
1721 		 * by then we return error.
1722 		 */
1723 		time = 0;
1724 		while (true) {
1725 			val64 = readq(&bar0->rti_command_mem);
1726 			if (!(val64 & RTI_CMD_MEM_STROBE_NEW_CMD))
1727 				break;
1728 
1729 			if (time > 10) {
1730 				DBG_PRINT(ERR_DBG, "%s: RTI init failed\n",
1731 					  dev->name);
1732 				return -ENODEV;
1733 			}
1734 			time++;
1735 			msleep(50);
1736 		}
1737 	}
1738 
1739 	/*
1740 	 * Initializing proper values as Pause threshold into all
1741 	 * the 8 Queues on Rx side.
1742 	 */
1743 	writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q0q3);
1744 	writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q4q7);
1745 
1746 	/* Disable RMAC PAD STRIPPING */
1747 	add = &bar0->mac_cfg;
1748 	val64 = readq(&bar0->mac_cfg);
1749 	val64 &= ~(MAC_CFG_RMAC_STRIP_PAD);
1750 	writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1751 	writel((u32) (val64), add);
1752 	writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1753 	writel((u32) (val64 >> 32), (add + 4));
1754 	val64 = readq(&bar0->mac_cfg);
1755 
1756 	/* Enable FCS stripping by adapter */
1757 	add = &bar0->mac_cfg;
1758 	val64 = readq(&bar0->mac_cfg);
1759 	val64 |= MAC_CFG_RMAC_STRIP_FCS;
1760 	if (nic->device_type == XFRAME_II_DEVICE)
1761 		writeq(val64, &bar0->mac_cfg);
1762 	else {
1763 		writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1764 		writel((u32) (val64), add);
1765 		writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1766 		writel((u32) (val64 >> 32), (add + 4));
1767 	}
1768 
1769 	/*
1770 	 * Set the time value to be inserted in the pause frame
1771 	 * generated by xena.
1772 	 */
1773 	val64 = readq(&bar0->rmac_pause_cfg);
1774 	val64 &= ~(RMAC_PAUSE_HG_PTIME(0xffff));
1775 	val64 |= RMAC_PAUSE_HG_PTIME(nic->mac_control.rmac_pause_time);
1776 	writeq(val64, &bar0->rmac_pause_cfg);
1777 
1778 	/*
1779 	 * Set the Threshold Limit for Generating the pause frame
1780 	 * If the amount of data in any Queue exceeds ratio of
1781 	 * (mac_control.mc_pause_threshold_q0q3 or q4q7)/256
1782 	 * pause frame is generated
1783 	 */
1784 	val64 = 0;
1785 	for (i = 0; i < 4; i++) {
1786 		val64 |= (((u64)0xFF00 |
1787 			   nic->mac_control.mc_pause_threshold_q0q3)
1788 			  << (i * 2 * 8));
1789 	}
1790 	writeq(val64, &bar0->mc_pause_thresh_q0q3);
1791 
1792 	val64 = 0;
1793 	for (i = 0; i < 4; i++) {
1794 		val64 |= (((u64)0xFF00 |
1795 			   nic->mac_control.mc_pause_threshold_q4q7)
1796 			  << (i * 2 * 8));
1797 	}
1798 	writeq(val64, &bar0->mc_pause_thresh_q4q7);
1799 
1800 	/*
1801 	 * TxDMA will stop Read request if the number of read split has
1802 	 * exceeded the limit pointed by shared_splits
1803 	 */
1804 	val64 = readq(&bar0->pic_control);
1805 	val64 |= PIC_CNTL_SHARED_SPLITS(shared_splits);
1806 	writeq(val64, &bar0->pic_control);
1807 
1808 	if (nic->config.bus_speed == 266) {
1809 		writeq(TXREQTO_VAL(0x7f) | TXREQTO_EN, &bar0->txreqtimeout);
1810 		writeq(0x0, &bar0->read_retry_delay);
1811 		writeq(0x0, &bar0->write_retry_delay);
1812 	}
1813 
1814 	/*
1815 	 * Programming the Herc to split every write transaction
1816 	 * that does not start on an ADB to reduce disconnects.
1817 	 */
1818 	if (nic->device_type == XFRAME_II_DEVICE) {
1819 		val64 = FAULT_BEHAVIOUR | EXT_REQ_EN |
1820 			MISC_LINK_STABILITY_PRD(3);
1821 		writeq(val64, &bar0->misc_control);
1822 		val64 = readq(&bar0->pic_control2);
1823 		val64 &= ~(s2BIT(13)|s2BIT(14)|s2BIT(15));
1824 		writeq(val64, &bar0->pic_control2);
1825 	}
1826 	if (strstr(nic->product_name, "CX4")) {
1827 		val64 = TMAC_AVG_IPG(0x17);
1828 		writeq(val64, &bar0->tmac_avg_ipg);
1829 	}
1830 
1831 	return SUCCESS;
1832 }
1833 #define LINK_UP_DOWN_INTERRUPT		1
1834 #define MAC_RMAC_ERR_TIMER		2
1835 
1836 static int s2io_link_fault_indication(struct s2io_nic *nic)
1837 {
1838 	if (nic->device_type == XFRAME_II_DEVICE)
1839 		return LINK_UP_DOWN_INTERRUPT;
1840 	else
1841 		return MAC_RMAC_ERR_TIMER;
1842 }
1843 
1844 /**
1845  *  do_s2io_write_bits -  update alarm bits in alarm register
1846  *  @value: alarm bits
1847  *  @flag: interrupt status
1848  *  @addr: address value
1849  *  Description: update alarm bits in alarm register
1850  *  Return Value:
1851  *  NONE.
1852  */
1853 static void do_s2io_write_bits(u64 value, int flag, void __iomem *addr)
1854 {
1855 	u64 temp64;
1856 
1857 	temp64 = readq(addr);
1858 
1859 	if (flag == ENABLE_INTRS)
1860 		temp64 &= ~((u64)value);
1861 	else
1862 		temp64 |= ((u64)value);
1863 	writeq(temp64, addr);
1864 }
1865 
1866 static void en_dis_err_alarms(struct s2io_nic *nic, u16 mask, int flag)
1867 {
1868 	struct XENA_dev_config __iomem *bar0 = nic->bar0;
1869 	register u64 gen_int_mask = 0;
1870 	u64 interruptible;
1871 
1872 	writeq(DISABLE_ALL_INTRS, &bar0->general_int_mask);
1873 	if (mask & TX_DMA_INTR) {
1874 		gen_int_mask |= TXDMA_INT_M;
1875 
1876 		do_s2io_write_bits(TXDMA_TDA_INT | TXDMA_PFC_INT |
1877 				   TXDMA_PCC_INT | TXDMA_TTI_INT |
1878 				   TXDMA_LSO_INT | TXDMA_TPA_INT |
1879 				   TXDMA_SM_INT, flag, &bar0->txdma_int_mask);
1880 
1881 		do_s2io_write_bits(PFC_ECC_DB_ERR | PFC_SM_ERR_ALARM |
1882 				   PFC_MISC_0_ERR | PFC_MISC_1_ERR |
1883 				   PFC_PCIX_ERR | PFC_ECC_SG_ERR, flag,
1884 				   &bar0->pfc_err_mask);
1885 
1886 		do_s2io_write_bits(TDA_Fn_ECC_DB_ERR | TDA_SM0_ERR_ALARM |
1887 				   TDA_SM1_ERR_ALARM | TDA_Fn_ECC_SG_ERR |
1888 				   TDA_PCIX_ERR, flag, &bar0->tda_err_mask);
1889 
1890 		do_s2io_write_bits(PCC_FB_ECC_DB_ERR | PCC_TXB_ECC_DB_ERR |
1891 				   PCC_SM_ERR_ALARM | PCC_WR_ERR_ALARM |
1892 				   PCC_N_SERR | PCC_6_COF_OV_ERR |
1893 				   PCC_7_COF_OV_ERR | PCC_6_LSO_OV_ERR |
1894 				   PCC_7_LSO_OV_ERR | PCC_FB_ECC_SG_ERR |
1895 				   PCC_TXB_ECC_SG_ERR,
1896 				   flag, &bar0->pcc_err_mask);
1897 
1898 		do_s2io_write_bits(TTI_SM_ERR_ALARM | TTI_ECC_SG_ERR |
1899 				   TTI_ECC_DB_ERR, flag, &bar0->tti_err_mask);
1900 
1901 		do_s2io_write_bits(LSO6_ABORT | LSO7_ABORT |
1902 				   LSO6_SM_ERR_ALARM | LSO7_SM_ERR_ALARM |
1903 				   LSO6_SEND_OFLOW | LSO7_SEND_OFLOW,
1904 				   flag, &bar0->lso_err_mask);
1905 
1906 		do_s2io_write_bits(TPA_SM_ERR_ALARM | TPA_TX_FRM_DROP,
1907 				   flag, &bar0->tpa_err_mask);
1908 
1909 		do_s2io_write_bits(SM_SM_ERR_ALARM, flag, &bar0->sm_err_mask);
1910 	}
1911 
1912 	if (mask & TX_MAC_INTR) {
1913 		gen_int_mask |= TXMAC_INT_M;
1914 		do_s2io_write_bits(MAC_INT_STATUS_TMAC_INT, flag,
1915 				   &bar0->mac_int_mask);
1916 		do_s2io_write_bits(TMAC_TX_BUF_OVRN | TMAC_TX_SM_ERR |
1917 				   TMAC_ECC_SG_ERR | TMAC_ECC_DB_ERR |
1918 				   TMAC_DESC_ECC_SG_ERR | TMAC_DESC_ECC_DB_ERR,
1919 				   flag, &bar0->mac_tmac_err_mask);
1920 	}
1921 
1922 	if (mask & TX_XGXS_INTR) {
1923 		gen_int_mask |= TXXGXS_INT_M;
1924 		do_s2io_write_bits(XGXS_INT_STATUS_TXGXS, flag,
1925 				   &bar0->xgxs_int_mask);
1926 		do_s2io_write_bits(TXGXS_ESTORE_UFLOW | TXGXS_TX_SM_ERR |
1927 				   TXGXS_ECC_SG_ERR | TXGXS_ECC_DB_ERR,
1928 				   flag, &bar0->xgxs_txgxs_err_mask);
1929 	}
1930 
1931 	if (mask & RX_DMA_INTR) {
1932 		gen_int_mask |= RXDMA_INT_M;
1933 		do_s2io_write_bits(RXDMA_INT_RC_INT_M | RXDMA_INT_RPA_INT_M |
1934 				   RXDMA_INT_RDA_INT_M | RXDMA_INT_RTI_INT_M,
1935 				   flag, &bar0->rxdma_int_mask);
1936 		do_s2io_write_bits(RC_PRCn_ECC_DB_ERR | RC_FTC_ECC_DB_ERR |
1937 				   RC_PRCn_SM_ERR_ALARM | RC_FTC_SM_ERR_ALARM |
1938 				   RC_PRCn_ECC_SG_ERR | RC_FTC_ECC_SG_ERR |
1939 				   RC_RDA_FAIL_WR_Rn, flag, &bar0->rc_err_mask);
1940 		do_s2io_write_bits(PRC_PCI_AB_RD_Rn | PRC_PCI_AB_WR_Rn |
1941 				   PRC_PCI_AB_F_WR_Rn | PRC_PCI_DP_RD_Rn |
1942 				   PRC_PCI_DP_WR_Rn | PRC_PCI_DP_F_WR_Rn, flag,
1943 				   &bar0->prc_pcix_err_mask);
1944 		do_s2io_write_bits(RPA_SM_ERR_ALARM | RPA_CREDIT_ERR |
1945 				   RPA_ECC_SG_ERR | RPA_ECC_DB_ERR, flag,
1946 				   &bar0->rpa_err_mask);
1947 		do_s2io_write_bits(RDA_RXDn_ECC_DB_ERR | RDA_FRM_ECC_DB_N_AERR |
1948 				   RDA_SM1_ERR_ALARM | RDA_SM0_ERR_ALARM |
1949 				   RDA_RXD_ECC_DB_SERR | RDA_RXDn_ECC_SG_ERR |
1950 				   RDA_FRM_ECC_SG_ERR |
1951 				   RDA_MISC_ERR|RDA_PCIX_ERR,
1952 				   flag, &bar0->rda_err_mask);
1953 		do_s2io_write_bits(RTI_SM_ERR_ALARM |
1954 				   RTI_ECC_SG_ERR | RTI_ECC_DB_ERR,
1955 				   flag, &bar0->rti_err_mask);
1956 	}
1957 
1958 	if (mask & RX_MAC_INTR) {
1959 		gen_int_mask |= RXMAC_INT_M;
1960 		do_s2io_write_bits(MAC_INT_STATUS_RMAC_INT, flag,
1961 				   &bar0->mac_int_mask);
1962 		interruptible = (RMAC_RX_BUFF_OVRN | RMAC_RX_SM_ERR |
1963 				 RMAC_UNUSED_INT | RMAC_SINGLE_ECC_ERR |
1964 				 RMAC_DOUBLE_ECC_ERR);
1965 		if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER)
1966 			interruptible |= RMAC_LINK_STATE_CHANGE_INT;
1967 		do_s2io_write_bits(interruptible,
1968 				   flag, &bar0->mac_rmac_err_mask);
1969 	}
1970 
1971 	if (mask & RX_XGXS_INTR) {
1972 		gen_int_mask |= RXXGXS_INT_M;
1973 		do_s2io_write_bits(XGXS_INT_STATUS_RXGXS, flag,
1974 				   &bar0->xgxs_int_mask);
1975 		do_s2io_write_bits(RXGXS_ESTORE_OFLOW | RXGXS_RX_SM_ERR, flag,
1976 				   &bar0->xgxs_rxgxs_err_mask);
1977 	}
1978 
1979 	if (mask & MC_INTR) {
1980 		gen_int_mask |= MC_INT_M;
1981 		do_s2io_write_bits(MC_INT_MASK_MC_INT,
1982 				   flag, &bar0->mc_int_mask);
1983 		do_s2io_write_bits(MC_ERR_REG_SM_ERR | MC_ERR_REG_ECC_ALL_SNG |
1984 				   MC_ERR_REG_ECC_ALL_DBL | PLL_LOCK_N, flag,
1985 				   &bar0->mc_err_mask);
1986 	}
1987 	nic->general_int_mask = gen_int_mask;
1988 
1989 	/* Remove this line when alarm interrupts are enabled */
1990 	nic->general_int_mask = 0;
1991 }
1992 
1993 /**
1994  *  en_dis_able_nic_intrs - Enable or Disable the interrupts
1995  *  @nic: device private variable,
1996  *  @mask: A mask indicating which Intr block must be modified and,
1997  *  @flag: A flag indicating whether to enable or disable the Intrs.
1998  *  Description: This function will either disable or enable the interrupts
1999  *  depending on the flag argument. The mask argument can be used to
2000  *  enable/disable any Intr block.
2001  *  Return Value: NONE.
2002  */
2003 
2004 static void en_dis_able_nic_intrs(struct s2io_nic *nic, u16 mask, int flag)
2005 {
2006 	struct XENA_dev_config __iomem *bar0 = nic->bar0;
2007 	register u64 temp64 = 0, intr_mask = 0;
2008 
2009 	intr_mask = nic->general_int_mask;
2010 
2011 	/*  Top level interrupt classification */
2012 	/*  PIC Interrupts */
2013 	if (mask & TX_PIC_INTR) {
2014 		/*  Enable PIC Intrs in the general intr mask register */
2015 		intr_mask |= TXPIC_INT_M;
2016 		if (flag == ENABLE_INTRS) {
2017 			/*
2018 			 * If Hercules adapter enable GPIO otherwise
2019 			 * disable all PCIX, Flash, MDIO, IIC and GPIO
2020 			 * interrupts for now.
2021 			 * TODO
2022 			 */
2023 			if (s2io_link_fault_indication(nic) ==
2024 			    LINK_UP_DOWN_INTERRUPT) {
2025 				do_s2io_write_bits(PIC_INT_GPIO, flag,
2026 						   &bar0->pic_int_mask);
2027 				do_s2io_write_bits(GPIO_INT_MASK_LINK_UP, flag,
2028 						   &bar0->gpio_int_mask);
2029 			} else
2030 				writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
2031 		} else if (flag == DISABLE_INTRS) {
2032 			/*
2033 			 * Disable PIC Intrs in the general
2034 			 * intr mask register
2035 			 */
2036 			writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
2037 		}
2038 	}
2039 
2040 	/*  Tx traffic interrupts */
2041 	if (mask & TX_TRAFFIC_INTR) {
2042 		intr_mask |= TXTRAFFIC_INT_M;
2043 		if (flag == ENABLE_INTRS) {
2044 			/*
2045 			 * Enable all the Tx side interrupts
2046 			 * writing 0 Enables all 64 TX interrupt levels
2047 			 */
2048 			writeq(0x0, &bar0->tx_traffic_mask);
2049 		} else if (flag == DISABLE_INTRS) {
2050 			/*
2051 			 * Disable Tx Traffic Intrs in the general intr mask
2052 			 * register.
2053 			 */
2054 			writeq(DISABLE_ALL_INTRS, &bar0->tx_traffic_mask);
2055 		}
2056 	}
2057 
2058 	/*  Rx traffic interrupts */
2059 	if (mask & RX_TRAFFIC_INTR) {
2060 		intr_mask |= RXTRAFFIC_INT_M;
2061 		if (flag == ENABLE_INTRS) {
2062 			/* writing 0 Enables all 8 RX interrupt levels */
2063 			writeq(0x0, &bar0->rx_traffic_mask);
2064 		} else if (flag == DISABLE_INTRS) {
2065 			/*
2066 			 * Disable Rx Traffic Intrs in the general intr mask
2067 			 * register.
2068 			 */
2069 			writeq(DISABLE_ALL_INTRS, &bar0->rx_traffic_mask);
2070 		}
2071 	}
2072 
2073 	temp64 = readq(&bar0->general_int_mask);
2074 	if (flag == ENABLE_INTRS)
2075 		temp64 &= ~((u64)intr_mask);
2076 	else
2077 		temp64 = DISABLE_ALL_INTRS;
2078 	writeq(temp64, &bar0->general_int_mask);
2079 
2080 	nic->general_int_mask = readq(&bar0->general_int_mask);
2081 }
2082 
2083 /**
2084  *  verify_pcc_quiescent- Checks for PCC quiescent state
2085  *  Return: 1 If PCC is quiescence
2086  *          0 If PCC is not quiescence
2087  */
2088 static int verify_pcc_quiescent(struct s2io_nic *sp, int flag)
2089 {
2090 	int ret = 0, herc;
2091 	struct XENA_dev_config __iomem *bar0 = sp->bar0;
2092 	u64 val64 = readq(&bar0->adapter_status);
2093 
2094 	herc = (sp->device_type == XFRAME_II_DEVICE);
2095 
2096 	if (flag == false) {
2097 		if ((!herc && (sp->pdev->revision >= 4)) || herc) {
2098 			if (!(val64 & ADAPTER_STATUS_RMAC_PCC_IDLE))
2099 				ret = 1;
2100 		} else {
2101 			if (!(val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE))
2102 				ret = 1;
2103 		}
2104 	} else {
2105 		if ((!herc && (sp->pdev->revision >= 4)) || herc) {
2106 			if (((val64 & ADAPTER_STATUS_RMAC_PCC_IDLE) ==
2107 			     ADAPTER_STATUS_RMAC_PCC_IDLE))
2108 				ret = 1;
2109 		} else {
2110 			if (((val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE) ==
2111 			     ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE))
2112 				ret = 1;
2113 		}
2114 	}
2115 
2116 	return ret;
2117 }
2118 /**
2119  *  verify_xena_quiescence - Checks whether the H/W is ready
2120  *  Description: Returns whether the H/W is ready to go or not. Depending
2121  *  on whether adapter enable bit was written or not the comparison
2122  *  differs and the calling function passes the input argument flag to
2123  *  indicate this.
2124  *  Return: 1 If xena is quiescence
2125  *          0 If Xena is not quiescence
2126  */
2127 
2128 static int verify_xena_quiescence(struct s2io_nic *sp)
2129 {
2130 	int  mode;
2131 	struct XENA_dev_config __iomem *bar0 = sp->bar0;
2132 	u64 val64 = readq(&bar0->adapter_status);
2133 	mode = s2io_verify_pci_mode(sp);
2134 
2135 	if (!(val64 & ADAPTER_STATUS_TDMA_READY)) {
2136 		DBG_PRINT(ERR_DBG, "TDMA is not ready!\n");
2137 		return 0;
2138 	}
2139 	if (!(val64 & ADAPTER_STATUS_RDMA_READY)) {
2140 		DBG_PRINT(ERR_DBG, "RDMA is not ready!\n");
2141 		return 0;
2142 	}
2143 	if (!(val64 & ADAPTER_STATUS_PFC_READY)) {
2144 		DBG_PRINT(ERR_DBG, "PFC is not ready!\n");
2145 		return 0;
2146 	}
2147 	if (!(val64 & ADAPTER_STATUS_TMAC_BUF_EMPTY)) {
2148 		DBG_PRINT(ERR_DBG, "TMAC BUF is not empty!\n");
2149 		return 0;
2150 	}
2151 	if (!(val64 & ADAPTER_STATUS_PIC_QUIESCENT)) {
2152 		DBG_PRINT(ERR_DBG, "PIC is not QUIESCENT!\n");
2153 		return 0;
2154 	}
2155 	if (!(val64 & ADAPTER_STATUS_MC_DRAM_READY)) {
2156 		DBG_PRINT(ERR_DBG, "MC_DRAM is not ready!\n");
2157 		return 0;
2158 	}
2159 	if (!(val64 & ADAPTER_STATUS_MC_QUEUES_READY)) {
2160 		DBG_PRINT(ERR_DBG, "MC_QUEUES is not ready!\n");
2161 		return 0;
2162 	}
2163 	if (!(val64 & ADAPTER_STATUS_M_PLL_LOCK)) {
2164 		DBG_PRINT(ERR_DBG, "M_PLL is not locked!\n");
2165 		return 0;
2166 	}
2167 
2168 	/*
2169 	 * In PCI 33 mode, the P_PLL is not used, and therefore,
2170 	 * the the P_PLL_LOCK bit in the adapter_status register will
2171 	 * not be asserted.
2172 	 */
2173 	if (!(val64 & ADAPTER_STATUS_P_PLL_LOCK) &&
2174 	    sp->device_type == XFRAME_II_DEVICE &&
2175 	    mode != PCI_MODE_PCI_33) {
2176 		DBG_PRINT(ERR_DBG, "P_PLL is not locked!\n");
2177 		return 0;
2178 	}
2179 	if (!((val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ==
2180 	      ADAPTER_STATUS_RC_PRC_QUIESCENT)) {
2181 		DBG_PRINT(ERR_DBG, "RC_PRC is not QUIESCENT!\n");
2182 		return 0;
2183 	}
2184 	return 1;
2185 }
2186 
2187 /**
2188  * fix_mac_address -  Fix for Mac addr problem on Alpha platforms
2189  * @sp: Pointer to device specifc structure
2190  * Description :
2191  * New procedure to clear mac address reading  problems on Alpha platforms
2192  *
2193  */
2194 
2195 static void fix_mac_address(struct s2io_nic *sp)
2196 {
2197 	struct XENA_dev_config __iomem *bar0 = sp->bar0;
2198 	int i = 0;
2199 
2200 	while (fix_mac[i] != END_SIGN) {
2201 		writeq(fix_mac[i++], &bar0->gpio_control);
2202 		udelay(10);
2203 		(void) readq(&bar0->gpio_control);
2204 	}
2205 }
2206 
2207 /**
2208  *  start_nic - Turns the device on
2209  *  @nic : device private variable.
2210  *  Description:
2211  *  This function actually turns the device on. Before this  function is
2212  *  called,all Registers are configured from their reset states
2213  *  and shared memory is allocated but the NIC is still quiescent. On
2214  *  calling this function, the device interrupts are cleared and the NIC is
2215  *  literally switched on by writing into the adapter control register.
2216  *  Return Value:
2217  *  SUCCESS on success and -1 on failure.
2218  */
2219 
2220 static int start_nic(struct s2io_nic *nic)
2221 {
2222 	struct XENA_dev_config __iomem *bar0 = nic->bar0;
2223 	struct net_device *dev = nic->dev;
2224 	register u64 val64 = 0;
2225 	u16 subid, i;
2226 	struct config_param *config = &nic->config;
2227 	struct mac_info *mac_control = &nic->mac_control;
2228 
2229 	/*  PRC Initialization and configuration */
2230 	for (i = 0; i < config->rx_ring_num; i++) {
2231 		struct ring_info *ring = &mac_control->rings[i];
2232 
2233 		writeq((u64)ring->rx_blocks[0].block_dma_addr,
2234 		       &bar0->prc_rxd0_n[i]);
2235 
2236 		val64 = readq(&bar0->prc_ctrl_n[i]);
2237 		if (nic->rxd_mode == RXD_MODE_1)
2238 			val64 |= PRC_CTRL_RC_ENABLED;
2239 		else
2240 			val64 |= PRC_CTRL_RC_ENABLED | PRC_CTRL_RING_MODE_3;
2241 		if (nic->device_type == XFRAME_II_DEVICE)
2242 			val64 |= PRC_CTRL_GROUP_READS;
2243 		val64 &= ~PRC_CTRL_RXD_BACKOFF_INTERVAL(0xFFFFFF);
2244 		val64 |= PRC_CTRL_RXD_BACKOFF_INTERVAL(0x1000);
2245 		writeq(val64, &bar0->prc_ctrl_n[i]);
2246 	}
2247 
2248 	if (nic->rxd_mode == RXD_MODE_3B) {
2249 		/* Enabling 2 buffer mode by writing into Rx_pa_cfg reg. */
2250 		val64 = readq(&bar0->rx_pa_cfg);
2251 		val64 |= RX_PA_CFG_IGNORE_L2_ERR;
2252 		writeq(val64, &bar0->rx_pa_cfg);
2253 	}
2254 
2255 	if (vlan_tag_strip == 0) {
2256 		val64 = readq(&bar0->rx_pa_cfg);
2257 		val64 &= ~RX_PA_CFG_STRIP_VLAN_TAG;
2258 		writeq(val64, &bar0->rx_pa_cfg);
2259 		nic->vlan_strip_flag = 0;
2260 	}
2261 
2262 	/*
2263 	 * Enabling MC-RLDRAM. After enabling the device, we timeout
2264 	 * for around 100ms, which is approximately the time required
2265 	 * for the device to be ready for operation.
2266 	 */
2267 	val64 = readq(&bar0->mc_rldram_mrs);
2268 	val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE | MC_RLDRAM_MRS_ENABLE;
2269 	SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
2270 	val64 = readq(&bar0->mc_rldram_mrs);
2271 
2272 	msleep(100);	/* Delay by around 100 ms. */
2273 
2274 	/* Enabling ECC Protection. */
2275 	val64 = readq(&bar0->adapter_control);
2276 	val64 &= ~ADAPTER_ECC_EN;
2277 	writeq(val64, &bar0->adapter_control);
2278 
2279 	/*
2280 	 * Verify if the device is ready to be enabled, if so enable
2281 	 * it.
2282 	 */
2283 	val64 = readq(&bar0->adapter_status);
2284 	if (!verify_xena_quiescence(nic)) {
2285 		DBG_PRINT(ERR_DBG, "%s: device is not ready, "
2286 			  "Adapter status reads: 0x%llx\n",
2287 			  dev->name, (unsigned long long)val64);
2288 		return FAILURE;
2289 	}
2290 
2291 	/*
2292 	 * With some switches, link might be already up at this point.
2293 	 * Because of this weird behavior, when we enable laser,
2294 	 * we may not get link. We need to handle this. We cannot
2295 	 * figure out which switch is misbehaving. So we are forced to
2296 	 * make a global change.
2297 	 */
2298 
2299 	/* Enabling Laser. */
2300 	val64 = readq(&bar0->adapter_control);
2301 	val64 |= ADAPTER_EOI_TX_ON;
2302 	writeq(val64, &bar0->adapter_control);
2303 
2304 	if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
2305 		/*
2306 		 * Dont see link state interrupts initially on some switches,
2307 		 * so directly scheduling the link state task here.
2308 		 */
2309 		schedule_work(&nic->set_link_task);
2310 	}
2311 	/* SXE-002: Initialize link and activity LED */
2312 	subid = nic->pdev->subsystem_device;
2313 	if (((subid & 0xFF) >= 0x07) &&
2314 	    (nic->device_type == XFRAME_I_DEVICE)) {
2315 		val64 = readq(&bar0->gpio_control);
2316 		val64 |= 0x0000800000000000ULL;
2317 		writeq(val64, &bar0->gpio_control);
2318 		val64 = 0x0411040400000000ULL;
2319 		writeq(val64, (void __iomem *)bar0 + 0x2700);
2320 	}
2321 
2322 	return SUCCESS;
2323 }
2324 /**
2325  * s2io_txdl_getskb - Get the skb from txdl, unmap and return skb
2326  */
2327 static struct sk_buff *s2io_txdl_getskb(struct fifo_info *fifo_data,
2328 					struct TxD *txdlp, int get_off)
2329 {
2330 	struct s2io_nic *nic = fifo_data->nic;
2331 	struct sk_buff *skb;
2332 	struct TxD *txds;
2333 	u16 j, frg_cnt;
2334 
2335 	txds = txdlp;
2336 	if (txds->Host_Control == (u64)(long)fifo_data->ufo_in_band_v) {
2337 		pci_unmap_single(nic->pdev, (dma_addr_t)txds->Buffer_Pointer,
2338 				 sizeof(u64), PCI_DMA_TODEVICE);
2339 		txds++;
2340 	}
2341 
2342 	skb = (struct sk_buff *)((unsigned long)txds->Host_Control);
2343 	if (!skb) {
2344 		memset(txdlp, 0, (sizeof(struct TxD) * fifo_data->max_txds));
2345 		return NULL;
2346 	}
2347 	pci_unmap_single(nic->pdev, (dma_addr_t)txds->Buffer_Pointer,
2348 			 skb_headlen(skb), PCI_DMA_TODEVICE);
2349 	frg_cnt = skb_shinfo(skb)->nr_frags;
2350 	if (frg_cnt) {
2351 		txds++;
2352 		for (j = 0; j < frg_cnt; j++, txds++) {
2353 			const skb_frag_t *frag = &skb_shinfo(skb)->frags[j];
2354 			if (!txds->Buffer_Pointer)
2355 				break;
2356 			pci_unmap_page(nic->pdev,
2357 				       (dma_addr_t)txds->Buffer_Pointer,
2358 				       skb_frag_size(frag), PCI_DMA_TODEVICE);
2359 		}
2360 	}
2361 	memset(txdlp, 0, (sizeof(struct TxD) * fifo_data->max_txds));
2362 	return skb;
2363 }
2364 
2365 /**
2366  *  free_tx_buffers - Free all queued Tx buffers
2367  *  @nic : device private variable.
2368  *  Description:
2369  *  Free all queued Tx buffers.
2370  *  Return Value: void
2371  */
2372 
2373 static void free_tx_buffers(struct s2io_nic *nic)
2374 {
2375 	struct net_device *dev = nic->dev;
2376 	struct sk_buff *skb;
2377 	struct TxD *txdp;
2378 	int i, j;
2379 	int cnt = 0;
2380 	struct config_param *config = &nic->config;
2381 	struct mac_info *mac_control = &nic->mac_control;
2382 	struct stat_block *stats = mac_control->stats_info;
2383 	struct swStat *swstats = &stats->sw_stat;
2384 
2385 	for (i = 0; i < config->tx_fifo_num; i++) {
2386 		struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
2387 		struct fifo_info *fifo = &mac_control->fifos[i];
2388 		unsigned long flags;
2389 
2390 		spin_lock_irqsave(&fifo->tx_lock, flags);
2391 		for (j = 0; j < tx_cfg->fifo_len; j++) {
2392 			txdp = fifo->list_info[j].list_virt_addr;
2393 			skb = s2io_txdl_getskb(&mac_control->fifos[i], txdp, j);
2394 			if (skb) {
2395 				swstats->mem_freed += skb->truesize;
2396 				dev_kfree_skb(skb);
2397 				cnt++;
2398 			}
2399 		}
2400 		DBG_PRINT(INTR_DBG,
2401 			  "%s: forcibly freeing %d skbs on FIFO%d\n",
2402 			  dev->name, cnt, i);
2403 		fifo->tx_curr_get_info.offset = 0;
2404 		fifo->tx_curr_put_info.offset = 0;
2405 		spin_unlock_irqrestore(&fifo->tx_lock, flags);
2406 	}
2407 }
2408 
2409 /**
2410  *   stop_nic -  To stop the nic
2411  *   @nic ; device private variable.
2412  *   Description:
2413  *   This function does exactly the opposite of what the start_nic()
2414  *   function does. This function is called to stop the device.
2415  *   Return Value:
2416  *   void.
2417  */
2418 
2419 static void stop_nic(struct s2io_nic *nic)
2420 {
2421 	struct XENA_dev_config __iomem *bar0 = nic->bar0;
2422 	register u64 val64 = 0;
2423 	u16 interruptible;
2424 
2425 	/*  Disable all interrupts */
2426 	en_dis_err_alarms(nic, ENA_ALL_INTRS, DISABLE_INTRS);
2427 	interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
2428 	interruptible |= TX_PIC_INTR;
2429 	en_dis_able_nic_intrs(nic, interruptible, DISABLE_INTRS);
2430 
2431 	/* Clearing Adapter_En bit of ADAPTER_CONTROL Register */
2432 	val64 = readq(&bar0->adapter_control);
2433 	val64 &= ~(ADAPTER_CNTL_EN);
2434 	writeq(val64, &bar0->adapter_control);
2435 }
2436 
2437 /**
2438  *  fill_rx_buffers - Allocates the Rx side skbs
2439  *  @ring_info: per ring structure
2440  *  @from_card_up: If this is true, we will map the buffer to get
2441  *     the dma address for buf0 and buf1 to give it to the card.
2442  *     Else we will sync the already mapped buffer to give it to the card.
2443  *  Description:
2444  *  The function allocates Rx side skbs and puts the physical
2445  *  address of these buffers into the RxD buffer pointers, so that the NIC
2446  *  can DMA the received frame into these locations.
2447  *  The NIC supports 3 receive modes, viz
2448  *  1. single buffer,
2449  *  2. three buffer and
2450  *  3. Five buffer modes.
2451  *  Each mode defines how many fragments the received frame will be split
2452  *  up into by the NIC. The frame is split into L3 header, L4 Header,
2453  *  L4 payload in three buffer mode and in 5 buffer mode, L4 payload itself
2454  *  is split into 3 fragments. As of now only single buffer mode is
2455  *  supported.
2456  *   Return Value:
2457  *  SUCCESS on success or an appropriate -ve value on failure.
2458  */
2459 static int fill_rx_buffers(struct s2io_nic *nic, struct ring_info *ring,
2460 			   int from_card_up)
2461 {
2462 	struct sk_buff *skb;
2463 	struct RxD_t *rxdp;
2464 	int off, size, block_no, block_no1;
2465 	u32 alloc_tab = 0;
2466 	u32 alloc_cnt;
2467 	u64 tmp;
2468 	struct buffAdd *ba;
2469 	struct RxD_t *first_rxdp = NULL;
2470 	u64 Buffer0_ptr = 0, Buffer1_ptr = 0;
2471 	int rxd_index = 0;
2472 	struct RxD1 *rxdp1;
2473 	struct RxD3 *rxdp3;
2474 	struct swStat *swstats = &ring->nic->mac_control.stats_info->sw_stat;
2475 
2476 	alloc_cnt = ring->pkt_cnt - ring->rx_bufs_left;
2477 
2478 	block_no1 = ring->rx_curr_get_info.block_index;
2479 	while (alloc_tab < alloc_cnt) {
2480 		block_no = ring->rx_curr_put_info.block_index;
2481 
2482 		off = ring->rx_curr_put_info.offset;
2483 
2484 		rxdp = ring->rx_blocks[block_no].rxds[off].virt_addr;
2485 
2486 		rxd_index = off + 1;
2487 		if (block_no)
2488 			rxd_index += (block_no * ring->rxd_count);
2489 
2490 		if ((block_no == block_no1) &&
2491 		    (off == ring->rx_curr_get_info.offset) &&
2492 		    (rxdp->Host_Control)) {
2493 			DBG_PRINT(INTR_DBG, "%s: Get and Put info equated\n",
2494 				  ring->dev->name);
2495 			goto end;
2496 		}
2497 		if (off && (off == ring->rxd_count)) {
2498 			ring->rx_curr_put_info.block_index++;
2499 			if (ring->rx_curr_put_info.block_index ==
2500 			    ring->block_count)
2501 				ring->rx_curr_put_info.block_index = 0;
2502 			block_no = ring->rx_curr_put_info.block_index;
2503 			off = 0;
2504 			ring->rx_curr_put_info.offset = off;
2505 			rxdp = ring->rx_blocks[block_no].block_virt_addr;
2506 			DBG_PRINT(INTR_DBG, "%s: Next block at: %p\n",
2507 				  ring->dev->name, rxdp);
2508 
2509 		}
2510 
2511 		if ((rxdp->Control_1 & RXD_OWN_XENA) &&
2512 		    ((ring->rxd_mode == RXD_MODE_3B) &&
2513 		     (rxdp->Control_2 & s2BIT(0)))) {
2514 			ring->rx_curr_put_info.offset = off;
2515 			goto end;
2516 		}
2517 		/* calculate size of skb based on ring mode */
2518 		size = ring->mtu +
2519 			HEADER_ETHERNET_II_802_3_SIZE +
2520 			HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
2521 		if (ring->rxd_mode == RXD_MODE_1)
2522 			size += NET_IP_ALIGN;
2523 		else
2524 			size = ring->mtu + ALIGN_SIZE + BUF0_LEN + 4;
2525 
2526 		/* allocate skb */
2527 		skb = netdev_alloc_skb(nic->dev, size);
2528 		if (!skb) {
2529 			DBG_PRINT(INFO_DBG, "%s: Could not allocate skb\n",
2530 				  ring->dev->name);
2531 			if (first_rxdp) {
2532 				wmb();
2533 				first_rxdp->Control_1 |= RXD_OWN_XENA;
2534 			}
2535 			swstats->mem_alloc_fail_cnt++;
2536 
2537 			return -ENOMEM ;
2538 		}
2539 		swstats->mem_allocated += skb->truesize;
2540 
2541 		if (ring->rxd_mode == RXD_MODE_1) {
2542 			/* 1 buffer mode - normal operation mode */
2543 			rxdp1 = (struct RxD1 *)rxdp;
2544 			memset(rxdp, 0, sizeof(struct RxD1));
2545 			skb_reserve(skb, NET_IP_ALIGN);
2546 			rxdp1->Buffer0_ptr =
2547 				pci_map_single(ring->pdev, skb->data,
2548 					       size - NET_IP_ALIGN,
2549 					       PCI_DMA_FROMDEVICE);
2550 			if (pci_dma_mapping_error(nic->pdev,
2551 						  rxdp1->Buffer0_ptr))
2552 				goto pci_map_failed;
2553 
2554 			rxdp->Control_2 =
2555 				SET_BUFFER0_SIZE_1(size - NET_IP_ALIGN);
2556 			rxdp->Host_Control = (unsigned long)skb;
2557 		} else if (ring->rxd_mode == RXD_MODE_3B) {
2558 			/*
2559 			 * 2 buffer mode -
2560 			 * 2 buffer mode provides 128
2561 			 * byte aligned receive buffers.
2562 			 */
2563 
2564 			rxdp3 = (struct RxD3 *)rxdp;
2565 			/* save buffer pointers to avoid frequent dma mapping */
2566 			Buffer0_ptr = rxdp3->Buffer0_ptr;
2567 			Buffer1_ptr = rxdp3->Buffer1_ptr;
2568 			memset(rxdp, 0, sizeof(struct RxD3));
2569 			/* restore the buffer pointers for dma sync*/
2570 			rxdp3->Buffer0_ptr = Buffer0_ptr;
2571 			rxdp3->Buffer1_ptr = Buffer1_ptr;
2572 
2573 			ba = &ring->ba[block_no][off];
2574 			skb_reserve(skb, BUF0_LEN);
2575 			tmp = (u64)(unsigned long)skb->data;
2576 			tmp += ALIGN_SIZE;
2577 			tmp &= ~ALIGN_SIZE;
2578 			skb->data = (void *) (unsigned long)tmp;
2579 			skb_reset_tail_pointer(skb);
2580 
2581 			if (from_card_up) {
2582 				rxdp3->Buffer0_ptr =
2583 					pci_map_single(ring->pdev, ba->ba_0,
2584 						       BUF0_LEN,
2585 						       PCI_DMA_FROMDEVICE);
2586 				if (pci_dma_mapping_error(nic->pdev,
2587 							  rxdp3->Buffer0_ptr))
2588 					goto pci_map_failed;
2589 			} else
2590 				pci_dma_sync_single_for_device(ring->pdev,
2591 							       (dma_addr_t)rxdp3->Buffer0_ptr,
2592 							       BUF0_LEN,
2593 							       PCI_DMA_FROMDEVICE);
2594 
2595 			rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
2596 			if (ring->rxd_mode == RXD_MODE_3B) {
2597 				/* Two buffer mode */
2598 
2599 				/*
2600 				 * Buffer2 will have L3/L4 header plus
2601 				 * L4 payload
2602 				 */
2603 				rxdp3->Buffer2_ptr = pci_map_single(ring->pdev,
2604 								    skb->data,
2605 								    ring->mtu + 4,
2606 								    PCI_DMA_FROMDEVICE);
2607 
2608 				if (pci_dma_mapping_error(nic->pdev,
2609 							  rxdp3->Buffer2_ptr))
2610 					goto pci_map_failed;
2611 
2612 				if (from_card_up) {
2613 					rxdp3->Buffer1_ptr =
2614 						pci_map_single(ring->pdev,
2615 							       ba->ba_1,
2616 							       BUF1_LEN,
2617 							       PCI_DMA_FROMDEVICE);
2618 
2619 					if (pci_dma_mapping_error(nic->pdev,
2620 								  rxdp3->Buffer1_ptr)) {
2621 						pci_unmap_single(ring->pdev,
2622 								 (dma_addr_t)(unsigned long)
2623 								 skb->data,
2624 								 ring->mtu + 4,
2625 								 PCI_DMA_FROMDEVICE);
2626 						goto pci_map_failed;
2627 					}
2628 				}
2629 				rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
2630 				rxdp->Control_2 |= SET_BUFFER2_SIZE_3
2631 					(ring->mtu + 4);
2632 			}
2633 			rxdp->Control_2 |= s2BIT(0);
2634 			rxdp->Host_Control = (unsigned long) (skb);
2635 		}
2636 		if (alloc_tab & ((1 << rxsync_frequency) - 1))
2637 			rxdp->Control_1 |= RXD_OWN_XENA;
2638 		off++;
2639 		if (off == (ring->rxd_count + 1))
2640 			off = 0;
2641 		ring->rx_curr_put_info.offset = off;
2642 
2643 		rxdp->Control_2 |= SET_RXD_MARKER;
2644 		if (!(alloc_tab & ((1 << rxsync_frequency) - 1))) {
2645 			if (first_rxdp) {
2646 				wmb();
2647 				first_rxdp->Control_1 |= RXD_OWN_XENA;
2648 			}
2649 			first_rxdp = rxdp;
2650 		}
2651 		ring->rx_bufs_left += 1;
2652 		alloc_tab++;
2653 	}
2654 
2655 end:
2656 	/* Transfer ownership of first descriptor to adapter just before
2657 	 * exiting. Before that, use memory barrier so that ownership
2658 	 * and other fields are seen by adapter correctly.
2659 	 */
2660 	if (first_rxdp) {
2661 		wmb();
2662 		first_rxdp->Control_1 |= RXD_OWN_XENA;
2663 	}
2664 
2665 	return SUCCESS;
2666 
2667 pci_map_failed:
2668 	swstats->pci_map_fail_cnt++;
2669 	swstats->mem_freed += skb->truesize;
2670 	dev_kfree_skb_irq(skb);
2671 	return -ENOMEM;
2672 }
2673 
2674 static void free_rxd_blk(struct s2io_nic *sp, int ring_no, int blk)
2675 {
2676 	struct net_device *dev = sp->dev;
2677 	int j;
2678 	struct sk_buff *skb;
2679 	struct RxD_t *rxdp;
2680 	struct RxD1 *rxdp1;
2681 	struct RxD3 *rxdp3;
2682 	struct mac_info *mac_control = &sp->mac_control;
2683 	struct stat_block *stats = mac_control->stats_info;
2684 	struct swStat *swstats = &stats->sw_stat;
2685 
2686 	for (j = 0 ; j < rxd_count[sp->rxd_mode]; j++) {
2687 		rxdp = mac_control->rings[ring_no].
2688 			rx_blocks[blk].rxds[j].virt_addr;
2689 		skb = (struct sk_buff *)((unsigned long)rxdp->Host_Control);
2690 		if (!skb)
2691 			continue;
2692 		if (sp->rxd_mode == RXD_MODE_1) {
2693 			rxdp1 = (struct RxD1 *)rxdp;
2694 			pci_unmap_single(sp->pdev,
2695 					 (dma_addr_t)rxdp1->Buffer0_ptr,
2696 					 dev->mtu +
2697 					 HEADER_ETHERNET_II_802_3_SIZE +
2698 					 HEADER_802_2_SIZE + HEADER_SNAP_SIZE,
2699 					 PCI_DMA_FROMDEVICE);
2700 			memset(rxdp, 0, sizeof(struct RxD1));
2701 		} else if (sp->rxd_mode == RXD_MODE_3B) {
2702 			rxdp3 = (struct RxD3 *)rxdp;
2703 			pci_unmap_single(sp->pdev,
2704 					 (dma_addr_t)rxdp3->Buffer0_ptr,
2705 					 BUF0_LEN,
2706 					 PCI_DMA_FROMDEVICE);
2707 			pci_unmap_single(sp->pdev,
2708 					 (dma_addr_t)rxdp3->Buffer1_ptr,
2709 					 BUF1_LEN,
2710 					 PCI_DMA_FROMDEVICE);
2711 			pci_unmap_single(sp->pdev,
2712 					 (dma_addr_t)rxdp3->Buffer2_ptr,
2713 					 dev->mtu + 4,
2714 					 PCI_DMA_FROMDEVICE);
2715 			memset(rxdp, 0, sizeof(struct RxD3));
2716 		}
2717 		swstats->mem_freed += skb->truesize;
2718 		dev_kfree_skb(skb);
2719 		mac_control->rings[ring_no].rx_bufs_left -= 1;
2720 	}
2721 }
2722 
2723 /**
2724  *  free_rx_buffers - Frees all Rx buffers
2725  *  @sp: device private variable.
2726  *  Description:
2727  *  This function will free all Rx buffers allocated by host.
2728  *  Return Value:
2729  *  NONE.
2730  */
2731 
2732 static void free_rx_buffers(struct s2io_nic *sp)
2733 {
2734 	struct net_device *dev = sp->dev;
2735 	int i, blk = 0, buf_cnt = 0;
2736 	struct config_param *config = &sp->config;
2737 	struct mac_info *mac_control = &sp->mac_control;
2738 
2739 	for (i = 0; i < config->rx_ring_num; i++) {
2740 		struct ring_info *ring = &mac_control->rings[i];
2741 
2742 		for (blk = 0; blk < rx_ring_sz[i]; blk++)
2743 			free_rxd_blk(sp, i, blk);
2744 
2745 		ring->rx_curr_put_info.block_index = 0;
2746 		ring->rx_curr_get_info.block_index = 0;
2747 		ring->rx_curr_put_info.offset = 0;
2748 		ring->rx_curr_get_info.offset = 0;
2749 		ring->rx_bufs_left = 0;
2750 		DBG_PRINT(INIT_DBG, "%s: Freed 0x%x Rx Buffers on ring%d\n",
2751 			  dev->name, buf_cnt, i);
2752 	}
2753 }
2754 
2755 static int s2io_chk_rx_buffers(struct s2io_nic *nic, struct ring_info *ring)
2756 {
2757 	if (fill_rx_buffers(nic, ring, 0) == -ENOMEM) {
2758 		DBG_PRINT(INFO_DBG, "%s: Out of memory in Rx Intr!!\n",
2759 			  ring->dev->name);
2760 	}
2761 	return 0;
2762 }
2763 
2764 /**
2765  * s2io_poll - Rx interrupt handler for NAPI support
2766  * @napi : pointer to the napi structure.
2767  * @budget : The number of packets that were budgeted to be processed
2768  * during  one pass through the 'Poll" function.
2769  * Description:
2770  * Comes into picture only if NAPI support has been incorporated. It does
2771  * the same thing that rx_intr_handler does, but not in a interrupt context
2772  * also It will process only a given number of packets.
2773  * Return value:
2774  * 0 on success and 1 if there are No Rx packets to be processed.
2775  */
2776 
2777 static int s2io_poll_msix(struct napi_struct *napi, int budget)
2778 {
2779 	struct ring_info *ring = container_of(napi, struct ring_info, napi);
2780 	struct net_device *dev = ring->dev;
2781 	int pkts_processed = 0;
2782 	u8 __iomem *addr = NULL;
2783 	u8 val8 = 0;
2784 	struct s2io_nic *nic = netdev_priv(dev);
2785 	struct XENA_dev_config __iomem *bar0 = nic->bar0;
2786 	int budget_org = budget;
2787 
2788 	if (unlikely(!is_s2io_card_up(nic)))
2789 		return 0;
2790 
2791 	pkts_processed = rx_intr_handler(ring, budget);
2792 	s2io_chk_rx_buffers(nic, ring);
2793 
2794 	if (pkts_processed < budget_org) {
2795 		napi_complete(napi);
2796 		/*Re Enable MSI-Rx Vector*/
2797 		addr = (u8 __iomem *)&bar0->xmsi_mask_reg;
2798 		addr += 7 - ring->ring_no;
2799 		val8 = (ring->ring_no == 0) ? 0x3f : 0xbf;
2800 		writeb(val8, addr);
2801 		val8 = readb(addr);
2802 	}
2803 	return pkts_processed;
2804 }
2805 
2806 static int s2io_poll_inta(struct napi_struct *napi, int budget)
2807 {
2808 	struct s2io_nic *nic = container_of(napi, struct s2io_nic, napi);
2809 	int pkts_processed = 0;
2810 	int ring_pkts_processed, i;
2811 	struct XENA_dev_config __iomem *bar0 = nic->bar0;
2812 	int budget_org = budget;
2813 	struct config_param *config = &nic->config;
2814 	struct mac_info *mac_control = &nic->mac_control;
2815 
2816 	if (unlikely(!is_s2io_card_up(nic)))
2817 		return 0;
2818 
2819 	for (i = 0; i < config->rx_ring_num; i++) {
2820 		struct ring_info *ring = &mac_control->rings[i];
2821 		ring_pkts_processed = rx_intr_handler(ring, budget);
2822 		s2io_chk_rx_buffers(nic, ring);
2823 		pkts_processed += ring_pkts_processed;
2824 		budget -= ring_pkts_processed;
2825 		if (budget <= 0)
2826 			break;
2827 	}
2828 	if (pkts_processed < budget_org) {
2829 		napi_complete(napi);
2830 		/* Re enable the Rx interrupts for the ring */
2831 		writeq(0, &bar0->rx_traffic_mask);
2832 		readl(&bar0->rx_traffic_mask);
2833 	}
2834 	return pkts_processed;
2835 }
2836 
2837 #ifdef CONFIG_NET_POLL_CONTROLLER
2838 /**
2839  * s2io_netpoll - netpoll event handler entry point
2840  * @dev : pointer to the device structure.
2841  * Description:
2842  * 	This function will be called by upper layer to check for events on the
2843  * interface in situations where interrupts are disabled. It is used for
2844  * specific in-kernel networking tasks, such as remote consoles and kernel
2845  * debugging over the network (example netdump in RedHat).
2846  */
2847 static void s2io_netpoll(struct net_device *dev)
2848 {
2849 	struct s2io_nic *nic = netdev_priv(dev);
2850 	const int irq = nic->pdev->irq;
2851 	struct XENA_dev_config __iomem *bar0 = nic->bar0;
2852 	u64 val64 = 0xFFFFFFFFFFFFFFFFULL;
2853 	int i;
2854 	struct config_param *config = &nic->config;
2855 	struct mac_info *mac_control = &nic->mac_control;
2856 
2857 	if (pci_channel_offline(nic->pdev))
2858 		return;
2859 
2860 	disable_irq(irq);
2861 
2862 	writeq(val64, &bar0->rx_traffic_int);
2863 	writeq(val64, &bar0->tx_traffic_int);
2864 
2865 	/* we need to free up the transmitted skbufs or else netpoll will
2866 	 * run out of skbs and will fail and eventually netpoll application such
2867 	 * as netdump will fail.
2868 	 */
2869 	for (i = 0; i < config->tx_fifo_num; i++)
2870 		tx_intr_handler(&mac_control->fifos[i]);
2871 
2872 	/* check for received packet and indicate up to network */
2873 	for (i = 0; i < config->rx_ring_num; i++) {
2874 		struct ring_info *ring = &mac_control->rings[i];
2875 
2876 		rx_intr_handler(ring, 0);
2877 	}
2878 
2879 	for (i = 0; i < config->rx_ring_num; i++) {
2880 		struct ring_info *ring = &mac_control->rings[i];
2881 
2882 		if (fill_rx_buffers(nic, ring, 0) == -ENOMEM) {
2883 			DBG_PRINT(INFO_DBG,
2884 				  "%s: Out of memory in Rx Netpoll!!\n",
2885 				  dev->name);
2886 			break;
2887 		}
2888 	}
2889 	enable_irq(irq);
2890 }
2891 #endif
2892 
2893 /**
2894  *  rx_intr_handler - Rx interrupt handler
2895  *  @ring_info: per ring structure.
2896  *  @budget: budget for napi processing.
2897  *  Description:
2898  *  If the interrupt is because of a received frame or if the
2899  *  receive ring contains fresh as yet un-processed frames,this function is
2900  *  called. It picks out the RxD at which place the last Rx processing had
2901  *  stopped and sends the skb to the OSM's Rx handler and then increments
2902  *  the offset.
2903  *  Return Value:
2904  *  No. of napi packets processed.
2905  */
2906 static int rx_intr_handler(struct ring_info *ring_data, int budget)
2907 {
2908 	int get_block, put_block;
2909 	struct rx_curr_get_info get_info, put_info;
2910 	struct RxD_t *rxdp;
2911 	struct sk_buff *skb;
2912 	int pkt_cnt = 0, napi_pkts = 0;
2913 	int i;
2914 	struct RxD1 *rxdp1;
2915 	struct RxD3 *rxdp3;
2916 
2917 	if (budget <= 0)
2918 		return napi_pkts;
2919 
2920 	get_info = ring_data->rx_curr_get_info;
2921 	get_block = get_info.block_index;
2922 	memcpy(&put_info, &ring_data->rx_curr_put_info, sizeof(put_info));
2923 	put_block = put_info.block_index;
2924 	rxdp = ring_data->rx_blocks[get_block].rxds[get_info.offset].virt_addr;
2925 
2926 	while (RXD_IS_UP2DT(rxdp)) {
2927 		/*
2928 		 * If your are next to put index then it's
2929 		 * FIFO full condition
2930 		 */
2931 		if ((get_block == put_block) &&
2932 		    (get_info.offset + 1) == put_info.offset) {
2933 			DBG_PRINT(INTR_DBG, "%s: Ring Full\n",
2934 				  ring_data->dev->name);
2935 			break;
2936 		}
2937 		skb = (struct sk_buff *)((unsigned long)rxdp->Host_Control);
2938 		if (skb == NULL) {
2939 			DBG_PRINT(ERR_DBG, "%s: NULL skb in Rx Intr\n",
2940 				  ring_data->dev->name);
2941 			return 0;
2942 		}
2943 		if (ring_data->rxd_mode == RXD_MODE_1) {
2944 			rxdp1 = (struct RxD1 *)rxdp;
2945 			pci_unmap_single(ring_data->pdev, (dma_addr_t)
2946 					 rxdp1->Buffer0_ptr,
2947 					 ring_data->mtu +
2948 					 HEADER_ETHERNET_II_802_3_SIZE +
2949 					 HEADER_802_2_SIZE +
2950 					 HEADER_SNAP_SIZE,
2951 					 PCI_DMA_FROMDEVICE);
2952 		} else if (ring_data->rxd_mode == RXD_MODE_3B) {
2953 			rxdp3 = (struct RxD3 *)rxdp;
2954 			pci_dma_sync_single_for_cpu(ring_data->pdev,
2955 						    (dma_addr_t)rxdp3->Buffer0_ptr,
2956 						    BUF0_LEN,
2957 						    PCI_DMA_FROMDEVICE);
2958 			pci_unmap_single(ring_data->pdev,
2959 					 (dma_addr_t)rxdp3->Buffer2_ptr,
2960 					 ring_data->mtu + 4,
2961 					 PCI_DMA_FROMDEVICE);
2962 		}
2963 		prefetch(skb->data);
2964 		rx_osm_handler(ring_data, rxdp);
2965 		get_info.offset++;
2966 		ring_data->rx_curr_get_info.offset = get_info.offset;
2967 		rxdp = ring_data->rx_blocks[get_block].
2968 			rxds[get_info.offset].virt_addr;
2969 		if (get_info.offset == rxd_count[ring_data->rxd_mode]) {
2970 			get_info.offset = 0;
2971 			ring_data->rx_curr_get_info.offset = get_info.offset;
2972 			get_block++;
2973 			if (get_block == ring_data->block_count)
2974 				get_block = 0;
2975 			ring_data->rx_curr_get_info.block_index = get_block;
2976 			rxdp = ring_data->rx_blocks[get_block].block_virt_addr;
2977 		}
2978 
2979 		if (ring_data->nic->config.napi) {
2980 			budget--;
2981 			napi_pkts++;
2982 			if (!budget)
2983 				break;
2984 		}
2985 		pkt_cnt++;
2986 		if ((indicate_max_pkts) && (pkt_cnt > indicate_max_pkts))
2987 			break;
2988 	}
2989 	if (ring_data->lro) {
2990 		/* Clear all LRO sessions before exiting */
2991 		for (i = 0; i < MAX_LRO_SESSIONS; i++) {
2992 			struct lro *lro = &ring_data->lro0_n[i];
2993 			if (lro->in_use) {
2994 				update_L3L4_header(ring_data->nic, lro);
2995 				queue_rx_frame(lro->parent, lro->vlan_tag);
2996 				clear_lro_session(lro);
2997 			}
2998 		}
2999 	}
3000 	return napi_pkts;
3001 }
3002 
3003 /**
3004  *  tx_intr_handler - Transmit interrupt handler
3005  *  @nic : device private variable
3006  *  Description:
3007  *  If an interrupt was raised to indicate DMA complete of the
3008  *  Tx packet, this function is called. It identifies the last TxD
3009  *  whose buffer was freed and frees all skbs whose data have already
3010  *  DMA'ed into the NICs internal memory.
3011  *  Return Value:
3012  *  NONE
3013  */
3014 
3015 static void tx_intr_handler(struct fifo_info *fifo_data)
3016 {
3017 	struct s2io_nic *nic = fifo_data->nic;
3018 	struct tx_curr_get_info get_info, put_info;
3019 	struct sk_buff *skb = NULL;
3020 	struct TxD *txdlp;
3021 	int pkt_cnt = 0;
3022 	unsigned long flags = 0;
3023 	u8 err_mask;
3024 	struct stat_block *stats = nic->mac_control.stats_info;
3025 	struct swStat *swstats = &stats->sw_stat;
3026 
3027 	if (!spin_trylock_irqsave(&fifo_data->tx_lock, flags))
3028 		return;
3029 
3030 	get_info = fifo_data->tx_curr_get_info;
3031 	memcpy(&put_info, &fifo_data->tx_curr_put_info, sizeof(put_info));
3032 	txdlp = fifo_data->list_info[get_info.offset].list_virt_addr;
3033 	while ((!(txdlp->Control_1 & TXD_LIST_OWN_XENA)) &&
3034 	       (get_info.offset != put_info.offset) &&
3035 	       (txdlp->Host_Control)) {
3036 		/* Check for TxD errors */
3037 		if (txdlp->Control_1 & TXD_T_CODE) {
3038 			unsigned long long err;
3039 			err = txdlp->Control_1 & TXD_T_CODE;
3040 			if (err & 0x1) {
3041 				swstats->parity_err_cnt++;
3042 			}
3043 
3044 			/* update t_code statistics */
3045 			err_mask = err >> 48;
3046 			switch (err_mask) {
3047 			case 2:
3048 				swstats->tx_buf_abort_cnt++;
3049 				break;
3050 
3051 			case 3:
3052 				swstats->tx_desc_abort_cnt++;
3053 				break;
3054 
3055 			case 7:
3056 				swstats->tx_parity_err_cnt++;
3057 				break;
3058 
3059 			case 10:
3060 				swstats->tx_link_loss_cnt++;
3061 				break;
3062 
3063 			case 15:
3064 				swstats->tx_list_proc_err_cnt++;
3065 				break;
3066 			}
3067 		}
3068 
3069 		skb = s2io_txdl_getskb(fifo_data, txdlp, get_info.offset);
3070 		if (skb == NULL) {
3071 			spin_unlock_irqrestore(&fifo_data->tx_lock, flags);
3072 			DBG_PRINT(ERR_DBG, "%s: NULL skb in Tx Free Intr\n",
3073 				  __func__);
3074 			return;
3075 		}
3076 		pkt_cnt++;
3077 
3078 		/* Updating the statistics block */
3079 		swstats->mem_freed += skb->truesize;
3080 		dev_kfree_skb_irq(skb);
3081 
3082 		get_info.offset++;
3083 		if (get_info.offset == get_info.fifo_len + 1)
3084 			get_info.offset = 0;
3085 		txdlp = fifo_data->list_info[get_info.offset].list_virt_addr;
3086 		fifo_data->tx_curr_get_info.offset = get_info.offset;
3087 	}
3088 
3089 	s2io_wake_tx_queue(fifo_data, pkt_cnt, nic->config.multiq);
3090 
3091 	spin_unlock_irqrestore(&fifo_data->tx_lock, flags);
3092 }
3093 
3094 /**
3095  *  s2io_mdio_write - Function to write in to MDIO registers
3096  *  @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
3097  *  @addr     : address value
3098  *  @value    : data value
3099  *  @dev      : pointer to net_device structure
3100  *  Description:
3101  *  This function is used to write values to the MDIO registers
3102  *  NONE
3103  */
3104 static void s2io_mdio_write(u32 mmd_type, u64 addr, u16 value,
3105 			    struct net_device *dev)
3106 {
3107 	u64 val64;
3108 	struct s2io_nic *sp = netdev_priv(dev);
3109 	struct XENA_dev_config __iomem *bar0 = sp->bar0;
3110 
3111 	/* address transaction */
3112 	val64 = MDIO_MMD_INDX_ADDR(addr) |
3113 		MDIO_MMD_DEV_ADDR(mmd_type) |
3114 		MDIO_MMS_PRT_ADDR(0x0);
3115 	writeq(val64, &bar0->mdio_control);
3116 	val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3117 	writeq(val64, &bar0->mdio_control);
3118 	udelay(100);
3119 
3120 	/* Data transaction */
3121 	val64 = MDIO_MMD_INDX_ADDR(addr) |
3122 		MDIO_MMD_DEV_ADDR(mmd_type) |
3123 		MDIO_MMS_PRT_ADDR(0x0) |
3124 		MDIO_MDIO_DATA(value) |
3125 		MDIO_OP(MDIO_OP_WRITE_TRANS);
3126 	writeq(val64, &bar0->mdio_control);
3127 	val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3128 	writeq(val64, &bar0->mdio_control);
3129 	udelay(100);
3130 
3131 	val64 = MDIO_MMD_INDX_ADDR(addr) |
3132 		MDIO_MMD_DEV_ADDR(mmd_type) |
3133 		MDIO_MMS_PRT_ADDR(0x0) |
3134 		MDIO_OP(MDIO_OP_READ_TRANS);
3135 	writeq(val64, &bar0->mdio_control);
3136 	val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3137 	writeq(val64, &bar0->mdio_control);
3138 	udelay(100);
3139 }
3140 
3141 /**
3142  *  s2io_mdio_read - Function to write in to MDIO registers
3143  *  @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
3144  *  @addr     : address value
3145  *  @dev      : pointer to net_device structure
3146  *  Description:
3147  *  This function is used to read values to the MDIO registers
3148  *  NONE
3149  */
3150 static u64 s2io_mdio_read(u32 mmd_type, u64 addr, struct net_device *dev)
3151 {
3152 	u64 val64 = 0x0;
3153 	u64 rval64 = 0x0;
3154 	struct s2io_nic *sp = netdev_priv(dev);
3155 	struct XENA_dev_config __iomem *bar0 = sp->bar0;
3156 
3157 	/* address transaction */
3158 	val64 = val64 | (MDIO_MMD_INDX_ADDR(addr)
3159 			 | MDIO_MMD_DEV_ADDR(mmd_type)
3160 			 | MDIO_MMS_PRT_ADDR(0x0));
3161 	writeq(val64, &bar0->mdio_control);
3162 	val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3163 	writeq(val64, &bar0->mdio_control);
3164 	udelay(100);
3165 
3166 	/* Data transaction */
3167 	val64 = MDIO_MMD_INDX_ADDR(addr) |
3168 		MDIO_MMD_DEV_ADDR(mmd_type) |
3169 		MDIO_MMS_PRT_ADDR(0x0) |
3170 		MDIO_OP(MDIO_OP_READ_TRANS);
3171 	writeq(val64, &bar0->mdio_control);
3172 	val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3173 	writeq(val64, &bar0->mdio_control);
3174 	udelay(100);
3175 
3176 	/* Read the value from regs */
3177 	rval64 = readq(&bar0->mdio_control);
3178 	rval64 = rval64 & 0xFFFF0000;
3179 	rval64 = rval64 >> 16;
3180 	return rval64;
3181 }
3182 
3183 /**
3184  *  s2io_chk_xpak_counter - Function to check the status of the xpak counters
3185  *  @counter      : counter value to be updated
3186  *  @flag         : flag to indicate the status
3187  *  @type         : counter type
3188  *  Description:
3189  *  This function is to check the status of the xpak counters value
3190  *  NONE
3191  */
3192 
3193 static void s2io_chk_xpak_counter(u64 *counter, u64 * regs_stat, u32 index,
3194 				  u16 flag, u16 type)
3195 {
3196 	u64 mask = 0x3;
3197 	u64 val64;
3198 	int i;
3199 	for (i = 0; i < index; i++)
3200 		mask = mask << 0x2;
3201 
3202 	if (flag > 0) {
3203 		*counter = *counter + 1;
3204 		val64 = *regs_stat & mask;
3205 		val64 = val64 >> (index * 0x2);
3206 		val64 = val64 + 1;
3207 		if (val64 == 3) {
3208 			switch (type) {
3209 			case 1:
3210 				DBG_PRINT(ERR_DBG,
3211 					  "Take Xframe NIC out of service.\n");
3212 				DBG_PRINT(ERR_DBG,
3213 "Excessive temperatures may result in premature transceiver failure.\n");
3214 				break;
3215 			case 2:
3216 				DBG_PRINT(ERR_DBG,
3217 					  "Take Xframe NIC out of service.\n");
3218 				DBG_PRINT(ERR_DBG,
3219 "Excessive bias currents may indicate imminent laser diode failure.\n");
3220 				break;
3221 			case 3:
3222 				DBG_PRINT(ERR_DBG,
3223 					  "Take Xframe NIC out of service.\n");
3224 				DBG_PRINT(ERR_DBG,
3225 "Excessive laser output power may saturate far-end receiver.\n");
3226 				break;
3227 			default:
3228 				DBG_PRINT(ERR_DBG,
3229 					  "Incorrect XPAK Alarm type\n");
3230 			}
3231 			val64 = 0x0;
3232 		}
3233 		val64 = val64 << (index * 0x2);
3234 		*regs_stat = (*regs_stat & (~mask)) | (val64);
3235 
3236 	} else {
3237 		*regs_stat = *regs_stat & (~mask);
3238 	}
3239 }
3240 
3241 /**
3242  *  s2io_updt_xpak_counter - Function to update the xpak counters
3243  *  @dev         : pointer to net_device struct
3244  *  Description:
3245  *  This function is to upate the status of the xpak counters value
3246  *  NONE
3247  */
3248 static void s2io_updt_xpak_counter(struct net_device *dev)
3249 {
3250 	u16 flag  = 0x0;
3251 	u16 type  = 0x0;
3252 	u16 val16 = 0x0;
3253 	u64 val64 = 0x0;
3254 	u64 addr  = 0x0;
3255 
3256 	struct s2io_nic *sp = netdev_priv(dev);
3257 	struct stat_block *stats = sp->mac_control.stats_info;
3258 	struct xpakStat *xstats = &stats->xpak_stat;
3259 
3260 	/* Check the communication with the MDIO slave */
3261 	addr = MDIO_CTRL1;
3262 	val64 = 0x0;
3263 	val64 = s2io_mdio_read(MDIO_MMD_PMAPMD, addr, dev);
3264 	if ((val64 == 0xFFFF) || (val64 == 0x0000)) {
3265 		DBG_PRINT(ERR_DBG,
3266 			  "ERR: MDIO slave access failed - Returned %llx\n",
3267 			  (unsigned long long)val64);
3268 		return;
3269 	}
3270 
3271 	/* Check for the expected value of control reg 1 */
3272 	if (val64 != MDIO_CTRL1_SPEED10G) {
3273 		DBG_PRINT(ERR_DBG, "Incorrect value at PMA address 0x0000 - "
3274 			  "Returned: %llx- Expected: 0x%x\n",
3275 			  (unsigned long long)val64, MDIO_CTRL1_SPEED10G);
3276 		return;
3277 	}
3278 
3279 	/* Loading the DOM register to MDIO register */
3280 	addr = 0xA100;
3281 	s2io_mdio_write(MDIO_MMD_PMAPMD, addr, val16, dev);
3282 	val64 = s2io_mdio_read(MDIO_MMD_PMAPMD, addr, dev);
3283 
3284 	/* Reading the Alarm flags */
3285 	addr = 0xA070;
3286 	val64 = 0x0;
3287 	val64 = s2io_mdio_read(MDIO_MMD_PMAPMD, addr, dev);
3288 
3289 	flag = CHECKBIT(val64, 0x7);
3290 	type = 1;
3291 	s2io_chk_xpak_counter(&xstats->alarm_transceiver_temp_high,
3292 			      &xstats->xpak_regs_stat,
3293 			      0x0, flag, type);
3294 
3295 	if (CHECKBIT(val64, 0x6))
3296 		xstats->alarm_transceiver_temp_low++;
3297 
3298 	flag = CHECKBIT(val64, 0x3);
3299 	type = 2;
3300 	s2io_chk_xpak_counter(&xstats->alarm_laser_bias_current_high,
3301 			      &xstats->xpak_regs_stat,
3302 			      0x2, flag, type);
3303 
3304 	if (CHECKBIT(val64, 0x2))
3305 		xstats->alarm_laser_bias_current_low++;
3306 
3307 	flag = CHECKBIT(val64, 0x1);
3308 	type = 3;
3309 	s2io_chk_xpak_counter(&xstats->alarm_laser_output_power_high,
3310 			      &xstats->xpak_regs_stat,
3311 			      0x4, flag, type);
3312 
3313 	if (CHECKBIT(val64, 0x0))
3314 		xstats->alarm_laser_output_power_low++;
3315 
3316 	/* Reading the Warning flags */
3317 	addr = 0xA074;
3318 	val64 = 0x0;
3319 	val64 = s2io_mdio_read(MDIO_MMD_PMAPMD, addr, dev);
3320 
3321 	if (CHECKBIT(val64, 0x7))
3322 		xstats->warn_transceiver_temp_high++;
3323 
3324 	if (CHECKBIT(val64, 0x6))
3325 		xstats->warn_transceiver_temp_low++;
3326 
3327 	if (CHECKBIT(val64, 0x3))
3328 		xstats->warn_laser_bias_current_high++;
3329 
3330 	if (CHECKBIT(val64, 0x2))
3331 		xstats->warn_laser_bias_current_low++;
3332 
3333 	if (CHECKBIT(val64, 0x1))
3334 		xstats->warn_laser_output_power_high++;
3335 
3336 	if (CHECKBIT(val64, 0x0))
3337 		xstats->warn_laser_output_power_low++;
3338 }
3339 
3340 /**
3341  *  wait_for_cmd_complete - waits for a command to complete.
3342  *  @sp : private member of the device structure, which is a pointer to the
3343  *  s2io_nic structure.
3344  *  Description: Function that waits for a command to Write into RMAC
3345  *  ADDR DATA registers to be completed and returns either success or
3346  *  error depending on whether the command was complete or not.
3347  *  Return value:
3348  *   SUCCESS on success and FAILURE on failure.
3349  */
3350 
3351 static int wait_for_cmd_complete(void __iomem *addr, u64 busy_bit,
3352 				 int bit_state)
3353 {
3354 	int ret = FAILURE, cnt = 0, delay = 1;
3355 	u64 val64;
3356 
3357 	if ((bit_state != S2IO_BIT_RESET) && (bit_state != S2IO_BIT_SET))
3358 		return FAILURE;
3359 
3360 	do {
3361 		val64 = readq(addr);
3362 		if (bit_state == S2IO_BIT_RESET) {
3363 			if (!(val64 & busy_bit)) {
3364 				ret = SUCCESS;
3365 				break;
3366 			}
3367 		} else {
3368 			if (val64 & busy_bit) {
3369 				ret = SUCCESS;
3370 				break;
3371 			}
3372 		}
3373 
3374 		if (in_interrupt())
3375 			mdelay(delay);
3376 		else
3377 			msleep(delay);
3378 
3379 		if (++cnt >= 10)
3380 			delay = 50;
3381 	} while (cnt < 20);
3382 	return ret;
3383 }
3384 /**
3385  * check_pci_device_id - Checks if the device id is supported
3386  * @id : device id
3387  * Description: Function to check if the pci device id is supported by driver.
3388  * Return value: Actual device id if supported else PCI_ANY_ID
3389  */
3390 static u16 check_pci_device_id(u16 id)
3391 {
3392 	switch (id) {
3393 	case PCI_DEVICE_ID_HERC_WIN:
3394 	case PCI_DEVICE_ID_HERC_UNI:
3395 		return XFRAME_II_DEVICE;
3396 	case PCI_DEVICE_ID_S2IO_UNI:
3397 	case PCI_DEVICE_ID_S2IO_WIN:
3398 		return XFRAME_I_DEVICE;
3399 	default:
3400 		return PCI_ANY_ID;
3401 	}
3402 }
3403 
3404 /**
3405  *  s2io_reset - Resets the card.
3406  *  @sp : private member of the device structure.
3407  *  Description: Function to Reset the card. This function then also
3408  *  restores the previously saved PCI configuration space registers as
3409  *  the card reset also resets the configuration space.
3410  *  Return value:
3411  *  void.
3412  */
3413 
3414 static void s2io_reset(struct s2io_nic *sp)
3415 {
3416 	struct XENA_dev_config __iomem *bar0 = sp->bar0;
3417 	u64 val64;
3418 	u16 subid, pci_cmd;
3419 	int i;
3420 	u16 val16;
3421 	unsigned long long up_cnt, down_cnt, up_time, down_time, reset_cnt;
3422 	unsigned long long mem_alloc_cnt, mem_free_cnt, watchdog_cnt;
3423 	struct stat_block *stats;
3424 	struct swStat *swstats;
3425 
3426 	DBG_PRINT(INIT_DBG, "%s: Resetting XFrame card %s\n",
3427 		  __func__, pci_name(sp->pdev));
3428 
3429 	/* Back up  the PCI-X CMD reg, dont want to lose MMRBC, OST settings */
3430 	pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER, &(pci_cmd));
3431 
3432 	val64 = SW_RESET_ALL;
3433 	writeq(val64, &bar0->sw_reset);
3434 	if (strstr(sp->product_name, "CX4"))
3435 		msleep(750);
3436 	msleep(250);
3437 	for (i = 0; i < S2IO_MAX_PCI_CONFIG_SPACE_REINIT; i++) {
3438 
3439 		/* Restore the PCI state saved during initialization. */
3440 		pci_restore_state(sp->pdev);
3441 		pci_save_state(sp->pdev);
3442 		pci_read_config_word(sp->pdev, 0x2, &val16);
3443 		if (check_pci_device_id(val16) != (u16)PCI_ANY_ID)
3444 			break;
3445 		msleep(200);
3446 	}
3447 
3448 	if (check_pci_device_id(val16) == (u16)PCI_ANY_ID)
3449 		DBG_PRINT(ERR_DBG, "%s SW_Reset failed!\n", __func__);
3450 
3451 	pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER, pci_cmd);
3452 
3453 	s2io_init_pci(sp);
3454 
3455 	/* Set swapper to enable I/O register access */
3456 	s2io_set_swapper(sp);
3457 
3458 	/* restore mac_addr entries */
3459 	do_s2io_restore_unicast_mc(sp);
3460 
3461 	/* Restore the MSIX table entries from local variables */
3462 	restore_xmsi_data(sp);
3463 
3464 	/* Clear certain PCI/PCI-X fields after reset */
3465 	if (sp->device_type == XFRAME_II_DEVICE) {
3466 		/* Clear "detected parity error" bit */
3467 		pci_write_config_word(sp->pdev, PCI_STATUS, 0x8000);
3468 
3469 		/* Clearing PCIX Ecc status register */
3470 		pci_write_config_dword(sp->pdev, 0x68, 0x7C);
3471 
3472 		/* Clearing PCI_STATUS error reflected here */
3473 		writeq(s2BIT(62), &bar0->txpic_int_reg);
3474 	}
3475 
3476 	/* Reset device statistics maintained by OS */
3477 	memset(&sp->stats, 0, sizeof(struct net_device_stats));
3478 
3479 	stats = sp->mac_control.stats_info;
3480 	swstats = &stats->sw_stat;
3481 
3482 	/* save link up/down time/cnt, reset/memory/watchdog cnt */
3483 	up_cnt = swstats->link_up_cnt;
3484 	down_cnt = swstats->link_down_cnt;
3485 	up_time = swstats->link_up_time;
3486 	down_time = swstats->link_down_time;
3487 	reset_cnt = swstats->soft_reset_cnt;
3488 	mem_alloc_cnt = swstats->mem_allocated;
3489 	mem_free_cnt = swstats->mem_freed;
3490 	watchdog_cnt = swstats->watchdog_timer_cnt;
3491 
3492 	memset(stats, 0, sizeof(struct stat_block));
3493 
3494 	/* restore link up/down time/cnt, reset/memory/watchdog cnt */
3495 	swstats->link_up_cnt = up_cnt;
3496 	swstats->link_down_cnt = down_cnt;
3497 	swstats->link_up_time = up_time;
3498 	swstats->link_down_time = down_time;
3499 	swstats->soft_reset_cnt = reset_cnt;
3500 	swstats->mem_allocated = mem_alloc_cnt;
3501 	swstats->mem_freed = mem_free_cnt;
3502 	swstats->watchdog_timer_cnt = watchdog_cnt;
3503 
3504 	/* SXE-002: Configure link and activity LED to turn it off */
3505 	subid = sp->pdev->subsystem_device;
3506 	if (((subid & 0xFF) >= 0x07) &&
3507 	    (sp->device_type == XFRAME_I_DEVICE)) {
3508 		val64 = readq(&bar0->gpio_control);
3509 		val64 |= 0x0000800000000000ULL;
3510 		writeq(val64, &bar0->gpio_control);
3511 		val64 = 0x0411040400000000ULL;
3512 		writeq(val64, (void __iomem *)bar0 + 0x2700);
3513 	}
3514 
3515 	/*
3516 	 * Clear spurious ECC interrupts that would have occurred on
3517 	 * XFRAME II cards after reset.
3518 	 */
3519 	if (sp->device_type == XFRAME_II_DEVICE) {
3520 		val64 = readq(&bar0->pcc_err_reg);
3521 		writeq(val64, &bar0->pcc_err_reg);
3522 	}
3523 
3524 	sp->device_enabled_once = false;
3525 }
3526 
3527 /**
3528  *  s2io_set_swapper - to set the swapper controle on the card
3529  *  @sp : private member of the device structure,
3530  *  pointer to the s2io_nic structure.
3531  *  Description: Function to set the swapper control on the card
3532  *  correctly depending on the 'endianness' of the system.
3533  *  Return value:
3534  *  SUCCESS on success and FAILURE on failure.
3535  */
3536 
3537 static int s2io_set_swapper(struct s2io_nic *sp)
3538 {
3539 	struct net_device *dev = sp->dev;
3540 	struct XENA_dev_config __iomem *bar0 = sp->bar0;
3541 	u64 val64, valt, valr;
3542 
3543 	/*
3544 	 * Set proper endian settings and verify the same by reading
3545 	 * the PIF Feed-back register.
3546 	 */
3547 
3548 	val64 = readq(&bar0->pif_rd_swapper_fb);
3549 	if (val64 != 0x0123456789ABCDEFULL) {
3550 		int i = 0;
3551 		static const u64 value[] = {
3552 			0xC30000C3C30000C3ULL,	/* FE=1, SE=1 */
3553 			0x8100008181000081ULL,	/* FE=1, SE=0 */
3554 			0x4200004242000042ULL,	/* FE=0, SE=1 */
3555 			0			/* FE=0, SE=0 */
3556 		};
3557 
3558 		while (i < 4) {
3559 			writeq(value[i], &bar0->swapper_ctrl);
3560 			val64 = readq(&bar0->pif_rd_swapper_fb);
3561 			if (val64 == 0x0123456789ABCDEFULL)
3562 				break;
3563 			i++;
3564 		}
3565 		if (i == 4) {
3566 			DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, "
3567 				  "feedback read %llx\n",
3568 				  dev->name, (unsigned long long)val64);
3569 			return FAILURE;
3570 		}
3571 		valr = value[i];
3572 	} else {
3573 		valr = readq(&bar0->swapper_ctrl);
3574 	}
3575 
3576 	valt = 0x0123456789ABCDEFULL;
3577 	writeq(valt, &bar0->xmsi_address);
3578 	val64 = readq(&bar0->xmsi_address);
3579 
3580 	if (val64 != valt) {
3581 		int i = 0;
3582 		static const u64 value[] = {
3583 			0x00C3C30000C3C300ULL,	/* FE=1, SE=1 */
3584 			0x0081810000818100ULL,	/* FE=1, SE=0 */
3585 			0x0042420000424200ULL,	/* FE=0, SE=1 */
3586 			0			/* FE=0, SE=0 */
3587 		};
3588 
3589 		while (i < 4) {
3590 			writeq((value[i] | valr), &bar0->swapper_ctrl);
3591 			writeq(valt, &bar0->xmsi_address);
3592 			val64 = readq(&bar0->xmsi_address);
3593 			if (val64 == valt)
3594 				break;
3595 			i++;
3596 		}
3597 		if (i == 4) {
3598 			unsigned long long x = val64;
3599 			DBG_PRINT(ERR_DBG,
3600 				  "Write failed, Xmsi_addr reads:0x%llx\n", x);
3601 			return FAILURE;
3602 		}
3603 	}
3604 	val64 = readq(&bar0->swapper_ctrl);
3605 	val64 &= 0xFFFF000000000000ULL;
3606 
3607 #ifdef __BIG_ENDIAN
3608 	/*
3609 	 * The device by default set to a big endian format, so a
3610 	 * big endian driver need not set anything.
3611 	 */
3612 	val64 |= (SWAPPER_CTRL_TXP_FE |
3613 		  SWAPPER_CTRL_TXP_SE |
3614 		  SWAPPER_CTRL_TXD_R_FE |
3615 		  SWAPPER_CTRL_TXD_W_FE |
3616 		  SWAPPER_CTRL_TXF_R_FE |
3617 		  SWAPPER_CTRL_RXD_R_FE |
3618 		  SWAPPER_CTRL_RXD_W_FE |
3619 		  SWAPPER_CTRL_RXF_W_FE |
3620 		  SWAPPER_CTRL_XMSI_FE |
3621 		  SWAPPER_CTRL_STATS_FE |
3622 		  SWAPPER_CTRL_STATS_SE);
3623 	if (sp->config.intr_type == INTA)
3624 		val64 |= SWAPPER_CTRL_XMSI_SE;
3625 	writeq(val64, &bar0->swapper_ctrl);
3626 #else
3627 	/*
3628 	 * Initially we enable all bits to make it accessible by the
3629 	 * driver, then we selectively enable only those bits that
3630 	 * we want to set.
3631 	 */
3632 	val64 |= (SWAPPER_CTRL_TXP_FE |
3633 		  SWAPPER_CTRL_TXP_SE |
3634 		  SWAPPER_CTRL_TXD_R_FE |
3635 		  SWAPPER_CTRL_TXD_R_SE |
3636 		  SWAPPER_CTRL_TXD_W_FE |
3637 		  SWAPPER_CTRL_TXD_W_SE |
3638 		  SWAPPER_CTRL_TXF_R_FE |
3639 		  SWAPPER_CTRL_RXD_R_FE |
3640 		  SWAPPER_CTRL_RXD_R_SE |
3641 		  SWAPPER_CTRL_RXD_W_FE |
3642 		  SWAPPER_CTRL_RXD_W_SE |
3643 		  SWAPPER_CTRL_RXF_W_FE |
3644 		  SWAPPER_CTRL_XMSI_FE |
3645 		  SWAPPER_CTRL_STATS_FE |
3646 		  SWAPPER_CTRL_STATS_SE);
3647 	if (sp->config.intr_type == INTA)
3648 		val64 |= SWAPPER_CTRL_XMSI_SE;
3649 	writeq(val64, &bar0->swapper_ctrl);
3650 #endif
3651 	val64 = readq(&bar0->swapper_ctrl);
3652 
3653 	/*
3654 	 * Verifying if endian settings are accurate by reading a
3655 	 * feedback register.
3656 	 */
3657 	val64 = readq(&bar0->pif_rd_swapper_fb);
3658 	if (val64 != 0x0123456789ABCDEFULL) {
3659 		/* Endian settings are incorrect, calls for another dekko. */
3660 		DBG_PRINT(ERR_DBG,
3661 			  "%s: Endian settings are wrong, feedback read %llx\n",
3662 			  dev->name, (unsigned long long)val64);
3663 		return FAILURE;
3664 	}
3665 
3666 	return SUCCESS;
3667 }
3668 
3669 static int wait_for_msix_trans(struct s2io_nic *nic, int i)
3670 {
3671 	struct XENA_dev_config __iomem *bar0 = nic->bar0;
3672 	u64 val64;
3673 	int ret = 0, cnt = 0;
3674 
3675 	do {
3676 		val64 = readq(&bar0->xmsi_access);
3677 		if (!(val64 & s2BIT(15)))
3678 			break;
3679 		mdelay(1);
3680 		cnt++;
3681 	} while (cnt < 5);
3682 	if (cnt == 5) {
3683 		DBG_PRINT(ERR_DBG, "XMSI # %d Access failed\n", i);
3684 		ret = 1;
3685 	}
3686 
3687 	return ret;
3688 }
3689 
3690 static void restore_xmsi_data(struct s2io_nic *nic)
3691 {
3692 	struct XENA_dev_config __iomem *bar0 = nic->bar0;
3693 	u64 val64;
3694 	int i, msix_index;
3695 
3696 	if (nic->device_type == XFRAME_I_DEVICE)
3697 		return;
3698 
3699 	for (i = 0; i < MAX_REQUESTED_MSI_X; i++) {
3700 		msix_index = (i) ? ((i-1) * 8 + 1) : 0;
3701 		writeq(nic->msix_info[i].addr, &bar0->xmsi_address);
3702 		writeq(nic->msix_info[i].data, &bar0->xmsi_data);
3703 		val64 = (s2BIT(7) | s2BIT(15) | vBIT(msix_index, 26, 6));
3704 		writeq(val64, &bar0->xmsi_access);
3705 		if (wait_for_msix_trans(nic, msix_index)) {
3706 			DBG_PRINT(ERR_DBG, "%s: index: %d failed\n",
3707 				  __func__, msix_index);
3708 			continue;
3709 		}
3710 	}
3711 }
3712 
3713 static void store_xmsi_data(struct s2io_nic *nic)
3714 {
3715 	struct XENA_dev_config __iomem *bar0 = nic->bar0;
3716 	u64 val64, addr, data;
3717 	int i, msix_index;
3718 
3719 	if (nic->device_type == XFRAME_I_DEVICE)
3720 		return;
3721 
3722 	/* Store and display */
3723 	for (i = 0; i < MAX_REQUESTED_MSI_X; i++) {
3724 		msix_index = (i) ? ((i-1) * 8 + 1) : 0;
3725 		val64 = (s2BIT(15) | vBIT(msix_index, 26, 6));
3726 		writeq(val64, &bar0->xmsi_access);
3727 		if (wait_for_msix_trans(nic, msix_index)) {
3728 			DBG_PRINT(ERR_DBG, "%s: index: %d failed\n",
3729 				  __func__, msix_index);
3730 			continue;
3731 		}
3732 		addr = readq(&bar0->xmsi_address);
3733 		data = readq(&bar0->xmsi_data);
3734 		if (addr && data) {
3735 			nic->msix_info[i].addr = addr;
3736 			nic->msix_info[i].data = data;
3737 		}
3738 	}
3739 }
3740 
3741 static int s2io_enable_msi_x(struct s2io_nic *nic)
3742 {
3743 	struct XENA_dev_config __iomem *bar0 = nic->bar0;
3744 	u64 rx_mat;
3745 	u16 msi_control; /* Temp variable */
3746 	int ret, i, j, msix_indx = 1;
3747 	int size;
3748 	struct stat_block *stats = nic->mac_control.stats_info;
3749 	struct swStat *swstats = &stats->sw_stat;
3750 
3751 	size = nic->num_entries * sizeof(struct msix_entry);
3752 	nic->entries = kzalloc(size, GFP_KERNEL);
3753 	if (!nic->entries) {
3754 		DBG_PRINT(INFO_DBG, "%s: Memory allocation failed\n",
3755 			  __func__);
3756 		swstats->mem_alloc_fail_cnt++;
3757 		return -ENOMEM;
3758 	}
3759 	swstats->mem_allocated += size;
3760 
3761 	size = nic->num_entries * sizeof(struct s2io_msix_entry);
3762 	nic->s2io_entries = kzalloc(size, GFP_KERNEL);
3763 	if (!nic->s2io_entries) {
3764 		DBG_PRINT(INFO_DBG, "%s: Memory allocation failed\n",
3765 			  __func__);
3766 		swstats->mem_alloc_fail_cnt++;
3767 		kfree(nic->entries);
3768 		swstats->mem_freed
3769 			+= (nic->num_entries * sizeof(struct msix_entry));
3770 		return -ENOMEM;
3771 	}
3772 	swstats->mem_allocated += size;
3773 
3774 	nic->entries[0].entry = 0;
3775 	nic->s2io_entries[0].entry = 0;
3776 	nic->s2io_entries[0].in_use = MSIX_FLG;
3777 	nic->s2io_entries[0].type = MSIX_ALARM_TYPE;
3778 	nic->s2io_entries[0].arg = &nic->mac_control.fifos;
3779 
3780 	for (i = 1; i < nic->num_entries; i++) {
3781 		nic->entries[i].entry = ((i - 1) * 8) + 1;
3782 		nic->s2io_entries[i].entry = ((i - 1) * 8) + 1;
3783 		nic->s2io_entries[i].arg = NULL;
3784 		nic->s2io_entries[i].in_use = 0;
3785 	}
3786 
3787 	rx_mat = readq(&bar0->rx_mat);
3788 	for (j = 0; j < nic->config.rx_ring_num; j++) {
3789 		rx_mat |= RX_MAT_SET(j, msix_indx);
3790 		nic->s2io_entries[j+1].arg = &nic->mac_control.rings[j];
3791 		nic->s2io_entries[j+1].type = MSIX_RING_TYPE;
3792 		nic->s2io_entries[j+1].in_use = MSIX_FLG;
3793 		msix_indx += 8;
3794 	}
3795 	writeq(rx_mat, &bar0->rx_mat);
3796 	readq(&bar0->rx_mat);
3797 
3798 	ret = pci_enable_msix_range(nic->pdev, nic->entries,
3799 				    nic->num_entries, nic->num_entries);
3800 	/* We fail init if error or we get less vectors than min required */
3801 	if (ret < 0) {
3802 		DBG_PRINT(ERR_DBG, "Enabling MSI-X failed\n");
3803 		kfree(nic->entries);
3804 		swstats->mem_freed += nic->num_entries *
3805 			sizeof(struct msix_entry);
3806 		kfree(nic->s2io_entries);
3807 		swstats->mem_freed += nic->num_entries *
3808 			sizeof(struct s2io_msix_entry);
3809 		nic->entries = NULL;
3810 		nic->s2io_entries = NULL;
3811 		return -ENOMEM;
3812 	}
3813 
3814 	/*
3815 	 * To enable MSI-X, MSI also needs to be enabled, due to a bug
3816 	 * in the herc NIC. (Temp change, needs to be removed later)
3817 	 */
3818 	pci_read_config_word(nic->pdev, 0x42, &msi_control);
3819 	msi_control |= 0x1; /* Enable MSI */
3820 	pci_write_config_word(nic->pdev, 0x42, msi_control);
3821 
3822 	return 0;
3823 }
3824 
3825 /* Handle software interrupt used during MSI(X) test */
3826 static irqreturn_t s2io_test_intr(int irq, void *dev_id)
3827 {
3828 	struct s2io_nic *sp = dev_id;
3829 
3830 	sp->msi_detected = 1;
3831 	wake_up(&sp->msi_wait);
3832 
3833 	return IRQ_HANDLED;
3834 }
3835 
3836 /* Test interrupt path by forcing a a software IRQ */
3837 static int s2io_test_msi(struct s2io_nic *sp)
3838 {
3839 	struct pci_dev *pdev = sp->pdev;
3840 	struct XENA_dev_config __iomem *bar0 = sp->bar0;
3841 	int err;
3842 	u64 val64, saved64;
3843 
3844 	err = request_irq(sp->entries[1].vector, s2io_test_intr, 0,
3845 			  sp->name, sp);
3846 	if (err) {
3847 		DBG_PRINT(ERR_DBG, "%s: PCI %s: cannot assign irq %d\n",
3848 			  sp->dev->name, pci_name(pdev), pdev->irq);
3849 		return err;
3850 	}
3851 
3852 	init_waitqueue_head(&sp->msi_wait);
3853 	sp->msi_detected = 0;
3854 
3855 	saved64 = val64 = readq(&bar0->scheduled_int_ctrl);
3856 	val64 |= SCHED_INT_CTRL_ONE_SHOT;
3857 	val64 |= SCHED_INT_CTRL_TIMER_EN;
3858 	val64 |= SCHED_INT_CTRL_INT2MSI(1);
3859 	writeq(val64, &bar0->scheduled_int_ctrl);
3860 
3861 	wait_event_timeout(sp->msi_wait, sp->msi_detected, HZ/10);
3862 
3863 	if (!sp->msi_detected) {
3864 		/* MSI(X) test failed, go back to INTx mode */
3865 		DBG_PRINT(ERR_DBG, "%s: PCI %s: No interrupt was generated "
3866 			  "using MSI(X) during test\n",
3867 			  sp->dev->name, pci_name(pdev));
3868 
3869 		err = -EOPNOTSUPP;
3870 	}
3871 
3872 	free_irq(sp->entries[1].vector, sp);
3873 
3874 	writeq(saved64, &bar0->scheduled_int_ctrl);
3875 
3876 	return err;
3877 }
3878 
3879 static void remove_msix_isr(struct s2io_nic *sp)
3880 {
3881 	int i;
3882 	u16 msi_control;
3883 
3884 	for (i = 0; i < sp->num_entries; i++) {
3885 		if (sp->s2io_entries[i].in_use == MSIX_REGISTERED_SUCCESS) {
3886 			int vector = sp->entries[i].vector;
3887 			void *arg = sp->s2io_entries[i].arg;
3888 			free_irq(vector, arg);
3889 		}
3890 	}
3891 
3892 	kfree(sp->entries);
3893 	kfree(sp->s2io_entries);
3894 	sp->entries = NULL;
3895 	sp->s2io_entries = NULL;
3896 
3897 	pci_read_config_word(sp->pdev, 0x42, &msi_control);
3898 	msi_control &= 0xFFFE; /* Disable MSI */
3899 	pci_write_config_word(sp->pdev, 0x42, msi_control);
3900 
3901 	pci_disable_msix(sp->pdev);
3902 }
3903 
3904 static void remove_inta_isr(struct s2io_nic *sp)
3905 {
3906 	free_irq(sp->pdev->irq, sp->dev);
3907 }
3908 
3909 /* ********************************************************* *
3910  * Functions defined below concern the OS part of the driver *
3911  * ********************************************************* */
3912 
3913 /**
3914  *  s2io_open - open entry point of the driver
3915  *  @dev : pointer to the device structure.
3916  *  Description:
3917  *  This function is the open entry point of the driver. It mainly calls a
3918  *  function to allocate Rx buffers and inserts them into the buffer
3919  *  descriptors and then enables the Rx part of the NIC.
3920  *  Return value:
3921  *  0 on success and an appropriate (-)ve integer as defined in errno.h
3922  *   file on failure.
3923  */
3924 
3925 static int s2io_open(struct net_device *dev)
3926 {
3927 	struct s2io_nic *sp = netdev_priv(dev);
3928 	struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
3929 	int err = 0;
3930 
3931 	/*
3932 	 * Make sure you have link off by default every time
3933 	 * Nic is initialized
3934 	 */
3935 	netif_carrier_off(dev);
3936 	sp->last_link_state = 0;
3937 
3938 	/* Initialize H/W and enable interrupts */
3939 	err = s2io_card_up(sp);
3940 	if (err) {
3941 		DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
3942 			  dev->name);
3943 		goto hw_init_failed;
3944 	}
3945 
3946 	if (do_s2io_prog_unicast(dev, dev->dev_addr) == FAILURE) {
3947 		DBG_PRINT(ERR_DBG, "Set Mac Address Failed\n");
3948 		s2io_card_down(sp);
3949 		err = -ENODEV;
3950 		goto hw_init_failed;
3951 	}
3952 	s2io_start_all_tx_queue(sp);
3953 	return 0;
3954 
3955 hw_init_failed:
3956 	if (sp->config.intr_type == MSI_X) {
3957 		if (sp->entries) {
3958 			kfree(sp->entries);
3959 			swstats->mem_freed += sp->num_entries *
3960 				sizeof(struct msix_entry);
3961 		}
3962 		if (sp->s2io_entries) {
3963 			kfree(sp->s2io_entries);
3964 			swstats->mem_freed += sp->num_entries *
3965 				sizeof(struct s2io_msix_entry);
3966 		}
3967 	}
3968 	return err;
3969 }
3970 
3971 /**
3972  *  s2io_close -close entry point of the driver
3973  *  @dev : device pointer.
3974  *  Description:
3975  *  This is the stop entry point of the driver. It needs to undo exactly
3976  *  whatever was done by the open entry point,thus it's usually referred to
3977  *  as the close function.Among other things this function mainly stops the
3978  *  Rx side of the NIC and frees all the Rx buffers in the Rx rings.
3979  *  Return value:
3980  *  0 on success and an appropriate (-)ve integer as defined in errno.h
3981  *  file on failure.
3982  */
3983 
3984 static int s2io_close(struct net_device *dev)
3985 {
3986 	struct s2io_nic *sp = netdev_priv(dev);
3987 	struct config_param *config = &sp->config;
3988 	u64 tmp64;
3989 	int offset;
3990 
3991 	/* Return if the device is already closed               *
3992 	 *  Can happen when s2io_card_up failed in change_mtu    *
3993 	 */
3994 	if (!is_s2io_card_up(sp))
3995 		return 0;
3996 
3997 	s2io_stop_all_tx_queue(sp);
3998 	/* delete all populated mac entries */
3999 	for (offset = 1; offset < config->max_mc_addr; offset++) {
4000 		tmp64 = do_s2io_read_unicast_mc(sp, offset);
4001 		if (tmp64 != S2IO_DISABLE_MAC_ENTRY)
4002 			do_s2io_delete_unicast_mc(sp, tmp64);
4003 	}
4004 
4005 	s2io_card_down(sp);
4006 
4007 	return 0;
4008 }
4009 
4010 /**
4011  *  s2io_xmit - Tx entry point of te driver
4012  *  @skb : the socket buffer containing the Tx data.
4013  *  @dev : device pointer.
4014  *  Description :
4015  *  This function is the Tx entry point of the driver. S2IO NIC supports
4016  *  certain protocol assist features on Tx side, namely  CSO, S/G, LSO.
4017  *  NOTE: when device can't queue the pkt,just the trans_start variable will
4018  *  not be upadted.
4019  *  Return value:
4020  *  0 on success & 1 on failure.
4021  */
4022 
4023 static netdev_tx_t s2io_xmit(struct sk_buff *skb, struct net_device *dev)
4024 {
4025 	struct s2io_nic *sp = netdev_priv(dev);
4026 	u16 frg_cnt, frg_len, i, queue, queue_len, put_off, get_off;
4027 	register u64 val64;
4028 	struct TxD *txdp;
4029 	struct TxFIFO_element __iomem *tx_fifo;
4030 	unsigned long flags = 0;
4031 	u16 vlan_tag = 0;
4032 	struct fifo_info *fifo = NULL;
4033 	int do_spin_lock = 1;
4034 	int offload_type;
4035 	int enable_per_list_interrupt = 0;
4036 	struct config_param *config = &sp->config;
4037 	struct mac_info *mac_control = &sp->mac_control;
4038 	struct stat_block *stats = mac_control->stats_info;
4039 	struct swStat *swstats = &stats->sw_stat;
4040 
4041 	DBG_PRINT(TX_DBG, "%s: In Neterion Tx routine\n", dev->name);
4042 
4043 	if (unlikely(skb->len <= 0)) {
4044 		DBG_PRINT(TX_DBG, "%s: Buffer has no data..\n", dev->name);
4045 		dev_kfree_skb_any(skb);
4046 		return NETDEV_TX_OK;
4047 	}
4048 
4049 	if (!is_s2io_card_up(sp)) {
4050 		DBG_PRINT(TX_DBG, "%s: Card going down for reset\n",
4051 			  dev->name);
4052 		dev_kfree_skb_any(skb);
4053 		return NETDEV_TX_OK;
4054 	}
4055 
4056 	queue = 0;
4057 	if (vlan_tx_tag_present(skb))
4058 		vlan_tag = vlan_tx_tag_get(skb);
4059 	if (sp->config.tx_steering_type == TX_DEFAULT_STEERING) {
4060 		if (skb->protocol == htons(ETH_P_IP)) {
4061 			struct iphdr *ip;
4062 			struct tcphdr *th;
4063 			ip = ip_hdr(skb);
4064 
4065 			if (!ip_is_fragment(ip)) {
4066 				th = (struct tcphdr *)(((unsigned char *)ip) +
4067 						       ip->ihl*4);
4068 
4069 				if (ip->protocol == IPPROTO_TCP) {
4070 					queue_len = sp->total_tcp_fifos;
4071 					queue = (ntohs(th->source) +
4072 						 ntohs(th->dest)) &
4073 						sp->fifo_selector[queue_len - 1];
4074 					if (queue >= queue_len)
4075 						queue = queue_len - 1;
4076 				} else if (ip->protocol == IPPROTO_UDP) {
4077 					queue_len = sp->total_udp_fifos;
4078 					queue = (ntohs(th->source) +
4079 						 ntohs(th->dest)) &
4080 						sp->fifo_selector[queue_len - 1];
4081 					if (queue >= queue_len)
4082 						queue = queue_len - 1;
4083 					queue += sp->udp_fifo_idx;
4084 					if (skb->len > 1024)
4085 						enable_per_list_interrupt = 1;
4086 					do_spin_lock = 0;
4087 				}
4088 			}
4089 		}
4090 	} else if (sp->config.tx_steering_type == TX_PRIORITY_STEERING)
4091 		/* get fifo number based on skb->priority value */
4092 		queue = config->fifo_mapping
4093 			[skb->priority & (MAX_TX_FIFOS - 1)];
4094 	fifo = &mac_control->fifos[queue];
4095 
4096 	if (do_spin_lock)
4097 		spin_lock_irqsave(&fifo->tx_lock, flags);
4098 	else {
4099 		if (unlikely(!spin_trylock_irqsave(&fifo->tx_lock, flags)))
4100 			return NETDEV_TX_LOCKED;
4101 	}
4102 
4103 	if (sp->config.multiq) {
4104 		if (__netif_subqueue_stopped(dev, fifo->fifo_no)) {
4105 			spin_unlock_irqrestore(&fifo->tx_lock, flags);
4106 			return NETDEV_TX_BUSY;
4107 		}
4108 	} else if (unlikely(fifo->queue_state == FIFO_QUEUE_STOP)) {
4109 		if (netif_queue_stopped(dev)) {
4110 			spin_unlock_irqrestore(&fifo->tx_lock, flags);
4111 			return NETDEV_TX_BUSY;
4112 		}
4113 	}
4114 
4115 	put_off = (u16)fifo->tx_curr_put_info.offset;
4116 	get_off = (u16)fifo->tx_curr_get_info.offset;
4117 	txdp = fifo->list_info[put_off].list_virt_addr;
4118 
4119 	queue_len = fifo->tx_curr_put_info.fifo_len + 1;
4120 	/* Avoid "put" pointer going beyond "get" pointer */
4121 	if (txdp->Host_Control ||
4122 	    ((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
4123 		DBG_PRINT(TX_DBG, "Error in xmit, No free TXDs.\n");
4124 		s2io_stop_tx_queue(sp, fifo->fifo_no);
4125 		dev_kfree_skb_any(skb);
4126 		spin_unlock_irqrestore(&fifo->tx_lock, flags);
4127 		return NETDEV_TX_OK;
4128 	}
4129 
4130 	offload_type = s2io_offload_type(skb);
4131 	if (offload_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)) {
4132 		txdp->Control_1 |= TXD_TCP_LSO_EN;
4133 		txdp->Control_1 |= TXD_TCP_LSO_MSS(s2io_tcp_mss(skb));
4134 	}
4135 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
4136 		txdp->Control_2 |= (TXD_TX_CKO_IPV4_EN |
4137 				    TXD_TX_CKO_TCP_EN |
4138 				    TXD_TX_CKO_UDP_EN);
4139 	}
4140 	txdp->Control_1 |= TXD_GATHER_CODE_FIRST;
4141 	txdp->Control_1 |= TXD_LIST_OWN_XENA;
4142 	txdp->Control_2 |= TXD_INT_NUMBER(fifo->fifo_no);
4143 	if (enable_per_list_interrupt)
4144 		if (put_off & (queue_len >> 5))
4145 			txdp->Control_2 |= TXD_INT_TYPE_PER_LIST;
4146 	if (vlan_tag) {
4147 		txdp->Control_2 |= TXD_VLAN_ENABLE;
4148 		txdp->Control_2 |= TXD_VLAN_TAG(vlan_tag);
4149 	}
4150 
4151 	frg_len = skb_headlen(skb);
4152 	if (offload_type == SKB_GSO_UDP) {
4153 		int ufo_size;
4154 
4155 		ufo_size = s2io_udp_mss(skb);
4156 		ufo_size &= ~7;
4157 		txdp->Control_1 |= TXD_UFO_EN;
4158 		txdp->Control_1 |= TXD_UFO_MSS(ufo_size);
4159 		txdp->Control_1 |= TXD_BUFFER0_SIZE(8);
4160 #ifdef __BIG_ENDIAN
4161 		/* both variants do cpu_to_be64(be32_to_cpu(...)) */
4162 		fifo->ufo_in_band_v[put_off] =
4163 			(__force u64)skb_shinfo(skb)->ip6_frag_id;
4164 #else
4165 		fifo->ufo_in_band_v[put_off] =
4166 			(__force u64)skb_shinfo(skb)->ip6_frag_id << 32;
4167 #endif
4168 		txdp->Host_Control = (unsigned long)fifo->ufo_in_band_v;
4169 		txdp->Buffer_Pointer = pci_map_single(sp->pdev,
4170 						      fifo->ufo_in_band_v,
4171 						      sizeof(u64),
4172 						      PCI_DMA_TODEVICE);
4173 		if (pci_dma_mapping_error(sp->pdev, txdp->Buffer_Pointer))
4174 			goto pci_map_failed;
4175 		txdp++;
4176 	}
4177 
4178 	txdp->Buffer_Pointer = pci_map_single(sp->pdev, skb->data,
4179 					      frg_len, PCI_DMA_TODEVICE);
4180 	if (pci_dma_mapping_error(sp->pdev, txdp->Buffer_Pointer))
4181 		goto pci_map_failed;
4182 
4183 	txdp->Host_Control = (unsigned long)skb;
4184 	txdp->Control_1 |= TXD_BUFFER0_SIZE(frg_len);
4185 	if (offload_type == SKB_GSO_UDP)
4186 		txdp->Control_1 |= TXD_UFO_EN;
4187 
4188 	frg_cnt = skb_shinfo(skb)->nr_frags;
4189 	/* For fragmented SKB. */
4190 	for (i = 0; i < frg_cnt; i++) {
4191 		const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4192 		/* A '0' length fragment will be ignored */
4193 		if (!skb_frag_size(frag))
4194 			continue;
4195 		txdp++;
4196 		txdp->Buffer_Pointer = (u64)skb_frag_dma_map(&sp->pdev->dev,
4197 							     frag, 0,
4198 							     skb_frag_size(frag),
4199 							     DMA_TO_DEVICE);
4200 		txdp->Control_1 = TXD_BUFFER0_SIZE(skb_frag_size(frag));
4201 		if (offload_type == SKB_GSO_UDP)
4202 			txdp->Control_1 |= TXD_UFO_EN;
4203 	}
4204 	txdp->Control_1 |= TXD_GATHER_CODE_LAST;
4205 
4206 	if (offload_type == SKB_GSO_UDP)
4207 		frg_cnt++; /* as Txd0 was used for inband header */
4208 
4209 	tx_fifo = mac_control->tx_FIFO_start[queue];
4210 	val64 = fifo->list_info[put_off].list_phy_addr;
4211 	writeq(val64, &tx_fifo->TxDL_Pointer);
4212 
4213 	val64 = (TX_FIFO_LAST_TXD_NUM(frg_cnt) | TX_FIFO_FIRST_LIST |
4214 		 TX_FIFO_LAST_LIST);
4215 	if (offload_type)
4216 		val64 |= TX_FIFO_SPECIAL_FUNC;
4217 
4218 	writeq(val64, &tx_fifo->List_Control);
4219 
4220 	mmiowb();
4221 
4222 	put_off++;
4223 	if (put_off == fifo->tx_curr_put_info.fifo_len + 1)
4224 		put_off = 0;
4225 	fifo->tx_curr_put_info.offset = put_off;
4226 
4227 	/* Avoid "put" pointer going beyond "get" pointer */
4228 	if (((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
4229 		swstats->fifo_full_cnt++;
4230 		DBG_PRINT(TX_DBG,
4231 			  "No free TxDs for xmit, Put: 0x%x Get:0x%x\n",
4232 			  put_off, get_off);
4233 		s2io_stop_tx_queue(sp, fifo->fifo_no);
4234 	}
4235 	swstats->mem_allocated += skb->truesize;
4236 	spin_unlock_irqrestore(&fifo->tx_lock, flags);
4237 
4238 	if (sp->config.intr_type == MSI_X)
4239 		tx_intr_handler(fifo);
4240 
4241 	return NETDEV_TX_OK;
4242 
4243 pci_map_failed:
4244 	swstats->pci_map_fail_cnt++;
4245 	s2io_stop_tx_queue(sp, fifo->fifo_no);
4246 	swstats->mem_freed += skb->truesize;
4247 	dev_kfree_skb_any(skb);
4248 	spin_unlock_irqrestore(&fifo->tx_lock, flags);
4249 	return NETDEV_TX_OK;
4250 }
4251 
4252 static void
4253 s2io_alarm_handle(unsigned long data)
4254 {
4255 	struct s2io_nic *sp = (struct s2io_nic *)data;
4256 	struct net_device *dev = sp->dev;
4257 
4258 	s2io_handle_errors(dev);
4259 	mod_timer(&sp->alarm_timer, jiffies + HZ / 2);
4260 }
4261 
4262 static irqreturn_t s2io_msix_ring_handle(int irq, void *dev_id)
4263 {
4264 	struct ring_info *ring = (struct ring_info *)dev_id;
4265 	struct s2io_nic *sp = ring->nic;
4266 	struct XENA_dev_config __iomem *bar0 = sp->bar0;
4267 
4268 	if (unlikely(!is_s2io_card_up(sp)))
4269 		return IRQ_HANDLED;
4270 
4271 	if (sp->config.napi) {
4272 		u8 __iomem *addr = NULL;
4273 		u8 val8 = 0;
4274 
4275 		addr = (u8 __iomem *)&bar0->xmsi_mask_reg;
4276 		addr += (7 - ring->ring_no);
4277 		val8 = (ring->ring_no == 0) ? 0x7f : 0xff;
4278 		writeb(val8, addr);
4279 		val8 = readb(addr);
4280 		napi_schedule(&ring->napi);
4281 	} else {
4282 		rx_intr_handler(ring, 0);
4283 		s2io_chk_rx_buffers(sp, ring);
4284 	}
4285 
4286 	return IRQ_HANDLED;
4287 }
4288 
4289 static irqreturn_t s2io_msix_fifo_handle(int irq, void *dev_id)
4290 {
4291 	int i;
4292 	struct fifo_info *fifos = (struct fifo_info *)dev_id;
4293 	struct s2io_nic *sp = fifos->nic;
4294 	struct XENA_dev_config __iomem *bar0 = sp->bar0;
4295 	struct config_param *config  = &sp->config;
4296 	u64 reason;
4297 
4298 	if (unlikely(!is_s2io_card_up(sp)))
4299 		return IRQ_NONE;
4300 
4301 	reason = readq(&bar0->general_int_status);
4302 	if (unlikely(reason == S2IO_MINUS_ONE))
4303 		/* Nothing much can be done. Get out */
4304 		return IRQ_HANDLED;
4305 
4306 	if (reason & (GEN_INTR_TXPIC | GEN_INTR_TXTRAFFIC)) {
4307 		writeq(S2IO_MINUS_ONE, &bar0->general_int_mask);
4308 
4309 		if (reason & GEN_INTR_TXPIC)
4310 			s2io_txpic_intr_handle(sp);
4311 
4312 		if (reason & GEN_INTR_TXTRAFFIC)
4313 			writeq(S2IO_MINUS_ONE, &bar0->tx_traffic_int);
4314 
4315 		for (i = 0; i < config->tx_fifo_num; i++)
4316 			tx_intr_handler(&fifos[i]);
4317 
4318 		writeq(sp->general_int_mask, &bar0->general_int_mask);
4319 		readl(&bar0->general_int_status);
4320 		return IRQ_HANDLED;
4321 	}
4322 	/* The interrupt was not raised by us */
4323 	return IRQ_NONE;
4324 }
4325 
4326 static void s2io_txpic_intr_handle(struct s2io_nic *sp)
4327 {
4328 	struct XENA_dev_config __iomem *bar0 = sp->bar0;
4329 	u64 val64;
4330 
4331 	val64 = readq(&bar0->pic_int_status);
4332 	if (val64 & PIC_INT_GPIO) {
4333 		val64 = readq(&bar0->gpio_int_reg);
4334 		if ((val64 & GPIO_INT_REG_LINK_DOWN) &&
4335 		    (val64 & GPIO_INT_REG_LINK_UP)) {
4336 			/*
4337 			 * This is unstable state so clear both up/down
4338 			 * interrupt and adapter to re-evaluate the link state.
4339 			 */
4340 			val64 |= GPIO_INT_REG_LINK_DOWN;
4341 			val64 |= GPIO_INT_REG_LINK_UP;
4342 			writeq(val64, &bar0->gpio_int_reg);
4343 			val64 = readq(&bar0->gpio_int_mask);
4344 			val64 &= ~(GPIO_INT_MASK_LINK_UP |
4345 				   GPIO_INT_MASK_LINK_DOWN);
4346 			writeq(val64, &bar0->gpio_int_mask);
4347 		} else if (val64 & GPIO_INT_REG_LINK_UP) {
4348 			val64 = readq(&bar0->adapter_status);
4349 			/* Enable Adapter */
4350 			val64 = readq(&bar0->adapter_control);
4351 			val64 |= ADAPTER_CNTL_EN;
4352 			writeq(val64, &bar0->adapter_control);
4353 			val64 |= ADAPTER_LED_ON;
4354 			writeq(val64, &bar0->adapter_control);
4355 			if (!sp->device_enabled_once)
4356 				sp->device_enabled_once = 1;
4357 
4358 			s2io_link(sp, LINK_UP);
4359 			/*
4360 			 * unmask link down interrupt and mask link-up
4361 			 * intr
4362 			 */
4363 			val64 = readq(&bar0->gpio_int_mask);
4364 			val64 &= ~GPIO_INT_MASK_LINK_DOWN;
4365 			val64 |= GPIO_INT_MASK_LINK_UP;
4366 			writeq(val64, &bar0->gpio_int_mask);
4367 
4368 		} else if (val64 & GPIO_INT_REG_LINK_DOWN) {
4369 			val64 = readq(&bar0->adapter_status);
4370 			s2io_link(sp, LINK_DOWN);
4371 			/* Link is down so unmaks link up interrupt */
4372 			val64 = readq(&bar0->gpio_int_mask);
4373 			val64 &= ~GPIO_INT_MASK_LINK_UP;
4374 			val64 |= GPIO_INT_MASK_LINK_DOWN;
4375 			writeq(val64, &bar0->gpio_int_mask);
4376 
4377 			/* turn off LED */
4378 			val64 = readq(&bar0->adapter_control);
4379 			val64 = val64 & (~ADAPTER_LED_ON);
4380 			writeq(val64, &bar0->adapter_control);
4381 		}
4382 	}
4383 	val64 = readq(&bar0->gpio_int_mask);
4384 }
4385 
4386 /**
4387  *  do_s2io_chk_alarm_bit - Check for alarm and incrment the counter
4388  *  @value: alarm bits
4389  *  @addr: address value
4390  *  @cnt: counter variable
4391  *  Description: Check for alarm and increment the counter
4392  *  Return Value:
4393  *  1 - if alarm bit set
4394  *  0 - if alarm bit is not set
4395  */
4396 static int do_s2io_chk_alarm_bit(u64 value, void __iomem *addr,
4397 				 unsigned long long *cnt)
4398 {
4399 	u64 val64;
4400 	val64 = readq(addr);
4401 	if (val64 & value) {
4402 		writeq(val64, addr);
4403 		(*cnt)++;
4404 		return 1;
4405 	}
4406 	return 0;
4407 
4408 }
4409 
4410 /**
4411  *  s2io_handle_errors - Xframe error indication handler
4412  *  @nic: device private variable
4413  *  Description: Handle alarms such as loss of link, single or
4414  *  double ECC errors, critical and serious errors.
4415  *  Return Value:
4416  *  NONE
4417  */
4418 static void s2io_handle_errors(void *dev_id)
4419 {
4420 	struct net_device *dev = (struct net_device *)dev_id;
4421 	struct s2io_nic *sp = netdev_priv(dev);
4422 	struct XENA_dev_config __iomem *bar0 = sp->bar0;
4423 	u64 temp64 = 0, val64 = 0;
4424 	int i = 0;
4425 
4426 	struct swStat *sw_stat = &sp->mac_control.stats_info->sw_stat;
4427 	struct xpakStat *stats = &sp->mac_control.stats_info->xpak_stat;
4428 
4429 	if (!is_s2io_card_up(sp))
4430 		return;
4431 
4432 	if (pci_channel_offline(sp->pdev))
4433 		return;
4434 
4435 	memset(&sw_stat->ring_full_cnt, 0,
4436 	       sizeof(sw_stat->ring_full_cnt));
4437 
4438 	/* Handling the XPAK counters update */
4439 	if (stats->xpak_timer_count < 72000) {
4440 		/* waiting for an hour */
4441 		stats->xpak_timer_count++;
4442 	} else {
4443 		s2io_updt_xpak_counter(dev);
4444 		/* reset the count to zero */
4445 		stats->xpak_timer_count = 0;
4446 	}
4447 
4448 	/* Handling link status change error Intr */
4449 	if (s2io_link_fault_indication(sp) == MAC_RMAC_ERR_TIMER) {
4450 		val64 = readq(&bar0->mac_rmac_err_reg);
4451 		writeq(val64, &bar0->mac_rmac_err_reg);
4452 		if (val64 & RMAC_LINK_STATE_CHANGE_INT)
4453 			schedule_work(&sp->set_link_task);
4454 	}
4455 
4456 	/* In case of a serious error, the device will be Reset. */
4457 	if (do_s2io_chk_alarm_bit(SERR_SOURCE_ANY, &bar0->serr_source,
4458 				  &sw_stat->serious_err_cnt))
4459 		goto reset;
4460 
4461 	/* Check for data parity error */
4462 	if (do_s2io_chk_alarm_bit(GPIO_INT_REG_DP_ERR_INT, &bar0->gpio_int_reg,
4463 				  &sw_stat->parity_err_cnt))
4464 		goto reset;
4465 
4466 	/* Check for ring full counter */
4467 	if (sp->device_type == XFRAME_II_DEVICE) {
4468 		val64 = readq(&bar0->ring_bump_counter1);
4469 		for (i = 0; i < 4; i++) {
4470 			temp64 = (val64 & vBIT(0xFFFF, (i*16), 16));
4471 			temp64 >>= 64 - ((i+1)*16);
4472 			sw_stat->ring_full_cnt[i] += temp64;
4473 		}
4474 
4475 		val64 = readq(&bar0->ring_bump_counter2);
4476 		for (i = 0; i < 4; i++) {
4477 			temp64 = (val64 & vBIT(0xFFFF, (i*16), 16));
4478 			temp64 >>= 64 - ((i+1)*16);
4479 			sw_stat->ring_full_cnt[i+4] += temp64;
4480 		}
4481 	}
4482 
4483 	val64 = readq(&bar0->txdma_int_status);
4484 	/*check for pfc_err*/
4485 	if (val64 & TXDMA_PFC_INT) {
4486 		if (do_s2io_chk_alarm_bit(PFC_ECC_DB_ERR | PFC_SM_ERR_ALARM |
4487 					  PFC_MISC_0_ERR | PFC_MISC_1_ERR |
4488 					  PFC_PCIX_ERR,
4489 					  &bar0->pfc_err_reg,
4490 					  &sw_stat->pfc_err_cnt))
4491 			goto reset;
4492 		do_s2io_chk_alarm_bit(PFC_ECC_SG_ERR,
4493 				      &bar0->pfc_err_reg,
4494 				      &sw_stat->pfc_err_cnt);
4495 	}
4496 
4497 	/*check for tda_err*/
4498 	if (val64 & TXDMA_TDA_INT) {
4499 		if (do_s2io_chk_alarm_bit(TDA_Fn_ECC_DB_ERR |
4500 					  TDA_SM0_ERR_ALARM |
4501 					  TDA_SM1_ERR_ALARM,
4502 					  &bar0->tda_err_reg,
4503 					  &sw_stat->tda_err_cnt))
4504 			goto reset;
4505 		do_s2io_chk_alarm_bit(TDA_Fn_ECC_SG_ERR | TDA_PCIX_ERR,
4506 				      &bar0->tda_err_reg,
4507 				      &sw_stat->tda_err_cnt);
4508 	}
4509 	/*check for pcc_err*/
4510 	if (val64 & TXDMA_PCC_INT) {
4511 		if (do_s2io_chk_alarm_bit(PCC_SM_ERR_ALARM | PCC_WR_ERR_ALARM |
4512 					  PCC_N_SERR | PCC_6_COF_OV_ERR |
4513 					  PCC_7_COF_OV_ERR | PCC_6_LSO_OV_ERR |
4514 					  PCC_7_LSO_OV_ERR | PCC_FB_ECC_DB_ERR |
4515 					  PCC_TXB_ECC_DB_ERR,
4516 					  &bar0->pcc_err_reg,
4517 					  &sw_stat->pcc_err_cnt))
4518 			goto reset;
4519 		do_s2io_chk_alarm_bit(PCC_FB_ECC_SG_ERR | PCC_TXB_ECC_SG_ERR,
4520 				      &bar0->pcc_err_reg,
4521 				      &sw_stat->pcc_err_cnt);
4522 	}
4523 
4524 	/*check for tti_err*/
4525 	if (val64 & TXDMA_TTI_INT) {
4526 		if (do_s2io_chk_alarm_bit(TTI_SM_ERR_ALARM,
4527 					  &bar0->tti_err_reg,
4528 					  &sw_stat->tti_err_cnt))
4529 			goto reset;
4530 		do_s2io_chk_alarm_bit(TTI_ECC_SG_ERR | TTI_ECC_DB_ERR,
4531 				      &bar0->tti_err_reg,
4532 				      &sw_stat->tti_err_cnt);
4533 	}
4534 
4535 	/*check for lso_err*/
4536 	if (val64 & TXDMA_LSO_INT) {
4537 		if (do_s2io_chk_alarm_bit(LSO6_ABORT | LSO7_ABORT |
4538 					  LSO6_SM_ERR_ALARM | LSO7_SM_ERR_ALARM,
4539 					  &bar0->lso_err_reg,
4540 					  &sw_stat->lso_err_cnt))
4541 			goto reset;
4542 		do_s2io_chk_alarm_bit(LSO6_SEND_OFLOW | LSO7_SEND_OFLOW,
4543 				      &bar0->lso_err_reg,
4544 				      &sw_stat->lso_err_cnt);
4545 	}
4546 
4547 	/*check for tpa_err*/
4548 	if (val64 & TXDMA_TPA_INT) {
4549 		if (do_s2io_chk_alarm_bit(TPA_SM_ERR_ALARM,
4550 					  &bar0->tpa_err_reg,
4551 					  &sw_stat->tpa_err_cnt))
4552 			goto reset;
4553 		do_s2io_chk_alarm_bit(TPA_TX_FRM_DROP,
4554 				      &bar0->tpa_err_reg,
4555 				      &sw_stat->tpa_err_cnt);
4556 	}
4557 
4558 	/*check for sm_err*/
4559 	if (val64 & TXDMA_SM_INT) {
4560 		if (do_s2io_chk_alarm_bit(SM_SM_ERR_ALARM,
4561 					  &bar0->sm_err_reg,
4562 					  &sw_stat->sm_err_cnt))
4563 			goto reset;
4564 	}
4565 
4566 	val64 = readq(&bar0->mac_int_status);
4567 	if (val64 & MAC_INT_STATUS_TMAC_INT) {
4568 		if (do_s2io_chk_alarm_bit(TMAC_TX_BUF_OVRN | TMAC_TX_SM_ERR,
4569 					  &bar0->mac_tmac_err_reg,
4570 					  &sw_stat->mac_tmac_err_cnt))
4571 			goto reset;
4572 		do_s2io_chk_alarm_bit(TMAC_ECC_SG_ERR | TMAC_ECC_DB_ERR |
4573 				      TMAC_DESC_ECC_SG_ERR |
4574 				      TMAC_DESC_ECC_DB_ERR,
4575 				      &bar0->mac_tmac_err_reg,
4576 				      &sw_stat->mac_tmac_err_cnt);
4577 	}
4578 
4579 	val64 = readq(&bar0->xgxs_int_status);
4580 	if (val64 & XGXS_INT_STATUS_TXGXS) {
4581 		if (do_s2io_chk_alarm_bit(TXGXS_ESTORE_UFLOW | TXGXS_TX_SM_ERR,
4582 					  &bar0->xgxs_txgxs_err_reg,
4583 					  &sw_stat->xgxs_txgxs_err_cnt))
4584 			goto reset;
4585 		do_s2io_chk_alarm_bit(TXGXS_ECC_SG_ERR | TXGXS_ECC_DB_ERR,
4586 				      &bar0->xgxs_txgxs_err_reg,
4587 				      &sw_stat->xgxs_txgxs_err_cnt);
4588 	}
4589 
4590 	val64 = readq(&bar0->rxdma_int_status);
4591 	if (val64 & RXDMA_INT_RC_INT_M) {
4592 		if (do_s2io_chk_alarm_bit(RC_PRCn_ECC_DB_ERR |
4593 					  RC_FTC_ECC_DB_ERR |
4594 					  RC_PRCn_SM_ERR_ALARM |
4595 					  RC_FTC_SM_ERR_ALARM,
4596 					  &bar0->rc_err_reg,
4597 					  &sw_stat->rc_err_cnt))
4598 			goto reset;
4599 		do_s2io_chk_alarm_bit(RC_PRCn_ECC_SG_ERR |
4600 				      RC_FTC_ECC_SG_ERR |
4601 				      RC_RDA_FAIL_WR_Rn, &bar0->rc_err_reg,
4602 				      &sw_stat->rc_err_cnt);
4603 		if (do_s2io_chk_alarm_bit(PRC_PCI_AB_RD_Rn |
4604 					  PRC_PCI_AB_WR_Rn |
4605 					  PRC_PCI_AB_F_WR_Rn,
4606 					  &bar0->prc_pcix_err_reg,
4607 					  &sw_stat->prc_pcix_err_cnt))
4608 			goto reset;
4609 		do_s2io_chk_alarm_bit(PRC_PCI_DP_RD_Rn |
4610 				      PRC_PCI_DP_WR_Rn |
4611 				      PRC_PCI_DP_F_WR_Rn,
4612 				      &bar0->prc_pcix_err_reg,
4613 				      &sw_stat->prc_pcix_err_cnt);
4614 	}
4615 
4616 	if (val64 & RXDMA_INT_RPA_INT_M) {
4617 		if (do_s2io_chk_alarm_bit(RPA_SM_ERR_ALARM | RPA_CREDIT_ERR,
4618 					  &bar0->rpa_err_reg,
4619 					  &sw_stat->rpa_err_cnt))
4620 			goto reset;
4621 		do_s2io_chk_alarm_bit(RPA_ECC_SG_ERR | RPA_ECC_DB_ERR,
4622 				      &bar0->rpa_err_reg,
4623 				      &sw_stat->rpa_err_cnt);
4624 	}
4625 
4626 	if (val64 & RXDMA_INT_RDA_INT_M) {
4627 		if (do_s2io_chk_alarm_bit(RDA_RXDn_ECC_DB_ERR |
4628 					  RDA_FRM_ECC_DB_N_AERR |
4629 					  RDA_SM1_ERR_ALARM |
4630 					  RDA_SM0_ERR_ALARM |
4631 					  RDA_RXD_ECC_DB_SERR,
4632 					  &bar0->rda_err_reg,
4633 					  &sw_stat->rda_err_cnt))
4634 			goto reset;
4635 		do_s2io_chk_alarm_bit(RDA_RXDn_ECC_SG_ERR |
4636 				      RDA_FRM_ECC_SG_ERR |
4637 				      RDA_MISC_ERR |
4638 				      RDA_PCIX_ERR,
4639 				      &bar0->rda_err_reg,
4640 				      &sw_stat->rda_err_cnt);
4641 	}
4642 
4643 	if (val64 & RXDMA_INT_RTI_INT_M) {
4644 		if (do_s2io_chk_alarm_bit(RTI_SM_ERR_ALARM,
4645 					  &bar0->rti_err_reg,
4646 					  &sw_stat->rti_err_cnt))
4647 			goto reset;
4648 		do_s2io_chk_alarm_bit(RTI_ECC_SG_ERR | RTI_ECC_DB_ERR,
4649 				      &bar0->rti_err_reg,
4650 				      &sw_stat->rti_err_cnt);
4651 	}
4652 
4653 	val64 = readq(&bar0->mac_int_status);
4654 	if (val64 & MAC_INT_STATUS_RMAC_INT) {
4655 		if (do_s2io_chk_alarm_bit(RMAC_RX_BUFF_OVRN | RMAC_RX_SM_ERR,
4656 					  &bar0->mac_rmac_err_reg,
4657 					  &sw_stat->mac_rmac_err_cnt))
4658 			goto reset;
4659 		do_s2io_chk_alarm_bit(RMAC_UNUSED_INT |
4660 				      RMAC_SINGLE_ECC_ERR |
4661 				      RMAC_DOUBLE_ECC_ERR,
4662 				      &bar0->mac_rmac_err_reg,
4663 				      &sw_stat->mac_rmac_err_cnt);
4664 	}
4665 
4666 	val64 = readq(&bar0->xgxs_int_status);
4667 	if (val64 & XGXS_INT_STATUS_RXGXS) {
4668 		if (do_s2io_chk_alarm_bit(RXGXS_ESTORE_OFLOW | RXGXS_RX_SM_ERR,
4669 					  &bar0->xgxs_rxgxs_err_reg,
4670 					  &sw_stat->xgxs_rxgxs_err_cnt))
4671 			goto reset;
4672 	}
4673 
4674 	val64 = readq(&bar0->mc_int_status);
4675 	if (val64 & MC_INT_STATUS_MC_INT) {
4676 		if (do_s2io_chk_alarm_bit(MC_ERR_REG_SM_ERR,
4677 					  &bar0->mc_err_reg,
4678 					  &sw_stat->mc_err_cnt))
4679 			goto reset;
4680 
4681 		/* Handling Ecc errors */
4682 		if (val64 & (MC_ERR_REG_ECC_ALL_SNG | MC_ERR_REG_ECC_ALL_DBL)) {
4683 			writeq(val64, &bar0->mc_err_reg);
4684 			if (val64 & MC_ERR_REG_ECC_ALL_DBL) {
4685 				sw_stat->double_ecc_errs++;
4686 				if (sp->device_type != XFRAME_II_DEVICE) {
4687 					/*
4688 					 * Reset XframeI only if critical error
4689 					 */
4690 					if (val64 &
4691 					    (MC_ERR_REG_MIRI_ECC_DB_ERR_0 |
4692 					     MC_ERR_REG_MIRI_ECC_DB_ERR_1))
4693 						goto reset;
4694 				}
4695 			} else
4696 				sw_stat->single_ecc_errs++;
4697 		}
4698 	}
4699 	return;
4700 
4701 reset:
4702 	s2io_stop_all_tx_queue(sp);
4703 	schedule_work(&sp->rst_timer_task);
4704 	sw_stat->soft_reset_cnt++;
4705 }
4706 
4707 /**
4708  *  s2io_isr - ISR handler of the device .
4709  *  @irq: the irq of the device.
4710  *  @dev_id: a void pointer to the dev structure of the NIC.
4711  *  Description:  This function is the ISR handler of the device. It
4712  *  identifies the reason for the interrupt and calls the relevant
4713  *  service routines. As a contongency measure, this ISR allocates the
4714  *  recv buffers, if their numbers are below the panic value which is
4715  *  presently set to 25% of the original number of rcv buffers allocated.
4716  *  Return value:
4717  *   IRQ_HANDLED: will be returned if IRQ was handled by this routine
4718  *   IRQ_NONE: will be returned if interrupt is not from our device
4719  */
4720 static irqreturn_t s2io_isr(int irq, void *dev_id)
4721 {
4722 	struct net_device *dev = (struct net_device *)dev_id;
4723 	struct s2io_nic *sp = netdev_priv(dev);
4724 	struct XENA_dev_config __iomem *bar0 = sp->bar0;
4725 	int i;
4726 	u64 reason = 0;
4727 	struct mac_info *mac_control;
4728 	struct config_param *config;
4729 
4730 	/* Pretend we handled any irq's from a disconnected card */
4731 	if (pci_channel_offline(sp->pdev))
4732 		return IRQ_NONE;
4733 
4734 	if (!is_s2io_card_up(sp))
4735 		return IRQ_NONE;
4736 
4737 	config = &sp->config;
4738 	mac_control = &sp->mac_control;
4739 
4740 	/*
4741 	 * Identify the cause for interrupt and call the appropriate
4742 	 * interrupt handler. Causes for the interrupt could be;
4743 	 * 1. Rx of packet.
4744 	 * 2. Tx complete.
4745 	 * 3. Link down.
4746 	 */
4747 	reason = readq(&bar0->general_int_status);
4748 
4749 	if (unlikely(reason == S2IO_MINUS_ONE))
4750 		return IRQ_HANDLED;	/* Nothing much can be done. Get out */
4751 
4752 	if (reason &
4753 	    (GEN_INTR_RXTRAFFIC | GEN_INTR_TXTRAFFIC | GEN_INTR_TXPIC)) {
4754 		writeq(S2IO_MINUS_ONE, &bar0->general_int_mask);
4755 
4756 		if (config->napi) {
4757 			if (reason & GEN_INTR_RXTRAFFIC) {
4758 				napi_schedule(&sp->napi);
4759 				writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_mask);
4760 				writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
4761 				readl(&bar0->rx_traffic_int);
4762 			}
4763 		} else {
4764 			/*
4765 			 * rx_traffic_int reg is an R1 register, writing all 1's
4766 			 * will ensure that the actual interrupt causing bit
4767 			 * get's cleared and hence a read can be avoided.
4768 			 */
4769 			if (reason & GEN_INTR_RXTRAFFIC)
4770 				writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
4771 
4772 			for (i = 0; i < config->rx_ring_num; i++) {
4773 				struct ring_info *ring = &mac_control->rings[i];
4774 
4775 				rx_intr_handler(ring, 0);
4776 			}
4777 		}
4778 
4779 		/*
4780 		 * tx_traffic_int reg is an R1 register, writing all 1's
4781 		 * will ensure that the actual interrupt causing bit get's
4782 		 * cleared and hence a read can be avoided.
4783 		 */
4784 		if (reason & GEN_INTR_TXTRAFFIC)
4785 			writeq(S2IO_MINUS_ONE, &bar0->tx_traffic_int);
4786 
4787 		for (i = 0; i < config->tx_fifo_num; i++)
4788 			tx_intr_handler(&mac_control->fifos[i]);
4789 
4790 		if (reason & GEN_INTR_TXPIC)
4791 			s2io_txpic_intr_handle(sp);
4792 
4793 		/*
4794 		 * Reallocate the buffers from the interrupt handler itself.
4795 		 */
4796 		if (!config->napi) {
4797 			for (i = 0; i < config->rx_ring_num; i++) {
4798 				struct ring_info *ring = &mac_control->rings[i];
4799 
4800 				s2io_chk_rx_buffers(sp, ring);
4801 			}
4802 		}
4803 		writeq(sp->general_int_mask, &bar0->general_int_mask);
4804 		readl(&bar0->general_int_status);
4805 
4806 		return IRQ_HANDLED;
4807 
4808 	} else if (!reason) {
4809 		/* The interrupt was not raised by us */
4810 		return IRQ_NONE;
4811 	}
4812 
4813 	return IRQ_HANDLED;
4814 }
4815 
4816 /**
4817  * s2io_updt_stats -
4818  */
4819 static void s2io_updt_stats(struct s2io_nic *sp)
4820 {
4821 	struct XENA_dev_config __iomem *bar0 = sp->bar0;
4822 	u64 val64;
4823 	int cnt = 0;
4824 
4825 	if (is_s2io_card_up(sp)) {
4826 		/* Apprx 30us on a 133 MHz bus */
4827 		val64 = SET_UPDT_CLICKS(10) |
4828 			STAT_CFG_ONE_SHOT_EN | STAT_CFG_STAT_EN;
4829 		writeq(val64, &bar0->stat_cfg);
4830 		do {
4831 			udelay(100);
4832 			val64 = readq(&bar0->stat_cfg);
4833 			if (!(val64 & s2BIT(0)))
4834 				break;
4835 			cnt++;
4836 			if (cnt == 5)
4837 				break; /* Updt failed */
4838 		} while (1);
4839 	}
4840 }
4841 
4842 /**
4843  *  s2io_get_stats - Updates the device statistics structure.
4844  *  @dev : pointer to the device structure.
4845  *  Description:
4846  *  This function updates the device statistics structure in the s2io_nic
4847  *  structure and returns a pointer to the same.
4848  *  Return value:
4849  *  pointer to the updated net_device_stats structure.
4850  */
4851 static struct net_device_stats *s2io_get_stats(struct net_device *dev)
4852 {
4853 	struct s2io_nic *sp = netdev_priv(dev);
4854 	struct mac_info *mac_control = &sp->mac_control;
4855 	struct stat_block *stats = mac_control->stats_info;
4856 	u64 delta;
4857 
4858 	/* Configure Stats for immediate updt */
4859 	s2io_updt_stats(sp);
4860 
4861 	/* A device reset will cause the on-adapter statistics to be zero'ed.
4862 	 * This can be done while running by changing the MTU.  To prevent the
4863 	 * system from having the stats zero'ed, the driver keeps a copy of the
4864 	 * last update to the system (which is also zero'ed on reset).  This
4865 	 * enables the driver to accurately know the delta between the last
4866 	 * update and the current update.
4867 	 */
4868 	delta = ((u64) le32_to_cpu(stats->rmac_vld_frms_oflow) << 32 |
4869 		le32_to_cpu(stats->rmac_vld_frms)) - sp->stats.rx_packets;
4870 	sp->stats.rx_packets += delta;
4871 	dev->stats.rx_packets += delta;
4872 
4873 	delta = ((u64) le32_to_cpu(stats->tmac_frms_oflow) << 32 |
4874 		le32_to_cpu(stats->tmac_frms)) - sp->stats.tx_packets;
4875 	sp->stats.tx_packets += delta;
4876 	dev->stats.tx_packets += delta;
4877 
4878 	delta = ((u64) le32_to_cpu(stats->rmac_data_octets_oflow) << 32 |
4879 		le32_to_cpu(stats->rmac_data_octets)) - sp->stats.rx_bytes;
4880 	sp->stats.rx_bytes += delta;
4881 	dev->stats.rx_bytes += delta;
4882 
4883 	delta = ((u64) le32_to_cpu(stats->tmac_data_octets_oflow) << 32 |
4884 		le32_to_cpu(stats->tmac_data_octets)) - sp->stats.tx_bytes;
4885 	sp->stats.tx_bytes += delta;
4886 	dev->stats.tx_bytes += delta;
4887 
4888 	delta = le64_to_cpu(stats->rmac_drop_frms) - sp->stats.rx_errors;
4889 	sp->stats.rx_errors += delta;
4890 	dev->stats.rx_errors += delta;
4891 
4892 	delta = ((u64) le32_to_cpu(stats->tmac_any_err_frms_oflow) << 32 |
4893 		le32_to_cpu(stats->tmac_any_err_frms)) - sp->stats.tx_errors;
4894 	sp->stats.tx_errors += delta;
4895 	dev->stats.tx_errors += delta;
4896 
4897 	delta = le64_to_cpu(stats->rmac_drop_frms) - sp->stats.rx_dropped;
4898 	sp->stats.rx_dropped += delta;
4899 	dev->stats.rx_dropped += delta;
4900 
4901 	delta = le64_to_cpu(stats->tmac_drop_frms) - sp->stats.tx_dropped;
4902 	sp->stats.tx_dropped += delta;
4903 	dev->stats.tx_dropped += delta;
4904 
4905 	/* The adapter MAC interprets pause frames as multicast packets, but
4906 	 * does not pass them up.  This erroneously increases the multicast
4907 	 * packet count and needs to be deducted when the multicast frame count
4908 	 * is queried.
4909 	 */
4910 	delta = (u64) le32_to_cpu(stats->rmac_vld_mcst_frms_oflow) << 32 |
4911 		le32_to_cpu(stats->rmac_vld_mcst_frms);
4912 	delta -= le64_to_cpu(stats->rmac_pause_ctrl_frms);
4913 	delta -= sp->stats.multicast;
4914 	sp->stats.multicast += delta;
4915 	dev->stats.multicast += delta;
4916 
4917 	delta = ((u64) le32_to_cpu(stats->rmac_usized_frms_oflow) << 32 |
4918 		le32_to_cpu(stats->rmac_usized_frms)) +
4919 		le64_to_cpu(stats->rmac_long_frms) - sp->stats.rx_length_errors;
4920 	sp->stats.rx_length_errors += delta;
4921 	dev->stats.rx_length_errors += delta;
4922 
4923 	delta = le64_to_cpu(stats->rmac_fcs_err_frms) - sp->stats.rx_crc_errors;
4924 	sp->stats.rx_crc_errors += delta;
4925 	dev->stats.rx_crc_errors += delta;
4926 
4927 	return &dev->stats;
4928 }
4929 
4930 /**
4931  *  s2io_set_multicast - entry point for multicast address enable/disable.
4932  *  @dev : pointer to the device structure
4933  *  Description:
4934  *  This function is a driver entry point which gets called by the kernel
4935  *  whenever multicast addresses must be enabled/disabled. This also gets
4936  *  called to set/reset promiscuous mode. Depending on the deivce flag, we
4937  *  determine, if multicast address must be enabled or if promiscuous mode
4938  *  is to be disabled etc.
4939  *  Return value:
4940  *  void.
4941  */
4942 
4943 static void s2io_set_multicast(struct net_device *dev)
4944 {
4945 	int i, j, prev_cnt;
4946 	struct netdev_hw_addr *ha;
4947 	struct s2io_nic *sp = netdev_priv(dev);
4948 	struct XENA_dev_config __iomem *bar0 = sp->bar0;
4949 	u64 val64 = 0, multi_mac = 0x010203040506ULL, mask =
4950 		0xfeffffffffffULL;
4951 	u64 dis_addr = S2IO_DISABLE_MAC_ENTRY, mac_addr = 0;
4952 	void __iomem *add;
4953 	struct config_param *config = &sp->config;
4954 
4955 	if ((dev->flags & IFF_ALLMULTI) && (!sp->m_cast_flg)) {
4956 		/*  Enable all Multicast addresses */
4957 		writeq(RMAC_ADDR_DATA0_MEM_ADDR(multi_mac),
4958 		       &bar0->rmac_addr_data0_mem);
4959 		writeq(RMAC_ADDR_DATA1_MEM_MASK(mask),
4960 		       &bar0->rmac_addr_data1_mem);
4961 		val64 = RMAC_ADDR_CMD_MEM_WE |
4962 			RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4963 			RMAC_ADDR_CMD_MEM_OFFSET(config->max_mc_addr - 1);
4964 		writeq(val64, &bar0->rmac_addr_cmd_mem);
4965 		/* Wait till command completes */
4966 		wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4967 				      RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
4968 				      S2IO_BIT_RESET);
4969 
4970 		sp->m_cast_flg = 1;
4971 		sp->all_multi_pos = config->max_mc_addr - 1;
4972 	} else if ((dev->flags & IFF_ALLMULTI) && (sp->m_cast_flg)) {
4973 		/*  Disable all Multicast addresses */
4974 		writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
4975 		       &bar0->rmac_addr_data0_mem);
4976 		writeq(RMAC_ADDR_DATA1_MEM_MASK(0x0),
4977 		       &bar0->rmac_addr_data1_mem);
4978 		val64 = RMAC_ADDR_CMD_MEM_WE |
4979 			RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4980 			RMAC_ADDR_CMD_MEM_OFFSET(sp->all_multi_pos);
4981 		writeq(val64, &bar0->rmac_addr_cmd_mem);
4982 		/* Wait till command completes */
4983 		wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4984 				      RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
4985 				      S2IO_BIT_RESET);
4986 
4987 		sp->m_cast_flg = 0;
4988 		sp->all_multi_pos = 0;
4989 	}
4990 
4991 	if ((dev->flags & IFF_PROMISC) && (!sp->promisc_flg)) {
4992 		/*  Put the NIC into promiscuous mode */
4993 		add = &bar0->mac_cfg;
4994 		val64 = readq(&bar0->mac_cfg);
4995 		val64 |= MAC_CFG_RMAC_PROM_ENABLE;
4996 
4997 		writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4998 		writel((u32)val64, add);
4999 		writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
5000 		writel((u32) (val64 >> 32), (add + 4));
5001 
5002 		if (vlan_tag_strip != 1) {
5003 			val64 = readq(&bar0->rx_pa_cfg);
5004 			val64 &= ~RX_PA_CFG_STRIP_VLAN_TAG;
5005 			writeq(val64, &bar0->rx_pa_cfg);
5006 			sp->vlan_strip_flag = 0;
5007 		}
5008 
5009 		val64 = readq(&bar0->mac_cfg);
5010 		sp->promisc_flg = 1;
5011 		DBG_PRINT(INFO_DBG, "%s: entered promiscuous mode\n",
5012 			  dev->name);
5013 	} else if (!(dev->flags & IFF_PROMISC) && (sp->promisc_flg)) {
5014 		/*  Remove the NIC from promiscuous mode */
5015 		add = &bar0->mac_cfg;
5016 		val64 = readq(&bar0->mac_cfg);
5017 		val64 &= ~MAC_CFG_RMAC_PROM_ENABLE;
5018 
5019 		writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
5020 		writel((u32)val64, add);
5021 		writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
5022 		writel((u32) (val64 >> 32), (add + 4));
5023 
5024 		if (vlan_tag_strip != 0) {
5025 			val64 = readq(&bar0->rx_pa_cfg);
5026 			val64 |= RX_PA_CFG_STRIP_VLAN_TAG;
5027 			writeq(val64, &bar0->rx_pa_cfg);
5028 			sp->vlan_strip_flag = 1;
5029 		}
5030 
5031 		val64 = readq(&bar0->mac_cfg);
5032 		sp->promisc_flg = 0;
5033 		DBG_PRINT(INFO_DBG, "%s: left promiscuous mode\n", dev->name);
5034 	}
5035 
5036 	/*  Update individual M_CAST address list */
5037 	if ((!sp->m_cast_flg) && netdev_mc_count(dev)) {
5038 		if (netdev_mc_count(dev) >
5039 		    (config->max_mc_addr - config->max_mac_addr)) {
5040 			DBG_PRINT(ERR_DBG,
5041 				  "%s: No more Rx filters can be added - "
5042 				  "please enable ALL_MULTI instead\n",
5043 				  dev->name);
5044 			return;
5045 		}
5046 
5047 		prev_cnt = sp->mc_addr_count;
5048 		sp->mc_addr_count = netdev_mc_count(dev);
5049 
5050 		/* Clear out the previous list of Mc in the H/W. */
5051 		for (i = 0; i < prev_cnt; i++) {
5052 			writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
5053 			       &bar0->rmac_addr_data0_mem);
5054 			writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
5055 			       &bar0->rmac_addr_data1_mem);
5056 			val64 = RMAC_ADDR_CMD_MEM_WE |
5057 				RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5058 				RMAC_ADDR_CMD_MEM_OFFSET
5059 				(config->mc_start_offset + i);
5060 			writeq(val64, &bar0->rmac_addr_cmd_mem);
5061 
5062 			/* Wait for command completes */
5063 			if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
5064 						  RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5065 						  S2IO_BIT_RESET)) {
5066 				DBG_PRINT(ERR_DBG,
5067 					  "%s: Adding Multicasts failed\n",
5068 					  dev->name);
5069 				return;
5070 			}
5071 		}
5072 
5073 		/* Create the new Rx filter list and update the same in H/W. */
5074 		i = 0;
5075 		netdev_for_each_mc_addr(ha, dev) {
5076 			mac_addr = 0;
5077 			for (j = 0; j < ETH_ALEN; j++) {
5078 				mac_addr |= ha->addr[j];
5079 				mac_addr <<= 8;
5080 			}
5081 			mac_addr >>= 8;
5082 			writeq(RMAC_ADDR_DATA0_MEM_ADDR(mac_addr),
5083 			       &bar0->rmac_addr_data0_mem);
5084 			writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
5085 			       &bar0->rmac_addr_data1_mem);
5086 			val64 = RMAC_ADDR_CMD_MEM_WE |
5087 				RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5088 				RMAC_ADDR_CMD_MEM_OFFSET
5089 				(i + config->mc_start_offset);
5090 			writeq(val64, &bar0->rmac_addr_cmd_mem);
5091 
5092 			/* Wait for command completes */
5093 			if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
5094 						  RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5095 						  S2IO_BIT_RESET)) {
5096 				DBG_PRINT(ERR_DBG,
5097 					  "%s: Adding Multicasts failed\n",
5098 					  dev->name);
5099 				return;
5100 			}
5101 			i++;
5102 		}
5103 	}
5104 }
5105 
5106 /* read from CAM unicast & multicast addresses and store it in
5107  * def_mac_addr structure
5108  */
5109 static void do_s2io_store_unicast_mc(struct s2io_nic *sp)
5110 {
5111 	int offset;
5112 	u64 mac_addr = 0x0;
5113 	struct config_param *config = &sp->config;
5114 
5115 	/* store unicast & multicast mac addresses */
5116 	for (offset = 0; offset < config->max_mc_addr; offset++) {
5117 		mac_addr = do_s2io_read_unicast_mc(sp, offset);
5118 		/* if read fails disable the entry */
5119 		if (mac_addr == FAILURE)
5120 			mac_addr = S2IO_DISABLE_MAC_ENTRY;
5121 		do_s2io_copy_mac_addr(sp, offset, mac_addr);
5122 	}
5123 }
5124 
5125 /* restore unicast & multicast MAC to CAM from def_mac_addr structure */
5126 static void do_s2io_restore_unicast_mc(struct s2io_nic *sp)
5127 {
5128 	int offset;
5129 	struct config_param *config = &sp->config;
5130 	/* restore unicast mac address */
5131 	for (offset = 0; offset < config->max_mac_addr; offset++)
5132 		do_s2io_prog_unicast(sp->dev,
5133 				     sp->def_mac_addr[offset].mac_addr);
5134 
5135 	/* restore multicast mac address */
5136 	for (offset = config->mc_start_offset;
5137 	     offset < config->max_mc_addr; offset++)
5138 		do_s2io_add_mc(sp, sp->def_mac_addr[offset].mac_addr);
5139 }
5140 
5141 /* add a multicast MAC address to CAM */
5142 static int do_s2io_add_mc(struct s2io_nic *sp, u8 *addr)
5143 {
5144 	int i;
5145 	u64 mac_addr = 0;
5146 	struct config_param *config = &sp->config;
5147 
5148 	for (i = 0; i < ETH_ALEN; i++) {
5149 		mac_addr <<= 8;
5150 		mac_addr |= addr[i];
5151 	}
5152 	if ((0ULL == mac_addr) || (mac_addr == S2IO_DISABLE_MAC_ENTRY))
5153 		return SUCCESS;
5154 
5155 	/* check if the multicast mac already preset in CAM */
5156 	for (i = config->mc_start_offset; i < config->max_mc_addr; i++) {
5157 		u64 tmp64;
5158 		tmp64 = do_s2io_read_unicast_mc(sp, i);
5159 		if (tmp64 == S2IO_DISABLE_MAC_ENTRY) /* CAM entry is empty */
5160 			break;
5161 
5162 		if (tmp64 == mac_addr)
5163 			return SUCCESS;
5164 	}
5165 	if (i == config->max_mc_addr) {
5166 		DBG_PRINT(ERR_DBG,
5167 			  "CAM full no space left for multicast MAC\n");
5168 		return FAILURE;
5169 	}
5170 	/* Update the internal structure with this new mac address */
5171 	do_s2io_copy_mac_addr(sp, i, mac_addr);
5172 
5173 	return do_s2io_add_mac(sp, mac_addr, i);
5174 }
5175 
5176 /* add MAC address to CAM */
5177 static int do_s2io_add_mac(struct s2io_nic *sp, u64 addr, int off)
5178 {
5179 	u64 val64;
5180 	struct XENA_dev_config __iomem *bar0 = sp->bar0;
5181 
5182 	writeq(RMAC_ADDR_DATA0_MEM_ADDR(addr),
5183 	       &bar0->rmac_addr_data0_mem);
5184 
5185 	val64 =	RMAC_ADDR_CMD_MEM_WE | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5186 		RMAC_ADDR_CMD_MEM_OFFSET(off);
5187 	writeq(val64, &bar0->rmac_addr_cmd_mem);
5188 
5189 	/* Wait till command completes */
5190 	if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
5191 				  RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5192 				  S2IO_BIT_RESET)) {
5193 		DBG_PRINT(INFO_DBG, "do_s2io_add_mac failed\n");
5194 		return FAILURE;
5195 	}
5196 	return SUCCESS;
5197 }
5198 /* deletes a specified unicast/multicast mac entry from CAM */
5199 static int do_s2io_delete_unicast_mc(struct s2io_nic *sp, u64 addr)
5200 {
5201 	int offset;
5202 	u64 dis_addr = S2IO_DISABLE_MAC_ENTRY, tmp64;
5203 	struct config_param *config = &sp->config;
5204 
5205 	for (offset = 1;
5206 	     offset < config->max_mc_addr; offset++) {
5207 		tmp64 = do_s2io_read_unicast_mc(sp, offset);
5208 		if (tmp64 == addr) {
5209 			/* disable the entry by writing  0xffffffffffffULL */
5210 			if (do_s2io_add_mac(sp, dis_addr, offset) ==  FAILURE)
5211 				return FAILURE;
5212 			/* store the new mac list from CAM */
5213 			do_s2io_store_unicast_mc(sp);
5214 			return SUCCESS;
5215 		}
5216 	}
5217 	DBG_PRINT(ERR_DBG, "MAC address 0x%llx not found in CAM\n",
5218 		  (unsigned long long)addr);
5219 	return FAILURE;
5220 }
5221 
5222 /* read mac entries from CAM */
5223 static u64 do_s2io_read_unicast_mc(struct s2io_nic *sp, int offset)
5224 {
5225 	u64 tmp64 = 0xffffffffffff0000ULL, val64;
5226 	struct XENA_dev_config __iomem *bar0 = sp->bar0;
5227 
5228 	/* read mac addr */
5229 	val64 =	RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5230 		RMAC_ADDR_CMD_MEM_OFFSET(offset);
5231 	writeq(val64, &bar0->rmac_addr_cmd_mem);
5232 
5233 	/* Wait till command completes */
5234 	if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
5235 				  RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5236 				  S2IO_BIT_RESET)) {
5237 		DBG_PRINT(INFO_DBG, "do_s2io_read_unicast_mc failed\n");
5238 		return FAILURE;
5239 	}
5240 	tmp64 = readq(&bar0->rmac_addr_data0_mem);
5241 
5242 	return tmp64 >> 16;
5243 }
5244 
5245 /**
5246  * s2io_set_mac_addr - driver entry point
5247  */
5248 
5249 static int s2io_set_mac_addr(struct net_device *dev, void *p)
5250 {
5251 	struct sockaddr *addr = p;
5252 
5253 	if (!is_valid_ether_addr(addr->sa_data))
5254 		return -EADDRNOTAVAIL;
5255 
5256 	memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
5257 
5258 	/* store the MAC address in CAM */
5259 	return do_s2io_prog_unicast(dev, dev->dev_addr);
5260 }
5261 /**
5262  *  do_s2io_prog_unicast - Programs the Xframe mac address
5263  *  @dev : pointer to the device structure.
5264  *  @addr: a uchar pointer to the new mac address which is to be set.
5265  *  Description : This procedure will program the Xframe to receive
5266  *  frames with new Mac Address
5267  *  Return value: SUCCESS on success and an appropriate (-)ve integer
5268  *  as defined in errno.h file on failure.
5269  */
5270 
5271 static int do_s2io_prog_unicast(struct net_device *dev, u8 *addr)
5272 {
5273 	struct s2io_nic *sp = netdev_priv(dev);
5274 	register u64 mac_addr = 0, perm_addr = 0;
5275 	int i;
5276 	u64 tmp64;
5277 	struct config_param *config = &sp->config;
5278 
5279 	/*
5280 	 * Set the new MAC address as the new unicast filter and reflect this
5281 	 * change on the device address registered with the OS. It will be
5282 	 * at offset 0.
5283 	 */
5284 	for (i = 0; i < ETH_ALEN; i++) {
5285 		mac_addr <<= 8;
5286 		mac_addr |= addr[i];
5287 		perm_addr <<= 8;
5288 		perm_addr |= sp->def_mac_addr[0].mac_addr[i];
5289 	}
5290 
5291 	/* check if the dev_addr is different than perm_addr */
5292 	if (mac_addr == perm_addr)
5293 		return SUCCESS;
5294 
5295 	/* check if the mac already preset in CAM */
5296 	for (i = 1; i < config->max_mac_addr; i++) {
5297 		tmp64 = do_s2io_read_unicast_mc(sp, i);
5298 		if (tmp64 == S2IO_DISABLE_MAC_ENTRY) /* CAM entry is empty */
5299 			break;
5300 
5301 		if (tmp64 == mac_addr) {
5302 			DBG_PRINT(INFO_DBG,
5303 				  "MAC addr:0x%llx already present in CAM\n",
5304 				  (unsigned long long)mac_addr);
5305 			return SUCCESS;
5306 		}
5307 	}
5308 	if (i == config->max_mac_addr) {
5309 		DBG_PRINT(ERR_DBG, "CAM full no space left for Unicast MAC\n");
5310 		return FAILURE;
5311 	}
5312 	/* Update the internal structure with this new mac address */
5313 	do_s2io_copy_mac_addr(sp, i, mac_addr);
5314 
5315 	return do_s2io_add_mac(sp, mac_addr, i);
5316 }
5317 
5318 /**
5319  * s2io_ethtool_sset - Sets different link parameters.
5320  * @sp : private member of the device structure, which is a pointer to the  * s2io_nic structure.
5321  * @info: pointer to the structure with parameters given by ethtool to set
5322  * link information.
5323  * Description:
5324  * The function sets different link parameters provided by the user onto
5325  * the NIC.
5326  * Return value:
5327  * 0 on success.
5328  */
5329 
5330 static int s2io_ethtool_sset(struct net_device *dev,
5331 			     struct ethtool_cmd *info)
5332 {
5333 	struct s2io_nic *sp = netdev_priv(dev);
5334 	if ((info->autoneg == AUTONEG_ENABLE) ||
5335 	    (ethtool_cmd_speed(info) != SPEED_10000) ||
5336 	    (info->duplex != DUPLEX_FULL))
5337 		return -EINVAL;
5338 	else {
5339 		s2io_close(sp->dev);
5340 		s2io_open(sp->dev);
5341 	}
5342 
5343 	return 0;
5344 }
5345 
5346 /**
5347  * s2io_ethtol_gset - Return link specific information.
5348  * @sp : private member of the device structure, pointer to the
5349  *      s2io_nic structure.
5350  * @info : pointer to the structure with parameters given by ethtool
5351  * to return link information.
5352  * Description:
5353  * Returns link specific information like speed, duplex etc.. to ethtool.
5354  * Return value :
5355  * return 0 on success.
5356  */
5357 
5358 static int s2io_ethtool_gset(struct net_device *dev, struct ethtool_cmd *info)
5359 {
5360 	struct s2io_nic *sp = netdev_priv(dev);
5361 	info->supported = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
5362 	info->advertising = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
5363 	info->port = PORT_FIBRE;
5364 
5365 	/* info->transceiver */
5366 	info->transceiver = XCVR_EXTERNAL;
5367 
5368 	if (netif_carrier_ok(sp->dev)) {
5369 		ethtool_cmd_speed_set(info, SPEED_10000);
5370 		info->duplex = DUPLEX_FULL;
5371 	} else {
5372 		ethtool_cmd_speed_set(info, -1);
5373 		info->duplex = -1;
5374 	}
5375 
5376 	info->autoneg = AUTONEG_DISABLE;
5377 	return 0;
5378 }
5379 
5380 /**
5381  * s2io_ethtool_gdrvinfo - Returns driver specific information.
5382  * @sp : private member of the device structure, which is a pointer to the
5383  * s2io_nic structure.
5384  * @info : pointer to the structure with parameters given by ethtool to
5385  * return driver information.
5386  * Description:
5387  * Returns driver specefic information like name, version etc.. to ethtool.
5388  * Return value:
5389  *  void
5390  */
5391 
5392 static void s2io_ethtool_gdrvinfo(struct net_device *dev,
5393 				  struct ethtool_drvinfo *info)
5394 {
5395 	struct s2io_nic *sp = netdev_priv(dev);
5396 
5397 	strlcpy(info->driver, s2io_driver_name, sizeof(info->driver));
5398 	strlcpy(info->version, s2io_driver_version, sizeof(info->version));
5399 	strlcpy(info->bus_info, pci_name(sp->pdev), sizeof(info->bus_info));
5400 	info->regdump_len = XENA_REG_SPACE;
5401 	info->eedump_len = XENA_EEPROM_SPACE;
5402 }
5403 
5404 /**
5405  *  s2io_ethtool_gregs - dumps the entire space of Xfame into the buffer.
5406  *  @sp: private member of the device structure, which is a pointer to the
5407  *  s2io_nic structure.
5408  *  @regs : pointer to the structure with parameters given by ethtool for
5409  *  dumping the registers.
5410  *  @reg_space: The input argumnet into which all the registers are dumped.
5411  *  Description:
5412  *  Dumps the entire register space of xFrame NIC into the user given
5413  *  buffer area.
5414  * Return value :
5415  * void .
5416  */
5417 
5418 static void s2io_ethtool_gregs(struct net_device *dev,
5419 			       struct ethtool_regs *regs, void *space)
5420 {
5421 	int i;
5422 	u64 reg;
5423 	u8 *reg_space = (u8 *)space;
5424 	struct s2io_nic *sp = netdev_priv(dev);
5425 
5426 	regs->len = XENA_REG_SPACE;
5427 	regs->version = sp->pdev->subsystem_device;
5428 
5429 	for (i = 0; i < regs->len; i += 8) {
5430 		reg = readq(sp->bar0 + i);
5431 		memcpy((reg_space + i), &reg, 8);
5432 	}
5433 }
5434 
5435 /*
5436  *  s2io_set_led - control NIC led
5437  */
5438 static void s2io_set_led(struct s2io_nic *sp, bool on)
5439 {
5440 	struct XENA_dev_config __iomem *bar0 = sp->bar0;
5441 	u16 subid = sp->pdev->subsystem_device;
5442 	u64 val64;
5443 
5444 	if ((sp->device_type == XFRAME_II_DEVICE) ||
5445 	    ((subid & 0xFF) >= 0x07)) {
5446 		val64 = readq(&bar0->gpio_control);
5447 		if (on)
5448 			val64 |= GPIO_CTRL_GPIO_0;
5449 		else
5450 			val64 &= ~GPIO_CTRL_GPIO_0;
5451 
5452 		writeq(val64, &bar0->gpio_control);
5453 	} else {
5454 		val64 = readq(&bar0->adapter_control);
5455 		if (on)
5456 			val64 |= ADAPTER_LED_ON;
5457 		else
5458 			val64 &= ~ADAPTER_LED_ON;
5459 
5460 		writeq(val64, &bar0->adapter_control);
5461 	}
5462 
5463 }
5464 
5465 /**
5466  * s2io_ethtool_set_led - To physically identify the nic on the system.
5467  * @dev : network device
5468  * @state: led setting
5469  *
5470  * Description: Used to physically identify the NIC on the system.
5471  * The Link LED will blink for a time specified by the user for
5472  * identification.
5473  * NOTE: The Link has to be Up to be able to blink the LED. Hence
5474  * identification is possible only if it's link is up.
5475  */
5476 
5477 static int s2io_ethtool_set_led(struct net_device *dev,
5478 				enum ethtool_phys_id_state state)
5479 {
5480 	struct s2io_nic *sp = netdev_priv(dev);
5481 	struct XENA_dev_config __iomem *bar0 = sp->bar0;
5482 	u16 subid = sp->pdev->subsystem_device;
5483 
5484 	if ((sp->device_type == XFRAME_I_DEVICE) && ((subid & 0xFF) < 0x07)) {
5485 		u64 val64 = readq(&bar0->adapter_control);
5486 		if (!(val64 & ADAPTER_CNTL_EN)) {
5487 			pr_err("Adapter Link down, cannot blink LED\n");
5488 			return -EAGAIN;
5489 		}
5490 	}
5491 
5492 	switch (state) {
5493 	case ETHTOOL_ID_ACTIVE:
5494 		sp->adapt_ctrl_org = readq(&bar0->gpio_control);
5495 		return 1;	/* cycle on/off once per second */
5496 
5497 	case ETHTOOL_ID_ON:
5498 		s2io_set_led(sp, true);
5499 		break;
5500 
5501 	case ETHTOOL_ID_OFF:
5502 		s2io_set_led(sp, false);
5503 		break;
5504 
5505 	case ETHTOOL_ID_INACTIVE:
5506 		if (CARDS_WITH_FAULTY_LINK_INDICATORS(sp->device_type, subid))
5507 			writeq(sp->adapt_ctrl_org, &bar0->gpio_control);
5508 	}
5509 
5510 	return 0;
5511 }
5512 
5513 static void s2io_ethtool_gringparam(struct net_device *dev,
5514 				    struct ethtool_ringparam *ering)
5515 {
5516 	struct s2io_nic *sp = netdev_priv(dev);
5517 	int i, tx_desc_count = 0, rx_desc_count = 0;
5518 
5519 	if (sp->rxd_mode == RXD_MODE_1) {
5520 		ering->rx_max_pending = MAX_RX_DESC_1;
5521 		ering->rx_jumbo_max_pending = MAX_RX_DESC_1;
5522 	} else {
5523 		ering->rx_max_pending = MAX_RX_DESC_2;
5524 		ering->rx_jumbo_max_pending = MAX_RX_DESC_2;
5525 	}
5526 
5527 	ering->tx_max_pending = MAX_TX_DESC;
5528 
5529 	for (i = 0; i < sp->config.rx_ring_num; i++)
5530 		rx_desc_count += sp->config.rx_cfg[i].num_rxd;
5531 	ering->rx_pending = rx_desc_count;
5532 	ering->rx_jumbo_pending = rx_desc_count;
5533 
5534 	for (i = 0; i < sp->config.tx_fifo_num; i++)
5535 		tx_desc_count += sp->config.tx_cfg[i].fifo_len;
5536 	ering->tx_pending = tx_desc_count;
5537 	DBG_PRINT(INFO_DBG, "max txds: %d\n", sp->config.max_txds);
5538 }
5539 
5540 /**
5541  * s2io_ethtool_getpause_data -Pause frame frame generation and reception.
5542  * @sp : private member of the device structure, which is a pointer to the
5543  *	s2io_nic structure.
5544  * @ep : pointer to the structure with pause parameters given by ethtool.
5545  * Description:
5546  * Returns the Pause frame generation and reception capability of the NIC.
5547  * Return value:
5548  *  void
5549  */
5550 static void s2io_ethtool_getpause_data(struct net_device *dev,
5551 				       struct ethtool_pauseparam *ep)
5552 {
5553 	u64 val64;
5554 	struct s2io_nic *sp = netdev_priv(dev);
5555 	struct XENA_dev_config __iomem *bar0 = sp->bar0;
5556 
5557 	val64 = readq(&bar0->rmac_pause_cfg);
5558 	if (val64 & RMAC_PAUSE_GEN_ENABLE)
5559 		ep->tx_pause = true;
5560 	if (val64 & RMAC_PAUSE_RX_ENABLE)
5561 		ep->rx_pause = true;
5562 	ep->autoneg = false;
5563 }
5564 
5565 /**
5566  * s2io_ethtool_setpause_data -  set/reset pause frame generation.
5567  * @sp : private member of the device structure, which is a pointer to the
5568  *      s2io_nic structure.
5569  * @ep : pointer to the structure with pause parameters given by ethtool.
5570  * Description:
5571  * It can be used to set or reset Pause frame generation or reception
5572  * support of the NIC.
5573  * Return value:
5574  * int, returns 0 on Success
5575  */
5576 
5577 static int s2io_ethtool_setpause_data(struct net_device *dev,
5578 				      struct ethtool_pauseparam *ep)
5579 {
5580 	u64 val64;
5581 	struct s2io_nic *sp = netdev_priv(dev);
5582 	struct XENA_dev_config __iomem *bar0 = sp->bar0;
5583 
5584 	val64 = readq(&bar0->rmac_pause_cfg);
5585 	if (ep->tx_pause)
5586 		val64 |= RMAC_PAUSE_GEN_ENABLE;
5587 	else
5588 		val64 &= ~RMAC_PAUSE_GEN_ENABLE;
5589 	if (ep->rx_pause)
5590 		val64 |= RMAC_PAUSE_RX_ENABLE;
5591 	else
5592 		val64 &= ~RMAC_PAUSE_RX_ENABLE;
5593 	writeq(val64, &bar0->rmac_pause_cfg);
5594 	return 0;
5595 }
5596 
5597 /**
5598  * read_eeprom - reads 4 bytes of data from user given offset.
5599  * @sp : private member of the device structure, which is a pointer to the
5600  *      s2io_nic structure.
5601  * @off : offset at which the data must be written
5602  * @data : Its an output parameter where the data read at the given
5603  *	offset is stored.
5604  * Description:
5605  * Will read 4 bytes of data from the user given offset and return the
5606  * read data.
5607  * NOTE: Will allow to read only part of the EEPROM visible through the
5608  *   I2C bus.
5609  * Return value:
5610  *  -1 on failure and 0 on success.
5611  */
5612 
5613 #define S2IO_DEV_ID		5
5614 static int read_eeprom(struct s2io_nic *sp, int off, u64 *data)
5615 {
5616 	int ret = -1;
5617 	u32 exit_cnt = 0;
5618 	u64 val64;
5619 	struct XENA_dev_config __iomem *bar0 = sp->bar0;
5620 
5621 	if (sp->device_type == XFRAME_I_DEVICE) {
5622 		val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) |
5623 			I2C_CONTROL_ADDR(off) |
5624 			I2C_CONTROL_BYTE_CNT(0x3) |
5625 			I2C_CONTROL_READ |
5626 			I2C_CONTROL_CNTL_START;
5627 		SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
5628 
5629 		while (exit_cnt < 5) {
5630 			val64 = readq(&bar0->i2c_control);
5631 			if (I2C_CONTROL_CNTL_END(val64)) {
5632 				*data = I2C_CONTROL_GET_DATA(val64);
5633 				ret = 0;
5634 				break;
5635 			}
5636 			msleep(50);
5637 			exit_cnt++;
5638 		}
5639 	}
5640 
5641 	if (sp->device_type == XFRAME_II_DEVICE) {
5642 		val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
5643 			SPI_CONTROL_BYTECNT(0x3) |
5644 			SPI_CONTROL_CMD(0x3) | SPI_CONTROL_ADDR(off);
5645 		SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5646 		val64 |= SPI_CONTROL_REQ;
5647 		SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5648 		while (exit_cnt < 5) {
5649 			val64 = readq(&bar0->spi_control);
5650 			if (val64 & SPI_CONTROL_NACK) {
5651 				ret = 1;
5652 				break;
5653 			} else if (val64 & SPI_CONTROL_DONE) {
5654 				*data = readq(&bar0->spi_data);
5655 				*data &= 0xffffff;
5656 				ret = 0;
5657 				break;
5658 			}
5659 			msleep(50);
5660 			exit_cnt++;
5661 		}
5662 	}
5663 	return ret;
5664 }
5665 
5666 /**
5667  *  write_eeprom - actually writes the relevant part of the data value.
5668  *  @sp : private member of the device structure, which is a pointer to the
5669  *       s2io_nic structure.
5670  *  @off : offset at which the data must be written
5671  *  @data : The data that is to be written
5672  *  @cnt : Number of bytes of the data that are actually to be written into
5673  *  the Eeprom. (max of 3)
5674  * Description:
5675  *  Actually writes the relevant part of the data value into the Eeprom
5676  *  through the I2C bus.
5677  * Return value:
5678  *  0 on success, -1 on failure.
5679  */
5680 
5681 static int write_eeprom(struct s2io_nic *sp, int off, u64 data, int cnt)
5682 {
5683 	int exit_cnt = 0, ret = -1;
5684 	u64 val64;
5685 	struct XENA_dev_config __iomem *bar0 = sp->bar0;
5686 
5687 	if (sp->device_type == XFRAME_I_DEVICE) {
5688 		val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) |
5689 			I2C_CONTROL_ADDR(off) |
5690 			I2C_CONTROL_BYTE_CNT(cnt) |
5691 			I2C_CONTROL_SET_DATA((u32)data) |
5692 			I2C_CONTROL_CNTL_START;
5693 		SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
5694 
5695 		while (exit_cnt < 5) {
5696 			val64 = readq(&bar0->i2c_control);
5697 			if (I2C_CONTROL_CNTL_END(val64)) {
5698 				if (!(val64 & I2C_CONTROL_NACK))
5699 					ret = 0;
5700 				break;
5701 			}
5702 			msleep(50);
5703 			exit_cnt++;
5704 		}
5705 	}
5706 
5707 	if (sp->device_type == XFRAME_II_DEVICE) {
5708 		int write_cnt = (cnt == 8) ? 0 : cnt;
5709 		writeq(SPI_DATA_WRITE(data, (cnt << 3)), &bar0->spi_data);
5710 
5711 		val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
5712 			SPI_CONTROL_BYTECNT(write_cnt) |
5713 			SPI_CONTROL_CMD(0x2) | SPI_CONTROL_ADDR(off);
5714 		SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5715 		val64 |= SPI_CONTROL_REQ;
5716 		SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5717 		while (exit_cnt < 5) {
5718 			val64 = readq(&bar0->spi_control);
5719 			if (val64 & SPI_CONTROL_NACK) {
5720 				ret = 1;
5721 				break;
5722 			} else if (val64 & SPI_CONTROL_DONE) {
5723 				ret = 0;
5724 				break;
5725 			}
5726 			msleep(50);
5727 			exit_cnt++;
5728 		}
5729 	}
5730 	return ret;
5731 }
5732 static void s2io_vpd_read(struct s2io_nic *nic)
5733 {
5734 	u8 *vpd_data;
5735 	u8 data;
5736 	int i = 0, cnt, len, fail = 0;
5737 	int vpd_addr = 0x80;
5738 	struct swStat *swstats = &nic->mac_control.stats_info->sw_stat;
5739 
5740 	if (nic->device_type == XFRAME_II_DEVICE) {
5741 		strcpy(nic->product_name, "Xframe II 10GbE network adapter");
5742 		vpd_addr = 0x80;
5743 	} else {
5744 		strcpy(nic->product_name, "Xframe I 10GbE network adapter");
5745 		vpd_addr = 0x50;
5746 	}
5747 	strcpy(nic->serial_num, "NOT AVAILABLE");
5748 
5749 	vpd_data = kmalloc(256, GFP_KERNEL);
5750 	if (!vpd_data) {
5751 		swstats->mem_alloc_fail_cnt++;
5752 		return;
5753 	}
5754 	swstats->mem_allocated += 256;
5755 
5756 	for (i = 0; i < 256; i += 4) {
5757 		pci_write_config_byte(nic->pdev, (vpd_addr + 2), i);
5758 		pci_read_config_byte(nic->pdev,  (vpd_addr + 2), &data);
5759 		pci_write_config_byte(nic->pdev, (vpd_addr + 3), 0);
5760 		for (cnt = 0; cnt < 5; cnt++) {
5761 			msleep(2);
5762 			pci_read_config_byte(nic->pdev, (vpd_addr + 3), &data);
5763 			if (data == 0x80)
5764 				break;
5765 		}
5766 		if (cnt >= 5) {
5767 			DBG_PRINT(ERR_DBG, "Read of VPD data failed\n");
5768 			fail = 1;
5769 			break;
5770 		}
5771 		pci_read_config_dword(nic->pdev,  (vpd_addr + 4),
5772 				      (u32 *)&vpd_data[i]);
5773 	}
5774 
5775 	if (!fail) {
5776 		/* read serial number of adapter */
5777 		for (cnt = 0; cnt < 252; cnt++) {
5778 			if ((vpd_data[cnt] == 'S') &&
5779 			    (vpd_data[cnt+1] == 'N')) {
5780 				len = vpd_data[cnt+2];
5781 				if (len < min(VPD_STRING_LEN, 256-cnt-2)) {
5782 					memcpy(nic->serial_num,
5783 					       &vpd_data[cnt + 3],
5784 					       len);
5785 					memset(nic->serial_num+len,
5786 					       0,
5787 					       VPD_STRING_LEN-len);
5788 					break;
5789 				}
5790 			}
5791 		}
5792 	}
5793 
5794 	if ((!fail) && (vpd_data[1] < VPD_STRING_LEN)) {
5795 		len = vpd_data[1];
5796 		memcpy(nic->product_name, &vpd_data[3], len);
5797 		nic->product_name[len] = 0;
5798 	}
5799 	kfree(vpd_data);
5800 	swstats->mem_freed += 256;
5801 }
5802 
5803 /**
5804  *  s2io_ethtool_geeprom  - reads the value stored in the Eeprom.
5805  *  @sp : private member of the device structure, which is a pointer to the *       s2io_nic structure.
5806  *  @eeprom : pointer to the user level structure provided by ethtool,
5807  *  containing all relevant information.
5808  *  @data_buf : user defined value to be written into Eeprom.
5809  *  Description: Reads the values stored in the Eeprom at given offset
5810  *  for a given length. Stores these values int the input argument data
5811  *  buffer 'data_buf' and returns these to the caller (ethtool.)
5812  *  Return value:
5813  *  int  0 on success
5814  */
5815 
5816 static int s2io_ethtool_geeprom(struct net_device *dev,
5817 				struct ethtool_eeprom *eeprom, u8 * data_buf)
5818 {
5819 	u32 i, valid;
5820 	u64 data;
5821 	struct s2io_nic *sp = netdev_priv(dev);
5822 
5823 	eeprom->magic = sp->pdev->vendor | (sp->pdev->device << 16);
5824 
5825 	if ((eeprom->offset + eeprom->len) > (XENA_EEPROM_SPACE))
5826 		eeprom->len = XENA_EEPROM_SPACE - eeprom->offset;
5827 
5828 	for (i = 0; i < eeprom->len; i += 4) {
5829 		if (read_eeprom(sp, (eeprom->offset + i), &data)) {
5830 			DBG_PRINT(ERR_DBG, "Read of EEPROM failed\n");
5831 			return -EFAULT;
5832 		}
5833 		valid = INV(data);
5834 		memcpy((data_buf + i), &valid, 4);
5835 	}
5836 	return 0;
5837 }
5838 
5839 /**
5840  *  s2io_ethtool_seeprom - tries to write the user provided value in Eeprom
5841  *  @sp : private member of the device structure, which is a pointer to the
5842  *  s2io_nic structure.
5843  *  @eeprom : pointer to the user level structure provided by ethtool,
5844  *  containing all relevant information.
5845  *  @data_buf ; user defined value to be written into Eeprom.
5846  *  Description:
5847  *  Tries to write the user provided value in the Eeprom, at the offset
5848  *  given by the user.
5849  *  Return value:
5850  *  0 on success, -EFAULT on failure.
5851  */
5852 
5853 static int s2io_ethtool_seeprom(struct net_device *dev,
5854 				struct ethtool_eeprom *eeprom,
5855 				u8 *data_buf)
5856 {
5857 	int len = eeprom->len, cnt = 0;
5858 	u64 valid = 0, data;
5859 	struct s2io_nic *sp = netdev_priv(dev);
5860 
5861 	if (eeprom->magic != (sp->pdev->vendor | (sp->pdev->device << 16))) {
5862 		DBG_PRINT(ERR_DBG,
5863 			  "ETHTOOL_WRITE_EEPROM Err: "
5864 			  "Magic value is wrong, it is 0x%x should be 0x%x\n",
5865 			  (sp->pdev->vendor | (sp->pdev->device << 16)),
5866 			  eeprom->magic);
5867 		return -EFAULT;
5868 	}
5869 
5870 	while (len) {
5871 		data = (u32)data_buf[cnt] & 0x000000FF;
5872 		if (data)
5873 			valid = (u32)(data << 24);
5874 		else
5875 			valid = data;
5876 
5877 		if (write_eeprom(sp, (eeprom->offset + cnt), valid, 0)) {
5878 			DBG_PRINT(ERR_DBG,
5879 				  "ETHTOOL_WRITE_EEPROM Err: "
5880 				  "Cannot write into the specified offset\n");
5881 			return -EFAULT;
5882 		}
5883 		cnt++;
5884 		len--;
5885 	}
5886 
5887 	return 0;
5888 }
5889 
5890 /**
5891  * s2io_register_test - reads and writes into all clock domains.
5892  * @sp : private member of the device structure, which is a pointer to the
5893  * s2io_nic structure.
5894  * @data : variable that returns the result of each of the test conducted b
5895  * by the driver.
5896  * Description:
5897  * Read and write into all clock domains. The NIC has 3 clock domains,
5898  * see that registers in all the three regions are accessible.
5899  * Return value:
5900  * 0 on success.
5901  */
5902 
5903 static int s2io_register_test(struct s2io_nic *sp, uint64_t *data)
5904 {
5905 	struct XENA_dev_config __iomem *bar0 = sp->bar0;
5906 	u64 val64 = 0, exp_val;
5907 	int fail = 0;
5908 
5909 	val64 = readq(&bar0->pif_rd_swapper_fb);
5910 	if (val64 != 0x123456789abcdefULL) {
5911 		fail = 1;
5912 		DBG_PRINT(INFO_DBG, "Read Test level %d fails\n", 1);
5913 	}
5914 
5915 	val64 = readq(&bar0->rmac_pause_cfg);
5916 	if (val64 != 0xc000ffff00000000ULL) {
5917 		fail = 1;
5918 		DBG_PRINT(INFO_DBG, "Read Test level %d fails\n", 2);
5919 	}
5920 
5921 	val64 = readq(&bar0->rx_queue_cfg);
5922 	if (sp->device_type == XFRAME_II_DEVICE)
5923 		exp_val = 0x0404040404040404ULL;
5924 	else
5925 		exp_val = 0x0808080808080808ULL;
5926 	if (val64 != exp_val) {
5927 		fail = 1;
5928 		DBG_PRINT(INFO_DBG, "Read Test level %d fails\n", 3);
5929 	}
5930 
5931 	val64 = readq(&bar0->xgxs_efifo_cfg);
5932 	if (val64 != 0x000000001923141EULL) {
5933 		fail = 1;
5934 		DBG_PRINT(INFO_DBG, "Read Test level %d fails\n", 4);
5935 	}
5936 
5937 	val64 = 0x5A5A5A5A5A5A5A5AULL;
5938 	writeq(val64, &bar0->xmsi_data);
5939 	val64 = readq(&bar0->xmsi_data);
5940 	if (val64 != 0x5A5A5A5A5A5A5A5AULL) {
5941 		fail = 1;
5942 		DBG_PRINT(ERR_DBG, "Write Test level %d fails\n", 1);
5943 	}
5944 
5945 	val64 = 0xA5A5A5A5A5A5A5A5ULL;
5946 	writeq(val64, &bar0->xmsi_data);
5947 	val64 = readq(&bar0->xmsi_data);
5948 	if (val64 != 0xA5A5A5A5A5A5A5A5ULL) {
5949 		fail = 1;
5950 		DBG_PRINT(ERR_DBG, "Write Test level %d fails\n", 2);
5951 	}
5952 
5953 	*data = fail;
5954 	return fail;
5955 }
5956 
5957 /**
5958  * s2io_eeprom_test - to verify that EEprom in the xena can be programmed.
5959  * @sp : private member of the device structure, which is a pointer to the
5960  * s2io_nic structure.
5961  * @data:variable that returns the result of each of the test conducted by
5962  * the driver.
5963  * Description:
5964  * Verify that EEPROM in the xena can be programmed using I2C_CONTROL
5965  * register.
5966  * Return value:
5967  * 0 on success.
5968  */
5969 
5970 static int s2io_eeprom_test(struct s2io_nic *sp, uint64_t *data)
5971 {
5972 	int fail = 0;
5973 	u64 ret_data, org_4F0, org_7F0;
5974 	u8 saved_4F0 = 0, saved_7F0 = 0;
5975 	struct net_device *dev = sp->dev;
5976 
5977 	/* Test Write Error at offset 0 */
5978 	/* Note that SPI interface allows write access to all areas
5979 	 * of EEPROM. Hence doing all negative testing only for Xframe I.
5980 	 */
5981 	if (sp->device_type == XFRAME_I_DEVICE)
5982 		if (!write_eeprom(sp, 0, 0, 3))
5983 			fail = 1;
5984 
5985 	/* Save current values at offsets 0x4F0 and 0x7F0 */
5986 	if (!read_eeprom(sp, 0x4F0, &org_4F0))
5987 		saved_4F0 = 1;
5988 	if (!read_eeprom(sp, 0x7F0, &org_7F0))
5989 		saved_7F0 = 1;
5990 
5991 	/* Test Write at offset 4f0 */
5992 	if (write_eeprom(sp, 0x4F0, 0x012345, 3))
5993 		fail = 1;
5994 	if (read_eeprom(sp, 0x4F0, &ret_data))
5995 		fail = 1;
5996 
5997 	if (ret_data != 0x012345) {
5998 		DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x4F0. "
5999 			  "Data written %llx Data read %llx\n",
6000 			  dev->name, (unsigned long long)0x12345,
6001 			  (unsigned long long)ret_data);
6002 		fail = 1;
6003 	}
6004 
6005 	/* Reset the EEPROM data go FFFF */
6006 	write_eeprom(sp, 0x4F0, 0xFFFFFF, 3);
6007 
6008 	/* Test Write Request Error at offset 0x7c */
6009 	if (sp->device_type == XFRAME_I_DEVICE)
6010 		if (!write_eeprom(sp, 0x07C, 0, 3))
6011 			fail = 1;
6012 
6013 	/* Test Write Request at offset 0x7f0 */
6014 	if (write_eeprom(sp, 0x7F0, 0x012345, 3))
6015 		fail = 1;
6016 	if (read_eeprom(sp, 0x7F0, &ret_data))
6017 		fail = 1;
6018 
6019 	if (ret_data != 0x012345) {
6020 		DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x7F0. "
6021 			  "Data written %llx Data read %llx\n",
6022 			  dev->name, (unsigned long long)0x12345,
6023 			  (unsigned long long)ret_data);
6024 		fail = 1;
6025 	}
6026 
6027 	/* Reset the EEPROM data go FFFF */
6028 	write_eeprom(sp, 0x7F0, 0xFFFFFF, 3);
6029 
6030 	if (sp->device_type == XFRAME_I_DEVICE) {
6031 		/* Test Write Error at offset 0x80 */
6032 		if (!write_eeprom(sp, 0x080, 0, 3))
6033 			fail = 1;
6034 
6035 		/* Test Write Error at offset 0xfc */
6036 		if (!write_eeprom(sp, 0x0FC, 0, 3))
6037 			fail = 1;
6038 
6039 		/* Test Write Error at offset 0x100 */
6040 		if (!write_eeprom(sp, 0x100, 0, 3))
6041 			fail = 1;
6042 
6043 		/* Test Write Error at offset 4ec */
6044 		if (!write_eeprom(sp, 0x4EC, 0, 3))
6045 			fail = 1;
6046 	}
6047 
6048 	/* Restore values at offsets 0x4F0 and 0x7F0 */
6049 	if (saved_4F0)
6050 		write_eeprom(sp, 0x4F0, org_4F0, 3);
6051 	if (saved_7F0)
6052 		write_eeprom(sp, 0x7F0, org_7F0, 3);
6053 
6054 	*data = fail;
6055 	return fail;
6056 }
6057 
6058 /**
6059  * s2io_bist_test - invokes the MemBist test of the card .
6060  * @sp : private member of the device structure, which is a pointer to the
6061  * s2io_nic structure.
6062  * @data:variable that returns the result of each of the test conducted by
6063  * the driver.
6064  * Description:
6065  * This invokes the MemBist test of the card. We give around
6066  * 2 secs time for the Test to complete. If it's still not complete
6067  * within this peiod, we consider that the test failed.
6068  * Return value:
6069  * 0 on success and -1 on failure.
6070  */
6071 
6072 static int s2io_bist_test(struct s2io_nic *sp, uint64_t *data)
6073 {
6074 	u8 bist = 0;
6075 	int cnt = 0, ret = -1;
6076 
6077 	pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
6078 	bist |= PCI_BIST_START;
6079 	pci_write_config_word(sp->pdev, PCI_BIST, bist);
6080 
6081 	while (cnt < 20) {
6082 		pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
6083 		if (!(bist & PCI_BIST_START)) {
6084 			*data = (bist & PCI_BIST_CODE_MASK);
6085 			ret = 0;
6086 			break;
6087 		}
6088 		msleep(100);
6089 		cnt++;
6090 	}
6091 
6092 	return ret;
6093 }
6094 
6095 /**
6096  * s2io_link_test - verifies the link state of the nic
6097  * @sp ; private member of the device structure, which is a pointer to the
6098  * s2io_nic structure.
6099  * @data: variable that returns the result of each of the test conducted by
6100  * the driver.
6101  * Description:
6102  * The function verifies the link state of the NIC and updates the input
6103  * argument 'data' appropriately.
6104  * Return value:
6105  * 0 on success.
6106  */
6107 
6108 static int s2io_link_test(struct s2io_nic *sp, uint64_t *data)
6109 {
6110 	struct XENA_dev_config __iomem *bar0 = sp->bar0;
6111 	u64 val64;
6112 
6113 	val64 = readq(&bar0->adapter_status);
6114 	if (!(LINK_IS_UP(val64)))
6115 		*data = 1;
6116 	else
6117 		*data = 0;
6118 
6119 	return *data;
6120 }
6121 
6122 /**
6123  * s2io_rldram_test - offline test for access to the RldRam chip on the NIC
6124  * @sp: private member of the device structure, which is a pointer to the
6125  * s2io_nic structure.
6126  * @data: variable that returns the result of each of the test
6127  * conducted by the driver.
6128  * Description:
6129  *  This is one of the offline test that tests the read and write
6130  *  access to the RldRam chip on the NIC.
6131  * Return value:
6132  *  0 on success.
6133  */
6134 
6135 static int s2io_rldram_test(struct s2io_nic *sp, uint64_t *data)
6136 {
6137 	struct XENA_dev_config __iomem *bar0 = sp->bar0;
6138 	u64 val64;
6139 	int cnt, iteration = 0, test_fail = 0;
6140 
6141 	val64 = readq(&bar0->adapter_control);
6142 	val64 &= ~ADAPTER_ECC_EN;
6143 	writeq(val64, &bar0->adapter_control);
6144 
6145 	val64 = readq(&bar0->mc_rldram_test_ctrl);
6146 	val64 |= MC_RLDRAM_TEST_MODE;
6147 	SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
6148 
6149 	val64 = readq(&bar0->mc_rldram_mrs);
6150 	val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE;
6151 	SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
6152 
6153 	val64 |= MC_RLDRAM_MRS_ENABLE;
6154 	SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
6155 
6156 	while (iteration < 2) {
6157 		val64 = 0x55555555aaaa0000ULL;
6158 		if (iteration == 1)
6159 			val64 ^= 0xFFFFFFFFFFFF0000ULL;
6160 		writeq(val64, &bar0->mc_rldram_test_d0);
6161 
6162 		val64 = 0xaaaa5a5555550000ULL;
6163 		if (iteration == 1)
6164 			val64 ^= 0xFFFFFFFFFFFF0000ULL;
6165 		writeq(val64, &bar0->mc_rldram_test_d1);
6166 
6167 		val64 = 0x55aaaaaaaa5a0000ULL;
6168 		if (iteration == 1)
6169 			val64 ^= 0xFFFFFFFFFFFF0000ULL;
6170 		writeq(val64, &bar0->mc_rldram_test_d2);
6171 
6172 		val64 = (u64) (0x0000003ffffe0100ULL);
6173 		writeq(val64, &bar0->mc_rldram_test_add);
6174 
6175 		val64 = MC_RLDRAM_TEST_MODE |
6176 			MC_RLDRAM_TEST_WRITE |
6177 			MC_RLDRAM_TEST_GO;
6178 		SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
6179 
6180 		for (cnt = 0; cnt < 5; cnt++) {
6181 			val64 = readq(&bar0->mc_rldram_test_ctrl);
6182 			if (val64 & MC_RLDRAM_TEST_DONE)
6183 				break;
6184 			msleep(200);
6185 		}
6186 
6187 		if (cnt == 5)
6188 			break;
6189 
6190 		val64 = MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_GO;
6191 		SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
6192 
6193 		for (cnt = 0; cnt < 5; cnt++) {
6194 			val64 = readq(&bar0->mc_rldram_test_ctrl);
6195 			if (val64 & MC_RLDRAM_TEST_DONE)
6196 				break;
6197 			msleep(500);
6198 		}
6199 
6200 		if (cnt == 5)
6201 			break;
6202 
6203 		val64 = readq(&bar0->mc_rldram_test_ctrl);
6204 		if (!(val64 & MC_RLDRAM_TEST_PASS))
6205 			test_fail = 1;
6206 
6207 		iteration++;
6208 	}
6209 
6210 	*data = test_fail;
6211 
6212 	/* Bring the adapter out of test mode */
6213 	SPECIAL_REG_WRITE(0, &bar0->mc_rldram_test_ctrl, LF);
6214 
6215 	return test_fail;
6216 }
6217 
6218 /**
6219  *  s2io_ethtool_test - conducts 6 tsets to determine the health of card.
6220  *  @sp : private member of the device structure, which is a pointer to the
6221  *  s2io_nic structure.
6222  *  @ethtest : pointer to a ethtool command specific structure that will be
6223  *  returned to the user.
6224  *  @data : variable that returns the result of each of the test
6225  * conducted by the driver.
6226  * Description:
6227  *  This function conducts 6 tests ( 4 offline and 2 online) to determine
6228  *  the health of the card.
6229  * Return value:
6230  *  void
6231  */
6232 
6233 static void s2io_ethtool_test(struct net_device *dev,
6234 			      struct ethtool_test *ethtest,
6235 			      uint64_t *data)
6236 {
6237 	struct s2io_nic *sp = netdev_priv(dev);
6238 	int orig_state = netif_running(sp->dev);
6239 
6240 	if (ethtest->flags == ETH_TEST_FL_OFFLINE) {
6241 		/* Offline Tests. */
6242 		if (orig_state)
6243 			s2io_close(sp->dev);
6244 
6245 		if (s2io_register_test(sp, &data[0]))
6246 			ethtest->flags |= ETH_TEST_FL_FAILED;
6247 
6248 		s2io_reset(sp);
6249 
6250 		if (s2io_rldram_test(sp, &data[3]))
6251 			ethtest->flags |= ETH_TEST_FL_FAILED;
6252 
6253 		s2io_reset(sp);
6254 
6255 		if (s2io_eeprom_test(sp, &data[1]))
6256 			ethtest->flags |= ETH_TEST_FL_FAILED;
6257 
6258 		if (s2io_bist_test(sp, &data[4]))
6259 			ethtest->flags |= ETH_TEST_FL_FAILED;
6260 
6261 		if (orig_state)
6262 			s2io_open(sp->dev);
6263 
6264 		data[2] = 0;
6265 	} else {
6266 		/* Online Tests. */
6267 		if (!orig_state) {
6268 			DBG_PRINT(ERR_DBG, "%s: is not up, cannot run test\n",
6269 				  dev->name);
6270 			data[0] = -1;
6271 			data[1] = -1;
6272 			data[2] = -1;
6273 			data[3] = -1;
6274 			data[4] = -1;
6275 		}
6276 
6277 		if (s2io_link_test(sp, &data[2]))
6278 			ethtest->flags |= ETH_TEST_FL_FAILED;
6279 
6280 		data[0] = 0;
6281 		data[1] = 0;
6282 		data[3] = 0;
6283 		data[4] = 0;
6284 	}
6285 }
6286 
6287 static void s2io_get_ethtool_stats(struct net_device *dev,
6288 				   struct ethtool_stats *estats,
6289 				   u64 *tmp_stats)
6290 {
6291 	int i = 0, k;
6292 	struct s2io_nic *sp = netdev_priv(dev);
6293 	struct stat_block *stats = sp->mac_control.stats_info;
6294 	struct swStat *swstats = &stats->sw_stat;
6295 	struct xpakStat *xstats = &stats->xpak_stat;
6296 
6297 	s2io_updt_stats(sp);
6298 	tmp_stats[i++] =
6299 		(u64)le32_to_cpu(stats->tmac_frms_oflow) << 32  |
6300 		le32_to_cpu(stats->tmac_frms);
6301 	tmp_stats[i++] =
6302 		(u64)le32_to_cpu(stats->tmac_data_octets_oflow) << 32 |
6303 		le32_to_cpu(stats->tmac_data_octets);
6304 	tmp_stats[i++] = le64_to_cpu(stats->tmac_drop_frms);
6305 	tmp_stats[i++] =
6306 		(u64)le32_to_cpu(stats->tmac_mcst_frms_oflow) << 32 |
6307 		le32_to_cpu(stats->tmac_mcst_frms);
6308 	tmp_stats[i++] =
6309 		(u64)le32_to_cpu(stats->tmac_bcst_frms_oflow) << 32 |
6310 		le32_to_cpu(stats->tmac_bcst_frms);
6311 	tmp_stats[i++] = le64_to_cpu(stats->tmac_pause_ctrl_frms);
6312 	tmp_stats[i++] =
6313 		(u64)le32_to_cpu(stats->tmac_ttl_octets_oflow) << 32 |
6314 		le32_to_cpu(stats->tmac_ttl_octets);
6315 	tmp_stats[i++] =
6316 		(u64)le32_to_cpu(stats->tmac_ucst_frms_oflow) << 32 |
6317 		le32_to_cpu(stats->tmac_ucst_frms);
6318 	tmp_stats[i++] =
6319 		(u64)le32_to_cpu(stats->tmac_nucst_frms_oflow) << 32 |
6320 		le32_to_cpu(stats->tmac_nucst_frms);
6321 	tmp_stats[i++] =
6322 		(u64)le32_to_cpu(stats->tmac_any_err_frms_oflow) << 32 |
6323 		le32_to_cpu(stats->tmac_any_err_frms);
6324 	tmp_stats[i++] = le64_to_cpu(stats->tmac_ttl_less_fb_octets);
6325 	tmp_stats[i++] = le64_to_cpu(stats->tmac_vld_ip_octets);
6326 	tmp_stats[i++] =
6327 		(u64)le32_to_cpu(stats->tmac_vld_ip_oflow) << 32 |
6328 		le32_to_cpu(stats->tmac_vld_ip);
6329 	tmp_stats[i++] =
6330 		(u64)le32_to_cpu(stats->tmac_drop_ip_oflow) << 32 |
6331 		le32_to_cpu(stats->tmac_drop_ip);
6332 	tmp_stats[i++] =
6333 		(u64)le32_to_cpu(stats->tmac_icmp_oflow) << 32 |
6334 		le32_to_cpu(stats->tmac_icmp);
6335 	tmp_stats[i++] =
6336 		(u64)le32_to_cpu(stats->tmac_rst_tcp_oflow) << 32 |
6337 		le32_to_cpu(stats->tmac_rst_tcp);
6338 	tmp_stats[i++] = le64_to_cpu(stats->tmac_tcp);
6339 	tmp_stats[i++] = (u64)le32_to_cpu(stats->tmac_udp_oflow) << 32 |
6340 		le32_to_cpu(stats->tmac_udp);
6341 	tmp_stats[i++] =
6342 		(u64)le32_to_cpu(stats->rmac_vld_frms_oflow) << 32 |
6343 		le32_to_cpu(stats->rmac_vld_frms);
6344 	tmp_stats[i++] =
6345 		(u64)le32_to_cpu(stats->rmac_data_octets_oflow) << 32 |
6346 		le32_to_cpu(stats->rmac_data_octets);
6347 	tmp_stats[i++] = le64_to_cpu(stats->rmac_fcs_err_frms);
6348 	tmp_stats[i++] = le64_to_cpu(stats->rmac_drop_frms);
6349 	tmp_stats[i++] =
6350 		(u64)le32_to_cpu(stats->rmac_vld_mcst_frms_oflow) << 32 |
6351 		le32_to_cpu(stats->rmac_vld_mcst_frms);
6352 	tmp_stats[i++] =
6353 		(u64)le32_to_cpu(stats->rmac_vld_bcst_frms_oflow) << 32 |
6354 		le32_to_cpu(stats->rmac_vld_bcst_frms);
6355 	tmp_stats[i++] = le32_to_cpu(stats->rmac_in_rng_len_err_frms);
6356 	tmp_stats[i++] = le32_to_cpu(stats->rmac_out_rng_len_err_frms);
6357 	tmp_stats[i++] = le64_to_cpu(stats->rmac_long_frms);
6358 	tmp_stats[i++] = le64_to_cpu(stats->rmac_pause_ctrl_frms);
6359 	tmp_stats[i++] = le64_to_cpu(stats->rmac_unsup_ctrl_frms);
6360 	tmp_stats[i++] =
6361 		(u64)le32_to_cpu(stats->rmac_ttl_octets_oflow) << 32 |
6362 		le32_to_cpu(stats->rmac_ttl_octets);
6363 	tmp_stats[i++] =
6364 		(u64)le32_to_cpu(stats->rmac_accepted_ucst_frms_oflow) << 32
6365 		| le32_to_cpu(stats->rmac_accepted_ucst_frms);
6366 	tmp_stats[i++] =
6367 		(u64)le32_to_cpu(stats->rmac_accepted_nucst_frms_oflow)
6368 		<< 32 | le32_to_cpu(stats->rmac_accepted_nucst_frms);
6369 	tmp_stats[i++] =
6370 		(u64)le32_to_cpu(stats->rmac_discarded_frms_oflow) << 32 |
6371 		le32_to_cpu(stats->rmac_discarded_frms);
6372 	tmp_stats[i++] =
6373 		(u64)le32_to_cpu(stats->rmac_drop_events_oflow)
6374 		<< 32 | le32_to_cpu(stats->rmac_drop_events);
6375 	tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_less_fb_octets);
6376 	tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_frms);
6377 	tmp_stats[i++] =
6378 		(u64)le32_to_cpu(stats->rmac_usized_frms_oflow) << 32 |
6379 		le32_to_cpu(stats->rmac_usized_frms);
6380 	tmp_stats[i++] =
6381 		(u64)le32_to_cpu(stats->rmac_osized_frms_oflow) << 32 |
6382 		le32_to_cpu(stats->rmac_osized_frms);
6383 	tmp_stats[i++] =
6384 		(u64)le32_to_cpu(stats->rmac_frag_frms_oflow) << 32 |
6385 		le32_to_cpu(stats->rmac_frag_frms);
6386 	tmp_stats[i++] =
6387 		(u64)le32_to_cpu(stats->rmac_jabber_frms_oflow) << 32 |
6388 		le32_to_cpu(stats->rmac_jabber_frms);
6389 	tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_64_frms);
6390 	tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_65_127_frms);
6391 	tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_128_255_frms);
6392 	tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_256_511_frms);
6393 	tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_512_1023_frms);
6394 	tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_1024_1518_frms);
6395 	tmp_stats[i++] =
6396 		(u64)le32_to_cpu(stats->rmac_ip_oflow) << 32 |
6397 		le32_to_cpu(stats->rmac_ip);
6398 	tmp_stats[i++] = le64_to_cpu(stats->rmac_ip_octets);
6399 	tmp_stats[i++] = le32_to_cpu(stats->rmac_hdr_err_ip);
6400 	tmp_stats[i++] =
6401 		(u64)le32_to_cpu(stats->rmac_drop_ip_oflow) << 32 |
6402 		le32_to_cpu(stats->rmac_drop_ip);
6403 	tmp_stats[i++] =
6404 		(u64)le32_to_cpu(stats->rmac_icmp_oflow) << 32 |
6405 		le32_to_cpu(stats->rmac_icmp);
6406 	tmp_stats[i++] = le64_to_cpu(stats->rmac_tcp);
6407 	tmp_stats[i++] =
6408 		(u64)le32_to_cpu(stats->rmac_udp_oflow) << 32 |
6409 		le32_to_cpu(stats->rmac_udp);
6410 	tmp_stats[i++] =
6411 		(u64)le32_to_cpu(stats->rmac_err_drp_udp_oflow) << 32 |
6412 		le32_to_cpu(stats->rmac_err_drp_udp);
6413 	tmp_stats[i++] = le64_to_cpu(stats->rmac_xgmii_err_sym);
6414 	tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q0);
6415 	tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q1);
6416 	tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q2);
6417 	tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q3);
6418 	tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q4);
6419 	tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q5);
6420 	tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q6);
6421 	tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q7);
6422 	tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q0);
6423 	tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q1);
6424 	tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q2);
6425 	tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q3);
6426 	tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q4);
6427 	tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q5);
6428 	tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q6);
6429 	tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q7);
6430 	tmp_stats[i++] =
6431 		(u64)le32_to_cpu(stats->rmac_pause_cnt_oflow) << 32 |
6432 		le32_to_cpu(stats->rmac_pause_cnt);
6433 	tmp_stats[i++] = le64_to_cpu(stats->rmac_xgmii_data_err_cnt);
6434 	tmp_stats[i++] = le64_to_cpu(stats->rmac_xgmii_ctrl_err_cnt);
6435 	tmp_stats[i++] =
6436 		(u64)le32_to_cpu(stats->rmac_accepted_ip_oflow) << 32 |
6437 		le32_to_cpu(stats->rmac_accepted_ip);
6438 	tmp_stats[i++] = le32_to_cpu(stats->rmac_err_tcp);
6439 	tmp_stats[i++] = le32_to_cpu(stats->rd_req_cnt);
6440 	tmp_stats[i++] = le32_to_cpu(stats->new_rd_req_cnt);
6441 	tmp_stats[i++] = le32_to_cpu(stats->new_rd_req_rtry_cnt);
6442 	tmp_stats[i++] = le32_to_cpu(stats->rd_rtry_cnt);
6443 	tmp_stats[i++] = le32_to_cpu(stats->wr_rtry_rd_ack_cnt);
6444 	tmp_stats[i++] = le32_to_cpu(stats->wr_req_cnt);
6445 	tmp_stats[i++] = le32_to_cpu(stats->new_wr_req_cnt);
6446 	tmp_stats[i++] = le32_to_cpu(stats->new_wr_req_rtry_cnt);
6447 	tmp_stats[i++] = le32_to_cpu(stats->wr_rtry_cnt);
6448 	tmp_stats[i++] = le32_to_cpu(stats->wr_disc_cnt);
6449 	tmp_stats[i++] = le32_to_cpu(stats->rd_rtry_wr_ack_cnt);
6450 	tmp_stats[i++] = le32_to_cpu(stats->txp_wr_cnt);
6451 	tmp_stats[i++] = le32_to_cpu(stats->txd_rd_cnt);
6452 	tmp_stats[i++] = le32_to_cpu(stats->txd_wr_cnt);
6453 	tmp_stats[i++] = le32_to_cpu(stats->rxd_rd_cnt);
6454 	tmp_stats[i++] = le32_to_cpu(stats->rxd_wr_cnt);
6455 	tmp_stats[i++] = le32_to_cpu(stats->txf_rd_cnt);
6456 	tmp_stats[i++] = le32_to_cpu(stats->rxf_wr_cnt);
6457 
6458 	/* Enhanced statistics exist only for Hercules */
6459 	if (sp->device_type == XFRAME_II_DEVICE) {
6460 		tmp_stats[i++] =
6461 			le64_to_cpu(stats->rmac_ttl_1519_4095_frms);
6462 		tmp_stats[i++] =
6463 			le64_to_cpu(stats->rmac_ttl_4096_8191_frms);
6464 		tmp_stats[i++] =
6465 			le64_to_cpu(stats->rmac_ttl_8192_max_frms);
6466 		tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_gt_max_frms);
6467 		tmp_stats[i++] = le64_to_cpu(stats->rmac_osized_alt_frms);
6468 		tmp_stats[i++] = le64_to_cpu(stats->rmac_jabber_alt_frms);
6469 		tmp_stats[i++] = le64_to_cpu(stats->rmac_gt_max_alt_frms);
6470 		tmp_stats[i++] = le64_to_cpu(stats->rmac_vlan_frms);
6471 		tmp_stats[i++] = le32_to_cpu(stats->rmac_len_discard);
6472 		tmp_stats[i++] = le32_to_cpu(stats->rmac_fcs_discard);
6473 		tmp_stats[i++] = le32_to_cpu(stats->rmac_pf_discard);
6474 		tmp_stats[i++] = le32_to_cpu(stats->rmac_da_discard);
6475 		tmp_stats[i++] = le32_to_cpu(stats->rmac_red_discard);
6476 		tmp_stats[i++] = le32_to_cpu(stats->rmac_rts_discard);
6477 		tmp_stats[i++] = le32_to_cpu(stats->rmac_ingm_full_discard);
6478 		tmp_stats[i++] = le32_to_cpu(stats->link_fault_cnt);
6479 	}
6480 
6481 	tmp_stats[i++] = 0;
6482 	tmp_stats[i++] = swstats->single_ecc_errs;
6483 	tmp_stats[i++] = swstats->double_ecc_errs;
6484 	tmp_stats[i++] = swstats->parity_err_cnt;
6485 	tmp_stats[i++] = swstats->serious_err_cnt;
6486 	tmp_stats[i++] = swstats->soft_reset_cnt;
6487 	tmp_stats[i++] = swstats->fifo_full_cnt;
6488 	for (k = 0; k < MAX_RX_RINGS; k++)
6489 		tmp_stats[i++] = swstats->ring_full_cnt[k];
6490 	tmp_stats[i++] = xstats->alarm_transceiver_temp_high;
6491 	tmp_stats[i++] = xstats->alarm_transceiver_temp_low;
6492 	tmp_stats[i++] = xstats->alarm_laser_bias_current_high;
6493 	tmp_stats[i++] = xstats->alarm_laser_bias_current_low;
6494 	tmp_stats[i++] = xstats->alarm_laser_output_power_high;
6495 	tmp_stats[i++] = xstats->alarm_laser_output_power_low;
6496 	tmp_stats[i++] = xstats->warn_transceiver_temp_high;
6497 	tmp_stats[i++] = xstats->warn_transceiver_temp_low;
6498 	tmp_stats[i++] = xstats->warn_laser_bias_current_high;
6499 	tmp_stats[i++] = xstats->warn_laser_bias_current_low;
6500 	tmp_stats[i++] = xstats->warn_laser_output_power_high;
6501 	tmp_stats[i++] = xstats->warn_laser_output_power_low;
6502 	tmp_stats[i++] = swstats->clubbed_frms_cnt;
6503 	tmp_stats[i++] = swstats->sending_both;
6504 	tmp_stats[i++] = swstats->outof_sequence_pkts;
6505 	tmp_stats[i++] = swstats->flush_max_pkts;
6506 	if (swstats->num_aggregations) {
6507 		u64 tmp = swstats->sum_avg_pkts_aggregated;
6508 		int count = 0;
6509 		/*
6510 		 * Since 64-bit divide does not work on all platforms,
6511 		 * do repeated subtraction.
6512 		 */
6513 		while (tmp >= swstats->num_aggregations) {
6514 			tmp -= swstats->num_aggregations;
6515 			count++;
6516 		}
6517 		tmp_stats[i++] = count;
6518 	} else
6519 		tmp_stats[i++] = 0;
6520 	tmp_stats[i++] = swstats->mem_alloc_fail_cnt;
6521 	tmp_stats[i++] = swstats->pci_map_fail_cnt;
6522 	tmp_stats[i++] = swstats->watchdog_timer_cnt;
6523 	tmp_stats[i++] = swstats->mem_allocated;
6524 	tmp_stats[i++] = swstats->mem_freed;
6525 	tmp_stats[i++] = swstats->link_up_cnt;
6526 	tmp_stats[i++] = swstats->link_down_cnt;
6527 	tmp_stats[i++] = swstats->link_up_time;
6528 	tmp_stats[i++] = swstats->link_down_time;
6529 
6530 	tmp_stats[i++] = swstats->tx_buf_abort_cnt;
6531 	tmp_stats[i++] = swstats->tx_desc_abort_cnt;
6532 	tmp_stats[i++] = swstats->tx_parity_err_cnt;
6533 	tmp_stats[i++] = swstats->tx_link_loss_cnt;
6534 	tmp_stats[i++] = swstats->tx_list_proc_err_cnt;
6535 
6536 	tmp_stats[i++] = swstats->rx_parity_err_cnt;
6537 	tmp_stats[i++] = swstats->rx_abort_cnt;
6538 	tmp_stats[i++] = swstats->rx_parity_abort_cnt;
6539 	tmp_stats[i++] = swstats->rx_rda_fail_cnt;
6540 	tmp_stats[i++] = swstats->rx_unkn_prot_cnt;
6541 	tmp_stats[i++] = swstats->rx_fcs_err_cnt;
6542 	tmp_stats[i++] = swstats->rx_buf_size_err_cnt;
6543 	tmp_stats[i++] = swstats->rx_rxd_corrupt_cnt;
6544 	tmp_stats[i++] = swstats->rx_unkn_err_cnt;
6545 	tmp_stats[i++] = swstats->tda_err_cnt;
6546 	tmp_stats[i++] = swstats->pfc_err_cnt;
6547 	tmp_stats[i++] = swstats->pcc_err_cnt;
6548 	tmp_stats[i++] = swstats->tti_err_cnt;
6549 	tmp_stats[i++] = swstats->tpa_err_cnt;
6550 	tmp_stats[i++] = swstats->sm_err_cnt;
6551 	tmp_stats[i++] = swstats->lso_err_cnt;
6552 	tmp_stats[i++] = swstats->mac_tmac_err_cnt;
6553 	tmp_stats[i++] = swstats->mac_rmac_err_cnt;
6554 	tmp_stats[i++] = swstats->xgxs_txgxs_err_cnt;
6555 	tmp_stats[i++] = swstats->xgxs_rxgxs_err_cnt;
6556 	tmp_stats[i++] = swstats->rc_err_cnt;
6557 	tmp_stats[i++] = swstats->prc_pcix_err_cnt;
6558 	tmp_stats[i++] = swstats->rpa_err_cnt;
6559 	tmp_stats[i++] = swstats->rda_err_cnt;
6560 	tmp_stats[i++] = swstats->rti_err_cnt;
6561 	tmp_stats[i++] = swstats->mc_err_cnt;
6562 }
6563 
6564 static int s2io_ethtool_get_regs_len(struct net_device *dev)
6565 {
6566 	return XENA_REG_SPACE;
6567 }
6568 
6569 
6570 static int s2io_get_eeprom_len(struct net_device *dev)
6571 {
6572 	return XENA_EEPROM_SPACE;
6573 }
6574 
6575 static int s2io_get_sset_count(struct net_device *dev, int sset)
6576 {
6577 	struct s2io_nic *sp = netdev_priv(dev);
6578 
6579 	switch (sset) {
6580 	case ETH_SS_TEST:
6581 		return S2IO_TEST_LEN;
6582 	case ETH_SS_STATS:
6583 		switch (sp->device_type) {
6584 		case XFRAME_I_DEVICE:
6585 			return XFRAME_I_STAT_LEN;
6586 		case XFRAME_II_DEVICE:
6587 			return XFRAME_II_STAT_LEN;
6588 		default:
6589 			return 0;
6590 		}
6591 	default:
6592 		return -EOPNOTSUPP;
6593 	}
6594 }
6595 
6596 static void s2io_ethtool_get_strings(struct net_device *dev,
6597 				     u32 stringset, u8 *data)
6598 {
6599 	int stat_size = 0;
6600 	struct s2io_nic *sp = netdev_priv(dev);
6601 
6602 	switch (stringset) {
6603 	case ETH_SS_TEST:
6604 		memcpy(data, s2io_gstrings, S2IO_STRINGS_LEN);
6605 		break;
6606 	case ETH_SS_STATS:
6607 		stat_size = sizeof(ethtool_xena_stats_keys);
6608 		memcpy(data, &ethtool_xena_stats_keys, stat_size);
6609 		if (sp->device_type == XFRAME_II_DEVICE) {
6610 			memcpy(data + stat_size,
6611 			       &ethtool_enhanced_stats_keys,
6612 			       sizeof(ethtool_enhanced_stats_keys));
6613 			stat_size += sizeof(ethtool_enhanced_stats_keys);
6614 		}
6615 
6616 		memcpy(data + stat_size, &ethtool_driver_stats_keys,
6617 		       sizeof(ethtool_driver_stats_keys));
6618 	}
6619 }
6620 
6621 static int s2io_set_features(struct net_device *dev, netdev_features_t features)
6622 {
6623 	struct s2io_nic *sp = netdev_priv(dev);
6624 	netdev_features_t changed = (features ^ dev->features) & NETIF_F_LRO;
6625 
6626 	if (changed && netif_running(dev)) {
6627 		int rc;
6628 
6629 		s2io_stop_all_tx_queue(sp);
6630 		s2io_card_down(sp);
6631 		dev->features = features;
6632 		rc = s2io_card_up(sp);
6633 		if (rc)
6634 			s2io_reset(sp);
6635 		else
6636 			s2io_start_all_tx_queue(sp);
6637 
6638 		return rc ? rc : 1;
6639 	}
6640 
6641 	return 0;
6642 }
6643 
6644 static const struct ethtool_ops netdev_ethtool_ops = {
6645 	.get_settings = s2io_ethtool_gset,
6646 	.set_settings = s2io_ethtool_sset,
6647 	.get_drvinfo = s2io_ethtool_gdrvinfo,
6648 	.get_regs_len = s2io_ethtool_get_regs_len,
6649 	.get_regs = s2io_ethtool_gregs,
6650 	.get_link = ethtool_op_get_link,
6651 	.get_eeprom_len = s2io_get_eeprom_len,
6652 	.get_eeprom = s2io_ethtool_geeprom,
6653 	.set_eeprom = s2io_ethtool_seeprom,
6654 	.get_ringparam = s2io_ethtool_gringparam,
6655 	.get_pauseparam = s2io_ethtool_getpause_data,
6656 	.set_pauseparam = s2io_ethtool_setpause_data,
6657 	.self_test = s2io_ethtool_test,
6658 	.get_strings = s2io_ethtool_get_strings,
6659 	.set_phys_id = s2io_ethtool_set_led,
6660 	.get_ethtool_stats = s2io_get_ethtool_stats,
6661 	.get_sset_count = s2io_get_sset_count,
6662 };
6663 
6664 /**
6665  *  s2io_ioctl - Entry point for the Ioctl
6666  *  @dev :  Device pointer.
6667  *  @ifr :  An IOCTL specefic structure, that can contain a pointer to
6668  *  a proprietary structure used to pass information to the driver.
6669  *  @cmd :  This is used to distinguish between the different commands that
6670  *  can be passed to the IOCTL functions.
6671  *  Description:
6672  *  Currently there are no special functionality supported in IOCTL, hence
6673  *  function always return EOPNOTSUPPORTED
6674  */
6675 
6676 static int s2io_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
6677 {
6678 	return -EOPNOTSUPP;
6679 }
6680 
6681 /**
6682  *  s2io_change_mtu - entry point to change MTU size for the device.
6683  *   @dev : device pointer.
6684  *   @new_mtu : the new MTU size for the device.
6685  *   Description: A driver entry point to change MTU size for the device.
6686  *   Before changing the MTU the device must be stopped.
6687  *  Return value:
6688  *   0 on success and an appropriate (-)ve integer as defined in errno.h
6689  *   file on failure.
6690  */
6691 
6692 static int s2io_change_mtu(struct net_device *dev, int new_mtu)
6693 {
6694 	struct s2io_nic *sp = netdev_priv(dev);
6695 	int ret = 0;
6696 
6697 	if ((new_mtu < MIN_MTU) || (new_mtu > S2IO_JUMBO_SIZE)) {
6698 		DBG_PRINT(ERR_DBG, "%s: MTU size is invalid.\n", dev->name);
6699 		return -EPERM;
6700 	}
6701 
6702 	dev->mtu = new_mtu;
6703 	if (netif_running(dev)) {
6704 		s2io_stop_all_tx_queue(sp);
6705 		s2io_card_down(sp);
6706 		ret = s2io_card_up(sp);
6707 		if (ret) {
6708 			DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n",
6709 				  __func__);
6710 			return ret;
6711 		}
6712 		s2io_wake_all_tx_queue(sp);
6713 	} else { /* Device is down */
6714 		struct XENA_dev_config __iomem *bar0 = sp->bar0;
6715 		u64 val64 = new_mtu;
6716 
6717 		writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
6718 	}
6719 
6720 	return ret;
6721 }
6722 
6723 /**
6724  * s2io_set_link - Set the LInk status
6725  * @data: long pointer to device private structue
6726  * Description: Sets the link status for the adapter
6727  */
6728 
6729 static void s2io_set_link(struct work_struct *work)
6730 {
6731 	struct s2io_nic *nic = container_of(work, struct s2io_nic,
6732 					    set_link_task);
6733 	struct net_device *dev = nic->dev;
6734 	struct XENA_dev_config __iomem *bar0 = nic->bar0;
6735 	register u64 val64;
6736 	u16 subid;
6737 
6738 	rtnl_lock();
6739 
6740 	if (!netif_running(dev))
6741 		goto out_unlock;
6742 
6743 	if (test_and_set_bit(__S2IO_STATE_LINK_TASK, &(nic->state))) {
6744 		/* The card is being reset, no point doing anything */
6745 		goto out_unlock;
6746 	}
6747 
6748 	subid = nic->pdev->subsystem_device;
6749 	if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
6750 		/*
6751 		 * Allow a small delay for the NICs self initiated
6752 		 * cleanup to complete.
6753 		 */
6754 		msleep(100);
6755 	}
6756 
6757 	val64 = readq(&bar0->adapter_status);
6758 	if (LINK_IS_UP(val64)) {
6759 		if (!(readq(&bar0->adapter_control) & ADAPTER_CNTL_EN)) {
6760 			if (verify_xena_quiescence(nic)) {
6761 				val64 = readq(&bar0->adapter_control);
6762 				val64 |= ADAPTER_CNTL_EN;
6763 				writeq(val64, &bar0->adapter_control);
6764 				if (CARDS_WITH_FAULTY_LINK_INDICATORS(
6765 					    nic->device_type, subid)) {
6766 					val64 = readq(&bar0->gpio_control);
6767 					val64 |= GPIO_CTRL_GPIO_0;
6768 					writeq(val64, &bar0->gpio_control);
6769 					val64 = readq(&bar0->gpio_control);
6770 				} else {
6771 					val64 |= ADAPTER_LED_ON;
6772 					writeq(val64, &bar0->adapter_control);
6773 				}
6774 				nic->device_enabled_once = true;
6775 			} else {
6776 				DBG_PRINT(ERR_DBG,
6777 					  "%s: Error: device is not Quiescent\n",
6778 					  dev->name);
6779 				s2io_stop_all_tx_queue(nic);
6780 			}
6781 		}
6782 		val64 = readq(&bar0->adapter_control);
6783 		val64 |= ADAPTER_LED_ON;
6784 		writeq(val64, &bar0->adapter_control);
6785 		s2io_link(nic, LINK_UP);
6786 	} else {
6787 		if (CARDS_WITH_FAULTY_LINK_INDICATORS(nic->device_type,
6788 						      subid)) {
6789 			val64 = readq(&bar0->gpio_control);
6790 			val64 &= ~GPIO_CTRL_GPIO_0;
6791 			writeq(val64, &bar0->gpio_control);
6792 			val64 = readq(&bar0->gpio_control);
6793 		}
6794 		/* turn off LED */
6795 		val64 = readq(&bar0->adapter_control);
6796 		val64 = val64 & (~ADAPTER_LED_ON);
6797 		writeq(val64, &bar0->adapter_control);
6798 		s2io_link(nic, LINK_DOWN);
6799 	}
6800 	clear_bit(__S2IO_STATE_LINK_TASK, &(nic->state));
6801 
6802 out_unlock:
6803 	rtnl_unlock();
6804 }
6805 
6806 static int set_rxd_buffer_pointer(struct s2io_nic *sp, struct RxD_t *rxdp,
6807 				  struct buffAdd *ba,
6808 				  struct sk_buff **skb, u64 *temp0, u64 *temp1,
6809 				  u64 *temp2, int size)
6810 {
6811 	struct net_device *dev = sp->dev;
6812 	struct swStat *stats = &sp->mac_control.stats_info->sw_stat;
6813 
6814 	if ((sp->rxd_mode == RXD_MODE_1) && (rxdp->Host_Control == 0)) {
6815 		struct RxD1 *rxdp1 = (struct RxD1 *)rxdp;
6816 		/* allocate skb */
6817 		if (*skb) {
6818 			DBG_PRINT(INFO_DBG, "SKB is not NULL\n");
6819 			/*
6820 			 * As Rx frame are not going to be processed,
6821 			 * using same mapped address for the Rxd
6822 			 * buffer pointer
6823 			 */
6824 			rxdp1->Buffer0_ptr = *temp0;
6825 		} else {
6826 			*skb = netdev_alloc_skb(dev, size);
6827 			if (!(*skb)) {
6828 				DBG_PRINT(INFO_DBG,
6829 					  "%s: Out of memory to allocate %s\n",
6830 					  dev->name, "1 buf mode SKBs");
6831 				stats->mem_alloc_fail_cnt++;
6832 				return -ENOMEM ;
6833 			}
6834 			stats->mem_allocated += (*skb)->truesize;
6835 			/* storing the mapped addr in a temp variable
6836 			 * such it will be used for next rxd whose
6837 			 * Host Control is NULL
6838 			 */
6839 			rxdp1->Buffer0_ptr = *temp0 =
6840 				pci_map_single(sp->pdev, (*skb)->data,
6841 					       size - NET_IP_ALIGN,
6842 					       PCI_DMA_FROMDEVICE);
6843 			if (pci_dma_mapping_error(sp->pdev, rxdp1->Buffer0_ptr))
6844 				goto memalloc_failed;
6845 			rxdp->Host_Control = (unsigned long) (*skb);
6846 		}
6847 	} else if ((sp->rxd_mode == RXD_MODE_3B) && (rxdp->Host_Control == 0)) {
6848 		struct RxD3 *rxdp3 = (struct RxD3 *)rxdp;
6849 		/* Two buffer Mode */
6850 		if (*skb) {
6851 			rxdp3->Buffer2_ptr = *temp2;
6852 			rxdp3->Buffer0_ptr = *temp0;
6853 			rxdp3->Buffer1_ptr = *temp1;
6854 		} else {
6855 			*skb = netdev_alloc_skb(dev, size);
6856 			if (!(*skb)) {
6857 				DBG_PRINT(INFO_DBG,
6858 					  "%s: Out of memory to allocate %s\n",
6859 					  dev->name,
6860 					  "2 buf mode SKBs");
6861 				stats->mem_alloc_fail_cnt++;
6862 				return -ENOMEM;
6863 			}
6864 			stats->mem_allocated += (*skb)->truesize;
6865 			rxdp3->Buffer2_ptr = *temp2 =
6866 				pci_map_single(sp->pdev, (*skb)->data,
6867 					       dev->mtu + 4,
6868 					       PCI_DMA_FROMDEVICE);
6869 			if (pci_dma_mapping_error(sp->pdev, rxdp3->Buffer2_ptr))
6870 				goto memalloc_failed;
6871 			rxdp3->Buffer0_ptr = *temp0 =
6872 				pci_map_single(sp->pdev, ba->ba_0, BUF0_LEN,
6873 					       PCI_DMA_FROMDEVICE);
6874 			if (pci_dma_mapping_error(sp->pdev,
6875 						  rxdp3->Buffer0_ptr)) {
6876 				pci_unmap_single(sp->pdev,
6877 						 (dma_addr_t)rxdp3->Buffer2_ptr,
6878 						 dev->mtu + 4,
6879 						 PCI_DMA_FROMDEVICE);
6880 				goto memalloc_failed;
6881 			}
6882 			rxdp->Host_Control = (unsigned long) (*skb);
6883 
6884 			/* Buffer-1 will be dummy buffer not used */
6885 			rxdp3->Buffer1_ptr = *temp1 =
6886 				pci_map_single(sp->pdev, ba->ba_1, BUF1_LEN,
6887 					       PCI_DMA_FROMDEVICE);
6888 			if (pci_dma_mapping_error(sp->pdev,
6889 						  rxdp3->Buffer1_ptr)) {
6890 				pci_unmap_single(sp->pdev,
6891 						 (dma_addr_t)rxdp3->Buffer0_ptr,
6892 						 BUF0_LEN, PCI_DMA_FROMDEVICE);
6893 				pci_unmap_single(sp->pdev,
6894 						 (dma_addr_t)rxdp3->Buffer2_ptr,
6895 						 dev->mtu + 4,
6896 						 PCI_DMA_FROMDEVICE);
6897 				goto memalloc_failed;
6898 			}
6899 		}
6900 	}
6901 	return 0;
6902 
6903 memalloc_failed:
6904 	stats->pci_map_fail_cnt++;
6905 	stats->mem_freed += (*skb)->truesize;
6906 	dev_kfree_skb(*skb);
6907 	return -ENOMEM;
6908 }
6909 
6910 static void set_rxd_buffer_size(struct s2io_nic *sp, struct RxD_t *rxdp,
6911 				int size)
6912 {
6913 	struct net_device *dev = sp->dev;
6914 	if (sp->rxd_mode == RXD_MODE_1) {
6915 		rxdp->Control_2 = SET_BUFFER0_SIZE_1(size - NET_IP_ALIGN);
6916 	} else if (sp->rxd_mode == RXD_MODE_3B) {
6917 		rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
6918 		rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
6919 		rxdp->Control_2 |= SET_BUFFER2_SIZE_3(dev->mtu + 4);
6920 	}
6921 }
6922 
6923 static  int rxd_owner_bit_reset(struct s2io_nic *sp)
6924 {
6925 	int i, j, k, blk_cnt = 0, size;
6926 	struct config_param *config = &sp->config;
6927 	struct mac_info *mac_control = &sp->mac_control;
6928 	struct net_device *dev = sp->dev;
6929 	struct RxD_t *rxdp = NULL;
6930 	struct sk_buff *skb = NULL;
6931 	struct buffAdd *ba = NULL;
6932 	u64 temp0_64 = 0, temp1_64 = 0, temp2_64 = 0;
6933 
6934 	/* Calculate the size based on ring mode */
6935 	size = dev->mtu + HEADER_ETHERNET_II_802_3_SIZE +
6936 		HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
6937 	if (sp->rxd_mode == RXD_MODE_1)
6938 		size += NET_IP_ALIGN;
6939 	else if (sp->rxd_mode == RXD_MODE_3B)
6940 		size = dev->mtu + ALIGN_SIZE + BUF0_LEN + 4;
6941 
6942 	for (i = 0; i < config->rx_ring_num; i++) {
6943 		struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
6944 		struct ring_info *ring = &mac_control->rings[i];
6945 
6946 		blk_cnt = rx_cfg->num_rxd / (rxd_count[sp->rxd_mode] + 1);
6947 
6948 		for (j = 0; j < blk_cnt; j++) {
6949 			for (k = 0; k < rxd_count[sp->rxd_mode]; k++) {
6950 				rxdp = ring->rx_blocks[j].rxds[k].virt_addr;
6951 				if (sp->rxd_mode == RXD_MODE_3B)
6952 					ba = &ring->ba[j][k];
6953 				if (set_rxd_buffer_pointer(sp, rxdp, ba, &skb,
6954 							   &temp0_64,
6955 							   &temp1_64,
6956 							   &temp2_64,
6957 							   size) == -ENOMEM) {
6958 					return 0;
6959 				}
6960 
6961 				set_rxd_buffer_size(sp, rxdp, size);
6962 				wmb();
6963 				/* flip the Ownership bit to Hardware */
6964 				rxdp->Control_1 |= RXD_OWN_XENA;
6965 			}
6966 		}
6967 	}
6968 	return 0;
6969 
6970 }
6971 
6972 static int s2io_add_isr(struct s2io_nic *sp)
6973 {
6974 	int ret = 0;
6975 	struct net_device *dev = sp->dev;
6976 	int err = 0;
6977 
6978 	if (sp->config.intr_type == MSI_X)
6979 		ret = s2io_enable_msi_x(sp);
6980 	if (ret) {
6981 		DBG_PRINT(ERR_DBG, "%s: Defaulting to INTA\n", dev->name);
6982 		sp->config.intr_type = INTA;
6983 	}
6984 
6985 	/*
6986 	 * Store the values of the MSIX table in
6987 	 * the struct s2io_nic structure
6988 	 */
6989 	store_xmsi_data(sp);
6990 
6991 	/* After proper initialization of H/W, register ISR */
6992 	if (sp->config.intr_type == MSI_X) {
6993 		int i, msix_rx_cnt = 0;
6994 
6995 		for (i = 0; i < sp->num_entries; i++) {
6996 			if (sp->s2io_entries[i].in_use == MSIX_FLG) {
6997 				if (sp->s2io_entries[i].type ==
6998 				    MSIX_RING_TYPE) {
6999 					sprintf(sp->desc[i], "%s:MSI-X-%d-RX",
7000 						dev->name, i);
7001 					err = request_irq(sp->entries[i].vector,
7002 							  s2io_msix_ring_handle,
7003 							  0,
7004 							  sp->desc[i],
7005 							  sp->s2io_entries[i].arg);
7006 				} else if (sp->s2io_entries[i].type ==
7007 					   MSIX_ALARM_TYPE) {
7008 					sprintf(sp->desc[i], "%s:MSI-X-%d-TX",
7009 						dev->name, i);
7010 					err = request_irq(sp->entries[i].vector,
7011 							  s2io_msix_fifo_handle,
7012 							  0,
7013 							  sp->desc[i],
7014 							  sp->s2io_entries[i].arg);
7015 
7016 				}
7017 				/* if either data or addr is zero print it. */
7018 				if (!(sp->msix_info[i].addr &&
7019 				      sp->msix_info[i].data)) {
7020 					DBG_PRINT(ERR_DBG,
7021 						  "%s @Addr:0x%llx Data:0x%llx\n",
7022 						  sp->desc[i],
7023 						  (unsigned long long)
7024 						  sp->msix_info[i].addr,
7025 						  (unsigned long long)
7026 						  ntohl(sp->msix_info[i].data));
7027 				} else
7028 					msix_rx_cnt++;
7029 				if (err) {
7030 					remove_msix_isr(sp);
7031 
7032 					DBG_PRINT(ERR_DBG,
7033 						  "%s:MSI-X-%d registration "
7034 						  "failed\n", dev->name, i);
7035 
7036 					DBG_PRINT(ERR_DBG,
7037 						  "%s: Defaulting to INTA\n",
7038 						  dev->name);
7039 					sp->config.intr_type = INTA;
7040 					break;
7041 				}
7042 				sp->s2io_entries[i].in_use =
7043 					MSIX_REGISTERED_SUCCESS;
7044 			}
7045 		}
7046 		if (!err) {
7047 			pr_info("MSI-X-RX %d entries enabled\n", --msix_rx_cnt);
7048 			DBG_PRINT(INFO_DBG,
7049 				  "MSI-X-TX entries enabled through alarm vector\n");
7050 		}
7051 	}
7052 	if (sp->config.intr_type == INTA) {
7053 		err = request_irq(sp->pdev->irq, s2io_isr, IRQF_SHARED,
7054 				  sp->name, dev);
7055 		if (err) {
7056 			DBG_PRINT(ERR_DBG, "%s: ISR registration failed\n",
7057 				  dev->name);
7058 			return -1;
7059 		}
7060 	}
7061 	return 0;
7062 }
7063 
7064 static void s2io_rem_isr(struct s2io_nic *sp)
7065 {
7066 	if (sp->config.intr_type == MSI_X)
7067 		remove_msix_isr(sp);
7068 	else
7069 		remove_inta_isr(sp);
7070 }
7071 
7072 static void do_s2io_card_down(struct s2io_nic *sp, int do_io)
7073 {
7074 	int cnt = 0;
7075 	struct XENA_dev_config __iomem *bar0 = sp->bar0;
7076 	register u64 val64 = 0;
7077 	struct config_param *config;
7078 	config = &sp->config;
7079 
7080 	if (!is_s2io_card_up(sp))
7081 		return;
7082 
7083 	del_timer_sync(&sp->alarm_timer);
7084 	/* If s2io_set_link task is executing, wait till it completes. */
7085 	while (test_and_set_bit(__S2IO_STATE_LINK_TASK, &(sp->state)))
7086 		msleep(50);
7087 	clear_bit(__S2IO_STATE_CARD_UP, &sp->state);
7088 
7089 	/* Disable napi */
7090 	if (sp->config.napi) {
7091 		int off = 0;
7092 		if (config->intr_type ==  MSI_X) {
7093 			for (; off < sp->config.rx_ring_num; off++)
7094 				napi_disable(&sp->mac_control.rings[off].napi);
7095 		}
7096 		else
7097 			napi_disable(&sp->napi);
7098 	}
7099 
7100 	/* disable Tx and Rx traffic on the NIC */
7101 	if (do_io)
7102 		stop_nic(sp);
7103 
7104 	s2io_rem_isr(sp);
7105 
7106 	/* stop the tx queue, indicate link down */
7107 	s2io_link(sp, LINK_DOWN);
7108 
7109 	/* Check if the device is Quiescent and then Reset the NIC */
7110 	while (do_io) {
7111 		/* As per the HW requirement we need to replenish the
7112 		 * receive buffer to avoid the ring bump. Since there is
7113 		 * no intention of processing the Rx frame at this pointwe are
7114 		 * just setting the ownership bit of rxd in Each Rx
7115 		 * ring to HW and set the appropriate buffer size
7116 		 * based on the ring mode
7117 		 */
7118 		rxd_owner_bit_reset(sp);
7119 
7120 		val64 = readq(&bar0->adapter_status);
7121 		if (verify_xena_quiescence(sp)) {
7122 			if (verify_pcc_quiescent(sp, sp->device_enabled_once))
7123 				break;
7124 		}
7125 
7126 		msleep(50);
7127 		cnt++;
7128 		if (cnt == 10) {
7129 			DBG_PRINT(ERR_DBG, "Device not Quiescent - "
7130 				  "adapter status reads 0x%llx\n",
7131 				  (unsigned long long)val64);
7132 			break;
7133 		}
7134 	}
7135 	if (do_io)
7136 		s2io_reset(sp);
7137 
7138 	/* Free all Tx buffers */
7139 	free_tx_buffers(sp);
7140 
7141 	/* Free all Rx buffers */
7142 	free_rx_buffers(sp);
7143 
7144 	clear_bit(__S2IO_STATE_LINK_TASK, &(sp->state));
7145 }
7146 
7147 static void s2io_card_down(struct s2io_nic *sp)
7148 {
7149 	do_s2io_card_down(sp, 1);
7150 }
7151 
7152 static int s2io_card_up(struct s2io_nic *sp)
7153 {
7154 	int i, ret = 0;
7155 	struct config_param *config;
7156 	struct mac_info *mac_control;
7157 	struct net_device *dev = sp->dev;
7158 	u16 interruptible;
7159 
7160 	/* Initialize the H/W I/O registers */
7161 	ret = init_nic(sp);
7162 	if (ret != 0) {
7163 		DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
7164 			  dev->name);
7165 		if (ret != -EIO)
7166 			s2io_reset(sp);
7167 		return ret;
7168 	}
7169 
7170 	/*
7171 	 * Initializing the Rx buffers. For now we are considering only 1
7172 	 * Rx ring and initializing buffers into 30 Rx blocks
7173 	 */
7174 	config = &sp->config;
7175 	mac_control = &sp->mac_control;
7176 
7177 	for (i = 0; i < config->rx_ring_num; i++) {
7178 		struct ring_info *ring = &mac_control->rings[i];
7179 
7180 		ring->mtu = dev->mtu;
7181 		ring->lro = !!(dev->features & NETIF_F_LRO);
7182 		ret = fill_rx_buffers(sp, ring, 1);
7183 		if (ret) {
7184 			DBG_PRINT(ERR_DBG, "%s: Out of memory in Open\n",
7185 				  dev->name);
7186 			s2io_reset(sp);
7187 			free_rx_buffers(sp);
7188 			return -ENOMEM;
7189 		}
7190 		DBG_PRINT(INFO_DBG, "Buf in ring:%d is %d:\n", i,
7191 			  ring->rx_bufs_left);
7192 	}
7193 
7194 	/* Initialise napi */
7195 	if (config->napi) {
7196 		if (config->intr_type ==  MSI_X) {
7197 			for (i = 0; i < sp->config.rx_ring_num; i++)
7198 				napi_enable(&sp->mac_control.rings[i].napi);
7199 		} else {
7200 			napi_enable(&sp->napi);
7201 		}
7202 	}
7203 
7204 	/* Maintain the state prior to the open */
7205 	if (sp->promisc_flg)
7206 		sp->promisc_flg = 0;
7207 	if (sp->m_cast_flg) {
7208 		sp->m_cast_flg = 0;
7209 		sp->all_multi_pos = 0;
7210 	}
7211 
7212 	/* Setting its receive mode */
7213 	s2io_set_multicast(dev);
7214 
7215 	if (dev->features & NETIF_F_LRO) {
7216 		/* Initialize max aggregatable pkts per session based on MTU */
7217 		sp->lro_max_aggr_per_sess = ((1<<16) - 1) / dev->mtu;
7218 		/* Check if we can use (if specified) user provided value */
7219 		if (lro_max_pkts < sp->lro_max_aggr_per_sess)
7220 			sp->lro_max_aggr_per_sess = lro_max_pkts;
7221 	}
7222 
7223 	/* Enable Rx Traffic and interrupts on the NIC */
7224 	if (start_nic(sp)) {
7225 		DBG_PRINT(ERR_DBG, "%s: Starting NIC failed\n", dev->name);
7226 		s2io_reset(sp);
7227 		free_rx_buffers(sp);
7228 		return -ENODEV;
7229 	}
7230 
7231 	/* Add interrupt service routine */
7232 	if (s2io_add_isr(sp) != 0) {
7233 		if (sp->config.intr_type == MSI_X)
7234 			s2io_rem_isr(sp);
7235 		s2io_reset(sp);
7236 		free_rx_buffers(sp);
7237 		return -ENODEV;
7238 	}
7239 
7240 	S2IO_TIMER_CONF(sp->alarm_timer, s2io_alarm_handle, sp, (HZ/2));
7241 
7242 	set_bit(__S2IO_STATE_CARD_UP, &sp->state);
7243 
7244 	/*  Enable select interrupts */
7245 	en_dis_err_alarms(sp, ENA_ALL_INTRS, ENABLE_INTRS);
7246 	if (sp->config.intr_type != INTA) {
7247 		interruptible = TX_TRAFFIC_INTR | TX_PIC_INTR;
7248 		en_dis_able_nic_intrs(sp, interruptible, ENABLE_INTRS);
7249 	} else {
7250 		interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
7251 		interruptible |= TX_PIC_INTR;
7252 		en_dis_able_nic_intrs(sp, interruptible, ENABLE_INTRS);
7253 	}
7254 
7255 	return 0;
7256 }
7257 
7258 /**
7259  * s2io_restart_nic - Resets the NIC.
7260  * @data : long pointer to the device private structure
7261  * Description:
7262  * This function is scheduled to be run by the s2io_tx_watchdog
7263  * function after 0.5 secs to reset the NIC. The idea is to reduce
7264  * the run time of the watch dog routine which is run holding a
7265  * spin lock.
7266  */
7267 
7268 static void s2io_restart_nic(struct work_struct *work)
7269 {
7270 	struct s2io_nic *sp = container_of(work, struct s2io_nic, rst_timer_task);
7271 	struct net_device *dev = sp->dev;
7272 
7273 	rtnl_lock();
7274 
7275 	if (!netif_running(dev))
7276 		goto out_unlock;
7277 
7278 	s2io_card_down(sp);
7279 	if (s2io_card_up(sp)) {
7280 		DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n", dev->name);
7281 	}
7282 	s2io_wake_all_tx_queue(sp);
7283 	DBG_PRINT(ERR_DBG, "%s: was reset by Tx watchdog timer\n", dev->name);
7284 out_unlock:
7285 	rtnl_unlock();
7286 }
7287 
7288 /**
7289  *  s2io_tx_watchdog - Watchdog for transmit side.
7290  *  @dev : Pointer to net device structure
7291  *  Description:
7292  *  This function is triggered if the Tx Queue is stopped
7293  *  for a pre-defined amount of time when the Interface is still up.
7294  *  If the Interface is jammed in such a situation, the hardware is
7295  *  reset (by s2io_close) and restarted again (by s2io_open) to
7296  *  overcome any problem that might have been caused in the hardware.
7297  *  Return value:
7298  *  void
7299  */
7300 
7301 static void s2io_tx_watchdog(struct net_device *dev)
7302 {
7303 	struct s2io_nic *sp = netdev_priv(dev);
7304 	struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
7305 
7306 	if (netif_carrier_ok(dev)) {
7307 		swstats->watchdog_timer_cnt++;
7308 		schedule_work(&sp->rst_timer_task);
7309 		swstats->soft_reset_cnt++;
7310 	}
7311 }
7312 
7313 /**
7314  *   rx_osm_handler - To perform some OS related operations on SKB.
7315  *   @sp: private member of the device structure,pointer to s2io_nic structure.
7316  *   @skb : the socket buffer pointer.
7317  *   @len : length of the packet
7318  *   @cksum : FCS checksum of the frame.
7319  *   @ring_no : the ring from which this RxD was extracted.
7320  *   Description:
7321  *   This function is called by the Rx interrupt serivce routine to perform
7322  *   some OS related operations on the SKB before passing it to the upper
7323  *   layers. It mainly checks if the checksum is OK, if so adds it to the
7324  *   SKBs cksum variable, increments the Rx packet count and passes the SKB
7325  *   to the upper layer. If the checksum is wrong, it increments the Rx
7326  *   packet error count, frees the SKB and returns error.
7327  *   Return value:
7328  *   SUCCESS on success and -1 on failure.
7329  */
7330 static int rx_osm_handler(struct ring_info *ring_data, struct RxD_t * rxdp)
7331 {
7332 	struct s2io_nic *sp = ring_data->nic;
7333 	struct net_device *dev = ring_data->dev;
7334 	struct sk_buff *skb = (struct sk_buff *)
7335 		((unsigned long)rxdp->Host_Control);
7336 	int ring_no = ring_data->ring_no;
7337 	u16 l3_csum, l4_csum;
7338 	unsigned long long err = rxdp->Control_1 & RXD_T_CODE;
7339 	struct lro *uninitialized_var(lro);
7340 	u8 err_mask;
7341 	struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
7342 
7343 	skb->dev = dev;
7344 
7345 	if (err) {
7346 		/* Check for parity error */
7347 		if (err & 0x1)
7348 			swstats->parity_err_cnt++;
7349 
7350 		err_mask = err >> 48;
7351 		switch (err_mask) {
7352 		case 1:
7353 			swstats->rx_parity_err_cnt++;
7354 			break;
7355 
7356 		case 2:
7357 			swstats->rx_abort_cnt++;
7358 			break;
7359 
7360 		case 3:
7361 			swstats->rx_parity_abort_cnt++;
7362 			break;
7363 
7364 		case 4:
7365 			swstats->rx_rda_fail_cnt++;
7366 			break;
7367 
7368 		case 5:
7369 			swstats->rx_unkn_prot_cnt++;
7370 			break;
7371 
7372 		case 6:
7373 			swstats->rx_fcs_err_cnt++;
7374 			break;
7375 
7376 		case 7:
7377 			swstats->rx_buf_size_err_cnt++;
7378 			break;
7379 
7380 		case 8:
7381 			swstats->rx_rxd_corrupt_cnt++;
7382 			break;
7383 
7384 		case 15:
7385 			swstats->rx_unkn_err_cnt++;
7386 			break;
7387 		}
7388 		/*
7389 		 * Drop the packet if bad transfer code. Exception being
7390 		 * 0x5, which could be due to unsupported IPv6 extension header.
7391 		 * In this case, we let stack handle the packet.
7392 		 * Note that in this case, since checksum will be incorrect,
7393 		 * stack will validate the same.
7394 		 */
7395 		if (err_mask != 0x5) {
7396 			DBG_PRINT(ERR_DBG, "%s: Rx error Value: 0x%x\n",
7397 				  dev->name, err_mask);
7398 			dev->stats.rx_crc_errors++;
7399 			swstats->mem_freed
7400 				+= skb->truesize;
7401 			dev_kfree_skb(skb);
7402 			ring_data->rx_bufs_left -= 1;
7403 			rxdp->Host_Control = 0;
7404 			return 0;
7405 		}
7406 	}
7407 
7408 	rxdp->Host_Control = 0;
7409 	if (sp->rxd_mode == RXD_MODE_1) {
7410 		int len = RXD_GET_BUFFER0_SIZE_1(rxdp->Control_2);
7411 
7412 		skb_put(skb, len);
7413 	} else if (sp->rxd_mode == RXD_MODE_3B) {
7414 		int get_block = ring_data->rx_curr_get_info.block_index;
7415 		int get_off = ring_data->rx_curr_get_info.offset;
7416 		int buf0_len = RXD_GET_BUFFER0_SIZE_3(rxdp->Control_2);
7417 		int buf2_len = RXD_GET_BUFFER2_SIZE_3(rxdp->Control_2);
7418 		unsigned char *buff = skb_push(skb, buf0_len);
7419 
7420 		struct buffAdd *ba = &ring_data->ba[get_block][get_off];
7421 		memcpy(buff, ba->ba_0, buf0_len);
7422 		skb_put(skb, buf2_len);
7423 	}
7424 
7425 	if ((rxdp->Control_1 & TCP_OR_UDP_FRAME) &&
7426 	    ((!ring_data->lro) ||
7427 	     (ring_data->lro && (!(rxdp->Control_1 & RXD_FRAME_IP_FRAG)))) &&
7428 	    (dev->features & NETIF_F_RXCSUM)) {
7429 		l3_csum = RXD_GET_L3_CKSUM(rxdp->Control_1);
7430 		l4_csum = RXD_GET_L4_CKSUM(rxdp->Control_1);
7431 		if ((l3_csum == L3_CKSUM_OK) && (l4_csum == L4_CKSUM_OK)) {
7432 			/*
7433 			 * NIC verifies if the Checksum of the received
7434 			 * frame is Ok or not and accordingly returns
7435 			 * a flag in the RxD.
7436 			 */
7437 			skb->ip_summed = CHECKSUM_UNNECESSARY;
7438 			if (ring_data->lro) {
7439 				u32 tcp_len = 0;
7440 				u8 *tcp;
7441 				int ret = 0;
7442 
7443 				ret = s2io_club_tcp_session(ring_data,
7444 							    skb->data, &tcp,
7445 							    &tcp_len, &lro,
7446 							    rxdp, sp);
7447 				switch (ret) {
7448 				case 3: /* Begin anew */
7449 					lro->parent = skb;
7450 					goto aggregate;
7451 				case 1: /* Aggregate */
7452 					lro_append_pkt(sp, lro, skb, tcp_len);
7453 					goto aggregate;
7454 				case 4: /* Flush session */
7455 					lro_append_pkt(sp, lro, skb, tcp_len);
7456 					queue_rx_frame(lro->parent,
7457 						       lro->vlan_tag);
7458 					clear_lro_session(lro);
7459 					swstats->flush_max_pkts++;
7460 					goto aggregate;
7461 				case 2: /* Flush both */
7462 					lro->parent->data_len = lro->frags_len;
7463 					swstats->sending_both++;
7464 					queue_rx_frame(lro->parent,
7465 						       lro->vlan_tag);
7466 					clear_lro_session(lro);
7467 					goto send_up;
7468 				case 0: /* sessions exceeded */
7469 				case -1: /* non-TCP or not L2 aggregatable */
7470 				case 5: /*
7471 					 * First pkt in session not
7472 					 * L3/L4 aggregatable
7473 					 */
7474 					break;
7475 				default:
7476 					DBG_PRINT(ERR_DBG,
7477 						  "%s: Samadhana!!\n",
7478 						  __func__);
7479 					BUG();
7480 				}
7481 			}
7482 		} else {
7483 			/*
7484 			 * Packet with erroneous checksum, let the
7485 			 * upper layers deal with it.
7486 			 */
7487 			skb_checksum_none_assert(skb);
7488 		}
7489 	} else
7490 		skb_checksum_none_assert(skb);
7491 
7492 	swstats->mem_freed += skb->truesize;
7493 send_up:
7494 	skb_record_rx_queue(skb, ring_no);
7495 	queue_rx_frame(skb, RXD_GET_VLAN_TAG(rxdp->Control_2));
7496 aggregate:
7497 	sp->mac_control.rings[ring_no].rx_bufs_left -= 1;
7498 	return SUCCESS;
7499 }
7500 
7501 /**
7502  *  s2io_link - stops/starts the Tx queue.
7503  *  @sp : private member of the device structure, which is a pointer to the
7504  *  s2io_nic structure.
7505  *  @link : inidicates whether link is UP/DOWN.
7506  *  Description:
7507  *  This function stops/starts the Tx queue depending on whether the link
7508  *  status of the NIC is is down or up. This is called by the Alarm
7509  *  interrupt handler whenever a link change interrupt comes up.
7510  *  Return value:
7511  *  void.
7512  */
7513 
7514 static void s2io_link(struct s2io_nic *sp, int link)
7515 {
7516 	struct net_device *dev = sp->dev;
7517 	struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
7518 
7519 	if (link != sp->last_link_state) {
7520 		init_tti(sp, link);
7521 		if (link == LINK_DOWN) {
7522 			DBG_PRINT(ERR_DBG, "%s: Link down\n", dev->name);
7523 			s2io_stop_all_tx_queue(sp);
7524 			netif_carrier_off(dev);
7525 			if (swstats->link_up_cnt)
7526 				swstats->link_up_time =
7527 					jiffies - sp->start_time;
7528 			swstats->link_down_cnt++;
7529 		} else {
7530 			DBG_PRINT(ERR_DBG, "%s: Link Up\n", dev->name);
7531 			if (swstats->link_down_cnt)
7532 				swstats->link_down_time =
7533 					jiffies - sp->start_time;
7534 			swstats->link_up_cnt++;
7535 			netif_carrier_on(dev);
7536 			s2io_wake_all_tx_queue(sp);
7537 		}
7538 	}
7539 	sp->last_link_state = link;
7540 	sp->start_time = jiffies;
7541 }
7542 
7543 /**
7544  *  s2io_init_pci -Initialization of PCI and PCI-X configuration registers .
7545  *  @sp : private member of the device structure, which is a pointer to the
7546  *  s2io_nic structure.
7547  *  Description:
7548  *  This function initializes a few of the PCI and PCI-X configuration registers
7549  *  with recommended values.
7550  *  Return value:
7551  *  void
7552  */
7553 
7554 static void s2io_init_pci(struct s2io_nic *sp)
7555 {
7556 	u16 pci_cmd = 0, pcix_cmd = 0;
7557 
7558 	/* Enable Data Parity Error Recovery in PCI-X command register. */
7559 	pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
7560 			     &(pcix_cmd));
7561 	pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
7562 			      (pcix_cmd | 1));
7563 	pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
7564 			     &(pcix_cmd));
7565 
7566 	/* Set the PErr Response bit in PCI command register. */
7567 	pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
7568 	pci_write_config_word(sp->pdev, PCI_COMMAND,
7569 			      (pci_cmd | PCI_COMMAND_PARITY));
7570 	pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
7571 }
7572 
7573 static int s2io_verify_parm(struct pci_dev *pdev, u8 *dev_intr_type,
7574 			    u8 *dev_multiq)
7575 {
7576 	int i;
7577 
7578 	if ((tx_fifo_num > MAX_TX_FIFOS) || (tx_fifo_num < 1)) {
7579 		DBG_PRINT(ERR_DBG, "Requested number of tx fifos "
7580 			  "(%d) not supported\n", tx_fifo_num);
7581 
7582 		if (tx_fifo_num < 1)
7583 			tx_fifo_num = 1;
7584 		else
7585 			tx_fifo_num = MAX_TX_FIFOS;
7586 
7587 		DBG_PRINT(ERR_DBG, "Default to %d tx fifos\n", tx_fifo_num);
7588 	}
7589 
7590 	if (multiq)
7591 		*dev_multiq = multiq;
7592 
7593 	if (tx_steering_type && (1 == tx_fifo_num)) {
7594 		if (tx_steering_type != TX_DEFAULT_STEERING)
7595 			DBG_PRINT(ERR_DBG,
7596 				  "Tx steering is not supported with "
7597 				  "one fifo. Disabling Tx steering.\n");
7598 		tx_steering_type = NO_STEERING;
7599 	}
7600 
7601 	if ((tx_steering_type < NO_STEERING) ||
7602 	    (tx_steering_type > TX_DEFAULT_STEERING)) {
7603 		DBG_PRINT(ERR_DBG,
7604 			  "Requested transmit steering not supported\n");
7605 		DBG_PRINT(ERR_DBG, "Disabling transmit steering\n");
7606 		tx_steering_type = NO_STEERING;
7607 	}
7608 
7609 	if (rx_ring_num > MAX_RX_RINGS) {
7610 		DBG_PRINT(ERR_DBG,
7611 			  "Requested number of rx rings not supported\n");
7612 		DBG_PRINT(ERR_DBG, "Default to %d rx rings\n",
7613 			  MAX_RX_RINGS);
7614 		rx_ring_num = MAX_RX_RINGS;
7615 	}
7616 
7617 	if ((*dev_intr_type != INTA) && (*dev_intr_type != MSI_X)) {
7618 		DBG_PRINT(ERR_DBG, "Wrong intr_type requested. "
7619 			  "Defaulting to INTA\n");
7620 		*dev_intr_type = INTA;
7621 	}
7622 
7623 	if ((*dev_intr_type == MSI_X) &&
7624 	    ((pdev->device != PCI_DEVICE_ID_HERC_WIN) &&
7625 	     (pdev->device != PCI_DEVICE_ID_HERC_UNI))) {
7626 		DBG_PRINT(ERR_DBG, "Xframe I does not support MSI_X. "
7627 			  "Defaulting to INTA\n");
7628 		*dev_intr_type = INTA;
7629 	}
7630 
7631 	if ((rx_ring_mode != 1) && (rx_ring_mode != 2)) {
7632 		DBG_PRINT(ERR_DBG, "Requested ring mode not supported\n");
7633 		DBG_PRINT(ERR_DBG, "Defaulting to 1-buffer mode\n");
7634 		rx_ring_mode = 1;
7635 	}
7636 
7637 	for (i = 0; i < MAX_RX_RINGS; i++)
7638 		if (rx_ring_sz[i] > MAX_RX_BLOCKS_PER_RING) {
7639 			DBG_PRINT(ERR_DBG, "Requested rx ring size not "
7640 				  "supported\nDefaulting to %d\n",
7641 				  MAX_RX_BLOCKS_PER_RING);
7642 			rx_ring_sz[i] = MAX_RX_BLOCKS_PER_RING;
7643 		}
7644 
7645 	return SUCCESS;
7646 }
7647 
7648 /**
7649  * rts_ds_steer - Receive traffic steering based on IPv4 or IPv6 TOS
7650  * or Traffic class respectively.
7651  * @nic: device private variable
7652  * Description: The function configures the receive steering to
7653  * desired receive ring.
7654  * Return Value:  SUCCESS on success and
7655  * '-1' on failure (endian settings incorrect).
7656  */
7657 static int rts_ds_steer(struct s2io_nic *nic, u8 ds_codepoint, u8 ring)
7658 {
7659 	struct XENA_dev_config __iomem *bar0 = nic->bar0;
7660 	register u64 val64 = 0;
7661 
7662 	if (ds_codepoint > 63)
7663 		return FAILURE;
7664 
7665 	val64 = RTS_DS_MEM_DATA(ring);
7666 	writeq(val64, &bar0->rts_ds_mem_data);
7667 
7668 	val64 = RTS_DS_MEM_CTRL_WE |
7669 		RTS_DS_MEM_CTRL_STROBE_NEW_CMD |
7670 		RTS_DS_MEM_CTRL_OFFSET(ds_codepoint);
7671 
7672 	writeq(val64, &bar0->rts_ds_mem_ctrl);
7673 
7674 	return wait_for_cmd_complete(&bar0->rts_ds_mem_ctrl,
7675 				     RTS_DS_MEM_CTRL_STROBE_CMD_BEING_EXECUTED,
7676 				     S2IO_BIT_RESET);
7677 }
7678 
7679 static const struct net_device_ops s2io_netdev_ops = {
7680 	.ndo_open	        = s2io_open,
7681 	.ndo_stop	        = s2io_close,
7682 	.ndo_get_stats	        = s2io_get_stats,
7683 	.ndo_start_xmit    	= s2io_xmit,
7684 	.ndo_validate_addr	= eth_validate_addr,
7685 	.ndo_set_rx_mode	= s2io_set_multicast,
7686 	.ndo_do_ioctl	   	= s2io_ioctl,
7687 	.ndo_set_mac_address    = s2io_set_mac_addr,
7688 	.ndo_change_mtu	   	= s2io_change_mtu,
7689 	.ndo_set_features	= s2io_set_features,
7690 	.ndo_tx_timeout	   	= s2io_tx_watchdog,
7691 #ifdef CONFIG_NET_POLL_CONTROLLER
7692 	.ndo_poll_controller    = s2io_netpoll,
7693 #endif
7694 };
7695 
7696 /**
7697  *  s2io_init_nic - Initialization of the adapter .
7698  *  @pdev : structure containing the PCI related information of the device.
7699  *  @pre: List of PCI devices supported by the driver listed in s2io_tbl.
7700  *  Description:
7701  *  The function initializes an adapter identified by the pci_dec structure.
7702  *  All OS related initialization including memory and device structure and
7703  *  initlaization of the device private variable is done. Also the swapper
7704  *  control register is initialized to enable read and write into the I/O
7705  *  registers of the device.
7706  *  Return value:
7707  *  returns 0 on success and negative on failure.
7708  */
7709 
7710 static int
7711 s2io_init_nic(struct pci_dev *pdev, const struct pci_device_id *pre)
7712 {
7713 	struct s2io_nic *sp;
7714 	struct net_device *dev;
7715 	int i, j, ret;
7716 	int dma_flag = false;
7717 	u32 mac_up, mac_down;
7718 	u64 val64 = 0, tmp64 = 0;
7719 	struct XENA_dev_config __iomem *bar0 = NULL;
7720 	u16 subid;
7721 	struct config_param *config;
7722 	struct mac_info *mac_control;
7723 	int mode;
7724 	u8 dev_intr_type = intr_type;
7725 	u8 dev_multiq = 0;
7726 
7727 	ret = s2io_verify_parm(pdev, &dev_intr_type, &dev_multiq);
7728 	if (ret)
7729 		return ret;
7730 
7731 	ret = pci_enable_device(pdev);
7732 	if (ret) {
7733 		DBG_PRINT(ERR_DBG,
7734 			  "%s: pci_enable_device failed\n", __func__);
7735 		return ret;
7736 	}
7737 
7738 	if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
7739 		DBG_PRINT(INIT_DBG, "%s: Using 64bit DMA\n", __func__);
7740 		dma_flag = true;
7741 		if (pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64))) {
7742 			DBG_PRINT(ERR_DBG,
7743 				  "Unable to obtain 64bit DMA "
7744 				  "for consistent allocations\n");
7745 			pci_disable_device(pdev);
7746 			return -ENOMEM;
7747 		}
7748 	} else if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(32))) {
7749 		DBG_PRINT(INIT_DBG, "%s: Using 32bit DMA\n", __func__);
7750 	} else {
7751 		pci_disable_device(pdev);
7752 		return -ENOMEM;
7753 	}
7754 	ret = pci_request_regions(pdev, s2io_driver_name);
7755 	if (ret) {
7756 		DBG_PRINT(ERR_DBG, "%s: Request Regions failed - %x\n",
7757 			  __func__, ret);
7758 		pci_disable_device(pdev);
7759 		return -ENODEV;
7760 	}
7761 	if (dev_multiq)
7762 		dev = alloc_etherdev_mq(sizeof(struct s2io_nic), tx_fifo_num);
7763 	else
7764 		dev = alloc_etherdev(sizeof(struct s2io_nic));
7765 	if (dev == NULL) {
7766 		pci_disable_device(pdev);
7767 		pci_release_regions(pdev);
7768 		return -ENODEV;
7769 	}
7770 
7771 	pci_set_master(pdev);
7772 	pci_set_drvdata(pdev, dev);
7773 	SET_NETDEV_DEV(dev, &pdev->dev);
7774 
7775 	/*  Private member variable initialized to s2io NIC structure */
7776 	sp = netdev_priv(dev);
7777 	sp->dev = dev;
7778 	sp->pdev = pdev;
7779 	sp->high_dma_flag = dma_flag;
7780 	sp->device_enabled_once = false;
7781 	if (rx_ring_mode == 1)
7782 		sp->rxd_mode = RXD_MODE_1;
7783 	if (rx_ring_mode == 2)
7784 		sp->rxd_mode = RXD_MODE_3B;
7785 
7786 	sp->config.intr_type = dev_intr_type;
7787 
7788 	if ((pdev->device == PCI_DEVICE_ID_HERC_WIN) ||
7789 	    (pdev->device == PCI_DEVICE_ID_HERC_UNI))
7790 		sp->device_type = XFRAME_II_DEVICE;
7791 	else
7792 		sp->device_type = XFRAME_I_DEVICE;
7793 
7794 
7795 	/* Initialize some PCI/PCI-X fields of the NIC. */
7796 	s2io_init_pci(sp);
7797 
7798 	/*
7799 	 * Setting the device configuration parameters.
7800 	 * Most of these parameters can be specified by the user during
7801 	 * module insertion as they are module loadable parameters. If
7802 	 * these parameters are not not specified during load time, they
7803 	 * are initialized with default values.
7804 	 */
7805 	config = &sp->config;
7806 	mac_control = &sp->mac_control;
7807 
7808 	config->napi = napi;
7809 	config->tx_steering_type = tx_steering_type;
7810 
7811 	/* Tx side parameters. */
7812 	if (config->tx_steering_type == TX_PRIORITY_STEERING)
7813 		config->tx_fifo_num = MAX_TX_FIFOS;
7814 	else
7815 		config->tx_fifo_num = tx_fifo_num;
7816 
7817 	/* Initialize the fifos used for tx steering */
7818 	if (config->tx_fifo_num < 5) {
7819 		if (config->tx_fifo_num  == 1)
7820 			sp->total_tcp_fifos = 1;
7821 		else
7822 			sp->total_tcp_fifos = config->tx_fifo_num - 1;
7823 		sp->udp_fifo_idx = config->tx_fifo_num - 1;
7824 		sp->total_udp_fifos = 1;
7825 		sp->other_fifo_idx = sp->total_tcp_fifos - 1;
7826 	} else {
7827 		sp->total_tcp_fifos = (tx_fifo_num - FIFO_UDP_MAX_NUM -
7828 				       FIFO_OTHER_MAX_NUM);
7829 		sp->udp_fifo_idx = sp->total_tcp_fifos;
7830 		sp->total_udp_fifos = FIFO_UDP_MAX_NUM;
7831 		sp->other_fifo_idx = sp->udp_fifo_idx + FIFO_UDP_MAX_NUM;
7832 	}
7833 
7834 	config->multiq = dev_multiq;
7835 	for (i = 0; i < config->tx_fifo_num; i++) {
7836 		struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
7837 
7838 		tx_cfg->fifo_len = tx_fifo_len[i];
7839 		tx_cfg->fifo_priority = i;
7840 	}
7841 
7842 	/* mapping the QoS priority to the configured fifos */
7843 	for (i = 0; i < MAX_TX_FIFOS; i++)
7844 		config->fifo_mapping[i] = fifo_map[config->tx_fifo_num - 1][i];
7845 
7846 	/* map the hashing selector table to the configured fifos */
7847 	for (i = 0; i < config->tx_fifo_num; i++)
7848 		sp->fifo_selector[i] = fifo_selector[i];
7849 
7850 
7851 	config->tx_intr_type = TXD_INT_TYPE_UTILZ;
7852 	for (i = 0; i < config->tx_fifo_num; i++) {
7853 		struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
7854 
7855 		tx_cfg->f_no_snoop = (NO_SNOOP_TXD | NO_SNOOP_TXD_BUFFER);
7856 		if (tx_cfg->fifo_len < 65) {
7857 			config->tx_intr_type = TXD_INT_TYPE_PER_LIST;
7858 			break;
7859 		}
7860 	}
7861 	/* + 2 because one Txd for skb->data and one Txd for UFO */
7862 	config->max_txds = MAX_SKB_FRAGS + 2;
7863 
7864 	/* Rx side parameters. */
7865 	config->rx_ring_num = rx_ring_num;
7866 	for (i = 0; i < config->rx_ring_num; i++) {
7867 		struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
7868 		struct ring_info *ring = &mac_control->rings[i];
7869 
7870 		rx_cfg->num_rxd = rx_ring_sz[i] * (rxd_count[sp->rxd_mode] + 1);
7871 		rx_cfg->ring_priority = i;
7872 		ring->rx_bufs_left = 0;
7873 		ring->rxd_mode = sp->rxd_mode;
7874 		ring->rxd_count = rxd_count[sp->rxd_mode];
7875 		ring->pdev = sp->pdev;
7876 		ring->dev = sp->dev;
7877 	}
7878 
7879 	for (i = 0; i < rx_ring_num; i++) {
7880 		struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
7881 
7882 		rx_cfg->ring_org = RING_ORG_BUFF1;
7883 		rx_cfg->f_no_snoop = (NO_SNOOP_RXD | NO_SNOOP_RXD_BUFFER);
7884 	}
7885 
7886 	/*  Setting Mac Control parameters */
7887 	mac_control->rmac_pause_time = rmac_pause_time;
7888 	mac_control->mc_pause_threshold_q0q3 = mc_pause_threshold_q0q3;
7889 	mac_control->mc_pause_threshold_q4q7 = mc_pause_threshold_q4q7;
7890 
7891 
7892 	/*  initialize the shared memory used by the NIC and the host */
7893 	if (init_shared_mem(sp)) {
7894 		DBG_PRINT(ERR_DBG, "%s: Memory allocation failed\n", dev->name);
7895 		ret = -ENOMEM;
7896 		goto mem_alloc_failed;
7897 	}
7898 
7899 	sp->bar0 = pci_ioremap_bar(pdev, 0);
7900 	if (!sp->bar0) {
7901 		DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem1\n",
7902 			  dev->name);
7903 		ret = -ENOMEM;
7904 		goto bar0_remap_failed;
7905 	}
7906 
7907 	sp->bar1 = pci_ioremap_bar(pdev, 2);
7908 	if (!sp->bar1) {
7909 		DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem2\n",
7910 			  dev->name);
7911 		ret = -ENOMEM;
7912 		goto bar1_remap_failed;
7913 	}
7914 
7915 	/* Initializing the BAR1 address as the start of the FIFO pointer. */
7916 	for (j = 0; j < MAX_TX_FIFOS; j++) {
7917 		mac_control->tx_FIFO_start[j] = sp->bar1 + (j * 0x00020000);
7918 	}
7919 
7920 	/*  Driver entry points */
7921 	dev->netdev_ops = &s2io_netdev_ops;
7922 	SET_ETHTOOL_OPS(dev, &netdev_ethtool_ops);
7923 	dev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM |
7924 		NETIF_F_TSO | NETIF_F_TSO6 |
7925 		NETIF_F_RXCSUM | NETIF_F_LRO;
7926 	dev->features |= dev->hw_features |
7927 		NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX;
7928 	if (sp->device_type & XFRAME_II_DEVICE) {
7929 		dev->hw_features |= NETIF_F_UFO;
7930 		if (ufo)
7931 			dev->features |= NETIF_F_UFO;
7932 	}
7933 	if (sp->high_dma_flag == true)
7934 		dev->features |= NETIF_F_HIGHDMA;
7935 	dev->watchdog_timeo = WATCH_DOG_TIMEOUT;
7936 	INIT_WORK(&sp->rst_timer_task, s2io_restart_nic);
7937 	INIT_WORK(&sp->set_link_task, s2io_set_link);
7938 
7939 	pci_save_state(sp->pdev);
7940 
7941 	/* Setting swapper control on the NIC, for proper reset operation */
7942 	if (s2io_set_swapper(sp)) {
7943 		DBG_PRINT(ERR_DBG, "%s: swapper settings are wrong\n",
7944 			  dev->name);
7945 		ret = -EAGAIN;
7946 		goto set_swap_failed;
7947 	}
7948 
7949 	/* Verify if the Herc works on the slot its placed into */
7950 	if (sp->device_type & XFRAME_II_DEVICE) {
7951 		mode = s2io_verify_pci_mode(sp);
7952 		if (mode < 0) {
7953 			DBG_PRINT(ERR_DBG, "%s: Unsupported PCI bus mode\n",
7954 				  __func__);
7955 			ret = -EBADSLT;
7956 			goto set_swap_failed;
7957 		}
7958 	}
7959 
7960 	if (sp->config.intr_type == MSI_X) {
7961 		sp->num_entries = config->rx_ring_num + 1;
7962 		ret = s2io_enable_msi_x(sp);
7963 
7964 		if (!ret) {
7965 			ret = s2io_test_msi(sp);
7966 			/* rollback MSI-X, will re-enable during add_isr() */
7967 			remove_msix_isr(sp);
7968 		}
7969 		if (ret) {
7970 
7971 			DBG_PRINT(ERR_DBG,
7972 				  "MSI-X requested but failed to enable\n");
7973 			sp->config.intr_type = INTA;
7974 		}
7975 	}
7976 
7977 	if (config->intr_type ==  MSI_X) {
7978 		for (i = 0; i < config->rx_ring_num ; i++) {
7979 			struct ring_info *ring = &mac_control->rings[i];
7980 
7981 			netif_napi_add(dev, &ring->napi, s2io_poll_msix, 64);
7982 		}
7983 	} else {
7984 		netif_napi_add(dev, &sp->napi, s2io_poll_inta, 64);
7985 	}
7986 
7987 	/* Not needed for Herc */
7988 	if (sp->device_type & XFRAME_I_DEVICE) {
7989 		/*
7990 		 * Fix for all "FFs" MAC address problems observed on
7991 		 * Alpha platforms
7992 		 */
7993 		fix_mac_address(sp);
7994 		s2io_reset(sp);
7995 	}
7996 
7997 	/*
7998 	 * MAC address initialization.
7999 	 * For now only one mac address will be read and used.
8000 	 */
8001 	bar0 = sp->bar0;
8002 	val64 = RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
8003 		RMAC_ADDR_CMD_MEM_OFFSET(0 + S2IO_MAC_ADDR_START_OFFSET);
8004 	writeq(val64, &bar0->rmac_addr_cmd_mem);
8005 	wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
8006 			      RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
8007 			      S2IO_BIT_RESET);
8008 	tmp64 = readq(&bar0->rmac_addr_data0_mem);
8009 	mac_down = (u32)tmp64;
8010 	mac_up = (u32) (tmp64 >> 32);
8011 
8012 	sp->def_mac_addr[0].mac_addr[3] = (u8) (mac_up);
8013 	sp->def_mac_addr[0].mac_addr[2] = (u8) (mac_up >> 8);
8014 	sp->def_mac_addr[0].mac_addr[1] = (u8) (mac_up >> 16);
8015 	sp->def_mac_addr[0].mac_addr[0] = (u8) (mac_up >> 24);
8016 	sp->def_mac_addr[0].mac_addr[5] = (u8) (mac_down >> 16);
8017 	sp->def_mac_addr[0].mac_addr[4] = (u8) (mac_down >> 24);
8018 
8019 	/*  Set the factory defined MAC address initially   */
8020 	dev->addr_len = ETH_ALEN;
8021 	memcpy(dev->dev_addr, sp->def_mac_addr, ETH_ALEN);
8022 
8023 	/* initialize number of multicast & unicast MAC entries variables */
8024 	if (sp->device_type == XFRAME_I_DEVICE) {
8025 		config->max_mc_addr = S2IO_XENA_MAX_MC_ADDRESSES;
8026 		config->max_mac_addr = S2IO_XENA_MAX_MAC_ADDRESSES;
8027 		config->mc_start_offset = S2IO_XENA_MC_ADDR_START_OFFSET;
8028 	} else if (sp->device_type == XFRAME_II_DEVICE) {
8029 		config->max_mc_addr = S2IO_HERC_MAX_MC_ADDRESSES;
8030 		config->max_mac_addr = S2IO_HERC_MAX_MAC_ADDRESSES;
8031 		config->mc_start_offset = S2IO_HERC_MC_ADDR_START_OFFSET;
8032 	}
8033 
8034 	/* store mac addresses from CAM to s2io_nic structure */
8035 	do_s2io_store_unicast_mc(sp);
8036 
8037 	/* Configure MSIX vector for number of rings configured plus one */
8038 	if ((sp->device_type == XFRAME_II_DEVICE) &&
8039 	    (config->intr_type == MSI_X))
8040 		sp->num_entries = config->rx_ring_num + 1;
8041 
8042 	/* Store the values of the MSIX table in the s2io_nic structure */
8043 	store_xmsi_data(sp);
8044 	/* reset Nic and bring it to known state */
8045 	s2io_reset(sp);
8046 
8047 	/*
8048 	 * Initialize link state flags
8049 	 * and the card state parameter
8050 	 */
8051 	sp->state = 0;
8052 
8053 	/* Initialize spinlocks */
8054 	for (i = 0; i < sp->config.tx_fifo_num; i++) {
8055 		struct fifo_info *fifo = &mac_control->fifos[i];
8056 
8057 		spin_lock_init(&fifo->tx_lock);
8058 	}
8059 
8060 	/*
8061 	 * SXE-002: Configure link and activity LED to init state
8062 	 * on driver load.
8063 	 */
8064 	subid = sp->pdev->subsystem_device;
8065 	if ((subid & 0xFF) >= 0x07) {
8066 		val64 = readq(&bar0->gpio_control);
8067 		val64 |= 0x0000800000000000ULL;
8068 		writeq(val64, &bar0->gpio_control);
8069 		val64 = 0x0411040400000000ULL;
8070 		writeq(val64, (void __iomem *)bar0 + 0x2700);
8071 		val64 = readq(&bar0->gpio_control);
8072 	}
8073 
8074 	sp->rx_csum = 1;	/* Rx chksum verify enabled by default */
8075 
8076 	if (register_netdev(dev)) {
8077 		DBG_PRINT(ERR_DBG, "Device registration failed\n");
8078 		ret = -ENODEV;
8079 		goto register_failed;
8080 	}
8081 	s2io_vpd_read(sp);
8082 	DBG_PRINT(ERR_DBG, "Copyright(c) 2002-2010 Exar Corp.\n");
8083 	DBG_PRINT(ERR_DBG, "%s: Neterion %s (rev %d)\n", dev->name,
8084 		  sp->product_name, pdev->revision);
8085 	DBG_PRINT(ERR_DBG, "%s: Driver version %s\n", dev->name,
8086 		  s2io_driver_version);
8087 	DBG_PRINT(ERR_DBG, "%s: MAC Address: %pM\n", dev->name, dev->dev_addr);
8088 	DBG_PRINT(ERR_DBG, "Serial number: %s\n", sp->serial_num);
8089 	if (sp->device_type & XFRAME_II_DEVICE) {
8090 		mode = s2io_print_pci_mode(sp);
8091 		if (mode < 0) {
8092 			ret = -EBADSLT;
8093 			unregister_netdev(dev);
8094 			goto set_swap_failed;
8095 		}
8096 	}
8097 	switch (sp->rxd_mode) {
8098 	case RXD_MODE_1:
8099 		DBG_PRINT(ERR_DBG, "%s: 1-Buffer receive mode enabled\n",
8100 			  dev->name);
8101 		break;
8102 	case RXD_MODE_3B:
8103 		DBG_PRINT(ERR_DBG, "%s: 2-Buffer receive mode enabled\n",
8104 			  dev->name);
8105 		break;
8106 	}
8107 
8108 	switch (sp->config.napi) {
8109 	case 0:
8110 		DBG_PRINT(ERR_DBG, "%s: NAPI disabled\n", dev->name);
8111 		break;
8112 	case 1:
8113 		DBG_PRINT(ERR_DBG, "%s: NAPI enabled\n", dev->name);
8114 		break;
8115 	}
8116 
8117 	DBG_PRINT(ERR_DBG, "%s: Using %d Tx fifo(s)\n", dev->name,
8118 		  sp->config.tx_fifo_num);
8119 
8120 	DBG_PRINT(ERR_DBG, "%s: Using %d Rx ring(s)\n", dev->name,
8121 		  sp->config.rx_ring_num);
8122 
8123 	switch (sp->config.intr_type) {
8124 	case INTA:
8125 		DBG_PRINT(ERR_DBG, "%s: Interrupt type INTA\n", dev->name);
8126 		break;
8127 	case MSI_X:
8128 		DBG_PRINT(ERR_DBG, "%s: Interrupt type MSI-X\n", dev->name);
8129 		break;
8130 	}
8131 	if (sp->config.multiq) {
8132 		for (i = 0; i < sp->config.tx_fifo_num; i++) {
8133 			struct fifo_info *fifo = &mac_control->fifos[i];
8134 
8135 			fifo->multiq = config->multiq;
8136 		}
8137 		DBG_PRINT(ERR_DBG, "%s: Multiqueue support enabled\n",
8138 			  dev->name);
8139 	} else
8140 		DBG_PRINT(ERR_DBG, "%s: Multiqueue support disabled\n",
8141 			  dev->name);
8142 
8143 	switch (sp->config.tx_steering_type) {
8144 	case NO_STEERING:
8145 		DBG_PRINT(ERR_DBG, "%s: No steering enabled for transmit\n",
8146 			  dev->name);
8147 		break;
8148 	case TX_PRIORITY_STEERING:
8149 		DBG_PRINT(ERR_DBG,
8150 			  "%s: Priority steering enabled for transmit\n",
8151 			  dev->name);
8152 		break;
8153 	case TX_DEFAULT_STEERING:
8154 		DBG_PRINT(ERR_DBG,
8155 			  "%s: Default steering enabled for transmit\n",
8156 			  dev->name);
8157 	}
8158 
8159 	DBG_PRINT(ERR_DBG, "%s: Large receive offload enabled\n",
8160 		  dev->name);
8161 	if (ufo)
8162 		DBG_PRINT(ERR_DBG,
8163 			  "%s: UDP Fragmentation Offload(UFO) enabled\n",
8164 			  dev->name);
8165 	/* Initialize device name */
8166 	sprintf(sp->name, "%s Neterion %s", dev->name, sp->product_name);
8167 
8168 	if (vlan_tag_strip)
8169 		sp->vlan_strip_flag = 1;
8170 	else
8171 		sp->vlan_strip_flag = 0;
8172 
8173 	/*
8174 	 * Make Link state as off at this point, when the Link change
8175 	 * interrupt comes the state will be automatically changed to
8176 	 * the right state.
8177 	 */
8178 	netif_carrier_off(dev);
8179 
8180 	return 0;
8181 
8182 register_failed:
8183 set_swap_failed:
8184 	iounmap(sp->bar1);
8185 bar1_remap_failed:
8186 	iounmap(sp->bar0);
8187 bar0_remap_failed:
8188 mem_alloc_failed:
8189 	free_shared_mem(sp);
8190 	pci_disable_device(pdev);
8191 	pci_release_regions(pdev);
8192 	free_netdev(dev);
8193 
8194 	return ret;
8195 }
8196 
8197 /**
8198  * s2io_rem_nic - Free the PCI device
8199  * @pdev: structure containing the PCI related information of the device.
8200  * Description: This function is called by the Pci subsystem to release a
8201  * PCI device and free up all resource held up by the device. This could
8202  * be in response to a Hot plug event or when the driver is to be removed
8203  * from memory.
8204  */
8205 
8206 static void s2io_rem_nic(struct pci_dev *pdev)
8207 {
8208 	struct net_device *dev = pci_get_drvdata(pdev);
8209 	struct s2io_nic *sp;
8210 
8211 	if (dev == NULL) {
8212 		DBG_PRINT(ERR_DBG, "Driver Data is NULL!!\n");
8213 		return;
8214 	}
8215 
8216 	sp = netdev_priv(dev);
8217 
8218 	cancel_work_sync(&sp->rst_timer_task);
8219 	cancel_work_sync(&sp->set_link_task);
8220 
8221 	unregister_netdev(dev);
8222 
8223 	free_shared_mem(sp);
8224 	iounmap(sp->bar0);
8225 	iounmap(sp->bar1);
8226 	pci_release_regions(pdev);
8227 	free_netdev(dev);
8228 	pci_disable_device(pdev);
8229 }
8230 
8231 /**
8232  * s2io_starter - Entry point for the driver
8233  * Description: This function is the entry point for the driver. It verifies
8234  * the module loadable parameters and initializes PCI configuration space.
8235  */
8236 
8237 static int __init s2io_starter(void)
8238 {
8239 	return pci_register_driver(&s2io_driver);
8240 }
8241 
8242 /**
8243  * s2io_closer - Cleanup routine for the driver
8244  * Description: This function is the cleanup routine for the driver. It
8245  * unregisters the driver.
8246  */
8247 
8248 static __exit void s2io_closer(void)
8249 {
8250 	pci_unregister_driver(&s2io_driver);
8251 	DBG_PRINT(INIT_DBG, "cleanup done\n");
8252 }
8253 
8254 module_init(s2io_starter);
8255 module_exit(s2io_closer);
8256 
8257 static int check_L2_lro_capable(u8 *buffer, struct iphdr **ip,
8258 				struct tcphdr **tcp, struct RxD_t *rxdp,
8259 				struct s2io_nic *sp)
8260 {
8261 	int ip_off;
8262 	u8 l2_type = (u8)((rxdp->Control_1 >> 37) & 0x7), ip_len;
8263 
8264 	if (!(rxdp->Control_1 & RXD_FRAME_PROTO_TCP)) {
8265 		DBG_PRINT(INIT_DBG,
8266 			  "%s: Non-TCP frames not supported for LRO\n",
8267 			  __func__);
8268 		return -1;
8269 	}
8270 
8271 	/* Checking for DIX type or DIX type with VLAN */
8272 	if ((l2_type == 0) || (l2_type == 4)) {
8273 		ip_off = HEADER_ETHERNET_II_802_3_SIZE;
8274 		/*
8275 		 * If vlan stripping is disabled and the frame is VLAN tagged,
8276 		 * shift the offset by the VLAN header size bytes.
8277 		 */
8278 		if ((!sp->vlan_strip_flag) &&
8279 		    (rxdp->Control_1 & RXD_FRAME_VLAN_TAG))
8280 			ip_off += HEADER_VLAN_SIZE;
8281 	} else {
8282 		/* LLC, SNAP etc are considered non-mergeable */
8283 		return -1;
8284 	}
8285 
8286 	*ip = (struct iphdr *)(buffer + ip_off);
8287 	ip_len = (u8)((*ip)->ihl);
8288 	ip_len <<= 2;
8289 	*tcp = (struct tcphdr *)((unsigned long)*ip + ip_len);
8290 
8291 	return 0;
8292 }
8293 
8294 static int check_for_socket_match(struct lro *lro, struct iphdr *ip,
8295 				  struct tcphdr *tcp)
8296 {
8297 	DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__);
8298 	if ((lro->iph->saddr != ip->saddr) ||
8299 	    (lro->iph->daddr != ip->daddr) ||
8300 	    (lro->tcph->source != tcp->source) ||
8301 	    (lro->tcph->dest != tcp->dest))
8302 		return -1;
8303 	return 0;
8304 }
8305 
8306 static inline int get_l4_pyld_length(struct iphdr *ip, struct tcphdr *tcp)
8307 {
8308 	return ntohs(ip->tot_len) - (ip->ihl << 2) - (tcp->doff << 2);
8309 }
8310 
8311 static void initiate_new_session(struct lro *lro, u8 *l2h,
8312 				 struct iphdr *ip, struct tcphdr *tcp,
8313 				 u32 tcp_pyld_len, u16 vlan_tag)
8314 {
8315 	DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__);
8316 	lro->l2h = l2h;
8317 	lro->iph = ip;
8318 	lro->tcph = tcp;
8319 	lro->tcp_next_seq = tcp_pyld_len + ntohl(tcp->seq);
8320 	lro->tcp_ack = tcp->ack_seq;
8321 	lro->sg_num = 1;
8322 	lro->total_len = ntohs(ip->tot_len);
8323 	lro->frags_len = 0;
8324 	lro->vlan_tag = vlan_tag;
8325 	/*
8326 	 * Check if we saw TCP timestamp.
8327 	 * Other consistency checks have already been done.
8328 	 */
8329 	if (tcp->doff == 8) {
8330 		__be32 *ptr;
8331 		ptr = (__be32 *)(tcp+1);
8332 		lro->saw_ts = 1;
8333 		lro->cur_tsval = ntohl(*(ptr+1));
8334 		lro->cur_tsecr = *(ptr+2);
8335 	}
8336 	lro->in_use = 1;
8337 }
8338 
8339 static void update_L3L4_header(struct s2io_nic *sp, struct lro *lro)
8340 {
8341 	struct iphdr *ip = lro->iph;
8342 	struct tcphdr *tcp = lro->tcph;
8343 	struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
8344 
8345 	DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__);
8346 
8347 	/* Update L3 header */
8348 	csum_replace2(&ip->check, ip->tot_len, htons(lro->total_len));
8349 	ip->tot_len = htons(lro->total_len);
8350 
8351 	/* Update L4 header */
8352 	tcp->ack_seq = lro->tcp_ack;
8353 	tcp->window = lro->window;
8354 
8355 	/* Update tsecr field if this session has timestamps enabled */
8356 	if (lro->saw_ts) {
8357 		__be32 *ptr = (__be32 *)(tcp + 1);
8358 		*(ptr+2) = lro->cur_tsecr;
8359 	}
8360 
8361 	/* Update counters required for calculation of
8362 	 * average no. of packets aggregated.
8363 	 */
8364 	swstats->sum_avg_pkts_aggregated += lro->sg_num;
8365 	swstats->num_aggregations++;
8366 }
8367 
8368 static void aggregate_new_rx(struct lro *lro, struct iphdr *ip,
8369 			     struct tcphdr *tcp, u32 l4_pyld)
8370 {
8371 	DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__);
8372 	lro->total_len += l4_pyld;
8373 	lro->frags_len += l4_pyld;
8374 	lro->tcp_next_seq += l4_pyld;
8375 	lro->sg_num++;
8376 
8377 	/* Update ack seq no. and window ad(from this pkt) in LRO object */
8378 	lro->tcp_ack = tcp->ack_seq;
8379 	lro->window = tcp->window;
8380 
8381 	if (lro->saw_ts) {
8382 		__be32 *ptr;
8383 		/* Update tsecr and tsval from this packet */
8384 		ptr = (__be32 *)(tcp+1);
8385 		lro->cur_tsval = ntohl(*(ptr+1));
8386 		lro->cur_tsecr = *(ptr + 2);
8387 	}
8388 }
8389 
8390 static int verify_l3_l4_lro_capable(struct lro *l_lro, struct iphdr *ip,
8391 				    struct tcphdr *tcp, u32 tcp_pyld_len)
8392 {
8393 	u8 *ptr;
8394 
8395 	DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__);
8396 
8397 	if (!tcp_pyld_len) {
8398 		/* Runt frame or a pure ack */
8399 		return -1;
8400 	}
8401 
8402 	if (ip->ihl != 5) /* IP has options */
8403 		return -1;
8404 
8405 	/* If we see CE codepoint in IP header, packet is not mergeable */
8406 	if (INET_ECN_is_ce(ipv4_get_dsfield(ip)))
8407 		return -1;
8408 
8409 	/* If we see ECE or CWR flags in TCP header, packet is not mergeable */
8410 	if (tcp->urg || tcp->psh || tcp->rst ||
8411 	    tcp->syn || tcp->fin ||
8412 	    tcp->ece || tcp->cwr || !tcp->ack) {
8413 		/*
8414 		 * Currently recognize only the ack control word and
8415 		 * any other control field being set would result in
8416 		 * flushing the LRO session
8417 		 */
8418 		return -1;
8419 	}
8420 
8421 	/*
8422 	 * Allow only one TCP timestamp option. Don't aggregate if
8423 	 * any other options are detected.
8424 	 */
8425 	if (tcp->doff != 5 && tcp->doff != 8)
8426 		return -1;
8427 
8428 	if (tcp->doff == 8) {
8429 		ptr = (u8 *)(tcp + 1);
8430 		while (*ptr == TCPOPT_NOP)
8431 			ptr++;
8432 		if (*ptr != TCPOPT_TIMESTAMP || *(ptr+1) != TCPOLEN_TIMESTAMP)
8433 			return -1;
8434 
8435 		/* Ensure timestamp value increases monotonically */
8436 		if (l_lro)
8437 			if (l_lro->cur_tsval > ntohl(*((__be32 *)(ptr+2))))
8438 				return -1;
8439 
8440 		/* timestamp echo reply should be non-zero */
8441 		if (*((__be32 *)(ptr+6)) == 0)
8442 			return -1;
8443 	}
8444 
8445 	return 0;
8446 }
8447 
8448 static int s2io_club_tcp_session(struct ring_info *ring_data, u8 *buffer,
8449 				 u8 **tcp, u32 *tcp_len, struct lro **lro,
8450 				 struct RxD_t *rxdp, struct s2io_nic *sp)
8451 {
8452 	struct iphdr *ip;
8453 	struct tcphdr *tcph;
8454 	int ret = 0, i;
8455 	u16 vlan_tag = 0;
8456 	struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
8457 
8458 	ret = check_L2_lro_capable(buffer, &ip, (struct tcphdr **)tcp,
8459 				   rxdp, sp);
8460 	if (ret)
8461 		return ret;
8462 
8463 	DBG_PRINT(INFO_DBG, "IP Saddr: %x Daddr: %x\n", ip->saddr, ip->daddr);
8464 
8465 	vlan_tag = RXD_GET_VLAN_TAG(rxdp->Control_2);
8466 	tcph = (struct tcphdr *)*tcp;
8467 	*tcp_len = get_l4_pyld_length(ip, tcph);
8468 	for (i = 0; i < MAX_LRO_SESSIONS; i++) {
8469 		struct lro *l_lro = &ring_data->lro0_n[i];
8470 		if (l_lro->in_use) {
8471 			if (check_for_socket_match(l_lro, ip, tcph))
8472 				continue;
8473 			/* Sock pair matched */
8474 			*lro = l_lro;
8475 
8476 			if ((*lro)->tcp_next_seq != ntohl(tcph->seq)) {
8477 				DBG_PRINT(INFO_DBG, "%s: Out of sequence. "
8478 					  "expected 0x%x, actual 0x%x\n",
8479 					  __func__,
8480 					  (*lro)->tcp_next_seq,
8481 					  ntohl(tcph->seq));
8482 
8483 				swstats->outof_sequence_pkts++;
8484 				ret = 2;
8485 				break;
8486 			}
8487 
8488 			if (!verify_l3_l4_lro_capable(l_lro, ip, tcph,
8489 						      *tcp_len))
8490 				ret = 1; /* Aggregate */
8491 			else
8492 				ret = 2; /* Flush both */
8493 			break;
8494 		}
8495 	}
8496 
8497 	if (ret == 0) {
8498 		/* Before searching for available LRO objects,
8499 		 * check if the pkt is L3/L4 aggregatable. If not
8500 		 * don't create new LRO session. Just send this
8501 		 * packet up.
8502 		 */
8503 		if (verify_l3_l4_lro_capable(NULL, ip, tcph, *tcp_len))
8504 			return 5;
8505 
8506 		for (i = 0; i < MAX_LRO_SESSIONS; i++) {
8507 			struct lro *l_lro = &ring_data->lro0_n[i];
8508 			if (!(l_lro->in_use)) {
8509 				*lro = l_lro;
8510 				ret = 3; /* Begin anew */
8511 				break;
8512 			}
8513 		}
8514 	}
8515 
8516 	if (ret == 0) { /* sessions exceeded */
8517 		DBG_PRINT(INFO_DBG, "%s: All LRO sessions already in use\n",
8518 			  __func__);
8519 		*lro = NULL;
8520 		return ret;
8521 	}
8522 
8523 	switch (ret) {
8524 	case 3:
8525 		initiate_new_session(*lro, buffer, ip, tcph, *tcp_len,
8526 				     vlan_tag);
8527 		break;
8528 	case 2:
8529 		update_L3L4_header(sp, *lro);
8530 		break;
8531 	case 1:
8532 		aggregate_new_rx(*lro, ip, tcph, *tcp_len);
8533 		if ((*lro)->sg_num == sp->lro_max_aggr_per_sess) {
8534 			update_L3L4_header(sp, *lro);
8535 			ret = 4; /* Flush the LRO */
8536 		}
8537 		break;
8538 	default:
8539 		DBG_PRINT(ERR_DBG, "%s: Don't know, can't say!!\n", __func__);
8540 		break;
8541 	}
8542 
8543 	return ret;
8544 }
8545 
8546 static void clear_lro_session(struct lro *lro)
8547 {
8548 	static u16 lro_struct_size = sizeof(struct lro);
8549 
8550 	memset(lro, 0, lro_struct_size);
8551 }
8552 
8553 static void queue_rx_frame(struct sk_buff *skb, u16 vlan_tag)
8554 {
8555 	struct net_device *dev = skb->dev;
8556 	struct s2io_nic *sp = netdev_priv(dev);
8557 
8558 	skb->protocol = eth_type_trans(skb, dev);
8559 	if (vlan_tag && sp->vlan_strip_flag)
8560 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag);
8561 	if (sp->config.napi)
8562 		netif_receive_skb(skb);
8563 	else
8564 		netif_rx(skb);
8565 }
8566 
8567 static void lro_append_pkt(struct s2io_nic *sp, struct lro *lro,
8568 			   struct sk_buff *skb, u32 tcp_len)
8569 {
8570 	struct sk_buff *first = lro->parent;
8571 	struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
8572 
8573 	first->len += tcp_len;
8574 	first->data_len = lro->frags_len;
8575 	skb_pull(skb, (skb->len - tcp_len));
8576 	if (skb_shinfo(first)->frag_list)
8577 		lro->last_frag->next = skb;
8578 	else
8579 		skb_shinfo(first)->frag_list = skb;
8580 	first->truesize += skb->truesize;
8581 	lro->last_frag = skb;
8582 	swstats->clubbed_frms_cnt++;
8583 }
8584 
8585 /**
8586  * s2io_io_error_detected - called when PCI error is detected
8587  * @pdev: Pointer to PCI device
8588  * @state: The current pci connection state
8589  *
8590  * This function is called after a PCI bus error affecting
8591  * this device has been detected.
8592  */
8593 static pci_ers_result_t s2io_io_error_detected(struct pci_dev *pdev,
8594 					       pci_channel_state_t state)
8595 {
8596 	struct net_device *netdev = pci_get_drvdata(pdev);
8597 	struct s2io_nic *sp = netdev_priv(netdev);
8598 
8599 	netif_device_detach(netdev);
8600 
8601 	if (state == pci_channel_io_perm_failure)
8602 		return PCI_ERS_RESULT_DISCONNECT;
8603 
8604 	if (netif_running(netdev)) {
8605 		/* Bring down the card, while avoiding PCI I/O */
8606 		do_s2io_card_down(sp, 0);
8607 	}
8608 	pci_disable_device(pdev);
8609 
8610 	return PCI_ERS_RESULT_NEED_RESET;
8611 }
8612 
8613 /**
8614  * s2io_io_slot_reset - called after the pci bus has been reset.
8615  * @pdev: Pointer to PCI device
8616  *
8617  * Restart the card from scratch, as if from a cold-boot.
8618  * At this point, the card has exprienced a hard reset,
8619  * followed by fixups by BIOS, and has its config space
8620  * set up identically to what it was at cold boot.
8621  */
8622 static pci_ers_result_t s2io_io_slot_reset(struct pci_dev *pdev)
8623 {
8624 	struct net_device *netdev = pci_get_drvdata(pdev);
8625 	struct s2io_nic *sp = netdev_priv(netdev);
8626 
8627 	if (pci_enable_device(pdev)) {
8628 		pr_err("Cannot re-enable PCI device after reset.\n");
8629 		return PCI_ERS_RESULT_DISCONNECT;
8630 	}
8631 
8632 	pci_set_master(pdev);
8633 	s2io_reset(sp);
8634 
8635 	return PCI_ERS_RESULT_RECOVERED;
8636 }
8637 
8638 /**
8639  * s2io_io_resume - called when traffic can start flowing again.
8640  * @pdev: Pointer to PCI device
8641  *
8642  * This callback is called when the error recovery driver tells
8643  * us that its OK to resume normal operation.
8644  */
8645 static void s2io_io_resume(struct pci_dev *pdev)
8646 {
8647 	struct net_device *netdev = pci_get_drvdata(pdev);
8648 	struct s2io_nic *sp = netdev_priv(netdev);
8649 
8650 	if (netif_running(netdev)) {
8651 		if (s2io_card_up(sp)) {
8652 			pr_err("Can't bring device back up after reset.\n");
8653 			return;
8654 		}
8655 
8656 		if (s2io_set_mac_addr(netdev, netdev->dev_addr) == FAILURE) {
8657 			s2io_card_down(sp);
8658 			pr_err("Can't restore mac addr after reset.\n");
8659 			return;
8660 		}
8661 	}
8662 
8663 	netif_device_attach(netdev);
8664 	netif_tx_wake_all_queues(netdev);
8665 }
8666