1 /************************************************************************ 2 * s2io.c: A Linux PCI-X Ethernet driver for Neterion 10GbE Server NIC 3 * Copyright(c) 2002-2010 Exar Corp. 4 * 5 * This software may be used and distributed according to the terms of 6 * the GNU General Public License (GPL), incorporated herein by reference. 7 * Drivers based on or derived from this code fall under the GPL and must 8 * retain the authorship, copyright and license notice. This file is not 9 * a complete program and may only be used when the entire operating 10 * system is licensed under the GPL. 11 * See the file COPYING in this distribution for more information. 12 * 13 * Credits: 14 * Jeff Garzik : For pointing out the improper error condition 15 * check in the s2io_xmit routine and also some 16 * issues in the Tx watch dog function. Also for 17 * patiently answering all those innumerable 18 * questions regaring the 2.6 porting issues. 19 * Stephen Hemminger : Providing proper 2.6 porting mechanism for some 20 * macros available only in 2.6 Kernel. 21 * Francois Romieu : For pointing out all code part that were 22 * deprecated and also styling related comments. 23 * Grant Grundler : For helping me get rid of some Architecture 24 * dependent code. 25 * Christopher Hellwig : Some more 2.6 specific issues in the driver. 26 * 27 * The module loadable parameters that are supported by the driver and a brief 28 * explanation of all the variables. 29 * 30 * rx_ring_num : This can be used to program the number of receive rings used 31 * in the driver. 32 * rx_ring_sz: This defines the number of receive blocks each ring can have. 33 * This is also an array of size 8. 34 * rx_ring_mode: This defines the operation mode of all 8 rings. The valid 35 * values are 1, 2. 36 * tx_fifo_num: This defines the number of Tx FIFOs thats used int the driver. 37 * tx_fifo_len: This too is an array of 8. Each element defines the number of 38 * Tx descriptors that can be associated with each corresponding FIFO. 39 * intr_type: This defines the type of interrupt. The values can be 0(INTA), 40 * 2(MSI_X). Default value is '2(MSI_X)' 41 * lro_max_pkts: This parameter defines maximum number of packets can be 42 * aggregated as a single large packet 43 * napi: This parameter used to enable/disable NAPI (polling Rx) 44 * Possible values '1' for enable and '0' for disable. Default is '1' 45 * ufo: This parameter used to enable/disable UDP Fragmentation Offload(UFO) 46 * Possible values '1' for enable and '0' for disable. Default is '0' 47 * vlan_tag_strip: This can be used to enable or disable vlan stripping. 48 * Possible values '1' for enable , '0' for disable. 49 * Default is '2' - which means disable in promisc mode 50 * and enable in non-promiscuous mode. 51 * multiq: This parameter used to enable/disable MULTIQUEUE support. 52 * Possible values '1' for enable and '0' for disable. Default is '0' 53 ************************************************************************/ 54 55 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 56 57 #include <linux/module.h> 58 #include <linux/types.h> 59 #include <linux/errno.h> 60 #include <linux/ioport.h> 61 #include <linux/pci.h> 62 #include <linux/dma-mapping.h> 63 #include <linux/kernel.h> 64 #include <linux/netdevice.h> 65 #include <linux/etherdevice.h> 66 #include <linux/mdio.h> 67 #include <linux/skbuff.h> 68 #include <linux/init.h> 69 #include <linux/delay.h> 70 #include <linux/stddef.h> 71 #include <linux/ioctl.h> 72 #include <linux/timex.h> 73 #include <linux/ethtool.h> 74 #include <linux/workqueue.h> 75 #include <linux/if_vlan.h> 76 #include <linux/ip.h> 77 #include <linux/tcp.h> 78 #include <linux/uaccess.h> 79 #include <linux/io.h> 80 #include <linux/slab.h> 81 #include <linux/prefetch.h> 82 #include <net/tcp.h> 83 #include <net/checksum.h> 84 85 #include <asm/div64.h> 86 #include <asm/irq.h> 87 88 /* local include */ 89 #include "s2io.h" 90 #include "s2io-regs.h" 91 92 #define DRV_VERSION "2.0.26.28" 93 94 /* S2io Driver name & version. */ 95 static const char s2io_driver_name[] = "Neterion"; 96 static const char s2io_driver_version[] = DRV_VERSION; 97 98 static const int rxd_size[2] = {32, 48}; 99 static const int rxd_count[2] = {127, 85}; 100 101 static inline int RXD_IS_UP2DT(struct RxD_t *rxdp) 102 { 103 int ret; 104 105 ret = ((!(rxdp->Control_1 & RXD_OWN_XENA)) && 106 (GET_RXD_MARKER(rxdp->Control_2) != THE_RXD_MARK)); 107 108 return ret; 109 } 110 111 /* 112 * Cards with following subsystem_id have a link state indication 113 * problem, 600B, 600C, 600D, 640B, 640C and 640D. 114 * macro below identifies these cards given the subsystem_id. 115 */ 116 #define CARDS_WITH_FAULTY_LINK_INDICATORS(dev_type, subid) \ 117 (dev_type == XFRAME_I_DEVICE) ? \ 118 ((((subid >= 0x600B) && (subid <= 0x600D)) || \ 119 ((subid >= 0x640B) && (subid <= 0x640D))) ? 1 : 0) : 0 120 121 #define LINK_IS_UP(val64) (!(val64 & (ADAPTER_STATUS_RMAC_REMOTE_FAULT | \ 122 ADAPTER_STATUS_RMAC_LOCAL_FAULT))) 123 124 static inline int is_s2io_card_up(const struct s2io_nic *sp) 125 { 126 return test_bit(__S2IO_STATE_CARD_UP, &sp->state); 127 } 128 129 /* Ethtool related variables and Macros. */ 130 static const char s2io_gstrings[][ETH_GSTRING_LEN] = { 131 "Register test\t(offline)", 132 "Eeprom test\t(offline)", 133 "Link test\t(online)", 134 "RLDRAM test\t(offline)", 135 "BIST Test\t(offline)" 136 }; 137 138 static const char ethtool_xena_stats_keys[][ETH_GSTRING_LEN] = { 139 {"tmac_frms"}, 140 {"tmac_data_octets"}, 141 {"tmac_drop_frms"}, 142 {"tmac_mcst_frms"}, 143 {"tmac_bcst_frms"}, 144 {"tmac_pause_ctrl_frms"}, 145 {"tmac_ttl_octets"}, 146 {"tmac_ucst_frms"}, 147 {"tmac_nucst_frms"}, 148 {"tmac_any_err_frms"}, 149 {"tmac_ttl_less_fb_octets"}, 150 {"tmac_vld_ip_octets"}, 151 {"tmac_vld_ip"}, 152 {"tmac_drop_ip"}, 153 {"tmac_icmp"}, 154 {"tmac_rst_tcp"}, 155 {"tmac_tcp"}, 156 {"tmac_udp"}, 157 {"rmac_vld_frms"}, 158 {"rmac_data_octets"}, 159 {"rmac_fcs_err_frms"}, 160 {"rmac_drop_frms"}, 161 {"rmac_vld_mcst_frms"}, 162 {"rmac_vld_bcst_frms"}, 163 {"rmac_in_rng_len_err_frms"}, 164 {"rmac_out_rng_len_err_frms"}, 165 {"rmac_long_frms"}, 166 {"rmac_pause_ctrl_frms"}, 167 {"rmac_unsup_ctrl_frms"}, 168 {"rmac_ttl_octets"}, 169 {"rmac_accepted_ucst_frms"}, 170 {"rmac_accepted_nucst_frms"}, 171 {"rmac_discarded_frms"}, 172 {"rmac_drop_events"}, 173 {"rmac_ttl_less_fb_octets"}, 174 {"rmac_ttl_frms"}, 175 {"rmac_usized_frms"}, 176 {"rmac_osized_frms"}, 177 {"rmac_frag_frms"}, 178 {"rmac_jabber_frms"}, 179 {"rmac_ttl_64_frms"}, 180 {"rmac_ttl_65_127_frms"}, 181 {"rmac_ttl_128_255_frms"}, 182 {"rmac_ttl_256_511_frms"}, 183 {"rmac_ttl_512_1023_frms"}, 184 {"rmac_ttl_1024_1518_frms"}, 185 {"rmac_ip"}, 186 {"rmac_ip_octets"}, 187 {"rmac_hdr_err_ip"}, 188 {"rmac_drop_ip"}, 189 {"rmac_icmp"}, 190 {"rmac_tcp"}, 191 {"rmac_udp"}, 192 {"rmac_err_drp_udp"}, 193 {"rmac_xgmii_err_sym"}, 194 {"rmac_frms_q0"}, 195 {"rmac_frms_q1"}, 196 {"rmac_frms_q2"}, 197 {"rmac_frms_q3"}, 198 {"rmac_frms_q4"}, 199 {"rmac_frms_q5"}, 200 {"rmac_frms_q6"}, 201 {"rmac_frms_q7"}, 202 {"rmac_full_q0"}, 203 {"rmac_full_q1"}, 204 {"rmac_full_q2"}, 205 {"rmac_full_q3"}, 206 {"rmac_full_q4"}, 207 {"rmac_full_q5"}, 208 {"rmac_full_q6"}, 209 {"rmac_full_q7"}, 210 {"rmac_pause_cnt"}, 211 {"rmac_xgmii_data_err_cnt"}, 212 {"rmac_xgmii_ctrl_err_cnt"}, 213 {"rmac_accepted_ip"}, 214 {"rmac_err_tcp"}, 215 {"rd_req_cnt"}, 216 {"new_rd_req_cnt"}, 217 {"new_rd_req_rtry_cnt"}, 218 {"rd_rtry_cnt"}, 219 {"wr_rtry_rd_ack_cnt"}, 220 {"wr_req_cnt"}, 221 {"new_wr_req_cnt"}, 222 {"new_wr_req_rtry_cnt"}, 223 {"wr_rtry_cnt"}, 224 {"wr_disc_cnt"}, 225 {"rd_rtry_wr_ack_cnt"}, 226 {"txp_wr_cnt"}, 227 {"txd_rd_cnt"}, 228 {"txd_wr_cnt"}, 229 {"rxd_rd_cnt"}, 230 {"rxd_wr_cnt"}, 231 {"txf_rd_cnt"}, 232 {"rxf_wr_cnt"} 233 }; 234 235 static const char ethtool_enhanced_stats_keys[][ETH_GSTRING_LEN] = { 236 {"rmac_ttl_1519_4095_frms"}, 237 {"rmac_ttl_4096_8191_frms"}, 238 {"rmac_ttl_8192_max_frms"}, 239 {"rmac_ttl_gt_max_frms"}, 240 {"rmac_osized_alt_frms"}, 241 {"rmac_jabber_alt_frms"}, 242 {"rmac_gt_max_alt_frms"}, 243 {"rmac_vlan_frms"}, 244 {"rmac_len_discard"}, 245 {"rmac_fcs_discard"}, 246 {"rmac_pf_discard"}, 247 {"rmac_da_discard"}, 248 {"rmac_red_discard"}, 249 {"rmac_rts_discard"}, 250 {"rmac_ingm_full_discard"}, 251 {"link_fault_cnt"} 252 }; 253 254 static const char ethtool_driver_stats_keys[][ETH_GSTRING_LEN] = { 255 {"\n DRIVER STATISTICS"}, 256 {"single_bit_ecc_errs"}, 257 {"double_bit_ecc_errs"}, 258 {"parity_err_cnt"}, 259 {"serious_err_cnt"}, 260 {"soft_reset_cnt"}, 261 {"fifo_full_cnt"}, 262 {"ring_0_full_cnt"}, 263 {"ring_1_full_cnt"}, 264 {"ring_2_full_cnt"}, 265 {"ring_3_full_cnt"}, 266 {"ring_4_full_cnt"}, 267 {"ring_5_full_cnt"}, 268 {"ring_6_full_cnt"}, 269 {"ring_7_full_cnt"}, 270 {"alarm_transceiver_temp_high"}, 271 {"alarm_transceiver_temp_low"}, 272 {"alarm_laser_bias_current_high"}, 273 {"alarm_laser_bias_current_low"}, 274 {"alarm_laser_output_power_high"}, 275 {"alarm_laser_output_power_low"}, 276 {"warn_transceiver_temp_high"}, 277 {"warn_transceiver_temp_low"}, 278 {"warn_laser_bias_current_high"}, 279 {"warn_laser_bias_current_low"}, 280 {"warn_laser_output_power_high"}, 281 {"warn_laser_output_power_low"}, 282 {"lro_aggregated_pkts"}, 283 {"lro_flush_both_count"}, 284 {"lro_out_of_sequence_pkts"}, 285 {"lro_flush_due_to_max_pkts"}, 286 {"lro_avg_aggr_pkts"}, 287 {"mem_alloc_fail_cnt"}, 288 {"pci_map_fail_cnt"}, 289 {"watchdog_timer_cnt"}, 290 {"mem_allocated"}, 291 {"mem_freed"}, 292 {"link_up_cnt"}, 293 {"link_down_cnt"}, 294 {"link_up_time"}, 295 {"link_down_time"}, 296 {"tx_tcode_buf_abort_cnt"}, 297 {"tx_tcode_desc_abort_cnt"}, 298 {"tx_tcode_parity_err_cnt"}, 299 {"tx_tcode_link_loss_cnt"}, 300 {"tx_tcode_list_proc_err_cnt"}, 301 {"rx_tcode_parity_err_cnt"}, 302 {"rx_tcode_abort_cnt"}, 303 {"rx_tcode_parity_abort_cnt"}, 304 {"rx_tcode_rda_fail_cnt"}, 305 {"rx_tcode_unkn_prot_cnt"}, 306 {"rx_tcode_fcs_err_cnt"}, 307 {"rx_tcode_buf_size_err_cnt"}, 308 {"rx_tcode_rxd_corrupt_cnt"}, 309 {"rx_tcode_unkn_err_cnt"}, 310 {"tda_err_cnt"}, 311 {"pfc_err_cnt"}, 312 {"pcc_err_cnt"}, 313 {"tti_err_cnt"}, 314 {"tpa_err_cnt"}, 315 {"sm_err_cnt"}, 316 {"lso_err_cnt"}, 317 {"mac_tmac_err_cnt"}, 318 {"mac_rmac_err_cnt"}, 319 {"xgxs_txgxs_err_cnt"}, 320 {"xgxs_rxgxs_err_cnt"}, 321 {"rc_err_cnt"}, 322 {"prc_pcix_err_cnt"}, 323 {"rpa_err_cnt"}, 324 {"rda_err_cnt"}, 325 {"rti_err_cnt"}, 326 {"mc_err_cnt"} 327 }; 328 329 #define S2IO_XENA_STAT_LEN ARRAY_SIZE(ethtool_xena_stats_keys) 330 #define S2IO_ENHANCED_STAT_LEN ARRAY_SIZE(ethtool_enhanced_stats_keys) 331 #define S2IO_DRIVER_STAT_LEN ARRAY_SIZE(ethtool_driver_stats_keys) 332 333 #define XFRAME_I_STAT_LEN (S2IO_XENA_STAT_LEN + S2IO_DRIVER_STAT_LEN) 334 #define XFRAME_II_STAT_LEN (XFRAME_I_STAT_LEN + S2IO_ENHANCED_STAT_LEN) 335 336 #define XFRAME_I_STAT_STRINGS_LEN (XFRAME_I_STAT_LEN * ETH_GSTRING_LEN) 337 #define XFRAME_II_STAT_STRINGS_LEN (XFRAME_II_STAT_LEN * ETH_GSTRING_LEN) 338 339 #define S2IO_TEST_LEN ARRAY_SIZE(s2io_gstrings) 340 #define S2IO_STRINGS_LEN (S2IO_TEST_LEN * ETH_GSTRING_LEN) 341 342 #define S2IO_TIMER_CONF(timer, handle, arg, exp) \ 343 init_timer(&timer); \ 344 timer.function = handle; \ 345 timer.data = (unsigned long)arg; \ 346 mod_timer(&timer, (jiffies + exp)) \ 347 348 /* copy mac addr to def_mac_addr array */ 349 static void do_s2io_copy_mac_addr(struct s2io_nic *sp, int offset, u64 mac_addr) 350 { 351 sp->def_mac_addr[offset].mac_addr[5] = (u8) (mac_addr); 352 sp->def_mac_addr[offset].mac_addr[4] = (u8) (mac_addr >> 8); 353 sp->def_mac_addr[offset].mac_addr[3] = (u8) (mac_addr >> 16); 354 sp->def_mac_addr[offset].mac_addr[2] = (u8) (mac_addr >> 24); 355 sp->def_mac_addr[offset].mac_addr[1] = (u8) (mac_addr >> 32); 356 sp->def_mac_addr[offset].mac_addr[0] = (u8) (mac_addr >> 40); 357 } 358 359 /* 360 * Constants to be programmed into the Xena's registers, to configure 361 * the XAUI. 362 */ 363 364 #define END_SIGN 0x0 365 static const u64 herc_act_dtx_cfg[] = { 366 /* Set address */ 367 0x8000051536750000ULL, 0x80000515367500E0ULL, 368 /* Write data */ 369 0x8000051536750004ULL, 0x80000515367500E4ULL, 370 /* Set address */ 371 0x80010515003F0000ULL, 0x80010515003F00E0ULL, 372 /* Write data */ 373 0x80010515003F0004ULL, 0x80010515003F00E4ULL, 374 /* Set address */ 375 0x801205150D440000ULL, 0x801205150D4400E0ULL, 376 /* Write data */ 377 0x801205150D440004ULL, 0x801205150D4400E4ULL, 378 /* Set address */ 379 0x80020515F2100000ULL, 0x80020515F21000E0ULL, 380 /* Write data */ 381 0x80020515F2100004ULL, 0x80020515F21000E4ULL, 382 /* Done */ 383 END_SIGN 384 }; 385 386 static const u64 xena_dtx_cfg[] = { 387 /* Set address */ 388 0x8000051500000000ULL, 0x80000515000000E0ULL, 389 /* Write data */ 390 0x80000515D9350004ULL, 0x80000515D93500E4ULL, 391 /* Set address */ 392 0x8001051500000000ULL, 0x80010515000000E0ULL, 393 /* Write data */ 394 0x80010515001E0004ULL, 0x80010515001E00E4ULL, 395 /* Set address */ 396 0x8002051500000000ULL, 0x80020515000000E0ULL, 397 /* Write data */ 398 0x80020515F2100004ULL, 0x80020515F21000E4ULL, 399 END_SIGN 400 }; 401 402 /* 403 * Constants for Fixing the MacAddress problem seen mostly on 404 * Alpha machines. 405 */ 406 static const u64 fix_mac[] = { 407 0x0060000000000000ULL, 0x0060600000000000ULL, 408 0x0040600000000000ULL, 0x0000600000000000ULL, 409 0x0020600000000000ULL, 0x0060600000000000ULL, 410 0x0020600000000000ULL, 0x0060600000000000ULL, 411 0x0020600000000000ULL, 0x0060600000000000ULL, 412 0x0020600000000000ULL, 0x0060600000000000ULL, 413 0x0020600000000000ULL, 0x0060600000000000ULL, 414 0x0020600000000000ULL, 0x0060600000000000ULL, 415 0x0020600000000000ULL, 0x0060600000000000ULL, 416 0x0020600000000000ULL, 0x0060600000000000ULL, 417 0x0020600000000000ULL, 0x0060600000000000ULL, 418 0x0020600000000000ULL, 0x0060600000000000ULL, 419 0x0020600000000000ULL, 0x0000600000000000ULL, 420 0x0040600000000000ULL, 0x0060600000000000ULL, 421 END_SIGN 422 }; 423 424 MODULE_LICENSE("GPL"); 425 MODULE_VERSION(DRV_VERSION); 426 427 428 /* Module Loadable parameters. */ 429 S2IO_PARM_INT(tx_fifo_num, FIFO_DEFAULT_NUM); 430 S2IO_PARM_INT(rx_ring_num, 1); 431 S2IO_PARM_INT(multiq, 0); 432 S2IO_PARM_INT(rx_ring_mode, 1); 433 S2IO_PARM_INT(use_continuous_tx_intrs, 1); 434 S2IO_PARM_INT(rmac_pause_time, 0x100); 435 S2IO_PARM_INT(mc_pause_threshold_q0q3, 187); 436 S2IO_PARM_INT(mc_pause_threshold_q4q7, 187); 437 S2IO_PARM_INT(shared_splits, 0); 438 S2IO_PARM_INT(tmac_util_period, 5); 439 S2IO_PARM_INT(rmac_util_period, 5); 440 S2IO_PARM_INT(l3l4hdr_size, 128); 441 /* 0 is no steering, 1 is Priority steering, 2 is Default steering */ 442 S2IO_PARM_INT(tx_steering_type, TX_DEFAULT_STEERING); 443 /* Frequency of Rx desc syncs expressed as power of 2 */ 444 S2IO_PARM_INT(rxsync_frequency, 3); 445 /* Interrupt type. Values can be 0(INTA), 2(MSI_X) */ 446 S2IO_PARM_INT(intr_type, 2); 447 /* Large receive offload feature */ 448 449 /* Max pkts to be aggregated by LRO at one time. If not specified, 450 * aggregation happens until we hit max IP pkt size(64K) 451 */ 452 S2IO_PARM_INT(lro_max_pkts, 0xFFFF); 453 S2IO_PARM_INT(indicate_max_pkts, 0); 454 455 S2IO_PARM_INT(napi, 1); 456 S2IO_PARM_INT(ufo, 0); 457 S2IO_PARM_INT(vlan_tag_strip, NO_STRIP_IN_PROMISC); 458 459 static unsigned int tx_fifo_len[MAX_TX_FIFOS] = 460 {DEFAULT_FIFO_0_LEN, [1 ...(MAX_TX_FIFOS - 1)] = DEFAULT_FIFO_1_7_LEN}; 461 static unsigned int rx_ring_sz[MAX_RX_RINGS] = 462 {[0 ...(MAX_RX_RINGS - 1)] = SMALL_BLK_CNT}; 463 static unsigned int rts_frm_len[MAX_RX_RINGS] = 464 {[0 ...(MAX_RX_RINGS - 1)] = 0 }; 465 466 module_param_array(tx_fifo_len, uint, NULL, 0); 467 module_param_array(rx_ring_sz, uint, NULL, 0); 468 module_param_array(rts_frm_len, uint, NULL, 0); 469 470 /* 471 * S2IO device table. 472 * This table lists all the devices that this driver supports. 473 */ 474 static DEFINE_PCI_DEVICE_TABLE(s2io_tbl) = { 475 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_WIN, 476 PCI_ANY_ID, PCI_ANY_ID}, 477 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_UNI, 478 PCI_ANY_ID, PCI_ANY_ID}, 479 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_WIN, 480 PCI_ANY_ID, PCI_ANY_ID}, 481 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_UNI, 482 PCI_ANY_ID, PCI_ANY_ID}, 483 {0,} 484 }; 485 486 MODULE_DEVICE_TABLE(pci, s2io_tbl); 487 488 static const struct pci_error_handlers s2io_err_handler = { 489 .error_detected = s2io_io_error_detected, 490 .slot_reset = s2io_io_slot_reset, 491 .resume = s2io_io_resume, 492 }; 493 494 static struct pci_driver s2io_driver = { 495 .name = "S2IO", 496 .id_table = s2io_tbl, 497 .probe = s2io_init_nic, 498 .remove = s2io_rem_nic, 499 .err_handler = &s2io_err_handler, 500 }; 501 502 /* A simplifier macro used both by init and free shared_mem Fns(). */ 503 #define TXD_MEM_PAGE_CNT(len, per_each) ((len+per_each - 1) / per_each) 504 505 /* netqueue manipulation helper functions */ 506 static inline void s2io_stop_all_tx_queue(struct s2io_nic *sp) 507 { 508 if (!sp->config.multiq) { 509 int i; 510 511 for (i = 0; i < sp->config.tx_fifo_num; i++) 512 sp->mac_control.fifos[i].queue_state = FIFO_QUEUE_STOP; 513 } 514 netif_tx_stop_all_queues(sp->dev); 515 } 516 517 static inline void s2io_stop_tx_queue(struct s2io_nic *sp, int fifo_no) 518 { 519 if (!sp->config.multiq) 520 sp->mac_control.fifos[fifo_no].queue_state = 521 FIFO_QUEUE_STOP; 522 523 netif_tx_stop_all_queues(sp->dev); 524 } 525 526 static inline void s2io_start_all_tx_queue(struct s2io_nic *sp) 527 { 528 if (!sp->config.multiq) { 529 int i; 530 531 for (i = 0; i < sp->config.tx_fifo_num; i++) 532 sp->mac_control.fifos[i].queue_state = FIFO_QUEUE_START; 533 } 534 netif_tx_start_all_queues(sp->dev); 535 } 536 537 static inline void s2io_start_tx_queue(struct s2io_nic *sp, int fifo_no) 538 { 539 if (!sp->config.multiq) 540 sp->mac_control.fifos[fifo_no].queue_state = 541 FIFO_QUEUE_START; 542 543 netif_tx_start_all_queues(sp->dev); 544 } 545 546 static inline void s2io_wake_all_tx_queue(struct s2io_nic *sp) 547 { 548 if (!sp->config.multiq) { 549 int i; 550 551 for (i = 0; i < sp->config.tx_fifo_num; i++) 552 sp->mac_control.fifos[i].queue_state = FIFO_QUEUE_START; 553 } 554 netif_tx_wake_all_queues(sp->dev); 555 } 556 557 static inline void s2io_wake_tx_queue( 558 struct fifo_info *fifo, int cnt, u8 multiq) 559 { 560 561 if (multiq) { 562 if (cnt && __netif_subqueue_stopped(fifo->dev, fifo->fifo_no)) 563 netif_wake_subqueue(fifo->dev, fifo->fifo_no); 564 } else if (cnt && (fifo->queue_state == FIFO_QUEUE_STOP)) { 565 if (netif_queue_stopped(fifo->dev)) { 566 fifo->queue_state = FIFO_QUEUE_START; 567 netif_wake_queue(fifo->dev); 568 } 569 } 570 } 571 572 /** 573 * init_shared_mem - Allocation and Initialization of Memory 574 * @nic: Device private variable. 575 * Description: The function allocates all the memory areas shared 576 * between the NIC and the driver. This includes Tx descriptors, 577 * Rx descriptors and the statistics block. 578 */ 579 580 static int init_shared_mem(struct s2io_nic *nic) 581 { 582 u32 size; 583 void *tmp_v_addr, *tmp_v_addr_next; 584 dma_addr_t tmp_p_addr, tmp_p_addr_next; 585 struct RxD_block *pre_rxd_blk = NULL; 586 int i, j, blk_cnt; 587 int lst_size, lst_per_page; 588 struct net_device *dev = nic->dev; 589 unsigned long tmp; 590 struct buffAdd *ba; 591 struct config_param *config = &nic->config; 592 struct mac_info *mac_control = &nic->mac_control; 593 unsigned long long mem_allocated = 0; 594 595 /* Allocation and initialization of TXDLs in FIFOs */ 596 size = 0; 597 for (i = 0; i < config->tx_fifo_num; i++) { 598 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i]; 599 600 size += tx_cfg->fifo_len; 601 } 602 if (size > MAX_AVAILABLE_TXDS) { 603 DBG_PRINT(ERR_DBG, 604 "Too many TxDs requested: %d, max supported: %d\n", 605 size, MAX_AVAILABLE_TXDS); 606 return -EINVAL; 607 } 608 609 size = 0; 610 for (i = 0; i < config->tx_fifo_num; i++) { 611 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i]; 612 613 size = tx_cfg->fifo_len; 614 /* 615 * Legal values are from 2 to 8192 616 */ 617 if (size < 2) { 618 DBG_PRINT(ERR_DBG, "Fifo %d: Invalid length (%d) - " 619 "Valid lengths are 2 through 8192\n", 620 i, size); 621 return -EINVAL; 622 } 623 } 624 625 lst_size = (sizeof(struct TxD) * config->max_txds); 626 lst_per_page = PAGE_SIZE / lst_size; 627 628 for (i = 0; i < config->tx_fifo_num; i++) { 629 struct fifo_info *fifo = &mac_control->fifos[i]; 630 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i]; 631 int fifo_len = tx_cfg->fifo_len; 632 int list_holder_size = fifo_len * sizeof(struct list_info_hold); 633 634 fifo->list_info = kzalloc(list_holder_size, GFP_KERNEL); 635 if (!fifo->list_info) { 636 DBG_PRINT(INFO_DBG, "Malloc failed for list_info\n"); 637 return -ENOMEM; 638 } 639 mem_allocated += list_holder_size; 640 } 641 for (i = 0; i < config->tx_fifo_num; i++) { 642 int page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len, 643 lst_per_page); 644 struct fifo_info *fifo = &mac_control->fifos[i]; 645 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i]; 646 647 fifo->tx_curr_put_info.offset = 0; 648 fifo->tx_curr_put_info.fifo_len = tx_cfg->fifo_len - 1; 649 fifo->tx_curr_get_info.offset = 0; 650 fifo->tx_curr_get_info.fifo_len = tx_cfg->fifo_len - 1; 651 fifo->fifo_no = i; 652 fifo->nic = nic; 653 fifo->max_txds = MAX_SKB_FRAGS + 2; 654 fifo->dev = dev; 655 656 for (j = 0; j < page_num; j++) { 657 int k = 0; 658 dma_addr_t tmp_p; 659 void *tmp_v; 660 tmp_v = pci_alloc_consistent(nic->pdev, 661 PAGE_SIZE, &tmp_p); 662 if (!tmp_v) { 663 DBG_PRINT(INFO_DBG, 664 "pci_alloc_consistent failed for TxDL\n"); 665 return -ENOMEM; 666 } 667 /* If we got a zero DMA address(can happen on 668 * certain platforms like PPC), reallocate. 669 * Store virtual address of page we don't want, 670 * to be freed later. 671 */ 672 if (!tmp_p) { 673 mac_control->zerodma_virt_addr = tmp_v; 674 DBG_PRINT(INIT_DBG, 675 "%s: Zero DMA address for TxDL. " 676 "Virtual address %p\n", 677 dev->name, tmp_v); 678 tmp_v = pci_alloc_consistent(nic->pdev, 679 PAGE_SIZE, &tmp_p); 680 if (!tmp_v) { 681 DBG_PRINT(INFO_DBG, 682 "pci_alloc_consistent failed for TxDL\n"); 683 return -ENOMEM; 684 } 685 mem_allocated += PAGE_SIZE; 686 } 687 while (k < lst_per_page) { 688 int l = (j * lst_per_page) + k; 689 if (l == tx_cfg->fifo_len) 690 break; 691 fifo->list_info[l].list_virt_addr = 692 tmp_v + (k * lst_size); 693 fifo->list_info[l].list_phy_addr = 694 tmp_p + (k * lst_size); 695 k++; 696 } 697 } 698 } 699 700 for (i = 0; i < config->tx_fifo_num; i++) { 701 struct fifo_info *fifo = &mac_control->fifos[i]; 702 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i]; 703 704 size = tx_cfg->fifo_len; 705 fifo->ufo_in_band_v = kcalloc(size, sizeof(u64), GFP_KERNEL); 706 if (!fifo->ufo_in_band_v) 707 return -ENOMEM; 708 mem_allocated += (size * sizeof(u64)); 709 } 710 711 /* Allocation and initialization of RXDs in Rings */ 712 size = 0; 713 for (i = 0; i < config->rx_ring_num; i++) { 714 struct rx_ring_config *rx_cfg = &config->rx_cfg[i]; 715 struct ring_info *ring = &mac_control->rings[i]; 716 717 if (rx_cfg->num_rxd % (rxd_count[nic->rxd_mode] + 1)) { 718 DBG_PRINT(ERR_DBG, "%s: Ring%d RxD count is not a " 719 "multiple of RxDs per Block\n", 720 dev->name, i); 721 return FAILURE; 722 } 723 size += rx_cfg->num_rxd; 724 ring->block_count = rx_cfg->num_rxd / 725 (rxd_count[nic->rxd_mode] + 1); 726 ring->pkt_cnt = rx_cfg->num_rxd - ring->block_count; 727 } 728 if (nic->rxd_mode == RXD_MODE_1) 729 size = (size * (sizeof(struct RxD1))); 730 else 731 size = (size * (sizeof(struct RxD3))); 732 733 for (i = 0; i < config->rx_ring_num; i++) { 734 struct rx_ring_config *rx_cfg = &config->rx_cfg[i]; 735 struct ring_info *ring = &mac_control->rings[i]; 736 737 ring->rx_curr_get_info.block_index = 0; 738 ring->rx_curr_get_info.offset = 0; 739 ring->rx_curr_get_info.ring_len = rx_cfg->num_rxd - 1; 740 ring->rx_curr_put_info.block_index = 0; 741 ring->rx_curr_put_info.offset = 0; 742 ring->rx_curr_put_info.ring_len = rx_cfg->num_rxd - 1; 743 ring->nic = nic; 744 ring->ring_no = i; 745 746 blk_cnt = rx_cfg->num_rxd / (rxd_count[nic->rxd_mode] + 1); 747 /* Allocating all the Rx blocks */ 748 for (j = 0; j < blk_cnt; j++) { 749 struct rx_block_info *rx_blocks; 750 int l; 751 752 rx_blocks = &ring->rx_blocks[j]; 753 size = SIZE_OF_BLOCK; /* size is always page size */ 754 tmp_v_addr = pci_alloc_consistent(nic->pdev, size, 755 &tmp_p_addr); 756 if (tmp_v_addr == NULL) { 757 /* 758 * In case of failure, free_shared_mem() 759 * is called, which should free any 760 * memory that was alloced till the 761 * failure happened. 762 */ 763 rx_blocks->block_virt_addr = tmp_v_addr; 764 return -ENOMEM; 765 } 766 mem_allocated += size; 767 memset(tmp_v_addr, 0, size); 768 769 size = sizeof(struct rxd_info) * 770 rxd_count[nic->rxd_mode]; 771 rx_blocks->block_virt_addr = tmp_v_addr; 772 rx_blocks->block_dma_addr = tmp_p_addr; 773 rx_blocks->rxds = kmalloc(size, GFP_KERNEL); 774 if (!rx_blocks->rxds) 775 return -ENOMEM; 776 mem_allocated += size; 777 for (l = 0; l < rxd_count[nic->rxd_mode]; l++) { 778 rx_blocks->rxds[l].virt_addr = 779 rx_blocks->block_virt_addr + 780 (rxd_size[nic->rxd_mode] * l); 781 rx_blocks->rxds[l].dma_addr = 782 rx_blocks->block_dma_addr + 783 (rxd_size[nic->rxd_mode] * l); 784 } 785 } 786 /* Interlinking all Rx Blocks */ 787 for (j = 0; j < blk_cnt; j++) { 788 int next = (j + 1) % blk_cnt; 789 tmp_v_addr = ring->rx_blocks[j].block_virt_addr; 790 tmp_v_addr_next = ring->rx_blocks[next].block_virt_addr; 791 tmp_p_addr = ring->rx_blocks[j].block_dma_addr; 792 tmp_p_addr_next = ring->rx_blocks[next].block_dma_addr; 793 794 pre_rxd_blk = tmp_v_addr; 795 pre_rxd_blk->reserved_2_pNext_RxD_block = 796 (unsigned long)tmp_v_addr_next; 797 pre_rxd_blk->pNext_RxD_Blk_physical = 798 (u64)tmp_p_addr_next; 799 } 800 } 801 if (nic->rxd_mode == RXD_MODE_3B) { 802 /* 803 * Allocation of Storages for buffer addresses in 2BUFF mode 804 * and the buffers as well. 805 */ 806 for (i = 0; i < config->rx_ring_num; i++) { 807 struct rx_ring_config *rx_cfg = &config->rx_cfg[i]; 808 struct ring_info *ring = &mac_control->rings[i]; 809 810 blk_cnt = rx_cfg->num_rxd / 811 (rxd_count[nic->rxd_mode] + 1); 812 size = sizeof(struct buffAdd *) * blk_cnt; 813 ring->ba = kmalloc(size, GFP_KERNEL); 814 if (!ring->ba) 815 return -ENOMEM; 816 mem_allocated += size; 817 for (j = 0; j < blk_cnt; j++) { 818 int k = 0; 819 820 size = sizeof(struct buffAdd) * 821 (rxd_count[nic->rxd_mode] + 1); 822 ring->ba[j] = kmalloc(size, GFP_KERNEL); 823 if (!ring->ba[j]) 824 return -ENOMEM; 825 mem_allocated += size; 826 while (k != rxd_count[nic->rxd_mode]) { 827 ba = &ring->ba[j][k]; 828 size = BUF0_LEN + ALIGN_SIZE; 829 ba->ba_0_org = kmalloc(size, GFP_KERNEL); 830 if (!ba->ba_0_org) 831 return -ENOMEM; 832 mem_allocated += size; 833 tmp = (unsigned long)ba->ba_0_org; 834 tmp += ALIGN_SIZE; 835 tmp &= ~((unsigned long)ALIGN_SIZE); 836 ba->ba_0 = (void *)tmp; 837 838 size = BUF1_LEN + ALIGN_SIZE; 839 ba->ba_1_org = kmalloc(size, GFP_KERNEL); 840 if (!ba->ba_1_org) 841 return -ENOMEM; 842 mem_allocated += size; 843 tmp = (unsigned long)ba->ba_1_org; 844 tmp += ALIGN_SIZE; 845 tmp &= ~((unsigned long)ALIGN_SIZE); 846 ba->ba_1 = (void *)tmp; 847 k++; 848 } 849 } 850 } 851 } 852 853 /* Allocation and initialization of Statistics block */ 854 size = sizeof(struct stat_block); 855 mac_control->stats_mem = 856 pci_alloc_consistent(nic->pdev, size, 857 &mac_control->stats_mem_phy); 858 859 if (!mac_control->stats_mem) { 860 /* 861 * In case of failure, free_shared_mem() is called, which 862 * should free any memory that was alloced till the 863 * failure happened. 864 */ 865 return -ENOMEM; 866 } 867 mem_allocated += size; 868 mac_control->stats_mem_sz = size; 869 870 tmp_v_addr = mac_control->stats_mem; 871 mac_control->stats_info = tmp_v_addr; 872 memset(tmp_v_addr, 0, size); 873 DBG_PRINT(INIT_DBG, "%s: Ring Mem PHY: 0x%llx\n", 874 dev_name(&nic->pdev->dev), (unsigned long long)tmp_p_addr); 875 mac_control->stats_info->sw_stat.mem_allocated += mem_allocated; 876 return SUCCESS; 877 } 878 879 /** 880 * free_shared_mem - Free the allocated Memory 881 * @nic: Device private variable. 882 * Description: This function is to free all memory locations allocated by 883 * the init_shared_mem() function and return it to the kernel. 884 */ 885 886 static void free_shared_mem(struct s2io_nic *nic) 887 { 888 int i, j, blk_cnt, size; 889 void *tmp_v_addr; 890 dma_addr_t tmp_p_addr; 891 int lst_size, lst_per_page; 892 struct net_device *dev; 893 int page_num = 0; 894 struct config_param *config; 895 struct mac_info *mac_control; 896 struct stat_block *stats; 897 struct swStat *swstats; 898 899 if (!nic) 900 return; 901 902 dev = nic->dev; 903 904 config = &nic->config; 905 mac_control = &nic->mac_control; 906 stats = mac_control->stats_info; 907 swstats = &stats->sw_stat; 908 909 lst_size = sizeof(struct TxD) * config->max_txds; 910 lst_per_page = PAGE_SIZE / lst_size; 911 912 for (i = 0; i < config->tx_fifo_num; i++) { 913 struct fifo_info *fifo = &mac_control->fifos[i]; 914 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i]; 915 916 page_num = TXD_MEM_PAGE_CNT(tx_cfg->fifo_len, lst_per_page); 917 for (j = 0; j < page_num; j++) { 918 int mem_blks = (j * lst_per_page); 919 struct list_info_hold *fli; 920 921 if (!fifo->list_info) 922 return; 923 924 fli = &fifo->list_info[mem_blks]; 925 if (!fli->list_virt_addr) 926 break; 927 pci_free_consistent(nic->pdev, PAGE_SIZE, 928 fli->list_virt_addr, 929 fli->list_phy_addr); 930 swstats->mem_freed += PAGE_SIZE; 931 } 932 /* If we got a zero DMA address during allocation, 933 * free the page now 934 */ 935 if (mac_control->zerodma_virt_addr) { 936 pci_free_consistent(nic->pdev, PAGE_SIZE, 937 mac_control->zerodma_virt_addr, 938 (dma_addr_t)0); 939 DBG_PRINT(INIT_DBG, 940 "%s: Freeing TxDL with zero DMA address. " 941 "Virtual address %p\n", 942 dev->name, mac_control->zerodma_virt_addr); 943 swstats->mem_freed += PAGE_SIZE; 944 } 945 kfree(fifo->list_info); 946 swstats->mem_freed += tx_cfg->fifo_len * 947 sizeof(struct list_info_hold); 948 } 949 950 size = SIZE_OF_BLOCK; 951 for (i = 0; i < config->rx_ring_num; i++) { 952 struct ring_info *ring = &mac_control->rings[i]; 953 954 blk_cnt = ring->block_count; 955 for (j = 0; j < blk_cnt; j++) { 956 tmp_v_addr = ring->rx_blocks[j].block_virt_addr; 957 tmp_p_addr = ring->rx_blocks[j].block_dma_addr; 958 if (tmp_v_addr == NULL) 959 break; 960 pci_free_consistent(nic->pdev, size, 961 tmp_v_addr, tmp_p_addr); 962 swstats->mem_freed += size; 963 kfree(ring->rx_blocks[j].rxds); 964 swstats->mem_freed += sizeof(struct rxd_info) * 965 rxd_count[nic->rxd_mode]; 966 } 967 } 968 969 if (nic->rxd_mode == RXD_MODE_3B) { 970 /* Freeing buffer storage addresses in 2BUFF mode. */ 971 for (i = 0; i < config->rx_ring_num; i++) { 972 struct rx_ring_config *rx_cfg = &config->rx_cfg[i]; 973 struct ring_info *ring = &mac_control->rings[i]; 974 975 blk_cnt = rx_cfg->num_rxd / 976 (rxd_count[nic->rxd_mode] + 1); 977 for (j = 0; j < blk_cnt; j++) { 978 int k = 0; 979 if (!ring->ba[j]) 980 continue; 981 while (k != rxd_count[nic->rxd_mode]) { 982 struct buffAdd *ba = &ring->ba[j][k]; 983 kfree(ba->ba_0_org); 984 swstats->mem_freed += 985 BUF0_LEN + ALIGN_SIZE; 986 kfree(ba->ba_1_org); 987 swstats->mem_freed += 988 BUF1_LEN + ALIGN_SIZE; 989 k++; 990 } 991 kfree(ring->ba[j]); 992 swstats->mem_freed += sizeof(struct buffAdd) * 993 (rxd_count[nic->rxd_mode] + 1); 994 } 995 kfree(ring->ba); 996 swstats->mem_freed += sizeof(struct buffAdd *) * 997 blk_cnt; 998 } 999 } 1000 1001 for (i = 0; i < nic->config.tx_fifo_num; i++) { 1002 struct fifo_info *fifo = &mac_control->fifos[i]; 1003 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i]; 1004 1005 if (fifo->ufo_in_band_v) { 1006 swstats->mem_freed += tx_cfg->fifo_len * 1007 sizeof(u64); 1008 kfree(fifo->ufo_in_band_v); 1009 } 1010 } 1011 1012 if (mac_control->stats_mem) { 1013 swstats->mem_freed += mac_control->stats_mem_sz; 1014 pci_free_consistent(nic->pdev, 1015 mac_control->stats_mem_sz, 1016 mac_control->stats_mem, 1017 mac_control->stats_mem_phy); 1018 } 1019 } 1020 1021 /** 1022 * s2io_verify_pci_mode - 1023 */ 1024 1025 static int s2io_verify_pci_mode(struct s2io_nic *nic) 1026 { 1027 struct XENA_dev_config __iomem *bar0 = nic->bar0; 1028 register u64 val64 = 0; 1029 int mode; 1030 1031 val64 = readq(&bar0->pci_mode); 1032 mode = (u8)GET_PCI_MODE(val64); 1033 1034 if (val64 & PCI_MODE_UNKNOWN_MODE) 1035 return -1; /* Unknown PCI mode */ 1036 return mode; 1037 } 1038 1039 #define NEC_VENID 0x1033 1040 #define NEC_DEVID 0x0125 1041 static int s2io_on_nec_bridge(struct pci_dev *s2io_pdev) 1042 { 1043 struct pci_dev *tdev = NULL; 1044 for_each_pci_dev(tdev) { 1045 if (tdev->vendor == NEC_VENID && tdev->device == NEC_DEVID) { 1046 if (tdev->bus == s2io_pdev->bus->parent) { 1047 pci_dev_put(tdev); 1048 return 1; 1049 } 1050 } 1051 } 1052 return 0; 1053 } 1054 1055 static int bus_speed[8] = {33, 133, 133, 200, 266, 133, 200, 266}; 1056 /** 1057 * s2io_print_pci_mode - 1058 */ 1059 static int s2io_print_pci_mode(struct s2io_nic *nic) 1060 { 1061 struct XENA_dev_config __iomem *bar0 = nic->bar0; 1062 register u64 val64 = 0; 1063 int mode; 1064 struct config_param *config = &nic->config; 1065 const char *pcimode; 1066 1067 val64 = readq(&bar0->pci_mode); 1068 mode = (u8)GET_PCI_MODE(val64); 1069 1070 if (val64 & PCI_MODE_UNKNOWN_MODE) 1071 return -1; /* Unknown PCI mode */ 1072 1073 config->bus_speed = bus_speed[mode]; 1074 1075 if (s2io_on_nec_bridge(nic->pdev)) { 1076 DBG_PRINT(ERR_DBG, "%s: Device is on PCI-E bus\n", 1077 nic->dev->name); 1078 return mode; 1079 } 1080 1081 switch (mode) { 1082 case PCI_MODE_PCI_33: 1083 pcimode = "33MHz PCI bus"; 1084 break; 1085 case PCI_MODE_PCI_66: 1086 pcimode = "66MHz PCI bus"; 1087 break; 1088 case PCI_MODE_PCIX_M1_66: 1089 pcimode = "66MHz PCIX(M1) bus"; 1090 break; 1091 case PCI_MODE_PCIX_M1_100: 1092 pcimode = "100MHz PCIX(M1) bus"; 1093 break; 1094 case PCI_MODE_PCIX_M1_133: 1095 pcimode = "133MHz PCIX(M1) bus"; 1096 break; 1097 case PCI_MODE_PCIX_M2_66: 1098 pcimode = "133MHz PCIX(M2) bus"; 1099 break; 1100 case PCI_MODE_PCIX_M2_100: 1101 pcimode = "200MHz PCIX(M2) bus"; 1102 break; 1103 case PCI_MODE_PCIX_M2_133: 1104 pcimode = "266MHz PCIX(M2) bus"; 1105 break; 1106 default: 1107 pcimode = "unsupported bus!"; 1108 mode = -1; 1109 } 1110 1111 DBG_PRINT(ERR_DBG, "%s: Device is on %d bit %s\n", 1112 nic->dev->name, val64 & PCI_MODE_32_BITS ? 32 : 64, pcimode); 1113 1114 return mode; 1115 } 1116 1117 /** 1118 * init_tti - Initialization transmit traffic interrupt scheme 1119 * @nic: device private variable 1120 * @link: link status (UP/DOWN) used to enable/disable continuous 1121 * transmit interrupts 1122 * Description: The function configures transmit traffic interrupts 1123 * Return Value: SUCCESS on success and 1124 * '-1' on failure 1125 */ 1126 1127 static int init_tti(struct s2io_nic *nic, int link) 1128 { 1129 struct XENA_dev_config __iomem *bar0 = nic->bar0; 1130 register u64 val64 = 0; 1131 int i; 1132 struct config_param *config = &nic->config; 1133 1134 for (i = 0; i < config->tx_fifo_num; i++) { 1135 /* 1136 * TTI Initialization. Default Tx timer gets us about 1137 * 250 interrupts per sec. Continuous interrupts are enabled 1138 * by default. 1139 */ 1140 if (nic->device_type == XFRAME_II_DEVICE) { 1141 int count = (nic->config.bus_speed * 125)/2; 1142 val64 = TTI_DATA1_MEM_TX_TIMER_VAL(count); 1143 } else 1144 val64 = TTI_DATA1_MEM_TX_TIMER_VAL(0x2078); 1145 1146 val64 |= TTI_DATA1_MEM_TX_URNG_A(0xA) | 1147 TTI_DATA1_MEM_TX_URNG_B(0x10) | 1148 TTI_DATA1_MEM_TX_URNG_C(0x30) | 1149 TTI_DATA1_MEM_TX_TIMER_AC_EN; 1150 if (i == 0) 1151 if (use_continuous_tx_intrs && (link == LINK_UP)) 1152 val64 |= TTI_DATA1_MEM_TX_TIMER_CI_EN; 1153 writeq(val64, &bar0->tti_data1_mem); 1154 1155 if (nic->config.intr_type == MSI_X) { 1156 val64 = TTI_DATA2_MEM_TX_UFC_A(0x10) | 1157 TTI_DATA2_MEM_TX_UFC_B(0x100) | 1158 TTI_DATA2_MEM_TX_UFC_C(0x200) | 1159 TTI_DATA2_MEM_TX_UFC_D(0x300); 1160 } else { 1161 if ((nic->config.tx_steering_type == 1162 TX_DEFAULT_STEERING) && 1163 (config->tx_fifo_num > 1) && 1164 (i >= nic->udp_fifo_idx) && 1165 (i < (nic->udp_fifo_idx + 1166 nic->total_udp_fifos))) 1167 val64 = TTI_DATA2_MEM_TX_UFC_A(0x50) | 1168 TTI_DATA2_MEM_TX_UFC_B(0x80) | 1169 TTI_DATA2_MEM_TX_UFC_C(0x100) | 1170 TTI_DATA2_MEM_TX_UFC_D(0x120); 1171 else 1172 val64 = TTI_DATA2_MEM_TX_UFC_A(0x10) | 1173 TTI_DATA2_MEM_TX_UFC_B(0x20) | 1174 TTI_DATA2_MEM_TX_UFC_C(0x40) | 1175 TTI_DATA2_MEM_TX_UFC_D(0x80); 1176 } 1177 1178 writeq(val64, &bar0->tti_data2_mem); 1179 1180 val64 = TTI_CMD_MEM_WE | 1181 TTI_CMD_MEM_STROBE_NEW_CMD | 1182 TTI_CMD_MEM_OFFSET(i); 1183 writeq(val64, &bar0->tti_command_mem); 1184 1185 if (wait_for_cmd_complete(&bar0->tti_command_mem, 1186 TTI_CMD_MEM_STROBE_NEW_CMD, 1187 S2IO_BIT_RESET) != SUCCESS) 1188 return FAILURE; 1189 } 1190 1191 return SUCCESS; 1192 } 1193 1194 /** 1195 * init_nic - Initialization of hardware 1196 * @nic: device private variable 1197 * Description: The function sequentially configures every block 1198 * of the H/W from their reset values. 1199 * Return Value: SUCCESS on success and 1200 * '-1' on failure (endian settings incorrect). 1201 */ 1202 1203 static int init_nic(struct s2io_nic *nic) 1204 { 1205 struct XENA_dev_config __iomem *bar0 = nic->bar0; 1206 struct net_device *dev = nic->dev; 1207 register u64 val64 = 0; 1208 void __iomem *add; 1209 u32 time; 1210 int i, j; 1211 int dtx_cnt = 0; 1212 unsigned long long mem_share; 1213 int mem_size; 1214 struct config_param *config = &nic->config; 1215 struct mac_info *mac_control = &nic->mac_control; 1216 1217 /* to set the swapper controle on the card */ 1218 if (s2io_set_swapper(nic)) { 1219 DBG_PRINT(ERR_DBG, "ERROR: Setting Swapper failed\n"); 1220 return -EIO; 1221 } 1222 1223 /* 1224 * Herc requires EOI to be removed from reset before XGXS, so.. 1225 */ 1226 if (nic->device_type & XFRAME_II_DEVICE) { 1227 val64 = 0xA500000000ULL; 1228 writeq(val64, &bar0->sw_reset); 1229 msleep(500); 1230 val64 = readq(&bar0->sw_reset); 1231 } 1232 1233 /* Remove XGXS from reset state */ 1234 val64 = 0; 1235 writeq(val64, &bar0->sw_reset); 1236 msleep(500); 1237 val64 = readq(&bar0->sw_reset); 1238 1239 /* Ensure that it's safe to access registers by checking 1240 * RIC_RUNNING bit is reset. Check is valid only for XframeII. 1241 */ 1242 if (nic->device_type == XFRAME_II_DEVICE) { 1243 for (i = 0; i < 50; i++) { 1244 val64 = readq(&bar0->adapter_status); 1245 if (!(val64 & ADAPTER_STATUS_RIC_RUNNING)) 1246 break; 1247 msleep(10); 1248 } 1249 if (i == 50) 1250 return -ENODEV; 1251 } 1252 1253 /* Enable Receiving broadcasts */ 1254 add = &bar0->mac_cfg; 1255 val64 = readq(&bar0->mac_cfg); 1256 val64 |= MAC_RMAC_BCAST_ENABLE; 1257 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key); 1258 writel((u32)val64, add); 1259 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key); 1260 writel((u32) (val64 >> 32), (add + 4)); 1261 1262 /* Read registers in all blocks */ 1263 val64 = readq(&bar0->mac_int_mask); 1264 val64 = readq(&bar0->mc_int_mask); 1265 val64 = readq(&bar0->xgxs_int_mask); 1266 1267 /* Set MTU */ 1268 val64 = dev->mtu; 1269 writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len); 1270 1271 if (nic->device_type & XFRAME_II_DEVICE) { 1272 while (herc_act_dtx_cfg[dtx_cnt] != END_SIGN) { 1273 SPECIAL_REG_WRITE(herc_act_dtx_cfg[dtx_cnt], 1274 &bar0->dtx_control, UF); 1275 if (dtx_cnt & 0x1) 1276 msleep(1); /* Necessary!! */ 1277 dtx_cnt++; 1278 } 1279 } else { 1280 while (xena_dtx_cfg[dtx_cnt] != END_SIGN) { 1281 SPECIAL_REG_WRITE(xena_dtx_cfg[dtx_cnt], 1282 &bar0->dtx_control, UF); 1283 val64 = readq(&bar0->dtx_control); 1284 dtx_cnt++; 1285 } 1286 } 1287 1288 /* Tx DMA Initialization */ 1289 val64 = 0; 1290 writeq(val64, &bar0->tx_fifo_partition_0); 1291 writeq(val64, &bar0->tx_fifo_partition_1); 1292 writeq(val64, &bar0->tx_fifo_partition_2); 1293 writeq(val64, &bar0->tx_fifo_partition_3); 1294 1295 for (i = 0, j = 0; i < config->tx_fifo_num; i++) { 1296 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i]; 1297 1298 val64 |= vBIT(tx_cfg->fifo_len - 1, ((j * 32) + 19), 13) | 1299 vBIT(tx_cfg->fifo_priority, ((j * 32) + 5), 3); 1300 1301 if (i == (config->tx_fifo_num - 1)) { 1302 if (i % 2 == 0) 1303 i++; 1304 } 1305 1306 switch (i) { 1307 case 1: 1308 writeq(val64, &bar0->tx_fifo_partition_0); 1309 val64 = 0; 1310 j = 0; 1311 break; 1312 case 3: 1313 writeq(val64, &bar0->tx_fifo_partition_1); 1314 val64 = 0; 1315 j = 0; 1316 break; 1317 case 5: 1318 writeq(val64, &bar0->tx_fifo_partition_2); 1319 val64 = 0; 1320 j = 0; 1321 break; 1322 case 7: 1323 writeq(val64, &bar0->tx_fifo_partition_3); 1324 val64 = 0; 1325 j = 0; 1326 break; 1327 default: 1328 j++; 1329 break; 1330 } 1331 } 1332 1333 /* 1334 * Disable 4 PCCs for Xena1, 2 and 3 as per H/W bug 1335 * SXE-008 TRANSMIT DMA ARBITRATION ISSUE. 1336 */ 1337 if ((nic->device_type == XFRAME_I_DEVICE) && (nic->pdev->revision < 4)) 1338 writeq(PCC_ENABLE_FOUR, &bar0->pcc_enable); 1339 1340 val64 = readq(&bar0->tx_fifo_partition_0); 1341 DBG_PRINT(INIT_DBG, "Fifo partition at: 0x%p is: 0x%llx\n", 1342 &bar0->tx_fifo_partition_0, (unsigned long long)val64); 1343 1344 /* 1345 * Initialization of Tx_PA_CONFIG register to ignore packet 1346 * integrity checking. 1347 */ 1348 val64 = readq(&bar0->tx_pa_cfg); 1349 val64 |= TX_PA_CFG_IGNORE_FRM_ERR | 1350 TX_PA_CFG_IGNORE_SNAP_OUI | 1351 TX_PA_CFG_IGNORE_LLC_CTRL | 1352 TX_PA_CFG_IGNORE_L2_ERR; 1353 writeq(val64, &bar0->tx_pa_cfg); 1354 1355 /* Rx DMA intialization. */ 1356 val64 = 0; 1357 for (i = 0; i < config->rx_ring_num; i++) { 1358 struct rx_ring_config *rx_cfg = &config->rx_cfg[i]; 1359 1360 val64 |= vBIT(rx_cfg->ring_priority, (5 + (i * 8)), 3); 1361 } 1362 writeq(val64, &bar0->rx_queue_priority); 1363 1364 /* 1365 * Allocating equal share of memory to all the 1366 * configured Rings. 1367 */ 1368 val64 = 0; 1369 if (nic->device_type & XFRAME_II_DEVICE) 1370 mem_size = 32; 1371 else 1372 mem_size = 64; 1373 1374 for (i = 0; i < config->rx_ring_num; i++) { 1375 switch (i) { 1376 case 0: 1377 mem_share = (mem_size / config->rx_ring_num + 1378 mem_size % config->rx_ring_num); 1379 val64 |= RX_QUEUE_CFG_Q0_SZ(mem_share); 1380 continue; 1381 case 1: 1382 mem_share = (mem_size / config->rx_ring_num); 1383 val64 |= RX_QUEUE_CFG_Q1_SZ(mem_share); 1384 continue; 1385 case 2: 1386 mem_share = (mem_size / config->rx_ring_num); 1387 val64 |= RX_QUEUE_CFG_Q2_SZ(mem_share); 1388 continue; 1389 case 3: 1390 mem_share = (mem_size / config->rx_ring_num); 1391 val64 |= RX_QUEUE_CFG_Q3_SZ(mem_share); 1392 continue; 1393 case 4: 1394 mem_share = (mem_size / config->rx_ring_num); 1395 val64 |= RX_QUEUE_CFG_Q4_SZ(mem_share); 1396 continue; 1397 case 5: 1398 mem_share = (mem_size / config->rx_ring_num); 1399 val64 |= RX_QUEUE_CFG_Q5_SZ(mem_share); 1400 continue; 1401 case 6: 1402 mem_share = (mem_size / config->rx_ring_num); 1403 val64 |= RX_QUEUE_CFG_Q6_SZ(mem_share); 1404 continue; 1405 case 7: 1406 mem_share = (mem_size / config->rx_ring_num); 1407 val64 |= RX_QUEUE_CFG_Q7_SZ(mem_share); 1408 continue; 1409 } 1410 } 1411 writeq(val64, &bar0->rx_queue_cfg); 1412 1413 /* 1414 * Filling Tx round robin registers 1415 * as per the number of FIFOs for equal scheduling priority 1416 */ 1417 switch (config->tx_fifo_num) { 1418 case 1: 1419 val64 = 0x0; 1420 writeq(val64, &bar0->tx_w_round_robin_0); 1421 writeq(val64, &bar0->tx_w_round_robin_1); 1422 writeq(val64, &bar0->tx_w_round_robin_2); 1423 writeq(val64, &bar0->tx_w_round_robin_3); 1424 writeq(val64, &bar0->tx_w_round_robin_4); 1425 break; 1426 case 2: 1427 val64 = 0x0001000100010001ULL; 1428 writeq(val64, &bar0->tx_w_round_robin_0); 1429 writeq(val64, &bar0->tx_w_round_robin_1); 1430 writeq(val64, &bar0->tx_w_round_robin_2); 1431 writeq(val64, &bar0->tx_w_round_robin_3); 1432 val64 = 0x0001000100000000ULL; 1433 writeq(val64, &bar0->tx_w_round_robin_4); 1434 break; 1435 case 3: 1436 val64 = 0x0001020001020001ULL; 1437 writeq(val64, &bar0->tx_w_round_robin_0); 1438 val64 = 0x0200010200010200ULL; 1439 writeq(val64, &bar0->tx_w_round_robin_1); 1440 val64 = 0x0102000102000102ULL; 1441 writeq(val64, &bar0->tx_w_round_robin_2); 1442 val64 = 0x0001020001020001ULL; 1443 writeq(val64, &bar0->tx_w_round_robin_3); 1444 val64 = 0x0200010200000000ULL; 1445 writeq(val64, &bar0->tx_w_round_robin_4); 1446 break; 1447 case 4: 1448 val64 = 0x0001020300010203ULL; 1449 writeq(val64, &bar0->tx_w_round_robin_0); 1450 writeq(val64, &bar0->tx_w_round_robin_1); 1451 writeq(val64, &bar0->tx_w_round_robin_2); 1452 writeq(val64, &bar0->tx_w_round_robin_3); 1453 val64 = 0x0001020300000000ULL; 1454 writeq(val64, &bar0->tx_w_round_robin_4); 1455 break; 1456 case 5: 1457 val64 = 0x0001020304000102ULL; 1458 writeq(val64, &bar0->tx_w_round_robin_0); 1459 val64 = 0x0304000102030400ULL; 1460 writeq(val64, &bar0->tx_w_round_robin_1); 1461 val64 = 0x0102030400010203ULL; 1462 writeq(val64, &bar0->tx_w_round_robin_2); 1463 val64 = 0x0400010203040001ULL; 1464 writeq(val64, &bar0->tx_w_round_robin_3); 1465 val64 = 0x0203040000000000ULL; 1466 writeq(val64, &bar0->tx_w_round_robin_4); 1467 break; 1468 case 6: 1469 val64 = 0x0001020304050001ULL; 1470 writeq(val64, &bar0->tx_w_round_robin_0); 1471 val64 = 0x0203040500010203ULL; 1472 writeq(val64, &bar0->tx_w_round_robin_1); 1473 val64 = 0x0405000102030405ULL; 1474 writeq(val64, &bar0->tx_w_round_robin_2); 1475 val64 = 0x0001020304050001ULL; 1476 writeq(val64, &bar0->tx_w_round_robin_3); 1477 val64 = 0x0203040500000000ULL; 1478 writeq(val64, &bar0->tx_w_round_robin_4); 1479 break; 1480 case 7: 1481 val64 = 0x0001020304050600ULL; 1482 writeq(val64, &bar0->tx_w_round_robin_0); 1483 val64 = 0x0102030405060001ULL; 1484 writeq(val64, &bar0->tx_w_round_robin_1); 1485 val64 = 0x0203040506000102ULL; 1486 writeq(val64, &bar0->tx_w_round_robin_2); 1487 val64 = 0x0304050600010203ULL; 1488 writeq(val64, &bar0->tx_w_round_robin_3); 1489 val64 = 0x0405060000000000ULL; 1490 writeq(val64, &bar0->tx_w_round_robin_4); 1491 break; 1492 case 8: 1493 val64 = 0x0001020304050607ULL; 1494 writeq(val64, &bar0->tx_w_round_robin_0); 1495 writeq(val64, &bar0->tx_w_round_robin_1); 1496 writeq(val64, &bar0->tx_w_round_robin_2); 1497 writeq(val64, &bar0->tx_w_round_robin_3); 1498 val64 = 0x0001020300000000ULL; 1499 writeq(val64, &bar0->tx_w_round_robin_4); 1500 break; 1501 } 1502 1503 /* Enable all configured Tx FIFO partitions */ 1504 val64 = readq(&bar0->tx_fifo_partition_0); 1505 val64 |= (TX_FIFO_PARTITION_EN); 1506 writeq(val64, &bar0->tx_fifo_partition_0); 1507 1508 /* Filling the Rx round robin registers as per the 1509 * number of Rings and steering based on QoS with 1510 * equal priority. 1511 */ 1512 switch (config->rx_ring_num) { 1513 case 1: 1514 val64 = 0x0; 1515 writeq(val64, &bar0->rx_w_round_robin_0); 1516 writeq(val64, &bar0->rx_w_round_robin_1); 1517 writeq(val64, &bar0->rx_w_round_robin_2); 1518 writeq(val64, &bar0->rx_w_round_robin_3); 1519 writeq(val64, &bar0->rx_w_round_robin_4); 1520 1521 val64 = 0x8080808080808080ULL; 1522 writeq(val64, &bar0->rts_qos_steering); 1523 break; 1524 case 2: 1525 val64 = 0x0001000100010001ULL; 1526 writeq(val64, &bar0->rx_w_round_robin_0); 1527 writeq(val64, &bar0->rx_w_round_robin_1); 1528 writeq(val64, &bar0->rx_w_round_robin_2); 1529 writeq(val64, &bar0->rx_w_round_robin_3); 1530 val64 = 0x0001000100000000ULL; 1531 writeq(val64, &bar0->rx_w_round_robin_4); 1532 1533 val64 = 0x8080808040404040ULL; 1534 writeq(val64, &bar0->rts_qos_steering); 1535 break; 1536 case 3: 1537 val64 = 0x0001020001020001ULL; 1538 writeq(val64, &bar0->rx_w_round_robin_0); 1539 val64 = 0x0200010200010200ULL; 1540 writeq(val64, &bar0->rx_w_round_robin_1); 1541 val64 = 0x0102000102000102ULL; 1542 writeq(val64, &bar0->rx_w_round_robin_2); 1543 val64 = 0x0001020001020001ULL; 1544 writeq(val64, &bar0->rx_w_round_robin_3); 1545 val64 = 0x0200010200000000ULL; 1546 writeq(val64, &bar0->rx_w_round_robin_4); 1547 1548 val64 = 0x8080804040402020ULL; 1549 writeq(val64, &bar0->rts_qos_steering); 1550 break; 1551 case 4: 1552 val64 = 0x0001020300010203ULL; 1553 writeq(val64, &bar0->rx_w_round_robin_0); 1554 writeq(val64, &bar0->rx_w_round_robin_1); 1555 writeq(val64, &bar0->rx_w_round_robin_2); 1556 writeq(val64, &bar0->rx_w_round_robin_3); 1557 val64 = 0x0001020300000000ULL; 1558 writeq(val64, &bar0->rx_w_round_robin_4); 1559 1560 val64 = 0x8080404020201010ULL; 1561 writeq(val64, &bar0->rts_qos_steering); 1562 break; 1563 case 5: 1564 val64 = 0x0001020304000102ULL; 1565 writeq(val64, &bar0->rx_w_round_robin_0); 1566 val64 = 0x0304000102030400ULL; 1567 writeq(val64, &bar0->rx_w_round_robin_1); 1568 val64 = 0x0102030400010203ULL; 1569 writeq(val64, &bar0->rx_w_round_robin_2); 1570 val64 = 0x0400010203040001ULL; 1571 writeq(val64, &bar0->rx_w_round_robin_3); 1572 val64 = 0x0203040000000000ULL; 1573 writeq(val64, &bar0->rx_w_round_robin_4); 1574 1575 val64 = 0x8080404020201008ULL; 1576 writeq(val64, &bar0->rts_qos_steering); 1577 break; 1578 case 6: 1579 val64 = 0x0001020304050001ULL; 1580 writeq(val64, &bar0->rx_w_round_robin_0); 1581 val64 = 0x0203040500010203ULL; 1582 writeq(val64, &bar0->rx_w_round_robin_1); 1583 val64 = 0x0405000102030405ULL; 1584 writeq(val64, &bar0->rx_w_round_robin_2); 1585 val64 = 0x0001020304050001ULL; 1586 writeq(val64, &bar0->rx_w_round_robin_3); 1587 val64 = 0x0203040500000000ULL; 1588 writeq(val64, &bar0->rx_w_round_robin_4); 1589 1590 val64 = 0x8080404020100804ULL; 1591 writeq(val64, &bar0->rts_qos_steering); 1592 break; 1593 case 7: 1594 val64 = 0x0001020304050600ULL; 1595 writeq(val64, &bar0->rx_w_round_robin_0); 1596 val64 = 0x0102030405060001ULL; 1597 writeq(val64, &bar0->rx_w_round_robin_1); 1598 val64 = 0x0203040506000102ULL; 1599 writeq(val64, &bar0->rx_w_round_robin_2); 1600 val64 = 0x0304050600010203ULL; 1601 writeq(val64, &bar0->rx_w_round_robin_3); 1602 val64 = 0x0405060000000000ULL; 1603 writeq(val64, &bar0->rx_w_round_robin_4); 1604 1605 val64 = 0x8080402010080402ULL; 1606 writeq(val64, &bar0->rts_qos_steering); 1607 break; 1608 case 8: 1609 val64 = 0x0001020304050607ULL; 1610 writeq(val64, &bar0->rx_w_round_robin_0); 1611 writeq(val64, &bar0->rx_w_round_robin_1); 1612 writeq(val64, &bar0->rx_w_round_robin_2); 1613 writeq(val64, &bar0->rx_w_round_robin_3); 1614 val64 = 0x0001020300000000ULL; 1615 writeq(val64, &bar0->rx_w_round_robin_4); 1616 1617 val64 = 0x8040201008040201ULL; 1618 writeq(val64, &bar0->rts_qos_steering); 1619 break; 1620 } 1621 1622 /* UDP Fix */ 1623 val64 = 0; 1624 for (i = 0; i < 8; i++) 1625 writeq(val64, &bar0->rts_frm_len_n[i]); 1626 1627 /* Set the default rts frame length for the rings configured */ 1628 val64 = MAC_RTS_FRM_LEN_SET(dev->mtu+22); 1629 for (i = 0 ; i < config->rx_ring_num ; i++) 1630 writeq(val64, &bar0->rts_frm_len_n[i]); 1631 1632 /* Set the frame length for the configured rings 1633 * desired by the user 1634 */ 1635 for (i = 0; i < config->rx_ring_num; i++) { 1636 /* If rts_frm_len[i] == 0 then it is assumed that user not 1637 * specified frame length steering. 1638 * If the user provides the frame length then program 1639 * the rts_frm_len register for those values or else 1640 * leave it as it is. 1641 */ 1642 if (rts_frm_len[i] != 0) { 1643 writeq(MAC_RTS_FRM_LEN_SET(rts_frm_len[i]), 1644 &bar0->rts_frm_len_n[i]); 1645 } 1646 } 1647 1648 /* Disable differentiated services steering logic */ 1649 for (i = 0; i < 64; i++) { 1650 if (rts_ds_steer(nic, i, 0) == FAILURE) { 1651 DBG_PRINT(ERR_DBG, 1652 "%s: rts_ds_steer failed on codepoint %d\n", 1653 dev->name, i); 1654 return -ENODEV; 1655 } 1656 } 1657 1658 /* Program statistics memory */ 1659 writeq(mac_control->stats_mem_phy, &bar0->stat_addr); 1660 1661 if (nic->device_type == XFRAME_II_DEVICE) { 1662 val64 = STAT_BC(0x320); 1663 writeq(val64, &bar0->stat_byte_cnt); 1664 } 1665 1666 /* 1667 * Initializing the sampling rate for the device to calculate the 1668 * bandwidth utilization. 1669 */ 1670 val64 = MAC_TX_LINK_UTIL_VAL(tmac_util_period) | 1671 MAC_RX_LINK_UTIL_VAL(rmac_util_period); 1672 writeq(val64, &bar0->mac_link_util); 1673 1674 /* 1675 * Initializing the Transmit and Receive Traffic Interrupt 1676 * Scheme. 1677 */ 1678 1679 /* Initialize TTI */ 1680 if (SUCCESS != init_tti(nic, nic->last_link_state)) 1681 return -ENODEV; 1682 1683 /* RTI Initialization */ 1684 if (nic->device_type == XFRAME_II_DEVICE) { 1685 /* 1686 * Programmed to generate Apprx 500 Intrs per 1687 * second 1688 */ 1689 int count = (nic->config.bus_speed * 125)/4; 1690 val64 = RTI_DATA1_MEM_RX_TIMER_VAL(count); 1691 } else 1692 val64 = RTI_DATA1_MEM_RX_TIMER_VAL(0xFFF); 1693 val64 |= RTI_DATA1_MEM_RX_URNG_A(0xA) | 1694 RTI_DATA1_MEM_RX_URNG_B(0x10) | 1695 RTI_DATA1_MEM_RX_URNG_C(0x30) | 1696 RTI_DATA1_MEM_RX_TIMER_AC_EN; 1697 1698 writeq(val64, &bar0->rti_data1_mem); 1699 1700 val64 = RTI_DATA2_MEM_RX_UFC_A(0x1) | 1701 RTI_DATA2_MEM_RX_UFC_B(0x2) ; 1702 if (nic->config.intr_type == MSI_X) 1703 val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x20) | 1704 RTI_DATA2_MEM_RX_UFC_D(0x40)); 1705 else 1706 val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x40) | 1707 RTI_DATA2_MEM_RX_UFC_D(0x80)); 1708 writeq(val64, &bar0->rti_data2_mem); 1709 1710 for (i = 0; i < config->rx_ring_num; i++) { 1711 val64 = RTI_CMD_MEM_WE | 1712 RTI_CMD_MEM_STROBE_NEW_CMD | 1713 RTI_CMD_MEM_OFFSET(i); 1714 writeq(val64, &bar0->rti_command_mem); 1715 1716 /* 1717 * Once the operation completes, the Strobe bit of the 1718 * command register will be reset. We poll for this 1719 * particular condition. We wait for a maximum of 500ms 1720 * for the operation to complete, if it's not complete 1721 * by then we return error. 1722 */ 1723 time = 0; 1724 while (true) { 1725 val64 = readq(&bar0->rti_command_mem); 1726 if (!(val64 & RTI_CMD_MEM_STROBE_NEW_CMD)) 1727 break; 1728 1729 if (time > 10) { 1730 DBG_PRINT(ERR_DBG, "%s: RTI init failed\n", 1731 dev->name); 1732 return -ENODEV; 1733 } 1734 time++; 1735 msleep(50); 1736 } 1737 } 1738 1739 /* 1740 * Initializing proper values as Pause threshold into all 1741 * the 8 Queues on Rx side. 1742 */ 1743 writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q0q3); 1744 writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q4q7); 1745 1746 /* Disable RMAC PAD STRIPPING */ 1747 add = &bar0->mac_cfg; 1748 val64 = readq(&bar0->mac_cfg); 1749 val64 &= ~(MAC_CFG_RMAC_STRIP_PAD); 1750 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key); 1751 writel((u32) (val64), add); 1752 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key); 1753 writel((u32) (val64 >> 32), (add + 4)); 1754 val64 = readq(&bar0->mac_cfg); 1755 1756 /* Enable FCS stripping by adapter */ 1757 add = &bar0->mac_cfg; 1758 val64 = readq(&bar0->mac_cfg); 1759 val64 |= MAC_CFG_RMAC_STRIP_FCS; 1760 if (nic->device_type == XFRAME_II_DEVICE) 1761 writeq(val64, &bar0->mac_cfg); 1762 else { 1763 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key); 1764 writel((u32) (val64), add); 1765 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key); 1766 writel((u32) (val64 >> 32), (add + 4)); 1767 } 1768 1769 /* 1770 * Set the time value to be inserted in the pause frame 1771 * generated by xena. 1772 */ 1773 val64 = readq(&bar0->rmac_pause_cfg); 1774 val64 &= ~(RMAC_PAUSE_HG_PTIME(0xffff)); 1775 val64 |= RMAC_PAUSE_HG_PTIME(nic->mac_control.rmac_pause_time); 1776 writeq(val64, &bar0->rmac_pause_cfg); 1777 1778 /* 1779 * Set the Threshold Limit for Generating the pause frame 1780 * If the amount of data in any Queue exceeds ratio of 1781 * (mac_control.mc_pause_threshold_q0q3 or q4q7)/256 1782 * pause frame is generated 1783 */ 1784 val64 = 0; 1785 for (i = 0; i < 4; i++) { 1786 val64 |= (((u64)0xFF00 | 1787 nic->mac_control.mc_pause_threshold_q0q3) 1788 << (i * 2 * 8)); 1789 } 1790 writeq(val64, &bar0->mc_pause_thresh_q0q3); 1791 1792 val64 = 0; 1793 for (i = 0; i < 4; i++) { 1794 val64 |= (((u64)0xFF00 | 1795 nic->mac_control.mc_pause_threshold_q4q7) 1796 << (i * 2 * 8)); 1797 } 1798 writeq(val64, &bar0->mc_pause_thresh_q4q7); 1799 1800 /* 1801 * TxDMA will stop Read request if the number of read split has 1802 * exceeded the limit pointed by shared_splits 1803 */ 1804 val64 = readq(&bar0->pic_control); 1805 val64 |= PIC_CNTL_SHARED_SPLITS(shared_splits); 1806 writeq(val64, &bar0->pic_control); 1807 1808 if (nic->config.bus_speed == 266) { 1809 writeq(TXREQTO_VAL(0x7f) | TXREQTO_EN, &bar0->txreqtimeout); 1810 writeq(0x0, &bar0->read_retry_delay); 1811 writeq(0x0, &bar0->write_retry_delay); 1812 } 1813 1814 /* 1815 * Programming the Herc to split every write transaction 1816 * that does not start on an ADB to reduce disconnects. 1817 */ 1818 if (nic->device_type == XFRAME_II_DEVICE) { 1819 val64 = FAULT_BEHAVIOUR | EXT_REQ_EN | 1820 MISC_LINK_STABILITY_PRD(3); 1821 writeq(val64, &bar0->misc_control); 1822 val64 = readq(&bar0->pic_control2); 1823 val64 &= ~(s2BIT(13)|s2BIT(14)|s2BIT(15)); 1824 writeq(val64, &bar0->pic_control2); 1825 } 1826 if (strstr(nic->product_name, "CX4")) { 1827 val64 = TMAC_AVG_IPG(0x17); 1828 writeq(val64, &bar0->tmac_avg_ipg); 1829 } 1830 1831 return SUCCESS; 1832 } 1833 #define LINK_UP_DOWN_INTERRUPT 1 1834 #define MAC_RMAC_ERR_TIMER 2 1835 1836 static int s2io_link_fault_indication(struct s2io_nic *nic) 1837 { 1838 if (nic->device_type == XFRAME_II_DEVICE) 1839 return LINK_UP_DOWN_INTERRUPT; 1840 else 1841 return MAC_RMAC_ERR_TIMER; 1842 } 1843 1844 /** 1845 * do_s2io_write_bits - update alarm bits in alarm register 1846 * @value: alarm bits 1847 * @flag: interrupt status 1848 * @addr: address value 1849 * Description: update alarm bits in alarm register 1850 * Return Value: 1851 * NONE. 1852 */ 1853 static void do_s2io_write_bits(u64 value, int flag, void __iomem *addr) 1854 { 1855 u64 temp64; 1856 1857 temp64 = readq(addr); 1858 1859 if (flag == ENABLE_INTRS) 1860 temp64 &= ~((u64)value); 1861 else 1862 temp64 |= ((u64)value); 1863 writeq(temp64, addr); 1864 } 1865 1866 static void en_dis_err_alarms(struct s2io_nic *nic, u16 mask, int flag) 1867 { 1868 struct XENA_dev_config __iomem *bar0 = nic->bar0; 1869 register u64 gen_int_mask = 0; 1870 u64 interruptible; 1871 1872 writeq(DISABLE_ALL_INTRS, &bar0->general_int_mask); 1873 if (mask & TX_DMA_INTR) { 1874 gen_int_mask |= TXDMA_INT_M; 1875 1876 do_s2io_write_bits(TXDMA_TDA_INT | TXDMA_PFC_INT | 1877 TXDMA_PCC_INT | TXDMA_TTI_INT | 1878 TXDMA_LSO_INT | TXDMA_TPA_INT | 1879 TXDMA_SM_INT, flag, &bar0->txdma_int_mask); 1880 1881 do_s2io_write_bits(PFC_ECC_DB_ERR | PFC_SM_ERR_ALARM | 1882 PFC_MISC_0_ERR | PFC_MISC_1_ERR | 1883 PFC_PCIX_ERR | PFC_ECC_SG_ERR, flag, 1884 &bar0->pfc_err_mask); 1885 1886 do_s2io_write_bits(TDA_Fn_ECC_DB_ERR | TDA_SM0_ERR_ALARM | 1887 TDA_SM1_ERR_ALARM | TDA_Fn_ECC_SG_ERR | 1888 TDA_PCIX_ERR, flag, &bar0->tda_err_mask); 1889 1890 do_s2io_write_bits(PCC_FB_ECC_DB_ERR | PCC_TXB_ECC_DB_ERR | 1891 PCC_SM_ERR_ALARM | PCC_WR_ERR_ALARM | 1892 PCC_N_SERR | PCC_6_COF_OV_ERR | 1893 PCC_7_COF_OV_ERR | PCC_6_LSO_OV_ERR | 1894 PCC_7_LSO_OV_ERR | PCC_FB_ECC_SG_ERR | 1895 PCC_TXB_ECC_SG_ERR, 1896 flag, &bar0->pcc_err_mask); 1897 1898 do_s2io_write_bits(TTI_SM_ERR_ALARM | TTI_ECC_SG_ERR | 1899 TTI_ECC_DB_ERR, flag, &bar0->tti_err_mask); 1900 1901 do_s2io_write_bits(LSO6_ABORT | LSO7_ABORT | 1902 LSO6_SM_ERR_ALARM | LSO7_SM_ERR_ALARM | 1903 LSO6_SEND_OFLOW | LSO7_SEND_OFLOW, 1904 flag, &bar0->lso_err_mask); 1905 1906 do_s2io_write_bits(TPA_SM_ERR_ALARM | TPA_TX_FRM_DROP, 1907 flag, &bar0->tpa_err_mask); 1908 1909 do_s2io_write_bits(SM_SM_ERR_ALARM, flag, &bar0->sm_err_mask); 1910 } 1911 1912 if (mask & TX_MAC_INTR) { 1913 gen_int_mask |= TXMAC_INT_M; 1914 do_s2io_write_bits(MAC_INT_STATUS_TMAC_INT, flag, 1915 &bar0->mac_int_mask); 1916 do_s2io_write_bits(TMAC_TX_BUF_OVRN | TMAC_TX_SM_ERR | 1917 TMAC_ECC_SG_ERR | TMAC_ECC_DB_ERR | 1918 TMAC_DESC_ECC_SG_ERR | TMAC_DESC_ECC_DB_ERR, 1919 flag, &bar0->mac_tmac_err_mask); 1920 } 1921 1922 if (mask & TX_XGXS_INTR) { 1923 gen_int_mask |= TXXGXS_INT_M; 1924 do_s2io_write_bits(XGXS_INT_STATUS_TXGXS, flag, 1925 &bar0->xgxs_int_mask); 1926 do_s2io_write_bits(TXGXS_ESTORE_UFLOW | TXGXS_TX_SM_ERR | 1927 TXGXS_ECC_SG_ERR | TXGXS_ECC_DB_ERR, 1928 flag, &bar0->xgxs_txgxs_err_mask); 1929 } 1930 1931 if (mask & RX_DMA_INTR) { 1932 gen_int_mask |= RXDMA_INT_M; 1933 do_s2io_write_bits(RXDMA_INT_RC_INT_M | RXDMA_INT_RPA_INT_M | 1934 RXDMA_INT_RDA_INT_M | RXDMA_INT_RTI_INT_M, 1935 flag, &bar0->rxdma_int_mask); 1936 do_s2io_write_bits(RC_PRCn_ECC_DB_ERR | RC_FTC_ECC_DB_ERR | 1937 RC_PRCn_SM_ERR_ALARM | RC_FTC_SM_ERR_ALARM | 1938 RC_PRCn_ECC_SG_ERR | RC_FTC_ECC_SG_ERR | 1939 RC_RDA_FAIL_WR_Rn, flag, &bar0->rc_err_mask); 1940 do_s2io_write_bits(PRC_PCI_AB_RD_Rn | PRC_PCI_AB_WR_Rn | 1941 PRC_PCI_AB_F_WR_Rn | PRC_PCI_DP_RD_Rn | 1942 PRC_PCI_DP_WR_Rn | PRC_PCI_DP_F_WR_Rn, flag, 1943 &bar0->prc_pcix_err_mask); 1944 do_s2io_write_bits(RPA_SM_ERR_ALARM | RPA_CREDIT_ERR | 1945 RPA_ECC_SG_ERR | RPA_ECC_DB_ERR, flag, 1946 &bar0->rpa_err_mask); 1947 do_s2io_write_bits(RDA_RXDn_ECC_DB_ERR | RDA_FRM_ECC_DB_N_AERR | 1948 RDA_SM1_ERR_ALARM | RDA_SM0_ERR_ALARM | 1949 RDA_RXD_ECC_DB_SERR | RDA_RXDn_ECC_SG_ERR | 1950 RDA_FRM_ECC_SG_ERR | 1951 RDA_MISC_ERR|RDA_PCIX_ERR, 1952 flag, &bar0->rda_err_mask); 1953 do_s2io_write_bits(RTI_SM_ERR_ALARM | 1954 RTI_ECC_SG_ERR | RTI_ECC_DB_ERR, 1955 flag, &bar0->rti_err_mask); 1956 } 1957 1958 if (mask & RX_MAC_INTR) { 1959 gen_int_mask |= RXMAC_INT_M; 1960 do_s2io_write_bits(MAC_INT_STATUS_RMAC_INT, flag, 1961 &bar0->mac_int_mask); 1962 interruptible = (RMAC_RX_BUFF_OVRN | RMAC_RX_SM_ERR | 1963 RMAC_UNUSED_INT | RMAC_SINGLE_ECC_ERR | 1964 RMAC_DOUBLE_ECC_ERR); 1965 if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) 1966 interruptible |= RMAC_LINK_STATE_CHANGE_INT; 1967 do_s2io_write_bits(interruptible, 1968 flag, &bar0->mac_rmac_err_mask); 1969 } 1970 1971 if (mask & RX_XGXS_INTR) { 1972 gen_int_mask |= RXXGXS_INT_M; 1973 do_s2io_write_bits(XGXS_INT_STATUS_RXGXS, flag, 1974 &bar0->xgxs_int_mask); 1975 do_s2io_write_bits(RXGXS_ESTORE_OFLOW | RXGXS_RX_SM_ERR, flag, 1976 &bar0->xgxs_rxgxs_err_mask); 1977 } 1978 1979 if (mask & MC_INTR) { 1980 gen_int_mask |= MC_INT_M; 1981 do_s2io_write_bits(MC_INT_MASK_MC_INT, 1982 flag, &bar0->mc_int_mask); 1983 do_s2io_write_bits(MC_ERR_REG_SM_ERR | MC_ERR_REG_ECC_ALL_SNG | 1984 MC_ERR_REG_ECC_ALL_DBL | PLL_LOCK_N, flag, 1985 &bar0->mc_err_mask); 1986 } 1987 nic->general_int_mask = gen_int_mask; 1988 1989 /* Remove this line when alarm interrupts are enabled */ 1990 nic->general_int_mask = 0; 1991 } 1992 1993 /** 1994 * en_dis_able_nic_intrs - Enable or Disable the interrupts 1995 * @nic: device private variable, 1996 * @mask: A mask indicating which Intr block must be modified and, 1997 * @flag: A flag indicating whether to enable or disable the Intrs. 1998 * Description: This function will either disable or enable the interrupts 1999 * depending on the flag argument. The mask argument can be used to 2000 * enable/disable any Intr block. 2001 * Return Value: NONE. 2002 */ 2003 2004 static void en_dis_able_nic_intrs(struct s2io_nic *nic, u16 mask, int flag) 2005 { 2006 struct XENA_dev_config __iomem *bar0 = nic->bar0; 2007 register u64 temp64 = 0, intr_mask = 0; 2008 2009 intr_mask = nic->general_int_mask; 2010 2011 /* Top level interrupt classification */ 2012 /* PIC Interrupts */ 2013 if (mask & TX_PIC_INTR) { 2014 /* Enable PIC Intrs in the general intr mask register */ 2015 intr_mask |= TXPIC_INT_M; 2016 if (flag == ENABLE_INTRS) { 2017 /* 2018 * If Hercules adapter enable GPIO otherwise 2019 * disable all PCIX, Flash, MDIO, IIC and GPIO 2020 * interrupts for now. 2021 * TODO 2022 */ 2023 if (s2io_link_fault_indication(nic) == 2024 LINK_UP_DOWN_INTERRUPT) { 2025 do_s2io_write_bits(PIC_INT_GPIO, flag, 2026 &bar0->pic_int_mask); 2027 do_s2io_write_bits(GPIO_INT_MASK_LINK_UP, flag, 2028 &bar0->gpio_int_mask); 2029 } else 2030 writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask); 2031 } else if (flag == DISABLE_INTRS) { 2032 /* 2033 * Disable PIC Intrs in the general 2034 * intr mask register 2035 */ 2036 writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask); 2037 } 2038 } 2039 2040 /* Tx traffic interrupts */ 2041 if (mask & TX_TRAFFIC_INTR) { 2042 intr_mask |= TXTRAFFIC_INT_M; 2043 if (flag == ENABLE_INTRS) { 2044 /* 2045 * Enable all the Tx side interrupts 2046 * writing 0 Enables all 64 TX interrupt levels 2047 */ 2048 writeq(0x0, &bar0->tx_traffic_mask); 2049 } else if (flag == DISABLE_INTRS) { 2050 /* 2051 * Disable Tx Traffic Intrs in the general intr mask 2052 * register. 2053 */ 2054 writeq(DISABLE_ALL_INTRS, &bar0->tx_traffic_mask); 2055 } 2056 } 2057 2058 /* Rx traffic interrupts */ 2059 if (mask & RX_TRAFFIC_INTR) { 2060 intr_mask |= RXTRAFFIC_INT_M; 2061 if (flag == ENABLE_INTRS) { 2062 /* writing 0 Enables all 8 RX interrupt levels */ 2063 writeq(0x0, &bar0->rx_traffic_mask); 2064 } else if (flag == DISABLE_INTRS) { 2065 /* 2066 * Disable Rx Traffic Intrs in the general intr mask 2067 * register. 2068 */ 2069 writeq(DISABLE_ALL_INTRS, &bar0->rx_traffic_mask); 2070 } 2071 } 2072 2073 temp64 = readq(&bar0->general_int_mask); 2074 if (flag == ENABLE_INTRS) 2075 temp64 &= ~((u64)intr_mask); 2076 else 2077 temp64 = DISABLE_ALL_INTRS; 2078 writeq(temp64, &bar0->general_int_mask); 2079 2080 nic->general_int_mask = readq(&bar0->general_int_mask); 2081 } 2082 2083 /** 2084 * verify_pcc_quiescent- Checks for PCC quiescent state 2085 * Return: 1 If PCC is quiescence 2086 * 0 If PCC is not quiescence 2087 */ 2088 static int verify_pcc_quiescent(struct s2io_nic *sp, int flag) 2089 { 2090 int ret = 0, herc; 2091 struct XENA_dev_config __iomem *bar0 = sp->bar0; 2092 u64 val64 = readq(&bar0->adapter_status); 2093 2094 herc = (sp->device_type == XFRAME_II_DEVICE); 2095 2096 if (flag == false) { 2097 if ((!herc && (sp->pdev->revision >= 4)) || herc) { 2098 if (!(val64 & ADAPTER_STATUS_RMAC_PCC_IDLE)) 2099 ret = 1; 2100 } else { 2101 if (!(val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE)) 2102 ret = 1; 2103 } 2104 } else { 2105 if ((!herc && (sp->pdev->revision >= 4)) || herc) { 2106 if (((val64 & ADAPTER_STATUS_RMAC_PCC_IDLE) == 2107 ADAPTER_STATUS_RMAC_PCC_IDLE)) 2108 ret = 1; 2109 } else { 2110 if (((val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE) == 2111 ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE)) 2112 ret = 1; 2113 } 2114 } 2115 2116 return ret; 2117 } 2118 /** 2119 * verify_xena_quiescence - Checks whether the H/W is ready 2120 * Description: Returns whether the H/W is ready to go or not. Depending 2121 * on whether adapter enable bit was written or not the comparison 2122 * differs and the calling function passes the input argument flag to 2123 * indicate this. 2124 * Return: 1 If xena is quiescence 2125 * 0 If Xena is not quiescence 2126 */ 2127 2128 static int verify_xena_quiescence(struct s2io_nic *sp) 2129 { 2130 int mode; 2131 struct XENA_dev_config __iomem *bar0 = sp->bar0; 2132 u64 val64 = readq(&bar0->adapter_status); 2133 mode = s2io_verify_pci_mode(sp); 2134 2135 if (!(val64 & ADAPTER_STATUS_TDMA_READY)) { 2136 DBG_PRINT(ERR_DBG, "TDMA is not ready!\n"); 2137 return 0; 2138 } 2139 if (!(val64 & ADAPTER_STATUS_RDMA_READY)) { 2140 DBG_PRINT(ERR_DBG, "RDMA is not ready!\n"); 2141 return 0; 2142 } 2143 if (!(val64 & ADAPTER_STATUS_PFC_READY)) { 2144 DBG_PRINT(ERR_DBG, "PFC is not ready!\n"); 2145 return 0; 2146 } 2147 if (!(val64 & ADAPTER_STATUS_TMAC_BUF_EMPTY)) { 2148 DBG_PRINT(ERR_DBG, "TMAC BUF is not empty!\n"); 2149 return 0; 2150 } 2151 if (!(val64 & ADAPTER_STATUS_PIC_QUIESCENT)) { 2152 DBG_PRINT(ERR_DBG, "PIC is not QUIESCENT!\n"); 2153 return 0; 2154 } 2155 if (!(val64 & ADAPTER_STATUS_MC_DRAM_READY)) { 2156 DBG_PRINT(ERR_DBG, "MC_DRAM is not ready!\n"); 2157 return 0; 2158 } 2159 if (!(val64 & ADAPTER_STATUS_MC_QUEUES_READY)) { 2160 DBG_PRINT(ERR_DBG, "MC_QUEUES is not ready!\n"); 2161 return 0; 2162 } 2163 if (!(val64 & ADAPTER_STATUS_M_PLL_LOCK)) { 2164 DBG_PRINT(ERR_DBG, "M_PLL is not locked!\n"); 2165 return 0; 2166 } 2167 2168 /* 2169 * In PCI 33 mode, the P_PLL is not used, and therefore, 2170 * the the P_PLL_LOCK bit in the adapter_status register will 2171 * not be asserted. 2172 */ 2173 if (!(val64 & ADAPTER_STATUS_P_PLL_LOCK) && 2174 sp->device_type == XFRAME_II_DEVICE && 2175 mode != PCI_MODE_PCI_33) { 2176 DBG_PRINT(ERR_DBG, "P_PLL is not locked!\n"); 2177 return 0; 2178 } 2179 if (!((val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) == 2180 ADAPTER_STATUS_RC_PRC_QUIESCENT)) { 2181 DBG_PRINT(ERR_DBG, "RC_PRC is not QUIESCENT!\n"); 2182 return 0; 2183 } 2184 return 1; 2185 } 2186 2187 /** 2188 * fix_mac_address - Fix for Mac addr problem on Alpha platforms 2189 * @sp: Pointer to device specifc structure 2190 * Description : 2191 * New procedure to clear mac address reading problems on Alpha platforms 2192 * 2193 */ 2194 2195 static void fix_mac_address(struct s2io_nic *sp) 2196 { 2197 struct XENA_dev_config __iomem *bar0 = sp->bar0; 2198 int i = 0; 2199 2200 while (fix_mac[i] != END_SIGN) { 2201 writeq(fix_mac[i++], &bar0->gpio_control); 2202 udelay(10); 2203 (void) readq(&bar0->gpio_control); 2204 } 2205 } 2206 2207 /** 2208 * start_nic - Turns the device on 2209 * @nic : device private variable. 2210 * Description: 2211 * This function actually turns the device on. Before this function is 2212 * called,all Registers are configured from their reset states 2213 * and shared memory is allocated but the NIC is still quiescent. On 2214 * calling this function, the device interrupts are cleared and the NIC is 2215 * literally switched on by writing into the adapter control register. 2216 * Return Value: 2217 * SUCCESS on success and -1 on failure. 2218 */ 2219 2220 static int start_nic(struct s2io_nic *nic) 2221 { 2222 struct XENA_dev_config __iomem *bar0 = nic->bar0; 2223 struct net_device *dev = nic->dev; 2224 register u64 val64 = 0; 2225 u16 subid, i; 2226 struct config_param *config = &nic->config; 2227 struct mac_info *mac_control = &nic->mac_control; 2228 2229 /* PRC Initialization and configuration */ 2230 for (i = 0; i < config->rx_ring_num; i++) { 2231 struct ring_info *ring = &mac_control->rings[i]; 2232 2233 writeq((u64)ring->rx_blocks[0].block_dma_addr, 2234 &bar0->prc_rxd0_n[i]); 2235 2236 val64 = readq(&bar0->prc_ctrl_n[i]); 2237 if (nic->rxd_mode == RXD_MODE_1) 2238 val64 |= PRC_CTRL_RC_ENABLED; 2239 else 2240 val64 |= PRC_CTRL_RC_ENABLED | PRC_CTRL_RING_MODE_3; 2241 if (nic->device_type == XFRAME_II_DEVICE) 2242 val64 |= PRC_CTRL_GROUP_READS; 2243 val64 &= ~PRC_CTRL_RXD_BACKOFF_INTERVAL(0xFFFFFF); 2244 val64 |= PRC_CTRL_RXD_BACKOFF_INTERVAL(0x1000); 2245 writeq(val64, &bar0->prc_ctrl_n[i]); 2246 } 2247 2248 if (nic->rxd_mode == RXD_MODE_3B) { 2249 /* Enabling 2 buffer mode by writing into Rx_pa_cfg reg. */ 2250 val64 = readq(&bar0->rx_pa_cfg); 2251 val64 |= RX_PA_CFG_IGNORE_L2_ERR; 2252 writeq(val64, &bar0->rx_pa_cfg); 2253 } 2254 2255 if (vlan_tag_strip == 0) { 2256 val64 = readq(&bar0->rx_pa_cfg); 2257 val64 &= ~RX_PA_CFG_STRIP_VLAN_TAG; 2258 writeq(val64, &bar0->rx_pa_cfg); 2259 nic->vlan_strip_flag = 0; 2260 } 2261 2262 /* 2263 * Enabling MC-RLDRAM. After enabling the device, we timeout 2264 * for around 100ms, which is approximately the time required 2265 * for the device to be ready for operation. 2266 */ 2267 val64 = readq(&bar0->mc_rldram_mrs); 2268 val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE | MC_RLDRAM_MRS_ENABLE; 2269 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF); 2270 val64 = readq(&bar0->mc_rldram_mrs); 2271 2272 msleep(100); /* Delay by around 100 ms. */ 2273 2274 /* Enabling ECC Protection. */ 2275 val64 = readq(&bar0->adapter_control); 2276 val64 &= ~ADAPTER_ECC_EN; 2277 writeq(val64, &bar0->adapter_control); 2278 2279 /* 2280 * Verify if the device is ready to be enabled, if so enable 2281 * it. 2282 */ 2283 val64 = readq(&bar0->adapter_status); 2284 if (!verify_xena_quiescence(nic)) { 2285 DBG_PRINT(ERR_DBG, "%s: device is not ready, " 2286 "Adapter status reads: 0x%llx\n", 2287 dev->name, (unsigned long long)val64); 2288 return FAILURE; 2289 } 2290 2291 /* 2292 * With some switches, link might be already up at this point. 2293 * Because of this weird behavior, when we enable laser, 2294 * we may not get link. We need to handle this. We cannot 2295 * figure out which switch is misbehaving. So we are forced to 2296 * make a global change. 2297 */ 2298 2299 /* Enabling Laser. */ 2300 val64 = readq(&bar0->adapter_control); 2301 val64 |= ADAPTER_EOI_TX_ON; 2302 writeq(val64, &bar0->adapter_control); 2303 2304 if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) { 2305 /* 2306 * Dont see link state interrupts initially on some switches, 2307 * so directly scheduling the link state task here. 2308 */ 2309 schedule_work(&nic->set_link_task); 2310 } 2311 /* SXE-002: Initialize link and activity LED */ 2312 subid = nic->pdev->subsystem_device; 2313 if (((subid & 0xFF) >= 0x07) && 2314 (nic->device_type == XFRAME_I_DEVICE)) { 2315 val64 = readq(&bar0->gpio_control); 2316 val64 |= 0x0000800000000000ULL; 2317 writeq(val64, &bar0->gpio_control); 2318 val64 = 0x0411040400000000ULL; 2319 writeq(val64, (void __iomem *)bar0 + 0x2700); 2320 } 2321 2322 return SUCCESS; 2323 } 2324 /** 2325 * s2io_txdl_getskb - Get the skb from txdl, unmap and return skb 2326 */ 2327 static struct sk_buff *s2io_txdl_getskb(struct fifo_info *fifo_data, 2328 struct TxD *txdlp, int get_off) 2329 { 2330 struct s2io_nic *nic = fifo_data->nic; 2331 struct sk_buff *skb; 2332 struct TxD *txds; 2333 u16 j, frg_cnt; 2334 2335 txds = txdlp; 2336 if (txds->Host_Control == (u64)(long)fifo_data->ufo_in_band_v) { 2337 pci_unmap_single(nic->pdev, (dma_addr_t)txds->Buffer_Pointer, 2338 sizeof(u64), PCI_DMA_TODEVICE); 2339 txds++; 2340 } 2341 2342 skb = (struct sk_buff *)((unsigned long)txds->Host_Control); 2343 if (!skb) { 2344 memset(txdlp, 0, (sizeof(struct TxD) * fifo_data->max_txds)); 2345 return NULL; 2346 } 2347 pci_unmap_single(nic->pdev, (dma_addr_t)txds->Buffer_Pointer, 2348 skb_headlen(skb), PCI_DMA_TODEVICE); 2349 frg_cnt = skb_shinfo(skb)->nr_frags; 2350 if (frg_cnt) { 2351 txds++; 2352 for (j = 0; j < frg_cnt; j++, txds++) { 2353 const skb_frag_t *frag = &skb_shinfo(skb)->frags[j]; 2354 if (!txds->Buffer_Pointer) 2355 break; 2356 pci_unmap_page(nic->pdev, 2357 (dma_addr_t)txds->Buffer_Pointer, 2358 skb_frag_size(frag), PCI_DMA_TODEVICE); 2359 } 2360 } 2361 memset(txdlp, 0, (sizeof(struct TxD) * fifo_data->max_txds)); 2362 return skb; 2363 } 2364 2365 /** 2366 * free_tx_buffers - Free all queued Tx buffers 2367 * @nic : device private variable. 2368 * Description: 2369 * Free all queued Tx buffers. 2370 * Return Value: void 2371 */ 2372 2373 static void free_tx_buffers(struct s2io_nic *nic) 2374 { 2375 struct net_device *dev = nic->dev; 2376 struct sk_buff *skb; 2377 struct TxD *txdp; 2378 int i, j; 2379 int cnt = 0; 2380 struct config_param *config = &nic->config; 2381 struct mac_info *mac_control = &nic->mac_control; 2382 struct stat_block *stats = mac_control->stats_info; 2383 struct swStat *swstats = &stats->sw_stat; 2384 2385 for (i = 0; i < config->tx_fifo_num; i++) { 2386 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i]; 2387 struct fifo_info *fifo = &mac_control->fifos[i]; 2388 unsigned long flags; 2389 2390 spin_lock_irqsave(&fifo->tx_lock, flags); 2391 for (j = 0; j < tx_cfg->fifo_len; j++) { 2392 txdp = fifo->list_info[j].list_virt_addr; 2393 skb = s2io_txdl_getskb(&mac_control->fifos[i], txdp, j); 2394 if (skb) { 2395 swstats->mem_freed += skb->truesize; 2396 dev_kfree_skb(skb); 2397 cnt++; 2398 } 2399 } 2400 DBG_PRINT(INTR_DBG, 2401 "%s: forcibly freeing %d skbs on FIFO%d\n", 2402 dev->name, cnt, i); 2403 fifo->tx_curr_get_info.offset = 0; 2404 fifo->tx_curr_put_info.offset = 0; 2405 spin_unlock_irqrestore(&fifo->tx_lock, flags); 2406 } 2407 } 2408 2409 /** 2410 * stop_nic - To stop the nic 2411 * @nic ; device private variable. 2412 * Description: 2413 * This function does exactly the opposite of what the start_nic() 2414 * function does. This function is called to stop the device. 2415 * Return Value: 2416 * void. 2417 */ 2418 2419 static void stop_nic(struct s2io_nic *nic) 2420 { 2421 struct XENA_dev_config __iomem *bar0 = nic->bar0; 2422 register u64 val64 = 0; 2423 u16 interruptible; 2424 2425 /* Disable all interrupts */ 2426 en_dis_err_alarms(nic, ENA_ALL_INTRS, DISABLE_INTRS); 2427 interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR; 2428 interruptible |= TX_PIC_INTR; 2429 en_dis_able_nic_intrs(nic, interruptible, DISABLE_INTRS); 2430 2431 /* Clearing Adapter_En bit of ADAPTER_CONTROL Register */ 2432 val64 = readq(&bar0->adapter_control); 2433 val64 &= ~(ADAPTER_CNTL_EN); 2434 writeq(val64, &bar0->adapter_control); 2435 } 2436 2437 /** 2438 * fill_rx_buffers - Allocates the Rx side skbs 2439 * @ring_info: per ring structure 2440 * @from_card_up: If this is true, we will map the buffer to get 2441 * the dma address for buf0 and buf1 to give it to the card. 2442 * Else we will sync the already mapped buffer to give it to the card. 2443 * Description: 2444 * The function allocates Rx side skbs and puts the physical 2445 * address of these buffers into the RxD buffer pointers, so that the NIC 2446 * can DMA the received frame into these locations. 2447 * The NIC supports 3 receive modes, viz 2448 * 1. single buffer, 2449 * 2. three buffer and 2450 * 3. Five buffer modes. 2451 * Each mode defines how many fragments the received frame will be split 2452 * up into by the NIC. The frame is split into L3 header, L4 Header, 2453 * L4 payload in three buffer mode and in 5 buffer mode, L4 payload itself 2454 * is split into 3 fragments. As of now only single buffer mode is 2455 * supported. 2456 * Return Value: 2457 * SUCCESS on success or an appropriate -ve value on failure. 2458 */ 2459 static int fill_rx_buffers(struct s2io_nic *nic, struct ring_info *ring, 2460 int from_card_up) 2461 { 2462 struct sk_buff *skb; 2463 struct RxD_t *rxdp; 2464 int off, size, block_no, block_no1; 2465 u32 alloc_tab = 0; 2466 u32 alloc_cnt; 2467 u64 tmp; 2468 struct buffAdd *ba; 2469 struct RxD_t *first_rxdp = NULL; 2470 u64 Buffer0_ptr = 0, Buffer1_ptr = 0; 2471 int rxd_index = 0; 2472 struct RxD1 *rxdp1; 2473 struct RxD3 *rxdp3; 2474 struct swStat *swstats = &ring->nic->mac_control.stats_info->sw_stat; 2475 2476 alloc_cnt = ring->pkt_cnt - ring->rx_bufs_left; 2477 2478 block_no1 = ring->rx_curr_get_info.block_index; 2479 while (alloc_tab < alloc_cnt) { 2480 block_no = ring->rx_curr_put_info.block_index; 2481 2482 off = ring->rx_curr_put_info.offset; 2483 2484 rxdp = ring->rx_blocks[block_no].rxds[off].virt_addr; 2485 2486 rxd_index = off + 1; 2487 if (block_no) 2488 rxd_index += (block_no * ring->rxd_count); 2489 2490 if ((block_no == block_no1) && 2491 (off == ring->rx_curr_get_info.offset) && 2492 (rxdp->Host_Control)) { 2493 DBG_PRINT(INTR_DBG, "%s: Get and Put info equated\n", 2494 ring->dev->name); 2495 goto end; 2496 } 2497 if (off && (off == ring->rxd_count)) { 2498 ring->rx_curr_put_info.block_index++; 2499 if (ring->rx_curr_put_info.block_index == 2500 ring->block_count) 2501 ring->rx_curr_put_info.block_index = 0; 2502 block_no = ring->rx_curr_put_info.block_index; 2503 off = 0; 2504 ring->rx_curr_put_info.offset = off; 2505 rxdp = ring->rx_blocks[block_no].block_virt_addr; 2506 DBG_PRINT(INTR_DBG, "%s: Next block at: %p\n", 2507 ring->dev->name, rxdp); 2508 2509 } 2510 2511 if ((rxdp->Control_1 & RXD_OWN_XENA) && 2512 ((ring->rxd_mode == RXD_MODE_3B) && 2513 (rxdp->Control_2 & s2BIT(0)))) { 2514 ring->rx_curr_put_info.offset = off; 2515 goto end; 2516 } 2517 /* calculate size of skb based on ring mode */ 2518 size = ring->mtu + 2519 HEADER_ETHERNET_II_802_3_SIZE + 2520 HEADER_802_2_SIZE + HEADER_SNAP_SIZE; 2521 if (ring->rxd_mode == RXD_MODE_1) 2522 size += NET_IP_ALIGN; 2523 else 2524 size = ring->mtu + ALIGN_SIZE + BUF0_LEN + 4; 2525 2526 /* allocate skb */ 2527 skb = netdev_alloc_skb(nic->dev, size); 2528 if (!skb) { 2529 DBG_PRINT(INFO_DBG, "%s: Could not allocate skb\n", 2530 ring->dev->name); 2531 if (first_rxdp) { 2532 wmb(); 2533 first_rxdp->Control_1 |= RXD_OWN_XENA; 2534 } 2535 swstats->mem_alloc_fail_cnt++; 2536 2537 return -ENOMEM ; 2538 } 2539 swstats->mem_allocated += skb->truesize; 2540 2541 if (ring->rxd_mode == RXD_MODE_1) { 2542 /* 1 buffer mode - normal operation mode */ 2543 rxdp1 = (struct RxD1 *)rxdp; 2544 memset(rxdp, 0, sizeof(struct RxD1)); 2545 skb_reserve(skb, NET_IP_ALIGN); 2546 rxdp1->Buffer0_ptr = 2547 pci_map_single(ring->pdev, skb->data, 2548 size - NET_IP_ALIGN, 2549 PCI_DMA_FROMDEVICE); 2550 if (pci_dma_mapping_error(nic->pdev, 2551 rxdp1->Buffer0_ptr)) 2552 goto pci_map_failed; 2553 2554 rxdp->Control_2 = 2555 SET_BUFFER0_SIZE_1(size - NET_IP_ALIGN); 2556 rxdp->Host_Control = (unsigned long)skb; 2557 } else if (ring->rxd_mode == RXD_MODE_3B) { 2558 /* 2559 * 2 buffer mode - 2560 * 2 buffer mode provides 128 2561 * byte aligned receive buffers. 2562 */ 2563 2564 rxdp3 = (struct RxD3 *)rxdp; 2565 /* save buffer pointers to avoid frequent dma mapping */ 2566 Buffer0_ptr = rxdp3->Buffer0_ptr; 2567 Buffer1_ptr = rxdp3->Buffer1_ptr; 2568 memset(rxdp, 0, sizeof(struct RxD3)); 2569 /* restore the buffer pointers for dma sync*/ 2570 rxdp3->Buffer0_ptr = Buffer0_ptr; 2571 rxdp3->Buffer1_ptr = Buffer1_ptr; 2572 2573 ba = &ring->ba[block_no][off]; 2574 skb_reserve(skb, BUF0_LEN); 2575 tmp = (u64)(unsigned long)skb->data; 2576 tmp += ALIGN_SIZE; 2577 tmp &= ~ALIGN_SIZE; 2578 skb->data = (void *) (unsigned long)tmp; 2579 skb_reset_tail_pointer(skb); 2580 2581 if (from_card_up) { 2582 rxdp3->Buffer0_ptr = 2583 pci_map_single(ring->pdev, ba->ba_0, 2584 BUF0_LEN, 2585 PCI_DMA_FROMDEVICE); 2586 if (pci_dma_mapping_error(nic->pdev, 2587 rxdp3->Buffer0_ptr)) 2588 goto pci_map_failed; 2589 } else 2590 pci_dma_sync_single_for_device(ring->pdev, 2591 (dma_addr_t)rxdp3->Buffer0_ptr, 2592 BUF0_LEN, 2593 PCI_DMA_FROMDEVICE); 2594 2595 rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN); 2596 if (ring->rxd_mode == RXD_MODE_3B) { 2597 /* Two buffer mode */ 2598 2599 /* 2600 * Buffer2 will have L3/L4 header plus 2601 * L4 payload 2602 */ 2603 rxdp3->Buffer2_ptr = pci_map_single(ring->pdev, 2604 skb->data, 2605 ring->mtu + 4, 2606 PCI_DMA_FROMDEVICE); 2607 2608 if (pci_dma_mapping_error(nic->pdev, 2609 rxdp3->Buffer2_ptr)) 2610 goto pci_map_failed; 2611 2612 if (from_card_up) { 2613 rxdp3->Buffer1_ptr = 2614 pci_map_single(ring->pdev, 2615 ba->ba_1, 2616 BUF1_LEN, 2617 PCI_DMA_FROMDEVICE); 2618 2619 if (pci_dma_mapping_error(nic->pdev, 2620 rxdp3->Buffer1_ptr)) { 2621 pci_unmap_single(ring->pdev, 2622 (dma_addr_t)(unsigned long) 2623 skb->data, 2624 ring->mtu + 4, 2625 PCI_DMA_FROMDEVICE); 2626 goto pci_map_failed; 2627 } 2628 } 2629 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1); 2630 rxdp->Control_2 |= SET_BUFFER2_SIZE_3 2631 (ring->mtu + 4); 2632 } 2633 rxdp->Control_2 |= s2BIT(0); 2634 rxdp->Host_Control = (unsigned long) (skb); 2635 } 2636 if (alloc_tab & ((1 << rxsync_frequency) - 1)) 2637 rxdp->Control_1 |= RXD_OWN_XENA; 2638 off++; 2639 if (off == (ring->rxd_count + 1)) 2640 off = 0; 2641 ring->rx_curr_put_info.offset = off; 2642 2643 rxdp->Control_2 |= SET_RXD_MARKER; 2644 if (!(alloc_tab & ((1 << rxsync_frequency) - 1))) { 2645 if (first_rxdp) { 2646 wmb(); 2647 first_rxdp->Control_1 |= RXD_OWN_XENA; 2648 } 2649 first_rxdp = rxdp; 2650 } 2651 ring->rx_bufs_left += 1; 2652 alloc_tab++; 2653 } 2654 2655 end: 2656 /* Transfer ownership of first descriptor to adapter just before 2657 * exiting. Before that, use memory barrier so that ownership 2658 * and other fields are seen by adapter correctly. 2659 */ 2660 if (first_rxdp) { 2661 wmb(); 2662 first_rxdp->Control_1 |= RXD_OWN_XENA; 2663 } 2664 2665 return SUCCESS; 2666 2667 pci_map_failed: 2668 swstats->pci_map_fail_cnt++; 2669 swstats->mem_freed += skb->truesize; 2670 dev_kfree_skb_irq(skb); 2671 return -ENOMEM; 2672 } 2673 2674 static void free_rxd_blk(struct s2io_nic *sp, int ring_no, int blk) 2675 { 2676 struct net_device *dev = sp->dev; 2677 int j; 2678 struct sk_buff *skb; 2679 struct RxD_t *rxdp; 2680 struct RxD1 *rxdp1; 2681 struct RxD3 *rxdp3; 2682 struct mac_info *mac_control = &sp->mac_control; 2683 struct stat_block *stats = mac_control->stats_info; 2684 struct swStat *swstats = &stats->sw_stat; 2685 2686 for (j = 0 ; j < rxd_count[sp->rxd_mode]; j++) { 2687 rxdp = mac_control->rings[ring_no]. 2688 rx_blocks[blk].rxds[j].virt_addr; 2689 skb = (struct sk_buff *)((unsigned long)rxdp->Host_Control); 2690 if (!skb) 2691 continue; 2692 if (sp->rxd_mode == RXD_MODE_1) { 2693 rxdp1 = (struct RxD1 *)rxdp; 2694 pci_unmap_single(sp->pdev, 2695 (dma_addr_t)rxdp1->Buffer0_ptr, 2696 dev->mtu + 2697 HEADER_ETHERNET_II_802_3_SIZE + 2698 HEADER_802_2_SIZE + HEADER_SNAP_SIZE, 2699 PCI_DMA_FROMDEVICE); 2700 memset(rxdp, 0, sizeof(struct RxD1)); 2701 } else if (sp->rxd_mode == RXD_MODE_3B) { 2702 rxdp3 = (struct RxD3 *)rxdp; 2703 pci_unmap_single(sp->pdev, 2704 (dma_addr_t)rxdp3->Buffer0_ptr, 2705 BUF0_LEN, 2706 PCI_DMA_FROMDEVICE); 2707 pci_unmap_single(sp->pdev, 2708 (dma_addr_t)rxdp3->Buffer1_ptr, 2709 BUF1_LEN, 2710 PCI_DMA_FROMDEVICE); 2711 pci_unmap_single(sp->pdev, 2712 (dma_addr_t)rxdp3->Buffer2_ptr, 2713 dev->mtu + 4, 2714 PCI_DMA_FROMDEVICE); 2715 memset(rxdp, 0, sizeof(struct RxD3)); 2716 } 2717 swstats->mem_freed += skb->truesize; 2718 dev_kfree_skb(skb); 2719 mac_control->rings[ring_no].rx_bufs_left -= 1; 2720 } 2721 } 2722 2723 /** 2724 * free_rx_buffers - Frees all Rx buffers 2725 * @sp: device private variable. 2726 * Description: 2727 * This function will free all Rx buffers allocated by host. 2728 * Return Value: 2729 * NONE. 2730 */ 2731 2732 static void free_rx_buffers(struct s2io_nic *sp) 2733 { 2734 struct net_device *dev = sp->dev; 2735 int i, blk = 0, buf_cnt = 0; 2736 struct config_param *config = &sp->config; 2737 struct mac_info *mac_control = &sp->mac_control; 2738 2739 for (i = 0; i < config->rx_ring_num; i++) { 2740 struct ring_info *ring = &mac_control->rings[i]; 2741 2742 for (blk = 0; blk < rx_ring_sz[i]; blk++) 2743 free_rxd_blk(sp, i, blk); 2744 2745 ring->rx_curr_put_info.block_index = 0; 2746 ring->rx_curr_get_info.block_index = 0; 2747 ring->rx_curr_put_info.offset = 0; 2748 ring->rx_curr_get_info.offset = 0; 2749 ring->rx_bufs_left = 0; 2750 DBG_PRINT(INIT_DBG, "%s: Freed 0x%x Rx Buffers on ring%d\n", 2751 dev->name, buf_cnt, i); 2752 } 2753 } 2754 2755 static int s2io_chk_rx_buffers(struct s2io_nic *nic, struct ring_info *ring) 2756 { 2757 if (fill_rx_buffers(nic, ring, 0) == -ENOMEM) { 2758 DBG_PRINT(INFO_DBG, "%s: Out of memory in Rx Intr!!\n", 2759 ring->dev->name); 2760 } 2761 return 0; 2762 } 2763 2764 /** 2765 * s2io_poll - Rx interrupt handler for NAPI support 2766 * @napi : pointer to the napi structure. 2767 * @budget : The number of packets that were budgeted to be processed 2768 * during one pass through the 'Poll" function. 2769 * Description: 2770 * Comes into picture only if NAPI support has been incorporated. It does 2771 * the same thing that rx_intr_handler does, but not in a interrupt context 2772 * also It will process only a given number of packets. 2773 * Return value: 2774 * 0 on success and 1 if there are No Rx packets to be processed. 2775 */ 2776 2777 static int s2io_poll_msix(struct napi_struct *napi, int budget) 2778 { 2779 struct ring_info *ring = container_of(napi, struct ring_info, napi); 2780 struct net_device *dev = ring->dev; 2781 int pkts_processed = 0; 2782 u8 __iomem *addr = NULL; 2783 u8 val8 = 0; 2784 struct s2io_nic *nic = netdev_priv(dev); 2785 struct XENA_dev_config __iomem *bar0 = nic->bar0; 2786 int budget_org = budget; 2787 2788 if (unlikely(!is_s2io_card_up(nic))) 2789 return 0; 2790 2791 pkts_processed = rx_intr_handler(ring, budget); 2792 s2io_chk_rx_buffers(nic, ring); 2793 2794 if (pkts_processed < budget_org) { 2795 napi_complete(napi); 2796 /*Re Enable MSI-Rx Vector*/ 2797 addr = (u8 __iomem *)&bar0->xmsi_mask_reg; 2798 addr += 7 - ring->ring_no; 2799 val8 = (ring->ring_no == 0) ? 0x3f : 0xbf; 2800 writeb(val8, addr); 2801 val8 = readb(addr); 2802 } 2803 return pkts_processed; 2804 } 2805 2806 static int s2io_poll_inta(struct napi_struct *napi, int budget) 2807 { 2808 struct s2io_nic *nic = container_of(napi, struct s2io_nic, napi); 2809 int pkts_processed = 0; 2810 int ring_pkts_processed, i; 2811 struct XENA_dev_config __iomem *bar0 = nic->bar0; 2812 int budget_org = budget; 2813 struct config_param *config = &nic->config; 2814 struct mac_info *mac_control = &nic->mac_control; 2815 2816 if (unlikely(!is_s2io_card_up(nic))) 2817 return 0; 2818 2819 for (i = 0; i < config->rx_ring_num; i++) { 2820 struct ring_info *ring = &mac_control->rings[i]; 2821 ring_pkts_processed = rx_intr_handler(ring, budget); 2822 s2io_chk_rx_buffers(nic, ring); 2823 pkts_processed += ring_pkts_processed; 2824 budget -= ring_pkts_processed; 2825 if (budget <= 0) 2826 break; 2827 } 2828 if (pkts_processed < budget_org) { 2829 napi_complete(napi); 2830 /* Re enable the Rx interrupts for the ring */ 2831 writeq(0, &bar0->rx_traffic_mask); 2832 readl(&bar0->rx_traffic_mask); 2833 } 2834 return pkts_processed; 2835 } 2836 2837 #ifdef CONFIG_NET_POLL_CONTROLLER 2838 /** 2839 * s2io_netpoll - netpoll event handler entry point 2840 * @dev : pointer to the device structure. 2841 * Description: 2842 * This function will be called by upper layer to check for events on the 2843 * interface in situations where interrupts are disabled. It is used for 2844 * specific in-kernel networking tasks, such as remote consoles and kernel 2845 * debugging over the network (example netdump in RedHat). 2846 */ 2847 static void s2io_netpoll(struct net_device *dev) 2848 { 2849 struct s2io_nic *nic = netdev_priv(dev); 2850 const int irq = nic->pdev->irq; 2851 struct XENA_dev_config __iomem *bar0 = nic->bar0; 2852 u64 val64 = 0xFFFFFFFFFFFFFFFFULL; 2853 int i; 2854 struct config_param *config = &nic->config; 2855 struct mac_info *mac_control = &nic->mac_control; 2856 2857 if (pci_channel_offline(nic->pdev)) 2858 return; 2859 2860 disable_irq(irq); 2861 2862 writeq(val64, &bar0->rx_traffic_int); 2863 writeq(val64, &bar0->tx_traffic_int); 2864 2865 /* we need to free up the transmitted skbufs or else netpoll will 2866 * run out of skbs and will fail and eventually netpoll application such 2867 * as netdump will fail. 2868 */ 2869 for (i = 0; i < config->tx_fifo_num; i++) 2870 tx_intr_handler(&mac_control->fifos[i]); 2871 2872 /* check for received packet and indicate up to network */ 2873 for (i = 0; i < config->rx_ring_num; i++) { 2874 struct ring_info *ring = &mac_control->rings[i]; 2875 2876 rx_intr_handler(ring, 0); 2877 } 2878 2879 for (i = 0; i < config->rx_ring_num; i++) { 2880 struct ring_info *ring = &mac_control->rings[i]; 2881 2882 if (fill_rx_buffers(nic, ring, 0) == -ENOMEM) { 2883 DBG_PRINT(INFO_DBG, 2884 "%s: Out of memory in Rx Netpoll!!\n", 2885 dev->name); 2886 break; 2887 } 2888 } 2889 enable_irq(irq); 2890 } 2891 #endif 2892 2893 /** 2894 * rx_intr_handler - Rx interrupt handler 2895 * @ring_info: per ring structure. 2896 * @budget: budget for napi processing. 2897 * Description: 2898 * If the interrupt is because of a received frame or if the 2899 * receive ring contains fresh as yet un-processed frames,this function is 2900 * called. It picks out the RxD at which place the last Rx processing had 2901 * stopped and sends the skb to the OSM's Rx handler and then increments 2902 * the offset. 2903 * Return Value: 2904 * No. of napi packets processed. 2905 */ 2906 static int rx_intr_handler(struct ring_info *ring_data, int budget) 2907 { 2908 int get_block, put_block; 2909 struct rx_curr_get_info get_info, put_info; 2910 struct RxD_t *rxdp; 2911 struct sk_buff *skb; 2912 int pkt_cnt = 0, napi_pkts = 0; 2913 int i; 2914 struct RxD1 *rxdp1; 2915 struct RxD3 *rxdp3; 2916 2917 if (budget <= 0) 2918 return napi_pkts; 2919 2920 get_info = ring_data->rx_curr_get_info; 2921 get_block = get_info.block_index; 2922 memcpy(&put_info, &ring_data->rx_curr_put_info, sizeof(put_info)); 2923 put_block = put_info.block_index; 2924 rxdp = ring_data->rx_blocks[get_block].rxds[get_info.offset].virt_addr; 2925 2926 while (RXD_IS_UP2DT(rxdp)) { 2927 /* 2928 * If your are next to put index then it's 2929 * FIFO full condition 2930 */ 2931 if ((get_block == put_block) && 2932 (get_info.offset + 1) == put_info.offset) { 2933 DBG_PRINT(INTR_DBG, "%s: Ring Full\n", 2934 ring_data->dev->name); 2935 break; 2936 } 2937 skb = (struct sk_buff *)((unsigned long)rxdp->Host_Control); 2938 if (skb == NULL) { 2939 DBG_PRINT(ERR_DBG, "%s: NULL skb in Rx Intr\n", 2940 ring_data->dev->name); 2941 return 0; 2942 } 2943 if (ring_data->rxd_mode == RXD_MODE_1) { 2944 rxdp1 = (struct RxD1 *)rxdp; 2945 pci_unmap_single(ring_data->pdev, (dma_addr_t) 2946 rxdp1->Buffer0_ptr, 2947 ring_data->mtu + 2948 HEADER_ETHERNET_II_802_3_SIZE + 2949 HEADER_802_2_SIZE + 2950 HEADER_SNAP_SIZE, 2951 PCI_DMA_FROMDEVICE); 2952 } else if (ring_data->rxd_mode == RXD_MODE_3B) { 2953 rxdp3 = (struct RxD3 *)rxdp; 2954 pci_dma_sync_single_for_cpu(ring_data->pdev, 2955 (dma_addr_t)rxdp3->Buffer0_ptr, 2956 BUF0_LEN, 2957 PCI_DMA_FROMDEVICE); 2958 pci_unmap_single(ring_data->pdev, 2959 (dma_addr_t)rxdp3->Buffer2_ptr, 2960 ring_data->mtu + 4, 2961 PCI_DMA_FROMDEVICE); 2962 } 2963 prefetch(skb->data); 2964 rx_osm_handler(ring_data, rxdp); 2965 get_info.offset++; 2966 ring_data->rx_curr_get_info.offset = get_info.offset; 2967 rxdp = ring_data->rx_blocks[get_block]. 2968 rxds[get_info.offset].virt_addr; 2969 if (get_info.offset == rxd_count[ring_data->rxd_mode]) { 2970 get_info.offset = 0; 2971 ring_data->rx_curr_get_info.offset = get_info.offset; 2972 get_block++; 2973 if (get_block == ring_data->block_count) 2974 get_block = 0; 2975 ring_data->rx_curr_get_info.block_index = get_block; 2976 rxdp = ring_data->rx_blocks[get_block].block_virt_addr; 2977 } 2978 2979 if (ring_data->nic->config.napi) { 2980 budget--; 2981 napi_pkts++; 2982 if (!budget) 2983 break; 2984 } 2985 pkt_cnt++; 2986 if ((indicate_max_pkts) && (pkt_cnt > indicate_max_pkts)) 2987 break; 2988 } 2989 if (ring_data->lro) { 2990 /* Clear all LRO sessions before exiting */ 2991 for (i = 0; i < MAX_LRO_SESSIONS; i++) { 2992 struct lro *lro = &ring_data->lro0_n[i]; 2993 if (lro->in_use) { 2994 update_L3L4_header(ring_data->nic, lro); 2995 queue_rx_frame(lro->parent, lro->vlan_tag); 2996 clear_lro_session(lro); 2997 } 2998 } 2999 } 3000 return napi_pkts; 3001 } 3002 3003 /** 3004 * tx_intr_handler - Transmit interrupt handler 3005 * @nic : device private variable 3006 * Description: 3007 * If an interrupt was raised to indicate DMA complete of the 3008 * Tx packet, this function is called. It identifies the last TxD 3009 * whose buffer was freed and frees all skbs whose data have already 3010 * DMA'ed into the NICs internal memory. 3011 * Return Value: 3012 * NONE 3013 */ 3014 3015 static void tx_intr_handler(struct fifo_info *fifo_data) 3016 { 3017 struct s2io_nic *nic = fifo_data->nic; 3018 struct tx_curr_get_info get_info, put_info; 3019 struct sk_buff *skb = NULL; 3020 struct TxD *txdlp; 3021 int pkt_cnt = 0; 3022 unsigned long flags = 0; 3023 u8 err_mask; 3024 struct stat_block *stats = nic->mac_control.stats_info; 3025 struct swStat *swstats = &stats->sw_stat; 3026 3027 if (!spin_trylock_irqsave(&fifo_data->tx_lock, flags)) 3028 return; 3029 3030 get_info = fifo_data->tx_curr_get_info; 3031 memcpy(&put_info, &fifo_data->tx_curr_put_info, sizeof(put_info)); 3032 txdlp = fifo_data->list_info[get_info.offset].list_virt_addr; 3033 while ((!(txdlp->Control_1 & TXD_LIST_OWN_XENA)) && 3034 (get_info.offset != put_info.offset) && 3035 (txdlp->Host_Control)) { 3036 /* Check for TxD errors */ 3037 if (txdlp->Control_1 & TXD_T_CODE) { 3038 unsigned long long err; 3039 err = txdlp->Control_1 & TXD_T_CODE; 3040 if (err & 0x1) { 3041 swstats->parity_err_cnt++; 3042 } 3043 3044 /* update t_code statistics */ 3045 err_mask = err >> 48; 3046 switch (err_mask) { 3047 case 2: 3048 swstats->tx_buf_abort_cnt++; 3049 break; 3050 3051 case 3: 3052 swstats->tx_desc_abort_cnt++; 3053 break; 3054 3055 case 7: 3056 swstats->tx_parity_err_cnt++; 3057 break; 3058 3059 case 10: 3060 swstats->tx_link_loss_cnt++; 3061 break; 3062 3063 case 15: 3064 swstats->tx_list_proc_err_cnt++; 3065 break; 3066 } 3067 } 3068 3069 skb = s2io_txdl_getskb(fifo_data, txdlp, get_info.offset); 3070 if (skb == NULL) { 3071 spin_unlock_irqrestore(&fifo_data->tx_lock, flags); 3072 DBG_PRINT(ERR_DBG, "%s: NULL skb in Tx Free Intr\n", 3073 __func__); 3074 return; 3075 } 3076 pkt_cnt++; 3077 3078 /* Updating the statistics block */ 3079 swstats->mem_freed += skb->truesize; 3080 dev_kfree_skb_irq(skb); 3081 3082 get_info.offset++; 3083 if (get_info.offset == get_info.fifo_len + 1) 3084 get_info.offset = 0; 3085 txdlp = fifo_data->list_info[get_info.offset].list_virt_addr; 3086 fifo_data->tx_curr_get_info.offset = get_info.offset; 3087 } 3088 3089 s2io_wake_tx_queue(fifo_data, pkt_cnt, nic->config.multiq); 3090 3091 spin_unlock_irqrestore(&fifo_data->tx_lock, flags); 3092 } 3093 3094 /** 3095 * s2io_mdio_write - Function to write in to MDIO registers 3096 * @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS) 3097 * @addr : address value 3098 * @value : data value 3099 * @dev : pointer to net_device structure 3100 * Description: 3101 * This function is used to write values to the MDIO registers 3102 * NONE 3103 */ 3104 static void s2io_mdio_write(u32 mmd_type, u64 addr, u16 value, 3105 struct net_device *dev) 3106 { 3107 u64 val64; 3108 struct s2io_nic *sp = netdev_priv(dev); 3109 struct XENA_dev_config __iomem *bar0 = sp->bar0; 3110 3111 /* address transaction */ 3112 val64 = MDIO_MMD_INDX_ADDR(addr) | 3113 MDIO_MMD_DEV_ADDR(mmd_type) | 3114 MDIO_MMS_PRT_ADDR(0x0); 3115 writeq(val64, &bar0->mdio_control); 3116 val64 = val64 | MDIO_CTRL_START_TRANS(0xE); 3117 writeq(val64, &bar0->mdio_control); 3118 udelay(100); 3119 3120 /* Data transaction */ 3121 val64 = MDIO_MMD_INDX_ADDR(addr) | 3122 MDIO_MMD_DEV_ADDR(mmd_type) | 3123 MDIO_MMS_PRT_ADDR(0x0) | 3124 MDIO_MDIO_DATA(value) | 3125 MDIO_OP(MDIO_OP_WRITE_TRANS); 3126 writeq(val64, &bar0->mdio_control); 3127 val64 = val64 | MDIO_CTRL_START_TRANS(0xE); 3128 writeq(val64, &bar0->mdio_control); 3129 udelay(100); 3130 3131 val64 = MDIO_MMD_INDX_ADDR(addr) | 3132 MDIO_MMD_DEV_ADDR(mmd_type) | 3133 MDIO_MMS_PRT_ADDR(0x0) | 3134 MDIO_OP(MDIO_OP_READ_TRANS); 3135 writeq(val64, &bar0->mdio_control); 3136 val64 = val64 | MDIO_CTRL_START_TRANS(0xE); 3137 writeq(val64, &bar0->mdio_control); 3138 udelay(100); 3139 } 3140 3141 /** 3142 * s2io_mdio_read - Function to write in to MDIO registers 3143 * @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS) 3144 * @addr : address value 3145 * @dev : pointer to net_device structure 3146 * Description: 3147 * This function is used to read values to the MDIO registers 3148 * NONE 3149 */ 3150 static u64 s2io_mdio_read(u32 mmd_type, u64 addr, struct net_device *dev) 3151 { 3152 u64 val64 = 0x0; 3153 u64 rval64 = 0x0; 3154 struct s2io_nic *sp = netdev_priv(dev); 3155 struct XENA_dev_config __iomem *bar0 = sp->bar0; 3156 3157 /* address transaction */ 3158 val64 = val64 | (MDIO_MMD_INDX_ADDR(addr) 3159 | MDIO_MMD_DEV_ADDR(mmd_type) 3160 | MDIO_MMS_PRT_ADDR(0x0)); 3161 writeq(val64, &bar0->mdio_control); 3162 val64 = val64 | MDIO_CTRL_START_TRANS(0xE); 3163 writeq(val64, &bar0->mdio_control); 3164 udelay(100); 3165 3166 /* Data transaction */ 3167 val64 = MDIO_MMD_INDX_ADDR(addr) | 3168 MDIO_MMD_DEV_ADDR(mmd_type) | 3169 MDIO_MMS_PRT_ADDR(0x0) | 3170 MDIO_OP(MDIO_OP_READ_TRANS); 3171 writeq(val64, &bar0->mdio_control); 3172 val64 = val64 | MDIO_CTRL_START_TRANS(0xE); 3173 writeq(val64, &bar0->mdio_control); 3174 udelay(100); 3175 3176 /* Read the value from regs */ 3177 rval64 = readq(&bar0->mdio_control); 3178 rval64 = rval64 & 0xFFFF0000; 3179 rval64 = rval64 >> 16; 3180 return rval64; 3181 } 3182 3183 /** 3184 * s2io_chk_xpak_counter - Function to check the status of the xpak counters 3185 * @counter : counter value to be updated 3186 * @flag : flag to indicate the status 3187 * @type : counter type 3188 * Description: 3189 * This function is to check the status of the xpak counters value 3190 * NONE 3191 */ 3192 3193 static void s2io_chk_xpak_counter(u64 *counter, u64 * regs_stat, u32 index, 3194 u16 flag, u16 type) 3195 { 3196 u64 mask = 0x3; 3197 u64 val64; 3198 int i; 3199 for (i = 0; i < index; i++) 3200 mask = mask << 0x2; 3201 3202 if (flag > 0) { 3203 *counter = *counter + 1; 3204 val64 = *regs_stat & mask; 3205 val64 = val64 >> (index * 0x2); 3206 val64 = val64 + 1; 3207 if (val64 == 3) { 3208 switch (type) { 3209 case 1: 3210 DBG_PRINT(ERR_DBG, 3211 "Take Xframe NIC out of service.\n"); 3212 DBG_PRINT(ERR_DBG, 3213 "Excessive temperatures may result in premature transceiver failure.\n"); 3214 break; 3215 case 2: 3216 DBG_PRINT(ERR_DBG, 3217 "Take Xframe NIC out of service.\n"); 3218 DBG_PRINT(ERR_DBG, 3219 "Excessive bias currents may indicate imminent laser diode failure.\n"); 3220 break; 3221 case 3: 3222 DBG_PRINT(ERR_DBG, 3223 "Take Xframe NIC out of service.\n"); 3224 DBG_PRINT(ERR_DBG, 3225 "Excessive laser output power may saturate far-end receiver.\n"); 3226 break; 3227 default: 3228 DBG_PRINT(ERR_DBG, 3229 "Incorrect XPAK Alarm type\n"); 3230 } 3231 val64 = 0x0; 3232 } 3233 val64 = val64 << (index * 0x2); 3234 *regs_stat = (*regs_stat & (~mask)) | (val64); 3235 3236 } else { 3237 *regs_stat = *regs_stat & (~mask); 3238 } 3239 } 3240 3241 /** 3242 * s2io_updt_xpak_counter - Function to update the xpak counters 3243 * @dev : pointer to net_device struct 3244 * Description: 3245 * This function is to upate the status of the xpak counters value 3246 * NONE 3247 */ 3248 static void s2io_updt_xpak_counter(struct net_device *dev) 3249 { 3250 u16 flag = 0x0; 3251 u16 type = 0x0; 3252 u16 val16 = 0x0; 3253 u64 val64 = 0x0; 3254 u64 addr = 0x0; 3255 3256 struct s2io_nic *sp = netdev_priv(dev); 3257 struct stat_block *stats = sp->mac_control.stats_info; 3258 struct xpakStat *xstats = &stats->xpak_stat; 3259 3260 /* Check the communication with the MDIO slave */ 3261 addr = MDIO_CTRL1; 3262 val64 = 0x0; 3263 val64 = s2io_mdio_read(MDIO_MMD_PMAPMD, addr, dev); 3264 if ((val64 == 0xFFFF) || (val64 == 0x0000)) { 3265 DBG_PRINT(ERR_DBG, 3266 "ERR: MDIO slave access failed - Returned %llx\n", 3267 (unsigned long long)val64); 3268 return; 3269 } 3270 3271 /* Check for the expected value of control reg 1 */ 3272 if (val64 != MDIO_CTRL1_SPEED10G) { 3273 DBG_PRINT(ERR_DBG, "Incorrect value at PMA address 0x0000 - " 3274 "Returned: %llx- Expected: 0x%x\n", 3275 (unsigned long long)val64, MDIO_CTRL1_SPEED10G); 3276 return; 3277 } 3278 3279 /* Loading the DOM register to MDIO register */ 3280 addr = 0xA100; 3281 s2io_mdio_write(MDIO_MMD_PMAPMD, addr, val16, dev); 3282 val64 = s2io_mdio_read(MDIO_MMD_PMAPMD, addr, dev); 3283 3284 /* Reading the Alarm flags */ 3285 addr = 0xA070; 3286 val64 = 0x0; 3287 val64 = s2io_mdio_read(MDIO_MMD_PMAPMD, addr, dev); 3288 3289 flag = CHECKBIT(val64, 0x7); 3290 type = 1; 3291 s2io_chk_xpak_counter(&xstats->alarm_transceiver_temp_high, 3292 &xstats->xpak_regs_stat, 3293 0x0, flag, type); 3294 3295 if (CHECKBIT(val64, 0x6)) 3296 xstats->alarm_transceiver_temp_low++; 3297 3298 flag = CHECKBIT(val64, 0x3); 3299 type = 2; 3300 s2io_chk_xpak_counter(&xstats->alarm_laser_bias_current_high, 3301 &xstats->xpak_regs_stat, 3302 0x2, flag, type); 3303 3304 if (CHECKBIT(val64, 0x2)) 3305 xstats->alarm_laser_bias_current_low++; 3306 3307 flag = CHECKBIT(val64, 0x1); 3308 type = 3; 3309 s2io_chk_xpak_counter(&xstats->alarm_laser_output_power_high, 3310 &xstats->xpak_regs_stat, 3311 0x4, flag, type); 3312 3313 if (CHECKBIT(val64, 0x0)) 3314 xstats->alarm_laser_output_power_low++; 3315 3316 /* Reading the Warning flags */ 3317 addr = 0xA074; 3318 val64 = 0x0; 3319 val64 = s2io_mdio_read(MDIO_MMD_PMAPMD, addr, dev); 3320 3321 if (CHECKBIT(val64, 0x7)) 3322 xstats->warn_transceiver_temp_high++; 3323 3324 if (CHECKBIT(val64, 0x6)) 3325 xstats->warn_transceiver_temp_low++; 3326 3327 if (CHECKBIT(val64, 0x3)) 3328 xstats->warn_laser_bias_current_high++; 3329 3330 if (CHECKBIT(val64, 0x2)) 3331 xstats->warn_laser_bias_current_low++; 3332 3333 if (CHECKBIT(val64, 0x1)) 3334 xstats->warn_laser_output_power_high++; 3335 3336 if (CHECKBIT(val64, 0x0)) 3337 xstats->warn_laser_output_power_low++; 3338 } 3339 3340 /** 3341 * wait_for_cmd_complete - waits for a command to complete. 3342 * @sp : private member of the device structure, which is a pointer to the 3343 * s2io_nic structure. 3344 * Description: Function that waits for a command to Write into RMAC 3345 * ADDR DATA registers to be completed and returns either success or 3346 * error depending on whether the command was complete or not. 3347 * Return value: 3348 * SUCCESS on success and FAILURE on failure. 3349 */ 3350 3351 static int wait_for_cmd_complete(void __iomem *addr, u64 busy_bit, 3352 int bit_state) 3353 { 3354 int ret = FAILURE, cnt = 0, delay = 1; 3355 u64 val64; 3356 3357 if ((bit_state != S2IO_BIT_RESET) && (bit_state != S2IO_BIT_SET)) 3358 return FAILURE; 3359 3360 do { 3361 val64 = readq(addr); 3362 if (bit_state == S2IO_BIT_RESET) { 3363 if (!(val64 & busy_bit)) { 3364 ret = SUCCESS; 3365 break; 3366 } 3367 } else { 3368 if (val64 & busy_bit) { 3369 ret = SUCCESS; 3370 break; 3371 } 3372 } 3373 3374 if (in_interrupt()) 3375 mdelay(delay); 3376 else 3377 msleep(delay); 3378 3379 if (++cnt >= 10) 3380 delay = 50; 3381 } while (cnt < 20); 3382 return ret; 3383 } 3384 /** 3385 * check_pci_device_id - Checks if the device id is supported 3386 * @id : device id 3387 * Description: Function to check if the pci device id is supported by driver. 3388 * Return value: Actual device id if supported else PCI_ANY_ID 3389 */ 3390 static u16 check_pci_device_id(u16 id) 3391 { 3392 switch (id) { 3393 case PCI_DEVICE_ID_HERC_WIN: 3394 case PCI_DEVICE_ID_HERC_UNI: 3395 return XFRAME_II_DEVICE; 3396 case PCI_DEVICE_ID_S2IO_UNI: 3397 case PCI_DEVICE_ID_S2IO_WIN: 3398 return XFRAME_I_DEVICE; 3399 default: 3400 return PCI_ANY_ID; 3401 } 3402 } 3403 3404 /** 3405 * s2io_reset - Resets the card. 3406 * @sp : private member of the device structure. 3407 * Description: Function to Reset the card. This function then also 3408 * restores the previously saved PCI configuration space registers as 3409 * the card reset also resets the configuration space. 3410 * Return value: 3411 * void. 3412 */ 3413 3414 static void s2io_reset(struct s2io_nic *sp) 3415 { 3416 struct XENA_dev_config __iomem *bar0 = sp->bar0; 3417 u64 val64; 3418 u16 subid, pci_cmd; 3419 int i; 3420 u16 val16; 3421 unsigned long long up_cnt, down_cnt, up_time, down_time, reset_cnt; 3422 unsigned long long mem_alloc_cnt, mem_free_cnt, watchdog_cnt; 3423 struct stat_block *stats; 3424 struct swStat *swstats; 3425 3426 DBG_PRINT(INIT_DBG, "%s: Resetting XFrame card %s\n", 3427 __func__, pci_name(sp->pdev)); 3428 3429 /* Back up the PCI-X CMD reg, dont want to lose MMRBC, OST settings */ 3430 pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER, &(pci_cmd)); 3431 3432 val64 = SW_RESET_ALL; 3433 writeq(val64, &bar0->sw_reset); 3434 if (strstr(sp->product_name, "CX4")) 3435 msleep(750); 3436 msleep(250); 3437 for (i = 0; i < S2IO_MAX_PCI_CONFIG_SPACE_REINIT; i++) { 3438 3439 /* Restore the PCI state saved during initialization. */ 3440 pci_restore_state(sp->pdev); 3441 pci_save_state(sp->pdev); 3442 pci_read_config_word(sp->pdev, 0x2, &val16); 3443 if (check_pci_device_id(val16) != (u16)PCI_ANY_ID) 3444 break; 3445 msleep(200); 3446 } 3447 3448 if (check_pci_device_id(val16) == (u16)PCI_ANY_ID) 3449 DBG_PRINT(ERR_DBG, "%s SW_Reset failed!\n", __func__); 3450 3451 pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER, pci_cmd); 3452 3453 s2io_init_pci(sp); 3454 3455 /* Set swapper to enable I/O register access */ 3456 s2io_set_swapper(sp); 3457 3458 /* restore mac_addr entries */ 3459 do_s2io_restore_unicast_mc(sp); 3460 3461 /* Restore the MSIX table entries from local variables */ 3462 restore_xmsi_data(sp); 3463 3464 /* Clear certain PCI/PCI-X fields after reset */ 3465 if (sp->device_type == XFRAME_II_DEVICE) { 3466 /* Clear "detected parity error" bit */ 3467 pci_write_config_word(sp->pdev, PCI_STATUS, 0x8000); 3468 3469 /* Clearing PCIX Ecc status register */ 3470 pci_write_config_dword(sp->pdev, 0x68, 0x7C); 3471 3472 /* Clearing PCI_STATUS error reflected here */ 3473 writeq(s2BIT(62), &bar0->txpic_int_reg); 3474 } 3475 3476 /* Reset device statistics maintained by OS */ 3477 memset(&sp->stats, 0, sizeof(struct net_device_stats)); 3478 3479 stats = sp->mac_control.stats_info; 3480 swstats = &stats->sw_stat; 3481 3482 /* save link up/down time/cnt, reset/memory/watchdog cnt */ 3483 up_cnt = swstats->link_up_cnt; 3484 down_cnt = swstats->link_down_cnt; 3485 up_time = swstats->link_up_time; 3486 down_time = swstats->link_down_time; 3487 reset_cnt = swstats->soft_reset_cnt; 3488 mem_alloc_cnt = swstats->mem_allocated; 3489 mem_free_cnt = swstats->mem_freed; 3490 watchdog_cnt = swstats->watchdog_timer_cnt; 3491 3492 memset(stats, 0, sizeof(struct stat_block)); 3493 3494 /* restore link up/down time/cnt, reset/memory/watchdog cnt */ 3495 swstats->link_up_cnt = up_cnt; 3496 swstats->link_down_cnt = down_cnt; 3497 swstats->link_up_time = up_time; 3498 swstats->link_down_time = down_time; 3499 swstats->soft_reset_cnt = reset_cnt; 3500 swstats->mem_allocated = mem_alloc_cnt; 3501 swstats->mem_freed = mem_free_cnt; 3502 swstats->watchdog_timer_cnt = watchdog_cnt; 3503 3504 /* SXE-002: Configure link and activity LED to turn it off */ 3505 subid = sp->pdev->subsystem_device; 3506 if (((subid & 0xFF) >= 0x07) && 3507 (sp->device_type == XFRAME_I_DEVICE)) { 3508 val64 = readq(&bar0->gpio_control); 3509 val64 |= 0x0000800000000000ULL; 3510 writeq(val64, &bar0->gpio_control); 3511 val64 = 0x0411040400000000ULL; 3512 writeq(val64, (void __iomem *)bar0 + 0x2700); 3513 } 3514 3515 /* 3516 * Clear spurious ECC interrupts that would have occurred on 3517 * XFRAME II cards after reset. 3518 */ 3519 if (sp->device_type == XFRAME_II_DEVICE) { 3520 val64 = readq(&bar0->pcc_err_reg); 3521 writeq(val64, &bar0->pcc_err_reg); 3522 } 3523 3524 sp->device_enabled_once = false; 3525 } 3526 3527 /** 3528 * s2io_set_swapper - to set the swapper controle on the card 3529 * @sp : private member of the device structure, 3530 * pointer to the s2io_nic structure. 3531 * Description: Function to set the swapper control on the card 3532 * correctly depending on the 'endianness' of the system. 3533 * Return value: 3534 * SUCCESS on success and FAILURE on failure. 3535 */ 3536 3537 static int s2io_set_swapper(struct s2io_nic *sp) 3538 { 3539 struct net_device *dev = sp->dev; 3540 struct XENA_dev_config __iomem *bar0 = sp->bar0; 3541 u64 val64, valt, valr; 3542 3543 /* 3544 * Set proper endian settings and verify the same by reading 3545 * the PIF Feed-back register. 3546 */ 3547 3548 val64 = readq(&bar0->pif_rd_swapper_fb); 3549 if (val64 != 0x0123456789ABCDEFULL) { 3550 int i = 0; 3551 static const u64 value[] = { 3552 0xC30000C3C30000C3ULL, /* FE=1, SE=1 */ 3553 0x8100008181000081ULL, /* FE=1, SE=0 */ 3554 0x4200004242000042ULL, /* FE=0, SE=1 */ 3555 0 /* FE=0, SE=0 */ 3556 }; 3557 3558 while (i < 4) { 3559 writeq(value[i], &bar0->swapper_ctrl); 3560 val64 = readq(&bar0->pif_rd_swapper_fb); 3561 if (val64 == 0x0123456789ABCDEFULL) 3562 break; 3563 i++; 3564 } 3565 if (i == 4) { 3566 DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, " 3567 "feedback read %llx\n", 3568 dev->name, (unsigned long long)val64); 3569 return FAILURE; 3570 } 3571 valr = value[i]; 3572 } else { 3573 valr = readq(&bar0->swapper_ctrl); 3574 } 3575 3576 valt = 0x0123456789ABCDEFULL; 3577 writeq(valt, &bar0->xmsi_address); 3578 val64 = readq(&bar0->xmsi_address); 3579 3580 if (val64 != valt) { 3581 int i = 0; 3582 static const u64 value[] = { 3583 0x00C3C30000C3C300ULL, /* FE=1, SE=1 */ 3584 0x0081810000818100ULL, /* FE=1, SE=0 */ 3585 0x0042420000424200ULL, /* FE=0, SE=1 */ 3586 0 /* FE=0, SE=0 */ 3587 }; 3588 3589 while (i < 4) { 3590 writeq((value[i] | valr), &bar0->swapper_ctrl); 3591 writeq(valt, &bar0->xmsi_address); 3592 val64 = readq(&bar0->xmsi_address); 3593 if (val64 == valt) 3594 break; 3595 i++; 3596 } 3597 if (i == 4) { 3598 unsigned long long x = val64; 3599 DBG_PRINT(ERR_DBG, 3600 "Write failed, Xmsi_addr reads:0x%llx\n", x); 3601 return FAILURE; 3602 } 3603 } 3604 val64 = readq(&bar0->swapper_ctrl); 3605 val64 &= 0xFFFF000000000000ULL; 3606 3607 #ifdef __BIG_ENDIAN 3608 /* 3609 * The device by default set to a big endian format, so a 3610 * big endian driver need not set anything. 3611 */ 3612 val64 |= (SWAPPER_CTRL_TXP_FE | 3613 SWAPPER_CTRL_TXP_SE | 3614 SWAPPER_CTRL_TXD_R_FE | 3615 SWAPPER_CTRL_TXD_W_FE | 3616 SWAPPER_CTRL_TXF_R_FE | 3617 SWAPPER_CTRL_RXD_R_FE | 3618 SWAPPER_CTRL_RXD_W_FE | 3619 SWAPPER_CTRL_RXF_W_FE | 3620 SWAPPER_CTRL_XMSI_FE | 3621 SWAPPER_CTRL_STATS_FE | 3622 SWAPPER_CTRL_STATS_SE); 3623 if (sp->config.intr_type == INTA) 3624 val64 |= SWAPPER_CTRL_XMSI_SE; 3625 writeq(val64, &bar0->swapper_ctrl); 3626 #else 3627 /* 3628 * Initially we enable all bits to make it accessible by the 3629 * driver, then we selectively enable only those bits that 3630 * we want to set. 3631 */ 3632 val64 |= (SWAPPER_CTRL_TXP_FE | 3633 SWAPPER_CTRL_TXP_SE | 3634 SWAPPER_CTRL_TXD_R_FE | 3635 SWAPPER_CTRL_TXD_R_SE | 3636 SWAPPER_CTRL_TXD_W_FE | 3637 SWAPPER_CTRL_TXD_W_SE | 3638 SWAPPER_CTRL_TXF_R_FE | 3639 SWAPPER_CTRL_RXD_R_FE | 3640 SWAPPER_CTRL_RXD_R_SE | 3641 SWAPPER_CTRL_RXD_W_FE | 3642 SWAPPER_CTRL_RXD_W_SE | 3643 SWAPPER_CTRL_RXF_W_FE | 3644 SWAPPER_CTRL_XMSI_FE | 3645 SWAPPER_CTRL_STATS_FE | 3646 SWAPPER_CTRL_STATS_SE); 3647 if (sp->config.intr_type == INTA) 3648 val64 |= SWAPPER_CTRL_XMSI_SE; 3649 writeq(val64, &bar0->swapper_ctrl); 3650 #endif 3651 val64 = readq(&bar0->swapper_ctrl); 3652 3653 /* 3654 * Verifying if endian settings are accurate by reading a 3655 * feedback register. 3656 */ 3657 val64 = readq(&bar0->pif_rd_swapper_fb); 3658 if (val64 != 0x0123456789ABCDEFULL) { 3659 /* Endian settings are incorrect, calls for another dekko. */ 3660 DBG_PRINT(ERR_DBG, 3661 "%s: Endian settings are wrong, feedback read %llx\n", 3662 dev->name, (unsigned long long)val64); 3663 return FAILURE; 3664 } 3665 3666 return SUCCESS; 3667 } 3668 3669 static int wait_for_msix_trans(struct s2io_nic *nic, int i) 3670 { 3671 struct XENA_dev_config __iomem *bar0 = nic->bar0; 3672 u64 val64; 3673 int ret = 0, cnt = 0; 3674 3675 do { 3676 val64 = readq(&bar0->xmsi_access); 3677 if (!(val64 & s2BIT(15))) 3678 break; 3679 mdelay(1); 3680 cnt++; 3681 } while (cnt < 5); 3682 if (cnt == 5) { 3683 DBG_PRINT(ERR_DBG, "XMSI # %d Access failed\n", i); 3684 ret = 1; 3685 } 3686 3687 return ret; 3688 } 3689 3690 static void restore_xmsi_data(struct s2io_nic *nic) 3691 { 3692 struct XENA_dev_config __iomem *bar0 = nic->bar0; 3693 u64 val64; 3694 int i, msix_index; 3695 3696 if (nic->device_type == XFRAME_I_DEVICE) 3697 return; 3698 3699 for (i = 0; i < MAX_REQUESTED_MSI_X; i++) { 3700 msix_index = (i) ? ((i-1) * 8 + 1) : 0; 3701 writeq(nic->msix_info[i].addr, &bar0->xmsi_address); 3702 writeq(nic->msix_info[i].data, &bar0->xmsi_data); 3703 val64 = (s2BIT(7) | s2BIT(15) | vBIT(msix_index, 26, 6)); 3704 writeq(val64, &bar0->xmsi_access); 3705 if (wait_for_msix_trans(nic, msix_index)) { 3706 DBG_PRINT(ERR_DBG, "%s: index: %d failed\n", 3707 __func__, msix_index); 3708 continue; 3709 } 3710 } 3711 } 3712 3713 static void store_xmsi_data(struct s2io_nic *nic) 3714 { 3715 struct XENA_dev_config __iomem *bar0 = nic->bar0; 3716 u64 val64, addr, data; 3717 int i, msix_index; 3718 3719 if (nic->device_type == XFRAME_I_DEVICE) 3720 return; 3721 3722 /* Store and display */ 3723 for (i = 0; i < MAX_REQUESTED_MSI_X; i++) { 3724 msix_index = (i) ? ((i-1) * 8 + 1) : 0; 3725 val64 = (s2BIT(15) | vBIT(msix_index, 26, 6)); 3726 writeq(val64, &bar0->xmsi_access); 3727 if (wait_for_msix_trans(nic, msix_index)) { 3728 DBG_PRINT(ERR_DBG, "%s: index: %d failed\n", 3729 __func__, msix_index); 3730 continue; 3731 } 3732 addr = readq(&bar0->xmsi_address); 3733 data = readq(&bar0->xmsi_data); 3734 if (addr && data) { 3735 nic->msix_info[i].addr = addr; 3736 nic->msix_info[i].data = data; 3737 } 3738 } 3739 } 3740 3741 static int s2io_enable_msi_x(struct s2io_nic *nic) 3742 { 3743 struct XENA_dev_config __iomem *bar0 = nic->bar0; 3744 u64 rx_mat; 3745 u16 msi_control; /* Temp variable */ 3746 int ret, i, j, msix_indx = 1; 3747 int size; 3748 struct stat_block *stats = nic->mac_control.stats_info; 3749 struct swStat *swstats = &stats->sw_stat; 3750 3751 size = nic->num_entries * sizeof(struct msix_entry); 3752 nic->entries = kzalloc(size, GFP_KERNEL); 3753 if (!nic->entries) { 3754 DBG_PRINT(INFO_DBG, "%s: Memory allocation failed\n", 3755 __func__); 3756 swstats->mem_alloc_fail_cnt++; 3757 return -ENOMEM; 3758 } 3759 swstats->mem_allocated += size; 3760 3761 size = nic->num_entries * sizeof(struct s2io_msix_entry); 3762 nic->s2io_entries = kzalloc(size, GFP_KERNEL); 3763 if (!nic->s2io_entries) { 3764 DBG_PRINT(INFO_DBG, "%s: Memory allocation failed\n", 3765 __func__); 3766 swstats->mem_alloc_fail_cnt++; 3767 kfree(nic->entries); 3768 swstats->mem_freed 3769 += (nic->num_entries * sizeof(struct msix_entry)); 3770 return -ENOMEM; 3771 } 3772 swstats->mem_allocated += size; 3773 3774 nic->entries[0].entry = 0; 3775 nic->s2io_entries[0].entry = 0; 3776 nic->s2io_entries[0].in_use = MSIX_FLG; 3777 nic->s2io_entries[0].type = MSIX_ALARM_TYPE; 3778 nic->s2io_entries[0].arg = &nic->mac_control.fifos; 3779 3780 for (i = 1; i < nic->num_entries; i++) { 3781 nic->entries[i].entry = ((i - 1) * 8) + 1; 3782 nic->s2io_entries[i].entry = ((i - 1) * 8) + 1; 3783 nic->s2io_entries[i].arg = NULL; 3784 nic->s2io_entries[i].in_use = 0; 3785 } 3786 3787 rx_mat = readq(&bar0->rx_mat); 3788 for (j = 0; j < nic->config.rx_ring_num; j++) { 3789 rx_mat |= RX_MAT_SET(j, msix_indx); 3790 nic->s2io_entries[j+1].arg = &nic->mac_control.rings[j]; 3791 nic->s2io_entries[j+1].type = MSIX_RING_TYPE; 3792 nic->s2io_entries[j+1].in_use = MSIX_FLG; 3793 msix_indx += 8; 3794 } 3795 writeq(rx_mat, &bar0->rx_mat); 3796 readq(&bar0->rx_mat); 3797 3798 ret = pci_enable_msix_range(nic->pdev, nic->entries, 3799 nic->num_entries, nic->num_entries); 3800 /* We fail init if error or we get less vectors than min required */ 3801 if (ret < 0) { 3802 DBG_PRINT(ERR_DBG, "Enabling MSI-X failed\n"); 3803 kfree(nic->entries); 3804 swstats->mem_freed += nic->num_entries * 3805 sizeof(struct msix_entry); 3806 kfree(nic->s2io_entries); 3807 swstats->mem_freed += nic->num_entries * 3808 sizeof(struct s2io_msix_entry); 3809 nic->entries = NULL; 3810 nic->s2io_entries = NULL; 3811 return -ENOMEM; 3812 } 3813 3814 /* 3815 * To enable MSI-X, MSI also needs to be enabled, due to a bug 3816 * in the herc NIC. (Temp change, needs to be removed later) 3817 */ 3818 pci_read_config_word(nic->pdev, 0x42, &msi_control); 3819 msi_control |= 0x1; /* Enable MSI */ 3820 pci_write_config_word(nic->pdev, 0x42, msi_control); 3821 3822 return 0; 3823 } 3824 3825 /* Handle software interrupt used during MSI(X) test */ 3826 static irqreturn_t s2io_test_intr(int irq, void *dev_id) 3827 { 3828 struct s2io_nic *sp = dev_id; 3829 3830 sp->msi_detected = 1; 3831 wake_up(&sp->msi_wait); 3832 3833 return IRQ_HANDLED; 3834 } 3835 3836 /* Test interrupt path by forcing a a software IRQ */ 3837 static int s2io_test_msi(struct s2io_nic *sp) 3838 { 3839 struct pci_dev *pdev = sp->pdev; 3840 struct XENA_dev_config __iomem *bar0 = sp->bar0; 3841 int err; 3842 u64 val64, saved64; 3843 3844 err = request_irq(sp->entries[1].vector, s2io_test_intr, 0, 3845 sp->name, sp); 3846 if (err) { 3847 DBG_PRINT(ERR_DBG, "%s: PCI %s: cannot assign irq %d\n", 3848 sp->dev->name, pci_name(pdev), pdev->irq); 3849 return err; 3850 } 3851 3852 init_waitqueue_head(&sp->msi_wait); 3853 sp->msi_detected = 0; 3854 3855 saved64 = val64 = readq(&bar0->scheduled_int_ctrl); 3856 val64 |= SCHED_INT_CTRL_ONE_SHOT; 3857 val64 |= SCHED_INT_CTRL_TIMER_EN; 3858 val64 |= SCHED_INT_CTRL_INT2MSI(1); 3859 writeq(val64, &bar0->scheduled_int_ctrl); 3860 3861 wait_event_timeout(sp->msi_wait, sp->msi_detected, HZ/10); 3862 3863 if (!sp->msi_detected) { 3864 /* MSI(X) test failed, go back to INTx mode */ 3865 DBG_PRINT(ERR_DBG, "%s: PCI %s: No interrupt was generated " 3866 "using MSI(X) during test\n", 3867 sp->dev->name, pci_name(pdev)); 3868 3869 err = -EOPNOTSUPP; 3870 } 3871 3872 free_irq(sp->entries[1].vector, sp); 3873 3874 writeq(saved64, &bar0->scheduled_int_ctrl); 3875 3876 return err; 3877 } 3878 3879 static void remove_msix_isr(struct s2io_nic *sp) 3880 { 3881 int i; 3882 u16 msi_control; 3883 3884 for (i = 0; i < sp->num_entries; i++) { 3885 if (sp->s2io_entries[i].in_use == MSIX_REGISTERED_SUCCESS) { 3886 int vector = sp->entries[i].vector; 3887 void *arg = sp->s2io_entries[i].arg; 3888 free_irq(vector, arg); 3889 } 3890 } 3891 3892 kfree(sp->entries); 3893 kfree(sp->s2io_entries); 3894 sp->entries = NULL; 3895 sp->s2io_entries = NULL; 3896 3897 pci_read_config_word(sp->pdev, 0x42, &msi_control); 3898 msi_control &= 0xFFFE; /* Disable MSI */ 3899 pci_write_config_word(sp->pdev, 0x42, msi_control); 3900 3901 pci_disable_msix(sp->pdev); 3902 } 3903 3904 static void remove_inta_isr(struct s2io_nic *sp) 3905 { 3906 free_irq(sp->pdev->irq, sp->dev); 3907 } 3908 3909 /* ********************************************************* * 3910 * Functions defined below concern the OS part of the driver * 3911 * ********************************************************* */ 3912 3913 /** 3914 * s2io_open - open entry point of the driver 3915 * @dev : pointer to the device structure. 3916 * Description: 3917 * This function is the open entry point of the driver. It mainly calls a 3918 * function to allocate Rx buffers and inserts them into the buffer 3919 * descriptors and then enables the Rx part of the NIC. 3920 * Return value: 3921 * 0 on success and an appropriate (-)ve integer as defined in errno.h 3922 * file on failure. 3923 */ 3924 3925 static int s2io_open(struct net_device *dev) 3926 { 3927 struct s2io_nic *sp = netdev_priv(dev); 3928 struct swStat *swstats = &sp->mac_control.stats_info->sw_stat; 3929 int err = 0; 3930 3931 /* 3932 * Make sure you have link off by default every time 3933 * Nic is initialized 3934 */ 3935 netif_carrier_off(dev); 3936 sp->last_link_state = 0; 3937 3938 /* Initialize H/W and enable interrupts */ 3939 err = s2io_card_up(sp); 3940 if (err) { 3941 DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n", 3942 dev->name); 3943 goto hw_init_failed; 3944 } 3945 3946 if (do_s2io_prog_unicast(dev, dev->dev_addr) == FAILURE) { 3947 DBG_PRINT(ERR_DBG, "Set Mac Address Failed\n"); 3948 s2io_card_down(sp); 3949 err = -ENODEV; 3950 goto hw_init_failed; 3951 } 3952 s2io_start_all_tx_queue(sp); 3953 return 0; 3954 3955 hw_init_failed: 3956 if (sp->config.intr_type == MSI_X) { 3957 if (sp->entries) { 3958 kfree(sp->entries); 3959 swstats->mem_freed += sp->num_entries * 3960 sizeof(struct msix_entry); 3961 } 3962 if (sp->s2io_entries) { 3963 kfree(sp->s2io_entries); 3964 swstats->mem_freed += sp->num_entries * 3965 sizeof(struct s2io_msix_entry); 3966 } 3967 } 3968 return err; 3969 } 3970 3971 /** 3972 * s2io_close -close entry point of the driver 3973 * @dev : device pointer. 3974 * Description: 3975 * This is the stop entry point of the driver. It needs to undo exactly 3976 * whatever was done by the open entry point,thus it's usually referred to 3977 * as the close function.Among other things this function mainly stops the 3978 * Rx side of the NIC and frees all the Rx buffers in the Rx rings. 3979 * Return value: 3980 * 0 on success and an appropriate (-)ve integer as defined in errno.h 3981 * file on failure. 3982 */ 3983 3984 static int s2io_close(struct net_device *dev) 3985 { 3986 struct s2io_nic *sp = netdev_priv(dev); 3987 struct config_param *config = &sp->config; 3988 u64 tmp64; 3989 int offset; 3990 3991 /* Return if the device is already closed * 3992 * Can happen when s2io_card_up failed in change_mtu * 3993 */ 3994 if (!is_s2io_card_up(sp)) 3995 return 0; 3996 3997 s2io_stop_all_tx_queue(sp); 3998 /* delete all populated mac entries */ 3999 for (offset = 1; offset < config->max_mc_addr; offset++) { 4000 tmp64 = do_s2io_read_unicast_mc(sp, offset); 4001 if (tmp64 != S2IO_DISABLE_MAC_ENTRY) 4002 do_s2io_delete_unicast_mc(sp, tmp64); 4003 } 4004 4005 s2io_card_down(sp); 4006 4007 return 0; 4008 } 4009 4010 /** 4011 * s2io_xmit - Tx entry point of te driver 4012 * @skb : the socket buffer containing the Tx data. 4013 * @dev : device pointer. 4014 * Description : 4015 * This function is the Tx entry point of the driver. S2IO NIC supports 4016 * certain protocol assist features on Tx side, namely CSO, S/G, LSO. 4017 * NOTE: when device can't queue the pkt,just the trans_start variable will 4018 * not be upadted. 4019 * Return value: 4020 * 0 on success & 1 on failure. 4021 */ 4022 4023 static netdev_tx_t s2io_xmit(struct sk_buff *skb, struct net_device *dev) 4024 { 4025 struct s2io_nic *sp = netdev_priv(dev); 4026 u16 frg_cnt, frg_len, i, queue, queue_len, put_off, get_off; 4027 register u64 val64; 4028 struct TxD *txdp; 4029 struct TxFIFO_element __iomem *tx_fifo; 4030 unsigned long flags = 0; 4031 u16 vlan_tag = 0; 4032 struct fifo_info *fifo = NULL; 4033 int do_spin_lock = 1; 4034 int offload_type; 4035 int enable_per_list_interrupt = 0; 4036 struct config_param *config = &sp->config; 4037 struct mac_info *mac_control = &sp->mac_control; 4038 struct stat_block *stats = mac_control->stats_info; 4039 struct swStat *swstats = &stats->sw_stat; 4040 4041 DBG_PRINT(TX_DBG, "%s: In Neterion Tx routine\n", dev->name); 4042 4043 if (unlikely(skb->len <= 0)) { 4044 DBG_PRINT(TX_DBG, "%s: Buffer has no data..\n", dev->name); 4045 dev_kfree_skb_any(skb); 4046 return NETDEV_TX_OK; 4047 } 4048 4049 if (!is_s2io_card_up(sp)) { 4050 DBG_PRINT(TX_DBG, "%s: Card going down for reset\n", 4051 dev->name); 4052 dev_kfree_skb_any(skb); 4053 return NETDEV_TX_OK; 4054 } 4055 4056 queue = 0; 4057 if (vlan_tx_tag_present(skb)) 4058 vlan_tag = vlan_tx_tag_get(skb); 4059 if (sp->config.tx_steering_type == TX_DEFAULT_STEERING) { 4060 if (skb->protocol == htons(ETH_P_IP)) { 4061 struct iphdr *ip; 4062 struct tcphdr *th; 4063 ip = ip_hdr(skb); 4064 4065 if (!ip_is_fragment(ip)) { 4066 th = (struct tcphdr *)(((unsigned char *)ip) + 4067 ip->ihl*4); 4068 4069 if (ip->protocol == IPPROTO_TCP) { 4070 queue_len = sp->total_tcp_fifos; 4071 queue = (ntohs(th->source) + 4072 ntohs(th->dest)) & 4073 sp->fifo_selector[queue_len - 1]; 4074 if (queue >= queue_len) 4075 queue = queue_len - 1; 4076 } else if (ip->protocol == IPPROTO_UDP) { 4077 queue_len = sp->total_udp_fifos; 4078 queue = (ntohs(th->source) + 4079 ntohs(th->dest)) & 4080 sp->fifo_selector[queue_len - 1]; 4081 if (queue >= queue_len) 4082 queue = queue_len - 1; 4083 queue += sp->udp_fifo_idx; 4084 if (skb->len > 1024) 4085 enable_per_list_interrupt = 1; 4086 do_spin_lock = 0; 4087 } 4088 } 4089 } 4090 } else if (sp->config.tx_steering_type == TX_PRIORITY_STEERING) 4091 /* get fifo number based on skb->priority value */ 4092 queue = config->fifo_mapping 4093 [skb->priority & (MAX_TX_FIFOS - 1)]; 4094 fifo = &mac_control->fifos[queue]; 4095 4096 if (do_spin_lock) 4097 spin_lock_irqsave(&fifo->tx_lock, flags); 4098 else { 4099 if (unlikely(!spin_trylock_irqsave(&fifo->tx_lock, flags))) 4100 return NETDEV_TX_LOCKED; 4101 } 4102 4103 if (sp->config.multiq) { 4104 if (__netif_subqueue_stopped(dev, fifo->fifo_no)) { 4105 spin_unlock_irqrestore(&fifo->tx_lock, flags); 4106 return NETDEV_TX_BUSY; 4107 } 4108 } else if (unlikely(fifo->queue_state == FIFO_QUEUE_STOP)) { 4109 if (netif_queue_stopped(dev)) { 4110 spin_unlock_irqrestore(&fifo->tx_lock, flags); 4111 return NETDEV_TX_BUSY; 4112 } 4113 } 4114 4115 put_off = (u16)fifo->tx_curr_put_info.offset; 4116 get_off = (u16)fifo->tx_curr_get_info.offset; 4117 txdp = fifo->list_info[put_off].list_virt_addr; 4118 4119 queue_len = fifo->tx_curr_put_info.fifo_len + 1; 4120 /* Avoid "put" pointer going beyond "get" pointer */ 4121 if (txdp->Host_Control || 4122 ((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) { 4123 DBG_PRINT(TX_DBG, "Error in xmit, No free TXDs.\n"); 4124 s2io_stop_tx_queue(sp, fifo->fifo_no); 4125 dev_kfree_skb_any(skb); 4126 spin_unlock_irqrestore(&fifo->tx_lock, flags); 4127 return NETDEV_TX_OK; 4128 } 4129 4130 offload_type = s2io_offload_type(skb); 4131 if (offload_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)) { 4132 txdp->Control_1 |= TXD_TCP_LSO_EN; 4133 txdp->Control_1 |= TXD_TCP_LSO_MSS(s2io_tcp_mss(skb)); 4134 } 4135 if (skb->ip_summed == CHECKSUM_PARTIAL) { 4136 txdp->Control_2 |= (TXD_TX_CKO_IPV4_EN | 4137 TXD_TX_CKO_TCP_EN | 4138 TXD_TX_CKO_UDP_EN); 4139 } 4140 txdp->Control_1 |= TXD_GATHER_CODE_FIRST; 4141 txdp->Control_1 |= TXD_LIST_OWN_XENA; 4142 txdp->Control_2 |= TXD_INT_NUMBER(fifo->fifo_no); 4143 if (enable_per_list_interrupt) 4144 if (put_off & (queue_len >> 5)) 4145 txdp->Control_2 |= TXD_INT_TYPE_PER_LIST; 4146 if (vlan_tag) { 4147 txdp->Control_2 |= TXD_VLAN_ENABLE; 4148 txdp->Control_2 |= TXD_VLAN_TAG(vlan_tag); 4149 } 4150 4151 frg_len = skb_headlen(skb); 4152 if (offload_type == SKB_GSO_UDP) { 4153 int ufo_size; 4154 4155 ufo_size = s2io_udp_mss(skb); 4156 ufo_size &= ~7; 4157 txdp->Control_1 |= TXD_UFO_EN; 4158 txdp->Control_1 |= TXD_UFO_MSS(ufo_size); 4159 txdp->Control_1 |= TXD_BUFFER0_SIZE(8); 4160 #ifdef __BIG_ENDIAN 4161 /* both variants do cpu_to_be64(be32_to_cpu(...)) */ 4162 fifo->ufo_in_band_v[put_off] = 4163 (__force u64)skb_shinfo(skb)->ip6_frag_id; 4164 #else 4165 fifo->ufo_in_band_v[put_off] = 4166 (__force u64)skb_shinfo(skb)->ip6_frag_id << 32; 4167 #endif 4168 txdp->Host_Control = (unsigned long)fifo->ufo_in_band_v; 4169 txdp->Buffer_Pointer = pci_map_single(sp->pdev, 4170 fifo->ufo_in_band_v, 4171 sizeof(u64), 4172 PCI_DMA_TODEVICE); 4173 if (pci_dma_mapping_error(sp->pdev, txdp->Buffer_Pointer)) 4174 goto pci_map_failed; 4175 txdp++; 4176 } 4177 4178 txdp->Buffer_Pointer = pci_map_single(sp->pdev, skb->data, 4179 frg_len, PCI_DMA_TODEVICE); 4180 if (pci_dma_mapping_error(sp->pdev, txdp->Buffer_Pointer)) 4181 goto pci_map_failed; 4182 4183 txdp->Host_Control = (unsigned long)skb; 4184 txdp->Control_1 |= TXD_BUFFER0_SIZE(frg_len); 4185 if (offload_type == SKB_GSO_UDP) 4186 txdp->Control_1 |= TXD_UFO_EN; 4187 4188 frg_cnt = skb_shinfo(skb)->nr_frags; 4189 /* For fragmented SKB. */ 4190 for (i = 0; i < frg_cnt; i++) { 4191 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 4192 /* A '0' length fragment will be ignored */ 4193 if (!skb_frag_size(frag)) 4194 continue; 4195 txdp++; 4196 txdp->Buffer_Pointer = (u64)skb_frag_dma_map(&sp->pdev->dev, 4197 frag, 0, 4198 skb_frag_size(frag), 4199 DMA_TO_DEVICE); 4200 txdp->Control_1 = TXD_BUFFER0_SIZE(skb_frag_size(frag)); 4201 if (offload_type == SKB_GSO_UDP) 4202 txdp->Control_1 |= TXD_UFO_EN; 4203 } 4204 txdp->Control_1 |= TXD_GATHER_CODE_LAST; 4205 4206 if (offload_type == SKB_GSO_UDP) 4207 frg_cnt++; /* as Txd0 was used for inband header */ 4208 4209 tx_fifo = mac_control->tx_FIFO_start[queue]; 4210 val64 = fifo->list_info[put_off].list_phy_addr; 4211 writeq(val64, &tx_fifo->TxDL_Pointer); 4212 4213 val64 = (TX_FIFO_LAST_TXD_NUM(frg_cnt) | TX_FIFO_FIRST_LIST | 4214 TX_FIFO_LAST_LIST); 4215 if (offload_type) 4216 val64 |= TX_FIFO_SPECIAL_FUNC; 4217 4218 writeq(val64, &tx_fifo->List_Control); 4219 4220 mmiowb(); 4221 4222 put_off++; 4223 if (put_off == fifo->tx_curr_put_info.fifo_len + 1) 4224 put_off = 0; 4225 fifo->tx_curr_put_info.offset = put_off; 4226 4227 /* Avoid "put" pointer going beyond "get" pointer */ 4228 if (((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) { 4229 swstats->fifo_full_cnt++; 4230 DBG_PRINT(TX_DBG, 4231 "No free TxDs for xmit, Put: 0x%x Get:0x%x\n", 4232 put_off, get_off); 4233 s2io_stop_tx_queue(sp, fifo->fifo_no); 4234 } 4235 swstats->mem_allocated += skb->truesize; 4236 spin_unlock_irqrestore(&fifo->tx_lock, flags); 4237 4238 if (sp->config.intr_type == MSI_X) 4239 tx_intr_handler(fifo); 4240 4241 return NETDEV_TX_OK; 4242 4243 pci_map_failed: 4244 swstats->pci_map_fail_cnt++; 4245 s2io_stop_tx_queue(sp, fifo->fifo_no); 4246 swstats->mem_freed += skb->truesize; 4247 dev_kfree_skb_any(skb); 4248 spin_unlock_irqrestore(&fifo->tx_lock, flags); 4249 return NETDEV_TX_OK; 4250 } 4251 4252 static void 4253 s2io_alarm_handle(unsigned long data) 4254 { 4255 struct s2io_nic *sp = (struct s2io_nic *)data; 4256 struct net_device *dev = sp->dev; 4257 4258 s2io_handle_errors(dev); 4259 mod_timer(&sp->alarm_timer, jiffies + HZ / 2); 4260 } 4261 4262 static irqreturn_t s2io_msix_ring_handle(int irq, void *dev_id) 4263 { 4264 struct ring_info *ring = (struct ring_info *)dev_id; 4265 struct s2io_nic *sp = ring->nic; 4266 struct XENA_dev_config __iomem *bar0 = sp->bar0; 4267 4268 if (unlikely(!is_s2io_card_up(sp))) 4269 return IRQ_HANDLED; 4270 4271 if (sp->config.napi) { 4272 u8 __iomem *addr = NULL; 4273 u8 val8 = 0; 4274 4275 addr = (u8 __iomem *)&bar0->xmsi_mask_reg; 4276 addr += (7 - ring->ring_no); 4277 val8 = (ring->ring_no == 0) ? 0x7f : 0xff; 4278 writeb(val8, addr); 4279 val8 = readb(addr); 4280 napi_schedule(&ring->napi); 4281 } else { 4282 rx_intr_handler(ring, 0); 4283 s2io_chk_rx_buffers(sp, ring); 4284 } 4285 4286 return IRQ_HANDLED; 4287 } 4288 4289 static irqreturn_t s2io_msix_fifo_handle(int irq, void *dev_id) 4290 { 4291 int i; 4292 struct fifo_info *fifos = (struct fifo_info *)dev_id; 4293 struct s2io_nic *sp = fifos->nic; 4294 struct XENA_dev_config __iomem *bar0 = sp->bar0; 4295 struct config_param *config = &sp->config; 4296 u64 reason; 4297 4298 if (unlikely(!is_s2io_card_up(sp))) 4299 return IRQ_NONE; 4300 4301 reason = readq(&bar0->general_int_status); 4302 if (unlikely(reason == S2IO_MINUS_ONE)) 4303 /* Nothing much can be done. Get out */ 4304 return IRQ_HANDLED; 4305 4306 if (reason & (GEN_INTR_TXPIC | GEN_INTR_TXTRAFFIC)) { 4307 writeq(S2IO_MINUS_ONE, &bar0->general_int_mask); 4308 4309 if (reason & GEN_INTR_TXPIC) 4310 s2io_txpic_intr_handle(sp); 4311 4312 if (reason & GEN_INTR_TXTRAFFIC) 4313 writeq(S2IO_MINUS_ONE, &bar0->tx_traffic_int); 4314 4315 for (i = 0; i < config->tx_fifo_num; i++) 4316 tx_intr_handler(&fifos[i]); 4317 4318 writeq(sp->general_int_mask, &bar0->general_int_mask); 4319 readl(&bar0->general_int_status); 4320 return IRQ_HANDLED; 4321 } 4322 /* The interrupt was not raised by us */ 4323 return IRQ_NONE; 4324 } 4325 4326 static void s2io_txpic_intr_handle(struct s2io_nic *sp) 4327 { 4328 struct XENA_dev_config __iomem *bar0 = sp->bar0; 4329 u64 val64; 4330 4331 val64 = readq(&bar0->pic_int_status); 4332 if (val64 & PIC_INT_GPIO) { 4333 val64 = readq(&bar0->gpio_int_reg); 4334 if ((val64 & GPIO_INT_REG_LINK_DOWN) && 4335 (val64 & GPIO_INT_REG_LINK_UP)) { 4336 /* 4337 * This is unstable state so clear both up/down 4338 * interrupt and adapter to re-evaluate the link state. 4339 */ 4340 val64 |= GPIO_INT_REG_LINK_DOWN; 4341 val64 |= GPIO_INT_REG_LINK_UP; 4342 writeq(val64, &bar0->gpio_int_reg); 4343 val64 = readq(&bar0->gpio_int_mask); 4344 val64 &= ~(GPIO_INT_MASK_LINK_UP | 4345 GPIO_INT_MASK_LINK_DOWN); 4346 writeq(val64, &bar0->gpio_int_mask); 4347 } else if (val64 & GPIO_INT_REG_LINK_UP) { 4348 val64 = readq(&bar0->adapter_status); 4349 /* Enable Adapter */ 4350 val64 = readq(&bar0->adapter_control); 4351 val64 |= ADAPTER_CNTL_EN; 4352 writeq(val64, &bar0->adapter_control); 4353 val64 |= ADAPTER_LED_ON; 4354 writeq(val64, &bar0->adapter_control); 4355 if (!sp->device_enabled_once) 4356 sp->device_enabled_once = 1; 4357 4358 s2io_link(sp, LINK_UP); 4359 /* 4360 * unmask link down interrupt and mask link-up 4361 * intr 4362 */ 4363 val64 = readq(&bar0->gpio_int_mask); 4364 val64 &= ~GPIO_INT_MASK_LINK_DOWN; 4365 val64 |= GPIO_INT_MASK_LINK_UP; 4366 writeq(val64, &bar0->gpio_int_mask); 4367 4368 } else if (val64 & GPIO_INT_REG_LINK_DOWN) { 4369 val64 = readq(&bar0->adapter_status); 4370 s2io_link(sp, LINK_DOWN); 4371 /* Link is down so unmaks link up interrupt */ 4372 val64 = readq(&bar0->gpio_int_mask); 4373 val64 &= ~GPIO_INT_MASK_LINK_UP; 4374 val64 |= GPIO_INT_MASK_LINK_DOWN; 4375 writeq(val64, &bar0->gpio_int_mask); 4376 4377 /* turn off LED */ 4378 val64 = readq(&bar0->adapter_control); 4379 val64 = val64 & (~ADAPTER_LED_ON); 4380 writeq(val64, &bar0->adapter_control); 4381 } 4382 } 4383 val64 = readq(&bar0->gpio_int_mask); 4384 } 4385 4386 /** 4387 * do_s2io_chk_alarm_bit - Check for alarm and incrment the counter 4388 * @value: alarm bits 4389 * @addr: address value 4390 * @cnt: counter variable 4391 * Description: Check for alarm and increment the counter 4392 * Return Value: 4393 * 1 - if alarm bit set 4394 * 0 - if alarm bit is not set 4395 */ 4396 static int do_s2io_chk_alarm_bit(u64 value, void __iomem *addr, 4397 unsigned long long *cnt) 4398 { 4399 u64 val64; 4400 val64 = readq(addr); 4401 if (val64 & value) { 4402 writeq(val64, addr); 4403 (*cnt)++; 4404 return 1; 4405 } 4406 return 0; 4407 4408 } 4409 4410 /** 4411 * s2io_handle_errors - Xframe error indication handler 4412 * @nic: device private variable 4413 * Description: Handle alarms such as loss of link, single or 4414 * double ECC errors, critical and serious errors. 4415 * Return Value: 4416 * NONE 4417 */ 4418 static void s2io_handle_errors(void *dev_id) 4419 { 4420 struct net_device *dev = (struct net_device *)dev_id; 4421 struct s2io_nic *sp = netdev_priv(dev); 4422 struct XENA_dev_config __iomem *bar0 = sp->bar0; 4423 u64 temp64 = 0, val64 = 0; 4424 int i = 0; 4425 4426 struct swStat *sw_stat = &sp->mac_control.stats_info->sw_stat; 4427 struct xpakStat *stats = &sp->mac_control.stats_info->xpak_stat; 4428 4429 if (!is_s2io_card_up(sp)) 4430 return; 4431 4432 if (pci_channel_offline(sp->pdev)) 4433 return; 4434 4435 memset(&sw_stat->ring_full_cnt, 0, 4436 sizeof(sw_stat->ring_full_cnt)); 4437 4438 /* Handling the XPAK counters update */ 4439 if (stats->xpak_timer_count < 72000) { 4440 /* waiting for an hour */ 4441 stats->xpak_timer_count++; 4442 } else { 4443 s2io_updt_xpak_counter(dev); 4444 /* reset the count to zero */ 4445 stats->xpak_timer_count = 0; 4446 } 4447 4448 /* Handling link status change error Intr */ 4449 if (s2io_link_fault_indication(sp) == MAC_RMAC_ERR_TIMER) { 4450 val64 = readq(&bar0->mac_rmac_err_reg); 4451 writeq(val64, &bar0->mac_rmac_err_reg); 4452 if (val64 & RMAC_LINK_STATE_CHANGE_INT) 4453 schedule_work(&sp->set_link_task); 4454 } 4455 4456 /* In case of a serious error, the device will be Reset. */ 4457 if (do_s2io_chk_alarm_bit(SERR_SOURCE_ANY, &bar0->serr_source, 4458 &sw_stat->serious_err_cnt)) 4459 goto reset; 4460 4461 /* Check for data parity error */ 4462 if (do_s2io_chk_alarm_bit(GPIO_INT_REG_DP_ERR_INT, &bar0->gpio_int_reg, 4463 &sw_stat->parity_err_cnt)) 4464 goto reset; 4465 4466 /* Check for ring full counter */ 4467 if (sp->device_type == XFRAME_II_DEVICE) { 4468 val64 = readq(&bar0->ring_bump_counter1); 4469 for (i = 0; i < 4; i++) { 4470 temp64 = (val64 & vBIT(0xFFFF, (i*16), 16)); 4471 temp64 >>= 64 - ((i+1)*16); 4472 sw_stat->ring_full_cnt[i] += temp64; 4473 } 4474 4475 val64 = readq(&bar0->ring_bump_counter2); 4476 for (i = 0; i < 4; i++) { 4477 temp64 = (val64 & vBIT(0xFFFF, (i*16), 16)); 4478 temp64 >>= 64 - ((i+1)*16); 4479 sw_stat->ring_full_cnt[i+4] += temp64; 4480 } 4481 } 4482 4483 val64 = readq(&bar0->txdma_int_status); 4484 /*check for pfc_err*/ 4485 if (val64 & TXDMA_PFC_INT) { 4486 if (do_s2io_chk_alarm_bit(PFC_ECC_DB_ERR | PFC_SM_ERR_ALARM | 4487 PFC_MISC_0_ERR | PFC_MISC_1_ERR | 4488 PFC_PCIX_ERR, 4489 &bar0->pfc_err_reg, 4490 &sw_stat->pfc_err_cnt)) 4491 goto reset; 4492 do_s2io_chk_alarm_bit(PFC_ECC_SG_ERR, 4493 &bar0->pfc_err_reg, 4494 &sw_stat->pfc_err_cnt); 4495 } 4496 4497 /*check for tda_err*/ 4498 if (val64 & TXDMA_TDA_INT) { 4499 if (do_s2io_chk_alarm_bit(TDA_Fn_ECC_DB_ERR | 4500 TDA_SM0_ERR_ALARM | 4501 TDA_SM1_ERR_ALARM, 4502 &bar0->tda_err_reg, 4503 &sw_stat->tda_err_cnt)) 4504 goto reset; 4505 do_s2io_chk_alarm_bit(TDA_Fn_ECC_SG_ERR | TDA_PCIX_ERR, 4506 &bar0->tda_err_reg, 4507 &sw_stat->tda_err_cnt); 4508 } 4509 /*check for pcc_err*/ 4510 if (val64 & TXDMA_PCC_INT) { 4511 if (do_s2io_chk_alarm_bit(PCC_SM_ERR_ALARM | PCC_WR_ERR_ALARM | 4512 PCC_N_SERR | PCC_6_COF_OV_ERR | 4513 PCC_7_COF_OV_ERR | PCC_6_LSO_OV_ERR | 4514 PCC_7_LSO_OV_ERR | PCC_FB_ECC_DB_ERR | 4515 PCC_TXB_ECC_DB_ERR, 4516 &bar0->pcc_err_reg, 4517 &sw_stat->pcc_err_cnt)) 4518 goto reset; 4519 do_s2io_chk_alarm_bit(PCC_FB_ECC_SG_ERR | PCC_TXB_ECC_SG_ERR, 4520 &bar0->pcc_err_reg, 4521 &sw_stat->pcc_err_cnt); 4522 } 4523 4524 /*check for tti_err*/ 4525 if (val64 & TXDMA_TTI_INT) { 4526 if (do_s2io_chk_alarm_bit(TTI_SM_ERR_ALARM, 4527 &bar0->tti_err_reg, 4528 &sw_stat->tti_err_cnt)) 4529 goto reset; 4530 do_s2io_chk_alarm_bit(TTI_ECC_SG_ERR | TTI_ECC_DB_ERR, 4531 &bar0->tti_err_reg, 4532 &sw_stat->tti_err_cnt); 4533 } 4534 4535 /*check for lso_err*/ 4536 if (val64 & TXDMA_LSO_INT) { 4537 if (do_s2io_chk_alarm_bit(LSO6_ABORT | LSO7_ABORT | 4538 LSO6_SM_ERR_ALARM | LSO7_SM_ERR_ALARM, 4539 &bar0->lso_err_reg, 4540 &sw_stat->lso_err_cnt)) 4541 goto reset; 4542 do_s2io_chk_alarm_bit(LSO6_SEND_OFLOW | LSO7_SEND_OFLOW, 4543 &bar0->lso_err_reg, 4544 &sw_stat->lso_err_cnt); 4545 } 4546 4547 /*check for tpa_err*/ 4548 if (val64 & TXDMA_TPA_INT) { 4549 if (do_s2io_chk_alarm_bit(TPA_SM_ERR_ALARM, 4550 &bar0->tpa_err_reg, 4551 &sw_stat->tpa_err_cnt)) 4552 goto reset; 4553 do_s2io_chk_alarm_bit(TPA_TX_FRM_DROP, 4554 &bar0->tpa_err_reg, 4555 &sw_stat->tpa_err_cnt); 4556 } 4557 4558 /*check for sm_err*/ 4559 if (val64 & TXDMA_SM_INT) { 4560 if (do_s2io_chk_alarm_bit(SM_SM_ERR_ALARM, 4561 &bar0->sm_err_reg, 4562 &sw_stat->sm_err_cnt)) 4563 goto reset; 4564 } 4565 4566 val64 = readq(&bar0->mac_int_status); 4567 if (val64 & MAC_INT_STATUS_TMAC_INT) { 4568 if (do_s2io_chk_alarm_bit(TMAC_TX_BUF_OVRN | TMAC_TX_SM_ERR, 4569 &bar0->mac_tmac_err_reg, 4570 &sw_stat->mac_tmac_err_cnt)) 4571 goto reset; 4572 do_s2io_chk_alarm_bit(TMAC_ECC_SG_ERR | TMAC_ECC_DB_ERR | 4573 TMAC_DESC_ECC_SG_ERR | 4574 TMAC_DESC_ECC_DB_ERR, 4575 &bar0->mac_tmac_err_reg, 4576 &sw_stat->mac_tmac_err_cnt); 4577 } 4578 4579 val64 = readq(&bar0->xgxs_int_status); 4580 if (val64 & XGXS_INT_STATUS_TXGXS) { 4581 if (do_s2io_chk_alarm_bit(TXGXS_ESTORE_UFLOW | TXGXS_TX_SM_ERR, 4582 &bar0->xgxs_txgxs_err_reg, 4583 &sw_stat->xgxs_txgxs_err_cnt)) 4584 goto reset; 4585 do_s2io_chk_alarm_bit(TXGXS_ECC_SG_ERR | TXGXS_ECC_DB_ERR, 4586 &bar0->xgxs_txgxs_err_reg, 4587 &sw_stat->xgxs_txgxs_err_cnt); 4588 } 4589 4590 val64 = readq(&bar0->rxdma_int_status); 4591 if (val64 & RXDMA_INT_RC_INT_M) { 4592 if (do_s2io_chk_alarm_bit(RC_PRCn_ECC_DB_ERR | 4593 RC_FTC_ECC_DB_ERR | 4594 RC_PRCn_SM_ERR_ALARM | 4595 RC_FTC_SM_ERR_ALARM, 4596 &bar0->rc_err_reg, 4597 &sw_stat->rc_err_cnt)) 4598 goto reset; 4599 do_s2io_chk_alarm_bit(RC_PRCn_ECC_SG_ERR | 4600 RC_FTC_ECC_SG_ERR | 4601 RC_RDA_FAIL_WR_Rn, &bar0->rc_err_reg, 4602 &sw_stat->rc_err_cnt); 4603 if (do_s2io_chk_alarm_bit(PRC_PCI_AB_RD_Rn | 4604 PRC_PCI_AB_WR_Rn | 4605 PRC_PCI_AB_F_WR_Rn, 4606 &bar0->prc_pcix_err_reg, 4607 &sw_stat->prc_pcix_err_cnt)) 4608 goto reset; 4609 do_s2io_chk_alarm_bit(PRC_PCI_DP_RD_Rn | 4610 PRC_PCI_DP_WR_Rn | 4611 PRC_PCI_DP_F_WR_Rn, 4612 &bar0->prc_pcix_err_reg, 4613 &sw_stat->prc_pcix_err_cnt); 4614 } 4615 4616 if (val64 & RXDMA_INT_RPA_INT_M) { 4617 if (do_s2io_chk_alarm_bit(RPA_SM_ERR_ALARM | RPA_CREDIT_ERR, 4618 &bar0->rpa_err_reg, 4619 &sw_stat->rpa_err_cnt)) 4620 goto reset; 4621 do_s2io_chk_alarm_bit(RPA_ECC_SG_ERR | RPA_ECC_DB_ERR, 4622 &bar0->rpa_err_reg, 4623 &sw_stat->rpa_err_cnt); 4624 } 4625 4626 if (val64 & RXDMA_INT_RDA_INT_M) { 4627 if (do_s2io_chk_alarm_bit(RDA_RXDn_ECC_DB_ERR | 4628 RDA_FRM_ECC_DB_N_AERR | 4629 RDA_SM1_ERR_ALARM | 4630 RDA_SM0_ERR_ALARM | 4631 RDA_RXD_ECC_DB_SERR, 4632 &bar0->rda_err_reg, 4633 &sw_stat->rda_err_cnt)) 4634 goto reset; 4635 do_s2io_chk_alarm_bit(RDA_RXDn_ECC_SG_ERR | 4636 RDA_FRM_ECC_SG_ERR | 4637 RDA_MISC_ERR | 4638 RDA_PCIX_ERR, 4639 &bar0->rda_err_reg, 4640 &sw_stat->rda_err_cnt); 4641 } 4642 4643 if (val64 & RXDMA_INT_RTI_INT_M) { 4644 if (do_s2io_chk_alarm_bit(RTI_SM_ERR_ALARM, 4645 &bar0->rti_err_reg, 4646 &sw_stat->rti_err_cnt)) 4647 goto reset; 4648 do_s2io_chk_alarm_bit(RTI_ECC_SG_ERR | RTI_ECC_DB_ERR, 4649 &bar0->rti_err_reg, 4650 &sw_stat->rti_err_cnt); 4651 } 4652 4653 val64 = readq(&bar0->mac_int_status); 4654 if (val64 & MAC_INT_STATUS_RMAC_INT) { 4655 if (do_s2io_chk_alarm_bit(RMAC_RX_BUFF_OVRN | RMAC_RX_SM_ERR, 4656 &bar0->mac_rmac_err_reg, 4657 &sw_stat->mac_rmac_err_cnt)) 4658 goto reset; 4659 do_s2io_chk_alarm_bit(RMAC_UNUSED_INT | 4660 RMAC_SINGLE_ECC_ERR | 4661 RMAC_DOUBLE_ECC_ERR, 4662 &bar0->mac_rmac_err_reg, 4663 &sw_stat->mac_rmac_err_cnt); 4664 } 4665 4666 val64 = readq(&bar0->xgxs_int_status); 4667 if (val64 & XGXS_INT_STATUS_RXGXS) { 4668 if (do_s2io_chk_alarm_bit(RXGXS_ESTORE_OFLOW | RXGXS_RX_SM_ERR, 4669 &bar0->xgxs_rxgxs_err_reg, 4670 &sw_stat->xgxs_rxgxs_err_cnt)) 4671 goto reset; 4672 } 4673 4674 val64 = readq(&bar0->mc_int_status); 4675 if (val64 & MC_INT_STATUS_MC_INT) { 4676 if (do_s2io_chk_alarm_bit(MC_ERR_REG_SM_ERR, 4677 &bar0->mc_err_reg, 4678 &sw_stat->mc_err_cnt)) 4679 goto reset; 4680 4681 /* Handling Ecc errors */ 4682 if (val64 & (MC_ERR_REG_ECC_ALL_SNG | MC_ERR_REG_ECC_ALL_DBL)) { 4683 writeq(val64, &bar0->mc_err_reg); 4684 if (val64 & MC_ERR_REG_ECC_ALL_DBL) { 4685 sw_stat->double_ecc_errs++; 4686 if (sp->device_type != XFRAME_II_DEVICE) { 4687 /* 4688 * Reset XframeI only if critical error 4689 */ 4690 if (val64 & 4691 (MC_ERR_REG_MIRI_ECC_DB_ERR_0 | 4692 MC_ERR_REG_MIRI_ECC_DB_ERR_1)) 4693 goto reset; 4694 } 4695 } else 4696 sw_stat->single_ecc_errs++; 4697 } 4698 } 4699 return; 4700 4701 reset: 4702 s2io_stop_all_tx_queue(sp); 4703 schedule_work(&sp->rst_timer_task); 4704 sw_stat->soft_reset_cnt++; 4705 } 4706 4707 /** 4708 * s2io_isr - ISR handler of the device . 4709 * @irq: the irq of the device. 4710 * @dev_id: a void pointer to the dev structure of the NIC. 4711 * Description: This function is the ISR handler of the device. It 4712 * identifies the reason for the interrupt and calls the relevant 4713 * service routines. As a contongency measure, this ISR allocates the 4714 * recv buffers, if their numbers are below the panic value which is 4715 * presently set to 25% of the original number of rcv buffers allocated. 4716 * Return value: 4717 * IRQ_HANDLED: will be returned if IRQ was handled by this routine 4718 * IRQ_NONE: will be returned if interrupt is not from our device 4719 */ 4720 static irqreturn_t s2io_isr(int irq, void *dev_id) 4721 { 4722 struct net_device *dev = (struct net_device *)dev_id; 4723 struct s2io_nic *sp = netdev_priv(dev); 4724 struct XENA_dev_config __iomem *bar0 = sp->bar0; 4725 int i; 4726 u64 reason = 0; 4727 struct mac_info *mac_control; 4728 struct config_param *config; 4729 4730 /* Pretend we handled any irq's from a disconnected card */ 4731 if (pci_channel_offline(sp->pdev)) 4732 return IRQ_NONE; 4733 4734 if (!is_s2io_card_up(sp)) 4735 return IRQ_NONE; 4736 4737 config = &sp->config; 4738 mac_control = &sp->mac_control; 4739 4740 /* 4741 * Identify the cause for interrupt and call the appropriate 4742 * interrupt handler. Causes for the interrupt could be; 4743 * 1. Rx of packet. 4744 * 2. Tx complete. 4745 * 3. Link down. 4746 */ 4747 reason = readq(&bar0->general_int_status); 4748 4749 if (unlikely(reason == S2IO_MINUS_ONE)) 4750 return IRQ_HANDLED; /* Nothing much can be done. Get out */ 4751 4752 if (reason & 4753 (GEN_INTR_RXTRAFFIC | GEN_INTR_TXTRAFFIC | GEN_INTR_TXPIC)) { 4754 writeq(S2IO_MINUS_ONE, &bar0->general_int_mask); 4755 4756 if (config->napi) { 4757 if (reason & GEN_INTR_RXTRAFFIC) { 4758 napi_schedule(&sp->napi); 4759 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_mask); 4760 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int); 4761 readl(&bar0->rx_traffic_int); 4762 } 4763 } else { 4764 /* 4765 * rx_traffic_int reg is an R1 register, writing all 1's 4766 * will ensure that the actual interrupt causing bit 4767 * get's cleared and hence a read can be avoided. 4768 */ 4769 if (reason & GEN_INTR_RXTRAFFIC) 4770 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int); 4771 4772 for (i = 0; i < config->rx_ring_num; i++) { 4773 struct ring_info *ring = &mac_control->rings[i]; 4774 4775 rx_intr_handler(ring, 0); 4776 } 4777 } 4778 4779 /* 4780 * tx_traffic_int reg is an R1 register, writing all 1's 4781 * will ensure that the actual interrupt causing bit get's 4782 * cleared and hence a read can be avoided. 4783 */ 4784 if (reason & GEN_INTR_TXTRAFFIC) 4785 writeq(S2IO_MINUS_ONE, &bar0->tx_traffic_int); 4786 4787 for (i = 0; i < config->tx_fifo_num; i++) 4788 tx_intr_handler(&mac_control->fifos[i]); 4789 4790 if (reason & GEN_INTR_TXPIC) 4791 s2io_txpic_intr_handle(sp); 4792 4793 /* 4794 * Reallocate the buffers from the interrupt handler itself. 4795 */ 4796 if (!config->napi) { 4797 for (i = 0; i < config->rx_ring_num; i++) { 4798 struct ring_info *ring = &mac_control->rings[i]; 4799 4800 s2io_chk_rx_buffers(sp, ring); 4801 } 4802 } 4803 writeq(sp->general_int_mask, &bar0->general_int_mask); 4804 readl(&bar0->general_int_status); 4805 4806 return IRQ_HANDLED; 4807 4808 } else if (!reason) { 4809 /* The interrupt was not raised by us */ 4810 return IRQ_NONE; 4811 } 4812 4813 return IRQ_HANDLED; 4814 } 4815 4816 /** 4817 * s2io_updt_stats - 4818 */ 4819 static void s2io_updt_stats(struct s2io_nic *sp) 4820 { 4821 struct XENA_dev_config __iomem *bar0 = sp->bar0; 4822 u64 val64; 4823 int cnt = 0; 4824 4825 if (is_s2io_card_up(sp)) { 4826 /* Apprx 30us on a 133 MHz bus */ 4827 val64 = SET_UPDT_CLICKS(10) | 4828 STAT_CFG_ONE_SHOT_EN | STAT_CFG_STAT_EN; 4829 writeq(val64, &bar0->stat_cfg); 4830 do { 4831 udelay(100); 4832 val64 = readq(&bar0->stat_cfg); 4833 if (!(val64 & s2BIT(0))) 4834 break; 4835 cnt++; 4836 if (cnt == 5) 4837 break; /* Updt failed */ 4838 } while (1); 4839 } 4840 } 4841 4842 /** 4843 * s2io_get_stats - Updates the device statistics structure. 4844 * @dev : pointer to the device structure. 4845 * Description: 4846 * This function updates the device statistics structure in the s2io_nic 4847 * structure and returns a pointer to the same. 4848 * Return value: 4849 * pointer to the updated net_device_stats structure. 4850 */ 4851 static struct net_device_stats *s2io_get_stats(struct net_device *dev) 4852 { 4853 struct s2io_nic *sp = netdev_priv(dev); 4854 struct mac_info *mac_control = &sp->mac_control; 4855 struct stat_block *stats = mac_control->stats_info; 4856 u64 delta; 4857 4858 /* Configure Stats for immediate updt */ 4859 s2io_updt_stats(sp); 4860 4861 /* A device reset will cause the on-adapter statistics to be zero'ed. 4862 * This can be done while running by changing the MTU. To prevent the 4863 * system from having the stats zero'ed, the driver keeps a copy of the 4864 * last update to the system (which is also zero'ed on reset). This 4865 * enables the driver to accurately know the delta between the last 4866 * update and the current update. 4867 */ 4868 delta = ((u64) le32_to_cpu(stats->rmac_vld_frms_oflow) << 32 | 4869 le32_to_cpu(stats->rmac_vld_frms)) - sp->stats.rx_packets; 4870 sp->stats.rx_packets += delta; 4871 dev->stats.rx_packets += delta; 4872 4873 delta = ((u64) le32_to_cpu(stats->tmac_frms_oflow) << 32 | 4874 le32_to_cpu(stats->tmac_frms)) - sp->stats.tx_packets; 4875 sp->stats.tx_packets += delta; 4876 dev->stats.tx_packets += delta; 4877 4878 delta = ((u64) le32_to_cpu(stats->rmac_data_octets_oflow) << 32 | 4879 le32_to_cpu(stats->rmac_data_octets)) - sp->stats.rx_bytes; 4880 sp->stats.rx_bytes += delta; 4881 dev->stats.rx_bytes += delta; 4882 4883 delta = ((u64) le32_to_cpu(stats->tmac_data_octets_oflow) << 32 | 4884 le32_to_cpu(stats->tmac_data_octets)) - sp->stats.tx_bytes; 4885 sp->stats.tx_bytes += delta; 4886 dev->stats.tx_bytes += delta; 4887 4888 delta = le64_to_cpu(stats->rmac_drop_frms) - sp->stats.rx_errors; 4889 sp->stats.rx_errors += delta; 4890 dev->stats.rx_errors += delta; 4891 4892 delta = ((u64) le32_to_cpu(stats->tmac_any_err_frms_oflow) << 32 | 4893 le32_to_cpu(stats->tmac_any_err_frms)) - sp->stats.tx_errors; 4894 sp->stats.tx_errors += delta; 4895 dev->stats.tx_errors += delta; 4896 4897 delta = le64_to_cpu(stats->rmac_drop_frms) - sp->stats.rx_dropped; 4898 sp->stats.rx_dropped += delta; 4899 dev->stats.rx_dropped += delta; 4900 4901 delta = le64_to_cpu(stats->tmac_drop_frms) - sp->stats.tx_dropped; 4902 sp->stats.tx_dropped += delta; 4903 dev->stats.tx_dropped += delta; 4904 4905 /* The adapter MAC interprets pause frames as multicast packets, but 4906 * does not pass them up. This erroneously increases the multicast 4907 * packet count and needs to be deducted when the multicast frame count 4908 * is queried. 4909 */ 4910 delta = (u64) le32_to_cpu(stats->rmac_vld_mcst_frms_oflow) << 32 | 4911 le32_to_cpu(stats->rmac_vld_mcst_frms); 4912 delta -= le64_to_cpu(stats->rmac_pause_ctrl_frms); 4913 delta -= sp->stats.multicast; 4914 sp->stats.multicast += delta; 4915 dev->stats.multicast += delta; 4916 4917 delta = ((u64) le32_to_cpu(stats->rmac_usized_frms_oflow) << 32 | 4918 le32_to_cpu(stats->rmac_usized_frms)) + 4919 le64_to_cpu(stats->rmac_long_frms) - sp->stats.rx_length_errors; 4920 sp->stats.rx_length_errors += delta; 4921 dev->stats.rx_length_errors += delta; 4922 4923 delta = le64_to_cpu(stats->rmac_fcs_err_frms) - sp->stats.rx_crc_errors; 4924 sp->stats.rx_crc_errors += delta; 4925 dev->stats.rx_crc_errors += delta; 4926 4927 return &dev->stats; 4928 } 4929 4930 /** 4931 * s2io_set_multicast - entry point for multicast address enable/disable. 4932 * @dev : pointer to the device structure 4933 * Description: 4934 * This function is a driver entry point which gets called by the kernel 4935 * whenever multicast addresses must be enabled/disabled. This also gets 4936 * called to set/reset promiscuous mode. Depending on the deivce flag, we 4937 * determine, if multicast address must be enabled or if promiscuous mode 4938 * is to be disabled etc. 4939 * Return value: 4940 * void. 4941 */ 4942 4943 static void s2io_set_multicast(struct net_device *dev) 4944 { 4945 int i, j, prev_cnt; 4946 struct netdev_hw_addr *ha; 4947 struct s2io_nic *sp = netdev_priv(dev); 4948 struct XENA_dev_config __iomem *bar0 = sp->bar0; 4949 u64 val64 = 0, multi_mac = 0x010203040506ULL, mask = 4950 0xfeffffffffffULL; 4951 u64 dis_addr = S2IO_DISABLE_MAC_ENTRY, mac_addr = 0; 4952 void __iomem *add; 4953 struct config_param *config = &sp->config; 4954 4955 if ((dev->flags & IFF_ALLMULTI) && (!sp->m_cast_flg)) { 4956 /* Enable all Multicast addresses */ 4957 writeq(RMAC_ADDR_DATA0_MEM_ADDR(multi_mac), 4958 &bar0->rmac_addr_data0_mem); 4959 writeq(RMAC_ADDR_DATA1_MEM_MASK(mask), 4960 &bar0->rmac_addr_data1_mem); 4961 val64 = RMAC_ADDR_CMD_MEM_WE | 4962 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD | 4963 RMAC_ADDR_CMD_MEM_OFFSET(config->max_mc_addr - 1); 4964 writeq(val64, &bar0->rmac_addr_cmd_mem); 4965 /* Wait till command completes */ 4966 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem, 4967 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING, 4968 S2IO_BIT_RESET); 4969 4970 sp->m_cast_flg = 1; 4971 sp->all_multi_pos = config->max_mc_addr - 1; 4972 } else if ((dev->flags & IFF_ALLMULTI) && (sp->m_cast_flg)) { 4973 /* Disable all Multicast addresses */ 4974 writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr), 4975 &bar0->rmac_addr_data0_mem); 4976 writeq(RMAC_ADDR_DATA1_MEM_MASK(0x0), 4977 &bar0->rmac_addr_data1_mem); 4978 val64 = RMAC_ADDR_CMD_MEM_WE | 4979 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD | 4980 RMAC_ADDR_CMD_MEM_OFFSET(sp->all_multi_pos); 4981 writeq(val64, &bar0->rmac_addr_cmd_mem); 4982 /* Wait till command completes */ 4983 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem, 4984 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING, 4985 S2IO_BIT_RESET); 4986 4987 sp->m_cast_flg = 0; 4988 sp->all_multi_pos = 0; 4989 } 4990 4991 if ((dev->flags & IFF_PROMISC) && (!sp->promisc_flg)) { 4992 /* Put the NIC into promiscuous mode */ 4993 add = &bar0->mac_cfg; 4994 val64 = readq(&bar0->mac_cfg); 4995 val64 |= MAC_CFG_RMAC_PROM_ENABLE; 4996 4997 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key); 4998 writel((u32)val64, add); 4999 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key); 5000 writel((u32) (val64 >> 32), (add + 4)); 5001 5002 if (vlan_tag_strip != 1) { 5003 val64 = readq(&bar0->rx_pa_cfg); 5004 val64 &= ~RX_PA_CFG_STRIP_VLAN_TAG; 5005 writeq(val64, &bar0->rx_pa_cfg); 5006 sp->vlan_strip_flag = 0; 5007 } 5008 5009 val64 = readq(&bar0->mac_cfg); 5010 sp->promisc_flg = 1; 5011 DBG_PRINT(INFO_DBG, "%s: entered promiscuous mode\n", 5012 dev->name); 5013 } else if (!(dev->flags & IFF_PROMISC) && (sp->promisc_flg)) { 5014 /* Remove the NIC from promiscuous mode */ 5015 add = &bar0->mac_cfg; 5016 val64 = readq(&bar0->mac_cfg); 5017 val64 &= ~MAC_CFG_RMAC_PROM_ENABLE; 5018 5019 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key); 5020 writel((u32)val64, add); 5021 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key); 5022 writel((u32) (val64 >> 32), (add + 4)); 5023 5024 if (vlan_tag_strip != 0) { 5025 val64 = readq(&bar0->rx_pa_cfg); 5026 val64 |= RX_PA_CFG_STRIP_VLAN_TAG; 5027 writeq(val64, &bar0->rx_pa_cfg); 5028 sp->vlan_strip_flag = 1; 5029 } 5030 5031 val64 = readq(&bar0->mac_cfg); 5032 sp->promisc_flg = 0; 5033 DBG_PRINT(INFO_DBG, "%s: left promiscuous mode\n", dev->name); 5034 } 5035 5036 /* Update individual M_CAST address list */ 5037 if ((!sp->m_cast_flg) && netdev_mc_count(dev)) { 5038 if (netdev_mc_count(dev) > 5039 (config->max_mc_addr - config->max_mac_addr)) { 5040 DBG_PRINT(ERR_DBG, 5041 "%s: No more Rx filters can be added - " 5042 "please enable ALL_MULTI instead\n", 5043 dev->name); 5044 return; 5045 } 5046 5047 prev_cnt = sp->mc_addr_count; 5048 sp->mc_addr_count = netdev_mc_count(dev); 5049 5050 /* Clear out the previous list of Mc in the H/W. */ 5051 for (i = 0; i < prev_cnt; i++) { 5052 writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr), 5053 &bar0->rmac_addr_data0_mem); 5054 writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL), 5055 &bar0->rmac_addr_data1_mem); 5056 val64 = RMAC_ADDR_CMD_MEM_WE | 5057 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD | 5058 RMAC_ADDR_CMD_MEM_OFFSET 5059 (config->mc_start_offset + i); 5060 writeq(val64, &bar0->rmac_addr_cmd_mem); 5061 5062 /* Wait for command completes */ 5063 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem, 5064 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING, 5065 S2IO_BIT_RESET)) { 5066 DBG_PRINT(ERR_DBG, 5067 "%s: Adding Multicasts failed\n", 5068 dev->name); 5069 return; 5070 } 5071 } 5072 5073 /* Create the new Rx filter list and update the same in H/W. */ 5074 i = 0; 5075 netdev_for_each_mc_addr(ha, dev) { 5076 mac_addr = 0; 5077 for (j = 0; j < ETH_ALEN; j++) { 5078 mac_addr |= ha->addr[j]; 5079 mac_addr <<= 8; 5080 } 5081 mac_addr >>= 8; 5082 writeq(RMAC_ADDR_DATA0_MEM_ADDR(mac_addr), 5083 &bar0->rmac_addr_data0_mem); 5084 writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL), 5085 &bar0->rmac_addr_data1_mem); 5086 val64 = RMAC_ADDR_CMD_MEM_WE | 5087 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD | 5088 RMAC_ADDR_CMD_MEM_OFFSET 5089 (i + config->mc_start_offset); 5090 writeq(val64, &bar0->rmac_addr_cmd_mem); 5091 5092 /* Wait for command completes */ 5093 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem, 5094 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING, 5095 S2IO_BIT_RESET)) { 5096 DBG_PRINT(ERR_DBG, 5097 "%s: Adding Multicasts failed\n", 5098 dev->name); 5099 return; 5100 } 5101 i++; 5102 } 5103 } 5104 } 5105 5106 /* read from CAM unicast & multicast addresses and store it in 5107 * def_mac_addr structure 5108 */ 5109 static void do_s2io_store_unicast_mc(struct s2io_nic *sp) 5110 { 5111 int offset; 5112 u64 mac_addr = 0x0; 5113 struct config_param *config = &sp->config; 5114 5115 /* store unicast & multicast mac addresses */ 5116 for (offset = 0; offset < config->max_mc_addr; offset++) { 5117 mac_addr = do_s2io_read_unicast_mc(sp, offset); 5118 /* if read fails disable the entry */ 5119 if (mac_addr == FAILURE) 5120 mac_addr = S2IO_DISABLE_MAC_ENTRY; 5121 do_s2io_copy_mac_addr(sp, offset, mac_addr); 5122 } 5123 } 5124 5125 /* restore unicast & multicast MAC to CAM from def_mac_addr structure */ 5126 static void do_s2io_restore_unicast_mc(struct s2io_nic *sp) 5127 { 5128 int offset; 5129 struct config_param *config = &sp->config; 5130 /* restore unicast mac address */ 5131 for (offset = 0; offset < config->max_mac_addr; offset++) 5132 do_s2io_prog_unicast(sp->dev, 5133 sp->def_mac_addr[offset].mac_addr); 5134 5135 /* restore multicast mac address */ 5136 for (offset = config->mc_start_offset; 5137 offset < config->max_mc_addr; offset++) 5138 do_s2io_add_mc(sp, sp->def_mac_addr[offset].mac_addr); 5139 } 5140 5141 /* add a multicast MAC address to CAM */ 5142 static int do_s2io_add_mc(struct s2io_nic *sp, u8 *addr) 5143 { 5144 int i; 5145 u64 mac_addr = 0; 5146 struct config_param *config = &sp->config; 5147 5148 for (i = 0; i < ETH_ALEN; i++) { 5149 mac_addr <<= 8; 5150 mac_addr |= addr[i]; 5151 } 5152 if ((0ULL == mac_addr) || (mac_addr == S2IO_DISABLE_MAC_ENTRY)) 5153 return SUCCESS; 5154 5155 /* check if the multicast mac already preset in CAM */ 5156 for (i = config->mc_start_offset; i < config->max_mc_addr; i++) { 5157 u64 tmp64; 5158 tmp64 = do_s2io_read_unicast_mc(sp, i); 5159 if (tmp64 == S2IO_DISABLE_MAC_ENTRY) /* CAM entry is empty */ 5160 break; 5161 5162 if (tmp64 == mac_addr) 5163 return SUCCESS; 5164 } 5165 if (i == config->max_mc_addr) { 5166 DBG_PRINT(ERR_DBG, 5167 "CAM full no space left for multicast MAC\n"); 5168 return FAILURE; 5169 } 5170 /* Update the internal structure with this new mac address */ 5171 do_s2io_copy_mac_addr(sp, i, mac_addr); 5172 5173 return do_s2io_add_mac(sp, mac_addr, i); 5174 } 5175 5176 /* add MAC address to CAM */ 5177 static int do_s2io_add_mac(struct s2io_nic *sp, u64 addr, int off) 5178 { 5179 u64 val64; 5180 struct XENA_dev_config __iomem *bar0 = sp->bar0; 5181 5182 writeq(RMAC_ADDR_DATA0_MEM_ADDR(addr), 5183 &bar0->rmac_addr_data0_mem); 5184 5185 val64 = RMAC_ADDR_CMD_MEM_WE | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD | 5186 RMAC_ADDR_CMD_MEM_OFFSET(off); 5187 writeq(val64, &bar0->rmac_addr_cmd_mem); 5188 5189 /* Wait till command completes */ 5190 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem, 5191 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING, 5192 S2IO_BIT_RESET)) { 5193 DBG_PRINT(INFO_DBG, "do_s2io_add_mac failed\n"); 5194 return FAILURE; 5195 } 5196 return SUCCESS; 5197 } 5198 /* deletes a specified unicast/multicast mac entry from CAM */ 5199 static int do_s2io_delete_unicast_mc(struct s2io_nic *sp, u64 addr) 5200 { 5201 int offset; 5202 u64 dis_addr = S2IO_DISABLE_MAC_ENTRY, tmp64; 5203 struct config_param *config = &sp->config; 5204 5205 for (offset = 1; 5206 offset < config->max_mc_addr; offset++) { 5207 tmp64 = do_s2io_read_unicast_mc(sp, offset); 5208 if (tmp64 == addr) { 5209 /* disable the entry by writing 0xffffffffffffULL */ 5210 if (do_s2io_add_mac(sp, dis_addr, offset) == FAILURE) 5211 return FAILURE; 5212 /* store the new mac list from CAM */ 5213 do_s2io_store_unicast_mc(sp); 5214 return SUCCESS; 5215 } 5216 } 5217 DBG_PRINT(ERR_DBG, "MAC address 0x%llx not found in CAM\n", 5218 (unsigned long long)addr); 5219 return FAILURE; 5220 } 5221 5222 /* read mac entries from CAM */ 5223 static u64 do_s2io_read_unicast_mc(struct s2io_nic *sp, int offset) 5224 { 5225 u64 tmp64 = 0xffffffffffff0000ULL, val64; 5226 struct XENA_dev_config __iomem *bar0 = sp->bar0; 5227 5228 /* read mac addr */ 5229 val64 = RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD | 5230 RMAC_ADDR_CMD_MEM_OFFSET(offset); 5231 writeq(val64, &bar0->rmac_addr_cmd_mem); 5232 5233 /* Wait till command completes */ 5234 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem, 5235 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING, 5236 S2IO_BIT_RESET)) { 5237 DBG_PRINT(INFO_DBG, "do_s2io_read_unicast_mc failed\n"); 5238 return FAILURE; 5239 } 5240 tmp64 = readq(&bar0->rmac_addr_data0_mem); 5241 5242 return tmp64 >> 16; 5243 } 5244 5245 /** 5246 * s2io_set_mac_addr - driver entry point 5247 */ 5248 5249 static int s2io_set_mac_addr(struct net_device *dev, void *p) 5250 { 5251 struct sockaddr *addr = p; 5252 5253 if (!is_valid_ether_addr(addr->sa_data)) 5254 return -EADDRNOTAVAIL; 5255 5256 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len); 5257 5258 /* store the MAC address in CAM */ 5259 return do_s2io_prog_unicast(dev, dev->dev_addr); 5260 } 5261 /** 5262 * do_s2io_prog_unicast - Programs the Xframe mac address 5263 * @dev : pointer to the device structure. 5264 * @addr: a uchar pointer to the new mac address which is to be set. 5265 * Description : This procedure will program the Xframe to receive 5266 * frames with new Mac Address 5267 * Return value: SUCCESS on success and an appropriate (-)ve integer 5268 * as defined in errno.h file on failure. 5269 */ 5270 5271 static int do_s2io_prog_unicast(struct net_device *dev, u8 *addr) 5272 { 5273 struct s2io_nic *sp = netdev_priv(dev); 5274 register u64 mac_addr = 0, perm_addr = 0; 5275 int i; 5276 u64 tmp64; 5277 struct config_param *config = &sp->config; 5278 5279 /* 5280 * Set the new MAC address as the new unicast filter and reflect this 5281 * change on the device address registered with the OS. It will be 5282 * at offset 0. 5283 */ 5284 for (i = 0; i < ETH_ALEN; i++) { 5285 mac_addr <<= 8; 5286 mac_addr |= addr[i]; 5287 perm_addr <<= 8; 5288 perm_addr |= sp->def_mac_addr[0].mac_addr[i]; 5289 } 5290 5291 /* check if the dev_addr is different than perm_addr */ 5292 if (mac_addr == perm_addr) 5293 return SUCCESS; 5294 5295 /* check if the mac already preset in CAM */ 5296 for (i = 1; i < config->max_mac_addr; i++) { 5297 tmp64 = do_s2io_read_unicast_mc(sp, i); 5298 if (tmp64 == S2IO_DISABLE_MAC_ENTRY) /* CAM entry is empty */ 5299 break; 5300 5301 if (tmp64 == mac_addr) { 5302 DBG_PRINT(INFO_DBG, 5303 "MAC addr:0x%llx already present in CAM\n", 5304 (unsigned long long)mac_addr); 5305 return SUCCESS; 5306 } 5307 } 5308 if (i == config->max_mac_addr) { 5309 DBG_PRINT(ERR_DBG, "CAM full no space left for Unicast MAC\n"); 5310 return FAILURE; 5311 } 5312 /* Update the internal structure with this new mac address */ 5313 do_s2io_copy_mac_addr(sp, i, mac_addr); 5314 5315 return do_s2io_add_mac(sp, mac_addr, i); 5316 } 5317 5318 /** 5319 * s2io_ethtool_sset - Sets different link parameters. 5320 * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure. 5321 * @info: pointer to the structure with parameters given by ethtool to set 5322 * link information. 5323 * Description: 5324 * The function sets different link parameters provided by the user onto 5325 * the NIC. 5326 * Return value: 5327 * 0 on success. 5328 */ 5329 5330 static int s2io_ethtool_sset(struct net_device *dev, 5331 struct ethtool_cmd *info) 5332 { 5333 struct s2io_nic *sp = netdev_priv(dev); 5334 if ((info->autoneg == AUTONEG_ENABLE) || 5335 (ethtool_cmd_speed(info) != SPEED_10000) || 5336 (info->duplex != DUPLEX_FULL)) 5337 return -EINVAL; 5338 else { 5339 s2io_close(sp->dev); 5340 s2io_open(sp->dev); 5341 } 5342 5343 return 0; 5344 } 5345 5346 /** 5347 * s2io_ethtol_gset - Return link specific information. 5348 * @sp : private member of the device structure, pointer to the 5349 * s2io_nic structure. 5350 * @info : pointer to the structure with parameters given by ethtool 5351 * to return link information. 5352 * Description: 5353 * Returns link specific information like speed, duplex etc.. to ethtool. 5354 * Return value : 5355 * return 0 on success. 5356 */ 5357 5358 static int s2io_ethtool_gset(struct net_device *dev, struct ethtool_cmd *info) 5359 { 5360 struct s2io_nic *sp = netdev_priv(dev); 5361 info->supported = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE); 5362 info->advertising = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE); 5363 info->port = PORT_FIBRE; 5364 5365 /* info->transceiver */ 5366 info->transceiver = XCVR_EXTERNAL; 5367 5368 if (netif_carrier_ok(sp->dev)) { 5369 ethtool_cmd_speed_set(info, SPEED_10000); 5370 info->duplex = DUPLEX_FULL; 5371 } else { 5372 ethtool_cmd_speed_set(info, -1); 5373 info->duplex = -1; 5374 } 5375 5376 info->autoneg = AUTONEG_DISABLE; 5377 return 0; 5378 } 5379 5380 /** 5381 * s2io_ethtool_gdrvinfo - Returns driver specific information. 5382 * @sp : private member of the device structure, which is a pointer to the 5383 * s2io_nic structure. 5384 * @info : pointer to the structure with parameters given by ethtool to 5385 * return driver information. 5386 * Description: 5387 * Returns driver specefic information like name, version etc.. to ethtool. 5388 * Return value: 5389 * void 5390 */ 5391 5392 static void s2io_ethtool_gdrvinfo(struct net_device *dev, 5393 struct ethtool_drvinfo *info) 5394 { 5395 struct s2io_nic *sp = netdev_priv(dev); 5396 5397 strlcpy(info->driver, s2io_driver_name, sizeof(info->driver)); 5398 strlcpy(info->version, s2io_driver_version, sizeof(info->version)); 5399 strlcpy(info->bus_info, pci_name(sp->pdev), sizeof(info->bus_info)); 5400 info->regdump_len = XENA_REG_SPACE; 5401 info->eedump_len = XENA_EEPROM_SPACE; 5402 } 5403 5404 /** 5405 * s2io_ethtool_gregs - dumps the entire space of Xfame into the buffer. 5406 * @sp: private member of the device structure, which is a pointer to the 5407 * s2io_nic structure. 5408 * @regs : pointer to the structure with parameters given by ethtool for 5409 * dumping the registers. 5410 * @reg_space: The input argumnet into which all the registers are dumped. 5411 * Description: 5412 * Dumps the entire register space of xFrame NIC into the user given 5413 * buffer area. 5414 * Return value : 5415 * void . 5416 */ 5417 5418 static void s2io_ethtool_gregs(struct net_device *dev, 5419 struct ethtool_regs *regs, void *space) 5420 { 5421 int i; 5422 u64 reg; 5423 u8 *reg_space = (u8 *)space; 5424 struct s2io_nic *sp = netdev_priv(dev); 5425 5426 regs->len = XENA_REG_SPACE; 5427 regs->version = sp->pdev->subsystem_device; 5428 5429 for (i = 0; i < regs->len; i += 8) { 5430 reg = readq(sp->bar0 + i); 5431 memcpy((reg_space + i), ®, 8); 5432 } 5433 } 5434 5435 /* 5436 * s2io_set_led - control NIC led 5437 */ 5438 static void s2io_set_led(struct s2io_nic *sp, bool on) 5439 { 5440 struct XENA_dev_config __iomem *bar0 = sp->bar0; 5441 u16 subid = sp->pdev->subsystem_device; 5442 u64 val64; 5443 5444 if ((sp->device_type == XFRAME_II_DEVICE) || 5445 ((subid & 0xFF) >= 0x07)) { 5446 val64 = readq(&bar0->gpio_control); 5447 if (on) 5448 val64 |= GPIO_CTRL_GPIO_0; 5449 else 5450 val64 &= ~GPIO_CTRL_GPIO_0; 5451 5452 writeq(val64, &bar0->gpio_control); 5453 } else { 5454 val64 = readq(&bar0->adapter_control); 5455 if (on) 5456 val64 |= ADAPTER_LED_ON; 5457 else 5458 val64 &= ~ADAPTER_LED_ON; 5459 5460 writeq(val64, &bar0->adapter_control); 5461 } 5462 5463 } 5464 5465 /** 5466 * s2io_ethtool_set_led - To physically identify the nic on the system. 5467 * @dev : network device 5468 * @state: led setting 5469 * 5470 * Description: Used to physically identify the NIC on the system. 5471 * The Link LED will blink for a time specified by the user for 5472 * identification. 5473 * NOTE: The Link has to be Up to be able to blink the LED. Hence 5474 * identification is possible only if it's link is up. 5475 */ 5476 5477 static int s2io_ethtool_set_led(struct net_device *dev, 5478 enum ethtool_phys_id_state state) 5479 { 5480 struct s2io_nic *sp = netdev_priv(dev); 5481 struct XENA_dev_config __iomem *bar0 = sp->bar0; 5482 u16 subid = sp->pdev->subsystem_device; 5483 5484 if ((sp->device_type == XFRAME_I_DEVICE) && ((subid & 0xFF) < 0x07)) { 5485 u64 val64 = readq(&bar0->adapter_control); 5486 if (!(val64 & ADAPTER_CNTL_EN)) { 5487 pr_err("Adapter Link down, cannot blink LED\n"); 5488 return -EAGAIN; 5489 } 5490 } 5491 5492 switch (state) { 5493 case ETHTOOL_ID_ACTIVE: 5494 sp->adapt_ctrl_org = readq(&bar0->gpio_control); 5495 return 1; /* cycle on/off once per second */ 5496 5497 case ETHTOOL_ID_ON: 5498 s2io_set_led(sp, true); 5499 break; 5500 5501 case ETHTOOL_ID_OFF: 5502 s2io_set_led(sp, false); 5503 break; 5504 5505 case ETHTOOL_ID_INACTIVE: 5506 if (CARDS_WITH_FAULTY_LINK_INDICATORS(sp->device_type, subid)) 5507 writeq(sp->adapt_ctrl_org, &bar0->gpio_control); 5508 } 5509 5510 return 0; 5511 } 5512 5513 static void s2io_ethtool_gringparam(struct net_device *dev, 5514 struct ethtool_ringparam *ering) 5515 { 5516 struct s2io_nic *sp = netdev_priv(dev); 5517 int i, tx_desc_count = 0, rx_desc_count = 0; 5518 5519 if (sp->rxd_mode == RXD_MODE_1) { 5520 ering->rx_max_pending = MAX_RX_DESC_1; 5521 ering->rx_jumbo_max_pending = MAX_RX_DESC_1; 5522 } else { 5523 ering->rx_max_pending = MAX_RX_DESC_2; 5524 ering->rx_jumbo_max_pending = MAX_RX_DESC_2; 5525 } 5526 5527 ering->tx_max_pending = MAX_TX_DESC; 5528 5529 for (i = 0; i < sp->config.rx_ring_num; i++) 5530 rx_desc_count += sp->config.rx_cfg[i].num_rxd; 5531 ering->rx_pending = rx_desc_count; 5532 ering->rx_jumbo_pending = rx_desc_count; 5533 5534 for (i = 0; i < sp->config.tx_fifo_num; i++) 5535 tx_desc_count += sp->config.tx_cfg[i].fifo_len; 5536 ering->tx_pending = tx_desc_count; 5537 DBG_PRINT(INFO_DBG, "max txds: %d\n", sp->config.max_txds); 5538 } 5539 5540 /** 5541 * s2io_ethtool_getpause_data -Pause frame frame generation and reception. 5542 * @sp : private member of the device structure, which is a pointer to the 5543 * s2io_nic structure. 5544 * @ep : pointer to the structure with pause parameters given by ethtool. 5545 * Description: 5546 * Returns the Pause frame generation and reception capability of the NIC. 5547 * Return value: 5548 * void 5549 */ 5550 static void s2io_ethtool_getpause_data(struct net_device *dev, 5551 struct ethtool_pauseparam *ep) 5552 { 5553 u64 val64; 5554 struct s2io_nic *sp = netdev_priv(dev); 5555 struct XENA_dev_config __iomem *bar0 = sp->bar0; 5556 5557 val64 = readq(&bar0->rmac_pause_cfg); 5558 if (val64 & RMAC_PAUSE_GEN_ENABLE) 5559 ep->tx_pause = true; 5560 if (val64 & RMAC_PAUSE_RX_ENABLE) 5561 ep->rx_pause = true; 5562 ep->autoneg = false; 5563 } 5564 5565 /** 5566 * s2io_ethtool_setpause_data - set/reset pause frame generation. 5567 * @sp : private member of the device structure, which is a pointer to the 5568 * s2io_nic structure. 5569 * @ep : pointer to the structure with pause parameters given by ethtool. 5570 * Description: 5571 * It can be used to set or reset Pause frame generation or reception 5572 * support of the NIC. 5573 * Return value: 5574 * int, returns 0 on Success 5575 */ 5576 5577 static int s2io_ethtool_setpause_data(struct net_device *dev, 5578 struct ethtool_pauseparam *ep) 5579 { 5580 u64 val64; 5581 struct s2io_nic *sp = netdev_priv(dev); 5582 struct XENA_dev_config __iomem *bar0 = sp->bar0; 5583 5584 val64 = readq(&bar0->rmac_pause_cfg); 5585 if (ep->tx_pause) 5586 val64 |= RMAC_PAUSE_GEN_ENABLE; 5587 else 5588 val64 &= ~RMAC_PAUSE_GEN_ENABLE; 5589 if (ep->rx_pause) 5590 val64 |= RMAC_PAUSE_RX_ENABLE; 5591 else 5592 val64 &= ~RMAC_PAUSE_RX_ENABLE; 5593 writeq(val64, &bar0->rmac_pause_cfg); 5594 return 0; 5595 } 5596 5597 /** 5598 * read_eeprom - reads 4 bytes of data from user given offset. 5599 * @sp : private member of the device structure, which is a pointer to the 5600 * s2io_nic structure. 5601 * @off : offset at which the data must be written 5602 * @data : Its an output parameter where the data read at the given 5603 * offset is stored. 5604 * Description: 5605 * Will read 4 bytes of data from the user given offset and return the 5606 * read data. 5607 * NOTE: Will allow to read only part of the EEPROM visible through the 5608 * I2C bus. 5609 * Return value: 5610 * -1 on failure and 0 on success. 5611 */ 5612 5613 #define S2IO_DEV_ID 5 5614 static int read_eeprom(struct s2io_nic *sp, int off, u64 *data) 5615 { 5616 int ret = -1; 5617 u32 exit_cnt = 0; 5618 u64 val64; 5619 struct XENA_dev_config __iomem *bar0 = sp->bar0; 5620 5621 if (sp->device_type == XFRAME_I_DEVICE) { 5622 val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) | 5623 I2C_CONTROL_ADDR(off) | 5624 I2C_CONTROL_BYTE_CNT(0x3) | 5625 I2C_CONTROL_READ | 5626 I2C_CONTROL_CNTL_START; 5627 SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF); 5628 5629 while (exit_cnt < 5) { 5630 val64 = readq(&bar0->i2c_control); 5631 if (I2C_CONTROL_CNTL_END(val64)) { 5632 *data = I2C_CONTROL_GET_DATA(val64); 5633 ret = 0; 5634 break; 5635 } 5636 msleep(50); 5637 exit_cnt++; 5638 } 5639 } 5640 5641 if (sp->device_type == XFRAME_II_DEVICE) { 5642 val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 | 5643 SPI_CONTROL_BYTECNT(0x3) | 5644 SPI_CONTROL_CMD(0x3) | SPI_CONTROL_ADDR(off); 5645 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF); 5646 val64 |= SPI_CONTROL_REQ; 5647 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF); 5648 while (exit_cnt < 5) { 5649 val64 = readq(&bar0->spi_control); 5650 if (val64 & SPI_CONTROL_NACK) { 5651 ret = 1; 5652 break; 5653 } else if (val64 & SPI_CONTROL_DONE) { 5654 *data = readq(&bar0->spi_data); 5655 *data &= 0xffffff; 5656 ret = 0; 5657 break; 5658 } 5659 msleep(50); 5660 exit_cnt++; 5661 } 5662 } 5663 return ret; 5664 } 5665 5666 /** 5667 * write_eeprom - actually writes the relevant part of the data value. 5668 * @sp : private member of the device structure, which is a pointer to the 5669 * s2io_nic structure. 5670 * @off : offset at which the data must be written 5671 * @data : The data that is to be written 5672 * @cnt : Number of bytes of the data that are actually to be written into 5673 * the Eeprom. (max of 3) 5674 * Description: 5675 * Actually writes the relevant part of the data value into the Eeprom 5676 * through the I2C bus. 5677 * Return value: 5678 * 0 on success, -1 on failure. 5679 */ 5680 5681 static int write_eeprom(struct s2io_nic *sp, int off, u64 data, int cnt) 5682 { 5683 int exit_cnt = 0, ret = -1; 5684 u64 val64; 5685 struct XENA_dev_config __iomem *bar0 = sp->bar0; 5686 5687 if (sp->device_type == XFRAME_I_DEVICE) { 5688 val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) | 5689 I2C_CONTROL_ADDR(off) | 5690 I2C_CONTROL_BYTE_CNT(cnt) | 5691 I2C_CONTROL_SET_DATA((u32)data) | 5692 I2C_CONTROL_CNTL_START; 5693 SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF); 5694 5695 while (exit_cnt < 5) { 5696 val64 = readq(&bar0->i2c_control); 5697 if (I2C_CONTROL_CNTL_END(val64)) { 5698 if (!(val64 & I2C_CONTROL_NACK)) 5699 ret = 0; 5700 break; 5701 } 5702 msleep(50); 5703 exit_cnt++; 5704 } 5705 } 5706 5707 if (sp->device_type == XFRAME_II_DEVICE) { 5708 int write_cnt = (cnt == 8) ? 0 : cnt; 5709 writeq(SPI_DATA_WRITE(data, (cnt << 3)), &bar0->spi_data); 5710 5711 val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 | 5712 SPI_CONTROL_BYTECNT(write_cnt) | 5713 SPI_CONTROL_CMD(0x2) | SPI_CONTROL_ADDR(off); 5714 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF); 5715 val64 |= SPI_CONTROL_REQ; 5716 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF); 5717 while (exit_cnt < 5) { 5718 val64 = readq(&bar0->spi_control); 5719 if (val64 & SPI_CONTROL_NACK) { 5720 ret = 1; 5721 break; 5722 } else if (val64 & SPI_CONTROL_DONE) { 5723 ret = 0; 5724 break; 5725 } 5726 msleep(50); 5727 exit_cnt++; 5728 } 5729 } 5730 return ret; 5731 } 5732 static void s2io_vpd_read(struct s2io_nic *nic) 5733 { 5734 u8 *vpd_data; 5735 u8 data; 5736 int i = 0, cnt, len, fail = 0; 5737 int vpd_addr = 0x80; 5738 struct swStat *swstats = &nic->mac_control.stats_info->sw_stat; 5739 5740 if (nic->device_type == XFRAME_II_DEVICE) { 5741 strcpy(nic->product_name, "Xframe II 10GbE network adapter"); 5742 vpd_addr = 0x80; 5743 } else { 5744 strcpy(nic->product_name, "Xframe I 10GbE network adapter"); 5745 vpd_addr = 0x50; 5746 } 5747 strcpy(nic->serial_num, "NOT AVAILABLE"); 5748 5749 vpd_data = kmalloc(256, GFP_KERNEL); 5750 if (!vpd_data) { 5751 swstats->mem_alloc_fail_cnt++; 5752 return; 5753 } 5754 swstats->mem_allocated += 256; 5755 5756 for (i = 0; i < 256; i += 4) { 5757 pci_write_config_byte(nic->pdev, (vpd_addr + 2), i); 5758 pci_read_config_byte(nic->pdev, (vpd_addr + 2), &data); 5759 pci_write_config_byte(nic->pdev, (vpd_addr + 3), 0); 5760 for (cnt = 0; cnt < 5; cnt++) { 5761 msleep(2); 5762 pci_read_config_byte(nic->pdev, (vpd_addr + 3), &data); 5763 if (data == 0x80) 5764 break; 5765 } 5766 if (cnt >= 5) { 5767 DBG_PRINT(ERR_DBG, "Read of VPD data failed\n"); 5768 fail = 1; 5769 break; 5770 } 5771 pci_read_config_dword(nic->pdev, (vpd_addr + 4), 5772 (u32 *)&vpd_data[i]); 5773 } 5774 5775 if (!fail) { 5776 /* read serial number of adapter */ 5777 for (cnt = 0; cnt < 252; cnt++) { 5778 if ((vpd_data[cnt] == 'S') && 5779 (vpd_data[cnt+1] == 'N')) { 5780 len = vpd_data[cnt+2]; 5781 if (len < min(VPD_STRING_LEN, 256-cnt-2)) { 5782 memcpy(nic->serial_num, 5783 &vpd_data[cnt + 3], 5784 len); 5785 memset(nic->serial_num+len, 5786 0, 5787 VPD_STRING_LEN-len); 5788 break; 5789 } 5790 } 5791 } 5792 } 5793 5794 if ((!fail) && (vpd_data[1] < VPD_STRING_LEN)) { 5795 len = vpd_data[1]; 5796 memcpy(nic->product_name, &vpd_data[3], len); 5797 nic->product_name[len] = 0; 5798 } 5799 kfree(vpd_data); 5800 swstats->mem_freed += 256; 5801 } 5802 5803 /** 5804 * s2io_ethtool_geeprom - reads the value stored in the Eeprom. 5805 * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure. 5806 * @eeprom : pointer to the user level structure provided by ethtool, 5807 * containing all relevant information. 5808 * @data_buf : user defined value to be written into Eeprom. 5809 * Description: Reads the values stored in the Eeprom at given offset 5810 * for a given length. Stores these values int the input argument data 5811 * buffer 'data_buf' and returns these to the caller (ethtool.) 5812 * Return value: 5813 * int 0 on success 5814 */ 5815 5816 static int s2io_ethtool_geeprom(struct net_device *dev, 5817 struct ethtool_eeprom *eeprom, u8 * data_buf) 5818 { 5819 u32 i, valid; 5820 u64 data; 5821 struct s2io_nic *sp = netdev_priv(dev); 5822 5823 eeprom->magic = sp->pdev->vendor | (sp->pdev->device << 16); 5824 5825 if ((eeprom->offset + eeprom->len) > (XENA_EEPROM_SPACE)) 5826 eeprom->len = XENA_EEPROM_SPACE - eeprom->offset; 5827 5828 for (i = 0; i < eeprom->len; i += 4) { 5829 if (read_eeprom(sp, (eeprom->offset + i), &data)) { 5830 DBG_PRINT(ERR_DBG, "Read of EEPROM failed\n"); 5831 return -EFAULT; 5832 } 5833 valid = INV(data); 5834 memcpy((data_buf + i), &valid, 4); 5835 } 5836 return 0; 5837 } 5838 5839 /** 5840 * s2io_ethtool_seeprom - tries to write the user provided value in Eeprom 5841 * @sp : private member of the device structure, which is a pointer to the 5842 * s2io_nic structure. 5843 * @eeprom : pointer to the user level structure provided by ethtool, 5844 * containing all relevant information. 5845 * @data_buf ; user defined value to be written into Eeprom. 5846 * Description: 5847 * Tries to write the user provided value in the Eeprom, at the offset 5848 * given by the user. 5849 * Return value: 5850 * 0 on success, -EFAULT on failure. 5851 */ 5852 5853 static int s2io_ethtool_seeprom(struct net_device *dev, 5854 struct ethtool_eeprom *eeprom, 5855 u8 *data_buf) 5856 { 5857 int len = eeprom->len, cnt = 0; 5858 u64 valid = 0, data; 5859 struct s2io_nic *sp = netdev_priv(dev); 5860 5861 if (eeprom->magic != (sp->pdev->vendor | (sp->pdev->device << 16))) { 5862 DBG_PRINT(ERR_DBG, 5863 "ETHTOOL_WRITE_EEPROM Err: " 5864 "Magic value is wrong, it is 0x%x should be 0x%x\n", 5865 (sp->pdev->vendor | (sp->pdev->device << 16)), 5866 eeprom->magic); 5867 return -EFAULT; 5868 } 5869 5870 while (len) { 5871 data = (u32)data_buf[cnt] & 0x000000FF; 5872 if (data) 5873 valid = (u32)(data << 24); 5874 else 5875 valid = data; 5876 5877 if (write_eeprom(sp, (eeprom->offset + cnt), valid, 0)) { 5878 DBG_PRINT(ERR_DBG, 5879 "ETHTOOL_WRITE_EEPROM Err: " 5880 "Cannot write into the specified offset\n"); 5881 return -EFAULT; 5882 } 5883 cnt++; 5884 len--; 5885 } 5886 5887 return 0; 5888 } 5889 5890 /** 5891 * s2io_register_test - reads and writes into all clock domains. 5892 * @sp : private member of the device structure, which is a pointer to the 5893 * s2io_nic structure. 5894 * @data : variable that returns the result of each of the test conducted b 5895 * by the driver. 5896 * Description: 5897 * Read and write into all clock domains. The NIC has 3 clock domains, 5898 * see that registers in all the three regions are accessible. 5899 * Return value: 5900 * 0 on success. 5901 */ 5902 5903 static int s2io_register_test(struct s2io_nic *sp, uint64_t *data) 5904 { 5905 struct XENA_dev_config __iomem *bar0 = sp->bar0; 5906 u64 val64 = 0, exp_val; 5907 int fail = 0; 5908 5909 val64 = readq(&bar0->pif_rd_swapper_fb); 5910 if (val64 != 0x123456789abcdefULL) { 5911 fail = 1; 5912 DBG_PRINT(INFO_DBG, "Read Test level %d fails\n", 1); 5913 } 5914 5915 val64 = readq(&bar0->rmac_pause_cfg); 5916 if (val64 != 0xc000ffff00000000ULL) { 5917 fail = 1; 5918 DBG_PRINT(INFO_DBG, "Read Test level %d fails\n", 2); 5919 } 5920 5921 val64 = readq(&bar0->rx_queue_cfg); 5922 if (sp->device_type == XFRAME_II_DEVICE) 5923 exp_val = 0x0404040404040404ULL; 5924 else 5925 exp_val = 0x0808080808080808ULL; 5926 if (val64 != exp_val) { 5927 fail = 1; 5928 DBG_PRINT(INFO_DBG, "Read Test level %d fails\n", 3); 5929 } 5930 5931 val64 = readq(&bar0->xgxs_efifo_cfg); 5932 if (val64 != 0x000000001923141EULL) { 5933 fail = 1; 5934 DBG_PRINT(INFO_DBG, "Read Test level %d fails\n", 4); 5935 } 5936 5937 val64 = 0x5A5A5A5A5A5A5A5AULL; 5938 writeq(val64, &bar0->xmsi_data); 5939 val64 = readq(&bar0->xmsi_data); 5940 if (val64 != 0x5A5A5A5A5A5A5A5AULL) { 5941 fail = 1; 5942 DBG_PRINT(ERR_DBG, "Write Test level %d fails\n", 1); 5943 } 5944 5945 val64 = 0xA5A5A5A5A5A5A5A5ULL; 5946 writeq(val64, &bar0->xmsi_data); 5947 val64 = readq(&bar0->xmsi_data); 5948 if (val64 != 0xA5A5A5A5A5A5A5A5ULL) { 5949 fail = 1; 5950 DBG_PRINT(ERR_DBG, "Write Test level %d fails\n", 2); 5951 } 5952 5953 *data = fail; 5954 return fail; 5955 } 5956 5957 /** 5958 * s2io_eeprom_test - to verify that EEprom in the xena can be programmed. 5959 * @sp : private member of the device structure, which is a pointer to the 5960 * s2io_nic structure. 5961 * @data:variable that returns the result of each of the test conducted by 5962 * the driver. 5963 * Description: 5964 * Verify that EEPROM in the xena can be programmed using I2C_CONTROL 5965 * register. 5966 * Return value: 5967 * 0 on success. 5968 */ 5969 5970 static int s2io_eeprom_test(struct s2io_nic *sp, uint64_t *data) 5971 { 5972 int fail = 0; 5973 u64 ret_data, org_4F0, org_7F0; 5974 u8 saved_4F0 = 0, saved_7F0 = 0; 5975 struct net_device *dev = sp->dev; 5976 5977 /* Test Write Error at offset 0 */ 5978 /* Note that SPI interface allows write access to all areas 5979 * of EEPROM. Hence doing all negative testing only for Xframe I. 5980 */ 5981 if (sp->device_type == XFRAME_I_DEVICE) 5982 if (!write_eeprom(sp, 0, 0, 3)) 5983 fail = 1; 5984 5985 /* Save current values at offsets 0x4F0 and 0x7F0 */ 5986 if (!read_eeprom(sp, 0x4F0, &org_4F0)) 5987 saved_4F0 = 1; 5988 if (!read_eeprom(sp, 0x7F0, &org_7F0)) 5989 saved_7F0 = 1; 5990 5991 /* Test Write at offset 4f0 */ 5992 if (write_eeprom(sp, 0x4F0, 0x012345, 3)) 5993 fail = 1; 5994 if (read_eeprom(sp, 0x4F0, &ret_data)) 5995 fail = 1; 5996 5997 if (ret_data != 0x012345) { 5998 DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x4F0. " 5999 "Data written %llx Data read %llx\n", 6000 dev->name, (unsigned long long)0x12345, 6001 (unsigned long long)ret_data); 6002 fail = 1; 6003 } 6004 6005 /* Reset the EEPROM data go FFFF */ 6006 write_eeprom(sp, 0x4F0, 0xFFFFFF, 3); 6007 6008 /* Test Write Request Error at offset 0x7c */ 6009 if (sp->device_type == XFRAME_I_DEVICE) 6010 if (!write_eeprom(sp, 0x07C, 0, 3)) 6011 fail = 1; 6012 6013 /* Test Write Request at offset 0x7f0 */ 6014 if (write_eeprom(sp, 0x7F0, 0x012345, 3)) 6015 fail = 1; 6016 if (read_eeprom(sp, 0x7F0, &ret_data)) 6017 fail = 1; 6018 6019 if (ret_data != 0x012345) { 6020 DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x7F0. " 6021 "Data written %llx Data read %llx\n", 6022 dev->name, (unsigned long long)0x12345, 6023 (unsigned long long)ret_data); 6024 fail = 1; 6025 } 6026 6027 /* Reset the EEPROM data go FFFF */ 6028 write_eeprom(sp, 0x7F0, 0xFFFFFF, 3); 6029 6030 if (sp->device_type == XFRAME_I_DEVICE) { 6031 /* Test Write Error at offset 0x80 */ 6032 if (!write_eeprom(sp, 0x080, 0, 3)) 6033 fail = 1; 6034 6035 /* Test Write Error at offset 0xfc */ 6036 if (!write_eeprom(sp, 0x0FC, 0, 3)) 6037 fail = 1; 6038 6039 /* Test Write Error at offset 0x100 */ 6040 if (!write_eeprom(sp, 0x100, 0, 3)) 6041 fail = 1; 6042 6043 /* Test Write Error at offset 4ec */ 6044 if (!write_eeprom(sp, 0x4EC, 0, 3)) 6045 fail = 1; 6046 } 6047 6048 /* Restore values at offsets 0x4F0 and 0x7F0 */ 6049 if (saved_4F0) 6050 write_eeprom(sp, 0x4F0, org_4F0, 3); 6051 if (saved_7F0) 6052 write_eeprom(sp, 0x7F0, org_7F0, 3); 6053 6054 *data = fail; 6055 return fail; 6056 } 6057 6058 /** 6059 * s2io_bist_test - invokes the MemBist test of the card . 6060 * @sp : private member of the device structure, which is a pointer to the 6061 * s2io_nic structure. 6062 * @data:variable that returns the result of each of the test conducted by 6063 * the driver. 6064 * Description: 6065 * This invokes the MemBist test of the card. We give around 6066 * 2 secs time for the Test to complete. If it's still not complete 6067 * within this peiod, we consider that the test failed. 6068 * Return value: 6069 * 0 on success and -1 on failure. 6070 */ 6071 6072 static int s2io_bist_test(struct s2io_nic *sp, uint64_t *data) 6073 { 6074 u8 bist = 0; 6075 int cnt = 0, ret = -1; 6076 6077 pci_read_config_byte(sp->pdev, PCI_BIST, &bist); 6078 bist |= PCI_BIST_START; 6079 pci_write_config_word(sp->pdev, PCI_BIST, bist); 6080 6081 while (cnt < 20) { 6082 pci_read_config_byte(sp->pdev, PCI_BIST, &bist); 6083 if (!(bist & PCI_BIST_START)) { 6084 *data = (bist & PCI_BIST_CODE_MASK); 6085 ret = 0; 6086 break; 6087 } 6088 msleep(100); 6089 cnt++; 6090 } 6091 6092 return ret; 6093 } 6094 6095 /** 6096 * s2io_link_test - verifies the link state of the nic 6097 * @sp ; private member of the device structure, which is a pointer to the 6098 * s2io_nic structure. 6099 * @data: variable that returns the result of each of the test conducted by 6100 * the driver. 6101 * Description: 6102 * The function verifies the link state of the NIC and updates the input 6103 * argument 'data' appropriately. 6104 * Return value: 6105 * 0 on success. 6106 */ 6107 6108 static int s2io_link_test(struct s2io_nic *sp, uint64_t *data) 6109 { 6110 struct XENA_dev_config __iomem *bar0 = sp->bar0; 6111 u64 val64; 6112 6113 val64 = readq(&bar0->adapter_status); 6114 if (!(LINK_IS_UP(val64))) 6115 *data = 1; 6116 else 6117 *data = 0; 6118 6119 return *data; 6120 } 6121 6122 /** 6123 * s2io_rldram_test - offline test for access to the RldRam chip on the NIC 6124 * @sp: private member of the device structure, which is a pointer to the 6125 * s2io_nic structure. 6126 * @data: variable that returns the result of each of the test 6127 * conducted by the driver. 6128 * Description: 6129 * This is one of the offline test that tests the read and write 6130 * access to the RldRam chip on the NIC. 6131 * Return value: 6132 * 0 on success. 6133 */ 6134 6135 static int s2io_rldram_test(struct s2io_nic *sp, uint64_t *data) 6136 { 6137 struct XENA_dev_config __iomem *bar0 = sp->bar0; 6138 u64 val64; 6139 int cnt, iteration = 0, test_fail = 0; 6140 6141 val64 = readq(&bar0->adapter_control); 6142 val64 &= ~ADAPTER_ECC_EN; 6143 writeq(val64, &bar0->adapter_control); 6144 6145 val64 = readq(&bar0->mc_rldram_test_ctrl); 6146 val64 |= MC_RLDRAM_TEST_MODE; 6147 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF); 6148 6149 val64 = readq(&bar0->mc_rldram_mrs); 6150 val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE; 6151 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF); 6152 6153 val64 |= MC_RLDRAM_MRS_ENABLE; 6154 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF); 6155 6156 while (iteration < 2) { 6157 val64 = 0x55555555aaaa0000ULL; 6158 if (iteration == 1) 6159 val64 ^= 0xFFFFFFFFFFFF0000ULL; 6160 writeq(val64, &bar0->mc_rldram_test_d0); 6161 6162 val64 = 0xaaaa5a5555550000ULL; 6163 if (iteration == 1) 6164 val64 ^= 0xFFFFFFFFFFFF0000ULL; 6165 writeq(val64, &bar0->mc_rldram_test_d1); 6166 6167 val64 = 0x55aaaaaaaa5a0000ULL; 6168 if (iteration == 1) 6169 val64 ^= 0xFFFFFFFFFFFF0000ULL; 6170 writeq(val64, &bar0->mc_rldram_test_d2); 6171 6172 val64 = (u64) (0x0000003ffffe0100ULL); 6173 writeq(val64, &bar0->mc_rldram_test_add); 6174 6175 val64 = MC_RLDRAM_TEST_MODE | 6176 MC_RLDRAM_TEST_WRITE | 6177 MC_RLDRAM_TEST_GO; 6178 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF); 6179 6180 for (cnt = 0; cnt < 5; cnt++) { 6181 val64 = readq(&bar0->mc_rldram_test_ctrl); 6182 if (val64 & MC_RLDRAM_TEST_DONE) 6183 break; 6184 msleep(200); 6185 } 6186 6187 if (cnt == 5) 6188 break; 6189 6190 val64 = MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_GO; 6191 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF); 6192 6193 for (cnt = 0; cnt < 5; cnt++) { 6194 val64 = readq(&bar0->mc_rldram_test_ctrl); 6195 if (val64 & MC_RLDRAM_TEST_DONE) 6196 break; 6197 msleep(500); 6198 } 6199 6200 if (cnt == 5) 6201 break; 6202 6203 val64 = readq(&bar0->mc_rldram_test_ctrl); 6204 if (!(val64 & MC_RLDRAM_TEST_PASS)) 6205 test_fail = 1; 6206 6207 iteration++; 6208 } 6209 6210 *data = test_fail; 6211 6212 /* Bring the adapter out of test mode */ 6213 SPECIAL_REG_WRITE(0, &bar0->mc_rldram_test_ctrl, LF); 6214 6215 return test_fail; 6216 } 6217 6218 /** 6219 * s2io_ethtool_test - conducts 6 tsets to determine the health of card. 6220 * @sp : private member of the device structure, which is a pointer to the 6221 * s2io_nic structure. 6222 * @ethtest : pointer to a ethtool command specific structure that will be 6223 * returned to the user. 6224 * @data : variable that returns the result of each of the test 6225 * conducted by the driver. 6226 * Description: 6227 * This function conducts 6 tests ( 4 offline and 2 online) to determine 6228 * the health of the card. 6229 * Return value: 6230 * void 6231 */ 6232 6233 static void s2io_ethtool_test(struct net_device *dev, 6234 struct ethtool_test *ethtest, 6235 uint64_t *data) 6236 { 6237 struct s2io_nic *sp = netdev_priv(dev); 6238 int orig_state = netif_running(sp->dev); 6239 6240 if (ethtest->flags == ETH_TEST_FL_OFFLINE) { 6241 /* Offline Tests. */ 6242 if (orig_state) 6243 s2io_close(sp->dev); 6244 6245 if (s2io_register_test(sp, &data[0])) 6246 ethtest->flags |= ETH_TEST_FL_FAILED; 6247 6248 s2io_reset(sp); 6249 6250 if (s2io_rldram_test(sp, &data[3])) 6251 ethtest->flags |= ETH_TEST_FL_FAILED; 6252 6253 s2io_reset(sp); 6254 6255 if (s2io_eeprom_test(sp, &data[1])) 6256 ethtest->flags |= ETH_TEST_FL_FAILED; 6257 6258 if (s2io_bist_test(sp, &data[4])) 6259 ethtest->flags |= ETH_TEST_FL_FAILED; 6260 6261 if (orig_state) 6262 s2io_open(sp->dev); 6263 6264 data[2] = 0; 6265 } else { 6266 /* Online Tests. */ 6267 if (!orig_state) { 6268 DBG_PRINT(ERR_DBG, "%s: is not up, cannot run test\n", 6269 dev->name); 6270 data[0] = -1; 6271 data[1] = -1; 6272 data[2] = -1; 6273 data[3] = -1; 6274 data[4] = -1; 6275 } 6276 6277 if (s2io_link_test(sp, &data[2])) 6278 ethtest->flags |= ETH_TEST_FL_FAILED; 6279 6280 data[0] = 0; 6281 data[1] = 0; 6282 data[3] = 0; 6283 data[4] = 0; 6284 } 6285 } 6286 6287 static void s2io_get_ethtool_stats(struct net_device *dev, 6288 struct ethtool_stats *estats, 6289 u64 *tmp_stats) 6290 { 6291 int i = 0, k; 6292 struct s2io_nic *sp = netdev_priv(dev); 6293 struct stat_block *stats = sp->mac_control.stats_info; 6294 struct swStat *swstats = &stats->sw_stat; 6295 struct xpakStat *xstats = &stats->xpak_stat; 6296 6297 s2io_updt_stats(sp); 6298 tmp_stats[i++] = 6299 (u64)le32_to_cpu(stats->tmac_frms_oflow) << 32 | 6300 le32_to_cpu(stats->tmac_frms); 6301 tmp_stats[i++] = 6302 (u64)le32_to_cpu(stats->tmac_data_octets_oflow) << 32 | 6303 le32_to_cpu(stats->tmac_data_octets); 6304 tmp_stats[i++] = le64_to_cpu(stats->tmac_drop_frms); 6305 tmp_stats[i++] = 6306 (u64)le32_to_cpu(stats->tmac_mcst_frms_oflow) << 32 | 6307 le32_to_cpu(stats->tmac_mcst_frms); 6308 tmp_stats[i++] = 6309 (u64)le32_to_cpu(stats->tmac_bcst_frms_oflow) << 32 | 6310 le32_to_cpu(stats->tmac_bcst_frms); 6311 tmp_stats[i++] = le64_to_cpu(stats->tmac_pause_ctrl_frms); 6312 tmp_stats[i++] = 6313 (u64)le32_to_cpu(stats->tmac_ttl_octets_oflow) << 32 | 6314 le32_to_cpu(stats->tmac_ttl_octets); 6315 tmp_stats[i++] = 6316 (u64)le32_to_cpu(stats->tmac_ucst_frms_oflow) << 32 | 6317 le32_to_cpu(stats->tmac_ucst_frms); 6318 tmp_stats[i++] = 6319 (u64)le32_to_cpu(stats->tmac_nucst_frms_oflow) << 32 | 6320 le32_to_cpu(stats->tmac_nucst_frms); 6321 tmp_stats[i++] = 6322 (u64)le32_to_cpu(stats->tmac_any_err_frms_oflow) << 32 | 6323 le32_to_cpu(stats->tmac_any_err_frms); 6324 tmp_stats[i++] = le64_to_cpu(stats->tmac_ttl_less_fb_octets); 6325 tmp_stats[i++] = le64_to_cpu(stats->tmac_vld_ip_octets); 6326 tmp_stats[i++] = 6327 (u64)le32_to_cpu(stats->tmac_vld_ip_oflow) << 32 | 6328 le32_to_cpu(stats->tmac_vld_ip); 6329 tmp_stats[i++] = 6330 (u64)le32_to_cpu(stats->tmac_drop_ip_oflow) << 32 | 6331 le32_to_cpu(stats->tmac_drop_ip); 6332 tmp_stats[i++] = 6333 (u64)le32_to_cpu(stats->tmac_icmp_oflow) << 32 | 6334 le32_to_cpu(stats->tmac_icmp); 6335 tmp_stats[i++] = 6336 (u64)le32_to_cpu(stats->tmac_rst_tcp_oflow) << 32 | 6337 le32_to_cpu(stats->tmac_rst_tcp); 6338 tmp_stats[i++] = le64_to_cpu(stats->tmac_tcp); 6339 tmp_stats[i++] = (u64)le32_to_cpu(stats->tmac_udp_oflow) << 32 | 6340 le32_to_cpu(stats->tmac_udp); 6341 tmp_stats[i++] = 6342 (u64)le32_to_cpu(stats->rmac_vld_frms_oflow) << 32 | 6343 le32_to_cpu(stats->rmac_vld_frms); 6344 tmp_stats[i++] = 6345 (u64)le32_to_cpu(stats->rmac_data_octets_oflow) << 32 | 6346 le32_to_cpu(stats->rmac_data_octets); 6347 tmp_stats[i++] = le64_to_cpu(stats->rmac_fcs_err_frms); 6348 tmp_stats[i++] = le64_to_cpu(stats->rmac_drop_frms); 6349 tmp_stats[i++] = 6350 (u64)le32_to_cpu(stats->rmac_vld_mcst_frms_oflow) << 32 | 6351 le32_to_cpu(stats->rmac_vld_mcst_frms); 6352 tmp_stats[i++] = 6353 (u64)le32_to_cpu(stats->rmac_vld_bcst_frms_oflow) << 32 | 6354 le32_to_cpu(stats->rmac_vld_bcst_frms); 6355 tmp_stats[i++] = le32_to_cpu(stats->rmac_in_rng_len_err_frms); 6356 tmp_stats[i++] = le32_to_cpu(stats->rmac_out_rng_len_err_frms); 6357 tmp_stats[i++] = le64_to_cpu(stats->rmac_long_frms); 6358 tmp_stats[i++] = le64_to_cpu(stats->rmac_pause_ctrl_frms); 6359 tmp_stats[i++] = le64_to_cpu(stats->rmac_unsup_ctrl_frms); 6360 tmp_stats[i++] = 6361 (u64)le32_to_cpu(stats->rmac_ttl_octets_oflow) << 32 | 6362 le32_to_cpu(stats->rmac_ttl_octets); 6363 tmp_stats[i++] = 6364 (u64)le32_to_cpu(stats->rmac_accepted_ucst_frms_oflow) << 32 6365 | le32_to_cpu(stats->rmac_accepted_ucst_frms); 6366 tmp_stats[i++] = 6367 (u64)le32_to_cpu(stats->rmac_accepted_nucst_frms_oflow) 6368 << 32 | le32_to_cpu(stats->rmac_accepted_nucst_frms); 6369 tmp_stats[i++] = 6370 (u64)le32_to_cpu(stats->rmac_discarded_frms_oflow) << 32 | 6371 le32_to_cpu(stats->rmac_discarded_frms); 6372 tmp_stats[i++] = 6373 (u64)le32_to_cpu(stats->rmac_drop_events_oflow) 6374 << 32 | le32_to_cpu(stats->rmac_drop_events); 6375 tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_less_fb_octets); 6376 tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_frms); 6377 tmp_stats[i++] = 6378 (u64)le32_to_cpu(stats->rmac_usized_frms_oflow) << 32 | 6379 le32_to_cpu(stats->rmac_usized_frms); 6380 tmp_stats[i++] = 6381 (u64)le32_to_cpu(stats->rmac_osized_frms_oflow) << 32 | 6382 le32_to_cpu(stats->rmac_osized_frms); 6383 tmp_stats[i++] = 6384 (u64)le32_to_cpu(stats->rmac_frag_frms_oflow) << 32 | 6385 le32_to_cpu(stats->rmac_frag_frms); 6386 tmp_stats[i++] = 6387 (u64)le32_to_cpu(stats->rmac_jabber_frms_oflow) << 32 | 6388 le32_to_cpu(stats->rmac_jabber_frms); 6389 tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_64_frms); 6390 tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_65_127_frms); 6391 tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_128_255_frms); 6392 tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_256_511_frms); 6393 tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_512_1023_frms); 6394 tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_1024_1518_frms); 6395 tmp_stats[i++] = 6396 (u64)le32_to_cpu(stats->rmac_ip_oflow) << 32 | 6397 le32_to_cpu(stats->rmac_ip); 6398 tmp_stats[i++] = le64_to_cpu(stats->rmac_ip_octets); 6399 tmp_stats[i++] = le32_to_cpu(stats->rmac_hdr_err_ip); 6400 tmp_stats[i++] = 6401 (u64)le32_to_cpu(stats->rmac_drop_ip_oflow) << 32 | 6402 le32_to_cpu(stats->rmac_drop_ip); 6403 tmp_stats[i++] = 6404 (u64)le32_to_cpu(stats->rmac_icmp_oflow) << 32 | 6405 le32_to_cpu(stats->rmac_icmp); 6406 tmp_stats[i++] = le64_to_cpu(stats->rmac_tcp); 6407 tmp_stats[i++] = 6408 (u64)le32_to_cpu(stats->rmac_udp_oflow) << 32 | 6409 le32_to_cpu(stats->rmac_udp); 6410 tmp_stats[i++] = 6411 (u64)le32_to_cpu(stats->rmac_err_drp_udp_oflow) << 32 | 6412 le32_to_cpu(stats->rmac_err_drp_udp); 6413 tmp_stats[i++] = le64_to_cpu(stats->rmac_xgmii_err_sym); 6414 tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q0); 6415 tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q1); 6416 tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q2); 6417 tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q3); 6418 tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q4); 6419 tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q5); 6420 tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q6); 6421 tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q7); 6422 tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q0); 6423 tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q1); 6424 tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q2); 6425 tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q3); 6426 tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q4); 6427 tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q5); 6428 tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q6); 6429 tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q7); 6430 tmp_stats[i++] = 6431 (u64)le32_to_cpu(stats->rmac_pause_cnt_oflow) << 32 | 6432 le32_to_cpu(stats->rmac_pause_cnt); 6433 tmp_stats[i++] = le64_to_cpu(stats->rmac_xgmii_data_err_cnt); 6434 tmp_stats[i++] = le64_to_cpu(stats->rmac_xgmii_ctrl_err_cnt); 6435 tmp_stats[i++] = 6436 (u64)le32_to_cpu(stats->rmac_accepted_ip_oflow) << 32 | 6437 le32_to_cpu(stats->rmac_accepted_ip); 6438 tmp_stats[i++] = le32_to_cpu(stats->rmac_err_tcp); 6439 tmp_stats[i++] = le32_to_cpu(stats->rd_req_cnt); 6440 tmp_stats[i++] = le32_to_cpu(stats->new_rd_req_cnt); 6441 tmp_stats[i++] = le32_to_cpu(stats->new_rd_req_rtry_cnt); 6442 tmp_stats[i++] = le32_to_cpu(stats->rd_rtry_cnt); 6443 tmp_stats[i++] = le32_to_cpu(stats->wr_rtry_rd_ack_cnt); 6444 tmp_stats[i++] = le32_to_cpu(stats->wr_req_cnt); 6445 tmp_stats[i++] = le32_to_cpu(stats->new_wr_req_cnt); 6446 tmp_stats[i++] = le32_to_cpu(stats->new_wr_req_rtry_cnt); 6447 tmp_stats[i++] = le32_to_cpu(stats->wr_rtry_cnt); 6448 tmp_stats[i++] = le32_to_cpu(stats->wr_disc_cnt); 6449 tmp_stats[i++] = le32_to_cpu(stats->rd_rtry_wr_ack_cnt); 6450 tmp_stats[i++] = le32_to_cpu(stats->txp_wr_cnt); 6451 tmp_stats[i++] = le32_to_cpu(stats->txd_rd_cnt); 6452 tmp_stats[i++] = le32_to_cpu(stats->txd_wr_cnt); 6453 tmp_stats[i++] = le32_to_cpu(stats->rxd_rd_cnt); 6454 tmp_stats[i++] = le32_to_cpu(stats->rxd_wr_cnt); 6455 tmp_stats[i++] = le32_to_cpu(stats->txf_rd_cnt); 6456 tmp_stats[i++] = le32_to_cpu(stats->rxf_wr_cnt); 6457 6458 /* Enhanced statistics exist only for Hercules */ 6459 if (sp->device_type == XFRAME_II_DEVICE) { 6460 tmp_stats[i++] = 6461 le64_to_cpu(stats->rmac_ttl_1519_4095_frms); 6462 tmp_stats[i++] = 6463 le64_to_cpu(stats->rmac_ttl_4096_8191_frms); 6464 tmp_stats[i++] = 6465 le64_to_cpu(stats->rmac_ttl_8192_max_frms); 6466 tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_gt_max_frms); 6467 tmp_stats[i++] = le64_to_cpu(stats->rmac_osized_alt_frms); 6468 tmp_stats[i++] = le64_to_cpu(stats->rmac_jabber_alt_frms); 6469 tmp_stats[i++] = le64_to_cpu(stats->rmac_gt_max_alt_frms); 6470 tmp_stats[i++] = le64_to_cpu(stats->rmac_vlan_frms); 6471 tmp_stats[i++] = le32_to_cpu(stats->rmac_len_discard); 6472 tmp_stats[i++] = le32_to_cpu(stats->rmac_fcs_discard); 6473 tmp_stats[i++] = le32_to_cpu(stats->rmac_pf_discard); 6474 tmp_stats[i++] = le32_to_cpu(stats->rmac_da_discard); 6475 tmp_stats[i++] = le32_to_cpu(stats->rmac_red_discard); 6476 tmp_stats[i++] = le32_to_cpu(stats->rmac_rts_discard); 6477 tmp_stats[i++] = le32_to_cpu(stats->rmac_ingm_full_discard); 6478 tmp_stats[i++] = le32_to_cpu(stats->link_fault_cnt); 6479 } 6480 6481 tmp_stats[i++] = 0; 6482 tmp_stats[i++] = swstats->single_ecc_errs; 6483 tmp_stats[i++] = swstats->double_ecc_errs; 6484 tmp_stats[i++] = swstats->parity_err_cnt; 6485 tmp_stats[i++] = swstats->serious_err_cnt; 6486 tmp_stats[i++] = swstats->soft_reset_cnt; 6487 tmp_stats[i++] = swstats->fifo_full_cnt; 6488 for (k = 0; k < MAX_RX_RINGS; k++) 6489 tmp_stats[i++] = swstats->ring_full_cnt[k]; 6490 tmp_stats[i++] = xstats->alarm_transceiver_temp_high; 6491 tmp_stats[i++] = xstats->alarm_transceiver_temp_low; 6492 tmp_stats[i++] = xstats->alarm_laser_bias_current_high; 6493 tmp_stats[i++] = xstats->alarm_laser_bias_current_low; 6494 tmp_stats[i++] = xstats->alarm_laser_output_power_high; 6495 tmp_stats[i++] = xstats->alarm_laser_output_power_low; 6496 tmp_stats[i++] = xstats->warn_transceiver_temp_high; 6497 tmp_stats[i++] = xstats->warn_transceiver_temp_low; 6498 tmp_stats[i++] = xstats->warn_laser_bias_current_high; 6499 tmp_stats[i++] = xstats->warn_laser_bias_current_low; 6500 tmp_stats[i++] = xstats->warn_laser_output_power_high; 6501 tmp_stats[i++] = xstats->warn_laser_output_power_low; 6502 tmp_stats[i++] = swstats->clubbed_frms_cnt; 6503 tmp_stats[i++] = swstats->sending_both; 6504 tmp_stats[i++] = swstats->outof_sequence_pkts; 6505 tmp_stats[i++] = swstats->flush_max_pkts; 6506 if (swstats->num_aggregations) { 6507 u64 tmp = swstats->sum_avg_pkts_aggregated; 6508 int count = 0; 6509 /* 6510 * Since 64-bit divide does not work on all platforms, 6511 * do repeated subtraction. 6512 */ 6513 while (tmp >= swstats->num_aggregations) { 6514 tmp -= swstats->num_aggregations; 6515 count++; 6516 } 6517 tmp_stats[i++] = count; 6518 } else 6519 tmp_stats[i++] = 0; 6520 tmp_stats[i++] = swstats->mem_alloc_fail_cnt; 6521 tmp_stats[i++] = swstats->pci_map_fail_cnt; 6522 tmp_stats[i++] = swstats->watchdog_timer_cnt; 6523 tmp_stats[i++] = swstats->mem_allocated; 6524 tmp_stats[i++] = swstats->mem_freed; 6525 tmp_stats[i++] = swstats->link_up_cnt; 6526 tmp_stats[i++] = swstats->link_down_cnt; 6527 tmp_stats[i++] = swstats->link_up_time; 6528 tmp_stats[i++] = swstats->link_down_time; 6529 6530 tmp_stats[i++] = swstats->tx_buf_abort_cnt; 6531 tmp_stats[i++] = swstats->tx_desc_abort_cnt; 6532 tmp_stats[i++] = swstats->tx_parity_err_cnt; 6533 tmp_stats[i++] = swstats->tx_link_loss_cnt; 6534 tmp_stats[i++] = swstats->tx_list_proc_err_cnt; 6535 6536 tmp_stats[i++] = swstats->rx_parity_err_cnt; 6537 tmp_stats[i++] = swstats->rx_abort_cnt; 6538 tmp_stats[i++] = swstats->rx_parity_abort_cnt; 6539 tmp_stats[i++] = swstats->rx_rda_fail_cnt; 6540 tmp_stats[i++] = swstats->rx_unkn_prot_cnt; 6541 tmp_stats[i++] = swstats->rx_fcs_err_cnt; 6542 tmp_stats[i++] = swstats->rx_buf_size_err_cnt; 6543 tmp_stats[i++] = swstats->rx_rxd_corrupt_cnt; 6544 tmp_stats[i++] = swstats->rx_unkn_err_cnt; 6545 tmp_stats[i++] = swstats->tda_err_cnt; 6546 tmp_stats[i++] = swstats->pfc_err_cnt; 6547 tmp_stats[i++] = swstats->pcc_err_cnt; 6548 tmp_stats[i++] = swstats->tti_err_cnt; 6549 tmp_stats[i++] = swstats->tpa_err_cnt; 6550 tmp_stats[i++] = swstats->sm_err_cnt; 6551 tmp_stats[i++] = swstats->lso_err_cnt; 6552 tmp_stats[i++] = swstats->mac_tmac_err_cnt; 6553 tmp_stats[i++] = swstats->mac_rmac_err_cnt; 6554 tmp_stats[i++] = swstats->xgxs_txgxs_err_cnt; 6555 tmp_stats[i++] = swstats->xgxs_rxgxs_err_cnt; 6556 tmp_stats[i++] = swstats->rc_err_cnt; 6557 tmp_stats[i++] = swstats->prc_pcix_err_cnt; 6558 tmp_stats[i++] = swstats->rpa_err_cnt; 6559 tmp_stats[i++] = swstats->rda_err_cnt; 6560 tmp_stats[i++] = swstats->rti_err_cnt; 6561 tmp_stats[i++] = swstats->mc_err_cnt; 6562 } 6563 6564 static int s2io_ethtool_get_regs_len(struct net_device *dev) 6565 { 6566 return XENA_REG_SPACE; 6567 } 6568 6569 6570 static int s2io_get_eeprom_len(struct net_device *dev) 6571 { 6572 return XENA_EEPROM_SPACE; 6573 } 6574 6575 static int s2io_get_sset_count(struct net_device *dev, int sset) 6576 { 6577 struct s2io_nic *sp = netdev_priv(dev); 6578 6579 switch (sset) { 6580 case ETH_SS_TEST: 6581 return S2IO_TEST_LEN; 6582 case ETH_SS_STATS: 6583 switch (sp->device_type) { 6584 case XFRAME_I_DEVICE: 6585 return XFRAME_I_STAT_LEN; 6586 case XFRAME_II_DEVICE: 6587 return XFRAME_II_STAT_LEN; 6588 default: 6589 return 0; 6590 } 6591 default: 6592 return -EOPNOTSUPP; 6593 } 6594 } 6595 6596 static void s2io_ethtool_get_strings(struct net_device *dev, 6597 u32 stringset, u8 *data) 6598 { 6599 int stat_size = 0; 6600 struct s2io_nic *sp = netdev_priv(dev); 6601 6602 switch (stringset) { 6603 case ETH_SS_TEST: 6604 memcpy(data, s2io_gstrings, S2IO_STRINGS_LEN); 6605 break; 6606 case ETH_SS_STATS: 6607 stat_size = sizeof(ethtool_xena_stats_keys); 6608 memcpy(data, ðtool_xena_stats_keys, stat_size); 6609 if (sp->device_type == XFRAME_II_DEVICE) { 6610 memcpy(data + stat_size, 6611 ðtool_enhanced_stats_keys, 6612 sizeof(ethtool_enhanced_stats_keys)); 6613 stat_size += sizeof(ethtool_enhanced_stats_keys); 6614 } 6615 6616 memcpy(data + stat_size, ðtool_driver_stats_keys, 6617 sizeof(ethtool_driver_stats_keys)); 6618 } 6619 } 6620 6621 static int s2io_set_features(struct net_device *dev, netdev_features_t features) 6622 { 6623 struct s2io_nic *sp = netdev_priv(dev); 6624 netdev_features_t changed = (features ^ dev->features) & NETIF_F_LRO; 6625 6626 if (changed && netif_running(dev)) { 6627 int rc; 6628 6629 s2io_stop_all_tx_queue(sp); 6630 s2io_card_down(sp); 6631 dev->features = features; 6632 rc = s2io_card_up(sp); 6633 if (rc) 6634 s2io_reset(sp); 6635 else 6636 s2io_start_all_tx_queue(sp); 6637 6638 return rc ? rc : 1; 6639 } 6640 6641 return 0; 6642 } 6643 6644 static const struct ethtool_ops netdev_ethtool_ops = { 6645 .get_settings = s2io_ethtool_gset, 6646 .set_settings = s2io_ethtool_sset, 6647 .get_drvinfo = s2io_ethtool_gdrvinfo, 6648 .get_regs_len = s2io_ethtool_get_regs_len, 6649 .get_regs = s2io_ethtool_gregs, 6650 .get_link = ethtool_op_get_link, 6651 .get_eeprom_len = s2io_get_eeprom_len, 6652 .get_eeprom = s2io_ethtool_geeprom, 6653 .set_eeprom = s2io_ethtool_seeprom, 6654 .get_ringparam = s2io_ethtool_gringparam, 6655 .get_pauseparam = s2io_ethtool_getpause_data, 6656 .set_pauseparam = s2io_ethtool_setpause_data, 6657 .self_test = s2io_ethtool_test, 6658 .get_strings = s2io_ethtool_get_strings, 6659 .set_phys_id = s2io_ethtool_set_led, 6660 .get_ethtool_stats = s2io_get_ethtool_stats, 6661 .get_sset_count = s2io_get_sset_count, 6662 }; 6663 6664 /** 6665 * s2io_ioctl - Entry point for the Ioctl 6666 * @dev : Device pointer. 6667 * @ifr : An IOCTL specefic structure, that can contain a pointer to 6668 * a proprietary structure used to pass information to the driver. 6669 * @cmd : This is used to distinguish between the different commands that 6670 * can be passed to the IOCTL functions. 6671 * Description: 6672 * Currently there are no special functionality supported in IOCTL, hence 6673 * function always return EOPNOTSUPPORTED 6674 */ 6675 6676 static int s2io_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) 6677 { 6678 return -EOPNOTSUPP; 6679 } 6680 6681 /** 6682 * s2io_change_mtu - entry point to change MTU size for the device. 6683 * @dev : device pointer. 6684 * @new_mtu : the new MTU size for the device. 6685 * Description: A driver entry point to change MTU size for the device. 6686 * Before changing the MTU the device must be stopped. 6687 * Return value: 6688 * 0 on success and an appropriate (-)ve integer as defined in errno.h 6689 * file on failure. 6690 */ 6691 6692 static int s2io_change_mtu(struct net_device *dev, int new_mtu) 6693 { 6694 struct s2io_nic *sp = netdev_priv(dev); 6695 int ret = 0; 6696 6697 if ((new_mtu < MIN_MTU) || (new_mtu > S2IO_JUMBO_SIZE)) { 6698 DBG_PRINT(ERR_DBG, "%s: MTU size is invalid.\n", dev->name); 6699 return -EPERM; 6700 } 6701 6702 dev->mtu = new_mtu; 6703 if (netif_running(dev)) { 6704 s2io_stop_all_tx_queue(sp); 6705 s2io_card_down(sp); 6706 ret = s2io_card_up(sp); 6707 if (ret) { 6708 DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n", 6709 __func__); 6710 return ret; 6711 } 6712 s2io_wake_all_tx_queue(sp); 6713 } else { /* Device is down */ 6714 struct XENA_dev_config __iomem *bar0 = sp->bar0; 6715 u64 val64 = new_mtu; 6716 6717 writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len); 6718 } 6719 6720 return ret; 6721 } 6722 6723 /** 6724 * s2io_set_link - Set the LInk status 6725 * @data: long pointer to device private structue 6726 * Description: Sets the link status for the adapter 6727 */ 6728 6729 static void s2io_set_link(struct work_struct *work) 6730 { 6731 struct s2io_nic *nic = container_of(work, struct s2io_nic, 6732 set_link_task); 6733 struct net_device *dev = nic->dev; 6734 struct XENA_dev_config __iomem *bar0 = nic->bar0; 6735 register u64 val64; 6736 u16 subid; 6737 6738 rtnl_lock(); 6739 6740 if (!netif_running(dev)) 6741 goto out_unlock; 6742 6743 if (test_and_set_bit(__S2IO_STATE_LINK_TASK, &(nic->state))) { 6744 /* The card is being reset, no point doing anything */ 6745 goto out_unlock; 6746 } 6747 6748 subid = nic->pdev->subsystem_device; 6749 if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) { 6750 /* 6751 * Allow a small delay for the NICs self initiated 6752 * cleanup to complete. 6753 */ 6754 msleep(100); 6755 } 6756 6757 val64 = readq(&bar0->adapter_status); 6758 if (LINK_IS_UP(val64)) { 6759 if (!(readq(&bar0->adapter_control) & ADAPTER_CNTL_EN)) { 6760 if (verify_xena_quiescence(nic)) { 6761 val64 = readq(&bar0->adapter_control); 6762 val64 |= ADAPTER_CNTL_EN; 6763 writeq(val64, &bar0->adapter_control); 6764 if (CARDS_WITH_FAULTY_LINK_INDICATORS( 6765 nic->device_type, subid)) { 6766 val64 = readq(&bar0->gpio_control); 6767 val64 |= GPIO_CTRL_GPIO_0; 6768 writeq(val64, &bar0->gpio_control); 6769 val64 = readq(&bar0->gpio_control); 6770 } else { 6771 val64 |= ADAPTER_LED_ON; 6772 writeq(val64, &bar0->adapter_control); 6773 } 6774 nic->device_enabled_once = true; 6775 } else { 6776 DBG_PRINT(ERR_DBG, 6777 "%s: Error: device is not Quiescent\n", 6778 dev->name); 6779 s2io_stop_all_tx_queue(nic); 6780 } 6781 } 6782 val64 = readq(&bar0->adapter_control); 6783 val64 |= ADAPTER_LED_ON; 6784 writeq(val64, &bar0->adapter_control); 6785 s2io_link(nic, LINK_UP); 6786 } else { 6787 if (CARDS_WITH_FAULTY_LINK_INDICATORS(nic->device_type, 6788 subid)) { 6789 val64 = readq(&bar0->gpio_control); 6790 val64 &= ~GPIO_CTRL_GPIO_0; 6791 writeq(val64, &bar0->gpio_control); 6792 val64 = readq(&bar0->gpio_control); 6793 } 6794 /* turn off LED */ 6795 val64 = readq(&bar0->adapter_control); 6796 val64 = val64 & (~ADAPTER_LED_ON); 6797 writeq(val64, &bar0->adapter_control); 6798 s2io_link(nic, LINK_DOWN); 6799 } 6800 clear_bit(__S2IO_STATE_LINK_TASK, &(nic->state)); 6801 6802 out_unlock: 6803 rtnl_unlock(); 6804 } 6805 6806 static int set_rxd_buffer_pointer(struct s2io_nic *sp, struct RxD_t *rxdp, 6807 struct buffAdd *ba, 6808 struct sk_buff **skb, u64 *temp0, u64 *temp1, 6809 u64 *temp2, int size) 6810 { 6811 struct net_device *dev = sp->dev; 6812 struct swStat *stats = &sp->mac_control.stats_info->sw_stat; 6813 6814 if ((sp->rxd_mode == RXD_MODE_1) && (rxdp->Host_Control == 0)) { 6815 struct RxD1 *rxdp1 = (struct RxD1 *)rxdp; 6816 /* allocate skb */ 6817 if (*skb) { 6818 DBG_PRINT(INFO_DBG, "SKB is not NULL\n"); 6819 /* 6820 * As Rx frame are not going to be processed, 6821 * using same mapped address for the Rxd 6822 * buffer pointer 6823 */ 6824 rxdp1->Buffer0_ptr = *temp0; 6825 } else { 6826 *skb = netdev_alloc_skb(dev, size); 6827 if (!(*skb)) { 6828 DBG_PRINT(INFO_DBG, 6829 "%s: Out of memory to allocate %s\n", 6830 dev->name, "1 buf mode SKBs"); 6831 stats->mem_alloc_fail_cnt++; 6832 return -ENOMEM ; 6833 } 6834 stats->mem_allocated += (*skb)->truesize; 6835 /* storing the mapped addr in a temp variable 6836 * such it will be used for next rxd whose 6837 * Host Control is NULL 6838 */ 6839 rxdp1->Buffer0_ptr = *temp0 = 6840 pci_map_single(sp->pdev, (*skb)->data, 6841 size - NET_IP_ALIGN, 6842 PCI_DMA_FROMDEVICE); 6843 if (pci_dma_mapping_error(sp->pdev, rxdp1->Buffer0_ptr)) 6844 goto memalloc_failed; 6845 rxdp->Host_Control = (unsigned long) (*skb); 6846 } 6847 } else if ((sp->rxd_mode == RXD_MODE_3B) && (rxdp->Host_Control == 0)) { 6848 struct RxD3 *rxdp3 = (struct RxD3 *)rxdp; 6849 /* Two buffer Mode */ 6850 if (*skb) { 6851 rxdp3->Buffer2_ptr = *temp2; 6852 rxdp3->Buffer0_ptr = *temp0; 6853 rxdp3->Buffer1_ptr = *temp1; 6854 } else { 6855 *skb = netdev_alloc_skb(dev, size); 6856 if (!(*skb)) { 6857 DBG_PRINT(INFO_DBG, 6858 "%s: Out of memory to allocate %s\n", 6859 dev->name, 6860 "2 buf mode SKBs"); 6861 stats->mem_alloc_fail_cnt++; 6862 return -ENOMEM; 6863 } 6864 stats->mem_allocated += (*skb)->truesize; 6865 rxdp3->Buffer2_ptr = *temp2 = 6866 pci_map_single(sp->pdev, (*skb)->data, 6867 dev->mtu + 4, 6868 PCI_DMA_FROMDEVICE); 6869 if (pci_dma_mapping_error(sp->pdev, rxdp3->Buffer2_ptr)) 6870 goto memalloc_failed; 6871 rxdp3->Buffer0_ptr = *temp0 = 6872 pci_map_single(sp->pdev, ba->ba_0, BUF0_LEN, 6873 PCI_DMA_FROMDEVICE); 6874 if (pci_dma_mapping_error(sp->pdev, 6875 rxdp3->Buffer0_ptr)) { 6876 pci_unmap_single(sp->pdev, 6877 (dma_addr_t)rxdp3->Buffer2_ptr, 6878 dev->mtu + 4, 6879 PCI_DMA_FROMDEVICE); 6880 goto memalloc_failed; 6881 } 6882 rxdp->Host_Control = (unsigned long) (*skb); 6883 6884 /* Buffer-1 will be dummy buffer not used */ 6885 rxdp3->Buffer1_ptr = *temp1 = 6886 pci_map_single(sp->pdev, ba->ba_1, BUF1_LEN, 6887 PCI_DMA_FROMDEVICE); 6888 if (pci_dma_mapping_error(sp->pdev, 6889 rxdp3->Buffer1_ptr)) { 6890 pci_unmap_single(sp->pdev, 6891 (dma_addr_t)rxdp3->Buffer0_ptr, 6892 BUF0_LEN, PCI_DMA_FROMDEVICE); 6893 pci_unmap_single(sp->pdev, 6894 (dma_addr_t)rxdp3->Buffer2_ptr, 6895 dev->mtu + 4, 6896 PCI_DMA_FROMDEVICE); 6897 goto memalloc_failed; 6898 } 6899 } 6900 } 6901 return 0; 6902 6903 memalloc_failed: 6904 stats->pci_map_fail_cnt++; 6905 stats->mem_freed += (*skb)->truesize; 6906 dev_kfree_skb(*skb); 6907 return -ENOMEM; 6908 } 6909 6910 static void set_rxd_buffer_size(struct s2io_nic *sp, struct RxD_t *rxdp, 6911 int size) 6912 { 6913 struct net_device *dev = sp->dev; 6914 if (sp->rxd_mode == RXD_MODE_1) { 6915 rxdp->Control_2 = SET_BUFFER0_SIZE_1(size - NET_IP_ALIGN); 6916 } else if (sp->rxd_mode == RXD_MODE_3B) { 6917 rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN); 6918 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1); 6919 rxdp->Control_2 |= SET_BUFFER2_SIZE_3(dev->mtu + 4); 6920 } 6921 } 6922 6923 static int rxd_owner_bit_reset(struct s2io_nic *sp) 6924 { 6925 int i, j, k, blk_cnt = 0, size; 6926 struct config_param *config = &sp->config; 6927 struct mac_info *mac_control = &sp->mac_control; 6928 struct net_device *dev = sp->dev; 6929 struct RxD_t *rxdp = NULL; 6930 struct sk_buff *skb = NULL; 6931 struct buffAdd *ba = NULL; 6932 u64 temp0_64 = 0, temp1_64 = 0, temp2_64 = 0; 6933 6934 /* Calculate the size based on ring mode */ 6935 size = dev->mtu + HEADER_ETHERNET_II_802_3_SIZE + 6936 HEADER_802_2_SIZE + HEADER_SNAP_SIZE; 6937 if (sp->rxd_mode == RXD_MODE_1) 6938 size += NET_IP_ALIGN; 6939 else if (sp->rxd_mode == RXD_MODE_3B) 6940 size = dev->mtu + ALIGN_SIZE + BUF0_LEN + 4; 6941 6942 for (i = 0; i < config->rx_ring_num; i++) { 6943 struct rx_ring_config *rx_cfg = &config->rx_cfg[i]; 6944 struct ring_info *ring = &mac_control->rings[i]; 6945 6946 blk_cnt = rx_cfg->num_rxd / (rxd_count[sp->rxd_mode] + 1); 6947 6948 for (j = 0; j < blk_cnt; j++) { 6949 for (k = 0; k < rxd_count[sp->rxd_mode]; k++) { 6950 rxdp = ring->rx_blocks[j].rxds[k].virt_addr; 6951 if (sp->rxd_mode == RXD_MODE_3B) 6952 ba = &ring->ba[j][k]; 6953 if (set_rxd_buffer_pointer(sp, rxdp, ba, &skb, 6954 &temp0_64, 6955 &temp1_64, 6956 &temp2_64, 6957 size) == -ENOMEM) { 6958 return 0; 6959 } 6960 6961 set_rxd_buffer_size(sp, rxdp, size); 6962 wmb(); 6963 /* flip the Ownership bit to Hardware */ 6964 rxdp->Control_1 |= RXD_OWN_XENA; 6965 } 6966 } 6967 } 6968 return 0; 6969 6970 } 6971 6972 static int s2io_add_isr(struct s2io_nic *sp) 6973 { 6974 int ret = 0; 6975 struct net_device *dev = sp->dev; 6976 int err = 0; 6977 6978 if (sp->config.intr_type == MSI_X) 6979 ret = s2io_enable_msi_x(sp); 6980 if (ret) { 6981 DBG_PRINT(ERR_DBG, "%s: Defaulting to INTA\n", dev->name); 6982 sp->config.intr_type = INTA; 6983 } 6984 6985 /* 6986 * Store the values of the MSIX table in 6987 * the struct s2io_nic structure 6988 */ 6989 store_xmsi_data(sp); 6990 6991 /* After proper initialization of H/W, register ISR */ 6992 if (sp->config.intr_type == MSI_X) { 6993 int i, msix_rx_cnt = 0; 6994 6995 for (i = 0; i < sp->num_entries; i++) { 6996 if (sp->s2io_entries[i].in_use == MSIX_FLG) { 6997 if (sp->s2io_entries[i].type == 6998 MSIX_RING_TYPE) { 6999 sprintf(sp->desc[i], "%s:MSI-X-%d-RX", 7000 dev->name, i); 7001 err = request_irq(sp->entries[i].vector, 7002 s2io_msix_ring_handle, 7003 0, 7004 sp->desc[i], 7005 sp->s2io_entries[i].arg); 7006 } else if (sp->s2io_entries[i].type == 7007 MSIX_ALARM_TYPE) { 7008 sprintf(sp->desc[i], "%s:MSI-X-%d-TX", 7009 dev->name, i); 7010 err = request_irq(sp->entries[i].vector, 7011 s2io_msix_fifo_handle, 7012 0, 7013 sp->desc[i], 7014 sp->s2io_entries[i].arg); 7015 7016 } 7017 /* if either data or addr is zero print it. */ 7018 if (!(sp->msix_info[i].addr && 7019 sp->msix_info[i].data)) { 7020 DBG_PRINT(ERR_DBG, 7021 "%s @Addr:0x%llx Data:0x%llx\n", 7022 sp->desc[i], 7023 (unsigned long long) 7024 sp->msix_info[i].addr, 7025 (unsigned long long) 7026 ntohl(sp->msix_info[i].data)); 7027 } else 7028 msix_rx_cnt++; 7029 if (err) { 7030 remove_msix_isr(sp); 7031 7032 DBG_PRINT(ERR_DBG, 7033 "%s:MSI-X-%d registration " 7034 "failed\n", dev->name, i); 7035 7036 DBG_PRINT(ERR_DBG, 7037 "%s: Defaulting to INTA\n", 7038 dev->name); 7039 sp->config.intr_type = INTA; 7040 break; 7041 } 7042 sp->s2io_entries[i].in_use = 7043 MSIX_REGISTERED_SUCCESS; 7044 } 7045 } 7046 if (!err) { 7047 pr_info("MSI-X-RX %d entries enabled\n", --msix_rx_cnt); 7048 DBG_PRINT(INFO_DBG, 7049 "MSI-X-TX entries enabled through alarm vector\n"); 7050 } 7051 } 7052 if (sp->config.intr_type == INTA) { 7053 err = request_irq(sp->pdev->irq, s2io_isr, IRQF_SHARED, 7054 sp->name, dev); 7055 if (err) { 7056 DBG_PRINT(ERR_DBG, "%s: ISR registration failed\n", 7057 dev->name); 7058 return -1; 7059 } 7060 } 7061 return 0; 7062 } 7063 7064 static void s2io_rem_isr(struct s2io_nic *sp) 7065 { 7066 if (sp->config.intr_type == MSI_X) 7067 remove_msix_isr(sp); 7068 else 7069 remove_inta_isr(sp); 7070 } 7071 7072 static void do_s2io_card_down(struct s2io_nic *sp, int do_io) 7073 { 7074 int cnt = 0; 7075 struct XENA_dev_config __iomem *bar0 = sp->bar0; 7076 register u64 val64 = 0; 7077 struct config_param *config; 7078 config = &sp->config; 7079 7080 if (!is_s2io_card_up(sp)) 7081 return; 7082 7083 del_timer_sync(&sp->alarm_timer); 7084 /* If s2io_set_link task is executing, wait till it completes. */ 7085 while (test_and_set_bit(__S2IO_STATE_LINK_TASK, &(sp->state))) 7086 msleep(50); 7087 clear_bit(__S2IO_STATE_CARD_UP, &sp->state); 7088 7089 /* Disable napi */ 7090 if (sp->config.napi) { 7091 int off = 0; 7092 if (config->intr_type == MSI_X) { 7093 for (; off < sp->config.rx_ring_num; off++) 7094 napi_disable(&sp->mac_control.rings[off].napi); 7095 } 7096 else 7097 napi_disable(&sp->napi); 7098 } 7099 7100 /* disable Tx and Rx traffic on the NIC */ 7101 if (do_io) 7102 stop_nic(sp); 7103 7104 s2io_rem_isr(sp); 7105 7106 /* stop the tx queue, indicate link down */ 7107 s2io_link(sp, LINK_DOWN); 7108 7109 /* Check if the device is Quiescent and then Reset the NIC */ 7110 while (do_io) { 7111 /* As per the HW requirement we need to replenish the 7112 * receive buffer to avoid the ring bump. Since there is 7113 * no intention of processing the Rx frame at this pointwe are 7114 * just setting the ownership bit of rxd in Each Rx 7115 * ring to HW and set the appropriate buffer size 7116 * based on the ring mode 7117 */ 7118 rxd_owner_bit_reset(sp); 7119 7120 val64 = readq(&bar0->adapter_status); 7121 if (verify_xena_quiescence(sp)) { 7122 if (verify_pcc_quiescent(sp, sp->device_enabled_once)) 7123 break; 7124 } 7125 7126 msleep(50); 7127 cnt++; 7128 if (cnt == 10) { 7129 DBG_PRINT(ERR_DBG, "Device not Quiescent - " 7130 "adapter status reads 0x%llx\n", 7131 (unsigned long long)val64); 7132 break; 7133 } 7134 } 7135 if (do_io) 7136 s2io_reset(sp); 7137 7138 /* Free all Tx buffers */ 7139 free_tx_buffers(sp); 7140 7141 /* Free all Rx buffers */ 7142 free_rx_buffers(sp); 7143 7144 clear_bit(__S2IO_STATE_LINK_TASK, &(sp->state)); 7145 } 7146 7147 static void s2io_card_down(struct s2io_nic *sp) 7148 { 7149 do_s2io_card_down(sp, 1); 7150 } 7151 7152 static int s2io_card_up(struct s2io_nic *sp) 7153 { 7154 int i, ret = 0; 7155 struct config_param *config; 7156 struct mac_info *mac_control; 7157 struct net_device *dev = sp->dev; 7158 u16 interruptible; 7159 7160 /* Initialize the H/W I/O registers */ 7161 ret = init_nic(sp); 7162 if (ret != 0) { 7163 DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n", 7164 dev->name); 7165 if (ret != -EIO) 7166 s2io_reset(sp); 7167 return ret; 7168 } 7169 7170 /* 7171 * Initializing the Rx buffers. For now we are considering only 1 7172 * Rx ring and initializing buffers into 30 Rx blocks 7173 */ 7174 config = &sp->config; 7175 mac_control = &sp->mac_control; 7176 7177 for (i = 0; i < config->rx_ring_num; i++) { 7178 struct ring_info *ring = &mac_control->rings[i]; 7179 7180 ring->mtu = dev->mtu; 7181 ring->lro = !!(dev->features & NETIF_F_LRO); 7182 ret = fill_rx_buffers(sp, ring, 1); 7183 if (ret) { 7184 DBG_PRINT(ERR_DBG, "%s: Out of memory in Open\n", 7185 dev->name); 7186 s2io_reset(sp); 7187 free_rx_buffers(sp); 7188 return -ENOMEM; 7189 } 7190 DBG_PRINT(INFO_DBG, "Buf in ring:%d is %d:\n", i, 7191 ring->rx_bufs_left); 7192 } 7193 7194 /* Initialise napi */ 7195 if (config->napi) { 7196 if (config->intr_type == MSI_X) { 7197 for (i = 0; i < sp->config.rx_ring_num; i++) 7198 napi_enable(&sp->mac_control.rings[i].napi); 7199 } else { 7200 napi_enable(&sp->napi); 7201 } 7202 } 7203 7204 /* Maintain the state prior to the open */ 7205 if (sp->promisc_flg) 7206 sp->promisc_flg = 0; 7207 if (sp->m_cast_flg) { 7208 sp->m_cast_flg = 0; 7209 sp->all_multi_pos = 0; 7210 } 7211 7212 /* Setting its receive mode */ 7213 s2io_set_multicast(dev); 7214 7215 if (dev->features & NETIF_F_LRO) { 7216 /* Initialize max aggregatable pkts per session based on MTU */ 7217 sp->lro_max_aggr_per_sess = ((1<<16) - 1) / dev->mtu; 7218 /* Check if we can use (if specified) user provided value */ 7219 if (lro_max_pkts < sp->lro_max_aggr_per_sess) 7220 sp->lro_max_aggr_per_sess = lro_max_pkts; 7221 } 7222 7223 /* Enable Rx Traffic and interrupts on the NIC */ 7224 if (start_nic(sp)) { 7225 DBG_PRINT(ERR_DBG, "%s: Starting NIC failed\n", dev->name); 7226 s2io_reset(sp); 7227 free_rx_buffers(sp); 7228 return -ENODEV; 7229 } 7230 7231 /* Add interrupt service routine */ 7232 if (s2io_add_isr(sp) != 0) { 7233 if (sp->config.intr_type == MSI_X) 7234 s2io_rem_isr(sp); 7235 s2io_reset(sp); 7236 free_rx_buffers(sp); 7237 return -ENODEV; 7238 } 7239 7240 S2IO_TIMER_CONF(sp->alarm_timer, s2io_alarm_handle, sp, (HZ/2)); 7241 7242 set_bit(__S2IO_STATE_CARD_UP, &sp->state); 7243 7244 /* Enable select interrupts */ 7245 en_dis_err_alarms(sp, ENA_ALL_INTRS, ENABLE_INTRS); 7246 if (sp->config.intr_type != INTA) { 7247 interruptible = TX_TRAFFIC_INTR | TX_PIC_INTR; 7248 en_dis_able_nic_intrs(sp, interruptible, ENABLE_INTRS); 7249 } else { 7250 interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR; 7251 interruptible |= TX_PIC_INTR; 7252 en_dis_able_nic_intrs(sp, interruptible, ENABLE_INTRS); 7253 } 7254 7255 return 0; 7256 } 7257 7258 /** 7259 * s2io_restart_nic - Resets the NIC. 7260 * @data : long pointer to the device private structure 7261 * Description: 7262 * This function is scheduled to be run by the s2io_tx_watchdog 7263 * function after 0.5 secs to reset the NIC. The idea is to reduce 7264 * the run time of the watch dog routine which is run holding a 7265 * spin lock. 7266 */ 7267 7268 static void s2io_restart_nic(struct work_struct *work) 7269 { 7270 struct s2io_nic *sp = container_of(work, struct s2io_nic, rst_timer_task); 7271 struct net_device *dev = sp->dev; 7272 7273 rtnl_lock(); 7274 7275 if (!netif_running(dev)) 7276 goto out_unlock; 7277 7278 s2io_card_down(sp); 7279 if (s2io_card_up(sp)) { 7280 DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n", dev->name); 7281 } 7282 s2io_wake_all_tx_queue(sp); 7283 DBG_PRINT(ERR_DBG, "%s: was reset by Tx watchdog timer\n", dev->name); 7284 out_unlock: 7285 rtnl_unlock(); 7286 } 7287 7288 /** 7289 * s2io_tx_watchdog - Watchdog for transmit side. 7290 * @dev : Pointer to net device structure 7291 * Description: 7292 * This function is triggered if the Tx Queue is stopped 7293 * for a pre-defined amount of time when the Interface is still up. 7294 * If the Interface is jammed in such a situation, the hardware is 7295 * reset (by s2io_close) and restarted again (by s2io_open) to 7296 * overcome any problem that might have been caused in the hardware. 7297 * Return value: 7298 * void 7299 */ 7300 7301 static void s2io_tx_watchdog(struct net_device *dev) 7302 { 7303 struct s2io_nic *sp = netdev_priv(dev); 7304 struct swStat *swstats = &sp->mac_control.stats_info->sw_stat; 7305 7306 if (netif_carrier_ok(dev)) { 7307 swstats->watchdog_timer_cnt++; 7308 schedule_work(&sp->rst_timer_task); 7309 swstats->soft_reset_cnt++; 7310 } 7311 } 7312 7313 /** 7314 * rx_osm_handler - To perform some OS related operations on SKB. 7315 * @sp: private member of the device structure,pointer to s2io_nic structure. 7316 * @skb : the socket buffer pointer. 7317 * @len : length of the packet 7318 * @cksum : FCS checksum of the frame. 7319 * @ring_no : the ring from which this RxD was extracted. 7320 * Description: 7321 * This function is called by the Rx interrupt serivce routine to perform 7322 * some OS related operations on the SKB before passing it to the upper 7323 * layers. It mainly checks if the checksum is OK, if so adds it to the 7324 * SKBs cksum variable, increments the Rx packet count and passes the SKB 7325 * to the upper layer. If the checksum is wrong, it increments the Rx 7326 * packet error count, frees the SKB and returns error. 7327 * Return value: 7328 * SUCCESS on success and -1 on failure. 7329 */ 7330 static int rx_osm_handler(struct ring_info *ring_data, struct RxD_t * rxdp) 7331 { 7332 struct s2io_nic *sp = ring_data->nic; 7333 struct net_device *dev = ring_data->dev; 7334 struct sk_buff *skb = (struct sk_buff *) 7335 ((unsigned long)rxdp->Host_Control); 7336 int ring_no = ring_data->ring_no; 7337 u16 l3_csum, l4_csum; 7338 unsigned long long err = rxdp->Control_1 & RXD_T_CODE; 7339 struct lro *uninitialized_var(lro); 7340 u8 err_mask; 7341 struct swStat *swstats = &sp->mac_control.stats_info->sw_stat; 7342 7343 skb->dev = dev; 7344 7345 if (err) { 7346 /* Check for parity error */ 7347 if (err & 0x1) 7348 swstats->parity_err_cnt++; 7349 7350 err_mask = err >> 48; 7351 switch (err_mask) { 7352 case 1: 7353 swstats->rx_parity_err_cnt++; 7354 break; 7355 7356 case 2: 7357 swstats->rx_abort_cnt++; 7358 break; 7359 7360 case 3: 7361 swstats->rx_parity_abort_cnt++; 7362 break; 7363 7364 case 4: 7365 swstats->rx_rda_fail_cnt++; 7366 break; 7367 7368 case 5: 7369 swstats->rx_unkn_prot_cnt++; 7370 break; 7371 7372 case 6: 7373 swstats->rx_fcs_err_cnt++; 7374 break; 7375 7376 case 7: 7377 swstats->rx_buf_size_err_cnt++; 7378 break; 7379 7380 case 8: 7381 swstats->rx_rxd_corrupt_cnt++; 7382 break; 7383 7384 case 15: 7385 swstats->rx_unkn_err_cnt++; 7386 break; 7387 } 7388 /* 7389 * Drop the packet if bad transfer code. Exception being 7390 * 0x5, which could be due to unsupported IPv6 extension header. 7391 * In this case, we let stack handle the packet. 7392 * Note that in this case, since checksum will be incorrect, 7393 * stack will validate the same. 7394 */ 7395 if (err_mask != 0x5) { 7396 DBG_PRINT(ERR_DBG, "%s: Rx error Value: 0x%x\n", 7397 dev->name, err_mask); 7398 dev->stats.rx_crc_errors++; 7399 swstats->mem_freed 7400 += skb->truesize; 7401 dev_kfree_skb(skb); 7402 ring_data->rx_bufs_left -= 1; 7403 rxdp->Host_Control = 0; 7404 return 0; 7405 } 7406 } 7407 7408 rxdp->Host_Control = 0; 7409 if (sp->rxd_mode == RXD_MODE_1) { 7410 int len = RXD_GET_BUFFER0_SIZE_1(rxdp->Control_2); 7411 7412 skb_put(skb, len); 7413 } else if (sp->rxd_mode == RXD_MODE_3B) { 7414 int get_block = ring_data->rx_curr_get_info.block_index; 7415 int get_off = ring_data->rx_curr_get_info.offset; 7416 int buf0_len = RXD_GET_BUFFER0_SIZE_3(rxdp->Control_2); 7417 int buf2_len = RXD_GET_BUFFER2_SIZE_3(rxdp->Control_2); 7418 unsigned char *buff = skb_push(skb, buf0_len); 7419 7420 struct buffAdd *ba = &ring_data->ba[get_block][get_off]; 7421 memcpy(buff, ba->ba_0, buf0_len); 7422 skb_put(skb, buf2_len); 7423 } 7424 7425 if ((rxdp->Control_1 & TCP_OR_UDP_FRAME) && 7426 ((!ring_data->lro) || 7427 (ring_data->lro && (!(rxdp->Control_1 & RXD_FRAME_IP_FRAG)))) && 7428 (dev->features & NETIF_F_RXCSUM)) { 7429 l3_csum = RXD_GET_L3_CKSUM(rxdp->Control_1); 7430 l4_csum = RXD_GET_L4_CKSUM(rxdp->Control_1); 7431 if ((l3_csum == L3_CKSUM_OK) && (l4_csum == L4_CKSUM_OK)) { 7432 /* 7433 * NIC verifies if the Checksum of the received 7434 * frame is Ok or not and accordingly returns 7435 * a flag in the RxD. 7436 */ 7437 skb->ip_summed = CHECKSUM_UNNECESSARY; 7438 if (ring_data->lro) { 7439 u32 tcp_len = 0; 7440 u8 *tcp; 7441 int ret = 0; 7442 7443 ret = s2io_club_tcp_session(ring_data, 7444 skb->data, &tcp, 7445 &tcp_len, &lro, 7446 rxdp, sp); 7447 switch (ret) { 7448 case 3: /* Begin anew */ 7449 lro->parent = skb; 7450 goto aggregate; 7451 case 1: /* Aggregate */ 7452 lro_append_pkt(sp, lro, skb, tcp_len); 7453 goto aggregate; 7454 case 4: /* Flush session */ 7455 lro_append_pkt(sp, lro, skb, tcp_len); 7456 queue_rx_frame(lro->parent, 7457 lro->vlan_tag); 7458 clear_lro_session(lro); 7459 swstats->flush_max_pkts++; 7460 goto aggregate; 7461 case 2: /* Flush both */ 7462 lro->parent->data_len = lro->frags_len; 7463 swstats->sending_both++; 7464 queue_rx_frame(lro->parent, 7465 lro->vlan_tag); 7466 clear_lro_session(lro); 7467 goto send_up; 7468 case 0: /* sessions exceeded */ 7469 case -1: /* non-TCP or not L2 aggregatable */ 7470 case 5: /* 7471 * First pkt in session not 7472 * L3/L4 aggregatable 7473 */ 7474 break; 7475 default: 7476 DBG_PRINT(ERR_DBG, 7477 "%s: Samadhana!!\n", 7478 __func__); 7479 BUG(); 7480 } 7481 } 7482 } else { 7483 /* 7484 * Packet with erroneous checksum, let the 7485 * upper layers deal with it. 7486 */ 7487 skb_checksum_none_assert(skb); 7488 } 7489 } else 7490 skb_checksum_none_assert(skb); 7491 7492 swstats->mem_freed += skb->truesize; 7493 send_up: 7494 skb_record_rx_queue(skb, ring_no); 7495 queue_rx_frame(skb, RXD_GET_VLAN_TAG(rxdp->Control_2)); 7496 aggregate: 7497 sp->mac_control.rings[ring_no].rx_bufs_left -= 1; 7498 return SUCCESS; 7499 } 7500 7501 /** 7502 * s2io_link - stops/starts the Tx queue. 7503 * @sp : private member of the device structure, which is a pointer to the 7504 * s2io_nic structure. 7505 * @link : inidicates whether link is UP/DOWN. 7506 * Description: 7507 * This function stops/starts the Tx queue depending on whether the link 7508 * status of the NIC is is down or up. This is called by the Alarm 7509 * interrupt handler whenever a link change interrupt comes up. 7510 * Return value: 7511 * void. 7512 */ 7513 7514 static void s2io_link(struct s2io_nic *sp, int link) 7515 { 7516 struct net_device *dev = sp->dev; 7517 struct swStat *swstats = &sp->mac_control.stats_info->sw_stat; 7518 7519 if (link != sp->last_link_state) { 7520 init_tti(sp, link); 7521 if (link == LINK_DOWN) { 7522 DBG_PRINT(ERR_DBG, "%s: Link down\n", dev->name); 7523 s2io_stop_all_tx_queue(sp); 7524 netif_carrier_off(dev); 7525 if (swstats->link_up_cnt) 7526 swstats->link_up_time = 7527 jiffies - sp->start_time; 7528 swstats->link_down_cnt++; 7529 } else { 7530 DBG_PRINT(ERR_DBG, "%s: Link Up\n", dev->name); 7531 if (swstats->link_down_cnt) 7532 swstats->link_down_time = 7533 jiffies - sp->start_time; 7534 swstats->link_up_cnt++; 7535 netif_carrier_on(dev); 7536 s2io_wake_all_tx_queue(sp); 7537 } 7538 } 7539 sp->last_link_state = link; 7540 sp->start_time = jiffies; 7541 } 7542 7543 /** 7544 * s2io_init_pci -Initialization of PCI and PCI-X configuration registers . 7545 * @sp : private member of the device structure, which is a pointer to the 7546 * s2io_nic structure. 7547 * Description: 7548 * This function initializes a few of the PCI and PCI-X configuration registers 7549 * with recommended values. 7550 * Return value: 7551 * void 7552 */ 7553 7554 static void s2io_init_pci(struct s2io_nic *sp) 7555 { 7556 u16 pci_cmd = 0, pcix_cmd = 0; 7557 7558 /* Enable Data Parity Error Recovery in PCI-X command register. */ 7559 pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER, 7560 &(pcix_cmd)); 7561 pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER, 7562 (pcix_cmd | 1)); 7563 pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER, 7564 &(pcix_cmd)); 7565 7566 /* Set the PErr Response bit in PCI command register. */ 7567 pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd); 7568 pci_write_config_word(sp->pdev, PCI_COMMAND, 7569 (pci_cmd | PCI_COMMAND_PARITY)); 7570 pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd); 7571 } 7572 7573 static int s2io_verify_parm(struct pci_dev *pdev, u8 *dev_intr_type, 7574 u8 *dev_multiq) 7575 { 7576 int i; 7577 7578 if ((tx_fifo_num > MAX_TX_FIFOS) || (tx_fifo_num < 1)) { 7579 DBG_PRINT(ERR_DBG, "Requested number of tx fifos " 7580 "(%d) not supported\n", tx_fifo_num); 7581 7582 if (tx_fifo_num < 1) 7583 tx_fifo_num = 1; 7584 else 7585 tx_fifo_num = MAX_TX_FIFOS; 7586 7587 DBG_PRINT(ERR_DBG, "Default to %d tx fifos\n", tx_fifo_num); 7588 } 7589 7590 if (multiq) 7591 *dev_multiq = multiq; 7592 7593 if (tx_steering_type && (1 == tx_fifo_num)) { 7594 if (tx_steering_type != TX_DEFAULT_STEERING) 7595 DBG_PRINT(ERR_DBG, 7596 "Tx steering is not supported with " 7597 "one fifo. Disabling Tx steering.\n"); 7598 tx_steering_type = NO_STEERING; 7599 } 7600 7601 if ((tx_steering_type < NO_STEERING) || 7602 (tx_steering_type > TX_DEFAULT_STEERING)) { 7603 DBG_PRINT(ERR_DBG, 7604 "Requested transmit steering not supported\n"); 7605 DBG_PRINT(ERR_DBG, "Disabling transmit steering\n"); 7606 tx_steering_type = NO_STEERING; 7607 } 7608 7609 if (rx_ring_num > MAX_RX_RINGS) { 7610 DBG_PRINT(ERR_DBG, 7611 "Requested number of rx rings not supported\n"); 7612 DBG_PRINT(ERR_DBG, "Default to %d rx rings\n", 7613 MAX_RX_RINGS); 7614 rx_ring_num = MAX_RX_RINGS; 7615 } 7616 7617 if ((*dev_intr_type != INTA) && (*dev_intr_type != MSI_X)) { 7618 DBG_PRINT(ERR_DBG, "Wrong intr_type requested. " 7619 "Defaulting to INTA\n"); 7620 *dev_intr_type = INTA; 7621 } 7622 7623 if ((*dev_intr_type == MSI_X) && 7624 ((pdev->device != PCI_DEVICE_ID_HERC_WIN) && 7625 (pdev->device != PCI_DEVICE_ID_HERC_UNI))) { 7626 DBG_PRINT(ERR_DBG, "Xframe I does not support MSI_X. " 7627 "Defaulting to INTA\n"); 7628 *dev_intr_type = INTA; 7629 } 7630 7631 if ((rx_ring_mode != 1) && (rx_ring_mode != 2)) { 7632 DBG_PRINT(ERR_DBG, "Requested ring mode not supported\n"); 7633 DBG_PRINT(ERR_DBG, "Defaulting to 1-buffer mode\n"); 7634 rx_ring_mode = 1; 7635 } 7636 7637 for (i = 0; i < MAX_RX_RINGS; i++) 7638 if (rx_ring_sz[i] > MAX_RX_BLOCKS_PER_RING) { 7639 DBG_PRINT(ERR_DBG, "Requested rx ring size not " 7640 "supported\nDefaulting to %d\n", 7641 MAX_RX_BLOCKS_PER_RING); 7642 rx_ring_sz[i] = MAX_RX_BLOCKS_PER_RING; 7643 } 7644 7645 return SUCCESS; 7646 } 7647 7648 /** 7649 * rts_ds_steer - Receive traffic steering based on IPv4 or IPv6 TOS 7650 * or Traffic class respectively. 7651 * @nic: device private variable 7652 * Description: The function configures the receive steering to 7653 * desired receive ring. 7654 * Return Value: SUCCESS on success and 7655 * '-1' on failure (endian settings incorrect). 7656 */ 7657 static int rts_ds_steer(struct s2io_nic *nic, u8 ds_codepoint, u8 ring) 7658 { 7659 struct XENA_dev_config __iomem *bar0 = nic->bar0; 7660 register u64 val64 = 0; 7661 7662 if (ds_codepoint > 63) 7663 return FAILURE; 7664 7665 val64 = RTS_DS_MEM_DATA(ring); 7666 writeq(val64, &bar0->rts_ds_mem_data); 7667 7668 val64 = RTS_DS_MEM_CTRL_WE | 7669 RTS_DS_MEM_CTRL_STROBE_NEW_CMD | 7670 RTS_DS_MEM_CTRL_OFFSET(ds_codepoint); 7671 7672 writeq(val64, &bar0->rts_ds_mem_ctrl); 7673 7674 return wait_for_cmd_complete(&bar0->rts_ds_mem_ctrl, 7675 RTS_DS_MEM_CTRL_STROBE_CMD_BEING_EXECUTED, 7676 S2IO_BIT_RESET); 7677 } 7678 7679 static const struct net_device_ops s2io_netdev_ops = { 7680 .ndo_open = s2io_open, 7681 .ndo_stop = s2io_close, 7682 .ndo_get_stats = s2io_get_stats, 7683 .ndo_start_xmit = s2io_xmit, 7684 .ndo_validate_addr = eth_validate_addr, 7685 .ndo_set_rx_mode = s2io_set_multicast, 7686 .ndo_do_ioctl = s2io_ioctl, 7687 .ndo_set_mac_address = s2io_set_mac_addr, 7688 .ndo_change_mtu = s2io_change_mtu, 7689 .ndo_set_features = s2io_set_features, 7690 .ndo_tx_timeout = s2io_tx_watchdog, 7691 #ifdef CONFIG_NET_POLL_CONTROLLER 7692 .ndo_poll_controller = s2io_netpoll, 7693 #endif 7694 }; 7695 7696 /** 7697 * s2io_init_nic - Initialization of the adapter . 7698 * @pdev : structure containing the PCI related information of the device. 7699 * @pre: List of PCI devices supported by the driver listed in s2io_tbl. 7700 * Description: 7701 * The function initializes an adapter identified by the pci_dec structure. 7702 * All OS related initialization including memory and device structure and 7703 * initlaization of the device private variable is done. Also the swapper 7704 * control register is initialized to enable read and write into the I/O 7705 * registers of the device. 7706 * Return value: 7707 * returns 0 on success and negative on failure. 7708 */ 7709 7710 static int 7711 s2io_init_nic(struct pci_dev *pdev, const struct pci_device_id *pre) 7712 { 7713 struct s2io_nic *sp; 7714 struct net_device *dev; 7715 int i, j, ret; 7716 int dma_flag = false; 7717 u32 mac_up, mac_down; 7718 u64 val64 = 0, tmp64 = 0; 7719 struct XENA_dev_config __iomem *bar0 = NULL; 7720 u16 subid; 7721 struct config_param *config; 7722 struct mac_info *mac_control; 7723 int mode; 7724 u8 dev_intr_type = intr_type; 7725 u8 dev_multiq = 0; 7726 7727 ret = s2io_verify_parm(pdev, &dev_intr_type, &dev_multiq); 7728 if (ret) 7729 return ret; 7730 7731 ret = pci_enable_device(pdev); 7732 if (ret) { 7733 DBG_PRINT(ERR_DBG, 7734 "%s: pci_enable_device failed\n", __func__); 7735 return ret; 7736 } 7737 7738 if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) { 7739 DBG_PRINT(INIT_DBG, "%s: Using 64bit DMA\n", __func__); 7740 dma_flag = true; 7741 if (pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64))) { 7742 DBG_PRINT(ERR_DBG, 7743 "Unable to obtain 64bit DMA " 7744 "for consistent allocations\n"); 7745 pci_disable_device(pdev); 7746 return -ENOMEM; 7747 } 7748 } else if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(32))) { 7749 DBG_PRINT(INIT_DBG, "%s: Using 32bit DMA\n", __func__); 7750 } else { 7751 pci_disable_device(pdev); 7752 return -ENOMEM; 7753 } 7754 ret = pci_request_regions(pdev, s2io_driver_name); 7755 if (ret) { 7756 DBG_PRINT(ERR_DBG, "%s: Request Regions failed - %x\n", 7757 __func__, ret); 7758 pci_disable_device(pdev); 7759 return -ENODEV; 7760 } 7761 if (dev_multiq) 7762 dev = alloc_etherdev_mq(sizeof(struct s2io_nic), tx_fifo_num); 7763 else 7764 dev = alloc_etherdev(sizeof(struct s2io_nic)); 7765 if (dev == NULL) { 7766 pci_disable_device(pdev); 7767 pci_release_regions(pdev); 7768 return -ENODEV; 7769 } 7770 7771 pci_set_master(pdev); 7772 pci_set_drvdata(pdev, dev); 7773 SET_NETDEV_DEV(dev, &pdev->dev); 7774 7775 /* Private member variable initialized to s2io NIC structure */ 7776 sp = netdev_priv(dev); 7777 sp->dev = dev; 7778 sp->pdev = pdev; 7779 sp->high_dma_flag = dma_flag; 7780 sp->device_enabled_once = false; 7781 if (rx_ring_mode == 1) 7782 sp->rxd_mode = RXD_MODE_1; 7783 if (rx_ring_mode == 2) 7784 sp->rxd_mode = RXD_MODE_3B; 7785 7786 sp->config.intr_type = dev_intr_type; 7787 7788 if ((pdev->device == PCI_DEVICE_ID_HERC_WIN) || 7789 (pdev->device == PCI_DEVICE_ID_HERC_UNI)) 7790 sp->device_type = XFRAME_II_DEVICE; 7791 else 7792 sp->device_type = XFRAME_I_DEVICE; 7793 7794 7795 /* Initialize some PCI/PCI-X fields of the NIC. */ 7796 s2io_init_pci(sp); 7797 7798 /* 7799 * Setting the device configuration parameters. 7800 * Most of these parameters can be specified by the user during 7801 * module insertion as they are module loadable parameters. If 7802 * these parameters are not not specified during load time, they 7803 * are initialized with default values. 7804 */ 7805 config = &sp->config; 7806 mac_control = &sp->mac_control; 7807 7808 config->napi = napi; 7809 config->tx_steering_type = tx_steering_type; 7810 7811 /* Tx side parameters. */ 7812 if (config->tx_steering_type == TX_PRIORITY_STEERING) 7813 config->tx_fifo_num = MAX_TX_FIFOS; 7814 else 7815 config->tx_fifo_num = tx_fifo_num; 7816 7817 /* Initialize the fifos used for tx steering */ 7818 if (config->tx_fifo_num < 5) { 7819 if (config->tx_fifo_num == 1) 7820 sp->total_tcp_fifos = 1; 7821 else 7822 sp->total_tcp_fifos = config->tx_fifo_num - 1; 7823 sp->udp_fifo_idx = config->tx_fifo_num - 1; 7824 sp->total_udp_fifos = 1; 7825 sp->other_fifo_idx = sp->total_tcp_fifos - 1; 7826 } else { 7827 sp->total_tcp_fifos = (tx_fifo_num - FIFO_UDP_MAX_NUM - 7828 FIFO_OTHER_MAX_NUM); 7829 sp->udp_fifo_idx = sp->total_tcp_fifos; 7830 sp->total_udp_fifos = FIFO_UDP_MAX_NUM; 7831 sp->other_fifo_idx = sp->udp_fifo_idx + FIFO_UDP_MAX_NUM; 7832 } 7833 7834 config->multiq = dev_multiq; 7835 for (i = 0; i < config->tx_fifo_num; i++) { 7836 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i]; 7837 7838 tx_cfg->fifo_len = tx_fifo_len[i]; 7839 tx_cfg->fifo_priority = i; 7840 } 7841 7842 /* mapping the QoS priority to the configured fifos */ 7843 for (i = 0; i < MAX_TX_FIFOS; i++) 7844 config->fifo_mapping[i] = fifo_map[config->tx_fifo_num - 1][i]; 7845 7846 /* map the hashing selector table to the configured fifos */ 7847 for (i = 0; i < config->tx_fifo_num; i++) 7848 sp->fifo_selector[i] = fifo_selector[i]; 7849 7850 7851 config->tx_intr_type = TXD_INT_TYPE_UTILZ; 7852 for (i = 0; i < config->tx_fifo_num; i++) { 7853 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i]; 7854 7855 tx_cfg->f_no_snoop = (NO_SNOOP_TXD | NO_SNOOP_TXD_BUFFER); 7856 if (tx_cfg->fifo_len < 65) { 7857 config->tx_intr_type = TXD_INT_TYPE_PER_LIST; 7858 break; 7859 } 7860 } 7861 /* + 2 because one Txd for skb->data and one Txd for UFO */ 7862 config->max_txds = MAX_SKB_FRAGS + 2; 7863 7864 /* Rx side parameters. */ 7865 config->rx_ring_num = rx_ring_num; 7866 for (i = 0; i < config->rx_ring_num; i++) { 7867 struct rx_ring_config *rx_cfg = &config->rx_cfg[i]; 7868 struct ring_info *ring = &mac_control->rings[i]; 7869 7870 rx_cfg->num_rxd = rx_ring_sz[i] * (rxd_count[sp->rxd_mode] + 1); 7871 rx_cfg->ring_priority = i; 7872 ring->rx_bufs_left = 0; 7873 ring->rxd_mode = sp->rxd_mode; 7874 ring->rxd_count = rxd_count[sp->rxd_mode]; 7875 ring->pdev = sp->pdev; 7876 ring->dev = sp->dev; 7877 } 7878 7879 for (i = 0; i < rx_ring_num; i++) { 7880 struct rx_ring_config *rx_cfg = &config->rx_cfg[i]; 7881 7882 rx_cfg->ring_org = RING_ORG_BUFF1; 7883 rx_cfg->f_no_snoop = (NO_SNOOP_RXD | NO_SNOOP_RXD_BUFFER); 7884 } 7885 7886 /* Setting Mac Control parameters */ 7887 mac_control->rmac_pause_time = rmac_pause_time; 7888 mac_control->mc_pause_threshold_q0q3 = mc_pause_threshold_q0q3; 7889 mac_control->mc_pause_threshold_q4q7 = mc_pause_threshold_q4q7; 7890 7891 7892 /* initialize the shared memory used by the NIC and the host */ 7893 if (init_shared_mem(sp)) { 7894 DBG_PRINT(ERR_DBG, "%s: Memory allocation failed\n", dev->name); 7895 ret = -ENOMEM; 7896 goto mem_alloc_failed; 7897 } 7898 7899 sp->bar0 = pci_ioremap_bar(pdev, 0); 7900 if (!sp->bar0) { 7901 DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem1\n", 7902 dev->name); 7903 ret = -ENOMEM; 7904 goto bar0_remap_failed; 7905 } 7906 7907 sp->bar1 = pci_ioremap_bar(pdev, 2); 7908 if (!sp->bar1) { 7909 DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem2\n", 7910 dev->name); 7911 ret = -ENOMEM; 7912 goto bar1_remap_failed; 7913 } 7914 7915 /* Initializing the BAR1 address as the start of the FIFO pointer. */ 7916 for (j = 0; j < MAX_TX_FIFOS; j++) { 7917 mac_control->tx_FIFO_start[j] = sp->bar1 + (j * 0x00020000); 7918 } 7919 7920 /* Driver entry points */ 7921 dev->netdev_ops = &s2io_netdev_ops; 7922 SET_ETHTOOL_OPS(dev, &netdev_ethtool_ops); 7923 dev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | 7924 NETIF_F_TSO | NETIF_F_TSO6 | 7925 NETIF_F_RXCSUM | NETIF_F_LRO; 7926 dev->features |= dev->hw_features | 7927 NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX; 7928 if (sp->device_type & XFRAME_II_DEVICE) { 7929 dev->hw_features |= NETIF_F_UFO; 7930 if (ufo) 7931 dev->features |= NETIF_F_UFO; 7932 } 7933 if (sp->high_dma_flag == true) 7934 dev->features |= NETIF_F_HIGHDMA; 7935 dev->watchdog_timeo = WATCH_DOG_TIMEOUT; 7936 INIT_WORK(&sp->rst_timer_task, s2io_restart_nic); 7937 INIT_WORK(&sp->set_link_task, s2io_set_link); 7938 7939 pci_save_state(sp->pdev); 7940 7941 /* Setting swapper control on the NIC, for proper reset operation */ 7942 if (s2io_set_swapper(sp)) { 7943 DBG_PRINT(ERR_DBG, "%s: swapper settings are wrong\n", 7944 dev->name); 7945 ret = -EAGAIN; 7946 goto set_swap_failed; 7947 } 7948 7949 /* Verify if the Herc works on the slot its placed into */ 7950 if (sp->device_type & XFRAME_II_DEVICE) { 7951 mode = s2io_verify_pci_mode(sp); 7952 if (mode < 0) { 7953 DBG_PRINT(ERR_DBG, "%s: Unsupported PCI bus mode\n", 7954 __func__); 7955 ret = -EBADSLT; 7956 goto set_swap_failed; 7957 } 7958 } 7959 7960 if (sp->config.intr_type == MSI_X) { 7961 sp->num_entries = config->rx_ring_num + 1; 7962 ret = s2io_enable_msi_x(sp); 7963 7964 if (!ret) { 7965 ret = s2io_test_msi(sp); 7966 /* rollback MSI-X, will re-enable during add_isr() */ 7967 remove_msix_isr(sp); 7968 } 7969 if (ret) { 7970 7971 DBG_PRINT(ERR_DBG, 7972 "MSI-X requested but failed to enable\n"); 7973 sp->config.intr_type = INTA; 7974 } 7975 } 7976 7977 if (config->intr_type == MSI_X) { 7978 for (i = 0; i < config->rx_ring_num ; i++) { 7979 struct ring_info *ring = &mac_control->rings[i]; 7980 7981 netif_napi_add(dev, &ring->napi, s2io_poll_msix, 64); 7982 } 7983 } else { 7984 netif_napi_add(dev, &sp->napi, s2io_poll_inta, 64); 7985 } 7986 7987 /* Not needed for Herc */ 7988 if (sp->device_type & XFRAME_I_DEVICE) { 7989 /* 7990 * Fix for all "FFs" MAC address problems observed on 7991 * Alpha platforms 7992 */ 7993 fix_mac_address(sp); 7994 s2io_reset(sp); 7995 } 7996 7997 /* 7998 * MAC address initialization. 7999 * For now only one mac address will be read and used. 8000 */ 8001 bar0 = sp->bar0; 8002 val64 = RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD | 8003 RMAC_ADDR_CMD_MEM_OFFSET(0 + S2IO_MAC_ADDR_START_OFFSET); 8004 writeq(val64, &bar0->rmac_addr_cmd_mem); 8005 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem, 8006 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING, 8007 S2IO_BIT_RESET); 8008 tmp64 = readq(&bar0->rmac_addr_data0_mem); 8009 mac_down = (u32)tmp64; 8010 mac_up = (u32) (tmp64 >> 32); 8011 8012 sp->def_mac_addr[0].mac_addr[3] = (u8) (mac_up); 8013 sp->def_mac_addr[0].mac_addr[2] = (u8) (mac_up >> 8); 8014 sp->def_mac_addr[0].mac_addr[1] = (u8) (mac_up >> 16); 8015 sp->def_mac_addr[0].mac_addr[0] = (u8) (mac_up >> 24); 8016 sp->def_mac_addr[0].mac_addr[5] = (u8) (mac_down >> 16); 8017 sp->def_mac_addr[0].mac_addr[4] = (u8) (mac_down >> 24); 8018 8019 /* Set the factory defined MAC address initially */ 8020 dev->addr_len = ETH_ALEN; 8021 memcpy(dev->dev_addr, sp->def_mac_addr, ETH_ALEN); 8022 8023 /* initialize number of multicast & unicast MAC entries variables */ 8024 if (sp->device_type == XFRAME_I_DEVICE) { 8025 config->max_mc_addr = S2IO_XENA_MAX_MC_ADDRESSES; 8026 config->max_mac_addr = S2IO_XENA_MAX_MAC_ADDRESSES; 8027 config->mc_start_offset = S2IO_XENA_MC_ADDR_START_OFFSET; 8028 } else if (sp->device_type == XFRAME_II_DEVICE) { 8029 config->max_mc_addr = S2IO_HERC_MAX_MC_ADDRESSES; 8030 config->max_mac_addr = S2IO_HERC_MAX_MAC_ADDRESSES; 8031 config->mc_start_offset = S2IO_HERC_MC_ADDR_START_OFFSET; 8032 } 8033 8034 /* store mac addresses from CAM to s2io_nic structure */ 8035 do_s2io_store_unicast_mc(sp); 8036 8037 /* Configure MSIX vector for number of rings configured plus one */ 8038 if ((sp->device_type == XFRAME_II_DEVICE) && 8039 (config->intr_type == MSI_X)) 8040 sp->num_entries = config->rx_ring_num + 1; 8041 8042 /* Store the values of the MSIX table in the s2io_nic structure */ 8043 store_xmsi_data(sp); 8044 /* reset Nic and bring it to known state */ 8045 s2io_reset(sp); 8046 8047 /* 8048 * Initialize link state flags 8049 * and the card state parameter 8050 */ 8051 sp->state = 0; 8052 8053 /* Initialize spinlocks */ 8054 for (i = 0; i < sp->config.tx_fifo_num; i++) { 8055 struct fifo_info *fifo = &mac_control->fifos[i]; 8056 8057 spin_lock_init(&fifo->tx_lock); 8058 } 8059 8060 /* 8061 * SXE-002: Configure link and activity LED to init state 8062 * on driver load. 8063 */ 8064 subid = sp->pdev->subsystem_device; 8065 if ((subid & 0xFF) >= 0x07) { 8066 val64 = readq(&bar0->gpio_control); 8067 val64 |= 0x0000800000000000ULL; 8068 writeq(val64, &bar0->gpio_control); 8069 val64 = 0x0411040400000000ULL; 8070 writeq(val64, (void __iomem *)bar0 + 0x2700); 8071 val64 = readq(&bar0->gpio_control); 8072 } 8073 8074 sp->rx_csum = 1; /* Rx chksum verify enabled by default */ 8075 8076 if (register_netdev(dev)) { 8077 DBG_PRINT(ERR_DBG, "Device registration failed\n"); 8078 ret = -ENODEV; 8079 goto register_failed; 8080 } 8081 s2io_vpd_read(sp); 8082 DBG_PRINT(ERR_DBG, "Copyright(c) 2002-2010 Exar Corp.\n"); 8083 DBG_PRINT(ERR_DBG, "%s: Neterion %s (rev %d)\n", dev->name, 8084 sp->product_name, pdev->revision); 8085 DBG_PRINT(ERR_DBG, "%s: Driver version %s\n", dev->name, 8086 s2io_driver_version); 8087 DBG_PRINT(ERR_DBG, "%s: MAC Address: %pM\n", dev->name, dev->dev_addr); 8088 DBG_PRINT(ERR_DBG, "Serial number: %s\n", sp->serial_num); 8089 if (sp->device_type & XFRAME_II_DEVICE) { 8090 mode = s2io_print_pci_mode(sp); 8091 if (mode < 0) { 8092 ret = -EBADSLT; 8093 unregister_netdev(dev); 8094 goto set_swap_failed; 8095 } 8096 } 8097 switch (sp->rxd_mode) { 8098 case RXD_MODE_1: 8099 DBG_PRINT(ERR_DBG, "%s: 1-Buffer receive mode enabled\n", 8100 dev->name); 8101 break; 8102 case RXD_MODE_3B: 8103 DBG_PRINT(ERR_DBG, "%s: 2-Buffer receive mode enabled\n", 8104 dev->name); 8105 break; 8106 } 8107 8108 switch (sp->config.napi) { 8109 case 0: 8110 DBG_PRINT(ERR_DBG, "%s: NAPI disabled\n", dev->name); 8111 break; 8112 case 1: 8113 DBG_PRINT(ERR_DBG, "%s: NAPI enabled\n", dev->name); 8114 break; 8115 } 8116 8117 DBG_PRINT(ERR_DBG, "%s: Using %d Tx fifo(s)\n", dev->name, 8118 sp->config.tx_fifo_num); 8119 8120 DBG_PRINT(ERR_DBG, "%s: Using %d Rx ring(s)\n", dev->name, 8121 sp->config.rx_ring_num); 8122 8123 switch (sp->config.intr_type) { 8124 case INTA: 8125 DBG_PRINT(ERR_DBG, "%s: Interrupt type INTA\n", dev->name); 8126 break; 8127 case MSI_X: 8128 DBG_PRINT(ERR_DBG, "%s: Interrupt type MSI-X\n", dev->name); 8129 break; 8130 } 8131 if (sp->config.multiq) { 8132 for (i = 0; i < sp->config.tx_fifo_num; i++) { 8133 struct fifo_info *fifo = &mac_control->fifos[i]; 8134 8135 fifo->multiq = config->multiq; 8136 } 8137 DBG_PRINT(ERR_DBG, "%s: Multiqueue support enabled\n", 8138 dev->name); 8139 } else 8140 DBG_PRINT(ERR_DBG, "%s: Multiqueue support disabled\n", 8141 dev->name); 8142 8143 switch (sp->config.tx_steering_type) { 8144 case NO_STEERING: 8145 DBG_PRINT(ERR_DBG, "%s: No steering enabled for transmit\n", 8146 dev->name); 8147 break; 8148 case TX_PRIORITY_STEERING: 8149 DBG_PRINT(ERR_DBG, 8150 "%s: Priority steering enabled for transmit\n", 8151 dev->name); 8152 break; 8153 case TX_DEFAULT_STEERING: 8154 DBG_PRINT(ERR_DBG, 8155 "%s: Default steering enabled for transmit\n", 8156 dev->name); 8157 } 8158 8159 DBG_PRINT(ERR_DBG, "%s: Large receive offload enabled\n", 8160 dev->name); 8161 if (ufo) 8162 DBG_PRINT(ERR_DBG, 8163 "%s: UDP Fragmentation Offload(UFO) enabled\n", 8164 dev->name); 8165 /* Initialize device name */ 8166 sprintf(sp->name, "%s Neterion %s", dev->name, sp->product_name); 8167 8168 if (vlan_tag_strip) 8169 sp->vlan_strip_flag = 1; 8170 else 8171 sp->vlan_strip_flag = 0; 8172 8173 /* 8174 * Make Link state as off at this point, when the Link change 8175 * interrupt comes the state will be automatically changed to 8176 * the right state. 8177 */ 8178 netif_carrier_off(dev); 8179 8180 return 0; 8181 8182 register_failed: 8183 set_swap_failed: 8184 iounmap(sp->bar1); 8185 bar1_remap_failed: 8186 iounmap(sp->bar0); 8187 bar0_remap_failed: 8188 mem_alloc_failed: 8189 free_shared_mem(sp); 8190 pci_disable_device(pdev); 8191 pci_release_regions(pdev); 8192 free_netdev(dev); 8193 8194 return ret; 8195 } 8196 8197 /** 8198 * s2io_rem_nic - Free the PCI device 8199 * @pdev: structure containing the PCI related information of the device. 8200 * Description: This function is called by the Pci subsystem to release a 8201 * PCI device and free up all resource held up by the device. This could 8202 * be in response to a Hot plug event or when the driver is to be removed 8203 * from memory. 8204 */ 8205 8206 static void s2io_rem_nic(struct pci_dev *pdev) 8207 { 8208 struct net_device *dev = pci_get_drvdata(pdev); 8209 struct s2io_nic *sp; 8210 8211 if (dev == NULL) { 8212 DBG_PRINT(ERR_DBG, "Driver Data is NULL!!\n"); 8213 return; 8214 } 8215 8216 sp = netdev_priv(dev); 8217 8218 cancel_work_sync(&sp->rst_timer_task); 8219 cancel_work_sync(&sp->set_link_task); 8220 8221 unregister_netdev(dev); 8222 8223 free_shared_mem(sp); 8224 iounmap(sp->bar0); 8225 iounmap(sp->bar1); 8226 pci_release_regions(pdev); 8227 free_netdev(dev); 8228 pci_disable_device(pdev); 8229 } 8230 8231 /** 8232 * s2io_starter - Entry point for the driver 8233 * Description: This function is the entry point for the driver. It verifies 8234 * the module loadable parameters and initializes PCI configuration space. 8235 */ 8236 8237 static int __init s2io_starter(void) 8238 { 8239 return pci_register_driver(&s2io_driver); 8240 } 8241 8242 /** 8243 * s2io_closer - Cleanup routine for the driver 8244 * Description: This function is the cleanup routine for the driver. It 8245 * unregisters the driver. 8246 */ 8247 8248 static __exit void s2io_closer(void) 8249 { 8250 pci_unregister_driver(&s2io_driver); 8251 DBG_PRINT(INIT_DBG, "cleanup done\n"); 8252 } 8253 8254 module_init(s2io_starter); 8255 module_exit(s2io_closer); 8256 8257 static int check_L2_lro_capable(u8 *buffer, struct iphdr **ip, 8258 struct tcphdr **tcp, struct RxD_t *rxdp, 8259 struct s2io_nic *sp) 8260 { 8261 int ip_off; 8262 u8 l2_type = (u8)((rxdp->Control_1 >> 37) & 0x7), ip_len; 8263 8264 if (!(rxdp->Control_1 & RXD_FRAME_PROTO_TCP)) { 8265 DBG_PRINT(INIT_DBG, 8266 "%s: Non-TCP frames not supported for LRO\n", 8267 __func__); 8268 return -1; 8269 } 8270 8271 /* Checking for DIX type or DIX type with VLAN */ 8272 if ((l2_type == 0) || (l2_type == 4)) { 8273 ip_off = HEADER_ETHERNET_II_802_3_SIZE; 8274 /* 8275 * If vlan stripping is disabled and the frame is VLAN tagged, 8276 * shift the offset by the VLAN header size bytes. 8277 */ 8278 if ((!sp->vlan_strip_flag) && 8279 (rxdp->Control_1 & RXD_FRAME_VLAN_TAG)) 8280 ip_off += HEADER_VLAN_SIZE; 8281 } else { 8282 /* LLC, SNAP etc are considered non-mergeable */ 8283 return -1; 8284 } 8285 8286 *ip = (struct iphdr *)(buffer + ip_off); 8287 ip_len = (u8)((*ip)->ihl); 8288 ip_len <<= 2; 8289 *tcp = (struct tcphdr *)((unsigned long)*ip + ip_len); 8290 8291 return 0; 8292 } 8293 8294 static int check_for_socket_match(struct lro *lro, struct iphdr *ip, 8295 struct tcphdr *tcp) 8296 { 8297 DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__); 8298 if ((lro->iph->saddr != ip->saddr) || 8299 (lro->iph->daddr != ip->daddr) || 8300 (lro->tcph->source != tcp->source) || 8301 (lro->tcph->dest != tcp->dest)) 8302 return -1; 8303 return 0; 8304 } 8305 8306 static inline int get_l4_pyld_length(struct iphdr *ip, struct tcphdr *tcp) 8307 { 8308 return ntohs(ip->tot_len) - (ip->ihl << 2) - (tcp->doff << 2); 8309 } 8310 8311 static void initiate_new_session(struct lro *lro, u8 *l2h, 8312 struct iphdr *ip, struct tcphdr *tcp, 8313 u32 tcp_pyld_len, u16 vlan_tag) 8314 { 8315 DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__); 8316 lro->l2h = l2h; 8317 lro->iph = ip; 8318 lro->tcph = tcp; 8319 lro->tcp_next_seq = tcp_pyld_len + ntohl(tcp->seq); 8320 lro->tcp_ack = tcp->ack_seq; 8321 lro->sg_num = 1; 8322 lro->total_len = ntohs(ip->tot_len); 8323 lro->frags_len = 0; 8324 lro->vlan_tag = vlan_tag; 8325 /* 8326 * Check if we saw TCP timestamp. 8327 * Other consistency checks have already been done. 8328 */ 8329 if (tcp->doff == 8) { 8330 __be32 *ptr; 8331 ptr = (__be32 *)(tcp+1); 8332 lro->saw_ts = 1; 8333 lro->cur_tsval = ntohl(*(ptr+1)); 8334 lro->cur_tsecr = *(ptr+2); 8335 } 8336 lro->in_use = 1; 8337 } 8338 8339 static void update_L3L4_header(struct s2io_nic *sp, struct lro *lro) 8340 { 8341 struct iphdr *ip = lro->iph; 8342 struct tcphdr *tcp = lro->tcph; 8343 struct swStat *swstats = &sp->mac_control.stats_info->sw_stat; 8344 8345 DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__); 8346 8347 /* Update L3 header */ 8348 csum_replace2(&ip->check, ip->tot_len, htons(lro->total_len)); 8349 ip->tot_len = htons(lro->total_len); 8350 8351 /* Update L4 header */ 8352 tcp->ack_seq = lro->tcp_ack; 8353 tcp->window = lro->window; 8354 8355 /* Update tsecr field if this session has timestamps enabled */ 8356 if (lro->saw_ts) { 8357 __be32 *ptr = (__be32 *)(tcp + 1); 8358 *(ptr+2) = lro->cur_tsecr; 8359 } 8360 8361 /* Update counters required for calculation of 8362 * average no. of packets aggregated. 8363 */ 8364 swstats->sum_avg_pkts_aggregated += lro->sg_num; 8365 swstats->num_aggregations++; 8366 } 8367 8368 static void aggregate_new_rx(struct lro *lro, struct iphdr *ip, 8369 struct tcphdr *tcp, u32 l4_pyld) 8370 { 8371 DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__); 8372 lro->total_len += l4_pyld; 8373 lro->frags_len += l4_pyld; 8374 lro->tcp_next_seq += l4_pyld; 8375 lro->sg_num++; 8376 8377 /* Update ack seq no. and window ad(from this pkt) in LRO object */ 8378 lro->tcp_ack = tcp->ack_seq; 8379 lro->window = tcp->window; 8380 8381 if (lro->saw_ts) { 8382 __be32 *ptr; 8383 /* Update tsecr and tsval from this packet */ 8384 ptr = (__be32 *)(tcp+1); 8385 lro->cur_tsval = ntohl(*(ptr+1)); 8386 lro->cur_tsecr = *(ptr + 2); 8387 } 8388 } 8389 8390 static int verify_l3_l4_lro_capable(struct lro *l_lro, struct iphdr *ip, 8391 struct tcphdr *tcp, u32 tcp_pyld_len) 8392 { 8393 u8 *ptr; 8394 8395 DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__); 8396 8397 if (!tcp_pyld_len) { 8398 /* Runt frame or a pure ack */ 8399 return -1; 8400 } 8401 8402 if (ip->ihl != 5) /* IP has options */ 8403 return -1; 8404 8405 /* If we see CE codepoint in IP header, packet is not mergeable */ 8406 if (INET_ECN_is_ce(ipv4_get_dsfield(ip))) 8407 return -1; 8408 8409 /* If we see ECE or CWR flags in TCP header, packet is not mergeable */ 8410 if (tcp->urg || tcp->psh || tcp->rst || 8411 tcp->syn || tcp->fin || 8412 tcp->ece || tcp->cwr || !tcp->ack) { 8413 /* 8414 * Currently recognize only the ack control word and 8415 * any other control field being set would result in 8416 * flushing the LRO session 8417 */ 8418 return -1; 8419 } 8420 8421 /* 8422 * Allow only one TCP timestamp option. Don't aggregate if 8423 * any other options are detected. 8424 */ 8425 if (tcp->doff != 5 && tcp->doff != 8) 8426 return -1; 8427 8428 if (tcp->doff == 8) { 8429 ptr = (u8 *)(tcp + 1); 8430 while (*ptr == TCPOPT_NOP) 8431 ptr++; 8432 if (*ptr != TCPOPT_TIMESTAMP || *(ptr+1) != TCPOLEN_TIMESTAMP) 8433 return -1; 8434 8435 /* Ensure timestamp value increases monotonically */ 8436 if (l_lro) 8437 if (l_lro->cur_tsval > ntohl(*((__be32 *)(ptr+2)))) 8438 return -1; 8439 8440 /* timestamp echo reply should be non-zero */ 8441 if (*((__be32 *)(ptr+6)) == 0) 8442 return -1; 8443 } 8444 8445 return 0; 8446 } 8447 8448 static int s2io_club_tcp_session(struct ring_info *ring_data, u8 *buffer, 8449 u8 **tcp, u32 *tcp_len, struct lro **lro, 8450 struct RxD_t *rxdp, struct s2io_nic *sp) 8451 { 8452 struct iphdr *ip; 8453 struct tcphdr *tcph; 8454 int ret = 0, i; 8455 u16 vlan_tag = 0; 8456 struct swStat *swstats = &sp->mac_control.stats_info->sw_stat; 8457 8458 ret = check_L2_lro_capable(buffer, &ip, (struct tcphdr **)tcp, 8459 rxdp, sp); 8460 if (ret) 8461 return ret; 8462 8463 DBG_PRINT(INFO_DBG, "IP Saddr: %x Daddr: %x\n", ip->saddr, ip->daddr); 8464 8465 vlan_tag = RXD_GET_VLAN_TAG(rxdp->Control_2); 8466 tcph = (struct tcphdr *)*tcp; 8467 *tcp_len = get_l4_pyld_length(ip, tcph); 8468 for (i = 0; i < MAX_LRO_SESSIONS; i++) { 8469 struct lro *l_lro = &ring_data->lro0_n[i]; 8470 if (l_lro->in_use) { 8471 if (check_for_socket_match(l_lro, ip, tcph)) 8472 continue; 8473 /* Sock pair matched */ 8474 *lro = l_lro; 8475 8476 if ((*lro)->tcp_next_seq != ntohl(tcph->seq)) { 8477 DBG_PRINT(INFO_DBG, "%s: Out of sequence. " 8478 "expected 0x%x, actual 0x%x\n", 8479 __func__, 8480 (*lro)->tcp_next_seq, 8481 ntohl(tcph->seq)); 8482 8483 swstats->outof_sequence_pkts++; 8484 ret = 2; 8485 break; 8486 } 8487 8488 if (!verify_l3_l4_lro_capable(l_lro, ip, tcph, 8489 *tcp_len)) 8490 ret = 1; /* Aggregate */ 8491 else 8492 ret = 2; /* Flush both */ 8493 break; 8494 } 8495 } 8496 8497 if (ret == 0) { 8498 /* Before searching for available LRO objects, 8499 * check if the pkt is L3/L4 aggregatable. If not 8500 * don't create new LRO session. Just send this 8501 * packet up. 8502 */ 8503 if (verify_l3_l4_lro_capable(NULL, ip, tcph, *tcp_len)) 8504 return 5; 8505 8506 for (i = 0; i < MAX_LRO_SESSIONS; i++) { 8507 struct lro *l_lro = &ring_data->lro0_n[i]; 8508 if (!(l_lro->in_use)) { 8509 *lro = l_lro; 8510 ret = 3; /* Begin anew */ 8511 break; 8512 } 8513 } 8514 } 8515 8516 if (ret == 0) { /* sessions exceeded */ 8517 DBG_PRINT(INFO_DBG, "%s: All LRO sessions already in use\n", 8518 __func__); 8519 *lro = NULL; 8520 return ret; 8521 } 8522 8523 switch (ret) { 8524 case 3: 8525 initiate_new_session(*lro, buffer, ip, tcph, *tcp_len, 8526 vlan_tag); 8527 break; 8528 case 2: 8529 update_L3L4_header(sp, *lro); 8530 break; 8531 case 1: 8532 aggregate_new_rx(*lro, ip, tcph, *tcp_len); 8533 if ((*lro)->sg_num == sp->lro_max_aggr_per_sess) { 8534 update_L3L4_header(sp, *lro); 8535 ret = 4; /* Flush the LRO */ 8536 } 8537 break; 8538 default: 8539 DBG_PRINT(ERR_DBG, "%s: Don't know, can't say!!\n", __func__); 8540 break; 8541 } 8542 8543 return ret; 8544 } 8545 8546 static void clear_lro_session(struct lro *lro) 8547 { 8548 static u16 lro_struct_size = sizeof(struct lro); 8549 8550 memset(lro, 0, lro_struct_size); 8551 } 8552 8553 static void queue_rx_frame(struct sk_buff *skb, u16 vlan_tag) 8554 { 8555 struct net_device *dev = skb->dev; 8556 struct s2io_nic *sp = netdev_priv(dev); 8557 8558 skb->protocol = eth_type_trans(skb, dev); 8559 if (vlan_tag && sp->vlan_strip_flag) 8560 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag); 8561 if (sp->config.napi) 8562 netif_receive_skb(skb); 8563 else 8564 netif_rx(skb); 8565 } 8566 8567 static void lro_append_pkt(struct s2io_nic *sp, struct lro *lro, 8568 struct sk_buff *skb, u32 tcp_len) 8569 { 8570 struct sk_buff *first = lro->parent; 8571 struct swStat *swstats = &sp->mac_control.stats_info->sw_stat; 8572 8573 first->len += tcp_len; 8574 first->data_len = lro->frags_len; 8575 skb_pull(skb, (skb->len - tcp_len)); 8576 if (skb_shinfo(first)->frag_list) 8577 lro->last_frag->next = skb; 8578 else 8579 skb_shinfo(first)->frag_list = skb; 8580 first->truesize += skb->truesize; 8581 lro->last_frag = skb; 8582 swstats->clubbed_frms_cnt++; 8583 } 8584 8585 /** 8586 * s2io_io_error_detected - called when PCI error is detected 8587 * @pdev: Pointer to PCI device 8588 * @state: The current pci connection state 8589 * 8590 * This function is called after a PCI bus error affecting 8591 * this device has been detected. 8592 */ 8593 static pci_ers_result_t s2io_io_error_detected(struct pci_dev *pdev, 8594 pci_channel_state_t state) 8595 { 8596 struct net_device *netdev = pci_get_drvdata(pdev); 8597 struct s2io_nic *sp = netdev_priv(netdev); 8598 8599 netif_device_detach(netdev); 8600 8601 if (state == pci_channel_io_perm_failure) 8602 return PCI_ERS_RESULT_DISCONNECT; 8603 8604 if (netif_running(netdev)) { 8605 /* Bring down the card, while avoiding PCI I/O */ 8606 do_s2io_card_down(sp, 0); 8607 } 8608 pci_disable_device(pdev); 8609 8610 return PCI_ERS_RESULT_NEED_RESET; 8611 } 8612 8613 /** 8614 * s2io_io_slot_reset - called after the pci bus has been reset. 8615 * @pdev: Pointer to PCI device 8616 * 8617 * Restart the card from scratch, as if from a cold-boot. 8618 * At this point, the card has exprienced a hard reset, 8619 * followed by fixups by BIOS, and has its config space 8620 * set up identically to what it was at cold boot. 8621 */ 8622 static pci_ers_result_t s2io_io_slot_reset(struct pci_dev *pdev) 8623 { 8624 struct net_device *netdev = pci_get_drvdata(pdev); 8625 struct s2io_nic *sp = netdev_priv(netdev); 8626 8627 if (pci_enable_device(pdev)) { 8628 pr_err("Cannot re-enable PCI device after reset.\n"); 8629 return PCI_ERS_RESULT_DISCONNECT; 8630 } 8631 8632 pci_set_master(pdev); 8633 s2io_reset(sp); 8634 8635 return PCI_ERS_RESULT_RECOVERED; 8636 } 8637 8638 /** 8639 * s2io_io_resume - called when traffic can start flowing again. 8640 * @pdev: Pointer to PCI device 8641 * 8642 * This callback is called when the error recovery driver tells 8643 * us that its OK to resume normal operation. 8644 */ 8645 static void s2io_io_resume(struct pci_dev *pdev) 8646 { 8647 struct net_device *netdev = pci_get_drvdata(pdev); 8648 struct s2io_nic *sp = netdev_priv(netdev); 8649 8650 if (netif_running(netdev)) { 8651 if (s2io_card_up(sp)) { 8652 pr_err("Can't bring device back up after reset.\n"); 8653 return; 8654 } 8655 8656 if (s2io_set_mac_addr(netdev, netdev->dev_addr) == FAILURE) { 8657 s2io_card_down(sp); 8658 pr_err("Can't restore mac addr after reset.\n"); 8659 return; 8660 } 8661 } 8662 8663 netif_device_attach(netdev); 8664 netif_tx_wake_all_queues(netdev); 8665 } 8666