1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * sonic.c 4 * 5 * (C) 2005 Finn Thain 6 * 7 * Converted to DMA API, added zero-copy buffer handling, and 8 * (from the mac68k project) introduced dhd's support for 16-bit cards. 9 * 10 * (C) 1996,1998 by Thomas Bogendoerfer (tsbogend@alpha.franken.de) 11 * 12 * This driver is based on work from Andreas Busse, but most of 13 * the code is rewritten. 14 * 15 * (C) 1995 by Andreas Busse (andy@waldorf-gmbh.de) 16 * 17 * Core code included by system sonic drivers 18 * 19 * And... partially rewritten again by David Huggins-Daines in order 20 * to cope with screwed up Macintosh NICs that may or may not use 21 * 16-bit DMA. 22 * 23 * (C) 1999 David Huggins-Daines <dhd@debian.org> 24 * 25 */ 26 27 /* 28 * Sources: Olivetti M700-10 Risc Personal Computer hardware handbook, 29 * National Semiconductors data sheet for the DP83932B Sonic Ethernet 30 * controller, and the files "8390.c" and "skeleton.c" in this directory. 31 * 32 * Additional sources: Nat Semi data sheet for the DP83932C and Nat Semi 33 * Application Note AN-746, the files "lance.c" and "ibmlana.c". See also 34 * the NetBSD file "sys/arch/mac68k/dev/if_sn.c". 35 */ 36 37 static unsigned int version_printed; 38 39 static int sonic_debug = -1; 40 module_param(sonic_debug, int, 0); 41 MODULE_PARM_DESC(sonic_debug, "debug message level"); 42 43 static void sonic_msg_init(struct net_device *dev) 44 { 45 struct sonic_local *lp = netdev_priv(dev); 46 47 lp->msg_enable = netif_msg_init(sonic_debug, 0); 48 49 if (version_printed++ == 0) 50 netif_dbg(lp, drv, dev, "%s", version); 51 } 52 53 static int sonic_alloc_descriptors(struct net_device *dev) 54 { 55 struct sonic_local *lp = netdev_priv(dev); 56 57 /* Allocate a chunk of memory for the descriptors. Note that this 58 * must not cross a 64K boundary. It is smaller than one page which 59 * means that page alignment is a sufficient condition. 60 */ 61 lp->descriptors = 62 dma_alloc_coherent(lp->device, 63 SIZEOF_SONIC_DESC * 64 SONIC_BUS_SCALE(lp->dma_bitmode), 65 &lp->descriptors_laddr, GFP_KERNEL); 66 67 if (!lp->descriptors) 68 return -ENOMEM; 69 70 lp->cda = lp->descriptors; 71 lp->tda = lp->cda + SIZEOF_SONIC_CDA * 72 SONIC_BUS_SCALE(lp->dma_bitmode); 73 lp->rda = lp->tda + SIZEOF_SONIC_TD * SONIC_NUM_TDS * 74 SONIC_BUS_SCALE(lp->dma_bitmode); 75 lp->rra = lp->rda + SIZEOF_SONIC_RD * SONIC_NUM_RDS * 76 SONIC_BUS_SCALE(lp->dma_bitmode); 77 78 lp->cda_laddr = lp->descriptors_laddr; 79 lp->tda_laddr = lp->cda_laddr + SIZEOF_SONIC_CDA * 80 SONIC_BUS_SCALE(lp->dma_bitmode); 81 lp->rda_laddr = lp->tda_laddr + SIZEOF_SONIC_TD * SONIC_NUM_TDS * 82 SONIC_BUS_SCALE(lp->dma_bitmode); 83 lp->rra_laddr = lp->rda_laddr + SIZEOF_SONIC_RD * SONIC_NUM_RDS * 84 SONIC_BUS_SCALE(lp->dma_bitmode); 85 86 return 0; 87 } 88 89 /* 90 * Open/initialize the SONIC controller. 91 * 92 * This routine should set everything up anew at each open, even 93 * registers that "should" only need to be set once at boot, so that 94 * there is non-reboot way to recover if something goes wrong. 95 */ 96 static int sonic_open(struct net_device *dev) 97 { 98 struct sonic_local *lp = netdev_priv(dev); 99 int i; 100 101 netif_dbg(lp, ifup, dev, "%s: initializing sonic driver\n", __func__); 102 103 spin_lock_init(&lp->lock); 104 105 for (i = 0; i < SONIC_NUM_RRS; i++) { 106 struct sk_buff *skb = netdev_alloc_skb(dev, SONIC_RBSIZE + 2); 107 if (skb == NULL) { 108 while(i > 0) { /* free any that were allocated successfully */ 109 i--; 110 dev_kfree_skb(lp->rx_skb[i]); 111 lp->rx_skb[i] = NULL; 112 } 113 printk(KERN_ERR "%s: couldn't allocate receive buffers\n", 114 dev->name); 115 return -ENOMEM; 116 } 117 /* align IP header unless DMA requires otherwise */ 118 if (SONIC_BUS_SCALE(lp->dma_bitmode) == 2) 119 skb_reserve(skb, 2); 120 lp->rx_skb[i] = skb; 121 } 122 123 for (i = 0; i < SONIC_NUM_RRS; i++) { 124 dma_addr_t laddr = dma_map_single(lp->device, skb_put(lp->rx_skb[i], SONIC_RBSIZE), 125 SONIC_RBSIZE, DMA_FROM_DEVICE); 126 if (dma_mapping_error(lp->device, laddr)) { 127 while(i > 0) { /* free any that were mapped successfully */ 128 i--; 129 dma_unmap_single(lp->device, lp->rx_laddr[i], SONIC_RBSIZE, DMA_FROM_DEVICE); 130 lp->rx_laddr[i] = (dma_addr_t)0; 131 } 132 for (i = 0; i < SONIC_NUM_RRS; i++) { 133 dev_kfree_skb(lp->rx_skb[i]); 134 lp->rx_skb[i] = NULL; 135 } 136 printk(KERN_ERR "%s: couldn't map rx DMA buffers\n", 137 dev->name); 138 return -ENOMEM; 139 } 140 lp->rx_laddr[i] = laddr; 141 } 142 143 /* 144 * Initialize the SONIC 145 */ 146 sonic_init(dev); 147 148 netif_start_queue(dev); 149 150 netif_dbg(lp, ifup, dev, "%s: Initialization done\n", __func__); 151 152 return 0; 153 } 154 155 /* Wait for the SONIC to become idle. */ 156 static void sonic_quiesce(struct net_device *dev, u16 mask) 157 { 158 struct sonic_local * __maybe_unused lp = netdev_priv(dev); 159 int i; 160 u16 bits; 161 162 for (i = 0; i < 1000; ++i) { 163 bits = SONIC_READ(SONIC_CMD) & mask; 164 if (!bits) 165 return; 166 if (irqs_disabled() || in_interrupt()) 167 udelay(20); 168 else 169 usleep_range(100, 200); 170 } 171 WARN_ONCE(1, "command deadline expired! 0x%04x\n", bits); 172 } 173 174 /* 175 * Close the SONIC device 176 */ 177 static int sonic_close(struct net_device *dev) 178 { 179 struct sonic_local *lp = netdev_priv(dev); 180 int i; 181 182 netif_dbg(lp, ifdown, dev, "%s\n", __func__); 183 184 netif_stop_queue(dev); 185 186 /* 187 * stop the SONIC, disable interrupts 188 */ 189 SONIC_WRITE(SONIC_CMD, SONIC_CR_RXDIS); 190 sonic_quiesce(dev, SONIC_CR_ALL); 191 192 SONIC_WRITE(SONIC_IMR, 0); 193 SONIC_WRITE(SONIC_ISR, 0x7fff); 194 SONIC_WRITE(SONIC_CMD, SONIC_CR_RST); 195 196 /* unmap and free skbs that haven't been transmitted */ 197 for (i = 0; i < SONIC_NUM_TDS; i++) { 198 if(lp->tx_laddr[i]) { 199 dma_unmap_single(lp->device, lp->tx_laddr[i], lp->tx_len[i], DMA_TO_DEVICE); 200 lp->tx_laddr[i] = (dma_addr_t)0; 201 } 202 if(lp->tx_skb[i]) { 203 dev_kfree_skb(lp->tx_skb[i]); 204 lp->tx_skb[i] = NULL; 205 } 206 } 207 208 /* unmap and free the receive buffers */ 209 for (i = 0; i < SONIC_NUM_RRS; i++) { 210 if(lp->rx_laddr[i]) { 211 dma_unmap_single(lp->device, lp->rx_laddr[i], SONIC_RBSIZE, DMA_FROM_DEVICE); 212 lp->rx_laddr[i] = (dma_addr_t)0; 213 } 214 if(lp->rx_skb[i]) { 215 dev_kfree_skb(lp->rx_skb[i]); 216 lp->rx_skb[i] = NULL; 217 } 218 } 219 220 return 0; 221 } 222 223 static void sonic_tx_timeout(struct net_device *dev, unsigned int txqueue) 224 { 225 struct sonic_local *lp = netdev_priv(dev); 226 int i; 227 /* 228 * put the Sonic into software-reset mode and 229 * disable all interrupts before releasing DMA buffers 230 */ 231 SONIC_WRITE(SONIC_CMD, SONIC_CR_RXDIS); 232 sonic_quiesce(dev, SONIC_CR_ALL); 233 234 SONIC_WRITE(SONIC_IMR, 0); 235 SONIC_WRITE(SONIC_ISR, 0x7fff); 236 SONIC_WRITE(SONIC_CMD, SONIC_CR_RST); 237 /* We could resend the original skbs. Easier to re-initialise. */ 238 for (i = 0; i < SONIC_NUM_TDS; i++) { 239 if(lp->tx_laddr[i]) { 240 dma_unmap_single(lp->device, lp->tx_laddr[i], lp->tx_len[i], DMA_TO_DEVICE); 241 lp->tx_laddr[i] = (dma_addr_t)0; 242 } 243 if(lp->tx_skb[i]) { 244 dev_kfree_skb(lp->tx_skb[i]); 245 lp->tx_skb[i] = NULL; 246 } 247 } 248 /* Try to restart the adaptor. */ 249 sonic_init(dev); 250 lp->stats.tx_errors++; 251 netif_trans_update(dev); /* prevent tx timeout */ 252 netif_wake_queue(dev); 253 } 254 255 /* 256 * transmit packet 257 * 258 * Appends new TD during transmission thus avoiding any TX interrupts 259 * until we run out of TDs. 260 * This routine interacts closely with the ISR in that it may, 261 * set tx_skb[i] 262 * reset the status flags of the new TD 263 * set and reset EOL flags 264 * stop the tx queue 265 * The ISR interacts with this routine in various ways. It may, 266 * reset tx_skb[i] 267 * test the EOL and status flags of the TDs 268 * wake the tx queue 269 * Concurrently with all of this, the SONIC is potentially writing to 270 * the status flags of the TDs. 271 */ 272 273 static int sonic_send_packet(struct sk_buff *skb, struct net_device *dev) 274 { 275 struct sonic_local *lp = netdev_priv(dev); 276 dma_addr_t laddr; 277 int length; 278 int entry; 279 unsigned long flags; 280 281 netif_dbg(lp, tx_queued, dev, "%s: skb=%p\n", __func__, skb); 282 283 length = skb->len; 284 if (length < ETH_ZLEN) { 285 if (skb_padto(skb, ETH_ZLEN)) 286 return NETDEV_TX_OK; 287 length = ETH_ZLEN; 288 } 289 290 /* 291 * Map the packet data into the logical DMA address space 292 */ 293 294 laddr = dma_map_single(lp->device, skb->data, length, DMA_TO_DEVICE); 295 if (!laddr) { 296 pr_err_ratelimited("%s: failed to map tx DMA buffer.\n", dev->name); 297 dev_kfree_skb_any(skb); 298 return NETDEV_TX_OK; 299 } 300 301 spin_lock_irqsave(&lp->lock, flags); 302 303 entry = (lp->eol_tx + 1) & SONIC_TDS_MASK; 304 305 sonic_tda_put(dev, entry, SONIC_TD_STATUS, 0); /* clear status */ 306 sonic_tda_put(dev, entry, SONIC_TD_FRAG_COUNT, 1); /* single fragment */ 307 sonic_tda_put(dev, entry, SONIC_TD_PKTSIZE, length); /* length of packet */ 308 sonic_tda_put(dev, entry, SONIC_TD_FRAG_PTR_L, laddr & 0xffff); 309 sonic_tda_put(dev, entry, SONIC_TD_FRAG_PTR_H, laddr >> 16); 310 sonic_tda_put(dev, entry, SONIC_TD_FRAG_SIZE, length); 311 sonic_tda_put(dev, entry, SONIC_TD_LINK, 312 sonic_tda_get(dev, entry, SONIC_TD_LINK) | SONIC_EOL); 313 314 sonic_tda_put(dev, lp->eol_tx, SONIC_TD_LINK, ~SONIC_EOL & 315 sonic_tda_get(dev, lp->eol_tx, SONIC_TD_LINK)); 316 317 netif_dbg(lp, tx_queued, dev, "%s: issuing Tx command\n", __func__); 318 319 SONIC_WRITE(SONIC_CMD, SONIC_CR_TXP); 320 321 lp->tx_len[entry] = length; 322 lp->tx_laddr[entry] = laddr; 323 lp->tx_skb[entry] = skb; 324 325 lp->eol_tx = entry; 326 327 entry = (entry + 1) & SONIC_TDS_MASK; 328 if (lp->tx_skb[entry]) { 329 /* The ring is full, the ISR has yet to process the next TD. */ 330 netif_dbg(lp, tx_queued, dev, "%s: stopping queue\n", __func__); 331 netif_stop_queue(dev); 332 /* after this packet, wait for ISR to free up some TDAs */ 333 } 334 335 spin_unlock_irqrestore(&lp->lock, flags); 336 337 return NETDEV_TX_OK; 338 } 339 340 /* 341 * The typical workload of the driver: 342 * Handle the network interface interrupts. 343 */ 344 static irqreturn_t sonic_interrupt(int irq, void *dev_id) 345 { 346 struct net_device *dev = dev_id; 347 struct sonic_local *lp = netdev_priv(dev); 348 int status; 349 unsigned long flags; 350 351 /* The lock has two purposes. Firstly, it synchronizes sonic_interrupt() 352 * with sonic_send_packet() so that the two functions can share state. 353 * Secondly, it makes sonic_interrupt() re-entrant, as that is required 354 * by macsonic which must use two IRQs with different priority levels. 355 */ 356 spin_lock_irqsave(&lp->lock, flags); 357 358 status = SONIC_READ(SONIC_ISR) & SONIC_IMR_DEFAULT; 359 if (!status) { 360 spin_unlock_irqrestore(&lp->lock, flags); 361 362 return IRQ_NONE; 363 } 364 365 do { 366 SONIC_WRITE(SONIC_ISR, status); /* clear the interrupt(s) */ 367 368 if (status & SONIC_INT_PKTRX) { 369 netif_dbg(lp, intr, dev, "%s: packet rx\n", __func__); 370 sonic_rx(dev); /* got packet(s) */ 371 } 372 373 if (status & SONIC_INT_TXDN) { 374 int entry = lp->cur_tx; 375 int td_status; 376 int freed_some = 0; 377 378 /* The state of a Transmit Descriptor may be inferred 379 * from { tx_skb[entry], td_status } as follows. 380 * { clear, clear } => the TD has never been used 381 * { set, clear } => the TD was handed to SONIC 382 * { set, set } => the TD was handed back 383 * { clear, set } => the TD is available for re-use 384 */ 385 386 netif_dbg(lp, intr, dev, "%s: tx done\n", __func__); 387 388 while (lp->tx_skb[entry] != NULL) { 389 if ((td_status = sonic_tda_get(dev, entry, SONIC_TD_STATUS)) == 0) 390 break; 391 392 if (td_status & SONIC_TCR_PTX) { 393 lp->stats.tx_packets++; 394 lp->stats.tx_bytes += sonic_tda_get(dev, entry, SONIC_TD_PKTSIZE); 395 } else { 396 if (td_status & (SONIC_TCR_EXD | 397 SONIC_TCR_EXC | SONIC_TCR_BCM)) 398 lp->stats.tx_aborted_errors++; 399 if (td_status & 400 (SONIC_TCR_NCRS | SONIC_TCR_CRLS)) 401 lp->stats.tx_carrier_errors++; 402 if (td_status & SONIC_TCR_OWC) 403 lp->stats.tx_window_errors++; 404 if (td_status & SONIC_TCR_FU) 405 lp->stats.tx_fifo_errors++; 406 } 407 408 /* We must free the original skb */ 409 dev_consume_skb_irq(lp->tx_skb[entry]); 410 lp->tx_skb[entry] = NULL; 411 /* and unmap DMA buffer */ 412 dma_unmap_single(lp->device, lp->tx_laddr[entry], lp->tx_len[entry], DMA_TO_DEVICE); 413 lp->tx_laddr[entry] = (dma_addr_t)0; 414 freed_some = 1; 415 416 if (sonic_tda_get(dev, entry, SONIC_TD_LINK) & SONIC_EOL) { 417 entry = (entry + 1) & SONIC_TDS_MASK; 418 break; 419 } 420 entry = (entry + 1) & SONIC_TDS_MASK; 421 } 422 423 if (freed_some || lp->tx_skb[entry] == NULL) 424 netif_wake_queue(dev); /* The ring is no longer full */ 425 lp->cur_tx = entry; 426 } 427 428 /* 429 * check error conditions 430 */ 431 if (status & SONIC_INT_RFO) { 432 netif_dbg(lp, rx_err, dev, "%s: rx fifo overrun\n", 433 __func__); 434 } 435 if (status & SONIC_INT_RDE) { 436 netif_dbg(lp, rx_err, dev, "%s: rx descriptors exhausted\n", 437 __func__); 438 } 439 if (status & SONIC_INT_RBAE) { 440 netif_dbg(lp, rx_err, dev, "%s: rx buffer area exceeded\n", 441 __func__); 442 } 443 444 /* counter overruns; all counters are 16bit wide */ 445 if (status & SONIC_INT_FAE) 446 lp->stats.rx_frame_errors += 65536; 447 if (status & SONIC_INT_CRC) 448 lp->stats.rx_crc_errors += 65536; 449 if (status & SONIC_INT_MP) 450 lp->stats.rx_missed_errors += 65536; 451 452 /* transmit error */ 453 if (status & SONIC_INT_TXER) { 454 u16 tcr = SONIC_READ(SONIC_TCR); 455 456 netif_dbg(lp, tx_err, dev, "%s: TXER intr, TCR %04x\n", 457 __func__, tcr); 458 459 if (tcr & (SONIC_TCR_EXD | SONIC_TCR_EXC | 460 SONIC_TCR_FU | SONIC_TCR_BCM)) { 461 /* Aborted transmission. Try again. */ 462 netif_stop_queue(dev); 463 SONIC_WRITE(SONIC_CMD, SONIC_CR_TXP); 464 } 465 } 466 467 /* bus retry */ 468 if (status & SONIC_INT_BR) { 469 printk(KERN_ERR "%s: Bus retry occurred! Device interrupt disabled.\n", 470 dev->name); 471 /* ... to help debug DMA problems causing endless interrupts. */ 472 /* Bounce the eth interface to turn on the interrupt again. */ 473 SONIC_WRITE(SONIC_IMR, 0); 474 } 475 476 status = SONIC_READ(SONIC_ISR) & SONIC_IMR_DEFAULT; 477 } while (status); 478 479 spin_unlock_irqrestore(&lp->lock, flags); 480 481 return IRQ_HANDLED; 482 } 483 484 /* Return the array index corresponding to a given Receive Buffer pointer. */ 485 static int index_from_addr(struct sonic_local *lp, dma_addr_t addr, 486 unsigned int last) 487 { 488 unsigned int i = last; 489 490 do { 491 i = (i + 1) & SONIC_RRS_MASK; 492 if (addr == lp->rx_laddr[i]) 493 return i; 494 } while (i != last); 495 496 return -ENOENT; 497 } 498 499 /* Allocate and map a new skb to be used as a receive buffer. */ 500 static bool sonic_alloc_rb(struct net_device *dev, struct sonic_local *lp, 501 struct sk_buff **new_skb, dma_addr_t *new_addr) 502 { 503 *new_skb = netdev_alloc_skb(dev, SONIC_RBSIZE + 2); 504 if (!*new_skb) 505 return false; 506 507 if (SONIC_BUS_SCALE(lp->dma_bitmode) == 2) 508 skb_reserve(*new_skb, 2); 509 510 *new_addr = dma_map_single(lp->device, skb_put(*new_skb, SONIC_RBSIZE), 511 SONIC_RBSIZE, DMA_FROM_DEVICE); 512 if (!*new_addr) { 513 dev_kfree_skb(*new_skb); 514 *new_skb = NULL; 515 return false; 516 } 517 518 return true; 519 } 520 521 /* Place a new receive resource in the Receive Resource Area and update RWP. */ 522 static void sonic_update_rra(struct net_device *dev, struct sonic_local *lp, 523 dma_addr_t old_addr, dma_addr_t new_addr) 524 { 525 unsigned int entry = sonic_rr_entry(dev, SONIC_READ(SONIC_RWP)); 526 unsigned int end = sonic_rr_entry(dev, SONIC_READ(SONIC_RRP)); 527 u32 buf; 528 529 /* The resources in the range [RRP, RWP) belong to the SONIC. This loop 530 * scans the other resources in the RRA, those in the range [RWP, RRP). 531 */ 532 do { 533 buf = (sonic_rra_get(dev, entry, SONIC_RR_BUFADR_H) << 16) | 534 sonic_rra_get(dev, entry, SONIC_RR_BUFADR_L); 535 536 if (buf == old_addr) 537 break; 538 539 entry = (entry + 1) & SONIC_RRS_MASK; 540 } while (entry != end); 541 542 WARN_ONCE(buf != old_addr, "failed to find resource!\n"); 543 544 sonic_rra_put(dev, entry, SONIC_RR_BUFADR_H, new_addr >> 16); 545 sonic_rra_put(dev, entry, SONIC_RR_BUFADR_L, new_addr & 0xffff); 546 547 entry = (entry + 1) & SONIC_RRS_MASK; 548 549 SONIC_WRITE(SONIC_RWP, sonic_rr_addr(dev, entry)); 550 } 551 552 /* 553 * We have a good packet(s), pass it/them up the network stack. 554 */ 555 static void sonic_rx(struct net_device *dev) 556 { 557 struct sonic_local *lp = netdev_priv(dev); 558 int entry = lp->cur_rx; 559 int prev_entry = lp->eol_rx; 560 bool rbe = false; 561 562 while (sonic_rda_get(dev, entry, SONIC_RD_IN_USE) == 0) { 563 u16 status = sonic_rda_get(dev, entry, SONIC_RD_STATUS); 564 565 /* If the RD has LPKT set, the chip has finished with the RB */ 566 if ((status & SONIC_RCR_PRX) && (status & SONIC_RCR_LPKT)) { 567 struct sk_buff *new_skb; 568 dma_addr_t new_laddr; 569 u32 addr = (sonic_rda_get(dev, entry, 570 SONIC_RD_PKTPTR_H) << 16) | 571 sonic_rda_get(dev, entry, SONIC_RD_PKTPTR_L); 572 int i = index_from_addr(lp, addr, entry); 573 574 if (i < 0) { 575 WARN_ONCE(1, "failed to find buffer!\n"); 576 break; 577 } 578 579 if (sonic_alloc_rb(dev, lp, &new_skb, &new_laddr)) { 580 struct sk_buff *used_skb = lp->rx_skb[i]; 581 int pkt_len; 582 583 /* Pass the used buffer up the stack */ 584 dma_unmap_single(lp->device, addr, SONIC_RBSIZE, 585 DMA_FROM_DEVICE); 586 587 pkt_len = sonic_rda_get(dev, entry, 588 SONIC_RD_PKTLEN); 589 skb_trim(used_skb, pkt_len); 590 used_skb->protocol = eth_type_trans(used_skb, 591 dev); 592 netif_rx(used_skb); 593 lp->stats.rx_packets++; 594 lp->stats.rx_bytes += pkt_len; 595 596 lp->rx_skb[i] = new_skb; 597 lp->rx_laddr[i] = new_laddr; 598 } else { 599 /* Failed to obtain a new buffer so re-use it */ 600 new_laddr = addr; 601 lp->stats.rx_dropped++; 602 } 603 /* If RBE is already asserted when RWP advances then 604 * it's safe to clear RBE after processing this packet. 605 */ 606 rbe = rbe || SONIC_READ(SONIC_ISR) & SONIC_INT_RBE; 607 sonic_update_rra(dev, lp, addr, new_laddr); 608 } 609 /* 610 * give back the descriptor 611 */ 612 sonic_rda_put(dev, entry, SONIC_RD_STATUS, 0); 613 sonic_rda_put(dev, entry, SONIC_RD_IN_USE, 1); 614 615 prev_entry = entry; 616 entry = (entry + 1) & SONIC_RDS_MASK; 617 } 618 619 lp->cur_rx = entry; 620 621 if (prev_entry != lp->eol_rx) { 622 /* Advance the EOL flag to put descriptors back into service */ 623 sonic_rda_put(dev, prev_entry, SONIC_RD_LINK, SONIC_EOL | 624 sonic_rda_get(dev, prev_entry, SONIC_RD_LINK)); 625 sonic_rda_put(dev, lp->eol_rx, SONIC_RD_LINK, ~SONIC_EOL & 626 sonic_rda_get(dev, lp->eol_rx, SONIC_RD_LINK)); 627 lp->eol_rx = prev_entry; 628 } 629 630 if (rbe) 631 SONIC_WRITE(SONIC_ISR, SONIC_INT_RBE); 632 } 633 634 635 /* 636 * Get the current statistics. 637 * This may be called with the device open or closed. 638 */ 639 static struct net_device_stats *sonic_get_stats(struct net_device *dev) 640 { 641 struct sonic_local *lp = netdev_priv(dev); 642 643 /* read the tally counter from the SONIC and reset them */ 644 lp->stats.rx_crc_errors += SONIC_READ(SONIC_CRCT); 645 SONIC_WRITE(SONIC_CRCT, 0xffff); 646 lp->stats.rx_frame_errors += SONIC_READ(SONIC_FAET); 647 SONIC_WRITE(SONIC_FAET, 0xffff); 648 lp->stats.rx_missed_errors += SONIC_READ(SONIC_MPT); 649 SONIC_WRITE(SONIC_MPT, 0xffff); 650 651 return &lp->stats; 652 } 653 654 655 /* 656 * Set or clear the multicast filter for this adaptor. 657 */ 658 static void sonic_multicast_list(struct net_device *dev) 659 { 660 struct sonic_local *lp = netdev_priv(dev); 661 unsigned int rcr; 662 struct netdev_hw_addr *ha; 663 unsigned char *addr; 664 int i; 665 666 rcr = SONIC_READ(SONIC_RCR) & ~(SONIC_RCR_PRO | SONIC_RCR_AMC); 667 rcr |= SONIC_RCR_BRD; /* accept broadcast packets */ 668 669 if (dev->flags & IFF_PROMISC) { /* set promiscuous mode */ 670 rcr |= SONIC_RCR_PRO; 671 } else { 672 if ((dev->flags & IFF_ALLMULTI) || 673 (netdev_mc_count(dev) > 15)) { 674 rcr |= SONIC_RCR_AMC; 675 } else { 676 unsigned long flags; 677 678 netif_dbg(lp, ifup, dev, "%s: mc_count %d\n", __func__, 679 netdev_mc_count(dev)); 680 sonic_set_cam_enable(dev, 1); /* always enable our own address */ 681 i = 1; 682 netdev_for_each_mc_addr(ha, dev) { 683 addr = ha->addr; 684 sonic_cda_put(dev, i, SONIC_CD_CAP0, addr[1] << 8 | addr[0]); 685 sonic_cda_put(dev, i, SONIC_CD_CAP1, addr[3] << 8 | addr[2]); 686 sonic_cda_put(dev, i, SONIC_CD_CAP2, addr[5] << 8 | addr[4]); 687 sonic_set_cam_enable(dev, sonic_get_cam_enable(dev) | (1 << i)); 688 i++; 689 } 690 SONIC_WRITE(SONIC_CDC, 16); 691 SONIC_WRITE(SONIC_CDP, lp->cda_laddr & 0xffff); 692 693 /* LCAM and TXP commands can't be used simultaneously */ 694 spin_lock_irqsave(&lp->lock, flags); 695 sonic_quiesce(dev, SONIC_CR_TXP); 696 SONIC_WRITE(SONIC_CMD, SONIC_CR_LCAM); 697 sonic_quiesce(dev, SONIC_CR_LCAM); 698 spin_unlock_irqrestore(&lp->lock, flags); 699 } 700 } 701 702 netif_dbg(lp, ifup, dev, "%s: setting RCR=%x\n", __func__, rcr); 703 704 SONIC_WRITE(SONIC_RCR, rcr); 705 } 706 707 708 /* 709 * Initialize the SONIC ethernet controller. 710 */ 711 static int sonic_init(struct net_device *dev) 712 { 713 struct sonic_local *lp = netdev_priv(dev); 714 int i; 715 716 /* 717 * put the Sonic into software-reset mode and 718 * disable all interrupts 719 */ 720 SONIC_WRITE(SONIC_IMR, 0); 721 SONIC_WRITE(SONIC_ISR, 0x7fff); 722 SONIC_WRITE(SONIC_CMD, SONIC_CR_RST); 723 724 /* While in reset mode, clear CAM Enable register */ 725 SONIC_WRITE(SONIC_CE, 0); 726 727 /* 728 * clear software reset flag, disable receiver, clear and 729 * enable interrupts, then completely initialize the SONIC 730 */ 731 SONIC_WRITE(SONIC_CMD, 0); 732 SONIC_WRITE(SONIC_CMD, SONIC_CR_RXDIS | SONIC_CR_STP); 733 sonic_quiesce(dev, SONIC_CR_ALL); 734 735 /* 736 * initialize the receive resource area 737 */ 738 netif_dbg(lp, ifup, dev, "%s: initialize receive resource area\n", 739 __func__); 740 741 for (i = 0; i < SONIC_NUM_RRS; i++) { 742 u16 bufadr_l = (unsigned long)lp->rx_laddr[i] & 0xffff; 743 u16 bufadr_h = (unsigned long)lp->rx_laddr[i] >> 16; 744 sonic_rra_put(dev, i, SONIC_RR_BUFADR_L, bufadr_l); 745 sonic_rra_put(dev, i, SONIC_RR_BUFADR_H, bufadr_h); 746 sonic_rra_put(dev, i, SONIC_RR_BUFSIZE_L, SONIC_RBSIZE >> 1); 747 sonic_rra_put(dev, i, SONIC_RR_BUFSIZE_H, 0); 748 } 749 750 /* initialize all RRA registers */ 751 SONIC_WRITE(SONIC_RSA, sonic_rr_addr(dev, 0)); 752 SONIC_WRITE(SONIC_REA, sonic_rr_addr(dev, SONIC_NUM_RRS)); 753 SONIC_WRITE(SONIC_RRP, sonic_rr_addr(dev, 0)); 754 SONIC_WRITE(SONIC_RWP, sonic_rr_addr(dev, SONIC_NUM_RRS - 1)); 755 SONIC_WRITE(SONIC_URRA, lp->rra_laddr >> 16); 756 SONIC_WRITE(SONIC_EOBC, (SONIC_RBSIZE >> 1) - (lp->dma_bitmode ? 2 : 1)); 757 758 /* load the resource pointers */ 759 netif_dbg(lp, ifup, dev, "%s: issuing RRRA command\n", __func__); 760 761 SONIC_WRITE(SONIC_CMD, SONIC_CR_RRRA); 762 sonic_quiesce(dev, SONIC_CR_RRRA); 763 764 /* 765 * Initialize the receive descriptors so that they 766 * become a circular linked list, ie. let the last 767 * descriptor point to the first again. 768 */ 769 netif_dbg(lp, ifup, dev, "%s: initialize receive descriptors\n", 770 __func__); 771 772 for (i=0; i<SONIC_NUM_RDS; i++) { 773 sonic_rda_put(dev, i, SONIC_RD_STATUS, 0); 774 sonic_rda_put(dev, i, SONIC_RD_PKTLEN, 0); 775 sonic_rda_put(dev, i, SONIC_RD_PKTPTR_L, 0); 776 sonic_rda_put(dev, i, SONIC_RD_PKTPTR_H, 0); 777 sonic_rda_put(dev, i, SONIC_RD_SEQNO, 0); 778 sonic_rda_put(dev, i, SONIC_RD_IN_USE, 1); 779 sonic_rda_put(dev, i, SONIC_RD_LINK, 780 lp->rda_laddr + 781 ((i+1) * SIZEOF_SONIC_RD * SONIC_BUS_SCALE(lp->dma_bitmode))); 782 } 783 /* fix last descriptor */ 784 sonic_rda_put(dev, SONIC_NUM_RDS - 1, SONIC_RD_LINK, 785 (lp->rda_laddr & 0xffff) | SONIC_EOL); 786 lp->eol_rx = SONIC_NUM_RDS - 1; 787 lp->cur_rx = 0; 788 SONIC_WRITE(SONIC_URDA, lp->rda_laddr >> 16); 789 SONIC_WRITE(SONIC_CRDA, lp->rda_laddr & 0xffff); 790 791 /* 792 * initialize transmit descriptors 793 */ 794 netif_dbg(lp, ifup, dev, "%s: initialize transmit descriptors\n", 795 __func__); 796 797 for (i = 0; i < SONIC_NUM_TDS; i++) { 798 sonic_tda_put(dev, i, SONIC_TD_STATUS, 0); 799 sonic_tda_put(dev, i, SONIC_TD_CONFIG, 0); 800 sonic_tda_put(dev, i, SONIC_TD_PKTSIZE, 0); 801 sonic_tda_put(dev, i, SONIC_TD_FRAG_COUNT, 0); 802 sonic_tda_put(dev, i, SONIC_TD_LINK, 803 (lp->tda_laddr & 0xffff) + 804 (i + 1) * SIZEOF_SONIC_TD * SONIC_BUS_SCALE(lp->dma_bitmode)); 805 lp->tx_skb[i] = NULL; 806 } 807 /* fix last descriptor */ 808 sonic_tda_put(dev, SONIC_NUM_TDS - 1, SONIC_TD_LINK, 809 (lp->tda_laddr & 0xffff)); 810 811 SONIC_WRITE(SONIC_UTDA, lp->tda_laddr >> 16); 812 SONIC_WRITE(SONIC_CTDA, lp->tda_laddr & 0xffff); 813 lp->cur_tx = 0; 814 lp->eol_tx = SONIC_NUM_TDS - 1; 815 816 /* 817 * put our own address to CAM desc[0] 818 */ 819 sonic_cda_put(dev, 0, SONIC_CD_CAP0, dev->dev_addr[1] << 8 | dev->dev_addr[0]); 820 sonic_cda_put(dev, 0, SONIC_CD_CAP1, dev->dev_addr[3] << 8 | dev->dev_addr[2]); 821 sonic_cda_put(dev, 0, SONIC_CD_CAP2, dev->dev_addr[5] << 8 | dev->dev_addr[4]); 822 sonic_set_cam_enable(dev, 1); 823 824 for (i = 0; i < 16; i++) 825 sonic_cda_put(dev, i, SONIC_CD_ENTRY_POINTER, i); 826 827 /* 828 * initialize CAM registers 829 */ 830 SONIC_WRITE(SONIC_CDP, lp->cda_laddr & 0xffff); 831 SONIC_WRITE(SONIC_CDC, 16); 832 833 /* 834 * load the CAM 835 */ 836 SONIC_WRITE(SONIC_CMD, SONIC_CR_LCAM); 837 sonic_quiesce(dev, SONIC_CR_LCAM); 838 839 /* 840 * enable receiver, disable loopback 841 * and enable all interrupts 842 */ 843 SONIC_WRITE(SONIC_RCR, SONIC_RCR_DEFAULT); 844 SONIC_WRITE(SONIC_TCR, SONIC_TCR_DEFAULT); 845 SONIC_WRITE(SONIC_ISR, 0x7fff); 846 SONIC_WRITE(SONIC_IMR, SONIC_IMR_DEFAULT); 847 SONIC_WRITE(SONIC_CMD, SONIC_CR_RXEN); 848 849 netif_dbg(lp, ifup, dev, "%s: new status=%x\n", __func__, 850 SONIC_READ(SONIC_CMD)); 851 852 return 0; 853 } 854 855 MODULE_LICENSE("GPL"); 856