xref: /openbmc/linux/drivers/net/ethernet/natsemi/ns83820.c (revision eb3fcf007fffe5830d815e713591f3e858f2a365)
1 #define VERSION "0.23"
2 /* ns83820.c by Benjamin LaHaise with contributions.
3  *
4  * Questions/comments/discussion to linux-ns83820@kvack.org.
5  *
6  * $Revision: 1.34.2.23 $
7  *
8  * Copyright 2001 Benjamin LaHaise.
9  * Copyright 2001, 2002 Red Hat.
10  *
11  * Mmmm, chocolate vanilla mocha...
12  *
13  *
14  * This program is free software; you can redistribute it and/or modify
15  * it under the terms of the GNU General Public License as published by
16  * the Free Software Foundation; either version 2 of the License, or
17  * (at your option) any later version.
18  *
19  * This program is distributed in the hope that it will be useful,
20  * but WITHOUT ANY WARRANTY; without even the implied warranty of
21  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
22  * GNU General Public License for more details.
23  *
24  * You should have received a copy of the GNU General Public License
25  * along with this program; if not, see <http://www.gnu.org/licenses/>.
26  *
27  *
28  * ChangeLog
29  * =========
30  *	20010414	0.1 - created
31  *	20010622	0.2 - basic rx and tx.
32  *	20010711	0.3 - added duplex and link state detection support.
33  *	20010713	0.4 - zero copy, no hangs.
34  *			0.5 - 64 bit dma support (davem will hate me for this)
35  *			    - disable jumbo frames to avoid tx hangs
36  *			    - work around tx deadlocks on my 1.02 card via
37  *			      fiddling with TXCFG
38  *	20010810	0.6 - use pci dma api for ringbuffers, work on ia64
39  *	20010816	0.7 - misc cleanups
40  *	20010826	0.8 - fix critical zero copy bugs
41  *			0.9 - internal experiment
42  *	20010827	0.10 - fix ia64 unaligned access.
43  *	20010906	0.11 - accept all packets with checksum errors as
44  *			       otherwise fragments get lost
45  *			     - fix >> 32 bugs
46  *			0.12 - add statistics counters
47  *			     - add allmulti/promisc support
48  *	20011009	0.13 - hotplug support, other smaller pci api cleanups
49  *	20011204	0.13a - optical transceiver support added
50  *				by Michael Clark <michael@metaparadigm.com>
51  *	20011205	0.13b - call register_netdev earlier in initialization
52  *				suppress duplicate link status messages
53  *	20011117 	0.14 - ethtool GDRVINFO, GLINK support from jgarzik
54  *	20011204 	0.15	get ppc (big endian) working
55  *	20011218	0.16	various cleanups
56  *	20020310	0.17	speedups
57  *	20020610	0.18 -	actually use the pci dma api for highmem
58  *			     -	remove pci latency register fiddling
59  *			0.19 -	better bist support
60  *			     -	add ihr and reset_phy parameters
61  *			     -	gmii bus probing
62  *			     -	fix missed txok introduced during performance
63  *				tuning
64  *			0.20 -	fix stupid RFEN thinko.  i am such a smurf.
65  *	20040828	0.21 -	add hardware vlan accleration
66  *				by Neil Horman <nhorman@redhat.com>
67  *	20050406	0.22 -	improved DAC ifdefs from Andi Kleen
68  *			     -	removal of dead code from Adrian Bunk
69  *			     -	fix half duplex collision behaviour
70  * Driver Overview
71  * ===============
72  *
73  * This driver was originally written for the National Semiconductor
74  * 83820 chip, a 10/100/1000 Mbps 64 bit PCI ethernet NIC.  Hopefully
75  * this code will turn out to be a) clean, b) correct, and c) fast.
76  * With that in mind, I'm aiming to split the code up as much as
77  * reasonably possible.  At present there are X major sections that
78  * break down into a) packet receive, b) packet transmit, c) link
79  * management, d) initialization and configuration.  Where possible,
80  * these code paths are designed to run in parallel.
81  *
82  * This driver has been tested and found to work with the following
83  * cards (in no particular order):
84  *
85  *	Cameo		SOHO-GA2000T	SOHO-GA2500T
86  *	D-Link		DGE-500T
87  *	PureData	PDP8023Z-TG
88  *	SMC		SMC9452TX	SMC9462TX
89  *	Netgear		GA621
90  *
91  * Special thanks to SMC for providing hardware to test this driver on.
92  *
93  * Reports of success or failure would be greatly appreciated.
94  */
95 //#define dprintk		printk
96 #define dprintk(x...)		do { } while (0)
97 
98 #include <linux/module.h>
99 #include <linux/moduleparam.h>
100 #include <linux/types.h>
101 #include <linux/pci.h>
102 #include <linux/dma-mapping.h>
103 #include <linux/netdevice.h>
104 #include <linux/etherdevice.h>
105 #include <linux/delay.h>
106 #include <linux/workqueue.h>
107 #include <linux/init.h>
108 #include <linux/interrupt.h>
109 #include <linux/ip.h>	/* for iph */
110 #include <linux/in.h>	/* for IPPROTO_... */
111 #include <linux/compiler.h>
112 #include <linux/prefetch.h>
113 #include <linux/ethtool.h>
114 #include <linux/sched.h>
115 #include <linux/timer.h>
116 #include <linux/if_vlan.h>
117 #include <linux/rtnetlink.h>
118 #include <linux/jiffies.h>
119 #include <linux/slab.h>
120 
121 #include <asm/io.h>
122 #include <asm/uaccess.h>
123 
124 #define DRV_NAME "ns83820"
125 
126 /* Global parameters.  See module_param near the bottom. */
127 static int ihr = 2;
128 static int reset_phy = 0;
129 static int lnksts = 0;		/* CFG_LNKSTS bit polarity */
130 
131 /* Dprintk is used for more interesting debug events */
132 #undef Dprintk
133 #define	Dprintk			dprintk
134 
135 /* tunables */
136 #define RX_BUF_SIZE	1500	/* 8192 */
137 #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
138 #define NS83820_VLAN_ACCEL_SUPPORT
139 #endif
140 
141 /* Must not exceed ~65000. */
142 #define NR_RX_DESC	64
143 #define NR_TX_DESC	128
144 
145 /* not tunable */
146 #define REAL_RX_BUF_SIZE (RX_BUF_SIZE + 14)	/* rx/tx mac addr + type */
147 
148 #define MIN_TX_DESC_FREE	8
149 
150 /* register defines */
151 #define CFGCS		0x04
152 
153 #define CR_TXE		0x00000001
154 #define CR_TXD		0x00000002
155 /* Ramit : Here's a tip, don't do a RXD immediately followed by an RXE
156  * The Receive engine skips one descriptor and moves
157  * onto the next one!! */
158 #define CR_RXE		0x00000004
159 #define CR_RXD		0x00000008
160 #define CR_TXR		0x00000010
161 #define CR_RXR		0x00000020
162 #define CR_SWI		0x00000080
163 #define CR_RST		0x00000100
164 
165 #define PTSCR_EEBIST_FAIL       0x00000001
166 #define PTSCR_EEBIST_EN         0x00000002
167 #define PTSCR_EELOAD_EN         0x00000004
168 #define PTSCR_RBIST_FAIL        0x000001b8
169 #define PTSCR_RBIST_DONE        0x00000200
170 #define PTSCR_RBIST_EN          0x00000400
171 #define PTSCR_RBIST_RST         0x00002000
172 
173 #define MEAR_EEDI		0x00000001
174 #define MEAR_EEDO		0x00000002
175 #define MEAR_EECLK		0x00000004
176 #define MEAR_EESEL		0x00000008
177 #define MEAR_MDIO		0x00000010
178 #define MEAR_MDDIR		0x00000020
179 #define MEAR_MDC		0x00000040
180 
181 #define ISR_TXDESC3	0x40000000
182 #define ISR_TXDESC2	0x20000000
183 #define ISR_TXDESC1	0x10000000
184 #define ISR_TXDESC0	0x08000000
185 #define ISR_RXDESC3	0x04000000
186 #define ISR_RXDESC2	0x02000000
187 #define ISR_RXDESC1	0x01000000
188 #define ISR_RXDESC0	0x00800000
189 #define ISR_TXRCMP	0x00400000
190 #define ISR_RXRCMP	0x00200000
191 #define ISR_DPERR	0x00100000
192 #define ISR_SSERR	0x00080000
193 #define ISR_RMABT	0x00040000
194 #define ISR_RTABT	0x00020000
195 #define ISR_RXSOVR	0x00010000
196 #define ISR_HIBINT	0x00008000
197 #define ISR_PHY		0x00004000
198 #define ISR_PME		0x00002000
199 #define ISR_SWI		0x00001000
200 #define ISR_MIB		0x00000800
201 #define ISR_TXURN	0x00000400
202 #define ISR_TXIDLE	0x00000200
203 #define ISR_TXERR	0x00000100
204 #define ISR_TXDESC	0x00000080
205 #define ISR_TXOK	0x00000040
206 #define ISR_RXORN	0x00000020
207 #define ISR_RXIDLE	0x00000010
208 #define ISR_RXEARLY	0x00000008
209 #define ISR_RXERR	0x00000004
210 #define ISR_RXDESC	0x00000002
211 #define ISR_RXOK	0x00000001
212 
213 #define TXCFG_CSI	0x80000000
214 #define TXCFG_HBI	0x40000000
215 #define TXCFG_MLB	0x20000000
216 #define TXCFG_ATP	0x10000000
217 #define TXCFG_ECRETRY	0x00800000
218 #define TXCFG_BRST_DIS	0x00080000
219 #define TXCFG_MXDMA1024	0x00000000
220 #define TXCFG_MXDMA512	0x00700000
221 #define TXCFG_MXDMA256	0x00600000
222 #define TXCFG_MXDMA128	0x00500000
223 #define TXCFG_MXDMA64	0x00400000
224 #define TXCFG_MXDMA32	0x00300000
225 #define TXCFG_MXDMA16	0x00200000
226 #define TXCFG_MXDMA8	0x00100000
227 
228 #define CFG_LNKSTS	0x80000000
229 #define CFG_SPDSTS	0x60000000
230 #define CFG_SPDSTS1	0x40000000
231 #define CFG_SPDSTS0	0x20000000
232 #define CFG_DUPSTS	0x10000000
233 #define CFG_TBI_EN	0x01000000
234 #define CFG_MODE_1000	0x00400000
235 /* Ramit : Dont' ever use AUTO_1000, it never works and is buggy.
236  * Read the Phy response and then configure the MAC accordingly */
237 #define CFG_AUTO_1000	0x00200000
238 #define CFG_PINT_CTL	0x001c0000
239 #define CFG_PINT_DUPSTS	0x00100000
240 #define CFG_PINT_LNKSTS	0x00080000
241 #define CFG_PINT_SPDSTS	0x00040000
242 #define CFG_TMRTEST	0x00020000
243 #define CFG_MRM_DIS	0x00010000
244 #define CFG_MWI_DIS	0x00008000
245 #define CFG_T64ADDR	0x00004000
246 #define CFG_PCI64_DET	0x00002000
247 #define CFG_DATA64_EN	0x00001000
248 #define CFG_M64ADDR	0x00000800
249 #define CFG_PHY_RST	0x00000400
250 #define CFG_PHY_DIS	0x00000200
251 #define CFG_EXTSTS_EN	0x00000100
252 #define CFG_REQALG	0x00000080
253 #define CFG_SB		0x00000040
254 #define CFG_POW		0x00000020
255 #define CFG_EXD		0x00000010
256 #define CFG_PESEL	0x00000008
257 #define CFG_BROM_DIS	0x00000004
258 #define CFG_EXT_125	0x00000002
259 #define CFG_BEM		0x00000001
260 
261 #define EXTSTS_UDPPKT	0x00200000
262 #define EXTSTS_TCPPKT	0x00080000
263 #define EXTSTS_IPPKT	0x00020000
264 #define EXTSTS_VPKT	0x00010000
265 #define EXTSTS_VTG_MASK	0x0000ffff
266 
267 #define SPDSTS_POLARITY	(CFG_SPDSTS1 | CFG_SPDSTS0 | CFG_DUPSTS | (lnksts ? CFG_LNKSTS : 0))
268 
269 #define MIBC_MIBS	0x00000008
270 #define MIBC_ACLR	0x00000004
271 #define MIBC_FRZ	0x00000002
272 #define MIBC_WRN	0x00000001
273 
274 #define PCR_PSEN	(1 << 31)
275 #define PCR_PS_MCAST	(1 << 30)
276 #define PCR_PS_DA	(1 << 29)
277 #define PCR_STHI_8	(3 << 23)
278 #define PCR_STLO_4	(1 << 23)
279 #define PCR_FFHI_8K	(3 << 21)
280 #define PCR_FFLO_4K	(1 << 21)
281 #define PCR_PAUSE_CNT	0xFFFE
282 
283 #define RXCFG_AEP	0x80000000
284 #define RXCFG_ARP	0x40000000
285 #define RXCFG_STRIPCRC	0x20000000
286 #define RXCFG_RX_FD	0x10000000
287 #define RXCFG_ALP	0x08000000
288 #define RXCFG_AIRL	0x04000000
289 #define RXCFG_MXDMA512	0x00700000
290 #define RXCFG_DRTH	0x0000003e
291 #define RXCFG_DRTH0	0x00000002
292 
293 #define RFCR_RFEN	0x80000000
294 #define RFCR_AAB	0x40000000
295 #define RFCR_AAM	0x20000000
296 #define RFCR_AAU	0x10000000
297 #define RFCR_APM	0x08000000
298 #define RFCR_APAT	0x07800000
299 #define RFCR_APAT3	0x04000000
300 #define RFCR_APAT2	0x02000000
301 #define RFCR_APAT1	0x01000000
302 #define RFCR_APAT0	0x00800000
303 #define RFCR_AARP	0x00400000
304 #define RFCR_MHEN	0x00200000
305 #define RFCR_UHEN	0x00100000
306 #define RFCR_ULM	0x00080000
307 
308 #define VRCR_RUDPE	0x00000080
309 #define VRCR_RTCPE	0x00000040
310 #define VRCR_RIPE	0x00000020
311 #define VRCR_IPEN	0x00000010
312 #define VRCR_DUTF	0x00000008
313 #define VRCR_DVTF	0x00000004
314 #define VRCR_VTREN	0x00000002
315 #define VRCR_VTDEN	0x00000001
316 
317 #define VTCR_PPCHK	0x00000008
318 #define VTCR_GCHK	0x00000004
319 #define VTCR_VPPTI	0x00000002
320 #define VTCR_VGTI	0x00000001
321 
322 #define CR		0x00
323 #define CFG		0x04
324 #define MEAR		0x08
325 #define PTSCR		0x0c
326 #define	ISR		0x10
327 #define	IMR		0x14
328 #define	IER		0x18
329 #define	IHR		0x1c
330 #define TXDP		0x20
331 #define TXDP_HI		0x24
332 #define TXCFG		0x28
333 #define GPIOR		0x2c
334 #define RXDP		0x30
335 #define RXDP_HI		0x34
336 #define RXCFG		0x38
337 #define PQCR		0x3c
338 #define WCSR		0x40
339 #define PCR		0x44
340 #define RFCR		0x48
341 #define RFDR		0x4c
342 
343 #define SRR		0x58
344 
345 #define VRCR		0xbc
346 #define VTCR		0xc0
347 #define VDR		0xc4
348 #define CCSR		0xcc
349 
350 #define TBICR		0xe0
351 #define TBISR		0xe4
352 #define TANAR		0xe8
353 #define TANLPAR		0xec
354 #define TANER		0xf0
355 #define TESR		0xf4
356 
357 #define TBICR_MR_AN_ENABLE	0x00001000
358 #define TBICR_MR_RESTART_AN	0x00000200
359 
360 #define TBISR_MR_LINK_STATUS	0x00000020
361 #define TBISR_MR_AN_COMPLETE	0x00000004
362 
363 #define TANAR_PS2 		0x00000100
364 #define TANAR_PS1 		0x00000080
365 #define TANAR_HALF_DUP 		0x00000040
366 #define TANAR_FULL_DUP 		0x00000020
367 
368 #define GPIOR_GP5_OE		0x00000200
369 #define GPIOR_GP4_OE		0x00000100
370 #define GPIOR_GP3_OE		0x00000080
371 #define GPIOR_GP2_OE		0x00000040
372 #define GPIOR_GP1_OE		0x00000020
373 #define GPIOR_GP3_OUT		0x00000004
374 #define GPIOR_GP1_OUT		0x00000001
375 
376 #define LINK_AUTONEGOTIATE	0x01
377 #define LINK_DOWN		0x02
378 #define LINK_UP			0x04
379 
380 #define HW_ADDR_LEN	sizeof(dma_addr_t)
381 #define desc_addr_set(desc, addr)				\
382 	do {							\
383 		((desc)[0] = cpu_to_le32(addr));		\
384 		if (HW_ADDR_LEN == 8)		 		\
385 			(desc)[1] = cpu_to_le32(((u64)addr) >> 32);	\
386 	} while(0)
387 #define desc_addr_get(desc)					\
388 	(le32_to_cpu((desc)[0]) | \
389 	(HW_ADDR_LEN == 8 ? ((dma_addr_t)le32_to_cpu((desc)[1]))<<32 : 0))
390 
391 #define DESC_LINK		0
392 #define DESC_BUFPTR		(DESC_LINK + HW_ADDR_LEN/4)
393 #define DESC_CMDSTS		(DESC_BUFPTR + HW_ADDR_LEN/4)
394 #define DESC_EXTSTS		(DESC_CMDSTS + 4/4)
395 
396 #define CMDSTS_OWN	0x80000000
397 #define CMDSTS_MORE	0x40000000
398 #define CMDSTS_INTR	0x20000000
399 #define CMDSTS_ERR	0x10000000
400 #define CMDSTS_OK	0x08000000
401 #define CMDSTS_RUNT	0x00200000
402 #define CMDSTS_LEN_MASK	0x0000ffff
403 
404 #define CMDSTS_DEST_MASK	0x01800000
405 #define CMDSTS_DEST_SELF	0x00800000
406 #define CMDSTS_DEST_MULTI	0x01000000
407 
408 #define DESC_SIZE	8		/* Should be cache line sized */
409 
410 struct rx_info {
411 	spinlock_t	lock;
412 	int		up;
413 	unsigned long	idle;
414 
415 	struct sk_buff	*skbs[NR_RX_DESC];
416 
417 	__le32		*next_rx_desc;
418 	u16		next_rx, next_empty;
419 
420 	__le32		*descs;
421 	dma_addr_t	phy_descs;
422 };
423 
424 
425 struct ns83820 {
426 	u8			__iomem *base;
427 
428 	struct pci_dev		*pci_dev;
429 	struct net_device	*ndev;
430 
431 	struct rx_info		rx_info;
432 	struct tasklet_struct	rx_tasklet;
433 
434 	unsigned		ihr;
435 	struct work_struct	tq_refill;
436 
437 	/* protects everything below.  irqsave when using. */
438 	spinlock_t		misc_lock;
439 
440 	u32			CFG_cache;
441 
442 	u32			MEAR_cache;
443 	u32			IMR_cache;
444 
445 	unsigned		linkstate;
446 
447 	spinlock_t	tx_lock;
448 
449 	u16		tx_done_idx;
450 	u16		tx_idx;
451 	volatile u16	tx_free_idx;	/* idx of free desc chain */
452 	u16		tx_intr_idx;
453 
454 	atomic_t	nr_tx_skbs;
455 	struct sk_buff	*tx_skbs[NR_TX_DESC];
456 
457 	char		pad[16] __attribute__((aligned(16)));
458 	__le32		*tx_descs;
459 	dma_addr_t	tx_phy_descs;
460 
461 	struct timer_list	tx_watchdog;
462 };
463 
464 static inline struct ns83820 *PRIV(struct net_device *dev)
465 {
466 	return netdev_priv(dev);
467 }
468 
469 #define __kick_rx(dev)	writel(CR_RXE, dev->base + CR)
470 
471 static inline void kick_rx(struct net_device *ndev)
472 {
473 	struct ns83820 *dev = PRIV(ndev);
474 	dprintk("kick_rx: maybe kicking\n");
475 	if (test_and_clear_bit(0, &dev->rx_info.idle)) {
476 		dprintk("actually kicking\n");
477 		writel(dev->rx_info.phy_descs +
478 			(4 * DESC_SIZE * dev->rx_info.next_rx),
479 		       dev->base + RXDP);
480 		if (dev->rx_info.next_rx == dev->rx_info.next_empty)
481 			printk(KERN_DEBUG "%s: uh-oh: next_rx == next_empty???\n",
482 				ndev->name);
483 		__kick_rx(dev);
484 	}
485 }
486 
487 //free = (tx_done_idx + NR_TX_DESC-2 - free_idx) % NR_TX_DESC
488 #define start_tx_okay(dev)	\
489 	(((NR_TX_DESC-2 + dev->tx_done_idx - dev->tx_free_idx) % NR_TX_DESC) > MIN_TX_DESC_FREE)
490 
491 /* Packet Receiver
492  *
493  * The hardware supports linked lists of receive descriptors for
494  * which ownership is transferred back and forth by means of an
495  * ownership bit.  While the hardware does support the use of a
496  * ring for receive descriptors, we only make use of a chain in
497  * an attempt to reduce bus traffic under heavy load scenarios.
498  * This will also make bugs a bit more obvious.  The current code
499  * only makes use of a single rx chain; I hope to implement
500  * priority based rx for version 1.0.  Goal: even under overload
501  * conditions, still route realtime traffic with as low jitter as
502  * possible.
503  */
504 static inline void build_rx_desc(struct ns83820 *dev, __le32 *desc, dma_addr_t link, dma_addr_t buf, u32 cmdsts, u32 extsts)
505 {
506 	desc_addr_set(desc + DESC_LINK, link);
507 	desc_addr_set(desc + DESC_BUFPTR, buf);
508 	desc[DESC_EXTSTS] = cpu_to_le32(extsts);
509 	mb();
510 	desc[DESC_CMDSTS] = cpu_to_le32(cmdsts);
511 }
512 
513 #define nr_rx_empty(dev) ((NR_RX_DESC-2 + dev->rx_info.next_rx - dev->rx_info.next_empty) % NR_RX_DESC)
514 static inline int ns83820_add_rx_skb(struct ns83820 *dev, struct sk_buff *skb)
515 {
516 	unsigned next_empty;
517 	u32 cmdsts;
518 	__le32 *sg;
519 	dma_addr_t buf;
520 
521 	next_empty = dev->rx_info.next_empty;
522 
523 	/* don't overrun last rx marker */
524 	if (unlikely(nr_rx_empty(dev) <= 2)) {
525 		kfree_skb(skb);
526 		return 1;
527 	}
528 
529 #if 0
530 	dprintk("next_empty[%d] nr_used[%d] next_rx[%d]\n",
531 		dev->rx_info.next_empty,
532 		dev->rx_info.nr_used,
533 		dev->rx_info.next_rx
534 		);
535 #endif
536 
537 	sg = dev->rx_info.descs + (next_empty * DESC_SIZE);
538 	BUG_ON(NULL != dev->rx_info.skbs[next_empty]);
539 	dev->rx_info.skbs[next_empty] = skb;
540 
541 	dev->rx_info.next_empty = (next_empty + 1) % NR_RX_DESC;
542 	cmdsts = REAL_RX_BUF_SIZE | CMDSTS_INTR;
543 	buf = pci_map_single(dev->pci_dev, skb->data,
544 			     REAL_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
545 	build_rx_desc(dev, sg, 0, buf, cmdsts, 0);
546 	/* update link of previous rx */
547 	if (likely(next_empty != dev->rx_info.next_rx))
548 		dev->rx_info.descs[((NR_RX_DESC + next_empty - 1) % NR_RX_DESC) * DESC_SIZE] = cpu_to_le32(dev->rx_info.phy_descs + (next_empty * DESC_SIZE * 4));
549 
550 	return 0;
551 }
552 
553 static inline int rx_refill(struct net_device *ndev, gfp_t gfp)
554 {
555 	struct ns83820 *dev = PRIV(ndev);
556 	unsigned i;
557 	unsigned long flags = 0;
558 
559 	if (unlikely(nr_rx_empty(dev) <= 2))
560 		return 0;
561 
562 	dprintk("rx_refill(%p)\n", ndev);
563 	if (gfp == GFP_ATOMIC)
564 		spin_lock_irqsave(&dev->rx_info.lock, flags);
565 	for (i=0; i<NR_RX_DESC; i++) {
566 		struct sk_buff *skb;
567 		long res;
568 
569 		/* extra 16 bytes for alignment */
570 		skb = __netdev_alloc_skb(ndev, REAL_RX_BUF_SIZE+16, gfp);
571 		if (unlikely(!skb))
572 			break;
573 
574 		skb_reserve(skb, skb->data - PTR_ALIGN(skb->data, 16));
575 		if (gfp != GFP_ATOMIC)
576 			spin_lock_irqsave(&dev->rx_info.lock, flags);
577 		res = ns83820_add_rx_skb(dev, skb);
578 		if (gfp != GFP_ATOMIC)
579 			spin_unlock_irqrestore(&dev->rx_info.lock, flags);
580 		if (res) {
581 			i = 1;
582 			break;
583 		}
584 	}
585 	if (gfp == GFP_ATOMIC)
586 		spin_unlock_irqrestore(&dev->rx_info.lock, flags);
587 
588 	return i ? 0 : -ENOMEM;
589 }
590 
591 static void rx_refill_atomic(struct net_device *ndev)
592 {
593 	rx_refill(ndev, GFP_ATOMIC);
594 }
595 
596 /* REFILL */
597 static inline void queue_refill(struct work_struct *work)
598 {
599 	struct ns83820 *dev = container_of(work, struct ns83820, tq_refill);
600 	struct net_device *ndev = dev->ndev;
601 
602 	rx_refill(ndev, GFP_KERNEL);
603 	if (dev->rx_info.up)
604 		kick_rx(ndev);
605 }
606 
607 static inline void clear_rx_desc(struct ns83820 *dev, unsigned i)
608 {
609 	build_rx_desc(dev, dev->rx_info.descs + (DESC_SIZE * i), 0, 0, CMDSTS_OWN, 0);
610 }
611 
612 static void phy_intr(struct net_device *ndev)
613 {
614 	struct ns83820 *dev = PRIV(ndev);
615 	static const char *speeds[] = { "10", "100", "1000", "1000(?)", "1000F" };
616 	u32 cfg, new_cfg;
617 	u32 tbisr, tanar, tanlpar;
618 	int speed, fullduplex, newlinkstate;
619 
620 	cfg = readl(dev->base + CFG) ^ SPDSTS_POLARITY;
621 
622 	if (dev->CFG_cache & CFG_TBI_EN) {
623 		/* we have an optical transceiver */
624 		tbisr = readl(dev->base + TBISR);
625 		tanar = readl(dev->base + TANAR);
626 		tanlpar = readl(dev->base + TANLPAR);
627 		dprintk("phy_intr: tbisr=%08x, tanar=%08x, tanlpar=%08x\n",
628 			tbisr, tanar, tanlpar);
629 
630 		if ( (fullduplex = (tanlpar & TANAR_FULL_DUP) &&
631 		      (tanar & TANAR_FULL_DUP)) ) {
632 
633 			/* both of us are full duplex */
634 			writel(readl(dev->base + TXCFG)
635 			       | TXCFG_CSI | TXCFG_HBI | TXCFG_ATP,
636 			       dev->base + TXCFG);
637 			writel(readl(dev->base + RXCFG) | RXCFG_RX_FD,
638 			       dev->base + RXCFG);
639 			/* Light up full duplex LED */
640 			writel(readl(dev->base + GPIOR) | GPIOR_GP1_OUT,
641 			       dev->base + GPIOR);
642 
643 		} else if (((tanlpar & TANAR_HALF_DUP) &&
644 			    (tanar & TANAR_HALF_DUP)) ||
645 			   ((tanlpar & TANAR_FULL_DUP) &&
646 			    (tanar & TANAR_HALF_DUP)) ||
647 			   ((tanlpar & TANAR_HALF_DUP) &&
648 			    (tanar & TANAR_FULL_DUP))) {
649 
650 			/* one or both of us are half duplex */
651 			writel((readl(dev->base + TXCFG)
652 				& ~(TXCFG_CSI | TXCFG_HBI)) | TXCFG_ATP,
653 			       dev->base + TXCFG);
654 			writel(readl(dev->base + RXCFG) & ~RXCFG_RX_FD,
655 			       dev->base + RXCFG);
656 			/* Turn off full duplex LED */
657 			writel(readl(dev->base + GPIOR) & ~GPIOR_GP1_OUT,
658 			       dev->base + GPIOR);
659 		}
660 
661 		speed = 4; /* 1000F */
662 
663 	} else {
664 		/* we have a copper transceiver */
665 		new_cfg = dev->CFG_cache & ~(CFG_SB | CFG_MODE_1000 | CFG_SPDSTS);
666 
667 		if (cfg & CFG_SPDSTS1)
668 			new_cfg |= CFG_MODE_1000;
669 		else
670 			new_cfg &= ~CFG_MODE_1000;
671 
672 		speed = ((cfg / CFG_SPDSTS0) & 3);
673 		fullduplex = (cfg & CFG_DUPSTS);
674 
675 		if (fullduplex) {
676 			new_cfg |= CFG_SB;
677 			writel(readl(dev->base + TXCFG)
678 					| TXCFG_CSI | TXCFG_HBI,
679 			       dev->base + TXCFG);
680 			writel(readl(dev->base + RXCFG) | RXCFG_RX_FD,
681 			       dev->base + RXCFG);
682 		} else {
683 			writel(readl(dev->base + TXCFG)
684 					& ~(TXCFG_CSI | TXCFG_HBI),
685 			       dev->base + TXCFG);
686 			writel(readl(dev->base + RXCFG) & ~(RXCFG_RX_FD),
687 			       dev->base + RXCFG);
688 		}
689 
690 		if ((cfg & CFG_LNKSTS) &&
691 		    ((new_cfg ^ dev->CFG_cache) != 0)) {
692 			writel(new_cfg, dev->base + CFG);
693 			dev->CFG_cache = new_cfg;
694 		}
695 
696 		dev->CFG_cache &= ~CFG_SPDSTS;
697 		dev->CFG_cache |= cfg & CFG_SPDSTS;
698 	}
699 
700 	newlinkstate = (cfg & CFG_LNKSTS) ? LINK_UP : LINK_DOWN;
701 
702 	if (newlinkstate & LINK_UP &&
703 	    dev->linkstate != newlinkstate) {
704 		netif_start_queue(ndev);
705 		netif_wake_queue(ndev);
706 		printk(KERN_INFO "%s: link now %s mbps, %s duplex and up.\n",
707 			ndev->name,
708 			speeds[speed],
709 			fullduplex ? "full" : "half");
710 	} else if (newlinkstate & LINK_DOWN &&
711 		   dev->linkstate != newlinkstate) {
712 		netif_stop_queue(ndev);
713 		printk(KERN_INFO "%s: link now down.\n", ndev->name);
714 	}
715 
716 	dev->linkstate = newlinkstate;
717 }
718 
719 static int ns83820_setup_rx(struct net_device *ndev)
720 {
721 	struct ns83820 *dev = PRIV(ndev);
722 	unsigned i;
723 	int ret;
724 
725 	dprintk("ns83820_setup_rx(%p)\n", ndev);
726 
727 	dev->rx_info.idle = 1;
728 	dev->rx_info.next_rx = 0;
729 	dev->rx_info.next_rx_desc = dev->rx_info.descs;
730 	dev->rx_info.next_empty = 0;
731 
732 	for (i=0; i<NR_RX_DESC; i++)
733 		clear_rx_desc(dev, i);
734 
735 	writel(0, dev->base + RXDP_HI);
736 	writel(dev->rx_info.phy_descs, dev->base + RXDP);
737 
738 	ret = rx_refill(ndev, GFP_KERNEL);
739 	if (!ret) {
740 		dprintk("starting receiver\n");
741 		/* prevent the interrupt handler from stomping on us */
742 		spin_lock_irq(&dev->rx_info.lock);
743 
744 		writel(0x0001, dev->base + CCSR);
745 		writel(0, dev->base + RFCR);
746 		writel(0x7fc00000, dev->base + RFCR);
747 		writel(0xffc00000, dev->base + RFCR);
748 
749 		dev->rx_info.up = 1;
750 
751 		phy_intr(ndev);
752 
753 		/* Okay, let it rip */
754 		spin_lock(&dev->misc_lock);
755 		dev->IMR_cache |= ISR_PHY;
756 		dev->IMR_cache |= ISR_RXRCMP;
757 		//dev->IMR_cache |= ISR_RXERR;
758 		//dev->IMR_cache |= ISR_RXOK;
759 		dev->IMR_cache |= ISR_RXORN;
760 		dev->IMR_cache |= ISR_RXSOVR;
761 		dev->IMR_cache |= ISR_RXDESC;
762 		dev->IMR_cache |= ISR_RXIDLE;
763 		dev->IMR_cache |= ISR_TXDESC;
764 		dev->IMR_cache |= ISR_TXIDLE;
765 
766 		writel(dev->IMR_cache, dev->base + IMR);
767 		writel(1, dev->base + IER);
768 		spin_unlock(&dev->misc_lock);
769 
770 		kick_rx(ndev);
771 
772 		spin_unlock_irq(&dev->rx_info.lock);
773 	}
774 	return ret;
775 }
776 
777 static void ns83820_cleanup_rx(struct ns83820 *dev)
778 {
779 	unsigned i;
780 	unsigned long flags;
781 
782 	dprintk("ns83820_cleanup_rx(%p)\n", dev);
783 
784 	/* disable receive interrupts */
785 	spin_lock_irqsave(&dev->misc_lock, flags);
786 	dev->IMR_cache &= ~(ISR_RXOK | ISR_RXDESC | ISR_RXERR | ISR_RXEARLY | ISR_RXIDLE);
787 	writel(dev->IMR_cache, dev->base + IMR);
788 	spin_unlock_irqrestore(&dev->misc_lock, flags);
789 
790 	/* synchronize with the interrupt handler and kill it */
791 	dev->rx_info.up = 0;
792 	synchronize_irq(dev->pci_dev->irq);
793 
794 	/* touch the pci bus... */
795 	readl(dev->base + IMR);
796 
797 	/* assumes the transmitter is already disabled and reset */
798 	writel(0, dev->base + RXDP_HI);
799 	writel(0, dev->base + RXDP);
800 
801 	for (i=0; i<NR_RX_DESC; i++) {
802 		struct sk_buff *skb = dev->rx_info.skbs[i];
803 		dev->rx_info.skbs[i] = NULL;
804 		clear_rx_desc(dev, i);
805 		kfree_skb(skb);
806 	}
807 }
808 
809 static void ns83820_rx_kick(struct net_device *ndev)
810 {
811 	struct ns83820 *dev = PRIV(ndev);
812 	/*if (nr_rx_empty(dev) >= NR_RX_DESC/4)*/ {
813 		if (dev->rx_info.up) {
814 			rx_refill_atomic(ndev);
815 			kick_rx(ndev);
816 		}
817 	}
818 
819 	if (dev->rx_info.up && nr_rx_empty(dev) > NR_RX_DESC*3/4)
820 		schedule_work(&dev->tq_refill);
821 	else
822 		kick_rx(ndev);
823 	if (dev->rx_info.idle)
824 		printk(KERN_DEBUG "%s: BAD\n", ndev->name);
825 }
826 
827 /* rx_irq
828  *
829  */
830 static void rx_irq(struct net_device *ndev)
831 {
832 	struct ns83820 *dev = PRIV(ndev);
833 	struct rx_info *info = &dev->rx_info;
834 	unsigned next_rx;
835 	int rx_rc, len;
836 	u32 cmdsts;
837 	__le32 *desc;
838 	unsigned long flags;
839 	int nr = 0;
840 
841 	dprintk("rx_irq(%p)\n", ndev);
842 	dprintk("rxdp: %08x, descs: %08lx next_rx[%d]: %p next_empty[%d]: %p\n",
843 		readl(dev->base + RXDP),
844 		(long)(dev->rx_info.phy_descs),
845 		(int)dev->rx_info.next_rx,
846 		(dev->rx_info.descs + (DESC_SIZE * dev->rx_info.next_rx)),
847 		(int)dev->rx_info.next_empty,
848 		(dev->rx_info.descs + (DESC_SIZE * dev->rx_info.next_empty))
849 		);
850 
851 	spin_lock_irqsave(&info->lock, flags);
852 	if (!info->up)
853 		goto out;
854 
855 	dprintk("walking descs\n");
856 	next_rx = info->next_rx;
857 	desc = info->next_rx_desc;
858 	while ((CMDSTS_OWN & (cmdsts = le32_to_cpu(desc[DESC_CMDSTS]))) &&
859 	       (cmdsts != CMDSTS_OWN)) {
860 		struct sk_buff *skb;
861 		u32 extsts = le32_to_cpu(desc[DESC_EXTSTS]);
862 		dma_addr_t bufptr = desc_addr_get(desc + DESC_BUFPTR);
863 
864 		dprintk("cmdsts: %08x\n", cmdsts);
865 		dprintk("link: %08x\n", cpu_to_le32(desc[DESC_LINK]));
866 		dprintk("extsts: %08x\n", extsts);
867 
868 		skb = info->skbs[next_rx];
869 		info->skbs[next_rx] = NULL;
870 		info->next_rx = (next_rx + 1) % NR_RX_DESC;
871 
872 		mb();
873 		clear_rx_desc(dev, next_rx);
874 
875 		pci_unmap_single(dev->pci_dev, bufptr,
876 				 RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
877 		len = cmdsts & CMDSTS_LEN_MASK;
878 #ifdef NS83820_VLAN_ACCEL_SUPPORT
879 		/* NH: As was mentioned below, this chip is kinda
880 		 * brain dead about vlan tag stripping.  Frames
881 		 * that are 64 bytes with a vlan header appended
882 		 * like arp frames, or pings, are flagged as Runts
883 		 * when the tag is stripped and hardware.  This
884 		 * also means that the OK bit in the descriptor
885 		 * is cleared when the frame comes in so we have
886 		 * to do a specific length check here to make sure
887 		 * the frame would have been ok, had we not stripped
888 		 * the tag.
889 		 */
890 		if (likely((CMDSTS_OK & cmdsts) ||
891 			((cmdsts & CMDSTS_RUNT) && len >= 56))) {
892 #else
893 		if (likely(CMDSTS_OK & cmdsts)) {
894 #endif
895 			skb_put(skb, len);
896 			if (unlikely(!skb))
897 				goto netdev_mangle_me_harder_failed;
898 			if (cmdsts & CMDSTS_DEST_MULTI)
899 				ndev->stats.multicast++;
900 			ndev->stats.rx_packets++;
901 			ndev->stats.rx_bytes += len;
902 			if ((extsts & 0x002a0000) && !(extsts & 0x00540000)) {
903 				skb->ip_summed = CHECKSUM_UNNECESSARY;
904 			} else {
905 				skb_checksum_none_assert(skb);
906 			}
907 			skb->protocol = eth_type_trans(skb, ndev);
908 #ifdef NS83820_VLAN_ACCEL_SUPPORT
909 			if(extsts & EXTSTS_VPKT) {
910 				unsigned short tag;
911 
912 				tag = ntohs(extsts & EXTSTS_VTG_MASK);
913 				__vlan_hwaccel_put_tag(skb, htons(ETH_P_IPV6), tag);
914 			}
915 #endif
916 			rx_rc = netif_rx(skb);
917 			if (NET_RX_DROP == rx_rc) {
918 netdev_mangle_me_harder_failed:
919 				ndev->stats.rx_dropped++;
920 			}
921 		} else {
922 			kfree_skb(skb);
923 		}
924 
925 		nr++;
926 		next_rx = info->next_rx;
927 		desc = info->descs + (DESC_SIZE * next_rx);
928 	}
929 	info->next_rx = next_rx;
930 	info->next_rx_desc = info->descs + (DESC_SIZE * next_rx);
931 
932 out:
933 	if (0 && !nr) {
934 		Dprintk("dazed: cmdsts_f: %08x\n", cmdsts);
935 	}
936 
937 	spin_unlock_irqrestore(&info->lock, flags);
938 }
939 
940 static void rx_action(unsigned long _dev)
941 {
942 	struct net_device *ndev = (void *)_dev;
943 	struct ns83820 *dev = PRIV(ndev);
944 	rx_irq(ndev);
945 	writel(ihr, dev->base + IHR);
946 
947 	spin_lock_irq(&dev->misc_lock);
948 	dev->IMR_cache |= ISR_RXDESC;
949 	writel(dev->IMR_cache, dev->base + IMR);
950 	spin_unlock_irq(&dev->misc_lock);
951 
952 	rx_irq(ndev);
953 	ns83820_rx_kick(ndev);
954 }
955 
956 /* Packet Transmit code
957  */
958 static inline void kick_tx(struct ns83820 *dev)
959 {
960 	dprintk("kick_tx(%p): tx_idx=%d free_idx=%d\n",
961 		dev, dev->tx_idx, dev->tx_free_idx);
962 	writel(CR_TXE, dev->base + CR);
963 }
964 
965 /* No spinlock needed on the transmit irq path as the interrupt handler is
966  * serialized.
967  */
968 static void do_tx_done(struct net_device *ndev)
969 {
970 	struct ns83820 *dev = PRIV(ndev);
971 	u32 cmdsts, tx_done_idx;
972 	__le32 *desc;
973 
974 	dprintk("do_tx_done(%p)\n", ndev);
975 	tx_done_idx = dev->tx_done_idx;
976 	desc = dev->tx_descs + (tx_done_idx * DESC_SIZE);
977 
978 	dprintk("tx_done_idx=%d free_idx=%d cmdsts=%08x\n",
979 		tx_done_idx, dev->tx_free_idx, le32_to_cpu(desc[DESC_CMDSTS]));
980 	while ((tx_done_idx != dev->tx_free_idx) &&
981 	       !(CMDSTS_OWN & (cmdsts = le32_to_cpu(desc[DESC_CMDSTS]))) ) {
982 		struct sk_buff *skb;
983 		unsigned len;
984 		dma_addr_t addr;
985 
986 		if (cmdsts & CMDSTS_ERR)
987 			ndev->stats.tx_errors++;
988 		if (cmdsts & CMDSTS_OK)
989 			ndev->stats.tx_packets++;
990 		if (cmdsts & CMDSTS_OK)
991 			ndev->stats.tx_bytes += cmdsts & 0xffff;
992 
993 		dprintk("tx_done_idx=%d free_idx=%d cmdsts=%08x\n",
994 			tx_done_idx, dev->tx_free_idx, cmdsts);
995 		skb = dev->tx_skbs[tx_done_idx];
996 		dev->tx_skbs[tx_done_idx] = NULL;
997 		dprintk("done(%p)\n", skb);
998 
999 		len = cmdsts & CMDSTS_LEN_MASK;
1000 		addr = desc_addr_get(desc + DESC_BUFPTR);
1001 		if (skb) {
1002 			pci_unmap_single(dev->pci_dev,
1003 					addr,
1004 					len,
1005 					PCI_DMA_TODEVICE);
1006 			dev_kfree_skb_irq(skb);
1007 			atomic_dec(&dev->nr_tx_skbs);
1008 		} else
1009 			pci_unmap_page(dev->pci_dev,
1010 					addr,
1011 					len,
1012 					PCI_DMA_TODEVICE);
1013 
1014 		tx_done_idx = (tx_done_idx + 1) % NR_TX_DESC;
1015 		dev->tx_done_idx = tx_done_idx;
1016 		desc[DESC_CMDSTS] = cpu_to_le32(0);
1017 		mb();
1018 		desc = dev->tx_descs + (tx_done_idx * DESC_SIZE);
1019 	}
1020 
1021 	/* Allow network stack to resume queueing packets after we've
1022 	 * finished transmitting at least 1/4 of the packets in the queue.
1023 	 */
1024 	if (netif_queue_stopped(ndev) && start_tx_okay(dev)) {
1025 		dprintk("start_queue(%p)\n", ndev);
1026 		netif_start_queue(ndev);
1027 		netif_wake_queue(ndev);
1028 	}
1029 }
1030 
1031 static void ns83820_cleanup_tx(struct ns83820 *dev)
1032 {
1033 	unsigned i;
1034 
1035 	for (i=0; i<NR_TX_DESC; i++) {
1036 		struct sk_buff *skb = dev->tx_skbs[i];
1037 		dev->tx_skbs[i] = NULL;
1038 		if (skb) {
1039 			__le32 *desc = dev->tx_descs + (i * DESC_SIZE);
1040 			pci_unmap_single(dev->pci_dev,
1041 					desc_addr_get(desc + DESC_BUFPTR),
1042 					le32_to_cpu(desc[DESC_CMDSTS]) & CMDSTS_LEN_MASK,
1043 					PCI_DMA_TODEVICE);
1044 			dev_kfree_skb_irq(skb);
1045 			atomic_dec(&dev->nr_tx_skbs);
1046 		}
1047 	}
1048 
1049 	memset(dev->tx_descs, 0, NR_TX_DESC * DESC_SIZE * 4);
1050 }
1051 
1052 /* transmit routine.  This code relies on the network layer serializing
1053  * its calls in, but will run happily in parallel with the interrupt
1054  * handler.  This code currently has provisions for fragmenting tx buffers
1055  * while trying to track down a bug in either the zero copy code or
1056  * the tx fifo (hence the MAX_FRAG_LEN).
1057  */
1058 static netdev_tx_t ns83820_hard_start_xmit(struct sk_buff *skb,
1059 					   struct net_device *ndev)
1060 {
1061 	struct ns83820 *dev = PRIV(ndev);
1062 	u32 free_idx, cmdsts, extsts;
1063 	int nr_free, nr_frags;
1064 	unsigned tx_done_idx, last_idx;
1065 	dma_addr_t buf;
1066 	unsigned len;
1067 	skb_frag_t *frag;
1068 	int stopped = 0;
1069 	int do_intr = 0;
1070 	volatile __le32 *first_desc;
1071 
1072 	dprintk("ns83820_hard_start_xmit\n");
1073 
1074 	nr_frags =  skb_shinfo(skb)->nr_frags;
1075 again:
1076 	if (unlikely(dev->CFG_cache & CFG_LNKSTS)) {
1077 		netif_stop_queue(ndev);
1078 		if (unlikely(dev->CFG_cache & CFG_LNKSTS))
1079 			return NETDEV_TX_BUSY;
1080 		netif_start_queue(ndev);
1081 	}
1082 
1083 	last_idx = free_idx = dev->tx_free_idx;
1084 	tx_done_idx = dev->tx_done_idx;
1085 	nr_free = (tx_done_idx + NR_TX_DESC-2 - free_idx) % NR_TX_DESC;
1086 	nr_free -= 1;
1087 	if (nr_free <= nr_frags) {
1088 		dprintk("stop_queue - not enough(%p)\n", ndev);
1089 		netif_stop_queue(ndev);
1090 
1091 		/* Check again: we may have raced with a tx done irq */
1092 		if (dev->tx_done_idx != tx_done_idx) {
1093 			dprintk("restart queue(%p)\n", ndev);
1094 			netif_start_queue(ndev);
1095 			goto again;
1096 		}
1097 		return NETDEV_TX_BUSY;
1098 	}
1099 
1100 	if (free_idx == dev->tx_intr_idx) {
1101 		do_intr = 1;
1102 		dev->tx_intr_idx = (dev->tx_intr_idx + NR_TX_DESC/4) % NR_TX_DESC;
1103 	}
1104 
1105 	nr_free -= nr_frags;
1106 	if (nr_free < MIN_TX_DESC_FREE) {
1107 		dprintk("stop_queue - last entry(%p)\n", ndev);
1108 		netif_stop_queue(ndev);
1109 		stopped = 1;
1110 	}
1111 
1112 	frag = skb_shinfo(skb)->frags;
1113 	if (!nr_frags)
1114 		frag = NULL;
1115 	extsts = 0;
1116 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
1117 		extsts |= EXTSTS_IPPKT;
1118 		if (IPPROTO_TCP == ip_hdr(skb)->protocol)
1119 			extsts |= EXTSTS_TCPPKT;
1120 		else if (IPPROTO_UDP == ip_hdr(skb)->protocol)
1121 			extsts |= EXTSTS_UDPPKT;
1122 	}
1123 
1124 #ifdef NS83820_VLAN_ACCEL_SUPPORT
1125 	if (skb_vlan_tag_present(skb)) {
1126 		/* fetch the vlan tag info out of the
1127 		 * ancillary data if the vlan code
1128 		 * is using hw vlan acceleration
1129 		 */
1130 		short tag = skb_vlan_tag_get(skb);
1131 		extsts |= (EXTSTS_VPKT | htons(tag));
1132 	}
1133 #endif
1134 
1135 	len = skb->len;
1136 	if (nr_frags)
1137 		len -= skb->data_len;
1138 	buf = pci_map_single(dev->pci_dev, skb->data, len, PCI_DMA_TODEVICE);
1139 
1140 	first_desc = dev->tx_descs + (free_idx * DESC_SIZE);
1141 
1142 	for (;;) {
1143 		volatile __le32 *desc = dev->tx_descs + (free_idx * DESC_SIZE);
1144 
1145 		dprintk("frag[%3u]: %4u @ 0x%08Lx\n", free_idx, len,
1146 			(unsigned long long)buf);
1147 		last_idx = free_idx;
1148 		free_idx = (free_idx + 1) % NR_TX_DESC;
1149 		desc[DESC_LINK] = cpu_to_le32(dev->tx_phy_descs + (free_idx * DESC_SIZE * 4));
1150 		desc_addr_set(desc + DESC_BUFPTR, buf);
1151 		desc[DESC_EXTSTS] = cpu_to_le32(extsts);
1152 
1153 		cmdsts = ((nr_frags) ? CMDSTS_MORE : do_intr ? CMDSTS_INTR : 0);
1154 		cmdsts |= (desc == first_desc) ? 0 : CMDSTS_OWN;
1155 		cmdsts |= len;
1156 		desc[DESC_CMDSTS] = cpu_to_le32(cmdsts);
1157 
1158 		if (!nr_frags)
1159 			break;
1160 
1161 		buf = skb_frag_dma_map(&dev->pci_dev->dev, frag, 0,
1162 				       skb_frag_size(frag), DMA_TO_DEVICE);
1163 		dprintk("frag: buf=%08Lx  page=%08lx offset=%08lx\n",
1164 			(long long)buf, (long) page_to_pfn(frag->page),
1165 			frag->page_offset);
1166 		len = skb_frag_size(frag);
1167 		frag++;
1168 		nr_frags--;
1169 	}
1170 	dprintk("done pkt\n");
1171 
1172 	spin_lock_irq(&dev->tx_lock);
1173 	dev->tx_skbs[last_idx] = skb;
1174 	first_desc[DESC_CMDSTS] |= cpu_to_le32(CMDSTS_OWN);
1175 	dev->tx_free_idx = free_idx;
1176 	atomic_inc(&dev->nr_tx_skbs);
1177 	spin_unlock_irq(&dev->tx_lock);
1178 
1179 	kick_tx(dev);
1180 
1181 	/* Check again: we may have raced with a tx done irq */
1182 	if (stopped && (dev->tx_done_idx != tx_done_idx) && start_tx_okay(dev))
1183 		netif_start_queue(ndev);
1184 
1185 	return NETDEV_TX_OK;
1186 }
1187 
1188 static void ns83820_update_stats(struct ns83820 *dev)
1189 {
1190 	struct net_device *ndev = dev->ndev;
1191 	u8 __iomem *base = dev->base;
1192 
1193 	/* the DP83820 will freeze counters, so we need to read all of them */
1194 	ndev->stats.rx_errors		+= readl(base + 0x60) & 0xffff;
1195 	ndev->stats.rx_crc_errors	+= readl(base + 0x64) & 0xffff;
1196 	ndev->stats.rx_missed_errors	+= readl(base + 0x68) & 0xffff;
1197 	ndev->stats.rx_frame_errors	+= readl(base + 0x6c) & 0xffff;
1198 	/*ndev->stats.rx_symbol_errors +=*/ readl(base + 0x70);
1199 	ndev->stats.rx_length_errors	+= readl(base + 0x74) & 0xffff;
1200 	ndev->stats.rx_length_errors	+= readl(base + 0x78) & 0xffff;
1201 	/*ndev->stats.rx_badopcode_errors += */ readl(base + 0x7c);
1202 	/*ndev->stats.rx_pause_count += */  readl(base + 0x80);
1203 	/*ndev->stats.tx_pause_count += */  readl(base + 0x84);
1204 	ndev->stats.tx_carrier_errors	+= readl(base + 0x88) & 0xff;
1205 }
1206 
1207 static struct net_device_stats *ns83820_get_stats(struct net_device *ndev)
1208 {
1209 	struct ns83820 *dev = PRIV(ndev);
1210 
1211 	/* somewhat overkill */
1212 	spin_lock_irq(&dev->misc_lock);
1213 	ns83820_update_stats(dev);
1214 	spin_unlock_irq(&dev->misc_lock);
1215 
1216 	return &ndev->stats;
1217 }
1218 
1219 /* Let ethtool retrieve info */
1220 static int ns83820_get_settings(struct net_device *ndev,
1221 				struct ethtool_cmd *cmd)
1222 {
1223 	struct ns83820 *dev = PRIV(ndev);
1224 	u32 cfg, tanar, tbicr;
1225 	int fullduplex   = 0;
1226 
1227 	/*
1228 	 * Here's the list of available ethtool commands from other drivers:
1229 	 *	cmd->advertising =
1230 	 *	ethtool_cmd_speed_set(cmd, ...)
1231 	 *	cmd->duplex =
1232 	 *	cmd->port = 0;
1233 	 *	cmd->phy_address =
1234 	 *	cmd->transceiver = 0;
1235 	 *	cmd->autoneg =
1236 	 *	cmd->maxtxpkt = 0;
1237 	 *	cmd->maxrxpkt = 0;
1238 	 */
1239 
1240 	/* read current configuration */
1241 	cfg   = readl(dev->base + CFG) ^ SPDSTS_POLARITY;
1242 	tanar = readl(dev->base + TANAR);
1243 	tbicr = readl(dev->base + TBICR);
1244 
1245 	fullduplex = (cfg & CFG_DUPSTS) ? 1 : 0;
1246 
1247 	cmd->supported = SUPPORTED_Autoneg;
1248 
1249 	if (dev->CFG_cache & CFG_TBI_EN) {
1250 		/* we have optical interface */
1251 		cmd->supported |= SUPPORTED_1000baseT_Half |
1252 					SUPPORTED_1000baseT_Full |
1253 					SUPPORTED_FIBRE;
1254 		cmd->port       = PORT_FIBRE;
1255 	} else {
1256 		/* we have copper */
1257 		cmd->supported |= SUPPORTED_10baseT_Half |
1258 			SUPPORTED_10baseT_Full | SUPPORTED_100baseT_Half |
1259 			SUPPORTED_100baseT_Full | SUPPORTED_1000baseT_Half |
1260 			SUPPORTED_1000baseT_Full |
1261 			SUPPORTED_MII;
1262 		cmd->port = PORT_MII;
1263 	}
1264 
1265 	cmd->duplex = fullduplex ? DUPLEX_FULL : DUPLEX_HALF;
1266 	switch (cfg / CFG_SPDSTS0 & 3) {
1267 	case 2:
1268 		ethtool_cmd_speed_set(cmd, SPEED_1000);
1269 		break;
1270 	case 1:
1271 		ethtool_cmd_speed_set(cmd, SPEED_100);
1272 		break;
1273 	default:
1274 		ethtool_cmd_speed_set(cmd, SPEED_10);
1275 		break;
1276 	}
1277 	cmd->autoneg = (tbicr & TBICR_MR_AN_ENABLE)
1278 		? AUTONEG_ENABLE : AUTONEG_DISABLE;
1279 	return 0;
1280 }
1281 
1282 /* Let ethool change settings*/
1283 static int ns83820_set_settings(struct net_device *ndev,
1284 				struct ethtool_cmd *cmd)
1285 {
1286 	struct ns83820 *dev = PRIV(ndev);
1287 	u32 cfg, tanar;
1288 	int have_optical = 0;
1289 	int fullduplex   = 0;
1290 
1291 	/* read current configuration */
1292 	cfg = readl(dev->base + CFG) ^ SPDSTS_POLARITY;
1293 	tanar = readl(dev->base + TANAR);
1294 
1295 	if (dev->CFG_cache & CFG_TBI_EN) {
1296 		/* we have optical */
1297 		have_optical = 1;
1298 		fullduplex   = (tanar & TANAR_FULL_DUP);
1299 
1300 	} else {
1301 		/* we have copper */
1302 		fullduplex = cfg & CFG_DUPSTS;
1303 	}
1304 
1305 	spin_lock_irq(&dev->misc_lock);
1306 	spin_lock(&dev->tx_lock);
1307 
1308 	/* Set duplex */
1309 	if (cmd->duplex != fullduplex) {
1310 		if (have_optical) {
1311 			/*set full duplex*/
1312 			if (cmd->duplex == DUPLEX_FULL) {
1313 				/* force full duplex */
1314 				writel(readl(dev->base + TXCFG)
1315 					| TXCFG_CSI | TXCFG_HBI | TXCFG_ATP,
1316 					dev->base + TXCFG);
1317 				writel(readl(dev->base + RXCFG) | RXCFG_RX_FD,
1318 					dev->base + RXCFG);
1319 				/* Light up full duplex LED */
1320 				writel(readl(dev->base + GPIOR) | GPIOR_GP1_OUT,
1321 					dev->base + GPIOR);
1322 			} else {
1323 				/*TODO: set half duplex */
1324 			}
1325 
1326 		} else {
1327 			/*we have copper*/
1328 			/* TODO: Set duplex for copper cards */
1329 		}
1330 		printk(KERN_INFO "%s: Duplex set via ethtool\n",
1331 		ndev->name);
1332 	}
1333 
1334 	/* Set autonegotiation */
1335 	if (1) {
1336 		if (cmd->autoneg == AUTONEG_ENABLE) {
1337 			/* restart auto negotiation */
1338 			writel(TBICR_MR_AN_ENABLE | TBICR_MR_RESTART_AN,
1339 				dev->base + TBICR);
1340 			writel(TBICR_MR_AN_ENABLE, dev->base + TBICR);
1341 				dev->linkstate = LINK_AUTONEGOTIATE;
1342 
1343 			printk(KERN_INFO "%s: autoneg enabled via ethtool\n",
1344 				ndev->name);
1345 		} else {
1346 			/* disable auto negotiation */
1347 			writel(0x00000000, dev->base + TBICR);
1348 		}
1349 
1350 		printk(KERN_INFO "%s: autoneg %s via ethtool\n", ndev->name,
1351 				cmd->autoneg ? "ENABLED" : "DISABLED");
1352 	}
1353 
1354 	phy_intr(ndev);
1355 	spin_unlock(&dev->tx_lock);
1356 	spin_unlock_irq(&dev->misc_lock);
1357 
1358 	return 0;
1359 }
1360 /* end ethtool get/set support -df */
1361 
1362 static void ns83820_get_drvinfo(struct net_device *ndev, struct ethtool_drvinfo *info)
1363 {
1364 	struct ns83820 *dev = PRIV(ndev);
1365 	strlcpy(info->driver, "ns83820", sizeof(info->driver));
1366 	strlcpy(info->version, VERSION, sizeof(info->version));
1367 	strlcpy(info->bus_info, pci_name(dev->pci_dev), sizeof(info->bus_info));
1368 }
1369 
1370 static u32 ns83820_get_link(struct net_device *ndev)
1371 {
1372 	struct ns83820 *dev = PRIV(ndev);
1373 	u32 cfg = readl(dev->base + CFG) ^ SPDSTS_POLARITY;
1374 	return cfg & CFG_LNKSTS ? 1 : 0;
1375 }
1376 
1377 static const struct ethtool_ops ops = {
1378 	.get_settings    = ns83820_get_settings,
1379 	.set_settings    = ns83820_set_settings,
1380 	.get_drvinfo     = ns83820_get_drvinfo,
1381 	.get_link        = ns83820_get_link
1382 };
1383 
1384 static inline void ns83820_disable_interrupts(struct ns83820 *dev)
1385 {
1386 	writel(0, dev->base + IMR);
1387 	writel(0, dev->base + IER);
1388 	readl(dev->base + IER);
1389 }
1390 
1391 /* this function is called in irq context from the ISR */
1392 static void ns83820_mib_isr(struct ns83820 *dev)
1393 {
1394 	unsigned long flags;
1395 	spin_lock_irqsave(&dev->misc_lock, flags);
1396 	ns83820_update_stats(dev);
1397 	spin_unlock_irqrestore(&dev->misc_lock, flags);
1398 }
1399 
1400 static void ns83820_do_isr(struct net_device *ndev, u32 isr);
1401 static irqreturn_t ns83820_irq(int foo, void *data)
1402 {
1403 	struct net_device *ndev = data;
1404 	struct ns83820 *dev = PRIV(ndev);
1405 	u32 isr;
1406 	dprintk("ns83820_irq(%p)\n", ndev);
1407 
1408 	dev->ihr = 0;
1409 
1410 	isr = readl(dev->base + ISR);
1411 	dprintk("irq: %08x\n", isr);
1412 	ns83820_do_isr(ndev, isr);
1413 	return IRQ_HANDLED;
1414 }
1415 
1416 static void ns83820_do_isr(struct net_device *ndev, u32 isr)
1417 {
1418 	struct ns83820 *dev = PRIV(ndev);
1419 	unsigned long flags;
1420 
1421 #ifdef DEBUG
1422 	if (isr & ~(ISR_PHY | ISR_RXDESC | ISR_RXEARLY | ISR_RXOK | ISR_RXERR | ISR_TXIDLE | ISR_TXOK | ISR_TXDESC))
1423 		Dprintk("odd isr? 0x%08x\n", isr);
1424 #endif
1425 
1426 	if (ISR_RXIDLE & isr) {
1427 		dev->rx_info.idle = 1;
1428 		Dprintk("oh dear, we are idle\n");
1429 		ns83820_rx_kick(ndev);
1430 	}
1431 
1432 	if ((ISR_RXDESC | ISR_RXOK) & isr) {
1433 		prefetch(dev->rx_info.next_rx_desc);
1434 
1435 		spin_lock_irqsave(&dev->misc_lock, flags);
1436 		dev->IMR_cache &= ~(ISR_RXDESC | ISR_RXOK);
1437 		writel(dev->IMR_cache, dev->base + IMR);
1438 		spin_unlock_irqrestore(&dev->misc_lock, flags);
1439 
1440 		tasklet_schedule(&dev->rx_tasklet);
1441 		//rx_irq(ndev);
1442 		//writel(4, dev->base + IHR);
1443 	}
1444 
1445 	if ((ISR_RXIDLE | ISR_RXORN | ISR_RXDESC | ISR_RXOK | ISR_RXERR) & isr)
1446 		ns83820_rx_kick(ndev);
1447 
1448 	if (unlikely(ISR_RXSOVR & isr)) {
1449 		//printk("overrun: rxsovr\n");
1450 		ndev->stats.rx_fifo_errors++;
1451 	}
1452 
1453 	if (unlikely(ISR_RXORN & isr)) {
1454 		//printk("overrun: rxorn\n");
1455 		ndev->stats.rx_fifo_errors++;
1456 	}
1457 
1458 	if ((ISR_RXRCMP & isr) && dev->rx_info.up)
1459 		writel(CR_RXE, dev->base + CR);
1460 
1461 	if (ISR_TXIDLE & isr) {
1462 		u32 txdp;
1463 		txdp = readl(dev->base + TXDP);
1464 		dprintk("txdp: %08x\n", txdp);
1465 		txdp -= dev->tx_phy_descs;
1466 		dev->tx_idx = txdp / (DESC_SIZE * 4);
1467 		if (dev->tx_idx >= NR_TX_DESC) {
1468 			printk(KERN_ALERT "%s: BUG -- txdp out of range\n", ndev->name);
1469 			dev->tx_idx = 0;
1470 		}
1471 		/* The may have been a race between a pci originated read
1472 		 * and the descriptor update from the cpu.  Just in case,
1473 		 * kick the transmitter if the hardware thinks it is on a
1474 		 * different descriptor than we are.
1475 		 */
1476 		if (dev->tx_idx != dev->tx_free_idx)
1477 			kick_tx(dev);
1478 	}
1479 
1480 	/* Defer tx ring processing until more than a minimum amount of
1481 	 * work has accumulated
1482 	 */
1483 	if ((ISR_TXDESC | ISR_TXIDLE | ISR_TXOK | ISR_TXERR) & isr) {
1484 		spin_lock_irqsave(&dev->tx_lock, flags);
1485 		do_tx_done(ndev);
1486 		spin_unlock_irqrestore(&dev->tx_lock, flags);
1487 
1488 		/* Disable TxOk if there are no outstanding tx packets.
1489 		 */
1490 		if ((dev->tx_done_idx == dev->tx_free_idx) &&
1491 		    (dev->IMR_cache & ISR_TXOK)) {
1492 			spin_lock_irqsave(&dev->misc_lock, flags);
1493 			dev->IMR_cache &= ~ISR_TXOK;
1494 			writel(dev->IMR_cache, dev->base + IMR);
1495 			spin_unlock_irqrestore(&dev->misc_lock, flags);
1496 		}
1497 	}
1498 
1499 	/* The TxIdle interrupt can come in before the transmit has
1500 	 * completed.  Normally we reap packets off of the combination
1501 	 * of TxDesc and TxIdle and leave TxOk disabled (since it
1502 	 * occurs on every packet), but when no further irqs of this
1503 	 * nature are expected, we must enable TxOk.
1504 	 */
1505 	if ((ISR_TXIDLE & isr) && (dev->tx_done_idx != dev->tx_free_idx)) {
1506 		spin_lock_irqsave(&dev->misc_lock, flags);
1507 		dev->IMR_cache |= ISR_TXOK;
1508 		writel(dev->IMR_cache, dev->base + IMR);
1509 		spin_unlock_irqrestore(&dev->misc_lock, flags);
1510 	}
1511 
1512 	/* MIB interrupt: one of the statistics counters is about to overflow */
1513 	if (unlikely(ISR_MIB & isr))
1514 		ns83820_mib_isr(dev);
1515 
1516 	/* PHY: Link up/down/negotiation state change */
1517 	if (unlikely(ISR_PHY & isr))
1518 		phy_intr(ndev);
1519 
1520 #if 0	/* Still working on the interrupt mitigation strategy */
1521 	if (dev->ihr)
1522 		writel(dev->ihr, dev->base + IHR);
1523 #endif
1524 }
1525 
1526 static void ns83820_do_reset(struct ns83820 *dev, u32 which)
1527 {
1528 	Dprintk("resetting chip...\n");
1529 	writel(which, dev->base + CR);
1530 	do {
1531 		schedule();
1532 	} while (readl(dev->base + CR) & which);
1533 	Dprintk("okay!\n");
1534 }
1535 
1536 static int ns83820_stop(struct net_device *ndev)
1537 {
1538 	struct ns83820 *dev = PRIV(ndev);
1539 
1540 	/* FIXME: protect against interrupt handler? */
1541 	del_timer_sync(&dev->tx_watchdog);
1542 
1543 	ns83820_disable_interrupts(dev);
1544 
1545 	dev->rx_info.up = 0;
1546 	synchronize_irq(dev->pci_dev->irq);
1547 
1548 	ns83820_do_reset(dev, CR_RST);
1549 
1550 	synchronize_irq(dev->pci_dev->irq);
1551 
1552 	spin_lock_irq(&dev->misc_lock);
1553 	dev->IMR_cache &= ~(ISR_TXURN | ISR_TXIDLE | ISR_TXERR | ISR_TXDESC | ISR_TXOK);
1554 	spin_unlock_irq(&dev->misc_lock);
1555 
1556 	ns83820_cleanup_rx(dev);
1557 	ns83820_cleanup_tx(dev);
1558 
1559 	return 0;
1560 }
1561 
1562 static void ns83820_tx_timeout(struct net_device *ndev)
1563 {
1564 	struct ns83820 *dev = PRIV(ndev);
1565         u32 tx_done_idx;
1566 	__le32 *desc;
1567 	unsigned long flags;
1568 
1569 	spin_lock_irqsave(&dev->tx_lock, flags);
1570 
1571 	tx_done_idx = dev->tx_done_idx;
1572 	desc = dev->tx_descs + (tx_done_idx * DESC_SIZE);
1573 
1574 	printk(KERN_INFO "%s: tx_timeout: tx_done_idx=%d free_idx=%d cmdsts=%08x\n",
1575 		ndev->name,
1576 		tx_done_idx, dev->tx_free_idx, le32_to_cpu(desc[DESC_CMDSTS]));
1577 
1578 #if defined(DEBUG)
1579 	{
1580 		u32 isr;
1581 		isr = readl(dev->base + ISR);
1582 		printk("irq: %08x imr: %08x\n", isr, dev->IMR_cache);
1583 		ns83820_do_isr(ndev, isr);
1584 	}
1585 #endif
1586 
1587 	do_tx_done(ndev);
1588 
1589 	tx_done_idx = dev->tx_done_idx;
1590 	desc = dev->tx_descs + (tx_done_idx * DESC_SIZE);
1591 
1592 	printk(KERN_INFO "%s: after: tx_done_idx=%d free_idx=%d cmdsts=%08x\n",
1593 		ndev->name,
1594 		tx_done_idx, dev->tx_free_idx, le32_to_cpu(desc[DESC_CMDSTS]));
1595 
1596 	spin_unlock_irqrestore(&dev->tx_lock, flags);
1597 }
1598 
1599 static void ns83820_tx_watch(unsigned long data)
1600 {
1601 	struct net_device *ndev = (void *)data;
1602 	struct ns83820 *dev = PRIV(ndev);
1603 
1604 #if defined(DEBUG)
1605 	printk("ns83820_tx_watch: %u %u %d\n",
1606 		dev->tx_done_idx, dev->tx_free_idx, atomic_read(&dev->nr_tx_skbs)
1607 		);
1608 #endif
1609 
1610 	if (time_after(jiffies, dev_trans_start(ndev) + 1*HZ) &&
1611 	    dev->tx_done_idx != dev->tx_free_idx) {
1612 		printk(KERN_DEBUG "%s: ns83820_tx_watch: %u %u %d\n",
1613 			ndev->name,
1614 			dev->tx_done_idx, dev->tx_free_idx,
1615 			atomic_read(&dev->nr_tx_skbs));
1616 		ns83820_tx_timeout(ndev);
1617 	}
1618 
1619 	mod_timer(&dev->tx_watchdog, jiffies + 2*HZ);
1620 }
1621 
1622 static int ns83820_open(struct net_device *ndev)
1623 {
1624 	struct ns83820 *dev = PRIV(ndev);
1625 	unsigned i;
1626 	u32 desc;
1627 	int ret;
1628 
1629 	dprintk("ns83820_open\n");
1630 
1631 	writel(0, dev->base + PQCR);
1632 
1633 	ret = ns83820_setup_rx(ndev);
1634 	if (ret)
1635 		goto failed;
1636 
1637 	memset(dev->tx_descs, 0, 4 * NR_TX_DESC * DESC_SIZE);
1638 	for (i=0; i<NR_TX_DESC; i++) {
1639 		dev->tx_descs[(i * DESC_SIZE) + DESC_LINK]
1640 				= cpu_to_le32(
1641 				  dev->tx_phy_descs
1642 				  + ((i+1) % NR_TX_DESC) * DESC_SIZE * 4);
1643 	}
1644 
1645 	dev->tx_idx = 0;
1646 	dev->tx_done_idx = 0;
1647 	desc = dev->tx_phy_descs;
1648 	writel(0, dev->base + TXDP_HI);
1649 	writel(desc, dev->base + TXDP);
1650 
1651 	init_timer(&dev->tx_watchdog);
1652 	dev->tx_watchdog.data = (unsigned long)ndev;
1653 	dev->tx_watchdog.function = ns83820_tx_watch;
1654 	mod_timer(&dev->tx_watchdog, jiffies + 2*HZ);
1655 
1656 	netif_start_queue(ndev);	/* FIXME: wait for phy to come up */
1657 
1658 	return 0;
1659 
1660 failed:
1661 	ns83820_stop(ndev);
1662 	return ret;
1663 }
1664 
1665 static void ns83820_getmac(struct ns83820 *dev, u8 *mac)
1666 {
1667 	unsigned i;
1668 	for (i=0; i<3; i++) {
1669 		u32 data;
1670 
1671 		/* Read from the perfect match memory: this is loaded by
1672 		 * the chip from the EEPROM via the EELOAD self test.
1673 		 */
1674 		writel(i*2, dev->base + RFCR);
1675 		data = readl(dev->base + RFDR);
1676 
1677 		*mac++ = data;
1678 		*mac++ = data >> 8;
1679 	}
1680 }
1681 
1682 static int ns83820_change_mtu(struct net_device *ndev, int new_mtu)
1683 {
1684 	if (new_mtu > RX_BUF_SIZE)
1685 		return -EINVAL;
1686 	ndev->mtu = new_mtu;
1687 	return 0;
1688 }
1689 
1690 static void ns83820_set_multicast(struct net_device *ndev)
1691 {
1692 	struct ns83820 *dev = PRIV(ndev);
1693 	u8 __iomem *rfcr = dev->base + RFCR;
1694 	u32 and_mask = 0xffffffff;
1695 	u32 or_mask = 0;
1696 	u32 val;
1697 
1698 	if (ndev->flags & IFF_PROMISC)
1699 		or_mask |= RFCR_AAU | RFCR_AAM;
1700 	else
1701 		and_mask &= ~(RFCR_AAU | RFCR_AAM);
1702 
1703 	if (ndev->flags & IFF_ALLMULTI || netdev_mc_count(ndev))
1704 		or_mask |= RFCR_AAM;
1705 	else
1706 		and_mask &= ~RFCR_AAM;
1707 
1708 	spin_lock_irq(&dev->misc_lock);
1709 	val = (readl(rfcr) & and_mask) | or_mask;
1710 	/* Ramit : RFCR Write Fix doc says RFEN must be 0 modify other bits */
1711 	writel(val & ~RFCR_RFEN, rfcr);
1712 	writel(val, rfcr);
1713 	spin_unlock_irq(&dev->misc_lock);
1714 }
1715 
1716 static void ns83820_run_bist(struct net_device *ndev, const char *name, u32 enable, u32 done, u32 fail)
1717 {
1718 	struct ns83820 *dev = PRIV(ndev);
1719 	int timed_out = 0;
1720 	unsigned long start;
1721 	u32 status;
1722 	int loops = 0;
1723 
1724 	dprintk("%s: start %s\n", ndev->name, name);
1725 
1726 	start = jiffies;
1727 
1728 	writel(enable, dev->base + PTSCR);
1729 	for (;;) {
1730 		loops++;
1731 		status = readl(dev->base + PTSCR);
1732 		if (!(status & enable))
1733 			break;
1734 		if (status & done)
1735 			break;
1736 		if (status & fail)
1737 			break;
1738 		if (time_after_eq(jiffies, start + HZ)) {
1739 			timed_out = 1;
1740 			break;
1741 		}
1742 		schedule_timeout_uninterruptible(1);
1743 	}
1744 
1745 	if (status & fail)
1746 		printk(KERN_INFO "%s: %s failed! (0x%08x & 0x%08x)\n",
1747 			ndev->name, name, status, fail);
1748 	else if (timed_out)
1749 		printk(KERN_INFO "%s: run_bist %s timed out! (%08x)\n",
1750 			ndev->name, name, status);
1751 
1752 	dprintk("%s: done %s in %d loops\n", ndev->name, name, loops);
1753 }
1754 
1755 #ifdef PHY_CODE_IS_FINISHED
1756 static void ns83820_mii_write_bit(struct ns83820 *dev, int bit)
1757 {
1758 	/* drive MDC low */
1759 	dev->MEAR_cache &= ~MEAR_MDC;
1760 	writel(dev->MEAR_cache, dev->base + MEAR);
1761 	readl(dev->base + MEAR);
1762 
1763 	/* enable output, set bit */
1764 	dev->MEAR_cache |= MEAR_MDDIR;
1765 	if (bit)
1766 		dev->MEAR_cache |= MEAR_MDIO;
1767 	else
1768 		dev->MEAR_cache &= ~MEAR_MDIO;
1769 
1770 	/* set the output bit */
1771 	writel(dev->MEAR_cache, dev->base + MEAR);
1772 	readl(dev->base + MEAR);
1773 
1774 	/* Wait.  Max clock rate is 2.5MHz, this way we come in under 1MHz */
1775 	udelay(1);
1776 
1777 	/* drive MDC high causing the data bit to be latched */
1778 	dev->MEAR_cache |= MEAR_MDC;
1779 	writel(dev->MEAR_cache, dev->base + MEAR);
1780 	readl(dev->base + MEAR);
1781 
1782 	/* Wait again... */
1783 	udelay(1);
1784 }
1785 
1786 static int ns83820_mii_read_bit(struct ns83820 *dev)
1787 {
1788 	int bit;
1789 
1790 	/* drive MDC low, disable output */
1791 	dev->MEAR_cache &= ~MEAR_MDC;
1792 	dev->MEAR_cache &= ~MEAR_MDDIR;
1793 	writel(dev->MEAR_cache, dev->base + MEAR);
1794 	readl(dev->base + MEAR);
1795 
1796 	/* Wait.  Max clock rate is 2.5MHz, this way we come in under 1MHz */
1797 	udelay(1);
1798 
1799 	/* drive MDC high causing the data bit to be latched */
1800 	bit = (readl(dev->base + MEAR) & MEAR_MDIO) ? 1 : 0;
1801 	dev->MEAR_cache |= MEAR_MDC;
1802 	writel(dev->MEAR_cache, dev->base + MEAR);
1803 
1804 	/* Wait again... */
1805 	udelay(1);
1806 
1807 	return bit;
1808 }
1809 
1810 static unsigned ns83820_mii_read_reg(struct ns83820 *dev, unsigned phy, unsigned reg)
1811 {
1812 	unsigned data = 0;
1813 	int i;
1814 
1815 	/* read some garbage so that we eventually sync up */
1816 	for (i=0; i<64; i++)
1817 		ns83820_mii_read_bit(dev);
1818 
1819 	ns83820_mii_write_bit(dev, 0);	/* start */
1820 	ns83820_mii_write_bit(dev, 1);
1821 	ns83820_mii_write_bit(dev, 1);	/* opcode read */
1822 	ns83820_mii_write_bit(dev, 0);
1823 
1824 	/* write out the phy address: 5 bits, msb first */
1825 	for (i=0; i<5; i++)
1826 		ns83820_mii_write_bit(dev, phy & (0x10 >> i));
1827 
1828 	/* write out the register address, 5 bits, msb first */
1829 	for (i=0; i<5; i++)
1830 		ns83820_mii_write_bit(dev, reg & (0x10 >> i));
1831 
1832 	ns83820_mii_read_bit(dev);	/* turn around cycles */
1833 	ns83820_mii_read_bit(dev);
1834 
1835 	/* read in the register data, 16 bits msb first */
1836 	for (i=0; i<16; i++) {
1837 		data <<= 1;
1838 		data |= ns83820_mii_read_bit(dev);
1839 	}
1840 
1841 	return data;
1842 }
1843 
1844 static unsigned ns83820_mii_write_reg(struct ns83820 *dev, unsigned phy, unsigned reg, unsigned data)
1845 {
1846 	int i;
1847 
1848 	/* read some garbage so that we eventually sync up */
1849 	for (i=0; i<64; i++)
1850 		ns83820_mii_read_bit(dev);
1851 
1852 	ns83820_mii_write_bit(dev, 0);	/* start */
1853 	ns83820_mii_write_bit(dev, 1);
1854 	ns83820_mii_write_bit(dev, 0);	/* opcode read */
1855 	ns83820_mii_write_bit(dev, 1);
1856 
1857 	/* write out the phy address: 5 bits, msb first */
1858 	for (i=0; i<5; i++)
1859 		ns83820_mii_write_bit(dev, phy & (0x10 >> i));
1860 
1861 	/* write out the register address, 5 bits, msb first */
1862 	for (i=0; i<5; i++)
1863 		ns83820_mii_write_bit(dev, reg & (0x10 >> i));
1864 
1865 	ns83820_mii_read_bit(dev);	/* turn around cycles */
1866 	ns83820_mii_read_bit(dev);
1867 
1868 	/* read in the register data, 16 bits msb first */
1869 	for (i=0; i<16; i++)
1870 		ns83820_mii_write_bit(dev, (data >> (15 - i)) & 1);
1871 
1872 	return data;
1873 }
1874 
1875 static void ns83820_probe_phy(struct net_device *ndev)
1876 {
1877 	struct ns83820 *dev = PRIV(ndev);
1878 	static int first;
1879 	int i;
1880 #define MII_PHYIDR1	0x02
1881 #define MII_PHYIDR2	0x03
1882 
1883 #if 0
1884 	if (!first) {
1885 		unsigned tmp;
1886 		ns83820_mii_read_reg(dev, 1, 0x09);
1887 		ns83820_mii_write_reg(dev, 1, 0x10, 0x0d3e);
1888 
1889 		tmp = ns83820_mii_read_reg(dev, 1, 0x00);
1890 		ns83820_mii_write_reg(dev, 1, 0x00, tmp | 0x8000);
1891 		udelay(1300);
1892 		ns83820_mii_read_reg(dev, 1, 0x09);
1893 	}
1894 #endif
1895 	first = 1;
1896 
1897 	for (i=1; i<2; i++) {
1898 		int j;
1899 		unsigned a, b;
1900 		a = ns83820_mii_read_reg(dev, i, MII_PHYIDR1);
1901 		b = ns83820_mii_read_reg(dev, i, MII_PHYIDR2);
1902 
1903 		//printk("%s: phy %d: 0x%04x 0x%04x\n",
1904 		//	ndev->name, i, a, b);
1905 
1906 		for (j=0; j<0x16; j+=4) {
1907 			dprintk("%s: [0x%02x] %04x %04x %04x %04x\n",
1908 				ndev->name, j,
1909 				ns83820_mii_read_reg(dev, i, 0 + j),
1910 				ns83820_mii_read_reg(dev, i, 1 + j),
1911 				ns83820_mii_read_reg(dev, i, 2 + j),
1912 				ns83820_mii_read_reg(dev, i, 3 + j)
1913 				);
1914 		}
1915 	}
1916 	{
1917 		unsigned a, b;
1918 		/* read firmware version: memory addr is 0x8402 and 0x8403 */
1919 		ns83820_mii_write_reg(dev, 1, 0x16, 0x000d);
1920 		ns83820_mii_write_reg(dev, 1, 0x1e, 0x810e);
1921 		a = ns83820_mii_read_reg(dev, 1, 0x1d);
1922 
1923 		ns83820_mii_write_reg(dev, 1, 0x16, 0x000d);
1924 		ns83820_mii_write_reg(dev, 1, 0x1e, 0x810e);
1925 		b = ns83820_mii_read_reg(dev, 1, 0x1d);
1926 		dprintk("version: 0x%04x 0x%04x\n", a, b);
1927 	}
1928 }
1929 #endif
1930 
1931 static const struct net_device_ops netdev_ops = {
1932 	.ndo_open		= ns83820_open,
1933 	.ndo_stop		= ns83820_stop,
1934 	.ndo_start_xmit		= ns83820_hard_start_xmit,
1935 	.ndo_get_stats		= ns83820_get_stats,
1936 	.ndo_change_mtu		= ns83820_change_mtu,
1937 	.ndo_set_rx_mode	= ns83820_set_multicast,
1938 	.ndo_validate_addr	= eth_validate_addr,
1939 	.ndo_set_mac_address	= eth_mac_addr,
1940 	.ndo_tx_timeout		= ns83820_tx_timeout,
1941 };
1942 
1943 static int ns83820_init_one(struct pci_dev *pci_dev,
1944 			    const struct pci_device_id *id)
1945 {
1946 	struct net_device *ndev;
1947 	struct ns83820 *dev;
1948 	long addr;
1949 	int err;
1950 	int using_dac = 0;
1951 
1952 	/* See if we can set the dma mask early on; failure is fatal. */
1953 	if (sizeof(dma_addr_t) == 8 &&
1954 		!pci_set_dma_mask(pci_dev, DMA_BIT_MASK(64))) {
1955 		using_dac = 1;
1956 	} else if (!pci_set_dma_mask(pci_dev, DMA_BIT_MASK(32))) {
1957 		using_dac = 0;
1958 	} else {
1959 		dev_warn(&pci_dev->dev, "pci_set_dma_mask failed!\n");
1960 		return -ENODEV;
1961 	}
1962 
1963 	ndev = alloc_etherdev(sizeof(struct ns83820));
1964 	err = -ENOMEM;
1965 	if (!ndev)
1966 		goto out;
1967 
1968 	dev = PRIV(ndev);
1969 	dev->ndev = ndev;
1970 
1971 	spin_lock_init(&dev->rx_info.lock);
1972 	spin_lock_init(&dev->tx_lock);
1973 	spin_lock_init(&dev->misc_lock);
1974 	dev->pci_dev = pci_dev;
1975 
1976 	SET_NETDEV_DEV(ndev, &pci_dev->dev);
1977 
1978 	INIT_WORK(&dev->tq_refill, queue_refill);
1979 	tasklet_init(&dev->rx_tasklet, rx_action, (unsigned long)ndev);
1980 
1981 	err = pci_enable_device(pci_dev);
1982 	if (err) {
1983 		dev_info(&pci_dev->dev, "pci_enable_dev failed: %d\n", err);
1984 		goto out_free;
1985 	}
1986 
1987 	pci_set_master(pci_dev);
1988 	addr = pci_resource_start(pci_dev, 1);
1989 	dev->base = ioremap_nocache(addr, PAGE_SIZE);
1990 	dev->tx_descs = pci_alloc_consistent(pci_dev,
1991 			4 * DESC_SIZE * NR_TX_DESC, &dev->tx_phy_descs);
1992 	dev->rx_info.descs = pci_alloc_consistent(pci_dev,
1993 			4 * DESC_SIZE * NR_RX_DESC, &dev->rx_info.phy_descs);
1994 	err = -ENOMEM;
1995 	if (!dev->base || !dev->tx_descs || !dev->rx_info.descs)
1996 		goto out_disable;
1997 
1998 	dprintk("%p: %08lx  %p: %08lx\n",
1999 		dev->tx_descs, (long)dev->tx_phy_descs,
2000 		dev->rx_info.descs, (long)dev->rx_info.phy_descs);
2001 
2002 	ns83820_disable_interrupts(dev);
2003 
2004 	dev->IMR_cache = 0;
2005 
2006 	err = request_irq(pci_dev->irq, ns83820_irq, IRQF_SHARED,
2007 			  DRV_NAME, ndev);
2008 	if (err) {
2009 		dev_info(&pci_dev->dev, "unable to register irq %d, err %d\n",
2010 			pci_dev->irq, err);
2011 		goto out_disable;
2012 	}
2013 
2014 	/*
2015 	 * FIXME: we are holding rtnl_lock() over obscenely long area only
2016 	 * because some of the setup code uses dev->name.  It's Wrong(tm) -
2017 	 * we should be using driver-specific names for all that stuff.
2018 	 * For now that will do, but we really need to come back and kill
2019 	 * most of the dev_alloc_name() users later.
2020 	 */
2021 	rtnl_lock();
2022 	err = dev_alloc_name(ndev, ndev->name);
2023 	if (err < 0) {
2024 		dev_info(&pci_dev->dev, "unable to get netdev name: %d\n", err);
2025 		goto out_free_irq;
2026 	}
2027 
2028 	printk("%s: ns83820.c: 0x22c: %08x, subsystem: %04x:%04x\n",
2029 		ndev->name, le32_to_cpu(readl(dev->base + 0x22c)),
2030 		pci_dev->subsystem_vendor, pci_dev->subsystem_device);
2031 
2032 	ndev->netdev_ops = &netdev_ops;
2033 	ndev->ethtool_ops = &ops;
2034 	ndev->watchdog_timeo = 5 * HZ;
2035 	pci_set_drvdata(pci_dev, ndev);
2036 
2037 	ns83820_do_reset(dev, CR_RST);
2038 
2039 	/* Must reset the ram bist before running it */
2040 	writel(PTSCR_RBIST_RST, dev->base + PTSCR);
2041 	ns83820_run_bist(ndev, "sram bist",   PTSCR_RBIST_EN,
2042 			 PTSCR_RBIST_DONE, PTSCR_RBIST_FAIL);
2043 	ns83820_run_bist(ndev, "eeprom bist", PTSCR_EEBIST_EN, 0,
2044 			 PTSCR_EEBIST_FAIL);
2045 	ns83820_run_bist(ndev, "eeprom load", PTSCR_EELOAD_EN, 0, 0);
2046 
2047 	/* I love config registers */
2048 	dev->CFG_cache = readl(dev->base + CFG);
2049 
2050 	if ((dev->CFG_cache & CFG_PCI64_DET)) {
2051 		printk(KERN_INFO "%s: detected 64 bit PCI data bus.\n",
2052 			ndev->name);
2053 		/*dev->CFG_cache |= CFG_DATA64_EN;*/
2054 		if (!(dev->CFG_cache & CFG_DATA64_EN))
2055 			printk(KERN_INFO "%s: EEPROM did not enable 64 bit bus.  Disabled.\n",
2056 				ndev->name);
2057 	} else
2058 		dev->CFG_cache &= ~(CFG_DATA64_EN);
2059 
2060 	dev->CFG_cache &= (CFG_TBI_EN  | CFG_MRM_DIS   | CFG_MWI_DIS |
2061 			   CFG_T64ADDR | CFG_DATA64_EN | CFG_EXT_125 |
2062 			   CFG_M64ADDR);
2063 	dev->CFG_cache |= CFG_PINT_DUPSTS | CFG_PINT_LNKSTS | CFG_PINT_SPDSTS |
2064 			  CFG_EXTSTS_EN   | CFG_EXD         | CFG_PESEL;
2065 	dev->CFG_cache |= CFG_REQALG;
2066 	dev->CFG_cache |= CFG_POW;
2067 	dev->CFG_cache |= CFG_TMRTEST;
2068 
2069 	/* When compiled with 64 bit addressing, we must always enable
2070 	 * the 64 bit descriptor format.
2071 	 */
2072 	if (sizeof(dma_addr_t) == 8)
2073 		dev->CFG_cache |= CFG_M64ADDR;
2074 	if (using_dac)
2075 		dev->CFG_cache |= CFG_T64ADDR;
2076 
2077 	/* Big endian mode does not seem to do what the docs suggest */
2078 	dev->CFG_cache &= ~CFG_BEM;
2079 
2080 	/* setup optical transceiver if we have one */
2081 	if (dev->CFG_cache & CFG_TBI_EN) {
2082 		printk(KERN_INFO "%s: enabling optical transceiver\n",
2083 			ndev->name);
2084 		writel(readl(dev->base + GPIOR) | 0x3e8, dev->base + GPIOR);
2085 
2086 		/* setup auto negotiation feature advertisement */
2087 		writel(readl(dev->base + TANAR)
2088 		       | TANAR_HALF_DUP | TANAR_FULL_DUP,
2089 		       dev->base + TANAR);
2090 
2091 		/* start auto negotiation */
2092 		writel(TBICR_MR_AN_ENABLE | TBICR_MR_RESTART_AN,
2093 		       dev->base + TBICR);
2094 		writel(TBICR_MR_AN_ENABLE, dev->base + TBICR);
2095 		dev->linkstate = LINK_AUTONEGOTIATE;
2096 
2097 		dev->CFG_cache |= CFG_MODE_1000;
2098 	}
2099 
2100 	writel(dev->CFG_cache, dev->base + CFG);
2101 	dprintk("CFG: %08x\n", dev->CFG_cache);
2102 
2103 	if (reset_phy) {
2104 		printk(KERN_INFO "%s: resetting phy\n", ndev->name);
2105 		writel(dev->CFG_cache | CFG_PHY_RST, dev->base + CFG);
2106 		msleep(10);
2107 		writel(dev->CFG_cache, dev->base + CFG);
2108 	}
2109 
2110 #if 0	/* Huh?  This sets the PCI latency register.  Should be done via
2111 	 * the PCI layer.  FIXME.
2112 	 */
2113 	if (readl(dev->base + SRR))
2114 		writel(readl(dev->base+0x20c) | 0xfe00, dev->base + 0x20c);
2115 #endif
2116 
2117 	/* Note!  The DMA burst size interacts with packet
2118 	 * transmission, such that the largest packet that
2119 	 * can be transmitted is 8192 - FLTH - burst size.
2120 	 * If only the transmit fifo was larger...
2121 	 */
2122 	/* Ramit : 1024 DMA is not a good idea, it ends up banging
2123 	 * some DELL and COMPAQ SMP systems */
2124 	writel(TXCFG_CSI | TXCFG_HBI | TXCFG_ATP | TXCFG_MXDMA512
2125 		| ((1600 / 32) * 0x100),
2126 		dev->base + TXCFG);
2127 
2128 	/* Flush the interrupt holdoff timer */
2129 	writel(0x000, dev->base + IHR);
2130 	writel(0x100, dev->base + IHR);
2131 	writel(0x000, dev->base + IHR);
2132 
2133 	/* Set Rx to full duplex, don't accept runt, errored, long or length
2134 	 * range errored packets.  Use 512 byte DMA.
2135 	 */
2136 	/* Ramit : 1024 DMA is not a good idea, it ends up banging
2137 	 * some DELL and COMPAQ SMP systems
2138 	 * Turn on ALP, only we are accpeting Jumbo Packets */
2139 	writel(RXCFG_AEP | RXCFG_ARP | RXCFG_AIRL | RXCFG_RX_FD
2140 		| RXCFG_STRIPCRC
2141 		//| RXCFG_ALP
2142 		| (RXCFG_MXDMA512) | 0, dev->base + RXCFG);
2143 
2144 	/* Disable priority queueing */
2145 	writel(0, dev->base + PQCR);
2146 
2147 	/* Enable IP checksum validation and detetion of VLAN headers.
2148 	 * Note: do not set the reject options as at least the 0x102
2149 	 * revision of the chip does not properly accept IP fragments
2150 	 * at least for UDP.
2151 	 */
2152 	/* Ramit : Be sure to turn on RXCFG_ARP if VLAN's are enabled, since
2153 	 * the MAC it calculates the packetsize AFTER stripping the VLAN
2154 	 * header, and if a VLAN Tagged packet of 64 bytes is received (like
2155 	 * a ping with a VLAN header) then the card, strips the 4 byte VLAN
2156 	 * tag and then checks the packet size, so if RXCFG_ARP is not enabled,
2157 	 * it discrards it!.  These guys......
2158 	 * also turn on tag stripping if hardware acceleration is enabled
2159 	 */
2160 #ifdef NS83820_VLAN_ACCEL_SUPPORT
2161 #define VRCR_INIT_VALUE (VRCR_IPEN|VRCR_VTDEN|VRCR_VTREN)
2162 #else
2163 #define VRCR_INIT_VALUE (VRCR_IPEN|VRCR_VTDEN)
2164 #endif
2165 	writel(VRCR_INIT_VALUE, dev->base + VRCR);
2166 
2167 	/* Enable per-packet TCP/UDP/IP checksumming
2168 	 * and per packet vlan tag insertion if
2169 	 * vlan hardware acceleration is enabled
2170 	 */
2171 #ifdef NS83820_VLAN_ACCEL_SUPPORT
2172 #define VTCR_INIT_VALUE (VTCR_PPCHK|VTCR_VPPTI)
2173 #else
2174 #define VTCR_INIT_VALUE VTCR_PPCHK
2175 #endif
2176 	writel(VTCR_INIT_VALUE, dev->base + VTCR);
2177 
2178 	/* Ramit : Enable async and sync pause frames */
2179 	/* writel(0, dev->base + PCR); */
2180 	writel((PCR_PS_MCAST | PCR_PS_DA | PCR_PSEN | PCR_FFLO_4K |
2181 		PCR_FFHI_8K | PCR_STLO_4 | PCR_STHI_8 | PCR_PAUSE_CNT),
2182 		dev->base + PCR);
2183 
2184 	/* Disable Wake On Lan */
2185 	writel(0, dev->base + WCSR);
2186 
2187 	ns83820_getmac(dev, ndev->dev_addr);
2188 
2189 	/* Yes, we support dumb IP checksum on transmit */
2190 	ndev->features |= NETIF_F_SG;
2191 	ndev->features |= NETIF_F_IP_CSUM;
2192 
2193 #ifdef NS83820_VLAN_ACCEL_SUPPORT
2194 	/* We also support hardware vlan acceleration */
2195 	ndev->features |= NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX;
2196 #endif
2197 
2198 	if (using_dac) {
2199 		printk(KERN_INFO "%s: using 64 bit addressing.\n",
2200 			ndev->name);
2201 		ndev->features |= NETIF_F_HIGHDMA;
2202 	}
2203 
2204 	printk(KERN_INFO "%s: ns83820 v" VERSION ": DP83820 v%u.%u: %pM io=0x%08lx irq=%d f=%s\n",
2205 		ndev->name,
2206 		(unsigned)readl(dev->base + SRR) >> 8,
2207 		(unsigned)readl(dev->base + SRR) & 0xff,
2208 		ndev->dev_addr, addr, pci_dev->irq,
2209 		(ndev->features & NETIF_F_HIGHDMA) ? "h,sg" : "sg"
2210 		);
2211 
2212 #ifdef PHY_CODE_IS_FINISHED
2213 	ns83820_probe_phy(ndev);
2214 #endif
2215 
2216 	err = register_netdevice(ndev);
2217 	if (err) {
2218 		printk(KERN_INFO "ns83820: unable to register netdev: %d\n", err);
2219 		goto out_cleanup;
2220 	}
2221 	rtnl_unlock();
2222 
2223 	return 0;
2224 
2225 out_cleanup:
2226 	ns83820_disable_interrupts(dev); /* paranoia */
2227 out_free_irq:
2228 	rtnl_unlock();
2229 	free_irq(pci_dev->irq, ndev);
2230 out_disable:
2231 	if (dev->base)
2232 		iounmap(dev->base);
2233 	pci_free_consistent(pci_dev, 4 * DESC_SIZE * NR_TX_DESC, dev->tx_descs, dev->tx_phy_descs);
2234 	pci_free_consistent(pci_dev, 4 * DESC_SIZE * NR_RX_DESC, dev->rx_info.descs, dev->rx_info.phy_descs);
2235 	pci_disable_device(pci_dev);
2236 out_free:
2237 	free_netdev(ndev);
2238 out:
2239 	return err;
2240 }
2241 
2242 static void ns83820_remove_one(struct pci_dev *pci_dev)
2243 {
2244 	struct net_device *ndev = pci_get_drvdata(pci_dev);
2245 	struct ns83820 *dev = PRIV(ndev); /* ok even if NULL */
2246 
2247 	if (!ndev)			/* paranoia */
2248 		return;
2249 
2250 	ns83820_disable_interrupts(dev); /* paranoia */
2251 
2252 	unregister_netdev(ndev);
2253 	free_irq(dev->pci_dev->irq, ndev);
2254 	iounmap(dev->base);
2255 	pci_free_consistent(dev->pci_dev, 4 * DESC_SIZE * NR_TX_DESC,
2256 			dev->tx_descs, dev->tx_phy_descs);
2257 	pci_free_consistent(dev->pci_dev, 4 * DESC_SIZE * NR_RX_DESC,
2258 			dev->rx_info.descs, dev->rx_info.phy_descs);
2259 	pci_disable_device(dev->pci_dev);
2260 	free_netdev(ndev);
2261 }
2262 
2263 static const struct pci_device_id ns83820_pci_tbl[] = {
2264 	{ 0x100b, 0x0022, PCI_ANY_ID, PCI_ANY_ID, 0, .driver_data = 0, },
2265 	{ 0, },
2266 };
2267 
2268 static struct pci_driver driver = {
2269 	.name		= "ns83820",
2270 	.id_table	= ns83820_pci_tbl,
2271 	.probe		= ns83820_init_one,
2272 	.remove		= ns83820_remove_one,
2273 #if 0	/* FIXME: implement */
2274 	.suspend	= ,
2275 	.resume		= ,
2276 #endif
2277 };
2278 
2279 
2280 static int __init ns83820_init(void)
2281 {
2282 	printk(KERN_INFO "ns83820.c: National Semiconductor DP83820 10/100/1000 driver.\n");
2283 	return pci_register_driver(&driver);
2284 }
2285 
2286 static void __exit ns83820_exit(void)
2287 {
2288 	pci_unregister_driver(&driver);
2289 }
2290 
2291 MODULE_AUTHOR("Benjamin LaHaise <bcrl@kvack.org>");
2292 MODULE_DESCRIPTION("National Semiconductor DP83820 10/100/1000 driver");
2293 MODULE_LICENSE("GPL");
2294 
2295 MODULE_DEVICE_TABLE(pci, ns83820_pci_tbl);
2296 
2297 module_param(lnksts, int, 0);
2298 MODULE_PARM_DESC(lnksts, "Polarity of LNKSTS bit");
2299 
2300 module_param(ihr, int, 0);
2301 MODULE_PARM_DESC(ihr, "Time in 100 us increments to delay interrupts (range 0-127)");
2302 
2303 module_param(reset_phy, int, 0);
2304 MODULE_PARM_DESC(reset_phy, "Set to 1 to reset the PHY on startup");
2305 
2306 module_init(ns83820_init);
2307 module_exit(ns83820_exit);
2308