xref: /openbmc/linux/drivers/net/ethernet/natsemi/ns83820.c (revision a080a92a6f89e716b8a264f6b93123b41a1c004c)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 #define VERSION "0.23"
3 /* ns83820.c by Benjamin LaHaise with contributions.
4  *
5  * Questions/comments/discussion to linux-ns83820@kvack.org.
6  *
7  * $Revision: 1.34.2.23 $
8  *
9  * Copyright 2001 Benjamin LaHaise.
10  * Copyright 2001, 2002 Red Hat.
11  *
12  * Mmmm, chocolate vanilla mocha...
13  *
14  * ChangeLog
15  * =========
16  *	20010414	0.1 - created
17  *	20010622	0.2 - basic rx and tx.
18  *	20010711	0.3 - added duplex and link state detection support.
19  *	20010713	0.4 - zero copy, no hangs.
20  *			0.5 - 64 bit dma support (davem will hate me for this)
21  *			    - disable jumbo frames to avoid tx hangs
22  *			    - work around tx deadlocks on my 1.02 card via
23  *			      fiddling with TXCFG
24  *	20010810	0.6 - use pci dma api for ringbuffers, work on ia64
25  *	20010816	0.7 - misc cleanups
26  *	20010826	0.8 - fix critical zero copy bugs
27  *			0.9 - internal experiment
28  *	20010827	0.10 - fix ia64 unaligned access.
29  *	20010906	0.11 - accept all packets with checksum errors as
30  *			       otherwise fragments get lost
31  *			     - fix >> 32 bugs
32  *			0.12 - add statistics counters
33  *			     - add allmulti/promisc support
34  *	20011009	0.13 - hotplug support, other smaller pci api cleanups
35  *	20011204	0.13a - optical transceiver support added
36  *				by Michael Clark <michael@metaparadigm.com>
37  *	20011205	0.13b - call register_netdev earlier in initialization
38  *				suppress duplicate link status messages
39  *	20011117 	0.14 - ethtool GDRVINFO, GLINK support from jgarzik
40  *	20011204 	0.15	get ppc (big endian) working
41  *	20011218	0.16	various cleanups
42  *	20020310	0.17	speedups
43  *	20020610	0.18 -	actually use the pci dma api for highmem
44  *			     -	remove pci latency register fiddling
45  *			0.19 -	better bist support
46  *			     -	add ihr and reset_phy parameters
47  *			     -	gmii bus probing
48  *			     -	fix missed txok introduced during performance
49  *				tuning
50  *			0.20 -	fix stupid RFEN thinko.  i am such a smurf.
51  *	20040828	0.21 -	add hardware vlan accleration
52  *				by Neil Horman <nhorman@redhat.com>
53  *	20050406	0.22 -	improved DAC ifdefs from Andi Kleen
54  *			     -	removal of dead code from Adrian Bunk
55  *			     -	fix half duplex collision behaviour
56  * Driver Overview
57  * ===============
58  *
59  * This driver was originally written for the National Semiconductor
60  * 83820 chip, a 10/100/1000 Mbps 64 bit PCI ethernet NIC.  Hopefully
61  * this code will turn out to be a) clean, b) correct, and c) fast.
62  * With that in mind, I'm aiming to split the code up as much as
63  * reasonably possible.  At present there are X major sections that
64  * break down into a) packet receive, b) packet transmit, c) link
65  * management, d) initialization and configuration.  Where possible,
66  * these code paths are designed to run in parallel.
67  *
68  * This driver has been tested and found to work with the following
69  * cards (in no particular order):
70  *
71  *	Cameo		SOHO-GA2000T	SOHO-GA2500T
72  *	D-Link		DGE-500T
73  *	PureData	PDP8023Z-TG
74  *	SMC		SMC9452TX	SMC9462TX
75  *	Netgear		GA621
76  *
77  * Special thanks to SMC for providing hardware to test this driver on.
78  *
79  * Reports of success or failure would be greatly appreciated.
80  */
81 //#define dprintk		printk
82 #define dprintk(x...)		do { } while (0)
83 
84 #include <linux/module.h>
85 #include <linux/moduleparam.h>
86 #include <linux/types.h>
87 #include <linux/pci.h>
88 #include <linux/dma-mapping.h>
89 #include <linux/netdevice.h>
90 #include <linux/etherdevice.h>
91 #include <linux/delay.h>
92 #include <linux/workqueue.h>
93 #include <linux/init.h>
94 #include <linux/interrupt.h>
95 #include <linux/ip.h>	/* for iph */
96 #include <linux/in.h>	/* for IPPROTO_... */
97 #include <linux/compiler.h>
98 #include <linux/prefetch.h>
99 #include <linux/ethtool.h>
100 #include <linux/sched.h>
101 #include <linux/timer.h>
102 #include <linux/if_vlan.h>
103 #include <linux/rtnetlink.h>
104 #include <linux/jiffies.h>
105 #include <linux/slab.h>
106 
107 #include <asm/io.h>
108 #include <linux/uaccess.h>
109 
110 #define DRV_NAME "ns83820"
111 
112 /* Global parameters.  See module_param near the bottom. */
113 static int ihr = 2;
114 static int reset_phy = 0;
115 static int lnksts = 0;		/* CFG_LNKSTS bit polarity */
116 
117 /* Dprintk is used for more interesting debug events */
118 #undef Dprintk
119 #define	Dprintk			dprintk
120 
121 /* tunables */
122 #define RX_BUF_SIZE	1500	/* 8192 */
123 #if IS_ENABLED(CONFIG_VLAN_8021Q)
124 #define NS83820_VLAN_ACCEL_SUPPORT
125 #endif
126 
127 /* Must not exceed ~65000. */
128 #define NR_RX_DESC	64
129 #define NR_TX_DESC	128
130 
131 /* not tunable */
132 #define REAL_RX_BUF_SIZE (RX_BUF_SIZE + 14)	/* rx/tx mac addr + type */
133 
134 #define MIN_TX_DESC_FREE	8
135 
136 /* register defines */
137 #define CFGCS		0x04
138 
139 #define CR_TXE		0x00000001
140 #define CR_TXD		0x00000002
141 /* Ramit : Here's a tip, don't do a RXD immediately followed by an RXE
142  * The Receive engine skips one descriptor and moves
143  * onto the next one!! */
144 #define CR_RXE		0x00000004
145 #define CR_RXD		0x00000008
146 #define CR_TXR		0x00000010
147 #define CR_RXR		0x00000020
148 #define CR_SWI		0x00000080
149 #define CR_RST		0x00000100
150 
151 #define PTSCR_EEBIST_FAIL       0x00000001
152 #define PTSCR_EEBIST_EN         0x00000002
153 #define PTSCR_EELOAD_EN         0x00000004
154 #define PTSCR_RBIST_FAIL        0x000001b8
155 #define PTSCR_RBIST_DONE        0x00000200
156 #define PTSCR_RBIST_EN          0x00000400
157 #define PTSCR_RBIST_RST         0x00002000
158 
159 #define MEAR_EEDI		0x00000001
160 #define MEAR_EEDO		0x00000002
161 #define MEAR_EECLK		0x00000004
162 #define MEAR_EESEL		0x00000008
163 #define MEAR_MDIO		0x00000010
164 #define MEAR_MDDIR		0x00000020
165 #define MEAR_MDC		0x00000040
166 
167 #define ISR_TXDESC3	0x40000000
168 #define ISR_TXDESC2	0x20000000
169 #define ISR_TXDESC1	0x10000000
170 #define ISR_TXDESC0	0x08000000
171 #define ISR_RXDESC3	0x04000000
172 #define ISR_RXDESC2	0x02000000
173 #define ISR_RXDESC1	0x01000000
174 #define ISR_RXDESC0	0x00800000
175 #define ISR_TXRCMP	0x00400000
176 #define ISR_RXRCMP	0x00200000
177 #define ISR_DPERR	0x00100000
178 #define ISR_SSERR	0x00080000
179 #define ISR_RMABT	0x00040000
180 #define ISR_RTABT	0x00020000
181 #define ISR_RXSOVR	0x00010000
182 #define ISR_HIBINT	0x00008000
183 #define ISR_PHY		0x00004000
184 #define ISR_PME		0x00002000
185 #define ISR_SWI		0x00001000
186 #define ISR_MIB		0x00000800
187 #define ISR_TXURN	0x00000400
188 #define ISR_TXIDLE	0x00000200
189 #define ISR_TXERR	0x00000100
190 #define ISR_TXDESC	0x00000080
191 #define ISR_TXOK	0x00000040
192 #define ISR_RXORN	0x00000020
193 #define ISR_RXIDLE	0x00000010
194 #define ISR_RXEARLY	0x00000008
195 #define ISR_RXERR	0x00000004
196 #define ISR_RXDESC	0x00000002
197 #define ISR_RXOK	0x00000001
198 
199 #define TXCFG_CSI	0x80000000
200 #define TXCFG_HBI	0x40000000
201 #define TXCFG_MLB	0x20000000
202 #define TXCFG_ATP	0x10000000
203 #define TXCFG_ECRETRY	0x00800000
204 #define TXCFG_BRST_DIS	0x00080000
205 #define TXCFG_MXDMA1024	0x00000000
206 #define TXCFG_MXDMA512	0x00700000
207 #define TXCFG_MXDMA256	0x00600000
208 #define TXCFG_MXDMA128	0x00500000
209 #define TXCFG_MXDMA64	0x00400000
210 #define TXCFG_MXDMA32	0x00300000
211 #define TXCFG_MXDMA16	0x00200000
212 #define TXCFG_MXDMA8	0x00100000
213 
214 #define CFG_LNKSTS	0x80000000
215 #define CFG_SPDSTS	0x60000000
216 #define CFG_SPDSTS1	0x40000000
217 #define CFG_SPDSTS0	0x20000000
218 #define CFG_DUPSTS	0x10000000
219 #define CFG_TBI_EN	0x01000000
220 #define CFG_MODE_1000	0x00400000
221 /* Ramit : Dont' ever use AUTO_1000, it never works and is buggy.
222  * Read the Phy response and then configure the MAC accordingly */
223 #define CFG_AUTO_1000	0x00200000
224 #define CFG_PINT_CTL	0x001c0000
225 #define CFG_PINT_DUPSTS	0x00100000
226 #define CFG_PINT_LNKSTS	0x00080000
227 #define CFG_PINT_SPDSTS	0x00040000
228 #define CFG_TMRTEST	0x00020000
229 #define CFG_MRM_DIS	0x00010000
230 #define CFG_MWI_DIS	0x00008000
231 #define CFG_T64ADDR	0x00004000
232 #define CFG_PCI64_DET	0x00002000
233 #define CFG_DATA64_EN	0x00001000
234 #define CFG_M64ADDR	0x00000800
235 #define CFG_PHY_RST	0x00000400
236 #define CFG_PHY_DIS	0x00000200
237 #define CFG_EXTSTS_EN	0x00000100
238 #define CFG_REQALG	0x00000080
239 #define CFG_SB		0x00000040
240 #define CFG_POW		0x00000020
241 #define CFG_EXD		0x00000010
242 #define CFG_PESEL	0x00000008
243 #define CFG_BROM_DIS	0x00000004
244 #define CFG_EXT_125	0x00000002
245 #define CFG_BEM		0x00000001
246 
247 #define EXTSTS_UDPPKT	0x00200000
248 #define EXTSTS_TCPPKT	0x00080000
249 #define EXTSTS_IPPKT	0x00020000
250 #define EXTSTS_VPKT	0x00010000
251 #define EXTSTS_VTG_MASK	0x0000ffff
252 
253 #define SPDSTS_POLARITY	(CFG_SPDSTS1 | CFG_SPDSTS0 | CFG_DUPSTS | (lnksts ? CFG_LNKSTS : 0))
254 
255 #define MIBC_MIBS	0x00000008
256 #define MIBC_ACLR	0x00000004
257 #define MIBC_FRZ	0x00000002
258 #define MIBC_WRN	0x00000001
259 
260 #define PCR_PSEN	(1 << 31)
261 #define PCR_PS_MCAST	(1 << 30)
262 #define PCR_PS_DA	(1 << 29)
263 #define PCR_STHI_8	(3 << 23)
264 #define PCR_STLO_4	(1 << 23)
265 #define PCR_FFHI_8K	(3 << 21)
266 #define PCR_FFLO_4K	(1 << 21)
267 #define PCR_PAUSE_CNT	0xFFFE
268 
269 #define RXCFG_AEP	0x80000000
270 #define RXCFG_ARP	0x40000000
271 #define RXCFG_STRIPCRC	0x20000000
272 #define RXCFG_RX_FD	0x10000000
273 #define RXCFG_ALP	0x08000000
274 #define RXCFG_AIRL	0x04000000
275 #define RXCFG_MXDMA512	0x00700000
276 #define RXCFG_DRTH	0x0000003e
277 #define RXCFG_DRTH0	0x00000002
278 
279 #define RFCR_RFEN	0x80000000
280 #define RFCR_AAB	0x40000000
281 #define RFCR_AAM	0x20000000
282 #define RFCR_AAU	0x10000000
283 #define RFCR_APM	0x08000000
284 #define RFCR_APAT	0x07800000
285 #define RFCR_APAT3	0x04000000
286 #define RFCR_APAT2	0x02000000
287 #define RFCR_APAT1	0x01000000
288 #define RFCR_APAT0	0x00800000
289 #define RFCR_AARP	0x00400000
290 #define RFCR_MHEN	0x00200000
291 #define RFCR_UHEN	0x00100000
292 #define RFCR_ULM	0x00080000
293 
294 #define VRCR_RUDPE	0x00000080
295 #define VRCR_RTCPE	0x00000040
296 #define VRCR_RIPE	0x00000020
297 #define VRCR_IPEN	0x00000010
298 #define VRCR_DUTF	0x00000008
299 #define VRCR_DVTF	0x00000004
300 #define VRCR_VTREN	0x00000002
301 #define VRCR_VTDEN	0x00000001
302 
303 #define VTCR_PPCHK	0x00000008
304 #define VTCR_GCHK	0x00000004
305 #define VTCR_VPPTI	0x00000002
306 #define VTCR_VGTI	0x00000001
307 
308 #define CR		0x00
309 #define CFG		0x04
310 #define MEAR		0x08
311 #define PTSCR		0x0c
312 #define	ISR		0x10
313 #define	IMR		0x14
314 #define	IER		0x18
315 #define	IHR		0x1c
316 #define TXDP		0x20
317 #define TXDP_HI		0x24
318 #define TXCFG		0x28
319 #define GPIOR		0x2c
320 #define RXDP		0x30
321 #define RXDP_HI		0x34
322 #define RXCFG		0x38
323 #define PQCR		0x3c
324 #define WCSR		0x40
325 #define PCR		0x44
326 #define RFCR		0x48
327 #define RFDR		0x4c
328 
329 #define SRR		0x58
330 
331 #define VRCR		0xbc
332 #define VTCR		0xc0
333 #define VDR		0xc4
334 #define CCSR		0xcc
335 
336 #define TBICR		0xe0
337 #define TBISR		0xe4
338 #define TANAR		0xe8
339 #define TANLPAR		0xec
340 #define TANER		0xf0
341 #define TESR		0xf4
342 
343 #define TBICR_MR_AN_ENABLE	0x00001000
344 #define TBICR_MR_RESTART_AN	0x00000200
345 
346 #define TBISR_MR_LINK_STATUS	0x00000020
347 #define TBISR_MR_AN_COMPLETE	0x00000004
348 
349 #define TANAR_PS2 		0x00000100
350 #define TANAR_PS1 		0x00000080
351 #define TANAR_HALF_DUP 		0x00000040
352 #define TANAR_FULL_DUP 		0x00000020
353 
354 #define GPIOR_GP5_OE		0x00000200
355 #define GPIOR_GP4_OE		0x00000100
356 #define GPIOR_GP3_OE		0x00000080
357 #define GPIOR_GP2_OE		0x00000040
358 #define GPIOR_GP1_OE		0x00000020
359 #define GPIOR_GP3_OUT		0x00000004
360 #define GPIOR_GP1_OUT		0x00000001
361 
362 #define LINK_AUTONEGOTIATE	0x01
363 #define LINK_DOWN		0x02
364 #define LINK_UP			0x04
365 
366 #define HW_ADDR_LEN	sizeof(dma_addr_t)
367 #define desc_addr_set(desc, addr)				\
368 	do {							\
369 		((desc)[0] = cpu_to_le32(addr));		\
370 		if (HW_ADDR_LEN == 8)		 		\
371 			(desc)[1] = cpu_to_le32(((u64)addr) >> 32);	\
372 	} while(0)
373 #define desc_addr_get(desc)					\
374 	(le32_to_cpu((desc)[0]) | \
375 	(HW_ADDR_LEN == 8 ? ((dma_addr_t)le32_to_cpu((desc)[1]))<<32 : 0))
376 
377 #define DESC_LINK		0
378 #define DESC_BUFPTR		(DESC_LINK + HW_ADDR_LEN/4)
379 #define DESC_CMDSTS		(DESC_BUFPTR + HW_ADDR_LEN/4)
380 #define DESC_EXTSTS		(DESC_CMDSTS + 4/4)
381 
382 #define CMDSTS_OWN	0x80000000
383 #define CMDSTS_MORE	0x40000000
384 #define CMDSTS_INTR	0x20000000
385 #define CMDSTS_ERR	0x10000000
386 #define CMDSTS_OK	0x08000000
387 #define CMDSTS_RUNT	0x00200000
388 #define CMDSTS_LEN_MASK	0x0000ffff
389 
390 #define CMDSTS_DEST_MASK	0x01800000
391 #define CMDSTS_DEST_SELF	0x00800000
392 #define CMDSTS_DEST_MULTI	0x01000000
393 
394 #define DESC_SIZE	8		/* Should be cache line sized */
395 
396 struct rx_info {
397 	spinlock_t	lock;
398 	int		up;
399 	unsigned long	idle;
400 
401 	struct sk_buff	*skbs[NR_RX_DESC];
402 
403 	__le32		*next_rx_desc;
404 	u16		next_rx, next_empty;
405 
406 	__le32		*descs;
407 	dma_addr_t	phy_descs;
408 };
409 
410 
411 struct ns83820 {
412 	u8			__iomem *base;
413 
414 	struct pci_dev		*pci_dev;
415 	struct net_device	*ndev;
416 
417 	struct rx_info		rx_info;
418 	struct tasklet_struct	rx_tasklet;
419 
420 	unsigned		ihr;
421 	struct work_struct	tq_refill;
422 
423 	/* protects everything below.  irqsave when using. */
424 	spinlock_t		misc_lock;
425 
426 	u32			CFG_cache;
427 
428 	u32			MEAR_cache;
429 	u32			IMR_cache;
430 
431 	unsigned		linkstate;
432 
433 	spinlock_t	tx_lock;
434 
435 	u16		tx_done_idx;
436 	u16		tx_idx;
437 	volatile u16	tx_free_idx;	/* idx of free desc chain */
438 	u16		tx_intr_idx;
439 
440 	atomic_t	nr_tx_skbs;
441 	struct sk_buff	*tx_skbs[NR_TX_DESC];
442 
443 	char		pad[16] __attribute__((aligned(16)));
444 	__le32		*tx_descs;
445 	dma_addr_t	tx_phy_descs;
446 
447 	struct timer_list	tx_watchdog;
448 };
449 
450 static inline struct ns83820 *PRIV(struct net_device *dev)
451 {
452 	return netdev_priv(dev);
453 }
454 
455 #define __kick_rx(dev)	writel(CR_RXE, dev->base + CR)
456 
457 static inline void kick_rx(struct net_device *ndev)
458 {
459 	struct ns83820 *dev = PRIV(ndev);
460 	dprintk("kick_rx: maybe kicking\n");
461 	if (test_and_clear_bit(0, &dev->rx_info.idle)) {
462 		dprintk("actually kicking\n");
463 		writel(dev->rx_info.phy_descs +
464 			(4 * DESC_SIZE * dev->rx_info.next_rx),
465 		       dev->base + RXDP);
466 		if (dev->rx_info.next_rx == dev->rx_info.next_empty)
467 			printk(KERN_DEBUG "%s: uh-oh: next_rx == next_empty???\n",
468 				ndev->name);
469 		__kick_rx(dev);
470 	}
471 }
472 
473 //free = (tx_done_idx + NR_TX_DESC-2 - free_idx) % NR_TX_DESC
474 #define start_tx_okay(dev)	\
475 	(((NR_TX_DESC-2 + dev->tx_done_idx - dev->tx_free_idx) % NR_TX_DESC) > MIN_TX_DESC_FREE)
476 
477 /* Packet Receiver
478  *
479  * The hardware supports linked lists of receive descriptors for
480  * which ownership is transferred back and forth by means of an
481  * ownership bit.  While the hardware does support the use of a
482  * ring for receive descriptors, we only make use of a chain in
483  * an attempt to reduce bus traffic under heavy load scenarios.
484  * This will also make bugs a bit more obvious.  The current code
485  * only makes use of a single rx chain; I hope to implement
486  * priority based rx for version 1.0.  Goal: even under overload
487  * conditions, still route realtime traffic with as low jitter as
488  * possible.
489  */
490 static inline void build_rx_desc(struct ns83820 *dev, __le32 *desc, dma_addr_t link, dma_addr_t buf, u32 cmdsts, u32 extsts)
491 {
492 	desc_addr_set(desc + DESC_LINK, link);
493 	desc_addr_set(desc + DESC_BUFPTR, buf);
494 	desc[DESC_EXTSTS] = cpu_to_le32(extsts);
495 	mb();
496 	desc[DESC_CMDSTS] = cpu_to_le32(cmdsts);
497 }
498 
499 #define nr_rx_empty(dev) ((NR_RX_DESC-2 + dev->rx_info.next_rx - dev->rx_info.next_empty) % NR_RX_DESC)
500 static inline int ns83820_add_rx_skb(struct ns83820 *dev, struct sk_buff *skb)
501 {
502 	unsigned next_empty;
503 	u32 cmdsts;
504 	__le32 *sg;
505 	dma_addr_t buf;
506 
507 	next_empty = dev->rx_info.next_empty;
508 
509 	/* don't overrun last rx marker */
510 	if (unlikely(nr_rx_empty(dev) <= 2)) {
511 		kfree_skb(skb);
512 		return 1;
513 	}
514 
515 #if 0
516 	dprintk("next_empty[%d] nr_used[%d] next_rx[%d]\n",
517 		dev->rx_info.next_empty,
518 		dev->rx_info.nr_used,
519 		dev->rx_info.next_rx
520 		);
521 #endif
522 
523 	sg = dev->rx_info.descs + (next_empty * DESC_SIZE);
524 	BUG_ON(NULL != dev->rx_info.skbs[next_empty]);
525 	dev->rx_info.skbs[next_empty] = skb;
526 
527 	dev->rx_info.next_empty = (next_empty + 1) % NR_RX_DESC;
528 	cmdsts = REAL_RX_BUF_SIZE | CMDSTS_INTR;
529 	buf = pci_map_single(dev->pci_dev, skb->data,
530 			     REAL_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
531 	build_rx_desc(dev, sg, 0, buf, cmdsts, 0);
532 	/* update link of previous rx */
533 	if (likely(next_empty != dev->rx_info.next_rx))
534 		dev->rx_info.descs[((NR_RX_DESC + next_empty - 1) % NR_RX_DESC) * DESC_SIZE] = cpu_to_le32(dev->rx_info.phy_descs + (next_empty * DESC_SIZE * 4));
535 
536 	return 0;
537 }
538 
539 static inline int rx_refill(struct net_device *ndev, gfp_t gfp)
540 {
541 	struct ns83820 *dev = PRIV(ndev);
542 	unsigned i;
543 	unsigned long flags = 0;
544 
545 	if (unlikely(nr_rx_empty(dev) <= 2))
546 		return 0;
547 
548 	dprintk("rx_refill(%p)\n", ndev);
549 	if (gfp == GFP_ATOMIC)
550 		spin_lock_irqsave(&dev->rx_info.lock, flags);
551 	for (i=0; i<NR_RX_DESC; i++) {
552 		struct sk_buff *skb;
553 		long res;
554 
555 		/* extra 16 bytes for alignment */
556 		skb = __netdev_alloc_skb(ndev, REAL_RX_BUF_SIZE+16, gfp);
557 		if (unlikely(!skb))
558 			break;
559 
560 		skb_reserve(skb, skb->data - PTR_ALIGN(skb->data, 16));
561 		if (gfp != GFP_ATOMIC)
562 			spin_lock_irqsave(&dev->rx_info.lock, flags);
563 		res = ns83820_add_rx_skb(dev, skb);
564 		if (gfp != GFP_ATOMIC)
565 			spin_unlock_irqrestore(&dev->rx_info.lock, flags);
566 		if (res) {
567 			i = 1;
568 			break;
569 		}
570 	}
571 	if (gfp == GFP_ATOMIC)
572 		spin_unlock_irqrestore(&dev->rx_info.lock, flags);
573 
574 	return i ? 0 : -ENOMEM;
575 }
576 
577 static void rx_refill_atomic(struct net_device *ndev)
578 {
579 	rx_refill(ndev, GFP_ATOMIC);
580 }
581 
582 /* REFILL */
583 static inline void queue_refill(struct work_struct *work)
584 {
585 	struct ns83820 *dev = container_of(work, struct ns83820, tq_refill);
586 	struct net_device *ndev = dev->ndev;
587 
588 	rx_refill(ndev, GFP_KERNEL);
589 	if (dev->rx_info.up)
590 		kick_rx(ndev);
591 }
592 
593 static inline void clear_rx_desc(struct ns83820 *dev, unsigned i)
594 {
595 	build_rx_desc(dev, dev->rx_info.descs + (DESC_SIZE * i), 0, 0, CMDSTS_OWN, 0);
596 }
597 
598 static void phy_intr(struct net_device *ndev)
599 {
600 	struct ns83820 *dev = PRIV(ndev);
601 	static const char *speeds[] = { "10", "100", "1000", "1000(?)", "1000F" };
602 	u32 cfg, new_cfg;
603 	u32 tbisr, tanar, tanlpar;
604 	int speed, fullduplex, newlinkstate;
605 
606 	cfg = readl(dev->base + CFG) ^ SPDSTS_POLARITY;
607 
608 	if (dev->CFG_cache & CFG_TBI_EN) {
609 		/* we have an optical transceiver */
610 		tbisr = readl(dev->base + TBISR);
611 		tanar = readl(dev->base + TANAR);
612 		tanlpar = readl(dev->base + TANLPAR);
613 		dprintk("phy_intr: tbisr=%08x, tanar=%08x, tanlpar=%08x\n",
614 			tbisr, tanar, tanlpar);
615 
616 		if ( (fullduplex = (tanlpar & TANAR_FULL_DUP) &&
617 		      (tanar & TANAR_FULL_DUP)) ) {
618 
619 			/* both of us are full duplex */
620 			writel(readl(dev->base + TXCFG)
621 			       | TXCFG_CSI | TXCFG_HBI | TXCFG_ATP,
622 			       dev->base + TXCFG);
623 			writel(readl(dev->base + RXCFG) | RXCFG_RX_FD,
624 			       dev->base + RXCFG);
625 			/* Light up full duplex LED */
626 			writel(readl(dev->base + GPIOR) | GPIOR_GP1_OUT,
627 			       dev->base + GPIOR);
628 
629 		} else if (((tanlpar & TANAR_HALF_DUP) &&
630 			    (tanar & TANAR_HALF_DUP)) ||
631 			   ((tanlpar & TANAR_FULL_DUP) &&
632 			    (tanar & TANAR_HALF_DUP)) ||
633 			   ((tanlpar & TANAR_HALF_DUP) &&
634 			    (tanar & TANAR_FULL_DUP))) {
635 
636 			/* one or both of us are half duplex */
637 			writel((readl(dev->base + TXCFG)
638 				& ~(TXCFG_CSI | TXCFG_HBI)) | TXCFG_ATP,
639 			       dev->base + TXCFG);
640 			writel(readl(dev->base + RXCFG) & ~RXCFG_RX_FD,
641 			       dev->base + RXCFG);
642 			/* Turn off full duplex LED */
643 			writel(readl(dev->base + GPIOR) & ~GPIOR_GP1_OUT,
644 			       dev->base + GPIOR);
645 		}
646 
647 		speed = 4; /* 1000F */
648 
649 	} else {
650 		/* we have a copper transceiver */
651 		new_cfg = dev->CFG_cache & ~(CFG_SB | CFG_MODE_1000 | CFG_SPDSTS);
652 
653 		if (cfg & CFG_SPDSTS1)
654 			new_cfg |= CFG_MODE_1000;
655 		else
656 			new_cfg &= ~CFG_MODE_1000;
657 
658 		speed = ((cfg / CFG_SPDSTS0) & 3);
659 		fullduplex = (cfg & CFG_DUPSTS);
660 
661 		if (fullduplex) {
662 			new_cfg |= CFG_SB;
663 			writel(readl(dev->base + TXCFG)
664 					| TXCFG_CSI | TXCFG_HBI,
665 			       dev->base + TXCFG);
666 			writel(readl(dev->base + RXCFG) | RXCFG_RX_FD,
667 			       dev->base + RXCFG);
668 		} else {
669 			writel(readl(dev->base + TXCFG)
670 					& ~(TXCFG_CSI | TXCFG_HBI),
671 			       dev->base + TXCFG);
672 			writel(readl(dev->base + RXCFG) & ~(RXCFG_RX_FD),
673 			       dev->base + RXCFG);
674 		}
675 
676 		if ((cfg & CFG_LNKSTS) &&
677 		    ((new_cfg ^ dev->CFG_cache) != 0)) {
678 			writel(new_cfg, dev->base + CFG);
679 			dev->CFG_cache = new_cfg;
680 		}
681 
682 		dev->CFG_cache &= ~CFG_SPDSTS;
683 		dev->CFG_cache |= cfg & CFG_SPDSTS;
684 	}
685 
686 	newlinkstate = (cfg & CFG_LNKSTS) ? LINK_UP : LINK_DOWN;
687 
688 	if (newlinkstate & LINK_UP &&
689 	    dev->linkstate != newlinkstate) {
690 		netif_start_queue(ndev);
691 		netif_wake_queue(ndev);
692 		printk(KERN_INFO "%s: link now %s mbps, %s duplex and up.\n",
693 			ndev->name,
694 			speeds[speed],
695 			fullduplex ? "full" : "half");
696 	} else if (newlinkstate & LINK_DOWN &&
697 		   dev->linkstate != newlinkstate) {
698 		netif_stop_queue(ndev);
699 		printk(KERN_INFO "%s: link now down.\n", ndev->name);
700 	}
701 
702 	dev->linkstate = newlinkstate;
703 }
704 
705 static int ns83820_setup_rx(struct net_device *ndev)
706 {
707 	struct ns83820 *dev = PRIV(ndev);
708 	unsigned i;
709 	int ret;
710 
711 	dprintk("ns83820_setup_rx(%p)\n", ndev);
712 
713 	dev->rx_info.idle = 1;
714 	dev->rx_info.next_rx = 0;
715 	dev->rx_info.next_rx_desc = dev->rx_info.descs;
716 	dev->rx_info.next_empty = 0;
717 
718 	for (i=0; i<NR_RX_DESC; i++)
719 		clear_rx_desc(dev, i);
720 
721 	writel(0, dev->base + RXDP_HI);
722 	writel(dev->rx_info.phy_descs, dev->base + RXDP);
723 
724 	ret = rx_refill(ndev, GFP_KERNEL);
725 	if (!ret) {
726 		dprintk("starting receiver\n");
727 		/* prevent the interrupt handler from stomping on us */
728 		spin_lock_irq(&dev->rx_info.lock);
729 
730 		writel(0x0001, dev->base + CCSR);
731 		writel(0, dev->base + RFCR);
732 		writel(0x7fc00000, dev->base + RFCR);
733 		writel(0xffc00000, dev->base + RFCR);
734 
735 		dev->rx_info.up = 1;
736 
737 		phy_intr(ndev);
738 
739 		/* Okay, let it rip */
740 		spin_lock(&dev->misc_lock);
741 		dev->IMR_cache |= ISR_PHY;
742 		dev->IMR_cache |= ISR_RXRCMP;
743 		//dev->IMR_cache |= ISR_RXERR;
744 		//dev->IMR_cache |= ISR_RXOK;
745 		dev->IMR_cache |= ISR_RXORN;
746 		dev->IMR_cache |= ISR_RXSOVR;
747 		dev->IMR_cache |= ISR_RXDESC;
748 		dev->IMR_cache |= ISR_RXIDLE;
749 		dev->IMR_cache |= ISR_TXDESC;
750 		dev->IMR_cache |= ISR_TXIDLE;
751 
752 		writel(dev->IMR_cache, dev->base + IMR);
753 		writel(1, dev->base + IER);
754 		spin_unlock(&dev->misc_lock);
755 
756 		kick_rx(ndev);
757 
758 		spin_unlock_irq(&dev->rx_info.lock);
759 	}
760 	return ret;
761 }
762 
763 static void ns83820_cleanup_rx(struct ns83820 *dev)
764 {
765 	unsigned i;
766 	unsigned long flags;
767 
768 	dprintk("ns83820_cleanup_rx(%p)\n", dev);
769 
770 	/* disable receive interrupts */
771 	spin_lock_irqsave(&dev->misc_lock, flags);
772 	dev->IMR_cache &= ~(ISR_RXOK | ISR_RXDESC | ISR_RXERR | ISR_RXEARLY | ISR_RXIDLE);
773 	writel(dev->IMR_cache, dev->base + IMR);
774 	spin_unlock_irqrestore(&dev->misc_lock, flags);
775 
776 	/* synchronize with the interrupt handler and kill it */
777 	dev->rx_info.up = 0;
778 	synchronize_irq(dev->pci_dev->irq);
779 
780 	/* touch the pci bus... */
781 	readl(dev->base + IMR);
782 
783 	/* assumes the transmitter is already disabled and reset */
784 	writel(0, dev->base + RXDP_HI);
785 	writel(0, dev->base + RXDP);
786 
787 	for (i=0; i<NR_RX_DESC; i++) {
788 		struct sk_buff *skb = dev->rx_info.skbs[i];
789 		dev->rx_info.skbs[i] = NULL;
790 		clear_rx_desc(dev, i);
791 		kfree_skb(skb);
792 	}
793 }
794 
795 static void ns83820_rx_kick(struct net_device *ndev)
796 {
797 	struct ns83820 *dev = PRIV(ndev);
798 	/*if (nr_rx_empty(dev) >= NR_RX_DESC/4)*/ {
799 		if (dev->rx_info.up) {
800 			rx_refill_atomic(ndev);
801 			kick_rx(ndev);
802 		}
803 	}
804 
805 	if (dev->rx_info.up && nr_rx_empty(dev) > NR_RX_DESC*3/4)
806 		schedule_work(&dev->tq_refill);
807 	else
808 		kick_rx(ndev);
809 	if (dev->rx_info.idle)
810 		printk(KERN_DEBUG "%s: BAD\n", ndev->name);
811 }
812 
813 /* rx_irq
814  *
815  */
816 static void rx_irq(struct net_device *ndev)
817 {
818 	struct ns83820 *dev = PRIV(ndev);
819 	struct rx_info *info = &dev->rx_info;
820 	unsigned next_rx;
821 	int rx_rc, len;
822 	u32 cmdsts;
823 	__le32 *desc;
824 	unsigned long flags;
825 	int nr = 0;
826 
827 	dprintk("rx_irq(%p)\n", ndev);
828 	dprintk("rxdp: %08x, descs: %08lx next_rx[%d]: %p next_empty[%d]: %p\n",
829 		readl(dev->base + RXDP),
830 		(long)(dev->rx_info.phy_descs),
831 		(int)dev->rx_info.next_rx,
832 		(dev->rx_info.descs + (DESC_SIZE * dev->rx_info.next_rx)),
833 		(int)dev->rx_info.next_empty,
834 		(dev->rx_info.descs + (DESC_SIZE * dev->rx_info.next_empty))
835 		);
836 
837 	spin_lock_irqsave(&info->lock, flags);
838 	if (!info->up)
839 		goto out;
840 
841 	dprintk("walking descs\n");
842 	next_rx = info->next_rx;
843 	desc = info->next_rx_desc;
844 	while ((CMDSTS_OWN & (cmdsts = le32_to_cpu(desc[DESC_CMDSTS]))) &&
845 	       (cmdsts != CMDSTS_OWN)) {
846 		struct sk_buff *skb;
847 		u32 extsts = le32_to_cpu(desc[DESC_EXTSTS]);
848 		dma_addr_t bufptr = desc_addr_get(desc + DESC_BUFPTR);
849 
850 		dprintk("cmdsts: %08x\n", cmdsts);
851 		dprintk("link: %08x\n", cpu_to_le32(desc[DESC_LINK]));
852 		dprintk("extsts: %08x\n", extsts);
853 
854 		skb = info->skbs[next_rx];
855 		info->skbs[next_rx] = NULL;
856 		info->next_rx = (next_rx + 1) % NR_RX_DESC;
857 
858 		mb();
859 		clear_rx_desc(dev, next_rx);
860 
861 		pci_unmap_single(dev->pci_dev, bufptr,
862 				 RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
863 		len = cmdsts & CMDSTS_LEN_MASK;
864 #ifdef NS83820_VLAN_ACCEL_SUPPORT
865 		/* NH: As was mentioned below, this chip is kinda
866 		 * brain dead about vlan tag stripping.  Frames
867 		 * that are 64 bytes with a vlan header appended
868 		 * like arp frames, or pings, are flagged as Runts
869 		 * when the tag is stripped and hardware.  This
870 		 * also means that the OK bit in the descriptor
871 		 * is cleared when the frame comes in so we have
872 		 * to do a specific length check here to make sure
873 		 * the frame would have been ok, had we not stripped
874 		 * the tag.
875 		 */
876 		if (likely((CMDSTS_OK & cmdsts) ||
877 			((cmdsts & CMDSTS_RUNT) && len >= 56))) {
878 #else
879 		if (likely(CMDSTS_OK & cmdsts)) {
880 #endif
881 			skb_put(skb, len);
882 			if (unlikely(!skb))
883 				goto netdev_mangle_me_harder_failed;
884 			if (cmdsts & CMDSTS_DEST_MULTI)
885 				ndev->stats.multicast++;
886 			ndev->stats.rx_packets++;
887 			ndev->stats.rx_bytes += len;
888 			if ((extsts & 0x002a0000) && !(extsts & 0x00540000)) {
889 				skb->ip_summed = CHECKSUM_UNNECESSARY;
890 			} else {
891 				skb_checksum_none_assert(skb);
892 			}
893 			skb->protocol = eth_type_trans(skb, ndev);
894 #ifdef NS83820_VLAN_ACCEL_SUPPORT
895 			if(extsts & EXTSTS_VPKT) {
896 				unsigned short tag;
897 
898 				tag = ntohs(extsts & EXTSTS_VTG_MASK);
899 				__vlan_hwaccel_put_tag(skb, htons(ETH_P_IPV6), tag);
900 			}
901 #endif
902 			rx_rc = netif_rx(skb);
903 			if (NET_RX_DROP == rx_rc) {
904 netdev_mangle_me_harder_failed:
905 				ndev->stats.rx_dropped++;
906 			}
907 		} else {
908 			dev_kfree_skb_irq(skb);
909 		}
910 
911 		nr++;
912 		next_rx = info->next_rx;
913 		desc = info->descs + (DESC_SIZE * next_rx);
914 	}
915 	info->next_rx = next_rx;
916 	info->next_rx_desc = info->descs + (DESC_SIZE * next_rx);
917 
918 out:
919 	if (0 && !nr) {
920 		Dprintk("dazed: cmdsts_f: %08x\n", cmdsts);
921 	}
922 
923 	spin_unlock_irqrestore(&info->lock, flags);
924 }
925 
926 static void rx_action(unsigned long _dev)
927 {
928 	struct net_device *ndev = (void *)_dev;
929 	struct ns83820 *dev = PRIV(ndev);
930 	rx_irq(ndev);
931 	writel(ihr, dev->base + IHR);
932 
933 	spin_lock_irq(&dev->misc_lock);
934 	dev->IMR_cache |= ISR_RXDESC;
935 	writel(dev->IMR_cache, dev->base + IMR);
936 	spin_unlock_irq(&dev->misc_lock);
937 
938 	rx_irq(ndev);
939 	ns83820_rx_kick(ndev);
940 }
941 
942 /* Packet Transmit code
943  */
944 static inline void kick_tx(struct ns83820 *dev)
945 {
946 	dprintk("kick_tx(%p): tx_idx=%d free_idx=%d\n",
947 		dev, dev->tx_idx, dev->tx_free_idx);
948 	writel(CR_TXE, dev->base + CR);
949 }
950 
951 /* No spinlock needed on the transmit irq path as the interrupt handler is
952  * serialized.
953  */
954 static void do_tx_done(struct net_device *ndev)
955 {
956 	struct ns83820 *dev = PRIV(ndev);
957 	u32 cmdsts, tx_done_idx;
958 	__le32 *desc;
959 
960 	dprintk("do_tx_done(%p)\n", ndev);
961 	tx_done_idx = dev->tx_done_idx;
962 	desc = dev->tx_descs + (tx_done_idx * DESC_SIZE);
963 
964 	dprintk("tx_done_idx=%d free_idx=%d cmdsts=%08x\n",
965 		tx_done_idx, dev->tx_free_idx, le32_to_cpu(desc[DESC_CMDSTS]));
966 	while ((tx_done_idx != dev->tx_free_idx) &&
967 	       !(CMDSTS_OWN & (cmdsts = le32_to_cpu(desc[DESC_CMDSTS]))) ) {
968 		struct sk_buff *skb;
969 		unsigned len;
970 		dma_addr_t addr;
971 
972 		if (cmdsts & CMDSTS_ERR)
973 			ndev->stats.tx_errors++;
974 		if (cmdsts & CMDSTS_OK)
975 			ndev->stats.tx_packets++;
976 		if (cmdsts & CMDSTS_OK)
977 			ndev->stats.tx_bytes += cmdsts & 0xffff;
978 
979 		dprintk("tx_done_idx=%d free_idx=%d cmdsts=%08x\n",
980 			tx_done_idx, dev->tx_free_idx, cmdsts);
981 		skb = dev->tx_skbs[tx_done_idx];
982 		dev->tx_skbs[tx_done_idx] = NULL;
983 		dprintk("done(%p)\n", skb);
984 
985 		len = cmdsts & CMDSTS_LEN_MASK;
986 		addr = desc_addr_get(desc + DESC_BUFPTR);
987 		if (skb) {
988 			pci_unmap_single(dev->pci_dev,
989 					addr,
990 					len,
991 					PCI_DMA_TODEVICE);
992 			dev_consume_skb_irq(skb);
993 			atomic_dec(&dev->nr_tx_skbs);
994 		} else
995 			pci_unmap_page(dev->pci_dev,
996 					addr,
997 					len,
998 					PCI_DMA_TODEVICE);
999 
1000 		tx_done_idx = (tx_done_idx + 1) % NR_TX_DESC;
1001 		dev->tx_done_idx = tx_done_idx;
1002 		desc[DESC_CMDSTS] = cpu_to_le32(0);
1003 		mb();
1004 		desc = dev->tx_descs + (tx_done_idx * DESC_SIZE);
1005 	}
1006 
1007 	/* Allow network stack to resume queueing packets after we've
1008 	 * finished transmitting at least 1/4 of the packets in the queue.
1009 	 */
1010 	if (netif_queue_stopped(ndev) && start_tx_okay(dev)) {
1011 		dprintk("start_queue(%p)\n", ndev);
1012 		netif_start_queue(ndev);
1013 		netif_wake_queue(ndev);
1014 	}
1015 }
1016 
1017 static void ns83820_cleanup_tx(struct ns83820 *dev)
1018 {
1019 	unsigned i;
1020 
1021 	for (i=0; i<NR_TX_DESC; i++) {
1022 		struct sk_buff *skb = dev->tx_skbs[i];
1023 		dev->tx_skbs[i] = NULL;
1024 		if (skb) {
1025 			__le32 *desc = dev->tx_descs + (i * DESC_SIZE);
1026 			pci_unmap_single(dev->pci_dev,
1027 					desc_addr_get(desc + DESC_BUFPTR),
1028 					le32_to_cpu(desc[DESC_CMDSTS]) & CMDSTS_LEN_MASK,
1029 					PCI_DMA_TODEVICE);
1030 			dev_kfree_skb_irq(skb);
1031 			atomic_dec(&dev->nr_tx_skbs);
1032 		}
1033 	}
1034 
1035 	memset(dev->tx_descs, 0, NR_TX_DESC * DESC_SIZE * 4);
1036 }
1037 
1038 /* transmit routine.  This code relies on the network layer serializing
1039  * its calls in, but will run happily in parallel with the interrupt
1040  * handler.  This code currently has provisions for fragmenting tx buffers
1041  * while trying to track down a bug in either the zero copy code or
1042  * the tx fifo (hence the MAX_FRAG_LEN).
1043  */
1044 static netdev_tx_t ns83820_hard_start_xmit(struct sk_buff *skb,
1045 					   struct net_device *ndev)
1046 {
1047 	struct ns83820 *dev = PRIV(ndev);
1048 	u32 free_idx, cmdsts, extsts;
1049 	int nr_free, nr_frags;
1050 	unsigned tx_done_idx, last_idx;
1051 	dma_addr_t buf;
1052 	unsigned len;
1053 	skb_frag_t *frag;
1054 	int stopped = 0;
1055 	int do_intr = 0;
1056 	volatile __le32 *first_desc;
1057 
1058 	dprintk("ns83820_hard_start_xmit\n");
1059 
1060 	nr_frags =  skb_shinfo(skb)->nr_frags;
1061 again:
1062 	if (unlikely(dev->CFG_cache & CFG_LNKSTS)) {
1063 		netif_stop_queue(ndev);
1064 		if (unlikely(dev->CFG_cache & CFG_LNKSTS))
1065 			return NETDEV_TX_BUSY;
1066 		netif_start_queue(ndev);
1067 	}
1068 
1069 	last_idx = free_idx = dev->tx_free_idx;
1070 	tx_done_idx = dev->tx_done_idx;
1071 	nr_free = (tx_done_idx + NR_TX_DESC-2 - free_idx) % NR_TX_DESC;
1072 	nr_free -= 1;
1073 	if (nr_free <= nr_frags) {
1074 		dprintk("stop_queue - not enough(%p)\n", ndev);
1075 		netif_stop_queue(ndev);
1076 
1077 		/* Check again: we may have raced with a tx done irq */
1078 		if (dev->tx_done_idx != tx_done_idx) {
1079 			dprintk("restart queue(%p)\n", ndev);
1080 			netif_start_queue(ndev);
1081 			goto again;
1082 		}
1083 		return NETDEV_TX_BUSY;
1084 	}
1085 
1086 	if (free_idx == dev->tx_intr_idx) {
1087 		do_intr = 1;
1088 		dev->tx_intr_idx = (dev->tx_intr_idx + NR_TX_DESC/4) % NR_TX_DESC;
1089 	}
1090 
1091 	nr_free -= nr_frags;
1092 	if (nr_free < MIN_TX_DESC_FREE) {
1093 		dprintk("stop_queue - last entry(%p)\n", ndev);
1094 		netif_stop_queue(ndev);
1095 		stopped = 1;
1096 	}
1097 
1098 	frag = skb_shinfo(skb)->frags;
1099 	if (!nr_frags)
1100 		frag = NULL;
1101 	extsts = 0;
1102 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
1103 		extsts |= EXTSTS_IPPKT;
1104 		if (IPPROTO_TCP == ip_hdr(skb)->protocol)
1105 			extsts |= EXTSTS_TCPPKT;
1106 		else if (IPPROTO_UDP == ip_hdr(skb)->protocol)
1107 			extsts |= EXTSTS_UDPPKT;
1108 	}
1109 
1110 #ifdef NS83820_VLAN_ACCEL_SUPPORT
1111 	if (skb_vlan_tag_present(skb)) {
1112 		/* fetch the vlan tag info out of the
1113 		 * ancillary data if the vlan code
1114 		 * is using hw vlan acceleration
1115 		 */
1116 		short tag = skb_vlan_tag_get(skb);
1117 		extsts |= (EXTSTS_VPKT | htons(tag));
1118 	}
1119 #endif
1120 
1121 	len = skb->len;
1122 	if (nr_frags)
1123 		len -= skb->data_len;
1124 	buf = pci_map_single(dev->pci_dev, skb->data, len, PCI_DMA_TODEVICE);
1125 
1126 	first_desc = dev->tx_descs + (free_idx * DESC_SIZE);
1127 
1128 	for (;;) {
1129 		volatile __le32 *desc = dev->tx_descs + (free_idx * DESC_SIZE);
1130 
1131 		dprintk("frag[%3u]: %4u @ 0x%08Lx\n", free_idx, len,
1132 			(unsigned long long)buf);
1133 		last_idx = free_idx;
1134 		free_idx = (free_idx + 1) % NR_TX_DESC;
1135 		desc[DESC_LINK] = cpu_to_le32(dev->tx_phy_descs + (free_idx * DESC_SIZE * 4));
1136 		desc_addr_set(desc + DESC_BUFPTR, buf);
1137 		desc[DESC_EXTSTS] = cpu_to_le32(extsts);
1138 
1139 		cmdsts = ((nr_frags) ? CMDSTS_MORE : do_intr ? CMDSTS_INTR : 0);
1140 		cmdsts |= (desc == first_desc) ? 0 : CMDSTS_OWN;
1141 		cmdsts |= len;
1142 		desc[DESC_CMDSTS] = cpu_to_le32(cmdsts);
1143 
1144 		if (!nr_frags)
1145 			break;
1146 
1147 		buf = skb_frag_dma_map(&dev->pci_dev->dev, frag, 0,
1148 				       skb_frag_size(frag), DMA_TO_DEVICE);
1149 		dprintk("frag: buf=%08Lx  page=%08lx offset=%08lx\n",
1150 			(long long)buf, (long) page_to_pfn(frag->page),
1151 			frag->page_offset);
1152 		len = skb_frag_size(frag);
1153 		frag++;
1154 		nr_frags--;
1155 	}
1156 	dprintk("done pkt\n");
1157 
1158 	spin_lock_irq(&dev->tx_lock);
1159 	dev->tx_skbs[last_idx] = skb;
1160 	first_desc[DESC_CMDSTS] |= cpu_to_le32(CMDSTS_OWN);
1161 	dev->tx_free_idx = free_idx;
1162 	atomic_inc(&dev->nr_tx_skbs);
1163 	spin_unlock_irq(&dev->tx_lock);
1164 
1165 	kick_tx(dev);
1166 
1167 	/* Check again: we may have raced with a tx done irq */
1168 	if (stopped && (dev->tx_done_idx != tx_done_idx) && start_tx_okay(dev))
1169 		netif_start_queue(ndev);
1170 
1171 	return NETDEV_TX_OK;
1172 }
1173 
1174 static void ns83820_update_stats(struct ns83820 *dev)
1175 {
1176 	struct net_device *ndev = dev->ndev;
1177 	u8 __iomem *base = dev->base;
1178 
1179 	/* the DP83820 will freeze counters, so we need to read all of them */
1180 	ndev->stats.rx_errors		+= readl(base + 0x60) & 0xffff;
1181 	ndev->stats.rx_crc_errors	+= readl(base + 0x64) & 0xffff;
1182 	ndev->stats.rx_missed_errors	+= readl(base + 0x68) & 0xffff;
1183 	ndev->stats.rx_frame_errors	+= readl(base + 0x6c) & 0xffff;
1184 	/*ndev->stats.rx_symbol_errors +=*/ readl(base + 0x70);
1185 	ndev->stats.rx_length_errors	+= readl(base + 0x74) & 0xffff;
1186 	ndev->stats.rx_length_errors	+= readl(base + 0x78) & 0xffff;
1187 	/*ndev->stats.rx_badopcode_errors += */ readl(base + 0x7c);
1188 	/*ndev->stats.rx_pause_count += */  readl(base + 0x80);
1189 	/*ndev->stats.tx_pause_count += */  readl(base + 0x84);
1190 	ndev->stats.tx_carrier_errors	+= readl(base + 0x88) & 0xff;
1191 }
1192 
1193 static struct net_device_stats *ns83820_get_stats(struct net_device *ndev)
1194 {
1195 	struct ns83820 *dev = PRIV(ndev);
1196 
1197 	/* somewhat overkill */
1198 	spin_lock_irq(&dev->misc_lock);
1199 	ns83820_update_stats(dev);
1200 	spin_unlock_irq(&dev->misc_lock);
1201 
1202 	return &ndev->stats;
1203 }
1204 
1205 /* Let ethtool retrieve info */
1206 static int ns83820_get_link_ksettings(struct net_device *ndev,
1207 				      struct ethtool_link_ksettings *cmd)
1208 {
1209 	struct ns83820 *dev = PRIV(ndev);
1210 	u32 cfg, tanar, tbicr;
1211 	int fullduplex   = 0;
1212 	u32 supported;
1213 
1214 	/*
1215 	 * Here's the list of available ethtool commands from other drivers:
1216 	 *	cmd->advertising =
1217 	 *	ethtool_cmd_speed_set(cmd, ...)
1218 	 *	cmd->duplex =
1219 	 *	cmd->port = 0;
1220 	 *	cmd->phy_address =
1221 	 *	cmd->transceiver = 0;
1222 	 *	cmd->autoneg =
1223 	 *	cmd->maxtxpkt = 0;
1224 	 *	cmd->maxrxpkt = 0;
1225 	 */
1226 
1227 	/* read current configuration */
1228 	cfg   = readl(dev->base + CFG) ^ SPDSTS_POLARITY;
1229 	tanar = readl(dev->base + TANAR);
1230 	tbicr = readl(dev->base + TBICR);
1231 
1232 	fullduplex = (cfg & CFG_DUPSTS) ? 1 : 0;
1233 
1234 	supported = SUPPORTED_Autoneg;
1235 
1236 	if (dev->CFG_cache & CFG_TBI_EN) {
1237 		/* we have optical interface */
1238 		supported |= SUPPORTED_1000baseT_Half |
1239 					SUPPORTED_1000baseT_Full |
1240 					SUPPORTED_FIBRE;
1241 		cmd->base.port       = PORT_FIBRE;
1242 	} else {
1243 		/* we have copper */
1244 		supported |= SUPPORTED_10baseT_Half |
1245 			SUPPORTED_10baseT_Full | SUPPORTED_100baseT_Half |
1246 			SUPPORTED_100baseT_Full | SUPPORTED_1000baseT_Half |
1247 			SUPPORTED_1000baseT_Full |
1248 			SUPPORTED_MII;
1249 		cmd->base.port = PORT_MII;
1250 	}
1251 
1252 	ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported,
1253 						supported);
1254 
1255 	cmd->base.duplex = fullduplex ? DUPLEX_FULL : DUPLEX_HALF;
1256 	switch (cfg / CFG_SPDSTS0 & 3) {
1257 	case 2:
1258 		cmd->base.speed = SPEED_1000;
1259 		break;
1260 	case 1:
1261 		cmd->base.speed = SPEED_100;
1262 		break;
1263 	default:
1264 		cmd->base.speed = SPEED_10;
1265 		break;
1266 	}
1267 	cmd->base.autoneg = (tbicr & TBICR_MR_AN_ENABLE)
1268 		? AUTONEG_ENABLE : AUTONEG_DISABLE;
1269 	return 0;
1270 }
1271 
1272 /* Let ethool change settings*/
1273 static int ns83820_set_link_ksettings(struct net_device *ndev,
1274 				      const struct ethtool_link_ksettings *cmd)
1275 {
1276 	struct ns83820 *dev = PRIV(ndev);
1277 	u32 cfg, tanar;
1278 	int have_optical = 0;
1279 	int fullduplex   = 0;
1280 
1281 	/* read current configuration */
1282 	cfg = readl(dev->base + CFG) ^ SPDSTS_POLARITY;
1283 	tanar = readl(dev->base + TANAR);
1284 
1285 	if (dev->CFG_cache & CFG_TBI_EN) {
1286 		/* we have optical */
1287 		have_optical = 1;
1288 		fullduplex   = (tanar & TANAR_FULL_DUP);
1289 
1290 	} else {
1291 		/* we have copper */
1292 		fullduplex = cfg & CFG_DUPSTS;
1293 	}
1294 
1295 	spin_lock_irq(&dev->misc_lock);
1296 	spin_lock(&dev->tx_lock);
1297 
1298 	/* Set duplex */
1299 	if (cmd->base.duplex != fullduplex) {
1300 		if (have_optical) {
1301 			/*set full duplex*/
1302 			if (cmd->base.duplex == DUPLEX_FULL) {
1303 				/* force full duplex */
1304 				writel(readl(dev->base + TXCFG)
1305 					| TXCFG_CSI | TXCFG_HBI | TXCFG_ATP,
1306 					dev->base + TXCFG);
1307 				writel(readl(dev->base + RXCFG) | RXCFG_RX_FD,
1308 					dev->base + RXCFG);
1309 				/* Light up full duplex LED */
1310 				writel(readl(dev->base + GPIOR) | GPIOR_GP1_OUT,
1311 					dev->base + GPIOR);
1312 			} else {
1313 				/*TODO: set half duplex */
1314 			}
1315 
1316 		} else {
1317 			/*we have copper*/
1318 			/* TODO: Set duplex for copper cards */
1319 		}
1320 		printk(KERN_INFO "%s: Duplex set via ethtool\n",
1321 		ndev->name);
1322 	}
1323 
1324 	/* Set autonegotiation */
1325 	if (1) {
1326 		if (cmd->base.autoneg == AUTONEG_ENABLE) {
1327 			/* restart auto negotiation */
1328 			writel(TBICR_MR_AN_ENABLE | TBICR_MR_RESTART_AN,
1329 				dev->base + TBICR);
1330 			writel(TBICR_MR_AN_ENABLE, dev->base + TBICR);
1331 				dev->linkstate = LINK_AUTONEGOTIATE;
1332 
1333 			printk(KERN_INFO "%s: autoneg enabled via ethtool\n",
1334 				ndev->name);
1335 		} else {
1336 			/* disable auto negotiation */
1337 			writel(0x00000000, dev->base + TBICR);
1338 		}
1339 
1340 		printk(KERN_INFO "%s: autoneg %s via ethtool\n", ndev->name,
1341 				cmd->base.autoneg ? "ENABLED" : "DISABLED");
1342 	}
1343 
1344 	phy_intr(ndev);
1345 	spin_unlock(&dev->tx_lock);
1346 	spin_unlock_irq(&dev->misc_lock);
1347 
1348 	return 0;
1349 }
1350 /* end ethtool get/set support -df */
1351 
1352 static void ns83820_get_drvinfo(struct net_device *ndev, struct ethtool_drvinfo *info)
1353 {
1354 	struct ns83820 *dev = PRIV(ndev);
1355 	strlcpy(info->driver, "ns83820", sizeof(info->driver));
1356 	strlcpy(info->version, VERSION, sizeof(info->version));
1357 	strlcpy(info->bus_info, pci_name(dev->pci_dev), sizeof(info->bus_info));
1358 }
1359 
1360 static u32 ns83820_get_link(struct net_device *ndev)
1361 {
1362 	struct ns83820 *dev = PRIV(ndev);
1363 	u32 cfg = readl(dev->base + CFG) ^ SPDSTS_POLARITY;
1364 	return cfg & CFG_LNKSTS ? 1 : 0;
1365 }
1366 
1367 static const struct ethtool_ops ops = {
1368 	.get_drvinfo     = ns83820_get_drvinfo,
1369 	.get_link        = ns83820_get_link,
1370 	.get_link_ksettings = ns83820_get_link_ksettings,
1371 	.set_link_ksettings = ns83820_set_link_ksettings,
1372 };
1373 
1374 static inline void ns83820_disable_interrupts(struct ns83820 *dev)
1375 {
1376 	writel(0, dev->base + IMR);
1377 	writel(0, dev->base + IER);
1378 	readl(dev->base + IER);
1379 }
1380 
1381 /* this function is called in irq context from the ISR */
1382 static void ns83820_mib_isr(struct ns83820 *dev)
1383 {
1384 	unsigned long flags;
1385 	spin_lock_irqsave(&dev->misc_lock, flags);
1386 	ns83820_update_stats(dev);
1387 	spin_unlock_irqrestore(&dev->misc_lock, flags);
1388 }
1389 
1390 static void ns83820_do_isr(struct net_device *ndev, u32 isr);
1391 static irqreturn_t ns83820_irq(int foo, void *data)
1392 {
1393 	struct net_device *ndev = data;
1394 	struct ns83820 *dev = PRIV(ndev);
1395 	u32 isr;
1396 	dprintk("ns83820_irq(%p)\n", ndev);
1397 
1398 	dev->ihr = 0;
1399 
1400 	isr = readl(dev->base + ISR);
1401 	dprintk("irq: %08x\n", isr);
1402 	ns83820_do_isr(ndev, isr);
1403 	return IRQ_HANDLED;
1404 }
1405 
1406 static void ns83820_do_isr(struct net_device *ndev, u32 isr)
1407 {
1408 	struct ns83820 *dev = PRIV(ndev);
1409 	unsigned long flags;
1410 
1411 #ifdef DEBUG
1412 	if (isr & ~(ISR_PHY | ISR_RXDESC | ISR_RXEARLY | ISR_RXOK | ISR_RXERR | ISR_TXIDLE | ISR_TXOK | ISR_TXDESC))
1413 		Dprintk("odd isr? 0x%08x\n", isr);
1414 #endif
1415 
1416 	if (ISR_RXIDLE & isr) {
1417 		dev->rx_info.idle = 1;
1418 		Dprintk("oh dear, we are idle\n");
1419 		ns83820_rx_kick(ndev);
1420 	}
1421 
1422 	if ((ISR_RXDESC | ISR_RXOK) & isr) {
1423 		prefetch(dev->rx_info.next_rx_desc);
1424 
1425 		spin_lock_irqsave(&dev->misc_lock, flags);
1426 		dev->IMR_cache &= ~(ISR_RXDESC | ISR_RXOK);
1427 		writel(dev->IMR_cache, dev->base + IMR);
1428 		spin_unlock_irqrestore(&dev->misc_lock, flags);
1429 
1430 		tasklet_schedule(&dev->rx_tasklet);
1431 		//rx_irq(ndev);
1432 		//writel(4, dev->base + IHR);
1433 	}
1434 
1435 	if ((ISR_RXIDLE | ISR_RXORN | ISR_RXDESC | ISR_RXOK | ISR_RXERR) & isr)
1436 		ns83820_rx_kick(ndev);
1437 
1438 	if (unlikely(ISR_RXSOVR & isr)) {
1439 		//printk("overrun: rxsovr\n");
1440 		ndev->stats.rx_fifo_errors++;
1441 	}
1442 
1443 	if (unlikely(ISR_RXORN & isr)) {
1444 		//printk("overrun: rxorn\n");
1445 		ndev->stats.rx_fifo_errors++;
1446 	}
1447 
1448 	if ((ISR_RXRCMP & isr) && dev->rx_info.up)
1449 		writel(CR_RXE, dev->base + CR);
1450 
1451 	if (ISR_TXIDLE & isr) {
1452 		u32 txdp;
1453 		txdp = readl(dev->base + TXDP);
1454 		dprintk("txdp: %08x\n", txdp);
1455 		txdp -= dev->tx_phy_descs;
1456 		dev->tx_idx = txdp / (DESC_SIZE * 4);
1457 		if (dev->tx_idx >= NR_TX_DESC) {
1458 			printk(KERN_ALERT "%s: BUG -- txdp out of range\n", ndev->name);
1459 			dev->tx_idx = 0;
1460 		}
1461 		/* The may have been a race between a pci originated read
1462 		 * and the descriptor update from the cpu.  Just in case,
1463 		 * kick the transmitter if the hardware thinks it is on a
1464 		 * different descriptor than we are.
1465 		 */
1466 		if (dev->tx_idx != dev->tx_free_idx)
1467 			kick_tx(dev);
1468 	}
1469 
1470 	/* Defer tx ring processing until more than a minimum amount of
1471 	 * work has accumulated
1472 	 */
1473 	if ((ISR_TXDESC | ISR_TXIDLE | ISR_TXOK | ISR_TXERR) & isr) {
1474 		spin_lock_irqsave(&dev->tx_lock, flags);
1475 		do_tx_done(ndev);
1476 		spin_unlock_irqrestore(&dev->tx_lock, flags);
1477 
1478 		/* Disable TxOk if there are no outstanding tx packets.
1479 		 */
1480 		if ((dev->tx_done_idx == dev->tx_free_idx) &&
1481 		    (dev->IMR_cache & ISR_TXOK)) {
1482 			spin_lock_irqsave(&dev->misc_lock, flags);
1483 			dev->IMR_cache &= ~ISR_TXOK;
1484 			writel(dev->IMR_cache, dev->base + IMR);
1485 			spin_unlock_irqrestore(&dev->misc_lock, flags);
1486 		}
1487 	}
1488 
1489 	/* The TxIdle interrupt can come in before the transmit has
1490 	 * completed.  Normally we reap packets off of the combination
1491 	 * of TxDesc and TxIdle and leave TxOk disabled (since it
1492 	 * occurs on every packet), but when no further irqs of this
1493 	 * nature are expected, we must enable TxOk.
1494 	 */
1495 	if ((ISR_TXIDLE & isr) && (dev->tx_done_idx != dev->tx_free_idx)) {
1496 		spin_lock_irqsave(&dev->misc_lock, flags);
1497 		dev->IMR_cache |= ISR_TXOK;
1498 		writel(dev->IMR_cache, dev->base + IMR);
1499 		spin_unlock_irqrestore(&dev->misc_lock, flags);
1500 	}
1501 
1502 	/* MIB interrupt: one of the statistics counters is about to overflow */
1503 	if (unlikely(ISR_MIB & isr))
1504 		ns83820_mib_isr(dev);
1505 
1506 	/* PHY: Link up/down/negotiation state change */
1507 	if (unlikely(ISR_PHY & isr))
1508 		phy_intr(ndev);
1509 
1510 #if 0	/* Still working on the interrupt mitigation strategy */
1511 	if (dev->ihr)
1512 		writel(dev->ihr, dev->base + IHR);
1513 #endif
1514 }
1515 
1516 static void ns83820_do_reset(struct ns83820 *dev, u32 which)
1517 {
1518 	Dprintk("resetting chip...\n");
1519 	writel(which, dev->base + CR);
1520 	do {
1521 		schedule();
1522 	} while (readl(dev->base + CR) & which);
1523 	Dprintk("okay!\n");
1524 }
1525 
1526 static int ns83820_stop(struct net_device *ndev)
1527 {
1528 	struct ns83820 *dev = PRIV(ndev);
1529 
1530 	/* FIXME: protect against interrupt handler? */
1531 	del_timer_sync(&dev->tx_watchdog);
1532 
1533 	ns83820_disable_interrupts(dev);
1534 
1535 	dev->rx_info.up = 0;
1536 	synchronize_irq(dev->pci_dev->irq);
1537 
1538 	ns83820_do_reset(dev, CR_RST);
1539 
1540 	synchronize_irq(dev->pci_dev->irq);
1541 
1542 	spin_lock_irq(&dev->misc_lock);
1543 	dev->IMR_cache &= ~(ISR_TXURN | ISR_TXIDLE | ISR_TXERR | ISR_TXDESC | ISR_TXOK);
1544 	spin_unlock_irq(&dev->misc_lock);
1545 
1546 	ns83820_cleanup_rx(dev);
1547 	ns83820_cleanup_tx(dev);
1548 
1549 	return 0;
1550 }
1551 
1552 static void ns83820_tx_timeout(struct net_device *ndev, unsigned int txqueue)
1553 {
1554 	struct ns83820 *dev = PRIV(ndev);
1555         u32 tx_done_idx;
1556 	__le32 *desc;
1557 	unsigned long flags;
1558 
1559 	spin_lock_irqsave(&dev->tx_lock, flags);
1560 
1561 	tx_done_idx = dev->tx_done_idx;
1562 	desc = dev->tx_descs + (tx_done_idx * DESC_SIZE);
1563 
1564 	printk(KERN_INFO "%s: tx_timeout: tx_done_idx=%d free_idx=%d cmdsts=%08x\n",
1565 		ndev->name,
1566 		tx_done_idx, dev->tx_free_idx, le32_to_cpu(desc[DESC_CMDSTS]));
1567 
1568 #if defined(DEBUG)
1569 	{
1570 		u32 isr;
1571 		isr = readl(dev->base + ISR);
1572 		printk("irq: %08x imr: %08x\n", isr, dev->IMR_cache);
1573 		ns83820_do_isr(ndev, isr);
1574 	}
1575 #endif
1576 
1577 	do_tx_done(ndev);
1578 
1579 	tx_done_idx = dev->tx_done_idx;
1580 	desc = dev->tx_descs + (tx_done_idx * DESC_SIZE);
1581 
1582 	printk(KERN_INFO "%s: after: tx_done_idx=%d free_idx=%d cmdsts=%08x\n",
1583 		ndev->name,
1584 		tx_done_idx, dev->tx_free_idx, le32_to_cpu(desc[DESC_CMDSTS]));
1585 
1586 	spin_unlock_irqrestore(&dev->tx_lock, flags);
1587 }
1588 
1589 static void ns83820_tx_watch(struct timer_list *t)
1590 {
1591 	struct ns83820 *dev = from_timer(dev, t, tx_watchdog);
1592 	struct net_device *ndev = dev->ndev;
1593 
1594 #if defined(DEBUG)
1595 	printk("ns83820_tx_watch: %u %u %d\n",
1596 		dev->tx_done_idx, dev->tx_free_idx, atomic_read(&dev->nr_tx_skbs)
1597 		);
1598 #endif
1599 
1600 	if (time_after(jiffies, dev_trans_start(ndev) + 1*HZ) &&
1601 	    dev->tx_done_idx != dev->tx_free_idx) {
1602 		printk(KERN_DEBUG "%s: ns83820_tx_watch: %u %u %d\n",
1603 			ndev->name,
1604 			dev->tx_done_idx, dev->tx_free_idx,
1605 			atomic_read(&dev->nr_tx_skbs));
1606 		ns83820_tx_timeout(ndev, UINT_MAX);
1607 	}
1608 
1609 	mod_timer(&dev->tx_watchdog, jiffies + 2*HZ);
1610 }
1611 
1612 static int ns83820_open(struct net_device *ndev)
1613 {
1614 	struct ns83820 *dev = PRIV(ndev);
1615 	unsigned i;
1616 	u32 desc;
1617 	int ret;
1618 
1619 	dprintk("ns83820_open\n");
1620 
1621 	writel(0, dev->base + PQCR);
1622 
1623 	ret = ns83820_setup_rx(ndev);
1624 	if (ret)
1625 		goto failed;
1626 
1627 	memset(dev->tx_descs, 0, 4 * NR_TX_DESC * DESC_SIZE);
1628 	for (i=0; i<NR_TX_DESC; i++) {
1629 		dev->tx_descs[(i * DESC_SIZE) + DESC_LINK]
1630 				= cpu_to_le32(
1631 				  dev->tx_phy_descs
1632 				  + ((i+1) % NR_TX_DESC) * DESC_SIZE * 4);
1633 	}
1634 
1635 	dev->tx_idx = 0;
1636 	dev->tx_done_idx = 0;
1637 	desc = dev->tx_phy_descs;
1638 	writel(0, dev->base + TXDP_HI);
1639 	writel(desc, dev->base + TXDP);
1640 
1641 	timer_setup(&dev->tx_watchdog, ns83820_tx_watch, 0);
1642 	mod_timer(&dev->tx_watchdog, jiffies + 2*HZ);
1643 
1644 	netif_start_queue(ndev);	/* FIXME: wait for phy to come up */
1645 
1646 	return 0;
1647 
1648 failed:
1649 	ns83820_stop(ndev);
1650 	return ret;
1651 }
1652 
1653 static void ns83820_getmac(struct ns83820 *dev, u8 *mac)
1654 {
1655 	unsigned i;
1656 	for (i=0; i<3; i++) {
1657 		u32 data;
1658 
1659 		/* Read from the perfect match memory: this is loaded by
1660 		 * the chip from the EEPROM via the EELOAD self test.
1661 		 */
1662 		writel(i*2, dev->base + RFCR);
1663 		data = readl(dev->base + RFDR);
1664 
1665 		*mac++ = data;
1666 		*mac++ = data >> 8;
1667 	}
1668 }
1669 
1670 static void ns83820_set_multicast(struct net_device *ndev)
1671 {
1672 	struct ns83820 *dev = PRIV(ndev);
1673 	u8 __iomem *rfcr = dev->base + RFCR;
1674 	u32 and_mask = 0xffffffff;
1675 	u32 or_mask = 0;
1676 	u32 val;
1677 
1678 	if (ndev->flags & IFF_PROMISC)
1679 		or_mask |= RFCR_AAU | RFCR_AAM;
1680 	else
1681 		and_mask &= ~(RFCR_AAU | RFCR_AAM);
1682 
1683 	if (ndev->flags & IFF_ALLMULTI || netdev_mc_count(ndev))
1684 		or_mask |= RFCR_AAM;
1685 	else
1686 		and_mask &= ~RFCR_AAM;
1687 
1688 	spin_lock_irq(&dev->misc_lock);
1689 	val = (readl(rfcr) & and_mask) | or_mask;
1690 	/* Ramit : RFCR Write Fix doc says RFEN must be 0 modify other bits */
1691 	writel(val & ~RFCR_RFEN, rfcr);
1692 	writel(val, rfcr);
1693 	spin_unlock_irq(&dev->misc_lock);
1694 }
1695 
1696 static void ns83820_run_bist(struct net_device *ndev, const char *name, u32 enable, u32 done, u32 fail)
1697 {
1698 	struct ns83820 *dev = PRIV(ndev);
1699 	int timed_out = 0;
1700 	unsigned long start;
1701 	u32 status;
1702 	int loops = 0;
1703 
1704 	dprintk("%s: start %s\n", ndev->name, name);
1705 
1706 	start = jiffies;
1707 
1708 	writel(enable, dev->base + PTSCR);
1709 	for (;;) {
1710 		loops++;
1711 		status = readl(dev->base + PTSCR);
1712 		if (!(status & enable))
1713 			break;
1714 		if (status & done)
1715 			break;
1716 		if (status & fail)
1717 			break;
1718 		if (time_after_eq(jiffies, start + HZ)) {
1719 			timed_out = 1;
1720 			break;
1721 		}
1722 		schedule_timeout_uninterruptible(1);
1723 	}
1724 
1725 	if (status & fail)
1726 		printk(KERN_INFO "%s: %s failed! (0x%08x & 0x%08x)\n",
1727 			ndev->name, name, status, fail);
1728 	else if (timed_out)
1729 		printk(KERN_INFO "%s: run_bist %s timed out! (%08x)\n",
1730 			ndev->name, name, status);
1731 
1732 	dprintk("%s: done %s in %d loops\n", ndev->name, name, loops);
1733 }
1734 
1735 #ifdef PHY_CODE_IS_FINISHED
1736 static void ns83820_mii_write_bit(struct ns83820 *dev, int bit)
1737 {
1738 	/* drive MDC low */
1739 	dev->MEAR_cache &= ~MEAR_MDC;
1740 	writel(dev->MEAR_cache, dev->base + MEAR);
1741 	readl(dev->base + MEAR);
1742 
1743 	/* enable output, set bit */
1744 	dev->MEAR_cache |= MEAR_MDDIR;
1745 	if (bit)
1746 		dev->MEAR_cache |= MEAR_MDIO;
1747 	else
1748 		dev->MEAR_cache &= ~MEAR_MDIO;
1749 
1750 	/* set the output bit */
1751 	writel(dev->MEAR_cache, dev->base + MEAR);
1752 	readl(dev->base + MEAR);
1753 
1754 	/* Wait.  Max clock rate is 2.5MHz, this way we come in under 1MHz */
1755 	udelay(1);
1756 
1757 	/* drive MDC high causing the data bit to be latched */
1758 	dev->MEAR_cache |= MEAR_MDC;
1759 	writel(dev->MEAR_cache, dev->base + MEAR);
1760 	readl(dev->base + MEAR);
1761 
1762 	/* Wait again... */
1763 	udelay(1);
1764 }
1765 
1766 static int ns83820_mii_read_bit(struct ns83820 *dev)
1767 {
1768 	int bit;
1769 
1770 	/* drive MDC low, disable output */
1771 	dev->MEAR_cache &= ~MEAR_MDC;
1772 	dev->MEAR_cache &= ~MEAR_MDDIR;
1773 	writel(dev->MEAR_cache, dev->base + MEAR);
1774 	readl(dev->base + MEAR);
1775 
1776 	/* Wait.  Max clock rate is 2.5MHz, this way we come in under 1MHz */
1777 	udelay(1);
1778 
1779 	/* drive MDC high causing the data bit to be latched */
1780 	bit = (readl(dev->base + MEAR) & MEAR_MDIO) ? 1 : 0;
1781 	dev->MEAR_cache |= MEAR_MDC;
1782 	writel(dev->MEAR_cache, dev->base + MEAR);
1783 
1784 	/* Wait again... */
1785 	udelay(1);
1786 
1787 	return bit;
1788 }
1789 
1790 static unsigned ns83820_mii_read_reg(struct ns83820 *dev, unsigned phy, unsigned reg)
1791 {
1792 	unsigned data = 0;
1793 	int i;
1794 
1795 	/* read some garbage so that we eventually sync up */
1796 	for (i=0; i<64; i++)
1797 		ns83820_mii_read_bit(dev);
1798 
1799 	ns83820_mii_write_bit(dev, 0);	/* start */
1800 	ns83820_mii_write_bit(dev, 1);
1801 	ns83820_mii_write_bit(dev, 1);	/* opcode read */
1802 	ns83820_mii_write_bit(dev, 0);
1803 
1804 	/* write out the phy address: 5 bits, msb first */
1805 	for (i=0; i<5; i++)
1806 		ns83820_mii_write_bit(dev, phy & (0x10 >> i));
1807 
1808 	/* write out the register address, 5 bits, msb first */
1809 	for (i=0; i<5; i++)
1810 		ns83820_mii_write_bit(dev, reg & (0x10 >> i));
1811 
1812 	ns83820_mii_read_bit(dev);	/* turn around cycles */
1813 	ns83820_mii_read_bit(dev);
1814 
1815 	/* read in the register data, 16 bits msb first */
1816 	for (i=0; i<16; i++) {
1817 		data <<= 1;
1818 		data |= ns83820_mii_read_bit(dev);
1819 	}
1820 
1821 	return data;
1822 }
1823 
1824 static unsigned ns83820_mii_write_reg(struct ns83820 *dev, unsigned phy, unsigned reg, unsigned data)
1825 {
1826 	int i;
1827 
1828 	/* read some garbage so that we eventually sync up */
1829 	for (i=0; i<64; i++)
1830 		ns83820_mii_read_bit(dev);
1831 
1832 	ns83820_mii_write_bit(dev, 0);	/* start */
1833 	ns83820_mii_write_bit(dev, 1);
1834 	ns83820_mii_write_bit(dev, 0);	/* opcode read */
1835 	ns83820_mii_write_bit(dev, 1);
1836 
1837 	/* write out the phy address: 5 bits, msb first */
1838 	for (i=0; i<5; i++)
1839 		ns83820_mii_write_bit(dev, phy & (0x10 >> i));
1840 
1841 	/* write out the register address, 5 bits, msb first */
1842 	for (i=0; i<5; i++)
1843 		ns83820_mii_write_bit(dev, reg & (0x10 >> i));
1844 
1845 	ns83820_mii_read_bit(dev);	/* turn around cycles */
1846 	ns83820_mii_read_bit(dev);
1847 
1848 	/* read in the register data, 16 bits msb first */
1849 	for (i=0; i<16; i++)
1850 		ns83820_mii_write_bit(dev, (data >> (15 - i)) & 1);
1851 
1852 	return data;
1853 }
1854 
1855 static void ns83820_probe_phy(struct net_device *ndev)
1856 {
1857 	struct ns83820 *dev = PRIV(ndev);
1858 	int j;
1859 	unsigned a, b;
1860 
1861 	for (j = 0; j < 0x16; j += 4) {
1862 		dprintk("%s: [0x%02x] %04x %04x %04x %04x\n",
1863 			ndev->name, j,
1864 			ns83820_mii_read_reg(dev, 1, 0 + j),
1865 			ns83820_mii_read_reg(dev, 1, 1 + j),
1866 			ns83820_mii_read_reg(dev, 1, 2 + j),
1867 			ns83820_mii_read_reg(dev, 1, 3 + j)
1868 			);
1869 	}
1870 
1871 	/* read firmware version: memory addr is 0x8402 and 0x8403 */
1872 	ns83820_mii_write_reg(dev, 1, 0x16, 0x000d);
1873 	ns83820_mii_write_reg(dev, 1, 0x1e, 0x810e);
1874 	a = ns83820_mii_read_reg(dev, 1, 0x1d);
1875 
1876 	ns83820_mii_write_reg(dev, 1, 0x16, 0x000d);
1877 	ns83820_mii_write_reg(dev, 1, 0x1e, 0x810e);
1878 	b = ns83820_mii_read_reg(dev, 1, 0x1d);
1879 	dprintk("version: 0x%04x 0x%04x\n", a, b);
1880 }
1881 #endif
1882 
1883 static const struct net_device_ops netdev_ops = {
1884 	.ndo_open		= ns83820_open,
1885 	.ndo_stop		= ns83820_stop,
1886 	.ndo_start_xmit		= ns83820_hard_start_xmit,
1887 	.ndo_get_stats		= ns83820_get_stats,
1888 	.ndo_set_rx_mode	= ns83820_set_multicast,
1889 	.ndo_validate_addr	= eth_validate_addr,
1890 	.ndo_set_mac_address	= eth_mac_addr,
1891 	.ndo_tx_timeout		= ns83820_tx_timeout,
1892 };
1893 
1894 static int ns83820_init_one(struct pci_dev *pci_dev,
1895 			    const struct pci_device_id *id)
1896 {
1897 	struct net_device *ndev;
1898 	struct ns83820 *dev;
1899 	long addr;
1900 	int err;
1901 	int using_dac = 0;
1902 
1903 	/* See if we can set the dma mask early on; failure is fatal. */
1904 	if (sizeof(dma_addr_t) == 8 &&
1905 		!pci_set_dma_mask(pci_dev, DMA_BIT_MASK(64))) {
1906 		using_dac = 1;
1907 	} else if (!pci_set_dma_mask(pci_dev, DMA_BIT_MASK(32))) {
1908 		using_dac = 0;
1909 	} else {
1910 		dev_warn(&pci_dev->dev, "pci_set_dma_mask failed!\n");
1911 		return -ENODEV;
1912 	}
1913 
1914 	ndev = alloc_etherdev(sizeof(struct ns83820));
1915 	err = -ENOMEM;
1916 	if (!ndev)
1917 		goto out;
1918 
1919 	dev = PRIV(ndev);
1920 	dev->ndev = ndev;
1921 
1922 	spin_lock_init(&dev->rx_info.lock);
1923 	spin_lock_init(&dev->tx_lock);
1924 	spin_lock_init(&dev->misc_lock);
1925 	dev->pci_dev = pci_dev;
1926 
1927 	SET_NETDEV_DEV(ndev, &pci_dev->dev);
1928 
1929 	INIT_WORK(&dev->tq_refill, queue_refill);
1930 	tasklet_init(&dev->rx_tasklet, rx_action, (unsigned long)ndev);
1931 
1932 	err = pci_enable_device(pci_dev);
1933 	if (err) {
1934 		dev_info(&pci_dev->dev, "pci_enable_dev failed: %d\n", err);
1935 		goto out_free;
1936 	}
1937 
1938 	pci_set_master(pci_dev);
1939 	addr = pci_resource_start(pci_dev, 1);
1940 	dev->base = ioremap(addr, PAGE_SIZE);
1941 	dev->tx_descs = pci_alloc_consistent(pci_dev,
1942 			4 * DESC_SIZE * NR_TX_DESC, &dev->tx_phy_descs);
1943 	dev->rx_info.descs = pci_alloc_consistent(pci_dev,
1944 			4 * DESC_SIZE * NR_RX_DESC, &dev->rx_info.phy_descs);
1945 	err = -ENOMEM;
1946 	if (!dev->base || !dev->tx_descs || !dev->rx_info.descs)
1947 		goto out_disable;
1948 
1949 	dprintk("%p: %08lx  %p: %08lx\n",
1950 		dev->tx_descs, (long)dev->tx_phy_descs,
1951 		dev->rx_info.descs, (long)dev->rx_info.phy_descs);
1952 
1953 	ns83820_disable_interrupts(dev);
1954 
1955 	dev->IMR_cache = 0;
1956 
1957 	err = request_irq(pci_dev->irq, ns83820_irq, IRQF_SHARED,
1958 			  DRV_NAME, ndev);
1959 	if (err) {
1960 		dev_info(&pci_dev->dev, "unable to register irq %d, err %d\n",
1961 			pci_dev->irq, err);
1962 		goto out_disable;
1963 	}
1964 
1965 	/*
1966 	 * FIXME: we are holding rtnl_lock() over obscenely long area only
1967 	 * because some of the setup code uses dev->name.  It's Wrong(tm) -
1968 	 * we should be using driver-specific names for all that stuff.
1969 	 * For now that will do, but we really need to come back and kill
1970 	 * most of the dev_alloc_name() users later.
1971 	 */
1972 	rtnl_lock();
1973 	err = dev_alloc_name(ndev, ndev->name);
1974 	if (err < 0) {
1975 		dev_info(&pci_dev->dev, "unable to get netdev name: %d\n", err);
1976 		goto out_free_irq;
1977 	}
1978 
1979 	printk("%s: ns83820.c: 0x22c: %08x, subsystem: %04x:%04x\n",
1980 		ndev->name, le32_to_cpu(readl(dev->base + 0x22c)),
1981 		pci_dev->subsystem_vendor, pci_dev->subsystem_device);
1982 
1983 	ndev->netdev_ops = &netdev_ops;
1984 	ndev->ethtool_ops = &ops;
1985 	ndev->watchdog_timeo = 5 * HZ;
1986 	pci_set_drvdata(pci_dev, ndev);
1987 
1988 	ns83820_do_reset(dev, CR_RST);
1989 
1990 	/* Must reset the ram bist before running it */
1991 	writel(PTSCR_RBIST_RST, dev->base + PTSCR);
1992 	ns83820_run_bist(ndev, "sram bist",   PTSCR_RBIST_EN,
1993 			 PTSCR_RBIST_DONE, PTSCR_RBIST_FAIL);
1994 	ns83820_run_bist(ndev, "eeprom bist", PTSCR_EEBIST_EN, 0,
1995 			 PTSCR_EEBIST_FAIL);
1996 	ns83820_run_bist(ndev, "eeprom load", PTSCR_EELOAD_EN, 0, 0);
1997 
1998 	/* I love config registers */
1999 	dev->CFG_cache = readl(dev->base + CFG);
2000 
2001 	if ((dev->CFG_cache & CFG_PCI64_DET)) {
2002 		printk(KERN_INFO "%s: detected 64 bit PCI data bus.\n",
2003 			ndev->name);
2004 		/*dev->CFG_cache |= CFG_DATA64_EN;*/
2005 		if (!(dev->CFG_cache & CFG_DATA64_EN))
2006 			printk(KERN_INFO "%s: EEPROM did not enable 64 bit bus.  Disabled.\n",
2007 				ndev->name);
2008 	} else
2009 		dev->CFG_cache &= ~(CFG_DATA64_EN);
2010 
2011 	dev->CFG_cache &= (CFG_TBI_EN  | CFG_MRM_DIS   | CFG_MWI_DIS |
2012 			   CFG_T64ADDR | CFG_DATA64_EN | CFG_EXT_125 |
2013 			   CFG_M64ADDR);
2014 	dev->CFG_cache |= CFG_PINT_DUPSTS | CFG_PINT_LNKSTS | CFG_PINT_SPDSTS |
2015 			  CFG_EXTSTS_EN   | CFG_EXD         | CFG_PESEL;
2016 	dev->CFG_cache |= CFG_REQALG;
2017 	dev->CFG_cache |= CFG_POW;
2018 	dev->CFG_cache |= CFG_TMRTEST;
2019 
2020 	/* When compiled with 64 bit addressing, we must always enable
2021 	 * the 64 bit descriptor format.
2022 	 */
2023 	if (sizeof(dma_addr_t) == 8)
2024 		dev->CFG_cache |= CFG_M64ADDR;
2025 	if (using_dac)
2026 		dev->CFG_cache |= CFG_T64ADDR;
2027 
2028 	/* Big endian mode does not seem to do what the docs suggest */
2029 	dev->CFG_cache &= ~CFG_BEM;
2030 
2031 	/* setup optical transceiver if we have one */
2032 	if (dev->CFG_cache & CFG_TBI_EN) {
2033 		printk(KERN_INFO "%s: enabling optical transceiver\n",
2034 			ndev->name);
2035 		writel(readl(dev->base + GPIOR) | 0x3e8, dev->base + GPIOR);
2036 
2037 		/* setup auto negotiation feature advertisement */
2038 		writel(readl(dev->base + TANAR)
2039 		       | TANAR_HALF_DUP | TANAR_FULL_DUP,
2040 		       dev->base + TANAR);
2041 
2042 		/* start auto negotiation */
2043 		writel(TBICR_MR_AN_ENABLE | TBICR_MR_RESTART_AN,
2044 		       dev->base + TBICR);
2045 		writel(TBICR_MR_AN_ENABLE, dev->base + TBICR);
2046 		dev->linkstate = LINK_AUTONEGOTIATE;
2047 
2048 		dev->CFG_cache |= CFG_MODE_1000;
2049 	}
2050 
2051 	writel(dev->CFG_cache, dev->base + CFG);
2052 	dprintk("CFG: %08x\n", dev->CFG_cache);
2053 
2054 	if (reset_phy) {
2055 		printk(KERN_INFO "%s: resetting phy\n", ndev->name);
2056 		writel(dev->CFG_cache | CFG_PHY_RST, dev->base + CFG);
2057 		msleep(10);
2058 		writel(dev->CFG_cache, dev->base + CFG);
2059 	}
2060 
2061 #if 0	/* Huh?  This sets the PCI latency register.  Should be done via
2062 	 * the PCI layer.  FIXME.
2063 	 */
2064 	if (readl(dev->base + SRR))
2065 		writel(readl(dev->base+0x20c) | 0xfe00, dev->base + 0x20c);
2066 #endif
2067 
2068 	/* Note!  The DMA burst size interacts with packet
2069 	 * transmission, such that the largest packet that
2070 	 * can be transmitted is 8192 - FLTH - burst size.
2071 	 * If only the transmit fifo was larger...
2072 	 */
2073 	/* Ramit : 1024 DMA is not a good idea, it ends up banging
2074 	 * some DELL and COMPAQ SMP systems */
2075 	writel(TXCFG_CSI | TXCFG_HBI | TXCFG_ATP | TXCFG_MXDMA512
2076 		| ((1600 / 32) * 0x100),
2077 		dev->base + TXCFG);
2078 
2079 	/* Flush the interrupt holdoff timer */
2080 	writel(0x000, dev->base + IHR);
2081 	writel(0x100, dev->base + IHR);
2082 	writel(0x000, dev->base + IHR);
2083 
2084 	/* Set Rx to full duplex, don't accept runt, errored, long or length
2085 	 * range errored packets.  Use 512 byte DMA.
2086 	 */
2087 	/* Ramit : 1024 DMA is not a good idea, it ends up banging
2088 	 * some DELL and COMPAQ SMP systems
2089 	 * Turn on ALP, only we are accpeting Jumbo Packets */
2090 	writel(RXCFG_AEP | RXCFG_ARP | RXCFG_AIRL | RXCFG_RX_FD
2091 		| RXCFG_STRIPCRC
2092 		//| RXCFG_ALP
2093 		| (RXCFG_MXDMA512) | 0, dev->base + RXCFG);
2094 
2095 	/* Disable priority queueing */
2096 	writel(0, dev->base + PQCR);
2097 
2098 	/* Enable IP checksum validation and detetion of VLAN headers.
2099 	 * Note: do not set the reject options as at least the 0x102
2100 	 * revision of the chip does not properly accept IP fragments
2101 	 * at least for UDP.
2102 	 */
2103 	/* Ramit : Be sure to turn on RXCFG_ARP if VLAN's are enabled, since
2104 	 * the MAC it calculates the packetsize AFTER stripping the VLAN
2105 	 * header, and if a VLAN Tagged packet of 64 bytes is received (like
2106 	 * a ping with a VLAN header) then the card, strips the 4 byte VLAN
2107 	 * tag and then checks the packet size, so if RXCFG_ARP is not enabled,
2108 	 * it discrards it!.  These guys......
2109 	 * also turn on tag stripping if hardware acceleration is enabled
2110 	 */
2111 #ifdef NS83820_VLAN_ACCEL_SUPPORT
2112 #define VRCR_INIT_VALUE (VRCR_IPEN|VRCR_VTDEN|VRCR_VTREN)
2113 #else
2114 #define VRCR_INIT_VALUE (VRCR_IPEN|VRCR_VTDEN)
2115 #endif
2116 	writel(VRCR_INIT_VALUE, dev->base + VRCR);
2117 
2118 	/* Enable per-packet TCP/UDP/IP checksumming
2119 	 * and per packet vlan tag insertion if
2120 	 * vlan hardware acceleration is enabled
2121 	 */
2122 #ifdef NS83820_VLAN_ACCEL_SUPPORT
2123 #define VTCR_INIT_VALUE (VTCR_PPCHK|VTCR_VPPTI)
2124 #else
2125 #define VTCR_INIT_VALUE VTCR_PPCHK
2126 #endif
2127 	writel(VTCR_INIT_VALUE, dev->base + VTCR);
2128 
2129 	/* Ramit : Enable async and sync pause frames */
2130 	/* writel(0, dev->base + PCR); */
2131 	writel((PCR_PS_MCAST | PCR_PS_DA | PCR_PSEN | PCR_FFLO_4K |
2132 		PCR_FFHI_8K | PCR_STLO_4 | PCR_STHI_8 | PCR_PAUSE_CNT),
2133 		dev->base + PCR);
2134 
2135 	/* Disable Wake On Lan */
2136 	writel(0, dev->base + WCSR);
2137 
2138 	ns83820_getmac(dev, ndev->dev_addr);
2139 
2140 	/* Yes, we support dumb IP checksum on transmit */
2141 	ndev->features |= NETIF_F_SG;
2142 	ndev->features |= NETIF_F_IP_CSUM;
2143 
2144 	ndev->min_mtu = 0;
2145 
2146 #ifdef NS83820_VLAN_ACCEL_SUPPORT
2147 	/* We also support hardware vlan acceleration */
2148 	ndev->features |= NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX;
2149 #endif
2150 
2151 	if (using_dac) {
2152 		printk(KERN_INFO "%s: using 64 bit addressing.\n",
2153 			ndev->name);
2154 		ndev->features |= NETIF_F_HIGHDMA;
2155 	}
2156 
2157 	printk(KERN_INFO "%s: ns83820 v" VERSION ": DP83820 v%u.%u: %pM io=0x%08lx irq=%d f=%s\n",
2158 		ndev->name,
2159 		(unsigned)readl(dev->base + SRR) >> 8,
2160 		(unsigned)readl(dev->base + SRR) & 0xff,
2161 		ndev->dev_addr, addr, pci_dev->irq,
2162 		(ndev->features & NETIF_F_HIGHDMA) ? "h,sg" : "sg"
2163 		);
2164 
2165 #ifdef PHY_CODE_IS_FINISHED
2166 	ns83820_probe_phy(ndev);
2167 #endif
2168 
2169 	err = register_netdevice(ndev);
2170 	if (err) {
2171 		printk(KERN_INFO "ns83820: unable to register netdev: %d\n", err);
2172 		goto out_cleanup;
2173 	}
2174 	rtnl_unlock();
2175 
2176 	return 0;
2177 
2178 out_cleanup:
2179 	ns83820_disable_interrupts(dev); /* paranoia */
2180 out_free_irq:
2181 	rtnl_unlock();
2182 	free_irq(pci_dev->irq, ndev);
2183 out_disable:
2184 	if (dev->base)
2185 		iounmap(dev->base);
2186 	pci_free_consistent(pci_dev, 4 * DESC_SIZE * NR_TX_DESC, dev->tx_descs, dev->tx_phy_descs);
2187 	pci_free_consistent(pci_dev, 4 * DESC_SIZE * NR_RX_DESC, dev->rx_info.descs, dev->rx_info.phy_descs);
2188 	pci_disable_device(pci_dev);
2189 out_free:
2190 	free_netdev(ndev);
2191 out:
2192 	return err;
2193 }
2194 
2195 static void ns83820_remove_one(struct pci_dev *pci_dev)
2196 {
2197 	struct net_device *ndev = pci_get_drvdata(pci_dev);
2198 	struct ns83820 *dev = PRIV(ndev); /* ok even if NULL */
2199 
2200 	if (!ndev)			/* paranoia */
2201 		return;
2202 
2203 	ns83820_disable_interrupts(dev); /* paranoia */
2204 
2205 	unregister_netdev(ndev);
2206 	free_irq(dev->pci_dev->irq, ndev);
2207 	iounmap(dev->base);
2208 	pci_free_consistent(dev->pci_dev, 4 * DESC_SIZE * NR_TX_DESC,
2209 			dev->tx_descs, dev->tx_phy_descs);
2210 	pci_free_consistent(dev->pci_dev, 4 * DESC_SIZE * NR_RX_DESC,
2211 			dev->rx_info.descs, dev->rx_info.phy_descs);
2212 	pci_disable_device(dev->pci_dev);
2213 	free_netdev(ndev);
2214 }
2215 
2216 static const struct pci_device_id ns83820_pci_tbl[] = {
2217 	{ 0x100b, 0x0022, PCI_ANY_ID, PCI_ANY_ID, 0, .driver_data = 0, },
2218 	{ 0, },
2219 };
2220 
2221 static struct pci_driver driver = {
2222 	.name		= "ns83820",
2223 	.id_table	= ns83820_pci_tbl,
2224 	.probe		= ns83820_init_one,
2225 	.remove		= ns83820_remove_one,
2226 #if 0	/* FIXME: implement */
2227 	.suspend	= ,
2228 	.resume		= ,
2229 #endif
2230 };
2231 
2232 
2233 static int __init ns83820_init(void)
2234 {
2235 	printk(KERN_INFO "ns83820.c: National Semiconductor DP83820 10/100/1000 driver.\n");
2236 	return pci_register_driver(&driver);
2237 }
2238 
2239 static void __exit ns83820_exit(void)
2240 {
2241 	pci_unregister_driver(&driver);
2242 }
2243 
2244 MODULE_AUTHOR("Benjamin LaHaise <bcrl@kvack.org>");
2245 MODULE_DESCRIPTION("National Semiconductor DP83820 10/100/1000 driver");
2246 MODULE_LICENSE("GPL");
2247 
2248 MODULE_DEVICE_TABLE(pci, ns83820_pci_tbl);
2249 
2250 module_param(lnksts, int, 0);
2251 MODULE_PARM_DESC(lnksts, "Polarity of LNKSTS bit");
2252 
2253 module_param(ihr, int, 0);
2254 MODULE_PARM_DESC(ihr, "Time in 100 us increments to delay interrupts (range 0-127)");
2255 
2256 module_param(reset_phy, int, 0);
2257 MODULE_PARM_DESC(reset_phy, "Set to 1 to reset the PHY on startup");
2258 
2259 module_init(ns83820_init);
2260 module_exit(ns83820_exit);
2261