1 #define VERSION "0.23"
2 /* ns83820.c by Benjamin LaHaise with contributions.
3  *
4  * Questions/comments/discussion to linux-ns83820@kvack.org.
5  *
6  * $Revision: 1.34.2.23 $
7  *
8  * Copyright 2001 Benjamin LaHaise.
9  * Copyright 2001, 2002 Red Hat.
10  *
11  * Mmmm, chocolate vanilla mocha...
12  *
13  *
14  * This program is free software; you can redistribute it and/or modify
15  * it under the terms of the GNU General Public License as published by
16  * the Free Software Foundation; either version 2 of the License, or
17  * (at your option) any later version.
18  *
19  * This program is distributed in the hope that it will be useful,
20  * but WITHOUT ANY WARRANTY; without even the implied warranty of
21  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
22  * GNU General Public License for more details.
23  *
24  * You should have received a copy of the GNU General Public License
25  * along with this program; if not, write to the Free Software
26  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
27  *
28  *
29  * ChangeLog
30  * =========
31  *	20010414	0.1 - created
32  *	20010622	0.2 - basic rx and tx.
33  *	20010711	0.3 - added duplex and link state detection support.
34  *	20010713	0.4 - zero copy, no hangs.
35  *			0.5 - 64 bit dma support (davem will hate me for this)
36  *			    - disable jumbo frames to avoid tx hangs
37  *			    - work around tx deadlocks on my 1.02 card via
38  *			      fiddling with TXCFG
39  *	20010810	0.6 - use pci dma api for ringbuffers, work on ia64
40  *	20010816	0.7 - misc cleanups
41  *	20010826	0.8 - fix critical zero copy bugs
42  *			0.9 - internal experiment
43  *	20010827	0.10 - fix ia64 unaligned access.
44  *	20010906	0.11 - accept all packets with checksum errors as
45  *			       otherwise fragments get lost
46  *			     - fix >> 32 bugs
47  *			0.12 - add statistics counters
48  *			     - add allmulti/promisc support
49  *	20011009	0.13 - hotplug support, other smaller pci api cleanups
50  *	20011204	0.13a - optical transceiver support added
51  *				by Michael Clark <michael@metaparadigm.com>
52  *	20011205	0.13b - call register_netdev earlier in initialization
53  *				suppress duplicate link status messages
54  *	20011117 	0.14 - ethtool GDRVINFO, GLINK support from jgarzik
55  *	20011204 	0.15	get ppc (big endian) working
56  *	20011218	0.16	various cleanups
57  *	20020310	0.17	speedups
58  *	20020610	0.18 -	actually use the pci dma api for highmem
59  *			     -	remove pci latency register fiddling
60  *			0.19 -	better bist support
61  *			     -	add ihr and reset_phy parameters
62  *			     -	gmii bus probing
63  *			     -	fix missed txok introduced during performance
64  *				tuning
65  *			0.20 -	fix stupid RFEN thinko.  i am such a smurf.
66  *	20040828	0.21 -	add hardware vlan accleration
67  *				by Neil Horman <nhorman@redhat.com>
68  *	20050406	0.22 -	improved DAC ifdefs from Andi Kleen
69  *			     -	removal of dead code from Adrian Bunk
70  *			     -	fix half duplex collision behaviour
71  * Driver Overview
72  * ===============
73  *
74  * This driver was originally written for the National Semiconductor
75  * 83820 chip, a 10/100/1000 Mbps 64 bit PCI ethernet NIC.  Hopefully
76  * this code will turn out to be a) clean, b) correct, and c) fast.
77  * With that in mind, I'm aiming to split the code up as much as
78  * reasonably possible.  At present there are X major sections that
79  * break down into a) packet receive, b) packet transmit, c) link
80  * management, d) initialization and configuration.  Where possible,
81  * these code paths are designed to run in parallel.
82  *
83  * This driver has been tested and found to work with the following
84  * cards (in no particular order):
85  *
86  *	Cameo		SOHO-GA2000T	SOHO-GA2500T
87  *	D-Link		DGE-500T
88  *	PureData	PDP8023Z-TG
89  *	SMC		SMC9452TX	SMC9462TX
90  *	Netgear		GA621
91  *
92  * Special thanks to SMC for providing hardware to test this driver on.
93  *
94  * Reports of success or failure would be greatly appreciated.
95  */
96 //#define dprintk		printk
97 #define dprintk(x...)		do { } while (0)
98 
99 #include <linux/module.h>
100 #include <linux/moduleparam.h>
101 #include <linux/types.h>
102 #include <linux/pci.h>
103 #include <linux/dma-mapping.h>
104 #include <linux/netdevice.h>
105 #include <linux/etherdevice.h>
106 #include <linux/delay.h>
107 #include <linux/workqueue.h>
108 #include <linux/init.h>
109 #include <linux/interrupt.h>
110 #include <linux/ip.h>	/* for iph */
111 #include <linux/in.h>	/* for IPPROTO_... */
112 #include <linux/compiler.h>
113 #include <linux/prefetch.h>
114 #include <linux/ethtool.h>
115 #include <linux/sched.h>
116 #include <linux/timer.h>
117 #include <linux/if_vlan.h>
118 #include <linux/rtnetlink.h>
119 #include <linux/jiffies.h>
120 #include <linux/slab.h>
121 
122 #include <asm/io.h>
123 #include <asm/uaccess.h>
124 
125 #define DRV_NAME "ns83820"
126 
127 /* Global parameters.  See module_param near the bottom. */
128 static int ihr = 2;
129 static int reset_phy = 0;
130 static int lnksts = 0;		/* CFG_LNKSTS bit polarity */
131 
132 /* Dprintk is used for more interesting debug events */
133 #undef Dprintk
134 #define	Dprintk			dprintk
135 
136 /* tunables */
137 #define RX_BUF_SIZE	1500	/* 8192 */
138 #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
139 #define NS83820_VLAN_ACCEL_SUPPORT
140 #endif
141 
142 /* Must not exceed ~65000. */
143 #define NR_RX_DESC	64
144 #define NR_TX_DESC	128
145 
146 /* not tunable */
147 #define REAL_RX_BUF_SIZE (RX_BUF_SIZE + 14)	/* rx/tx mac addr + type */
148 
149 #define MIN_TX_DESC_FREE	8
150 
151 /* register defines */
152 #define CFGCS		0x04
153 
154 #define CR_TXE		0x00000001
155 #define CR_TXD		0x00000002
156 /* Ramit : Here's a tip, don't do a RXD immediately followed by an RXE
157  * The Receive engine skips one descriptor and moves
158  * onto the next one!! */
159 #define CR_RXE		0x00000004
160 #define CR_RXD		0x00000008
161 #define CR_TXR		0x00000010
162 #define CR_RXR		0x00000020
163 #define CR_SWI		0x00000080
164 #define CR_RST		0x00000100
165 
166 #define PTSCR_EEBIST_FAIL       0x00000001
167 #define PTSCR_EEBIST_EN         0x00000002
168 #define PTSCR_EELOAD_EN         0x00000004
169 #define PTSCR_RBIST_FAIL        0x000001b8
170 #define PTSCR_RBIST_DONE        0x00000200
171 #define PTSCR_RBIST_EN          0x00000400
172 #define PTSCR_RBIST_RST         0x00002000
173 
174 #define MEAR_EEDI		0x00000001
175 #define MEAR_EEDO		0x00000002
176 #define MEAR_EECLK		0x00000004
177 #define MEAR_EESEL		0x00000008
178 #define MEAR_MDIO		0x00000010
179 #define MEAR_MDDIR		0x00000020
180 #define MEAR_MDC		0x00000040
181 
182 #define ISR_TXDESC3	0x40000000
183 #define ISR_TXDESC2	0x20000000
184 #define ISR_TXDESC1	0x10000000
185 #define ISR_TXDESC0	0x08000000
186 #define ISR_RXDESC3	0x04000000
187 #define ISR_RXDESC2	0x02000000
188 #define ISR_RXDESC1	0x01000000
189 #define ISR_RXDESC0	0x00800000
190 #define ISR_TXRCMP	0x00400000
191 #define ISR_RXRCMP	0x00200000
192 #define ISR_DPERR	0x00100000
193 #define ISR_SSERR	0x00080000
194 #define ISR_RMABT	0x00040000
195 #define ISR_RTABT	0x00020000
196 #define ISR_RXSOVR	0x00010000
197 #define ISR_HIBINT	0x00008000
198 #define ISR_PHY		0x00004000
199 #define ISR_PME		0x00002000
200 #define ISR_SWI		0x00001000
201 #define ISR_MIB		0x00000800
202 #define ISR_TXURN	0x00000400
203 #define ISR_TXIDLE	0x00000200
204 #define ISR_TXERR	0x00000100
205 #define ISR_TXDESC	0x00000080
206 #define ISR_TXOK	0x00000040
207 #define ISR_RXORN	0x00000020
208 #define ISR_RXIDLE	0x00000010
209 #define ISR_RXEARLY	0x00000008
210 #define ISR_RXERR	0x00000004
211 #define ISR_RXDESC	0x00000002
212 #define ISR_RXOK	0x00000001
213 
214 #define TXCFG_CSI	0x80000000
215 #define TXCFG_HBI	0x40000000
216 #define TXCFG_MLB	0x20000000
217 #define TXCFG_ATP	0x10000000
218 #define TXCFG_ECRETRY	0x00800000
219 #define TXCFG_BRST_DIS	0x00080000
220 #define TXCFG_MXDMA1024	0x00000000
221 #define TXCFG_MXDMA512	0x00700000
222 #define TXCFG_MXDMA256	0x00600000
223 #define TXCFG_MXDMA128	0x00500000
224 #define TXCFG_MXDMA64	0x00400000
225 #define TXCFG_MXDMA32	0x00300000
226 #define TXCFG_MXDMA16	0x00200000
227 #define TXCFG_MXDMA8	0x00100000
228 
229 #define CFG_LNKSTS	0x80000000
230 #define CFG_SPDSTS	0x60000000
231 #define CFG_SPDSTS1	0x40000000
232 #define CFG_SPDSTS0	0x20000000
233 #define CFG_DUPSTS	0x10000000
234 #define CFG_TBI_EN	0x01000000
235 #define CFG_MODE_1000	0x00400000
236 /* Ramit : Dont' ever use AUTO_1000, it never works and is buggy.
237  * Read the Phy response and then configure the MAC accordingly */
238 #define CFG_AUTO_1000	0x00200000
239 #define CFG_PINT_CTL	0x001c0000
240 #define CFG_PINT_DUPSTS	0x00100000
241 #define CFG_PINT_LNKSTS	0x00080000
242 #define CFG_PINT_SPDSTS	0x00040000
243 #define CFG_TMRTEST	0x00020000
244 #define CFG_MRM_DIS	0x00010000
245 #define CFG_MWI_DIS	0x00008000
246 #define CFG_T64ADDR	0x00004000
247 #define CFG_PCI64_DET	0x00002000
248 #define CFG_DATA64_EN	0x00001000
249 #define CFG_M64ADDR	0x00000800
250 #define CFG_PHY_RST	0x00000400
251 #define CFG_PHY_DIS	0x00000200
252 #define CFG_EXTSTS_EN	0x00000100
253 #define CFG_REQALG	0x00000080
254 #define CFG_SB		0x00000040
255 #define CFG_POW		0x00000020
256 #define CFG_EXD		0x00000010
257 #define CFG_PESEL	0x00000008
258 #define CFG_BROM_DIS	0x00000004
259 #define CFG_EXT_125	0x00000002
260 #define CFG_BEM		0x00000001
261 
262 #define EXTSTS_UDPPKT	0x00200000
263 #define EXTSTS_TCPPKT	0x00080000
264 #define EXTSTS_IPPKT	0x00020000
265 #define EXTSTS_VPKT	0x00010000
266 #define EXTSTS_VTG_MASK	0x0000ffff
267 
268 #define SPDSTS_POLARITY	(CFG_SPDSTS1 | CFG_SPDSTS0 | CFG_DUPSTS | (lnksts ? CFG_LNKSTS : 0))
269 
270 #define MIBC_MIBS	0x00000008
271 #define MIBC_ACLR	0x00000004
272 #define MIBC_FRZ	0x00000002
273 #define MIBC_WRN	0x00000001
274 
275 #define PCR_PSEN	(1 << 31)
276 #define PCR_PS_MCAST	(1 << 30)
277 #define PCR_PS_DA	(1 << 29)
278 #define PCR_STHI_8	(3 << 23)
279 #define PCR_STLO_4	(1 << 23)
280 #define PCR_FFHI_8K	(3 << 21)
281 #define PCR_FFLO_4K	(1 << 21)
282 #define PCR_PAUSE_CNT	0xFFFE
283 
284 #define RXCFG_AEP	0x80000000
285 #define RXCFG_ARP	0x40000000
286 #define RXCFG_STRIPCRC	0x20000000
287 #define RXCFG_RX_FD	0x10000000
288 #define RXCFG_ALP	0x08000000
289 #define RXCFG_AIRL	0x04000000
290 #define RXCFG_MXDMA512	0x00700000
291 #define RXCFG_DRTH	0x0000003e
292 #define RXCFG_DRTH0	0x00000002
293 
294 #define RFCR_RFEN	0x80000000
295 #define RFCR_AAB	0x40000000
296 #define RFCR_AAM	0x20000000
297 #define RFCR_AAU	0x10000000
298 #define RFCR_APM	0x08000000
299 #define RFCR_APAT	0x07800000
300 #define RFCR_APAT3	0x04000000
301 #define RFCR_APAT2	0x02000000
302 #define RFCR_APAT1	0x01000000
303 #define RFCR_APAT0	0x00800000
304 #define RFCR_AARP	0x00400000
305 #define RFCR_MHEN	0x00200000
306 #define RFCR_UHEN	0x00100000
307 #define RFCR_ULM	0x00080000
308 
309 #define VRCR_RUDPE	0x00000080
310 #define VRCR_RTCPE	0x00000040
311 #define VRCR_RIPE	0x00000020
312 #define VRCR_IPEN	0x00000010
313 #define VRCR_DUTF	0x00000008
314 #define VRCR_DVTF	0x00000004
315 #define VRCR_VTREN	0x00000002
316 #define VRCR_VTDEN	0x00000001
317 
318 #define VTCR_PPCHK	0x00000008
319 #define VTCR_GCHK	0x00000004
320 #define VTCR_VPPTI	0x00000002
321 #define VTCR_VGTI	0x00000001
322 
323 #define CR		0x00
324 #define CFG		0x04
325 #define MEAR		0x08
326 #define PTSCR		0x0c
327 #define	ISR		0x10
328 #define	IMR		0x14
329 #define	IER		0x18
330 #define	IHR		0x1c
331 #define TXDP		0x20
332 #define TXDP_HI		0x24
333 #define TXCFG		0x28
334 #define GPIOR		0x2c
335 #define RXDP		0x30
336 #define RXDP_HI		0x34
337 #define RXCFG		0x38
338 #define PQCR		0x3c
339 #define WCSR		0x40
340 #define PCR		0x44
341 #define RFCR		0x48
342 #define RFDR		0x4c
343 
344 #define SRR		0x58
345 
346 #define VRCR		0xbc
347 #define VTCR		0xc0
348 #define VDR		0xc4
349 #define CCSR		0xcc
350 
351 #define TBICR		0xe0
352 #define TBISR		0xe4
353 #define TANAR		0xe8
354 #define TANLPAR		0xec
355 #define TANER		0xf0
356 #define TESR		0xf4
357 
358 #define TBICR_MR_AN_ENABLE	0x00001000
359 #define TBICR_MR_RESTART_AN	0x00000200
360 
361 #define TBISR_MR_LINK_STATUS	0x00000020
362 #define TBISR_MR_AN_COMPLETE	0x00000004
363 
364 #define TANAR_PS2 		0x00000100
365 #define TANAR_PS1 		0x00000080
366 #define TANAR_HALF_DUP 		0x00000040
367 #define TANAR_FULL_DUP 		0x00000020
368 
369 #define GPIOR_GP5_OE		0x00000200
370 #define GPIOR_GP4_OE		0x00000100
371 #define GPIOR_GP3_OE		0x00000080
372 #define GPIOR_GP2_OE		0x00000040
373 #define GPIOR_GP1_OE		0x00000020
374 #define GPIOR_GP3_OUT		0x00000004
375 #define GPIOR_GP1_OUT		0x00000001
376 
377 #define LINK_AUTONEGOTIATE	0x01
378 #define LINK_DOWN		0x02
379 #define LINK_UP			0x04
380 
381 #define HW_ADDR_LEN	sizeof(dma_addr_t)
382 #define desc_addr_set(desc, addr)				\
383 	do {							\
384 		((desc)[0] = cpu_to_le32(addr));		\
385 		if (HW_ADDR_LEN == 8)		 		\
386 			(desc)[1] = cpu_to_le32(((u64)addr) >> 32);	\
387 	} while(0)
388 #define desc_addr_get(desc)					\
389 	(le32_to_cpu((desc)[0]) | \
390 	(HW_ADDR_LEN == 8 ? ((dma_addr_t)le32_to_cpu((desc)[1]))<<32 : 0))
391 
392 #define DESC_LINK		0
393 #define DESC_BUFPTR		(DESC_LINK + HW_ADDR_LEN/4)
394 #define DESC_CMDSTS		(DESC_BUFPTR + HW_ADDR_LEN/4)
395 #define DESC_EXTSTS		(DESC_CMDSTS + 4/4)
396 
397 #define CMDSTS_OWN	0x80000000
398 #define CMDSTS_MORE	0x40000000
399 #define CMDSTS_INTR	0x20000000
400 #define CMDSTS_ERR	0x10000000
401 #define CMDSTS_OK	0x08000000
402 #define CMDSTS_RUNT	0x00200000
403 #define CMDSTS_LEN_MASK	0x0000ffff
404 
405 #define CMDSTS_DEST_MASK	0x01800000
406 #define CMDSTS_DEST_SELF	0x00800000
407 #define CMDSTS_DEST_MULTI	0x01000000
408 
409 #define DESC_SIZE	8		/* Should be cache line sized */
410 
411 struct rx_info {
412 	spinlock_t	lock;
413 	int		up;
414 	unsigned long	idle;
415 
416 	struct sk_buff	*skbs[NR_RX_DESC];
417 
418 	__le32		*next_rx_desc;
419 	u16		next_rx, next_empty;
420 
421 	__le32		*descs;
422 	dma_addr_t	phy_descs;
423 };
424 
425 
426 struct ns83820 {
427 	u8			__iomem *base;
428 
429 	struct pci_dev		*pci_dev;
430 	struct net_device	*ndev;
431 
432 	struct rx_info		rx_info;
433 	struct tasklet_struct	rx_tasklet;
434 
435 	unsigned		ihr;
436 	struct work_struct	tq_refill;
437 
438 	/* protects everything below.  irqsave when using. */
439 	spinlock_t		misc_lock;
440 
441 	u32			CFG_cache;
442 
443 	u32			MEAR_cache;
444 	u32			IMR_cache;
445 
446 	unsigned		linkstate;
447 
448 	spinlock_t	tx_lock;
449 
450 	u16		tx_done_idx;
451 	u16		tx_idx;
452 	volatile u16	tx_free_idx;	/* idx of free desc chain */
453 	u16		tx_intr_idx;
454 
455 	atomic_t	nr_tx_skbs;
456 	struct sk_buff	*tx_skbs[NR_TX_DESC];
457 
458 	char		pad[16] __attribute__((aligned(16)));
459 	__le32		*tx_descs;
460 	dma_addr_t	tx_phy_descs;
461 
462 	struct timer_list	tx_watchdog;
463 };
464 
465 static inline struct ns83820 *PRIV(struct net_device *dev)
466 {
467 	return netdev_priv(dev);
468 }
469 
470 #define __kick_rx(dev)	writel(CR_RXE, dev->base + CR)
471 
472 static inline void kick_rx(struct net_device *ndev)
473 {
474 	struct ns83820 *dev = PRIV(ndev);
475 	dprintk("kick_rx: maybe kicking\n");
476 	if (test_and_clear_bit(0, &dev->rx_info.idle)) {
477 		dprintk("actually kicking\n");
478 		writel(dev->rx_info.phy_descs +
479 			(4 * DESC_SIZE * dev->rx_info.next_rx),
480 		       dev->base + RXDP);
481 		if (dev->rx_info.next_rx == dev->rx_info.next_empty)
482 			printk(KERN_DEBUG "%s: uh-oh: next_rx == next_empty???\n",
483 				ndev->name);
484 		__kick_rx(dev);
485 	}
486 }
487 
488 //free = (tx_done_idx + NR_TX_DESC-2 - free_idx) % NR_TX_DESC
489 #define start_tx_okay(dev)	\
490 	(((NR_TX_DESC-2 + dev->tx_done_idx - dev->tx_free_idx) % NR_TX_DESC) > MIN_TX_DESC_FREE)
491 
492 /* Packet Receiver
493  *
494  * The hardware supports linked lists of receive descriptors for
495  * which ownership is transferred back and forth by means of an
496  * ownership bit.  While the hardware does support the use of a
497  * ring for receive descriptors, we only make use of a chain in
498  * an attempt to reduce bus traffic under heavy load scenarios.
499  * This will also make bugs a bit more obvious.  The current code
500  * only makes use of a single rx chain; I hope to implement
501  * priority based rx for version 1.0.  Goal: even under overload
502  * conditions, still route realtime traffic with as low jitter as
503  * possible.
504  */
505 static inline void build_rx_desc(struct ns83820 *dev, __le32 *desc, dma_addr_t link, dma_addr_t buf, u32 cmdsts, u32 extsts)
506 {
507 	desc_addr_set(desc + DESC_LINK, link);
508 	desc_addr_set(desc + DESC_BUFPTR, buf);
509 	desc[DESC_EXTSTS] = cpu_to_le32(extsts);
510 	mb();
511 	desc[DESC_CMDSTS] = cpu_to_le32(cmdsts);
512 }
513 
514 #define nr_rx_empty(dev) ((NR_RX_DESC-2 + dev->rx_info.next_rx - dev->rx_info.next_empty) % NR_RX_DESC)
515 static inline int ns83820_add_rx_skb(struct ns83820 *dev, struct sk_buff *skb)
516 {
517 	unsigned next_empty;
518 	u32 cmdsts;
519 	__le32 *sg;
520 	dma_addr_t buf;
521 
522 	next_empty = dev->rx_info.next_empty;
523 
524 	/* don't overrun last rx marker */
525 	if (unlikely(nr_rx_empty(dev) <= 2)) {
526 		kfree_skb(skb);
527 		return 1;
528 	}
529 
530 #if 0
531 	dprintk("next_empty[%d] nr_used[%d] next_rx[%d]\n",
532 		dev->rx_info.next_empty,
533 		dev->rx_info.nr_used,
534 		dev->rx_info.next_rx
535 		);
536 #endif
537 
538 	sg = dev->rx_info.descs + (next_empty * DESC_SIZE);
539 	BUG_ON(NULL != dev->rx_info.skbs[next_empty]);
540 	dev->rx_info.skbs[next_empty] = skb;
541 
542 	dev->rx_info.next_empty = (next_empty + 1) % NR_RX_DESC;
543 	cmdsts = REAL_RX_BUF_SIZE | CMDSTS_INTR;
544 	buf = pci_map_single(dev->pci_dev, skb->data,
545 			     REAL_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
546 	build_rx_desc(dev, sg, 0, buf, cmdsts, 0);
547 	/* update link of previous rx */
548 	if (likely(next_empty != dev->rx_info.next_rx))
549 		dev->rx_info.descs[((NR_RX_DESC + next_empty - 1) % NR_RX_DESC) * DESC_SIZE] = cpu_to_le32(dev->rx_info.phy_descs + (next_empty * DESC_SIZE * 4));
550 
551 	return 0;
552 }
553 
554 static inline int rx_refill(struct net_device *ndev, gfp_t gfp)
555 {
556 	struct ns83820 *dev = PRIV(ndev);
557 	unsigned i;
558 	unsigned long flags = 0;
559 
560 	if (unlikely(nr_rx_empty(dev) <= 2))
561 		return 0;
562 
563 	dprintk("rx_refill(%p)\n", ndev);
564 	if (gfp == GFP_ATOMIC)
565 		spin_lock_irqsave(&dev->rx_info.lock, flags);
566 	for (i=0; i<NR_RX_DESC; i++) {
567 		struct sk_buff *skb;
568 		long res;
569 
570 		/* extra 16 bytes for alignment */
571 		skb = __netdev_alloc_skb(ndev, REAL_RX_BUF_SIZE+16, gfp);
572 		if (unlikely(!skb))
573 			break;
574 
575 		skb_reserve(skb, skb->data - PTR_ALIGN(skb->data, 16));
576 		if (gfp != GFP_ATOMIC)
577 			spin_lock_irqsave(&dev->rx_info.lock, flags);
578 		res = ns83820_add_rx_skb(dev, skb);
579 		if (gfp != GFP_ATOMIC)
580 			spin_unlock_irqrestore(&dev->rx_info.lock, flags);
581 		if (res) {
582 			i = 1;
583 			break;
584 		}
585 	}
586 	if (gfp == GFP_ATOMIC)
587 		spin_unlock_irqrestore(&dev->rx_info.lock, flags);
588 
589 	return i ? 0 : -ENOMEM;
590 }
591 
592 static void rx_refill_atomic(struct net_device *ndev)
593 {
594 	rx_refill(ndev, GFP_ATOMIC);
595 }
596 
597 /* REFILL */
598 static inline void queue_refill(struct work_struct *work)
599 {
600 	struct ns83820 *dev = container_of(work, struct ns83820, tq_refill);
601 	struct net_device *ndev = dev->ndev;
602 
603 	rx_refill(ndev, GFP_KERNEL);
604 	if (dev->rx_info.up)
605 		kick_rx(ndev);
606 }
607 
608 static inline void clear_rx_desc(struct ns83820 *dev, unsigned i)
609 {
610 	build_rx_desc(dev, dev->rx_info.descs + (DESC_SIZE * i), 0, 0, CMDSTS_OWN, 0);
611 }
612 
613 static void phy_intr(struct net_device *ndev)
614 {
615 	struct ns83820 *dev = PRIV(ndev);
616 	static const char *speeds[] = { "10", "100", "1000", "1000(?)", "1000F" };
617 	u32 cfg, new_cfg;
618 	u32 tbisr, tanar, tanlpar;
619 	int speed, fullduplex, newlinkstate;
620 
621 	cfg = readl(dev->base + CFG) ^ SPDSTS_POLARITY;
622 
623 	if (dev->CFG_cache & CFG_TBI_EN) {
624 		/* we have an optical transceiver */
625 		tbisr = readl(dev->base + TBISR);
626 		tanar = readl(dev->base + TANAR);
627 		tanlpar = readl(dev->base + TANLPAR);
628 		dprintk("phy_intr: tbisr=%08x, tanar=%08x, tanlpar=%08x\n",
629 			tbisr, tanar, tanlpar);
630 
631 		if ( (fullduplex = (tanlpar & TANAR_FULL_DUP) &&
632 		      (tanar & TANAR_FULL_DUP)) ) {
633 
634 			/* both of us are full duplex */
635 			writel(readl(dev->base + TXCFG)
636 			       | TXCFG_CSI | TXCFG_HBI | TXCFG_ATP,
637 			       dev->base + TXCFG);
638 			writel(readl(dev->base + RXCFG) | RXCFG_RX_FD,
639 			       dev->base + RXCFG);
640 			/* Light up full duplex LED */
641 			writel(readl(dev->base + GPIOR) | GPIOR_GP1_OUT,
642 			       dev->base + GPIOR);
643 
644 		} else if (((tanlpar & TANAR_HALF_DUP) &&
645 			    (tanar & TANAR_HALF_DUP)) ||
646 			   ((tanlpar & TANAR_FULL_DUP) &&
647 			    (tanar & TANAR_HALF_DUP)) ||
648 			   ((tanlpar & TANAR_HALF_DUP) &&
649 			    (tanar & TANAR_FULL_DUP))) {
650 
651 			/* one or both of us are half duplex */
652 			writel((readl(dev->base + TXCFG)
653 				& ~(TXCFG_CSI | TXCFG_HBI)) | TXCFG_ATP,
654 			       dev->base + TXCFG);
655 			writel(readl(dev->base + RXCFG) & ~RXCFG_RX_FD,
656 			       dev->base + RXCFG);
657 			/* Turn off full duplex LED */
658 			writel(readl(dev->base + GPIOR) & ~GPIOR_GP1_OUT,
659 			       dev->base + GPIOR);
660 		}
661 
662 		speed = 4; /* 1000F */
663 
664 	} else {
665 		/* we have a copper transceiver */
666 		new_cfg = dev->CFG_cache & ~(CFG_SB | CFG_MODE_1000 | CFG_SPDSTS);
667 
668 		if (cfg & CFG_SPDSTS1)
669 			new_cfg |= CFG_MODE_1000;
670 		else
671 			new_cfg &= ~CFG_MODE_1000;
672 
673 		speed = ((cfg / CFG_SPDSTS0) & 3);
674 		fullduplex = (cfg & CFG_DUPSTS);
675 
676 		if (fullduplex) {
677 			new_cfg |= CFG_SB;
678 			writel(readl(dev->base + TXCFG)
679 					| TXCFG_CSI | TXCFG_HBI,
680 			       dev->base + TXCFG);
681 			writel(readl(dev->base + RXCFG) | RXCFG_RX_FD,
682 			       dev->base + RXCFG);
683 		} else {
684 			writel(readl(dev->base + TXCFG)
685 					& ~(TXCFG_CSI | TXCFG_HBI),
686 			       dev->base + TXCFG);
687 			writel(readl(dev->base + RXCFG) & ~(RXCFG_RX_FD),
688 			       dev->base + RXCFG);
689 		}
690 
691 		if ((cfg & CFG_LNKSTS) &&
692 		    ((new_cfg ^ dev->CFG_cache) != 0)) {
693 			writel(new_cfg, dev->base + CFG);
694 			dev->CFG_cache = new_cfg;
695 		}
696 
697 		dev->CFG_cache &= ~CFG_SPDSTS;
698 		dev->CFG_cache |= cfg & CFG_SPDSTS;
699 	}
700 
701 	newlinkstate = (cfg & CFG_LNKSTS) ? LINK_UP : LINK_DOWN;
702 
703 	if (newlinkstate & LINK_UP &&
704 	    dev->linkstate != newlinkstate) {
705 		netif_start_queue(ndev);
706 		netif_wake_queue(ndev);
707 		printk(KERN_INFO "%s: link now %s mbps, %s duplex and up.\n",
708 			ndev->name,
709 			speeds[speed],
710 			fullduplex ? "full" : "half");
711 	} else if (newlinkstate & LINK_DOWN &&
712 		   dev->linkstate != newlinkstate) {
713 		netif_stop_queue(ndev);
714 		printk(KERN_INFO "%s: link now down.\n", ndev->name);
715 	}
716 
717 	dev->linkstate = newlinkstate;
718 }
719 
720 static int ns83820_setup_rx(struct net_device *ndev)
721 {
722 	struct ns83820 *dev = PRIV(ndev);
723 	unsigned i;
724 	int ret;
725 
726 	dprintk("ns83820_setup_rx(%p)\n", ndev);
727 
728 	dev->rx_info.idle = 1;
729 	dev->rx_info.next_rx = 0;
730 	dev->rx_info.next_rx_desc = dev->rx_info.descs;
731 	dev->rx_info.next_empty = 0;
732 
733 	for (i=0; i<NR_RX_DESC; i++)
734 		clear_rx_desc(dev, i);
735 
736 	writel(0, dev->base + RXDP_HI);
737 	writel(dev->rx_info.phy_descs, dev->base + RXDP);
738 
739 	ret = rx_refill(ndev, GFP_KERNEL);
740 	if (!ret) {
741 		dprintk("starting receiver\n");
742 		/* prevent the interrupt handler from stomping on us */
743 		spin_lock_irq(&dev->rx_info.lock);
744 
745 		writel(0x0001, dev->base + CCSR);
746 		writel(0, dev->base + RFCR);
747 		writel(0x7fc00000, dev->base + RFCR);
748 		writel(0xffc00000, dev->base + RFCR);
749 
750 		dev->rx_info.up = 1;
751 
752 		phy_intr(ndev);
753 
754 		/* Okay, let it rip */
755 		spin_lock(&dev->misc_lock);
756 		dev->IMR_cache |= ISR_PHY;
757 		dev->IMR_cache |= ISR_RXRCMP;
758 		//dev->IMR_cache |= ISR_RXERR;
759 		//dev->IMR_cache |= ISR_RXOK;
760 		dev->IMR_cache |= ISR_RXORN;
761 		dev->IMR_cache |= ISR_RXSOVR;
762 		dev->IMR_cache |= ISR_RXDESC;
763 		dev->IMR_cache |= ISR_RXIDLE;
764 		dev->IMR_cache |= ISR_TXDESC;
765 		dev->IMR_cache |= ISR_TXIDLE;
766 
767 		writel(dev->IMR_cache, dev->base + IMR);
768 		writel(1, dev->base + IER);
769 		spin_unlock(&dev->misc_lock);
770 
771 		kick_rx(ndev);
772 
773 		spin_unlock_irq(&dev->rx_info.lock);
774 	}
775 	return ret;
776 }
777 
778 static void ns83820_cleanup_rx(struct ns83820 *dev)
779 {
780 	unsigned i;
781 	unsigned long flags;
782 
783 	dprintk("ns83820_cleanup_rx(%p)\n", dev);
784 
785 	/* disable receive interrupts */
786 	spin_lock_irqsave(&dev->misc_lock, flags);
787 	dev->IMR_cache &= ~(ISR_RXOK | ISR_RXDESC | ISR_RXERR | ISR_RXEARLY | ISR_RXIDLE);
788 	writel(dev->IMR_cache, dev->base + IMR);
789 	spin_unlock_irqrestore(&dev->misc_lock, flags);
790 
791 	/* synchronize with the interrupt handler and kill it */
792 	dev->rx_info.up = 0;
793 	synchronize_irq(dev->pci_dev->irq);
794 
795 	/* touch the pci bus... */
796 	readl(dev->base + IMR);
797 
798 	/* assumes the transmitter is already disabled and reset */
799 	writel(0, dev->base + RXDP_HI);
800 	writel(0, dev->base + RXDP);
801 
802 	for (i=0; i<NR_RX_DESC; i++) {
803 		struct sk_buff *skb = dev->rx_info.skbs[i];
804 		dev->rx_info.skbs[i] = NULL;
805 		clear_rx_desc(dev, i);
806 		kfree_skb(skb);
807 	}
808 }
809 
810 static void ns83820_rx_kick(struct net_device *ndev)
811 {
812 	struct ns83820 *dev = PRIV(ndev);
813 	/*if (nr_rx_empty(dev) >= NR_RX_DESC/4)*/ {
814 		if (dev->rx_info.up) {
815 			rx_refill_atomic(ndev);
816 			kick_rx(ndev);
817 		}
818 	}
819 
820 	if (dev->rx_info.up && nr_rx_empty(dev) > NR_RX_DESC*3/4)
821 		schedule_work(&dev->tq_refill);
822 	else
823 		kick_rx(ndev);
824 	if (dev->rx_info.idle)
825 		printk(KERN_DEBUG "%s: BAD\n", ndev->name);
826 }
827 
828 /* rx_irq
829  *
830  */
831 static void rx_irq(struct net_device *ndev)
832 {
833 	struct ns83820 *dev = PRIV(ndev);
834 	struct rx_info *info = &dev->rx_info;
835 	unsigned next_rx;
836 	int rx_rc, len;
837 	u32 cmdsts;
838 	__le32 *desc;
839 	unsigned long flags;
840 	int nr = 0;
841 
842 	dprintk("rx_irq(%p)\n", ndev);
843 	dprintk("rxdp: %08x, descs: %08lx next_rx[%d]: %p next_empty[%d]: %p\n",
844 		readl(dev->base + RXDP),
845 		(long)(dev->rx_info.phy_descs),
846 		(int)dev->rx_info.next_rx,
847 		(dev->rx_info.descs + (DESC_SIZE * dev->rx_info.next_rx)),
848 		(int)dev->rx_info.next_empty,
849 		(dev->rx_info.descs + (DESC_SIZE * dev->rx_info.next_empty))
850 		);
851 
852 	spin_lock_irqsave(&info->lock, flags);
853 	if (!info->up)
854 		goto out;
855 
856 	dprintk("walking descs\n");
857 	next_rx = info->next_rx;
858 	desc = info->next_rx_desc;
859 	while ((CMDSTS_OWN & (cmdsts = le32_to_cpu(desc[DESC_CMDSTS]))) &&
860 	       (cmdsts != CMDSTS_OWN)) {
861 		struct sk_buff *skb;
862 		u32 extsts = le32_to_cpu(desc[DESC_EXTSTS]);
863 		dma_addr_t bufptr = desc_addr_get(desc + DESC_BUFPTR);
864 
865 		dprintk("cmdsts: %08x\n", cmdsts);
866 		dprintk("link: %08x\n", cpu_to_le32(desc[DESC_LINK]));
867 		dprintk("extsts: %08x\n", extsts);
868 
869 		skb = info->skbs[next_rx];
870 		info->skbs[next_rx] = NULL;
871 		info->next_rx = (next_rx + 1) % NR_RX_DESC;
872 
873 		mb();
874 		clear_rx_desc(dev, next_rx);
875 
876 		pci_unmap_single(dev->pci_dev, bufptr,
877 				 RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
878 		len = cmdsts & CMDSTS_LEN_MASK;
879 #ifdef NS83820_VLAN_ACCEL_SUPPORT
880 		/* NH: As was mentioned below, this chip is kinda
881 		 * brain dead about vlan tag stripping.  Frames
882 		 * that are 64 bytes with a vlan header appended
883 		 * like arp frames, or pings, are flagged as Runts
884 		 * when the tag is stripped and hardware.  This
885 		 * also means that the OK bit in the descriptor
886 		 * is cleared when the frame comes in so we have
887 		 * to do a specific length check here to make sure
888 		 * the frame would have been ok, had we not stripped
889 		 * the tag.
890 		 */
891 		if (likely((CMDSTS_OK & cmdsts) ||
892 			((cmdsts & CMDSTS_RUNT) && len >= 56))) {
893 #else
894 		if (likely(CMDSTS_OK & cmdsts)) {
895 #endif
896 			skb_put(skb, len);
897 			if (unlikely(!skb))
898 				goto netdev_mangle_me_harder_failed;
899 			if (cmdsts & CMDSTS_DEST_MULTI)
900 				ndev->stats.multicast++;
901 			ndev->stats.rx_packets++;
902 			ndev->stats.rx_bytes += len;
903 			if ((extsts & 0x002a0000) && !(extsts & 0x00540000)) {
904 				skb->ip_summed = CHECKSUM_UNNECESSARY;
905 			} else {
906 				skb_checksum_none_assert(skb);
907 			}
908 			skb->protocol = eth_type_trans(skb, ndev);
909 #ifdef NS83820_VLAN_ACCEL_SUPPORT
910 			if(extsts & EXTSTS_VPKT) {
911 				unsigned short tag;
912 
913 				tag = ntohs(extsts & EXTSTS_VTG_MASK);
914 				__vlan_hwaccel_put_tag(skb, tag);
915 			}
916 #endif
917 			rx_rc = netif_rx(skb);
918 			if (NET_RX_DROP == rx_rc) {
919 netdev_mangle_me_harder_failed:
920 				ndev->stats.rx_dropped++;
921 			}
922 		} else {
923 			kfree_skb(skb);
924 		}
925 
926 		nr++;
927 		next_rx = info->next_rx;
928 		desc = info->descs + (DESC_SIZE * next_rx);
929 	}
930 	info->next_rx = next_rx;
931 	info->next_rx_desc = info->descs + (DESC_SIZE * next_rx);
932 
933 out:
934 	if (0 && !nr) {
935 		Dprintk("dazed: cmdsts_f: %08x\n", cmdsts);
936 	}
937 
938 	spin_unlock_irqrestore(&info->lock, flags);
939 }
940 
941 static void rx_action(unsigned long _dev)
942 {
943 	struct net_device *ndev = (void *)_dev;
944 	struct ns83820 *dev = PRIV(ndev);
945 	rx_irq(ndev);
946 	writel(ihr, dev->base + IHR);
947 
948 	spin_lock_irq(&dev->misc_lock);
949 	dev->IMR_cache |= ISR_RXDESC;
950 	writel(dev->IMR_cache, dev->base + IMR);
951 	spin_unlock_irq(&dev->misc_lock);
952 
953 	rx_irq(ndev);
954 	ns83820_rx_kick(ndev);
955 }
956 
957 /* Packet Transmit code
958  */
959 static inline void kick_tx(struct ns83820 *dev)
960 {
961 	dprintk("kick_tx(%p): tx_idx=%d free_idx=%d\n",
962 		dev, dev->tx_idx, dev->tx_free_idx);
963 	writel(CR_TXE, dev->base + CR);
964 }
965 
966 /* No spinlock needed on the transmit irq path as the interrupt handler is
967  * serialized.
968  */
969 static void do_tx_done(struct net_device *ndev)
970 {
971 	struct ns83820 *dev = PRIV(ndev);
972 	u32 cmdsts, tx_done_idx;
973 	__le32 *desc;
974 
975 	dprintk("do_tx_done(%p)\n", ndev);
976 	tx_done_idx = dev->tx_done_idx;
977 	desc = dev->tx_descs + (tx_done_idx * DESC_SIZE);
978 
979 	dprintk("tx_done_idx=%d free_idx=%d cmdsts=%08x\n",
980 		tx_done_idx, dev->tx_free_idx, le32_to_cpu(desc[DESC_CMDSTS]));
981 	while ((tx_done_idx != dev->tx_free_idx) &&
982 	       !(CMDSTS_OWN & (cmdsts = le32_to_cpu(desc[DESC_CMDSTS]))) ) {
983 		struct sk_buff *skb;
984 		unsigned len;
985 		dma_addr_t addr;
986 
987 		if (cmdsts & CMDSTS_ERR)
988 			ndev->stats.tx_errors++;
989 		if (cmdsts & CMDSTS_OK)
990 			ndev->stats.tx_packets++;
991 		if (cmdsts & CMDSTS_OK)
992 			ndev->stats.tx_bytes += cmdsts & 0xffff;
993 
994 		dprintk("tx_done_idx=%d free_idx=%d cmdsts=%08x\n",
995 			tx_done_idx, dev->tx_free_idx, cmdsts);
996 		skb = dev->tx_skbs[tx_done_idx];
997 		dev->tx_skbs[tx_done_idx] = NULL;
998 		dprintk("done(%p)\n", skb);
999 
1000 		len = cmdsts & CMDSTS_LEN_MASK;
1001 		addr = desc_addr_get(desc + DESC_BUFPTR);
1002 		if (skb) {
1003 			pci_unmap_single(dev->pci_dev,
1004 					addr,
1005 					len,
1006 					PCI_DMA_TODEVICE);
1007 			dev_kfree_skb_irq(skb);
1008 			atomic_dec(&dev->nr_tx_skbs);
1009 		} else
1010 			pci_unmap_page(dev->pci_dev,
1011 					addr,
1012 					len,
1013 					PCI_DMA_TODEVICE);
1014 
1015 		tx_done_idx = (tx_done_idx + 1) % NR_TX_DESC;
1016 		dev->tx_done_idx = tx_done_idx;
1017 		desc[DESC_CMDSTS] = cpu_to_le32(0);
1018 		mb();
1019 		desc = dev->tx_descs + (tx_done_idx * DESC_SIZE);
1020 	}
1021 
1022 	/* Allow network stack to resume queueing packets after we've
1023 	 * finished transmitting at least 1/4 of the packets in the queue.
1024 	 */
1025 	if (netif_queue_stopped(ndev) && start_tx_okay(dev)) {
1026 		dprintk("start_queue(%p)\n", ndev);
1027 		netif_start_queue(ndev);
1028 		netif_wake_queue(ndev);
1029 	}
1030 }
1031 
1032 static void ns83820_cleanup_tx(struct ns83820 *dev)
1033 {
1034 	unsigned i;
1035 
1036 	for (i=0; i<NR_TX_DESC; i++) {
1037 		struct sk_buff *skb = dev->tx_skbs[i];
1038 		dev->tx_skbs[i] = NULL;
1039 		if (skb) {
1040 			__le32 *desc = dev->tx_descs + (i * DESC_SIZE);
1041 			pci_unmap_single(dev->pci_dev,
1042 					desc_addr_get(desc + DESC_BUFPTR),
1043 					le32_to_cpu(desc[DESC_CMDSTS]) & CMDSTS_LEN_MASK,
1044 					PCI_DMA_TODEVICE);
1045 			dev_kfree_skb_irq(skb);
1046 			atomic_dec(&dev->nr_tx_skbs);
1047 		}
1048 	}
1049 
1050 	memset(dev->tx_descs, 0, NR_TX_DESC * DESC_SIZE * 4);
1051 }
1052 
1053 /* transmit routine.  This code relies on the network layer serializing
1054  * its calls in, but will run happily in parallel with the interrupt
1055  * handler.  This code currently has provisions for fragmenting tx buffers
1056  * while trying to track down a bug in either the zero copy code or
1057  * the tx fifo (hence the MAX_FRAG_LEN).
1058  */
1059 static netdev_tx_t ns83820_hard_start_xmit(struct sk_buff *skb,
1060 					   struct net_device *ndev)
1061 {
1062 	struct ns83820 *dev = PRIV(ndev);
1063 	u32 free_idx, cmdsts, extsts;
1064 	int nr_free, nr_frags;
1065 	unsigned tx_done_idx, last_idx;
1066 	dma_addr_t buf;
1067 	unsigned len;
1068 	skb_frag_t *frag;
1069 	int stopped = 0;
1070 	int do_intr = 0;
1071 	volatile __le32 *first_desc;
1072 
1073 	dprintk("ns83820_hard_start_xmit\n");
1074 
1075 	nr_frags =  skb_shinfo(skb)->nr_frags;
1076 again:
1077 	if (unlikely(dev->CFG_cache & CFG_LNKSTS)) {
1078 		netif_stop_queue(ndev);
1079 		if (unlikely(dev->CFG_cache & CFG_LNKSTS))
1080 			return NETDEV_TX_BUSY;
1081 		netif_start_queue(ndev);
1082 	}
1083 
1084 	last_idx = free_idx = dev->tx_free_idx;
1085 	tx_done_idx = dev->tx_done_idx;
1086 	nr_free = (tx_done_idx + NR_TX_DESC-2 - free_idx) % NR_TX_DESC;
1087 	nr_free -= 1;
1088 	if (nr_free <= nr_frags) {
1089 		dprintk("stop_queue - not enough(%p)\n", ndev);
1090 		netif_stop_queue(ndev);
1091 
1092 		/* Check again: we may have raced with a tx done irq */
1093 		if (dev->tx_done_idx != tx_done_idx) {
1094 			dprintk("restart queue(%p)\n", ndev);
1095 			netif_start_queue(ndev);
1096 			goto again;
1097 		}
1098 		return NETDEV_TX_BUSY;
1099 	}
1100 
1101 	if (free_idx == dev->tx_intr_idx) {
1102 		do_intr = 1;
1103 		dev->tx_intr_idx = (dev->tx_intr_idx + NR_TX_DESC/4) % NR_TX_DESC;
1104 	}
1105 
1106 	nr_free -= nr_frags;
1107 	if (nr_free < MIN_TX_DESC_FREE) {
1108 		dprintk("stop_queue - last entry(%p)\n", ndev);
1109 		netif_stop_queue(ndev);
1110 		stopped = 1;
1111 	}
1112 
1113 	frag = skb_shinfo(skb)->frags;
1114 	if (!nr_frags)
1115 		frag = NULL;
1116 	extsts = 0;
1117 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
1118 		extsts |= EXTSTS_IPPKT;
1119 		if (IPPROTO_TCP == ip_hdr(skb)->protocol)
1120 			extsts |= EXTSTS_TCPPKT;
1121 		else if (IPPROTO_UDP == ip_hdr(skb)->protocol)
1122 			extsts |= EXTSTS_UDPPKT;
1123 	}
1124 
1125 #ifdef NS83820_VLAN_ACCEL_SUPPORT
1126 	if(vlan_tx_tag_present(skb)) {
1127 		/* fetch the vlan tag info out of the
1128 		 * ancillary data if the vlan code
1129 		 * is using hw vlan acceleration
1130 		 */
1131 		short tag = vlan_tx_tag_get(skb);
1132 		extsts |= (EXTSTS_VPKT | htons(tag));
1133 	}
1134 #endif
1135 
1136 	len = skb->len;
1137 	if (nr_frags)
1138 		len -= skb->data_len;
1139 	buf = pci_map_single(dev->pci_dev, skb->data, len, PCI_DMA_TODEVICE);
1140 
1141 	first_desc = dev->tx_descs + (free_idx * DESC_SIZE);
1142 
1143 	for (;;) {
1144 		volatile __le32 *desc = dev->tx_descs + (free_idx * DESC_SIZE);
1145 
1146 		dprintk("frag[%3u]: %4u @ 0x%08Lx\n", free_idx, len,
1147 			(unsigned long long)buf);
1148 		last_idx = free_idx;
1149 		free_idx = (free_idx + 1) % NR_TX_DESC;
1150 		desc[DESC_LINK] = cpu_to_le32(dev->tx_phy_descs + (free_idx * DESC_SIZE * 4));
1151 		desc_addr_set(desc + DESC_BUFPTR, buf);
1152 		desc[DESC_EXTSTS] = cpu_to_le32(extsts);
1153 
1154 		cmdsts = ((nr_frags) ? CMDSTS_MORE : do_intr ? CMDSTS_INTR : 0);
1155 		cmdsts |= (desc == first_desc) ? 0 : CMDSTS_OWN;
1156 		cmdsts |= len;
1157 		desc[DESC_CMDSTS] = cpu_to_le32(cmdsts);
1158 
1159 		if (!nr_frags)
1160 			break;
1161 
1162 		buf = skb_frag_dma_map(&dev->pci_dev->dev, frag, 0,
1163 				       skb_frag_size(frag), DMA_TO_DEVICE);
1164 		dprintk("frag: buf=%08Lx  page=%08lx offset=%08lx\n",
1165 			(long long)buf, (long) page_to_pfn(frag->page),
1166 			frag->page_offset);
1167 		len = skb_frag_size(frag);
1168 		frag++;
1169 		nr_frags--;
1170 	}
1171 	dprintk("done pkt\n");
1172 
1173 	spin_lock_irq(&dev->tx_lock);
1174 	dev->tx_skbs[last_idx] = skb;
1175 	first_desc[DESC_CMDSTS] |= cpu_to_le32(CMDSTS_OWN);
1176 	dev->tx_free_idx = free_idx;
1177 	atomic_inc(&dev->nr_tx_skbs);
1178 	spin_unlock_irq(&dev->tx_lock);
1179 
1180 	kick_tx(dev);
1181 
1182 	/* Check again: we may have raced with a tx done irq */
1183 	if (stopped && (dev->tx_done_idx != tx_done_idx) && start_tx_okay(dev))
1184 		netif_start_queue(ndev);
1185 
1186 	return NETDEV_TX_OK;
1187 }
1188 
1189 static void ns83820_update_stats(struct ns83820 *dev)
1190 {
1191 	struct net_device *ndev = dev->ndev;
1192 	u8 __iomem *base = dev->base;
1193 
1194 	/* the DP83820 will freeze counters, so we need to read all of them */
1195 	ndev->stats.rx_errors		+= readl(base + 0x60) & 0xffff;
1196 	ndev->stats.rx_crc_errors	+= readl(base + 0x64) & 0xffff;
1197 	ndev->stats.rx_missed_errors	+= readl(base + 0x68) & 0xffff;
1198 	ndev->stats.rx_frame_errors	+= readl(base + 0x6c) & 0xffff;
1199 	/*ndev->stats.rx_symbol_errors +=*/ readl(base + 0x70);
1200 	ndev->stats.rx_length_errors	+= readl(base + 0x74) & 0xffff;
1201 	ndev->stats.rx_length_errors	+= readl(base + 0x78) & 0xffff;
1202 	/*ndev->stats.rx_badopcode_errors += */ readl(base + 0x7c);
1203 	/*ndev->stats.rx_pause_count += */  readl(base + 0x80);
1204 	/*ndev->stats.tx_pause_count += */  readl(base + 0x84);
1205 	ndev->stats.tx_carrier_errors	+= readl(base + 0x88) & 0xff;
1206 }
1207 
1208 static struct net_device_stats *ns83820_get_stats(struct net_device *ndev)
1209 {
1210 	struct ns83820 *dev = PRIV(ndev);
1211 
1212 	/* somewhat overkill */
1213 	spin_lock_irq(&dev->misc_lock);
1214 	ns83820_update_stats(dev);
1215 	spin_unlock_irq(&dev->misc_lock);
1216 
1217 	return &ndev->stats;
1218 }
1219 
1220 /* Let ethtool retrieve info */
1221 static int ns83820_get_settings(struct net_device *ndev,
1222 				struct ethtool_cmd *cmd)
1223 {
1224 	struct ns83820 *dev = PRIV(ndev);
1225 	u32 cfg, tanar, tbicr;
1226 	int fullduplex   = 0;
1227 
1228 	/*
1229 	 * Here's the list of available ethtool commands from other drivers:
1230 	 *	cmd->advertising =
1231 	 *	ethtool_cmd_speed_set(cmd, ...)
1232 	 *	cmd->duplex =
1233 	 *	cmd->port = 0;
1234 	 *	cmd->phy_address =
1235 	 *	cmd->transceiver = 0;
1236 	 *	cmd->autoneg =
1237 	 *	cmd->maxtxpkt = 0;
1238 	 *	cmd->maxrxpkt = 0;
1239 	 */
1240 
1241 	/* read current configuration */
1242 	cfg   = readl(dev->base + CFG) ^ SPDSTS_POLARITY;
1243 	tanar = readl(dev->base + TANAR);
1244 	tbicr = readl(dev->base + TBICR);
1245 
1246 	fullduplex = (cfg & CFG_DUPSTS) ? 1 : 0;
1247 
1248 	cmd->supported = SUPPORTED_Autoneg;
1249 
1250 	if (dev->CFG_cache & CFG_TBI_EN) {
1251 		/* we have optical interface */
1252 		cmd->supported |= SUPPORTED_1000baseT_Half |
1253 					SUPPORTED_1000baseT_Full |
1254 					SUPPORTED_FIBRE;
1255 		cmd->port       = PORT_FIBRE;
1256 	} else {
1257 		/* we have copper */
1258 		cmd->supported |= SUPPORTED_10baseT_Half |
1259 			SUPPORTED_10baseT_Full | SUPPORTED_100baseT_Half |
1260 			SUPPORTED_100baseT_Full | SUPPORTED_1000baseT_Half |
1261 			SUPPORTED_1000baseT_Full |
1262 			SUPPORTED_MII;
1263 		cmd->port = PORT_MII;
1264 	}
1265 
1266 	cmd->duplex = fullduplex ? DUPLEX_FULL : DUPLEX_HALF;
1267 	switch (cfg / CFG_SPDSTS0 & 3) {
1268 	case 2:
1269 		ethtool_cmd_speed_set(cmd, SPEED_1000);
1270 		break;
1271 	case 1:
1272 		ethtool_cmd_speed_set(cmd, SPEED_100);
1273 		break;
1274 	default:
1275 		ethtool_cmd_speed_set(cmd, SPEED_10);
1276 		break;
1277 	}
1278 	cmd->autoneg = (tbicr & TBICR_MR_AN_ENABLE)
1279 		? AUTONEG_ENABLE : AUTONEG_DISABLE;
1280 	return 0;
1281 }
1282 
1283 /* Let ethool change settings*/
1284 static int ns83820_set_settings(struct net_device *ndev,
1285 				struct ethtool_cmd *cmd)
1286 {
1287 	struct ns83820 *dev = PRIV(ndev);
1288 	u32 cfg, tanar;
1289 	int have_optical = 0;
1290 	int fullduplex   = 0;
1291 
1292 	/* read current configuration */
1293 	cfg = readl(dev->base + CFG) ^ SPDSTS_POLARITY;
1294 	tanar = readl(dev->base + TANAR);
1295 
1296 	if (dev->CFG_cache & CFG_TBI_EN) {
1297 		/* we have optical */
1298 		have_optical = 1;
1299 		fullduplex   = (tanar & TANAR_FULL_DUP);
1300 
1301 	} else {
1302 		/* we have copper */
1303 		fullduplex = cfg & CFG_DUPSTS;
1304 	}
1305 
1306 	spin_lock_irq(&dev->misc_lock);
1307 	spin_lock(&dev->tx_lock);
1308 
1309 	/* Set duplex */
1310 	if (cmd->duplex != fullduplex) {
1311 		if (have_optical) {
1312 			/*set full duplex*/
1313 			if (cmd->duplex == DUPLEX_FULL) {
1314 				/* force full duplex */
1315 				writel(readl(dev->base + TXCFG)
1316 					| TXCFG_CSI | TXCFG_HBI | TXCFG_ATP,
1317 					dev->base + TXCFG);
1318 				writel(readl(dev->base + RXCFG) | RXCFG_RX_FD,
1319 					dev->base + RXCFG);
1320 				/* Light up full duplex LED */
1321 				writel(readl(dev->base + GPIOR) | GPIOR_GP1_OUT,
1322 					dev->base + GPIOR);
1323 			} else {
1324 				/*TODO: set half duplex */
1325 			}
1326 
1327 		} else {
1328 			/*we have copper*/
1329 			/* TODO: Set duplex for copper cards */
1330 		}
1331 		printk(KERN_INFO "%s: Duplex set via ethtool\n",
1332 		ndev->name);
1333 	}
1334 
1335 	/* Set autonegotiation */
1336 	if (1) {
1337 		if (cmd->autoneg == AUTONEG_ENABLE) {
1338 			/* restart auto negotiation */
1339 			writel(TBICR_MR_AN_ENABLE | TBICR_MR_RESTART_AN,
1340 				dev->base + TBICR);
1341 			writel(TBICR_MR_AN_ENABLE, dev->base + TBICR);
1342 				dev->linkstate = LINK_AUTONEGOTIATE;
1343 
1344 			printk(KERN_INFO "%s: autoneg enabled via ethtool\n",
1345 				ndev->name);
1346 		} else {
1347 			/* disable auto negotiation */
1348 			writel(0x00000000, dev->base + TBICR);
1349 		}
1350 
1351 		printk(KERN_INFO "%s: autoneg %s via ethtool\n", ndev->name,
1352 				cmd->autoneg ? "ENABLED" : "DISABLED");
1353 	}
1354 
1355 	phy_intr(ndev);
1356 	spin_unlock(&dev->tx_lock);
1357 	spin_unlock_irq(&dev->misc_lock);
1358 
1359 	return 0;
1360 }
1361 /* end ethtool get/set support -df */
1362 
1363 static void ns83820_get_drvinfo(struct net_device *ndev, struct ethtool_drvinfo *info)
1364 {
1365 	struct ns83820 *dev = PRIV(ndev);
1366 	strlcpy(info->driver, "ns83820", sizeof(info->driver));
1367 	strlcpy(info->version, VERSION, sizeof(info->version));
1368 	strlcpy(info->bus_info, pci_name(dev->pci_dev), sizeof(info->bus_info));
1369 }
1370 
1371 static u32 ns83820_get_link(struct net_device *ndev)
1372 {
1373 	struct ns83820 *dev = PRIV(ndev);
1374 	u32 cfg = readl(dev->base + CFG) ^ SPDSTS_POLARITY;
1375 	return cfg & CFG_LNKSTS ? 1 : 0;
1376 }
1377 
1378 static const struct ethtool_ops ops = {
1379 	.get_settings    = ns83820_get_settings,
1380 	.set_settings    = ns83820_set_settings,
1381 	.get_drvinfo     = ns83820_get_drvinfo,
1382 	.get_link        = ns83820_get_link
1383 };
1384 
1385 static inline void ns83820_disable_interrupts(struct ns83820 *dev)
1386 {
1387 	writel(0, dev->base + IMR);
1388 	writel(0, dev->base + IER);
1389 	readl(dev->base + IER);
1390 }
1391 
1392 /* this function is called in irq context from the ISR */
1393 static void ns83820_mib_isr(struct ns83820 *dev)
1394 {
1395 	unsigned long flags;
1396 	spin_lock_irqsave(&dev->misc_lock, flags);
1397 	ns83820_update_stats(dev);
1398 	spin_unlock_irqrestore(&dev->misc_lock, flags);
1399 }
1400 
1401 static void ns83820_do_isr(struct net_device *ndev, u32 isr);
1402 static irqreturn_t ns83820_irq(int foo, void *data)
1403 {
1404 	struct net_device *ndev = data;
1405 	struct ns83820 *dev = PRIV(ndev);
1406 	u32 isr;
1407 	dprintk("ns83820_irq(%p)\n", ndev);
1408 
1409 	dev->ihr = 0;
1410 
1411 	isr = readl(dev->base + ISR);
1412 	dprintk("irq: %08x\n", isr);
1413 	ns83820_do_isr(ndev, isr);
1414 	return IRQ_HANDLED;
1415 }
1416 
1417 static void ns83820_do_isr(struct net_device *ndev, u32 isr)
1418 {
1419 	struct ns83820 *dev = PRIV(ndev);
1420 	unsigned long flags;
1421 
1422 #ifdef DEBUG
1423 	if (isr & ~(ISR_PHY | ISR_RXDESC | ISR_RXEARLY | ISR_RXOK | ISR_RXERR | ISR_TXIDLE | ISR_TXOK | ISR_TXDESC))
1424 		Dprintk("odd isr? 0x%08x\n", isr);
1425 #endif
1426 
1427 	if (ISR_RXIDLE & isr) {
1428 		dev->rx_info.idle = 1;
1429 		Dprintk("oh dear, we are idle\n");
1430 		ns83820_rx_kick(ndev);
1431 	}
1432 
1433 	if ((ISR_RXDESC | ISR_RXOK) & isr) {
1434 		prefetch(dev->rx_info.next_rx_desc);
1435 
1436 		spin_lock_irqsave(&dev->misc_lock, flags);
1437 		dev->IMR_cache &= ~(ISR_RXDESC | ISR_RXOK);
1438 		writel(dev->IMR_cache, dev->base + IMR);
1439 		spin_unlock_irqrestore(&dev->misc_lock, flags);
1440 
1441 		tasklet_schedule(&dev->rx_tasklet);
1442 		//rx_irq(ndev);
1443 		//writel(4, dev->base + IHR);
1444 	}
1445 
1446 	if ((ISR_RXIDLE | ISR_RXORN | ISR_RXDESC | ISR_RXOK | ISR_RXERR) & isr)
1447 		ns83820_rx_kick(ndev);
1448 
1449 	if (unlikely(ISR_RXSOVR & isr)) {
1450 		//printk("overrun: rxsovr\n");
1451 		ndev->stats.rx_fifo_errors++;
1452 	}
1453 
1454 	if (unlikely(ISR_RXORN & isr)) {
1455 		//printk("overrun: rxorn\n");
1456 		ndev->stats.rx_fifo_errors++;
1457 	}
1458 
1459 	if ((ISR_RXRCMP & isr) && dev->rx_info.up)
1460 		writel(CR_RXE, dev->base + CR);
1461 
1462 	if (ISR_TXIDLE & isr) {
1463 		u32 txdp;
1464 		txdp = readl(dev->base + TXDP);
1465 		dprintk("txdp: %08x\n", txdp);
1466 		txdp -= dev->tx_phy_descs;
1467 		dev->tx_idx = txdp / (DESC_SIZE * 4);
1468 		if (dev->tx_idx >= NR_TX_DESC) {
1469 			printk(KERN_ALERT "%s: BUG -- txdp out of range\n", ndev->name);
1470 			dev->tx_idx = 0;
1471 		}
1472 		/* The may have been a race between a pci originated read
1473 		 * and the descriptor update from the cpu.  Just in case,
1474 		 * kick the transmitter if the hardware thinks it is on a
1475 		 * different descriptor than we are.
1476 		 */
1477 		if (dev->tx_idx != dev->tx_free_idx)
1478 			kick_tx(dev);
1479 	}
1480 
1481 	/* Defer tx ring processing until more than a minimum amount of
1482 	 * work has accumulated
1483 	 */
1484 	if ((ISR_TXDESC | ISR_TXIDLE | ISR_TXOK | ISR_TXERR) & isr) {
1485 		spin_lock_irqsave(&dev->tx_lock, flags);
1486 		do_tx_done(ndev);
1487 		spin_unlock_irqrestore(&dev->tx_lock, flags);
1488 
1489 		/* Disable TxOk if there are no outstanding tx packets.
1490 		 */
1491 		if ((dev->tx_done_idx == dev->tx_free_idx) &&
1492 		    (dev->IMR_cache & ISR_TXOK)) {
1493 			spin_lock_irqsave(&dev->misc_lock, flags);
1494 			dev->IMR_cache &= ~ISR_TXOK;
1495 			writel(dev->IMR_cache, dev->base + IMR);
1496 			spin_unlock_irqrestore(&dev->misc_lock, flags);
1497 		}
1498 	}
1499 
1500 	/* The TxIdle interrupt can come in before the transmit has
1501 	 * completed.  Normally we reap packets off of the combination
1502 	 * of TxDesc and TxIdle and leave TxOk disabled (since it
1503 	 * occurs on every packet), but when no further irqs of this
1504 	 * nature are expected, we must enable TxOk.
1505 	 */
1506 	if ((ISR_TXIDLE & isr) && (dev->tx_done_idx != dev->tx_free_idx)) {
1507 		spin_lock_irqsave(&dev->misc_lock, flags);
1508 		dev->IMR_cache |= ISR_TXOK;
1509 		writel(dev->IMR_cache, dev->base + IMR);
1510 		spin_unlock_irqrestore(&dev->misc_lock, flags);
1511 	}
1512 
1513 	/* MIB interrupt: one of the statistics counters is about to overflow */
1514 	if (unlikely(ISR_MIB & isr))
1515 		ns83820_mib_isr(dev);
1516 
1517 	/* PHY: Link up/down/negotiation state change */
1518 	if (unlikely(ISR_PHY & isr))
1519 		phy_intr(ndev);
1520 
1521 #if 0	/* Still working on the interrupt mitigation strategy */
1522 	if (dev->ihr)
1523 		writel(dev->ihr, dev->base + IHR);
1524 #endif
1525 }
1526 
1527 static void ns83820_do_reset(struct ns83820 *dev, u32 which)
1528 {
1529 	Dprintk("resetting chip...\n");
1530 	writel(which, dev->base + CR);
1531 	do {
1532 		schedule();
1533 	} while (readl(dev->base + CR) & which);
1534 	Dprintk("okay!\n");
1535 }
1536 
1537 static int ns83820_stop(struct net_device *ndev)
1538 {
1539 	struct ns83820 *dev = PRIV(ndev);
1540 
1541 	/* FIXME: protect against interrupt handler? */
1542 	del_timer_sync(&dev->tx_watchdog);
1543 
1544 	ns83820_disable_interrupts(dev);
1545 
1546 	dev->rx_info.up = 0;
1547 	synchronize_irq(dev->pci_dev->irq);
1548 
1549 	ns83820_do_reset(dev, CR_RST);
1550 
1551 	synchronize_irq(dev->pci_dev->irq);
1552 
1553 	spin_lock_irq(&dev->misc_lock);
1554 	dev->IMR_cache &= ~(ISR_TXURN | ISR_TXIDLE | ISR_TXERR | ISR_TXDESC | ISR_TXOK);
1555 	spin_unlock_irq(&dev->misc_lock);
1556 
1557 	ns83820_cleanup_rx(dev);
1558 	ns83820_cleanup_tx(dev);
1559 
1560 	return 0;
1561 }
1562 
1563 static void ns83820_tx_timeout(struct net_device *ndev)
1564 {
1565 	struct ns83820 *dev = PRIV(ndev);
1566         u32 tx_done_idx;
1567 	__le32 *desc;
1568 	unsigned long flags;
1569 
1570 	spin_lock_irqsave(&dev->tx_lock, flags);
1571 
1572 	tx_done_idx = dev->tx_done_idx;
1573 	desc = dev->tx_descs + (tx_done_idx * DESC_SIZE);
1574 
1575 	printk(KERN_INFO "%s: tx_timeout: tx_done_idx=%d free_idx=%d cmdsts=%08x\n",
1576 		ndev->name,
1577 		tx_done_idx, dev->tx_free_idx, le32_to_cpu(desc[DESC_CMDSTS]));
1578 
1579 #if defined(DEBUG)
1580 	{
1581 		u32 isr;
1582 		isr = readl(dev->base + ISR);
1583 		printk("irq: %08x imr: %08x\n", isr, dev->IMR_cache);
1584 		ns83820_do_isr(ndev, isr);
1585 	}
1586 #endif
1587 
1588 	do_tx_done(ndev);
1589 
1590 	tx_done_idx = dev->tx_done_idx;
1591 	desc = dev->tx_descs + (tx_done_idx * DESC_SIZE);
1592 
1593 	printk(KERN_INFO "%s: after: tx_done_idx=%d free_idx=%d cmdsts=%08x\n",
1594 		ndev->name,
1595 		tx_done_idx, dev->tx_free_idx, le32_to_cpu(desc[DESC_CMDSTS]));
1596 
1597 	spin_unlock_irqrestore(&dev->tx_lock, flags);
1598 }
1599 
1600 static void ns83820_tx_watch(unsigned long data)
1601 {
1602 	struct net_device *ndev = (void *)data;
1603 	struct ns83820 *dev = PRIV(ndev);
1604 
1605 #if defined(DEBUG)
1606 	printk("ns83820_tx_watch: %u %u %d\n",
1607 		dev->tx_done_idx, dev->tx_free_idx, atomic_read(&dev->nr_tx_skbs)
1608 		);
1609 #endif
1610 
1611 	if (time_after(jiffies, dev_trans_start(ndev) + 1*HZ) &&
1612 	    dev->tx_done_idx != dev->tx_free_idx) {
1613 		printk(KERN_DEBUG "%s: ns83820_tx_watch: %u %u %d\n",
1614 			ndev->name,
1615 			dev->tx_done_idx, dev->tx_free_idx,
1616 			atomic_read(&dev->nr_tx_skbs));
1617 		ns83820_tx_timeout(ndev);
1618 	}
1619 
1620 	mod_timer(&dev->tx_watchdog, jiffies + 2*HZ);
1621 }
1622 
1623 static int ns83820_open(struct net_device *ndev)
1624 {
1625 	struct ns83820 *dev = PRIV(ndev);
1626 	unsigned i;
1627 	u32 desc;
1628 	int ret;
1629 
1630 	dprintk("ns83820_open\n");
1631 
1632 	writel(0, dev->base + PQCR);
1633 
1634 	ret = ns83820_setup_rx(ndev);
1635 	if (ret)
1636 		goto failed;
1637 
1638 	memset(dev->tx_descs, 0, 4 * NR_TX_DESC * DESC_SIZE);
1639 	for (i=0; i<NR_TX_DESC; i++) {
1640 		dev->tx_descs[(i * DESC_SIZE) + DESC_LINK]
1641 				= cpu_to_le32(
1642 				  dev->tx_phy_descs
1643 				  + ((i+1) % NR_TX_DESC) * DESC_SIZE * 4);
1644 	}
1645 
1646 	dev->tx_idx = 0;
1647 	dev->tx_done_idx = 0;
1648 	desc = dev->tx_phy_descs;
1649 	writel(0, dev->base + TXDP_HI);
1650 	writel(desc, dev->base + TXDP);
1651 
1652 	init_timer(&dev->tx_watchdog);
1653 	dev->tx_watchdog.data = (unsigned long)ndev;
1654 	dev->tx_watchdog.function = ns83820_tx_watch;
1655 	mod_timer(&dev->tx_watchdog, jiffies + 2*HZ);
1656 
1657 	netif_start_queue(ndev);	/* FIXME: wait for phy to come up */
1658 
1659 	return 0;
1660 
1661 failed:
1662 	ns83820_stop(ndev);
1663 	return ret;
1664 }
1665 
1666 static void ns83820_getmac(struct ns83820 *dev, u8 *mac)
1667 {
1668 	unsigned i;
1669 	for (i=0; i<3; i++) {
1670 		u32 data;
1671 
1672 		/* Read from the perfect match memory: this is loaded by
1673 		 * the chip from the EEPROM via the EELOAD self test.
1674 		 */
1675 		writel(i*2, dev->base + RFCR);
1676 		data = readl(dev->base + RFDR);
1677 
1678 		*mac++ = data;
1679 		*mac++ = data >> 8;
1680 	}
1681 }
1682 
1683 static int ns83820_change_mtu(struct net_device *ndev, int new_mtu)
1684 {
1685 	if (new_mtu > RX_BUF_SIZE)
1686 		return -EINVAL;
1687 	ndev->mtu = new_mtu;
1688 	return 0;
1689 }
1690 
1691 static void ns83820_set_multicast(struct net_device *ndev)
1692 {
1693 	struct ns83820 *dev = PRIV(ndev);
1694 	u8 __iomem *rfcr = dev->base + RFCR;
1695 	u32 and_mask = 0xffffffff;
1696 	u32 or_mask = 0;
1697 	u32 val;
1698 
1699 	if (ndev->flags & IFF_PROMISC)
1700 		or_mask |= RFCR_AAU | RFCR_AAM;
1701 	else
1702 		and_mask &= ~(RFCR_AAU | RFCR_AAM);
1703 
1704 	if (ndev->flags & IFF_ALLMULTI || netdev_mc_count(ndev))
1705 		or_mask |= RFCR_AAM;
1706 	else
1707 		and_mask &= ~RFCR_AAM;
1708 
1709 	spin_lock_irq(&dev->misc_lock);
1710 	val = (readl(rfcr) & and_mask) | or_mask;
1711 	/* Ramit : RFCR Write Fix doc says RFEN must be 0 modify other bits */
1712 	writel(val & ~RFCR_RFEN, rfcr);
1713 	writel(val, rfcr);
1714 	spin_unlock_irq(&dev->misc_lock);
1715 }
1716 
1717 static void ns83820_run_bist(struct net_device *ndev, const char *name, u32 enable, u32 done, u32 fail)
1718 {
1719 	struct ns83820 *dev = PRIV(ndev);
1720 	int timed_out = 0;
1721 	unsigned long start;
1722 	u32 status;
1723 	int loops = 0;
1724 
1725 	dprintk("%s: start %s\n", ndev->name, name);
1726 
1727 	start = jiffies;
1728 
1729 	writel(enable, dev->base + PTSCR);
1730 	for (;;) {
1731 		loops++;
1732 		status = readl(dev->base + PTSCR);
1733 		if (!(status & enable))
1734 			break;
1735 		if (status & done)
1736 			break;
1737 		if (status & fail)
1738 			break;
1739 		if (time_after_eq(jiffies, start + HZ)) {
1740 			timed_out = 1;
1741 			break;
1742 		}
1743 		schedule_timeout_uninterruptible(1);
1744 	}
1745 
1746 	if (status & fail)
1747 		printk(KERN_INFO "%s: %s failed! (0x%08x & 0x%08x)\n",
1748 			ndev->name, name, status, fail);
1749 	else if (timed_out)
1750 		printk(KERN_INFO "%s: run_bist %s timed out! (%08x)\n",
1751 			ndev->name, name, status);
1752 
1753 	dprintk("%s: done %s in %d loops\n", ndev->name, name, loops);
1754 }
1755 
1756 #ifdef PHY_CODE_IS_FINISHED
1757 static void ns83820_mii_write_bit(struct ns83820 *dev, int bit)
1758 {
1759 	/* drive MDC low */
1760 	dev->MEAR_cache &= ~MEAR_MDC;
1761 	writel(dev->MEAR_cache, dev->base + MEAR);
1762 	readl(dev->base + MEAR);
1763 
1764 	/* enable output, set bit */
1765 	dev->MEAR_cache |= MEAR_MDDIR;
1766 	if (bit)
1767 		dev->MEAR_cache |= MEAR_MDIO;
1768 	else
1769 		dev->MEAR_cache &= ~MEAR_MDIO;
1770 
1771 	/* set the output bit */
1772 	writel(dev->MEAR_cache, dev->base + MEAR);
1773 	readl(dev->base + MEAR);
1774 
1775 	/* Wait.  Max clock rate is 2.5MHz, this way we come in under 1MHz */
1776 	udelay(1);
1777 
1778 	/* drive MDC high causing the data bit to be latched */
1779 	dev->MEAR_cache |= MEAR_MDC;
1780 	writel(dev->MEAR_cache, dev->base + MEAR);
1781 	readl(dev->base + MEAR);
1782 
1783 	/* Wait again... */
1784 	udelay(1);
1785 }
1786 
1787 static int ns83820_mii_read_bit(struct ns83820 *dev)
1788 {
1789 	int bit;
1790 
1791 	/* drive MDC low, disable output */
1792 	dev->MEAR_cache &= ~MEAR_MDC;
1793 	dev->MEAR_cache &= ~MEAR_MDDIR;
1794 	writel(dev->MEAR_cache, dev->base + MEAR);
1795 	readl(dev->base + MEAR);
1796 
1797 	/* Wait.  Max clock rate is 2.5MHz, this way we come in under 1MHz */
1798 	udelay(1);
1799 
1800 	/* drive MDC high causing the data bit to be latched */
1801 	bit = (readl(dev->base + MEAR) & MEAR_MDIO) ? 1 : 0;
1802 	dev->MEAR_cache |= MEAR_MDC;
1803 	writel(dev->MEAR_cache, dev->base + MEAR);
1804 
1805 	/* Wait again... */
1806 	udelay(1);
1807 
1808 	return bit;
1809 }
1810 
1811 static unsigned ns83820_mii_read_reg(struct ns83820 *dev, unsigned phy, unsigned reg)
1812 {
1813 	unsigned data = 0;
1814 	int i;
1815 
1816 	/* read some garbage so that we eventually sync up */
1817 	for (i=0; i<64; i++)
1818 		ns83820_mii_read_bit(dev);
1819 
1820 	ns83820_mii_write_bit(dev, 0);	/* start */
1821 	ns83820_mii_write_bit(dev, 1);
1822 	ns83820_mii_write_bit(dev, 1);	/* opcode read */
1823 	ns83820_mii_write_bit(dev, 0);
1824 
1825 	/* write out the phy address: 5 bits, msb first */
1826 	for (i=0; i<5; i++)
1827 		ns83820_mii_write_bit(dev, phy & (0x10 >> i));
1828 
1829 	/* write out the register address, 5 bits, msb first */
1830 	for (i=0; i<5; i++)
1831 		ns83820_mii_write_bit(dev, reg & (0x10 >> i));
1832 
1833 	ns83820_mii_read_bit(dev);	/* turn around cycles */
1834 	ns83820_mii_read_bit(dev);
1835 
1836 	/* read in the register data, 16 bits msb first */
1837 	for (i=0; i<16; i++) {
1838 		data <<= 1;
1839 		data |= ns83820_mii_read_bit(dev);
1840 	}
1841 
1842 	return data;
1843 }
1844 
1845 static unsigned ns83820_mii_write_reg(struct ns83820 *dev, unsigned phy, unsigned reg, unsigned data)
1846 {
1847 	int i;
1848 
1849 	/* read some garbage so that we eventually sync up */
1850 	for (i=0; i<64; i++)
1851 		ns83820_mii_read_bit(dev);
1852 
1853 	ns83820_mii_write_bit(dev, 0);	/* start */
1854 	ns83820_mii_write_bit(dev, 1);
1855 	ns83820_mii_write_bit(dev, 0);	/* opcode read */
1856 	ns83820_mii_write_bit(dev, 1);
1857 
1858 	/* write out the phy address: 5 bits, msb first */
1859 	for (i=0; i<5; i++)
1860 		ns83820_mii_write_bit(dev, phy & (0x10 >> i));
1861 
1862 	/* write out the register address, 5 bits, msb first */
1863 	for (i=0; i<5; i++)
1864 		ns83820_mii_write_bit(dev, reg & (0x10 >> i));
1865 
1866 	ns83820_mii_read_bit(dev);	/* turn around cycles */
1867 	ns83820_mii_read_bit(dev);
1868 
1869 	/* read in the register data, 16 bits msb first */
1870 	for (i=0; i<16; i++)
1871 		ns83820_mii_write_bit(dev, (data >> (15 - i)) & 1);
1872 
1873 	return data;
1874 }
1875 
1876 static void ns83820_probe_phy(struct net_device *ndev)
1877 {
1878 	struct ns83820 *dev = PRIV(ndev);
1879 	static int first;
1880 	int i;
1881 #define MII_PHYIDR1	0x02
1882 #define MII_PHYIDR2	0x03
1883 
1884 #if 0
1885 	if (!first) {
1886 		unsigned tmp;
1887 		ns83820_mii_read_reg(dev, 1, 0x09);
1888 		ns83820_mii_write_reg(dev, 1, 0x10, 0x0d3e);
1889 
1890 		tmp = ns83820_mii_read_reg(dev, 1, 0x00);
1891 		ns83820_mii_write_reg(dev, 1, 0x00, tmp | 0x8000);
1892 		udelay(1300);
1893 		ns83820_mii_read_reg(dev, 1, 0x09);
1894 	}
1895 #endif
1896 	first = 1;
1897 
1898 	for (i=1; i<2; i++) {
1899 		int j;
1900 		unsigned a, b;
1901 		a = ns83820_mii_read_reg(dev, i, MII_PHYIDR1);
1902 		b = ns83820_mii_read_reg(dev, i, MII_PHYIDR2);
1903 
1904 		//printk("%s: phy %d: 0x%04x 0x%04x\n",
1905 		//	ndev->name, i, a, b);
1906 
1907 		for (j=0; j<0x16; j+=4) {
1908 			dprintk("%s: [0x%02x] %04x %04x %04x %04x\n",
1909 				ndev->name, j,
1910 				ns83820_mii_read_reg(dev, i, 0 + j),
1911 				ns83820_mii_read_reg(dev, i, 1 + j),
1912 				ns83820_mii_read_reg(dev, i, 2 + j),
1913 				ns83820_mii_read_reg(dev, i, 3 + j)
1914 				);
1915 		}
1916 	}
1917 	{
1918 		unsigned a, b;
1919 		/* read firmware version: memory addr is 0x8402 and 0x8403 */
1920 		ns83820_mii_write_reg(dev, 1, 0x16, 0x000d);
1921 		ns83820_mii_write_reg(dev, 1, 0x1e, 0x810e);
1922 		a = ns83820_mii_read_reg(dev, 1, 0x1d);
1923 
1924 		ns83820_mii_write_reg(dev, 1, 0x16, 0x000d);
1925 		ns83820_mii_write_reg(dev, 1, 0x1e, 0x810e);
1926 		b = ns83820_mii_read_reg(dev, 1, 0x1d);
1927 		dprintk("version: 0x%04x 0x%04x\n", a, b);
1928 	}
1929 }
1930 #endif
1931 
1932 static const struct net_device_ops netdev_ops = {
1933 	.ndo_open		= ns83820_open,
1934 	.ndo_stop		= ns83820_stop,
1935 	.ndo_start_xmit		= ns83820_hard_start_xmit,
1936 	.ndo_get_stats		= ns83820_get_stats,
1937 	.ndo_change_mtu		= ns83820_change_mtu,
1938 	.ndo_set_rx_mode	= ns83820_set_multicast,
1939 	.ndo_validate_addr	= eth_validate_addr,
1940 	.ndo_set_mac_address	= eth_mac_addr,
1941 	.ndo_tx_timeout		= ns83820_tx_timeout,
1942 };
1943 
1944 static int __devinit ns83820_init_one(struct pci_dev *pci_dev,
1945 				      const struct pci_device_id *id)
1946 {
1947 	struct net_device *ndev;
1948 	struct ns83820 *dev;
1949 	long addr;
1950 	int err;
1951 	int using_dac = 0;
1952 
1953 	/* See if we can set the dma mask early on; failure is fatal. */
1954 	if (sizeof(dma_addr_t) == 8 &&
1955 		!pci_set_dma_mask(pci_dev, DMA_BIT_MASK(64))) {
1956 		using_dac = 1;
1957 	} else if (!pci_set_dma_mask(pci_dev, DMA_BIT_MASK(32))) {
1958 		using_dac = 0;
1959 	} else {
1960 		dev_warn(&pci_dev->dev, "pci_set_dma_mask failed!\n");
1961 		return -ENODEV;
1962 	}
1963 
1964 	ndev = alloc_etherdev(sizeof(struct ns83820));
1965 	err = -ENOMEM;
1966 	if (!ndev)
1967 		goto out;
1968 
1969 	dev = PRIV(ndev);
1970 	dev->ndev = ndev;
1971 
1972 	spin_lock_init(&dev->rx_info.lock);
1973 	spin_lock_init(&dev->tx_lock);
1974 	spin_lock_init(&dev->misc_lock);
1975 	dev->pci_dev = pci_dev;
1976 
1977 	SET_NETDEV_DEV(ndev, &pci_dev->dev);
1978 
1979 	INIT_WORK(&dev->tq_refill, queue_refill);
1980 	tasklet_init(&dev->rx_tasklet, rx_action, (unsigned long)ndev);
1981 
1982 	err = pci_enable_device(pci_dev);
1983 	if (err) {
1984 		dev_info(&pci_dev->dev, "pci_enable_dev failed: %d\n", err);
1985 		goto out_free;
1986 	}
1987 
1988 	pci_set_master(pci_dev);
1989 	addr = pci_resource_start(pci_dev, 1);
1990 	dev->base = ioremap_nocache(addr, PAGE_SIZE);
1991 	dev->tx_descs = pci_alloc_consistent(pci_dev,
1992 			4 * DESC_SIZE * NR_TX_DESC, &dev->tx_phy_descs);
1993 	dev->rx_info.descs = pci_alloc_consistent(pci_dev,
1994 			4 * DESC_SIZE * NR_RX_DESC, &dev->rx_info.phy_descs);
1995 	err = -ENOMEM;
1996 	if (!dev->base || !dev->tx_descs || !dev->rx_info.descs)
1997 		goto out_disable;
1998 
1999 	dprintk("%p: %08lx  %p: %08lx\n",
2000 		dev->tx_descs, (long)dev->tx_phy_descs,
2001 		dev->rx_info.descs, (long)dev->rx_info.phy_descs);
2002 
2003 	ns83820_disable_interrupts(dev);
2004 
2005 	dev->IMR_cache = 0;
2006 
2007 	err = request_irq(pci_dev->irq, ns83820_irq, IRQF_SHARED,
2008 			  DRV_NAME, ndev);
2009 	if (err) {
2010 		dev_info(&pci_dev->dev, "unable to register irq %d, err %d\n",
2011 			pci_dev->irq, err);
2012 		goto out_disable;
2013 	}
2014 
2015 	/*
2016 	 * FIXME: we are holding rtnl_lock() over obscenely long area only
2017 	 * because some of the setup code uses dev->name.  It's Wrong(tm) -
2018 	 * we should be using driver-specific names for all that stuff.
2019 	 * For now that will do, but we really need to come back and kill
2020 	 * most of the dev_alloc_name() users later.
2021 	 */
2022 	rtnl_lock();
2023 	err = dev_alloc_name(ndev, ndev->name);
2024 	if (err < 0) {
2025 		dev_info(&pci_dev->dev, "unable to get netdev name: %d\n", err);
2026 		goto out_free_irq;
2027 	}
2028 
2029 	printk("%s: ns83820.c: 0x22c: %08x, subsystem: %04x:%04x\n",
2030 		ndev->name, le32_to_cpu(readl(dev->base + 0x22c)),
2031 		pci_dev->subsystem_vendor, pci_dev->subsystem_device);
2032 
2033 	ndev->netdev_ops = &netdev_ops;
2034 	SET_ETHTOOL_OPS(ndev, &ops);
2035 	ndev->watchdog_timeo = 5 * HZ;
2036 	pci_set_drvdata(pci_dev, ndev);
2037 
2038 	ns83820_do_reset(dev, CR_RST);
2039 
2040 	/* Must reset the ram bist before running it */
2041 	writel(PTSCR_RBIST_RST, dev->base + PTSCR);
2042 	ns83820_run_bist(ndev, "sram bist",   PTSCR_RBIST_EN,
2043 			 PTSCR_RBIST_DONE, PTSCR_RBIST_FAIL);
2044 	ns83820_run_bist(ndev, "eeprom bist", PTSCR_EEBIST_EN, 0,
2045 			 PTSCR_EEBIST_FAIL);
2046 	ns83820_run_bist(ndev, "eeprom load", PTSCR_EELOAD_EN, 0, 0);
2047 
2048 	/* I love config registers */
2049 	dev->CFG_cache = readl(dev->base + CFG);
2050 
2051 	if ((dev->CFG_cache & CFG_PCI64_DET)) {
2052 		printk(KERN_INFO "%s: detected 64 bit PCI data bus.\n",
2053 			ndev->name);
2054 		/*dev->CFG_cache |= CFG_DATA64_EN;*/
2055 		if (!(dev->CFG_cache & CFG_DATA64_EN))
2056 			printk(KERN_INFO "%s: EEPROM did not enable 64 bit bus.  Disabled.\n",
2057 				ndev->name);
2058 	} else
2059 		dev->CFG_cache &= ~(CFG_DATA64_EN);
2060 
2061 	dev->CFG_cache &= (CFG_TBI_EN  | CFG_MRM_DIS   | CFG_MWI_DIS |
2062 			   CFG_T64ADDR | CFG_DATA64_EN | CFG_EXT_125 |
2063 			   CFG_M64ADDR);
2064 	dev->CFG_cache |= CFG_PINT_DUPSTS | CFG_PINT_LNKSTS | CFG_PINT_SPDSTS |
2065 			  CFG_EXTSTS_EN   | CFG_EXD         | CFG_PESEL;
2066 	dev->CFG_cache |= CFG_REQALG;
2067 	dev->CFG_cache |= CFG_POW;
2068 	dev->CFG_cache |= CFG_TMRTEST;
2069 
2070 	/* When compiled with 64 bit addressing, we must always enable
2071 	 * the 64 bit descriptor format.
2072 	 */
2073 	if (sizeof(dma_addr_t) == 8)
2074 		dev->CFG_cache |= CFG_M64ADDR;
2075 	if (using_dac)
2076 		dev->CFG_cache |= CFG_T64ADDR;
2077 
2078 	/* Big endian mode does not seem to do what the docs suggest */
2079 	dev->CFG_cache &= ~CFG_BEM;
2080 
2081 	/* setup optical transceiver if we have one */
2082 	if (dev->CFG_cache & CFG_TBI_EN) {
2083 		printk(KERN_INFO "%s: enabling optical transceiver\n",
2084 			ndev->name);
2085 		writel(readl(dev->base + GPIOR) | 0x3e8, dev->base + GPIOR);
2086 
2087 		/* setup auto negotiation feature advertisement */
2088 		writel(readl(dev->base + TANAR)
2089 		       | TANAR_HALF_DUP | TANAR_FULL_DUP,
2090 		       dev->base + TANAR);
2091 
2092 		/* start auto negotiation */
2093 		writel(TBICR_MR_AN_ENABLE | TBICR_MR_RESTART_AN,
2094 		       dev->base + TBICR);
2095 		writel(TBICR_MR_AN_ENABLE, dev->base + TBICR);
2096 		dev->linkstate = LINK_AUTONEGOTIATE;
2097 
2098 		dev->CFG_cache |= CFG_MODE_1000;
2099 	}
2100 
2101 	writel(dev->CFG_cache, dev->base + CFG);
2102 	dprintk("CFG: %08x\n", dev->CFG_cache);
2103 
2104 	if (reset_phy) {
2105 		printk(KERN_INFO "%s: resetting phy\n", ndev->name);
2106 		writel(dev->CFG_cache | CFG_PHY_RST, dev->base + CFG);
2107 		msleep(10);
2108 		writel(dev->CFG_cache, dev->base + CFG);
2109 	}
2110 
2111 #if 0	/* Huh?  This sets the PCI latency register.  Should be done via
2112 	 * the PCI layer.  FIXME.
2113 	 */
2114 	if (readl(dev->base + SRR))
2115 		writel(readl(dev->base+0x20c) | 0xfe00, dev->base + 0x20c);
2116 #endif
2117 
2118 	/* Note!  The DMA burst size interacts with packet
2119 	 * transmission, such that the largest packet that
2120 	 * can be transmitted is 8192 - FLTH - burst size.
2121 	 * If only the transmit fifo was larger...
2122 	 */
2123 	/* Ramit : 1024 DMA is not a good idea, it ends up banging
2124 	 * some DELL and COMPAQ SMP systems */
2125 	writel(TXCFG_CSI | TXCFG_HBI | TXCFG_ATP | TXCFG_MXDMA512
2126 		| ((1600 / 32) * 0x100),
2127 		dev->base + TXCFG);
2128 
2129 	/* Flush the interrupt holdoff timer */
2130 	writel(0x000, dev->base + IHR);
2131 	writel(0x100, dev->base + IHR);
2132 	writel(0x000, dev->base + IHR);
2133 
2134 	/* Set Rx to full duplex, don't accept runt, errored, long or length
2135 	 * range errored packets.  Use 512 byte DMA.
2136 	 */
2137 	/* Ramit : 1024 DMA is not a good idea, it ends up banging
2138 	 * some DELL and COMPAQ SMP systems
2139 	 * Turn on ALP, only we are accpeting Jumbo Packets */
2140 	writel(RXCFG_AEP | RXCFG_ARP | RXCFG_AIRL | RXCFG_RX_FD
2141 		| RXCFG_STRIPCRC
2142 		//| RXCFG_ALP
2143 		| (RXCFG_MXDMA512) | 0, dev->base + RXCFG);
2144 
2145 	/* Disable priority queueing */
2146 	writel(0, dev->base + PQCR);
2147 
2148 	/* Enable IP checksum validation and detetion of VLAN headers.
2149 	 * Note: do not set the reject options as at least the 0x102
2150 	 * revision of the chip does not properly accept IP fragments
2151 	 * at least for UDP.
2152 	 */
2153 	/* Ramit : Be sure to turn on RXCFG_ARP if VLAN's are enabled, since
2154 	 * the MAC it calculates the packetsize AFTER stripping the VLAN
2155 	 * header, and if a VLAN Tagged packet of 64 bytes is received (like
2156 	 * a ping with a VLAN header) then the card, strips the 4 byte VLAN
2157 	 * tag and then checks the packet size, so if RXCFG_ARP is not enabled,
2158 	 * it discrards it!.  These guys......
2159 	 * also turn on tag stripping if hardware acceleration is enabled
2160 	 */
2161 #ifdef NS83820_VLAN_ACCEL_SUPPORT
2162 #define VRCR_INIT_VALUE (VRCR_IPEN|VRCR_VTDEN|VRCR_VTREN)
2163 #else
2164 #define VRCR_INIT_VALUE (VRCR_IPEN|VRCR_VTDEN)
2165 #endif
2166 	writel(VRCR_INIT_VALUE, dev->base + VRCR);
2167 
2168 	/* Enable per-packet TCP/UDP/IP checksumming
2169 	 * and per packet vlan tag insertion if
2170 	 * vlan hardware acceleration is enabled
2171 	 */
2172 #ifdef NS83820_VLAN_ACCEL_SUPPORT
2173 #define VTCR_INIT_VALUE (VTCR_PPCHK|VTCR_VPPTI)
2174 #else
2175 #define VTCR_INIT_VALUE VTCR_PPCHK
2176 #endif
2177 	writel(VTCR_INIT_VALUE, dev->base + VTCR);
2178 
2179 	/* Ramit : Enable async and sync pause frames */
2180 	/* writel(0, dev->base + PCR); */
2181 	writel((PCR_PS_MCAST | PCR_PS_DA | PCR_PSEN | PCR_FFLO_4K |
2182 		PCR_FFHI_8K | PCR_STLO_4 | PCR_STHI_8 | PCR_PAUSE_CNT),
2183 		dev->base + PCR);
2184 
2185 	/* Disable Wake On Lan */
2186 	writel(0, dev->base + WCSR);
2187 
2188 	ns83820_getmac(dev, ndev->dev_addr);
2189 
2190 	/* Yes, we support dumb IP checksum on transmit */
2191 	ndev->features |= NETIF_F_SG;
2192 	ndev->features |= NETIF_F_IP_CSUM;
2193 
2194 #ifdef NS83820_VLAN_ACCEL_SUPPORT
2195 	/* We also support hardware vlan acceleration */
2196 	ndev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
2197 #endif
2198 
2199 	if (using_dac) {
2200 		printk(KERN_INFO "%s: using 64 bit addressing.\n",
2201 			ndev->name);
2202 		ndev->features |= NETIF_F_HIGHDMA;
2203 	}
2204 
2205 	printk(KERN_INFO "%s: ns83820 v" VERSION ": DP83820 v%u.%u: %pM io=0x%08lx irq=%d f=%s\n",
2206 		ndev->name,
2207 		(unsigned)readl(dev->base + SRR) >> 8,
2208 		(unsigned)readl(dev->base + SRR) & 0xff,
2209 		ndev->dev_addr, addr, pci_dev->irq,
2210 		(ndev->features & NETIF_F_HIGHDMA) ? "h,sg" : "sg"
2211 		);
2212 
2213 #ifdef PHY_CODE_IS_FINISHED
2214 	ns83820_probe_phy(ndev);
2215 #endif
2216 
2217 	err = register_netdevice(ndev);
2218 	if (err) {
2219 		printk(KERN_INFO "ns83820: unable to register netdev: %d\n", err);
2220 		goto out_cleanup;
2221 	}
2222 	rtnl_unlock();
2223 
2224 	return 0;
2225 
2226 out_cleanup:
2227 	ns83820_disable_interrupts(dev); /* paranoia */
2228 out_free_irq:
2229 	rtnl_unlock();
2230 	free_irq(pci_dev->irq, ndev);
2231 out_disable:
2232 	if (dev->base)
2233 		iounmap(dev->base);
2234 	pci_free_consistent(pci_dev, 4 * DESC_SIZE * NR_TX_DESC, dev->tx_descs, dev->tx_phy_descs);
2235 	pci_free_consistent(pci_dev, 4 * DESC_SIZE * NR_RX_DESC, dev->rx_info.descs, dev->rx_info.phy_descs);
2236 	pci_disable_device(pci_dev);
2237 out_free:
2238 	free_netdev(ndev);
2239 	pci_set_drvdata(pci_dev, NULL);
2240 out:
2241 	return err;
2242 }
2243 
2244 static void __devexit ns83820_remove_one(struct pci_dev *pci_dev)
2245 {
2246 	struct net_device *ndev = pci_get_drvdata(pci_dev);
2247 	struct ns83820 *dev = PRIV(ndev); /* ok even if NULL */
2248 
2249 	if (!ndev)			/* paranoia */
2250 		return;
2251 
2252 	ns83820_disable_interrupts(dev); /* paranoia */
2253 
2254 	unregister_netdev(ndev);
2255 	free_irq(dev->pci_dev->irq, ndev);
2256 	iounmap(dev->base);
2257 	pci_free_consistent(dev->pci_dev, 4 * DESC_SIZE * NR_TX_DESC,
2258 			dev->tx_descs, dev->tx_phy_descs);
2259 	pci_free_consistent(dev->pci_dev, 4 * DESC_SIZE * NR_RX_DESC,
2260 			dev->rx_info.descs, dev->rx_info.phy_descs);
2261 	pci_disable_device(dev->pci_dev);
2262 	free_netdev(ndev);
2263 	pci_set_drvdata(pci_dev, NULL);
2264 }
2265 
2266 static DEFINE_PCI_DEVICE_TABLE(ns83820_pci_tbl) = {
2267 	{ 0x100b, 0x0022, PCI_ANY_ID, PCI_ANY_ID, 0, .driver_data = 0, },
2268 	{ 0, },
2269 };
2270 
2271 static struct pci_driver driver = {
2272 	.name		= "ns83820",
2273 	.id_table	= ns83820_pci_tbl,
2274 	.probe		= ns83820_init_one,
2275 	.remove		= __devexit_p(ns83820_remove_one),
2276 #if 0	/* FIXME: implement */
2277 	.suspend	= ,
2278 	.resume		= ,
2279 #endif
2280 };
2281 
2282 
2283 static int __init ns83820_init(void)
2284 {
2285 	printk(KERN_INFO "ns83820.c: National Semiconductor DP83820 10/100/1000 driver.\n");
2286 	return pci_register_driver(&driver);
2287 }
2288 
2289 static void __exit ns83820_exit(void)
2290 {
2291 	pci_unregister_driver(&driver);
2292 }
2293 
2294 MODULE_AUTHOR("Benjamin LaHaise <bcrl@kvack.org>");
2295 MODULE_DESCRIPTION("National Semiconductor DP83820 10/100/1000 driver");
2296 MODULE_LICENSE("GPL");
2297 
2298 MODULE_DEVICE_TABLE(pci, ns83820_pci_tbl);
2299 
2300 module_param(lnksts, int, 0);
2301 MODULE_PARM_DESC(lnksts, "Polarity of LNKSTS bit");
2302 
2303 module_param(ihr, int, 0);
2304 MODULE_PARM_DESC(ihr, "Time in 100 us increments to delay interrupts (range 0-127)");
2305 
2306 module_param(reset_phy, int, 0);
2307 MODULE_PARM_DESC(reset_phy, "Set to 1 to reset the PHY on startup");
2308 
2309 module_init(ns83820_init);
2310 module_exit(ns83820_exit);
2311