1 #define VERSION "0.23"
2 /* ns83820.c by Benjamin LaHaise with contributions.
3  *
4  * Questions/comments/discussion to linux-ns83820@kvack.org.
5  *
6  * $Revision: 1.34.2.23 $
7  *
8  * Copyright 2001 Benjamin LaHaise.
9  * Copyright 2001, 2002 Red Hat.
10  *
11  * Mmmm, chocolate vanilla mocha...
12  *
13  *
14  * This program is free software; you can redistribute it and/or modify
15  * it under the terms of the GNU General Public License as published by
16  * the Free Software Foundation; either version 2 of the License, or
17  * (at your option) any later version.
18  *
19  * This program is distributed in the hope that it will be useful,
20  * but WITHOUT ANY WARRANTY; without even the implied warranty of
21  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
22  * GNU General Public License for more details.
23  *
24  * You should have received a copy of the GNU General Public License
25  * along with this program; if not, write to the Free Software
26  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
27  *
28  *
29  * ChangeLog
30  * =========
31  *	20010414	0.1 - created
32  *	20010622	0.2 - basic rx and tx.
33  *	20010711	0.3 - added duplex and link state detection support.
34  *	20010713	0.4 - zero copy, no hangs.
35  *			0.5 - 64 bit dma support (davem will hate me for this)
36  *			    - disable jumbo frames to avoid tx hangs
37  *			    - work around tx deadlocks on my 1.02 card via
38  *			      fiddling with TXCFG
39  *	20010810	0.6 - use pci dma api for ringbuffers, work on ia64
40  *	20010816	0.7 - misc cleanups
41  *	20010826	0.8 - fix critical zero copy bugs
42  *			0.9 - internal experiment
43  *	20010827	0.10 - fix ia64 unaligned access.
44  *	20010906	0.11 - accept all packets with checksum errors as
45  *			       otherwise fragments get lost
46  *			     - fix >> 32 bugs
47  *			0.12 - add statistics counters
48  *			     - add allmulti/promisc support
49  *	20011009	0.13 - hotplug support, other smaller pci api cleanups
50  *	20011204	0.13a - optical transceiver support added
51  *				by Michael Clark <michael@metaparadigm.com>
52  *	20011205	0.13b - call register_netdev earlier in initialization
53  *				suppress duplicate link status messages
54  *	20011117 	0.14 - ethtool GDRVINFO, GLINK support from jgarzik
55  *	20011204 	0.15	get ppc (big endian) working
56  *	20011218	0.16	various cleanups
57  *	20020310	0.17	speedups
58  *	20020610	0.18 -	actually use the pci dma api for highmem
59  *			     -	remove pci latency register fiddling
60  *			0.19 -	better bist support
61  *			     -	add ihr and reset_phy parameters
62  *			     -	gmii bus probing
63  *			     -	fix missed txok introduced during performance
64  *				tuning
65  *			0.20 -	fix stupid RFEN thinko.  i am such a smurf.
66  *	20040828	0.21 -	add hardware vlan accleration
67  *				by Neil Horman <nhorman@redhat.com>
68  *	20050406	0.22 -	improved DAC ifdefs from Andi Kleen
69  *			     -	removal of dead code from Adrian Bunk
70  *			     -	fix half duplex collision behaviour
71  * Driver Overview
72  * ===============
73  *
74  * This driver was originally written for the National Semiconductor
75  * 83820 chip, a 10/100/1000 Mbps 64 bit PCI ethernet NIC.  Hopefully
76  * this code will turn out to be a) clean, b) correct, and c) fast.
77  * With that in mind, I'm aiming to split the code up as much as
78  * reasonably possible.  At present there are X major sections that
79  * break down into a) packet receive, b) packet transmit, c) link
80  * management, d) initialization and configuration.  Where possible,
81  * these code paths are designed to run in parallel.
82  *
83  * This driver has been tested and found to work with the following
84  * cards (in no particular order):
85  *
86  *	Cameo		SOHO-GA2000T	SOHO-GA2500T
87  *	D-Link		DGE-500T
88  *	PureData	PDP8023Z-TG
89  *	SMC		SMC9452TX	SMC9462TX
90  *	Netgear		GA621
91  *
92  * Special thanks to SMC for providing hardware to test this driver on.
93  *
94  * Reports of success or failure would be greatly appreciated.
95  */
96 //#define dprintk		printk
97 #define dprintk(x...)		do { } while (0)
98 
99 #include <linux/module.h>
100 #include <linux/moduleparam.h>
101 #include <linux/types.h>
102 #include <linux/pci.h>
103 #include <linux/dma-mapping.h>
104 #include <linux/netdevice.h>
105 #include <linux/etherdevice.h>
106 #include <linux/delay.h>
107 #include <linux/workqueue.h>
108 #include <linux/init.h>
109 #include <linux/interrupt.h>
110 #include <linux/ip.h>	/* for iph */
111 #include <linux/in.h>	/* for IPPROTO_... */
112 #include <linux/compiler.h>
113 #include <linux/prefetch.h>
114 #include <linux/ethtool.h>
115 #include <linux/sched.h>
116 #include <linux/timer.h>
117 #include <linux/if_vlan.h>
118 #include <linux/rtnetlink.h>
119 #include <linux/jiffies.h>
120 #include <linux/slab.h>
121 
122 #include <asm/io.h>
123 #include <asm/uaccess.h>
124 #include <asm/system.h>
125 
126 #define DRV_NAME "ns83820"
127 
128 /* Global parameters.  See module_param near the bottom. */
129 static int ihr = 2;
130 static int reset_phy = 0;
131 static int lnksts = 0;		/* CFG_LNKSTS bit polarity */
132 
133 /* Dprintk is used for more interesting debug events */
134 #undef Dprintk
135 #define	Dprintk			dprintk
136 
137 /* tunables */
138 #define RX_BUF_SIZE	1500	/* 8192 */
139 #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
140 #define NS83820_VLAN_ACCEL_SUPPORT
141 #endif
142 
143 /* Must not exceed ~65000. */
144 #define NR_RX_DESC	64
145 #define NR_TX_DESC	128
146 
147 /* not tunable */
148 #define REAL_RX_BUF_SIZE (RX_BUF_SIZE + 14)	/* rx/tx mac addr + type */
149 
150 #define MIN_TX_DESC_FREE	8
151 
152 /* register defines */
153 #define CFGCS		0x04
154 
155 #define CR_TXE		0x00000001
156 #define CR_TXD		0x00000002
157 /* Ramit : Here's a tip, don't do a RXD immediately followed by an RXE
158  * The Receive engine skips one descriptor and moves
159  * onto the next one!! */
160 #define CR_RXE		0x00000004
161 #define CR_RXD		0x00000008
162 #define CR_TXR		0x00000010
163 #define CR_RXR		0x00000020
164 #define CR_SWI		0x00000080
165 #define CR_RST		0x00000100
166 
167 #define PTSCR_EEBIST_FAIL       0x00000001
168 #define PTSCR_EEBIST_EN         0x00000002
169 #define PTSCR_EELOAD_EN         0x00000004
170 #define PTSCR_RBIST_FAIL        0x000001b8
171 #define PTSCR_RBIST_DONE        0x00000200
172 #define PTSCR_RBIST_EN          0x00000400
173 #define PTSCR_RBIST_RST         0x00002000
174 
175 #define MEAR_EEDI		0x00000001
176 #define MEAR_EEDO		0x00000002
177 #define MEAR_EECLK		0x00000004
178 #define MEAR_EESEL		0x00000008
179 #define MEAR_MDIO		0x00000010
180 #define MEAR_MDDIR		0x00000020
181 #define MEAR_MDC		0x00000040
182 
183 #define ISR_TXDESC3	0x40000000
184 #define ISR_TXDESC2	0x20000000
185 #define ISR_TXDESC1	0x10000000
186 #define ISR_TXDESC0	0x08000000
187 #define ISR_RXDESC3	0x04000000
188 #define ISR_RXDESC2	0x02000000
189 #define ISR_RXDESC1	0x01000000
190 #define ISR_RXDESC0	0x00800000
191 #define ISR_TXRCMP	0x00400000
192 #define ISR_RXRCMP	0x00200000
193 #define ISR_DPERR	0x00100000
194 #define ISR_SSERR	0x00080000
195 #define ISR_RMABT	0x00040000
196 #define ISR_RTABT	0x00020000
197 #define ISR_RXSOVR	0x00010000
198 #define ISR_HIBINT	0x00008000
199 #define ISR_PHY		0x00004000
200 #define ISR_PME		0x00002000
201 #define ISR_SWI		0x00001000
202 #define ISR_MIB		0x00000800
203 #define ISR_TXURN	0x00000400
204 #define ISR_TXIDLE	0x00000200
205 #define ISR_TXERR	0x00000100
206 #define ISR_TXDESC	0x00000080
207 #define ISR_TXOK	0x00000040
208 #define ISR_RXORN	0x00000020
209 #define ISR_RXIDLE	0x00000010
210 #define ISR_RXEARLY	0x00000008
211 #define ISR_RXERR	0x00000004
212 #define ISR_RXDESC	0x00000002
213 #define ISR_RXOK	0x00000001
214 
215 #define TXCFG_CSI	0x80000000
216 #define TXCFG_HBI	0x40000000
217 #define TXCFG_MLB	0x20000000
218 #define TXCFG_ATP	0x10000000
219 #define TXCFG_ECRETRY	0x00800000
220 #define TXCFG_BRST_DIS	0x00080000
221 #define TXCFG_MXDMA1024	0x00000000
222 #define TXCFG_MXDMA512	0x00700000
223 #define TXCFG_MXDMA256	0x00600000
224 #define TXCFG_MXDMA128	0x00500000
225 #define TXCFG_MXDMA64	0x00400000
226 #define TXCFG_MXDMA32	0x00300000
227 #define TXCFG_MXDMA16	0x00200000
228 #define TXCFG_MXDMA8	0x00100000
229 
230 #define CFG_LNKSTS	0x80000000
231 #define CFG_SPDSTS	0x60000000
232 #define CFG_SPDSTS1	0x40000000
233 #define CFG_SPDSTS0	0x20000000
234 #define CFG_DUPSTS	0x10000000
235 #define CFG_TBI_EN	0x01000000
236 #define CFG_MODE_1000	0x00400000
237 /* Ramit : Dont' ever use AUTO_1000, it never works and is buggy.
238  * Read the Phy response and then configure the MAC accordingly */
239 #define CFG_AUTO_1000	0x00200000
240 #define CFG_PINT_CTL	0x001c0000
241 #define CFG_PINT_DUPSTS	0x00100000
242 #define CFG_PINT_LNKSTS	0x00080000
243 #define CFG_PINT_SPDSTS	0x00040000
244 #define CFG_TMRTEST	0x00020000
245 #define CFG_MRM_DIS	0x00010000
246 #define CFG_MWI_DIS	0x00008000
247 #define CFG_T64ADDR	0x00004000
248 #define CFG_PCI64_DET	0x00002000
249 #define CFG_DATA64_EN	0x00001000
250 #define CFG_M64ADDR	0x00000800
251 #define CFG_PHY_RST	0x00000400
252 #define CFG_PHY_DIS	0x00000200
253 #define CFG_EXTSTS_EN	0x00000100
254 #define CFG_REQALG	0x00000080
255 #define CFG_SB		0x00000040
256 #define CFG_POW		0x00000020
257 #define CFG_EXD		0x00000010
258 #define CFG_PESEL	0x00000008
259 #define CFG_BROM_DIS	0x00000004
260 #define CFG_EXT_125	0x00000002
261 #define CFG_BEM		0x00000001
262 
263 #define EXTSTS_UDPPKT	0x00200000
264 #define EXTSTS_TCPPKT	0x00080000
265 #define EXTSTS_IPPKT	0x00020000
266 #define EXTSTS_VPKT	0x00010000
267 #define EXTSTS_VTG_MASK	0x0000ffff
268 
269 #define SPDSTS_POLARITY	(CFG_SPDSTS1 | CFG_SPDSTS0 | CFG_DUPSTS | (lnksts ? CFG_LNKSTS : 0))
270 
271 #define MIBC_MIBS	0x00000008
272 #define MIBC_ACLR	0x00000004
273 #define MIBC_FRZ	0x00000002
274 #define MIBC_WRN	0x00000001
275 
276 #define PCR_PSEN	(1 << 31)
277 #define PCR_PS_MCAST	(1 << 30)
278 #define PCR_PS_DA	(1 << 29)
279 #define PCR_STHI_8	(3 << 23)
280 #define PCR_STLO_4	(1 << 23)
281 #define PCR_FFHI_8K	(3 << 21)
282 #define PCR_FFLO_4K	(1 << 21)
283 #define PCR_PAUSE_CNT	0xFFFE
284 
285 #define RXCFG_AEP	0x80000000
286 #define RXCFG_ARP	0x40000000
287 #define RXCFG_STRIPCRC	0x20000000
288 #define RXCFG_RX_FD	0x10000000
289 #define RXCFG_ALP	0x08000000
290 #define RXCFG_AIRL	0x04000000
291 #define RXCFG_MXDMA512	0x00700000
292 #define RXCFG_DRTH	0x0000003e
293 #define RXCFG_DRTH0	0x00000002
294 
295 #define RFCR_RFEN	0x80000000
296 #define RFCR_AAB	0x40000000
297 #define RFCR_AAM	0x20000000
298 #define RFCR_AAU	0x10000000
299 #define RFCR_APM	0x08000000
300 #define RFCR_APAT	0x07800000
301 #define RFCR_APAT3	0x04000000
302 #define RFCR_APAT2	0x02000000
303 #define RFCR_APAT1	0x01000000
304 #define RFCR_APAT0	0x00800000
305 #define RFCR_AARP	0x00400000
306 #define RFCR_MHEN	0x00200000
307 #define RFCR_UHEN	0x00100000
308 #define RFCR_ULM	0x00080000
309 
310 #define VRCR_RUDPE	0x00000080
311 #define VRCR_RTCPE	0x00000040
312 #define VRCR_RIPE	0x00000020
313 #define VRCR_IPEN	0x00000010
314 #define VRCR_DUTF	0x00000008
315 #define VRCR_DVTF	0x00000004
316 #define VRCR_VTREN	0x00000002
317 #define VRCR_VTDEN	0x00000001
318 
319 #define VTCR_PPCHK	0x00000008
320 #define VTCR_GCHK	0x00000004
321 #define VTCR_VPPTI	0x00000002
322 #define VTCR_VGTI	0x00000001
323 
324 #define CR		0x00
325 #define CFG		0x04
326 #define MEAR		0x08
327 #define PTSCR		0x0c
328 #define	ISR		0x10
329 #define	IMR		0x14
330 #define	IER		0x18
331 #define	IHR		0x1c
332 #define TXDP		0x20
333 #define TXDP_HI		0x24
334 #define TXCFG		0x28
335 #define GPIOR		0x2c
336 #define RXDP		0x30
337 #define RXDP_HI		0x34
338 #define RXCFG		0x38
339 #define PQCR		0x3c
340 #define WCSR		0x40
341 #define PCR		0x44
342 #define RFCR		0x48
343 #define RFDR		0x4c
344 
345 #define SRR		0x58
346 
347 #define VRCR		0xbc
348 #define VTCR		0xc0
349 #define VDR		0xc4
350 #define CCSR		0xcc
351 
352 #define TBICR		0xe0
353 #define TBISR		0xe4
354 #define TANAR		0xe8
355 #define TANLPAR		0xec
356 #define TANER		0xf0
357 #define TESR		0xf4
358 
359 #define TBICR_MR_AN_ENABLE	0x00001000
360 #define TBICR_MR_RESTART_AN	0x00000200
361 
362 #define TBISR_MR_LINK_STATUS	0x00000020
363 #define TBISR_MR_AN_COMPLETE	0x00000004
364 
365 #define TANAR_PS2 		0x00000100
366 #define TANAR_PS1 		0x00000080
367 #define TANAR_HALF_DUP 		0x00000040
368 #define TANAR_FULL_DUP 		0x00000020
369 
370 #define GPIOR_GP5_OE		0x00000200
371 #define GPIOR_GP4_OE		0x00000100
372 #define GPIOR_GP3_OE		0x00000080
373 #define GPIOR_GP2_OE		0x00000040
374 #define GPIOR_GP1_OE		0x00000020
375 #define GPIOR_GP3_OUT		0x00000004
376 #define GPIOR_GP1_OUT		0x00000001
377 
378 #define LINK_AUTONEGOTIATE	0x01
379 #define LINK_DOWN		0x02
380 #define LINK_UP			0x04
381 
382 #define HW_ADDR_LEN	sizeof(dma_addr_t)
383 #define desc_addr_set(desc, addr)				\
384 	do {							\
385 		((desc)[0] = cpu_to_le32(addr));		\
386 		if (HW_ADDR_LEN == 8)		 		\
387 			(desc)[1] = cpu_to_le32(((u64)addr) >> 32);	\
388 	} while(0)
389 #define desc_addr_get(desc)					\
390 	(le32_to_cpu((desc)[0]) | \
391 	(HW_ADDR_LEN == 8 ? ((dma_addr_t)le32_to_cpu((desc)[1]))<<32 : 0))
392 
393 #define DESC_LINK		0
394 #define DESC_BUFPTR		(DESC_LINK + HW_ADDR_LEN/4)
395 #define DESC_CMDSTS		(DESC_BUFPTR + HW_ADDR_LEN/4)
396 #define DESC_EXTSTS		(DESC_CMDSTS + 4/4)
397 
398 #define CMDSTS_OWN	0x80000000
399 #define CMDSTS_MORE	0x40000000
400 #define CMDSTS_INTR	0x20000000
401 #define CMDSTS_ERR	0x10000000
402 #define CMDSTS_OK	0x08000000
403 #define CMDSTS_RUNT	0x00200000
404 #define CMDSTS_LEN_MASK	0x0000ffff
405 
406 #define CMDSTS_DEST_MASK	0x01800000
407 #define CMDSTS_DEST_SELF	0x00800000
408 #define CMDSTS_DEST_MULTI	0x01000000
409 
410 #define DESC_SIZE	8		/* Should be cache line sized */
411 
412 struct rx_info {
413 	spinlock_t	lock;
414 	int		up;
415 	unsigned long	idle;
416 
417 	struct sk_buff	*skbs[NR_RX_DESC];
418 
419 	__le32		*next_rx_desc;
420 	u16		next_rx, next_empty;
421 
422 	__le32		*descs;
423 	dma_addr_t	phy_descs;
424 };
425 
426 
427 struct ns83820 {
428 	u8			__iomem *base;
429 
430 	struct pci_dev		*pci_dev;
431 	struct net_device	*ndev;
432 
433 	struct rx_info		rx_info;
434 	struct tasklet_struct	rx_tasklet;
435 
436 	unsigned		ihr;
437 	struct work_struct	tq_refill;
438 
439 	/* protects everything below.  irqsave when using. */
440 	spinlock_t		misc_lock;
441 
442 	u32			CFG_cache;
443 
444 	u32			MEAR_cache;
445 	u32			IMR_cache;
446 
447 	unsigned		linkstate;
448 
449 	spinlock_t	tx_lock;
450 
451 	u16		tx_done_idx;
452 	u16		tx_idx;
453 	volatile u16	tx_free_idx;	/* idx of free desc chain */
454 	u16		tx_intr_idx;
455 
456 	atomic_t	nr_tx_skbs;
457 	struct sk_buff	*tx_skbs[NR_TX_DESC];
458 
459 	char		pad[16] __attribute__((aligned(16)));
460 	__le32		*tx_descs;
461 	dma_addr_t	tx_phy_descs;
462 
463 	struct timer_list	tx_watchdog;
464 };
465 
466 static inline struct ns83820 *PRIV(struct net_device *dev)
467 {
468 	return netdev_priv(dev);
469 }
470 
471 #define __kick_rx(dev)	writel(CR_RXE, dev->base + CR)
472 
473 static inline void kick_rx(struct net_device *ndev)
474 {
475 	struct ns83820 *dev = PRIV(ndev);
476 	dprintk("kick_rx: maybe kicking\n");
477 	if (test_and_clear_bit(0, &dev->rx_info.idle)) {
478 		dprintk("actually kicking\n");
479 		writel(dev->rx_info.phy_descs +
480 			(4 * DESC_SIZE * dev->rx_info.next_rx),
481 		       dev->base + RXDP);
482 		if (dev->rx_info.next_rx == dev->rx_info.next_empty)
483 			printk(KERN_DEBUG "%s: uh-oh: next_rx == next_empty???\n",
484 				ndev->name);
485 		__kick_rx(dev);
486 	}
487 }
488 
489 //free = (tx_done_idx + NR_TX_DESC-2 - free_idx) % NR_TX_DESC
490 #define start_tx_okay(dev)	\
491 	(((NR_TX_DESC-2 + dev->tx_done_idx - dev->tx_free_idx) % NR_TX_DESC) > MIN_TX_DESC_FREE)
492 
493 /* Packet Receiver
494  *
495  * The hardware supports linked lists of receive descriptors for
496  * which ownership is transferred back and forth by means of an
497  * ownership bit.  While the hardware does support the use of a
498  * ring for receive descriptors, we only make use of a chain in
499  * an attempt to reduce bus traffic under heavy load scenarios.
500  * This will also make bugs a bit more obvious.  The current code
501  * only makes use of a single rx chain; I hope to implement
502  * priority based rx for version 1.0.  Goal: even under overload
503  * conditions, still route realtime traffic with as low jitter as
504  * possible.
505  */
506 static inline void build_rx_desc(struct ns83820 *dev, __le32 *desc, dma_addr_t link, dma_addr_t buf, u32 cmdsts, u32 extsts)
507 {
508 	desc_addr_set(desc + DESC_LINK, link);
509 	desc_addr_set(desc + DESC_BUFPTR, buf);
510 	desc[DESC_EXTSTS] = cpu_to_le32(extsts);
511 	mb();
512 	desc[DESC_CMDSTS] = cpu_to_le32(cmdsts);
513 }
514 
515 #define nr_rx_empty(dev) ((NR_RX_DESC-2 + dev->rx_info.next_rx - dev->rx_info.next_empty) % NR_RX_DESC)
516 static inline int ns83820_add_rx_skb(struct ns83820 *dev, struct sk_buff *skb)
517 {
518 	unsigned next_empty;
519 	u32 cmdsts;
520 	__le32 *sg;
521 	dma_addr_t buf;
522 
523 	next_empty = dev->rx_info.next_empty;
524 
525 	/* don't overrun last rx marker */
526 	if (unlikely(nr_rx_empty(dev) <= 2)) {
527 		kfree_skb(skb);
528 		return 1;
529 	}
530 
531 #if 0
532 	dprintk("next_empty[%d] nr_used[%d] next_rx[%d]\n",
533 		dev->rx_info.next_empty,
534 		dev->rx_info.nr_used,
535 		dev->rx_info.next_rx
536 		);
537 #endif
538 
539 	sg = dev->rx_info.descs + (next_empty * DESC_SIZE);
540 	BUG_ON(NULL != dev->rx_info.skbs[next_empty]);
541 	dev->rx_info.skbs[next_empty] = skb;
542 
543 	dev->rx_info.next_empty = (next_empty + 1) % NR_RX_DESC;
544 	cmdsts = REAL_RX_BUF_SIZE | CMDSTS_INTR;
545 	buf = pci_map_single(dev->pci_dev, skb->data,
546 			     REAL_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
547 	build_rx_desc(dev, sg, 0, buf, cmdsts, 0);
548 	/* update link of previous rx */
549 	if (likely(next_empty != dev->rx_info.next_rx))
550 		dev->rx_info.descs[((NR_RX_DESC + next_empty - 1) % NR_RX_DESC) * DESC_SIZE] = cpu_to_le32(dev->rx_info.phy_descs + (next_empty * DESC_SIZE * 4));
551 
552 	return 0;
553 }
554 
555 static inline int rx_refill(struct net_device *ndev, gfp_t gfp)
556 {
557 	struct ns83820 *dev = PRIV(ndev);
558 	unsigned i;
559 	unsigned long flags = 0;
560 
561 	if (unlikely(nr_rx_empty(dev) <= 2))
562 		return 0;
563 
564 	dprintk("rx_refill(%p)\n", ndev);
565 	if (gfp == GFP_ATOMIC)
566 		spin_lock_irqsave(&dev->rx_info.lock, flags);
567 	for (i=0; i<NR_RX_DESC; i++) {
568 		struct sk_buff *skb;
569 		long res;
570 
571 		/* extra 16 bytes for alignment */
572 		skb = __netdev_alloc_skb(ndev, REAL_RX_BUF_SIZE+16, gfp);
573 		if (unlikely(!skb))
574 			break;
575 
576 		skb_reserve(skb, skb->data - PTR_ALIGN(skb->data, 16));
577 		if (gfp != GFP_ATOMIC)
578 			spin_lock_irqsave(&dev->rx_info.lock, flags);
579 		res = ns83820_add_rx_skb(dev, skb);
580 		if (gfp != GFP_ATOMIC)
581 			spin_unlock_irqrestore(&dev->rx_info.lock, flags);
582 		if (res) {
583 			i = 1;
584 			break;
585 		}
586 	}
587 	if (gfp == GFP_ATOMIC)
588 		spin_unlock_irqrestore(&dev->rx_info.lock, flags);
589 
590 	return i ? 0 : -ENOMEM;
591 }
592 
593 static void rx_refill_atomic(struct net_device *ndev)
594 {
595 	rx_refill(ndev, GFP_ATOMIC);
596 }
597 
598 /* REFILL */
599 static inline void queue_refill(struct work_struct *work)
600 {
601 	struct ns83820 *dev = container_of(work, struct ns83820, tq_refill);
602 	struct net_device *ndev = dev->ndev;
603 
604 	rx_refill(ndev, GFP_KERNEL);
605 	if (dev->rx_info.up)
606 		kick_rx(ndev);
607 }
608 
609 static inline void clear_rx_desc(struct ns83820 *dev, unsigned i)
610 {
611 	build_rx_desc(dev, dev->rx_info.descs + (DESC_SIZE * i), 0, 0, CMDSTS_OWN, 0);
612 }
613 
614 static void phy_intr(struct net_device *ndev)
615 {
616 	struct ns83820 *dev = PRIV(ndev);
617 	static const char *speeds[] = { "10", "100", "1000", "1000(?)", "1000F" };
618 	u32 cfg, new_cfg;
619 	u32 tbisr, tanar, tanlpar;
620 	int speed, fullduplex, newlinkstate;
621 
622 	cfg = readl(dev->base + CFG) ^ SPDSTS_POLARITY;
623 
624 	if (dev->CFG_cache & CFG_TBI_EN) {
625 		/* we have an optical transceiver */
626 		tbisr = readl(dev->base + TBISR);
627 		tanar = readl(dev->base + TANAR);
628 		tanlpar = readl(dev->base + TANLPAR);
629 		dprintk("phy_intr: tbisr=%08x, tanar=%08x, tanlpar=%08x\n",
630 			tbisr, tanar, tanlpar);
631 
632 		if ( (fullduplex = (tanlpar & TANAR_FULL_DUP) &&
633 		      (tanar & TANAR_FULL_DUP)) ) {
634 
635 			/* both of us are full duplex */
636 			writel(readl(dev->base + TXCFG)
637 			       | TXCFG_CSI | TXCFG_HBI | TXCFG_ATP,
638 			       dev->base + TXCFG);
639 			writel(readl(dev->base + RXCFG) | RXCFG_RX_FD,
640 			       dev->base + RXCFG);
641 			/* Light up full duplex LED */
642 			writel(readl(dev->base + GPIOR) | GPIOR_GP1_OUT,
643 			       dev->base + GPIOR);
644 
645 		} else if (((tanlpar & TANAR_HALF_DUP) &&
646 			    (tanar & TANAR_HALF_DUP)) ||
647 			   ((tanlpar & TANAR_FULL_DUP) &&
648 			    (tanar & TANAR_HALF_DUP)) ||
649 			   ((tanlpar & TANAR_HALF_DUP) &&
650 			    (tanar & TANAR_FULL_DUP))) {
651 
652 			/* one or both of us are half duplex */
653 			writel((readl(dev->base + TXCFG)
654 				& ~(TXCFG_CSI | TXCFG_HBI)) | TXCFG_ATP,
655 			       dev->base + TXCFG);
656 			writel(readl(dev->base + RXCFG) & ~RXCFG_RX_FD,
657 			       dev->base + RXCFG);
658 			/* Turn off full duplex LED */
659 			writel(readl(dev->base + GPIOR) & ~GPIOR_GP1_OUT,
660 			       dev->base + GPIOR);
661 		}
662 
663 		speed = 4; /* 1000F */
664 
665 	} else {
666 		/* we have a copper transceiver */
667 		new_cfg = dev->CFG_cache & ~(CFG_SB | CFG_MODE_1000 | CFG_SPDSTS);
668 
669 		if (cfg & CFG_SPDSTS1)
670 			new_cfg |= CFG_MODE_1000;
671 		else
672 			new_cfg &= ~CFG_MODE_1000;
673 
674 		speed = ((cfg / CFG_SPDSTS0) & 3);
675 		fullduplex = (cfg & CFG_DUPSTS);
676 
677 		if (fullduplex) {
678 			new_cfg |= CFG_SB;
679 			writel(readl(dev->base + TXCFG)
680 					| TXCFG_CSI | TXCFG_HBI,
681 			       dev->base + TXCFG);
682 			writel(readl(dev->base + RXCFG) | RXCFG_RX_FD,
683 			       dev->base + RXCFG);
684 		} else {
685 			writel(readl(dev->base + TXCFG)
686 					& ~(TXCFG_CSI | TXCFG_HBI),
687 			       dev->base + TXCFG);
688 			writel(readl(dev->base + RXCFG) & ~(RXCFG_RX_FD),
689 			       dev->base + RXCFG);
690 		}
691 
692 		if ((cfg & CFG_LNKSTS) &&
693 		    ((new_cfg ^ dev->CFG_cache) != 0)) {
694 			writel(new_cfg, dev->base + CFG);
695 			dev->CFG_cache = new_cfg;
696 		}
697 
698 		dev->CFG_cache &= ~CFG_SPDSTS;
699 		dev->CFG_cache |= cfg & CFG_SPDSTS;
700 	}
701 
702 	newlinkstate = (cfg & CFG_LNKSTS) ? LINK_UP : LINK_DOWN;
703 
704 	if (newlinkstate & LINK_UP &&
705 	    dev->linkstate != newlinkstate) {
706 		netif_start_queue(ndev);
707 		netif_wake_queue(ndev);
708 		printk(KERN_INFO "%s: link now %s mbps, %s duplex and up.\n",
709 			ndev->name,
710 			speeds[speed],
711 			fullduplex ? "full" : "half");
712 	} else if (newlinkstate & LINK_DOWN &&
713 		   dev->linkstate != newlinkstate) {
714 		netif_stop_queue(ndev);
715 		printk(KERN_INFO "%s: link now down.\n", ndev->name);
716 	}
717 
718 	dev->linkstate = newlinkstate;
719 }
720 
721 static int ns83820_setup_rx(struct net_device *ndev)
722 {
723 	struct ns83820 *dev = PRIV(ndev);
724 	unsigned i;
725 	int ret;
726 
727 	dprintk("ns83820_setup_rx(%p)\n", ndev);
728 
729 	dev->rx_info.idle = 1;
730 	dev->rx_info.next_rx = 0;
731 	dev->rx_info.next_rx_desc = dev->rx_info.descs;
732 	dev->rx_info.next_empty = 0;
733 
734 	for (i=0; i<NR_RX_DESC; i++)
735 		clear_rx_desc(dev, i);
736 
737 	writel(0, dev->base + RXDP_HI);
738 	writel(dev->rx_info.phy_descs, dev->base + RXDP);
739 
740 	ret = rx_refill(ndev, GFP_KERNEL);
741 	if (!ret) {
742 		dprintk("starting receiver\n");
743 		/* prevent the interrupt handler from stomping on us */
744 		spin_lock_irq(&dev->rx_info.lock);
745 
746 		writel(0x0001, dev->base + CCSR);
747 		writel(0, dev->base + RFCR);
748 		writel(0x7fc00000, dev->base + RFCR);
749 		writel(0xffc00000, dev->base + RFCR);
750 
751 		dev->rx_info.up = 1;
752 
753 		phy_intr(ndev);
754 
755 		/* Okay, let it rip */
756 		spin_lock(&dev->misc_lock);
757 		dev->IMR_cache |= ISR_PHY;
758 		dev->IMR_cache |= ISR_RXRCMP;
759 		//dev->IMR_cache |= ISR_RXERR;
760 		//dev->IMR_cache |= ISR_RXOK;
761 		dev->IMR_cache |= ISR_RXORN;
762 		dev->IMR_cache |= ISR_RXSOVR;
763 		dev->IMR_cache |= ISR_RXDESC;
764 		dev->IMR_cache |= ISR_RXIDLE;
765 		dev->IMR_cache |= ISR_TXDESC;
766 		dev->IMR_cache |= ISR_TXIDLE;
767 
768 		writel(dev->IMR_cache, dev->base + IMR);
769 		writel(1, dev->base + IER);
770 		spin_unlock(&dev->misc_lock);
771 
772 		kick_rx(ndev);
773 
774 		spin_unlock_irq(&dev->rx_info.lock);
775 	}
776 	return ret;
777 }
778 
779 static void ns83820_cleanup_rx(struct ns83820 *dev)
780 {
781 	unsigned i;
782 	unsigned long flags;
783 
784 	dprintk("ns83820_cleanup_rx(%p)\n", dev);
785 
786 	/* disable receive interrupts */
787 	spin_lock_irqsave(&dev->misc_lock, flags);
788 	dev->IMR_cache &= ~(ISR_RXOK | ISR_RXDESC | ISR_RXERR | ISR_RXEARLY | ISR_RXIDLE);
789 	writel(dev->IMR_cache, dev->base + IMR);
790 	spin_unlock_irqrestore(&dev->misc_lock, flags);
791 
792 	/* synchronize with the interrupt handler and kill it */
793 	dev->rx_info.up = 0;
794 	synchronize_irq(dev->pci_dev->irq);
795 
796 	/* touch the pci bus... */
797 	readl(dev->base + IMR);
798 
799 	/* assumes the transmitter is already disabled and reset */
800 	writel(0, dev->base + RXDP_HI);
801 	writel(0, dev->base + RXDP);
802 
803 	for (i=0; i<NR_RX_DESC; i++) {
804 		struct sk_buff *skb = dev->rx_info.skbs[i];
805 		dev->rx_info.skbs[i] = NULL;
806 		clear_rx_desc(dev, i);
807 		kfree_skb(skb);
808 	}
809 }
810 
811 static void ns83820_rx_kick(struct net_device *ndev)
812 {
813 	struct ns83820 *dev = PRIV(ndev);
814 	/*if (nr_rx_empty(dev) >= NR_RX_DESC/4)*/ {
815 		if (dev->rx_info.up) {
816 			rx_refill_atomic(ndev);
817 			kick_rx(ndev);
818 		}
819 	}
820 
821 	if (dev->rx_info.up && nr_rx_empty(dev) > NR_RX_DESC*3/4)
822 		schedule_work(&dev->tq_refill);
823 	else
824 		kick_rx(ndev);
825 	if (dev->rx_info.idle)
826 		printk(KERN_DEBUG "%s: BAD\n", ndev->name);
827 }
828 
829 /* rx_irq
830  *
831  */
832 static void rx_irq(struct net_device *ndev)
833 {
834 	struct ns83820 *dev = PRIV(ndev);
835 	struct rx_info *info = &dev->rx_info;
836 	unsigned next_rx;
837 	int rx_rc, len;
838 	u32 cmdsts;
839 	__le32 *desc;
840 	unsigned long flags;
841 	int nr = 0;
842 
843 	dprintk("rx_irq(%p)\n", ndev);
844 	dprintk("rxdp: %08x, descs: %08lx next_rx[%d]: %p next_empty[%d]: %p\n",
845 		readl(dev->base + RXDP),
846 		(long)(dev->rx_info.phy_descs),
847 		(int)dev->rx_info.next_rx,
848 		(dev->rx_info.descs + (DESC_SIZE * dev->rx_info.next_rx)),
849 		(int)dev->rx_info.next_empty,
850 		(dev->rx_info.descs + (DESC_SIZE * dev->rx_info.next_empty))
851 		);
852 
853 	spin_lock_irqsave(&info->lock, flags);
854 	if (!info->up)
855 		goto out;
856 
857 	dprintk("walking descs\n");
858 	next_rx = info->next_rx;
859 	desc = info->next_rx_desc;
860 	while ((CMDSTS_OWN & (cmdsts = le32_to_cpu(desc[DESC_CMDSTS]))) &&
861 	       (cmdsts != CMDSTS_OWN)) {
862 		struct sk_buff *skb;
863 		u32 extsts = le32_to_cpu(desc[DESC_EXTSTS]);
864 		dma_addr_t bufptr = desc_addr_get(desc + DESC_BUFPTR);
865 
866 		dprintk("cmdsts: %08x\n", cmdsts);
867 		dprintk("link: %08x\n", cpu_to_le32(desc[DESC_LINK]));
868 		dprintk("extsts: %08x\n", extsts);
869 
870 		skb = info->skbs[next_rx];
871 		info->skbs[next_rx] = NULL;
872 		info->next_rx = (next_rx + 1) % NR_RX_DESC;
873 
874 		mb();
875 		clear_rx_desc(dev, next_rx);
876 
877 		pci_unmap_single(dev->pci_dev, bufptr,
878 				 RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
879 		len = cmdsts & CMDSTS_LEN_MASK;
880 #ifdef NS83820_VLAN_ACCEL_SUPPORT
881 		/* NH: As was mentioned below, this chip is kinda
882 		 * brain dead about vlan tag stripping.  Frames
883 		 * that are 64 bytes with a vlan header appended
884 		 * like arp frames, or pings, are flagged as Runts
885 		 * when the tag is stripped and hardware.  This
886 		 * also means that the OK bit in the descriptor
887 		 * is cleared when the frame comes in so we have
888 		 * to do a specific length check here to make sure
889 		 * the frame would have been ok, had we not stripped
890 		 * the tag.
891 		 */
892 		if (likely((CMDSTS_OK & cmdsts) ||
893 			((cmdsts & CMDSTS_RUNT) && len >= 56))) {
894 #else
895 		if (likely(CMDSTS_OK & cmdsts)) {
896 #endif
897 			skb_put(skb, len);
898 			if (unlikely(!skb))
899 				goto netdev_mangle_me_harder_failed;
900 			if (cmdsts & CMDSTS_DEST_MULTI)
901 				ndev->stats.multicast++;
902 			ndev->stats.rx_packets++;
903 			ndev->stats.rx_bytes += len;
904 			if ((extsts & 0x002a0000) && !(extsts & 0x00540000)) {
905 				skb->ip_summed = CHECKSUM_UNNECESSARY;
906 			} else {
907 				skb_checksum_none_assert(skb);
908 			}
909 			skb->protocol = eth_type_trans(skb, ndev);
910 #ifdef NS83820_VLAN_ACCEL_SUPPORT
911 			if(extsts & EXTSTS_VPKT) {
912 				unsigned short tag;
913 
914 				tag = ntohs(extsts & EXTSTS_VTG_MASK);
915 				__vlan_hwaccel_put_tag(skb, tag);
916 			}
917 #endif
918 			rx_rc = netif_rx(skb);
919 			if (NET_RX_DROP == rx_rc) {
920 netdev_mangle_me_harder_failed:
921 				ndev->stats.rx_dropped++;
922 			}
923 		} else {
924 			kfree_skb(skb);
925 		}
926 
927 		nr++;
928 		next_rx = info->next_rx;
929 		desc = info->descs + (DESC_SIZE * next_rx);
930 	}
931 	info->next_rx = next_rx;
932 	info->next_rx_desc = info->descs + (DESC_SIZE * next_rx);
933 
934 out:
935 	if (0 && !nr) {
936 		Dprintk("dazed: cmdsts_f: %08x\n", cmdsts);
937 	}
938 
939 	spin_unlock_irqrestore(&info->lock, flags);
940 }
941 
942 static void rx_action(unsigned long _dev)
943 {
944 	struct net_device *ndev = (void *)_dev;
945 	struct ns83820 *dev = PRIV(ndev);
946 	rx_irq(ndev);
947 	writel(ihr, dev->base + IHR);
948 
949 	spin_lock_irq(&dev->misc_lock);
950 	dev->IMR_cache |= ISR_RXDESC;
951 	writel(dev->IMR_cache, dev->base + IMR);
952 	spin_unlock_irq(&dev->misc_lock);
953 
954 	rx_irq(ndev);
955 	ns83820_rx_kick(ndev);
956 }
957 
958 /* Packet Transmit code
959  */
960 static inline void kick_tx(struct ns83820 *dev)
961 {
962 	dprintk("kick_tx(%p): tx_idx=%d free_idx=%d\n",
963 		dev, dev->tx_idx, dev->tx_free_idx);
964 	writel(CR_TXE, dev->base + CR);
965 }
966 
967 /* No spinlock needed on the transmit irq path as the interrupt handler is
968  * serialized.
969  */
970 static void do_tx_done(struct net_device *ndev)
971 {
972 	struct ns83820 *dev = PRIV(ndev);
973 	u32 cmdsts, tx_done_idx;
974 	__le32 *desc;
975 
976 	dprintk("do_tx_done(%p)\n", ndev);
977 	tx_done_idx = dev->tx_done_idx;
978 	desc = dev->tx_descs + (tx_done_idx * DESC_SIZE);
979 
980 	dprintk("tx_done_idx=%d free_idx=%d cmdsts=%08x\n",
981 		tx_done_idx, dev->tx_free_idx, le32_to_cpu(desc[DESC_CMDSTS]));
982 	while ((tx_done_idx != dev->tx_free_idx) &&
983 	       !(CMDSTS_OWN & (cmdsts = le32_to_cpu(desc[DESC_CMDSTS]))) ) {
984 		struct sk_buff *skb;
985 		unsigned len;
986 		dma_addr_t addr;
987 
988 		if (cmdsts & CMDSTS_ERR)
989 			ndev->stats.tx_errors++;
990 		if (cmdsts & CMDSTS_OK)
991 			ndev->stats.tx_packets++;
992 		if (cmdsts & CMDSTS_OK)
993 			ndev->stats.tx_bytes += cmdsts & 0xffff;
994 
995 		dprintk("tx_done_idx=%d free_idx=%d cmdsts=%08x\n",
996 			tx_done_idx, dev->tx_free_idx, cmdsts);
997 		skb = dev->tx_skbs[tx_done_idx];
998 		dev->tx_skbs[tx_done_idx] = NULL;
999 		dprintk("done(%p)\n", skb);
1000 
1001 		len = cmdsts & CMDSTS_LEN_MASK;
1002 		addr = desc_addr_get(desc + DESC_BUFPTR);
1003 		if (skb) {
1004 			pci_unmap_single(dev->pci_dev,
1005 					addr,
1006 					len,
1007 					PCI_DMA_TODEVICE);
1008 			dev_kfree_skb_irq(skb);
1009 			atomic_dec(&dev->nr_tx_skbs);
1010 		} else
1011 			pci_unmap_page(dev->pci_dev,
1012 					addr,
1013 					len,
1014 					PCI_DMA_TODEVICE);
1015 
1016 		tx_done_idx = (tx_done_idx + 1) % NR_TX_DESC;
1017 		dev->tx_done_idx = tx_done_idx;
1018 		desc[DESC_CMDSTS] = cpu_to_le32(0);
1019 		mb();
1020 		desc = dev->tx_descs + (tx_done_idx * DESC_SIZE);
1021 	}
1022 
1023 	/* Allow network stack to resume queueing packets after we've
1024 	 * finished transmitting at least 1/4 of the packets in the queue.
1025 	 */
1026 	if (netif_queue_stopped(ndev) && start_tx_okay(dev)) {
1027 		dprintk("start_queue(%p)\n", ndev);
1028 		netif_start_queue(ndev);
1029 		netif_wake_queue(ndev);
1030 	}
1031 }
1032 
1033 static void ns83820_cleanup_tx(struct ns83820 *dev)
1034 {
1035 	unsigned i;
1036 
1037 	for (i=0; i<NR_TX_DESC; i++) {
1038 		struct sk_buff *skb = dev->tx_skbs[i];
1039 		dev->tx_skbs[i] = NULL;
1040 		if (skb) {
1041 			__le32 *desc = dev->tx_descs + (i * DESC_SIZE);
1042 			pci_unmap_single(dev->pci_dev,
1043 					desc_addr_get(desc + DESC_BUFPTR),
1044 					le32_to_cpu(desc[DESC_CMDSTS]) & CMDSTS_LEN_MASK,
1045 					PCI_DMA_TODEVICE);
1046 			dev_kfree_skb_irq(skb);
1047 			atomic_dec(&dev->nr_tx_skbs);
1048 		}
1049 	}
1050 
1051 	memset(dev->tx_descs, 0, NR_TX_DESC * DESC_SIZE * 4);
1052 }
1053 
1054 /* transmit routine.  This code relies on the network layer serializing
1055  * its calls in, but will run happily in parallel with the interrupt
1056  * handler.  This code currently has provisions for fragmenting tx buffers
1057  * while trying to track down a bug in either the zero copy code or
1058  * the tx fifo (hence the MAX_FRAG_LEN).
1059  */
1060 static netdev_tx_t ns83820_hard_start_xmit(struct sk_buff *skb,
1061 					   struct net_device *ndev)
1062 {
1063 	struct ns83820 *dev = PRIV(ndev);
1064 	u32 free_idx, cmdsts, extsts;
1065 	int nr_free, nr_frags;
1066 	unsigned tx_done_idx, last_idx;
1067 	dma_addr_t buf;
1068 	unsigned len;
1069 	skb_frag_t *frag;
1070 	int stopped = 0;
1071 	int do_intr = 0;
1072 	volatile __le32 *first_desc;
1073 
1074 	dprintk("ns83820_hard_start_xmit\n");
1075 
1076 	nr_frags =  skb_shinfo(skb)->nr_frags;
1077 again:
1078 	if (unlikely(dev->CFG_cache & CFG_LNKSTS)) {
1079 		netif_stop_queue(ndev);
1080 		if (unlikely(dev->CFG_cache & CFG_LNKSTS))
1081 			return NETDEV_TX_BUSY;
1082 		netif_start_queue(ndev);
1083 	}
1084 
1085 	last_idx = free_idx = dev->tx_free_idx;
1086 	tx_done_idx = dev->tx_done_idx;
1087 	nr_free = (tx_done_idx + NR_TX_DESC-2 - free_idx) % NR_TX_DESC;
1088 	nr_free -= 1;
1089 	if (nr_free <= nr_frags) {
1090 		dprintk("stop_queue - not enough(%p)\n", ndev);
1091 		netif_stop_queue(ndev);
1092 
1093 		/* Check again: we may have raced with a tx done irq */
1094 		if (dev->tx_done_idx != tx_done_idx) {
1095 			dprintk("restart queue(%p)\n", ndev);
1096 			netif_start_queue(ndev);
1097 			goto again;
1098 		}
1099 		return NETDEV_TX_BUSY;
1100 	}
1101 
1102 	if (free_idx == dev->tx_intr_idx) {
1103 		do_intr = 1;
1104 		dev->tx_intr_idx = (dev->tx_intr_idx + NR_TX_DESC/4) % NR_TX_DESC;
1105 	}
1106 
1107 	nr_free -= nr_frags;
1108 	if (nr_free < MIN_TX_DESC_FREE) {
1109 		dprintk("stop_queue - last entry(%p)\n", ndev);
1110 		netif_stop_queue(ndev);
1111 		stopped = 1;
1112 	}
1113 
1114 	frag = skb_shinfo(skb)->frags;
1115 	if (!nr_frags)
1116 		frag = NULL;
1117 	extsts = 0;
1118 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
1119 		extsts |= EXTSTS_IPPKT;
1120 		if (IPPROTO_TCP == ip_hdr(skb)->protocol)
1121 			extsts |= EXTSTS_TCPPKT;
1122 		else if (IPPROTO_UDP == ip_hdr(skb)->protocol)
1123 			extsts |= EXTSTS_UDPPKT;
1124 	}
1125 
1126 #ifdef NS83820_VLAN_ACCEL_SUPPORT
1127 	if(vlan_tx_tag_present(skb)) {
1128 		/* fetch the vlan tag info out of the
1129 		 * ancillary data if the vlan code
1130 		 * is using hw vlan acceleration
1131 		 */
1132 		short tag = vlan_tx_tag_get(skb);
1133 		extsts |= (EXTSTS_VPKT | htons(tag));
1134 	}
1135 #endif
1136 
1137 	len = skb->len;
1138 	if (nr_frags)
1139 		len -= skb->data_len;
1140 	buf = pci_map_single(dev->pci_dev, skb->data, len, PCI_DMA_TODEVICE);
1141 
1142 	first_desc = dev->tx_descs + (free_idx * DESC_SIZE);
1143 
1144 	for (;;) {
1145 		volatile __le32 *desc = dev->tx_descs + (free_idx * DESC_SIZE);
1146 
1147 		dprintk("frag[%3u]: %4u @ 0x%08Lx\n", free_idx, len,
1148 			(unsigned long long)buf);
1149 		last_idx = free_idx;
1150 		free_idx = (free_idx + 1) % NR_TX_DESC;
1151 		desc[DESC_LINK] = cpu_to_le32(dev->tx_phy_descs + (free_idx * DESC_SIZE * 4));
1152 		desc_addr_set(desc + DESC_BUFPTR, buf);
1153 		desc[DESC_EXTSTS] = cpu_to_le32(extsts);
1154 
1155 		cmdsts = ((nr_frags) ? CMDSTS_MORE : do_intr ? CMDSTS_INTR : 0);
1156 		cmdsts |= (desc == first_desc) ? 0 : CMDSTS_OWN;
1157 		cmdsts |= len;
1158 		desc[DESC_CMDSTS] = cpu_to_le32(cmdsts);
1159 
1160 		if (!nr_frags)
1161 			break;
1162 
1163 		buf = skb_frag_dma_map(&dev->pci_dev->dev, frag, 0,
1164 				       skb_frag_size(frag), DMA_TO_DEVICE);
1165 		dprintk("frag: buf=%08Lx  page=%08lx offset=%08lx\n",
1166 			(long long)buf, (long) page_to_pfn(frag->page),
1167 			frag->page_offset);
1168 		len = skb_frag_size(frag);
1169 		frag++;
1170 		nr_frags--;
1171 	}
1172 	dprintk("done pkt\n");
1173 
1174 	spin_lock_irq(&dev->tx_lock);
1175 	dev->tx_skbs[last_idx] = skb;
1176 	first_desc[DESC_CMDSTS] |= cpu_to_le32(CMDSTS_OWN);
1177 	dev->tx_free_idx = free_idx;
1178 	atomic_inc(&dev->nr_tx_skbs);
1179 	spin_unlock_irq(&dev->tx_lock);
1180 
1181 	kick_tx(dev);
1182 
1183 	/* Check again: we may have raced with a tx done irq */
1184 	if (stopped && (dev->tx_done_idx != tx_done_idx) && start_tx_okay(dev))
1185 		netif_start_queue(ndev);
1186 
1187 	return NETDEV_TX_OK;
1188 }
1189 
1190 static void ns83820_update_stats(struct ns83820 *dev)
1191 {
1192 	struct net_device *ndev = dev->ndev;
1193 	u8 __iomem *base = dev->base;
1194 
1195 	/* the DP83820 will freeze counters, so we need to read all of them */
1196 	ndev->stats.rx_errors		+= readl(base + 0x60) & 0xffff;
1197 	ndev->stats.rx_crc_errors	+= readl(base + 0x64) & 0xffff;
1198 	ndev->stats.rx_missed_errors	+= readl(base + 0x68) & 0xffff;
1199 	ndev->stats.rx_frame_errors	+= readl(base + 0x6c) & 0xffff;
1200 	/*ndev->stats.rx_symbol_errors +=*/ readl(base + 0x70);
1201 	ndev->stats.rx_length_errors	+= readl(base + 0x74) & 0xffff;
1202 	ndev->stats.rx_length_errors	+= readl(base + 0x78) & 0xffff;
1203 	/*ndev->stats.rx_badopcode_errors += */ readl(base + 0x7c);
1204 	/*ndev->stats.rx_pause_count += */  readl(base + 0x80);
1205 	/*ndev->stats.tx_pause_count += */  readl(base + 0x84);
1206 	ndev->stats.tx_carrier_errors	+= readl(base + 0x88) & 0xff;
1207 }
1208 
1209 static struct net_device_stats *ns83820_get_stats(struct net_device *ndev)
1210 {
1211 	struct ns83820 *dev = PRIV(ndev);
1212 
1213 	/* somewhat overkill */
1214 	spin_lock_irq(&dev->misc_lock);
1215 	ns83820_update_stats(dev);
1216 	spin_unlock_irq(&dev->misc_lock);
1217 
1218 	return &ndev->stats;
1219 }
1220 
1221 /* Let ethtool retrieve info */
1222 static int ns83820_get_settings(struct net_device *ndev,
1223 				struct ethtool_cmd *cmd)
1224 {
1225 	struct ns83820 *dev = PRIV(ndev);
1226 	u32 cfg, tanar, tbicr;
1227 	int fullduplex   = 0;
1228 
1229 	/*
1230 	 * Here's the list of available ethtool commands from other drivers:
1231 	 *	cmd->advertising =
1232 	 *	ethtool_cmd_speed_set(cmd, ...)
1233 	 *	cmd->duplex =
1234 	 *	cmd->port = 0;
1235 	 *	cmd->phy_address =
1236 	 *	cmd->transceiver = 0;
1237 	 *	cmd->autoneg =
1238 	 *	cmd->maxtxpkt = 0;
1239 	 *	cmd->maxrxpkt = 0;
1240 	 */
1241 
1242 	/* read current configuration */
1243 	cfg   = readl(dev->base + CFG) ^ SPDSTS_POLARITY;
1244 	tanar = readl(dev->base + TANAR);
1245 	tbicr = readl(dev->base + TBICR);
1246 
1247 	fullduplex = (cfg & CFG_DUPSTS) ? 1 : 0;
1248 
1249 	cmd->supported = SUPPORTED_Autoneg;
1250 
1251 	if (dev->CFG_cache & CFG_TBI_EN) {
1252 		/* we have optical interface */
1253 		cmd->supported |= SUPPORTED_1000baseT_Half |
1254 					SUPPORTED_1000baseT_Full |
1255 					SUPPORTED_FIBRE;
1256 		cmd->port       = PORT_FIBRE;
1257 	} else {
1258 		/* we have copper */
1259 		cmd->supported |= SUPPORTED_10baseT_Half |
1260 			SUPPORTED_10baseT_Full | SUPPORTED_100baseT_Half |
1261 			SUPPORTED_100baseT_Full | SUPPORTED_1000baseT_Half |
1262 			SUPPORTED_1000baseT_Full |
1263 			SUPPORTED_MII;
1264 		cmd->port = PORT_MII;
1265 	}
1266 
1267 	cmd->duplex = fullduplex ? DUPLEX_FULL : DUPLEX_HALF;
1268 	switch (cfg / CFG_SPDSTS0 & 3) {
1269 	case 2:
1270 		ethtool_cmd_speed_set(cmd, SPEED_1000);
1271 		break;
1272 	case 1:
1273 		ethtool_cmd_speed_set(cmd, SPEED_100);
1274 		break;
1275 	default:
1276 		ethtool_cmd_speed_set(cmd, SPEED_10);
1277 		break;
1278 	}
1279 	cmd->autoneg = (tbicr & TBICR_MR_AN_ENABLE)
1280 		? AUTONEG_ENABLE : AUTONEG_DISABLE;
1281 	return 0;
1282 }
1283 
1284 /* Let ethool change settings*/
1285 static int ns83820_set_settings(struct net_device *ndev,
1286 				struct ethtool_cmd *cmd)
1287 {
1288 	struct ns83820 *dev = PRIV(ndev);
1289 	u32 cfg, tanar;
1290 	int have_optical = 0;
1291 	int fullduplex   = 0;
1292 
1293 	/* read current configuration */
1294 	cfg = readl(dev->base + CFG) ^ SPDSTS_POLARITY;
1295 	tanar = readl(dev->base + TANAR);
1296 
1297 	if (dev->CFG_cache & CFG_TBI_EN) {
1298 		/* we have optical */
1299 		have_optical = 1;
1300 		fullduplex   = (tanar & TANAR_FULL_DUP);
1301 
1302 	} else {
1303 		/* we have copper */
1304 		fullduplex = cfg & CFG_DUPSTS;
1305 	}
1306 
1307 	spin_lock_irq(&dev->misc_lock);
1308 	spin_lock(&dev->tx_lock);
1309 
1310 	/* Set duplex */
1311 	if (cmd->duplex != fullduplex) {
1312 		if (have_optical) {
1313 			/*set full duplex*/
1314 			if (cmd->duplex == DUPLEX_FULL) {
1315 				/* force full duplex */
1316 				writel(readl(dev->base + TXCFG)
1317 					| TXCFG_CSI | TXCFG_HBI | TXCFG_ATP,
1318 					dev->base + TXCFG);
1319 				writel(readl(dev->base + RXCFG) | RXCFG_RX_FD,
1320 					dev->base + RXCFG);
1321 				/* Light up full duplex LED */
1322 				writel(readl(dev->base + GPIOR) | GPIOR_GP1_OUT,
1323 					dev->base + GPIOR);
1324 			} else {
1325 				/*TODO: set half duplex */
1326 			}
1327 
1328 		} else {
1329 			/*we have copper*/
1330 			/* TODO: Set duplex for copper cards */
1331 		}
1332 		printk(KERN_INFO "%s: Duplex set via ethtool\n",
1333 		ndev->name);
1334 	}
1335 
1336 	/* Set autonegotiation */
1337 	if (1) {
1338 		if (cmd->autoneg == AUTONEG_ENABLE) {
1339 			/* restart auto negotiation */
1340 			writel(TBICR_MR_AN_ENABLE | TBICR_MR_RESTART_AN,
1341 				dev->base + TBICR);
1342 			writel(TBICR_MR_AN_ENABLE, dev->base + TBICR);
1343 				dev->linkstate = LINK_AUTONEGOTIATE;
1344 
1345 			printk(KERN_INFO "%s: autoneg enabled via ethtool\n",
1346 				ndev->name);
1347 		} else {
1348 			/* disable auto negotiation */
1349 			writel(0x00000000, dev->base + TBICR);
1350 		}
1351 
1352 		printk(KERN_INFO "%s: autoneg %s via ethtool\n", ndev->name,
1353 				cmd->autoneg ? "ENABLED" : "DISABLED");
1354 	}
1355 
1356 	phy_intr(ndev);
1357 	spin_unlock(&dev->tx_lock);
1358 	spin_unlock_irq(&dev->misc_lock);
1359 
1360 	return 0;
1361 }
1362 /* end ethtool get/set support -df */
1363 
1364 static void ns83820_get_drvinfo(struct net_device *ndev, struct ethtool_drvinfo *info)
1365 {
1366 	struct ns83820 *dev = PRIV(ndev);
1367 	strcpy(info->driver, "ns83820");
1368 	strcpy(info->version, VERSION);
1369 	strcpy(info->bus_info, pci_name(dev->pci_dev));
1370 }
1371 
1372 static u32 ns83820_get_link(struct net_device *ndev)
1373 {
1374 	struct ns83820 *dev = PRIV(ndev);
1375 	u32 cfg = readl(dev->base + CFG) ^ SPDSTS_POLARITY;
1376 	return cfg & CFG_LNKSTS ? 1 : 0;
1377 }
1378 
1379 static const struct ethtool_ops ops = {
1380 	.get_settings    = ns83820_get_settings,
1381 	.set_settings    = ns83820_set_settings,
1382 	.get_drvinfo     = ns83820_get_drvinfo,
1383 	.get_link        = ns83820_get_link
1384 };
1385 
1386 static inline void ns83820_disable_interrupts(struct ns83820 *dev)
1387 {
1388 	writel(0, dev->base + IMR);
1389 	writel(0, dev->base + IER);
1390 	readl(dev->base + IER);
1391 }
1392 
1393 /* this function is called in irq context from the ISR */
1394 static void ns83820_mib_isr(struct ns83820 *dev)
1395 {
1396 	unsigned long flags;
1397 	spin_lock_irqsave(&dev->misc_lock, flags);
1398 	ns83820_update_stats(dev);
1399 	spin_unlock_irqrestore(&dev->misc_lock, flags);
1400 }
1401 
1402 static void ns83820_do_isr(struct net_device *ndev, u32 isr);
1403 static irqreturn_t ns83820_irq(int foo, void *data)
1404 {
1405 	struct net_device *ndev = data;
1406 	struct ns83820 *dev = PRIV(ndev);
1407 	u32 isr;
1408 	dprintk("ns83820_irq(%p)\n", ndev);
1409 
1410 	dev->ihr = 0;
1411 
1412 	isr = readl(dev->base + ISR);
1413 	dprintk("irq: %08x\n", isr);
1414 	ns83820_do_isr(ndev, isr);
1415 	return IRQ_HANDLED;
1416 }
1417 
1418 static void ns83820_do_isr(struct net_device *ndev, u32 isr)
1419 {
1420 	struct ns83820 *dev = PRIV(ndev);
1421 	unsigned long flags;
1422 
1423 #ifdef DEBUG
1424 	if (isr & ~(ISR_PHY | ISR_RXDESC | ISR_RXEARLY | ISR_RXOK | ISR_RXERR | ISR_TXIDLE | ISR_TXOK | ISR_TXDESC))
1425 		Dprintk("odd isr? 0x%08x\n", isr);
1426 #endif
1427 
1428 	if (ISR_RXIDLE & isr) {
1429 		dev->rx_info.idle = 1;
1430 		Dprintk("oh dear, we are idle\n");
1431 		ns83820_rx_kick(ndev);
1432 	}
1433 
1434 	if ((ISR_RXDESC | ISR_RXOK) & isr) {
1435 		prefetch(dev->rx_info.next_rx_desc);
1436 
1437 		spin_lock_irqsave(&dev->misc_lock, flags);
1438 		dev->IMR_cache &= ~(ISR_RXDESC | ISR_RXOK);
1439 		writel(dev->IMR_cache, dev->base + IMR);
1440 		spin_unlock_irqrestore(&dev->misc_lock, flags);
1441 
1442 		tasklet_schedule(&dev->rx_tasklet);
1443 		//rx_irq(ndev);
1444 		//writel(4, dev->base + IHR);
1445 	}
1446 
1447 	if ((ISR_RXIDLE | ISR_RXORN | ISR_RXDESC | ISR_RXOK | ISR_RXERR) & isr)
1448 		ns83820_rx_kick(ndev);
1449 
1450 	if (unlikely(ISR_RXSOVR & isr)) {
1451 		//printk("overrun: rxsovr\n");
1452 		ndev->stats.rx_fifo_errors++;
1453 	}
1454 
1455 	if (unlikely(ISR_RXORN & isr)) {
1456 		//printk("overrun: rxorn\n");
1457 		ndev->stats.rx_fifo_errors++;
1458 	}
1459 
1460 	if ((ISR_RXRCMP & isr) && dev->rx_info.up)
1461 		writel(CR_RXE, dev->base + CR);
1462 
1463 	if (ISR_TXIDLE & isr) {
1464 		u32 txdp;
1465 		txdp = readl(dev->base + TXDP);
1466 		dprintk("txdp: %08x\n", txdp);
1467 		txdp -= dev->tx_phy_descs;
1468 		dev->tx_idx = txdp / (DESC_SIZE * 4);
1469 		if (dev->tx_idx >= NR_TX_DESC) {
1470 			printk(KERN_ALERT "%s: BUG -- txdp out of range\n", ndev->name);
1471 			dev->tx_idx = 0;
1472 		}
1473 		/* The may have been a race between a pci originated read
1474 		 * and the descriptor update from the cpu.  Just in case,
1475 		 * kick the transmitter if the hardware thinks it is on a
1476 		 * different descriptor than we are.
1477 		 */
1478 		if (dev->tx_idx != dev->tx_free_idx)
1479 			kick_tx(dev);
1480 	}
1481 
1482 	/* Defer tx ring processing until more than a minimum amount of
1483 	 * work has accumulated
1484 	 */
1485 	if ((ISR_TXDESC | ISR_TXIDLE | ISR_TXOK | ISR_TXERR) & isr) {
1486 		spin_lock_irqsave(&dev->tx_lock, flags);
1487 		do_tx_done(ndev);
1488 		spin_unlock_irqrestore(&dev->tx_lock, flags);
1489 
1490 		/* Disable TxOk if there are no outstanding tx packets.
1491 		 */
1492 		if ((dev->tx_done_idx == dev->tx_free_idx) &&
1493 		    (dev->IMR_cache & ISR_TXOK)) {
1494 			spin_lock_irqsave(&dev->misc_lock, flags);
1495 			dev->IMR_cache &= ~ISR_TXOK;
1496 			writel(dev->IMR_cache, dev->base + IMR);
1497 			spin_unlock_irqrestore(&dev->misc_lock, flags);
1498 		}
1499 	}
1500 
1501 	/* The TxIdle interrupt can come in before the transmit has
1502 	 * completed.  Normally we reap packets off of the combination
1503 	 * of TxDesc and TxIdle and leave TxOk disabled (since it
1504 	 * occurs on every packet), but when no further irqs of this
1505 	 * nature are expected, we must enable TxOk.
1506 	 */
1507 	if ((ISR_TXIDLE & isr) && (dev->tx_done_idx != dev->tx_free_idx)) {
1508 		spin_lock_irqsave(&dev->misc_lock, flags);
1509 		dev->IMR_cache |= ISR_TXOK;
1510 		writel(dev->IMR_cache, dev->base + IMR);
1511 		spin_unlock_irqrestore(&dev->misc_lock, flags);
1512 	}
1513 
1514 	/* MIB interrupt: one of the statistics counters is about to overflow */
1515 	if (unlikely(ISR_MIB & isr))
1516 		ns83820_mib_isr(dev);
1517 
1518 	/* PHY: Link up/down/negotiation state change */
1519 	if (unlikely(ISR_PHY & isr))
1520 		phy_intr(ndev);
1521 
1522 #if 0	/* Still working on the interrupt mitigation strategy */
1523 	if (dev->ihr)
1524 		writel(dev->ihr, dev->base + IHR);
1525 #endif
1526 }
1527 
1528 static void ns83820_do_reset(struct ns83820 *dev, u32 which)
1529 {
1530 	Dprintk("resetting chip...\n");
1531 	writel(which, dev->base + CR);
1532 	do {
1533 		schedule();
1534 	} while (readl(dev->base + CR) & which);
1535 	Dprintk("okay!\n");
1536 }
1537 
1538 static int ns83820_stop(struct net_device *ndev)
1539 {
1540 	struct ns83820 *dev = PRIV(ndev);
1541 
1542 	/* FIXME: protect against interrupt handler? */
1543 	del_timer_sync(&dev->tx_watchdog);
1544 
1545 	ns83820_disable_interrupts(dev);
1546 
1547 	dev->rx_info.up = 0;
1548 	synchronize_irq(dev->pci_dev->irq);
1549 
1550 	ns83820_do_reset(dev, CR_RST);
1551 
1552 	synchronize_irq(dev->pci_dev->irq);
1553 
1554 	spin_lock_irq(&dev->misc_lock);
1555 	dev->IMR_cache &= ~(ISR_TXURN | ISR_TXIDLE | ISR_TXERR | ISR_TXDESC | ISR_TXOK);
1556 	spin_unlock_irq(&dev->misc_lock);
1557 
1558 	ns83820_cleanup_rx(dev);
1559 	ns83820_cleanup_tx(dev);
1560 
1561 	return 0;
1562 }
1563 
1564 static void ns83820_tx_timeout(struct net_device *ndev)
1565 {
1566 	struct ns83820 *dev = PRIV(ndev);
1567         u32 tx_done_idx;
1568 	__le32 *desc;
1569 	unsigned long flags;
1570 
1571 	spin_lock_irqsave(&dev->tx_lock, flags);
1572 
1573 	tx_done_idx = dev->tx_done_idx;
1574 	desc = dev->tx_descs + (tx_done_idx * DESC_SIZE);
1575 
1576 	printk(KERN_INFO "%s: tx_timeout: tx_done_idx=%d free_idx=%d cmdsts=%08x\n",
1577 		ndev->name,
1578 		tx_done_idx, dev->tx_free_idx, le32_to_cpu(desc[DESC_CMDSTS]));
1579 
1580 #if defined(DEBUG)
1581 	{
1582 		u32 isr;
1583 		isr = readl(dev->base + ISR);
1584 		printk("irq: %08x imr: %08x\n", isr, dev->IMR_cache);
1585 		ns83820_do_isr(ndev, isr);
1586 	}
1587 #endif
1588 
1589 	do_tx_done(ndev);
1590 
1591 	tx_done_idx = dev->tx_done_idx;
1592 	desc = dev->tx_descs + (tx_done_idx * DESC_SIZE);
1593 
1594 	printk(KERN_INFO "%s: after: tx_done_idx=%d free_idx=%d cmdsts=%08x\n",
1595 		ndev->name,
1596 		tx_done_idx, dev->tx_free_idx, le32_to_cpu(desc[DESC_CMDSTS]));
1597 
1598 	spin_unlock_irqrestore(&dev->tx_lock, flags);
1599 }
1600 
1601 static void ns83820_tx_watch(unsigned long data)
1602 {
1603 	struct net_device *ndev = (void *)data;
1604 	struct ns83820 *dev = PRIV(ndev);
1605 
1606 #if defined(DEBUG)
1607 	printk("ns83820_tx_watch: %u %u %d\n",
1608 		dev->tx_done_idx, dev->tx_free_idx, atomic_read(&dev->nr_tx_skbs)
1609 		);
1610 #endif
1611 
1612 	if (time_after(jiffies, dev_trans_start(ndev) + 1*HZ) &&
1613 	    dev->tx_done_idx != dev->tx_free_idx) {
1614 		printk(KERN_DEBUG "%s: ns83820_tx_watch: %u %u %d\n",
1615 			ndev->name,
1616 			dev->tx_done_idx, dev->tx_free_idx,
1617 			atomic_read(&dev->nr_tx_skbs));
1618 		ns83820_tx_timeout(ndev);
1619 	}
1620 
1621 	mod_timer(&dev->tx_watchdog, jiffies + 2*HZ);
1622 }
1623 
1624 static int ns83820_open(struct net_device *ndev)
1625 {
1626 	struct ns83820 *dev = PRIV(ndev);
1627 	unsigned i;
1628 	u32 desc;
1629 	int ret;
1630 
1631 	dprintk("ns83820_open\n");
1632 
1633 	writel(0, dev->base + PQCR);
1634 
1635 	ret = ns83820_setup_rx(ndev);
1636 	if (ret)
1637 		goto failed;
1638 
1639 	memset(dev->tx_descs, 0, 4 * NR_TX_DESC * DESC_SIZE);
1640 	for (i=0; i<NR_TX_DESC; i++) {
1641 		dev->tx_descs[(i * DESC_SIZE) + DESC_LINK]
1642 				= cpu_to_le32(
1643 				  dev->tx_phy_descs
1644 				  + ((i+1) % NR_TX_DESC) * DESC_SIZE * 4);
1645 	}
1646 
1647 	dev->tx_idx = 0;
1648 	dev->tx_done_idx = 0;
1649 	desc = dev->tx_phy_descs;
1650 	writel(0, dev->base + TXDP_HI);
1651 	writel(desc, dev->base + TXDP);
1652 
1653 	init_timer(&dev->tx_watchdog);
1654 	dev->tx_watchdog.data = (unsigned long)ndev;
1655 	dev->tx_watchdog.function = ns83820_tx_watch;
1656 	mod_timer(&dev->tx_watchdog, jiffies + 2*HZ);
1657 
1658 	netif_start_queue(ndev);	/* FIXME: wait for phy to come up */
1659 
1660 	return 0;
1661 
1662 failed:
1663 	ns83820_stop(ndev);
1664 	return ret;
1665 }
1666 
1667 static void ns83820_getmac(struct ns83820 *dev, u8 *mac)
1668 {
1669 	unsigned i;
1670 	for (i=0; i<3; i++) {
1671 		u32 data;
1672 
1673 		/* Read from the perfect match memory: this is loaded by
1674 		 * the chip from the EEPROM via the EELOAD self test.
1675 		 */
1676 		writel(i*2, dev->base + RFCR);
1677 		data = readl(dev->base + RFDR);
1678 
1679 		*mac++ = data;
1680 		*mac++ = data >> 8;
1681 	}
1682 }
1683 
1684 static int ns83820_change_mtu(struct net_device *ndev, int new_mtu)
1685 {
1686 	if (new_mtu > RX_BUF_SIZE)
1687 		return -EINVAL;
1688 	ndev->mtu = new_mtu;
1689 	return 0;
1690 }
1691 
1692 static void ns83820_set_multicast(struct net_device *ndev)
1693 {
1694 	struct ns83820 *dev = PRIV(ndev);
1695 	u8 __iomem *rfcr = dev->base + RFCR;
1696 	u32 and_mask = 0xffffffff;
1697 	u32 or_mask = 0;
1698 	u32 val;
1699 
1700 	if (ndev->flags & IFF_PROMISC)
1701 		or_mask |= RFCR_AAU | RFCR_AAM;
1702 	else
1703 		and_mask &= ~(RFCR_AAU | RFCR_AAM);
1704 
1705 	if (ndev->flags & IFF_ALLMULTI || netdev_mc_count(ndev))
1706 		or_mask |= RFCR_AAM;
1707 	else
1708 		and_mask &= ~RFCR_AAM;
1709 
1710 	spin_lock_irq(&dev->misc_lock);
1711 	val = (readl(rfcr) & and_mask) | or_mask;
1712 	/* Ramit : RFCR Write Fix doc says RFEN must be 0 modify other bits */
1713 	writel(val & ~RFCR_RFEN, rfcr);
1714 	writel(val, rfcr);
1715 	spin_unlock_irq(&dev->misc_lock);
1716 }
1717 
1718 static void ns83820_run_bist(struct net_device *ndev, const char *name, u32 enable, u32 done, u32 fail)
1719 {
1720 	struct ns83820 *dev = PRIV(ndev);
1721 	int timed_out = 0;
1722 	unsigned long start;
1723 	u32 status;
1724 	int loops = 0;
1725 
1726 	dprintk("%s: start %s\n", ndev->name, name);
1727 
1728 	start = jiffies;
1729 
1730 	writel(enable, dev->base + PTSCR);
1731 	for (;;) {
1732 		loops++;
1733 		status = readl(dev->base + PTSCR);
1734 		if (!(status & enable))
1735 			break;
1736 		if (status & done)
1737 			break;
1738 		if (status & fail)
1739 			break;
1740 		if (time_after_eq(jiffies, start + HZ)) {
1741 			timed_out = 1;
1742 			break;
1743 		}
1744 		schedule_timeout_uninterruptible(1);
1745 	}
1746 
1747 	if (status & fail)
1748 		printk(KERN_INFO "%s: %s failed! (0x%08x & 0x%08x)\n",
1749 			ndev->name, name, status, fail);
1750 	else if (timed_out)
1751 		printk(KERN_INFO "%s: run_bist %s timed out! (%08x)\n",
1752 			ndev->name, name, status);
1753 
1754 	dprintk("%s: done %s in %d loops\n", ndev->name, name, loops);
1755 }
1756 
1757 #ifdef PHY_CODE_IS_FINISHED
1758 static void ns83820_mii_write_bit(struct ns83820 *dev, int bit)
1759 {
1760 	/* drive MDC low */
1761 	dev->MEAR_cache &= ~MEAR_MDC;
1762 	writel(dev->MEAR_cache, dev->base + MEAR);
1763 	readl(dev->base + MEAR);
1764 
1765 	/* enable output, set bit */
1766 	dev->MEAR_cache |= MEAR_MDDIR;
1767 	if (bit)
1768 		dev->MEAR_cache |= MEAR_MDIO;
1769 	else
1770 		dev->MEAR_cache &= ~MEAR_MDIO;
1771 
1772 	/* set the output bit */
1773 	writel(dev->MEAR_cache, dev->base + MEAR);
1774 	readl(dev->base + MEAR);
1775 
1776 	/* Wait.  Max clock rate is 2.5MHz, this way we come in under 1MHz */
1777 	udelay(1);
1778 
1779 	/* drive MDC high causing the data bit to be latched */
1780 	dev->MEAR_cache |= MEAR_MDC;
1781 	writel(dev->MEAR_cache, dev->base + MEAR);
1782 	readl(dev->base + MEAR);
1783 
1784 	/* Wait again... */
1785 	udelay(1);
1786 }
1787 
1788 static int ns83820_mii_read_bit(struct ns83820 *dev)
1789 {
1790 	int bit;
1791 
1792 	/* drive MDC low, disable output */
1793 	dev->MEAR_cache &= ~MEAR_MDC;
1794 	dev->MEAR_cache &= ~MEAR_MDDIR;
1795 	writel(dev->MEAR_cache, dev->base + MEAR);
1796 	readl(dev->base + MEAR);
1797 
1798 	/* Wait.  Max clock rate is 2.5MHz, this way we come in under 1MHz */
1799 	udelay(1);
1800 
1801 	/* drive MDC high causing the data bit to be latched */
1802 	bit = (readl(dev->base + MEAR) & MEAR_MDIO) ? 1 : 0;
1803 	dev->MEAR_cache |= MEAR_MDC;
1804 	writel(dev->MEAR_cache, dev->base + MEAR);
1805 
1806 	/* Wait again... */
1807 	udelay(1);
1808 
1809 	return bit;
1810 }
1811 
1812 static unsigned ns83820_mii_read_reg(struct ns83820 *dev, unsigned phy, unsigned reg)
1813 {
1814 	unsigned data = 0;
1815 	int i;
1816 
1817 	/* read some garbage so that we eventually sync up */
1818 	for (i=0; i<64; i++)
1819 		ns83820_mii_read_bit(dev);
1820 
1821 	ns83820_mii_write_bit(dev, 0);	/* start */
1822 	ns83820_mii_write_bit(dev, 1);
1823 	ns83820_mii_write_bit(dev, 1);	/* opcode read */
1824 	ns83820_mii_write_bit(dev, 0);
1825 
1826 	/* write out the phy address: 5 bits, msb first */
1827 	for (i=0; i<5; i++)
1828 		ns83820_mii_write_bit(dev, phy & (0x10 >> i));
1829 
1830 	/* write out the register address, 5 bits, msb first */
1831 	for (i=0; i<5; i++)
1832 		ns83820_mii_write_bit(dev, reg & (0x10 >> i));
1833 
1834 	ns83820_mii_read_bit(dev);	/* turn around cycles */
1835 	ns83820_mii_read_bit(dev);
1836 
1837 	/* read in the register data, 16 bits msb first */
1838 	for (i=0; i<16; i++) {
1839 		data <<= 1;
1840 		data |= ns83820_mii_read_bit(dev);
1841 	}
1842 
1843 	return data;
1844 }
1845 
1846 static unsigned ns83820_mii_write_reg(struct ns83820 *dev, unsigned phy, unsigned reg, unsigned data)
1847 {
1848 	int i;
1849 
1850 	/* read some garbage so that we eventually sync up */
1851 	for (i=0; i<64; i++)
1852 		ns83820_mii_read_bit(dev);
1853 
1854 	ns83820_mii_write_bit(dev, 0);	/* start */
1855 	ns83820_mii_write_bit(dev, 1);
1856 	ns83820_mii_write_bit(dev, 0);	/* opcode read */
1857 	ns83820_mii_write_bit(dev, 1);
1858 
1859 	/* write out the phy address: 5 bits, msb first */
1860 	for (i=0; i<5; i++)
1861 		ns83820_mii_write_bit(dev, phy & (0x10 >> i));
1862 
1863 	/* write out the register address, 5 bits, msb first */
1864 	for (i=0; i<5; i++)
1865 		ns83820_mii_write_bit(dev, reg & (0x10 >> i));
1866 
1867 	ns83820_mii_read_bit(dev);	/* turn around cycles */
1868 	ns83820_mii_read_bit(dev);
1869 
1870 	/* read in the register data, 16 bits msb first */
1871 	for (i=0; i<16; i++)
1872 		ns83820_mii_write_bit(dev, (data >> (15 - i)) & 1);
1873 
1874 	return data;
1875 }
1876 
1877 static void ns83820_probe_phy(struct net_device *ndev)
1878 {
1879 	struct ns83820 *dev = PRIV(ndev);
1880 	static int first;
1881 	int i;
1882 #define MII_PHYIDR1	0x02
1883 #define MII_PHYIDR2	0x03
1884 
1885 #if 0
1886 	if (!first) {
1887 		unsigned tmp;
1888 		ns83820_mii_read_reg(dev, 1, 0x09);
1889 		ns83820_mii_write_reg(dev, 1, 0x10, 0x0d3e);
1890 
1891 		tmp = ns83820_mii_read_reg(dev, 1, 0x00);
1892 		ns83820_mii_write_reg(dev, 1, 0x00, tmp | 0x8000);
1893 		udelay(1300);
1894 		ns83820_mii_read_reg(dev, 1, 0x09);
1895 	}
1896 #endif
1897 	first = 1;
1898 
1899 	for (i=1; i<2; i++) {
1900 		int j;
1901 		unsigned a, b;
1902 		a = ns83820_mii_read_reg(dev, i, MII_PHYIDR1);
1903 		b = ns83820_mii_read_reg(dev, i, MII_PHYIDR2);
1904 
1905 		//printk("%s: phy %d: 0x%04x 0x%04x\n",
1906 		//	ndev->name, i, a, b);
1907 
1908 		for (j=0; j<0x16; j+=4) {
1909 			dprintk("%s: [0x%02x] %04x %04x %04x %04x\n",
1910 				ndev->name, j,
1911 				ns83820_mii_read_reg(dev, i, 0 + j),
1912 				ns83820_mii_read_reg(dev, i, 1 + j),
1913 				ns83820_mii_read_reg(dev, i, 2 + j),
1914 				ns83820_mii_read_reg(dev, i, 3 + j)
1915 				);
1916 		}
1917 	}
1918 	{
1919 		unsigned a, b;
1920 		/* read firmware version: memory addr is 0x8402 and 0x8403 */
1921 		ns83820_mii_write_reg(dev, 1, 0x16, 0x000d);
1922 		ns83820_mii_write_reg(dev, 1, 0x1e, 0x810e);
1923 		a = ns83820_mii_read_reg(dev, 1, 0x1d);
1924 
1925 		ns83820_mii_write_reg(dev, 1, 0x16, 0x000d);
1926 		ns83820_mii_write_reg(dev, 1, 0x1e, 0x810e);
1927 		b = ns83820_mii_read_reg(dev, 1, 0x1d);
1928 		dprintk("version: 0x%04x 0x%04x\n", a, b);
1929 	}
1930 }
1931 #endif
1932 
1933 static const struct net_device_ops netdev_ops = {
1934 	.ndo_open		= ns83820_open,
1935 	.ndo_stop		= ns83820_stop,
1936 	.ndo_start_xmit		= ns83820_hard_start_xmit,
1937 	.ndo_get_stats		= ns83820_get_stats,
1938 	.ndo_change_mtu		= ns83820_change_mtu,
1939 	.ndo_set_rx_mode	= ns83820_set_multicast,
1940 	.ndo_validate_addr	= eth_validate_addr,
1941 	.ndo_set_mac_address	= eth_mac_addr,
1942 	.ndo_tx_timeout		= ns83820_tx_timeout,
1943 };
1944 
1945 static int __devinit ns83820_init_one(struct pci_dev *pci_dev,
1946 				      const struct pci_device_id *id)
1947 {
1948 	struct net_device *ndev;
1949 	struct ns83820 *dev;
1950 	long addr;
1951 	int err;
1952 	int using_dac = 0;
1953 
1954 	/* See if we can set the dma mask early on; failure is fatal. */
1955 	if (sizeof(dma_addr_t) == 8 &&
1956 		!pci_set_dma_mask(pci_dev, DMA_BIT_MASK(64))) {
1957 		using_dac = 1;
1958 	} else if (!pci_set_dma_mask(pci_dev, DMA_BIT_MASK(32))) {
1959 		using_dac = 0;
1960 	} else {
1961 		dev_warn(&pci_dev->dev, "pci_set_dma_mask failed!\n");
1962 		return -ENODEV;
1963 	}
1964 
1965 	ndev = alloc_etherdev(sizeof(struct ns83820));
1966 	err = -ENOMEM;
1967 	if (!ndev)
1968 		goto out;
1969 
1970 	dev = PRIV(ndev);
1971 	dev->ndev = ndev;
1972 
1973 	spin_lock_init(&dev->rx_info.lock);
1974 	spin_lock_init(&dev->tx_lock);
1975 	spin_lock_init(&dev->misc_lock);
1976 	dev->pci_dev = pci_dev;
1977 
1978 	SET_NETDEV_DEV(ndev, &pci_dev->dev);
1979 
1980 	INIT_WORK(&dev->tq_refill, queue_refill);
1981 	tasklet_init(&dev->rx_tasklet, rx_action, (unsigned long)ndev);
1982 
1983 	err = pci_enable_device(pci_dev);
1984 	if (err) {
1985 		dev_info(&pci_dev->dev, "pci_enable_dev failed: %d\n", err);
1986 		goto out_free;
1987 	}
1988 
1989 	pci_set_master(pci_dev);
1990 	addr = pci_resource_start(pci_dev, 1);
1991 	dev->base = ioremap_nocache(addr, PAGE_SIZE);
1992 	dev->tx_descs = pci_alloc_consistent(pci_dev,
1993 			4 * DESC_SIZE * NR_TX_DESC, &dev->tx_phy_descs);
1994 	dev->rx_info.descs = pci_alloc_consistent(pci_dev,
1995 			4 * DESC_SIZE * NR_RX_DESC, &dev->rx_info.phy_descs);
1996 	err = -ENOMEM;
1997 	if (!dev->base || !dev->tx_descs || !dev->rx_info.descs)
1998 		goto out_disable;
1999 
2000 	dprintk("%p: %08lx  %p: %08lx\n",
2001 		dev->tx_descs, (long)dev->tx_phy_descs,
2002 		dev->rx_info.descs, (long)dev->rx_info.phy_descs);
2003 
2004 	ns83820_disable_interrupts(dev);
2005 
2006 	dev->IMR_cache = 0;
2007 
2008 	err = request_irq(pci_dev->irq, ns83820_irq, IRQF_SHARED,
2009 			  DRV_NAME, ndev);
2010 	if (err) {
2011 		dev_info(&pci_dev->dev, "unable to register irq %d, err %d\n",
2012 			pci_dev->irq, err);
2013 		goto out_disable;
2014 	}
2015 
2016 	/*
2017 	 * FIXME: we are holding rtnl_lock() over obscenely long area only
2018 	 * because some of the setup code uses dev->name.  It's Wrong(tm) -
2019 	 * we should be using driver-specific names for all that stuff.
2020 	 * For now that will do, but we really need to come back and kill
2021 	 * most of the dev_alloc_name() users later.
2022 	 */
2023 	rtnl_lock();
2024 	err = dev_alloc_name(ndev, ndev->name);
2025 	if (err < 0) {
2026 		dev_info(&pci_dev->dev, "unable to get netdev name: %d\n", err);
2027 		goto out_free_irq;
2028 	}
2029 
2030 	printk("%s: ns83820.c: 0x22c: %08x, subsystem: %04x:%04x\n",
2031 		ndev->name, le32_to_cpu(readl(dev->base + 0x22c)),
2032 		pci_dev->subsystem_vendor, pci_dev->subsystem_device);
2033 
2034 	ndev->netdev_ops = &netdev_ops;
2035 	SET_ETHTOOL_OPS(ndev, &ops);
2036 	ndev->watchdog_timeo = 5 * HZ;
2037 	pci_set_drvdata(pci_dev, ndev);
2038 
2039 	ns83820_do_reset(dev, CR_RST);
2040 
2041 	/* Must reset the ram bist before running it */
2042 	writel(PTSCR_RBIST_RST, dev->base + PTSCR);
2043 	ns83820_run_bist(ndev, "sram bist",   PTSCR_RBIST_EN,
2044 			 PTSCR_RBIST_DONE, PTSCR_RBIST_FAIL);
2045 	ns83820_run_bist(ndev, "eeprom bist", PTSCR_EEBIST_EN, 0,
2046 			 PTSCR_EEBIST_FAIL);
2047 	ns83820_run_bist(ndev, "eeprom load", PTSCR_EELOAD_EN, 0, 0);
2048 
2049 	/* I love config registers */
2050 	dev->CFG_cache = readl(dev->base + CFG);
2051 
2052 	if ((dev->CFG_cache & CFG_PCI64_DET)) {
2053 		printk(KERN_INFO "%s: detected 64 bit PCI data bus.\n",
2054 			ndev->name);
2055 		/*dev->CFG_cache |= CFG_DATA64_EN;*/
2056 		if (!(dev->CFG_cache & CFG_DATA64_EN))
2057 			printk(KERN_INFO "%s: EEPROM did not enable 64 bit bus.  Disabled.\n",
2058 				ndev->name);
2059 	} else
2060 		dev->CFG_cache &= ~(CFG_DATA64_EN);
2061 
2062 	dev->CFG_cache &= (CFG_TBI_EN  | CFG_MRM_DIS   | CFG_MWI_DIS |
2063 			   CFG_T64ADDR | CFG_DATA64_EN | CFG_EXT_125 |
2064 			   CFG_M64ADDR);
2065 	dev->CFG_cache |= CFG_PINT_DUPSTS | CFG_PINT_LNKSTS | CFG_PINT_SPDSTS |
2066 			  CFG_EXTSTS_EN   | CFG_EXD         | CFG_PESEL;
2067 	dev->CFG_cache |= CFG_REQALG;
2068 	dev->CFG_cache |= CFG_POW;
2069 	dev->CFG_cache |= CFG_TMRTEST;
2070 
2071 	/* When compiled with 64 bit addressing, we must always enable
2072 	 * the 64 bit descriptor format.
2073 	 */
2074 	if (sizeof(dma_addr_t) == 8)
2075 		dev->CFG_cache |= CFG_M64ADDR;
2076 	if (using_dac)
2077 		dev->CFG_cache |= CFG_T64ADDR;
2078 
2079 	/* Big endian mode does not seem to do what the docs suggest */
2080 	dev->CFG_cache &= ~CFG_BEM;
2081 
2082 	/* setup optical transceiver if we have one */
2083 	if (dev->CFG_cache & CFG_TBI_EN) {
2084 		printk(KERN_INFO "%s: enabling optical transceiver\n",
2085 			ndev->name);
2086 		writel(readl(dev->base + GPIOR) | 0x3e8, dev->base + GPIOR);
2087 
2088 		/* setup auto negotiation feature advertisement */
2089 		writel(readl(dev->base + TANAR)
2090 		       | TANAR_HALF_DUP | TANAR_FULL_DUP,
2091 		       dev->base + TANAR);
2092 
2093 		/* start auto negotiation */
2094 		writel(TBICR_MR_AN_ENABLE | TBICR_MR_RESTART_AN,
2095 		       dev->base + TBICR);
2096 		writel(TBICR_MR_AN_ENABLE, dev->base + TBICR);
2097 		dev->linkstate = LINK_AUTONEGOTIATE;
2098 
2099 		dev->CFG_cache |= CFG_MODE_1000;
2100 	}
2101 
2102 	writel(dev->CFG_cache, dev->base + CFG);
2103 	dprintk("CFG: %08x\n", dev->CFG_cache);
2104 
2105 	if (reset_phy) {
2106 		printk(KERN_INFO "%s: resetting phy\n", ndev->name);
2107 		writel(dev->CFG_cache | CFG_PHY_RST, dev->base + CFG);
2108 		msleep(10);
2109 		writel(dev->CFG_cache, dev->base + CFG);
2110 	}
2111 
2112 #if 0	/* Huh?  This sets the PCI latency register.  Should be done via
2113 	 * the PCI layer.  FIXME.
2114 	 */
2115 	if (readl(dev->base + SRR))
2116 		writel(readl(dev->base+0x20c) | 0xfe00, dev->base + 0x20c);
2117 #endif
2118 
2119 	/* Note!  The DMA burst size interacts with packet
2120 	 * transmission, such that the largest packet that
2121 	 * can be transmitted is 8192 - FLTH - burst size.
2122 	 * If only the transmit fifo was larger...
2123 	 */
2124 	/* Ramit : 1024 DMA is not a good idea, it ends up banging
2125 	 * some DELL and COMPAQ SMP systems */
2126 	writel(TXCFG_CSI | TXCFG_HBI | TXCFG_ATP | TXCFG_MXDMA512
2127 		| ((1600 / 32) * 0x100),
2128 		dev->base + TXCFG);
2129 
2130 	/* Flush the interrupt holdoff timer */
2131 	writel(0x000, dev->base + IHR);
2132 	writel(0x100, dev->base + IHR);
2133 	writel(0x000, dev->base + IHR);
2134 
2135 	/* Set Rx to full duplex, don't accept runt, errored, long or length
2136 	 * range errored packets.  Use 512 byte DMA.
2137 	 */
2138 	/* Ramit : 1024 DMA is not a good idea, it ends up banging
2139 	 * some DELL and COMPAQ SMP systems
2140 	 * Turn on ALP, only we are accpeting Jumbo Packets */
2141 	writel(RXCFG_AEP | RXCFG_ARP | RXCFG_AIRL | RXCFG_RX_FD
2142 		| RXCFG_STRIPCRC
2143 		//| RXCFG_ALP
2144 		| (RXCFG_MXDMA512) | 0, dev->base + RXCFG);
2145 
2146 	/* Disable priority queueing */
2147 	writel(0, dev->base + PQCR);
2148 
2149 	/* Enable IP checksum validation and detetion of VLAN headers.
2150 	 * Note: do not set the reject options as at least the 0x102
2151 	 * revision of the chip does not properly accept IP fragments
2152 	 * at least for UDP.
2153 	 */
2154 	/* Ramit : Be sure to turn on RXCFG_ARP if VLAN's are enabled, since
2155 	 * the MAC it calculates the packetsize AFTER stripping the VLAN
2156 	 * header, and if a VLAN Tagged packet of 64 bytes is received (like
2157 	 * a ping with a VLAN header) then the card, strips the 4 byte VLAN
2158 	 * tag and then checks the packet size, so if RXCFG_ARP is not enabled,
2159 	 * it discrards it!.  These guys......
2160 	 * also turn on tag stripping if hardware acceleration is enabled
2161 	 */
2162 #ifdef NS83820_VLAN_ACCEL_SUPPORT
2163 #define VRCR_INIT_VALUE (VRCR_IPEN|VRCR_VTDEN|VRCR_VTREN)
2164 #else
2165 #define VRCR_INIT_VALUE (VRCR_IPEN|VRCR_VTDEN)
2166 #endif
2167 	writel(VRCR_INIT_VALUE, dev->base + VRCR);
2168 
2169 	/* Enable per-packet TCP/UDP/IP checksumming
2170 	 * and per packet vlan tag insertion if
2171 	 * vlan hardware acceleration is enabled
2172 	 */
2173 #ifdef NS83820_VLAN_ACCEL_SUPPORT
2174 #define VTCR_INIT_VALUE (VTCR_PPCHK|VTCR_VPPTI)
2175 #else
2176 #define VTCR_INIT_VALUE VTCR_PPCHK
2177 #endif
2178 	writel(VTCR_INIT_VALUE, dev->base + VTCR);
2179 
2180 	/* Ramit : Enable async and sync pause frames */
2181 	/* writel(0, dev->base + PCR); */
2182 	writel((PCR_PS_MCAST | PCR_PS_DA | PCR_PSEN | PCR_FFLO_4K |
2183 		PCR_FFHI_8K | PCR_STLO_4 | PCR_STHI_8 | PCR_PAUSE_CNT),
2184 		dev->base + PCR);
2185 
2186 	/* Disable Wake On Lan */
2187 	writel(0, dev->base + WCSR);
2188 
2189 	ns83820_getmac(dev, ndev->dev_addr);
2190 
2191 	/* Yes, we support dumb IP checksum on transmit */
2192 	ndev->features |= NETIF_F_SG;
2193 	ndev->features |= NETIF_F_IP_CSUM;
2194 
2195 #ifdef NS83820_VLAN_ACCEL_SUPPORT
2196 	/* We also support hardware vlan acceleration */
2197 	ndev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
2198 #endif
2199 
2200 	if (using_dac) {
2201 		printk(KERN_INFO "%s: using 64 bit addressing.\n",
2202 			ndev->name);
2203 		ndev->features |= NETIF_F_HIGHDMA;
2204 	}
2205 
2206 	printk(KERN_INFO "%s: ns83820 v" VERSION ": DP83820 v%u.%u: %pM io=0x%08lx irq=%d f=%s\n",
2207 		ndev->name,
2208 		(unsigned)readl(dev->base + SRR) >> 8,
2209 		(unsigned)readl(dev->base + SRR) & 0xff,
2210 		ndev->dev_addr, addr, pci_dev->irq,
2211 		(ndev->features & NETIF_F_HIGHDMA) ? "h,sg" : "sg"
2212 		);
2213 
2214 #ifdef PHY_CODE_IS_FINISHED
2215 	ns83820_probe_phy(ndev);
2216 #endif
2217 
2218 	err = register_netdevice(ndev);
2219 	if (err) {
2220 		printk(KERN_INFO "ns83820: unable to register netdev: %d\n", err);
2221 		goto out_cleanup;
2222 	}
2223 	rtnl_unlock();
2224 
2225 	return 0;
2226 
2227 out_cleanup:
2228 	ns83820_disable_interrupts(dev); /* paranoia */
2229 out_free_irq:
2230 	rtnl_unlock();
2231 	free_irq(pci_dev->irq, ndev);
2232 out_disable:
2233 	if (dev->base)
2234 		iounmap(dev->base);
2235 	pci_free_consistent(pci_dev, 4 * DESC_SIZE * NR_TX_DESC, dev->tx_descs, dev->tx_phy_descs);
2236 	pci_free_consistent(pci_dev, 4 * DESC_SIZE * NR_RX_DESC, dev->rx_info.descs, dev->rx_info.phy_descs);
2237 	pci_disable_device(pci_dev);
2238 out_free:
2239 	free_netdev(ndev);
2240 	pci_set_drvdata(pci_dev, NULL);
2241 out:
2242 	return err;
2243 }
2244 
2245 static void __devexit ns83820_remove_one(struct pci_dev *pci_dev)
2246 {
2247 	struct net_device *ndev = pci_get_drvdata(pci_dev);
2248 	struct ns83820 *dev = PRIV(ndev); /* ok even if NULL */
2249 
2250 	if (!ndev)			/* paranoia */
2251 		return;
2252 
2253 	ns83820_disable_interrupts(dev); /* paranoia */
2254 
2255 	unregister_netdev(ndev);
2256 	free_irq(dev->pci_dev->irq, ndev);
2257 	iounmap(dev->base);
2258 	pci_free_consistent(dev->pci_dev, 4 * DESC_SIZE * NR_TX_DESC,
2259 			dev->tx_descs, dev->tx_phy_descs);
2260 	pci_free_consistent(dev->pci_dev, 4 * DESC_SIZE * NR_RX_DESC,
2261 			dev->rx_info.descs, dev->rx_info.phy_descs);
2262 	pci_disable_device(dev->pci_dev);
2263 	free_netdev(ndev);
2264 	pci_set_drvdata(pci_dev, NULL);
2265 }
2266 
2267 static DEFINE_PCI_DEVICE_TABLE(ns83820_pci_tbl) = {
2268 	{ 0x100b, 0x0022, PCI_ANY_ID, PCI_ANY_ID, 0, .driver_data = 0, },
2269 	{ 0, },
2270 };
2271 
2272 static struct pci_driver driver = {
2273 	.name		= "ns83820",
2274 	.id_table	= ns83820_pci_tbl,
2275 	.probe		= ns83820_init_one,
2276 	.remove		= __devexit_p(ns83820_remove_one),
2277 #if 0	/* FIXME: implement */
2278 	.suspend	= ,
2279 	.resume		= ,
2280 #endif
2281 };
2282 
2283 
2284 static int __init ns83820_init(void)
2285 {
2286 	printk(KERN_INFO "ns83820.c: National Semiconductor DP83820 10/100/1000 driver.\n");
2287 	return pci_register_driver(&driver);
2288 }
2289 
2290 static void __exit ns83820_exit(void)
2291 {
2292 	pci_unregister_driver(&driver);
2293 }
2294 
2295 MODULE_AUTHOR("Benjamin LaHaise <bcrl@kvack.org>");
2296 MODULE_DESCRIPTION("National Semiconductor DP83820 10/100/1000 driver");
2297 MODULE_LICENSE("GPL");
2298 
2299 MODULE_DEVICE_TABLE(pci, ns83820_pci_tbl);
2300 
2301 module_param(lnksts, int, 0);
2302 MODULE_PARM_DESC(lnksts, "Polarity of LNKSTS bit");
2303 
2304 module_param(ihr, int, 0);
2305 MODULE_PARM_DESC(ihr, "Time in 100 us increments to delay interrupts (range 0-127)");
2306 
2307 module_param(reset_phy, int, 0);
2308 MODULE_PARM_DESC(reset_phy, "Set to 1 to reset the PHY on startup");
2309 
2310 module_init(ns83820_init);
2311 module_exit(ns83820_exit);
2312