1 // SPDX-License-Identifier: GPL-2.0-or-later 2 #define VERSION "0.23" 3 /* ns83820.c by Benjamin LaHaise with contributions. 4 * 5 * Questions/comments/discussion to linux-ns83820@kvack.org. 6 * 7 * $Revision: 1.34.2.23 $ 8 * 9 * Copyright 2001 Benjamin LaHaise. 10 * Copyright 2001, 2002 Red Hat. 11 * 12 * Mmmm, chocolate vanilla mocha... 13 * 14 * ChangeLog 15 * ========= 16 * 20010414 0.1 - created 17 * 20010622 0.2 - basic rx and tx. 18 * 20010711 0.3 - added duplex and link state detection support. 19 * 20010713 0.4 - zero copy, no hangs. 20 * 0.5 - 64 bit dma support (davem will hate me for this) 21 * - disable jumbo frames to avoid tx hangs 22 * - work around tx deadlocks on my 1.02 card via 23 * fiddling with TXCFG 24 * 20010810 0.6 - use pci dma api for ringbuffers, work on ia64 25 * 20010816 0.7 - misc cleanups 26 * 20010826 0.8 - fix critical zero copy bugs 27 * 0.9 - internal experiment 28 * 20010827 0.10 - fix ia64 unaligned access. 29 * 20010906 0.11 - accept all packets with checksum errors as 30 * otherwise fragments get lost 31 * - fix >> 32 bugs 32 * 0.12 - add statistics counters 33 * - add allmulti/promisc support 34 * 20011009 0.13 - hotplug support, other smaller pci api cleanups 35 * 20011204 0.13a - optical transceiver support added 36 * by Michael Clark <michael@metaparadigm.com> 37 * 20011205 0.13b - call register_netdev earlier in initialization 38 * suppress duplicate link status messages 39 * 20011117 0.14 - ethtool GDRVINFO, GLINK support from jgarzik 40 * 20011204 0.15 get ppc (big endian) working 41 * 20011218 0.16 various cleanups 42 * 20020310 0.17 speedups 43 * 20020610 0.18 - actually use the pci dma api for highmem 44 * - remove pci latency register fiddling 45 * 0.19 - better bist support 46 * - add ihr and reset_phy parameters 47 * - gmii bus probing 48 * - fix missed txok introduced during performance 49 * tuning 50 * 0.20 - fix stupid RFEN thinko. i am such a smurf. 51 * 20040828 0.21 - add hardware vlan accleration 52 * by Neil Horman <nhorman@redhat.com> 53 * 20050406 0.22 - improved DAC ifdefs from Andi Kleen 54 * - removal of dead code from Adrian Bunk 55 * - fix half duplex collision behaviour 56 * Driver Overview 57 * =============== 58 * 59 * This driver was originally written for the National Semiconductor 60 * 83820 chip, a 10/100/1000 Mbps 64 bit PCI ethernet NIC. Hopefully 61 * this code will turn out to be a) clean, b) correct, and c) fast. 62 * With that in mind, I'm aiming to split the code up as much as 63 * reasonably possible. At present there are X major sections that 64 * break down into a) packet receive, b) packet transmit, c) link 65 * management, d) initialization and configuration. Where possible, 66 * these code paths are designed to run in parallel. 67 * 68 * This driver has been tested and found to work with the following 69 * cards (in no particular order): 70 * 71 * Cameo SOHO-GA2000T SOHO-GA2500T 72 * D-Link DGE-500T 73 * PureData PDP8023Z-TG 74 * SMC SMC9452TX SMC9462TX 75 * Netgear GA621 76 * 77 * Special thanks to SMC for providing hardware to test this driver on. 78 * 79 * Reports of success or failure would be greatly appreciated. 80 */ 81 //#define dprintk printk 82 #define dprintk(x...) do { } while (0) 83 84 #include <linux/module.h> 85 #include <linux/moduleparam.h> 86 #include <linux/types.h> 87 #include <linux/pci.h> 88 #include <linux/dma-mapping.h> 89 #include <linux/netdevice.h> 90 #include <linux/etherdevice.h> 91 #include <linux/delay.h> 92 #include <linux/workqueue.h> 93 #include <linux/init.h> 94 #include <linux/interrupt.h> 95 #include <linux/ip.h> /* for iph */ 96 #include <linux/in.h> /* for IPPROTO_... */ 97 #include <linux/compiler.h> 98 #include <linux/prefetch.h> 99 #include <linux/ethtool.h> 100 #include <linux/sched.h> 101 #include <linux/timer.h> 102 #include <linux/if_vlan.h> 103 #include <linux/rtnetlink.h> 104 #include <linux/jiffies.h> 105 #include <linux/slab.h> 106 107 #include <asm/io.h> 108 #include <linux/uaccess.h> 109 110 #define DRV_NAME "ns83820" 111 112 /* Global parameters. See module_param near the bottom. */ 113 static int ihr = 2; 114 static int reset_phy = 0; 115 static int lnksts = 0; /* CFG_LNKSTS bit polarity */ 116 117 /* Dprintk is used for more interesting debug events */ 118 #undef Dprintk 119 #define Dprintk dprintk 120 121 /* tunables */ 122 #define RX_BUF_SIZE 1500 /* 8192 */ 123 #if IS_ENABLED(CONFIG_VLAN_8021Q) 124 #define NS83820_VLAN_ACCEL_SUPPORT 125 #endif 126 127 /* Must not exceed ~65000. */ 128 #define NR_RX_DESC 64 129 #define NR_TX_DESC 128 130 131 /* not tunable */ 132 #define REAL_RX_BUF_SIZE (RX_BUF_SIZE + 14) /* rx/tx mac addr + type */ 133 134 #define MIN_TX_DESC_FREE 8 135 136 /* register defines */ 137 #define CFGCS 0x04 138 139 #define CR_TXE 0x00000001 140 #define CR_TXD 0x00000002 141 /* Ramit : Here's a tip, don't do a RXD immediately followed by an RXE 142 * The Receive engine skips one descriptor and moves 143 * onto the next one!! */ 144 #define CR_RXE 0x00000004 145 #define CR_RXD 0x00000008 146 #define CR_TXR 0x00000010 147 #define CR_RXR 0x00000020 148 #define CR_SWI 0x00000080 149 #define CR_RST 0x00000100 150 151 #define PTSCR_EEBIST_FAIL 0x00000001 152 #define PTSCR_EEBIST_EN 0x00000002 153 #define PTSCR_EELOAD_EN 0x00000004 154 #define PTSCR_RBIST_FAIL 0x000001b8 155 #define PTSCR_RBIST_DONE 0x00000200 156 #define PTSCR_RBIST_EN 0x00000400 157 #define PTSCR_RBIST_RST 0x00002000 158 159 #define MEAR_EEDI 0x00000001 160 #define MEAR_EEDO 0x00000002 161 #define MEAR_EECLK 0x00000004 162 #define MEAR_EESEL 0x00000008 163 #define MEAR_MDIO 0x00000010 164 #define MEAR_MDDIR 0x00000020 165 #define MEAR_MDC 0x00000040 166 167 #define ISR_TXDESC3 0x40000000 168 #define ISR_TXDESC2 0x20000000 169 #define ISR_TXDESC1 0x10000000 170 #define ISR_TXDESC0 0x08000000 171 #define ISR_RXDESC3 0x04000000 172 #define ISR_RXDESC2 0x02000000 173 #define ISR_RXDESC1 0x01000000 174 #define ISR_RXDESC0 0x00800000 175 #define ISR_TXRCMP 0x00400000 176 #define ISR_RXRCMP 0x00200000 177 #define ISR_DPERR 0x00100000 178 #define ISR_SSERR 0x00080000 179 #define ISR_RMABT 0x00040000 180 #define ISR_RTABT 0x00020000 181 #define ISR_RXSOVR 0x00010000 182 #define ISR_HIBINT 0x00008000 183 #define ISR_PHY 0x00004000 184 #define ISR_PME 0x00002000 185 #define ISR_SWI 0x00001000 186 #define ISR_MIB 0x00000800 187 #define ISR_TXURN 0x00000400 188 #define ISR_TXIDLE 0x00000200 189 #define ISR_TXERR 0x00000100 190 #define ISR_TXDESC 0x00000080 191 #define ISR_TXOK 0x00000040 192 #define ISR_RXORN 0x00000020 193 #define ISR_RXIDLE 0x00000010 194 #define ISR_RXEARLY 0x00000008 195 #define ISR_RXERR 0x00000004 196 #define ISR_RXDESC 0x00000002 197 #define ISR_RXOK 0x00000001 198 199 #define TXCFG_CSI 0x80000000 200 #define TXCFG_HBI 0x40000000 201 #define TXCFG_MLB 0x20000000 202 #define TXCFG_ATP 0x10000000 203 #define TXCFG_ECRETRY 0x00800000 204 #define TXCFG_BRST_DIS 0x00080000 205 #define TXCFG_MXDMA1024 0x00000000 206 #define TXCFG_MXDMA512 0x00700000 207 #define TXCFG_MXDMA256 0x00600000 208 #define TXCFG_MXDMA128 0x00500000 209 #define TXCFG_MXDMA64 0x00400000 210 #define TXCFG_MXDMA32 0x00300000 211 #define TXCFG_MXDMA16 0x00200000 212 #define TXCFG_MXDMA8 0x00100000 213 214 #define CFG_LNKSTS 0x80000000 215 #define CFG_SPDSTS 0x60000000 216 #define CFG_SPDSTS1 0x40000000 217 #define CFG_SPDSTS0 0x20000000 218 #define CFG_DUPSTS 0x10000000 219 #define CFG_TBI_EN 0x01000000 220 #define CFG_MODE_1000 0x00400000 221 /* Ramit : Dont' ever use AUTO_1000, it never works and is buggy. 222 * Read the Phy response and then configure the MAC accordingly */ 223 #define CFG_AUTO_1000 0x00200000 224 #define CFG_PINT_CTL 0x001c0000 225 #define CFG_PINT_DUPSTS 0x00100000 226 #define CFG_PINT_LNKSTS 0x00080000 227 #define CFG_PINT_SPDSTS 0x00040000 228 #define CFG_TMRTEST 0x00020000 229 #define CFG_MRM_DIS 0x00010000 230 #define CFG_MWI_DIS 0x00008000 231 #define CFG_T64ADDR 0x00004000 232 #define CFG_PCI64_DET 0x00002000 233 #define CFG_DATA64_EN 0x00001000 234 #define CFG_M64ADDR 0x00000800 235 #define CFG_PHY_RST 0x00000400 236 #define CFG_PHY_DIS 0x00000200 237 #define CFG_EXTSTS_EN 0x00000100 238 #define CFG_REQALG 0x00000080 239 #define CFG_SB 0x00000040 240 #define CFG_POW 0x00000020 241 #define CFG_EXD 0x00000010 242 #define CFG_PESEL 0x00000008 243 #define CFG_BROM_DIS 0x00000004 244 #define CFG_EXT_125 0x00000002 245 #define CFG_BEM 0x00000001 246 247 #define EXTSTS_UDPPKT 0x00200000 248 #define EXTSTS_TCPPKT 0x00080000 249 #define EXTSTS_IPPKT 0x00020000 250 #define EXTSTS_VPKT 0x00010000 251 #define EXTSTS_VTG_MASK 0x0000ffff 252 253 #define SPDSTS_POLARITY (CFG_SPDSTS1 | CFG_SPDSTS0 | CFG_DUPSTS | (lnksts ? CFG_LNKSTS : 0)) 254 255 #define MIBC_MIBS 0x00000008 256 #define MIBC_ACLR 0x00000004 257 #define MIBC_FRZ 0x00000002 258 #define MIBC_WRN 0x00000001 259 260 #define PCR_PSEN (1 << 31) 261 #define PCR_PS_MCAST (1 << 30) 262 #define PCR_PS_DA (1 << 29) 263 #define PCR_STHI_8 (3 << 23) 264 #define PCR_STLO_4 (1 << 23) 265 #define PCR_FFHI_8K (3 << 21) 266 #define PCR_FFLO_4K (1 << 21) 267 #define PCR_PAUSE_CNT 0xFFFE 268 269 #define RXCFG_AEP 0x80000000 270 #define RXCFG_ARP 0x40000000 271 #define RXCFG_STRIPCRC 0x20000000 272 #define RXCFG_RX_FD 0x10000000 273 #define RXCFG_ALP 0x08000000 274 #define RXCFG_AIRL 0x04000000 275 #define RXCFG_MXDMA512 0x00700000 276 #define RXCFG_DRTH 0x0000003e 277 #define RXCFG_DRTH0 0x00000002 278 279 #define RFCR_RFEN 0x80000000 280 #define RFCR_AAB 0x40000000 281 #define RFCR_AAM 0x20000000 282 #define RFCR_AAU 0x10000000 283 #define RFCR_APM 0x08000000 284 #define RFCR_APAT 0x07800000 285 #define RFCR_APAT3 0x04000000 286 #define RFCR_APAT2 0x02000000 287 #define RFCR_APAT1 0x01000000 288 #define RFCR_APAT0 0x00800000 289 #define RFCR_AARP 0x00400000 290 #define RFCR_MHEN 0x00200000 291 #define RFCR_UHEN 0x00100000 292 #define RFCR_ULM 0x00080000 293 294 #define VRCR_RUDPE 0x00000080 295 #define VRCR_RTCPE 0x00000040 296 #define VRCR_RIPE 0x00000020 297 #define VRCR_IPEN 0x00000010 298 #define VRCR_DUTF 0x00000008 299 #define VRCR_DVTF 0x00000004 300 #define VRCR_VTREN 0x00000002 301 #define VRCR_VTDEN 0x00000001 302 303 #define VTCR_PPCHK 0x00000008 304 #define VTCR_GCHK 0x00000004 305 #define VTCR_VPPTI 0x00000002 306 #define VTCR_VGTI 0x00000001 307 308 #define CR 0x00 309 #define CFG 0x04 310 #define MEAR 0x08 311 #define PTSCR 0x0c 312 #define ISR 0x10 313 #define IMR 0x14 314 #define IER 0x18 315 #define IHR 0x1c 316 #define TXDP 0x20 317 #define TXDP_HI 0x24 318 #define TXCFG 0x28 319 #define GPIOR 0x2c 320 #define RXDP 0x30 321 #define RXDP_HI 0x34 322 #define RXCFG 0x38 323 #define PQCR 0x3c 324 #define WCSR 0x40 325 #define PCR 0x44 326 #define RFCR 0x48 327 #define RFDR 0x4c 328 329 #define SRR 0x58 330 331 #define VRCR 0xbc 332 #define VTCR 0xc0 333 #define VDR 0xc4 334 #define CCSR 0xcc 335 336 #define TBICR 0xe0 337 #define TBISR 0xe4 338 #define TANAR 0xe8 339 #define TANLPAR 0xec 340 #define TANER 0xf0 341 #define TESR 0xf4 342 343 #define TBICR_MR_AN_ENABLE 0x00001000 344 #define TBICR_MR_RESTART_AN 0x00000200 345 346 #define TBISR_MR_LINK_STATUS 0x00000020 347 #define TBISR_MR_AN_COMPLETE 0x00000004 348 349 #define TANAR_PS2 0x00000100 350 #define TANAR_PS1 0x00000080 351 #define TANAR_HALF_DUP 0x00000040 352 #define TANAR_FULL_DUP 0x00000020 353 354 #define GPIOR_GP5_OE 0x00000200 355 #define GPIOR_GP4_OE 0x00000100 356 #define GPIOR_GP3_OE 0x00000080 357 #define GPIOR_GP2_OE 0x00000040 358 #define GPIOR_GP1_OE 0x00000020 359 #define GPIOR_GP3_OUT 0x00000004 360 #define GPIOR_GP1_OUT 0x00000001 361 362 #define LINK_AUTONEGOTIATE 0x01 363 #define LINK_DOWN 0x02 364 #define LINK_UP 0x04 365 366 #define HW_ADDR_LEN sizeof(dma_addr_t) 367 #define desc_addr_set(desc, addr) \ 368 do { \ 369 ((desc)[0] = cpu_to_le32(addr)); \ 370 if (HW_ADDR_LEN == 8) \ 371 (desc)[1] = cpu_to_le32(((u64)addr) >> 32); \ 372 } while(0) 373 #define desc_addr_get(desc) \ 374 (le32_to_cpu((desc)[0]) | \ 375 (HW_ADDR_LEN == 8 ? ((dma_addr_t)le32_to_cpu((desc)[1]))<<32 : 0)) 376 377 #define DESC_LINK 0 378 #define DESC_BUFPTR (DESC_LINK + HW_ADDR_LEN/4) 379 #define DESC_CMDSTS (DESC_BUFPTR + HW_ADDR_LEN/4) 380 #define DESC_EXTSTS (DESC_CMDSTS + 4/4) 381 382 #define CMDSTS_OWN 0x80000000 383 #define CMDSTS_MORE 0x40000000 384 #define CMDSTS_INTR 0x20000000 385 #define CMDSTS_ERR 0x10000000 386 #define CMDSTS_OK 0x08000000 387 #define CMDSTS_RUNT 0x00200000 388 #define CMDSTS_LEN_MASK 0x0000ffff 389 390 #define CMDSTS_DEST_MASK 0x01800000 391 #define CMDSTS_DEST_SELF 0x00800000 392 #define CMDSTS_DEST_MULTI 0x01000000 393 394 #define DESC_SIZE 8 /* Should be cache line sized */ 395 396 struct rx_info { 397 spinlock_t lock; 398 int up; 399 unsigned long idle; 400 401 struct sk_buff *skbs[NR_RX_DESC]; 402 403 __le32 *next_rx_desc; 404 u16 next_rx, next_empty; 405 406 __le32 *descs; 407 dma_addr_t phy_descs; 408 }; 409 410 411 struct ns83820 { 412 u8 __iomem *base; 413 414 struct pci_dev *pci_dev; 415 struct net_device *ndev; 416 417 struct rx_info rx_info; 418 struct tasklet_struct rx_tasklet; 419 420 unsigned ihr; 421 struct work_struct tq_refill; 422 423 /* protects everything below. irqsave when using. */ 424 spinlock_t misc_lock; 425 426 u32 CFG_cache; 427 428 u32 MEAR_cache; 429 u32 IMR_cache; 430 431 unsigned linkstate; 432 433 spinlock_t tx_lock; 434 435 u16 tx_done_idx; 436 u16 tx_idx; 437 volatile u16 tx_free_idx; /* idx of free desc chain */ 438 u16 tx_intr_idx; 439 440 atomic_t nr_tx_skbs; 441 struct sk_buff *tx_skbs[NR_TX_DESC]; 442 443 char pad[16] __attribute__((aligned(16))); 444 __le32 *tx_descs; 445 dma_addr_t tx_phy_descs; 446 447 struct timer_list tx_watchdog; 448 }; 449 450 static inline struct ns83820 *PRIV(struct net_device *dev) 451 { 452 return netdev_priv(dev); 453 } 454 455 #define __kick_rx(dev) writel(CR_RXE, dev->base + CR) 456 457 static inline void kick_rx(struct net_device *ndev) 458 { 459 struct ns83820 *dev = PRIV(ndev); 460 dprintk("kick_rx: maybe kicking\n"); 461 if (test_and_clear_bit(0, &dev->rx_info.idle)) { 462 dprintk("actually kicking\n"); 463 writel(dev->rx_info.phy_descs + 464 (4 * DESC_SIZE * dev->rx_info.next_rx), 465 dev->base + RXDP); 466 if (dev->rx_info.next_rx == dev->rx_info.next_empty) 467 printk(KERN_DEBUG "%s: uh-oh: next_rx == next_empty???\n", 468 ndev->name); 469 __kick_rx(dev); 470 } 471 } 472 473 //free = (tx_done_idx + NR_TX_DESC-2 - free_idx) % NR_TX_DESC 474 #define start_tx_okay(dev) \ 475 (((NR_TX_DESC-2 + dev->tx_done_idx - dev->tx_free_idx) % NR_TX_DESC) > MIN_TX_DESC_FREE) 476 477 /* Packet Receiver 478 * 479 * The hardware supports linked lists of receive descriptors for 480 * which ownership is transferred back and forth by means of an 481 * ownership bit. While the hardware does support the use of a 482 * ring for receive descriptors, we only make use of a chain in 483 * an attempt to reduce bus traffic under heavy load scenarios. 484 * This will also make bugs a bit more obvious. The current code 485 * only makes use of a single rx chain; I hope to implement 486 * priority based rx for version 1.0. Goal: even under overload 487 * conditions, still route realtime traffic with as low jitter as 488 * possible. 489 */ 490 static inline void build_rx_desc(struct ns83820 *dev, __le32 *desc, dma_addr_t link, dma_addr_t buf, u32 cmdsts, u32 extsts) 491 { 492 desc_addr_set(desc + DESC_LINK, link); 493 desc_addr_set(desc + DESC_BUFPTR, buf); 494 desc[DESC_EXTSTS] = cpu_to_le32(extsts); 495 mb(); 496 desc[DESC_CMDSTS] = cpu_to_le32(cmdsts); 497 } 498 499 #define nr_rx_empty(dev) ((NR_RX_DESC-2 + dev->rx_info.next_rx - dev->rx_info.next_empty) % NR_RX_DESC) 500 static inline int ns83820_add_rx_skb(struct ns83820 *dev, struct sk_buff *skb) 501 { 502 unsigned next_empty; 503 u32 cmdsts; 504 __le32 *sg; 505 dma_addr_t buf; 506 507 next_empty = dev->rx_info.next_empty; 508 509 /* don't overrun last rx marker */ 510 if (unlikely(nr_rx_empty(dev) <= 2)) { 511 kfree_skb(skb); 512 return 1; 513 } 514 515 #if 0 516 dprintk("next_empty[%d] nr_used[%d] next_rx[%d]\n", 517 dev->rx_info.next_empty, 518 dev->rx_info.nr_used, 519 dev->rx_info.next_rx 520 ); 521 #endif 522 523 sg = dev->rx_info.descs + (next_empty * DESC_SIZE); 524 BUG_ON(NULL != dev->rx_info.skbs[next_empty]); 525 dev->rx_info.skbs[next_empty] = skb; 526 527 dev->rx_info.next_empty = (next_empty + 1) % NR_RX_DESC; 528 cmdsts = REAL_RX_BUF_SIZE | CMDSTS_INTR; 529 buf = dma_map_single(&dev->pci_dev->dev, skb->data, REAL_RX_BUF_SIZE, 530 DMA_FROM_DEVICE); 531 build_rx_desc(dev, sg, 0, buf, cmdsts, 0); 532 /* update link of previous rx */ 533 if (likely(next_empty != dev->rx_info.next_rx)) 534 dev->rx_info.descs[((NR_RX_DESC + next_empty - 1) % NR_RX_DESC) * DESC_SIZE] = cpu_to_le32(dev->rx_info.phy_descs + (next_empty * DESC_SIZE * 4)); 535 536 return 0; 537 } 538 539 static inline int rx_refill(struct net_device *ndev, gfp_t gfp) 540 { 541 struct ns83820 *dev = PRIV(ndev); 542 unsigned i; 543 unsigned long flags = 0; 544 545 if (unlikely(nr_rx_empty(dev) <= 2)) 546 return 0; 547 548 dprintk("rx_refill(%p)\n", ndev); 549 if (gfp == GFP_ATOMIC) 550 spin_lock_irqsave(&dev->rx_info.lock, flags); 551 for (i=0; i<NR_RX_DESC; i++) { 552 struct sk_buff *skb; 553 long res; 554 555 /* extra 16 bytes for alignment */ 556 skb = __netdev_alloc_skb(ndev, REAL_RX_BUF_SIZE+16, gfp); 557 if (unlikely(!skb)) 558 break; 559 560 skb_reserve(skb, skb->data - PTR_ALIGN(skb->data, 16)); 561 if (gfp != GFP_ATOMIC) 562 spin_lock_irqsave(&dev->rx_info.lock, flags); 563 res = ns83820_add_rx_skb(dev, skb); 564 if (gfp != GFP_ATOMIC) 565 spin_unlock_irqrestore(&dev->rx_info.lock, flags); 566 if (res) { 567 i = 1; 568 break; 569 } 570 } 571 if (gfp == GFP_ATOMIC) 572 spin_unlock_irqrestore(&dev->rx_info.lock, flags); 573 574 return i ? 0 : -ENOMEM; 575 } 576 577 static void rx_refill_atomic(struct net_device *ndev) 578 { 579 rx_refill(ndev, GFP_ATOMIC); 580 } 581 582 /* REFILL */ 583 static inline void queue_refill(struct work_struct *work) 584 { 585 struct ns83820 *dev = container_of(work, struct ns83820, tq_refill); 586 struct net_device *ndev = dev->ndev; 587 588 rx_refill(ndev, GFP_KERNEL); 589 if (dev->rx_info.up) 590 kick_rx(ndev); 591 } 592 593 static inline void clear_rx_desc(struct ns83820 *dev, unsigned i) 594 { 595 build_rx_desc(dev, dev->rx_info.descs + (DESC_SIZE * i), 0, 0, CMDSTS_OWN, 0); 596 } 597 598 static void phy_intr(struct net_device *ndev) 599 { 600 struct ns83820 *dev = PRIV(ndev); 601 static const char *speeds[] = { "10", "100", "1000", "1000(?)", "1000F" }; 602 u32 cfg, new_cfg; 603 u32 tanar, tanlpar; 604 int speed, fullduplex, newlinkstate; 605 606 cfg = readl(dev->base + CFG) ^ SPDSTS_POLARITY; 607 608 if (dev->CFG_cache & CFG_TBI_EN) { 609 u32 __maybe_unused tbisr; 610 611 /* we have an optical transceiver */ 612 tbisr = readl(dev->base + TBISR); 613 tanar = readl(dev->base + TANAR); 614 tanlpar = readl(dev->base + TANLPAR); 615 dprintk("phy_intr: tbisr=%08x, tanar=%08x, tanlpar=%08x\n", 616 tbisr, tanar, tanlpar); 617 618 if ( (fullduplex = (tanlpar & TANAR_FULL_DUP) && 619 (tanar & TANAR_FULL_DUP)) ) { 620 621 /* both of us are full duplex */ 622 writel(readl(dev->base + TXCFG) 623 | TXCFG_CSI | TXCFG_HBI | TXCFG_ATP, 624 dev->base + TXCFG); 625 writel(readl(dev->base + RXCFG) | RXCFG_RX_FD, 626 dev->base + RXCFG); 627 /* Light up full duplex LED */ 628 writel(readl(dev->base + GPIOR) | GPIOR_GP1_OUT, 629 dev->base + GPIOR); 630 631 } else if (((tanlpar & TANAR_HALF_DUP) && 632 (tanar & TANAR_HALF_DUP)) || 633 ((tanlpar & TANAR_FULL_DUP) && 634 (tanar & TANAR_HALF_DUP)) || 635 ((tanlpar & TANAR_HALF_DUP) && 636 (tanar & TANAR_FULL_DUP))) { 637 638 /* one or both of us are half duplex */ 639 writel((readl(dev->base + TXCFG) 640 & ~(TXCFG_CSI | TXCFG_HBI)) | TXCFG_ATP, 641 dev->base + TXCFG); 642 writel(readl(dev->base + RXCFG) & ~RXCFG_RX_FD, 643 dev->base + RXCFG); 644 /* Turn off full duplex LED */ 645 writel(readl(dev->base + GPIOR) & ~GPIOR_GP1_OUT, 646 dev->base + GPIOR); 647 } 648 649 speed = 4; /* 1000F */ 650 651 } else { 652 /* we have a copper transceiver */ 653 new_cfg = dev->CFG_cache & ~(CFG_SB | CFG_MODE_1000 | CFG_SPDSTS); 654 655 if (cfg & CFG_SPDSTS1) 656 new_cfg |= CFG_MODE_1000; 657 else 658 new_cfg &= ~CFG_MODE_1000; 659 660 speed = ((cfg / CFG_SPDSTS0) & 3); 661 fullduplex = (cfg & CFG_DUPSTS); 662 663 if (fullduplex) { 664 new_cfg |= CFG_SB; 665 writel(readl(dev->base + TXCFG) 666 | TXCFG_CSI | TXCFG_HBI, 667 dev->base + TXCFG); 668 writel(readl(dev->base + RXCFG) | RXCFG_RX_FD, 669 dev->base + RXCFG); 670 } else { 671 writel(readl(dev->base + TXCFG) 672 & ~(TXCFG_CSI | TXCFG_HBI), 673 dev->base + TXCFG); 674 writel(readl(dev->base + RXCFG) & ~(RXCFG_RX_FD), 675 dev->base + RXCFG); 676 } 677 678 if ((cfg & CFG_LNKSTS) && 679 ((new_cfg ^ dev->CFG_cache) != 0)) { 680 writel(new_cfg, dev->base + CFG); 681 dev->CFG_cache = new_cfg; 682 } 683 684 dev->CFG_cache &= ~CFG_SPDSTS; 685 dev->CFG_cache |= cfg & CFG_SPDSTS; 686 } 687 688 newlinkstate = (cfg & CFG_LNKSTS) ? LINK_UP : LINK_DOWN; 689 690 if (newlinkstate & LINK_UP && 691 dev->linkstate != newlinkstate) { 692 netif_start_queue(ndev); 693 netif_wake_queue(ndev); 694 printk(KERN_INFO "%s: link now %s mbps, %s duplex and up.\n", 695 ndev->name, 696 speeds[speed], 697 fullduplex ? "full" : "half"); 698 } else if (newlinkstate & LINK_DOWN && 699 dev->linkstate != newlinkstate) { 700 netif_stop_queue(ndev); 701 printk(KERN_INFO "%s: link now down.\n", ndev->name); 702 } 703 704 dev->linkstate = newlinkstate; 705 } 706 707 static int ns83820_setup_rx(struct net_device *ndev) 708 { 709 struct ns83820 *dev = PRIV(ndev); 710 unsigned i; 711 int ret; 712 713 dprintk("ns83820_setup_rx(%p)\n", ndev); 714 715 dev->rx_info.idle = 1; 716 dev->rx_info.next_rx = 0; 717 dev->rx_info.next_rx_desc = dev->rx_info.descs; 718 dev->rx_info.next_empty = 0; 719 720 for (i=0; i<NR_RX_DESC; i++) 721 clear_rx_desc(dev, i); 722 723 writel(0, dev->base + RXDP_HI); 724 writel(dev->rx_info.phy_descs, dev->base + RXDP); 725 726 ret = rx_refill(ndev, GFP_KERNEL); 727 if (!ret) { 728 dprintk("starting receiver\n"); 729 /* prevent the interrupt handler from stomping on us */ 730 spin_lock_irq(&dev->rx_info.lock); 731 732 writel(0x0001, dev->base + CCSR); 733 writel(0, dev->base + RFCR); 734 writel(0x7fc00000, dev->base + RFCR); 735 writel(0xffc00000, dev->base + RFCR); 736 737 dev->rx_info.up = 1; 738 739 phy_intr(ndev); 740 741 /* Okay, let it rip */ 742 spin_lock(&dev->misc_lock); 743 dev->IMR_cache |= ISR_PHY; 744 dev->IMR_cache |= ISR_RXRCMP; 745 //dev->IMR_cache |= ISR_RXERR; 746 //dev->IMR_cache |= ISR_RXOK; 747 dev->IMR_cache |= ISR_RXORN; 748 dev->IMR_cache |= ISR_RXSOVR; 749 dev->IMR_cache |= ISR_RXDESC; 750 dev->IMR_cache |= ISR_RXIDLE; 751 dev->IMR_cache |= ISR_TXDESC; 752 dev->IMR_cache |= ISR_TXIDLE; 753 754 writel(dev->IMR_cache, dev->base + IMR); 755 writel(1, dev->base + IER); 756 spin_unlock(&dev->misc_lock); 757 758 kick_rx(ndev); 759 760 spin_unlock_irq(&dev->rx_info.lock); 761 } 762 return ret; 763 } 764 765 static void ns83820_cleanup_rx(struct ns83820 *dev) 766 { 767 unsigned i; 768 unsigned long flags; 769 770 dprintk("ns83820_cleanup_rx(%p)\n", dev); 771 772 /* disable receive interrupts */ 773 spin_lock_irqsave(&dev->misc_lock, flags); 774 dev->IMR_cache &= ~(ISR_RXOK | ISR_RXDESC | ISR_RXERR | ISR_RXEARLY | ISR_RXIDLE); 775 writel(dev->IMR_cache, dev->base + IMR); 776 spin_unlock_irqrestore(&dev->misc_lock, flags); 777 778 /* synchronize with the interrupt handler and kill it */ 779 dev->rx_info.up = 0; 780 synchronize_irq(dev->pci_dev->irq); 781 782 /* touch the pci bus... */ 783 readl(dev->base + IMR); 784 785 /* assumes the transmitter is already disabled and reset */ 786 writel(0, dev->base + RXDP_HI); 787 writel(0, dev->base + RXDP); 788 789 for (i=0; i<NR_RX_DESC; i++) { 790 struct sk_buff *skb = dev->rx_info.skbs[i]; 791 dev->rx_info.skbs[i] = NULL; 792 clear_rx_desc(dev, i); 793 kfree_skb(skb); 794 } 795 } 796 797 static void ns83820_rx_kick(struct net_device *ndev) 798 { 799 struct ns83820 *dev = PRIV(ndev); 800 /*if (nr_rx_empty(dev) >= NR_RX_DESC/4)*/ { 801 if (dev->rx_info.up) { 802 rx_refill_atomic(ndev); 803 kick_rx(ndev); 804 } 805 } 806 807 if (dev->rx_info.up && nr_rx_empty(dev) > NR_RX_DESC*3/4) 808 schedule_work(&dev->tq_refill); 809 else 810 kick_rx(ndev); 811 if (dev->rx_info.idle) 812 printk(KERN_DEBUG "%s: BAD\n", ndev->name); 813 } 814 815 /* rx_irq 816 * 817 */ 818 static void rx_irq(struct net_device *ndev) 819 { 820 struct ns83820 *dev = PRIV(ndev); 821 struct rx_info *info = &dev->rx_info; 822 unsigned next_rx; 823 int rx_rc, len; 824 u32 cmdsts; 825 __le32 *desc; 826 unsigned long flags; 827 int nr = 0; 828 829 dprintk("rx_irq(%p)\n", ndev); 830 dprintk("rxdp: %08x, descs: %08lx next_rx[%d]: %p next_empty[%d]: %p\n", 831 readl(dev->base + RXDP), 832 (long)(dev->rx_info.phy_descs), 833 (int)dev->rx_info.next_rx, 834 (dev->rx_info.descs + (DESC_SIZE * dev->rx_info.next_rx)), 835 (int)dev->rx_info.next_empty, 836 (dev->rx_info.descs + (DESC_SIZE * dev->rx_info.next_empty)) 837 ); 838 839 spin_lock_irqsave(&info->lock, flags); 840 if (!info->up) 841 goto out; 842 843 dprintk("walking descs\n"); 844 next_rx = info->next_rx; 845 desc = info->next_rx_desc; 846 while ((CMDSTS_OWN & (cmdsts = le32_to_cpu(desc[DESC_CMDSTS]))) && 847 (cmdsts != CMDSTS_OWN)) { 848 struct sk_buff *skb; 849 u32 extsts = le32_to_cpu(desc[DESC_EXTSTS]); 850 dma_addr_t bufptr = desc_addr_get(desc + DESC_BUFPTR); 851 852 dprintk("cmdsts: %08x\n", cmdsts); 853 dprintk("link: %08x\n", cpu_to_le32(desc[DESC_LINK])); 854 dprintk("extsts: %08x\n", extsts); 855 856 skb = info->skbs[next_rx]; 857 info->skbs[next_rx] = NULL; 858 info->next_rx = (next_rx + 1) % NR_RX_DESC; 859 860 mb(); 861 clear_rx_desc(dev, next_rx); 862 863 dma_unmap_single(&dev->pci_dev->dev, bufptr, RX_BUF_SIZE, 864 DMA_FROM_DEVICE); 865 len = cmdsts & CMDSTS_LEN_MASK; 866 #ifdef NS83820_VLAN_ACCEL_SUPPORT 867 /* NH: As was mentioned below, this chip is kinda 868 * brain dead about vlan tag stripping. Frames 869 * that are 64 bytes with a vlan header appended 870 * like arp frames, or pings, are flagged as Runts 871 * when the tag is stripped and hardware. This 872 * also means that the OK bit in the descriptor 873 * is cleared when the frame comes in so we have 874 * to do a specific length check here to make sure 875 * the frame would have been ok, had we not stripped 876 * the tag. 877 */ 878 if (likely((CMDSTS_OK & cmdsts) || 879 ((cmdsts & CMDSTS_RUNT) && len >= 56))) { 880 #else 881 if (likely(CMDSTS_OK & cmdsts)) { 882 #endif 883 skb_put(skb, len); 884 if (unlikely(!skb)) 885 goto netdev_mangle_me_harder_failed; 886 if (cmdsts & CMDSTS_DEST_MULTI) 887 ndev->stats.multicast++; 888 ndev->stats.rx_packets++; 889 ndev->stats.rx_bytes += len; 890 if ((extsts & 0x002a0000) && !(extsts & 0x00540000)) { 891 skb->ip_summed = CHECKSUM_UNNECESSARY; 892 } else { 893 skb_checksum_none_assert(skb); 894 } 895 skb->protocol = eth_type_trans(skb, ndev); 896 #ifdef NS83820_VLAN_ACCEL_SUPPORT 897 if(extsts & EXTSTS_VPKT) { 898 unsigned short tag; 899 900 tag = ntohs(extsts & EXTSTS_VTG_MASK); 901 __vlan_hwaccel_put_tag(skb, htons(ETH_P_IPV6), tag); 902 } 903 #endif 904 rx_rc = netif_rx(skb); 905 if (NET_RX_DROP == rx_rc) { 906 netdev_mangle_me_harder_failed: 907 ndev->stats.rx_dropped++; 908 } 909 } else { 910 dev_kfree_skb_irq(skb); 911 } 912 913 nr++; 914 next_rx = info->next_rx; 915 desc = info->descs + (DESC_SIZE * next_rx); 916 } 917 info->next_rx = next_rx; 918 info->next_rx_desc = info->descs + (DESC_SIZE * next_rx); 919 920 out: 921 if (0 && !nr) { 922 Dprintk("dazed: cmdsts_f: %08x\n", cmdsts); 923 } 924 925 spin_unlock_irqrestore(&info->lock, flags); 926 } 927 928 static void rx_action(struct tasklet_struct *t) 929 { 930 struct ns83820 *dev = from_tasklet(dev, t, rx_tasklet); 931 struct net_device *ndev = dev->ndev; 932 rx_irq(ndev); 933 writel(ihr, dev->base + IHR); 934 935 spin_lock_irq(&dev->misc_lock); 936 dev->IMR_cache |= ISR_RXDESC; 937 writel(dev->IMR_cache, dev->base + IMR); 938 spin_unlock_irq(&dev->misc_lock); 939 940 rx_irq(ndev); 941 ns83820_rx_kick(ndev); 942 } 943 944 /* Packet Transmit code 945 */ 946 static inline void kick_tx(struct ns83820 *dev) 947 { 948 dprintk("kick_tx(%p): tx_idx=%d free_idx=%d\n", 949 dev, dev->tx_idx, dev->tx_free_idx); 950 writel(CR_TXE, dev->base + CR); 951 } 952 953 /* No spinlock needed on the transmit irq path as the interrupt handler is 954 * serialized. 955 */ 956 static void do_tx_done(struct net_device *ndev) 957 { 958 struct ns83820 *dev = PRIV(ndev); 959 u32 cmdsts, tx_done_idx; 960 __le32 *desc; 961 962 dprintk("do_tx_done(%p)\n", ndev); 963 tx_done_idx = dev->tx_done_idx; 964 desc = dev->tx_descs + (tx_done_idx * DESC_SIZE); 965 966 dprintk("tx_done_idx=%d free_idx=%d cmdsts=%08x\n", 967 tx_done_idx, dev->tx_free_idx, le32_to_cpu(desc[DESC_CMDSTS])); 968 while ((tx_done_idx != dev->tx_free_idx) && 969 !(CMDSTS_OWN & (cmdsts = le32_to_cpu(desc[DESC_CMDSTS]))) ) { 970 struct sk_buff *skb; 971 unsigned len; 972 dma_addr_t addr; 973 974 if (cmdsts & CMDSTS_ERR) 975 ndev->stats.tx_errors++; 976 if (cmdsts & CMDSTS_OK) 977 ndev->stats.tx_packets++; 978 if (cmdsts & CMDSTS_OK) 979 ndev->stats.tx_bytes += cmdsts & 0xffff; 980 981 dprintk("tx_done_idx=%d free_idx=%d cmdsts=%08x\n", 982 tx_done_idx, dev->tx_free_idx, cmdsts); 983 skb = dev->tx_skbs[tx_done_idx]; 984 dev->tx_skbs[tx_done_idx] = NULL; 985 dprintk("done(%p)\n", skb); 986 987 len = cmdsts & CMDSTS_LEN_MASK; 988 addr = desc_addr_get(desc + DESC_BUFPTR); 989 if (skb) { 990 dma_unmap_single(&dev->pci_dev->dev, addr, len, 991 DMA_TO_DEVICE); 992 dev_consume_skb_irq(skb); 993 atomic_dec(&dev->nr_tx_skbs); 994 } else 995 dma_unmap_page(&dev->pci_dev->dev, addr, len, 996 DMA_TO_DEVICE); 997 998 tx_done_idx = (tx_done_idx + 1) % NR_TX_DESC; 999 dev->tx_done_idx = tx_done_idx; 1000 desc[DESC_CMDSTS] = cpu_to_le32(0); 1001 mb(); 1002 desc = dev->tx_descs + (tx_done_idx * DESC_SIZE); 1003 } 1004 1005 /* Allow network stack to resume queueing packets after we've 1006 * finished transmitting at least 1/4 of the packets in the queue. 1007 */ 1008 if (netif_queue_stopped(ndev) && start_tx_okay(dev)) { 1009 dprintk("start_queue(%p)\n", ndev); 1010 netif_start_queue(ndev); 1011 netif_wake_queue(ndev); 1012 } 1013 } 1014 1015 static void ns83820_cleanup_tx(struct ns83820 *dev) 1016 { 1017 unsigned i; 1018 1019 for (i=0; i<NR_TX_DESC; i++) { 1020 struct sk_buff *skb = dev->tx_skbs[i]; 1021 dev->tx_skbs[i] = NULL; 1022 if (skb) { 1023 __le32 *desc = dev->tx_descs + (i * DESC_SIZE); 1024 dma_unmap_single(&dev->pci_dev->dev, 1025 desc_addr_get(desc + DESC_BUFPTR), 1026 le32_to_cpu(desc[DESC_CMDSTS]) & CMDSTS_LEN_MASK, 1027 DMA_TO_DEVICE); 1028 dev_kfree_skb_irq(skb); 1029 atomic_dec(&dev->nr_tx_skbs); 1030 } 1031 } 1032 1033 memset(dev->tx_descs, 0, NR_TX_DESC * DESC_SIZE * 4); 1034 } 1035 1036 /* transmit routine. This code relies on the network layer serializing 1037 * its calls in, but will run happily in parallel with the interrupt 1038 * handler. This code currently has provisions for fragmenting tx buffers 1039 * while trying to track down a bug in either the zero copy code or 1040 * the tx fifo (hence the MAX_FRAG_LEN). 1041 */ 1042 static netdev_tx_t ns83820_hard_start_xmit(struct sk_buff *skb, 1043 struct net_device *ndev) 1044 { 1045 struct ns83820 *dev = PRIV(ndev); 1046 u32 free_idx, cmdsts, extsts; 1047 int nr_free, nr_frags; 1048 unsigned tx_done_idx, last_idx; 1049 dma_addr_t buf; 1050 unsigned len; 1051 skb_frag_t *frag; 1052 int stopped = 0; 1053 int do_intr = 0; 1054 volatile __le32 *first_desc; 1055 1056 dprintk("ns83820_hard_start_xmit\n"); 1057 1058 nr_frags = skb_shinfo(skb)->nr_frags; 1059 again: 1060 if (unlikely(dev->CFG_cache & CFG_LNKSTS)) { 1061 netif_stop_queue(ndev); 1062 if (unlikely(dev->CFG_cache & CFG_LNKSTS)) 1063 return NETDEV_TX_BUSY; 1064 netif_start_queue(ndev); 1065 } 1066 1067 last_idx = free_idx = dev->tx_free_idx; 1068 tx_done_idx = dev->tx_done_idx; 1069 nr_free = (tx_done_idx + NR_TX_DESC-2 - free_idx) % NR_TX_DESC; 1070 nr_free -= 1; 1071 if (nr_free <= nr_frags) { 1072 dprintk("stop_queue - not enough(%p)\n", ndev); 1073 netif_stop_queue(ndev); 1074 1075 /* Check again: we may have raced with a tx done irq */ 1076 if (dev->tx_done_idx != tx_done_idx) { 1077 dprintk("restart queue(%p)\n", ndev); 1078 netif_start_queue(ndev); 1079 goto again; 1080 } 1081 return NETDEV_TX_BUSY; 1082 } 1083 1084 if (free_idx == dev->tx_intr_idx) { 1085 do_intr = 1; 1086 dev->tx_intr_idx = (dev->tx_intr_idx + NR_TX_DESC/4) % NR_TX_DESC; 1087 } 1088 1089 nr_free -= nr_frags; 1090 if (nr_free < MIN_TX_DESC_FREE) { 1091 dprintk("stop_queue - last entry(%p)\n", ndev); 1092 netif_stop_queue(ndev); 1093 stopped = 1; 1094 } 1095 1096 frag = skb_shinfo(skb)->frags; 1097 if (!nr_frags) 1098 frag = NULL; 1099 extsts = 0; 1100 if (skb->ip_summed == CHECKSUM_PARTIAL) { 1101 extsts |= EXTSTS_IPPKT; 1102 if (IPPROTO_TCP == ip_hdr(skb)->protocol) 1103 extsts |= EXTSTS_TCPPKT; 1104 else if (IPPROTO_UDP == ip_hdr(skb)->protocol) 1105 extsts |= EXTSTS_UDPPKT; 1106 } 1107 1108 #ifdef NS83820_VLAN_ACCEL_SUPPORT 1109 if (skb_vlan_tag_present(skb)) { 1110 /* fetch the vlan tag info out of the 1111 * ancillary data if the vlan code 1112 * is using hw vlan acceleration 1113 */ 1114 short tag = skb_vlan_tag_get(skb); 1115 extsts |= (EXTSTS_VPKT | htons(tag)); 1116 } 1117 #endif 1118 1119 len = skb->len; 1120 if (nr_frags) 1121 len -= skb->data_len; 1122 buf = dma_map_single(&dev->pci_dev->dev, skb->data, len, 1123 DMA_TO_DEVICE); 1124 1125 first_desc = dev->tx_descs + (free_idx * DESC_SIZE); 1126 1127 for (;;) { 1128 volatile __le32 *desc = dev->tx_descs + (free_idx * DESC_SIZE); 1129 1130 dprintk("frag[%3u]: %4u @ 0x%08Lx\n", free_idx, len, 1131 (unsigned long long)buf); 1132 last_idx = free_idx; 1133 free_idx = (free_idx + 1) % NR_TX_DESC; 1134 desc[DESC_LINK] = cpu_to_le32(dev->tx_phy_descs + (free_idx * DESC_SIZE * 4)); 1135 desc_addr_set(desc + DESC_BUFPTR, buf); 1136 desc[DESC_EXTSTS] = cpu_to_le32(extsts); 1137 1138 cmdsts = ((nr_frags) ? CMDSTS_MORE : do_intr ? CMDSTS_INTR : 0); 1139 cmdsts |= (desc == first_desc) ? 0 : CMDSTS_OWN; 1140 cmdsts |= len; 1141 desc[DESC_CMDSTS] = cpu_to_le32(cmdsts); 1142 1143 if (!nr_frags) 1144 break; 1145 1146 buf = skb_frag_dma_map(&dev->pci_dev->dev, frag, 0, 1147 skb_frag_size(frag), DMA_TO_DEVICE); 1148 dprintk("frag: buf=%08Lx page=%08lx offset=%08lx\n", 1149 (long long)buf, (long) page_to_pfn(frag->page), 1150 frag->page_offset); 1151 len = skb_frag_size(frag); 1152 frag++; 1153 nr_frags--; 1154 } 1155 dprintk("done pkt\n"); 1156 1157 spin_lock_irq(&dev->tx_lock); 1158 dev->tx_skbs[last_idx] = skb; 1159 first_desc[DESC_CMDSTS] |= cpu_to_le32(CMDSTS_OWN); 1160 dev->tx_free_idx = free_idx; 1161 atomic_inc(&dev->nr_tx_skbs); 1162 spin_unlock_irq(&dev->tx_lock); 1163 1164 kick_tx(dev); 1165 1166 /* Check again: we may have raced with a tx done irq */ 1167 if (stopped && (dev->tx_done_idx != tx_done_idx) && start_tx_okay(dev)) 1168 netif_start_queue(ndev); 1169 1170 return NETDEV_TX_OK; 1171 } 1172 1173 static void ns83820_update_stats(struct ns83820 *dev) 1174 { 1175 struct net_device *ndev = dev->ndev; 1176 u8 __iomem *base = dev->base; 1177 1178 /* the DP83820 will freeze counters, so we need to read all of them */ 1179 ndev->stats.rx_errors += readl(base + 0x60) & 0xffff; 1180 ndev->stats.rx_crc_errors += readl(base + 0x64) & 0xffff; 1181 ndev->stats.rx_missed_errors += readl(base + 0x68) & 0xffff; 1182 ndev->stats.rx_frame_errors += readl(base + 0x6c) & 0xffff; 1183 /*ndev->stats.rx_symbol_errors +=*/ readl(base + 0x70); 1184 ndev->stats.rx_length_errors += readl(base + 0x74) & 0xffff; 1185 ndev->stats.rx_length_errors += readl(base + 0x78) & 0xffff; 1186 /*ndev->stats.rx_badopcode_errors += */ readl(base + 0x7c); 1187 /*ndev->stats.rx_pause_count += */ readl(base + 0x80); 1188 /*ndev->stats.tx_pause_count += */ readl(base + 0x84); 1189 ndev->stats.tx_carrier_errors += readl(base + 0x88) & 0xff; 1190 } 1191 1192 static struct net_device_stats *ns83820_get_stats(struct net_device *ndev) 1193 { 1194 struct ns83820 *dev = PRIV(ndev); 1195 1196 /* somewhat overkill */ 1197 spin_lock_irq(&dev->misc_lock); 1198 ns83820_update_stats(dev); 1199 spin_unlock_irq(&dev->misc_lock); 1200 1201 return &ndev->stats; 1202 } 1203 1204 /* Let ethtool retrieve info */ 1205 static int ns83820_get_link_ksettings(struct net_device *ndev, 1206 struct ethtool_link_ksettings *cmd) 1207 { 1208 struct ns83820 *dev = PRIV(ndev); 1209 u32 cfg, tbicr; 1210 int fullduplex = 0; 1211 u32 supported; 1212 1213 /* 1214 * Here's the list of available ethtool commands from other drivers: 1215 * cmd->advertising = 1216 * ethtool_cmd_speed_set(cmd, ...) 1217 * cmd->duplex = 1218 * cmd->port = 0; 1219 * cmd->phy_address = 1220 * cmd->transceiver = 0; 1221 * cmd->autoneg = 1222 * cmd->maxtxpkt = 0; 1223 * cmd->maxrxpkt = 0; 1224 */ 1225 1226 /* read current configuration */ 1227 cfg = readl(dev->base + CFG) ^ SPDSTS_POLARITY; 1228 readl(dev->base + TANAR); 1229 tbicr = readl(dev->base + TBICR); 1230 1231 fullduplex = (cfg & CFG_DUPSTS) ? 1 : 0; 1232 1233 supported = SUPPORTED_Autoneg; 1234 1235 if (dev->CFG_cache & CFG_TBI_EN) { 1236 /* we have optical interface */ 1237 supported |= SUPPORTED_1000baseT_Half | 1238 SUPPORTED_1000baseT_Full | 1239 SUPPORTED_FIBRE; 1240 cmd->base.port = PORT_FIBRE; 1241 } else { 1242 /* we have copper */ 1243 supported |= SUPPORTED_10baseT_Half | 1244 SUPPORTED_10baseT_Full | SUPPORTED_100baseT_Half | 1245 SUPPORTED_100baseT_Full | SUPPORTED_1000baseT_Half | 1246 SUPPORTED_1000baseT_Full | 1247 SUPPORTED_MII; 1248 cmd->base.port = PORT_MII; 1249 } 1250 1251 ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported, 1252 supported); 1253 1254 cmd->base.duplex = fullduplex ? DUPLEX_FULL : DUPLEX_HALF; 1255 switch (cfg / CFG_SPDSTS0 & 3) { 1256 case 2: 1257 cmd->base.speed = SPEED_1000; 1258 break; 1259 case 1: 1260 cmd->base.speed = SPEED_100; 1261 break; 1262 default: 1263 cmd->base.speed = SPEED_10; 1264 break; 1265 } 1266 cmd->base.autoneg = (tbicr & TBICR_MR_AN_ENABLE) 1267 ? AUTONEG_ENABLE : AUTONEG_DISABLE; 1268 return 0; 1269 } 1270 1271 /* Let ethool change settings*/ 1272 static int ns83820_set_link_ksettings(struct net_device *ndev, 1273 const struct ethtool_link_ksettings *cmd) 1274 { 1275 struct ns83820 *dev = PRIV(ndev); 1276 u32 cfg, tanar; 1277 int have_optical = 0; 1278 int fullduplex = 0; 1279 1280 /* read current configuration */ 1281 cfg = readl(dev->base + CFG) ^ SPDSTS_POLARITY; 1282 tanar = readl(dev->base + TANAR); 1283 1284 if (dev->CFG_cache & CFG_TBI_EN) { 1285 /* we have optical */ 1286 have_optical = 1; 1287 fullduplex = (tanar & TANAR_FULL_DUP); 1288 1289 } else { 1290 /* we have copper */ 1291 fullduplex = cfg & CFG_DUPSTS; 1292 } 1293 1294 spin_lock_irq(&dev->misc_lock); 1295 spin_lock(&dev->tx_lock); 1296 1297 /* Set duplex */ 1298 if (cmd->base.duplex != fullduplex) { 1299 if (have_optical) { 1300 /*set full duplex*/ 1301 if (cmd->base.duplex == DUPLEX_FULL) { 1302 /* force full duplex */ 1303 writel(readl(dev->base + TXCFG) 1304 | TXCFG_CSI | TXCFG_HBI | TXCFG_ATP, 1305 dev->base + TXCFG); 1306 writel(readl(dev->base + RXCFG) | RXCFG_RX_FD, 1307 dev->base + RXCFG); 1308 /* Light up full duplex LED */ 1309 writel(readl(dev->base + GPIOR) | GPIOR_GP1_OUT, 1310 dev->base + GPIOR); 1311 } else { 1312 /*TODO: set half duplex */ 1313 } 1314 1315 } else { 1316 /*we have copper*/ 1317 /* TODO: Set duplex for copper cards */ 1318 } 1319 printk(KERN_INFO "%s: Duplex set via ethtool\n", 1320 ndev->name); 1321 } 1322 1323 /* Set autonegotiation */ 1324 if (1) { 1325 if (cmd->base.autoneg == AUTONEG_ENABLE) { 1326 /* restart auto negotiation */ 1327 writel(TBICR_MR_AN_ENABLE | TBICR_MR_RESTART_AN, 1328 dev->base + TBICR); 1329 writel(TBICR_MR_AN_ENABLE, dev->base + TBICR); 1330 dev->linkstate = LINK_AUTONEGOTIATE; 1331 1332 printk(KERN_INFO "%s: autoneg enabled via ethtool\n", 1333 ndev->name); 1334 } else { 1335 /* disable auto negotiation */ 1336 writel(0x00000000, dev->base + TBICR); 1337 } 1338 1339 printk(KERN_INFO "%s: autoneg %s via ethtool\n", ndev->name, 1340 cmd->base.autoneg ? "ENABLED" : "DISABLED"); 1341 } 1342 1343 phy_intr(ndev); 1344 spin_unlock(&dev->tx_lock); 1345 spin_unlock_irq(&dev->misc_lock); 1346 1347 return 0; 1348 } 1349 /* end ethtool get/set support -df */ 1350 1351 static void ns83820_get_drvinfo(struct net_device *ndev, struct ethtool_drvinfo *info) 1352 { 1353 struct ns83820 *dev = PRIV(ndev); 1354 strlcpy(info->driver, "ns83820", sizeof(info->driver)); 1355 strlcpy(info->version, VERSION, sizeof(info->version)); 1356 strlcpy(info->bus_info, pci_name(dev->pci_dev), sizeof(info->bus_info)); 1357 } 1358 1359 static u32 ns83820_get_link(struct net_device *ndev) 1360 { 1361 struct ns83820 *dev = PRIV(ndev); 1362 u32 cfg = readl(dev->base + CFG) ^ SPDSTS_POLARITY; 1363 return cfg & CFG_LNKSTS ? 1 : 0; 1364 } 1365 1366 static const struct ethtool_ops ops = { 1367 .get_drvinfo = ns83820_get_drvinfo, 1368 .get_link = ns83820_get_link, 1369 .get_link_ksettings = ns83820_get_link_ksettings, 1370 .set_link_ksettings = ns83820_set_link_ksettings, 1371 }; 1372 1373 static inline void ns83820_disable_interrupts(struct ns83820 *dev) 1374 { 1375 writel(0, dev->base + IMR); 1376 writel(0, dev->base + IER); 1377 readl(dev->base + IER); 1378 } 1379 1380 /* this function is called in irq context from the ISR */ 1381 static void ns83820_mib_isr(struct ns83820 *dev) 1382 { 1383 unsigned long flags; 1384 spin_lock_irqsave(&dev->misc_lock, flags); 1385 ns83820_update_stats(dev); 1386 spin_unlock_irqrestore(&dev->misc_lock, flags); 1387 } 1388 1389 static void ns83820_do_isr(struct net_device *ndev, u32 isr); 1390 static irqreturn_t ns83820_irq(int foo, void *data) 1391 { 1392 struct net_device *ndev = data; 1393 struct ns83820 *dev = PRIV(ndev); 1394 u32 isr; 1395 dprintk("ns83820_irq(%p)\n", ndev); 1396 1397 dev->ihr = 0; 1398 1399 isr = readl(dev->base + ISR); 1400 dprintk("irq: %08x\n", isr); 1401 ns83820_do_isr(ndev, isr); 1402 return IRQ_HANDLED; 1403 } 1404 1405 static void ns83820_do_isr(struct net_device *ndev, u32 isr) 1406 { 1407 struct ns83820 *dev = PRIV(ndev); 1408 unsigned long flags; 1409 1410 #ifdef DEBUG 1411 if (isr & ~(ISR_PHY | ISR_RXDESC | ISR_RXEARLY | ISR_RXOK | ISR_RXERR | ISR_TXIDLE | ISR_TXOK | ISR_TXDESC)) 1412 Dprintk("odd isr? 0x%08x\n", isr); 1413 #endif 1414 1415 if (ISR_RXIDLE & isr) { 1416 dev->rx_info.idle = 1; 1417 Dprintk("oh dear, we are idle\n"); 1418 ns83820_rx_kick(ndev); 1419 } 1420 1421 if ((ISR_RXDESC | ISR_RXOK) & isr) { 1422 prefetch(dev->rx_info.next_rx_desc); 1423 1424 spin_lock_irqsave(&dev->misc_lock, flags); 1425 dev->IMR_cache &= ~(ISR_RXDESC | ISR_RXOK); 1426 writel(dev->IMR_cache, dev->base + IMR); 1427 spin_unlock_irqrestore(&dev->misc_lock, flags); 1428 1429 tasklet_schedule(&dev->rx_tasklet); 1430 //rx_irq(ndev); 1431 //writel(4, dev->base + IHR); 1432 } 1433 1434 if ((ISR_RXIDLE | ISR_RXORN | ISR_RXDESC | ISR_RXOK | ISR_RXERR) & isr) 1435 ns83820_rx_kick(ndev); 1436 1437 if (unlikely(ISR_RXSOVR & isr)) { 1438 //printk("overrun: rxsovr\n"); 1439 ndev->stats.rx_fifo_errors++; 1440 } 1441 1442 if (unlikely(ISR_RXORN & isr)) { 1443 //printk("overrun: rxorn\n"); 1444 ndev->stats.rx_fifo_errors++; 1445 } 1446 1447 if ((ISR_RXRCMP & isr) && dev->rx_info.up) 1448 writel(CR_RXE, dev->base + CR); 1449 1450 if (ISR_TXIDLE & isr) { 1451 u32 txdp; 1452 txdp = readl(dev->base + TXDP); 1453 dprintk("txdp: %08x\n", txdp); 1454 txdp -= dev->tx_phy_descs; 1455 dev->tx_idx = txdp / (DESC_SIZE * 4); 1456 if (dev->tx_idx >= NR_TX_DESC) { 1457 printk(KERN_ALERT "%s: BUG -- txdp out of range\n", ndev->name); 1458 dev->tx_idx = 0; 1459 } 1460 /* The may have been a race between a pci originated read 1461 * and the descriptor update from the cpu. Just in case, 1462 * kick the transmitter if the hardware thinks it is on a 1463 * different descriptor than we are. 1464 */ 1465 if (dev->tx_idx != dev->tx_free_idx) 1466 kick_tx(dev); 1467 } 1468 1469 /* Defer tx ring processing until more than a minimum amount of 1470 * work has accumulated 1471 */ 1472 if ((ISR_TXDESC | ISR_TXIDLE | ISR_TXOK | ISR_TXERR) & isr) { 1473 spin_lock_irqsave(&dev->tx_lock, flags); 1474 do_tx_done(ndev); 1475 spin_unlock_irqrestore(&dev->tx_lock, flags); 1476 1477 /* Disable TxOk if there are no outstanding tx packets. 1478 */ 1479 if ((dev->tx_done_idx == dev->tx_free_idx) && 1480 (dev->IMR_cache & ISR_TXOK)) { 1481 spin_lock_irqsave(&dev->misc_lock, flags); 1482 dev->IMR_cache &= ~ISR_TXOK; 1483 writel(dev->IMR_cache, dev->base + IMR); 1484 spin_unlock_irqrestore(&dev->misc_lock, flags); 1485 } 1486 } 1487 1488 /* The TxIdle interrupt can come in before the transmit has 1489 * completed. Normally we reap packets off of the combination 1490 * of TxDesc and TxIdle and leave TxOk disabled (since it 1491 * occurs on every packet), but when no further irqs of this 1492 * nature are expected, we must enable TxOk. 1493 */ 1494 if ((ISR_TXIDLE & isr) && (dev->tx_done_idx != dev->tx_free_idx)) { 1495 spin_lock_irqsave(&dev->misc_lock, flags); 1496 dev->IMR_cache |= ISR_TXOK; 1497 writel(dev->IMR_cache, dev->base + IMR); 1498 spin_unlock_irqrestore(&dev->misc_lock, flags); 1499 } 1500 1501 /* MIB interrupt: one of the statistics counters is about to overflow */ 1502 if (unlikely(ISR_MIB & isr)) 1503 ns83820_mib_isr(dev); 1504 1505 /* PHY: Link up/down/negotiation state change */ 1506 if (unlikely(ISR_PHY & isr)) 1507 phy_intr(ndev); 1508 1509 #if 0 /* Still working on the interrupt mitigation strategy */ 1510 if (dev->ihr) 1511 writel(dev->ihr, dev->base + IHR); 1512 #endif 1513 } 1514 1515 static void ns83820_do_reset(struct ns83820 *dev, u32 which) 1516 { 1517 Dprintk("resetting chip...\n"); 1518 writel(which, dev->base + CR); 1519 do { 1520 schedule(); 1521 } while (readl(dev->base + CR) & which); 1522 Dprintk("okay!\n"); 1523 } 1524 1525 static int ns83820_stop(struct net_device *ndev) 1526 { 1527 struct ns83820 *dev = PRIV(ndev); 1528 1529 /* FIXME: protect against interrupt handler? */ 1530 del_timer_sync(&dev->tx_watchdog); 1531 1532 ns83820_disable_interrupts(dev); 1533 1534 dev->rx_info.up = 0; 1535 synchronize_irq(dev->pci_dev->irq); 1536 1537 ns83820_do_reset(dev, CR_RST); 1538 1539 synchronize_irq(dev->pci_dev->irq); 1540 1541 spin_lock_irq(&dev->misc_lock); 1542 dev->IMR_cache &= ~(ISR_TXURN | ISR_TXIDLE | ISR_TXERR | ISR_TXDESC | ISR_TXOK); 1543 spin_unlock_irq(&dev->misc_lock); 1544 1545 ns83820_cleanup_rx(dev); 1546 ns83820_cleanup_tx(dev); 1547 1548 return 0; 1549 } 1550 1551 static void ns83820_tx_timeout(struct net_device *ndev, unsigned int txqueue) 1552 { 1553 struct ns83820 *dev = PRIV(ndev); 1554 u32 tx_done_idx; 1555 __le32 *desc; 1556 unsigned long flags; 1557 1558 spin_lock_irqsave(&dev->tx_lock, flags); 1559 1560 tx_done_idx = dev->tx_done_idx; 1561 desc = dev->tx_descs + (tx_done_idx * DESC_SIZE); 1562 1563 printk(KERN_INFO "%s: tx_timeout: tx_done_idx=%d free_idx=%d cmdsts=%08x\n", 1564 ndev->name, 1565 tx_done_idx, dev->tx_free_idx, le32_to_cpu(desc[DESC_CMDSTS])); 1566 1567 #if defined(DEBUG) 1568 { 1569 u32 isr; 1570 isr = readl(dev->base + ISR); 1571 printk("irq: %08x imr: %08x\n", isr, dev->IMR_cache); 1572 ns83820_do_isr(ndev, isr); 1573 } 1574 #endif 1575 1576 do_tx_done(ndev); 1577 1578 tx_done_idx = dev->tx_done_idx; 1579 desc = dev->tx_descs + (tx_done_idx * DESC_SIZE); 1580 1581 printk(KERN_INFO "%s: after: tx_done_idx=%d free_idx=%d cmdsts=%08x\n", 1582 ndev->name, 1583 tx_done_idx, dev->tx_free_idx, le32_to_cpu(desc[DESC_CMDSTS])); 1584 1585 spin_unlock_irqrestore(&dev->tx_lock, flags); 1586 } 1587 1588 static void ns83820_tx_watch(struct timer_list *t) 1589 { 1590 struct ns83820 *dev = from_timer(dev, t, tx_watchdog); 1591 struct net_device *ndev = dev->ndev; 1592 1593 #if defined(DEBUG) 1594 printk("ns83820_tx_watch: %u %u %d\n", 1595 dev->tx_done_idx, dev->tx_free_idx, atomic_read(&dev->nr_tx_skbs) 1596 ); 1597 #endif 1598 1599 if (time_after(jiffies, dev_trans_start(ndev) + 1*HZ) && 1600 dev->tx_done_idx != dev->tx_free_idx) { 1601 printk(KERN_DEBUG "%s: ns83820_tx_watch: %u %u %d\n", 1602 ndev->name, 1603 dev->tx_done_idx, dev->tx_free_idx, 1604 atomic_read(&dev->nr_tx_skbs)); 1605 ns83820_tx_timeout(ndev, UINT_MAX); 1606 } 1607 1608 mod_timer(&dev->tx_watchdog, jiffies + 2*HZ); 1609 } 1610 1611 static int ns83820_open(struct net_device *ndev) 1612 { 1613 struct ns83820 *dev = PRIV(ndev); 1614 unsigned i; 1615 u32 desc; 1616 int ret; 1617 1618 dprintk("ns83820_open\n"); 1619 1620 writel(0, dev->base + PQCR); 1621 1622 ret = ns83820_setup_rx(ndev); 1623 if (ret) 1624 goto failed; 1625 1626 memset(dev->tx_descs, 0, 4 * NR_TX_DESC * DESC_SIZE); 1627 for (i=0; i<NR_TX_DESC; i++) { 1628 dev->tx_descs[(i * DESC_SIZE) + DESC_LINK] 1629 = cpu_to_le32( 1630 dev->tx_phy_descs 1631 + ((i+1) % NR_TX_DESC) * DESC_SIZE * 4); 1632 } 1633 1634 dev->tx_idx = 0; 1635 dev->tx_done_idx = 0; 1636 desc = dev->tx_phy_descs; 1637 writel(0, dev->base + TXDP_HI); 1638 writel(desc, dev->base + TXDP); 1639 1640 timer_setup(&dev->tx_watchdog, ns83820_tx_watch, 0); 1641 mod_timer(&dev->tx_watchdog, jiffies + 2*HZ); 1642 1643 netif_start_queue(ndev); /* FIXME: wait for phy to come up */ 1644 1645 return 0; 1646 1647 failed: 1648 ns83820_stop(ndev); 1649 return ret; 1650 } 1651 1652 static void ns83820_getmac(struct ns83820 *dev, u8 *mac) 1653 { 1654 unsigned i; 1655 for (i=0; i<3; i++) { 1656 u32 data; 1657 1658 /* Read from the perfect match memory: this is loaded by 1659 * the chip from the EEPROM via the EELOAD self test. 1660 */ 1661 writel(i*2, dev->base + RFCR); 1662 data = readl(dev->base + RFDR); 1663 1664 *mac++ = data; 1665 *mac++ = data >> 8; 1666 } 1667 } 1668 1669 static void ns83820_set_multicast(struct net_device *ndev) 1670 { 1671 struct ns83820 *dev = PRIV(ndev); 1672 u8 __iomem *rfcr = dev->base + RFCR; 1673 u32 and_mask = 0xffffffff; 1674 u32 or_mask = 0; 1675 u32 val; 1676 1677 if (ndev->flags & IFF_PROMISC) 1678 or_mask |= RFCR_AAU | RFCR_AAM; 1679 else 1680 and_mask &= ~(RFCR_AAU | RFCR_AAM); 1681 1682 if (ndev->flags & IFF_ALLMULTI || netdev_mc_count(ndev)) 1683 or_mask |= RFCR_AAM; 1684 else 1685 and_mask &= ~RFCR_AAM; 1686 1687 spin_lock_irq(&dev->misc_lock); 1688 val = (readl(rfcr) & and_mask) | or_mask; 1689 /* Ramit : RFCR Write Fix doc says RFEN must be 0 modify other bits */ 1690 writel(val & ~RFCR_RFEN, rfcr); 1691 writel(val, rfcr); 1692 spin_unlock_irq(&dev->misc_lock); 1693 } 1694 1695 static void ns83820_run_bist(struct net_device *ndev, const char *name, u32 enable, u32 done, u32 fail) 1696 { 1697 struct ns83820 *dev = PRIV(ndev); 1698 int timed_out = 0; 1699 unsigned long start; 1700 u32 status; 1701 int loops = 0; 1702 1703 dprintk("%s: start %s\n", ndev->name, name); 1704 1705 start = jiffies; 1706 1707 writel(enable, dev->base + PTSCR); 1708 for (;;) { 1709 loops++; 1710 status = readl(dev->base + PTSCR); 1711 if (!(status & enable)) 1712 break; 1713 if (status & done) 1714 break; 1715 if (status & fail) 1716 break; 1717 if (time_after_eq(jiffies, start + HZ)) { 1718 timed_out = 1; 1719 break; 1720 } 1721 schedule_timeout_uninterruptible(1); 1722 } 1723 1724 if (status & fail) 1725 printk(KERN_INFO "%s: %s failed! (0x%08x & 0x%08x)\n", 1726 ndev->name, name, status, fail); 1727 else if (timed_out) 1728 printk(KERN_INFO "%s: run_bist %s timed out! (%08x)\n", 1729 ndev->name, name, status); 1730 1731 dprintk("%s: done %s in %d loops\n", ndev->name, name, loops); 1732 } 1733 1734 #ifdef PHY_CODE_IS_FINISHED 1735 static void ns83820_mii_write_bit(struct ns83820 *dev, int bit) 1736 { 1737 /* drive MDC low */ 1738 dev->MEAR_cache &= ~MEAR_MDC; 1739 writel(dev->MEAR_cache, dev->base + MEAR); 1740 readl(dev->base + MEAR); 1741 1742 /* enable output, set bit */ 1743 dev->MEAR_cache |= MEAR_MDDIR; 1744 if (bit) 1745 dev->MEAR_cache |= MEAR_MDIO; 1746 else 1747 dev->MEAR_cache &= ~MEAR_MDIO; 1748 1749 /* set the output bit */ 1750 writel(dev->MEAR_cache, dev->base + MEAR); 1751 readl(dev->base + MEAR); 1752 1753 /* Wait. Max clock rate is 2.5MHz, this way we come in under 1MHz */ 1754 udelay(1); 1755 1756 /* drive MDC high causing the data bit to be latched */ 1757 dev->MEAR_cache |= MEAR_MDC; 1758 writel(dev->MEAR_cache, dev->base + MEAR); 1759 readl(dev->base + MEAR); 1760 1761 /* Wait again... */ 1762 udelay(1); 1763 } 1764 1765 static int ns83820_mii_read_bit(struct ns83820 *dev) 1766 { 1767 int bit; 1768 1769 /* drive MDC low, disable output */ 1770 dev->MEAR_cache &= ~MEAR_MDC; 1771 dev->MEAR_cache &= ~MEAR_MDDIR; 1772 writel(dev->MEAR_cache, dev->base + MEAR); 1773 readl(dev->base + MEAR); 1774 1775 /* Wait. Max clock rate is 2.5MHz, this way we come in under 1MHz */ 1776 udelay(1); 1777 1778 /* drive MDC high causing the data bit to be latched */ 1779 bit = (readl(dev->base + MEAR) & MEAR_MDIO) ? 1 : 0; 1780 dev->MEAR_cache |= MEAR_MDC; 1781 writel(dev->MEAR_cache, dev->base + MEAR); 1782 1783 /* Wait again... */ 1784 udelay(1); 1785 1786 return bit; 1787 } 1788 1789 static unsigned ns83820_mii_read_reg(struct ns83820 *dev, unsigned phy, unsigned reg) 1790 { 1791 unsigned data = 0; 1792 int i; 1793 1794 /* read some garbage so that we eventually sync up */ 1795 for (i=0; i<64; i++) 1796 ns83820_mii_read_bit(dev); 1797 1798 ns83820_mii_write_bit(dev, 0); /* start */ 1799 ns83820_mii_write_bit(dev, 1); 1800 ns83820_mii_write_bit(dev, 1); /* opcode read */ 1801 ns83820_mii_write_bit(dev, 0); 1802 1803 /* write out the phy address: 5 bits, msb first */ 1804 for (i=0; i<5; i++) 1805 ns83820_mii_write_bit(dev, phy & (0x10 >> i)); 1806 1807 /* write out the register address, 5 bits, msb first */ 1808 for (i=0; i<5; i++) 1809 ns83820_mii_write_bit(dev, reg & (0x10 >> i)); 1810 1811 ns83820_mii_read_bit(dev); /* turn around cycles */ 1812 ns83820_mii_read_bit(dev); 1813 1814 /* read in the register data, 16 bits msb first */ 1815 for (i=0; i<16; i++) { 1816 data <<= 1; 1817 data |= ns83820_mii_read_bit(dev); 1818 } 1819 1820 return data; 1821 } 1822 1823 static unsigned ns83820_mii_write_reg(struct ns83820 *dev, unsigned phy, unsigned reg, unsigned data) 1824 { 1825 int i; 1826 1827 /* read some garbage so that we eventually sync up */ 1828 for (i=0; i<64; i++) 1829 ns83820_mii_read_bit(dev); 1830 1831 ns83820_mii_write_bit(dev, 0); /* start */ 1832 ns83820_mii_write_bit(dev, 1); 1833 ns83820_mii_write_bit(dev, 0); /* opcode read */ 1834 ns83820_mii_write_bit(dev, 1); 1835 1836 /* write out the phy address: 5 bits, msb first */ 1837 for (i=0; i<5; i++) 1838 ns83820_mii_write_bit(dev, phy & (0x10 >> i)); 1839 1840 /* write out the register address, 5 bits, msb first */ 1841 for (i=0; i<5; i++) 1842 ns83820_mii_write_bit(dev, reg & (0x10 >> i)); 1843 1844 ns83820_mii_read_bit(dev); /* turn around cycles */ 1845 ns83820_mii_read_bit(dev); 1846 1847 /* read in the register data, 16 bits msb first */ 1848 for (i=0; i<16; i++) 1849 ns83820_mii_write_bit(dev, (data >> (15 - i)) & 1); 1850 1851 return data; 1852 } 1853 1854 static void ns83820_probe_phy(struct net_device *ndev) 1855 { 1856 struct ns83820 *dev = PRIV(ndev); 1857 int j; 1858 unsigned a, b; 1859 1860 for (j = 0; j < 0x16; j += 4) { 1861 dprintk("%s: [0x%02x] %04x %04x %04x %04x\n", 1862 ndev->name, j, 1863 ns83820_mii_read_reg(dev, 1, 0 + j), 1864 ns83820_mii_read_reg(dev, 1, 1 + j), 1865 ns83820_mii_read_reg(dev, 1, 2 + j), 1866 ns83820_mii_read_reg(dev, 1, 3 + j) 1867 ); 1868 } 1869 1870 /* read firmware version: memory addr is 0x8402 and 0x8403 */ 1871 ns83820_mii_write_reg(dev, 1, 0x16, 0x000d); 1872 ns83820_mii_write_reg(dev, 1, 0x1e, 0x810e); 1873 a = ns83820_mii_read_reg(dev, 1, 0x1d); 1874 1875 ns83820_mii_write_reg(dev, 1, 0x16, 0x000d); 1876 ns83820_mii_write_reg(dev, 1, 0x1e, 0x810e); 1877 b = ns83820_mii_read_reg(dev, 1, 0x1d); 1878 dprintk("version: 0x%04x 0x%04x\n", a, b); 1879 } 1880 #endif 1881 1882 static const struct net_device_ops netdev_ops = { 1883 .ndo_open = ns83820_open, 1884 .ndo_stop = ns83820_stop, 1885 .ndo_start_xmit = ns83820_hard_start_xmit, 1886 .ndo_get_stats = ns83820_get_stats, 1887 .ndo_set_rx_mode = ns83820_set_multicast, 1888 .ndo_validate_addr = eth_validate_addr, 1889 .ndo_set_mac_address = eth_mac_addr, 1890 .ndo_tx_timeout = ns83820_tx_timeout, 1891 }; 1892 1893 static int ns83820_init_one(struct pci_dev *pci_dev, 1894 const struct pci_device_id *id) 1895 { 1896 struct net_device *ndev; 1897 struct ns83820 *dev; 1898 long addr; 1899 int err; 1900 int using_dac = 0; 1901 1902 /* See if we can set the dma mask early on; failure is fatal. */ 1903 if (sizeof(dma_addr_t) == 8 && 1904 !dma_set_mask(&pci_dev->dev, DMA_BIT_MASK(64))) { 1905 using_dac = 1; 1906 } else if (!dma_set_mask(&pci_dev->dev, DMA_BIT_MASK(32))) { 1907 using_dac = 0; 1908 } else { 1909 dev_warn(&pci_dev->dev, "dma_set_mask failed!\n"); 1910 return -ENODEV; 1911 } 1912 1913 ndev = alloc_etherdev(sizeof(struct ns83820)); 1914 err = -ENOMEM; 1915 if (!ndev) 1916 goto out; 1917 1918 dev = PRIV(ndev); 1919 dev->ndev = ndev; 1920 1921 spin_lock_init(&dev->rx_info.lock); 1922 spin_lock_init(&dev->tx_lock); 1923 spin_lock_init(&dev->misc_lock); 1924 dev->pci_dev = pci_dev; 1925 1926 SET_NETDEV_DEV(ndev, &pci_dev->dev); 1927 1928 INIT_WORK(&dev->tq_refill, queue_refill); 1929 tasklet_setup(&dev->rx_tasklet, rx_action); 1930 1931 err = pci_enable_device(pci_dev); 1932 if (err) { 1933 dev_info(&pci_dev->dev, "pci_enable_dev failed: %d\n", err); 1934 goto out_free; 1935 } 1936 1937 pci_set_master(pci_dev); 1938 addr = pci_resource_start(pci_dev, 1); 1939 dev->base = ioremap(addr, PAGE_SIZE); 1940 dev->tx_descs = dma_alloc_coherent(&pci_dev->dev, 1941 4 * DESC_SIZE * NR_TX_DESC, 1942 &dev->tx_phy_descs, GFP_KERNEL); 1943 dev->rx_info.descs = dma_alloc_coherent(&pci_dev->dev, 1944 4 * DESC_SIZE * NR_RX_DESC, 1945 &dev->rx_info.phy_descs, GFP_KERNEL); 1946 err = -ENOMEM; 1947 if (!dev->base || !dev->tx_descs || !dev->rx_info.descs) 1948 goto out_disable; 1949 1950 dprintk("%p: %08lx %p: %08lx\n", 1951 dev->tx_descs, (long)dev->tx_phy_descs, 1952 dev->rx_info.descs, (long)dev->rx_info.phy_descs); 1953 1954 ns83820_disable_interrupts(dev); 1955 1956 dev->IMR_cache = 0; 1957 1958 err = request_irq(pci_dev->irq, ns83820_irq, IRQF_SHARED, 1959 DRV_NAME, ndev); 1960 if (err) { 1961 dev_info(&pci_dev->dev, "unable to register irq %d, err %d\n", 1962 pci_dev->irq, err); 1963 goto out_disable; 1964 } 1965 1966 /* 1967 * FIXME: we are holding rtnl_lock() over obscenely long area only 1968 * because some of the setup code uses dev->name. It's Wrong(tm) - 1969 * we should be using driver-specific names for all that stuff. 1970 * For now that will do, but we really need to come back and kill 1971 * most of the dev_alloc_name() users later. 1972 */ 1973 rtnl_lock(); 1974 err = dev_alloc_name(ndev, ndev->name); 1975 if (err < 0) { 1976 dev_info(&pci_dev->dev, "unable to get netdev name: %d\n", err); 1977 goto out_free_irq; 1978 } 1979 1980 printk("%s: ns83820.c: 0x22c: %08x, subsystem: %04x:%04x\n", 1981 ndev->name, le32_to_cpu(readl(dev->base + 0x22c)), 1982 pci_dev->subsystem_vendor, pci_dev->subsystem_device); 1983 1984 ndev->netdev_ops = &netdev_ops; 1985 ndev->ethtool_ops = &ops; 1986 ndev->watchdog_timeo = 5 * HZ; 1987 pci_set_drvdata(pci_dev, ndev); 1988 1989 ns83820_do_reset(dev, CR_RST); 1990 1991 /* Must reset the ram bist before running it */ 1992 writel(PTSCR_RBIST_RST, dev->base + PTSCR); 1993 ns83820_run_bist(ndev, "sram bist", PTSCR_RBIST_EN, 1994 PTSCR_RBIST_DONE, PTSCR_RBIST_FAIL); 1995 ns83820_run_bist(ndev, "eeprom bist", PTSCR_EEBIST_EN, 0, 1996 PTSCR_EEBIST_FAIL); 1997 ns83820_run_bist(ndev, "eeprom load", PTSCR_EELOAD_EN, 0, 0); 1998 1999 /* I love config registers */ 2000 dev->CFG_cache = readl(dev->base + CFG); 2001 2002 if ((dev->CFG_cache & CFG_PCI64_DET)) { 2003 printk(KERN_INFO "%s: detected 64 bit PCI data bus.\n", 2004 ndev->name); 2005 /*dev->CFG_cache |= CFG_DATA64_EN;*/ 2006 if (!(dev->CFG_cache & CFG_DATA64_EN)) 2007 printk(KERN_INFO "%s: EEPROM did not enable 64 bit bus. Disabled.\n", 2008 ndev->name); 2009 } else 2010 dev->CFG_cache &= ~(CFG_DATA64_EN); 2011 2012 dev->CFG_cache &= (CFG_TBI_EN | CFG_MRM_DIS | CFG_MWI_DIS | 2013 CFG_T64ADDR | CFG_DATA64_EN | CFG_EXT_125 | 2014 CFG_M64ADDR); 2015 dev->CFG_cache |= CFG_PINT_DUPSTS | CFG_PINT_LNKSTS | CFG_PINT_SPDSTS | 2016 CFG_EXTSTS_EN | CFG_EXD | CFG_PESEL; 2017 dev->CFG_cache |= CFG_REQALG; 2018 dev->CFG_cache |= CFG_POW; 2019 dev->CFG_cache |= CFG_TMRTEST; 2020 2021 /* When compiled with 64 bit addressing, we must always enable 2022 * the 64 bit descriptor format. 2023 */ 2024 if (sizeof(dma_addr_t) == 8) 2025 dev->CFG_cache |= CFG_M64ADDR; 2026 if (using_dac) 2027 dev->CFG_cache |= CFG_T64ADDR; 2028 2029 /* Big endian mode does not seem to do what the docs suggest */ 2030 dev->CFG_cache &= ~CFG_BEM; 2031 2032 /* setup optical transceiver if we have one */ 2033 if (dev->CFG_cache & CFG_TBI_EN) { 2034 printk(KERN_INFO "%s: enabling optical transceiver\n", 2035 ndev->name); 2036 writel(readl(dev->base + GPIOR) | 0x3e8, dev->base + GPIOR); 2037 2038 /* setup auto negotiation feature advertisement */ 2039 writel(readl(dev->base + TANAR) 2040 | TANAR_HALF_DUP | TANAR_FULL_DUP, 2041 dev->base + TANAR); 2042 2043 /* start auto negotiation */ 2044 writel(TBICR_MR_AN_ENABLE | TBICR_MR_RESTART_AN, 2045 dev->base + TBICR); 2046 writel(TBICR_MR_AN_ENABLE, dev->base + TBICR); 2047 dev->linkstate = LINK_AUTONEGOTIATE; 2048 2049 dev->CFG_cache |= CFG_MODE_1000; 2050 } 2051 2052 writel(dev->CFG_cache, dev->base + CFG); 2053 dprintk("CFG: %08x\n", dev->CFG_cache); 2054 2055 if (reset_phy) { 2056 printk(KERN_INFO "%s: resetting phy\n", ndev->name); 2057 writel(dev->CFG_cache | CFG_PHY_RST, dev->base + CFG); 2058 msleep(10); 2059 writel(dev->CFG_cache, dev->base + CFG); 2060 } 2061 2062 #if 0 /* Huh? This sets the PCI latency register. Should be done via 2063 * the PCI layer. FIXME. 2064 */ 2065 if (readl(dev->base + SRR)) 2066 writel(readl(dev->base+0x20c) | 0xfe00, dev->base + 0x20c); 2067 #endif 2068 2069 /* Note! The DMA burst size interacts with packet 2070 * transmission, such that the largest packet that 2071 * can be transmitted is 8192 - FLTH - burst size. 2072 * If only the transmit fifo was larger... 2073 */ 2074 /* Ramit : 1024 DMA is not a good idea, it ends up banging 2075 * some DELL and COMPAQ SMP systems */ 2076 writel(TXCFG_CSI | TXCFG_HBI | TXCFG_ATP | TXCFG_MXDMA512 2077 | ((1600 / 32) * 0x100), 2078 dev->base + TXCFG); 2079 2080 /* Flush the interrupt holdoff timer */ 2081 writel(0x000, dev->base + IHR); 2082 writel(0x100, dev->base + IHR); 2083 writel(0x000, dev->base + IHR); 2084 2085 /* Set Rx to full duplex, don't accept runt, errored, long or length 2086 * range errored packets. Use 512 byte DMA. 2087 */ 2088 /* Ramit : 1024 DMA is not a good idea, it ends up banging 2089 * some DELL and COMPAQ SMP systems 2090 * Turn on ALP, only we are accpeting Jumbo Packets */ 2091 writel(RXCFG_AEP | RXCFG_ARP | RXCFG_AIRL | RXCFG_RX_FD 2092 | RXCFG_STRIPCRC 2093 //| RXCFG_ALP 2094 | (RXCFG_MXDMA512) | 0, dev->base + RXCFG); 2095 2096 /* Disable priority queueing */ 2097 writel(0, dev->base + PQCR); 2098 2099 /* Enable IP checksum validation and detetion of VLAN headers. 2100 * Note: do not set the reject options as at least the 0x102 2101 * revision of the chip does not properly accept IP fragments 2102 * at least for UDP. 2103 */ 2104 /* Ramit : Be sure to turn on RXCFG_ARP if VLAN's are enabled, since 2105 * the MAC it calculates the packetsize AFTER stripping the VLAN 2106 * header, and if a VLAN Tagged packet of 64 bytes is received (like 2107 * a ping with a VLAN header) then the card, strips the 4 byte VLAN 2108 * tag and then checks the packet size, so if RXCFG_ARP is not enabled, 2109 * it discrards it!. These guys...... 2110 * also turn on tag stripping if hardware acceleration is enabled 2111 */ 2112 #ifdef NS83820_VLAN_ACCEL_SUPPORT 2113 #define VRCR_INIT_VALUE (VRCR_IPEN|VRCR_VTDEN|VRCR_VTREN) 2114 #else 2115 #define VRCR_INIT_VALUE (VRCR_IPEN|VRCR_VTDEN) 2116 #endif 2117 writel(VRCR_INIT_VALUE, dev->base + VRCR); 2118 2119 /* Enable per-packet TCP/UDP/IP checksumming 2120 * and per packet vlan tag insertion if 2121 * vlan hardware acceleration is enabled 2122 */ 2123 #ifdef NS83820_VLAN_ACCEL_SUPPORT 2124 #define VTCR_INIT_VALUE (VTCR_PPCHK|VTCR_VPPTI) 2125 #else 2126 #define VTCR_INIT_VALUE VTCR_PPCHK 2127 #endif 2128 writel(VTCR_INIT_VALUE, dev->base + VTCR); 2129 2130 /* Ramit : Enable async and sync pause frames */ 2131 /* writel(0, dev->base + PCR); */ 2132 writel((PCR_PS_MCAST | PCR_PS_DA | PCR_PSEN | PCR_FFLO_4K | 2133 PCR_FFHI_8K | PCR_STLO_4 | PCR_STHI_8 | PCR_PAUSE_CNT), 2134 dev->base + PCR); 2135 2136 /* Disable Wake On Lan */ 2137 writel(0, dev->base + WCSR); 2138 2139 ns83820_getmac(dev, ndev->dev_addr); 2140 2141 /* Yes, we support dumb IP checksum on transmit */ 2142 ndev->features |= NETIF_F_SG; 2143 ndev->features |= NETIF_F_IP_CSUM; 2144 2145 ndev->min_mtu = 0; 2146 2147 #ifdef NS83820_VLAN_ACCEL_SUPPORT 2148 /* We also support hardware vlan acceleration */ 2149 ndev->features |= NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX; 2150 #endif 2151 2152 if (using_dac) { 2153 printk(KERN_INFO "%s: using 64 bit addressing.\n", 2154 ndev->name); 2155 ndev->features |= NETIF_F_HIGHDMA; 2156 } 2157 2158 printk(KERN_INFO "%s: ns83820 v" VERSION ": DP83820 v%u.%u: %pM io=0x%08lx irq=%d f=%s\n", 2159 ndev->name, 2160 (unsigned)readl(dev->base + SRR) >> 8, 2161 (unsigned)readl(dev->base + SRR) & 0xff, 2162 ndev->dev_addr, addr, pci_dev->irq, 2163 (ndev->features & NETIF_F_HIGHDMA) ? "h,sg" : "sg" 2164 ); 2165 2166 #ifdef PHY_CODE_IS_FINISHED 2167 ns83820_probe_phy(ndev); 2168 #endif 2169 2170 err = register_netdevice(ndev); 2171 if (err) { 2172 printk(KERN_INFO "ns83820: unable to register netdev: %d\n", err); 2173 goto out_cleanup; 2174 } 2175 rtnl_unlock(); 2176 2177 return 0; 2178 2179 out_cleanup: 2180 ns83820_disable_interrupts(dev); /* paranoia */ 2181 out_free_irq: 2182 rtnl_unlock(); 2183 free_irq(pci_dev->irq, ndev); 2184 out_disable: 2185 if (dev->base) 2186 iounmap(dev->base); 2187 dma_free_coherent(&pci_dev->dev, 4 * DESC_SIZE * NR_TX_DESC, 2188 dev->tx_descs, dev->tx_phy_descs); 2189 dma_free_coherent(&pci_dev->dev, 4 * DESC_SIZE * NR_RX_DESC, 2190 dev->rx_info.descs, dev->rx_info.phy_descs); 2191 pci_disable_device(pci_dev); 2192 out_free: 2193 free_netdev(ndev); 2194 out: 2195 return err; 2196 } 2197 2198 static void ns83820_remove_one(struct pci_dev *pci_dev) 2199 { 2200 struct net_device *ndev = pci_get_drvdata(pci_dev); 2201 struct ns83820 *dev = PRIV(ndev); /* ok even if NULL */ 2202 2203 if (!ndev) /* paranoia */ 2204 return; 2205 2206 ns83820_disable_interrupts(dev); /* paranoia */ 2207 2208 unregister_netdev(ndev); 2209 free_irq(dev->pci_dev->irq, ndev); 2210 iounmap(dev->base); 2211 dma_free_coherent(&dev->pci_dev->dev, 4 * DESC_SIZE * NR_TX_DESC, 2212 dev->tx_descs, dev->tx_phy_descs); 2213 dma_free_coherent(&dev->pci_dev->dev, 4 * DESC_SIZE * NR_RX_DESC, 2214 dev->rx_info.descs, dev->rx_info.phy_descs); 2215 pci_disable_device(dev->pci_dev); 2216 free_netdev(ndev); 2217 } 2218 2219 static const struct pci_device_id ns83820_pci_tbl[] = { 2220 { 0x100b, 0x0022, PCI_ANY_ID, PCI_ANY_ID, 0, .driver_data = 0, }, 2221 { 0, }, 2222 }; 2223 2224 static struct pci_driver driver = { 2225 .name = "ns83820", 2226 .id_table = ns83820_pci_tbl, 2227 .probe = ns83820_init_one, 2228 .remove = ns83820_remove_one, 2229 #if 0 /* FIXME: implement */ 2230 .suspend = , 2231 .resume = , 2232 #endif 2233 }; 2234 2235 2236 static int __init ns83820_init(void) 2237 { 2238 printk(KERN_INFO "ns83820.c: National Semiconductor DP83820 10/100/1000 driver.\n"); 2239 return pci_register_driver(&driver); 2240 } 2241 2242 static void __exit ns83820_exit(void) 2243 { 2244 pci_unregister_driver(&driver); 2245 } 2246 2247 MODULE_AUTHOR("Benjamin LaHaise <bcrl@kvack.org>"); 2248 MODULE_DESCRIPTION("National Semiconductor DP83820 10/100/1000 driver"); 2249 MODULE_LICENSE("GPL"); 2250 2251 MODULE_DEVICE_TABLE(pci, ns83820_pci_tbl); 2252 2253 module_param(lnksts, int, 0); 2254 MODULE_PARM_DESC(lnksts, "Polarity of LNKSTS bit"); 2255 2256 module_param(ihr, int, 0); 2257 MODULE_PARM_DESC(ihr, "Time in 100 us increments to delay interrupts (range 0-127)"); 2258 2259 module_param(reset_phy, int, 0); 2260 MODULE_PARM_DESC(reset_phy, "Set to 1 to reset the PHY on startup"); 2261 2262 module_init(ns83820_init); 2263 module_exit(ns83820_exit); 2264