xref: /openbmc/linux/drivers/net/ethernet/natsemi/natsemi.c (revision ce932d0c5589e9766e089c22c66890dfc48fbd94)
1 /* natsemi.c: A Linux PCI Ethernet driver for the NatSemi DP8381x series. */
2 /*
3 	Written/copyright 1999-2001 by Donald Becker.
4 	Portions copyright (c) 2001,2002 Sun Microsystems (thockin@sun.com)
5 	Portions copyright 2001,2002 Manfred Spraul (manfred@colorfullife.com)
6 	Portions copyright 2004 Harald Welte <laforge@gnumonks.org>
7 
8 	This software may be used and distributed according to the terms of
9 	the GNU General Public License (GPL), incorporated herein by reference.
10 	Drivers based on or derived from this code fall under the GPL and must
11 	retain the authorship, copyright and license notice.  This file is not
12 	a complete program and may only be used when the entire operating
13 	system is licensed under the GPL.  License for under other terms may be
14 	available.  Contact the original author for details.
15 
16 	The original author may be reached as becker@scyld.com, or at
17 	Scyld Computing Corporation
18 	410 Severn Ave., Suite 210
19 	Annapolis MD 21403
20 
21 	Support information and updates available at
22 	http://www.scyld.com/network/netsemi.html
23 	[link no longer provides useful info -jgarzik]
24 
25 
26 	TODO:
27 	* big endian support with CFG:BEM instead of cpu_to_le32
28 */
29 
30 #include <linux/module.h>
31 #include <linux/kernel.h>
32 #include <linux/string.h>
33 #include <linux/timer.h>
34 #include <linux/errno.h>
35 #include <linux/ioport.h>
36 #include <linux/slab.h>
37 #include <linux/interrupt.h>
38 #include <linux/pci.h>
39 #include <linux/netdevice.h>
40 #include <linux/etherdevice.h>
41 #include <linux/skbuff.h>
42 #include <linux/init.h>
43 #include <linux/spinlock.h>
44 #include <linux/ethtool.h>
45 #include <linux/delay.h>
46 #include <linux/rtnetlink.h>
47 #include <linux/mii.h>
48 #include <linux/crc32.h>
49 #include <linux/bitops.h>
50 #include <linux/prefetch.h>
51 #include <asm/processor.h>	/* Processor type for cache alignment. */
52 #include <asm/io.h>
53 #include <asm/irq.h>
54 #include <asm/uaccess.h>
55 
56 #define DRV_NAME	"natsemi"
57 #define DRV_VERSION	"2.1"
58 #define DRV_RELDATE	"Sept 11, 2006"
59 
60 #define RX_OFFSET	2
61 
62 /* Updated to recommendations in pci-skeleton v2.03. */
63 
64 /* The user-configurable values.
65    These may be modified when a driver module is loaded.*/
66 
67 #define NATSEMI_DEF_MSG		(NETIF_MSG_DRV		| \
68 				 NETIF_MSG_LINK		| \
69 				 NETIF_MSG_WOL		| \
70 				 NETIF_MSG_RX_ERR	| \
71 				 NETIF_MSG_TX_ERR)
72 static int debug = -1;
73 
74 static int mtu;
75 
76 /* Maximum number of multicast addresses to filter (vs. rx-all-multicast).
77    This chip uses a 512 element hash table based on the Ethernet CRC.  */
78 static const int multicast_filter_limit = 100;
79 
80 /* Set the copy breakpoint for the copy-only-tiny-frames scheme.
81    Setting to > 1518 effectively disables this feature. */
82 static int rx_copybreak;
83 
84 static int dspcfg_workaround = 1;
85 
86 /* Used to pass the media type, etc.
87    Both 'options[]' and 'full_duplex[]' should exist for driver
88    interoperability.
89    The media type is usually passed in 'options[]'.
90 */
91 #define MAX_UNITS 8		/* More are supported, limit only on options */
92 static int options[MAX_UNITS];
93 static int full_duplex[MAX_UNITS];
94 
95 /* Operational parameters that are set at compile time. */
96 
97 /* Keep the ring sizes a power of two for compile efficiency.
98    The compiler will convert <unsigned>'%'<2^N> into a bit mask.
99    Making the Tx ring too large decreases the effectiveness of channel
100    bonding and packet priority.
101    There are no ill effects from too-large receive rings. */
102 #define TX_RING_SIZE	16
103 #define TX_QUEUE_LEN	10 /* Limit ring entries actually used, min 4. */
104 #define RX_RING_SIZE	32
105 
106 /* Operational parameters that usually are not changed. */
107 /* Time in jiffies before concluding the transmitter is hung. */
108 #define TX_TIMEOUT  (2*HZ)
109 
110 #define NATSEMI_HW_TIMEOUT	400
111 #define NATSEMI_TIMER_FREQ	5*HZ
112 #define NATSEMI_PG0_NREGS	64
113 #define NATSEMI_RFDR_NREGS	8
114 #define NATSEMI_PG1_NREGS	4
115 #define NATSEMI_NREGS		(NATSEMI_PG0_NREGS + NATSEMI_RFDR_NREGS + \
116 				 NATSEMI_PG1_NREGS)
117 #define NATSEMI_REGS_VER	1 /* v1 added RFDR registers */
118 #define NATSEMI_REGS_SIZE	(NATSEMI_NREGS * sizeof(u32))
119 
120 /* Buffer sizes:
121  * The nic writes 32-bit values, even if the upper bytes of
122  * a 32-bit value are beyond the end of the buffer.
123  */
124 #define NATSEMI_HEADERS		22	/* 2*mac,type,vlan,crc */
125 #define NATSEMI_PADDING		16	/* 2 bytes should be sufficient */
126 #define NATSEMI_LONGPKT		1518	/* limit for normal packets */
127 #define NATSEMI_RX_LIMIT	2046	/* maximum supported by hardware */
128 
129 /* These identify the driver base version and may not be removed. */
130 static const char version[] __devinitconst =
131   KERN_INFO DRV_NAME " dp8381x driver, version "
132       DRV_VERSION ", " DRV_RELDATE "\n"
133   "  originally by Donald Becker <becker@scyld.com>\n"
134   "  2.4.x kernel port by Jeff Garzik, Tjeerd Mulder\n";
135 
136 MODULE_AUTHOR("Donald Becker <becker@scyld.com>");
137 MODULE_DESCRIPTION("National Semiconductor DP8381x series PCI Ethernet driver");
138 MODULE_LICENSE("GPL");
139 
140 module_param(mtu, int, 0);
141 module_param(debug, int, 0);
142 module_param(rx_copybreak, int, 0);
143 module_param(dspcfg_workaround, int, 0);
144 module_param_array(options, int, NULL, 0);
145 module_param_array(full_duplex, int, NULL, 0);
146 MODULE_PARM_DESC(mtu, "DP8381x MTU (all boards)");
147 MODULE_PARM_DESC(debug, "DP8381x default debug level");
148 MODULE_PARM_DESC(rx_copybreak,
149 	"DP8381x copy breakpoint for copy-only-tiny-frames");
150 MODULE_PARM_DESC(dspcfg_workaround, "DP8381x: control DspCfg workaround");
151 MODULE_PARM_DESC(options,
152 	"DP8381x: Bits 0-3: media type, bit 17: full duplex");
153 MODULE_PARM_DESC(full_duplex, "DP8381x full duplex setting(s) (1)");
154 
155 /*
156 				Theory of Operation
157 
158 I. Board Compatibility
159 
160 This driver is designed for National Semiconductor DP83815 PCI Ethernet NIC.
161 It also works with other chips in in the DP83810 series.
162 
163 II. Board-specific settings
164 
165 This driver requires the PCI interrupt line to be valid.
166 It honors the EEPROM-set values.
167 
168 III. Driver operation
169 
170 IIIa. Ring buffers
171 
172 This driver uses two statically allocated fixed-size descriptor lists
173 formed into rings by a branch from the final descriptor to the beginning of
174 the list.  The ring sizes are set at compile time by RX/TX_RING_SIZE.
175 The NatSemi design uses a 'next descriptor' pointer that the driver forms
176 into a list.
177 
178 IIIb/c. Transmit/Receive Structure
179 
180 This driver uses a zero-copy receive and transmit scheme.
181 The driver allocates full frame size skbuffs for the Rx ring buffers at
182 open() time and passes the skb->data field to the chip as receive data
183 buffers.  When an incoming frame is less than RX_COPYBREAK bytes long,
184 a fresh skbuff is allocated and the frame is copied to the new skbuff.
185 When the incoming frame is larger, the skbuff is passed directly up the
186 protocol stack.  Buffers consumed this way are replaced by newly allocated
187 skbuffs in a later phase of receives.
188 
189 The RX_COPYBREAK value is chosen to trade-off the memory wasted by
190 using a full-sized skbuff for small frames vs. the copying costs of larger
191 frames.  New boards are typically used in generously configured machines
192 and the underfilled buffers have negligible impact compared to the benefit of
193 a single allocation size, so the default value of zero results in never
194 copying packets.  When copying is done, the cost is usually mitigated by using
195 a combined copy/checksum routine.  Copying also preloads the cache, which is
196 most useful with small frames.
197 
198 A subtle aspect of the operation is that unaligned buffers are not permitted
199 by the hardware.  Thus the IP header at offset 14 in an ethernet frame isn't
200 longword aligned for further processing.  On copies frames are put into the
201 skbuff at an offset of "+2", 16-byte aligning the IP header.
202 
203 IIId. Synchronization
204 
205 Most operations are synchronized on the np->lock irq spinlock, except the
206 receive and transmit paths which are synchronised using a combination of
207 hardware descriptor ownership, disabling interrupts and NAPI poll scheduling.
208 
209 IVb. References
210 
211 http://www.scyld.com/expert/100mbps.html
212 http://www.scyld.com/expert/NWay.html
213 Datasheet is available from:
214 http://www.national.com/pf/DP/DP83815.html
215 
216 IVc. Errata
217 
218 None characterised.
219 */
220 
221 
222 
223 /*
224  * Support for fibre connections on Am79C874:
225  * This phy needs a special setup when connected to a fibre cable.
226  * http://www.amd.com/files/connectivitysolutions/networking/archivednetworking/22235.pdf
227  */
228 #define PHYID_AM79C874	0x0022561b
229 
230 enum {
231 	MII_MCTRL	= 0x15,		/* mode control register */
232 	MII_FX_SEL	= 0x0001,	/* 100BASE-FX (fiber) */
233 	MII_EN_SCRM	= 0x0004,	/* enable scrambler (tp) */
234 };
235 
236 enum {
237 	NATSEMI_FLAG_IGNORE_PHY		= 0x1,
238 };
239 
240 /* array of board data directly indexed by pci_tbl[x].driver_data */
241 static struct {
242 	const char *name;
243 	unsigned long flags;
244 	unsigned int eeprom_size;
245 } natsemi_pci_info[] __devinitdata = {
246 	{ "Aculab E1/T1 PMXc cPCI carrier card", NATSEMI_FLAG_IGNORE_PHY, 128 },
247 	{ "NatSemi DP8381[56]", 0, 24 },
248 };
249 
250 static DEFINE_PCI_DEVICE_TABLE(natsemi_pci_tbl) = {
251 	{ PCI_VENDOR_ID_NS, 0x0020, 0x12d9,     0x000c,     0, 0, 0 },
252 	{ PCI_VENDOR_ID_NS, 0x0020, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 1 },
253 	{ }	/* terminate list */
254 };
255 MODULE_DEVICE_TABLE(pci, natsemi_pci_tbl);
256 
257 /* Offsets to the device registers.
258    Unlike software-only systems, device drivers interact with complex hardware.
259    It's not useful to define symbolic names for every register bit in the
260    device.
261 */
262 enum register_offsets {
263 	ChipCmd			= 0x00,
264 	ChipConfig		= 0x04,
265 	EECtrl			= 0x08,
266 	PCIBusCfg		= 0x0C,
267 	IntrStatus		= 0x10,
268 	IntrMask		= 0x14,
269 	IntrEnable		= 0x18,
270 	IntrHoldoff		= 0x1C, /* DP83816 only */
271 	TxRingPtr		= 0x20,
272 	TxConfig		= 0x24,
273 	RxRingPtr		= 0x30,
274 	RxConfig		= 0x34,
275 	ClkRun			= 0x3C,
276 	WOLCmd			= 0x40,
277 	PauseCmd		= 0x44,
278 	RxFilterAddr		= 0x48,
279 	RxFilterData		= 0x4C,
280 	BootRomAddr		= 0x50,
281 	BootRomData		= 0x54,
282 	SiliconRev		= 0x58,
283 	StatsCtrl		= 0x5C,
284 	StatsData		= 0x60,
285 	RxPktErrs		= 0x60,
286 	RxMissed		= 0x68,
287 	RxCRCErrs		= 0x64,
288 	BasicControl		= 0x80,
289 	BasicStatus		= 0x84,
290 	AnegAdv			= 0x90,
291 	AnegPeer		= 0x94,
292 	PhyStatus		= 0xC0,
293 	MIntrCtrl		= 0xC4,
294 	MIntrStatus		= 0xC8,
295 	PhyCtrl			= 0xE4,
296 
297 	/* These are from the spec, around page 78... on a separate table.
298 	 * The meaning of these registers depend on the value of PGSEL. */
299 	PGSEL			= 0xCC,
300 	PMDCSR			= 0xE4,
301 	TSTDAT			= 0xFC,
302 	DSPCFG			= 0xF4,
303 	SDCFG			= 0xF8
304 };
305 /* the values for the 'magic' registers above (PGSEL=1) */
306 #define PMDCSR_VAL	0x189c	/* enable preferred adaptation circuitry */
307 #define TSTDAT_VAL	0x0
308 #define DSPCFG_VAL	0x5040
309 #define SDCFG_VAL	0x008c	/* set voltage thresholds for Signal Detect */
310 #define DSPCFG_LOCK	0x20	/* coefficient lock bit in DSPCFG */
311 #define DSPCFG_COEF	0x1000	/* see coefficient (in TSTDAT) bit in DSPCFG */
312 #define TSTDAT_FIXED	0xe8	/* magic number for bad coefficients */
313 
314 /* misc PCI space registers */
315 enum pci_register_offsets {
316 	PCIPM			= 0x44,
317 };
318 
319 enum ChipCmd_bits {
320 	ChipReset		= 0x100,
321 	RxReset			= 0x20,
322 	TxReset			= 0x10,
323 	RxOff			= 0x08,
324 	RxOn			= 0x04,
325 	TxOff			= 0x02,
326 	TxOn			= 0x01,
327 };
328 
329 enum ChipConfig_bits {
330 	CfgPhyDis		= 0x200,
331 	CfgPhyRst		= 0x400,
332 	CfgExtPhy		= 0x1000,
333 	CfgAnegEnable		= 0x2000,
334 	CfgAneg100		= 0x4000,
335 	CfgAnegFull		= 0x8000,
336 	CfgAnegDone		= 0x8000000,
337 	CfgFullDuplex		= 0x20000000,
338 	CfgSpeed100		= 0x40000000,
339 	CfgLink			= 0x80000000,
340 };
341 
342 enum EECtrl_bits {
343 	EE_ShiftClk		= 0x04,
344 	EE_DataIn		= 0x01,
345 	EE_ChipSelect		= 0x08,
346 	EE_DataOut		= 0x02,
347 	MII_Data 		= 0x10,
348 	MII_Write		= 0x20,
349 	MII_ShiftClk		= 0x40,
350 };
351 
352 enum PCIBusCfg_bits {
353 	EepromReload		= 0x4,
354 };
355 
356 /* Bits in the interrupt status/mask registers. */
357 enum IntrStatus_bits {
358 	IntrRxDone		= 0x0001,
359 	IntrRxIntr		= 0x0002,
360 	IntrRxErr		= 0x0004,
361 	IntrRxEarly		= 0x0008,
362 	IntrRxIdle		= 0x0010,
363 	IntrRxOverrun		= 0x0020,
364 	IntrTxDone		= 0x0040,
365 	IntrTxIntr		= 0x0080,
366 	IntrTxErr		= 0x0100,
367 	IntrTxIdle		= 0x0200,
368 	IntrTxUnderrun		= 0x0400,
369 	StatsMax		= 0x0800,
370 	SWInt			= 0x1000,
371 	WOLPkt			= 0x2000,
372 	LinkChange		= 0x4000,
373 	IntrHighBits		= 0x8000,
374 	RxStatusFIFOOver	= 0x10000,
375 	IntrPCIErr		= 0xf00000,
376 	RxResetDone		= 0x1000000,
377 	TxResetDone		= 0x2000000,
378 	IntrAbnormalSummary	= 0xCD20,
379 };
380 
381 /*
382  * Default Interrupts:
383  * Rx OK, Rx Packet Error, Rx Overrun,
384  * Tx OK, Tx Packet Error, Tx Underrun,
385  * MIB Service, Phy Interrupt, High Bits,
386  * Rx Status FIFO overrun,
387  * Received Target Abort, Received Master Abort,
388  * Signalled System Error, Received Parity Error
389  */
390 #define DEFAULT_INTR 0x00f1cd65
391 
392 enum TxConfig_bits {
393 	TxDrthMask		= 0x3f,
394 	TxFlthMask		= 0x3f00,
395 	TxMxdmaMask		= 0x700000,
396 	TxMxdma_512		= 0x0,
397 	TxMxdma_4		= 0x100000,
398 	TxMxdma_8		= 0x200000,
399 	TxMxdma_16		= 0x300000,
400 	TxMxdma_32		= 0x400000,
401 	TxMxdma_64		= 0x500000,
402 	TxMxdma_128		= 0x600000,
403 	TxMxdma_256		= 0x700000,
404 	TxCollRetry		= 0x800000,
405 	TxAutoPad		= 0x10000000,
406 	TxMacLoop		= 0x20000000,
407 	TxHeartIgn		= 0x40000000,
408 	TxCarrierIgn		= 0x80000000
409 };
410 
411 /*
412  * Tx Configuration:
413  * - 256 byte DMA burst length
414  * - fill threshold 512 bytes (i.e. restart DMA when 512 bytes are free)
415  * - 64 bytes initial drain threshold (i.e. begin actual transmission
416  *   when 64 byte are in the fifo)
417  * - on tx underruns, increase drain threshold by 64.
418  * - at most use a drain threshold of 1472 bytes: The sum of the fill
419  *   threshold and the drain threshold must be less than 2016 bytes.
420  *
421  */
422 #define TX_FLTH_VAL		((512/32) << 8)
423 #define TX_DRTH_VAL_START	(64/32)
424 #define TX_DRTH_VAL_INC		2
425 #define TX_DRTH_VAL_LIMIT	(1472/32)
426 
427 enum RxConfig_bits {
428 	RxDrthMask		= 0x3e,
429 	RxMxdmaMask		= 0x700000,
430 	RxMxdma_512		= 0x0,
431 	RxMxdma_4		= 0x100000,
432 	RxMxdma_8		= 0x200000,
433 	RxMxdma_16		= 0x300000,
434 	RxMxdma_32		= 0x400000,
435 	RxMxdma_64		= 0x500000,
436 	RxMxdma_128		= 0x600000,
437 	RxMxdma_256		= 0x700000,
438 	RxAcceptLong		= 0x8000000,
439 	RxAcceptTx		= 0x10000000,
440 	RxAcceptRunt		= 0x40000000,
441 	RxAcceptErr		= 0x80000000
442 };
443 #define RX_DRTH_VAL		(128/8)
444 
445 enum ClkRun_bits {
446 	PMEEnable		= 0x100,
447 	PMEStatus		= 0x8000,
448 };
449 
450 enum WolCmd_bits {
451 	WakePhy			= 0x1,
452 	WakeUnicast		= 0x2,
453 	WakeMulticast		= 0x4,
454 	WakeBroadcast		= 0x8,
455 	WakeArp			= 0x10,
456 	WakePMatch0		= 0x20,
457 	WakePMatch1		= 0x40,
458 	WakePMatch2		= 0x80,
459 	WakePMatch3		= 0x100,
460 	WakeMagic		= 0x200,
461 	WakeMagicSecure		= 0x400,
462 	SecureHack		= 0x100000,
463 	WokePhy			= 0x400000,
464 	WokeUnicast		= 0x800000,
465 	WokeMulticast		= 0x1000000,
466 	WokeBroadcast		= 0x2000000,
467 	WokeArp			= 0x4000000,
468 	WokePMatch0		= 0x8000000,
469 	WokePMatch1		= 0x10000000,
470 	WokePMatch2		= 0x20000000,
471 	WokePMatch3		= 0x40000000,
472 	WokeMagic		= 0x80000000,
473 	WakeOptsSummary		= 0x7ff
474 };
475 
476 enum RxFilterAddr_bits {
477 	RFCRAddressMask		= 0x3ff,
478 	AcceptMulticast		= 0x00200000,
479 	AcceptMyPhys		= 0x08000000,
480 	AcceptAllPhys		= 0x10000000,
481 	AcceptAllMulticast	= 0x20000000,
482 	AcceptBroadcast		= 0x40000000,
483 	RxFilterEnable		= 0x80000000
484 };
485 
486 enum StatsCtrl_bits {
487 	StatsWarn		= 0x1,
488 	StatsFreeze		= 0x2,
489 	StatsClear		= 0x4,
490 	StatsStrobe		= 0x8,
491 };
492 
493 enum MIntrCtrl_bits {
494 	MICRIntEn		= 0x2,
495 };
496 
497 enum PhyCtrl_bits {
498 	PhyAddrMask		= 0x1f,
499 };
500 
501 #define PHY_ADDR_NONE		32
502 #define PHY_ADDR_INTERNAL	1
503 
504 /* values we might find in the silicon revision register */
505 #define SRR_DP83815_C	0x0302
506 #define SRR_DP83815_D	0x0403
507 #define SRR_DP83816_A4	0x0504
508 #define SRR_DP83816_A5	0x0505
509 
510 /* The Rx and Tx buffer descriptors. */
511 /* Note that using only 32 bit fields simplifies conversion to big-endian
512    architectures. */
513 struct netdev_desc {
514 	__le32 next_desc;
515 	__le32 cmd_status;
516 	__le32 addr;
517 	__le32 software_use;
518 };
519 
520 /* Bits in network_desc.status */
521 enum desc_status_bits {
522 	DescOwn=0x80000000, DescMore=0x40000000, DescIntr=0x20000000,
523 	DescNoCRC=0x10000000, DescPktOK=0x08000000,
524 	DescSizeMask=0xfff,
525 
526 	DescTxAbort=0x04000000, DescTxFIFO=0x02000000,
527 	DescTxCarrier=0x01000000, DescTxDefer=0x00800000,
528 	DescTxExcDefer=0x00400000, DescTxOOWCol=0x00200000,
529 	DescTxExcColl=0x00100000, DescTxCollCount=0x000f0000,
530 
531 	DescRxAbort=0x04000000, DescRxOver=0x02000000,
532 	DescRxDest=0x01800000, DescRxLong=0x00400000,
533 	DescRxRunt=0x00200000, DescRxInvalid=0x00100000,
534 	DescRxCRC=0x00080000, DescRxAlign=0x00040000,
535 	DescRxLoop=0x00020000, DesRxColl=0x00010000,
536 };
537 
538 struct netdev_private {
539 	/* Descriptor rings first for alignment */
540 	dma_addr_t ring_dma;
541 	struct netdev_desc *rx_ring;
542 	struct netdev_desc *tx_ring;
543 	/* The addresses of receive-in-place skbuffs */
544 	struct sk_buff *rx_skbuff[RX_RING_SIZE];
545 	dma_addr_t rx_dma[RX_RING_SIZE];
546 	/* address of a sent-in-place packet/buffer, for later free() */
547 	struct sk_buff *tx_skbuff[TX_RING_SIZE];
548 	dma_addr_t tx_dma[TX_RING_SIZE];
549 	struct net_device *dev;
550 	struct napi_struct napi;
551 	/* Media monitoring timer */
552 	struct timer_list timer;
553 	/* Frequently used values: keep some adjacent for cache effect */
554 	struct pci_dev *pci_dev;
555 	struct netdev_desc *rx_head_desc;
556 	/* Producer/consumer ring indices */
557 	unsigned int cur_rx, dirty_rx;
558 	unsigned int cur_tx, dirty_tx;
559 	/* Based on MTU+slack. */
560 	unsigned int rx_buf_sz;
561 	int oom;
562 	/* Interrupt status */
563 	u32 intr_status;
564 	/* Do not touch the nic registers */
565 	int hands_off;
566 	/* Don't pay attention to the reported link state. */
567 	int ignore_phy;
568 	/* external phy that is used: only valid if dev->if_port != PORT_TP */
569 	int mii;
570 	int phy_addr_external;
571 	unsigned int full_duplex;
572 	/* Rx filter */
573 	u32 cur_rx_mode;
574 	u32 rx_filter[16];
575 	/* FIFO and PCI burst thresholds */
576 	u32 tx_config, rx_config;
577 	/* original contents of ClkRun register */
578 	u32 SavedClkRun;
579 	/* silicon revision */
580 	u32 srr;
581 	/* expected DSPCFG value */
582 	u16 dspcfg;
583 	int dspcfg_workaround;
584 	/* parms saved in ethtool format */
585 	u16	speed;		/* The forced speed, 10Mb, 100Mb, gigabit */
586 	u8	duplex;		/* Duplex, half or full */
587 	u8	autoneg;	/* Autonegotiation enabled */
588 	/* MII transceiver section */
589 	u16 advertising;
590 	unsigned int iosize;
591 	spinlock_t lock;
592 	u32 msg_enable;
593 	/* EEPROM data */
594 	int eeprom_size;
595 };
596 
597 static void move_int_phy(struct net_device *dev, int addr);
598 static int eeprom_read(void __iomem *ioaddr, int location);
599 static int mdio_read(struct net_device *dev, int reg);
600 static void mdio_write(struct net_device *dev, int reg, u16 data);
601 static void init_phy_fixup(struct net_device *dev);
602 static int miiport_read(struct net_device *dev, int phy_id, int reg);
603 static void miiport_write(struct net_device *dev, int phy_id, int reg, u16 data);
604 static int find_mii(struct net_device *dev);
605 static void natsemi_reset(struct net_device *dev);
606 static void natsemi_reload_eeprom(struct net_device *dev);
607 static void natsemi_stop_rxtx(struct net_device *dev);
608 static int netdev_open(struct net_device *dev);
609 static void do_cable_magic(struct net_device *dev);
610 static void undo_cable_magic(struct net_device *dev);
611 static void check_link(struct net_device *dev);
612 static void netdev_timer(unsigned long data);
613 static void dump_ring(struct net_device *dev);
614 static void ns_tx_timeout(struct net_device *dev);
615 static int alloc_ring(struct net_device *dev);
616 static void refill_rx(struct net_device *dev);
617 static void init_ring(struct net_device *dev);
618 static void drain_tx(struct net_device *dev);
619 static void drain_ring(struct net_device *dev);
620 static void free_ring(struct net_device *dev);
621 static void reinit_ring(struct net_device *dev);
622 static void init_registers(struct net_device *dev);
623 static netdev_tx_t start_tx(struct sk_buff *skb, struct net_device *dev);
624 static irqreturn_t intr_handler(int irq, void *dev_instance);
625 static void netdev_error(struct net_device *dev, int intr_status);
626 static int natsemi_poll(struct napi_struct *napi, int budget);
627 static void netdev_rx(struct net_device *dev, int *work_done, int work_to_do);
628 static void netdev_tx_done(struct net_device *dev);
629 static int natsemi_change_mtu(struct net_device *dev, int new_mtu);
630 #ifdef CONFIG_NET_POLL_CONTROLLER
631 static void natsemi_poll_controller(struct net_device *dev);
632 #endif
633 static void __set_rx_mode(struct net_device *dev);
634 static void set_rx_mode(struct net_device *dev);
635 static void __get_stats(struct net_device *dev);
636 static struct net_device_stats *get_stats(struct net_device *dev);
637 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
638 static int netdev_set_wol(struct net_device *dev, u32 newval);
639 static int netdev_get_wol(struct net_device *dev, u32 *supported, u32 *cur);
640 static int netdev_set_sopass(struct net_device *dev, u8 *newval);
641 static int netdev_get_sopass(struct net_device *dev, u8 *data);
642 static int netdev_get_ecmd(struct net_device *dev, struct ethtool_cmd *ecmd);
643 static int netdev_set_ecmd(struct net_device *dev, struct ethtool_cmd *ecmd);
644 static void enable_wol_mode(struct net_device *dev, int enable_intr);
645 static int netdev_close(struct net_device *dev);
646 static int netdev_get_regs(struct net_device *dev, u8 *buf);
647 static int netdev_get_eeprom(struct net_device *dev, u8 *buf);
648 static const struct ethtool_ops ethtool_ops;
649 
650 #define NATSEMI_ATTR(_name) \
651 static ssize_t natsemi_show_##_name(struct device *dev, \
652          struct device_attribute *attr, char *buf); \
653 	 static ssize_t natsemi_set_##_name(struct device *dev, \
654 		struct device_attribute *attr, \
655 	        const char *buf, size_t count); \
656 	 static DEVICE_ATTR(_name, 0644, natsemi_show_##_name, natsemi_set_##_name)
657 
658 #define NATSEMI_CREATE_FILE(_dev, _name) \
659          device_create_file(&_dev->dev, &dev_attr_##_name)
660 #define NATSEMI_REMOVE_FILE(_dev, _name) \
661          device_remove_file(&_dev->dev, &dev_attr_##_name)
662 
663 NATSEMI_ATTR(dspcfg_workaround);
664 
665 static ssize_t natsemi_show_dspcfg_workaround(struct device *dev,
666 				  	      struct device_attribute *attr,
667 					      char *buf)
668 {
669 	struct netdev_private *np = netdev_priv(to_net_dev(dev));
670 
671 	return sprintf(buf, "%s\n", np->dspcfg_workaround ? "on" : "off");
672 }
673 
674 static ssize_t natsemi_set_dspcfg_workaround(struct device *dev,
675 					     struct device_attribute *attr,
676 					     const char *buf, size_t count)
677 {
678 	struct netdev_private *np = netdev_priv(to_net_dev(dev));
679 	int new_setting;
680 	unsigned long flags;
681 
682         /* Find out the new setting */
683         if (!strncmp("on", buf, count - 1) || !strncmp("1", buf, count - 1))
684                 new_setting = 1;
685         else if (!strncmp("off", buf, count - 1) ||
686                  !strncmp("0", buf, count - 1))
687 		new_setting = 0;
688 	else
689                  return count;
690 
691 	spin_lock_irqsave(&np->lock, flags);
692 
693 	np->dspcfg_workaround = new_setting;
694 
695 	spin_unlock_irqrestore(&np->lock, flags);
696 
697 	return count;
698 }
699 
700 static inline void __iomem *ns_ioaddr(struct net_device *dev)
701 {
702 	return (void __iomem *) dev->base_addr;
703 }
704 
705 static inline void natsemi_irq_enable(struct net_device *dev)
706 {
707 	writel(1, ns_ioaddr(dev) + IntrEnable);
708 	readl(ns_ioaddr(dev) + IntrEnable);
709 }
710 
711 static inline void natsemi_irq_disable(struct net_device *dev)
712 {
713 	writel(0, ns_ioaddr(dev) + IntrEnable);
714 	readl(ns_ioaddr(dev) + IntrEnable);
715 }
716 
717 static void move_int_phy(struct net_device *dev, int addr)
718 {
719 	struct netdev_private *np = netdev_priv(dev);
720 	void __iomem *ioaddr = ns_ioaddr(dev);
721 	int target = 31;
722 
723 	/*
724 	 * The internal phy is visible on the external mii bus. Therefore we must
725 	 * move it away before we can send commands to an external phy.
726 	 * There are two addresses we must avoid:
727 	 * - the address on the external phy that is used for transmission.
728 	 * - the address that we want to access. User space can access phys
729 	 *   on the mii bus with SIOCGMIIREG/SIOCSMIIREG, independent from the
730 	 *   phy that is used for transmission.
731 	 */
732 
733 	if (target == addr)
734 		target--;
735 	if (target == np->phy_addr_external)
736 		target--;
737 	writew(target, ioaddr + PhyCtrl);
738 	readw(ioaddr + PhyCtrl);
739 	udelay(1);
740 }
741 
742 static void __devinit natsemi_init_media (struct net_device *dev)
743 {
744 	struct netdev_private *np = netdev_priv(dev);
745 	u32 tmp;
746 
747 	if (np->ignore_phy)
748 		netif_carrier_on(dev);
749 	else
750 		netif_carrier_off(dev);
751 
752 	/* get the initial settings from hardware */
753 	tmp            = mdio_read(dev, MII_BMCR);
754 	np->speed      = (tmp & BMCR_SPEED100)? SPEED_100     : SPEED_10;
755 	np->duplex     = (tmp & BMCR_FULLDPLX)? DUPLEX_FULL   : DUPLEX_HALF;
756 	np->autoneg    = (tmp & BMCR_ANENABLE)? AUTONEG_ENABLE: AUTONEG_DISABLE;
757 	np->advertising= mdio_read(dev, MII_ADVERTISE);
758 
759 	if ((np->advertising & ADVERTISE_ALL) != ADVERTISE_ALL &&
760 	    netif_msg_probe(np)) {
761 		printk(KERN_INFO "natsemi %s: Transceiver default autonegotiation %s "
762 			"10%s %s duplex.\n",
763 			pci_name(np->pci_dev),
764 			(mdio_read(dev, MII_BMCR) & BMCR_ANENABLE)?
765 			  "enabled, advertise" : "disabled, force",
766 			(np->advertising &
767 			  (ADVERTISE_100FULL|ADVERTISE_100HALF))?
768 			    "0" : "",
769 			(np->advertising &
770 			  (ADVERTISE_100FULL|ADVERTISE_10FULL))?
771 			    "full" : "half");
772 	}
773 	if (netif_msg_probe(np))
774 		printk(KERN_INFO
775 			"natsemi %s: Transceiver status %#04x advertising %#04x.\n",
776 			pci_name(np->pci_dev), mdio_read(dev, MII_BMSR),
777 			np->advertising);
778 
779 }
780 
781 static const struct net_device_ops natsemi_netdev_ops = {
782 	.ndo_open		= netdev_open,
783 	.ndo_stop		= netdev_close,
784 	.ndo_start_xmit		= start_tx,
785 	.ndo_get_stats		= get_stats,
786 	.ndo_set_rx_mode	= set_rx_mode,
787 	.ndo_change_mtu		= natsemi_change_mtu,
788 	.ndo_do_ioctl		= netdev_ioctl,
789 	.ndo_tx_timeout 	= ns_tx_timeout,
790 	.ndo_set_mac_address 	= eth_mac_addr,
791 	.ndo_validate_addr	= eth_validate_addr,
792 #ifdef CONFIG_NET_POLL_CONTROLLER
793 	.ndo_poll_controller	= natsemi_poll_controller,
794 #endif
795 };
796 
797 static int __devinit natsemi_probe1 (struct pci_dev *pdev,
798 	const struct pci_device_id *ent)
799 {
800 	struct net_device *dev;
801 	struct netdev_private *np;
802 	int i, option, irq, chip_idx = ent->driver_data;
803 	static int find_cnt = -1;
804 	resource_size_t iostart;
805 	unsigned long iosize;
806 	void __iomem *ioaddr;
807 	const int pcibar = 1; /* PCI base address register */
808 	int prev_eedata;
809 	u32 tmp;
810 
811 /* when built into the kernel, we only print version if device is found */
812 #ifndef MODULE
813 	static int printed_version;
814 	if (!printed_version++)
815 		printk(version);
816 #endif
817 
818 	i = pci_enable_device(pdev);
819 	if (i) return i;
820 
821 	/* natsemi has a non-standard PM control register
822 	 * in PCI config space.  Some boards apparently need
823 	 * to be brought to D0 in this manner.
824 	 */
825 	pci_read_config_dword(pdev, PCIPM, &tmp);
826 	if (tmp & PCI_PM_CTRL_STATE_MASK) {
827 		/* D0 state, disable PME assertion */
828 		u32 newtmp = tmp & ~PCI_PM_CTRL_STATE_MASK;
829 		pci_write_config_dword(pdev, PCIPM, newtmp);
830 	}
831 
832 	find_cnt++;
833 	iostart = pci_resource_start(pdev, pcibar);
834 	iosize = pci_resource_len(pdev, pcibar);
835 	irq = pdev->irq;
836 
837 	pci_set_master(pdev);
838 
839 	dev = alloc_etherdev(sizeof (struct netdev_private));
840 	if (!dev)
841 		return -ENOMEM;
842 	SET_NETDEV_DEV(dev, &pdev->dev);
843 
844 	i = pci_request_regions(pdev, DRV_NAME);
845 	if (i)
846 		goto err_pci_request_regions;
847 
848 	ioaddr = ioremap(iostart, iosize);
849 	if (!ioaddr) {
850 		i = -ENOMEM;
851 		goto err_ioremap;
852 	}
853 
854 	/* Work around the dropped serial bit. */
855 	prev_eedata = eeprom_read(ioaddr, 6);
856 	for (i = 0; i < 3; i++) {
857 		int eedata = eeprom_read(ioaddr, i + 7);
858 		dev->dev_addr[i*2] = (eedata << 1) + (prev_eedata >> 15);
859 		dev->dev_addr[i*2+1] = eedata >> 7;
860 		prev_eedata = eedata;
861 	}
862 
863 	/* Store MAC Address in perm_addr */
864 	memcpy(dev->perm_addr, dev->dev_addr, ETH_ALEN);
865 
866 	dev->base_addr = (unsigned long __force) ioaddr;
867 	dev->irq = irq;
868 
869 	np = netdev_priv(dev);
870 	netif_napi_add(dev, &np->napi, natsemi_poll, 64);
871 	np->dev = dev;
872 
873 	np->pci_dev = pdev;
874 	pci_set_drvdata(pdev, dev);
875 	np->iosize = iosize;
876 	spin_lock_init(&np->lock);
877 	np->msg_enable = (debug >= 0) ? (1<<debug)-1 : NATSEMI_DEF_MSG;
878 	np->hands_off = 0;
879 	np->intr_status = 0;
880 	np->eeprom_size = natsemi_pci_info[chip_idx].eeprom_size;
881 	if (natsemi_pci_info[chip_idx].flags & NATSEMI_FLAG_IGNORE_PHY)
882 		np->ignore_phy = 1;
883 	else
884 		np->ignore_phy = 0;
885 	np->dspcfg_workaround = dspcfg_workaround;
886 
887 	/* Initial port:
888 	 * - If configured to ignore the PHY set up for external.
889 	 * - If the nic was configured to use an external phy and if find_mii
890 	 *   finds a phy: use external port, first phy that replies.
891 	 * - Otherwise: internal port.
892 	 * Note that the phy address for the internal phy doesn't matter:
893 	 * The address would be used to access a phy over the mii bus, but
894 	 * the internal phy is accessed through mapped registers.
895 	 */
896 	if (np->ignore_phy || readl(ioaddr + ChipConfig) & CfgExtPhy)
897 		dev->if_port = PORT_MII;
898 	else
899 		dev->if_port = PORT_TP;
900 	/* Reset the chip to erase previous misconfiguration. */
901 	natsemi_reload_eeprom(dev);
902 	natsemi_reset(dev);
903 
904 	if (dev->if_port != PORT_TP) {
905 		np->phy_addr_external = find_mii(dev);
906 		/* If we're ignoring the PHY it doesn't matter if we can't
907 		 * find one. */
908 		if (!np->ignore_phy && np->phy_addr_external == PHY_ADDR_NONE) {
909 			dev->if_port = PORT_TP;
910 			np->phy_addr_external = PHY_ADDR_INTERNAL;
911 		}
912 	} else {
913 		np->phy_addr_external = PHY_ADDR_INTERNAL;
914 	}
915 
916 	option = find_cnt < MAX_UNITS ? options[find_cnt] : 0;
917 	if (dev->mem_start)
918 		option = dev->mem_start;
919 
920 	/* The lower four bits are the media type. */
921 	if (option) {
922 		if (option & 0x200)
923 			np->full_duplex = 1;
924 		if (option & 15)
925 			printk(KERN_INFO
926 				"natsemi %s: ignoring user supplied media type %d",
927 				pci_name(np->pci_dev), option & 15);
928 	}
929 	if (find_cnt < MAX_UNITS  &&  full_duplex[find_cnt])
930 		np->full_duplex = 1;
931 
932 	dev->netdev_ops = &natsemi_netdev_ops;
933 	dev->watchdog_timeo = TX_TIMEOUT;
934 
935 	SET_ETHTOOL_OPS(dev, &ethtool_ops);
936 
937 	if (mtu)
938 		dev->mtu = mtu;
939 
940 	natsemi_init_media(dev);
941 
942 	/* save the silicon revision for later querying */
943 	np->srr = readl(ioaddr + SiliconRev);
944 	if (netif_msg_hw(np))
945 		printk(KERN_INFO "natsemi %s: silicon revision %#04x.\n",
946 				pci_name(np->pci_dev), np->srr);
947 
948 	i = register_netdev(dev);
949 	if (i)
950 		goto err_register_netdev;
951 
952 	if (NATSEMI_CREATE_FILE(pdev, dspcfg_workaround))
953 		goto err_create_file;
954 
955 	if (netif_msg_drv(np)) {
956 		printk(KERN_INFO "natsemi %s: %s at %#08llx "
957 		       "(%s), %pM, IRQ %d",
958 		       dev->name, natsemi_pci_info[chip_idx].name,
959 		       (unsigned long long)iostart, pci_name(np->pci_dev),
960 		       dev->dev_addr, irq);
961 		if (dev->if_port == PORT_TP)
962 			printk(", port TP.\n");
963 		else if (np->ignore_phy)
964 			printk(", port MII, ignoring PHY\n");
965 		else
966 			printk(", port MII, phy ad %d.\n", np->phy_addr_external);
967 	}
968 	return 0;
969 
970  err_create_file:
971  	unregister_netdev(dev);
972 
973  err_register_netdev:
974 	iounmap(ioaddr);
975 
976  err_ioremap:
977 	pci_release_regions(pdev);
978 	pci_set_drvdata(pdev, NULL);
979 
980  err_pci_request_regions:
981 	free_netdev(dev);
982 	return i;
983 }
984 
985 
986 /* Read the EEPROM and MII Management Data I/O (MDIO) interfaces.
987    The EEPROM code is for the common 93c06/46 EEPROMs with 6 bit addresses. */
988 
989 /* Delay between EEPROM clock transitions.
990    No extra delay is needed with 33Mhz PCI, but future 66Mhz access may need
991    a delay.  Note that pre-2.0.34 kernels had a cache-alignment bug that
992    made udelay() unreliable.
993    The old method of using an ISA access as a delay, __SLOW_DOWN_IO__, is
994    deprecated.
995 */
996 #define eeprom_delay(ee_addr)	readl(ee_addr)
997 
998 #define EE_Write0 (EE_ChipSelect)
999 #define EE_Write1 (EE_ChipSelect | EE_DataIn)
1000 
1001 /* The EEPROM commands include the alway-set leading bit. */
1002 enum EEPROM_Cmds {
1003 	EE_WriteCmd=(5 << 6), EE_ReadCmd=(6 << 6), EE_EraseCmd=(7 << 6),
1004 };
1005 
1006 static int eeprom_read(void __iomem *addr, int location)
1007 {
1008 	int i;
1009 	int retval = 0;
1010 	void __iomem *ee_addr = addr + EECtrl;
1011 	int read_cmd = location | EE_ReadCmd;
1012 
1013 	writel(EE_Write0, ee_addr);
1014 
1015 	/* Shift the read command bits out. */
1016 	for (i = 10; i >= 0; i--) {
1017 		short dataval = (read_cmd & (1 << i)) ? EE_Write1 : EE_Write0;
1018 		writel(dataval, ee_addr);
1019 		eeprom_delay(ee_addr);
1020 		writel(dataval | EE_ShiftClk, ee_addr);
1021 		eeprom_delay(ee_addr);
1022 	}
1023 	writel(EE_ChipSelect, ee_addr);
1024 	eeprom_delay(ee_addr);
1025 
1026 	for (i = 0; i < 16; i++) {
1027 		writel(EE_ChipSelect | EE_ShiftClk, ee_addr);
1028 		eeprom_delay(ee_addr);
1029 		retval |= (readl(ee_addr) & EE_DataOut) ? 1 << i : 0;
1030 		writel(EE_ChipSelect, ee_addr);
1031 		eeprom_delay(ee_addr);
1032 	}
1033 
1034 	/* Terminate the EEPROM access. */
1035 	writel(EE_Write0, ee_addr);
1036 	writel(0, ee_addr);
1037 	return retval;
1038 }
1039 
1040 /* MII transceiver control section.
1041  * The 83815 series has an internal transceiver, and we present the
1042  * internal management registers as if they were MII connected.
1043  * External Phy registers are referenced through the MII interface.
1044  */
1045 
1046 /* clock transitions >= 20ns (25MHz)
1047  * One readl should be good to PCI @ 100MHz
1048  */
1049 #define mii_delay(ioaddr)  readl(ioaddr + EECtrl)
1050 
1051 static int mii_getbit (struct net_device *dev)
1052 {
1053 	int data;
1054 	void __iomem *ioaddr = ns_ioaddr(dev);
1055 
1056 	writel(MII_ShiftClk, ioaddr + EECtrl);
1057 	data = readl(ioaddr + EECtrl);
1058 	writel(0, ioaddr + EECtrl);
1059 	mii_delay(ioaddr);
1060 	return (data & MII_Data)? 1 : 0;
1061 }
1062 
1063 static void mii_send_bits (struct net_device *dev, u32 data, int len)
1064 {
1065 	u32 i;
1066 	void __iomem *ioaddr = ns_ioaddr(dev);
1067 
1068 	for (i = (1 << (len-1)); i; i >>= 1)
1069 	{
1070 		u32 mdio_val = MII_Write | ((data & i)? MII_Data : 0);
1071 		writel(mdio_val, ioaddr + EECtrl);
1072 		mii_delay(ioaddr);
1073 		writel(mdio_val | MII_ShiftClk, ioaddr + EECtrl);
1074 		mii_delay(ioaddr);
1075 	}
1076 	writel(0, ioaddr + EECtrl);
1077 	mii_delay(ioaddr);
1078 }
1079 
1080 static int miiport_read(struct net_device *dev, int phy_id, int reg)
1081 {
1082 	u32 cmd;
1083 	int i;
1084 	u32 retval = 0;
1085 
1086 	/* Ensure sync */
1087 	mii_send_bits (dev, 0xffffffff, 32);
1088 	/* ST(2), OP(2), ADDR(5), REG#(5), TA(2), Data(16) total 32 bits */
1089 	/* ST,OP = 0110'b for read operation */
1090 	cmd = (0x06 << 10) | (phy_id << 5) | reg;
1091 	mii_send_bits (dev, cmd, 14);
1092 	/* Turnaround */
1093 	if (mii_getbit (dev))
1094 		return 0;
1095 	/* Read data */
1096 	for (i = 0; i < 16; i++) {
1097 		retval <<= 1;
1098 		retval |= mii_getbit (dev);
1099 	}
1100 	/* End cycle */
1101 	mii_getbit (dev);
1102 	return retval;
1103 }
1104 
1105 static void miiport_write(struct net_device *dev, int phy_id, int reg, u16 data)
1106 {
1107 	u32 cmd;
1108 
1109 	/* Ensure sync */
1110 	mii_send_bits (dev, 0xffffffff, 32);
1111 	/* ST(2), OP(2), ADDR(5), REG#(5), TA(2), Data(16) total 32 bits */
1112 	/* ST,OP,AAAAA,RRRRR,TA = 0101xxxxxxxxxx10'b = 0x5002 for write */
1113 	cmd = (0x5002 << 16) | (phy_id << 23) | (reg << 18) | data;
1114 	mii_send_bits (dev, cmd, 32);
1115 	/* End cycle */
1116 	mii_getbit (dev);
1117 }
1118 
1119 static int mdio_read(struct net_device *dev, int reg)
1120 {
1121 	struct netdev_private *np = netdev_priv(dev);
1122 	void __iomem *ioaddr = ns_ioaddr(dev);
1123 
1124 	/* The 83815 series has two ports:
1125 	 * - an internal transceiver
1126 	 * - an external mii bus
1127 	 */
1128 	if (dev->if_port == PORT_TP)
1129 		return readw(ioaddr+BasicControl+(reg<<2));
1130 	else
1131 		return miiport_read(dev, np->phy_addr_external, reg);
1132 }
1133 
1134 static void mdio_write(struct net_device *dev, int reg, u16 data)
1135 {
1136 	struct netdev_private *np = netdev_priv(dev);
1137 	void __iomem *ioaddr = ns_ioaddr(dev);
1138 
1139 	/* The 83815 series has an internal transceiver; handle separately */
1140 	if (dev->if_port == PORT_TP)
1141 		writew(data, ioaddr+BasicControl+(reg<<2));
1142 	else
1143 		miiport_write(dev, np->phy_addr_external, reg, data);
1144 }
1145 
1146 static void init_phy_fixup(struct net_device *dev)
1147 {
1148 	struct netdev_private *np = netdev_priv(dev);
1149 	void __iomem *ioaddr = ns_ioaddr(dev);
1150 	int i;
1151 	u32 cfg;
1152 	u16 tmp;
1153 
1154 	/* restore stuff lost when power was out */
1155 	tmp = mdio_read(dev, MII_BMCR);
1156 	if (np->autoneg == AUTONEG_ENABLE) {
1157 		/* renegotiate if something changed */
1158 		if ((tmp & BMCR_ANENABLE) == 0 ||
1159 		    np->advertising != mdio_read(dev, MII_ADVERTISE))
1160 		{
1161 			/* turn on autonegotiation and force negotiation */
1162 			tmp |= (BMCR_ANENABLE | BMCR_ANRESTART);
1163 			mdio_write(dev, MII_ADVERTISE, np->advertising);
1164 		}
1165 	} else {
1166 		/* turn off auto negotiation, set speed and duplexity */
1167 		tmp &= ~(BMCR_ANENABLE | BMCR_SPEED100 | BMCR_FULLDPLX);
1168 		if (np->speed == SPEED_100)
1169 			tmp |= BMCR_SPEED100;
1170 		if (np->duplex == DUPLEX_FULL)
1171 			tmp |= BMCR_FULLDPLX;
1172 		/*
1173 		 * Note: there is no good way to inform the link partner
1174 		 * that our capabilities changed. The user has to unplug
1175 		 * and replug the network cable after some changes, e.g.
1176 		 * after switching from 10HD, autoneg off to 100 HD,
1177 		 * autoneg off.
1178 		 */
1179 	}
1180 	mdio_write(dev, MII_BMCR, tmp);
1181 	readl(ioaddr + ChipConfig);
1182 	udelay(1);
1183 
1184 	/* find out what phy this is */
1185 	np->mii = (mdio_read(dev, MII_PHYSID1) << 16)
1186 				+ mdio_read(dev, MII_PHYSID2);
1187 
1188 	/* handle external phys here */
1189 	switch (np->mii) {
1190 	case PHYID_AM79C874:
1191 		/* phy specific configuration for fibre/tp operation */
1192 		tmp = mdio_read(dev, MII_MCTRL);
1193 		tmp &= ~(MII_FX_SEL | MII_EN_SCRM);
1194 		if (dev->if_port == PORT_FIBRE)
1195 			tmp |= MII_FX_SEL;
1196 		else
1197 			tmp |= MII_EN_SCRM;
1198 		mdio_write(dev, MII_MCTRL, tmp);
1199 		break;
1200 	default:
1201 		break;
1202 	}
1203 	cfg = readl(ioaddr + ChipConfig);
1204 	if (cfg & CfgExtPhy)
1205 		return;
1206 
1207 	/* On page 78 of the spec, they recommend some settings for "optimum
1208 	   performance" to be done in sequence.  These settings optimize some
1209 	   of the 100Mbit autodetection circuitry.  They say we only want to
1210 	   do this for rev C of the chip, but engineers at NSC (Bradley
1211 	   Kennedy) recommends always setting them.  If you don't, you get
1212 	   errors on some autonegotiations that make the device unusable.
1213 
1214 	   It seems that the DSP needs a few usec to reinitialize after
1215 	   the start of the phy. Just retry writing these values until they
1216 	   stick.
1217 	*/
1218 	for (i=0;i<NATSEMI_HW_TIMEOUT;i++) {
1219 
1220 		int dspcfg;
1221 		writew(1, ioaddr + PGSEL);
1222 		writew(PMDCSR_VAL, ioaddr + PMDCSR);
1223 		writew(TSTDAT_VAL, ioaddr + TSTDAT);
1224 		np->dspcfg = (np->srr <= SRR_DP83815_C)?
1225 			DSPCFG_VAL : (DSPCFG_COEF | readw(ioaddr + DSPCFG));
1226 		writew(np->dspcfg, ioaddr + DSPCFG);
1227 		writew(SDCFG_VAL, ioaddr + SDCFG);
1228 		writew(0, ioaddr + PGSEL);
1229 		readl(ioaddr + ChipConfig);
1230 		udelay(10);
1231 
1232 		writew(1, ioaddr + PGSEL);
1233 		dspcfg = readw(ioaddr + DSPCFG);
1234 		writew(0, ioaddr + PGSEL);
1235 		if (np->dspcfg == dspcfg)
1236 			break;
1237 	}
1238 
1239 	if (netif_msg_link(np)) {
1240 		if (i==NATSEMI_HW_TIMEOUT) {
1241 			printk(KERN_INFO
1242 				"%s: DSPCFG mismatch after retrying for %d usec.\n",
1243 				dev->name, i*10);
1244 		} else {
1245 			printk(KERN_INFO
1246 				"%s: DSPCFG accepted after %d usec.\n",
1247 				dev->name, i*10);
1248 		}
1249 	}
1250 	/*
1251 	 * Enable PHY Specific event based interrupts.  Link state change
1252 	 * and Auto-Negotiation Completion are among the affected.
1253 	 * Read the intr status to clear it (needed for wake events).
1254 	 */
1255 	readw(ioaddr + MIntrStatus);
1256 	writew(MICRIntEn, ioaddr + MIntrCtrl);
1257 }
1258 
1259 static int switch_port_external(struct net_device *dev)
1260 {
1261 	struct netdev_private *np = netdev_priv(dev);
1262 	void __iomem *ioaddr = ns_ioaddr(dev);
1263 	u32 cfg;
1264 
1265 	cfg = readl(ioaddr + ChipConfig);
1266 	if (cfg & CfgExtPhy)
1267 		return 0;
1268 
1269 	if (netif_msg_link(np)) {
1270 		printk(KERN_INFO "%s: switching to external transceiver.\n",
1271 				dev->name);
1272 	}
1273 
1274 	/* 1) switch back to external phy */
1275 	writel(cfg | (CfgExtPhy | CfgPhyDis), ioaddr + ChipConfig);
1276 	readl(ioaddr + ChipConfig);
1277 	udelay(1);
1278 
1279 	/* 2) reset the external phy: */
1280 	/* resetting the external PHY has been known to cause a hub supplying
1281 	 * power over Ethernet to kill the power.  We don't want to kill
1282 	 * power to this computer, so we avoid resetting the phy.
1283 	 */
1284 
1285 	/* 3) reinit the phy fixup, it got lost during power down. */
1286 	move_int_phy(dev, np->phy_addr_external);
1287 	init_phy_fixup(dev);
1288 
1289 	return 1;
1290 }
1291 
1292 static int switch_port_internal(struct net_device *dev)
1293 {
1294 	struct netdev_private *np = netdev_priv(dev);
1295 	void __iomem *ioaddr = ns_ioaddr(dev);
1296 	int i;
1297 	u32 cfg;
1298 	u16 bmcr;
1299 
1300 	cfg = readl(ioaddr + ChipConfig);
1301 	if (!(cfg &CfgExtPhy))
1302 		return 0;
1303 
1304 	if (netif_msg_link(np)) {
1305 		printk(KERN_INFO "%s: switching to internal transceiver.\n",
1306 				dev->name);
1307 	}
1308 	/* 1) switch back to internal phy: */
1309 	cfg = cfg & ~(CfgExtPhy | CfgPhyDis);
1310 	writel(cfg, ioaddr + ChipConfig);
1311 	readl(ioaddr + ChipConfig);
1312 	udelay(1);
1313 
1314 	/* 2) reset the internal phy: */
1315 	bmcr = readw(ioaddr+BasicControl+(MII_BMCR<<2));
1316 	writel(bmcr | BMCR_RESET, ioaddr+BasicControl+(MII_BMCR<<2));
1317 	readl(ioaddr + ChipConfig);
1318 	udelay(10);
1319 	for (i=0;i<NATSEMI_HW_TIMEOUT;i++) {
1320 		bmcr = readw(ioaddr+BasicControl+(MII_BMCR<<2));
1321 		if (!(bmcr & BMCR_RESET))
1322 			break;
1323 		udelay(10);
1324 	}
1325 	if (i==NATSEMI_HW_TIMEOUT && netif_msg_link(np)) {
1326 		printk(KERN_INFO
1327 			"%s: phy reset did not complete in %d usec.\n",
1328 			dev->name, i*10);
1329 	}
1330 	/* 3) reinit the phy fixup, it got lost during power down. */
1331 	init_phy_fixup(dev);
1332 
1333 	return 1;
1334 }
1335 
1336 /* Scan for a PHY on the external mii bus.
1337  * There are two tricky points:
1338  * - Do not scan while the internal phy is enabled. The internal phy will
1339  *   crash: e.g. reads from the DSPCFG register will return odd values and
1340  *   the nasty random phy reset code will reset the nic every few seconds.
1341  * - The internal phy must be moved around, an external phy could
1342  *   have the same address as the internal phy.
1343  */
1344 static int find_mii(struct net_device *dev)
1345 {
1346 	struct netdev_private *np = netdev_priv(dev);
1347 	int tmp;
1348 	int i;
1349 	int did_switch;
1350 
1351 	/* Switch to external phy */
1352 	did_switch = switch_port_external(dev);
1353 
1354 	/* Scan the possible phy addresses:
1355 	 *
1356 	 * PHY address 0 means that the phy is in isolate mode. Not yet
1357 	 * supported due to lack of test hardware. User space should
1358 	 * handle it through ethtool.
1359 	 */
1360 	for (i = 1; i <= 31; i++) {
1361 		move_int_phy(dev, i);
1362 		tmp = miiport_read(dev, i, MII_BMSR);
1363 		if (tmp != 0xffff && tmp != 0x0000) {
1364 			/* found something! */
1365 			np->mii = (mdio_read(dev, MII_PHYSID1) << 16)
1366 					+ mdio_read(dev, MII_PHYSID2);
1367 	 		if (netif_msg_probe(np)) {
1368 				printk(KERN_INFO "natsemi %s: found external phy %08x at address %d.\n",
1369 						pci_name(np->pci_dev), np->mii, i);
1370 			}
1371 			break;
1372 		}
1373 	}
1374 	/* And switch back to internal phy: */
1375 	if (did_switch)
1376 		switch_port_internal(dev);
1377 	return i;
1378 }
1379 
1380 /* CFG bits [13:16] [18:23] */
1381 #define CFG_RESET_SAVE 0xfde000
1382 /* WCSR bits [0:4] [9:10] */
1383 #define WCSR_RESET_SAVE 0x61f
1384 /* RFCR bits [20] [22] [27:31] */
1385 #define RFCR_RESET_SAVE 0xf8500000
1386 
1387 static void natsemi_reset(struct net_device *dev)
1388 {
1389 	int i;
1390 	u32 cfg;
1391 	u32 wcsr;
1392 	u32 rfcr;
1393 	u16 pmatch[3];
1394 	u16 sopass[3];
1395 	struct netdev_private *np = netdev_priv(dev);
1396 	void __iomem *ioaddr = ns_ioaddr(dev);
1397 
1398 	/*
1399 	 * Resetting the chip causes some registers to be lost.
1400 	 * Natsemi suggests NOT reloading the EEPROM while live, so instead
1401 	 * we save the state that would have been loaded from EEPROM
1402 	 * on a normal power-up (see the spec EEPROM map).  This assumes
1403 	 * whoever calls this will follow up with init_registers() eventually.
1404 	 */
1405 
1406 	/* CFG */
1407 	cfg = readl(ioaddr + ChipConfig) & CFG_RESET_SAVE;
1408 	/* WCSR */
1409 	wcsr = readl(ioaddr + WOLCmd) & WCSR_RESET_SAVE;
1410 	/* RFCR */
1411 	rfcr = readl(ioaddr + RxFilterAddr) & RFCR_RESET_SAVE;
1412 	/* PMATCH */
1413 	for (i = 0; i < 3; i++) {
1414 		writel(i*2, ioaddr + RxFilterAddr);
1415 		pmatch[i] = readw(ioaddr + RxFilterData);
1416 	}
1417 	/* SOPAS */
1418 	for (i = 0; i < 3; i++) {
1419 		writel(0xa+(i*2), ioaddr + RxFilterAddr);
1420 		sopass[i] = readw(ioaddr + RxFilterData);
1421 	}
1422 
1423 	/* now whack the chip */
1424 	writel(ChipReset, ioaddr + ChipCmd);
1425 	for (i=0;i<NATSEMI_HW_TIMEOUT;i++) {
1426 		if (!(readl(ioaddr + ChipCmd) & ChipReset))
1427 			break;
1428 		udelay(5);
1429 	}
1430 	if (i==NATSEMI_HW_TIMEOUT) {
1431 		printk(KERN_WARNING "%s: reset did not complete in %d usec.\n",
1432 			dev->name, i*5);
1433 	} else if (netif_msg_hw(np)) {
1434 		printk(KERN_DEBUG "%s: reset completed in %d usec.\n",
1435 			dev->name, i*5);
1436 	}
1437 
1438 	/* restore CFG */
1439 	cfg |= readl(ioaddr + ChipConfig) & ~CFG_RESET_SAVE;
1440 	/* turn on external phy if it was selected */
1441 	if (dev->if_port == PORT_TP)
1442 		cfg &= ~(CfgExtPhy | CfgPhyDis);
1443 	else
1444 		cfg |= (CfgExtPhy | CfgPhyDis);
1445 	writel(cfg, ioaddr + ChipConfig);
1446 	/* restore WCSR */
1447 	wcsr |= readl(ioaddr + WOLCmd) & ~WCSR_RESET_SAVE;
1448 	writel(wcsr, ioaddr + WOLCmd);
1449 	/* read RFCR */
1450 	rfcr |= readl(ioaddr + RxFilterAddr) & ~RFCR_RESET_SAVE;
1451 	/* restore PMATCH */
1452 	for (i = 0; i < 3; i++) {
1453 		writel(i*2, ioaddr + RxFilterAddr);
1454 		writew(pmatch[i], ioaddr + RxFilterData);
1455 	}
1456 	for (i = 0; i < 3; i++) {
1457 		writel(0xa+(i*2), ioaddr + RxFilterAddr);
1458 		writew(sopass[i], ioaddr + RxFilterData);
1459 	}
1460 	/* restore RFCR */
1461 	writel(rfcr, ioaddr + RxFilterAddr);
1462 }
1463 
1464 static void reset_rx(struct net_device *dev)
1465 {
1466 	int i;
1467 	struct netdev_private *np = netdev_priv(dev);
1468 	void __iomem *ioaddr = ns_ioaddr(dev);
1469 
1470 	np->intr_status &= ~RxResetDone;
1471 
1472 	writel(RxReset, ioaddr + ChipCmd);
1473 
1474 	for (i=0;i<NATSEMI_HW_TIMEOUT;i++) {
1475 		np->intr_status |= readl(ioaddr + IntrStatus);
1476 		if (np->intr_status & RxResetDone)
1477 			break;
1478 		udelay(15);
1479 	}
1480 	if (i==NATSEMI_HW_TIMEOUT) {
1481 		printk(KERN_WARNING "%s: RX reset did not complete in %d usec.\n",
1482 		       dev->name, i*15);
1483 	} else if (netif_msg_hw(np)) {
1484 		printk(KERN_WARNING "%s: RX reset took %d usec.\n",
1485 		       dev->name, i*15);
1486 	}
1487 }
1488 
1489 static void natsemi_reload_eeprom(struct net_device *dev)
1490 {
1491 	struct netdev_private *np = netdev_priv(dev);
1492 	void __iomem *ioaddr = ns_ioaddr(dev);
1493 	int i;
1494 
1495 	writel(EepromReload, ioaddr + PCIBusCfg);
1496 	for (i=0;i<NATSEMI_HW_TIMEOUT;i++) {
1497 		udelay(50);
1498 		if (!(readl(ioaddr + PCIBusCfg) & EepromReload))
1499 			break;
1500 	}
1501 	if (i==NATSEMI_HW_TIMEOUT) {
1502 		printk(KERN_WARNING "natsemi %s: EEPROM did not reload in %d usec.\n",
1503 			pci_name(np->pci_dev), i*50);
1504 	} else if (netif_msg_hw(np)) {
1505 		printk(KERN_DEBUG "natsemi %s: EEPROM reloaded in %d usec.\n",
1506 			pci_name(np->pci_dev), i*50);
1507 	}
1508 }
1509 
1510 static void natsemi_stop_rxtx(struct net_device *dev)
1511 {
1512 	void __iomem * ioaddr = ns_ioaddr(dev);
1513 	struct netdev_private *np = netdev_priv(dev);
1514 	int i;
1515 
1516 	writel(RxOff | TxOff, ioaddr + ChipCmd);
1517 	for(i=0;i< NATSEMI_HW_TIMEOUT;i++) {
1518 		if ((readl(ioaddr + ChipCmd) & (TxOn|RxOn)) == 0)
1519 			break;
1520 		udelay(5);
1521 	}
1522 	if (i==NATSEMI_HW_TIMEOUT) {
1523 		printk(KERN_WARNING "%s: Tx/Rx process did not stop in %d usec.\n",
1524 			dev->name, i*5);
1525 	} else if (netif_msg_hw(np)) {
1526 		printk(KERN_DEBUG "%s: Tx/Rx process stopped in %d usec.\n",
1527 			dev->name, i*5);
1528 	}
1529 }
1530 
1531 static int netdev_open(struct net_device *dev)
1532 {
1533 	struct netdev_private *np = netdev_priv(dev);
1534 	void __iomem * ioaddr = ns_ioaddr(dev);
1535 	int i;
1536 
1537 	/* Reset the chip, just in case. */
1538 	natsemi_reset(dev);
1539 
1540 	i = request_irq(dev->irq, intr_handler, IRQF_SHARED, dev->name, dev);
1541 	if (i) return i;
1542 
1543 	if (netif_msg_ifup(np))
1544 		printk(KERN_DEBUG "%s: netdev_open() irq %d.\n",
1545 			dev->name, dev->irq);
1546 	i = alloc_ring(dev);
1547 	if (i < 0) {
1548 		free_irq(dev->irq, dev);
1549 		return i;
1550 	}
1551 	napi_enable(&np->napi);
1552 
1553 	init_ring(dev);
1554 	spin_lock_irq(&np->lock);
1555 	init_registers(dev);
1556 	/* now set the MAC address according to dev->dev_addr */
1557 	for (i = 0; i < 3; i++) {
1558 		u16 mac = (dev->dev_addr[2*i+1]<<8) + dev->dev_addr[2*i];
1559 
1560 		writel(i*2, ioaddr + RxFilterAddr);
1561 		writew(mac, ioaddr + RxFilterData);
1562 	}
1563 	writel(np->cur_rx_mode, ioaddr + RxFilterAddr);
1564 	spin_unlock_irq(&np->lock);
1565 
1566 	netif_start_queue(dev);
1567 
1568 	if (netif_msg_ifup(np))
1569 		printk(KERN_DEBUG "%s: Done netdev_open(), status: %#08x.\n",
1570 			dev->name, (int)readl(ioaddr + ChipCmd));
1571 
1572 	/* Set the timer to check for link beat. */
1573 	init_timer(&np->timer);
1574 	np->timer.expires = round_jiffies(jiffies + NATSEMI_TIMER_FREQ);
1575 	np->timer.data = (unsigned long)dev;
1576 	np->timer.function = netdev_timer; /* timer handler */
1577 	add_timer(&np->timer);
1578 
1579 	return 0;
1580 }
1581 
1582 static void do_cable_magic(struct net_device *dev)
1583 {
1584 	struct netdev_private *np = netdev_priv(dev);
1585 	void __iomem *ioaddr = ns_ioaddr(dev);
1586 
1587 	if (dev->if_port != PORT_TP)
1588 		return;
1589 
1590 	if (np->srr >= SRR_DP83816_A5)
1591 		return;
1592 
1593 	/*
1594 	 * 100 MBit links with short cables can trip an issue with the chip.
1595 	 * The problem manifests as lots of CRC errors and/or flickering
1596 	 * activity LED while idle.  This process is based on instructions
1597 	 * from engineers at National.
1598 	 */
1599 	if (readl(ioaddr + ChipConfig) & CfgSpeed100) {
1600 		u16 data;
1601 
1602 		writew(1, ioaddr + PGSEL);
1603 		/*
1604 		 * coefficient visibility should already be enabled via
1605 		 * DSPCFG | 0x1000
1606 		 */
1607 		data = readw(ioaddr + TSTDAT) & 0xff;
1608 		/*
1609 		 * the value must be negative, and within certain values
1610 		 * (these values all come from National)
1611 		 */
1612 		if (!(data & 0x80) || ((data >= 0xd8) && (data <= 0xff))) {
1613 			np = netdev_priv(dev);
1614 
1615 			/* the bug has been triggered - fix the coefficient */
1616 			writew(TSTDAT_FIXED, ioaddr + TSTDAT);
1617 			/* lock the value */
1618 			data = readw(ioaddr + DSPCFG);
1619 			np->dspcfg = data | DSPCFG_LOCK;
1620 			writew(np->dspcfg, ioaddr + DSPCFG);
1621 		}
1622 		writew(0, ioaddr + PGSEL);
1623 	}
1624 }
1625 
1626 static void undo_cable_magic(struct net_device *dev)
1627 {
1628 	u16 data;
1629 	struct netdev_private *np = netdev_priv(dev);
1630 	void __iomem * ioaddr = ns_ioaddr(dev);
1631 
1632 	if (dev->if_port != PORT_TP)
1633 		return;
1634 
1635 	if (np->srr >= SRR_DP83816_A5)
1636 		return;
1637 
1638 	writew(1, ioaddr + PGSEL);
1639 	/* make sure the lock bit is clear */
1640 	data = readw(ioaddr + DSPCFG);
1641 	np->dspcfg = data & ~DSPCFG_LOCK;
1642 	writew(np->dspcfg, ioaddr + DSPCFG);
1643 	writew(0, ioaddr + PGSEL);
1644 }
1645 
1646 static void check_link(struct net_device *dev)
1647 {
1648 	struct netdev_private *np = netdev_priv(dev);
1649 	void __iomem * ioaddr = ns_ioaddr(dev);
1650 	int duplex = np->duplex;
1651 	u16 bmsr;
1652 
1653 	/* If we are ignoring the PHY then don't try reading it. */
1654 	if (np->ignore_phy)
1655 		goto propagate_state;
1656 
1657 	/* The link status field is latched: it remains low after a temporary
1658 	 * link failure until it's read. We need the current link status,
1659 	 * thus read twice.
1660 	 */
1661 	mdio_read(dev, MII_BMSR);
1662 	bmsr = mdio_read(dev, MII_BMSR);
1663 
1664 	if (!(bmsr & BMSR_LSTATUS)) {
1665 		if (netif_carrier_ok(dev)) {
1666 			if (netif_msg_link(np))
1667 				printk(KERN_NOTICE "%s: link down.\n",
1668 				       dev->name);
1669 			netif_carrier_off(dev);
1670 			undo_cable_magic(dev);
1671 		}
1672 		return;
1673 	}
1674 	if (!netif_carrier_ok(dev)) {
1675 		if (netif_msg_link(np))
1676 			printk(KERN_NOTICE "%s: link up.\n", dev->name);
1677 		netif_carrier_on(dev);
1678 		do_cable_magic(dev);
1679 	}
1680 
1681 	duplex = np->full_duplex;
1682 	if (!duplex) {
1683 		if (bmsr & BMSR_ANEGCOMPLETE) {
1684 			int tmp = mii_nway_result(
1685 				np->advertising & mdio_read(dev, MII_LPA));
1686 			if (tmp == LPA_100FULL || tmp == LPA_10FULL)
1687 				duplex = 1;
1688 		} else if (mdio_read(dev, MII_BMCR) & BMCR_FULLDPLX)
1689 			duplex = 1;
1690 	}
1691 
1692 propagate_state:
1693 	/* if duplex is set then bit 28 must be set, too */
1694 	if (duplex ^ !!(np->rx_config & RxAcceptTx)) {
1695 		if (netif_msg_link(np))
1696 			printk(KERN_INFO
1697 				"%s: Setting %s-duplex based on negotiated "
1698 				"link capability.\n", dev->name,
1699 				duplex ? "full" : "half");
1700 		if (duplex) {
1701 			np->rx_config |= RxAcceptTx;
1702 			np->tx_config |= TxCarrierIgn | TxHeartIgn;
1703 		} else {
1704 			np->rx_config &= ~RxAcceptTx;
1705 			np->tx_config &= ~(TxCarrierIgn | TxHeartIgn);
1706 		}
1707 		writel(np->tx_config, ioaddr + TxConfig);
1708 		writel(np->rx_config, ioaddr + RxConfig);
1709 	}
1710 }
1711 
1712 static void init_registers(struct net_device *dev)
1713 {
1714 	struct netdev_private *np = netdev_priv(dev);
1715 	void __iomem * ioaddr = ns_ioaddr(dev);
1716 
1717 	init_phy_fixup(dev);
1718 
1719 	/* clear any interrupts that are pending, such as wake events */
1720 	readl(ioaddr + IntrStatus);
1721 
1722 	writel(np->ring_dma, ioaddr + RxRingPtr);
1723 	writel(np->ring_dma + RX_RING_SIZE * sizeof(struct netdev_desc),
1724 		ioaddr + TxRingPtr);
1725 
1726 	/* Initialize other registers.
1727 	 * Configure the PCI bus bursts and FIFO thresholds.
1728 	 * Configure for standard, in-spec Ethernet.
1729 	 * Start with half-duplex. check_link will update
1730 	 * to the correct settings.
1731 	 */
1732 
1733 	/* DRTH: 2: start tx if 64 bytes are in the fifo
1734 	 * FLTH: 0x10: refill with next packet if 512 bytes are free
1735 	 * MXDMA: 0: up to 256 byte bursts.
1736 	 * 	MXDMA must be <= FLTH
1737 	 * ECRETRY=1
1738 	 * ATP=1
1739 	 */
1740 	np->tx_config = TxAutoPad | TxCollRetry | TxMxdma_256 |
1741 				TX_FLTH_VAL | TX_DRTH_VAL_START;
1742 	writel(np->tx_config, ioaddr + TxConfig);
1743 
1744 	/* DRTH 0x10: start copying to memory if 128 bytes are in the fifo
1745 	 * MXDMA 0: up to 256 byte bursts
1746 	 */
1747 	np->rx_config = RxMxdma_256 | RX_DRTH_VAL;
1748 	/* if receive ring now has bigger buffers than normal, enable jumbo */
1749 	if (np->rx_buf_sz > NATSEMI_LONGPKT)
1750 		np->rx_config |= RxAcceptLong;
1751 
1752 	writel(np->rx_config, ioaddr + RxConfig);
1753 
1754 	/* Disable PME:
1755 	 * The PME bit is initialized from the EEPROM contents.
1756 	 * PCI cards probably have PME disabled, but motherboard
1757 	 * implementations may have PME set to enable WakeOnLan.
1758 	 * With PME set the chip will scan incoming packets but
1759 	 * nothing will be written to memory. */
1760 	np->SavedClkRun = readl(ioaddr + ClkRun);
1761 	writel(np->SavedClkRun & ~PMEEnable, ioaddr + ClkRun);
1762 	if (np->SavedClkRun & PMEStatus && netif_msg_wol(np)) {
1763 		printk(KERN_NOTICE "%s: Wake-up event %#08x\n",
1764 			dev->name, readl(ioaddr + WOLCmd));
1765 	}
1766 
1767 	check_link(dev);
1768 	__set_rx_mode(dev);
1769 
1770 	/* Enable interrupts by setting the interrupt mask. */
1771 	writel(DEFAULT_INTR, ioaddr + IntrMask);
1772 	natsemi_irq_enable(dev);
1773 
1774 	writel(RxOn | TxOn, ioaddr + ChipCmd);
1775 	writel(StatsClear, ioaddr + StatsCtrl); /* Clear Stats */
1776 }
1777 
1778 /*
1779  * netdev_timer:
1780  * Purpose:
1781  * 1) check for link changes. Usually they are handled by the MII interrupt
1782  *    but it doesn't hurt to check twice.
1783  * 2) check for sudden death of the NIC:
1784  *    It seems that a reference set for this chip went out with incorrect info,
1785  *    and there exist boards that aren't quite right.  An unexpected voltage
1786  *    drop can cause the PHY to get itself in a weird state (basically reset).
1787  *    NOTE: this only seems to affect revC chips.  The user can disable
1788  *    this check via dspcfg_workaround sysfs option.
1789  * 3) check of death of the RX path due to OOM
1790  */
1791 static void netdev_timer(unsigned long data)
1792 {
1793 	struct net_device *dev = (struct net_device *)data;
1794 	struct netdev_private *np = netdev_priv(dev);
1795 	void __iomem * ioaddr = ns_ioaddr(dev);
1796 	int next_tick = NATSEMI_TIMER_FREQ;
1797 
1798 	if (netif_msg_timer(np)) {
1799 		/* DO NOT read the IntrStatus register,
1800 		 * a read clears any pending interrupts.
1801 		 */
1802 		printk(KERN_DEBUG "%s: Media selection timer tick.\n",
1803 			dev->name);
1804 	}
1805 
1806 	if (dev->if_port == PORT_TP) {
1807 		u16 dspcfg;
1808 
1809 		spin_lock_irq(&np->lock);
1810 		/* check for a nasty random phy-reset - use dspcfg as a flag */
1811 		writew(1, ioaddr+PGSEL);
1812 		dspcfg = readw(ioaddr+DSPCFG);
1813 		writew(0, ioaddr+PGSEL);
1814 		if (np->dspcfg_workaround && dspcfg != np->dspcfg) {
1815 			if (!netif_queue_stopped(dev)) {
1816 				spin_unlock_irq(&np->lock);
1817 				if (netif_msg_drv(np))
1818 					printk(KERN_NOTICE "%s: possible phy reset: "
1819 						"re-initializing\n", dev->name);
1820 				disable_irq(dev->irq);
1821 				spin_lock_irq(&np->lock);
1822 				natsemi_stop_rxtx(dev);
1823 				dump_ring(dev);
1824 				reinit_ring(dev);
1825 				init_registers(dev);
1826 				spin_unlock_irq(&np->lock);
1827 				enable_irq(dev->irq);
1828 			} else {
1829 				/* hurry back */
1830 				next_tick = HZ;
1831 				spin_unlock_irq(&np->lock);
1832 			}
1833 		} else {
1834 			/* init_registers() calls check_link() for the above case */
1835 			check_link(dev);
1836 			spin_unlock_irq(&np->lock);
1837 		}
1838 	} else {
1839 		spin_lock_irq(&np->lock);
1840 		check_link(dev);
1841 		spin_unlock_irq(&np->lock);
1842 	}
1843 	if (np->oom) {
1844 		disable_irq(dev->irq);
1845 		np->oom = 0;
1846 		refill_rx(dev);
1847 		enable_irq(dev->irq);
1848 		if (!np->oom) {
1849 			writel(RxOn, ioaddr + ChipCmd);
1850 		} else {
1851 			next_tick = 1;
1852 		}
1853 	}
1854 
1855 	if (next_tick > 1)
1856 		mod_timer(&np->timer, round_jiffies(jiffies + next_tick));
1857 	else
1858 		mod_timer(&np->timer, jiffies + next_tick);
1859 }
1860 
1861 static void dump_ring(struct net_device *dev)
1862 {
1863 	struct netdev_private *np = netdev_priv(dev);
1864 
1865 	if (netif_msg_pktdata(np)) {
1866 		int i;
1867 		printk(KERN_DEBUG "  Tx ring at %p:\n", np->tx_ring);
1868 		for (i = 0; i < TX_RING_SIZE; i++) {
1869 			printk(KERN_DEBUG " #%d desc. %#08x %#08x %#08x.\n",
1870 				i, np->tx_ring[i].next_desc,
1871 				np->tx_ring[i].cmd_status,
1872 				np->tx_ring[i].addr);
1873 		}
1874 		printk(KERN_DEBUG "  Rx ring %p:\n", np->rx_ring);
1875 		for (i = 0; i < RX_RING_SIZE; i++) {
1876 			printk(KERN_DEBUG " #%d desc. %#08x %#08x %#08x.\n",
1877 				i, np->rx_ring[i].next_desc,
1878 				np->rx_ring[i].cmd_status,
1879 				np->rx_ring[i].addr);
1880 		}
1881 	}
1882 }
1883 
1884 static void ns_tx_timeout(struct net_device *dev)
1885 {
1886 	struct netdev_private *np = netdev_priv(dev);
1887 	void __iomem * ioaddr = ns_ioaddr(dev);
1888 
1889 	disable_irq(dev->irq);
1890 	spin_lock_irq(&np->lock);
1891 	if (!np->hands_off) {
1892 		if (netif_msg_tx_err(np))
1893 			printk(KERN_WARNING
1894 				"%s: Transmit timed out, status %#08x,"
1895 				" resetting...\n",
1896 				dev->name, readl(ioaddr + IntrStatus));
1897 		dump_ring(dev);
1898 
1899 		natsemi_reset(dev);
1900 		reinit_ring(dev);
1901 		init_registers(dev);
1902 	} else {
1903 		printk(KERN_WARNING
1904 			"%s: tx_timeout while in hands_off state?\n",
1905 			dev->name);
1906 	}
1907 	spin_unlock_irq(&np->lock);
1908 	enable_irq(dev->irq);
1909 
1910 	dev->trans_start = jiffies; /* prevent tx timeout */
1911 	dev->stats.tx_errors++;
1912 	netif_wake_queue(dev);
1913 }
1914 
1915 static int alloc_ring(struct net_device *dev)
1916 {
1917 	struct netdev_private *np = netdev_priv(dev);
1918 	np->rx_ring = pci_alloc_consistent(np->pci_dev,
1919 		sizeof(struct netdev_desc) * (RX_RING_SIZE+TX_RING_SIZE),
1920 		&np->ring_dma);
1921 	if (!np->rx_ring)
1922 		return -ENOMEM;
1923 	np->tx_ring = &np->rx_ring[RX_RING_SIZE];
1924 	return 0;
1925 }
1926 
1927 static void refill_rx(struct net_device *dev)
1928 {
1929 	struct netdev_private *np = netdev_priv(dev);
1930 
1931 	/* Refill the Rx ring buffers. */
1932 	for (; np->cur_rx - np->dirty_rx > 0; np->dirty_rx++) {
1933 		struct sk_buff *skb;
1934 		int entry = np->dirty_rx % RX_RING_SIZE;
1935 		if (np->rx_skbuff[entry] == NULL) {
1936 			unsigned int buflen = np->rx_buf_sz+NATSEMI_PADDING;
1937 			skb = netdev_alloc_skb(dev, buflen);
1938 			np->rx_skbuff[entry] = skb;
1939 			if (skb == NULL)
1940 				break; /* Better luck next round. */
1941 			np->rx_dma[entry] = pci_map_single(np->pci_dev,
1942 				skb->data, buflen, PCI_DMA_FROMDEVICE);
1943 			np->rx_ring[entry].addr = cpu_to_le32(np->rx_dma[entry]);
1944 		}
1945 		np->rx_ring[entry].cmd_status = cpu_to_le32(np->rx_buf_sz);
1946 	}
1947 	if (np->cur_rx - np->dirty_rx == RX_RING_SIZE) {
1948 		if (netif_msg_rx_err(np))
1949 			printk(KERN_WARNING "%s: going OOM.\n", dev->name);
1950 		np->oom = 1;
1951 	}
1952 }
1953 
1954 static void set_bufsize(struct net_device *dev)
1955 {
1956 	struct netdev_private *np = netdev_priv(dev);
1957 	if (dev->mtu <= ETH_DATA_LEN)
1958 		np->rx_buf_sz = ETH_DATA_LEN + NATSEMI_HEADERS;
1959 	else
1960 		np->rx_buf_sz = dev->mtu + NATSEMI_HEADERS;
1961 }
1962 
1963 /* Initialize the Rx and Tx rings, along with various 'dev' bits. */
1964 static void init_ring(struct net_device *dev)
1965 {
1966 	struct netdev_private *np = netdev_priv(dev);
1967 	int i;
1968 
1969 	/* 1) TX ring */
1970 	np->dirty_tx = np->cur_tx = 0;
1971 	for (i = 0; i < TX_RING_SIZE; i++) {
1972 		np->tx_skbuff[i] = NULL;
1973 		np->tx_ring[i].next_desc = cpu_to_le32(np->ring_dma
1974 			+sizeof(struct netdev_desc)
1975 			*((i+1)%TX_RING_SIZE+RX_RING_SIZE));
1976 		np->tx_ring[i].cmd_status = 0;
1977 	}
1978 
1979 	/* 2) RX ring */
1980 	np->dirty_rx = 0;
1981 	np->cur_rx = RX_RING_SIZE;
1982 	np->oom = 0;
1983 	set_bufsize(dev);
1984 
1985 	np->rx_head_desc = &np->rx_ring[0];
1986 
1987 	/* Please be careful before changing this loop - at least gcc-2.95.1
1988 	 * miscompiles it otherwise.
1989 	 */
1990 	/* Initialize all Rx descriptors. */
1991 	for (i = 0; i < RX_RING_SIZE; i++) {
1992 		np->rx_ring[i].next_desc = cpu_to_le32(np->ring_dma
1993 				+sizeof(struct netdev_desc)
1994 				*((i+1)%RX_RING_SIZE));
1995 		np->rx_ring[i].cmd_status = cpu_to_le32(DescOwn);
1996 		np->rx_skbuff[i] = NULL;
1997 	}
1998 	refill_rx(dev);
1999 	dump_ring(dev);
2000 }
2001 
2002 static void drain_tx(struct net_device *dev)
2003 {
2004 	struct netdev_private *np = netdev_priv(dev);
2005 	int i;
2006 
2007 	for (i = 0; i < TX_RING_SIZE; i++) {
2008 		if (np->tx_skbuff[i]) {
2009 			pci_unmap_single(np->pci_dev,
2010 				np->tx_dma[i], np->tx_skbuff[i]->len,
2011 				PCI_DMA_TODEVICE);
2012 			dev_kfree_skb(np->tx_skbuff[i]);
2013 			dev->stats.tx_dropped++;
2014 		}
2015 		np->tx_skbuff[i] = NULL;
2016 	}
2017 }
2018 
2019 static void drain_rx(struct net_device *dev)
2020 {
2021 	struct netdev_private *np = netdev_priv(dev);
2022 	unsigned int buflen = np->rx_buf_sz;
2023 	int i;
2024 
2025 	/* Free all the skbuffs in the Rx queue. */
2026 	for (i = 0; i < RX_RING_SIZE; i++) {
2027 		np->rx_ring[i].cmd_status = 0;
2028 		np->rx_ring[i].addr = cpu_to_le32(0xBADF00D0); /* An invalid address. */
2029 		if (np->rx_skbuff[i]) {
2030 			pci_unmap_single(np->pci_dev, np->rx_dma[i],
2031 				buflen + NATSEMI_PADDING,
2032 				PCI_DMA_FROMDEVICE);
2033 			dev_kfree_skb(np->rx_skbuff[i]);
2034 		}
2035 		np->rx_skbuff[i] = NULL;
2036 	}
2037 }
2038 
2039 static void drain_ring(struct net_device *dev)
2040 {
2041 	drain_rx(dev);
2042 	drain_tx(dev);
2043 }
2044 
2045 static void free_ring(struct net_device *dev)
2046 {
2047 	struct netdev_private *np = netdev_priv(dev);
2048 	pci_free_consistent(np->pci_dev,
2049 		sizeof(struct netdev_desc) * (RX_RING_SIZE+TX_RING_SIZE),
2050 		np->rx_ring, np->ring_dma);
2051 }
2052 
2053 static void reinit_rx(struct net_device *dev)
2054 {
2055 	struct netdev_private *np = netdev_priv(dev);
2056 	int i;
2057 
2058 	/* RX Ring */
2059 	np->dirty_rx = 0;
2060 	np->cur_rx = RX_RING_SIZE;
2061 	np->rx_head_desc = &np->rx_ring[0];
2062 	/* Initialize all Rx descriptors. */
2063 	for (i = 0; i < RX_RING_SIZE; i++)
2064 		np->rx_ring[i].cmd_status = cpu_to_le32(DescOwn);
2065 
2066 	refill_rx(dev);
2067 }
2068 
2069 static void reinit_ring(struct net_device *dev)
2070 {
2071 	struct netdev_private *np = netdev_priv(dev);
2072 	int i;
2073 
2074 	/* drain TX ring */
2075 	drain_tx(dev);
2076 	np->dirty_tx = np->cur_tx = 0;
2077 	for (i=0;i<TX_RING_SIZE;i++)
2078 		np->tx_ring[i].cmd_status = 0;
2079 
2080 	reinit_rx(dev);
2081 }
2082 
2083 static netdev_tx_t start_tx(struct sk_buff *skb, struct net_device *dev)
2084 {
2085 	struct netdev_private *np = netdev_priv(dev);
2086 	void __iomem * ioaddr = ns_ioaddr(dev);
2087 	unsigned entry;
2088 	unsigned long flags;
2089 
2090 	/* Note: Ordering is important here, set the field with the
2091 	   "ownership" bit last, and only then increment cur_tx. */
2092 
2093 	/* Calculate the next Tx descriptor entry. */
2094 	entry = np->cur_tx % TX_RING_SIZE;
2095 
2096 	np->tx_skbuff[entry] = skb;
2097 	np->tx_dma[entry] = pci_map_single(np->pci_dev,
2098 				skb->data,skb->len, PCI_DMA_TODEVICE);
2099 
2100 	np->tx_ring[entry].addr = cpu_to_le32(np->tx_dma[entry]);
2101 
2102 	spin_lock_irqsave(&np->lock, flags);
2103 
2104 	if (!np->hands_off) {
2105 		np->tx_ring[entry].cmd_status = cpu_to_le32(DescOwn | skb->len);
2106 		/* StrongARM: Explicitly cache flush np->tx_ring and
2107 		 * skb->data,skb->len. */
2108 		wmb();
2109 		np->cur_tx++;
2110 		if (np->cur_tx - np->dirty_tx >= TX_QUEUE_LEN - 1) {
2111 			netdev_tx_done(dev);
2112 			if (np->cur_tx - np->dirty_tx >= TX_QUEUE_LEN - 1)
2113 				netif_stop_queue(dev);
2114 		}
2115 		/* Wake the potentially-idle transmit channel. */
2116 		writel(TxOn, ioaddr + ChipCmd);
2117 	} else {
2118 		dev_kfree_skb_irq(skb);
2119 		dev->stats.tx_dropped++;
2120 	}
2121 	spin_unlock_irqrestore(&np->lock, flags);
2122 
2123 	if (netif_msg_tx_queued(np)) {
2124 		printk(KERN_DEBUG "%s: Transmit frame #%d queued in slot %d.\n",
2125 			dev->name, np->cur_tx, entry);
2126 	}
2127 	return NETDEV_TX_OK;
2128 }
2129 
2130 static void netdev_tx_done(struct net_device *dev)
2131 {
2132 	struct netdev_private *np = netdev_priv(dev);
2133 
2134 	for (; np->cur_tx - np->dirty_tx > 0; np->dirty_tx++) {
2135 		int entry = np->dirty_tx % TX_RING_SIZE;
2136 		if (np->tx_ring[entry].cmd_status & cpu_to_le32(DescOwn))
2137 			break;
2138 		if (netif_msg_tx_done(np))
2139 			printk(KERN_DEBUG
2140 				"%s: tx frame #%d finished, status %#08x.\n",
2141 					dev->name, np->dirty_tx,
2142 					le32_to_cpu(np->tx_ring[entry].cmd_status));
2143 		if (np->tx_ring[entry].cmd_status & cpu_to_le32(DescPktOK)) {
2144 			dev->stats.tx_packets++;
2145 			dev->stats.tx_bytes += np->tx_skbuff[entry]->len;
2146 		} else { /* Various Tx errors */
2147 			int tx_status =
2148 				le32_to_cpu(np->tx_ring[entry].cmd_status);
2149 			if (tx_status & (DescTxAbort|DescTxExcColl))
2150 				dev->stats.tx_aborted_errors++;
2151 			if (tx_status & DescTxFIFO)
2152 				dev->stats.tx_fifo_errors++;
2153 			if (tx_status & DescTxCarrier)
2154 				dev->stats.tx_carrier_errors++;
2155 			if (tx_status & DescTxOOWCol)
2156 				dev->stats.tx_window_errors++;
2157 			dev->stats.tx_errors++;
2158 		}
2159 		pci_unmap_single(np->pci_dev,np->tx_dma[entry],
2160 					np->tx_skbuff[entry]->len,
2161 					PCI_DMA_TODEVICE);
2162 		/* Free the original skb. */
2163 		dev_kfree_skb_irq(np->tx_skbuff[entry]);
2164 		np->tx_skbuff[entry] = NULL;
2165 	}
2166 	if (netif_queue_stopped(dev) &&
2167 	    np->cur_tx - np->dirty_tx < TX_QUEUE_LEN - 4) {
2168 		/* The ring is no longer full, wake queue. */
2169 		netif_wake_queue(dev);
2170 	}
2171 }
2172 
2173 /* The interrupt handler doesn't actually handle interrupts itself, it
2174  * schedules a NAPI poll if there is anything to do. */
2175 static irqreturn_t intr_handler(int irq, void *dev_instance)
2176 {
2177 	struct net_device *dev = dev_instance;
2178 	struct netdev_private *np = netdev_priv(dev);
2179 	void __iomem * ioaddr = ns_ioaddr(dev);
2180 
2181 	/* Reading IntrStatus automatically acknowledges so don't do
2182 	 * that while interrupts are disabled, (for example, while a
2183 	 * poll is scheduled).  */
2184 	if (np->hands_off || !readl(ioaddr + IntrEnable))
2185 		return IRQ_NONE;
2186 
2187 	np->intr_status = readl(ioaddr + IntrStatus);
2188 
2189 	if (!np->intr_status)
2190 		return IRQ_NONE;
2191 
2192 	if (netif_msg_intr(np))
2193 		printk(KERN_DEBUG
2194 		       "%s: Interrupt, status %#08x, mask %#08x.\n",
2195 		       dev->name, np->intr_status,
2196 		       readl(ioaddr + IntrMask));
2197 
2198 	prefetch(&np->rx_skbuff[np->cur_rx % RX_RING_SIZE]);
2199 
2200 	if (napi_schedule_prep(&np->napi)) {
2201 		/* Disable interrupts and register for poll */
2202 		natsemi_irq_disable(dev);
2203 		__napi_schedule(&np->napi);
2204 	} else
2205 		printk(KERN_WARNING
2206 	       	       "%s: Ignoring interrupt, status %#08x, mask %#08x.\n",
2207 		       dev->name, np->intr_status,
2208 		       readl(ioaddr + IntrMask));
2209 
2210 	return IRQ_HANDLED;
2211 }
2212 
2213 /* This is the NAPI poll routine.  As well as the standard RX handling
2214  * it also handles all other interrupts that the chip might raise.
2215  */
2216 static int natsemi_poll(struct napi_struct *napi, int budget)
2217 {
2218 	struct netdev_private *np = container_of(napi, struct netdev_private, napi);
2219 	struct net_device *dev = np->dev;
2220 	void __iomem * ioaddr = ns_ioaddr(dev);
2221 	int work_done = 0;
2222 
2223 	do {
2224 		if (netif_msg_intr(np))
2225 			printk(KERN_DEBUG
2226 			       "%s: Poll, status %#08x, mask %#08x.\n",
2227 			       dev->name, np->intr_status,
2228 			       readl(ioaddr + IntrMask));
2229 
2230 		/* netdev_rx() may read IntrStatus again if the RX state
2231 		 * machine falls over so do it first. */
2232 		if (np->intr_status &
2233 		    (IntrRxDone | IntrRxIntr | RxStatusFIFOOver |
2234 		     IntrRxErr | IntrRxOverrun)) {
2235 			netdev_rx(dev, &work_done, budget);
2236 		}
2237 
2238 		if (np->intr_status &
2239 		    (IntrTxDone | IntrTxIntr | IntrTxIdle | IntrTxErr)) {
2240 			spin_lock(&np->lock);
2241 			netdev_tx_done(dev);
2242 			spin_unlock(&np->lock);
2243 		}
2244 
2245 		/* Abnormal error summary/uncommon events handlers. */
2246 		if (np->intr_status & IntrAbnormalSummary)
2247 			netdev_error(dev, np->intr_status);
2248 
2249 		if (work_done >= budget)
2250 			return work_done;
2251 
2252 		np->intr_status = readl(ioaddr + IntrStatus);
2253 	} while (np->intr_status);
2254 
2255 	napi_complete(napi);
2256 
2257 	/* Reenable interrupts providing nothing is trying to shut
2258 	 * the chip down. */
2259 	spin_lock(&np->lock);
2260 	if (!np->hands_off)
2261 		natsemi_irq_enable(dev);
2262 	spin_unlock(&np->lock);
2263 
2264 	return work_done;
2265 }
2266 
2267 /* This routine is logically part of the interrupt handler, but separated
2268    for clarity and better register allocation. */
2269 static void netdev_rx(struct net_device *dev, int *work_done, int work_to_do)
2270 {
2271 	struct netdev_private *np = netdev_priv(dev);
2272 	int entry = np->cur_rx % RX_RING_SIZE;
2273 	int boguscnt = np->dirty_rx + RX_RING_SIZE - np->cur_rx;
2274 	s32 desc_status = le32_to_cpu(np->rx_head_desc->cmd_status);
2275 	unsigned int buflen = np->rx_buf_sz;
2276 	void __iomem * ioaddr = ns_ioaddr(dev);
2277 
2278 	/* If the driver owns the next entry it's a new packet. Send it up. */
2279 	while (desc_status < 0) { /* e.g. & DescOwn */
2280 		int pkt_len;
2281 		if (netif_msg_rx_status(np))
2282 			printk(KERN_DEBUG
2283 				"  netdev_rx() entry %d status was %#08x.\n",
2284 				entry, desc_status);
2285 		if (--boguscnt < 0)
2286 			break;
2287 
2288 		if (*work_done >= work_to_do)
2289 			break;
2290 
2291 		(*work_done)++;
2292 
2293 		pkt_len = (desc_status & DescSizeMask) - 4;
2294 		if ((desc_status&(DescMore|DescPktOK|DescRxLong)) != DescPktOK){
2295 			if (desc_status & DescMore) {
2296 				unsigned long flags;
2297 
2298 				if (netif_msg_rx_err(np))
2299 					printk(KERN_WARNING
2300 						"%s: Oversized(?) Ethernet "
2301 						"frame spanned multiple "
2302 						"buffers, entry %#08x "
2303 						"status %#08x.\n", dev->name,
2304 						np->cur_rx, desc_status);
2305 				dev->stats.rx_length_errors++;
2306 
2307 				/* The RX state machine has probably
2308 				 * locked up beneath us.  Follow the
2309 				 * reset procedure documented in
2310 				 * AN-1287. */
2311 
2312 				spin_lock_irqsave(&np->lock, flags);
2313 				reset_rx(dev);
2314 				reinit_rx(dev);
2315 				writel(np->ring_dma, ioaddr + RxRingPtr);
2316 				check_link(dev);
2317 				spin_unlock_irqrestore(&np->lock, flags);
2318 
2319 				/* We'll enable RX on exit from this
2320 				 * function. */
2321 				break;
2322 
2323 			} else {
2324 				/* There was an error. */
2325 				dev->stats.rx_errors++;
2326 				if (desc_status & (DescRxAbort|DescRxOver))
2327 					dev->stats.rx_over_errors++;
2328 				if (desc_status & (DescRxLong|DescRxRunt))
2329 					dev->stats.rx_length_errors++;
2330 				if (desc_status & (DescRxInvalid|DescRxAlign))
2331 					dev->stats.rx_frame_errors++;
2332 				if (desc_status & DescRxCRC)
2333 					dev->stats.rx_crc_errors++;
2334 			}
2335 		} else if (pkt_len > np->rx_buf_sz) {
2336 			/* if this is the tail of a double buffer
2337 			 * packet, we've already counted the error
2338 			 * on the first part.  Ignore the second half.
2339 			 */
2340 		} else {
2341 			struct sk_buff *skb;
2342 			/* Omit CRC size. */
2343 			/* Check if the packet is long enough to accept
2344 			 * without copying to a minimally-sized skbuff. */
2345 			if (pkt_len < rx_copybreak &&
2346 			    (skb = netdev_alloc_skb(dev, pkt_len + RX_OFFSET)) != NULL) {
2347 				/* 16 byte align the IP header */
2348 				skb_reserve(skb, RX_OFFSET);
2349 				pci_dma_sync_single_for_cpu(np->pci_dev,
2350 					np->rx_dma[entry],
2351 					buflen,
2352 					PCI_DMA_FROMDEVICE);
2353 				skb_copy_to_linear_data(skb,
2354 					np->rx_skbuff[entry]->data, pkt_len);
2355 				skb_put(skb, pkt_len);
2356 				pci_dma_sync_single_for_device(np->pci_dev,
2357 					np->rx_dma[entry],
2358 					buflen,
2359 					PCI_DMA_FROMDEVICE);
2360 			} else {
2361 				pci_unmap_single(np->pci_dev, np->rx_dma[entry],
2362 						 buflen + NATSEMI_PADDING,
2363 						 PCI_DMA_FROMDEVICE);
2364 				skb_put(skb = np->rx_skbuff[entry], pkt_len);
2365 				np->rx_skbuff[entry] = NULL;
2366 			}
2367 			skb->protocol = eth_type_trans(skb, dev);
2368 			netif_receive_skb(skb);
2369 			dev->stats.rx_packets++;
2370 			dev->stats.rx_bytes += pkt_len;
2371 		}
2372 		entry = (++np->cur_rx) % RX_RING_SIZE;
2373 		np->rx_head_desc = &np->rx_ring[entry];
2374 		desc_status = le32_to_cpu(np->rx_head_desc->cmd_status);
2375 	}
2376 	refill_rx(dev);
2377 
2378 	/* Restart Rx engine if stopped. */
2379 	if (np->oom)
2380 		mod_timer(&np->timer, jiffies + 1);
2381 	else
2382 		writel(RxOn, ioaddr + ChipCmd);
2383 }
2384 
2385 static void netdev_error(struct net_device *dev, int intr_status)
2386 {
2387 	struct netdev_private *np = netdev_priv(dev);
2388 	void __iomem * ioaddr = ns_ioaddr(dev);
2389 
2390 	spin_lock(&np->lock);
2391 	if (intr_status & LinkChange) {
2392 		u16 lpa = mdio_read(dev, MII_LPA);
2393 		if (mdio_read(dev, MII_BMCR) & BMCR_ANENABLE &&
2394 		    netif_msg_link(np)) {
2395 			printk(KERN_INFO
2396 				"%s: Autonegotiation advertising"
2397 				" %#04x  partner %#04x.\n", dev->name,
2398 				np->advertising, lpa);
2399 		}
2400 
2401 		/* read MII int status to clear the flag */
2402 		readw(ioaddr + MIntrStatus);
2403 		check_link(dev);
2404 	}
2405 	if (intr_status & StatsMax) {
2406 		__get_stats(dev);
2407 	}
2408 	if (intr_status & IntrTxUnderrun) {
2409 		if ((np->tx_config & TxDrthMask) < TX_DRTH_VAL_LIMIT) {
2410 			np->tx_config += TX_DRTH_VAL_INC;
2411 			if (netif_msg_tx_err(np))
2412 				printk(KERN_NOTICE
2413 					"%s: increased tx threshold, txcfg %#08x.\n",
2414 					dev->name, np->tx_config);
2415 		} else {
2416 			if (netif_msg_tx_err(np))
2417 				printk(KERN_NOTICE
2418 					"%s: tx underrun with maximum tx threshold, txcfg %#08x.\n",
2419 					dev->name, np->tx_config);
2420 		}
2421 		writel(np->tx_config, ioaddr + TxConfig);
2422 	}
2423 	if (intr_status & WOLPkt && netif_msg_wol(np)) {
2424 		int wol_status = readl(ioaddr + WOLCmd);
2425 		printk(KERN_NOTICE "%s: Link wake-up event %#08x\n",
2426 			dev->name, wol_status);
2427 	}
2428 	if (intr_status & RxStatusFIFOOver) {
2429 		if (netif_msg_rx_err(np) && netif_msg_intr(np)) {
2430 			printk(KERN_NOTICE "%s: Rx status FIFO overrun\n",
2431 				dev->name);
2432 		}
2433 		dev->stats.rx_fifo_errors++;
2434 		dev->stats.rx_errors++;
2435 	}
2436 	/* Hmmmmm, it's not clear how to recover from PCI faults. */
2437 	if (intr_status & IntrPCIErr) {
2438 		printk(KERN_NOTICE "%s: PCI error %#08x\n", dev->name,
2439 			intr_status & IntrPCIErr);
2440 		dev->stats.tx_fifo_errors++;
2441 		dev->stats.tx_errors++;
2442 		dev->stats.rx_fifo_errors++;
2443 		dev->stats.rx_errors++;
2444 	}
2445 	spin_unlock(&np->lock);
2446 }
2447 
2448 static void __get_stats(struct net_device *dev)
2449 {
2450 	void __iomem * ioaddr = ns_ioaddr(dev);
2451 
2452 	/* The chip only need report frame silently dropped. */
2453 	dev->stats.rx_crc_errors += readl(ioaddr + RxCRCErrs);
2454 	dev->stats.rx_missed_errors += readl(ioaddr + RxMissed);
2455 }
2456 
2457 static struct net_device_stats *get_stats(struct net_device *dev)
2458 {
2459 	struct netdev_private *np = netdev_priv(dev);
2460 
2461 	/* The chip only need report frame silently dropped. */
2462 	spin_lock_irq(&np->lock);
2463 	if (netif_running(dev) && !np->hands_off)
2464 		__get_stats(dev);
2465 	spin_unlock_irq(&np->lock);
2466 
2467 	return &dev->stats;
2468 }
2469 
2470 #ifdef CONFIG_NET_POLL_CONTROLLER
2471 static void natsemi_poll_controller(struct net_device *dev)
2472 {
2473 	disable_irq(dev->irq);
2474 	intr_handler(dev->irq, dev);
2475 	enable_irq(dev->irq);
2476 }
2477 #endif
2478 
2479 #define HASH_TABLE	0x200
2480 static void __set_rx_mode(struct net_device *dev)
2481 {
2482 	void __iomem * ioaddr = ns_ioaddr(dev);
2483 	struct netdev_private *np = netdev_priv(dev);
2484 	u8 mc_filter[64]; /* Multicast hash filter */
2485 	u32 rx_mode;
2486 
2487 	if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */
2488 		rx_mode = RxFilterEnable | AcceptBroadcast
2489 			| AcceptAllMulticast | AcceptAllPhys | AcceptMyPhys;
2490 	} else if ((netdev_mc_count(dev) > multicast_filter_limit) ||
2491 		   (dev->flags & IFF_ALLMULTI)) {
2492 		rx_mode = RxFilterEnable | AcceptBroadcast
2493 			| AcceptAllMulticast | AcceptMyPhys;
2494 	} else {
2495 		struct netdev_hw_addr *ha;
2496 		int i;
2497 
2498 		memset(mc_filter, 0, sizeof(mc_filter));
2499 		netdev_for_each_mc_addr(ha, dev) {
2500 			int b = (ether_crc(ETH_ALEN, ha->addr) >> 23) & 0x1ff;
2501 			mc_filter[b/8] |= (1 << (b & 0x07));
2502 		}
2503 		rx_mode = RxFilterEnable | AcceptBroadcast
2504 			| AcceptMulticast | AcceptMyPhys;
2505 		for (i = 0; i < 64; i += 2) {
2506 			writel(HASH_TABLE + i, ioaddr + RxFilterAddr);
2507 			writel((mc_filter[i + 1] << 8) + mc_filter[i],
2508 			       ioaddr + RxFilterData);
2509 		}
2510 	}
2511 	writel(rx_mode, ioaddr + RxFilterAddr);
2512 	np->cur_rx_mode = rx_mode;
2513 }
2514 
2515 static int natsemi_change_mtu(struct net_device *dev, int new_mtu)
2516 {
2517 	if (new_mtu < 64 || new_mtu > NATSEMI_RX_LIMIT-NATSEMI_HEADERS)
2518 		return -EINVAL;
2519 
2520 	dev->mtu = new_mtu;
2521 
2522 	/* synchronized against open : rtnl_lock() held by caller */
2523 	if (netif_running(dev)) {
2524 		struct netdev_private *np = netdev_priv(dev);
2525 		void __iomem * ioaddr = ns_ioaddr(dev);
2526 
2527 		disable_irq(dev->irq);
2528 		spin_lock(&np->lock);
2529 		/* stop engines */
2530 		natsemi_stop_rxtx(dev);
2531 		/* drain rx queue */
2532 		drain_rx(dev);
2533 		/* change buffers */
2534 		set_bufsize(dev);
2535 		reinit_rx(dev);
2536 		writel(np->ring_dma, ioaddr + RxRingPtr);
2537 		/* restart engines */
2538 		writel(RxOn | TxOn, ioaddr + ChipCmd);
2539 		spin_unlock(&np->lock);
2540 		enable_irq(dev->irq);
2541 	}
2542 	return 0;
2543 }
2544 
2545 static void set_rx_mode(struct net_device *dev)
2546 {
2547 	struct netdev_private *np = netdev_priv(dev);
2548 	spin_lock_irq(&np->lock);
2549 	if (!np->hands_off)
2550 		__set_rx_mode(dev);
2551 	spin_unlock_irq(&np->lock);
2552 }
2553 
2554 static void get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
2555 {
2556 	struct netdev_private *np = netdev_priv(dev);
2557 	strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
2558 	strlcpy(info->version, DRV_VERSION, sizeof(info->version));
2559 	strlcpy(info->bus_info, pci_name(np->pci_dev), sizeof(info->bus_info));
2560 }
2561 
2562 static int get_regs_len(struct net_device *dev)
2563 {
2564 	return NATSEMI_REGS_SIZE;
2565 }
2566 
2567 static int get_eeprom_len(struct net_device *dev)
2568 {
2569 	struct netdev_private *np = netdev_priv(dev);
2570 	return np->eeprom_size;
2571 }
2572 
2573 static int get_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
2574 {
2575 	struct netdev_private *np = netdev_priv(dev);
2576 	spin_lock_irq(&np->lock);
2577 	netdev_get_ecmd(dev, ecmd);
2578 	spin_unlock_irq(&np->lock);
2579 	return 0;
2580 }
2581 
2582 static int set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
2583 {
2584 	struct netdev_private *np = netdev_priv(dev);
2585 	int res;
2586 	spin_lock_irq(&np->lock);
2587 	res = netdev_set_ecmd(dev, ecmd);
2588 	spin_unlock_irq(&np->lock);
2589 	return res;
2590 }
2591 
2592 static void get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2593 {
2594 	struct netdev_private *np = netdev_priv(dev);
2595 	spin_lock_irq(&np->lock);
2596 	netdev_get_wol(dev, &wol->supported, &wol->wolopts);
2597 	netdev_get_sopass(dev, wol->sopass);
2598 	spin_unlock_irq(&np->lock);
2599 }
2600 
2601 static int set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2602 {
2603 	struct netdev_private *np = netdev_priv(dev);
2604 	int res;
2605 	spin_lock_irq(&np->lock);
2606 	netdev_set_wol(dev, wol->wolopts);
2607 	res = netdev_set_sopass(dev, wol->sopass);
2608 	spin_unlock_irq(&np->lock);
2609 	return res;
2610 }
2611 
2612 static void get_regs(struct net_device *dev, struct ethtool_regs *regs, void *buf)
2613 {
2614 	struct netdev_private *np = netdev_priv(dev);
2615 	regs->version = NATSEMI_REGS_VER;
2616 	spin_lock_irq(&np->lock);
2617 	netdev_get_regs(dev, buf);
2618 	spin_unlock_irq(&np->lock);
2619 }
2620 
2621 static u32 get_msglevel(struct net_device *dev)
2622 {
2623 	struct netdev_private *np = netdev_priv(dev);
2624 	return np->msg_enable;
2625 }
2626 
2627 static void set_msglevel(struct net_device *dev, u32 val)
2628 {
2629 	struct netdev_private *np = netdev_priv(dev);
2630 	np->msg_enable = val;
2631 }
2632 
2633 static int nway_reset(struct net_device *dev)
2634 {
2635 	int tmp;
2636 	int r = -EINVAL;
2637 	/* if autoneg is off, it's an error */
2638 	tmp = mdio_read(dev, MII_BMCR);
2639 	if (tmp & BMCR_ANENABLE) {
2640 		tmp |= (BMCR_ANRESTART);
2641 		mdio_write(dev, MII_BMCR, tmp);
2642 		r = 0;
2643 	}
2644 	return r;
2645 }
2646 
2647 static u32 get_link(struct net_device *dev)
2648 {
2649 	/* LSTATUS is latched low until a read - so read twice */
2650 	mdio_read(dev, MII_BMSR);
2651 	return (mdio_read(dev, MII_BMSR)&BMSR_LSTATUS) ? 1:0;
2652 }
2653 
2654 static int get_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom, u8 *data)
2655 {
2656 	struct netdev_private *np = netdev_priv(dev);
2657 	u8 *eebuf;
2658 	int res;
2659 
2660 	eebuf = kmalloc(np->eeprom_size, GFP_KERNEL);
2661 	if (!eebuf)
2662 		return -ENOMEM;
2663 
2664 	eeprom->magic = PCI_VENDOR_ID_NS | (PCI_DEVICE_ID_NS_83815<<16);
2665 	spin_lock_irq(&np->lock);
2666 	res = netdev_get_eeprom(dev, eebuf);
2667 	spin_unlock_irq(&np->lock);
2668 	if (!res)
2669 		memcpy(data, eebuf+eeprom->offset, eeprom->len);
2670 	kfree(eebuf);
2671 	return res;
2672 }
2673 
2674 static const struct ethtool_ops ethtool_ops = {
2675 	.get_drvinfo = get_drvinfo,
2676 	.get_regs_len = get_regs_len,
2677 	.get_eeprom_len = get_eeprom_len,
2678 	.get_settings = get_settings,
2679 	.set_settings = set_settings,
2680 	.get_wol = get_wol,
2681 	.set_wol = set_wol,
2682 	.get_regs = get_regs,
2683 	.get_msglevel = get_msglevel,
2684 	.set_msglevel = set_msglevel,
2685 	.nway_reset = nway_reset,
2686 	.get_link = get_link,
2687 	.get_eeprom = get_eeprom,
2688 };
2689 
2690 static int netdev_set_wol(struct net_device *dev, u32 newval)
2691 {
2692 	struct netdev_private *np = netdev_priv(dev);
2693 	void __iomem * ioaddr = ns_ioaddr(dev);
2694 	u32 data = readl(ioaddr + WOLCmd) & ~WakeOptsSummary;
2695 
2696 	/* translate to bitmasks this chip understands */
2697 	if (newval & WAKE_PHY)
2698 		data |= WakePhy;
2699 	if (newval & WAKE_UCAST)
2700 		data |= WakeUnicast;
2701 	if (newval & WAKE_MCAST)
2702 		data |= WakeMulticast;
2703 	if (newval & WAKE_BCAST)
2704 		data |= WakeBroadcast;
2705 	if (newval & WAKE_ARP)
2706 		data |= WakeArp;
2707 	if (newval & WAKE_MAGIC)
2708 		data |= WakeMagic;
2709 	if (np->srr >= SRR_DP83815_D) {
2710 		if (newval & WAKE_MAGICSECURE) {
2711 			data |= WakeMagicSecure;
2712 		}
2713 	}
2714 
2715 	writel(data, ioaddr + WOLCmd);
2716 
2717 	return 0;
2718 }
2719 
2720 static int netdev_get_wol(struct net_device *dev, u32 *supported, u32 *cur)
2721 {
2722 	struct netdev_private *np = netdev_priv(dev);
2723 	void __iomem * ioaddr = ns_ioaddr(dev);
2724 	u32 regval = readl(ioaddr + WOLCmd);
2725 
2726 	*supported = (WAKE_PHY | WAKE_UCAST | WAKE_MCAST | WAKE_BCAST
2727 			| WAKE_ARP | WAKE_MAGIC);
2728 
2729 	if (np->srr >= SRR_DP83815_D) {
2730 		/* SOPASS works on revD and higher */
2731 		*supported |= WAKE_MAGICSECURE;
2732 	}
2733 	*cur = 0;
2734 
2735 	/* translate from chip bitmasks */
2736 	if (regval & WakePhy)
2737 		*cur |= WAKE_PHY;
2738 	if (regval & WakeUnicast)
2739 		*cur |= WAKE_UCAST;
2740 	if (regval & WakeMulticast)
2741 		*cur |= WAKE_MCAST;
2742 	if (regval & WakeBroadcast)
2743 		*cur |= WAKE_BCAST;
2744 	if (regval & WakeArp)
2745 		*cur |= WAKE_ARP;
2746 	if (regval & WakeMagic)
2747 		*cur |= WAKE_MAGIC;
2748 	if (regval & WakeMagicSecure) {
2749 		/* this can be on in revC, but it's broken */
2750 		*cur |= WAKE_MAGICSECURE;
2751 	}
2752 
2753 	return 0;
2754 }
2755 
2756 static int netdev_set_sopass(struct net_device *dev, u8 *newval)
2757 {
2758 	struct netdev_private *np = netdev_priv(dev);
2759 	void __iomem * ioaddr = ns_ioaddr(dev);
2760 	u16 *sval = (u16 *)newval;
2761 	u32 addr;
2762 
2763 	if (np->srr < SRR_DP83815_D) {
2764 		return 0;
2765 	}
2766 
2767 	/* enable writing to these registers by disabling the RX filter */
2768 	addr = readl(ioaddr + RxFilterAddr) & ~RFCRAddressMask;
2769 	addr &= ~RxFilterEnable;
2770 	writel(addr, ioaddr + RxFilterAddr);
2771 
2772 	/* write the three words to (undocumented) RFCR vals 0xa, 0xc, 0xe */
2773 	writel(addr | 0xa, ioaddr + RxFilterAddr);
2774 	writew(sval[0], ioaddr + RxFilterData);
2775 
2776 	writel(addr | 0xc, ioaddr + RxFilterAddr);
2777 	writew(sval[1], ioaddr + RxFilterData);
2778 
2779 	writel(addr | 0xe, ioaddr + RxFilterAddr);
2780 	writew(sval[2], ioaddr + RxFilterData);
2781 
2782 	/* re-enable the RX filter */
2783 	writel(addr | RxFilterEnable, ioaddr + RxFilterAddr);
2784 
2785 	return 0;
2786 }
2787 
2788 static int netdev_get_sopass(struct net_device *dev, u8 *data)
2789 {
2790 	struct netdev_private *np = netdev_priv(dev);
2791 	void __iomem * ioaddr = ns_ioaddr(dev);
2792 	u16 *sval = (u16 *)data;
2793 	u32 addr;
2794 
2795 	if (np->srr < SRR_DP83815_D) {
2796 		sval[0] = sval[1] = sval[2] = 0;
2797 		return 0;
2798 	}
2799 
2800 	/* read the three words from (undocumented) RFCR vals 0xa, 0xc, 0xe */
2801 	addr = readl(ioaddr + RxFilterAddr) & ~RFCRAddressMask;
2802 
2803 	writel(addr | 0xa, ioaddr + RxFilterAddr);
2804 	sval[0] = readw(ioaddr + RxFilterData);
2805 
2806 	writel(addr | 0xc, ioaddr + RxFilterAddr);
2807 	sval[1] = readw(ioaddr + RxFilterData);
2808 
2809 	writel(addr | 0xe, ioaddr + RxFilterAddr);
2810 	sval[2] = readw(ioaddr + RxFilterData);
2811 
2812 	writel(addr, ioaddr + RxFilterAddr);
2813 
2814 	return 0;
2815 }
2816 
2817 static int netdev_get_ecmd(struct net_device *dev, struct ethtool_cmd *ecmd)
2818 {
2819 	struct netdev_private *np = netdev_priv(dev);
2820 	u32 tmp;
2821 
2822 	ecmd->port        = dev->if_port;
2823 	ethtool_cmd_speed_set(ecmd, np->speed);
2824 	ecmd->duplex      = np->duplex;
2825 	ecmd->autoneg     = np->autoneg;
2826 	ecmd->advertising = 0;
2827 	if (np->advertising & ADVERTISE_10HALF)
2828 		ecmd->advertising |= ADVERTISED_10baseT_Half;
2829 	if (np->advertising & ADVERTISE_10FULL)
2830 		ecmd->advertising |= ADVERTISED_10baseT_Full;
2831 	if (np->advertising & ADVERTISE_100HALF)
2832 		ecmd->advertising |= ADVERTISED_100baseT_Half;
2833 	if (np->advertising & ADVERTISE_100FULL)
2834 		ecmd->advertising |= ADVERTISED_100baseT_Full;
2835 	ecmd->supported   = (SUPPORTED_Autoneg |
2836 		SUPPORTED_10baseT_Half  | SUPPORTED_10baseT_Full  |
2837 		SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full |
2838 		SUPPORTED_TP | SUPPORTED_MII | SUPPORTED_FIBRE);
2839 	ecmd->phy_address = np->phy_addr_external;
2840 	/*
2841 	 * We intentionally report the phy address of the external
2842 	 * phy, even if the internal phy is used. This is necessary
2843 	 * to work around a deficiency of the ethtool interface:
2844 	 * It's only possible to query the settings of the active
2845 	 * port. Therefore
2846 	 * # ethtool -s ethX port mii
2847 	 * actually sends an ioctl to switch to port mii with the
2848 	 * settings that are used for the current active port.
2849 	 * If we would report a different phy address in this
2850 	 * command, then
2851 	 * # ethtool -s ethX port tp;ethtool -s ethX port mii
2852 	 * would unintentionally change the phy address.
2853 	 *
2854 	 * Fortunately the phy address doesn't matter with the
2855 	 * internal phy...
2856 	 */
2857 
2858 	/* set information based on active port type */
2859 	switch (ecmd->port) {
2860 	default:
2861 	case PORT_TP:
2862 		ecmd->advertising |= ADVERTISED_TP;
2863 		ecmd->transceiver = XCVR_INTERNAL;
2864 		break;
2865 	case PORT_MII:
2866 		ecmd->advertising |= ADVERTISED_MII;
2867 		ecmd->transceiver = XCVR_EXTERNAL;
2868 		break;
2869 	case PORT_FIBRE:
2870 		ecmd->advertising |= ADVERTISED_FIBRE;
2871 		ecmd->transceiver = XCVR_EXTERNAL;
2872 		break;
2873 	}
2874 
2875 	/* if autonegotiation is on, try to return the active speed/duplex */
2876 	if (ecmd->autoneg == AUTONEG_ENABLE) {
2877 		ecmd->advertising |= ADVERTISED_Autoneg;
2878 		tmp = mii_nway_result(
2879 			np->advertising & mdio_read(dev, MII_LPA));
2880 		if (tmp == LPA_100FULL || tmp == LPA_100HALF)
2881 			ethtool_cmd_speed_set(ecmd, SPEED_100);
2882 		else
2883 			ethtool_cmd_speed_set(ecmd, SPEED_10);
2884 		if (tmp == LPA_100FULL || tmp == LPA_10FULL)
2885 			ecmd->duplex = DUPLEX_FULL;
2886 		else
2887 			ecmd->duplex = DUPLEX_HALF;
2888 	}
2889 
2890 	/* ignore maxtxpkt, maxrxpkt for now */
2891 
2892 	return 0;
2893 }
2894 
2895 static int netdev_set_ecmd(struct net_device *dev, struct ethtool_cmd *ecmd)
2896 {
2897 	struct netdev_private *np = netdev_priv(dev);
2898 
2899 	if (ecmd->port != PORT_TP && ecmd->port != PORT_MII && ecmd->port != PORT_FIBRE)
2900 		return -EINVAL;
2901 	if (ecmd->transceiver != XCVR_INTERNAL && ecmd->transceiver != XCVR_EXTERNAL)
2902 		return -EINVAL;
2903 	if (ecmd->autoneg == AUTONEG_ENABLE) {
2904 		if ((ecmd->advertising & (ADVERTISED_10baseT_Half |
2905 					  ADVERTISED_10baseT_Full |
2906 					  ADVERTISED_100baseT_Half |
2907 					  ADVERTISED_100baseT_Full)) == 0) {
2908 			return -EINVAL;
2909 		}
2910 	} else if (ecmd->autoneg == AUTONEG_DISABLE) {
2911 		u32 speed = ethtool_cmd_speed(ecmd);
2912 		if (speed != SPEED_10 && speed != SPEED_100)
2913 			return -EINVAL;
2914 		if (ecmd->duplex != DUPLEX_HALF && ecmd->duplex != DUPLEX_FULL)
2915 			return -EINVAL;
2916 	} else {
2917 		return -EINVAL;
2918 	}
2919 
2920 	/*
2921 	 * If we're ignoring the PHY then autoneg and the internal
2922 	 * transceiver are really not going to work so don't let the
2923 	 * user select them.
2924 	 */
2925 	if (np->ignore_phy && (ecmd->autoneg == AUTONEG_ENABLE ||
2926 			       ecmd->port == PORT_TP))
2927 		return -EINVAL;
2928 
2929 	/*
2930 	 * maxtxpkt, maxrxpkt: ignored for now.
2931 	 *
2932 	 * transceiver:
2933 	 * PORT_TP is always XCVR_INTERNAL, PORT_MII and PORT_FIBRE are always
2934 	 * XCVR_EXTERNAL. The implementation thus ignores ecmd->transceiver and
2935 	 * selects based on ecmd->port.
2936 	 *
2937 	 * Actually PORT_FIBRE is nearly identical to PORT_MII: it's for fibre
2938 	 * phys that are connected to the mii bus. It's used to apply fibre
2939 	 * specific updates.
2940 	 */
2941 
2942 	/* WHEW! now lets bang some bits */
2943 
2944 	/* save the parms */
2945 	dev->if_port          = ecmd->port;
2946 	np->autoneg           = ecmd->autoneg;
2947 	np->phy_addr_external = ecmd->phy_address & PhyAddrMask;
2948 	if (np->autoneg == AUTONEG_ENABLE) {
2949 		/* advertise only what has been requested */
2950 		np->advertising &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4);
2951 		if (ecmd->advertising & ADVERTISED_10baseT_Half)
2952 			np->advertising |= ADVERTISE_10HALF;
2953 		if (ecmd->advertising & ADVERTISED_10baseT_Full)
2954 			np->advertising |= ADVERTISE_10FULL;
2955 		if (ecmd->advertising & ADVERTISED_100baseT_Half)
2956 			np->advertising |= ADVERTISE_100HALF;
2957 		if (ecmd->advertising & ADVERTISED_100baseT_Full)
2958 			np->advertising |= ADVERTISE_100FULL;
2959 	} else {
2960 		np->speed  = ethtool_cmd_speed(ecmd);
2961 		np->duplex = ecmd->duplex;
2962 		/* user overriding the initial full duplex parm? */
2963 		if (np->duplex == DUPLEX_HALF)
2964 			np->full_duplex = 0;
2965 	}
2966 
2967 	/* get the right phy enabled */
2968 	if (ecmd->port == PORT_TP)
2969 		switch_port_internal(dev);
2970 	else
2971 		switch_port_external(dev);
2972 
2973 	/* set parms and see how this affected our link status */
2974 	init_phy_fixup(dev);
2975 	check_link(dev);
2976 	return 0;
2977 }
2978 
2979 static int netdev_get_regs(struct net_device *dev, u8 *buf)
2980 {
2981 	int i;
2982 	int j;
2983 	u32 rfcr;
2984 	u32 *rbuf = (u32 *)buf;
2985 	void __iomem * ioaddr = ns_ioaddr(dev);
2986 
2987 	/* read non-mii page 0 of registers */
2988 	for (i = 0; i < NATSEMI_PG0_NREGS/2; i++) {
2989 		rbuf[i] = readl(ioaddr + i*4);
2990 	}
2991 
2992 	/* read current mii registers */
2993 	for (i = NATSEMI_PG0_NREGS/2; i < NATSEMI_PG0_NREGS; i++)
2994 		rbuf[i] = mdio_read(dev, i & 0x1f);
2995 
2996 	/* read only the 'magic' registers from page 1 */
2997 	writew(1, ioaddr + PGSEL);
2998 	rbuf[i++] = readw(ioaddr + PMDCSR);
2999 	rbuf[i++] = readw(ioaddr + TSTDAT);
3000 	rbuf[i++] = readw(ioaddr + DSPCFG);
3001 	rbuf[i++] = readw(ioaddr + SDCFG);
3002 	writew(0, ioaddr + PGSEL);
3003 
3004 	/* read RFCR indexed registers */
3005 	rfcr = readl(ioaddr + RxFilterAddr);
3006 	for (j = 0; j < NATSEMI_RFDR_NREGS; j++) {
3007 		writel(j*2, ioaddr + RxFilterAddr);
3008 		rbuf[i++] = readw(ioaddr + RxFilterData);
3009 	}
3010 	writel(rfcr, ioaddr + RxFilterAddr);
3011 
3012 	/* the interrupt status is clear-on-read - see if we missed any */
3013 	if (rbuf[4] & rbuf[5]) {
3014 		printk(KERN_WARNING
3015 			"%s: shoot, we dropped an interrupt (%#08x)\n",
3016 			dev->name, rbuf[4] & rbuf[5]);
3017 	}
3018 
3019 	return 0;
3020 }
3021 
3022 #define SWAP_BITS(x)	( (((x) & 0x0001) << 15) | (((x) & 0x0002) << 13) \
3023 			| (((x) & 0x0004) << 11) | (((x) & 0x0008) << 9)  \
3024 			| (((x) & 0x0010) << 7)  | (((x) & 0x0020) << 5)  \
3025 			| (((x) & 0x0040) << 3)  | (((x) & 0x0080) << 1)  \
3026 			| (((x) & 0x0100) >> 1)  | (((x) & 0x0200) >> 3)  \
3027 			| (((x) & 0x0400) >> 5)  | (((x) & 0x0800) >> 7)  \
3028 			| (((x) & 0x1000) >> 9)  | (((x) & 0x2000) >> 11) \
3029 			| (((x) & 0x4000) >> 13) | (((x) & 0x8000) >> 15) )
3030 
3031 static int netdev_get_eeprom(struct net_device *dev, u8 *buf)
3032 {
3033 	int i;
3034 	u16 *ebuf = (u16 *)buf;
3035 	void __iomem * ioaddr = ns_ioaddr(dev);
3036 	struct netdev_private *np = netdev_priv(dev);
3037 
3038 	/* eeprom_read reads 16 bits, and indexes by 16 bits */
3039 	for (i = 0; i < np->eeprom_size/2; i++) {
3040 		ebuf[i] = eeprom_read(ioaddr, i);
3041 		/* The EEPROM itself stores data bit-swapped, but eeprom_read
3042 		 * reads it back "sanely". So we swap it back here in order to
3043 		 * present it to userland as it is stored. */
3044 		ebuf[i] = SWAP_BITS(ebuf[i]);
3045 	}
3046 	return 0;
3047 }
3048 
3049 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
3050 {
3051 	struct mii_ioctl_data *data = if_mii(rq);
3052 	struct netdev_private *np = netdev_priv(dev);
3053 
3054 	switch(cmd) {
3055 	case SIOCGMIIPHY:		/* Get address of MII PHY in use. */
3056 		data->phy_id = np->phy_addr_external;
3057 		/* Fall Through */
3058 
3059 	case SIOCGMIIREG:		/* Read MII PHY register. */
3060 		/* The phy_id is not enough to uniquely identify
3061 		 * the intended target. Therefore the command is sent to
3062 		 * the given mii on the current port.
3063 		 */
3064 		if (dev->if_port == PORT_TP) {
3065 			if ((data->phy_id & 0x1f) == np->phy_addr_external)
3066 				data->val_out = mdio_read(dev,
3067 							data->reg_num & 0x1f);
3068 			else
3069 				data->val_out = 0;
3070 		} else {
3071 			move_int_phy(dev, data->phy_id & 0x1f);
3072 			data->val_out = miiport_read(dev, data->phy_id & 0x1f,
3073 							data->reg_num & 0x1f);
3074 		}
3075 		return 0;
3076 
3077 	case SIOCSMIIREG:		/* Write MII PHY register. */
3078 		if (dev->if_port == PORT_TP) {
3079 			if ((data->phy_id & 0x1f) == np->phy_addr_external) {
3080  				if ((data->reg_num & 0x1f) == MII_ADVERTISE)
3081 					np->advertising = data->val_in;
3082 				mdio_write(dev, data->reg_num & 0x1f,
3083 							data->val_in);
3084 			}
3085 		} else {
3086 			if ((data->phy_id & 0x1f) == np->phy_addr_external) {
3087  				if ((data->reg_num & 0x1f) == MII_ADVERTISE)
3088 					np->advertising = data->val_in;
3089 			}
3090 			move_int_phy(dev, data->phy_id & 0x1f);
3091 			miiport_write(dev, data->phy_id & 0x1f,
3092 						data->reg_num & 0x1f,
3093 						data->val_in);
3094 		}
3095 		return 0;
3096 	default:
3097 		return -EOPNOTSUPP;
3098 	}
3099 }
3100 
3101 static void enable_wol_mode(struct net_device *dev, int enable_intr)
3102 {
3103 	void __iomem * ioaddr = ns_ioaddr(dev);
3104 	struct netdev_private *np = netdev_priv(dev);
3105 
3106 	if (netif_msg_wol(np))
3107 		printk(KERN_INFO "%s: remaining active for wake-on-lan\n",
3108 			dev->name);
3109 
3110 	/* For WOL we must restart the rx process in silent mode.
3111 	 * Write NULL to the RxRingPtr. Only possible if
3112 	 * rx process is stopped
3113 	 */
3114 	writel(0, ioaddr + RxRingPtr);
3115 
3116 	/* read WoL status to clear */
3117 	readl(ioaddr + WOLCmd);
3118 
3119 	/* PME on, clear status */
3120 	writel(np->SavedClkRun | PMEEnable | PMEStatus, ioaddr + ClkRun);
3121 
3122 	/* and restart the rx process */
3123 	writel(RxOn, ioaddr + ChipCmd);
3124 
3125 	if (enable_intr) {
3126 		/* enable the WOL interrupt.
3127 		 * Could be used to send a netlink message.
3128 		 */
3129 		writel(WOLPkt | LinkChange, ioaddr + IntrMask);
3130 		natsemi_irq_enable(dev);
3131 	}
3132 }
3133 
3134 static int netdev_close(struct net_device *dev)
3135 {
3136 	void __iomem * ioaddr = ns_ioaddr(dev);
3137 	struct netdev_private *np = netdev_priv(dev);
3138 
3139 	if (netif_msg_ifdown(np))
3140 		printk(KERN_DEBUG
3141 			"%s: Shutting down ethercard, status was %#04x.\n",
3142 			dev->name, (int)readl(ioaddr + ChipCmd));
3143 	if (netif_msg_pktdata(np))
3144 		printk(KERN_DEBUG
3145 			"%s: Queue pointers were Tx %d / %d,  Rx %d / %d.\n",
3146 			dev->name, np->cur_tx, np->dirty_tx,
3147 			np->cur_rx, np->dirty_rx);
3148 
3149 	napi_disable(&np->napi);
3150 
3151 	/*
3152 	 * FIXME: what if someone tries to close a device
3153 	 * that is suspended?
3154 	 * Should we reenable the nic to switch to
3155 	 * the final WOL settings?
3156 	 */
3157 
3158 	del_timer_sync(&np->timer);
3159 	disable_irq(dev->irq);
3160 	spin_lock_irq(&np->lock);
3161 	natsemi_irq_disable(dev);
3162 	np->hands_off = 1;
3163 	spin_unlock_irq(&np->lock);
3164 	enable_irq(dev->irq);
3165 
3166 	free_irq(dev->irq, dev);
3167 
3168 	/* Interrupt disabled, interrupt handler released,
3169 	 * queue stopped, timer deleted, rtnl_lock held
3170 	 * All async codepaths that access the driver are disabled.
3171 	 */
3172 	spin_lock_irq(&np->lock);
3173 	np->hands_off = 0;
3174 	readl(ioaddr + IntrMask);
3175 	readw(ioaddr + MIntrStatus);
3176 
3177 	/* Freeze Stats */
3178 	writel(StatsFreeze, ioaddr + StatsCtrl);
3179 
3180 	/* Stop the chip's Tx and Rx processes. */
3181 	natsemi_stop_rxtx(dev);
3182 
3183 	__get_stats(dev);
3184 	spin_unlock_irq(&np->lock);
3185 
3186 	/* clear the carrier last - an interrupt could reenable it otherwise */
3187 	netif_carrier_off(dev);
3188 	netif_stop_queue(dev);
3189 
3190 	dump_ring(dev);
3191 	drain_ring(dev);
3192 	free_ring(dev);
3193 
3194 	{
3195 		u32 wol = readl(ioaddr + WOLCmd) & WakeOptsSummary;
3196 		if (wol) {
3197 			/* restart the NIC in WOL mode.
3198 			 * The nic must be stopped for this.
3199 			 */
3200 			enable_wol_mode(dev, 0);
3201 		} else {
3202 			/* Restore PME enable bit unmolested */
3203 			writel(np->SavedClkRun, ioaddr + ClkRun);
3204 		}
3205 	}
3206 	return 0;
3207 }
3208 
3209 
3210 static void __devexit natsemi_remove1 (struct pci_dev *pdev)
3211 {
3212 	struct net_device *dev = pci_get_drvdata(pdev);
3213 	void __iomem * ioaddr = ns_ioaddr(dev);
3214 
3215 	NATSEMI_REMOVE_FILE(pdev, dspcfg_workaround);
3216 	unregister_netdev (dev);
3217 	pci_release_regions (pdev);
3218 	iounmap(ioaddr);
3219 	free_netdev (dev);
3220 	pci_set_drvdata(pdev, NULL);
3221 }
3222 
3223 #ifdef CONFIG_PM
3224 
3225 /*
3226  * The ns83815 chip doesn't have explicit RxStop bits.
3227  * Kicking the Rx or Tx process for a new packet reenables the Rx process
3228  * of the nic, thus this function must be very careful:
3229  *
3230  * suspend/resume synchronization:
3231  * entry points:
3232  *   netdev_open, netdev_close, netdev_ioctl, set_rx_mode, intr_handler,
3233  *   start_tx, ns_tx_timeout
3234  *
3235  * No function accesses the hardware without checking np->hands_off.
3236  *	the check occurs under spin_lock_irq(&np->lock);
3237  * exceptions:
3238  *	* netdev_ioctl: noncritical access.
3239  *	* netdev_open: cannot happen due to the device_detach
3240  *	* netdev_close: doesn't hurt.
3241  *	* netdev_timer: timer stopped by natsemi_suspend.
3242  *	* intr_handler: doesn't acquire the spinlock. suspend calls
3243  *		disable_irq() to enforce synchronization.
3244  *      * natsemi_poll: checks before reenabling interrupts.  suspend
3245  *              sets hands_off, disables interrupts and then waits with
3246  *              napi_disable().
3247  *
3248  * Interrupts must be disabled, otherwise hands_off can cause irq storms.
3249  */
3250 
3251 static int natsemi_suspend (struct pci_dev *pdev, pm_message_t state)
3252 {
3253 	struct net_device *dev = pci_get_drvdata (pdev);
3254 	struct netdev_private *np = netdev_priv(dev);
3255 	void __iomem * ioaddr = ns_ioaddr(dev);
3256 
3257 	rtnl_lock();
3258 	if (netif_running (dev)) {
3259 		del_timer_sync(&np->timer);
3260 
3261 		disable_irq(dev->irq);
3262 		spin_lock_irq(&np->lock);
3263 
3264 		natsemi_irq_disable(dev);
3265 		np->hands_off = 1;
3266 		natsemi_stop_rxtx(dev);
3267 		netif_stop_queue(dev);
3268 
3269 		spin_unlock_irq(&np->lock);
3270 		enable_irq(dev->irq);
3271 
3272 		napi_disable(&np->napi);
3273 
3274 		/* Update the error counts. */
3275 		__get_stats(dev);
3276 
3277 		/* pci_power_off(pdev, -1); */
3278 		drain_ring(dev);
3279 		{
3280 			u32 wol = readl(ioaddr + WOLCmd) & WakeOptsSummary;
3281 			/* Restore PME enable bit */
3282 			if (wol) {
3283 				/* restart the NIC in WOL mode.
3284 				 * The nic must be stopped for this.
3285 				 * FIXME: use the WOL interrupt
3286 				 */
3287 				enable_wol_mode(dev, 0);
3288 			} else {
3289 				/* Restore PME enable bit unmolested */
3290 				writel(np->SavedClkRun, ioaddr + ClkRun);
3291 			}
3292 		}
3293 	}
3294 	netif_device_detach(dev);
3295 	rtnl_unlock();
3296 	return 0;
3297 }
3298 
3299 
3300 static int natsemi_resume (struct pci_dev *pdev)
3301 {
3302 	struct net_device *dev = pci_get_drvdata (pdev);
3303 	struct netdev_private *np = netdev_priv(dev);
3304 	int ret = 0;
3305 
3306 	rtnl_lock();
3307 	if (netif_device_present(dev))
3308 		goto out;
3309 	if (netif_running(dev)) {
3310 		BUG_ON(!np->hands_off);
3311 		ret = pci_enable_device(pdev);
3312 		if (ret < 0) {
3313 			dev_err(&pdev->dev,
3314 				"pci_enable_device() failed: %d\n", ret);
3315 			goto out;
3316 		}
3317 	/*	pci_power_on(pdev); */
3318 
3319 		napi_enable(&np->napi);
3320 
3321 		natsemi_reset(dev);
3322 		init_ring(dev);
3323 		disable_irq(dev->irq);
3324 		spin_lock_irq(&np->lock);
3325 		np->hands_off = 0;
3326 		init_registers(dev);
3327 		netif_device_attach(dev);
3328 		spin_unlock_irq(&np->lock);
3329 		enable_irq(dev->irq);
3330 
3331 		mod_timer(&np->timer, round_jiffies(jiffies + 1*HZ));
3332 	}
3333 	netif_device_attach(dev);
3334 out:
3335 	rtnl_unlock();
3336 	return ret;
3337 }
3338 
3339 #endif /* CONFIG_PM */
3340 
3341 static struct pci_driver natsemi_driver = {
3342 	.name		= DRV_NAME,
3343 	.id_table	= natsemi_pci_tbl,
3344 	.probe		= natsemi_probe1,
3345 	.remove		= __devexit_p(natsemi_remove1),
3346 #ifdef CONFIG_PM
3347 	.suspend	= natsemi_suspend,
3348 	.resume		= natsemi_resume,
3349 #endif
3350 };
3351 
3352 static int __init natsemi_init_mod (void)
3353 {
3354 /* when a module, this is printed whether or not devices are found in probe */
3355 #ifdef MODULE
3356 	printk(version);
3357 #endif
3358 
3359 	return pci_register_driver(&natsemi_driver);
3360 }
3361 
3362 static void __exit natsemi_exit_mod (void)
3363 {
3364 	pci_unregister_driver (&natsemi_driver);
3365 }
3366 
3367 module_init(natsemi_init_mod);
3368 module_exit(natsemi_exit_mod);
3369 
3370