1 /* natsemi.c: A Linux PCI Ethernet driver for the NatSemi DP8381x series. */
2 /*
3 	Written/copyright 1999-2001 by Donald Becker.
4 	Portions copyright (c) 2001,2002 Sun Microsystems (thockin@sun.com)
5 	Portions copyright 2001,2002 Manfred Spraul (manfred@colorfullife.com)
6 	Portions copyright 2004 Harald Welte <laforge@gnumonks.org>
7 
8 	This software may be used and distributed according to the terms of
9 	the GNU General Public License (GPL), incorporated herein by reference.
10 	Drivers based on or derived from this code fall under the GPL and must
11 	retain the authorship, copyright and license notice.  This file is not
12 	a complete program and may only be used when the entire operating
13 	system is licensed under the GPL.  License for under other terms may be
14 	available.  Contact the original author for details.
15 
16 	The original author may be reached as becker@scyld.com, or at
17 	Scyld Computing Corporation
18 	410 Severn Ave., Suite 210
19 	Annapolis MD 21403
20 
21 	Support information and updates available at
22 	http://www.scyld.com/network/netsemi.html
23 	[link no longer provides useful info -jgarzik]
24 
25 
26 	TODO:
27 	* big endian support with CFG:BEM instead of cpu_to_le32
28 */
29 
30 #include <linux/module.h>
31 #include <linux/kernel.h>
32 #include <linux/string.h>
33 #include <linux/timer.h>
34 #include <linux/errno.h>
35 #include <linux/ioport.h>
36 #include <linux/slab.h>
37 #include <linux/interrupt.h>
38 #include <linux/pci.h>
39 #include <linux/netdevice.h>
40 #include <linux/etherdevice.h>
41 #include <linux/skbuff.h>
42 #include <linux/init.h>
43 #include <linux/spinlock.h>
44 #include <linux/ethtool.h>
45 #include <linux/delay.h>
46 #include <linux/rtnetlink.h>
47 #include <linux/mii.h>
48 #include <linux/crc32.h>
49 #include <linux/bitops.h>
50 #include <linux/prefetch.h>
51 #include <asm/processor.h>	/* Processor type for cache alignment. */
52 #include <asm/io.h>
53 #include <asm/irq.h>
54 #include <asm/uaccess.h>
55 
56 #define DRV_NAME	"natsemi"
57 #define DRV_VERSION	"2.1"
58 #define DRV_RELDATE	"Sept 11, 2006"
59 
60 #define RX_OFFSET	2
61 
62 /* Updated to recommendations in pci-skeleton v2.03. */
63 
64 /* The user-configurable values.
65    These may be modified when a driver module is loaded.*/
66 
67 #define NATSEMI_DEF_MSG		(NETIF_MSG_DRV		| \
68 				 NETIF_MSG_LINK		| \
69 				 NETIF_MSG_WOL		| \
70 				 NETIF_MSG_RX_ERR	| \
71 				 NETIF_MSG_TX_ERR)
72 static int debug = -1;
73 
74 static int mtu;
75 
76 /* Maximum number of multicast addresses to filter (vs. rx-all-multicast).
77    This chip uses a 512 element hash table based on the Ethernet CRC.  */
78 static const int multicast_filter_limit = 100;
79 
80 /* Set the copy breakpoint for the copy-only-tiny-frames scheme.
81    Setting to > 1518 effectively disables this feature. */
82 static int rx_copybreak;
83 
84 static int dspcfg_workaround = 1;
85 
86 /* Used to pass the media type, etc.
87    Both 'options[]' and 'full_duplex[]' should exist for driver
88    interoperability.
89    The media type is usually passed in 'options[]'.
90 */
91 #define MAX_UNITS 8		/* More are supported, limit only on options */
92 static int options[MAX_UNITS];
93 static int full_duplex[MAX_UNITS];
94 
95 /* Operational parameters that are set at compile time. */
96 
97 /* Keep the ring sizes a power of two for compile efficiency.
98    The compiler will convert <unsigned>'%'<2^N> into a bit mask.
99    Making the Tx ring too large decreases the effectiveness of channel
100    bonding and packet priority.
101    There are no ill effects from too-large receive rings. */
102 #define TX_RING_SIZE	16
103 #define TX_QUEUE_LEN	10 /* Limit ring entries actually used, min 4. */
104 #define RX_RING_SIZE	32
105 
106 /* Operational parameters that usually are not changed. */
107 /* Time in jiffies before concluding the transmitter is hung. */
108 #define TX_TIMEOUT  (2*HZ)
109 
110 #define NATSEMI_HW_TIMEOUT	400
111 #define NATSEMI_TIMER_FREQ	5*HZ
112 #define NATSEMI_PG0_NREGS	64
113 #define NATSEMI_RFDR_NREGS	8
114 #define NATSEMI_PG1_NREGS	4
115 #define NATSEMI_NREGS		(NATSEMI_PG0_NREGS + NATSEMI_RFDR_NREGS + \
116 				 NATSEMI_PG1_NREGS)
117 #define NATSEMI_REGS_VER	1 /* v1 added RFDR registers */
118 #define NATSEMI_REGS_SIZE	(NATSEMI_NREGS * sizeof(u32))
119 
120 /* Buffer sizes:
121  * The nic writes 32-bit values, even if the upper bytes of
122  * a 32-bit value are beyond the end of the buffer.
123  */
124 #define NATSEMI_HEADERS		22	/* 2*mac,type,vlan,crc */
125 #define NATSEMI_PADDING		16	/* 2 bytes should be sufficient */
126 #define NATSEMI_LONGPKT		1518	/* limit for normal packets */
127 #define NATSEMI_RX_LIMIT	2046	/* maximum supported by hardware */
128 
129 /* These identify the driver base version and may not be removed. */
130 static const char version[] =
131   KERN_INFO DRV_NAME " dp8381x driver, version "
132       DRV_VERSION ", " DRV_RELDATE "\n"
133   "  originally by Donald Becker <becker@scyld.com>\n"
134   "  2.4.x kernel port by Jeff Garzik, Tjeerd Mulder\n";
135 
136 MODULE_AUTHOR("Donald Becker <becker@scyld.com>");
137 MODULE_DESCRIPTION("National Semiconductor DP8381x series PCI Ethernet driver");
138 MODULE_LICENSE("GPL");
139 
140 module_param(mtu, int, 0);
141 module_param(debug, int, 0);
142 module_param(rx_copybreak, int, 0);
143 module_param(dspcfg_workaround, int, 0);
144 module_param_array(options, int, NULL, 0);
145 module_param_array(full_duplex, int, NULL, 0);
146 MODULE_PARM_DESC(mtu, "DP8381x MTU (all boards)");
147 MODULE_PARM_DESC(debug, "DP8381x default debug level");
148 MODULE_PARM_DESC(rx_copybreak,
149 	"DP8381x copy breakpoint for copy-only-tiny-frames");
150 MODULE_PARM_DESC(dspcfg_workaround, "DP8381x: control DspCfg workaround");
151 MODULE_PARM_DESC(options,
152 	"DP8381x: Bits 0-3: media type, bit 17: full duplex");
153 MODULE_PARM_DESC(full_duplex, "DP8381x full duplex setting(s) (1)");
154 
155 /*
156 				Theory of Operation
157 
158 I. Board Compatibility
159 
160 This driver is designed for National Semiconductor DP83815 PCI Ethernet NIC.
161 It also works with other chips in in the DP83810 series.
162 
163 II. Board-specific settings
164 
165 This driver requires the PCI interrupt line to be valid.
166 It honors the EEPROM-set values.
167 
168 III. Driver operation
169 
170 IIIa. Ring buffers
171 
172 This driver uses two statically allocated fixed-size descriptor lists
173 formed into rings by a branch from the final descriptor to the beginning of
174 the list.  The ring sizes are set at compile time by RX/TX_RING_SIZE.
175 The NatSemi design uses a 'next descriptor' pointer that the driver forms
176 into a list.
177 
178 IIIb/c. Transmit/Receive Structure
179 
180 This driver uses a zero-copy receive and transmit scheme.
181 The driver allocates full frame size skbuffs for the Rx ring buffers at
182 open() time and passes the skb->data field to the chip as receive data
183 buffers.  When an incoming frame is less than RX_COPYBREAK bytes long,
184 a fresh skbuff is allocated and the frame is copied to the new skbuff.
185 When the incoming frame is larger, the skbuff is passed directly up the
186 protocol stack.  Buffers consumed this way are replaced by newly allocated
187 skbuffs in a later phase of receives.
188 
189 The RX_COPYBREAK value is chosen to trade-off the memory wasted by
190 using a full-sized skbuff for small frames vs. the copying costs of larger
191 frames.  New boards are typically used in generously configured machines
192 and the underfilled buffers have negligible impact compared to the benefit of
193 a single allocation size, so the default value of zero results in never
194 copying packets.  When copying is done, the cost is usually mitigated by using
195 a combined copy/checksum routine.  Copying also preloads the cache, which is
196 most useful with small frames.
197 
198 A subtle aspect of the operation is that unaligned buffers are not permitted
199 by the hardware.  Thus the IP header at offset 14 in an ethernet frame isn't
200 longword aligned for further processing.  On copies frames are put into the
201 skbuff at an offset of "+2", 16-byte aligning the IP header.
202 
203 IIId. Synchronization
204 
205 Most operations are synchronized on the np->lock irq spinlock, except the
206 receive and transmit paths which are synchronised using a combination of
207 hardware descriptor ownership, disabling interrupts and NAPI poll scheduling.
208 
209 IVb. References
210 
211 http://www.scyld.com/expert/100mbps.html
212 http://www.scyld.com/expert/NWay.html
213 Datasheet is available from:
214 http://www.national.com/pf/DP/DP83815.html
215 
216 IVc. Errata
217 
218 None characterised.
219 */
220 
221 
222 
223 /*
224  * Support for fibre connections on Am79C874:
225  * This phy needs a special setup when connected to a fibre cable.
226  * http://www.amd.com/files/connectivitysolutions/networking/archivednetworking/22235.pdf
227  */
228 #define PHYID_AM79C874	0x0022561b
229 
230 enum {
231 	MII_MCTRL	= 0x15,		/* mode control register */
232 	MII_FX_SEL	= 0x0001,	/* 100BASE-FX (fiber) */
233 	MII_EN_SCRM	= 0x0004,	/* enable scrambler (tp) */
234 };
235 
236 enum {
237 	NATSEMI_FLAG_IGNORE_PHY		= 0x1,
238 };
239 
240 /* array of board data directly indexed by pci_tbl[x].driver_data */
241 static struct {
242 	const char *name;
243 	unsigned long flags;
244 	unsigned int eeprom_size;
245 } natsemi_pci_info[] = {
246 	{ "Aculab E1/T1 PMXc cPCI carrier card", NATSEMI_FLAG_IGNORE_PHY, 128 },
247 	{ "NatSemi DP8381[56]", 0, 24 },
248 };
249 
250 static DEFINE_PCI_DEVICE_TABLE(natsemi_pci_tbl) = {
251 	{ PCI_VENDOR_ID_NS, 0x0020, 0x12d9,     0x000c,     0, 0, 0 },
252 	{ PCI_VENDOR_ID_NS, 0x0020, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 1 },
253 	{ }	/* terminate list */
254 };
255 MODULE_DEVICE_TABLE(pci, natsemi_pci_tbl);
256 
257 /* Offsets to the device registers.
258    Unlike software-only systems, device drivers interact with complex hardware.
259    It's not useful to define symbolic names for every register bit in the
260    device.
261 */
262 enum register_offsets {
263 	ChipCmd			= 0x00,
264 	ChipConfig		= 0x04,
265 	EECtrl			= 0x08,
266 	PCIBusCfg		= 0x0C,
267 	IntrStatus		= 0x10,
268 	IntrMask		= 0x14,
269 	IntrEnable		= 0x18,
270 	IntrHoldoff		= 0x1C, /* DP83816 only */
271 	TxRingPtr		= 0x20,
272 	TxConfig		= 0x24,
273 	RxRingPtr		= 0x30,
274 	RxConfig		= 0x34,
275 	ClkRun			= 0x3C,
276 	WOLCmd			= 0x40,
277 	PauseCmd		= 0x44,
278 	RxFilterAddr		= 0x48,
279 	RxFilterData		= 0x4C,
280 	BootRomAddr		= 0x50,
281 	BootRomData		= 0x54,
282 	SiliconRev		= 0x58,
283 	StatsCtrl		= 0x5C,
284 	StatsData		= 0x60,
285 	RxPktErrs		= 0x60,
286 	RxMissed		= 0x68,
287 	RxCRCErrs		= 0x64,
288 	BasicControl		= 0x80,
289 	BasicStatus		= 0x84,
290 	AnegAdv			= 0x90,
291 	AnegPeer		= 0x94,
292 	PhyStatus		= 0xC0,
293 	MIntrCtrl		= 0xC4,
294 	MIntrStatus		= 0xC8,
295 	PhyCtrl			= 0xE4,
296 
297 	/* These are from the spec, around page 78... on a separate table.
298 	 * The meaning of these registers depend on the value of PGSEL. */
299 	PGSEL			= 0xCC,
300 	PMDCSR			= 0xE4,
301 	TSTDAT			= 0xFC,
302 	DSPCFG			= 0xF4,
303 	SDCFG			= 0xF8
304 };
305 /* the values for the 'magic' registers above (PGSEL=1) */
306 #define PMDCSR_VAL	0x189c	/* enable preferred adaptation circuitry */
307 #define TSTDAT_VAL	0x0
308 #define DSPCFG_VAL	0x5040
309 #define SDCFG_VAL	0x008c	/* set voltage thresholds for Signal Detect */
310 #define DSPCFG_LOCK	0x20	/* coefficient lock bit in DSPCFG */
311 #define DSPCFG_COEF	0x1000	/* see coefficient (in TSTDAT) bit in DSPCFG */
312 #define TSTDAT_FIXED	0xe8	/* magic number for bad coefficients */
313 
314 /* misc PCI space registers */
315 enum pci_register_offsets {
316 	PCIPM			= 0x44,
317 };
318 
319 enum ChipCmd_bits {
320 	ChipReset		= 0x100,
321 	RxReset			= 0x20,
322 	TxReset			= 0x10,
323 	RxOff			= 0x08,
324 	RxOn			= 0x04,
325 	TxOff			= 0x02,
326 	TxOn			= 0x01,
327 };
328 
329 enum ChipConfig_bits {
330 	CfgPhyDis		= 0x200,
331 	CfgPhyRst		= 0x400,
332 	CfgExtPhy		= 0x1000,
333 	CfgAnegEnable		= 0x2000,
334 	CfgAneg100		= 0x4000,
335 	CfgAnegFull		= 0x8000,
336 	CfgAnegDone		= 0x8000000,
337 	CfgFullDuplex		= 0x20000000,
338 	CfgSpeed100		= 0x40000000,
339 	CfgLink			= 0x80000000,
340 };
341 
342 enum EECtrl_bits {
343 	EE_ShiftClk		= 0x04,
344 	EE_DataIn		= 0x01,
345 	EE_ChipSelect		= 0x08,
346 	EE_DataOut		= 0x02,
347 	MII_Data 		= 0x10,
348 	MII_Write		= 0x20,
349 	MII_ShiftClk		= 0x40,
350 };
351 
352 enum PCIBusCfg_bits {
353 	EepromReload		= 0x4,
354 };
355 
356 /* Bits in the interrupt status/mask registers. */
357 enum IntrStatus_bits {
358 	IntrRxDone		= 0x0001,
359 	IntrRxIntr		= 0x0002,
360 	IntrRxErr		= 0x0004,
361 	IntrRxEarly		= 0x0008,
362 	IntrRxIdle		= 0x0010,
363 	IntrRxOverrun		= 0x0020,
364 	IntrTxDone		= 0x0040,
365 	IntrTxIntr		= 0x0080,
366 	IntrTxErr		= 0x0100,
367 	IntrTxIdle		= 0x0200,
368 	IntrTxUnderrun		= 0x0400,
369 	StatsMax		= 0x0800,
370 	SWInt			= 0x1000,
371 	WOLPkt			= 0x2000,
372 	LinkChange		= 0x4000,
373 	IntrHighBits		= 0x8000,
374 	RxStatusFIFOOver	= 0x10000,
375 	IntrPCIErr		= 0xf00000,
376 	RxResetDone		= 0x1000000,
377 	TxResetDone		= 0x2000000,
378 	IntrAbnormalSummary	= 0xCD20,
379 };
380 
381 /*
382  * Default Interrupts:
383  * Rx OK, Rx Packet Error, Rx Overrun,
384  * Tx OK, Tx Packet Error, Tx Underrun,
385  * MIB Service, Phy Interrupt, High Bits,
386  * Rx Status FIFO overrun,
387  * Received Target Abort, Received Master Abort,
388  * Signalled System Error, Received Parity Error
389  */
390 #define DEFAULT_INTR 0x00f1cd65
391 
392 enum TxConfig_bits {
393 	TxDrthMask		= 0x3f,
394 	TxFlthMask		= 0x3f00,
395 	TxMxdmaMask		= 0x700000,
396 	TxMxdma_512		= 0x0,
397 	TxMxdma_4		= 0x100000,
398 	TxMxdma_8		= 0x200000,
399 	TxMxdma_16		= 0x300000,
400 	TxMxdma_32		= 0x400000,
401 	TxMxdma_64		= 0x500000,
402 	TxMxdma_128		= 0x600000,
403 	TxMxdma_256		= 0x700000,
404 	TxCollRetry		= 0x800000,
405 	TxAutoPad		= 0x10000000,
406 	TxMacLoop		= 0x20000000,
407 	TxHeartIgn		= 0x40000000,
408 	TxCarrierIgn		= 0x80000000
409 };
410 
411 /*
412  * Tx Configuration:
413  * - 256 byte DMA burst length
414  * - fill threshold 512 bytes (i.e. restart DMA when 512 bytes are free)
415  * - 64 bytes initial drain threshold (i.e. begin actual transmission
416  *   when 64 byte are in the fifo)
417  * - on tx underruns, increase drain threshold by 64.
418  * - at most use a drain threshold of 1472 bytes: The sum of the fill
419  *   threshold and the drain threshold must be less than 2016 bytes.
420  *
421  */
422 #define TX_FLTH_VAL		((512/32) << 8)
423 #define TX_DRTH_VAL_START	(64/32)
424 #define TX_DRTH_VAL_INC		2
425 #define TX_DRTH_VAL_LIMIT	(1472/32)
426 
427 enum RxConfig_bits {
428 	RxDrthMask		= 0x3e,
429 	RxMxdmaMask		= 0x700000,
430 	RxMxdma_512		= 0x0,
431 	RxMxdma_4		= 0x100000,
432 	RxMxdma_8		= 0x200000,
433 	RxMxdma_16		= 0x300000,
434 	RxMxdma_32		= 0x400000,
435 	RxMxdma_64		= 0x500000,
436 	RxMxdma_128		= 0x600000,
437 	RxMxdma_256		= 0x700000,
438 	RxAcceptLong		= 0x8000000,
439 	RxAcceptTx		= 0x10000000,
440 	RxAcceptRunt		= 0x40000000,
441 	RxAcceptErr		= 0x80000000
442 };
443 #define RX_DRTH_VAL		(128/8)
444 
445 enum ClkRun_bits {
446 	PMEEnable		= 0x100,
447 	PMEStatus		= 0x8000,
448 };
449 
450 enum WolCmd_bits {
451 	WakePhy			= 0x1,
452 	WakeUnicast		= 0x2,
453 	WakeMulticast		= 0x4,
454 	WakeBroadcast		= 0x8,
455 	WakeArp			= 0x10,
456 	WakePMatch0		= 0x20,
457 	WakePMatch1		= 0x40,
458 	WakePMatch2		= 0x80,
459 	WakePMatch3		= 0x100,
460 	WakeMagic		= 0x200,
461 	WakeMagicSecure		= 0x400,
462 	SecureHack		= 0x100000,
463 	WokePhy			= 0x400000,
464 	WokeUnicast		= 0x800000,
465 	WokeMulticast		= 0x1000000,
466 	WokeBroadcast		= 0x2000000,
467 	WokeArp			= 0x4000000,
468 	WokePMatch0		= 0x8000000,
469 	WokePMatch1		= 0x10000000,
470 	WokePMatch2		= 0x20000000,
471 	WokePMatch3		= 0x40000000,
472 	WokeMagic		= 0x80000000,
473 	WakeOptsSummary		= 0x7ff
474 };
475 
476 enum RxFilterAddr_bits {
477 	RFCRAddressMask		= 0x3ff,
478 	AcceptMulticast		= 0x00200000,
479 	AcceptMyPhys		= 0x08000000,
480 	AcceptAllPhys		= 0x10000000,
481 	AcceptAllMulticast	= 0x20000000,
482 	AcceptBroadcast		= 0x40000000,
483 	RxFilterEnable		= 0x80000000
484 };
485 
486 enum StatsCtrl_bits {
487 	StatsWarn		= 0x1,
488 	StatsFreeze		= 0x2,
489 	StatsClear		= 0x4,
490 	StatsStrobe		= 0x8,
491 };
492 
493 enum MIntrCtrl_bits {
494 	MICRIntEn		= 0x2,
495 };
496 
497 enum PhyCtrl_bits {
498 	PhyAddrMask		= 0x1f,
499 };
500 
501 #define PHY_ADDR_NONE		32
502 #define PHY_ADDR_INTERNAL	1
503 
504 /* values we might find in the silicon revision register */
505 #define SRR_DP83815_C	0x0302
506 #define SRR_DP83815_D	0x0403
507 #define SRR_DP83816_A4	0x0504
508 #define SRR_DP83816_A5	0x0505
509 
510 /* The Rx and Tx buffer descriptors. */
511 /* Note that using only 32 bit fields simplifies conversion to big-endian
512    architectures. */
513 struct netdev_desc {
514 	__le32 next_desc;
515 	__le32 cmd_status;
516 	__le32 addr;
517 	__le32 software_use;
518 };
519 
520 /* Bits in network_desc.status */
521 enum desc_status_bits {
522 	DescOwn=0x80000000, DescMore=0x40000000, DescIntr=0x20000000,
523 	DescNoCRC=0x10000000, DescPktOK=0x08000000,
524 	DescSizeMask=0xfff,
525 
526 	DescTxAbort=0x04000000, DescTxFIFO=0x02000000,
527 	DescTxCarrier=0x01000000, DescTxDefer=0x00800000,
528 	DescTxExcDefer=0x00400000, DescTxOOWCol=0x00200000,
529 	DescTxExcColl=0x00100000, DescTxCollCount=0x000f0000,
530 
531 	DescRxAbort=0x04000000, DescRxOver=0x02000000,
532 	DescRxDest=0x01800000, DescRxLong=0x00400000,
533 	DescRxRunt=0x00200000, DescRxInvalid=0x00100000,
534 	DescRxCRC=0x00080000, DescRxAlign=0x00040000,
535 	DescRxLoop=0x00020000, DesRxColl=0x00010000,
536 };
537 
538 struct netdev_private {
539 	/* Descriptor rings first for alignment */
540 	dma_addr_t ring_dma;
541 	struct netdev_desc *rx_ring;
542 	struct netdev_desc *tx_ring;
543 	/* The addresses of receive-in-place skbuffs */
544 	struct sk_buff *rx_skbuff[RX_RING_SIZE];
545 	dma_addr_t rx_dma[RX_RING_SIZE];
546 	/* address of a sent-in-place packet/buffer, for later free() */
547 	struct sk_buff *tx_skbuff[TX_RING_SIZE];
548 	dma_addr_t tx_dma[TX_RING_SIZE];
549 	struct net_device *dev;
550 	void __iomem *ioaddr;
551 	struct napi_struct napi;
552 	/* Media monitoring timer */
553 	struct timer_list timer;
554 	/* Frequently used values: keep some adjacent for cache effect */
555 	struct pci_dev *pci_dev;
556 	struct netdev_desc *rx_head_desc;
557 	/* Producer/consumer ring indices */
558 	unsigned int cur_rx, dirty_rx;
559 	unsigned int cur_tx, dirty_tx;
560 	/* Based on MTU+slack. */
561 	unsigned int rx_buf_sz;
562 	int oom;
563 	/* Interrupt status */
564 	u32 intr_status;
565 	/* Do not touch the nic registers */
566 	int hands_off;
567 	/* Don't pay attention to the reported link state. */
568 	int ignore_phy;
569 	/* external phy that is used: only valid if dev->if_port != PORT_TP */
570 	int mii;
571 	int phy_addr_external;
572 	unsigned int full_duplex;
573 	/* Rx filter */
574 	u32 cur_rx_mode;
575 	u32 rx_filter[16];
576 	/* FIFO and PCI burst thresholds */
577 	u32 tx_config, rx_config;
578 	/* original contents of ClkRun register */
579 	u32 SavedClkRun;
580 	/* silicon revision */
581 	u32 srr;
582 	/* expected DSPCFG value */
583 	u16 dspcfg;
584 	int dspcfg_workaround;
585 	/* parms saved in ethtool format */
586 	u16	speed;		/* The forced speed, 10Mb, 100Mb, gigabit */
587 	u8	duplex;		/* Duplex, half or full */
588 	u8	autoneg;	/* Autonegotiation enabled */
589 	/* MII transceiver section */
590 	u16 advertising;
591 	unsigned int iosize;
592 	spinlock_t lock;
593 	u32 msg_enable;
594 	/* EEPROM data */
595 	int eeprom_size;
596 };
597 
598 static void move_int_phy(struct net_device *dev, int addr);
599 static int eeprom_read(void __iomem *ioaddr, int location);
600 static int mdio_read(struct net_device *dev, int reg);
601 static void mdio_write(struct net_device *dev, int reg, u16 data);
602 static void init_phy_fixup(struct net_device *dev);
603 static int miiport_read(struct net_device *dev, int phy_id, int reg);
604 static void miiport_write(struct net_device *dev, int phy_id, int reg, u16 data);
605 static int find_mii(struct net_device *dev);
606 static void natsemi_reset(struct net_device *dev);
607 static void natsemi_reload_eeprom(struct net_device *dev);
608 static void natsemi_stop_rxtx(struct net_device *dev);
609 static int netdev_open(struct net_device *dev);
610 static void do_cable_magic(struct net_device *dev);
611 static void undo_cable_magic(struct net_device *dev);
612 static void check_link(struct net_device *dev);
613 static void netdev_timer(unsigned long data);
614 static void dump_ring(struct net_device *dev);
615 static void ns_tx_timeout(struct net_device *dev);
616 static int alloc_ring(struct net_device *dev);
617 static void refill_rx(struct net_device *dev);
618 static void init_ring(struct net_device *dev);
619 static void drain_tx(struct net_device *dev);
620 static void drain_ring(struct net_device *dev);
621 static void free_ring(struct net_device *dev);
622 static void reinit_ring(struct net_device *dev);
623 static void init_registers(struct net_device *dev);
624 static netdev_tx_t start_tx(struct sk_buff *skb, struct net_device *dev);
625 static irqreturn_t intr_handler(int irq, void *dev_instance);
626 static void netdev_error(struct net_device *dev, int intr_status);
627 static int natsemi_poll(struct napi_struct *napi, int budget);
628 static void netdev_rx(struct net_device *dev, int *work_done, int work_to_do);
629 static void netdev_tx_done(struct net_device *dev);
630 static int natsemi_change_mtu(struct net_device *dev, int new_mtu);
631 #ifdef CONFIG_NET_POLL_CONTROLLER
632 static void natsemi_poll_controller(struct net_device *dev);
633 #endif
634 static void __set_rx_mode(struct net_device *dev);
635 static void set_rx_mode(struct net_device *dev);
636 static void __get_stats(struct net_device *dev);
637 static struct net_device_stats *get_stats(struct net_device *dev);
638 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
639 static int netdev_set_wol(struct net_device *dev, u32 newval);
640 static int netdev_get_wol(struct net_device *dev, u32 *supported, u32 *cur);
641 static int netdev_set_sopass(struct net_device *dev, u8 *newval);
642 static int netdev_get_sopass(struct net_device *dev, u8 *data);
643 static int netdev_get_ecmd(struct net_device *dev, struct ethtool_cmd *ecmd);
644 static int netdev_set_ecmd(struct net_device *dev, struct ethtool_cmd *ecmd);
645 static void enable_wol_mode(struct net_device *dev, int enable_intr);
646 static int netdev_close(struct net_device *dev);
647 static int netdev_get_regs(struct net_device *dev, u8 *buf);
648 static int netdev_get_eeprom(struct net_device *dev, u8 *buf);
649 static const struct ethtool_ops ethtool_ops;
650 
651 #define NATSEMI_ATTR(_name) \
652 static ssize_t natsemi_show_##_name(struct device *dev, \
653          struct device_attribute *attr, char *buf); \
654 	 static ssize_t natsemi_set_##_name(struct device *dev, \
655 		struct device_attribute *attr, \
656 	        const char *buf, size_t count); \
657 	 static DEVICE_ATTR(_name, 0644, natsemi_show_##_name, natsemi_set_##_name)
658 
659 #define NATSEMI_CREATE_FILE(_dev, _name) \
660          device_create_file(&_dev->dev, &dev_attr_##_name)
661 #define NATSEMI_REMOVE_FILE(_dev, _name) \
662          device_remove_file(&_dev->dev, &dev_attr_##_name)
663 
664 NATSEMI_ATTR(dspcfg_workaround);
665 
666 static ssize_t natsemi_show_dspcfg_workaround(struct device *dev,
667 				  	      struct device_attribute *attr,
668 					      char *buf)
669 {
670 	struct netdev_private *np = netdev_priv(to_net_dev(dev));
671 
672 	return sprintf(buf, "%s\n", np->dspcfg_workaround ? "on" : "off");
673 }
674 
675 static ssize_t natsemi_set_dspcfg_workaround(struct device *dev,
676 					     struct device_attribute *attr,
677 					     const char *buf, size_t count)
678 {
679 	struct netdev_private *np = netdev_priv(to_net_dev(dev));
680 	int new_setting;
681 	unsigned long flags;
682 
683         /* Find out the new setting */
684         if (!strncmp("on", buf, count - 1) || !strncmp("1", buf, count - 1))
685                 new_setting = 1;
686         else if (!strncmp("off", buf, count - 1) ||
687                  !strncmp("0", buf, count - 1))
688 		new_setting = 0;
689 	else
690                  return count;
691 
692 	spin_lock_irqsave(&np->lock, flags);
693 
694 	np->dspcfg_workaround = new_setting;
695 
696 	spin_unlock_irqrestore(&np->lock, flags);
697 
698 	return count;
699 }
700 
701 static inline void __iomem *ns_ioaddr(struct net_device *dev)
702 {
703 	struct netdev_private *np = netdev_priv(dev);
704 
705 	return np->ioaddr;
706 }
707 
708 static inline void natsemi_irq_enable(struct net_device *dev)
709 {
710 	writel(1, ns_ioaddr(dev) + IntrEnable);
711 	readl(ns_ioaddr(dev) + IntrEnable);
712 }
713 
714 static inline void natsemi_irq_disable(struct net_device *dev)
715 {
716 	writel(0, ns_ioaddr(dev) + IntrEnable);
717 	readl(ns_ioaddr(dev) + IntrEnable);
718 }
719 
720 static void move_int_phy(struct net_device *dev, int addr)
721 {
722 	struct netdev_private *np = netdev_priv(dev);
723 	void __iomem *ioaddr = ns_ioaddr(dev);
724 	int target = 31;
725 
726 	/*
727 	 * The internal phy is visible on the external mii bus. Therefore we must
728 	 * move it away before we can send commands to an external phy.
729 	 * There are two addresses we must avoid:
730 	 * - the address on the external phy that is used for transmission.
731 	 * - the address that we want to access. User space can access phys
732 	 *   on the mii bus with SIOCGMIIREG/SIOCSMIIREG, independent from the
733 	 *   phy that is used for transmission.
734 	 */
735 
736 	if (target == addr)
737 		target--;
738 	if (target == np->phy_addr_external)
739 		target--;
740 	writew(target, ioaddr + PhyCtrl);
741 	readw(ioaddr + PhyCtrl);
742 	udelay(1);
743 }
744 
745 static void natsemi_init_media(struct net_device *dev)
746 {
747 	struct netdev_private *np = netdev_priv(dev);
748 	u32 tmp;
749 
750 	if (np->ignore_phy)
751 		netif_carrier_on(dev);
752 	else
753 		netif_carrier_off(dev);
754 
755 	/* get the initial settings from hardware */
756 	tmp            = mdio_read(dev, MII_BMCR);
757 	np->speed      = (tmp & BMCR_SPEED100)? SPEED_100     : SPEED_10;
758 	np->duplex     = (tmp & BMCR_FULLDPLX)? DUPLEX_FULL   : DUPLEX_HALF;
759 	np->autoneg    = (tmp & BMCR_ANENABLE)? AUTONEG_ENABLE: AUTONEG_DISABLE;
760 	np->advertising= mdio_read(dev, MII_ADVERTISE);
761 
762 	if ((np->advertising & ADVERTISE_ALL) != ADVERTISE_ALL &&
763 	    netif_msg_probe(np)) {
764 		printk(KERN_INFO "natsemi %s: Transceiver default autonegotiation %s "
765 			"10%s %s duplex.\n",
766 			pci_name(np->pci_dev),
767 			(mdio_read(dev, MII_BMCR) & BMCR_ANENABLE)?
768 			  "enabled, advertise" : "disabled, force",
769 			(np->advertising &
770 			  (ADVERTISE_100FULL|ADVERTISE_100HALF))?
771 			    "0" : "",
772 			(np->advertising &
773 			  (ADVERTISE_100FULL|ADVERTISE_10FULL))?
774 			    "full" : "half");
775 	}
776 	if (netif_msg_probe(np))
777 		printk(KERN_INFO
778 			"natsemi %s: Transceiver status %#04x advertising %#04x.\n",
779 			pci_name(np->pci_dev), mdio_read(dev, MII_BMSR),
780 			np->advertising);
781 
782 }
783 
784 static const struct net_device_ops natsemi_netdev_ops = {
785 	.ndo_open		= netdev_open,
786 	.ndo_stop		= netdev_close,
787 	.ndo_start_xmit		= start_tx,
788 	.ndo_get_stats		= get_stats,
789 	.ndo_set_rx_mode	= set_rx_mode,
790 	.ndo_change_mtu		= natsemi_change_mtu,
791 	.ndo_do_ioctl		= netdev_ioctl,
792 	.ndo_tx_timeout 	= ns_tx_timeout,
793 	.ndo_set_mac_address 	= eth_mac_addr,
794 	.ndo_validate_addr	= eth_validate_addr,
795 #ifdef CONFIG_NET_POLL_CONTROLLER
796 	.ndo_poll_controller	= natsemi_poll_controller,
797 #endif
798 };
799 
800 static int natsemi_probe1(struct pci_dev *pdev, const struct pci_device_id *ent)
801 {
802 	struct net_device *dev;
803 	struct netdev_private *np;
804 	int i, option, irq, chip_idx = ent->driver_data;
805 	static int find_cnt = -1;
806 	resource_size_t iostart;
807 	unsigned long iosize;
808 	void __iomem *ioaddr;
809 	const int pcibar = 1; /* PCI base address register */
810 	int prev_eedata;
811 	u32 tmp;
812 
813 /* when built into the kernel, we only print version if device is found */
814 #ifndef MODULE
815 	static int printed_version;
816 	if (!printed_version++)
817 		printk(version);
818 #endif
819 
820 	i = pci_enable_device(pdev);
821 	if (i) return i;
822 
823 	/* natsemi has a non-standard PM control register
824 	 * in PCI config space.  Some boards apparently need
825 	 * to be brought to D0 in this manner.
826 	 */
827 	pci_read_config_dword(pdev, PCIPM, &tmp);
828 	if (tmp & PCI_PM_CTRL_STATE_MASK) {
829 		/* D0 state, disable PME assertion */
830 		u32 newtmp = tmp & ~PCI_PM_CTRL_STATE_MASK;
831 		pci_write_config_dword(pdev, PCIPM, newtmp);
832 	}
833 
834 	find_cnt++;
835 	iostart = pci_resource_start(pdev, pcibar);
836 	iosize = pci_resource_len(pdev, pcibar);
837 	irq = pdev->irq;
838 
839 	pci_set_master(pdev);
840 
841 	dev = alloc_etherdev(sizeof (struct netdev_private));
842 	if (!dev)
843 		return -ENOMEM;
844 	SET_NETDEV_DEV(dev, &pdev->dev);
845 
846 	i = pci_request_regions(pdev, DRV_NAME);
847 	if (i)
848 		goto err_pci_request_regions;
849 
850 	ioaddr = ioremap(iostart, iosize);
851 	if (!ioaddr) {
852 		i = -ENOMEM;
853 		goto err_ioremap;
854 	}
855 
856 	/* Work around the dropped serial bit. */
857 	prev_eedata = eeprom_read(ioaddr, 6);
858 	for (i = 0; i < 3; i++) {
859 		int eedata = eeprom_read(ioaddr, i + 7);
860 		dev->dev_addr[i*2] = (eedata << 1) + (prev_eedata >> 15);
861 		dev->dev_addr[i*2+1] = eedata >> 7;
862 		prev_eedata = eedata;
863 	}
864 
865 	np = netdev_priv(dev);
866 	np->ioaddr = ioaddr;
867 
868 	netif_napi_add(dev, &np->napi, natsemi_poll, 64);
869 	np->dev = dev;
870 
871 	np->pci_dev = pdev;
872 	pci_set_drvdata(pdev, dev);
873 	np->iosize = iosize;
874 	spin_lock_init(&np->lock);
875 	np->msg_enable = (debug >= 0) ? (1<<debug)-1 : NATSEMI_DEF_MSG;
876 	np->hands_off = 0;
877 	np->intr_status = 0;
878 	np->eeprom_size = natsemi_pci_info[chip_idx].eeprom_size;
879 	if (natsemi_pci_info[chip_idx].flags & NATSEMI_FLAG_IGNORE_PHY)
880 		np->ignore_phy = 1;
881 	else
882 		np->ignore_phy = 0;
883 	np->dspcfg_workaround = dspcfg_workaround;
884 
885 	/* Initial port:
886 	 * - If configured to ignore the PHY set up for external.
887 	 * - If the nic was configured to use an external phy and if find_mii
888 	 *   finds a phy: use external port, first phy that replies.
889 	 * - Otherwise: internal port.
890 	 * Note that the phy address for the internal phy doesn't matter:
891 	 * The address would be used to access a phy over the mii bus, but
892 	 * the internal phy is accessed through mapped registers.
893 	 */
894 	if (np->ignore_phy || readl(ioaddr + ChipConfig) & CfgExtPhy)
895 		dev->if_port = PORT_MII;
896 	else
897 		dev->if_port = PORT_TP;
898 	/* Reset the chip to erase previous misconfiguration. */
899 	natsemi_reload_eeprom(dev);
900 	natsemi_reset(dev);
901 
902 	if (dev->if_port != PORT_TP) {
903 		np->phy_addr_external = find_mii(dev);
904 		/* If we're ignoring the PHY it doesn't matter if we can't
905 		 * find one. */
906 		if (!np->ignore_phy && np->phy_addr_external == PHY_ADDR_NONE) {
907 			dev->if_port = PORT_TP;
908 			np->phy_addr_external = PHY_ADDR_INTERNAL;
909 		}
910 	} else {
911 		np->phy_addr_external = PHY_ADDR_INTERNAL;
912 	}
913 
914 	option = find_cnt < MAX_UNITS ? options[find_cnt] : 0;
915 	/* The lower four bits are the media type. */
916 	if (option) {
917 		if (option & 0x200)
918 			np->full_duplex = 1;
919 		if (option & 15)
920 			printk(KERN_INFO
921 				"natsemi %s: ignoring user supplied media type %d",
922 				pci_name(np->pci_dev), option & 15);
923 	}
924 	if (find_cnt < MAX_UNITS  &&  full_duplex[find_cnt])
925 		np->full_duplex = 1;
926 
927 	dev->netdev_ops = &natsemi_netdev_ops;
928 	dev->watchdog_timeo = TX_TIMEOUT;
929 
930 	SET_ETHTOOL_OPS(dev, &ethtool_ops);
931 
932 	if (mtu)
933 		dev->mtu = mtu;
934 
935 	natsemi_init_media(dev);
936 
937 	/* save the silicon revision for later querying */
938 	np->srr = readl(ioaddr + SiliconRev);
939 	if (netif_msg_hw(np))
940 		printk(KERN_INFO "natsemi %s: silicon revision %#04x.\n",
941 				pci_name(np->pci_dev), np->srr);
942 
943 	i = register_netdev(dev);
944 	if (i)
945 		goto err_register_netdev;
946 	i = NATSEMI_CREATE_FILE(pdev, dspcfg_workaround);
947 	if (i)
948 		goto err_create_file;
949 
950 	if (netif_msg_drv(np)) {
951 		printk(KERN_INFO "natsemi %s: %s at %#08llx "
952 		       "(%s), %pM, IRQ %d",
953 		       dev->name, natsemi_pci_info[chip_idx].name,
954 		       (unsigned long long)iostart, pci_name(np->pci_dev),
955 		       dev->dev_addr, irq);
956 		if (dev->if_port == PORT_TP)
957 			printk(", port TP.\n");
958 		else if (np->ignore_phy)
959 			printk(", port MII, ignoring PHY\n");
960 		else
961 			printk(", port MII, phy ad %d.\n", np->phy_addr_external);
962 	}
963 	return 0;
964 
965  err_create_file:
966  	unregister_netdev(dev);
967 
968  err_register_netdev:
969 	iounmap(ioaddr);
970 
971  err_ioremap:
972 	pci_release_regions(pdev);
973 	pci_set_drvdata(pdev, NULL);
974 
975  err_pci_request_regions:
976 	free_netdev(dev);
977 	return i;
978 }
979 
980 
981 /* Read the EEPROM and MII Management Data I/O (MDIO) interfaces.
982    The EEPROM code is for the common 93c06/46 EEPROMs with 6 bit addresses. */
983 
984 /* Delay between EEPROM clock transitions.
985    No extra delay is needed with 33Mhz PCI, but future 66Mhz access may need
986    a delay.  Note that pre-2.0.34 kernels had a cache-alignment bug that
987    made udelay() unreliable.
988    The old method of using an ISA access as a delay, __SLOW_DOWN_IO__, is
989    deprecated.
990 */
991 #define eeprom_delay(ee_addr)	readl(ee_addr)
992 
993 #define EE_Write0 (EE_ChipSelect)
994 #define EE_Write1 (EE_ChipSelect | EE_DataIn)
995 
996 /* The EEPROM commands include the alway-set leading bit. */
997 enum EEPROM_Cmds {
998 	EE_WriteCmd=(5 << 6), EE_ReadCmd=(6 << 6), EE_EraseCmd=(7 << 6),
999 };
1000 
1001 static int eeprom_read(void __iomem *addr, int location)
1002 {
1003 	int i;
1004 	int retval = 0;
1005 	void __iomem *ee_addr = addr + EECtrl;
1006 	int read_cmd = location | EE_ReadCmd;
1007 
1008 	writel(EE_Write0, ee_addr);
1009 
1010 	/* Shift the read command bits out. */
1011 	for (i = 10; i >= 0; i--) {
1012 		short dataval = (read_cmd & (1 << i)) ? EE_Write1 : EE_Write0;
1013 		writel(dataval, ee_addr);
1014 		eeprom_delay(ee_addr);
1015 		writel(dataval | EE_ShiftClk, ee_addr);
1016 		eeprom_delay(ee_addr);
1017 	}
1018 	writel(EE_ChipSelect, ee_addr);
1019 	eeprom_delay(ee_addr);
1020 
1021 	for (i = 0; i < 16; i++) {
1022 		writel(EE_ChipSelect | EE_ShiftClk, ee_addr);
1023 		eeprom_delay(ee_addr);
1024 		retval |= (readl(ee_addr) & EE_DataOut) ? 1 << i : 0;
1025 		writel(EE_ChipSelect, ee_addr);
1026 		eeprom_delay(ee_addr);
1027 	}
1028 
1029 	/* Terminate the EEPROM access. */
1030 	writel(EE_Write0, ee_addr);
1031 	writel(0, ee_addr);
1032 	return retval;
1033 }
1034 
1035 /* MII transceiver control section.
1036  * The 83815 series has an internal transceiver, and we present the
1037  * internal management registers as if they were MII connected.
1038  * External Phy registers are referenced through the MII interface.
1039  */
1040 
1041 /* clock transitions >= 20ns (25MHz)
1042  * One readl should be good to PCI @ 100MHz
1043  */
1044 #define mii_delay(ioaddr)  readl(ioaddr + EECtrl)
1045 
1046 static int mii_getbit (struct net_device *dev)
1047 {
1048 	int data;
1049 	void __iomem *ioaddr = ns_ioaddr(dev);
1050 
1051 	writel(MII_ShiftClk, ioaddr + EECtrl);
1052 	data = readl(ioaddr + EECtrl);
1053 	writel(0, ioaddr + EECtrl);
1054 	mii_delay(ioaddr);
1055 	return (data & MII_Data)? 1 : 0;
1056 }
1057 
1058 static void mii_send_bits (struct net_device *dev, u32 data, int len)
1059 {
1060 	u32 i;
1061 	void __iomem *ioaddr = ns_ioaddr(dev);
1062 
1063 	for (i = (1 << (len-1)); i; i >>= 1)
1064 	{
1065 		u32 mdio_val = MII_Write | ((data & i)? MII_Data : 0);
1066 		writel(mdio_val, ioaddr + EECtrl);
1067 		mii_delay(ioaddr);
1068 		writel(mdio_val | MII_ShiftClk, ioaddr + EECtrl);
1069 		mii_delay(ioaddr);
1070 	}
1071 	writel(0, ioaddr + EECtrl);
1072 	mii_delay(ioaddr);
1073 }
1074 
1075 static int miiport_read(struct net_device *dev, int phy_id, int reg)
1076 {
1077 	u32 cmd;
1078 	int i;
1079 	u32 retval = 0;
1080 
1081 	/* Ensure sync */
1082 	mii_send_bits (dev, 0xffffffff, 32);
1083 	/* ST(2), OP(2), ADDR(5), REG#(5), TA(2), Data(16) total 32 bits */
1084 	/* ST,OP = 0110'b for read operation */
1085 	cmd = (0x06 << 10) | (phy_id << 5) | reg;
1086 	mii_send_bits (dev, cmd, 14);
1087 	/* Turnaround */
1088 	if (mii_getbit (dev))
1089 		return 0;
1090 	/* Read data */
1091 	for (i = 0; i < 16; i++) {
1092 		retval <<= 1;
1093 		retval |= mii_getbit (dev);
1094 	}
1095 	/* End cycle */
1096 	mii_getbit (dev);
1097 	return retval;
1098 }
1099 
1100 static void miiport_write(struct net_device *dev, int phy_id, int reg, u16 data)
1101 {
1102 	u32 cmd;
1103 
1104 	/* Ensure sync */
1105 	mii_send_bits (dev, 0xffffffff, 32);
1106 	/* ST(2), OP(2), ADDR(5), REG#(5), TA(2), Data(16) total 32 bits */
1107 	/* ST,OP,AAAAA,RRRRR,TA = 0101xxxxxxxxxx10'b = 0x5002 for write */
1108 	cmd = (0x5002 << 16) | (phy_id << 23) | (reg << 18) | data;
1109 	mii_send_bits (dev, cmd, 32);
1110 	/* End cycle */
1111 	mii_getbit (dev);
1112 }
1113 
1114 static int mdio_read(struct net_device *dev, int reg)
1115 {
1116 	struct netdev_private *np = netdev_priv(dev);
1117 	void __iomem *ioaddr = ns_ioaddr(dev);
1118 
1119 	/* The 83815 series has two ports:
1120 	 * - an internal transceiver
1121 	 * - an external mii bus
1122 	 */
1123 	if (dev->if_port == PORT_TP)
1124 		return readw(ioaddr+BasicControl+(reg<<2));
1125 	else
1126 		return miiport_read(dev, np->phy_addr_external, reg);
1127 }
1128 
1129 static void mdio_write(struct net_device *dev, int reg, u16 data)
1130 {
1131 	struct netdev_private *np = netdev_priv(dev);
1132 	void __iomem *ioaddr = ns_ioaddr(dev);
1133 
1134 	/* The 83815 series has an internal transceiver; handle separately */
1135 	if (dev->if_port == PORT_TP)
1136 		writew(data, ioaddr+BasicControl+(reg<<2));
1137 	else
1138 		miiport_write(dev, np->phy_addr_external, reg, data);
1139 }
1140 
1141 static void init_phy_fixup(struct net_device *dev)
1142 {
1143 	struct netdev_private *np = netdev_priv(dev);
1144 	void __iomem *ioaddr = ns_ioaddr(dev);
1145 	int i;
1146 	u32 cfg;
1147 	u16 tmp;
1148 
1149 	/* restore stuff lost when power was out */
1150 	tmp = mdio_read(dev, MII_BMCR);
1151 	if (np->autoneg == AUTONEG_ENABLE) {
1152 		/* renegotiate if something changed */
1153 		if ((tmp & BMCR_ANENABLE) == 0 ||
1154 		    np->advertising != mdio_read(dev, MII_ADVERTISE))
1155 		{
1156 			/* turn on autonegotiation and force negotiation */
1157 			tmp |= (BMCR_ANENABLE | BMCR_ANRESTART);
1158 			mdio_write(dev, MII_ADVERTISE, np->advertising);
1159 		}
1160 	} else {
1161 		/* turn off auto negotiation, set speed and duplexity */
1162 		tmp &= ~(BMCR_ANENABLE | BMCR_SPEED100 | BMCR_FULLDPLX);
1163 		if (np->speed == SPEED_100)
1164 			tmp |= BMCR_SPEED100;
1165 		if (np->duplex == DUPLEX_FULL)
1166 			tmp |= BMCR_FULLDPLX;
1167 		/*
1168 		 * Note: there is no good way to inform the link partner
1169 		 * that our capabilities changed. The user has to unplug
1170 		 * and replug the network cable after some changes, e.g.
1171 		 * after switching from 10HD, autoneg off to 100 HD,
1172 		 * autoneg off.
1173 		 */
1174 	}
1175 	mdio_write(dev, MII_BMCR, tmp);
1176 	readl(ioaddr + ChipConfig);
1177 	udelay(1);
1178 
1179 	/* find out what phy this is */
1180 	np->mii = (mdio_read(dev, MII_PHYSID1) << 16)
1181 				+ mdio_read(dev, MII_PHYSID2);
1182 
1183 	/* handle external phys here */
1184 	switch (np->mii) {
1185 	case PHYID_AM79C874:
1186 		/* phy specific configuration for fibre/tp operation */
1187 		tmp = mdio_read(dev, MII_MCTRL);
1188 		tmp &= ~(MII_FX_SEL | MII_EN_SCRM);
1189 		if (dev->if_port == PORT_FIBRE)
1190 			tmp |= MII_FX_SEL;
1191 		else
1192 			tmp |= MII_EN_SCRM;
1193 		mdio_write(dev, MII_MCTRL, tmp);
1194 		break;
1195 	default:
1196 		break;
1197 	}
1198 	cfg = readl(ioaddr + ChipConfig);
1199 	if (cfg & CfgExtPhy)
1200 		return;
1201 
1202 	/* On page 78 of the spec, they recommend some settings for "optimum
1203 	   performance" to be done in sequence.  These settings optimize some
1204 	   of the 100Mbit autodetection circuitry.  They say we only want to
1205 	   do this for rev C of the chip, but engineers at NSC (Bradley
1206 	   Kennedy) recommends always setting them.  If you don't, you get
1207 	   errors on some autonegotiations that make the device unusable.
1208 
1209 	   It seems that the DSP needs a few usec to reinitialize after
1210 	   the start of the phy. Just retry writing these values until they
1211 	   stick.
1212 	*/
1213 	for (i=0;i<NATSEMI_HW_TIMEOUT;i++) {
1214 
1215 		int dspcfg;
1216 		writew(1, ioaddr + PGSEL);
1217 		writew(PMDCSR_VAL, ioaddr + PMDCSR);
1218 		writew(TSTDAT_VAL, ioaddr + TSTDAT);
1219 		np->dspcfg = (np->srr <= SRR_DP83815_C)?
1220 			DSPCFG_VAL : (DSPCFG_COEF | readw(ioaddr + DSPCFG));
1221 		writew(np->dspcfg, ioaddr + DSPCFG);
1222 		writew(SDCFG_VAL, ioaddr + SDCFG);
1223 		writew(0, ioaddr + PGSEL);
1224 		readl(ioaddr + ChipConfig);
1225 		udelay(10);
1226 
1227 		writew(1, ioaddr + PGSEL);
1228 		dspcfg = readw(ioaddr + DSPCFG);
1229 		writew(0, ioaddr + PGSEL);
1230 		if (np->dspcfg == dspcfg)
1231 			break;
1232 	}
1233 
1234 	if (netif_msg_link(np)) {
1235 		if (i==NATSEMI_HW_TIMEOUT) {
1236 			printk(KERN_INFO
1237 				"%s: DSPCFG mismatch after retrying for %d usec.\n",
1238 				dev->name, i*10);
1239 		} else {
1240 			printk(KERN_INFO
1241 				"%s: DSPCFG accepted after %d usec.\n",
1242 				dev->name, i*10);
1243 		}
1244 	}
1245 	/*
1246 	 * Enable PHY Specific event based interrupts.  Link state change
1247 	 * and Auto-Negotiation Completion are among the affected.
1248 	 * Read the intr status to clear it (needed for wake events).
1249 	 */
1250 	readw(ioaddr + MIntrStatus);
1251 	writew(MICRIntEn, ioaddr + MIntrCtrl);
1252 }
1253 
1254 static int switch_port_external(struct net_device *dev)
1255 {
1256 	struct netdev_private *np = netdev_priv(dev);
1257 	void __iomem *ioaddr = ns_ioaddr(dev);
1258 	u32 cfg;
1259 
1260 	cfg = readl(ioaddr + ChipConfig);
1261 	if (cfg & CfgExtPhy)
1262 		return 0;
1263 
1264 	if (netif_msg_link(np)) {
1265 		printk(KERN_INFO "%s: switching to external transceiver.\n",
1266 				dev->name);
1267 	}
1268 
1269 	/* 1) switch back to external phy */
1270 	writel(cfg | (CfgExtPhy | CfgPhyDis), ioaddr + ChipConfig);
1271 	readl(ioaddr + ChipConfig);
1272 	udelay(1);
1273 
1274 	/* 2) reset the external phy: */
1275 	/* resetting the external PHY has been known to cause a hub supplying
1276 	 * power over Ethernet to kill the power.  We don't want to kill
1277 	 * power to this computer, so we avoid resetting the phy.
1278 	 */
1279 
1280 	/* 3) reinit the phy fixup, it got lost during power down. */
1281 	move_int_phy(dev, np->phy_addr_external);
1282 	init_phy_fixup(dev);
1283 
1284 	return 1;
1285 }
1286 
1287 static int switch_port_internal(struct net_device *dev)
1288 {
1289 	struct netdev_private *np = netdev_priv(dev);
1290 	void __iomem *ioaddr = ns_ioaddr(dev);
1291 	int i;
1292 	u32 cfg;
1293 	u16 bmcr;
1294 
1295 	cfg = readl(ioaddr + ChipConfig);
1296 	if (!(cfg &CfgExtPhy))
1297 		return 0;
1298 
1299 	if (netif_msg_link(np)) {
1300 		printk(KERN_INFO "%s: switching to internal transceiver.\n",
1301 				dev->name);
1302 	}
1303 	/* 1) switch back to internal phy: */
1304 	cfg = cfg & ~(CfgExtPhy | CfgPhyDis);
1305 	writel(cfg, ioaddr + ChipConfig);
1306 	readl(ioaddr + ChipConfig);
1307 	udelay(1);
1308 
1309 	/* 2) reset the internal phy: */
1310 	bmcr = readw(ioaddr+BasicControl+(MII_BMCR<<2));
1311 	writel(bmcr | BMCR_RESET, ioaddr+BasicControl+(MII_BMCR<<2));
1312 	readl(ioaddr + ChipConfig);
1313 	udelay(10);
1314 	for (i=0;i<NATSEMI_HW_TIMEOUT;i++) {
1315 		bmcr = readw(ioaddr+BasicControl+(MII_BMCR<<2));
1316 		if (!(bmcr & BMCR_RESET))
1317 			break;
1318 		udelay(10);
1319 	}
1320 	if (i==NATSEMI_HW_TIMEOUT && netif_msg_link(np)) {
1321 		printk(KERN_INFO
1322 			"%s: phy reset did not complete in %d usec.\n",
1323 			dev->name, i*10);
1324 	}
1325 	/* 3) reinit the phy fixup, it got lost during power down. */
1326 	init_phy_fixup(dev);
1327 
1328 	return 1;
1329 }
1330 
1331 /* Scan for a PHY on the external mii bus.
1332  * There are two tricky points:
1333  * - Do not scan while the internal phy is enabled. The internal phy will
1334  *   crash: e.g. reads from the DSPCFG register will return odd values and
1335  *   the nasty random phy reset code will reset the nic every few seconds.
1336  * - The internal phy must be moved around, an external phy could
1337  *   have the same address as the internal phy.
1338  */
1339 static int find_mii(struct net_device *dev)
1340 {
1341 	struct netdev_private *np = netdev_priv(dev);
1342 	int tmp;
1343 	int i;
1344 	int did_switch;
1345 
1346 	/* Switch to external phy */
1347 	did_switch = switch_port_external(dev);
1348 
1349 	/* Scan the possible phy addresses:
1350 	 *
1351 	 * PHY address 0 means that the phy is in isolate mode. Not yet
1352 	 * supported due to lack of test hardware. User space should
1353 	 * handle it through ethtool.
1354 	 */
1355 	for (i = 1; i <= 31; i++) {
1356 		move_int_phy(dev, i);
1357 		tmp = miiport_read(dev, i, MII_BMSR);
1358 		if (tmp != 0xffff && tmp != 0x0000) {
1359 			/* found something! */
1360 			np->mii = (mdio_read(dev, MII_PHYSID1) << 16)
1361 					+ mdio_read(dev, MII_PHYSID2);
1362 	 		if (netif_msg_probe(np)) {
1363 				printk(KERN_INFO "natsemi %s: found external phy %08x at address %d.\n",
1364 						pci_name(np->pci_dev), np->mii, i);
1365 			}
1366 			break;
1367 		}
1368 	}
1369 	/* And switch back to internal phy: */
1370 	if (did_switch)
1371 		switch_port_internal(dev);
1372 	return i;
1373 }
1374 
1375 /* CFG bits [13:16] [18:23] */
1376 #define CFG_RESET_SAVE 0xfde000
1377 /* WCSR bits [0:4] [9:10] */
1378 #define WCSR_RESET_SAVE 0x61f
1379 /* RFCR bits [20] [22] [27:31] */
1380 #define RFCR_RESET_SAVE 0xf8500000
1381 
1382 static void natsemi_reset(struct net_device *dev)
1383 {
1384 	int i;
1385 	u32 cfg;
1386 	u32 wcsr;
1387 	u32 rfcr;
1388 	u16 pmatch[3];
1389 	u16 sopass[3];
1390 	struct netdev_private *np = netdev_priv(dev);
1391 	void __iomem *ioaddr = ns_ioaddr(dev);
1392 
1393 	/*
1394 	 * Resetting the chip causes some registers to be lost.
1395 	 * Natsemi suggests NOT reloading the EEPROM while live, so instead
1396 	 * we save the state that would have been loaded from EEPROM
1397 	 * on a normal power-up (see the spec EEPROM map).  This assumes
1398 	 * whoever calls this will follow up with init_registers() eventually.
1399 	 */
1400 
1401 	/* CFG */
1402 	cfg = readl(ioaddr + ChipConfig) & CFG_RESET_SAVE;
1403 	/* WCSR */
1404 	wcsr = readl(ioaddr + WOLCmd) & WCSR_RESET_SAVE;
1405 	/* RFCR */
1406 	rfcr = readl(ioaddr + RxFilterAddr) & RFCR_RESET_SAVE;
1407 	/* PMATCH */
1408 	for (i = 0; i < 3; i++) {
1409 		writel(i*2, ioaddr + RxFilterAddr);
1410 		pmatch[i] = readw(ioaddr + RxFilterData);
1411 	}
1412 	/* SOPAS */
1413 	for (i = 0; i < 3; i++) {
1414 		writel(0xa+(i*2), ioaddr + RxFilterAddr);
1415 		sopass[i] = readw(ioaddr + RxFilterData);
1416 	}
1417 
1418 	/* now whack the chip */
1419 	writel(ChipReset, ioaddr + ChipCmd);
1420 	for (i=0;i<NATSEMI_HW_TIMEOUT;i++) {
1421 		if (!(readl(ioaddr + ChipCmd) & ChipReset))
1422 			break;
1423 		udelay(5);
1424 	}
1425 	if (i==NATSEMI_HW_TIMEOUT) {
1426 		printk(KERN_WARNING "%s: reset did not complete in %d usec.\n",
1427 			dev->name, i*5);
1428 	} else if (netif_msg_hw(np)) {
1429 		printk(KERN_DEBUG "%s: reset completed in %d usec.\n",
1430 			dev->name, i*5);
1431 	}
1432 
1433 	/* restore CFG */
1434 	cfg |= readl(ioaddr + ChipConfig) & ~CFG_RESET_SAVE;
1435 	/* turn on external phy if it was selected */
1436 	if (dev->if_port == PORT_TP)
1437 		cfg &= ~(CfgExtPhy | CfgPhyDis);
1438 	else
1439 		cfg |= (CfgExtPhy | CfgPhyDis);
1440 	writel(cfg, ioaddr + ChipConfig);
1441 	/* restore WCSR */
1442 	wcsr |= readl(ioaddr + WOLCmd) & ~WCSR_RESET_SAVE;
1443 	writel(wcsr, ioaddr + WOLCmd);
1444 	/* read RFCR */
1445 	rfcr |= readl(ioaddr + RxFilterAddr) & ~RFCR_RESET_SAVE;
1446 	/* restore PMATCH */
1447 	for (i = 0; i < 3; i++) {
1448 		writel(i*2, ioaddr + RxFilterAddr);
1449 		writew(pmatch[i], ioaddr + RxFilterData);
1450 	}
1451 	for (i = 0; i < 3; i++) {
1452 		writel(0xa+(i*2), ioaddr + RxFilterAddr);
1453 		writew(sopass[i], ioaddr + RxFilterData);
1454 	}
1455 	/* restore RFCR */
1456 	writel(rfcr, ioaddr + RxFilterAddr);
1457 }
1458 
1459 static void reset_rx(struct net_device *dev)
1460 {
1461 	int i;
1462 	struct netdev_private *np = netdev_priv(dev);
1463 	void __iomem *ioaddr = ns_ioaddr(dev);
1464 
1465 	np->intr_status &= ~RxResetDone;
1466 
1467 	writel(RxReset, ioaddr + ChipCmd);
1468 
1469 	for (i=0;i<NATSEMI_HW_TIMEOUT;i++) {
1470 		np->intr_status |= readl(ioaddr + IntrStatus);
1471 		if (np->intr_status & RxResetDone)
1472 			break;
1473 		udelay(15);
1474 	}
1475 	if (i==NATSEMI_HW_TIMEOUT) {
1476 		printk(KERN_WARNING "%s: RX reset did not complete in %d usec.\n",
1477 		       dev->name, i*15);
1478 	} else if (netif_msg_hw(np)) {
1479 		printk(KERN_WARNING "%s: RX reset took %d usec.\n",
1480 		       dev->name, i*15);
1481 	}
1482 }
1483 
1484 static void natsemi_reload_eeprom(struct net_device *dev)
1485 {
1486 	struct netdev_private *np = netdev_priv(dev);
1487 	void __iomem *ioaddr = ns_ioaddr(dev);
1488 	int i;
1489 
1490 	writel(EepromReload, ioaddr + PCIBusCfg);
1491 	for (i=0;i<NATSEMI_HW_TIMEOUT;i++) {
1492 		udelay(50);
1493 		if (!(readl(ioaddr + PCIBusCfg) & EepromReload))
1494 			break;
1495 	}
1496 	if (i==NATSEMI_HW_TIMEOUT) {
1497 		printk(KERN_WARNING "natsemi %s: EEPROM did not reload in %d usec.\n",
1498 			pci_name(np->pci_dev), i*50);
1499 	} else if (netif_msg_hw(np)) {
1500 		printk(KERN_DEBUG "natsemi %s: EEPROM reloaded in %d usec.\n",
1501 			pci_name(np->pci_dev), i*50);
1502 	}
1503 }
1504 
1505 static void natsemi_stop_rxtx(struct net_device *dev)
1506 {
1507 	void __iomem * ioaddr = ns_ioaddr(dev);
1508 	struct netdev_private *np = netdev_priv(dev);
1509 	int i;
1510 
1511 	writel(RxOff | TxOff, ioaddr + ChipCmd);
1512 	for(i=0;i< NATSEMI_HW_TIMEOUT;i++) {
1513 		if ((readl(ioaddr + ChipCmd) & (TxOn|RxOn)) == 0)
1514 			break;
1515 		udelay(5);
1516 	}
1517 	if (i==NATSEMI_HW_TIMEOUT) {
1518 		printk(KERN_WARNING "%s: Tx/Rx process did not stop in %d usec.\n",
1519 			dev->name, i*5);
1520 	} else if (netif_msg_hw(np)) {
1521 		printk(KERN_DEBUG "%s: Tx/Rx process stopped in %d usec.\n",
1522 			dev->name, i*5);
1523 	}
1524 }
1525 
1526 static int netdev_open(struct net_device *dev)
1527 {
1528 	struct netdev_private *np = netdev_priv(dev);
1529 	void __iomem * ioaddr = ns_ioaddr(dev);
1530 	const int irq = np->pci_dev->irq;
1531 	int i;
1532 
1533 	/* Reset the chip, just in case. */
1534 	natsemi_reset(dev);
1535 
1536 	i = request_irq(irq, intr_handler, IRQF_SHARED, dev->name, dev);
1537 	if (i) return i;
1538 
1539 	if (netif_msg_ifup(np))
1540 		printk(KERN_DEBUG "%s: netdev_open() irq %d.\n",
1541 			dev->name, irq);
1542 	i = alloc_ring(dev);
1543 	if (i < 0) {
1544 		free_irq(irq, dev);
1545 		return i;
1546 	}
1547 	napi_enable(&np->napi);
1548 
1549 	init_ring(dev);
1550 	spin_lock_irq(&np->lock);
1551 	init_registers(dev);
1552 	/* now set the MAC address according to dev->dev_addr */
1553 	for (i = 0; i < 3; i++) {
1554 		u16 mac = (dev->dev_addr[2*i+1]<<8) + dev->dev_addr[2*i];
1555 
1556 		writel(i*2, ioaddr + RxFilterAddr);
1557 		writew(mac, ioaddr + RxFilterData);
1558 	}
1559 	writel(np->cur_rx_mode, ioaddr + RxFilterAddr);
1560 	spin_unlock_irq(&np->lock);
1561 
1562 	netif_start_queue(dev);
1563 
1564 	if (netif_msg_ifup(np))
1565 		printk(KERN_DEBUG "%s: Done netdev_open(), status: %#08x.\n",
1566 			dev->name, (int)readl(ioaddr + ChipCmd));
1567 
1568 	/* Set the timer to check for link beat. */
1569 	init_timer(&np->timer);
1570 	np->timer.expires = round_jiffies(jiffies + NATSEMI_TIMER_FREQ);
1571 	np->timer.data = (unsigned long)dev;
1572 	np->timer.function = netdev_timer; /* timer handler */
1573 	add_timer(&np->timer);
1574 
1575 	return 0;
1576 }
1577 
1578 static void do_cable_magic(struct net_device *dev)
1579 {
1580 	struct netdev_private *np = netdev_priv(dev);
1581 	void __iomem *ioaddr = ns_ioaddr(dev);
1582 
1583 	if (dev->if_port != PORT_TP)
1584 		return;
1585 
1586 	if (np->srr >= SRR_DP83816_A5)
1587 		return;
1588 
1589 	/*
1590 	 * 100 MBit links with short cables can trip an issue with the chip.
1591 	 * The problem manifests as lots of CRC errors and/or flickering
1592 	 * activity LED while idle.  This process is based on instructions
1593 	 * from engineers at National.
1594 	 */
1595 	if (readl(ioaddr + ChipConfig) & CfgSpeed100) {
1596 		u16 data;
1597 
1598 		writew(1, ioaddr + PGSEL);
1599 		/*
1600 		 * coefficient visibility should already be enabled via
1601 		 * DSPCFG | 0x1000
1602 		 */
1603 		data = readw(ioaddr + TSTDAT) & 0xff;
1604 		/*
1605 		 * the value must be negative, and within certain values
1606 		 * (these values all come from National)
1607 		 */
1608 		if (!(data & 0x80) || ((data >= 0xd8) && (data <= 0xff))) {
1609 			np = netdev_priv(dev);
1610 
1611 			/* the bug has been triggered - fix the coefficient */
1612 			writew(TSTDAT_FIXED, ioaddr + TSTDAT);
1613 			/* lock the value */
1614 			data = readw(ioaddr + DSPCFG);
1615 			np->dspcfg = data | DSPCFG_LOCK;
1616 			writew(np->dspcfg, ioaddr + DSPCFG);
1617 		}
1618 		writew(0, ioaddr + PGSEL);
1619 	}
1620 }
1621 
1622 static void undo_cable_magic(struct net_device *dev)
1623 {
1624 	u16 data;
1625 	struct netdev_private *np = netdev_priv(dev);
1626 	void __iomem * ioaddr = ns_ioaddr(dev);
1627 
1628 	if (dev->if_port != PORT_TP)
1629 		return;
1630 
1631 	if (np->srr >= SRR_DP83816_A5)
1632 		return;
1633 
1634 	writew(1, ioaddr + PGSEL);
1635 	/* make sure the lock bit is clear */
1636 	data = readw(ioaddr + DSPCFG);
1637 	np->dspcfg = data & ~DSPCFG_LOCK;
1638 	writew(np->dspcfg, ioaddr + DSPCFG);
1639 	writew(0, ioaddr + PGSEL);
1640 }
1641 
1642 static void check_link(struct net_device *dev)
1643 {
1644 	struct netdev_private *np = netdev_priv(dev);
1645 	void __iomem * ioaddr = ns_ioaddr(dev);
1646 	int duplex = np->duplex;
1647 	u16 bmsr;
1648 
1649 	/* If we are ignoring the PHY then don't try reading it. */
1650 	if (np->ignore_phy)
1651 		goto propagate_state;
1652 
1653 	/* The link status field is latched: it remains low after a temporary
1654 	 * link failure until it's read. We need the current link status,
1655 	 * thus read twice.
1656 	 */
1657 	mdio_read(dev, MII_BMSR);
1658 	bmsr = mdio_read(dev, MII_BMSR);
1659 
1660 	if (!(bmsr & BMSR_LSTATUS)) {
1661 		if (netif_carrier_ok(dev)) {
1662 			if (netif_msg_link(np))
1663 				printk(KERN_NOTICE "%s: link down.\n",
1664 				       dev->name);
1665 			netif_carrier_off(dev);
1666 			undo_cable_magic(dev);
1667 		}
1668 		return;
1669 	}
1670 	if (!netif_carrier_ok(dev)) {
1671 		if (netif_msg_link(np))
1672 			printk(KERN_NOTICE "%s: link up.\n", dev->name);
1673 		netif_carrier_on(dev);
1674 		do_cable_magic(dev);
1675 	}
1676 
1677 	duplex = np->full_duplex;
1678 	if (!duplex) {
1679 		if (bmsr & BMSR_ANEGCOMPLETE) {
1680 			int tmp = mii_nway_result(
1681 				np->advertising & mdio_read(dev, MII_LPA));
1682 			if (tmp == LPA_100FULL || tmp == LPA_10FULL)
1683 				duplex = 1;
1684 		} else if (mdio_read(dev, MII_BMCR) & BMCR_FULLDPLX)
1685 			duplex = 1;
1686 	}
1687 
1688 propagate_state:
1689 	/* if duplex is set then bit 28 must be set, too */
1690 	if (duplex ^ !!(np->rx_config & RxAcceptTx)) {
1691 		if (netif_msg_link(np))
1692 			printk(KERN_INFO
1693 				"%s: Setting %s-duplex based on negotiated "
1694 				"link capability.\n", dev->name,
1695 				duplex ? "full" : "half");
1696 		if (duplex) {
1697 			np->rx_config |= RxAcceptTx;
1698 			np->tx_config |= TxCarrierIgn | TxHeartIgn;
1699 		} else {
1700 			np->rx_config &= ~RxAcceptTx;
1701 			np->tx_config &= ~(TxCarrierIgn | TxHeartIgn);
1702 		}
1703 		writel(np->tx_config, ioaddr + TxConfig);
1704 		writel(np->rx_config, ioaddr + RxConfig);
1705 	}
1706 }
1707 
1708 static void init_registers(struct net_device *dev)
1709 {
1710 	struct netdev_private *np = netdev_priv(dev);
1711 	void __iomem * ioaddr = ns_ioaddr(dev);
1712 
1713 	init_phy_fixup(dev);
1714 
1715 	/* clear any interrupts that are pending, such as wake events */
1716 	readl(ioaddr + IntrStatus);
1717 
1718 	writel(np->ring_dma, ioaddr + RxRingPtr);
1719 	writel(np->ring_dma + RX_RING_SIZE * sizeof(struct netdev_desc),
1720 		ioaddr + TxRingPtr);
1721 
1722 	/* Initialize other registers.
1723 	 * Configure the PCI bus bursts and FIFO thresholds.
1724 	 * Configure for standard, in-spec Ethernet.
1725 	 * Start with half-duplex. check_link will update
1726 	 * to the correct settings.
1727 	 */
1728 
1729 	/* DRTH: 2: start tx if 64 bytes are in the fifo
1730 	 * FLTH: 0x10: refill with next packet if 512 bytes are free
1731 	 * MXDMA: 0: up to 256 byte bursts.
1732 	 * 	MXDMA must be <= FLTH
1733 	 * ECRETRY=1
1734 	 * ATP=1
1735 	 */
1736 	np->tx_config = TxAutoPad | TxCollRetry | TxMxdma_256 |
1737 				TX_FLTH_VAL | TX_DRTH_VAL_START;
1738 	writel(np->tx_config, ioaddr + TxConfig);
1739 
1740 	/* DRTH 0x10: start copying to memory if 128 bytes are in the fifo
1741 	 * MXDMA 0: up to 256 byte bursts
1742 	 */
1743 	np->rx_config = RxMxdma_256 | RX_DRTH_VAL;
1744 	/* if receive ring now has bigger buffers than normal, enable jumbo */
1745 	if (np->rx_buf_sz > NATSEMI_LONGPKT)
1746 		np->rx_config |= RxAcceptLong;
1747 
1748 	writel(np->rx_config, ioaddr + RxConfig);
1749 
1750 	/* Disable PME:
1751 	 * The PME bit is initialized from the EEPROM contents.
1752 	 * PCI cards probably have PME disabled, but motherboard
1753 	 * implementations may have PME set to enable WakeOnLan.
1754 	 * With PME set the chip will scan incoming packets but
1755 	 * nothing will be written to memory. */
1756 	np->SavedClkRun = readl(ioaddr + ClkRun);
1757 	writel(np->SavedClkRun & ~PMEEnable, ioaddr + ClkRun);
1758 	if (np->SavedClkRun & PMEStatus && netif_msg_wol(np)) {
1759 		printk(KERN_NOTICE "%s: Wake-up event %#08x\n",
1760 			dev->name, readl(ioaddr + WOLCmd));
1761 	}
1762 
1763 	check_link(dev);
1764 	__set_rx_mode(dev);
1765 
1766 	/* Enable interrupts by setting the interrupt mask. */
1767 	writel(DEFAULT_INTR, ioaddr + IntrMask);
1768 	natsemi_irq_enable(dev);
1769 
1770 	writel(RxOn | TxOn, ioaddr + ChipCmd);
1771 	writel(StatsClear, ioaddr + StatsCtrl); /* Clear Stats */
1772 }
1773 
1774 /*
1775  * netdev_timer:
1776  * Purpose:
1777  * 1) check for link changes. Usually they are handled by the MII interrupt
1778  *    but it doesn't hurt to check twice.
1779  * 2) check for sudden death of the NIC:
1780  *    It seems that a reference set for this chip went out with incorrect info,
1781  *    and there exist boards that aren't quite right.  An unexpected voltage
1782  *    drop can cause the PHY to get itself in a weird state (basically reset).
1783  *    NOTE: this only seems to affect revC chips.  The user can disable
1784  *    this check via dspcfg_workaround sysfs option.
1785  * 3) check of death of the RX path due to OOM
1786  */
1787 static void netdev_timer(unsigned long data)
1788 {
1789 	struct net_device *dev = (struct net_device *)data;
1790 	struct netdev_private *np = netdev_priv(dev);
1791 	void __iomem * ioaddr = ns_ioaddr(dev);
1792 	int next_tick = NATSEMI_TIMER_FREQ;
1793 	const int irq = np->pci_dev->irq;
1794 
1795 	if (netif_msg_timer(np)) {
1796 		/* DO NOT read the IntrStatus register,
1797 		 * a read clears any pending interrupts.
1798 		 */
1799 		printk(KERN_DEBUG "%s: Media selection timer tick.\n",
1800 			dev->name);
1801 	}
1802 
1803 	if (dev->if_port == PORT_TP) {
1804 		u16 dspcfg;
1805 
1806 		spin_lock_irq(&np->lock);
1807 		/* check for a nasty random phy-reset - use dspcfg as a flag */
1808 		writew(1, ioaddr+PGSEL);
1809 		dspcfg = readw(ioaddr+DSPCFG);
1810 		writew(0, ioaddr+PGSEL);
1811 		if (np->dspcfg_workaround && dspcfg != np->dspcfg) {
1812 			if (!netif_queue_stopped(dev)) {
1813 				spin_unlock_irq(&np->lock);
1814 				if (netif_msg_drv(np))
1815 					printk(KERN_NOTICE "%s: possible phy reset: "
1816 						"re-initializing\n", dev->name);
1817 				disable_irq(irq);
1818 				spin_lock_irq(&np->lock);
1819 				natsemi_stop_rxtx(dev);
1820 				dump_ring(dev);
1821 				reinit_ring(dev);
1822 				init_registers(dev);
1823 				spin_unlock_irq(&np->lock);
1824 				enable_irq(irq);
1825 			} else {
1826 				/* hurry back */
1827 				next_tick = HZ;
1828 				spin_unlock_irq(&np->lock);
1829 			}
1830 		} else {
1831 			/* init_registers() calls check_link() for the above case */
1832 			check_link(dev);
1833 			spin_unlock_irq(&np->lock);
1834 		}
1835 	} else {
1836 		spin_lock_irq(&np->lock);
1837 		check_link(dev);
1838 		spin_unlock_irq(&np->lock);
1839 	}
1840 	if (np->oom) {
1841 		disable_irq(irq);
1842 		np->oom = 0;
1843 		refill_rx(dev);
1844 		enable_irq(irq);
1845 		if (!np->oom) {
1846 			writel(RxOn, ioaddr + ChipCmd);
1847 		} else {
1848 			next_tick = 1;
1849 		}
1850 	}
1851 
1852 	if (next_tick > 1)
1853 		mod_timer(&np->timer, round_jiffies(jiffies + next_tick));
1854 	else
1855 		mod_timer(&np->timer, jiffies + next_tick);
1856 }
1857 
1858 static void dump_ring(struct net_device *dev)
1859 {
1860 	struct netdev_private *np = netdev_priv(dev);
1861 
1862 	if (netif_msg_pktdata(np)) {
1863 		int i;
1864 		printk(KERN_DEBUG "  Tx ring at %p:\n", np->tx_ring);
1865 		for (i = 0; i < TX_RING_SIZE; i++) {
1866 			printk(KERN_DEBUG " #%d desc. %#08x %#08x %#08x.\n",
1867 				i, np->tx_ring[i].next_desc,
1868 				np->tx_ring[i].cmd_status,
1869 				np->tx_ring[i].addr);
1870 		}
1871 		printk(KERN_DEBUG "  Rx ring %p:\n", np->rx_ring);
1872 		for (i = 0; i < RX_RING_SIZE; i++) {
1873 			printk(KERN_DEBUG " #%d desc. %#08x %#08x %#08x.\n",
1874 				i, np->rx_ring[i].next_desc,
1875 				np->rx_ring[i].cmd_status,
1876 				np->rx_ring[i].addr);
1877 		}
1878 	}
1879 }
1880 
1881 static void ns_tx_timeout(struct net_device *dev)
1882 {
1883 	struct netdev_private *np = netdev_priv(dev);
1884 	void __iomem * ioaddr = ns_ioaddr(dev);
1885 	const int irq = np->pci_dev->irq;
1886 
1887 	disable_irq(irq);
1888 	spin_lock_irq(&np->lock);
1889 	if (!np->hands_off) {
1890 		if (netif_msg_tx_err(np))
1891 			printk(KERN_WARNING
1892 				"%s: Transmit timed out, status %#08x,"
1893 				" resetting...\n",
1894 				dev->name, readl(ioaddr + IntrStatus));
1895 		dump_ring(dev);
1896 
1897 		natsemi_reset(dev);
1898 		reinit_ring(dev);
1899 		init_registers(dev);
1900 	} else {
1901 		printk(KERN_WARNING
1902 			"%s: tx_timeout while in hands_off state?\n",
1903 			dev->name);
1904 	}
1905 	spin_unlock_irq(&np->lock);
1906 	enable_irq(irq);
1907 
1908 	dev->trans_start = jiffies; /* prevent tx timeout */
1909 	dev->stats.tx_errors++;
1910 	netif_wake_queue(dev);
1911 }
1912 
1913 static int alloc_ring(struct net_device *dev)
1914 {
1915 	struct netdev_private *np = netdev_priv(dev);
1916 	np->rx_ring = pci_alloc_consistent(np->pci_dev,
1917 		sizeof(struct netdev_desc) * (RX_RING_SIZE+TX_RING_SIZE),
1918 		&np->ring_dma);
1919 	if (!np->rx_ring)
1920 		return -ENOMEM;
1921 	np->tx_ring = &np->rx_ring[RX_RING_SIZE];
1922 	return 0;
1923 }
1924 
1925 static void refill_rx(struct net_device *dev)
1926 {
1927 	struct netdev_private *np = netdev_priv(dev);
1928 
1929 	/* Refill the Rx ring buffers. */
1930 	for (; np->cur_rx - np->dirty_rx > 0; np->dirty_rx++) {
1931 		struct sk_buff *skb;
1932 		int entry = np->dirty_rx % RX_RING_SIZE;
1933 		if (np->rx_skbuff[entry] == NULL) {
1934 			unsigned int buflen = np->rx_buf_sz+NATSEMI_PADDING;
1935 			skb = netdev_alloc_skb(dev, buflen);
1936 			np->rx_skbuff[entry] = skb;
1937 			if (skb == NULL)
1938 				break; /* Better luck next round. */
1939 			np->rx_dma[entry] = pci_map_single(np->pci_dev,
1940 				skb->data, buflen, PCI_DMA_FROMDEVICE);
1941 			np->rx_ring[entry].addr = cpu_to_le32(np->rx_dma[entry]);
1942 		}
1943 		np->rx_ring[entry].cmd_status = cpu_to_le32(np->rx_buf_sz);
1944 	}
1945 	if (np->cur_rx - np->dirty_rx == RX_RING_SIZE) {
1946 		if (netif_msg_rx_err(np))
1947 			printk(KERN_WARNING "%s: going OOM.\n", dev->name);
1948 		np->oom = 1;
1949 	}
1950 }
1951 
1952 static void set_bufsize(struct net_device *dev)
1953 {
1954 	struct netdev_private *np = netdev_priv(dev);
1955 	if (dev->mtu <= ETH_DATA_LEN)
1956 		np->rx_buf_sz = ETH_DATA_LEN + NATSEMI_HEADERS;
1957 	else
1958 		np->rx_buf_sz = dev->mtu + NATSEMI_HEADERS;
1959 }
1960 
1961 /* Initialize the Rx and Tx rings, along with various 'dev' bits. */
1962 static void init_ring(struct net_device *dev)
1963 {
1964 	struct netdev_private *np = netdev_priv(dev);
1965 	int i;
1966 
1967 	/* 1) TX ring */
1968 	np->dirty_tx = np->cur_tx = 0;
1969 	for (i = 0; i < TX_RING_SIZE; i++) {
1970 		np->tx_skbuff[i] = NULL;
1971 		np->tx_ring[i].next_desc = cpu_to_le32(np->ring_dma
1972 			+sizeof(struct netdev_desc)
1973 			*((i+1)%TX_RING_SIZE+RX_RING_SIZE));
1974 		np->tx_ring[i].cmd_status = 0;
1975 	}
1976 
1977 	/* 2) RX ring */
1978 	np->dirty_rx = 0;
1979 	np->cur_rx = RX_RING_SIZE;
1980 	np->oom = 0;
1981 	set_bufsize(dev);
1982 
1983 	np->rx_head_desc = &np->rx_ring[0];
1984 
1985 	/* Please be careful before changing this loop - at least gcc-2.95.1
1986 	 * miscompiles it otherwise.
1987 	 */
1988 	/* Initialize all Rx descriptors. */
1989 	for (i = 0; i < RX_RING_SIZE; i++) {
1990 		np->rx_ring[i].next_desc = cpu_to_le32(np->ring_dma
1991 				+sizeof(struct netdev_desc)
1992 				*((i+1)%RX_RING_SIZE));
1993 		np->rx_ring[i].cmd_status = cpu_to_le32(DescOwn);
1994 		np->rx_skbuff[i] = NULL;
1995 	}
1996 	refill_rx(dev);
1997 	dump_ring(dev);
1998 }
1999 
2000 static void drain_tx(struct net_device *dev)
2001 {
2002 	struct netdev_private *np = netdev_priv(dev);
2003 	int i;
2004 
2005 	for (i = 0; i < TX_RING_SIZE; i++) {
2006 		if (np->tx_skbuff[i]) {
2007 			pci_unmap_single(np->pci_dev,
2008 				np->tx_dma[i], np->tx_skbuff[i]->len,
2009 				PCI_DMA_TODEVICE);
2010 			dev_kfree_skb(np->tx_skbuff[i]);
2011 			dev->stats.tx_dropped++;
2012 		}
2013 		np->tx_skbuff[i] = NULL;
2014 	}
2015 }
2016 
2017 static void drain_rx(struct net_device *dev)
2018 {
2019 	struct netdev_private *np = netdev_priv(dev);
2020 	unsigned int buflen = np->rx_buf_sz;
2021 	int i;
2022 
2023 	/* Free all the skbuffs in the Rx queue. */
2024 	for (i = 0; i < RX_RING_SIZE; i++) {
2025 		np->rx_ring[i].cmd_status = 0;
2026 		np->rx_ring[i].addr = cpu_to_le32(0xBADF00D0); /* An invalid address. */
2027 		if (np->rx_skbuff[i]) {
2028 			pci_unmap_single(np->pci_dev, np->rx_dma[i],
2029 				buflen + NATSEMI_PADDING,
2030 				PCI_DMA_FROMDEVICE);
2031 			dev_kfree_skb(np->rx_skbuff[i]);
2032 		}
2033 		np->rx_skbuff[i] = NULL;
2034 	}
2035 }
2036 
2037 static void drain_ring(struct net_device *dev)
2038 {
2039 	drain_rx(dev);
2040 	drain_tx(dev);
2041 }
2042 
2043 static void free_ring(struct net_device *dev)
2044 {
2045 	struct netdev_private *np = netdev_priv(dev);
2046 	pci_free_consistent(np->pci_dev,
2047 		sizeof(struct netdev_desc) * (RX_RING_SIZE+TX_RING_SIZE),
2048 		np->rx_ring, np->ring_dma);
2049 }
2050 
2051 static void reinit_rx(struct net_device *dev)
2052 {
2053 	struct netdev_private *np = netdev_priv(dev);
2054 	int i;
2055 
2056 	/* RX Ring */
2057 	np->dirty_rx = 0;
2058 	np->cur_rx = RX_RING_SIZE;
2059 	np->rx_head_desc = &np->rx_ring[0];
2060 	/* Initialize all Rx descriptors. */
2061 	for (i = 0; i < RX_RING_SIZE; i++)
2062 		np->rx_ring[i].cmd_status = cpu_to_le32(DescOwn);
2063 
2064 	refill_rx(dev);
2065 }
2066 
2067 static void reinit_ring(struct net_device *dev)
2068 {
2069 	struct netdev_private *np = netdev_priv(dev);
2070 	int i;
2071 
2072 	/* drain TX ring */
2073 	drain_tx(dev);
2074 	np->dirty_tx = np->cur_tx = 0;
2075 	for (i=0;i<TX_RING_SIZE;i++)
2076 		np->tx_ring[i].cmd_status = 0;
2077 
2078 	reinit_rx(dev);
2079 }
2080 
2081 static netdev_tx_t start_tx(struct sk_buff *skb, struct net_device *dev)
2082 {
2083 	struct netdev_private *np = netdev_priv(dev);
2084 	void __iomem * ioaddr = ns_ioaddr(dev);
2085 	unsigned entry;
2086 	unsigned long flags;
2087 
2088 	/* Note: Ordering is important here, set the field with the
2089 	   "ownership" bit last, and only then increment cur_tx. */
2090 
2091 	/* Calculate the next Tx descriptor entry. */
2092 	entry = np->cur_tx % TX_RING_SIZE;
2093 
2094 	np->tx_skbuff[entry] = skb;
2095 	np->tx_dma[entry] = pci_map_single(np->pci_dev,
2096 				skb->data,skb->len, PCI_DMA_TODEVICE);
2097 
2098 	np->tx_ring[entry].addr = cpu_to_le32(np->tx_dma[entry]);
2099 
2100 	spin_lock_irqsave(&np->lock, flags);
2101 
2102 	if (!np->hands_off) {
2103 		np->tx_ring[entry].cmd_status = cpu_to_le32(DescOwn | skb->len);
2104 		/* StrongARM: Explicitly cache flush np->tx_ring and
2105 		 * skb->data,skb->len. */
2106 		wmb();
2107 		np->cur_tx++;
2108 		if (np->cur_tx - np->dirty_tx >= TX_QUEUE_LEN - 1) {
2109 			netdev_tx_done(dev);
2110 			if (np->cur_tx - np->dirty_tx >= TX_QUEUE_LEN - 1)
2111 				netif_stop_queue(dev);
2112 		}
2113 		/* Wake the potentially-idle transmit channel. */
2114 		writel(TxOn, ioaddr + ChipCmd);
2115 	} else {
2116 		dev_kfree_skb_irq(skb);
2117 		dev->stats.tx_dropped++;
2118 	}
2119 	spin_unlock_irqrestore(&np->lock, flags);
2120 
2121 	if (netif_msg_tx_queued(np)) {
2122 		printk(KERN_DEBUG "%s: Transmit frame #%d queued in slot %d.\n",
2123 			dev->name, np->cur_tx, entry);
2124 	}
2125 	return NETDEV_TX_OK;
2126 }
2127 
2128 static void netdev_tx_done(struct net_device *dev)
2129 {
2130 	struct netdev_private *np = netdev_priv(dev);
2131 
2132 	for (; np->cur_tx - np->dirty_tx > 0; np->dirty_tx++) {
2133 		int entry = np->dirty_tx % TX_RING_SIZE;
2134 		if (np->tx_ring[entry].cmd_status & cpu_to_le32(DescOwn))
2135 			break;
2136 		if (netif_msg_tx_done(np))
2137 			printk(KERN_DEBUG
2138 				"%s: tx frame #%d finished, status %#08x.\n",
2139 					dev->name, np->dirty_tx,
2140 					le32_to_cpu(np->tx_ring[entry].cmd_status));
2141 		if (np->tx_ring[entry].cmd_status & cpu_to_le32(DescPktOK)) {
2142 			dev->stats.tx_packets++;
2143 			dev->stats.tx_bytes += np->tx_skbuff[entry]->len;
2144 		} else { /* Various Tx errors */
2145 			int tx_status =
2146 				le32_to_cpu(np->tx_ring[entry].cmd_status);
2147 			if (tx_status & (DescTxAbort|DescTxExcColl))
2148 				dev->stats.tx_aborted_errors++;
2149 			if (tx_status & DescTxFIFO)
2150 				dev->stats.tx_fifo_errors++;
2151 			if (tx_status & DescTxCarrier)
2152 				dev->stats.tx_carrier_errors++;
2153 			if (tx_status & DescTxOOWCol)
2154 				dev->stats.tx_window_errors++;
2155 			dev->stats.tx_errors++;
2156 		}
2157 		pci_unmap_single(np->pci_dev,np->tx_dma[entry],
2158 					np->tx_skbuff[entry]->len,
2159 					PCI_DMA_TODEVICE);
2160 		/* Free the original skb. */
2161 		dev_kfree_skb_irq(np->tx_skbuff[entry]);
2162 		np->tx_skbuff[entry] = NULL;
2163 	}
2164 	if (netif_queue_stopped(dev) &&
2165 	    np->cur_tx - np->dirty_tx < TX_QUEUE_LEN - 4) {
2166 		/* The ring is no longer full, wake queue. */
2167 		netif_wake_queue(dev);
2168 	}
2169 }
2170 
2171 /* The interrupt handler doesn't actually handle interrupts itself, it
2172  * schedules a NAPI poll if there is anything to do. */
2173 static irqreturn_t intr_handler(int irq, void *dev_instance)
2174 {
2175 	struct net_device *dev = dev_instance;
2176 	struct netdev_private *np = netdev_priv(dev);
2177 	void __iomem * ioaddr = ns_ioaddr(dev);
2178 
2179 	/* Reading IntrStatus automatically acknowledges so don't do
2180 	 * that while interrupts are disabled, (for example, while a
2181 	 * poll is scheduled).  */
2182 	if (np->hands_off || !readl(ioaddr + IntrEnable))
2183 		return IRQ_NONE;
2184 
2185 	np->intr_status = readl(ioaddr + IntrStatus);
2186 
2187 	if (!np->intr_status)
2188 		return IRQ_NONE;
2189 
2190 	if (netif_msg_intr(np))
2191 		printk(KERN_DEBUG
2192 		       "%s: Interrupt, status %#08x, mask %#08x.\n",
2193 		       dev->name, np->intr_status,
2194 		       readl(ioaddr + IntrMask));
2195 
2196 	prefetch(&np->rx_skbuff[np->cur_rx % RX_RING_SIZE]);
2197 
2198 	if (napi_schedule_prep(&np->napi)) {
2199 		/* Disable interrupts and register for poll */
2200 		natsemi_irq_disable(dev);
2201 		__napi_schedule(&np->napi);
2202 	} else
2203 		printk(KERN_WARNING
2204 	       	       "%s: Ignoring interrupt, status %#08x, mask %#08x.\n",
2205 		       dev->name, np->intr_status,
2206 		       readl(ioaddr + IntrMask));
2207 
2208 	return IRQ_HANDLED;
2209 }
2210 
2211 /* This is the NAPI poll routine.  As well as the standard RX handling
2212  * it also handles all other interrupts that the chip might raise.
2213  */
2214 static int natsemi_poll(struct napi_struct *napi, int budget)
2215 {
2216 	struct netdev_private *np = container_of(napi, struct netdev_private, napi);
2217 	struct net_device *dev = np->dev;
2218 	void __iomem * ioaddr = ns_ioaddr(dev);
2219 	int work_done = 0;
2220 
2221 	do {
2222 		if (netif_msg_intr(np))
2223 			printk(KERN_DEBUG
2224 			       "%s: Poll, status %#08x, mask %#08x.\n",
2225 			       dev->name, np->intr_status,
2226 			       readl(ioaddr + IntrMask));
2227 
2228 		/* netdev_rx() may read IntrStatus again if the RX state
2229 		 * machine falls over so do it first. */
2230 		if (np->intr_status &
2231 		    (IntrRxDone | IntrRxIntr | RxStatusFIFOOver |
2232 		     IntrRxErr | IntrRxOverrun)) {
2233 			netdev_rx(dev, &work_done, budget);
2234 		}
2235 
2236 		if (np->intr_status &
2237 		    (IntrTxDone | IntrTxIntr | IntrTxIdle | IntrTxErr)) {
2238 			spin_lock(&np->lock);
2239 			netdev_tx_done(dev);
2240 			spin_unlock(&np->lock);
2241 		}
2242 
2243 		/* Abnormal error summary/uncommon events handlers. */
2244 		if (np->intr_status & IntrAbnormalSummary)
2245 			netdev_error(dev, np->intr_status);
2246 
2247 		if (work_done >= budget)
2248 			return work_done;
2249 
2250 		np->intr_status = readl(ioaddr + IntrStatus);
2251 	} while (np->intr_status);
2252 
2253 	napi_complete(napi);
2254 
2255 	/* Reenable interrupts providing nothing is trying to shut
2256 	 * the chip down. */
2257 	spin_lock(&np->lock);
2258 	if (!np->hands_off)
2259 		natsemi_irq_enable(dev);
2260 	spin_unlock(&np->lock);
2261 
2262 	return work_done;
2263 }
2264 
2265 /* This routine is logically part of the interrupt handler, but separated
2266    for clarity and better register allocation. */
2267 static void netdev_rx(struct net_device *dev, int *work_done, int work_to_do)
2268 {
2269 	struct netdev_private *np = netdev_priv(dev);
2270 	int entry = np->cur_rx % RX_RING_SIZE;
2271 	int boguscnt = np->dirty_rx + RX_RING_SIZE - np->cur_rx;
2272 	s32 desc_status = le32_to_cpu(np->rx_head_desc->cmd_status);
2273 	unsigned int buflen = np->rx_buf_sz;
2274 	void __iomem * ioaddr = ns_ioaddr(dev);
2275 
2276 	/* If the driver owns the next entry it's a new packet. Send it up. */
2277 	while (desc_status < 0) { /* e.g. & DescOwn */
2278 		int pkt_len;
2279 		if (netif_msg_rx_status(np))
2280 			printk(KERN_DEBUG
2281 				"  netdev_rx() entry %d status was %#08x.\n",
2282 				entry, desc_status);
2283 		if (--boguscnt < 0)
2284 			break;
2285 
2286 		if (*work_done >= work_to_do)
2287 			break;
2288 
2289 		(*work_done)++;
2290 
2291 		pkt_len = (desc_status & DescSizeMask) - 4;
2292 		if ((desc_status&(DescMore|DescPktOK|DescRxLong)) != DescPktOK){
2293 			if (desc_status & DescMore) {
2294 				unsigned long flags;
2295 
2296 				if (netif_msg_rx_err(np))
2297 					printk(KERN_WARNING
2298 						"%s: Oversized(?) Ethernet "
2299 						"frame spanned multiple "
2300 						"buffers, entry %#08x "
2301 						"status %#08x.\n", dev->name,
2302 						np->cur_rx, desc_status);
2303 				dev->stats.rx_length_errors++;
2304 
2305 				/* The RX state machine has probably
2306 				 * locked up beneath us.  Follow the
2307 				 * reset procedure documented in
2308 				 * AN-1287. */
2309 
2310 				spin_lock_irqsave(&np->lock, flags);
2311 				reset_rx(dev);
2312 				reinit_rx(dev);
2313 				writel(np->ring_dma, ioaddr + RxRingPtr);
2314 				check_link(dev);
2315 				spin_unlock_irqrestore(&np->lock, flags);
2316 
2317 				/* We'll enable RX on exit from this
2318 				 * function. */
2319 				break;
2320 
2321 			} else {
2322 				/* There was an error. */
2323 				dev->stats.rx_errors++;
2324 				if (desc_status & (DescRxAbort|DescRxOver))
2325 					dev->stats.rx_over_errors++;
2326 				if (desc_status & (DescRxLong|DescRxRunt))
2327 					dev->stats.rx_length_errors++;
2328 				if (desc_status & (DescRxInvalid|DescRxAlign))
2329 					dev->stats.rx_frame_errors++;
2330 				if (desc_status & DescRxCRC)
2331 					dev->stats.rx_crc_errors++;
2332 			}
2333 		} else if (pkt_len > np->rx_buf_sz) {
2334 			/* if this is the tail of a double buffer
2335 			 * packet, we've already counted the error
2336 			 * on the first part.  Ignore the second half.
2337 			 */
2338 		} else {
2339 			struct sk_buff *skb;
2340 			/* Omit CRC size. */
2341 			/* Check if the packet is long enough to accept
2342 			 * without copying to a minimally-sized skbuff. */
2343 			if (pkt_len < rx_copybreak &&
2344 			    (skb = netdev_alloc_skb(dev, pkt_len + RX_OFFSET)) != NULL) {
2345 				/* 16 byte align the IP header */
2346 				skb_reserve(skb, RX_OFFSET);
2347 				pci_dma_sync_single_for_cpu(np->pci_dev,
2348 					np->rx_dma[entry],
2349 					buflen,
2350 					PCI_DMA_FROMDEVICE);
2351 				skb_copy_to_linear_data(skb,
2352 					np->rx_skbuff[entry]->data, pkt_len);
2353 				skb_put(skb, pkt_len);
2354 				pci_dma_sync_single_for_device(np->pci_dev,
2355 					np->rx_dma[entry],
2356 					buflen,
2357 					PCI_DMA_FROMDEVICE);
2358 			} else {
2359 				pci_unmap_single(np->pci_dev, np->rx_dma[entry],
2360 						 buflen + NATSEMI_PADDING,
2361 						 PCI_DMA_FROMDEVICE);
2362 				skb_put(skb = np->rx_skbuff[entry], pkt_len);
2363 				np->rx_skbuff[entry] = NULL;
2364 			}
2365 			skb->protocol = eth_type_trans(skb, dev);
2366 			netif_receive_skb(skb);
2367 			dev->stats.rx_packets++;
2368 			dev->stats.rx_bytes += pkt_len;
2369 		}
2370 		entry = (++np->cur_rx) % RX_RING_SIZE;
2371 		np->rx_head_desc = &np->rx_ring[entry];
2372 		desc_status = le32_to_cpu(np->rx_head_desc->cmd_status);
2373 	}
2374 	refill_rx(dev);
2375 
2376 	/* Restart Rx engine if stopped. */
2377 	if (np->oom)
2378 		mod_timer(&np->timer, jiffies + 1);
2379 	else
2380 		writel(RxOn, ioaddr + ChipCmd);
2381 }
2382 
2383 static void netdev_error(struct net_device *dev, int intr_status)
2384 {
2385 	struct netdev_private *np = netdev_priv(dev);
2386 	void __iomem * ioaddr = ns_ioaddr(dev);
2387 
2388 	spin_lock(&np->lock);
2389 	if (intr_status & LinkChange) {
2390 		u16 lpa = mdio_read(dev, MII_LPA);
2391 		if (mdio_read(dev, MII_BMCR) & BMCR_ANENABLE &&
2392 		    netif_msg_link(np)) {
2393 			printk(KERN_INFO
2394 				"%s: Autonegotiation advertising"
2395 				" %#04x  partner %#04x.\n", dev->name,
2396 				np->advertising, lpa);
2397 		}
2398 
2399 		/* read MII int status to clear the flag */
2400 		readw(ioaddr + MIntrStatus);
2401 		check_link(dev);
2402 	}
2403 	if (intr_status & StatsMax) {
2404 		__get_stats(dev);
2405 	}
2406 	if (intr_status & IntrTxUnderrun) {
2407 		if ((np->tx_config & TxDrthMask) < TX_DRTH_VAL_LIMIT) {
2408 			np->tx_config += TX_DRTH_VAL_INC;
2409 			if (netif_msg_tx_err(np))
2410 				printk(KERN_NOTICE
2411 					"%s: increased tx threshold, txcfg %#08x.\n",
2412 					dev->name, np->tx_config);
2413 		} else {
2414 			if (netif_msg_tx_err(np))
2415 				printk(KERN_NOTICE
2416 					"%s: tx underrun with maximum tx threshold, txcfg %#08x.\n",
2417 					dev->name, np->tx_config);
2418 		}
2419 		writel(np->tx_config, ioaddr + TxConfig);
2420 	}
2421 	if (intr_status & WOLPkt && netif_msg_wol(np)) {
2422 		int wol_status = readl(ioaddr + WOLCmd);
2423 		printk(KERN_NOTICE "%s: Link wake-up event %#08x\n",
2424 			dev->name, wol_status);
2425 	}
2426 	if (intr_status & RxStatusFIFOOver) {
2427 		if (netif_msg_rx_err(np) && netif_msg_intr(np)) {
2428 			printk(KERN_NOTICE "%s: Rx status FIFO overrun\n",
2429 				dev->name);
2430 		}
2431 		dev->stats.rx_fifo_errors++;
2432 		dev->stats.rx_errors++;
2433 	}
2434 	/* Hmmmmm, it's not clear how to recover from PCI faults. */
2435 	if (intr_status & IntrPCIErr) {
2436 		printk(KERN_NOTICE "%s: PCI error %#08x\n", dev->name,
2437 			intr_status & IntrPCIErr);
2438 		dev->stats.tx_fifo_errors++;
2439 		dev->stats.tx_errors++;
2440 		dev->stats.rx_fifo_errors++;
2441 		dev->stats.rx_errors++;
2442 	}
2443 	spin_unlock(&np->lock);
2444 }
2445 
2446 static void __get_stats(struct net_device *dev)
2447 {
2448 	void __iomem * ioaddr = ns_ioaddr(dev);
2449 
2450 	/* The chip only need report frame silently dropped. */
2451 	dev->stats.rx_crc_errors += readl(ioaddr + RxCRCErrs);
2452 	dev->stats.rx_missed_errors += readl(ioaddr + RxMissed);
2453 }
2454 
2455 static struct net_device_stats *get_stats(struct net_device *dev)
2456 {
2457 	struct netdev_private *np = netdev_priv(dev);
2458 
2459 	/* The chip only need report frame silently dropped. */
2460 	spin_lock_irq(&np->lock);
2461 	if (netif_running(dev) && !np->hands_off)
2462 		__get_stats(dev);
2463 	spin_unlock_irq(&np->lock);
2464 
2465 	return &dev->stats;
2466 }
2467 
2468 #ifdef CONFIG_NET_POLL_CONTROLLER
2469 static void natsemi_poll_controller(struct net_device *dev)
2470 {
2471 	struct netdev_private *np = netdev_priv(dev);
2472 	const int irq = np->pci_dev->irq;
2473 
2474 	disable_irq(irq);
2475 	intr_handler(irq, dev);
2476 	enable_irq(irq);
2477 }
2478 #endif
2479 
2480 #define HASH_TABLE	0x200
2481 static void __set_rx_mode(struct net_device *dev)
2482 {
2483 	void __iomem * ioaddr = ns_ioaddr(dev);
2484 	struct netdev_private *np = netdev_priv(dev);
2485 	u8 mc_filter[64]; /* Multicast hash filter */
2486 	u32 rx_mode;
2487 
2488 	if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */
2489 		rx_mode = RxFilterEnable | AcceptBroadcast
2490 			| AcceptAllMulticast | AcceptAllPhys | AcceptMyPhys;
2491 	} else if ((netdev_mc_count(dev) > multicast_filter_limit) ||
2492 		   (dev->flags & IFF_ALLMULTI)) {
2493 		rx_mode = RxFilterEnable | AcceptBroadcast
2494 			| AcceptAllMulticast | AcceptMyPhys;
2495 	} else {
2496 		struct netdev_hw_addr *ha;
2497 		int i;
2498 
2499 		memset(mc_filter, 0, sizeof(mc_filter));
2500 		netdev_for_each_mc_addr(ha, dev) {
2501 			int b = (ether_crc(ETH_ALEN, ha->addr) >> 23) & 0x1ff;
2502 			mc_filter[b/8] |= (1 << (b & 0x07));
2503 		}
2504 		rx_mode = RxFilterEnable | AcceptBroadcast
2505 			| AcceptMulticast | AcceptMyPhys;
2506 		for (i = 0; i < 64; i += 2) {
2507 			writel(HASH_TABLE + i, ioaddr + RxFilterAddr);
2508 			writel((mc_filter[i + 1] << 8) + mc_filter[i],
2509 			       ioaddr + RxFilterData);
2510 		}
2511 	}
2512 	writel(rx_mode, ioaddr + RxFilterAddr);
2513 	np->cur_rx_mode = rx_mode;
2514 }
2515 
2516 static int natsemi_change_mtu(struct net_device *dev, int new_mtu)
2517 {
2518 	if (new_mtu < 64 || new_mtu > NATSEMI_RX_LIMIT-NATSEMI_HEADERS)
2519 		return -EINVAL;
2520 
2521 	dev->mtu = new_mtu;
2522 
2523 	/* synchronized against open : rtnl_lock() held by caller */
2524 	if (netif_running(dev)) {
2525 		struct netdev_private *np = netdev_priv(dev);
2526 		void __iomem * ioaddr = ns_ioaddr(dev);
2527 		const int irq = np->pci_dev->irq;
2528 
2529 		disable_irq(irq);
2530 		spin_lock(&np->lock);
2531 		/* stop engines */
2532 		natsemi_stop_rxtx(dev);
2533 		/* drain rx queue */
2534 		drain_rx(dev);
2535 		/* change buffers */
2536 		set_bufsize(dev);
2537 		reinit_rx(dev);
2538 		writel(np->ring_dma, ioaddr + RxRingPtr);
2539 		/* restart engines */
2540 		writel(RxOn | TxOn, ioaddr + ChipCmd);
2541 		spin_unlock(&np->lock);
2542 		enable_irq(irq);
2543 	}
2544 	return 0;
2545 }
2546 
2547 static void set_rx_mode(struct net_device *dev)
2548 {
2549 	struct netdev_private *np = netdev_priv(dev);
2550 	spin_lock_irq(&np->lock);
2551 	if (!np->hands_off)
2552 		__set_rx_mode(dev);
2553 	spin_unlock_irq(&np->lock);
2554 }
2555 
2556 static void get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
2557 {
2558 	struct netdev_private *np = netdev_priv(dev);
2559 	strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
2560 	strlcpy(info->version, DRV_VERSION, sizeof(info->version));
2561 	strlcpy(info->bus_info, pci_name(np->pci_dev), sizeof(info->bus_info));
2562 }
2563 
2564 static int get_regs_len(struct net_device *dev)
2565 {
2566 	return NATSEMI_REGS_SIZE;
2567 }
2568 
2569 static int get_eeprom_len(struct net_device *dev)
2570 {
2571 	struct netdev_private *np = netdev_priv(dev);
2572 	return np->eeprom_size;
2573 }
2574 
2575 static int get_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
2576 {
2577 	struct netdev_private *np = netdev_priv(dev);
2578 	spin_lock_irq(&np->lock);
2579 	netdev_get_ecmd(dev, ecmd);
2580 	spin_unlock_irq(&np->lock);
2581 	return 0;
2582 }
2583 
2584 static int set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
2585 {
2586 	struct netdev_private *np = netdev_priv(dev);
2587 	int res;
2588 	spin_lock_irq(&np->lock);
2589 	res = netdev_set_ecmd(dev, ecmd);
2590 	spin_unlock_irq(&np->lock);
2591 	return res;
2592 }
2593 
2594 static void get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2595 {
2596 	struct netdev_private *np = netdev_priv(dev);
2597 	spin_lock_irq(&np->lock);
2598 	netdev_get_wol(dev, &wol->supported, &wol->wolopts);
2599 	netdev_get_sopass(dev, wol->sopass);
2600 	spin_unlock_irq(&np->lock);
2601 }
2602 
2603 static int set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2604 {
2605 	struct netdev_private *np = netdev_priv(dev);
2606 	int res;
2607 	spin_lock_irq(&np->lock);
2608 	netdev_set_wol(dev, wol->wolopts);
2609 	res = netdev_set_sopass(dev, wol->sopass);
2610 	spin_unlock_irq(&np->lock);
2611 	return res;
2612 }
2613 
2614 static void get_regs(struct net_device *dev, struct ethtool_regs *regs, void *buf)
2615 {
2616 	struct netdev_private *np = netdev_priv(dev);
2617 	regs->version = NATSEMI_REGS_VER;
2618 	spin_lock_irq(&np->lock);
2619 	netdev_get_regs(dev, buf);
2620 	spin_unlock_irq(&np->lock);
2621 }
2622 
2623 static u32 get_msglevel(struct net_device *dev)
2624 {
2625 	struct netdev_private *np = netdev_priv(dev);
2626 	return np->msg_enable;
2627 }
2628 
2629 static void set_msglevel(struct net_device *dev, u32 val)
2630 {
2631 	struct netdev_private *np = netdev_priv(dev);
2632 	np->msg_enable = val;
2633 }
2634 
2635 static int nway_reset(struct net_device *dev)
2636 {
2637 	int tmp;
2638 	int r = -EINVAL;
2639 	/* if autoneg is off, it's an error */
2640 	tmp = mdio_read(dev, MII_BMCR);
2641 	if (tmp & BMCR_ANENABLE) {
2642 		tmp |= (BMCR_ANRESTART);
2643 		mdio_write(dev, MII_BMCR, tmp);
2644 		r = 0;
2645 	}
2646 	return r;
2647 }
2648 
2649 static u32 get_link(struct net_device *dev)
2650 {
2651 	/* LSTATUS is latched low until a read - so read twice */
2652 	mdio_read(dev, MII_BMSR);
2653 	return (mdio_read(dev, MII_BMSR)&BMSR_LSTATUS) ? 1:0;
2654 }
2655 
2656 static int get_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom, u8 *data)
2657 {
2658 	struct netdev_private *np = netdev_priv(dev);
2659 	u8 *eebuf;
2660 	int res;
2661 
2662 	eebuf = kmalloc(np->eeprom_size, GFP_KERNEL);
2663 	if (!eebuf)
2664 		return -ENOMEM;
2665 
2666 	eeprom->magic = PCI_VENDOR_ID_NS | (PCI_DEVICE_ID_NS_83815<<16);
2667 	spin_lock_irq(&np->lock);
2668 	res = netdev_get_eeprom(dev, eebuf);
2669 	spin_unlock_irq(&np->lock);
2670 	if (!res)
2671 		memcpy(data, eebuf+eeprom->offset, eeprom->len);
2672 	kfree(eebuf);
2673 	return res;
2674 }
2675 
2676 static const struct ethtool_ops ethtool_ops = {
2677 	.get_drvinfo = get_drvinfo,
2678 	.get_regs_len = get_regs_len,
2679 	.get_eeprom_len = get_eeprom_len,
2680 	.get_settings = get_settings,
2681 	.set_settings = set_settings,
2682 	.get_wol = get_wol,
2683 	.set_wol = set_wol,
2684 	.get_regs = get_regs,
2685 	.get_msglevel = get_msglevel,
2686 	.set_msglevel = set_msglevel,
2687 	.nway_reset = nway_reset,
2688 	.get_link = get_link,
2689 	.get_eeprom = get_eeprom,
2690 };
2691 
2692 static int netdev_set_wol(struct net_device *dev, u32 newval)
2693 {
2694 	struct netdev_private *np = netdev_priv(dev);
2695 	void __iomem * ioaddr = ns_ioaddr(dev);
2696 	u32 data = readl(ioaddr + WOLCmd) & ~WakeOptsSummary;
2697 
2698 	/* translate to bitmasks this chip understands */
2699 	if (newval & WAKE_PHY)
2700 		data |= WakePhy;
2701 	if (newval & WAKE_UCAST)
2702 		data |= WakeUnicast;
2703 	if (newval & WAKE_MCAST)
2704 		data |= WakeMulticast;
2705 	if (newval & WAKE_BCAST)
2706 		data |= WakeBroadcast;
2707 	if (newval & WAKE_ARP)
2708 		data |= WakeArp;
2709 	if (newval & WAKE_MAGIC)
2710 		data |= WakeMagic;
2711 	if (np->srr >= SRR_DP83815_D) {
2712 		if (newval & WAKE_MAGICSECURE) {
2713 			data |= WakeMagicSecure;
2714 		}
2715 	}
2716 
2717 	writel(data, ioaddr + WOLCmd);
2718 
2719 	return 0;
2720 }
2721 
2722 static int netdev_get_wol(struct net_device *dev, u32 *supported, u32 *cur)
2723 {
2724 	struct netdev_private *np = netdev_priv(dev);
2725 	void __iomem * ioaddr = ns_ioaddr(dev);
2726 	u32 regval = readl(ioaddr + WOLCmd);
2727 
2728 	*supported = (WAKE_PHY | WAKE_UCAST | WAKE_MCAST | WAKE_BCAST
2729 			| WAKE_ARP | WAKE_MAGIC);
2730 
2731 	if (np->srr >= SRR_DP83815_D) {
2732 		/* SOPASS works on revD and higher */
2733 		*supported |= WAKE_MAGICSECURE;
2734 	}
2735 	*cur = 0;
2736 
2737 	/* translate from chip bitmasks */
2738 	if (regval & WakePhy)
2739 		*cur |= WAKE_PHY;
2740 	if (regval & WakeUnicast)
2741 		*cur |= WAKE_UCAST;
2742 	if (regval & WakeMulticast)
2743 		*cur |= WAKE_MCAST;
2744 	if (regval & WakeBroadcast)
2745 		*cur |= WAKE_BCAST;
2746 	if (regval & WakeArp)
2747 		*cur |= WAKE_ARP;
2748 	if (regval & WakeMagic)
2749 		*cur |= WAKE_MAGIC;
2750 	if (regval & WakeMagicSecure) {
2751 		/* this can be on in revC, but it's broken */
2752 		*cur |= WAKE_MAGICSECURE;
2753 	}
2754 
2755 	return 0;
2756 }
2757 
2758 static int netdev_set_sopass(struct net_device *dev, u8 *newval)
2759 {
2760 	struct netdev_private *np = netdev_priv(dev);
2761 	void __iomem * ioaddr = ns_ioaddr(dev);
2762 	u16 *sval = (u16 *)newval;
2763 	u32 addr;
2764 
2765 	if (np->srr < SRR_DP83815_D) {
2766 		return 0;
2767 	}
2768 
2769 	/* enable writing to these registers by disabling the RX filter */
2770 	addr = readl(ioaddr + RxFilterAddr) & ~RFCRAddressMask;
2771 	addr &= ~RxFilterEnable;
2772 	writel(addr, ioaddr + RxFilterAddr);
2773 
2774 	/* write the three words to (undocumented) RFCR vals 0xa, 0xc, 0xe */
2775 	writel(addr | 0xa, ioaddr + RxFilterAddr);
2776 	writew(sval[0], ioaddr + RxFilterData);
2777 
2778 	writel(addr | 0xc, ioaddr + RxFilterAddr);
2779 	writew(sval[1], ioaddr + RxFilterData);
2780 
2781 	writel(addr | 0xe, ioaddr + RxFilterAddr);
2782 	writew(sval[2], ioaddr + RxFilterData);
2783 
2784 	/* re-enable the RX filter */
2785 	writel(addr | RxFilterEnable, ioaddr + RxFilterAddr);
2786 
2787 	return 0;
2788 }
2789 
2790 static int netdev_get_sopass(struct net_device *dev, u8 *data)
2791 {
2792 	struct netdev_private *np = netdev_priv(dev);
2793 	void __iomem * ioaddr = ns_ioaddr(dev);
2794 	u16 *sval = (u16 *)data;
2795 	u32 addr;
2796 
2797 	if (np->srr < SRR_DP83815_D) {
2798 		sval[0] = sval[1] = sval[2] = 0;
2799 		return 0;
2800 	}
2801 
2802 	/* read the three words from (undocumented) RFCR vals 0xa, 0xc, 0xe */
2803 	addr = readl(ioaddr + RxFilterAddr) & ~RFCRAddressMask;
2804 
2805 	writel(addr | 0xa, ioaddr + RxFilterAddr);
2806 	sval[0] = readw(ioaddr + RxFilterData);
2807 
2808 	writel(addr | 0xc, ioaddr + RxFilterAddr);
2809 	sval[1] = readw(ioaddr + RxFilterData);
2810 
2811 	writel(addr | 0xe, ioaddr + RxFilterAddr);
2812 	sval[2] = readw(ioaddr + RxFilterData);
2813 
2814 	writel(addr, ioaddr + RxFilterAddr);
2815 
2816 	return 0;
2817 }
2818 
2819 static int netdev_get_ecmd(struct net_device *dev, struct ethtool_cmd *ecmd)
2820 {
2821 	struct netdev_private *np = netdev_priv(dev);
2822 	u32 tmp;
2823 
2824 	ecmd->port        = dev->if_port;
2825 	ethtool_cmd_speed_set(ecmd, np->speed);
2826 	ecmd->duplex      = np->duplex;
2827 	ecmd->autoneg     = np->autoneg;
2828 	ecmd->advertising = 0;
2829 	if (np->advertising & ADVERTISE_10HALF)
2830 		ecmd->advertising |= ADVERTISED_10baseT_Half;
2831 	if (np->advertising & ADVERTISE_10FULL)
2832 		ecmd->advertising |= ADVERTISED_10baseT_Full;
2833 	if (np->advertising & ADVERTISE_100HALF)
2834 		ecmd->advertising |= ADVERTISED_100baseT_Half;
2835 	if (np->advertising & ADVERTISE_100FULL)
2836 		ecmd->advertising |= ADVERTISED_100baseT_Full;
2837 	ecmd->supported   = (SUPPORTED_Autoneg |
2838 		SUPPORTED_10baseT_Half  | SUPPORTED_10baseT_Full  |
2839 		SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full |
2840 		SUPPORTED_TP | SUPPORTED_MII | SUPPORTED_FIBRE);
2841 	ecmd->phy_address = np->phy_addr_external;
2842 	/*
2843 	 * We intentionally report the phy address of the external
2844 	 * phy, even if the internal phy is used. This is necessary
2845 	 * to work around a deficiency of the ethtool interface:
2846 	 * It's only possible to query the settings of the active
2847 	 * port. Therefore
2848 	 * # ethtool -s ethX port mii
2849 	 * actually sends an ioctl to switch to port mii with the
2850 	 * settings that are used for the current active port.
2851 	 * If we would report a different phy address in this
2852 	 * command, then
2853 	 * # ethtool -s ethX port tp;ethtool -s ethX port mii
2854 	 * would unintentionally change the phy address.
2855 	 *
2856 	 * Fortunately the phy address doesn't matter with the
2857 	 * internal phy...
2858 	 */
2859 
2860 	/* set information based on active port type */
2861 	switch (ecmd->port) {
2862 	default:
2863 	case PORT_TP:
2864 		ecmd->advertising |= ADVERTISED_TP;
2865 		ecmd->transceiver = XCVR_INTERNAL;
2866 		break;
2867 	case PORT_MII:
2868 		ecmd->advertising |= ADVERTISED_MII;
2869 		ecmd->transceiver = XCVR_EXTERNAL;
2870 		break;
2871 	case PORT_FIBRE:
2872 		ecmd->advertising |= ADVERTISED_FIBRE;
2873 		ecmd->transceiver = XCVR_EXTERNAL;
2874 		break;
2875 	}
2876 
2877 	/* if autonegotiation is on, try to return the active speed/duplex */
2878 	if (ecmd->autoneg == AUTONEG_ENABLE) {
2879 		ecmd->advertising |= ADVERTISED_Autoneg;
2880 		tmp = mii_nway_result(
2881 			np->advertising & mdio_read(dev, MII_LPA));
2882 		if (tmp == LPA_100FULL || tmp == LPA_100HALF)
2883 			ethtool_cmd_speed_set(ecmd, SPEED_100);
2884 		else
2885 			ethtool_cmd_speed_set(ecmd, SPEED_10);
2886 		if (tmp == LPA_100FULL || tmp == LPA_10FULL)
2887 			ecmd->duplex = DUPLEX_FULL;
2888 		else
2889 			ecmd->duplex = DUPLEX_HALF;
2890 	}
2891 
2892 	/* ignore maxtxpkt, maxrxpkt for now */
2893 
2894 	return 0;
2895 }
2896 
2897 static int netdev_set_ecmd(struct net_device *dev, struct ethtool_cmd *ecmd)
2898 {
2899 	struct netdev_private *np = netdev_priv(dev);
2900 
2901 	if (ecmd->port != PORT_TP && ecmd->port != PORT_MII && ecmd->port != PORT_FIBRE)
2902 		return -EINVAL;
2903 	if (ecmd->transceiver != XCVR_INTERNAL && ecmd->transceiver != XCVR_EXTERNAL)
2904 		return -EINVAL;
2905 	if (ecmd->autoneg == AUTONEG_ENABLE) {
2906 		if ((ecmd->advertising & (ADVERTISED_10baseT_Half |
2907 					  ADVERTISED_10baseT_Full |
2908 					  ADVERTISED_100baseT_Half |
2909 					  ADVERTISED_100baseT_Full)) == 0) {
2910 			return -EINVAL;
2911 		}
2912 	} else if (ecmd->autoneg == AUTONEG_DISABLE) {
2913 		u32 speed = ethtool_cmd_speed(ecmd);
2914 		if (speed != SPEED_10 && speed != SPEED_100)
2915 			return -EINVAL;
2916 		if (ecmd->duplex != DUPLEX_HALF && ecmd->duplex != DUPLEX_FULL)
2917 			return -EINVAL;
2918 	} else {
2919 		return -EINVAL;
2920 	}
2921 
2922 	/*
2923 	 * If we're ignoring the PHY then autoneg and the internal
2924 	 * transceiver are really not going to work so don't let the
2925 	 * user select them.
2926 	 */
2927 	if (np->ignore_phy && (ecmd->autoneg == AUTONEG_ENABLE ||
2928 			       ecmd->port == PORT_TP))
2929 		return -EINVAL;
2930 
2931 	/*
2932 	 * maxtxpkt, maxrxpkt: ignored for now.
2933 	 *
2934 	 * transceiver:
2935 	 * PORT_TP is always XCVR_INTERNAL, PORT_MII and PORT_FIBRE are always
2936 	 * XCVR_EXTERNAL. The implementation thus ignores ecmd->transceiver and
2937 	 * selects based on ecmd->port.
2938 	 *
2939 	 * Actually PORT_FIBRE is nearly identical to PORT_MII: it's for fibre
2940 	 * phys that are connected to the mii bus. It's used to apply fibre
2941 	 * specific updates.
2942 	 */
2943 
2944 	/* WHEW! now lets bang some bits */
2945 
2946 	/* save the parms */
2947 	dev->if_port          = ecmd->port;
2948 	np->autoneg           = ecmd->autoneg;
2949 	np->phy_addr_external = ecmd->phy_address & PhyAddrMask;
2950 	if (np->autoneg == AUTONEG_ENABLE) {
2951 		/* advertise only what has been requested */
2952 		np->advertising &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4);
2953 		if (ecmd->advertising & ADVERTISED_10baseT_Half)
2954 			np->advertising |= ADVERTISE_10HALF;
2955 		if (ecmd->advertising & ADVERTISED_10baseT_Full)
2956 			np->advertising |= ADVERTISE_10FULL;
2957 		if (ecmd->advertising & ADVERTISED_100baseT_Half)
2958 			np->advertising |= ADVERTISE_100HALF;
2959 		if (ecmd->advertising & ADVERTISED_100baseT_Full)
2960 			np->advertising |= ADVERTISE_100FULL;
2961 	} else {
2962 		np->speed  = ethtool_cmd_speed(ecmd);
2963 		np->duplex = ecmd->duplex;
2964 		/* user overriding the initial full duplex parm? */
2965 		if (np->duplex == DUPLEX_HALF)
2966 			np->full_duplex = 0;
2967 	}
2968 
2969 	/* get the right phy enabled */
2970 	if (ecmd->port == PORT_TP)
2971 		switch_port_internal(dev);
2972 	else
2973 		switch_port_external(dev);
2974 
2975 	/* set parms and see how this affected our link status */
2976 	init_phy_fixup(dev);
2977 	check_link(dev);
2978 	return 0;
2979 }
2980 
2981 static int netdev_get_regs(struct net_device *dev, u8 *buf)
2982 {
2983 	int i;
2984 	int j;
2985 	u32 rfcr;
2986 	u32 *rbuf = (u32 *)buf;
2987 	void __iomem * ioaddr = ns_ioaddr(dev);
2988 
2989 	/* read non-mii page 0 of registers */
2990 	for (i = 0; i < NATSEMI_PG0_NREGS/2; i++) {
2991 		rbuf[i] = readl(ioaddr + i*4);
2992 	}
2993 
2994 	/* read current mii registers */
2995 	for (i = NATSEMI_PG0_NREGS/2; i < NATSEMI_PG0_NREGS; i++)
2996 		rbuf[i] = mdio_read(dev, i & 0x1f);
2997 
2998 	/* read only the 'magic' registers from page 1 */
2999 	writew(1, ioaddr + PGSEL);
3000 	rbuf[i++] = readw(ioaddr + PMDCSR);
3001 	rbuf[i++] = readw(ioaddr + TSTDAT);
3002 	rbuf[i++] = readw(ioaddr + DSPCFG);
3003 	rbuf[i++] = readw(ioaddr + SDCFG);
3004 	writew(0, ioaddr + PGSEL);
3005 
3006 	/* read RFCR indexed registers */
3007 	rfcr = readl(ioaddr + RxFilterAddr);
3008 	for (j = 0; j < NATSEMI_RFDR_NREGS; j++) {
3009 		writel(j*2, ioaddr + RxFilterAddr);
3010 		rbuf[i++] = readw(ioaddr + RxFilterData);
3011 	}
3012 	writel(rfcr, ioaddr + RxFilterAddr);
3013 
3014 	/* the interrupt status is clear-on-read - see if we missed any */
3015 	if (rbuf[4] & rbuf[5]) {
3016 		printk(KERN_WARNING
3017 			"%s: shoot, we dropped an interrupt (%#08x)\n",
3018 			dev->name, rbuf[4] & rbuf[5]);
3019 	}
3020 
3021 	return 0;
3022 }
3023 
3024 #define SWAP_BITS(x)	( (((x) & 0x0001) << 15) | (((x) & 0x0002) << 13) \
3025 			| (((x) & 0x0004) << 11) | (((x) & 0x0008) << 9)  \
3026 			| (((x) & 0x0010) << 7)  | (((x) & 0x0020) << 5)  \
3027 			| (((x) & 0x0040) << 3)  | (((x) & 0x0080) << 1)  \
3028 			| (((x) & 0x0100) >> 1)  | (((x) & 0x0200) >> 3)  \
3029 			| (((x) & 0x0400) >> 5)  | (((x) & 0x0800) >> 7)  \
3030 			| (((x) & 0x1000) >> 9)  | (((x) & 0x2000) >> 11) \
3031 			| (((x) & 0x4000) >> 13) | (((x) & 0x8000) >> 15) )
3032 
3033 static int netdev_get_eeprom(struct net_device *dev, u8 *buf)
3034 {
3035 	int i;
3036 	u16 *ebuf = (u16 *)buf;
3037 	void __iomem * ioaddr = ns_ioaddr(dev);
3038 	struct netdev_private *np = netdev_priv(dev);
3039 
3040 	/* eeprom_read reads 16 bits, and indexes by 16 bits */
3041 	for (i = 0; i < np->eeprom_size/2; i++) {
3042 		ebuf[i] = eeprom_read(ioaddr, i);
3043 		/* The EEPROM itself stores data bit-swapped, but eeprom_read
3044 		 * reads it back "sanely". So we swap it back here in order to
3045 		 * present it to userland as it is stored. */
3046 		ebuf[i] = SWAP_BITS(ebuf[i]);
3047 	}
3048 	return 0;
3049 }
3050 
3051 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
3052 {
3053 	struct mii_ioctl_data *data = if_mii(rq);
3054 	struct netdev_private *np = netdev_priv(dev);
3055 
3056 	switch(cmd) {
3057 	case SIOCGMIIPHY:		/* Get address of MII PHY in use. */
3058 		data->phy_id = np->phy_addr_external;
3059 		/* Fall Through */
3060 
3061 	case SIOCGMIIREG:		/* Read MII PHY register. */
3062 		/* The phy_id is not enough to uniquely identify
3063 		 * the intended target. Therefore the command is sent to
3064 		 * the given mii on the current port.
3065 		 */
3066 		if (dev->if_port == PORT_TP) {
3067 			if ((data->phy_id & 0x1f) == np->phy_addr_external)
3068 				data->val_out = mdio_read(dev,
3069 							data->reg_num & 0x1f);
3070 			else
3071 				data->val_out = 0;
3072 		} else {
3073 			move_int_phy(dev, data->phy_id & 0x1f);
3074 			data->val_out = miiport_read(dev, data->phy_id & 0x1f,
3075 							data->reg_num & 0x1f);
3076 		}
3077 		return 0;
3078 
3079 	case SIOCSMIIREG:		/* Write MII PHY register. */
3080 		if (dev->if_port == PORT_TP) {
3081 			if ((data->phy_id & 0x1f) == np->phy_addr_external) {
3082  				if ((data->reg_num & 0x1f) == MII_ADVERTISE)
3083 					np->advertising = data->val_in;
3084 				mdio_write(dev, data->reg_num & 0x1f,
3085 							data->val_in);
3086 			}
3087 		} else {
3088 			if ((data->phy_id & 0x1f) == np->phy_addr_external) {
3089  				if ((data->reg_num & 0x1f) == MII_ADVERTISE)
3090 					np->advertising = data->val_in;
3091 			}
3092 			move_int_phy(dev, data->phy_id & 0x1f);
3093 			miiport_write(dev, data->phy_id & 0x1f,
3094 						data->reg_num & 0x1f,
3095 						data->val_in);
3096 		}
3097 		return 0;
3098 	default:
3099 		return -EOPNOTSUPP;
3100 	}
3101 }
3102 
3103 static void enable_wol_mode(struct net_device *dev, int enable_intr)
3104 {
3105 	void __iomem * ioaddr = ns_ioaddr(dev);
3106 	struct netdev_private *np = netdev_priv(dev);
3107 
3108 	if (netif_msg_wol(np))
3109 		printk(KERN_INFO "%s: remaining active for wake-on-lan\n",
3110 			dev->name);
3111 
3112 	/* For WOL we must restart the rx process in silent mode.
3113 	 * Write NULL to the RxRingPtr. Only possible if
3114 	 * rx process is stopped
3115 	 */
3116 	writel(0, ioaddr + RxRingPtr);
3117 
3118 	/* read WoL status to clear */
3119 	readl(ioaddr + WOLCmd);
3120 
3121 	/* PME on, clear status */
3122 	writel(np->SavedClkRun | PMEEnable | PMEStatus, ioaddr + ClkRun);
3123 
3124 	/* and restart the rx process */
3125 	writel(RxOn, ioaddr + ChipCmd);
3126 
3127 	if (enable_intr) {
3128 		/* enable the WOL interrupt.
3129 		 * Could be used to send a netlink message.
3130 		 */
3131 		writel(WOLPkt | LinkChange, ioaddr + IntrMask);
3132 		natsemi_irq_enable(dev);
3133 	}
3134 }
3135 
3136 static int netdev_close(struct net_device *dev)
3137 {
3138 	void __iomem * ioaddr = ns_ioaddr(dev);
3139 	struct netdev_private *np = netdev_priv(dev);
3140 	const int irq = np->pci_dev->irq;
3141 
3142 	if (netif_msg_ifdown(np))
3143 		printk(KERN_DEBUG
3144 			"%s: Shutting down ethercard, status was %#04x.\n",
3145 			dev->name, (int)readl(ioaddr + ChipCmd));
3146 	if (netif_msg_pktdata(np))
3147 		printk(KERN_DEBUG
3148 			"%s: Queue pointers were Tx %d / %d,  Rx %d / %d.\n",
3149 			dev->name, np->cur_tx, np->dirty_tx,
3150 			np->cur_rx, np->dirty_rx);
3151 
3152 	napi_disable(&np->napi);
3153 
3154 	/*
3155 	 * FIXME: what if someone tries to close a device
3156 	 * that is suspended?
3157 	 * Should we reenable the nic to switch to
3158 	 * the final WOL settings?
3159 	 */
3160 
3161 	del_timer_sync(&np->timer);
3162 	disable_irq(irq);
3163 	spin_lock_irq(&np->lock);
3164 	natsemi_irq_disable(dev);
3165 	np->hands_off = 1;
3166 	spin_unlock_irq(&np->lock);
3167 	enable_irq(irq);
3168 
3169 	free_irq(irq, dev);
3170 
3171 	/* Interrupt disabled, interrupt handler released,
3172 	 * queue stopped, timer deleted, rtnl_lock held
3173 	 * All async codepaths that access the driver are disabled.
3174 	 */
3175 	spin_lock_irq(&np->lock);
3176 	np->hands_off = 0;
3177 	readl(ioaddr + IntrMask);
3178 	readw(ioaddr + MIntrStatus);
3179 
3180 	/* Freeze Stats */
3181 	writel(StatsFreeze, ioaddr + StatsCtrl);
3182 
3183 	/* Stop the chip's Tx and Rx processes. */
3184 	natsemi_stop_rxtx(dev);
3185 
3186 	__get_stats(dev);
3187 	spin_unlock_irq(&np->lock);
3188 
3189 	/* clear the carrier last - an interrupt could reenable it otherwise */
3190 	netif_carrier_off(dev);
3191 	netif_stop_queue(dev);
3192 
3193 	dump_ring(dev);
3194 	drain_ring(dev);
3195 	free_ring(dev);
3196 
3197 	{
3198 		u32 wol = readl(ioaddr + WOLCmd) & WakeOptsSummary;
3199 		if (wol) {
3200 			/* restart the NIC in WOL mode.
3201 			 * The nic must be stopped for this.
3202 			 */
3203 			enable_wol_mode(dev, 0);
3204 		} else {
3205 			/* Restore PME enable bit unmolested */
3206 			writel(np->SavedClkRun, ioaddr + ClkRun);
3207 		}
3208 	}
3209 	return 0;
3210 }
3211 
3212 
3213 static void natsemi_remove1(struct pci_dev *pdev)
3214 {
3215 	struct net_device *dev = pci_get_drvdata(pdev);
3216 	void __iomem * ioaddr = ns_ioaddr(dev);
3217 
3218 	NATSEMI_REMOVE_FILE(pdev, dspcfg_workaround);
3219 	unregister_netdev (dev);
3220 	pci_release_regions (pdev);
3221 	iounmap(ioaddr);
3222 	free_netdev (dev);
3223 	pci_set_drvdata(pdev, NULL);
3224 }
3225 
3226 #ifdef CONFIG_PM
3227 
3228 /*
3229  * The ns83815 chip doesn't have explicit RxStop bits.
3230  * Kicking the Rx or Tx process for a new packet reenables the Rx process
3231  * of the nic, thus this function must be very careful:
3232  *
3233  * suspend/resume synchronization:
3234  * entry points:
3235  *   netdev_open, netdev_close, netdev_ioctl, set_rx_mode, intr_handler,
3236  *   start_tx, ns_tx_timeout
3237  *
3238  * No function accesses the hardware without checking np->hands_off.
3239  *	the check occurs under spin_lock_irq(&np->lock);
3240  * exceptions:
3241  *	* netdev_ioctl: noncritical access.
3242  *	* netdev_open: cannot happen due to the device_detach
3243  *	* netdev_close: doesn't hurt.
3244  *	* netdev_timer: timer stopped by natsemi_suspend.
3245  *	* intr_handler: doesn't acquire the spinlock. suspend calls
3246  *		disable_irq() to enforce synchronization.
3247  *      * natsemi_poll: checks before reenabling interrupts.  suspend
3248  *              sets hands_off, disables interrupts and then waits with
3249  *              napi_disable().
3250  *
3251  * Interrupts must be disabled, otherwise hands_off can cause irq storms.
3252  */
3253 
3254 static int natsemi_suspend (struct pci_dev *pdev, pm_message_t state)
3255 {
3256 	struct net_device *dev = pci_get_drvdata (pdev);
3257 	struct netdev_private *np = netdev_priv(dev);
3258 	void __iomem * ioaddr = ns_ioaddr(dev);
3259 
3260 	rtnl_lock();
3261 	if (netif_running (dev)) {
3262 		const int irq = np->pci_dev->irq;
3263 
3264 		del_timer_sync(&np->timer);
3265 
3266 		disable_irq(irq);
3267 		spin_lock_irq(&np->lock);
3268 
3269 		natsemi_irq_disable(dev);
3270 		np->hands_off = 1;
3271 		natsemi_stop_rxtx(dev);
3272 		netif_stop_queue(dev);
3273 
3274 		spin_unlock_irq(&np->lock);
3275 		enable_irq(irq);
3276 
3277 		napi_disable(&np->napi);
3278 
3279 		/* Update the error counts. */
3280 		__get_stats(dev);
3281 
3282 		/* pci_power_off(pdev, -1); */
3283 		drain_ring(dev);
3284 		{
3285 			u32 wol = readl(ioaddr + WOLCmd) & WakeOptsSummary;
3286 			/* Restore PME enable bit */
3287 			if (wol) {
3288 				/* restart the NIC in WOL mode.
3289 				 * The nic must be stopped for this.
3290 				 * FIXME: use the WOL interrupt
3291 				 */
3292 				enable_wol_mode(dev, 0);
3293 			} else {
3294 				/* Restore PME enable bit unmolested */
3295 				writel(np->SavedClkRun, ioaddr + ClkRun);
3296 			}
3297 		}
3298 	}
3299 	netif_device_detach(dev);
3300 	rtnl_unlock();
3301 	return 0;
3302 }
3303 
3304 
3305 static int natsemi_resume (struct pci_dev *pdev)
3306 {
3307 	struct net_device *dev = pci_get_drvdata (pdev);
3308 	struct netdev_private *np = netdev_priv(dev);
3309 	int ret = 0;
3310 
3311 	rtnl_lock();
3312 	if (netif_device_present(dev))
3313 		goto out;
3314 	if (netif_running(dev)) {
3315 		const int irq = np->pci_dev->irq;
3316 
3317 		BUG_ON(!np->hands_off);
3318 		ret = pci_enable_device(pdev);
3319 		if (ret < 0) {
3320 			dev_err(&pdev->dev,
3321 				"pci_enable_device() failed: %d\n", ret);
3322 			goto out;
3323 		}
3324 	/*	pci_power_on(pdev); */
3325 
3326 		napi_enable(&np->napi);
3327 
3328 		natsemi_reset(dev);
3329 		init_ring(dev);
3330 		disable_irq(irq);
3331 		spin_lock_irq(&np->lock);
3332 		np->hands_off = 0;
3333 		init_registers(dev);
3334 		netif_device_attach(dev);
3335 		spin_unlock_irq(&np->lock);
3336 		enable_irq(irq);
3337 
3338 		mod_timer(&np->timer, round_jiffies(jiffies + 1*HZ));
3339 	}
3340 	netif_device_attach(dev);
3341 out:
3342 	rtnl_unlock();
3343 	return ret;
3344 }
3345 
3346 #endif /* CONFIG_PM */
3347 
3348 static struct pci_driver natsemi_driver = {
3349 	.name		= DRV_NAME,
3350 	.id_table	= natsemi_pci_tbl,
3351 	.probe		= natsemi_probe1,
3352 	.remove		= natsemi_remove1,
3353 #ifdef CONFIG_PM
3354 	.suspend	= natsemi_suspend,
3355 	.resume		= natsemi_resume,
3356 #endif
3357 };
3358 
3359 static int __init natsemi_init_mod (void)
3360 {
3361 /* when a module, this is printed whether or not devices are found in probe */
3362 #ifdef MODULE
3363 	printk(version);
3364 #endif
3365 
3366 	return pci_register_driver(&natsemi_driver);
3367 }
3368 
3369 static void __exit natsemi_exit_mod (void)
3370 {
3371 	pci_unregister_driver (&natsemi_driver);
3372 }
3373 
3374 module_init(natsemi_init_mod);
3375 module_exit(natsemi_exit_mod);
3376 
3377