1 /* natsemi.c: A Linux PCI Ethernet driver for the NatSemi DP8381x series. */ 2 /* 3 Written/copyright 1999-2001 by Donald Becker. 4 Portions copyright (c) 2001,2002 Sun Microsystems (thockin@sun.com) 5 Portions copyright 2001,2002 Manfred Spraul (manfred@colorfullife.com) 6 Portions copyright 2004 Harald Welte <laforge@gnumonks.org> 7 8 This software may be used and distributed according to the terms of 9 the GNU General Public License (GPL), incorporated herein by reference. 10 Drivers based on or derived from this code fall under the GPL and must 11 retain the authorship, copyright and license notice. This file is not 12 a complete program and may only be used when the entire operating 13 system is licensed under the GPL. License for under other terms may be 14 available. Contact the original author for details. 15 16 The original author may be reached as becker@scyld.com, or at 17 Scyld Computing Corporation 18 410 Severn Ave., Suite 210 19 Annapolis MD 21403 20 21 Support information and updates available at 22 http://www.scyld.com/network/netsemi.html 23 [link no longer provides useful info -jgarzik] 24 25 26 TODO: 27 * big endian support with CFG:BEM instead of cpu_to_le32 28 */ 29 30 #include <linux/module.h> 31 #include <linux/kernel.h> 32 #include <linux/string.h> 33 #include <linux/timer.h> 34 #include <linux/errno.h> 35 #include <linux/ioport.h> 36 #include <linux/slab.h> 37 #include <linux/interrupt.h> 38 #include <linux/pci.h> 39 #include <linux/netdevice.h> 40 #include <linux/etherdevice.h> 41 #include <linux/skbuff.h> 42 #include <linux/init.h> 43 #include <linux/spinlock.h> 44 #include <linux/ethtool.h> 45 #include <linux/delay.h> 46 #include <linux/rtnetlink.h> 47 #include <linux/mii.h> 48 #include <linux/crc32.h> 49 #include <linux/bitops.h> 50 #include <linux/prefetch.h> 51 #include <asm/processor.h> /* Processor type for cache alignment. */ 52 #include <asm/io.h> 53 #include <asm/irq.h> 54 #include <linux/uaccess.h> 55 56 #define DRV_NAME "natsemi" 57 #define DRV_VERSION "2.1" 58 #define DRV_RELDATE "Sept 11, 2006" 59 60 #define RX_OFFSET 2 61 62 /* Updated to recommendations in pci-skeleton v2.03. */ 63 64 /* The user-configurable values. 65 These may be modified when a driver module is loaded.*/ 66 67 #define NATSEMI_DEF_MSG (NETIF_MSG_DRV | \ 68 NETIF_MSG_LINK | \ 69 NETIF_MSG_WOL | \ 70 NETIF_MSG_RX_ERR | \ 71 NETIF_MSG_TX_ERR) 72 static int debug = -1; 73 74 static int mtu; 75 76 /* Maximum number of multicast addresses to filter (vs. rx-all-multicast). 77 This chip uses a 512 element hash table based on the Ethernet CRC. */ 78 static const int multicast_filter_limit = 100; 79 80 /* Set the copy breakpoint for the copy-only-tiny-frames scheme. 81 Setting to > 1518 effectively disables this feature. */ 82 static int rx_copybreak; 83 84 static int dspcfg_workaround = 1; 85 86 /* Used to pass the media type, etc. 87 Both 'options[]' and 'full_duplex[]' should exist for driver 88 interoperability. 89 The media type is usually passed in 'options[]'. 90 */ 91 #define MAX_UNITS 8 /* More are supported, limit only on options */ 92 static int options[MAX_UNITS]; 93 static int full_duplex[MAX_UNITS]; 94 95 /* Operational parameters that are set at compile time. */ 96 97 /* Keep the ring sizes a power of two for compile efficiency. 98 The compiler will convert <unsigned>'%'<2^N> into a bit mask. 99 Making the Tx ring too large decreases the effectiveness of channel 100 bonding and packet priority. 101 There are no ill effects from too-large receive rings. */ 102 #define TX_RING_SIZE 16 103 #define TX_QUEUE_LEN 10 /* Limit ring entries actually used, min 4. */ 104 #define RX_RING_SIZE 32 105 106 /* Operational parameters that usually are not changed. */ 107 /* Time in jiffies before concluding the transmitter is hung. */ 108 #define TX_TIMEOUT (2*HZ) 109 110 #define NATSEMI_HW_TIMEOUT 400 111 #define NATSEMI_TIMER_FREQ 5*HZ 112 #define NATSEMI_PG0_NREGS 64 113 #define NATSEMI_RFDR_NREGS 8 114 #define NATSEMI_PG1_NREGS 4 115 #define NATSEMI_NREGS (NATSEMI_PG0_NREGS + NATSEMI_RFDR_NREGS + \ 116 NATSEMI_PG1_NREGS) 117 #define NATSEMI_REGS_VER 1 /* v1 added RFDR registers */ 118 #define NATSEMI_REGS_SIZE (NATSEMI_NREGS * sizeof(u32)) 119 120 /* Buffer sizes: 121 * The nic writes 32-bit values, even if the upper bytes of 122 * a 32-bit value are beyond the end of the buffer. 123 */ 124 #define NATSEMI_HEADERS 22 /* 2*mac,type,vlan,crc */ 125 #define NATSEMI_PADDING 16 /* 2 bytes should be sufficient */ 126 #define NATSEMI_LONGPKT 1518 /* limit for normal packets */ 127 #define NATSEMI_RX_LIMIT 2046 /* maximum supported by hardware */ 128 129 /* These identify the driver base version and may not be removed. */ 130 static const char version[] = 131 KERN_INFO DRV_NAME " dp8381x driver, version " 132 DRV_VERSION ", " DRV_RELDATE "\n" 133 " originally by Donald Becker <becker@scyld.com>\n" 134 " 2.4.x kernel port by Jeff Garzik, Tjeerd Mulder\n"; 135 136 MODULE_AUTHOR("Donald Becker <becker@scyld.com>"); 137 MODULE_DESCRIPTION("National Semiconductor DP8381x series PCI Ethernet driver"); 138 MODULE_LICENSE("GPL"); 139 140 module_param(mtu, int, 0); 141 module_param(debug, int, 0); 142 module_param(rx_copybreak, int, 0); 143 module_param(dspcfg_workaround, int, 0); 144 module_param_array(options, int, NULL, 0); 145 module_param_array(full_duplex, int, NULL, 0); 146 MODULE_PARM_DESC(mtu, "DP8381x MTU (all boards)"); 147 MODULE_PARM_DESC(debug, "DP8381x default debug level"); 148 MODULE_PARM_DESC(rx_copybreak, 149 "DP8381x copy breakpoint for copy-only-tiny-frames"); 150 MODULE_PARM_DESC(dspcfg_workaround, "DP8381x: control DspCfg workaround"); 151 MODULE_PARM_DESC(options, 152 "DP8381x: Bits 0-3: media type, bit 17: full duplex"); 153 MODULE_PARM_DESC(full_duplex, "DP8381x full duplex setting(s) (1)"); 154 155 /* 156 Theory of Operation 157 158 I. Board Compatibility 159 160 This driver is designed for National Semiconductor DP83815 PCI Ethernet NIC. 161 It also works with other chips in in the DP83810 series. 162 163 II. Board-specific settings 164 165 This driver requires the PCI interrupt line to be valid. 166 It honors the EEPROM-set values. 167 168 III. Driver operation 169 170 IIIa. Ring buffers 171 172 This driver uses two statically allocated fixed-size descriptor lists 173 formed into rings by a branch from the final descriptor to the beginning of 174 the list. The ring sizes are set at compile time by RX/TX_RING_SIZE. 175 The NatSemi design uses a 'next descriptor' pointer that the driver forms 176 into a list. 177 178 IIIb/c. Transmit/Receive Structure 179 180 This driver uses a zero-copy receive and transmit scheme. 181 The driver allocates full frame size skbuffs for the Rx ring buffers at 182 open() time and passes the skb->data field to the chip as receive data 183 buffers. When an incoming frame is less than RX_COPYBREAK bytes long, 184 a fresh skbuff is allocated and the frame is copied to the new skbuff. 185 When the incoming frame is larger, the skbuff is passed directly up the 186 protocol stack. Buffers consumed this way are replaced by newly allocated 187 skbuffs in a later phase of receives. 188 189 The RX_COPYBREAK value is chosen to trade-off the memory wasted by 190 using a full-sized skbuff for small frames vs. the copying costs of larger 191 frames. New boards are typically used in generously configured machines 192 and the underfilled buffers have negligible impact compared to the benefit of 193 a single allocation size, so the default value of zero results in never 194 copying packets. When copying is done, the cost is usually mitigated by using 195 a combined copy/checksum routine. Copying also preloads the cache, which is 196 most useful with small frames. 197 198 A subtle aspect of the operation is that unaligned buffers are not permitted 199 by the hardware. Thus the IP header at offset 14 in an ethernet frame isn't 200 longword aligned for further processing. On copies frames are put into the 201 skbuff at an offset of "+2", 16-byte aligning the IP header. 202 203 IIId. Synchronization 204 205 Most operations are synchronized on the np->lock irq spinlock, except the 206 receive and transmit paths which are synchronised using a combination of 207 hardware descriptor ownership, disabling interrupts and NAPI poll scheduling. 208 209 IVb. References 210 211 http://www.scyld.com/expert/100mbps.html 212 http://www.scyld.com/expert/NWay.html 213 Datasheet is available from: 214 http://www.national.com/pf/DP/DP83815.html 215 216 IVc. Errata 217 218 None characterised. 219 */ 220 221 222 223 /* 224 * Support for fibre connections on Am79C874: 225 * This phy needs a special setup when connected to a fibre cable. 226 * http://www.amd.com/files/connectivitysolutions/networking/archivednetworking/22235.pdf 227 */ 228 #define PHYID_AM79C874 0x0022561b 229 230 enum { 231 MII_MCTRL = 0x15, /* mode control register */ 232 MII_FX_SEL = 0x0001, /* 100BASE-FX (fiber) */ 233 MII_EN_SCRM = 0x0004, /* enable scrambler (tp) */ 234 }; 235 236 enum { 237 NATSEMI_FLAG_IGNORE_PHY = 0x1, 238 }; 239 240 /* array of board data directly indexed by pci_tbl[x].driver_data */ 241 static struct { 242 const char *name; 243 unsigned long flags; 244 unsigned int eeprom_size; 245 } natsemi_pci_info[] = { 246 { "Aculab E1/T1 PMXc cPCI carrier card", NATSEMI_FLAG_IGNORE_PHY, 128 }, 247 { "NatSemi DP8381[56]", 0, 24 }, 248 }; 249 250 static const struct pci_device_id natsemi_pci_tbl[] = { 251 { PCI_VENDOR_ID_NS, 0x0020, 0x12d9, 0x000c, 0, 0, 0 }, 252 { PCI_VENDOR_ID_NS, 0x0020, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 1 }, 253 { } /* terminate list */ 254 }; 255 MODULE_DEVICE_TABLE(pci, natsemi_pci_tbl); 256 257 /* Offsets to the device registers. 258 Unlike software-only systems, device drivers interact with complex hardware. 259 It's not useful to define symbolic names for every register bit in the 260 device. 261 */ 262 enum register_offsets { 263 ChipCmd = 0x00, 264 ChipConfig = 0x04, 265 EECtrl = 0x08, 266 PCIBusCfg = 0x0C, 267 IntrStatus = 0x10, 268 IntrMask = 0x14, 269 IntrEnable = 0x18, 270 IntrHoldoff = 0x1C, /* DP83816 only */ 271 TxRingPtr = 0x20, 272 TxConfig = 0x24, 273 RxRingPtr = 0x30, 274 RxConfig = 0x34, 275 ClkRun = 0x3C, 276 WOLCmd = 0x40, 277 PauseCmd = 0x44, 278 RxFilterAddr = 0x48, 279 RxFilterData = 0x4C, 280 BootRomAddr = 0x50, 281 BootRomData = 0x54, 282 SiliconRev = 0x58, 283 StatsCtrl = 0x5C, 284 StatsData = 0x60, 285 RxPktErrs = 0x60, 286 RxMissed = 0x68, 287 RxCRCErrs = 0x64, 288 BasicControl = 0x80, 289 BasicStatus = 0x84, 290 AnegAdv = 0x90, 291 AnegPeer = 0x94, 292 PhyStatus = 0xC0, 293 MIntrCtrl = 0xC4, 294 MIntrStatus = 0xC8, 295 PhyCtrl = 0xE4, 296 297 /* These are from the spec, around page 78... on a separate table. 298 * The meaning of these registers depend on the value of PGSEL. */ 299 PGSEL = 0xCC, 300 PMDCSR = 0xE4, 301 TSTDAT = 0xFC, 302 DSPCFG = 0xF4, 303 SDCFG = 0xF8 304 }; 305 /* the values for the 'magic' registers above (PGSEL=1) */ 306 #define PMDCSR_VAL 0x189c /* enable preferred adaptation circuitry */ 307 #define TSTDAT_VAL 0x0 308 #define DSPCFG_VAL 0x5040 309 #define SDCFG_VAL 0x008c /* set voltage thresholds for Signal Detect */ 310 #define DSPCFG_LOCK 0x20 /* coefficient lock bit in DSPCFG */ 311 #define DSPCFG_COEF 0x1000 /* see coefficient (in TSTDAT) bit in DSPCFG */ 312 #define TSTDAT_FIXED 0xe8 /* magic number for bad coefficients */ 313 314 /* misc PCI space registers */ 315 enum pci_register_offsets { 316 PCIPM = 0x44, 317 }; 318 319 enum ChipCmd_bits { 320 ChipReset = 0x100, 321 RxReset = 0x20, 322 TxReset = 0x10, 323 RxOff = 0x08, 324 RxOn = 0x04, 325 TxOff = 0x02, 326 TxOn = 0x01, 327 }; 328 329 enum ChipConfig_bits { 330 CfgPhyDis = 0x200, 331 CfgPhyRst = 0x400, 332 CfgExtPhy = 0x1000, 333 CfgAnegEnable = 0x2000, 334 CfgAneg100 = 0x4000, 335 CfgAnegFull = 0x8000, 336 CfgAnegDone = 0x8000000, 337 CfgFullDuplex = 0x20000000, 338 CfgSpeed100 = 0x40000000, 339 CfgLink = 0x80000000, 340 }; 341 342 enum EECtrl_bits { 343 EE_ShiftClk = 0x04, 344 EE_DataIn = 0x01, 345 EE_ChipSelect = 0x08, 346 EE_DataOut = 0x02, 347 MII_Data = 0x10, 348 MII_Write = 0x20, 349 MII_ShiftClk = 0x40, 350 }; 351 352 enum PCIBusCfg_bits { 353 EepromReload = 0x4, 354 }; 355 356 /* Bits in the interrupt status/mask registers. */ 357 enum IntrStatus_bits { 358 IntrRxDone = 0x0001, 359 IntrRxIntr = 0x0002, 360 IntrRxErr = 0x0004, 361 IntrRxEarly = 0x0008, 362 IntrRxIdle = 0x0010, 363 IntrRxOverrun = 0x0020, 364 IntrTxDone = 0x0040, 365 IntrTxIntr = 0x0080, 366 IntrTxErr = 0x0100, 367 IntrTxIdle = 0x0200, 368 IntrTxUnderrun = 0x0400, 369 StatsMax = 0x0800, 370 SWInt = 0x1000, 371 WOLPkt = 0x2000, 372 LinkChange = 0x4000, 373 IntrHighBits = 0x8000, 374 RxStatusFIFOOver = 0x10000, 375 IntrPCIErr = 0xf00000, 376 RxResetDone = 0x1000000, 377 TxResetDone = 0x2000000, 378 IntrAbnormalSummary = 0xCD20, 379 }; 380 381 /* 382 * Default Interrupts: 383 * Rx OK, Rx Packet Error, Rx Overrun, 384 * Tx OK, Tx Packet Error, Tx Underrun, 385 * MIB Service, Phy Interrupt, High Bits, 386 * Rx Status FIFO overrun, 387 * Received Target Abort, Received Master Abort, 388 * Signalled System Error, Received Parity Error 389 */ 390 #define DEFAULT_INTR 0x00f1cd65 391 392 enum TxConfig_bits { 393 TxDrthMask = 0x3f, 394 TxFlthMask = 0x3f00, 395 TxMxdmaMask = 0x700000, 396 TxMxdma_512 = 0x0, 397 TxMxdma_4 = 0x100000, 398 TxMxdma_8 = 0x200000, 399 TxMxdma_16 = 0x300000, 400 TxMxdma_32 = 0x400000, 401 TxMxdma_64 = 0x500000, 402 TxMxdma_128 = 0x600000, 403 TxMxdma_256 = 0x700000, 404 TxCollRetry = 0x800000, 405 TxAutoPad = 0x10000000, 406 TxMacLoop = 0x20000000, 407 TxHeartIgn = 0x40000000, 408 TxCarrierIgn = 0x80000000 409 }; 410 411 /* 412 * Tx Configuration: 413 * - 256 byte DMA burst length 414 * - fill threshold 512 bytes (i.e. restart DMA when 512 bytes are free) 415 * - 64 bytes initial drain threshold (i.e. begin actual transmission 416 * when 64 byte are in the fifo) 417 * - on tx underruns, increase drain threshold by 64. 418 * - at most use a drain threshold of 1472 bytes: The sum of the fill 419 * threshold and the drain threshold must be less than 2016 bytes. 420 * 421 */ 422 #define TX_FLTH_VAL ((512/32) << 8) 423 #define TX_DRTH_VAL_START (64/32) 424 #define TX_DRTH_VAL_INC 2 425 #define TX_DRTH_VAL_LIMIT (1472/32) 426 427 enum RxConfig_bits { 428 RxDrthMask = 0x3e, 429 RxMxdmaMask = 0x700000, 430 RxMxdma_512 = 0x0, 431 RxMxdma_4 = 0x100000, 432 RxMxdma_8 = 0x200000, 433 RxMxdma_16 = 0x300000, 434 RxMxdma_32 = 0x400000, 435 RxMxdma_64 = 0x500000, 436 RxMxdma_128 = 0x600000, 437 RxMxdma_256 = 0x700000, 438 RxAcceptLong = 0x8000000, 439 RxAcceptTx = 0x10000000, 440 RxAcceptRunt = 0x40000000, 441 RxAcceptErr = 0x80000000 442 }; 443 #define RX_DRTH_VAL (128/8) 444 445 enum ClkRun_bits { 446 PMEEnable = 0x100, 447 PMEStatus = 0x8000, 448 }; 449 450 enum WolCmd_bits { 451 WakePhy = 0x1, 452 WakeUnicast = 0x2, 453 WakeMulticast = 0x4, 454 WakeBroadcast = 0x8, 455 WakeArp = 0x10, 456 WakePMatch0 = 0x20, 457 WakePMatch1 = 0x40, 458 WakePMatch2 = 0x80, 459 WakePMatch3 = 0x100, 460 WakeMagic = 0x200, 461 WakeMagicSecure = 0x400, 462 SecureHack = 0x100000, 463 WokePhy = 0x400000, 464 WokeUnicast = 0x800000, 465 WokeMulticast = 0x1000000, 466 WokeBroadcast = 0x2000000, 467 WokeArp = 0x4000000, 468 WokePMatch0 = 0x8000000, 469 WokePMatch1 = 0x10000000, 470 WokePMatch2 = 0x20000000, 471 WokePMatch3 = 0x40000000, 472 WokeMagic = 0x80000000, 473 WakeOptsSummary = 0x7ff 474 }; 475 476 enum RxFilterAddr_bits { 477 RFCRAddressMask = 0x3ff, 478 AcceptMulticast = 0x00200000, 479 AcceptMyPhys = 0x08000000, 480 AcceptAllPhys = 0x10000000, 481 AcceptAllMulticast = 0x20000000, 482 AcceptBroadcast = 0x40000000, 483 RxFilterEnable = 0x80000000 484 }; 485 486 enum StatsCtrl_bits { 487 StatsWarn = 0x1, 488 StatsFreeze = 0x2, 489 StatsClear = 0x4, 490 StatsStrobe = 0x8, 491 }; 492 493 enum MIntrCtrl_bits { 494 MICRIntEn = 0x2, 495 }; 496 497 enum PhyCtrl_bits { 498 PhyAddrMask = 0x1f, 499 }; 500 501 #define PHY_ADDR_NONE 32 502 #define PHY_ADDR_INTERNAL 1 503 504 /* values we might find in the silicon revision register */ 505 #define SRR_DP83815_C 0x0302 506 #define SRR_DP83815_D 0x0403 507 #define SRR_DP83816_A4 0x0504 508 #define SRR_DP83816_A5 0x0505 509 510 /* The Rx and Tx buffer descriptors. */ 511 /* Note that using only 32 bit fields simplifies conversion to big-endian 512 architectures. */ 513 struct netdev_desc { 514 __le32 next_desc; 515 __le32 cmd_status; 516 __le32 addr; 517 __le32 software_use; 518 }; 519 520 /* Bits in network_desc.status */ 521 enum desc_status_bits { 522 DescOwn=0x80000000, DescMore=0x40000000, DescIntr=0x20000000, 523 DescNoCRC=0x10000000, DescPktOK=0x08000000, 524 DescSizeMask=0xfff, 525 526 DescTxAbort=0x04000000, DescTxFIFO=0x02000000, 527 DescTxCarrier=0x01000000, DescTxDefer=0x00800000, 528 DescTxExcDefer=0x00400000, DescTxOOWCol=0x00200000, 529 DescTxExcColl=0x00100000, DescTxCollCount=0x000f0000, 530 531 DescRxAbort=0x04000000, DescRxOver=0x02000000, 532 DescRxDest=0x01800000, DescRxLong=0x00400000, 533 DescRxRunt=0x00200000, DescRxInvalid=0x00100000, 534 DescRxCRC=0x00080000, DescRxAlign=0x00040000, 535 DescRxLoop=0x00020000, DesRxColl=0x00010000, 536 }; 537 538 struct netdev_private { 539 /* Descriptor rings first for alignment */ 540 dma_addr_t ring_dma; 541 struct netdev_desc *rx_ring; 542 struct netdev_desc *tx_ring; 543 /* The addresses of receive-in-place skbuffs */ 544 struct sk_buff *rx_skbuff[RX_RING_SIZE]; 545 dma_addr_t rx_dma[RX_RING_SIZE]; 546 /* address of a sent-in-place packet/buffer, for later free() */ 547 struct sk_buff *tx_skbuff[TX_RING_SIZE]; 548 dma_addr_t tx_dma[TX_RING_SIZE]; 549 struct net_device *dev; 550 void __iomem *ioaddr; 551 struct napi_struct napi; 552 /* Media monitoring timer */ 553 struct timer_list timer; 554 /* Frequently used values: keep some adjacent for cache effect */ 555 struct pci_dev *pci_dev; 556 struct netdev_desc *rx_head_desc; 557 /* Producer/consumer ring indices */ 558 unsigned int cur_rx, dirty_rx; 559 unsigned int cur_tx, dirty_tx; 560 /* Based on MTU+slack. */ 561 unsigned int rx_buf_sz; 562 int oom; 563 /* Interrupt status */ 564 u32 intr_status; 565 /* Do not touch the nic registers */ 566 int hands_off; 567 /* Don't pay attention to the reported link state. */ 568 int ignore_phy; 569 /* external phy that is used: only valid if dev->if_port != PORT_TP */ 570 int mii; 571 int phy_addr_external; 572 unsigned int full_duplex; 573 /* Rx filter */ 574 u32 cur_rx_mode; 575 u32 rx_filter[16]; 576 /* FIFO and PCI burst thresholds */ 577 u32 tx_config, rx_config; 578 /* original contents of ClkRun register */ 579 u32 SavedClkRun; 580 /* silicon revision */ 581 u32 srr; 582 /* expected DSPCFG value */ 583 u16 dspcfg; 584 int dspcfg_workaround; 585 /* parms saved in ethtool format */ 586 u16 speed; /* The forced speed, 10Mb, 100Mb, gigabit */ 587 u8 duplex; /* Duplex, half or full */ 588 u8 autoneg; /* Autonegotiation enabled */ 589 /* MII transceiver section */ 590 u16 advertising; 591 unsigned int iosize; 592 spinlock_t lock; 593 u32 msg_enable; 594 /* EEPROM data */ 595 int eeprom_size; 596 }; 597 598 static void move_int_phy(struct net_device *dev, int addr); 599 static int eeprom_read(void __iomem *ioaddr, int location); 600 static int mdio_read(struct net_device *dev, int reg); 601 static void mdio_write(struct net_device *dev, int reg, u16 data); 602 static void init_phy_fixup(struct net_device *dev); 603 static int miiport_read(struct net_device *dev, int phy_id, int reg); 604 static void miiport_write(struct net_device *dev, int phy_id, int reg, u16 data); 605 static int find_mii(struct net_device *dev); 606 static void natsemi_reset(struct net_device *dev); 607 static void natsemi_reload_eeprom(struct net_device *dev); 608 static void natsemi_stop_rxtx(struct net_device *dev); 609 static int netdev_open(struct net_device *dev); 610 static void do_cable_magic(struct net_device *dev); 611 static void undo_cable_magic(struct net_device *dev); 612 static void check_link(struct net_device *dev); 613 static void netdev_timer(struct timer_list *t); 614 static void dump_ring(struct net_device *dev); 615 static void ns_tx_timeout(struct net_device *dev); 616 static int alloc_ring(struct net_device *dev); 617 static void refill_rx(struct net_device *dev); 618 static void init_ring(struct net_device *dev); 619 static void drain_tx(struct net_device *dev); 620 static void drain_ring(struct net_device *dev); 621 static void free_ring(struct net_device *dev); 622 static void reinit_ring(struct net_device *dev); 623 static void init_registers(struct net_device *dev); 624 static netdev_tx_t start_tx(struct sk_buff *skb, struct net_device *dev); 625 static irqreturn_t intr_handler(int irq, void *dev_instance); 626 static void netdev_error(struct net_device *dev, int intr_status); 627 static int natsemi_poll(struct napi_struct *napi, int budget); 628 static void netdev_rx(struct net_device *dev, int *work_done, int work_to_do); 629 static void netdev_tx_done(struct net_device *dev); 630 static int natsemi_change_mtu(struct net_device *dev, int new_mtu); 631 #ifdef CONFIG_NET_POLL_CONTROLLER 632 static void natsemi_poll_controller(struct net_device *dev); 633 #endif 634 static void __set_rx_mode(struct net_device *dev); 635 static void set_rx_mode(struct net_device *dev); 636 static void __get_stats(struct net_device *dev); 637 static struct net_device_stats *get_stats(struct net_device *dev); 638 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd); 639 static int netdev_set_wol(struct net_device *dev, u32 newval); 640 static int netdev_get_wol(struct net_device *dev, u32 *supported, u32 *cur); 641 static int netdev_set_sopass(struct net_device *dev, u8 *newval); 642 static int netdev_get_sopass(struct net_device *dev, u8 *data); 643 static int netdev_get_ecmd(struct net_device *dev, 644 struct ethtool_link_ksettings *ecmd); 645 static int netdev_set_ecmd(struct net_device *dev, 646 const struct ethtool_link_ksettings *ecmd); 647 static void enable_wol_mode(struct net_device *dev, int enable_intr); 648 static int netdev_close(struct net_device *dev); 649 static int netdev_get_regs(struct net_device *dev, u8 *buf); 650 static int netdev_get_eeprom(struct net_device *dev, u8 *buf); 651 static const struct ethtool_ops ethtool_ops; 652 653 #define NATSEMI_ATTR(_name) \ 654 static ssize_t natsemi_show_##_name(struct device *dev, \ 655 struct device_attribute *attr, char *buf); \ 656 static ssize_t natsemi_set_##_name(struct device *dev, \ 657 struct device_attribute *attr, \ 658 const char *buf, size_t count); \ 659 static DEVICE_ATTR(_name, 0644, natsemi_show_##_name, natsemi_set_##_name) 660 661 #define NATSEMI_CREATE_FILE(_dev, _name) \ 662 device_create_file(&_dev->dev, &dev_attr_##_name) 663 #define NATSEMI_REMOVE_FILE(_dev, _name) \ 664 device_remove_file(&_dev->dev, &dev_attr_##_name) 665 666 NATSEMI_ATTR(dspcfg_workaround); 667 668 static ssize_t natsemi_show_dspcfg_workaround(struct device *dev, 669 struct device_attribute *attr, 670 char *buf) 671 { 672 struct netdev_private *np = netdev_priv(to_net_dev(dev)); 673 674 return sprintf(buf, "%s\n", np->dspcfg_workaround ? "on" : "off"); 675 } 676 677 static ssize_t natsemi_set_dspcfg_workaround(struct device *dev, 678 struct device_attribute *attr, 679 const char *buf, size_t count) 680 { 681 struct netdev_private *np = netdev_priv(to_net_dev(dev)); 682 int new_setting; 683 unsigned long flags; 684 685 /* Find out the new setting */ 686 if (!strncmp("on", buf, count - 1) || !strncmp("1", buf, count - 1)) 687 new_setting = 1; 688 else if (!strncmp("off", buf, count - 1) || 689 !strncmp("0", buf, count - 1)) 690 new_setting = 0; 691 else 692 return count; 693 694 spin_lock_irqsave(&np->lock, flags); 695 696 np->dspcfg_workaround = new_setting; 697 698 spin_unlock_irqrestore(&np->lock, flags); 699 700 return count; 701 } 702 703 static inline void __iomem *ns_ioaddr(struct net_device *dev) 704 { 705 struct netdev_private *np = netdev_priv(dev); 706 707 return np->ioaddr; 708 } 709 710 static inline void natsemi_irq_enable(struct net_device *dev) 711 { 712 writel(1, ns_ioaddr(dev) + IntrEnable); 713 readl(ns_ioaddr(dev) + IntrEnable); 714 } 715 716 static inline void natsemi_irq_disable(struct net_device *dev) 717 { 718 writel(0, ns_ioaddr(dev) + IntrEnable); 719 readl(ns_ioaddr(dev) + IntrEnable); 720 } 721 722 static void move_int_phy(struct net_device *dev, int addr) 723 { 724 struct netdev_private *np = netdev_priv(dev); 725 void __iomem *ioaddr = ns_ioaddr(dev); 726 int target = 31; 727 728 /* 729 * The internal phy is visible on the external mii bus. Therefore we must 730 * move it away before we can send commands to an external phy. 731 * There are two addresses we must avoid: 732 * - the address on the external phy that is used for transmission. 733 * - the address that we want to access. User space can access phys 734 * on the mii bus with SIOCGMIIREG/SIOCSMIIREG, independent from the 735 * phy that is used for transmission. 736 */ 737 738 if (target == addr) 739 target--; 740 if (target == np->phy_addr_external) 741 target--; 742 writew(target, ioaddr + PhyCtrl); 743 readw(ioaddr + PhyCtrl); 744 udelay(1); 745 } 746 747 static void natsemi_init_media(struct net_device *dev) 748 { 749 struct netdev_private *np = netdev_priv(dev); 750 u32 tmp; 751 752 if (np->ignore_phy) 753 netif_carrier_on(dev); 754 else 755 netif_carrier_off(dev); 756 757 /* get the initial settings from hardware */ 758 tmp = mdio_read(dev, MII_BMCR); 759 np->speed = (tmp & BMCR_SPEED100)? SPEED_100 : SPEED_10; 760 np->duplex = (tmp & BMCR_FULLDPLX)? DUPLEX_FULL : DUPLEX_HALF; 761 np->autoneg = (tmp & BMCR_ANENABLE)? AUTONEG_ENABLE: AUTONEG_DISABLE; 762 np->advertising= mdio_read(dev, MII_ADVERTISE); 763 764 if ((np->advertising & ADVERTISE_ALL) != ADVERTISE_ALL && 765 netif_msg_probe(np)) { 766 printk(KERN_INFO "natsemi %s: Transceiver default autonegotiation %s " 767 "10%s %s duplex.\n", 768 pci_name(np->pci_dev), 769 (mdio_read(dev, MII_BMCR) & BMCR_ANENABLE)? 770 "enabled, advertise" : "disabled, force", 771 (np->advertising & 772 (ADVERTISE_100FULL|ADVERTISE_100HALF))? 773 "0" : "", 774 (np->advertising & 775 (ADVERTISE_100FULL|ADVERTISE_10FULL))? 776 "full" : "half"); 777 } 778 if (netif_msg_probe(np)) 779 printk(KERN_INFO 780 "natsemi %s: Transceiver status %#04x advertising %#04x.\n", 781 pci_name(np->pci_dev), mdio_read(dev, MII_BMSR), 782 np->advertising); 783 784 } 785 786 static const struct net_device_ops natsemi_netdev_ops = { 787 .ndo_open = netdev_open, 788 .ndo_stop = netdev_close, 789 .ndo_start_xmit = start_tx, 790 .ndo_get_stats = get_stats, 791 .ndo_set_rx_mode = set_rx_mode, 792 .ndo_change_mtu = natsemi_change_mtu, 793 .ndo_do_ioctl = netdev_ioctl, 794 .ndo_tx_timeout = ns_tx_timeout, 795 .ndo_set_mac_address = eth_mac_addr, 796 .ndo_validate_addr = eth_validate_addr, 797 #ifdef CONFIG_NET_POLL_CONTROLLER 798 .ndo_poll_controller = natsemi_poll_controller, 799 #endif 800 }; 801 802 static int natsemi_probe1(struct pci_dev *pdev, const struct pci_device_id *ent) 803 { 804 struct net_device *dev; 805 struct netdev_private *np; 806 int i, option, irq, chip_idx = ent->driver_data; 807 static int find_cnt = -1; 808 resource_size_t iostart; 809 unsigned long iosize; 810 void __iomem *ioaddr; 811 const int pcibar = 1; /* PCI base address register */ 812 int prev_eedata; 813 u32 tmp; 814 815 /* when built into the kernel, we only print version if device is found */ 816 #ifndef MODULE 817 static int printed_version; 818 if (!printed_version++) 819 printk(version); 820 #endif 821 822 i = pci_enable_device(pdev); 823 if (i) return i; 824 825 /* natsemi has a non-standard PM control register 826 * in PCI config space. Some boards apparently need 827 * to be brought to D0 in this manner. 828 */ 829 pci_read_config_dword(pdev, PCIPM, &tmp); 830 if (tmp & PCI_PM_CTRL_STATE_MASK) { 831 /* D0 state, disable PME assertion */ 832 u32 newtmp = tmp & ~PCI_PM_CTRL_STATE_MASK; 833 pci_write_config_dword(pdev, PCIPM, newtmp); 834 } 835 836 find_cnt++; 837 iostart = pci_resource_start(pdev, pcibar); 838 iosize = pci_resource_len(pdev, pcibar); 839 irq = pdev->irq; 840 841 pci_set_master(pdev); 842 843 dev = alloc_etherdev(sizeof (struct netdev_private)); 844 if (!dev) 845 return -ENOMEM; 846 SET_NETDEV_DEV(dev, &pdev->dev); 847 848 i = pci_request_regions(pdev, DRV_NAME); 849 if (i) 850 goto err_pci_request_regions; 851 852 ioaddr = ioremap(iostart, iosize); 853 if (!ioaddr) { 854 i = -ENOMEM; 855 goto err_ioremap; 856 } 857 858 /* Work around the dropped serial bit. */ 859 prev_eedata = eeprom_read(ioaddr, 6); 860 for (i = 0; i < 3; i++) { 861 int eedata = eeprom_read(ioaddr, i + 7); 862 dev->dev_addr[i*2] = (eedata << 1) + (prev_eedata >> 15); 863 dev->dev_addr[i*2+1] = eedata >> 7; 864 prev_eedata = eedata; 865 } 866 867 np = netdev_priv(dev); 868 np->ioaddr = ioaddr; 869 870 netif_napi_add(dev, &np->napi, natsemi_poll, 64); 871 np->dev = dev; 872 873 np->pci_dev = pdev; 874 pci_set_drvdata(pdev, dev); 875 np->iosize = iosize; 876 spin_lock_init(&np->lock); 877 np->msg_enable = (debug >= 0) ? (1<<debug)-1 : NATSEMI_DEF_MSG; 878 np->hands_off = 0; 879 np->intr_status = 0; 880 np->eeprom_size = natsemi_pci_info[chip_idx].eeprom_size; 881 if (natsemi_pci_info[chip_idx].flags & NATSEMI_FLAG_IGNORE_PHY) 882 np->ignore_phy = 1; 883 else 884 np->ignore_phy = 0; 885 np->dspcfg_workaround = dspcfg_workaround; 886 887 /* Initial port: 888 * - If configured to ignore the PHY set up for external. 889 * - If the nic was configured to use an external phy and if find_mii 890 * finds a phy: use external port, first phy that replies. 891 * - Otherwise: internal port. 892 * Note that the phy address for the internal phy doesn't matter: 893 * The address would be used to access a phy over the mii bus, but 894 * the internal phy is accessed through mapped registers. 895 */ 896 if (np->ignore_phy || readl(ioaddr + ChipConfig) & CfgExtPhy) 897 dev->if_port = PORT_MII; 898 else 899 dev->if_port = PORT_TP; 900 /* Reset the chip to erase previous misconfiguration. */ 901 natsemi_reload_eeprom(dev); 902 natsemi_reset(dev); 903 904 if (dev->if_port != PORT_TP) { 905 np->phy_addr_external = find_mii(dev); 906 /* If we're ignoring the PHY it doesn't matter if we can't 907 * find one. */ 908 if (!np->ignore_phy && np->phy_addr_external == PHY_ADDR_NONE) { 909 dev->if_port = PORT_TP; 910 np->phy_addr_external = PHY_ADDR_INTERNAL; 911 } 912 } else { 913 np->phy_addr_external = PHY_ADDR_INTERNAL; 914 } 915 916 option = find_cnt < MAX_UNITS ? options[find_cnt] : 0; 917 /* The lower four bits are the media type. */ 918 if (option) { 919 if (option & 0x200) 920 np->full_duplex = 1; 921 if (option & 15) 922 printk(KERN_INFO 923 "natsemi %s: ignoring user supplied media type %d", 924 pci_name(np->pci_dev), option & 15); 925 } 926 if (find_cnt < MAX_UNITS && full_duplex[find_cnt]) 927 np->full_duplex = 1; 928 929 dev->netdev_ops = &natsemi_netdev_ops; 930 dev->watchdog_timeo = TX_TIMEOUT; 931 932 dev->ethtool_ops = ðtool_ops; 933 934 /* MTU range: 64 - 2024 */ 935 dev->min_mtu = ETH_ZLEN + ETH_FCS_LEN; 936 dev->max_mtu = NATSEMI_RX_LIMIT - NATSEMI_HEADERS; 937 938 if (mtu) 939 dev->mtu = mtu; 940 941 natsemi_init_media(dev); 942 943 /* save the silicon revision for later querying */ 944 np->srr = readl(ioaddr + SiliconRev); 945 if (netif_msg_hw(np)) 946 printk(KERN_INFO "natsemi %s: silicon revision %#04x.\n", 947 pci_name(np->pci_dev), np->srr); 948 949 i = register_netdev(dev); 950 if (i) 951 goto err_register_netdev; 952 i = NATSEMI_CREATE_FILE(pdev, dspcfg_workaround); 953 if (i) 954 goto err_create_file; 955 956 if (netif_msg_drv(np)) { 957 printk(KERN_INFO "natsemi %s: %s at %#08llx " 958 "(%s), %pM, IRQ %d", 959 dev->name, natsemi_pci_info[chip_idx].name, 960 (unsigned long long)iostart, pci_name(np->pci_dev), 961 dev->dev_addr, irq); 962 if (dev->if_port == PORT_TP) 963 printk(", port TP.\n"); 964 else if (np->ignore_phy) 965 printk(", port MII, ignoring PHY\n"); 966 else 967 printk(", port MII, phy ad %d.\n", np->phy_addr_external); 968 } 969 return 0; 970 971 err_create_file: 972 unregister_netdev(dev); 973 974 err_register_netdev: 975 iounmap(ioaddr); 976 977 err_ioremap: 978 pci_release_regions(pdev); 979 980 err_pci_request_regions: 981 free_netdev(dev); 982 return i; 983 } 984 985 986 /* Read the EEPROM and MII Management Data I/O (MDIO) interfaces. 987 The EEPROM code is for the common 93c06/46 EEPROMs with 6 bit addresses. */ 988 989 /* Delay between EEPROM clock transitions. 990 No extra delay is needed with 33Mhz PCI, but future 66Mhz access may need 991 a delay. Note that pre-2.0.34 kernels had a cache-alignment bug that 992 made udelay() unreliable. 993 The old method of using an ISA access as a delay, __SLOW_DOWN_IO__, is 994 deprecated. 995 */ 996 #define eeprom_delay(ee_addr) readl(ee_addr) 997 998 #define EE_Write0 (EE_ChipSelect) 999 #define EE_Write1 (EE_ChipSelect | EE_DataIn) 1000 1001 /* The EEPROM commands include the alway-set leading bit. */ 1002 enum EEPROM_Cmds { 1003 EE_WriteCmd=(5 << 6), EE_ReadCmd=(6 << 6), EE_EraseCmd=(7 << 6), 1004 }; 1005 1006 static int eeprom_read(void __iomem *addr, int location) 1007 { 1008 int i; 1009 int retval = 0; 1010 void __iomem *ee_addr = addr + EECtrl; 1011 int read_cmd = location | EE_ReadCmd; 1012 1013 writel(EE_Write0, ee_addr); 1014 1015 /* Shift the read command bits out. */ 1016 for (i = 10; i >= 0; i--) { 1017 short dataval = (read_cmd & (1 << i)) ? EE_Write1 : EE_Write0; 1018 writel(dataval, ee_addr); 1019 eeprom_delay(ee_addr); 1020 writel(dataval | EE_ShiftClk, ee_addr); 1021 eeprom_delay(ee_addr); 1022 } 1023 writel(EE_ChipSelect, ee_addr); 1024 eeprom_delay(ee_addr); 1025 1026 for (i = 0; i < 16; i++) { 1027 writel(EE_ChipSelect | EE_ShiftClk, ee_addr); 1028 eeprom_delay(ee_addr); 1029 retval |= (readl(ee_addr) & EE_DataOut) ? 1 << i : 0; 1030 writel(EE_ChipSelect, ee_addr); 1031 eeprom_delay(ee_addr); 1032 } 1033 1034 /* Terminate the EEPROM access. */ 1035 writel(EE_Write0, ee_addr); 1036 writel(0, ee_addr); 1037 return retval; 1038 } 1039 1040 /* MII transceiver control section. 1041 * The 83815 series has an internal transceiver, and we present the 1042 * internal management registers as if they were MII connected. 1043 * External Phy registers are referenced through the MII interface. 1044 */ 1045 1046 /* clock transitions >= 20ns (25MHz) 1047 * One readl should be good to PCI @ 100MHz 1048 */ 1049 #define mii_delay(ioaddr) readl(ioaddr + EECtrl) 1050 1051 static int mii_getbit (struct net_device *dev) 1052 { 1053 int data; 1054 void __iomem *ioaddr = ns_ioaddr(dev); 1055 1056 writel(MII_ShiftClk, ioaddr + EECtrl); 1057 data = readl(ioaddr + EECtrl); 1058 writel(0, ioaddr + EECtrl); 1059 mii_delay(ioaddr); 1060 return (data & MII_Data)? 1 : 0; 1061 } 1062 1063 static void mii_send_bits (struct net_device *dev, u32 data, int len) 1064 { 1065 u32 i; 1066 void __iomem *ioaddr = ns_ioaddr(dev); 1067 1068 for (i = (1 << (len-1)); i; i >>= 1) 1069 { 1070 u32 mdio_val = MII_Write | ((data & i)? MII_Data : 0); 1071 writel(mdio_val, ioaddr + EECtrl); 1072 mii_delay(ioaddr); 1073 writel(mdio_val | MII_ShiftClk, ioaddr + EECtrl); 1074 mii_delay(ioaddr); 1075 } 1076 writel(0, ioaddr + EECtrl); 1077 mii_delay(ioaddr); 1078 } 1079 1080 static int miiport_read(struct net_device *dev, int phy_id, int reg) 1081 { 1082 u32 cmd; 1083 int i; 1084 u32 retval = 0; 1085 1086 /* Ensure sync */ 1087 mii_send_bits (dev, 0xffffffff, 32); 1088 /* ST(2), OP(2), ADDR(5), REG#(5), TA(2), Data(16) total 32 bits */ 1089 /* ST,OP = 0110'b for read operation */ 1090 cmd = (0x06 << 10) | (phy_id << 5) | reg; 1091 mii_send_bits (dev, cmd, 14); 1092 /* Turnaround */ 1093 if (mii_getbit (dev)) 1094 return 0; 1095 /* Read data */ 1096 for (i = 0; i < 16; i++) { 1097 retval <<= 1; 1098 retval |= mii_getbit (dev); 1099 } 1100 /* End cycle */ 1101 mii_getbit (dev); 1102 return retval; 1103 } 1104 1105 static void miiport_write(struct net_device *dev, int phy_id, int reg, u16 data) 1106 { 1107 u32 cmd; 1108 1109 /* Ensure sync */ 1110 mii_send_bits (dev, 0xffffffff, 32); 1111 /* ST(2), OP(2), ADDR(5), REG#(5), TA(2), Data(16) total 32 bits */ 1112 /* ST,OP,AAAAA,RRRRR,TA = 0101xxxxxxxxxx10'b = 0x5002 for write */ 1113 cmd = (0x5002 << 16) | (phy_id << 23) | (reg << 18) | data; 1114 mii_send_bits (dev, cmd, 32); 1115 /* End cycle */ 1116 mii_getbit (dev); 1117 } 1118 1119 static int mdio_read(struct net_device *dev, int reg) 1120 { 1121 struct netdev_private *np = netdev_priv(dev); 1122 void __iomem *ioaddr = ns_ioaddr(dev); 1123 1124 /* The 83815 series has two ports: 1125 * - an internal transceiver 1126 * - an external mii bus 1127 */ 1128 if (dev->if_port == PORT_TP) 1129 return readw(ioaddr+BasicControl+(reg<<2)); 1130 else 1131 return miiport_read(dev, np->phy_addr_external, reg); 1132 } 1133 1134 static void mdio_write(struct net_device *dev, int reg, u16 data) 1135 { 1136 struct netdev_private *np = netdev_priv(dev); 1137 void __iomem *ioaddr = ns_ioaddr(dev); 1138 1139 /* The 83815 series has an internal transceiver; handle separately */ 1140 if (dev->if_port == PORT_TP) 1141 writew(data, ioaddr+BasicControl+(reg<<2)); 1142 else 1143 miiport_write(dev, np->phy_addr_external, reg, data); 1144 } 1145 1146 static void init_phy_fixup(struct net_device *dev) 1147 { 1148 struct netdev_private *np = netdev_priv(dev); 1149 void __iomem *ioaddr = ns_ioaddr(dev); 1150 int i; 1151 u32 cfg; 1152 u16 tmp; 1153 1154 /* restore stuff lost when power was out */ 1155 tmp = mdio_read(dev, MII_BMCR); 1156 if (np->autoneg == AUTONEG_ENABLE) { 1157 /* renegotiate if something changed */ 1158 if ((tmp & BMCR_ANENABLE) == 0 || 1159 np->advertising != mdio_read(dev, MII_ADVERTISE)) 1160 { 1161 /* turn on autonegotiation and force negotiation */ 1162 tmp |= (BMCR_ANENABLE | BMCR_ANRESTART); 1163 mdio_write(dev, MII_ADVERTISE, np->advertising); 1164 } 1165 } else { 1166 /* turn off auto negotiation, set speed and duplexity */ 1167 tmp &= ~(BMCR_ANENABLE | BMCR_SPEED100 | BMCR_FULLDPLX); 1168 if (np->speed == SPEED_100) 1169 tmp |= BMCR_SPEED100; 1170 if (np->duplex == DUPLEX_FULL) 1171 tmp |= BMCR_FULLDPLX; 1172 /* 1173 * Note: there is no good way to inform the link partner 1174 * that our capabilities changed. The user has to unplug 1175 * and replug the network cable after some changes, e.g. 1176 * after switching from 10HD, autoneg off to 100 HD, 1177 * autoneg off. 1178 */ 1179 } 1180 mdio_write(dev, MII_BMCR, tmp); 1181 readl(ioaddr + ChipConfig); 1182 udelay(1); 1183 1184 /* find out what phy this is */ 1185 np->mii = (mdio_read(dev, MII_PHYSID1) << 16) 1186 + mdio_read(dev, MII_PHYSID2); 1187 1188 /* handle external phys here */ 1189 switch (np->mii) { 1190 case PHYID_AM79C874: 1191 /* phy specific configuration for fibre/tp operation */ 1192 tmp = mdio_read(dev, MII_MCTRL); 1193 tmp &= ~(MII_FX_SEL | MII_EN_SCRM); 1194 if (dev->if_port == PORT_FIBRE) 1195 tmp |= MII_FX_SEL; 1196 else 1197 tmp |= MII_EN_SCRM; 1198 mdio_write(dev, MII_MCTRL, tmp); 1199 break; 1200 default: 1201 break; 1202 } 1203 cfg = readl(ioaddr + ChipConfig); 1204 if (cfg & CfgExtPhy) 1205 return; 1206 1207 /* On page 78 of the spec, they recommend some settings for "optimum 1208 performance" to be done in sequence. These settings optimize some 1209 of the 100Mbit autodetection circuitry. They say we only want to 1210 do this for rev C of the chip, but engineers at NSC (Bradley 1211 Kennedy) recommends always setting them. If you don't, you get 1212 errors on some autonegotiations that make the device unusable. 1213 1214 It seems that the DSP needs a few usec to reinitialize after 1215 the start of the phy. Just retry writing these values until they 1216 stick. 1217 */ 1218 for (i=0;i<NATSEMI_HW_TIMEOUT;i++) { 1219 1220 int dspcfg; 1221 writew(1, ioaddr + PGSEL); 1222 writew(PMDCSR_VAL, ioaddr + PMDCSR); 1223 writew(TSTDAT_VAL, ioaddr + TSTDAT); 1224 np->dspcfg = (np->srr <= SRR_DP83815_C)? 1225 DSPCFG_VAL : (DSPCFG_COEF | readw(ioaddr + DSPCFG)); 1226 writew(np->dspcfg, ioaddr + DSPCFG); 1227 writew(SDCFG_VAL, ioaddr + SDCFG); 1228 writew(0, ioaddr + PGSEL); 1229 readl(ioaddr + ChipConfig); 1230 udelay(10); 1231 1232 writew(1, ioaddr + PGSEL); 1233 dspcfg = readw(ioaddr + DSPCFG); 1234 writew(0, ioaddr + PGSEL); 1235 if (np->dspcfg == dspcfg) 1236 break; 1237 } 1238 1239 if (netif_msg_link(np)) { 1240 if (i==NATSEMI_HW_TIMEOUT) { 1241 printk(KERN_INFO 1242 "%s: DSPCFG mismatch after retrying for %d usec.\n", 1243 dev->name, i*10); 1244 } else { 1245 printk(KERN_INFO 1246 "%s: DSPCFG accepted after %d usec.\n", 1247 dev->name, i*10); 1248 } 1249 } 1250 /* 1251 * Enable PHY Specific event based interrupts. Link state change 1252 * and Auto-Negotiation Completion are among the affected. 1253 * Read the intr status to clear it (needed for wake events). 1254 */ 1255 readw(ioaddr + MIntrStatus); 1256 writew(MICRIntEn, ioaddr + MIntrCtrl); 1257 } 1258 1259 static int switch_port_external(struct net_device *dev) 1260 { 1261 struct netdev_private *np = netdev_priv(dev); 1262 void __iomem *ioaddr = ns_ioaddr(dev); 1263 u32 cfg; 1264 1265 cfg = readl(ioaddr + ChipConfig); 1266 if (cfg & CfgExtPhy) 1267 return 0; 1268 1269 if (netif_msg_link(np)) { 1270 printk(KERN_INFO "%s: switching to external transceiver.\n", 1271 dev->name); 1272 } 1273 1274 /* 1) switch back to external phy */ 1275 writel(cfg | (CfgExtPhy | CfgPhyDis), ioaddr + ChipConfig); 1276 readl(ioaddr + ChipConfig); 1277 udelay(1); 1278 1279 /* 2) reset the external phy: */ 1280 /* resetting the external PHY has been known to cause a hub supplying 1281 * power over Ethernet to kill the power. We don't want to kill 1282 * power to this computer, so we avoid resetting the phy. 1283 */ 1284 1285 /* 3) reinit the phy fixup, it got lost during power down. */ 1286 move_int_phy(dev, np->phy_addr_external); 1287 init_phy_fixup(dev); 1288 1289 return 1; 1290 } 1291 1292 static int switch_port_internal(struct net_device *dev) 1293 { 1294 struct netdev_private *np = netdev_priv(dev); 1295 void __iomem *ioaddr = ns_ioaddr(dev); 1296 int i; 1297 u32 cfg; 1298 u16 bmcr; 1299 1300 cfg = readl(ioaddr + ChipConfig); 1301 if (!(cfg &CfgExtPhy)) 1302 return 0; 1303 1304 if (netif_msg_link(np)) { 1305 printk(KERN_INFO "%s: switching to internal transceiver.\n", 1306 dev->name); 1307 } 1308 /* 1) switch back to internal phy: */ 1309 cfg = cfg & ~(CfgExtPhy | CfgPhyDis); 1310 writel(cfg, ioaddr + ChipConfig); 1311 readl(ioaddr + ChipConfig); 1312 udelay(1); 1313 1314 /* 2) reset the internal phy: */ 1315 bmcr = readw(ioaddr+BasicControl+(MII_BMCR<<2)); 1316 writel(bmcr | BMCR_RESET, ioaddr+BasicControl+(MII_BMCR<<2)); 1317 readl(ioaddr + ChipConfig); 1318 udelay(10); 1319 for (i=0;i<NATSEMI_HW_TIMEOUT;i++) { 1320 bmcr = readw(ioaddr+BasicControl+(MII_BMCR<<2)); 1321 if (!(bmcr & BMCR_RESET)) 1322 break; 1323 udelay(10); 1324 } 1325 if (i==NATSEMI_HW_TIMEOUT && netif_msg_link(np)) { 1326 printk(KERN_INFO 1327 "%s: phy reset did not complete in %d usec.\n", 1328 dev->name, i*10); 1329 } 1330 /* 3) reinit the phy fixup, it got lost during power down. */ 1331 init_phy_fixup(dev); 1332 1333 return 1; 1334 } 1335 1336 /* Scan for a PHY on the external mii bus. 1337 * There are two tricky points: 1338 * - Do not scan while the internal phy is enabled. The internal phy will 1339 * crash: e.g. reads from the DSPCFG register will return odd values and 1340 * the nasty random phy reset code will reset the nic every few seconds. 1341 * - The internal phy must be moved around, an external phy could 1342 * have the same address as the internal phy. 1343 */ 1344 static int find_mii(struct net_device *dev) 1345 { 1346 struct netdev_private *np = netdev_priv(dev); 1347 int tmp; 1348 int i; 1349 int did_switch; 1350 1351 /* Switch to external phy */ 1352 did_switch = switch_port_external(dev); 1353 1354 /* Scan the possible phy addresses: 1355 * 1356 * PHY address 0 means that the phy is in isolate mode. Not yet 1357 * supported due to lack of test hardware. User space should 1358 * handle it through ethtool. 1359 */ 1360 for (i = 1; i <= 31; i++) { 1361 move_int_phy(dev, i); 1362 tmp = miiport_read(dev, i, MII_BMSR); 1363 if (tmp != 0xffff && tmp != 0x0000) { 1364 /* found something! */ 1365 np->mii = (mdio_read(dev, MII_PHYSID1) << 16) 1366 + mdio_read(dev, MII_PHYSID2); 1367 if (netif_msg_probe(np)) { 1368 printk(KERN_INFO "natsemi %s: found external phy %08x at address %d.\n", 1369 pci_name(np->pci_dev), np->mii, i); 1370 } 1371 break; 1372 } 1373 } 1374 /* And switch back to internal phy: */ 1375 if (did_switch) 1376 switch_port_internal(dev); 1377 return i; 1378 } 1379 1380 /* CFG bits [13:16] [18:23] */ 1381 #define CFG_RESET_SAVE 0xfde000 1382 /* WCSR bits [0:4] [9:10] */ 1383 #define WCSR_RESET_SAVE 0x61f 1384 /* RFCR bits [20] [22] [27:31] */ 1385 #define RFCR_RESET_SAVE 0xf8500000 1386 1387 static void natsemi_reset(struct net_device *dev) 1388 { 1389 int i; 1390 u32 cfg; 1391 u32 wcsr; 1392 u32 rfcr; 1393 u16 pmatch[3]; 1394 u16 sopass[3]; 1395 struct netdev_private *np = netdev_priv(dev); 1396 void __iomem *ioaddr = ns_ioaddr(dev); 1397 1398 /* 1399 * Resetting the chip causes some registers to be lost. 1400 * Natsemi suggests NOT reloading the EEPROM while live, so instead 1401 * we save the state that would have been loaded from EEPROM 1402 * on a normal power-up (see the spec EEPROM map). This assumes 1403 * whoever calls this will follow up with init_registers() eventually. 1404 */ 1405 1406 /* CFG */ 1407 cfg = readl(ioaddr + ChipConfig) & CFG_RESET_SAVE; 1408 /* WCSR */ 1409 wcsr = readl(ioaddr + WOLCmd) & WCSR_RESET_SAVE; 1410 /* RFCR */ 1411 rfcr = readl(ioaddr + RxFilterAddr) & RFCR_RESET_SAVE; 1412 /* PMATCH */ 1413 for (i = 0; i < 3; i++) { 1414 writel(i*2, ioaddr + RxFilterAddr); 1415 pmatch[i] = readw(ioaddr + RxFilterData); 1416 } 1417 /* SOPAS */ 1418 for (i = 0; i < 3; i++) { 1419 writel(0xa+(i*2), ioaddr + RxFilterAddr); 1420 sopass[i] = readw(ioaddr + RxFilterData); 1421 } 1422 1423 /* now whack the chip */ 1424 writel(ChipReset, ioaddr + ChipCmd); 1425 for (i=0;i<NATSEMI_HW_TIMEOUT;i++) { 1426 if (!(readl(ioaddr + ChipCmd) & ChipReset)) 1427 break; 1428 udelay(5); 1429 } 1430 if (i==NATSEMI_HW_TIMEOUT) { 1431 printk(KERN_WARNING "%s: reset did not complete in %d usec.\n", 1432 dev->name, i*5); 1433 } else if (netif_msg_hw(np)) { 1434 printk(KERN_DEBUG "%s: reset completed in %d usec.\n", 1435 dev->name, i*5); 1436 } 1437 1438 /* restore CFG */ 1439 cfg |= readl(ioaddr + ChipConfig) & ~CFG_RESET_SAVE; 1440 /* turn on external phy if it was selected */ 1441 if (dev->if_port == PORT_TP) 1442 cfg &= ~(CfgExtPhy | CfgPhyDis); 1443 else 1444 cfg |= (CfgExtPhy | CfgPhyDis); 1445 writel(cfg, ioaddr + ChipConfig); 1446 /* restore WCSR */ 1447 wcsr |= readl(ioaddr + WOLCmd) & ~WCSR_RESET_SAVE; 1448 writel(wcsr, ioaddr + WOLCmd); 1449 /* read RFCR */ 1450 rfcr |= readl(ioaddr + RxFilterAddr) & ~RFCR_RESET_SAVE; 1451 /* restore PMATCH */ 1452 for (i = 0; i < 3; i++) { 1453 writel(i*2, ioaddr + RxFilterAddr); 1454 writew(pmatch[i], ioaddr + RxFilterData); 1455 } 1456 for (i = 0; i < 3; i++) { 1457 writel(0xa+(i*2), ioaddr + RxFilterAddr); 1458 writew(sopass[i], ioaddr + RxFilterData); 1459 } 1460 /* restore RFCR */ 1461 writel(rfcr, ioaddr + RxFilterAddr); 1462 } 1463 1464 static void reset_rx(struct net_device *dev) 1465 { 1466 int i; 1467 struct netdev_private *np = netdev_priv(dev); 1468 void __iomem *ioaddr = ns_ioaddr(dev); 1469 1470 np->intr_status &= ~RxResetDone; 1471 1472 writel(RxReset, ioaddr + ChipCmd); 1473 1474 for (i=0;i<NATSEMI_HW_TIMEOUT;i++) { 1475 np->intr_status |= readl(ioaddr + IntrStatus); 1476 if (np->intr_status & RxResetDone) 1477 break; 1478 udelay(15); 1479 } 1480 if (i==NATSEMI_HW_TIMEOUT) { 1481 printk(KERN_WARNING "%s: RX reset did not complete in %d usec.\n", 1482 dev->name, i*15); 1483 } else if (netif_msg_hw(np)) { 1484 printk(KERN_WARNING "%s: RX reset took %d usec.\n", 1485 dev->name, i*15); 1486 } 1487 } 1488 1489 static void natsemi_reload_eeprom(struct net_device *dev) 1490 { 1491 struct netdev_private *np = netdev_priv(dev); 1492 void __iomem *ioaddr = ns_ioaddr(dev); 1493 int i; 1494 1495 writel(EepromReload, ioaddr + PCIBusCfg); 1496 for (i=0;i<NATSEMI_HW_TIMEOUT;i++) { 1497 udelay(50); 1498 if (!(readl(ioaddr + PCIBusCfg) & EepromReload)) 1499 break; 1500 } 1501 if (i==NATSEMI_HW_TIMEOUT) { 1502 printk(KERN_WARNING "natsemi %s: EEPROM did not reload in %d usec.\n", 1503 pci_name(np->pci_dev), i*50); 1504 } else if (netif_msg_hw(np)) { 1505 printk(KERN_DEBUG "natsemi %s: EEPROM reloaded in %d usec.\n", 1506 pci_name(np->pci_dev), i*50); 1507 } 1508 } 1509 1510 static void natsemi_stop_rxtx(struct net_device *dev) 1511 { 1512 void __iomem * ioaddr = ns_ioaddr(dev); 1513 struct netdev_private *np = netdev_priv(dev); 1514 int i; 1515 1516 writel(RxOff | TxOff, ioaddr + ChipCmd); 1517 for(i=0;i< NATSEMI_HW_TIMEOUT;i++) { 1518 if ((readl(ioaddr + ChipCmd) & (TxOn|RxOn)) == 0) 1519 break; 1520 udelay(5); 1521 } 1522 if (i==NATSEMI_HW_TIMEOUT) { 1523 printk(KERN_WARNING "%s: Tx/Rx process did not stop in %d usec.\n", 1524 dev->name, i*5); 1525 } else if (netif_msg_hw(np)) { 1526 printk(KERN_DEBUG "%s: Tx/Rx process stopped in %d usec.\n", 1527 dev->name, i*5); 1528 } 1529 } 1530 1531 static int netdev_open(struct net_device *dev) 1532 { 1533 struct netdev_private *np = netdev_priv(dev); 1534 void __iomem * ioaddr = ns_ioaddr(dev); 1535 const int irq = np->pci_dev->irq; 1536 int i; 1537 1538 /* Reset the chip, just in case. */ 1539 natsemi_reset(dev); 1540 1541 i = request_irq(irq, intr_handler, IRQF_SHARED, dev->name, dev); 1542 if (i) return i; 1543 1544 if (netif_msg_ifup(np)) 1545 printk(KERN_DEBUG "%s: netdev_open() irq %d.\n", 1546 dev->name, irq); 1547 i = alloc_ring(dev); 1548 if (i < 0) { 1549 free_irq(irq, dev); 1550 return i; 1551 } 1552 napi_enable(&np->napi); 1553 1554 init_ring(dev); 1555 spin_lock_irq(&np->lock); 1556 init_registers(dev); 1557 /* now set the MAC address according to dev->dev_addr */ 1558 for (i = 0; i < 3; i++) { 1559 u16 mac = (dev->dev_addr[2*i+1]<<8) + dev->dev_addr[2*i]; 1560 1561 writel(i*2, ioaddr + RxFilterAddr); 1562 writew(mac, ioaddr + RxFilterData); 1563 } 1564 writel(np->cur_rx_mode, ioaddr + RxFilterAddr); 1565 spin_unlock_irq(&np->lock); 1566 1567 netif_start_queue(dev); 1568 1569 if (netif_msg_ifup(np)) 1570 printk(KERN_DEBUG "%s: Done netdev_open(), status: %#08x.\n", 1571 dev->name, (int)readl(ioaddr + ChipCmd)); 1572 1573 /* Set the timer to check for link beat. */ 1574 timer_setup(&np->timer, netdev_timer, 0); 1575 np->timer.expires = round_jiffies(jiffies + NATSEMI_TIMER_FREQ); 1576 add_timer(&np->timer); 1577 1578 return 0; 1579 } 1580 1581 static void do_cable_magic(struct net_device *dev) 1582 { 1583 struct netdev_private *np = netdev_priv(dev); 1584 void __iomem *ioaddr = ns_ioaddr(dev); 1585 1586 if (dev->if_port != PORT_TP) 1587 return; 1588 1589 if (np->srr >= SRR_DP83816_A5) 1590 return; 1591 1592 /* 1593 * 100 MBit links with short cables can trip an issue with the chip. 1594 * The problem manifests as lots of CRC errors and/or flickering 1595 * activity LED while idle. This process is based on instructions 1596 * from engineers at National. 1597 */ 1598 if (readl(ioaddr + ChipConfig) & CfgSpeed100) { 1599 u16 data; 1600 1601 writew(1, ioaddr + PGSEL); 1602 /* 1603 * coefficient visibility should already be enabled via 1604 * DSPCFG | 0x1000 1605 */ 1606 data = readw(ioaddr + TSTDAT) & 0xff; 1607 /* 1608 * the value must be negative, and within certain values 1609 * (these values all come from National) 1610 */ 1611 if (!(data & 0x80) || ((data >= 0xd8) && (data <= 0xff))) { 1612 np = netdev_priv(dev); 1613 1614 /* the bug has been triggered - fix the coefficient */ 1615 writew(TSTDAT_FIXED, ioaddr + TSTDAT); 1616 /* lock the value */ 1617 data = readw(ioaddr + DSPCFG); 1618 np->dspcfg = data | DSPCFG_LOCK; 1619 writew(np->dspcfg, ioaddr + DSPCFG); 1620 } 1621 writew(0, ioaddr + PGSEL); 1622 } 1623 } 1624 1625 static void undo_cable_magic(struct net_device *dev) 1626 { 1627 u16 data; 1628 struct netdev_private *np = netdev_priv(dev); 1629 void __iomem * ioaddr = ns_ioaddr(dev); 1630 1631 if (dev->if_port != PORT_TP) 1632 return; 1633 1634 if (np->srr >= SRR_DP83816_A5) 1635 return; 1636 1637 writew(1, ioaddr + PGSEL); 1638 /* make sure the lock bit is clear */ 1639 data = readw(ioaddr + DSPCFG); 1640 np->dspcfg = data & ~DSPCFG_LOCK; 1641 writew(np->dspcfg, ioaddr + DSPCFG); 1642 writew(0, ioaddr + PGSEL); 1643 } 1644 1645 static void check_link(struct net_device *dev) 1646 { 1647 struct netdev_private *np = netdev_priv(dev); 1648 void __iomem * ioaddr = ns_ioaddr(dev); 1649 int duplex = np->duplex; 1650 u16 bmsr; 1651 1652 /* If we are ignoring the PHY then don't try reading it. */ 1653 if (np->ignore_phy) 1654 goto propagate_state; 1655 1656 /* The link status field is latched: it remains low after a temporary 1657 * link failure until it's read. We need the current link status, 1658 * thus read twice. 1659 */ 1660 mdio_read(dev, MII_BMSR); 1661 bmsr = mdio_read(dev, MII_BMSR); 1662 1663 if (!(bmsr & BMSR_LSTATUS)) { 1664 if (netif_carrier_ok(dev)) { 1665 if (netif_msg_link(np)) 1666 printk(KERN_NOTICE "%s: link down.\n", 1667 dev->name); 1668 netif_carrier_off(dev); 1669 undo_cable_magic(dev); 1670 } 1671 return; 1672 } 1673 if (!netif_carrier_ok(dev)) { 1674 if (netif_msg_link(np)) 1675 printk(KERN_NOTICE "%s: link up.\n", dev->name); 1676 netif_carrier_on(dev); 1677 do_cable_magic(dev); 1678 } 1679 1680 duplex = np->full_duplex; 1681 if (!duplex) { 1682 if (bmsr & BMSR_ANEGCOMPLETE) { 1683 int tmp = mii_nway_result( 1684 np->advertising & mdio_read(dev, MII_LPA)); 1685 if (tmp == LPA_100FULL || tmp == LPA_10FULL) 1686 duplex = 1; 1687 } else if (mdio_read(dev, MII_BMCR) & BMCR_FULLDPLX) 1688 duplex = 1; 1689 } 1690 1691 propagate_state: 1692 /* if duplex is set then bit 28 must be set, too */ 1693 if (duplex ^ !!(np->rx_config & RxAcceptTx)) { 1694 if (netif_msg_link(np)) 1695 printk(KERN_INFO 1696 "%s: Setting %s-duplex based on negotiated " 1697 "link capability.\n", dev->name, 1698 duplex ? "full" : "half"); 1699 if (duplex) { 1700 np->rx_config |= RxAcceptTx; 1701 np->tx_config |= TxCarrierIgn | TxHeartIgn; 1702 } else { 1703 np->rx_config &= ~RxAcceptTx; 1704 np->tx_config &= ~(TxCarrierIgn | TxHeartIgn); 1705 } 1706 writel(np->tx_config, ioaddr + TxConfig); 1707 writel(np->rx_config, ioaddr + RxConfig); 1708 } 1709 } 1710 1711 static void init_registers(struct net_device *dev) 1712 { 1713 struct netdev_private *np = netdev_priv(dev); 1714 void __iomem * ioaddr = ns_ioaddr(dev); 1715 1716 init_phy_fixup(dev); 1717 1718 /* clear any interrupts that are pending, such as wake events */ 1719 readl(ioaddr + IntrStatus); 1720 1721 writel(np->ring_dma, ioaddr + RxRingPtr); 1722 writel(np->ring_dma + RX_RING_SIZE * sizeof(struct netdev_desc), 1723 ioaddr + TxRingPtr); 1724 1725 /* Initialize other registers. 1726 * Configure the PCI bus bursts and FIFO thresholds. 1727 * Configure for standard, in-spec Ethernet. 1728 * Start with half-duplex. check_link will update 1729 * to the correct settings. 1730 */ 1731 1732 /* DRTH: 2: start tx if 64 bytes are in the fifo 1733 * FLTH: 0x10: refill with next packet if 512 bytes are free 1734 * MXDMA: 0: up to 256 byte bursts. 1735 * MXDMA must be <= FLTH 1736 * ECRETRY=1 1737 * ATP=1 1738 */ 1739 np->tx_config = TxAutoPad | TxCollRetry | TxMxdma_256 | 1740 TX_FLTH_VAL | TX_DRTH_VAL_START; 1741 writel(np->tx_config, ioaddr + TxConfig); 1742 1743 /* DRTH 0x10: start copying to memory if 128 bytes are in the fifo 1744 * MXDMA 0: up to 256 byte bursts 1745 */ 1746 np->rx_config = RxMxdma_256 | RX_DRTH_VAL; 1747 /* if receive ring now has bigger buffers than normal, enable jumbo */ 1748 if (np->rx_buf_sz > NATSEMI_LONGPKT) 1749 np->rx_config |= RxAcceptLong; 1750 1751 writel(np->rx_config, ioaddr + RxConfig); 1752 1753 /* Disable PME: 1754 * The PME bit is initialized from the EEPROM contents. 1755 * PCI cards probably have PME disabled, but motherboard 1756 * implementations may have PME set to enable WakeOnLan. 1757 * With PME set the chip will scan incoming packets but 1758 * nothing will be written to memory. */ 1759 np->SavedClkRun = readl(ioaddr + ClkRun); 1760 writel(np->SavedClkRun & ~PMEEnable, ioaddr + ClkRun); 1761 if (np->SavedClkRun & PMEStatus && netif_msg_wol(np)) { 1762 printk(KERN_NOTICE "%s: Wake-up event %#08x\n", 1763 dev->name, readl(ioaddr + WOLCmd)); 1764 } 1765 1766 check_link(dev); 1767 __set_rx_mode(dev); 1768 1769 /* Enable interrupts by setting the interrupt mask. */ 1770 writel(DEFAULT_INTR, ioaddr + IntrMask); 1771 natsemi_irq_enable(dev); 1772 1773 writel(RxOn | TxOn, ioaddr + ChipCmd); 1774 writel(StatsClear, ioaddr + StatsCtrl); /* Clear Stats */ 1775 } 1776 1777 /* 1778 * netdev_timer: 1779 * Purpose: 1780 * 1) check for link changes. Usually they are handled by the MII interrupt 1781 * but it doesn't hurt to check twice. 1782 * 2) check for sudden death of the NIC: 1783 * It seems that a reference set for this chip went out with incorrect info, 1784 * and there exist boards that aren't quite right. An unexpected voltage 1785 * drop can cause the PHY to get itself in a weird state (basically reset). 1786 * NOTE: this only seems to affect revC chips. The user can disable 1787 * this check via dspcfg_workaround sysfs option. 1788 * 3) check of death of the RX path due to OOM 1789 */ 1790 static void netdev_timer(struct timer_list *t) 1791 { 1792 struct netdev_private *np = from_timer(np, t, timer); 1793 struct net_device *dev = np->dev; 1794 void __iomem * ioaddr = ns_ioaddr(dev); 1795 int next_tick = NATSEMI_TIMER_FREQ; 1796 const int irq = np->pci_dev->irq; 1797 1798 if (netif_msg_timer(np)) { 1799 /* DO NOT read the IntrStatus register, 1800 * a read clears any pending interrupts. 1801 */ 1802 printk(KERN_DEBUG "%s: Media selection timer tick.\n", 1803 dev->name); 1804 } 1805 1806 if (dev->if_port == PORT_TP) { 1807 u16 dspcfg; 1808 1809 spin_lock_irq(&np->lock); 1810 /* check for a nasty random phy-reset - use dspcfg as a flag */ 1811 writew(1, ioaddr+PGSEL); 1812 dspcfg = readw(ioaddr+DSPCFG); 1813 writew(0, ioaddr+PGSEL); 1814 if (np->dspcfg_workaround && dspcfg != np->dspcfg) { 1815 if (!netif_queue_stopped(dev)) { 1816 spin_unlock_irq(&np->lock); 1817 if (netif_msg_drv(np)) 1818 printk(KERN_NOTICE "%s: possible phy reset: " 1819 "re-initializing\n", dev->name); 1820 disable_irq(irq); 1821 spin_lock_irq(&np->lock); 1822 natsemi_stop_rxtx(dev); 1823 dump_ring(dev); 1824 reinit_ring(dev); 1825 init_registers(dev); 1826 spin_unlock_irq(&np->lock); 1827 enable_irq(irq); 1828 } else { 1829 /* hurry back */ 1830 next_tick = HZ; 1831 spin_unlock_irq(&np->lock); 1832 } 1833 } else { 1834 /* init_registers() calls check_link() for the above case */ 1835 check_link(dev); 1836 spin_unlock_irq(&np->lock); 1837 } 1838 } else { 1839 spin_lock_irq(&np->lock); 1840 check_link(dev); 1841 spin_unlock_irq(&np->lock); 1842 } 1843 if (np->oom) { 1844 disable_irq(irq); 1845 np->oom = 0; 1846 refill_rx(dev); 1847 enable_irq(irq); 1848 if (!np->oom) { 1849 writel(RxOn, ioaddr + ChipCmd); 1850 } else { 1851 next_tick = 1; 1852 } 1853 } 1854 1855 if (next_tick > 1) 1856 mod_timer(&np->timer, round_jiffies(jiffies + next_tick)); 1857 else 1858 mod_timer(&np->timer, jiffies + next_tick); 1859 } 1860 1861 static void dump_ring(struct net_device *dev) 1862 { 1863 struct netdev_private *np = netdev_priv(dev); 1864 1865 if (netif_msg_pktdata(np)) { 1866 int i; 1867 printk(KERN_DEBUG " Tx ring at %p:\n", np->tx_ring); 1868 for (i = 0; i < TX_RING_SIZE; i++) { 1869 printk(KERN_DEBUG " #%d desc. %#08x %#08x %#08x.\n", 1870 i, np->tx_ring[i].next_desc, 1871 np->tx_ring[i].cmd_status, 1872 np->tx_ring[i].addr); 1873 } 1874 printk(KERN_DEBUG " Rx ring %p:\n", np->rx_ring); 1875 for (i = 0; i < RX_RING_SIZE; i++) { 1876 printk(KERN_DEBUG " #%d desc. %#08x %#08x %#08x.\n", 1877 i, np->rx_ring[i].next_desc, 1878 np->rx_ring[i].cmd_status, 1879 np->rx_ring[i].addr); 1880 } 1881 } 1882 } 1883 1884 static void ns_tx_timeout(struct net_device *dev) 1885 { 1886 struct netdev_private *np = netdev_priv(dev); 1887 void __iomem * ioaddr = ns_ioaddr(dev); 1888 const int irq = np->pci_dev->irq; 1889 1890 disable_irq(irq); 1891 spin_lock_irq(&np->lock); 1892 if (!np->hands_off) { 1893 if (netif_msg_tx_err(np)) 1894 printk(KERN_WARNING 1895 "%s: Transmit timed out, status %#08x," 1896 " resetting...\n", 1897 dev->name, readl(ioaddr + IntrStatus)); 1898 dump_ring(dev); 1899 1900 natsemi_reset(dev); 1901 reinit_ring(dev); 1902 init_registers(dev); 1903 } else { 1904 printk(KERN_WARNING 1905 "%s: tx_timeout while in hands_off state?\n", 1906 dev->name); 1907 } 1908 spin_unlock_irq(&np->lock); 1909 enable_irq(irq); 1910 1911 netif_trans_update(dev); /* prevent tx timeout */ 1912 dev->stats.tx_errors++; 1913 netif_wake_queue(dev); 1914 } 1915 1916 static int alloc_ring(struct net_device *dev) 1917 { 1918 struct netdev_private *np = netdev_priv(dev); 1919 np->rx_ring = pci_alloc_consistent(np->pci_dev, 1920 sizeof(struct netdev_desc) * (RX_RING_SIZE+TX_RING_SIZE), 1921 &np->ring_dma); 1922 if (!np->rx_ring) 1923 return -ENOMEM; 1924 np->tx_ring = &np->rx_ring[RX_RING_SIZE]; 1925 return 0; 1926 } 1927 1928 static void refill_rx(struct net_device *dev) 1929 { 1930 struct netdev_private *np = netdev_priv(dev); 1931 1932 /* Refill the Rx ring buffers. */ 1933 for (; np->cur_rx - np->dirty_rx > 0; np->dirty_rx++) { 1934 struct sk_buff *skb; 1935 int entry = np->dirty_rx % RX_RING_SIZE; 1936 if (np->rx_skbuff[entry] == NULL) { 1937 unsigned int buflen = np->rx_buf_sz+NATSEMI_PADDING; 1938 skb = netdev_alloc_skb(dev, buflen); 1939 np->rx_skbuff[entry] = skb; 1940 if (skb == NULL) 1941 break; /* Better luck next round. */ 1942 np->rx_dma[entry] = pci_map_single(np->pci_dev, 1943 skb->data, buflen, PCI_DMA_FROMDEVICE); 1944 if (pci_dma_mapping_error(np->pci_dev, 1945 np->rx_dma[entry])) { 1946 dev_kfree_skb_any(skb); 1947 np->rx_skbuff[entry] = NULL; 1948 break; /* Better luck next round. */ 1949 } 1950 np->rx_ring[entry].addr = cpu_to_le32(np->rx_dma[entry]); 1951 } 1952 np->rx_ring[entry].cmd_status = cpu_to_le32(np->rx_buf_sz); 1953 } 1954 if (np->cur_rx - np->dirty_rx == RX_RING_SIZE) { 1955 if (netif_msg_rx_err(np)) 1956 printk(KERN_WARNING "%s: going OOM.\n", dev->name); 1957 np->oom = 1; 1958 } 1959 } 1960 1961 static void set_bufsize(struct net_device *dev) 1962 { 1963 struct netdev_private *np = netdev_priv(dev); 1964 if (dev->mtu <= ETH_DATA_LEN) 1965 np->rx_buf_sz = ETH_DATA_LEN + NATSEMI_HEADERS; 1966 else 1967 np->rx_buf_sz = dev->mtu + NATSEMI_HEADERS; 1968 } 1969 1970 /* Initialize the Rx and Tx rings, along with various 'dev' bits. */ 1971 static void init_ring(struct net_device *dev) 1972 { 1973 struct netdev_private *np = netdev_priv(dev); 1974 int i; 1975 1976 /* 1) TX ring */ 1977 np->dirty_tx = np->cur_tx = 0; 1978 for (i = 0; i < TX_RING_SIZE; i++) { 1979 np->tx_skbuff[i] = NULL; 1980 np->tx_ring[i].next_desc = cpu_to_le32(np->ring_dma 1981 +sizeof(struct netdev_desc) 1982 *((i+1)%TX_RING_SIZE+RX_RING_SIZE)); 1983 np->tx_ring[i].cmd_status = 0; 1984 } 1985 1986 /* 2) RX ring */ 1987 np->dirty_rx = 0; 1988 np->cur_rx = RX_RING_SIZE; 1989 np->oom = 0; 1990 set_bufsize(dev); 1991 1992 np->rx_head_desc = &np->rx_ring[0]; 1993 1994 /* Please be careful before changing this loop - at least gcc-2.95.1 1995 * miscompiles it otherwise. 1996 */ 1997 /* Initialize all Rx descriptors. */ 1998 for (i = 0; i < RX_RING_SIZE; i++) { 1999 np->rx_ring[i].next_desc = cpu_to_le32(np->ring_dma 2000 +sizeof(struct netdev_desc) 2001 *((i+1)%RX_RING_SIZE)); 2002 np->rx_ring[i].cmd_status = cpu_to_le32(DescOwn); 2003 np->rx_skbuff[i] = NULL; 2004 } 2005 refill_rx(dev); 2006 dump_ring(dev); 2007 } 2008 2009 static void drain_tx(struct net_device *dev) 2010 { 2011 struct netdev_private *np = netdev_priv(dev); 2012 int i; 2013 2014 for (i = 0; i < TX_RING_SIZE; i++) { 2015 if (np->tx_skbuff[i]) { 2016 pci_unmap_single(np->pci_dev, 2017 np->tx_dma[i], np->tx_skbuff[i]->len, 2018 PCI_DMA_TODEVICE); 2019 dev_kfree_skb(np->tx_skbuff[i]); 2020 dev->stats.tx_dropped++; 2021 } 2022 np->tx_skbuff[i] = NULL; 2023 } 2024 } 2025 2026 static void drain_rx(struct net_device *dev) 2027 { 2028 struct netdev_private *np = netdev_priv(dev); 2029 unsigned int buflen = np->rx_buf_sz; 2030 int i; 2031 2032 /* Free all the skbuffs in the Rx queue. */ 2033 for (i = 0; i < RX_RING_SIZE; i++) { 2034 np->rx_ring[i].cmd_status = 0; 2035 np->rx_ring[i].addr = cpu_to_le32(0xBADF00D0); /* An invalid address. */ 2036 if (np->rx_skbuff[i]) { 2037 pci_unmap_single(np->pci_dev, np->rx_dma[i], 2038 buflen + NATSEMI_PADDING, 2039 PCI_DMA_FROMDEVICE); 2040 dev_kfree_skb(np->rx_skbuff[i]); 2041 } 2042 np->rx_skbuff[i] = NULL; 2043 } 2044 } 2045 2046 static void drain_ring(struct net_device *dev) 2047 { 2048 drain_rx(dev); 2049 drain_tx(dev); 2050 } 2051 2052 static void free_ring(struct net_device *dev) 2053 { 2054 struct netdev_private *np = netdev_priv(dev); 2055 pci_free_consistent(np->pci_dev, 2056 sizeof(struct netdev_desc) * (RX_RING_SIZE+TX_RING_SIZE), 2057 np->rx_ring, np->ring_dma); 2058 } 2059 2060 static void reinit_rx(struct net_device *dev) 2061 { 2062 struct netdev_private *np = netdev_priv(dev); 2063 int i; 2064 2065 /* RX Ring */ 2066 np->dirty_rx = 0; 2067 np->cur_rx = RX_RING_SIZE; 2068 np->rx_head_desc = &np->rx_ring[0]; 2069 /* Initialize all Rx descriptors. */ 2070 for (i = 0; i < RX_RING_SIZE; i++) 2071 np->rx_ring[i].cmd_status = cpu_to_le32(DescOwn); 2072 2073 refill_rx(dev); 2074 } 2075 2076 static void reinit_ring(struct net_device *dev) 2077 { 2078 struct netdev_private *np = netdev_priv(dev); 2079 int i; 2080 2081 /* drain TX ring */ 2082 drain_tx(dev); 2083 np->dirty_tx = np->cur_tx = 0; 2084 for (i=0;i<TX_RING_SIZE;i++) 2085 np->tx_ring[i].cmd_status = 0; 2086 2087 reinit_rx(dev); 2088 } 2089 2090 static netdev_tx_t start_tx(struct sk_buff *skb, struct net_device *dev) 2091 { 2092 struct netdev_private *np = netdev_priv(dev); 2093 void __iomem * ioaddr = ns_ioaddr(dev); 2094 unsigned entry; 2095 unsigned long flags; 2096 2097 /* Note: Ordering is important here, set the field with the 2098 "ownership" bit last, and only then increment cur_tx. */ 2099 2100 /* Calculate the next Tx descriptor entry. */ 2101 entry = np->cur_tx % TX_RING_SIZE; 2102 2103 np->tx_skbuff[entry] = skb; 2104 np->tx_dma[entry] = pci_map_single(np->pci_dev, 2105 skb->data,skb->len, PCI_DMA_TODEVICE); 2106 if (pci_dma_mapping_error(np->pci_dev, np->tx_dma[entry])) { 2107 np->tx_skbuff[entry] = NULL; 2108 dev_kfree_skb_irq(skb); 2109 dev->stats.tx_dropped++; 2110 return NETDEV_TX_OK; 2111 } 2112 2113 np->tx_ring[entry].addr = cpu_to_le32(np->tx_dma[entry]); 2114 2115 spin_lock_irqsave(&np->lock, flags); 2116 2117 if (!np->hands_off) { 2118 np->tx_ring[entry].cmd_status = cpu_to_le32(DescOwn | skb->len); 2119 /* StrongARM: Explicitly cache flush np->tx_ring and 2120 * skb->data,skb->len. */ 2121 wmb(); 2122 np->cur_tx++; 2123 if (np->cur_tx - np->dirty_tx >= TX_QUEUE_LEN - 1) { 2124 netdev_tx_done(dev); 2125 if (np->cur_tx - np->dirty_tx >= TX_QUEUE_LEN - 1) 2126 netif_stop_queue(dev); 2127 } 2128 /* Wake the potentially-idle transmit channel. */ 2129 writel(TxOn, ioaddr + ChipCmd); 2130 } else { 2131 dev_kfree_skb_irq(skb); 2132 dev->stats.tx_dropped++; 2133 } 2134 spin_unlock_irqrestore(&np->lock, flags); 2135 2136 if (netif_msg_tx_queued(np)) { 2137 printk(KERN_DEBUG "%s: Transmit frame #%d queued in slot %d.\n", 2138 dev->name, np->cur_tx, entry); 2139 } 2140 return NETDEV_TX_OK; 2141 } 2142 2143 static void netdev_tx_done(struct net_device *dev) 2144 { 2145 struct netdev_private *np = netdev_priv(dev); 2146 2147 for (; np->cur_tx - np->dirty_tx > 0; np->dirty_tx++) { 2148 int entry = np->dirty_tx % TX_RING_SIZE; 2149 if (np->tx_ring[entry].cmd_status & cpu_to_le32(DescOwn)) 2150 break; 2151 if (netif_msg_tx_done(np)) 2152 printk(KERN_DEBUG 2153 "%s: tx frame #%d finished, status %#08x.\n", 2154 dev->name, np->dirty_tx, 2155 le32_to_cpu(np->tx_ring[entry].cmd_status)); 2156 if (np->tx_ring[entry].cmd_status & cpu_to_le32(DescPktOK)) { 2157 dev->stats.tx_packets++; 2158 dev->stats.tx_bytes += np->tx_skbuff[entry]->len; 2159 } else { /* Various Tx errors */ 2160 int tx_status = 2161 le32_to_cpu(np->tx_ring[entry].cmd_status); 2162 if (tx_status & (DescTxAbort|DescTxExcColl)) 2163 dev->stats.tx_aborted_errors++; 2164 if (tx_status & DescTxFIFO) 2165 dev->stats.tx_fifo_errors++; 2166 if (tx_status & DescTxCarrier) 2167 dev->stats.tx_carrier_errors++; 2168 if (tx_status & DescTxOOWCol) 2169 dev->stats.tx_window_errors++; 2170 dev->stats.tx_errors++; 2171 } 2172 pci_unmap_single(np->pci_dev,np->tx_dma[entry], 2173 np->tx_skbuff[entry]->len, 2174 PCI_DMA_TODEVICE); 2175 /* Free the original skb. */ 2176 dev_kfree_skb_irq(np->tx_skbuff[entry]); 2177 np->tx_skbuff[entry] = NULL; 2178 } 2179 if (netif_queue_stopped(dev) && 2180 np->cur_tx - np->dirty_tx < TX_QUEUE_LEN - 4) { 2181 /* The ring is no longer full, wake queue. */ 2182 netif_wake_queue(dev); 2183 } 2184 } 2185 2186 /* The interrupt handler doesn't actually handle interrupts itself, it 2187 * schedules a NAPI poll if there is anything to do. */ 2188 static irqreturn_t intr_handler(int irq, void *dev_instance) 2189 { 2190 struct net_device *dev = dev_instance; 2191 struct netdev_private *np = netdev_priv(dev); 2192 void __iomem * ioaddr = ns_ioaddr(dev); 2193 2194 /* Reading IntrStatus automatically acknowledges so don't do 2195 * that while interrupts are disabled, (for example, while a 2196 * poll is scheduled). */ 2197 if (np->hands_off || !readl(ioaddr + IntrEnable)) 2198 return IRQ_NONE; 2199 2200 np->intr_status = readl(ioaddr + IntrStatus); 2201 2202 if (!np->intr_status) 2203 return IRQ_NONE; 2204 2205 if (netif_msg_intr(np)) 2206 printk(KERN_DEBUG 2207 "%s: Interrupt, status %#08x, mask %#08x.\n", 2208 dev->name, np->intr_status, 2209 readl(ioaddr + IntrMask)); 2210 2211 prefetch(&np->rx_skbuff[np->cur_rx % RX_RING_SIZE]); 2212 2213 if (napi_schedule_prep(&np->napi)) { 2214 /* Disable interrupts and register for poll */ 2215 natsemi_irq_disable(dev); 2216 __napi_schedule(&np->napi); 2217 } else 2218 printk(KERN_WARNING 2219 "%s: Ignoring interrupt, status %#08x, mask %#08x.\n", 2220 dev->name, np->intr_status, 2221 readl(ioaddr + IntrMask)); 2222 2223 return IRQ_HANDLED; 2224 } 2225 2226 /* This is the NAPI poll routine. As well as the standard RX handling 2227 * it also handles all other interrupts that the chip might raise. 2228 */ 2229 static int natsemi_poll(struct napi_struct *napi, int budget) 2230 { 2231 struct netdev_private *np = container_of(napi, struct netdev_private, napi); 2232 struct net_device *dev = np->dev; 2233 void __iomem * ioaddr = ns_ioaddr(dev); 2234 int work_done = 0; 2235 2236 do { 2237 if (netif_msg_intr(np)) 2238 printk(KERN_DEBUG 2239 "%s: Poll, status %#08x, mask %#08x.\n", 2240 dev->name, np->intr_status, 2241 readl(ioaddr + IntrMask)); 2242 2243 /* netdev_rx() may read IntrStatus again if the RX state 2244 * machine falls over so do it first. */ 2245 if (np->intr_status & 2246 (IntrRxDone | IntrRxIntr | RxStatusFIFOOver | 2247 IntrRxErr | IntrRxOverrun)) { 2248 netdev_rx(dev, &work_done, budget); 2249 } 2250 2251 if (np->intr_status & 2252 (IntrTxDone | IntrTxIntr | IntrTxIdle | IntrTxErr)) { 2253 spin_lock(&np->lock); 2254 netdev_tx_done(dev); 2255 spin_unlock(&np->lock); 2256 } 2257 2258 /* Abnormal error summary/uncommon events handlers. */ 2259 if (np->intr_status & IntrAbnormalSummary) 2260 netdev_error(dev, np->intr_status); 2261 2262 if (work_done >= budget) 2263 return work_done; 2264 2265 np->intr_status = readl(ioaddr + IntrStatus); 2266 } while (np->intr_status); 2267 2268 napi_complete_done(napi, work_done); 2269 2270 /* Reenable interrupts providing nothing is trying to shut 2271 * the chip down. */ 2272 spin_lock(&np->lock); 2273 if (!np->hands_off) 2274 natsemi_irq_enable(dev); 2275 spin_unlock(&np->lock); 2276 2277 return work_done; 2278 } 2279 2280 /* This routine is logically part of the interrupt handler, but separated 2281 for clarity and better register allocation. */ 2282 static void netdev_rx(struct net_device *dev, int *work_done, int work_to_do) 2283 { 2284 struct netdev_private *np = netdev_priv(dev); 2285 int entry = np->cur_rx % RX_RING_SIZE; 2286 int boguscnt = np->dirty_rx + RX_RING_SIZE - np->cur_rx; 2287 s32 desc_status = le32_to_cpu(np->rx_head_desc->cmd_status); 2288 unsigned int buflen = np->rx_buf_sz; 2289 void __iomem * ioaddr = ns_ioaddr(dev); 2290 2291 /* If the driver owns the next entry it's a new packet. Send it up. */ 2292 while (desc_status < 0) { /* e.g. & DescOwn */ 2293 int pkt_len; 2294 if (netif_msg_rx_status(np)) 2295 printk(KERN_DEBUG 2296 " netdev_rx() entry %d status was %#08x.\n", 2297 entry, desc_status); 2298 if (--boguscnt < 0) 2299 break; 2300 2301 if (*work_done >= work_to_do) 2302 break; 2303 2304 (*work_done)++; 2305 2306 pkt_len = (desc_status & DescSizeMask) - 4; 2307 if ((desc_status&(DescMore|DescPktOK|DescRxLong)) != DescPktOK){ 2308 if (desc_status & DescMore) { 2309 unsigned long flags; 2310 2311 if (netif_msg_rx_err(np)) 2312 printk(KERN_WARNING 2313 "%s: Oversized(?) Ethernet " 2314 "frame spanned multiple " 2315 "buffers, entry %#08x " 2316 "status %#08x.\n", dev->name, 2317 np->cur_rx, desc_status); 2318 dev->stats.rx_length_errors++; 2319 2320 /* The RX state machine has probably 2321 * locked up beneath us. Follow the 2322 * reset procedure documented in 2323 * AN-1287. */ 2324 2325 spin_lock_irqsave(&np->lock, flags); 2326 reset_rx(dev); 2327 reinit_rx(dev); 2328 writel(np->ring_dma, ioaddr + RxRingPtr); 2329 check_link(dev); 2330 spin_unlock_irqrestore(&np->lock, flags); 2331 2332 /* We'll enable RX on exit from this 2333 * function. */ 2334 break; 2335 2336 } else { 2337 /* There was an error. */ 2338 dev->stats.rx_errors++; 2339 if (desc_status & (DescRxAbort|DescRxOver)) 2340 dev->stats.rx_over_errors++; 2341 if (desc_status & (DescRxLong|DescRxRunt)) 2342 dev->stats.rx_length_errors++; 2343 if (desc_status & (DescRxInvalid|DescRxAlign)) 2344 dev->stats.rx_frame_errors++; 2345 if (desc_status & DescRxCRC) 2346 dev->stats.rx_crc_errors++; 2347 } 2348 } else if (pkt_len > np->rx_buf_sz) { 2349 /* if this is the tail of a double buffer 2350 * packet, we've already counted the error 2351 * on the first part. Ignore the second half. 2352 */ 2353 } else { 2354 struct sk_buff *skb; 2355 /* Omit CRC size. */ 2356 /* Check if the packet is long enough to accept 2357 * without copying to a minimally-sized skbuff. */ 2358 if (pkt_len < rx_copybreak && 2359 (skb = netdev_alloc_skb(dev, pkt_len + RX_OFFSET)) != NULL) { 2360 /* 16 byte align the IP header */ 2361 skb_reserve(skb, RX_OFFSET); 2362 pci_dma_sync_single_for_cpu(np->pci_dev, 2363 np->rx_dma[entry], 2364 buflen, 2365 PCI_DMA_FROMDEVICE); 2366 skb_copy_to_linear_data(skb, 2367 np->rx_skbuff[entry]->data, pkt_len); 2368 skb_put(skb, pkt_len); 2369 pci_dma_sync_single_for_device(np->pci_dev, 2370 np->rx_dma[entry], 2371 buflen, 2372 PCI_DMA_FROMDEVICE); 2373 } else { 2374 pci_unmap_single(np->pci_dev, np->rx_dma[entry], 2375 buflen + NATSEMI_PADDING, 2376 PCI_DMA_FROMDEVICE); 2377 skb_put(skb = np->rx_skbuff[entry], pkt_len); 2378 np->rx_skbuff[entry] = NULL; 2379 } 2380 skb->protocol = eth_type_trans(skb, dev); 2381 netif_receive_skb(skb); 2382 dev->stats.rx_packets++; 2383 dev->stats.rx_bytes += pkt_len; 2384 } 2385 entry = (++np->cur_rx) % RX_RING_SIZE; 2386 np->rx_head_desc = &np->rx_ring[entry]; 2387 desc_status = le32_to_cpu(np->rx_head_desc->cmd_status); 2388 } 2389 refill_rx(dev); 2390 2391 /* Restart Rx engine if stopped. */ 2392 if (np->oom) 2393 mod_timer(&np->timer, jiffies + 1); 2394 else 2395 writel(RxOn, ioaddr + ChipCmd); 2396 } 2397 2398 static void netdev_error(struct net_device *dev, int intr_status) 2399 { 2400 struct netdev_private *np = netdev_priv(dev); 2401 void __iomem * ioaddr = ns_ioaddr(dev); 2402 2403 spin_lock(&np->lock); 2404 if (intr_status & LinkChange) { 2405 u16 lpa = mdio_read(dev, MII_LPA); 2406 if (mdio_read(dev, MII_BMCR) & BMCR_ANENABLE && 2407 netif_msg_link(np)) { 2408 printk(KERN_INFO 2409 "%s: Autonegotiation advertising" 2410 " %#04x partner %#04x.\n", dev->name, 2411 np->advertising, lpa); 2412 } 2413 2414 /* read MII int status to clear the flag */ 2415 readw(ioaddr + MIntrStatus); 2416 check_link(dev); 2417 } 2418 if (intr_status & StatsMax) { 2419 __get_stats(dev); 2420 } 2421 if (intr_status & IntrTxUnderrun) { 2422 if ((np->tx_config & TxDrthMask) < TX_DRTH_VAL_LIMIT) { 2423 np->tx_config += TX_DRTH_VAL_INC; 2424 if (netif_msg_tx_err(np)) 2425 printk(KERN_NOTICE 2426 "%s: increased tx threshold, txcfg %#08x.\n", 2427 dev->name, np->tx_config); 2428 } else { 2429 if (netif_msg_tx_err(np)) 2430 printk(KERN_NOTICE 2431 "%s: tx underrun with maximum tx threshold, txcfg %#08x.\n", 2432 dev->name, np->tx_config); 2433 } 2434 writel(np->tx_config, ioaddr + TxConfig); 2435 } 2436 if (intr_status & WOLPkt && netif_msg_wol(np)) { 2437 int wol_status = readl(ioaddr + WOLCmd); 2438 printk(KERN_NOTICE "%s: Link wake-up event %#08x\n", 2439 dev->name, wol_status); 2440 } 2441 if (intr_status & RxStatusFIFOOver) { 2442 if (netif_msg_rx_err(np) && netif_msg_intr(np)) { 2443 printk(KERN_NOTICE "%s: Rx status FIFO overrun\n", 2444 dev->name); 2445 } 2446 dev->stats.rx_fifo_errors++; 2447 dev->stats.rx_errors++; 2448 } 2449 /* Hmmmmm, it's not clear how to recover from PCI faults. */ 2450 if (intr_status & IntrPCIErr) { 2451 printk(KERN_NOTICE "%s: PCI error %#08x\n", dev->name, 2452 intr_status & IntrPCIErr); 2453 dev->stats.tx_fifo_errors++; 2454 dev->stats.tx_errors++; 2455 dev->stats.rx_fifo_errors++; 2456 dev->stats.rx_errors++; 2457 } 2458 spin_unlock(&np->lock); 2459 } 2460 2461 static void __get_stats(struct net_device *dev) 2462 { 2463 void __iomem * ioaddr = ns_ioaddr(dev); 2464 2465 /* The chip only need report frame silently dropped. */ 2466 dev->stats.rx_crc_errors += readl(ioaddr + RxCRCErrs); 2467 dev->stats.rx_missed_errors += readl(ioaddr + RxMissed); 2468 } 2469 2470 static struct net_device_stats *get_stats(struct net_device *dev) 2471 { 2472 struct netdev_private *np = netdev_priv(dev); 2473 2474 /* The chip only need report frame silently dropped. */ 2475 spin_lock_irq(&np->lock); 2476 if (netif_running(dev) && !np->hands_off) 2477 __get_stats(dev); 2478 spin_unlock_irq(&np->lock); 2479 2480 return &dev->stats; 2481 } 2482 2483 #ifdef CONFIG_NET_POLL_CONTROLLER 2484 static void natsemi_poll_controller(struct net_device *dev) 2485 { 2486 struct netdev_private *np = netdev_priv(dev); 2487 const int irq = np->pci_dev->irq; 2488 2489 disable_irq(irq); 2490 intr_handler(irq, dev); 2491 enable_irq(irq); 2492 } 2493 #endif 2494 2495 #define HASH_TABLE 0x200 2496 static void __set_rx_mode(struct net_device *dev) 2497 { 2498 void __iomem * ioaddr = ns_ioaddr(dev); 2499 struct netdev_private *np = netdev_priv(dev); 2500 u8 mc_filter[64]; /* Multicast hash filter */ 2501 u32 rx_mode; 2502 2503 if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */ 2504 rx_mode = RxFilterEnable | AcceptBroadcast 2505 | AcceptAllMulticast | AcceptAllPhys | AcceptMyPhys; 2506 } else if ((netdev_mc_count(dev) > multicast_filter_limit) || 2507 (dev->flags & IFF_ALLMULTI)) { 2508 rx_mode = RxFilterEnable | AcceptBroadcast 2509 | AcceptAllMulticast | AcceptMyPhys; 2510 } else { 2511 struct netdev_hw_addr *ha; 2512 int i; 2513 2514 memset(mc_filter, 0, sizeof(mc_filter)); 2515 netdev_for_each_mc_addr(ha, dev) { 2516 int b = (ether_crc(ETH_ALEN, ha->addr) >> 23) & 0x1ff; 2517 mc_filter[b/8] |= (1 << (b & 0x07)); 2518 } 2519 rx_mode = RxFilterEnable | AcceptBroadcast 2520 | AcceptMulticast | AcceptMyPhys; 2521 for (i = 0; i < 64; i += 2) { 2522 writel(HASH_TABLE + i, ioaddr + RxFilterAddr); 2523 writel((mc_filter[i + 1] << 8) + mc_filter[i], 2524 ioaddr + RxFilterData); 2525 } 2526 } 2527 writel(rx_mode, ioaddr + RxFilterAddr); 2528 np->cur_rx_mode = rx_mode; 2529 } 2530 2531 static int natsemi_change_mtu(struct net_device *dev, int new_mtu) 2532 { 2533 dev->mtu = new_mtu; 2534 2535 /* synchronized against open : rtnl_lock() held by caller */ 2536 if (netif_running(dev)) { 2537 struct netdev_private *np = netdev_priv(dev); 2538 void __iomem * ioaddr = ns_ioaddr(dev); 2539 const int irq = np->pci_dev->irq; 2540 2541 disable_irq(irq); 2542 spin_lock(&np->lock); 2543 /* stop engines */ 2544 natsemi_stop_rxtx(dev); 2545 /* drain rx queue */ 2546 drain_rx(dev); 2547 /* change buffers */ 2548 set_bufsize(dev); 2549 reinit_rx(dev); 2550 writel(np->ring_dma, ioaddr + RxRingPtr); 2551 /* restart engines */ 2552 writel(RxOn | TxOn, ioaddr + ChipCmd); 2553 spin_unlock(&np->lock); 2554 enable_irq(irq); 2555 } 2556 return 0; 2557 } 2558 2559 static void set_rx_mode(struct net_device *dev) 2560 { 2561 struct netdev_private *np = netdev_priv(dev); 2562 spin_lock_irq(&np->lock); 2563 if (!np->hands_off) 2564 __set_rx_mode(dev); 2565 spin_unlock_irq(&np->lock); 2566 } 2567 2568 static void get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info) 2569 { 2570 struct netdev_private *np = netdev_priv(dev); 2571 strlcpy(info->driver, DRV_NAME, sizeof(info->driver)); 2572 strlcpy(info->version, DRV_VERSION, sizeof(info->version)); 2573 strlcpy(info->bus_info, pci_name(np->pci_dev), sizeof(info->bus_info)); 2574 } 2575 2576 static int get_regs_len(struct net_device *dev) 2577 { 2578 return NATSEMI_REGS_SIZE; 2579 } 2580 2581 static int get_eeprom_len(struct net_device *dev) 2582 { 2583 struct netdev_private *np = netdev_priv(dev); 2584 return np->eeprom_size; 2585 } 2586 2587 static int get_link_ksettings(struct net_device *dev, 2588 struct ethtool_link_ksettings *ecmd) 2589 { 2590 struct netdev_private *np = netdev_priv(dev); 2591 spin_lock_irq(&np->lock); 2592 netdev_get_ecmd(dev, ecmd); 2593 spin_unlock_irq(&np->lock); 2594 return 0; 2595 } 2596 2597 static int set_link_ksettings(struct net_device *dev, 2598 const struct ethtool_link_ksettings *ecmd) 2599 { 2600 struct netdev_private *np = netdev_priv(dev); 2601 int res; 2602 spin_lock_irq(&np->lock); 2603 res = netdev_set_ecmd(dev, ecmd); 2604 spin_unlock_irq(&np->lock); 2605 return res; 2606 } 2607 2608 static void get_wol(struct net_device *dev, struct ethtool_wolinfo *wol) 2609 { 2610 struct netdev_private *np = netdev_priv(dev); 2611 spin_lock_irq(&np->lock); 2612 netdev_get_wol(dev, &wol->supported, &wol->wolopts); 2613 netdev_get_sopass(dev, wol->sopass); 2614 spin_unlock_irq(&np->lock); 2615 } 2616 2617 static int set_wol(struct net_device *dev, struct ethtool_wolinfo *wol) 2618 { 2619 struct netdev_private *np = netdev_priv(dev); 2620 int res; 2621 spin_lock_irq(&np->lock); 2622 netdev_set_wol(dev, wol->wolopts); 2623 res = netdev_set_sopass(dev, wol->sopass); 2624 spin_unlock_irq(&np->lock); 2625 return res; 2626 } 2627 2628 static void get_regs(struct net_device *dev, struct ethtool_regs *regs, void *buf) 2629 { 2630 struct netdev_private *np = netdev_priv(dev); 2631 regs->version = NATSEMI_REGS_VER; 2632 spin_lock_irq(&np->lock); 2633 netdev_get_regs(dev, buf); 2634 spin_unlock_irq(&np->lock); 2635 } 2636 2637 static u32 get_msglevel(struct net_device *dev) 2638 { 2639 struct netdev_private *np = netdev_priv(dev); 2640 return np->msg_enable; 2641 } 2642 2643 static void set_msglevel(struct net_device *dev, u32 val) 2644 { 2645 struct netdev_private *np = netdev_priv(dev); 2646 np->msg_enable = val; 2647 } 2648 2649 static int nway_reset(struct net_device *dev) 2650 { 2651 int tmp; 2652 int r = -EINVAL; 2653 /* if autoneg is off, it's an error */ 2654 tmp = mdio_read(dev, MII_BMCR); 2655 if (tmp & BMCR_ANENABLE) { 2656 tmp |= (BMCR_ANRESTART); 2657 mdio_write(dev, MII_BMCR, tmp); 2658 r = 0; 2659 } 2660 return r; 2661 } 2662 2663 static u32 get_link(struct net_device *dev) 2664 { 2665 /* LSTATUS is latched low until a read - so read twice */ 2666 mdio_read(dev, MII_BMSR); 2667 return (mdio_read(dev, MII_BMSR)&BMSR_LSTATUS) ? 1:0; 2668 } 2669 2670 static int get_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom, u8 *data) 2671 { 2672 struct netdev_private *np = netdev_priv(dev); 2673 u8 *eebuf; 2674 int res; 2675 2676 eebuf = kmalloc(np->eeprom_size, GFP_KERNEL); 2677 if (!eebuf) 2678 return -ENOMEM; 2679 2680 eeprom->magic = PCI_VENDOR_ID_NS | (PCI_DEVICE_ID_NS_83815<<16); 2681 spin_lock_irq(&np->lock); 2682 res = netdev_get_eeprom(dev, eebuf); 2683 spin_unlock_irq(&np->lock); 2684 if (!res) 2685 memcpy(data, eebuf+eeprom->offset, eeprom->len); 2686 kfree(eebuf); 2687 return res; 2688 } 2689 2690 static const struct ethtool_ops ethtool_ops = { 2691 .get_drvinfo = get_drvinfo, 2692 .get_regs_len = get_regs_len, 2693 .get_eeprom_len = get_eeprom_len, 2694 .get_wol = get_wol, 2695 .set_wol = set_wol, 2696 .get_regs = get_regs, 2697 .get_msglevel = get_msglevel, 2698 .set_msglevel = set_msglevel, 2699 .nway_reset = nway_reset, 2700 .get_link = get_link, 2701 .get_eeprom = get_eeprom, 2702 .get_link_ksettings = get_link_ksettings, 2703 .set_link_ksettings = set_link_ksettings, 2704 }; 2705 2706 static int netdev_set_wol(struct net_device *dev, u32 newval) 2707 { 2708 struct netdev_private *np = netdev_priv(dev); 2709 void __iomem * ioaddr = ns_ioaddr(dev); 2710 u32 data = readl(ioaddr + WOLCmd) & ~WakeOptsSummary; 2711 2712 /* translate to bitmasks this chip understands */ 2713 if (newval & WAKE_PHY) 2714 data |= WakePhy; 2715 if (newval & WAKE_UCAST) 2716 data |= WakeUnicast; 2717 if (newval & WAKE_MCAST) 2718 data |= WakeMulticast; 2719 if (newval & WAKE_BCAST) 2720 data |= WakeBroadcast; 2721 if (newval & WAKE_ARP) 2722 data |= WakeArp; 2723 if (newval & WAKE_MAGIC) 2724 data |= WakeMagic; 2725 if (np->srr >= SRR_DP83815_D) { 2726 if (newval & WAKE_MAGICSECURE) { 2727 data |= WakeMagicSecure; 2728 } 2729 } 2730 2731 writel(data, ioaddr + WOLCmd); 2732 2733 return 0; 2734 } 2735 2736 static int netdev_get_wol(struct net_device *dev, u32 *supported, u32 *cur) 2737 { 2738 struct netdev_private *np = netdev_priv(dev); 2739 void __iomem * ioaddr = ns_ioaddr(dev); 2740 u32 regval = readl(ioaddr + WOLCmd); 2741 2742 *supported = (WAKE_PHY | WAKE_UCAST | WAKE_MCAST | WAKE_BCAST 2743 | WAKE_ARP | WAKE_MAGIC); 2744 2745 if (np->srr >= SRR_DP83815_D) { 2746 /* SOPASS works on revD and higher */ 2747 *supported |= WAKE_MAGICSECURE; 2748 } 2749 *cur = 0; 2750 2751 /* translate from chip bitmasks */ 2752 if (regval & WakePhy) 2753 *cur |= WAKE_PHY; 2754 if (regval & WakeUnicast) 2755 *cur |= WAKE_UCAST; 2756 if (regval & WakeMulticast) 2757 *cur |= WAKE_MCAST; 2758 if (regval & WakeBroadcast) 2759 *cur |= WAKE_BCAST; 2760 if (regval & WakeArp) 2761 *cur |= WAKE_ARP; 2762 if (regval & WakeMagic) 2763 *cur |= WAKE_MAGIC; 2764 if (regval & WakeMagicSecure) { 2765 /* this can be on in revC, but it's broken */ 2766 *cur |= WAKE_MAGICSECURE; 2767 } 2768 2769 return 0; 2770 } 2771 2772 static int netdev_set_sopass(struct net_device *dev, u8 *newval) 2773 { 2774 struct netdev_private *np = netdev_priv(dev); 2775 void __iomem * ioaddr = ns_ioaddr(dev); 2776 u16 *sval = (u16 *)newval; 2777 u32 addr; 2778 2779 if (np->srr < SRR_DP83815_D) { 2780 return 0; 2781 } 2782 2783 /* enable writing to these registers by disabling the RX filter */ 2784 addr = readl(ioaddr + RxFilterAddr) & ~RFCRAddressMask; 2785 addr &= ~RxFilterEnable; 2786 writel(addr, ioaddr + RxFilterAddr); 2787 2788 /* write the three words to (undocumented) RFCR vals 0xa, 0xc, 0xe */ 2789 writel(addr | 0xa, ioaddr + RxFilterAddr); 2790 writew(sval[0], ioaddr + RxFilterData); 2791 2792 writel(addr | 0xc, ioaddr + RxFilterAddr); 2793 writew(sval[1], ioaddr + RxFilterData); 2794 2795 writel(addr | 0xe, ioaddr + RxFilterAddr); 2796 writew(sval[2], ioaddr + RxFilterData); 2797 2798 /* re-enable the RX filter */ 2799 writel(addr | RxFilterEnable, ioaddr + RxFilterAddr); 2800 2801 return 0; 2802 } 2803 2804 static int netdev_get_sopass(struct net_device *dev, u8 *data) 2805 { 2806 struct netdev_private *np = netdev_priv(dev); 2807 void __iomem * ioaddr = ns_ioaddr(dev); 2808 u16 *sval = (u16 *)data; 2809 u32 addr; 2810 2811 if (np->srr < SRR_DP83815_D) { 2812 sval[0] = sval[1] = sval[2] = 0; 2813 return 0; 2814 } 2815 2816 /* read the three words from (undocumented) RFCR vals 0xa, 0xc, 0xe */ 2817 addr = readl(ioaddr + RxFilterAddr) & ~RFCRAddressMask; 2818 2819 writel(addr | 0xa, ioaddr + RxFilterAddr); 2820 sval[0] = readw(ioaddr + RxFilterData); 2821 2822 writel(addr | 0xc, ioaddr + RxFilterAddr); 2823 sval[1] = readw(ioaddr + RxFilterData); 2824 2825 writel(addr | 0xe, ioaddr + RxFilterAddr); 2826 sval[2] = readw(ioaddr + RxFilterData); 2827 2828 writel(addr, ioaddr + RxFilterAddr); 2829 2830 return 0; 2831 } 2832 2833 static int netdev_get_ecmd(struct net_device *dev, 2834 struct ethtool_link_ksettings *ecmd) 2835 { 2836 struct netdev_private *np = netdev_priv(dev); 2837 u32 supported, advertising; 2838 u32 tmp; 2839 2840 ecmd->base.port = dev->if_port; 2841 ecmd->base.speed = np->speed; 2842 ecmd->base.duplex = np->duplex; 2843 ecmd->base.autoneg = np->autoneg; 2844 advertising = 0; 2845 2846 if (np->advertising & ADVERTISE_10HALF) 2847 advertising |= ADVERTISED_10baseT_Half; 2848 if (np->advertising & ADVERTISE_10FULL) 2849 advertising |= ADVERTISED_10baseT_Full; 2850 if (np->advertising & ADVERTISE_100HALF) 2851 advertising |= ADVERTISED_100baseT_Half; 2852 if (np->advertising & ADVERTISE_100FULL) 2853 advertising |= ADVERTISED_100baseT_Full; 2854 supported = (SUPPORTED_Autoneg | 2855 SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full | 2856 SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full | 2857 SUPPORTED_TP | SUPPORTED_MII | SUPPORTED_FIBRE); 2858 ecmd->base.phy_address = np->phy_addr_external; 2859 /* 2860 * We intentionally report the phy address of the external 2861 * phy, even if the internal phy is used. This is necessary 2862 * to work around a deficiency of the ethtool interface: 2863 * It's only possible to query the settings of the active 2864 * port. Therefore 2865 * # ethtool -s ethX port mii 2866 * actually sends an ioctl to switch to port mii with the 2867 * settings that are used for the current active port. 2868 * If we would report a different phy address in this 2869 * command, then 2870 * # ethtool -s ethX port tp;ethtool -s ethX port mii 2871 * would unintentionally change the phy address. 2872 * 2873 * Fortunately the phy address doesn't matter with the 2874 * internal phy... 2875 */ 2876 2877 /* set information based on active port type */ 2878 switch (ecmd->base.port) { 2879 default: 2880 case PORT_TP: 2881 advertising |= ADVERTISED_TP; 2882 break; 2883 case PORT_MII: 2884 advertising |= ADVERTISED_MII; 2885 break; 2886 case PORT_FIBRE: 2887 advertising |= ADVERTISED_FIBRE; 2888 break; 2889 } 2890 2891 /* if autonegotiation is on, try to return the active speed/duplex */ 2892 if (ecmd->base.autoneg == AUTONEG_ENABLE) { 2893 advertising |= ADVERTISED_Autoneg; 2894 tmp = mii_nway_result( 2895 np->advertising & mdio_read(dev, MII_LPA)); 2896 if (tmp == LPA_100FULL || tmp == LPA_100HALF) 2897 ecmd->base.speed = SPEED_100; 2898 else 2899 ecmd->base.speed = SPEED_10; 2900 if (tmp == LPA_100FULL || tmp == LPA_10FULL) 2901 ecmd->base.duplex = DUPLEX_FULL; 2902 else 2903 ecmd->base.duplex = DUPLEX_HALF; 2904 } 2905 2906 /* ignore maxtxpkt, maxrxpkt for now */ 2907 2908 ethtool_convert_legacy_u32_to_link_mode(ecmd->link_modes.supported, 2909 supported); 2910 ethtool_convert_legacy_u32_to_link_mode(ecmd->link_modes.advertising, 2911 advertising); 2912 2913 return 0; 2914 } 2915 2916 static int netdev_set_ecmd(struct net_device *dev, 2917 const struct ethtool_link_ksettings *ecmd) 2918 { 2919 struct netdev_private *np = netdev_priv(dev); 2920 u32 advertising; 2921 2922 ethtool_convert_link_mode_to_legacy_u32(&advertising, 2923 ecmd->link_modes.advertising); 2924 2925 if (ecmd->base.port != PORT_TP && 2926 ecmd->base.port != PORT_MII && 2927 ecmd->base.port != PORT_FIBRE) 2928 return -EINVAL; 2929 if (ecmd->base.autoneg == AUTONEG_ENABLE) { 2930 if ((advertising & (ADVERTISED_10baseT_Half | 2931 ADVERTISED_10baseT_Full | 2932 ADVERTISED_100baseT_Half | 2933 ADVERTISED_100baseT_Full)) == 0) { 2934 return -EINVAL; 2935 } 2936 } else if (ecmd->base.autoneg == AUTONEG_DISABLE) { 2937 u32 speed = ecmd->base.speed; 2938 if (speed != SPEED_10 && speed != SPEED_100) 2939 return -EINVAL; 2940 if (ecmd->base.duplex != DUPLEX_HALF && 2941 ecmd->base.duplex != DUPLEX_FULL) 2942 return -EINVAL; 2943 } else { 2944 return -EINVAL; 2945 } 2946 2947 /* 2948 * If we're ignoring the PHY then autoneg and the internal 2949 * transceiver are really not going to work so don't let the 2950 * user select them. 2951 */ 2952 if (np->ignore_phy && (ecmd->base.autoneg == AUTONEG_ENABLE || 2953 ecmd->base.port == PORT_TP)) 2954 return -EINVAL; 2955 2956 /* 2957 * maxtxpkt, maxrxpkt: ignored for now. 2958 * 2959 * transceiver: 2960 * PORT_TP is always XCVR_INTERNAL, PORT_MII and PORT_FIBRE are always 2961 * XCVR_EXTERNAL. The implementation thus ignores ecmd->transceiver and 2962 * selects based on ecmd->port. 2963 * 2964 * Actually PORT_FIBRE is nearly identical to PORT_MII: it's for fibre 2965 * phys that are connected to the mii bus. It's used to apply fibre 2966 * specific updates. 2967 */ 2968 2969 /* WHEW! now lets bang some bits */ 2970 2971 /* save the parms */ 2972 dev->if_port = ecmd->base.port; 2973 np->autoneg = ecmd->base.autoneg; 2974 np->phy_addr_external = ecmd->base.phy_address & PhyAddrMask; 2975 if (np->autoneg == AUTONEG_ENABLE) { 2976 /* advertise only what has been requested */ 2977 np->advertising &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4); 2978 if (advertising & ADVERTISED_10baseT_Half) 2979 np->advertising |= ADVERTISE_10HALF; 2980 if (advertising & ADVERTISED_10baseT_Full) 2981 np->advertising |= ADVERTISE_10FULL; 2982 if (advertising & ADVERTISED_100baseT_Half) 2983 np->advertising |= ADVERTISE_100HALF; 2984 if (advertising & ADVERTISED_100baseT_Full) 2985 np->advertising |= ADVERTISE_100FULL; 2986 } else { 2987 np->speed = ecmd->base.speed; 2988 np->duplex = ecmd->base.duplex; 2989 /* user overriding the initial full duplex parm? */ 2990 if (np->duplex == DUPLEX_HALF) 2991 np->full_duplex = 0; 2992 } 2993 2994 /* get the right phy enabled */ 2995 if (ecmd->base.port == PORT_TP) 2996 switch_port_internal(dev); 2997 else 2998 switch_port_external(dev); 2999 3000 /* set parms and see how this affected our link status */ 3001 init_phy_fixup(dev); 3002 check_link(dev); 3003 return 0; 3004 } 3005 3006 static int netdev_get_regs(struct net_device *dev, u8 *buf) 3007 { 3008 int i; 3009 int j; 3010 u32 rfcr; 3011 u32 *rbuf = (u32 *)buf; 3012 void __iomem * ioaddr = ns_ioaddr(dev); 3013 3014 /* read non-mii page 0 of registers */ 3015 for (i = 0; i < NATSEMI_PG0_NREGS/2; i++) { 3016 rbuf[i] = readl(ioaddr + i*4); 3017 } 3018 3019 /* read current mii registers */ 3020 for (i = NATSEMI_PG0_NREGS/2; i < NATSEMI_PG0_NREGS; i++) 3021 rbuf[i] = mdio_read(dev, i & 0x1f); 3022 3023 /* read only the 'magic' registers from page 1 */ 3024 writew(1, ioaddr + PGSEL); 3025 rbuf[i++] = readw(ioaddr + PMDCSR); 3026 rbuf[i++] = readw(ioaddr + TSTDAT); 3027 rbuf[i++] = readw(ioaddr + DSPCFG); 3028 rbuf[i++] = readw(ioaddr + SDCFG); 3029 writew(0, ioaddr + PGSEL); 3030 3031 /* read RFCR indexed registers */ 3032 rfcr = readl(ioaddr + RxFilterAddr); 3033 for (j = 0; j < NATSEMI_RFDR_NREGS; j++) { 3034 writel(j*2, ioaddr + RxFilterAddr); 3035 rbuf[i++] = readw(ioaddr + RxFilterData); 3036 } 3037 writel(rfcr, ioaddr + RxFilterAddr); 3038 3039 /* the interrupt status is clear-on-read - see if we missed any */ 3040 if (rbuf[4] & rbuf[5]) { 3041 printk(KERN_WARNING 3042 "%s: shoot, we dropped an interrupt (%#08x)\n", 3043 dev->name, rbuf[4] & rbuf[5]); 3044 } 3045 3046 return 0; 3047 } 3048 3049 #define SWAP_BITS(x) ( (((x) & 0x0001) << 15) | (((x) & 0x0002) << 13) \ 3050 | (((x) & 0x0004) << 11) | (((x) & 0x0008) << 9) \ 3051 | (((x) & 0x0010) << 7) | (((x) & 0x0020) << 5) \ 3052 | (((x) & 0x0040) << 3) | (((x) & 0x0080) << 1) \ 3053 | (((x) & 0x0100) >> 1) | (((x) & 0x0200) >> 3) \ 3054 | (((x) & 0x0400) >> 5) | (((x) & 0x0800) >> 7) \ 3055 | (((x) & 0x1000) >> 9) | (((x) & 0x2000) >> 11) \ 3056 | (((x) & 0x4000) >> 13) | (((x) & 0x8000) >> 15) ) 3057 3058 static int netdev_get_eeprom(struct net_device *dev, u8 *buf) 3059 { 3060 int i; 3061 u16 *ebuf = (u16 *)buf; 3062 void __iomem * ioaddr = ns_ioaddr(dev); 3063 struct netdev_private *np = netdev_priv(dev); 3064 3065 /* eeprom_read reads 16 bits, and indexes by 16 bits */ 3066 for (i = 0; i < np->eeprom_size/2; i++) { 3067 ebuf[i] = eeprom_read(ioaddr, i); 3068 /* The EEPROM itself stores data bit-swapped, but eeprom_read 3069 * reads it back "sanely". So we swap it back here in order to 3070 * present it to userland as it is stored. */ 3071 ebuf[i] = SWAP_BITS(ebuf[i]); 3072 } 3073 return 0; 3074 } 3075 3076 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) 3077 { 3078 struct mii_ioctl_data *data = if_mii(rq); 3079 struct netdev_private *np = netdev_priv(dev); 3080 3081 switch(cmd) { 3082 case SIOCGMIIPHY: /* Get address of MII PHY in use. */ 3083 data->phy_id = np->phy_addr_external; 3084 /* Fall Through */ 3085 3086 case SIOCGMIIREG: /* Read MII PHY register. */ 3087 /* The phy_id is not enough to uniquely identify 3088 * the intended target. Therefore the command is sent to 3089 * the given mii on the current port. 3090 */ 3091 if (dev->if_port == PORT_TP) { 3092 if ((data->phy_id & 0x1f) == np->phy_addr_external) 3093 data->val_out = mdio_read(dev, 3094 data->reg_num & 0x1f); 3095 else 3096 data->val_out = 0; 3097 } else { 3098 move_int_phy(dev, data->phy_id & 0x1f); 3099 data->val_out = miiport_read(dev, data->phy_id & 0x1f, 3100 data->reg_num & 0x1f); 3101 } 3102 return 0; 3103 3104 case SIOCSMIIREG: /* Write MII PHY register. */ 3105 if (dev->if_port == PORT_TP) { 3106 if ((data->phy_id & 0x1f) == np->phy_addr_external) { 3107 if ((data->reg_num & 0x1f) == MII_ADVERTISE) 3108 np->advertising = data->val_in; 3109 mdio_write(dev, data->reg_num & 0x1f, 3110 data->val_in); 3111 } 3112 } else { 3113 if ((data->phy_id & 0x1f) == np->phy_addr_external) { 3114 if ((data->reg_num & 0x1f) == MII_ADVERTISE) 3115 np->advertising = data->val_in; 3116 } 3117 move_int_phy(dev, data->phy_id & 0x1f); 3118 miiport_write(dev, data->phy_id & 0x1f, 3119 data->reg_num & 0x1f, 3120 data->val_in); 3121 } 3122 return 0; 3123 default: 3124 return -EOPNOTSUPP; 3125 } 3126 } 3127 3128 static void enable_wol_mode(struct net_device *dev, int enable_intr) 3129 { 3130 void __iomem * ioaddr = ns_ioaddr(dev); 3131 struct netdev_private *np = netdev_priv(dev); 3132 3133 if (netif_msg_wol(np)) 3134 printk(KERN_INFO "%s: remaining active for wake-on-lan\n", 3135 dev->name); 3136 3137 /* For WOL we must restart the rx process in silent mode. 3138 * Write NULL to the RxRingPtr. Only possible if 3139 * rx process is stopped 3140 */ 3141 writel(0, ioaddr + RxRingPtr); 3142 3143 /* read WoL status to clear */ 3144 readl(ioaddr + WOLCmd); 3145 3146 /* PME on, clear status */ 3147 writel(np->SavedClkRun | PMEEnable | PMEStatus, ioaddr + ClkRun); 3148 3149 /* and restart the rx process */ 3150 writel(RxOn, ioaddr + ChipCmd); 3151 3152 if (enable_intr) { 3153 /* enable the WOL interrupt. 3154 * Could be used to send a netlink message. 3155 */ 3156 writel(WOLPkt | LinkChange, ioaddr + IntrMask); 3157 natsemi_irq_enable(dev); 3158 } 3159 } 3160 3161 static int netdev_close(struct net_device *dev) 3162 { 3163 void __iomem * ioaddr = ns_ioaddr(dev); 3164 struct netdev_private *np = netdev_priv(dev); 3165 const int irq = np->pci_dev->irq; 3166 3167 if (netif_msg_ifdown(np)) 3168 printk(KERN_DEBUG 3169 "%s: Shutting down ethercard, status was %#04x.\n", 3170 dev->name, (int)readl(ioaddr + ChipCmd)); 3171 if (netif_msg_pktdata(np)) 3172 printk(KERN_DEBUG 3173 "%s: Queue pointers were Tx %d / %d, Rx %d / %d.\n", 3174 dev->name, np->cur_tx, np->dirty_tx, 3175 np->cur_rx, np->dirty_rx); 3176 3177 napi_disable(&np->napi); 3178 3179 /* 3180 * FIXME: what if someone tries to close a device 3181 * that is suspended? 3182 * Should we reenable the nic to switch to 3183 * the final WOL settings? 3184 */ 3185 3186 del_timer_sync(&np->timer); 3187 disable_irq(irq); 3188 spin_lock_irq(&np->lock); 3189 natsemi_irq_disable(dev); 3190 np->hands_off = 1; 3191 spin_unlock_irq(&np->lock); 3192 enable_irq(irq); 3193 3194 free_irq(irq, dev); 3195 3196 /* Interrupt disabled, interrupt handler released, 3197 * queue stopped, timer deleted, rtnl_lock held 3198 * All async codepaths that access the driver are disabled. 3199 */ 3200 spin_lock_irq(&np->lock); 3201 np->hands_off = 0; 3202 readl(ioaddr + IntrMask); 3203 readw(ioaddr + MIntrStatus); 3204 3205 /* Freeze Stats */ 3206 writel(StatsFreeze, ioaddr + StatsCtrl); 3207 3208 /* Stop the chip's Tx and Rx processes. */ 3209 natsemi_stop_rxtx(dev); 3210 3211 __get_stats(dev); 3212 spin_unlock_irq(&np->lock); 3213 3214 /* clear the carrier last - an interrupt could reenable it otherwise */ 3215 netif_carrier_off(dev); 3216 netif_stop_queue(dev); 3217 3218 dump_ring(dev); 3219 drain_ring(dev); 3220 free_ring(dev); 3221 3222 { 3223 u32 wol = readl(ioaddr + WOLCmd) & WakeOptsSummary; 3224 if (wol) { 3225 /* restart the NIC in WOL mode. 3226 * The nic must be stopped for this. 3227 */ 3228 enable_wol_mode(dev, 0); 3229 } else { 3230 /* Restore PME enable bit unmolested */ 3231 writel(np->SavedClkRun, ioaddr + ClkRun); 3232 } 3233 } 3234 return 0; 3235 } 3236 3237 3238 static void natsemi_remove1(struct pci_dev *pdev) 3239 { 3240 struct net_device *dev = pci_get_drvdata(pdev); 3241 void __iomem * ioaddr = ns_ioaddr(dev); 3242 3243 NATSEMI_REMOVE_FILE(pdev, dspcfg_workaround); 3244 unregister_netdev (dev); 3245 pci_release_regions (pdev); 3246 iounmap(ioaddr); 3247 free_netdev (dev); 3248 } 3249 3250 #ifdef CONFIG_PM 3251 3252 /* 3253 * The ns83815 chip doesn't have explicit RxStop bits. 3254 * Kicking the Rx or Tx process for a new packet reenables the Rx process 3255 * of the nic, thus this function must be very careful: 3256 * 3257 * suspend/resume synchronization: 3258 * entry points: 3259 * netdev_open, netdev_close, netdev_ioctl, set_rx_mode, intr_handler, 3260 * start_tx, ns_tx_timeout 3261 * 3262 * No function accesses the hardware without checking np->hands_off. 3263 * the check occurs under spin_lock_irq(&np->lock); 3264 * exceptions: 3265 * * netdev_ioctl: noncritical access. 3266 * * netdev_open: cannot happen due to the device_detach 3267 * * netdev_close: doesn't hurt. 3268 * * netdev_timer: timer stopped by natsemi_suspend. 3269 * * intr_handler: doesn't acquire the spinlock. suspend calls 3270 * disable_irq() to enforce synchronization. 3271 * * natsemi_poll: checks before reenabling interrupts. suspend 3272 * sets hands_off, disables interrupts and then waits with 3273 * napi_disable(). 3274 * 3275 * Interrupts must be disabled, otherwise hands_off can cause irq storms. 3276 */ 3277 3278 static int natsemi_suspend (struct pci_dev *pdev, pm_message_t state) 3279 { 3280 struct net_device *dev = pci_get_drvdata (pdev); 3281 struct netdev_private *np = netdev_priv(dev); 3282 void __iomem * ioaddr = ns_ioaddr(dev); 3283 3284 rtnl_lock(); 3285 if (netif_running (dev)) { 3286 const int irq = np->pci_dev->irq; 3287 3288 del_timer_sync(&np->timer); 3289 3290 disable_irq(irq); 3291 spin_lock_irq(&np->lock); 3292 3293 natsemi_irq_disable(dev); 3294 np->hands_off = 1; 3295 natsemi_stop_rxtx(dev); 3296 netif_stop_queue(dev); 3297 3298 spin_unlock_irq(&np->lock); 3299 enable_irq(irq); 3300 3301 napi_disable(&np->napi); 3302 3303 /* Update the error counts. */ 3304 __get_stats(dev); 3305 3306 /* pci_power_off(pdev, -1); */ 3307 drain_ring(dev); 3308 { 3309 u32 wol = readl(ioaddr + WOLCmd) & WakeOptsSummary; 3310 /* Restore PME enable bit */ 3311 if (wol) { 3312 /* restart the NIC in WOL mode. 3313 * The nic must be stopped for this. 3314 * FIXME: use the WOL interrupt 3315 */ 3316 enable_wol_mode(dev, 0); 3317 } else { 3318 /* Restore PME enable bit unmolested */ 3319 writel(np->SavedClkRun, ioaddr + ClkRun); 3320 } 3321 } 3322 } 3323 netif_device_detach(dev); 3324 rtnl_unlock(); 3325 return 0; 3326 } 3327 3328 3329 static int natsemi_resume (struct pci_dev *pdev) 3330 { 3331 struct net_device *dev = pci_get_drvdata (pdev); 3332 struct netdev_private *np = netdev_priv(dev); 3333 int ret = 0; 3334 3335 rtnl_lock(); 3336 if (netif_device_present(dev)) 3337 goto out; 3338 if (netif_running(dev)) { 3339 const int irq = np->pci_dev->irq; 3340 3341 BUG_ON(!np->hands_off); 3342 ret = pci_enable_device(pdev); 3343 if (ret < 0) { 3344 dev_err(&pdev->dev, 3345 "pci_enable_device() failed: %d\n", ret); 3346 goto out; 3347 } 3348 /* pci_power_on(pdev); */ 3349 3350 napi_enable(&np->napi); 3351 3352 natsemi_reset(dev); 3353 init_ring(dev); 3354 disable_irq(irq); 3355 spin_lock_irq(&np->lock); 3356 np->hands_off = 0; 3357 init_registers(dev); 3358 netif_device_attach(dev); 3359 spin_unlock_irq(&np->lock); 3360 enable_irq(irq); 3361 3362 mod_timer(&np->timer, round_jiffies(jiffies + 1*HZ)); 3363 } 3364 netif_device_attach(dev); 3365 out: 3366 rtnl_unlock(); 3367 return ret; 3368 } 3369 3370 #endif /* CONFIG_PM */ 3371 3372 static struct pci_driver natsemi_driver = { 3373 .name = DRV_NAME, 3374 .id_table = natsemi_pci_tbl, 3375 .probe = natsemi_probe1, 3376 .remove = natsemi_remove1, 3377 #ifdef CONFIG_PM 3378 .suspend = natsemi_suspend, 3379 .resume = natsemi_resume, 3380 #endif 3381 }; 3382 3383 static int __init natsemi_init_mod (void) 3384 { 3385 /* when a module, this is printed whether or not devices are found in probe */ 3386 #ifdef MODULE 3387 printk(version); 3388 #endif 3389 3390 return pci_register_driver(&natsemi_driver); 3391 } 3392 3393 static void __exit natsemi_exit_mod (void) 3394 { 3395 pci_unregister_driver (&natsemi_driver); 3396 } 3397 3398 module_init(natsemi_init_mod); 3399 module_exit(natsemi_exit_mod); 3400 3401