1 /* natsemi.c: A Linux PCI Ethernet driver for the NatSemi DP8381x series. */ 2 /* 3 Written/copyright 1999-2001 by Donald Becker. 4 Portions copyright (c) 2001,2002 Sun Microsystems (thockin@sun.com) 5 Portions copyright 2001,2002 Manfred Spraul (manfred@colorfullife.com) 6 Portions copyright 2004 Harald Welte <laforge@gnumonks.org> 7 8 This software may be used and distributed according to the terms of 9 the GNU General Public License (GPL), incorporated herein by reference. 10 Drivers based on or derived from this code fall under the GPL and must 11 retain the authorship, copyright and license notice. This file is not 12 a complete program and may only be used when the entire operating 13 system is licensed under the GPL. License for under other terms may be 14 available. Contact the original author for details. 15 16 The original author may be reached as becker@scyld.com, or at 17 Scyld Computing Corporation 18 410 Severn Ave., Suite 210 19 Annapolis MD 21403 20 21 Support information and updates available at 22 http://www.scyld.com/network/netsemi.html 23 [link no longer provides useful info -jgarzik] 24 25 26 TODO: 27 * big endian support with CFG:BEM instead of cpu_to_le32 28 */ 29 30 #include <linux/module.h> 31 #include <linux/kernel.h> 32 #include <linux/string.h> 33 #include <linux/timer.h> 34 #include <linux/errno.h> 35 #include <linux/ioport.h> 36 #include <linux/slab.h> 37 #include <linux/interrupt.h> 38 #include <linux/pci.h> 39 #include <linux/netdevice.h> 40 #include <linux/etherdevice.h> 41 #include <linux/skbuff.h> 42 #include <linux/init.h> 43 #include <linux/spinlock.h> 44 #include <linux/ethtool.h> 45 #include <linux/delay.h> 46 #include <linux/rtnetlink.h> 47 #include <linux/mii.h> 48 #include <linux/crc32.h> 49 #include <linux/bitops.h> 50 #include <linux/prefetch.h> 51 #include <asm/processor.h> /* Processor type for cache alignment. */ 52 #include <asm/io.h> 53 #include <asm/irq.h> 54 #include <asm/uaccess.h> 55 56 #define DRV_NAME "natsemi" 57 #define DRV_VERSION "2.1" 58 #define DRV_RELDATE "Sept 11, 2006" 59 60 #define RX_OFFSET 2 61 62 /* Updated to recommendations in pci-skeleton v2.03. */ 63 64 /* The user-configurable values. 65 These may be modified when a driver module is loaded.*/ 66 67 #define NATSEMI_DEF_MSG (NETIF_MSG_DRV | \ 68 NETIF_MSG_LINK | \ 69 NETIF_MSG_WOL | \ 70 NETIF_MSG_RX_ERR | \ 71 NETIF_MSG_TX_ERR) 72 static int debug = -1; 73 74 static int mtu; 75 76 /* Maximum number of multicast addresses to filter (vs. rx-all-multicast). 77 This chip uses a 512 element hash table based on the Ethernet CRC. */ 78 static const int multicast_filter_limit = 100; 79 80 /* Set the copy breakpoint for the copy-only-tiny-frames scheme. 81 Setting to > 1518 effectively disables this feature. */ 82 static int rx_copybreak; 83 84 static int dspcfg_workaround = 1; 85 86 /* Used to pass the media type, etc. 87 Both 'options[]' and 'full_duplex[]' should exist for driver 88 interoperability. 89 The media type is usually passed in 'options[]'. 90 */ 91 #define MAX_UNITS 8 /* More are supported, limit only on options */ 92 static int options[MAX_UNITS]; 93 static int full_duplex[MAX_UNITS]; 94 95 /* Operational parameters that are set at compile time. */ 96 97 /* Keep the ring sizes a power of two for compile efficiency. 98 The compiler will convert <unsigned>'%'<2^N> into a bit mask. 99 Making the Tx ring too large decreases the effectiveness of channel 100 bonding and packet priority. 101 There are no ill effects from too-large receive rings. */ 102 #define TX_RING_SIZE 16 103 #define TX_QUEUE_LEN 10 /* Limit ring entries actually used, min 4. */ 104 #define RX_RING_SIZE 32 105 106 /* Operational parameters that usually are not changed. */ 107 /* Time in jiffies before concluding the transmitter is hung. */ 108 #define TX_TIMEOUT (2*HZ) 109 110 #define NATSEMI_HW_TIMEOUT 400 111 #define NATSEMI_TIMER_FREQ 5*HZ 112 #define NATSEMI_PG0_NREGS 64 113 #define NATSEMI_RFDR_NREGS 8 114 #define NATSEMI_PG1_NREGS 4 115 #define NATSEMI_NREGS (NATSEMI_PG0_NREGS + NATSEMI_RFDR_NREGS + \ 116 NATSEMI_PG1_NREGS) 117 #define NATSEMI_REGS_VER 1 /* v1 added RFDR registers */ 118 #define NATSEMI_REGS_SIZE (NATSEMI_NREGS * sizeof(u32)) 119 120 /* Buffer sizes: 121 * The nic writes 32-bit values, even if the upper bytes of 122 * a 32-bit value are beyond the end of the buffer. 123 */ 124 #define NATSEMI_HEADERS 22 /* 2*mac,type,vlan,crc */ 125 #define NATSEMI_PADDING 16 /* 2 bytes should be sufficient */ 126 #define NATSEMI_LONGPKT 1518 /* limit for normal packets */ 127 #define NATSEMI_RX_LIMIT 2046 /* maximum supported by hardware */ 128 129 /* These identify the driver base version and may not be removed. */ 130 static const char version[] = 131 KERN_INFO DRV_NAME " dp8381x driver, version " 132 DRV_VERSION ", " DRV_RELDATE "\n" 133 " originally by Donald Becker <becker@scyld.com>\n" 134 " 2.4.x kernel port by Jeff Garzik, Tjeerd Mulder\n"; 135 136 MODULE_AUTHOR("Donald Becker <becker@scyld.com>"); 137 MODULE_DESCRIPTION("National Semiconductor DP8381x series PCI Ethernet driver"); 138 MODULE_LICENSE("GPL"); 139 140 module_param(mtu, int, 0); 141 module_param(debug, int, 0); 142 module_param(rx_copybreak, int, 0); 143 module_param(dspcfg_workaround, int, 0); 144 module_param_array(options, int, NULL, 0); 145 module_param_array(full_duplex, int, NULL, 0); 146 MODULE_PARM_DESC(mtu, "DP8381x MTU (all boards)"); 147 MODULE_PARM_DESC(debug, "DP8381x default debug level"); 148 MODULE_PARM_DESC(rx_copybreak, 149 "DP8381x copy breakpoint for copy-only-tiny-frames"); 150 MODULE_PARM_DESC(dspcfg_workaround, "DP8381x: control DspCfg workaround"); 151 MODULE_PARM_DESC(options, 152 "DP8381x: Bits 0-3: media type, bit 17: full duplex"); 153 MODULE_PARM_DESC(full_duplex, "DP8381x full duplex setting(s) (1)"); 154 155 /* 156 Theory of Operation 157 158 I. Board Compatibility 159 160 This driver is designed for National Semiconductor DP83815 PCI Ethernet NIC. 161 It also works with other chips in in the DP83810 series. 162 163 II. Board-specific settings 164 165 This driver requires the PCI interrupt line to be valid. 166 It honors the EEPROM-set values. 167 168 III. Driver operation 169 170 IIIa. Ring buffers 171 172 This driver uses two statically allocated fixed-size descriptor lists 173 formed into rings by a branch from the final descriptor to the beginning of 174 the list. The ring sizes are set at compile time by RX/TX_RING_SIZE. 175 The NatSemi design uses a 'next descriptor' pointer that the driver forms 176 into a list. 177 178 IIIb/c. Transmit/Receive Structure 179 180 This driver uses a zero-copy receive and transmit scheme. 181 The driver allocates full frame size skbuffs for the Rx ring buffers at 182 open() time and passes the skb->data field to the chip as receive data 183 buffers. When an incoming frame is less than RX_COPYBREAK bytes long, 184 a fresh skbuff is allocated and the frame is copied to the new skbuff. 185 When the incoming frame is larger, the skbuff is passed directly up the 186 protocol stack. Buffers consumed this way are replaced by newly allocated 187 skbuffs in a later phase of receives. 188 189 The RX_COPYBREAK value is chosen to trade-off the memory wasted by 190 using a full-sized skbuff for small frames vs. the copying costs of larger 191 frames. New boards are typically used in generously configured machines 192 and the underfilled buffers have negligible impact compared to the benefit of 193 a single allocation size, so the default value of zero results in never 194 copying packets. When copying is done, the cost is usually mitigated by using 195 a combined copy/checksum routine. Copying also preloads the cache, which is 196 most useful with small frames. 197 198 A subtle aspect of the operation is that unaligned buffers are not permitted 199 by the hardware. Thus the IP header at offset 14 in an ethernet frame isn't 200 longword aligned for further processing. On copies frames are put into the 201 skbuff at an offset of "+2", 16-byte aligning the IP header. 202 203 IIId. Synchronization 204 205 Most operations are synchronized on the np->lock irq spinlock, except the 206 receive and transmit paths which are synchronised using a combination of 207 hardware descriptor ownership, disabling interrupts and NAPI poll scheduling. 208 209 IVb. References 210 211 http://www.scyld.com/expert/100mbps.html 212 http://www.scyld.com/expert/NWay.html 213 Datasheet is available from: 214 http://www.national.com/pf/DP/DP83815.html 215 216 IVc. Errata 217 218 None characterised. 219 */ 220 221 222 223 /* 224 * Support for fibre connections on Am79C874: 225 * This phy needs a special setup when connected to a fibre cable. 226 * http://www.amd.com/files/connectivitysolutions/networking/archivednetworking/22235.pdf 227 */ 228 #define PHYID_AM79C874 0x0022561b 229 230 enum { 231 MII_MCTRL = 0x15, /* mode control register */ 232 MII_FX_SEL = 0x0001, /* 100BASE-FX (fiber) */ 233 MII_EN_SCRM = 0x0004, /* enable scrambler (tp) */ 234 }; 235 236 enum { 237 NATSEMI_FLAG_IGNORE_PHY = 0x1, 238 }; 239 240 /* array of board data directly indexed by pci_tbl[x].driver_data */ 241 static struct { 242 const char *name; 243 unsigned long flags; 244 unsigned int eeprom_size; 245 } natsemi_pci_info[] = { 246 { "Aculab E1/T1 PMXc cPCI carrier card", NATSEMI_FLAG_IGNORE_PHY, 128 }, 247 { "NatSemi DP8381[56]", 0, 24 }, 248 }; 249 250 static const struct pci_device_id natsemi_pci_tbl[] = { 251 { PCI_VENDOR_ID_NS, 0x0020, 0x12d9, 0x000c, 0, 0, 0 }, 252 { PCI_VENDOR_ID_NS, 0x0020, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 1 }, 253 { } /* terminate list */ 254 }; 255 MODULE_DEVICE_TABLE(pci, natsemi_pci_tbl); 256 257 /* Offsets to the device registers. 258 Unlike software-only systems, device drivers interact with complex hardware. 259 It's not useful to define symbolic names for every register bit in the 260 device. 261 */ 262 enum register_offsets { 263 ChipCmd = 0x00, 264 ChipConfig = 0x04, 265 EECtrl = 0x08, 266 PCIBusCfg = 0x0C, 267 IntrStatus = 0x10, 268 IntrMask = 0x14, 269 IntrEnable = 0x18, 270 IntrHoldoff = 0x1C, /* DP83816 only */ 271 TxRingPtr = 0x20, 272 TxConfig = 0x24, 273 RxRingPtr = 0x30, 274 RxConfig = 0x34, 275 ClkRun = 0x3C, 276 WOLCmd = 0x40, 277 PauseCmd = 0x44, 278 RxFilterAddr = 0x48, 279 RxFilterData = 0x4C, 280 BootRomAddr = 0x50, 281 BootRomData = 0x54, 282 SiliconRev = 0x58, 283 StatsCtrl = 0x5C, 284 StatsData = 0x60, 285 RxPktErrs = 0x60, 286 RxMissed = 0x68, 287 RxCRCErrs = 0x64, 288 BasicControl = 0x80, 289 BasicStatus = 0x84, 290 AnegAdv = 0x90, 291 AnegPeer = 0x94, 292 PhyStatus = 0xC0, 293 MIntrCtrl = 0xC4, 294 MIntrStatus = 0xC8, 295 PhyCtrl = 0xE4, 296 297 /* These are from the spec, around page 78... on a separate table. 298 * The meaning of these registers depend on the value of PGSEL. */ 299 PGSEL = 0xCC, 300 PMDCSR = 0xE4, 301 TSTDAT = 0xFC, 302 DSPCFG = 0xF4, 303 SDCFG = 0xF8 304 }; 305 /* the values for the 'magic' registers above (PGSEL=1) */ 306 #define PMDCSR_VAL 0x189c /* enable preferred adaptation circuitry */ 307 #define TSTDAT_VAL 0x0 308 #define DSPCFG_VAL 0x5040 309 #define SDCFG_VAL 0x008c /* set voltage thresholds for Signal Detect */ 310 #define DSPCFG_LOCK 0x20 /* coefficient lock bit in DSPCFG */ 311 #define DSPCFG_COEF 0x1000 /* see coefficient (in TSTDAT) bit in DSPCFG */ 312 #define TSTDAT_FIXED 0xe8 /* magic number for bad coefficients */ 313 314 /* misc PCI space registers */ 315 enum pci_register_offsets { 316 PCIPM = 0x44, 317 }; 318 319 enum ChipCmd_bits { 320 ChipReset = 0x100, 321 RxReset = 0x20, 322 TxReset = 0x10, 323 RxOff = 0x08, 324 RxOn = 0x04, 325 TxOff = 0x02, 326 TxOn = 0x01, 327 }; 328 329 enum ChipConfig_bits { 330 CfgPhyDis = 0x200, 331 CfgPhyRst = 0x400, 332 CfgExtPhy = 0x1000, 333 CfgAnegEnable = 0x2000, 334 CfgAneg100 = 0x4000, 335 CfgAnegFull = 0x8000, 336 CfgAnegDone = 0x8000000, 337 CfgFullDuplex = 0x20000000, 338 CfgSpeed100 = 0x40000000, 339 CfgLink = 0x80000000, 340 }; 341 342 enum EECtrl_bits { 343 EE_ShiftClk = 0x04, 344 EE_DataIn = 0x01, 345 EE_ChipSelect = 0x08, 346 EE_DataOut = 0x02, 347 MII_Data = 0x10, 348 MII_Write = 0x20, 349 MII_ShiftClk = 0x40, 350 }; 351 352 enum PCIBusCfg_bits { 353 EepromReload = 0x4, 354 }; 355 356 /* Bits in the interrupt status/mask registers. */ 357 enum IntrStatus_bits { 358 IntrRxDone = 0x0001, 359 IntrRxIntr = 0x0002, 360 IntrRxErr = 0x0004, 361 IntrRxEarly = 0x0008, 362 IntrRxIdle = 0x0010, 363 IntrRxOverrun = 0x0020, 364 IntrTxDone = 0x0040, 365 IntrTxIntr = 0x0080, 366 IntrTxErr = 0x0100, 367 IntrTxIdle = 0x0200, 368 IntrTxUnderrun = 0x0400, 369 StatsMax = 0x0800, 370 SWInt = 0x1000, 371 WOLPkt = 0x2000, 372 LinkChange = 0x4000, 373 IntrHighBits = 0x8000, 374 RxStatusFIFOOver = 0x10000, 375 IntrPCIErr = 0xf00000, 376 RxResetDone = 0x1000000, 377 TxResetDone = 0x2000000, 378 IntrAbnormalSummary = 0xCD20, 379 }; 380 381 /* 382 * Default Interrupts: 383 * Rx OK, Rx Packet Error, Rx Overrun, 384 * Tx OK, Tx Packet Error, Tx Underrun, 385 * MIB Service, Phy Interrupt, High Bits, 386 * Rx Status FIFO overrun, 387 * Received Target Abort, Received Master Abort, 388 * Signalled System Error, Received Parity Error 389 */ 390 #define DEFAULT_INTR 0x00f1cd65 391 392 enum TxConfig_bits { 393 TxDrthMask = 0x3f, 394 TxFlthMask = 0x3f00, 395 TxMxdmaMask = 0x700000, 396 TxMxdma_512 = 0x0, 397 TxMxdma_4 = 0x100000, 398 TxMxdma_8 = 0x200000, 399 TxMxdma_16 = 0x300000, 400 TxMxdma_32 = 0x400000, 401 TxMxdma_64 = 0x500000, 402 TxMxdma_128 = 0x600000, 403 TxMxdma_256 = 0x700000, 404 TxCollRetry = 0x800000, 405 TxAutoPad = 0x10000000, 406 TxMacLoop = 0x20000000, 407 TxHeartIgn = 0x40000000, 408 TxCarrierIgn = 0x80000000 409 }; 410 411 /* 412 * Tx Configuration: 413 * - 256 byte DMA burst length 414 * - fill threshold 512 bytes (i.e. restart DMA when 512 bytes are free) 415 * - 64 bytes initial drain threshold (i.e. begin actual transmission 416 * when 64 byte are in the fifo) 417 * - on tx underruns, increase drain threshold by 64. 418 * - at most use a drain threshold of 1472 bytes: The sum of the fill 419 * threshold and the drain threshold must be less than 2016 bytes. 420 * 421 */ 422 #define TX_FLTH_VAL ((512/32) << 8) 423 #define TX_DRTH_VAL_START (64/32) 424 #define TX_DRTH_VAL_INC 2 425 #define TX_DRTH_VAL_LIMIT (1472/32) 426 427 enum RxConfig_bits { 428 RxDrthMask = 0x3e, 429 RxMxdmaMask = 0x700000, 430 RxMxdma_512 = 0x0, 431 RxMxdma_4 = 0x100000, 432 RxMxdma_8 = 0x200000, 433 RxMxdma_16 = 0x300000, 434 RxMxdma_32 = 0x400000, 435 RxMxdma_64 = 0x500000, 436 RxMxdma_128 = 0x600000, 437 RxMxdma_256 = 0x700000, 438 RxAcceptLong = 0x8000000, 439 RxAcceptTx = 0x10000000, 440 RxAcceptRunt = 0x40000000, 441 RxAcceptErr = 0x80000000 442 }; 443 #define RX_DRTH_VAL (128/8) 444 445 enum ClkRun_bits { 446 PMEEnable = 0x100, 447 PMEStatus = 0x8000, 448 }; 449 450 enum WolCmd_bits { 451 WakePhy = 0x1, 452 WakeUnicast = 0x2, 453 WakeMulticast = 0x4, 454 WakeBroadcast = 0x8, 455 WakeArp = 0x10, 456 WakePMatch0 = 0x20, 457 WakePMatch1 = 0x40, 458 WakePMatch2 = 0x80, 459 WakePMatch3 = 0x100, 460 WakeMagic = 0x200, 461 WakeMagicSecure = 0x400, 462 SecureHack = 0x100000, 463 WokePhy = 0x400000, 464 WokeUnicast = 0x800000, 465 WokeMulticast = 0x1000000, 466 WokeBroadcast = 0x2000000, 467 WokeArp = 0x4000000, 468 WokePMatch0 = 0x8000000, 469 WokePMatch1 = 0x10000000, 470 WokePMatch2 = 0x20000000, 471 WokePMatch3 = 0x40000000, 472 WokeMagic = 0x80000000, 473 WakeOptsSummary = 0x7ff 474 }; 475 476 enum RxFilterAddr_bits { 477 RFCRAddressMask = 0x3ff, 478 AcceptMulticast = 0x00200000, 479 AcceptMyPhys = 0x08000000, 480 AcceptAllPhys = 0x10000000, 481 AcceptAllMulticast = 0x20000000, 482 AcceptBroadcast = 0x40000000, 483 RxFilterEnable = 0x80000000 484 }; 485 486 enum StatsCtrl_bits { 487 StatsWarn = 0x1, 488 StatsFreeze = 0x2, 489 StatsClear = 0x4, 490 StatsStrobe = 0x8, 491 }; 492 493 enum MIntrCtrl_bits { 494 MICRIntEn = 0x2, 495 }; 496 497 enum PhyCtrl_bits { 498 PhyAddrMask = 0x1f, 499 }; 500 501 #define PHY_ADDR_NONE 32 502 #define PHY_ADDR_INTERNAL 1 503 504 /* values we might find in the silicon revision register */ 505 #define SRR_DP83815_C 0x0302 506 #define SRR_DP83815_D 0x0403 507 #define SRR_DP83816_A4 0x0504 508 #define SRR_DP83816_A5 0x0505 509 510 /* The Rx and Tx buffer descriptors. */ 511 /* Note that using only 32 bit fields simplifies conversion to big-endian 512 architectures. */ 513 struct netdev_desc { 514 __le32 next_desc; 515 __le32 cmd_status; 516 __le32 addr; 517 __le32 software_use; 518 }; 519 520 /* Bits in network_desc.status */ 521 enum desc_status_bits { 522 DescOwn=0x80000000, DescMore=0x40000000, DescIntr=0x20000000, 523 DescNoCRC=0x10000000, DescPktOK=0x08000000, 524 DescSizeMask=0xfff, 525 526 DescTxAbort=0x04000000, DescTxFIFO=0x02000000, 527 DescTxCarrier=0x01000000, DescTxDefer=0x00800000, 528 DescTxExcDefer=0x00400000, DescTxOOWCol=0x00200000, 529 DescTxExcColl=0x00100000, DescTxCollCount=0x000f0000, 530 531 DescRxAbort=0x04000000, DescRxOver=0x02000000, 532 DescRxDest=0x01800000, DescRxLong=0x00400000, 533 DescRxRunt=0x00200000, DescRxInvalid=0x00100000, 534 DescRxCRC=0x00080000, DescRxAlign=0x00040000, 535 DescRxLoop=0x00020000, DesRxColl=0x00010000, 536 }; 537 538 struct netdev_private { 539 /* Descriptor rings first for alignment */ 540 dma_addr_t ring_dma; 541 struct netdev_desc *rx_ring; 542 struct netdev_desc *tx_ring; 543 /* The addresses of receive-in-place skbuffs */ 544 struct sk_buff *rx_skbuff[RX_RING_SIZE]; 545 dma_addr_t rx_dma[RX_RING_SIZE]; 546 /* address of a sent-in-place packet/buffer, for later free() */ 547 struct sk_buff *tx_skbuff[TX_RING_SIZE]; 548 dma_addr_t tx_dma[TX_RING_SIZE]; 549 struct net_device *dev; 550 void __iomem *ioaddr; 551 struct napi_struct napi; 552 /* Media monitoring timer */ 553 struct timer_list timer; 554 /* Frequently used values: keep some adjacent for cache effect */ 555 struct pci_dev *pci_dev; 556 struct netdev_desc *rx_head_desc; 557 /* Producer/consumer ring indices */ 558 unsigned int cur_rx, dirty_rx; 559 unsigned int cur_tx, dirty_tx; 560 /* Based on MTU+slack. */ 561 unsigned int rx_buf_sz; 562 int oom; 563 /* Interrupt status */ 564 u32 intr_status; 565 /* Do not touch the nic registers */ 566 int hands_off; 567 /* Don't pay attention to the reported link state. */ 568 int ignore_phy; 569 /* external phy that is used: only valid if dev->if_port != PORT_TP */ 570 int mii; 571 int phy_addr_external; 572 unsigned int full_duplex; 573 /* Rx filter */ 574 u32 cur_rx_mode; 575 u32 rx_filter[16]; 576 /* FIFO and PCI burst thresholds */ 577 u32 tx_config, rx_config; 578 /* original contents of ClkRun register */ 579 u32 SavedClkRun; 580 /* silicon revision */ 581 u32 srr; 582 /* expected DSPCFG value */ 583 u16 dspcfg; 584 int dspcfg_workaround; 585 /* parms saved in ethtool format */ 586 u16 speed; /* The forced speed, 10Mb, 100Mb, gigabit */ 587 u8 duplex; /* Duplex, half or full */ 588 u8 autoneg; /* Autonegotiation enabled */ 589 /* MII transceiver section */ 590 u16 advertising; 591 unsigned int iosize; 592 spinlock_t lock; 593 u32 msg_enable; 594 /* EEPROM data */ 595 int eeprom_size; 596 }; 597 598 static void move_int_phy(struct net_device *dev, int addr); 599 static int eeprom_read(void __iomem *ioaddr, int location); 600 static int mdio_read(struct net_device *dev, int reg); 601 static void mdio_write(struct net_device *dev, int reg, u16 data); 602 static void init_phy_fixup(struct net_device *dev); 603 static int miiport_read(struct net_device *dev, int phy_id, int reg); 604 static void miiport_write(struct net_device *dev, int phy_id, int reg, u16 data); 605 static int find_mii(struct net_device *dev); 606 static void natsemi_reset(struct net_device *dev); 607 static void natsemi_reload_eeprom(struct net_device *dev); 608 static void natsemi_stop_rxtx(struct net_device *dev); 609 static int netdev_open(struct net_device *dev); 610 static void do_cable_magic(struct net_device *dev); 611 static void undo_cable_magic(struct net_device *dev); 612 static void check_link(struct net_device *dev); 613 static void netdev_timer(unsigned long data); 614 static void dump_ring(struct net_device *dev); 615 static void ns_tx_timeout(struct net_device *dev); 616 static int alloc_ring(struct net_device *dev); 617 static void refill_rx(struct net_device *dev); 618 static void init_ring(struct net_device *dev); 619 static void drain_tx(struct net_device *dev); 620 static void drain_ring(struct net_device *dev); 621 static void free_ring(struct net_device *dev); 622 static void reinit_ring(struct net_device *dev); 623 static void init_registers(struct net_device *dev); 624 static netdev_tx_t start_tx(struct sk_buff *skb, struct net_device *dev); 625 static irqreturn_t intr_handler(int irq, void *dev_instance); 626 static void netdev_error(struct net_device *dev, int intr_status); 627 static int natsemi_poll(struct napi_struct *napi, int budget); 628 static void netdev_rx(struct net_device *dev, int *work_done, int work_to_do); 629 static void netdev_tx_done(struct net_device *dev); 630 static int natsemi_change_mtu(struct net_device *dev, int new_mtu); 631 #ifdef CONFIG_NET_POLL_CONTROLLER 632 static void natsemi_poll_controller(struct net_device *dev); 633 #endif 634 static void __set_rx_mode(struct net_device *dev); 635 static void set_rx_mode(struct net_device *dev); 636 static void __get_stats(struct net_device *dev); 637 static struct net_device_stats *get_stats(struct net_device *dev); 638 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd); 639 static int netdev_set_wol(struct net_device *dev, u32 newval); 640 static int netdev_get_wol(struct net_device *dev, u32 *supported, u32 *cur); 641 static int netdev_set_sopass(struct net_device *dev, u8 *newval); 642 static int netdev_get_sopass(struct net_device *dev, u8 *data); 643 static int netdev_get_ecmd(struct net_device *dev, struct ethtool_cmd *ecmd); 644 static int netdev_set_ecmd(struct net_device *dev, struct ethtool_cmd *ecmd); 645 static void enable_wol_mode(struct net_device *dev, int enable_intr); 646 static int netdev_close(struct net_device *dev); 647 static int netdev_get_regs(struct net_device *dev, u8 *buf); 648 static int netdev_get_eeprom(struct net_device *dev, u8 *buf); 649 static const struct ethtool_ops ethtool_ops; 650 651 #define NATSEMI_ATTR(_name) \ 652 static ssize_t natsemi_show_##_name(struct device *dev, \ 653 struct device_attribute *attr, char *buf); \ 654 static ssize_t natsemi_set_##_name(struct device *dev, \ 655 struct device_attribute *attr, \ 656 const char *buf, size_t count); \ 657 static DEVICE_ATTR(_name, 0644, natsemi_show_##_name, natsemi_set_##_name) 658 659 #define NATSEMI_CREATE_FILE(_dev, _name) \ 660 device_create_file(&_dev->dev, &dev_attr_##_name) 661 #define NATSEMI_REMOVE_FILE(_dev, _name) \ 662 device_remove_file(&_dev->dev, &dev_attr_##_name) 663 664 NATSEMI_ATTR(dspcfg_workaround); 665 666 static ssize_t natsemi_show_dspcfg_workaround(struct device *dev, 667 struct device_attribute *attr, 668 char *buf) 669 { 670 struct netdev_private *np = netdev_priv(to_net_dev(dev)); 671 672 return sprintf(buf, "%s\n", np->dspcfg_workaround ? "on" : "off"); 673 } 674 675 static ssize_t natsemi_set_dspcfg_workaround(struct device *dev, 676 struct device_attribute *attr, 677 const char *buf, size_t count) 678 { 679 struct netdev_private *np = netdev_priv(to_net_dev(dev)); 680 int new_setting; 681 unsigned long flags; 682 683 /* Find out the new setting */ 684 if (!strncmp("on", buf, count - 1) || !strncmp("1", buf, count - 1)) 685 new_setting = 1; 686 else if (!strncmp("off", buf, count - 1) || 687 !strncmp("0", buf, count - 1)) 688 new_setting = 0; 689 else 690 return count; 691 692 spin_lock_irqsave(&np->lock, flags); 693 694 np->dspcfg_workaround = new_setting; 695 696 spin_unlock_irqrestore(&np->lock, flags); 697 698 return count; 699 } 700 701 static inline void __iomem *ns_ioaddr(struct net_device *dev) 702 { 703 struct netdev_private *np = netdev_priv(dev); 704 705 return np->ioaddr; 706 } 707 708 static inline void natsemi_irq_enable(struct net_device *dev) 709 { 710 writel(1, ns_ioaddr(dev) + IntrEnable); 711 readl(ns_ioaddr(dev) + IntrEnable); 712 } 713 714 static inline void natsemi_irq_disable(struct net_device *dev) 715 { 716 writel(0, ns_ioaddr(dev) + IntrEnable); 717 readl(ns_ioaddr(dev) + IntrEnable); 718 } 719 720 static void move_int_phy(struct net_device *dev, int addr) 721 { 722 struct netdev_private *np = netdev_priv(dev); 723 void __iomem *ioaddr = ns_ioaddr(dev); 724 int target = 31; 725 726 /* 727 * The internal phy is visible on the external mii bus. Therefore we must 728 * move it away before we can send commands to an external phy. 729 * There are two addresses we must avoid: 730 * - the address on the external phy that is used for transmission. 731 * - the address that we want to access. User space can access phys 732 * on the mii bus with SIOCGMIIREG/SIOCSMIIREG, independent from the 733 * phy that is used for transmission. 734 */ 735 736 if (target == addr) 737 target--; 738 if (target == np->phy_addr_external) 739 target--; 740 writew(target, ioaddr + PhyCtrl); 741 readw(ioaddr + PhyCtrl); 742 udelay(1); 743 } 744 745 static void natsemi_init_media(struct net_device *dev) 746 { 747 struct netdev_private *np = netdev_priv(dev); 748 u32 tmp; 749 750 if (np->ignore_phy) 751 netif_carrier_on(dev); 752 else 753 netif_carrier_off(dev); 754 755 /* get the initial settings from hardware */ 756 tmp = mdio_read(dev, MII_BMCR); 757 np->speed = (tmp & BMCR_SPEED100)? SPEED_100 : SPEED_10; 758 np->duplex = (tmp & BMCR_FULLDPLX)? DUPLEX_FULL : DUPLEX_HALF; 759 np->autoneg = (tmp & BMCR_ANENABLE)? AUTONEG_ENABLE: AUTONEG_DISABLE; 760 np->advertising= mdio_read(dev, MII_ADVERTISE); 761 762 if ((np->advertising & ADVERTISE_ALL) != ADVERTISE_ALL && 763 netif_msg_probe(np)) { 764 printk(KERN_INFO "natsemi %s: Transceiver default autonegotiation %s " 765 "10%s %s duplex.\n", 766 pci_name(np->pci_dev), 767 (mdio_read(dev, MII_BMCR) & BMCR_ANENABLE)? 768 "enabled, advertise" : "disabled, force", 769 (np->advertising & 770 (ADVERTISE_100FULL|ADVERTISE_100HALF))? 771 "0" : "", 772 (np->advertising & 773 (ADVERTISE_100FULL|ADVERTISE_10FULL))? 774 "full" : "half"); 775 } 776 if (netif_msg_probe(np)) 777 printk(KERN_INFO 778 "natsemi %s: Transceiver status %#04x advertising %#04x.\n", 779 pci_name(np->pci_dev), mdio_read(dev, MII_BMSR), 780 np->advertising); 781 782 } 783 784 static const struct net_device_ops natsemi_netdev_ops = { 785 .ndo_open = netdev_open, 786 .ndo_stop = netdev_close, 787 .ndo_start_xmit = start_tx, 788 .ndo_get_stats = get_stats, 789 .ndo_set_rx_mode = set_rx_mode, 790 .ndo_change_mtu = natsemi_change_mtu, 791 .ndo_do_ioctl = netdev_ioctl, 792 .ndo_tx_timeout = ns_tx_timeout, 793 .ndo_set_mac_address = eth_mac_addr, 794 .ndo_validate_addr = eth_validate_addr, 795 #ifdef CONFIG_NET_POLL_CONTROLLER 796 .ndo_poll_controller = natsemi_poll_controller, 797 #endif 798 }; 799 800 static int natsemi_probe1(struct pci_dev *pdev, const struct pci_device_id *ent) 801 { 802 struct net_device *dev; 803 struct netdev_private *np; 804 int i, option, irq, chip_idx = ent->driver_data; 805 static int find_cnt = -1; 806 resource_size_t iostart; 807 unsigned long iosize; 808 void __iomem *ioaddr; 809 const int pcibar = 1; /* PCI base address register */ 810 int prev_eedata; 811 u32 tmp; 812 813 /* when built into the kernel, we only print version if device is found */ 814 #ifndef MODULE 815 static int printed_version; 816 if (!printed_version++) 817 printk(version); 818 #endif 819 820 i = pci_enable_device(pdev); 821 if (i) return i; 822 823 /* natsemi has a non-standard PM control register 824 * in PCI config space. Some boards apparently need 825 * to be brought to D0 in this manner. 826 */ 827 pci_read_config_dword(pdev, PCIPM, &tmp); 828 if (tmp & PCI_PM_CTRL_STATE_MASK) { 829 /* D0 state, disable PME assertion */ 830 u32 newtmp = tmp & ~PCI_PM_CTRL_STATE_MASK; 831 pci_write_config_dword(pdev, PCIPM, newtmp); 832 } 833 834 find_cnt++; 835 iostart = pci_resource_start(pdev, pcibar); 836 iosize = pci_resource_len(pdev, pcibar); 837 irq = pdev->irq; 838 839 pci_set_master(pdev); 840 841 dev = alloc_etherdev(sizeof (struct netdev_private)); 842 if (!dev) 843 return -ENOMEM; 844 SET_NETDEV_DEV(dev, &pdev->dev); 845 846 i = pci_request_regions(pdev, DRV_NAME); 847 if (i) 848 goto err_pci_request_regions; 849 850 ioaddr = ioremap(iostart, iosize); 851 if (!ioaddr) { 852 i = -ENOMEM; 853 goto err_ioremap; 854 } 855 856 /* Work around the dropped serial bit. */ 857 prev_eedata = eeprom_read(ioaddr, 6); 858 for (i = 0; i < 3; i++) { 859 int eedata = eeprom_read(ioaddr, i + 7); 860 dev->dev_addr[i*2] = (eedata << 1) + (prev_eedata >> 15); 861 dev->dev_addr[i*2+1] = eedata >> 7; 862 prev_eedata = eedata; 863 } 864 865 np = netdev_priv(dev); 866 np->ioaddr = ioaddr; 867 868 netif_napi_add(dev, &np->napi, natsemi_poll, 64); 869 np->dev = dev; 870 871 np->pci_dev = pdev; 872 pci_set_drvdata(pdev, dev); 873 np->iosize = iosize; 874 spin_lock_init(&np->lock); 875 np->msg_enable = (debug >= 0) ? (1<<debug)-1 : NATSEMI_DEF_MSG; 876 np->hands_off = 0; 877 np->intr_status = 0; 878 np->eeprom_size = natsemi_pci_info[chip_idx].eeprom_size; 879 if (natsemi_pci_info[chip_idx].flags & NATSEMI_FLAG_IGNORE_PHY) 880 np->ignore_phy = 1; 881 else 882 np->ignore_phy = 0; 883 np->dspcfg_workaround = dspcfg_workaround; 884 885 /* Initial port: 886 * - If configured to ignore the PHY set up for external. 887 * - If the nic was configured to use an external phy and if find_mii 888 * finds a phy: use external port, first phy that replies. 889 * - Otherwise: internal port. 890 * Note that the phy address for the internal phy doesn't matter: 891 * The address would be used to access a phy over the mii bus, but 892 * the internal phy is accessed through mapped registers. 893 */ 894 if (np->ignore_phy || readl(ioaddr + ChipConfig) & CfgExtPhy) 895 dev->if_port = PORT_MII; 896 else 897 dev->if_port = PORT_TP; 898 /* Reset the chip to erase previous misconfiguration. */ 899 natsemi_reload_eeprom(dev); 900 natsemi_reset(dev); 901 902 if (dev->if_port != PORT_TP) { 903 np->phy_addr_external = find_mii(dev); 904 /* If we're ignoring the PHY it doesn't matter if we can't 905 * find one. */ 906 if (!np->ignore_phy && np->phy_addr_external == PHY_ADDR_NONE) { 907 dev->if_port = PORT_TP; 908 np->phy_addr_external = PHY_ADDR_INTERNAL; 909 } 910 } else { 911 np->phy_addr_external = PHY_ADDR_INTERNAL; 912 } 913 914 option = find_cnt < MAX_UNITS ? options[find_cnt] : 0; 915 /* The lower four bits are the media type. */ 916 if (option) { 917 if (option & 0x200) 918 np->full_duplex = 1; 919 if (option & 15) 920 printk(KERN_INFO 921 "natsemi %s: ignoring user supplied media type %d", 922 pci_name(np->pci_dev), option & 15); 923 } 924 if (find_cnt < MAX_UNITS && full_duplex[find_cnt]) 925 np->full_duplex = 1; 926 927 dev->netdev_ops = &natsemi_netdev_ops; 928 dev->watchdog_timeo = TX_TIMEOUT; 929 930 dev->ethtool_ops = ðtool_ops; 931 932 if (mtu) 933 dev->mtu = mtu; 934 935 natsemi_init_media(dev); 936 937 /* save the silicon revision for later querying */ 938 np->srr = readl(ioaddr + SiliconRev); 939 if (netif_msg_hw(np)) 940 printk(KERN_INFO "natsemi %s: silicon revision %#04x.\n", 941 pci_name(np->pci_dev), np->srr); 942 943 i = register_netdev(dev); 944 if (i) 945 goto err_register_netdev; 946 i = NATSEMI_CREATE_FILE(pdev, dspcfg_workaround); 947 if (i) 948 goto err_create_file; 949 950 if (netif_msg_drv(np)) { 951 printk(KERN_INFO "natsemi %s: %s at %#08llx " 952 "(%s), %pM, IRQ %d", 953 dev->name, natsemi_pci_info[chip_idx].name, 954 (unsigned long long)iostart, pci_name(np->pci_dev), 955 dev->dev_addr, irq); 956 if (dev->if_port == PORT_TP) 957 printk(", port TP.\n"); 958 else if (np->ignore_phy) 959 printk(", port MII, ignoring PHY\n"); 960 else 961 printk(", port MII, phy ad %d.\n", np->phy_addr_external); 962 } 963 return 0; 964 965 err_create_file: 966 unregister_netdev(dev); 967 968 err_register_netdev: 969 iounmap(ioaddr); 970 971 err_ioremap: 972 pci_release_regions(pdev); 973 974 err_pci_request_regions: 975 free_netdev(dev); 976 return i; 977 } 978 979 980 /* Read the EEPROM and MII Management Data I/O (MDIO) interfaces. 981 The EEPROM code is for the common 93c06/46 EEPROMs with 6 bit addresses. */ 982 983 /* Delay between EEPROM clock transitions. 984 No extra delay is needed with 33Mhz PCI, but future 66Mhz access may need 985 a delay. Note that pre-2.0.34 kernels had a cache-alignment bug that 986 made udelay() unreliable. 987 The old method of using an ISA access as a delay, __SLOW_DOWN_IO__, is 988 deprecated. 989 */ 990 #define eeprom_delay(ee_addr) readl(ee_addr) 991 992 #define EE_Write0 (EE_ChipSelect) 993 #define EE_Write1 (EE_ChipSelect | EE_DataIn) 994 995 /* The EEPROM commands include the alway-set leading bit. */ 996 enum EEPROM_Cmds { 997 EE_WriteCmd=(5 << 6), EE_ReadCmd=(6 << 6), EE_EraseCmd=(7 << 6), 998 }; 999 1000 static int eeprom_read(void __iomem *addr, int location) 1001 { 1002 int i; 1003 int retval = 0; 1004 void __iomem *ee_addr = addr + EECtrl; 1005 int read_cmd = location | EE_ReadCmd; 1006 1007 writel(EE_Write0, ee_addr); 1008 1009 /* Shift the read command bits out. */ 1010 for (i = 10; i >= 0; i--) { 1011 short dataval = (read_cmd & (1 << i)) ? EE_Write1 : EE_Write0; 1012 writel(dataval, ee_addr); 1013 eeprom_delay(ee_addr); 1014 writel(dataval | EE_ShiftClk, ee_addr); 1015 eeprom_delay(ee_addr); 1016 } 1017 writel(EE_ChipSelect, ee_addr); 1018 eeprom_delay(ee_addr); 1019 1020 for (i = 0; i < 16; i++) { 1021 writel(EE_ChipSelect | EE_ShiftClk, ee_addr); 1022 eeprom_delay(ee_addr); 1023 retval |= (readl(ee_addr) & EE_DataOut) ? 1 << i : 0; 1024 writel(EE_ChipSelect, ee_addr); 1025 eeprom_delay(ee_addr); 1026 } 1027 1028 /* Terminate the EEPROM access. */ 1029 writel(EE_Write0, ee_addr); 1030 writel(0, ee_addr); 1031 return retval; 1032 } 1033 1034 /* MII transceiver control section. 1035 * The 83815 series has an internal transceiver, and we present the 1036 * internal management registers as if they were MII connected. 1037 * External Phy registers are referenced through the MII interface. 1038 */ 1039 1040 /* clock transitions >= 20ns (25MHz) 1041 * One readl should be good to PCI @ 100MHz 1042 */ 1043 #define mii_delay(ioaddr) readl(ioaddr + EECtrl) 1044 1045 static int mii_getbit (struct net_device *dev) 1046 { 1047 int data; 1048 void __iomem *ioaddr = ns_ioaddr(dev); 1049 1050 writel(MII_ShiftClk, ioaddr + EECtrl); 1051 data = readl(ioaddr + EECtrl); 1052 writel(0, ioaddr + EECtrl); 1053 mii_delay(ioaddr); 1054 return (data & MII_Data)? 1 : 0; 1055 } 1056 1057 static void mii_send_bits (struct net_device *dev, u32 data, int len) 1058 { 1059 u32 i; 1060 void __iomem *ioaddr = ns_ioaddr(dev); 1061 1062 for (i = (1 << (len-1)); i; i >>= 1) 1063 { 1064 u32 mdio_val = MII_Write | ((data & i)? MII_Data : 0); 1065 writel(mdio_val, ioaddr + EECtrl); 1066 mii_delay(ioaddr); 1067 writel(mdio_val | MII_ShiftClk, ioaddr + EECtrl); 1068 mii_delay(ioaddr); 1069 } 1070 writel(0, ioaddr + EECtrl); 1071 mii_delay(ioaddr); 1072 } 1073 1074 static int miiport_read(struct net_device *dev, int phy_id, int reg) 1075 { 1076 u32 cmd; 1077 int i; 1078 u32 retval = 0; 1079 1080 /* Ensure sync */ 1081 mii_send_bits (dev, 0xffffffff, 32); 1082 /* ST(2), OP(2), ADDR(5), REG#(5), TA(2), Data(16) total 32 bits */ 1083 /* ST,OP = 0110'b for read operation */ 1084 cmd = (0x06 << 10) | (phy_id << 5) | reg; 1085 mii_send_bits (dev, cmd, 14); 1086 /* Turnaround */ 1087 if (mii_getbit (dev)) 1088 return 0; 1089 /* Read data */ 1090 for (i = 0; i < 16; i++) { 1091 retval <<= 1; 1092 retval |= mii_getbit (dev); 1093 } 1094 /* End cycle */ 1095 mii_getbit (dev); 1096 return retval; 1097 } 1098 1099 static void miiport_write(struct net_device *dev, int phy_id, int reg, u16 data) 1100 { 1101 u32 cmd; 1102 1103 /* Ensure sync */ 1104 mii_send_bits (dev, 0xffffffff, 32); 1105 /* ST(2), OP(2), ADDR(5), REG#(5), TA(2), Data(16) total 32 bits */ 1106 /* ST,OP,AAAAA,RRRRR,TA = 0101xxxxxxxxxx10'b = 0x5002 for write */ 1107 cmd = (0x5002 << 16) | (phy_id << 23) | (reg << 18) | data; 1108 mii_send_bits (dev, cmd, 32); 1109 /* End cycle */ 1110 mii_getbit (dev); 1111 } 1112 1113 static int mdio_read(struct net_device *dev, int reg) 1114 { 1115 struct netdev_private *np = netdev_priv(dev); 1116 void __iomem *ioaddr = ns_ioaddr(dev); 1117 1118 /* The 83815 series has two ports: 1119 * - an internal transceiver 1120 * - an external mii bus 1121 */ 1122 if (dev->if_port == PORT_TP) 1123 return readw(ioaddr+BasicControl+(reg<<2)); 1124 else 1125 return miiport_read(dev, np->phy_addr_external, reg); 1126 } 1127 1128 static void mdio_write(struct net_device *dev, int reg, u16 data) 1129 { 1130 struct netdev_private *np = netdev_priv(dev); 1131 void __iomem *ioaddr = ns_ioaddr(dev); 1132 1133 /* The 83815 series has an internal transceiver; handle separately */ 1134 if (dev->if_port == PORT_TP) 1135 writew(data, ioaddr+BasicControl+(reg<<2)); 1136 else 1137 miiport_write(dev, np->phy_addr_external, reg, data); 1138 } 1139 1140 static void init_phy_fixup(struct net_device *dev) 1141 { 1142 struct netdev_private *np = netdev_priv(dev); 1143 void __iomem *ioaddr = ns_ioaddr(dev); 1144 int i; 1145 u32 cfg; 1146 u16 tmp; 1147 1148 /* restore stuff lost when power was out */ 1149 tmp = mdio_read(dev, MII_BMCR); 1150 if (np->autoneg == AUTONEG_ENABLE) { 1151 /* renegotiate if something changed */ 1152 if ((tmp & BMCR_ANENABLE) == 0 || 1153 np->advertising != mdio_read(dev, MII_ADVERTISE)) 1154 { 1155 /* turn on autonegotiation and force negotiation */ 1156 tmp |= (BMCR_ANENABLE | BMCR_ANRESTART); 1157 mdio_write(dev, MII_ADVERTISE, np->advertising); 1158 } 1159 } else { 1160 /* turn off auto negotiation, set speed and duplexity */ 1161 tmp &= ~(BMCR_ANENABLE | BMCR_SPEED100 | BMCR_FULLDPLX); 1162 if (np->speed == SPEED_100) 1163 tmp |= BMCR_SPEED100; 1164 if (np->duplex == DUPLEX_FULL) 1165 tmp |= BMCR_FULLDPLX; 1166 /* 1167 * Note: there is no good way to inform the link partner 1168 * that our capabilities changed. The user has to unplug 1169 * and replug the network cable after some changes, e.g. 1170 * after switching from 10HD, autoneg off to 100 HD, 1171 * autoneg off. 1172 */ 1173 } 1174 mdio_write(dev, MII_BMCR, tmp); 1175 readl(ioaddr + ChipConfig); 1176 udelay(1); 1177 1178 /* find out what phy this is */ 1179 np->mii = (mdio_read(dev, MII_PHYSID1) << 16) 1180 + mdio_read(dev, MII_PHYSID2); 1181 1182 /* handle external phys here */ 1183 switch (np->mii) { 1184 case PHYID_AM79C874: 1185 /* phy specific configuration for fibre/tp operation */ 1186 tmp = mdio_read(dev, MII_MCTRL); 1187 tmp &= ~(MII_FX_SEL | MII_EN_SCRM); 1188 if (dev->if_port == PORT_FIBRE) 1189 tmp |= MII_FX_SEL; 1190 else 1191 tmp |= MII_EN_SCRM; 1192 mdio_write(dev, MII_MCTRL, tmp); 1193 break; 1194 default: 1195 break; 1196 } 1197 cfg = readl(ioaddr + ChipConfig); 1198 if (cfg & CfgExtPhy) 1199 return; 1200 1201 /* On page 78 of the spec, they recommend some settings for "optimum 1202 performance" to be done in sequence. These settings optimize some 1203 of the 100Mbit autodetection circuitry. They say we only want to 1204 do this for rev C of the chip, but engineers at NSC (Bradley 1205 Kennedy) recommends always setting them. If you don't, you get 1206 errors on some autonegotiations that make the device unusable. 1207 1208 It seems that the DSP needs a few usec to reinitialize after 1209 the start of the phy. Just retry writing these values until they 1210 stick. 1211 */ 1212 for (i=0;i<NATSEMI_HW_TIMEOUT;i++) { 1213 1214 int dspcfg; 1215 writew(1, ioaddr + PGSEL); 1216 writew(PMDCSR_VAL, ioaddr + PMDCSR); 1217 writew(TSTDAT_VAL, ioaddr + TSTDAT); 1218 np->dspcfg = (np->srr <= SRR_DP83815_C)? 1219 DSPCFG_VAL : (DSPCFG_COEF | readw(ioaddr + DSPCFG)); 1220 writew(np->dspcfg, ioaddr + DSPCFG); 1221 writew(SDCFG_VAL, ioaddr + SDCFG); 1222 writew(0, ioaddr + PGSEL); 1223 readl(ioaddr + ChipConfig); 1224 udelay(10); 1225 1226 writew(1, ioaddr + PGSEL); 1227 dspcfg = readw(ioaddr + DSPCFG); 1228 writew(0, ioaddr + PGSEL); 1229 if (np->dspcfg == dspcfg) 1230 break; 1231 } 1232 1233 if (netif_msg_link(np)) { 1234 if (i==NATSEMI_HW_TIMEOUT) { 1235 printk(KERN_INFO 1236 "%s: DSPCFG mismatch after retrying for %d usec.\n", 1237 dev->name, i*10); 1238 } else { 1239 printk(KERN_INFO 1240 "%s: DSPCFG accepted after %d usec.\n", 1241 dev->name, i*10); 1242 } 1243 } 1244 /* 1245 * Enable PHY Specific event based interrupts. Link state change 1246 * and Auto-Negotiation Completion are among the affected. 1247 * Read the intr status to clear it (needed for wake events). 1248 */ 1249 readw(ioaddr + MIntrStatus); 1250 writew(MICRIntEn, ioaddr + MIntrCtrl); 1251 } 1252 1253 static int switch_port_external(struct net_device *dev) 1254 { 1255 struct netdev_private *np = netdev_priv(dev); 1256 void __iomem *ioaddr = ns_ioaddr(dev); 1257 u32 cfg; 1258 1259 cfg = readl(ioaddr + ChipConfig); 1260 if (cfg & CfgExtPhy) 1261 return 0; 1262 1263 if (netif_msg_link(np)) { 1264 printk(KERN_INFO "%s: switching to external transceiver.\n", 1265 dev->name); 1266 } 1267 1268 /* 1) switch back to external phy */ 1269 writel(cfg | (CfgExtPhy | CfgPhyDis), ioaddr + ChipConfig); 1270 readl(ioaddr + ChipConfig); 1271 udelay(1); 1272 1273 /* 2) reset the external phy: */ 1274 /* resetting the external PHY has been known to cause a hub supplying 1275 * power over Ethernet to kill the power. We don't want to kill 1276 * power to this computer, so we avoid resetting the phy. 1277 */ 1278 1279 /* 3) reinit the phy fixup, it got lost during power down. */ 1280 move_int_phy(dev, np->phy_addr_external); 1281 init_phy_fixup(dev); 1282 1283 return 1; 1284 } 1285 1286 static int switch_port_internal(struct net_device *dev) 1287 { 1288 struct netdev_private *np = netdev_priv(dev); 1289 void __iomem *ioaddr = ns_ioaddr(dev); 1290 int i; 1291 u32 cfg; 1292 u16 bmcr; 1293 1294 cfg = readl(ioaddr + ChipConfig); 1295 if (!(cfg &CfgExtPhy)) 1296 return 0; 1297 1298 if (netif_msg_link(np)) { 1299 printk(KERN_INFO "%s: switching to internal transceiver.\n", 1300 dev->name); 1301 } 1302 /* 1) switch back to internal phy: */ 1303 cfg = cfg & ~(CfgExtPhy | CfgPhyDis); 1304 writel(cfg, ioaddr + ChipConfig); 1305 readl(ioaddr + ChipConfig); 1306 udelay(1); 1307 1308 /* 2) reset the internal phy: */ 1309 bmcr = readw(ioaddr+BasicControl+(MII_BMCR<<2)); 1310 writel(bmcr | BMCR_RESET, ioaddr+BasicControl+(MII_BMCR<<2)); 1311 readl(ioaddr + ChipConfig); 1312 udelay(10); 1313 for (i=0;i<NATSEMI_HW_TIMEOUT;i++) { 1314 bmcr = readw(ioaddr+BasicControl+(MII_BMCR<<2)); 1315 if (!(bmcr & BMCR_RESET)) 1316 break; 1317 udelay(10); 1318 } 1319 if (i==NATSEMI_HW_TIMEOUT && netif_msg_link(np)) { 1320 printk(KERN_INFO 1321 "%s: phy reset did not complete in %d usec.\n", 1322 dev->name, i*10); 1323 } 1324 /* 3) reinit the phy fixup, it got lost during power down. */ 1325 init_phy_fixup(dev); 1326 1327 return 1; 1328 } 1329 1330 /* Scan for a PHY on the external mii bus. 1331 * There are two tricky points: 1332 * - Do not scan while the internal phy is enabled. The internal phy will 1333 * crash: e.g. reads from the DSPCFG register will return odd values and 1334 * the nasty random phy reset code will reset the nic every few seconds. 1335 * - The internal phy must be moved around, an external phy could 1336 * have the same address as the internal phy. 1337 */ 1338 static int find_mii(struct net_device *dev) 1339 { 1340 struct netdev_private *np = netdev_priv(dev); 1341 int tmp; 1342 int i; 1343 int did_switch; 1344 1345 /* Switch to external phy */ 1346 did_switch = switch_port_external(dev); 1347 1348 /* Scan the possible phy addresses: 1349 * 1350 * PHY address 0 means that the phy is in isolate mode. Not yet 1351 * supported due to lack of test hardware. User space should 1352 * handle it through ethtool. 1353 */ 1354 for (i = 1; i <= 31; i++) { 1355 move_int_phy(dev, i); 1356 tmp = miiport_read(dev, i, MII_BMSR); 1357 if (tmp != 0xffff && tmp != 0x0000) { 1358 /* found something! */ 1359 np->mii = (mdio_read(dev, MII_PHYSID1) << 16) 1360 + mdio_read(dev, MII_PHYSID2); 1361 if (netif_msg_probe(np)) { 1362 printk(KERN_INFO "natsemi %s: found external phy %08x at address %d.\n", 1363 pci_name(np->pci_dev), np->mii, i); 1364 } 1365 break; 1366 } 1367 } 1368 /* And switch back to internal phy: */ 1369 if (did_switch) 1370 switch_port_internal(dev); 1371 return i; 1372 } 1373 1374 /* CFG bits [13:16] [18:23] */ 1375 #define CFG_RESET_SAVE 0xfde000 1376 /* WCSR bits [0:4] [9:10] */ 1377 #define WCSR_RESET_SAVE 0x61f 1378 /* RFCR bits [20] [22] [27:31] */ 1379 #define RFCR_RESET_SAVE 0xf8500000 1380 1381 static void natsemi_reset(struct net_device *dev) 1382 { 1383 int i; 1384 u32 cfg; 1385 u32 wcsr; 1386 u32 rfcr; 1387 u16 pmatch[3]; 1388 u16 sopass[3]; 1389 struct netdev_private *np = netdev_priv(dev); 1390 void __iomem *ioaddr = ns_ioaddr(dev); 1391 1392 /* 1393 * Resetting the chip causes some registers to be lost. 1394 * Natsemi suggests NOT reloading the EEPROM while live, so instead 1395 * we save the state that would have been loaded from EEPROM 1396 * on a normal power-up (see the spec EEPROM map). This assumes 1397 * whoever calls this will follow up with init_registers() eventually. 1398 */ 1399 1400 /* CFG */ 1401 cfg = readl(ioaddr + ChipConfig) & CFG_RESET_SAVE; 1402 /* WCSR */ 1403 wcsr = readl(ioaddr + WOLCmd) & WCSR_RESET_SAVE; 1404 /* RFCR */ 1405 rfcr = readl(ioaddr + RxFilterAddr) & RFCR_RESET_SAVE; 1406 /* PMATCH */ 1407 for (i = 0; i < 3; i++) { 1408 writel(i*2, ioaddr + RxFilterAddr); 1409 pmatch[i] = readw(ioaddr + RxFilterData); 1410 } 1411 /* SOPAS */ 1412 for (i = 0; i < 3; i++) { 1413 writel(0xa+(i*2), ioaddr + RxFilterAddr); 1414 sopass[i] = readw(ioaddr + RxFilterData); 1415 } 1416 1417 /* now whack the chip */ 1418 writel(ChipReset, ioaddr + ChipCmd); 1419 for (i=0;i<NATSEMI_HW_TIMEOUT;i++) { 1420 if (!(readl(ioaddr + ChipCmd) & ChipReset)) 1421 break; 1422 udelay(5); 1423 } 1424 if (i==NATSEMI_HW_TIMEOUT) { 1425 printk(KERN_WARNING "%s: reset did not complete in %d usec.\n", 1426 dev->name, i*5); 1427 } else if (netif_msg_hw(np)) { 1428 printk(KERN_DEBUG "%s: reset completed in %d usec.\n", 1429 dev->name, i*5); 1430 } 1431 1432 /* restore CFG */ 1433 cfg |= readl(ioaddr + ChipConfig) & ~CFG_RESET_SAVE; 1434 /* turn on external phy if it was selected */ 1435 if (dev->if_port == PORT_TP) 1436 cfg &= ~(CfgExtPhy | CfgPhyDis); 1437 else 1438 cfg |= (CfgExtPhy | CfgPhyDis); 1439 writel(cfg, ioaddr + ChipConfig); 1440 /* restore WCSR */ 1441 wcsr |= readl(ioaddr + WOLCmd) & ~WCSR_RESET_SAVE; 1442 writel(wcsr, ioaddr + WOLCmd); 1443 /* read RFCR */ 1444 rfcr |= readl(ioaddr + RxFilterAddr) & ~RFCR_RESET_SAVE; 1445 /* restore PMATCH */ 1446 for (i = 0; i < 3; i++) { 1447 writel(i*2, ioaddr + RxFilterAddr); 1448 writew(pmatch[i], ioaddr + RxFilterData); 1449 } 1450 for (i = 0; i < 3; i++) { 1451 writel(0xa+(i*2), ioaddr + RxFilterAddr); 1452 writew(sopass[i], ioaddr + RxFilterData); 1453 } 1454 /* restore RFCR */ 1455 writel(rfcr, ioaddr + RxFilterAddr); 1456 } 1457 1458 static void reset_rx(struct net_device *dev) 1459 { 1460 int i; 1461 struct netdev_private *np = netdev_priv(dev); 1462 void __iomem *ioaddr = ns_ioaddr(dev); 1463 1464 np->intr_status &= ~RxResetDone; 1465 1466 writel(RxReset, ioaddr + ChipCmd); 1467 1468 for (i=0;i<NATSEMI_HW_TIMEOUT;i++) { 1469 np->intr_status |= readl(ioaddr + IntrStatus); 1470 if (np->intr_status & RxResetDone) 1471 break; 1472 udelay(15); 1473 } 1474 if (i==NATSEMI_HW_TIMEOUT) { 1475 printk(KERN_WARNING "%s: RX reset did not complete in %d usec.\n", 1476 dev->name, i*15); 1477 } else if (netif_msg_hw(np)) { 1478 printk(KERN_WARNING "%s: RX reset took %d usec.\n", 1479 dev->name, i*15); 1480 } 1481 } 1482 1483 static void natsemi_reload_eeprom(struct net_device *dev) 1484 { 1485 struct netdev_private *np = netdev_priv(dev); 1486 void __iomem *ioaddr = ns_ioaddr(dev); 1487 int i; 1488 1489 writel(EepromReload, ioaddr + PCIBusCfg); 1490 for (i=0;i<NATSEMI_HW_TIMEOUT;i++) { 1491 udelay(50); 1492 if (!(readl(ioaddr + PCIBusCfg) & EepromReload)) 1493 break; 1494 } 1495 if (i==NATSEMI_HW_TIMEOUT) { 1496 printk(KERN_WARNING "natsemi %s: EEPROM did not reload in %d usec.\n", 1497 pci_name(np->pci_dev), i*50); 1498 } else if (netif_msg_hw(np)) { 1499 printk(KERN_DEBUG "natsemi %s: EEPROM reloaded in %d usec.\n", 1500 pci_name(np->pci_dev), i*50); 1501 } 1502 } 1503 1504 static void natsemi_stop_rxtx(struct net_device *dev) 1505 { 1506 void __iomem * ioaddr = ns_ioaddr(dev); 1507 struct netdev_private *np = netdev_priv(dev); 1508 int i; 1509 1510 writel(RxOff | TxOff, ioaddr + ChipCmd); 1511 for(i=0;i< NATSEMI_HW_TIMEOUT;i++) { 1512 if ((readl(ioaddr + ChipCmd) & (TxOn|RxOn)) == 0) 1513 break; 1514 udelay(5); 1515 } 1516 if (i==NATSEMI_HW_TIMEOUT) { 1517 printk(KERN_WARNING "%s: Tx/Rx process did not stop in %d usec.\n", 1518 dev->name, i*5); 1519 } else if (netif_msg_hw(np)) { 1520 printk(KERN_DEBUG "%s: Tx/Rx process stopped in %d usec.\n", 1521 dev->name, i*5); 1522 } 1523 } 1524 1525 static int netdev_open(struct net_device *dev) 1526 { 1527 struct netdev_private *np = netdev_priv(dev); 1528 void __iomem * ioaddr = ns_ioaddr(dev); 1529 const int irq = np->pci_dev->irq; 1530 int i; 1531 1532 /* Reset the chip, just in case. */ 1533 natsemi_reset(dev); 1534 1535 i = request_irq(irq, intr_handler, IRQF_SHARED, dev->name, dev); 1536 if (i) return i; 1537 1538 if (netif_msg_ifup(np)) 1539 printk(KERN_DEBUG "%s: netdev_open() irq %d.\n", 1540 dev->name, irq); 1541 i = alloc_ring(dev); 1542 if (i < 0) { 1543 free_irq(irq, dev); 1544 return i; 1545 } 1546 napi_enable(&np->napi); 1547 1548 init_ring(dev); 1549 spin_lock_irq(&np->lock); 1550 init_registers(dev); 1551 /* now set the MAC address according to dev->dev_addr */ 1552 for (i = 0; i < 3; i++) { 1553 u16 mac = (dev->dev_addr[2*i+1]<<8) + dev->dev_addr[2*i]; 1554 1555 writel(i*2, ioaddr + RxFilterAddr); 1556 writew(mac, ioaddr + RxFilterData); 1557 } 1558 writel(np->cur_rx_mode, ioaddr + RxFilterAddr); 1559 spin_unlock_irq(&np->lock); 1560 1561 netif_start_queue(dev); 1562 1563 if (netif_msg_ifup(np)) 1564 printk(KERN_DEBUG "%s: Done netdev_open(), status: %#08x.\n", 1565 dev->name, (int)readl(ioaddr + ChipCmd)); 1566 1567 /* Set the timer to check for link beat. */ 1568 init_timer(&np->timer); 1569 np->timer.expires = round_jiffies(jiffies + NATSEMI_TIMER_FREQ); 1570 np->timer.data = (unsigned long)dev; 1571 np->timer.function = netdev_timer; /* timer handler */ 1572 add_timer(&np->timer); 1573 1574 return 0; 1575 } 1576 1577 static void do_cable_magic(struct net_device *dev) 1578 { 1579 struct netdev_private *np = netdev_priv(dev); 1580 void __iomem *ioaddr = ns_ioaddr(dev); 1581 1582 if (dev->if_port != PORT_TP) 1583 return; 1584 1585 if (np->srr >= SRR_DP83816_A5) 1586 return; 1587 1588 /* 1589 * 100 MBit links with short cables can trip an issue with the chip. 1590 * The problem manifests as lots of CRC errors and/or flickering 1591 * activity LED while idle. This process is based on instructions 1592 * from engineers at National. 1593 */ 1594 if (readl(ioaddr + ChipConfig) & CfgSpeed100) { 1595 u16 data; 1596 1597 writew(1, ioaddr + PGSEL); 1598 /* 1599 * coefficient visibility should already be enabled via 1600 * DSPCFG | 0x1000 1601 */ 1602 data = readw(ioaddr + TSTDAT) & 0xff; 1603 /* 1604 * the value must be negative, and within certain values 1605 * (these values all come from National) 1606 */ 1607 if (!(data & 0x80) || ((data >= 0xd8) && (data <= 0xff))) { 1608 np = netdev_priv(dev); 1609 1610 /* the bug has been triggered - fix the coefficient */ 1611 writew(TSTDAT_FIXED, ioaddr + TSTDAT); 1612 /* lock the value */ 1613 data = readw(ioaddr + DSPCFG); 1614 np->dspcfg = data | DSPCFG_LOCK; 1615 writew(np->dspcfg, ioaddr + DSPCFG); 1616 } 1617 writew(0, ioaddr + PGSEL); 1618 } 1619 } 1620 1621 static void undo_cable_magic(struct net_device *dev) 1622 { 1623 u16 data; 1624 struct netdev_private *np = netdev_priv(dev); 1625 void __iomem * ioaddr = ns_ioaddr(dev); 1626 1627 if (dev->if_port != PORT_TP) 1628 return; 1629 1630 if (np->srr >= SRR_DP83816_A5) 1631 return; 1632 1633 writew(1, ioaddr + PGSEL); 1634 /* make sure the lock bit is clear */ 1635 data = readw(ioaddr + DSPCFG); 1636 np->dspcfg = data & ~DSPCFG_LOCK; 1637 writew(np->dspcfg, ioaddr + DSPCFG); 1638 writew(0, ioaddr + PGSEL); 1639 } 1640 1641 static void check_link(struct net_device *dev) 1642 { 1643 struct netdev_private *np = netdev_priv(dev); 1644 void __iomem * ioaddr = ns_ioaddr(dev); 1645 int duplex = np->duplex; 1646 u16 bmsr; 1647 1648 /* If we are ignoring the PHY then don't try reading it. */ 1649 if (np->ignore_phy) 1650 goto propagate_state; 1651 1652 /* The link status field is latched: it remains low after a temporary 1653 * link failure until it's read. We need the current link status, 1654 * thus read twice. 1655 */ 1656 mdio_read(dev, MII_BMSR); 1657 bmsr = mdio_read(dev, MII_BMSR); 1658 1659 if (!(bmsr & BMSR_LSTATUS)) { 1660 if (netif_carrier_ok(dev)) { 1661 if (netif_msg_link(np)) 1662 printk(KERN_NOTICE "%s: link down.\n", 1663 dev->name); 1664 netif_carrier_off(dev); 1665 undo_cable_magic(dev); 1666 } 1667 return; 1668 } 1669 if (!netif_carrier_ok(dev)) { 1670 if (netif_msg_link(np)) 1671 printk(KERN_NOTICE "%s: link up.\n", dev->name); 1672 netif_carrier_on(dev); 1673 do_cable_magic(dev); 1674 } 1675 1676 duplex = np->full_duplex; 1677 if (!duplex) { 1678 if (bmsr & BMSR_ANEGCOMPLETE) { 1679 int tmp = mii_nway_result( 1680 np->advertising & mdio_read(dev, MII_LPA)); 1681 if (tmp == LPA_100FULL || tmp == LPA_10FULL) 1682 duplex = 1; 1683 } else if (mdio_read(dev, MII_BMCR) & BMCR_FULLDPLX) 1684 duplex = 1; 1685 } 1686 1687 propagate_state: 1688 /* if duplex is set then bit 28 must be set, too */ 1689 if (duplex ^ !!(np->rx_config & RxAcceptTx)) { 1690 if (netif_msg_link(np)) 1691 printk(KERN_INFO 1692 "%s: Setting %s-duplex based on negotiated " 1693 "link capability.\n", dev->name, 1694 duplex ? "full" : "half"); 1695 if (duplex) { 1696 np->rx_config |= RxAcceptTx; 1697 np->tx_config |= TxCarrierIgn | TxHeartIgn; 1698 } else { 1699 np->rx_config &= ~RxAcceptTx; 1700 np->tx_config &= ~(TxCarrierIgn | TxHeartIgn); 1701 } 1702 writel(np->tx_config, ioaddr + TxConfig); 1703 writel(np->rx_config, ioaddr + RxConfig); 1704 } 1705 } 1706 1707 static void init_registers(struct net_device *dev) 1708 { 1709 struct netdev_private *np = netdev_priv(dev); 1710 void __iomem * ioaddr = ns_ioaddr(dev); 1711 1712 init_phy_fixup(dev); 1713 1714 /* clear any interrupts that are pending, such as wake events */ 1715 readl(ioaddr + IntrStatus); 1716 1717 writel(np->ring_dma, ioaddr + RxRingPtr); 1718 writel(np->ring_dma + RX_RING_SIZE * sizeof(struct netdev_desc), 1719 ioaddr + TxRingPtr); 1720 1721 /* Initialize other registers. 1722 * Configure the PCI bus bursts and FIFO thresholds. 1723 * Configure for standard, in-spec Ethernet. 1724 * Start with half-duplex. check_link will update 1725 * to the correct settings. 1726 */ 1727 1728 /* DRTH: 2: start tx if 64 bytes are in the fifo 1729 * FLTH: 0x10: refill with next packet if 512 bytes are free 1730 * MXDMA: 0: up to 256 byte bursts. 1731 * MXDMA must be <= FLTH 1732 * ECRETRY=1 1733 * ATP=1 1734 */ 1735 np->tx_config = TxAutoPad | TxCollRetry | TxMxdma_256 | 1736 TX_FLTH_VAL | TX_DRTH_VAL_START; 1737 writel(np->tx_config, ioaddr + TxConfig); 1738 1739 /* DRTH 0x10: start copying to memory if 128 bytes are in the fifo 1740 * MXDMA 0: up to 256 byte bursts 1741 */ 1742 np->rx_config = RxMxdma_256 | RX_DRTH_VAL; 1743 /* if receive ring now has bigger buffers than normal, enable jumbo */ 1744 if (np->rx_buf_sz > NATSEMI_LONGPKT) 1745 np->rx_config |= RxAcceptLong; 1746 1747 writel(np->rx_config, ioaddr + RxConfig); 1748 1749 /* Disable PME: 1750 * The PME bit is initialized from the EEPROM contents. 1751 * PCI cards probably have PME disabled, but motherboard 1752 * implementations may have PME set to enable WakeOnLan. 1753 * With PME set the chip will scan incoming packets but 1754 * nothing will be written to memory. */ 1755 np->SavedClkRun = readl(ioaddr + ClkRun); 1756 writel(np->SavedClkRun & ~PMEEnable, ioaddr + ClkRun); 1757 if (np->SavedClkRun & PMEStatus && netif_msg_wol(np)) { 1758 printk(KERN_NOTICE "%s: Wake-up event %#08x\n", 1759 dev->name, readl(ioaddr + WOLCmd)); 1760 } 1761 1762 check_link(dev); 1763 __set_rx_mode(dev); 1764 1765 /* Enable interrupts by setting the interrupt mask. */ 1766 writel(DEFAULT_INTR, ioaddr + IntrMask); 1767 natsemi_irq_enable(dev); 1768 1769 writel(RxOn | TxOn, ioaddr + ChipCmd); 1770 writel(StatsClear, ioaddr + StatsCtrl); /* Clear Stats */ 1771 } 1772 1773 /* 1774 * netdev_timer: 1775 * Purpose: 1776 * 1) check for link changes. Usually they are handled by the MII interrupt 1777 * but it doesn't hurt to check twice. 1778 * 2) check for sudden death of the NIC: 1779 * It seems that a reference set for this chip went out with incorrect info, 1780 * and there exist boards that aren't quite right. An unexpected voltage 1781 * drop can cause the PHY to get itself in a weird state (basically reset). 1782 * NOTE: this only seems to affect revC chips. The user can disable 1783 * this check via dspcfg_workaround sysfs option. 1784 * 3) check of death of the RX path due to OOM 1785 */ 1786 static void netdev_timer(unsigned long data) 1787 { 1788 struct net_device *dev = (struct net_device *)data; 1789 struct netdev_private *np = netdev_priv(dev); 1790 void __iomem * ioaddr = ns_ioaddr(dev); 1791 int next_tick = NATSEMI_TIMER_FREQ; 1792 const int irq = np->pci_dev->irq; 1793 1794 if (netif_msg_timer(np)) { 1795 /* DO NOT read the IntrStatus register, 1796 * a read clears any pending interrupts. 1797 */ 1798 printk(KERN_DEBUG "%s: Media selection timer tick.\n", 1799 dev->name); 1800 } 1801 1802 if (dev->if_port == PORT_TP) { 1803 u16 dspcfg; 1804 1805 spin_lock_irq(&np->lock); 1806 /* check for a nasty random phy-reset - use dspcfg as a flag */ 1807 writew(1, ioaddr+PGSEL); 1808 dspcfg = readw(ioaddr+DSPCFG); 1809 writew(0, ioaddr+PGSEL); 1810 if (np->dspcfg_workaround && dspcfg != np->dspcfg) { 1811 if (!netif_queue_stopped(dev)) { 1812 spin_unlock_irq(&np->lock); 1813 if (netif_msg_drv(np)) 1814 printk(KERN_NOTICE "%s: possible phy reset: " 1815 "re-initializing\n", dev->name); 1816 disable_irq(irq); 1817 spin_lock_irq(&np->lock); 1818 natsemi_stop_rxtx(dev); 1819 dump_ring(dev); 1820 reinit_ring(dev); 1821 init_registers(dev); 1822 spin_unlock_irq(&np->lock); 1823 enable_irq(irq); 1824 } else { 1825 /* hurry back */ 1826 next_tick = HZ; 1827 spin_unlock_irq(&np->lock); 1828 } 1829 } else { 1830 /* init_registers() calls check_link() for the above case */ 1831 check_link(dev); 1832 spin_unlock_irq(&np->lock); 1833 } 1834 } else { 1835 spin_lock_irq(&np->lock); 1836 check_link(dev); 1837 spin_unlock_irq(&np->lock); 1838 } 1839 if (np->oom) { 1840 disable_irq(irq); 1841 np->oom = 0; 1842 refill_rx(dev); 1843 enable_irq(irq); 1844 if (!np->oom) { 1845 writel(RxOn, ioaddr + ChipCmd); 1846 } else { 1847 next_tick = 1; 1848 } 1849 } 1850 1851 if (next_tick > 1) 1852 mod_timer(&np->timer, round_jiffies(jiffies + next_tick)); 1853 else 1854 mod_timer(&np->timer, jiffies + next_tick); 1855 } 1856 1857 static void dump_ring(struct net_device *dev) 1858 { 1859 struct netdev_private *np = netdev_priv(dev); 1860 1861 if (netif_msg_pktdata(np)) { 1862 int i; 1863 printk(KERN_DEBUG " Tx ring at %p:\n", np->tx_ring); 1864 for (i = 0; i < TX_RING_SIZE; i++) { 1865 printk(KERN_DEBUG " #%d desc. %#08x %#08x %#08x.\n", 1866 i, np->tx_ring[i].next_desc, 1867 np->tx_ring[i].cmd_status, 1868 np->tx_ring[i].addr); 1869 } 1870 printk(KERN_DEBUG " Rx ring %p:\n", np->rx_ring); 1871 for (i = 0; i < RX_RING_SIZE; i++) { 1872 printk(KERN_DEBUG " #%d desc. %#08x %#08x %#08x.\n", 1873 i, np->rx_ring[i].next_desc, 1874 np->rx_ring[i].cmd_status, 1875 np->rx_ring[i].addr); 1876 } 1877 } 1878 } 1879 1880 static void ns_tx_timeout(struct net_device *dev) 1881 { 1882 struct netdev_private *np = netdev_priv(dev); 1883 void __iomem * ioaddr = ns_ioaddr(dev); 1884 const int irq = np->pci_dev->irq; 1885 1886 disable_irq(irq); 1887 spin_lock_irq(&np->lock); 1888 if (!np->hands_off) { 1889 if (netif_msg_tx_err(np)) 1890 printk(KERN_WARNING 1891 "%s: Transmit timed out, status %#08x," 1892 " resetting...\n", 1893 dev->name, readl(ioaddr + IntrStatus)); 1894 dump_ring(dev); 1895 1896 natsemi_reset(dev); 1897 reinit_ring(dev); 1898 init_registers(dev); 1899 } else { 1900 printk(KERN_WARNING 1901 "%s: tx_timeout while in hands_off state?\n", 1902 dev->name); 1903 } 1904 spin_unlock_irq(&np->lock); 1905 enable_irq(irq); 1906 1907 dev->trans_start = jiffies; /* prevent tx timeout */ 1908 dev->stats.tx_errors++; 1909 netif_wake_queue(dev); 1910 } 1911 1912 static int alloc_ring(struct net_device *dev) 1913 { 1914 struct netdev_private *np = netdev_priv(dev); 1915 np->rx_ring = pci_alloc_consistent(np->pci_dev, 1916 sizeof(struct netdev_desc) * (RX_RING_SIZE+TX_RING_SIZE), 1917 &np->ring_dma); 1918 if (!np->rx_ring) 1919 return -ENOMEM; 1920 np->tx_ring = &np->rx_ring[RX_RING_SIZE]; 1921 return 0; 1922 } 1923 1924 static void refill_rx(struct net_device *dev) 1925 { 1926 struct netdev_private *np = netdev_priv(dev); 1927 1928 /* Refill the Rx ring buffers. */ 1929 for (; np->cur_rx - np->dirty_rx > 0; np->dirty_rx++) { 1930 struct sk_buff *skb; 1931 int entry = np->dirty_rx % RX_RING_SIZE; 1932 if (np->rx_skbuff[entry] == NULL) { 1933 unsigned int buflen = np->rx_buf_sz+NATSEMI_PADDING; 1934 skb = netdev_alloc_skb(dev, buflen); 1935 np->rx_skbuff[entry] = skb; 1936 if (skb == NULL) 1937 break; /* Better luck next round. */ 1938 np->rx_dma[entry] = pci_map_single(np->pci_dev, 1939 skb->data, buflen, PCI_DMA_FROMDEVICE); 1940 if (pci_dma_mapping_error(np->pci_dev, 1941 np->rx_dma[entry])) { 1942 dev_kfree_skb_any(skb); 1943 np->rx_skbuff[entry] = NULL; 1944 break; /* Better luck next round. */ 1945 } 1946 np->rx_ring[entry].addr = cpu_to_le32(np->rx_dma[entry]); 1947 } 1948 np->rx_ring[entry].cmd_status = cpu_to_le32(np->rx_buf_sz); 1949 } 1950 if (np->cur_rx - np->dirty_rx == RX_RING_SIZE) { 1951 if (netif_msg_rx_err(np)) 1952 printk(KERN_WARNING "%s: going OOM.\n", dev->name); 1953 np->oom = 1; 1954 } 1955 } 1956 1957 static void set_bufsize(struct net_device *dev) 1958 { 1959 struct netdev_private *np = netdev_priv(dev); 1960 if (dev->mtu <= ETH_DATA_LEN) 1961 np->rx_buf_sz = ETH_DATA_LEN + NATSEMI_HEADERS; 1962 else 1963 np->rx_buf_sz = dev->mtu + NATSEMI_HEADERS; 1964 } 1965 1966 /* Initialize the Rx and Tx rings, along with various 'dev' bits. */ 1967 static void init_ring(struct net_device *dev) 1968 { 1969 struct netdev_private *np = netdev_priv(dev); 1970 int i; 1971 1972 /* 1) TX ring */ 1973 np->dirty_tx = np->cur_tx = 0; 1974 for (i = 0; i < TX_RING_SIZE; i++) { 1975 np->tx_skbuff[i] = NULL; 1976 np->tx_ring[i].next_desc = cpu_to_le32(np->ring_dma 1977 +sizeof(struct netdev_desc) 1978 *((i+1)%TX_RING_SIZE+RX_RING_SIZE)); 1979 np->tx_ring[i].cmd_status = 0; 1980 } 1981 1982 /* 2) RX ring */ 1983 np->dirty_rx = 0; 1984 np->cur_rx = RX_RING_SIZE; 1985 np->oom = 0; 1986 set_bufsize(dev); 1987 1988 np->rx_head_desc = &np->rx_ring[0]; 1989 1990 /* Please be careful before changing this loop - at least gcc-2.95.1 1991 * miscompiles it otherwise. 1992 */ 1993 /* Initialize all Rx descriptors. */ 1994 for (i = 0; i < RX_RING_SIZE; i++) { 1995 np->rx_ring[i].next_desc = cpu_to_le32(np->ring_dma 1996 +sizeof(struct netdev_desc) 1997 *((i+1)%RX_RING_SIZE)); 1998 np->rx_ring[i].cmd_status = cpu_to_le32(DescOwn); 1999 np->rx_skbuff[i] = NULL; 2000 } 2001 refill_rx(dev); 2002 dump_ring(dev); 2003 } 2004 2005 static void drain_tx(struct net_device *dev) 2006 { 2007 struct netdev_private *np = netdev_priv(dev); 2008 int i; 2009 2010 for (i = 0; i < TX_RING_SIZE; i++) { 2011 if (np->tx_skbuff[i]) { 2012 pci_unmap_single(np->pci_dev, 2013 np->tx_dma[i], np->tx_skbuff[i]->len, 2014 PCI_DMA_TODEVICE); 2015 dev_kfree_skb(np->tx_skbuff[i]); 2016 dev->stats.tx_dropped++; 2017 } 2018 np->tx_skbuff[i] = NULL; 2019 } 2020 } 2021 2022 static void drain_rx(struct net_device *dev) 2023 { 2024 struct netdev_private *np = netdev_priv(dev); 2025 unsigned int buflen = np->rx_buf_sz; 2026 int i; 2027 2028 /* Free all the skbuffs in the Rx queue. */ 2029 for (i = 0; i < RX_RING_SIZE; i++) { 2030 np->rx_ring[i].cmd_status = 0; 2031 np->rx_ring[i].addr = cpu_to_le32(0xBADF00D0); /* An invalid address. */ 2032 if (np->rx_skbuff[i]) { 2033 pci_unmap_single(np->pci_dev, np->rx_dma[i], 2034 buflen + NATSEMI_PADDING, 2035 PCI_DMA_FROMDEVICE); 2036 dev_kfree_skb(np->rx_skbuff[i]); 2037 } 2038 np->rx_skbuff[i] = NULL; 2039 } 2040 } 2041 2042 static void drain_ring(struct net_device *dev) 2043 { 2044 drain_rx(dev); 2045 drain_tx(dev); 2046 } 2047 2048 static void free_ring(struct net_device *dev) 2049 { 2050 struct netdev_private *np = netdev_priv(dev); 2051 pci_free_consistent(np->pci_dev, 2052 sizeof(struct netdev_desc) * (RX_RING_SIZE+TX_RING_SIZE), 2053 np->rx_ring, np->ring_dma); 2054 } 2055 2056 static void reinit_rx(struct net_device *dev) 2057 { 2058 struct netdev_private *np = netdev_priv(dev); 2059 int i; 2060 2061 /* RX Ring */ 2062 np->dirty_rx = 0; 2063 np->cur_rx = RX_RING_SIZE; 2064 np->rx_head_desc = &np->rx_ring[0]; 2065 /* Initialize all Rx descriptors. */ 2066 for (i = 0; i < RX_RING_SIZE; i++) 2067 np->rx_ring[i].cmd_status = cpu_to_le32(DescOwn); 2068 2069 refill_rx(dev); 2070 } 2071 2072 static void reinit_ring(struct net_device *dev) 2073 { 2074 struct netdev_private *np = netdev_priv(dev); 2075 int i; 2076 2077 /* drain TX ring */ 2078 drain_tx(dev); 2079 np->dirty_tx = np->cur_tx = 0; 2080 for (i=0;i<TX_RING_SIZE;i++) 2081 np->tx_ring[i].cmd_status = 0; 2082 2083 reinit_rx(dev); 2084 } 2085 2086 static netdev_tx_t start_tx(struct sk_buff *skb, struct net_device *dev) 2087 { 2088 struct netdev_private *np = netdev_priv(dev); 2089 void __iomem * ioaddr = ns_ioaddr(dev); 2090 unsigned entry; 2091 unsigned long flags; 2092 2093 /* Note: Ordering is important here, set the field with the 2094 "ownership" bit last, and only then increment cur_tx. */ 2095 2096 /* Calculate the next Tx descriptor entry. */ 2097 entry = np->cur_tx % TX_RING_SIZE; 2098 2099 np->tx_skbuff[entry] = skb; 2100 np->tx_dma[entry] = pci_map_single(np->pci_dev, 2101 skb->data,skb->len, PCI_DMA_TODEVICE); 2102 if (pci_dma_mapping_error(np->pci_dev, np->tx_dma[entry])) { 2103 np->tx_skbuff[entry] = NULL; 2104 dev_kfree_skb_irq(skb); 2105 dev->stats.tx_dropped++; 2106 return NETDEV_TX_OK; 2107 } 2108 2109 np->tx_ring[entry].addr = cpu_to_le32(np->tx_dma[entry]); 2110 2111 spin_lock_irqsave(&np->lock, flags); 2112 2113 if (!np->hands_off) { 2114 np->tx_ring[entry].cmd_status = cpu_to_le32(DescOwn | skb->len); 2115 /* StrongARM: Explicitly cache flush np->tx_ring and 2116 * skb->data,skb->len. */ 2117 wmb(); 2118 np->cur_tx++; 2119 if (np->cur_tx - np->dirty_tx >= TX_QUEUE_LEN - 1) { 2120 netdev_tx_done(dev); 2121 if (np->cur_tx - np->dirty_tx >= TX_QUEUE_LEN - 1) 2122 netif_stop_queue(dev); 2123 } 2124 /* Wake the potentially-idle transmit channel. */ 2125 writel(TxOn, ioaddr + ChipCmd); 2126 } else { 2127 dev_kfree_skb_irq(skb); 2128 dev->stats.tx_dropped++; 2129 } 2130 spin_unlock_irqrestore(&np->lock, flags); 2131 2132 if (netif_msg_tx_queued(np)) { 2133 printk(KERN_DEBUG "%s: Transmit frame #%d queued in slot %d.\n", 2134 dev->name, np->cur_tx, entry); 2135 } 2136 return NETDEV_TX_OK; 2137 } 2138 2139 static void netdev_tx_done(struct net_device *dev) 2140 { 2141 struct netdev_private *np = netdev_priv(dev); 2142 2143 for (; np->cur_tx - np->dirty_tx > 0; np->dirty_tx++) { 2144 int entry = np->dirty_tx % TX_RING_SIZE; 2145 if (np->tx_ring[entry].cmd_status & cpu_to_le32(DescOwn)) 2146 break; 2147 if (netif_msg_tx_done(np)) 2148 printk(KERN_DEBUG 2149 "%s: tx frame #%d finished, status %#08x.\n", 2150 dev->name, np->dirty_tx, 2151 le32_to_cpu(np->tx_ring[entry].cmd_status)); 2152 if (np->tx_ring[entry].cmd_status & cpu_to_le32(DescPktOK)) { 2153 dev->stats.tx_packets++; 2154 dev->stats.tx_bytes += np->tx_skbuff[entry]->len; 2155 } else { /* Various Tx errors */ 2156 int tx_status = 2157 le32_to_cpu(np->tx_ring[entry].cmd_status); 2158 if (tx_status & (DescTxAbort|DescTxExcColl)) 2159 dev->stats.tx_aborted_errors++; 2160 if (tx_status & DescTxFIFO) 2161 dev->stats.tx_fifo_errors++; 2162 if (tx_status & DescTxCarrier) 2163 dev->stats.tx_carrier_errors++; 2164 if (tx_status & DescTxOOWCol) 2165 dev->stats.tx_window_errors++; 2166 dev->stats.tx_errors++; 2167 } 2168 pci_unmap_single(np->pci_dev,np->tx_dma[entry], 2169 np->tx_skbuff[entry]->len, 2170 PCI_DMA_TODEVICE); 2171 /* Free the original skb. */ 2172 dev_kfree_skb_irq(np->tx_skbuff[entry]); 2173 np->tx_skbuff[entry] = NULL; 2174 } 2175 if (netif_queue_stopped(dev) && 2176 np->cur_tx - np->dirty_tx < TX_QUEUE_LEN - 4) { 2177 /* The ring is no longer full, wake queue. */ 2178 netif_wake_queue(dev); 2179 } 2180 } 2181 2182 /* The interrupt handler doesn't actually handle interrupts itself, it 2183 * schedules a NAPI poll if there is anything to do. */ 2184 static irqreturn_t intr_handler(int irq, void *dev_instance) 2185 { 2186 struct net_device *dev = dev_instance; 2187 struct netdev_private *np = netdev_priv(dev); 2188 void __iomem * ioaddr = ns_ioaddr(dev); 2189 2190 /* Reading IntrStatus automatically acknowledges so don't do 2191 * that while interrupts are disabled, (for example, while a 2192 * poll is scheduled). */ 2193 if (np->hands_off || !readl(ioaddr + IntrEnable)) 2194 return IRQ_NONE; 2195 2196 np->intr_status = readl(ioaddr + IntrStatus); 2197 2198 if (!np->intr_status) 2199 return IRQ_NONE; 2200 2201 if (netif_msg_intr(np)) 2202 printk(KERN_DEBUG 2203 "%s: Interrupt, status %#08x, mask %#08x.\n", 2204 dev->name, np->intr_status, 2205 readl(ioaddr + IntrMask)); 2206 2207 prefetch(&np->rx_skbuff[np->cur_rx % RX_RING_SIZE]); 2208 2209 if (napi_schedule_prep(&np->napi)) { 2210 /* Disable interrupts and register for poll */ 2211 natsemi_irq_disable(dev); 2212 __napi_schedule(&np->napi); 2213 } else 2214 printk(KERN_WARNING 2215 "%s: Ignoring interrupt, status %#08x, mask %#08x.\n", 2216 dev->name, np->intr_status, 2217 readl(ioaddr + IntrMask)); 2218 2219 return IRQ_HANDLED; 2220 } 2221 2222 /* This is the NAPI poll routine. As well as the standard RX handling 2223 * it also handles all other interrupts that the chip might raise. 2224 */ 2225 static int natsemi_poll(struct napi_struct *napi, int budget) 2226 { 2227 struct netdev_private *np = container_of(napi, struct netdev_private, napi); 2228 struct net_device *dev = np->dev; 2229 void __iomem * ioaddr = ns_ioaddr(dev); 2230 int work_done = 0; 2231 2232 do { 2233 if (netif_msg_intr(np)) 2234 printk(KERN_DEBUG 2235 "%s: Poll, status %#08x, mask %#08x.\n", 2236 dev->name, np->intr_status, 2237 readl(ioaddr + IntrMask)); 2238 2239 /* netdev_rx() may read IntrStatus again if the RX state 2240 * machine falls over so do it first. */ 2241 if (np->intr_status & 2242 (IntrRxDone | IntrRxIntr | RxStatusFIFOOver | 2243 IntrRxErr | IntrRxOverrun)) { 2244 netdev_rx(dev, &work_done, budget); 2245 } 2246 2247 if (np->intr_status & 2248 (IntrTxDone | IntrTxIntr | IntrTxIdle | IntrTxErr)) { 2249 spin_lock(&np->lock); 2250 netdev_tx_done(dev); 2251 spin_unlock(&np->lock); 2252 } 2253 2254 /* Abnormal error summary/uncommon events handlers. */ 2255 if (np->intr_status & IntrAbnormalSummary) 2256 netdev_error(dev, np->intr_status); 2257 2258 if (work_done >= budget) 2259 return work_done; 2260 2261 np->intr_status = readl(ioaddr + IntrStatus); 2262 } while (np->intr_status); 2263 2264 napi_complete(napi); 2265 2266 /* Reenable interrupts providing nothing is trying to shut 2267 * the chip down. */ 2268 spin_lock(&np->lock); 2269 if (!np->hands_off) 2270 natsemi_irq_enable(dev); 2271 spin_unlock(&np->lock); 2272 2273 return work_done; 2274 } 2275 2276 /* This routine is logically part of the interrupt handler, but separated 2277 for clarity and better register allocation. */ 2278 static void netdev_rx(struct net_device *dev, int *work_done, int work_to_do) 2279 { 2280 struct netdev_private *np = netdev_priv(dev); 2281 int entry = np->cur_rx % RX_RING_SIZE; 2282 int boguscnt = np->dirty_rx + RX_RING_SIZE - np->cur_rx; 2283 s32 desc_status = le32_to_cpu(np->rx_head_desc->cmd_status); 2284 unsigned int buflen = np->rx_buf_sz; 2285 void __iomem * ioaddr = ns_ioaddr(dev); 2286 2287 /* If the driver owns the next entry it's a new packet. Send it up. */ 2288 while (desc_status < 0) { /* e.g. & DescOwn */ 2289 int pkt_len; 2290 if (netif_msg_rx_status(np)) 2291 printk(KERN_DEBUG 2292 " netdev_rx() entry %d status was %#08x.\n", 2293 entry, desc_status); 2294 if (--boguscnt < 0) 2295 break; 2296 2297 if (*work_done >= work_to_do) 2298 break; 2299 2300 (*work_done)++; 2301 2302 pkt_len = (desc_status & DescSizeMask) - 4; 2303 if ((desc_status&(DescMore|DescPktOK|DescRxLong)) != DescPktOK){ 2304 if (desc_status & DescMore) { 2305 unsigned long flags; 2306 2307 if (netif_msg_rx_err(np)) 2308 printk(KERN_WARNING 2309 "%s: Oversized(?) Ethernet " 2310 "frame spanned multiple " 2311 "buffers, entry %#08x " 2312 "status %#08x.\n", dev->name, 2313 np->cur_rx, desc_status); 2314 dev->stats.rx_length_errors++; 2315 2316 /* The RX state machine has probably 2317 * locked up beneath us. Follow the 2318 * reset procedure documented in 2319 * AN-1287. */ 2320 2321 spin_lock_irqsave(&np->lock, flags); 2322 reset_rx(dev); 2323 reinit_rx(dev); 2324 writel(np->ring_dma, ioaddr + RxRingPtr); 2325 check_link(dev); 2326 spin_unlock_irqrestore(&np->lock, flags); 2327 2328 /* We'll enable RX on exit from this 2329 * function. */ 2330 break; 2331 2332 } else { 2333 /* There was an error. */ 2334 dev->stats.rx_errors++; 2335 if (desc_status & (DescRxAbort|DescRxOver)) 2336 dev->stats.rx_over_errors++; 2337 if (desc_status & (DescRxLong|DescRxRunt)) 2338 dev->stats.rx_length_errors++; 2339 if (desc_status & (DescRxInvalid|DescRxAlign)) 2340 dev->stats.rx_frame_errors++; 2341 if (desc_status & DescRxCRC) 2342 dev->stats.rx_crc_errors++; 2343 } 2344 } else if (pkt_len > np->rx_buf_sz) { 2345 /* if this is the tail of a double buffer 2346 * packet, we've already counted the error 2347 * on the first part. Ignore the second half. 2348 */ 2349 } else { 2350 struct sk_buff *skb; 2351 /* Omit CRC size. */ 2352 /* Check if the packet is long enough to accept 2353 * without copying to a minimally-sized skbuff. */ 2354 if (pkt_len < rx_copybreak && 2355 (skb = netdev_alloc_skb(dev, pkt_len + RX_OFFSET)) != NULL) { 2356 /* 16 byte align the IP header */ 2357 skb_reserve(skb, RX_OFFSET); 2358 pci_dma_sync_single_for_cpu(np->pci_dev, 2359 np->rx_dma[entry], 2360 buflen, 2361 PCI_DMA_FROMDEVICE); 2362 skb_copy_to_linear_data(skb, 2363 np->rx_skbuff[entry]->data, pkt_len); 2364 skb_put(skb, pkt_len); 2365 pci_dma_sync_single_for_device(np->pci_dev, 2366 np->rx_dma[entry], 2367 buflen, 2368 PCI_DMA_FROMDEVICE); 2369 } else { 2370 pci_unmap_single(np->pci_dev, np->rx_dma[entry], 2371 buflen + NATSEMI_PADDING, 2372 PCI_DMA_FROMDEVICE); 2373 skb_put(skb = np->rx_skbuff[entry], pkt_len); 2374 np->rx_skbuff[entry] = NULL; 2375 } 2376 skb->protocol = eth_type_trans(skb, dev); 2377 netif_receive_skb(skb); 2378 dev->stats.rx_packets++; 2379 dev->stats.rx_bytes += pkt_len; 2380 } 2381 entry = (++np->cur_rx) % RX_RING_SIZE; 2382 np->rx_head_desc = &np->rx_ring[entry]; 2383 desc_status = le32_to_cpu(np->rx_head_desc->cmd_status); 2384 } 2385 refill_rx(dev); 2386 2387 /* Restart Rx engine if stopped. */ 2388 if (np->oom) 2389 mod_timer(&np->timer, jiffies + 1); 2390 else 2391 writel(RxOn, ioaddr + ChipCmd); 2392 } 2393 2394 static void netdev_error(struct net_device *dev, int intr_status) 2395 { 2396 struct netdev_private *np = netdev_priv(dev); 2397 void __iomem * ioaddr = ns_ioaddr(dev); 2398 2399 spin_lock(&np->lock); 2400 if (intr_status & LinkChange) { 2401 u16 lpa = mdio_read(dev, MII_LPA); 2402 if (mdio_read(dev, MII_BMCR) & BMCR_ANENABLE && 2403 netif_msg_link(np)) { 2404 printk(KERN_INFO 2405 "%s: Autonegotiation advertising" 2406 " %#04x partner %#04x.\n", dev->name, 2407 np->advertising, lpa); 2408 } 2409 2410 /* read MII int status to clear the flag */ 2411 readw(ioaddr + MIntrStatus); 2412 check_link(dev); 2413 } 2414 if (intr_status & StatsMax) { 2415 __get_stats(dev); 2416 } 2417 if (intr_status & IntrTxUnderrun) { 2418 if ((np->tx_config & TxDrthMask) < TX_DRTH_VAL_LIMIT) { 2419 np->tx_config += TX_DRTH_VAL_INC; 2420 if (netif_msg_tx_err(np)) 2421 printk(KERN_NOTICE 2422 "%s: increased tx threshold, txcfg %#08x.\n", 2423 dev->name, np->tx_config); 2424 } else { 2425 if (netif_msg_tx_err(np)) 2426 printk(KERN_NOTICE 2427 "%s: tx underrun with maximum tx threshold, txcfg %#08x.\n", 2428 dev->name, np->tx_config); 2429 } 2430 writel(np->tx_config, ioaddr + TxConfig); 2431 } 2432 if (intr_status & WOLPkt && netif_msg_wol(np)) { 2433 int wol_status = readl(ioaddr + WOLCmd); 2434 printk(KERN_NOTICE "%s: Link wake-up event %#08x\n", 2435 dev->name, wol_status); 2436 } 2437 if (intr_status & RxStatusFIFOOver) { 2438 if (netif_msg_rx_err(np) && netif_msg_intr(np)) { 2439 printk(KERN_NOTICE "%s: Rx status FIFO overrun\n", 2440 dev->name); 2441 } 2442 dev->stats.rx_fifo_errors++; 2443 dev->stats.rx_errors++; 2444 } 2445 /* Hmmmmm, it's not clear how to recover from PCI faults. */ 2446 if (intr_status & IntrPCIErr) { 2447 printk(KERN_NOTICE "%s: PCI error %#08x\n", dev->name, 2448 intr_status & IntrPCIErr); 2449 dev->stats.tx_fifo_errors++; 2450 dev->stats.tx_errors++; 2451 dev->stats.rx_fifo_errors++; 2452 dev->stats.rx_errors++; 2453 } 2454 spin_unlock(&np->lock); 2455 } 2456 2457 static void __get_stats(struct net_device *dev) 2458 { 2459 void __iomem * ioaddr = ns_ioaddr(dev); 2460 2461 /* The chip only need report frame silently dropped. */ 2462 dev->stats.rx_crc_errors += readl(ioaddr + RxCRCErrs); 2463 dev->stats.rx_missed_errors += readl(ioaddr + RxMissed); 2464 } 2465 2466 static struct net_device_stats *get_stats(struct net_device *dev) 2467 { 2468 struct netdev_private *np = netdev_priv(dev); 2469 2470 /* The chip only need report frame silently dropped. */ 2471 spin_lock_irq(&np->lock); 2472 if (netif_running(dev) && !np->hands_off) 2473 __get_stats(dev); 2474 spin_unlock_irq(&np->lock); 2475 2476 return &dev->stats; 2477 } 2478 2479 #ifdef CONFIG_NET_POLL_CONTROLLER 2480 static void natsemi_poll_controller(struct net_device *dev) 2481 { 2482 struct netdev_private *np = netdev_priv(dev); 2483 const int irq = np->pci_dev->irq; 2484 2485 disable_irq(irq); 2486 intr_handler(irq, dev); 2487 enable_irq(irq); 2488 } 2489 #endif 2490 2491 #define HASH_TABLE 0x200 2492 static void __set_rx_mode(struct net_device *dev) 2493 { 2494 void __iomem * ioaddr = ns_ioaddr(dev); 2495 struct netdev_private *np = netdev_priv(dev); 2496 u8 mc_filter[64]; /* Multicast hash filter */ 2497 u32 rx_mode; 2498 2499 if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */ 2500 rx_mode = RxFilterEnable | AcceptBroadcast 2501 | AcceptAllMulticast | AcceptAllPhys | AcceptMyPhys; 2502 } else if ((netdev_mc_count(dev) > multicast_filter_limit) || 2503 (dev->flags & IFF_ALLMULTI)) { 2504 rx_mode = RxFilterEnable | AcceptBroadcast 2505 | AcceptAllMulticast | AcceptMyPhys; 2506 } else { 2507 struct netdev_hw_addr *ha; 2508 int i; 2509 2510 memset(mc_filter, 0, sizeof(mc_filter)); 2511 netdev_for_each_mc_addr(ha, dev) { 2512 int b = (ether_crc(ETH_ALEN, ha->addr) >> 23) & 0x1ff; 2513 mc_filter[b/8] |= (1 << (b & 0x07)); 2514 } 2515 rx_mode = RxFilterEnable | AcceptBroadcast 2516 | AcceptMulticast | AcceptMyPhys; 2517 for (i = 0; i < 64; i += 2) { 2518 writel(HASH_TABLE + i, ioaddr + RxFilterAddr); 2519 writel((mc_filter[i + 1] << 8) + mc_filter[i], 2520 ioaddr + RxFilterData); 2521 } 2522 } 2523 writel(rx_mode, ioaddr + RxFilterAddr); 2524 np->cur_rx_mode = rx_mode; 2525 } 2526 2527 static int natsemi_change_mtu(struct net_device *dev, int new_mtu) 2528 { 2529 if (new_mtu < 64 || new_mtu > NATSEMI_RX_LIMIT-NATSEMI_HEADERS) 2530 return -EINVAL; 2531 2532 dev->mtu = new_mtu; 2533 2534 /* synchronized against open : rtnl_lock() held by caller */ 2535 if (netif_running(dev)) { 2536 struct netdev_private *np = netdev_priv(dev); 2537 void __iomem * ioaddr = ns_ioaddr(dev); 2538 const int irq = np->pci_dev->irq; 2539 2540 disable_irq(irq); 2541 spin_lock(&np->lock); 2542 /* stop engines */ 2543 natsemi_stop_rxtx(dev); 2544 /* drain rx queue */ 2545 drain_rx(dev); 2546 /* change buffers */ 2547 set_bufsize(dev); 2548 reinit_rx(dev); 2549 writel(np->ring_dma, ioaddr + RxRingPtr); 2550 /* restart engines */ 2551 writel(RxOn | TxOn, ioaddr + ChipCmd); 2552 spin_unlock(&np->lock); 2553 enable_irq(irq); 2554 } 2555 return 0; 2556 } 2557 2558 static void set_rx_mode(struct net_device *dev) 2559 { 2560 struct netdev_private *np = netdev_priv(dev); 2561 spin_lock_irq(&np->lock); 2562 if (!np->hands_off) 2563 __set_rx_mode(dev); 2564 spin_unlock_irq(&np->lock); 2565 } 2566 2567 static void get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info) 2568 { 2569 struct netdev_private *np = netdev_priv(dev); 2570 strlcpy(info->driver, DRV_NAME, sizeof(info->driver)); 2571 strlcpy(info->version, DRV_VERSION, sizeof(info->version)); 2572 strlcpy(info->bus_info, pci_name(np->pci_dev), sizeof(info->bus_info)); 2573 } 2574 2575 static int get_regs_len(struct net_device *dev) 2576 { 2577 return NATSEMI_REGS_SIZE; 2578 } 2579 2580 static int get_eeprom_len(struct net_device *dev) 2581 { 2582 struct netdev_private *np = netdev_priv(dev); 2583 return np->eeprom_size; 2584 } 2585 2586 static int get_settings(struct net_device *dev, struct ethtool_cmd *ecmd) 2587 { 2588 struct netdev_private *np = netdev_priv(dev); 2589 spin_lock_irq(&np->lock); 2590 netdev_get_ecmd(dev, ecmd); 2591 spin_unlock_irq(&np->lock); 2592 return 0; 2593 } 2594 2595 static int set_settings(struct net_device *dev, struct ethtool_cmd *ecmd) 2596 { 2597 struct netdev_private *np = netdev_priv(dev); 2598 int res; 2599 spin_lock_irq(&np->lock); 2600 res = netdev_set_ecmd(dev, ecmd); 2601 spin_unlock_irq(&np->lock); 2602 return res; 2603 } 2604 2605 static void get_wol(struct net_device *dev, struct ethtool_wolinfo *wol) 2606 { 2607 struct netdev_private *np = netdev_priv(dev); 2608 spin_lock_irq(&np->lock); 2609 netdev_get_wol(dev, &wol->supported, &wol->wolopts); 2610 netdev_get_sopass(dev, wol->sopass); 2611 spin_unlock_irq(&np->lock); 2612 } 2613 2614 static int set_wol(struct net_device *dev, struct ethtool_wolinfo *wol) 2615 { 2616 struct netdev_private *np = netdev_priv(dev); 2617 int res; 2618 spin_lock_irq(&np->lock); 2619 netdev_set_wol(dev, wol->wolopts); 2620 res = netdev_set_sopass(dev, wol->sopass); 2621 spin_unlock_irq(&np->lock); 2622 return res; 2623 } 2624 2625 static void get_regs(struct net_device *dev, struct ethtool_regs *regs, void *buf) 2626 { 2627 struct netdev_private *np = netdev_priv(dev); 2628 regs->version = NATSEMI_REGS_VER; 2629 spin_lock_irq(&np->lock); 2630 netdev_get_regs(dev, buf); 2631 spin_unlock_irq(&np->lock); 2632 } 2633 2634 static u32 get_msglevel(struct net_device *dev) 2635 { 2636 struct netdev_private *np = netdev_priv(dev); 2637 return np->msg_enable; 2638 } 2639 2640 static void set_msglevel(struct net_device *dev, u32 val) 2641 { 2642 struct netdev_private *np = netdev_priv(dev); 2643 np->msg_enable = val; 2644 } 2645 2646 static int nway_reset(struct net_device *dev) 2647 { 2648 int tmp; 2649 int r = -EINVAL; 2650 /* if autoneg is off, it's an error */ 2651 tmp = mdio_read(dev, MII_BMCR); 2652 if (tmp & BMCR_ANENABLE) { 2653 tmp |= (BMCR_ANRESTART); 2654 mdio_write(dev, MII_BMCR, tmp); 2655 r = 0; 2656 } 2657 return r; 2658 } 2659 2660 static u32 get_link(struct net_device *dev) 2661 { 2662 /* LSTATUS is latched low until a read - so read twice */ 2663 mdio_read(dev, MII_BMSR); 2664 return (mdio_read(dev, MII_BMSR)&BMSR_LSTATUS) ? 1:0; 2665 } 2666 2667 static int get_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom, u8 *data) 2668 { 2669 struct netdev_private *np = netdev_priv(dev); 2670 u8 *eebuf; 2671 int res; 2672 2673 eebuf = kmalloc(np->eeprom_size, GFP_KERNEL); 2674 if (!eebuf) 2675 return -ENOMEM; 2676 2677 eeprom->magic = PCI_VENDOR_ID_NS | (PCI_DEVICE_ID_NS_83815<<16); 2678 spin_lock_irq(&np->lock); 2679 res = netdev_get_eeprom(dev, eebuf); 2680 spin_unlock_irq(&np->lock); 2681 if (!res) 2682 memcpy(data, eebuf+eeprom->offset, eeprom->len); 2683 kfree(eebuf); 2684 return res; 2685 } 2686 2687 static const struct ethtool_ops ethtool_ops = { 2688 .get_drvinfo = get_drvinfo, 2689 .get_regs_len = get_regs_len, 2690 .get_eeprom_len = get_eeprom_len, 2691 .get_settings = get_settings, 2692 .set_settings = set_settings, 2693 .get_wol = get_wol, 2694 .set_wol = set_wol, 2695 .get_regs = get_regs, 2696 .get_msglevel = get_msglevel, 2697 .set_msglevel = set_msglevel, 2698 .nway_reset = nway_reset, 2699 .get_link = get_link, 2700 .get_eeprom = get_eeprom, 2701 }; 2702 2703 static int netdev_set_wol(struct net_device *dev, u32 newval) 2704 { 2705 struct netdev_private *np = netdev_priv(dev); 2706 void __iomem * ioaddr = ns_ioaddr(dev); 2707 u32 data = readl(ioaddr + WOLCmd) & ~WakeOptsSummary; 2708 2709 /* translate to bitmasks this chip understands */ 2710 if (newval & WAKE_PHY) 2711 data |= WakePhy; 2712 if (newval & WAKE_UCAST) 2713 data |= WakeUnicast; 2714 if (newval & WAKE_MCAST) 2715 data |= WakeMulticast; 2716 if (newval & WAKE_BCAST) 2717 data |= WakeBroadcast; 2718 if (newval & WAKE_ARP) 2719 data |= WakeArp; 2720 if (newval & WAKE_MAGIC) 2721 data |= WakeMagic; 2722 if (np->srr >= SRR_DP83815_D) { 2723 if (newval & WAKE_MAGICSECURE) { 2724 data |= WakeMagicSecure; 2725 } 2726 } 2727 2728 writel(data, ioaddr + WOLCmd); 2729 2730 return 0; 2731 } 2732 2733 static int netdev_get_wol(struct net_device *dev, u32 *supported, u32 *cur) 2734 { 2735 struct netdev_private *np = netdev_priv(dev); 2736 void __iomem * ioaddr = ns_ioaddr(dev); 2737 u32 regval = readl(ioaddr + WOLCmd); 2738 2739 *supported = (WAKE_PHY | WAKE_UCAST | WAKE_MCAST | WAKE_BCAST 2740 | WAKE_ARP | WAKE_MAGIC); 2741 2742 if (np->srr >= SRR_DP83815_D) { 2743 /* SOPASS works on revD and higher */ 2744 *supported |= WAKE_MAGICSECURE; 2745 } 2746 *cur = 0; 2747 2748 /* translate from chip bitmasks */ 2749 if (regval & WakePhy) 2750 *cur |= WAKE_PHY; 2751 if (regval & WakeUnicast) 2752 *cur |= WAKE_UCAST; 2753 if (regval & WakeMulticast) 2754 *cur |= WAKE_MCAST; 2755 if (regval & WakeBroadcast) 2756 *cur |= WAKE_BCAST; 2757 if (regval & WakeArp) 2758 *cur |= WAKE_ARP; 2759 if (regval & WakeMagic) 2760 *cur |= WAKE_MAGIC; 2761 if (regval & WakeMagicSecure) { 2762 /* this can be on in revC, but it's broken */ 2763 *cur |= WAKE_MAGICSECURE; 2764 } 2765 2766 return 0; 2767 } 2768 2769 static int netdev_set_sopass(struct net_device *dev, u8 *newval) 2770 { 2771 struct netdev_private *np = netdev_priv(dev); 2772 void __iomem * ioaddr = ns_ioaddr(dev); 2773 u16 *sval = (u16 *)newval; 2774 u32 addr; 2775 2776 if (np->srr < SRR_DP83815_D) { 2777 return 0; 2778 } 2779 2780 /* enable writing to these registers by disabling the RX filter */ 2781 addr = readl(ioaddr + RxFilterAddr) & ~RFCRAddressMask; 2782 addr &= ~RxFilterEnable; 2783 writel(addr, ioaddr + RxFilterAddr); 2784 2785 /* write the three words to (undocumented) RFCR vals 0xa, 0xc, 0xe */ 2786 writel(addr | 0xa, ioaddr + RxFilterAddr); 2787 writew(sval[0], ioaddr + RxFilterData); 2788 2789 writel(addr | 0xc, ioaddr + RxFilterAddr); 2790 writew(sval[1], ioaddr + RxFilterData); 2791 2792 writel(addr | 0xe, ioaddr + RxFilterAddr); 2793 writew(sval[2], ioaddr + RxFilterData); 2794 2795 /* re-enable the RX filter */ 2796 writel(addr | RxFilterEnable, ioaddr + RxFilterAddr); 2797 2798 return 0; 2799 } 2800 2801 static int netdev_get_sopass(struct net_device *dev, u8 *data) 2802 { 2803 struct netdev_private *np = netdev_priv(dev); 2804 void __iomem * ioaddr = ns_ioaddr(dev); 2805 u16 *sval = (u16 *)data; 2806 u32 addr; 2807 2808 if (np->srr < SRR_DP83815_D) { 2809 sval[0] = sval[1] = sval[2] = 0; 2810 return 0; 2811 } 2812 2813 /* read the three words from (undocumented) RFCR vals 0xa, 0xc, 0xe */ 2814 addr = readl(ioaddr + RxFilterAddr) & ~RFCRAddressMask; 2815 2816 writel(addr | 0xa, ioaddr + RxFilterAddr); 2817 sval[0] = readw(ioaddr + RxFilterData); 2818 2819 writel(addr | 0xc, ioaddr + RxFilterAddr); 2820 sval[1] = readw(ioaddr + RxFilterData); 2821 2822 writel(addr | 0xe, ioaddr + RxFilterAddr); 2823 sval[2] = readw(ioaddr + RxFilterData); 2824 2825 writel(addr, ioaddr + RxFilterAddr); 2826 2827 return 0; 2828 } 2829 2830 static int netdev_get_ecmd(struct net_device *dev, struct ethtool_cmd *ecmd) 2831 { 2832 struct netdev_private *np = netdev_priv(dev); 2833 u32 tmp; 2834 2835 ecmd->port = dev->if_port; 2836 ethtool_cmd_speed_set(ecmd, np->speed); 2837 ecmd->duplex = np->duplex; 2838 ecmd->autoneg = np->autoneg; 2839 ecmd->advertising = 0; 2840 if (np->advertising & ADVERTISE_10HALF) 2841 ecmd->advertising |= ADVERTISED_10baseT_Half; 2842 if (np->advertising & ADVERTISE_10FULL) 2843 ecmd->advertising |= ADVERTISED_10baseT_Full; 2844 if (np->advertising & ADVERTISE_100HALF) 2845 ecmd->advertising |= ADVERTISED_100baseT_Half; 2846 if (np->advertising & ADVERTISE_100FULL) 2847 ecmd->advertising |= ADVERTISED_100baseT_Full; 2848 ecmd->supported = (SUPPORTED_Autoneg | 2849 SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full | 2850 SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full | 2851 SUPPORTED_TP | SUPPORTED_MII | SUPPORTED_FIBRE); 2852 ecmd->phy_address = np->phy_addr_external; 2853 /* 2854 * We intentionally report the phy address of the external 2855 * phy, even if the internal phy is used. This is necessary 2856 * to work around a deficiency of the ethtool interface: 2857 * It's only possible to query the settings of the active 2858 * port. Therefore 2859 * # ethtool -s ethX port mii 2860 * actually sends an ioctl to switch to port mii with the 2861 * settings that are used for the current active port. 2862 * If we would report a different phy address in this 2863 * command, then 2864 * # ethtool -s ethX port tp;ethtool -s ethX port mii 2865 * would unintentionally change the phy address. 2866 * 2867 * Fortunately the phy address doesn't matter with the 2868 * internal phy... 2869 */ 2870 2871 /* set information based on active port type */ 2872 switch (ecmd->port) { 2873 default: 2874 case PORT_TP: 2875 ecmd->advertising |= ADVERTISED_TP; 2876 ecmd->transceiver = XCVR_INTERNAL; 2877 break; 2878 case PORT_MII: 2879 ecmd->advertising |= ADVERTISED_MII; 2880 ecmd->transceiver = XCVR_EXTERNAL; 2881 break; 2882 case PORT_FIBRE: 2883 ecmd->advertising |= ADVERTISED_FIBRE; 2884 ecmd->transceiver = XCVR_EXTERNAL; 2885 break; 2886 } 2887 2888 /* if autonegotiation is on, try to return the active speed/duplex */ 2889 if (ecmd->autoneg == AUTONEG_ENABLE) { 2890 ecmd->advertising |= ADVERTISED_Autoneg; 2891 tmp = mii_nway_result( 2892 np->advertising & mdio_read(dev, MII_LPA)); 2893 if (tmp == LPA_100FULL || tmp == LPA_100HALF) 2894 ethtool_cmd_speed_set(ecmd, SPEED_100); 2895 else 2896 ethtool_cmd_speed_set(ecmd, SPEED_10); 2897 if (tmp == LPA_100FULL || tmp == LPA_10FULL) 2898 ecmd->duplex = DUPLEX_FULL; 2899 else 2900 ecmd->duplex = DUPLEX_HALF; 2901 } 2902 2903 /* ignore maxtxpkt, maxrxpkt for now */ 2904 2905 return 0; 2906 } 2907 2908 static int netdev_set_ecmd(struct net_device *dev, struct ethtool_cmd *ecmd) 2909 { 2910 struct netdev_private *np = netdev_priv(dev); 2911 2912 if (ecmd->port != PORT_TP && ecmd->port != PORT_MII && ecmd->port != PORT_FIBRE) 2913 return -EINVAL; 2914 if (ecmd->transceiver != XCVR_INTERNAL && ecmd->transceiver != XCVR_EXTERNAL) 2915 return -EINVAL; 2916 if (ecmd->autoneg == AUTONEG_ENABLE) { 2917 if ((ecmd->advertising & (ADVERTISED_10baseT_Half | 2918 ADVERTISED_10baseT_Full | 2919 ADVERTISED_100baseT_Half | 2920 ADVERTISED_100baseT_Full)) == 0) { 2921 return -EINVAL; 2922 } 2923 } else if (ecmd->autoneg == AUTONEG_DISABLE) { 2924 u32 speed = ethtool_cmd_speed(ecmd); 2925 if (speed != SPEED_10 && speed != SPEED_100) 2926 return -EINVAL; 2927 if (ecmd->duplex != DUPLEX_HALF && ecmd->duplex != DUPLEX_FULL) 2928 return -EINVAL; 2929 } else { 2930 return -EINVAL; 2931 } 2932 2933 /* 2934 * If we're ignoring the PHY then autoneg and the internal 2935 * transceiver are really not going to work so don't let the 2936 * user select them. 2937 */ 2938 if (np->ignore_phy && (ecmd->autoneg == AUTONEG_ENABLE || 2939 ecmd->port == PORT_TP)) 2940 return -EINVAL; 2941 2942 /* 2943 * maxtxpkt, maxrxpkt: ignored for now. 2944 * 2945 * transceiver: 2946 * PORT_TP is always XCVR_INTERNAL, PORT_MII and PORT_FIBRE are always 2947 * XCVR_EXTERNAL. The implementation thus ignores ecmd->transceiver and 2948 * selects based on ecmd->port. 2949 * 2950 * Actually PORT_FIBRE is nearly identical to PORT_MII: it's for fibre 2951 * phys that are connected to the mii bus. It's used to apply fibre 2952 * specific updates. 2953 */ 2954 2955 /* WHEW! now lets bang some bits */ 2956 2957 /* save the parms */ 2958 dev->if_port = ecmd->port; 2959 np->autoneg = ecmd->autoneg; 2960 np->phy_addr_external = ecmd->phy_address & PhyAddrMask; 2961 if (np->autoneg == AUTONEG_ENABLE) { 2962 /* advertise only what has been requested */ 2963 np->advertising &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4); 2964 if (ecmd->advertising & ADVERTISED_10baseT_Half) 2965 np->advertising |= ADVERTISE_10HALF; 2966 if (ecmd->advertising & ADVERTISED_10baseT_Full) 2967 np->advertising |= ADVERTISE_10FULL; 2968 if (ecmd->advertising & ADVERTISED_100baseT_Half) 2969 np->advertising |= ADVERTISE_100HALF; 2970 if (ecmd->advertising & ADVERTISED_100baseT_Full) 2971 np->advertising |= ADVERTISE_100FULL; 2972 } else { 2973 np->speed = ethtool_cmd_speed(ecmd); 2974 np->duplex = ecmd->duplex; 2975 /* user overriding the initial full duplex parm? */ 2976 if (np->duplex == DUPLEX_HALF) 2977 np->full_duplex = 0; 2978 } 2979 2980 /* get the right phy enabled */ 2981 if (ecmd->port == PORT_TP) 2982 switch_port_internal(dev); 2983 else 2984 switch_port_external(dev); 2985 2986 /* set parms and see how this affected our link status */ 2987 init_phy_fixup(dev); 2988 check_link(dev); 2989 return 0; 2990 } 2991 2992 static int netdev_get_regs(struct net_device *dev, u8 *buf) 2993 { 2994 int i; 2995 int j; 2996 u32 rfcr; 2997 u32 *rbuf = (u32 *)buf; 2998 void __iomem * ioaddr = ns_ioaddr(dev); 2999 3000 /* read non-mii page 0 of registers */ 3001 for (i = 0; i < NATSEMI_PG0_NREGS/2; i++) { 3002 rbuf[i] = readl(ioaddr + i*4); 3003 } 3004 3005 /* read current mii registers */ 3006 for (i = NATSEMI_PG0_NREGS/2; i < NATSEMI_PG0_NREGS; i++) 3007 rbuf[i] = mdio_read(dev, i & 0x1f); 3008 3009 /* read only the 'magic' registers from page 1 */ 3010 writew(1, ioaddr + PGSEL); 3011 rbuf[i++] = readw(ioaddr + PMDCSR); 3012 rbuf[i++] = readw(ioaddr + TSTDAT); 3013 rbuf[i++] = readw(ioaddr + DSPCFG); 3014 rbuf[i++] = readw(ioaddr + SDCFG); 3015 writew(0, ioaddr + PGSEL); 3016 3017 /* read RFCR indexed registers */ 3018 rfcr = readl(ioaddr + RxFilterAddr); 3019 for (j = 0; j < NATSEMI_RFDR_NREGS; j++) { 3020 writel(j*2, ioaddr + RxFilterAddr); 3021 rbuf[i++] = readw(ioaddr + RxFilterData); 3022 } 3023 writel(rfcr, ioaddr + RxFilterAddr); 3024 3025 /* the interrupt status is clear-on-read - see if we missed any */ 3026 if (rbuf[4] & rbuf[5]) { 3027 printk(KERN_WARNING 3028 "%s: shoot, we dropped an interrupt (%#08x)\n", 3029 dev->name, rbuf[4] & rbuf[5]); 3030 } 3031 3032 return 0; 3033 } 3034 3035 #define SWAP_BITS(x) ( (((x) & 0x0001) << 15) | (((x) & 0x0002) << 13) \ 3036 | (((x) & 0x0004) << 11) | (((x) & 0x0008) << 9) \ 3037 | (((x) & 0x0010) << 7) | (((x) & 0x0020) << 5) \ 3038 | (((x) & 0x0040) << 3) | (((x) & 0x0080) << 1) \ 3039 | (((x) & 0x0100) >> 1) | (((x) & 0x0200) >> 3) \ 3040 | (((x) & 0x0400) >> 5) | (((x) & 0x0800) >> 7) \ 3041 | (((x) & 0x1000) >> 9) | (((x) & 0x2000) >> 11) \ 3042 | (((x) & 0x4000) >> 13) | (((x) & 0x8000) >> 15) ) 3043 3044 static int netdev_get_eeprom(struct net_device *dev, u8 *buf) 3045 { 3046 int i; 3047 u16 *ebuf = (u16 *)buf; 3048 void __iomem * ioaddr = ns_ioaddr(dev); 3049 struct netdev_private *np = netdev_priv(dev); 3050 3051 /* eeprom_read reads 16 bits, and indexes by 16 bits */ 3052 for (i = 0; i < np->eeprom_size/2; i++) { 3053 ebuf[i] = eeprom_read(ioaddr, i); 3054 /* The EEPROM itself stores data bit-swapped, but eeprom_read 3055 * reads it back "sanely". So we swap it back here in order to 3056 * present it to userland as it is stored. */ 3057 ebuf[i] = SWAP_BITS(ebuf[i]); 3058 } 3059 return 0; 3060 } 3061 3062 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) 3063 { 3064 struct mii_ioctl_data *data = if_mii(rq); 3065 struct netdev_private *np = netdev_priv(dev); 3066 3067 switch(cmd) { 3068 case SIOCGMIIPHY: /* Get address of MII PHY in use. */ 3069 data->phy_id = np->phy_addr_external; 3070 /* Fall Through */ 3071 3072 case SIOCGMIIREG: /* Read MII PHY register. */ 3073 /* The phy_id is not enough to uniquely identify 3074 * the intended target. Therefore the command is sent to 3075 * the given mii on the current port. 3076 */ 3077 if (dev->if_port == PORT_TP) { 3078 if ((data->phy_id & 0x1f) == np->phy_addr_external) 3079 data->val_out = mdio_read(dev, 3080 data->reg_num & 0x1f); 3081 else 3082 data->val_out = 0; 3083 } else { 3084 move_int_phy(dev, data->phy_id & 0x1f); 3085 data->val_out = miiport_read(dev, data->phy_id & 0x1f, 3086 data->reg_num & 0x1f); 3087 } 3088 return 0; 3089 3090 case SIOCSMIIREG: /* Write MII PHY register. */ 3091 if (dev->if_port == PORT_TP) { 3092 if ((data->phy_id & 0x1f) == np->phy_addr_external) { 3093 if ((data->reg_num & 0x1f) == MII_ADVERTISE) 3094 np->advertising = data->val_in; 3095 mdio_write(dev, data->reg_num & 0x1f, 3096 data->val_in); 3097 } 3098 } else { 3099 if ((data->phy_id & 0x1f) == np->phy_addr_external) { 3100 if ((data->reg_num & 0x1f) == MII_ADVERTISE) 3101 np->advertising = data->val_in; 3102 } 3103 move_int_phy(dev, data->phy_id & 0x1f); 3104 miiport_write(dev, data->phy_id & 0x1f, 3105 data->reg_num & 0x1f, 3106 data->val_in); 3107 } 3108 return 0; 3109 default: 3110 return -EOPNOTSUPP; 3111 } 3112 } 3113 3114 static void enable_wol_mode(struct net_device *dev, int enable_intr) 3115 { 3116 void __iomem * ioaddr = ns_ioaddr(dev); 3117 struct netdev_private *np = netdev_priv(dev); 3118 3119 if (netif_msg_wol(np)) 3120 printk(KERN_INFO "%s: remaining active for wake-on-lan\n", 3121 dev->name); 3122 3123 /* For WOL we must restart the rx process in silent mode. 3124 * Write NULL to the RxRingPtr. Only possible if 3125 * rx process is stopped 3126 */ 3127 writel(0, ioaddr + RxRingPtr); 3128 3129 /* read WoL status to clear */ 3130 readl(ioaddr + WOLCmd); 3131 3132 /* PME on, clear status */ 3133 writel(np->SavedClkRun | PMEEnable | PMEStatus, ioaddr + ClkRun); 3134 3135 /* and restart the rx process */ 3136 writel(RxOn, ioaddr + ChipCmd); 3137 3138 if (enable_intr) { 3139 /* enable the WOL interrupt. 3140 * Could be used to send a netlink message. 3141 */ 3142 writel(WOLPkt | LinkChange, ioaddr + IntrMask); 3143 natsemi_irq_enable(dev); 3144 } 3145 } 3146 3147 static int netdev_close(struct net_device *dev) 3148 { 3149 void __iomem * ioaddr = ns_ioaddr(dev); 3150 struct netdev_private *np = netdev_priv(dev); 3151 const int irq = np->pci_dev->irq; 3152 3153 if (netif_msg_ifdown(np)) 3154 printk(KERN_DEBUG 3155 "%s: Shutting down ethercard, status was %#04x.\n", 3156 dev->name, (int)readl(ioaddr + ChipCmd)); 3157 if (netif_msg_pktdata(np)) 3158 printk(KERN_DEBUG 3159 "%s: Queue pointers were Tx %d / %d, Rx %d / %d.\n", 3160 dev->name, np->cur_tx, np->dirty_tx, 3161 np->cur_rx, np->dirty_rx); 3162 3163 napi_disable(&np->napi); 3164 3165 /* 3166 * FIXME: what if someone tries to close a device 3167 * that is suspended? 3168 * Should we reenable the nic to switch to 3169 * the final WOL settings? 3170 */ 3171 3172 del_timer_sync(&np->timer); 3173 disable_irq(irq); 3174 spin_lock_irq(&np->lock); 3175 natsemi_irq_disable(dev); 3176 np->hands_off = 1; 3177 spin_unlock_irq(&np->lock); 3178 enable_irq(irq); 3179 3180 free_irq(irq, dev); 3181 3182 /* Interrupt disabled, interrupt handler released, 3183 * queue stopped, timer deleted, rtnl_lock held 3184 * All async codepaths that access the driver are disabled. 3185 */ 3186 spin_lock_irq(&np->lock); 3187 np->hands_off = 0; 3188 readl(ioaddr + IntrMask); 3189 readw(ioaddr + MIntrStatus); 3190 3191 /* Freeze Stats */ 3192 writel(StatsFreeze, ioaddr + StatsCtrl); 3193 3194 /* Stop the chip's Tx and Rx processes. */ 3195 natsemi_stop_rxtx(dev); 3196 3197 __get_stats(dev); 3198 spin_unlock_irq(&np->lock); 3199 3200 /* clear the carrier last - an interrupt could reenable it otherwise */ 3201 netif_carrier_off(dev); 3202 netif_stop_queue(dev); 3203 3204 dump_ring(dev); 3205 drain_ring(dev); 3206 free_ring(dev); 3207 3208 { 3209 u32 wol = readl(ioaddr + WOLCmd) & WakeOptsSummary; 3210 if (wol) { 3211 /* restart the NIC in WOL mode. 3212 * The nic must be stopped for this. 3213 */ 3214 enable_wol_mode(dev, 0); 3215 } else { 3216 /* Restore PME enable bit unmolested */ 3217 writel(np->SavedClkRun, ioaddr + ClkRun); 3218 } 3219 } 3220 return 0; 3221 } 3222 3223 3224 static void natsemi_remove1(struct pci_dev *pdev) 3225 { 3226 struct net_device *dev = pci_get_drvdata(pdev); 3227 void __iomem * ioaddr = ns_ioaddr(dev); 3228 3229 NATSEMI_REMOVE_FILE(pdev, dspcfg_workaround); 3230 unregister_netdev (dev); 3231 pci_release_regions (pdev); 3232 iounmap(ioaddr); 3233 free_netdev (dev); 3234 } 3235 3236 #ifdef CONFIG_PM 3237 3238 /* 3239 * The ns83815 chip doesn't have explicit RxStop bits. 3240 * Kicking the Rx or Tx process for a new packet reenables the Rx process 3241 * of the nic, thus this function must be very careful: 3242 * 3243 * suspend/resume synchronization: 3244 * entry points: 3245 * netdev_open, netdev_close, netdev_ioctl, set_rx_mode, intr_handler, 3246 * start_tx, ns_tx_timeout 3247 * 3248 * No function accesses the hardware without checking np->hands_off. 3249 * the check occurs under spin_lock_irq(&np->lock); 3250 * exceptions: 3251 * * netdev_ioctl: noncritical access. 3252 * * netdev_open: cannot happen due to the device_detach 3253 * * netdev_close: doesn't hurt. 3254 * * netdev_timer: timer stopped by natsemi_suspend. 3255 * * intr_handler: doesn't acquire the spinlock. suspend calls 3256 * disable_irq() to enforce synchronization. 3257 * * natsemi_poll: checks before reenabling interrupts. suspend 3258 * sets hands_off, disables interrupts and then waits with 3259 * napi_disable(). 3260 * 3261 * Interrupts must be disabled, otherwise hands_off can cause irq storms. 3262 */ 3263 3264 static int natsemi_suspend (struct pci_dev *pdev, pm_message_t state) 3265 { 3266 struct net_device *dev = pci_get_drvdata (pdev); 3267 struct netdev_private *np = netdev_priv(dev); 3268 void __iomem * ioaddr = ns_ioaddr(dev); 3269 3270 rtnl_lock(); 3271 if (netif_running (dev)) { 3272 const int irq = np->pci_dev->irq; 3273 3274 del_timer_sync(&np->timer); 3275 3276 disable_irq(irq); 3277 spin_lock_irq(&np->lock); 3278 3279 natsemi_irq_disable(dev); 3280 np->hands_off = 1; 3281 natsemi_stop_rxtx(dev); 3282 netif_stop_queue(dev); 3283 3284 spin_unlock_irq(&np->lock); 3285 enable_irq(irq); 3286 3287 napi_disable(&np->napi); 3288 3289 /* Update the error counts. */ 3290 __get_stats(dev); 3291 3292 /* pci_power_off(pdev, -1); */ 3293 drain_ring(dev); 3294 { 3295 u32 wol = readl(ioaddr + WOLCmd) & WakeOptsSummary; 3296 /* Restore PME enable bit */ 3297 if (wol) { 3298 /* restart the NIC in WOL mode. 3299 * The nic must be stopped for this. 3300 * FIXME: use the WOL interrupt 3301 */ 3302 enable_wol_mode(dev, 0); 3303 } else { 3304 /* Restore PME enable bit unmolested */ 3305 writel(np->SavedClkRun, ioaddr + ClkRun); 3306 } 3307 } 3308 } 3309 netif_device_detach(dev); 3310 rtnl_unlock(); 3311 return 0; 3312 } 3313 3314 3315 static int natsemi_resume (struct pci_dev *pdev) 3316 { 3317 struct net_device *dev = pci_get_drvdata (pdev); 3318 struct netdev_private *np = netdev_priv(dev); 3319 int ret = 0; 3320 3321 rtnl_lock(); 3322 if (netif_device_present(dev)) 3323 goto out; 3324 if (netif_running(dev)) { 3325 const int irq = np->pci_dev->irq; 3326 3327 BUG_ON(!np->hands_off); 3328 ret = pci_enable_device(pdev); 3329 if (ret < 0) { 3330 dev_err(&pdev->dev, 3331 "pci_enable_device() failed: %d\n", ret); 3332 goto out; 3333 } 3334 /* pci_power_on(pdev); */ 3335 3336 napi_enable(&np->napi); 3337 3338 natsemi_reset(dev); 3339 init_ring(dev); 3340 disable_irq(irq); 3341 spin_lock_irq(&np->lock); 3342 np->hands_off = 0; 3343 init_registers(dev); 3344 netif_device_attach(dev); 3345 spin_unlock_irq(&np->lock); 3346 enable_irq(irq); 3347 3348 mod_timer(&np->timer, round_jiffies(jiffies + 1*HZ)); 3349 } 3350 netif_device_attach(dev); 3351 out: 3352 rtnl_unlock(); 3353 return ret; 3354 } 3355 3356 #endif /* CONFIG_PM */ 3357 3358 static struct pci_driver natsemi_driver = { 3359 .name = DRV_NAME, 3360 .id_table = natsemi_pci_tbl, 3361 .probe = natsemi_probe1, 3362 .remove = natsemi_remove1, 3363 #ifdef CONFIG_PM 3364 .suspend = natsemi_suspend, 3365 .resume = natsemi_resume, 3366 #endif 3367 }; 3368 3369 static int __init natsemi_init_mod (void) 3370 { 3371 /* when a module, this is printed whether or not devices are found in probe */ 3372 #ifdef MODULE 3373 printk(version); 3374 #endif 3375 3376 return pci_register_driver(&natsemi_driver); 3377 } 3378 3379 static void __exit natsemi_exit_mod (void) 3380 { 3381 pci_unregister_driver (&natsemi_driver); 3382 } 3383 3384 module_init(natsemi_init_mod); 3385 module_exit(natsemi_exit_mod); 3386 3387