1 /* natsemi.c: A Linux PCI Ethernet driver for the NatSemi DP8381x series. */
2 /*
3 	Written/copyright 1999-2001 by Donald Becker.
4 	Portions copyright (c) 2001,2002 Sun Microsystems (thockin@sun.com)
5 	Portions copyright 2001,2002 Manfred Spraul (manfred@colorfullife.com)
6 	Portions copyright 2004 Harald Welte <laforge@gnumonks.org>
7 
8 	This software may be used and distributed according to the terms of
9 	the GNU General Public License (GPL), incorporated herein by reference.
10 	Drivers based on or derived from this code fall under the GPL and must
11 	retain the authorship, copyright and license notice.  This file is not
12 	a complete program and may only be used when the entire operating
13 	system is licensed under the GPL.  License for under other terms may be
14 	available.  Contact the original author for details.
15 
16 	The original author may be reached as becker@scyld.com, or at
17 	Scyld Computing Corporation
18 	410 Severn Ave., Suite 210
19 	Annapolis MD 21403
20 
21 	Support information and updates available at
22 	http://www.scyld.com/network/netsemi.html
23 	[link no longer provides useful info -jgarzik]
24 
25 
26 	TODO:
27 	* big endian support with CFG:BEM instead of cpu_to_le32
28 */
29 
30 #include <linux/module.h>
31 #include <linux/kernel.h>
32 #include <linux/string.h>
33 #include <linux/timer.h>
34 #include <linux/errno.h>
35 #include <linux/ioport.h>
36 #include <linux/slab.h>
37 #include <linux/interrupt.h>
38 #include <linux/pci.h>
39 #include <linux/netdevice.h>
40 #include <linux/etherdevice.h>
41 #include <linux/skbuff.h>
42 #include <linux/init.h>
43 #include <linux/spinlock.h>
44 #include <linux/ethtool.h>
45 #include <linux/delay.h>
46 #include <linux/rtnetlink.h>
47 #include <linux/mii.h>
48 #include <linux/crc32.h>
49 #include <linux/bitops.h>
50 #include <linux/prefetch.h>
51 #include <asm/processor.h>	/* Processor type for cache alignment. */
52 #include <asm/io.h>
53 #include <asm/irq.h>
54 #include <linux/uaccess.h>
55 
56 #define DRV_NAME	"natsemi"
57 #define DRV_VERSION	"2.1"
58 #define DRV_RELDATE	"Sept 11, 2006"
59 
60 #define RX_OFFSET	2
61 
62 /* Updated to recommendations in pci-skeleton v2.03. */
63 
64 /* The user-configurable values.
65    These may be modified when a driver module is loaded.*/
66 
67 #define NATSEMI_DEF_MSG		(NETIF_MSG_DRV		| \
68 				 NETIF_MSG_LINK		| \
69 				 NETIF_MSG_WOL		| \
70 				 NETIF_MSG_RX_ERR	| \
71 				 NETIF_MSG_TX_ERR)
72 static int debug = -1;
73 
74 static int mtu;
75 
76 /* Maximum number of multicast addresses to filter (vs. rx-all-multicast).
77    This chip uses a 512 element hash table based on the Ethernet CRC.  */
78 static const int multicast_filter_limit = 100;
79 
80 /* Set the copy breakpoint for the copy-only-tiny-frames scheme.
81    Setting to > 1518 effectively disables this feature. */
82 static int rx_copybreak;
83 
84 static int dspcfg_workaround = 1;
85 
86 /* Used to pass the media type, etc.
87    Both 'options[]' and 'full_duplex[]' should exist for driver
88    interoperability.
89    The media type is usually passed in 'options[]'.
90 */
91 #define MAX_UNITS 8		/* More are supported, limit only on options */
92 static int options[MAX_UNITS];
93 static int full_duplex[MAX_UNITS];
94 
95 /* Operational parameters that are set at compile time. */
96 
97 /* Keep the ring sizes a power of two for compile efficiency.
98    The compiler will convert <unsigned>'%'<2^N> into a bit mask.
99    Making the Tx ring too large decreases the effectiveness of channel
100    bonding and packet priority.
101    There are no ill effects from too-large receive rings. */
102 #define TX_RING_SIZE	16
103 #define TX_QUEUE_LEN	10 /* Limit ring entries actually used, min 4. */
104 #define RX_RING_SIZE	32
105 
106 /* Operational parameters that usually are not changed. */
107 /* Time in jiffies before concluding the transmitter is hung. */
108 #define TX_TIMEOUT  (2*HZ)
109 
110 #define NATSEMI_HW_TIMEOUT	400
111 #define NATSEMI_TIMER_FREQ	5*HZ
112 #define NATSEMI_PG0_NREGS	64
113 #define NATSEMI_RFDR_NREGS	8
114 #define NATSEMI_PG1_NREGS	4
115 #define NATSEMI_NREGS		(NATSEMI_PG0_NREGS + NATSEMI_RFDR_NREGS + \
116 				 NATSEMI_PG1_NREGS)
117 #define NATSEMI_REGS_VER	1 /* v1 added RFDR registers */
118 #define NATSEMI_REGS_SIZE	(NATSEMI_NREGS * sizeof(u32))
119 
120 /* Buffer sizes:
121  * The nic writes 32-bit values, even if the upper bytes of
122  * a 32-bit value are beyond the end of the buffer.
123  */
124 #define NATSEMI_HEADERS		22	/* 2*mac,type,vlan,crc */
125 #define NATSEMI_PADDING		16	/* 2 bytes should be sufficient */
126 #define NATSEMI_LONGPKT		1518	/* limit for normal packets */
127 #define NATSEMI_RX_LIMIT	2046	/* maximum supported by hardware */
128 
129 /* These identify the driver base version and may not be removed. */
130 static const char version[] =
131   KERN_INFO DRV_NAME " dp8381x driver, version "
132       DRV_VERSION ", " DRV_RELDATE "\n"
133   "  originally by Donald Becker <becker@scyld.com>\n"
134   "  2.4.x kernel port by Jeff Garzik, Tjeerd Mulder\n";
135 
136 MODULE_AUTHOR("Donald Becker <becker@scyld.com>");
137 MODULE_DESCRIPTION("National Semiconductor DP8381x series PCI Ethernet driver");
138 MODULE_LICENSE("GPL");
139 
140 module_param(mtu, int, 0);
141 module_param(debug, int, 0);
142 module_param(rx_copybreak, int, 0);
143 module_param(dspcfg_workaround, int, 0);
144 module_param_array(options, int, NULL, 0);
145 module_param_array(full_duplex, int, NULL, 0);
146 MODULE_PARM_DESC(mtu, "DP8381x MTU (all boards)");
147 MODULE_PARM_DESC(debug, "DP8381x default debug level");
148 MODULE_PARM_DESC(rx_copybreak,
149 	"DP8381x copy breakpoint for copy-only-tiny-frames");
150 MODULE_PARM_DESC(dspcfg_workaround, "DP8381x: control DspCfg workaround");
151 MODULE_PARM_DESC(options,
152 	"DP8381x: Bits 0-3: media type, bit 17: full duplex");
153 MODULE_PARM_DESC(full_duplex, "DP8381x full duplex setting(s) (1)");
154 
155 /*
156 				Theory of Operation
157 
158 I. Board Compatibility
159 
160 This driver is designed for National Semiconductor DP83815 PCI Ethernet NIC.
161 It also works with other chips in in the DP83810 series.
162 
163 II. Board-specific settings
164 
165 This driver requires the PCI interrupt line to be valid.
166 It honors the EEPROM-set values.
167 
168 III. Driver operation
169 
170 IIIa. Ring buffers
171 
172 This driver uses two statically allocated fixed-size descriptor lists
173 formed into rings by a branch from the final descriptor to the beginning of
174 the list.  The ring sizes are set at compile time by RX/TX_RING_SIZE.
175 The NatSemi design uses a 'next descriptor' pointer that the driver forms
176 into a list.
177 
178 IIIb/c. Transmit/Receive Structure
179 
180 This driver uses a zero-copy receive and transmit scheme.
181 The driver allocates full frame size skbuffs for the Rx ring buffers at
182 open() time and passes the skb->data field to the chip as receive data
183 buffers.  When an incoming frame is less than RX_COPYBREAK bytes long,
184 a fresh skbuff is allocated and the frame is copied to the new skbuff.
185 When the incoming frame is larger, the skbuff is passed directly up the
186 protocol stack.  Buffers consumed this way are replaced by newly allocated
187 skbuffs in a later phase of receives.
188 
189 The RX_COPYBREAK value is chosen to trade-off the memory wasted by
190 using a full-sized skbuff for small frames vs. the copying costs of larger
191 frames.  New boards are typically used in generously configured machines
192 and the underfilled buffers have negligible impact compared to the benefit of
193 a single allocation size, so the default value of zero results in never
194 copying packets.  When copying is done, the cost is usually mitigated by using
195 a combined copy/checksum routine.  Copying also preloads the cache, which is
196 most useful with small frames.
197 
198 A subtle aspect of the operation is that unaligned buffers are not permitted
199 by the hardware.  Thus the IP header at offset 14 in an ethernet frame isn't
200 longword aligned for further processing.  On copies frames are put into the
201 skbuff at an offset of "+2", 16-byte aligning the IP header.
202 
203 IIId. Synchronization
204 
205 Most operations are synchronized on the np->lock irq spinlock, except the
206 receive and transmit paths which are synchronised using a combination of
207 hardware descriptor ownership, disabling interrupts and NAPI poll scheduling.
208 
209 IVb. References
210 
211 http://www.scyld.com/expert/100mbps.html
212 http://www.scyld.com/expert/NWay.html
213 Datasheet is available from:
214 http://www.national.com/pf/DP/DP83815.html
215 
216 IVc. Errata
217 
218 None characterised.
219 */
220 
221 
222 
223 /*
224  * Support for fibre connections on Am79C874:
225  * This phy needs a special setup when connected to a fibre cable.
226  * http://www.amd.com/files/connectivitysolutions/networking/archivednetworking/22235.pdf
227  */
228 #define PHYID_AM79C874	0x0022561b
229 
230 enum {
231 	MII_MCTRL	= 0x15,		/* mode control register */
232 	MII_FX_SEL	= 0x0001,	/* 100BASE-FX (fiber) */
233 	MII_EN_SCRM	= 0x0004,	/* enable scrambler (tp) */
234 };
235 
236 enum {
237 	NATSEMI_FLAG_IGNORE_PHY		= 0x1,
238 };
239 
240 /* array of board data directly indexed by pci_tbl[x].driver_data */
241 static struct {
242 	const char *name;
243 	unsigned long flags;
244 	unsigned int eeprom_size;
245 } natsemi_pci_info[] = {
246 	{ "Aculab E1/T1 PMXc cPCI carrier card", NATSEMI_FLAG_IGNORE_PHY, 128 },
247 	{ "NatSemi DP8381[56]", 0, 24 },
248 };
249 
250 static const struct pci_device_id natsemi_pci_tbl[] = {
251 	{ PCI_VENDOR_ID_NS, 0x0020, 0x12d9,     0x000c,     0, 0, 0 },
252 	{ PCI_VENDOR_ID_NS, 0x0020, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 1 },
253 	{ }	/* terminate list */
254 };
255 MODULE_DEVICE_TABLE(pci, natsemi_pci_tbl);
256 
257 /* Offsets to the device registers.
258    Unlike software-only systems, device drivers interact with complex hardware.
259    It's not useful to define symbolic names for every register bit in the
260    device.
261 */
262 enum register_offsets {
263 	ChipCmd			= 0x00,
264 	ChipConfig		= 0x04,
265 	EECtrl			= 0x08,
266 	PCIBusCfg		= 0x0C,
267 	IntrStatus		= 0x10,
268 	IntrMask		= 0x14,
269 	IntrEnable		= 0x18,
270 	IntrHoldoff		= 0x1C, /* DP83816 only */
271 	TxRingPtr		= 0x20,
272 	TxConfig		= 0x24,
273 	RxRingPtr		= 0x30,
274 	RxConfig		= 0x34,
275 	ClkRun			= 0x3C,
276 	WOLCmd			= 0x40,
277 	PauseCmd		= 0x44,
278 	RxFilterAddr		= 0x48,
279 	RxFilterData		= 0x4C,
280 	BootRomAddr		= 0x50,
281 	BootRomData		= 0x54,
282 	SiliconRev		= 0x58,
283 	StatsCtrl		= 0x5C,
284 	StatsData		= 0x60,
285 	RxPktErrs		= 0x60,
286 	RxMissed		= 0x68,
287 	RxCRCErrs		= 0x64,
288 	BasicControl		= 0x80,
289 	BasicStatus		= 0x84,
290 	AnegAdv			= 0x90,
291 	AnegPeer		= 0x94,
292 	PhyStatus		= 0xC0,
293 	MIntrCtrl		= 0xC4,
294 	MIntrStatus		= 0xC8,
295 	PhyCtrl			= 0xE4,
296 
297 	/* These are from the spec, around page 78... on a separate table.
298 	 * The meaning of these registers depend on the value of PGSEL. */
299 	PGSEL			= 0xCC,
300 	PMDCSR			= 0xE4,
301 	TSTDAT			= 0xFC,
302 	DSPCFG			= 0xF4,
303 	SDCFG			= 0xF8
304 };
305 /* the values for the 'magic' registers above (PGSEL=1) */
306 #define PMDCSR_VAL	0x189c	/* enable preferred adaptation circuitry */
307 #define TSTDAT_VAL	0x0
308 #define DSPCFG_VAL	0x5040
309 #define SDCFG_VAL	0x008c	/* set voltage thresholds for Signal Detect */
310 #define DSPCFG_LOCK	0x20	/* coefficient lock bit in DSPCFG */
311 #define DSPCFG_COEF	0x1000	/* see coefficient (in TSTDAT) bit in DSPCFG */
312 #define TSTDAT_FIXED	0xe8	/* magic number for bad coefficients */
313 
314 /* misc PCI space registers */
315 enum pci_register_offsets {
316 	PCIPM			= 0x44,
317 };
318 
319 enum ChipCmd_bits {
320 	ChipReset		= 0x100,
321 	RxReset			= 0x20,
322 	TxReset			= 0x10,
323 	RxOff			= 0x08,
324 	RxOn			= 0x04,
325 	TxOff			= 0x02,
326 	TxOn			= 0x01,
327 };
328 
329 enum ChipConfig_bits {
330 	CfgPhyDis		= 0x200,
331 	CfgPhyRst		= 0x400,
332 	CfgExtPhy		= 0x1000,
333 	CfgAnegEnable		= 0x2000,
334 	CfgAneg100		= 0x4000,
335 	CfgAnegFull		= 0x8000,
336 	CfgAnegDone		= 0x8000000,
337 	CfgFullDuplex		= 0x20000000,
338 	CfgSpeed100		= 0x40000000,
339 	CfgLink			= 0x80000000,
340 };
341 
342 enum EECtrl_bits {
343 	EE_ShiftClk		= 0x04,
344 	EE_DataIn		= 0x01,
345 	EE_ChipSelect		= 0x08,
346 	EE_DataOut		= 0x02,
347 	MII_Data 		= 0x10,
348 	MII_Write		= 0x20,
349 	MII_ShiftClk		= 0x40,
350 };
351 
352 enum PCIBusCfg_bits {
353 	EepromReload		= 0x4,
354 };
355 
356 /* Bits in the interrupt status/mask registers. */
357 enum IntrStatus_bits {
358 	IntrRxDone		= 0x0001,
359 	IntrRxIntr		= 0x0002,
360 	IntrRxErr		= 0x0004,
361 	IntrRxEarly		= 0x0008,
362 	IntrRxIdle		= 0x0010,
363 	IntrRxOverrun		= 0x0020,
364 	IntrTxDone		= 0x0040,
365 	IntrTxIntr		= 0x0080,
366 	IntrTxErr		= 0x0100,
367 	IntrTxIdle		= 0x0200,
368 	IntrTxUnderrun		= 0x0400,
369 	StatsMax		= 0x0800,
370 	SWInt			= 0x1000,
371 	WOLPkt			= 0x2000,
372 	LinkChange		= 0x4000,
373 	IntrHighBits		= 0x8000,
374 	RxStatusFIFOOver	= 0x10000,
375 	IntrPCIErr		= 0xf00000,
376 	RxResetDone		= 0x1000000,
377 	TxResetDone		= 0x2000000,
378 	IntrAbnormalSummary	= 0xCD20,
379 };
380 
381 /*
382  * Default Interrupts:
383  * Rx OK, Rx Packet Error, Rx Overrun,
384  * Tx OK, Tx Packet Error, Tx Underrun,
385  * MIB Service, Phy Interrupt, High Bits,
386  * Rx Status FIFO overrun,
387  * Received Target Abort, Received Master Abort,
388  * Signalled System Error, Received Parity Error
389  */
390 #define DEFAULT_INTR 0x00f1cd65
391 
392 enum TxConfig_bits {
393 	TxDrthMask		= 0x3f,
394 	TxFlthMask		= 0x3f00,
395 	TxMxdmaMask		= 0x700000,
396 	TxMxdma_512		= 0x0,
397 	TxMxdma_4		= 0x100000,
398 	TxMxdma_8		= 0x200000,
399 	TxMxdma_16		= 0x300000,
400 	TxMxdma_32		= 0x400000,
401 	TxMxdma_64		= 0x500000,
402 	TxMxdma_128		= 0x600000,
403 	TxMxdma_256		= 0x700000,
404 	TxCollRetry		= 0x800000,
405 	TxAutoPad		= 0x10000000,
406 	TxMacLoop		= 0x20000000,
407 	TxHeartIgn		= 0x40000000,
408 	TxCarrierIgn		= 0x80000000
409 };
410 
411 /*
412  * Tx Configuration:
413  * - 256 byte DMA burst length
414  * - fill threshold 512 bytes (i.e. restart DMA when 512 bytes are free)
415  * - 64 bytes initial drain threshold (i.e. begin actual transmission
416  *   when 64 byte are in the fifo)
417  * - on tx underruns, increase drain threshold by 64.
418  * - at most use a drain threshold of 1472 bytes: The sum of the fill
419  *   threshold and the drain threshold must be less than 2016 bytes.
420  *
421  */
422 #define TX_FLTH_VAL		((512/32) << 8)
423 #define TX_DRTH_VAL_START	(64/32)
424 #define TX_DRTH_VAL_INC		2
425 #define TX_DRTH_VAL_LIMIT	(1472/32)
426 
427 enum RxConfig_bits {
428 	RxDrthMask		= 0x3e,
429 	RxMxdmaMask		= 0x700000,
430 	RxMxdma_512		= 0x0,
431 	RxMxdma_4		= 0x100000,
432 	RxMxdma_8		= 0x200000,
433 	RxMxdma_16		= 0x300000,
434 	RxMxdma_32		= 0x400000,
435 	RxMxdma_64		= 0x500000,
436 	RxMxdma_128		= 0x600000,
437 	RxMxdma_256		= 0x700000,
438 	RxAcceptLong		= 0x8000000,
439 	RxAcceptTx		= 0x10000000,
440 	RxAcceptRunt		= 0x40000000,
441 	RxAcceptErr		= 0x80000000
442 };
443 #define RX_DRTH_VAL		(128/8)
444 
445 enum ClkRun_bits {
446 	PMEEnable		= 0x100,
447 	PMEStatus		= 0x8000,
448 };
449 
450 enum WolCmd_bits {
451 	WakePhy			= 0x1,
452 	WakeUnicast		= 0x2,
453 	WakeMulticast		= 0x4,
454 	WakeBroadcast		= 0x8,
455 	WakeArp			= 0x10,
456 	WakePMatch0		= 0x20,
457 	WakePMatch1		= 0x40,
458 	WakePMatch2		= 0x80,
459 	WakePMatch3		= 0x100,
460 	WakeMagic		= 0x200,
461 	WakeMagicSecure		= 0x400,
462 	SecureHack		= 0x100000,
463 	WokePhy			= 0x400000,
464 	WokeUnicast		= 0x800000,
465 	WokeMulticast		= 0x1000000,
466 	WokeBroadcast		= 0x2000000,
467 	WokeArp			= 0x4000000,
468 	WokePMatch0		= 0x8000000,
469 	WokePMatch1		= 0x10000000,
470 	WokePMatch2		= 0x20000000,
471 	WokePMatch3		= 0x40000000,
472 	WokeMagic		= 0x80000000,
473 	WakeOptsSummary		= 0x7ff
474 };
475 
476 enum RxFilterAddr_bits {
477 	RFCRAddressMask		= 0x3ff,
478 	AcceptMulticast		= 0x00200000,
479 	AcceptMyPhys		= 0x08000000,
480 	AcceptAllPhys		= 0x10000000,
481 	AcceptAllMulticast	= 0x20000000,
482 	AcceptBroadcast		= 0x40000000,
483 	RxFilterEnable		= 0x80000000
484 };
485 
486 enum StatsCtrl_bits {
487 	StatsWarn		= 0x1,
488 	StatsFreeze		= 0x2,
489 	StatsClear		= 0x4,
490 	StatsStrobe		= 0x8,
491 };
492 
493 enum MIntrCtrl_bits {
494 	MICRIntEn		= 0x2,
495 };
496 
497 enum PhyCtrl_bits {
498 	PhyAddrMask		= 0x1f,
499 };
500 
501 #define PHY_ADDR_NONE		32
502 #define PHY_ADDR_INTERNAL	1
503 
504 /* values we might find in the silicon revision register */
505 #define SRR_DP83815_C	0x0302
506 #define SRR_DP83815_D	0x0403
507 #define SRR_DP83816_A4	0x0504
508 #define SRR_DP83816_A5	0x0505
509 
510 /* The Rx and Tx buffer descriptors. */
511 /* Note that using only 32 bit fields simplifies conversion to big-endian
512    architectures. */
513 struct netdev_desc {
514 	__le32 next_desc;
515 	__le32 cmd_status;
516 	__le32 addr;
517 	__le32 software_use;
518 };
519 
520 /* Bits in network_desc.status */
521 enum desc_status_bits {
522 	DescOwn=0x80000000, DescMore=0x40000000, DescIntr=0x20000000,
523 	DescNoCRC=0x10000000, DescPktOK=0x08000000,
524 	DescSizeMask=0xfff,
525 
526 	DescTxAbort=0x04000000, DescTxFIFO=0x02000000,
527 	DescTxCarrier=0x01000000, DescTxDefer=0x00800000,
528 	DescTxExcDefer=0x00400000, DescTxOOWCol=0x00200000,
529 	DescTxExcColl=0x00100000, DescTxCollCount=0x000f0000,
530 
531 	DescRxAbort=0x04000000, DescRxOver=0x02000000,
532 	DescRxDest=0x01800000, DescRxLong=0x00400000,
533 	DescRxRunt=0x00200000, DescRxInvalid=0x00100000,
534 	DescRxCRC=0x00080000, DescRxAlign=0x00040000,
535 	DescRxLoop=0x00020000, DesRxColl=0x00010000,
536 };
537 
538 struct netdev_private {
539 	/* Descriptor rings first for alignment */
540 	dma_addr_t ring_dma;
541 	struct netdev_desc *rx_ring;
542 	struct netdev_desc *tx_ring;
543 	/* The addresses of receive-in-place skbuffs */
544 	struct sk_buff *rx_skbuff[RX_RING_SIZE];
545 	dma_addr_t rx_dma[RX_RING_SIZE];
546 	/* address of a sent-in-place packet/buffer, for later free() */
547 	struct sk_buff *tx_skbuff[TX_RING_SIZE];
548 	dma_addr_t tx_dma[TX_RING_SIZE];
549 	struct net_device *dev;
550 	void __iomem *ioaddr;
551 	struct napi_struct napi;
552 	/* Media monitoring timer */
553 	struct timer_list timer;
554 	/* Frequently used values: keep some adjacent for cache effect */
555 	struct pci_dev *pci_dev;
556 	struct netdev_desc *rx_head_desc;
557 	/* Producer/consumer ring indices */
558 	unsigned int cur_rx, dirty_rx;
559 	unsigned int cur_tx, dirty_tx;
560 	/* Based on MTU+slack. */
561 	unsigned int rx_buf_sz;
562 	int oom;
563 	/* Interrupt status */
564 	u32 intr_status;
565 	/* Do not touch the nic registers */
566 	int hands_off;
567 	/* Don't pay attention to the reported link state. */
568 	int ignore_phy;
569 	/* external phy that is used: only valid if dev->if_port != PORT_TP */
570 	int mii;
571 	int phy_addr_external;
572 	unsigned int full_duplex;
573 	/* Rx filter */
574 	u32 cur_rx_mode;
575 	u32 rx_filter[16];
576 	/* FIFO and PCI burst thresholds */
577 	u32 tx_config, rx_config;
578 	/* original contents of ClkRun register */
579 	u32 SavedClkRun;
580 	/* silicon revision */
581 	u32 srr;
582 	/* expected DSPCFG value */
583 	u16 dspcfg;
584 	int dspcfg_workaround;
585 	/* parms saved in ethtool format */
586 	u16	speed;		/* The forced speed, 10Mb, 100Mb, gigabit */
587 	u8	duplex;		/* Duplex, half or full */
588 	u8	autoneg;	/* Autonegotiation enabled */
589 	/* MII transceiver section */
590 	u16 advertising;
591 	unsigned int iosize;
592 	spinlock_t lock;
593 	u32 msg_enable;
594 	/* EEPROM data */
595 	int eeprom_size;
596 };
597 
598 static void move_int_phy(struct net_device *dev, int addr);
599 static int eeprom_read(void __iomem *ioaddr, int location);
600 static int mdio_read(struct net_device *dev, int reg);
601 static void mdio_write(struct net_device *dev, int reg, u16 data);
602 static void init_phy_fixup(struct net_device *dev);
603 static int miiport_read(struct net_device *dev, int phy_id, int reg);
604 static void miiport_write(struct net_device *dev, int phy_id, int reg, u16 data);
605 static int find_mii(struct net_device *dev);
606 static void natsemi_reset(struct net_device *dev);
607 static void natsemi_reload_eeprom(struct net_device *dev);
608 static void natsemi_stop_rxtx(struct net_device *dev);
609 static int netdev_open(struct net_device *dev);
610 static void do_cable_magic(struct net_device *dev);
611 static void undo_cable_magic(struct net_device *dev);
612 static void check_link(struct net_device *dev);
613 static void netdev_timer(unsigned long data);
614 static void dump_ring(struct net_device *dev);
615 static void ns_tx_timeout(struct net_device *dev);
616 static int alloc_ring(struct net_device *dev);
617 static void refill_rx(struct net_device *dev);
618 static void init_ring(struct net_device *dev);
619 static void drain_tx(struct net_device *dev);
620 static void drain_ring(struct net_device *dev);
621 static void free_ring(struct net_device *dev);
622 static void reinit_ring(struct net_device *dev);
623 static void init_registers(struct net_device *dev);
624 static netdev_tx_t start_tx(struct sk_buff *skb, struct net_device *dev);
625 static irqreturn_t intr_handler(int irq, void *dev_instance);
626 static void netdev_error(struct net_device *dev, int intr_status);
627 static int natsemi_poll(struct napi_struct *napi, int budget);
628 static void netdev_rx(struct net_device *dev, int *work_done, int work_to_do);
629 static void netdev_tx_done(struct net_device *dev);
630 static int natsemi_change_mtu(struct net_device *dev, int new_mtu);
631 #ifdef CONFIG_NET_POLL_CONTROLLER
632 static void natsemi_poll_controller(struct net_device *dev);
633 #endif
634 static void __set_rx_mode(struct net_device *dev);
635 static void set_rx_mode(struct net_device *dev);
636 static void __get_stats(struct net_device *dev);
637 static struct net_device_stats *get_stats(struct net_device *dev);
638 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
639 static int netdev_set_wol(struct net_device *dev, u32 newval);
640 static int netdev_get_wol(struct net_device *dev, u32 *supported, u32 *cur);
641 static int netdev_set_sopass(struct net_device *dev, u8 *newval);
642 static int netdev_get_sopass(struct net_device *dev, u8 *data);
643 static int netdev_get_ecmd(struct net_device *dev,
644 			   struct ethtool_link_ksettings *ecmd);
645 static int netdev_set_ecmd(struct net_device *dev,
646 			   const struct ethtool_link_ksettings *ecmd);
647 static void enable_wol_mode(struct net_device *dev, int enable_intr);
648 static int netdev_close(struct net_device *dev);
649 static int netdev_get_regs(struct net_device *dev, u8 *buf);
650 static int netdev_get_eeprom(struct net_device *dev, u8 *buf);
651 static const struct ethtool_ops ethtool_ops;
652 
653 #define NATSEMI_ATTR(_name) \
654 static ssize_t natsemi_show_##_name(struct device *dev, \
655          struct device_attribute *attr, char *buf); \
656 	 static ssize_t natsemi_set_##_name(struct device *dev, \
657 		struct device_attribute *attr, \
658 	        const char *buf, size_t count); \
659 	 static DEVICE_ATTR(_name, 0644, natsemi_show_##_name, natsemi_set_##_name)
660 
661 #define NATSEMI_CREATE_FILE(_dev, _name) \
662          device_create_file(&_dev->dev, &dev_attr_##_name)
663 #define NATSEMI_REMOVE_FILE(_dev, _name) \
664          device_remove_file(&_dev->dev, &dev_attr_##_name)
665 
666 NATSEMI_ATTR(dspcfg_workaround);
667 
668 static ssize_t natsemi_show_dspcfg_workaround(struct device *dev,
669 				  	      struct device_attribute *attr,
670 					      char *buf)
671 {
672 	struct netdev_private *np = netdev_priv(to_net_dev(dev));
673 
674 	return sprintf(buf, "%s\n", np->dspcfg_workaround ? "on" : "off");
675 }
676 
677 static ssize_t natsemi_set_dspcfg_workaround(struct device *dev,
678 					     struct device_attribute *attr,
679 					     const char *buf, size_t count)
680 {
681 	struct netdev_private *np = netdev_priv(to_net_dev(dev));
682 	int new_setting;
683 	unsigned long flags;
684 
685         /* Find out the new setting */
686         if (!strncmp("on", buf, count - 1) || !strncmp("1", buf, count - 1))
687                 new_setting = 1;
688         else if (!strncmp("off", buf, count - 1) ||
689                  !strncmp("0", buf, count - 1))
690 		new_setting = 0;
691 	else
692                  return count;
693 
694 	spin_lock_irqsave(&np->lock, flags);
695 
696 	np->dspcfg_workaround = new_setting;
697 
698 	spin_unlock_irqrestore(&np->lock, flags);
699 
700 	return count;
701 }
702 
703 static inline void __iomem *ns_ioaddr(struct net_device *dev)
704 {
705 	struct netdev_private *np = netdev_priv(dev);
706 
707 	return np->ioaddr;
708 }
709 
710 static inline void natsemi_irq_enable(struct net_device *dev)
711 {
712 	writel(1, ns_ioaddr(dev) + IntrEnable);
713 	readl(ns_ioaddr(dev) + IntrEnable);
714 }
715 
716 static inline void natsemi_irq_disable(struct net_device *dev)
717 {
718 	writel(0, ns_ioaddr(dev) + IntrEnable);
719 	readl(ns_ioaddr(dev) + IntrEnable);
720 }
721 
722 static void move_int_phy(struct net_device *dev, int addr)
723 {
724 	struct netdev_private *np = netdev_priv(dev);
725 	void __iomem *ioaddr = ns_ioaddr(dev);
726 	int target = 31;
727 
728 	/*
729 	 * The internal phy is visible on the external mii bus. Therefore we must
730 	 * move it away before we can send commands to an external phy.
731 	 * There are two addresses we must avoid:
732 	 * - the address on the external phy that is used for transmission.
733 	 * - the address that we want to access. User space can access phys
734 	 *   on the mii bus with SIOCGMIIREG/SIOCSMIIREG, independent from the
735 	 *   phy that is used for transmission.
736 	 */
737 
738 	if (target == addr)
739 		target--;
740 	if (target == np->phy_addr_external)
741 		target--;
742 	writew(target, ioaddr + PhyCtrl);
743 	readw(ioaddr + PhyCtrl);
744 	udelay(1);
745 }
746 
747 static void natsemi_init_media(struct net_device *dev)
748 {
749 	struct netdev_private *np = netdev_priv(dev);
750 	u32 tmp;
751 
752 	if (np->ignore_phy)
753 		netif_carrier_on(dev);
754 	else
755 		netif_carrier_off(dev);
756 
757 	/* get the initial settings from hardware */
758 	tmp            = mdio_read(dev, MII_BMCR);
759 	np->speed      = (tmp & BMCR_SPEED100)? SPEED_100     : SPEED_10;
760 	np->duplex     = (tmp & BMCR_FULLDPLX)? DUPLEX_FULL   : DUPLEX_HALF;
761 	np->autoneg    = (tmp & BMCR_ANENABLE)? AUTONEG_ENABLE: AUTONEG_DISABLE;
762 	np->advertising= mdio_read(dev, MII_ADVERTISE);
763 
764 	if ((np->advertising & ADVERTISE_ALL) != ADVERTISE_ALL &&
765 	    netif_msg_probe(np)) {
766 		printk(KERN_INFO "natsemi %s: Transceiver default autonegotiation %s "
767 			"10%s %s duplex.\n",
768 			pci_name(np->pci_dev),
769 			(mdio_read(dev, MII_BMCR) & BMCR_ANENABLE)?
770 			  "enabled, advertise" : "disabled, force",
771 			(np->advertising &
772 			  (ADVERTISE_100FULL|ADVERTISE_100HALF))?
773 			    "0" : "",
774 			(np->advertising &
775 			  (ADVERTISE_100FULL|ADVERTISE_10FULL))?
776 			    "full" : "half");
777 	}
778 	if (netif_msg_probe(np))
779 		printk(KERN_INFO
780 			"natsemi %s: Transceiver status %#04x advertising %#04x.\n",
781 			pci_name(np->pci_dev), mdio_read(dev, MII_BMSR),
782 			np->advertising);
783 
784 }
785 
786 static const struct net_device_ops natsemi_netdev_ops = {
787 	.ndo_open		= netdev_open,
788 	.ndo_stop		= netdev_close,
789 	.ndo_start_xmit		= start_tx,
790 	.ndo_get_stats		= get_stats,
791 	.ndo_set_rx_mode	= set_rx_mode,
792 	.ndo_change_mtu		= natsemi_change_mtu,
793 	.ndo_do_ioctl		= netdev_ioctl,
794 	.ndo_tx_timeout 	= ns_tx_timeout,
795 	.ndo_set_mac_address 	= eth_mac_addr,
796 	.ndo_validate_addr	= eth_validate_addr,
797 #ifdef CONFIG_NET_POLL_CONTROLLER
798 	.ndo_poll_controller	= natsemi_poll_controller,
799 #endif
800 };
801 
802 static int natsemi_probe1(struct pci_dev *pdev, const struct pci_device_id *ent)
803 {
804 	struct net_device *dev;
805 	struct netdev_private *np;
806 	int i, option, irq, chip_idx = ent->driver_data;
807 	static int find_cnt = -1;
808 	resource_size_t iostart;
809 	unsigned long iosize;
810 	void __iomem *ioaddr;
811 	const int pcibar = 1; /* PCI base address register */
812 	int prev_eedata;
813 	u32 tmp;
814 
815 /* when built into the kernel, we only print version if device is found */
816 #ifndef MODULE
817 	static int printed_version;
818 	if (!printed_version++)
819 		printk(version);
820 #endif
821 
822 	i = pci_enable_device(pdev);
823 	if (i) return i;
824 
825 	/* natsemi has a non-standard PM control register
826 	 * in PCI config space.  Some boards apparently need
827 	 * to be brought to D0 in this manner.
828 	 */
829 	pci_read_config_dword(pdev, PCIPM, &tmp);
830 	if (tmp & PCI_PM_CTRL_STATE_MASK) {
831 		/* D0 state, disable PME assertion */
832 		u32 newtmp = tmp & ~PCI_PM_CTRL_STATE_MASK;
833 		pci_write_config_dword(pdev, PCIPM, newtmp);
834 	}
835 
836 	find_cnt++;
837 	iostart = pci_resource_start(pdev, pcibar);
838 	iosize = pci_resource_len(pdev, pcibar);
839 	irq = pdev->irq;
840 
841 	pci_set_master(pdev);
842 
843 	dev = alloc_etherdev(sizeof (struct netdev_private));
844 	if (!dev)
845 		return -ENOMEM;
846 	SET_NETDEV_DEV(dev, &pdev->dev);
847 
848 	i = pci_request_regions(pdev, DRV_NAME);
849 	if (i)
850 		goto err_pci_request_regions;
851 
852 	ioaddr = ioremap(iostart, iosize);
853 	if (!ioaddr) {
854 		i = -ENOMEM;
855 		goto err_ioremap;
856 	}
857 
858 	/* Work around the dropped serial bit. */
859 	prev_eedata = eeprom_read(ioaddr, 6);
860 	for (i = 0; i < 3; i++) {
861 		int eedata = eeprom_read(ioaddr, i + 7);
862 		dev->dev_addr[i*2] = (eedata << 1) + (prev_eedata >> 15);
863 		dev->dev_addr[i*2+1] = eedata >> 7;
864 		prev_eedata = eedata;
865 	}
866 
867 	np = netdev_priv(dev);
868 	np->ioaddr = ioaddr;
869 
870 	netif_napi_add(dev, &np->napi, natsemi_poll, 64);
871 	np->dev = dev;
872 
873 	np->pci_dev = pdev;
874 	pci_set_drvdata(pdev, dev);
875 	np->iosize = iosize;
876 	spin_lock_init(&np->lock);
877 	np->msg_enable = (debug >= 0) ? (1<<debug)-1 : NATSEMI_DEF_MSG;
878 	np->hands_off = 0;
879 	np->intr_status = 0;
880 	np->eeprom_size = natsemi_pci_info[chip_idx].eeprom_size;
881 	if (natsemi_pci_info[chip_idx].flags & NATSEMI_FLAG_IGNORE_PHY)
882 		np->ignore_phy = 1;
883 	else
884 		np->ignore_phy = 0;
885 	np->dspcfg_workaround = dspcfg_workaround;
886 
887 	/* Initial port:
888 	 * - If configured to ignore the PHY set up for external.
889 	 * - If the nic was configured to use an external phy and if find_mii
890 	 *   finds a phy: use external port, first phy that replies.
891 	 * - Otherwise: internal port.
892 	 * Note that the phy address for the internal phy doesn't matter:
893 	 * The address would be used to access a phy over the mii bus, but
894 	 * the internal phy is accessed through mapped registers.
895 	 */
896 	if (np->ignore_phy || readl(ioaddr + ChipConfig) & CfgExtPhy)
897 		dev->if_port = PORT_MII;
898 	else
899 		dev->if_port = PORT_TP;
900 	/* Reset the chip to erase previous misconfiguration. */
901 	natsemi_reload_eeprom(dev);
902 	natsemi_reset(dev);
903 
904 	if (dev->if_port != PORT_TP) {
905 		np->phy_addr_external = find_mii(dev);
906 		/* If we're ignoring the PHY it doesn't matter if we can't
907 		 * find one. */
908 		if (!np->ignore_phy && np->phy_addr_external == PHY_ADDR_NONE) {
909 			dev->if_port = PORT_TP;
910 			np->phy_addr_external = PHY_ADDR_INTERNAL;
911 		}
912 	} else {
913 		np->phy_addr_external = PHY_ADDR_INTERNAL;
914 	}
915 
916 	option = find_cnt < MAX_UNITS ? options[find_cnt] : 0;
917 	/* The lower four bits are the media type. */
918 	if (option) {
919 		if (option & 0x200)
920 			np->full_duplex = 1;
921 		if (option & 15)
922 			printk(KERN_INFO
923 				"natsemi %s: ignoring user supplied media type %d",
924 				pci_name(np->pci_dev), option & 15);
925 	}
926 	if (find_cnt < MAX_UNITS  &&  full_duplex[find_cnt])
927 		np->full_duplex = 1;
928 
929 	dev->netdev_ops = &natsemi_netdev_ops;
930 	dev->watchdog_timeo = TX_TIMEOUT;
931 
932 	dev->ethtool_ops = &ethtool_ops;
933 
934 	/* MTU range: 64 - 2024 */
935 	dev->min_mtu = ETH_ZLEN + ETH_FCS_LEN;
936 	dev->max_mtu = NATSEMI_RX_LIMIT - NATSEMI_HEADERS;
937 
938 	if (mtu)
939 		dev->mtu = mtu;
940 
941 	natsemi_init_media(dev);
942 
943 	/* save the silicon revision for later querying */
944 	np->srr = readl(ioaddr + SiliconRev);
945 	if (netif_msg_hw(np))
946 		printk(KERN_INFO "natsemi %s: silicon revision %#04x.\n",
947 				pci_name(np->pci_dev), np->srr);
948 
949 	i = register_netdev(dev);
950 	if (i)
951 		goto err_register_netdev;
952 	i = NATSEMI_CREATE_FILE(pdev, dspcfg_workaround);
953 	if (i)
954 		goto err_create_file;
955 
956 	if (netif_msg_drv(np)) {
957 		printk(KERN_INFO "natsemi %s: %s at %#08llx "
958 		       "(%s), %pM, IRQ %d",
959 		       dev->name, natsemi_pci_info[chip_idx].name,
960 		       (unsigned long long)iostart, pci_name(np->pci_dev),
961 		       dev->dev_addr, irq);
962 		if (dev->if_port == PORT_TP)
963 			printk(", port TP.\n");
964 		else if (np->ignore_phy)
965 			printk(", port MII, ignoring PHY\n");
966 		else
967 			printk(", port MII, phy ad %d.\n", np->phy_addr_external);
968 	}
969 	return 0;
970 
971  err_create_file:
972  	unregister_netdev(dev);
973 
974  err_register_netdev:
975 	iounmap(ioaddr);
976 
977  err_ioremap:
978 	pci_release_regions(pdev);
979 
980  err_pci_request_regions:
981 	free_netdev(dev);
982 	return i;
983 }
984 
985 
986 /* Read the EEPROM and MII Management Data I/O (MDIO) interfaces.
987    The EEPROM code is for the common 93c06/46 EEPROMs with 6 bit addresses. */
988 
989 /* Delay between EEPROM clock transitions.
990    No extra delay is needed with 33Mhz PCI, but future 66Mhz access may need
991    a delay.  Note that pre-2.0.34 kernels had a cache-alignment bug that
992    made udelay() unreliable.
993    The old method of using an ISA access as a delay, __SLOW_DOWN_IO__, is
994    deprecated.
995 */
996 #define eeprom_delay(ee_addr)	readl(ee_addr)
997 
998 #define EE_Write0 (EE_ChipSelect)
999 #define EE_Write1 (EE_ChipSelect | EE_DataIn)
1000 
1001 /* The EEPROM commands include the alway-set leading bit. */
1002 enum EEPROM_Cmds {
1003 	EE_WriteCmd=(5 << 6), EE_ReadCmd=(6 << 6), EE_EraseCmd=(7 << 6),
1004 };
1005 
1006 static int eeprom_read(void __iomem *addr, int location)
1007 {
1008 	int i;
1009 	int retval = 0;
1010 	void __iomem *ee_addr = addr + EECtrl;
1011 	int read_cmd = location | EE_ReadCmd;
1012 
1013 	writel(EE_Write0, ee_addr);
1014 
1015 	/* Shift the read command bits out. */
1016 	for (i = 10; i >= 0; i--) {
1017 		short dataval = (read_cmd & (1 << i)) ? EE_Write1 : EE_Write0;
1018 		writel(dataval, ee_addr);
1019 		eeprom_delay(ee_addr);
1020 		writel(dataval | EE_ShiftClk, ee_addr);
1021 		eeprom_delay(ee_addr);
1022 	}
1023 	writel(EE_ChipSelect, ee_addr);
1024 	eeprom_delay(ee_addr);
1025 
1026 	for (i = 0; i < 16; i++) {
1027 		writel(EE_ChipSelect | EE_ShiftClk, ee_addr);
1028 		eeprom_delay(ee_addr);
1029 		retval |= (readl(ee_addr) & EE_DataOut) ? 1 << i : 0;
1030 		writel(EE_ChipSelect, ee_addr);
1031 		eeprom_delay(ee_addr);
1032 	}
1033 
1034 	/* Terminate the EEPROM access. */
1035 	writel(EE_Write0, ee_addr);
1036 	writel(0, ee_addr);
1037 	return retval;
1038 }
1039 
1040 /* MII transceiver control section.
1041  * The 83815 series has an internal transceiver, and we present the
1042  * internal management registers as if they were MII connected.
1043  * External Phy registers are referenced through the MII interface.
1044  */
1045 
1046 /* clock transitions >= 20ns (25MHz)
1047  * One readl should be good to PCI @ 100MHz
1048  */
1049 #define mii_delay(ioaddr)  readl(ioaddr + EECtrl)
1050 
1051 static int mii_getbit (struct net_device *dev)
1052 {
1053 	int data;
1054 	void __iomem *ioaddr = ns_ioaddr(dev);
1055 
1056 	writel(MII_ShiftClk, ioaddr + EECtrl);
1057 	data = readl(ioaddr + EECtrl);
1058 	writel(0, ioaddr + EECtrl);
1059 	mii_delay(ioaddr);
1060 	return (data & MII_Data)? 1 : 0;
1061 }
1062 
1063 static void mii_send_bits (struct net_device *dev, u32 data, int len)
1064 {
1065 	u32 i;
1066 	void __iomem *ioaddr = ns_ioaddr(dev);
1067 
1068 	for (i = (1 << (len-1)); i; i >>= 1)
1069 	{
1070 		u32 mdio_val = MII_Write | ((data & i)? MII_Data : 0);
1071 		writel(mdio_val, ioaddr + EECtrl);
1072 		mii_delay(ioaddr);
1073 		writel(mdio_val | MII_ShiftClk, ioaddr + EECtrl);
1074 		mii_delay(ioaddr);
1075 	}
1076 	writel(0, ioaddr + EECtrl);
1077 	mii_delay(ioaddr);
1078 }
1079 
1080 static int miiport_read(struct net_device *dev, int phy_id, int reg)
1081 {
1082 	u32 cmd;
1083 	int i;
1084 	u32 retval = 0;
1085 
1086 	/* Ensure sync */
1087 	mii_send_bits (dev, 0xffffffff, 32);
1088 	/* ST(2), OP(2), ADDR(5), REG#(5), TA(2), Data(16) total 32 bits */
1089 	/* ST,OP = 0110'b for read operation */
1090 	cmd = (0x06 << 10) | (phy_id << 5) | reg;
1091 	mii_send_bits (dev, cmd, 14);
1092 	/* Turnaround */
1093 	if (mii_getbit (dev))
1094 		return 0;
1095 	/* Read data */
1096 	for (i = 0; i < 16; i++) {
1097 		retval <<= 1;
1098 		retval |= mii_getbit (dev);
1099 	}
1100 	/* End cycle */
1101 	mii_getbit (dev);
1102 	return retval;
1103 }
1104 
1105 static void miiport_write(struct net_device *dev, int phy_id, int reg, u16 data)
1106 {
1107 	u32 cmd;
1108 
1109 	/* Ensure sync */
1110 	mii_send_bits (dev, 0xffffffff, 32);
1111 	/* ST(2), OP(2), ADDR(5), REG#(5), TA(2), Data(16) total 32 bits */
1112 	/* ST,OP,AAAAA,RRRRR,TA = 0101xxxxxxxxxx10'b = 0x5002 for write */
1113 	cmd = (0x5002 << 16) | (phy_id << 23) | (reg << 18) | data;
1114 	mii_send_bits (dev, cmd, 32);
1115 	/* End cycle */
1116 	mii_getbit (dev);
1117 }
1118 
1119 static int mdio_read(struct net_device *dev, int reg)
1120 {
1121 	struct netdev_private *np = netdev_priv(dev);
1122 	void __iomem *ioaddr = ns_ioaddr(dev);
1123 
1124 	/* The 83815 series has two ports:
1125 	 * - an internal transceiver
1126 	 * - an external mii bus
1127 	 */
1128 	if (dev->if_port == PORT_TP)
1129 		return readw(ioaddr+BasicControl+(reg<<2));
1130 	else
1131 		return miiport_read(dev, np->phy_addr_external, reg);
1132 }
1133 
1134 static void mdio_write(struct net_device *dev, int reg, u16 data)
1135 {
1136 	struct netdev_private *np = netdev_priv(dev);
1137 	void __iomem *ioaddr = ns_ioaddr(dev);
1138 
1139 	/* The 83815 series has an internal transceiver; handle separately */
1140 	if (dev->if_port == PORT_TP)
1141 		writew(data, ioaddr+BasicControl+(reg<<2));
1142 	else
1143 		miiport_write(dev, np->phy_addr_external, reg, data);
1144 }
1145 
1146 static void init_phy_fixup(struct net_device *dev)
1147 {
1148 	struct netdev_private *np = netdev_priv(dev);
1149 	void __iomem *ioaddr = ns_ioaddr(dev);
1150 	int i;
1151 	u32 cfg;
1152 	u16 tmp;
1153 
1154 	/* restore stuff lost when power was out */
1155 	tmp = mdio_read(dev, MII_BMCR);
1156 	if (np->autoneg == AUTONEG_ENABLE) {
1157 		/* renegotiate if something changed */
1158 		if ((tmp & BMCR_ANENABLE) == 0 ||
1159 		    np->advertising != mdio_read(dev, MII_ADVERTISE))
1160 		{
1161 			/* turn on autonegotiation and force negotiation */
1162 			tmp |= (BMCR_ANENABLE | BMCR_ANRESTART);
1163 			mdio_write(dev, MII_ADVERTISE, np->advertising);
1164 		}
1165 	} else {
1166 		/* turn off auto negotiation, set speed and duplexity */
1167 		tmp &= ~(BMCR_ANENABLE | BMCR_SPEED100 | BMCR_FULLDPLX);
1168 		if (np->speed == SPEED_100)
1169 			tmp |= BMCR_SPEED100;
1170 		if (np->duplex == DUPLEX_FULL)
1171 			tmp |= BMCR_FULLDPLX;
1172 		/*
1173 		 * Note: there is no good way to inform the link partner
1174 		 * that our capabilities changed. The user has to unplug
1175 		 * and replug the network cable after some changes, e.g.
1176 		 * after switching from 10HD, autoneg off to 100 HD,
1177 		 * autoneg off.
1178 		 */
1179 	}
1180 	mdio_write(dev, MII_BMCR, tmp);
1181 	readl(ioaddr + ChipConfig);
1182 	udelay(1);
1183 
1184 	/* find out what phy this is */
1185 	np->mii = (mdio_read(dev, MII_PHYSID1) << 16)
1186 				+ mdio_read(dev, MII_PHYSID2);
1187 
1188 	/* handle external phys here */
1189 	switch (np->mii) {
1190 	case PHYID_AM79C874:
1191 		/* phy specific configuration for fibre/tp operation */
1192 		tmp = mdio_read(dev, MII_MCTRL);
1193 		tmp &= ~(MII_FX_SEL | MII_EN_SCRM);
1194 		if (dev->if_port == PORT_FIBRE)
1195 			tmp |= MII_FX_SEL;
1196 		else
1197 			tmp |= MII_EN_SCRM;
1198 		mdio_write(dev, MII_MCTRL, tmp);
1199 		break;
1200 	default:
1201 		break;
1202 	}
1203 	cfg = readl(ioaddr + ChipConfig);
1204 	if (cfg & CfgExtPhy)
1205 		return;
1206 
1207 	/* On page 78 of the spec, they recommend some settings for "optimum
1208 	   performance" to be done in sequence.  These settings optimize some
1209 	   of the 100Mbit autodetection circuitry.  They say we only want to
1210 	   do this for rev C of the chip, but engineers at NSC (Bradley
1211 	   Kennedy) recommends always setting them.  If you don't, you get
1212 	   errors on some autonegotiations that make the device unusable.
1213 
1214 	   It seems that the DSP needs a few usec to reinitialize after
1215 	   the start of the phy. Just retry writing these values until they
1216 	   stick.
1217 	*/
1218 	for (i=0;i<NATSEMI_HW_TIMEOUT;i++) {
1219 
1220 		int dspcfg;
1221 		writew(1, ioaddr + PGSEL);
1222 		writew(PMDCSR_VAL, ioaddr + PMDCSR);
1223 		writew(TSTDAT_VAL, ioaddr + TSTDAT);
1224 		np->dspcfg = (np->srr <= SRR_DP83815_C)?
1225 			DSPCFG_VAL : (DSPCFG_COEF | readw(ioaddr + DSPCFG));
1226 		writew(np->dspcfg, ioaddr + DSPCFG);
1227 		writew(SDCFG_VAL, ioaddr + SDCFG);
1228 		writew(0, ioaddr + PGSEL);
1229 		readl(ioaddr + ChipConfig);
1230 		udelay(10);
1231 
1232 		writew(1, ioaddr + PGSEL);
1233 		dspcfg = readw(ioaddr + DSPCFG);
1234 		writew(0, ioaddr + PGSEL);
1235 		if (np->dspcfg == dspcfg)
1236 			break;
1237 	}
1238 
1239 	if (netif_msg_link(np)) {
1240 		if (i==NATSEMI_HW_TIMEOUT) {
1241 			printk(KERN_INFO
1242 				"%s: DSPCFG mismatch after retrying for %d usec.\n",
1243 				dev->name, i*10);
1244 		} else {
1245 			printk(KERN_INFO
1246 				"%s: DSPCFG accepted after %d usec.\n",
1247 				dev->name, i*10);
1248 		}
1249 	}
1250 	/*
1251 	 * Enable PHY Specific event based interrupts.  Link state change
1252 	 * and Auto-Negotiation Completion are among the affected.
1253 	 * Read the intr status to clear it (needed for wake events).
1254 	 */
1255 	readw(ioaddr + MIntrStatus);
1256 	writew(MICRIntEn, ioaddr + MIntrCtrl);
1257 }
1258 
1259 static int switch_port_external(struct net_device *dev)
1260 {
1261 	struct netdev_private *np = netdev_priv(dev);
1262 	void __iomem *ioaddr = ns_ioaddr(dev);
1263 	u32 cfg;
1264 
1265 	cfg = readl(ioaddr + ChipConfig);
1266 	if (cfg & CfgExtPhy)
1267 		return 0;
1268 
1269 	if (netif_msg_link(np)) {
1270 		printk(KERN_INFO "%s: switching to external transceiver.\n",
1271 				dev->name);
1272 	}
1273 
1274 	/* 1) switch back to external phy */
1275 	writel(cfg | (CfgExtPhy | CfgPhyDis), ioaddr + ChipConfig);
1276 	readl(ioaddr + ChipConfig);
1277 	udelay(1);
1278 
1279 	/* 2) reset the external phy: */
1280 	/* resetting the external PHY has been known to cause a hub supplying
1281 	 * power over Ethernet to kill the power.  We don't want to kill
1282 	 * power to this computer, so we avoid resetting the phy.
1283 	 */
1284 
1285 	/* 3) reinit the phy fixup, it got lost during power down. */
1286 	move_int_phy(dev, np->phy_addr_external);
1287 	init_phy_fixup(dev);
1288 
1289 	return 1;
1290 }
1291 
1292 static int switch_port_internal(struct net_device *dev)
1293 {
1294 	struct netdev_private *np = netdev_priv(dev);
1295 	void __iomem *ioaddr = ns_ioaddr(dev);
1296 	int i;
1297 	u32 cfg;
1298 	u16 bmcr;
1299 
1300 	cfg = readl(ioaddr + ChipConfig);
1301 	if (!(cfg &CfgExtPhy))
1302 		return 0;
1303 
1304 	if (netif_msg_link(np)) {
1305 		printk(KERN_INFO "%s: switching to internal transceiver.\n",
1306 				dev->name);
1307 	}
1308 	/* 1) switch back to internal phy: */
1309 	cfg = cfg & ~(CfgExtPhy | CfgPhyDis);
1310 	writel(cfg, ioaddr + ChipConfig);
1311 	readl(ioaddr + ChipConfig);
1312 	udelay(1);
1313 
1314 	/* 2) reset the internal phy: */
1315 	bmcr = readw(ioaddr+BasicControl+(MII_BMCR<<2));
1316 	writel(bmcr | BMCR_RESET, ioaddr+BasicControl+(MII_BMCR<<2));
1317 	readl(ioaddr + ChipConfig);
1318 	udelay(10);
1319 	for (i=0;i<NATSEMI_HW_TIMEOUT;i++) {
1320 		bmcr = readw(ioaddr+BasicControl+(MII_BMCR<<2));
1321 		if (!(bmcr & BMCR_RESET))
1322 			break;
1323 		udelay(10);
1324 	}
1325 	if (i==NATSEMI_HW_TIMEOUT && netif_msg_link(np)) {
1326 		printk(KERN_INFO
1327 			"%s: phy reset did not complete in %d usec.\n",
1328 			dev->name, i*10);
1329 	}
1330 	/* 3) reinit the phy fixup, it got lost during power down. */
1331 	init_phy_fixup(dev);
1332 
1333 	return 1;
1334 }
1335 
1336 /* Scan for a PHY on the external mii bus.
1337  * There are two tricky points:
1338  * - Do not scan while the internal phy is enabled. The internal phy will
1339  *   crash: e.g. reads from the DSPCFG register will return odd values and
1340  *   the nasty random phy reset code will reset the nic every few seconds.
1341  * - The internal phy must be moved around, an external phy could
1342  *   have the same address as the internal phy.
1343  */
1344 static int find_mii(struct net_device *dev)
1345 {
1346 	struct netdev_private *np = netdev_priv(dev);
1347 	int tmp;
1348 	int i;
1349 	int did_switch;
1350 
1351 	/* Switch to external phy */
1352 	did_switch = switch_port_external(dev);
1353 
1354 	/* Scan the possible phy addresses:
1355 	 *
1356 	 * PHY address 0 means that the phy is in isolate mode. Not yet
1357 	 * supported due to lack of test hardware. User space should
1358 	 * handle it through ethtool.
1359 	 */
1360 	for (i = 1; i <= 31; i++) {
1361 		move_int_phy(dev, i);
1362 		tmp = miiport_read(dev, i, MII_BMSR);
1363 		if (tmp != 0xffff && tmp != 0x0000) {
1364 			/* found something! */
1365 			np->mii = (mdio_read(dev, MII_PHYSID1) << 16)
1366 					+ mdio_read(dev, MII_PHYSID2);
1367 	 		if (netif_msg_probe(np)) {
1368 				printk(KERN_INFO "natsemi %s: found external phy %08x at address %d.\n",
1369 						pci_name(np->pci_dev), np->mii, i);
1370 			}
1371 			break;
1372 		}
1373 	}
1374 	/* And switch back to internal phy: */
1375 	if (did_switch)
1376 		switch_port_internal(dev);
1377 	return i;
1378 }
1379 
1380 /* CFG bits [13:16] [18:23] */
1381 #define CFG_RESET_SAVE 0xfde000
1382 /* WCSR bits [0:4] [9:10] */
1383 #define WCSR_RESET_SAVE 0x61f
1384 /* RFCR bits [20] [22] [27:31] */
1385 #define RFCR_RESET_SAVE 0xf8500000
1386 
1387 static void natsemi_reset(struct net_device *dev)
1388 {
1389 	int i;
1390 	u32 cfg;
1391 	u32 wcsr;
1392 	u32 rfcr;
1393 	u16 pmatch[3];
1394 	u16 sopass[3];
1395 	struct netdev_private *np = netdev_priv(dev);
1396 	void __iomem *ioaddr = ns_ioaddr(dev);
1397 
1398 	/*
1399 	 * Resetting the chip causes some registers to be lost.
1400 	 * Natsemi suggests NOT reloading the EEPROM while live, so instead
1401 	 * we save the state that would have been loaded from EEPROM
1402 	 * on a normal power-up (see the spec EEPROM map).  This assumes
1403 	 * whoever calls this will follow up with init_registers() eventually.
1404 	 */
1405 
1406 	/* CFG */
1407 	cfg = readl(ioaddr + ChipConfig) & CFG_RESET_SAVE;
1408 	/* WCSR */
1409 	wcsr = readl(ioaddr + WOLCmd) & WCSR_RESET_SAVE;
1410 	/* RFCR */
1411 	rfcr = readl(ioaddr + RxFilterAddr) & RFCR_RESET_SAVE;
1412 	/* PMATCH */
1413 	for (i = 0; i < 3; i++) {
1414 		writel(i*2, ioaddr + RxFilterAddr);
1415 		pmatch[i] = readw(ioaddr + RxFilterData);
1416 	}
1417 	/* SOPAS */
1418 	for (i = 0; i < 3; i++) {
1419 		writel(0xa+(i*2), ioaddr + RxFilterAddr);
1420 		sopass[i] = readw(ioaddr + RxFilterData);
1421 	}
1422 
1423 	/* now whack the chip */
1424 	writel(ChipReset, ioaddr + ChipCmd);
1425 	for (i=0;i<NATSEMI_HW_TIMEOUT;i++) {
1426 		if (!(readl(ioaddr + ChipCmd) & ChipReset))
1427 			break;
1428 		udelay(5);
1429 	}
1430 	if (i==NATSEMI_HW_TIMEOUT) {
1431 		printk(KERN_WARNING "%s: reset did not complete in %d usec.\n",
1432 			dev->name, i*5);
1433 	} else if (netif_msg_hw(np)) {
1434 		printk(KERN_DEBUG "%s: reset completed in %d usec.\n",
1435 			dev->name, i*5);
1436 	}
1437 
1438 	/* restore CFG */
1439 	cfg |= readl(ioaddr + ChipConfig) & ~CFG_RESET_SAVE;
1440 	/* turn on external phy if it was selected */
1441 	if (dev->if_port == PORT_TP)
1442 		cfg &= ~(CfgExtPhy | CfgPhyDis);
1443 	else
1444 		cfg |= (CfgExtPhy | CfgPhyDis);
1445 	writel(cfg, ioaddr + ChipConfig);
1446 	/* restore WCSR */
1447 	wcsr |= readl(ioaddr + WOLCmd) & ~WCSR_RESET_SAVE;
1448 	writel(wcsr, ioaddr + WOLCmd);
1449 	/* read RFCR */
1450 	rfcr |= readl(ioaddr + RxFilterAddr) & ~RFCR_RESET_SAVE;
1451 	/* restore PMATCH */
1452 	for (i = 0; i < 3; i++) {
1453 		writel(i*2, ioaddr + RxFilterAddr);
1454 		writew(pmatch[i], ioaddr + RxFilterData);
1455 	}
1456 	for (i = 0; i < 3; i++) {
1457 		writel(0xa+(i*2), ioaddr + RxFilterAddr);
1458 		writew(sopass[i], ioaddr + RxFilterData);
1459 	}
1460 	/* restore RFCR */
1461 	writel(rfcr, ioaddr + RxFilterAddr);
1462 }
1463 
1464 static void reset_rx(struct net_device *dev)
1465 {
1466 	int i;
1467 	struct netdev_private *np = netdev_priv(dev);
1468 	void __iomem *ioaddr = ns_ioaddr(dev);
1469 
1470 	np->intr_status &= ~RxResetDone;
1471 
1472 	writel(RxReset, ioaddr + ChipCmd);
1473 
1474 	for (i=0;i<NATSEMI_HW_TIMEOUT;i++) {
1475 		np->intr_status |= readl(ioaddr + IntrStatus);
1476 		if (np->intr_status & RxResetDone)
1477 			break;
1478 		udelay(15);
1479 	}
1480 	if (i==NATSEMI_HW_TIMEOUT) {
1481 		printk(KERN_WARNING "%s: RX reset did not complete in %d usec.\n",
1482 		       dev->name, i*15);
1483 	} else if (netif_msg_hw(np)) {
1484 		printk(KERN_WARNING "%s: RX reset took %d usec.\n",
1485 		       dev->name, i*15);
1486 	}
1487 }
1488 
1489 static void natsemi_reload_eeprom(struct net_device *dev)
1490 {
1491 	struct netdev_private *np = netdev_priv(dev);
1492 	void __iomem *ioaddr = ns_ioaddr(dev);
1493 	int i;
1494 
1495 	writel(EepromReload, ioaddr + PCIBusCfg);
1496 	for (i=0;i<NATSEMI_HW_TIMEOUT;i++) {
1497 		udelay(50);
1498 		if (!(readl(ioaddr + PCIBusCfg) & EepromReload))
1499 			break;
1500 	}
1501 	if (i==NATSEMI_HW_TIMEOUT) {
1502 		printk(KERN_WARNING "natsemi %s: EEPROM did not reload in %d usec.\n",
1503 			pci_name(np->pci_dev), i*50);
1504 	} else if (netif_msg_hw(np)) {
1505 		printk(KERN_DEBUG "natsemi %s: EEPROM reloaded in %d usec.\n",
1506 			pci_name(np->pci_dev), i*50);
1507 	}
1508 }
1509 
1510 static void natsemi_stop_rxtx(struct net_device *dev)
1511 {
1512 	void __iomem * ioaddr = ns_ioaddr(dev);
1513 	struct netdev_private *np = netdev_priv(dev);
1514 	int i;
1515 
1516 	writel(RxOff | TxOff, ioaddr + ChipCmd);
1517 	for(i=0;i< NATSEMI_HW_TIMEOUT;i++) {
1518 		if ((readl(ioaddr + ChipCmd) & (TxOn|RxOn)) == 0)
1519 			break;
1520 		udelay(5);
1521 	}
1522 	if (i==NATSEMI_HW_TIMEOUT) {
1523 		printk(KERN_WARNING "%s: Tx/Rx process did not stop in %d usec.\n",
1524 			dev->name, i*5);
1525 	} else if (netif_msg_hw(np)) {
1526 		printk(KERN_DEBUG "%s: Tx/Rx process stopped in %d usec.\n",
1527 			dev->name, i*5);
1528 	}
1529 }
1530 
1531 static int netdev_open(struct net_device *dev)
1532 {
1533 	struct netdev_private *np = netdev_priv(dev);
1534 	void __iomem * ioaddr = ns_ioaddr(dev);
1535 	const int irq = np->pci_dev->irq;
1536 	int i;
1537 
1538 	/* Reset the chip, just in case. */
1539 	natsemi_reset(dev);
1540 
1541 	i = request_irq(irq, intr_handler, IRQF_SHARED, dev->name, dev);
1542 	if (i) return i;
1543 
1544 	if (netif_msg_ifup(np))
1545 		printk(KERN_DEBUG "%s: netdev_open() irq %d.\n",
1546 			dev->name, irq);
1547 	i = alloc_ring(dev);
1548 	if (i < 0) {
1549 		free_irq(irq, dev);
1550 		return i;
1551 	}
1552 	napi_enable(&np->napi);
1553 
1554 	init_ring(dev);
1555 	spin_lock_irq(&np->lock);
1556 	init_registers(dev);
1557 	/* now set the MAC address according to dev->dev_addr */
1558 	for (i = 0; i < 3; i++) {
1559 		u16 mac = (dev->dev_addr[2*i+1]<<8) + dev->dev_addr[2*i];
1560 
1561 		writel(i*2, ioaddr + RxFilterAddr);
1562 		writew(mac, ioaddr + RxFilterData);
1563 	}
1564 	writel(np->cur_rx_mode, ioaddr + RxFilterAddr);
1565 	spin_unlock_irq(&np->lock);
1566 
1567 	netif_start_queue(dev);
1568 
1569 	if (netif_msg_ifup(np))
1570 		printk(KERN_DEBUG "%s: Done netdev_open(), status: %#08x.\n",
1571 			dev->name, (int)readl(ioaddr + ChipCmd));
1572 
1573 	/* Set the timer to check for link beat. */
1574 	init_timer(&np->timer);
1575 	np->timer.expires = round_jiffies(jiffies + NATSEMI_TIMER_FREQ);
1576 	np->timer.data = (unsigned long)dev;
1577 	np->timer.function = netdev_timer; /* timer handler */
1578 	add_timer(&np->timer);
1579 
1580 	return 0;
1581 }
1582 
1583 static void do_cable_magic(struct net_device *dev)
1584 {
1585 	struct netdev_private *np = netdev_priv(dev);
1586 	void __iomem *ioaddr = ns_ioaddr(dev);
1587 
1588 	if (dev->if_port != PORT_TP)
1589 		return;
1590 
1591 	if (np->srr >= SRR_DP83816_A5)
1592 		return;
1593 
1594 	/*
1595 	 * 100 MBit links with short cables can trip an issue with the chip.
1596 	 * The problem manifests as lots of CRC errors and/or flickering
1597 	 * activity LED while idle.  This process is based on instructions
1598 	 * from engineers at National.
1599 	 */
1600 	if (readl(ioaddr + ChipConfig) & CfgSpeed100) {
1601 		u16 data;
1602 
1603 		writew(1, ioaddr + PGSEL);
1604 		/*
1605 		 * coefficient visibility should already be enabled via
1606 		 * DSPCFG | 0x1000
1607 		 */
1608 		data = readw(ioaddr + TSTDAT) & 0xff;
1609 		/*
1610 		 * the value must be negative, and within certain values
1611 		 * (these values all come from National)
1612 		 */
1613 		if (!(data & 0x80) || ((data >= 0xd8) && (data <= 0xff))) {
1614 			np = netdev_priv(dev);
1615 
1616 			/* the bug has been triggered - fix the coefficient */
1617 			writew(TSTDAT_FIXED, ioaddr + TSTDAT);
1618 			/* lock the value */
1619 			data = readw(ioaddr + DSPCFG);
1620 			np->dspcfg = data | DSPCFG_LOCK;
1621 			writew(np->dspcfg, ioaddr + DSPCFG);
1622 		}
1623 		writew(0, ioaddr + PGSEL);
1624 	}
1625 }
1626 
1627 static void undo_cable_magic(struct net_device *dev)
1628 {
1629 	u16 data;
1630 	struct netdev_private *np = netdev_priv(dev);
1631 	void __iomem * ioaddr = ns_ioaddr(dev);
1632 
1633 	if (dev->if_port != PORT_TP)
1634 		return;
1635 
1636 	if (np->srr >= SRR_DP83816_A5)
1637 		return;
1638 
1639 	writew(1, ioaddr + PGSEL);
1640 	/* make sure the lock bit is clear */
1641 	data = readw(ioaddr + DSPCFG);
1642 	np->dspcfg = data & ~DSPCFG_LOCK;
1643 	writew(np->dspcfg, ioaddr + DSPCFG);
1644 	writew(0, ioaddr + PGSEL);
1645 }
1646 
1647 static void check_link(struct net_device *dev)
1648 {
1649 	struct netdev_private *np = netdev_priv(dev);
1650 	void __iomem * ioaddr = ns_ioaddr(dev);
1651 	int duplex = np->duplex;
1652 	u16 bmsr;
1653 
1654 	/* If we are ignoring the PHY then don't try reading it. */
1655 	if (np->ignore_phy)
1656 		goto propagate_state;
1657 
1658 	/* The link status field is latched: it remains low after a temporary
1659 	 * link failure until it's read. We need the current link status,
1660 	 * thus read twice.
1661 	 */
1662 	mdio_read(dev, MII_BMSR);
1663 	bmsr = mdio_read(dev, MII_BMSR);
1664 
1665 	if (!(bmsr & BMSR_LSTATUS)) {
1666 		if (netif_carrier_ok(dev)) {
1667 			if (netif_msg_link(np))
1668 				printk(KERN_NOTICE "%s: link down.\n",
1669 				       dev->name);
1670 			netif_carrier_off(dev);
1671 			undo_cable_magic(dev);
1672 		}
1673 		return;
1674 	}
1675 	if (!netif_carrier_ok(dev)) {
1676 		if (netif_msg_link(np))
1677 			printk(KERN_NOTICE "%s: link up.\n", dev->name);
1678 		netif_carrier_on(dev);
1679 		do_cable_magic(dev);
1680 	}
1681 
1682 	duplex = np->full_duplex;
1683 	if (!duplex) {
1684 		if (bmsr & BMSR_ANEGCOMPLETE) {
1685 			int tmp = mii_nway_result(
1686 				np->advertising & mdio_read(dev, MII_LPA));
1687 			if (tmp == LPA_100FULL || tmp == LPA_10FULL)
1688 				duplex = 1;
1689 		} else if (mdio_read(dev, MII_BMCR) & BMCR_FULLDPLX)
1690 			duplex = 1;
1691 	}
1692 
1693 propagate_state:
1694 	/* if duplex is set then bit 28 must be set, too */
1695 	if (duplex ^ !!(np->rx_config & RxAcceptTx)) {
1696 		if (netif_msg_link(np))
1697 			printk(KERN_INFO
1698 				"%s: Setting %s-duplex based on negotiated "
1699 				"link capability.\n", dev->name,
1700 				duplex ? "full" : "half");
1701 		if (duplex) {
1702 			np->rx_config |= RxAcceptTx;
1703 			np->tx_config |= TxCarrierIgn | TxHeartIgn;
1704 		} else {
1705 			np->rx_config &= ~RxAcceptTx;
1706 			np->tx_config &= ~(TxCarrierIgn | TxHeartIgn);
1707 		}
1708 		writel(np->tx_config, ioaddr + TxConfig);
1709 		writel(np->rx_config, ioaddr + RxConfig);
1710 	}
1711 }
1712 
1713 static void init_registers(struct net_device *dev)
1714 {
1715 	struct netdev_private *np = netdev_priv(dev);
1716 	void __iomem * ioaddr = ns_ioaddr(dev);
1717 
1718 	init_phy_fixup(dev);
1719 
1720 	/* clear any interrupts that are pending, such as wake events */
1721 	readl(ioaddr + IntrStatus);
1722 
1723 	writel(np->ring_dma, ioaddr + RxRingPtr);
1724 	writel(np->ring_dma + RX_RING_SIZE * sizeof(struct netdev_desc),
1725 		ioaddr + TxRingPtr);
1726 
1727 	/* Initialize other registers.
1728 	 * Configure the PCI bus bursts and FIFO thresholds.
1729 	 * Configure for standard, in-spec Ethernet.
1730 	 * Start with half-duplex. check_link will update
1731 	 * to the correct settings.
1732 	 */
1733 
1734 	/* DRTH: 2: start tx if 64 bytes are in the fifo
1735 	 * FLTH: 0x10: refill with next packet if 512 bytes are free
1736 	 * MXDMA: 0: up to 256 byte bursts.
1737 	 * 	MXDMA must be <= FLTH
1738 	 * ECRETRY=1
1739 	 * ATP=1
1740 	 */
1741 	np->tx_config = TxAutoPad | TxCollRetry | TxMxdma_256 |
1742 				TX_FLTH_VAL | TX_DRTH_VAL_START;
1743 	writel(np->tx_config, ioaddr + TxConfig);
1744 
1745 	/* DRTH 0x10: start copying to memory if 128 bytes are in the fifo
1746 	 * MXDMA 0: up to 256 byte bursts
1747 	 */
1748 	np->rx_config = RxMxdma_256 | RX_DRTH_VAL;
1749 	/* if receive ring now has bigger buffers than normal, enable jumbo */
1750 	if (np->rx_buf_sz > NATSEMI_LONGPKT)
1751 		np->rx_config |= RxAcceptLong;
1752 
1753 	writel(np->rx_config, ioaddr + RxConfig);
1754 
1755 	/* Disable PME:
1756 	 * The PME bit is initialized from the EEPROM contents.
1757 	 * PCI cards probably have PME disabled, but motherboard
1758 	 * implementations may have PME set to enable WakeOnLan.
1759 	 * With PME set the chip will scan incoming packets but
1760 	 * nothing will be written to memory. */
1761 	np->SavedClkRun = readl(ioaddr + ClkRun);
1762 	writel(np->SavedClkRun & ~PMEEnable, ioaddr + ClkRun);
1763 	if (np->SavedClkRun & PMEStatus && netif_msg_wol(np)) {
1764 		printk(KERN_NOTICE "%s: Wake-up event %#08x\n",
1765 			dev->name, readl(ioaddr + WOLCmd));
1766 	}
1767 
1768 	check_link(dev);
1769 	__set_rx_mode(dev);
1770 
1771 	/* Enable interrupts by setting the interrupt mask. */
1772 	writel(DEFAULT_INTR, ioaddr + IntrMask);
1773 	natsemi_irq_enable(dev);
1774 
1775 	writel(RxOn | TxOn, ioaddr + ChipCmd);
1776 	writel(StatsClear, ioaddr + StatsCtrl); /* Clear Stats */
1777 }
1778 
1779 /*
1780  * netdev_timer:
1781  * Purpose:
1782  * 1) check for link changes. Usually they are handled by the MII interrupt
1783  *    but it doesn't hurt to check twice.
1784  * 2) check for sudden death of the NIC:
1785  *    It seems that a reference set for this chip went out with incorrect info,
1786  *    and there exist boards that aren't quite right.  An unexpected voltage
1787  *    drop can cause the PHY to get itself in a weird state (basically reset).
1788  *    NOTE: this only seems to affect revC chips.  The user can disable
1789  *    this check via dspcfg_workaround sysfs option.
1790  * 3) check of death of the RX path due to OOM
1791  */
1792 static void netdev_timer(unsigned long data)
1793 {
1794 	struct net_device *dev = (struct net_device *)data;
1795 	struct netdev_private *np = netdev_priv(dev);
1796 	void __iomem * ioaddr = ns_ioaddr(dev);
1797 	int next_tick = NATSEMI_TIMER_FREQ;
1798 	const int irq = np->pci_dev->irq;
1799 
1800 	if (netif_msg_timer(np)) {
1801 		/* DO NOT read the IntrStatus register,
1802 		 * a read clears any pending interrupts.
1803 		 */
1804 		printk(KERN_DEBUG "%s: Media selection timer tick.\n",
1805 			dev->name);
1806 	}
1807 
1808 	if (dev->if_port == PORT_TP) {
1809 		u16 dspcfg;
1810 
1811 		spin_lock_irq(&np->lock);
1812 		/* check for a nasty random phy-reset - use dspcfg as a flag */
1813 		writew(1, ioaddr+PGSEL);
1814 		dspcfg = readw(ioaddr+DSPCFG);
1815 		writew(0, ioaddr+PGSEL);
1816 		if (np->dspcfg_workaround && dspcfg != np->dspcfg) {
1817 			if (!netif_queue_stopped(dev)) {
1818 				spin_unlock_irq(&np->lock);
1819 				if (netif_msg_drv(np))
1820 					printk(KERN_NOTICE "%s: possible phy reset: "
1821 						"re-initializing\n", dev->name);
1822 				disable_irq(irq);
1823 				spin_lock_irq(&np->lock);
1824 				natsemi_stop_rxtx(dev);
1825 				dump_ring(dev);
1826 				reinit_ring(dev);
1827 				init_registers(dev);
1828 				spin_unlock_irq(&np->lock);
1829 				enable_irq(irq);
1830 			} else {
1831 				/* hurry back */
1832 				next_tick = HZ;
1833 				spin_unlock_irq(&np->lock);
1834 			}
1835 		} else {
1836 			/* init_registers() calls check_link() for the above case */
1837 			check_link(dev);
1838 			spin_unlock_irq(&np->lock);
1839 		}
1840 	} else {
1841 		spin_lock_irq(&np->lock);
1842 		check_link(dev);
1843 		spin_unlock_irq(&np->lock);
1844 	}
1845 	if (np->oom) {
1846 		disable_irq(irq);
1847 		np->oom = 0;
1848 		refill_rx(dev);
1849 		enable_irq(irq);
1850 		if (!np->oom) {
1851 			writel(RxOn, ioaddr + ChipCmd);
1852 		} else {
1853 			next_tick = 1;
1854 		}
1855 	}
1856 
1857 	if (next_tick > 1)
1858 		mod_timer(&np->timer, round_jiffies(jiffies + next_tick));
1859 	else
1860 		mod_timer(&np->timer, jiffies + next_tick);
1861 }
1862 
1863 static void dump_ring(struct net_device *dev)
1864 {
1865 	struct netdev_private *np = netdev_priv(dev);
1866 
1867 	if (netif_msg_pktdata(np)) {
1868 		int i;
1869 		printk(KERN_DEBUG "  Tx ring at %p:\n", np->tx_ring);
1870 		for (i = 0; i < TX_RING_SIZE; i++) {
1871 			printk(KERN_DEBUG " #%d desc. %#08x %#08x %#08x.\n",
1872 				i, np->tx_ring[i].next_desc,
1873 				np->tx_ring[i].cmd_status,
1874 				np->tx_ring[i].addr);
1875 		}
1876 		printk(KERN_DEBUG "  Rx ring %p:\n", np->rx_ring);
1877 		for (i = 0; i < RX_RING_SIZE; i++) {
1878 			printk(KERN_DEBUG " #%d desc. %#08x %#08x %#08x.\n",
1879 				i, np->rx_ring[i].next_desc,
1880 				np->rx_ring[i].cmd_status,
1881 				np->rx_ring[i].addr);
1882 		}
1883 	}
1884 }
1885 
1886 static void ns_tx_timeout(struct net_device *dev)
1887 {
1888 	struct netdev_private *np = netdev_priv(dev);
1889 	void __iomem * ioaddr = ns_ioaddr(dev);
1890 	const int irq = np->pci_dev->irq;
1891 
1892 	disable_irq(irq);
1893 	spin_lock_irq(&np->lock);
1894 	if (!np->hands_off) {
1895 		if (netif_msg_tx_err(np))
1896 			printk(KERN_WARNING
1897 				"%s: Transmit timed out, status %#08x,"
1898 				" resetting...\n",
1899 				dev->name, readl(ioaddr + IntrStatus));
1900 		dump_ring(dev);
1901 
1902 		natsemi_reset(dev);
1903 		reinit_ring(dev);
1904 		init_registers(dev);
1905 	} else {
1906 		printk(KERN_WARNING
1907 			"%s: tx_timeout while in hands_off state?\n",
1908 			dev->name);
1909 	}
1910 	spin_unlock_irq(&np->lock);
1911 	enable_irq(irq);
1912 
1913 	netif_trans_update(dev); /* prevent tx timeout */
1914 	dev->stats.tx_errors++;
1915 	netif_wake_queue(dev);
1916 }
1917 
1918 static int alloc_ring(struct net_device *dev)
1919 {
1920 	struct netdev_private *np = netdev_priv(dev);
1921 	np->rx_ring = pci_alloc_consistent(np->pci_dev,
1922 		sizeof(struct netdev_desc) * (RX_RING_SIZE+TX_RING_SIZE),
1923 		&np->ring_dma);
1924 	if (!np->rx_ring)
1925 		return -ENOMEM;
1926 	np->tx_ring = &np->rx_ring[RX_RING_SIZE];
1927 	return 0;
1928 }
1929 
1930 static void refill_rx(struct net_device *dev)
1931 {
1932 	struct netdev_private *np = netdev_priv(dev);
1933 
1934 	/* Refill the Rx ring buffers. */
1935 	for (; np->cur_rx - np->dirty_rx > 0; np->dirty_rx++) {
1936 		struct sk_buff *skb;
1937 		int entry = np->dirty_rx % RX_RING_SIZE;
1938 		if (np->rx_skbuff[entry] == NULL) {
1939 			unsigned int buflen = np->rx_buf_sz+NATSEMI_PADDING;
1940 			skb = netdev_alloc_skb(dev, buflen);
1941 			np->rx_skbuff[entry] = skb;
1942 			if (skb == NULL)
1943 				break; /* Better luck next round. */
1944 			np->rx_dma[entry] = pci_map_single(np->pci_dev,
1945 				skb->data, buflen, PCI_DMA_FROMDEVICE);
1946 			if (pci_dma_mapping_error(np->pci_dev,
1947 						  np->rx_dma[entry])) {
1948 				dev_kfree_skb_any(skb);
1949 				np->rx_skbuff[entry] = NULL;
1950 				break; /* Better luck next round. */
1951 			}
1952 			np->rx_ring[entry].addr = cpu_to_le32(np->rx_dma[entry]);
1953 		}
1954 		np->rx_ring[entry].cmd_status = cpu_to_le32(np->rx_buf_sz);
1955 	}
1956 	if (np->cur_rx - np->dirty_rx == RX_RING_SIZE) {
1957 		if (netif_msg_rx_err(np))
1958 			printk(KERN_WARNING "%s: going OOM.\n", dev->name);
1959 		np->oom = 1;
1960 	}
1961 }
1962 
1963 static void set_bufsize(struct net_device *dev)
1964 {
1965 	struct netdev_private *np = netdev_priv(dev);
1966 	if (dev->mtu <= ETH_DATA_LEN)
1967 		np->rx_buf_sz = ETH_DATA_LEN + NATSEMI_HEADERS;
1968 	else
1969 		np->rx_buf_sz = dev->mtu + NATSEMI_HEADERS;
1970 }
1971 
1972 /* Initialize the Rx and Tx rings, along with various 'dev' bits. */
1973 static void init_ring(struct net_device *dev)
1974 {
1975 	struct netdev_private *np = netdev_priv(dev);
1976 	int i;
1977 
1978 	/* 1) TX ring */
1979 	np->dirty_tx = np->cur_tx = 0;
1980 	for (i = 0; i < TX_RING_SIZE; i++) {
1981 		np->tx_skbuff[i] = NULL;
1982 		np->tx_ring[i].next_desc = cpu_to_le32(np->ring_dma
1983 			+sizeof(struct netdev_desc)
1984 			*((i+1)%TX_RING_SIZE+RX_RING_SIZE));
1985 		np->tx_ring[i].cmd_status = 0;
1986 	}
1987 
1988 	/* 2) RX ring */
1989 	np->dirty_rx = 0;
1990 	np->cur_rx = RX_RING_SIZE;
1991 	np->oom = 0;
1992 	set_bufsize(dev);
1993 
1994 	np->rx_head_desc = &np->rx_ring[0];
1995 
1996 	/* Please be careful before changing this loop - at least gcc-2.95.1
1997 	 * miscompiles it otherwise.
1998 	 */
1999 	/* Initialize all Rx descriptors. */
2000 	for (i = 0; i < RX_RING_SIZE; i++) {
2001 		np->rx_ring[i].next_desc = cpu_to_le32(np->ring_dma
2002 				+sizeof(struct netdev_desc)
2003 				*((i+1)%RX_RING_SIZE));
2004 		np->rx_ring[i].cmd_status = cpu_to_le32(DescOwn);
2005 		np->rx_skbuff[i] = NULL;
2006 	}
2007 	refill_rx(dev);
2008 	dump_ring(dev);
2009 }
2010 
2011 static void drain_tx(struct net_device *dev)
2012 {
2013 	struct netdev_private *np = netdev_priv(dev);
2014 	int i;
2015 
2016 	for (i = 0; i < TX_RING_SIZE; i++) {
2017 		if (np->tx_skbuff[i]) {
2018 			pci_unmap_single(np->pci_dev,
2019 				np->tx_dma[i], np->tx_skbuff[i]->len,
2020 				PCI_DMA_TODEVICE);
2021 			dev_kfree_skb(np->tx_skbuff[i]);
2022 			dev->stats.tx_dropped++;
2023 		}
2024 		np->tx_skbuff[i] = NULL;
2025 	}
2026 }
2027 
2028 static void drain_rx(struct net_device *dev)
2029 {
2030 	struct netdev_private *np = netdev_priv(dev);
2031 	unsigned int buflen = np->rx_buf_sz;
2032 	int i;
2033 
2034 	/* Free all the skbuffs in the Rx queue. */
2035 	for (i = 0; i < RX_RING_SIZE; i++) {
2036 		np->rx_ring[i].cmd_status = 0;
2037 		np->rx_ring[i].addr = cpu_to_le32(0xBADF00D0); /* An invalid address. */
2038 		if (np->rx_skbuff[i]) {
2039 			pci_unmap_single(np->pci_dev, np->rx_dma[i],
2040 				buflen + NATSEMI_PADDING,
2041 				PCI_DMA_FROMDEVICE);
2042 			dev_kfree_skb(np->rx_skbuff[i]);
2043 		}
2044 		np->rx_skbuff[i] = NULL;
2045 	}
2046 }
2047 
2048 static void drain_ring(struct net_device *dev)
2049 {
2050 	drain_rx(dev);
2051 	drain_tx(dev);
2052 }
2053 
2054 static void free_ring(struct net_device *dev)
2055 {
2056 	struct netdev_private *np = netdev_priv(dev);
2057 	pci_free_consistent(np->pci_dev,
2058 		sizeof(struct netdev_desc) * (RX_RING_SIZE+TX_RING_SIZE),
2059 		np->rx_ring, np->ring_dma);
2060 }
2061 
2062 static void reinit_rx(struct net_device *dev)
2063 {
2064 	struct netdev_private *np = netdev_priv(dev);
2065 	int i;
2066 
2067 	/* RX Ring */
2068 	np->dirty_rx = 0;
2069 	np->cur_rx = RX_RING_SIZE;
2070 	np->rx_head_desc = &np->rx_ring[0];
2071 	/* Initialize all Rx descriptors. */
2072 	for (i = 0; i < RX_RING_SIZE; i++)
2073 		np->rx_ring[i].cmd_status = cpu_to_le32(DescOwn);
2074 
2075 	refill_rx(dev);
2076 }
2077 
2078 static void reinit_ring(struct net_device *dev)
2079 {
2080 	struct netdev_private *np = netdev_priv(dev);
2081 	int i;
2082 
2083 	/* drain TX ring */
2084 	drain_tx(dev);
2085 	np->dirty_tx = np->cur_tx = 0;
2086 	for (i=0;i<TX_RING_SIZE;i++)
2087 		np->tx_ring[i].cmd_status = 0;
2088 
2089 	reinit_rx(dev);
2090 }
2091 
2092 static netdev_tx_t start_tx(struct sk_buff *skb, struct net_device *dev)
2093 {
2094 	struct netdev_private *np = netdev_priv(dev);
2095 	void __iomem * ioaddr = ns_ioaddr(dev);
2096 	unsigned entry;
2097 	unsigned long flags;
2098 
2099 	/* Note: Ordering is important here, set the field with the
2100 	   "ownership" bit last, and only then increment cur_tx. */
2101 
2102 	/* Calculate the next Tx descriptor entry. */
2103 	entry = np->cur_tx % TX_RING_SIZE;
2104 
2105 	np->tx_skbuff[entry] = skb;
2106 	np->tx_dma[entry] = pci_map_single(np->pci_dev,
2107 				skb->data,skb->len, PCI_DMA_TODEVICE);
2108 	if (pci_dma_mapping_error(np->pci_dev, np->tx_dma[entry])) {
2109 		np->tx_skbuff[entry] = NULL;
2110 		dev_kfree_skb_irq(skb);
2111 		dev->stats.tx_dropped++;
2112 		return NETDEV_TX_OK;
2113 	}
2114 
2115 	np->tx_ring[entry].addr = cpu_to_le32(np->tx_dma[entry]);
2116 
2117 	spin_lock_irqsave(&np->lock, flags);
2118 
2119 	if (!np->hands_off) {
2120 		np->tx_ring[entry].cmd_status = cpu_to_le32(DescOwn | skb->len);
2121 		/* StrongARM: Explicitly cache flush np->tx_ring and
2122 		 * skb->data,skb->len. */
2123 		wmb();
2124 		np->cur_tx++;
2125 		if (np->cur_tx - np->dirty_tx >= TX_QUEUE_LEN - 1) {
2126 			netdev_tx_done(dev);
2127 			if (np->cur_tx - np->dirty_tx >= TX_QUEUE_LEN - 1)
2128 				netif_stop_queue(dev);
2129 		}
2130 		/* Wake the potentially-idle transmit channel. */
2131 		writel(TxOn, ioaddr + ChipCmd);
2132 	} else {
2133 		dev_kfree_skb_irq(skb);
2134 		dev->stats.tx_dropped++;
2135 	}
2136 	spin_unlock_irqrestore(&np->lock, flags);
2137 
2138 	if (netif_msg_tx_queued(np)) {
2139 		printk(KERN_DEBUG "%s: Transmit frame #%d queued in slot %d.\n",
2140 			dev->name, np->cur_tx, entry);
2141 	}
2142 	return NETDEV_TX_OK;
2143 }
2144 
2145 static void netdev_tx_done(struct net_device *dev)
2146 {
2147 	struct netdev_private *np = netdev_priv(dev);
2148 
2149 	for (; np->cur_tx - np->dirty_tx > 0; np->dirty_tx++) {
2150 		int entry = np->dirty_tx % TX_RING_SIZE;
2151 		if (np->tx_ring[entry].cmd_status & cpu_to_le32(DescOwn))
2152 			break;
2153 		if (netif_msg_tx_done(np))
2154 			printk(KERN_DEBUG
2155 				"%s: tx frame #%d finished, status %#08x.\n",
2156 					dev->name, np->dirty_tx,
2157 					le32_to_cpu(np->tx_ring[entry].cmd_status));
2158 		if (np->tx_ring[entry].cmd_status & cpu_to_le32(DescPktOK)) {
2159 			dev->stats.tx_packets++;
2160 			dev->stats.tx_bytes += np->tx_skbuff[entry]->len;
2161 		} else { /* Various Tx errors */
2162 			int tx_status =
2163 				le32_to_cpu(np->tx_ring[entry].cmd_status);
2164 			if (tx_status & (DescTxAbort|DescTxExcColl))
2165 				dev->stats.tx_aborted_errors++;
2166 			if (tx_status & DescTxFIFO)
2167 				dev->stats.tx_fifo_errors++;
2168 			if (tx_status & DescTxCarrier)
2169 				dev->stats.tx_carrier_errors++;
2170 			if (tx_status & DescTxOOWCol)
2171 				dev->stats.tx_window_errors++;
2172 			dev->stats.tx_errors++;
2173 		}
2174 		pci_unmap_single(np->pci_dev,np->tx_dma[entry],
2175 					np->tx_skbuff[entry]->len,
2176 					PCI_DMA_TODEVICE);
2177 		/* Free the original skb. */
2178 		dev_kfree_skb_irq(np->tx_skbuff[entry]);
2179 		np->tx_skbuff[entry] = NULL;
2180 	}
2181 	if (netif_queue_stopped(dev) &&
2182 	    np->cur_tx - np->dirty_tx < TX_QUEUE_LEN - 4) {
2183 		/* The ring is no longer full, wake queue. */
2184 		netif_wake_queue(dev);
2185 	}
2186 }
2187 
2188 /* The interrupt handler doesn't actually handle interrupts itself, it
2189  * schedules a NAPI poll if there is anything to do. */
2190 static irqreturn_t intr_handler(int irq, void *dev_instance)
2191 {
2192 	struct net_device *dev = dev_instance;
2193 	struct netdev_private *np = netdev_priv(dev);
2194 	void __iomem * ioaddr = ns_ioaddr(dev);
2195 
2196 	/* Reading IntrStatus automatically acknowledges so don't do
2197 	 * that while interrupts are disabled, (for example, while a
2198 	 * poll is scheduled).  */
2199 	if (np->hands_off || !readl(ioaddr + IntrEnable))
2200 		return IRQ_NONE;
2201 
2202 	np->intr_status = readl(ioaddr + IntrStatus);
2203 
2204 	if (!np->intr_status)
2205 		return IRQ_NONE;
2206 
2207 	if (netif_msg_intr(np))
2208 		printk(KERN_DEBUG
2209 		       "%s: Interrupt, status %#08x, mask %#08x.\n",
2210 		       dev->name, np->intr_status,
2211 		       readl(ioaddr + IntrMask));
2212 
2213 	prefetch(&np->rx_skbuff[np->cur_rx % RX_RING_SIZE]);
2214 
2215 	if (napi_schedule_prep(&np->napi)) {
2216 		/* Disable interrupts and register for poll */
2217 		natsemi_irq_disable(dev);
2218 		__napi_schedule(&np->napi);
2219 	} else
2220 		printk(KERN_WARNING
2221 	       	       "%s: Ignoring interrupt, status %#08x, mask %#08x.\n",
2222 		       dev->name, np->intr_status,
2223 		       readl(ioaddr + IntrMask));
2224 
2225 	return IRQ_HANDLED;
2226 }
2227 
2228 /* This is the NAPI poll routine.  As well as the standard RX handling
2229  * it also handles all other interrupts that the chip might raise.
2230  */
2231 static int natsemi_poll(struct napi_struct *napi, int budget)
2232 {
2233 	struct netdev_private *np = container_of(napi, struct netdev_private, napi);
2234 	struct net_device *dev = np->dev;
2235 	void __iomem * ioaddr = ns_ioaddr(dev);
2236 	int work_done = 0;
2237 
2238 	do {
2239 		if (netif_msg_intr(np))
2240 			printk(KERN_DEBUG
2241 			       "%s: Poll, status %#08x, mask %#08x.\n",
2242 			       dev->name, np->intr_status,
2243 			       readl(ioaddr + IntrMask));
2244 
2245 		/* netdev_rx() may read IntrStatus again if the RX state
2246 		 * machine falls over so do it first. */
2247 		if (np->intr_status &
2248 		    (IntrRxDone | IntrRxIntr | RxStatusFIFOOver |
2249 		     IntrRxErr | IntrRxOverrun)) {
2250 			netdev_rx(dev, &work_done, budget);
2251 		}
2252 
2253 		if (np->intr_status &
2254 		    (IntrTxDone | IntrTxIntr | IntrTxIdle | IntrTxErr)) {
2255 			spin_lock(&np->lock);
2256 			netdev_tx_done(dev);
2257 			spin_unlock(&np->lock);
2258 		}
2259 
2260 		/* Abnormal error summary/uncommon events handlers. */
2261 		if (np->intr_status & IntrAbnormalSummary)
2262 			netdev_error(dev, np->intr_status);
2263 
2264 		if (work_done >= budget)
2265 			return work_done;
2266 
2267 		np->intr_status = readl(ioaddr + IntrStatus);
2268 	} while (np->intr_status);
2269 
2270 	napi_complete_done(napi, work_done);
2271 
2272 	/* Reenable interrupts providing nothing is trying to shut
2273 	 * the chip down. */
2274 	spin_lock(&np->lock);
2275 	if (!np->hands_off)
2276 		natsemi_irq_enable(dev);
2277 	spin_unlock(&np->lock);
2278 
2279 	return work_done;
2280 }
2281 
2282 /* This routine is logically part of the interrupt handler, but separated
2283    for clarity and better register allocation. */
2284 static void netdev_rx(struct net_device *dev, int *work_done, int work_to_do)
2285 {
2286 	struct netdev_private *np = netdev_priv(dev);
2287 	int entry = np->cur_rx % RX_RING_SIZE;
2288 	int boguscnt = np->dirty_rx + RX_RING_SIZE - np->cur_rx;
2289 	s32 desc_status = le32_to_cpu(np->rx_head_desc->cmd_status);
2290 	unsigned int buflen = np->rx_buf_sz;
2291 	void __iomem * ioaddr = ns_ioaddr(dev);
2292 
2293 	/* If the driver owns the next entry it's a new packet. Send it up. */
2294 	while (desc_status < 0) { /* e.g. & DescOwn */
2295 		int pkt_len;
2296 		if (netif_msg_rx_status(np))
2297 			printk(KERN_DEBUG
2298 				"  netdev_rx() entry %d status was %#08x.\n",
2299 				entry, desc_status);
2300 		if (--boguscnt < 0)
2301 			break;
2302 
2303 		if (*work_done >= work_to_do)
2304 			break;
2305 
2306 		(*work_done)++;
2307 
2308 		pkt_len = (desc_status & DescSizeMask) - 4;
2309 		if ((desc_status&(DescMore|DescPktOK|DescRxLong)) != DescPktOK){
2310 			if (desc_status & DescMore) {
2311 				unsigned long flags;
2312 
2313 				if (netif_msg_rx_err(np))
2314 					printk(KERN_WARNING
2315 						"%s: Oversized(?) Ethernet "
2316 						"frame spanned multiple "
2317 						"buffers, entry %#08x "
2318 						"status %#08x.\n", dev->name,
2319 						np->cur_rx, desc_status);
2320 				dev->stats.rx_length_errors++;
2321 
2322 				/* The RX state machine has probably
2323 				 * locked up beneath us.  Follow the
2324 				 * reset procedure documented in
2325 				 * AN-1287. */
2326 
2327 				spin_lock_irqsave(&np->lock, flags);
2328 				reset_rx(dev);
2329 				reinit_rx(dev);
2330 				writel(np->ring_dma, ioaddr + RxRingPtr);
2331 				check_link(dev);
2332 				spin_unlock_irqrestore(&np->lock, flags);
2333 
2334 				/* We'll enable RX on exit from this
2335 				 * function. */
2336 				break;
2337 
2338 			} else {
2339 				/* There was an error. */
2340 				dev->stats.rx_errors++;
2341 				if (desc_status & (DescRxAbort|DescRxOver))
2342 					dev->stats.rx_over_errors++;
2343 				if (desc_status & (DescRxLong|DescRxRunt))
2344 					dev->stats.rx_length_errors++;
2345 				if (desc_status & (DescRxInvalid|DescRxAlign))
2346 					dev->stats.rx_frame_errors++;
2347 				if (desc_status & DescRxCRC)
2348 					dev->stats.rx_crc_errors++;
2349 			}
2350 		} else if (pkt_len > np->rx_buf_sz) {
2351 			/* if this is the tail of a double buffer
2352 			 * packet, we've already counted the error
2353 			 * on the first part.  Ignore the second half.
2354 			 */
2355 		} else {
2356 			struct sk_buff *skb;
2357 			/* Omit CRC size. */
2358 			/* Check if the packet is long enough to accept
2359 			 * without copying to a minimally-sized skbuff. */
2360 			if (pkt_len < rx_copybreak &&
2361 			    (skb = netdev_alloc_skb(dev, pkt_len + RX_OFFSET)) != NULL) {
2362 				/* 16 byte align the IP header */
2363 				skb_reserve(skb, RX_OFFSET);
2364 				pci_dma_sync_single_for_cpu(np->pci_dev,
2365 					np->rx_dma[entry],
2366 					buflen,
2367 					PCI_DMA_FROMDEVICE);
2368 				skb_copy_to_linear_data(skb,
2369 					np->rx_skbuff[entry]->data, pkt_len);
2370 				skb_put(skb, pkt_len);
2371 				pci_dma_sync_single_for_device(np->pci_dev,
2372 					np->rx_dma[entry],
2373 					buflen,
2374 					PCI_DMA_FROMDEVICE);
2375 			} else {
2376 				pci_unmap_single(np->pci_dev, np->rx_dma[entry],
2377 						 buflen + NATSEMI_PADDING,
2378 						 PCI_DMA_FROMDEVICE);
2379 				skb_put(skb = np->rx_skbuff[entry], pkt_len);
2380 				np->rx_skbuff[entry] = NULL;
2381 			}
2382 			skb->protocol = eth_type_trans(skb, dev);
2383 			netif_receive_skb(skb);
2384 			dev->stats.rx_packets++;
2385 			dev->stats.rx_bytes += pkt_len;
2386 		}
2387 		entry = (++np->cur_rx) % RX_RING_SIZE;
2388 		np->rx_head_desc = &np->rx_ring[entry];
2389 		desc_status = le32_to_cpu(np->rx_head_desc->cmd_status);
2390 	}
2391 	refill_rx(dev);
2392 
2393 	/* Restart Rx engine if stopped. */
2394 	if (np->oom)
2395 		mod_timer(&np->timer, jiffies + 1);
2396 	else
2397 		writel(RxOn, ioaddr + ChipCmd);
2398 }
2399 
2400 static void netdev_error(struct net_device *dev, int intr_status)
2401 {
2402 	struct netdev_private *np = netdev_priv(dev);
2403 	void __iomem * ioaddr = ns_ioaddr(dev);
2404 
2405 	spin_lock(&np->lock);
2406 	if (intr_status & LinkChange) {
2407 		u16 lpa = mdio_read(dev, MII_LPA);
2408 		if (mdio_read(dev, MII_BMCR) & BMCR_ANENABLE &&
2409 		    netif_msg_link(np)) {
2410 			printk(KERN_INFO
2411 				"%s: Autonegotiation advertising"
2412 				" %#04x  partner %#04x.\n", dev->name,
2413 				np->advertising, lpa);
2414 		}
2415 
2416 		/* read MII int status to clear the flag */
2417 		readw(ioaddr + MIntrStatus);
2418 		check_link(dev);
2419 	}
2420 	if (intr_status & StatsMax) {
2421 		__get_stats(dev);
2422 	}
2423 	if (intr_status & IntrTxUnderrun) {
2424 		if ((np->tx_config & TxDrthMask) < TX_DRTH_VAL_LIMIT) {
2425 			np->tx_config += TX_DRTH_VAL_INC;
2426 			if (netif_msg_tx_err(np))
2427 				printk(KERN_NOTICE
2428 					"%s: increased tx threshold, txcfg %#08x.\n",
2429 					dev->name, np->tx_config);
2430 		} else {
2431 			if (netif_msg_tx_err(np))
2432 				printk(KERN_NOTICE
2433 					"%s: tx underrun with maximum tx threshold, txcfg %#08x.\n",
2434 					dev->name, np->tx_config);
2435 		}
2436 		writel(np->tx_config, ioaddr + TxConfig);
2437 	}
2438 	if (intr_status & WOLPkt && netif_msg_wol(np)) {
2439 		int wol_status = readl(ioaddr + WOLCmd);
2440 		printk(KERN_NOTICE "%s: Link wake-up event %#08x\n",
2441 			dev->name, wol_status);
2442 	}
2443 	if (intr_status & RxStatusFIFOOver) {
2444 		if (netif_msg_rx_err(np) && netif_msg_intr(np)) {
2445 			printk(KERN_NOTICE "%s: Rx status FIFO overrun\n",
2446 				dev->name);
2447 		}
2448 		dev->stats.rx_fifo_errors++;
2449 		dev->stats.rx_errors++;
2450 	}
2451 	/* Hmmmmm, it's not clear how to recover from PCI faults. */
2452 	if (intr_status & IntrPCIErr) {
2453 		printk(KERN_NOTICE "%s: PCI error %#08x\n", dev->name,
2454 			intr_status & IntrPCIErr);
2455 		dev->stats.tx_fifo_errors++;
2456 		dev->stats.tx_errors++;
2457 		dev->stats.rx_fifo_errors++;
2458 		dev->stats.rx_errors++;
2459 	}
2460 	spin_unlock(&np->lock);
2461 }
2462 
2463 static void __get_stats(struct net_device *dev)
2464 {
2465 	void __iomem * ioaddr = ns_ioaddr(dev);
2466 
2467 	/* The chip only need report frame silently dropped. */
2468 	dev->stats.rx_crc_errors += readl(ioaddr + RxCRCErrs);
2469 	dev->stats.rx_missed_errors += readl(ioaddr + RxMissed);
2470 }
2471 
2472 static struct net_device_stats *get_stats(struct net_device *dev)
2473 {
2474 	struct netdev_private *np = netdev_priv(dev);
2475 
2476 	/* The chip only need report frame silently dropped. */
2477 	spin_lock_irq(&np->lock);
2478 	if (netif_running(dev) && !np->hands_off)
2479 		__get_stats(dev);
2480 	spin_unlock_irq(&np->lock);
2481 
2482 	return &dev->stats;
2483 }
2484 
2485 #ifdef CONFIG_NET_POLL_CONTROLLER
2486 static void natsemi_poll_controller(struct net_device *dev)
2487 {
2488 	struct netdev_private *np = netdev_priv(dev);
2489 	const int irq = np->pci_dev->irq;
2490 
2491 	disable_irq(irq);
2492 	intr_handler(irq, dev);
2493 	enable_irq(irq);
2494 }
2495 #endif
2496 
2497 #define HASH_TABLE	0x200
2498 static void __set_rx_mode(struct net_device *dev)
2499 {
2500 	void __iomem * ioaddr = ns_ioaddr(dev);
2501 	struct netdev_private *np = netdev_priv(dev);
2502 	u8 mc_filter[64]; /* Multicast hash filter */
2503 	u32 rx_mode;
2504 
2505 	if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */
2506 		rx_mode = RxFilterEnable | AcceptBroadcast
2507 			| AcceptAllMulticast | AcceptAllPhys | AcceptMyPhys;
2508 	} else if ((netdev_mc_count(dev) > multicast_filter_limit) ||
2509 		   (dev->flags & IFF_ALLMULTI)) {
2510 		rx_mode = RxFilterEnable | AcceptBroadcast
2511 			| AcceptAllMulticast | AcceptMyPhys;
2512 	} else {
2513 		struct netdev_hw_addr *ha;
2514 		int i;
2515 
2516 		memset(mc_filter, 0, sizeof(mc_filter));
2517 		netdev_for_each_mc_addr(ha, dev) {
2518 			int b = (ether_crc(ETH_ALEN, ha->addr) >> 23) & 0x1ff;
2519 			mc_filter[b/8] |= (1 << (b & 0x07));
2520 		}
2521 		rx_mode = RxFilterEnable | AcceptBroadcast
2522 			| AcceptMulticast | AcceptMyPhys;
2523 		for (i = 0; i < 64; i += 2) {
2524 			writel(HASH_TABLE + i, ioaddr + RxFilterAddr);
2525 			writel((mc_filter[i + 1] << 8) + mc_filter[i],
2526 			       ioaddr + RxFilterData);
2527 		}
2528 	}
2529 	writel(rx_mode, ioaddr + RxFilterAddr);
2530 	np->cur_rx_mode = rx_mode;
2531 }
2532 
2533 static int natsemi_change_mtu(struct net_device *dev, int new_mtu)
2534 {
2535 	dev->mtu = new_mtu;
2536 
2537 	/* synchronized against open : rtnl_lock() held by caller */
2538 	if (netif_running(dev)) {
2539 		struct netdev_private *np = netdev_priv(dev);
2540 		void __iomem * ioaddr = ns_ioaddr(dev);
2541 		const int irq = np->pci_dev->irq;
2542 
2543 		disable_irq(irq);
2544 		spin_lock(&np->lock);
2545 		/* stop engines */
2546 		natsemi_stop_rxtx(dev);
2547 		/* drain rx queue */
2548 		drain_rx(dev);
2549 		/* change buffers */
2550 		set_bufsize(dev);
2551 		reinit_rx(dev);
2552 		writel(np->ring_dma, ioaddr + RxRingPtr);
2553 		/* restart engines */
2554 		writel(RxOn | TxOn, ioaddr + ChipCmd);
2555 		spin_unlock(&np->lock);
2556 		enable_irq(irq);
2557 	}
2558 	return 0;
2559 }
2560 
2561 static void set_rx_mode(struct net_device *dev)
2562 {
2563 	struct netdev_private *np = netdev_priv(dev);
2564 	spin_lock_irq(&np->lock);
2565 	if (!np->hands_off)
2566 		__set_rx_mode(dev);
2567 	spin_unlock_irq(&np->lock);
2568 }
2569 
2570 static void get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
2571 {
2572 	struct netdev_private *np = netdev_priv(dev);
2573 	strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
2574 	strlcpy(info->version, DRV_VERSION, sizeof(info->version));
2575 	strlcpy(info->bus_info, pci_name(np->pci_dev), sizeof(info->bus_info));
2576 }
2577 
2578 static int get_regs_len(struct net_device *dev)
2579 {
2580 	return NATSEMI_REGS_SIZE;
2581 }
2582 
2583 static int get_eeprom_len(struct net_device *dev)
2584 {
2585 	struct netdev_private *np = netdev_priv(dev);
2586 	return np->eeprom_size;
2587 }
2588 
2589 static int get_link_ksettings(struct net_device *dev,
2590 			      struct ethtool_link_ksettings *ecmd)
2591 {
2592 	struct netdev_private *np = netdev_priv(dev);
2593 	spin_lock_irq(&np->lock);
2594 	netdev_get_ecmd(dev, ecmd);
2595 	spin_unlock_irq(&np->lock);
2596 	return 0;
2597 }
2598 
2599 static int set_link_ksettings(struct net_device *dev,
2600 			      const struct ethtool_link_ksettings *ecmd)
2601 {
2602 	struct netdev_private *np = netdev_priv(dev);
2603 	int res;
2604 	spin_lock_irq(&np->lock);
2605 	res = netdev_set_ecmd(dev, ecmd);
2606 	spin_unlock_irq(&np->lock);
2607 	return res;
2608 }
2609 
2610 static void get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2611 {
2612 	struct netdev_private *np = netdev_priv(dev);
2613 	spin_lock_irq(&np->lock);
2614 	netdev_get_wol(dev, &wol->supported, &wol->wolopts);
2615 	netdev_get_sopass(dev, wol->sopass);
2616 	spin_unlock_irq(&np->lock);
2617 }
2618 
2619 static int set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2620 {
2621 	struct netdev_private *np = netdev_priv(dev);
2622 	int res;
2623 	spin_lock_irq(&np->lock);
2624 	netdev_set_wol(dev, wol->wolopts);
2625 	res = netdev_set_sopass(dev, wol->sopass);
2626 	spin_unlock_irq(&np->lock);
2627 	return res;
2628 }
2629 
2630 static void get_regs(struct net_device *dev, struct ethtool_regs *regs, void *buf)
2631 {
2632 	struct netdev_private *np = netdev_priv(dev);
2633 	regs->version = NATSEMI_REGS_VER;
2634 	spin_lock_irq(&np->lock);
2635 	netdev_get_regs(dev, buf);
2636 	spin_unlock_irq(&np->lock);
2637 }
2638 
2639 static u32 get_msglevel(struct net_device *dev)
2640 {
2641 	struct netdev_private *np = netdev_priv(dev);
2642 	return np->msg_enable;
2643 }
2644 
2645 static void set_msglevel(struct net_device *dev, u32 val)
2646 {
2647 	struct netdev_private *np = netdev_priv(dev);
2648 	np->msg_enable = val;
2649 }
2650 
2651 static int nway_reset(struct net_device *dev)
2652 {
2653 	int tmp;
2654 	int r = -EINVAL;
2655 	/* if autoneg is off, it's an error */
2656 	tmp = mdio_read(dev, MII_BMCR);
2657 	if (tmp & BMCR_ANENABLE) {
2658 		tmp |= (BMCR_ANRESTART);
2659 		mdio_write(dev, MII_BMCR, tmp);
2660 		r = 0;
2661 	}
2662 	return r;
2663 }
2664 
2665 static u32 get_link(struct net_device *dev)
2666 {
2667 	/* LSTATUS is latched low until a read - so read twice */
2668 	mdio_read(dev, MII_BMSR);
2669 	return (mdio_read(dev, MII_BMSR)&BMSR_LSTATUS) ? 1:0;
2670 }
2671 
2672 static int get_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom, u8 *data)
2673 {
2674 	struct netdev_private *np = netdev_priv(dev);
2675 	u8 *eebuf;
2676 	int res;
2677 
2678 	eebuf = kmalloc(np->eeprom_size, GFP_KERNEL);
2679 	if (!eebuf)
2680 		return -ENOMEM;
2681 
2682 	eeprom->magic = PCI_VENDOR_ID_NS | (PCI_DEVICE_ID_NS_83815<<16);
2683 	spin_lock_irq(&np->lock);
2684 	res = netdev_get_eeprom(dev, eebuf);
2685 	spin_unlock_irq(&np->lock);
2686 	if (!res)
2687 		memcpy(data, eebuf+eeprom->offset, eeprom->len);
2688 	kfree(eebuf);
2689 	return res;
2690 }
2691 
2692 static const struct ethtool_ops ethtool_ops = {
2693 	.get_drvinfo = get_drvinfo,
2694 	.get_regs_len = get_regs_len,
2695 	.get_eeprom_len = get_eeprom_len,
2696 	.get_wol = get_wol,
2697 	.set_wol = set_wol,
2698 	.get_regs = get_regs,
2699 	.get_msglevel = get_msglevel,
2700 	.set_msglevel = set_msglevel,
2701 	.nway_reset = nway_reset,
2702 	.get_link = get_link,
2703 	.get_eeprom = get_eeprom,
2704 	.get_link_ksettings = get_link_ksettings,
2705 	.set_link_ksettings = set_link_ksettings,
2706 };
2707 
2708 static int netdev_set_wol(struct net_device *dev, u32 newval)
2709 {
2710 	struct netdev_private *np = netdev_priv(dev);
2711 	void __iomem * ioaddr = ns_ioaddr(dev);
2712 	u32 data = readl(ioaddr + WOLCmd) & ~WakeOptsSummary;
2713 
2714 	/* translate to bitmasks this chip understands */
2715 	if (newval & WAKE_PHY)
2716 		data |= WakePhy;
2717 	if (newval & WAKE_UCAST)
2718 		data |= WakeUnicast;
2719 	if (newval & WAKE_MCAST)
2720 		data |= WakeMulticast;
2721 	if (newval & WAKE_BCAST)
2722 		data |= WakeBroadcast;
2723 	if (newval & WAKE_ARP)
2724 		data |= WakeArp;
2725 	if (newval & WAKE_MAGIC)
2726 		data |= WakeMagic;
2727 	if (np->srr >= SRR_DP83815_D) {
2728 		if (newval & WAKE_MAGICSECURE) {
2729 			data |= WakeMagicSecure;
2730 		}
2731 	}
2732 
2733 	writel(data, ioaddr + WOLCmd);
2734 
2735 	return 0;
2736 }
2737 
2738 static int netdev_get_wol(struct net_device *dev, u32 *supported, u32 *cur)
2739 {
2740 	struct netdev_private *np = netdev_priv(dev);
2741 	void __iomem * ioaddr = ns_ioaddr(dev);
2742 	u32 regval = readl(ioaddr + WOLCmd);
2743 
2744 	*supported = (WAKE_PHY | WAKE_UCAST | WAKE_MCAST | WAKE_BCAST
2745 			| WAKE_ARP | WAKE_MAGIC);
2746 
2747 	if (np->srr >= SRR_DP83815_D) {
2748 		/* SOPASS works on revD and higher */
2749 		*supported |= WAKE_MAGICSECURE;
2750 	}
2751 	*cur = 0;
2752 
2753 	/* translate from chip bitmasks */
2754 	if (regval & WakePhy)
2755 		*cur |= WAKE_PHY;
2756 	if (regval & WakeUnicast)
2757 		*cur |= WAKE_UCAST;
2758 	if (regval & WakeMulticast)
2759 		*cur |= WAKE_MCAST;
2760 	if (regval & WakeBroadcast)
2761 		*cur |= WAKE_BCAST;
2762 	if (regval & WakeArp)
2763 		*cur |= WAKE_ARP;
2764 	if (regval & WakeMagic)
2765 		*cur |= WAKE_MAGIC;
2766 	if (regval & WakeMagicSecure) {
2767 		/* this can be on in revC, but it's broken */
2768 		*cur |= WAKE_MAGICSECURE;
2769 	}
2770 
2771 	return 0;
2772 }
2773 
2774 static int netdev_set_sopass(struct net_device *dev, u8 *newval)
2775 {
2776 	struct netdev_private *np = netdev_priv(dev);
2777 	void __iomem * ioaddr = ns_ioaddr(dev);
2778 	u16 *sval = (u16 *)newval;
2779 	u32 addr;
2780 
2781 	if (np->srr < SRR_DP83815_D) {
2782 		return 0;
2783 	}
2784 
2785 	/* enable writing to these registers by disabling the RX filter */
2786 	addr = readl(ioaddr + RxFilterAddr) & ~RFCRAddressMask;
2787 	addr &= ~RxFilterEnable;
2788 	writel(addr, ioaddr + RxFilterAddr);
2789 
2790 	/* write the three words to (undocumented) RFCR vals 0xa, 0xc, 0xe */
2791 	writel(addr | 0xa, ioaddr + RxFilterAddr);
2792 	writew(sval[0], ioaddr + RxFilterData);
2793 
2794 	writel(addr | 0xc, ioaddr + RxFilterAddr);
2795 	writew(sval[1], ioaddr + RxFilterData);
2796 
2797 	writel(addr | 0xe, ioaddr + RxFilterAddr);
2798 	writew(sval[2], ioaddr + RxFilterData);
2799 
2800 	/* re-enable the RX filter */
2801 	writel(addr | RxFilterEnable, ioaddr + RxFilterAddr);
2802 
2803 	return 0;
2804 }
2805 
2806 static int netdev_get_sopass(struct net_device *dev, u8 *data)
2807 {
2808 	struct netdev_private *np = netdev_priv(dev);
2809 	void __iomem * ioaddr = ns_ioaddr(dev);
2810 	u16 *sval = (u16 *)data;
2811 	u32 addr;
2812 
2813 	if (np->srr < SRR_DP83815_D) {
2814 		sval[0] = sval[1] = sval[2] = 0;
2815 		return 0;
2816 	}
2817 
2818 	/* read the three words from (undocumented) RFCR vals 0xa, 0xc, 0xe */
2819 	addr = readl(ioaddr + RxFilterAddr) & ~RFCRAddressMask;
2820 
2821 	writel(addr | 0xa, ioaddr + RxFilterAddr);
2822 	sval[0] = readw(ioaddr + RxFilterData);
2823 
2824 	writel(addr | 0xc, ioaddr + RxFilterAddr);
2825 	sval[1] = readw(ioaddr + RxFilterData);
2826 
2827 	writel(addr | 0xe, ioaddr + RxFilterAddr);
2828 	sval[2] = readw(ioaddr + RxFilterData);
2829 
2830 	writel(addr, ioaddr + RxFilterAddr);
2831 
2832 	return 0;
2833 }
2834 
2835 static int netdev_get_ecmd(struct net_device *dev,
2836 			   struct ethtool_link_ksettings *ecmd)
2837 {
2838 	struct netdev_private *np = netdev_priv(dev);
2839 	u32 supported, advertising;
2840 	u32 tmp;
2841 
2842 	ecmd->base.port   = dev->if_port;
2843 	ecmd->base.speed  = np->speed;
2844 	ecmd->base.duplex = np->duplex;
2845 	ecmd->base.autoneg = np->autoneg;
2846 	advertising = 0;
2847 
2848 	if (np->advertising & ADVERTISE_10HALF)
2849 		advertising |= ADVERTISED_10baseT_Half;
2850 	if (np->advertising & ADVERTISE_10FULL)
2851 		advertising |= ADVERTISED_10baseT_Full;
2852 	if (np->advertising & ADVERTISE_100HALF)
2853 		advertising |= ADVERTISED_100baseT_Half;
2854 	if (np->advertising & ADVERTISE_100FULL)
2855 		advertising |= ADVERTISED_100baseT_Full;
2856 	supported   = (SUPPORTED_Autoneg |
2857 		SUPPORTED_10baseT_Half  | SUPPORTED_10baseT_Full  |
2858 		SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full |
2859 		SUPPORTED_TP | SUPPORTED_MII | SUPPORTED_FIBRE);
2860 	ecmd->base.phy_address = np->phy_addr_external;
2861 	/*
2862 	 * We intentionally report the phy address of the external
2863 	 * phy, even if the internal phy is used. This is necessary
2864 	 * to work around a deficiency of the ethtool interface:
2865 	 * It's only possible to query the settings of the active
2866 	 * port. Therefore
2867 	 * # ethtool -s ethX port mii
2868 	 * actually sends an ioctl to switch to port mii with the
2869 	 * settings that are used for the current active port.
2870 	 * If we would report a different phy address in this
2871 	 * command, then
2872 	 * # ethtool -s ethX port tp;ethtool -s ethX port mii
2873 	 * would unintentionally change the phy address.
2874 	 *
2875 	 * Fortunately the phy address doesn't matter with the
2876 	 * internal phy...
2877 	 */
2878 
2879 	/* set information based on active port type */
2880 	switch (ecmd->base.port) {
2881 	default:
2882 	case PORT_TP:
2883 		advertising |= ADVERTISED_TP;
2884 		break;
2885 	case PORT_MII:
2886 		advertising |= ADVERTISED_MII;
2887 		break;
2888 	case PORT_FIBRE:
2889 		advertising |= ADVERTISED_FIBRE;
2890 		break;
2891 	}
2892 
2893 	/* if autonegotiation is on, try to return the active speed/duplex */
2894 	if (ecmd->base.autoneg == AUTONEG_ENABLE) {
2895 		advertising |= ADVERTISED_Autoneg;
2896 		tmp = mii_nway_result(
2897 			np->advertising & mdio_read(dev, MII_LPA));
2898 		if (tmp == LPA_100FULL || tmp == LPA_100HALF)
2899 			ecmd->base.speed = SPEED_100;
2900 		else
2901 			ecmd->base.speed = SPEED_10;
2902 		if (tmp == LPA_100FULL || tmp == LPA_10FULL)
2903 			ecmd->base.duplex = DUPLEX_FULL;
2904 		else
2905 			ecmd->base.duplex = DUPLEX_HALF;
2906 	}
2907 
2908 	/* ignore maxtxpkt, maxrxpkt for now */
2909 
2910 	ethtool_convert_legacy_u32_to_link_mode(ecmd->link_modes.supported,
2911 						supported);
2912 	ethtool_convert_legacy_u32_to_link_mode(ecmd->link_modes.advertising,
2913 						advertising);
2914 
2915 	return 0;
2916 }
2917 
2918 static int netdev_set_ecmd(struct net_device *dev,
2919 			   const struct ethtool_link_ksettings *ecmd)
2920 {
2921 	struct netdev_private *np = netdev_priv(dev);
2922 	u32 advertising;
2923 
2924 	ethtool_convert_link_mode_to_legacy_u32(&advertising,
2925 						ecmd->link_modes.advertising);
2926 
2927 	if (ecmd->base.port != PORT_TP &&
2928 	    ecmd->base.port != PORT_MII &&
2929 	    ecmd->base.port != PORT_FIBRE)
2930 		return -EINVAL;
2931 	if (ecmd->base.autoneg == AUTONEG_ENABLE) {
2932 		if ((advertising & (ADVERTISED_10baseT_Half |
2933 					  ADVERTISED_10baseT_Full |
2934 					  ADVERTISED_100baseT_Half |
2935 					  ADVERTISED_100baseT_Full)) == 0) {
2936 			return -EINVAL;
2937 		}
2938 	} else if (ecmd->base.autoneg == AUTONEG_DISABLE) {
2939 		u32 speed = ecmd->base.speed;
2940 		if (speed != SPEED_10 && speed != SPEED_100)
2941 			return -EINVAL;
2942 		if (ecmd->base.duplex != DUPLEX_HALF &&
2943 		    ecmd->base.duplex != DUPLEX_FULL)
2944 			return -EINVAL;
2945 	} else {
2946 		return -EINVAL;
2947 	}
2948 
2949 	/*
2950 	 * If we're ignoring the PHY then autoneg and the internal
2951 	 * transceiver are really not going to work so don't let the
2952 	 * user select them.
2953 	 */
2954 	if (np->ignore_phy && (ecmd->base.autoneg == AUTONEG_ENABLE ||
2955 			       ecmd->base.port == PORT_TP))
2956 		return -EINVAL;
2957 
2958 	/*
2959 	 * maxtxpkt, maxrxpkt: ignored for now.
2960 	 *
2961 	 * transceiver:
2962 	 * PORT_TP is always XCVR_INTERNAL, PORT_MII and PORT_FIBRE are always
2963 	 * XCVR_EXTERNAL. The implementation thus ignores ecmd->transceiver and
2964 	 * selects based on ecmd->port.
2965 	 *
2966 	 * Actually PORT_FIBRE is nearly identical to PORT_MII: it's for fibre
2967 	 * phys that are connected to the mii bus. It's used to apply fibre
2968 	 * specific updates.
2969 	 */
2970 
2971 	/* WHEW! now lets bang some bits */
2972 
2973 	/* save the parms */
2974 	dev->if_port          = ecmd->base.port;
2975 	np->autoneg           = ecmd->base.autoneg;
2976 	np->phy_addr_external = ecmd->base.phy_address & PhyAddrMask;
2977 	if (np->autoneg == AUTONEG_ENABLE) {
2978 		/* advertise only what has been requested */
2979 		np->advertising &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4);
2980 		if (advertising & ADVERTISED_10baseT_Half)
2981 			np->advertising |= ADVERTISE_10HALF;
2982 		if (advertising & ADVERTISED_10baseT_Full)
2983 			np->advertising |= ADVERTISE_10FULL;
2984 		if (advertising & ADVERTISED_100baseT_Half)
2985 			np->advertising |= ADVERTISE_100HALF;
2986 		if (advertising & ADVERTISED_100baseT_Full)
2987 			np->advertising |= ADVERTISE_100FULL;
2988 	} else {
2989 		np->speed  = ecmd->base.speed;
2990 		np->duplex = ecmd->base.duplex;
2991 		/* user overriding the initial full duplex parm? */
2992 		if (np->duplex == DUPLEX_HALF)
2993 			np->full_duplex = 0;
2994 	}
2995 
2996 	/* get the right phy enabled */
2997 	if (ecmd->base.port == PORT_TP)
2998 		switch_port_internal(dev);
2999 	else
3000 		switch_port_external(dev);
3001 
3002 	/* set parms and see how this affected our link status */
3003 	init_phy_fixup(dev);
3004 	check_link(dev);
3005 	return 0;
3006 }
3007 
3008 static int netdev_get_regs(struct net_device *dev, u8 *buf)
3009 {
3010 	int i;
3011 	int j;
3012 	u32 rfcr;
3013 	u32 *rbuf = (u32 *)buf;
3014 	void __iomem * ioaddr = ns_ioaddr(dev);
3015 
3016 	/* read non-mii page 0 of registers */
3017 	for (i = 0; i < NATSEMI_PG0_NREGS/2; i++) {
3018 		rbuf[i] = readl(ioaddr + i*4);
3019 	}
3020 
3021 	/* read current mii registers */
3022 	for (i = NATSEMI_PG0_NREGS/2; i < NATSEMI_PG0_NREGS; i++)
3023 		rbuf[i] = mdio_read(dev, i & 0x1f);
3024 
3025 	/* read only the 'magic' registers from page 1 */
3026 	writew(1, ioaddr + PGSEL);
3027 	rbuf[i++] = readw(ioaddr + PMDCSR);
3028 	rbuf[i++] = readw(ioaddr + TSTDAT);
3029 	rbuf[i++] = readw(ioaddr + DSPCFG);
3030 	rbuf[i++] = readw(ioaddr + SDCFG);
3031 	writew(0, ioaddr + PGSEL);
3032 
3033 	/* read RFCR indexed registers */
3034 	rfcr = readl(ioaddr + RxFilterAddr);
3035 	for (j = 0; j < NATSEMI_RFDR_NREGS; j++) {
3036 		writel(j*2, ioaddr + RxFilterAddr);
3037 		rbuf[i++] = readw(ioaddr + RxFilterData);
3038 	}
3039 	writel(rfcr, ioaddr + RxFilterAddr);
3040 
3041 	/* the interrupt status is clear-on-read - see if we missed any */
3042 	if (rbuf[4] & rbuf[5]) {
3043 		printk(KERN_WARNING
3044 			"%s: shoot, we dropped an interrupt (%#08x)\n",
3045 			dev->name, rbuf[4] & rbuf[5]);
3046 	}
3047 
3048 	return 0;
3049 }
3050 
3051 #define SWAP_BITS(x)	( (((x) & 0x0001) << 15) | (((x) & 0x0002) << 13) \
3052 			| (((x) & 0x0004) << 11) | (((x) & 0x0008) << 9)  \
3053 			| (((x) & 0x0010) << 7)  | (((x) & 0x0020) << 5)  \
3054 			| (((x) & 0x0040) << 3)  | (((x) & 0x0080) << 1)  \
3055 			| (((x) & 0x0100) >> 1)  | (((x) & 0x0200) >> 3)  \
3056 			| (((x) & 0x0400) >> 5)  | (((x) & 0x0800) >> 7)  \
3057 			| (((x) & 0x1000) >> 9)  | (((x) & 0x2000) >> 11) \
3058 			| (((x) & 0x4000) >> 13) | (((x) & 0x8000) >> 15) )
3059 
3060 static int netdev_get_eeprom(struct net_device *dev, u8 *buf)
3061 {
3062 	int i;
3063 	u16 *ebuf = (u16 *)buf;
3064 	void __iomem * ioaddr = ns_ioaddr(dev);
3065 	struct netdev_private *np = netdev_priv(dev);
3066 
3067 	/* eeprom_read reads 16 bits, and indexes by 16 bits */
3068 	for (i = 0; i < np->eeprom_size/2; i++) {
3069 		ebuf[i] = eeprom_read(ioaddr, i);
3070 		/* The EEPROM itself stores data bit-swapped, but eeprom_read
3071 		 * reads it back "sanely". So we swap it back here in order to
3072 		 * present it to userland as it is stored. */
3073 		ebuf[i] = SWAP_BITS(ebuf[i]);
3074 	}
3075 	return 0;
3076 }
3077 
3078 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
3079 {
3080 	struct mii_ioctl_data *data = if_mii(rq);
3081 	struct netdev_private *np = netdev_priv(dev);
3082 
3083 	switch(cmd) {
3084 	case SIOCGMIIPHY:		/* Get address of MII PHY in use. */
3085 		data->phy_id = np->phy_addr_external;
3086 		/* Fall Through */
3087 
3088 	case SIOCGMIIREG:		/* Read MII PHY register. */
3089 		/* The phy_id is not enough to uniquely identify
3090 		 * the intended target. Therefore the command is sent to
3091 		 * the given mii on the current port.
3092 		 */
3093 		if (dev->if_port == PORT_TP) {
3094 			if ((data->phy_id & 0x1f) == np->phy_addr_external)
3095 				data->val_out = mdio_read(dev,
3096 							data->reg_num & 0x1f);
3097 			else
3098 				data->val_out = 0;
3099 		} else {
3100 			move_int_phy(dev, data->phy_id & 0x1f);
3101 			data->val_out = miiport_read(dev, data->phy_id & 0x1f,
3102 							data->reg_num & 0x1f);
3103 		}
3104 		return 0;
3105 
3106 	case SIOCSMIIREG:		/* Write MII PHY register. */
3107 		if (dev->if_port == PORT_TP) {
3108 			if ((data->phy_id & 0x1f) == np->phy_addr_external) {
3109  				if ((data->reg_num & 0x1f) == MII_ADVERTISE)
3110 					np->advertising = data->val_in;
3111 				mdio_write(dev, data->reg_num & 0x1f,
3112 							data->val_in);
3113 			}
3114 		} else {
3115 			if ((data->phy_id & 0x1f) == np->phy_addr_external) {
3116  				if ((data->reg_num & 0x1f) == MII_ADVERTISE)
3117 					np->advertising = data->val_in;
3118 			}
3119 			move_int_phy(dev, data->phy_id & 0x1f);
3120 			miiport_write(dev, data->phy_id & 0x1f,
3121 						data->reg_num & 0x1f,
3122 						data->val_in);
3123 		}
3124 		return 0;
3125 	default:
3126 		return -EOPNOTSUPP;
3127 	}
3128 }
3129 
3130 static void enable_wol_mode(struct net_device *dev, int enable_intr)
3131 {
3132 	void __iomem * ioaddr = ns_ioaddr(dev);
3133 	struct netdev_private *np = netdev_priv(dev);
3134 
3135 	if (netif_msg_wol(np))
3136 		printk(KERN_INFO "%s: remaining active for wake-on-lan\n",
3137 			dev->name);
3138 
3139 	/* For WOL we must restart the rx process in silent mode.
3140 	 * Write NULL to the RxRingPtr. Only possible if
3141 	 * rx process is stopped
3142 	 */
3143 	writel(0, ioaddr + RxRingPtr);
3144 
3145 	/* read WoL status to clear */
3146 	readl(ioaddr + WOLCmd);
3147 
3148 	/* PME on, clear status */
3149 	writel(np->SavedClkRun | PMEEnable | PMEStatus, ioaddr + ClkRun);
3150 
3151 	/* and restart the rx process */
3152 	writel(RxOn, ioaddr + ChipCmd);
3153 
3154 	if (enable_intr) {
3155 		/* enable the WOL interrupt.
3156 		 * Could be used to send a netlink message.
3157 		 */
3158 		writel(WOLPkt | LinkChange, ioaddr + IntrMask);
3159 		natsemi_irq_enable(dev);
3160 	}
3161 }
3162 
3163 static int netdev_close(struct net_device *dev)
3164 {
3165 	void __iomem * ioaddr = ns_ioaddr(dev);
3166 	struct netdev_private *np = netdev_priv(dev);
3167 	const int irq = np->pci_dev->irq;
3168 
3169 	if (netif_msg_ifdown(np))
3170 		printk(KERN_DEBUG
3171 			"%s: Shutting down ethercard, status was %#04x.\n",
3172 			dev->name, (int)readl(ioaddr + ChipCmd));
3173 	if (netif_msg_pktdata(np))
3174 		printk(KERN_DEBUG
3175 			"%s: Queue pointers were Tx %d / %d,  Rx %d / %d.\n",
3176 			dev->name, np->cur_tx, np->dirty_tx,
3177 			np->cur_rx, np->dirty_rx);
3178 
3179 	napi_disable(&np->napi);
3180 
3181 	/*
3182 	 * FIXME: what if someone tries to close a device
3183 	 * that is suspended?
3184 	 * Should we reenable the nic to switch to
3185 	 * the final WOL settings?
3186 	 */
3187 
3188 	del_timer_sync(&np->timer);
3189 	disable_irq(irq);
3190 	spin_lock_irq(&np->lock);
3191 	natsemi_irq_disable(dev);
3192 	np->hands_off = 1;
3193 	spin_unlock_irq(&np->lock);
3194 	enable_irq(irq);
3195 
3196 	free_irq(irq, dev);
3197 
3198 	/* Interrupt disabled, interrupt handler released,
3199 	 * queue stopped, timer deleted, rtnl_lock held
3200 	 * All async codepaths that access the driver are disabled.
3201 	 */
3202 	spin_lock_irq(&np->lock);
3203 	np->hands_off = 0;
3204 	readl(ioaddr + IntrMask);
3205 	readw(ioaddr + MIntrStatus);
3206 
3207 	/* Freeze Stats */
3208 	writel(StatsFreeze, ioaddr + StatsCtrl);
3209 
3210 	/* Stop the chip's Tx and Rx processes. */
3211 	natsemi_stop_rxtx(dev);
3212 
3213 	__get_stats(dev);
3214 	spin_unlock_irq(&np->lock);
3215 
3216 	/* clear the carrier last - an interrupt could reenable it otherwise */
3217 	netif_carrier_off(dev);
3218 	netif_stop_queue(dev);
3219 
3220 	dump_ring(dev);
3221 	drain_ring(dev);
3222 	free_ring(dev);
3223 
3224 	{
3225 		u32 wol = readl(ioaddr + WOLCmd) & WakeOptsSummary;
3226 		if (wol) {
3227 			/* restart the NIC in WOL mode.
3228 			 * The nic must be stopped for this.
3229 			 */
3230 			enable_wol_mode(dev, 0);
3231 		} else {
3232 			/* Restore PME enable bit unmolested */
3233 			writel(np->SavedClkRun, ioaddr + ClkRun);
3234 		}
3235 	}
3236 	return 0;
3237 }
3238 
3239 
3240 static void natsemi_remove1(struct pci_dev *pdev)
3241 {
3242 	struct net_device *dev = pci_get_drvdata(pdev);
3243 	void __iomem * ioaddr = ns_ioaddr(dev);
3244 
3245 	NATSEMI_REMOVE_FILE(pdev, dspcfg_workaround);
3246 	unregister_netdev (dev);
3247 	pci_release_regions (pdev);
3248 	iounmap(ioaddr);
3249 	free_netdev (dev);
3250 }
3251 
3252 #ifdef CONFIG_PM
3253 
3254 /*
3255  * The ns83815 chip doesn't have explicit RxStop bits.
3256  * Kicking the Rx or Tx process for a new packet reenables the Rx process
3257  * of the nic, thus this function must be very careful:
3258  *
3259  * suspend/resume synchronization:
3260  * entry points:
3261  *   netdev_open, netdev_close, netdev_ioctl, set_rx_mode, intr_handler,
3262  *   start_tx, ns_tx_timeout
3263  *
3264  * No function accesses the hardware without checking np->hands_off.
3265  *	the check occurs under spin_lock_irq(&np->lock);
3266  * exceptions:
3267  *	* netdev_ioctl: noncritical access.
3268  *	* netdev_open: cannot happen due to the device_detach
3269  *	* netdev_close: doesn't hurt.
3270  *	* netdev_timer: timer stopped by natsemi_suspend.
3271  *	* intr_handler: doesn't acquire the spinlock. suspend calls
3272  *		disable_irq() to enforce synchronization.
3273  *      * natsemi_poll: checks before reenabling interrupts.  suspend
3274  *              sets hands_off, disables interrupts and then waits with
3275  *              napi_disable().
3276  *
3277  * Interrupts must be disabled, otherwise hands_off can cause irq storms.
3278  */
3279 
3280 static int natsemi_suspend (struct pci_dev *pdev, pm_message_t state)
3281 {
3282 	struct net_device *dev = pci_get_drvdata (pdev);
3283 	struct netdev_private *np = netdev_priv(dev);
3284 	void __iomem * ioaddr = ns_ioaddr(dev);
3285 
3286 	rtnl_lock();
3287 	if (netif_running (dev)) {
3288 		const int irq = np->pci_dev->irq;
3289 
3290 		del_timer_sync(&np->timer);
3291 
3292 		disable_irq(irq);
3293 		spin_lock_irq(&np->lock);
3294 
3295 		natsemi_irq_disable(dev);
3296 		np->hands_off = 1;
3297 		natsemi_stop_rxtx(dev);
3298 		netif_stop_queue(dev);
3299 
3300 		spin_unlock_irq(&np->lock);
3301 		enable_irq(irq);
3302 
3303 		napi_disable(&np->napi);
3304 
3305 		/* Update the error counts. */
3306 		__get_stats(dev);
3307 
3308 		/* pci_power_off(pdev, -1); */
3309 		drain_ring(dev);
3310 		{
3311 			u32 wol = readl(ioaddr + WOLCmd) & WakeOptsSummary;
3312 			/* Restore PME enable bit */
3313 			if (wol) {
3314 				/* restart the NIC in WOL mode.
3315 				 * The nic must be stopped for this.
3316 				 * FIXME: use the WOL interrupt
3317 				 */
3318 				enable_wol_mode(dev, 0);
3319 			} else {
3320 				/* Restore PME enable bit unmolested */
3321 				writel(np->SavedClkRun, ioaddr + ClkRun);
3322 			}
3323 		}
3324 	}
3325 	netif_device_detach(dev);
3326 	rtnl_unlock();
3327 	return 0;
3328 }
3329 
3330 
3331 static int natsemi_resume (struct pci_dev *pdev)
3332 {
3333 	struct net_device *dev = pci_get_drvdata (pdev);
3334 	struct netdev_private *np = netdev_priv(dev);
3335 	int ret = 0;
3336 
3337 	rtnl_lock();
3338 	if (netif_device_present(dev))
3339 		goto out;
3340 	if (netif_running(dev)) {
3341 		const int irq = np->pci_dev->irq;
3342 
3343 		BUG_ON(!np->hands_off);
3344 		ret = pci_enable_device(pdev);
3345 		if (ret < 0) {
3346 			dev_err(&pdev->dev,
3347 				"pci_enable_device() failed: %d\n", ret);
3348 			goto out;
3349 		}
3350 	/*	pci_power_on(pdev); */
3351 
3352 		napi_enable(&np->napi);
3353 
3354 		natsemi_reset(dev);
3355 		init_ring(dev);
3356 		disable_irq(irq);
3357 		spin_lock_irq(&np->lock);
3358 		np->hands_off = 0;
3359 		init_registers(dev);
3360 		netif_device_attach(dev);
3361 		spin_unlock_irq(&np->lock);
3362 		enable_irq(irq);
3363 
3364 		mod_timer(&np->timer, round_jiffies(jiffies + 1*HZ));
3365 	}
3366 	netif_device_attach(dev);
3367 out:
3368 	rtnl_unlock();
3369 	return ret;
3370 }
3371 
3372 #endif /* CONFIG_PM */
3373 
3374 static struct pci_driver natsemi_driver = {
3375 	.name		= DRV_NAME,
3376 	.id_table	= natsemi_pci_tbl,
3377 	.probe		= natsemi_probe1,
3378 	.remove		= natsemi_remove1,
3379 #ifdef CONFIG_PM
3380 	.suspend	= natsemi_suspend,
3381 	.resume		= natsemi_resume,
3382 #endif
3383 };
3384 
3385 static int __init natsemi_init_mod (void)
3386 {
3387 /* when a module, this is printed whether or not devices are found in probe */
3388 #ifdef MODULE
3389 	printk(version);
3390 #endif
3391 
3392 	return pci_register_driver(&natsemi_driver);
3393 }
3394 
3395 static void __exit natsemi_exit_mod (void)
3396 {
3397 	pci_unregister_driver (&natsemi_driver);
3398 }
3399 
3400 module_init(natsemi_init_mod);
3401 module_exit(natsemi_exit_mod);
3402 
3403