xref: /openbmc/linux/drivers/net/ethernet/microchip/sparx5/sparx5_ptp.c (revision 2584e54502e1c77ce143d5874520f36240395e6f)
1 // SPDX-License-Identifier: GPL-2.0+
2 /* Microchip Sparx5 Switch driver
3  *
4  * Copyright (c) 2021 Microchip Technology Inc. and its subsidiaries.
5  *
6  * The Sparx5 Chip Register Model can be browsed at this location:
7  * https://github.com/microchip-ung/sparx-5_reginfo
8  */
9 #include <linux/ptp_classify.h>
10 
11 #include "sparx5_main_regs.h"
12 #include "sparx5_main.h"
13 
14 #define SPARX5_MAX_PTP_ID	512
15 
16 #define TOD_ACC_PIN		0x4
17 
18 enum {
19 	PTP_PIN_ACTION_IDLE = 0,
20 	PTP_PIN_ACTION_LOAD,
21 	PTP_PIN_ACTION_SAVE,
22 	PTP_PIN_ACTION_CLOCK,
23 	PTP_PIN_ACTION_DELTA,
24 	PTP_PIN_ACTION_TOD
25 };
26 
27 static u64 sparx5_ptp_get_1ppm(struct sparx5 *sparx5)
28 {
29 	/* Represents 1ppm adjustment in 2^59 format with 1.59687500000(625)
30 	 * 1.99609375000(500), 3.99218750000(250) as reference
31 	 * The value is calculated as following:
32 	 * (1/1000000)/((2^-59)/X)
33 	 */
34 
35 	u64 res = 0;
36 
37 	switch (sparx5->coreclock) {
38 	case SPX5_CORE_CLOCK_250MHZ:
39 		res = 2301339409586;
40 		break;
41 	case SPX5_CORE_CLOCK_500MHZ:
42 		res = 1150669704793;
43 		break;
44 	case SPX5_CORE_CLOCK_625MHZ:
45 		res =  920535763834;
46 		break;
47 	default:
48 		WARN(1, "Invalid core clock");
49 		break;
50 	}
51 
52 	return res;
53 }
54 
55 static u64 sparx5_ptp_get_nominal_value(struct sparx5 *sparx5)
56 {
57 	u64 res = 0;
58 
59 	switch (sparx5->coreclock) {
60 	case SPX5_CORE_CLOCK_250MHZ:
61 		res = 0x1FF0000000000000;
62 		break;
63 	case SPX5_CORE_CLOCK_500MHZ:
64 		res = 0x0FF8000000000000;
65 		break;
66 	case SPX5_CORE_CLOCK_625MHZ:
67 		res = 0x0CC6666666666666;
68 		break;
69 	default:
70 		WARN(1, "Invalid core clock");
71 		break;
72 	}
73 
74 	return res;
75 }
76 
77 int sparx5_ptp_hwtstamp_set(struct sparx5_port *port,
78 			    struct kernel_hwtstamp_config *cfg,
79 			    struct netlink_ext_ack *extack)
80 {
81 	struct sparx5 *sparx5 = port->sparx5;
82 	struct sparx5_phc *phc;
83 
84 	/* For now don't allow to run ptp on ports that are part of a bridge,
85 	 * because in case of transparent clock the HW will still forward the
86 	 * frames, so there would be duplicate frames
87 	 */
88 
89 	if (test_bit(port->portno, sparx5->bridge_mask))
90 		return -EINVAL;
91 
92 	switch (cfg->tx_type) {
93 	case HWTSTAMP_TX_ON:
94 		port->ptp_cmd = IFH_REW_OP_TWO_STEP_PTP;
95 		break;
96 	case HWTSTAMP_TX_ONESTEP_SYNC:
97 		port->ptp_cmd = IFH_REW_OP_ONE_STEP_PTP;
98 		break;
99 	case HWTSTAMP_TX_OFF:
100 		port->ptp_cmd = IFH_REW_OP_NOOP;
101 		break;
102 	default:
103 		return -ERANGE;
104 	}
105 
106 	switch (cfg->rx_filter) {
107 	case HWTSTAMP_FILTER_NONE:
108 		break;
109 	case HWTSTAMP_FILTER_ALL:
110 	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
111 	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
112 	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
113 	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
114 	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
115 	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
116 	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
117 	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
118 	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
119 	case HWTSTAMP_FILTER_PTP_V2_EVENT:
120 	case HWTSTAMP_FILTER_PTP_V2_SYNC:
121 	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
122 	case HWTSTAMP_FILTER_NTP_ALL:
123 		cfg->rx_filter = HWTSTAMP_FILTER_ALL;
124 		break;
125 	default:
126 		return -ERANGE;
127 	}
128 
129 	/* Commit back the result & save it */
130 	mutex_lock(&sparx5->ptp_lock);
131 	phc = &sparx5->phc[SPARX5_PHC_PORT];
132 	phc->hwtstamp_config = *cfg;
133 	mutex_unlock(&sparx5->ptp_lock);
134 
135 	return 0;
136 }
137 
138 void sparx5_ptp_hwtstamp_get(struct sparx5_port *port,
139 			     struct kernel_hwtstamp_config *cfg)
140 {
141 	struct sparx5 *sparx5 = port->sparx5;
142 	struct sparx5_phc *phc;
143 
144 	phc = &sparx5->phc[SPARX5_PHC_PORT];
145 	*cfg = phc->hwtstamp_config;
146 }
147 
148 static void sparx5_ptp_classify(struct sparx5_port *port, struct sk_buff *skb,
149 				u8 *rew_op, u8 *pdu_type, u8 *pdu_w16_offset)
150 {
151 	struct ptp_header *header;
152 	u8 msgtype;
153 	int type;
154 
155 	if (port->ptp_cmd == IFH_REW_OP_NOOP) {
156 		*rew_op = IFH_REW_OP_NOOP;
157 		*pdu_type = IFH_PDU_TYPE_NONE;
158 		*pdu_w16_offset = 0;
159 		return;
160 	}
161 
162 	type = ptp_classify_raw(skb);
163 	if (type == PTP_CLASS_NONE) {
164 		*rew_op = IFH_REW_OP_NOOP;
165 		*pdu_type = IFH_PDU_TYPE_NONE;
166 		*pdu_w16_offset = 0;
167 		return;
168 	}
169 
170 	header = ptp_parse_header(skb, type);
171 	if (!header) {
172 		*rew_op = IFH_REW_OP_NOOP;
173 		*pdu_type = IFH_PDU_TYPE_NONE;
174 		*pdu_w16_offset = 0;
175 		return;
176 	}
177 
178 	*pdu_w16_offset = 7;
179 	if (type & PTP_CLASS_L2)
180 		*pdu_type = IFH_PDU_TYPE_PTP;
181 	if (type & PTP_CLASS_IPV4)
182 		*pdu_type = IFH_PDU_TYPE_IPV4_UDP_PTP;
183 	if (type & PTP_CLASS_IPV6)
184 		*pdu_type = IFH_PDU_TYPE_IPV6_UDP_PTP;
185 
186 	if (port->ptp_cmd == IFH_REW_OP_TWO_STEP_PTP) {
187 		*rew_op = IFH_REW_OP_TWO_STEP_PTP;
188 		return;
189 	}
190 
191 	/* If it is sync and run 1 step then set the correct operation,
192 	 * otherwise run as 2 step
193 	 */
194 	msgtype = ptp_get_msgtype(header, type);
195 	if ((msgtype & 0xf) == 0) {
196 		*rew_op = IFH_REW_OP_ONE_STEP_PTP;
197 		return;
198 	}
199 
200 	*rew_op = IFH_REW_OP_TWO_STEP_PTP;
201 }
202 
203 static void sparx5_ptp_txtstamp_old_release(struct sparx5_port *port)
204 {
205 	struct sk_buff *skb, *skb_tmp;
206 	unsigned long flags;
207 
208 	spin_lock_irqsave(&port->tx_skbs.lock, flags);
209 	skb_queue_walk_safe(&port->tx_skbs, skb, skb_tmp) {
210 		if time_after(SPARX5_SKB_CB(skb)->jiffies + SPARX5_PTP_TIMEOUT,
211 			      jiffies)
212 			break;
213 
214 		__skb_unlink(skb, &port->tx_skbs);
215 		dev_kfree_skb_any(skb);
216 	}
217 	spin_unlock_irqrestore(&port->tx_skbs.lock, flags);
218 }
219 
220 int sparx5_ptp_txtstamp_request(struct sparx5_port *port,
221 				struct sk_buff *skb)
222 {
223 	struct sparx5 *sparx5 = port->sparx5;
224 	u8 rew_op, pdu_type, pdu_w16_offset;
225 	unsigned long flags;
226 
227 	sparx5_ptp_classify(port, skb, &rew_op, &pdu_type, &pdu_w16_offset);
228 	SPARX5_SKB_CB(skb)->rew_op = rew_op;
229 	SPARX5_SKB_CB(skb)->pdu_type = pdu_type;
230 	SPARX5_SKB_CB(skb)->pdu_w16_offset = pdu_w16_offset;
231 
232 	if (rew_op != IFH_REW_OP_TWO_STEP_PTP)
233 		return 0;
234 
235 	sparx5_ptp_txtstamp_old_release(port);
236 
237 	spin_lock_irqsave(&sparx5->ptp_ts_id_lock, flags);
238 	if (sparx5->ptp_skbs == SPARX5_MAX_PTP_ID) {
239 		spin_unlock_irqrestore(&sparx5->ptp_ts_id_lock, flags);
240 		return -EBUSY;
241 	}
242 
243 	skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
244 
245 	skb_queue_tail(&port->tx_skbs, skb);
246 	SPARX5_SKB_CB(skb)->ts_id = port->ts_id;
247 	SPARX5_SKB_CB(skb)->jiffies = jiffies;
248 
249 	sparx5->ptp_skbs++;
250 	port->ts_id++;
251 	if (port->ts_id == SPARX5_MAX_PTP_ID)
252 		port->ts_id = 0;
253 
254 	spin_unlock_irqrestore(&sparx5->ptp_ts_id_lock, flags);
255 
256 	return 0;
257 }
258 
259 void sparx5_ptp_txtstamp_release(struct sparx5_port *port,
260 				 struct sk_buff *skb)
261 {
262 	struct sparx5 *sparx5 = port->sparx5;
263 	unsigned long flags;
264 
265 	spin_lock_irqsave(&sparx5->ptp_ts_id_lock, flags);
266 	port->ts_id--;
267 	sparx5->ptp_skbs--;
268 	skb_unlink(skb, &port->tx_skbs);
269 	spin_unlock_irqrestore(&sparx5->ptp_ts_id_lock, flags);
270 }
271 
272 static void sparx5_get_hwtimestamp(struct sparx5 *sparx5,
273 				   struct timespec64 *ts,
274 				   u32 nsec)
275 {
276 	/* Read current PTP time to get seconds */
277 	unsigned long flags;
278 	u32 curr_nsec;
279 
280 	spin_lock_irqsave(&sparx5->ptp_clock_lock, flags);
281 
282 	spx5_rmw(PTP_PTP_PIN_CFG_PTP_PIN_ACTION_SET(PTP_PIN_ACTION_SAVE) |
283 		 PTP_PTP_PIN_CFG_PTP_PIN_DOM_SET(SPARX5_PHC_PORT) |
284 		 PTP_PTP_PIN_CFG_PTP_PIN_SYNC_SET(0),
285 		 PTP_PTP_PIN_CFG_PTP_PIN_ACTION |
286 		 PTP_PTP_PIN_CFG_PTP_PIN_DOM |
287 		 PTP_PTP_PIN_CFG_PTP_PIN_SYNC,
288 		 sparx5, PTP_PTP_PIN_CFG(TOD_ACC_PIN));
289 
290 	ts->tv_sec = spx5_rd(sparx5, PTP_PTP_TOD_SEC_LSB(TOD_ACC_PIN));
291 	curr_nsec = spx5_rd(sparx5, PTP_PTP_TOD_NSEC(TOD_ACC_PIN));
292 
293 	ts->tv_nsec = nsec;
294 
295 	/* Sec has incremented since the ts was registered */
296 	if (curr_nsec < nsec)
297 		ts->tv_sec--;
298 
299 	spin_unlock_irqrestore(&sparx5->ptp_clock_lock, flags);
300 }
301 
302 irqreturn_t sparx5_ptp_irq_handler(int irq, void *args)
303 {
304 	int budget = SPARX5_MAX_PTP_ID;
305 	struct sparx5 *sparx5 = args;
306 
307 	while (budget--) {
308 		struct sk_buff *skb, *skb_tmp, *skb_match = NULL;
309 		struct skb_shared_hwtstamps shhwtstamps;
310 		struct sparx5_port *port;
311 		struct timespec64 ts;
312 		unsigned long flags;
313 		u32 val, id, txport;
314 		u32 delay;
315 
316 		val = spx5_rd(sparx5, REW_PTP_TWOSTEP_CTRL);
317 
318 		/* Check if a timestamp can be retrieved */
319 		if (!(val & REW_PTP_TWOSTEP_CTRL_PTP_VLD))
320 			break;
321 
322 		WARN_ON(val & REW_PTP_TWOSTEP_CTRL_PTP_OVFL);
323 
324 		if (!(val & REW_PTP_TWOSTEP_CTRL_STAMP_TX))
325 			continue;
326 
327 		/* Retrieve the ts Tx port */
328 		txport = REW_PTP_TWOSTEP_CTRL_STAMP_PORT_GET(val);
329 
330 		/* Retrieve its associated skb */
331 		port = sparx5->ports[txport];
332 
333 		/* Retrieve the delay */
334 		delay = spx5_rd(sparx5, REW_PTP_TWOSTEP_STAMP);
335 		delay = REW_PTP_TWOSTEP_STAMP_STAMP_NSEC_GET(delay);
336 
337 		/* Get next timestamp from fifo, which needs to be the
338 		 * rx timestamp which represents the id of the frame
339 		 */
340 		spx5_rmw(REW_PTP_TWOSTEP_CTRL_PTP_NXT_SET(1),
341 			 REW_PTP_TWOSTEP_CTRL_PTP_NXT,
342 			 sparx5, REW_PTP_TWOSTEP_CTRL);
343 
344 		val = spx5_rd(sparx5, REW_PTP_TWOSTEP_CTRL);
345 
346 		/* Check if a timestamp can be retried */
347 		if (!(val & REW_PTP_TWOSTEP_CTRL_PTP_VLD))
348 			break;
349 
350 		/* Read RX timestamping to get the ID */
351 		id = spx5_rd(sparx5, REW_PTP_TWOSTEP_STAMP);
352 		id <<= 8;
353 		id |= spx5_rd(sparx5, REW_PTP_TWOSTEP_STAMP_SUBNS);
354 
355 		spin_lock_irqsave(&port->tx_skbs.lock, flags);
356 		skb_queue_walk_safe(&port->tx_skbs, skb, skb_tmp) {
357 			if (SPARX5_SKB_CB(skb)->ts_id != id)
358 				continue;
359 
360 			__skb_unlink(skb, &port->tx_skbs);
361 			skb_match = skb;
362 			break;
363 		}
364 		spin_unlock_irqrestore(&port->tx_skbs.lock, flags);
365 
366 		/* Next ts */
367 		spx5_rmw(REW_PTP_TWOSTEP_CTRL_PTP_NXT_SET(1),
368 			 REW_PTP_TWOSTEP_CTRL_PTP_NXT,
369 			 sparx5, REW_PTP_TWOSTEP_CTRL);
370 
371 		if (WARN_ON(!skb_match))
372 			continue;
373 
374 		spin_lock(&sparx5->ptp_ts_id_lock);
375 		sparx5->ptp_skbs--;
376 		spin_unlock(&sparx5->ptp_ts_id_lock);
377 
378 		/* Get the h/w timestamp */
379 		sparx5_get_hwtimestamp(sparx5, &ts, delay);
380 
381 		/* Set the timestamp into the skb */
382 		shhwtstamps.hwtstamp = ktime_set(ts.tv_sec, ts.tv_nsec);
383 		skb_tstamp_tx(skb_match, &shhwtstamps);
384 
385 		dev_kfree_skb_any(skb_match);
386 	}
387 
388 	return IRQ_HANDLED;
389 }
390 
391 static int sparx5_ptp_adjfine(struct ptp_clock_info *ptp, long scaled_ppm)
392 {
393 	struct sparx5_phc *phc = container_of(ptp, struct sparx5_phc, info);
394 	struct sparx5 *sparx5 = phc->sparx5;
395 	unsigned long flags;
396 	bool neg_adj = 0;
397 	u64 tod_inc;
398 	u64 ref;
399 
400 	if (!scaled_ppm)
401 		return 0;
402 
403 	if (scaled_ppm < 0) {
404 		neg_adj = 1;
405 		scaled_ppm = -scaled_ppm;
406 	}
407 
408 	tod_inc = sparx5_ptp_get_nominal_value(sparx5);
409 
410 	/* The multiplication is split in 2 separate additions because of
411 	 * overflow issues. If scaled_ppm with 16bit fractional part was bigger
412 	 * than 20ppm then we got overflow.
413 	 */
414 	ref = sparx5_ptp_get_1ppm(sparx5) * (scaled_ppm >> 16);
415 	ref += (sparx5_ptp_get_1ppm(sparx5) * (0xffff & scaled_ppm)) >> 16;
416 	tod_inc = neg_adj ? tod_inc - ref : tod_inc + ref;
417 
418 	spin_lock_irqsave(&sparx5->ptp_clock_lock, flags);
419 
420 	spx5_rmw(PTP_PTP_DOM_CFG_PTP_CLKCFG_DIS_SET(1 << BIT(phc->index)),
421 		 PTP_PTP_DOM_CFG_PTP_CLKCFG_DIS,
422 		 sparx5, PTP_PTP_DOM_CFG);
423 
424 	spx5_wr((u32)tod_inc & 0xFFFFFFFF, sparx5,
425 		PTP_CLK_PER_CFG(phc->index, 0));
426 	spx5_wr((u32)(tod_inc >> 32), sparx5,
427 		PTP_CLK_PER_CFG(phc->index, 1));
428 
429 	spx5_rmw(PTP_PTP_DOM_CFG_PTP_CLKCFG_DIS_SET(0),
430 		 PTP_PTP_DOM_CFG_PTP_CLKCFG_DIS, sparx5,
431 		 PTP_PTP_DOM_CFG);
432 
433 	spin_unlock_irqrestore(&sparx5->ptp_clock_lock, flags);
434 
435 	return 0;
436 }
437 
438 static int sparx5_ptp_settime64(struct ptp_clock_info *ptp,
439 				const struct timespec64 *ts)
440 {
441 	struct sparx5_phc *phc = container_of(ptp, struct sparx5_phc, info);
442 	struct sparx5 *sparx5 = phc->sparx5;
443 	unsigned long flags;
444 
445 	spin_lock_irqsave(&sparx5->ptp_clock_lock, flags);
446 
447 	/* Must be in IDLE mode before the time can be loaded */
448 	spx5_rmw(PTP_PTP_PIN_CFG_PTP_PIN_ACTION_SET(PTP_PIN_ACTION_IDLE) |
449 		 PTP_PTP_PIN_CFG_PTP_PIN_DOM_SET(phc->index) |
450 		 PTP_PTP_PIN_CFG_PTP_PIN_SYNC_SET(0),
451 		 PTP_PTP_PIN_CFG_PTP_PIN_ACTION |
452 		 PTP_PTP_PIN_CFG_PTP_PIN_DOM |
453 		 PTP_PTP_PIN_CFG_PTP_PIN_SYNC,
454 		 sparx5, PTP_PTP_PIN_CFG(TOD_ACC_PIN));
455 
456 	/* Set new value */
457 	spx5_wr(PTP_PTP_TOD_SEC_MSB_PTP_TOD_SEC_MSB_SET(upper_32_bits(ts->tv_sec)),
458 		sparx5, PTP_PTP_TOD_SEC_MSB(TOD_ACC_PIN));
459 	spx5_wr(lower_32_bits(ts->tv_sec),
460 		sparx5, PTP_PTP_TOD_SEC_LSB(TOD_ACC_PIN));
461 	spx5_wr(ts->tv_nsec, sparx5, PTP_PTP_TOD_NSEC(TOD_ACC_PIN));
462 
463 	/* Apply new values */
464 	spx5_rmw(PTP_PTP_PIN_CFG_PTP_PIN_ACTION_SET(PTP_PIN_ACTION_LOAD) |
465 		 PTP_PTP_PIN_CFG_PTP_PIN_DOM_SET(phc->index) |
466 		 PTP_PTP_PIN_CFG_PTP_PIN_SYNC_SET(0),
467 		 PTP_PTP_PIN_CFG_PTP_PIN_ACTION |
468 		 PTP_PTP_PIN_CFG_PTP_PIN_DOM |
469 		 PTP_PTP_PIN_CFG_PTP_PIN_SYNC,
470 		 sparx5, PTP_PTP_PIN_CFG(TOD_ACC_PIN));
471 
472 	spin_unlock_irqrestore(&sparx5->ptp_clock_lock, flags);
473 
474 	return 0;
475 }
476 
477 int sparx5_ptp_gettime64(struct ptp_clock_info *ptp, struct timespec64 *ts)
478 {
479 	struct sparx5_phc *phc = container_of(ptp, struct sparx5_phc, info);
480 	struct sparx5 *sparx5 = phc->sparx5;
481 	unsigned long flags;
482 	time64_t s;
483 	s64 ns;
484 
485 	spin_lock_irqsave(&sparx5->ptp_clock_lock, flags);
486 
487 	spx5_rmw(PTP_PTP_PIN_CFG_PTP_PIN_ACTION_SET(PTP_PIN_ACTION_SAVE) |
488 		 PTP_PTP_PIN_CFG_PTP_PIN_DOM_SET(phc->index) |
489 		 PTP_PTP_PIN_CFG_PTP_PIN_SYNC_SET(0),
490 		 PTP_PTP_PIN_CFG_PTP_PIN_ACTION |
491 		 PTP_PTP_PIN_CFG_PTP_PIN_DOM |
492 		 PTP_PTP_PIN_CFG_PTP_PIN_SYNC,
493 		 sparx5, PTP_PTP_PIN_CFG(TOD_ACC_PIN));
494 
495 	s = spx5_rd(sparx5, PTP_PTP_TOD_SEC_MSB(TOD_ACC_PIN));
496 	s <<= 32;
497 	s |= spx5_rd(sparx5, PTP_PTP_TOD_SEC_LSB(TOD_ACC_PIN));
498 	ns = spx5_rd(sparx5, PTP_PTP_TOD_NSEC(TOD_ACC_PIN));
499 	ns &= PTP_PTP_TOD_NSEC_PTP_TOD_NSEC;
500 
501 	spin_unlock_irqrestore(&sparx5->ptp_clock_lock, flags);
502 
503 	/* Deal with negative values */
504 	if ((ns & 0xFFFFFFF0) == 0x3FFFFFF0) {
505 		s--;
506 		ns &= 0xf;
507 		ns += 999999984;
508 	}
509 
510 	set_normalized_timespec64(ts, s, ns);
511 	return 0;
512 }
513 
514 static int sparx5_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta)
515 {
516 	struct sparx5_phc *phc = container_of(ptp, struct sparx5_phc, info);
517 	struct sparx5 *sparx5 = phc->sparx5;
518 
519 	if (delta > -(NSEC_PER_SEC / 2) && delta < (NSEC_PER_SEC / 2)) {
520 		unsigned long flags;
521 
522 		spin_lock_irqsave(&sparx5->ptp_clock_lock, flags);
523 
524 		/* Must be in IDLE mode before the time can be loaded */
525 		spx5_rmw(PTP_PTP_PIN_CFG_PTP_PIN_ACTION_SET(PTP_PIN_ACTION_IDLE) |
526 			 PTP_PTP_PIN_CFG_PTP_PIN_DOM_SET(phc->index) |
527 			 PTP_PTP_PIN_CFG_PTP_PIN_SYNC_SET(0),
528 			 PTP_PTP_PIN_CFG_PTP_PIN_ACTION |
529 			 PTP_PTP_PIN_CFG_PTP_PIN_DOM |
530 			 PTP_PTP_PIN_CFG_PTP_PIN_SYNC,
531 			 sparx5, PTP_PTP_PIN_CFG(TOD_ACC_PIN));
532 
533 		spx5_wr(PTP_PTP_TOD_NSEC_PTP_TOD_NSEC_SET(delta),
534 			sparx5, PTP_PTP_TOD_NSEC(TOD_ACC_PIN));
535 
536 		/* Adjust time with the value of PTP_TOD_NSEC */
537 		spx5_rmw(PTP_PTP_PIN_CFG_PTP_PIN_ACTION_SET(PTP_PIN_ACTION_DELTA) |
538 			 PTP_PTP_PIN_CFG_PTP_PIN_DOM_SET(phc->index) |
539 			 PTP_PTP_PIN_CFG_PTP_PIN_SYNC_SET(0),
540 			 PTP_PTP_PIN_CFG_PTP_PIN_ACTION |
541 			 PTP_PTP_PIN_CFG_PTP_PIN_DOM |
542 			 PTP_PTP_PIN_CFG_PTP_PIN_SYNC,
543 			 sparx5, PTP_PTP_PIN_CFG(TOD_ACC_PIN));
544 
545 		spin_unlock_irqrestore(&sparx5->ptp_clock_lock, flags);
546 	} else {
547 		/* Fall back using sparx5_ptp_settime64 which is not exact */
548 		struct timespec64 ts;
549 		u64 now;
550 
551 		sparx5_ptp_gettime64(ptp, &ts);
552 
553 		now = ktime_to_ns(timespec64_to_ktime(ts));
554 		ts = ns_to_timespec64(now + delta);
555 
556 		sparx5_ptp_settime64(ptp, &ts);
557 	}
558 
559 	return 0;
560 }
561 
562 static struct ptp_clock_info sparx5_ptp_clock_info = {
563 	.owner		= THIS_MODULE,
564 	.name		= "sparx5 ptp",
565 	.max_adj	= 200000,
566 	.gettime64	= sparx5_ptp_gettime64,
567 	.settime64	= sparx5_ptp_settime64,
568 	.adjtime	= sparx5_ptp_adjtime,
569 	.adjfine	= sparx5_ptp_adjfine,
570 };
571 
572 static int sparx5_ptp_phc_init(struct sparx5 *sparx5,
573 			       int index,
574 			       struct ptp_clock_info *clock_info)
575 {
576 	struct sparx5_phc *phc = &sparx5->phc[index];
577 
578 	phc->info = *clock_info;
579 	phc->clock = ptp_clock_register(&phc->info, sparx5->dev);
580 	if (IS_ERR(phc->clock))
581 		return PTR_ERR(phc->clock);
582 
583 	phc->index = index;
584 	phc->sparx5 = sparx5;
585 
586 	/* PTP Rx stamping is always enabled.  */
587 	phc->hwtstamp_config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
588 
589 	return 0;
590 }
591 
592 int sparx5_ptp_init(struct sparx5 *sparx5)
593 {
594 	u64 tod_adj = sparx5_ptp_get_nominal_value(sparx5);
595 	struct sparx5_port *port;
596 	int err, i;
597 
598 	if (!sparx5->ptp)
599 		return 0;
600 
601 	for (i = 0; i < SPARX5_PHC_COUNT; ++i) {
602 		err = sparx5_ptp_phc_init(sparx5, i, &sparx5_ptp_clock_info);
603 		if (err)
604 			return err;
605 	}
606 
607 	spin_lock_init(&sparx5->ptp_clock_lock);
608 	spin_lock_init(&sparx5->ptp_ts_id_lock);
609 	mutex_init(&sparx5->ptp_lock);
610 
611 	/* Disable master counters */
612 	spx5_wr(PTP_PTP_DOM_CFG_PTP_ENA_SET(0), sparx5, PTP_PTP_DOM_CFG);
613 
614 	/* Configure the nominal TOD increment per clock cycle */
615 	spx5_rmw(PTP_PTP_DOM_CFG_PTP_CLKCFG_DIS_SET(0x7),
616 		 PTP_PTP_DOM_CFG_PTP_CLKCFG_DIS,
617 		 sparx5, PTP_PTP_DOM_CFG);
618 
619 	for (i = 0; i < SPARX5_PHC_COUNT; ++i) {
620 		spx5_wr((u32)tod_adj & 0xFFFFFFFF, sparx5,
621 			PTP_CLK_PER_CFG(i, 0));
622 		spx5_wr((u32)(tod_adj >> 32), sparx5,
623 			PTP_CLK_PER_CFG(i, 1));
624 	}
625 
626 	spx5_rmw(PTP_PTP_DOM_CFG_PTP_CLKCFG_DIS_SET(0),
627 		 PTP_PTP_DOM_CFG_PTP_CLKCFG_DIS,
628 		 sparx5, PTP_PTP_DOM_CFG);
629 
630 	/* Enable master counters */
631 	spx5_wr(PTP_PTP_DOM_CFG_PTP_ENA_SET(0x7), sparx5, PTP_PTP_DOM_CFG);
632 
633 	for (i = 0; i < SPX5_PORTS; i++) {
634 		port = sparx5->ports[i];
635 		if (!port)
636 			continue;
637 
638 		skb_queue_head_init(&port->tx_skbs);
639 	}
640 
641 	return 0;
642 }
643 
644 void sparx5_ptp_deinit(struct sparx5 *sparx5)
645 {
646 	struct sparx5_port *port;
647 	int i;
648 
649 	for (i = 0; i < SPX5_PORTS; i++) {
650 		port = sparx5->ports[i];
651 		if (!port)
652 			continue;
653 
654 		skb_queue_purge(&port->tx_skbs);
655 	}
656 
657 	for (i = 0; i < SPARX5_PHC_COUNT; ++i)
658 		ptp_clock_unregister(sparx5->phc[i].clock);
659 }
660 
661 void sparx5_ptp_rxtstamp(struct sparx5 *sparx5, struct sk_buff *skb,
662 			 u64 timestamp)
663 {
664 	struct skb_shared_hwtstamps *shhwtstamps;
665 	struct sparx5_phc *phc;
666 	struct timespec64 ts;
667 	u64 full_ts_in_ns;
668 
669 	if (!sparx5->ptp)
670 		return;
671 
672 	phc = &sparx5->phc[SPARX5_PHC_PORT];
673 	sparx5_ptp_gettime64(&phc->info, &ts);
674 
675 	if (ts.tv_nsec < timestamp)
676 		ts.tv_sec--;
677 	ts.tv_nsec = timestamp;
678 	full_ts_in_ns = ktime_set(ts.tv_sec, ts.tv_nsec);
679 
680 	shhwtstamps = skb_hwtstamps(skb);
681 	shhwtstamps->hwtstamp = full_ts_in_ns;
682 }
683