1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Microchip ENC28J60 ethernet driver (MAC + PHY) 4 * 5 * Copyright (C) 2007 Eurek srl 6 * Author: Claudio Lanconelli <lanconelli.claudio@eptar.com> 7 * based on enc28j60.c written by David Anders for 2.4 kernel version 8 * 9 * $Id: enc28j60.c,v 1.22 2007/12/20 10:47:01 claudio Exp $ 10 */ 11 12 #include <linux/module.h> 13 #include <linux/kernel.h> 14 #include <linux/types.h> 15 #include <linux/fcntl.h> 16 #include <linux/interrupt.h> 17 #include <linux/property.h> 18 #include <linux/string.h> 19 #include <linux/errno.h> 20 #include <linux/netdevice.h> 21 #include <linux/etherdevice.h> 22 #include <linux/ethtool.h> 23 #include <linux/tcp.h> 24 #include <linux/skbuff.h> 25 #include <linux/delay.h> 26 #include <linux/spi/spi.h> 27 28 #include "enc28j60_hw.h" 29 30 #define DRV_NAME "enc28j60" 31 #define DRV_VERSION "1.02" 32 33 #define SPI_OPLEN 1 34 35 #define ENC28J60_MSG_DEFAULT \ 36 (NETIF_MSG_PROBE | NETIF_MSG_IFUP | NETIF_MSG_IFDOWN | NETIF_MSG_LINK) 37 38 /* Buffer size required for the largest SPI transfer (i.e., reading a 39 * frame). 40 */ 41 #define SPI_TRANSFER_BUF_LEN (4 + MAX_FRAMELEN) 42 43 #define TX_TIMEOUT (4 * HZ) 44 45 /* Max TX retries in case of collision as suggested by errata datasheet */ 46 #define MAX_TX_RETRYCOUNT 16 47 48 enum { 49 RXFILTER_NORMAL, 50 RXFILTER_MULTI, 51 RXFILTER_PROMISC 52 }; 53 54 /* Driver local data */ 55 struct enc28j60_net { 56 struct net_device *netdev; 57 struct spi_device *spi; 58 struct mutex lock; 59 struct sk_buff *tx_skb; 60 struct work_struct tx_work; 61 struct work_struct irq_work; 62 struct work_struct setrx_work; 63 struct work_struct restart_work; 64 u8 bank; /* current register bank selected */ 65 u16 next_pk_ptr; /* next packet pointer within FIFO */ 66 u16 max_pk_counter; /* statistics: max packet counter */ 67 u16 tx_retry_count; 68 bool hw_enable; 69 bool full_duplex; 70 int rxfilter; 71 u32 msg_enable; 72 u8 spi_transfer_buf[SPI_TRANSFER_BUF_LEN]; 73 }; 74 75 /* use ethtool to change the level for any given device */ 76 static struct { 77 u32 msg_enable; 78 } debug = { -1 }; 79 80 /* 81 * SPI read buffer 82 * Wait for the SPI transfer and copy received data to destination. 83 */ 84 static int 85 spi_read_buf(struct enc28j60_net *priv, int len, u8 *data) 86 { 87 struct device *dev = &priv->spi->dev; 88 u8 *rx_buf = priv->spi_transfer_buf + 4; 89 u8 *tx_buf = priv->spi_transfer_buf; 90 struct spi_transfer tx = { 91 .tx_buf = tx_buf, 92 .len = SPI_OPLEN, 93 }; 94 struct spi_transfer rx = { 95 .rx_buf = rx_buf, 96 .len = len, 97 }; 98 struct spi_message msg; 99 int ret; 100 101 tx_buf[0] = ENC28J60_READ_BUF_MEM; 102 103 spi_message_init(&msg); 104 spi_message_add_tail(&tx, &msg); 105 spi_message_add_tail(&rx, &msg); 106 107 ret = spi_sync(priv->spi, &msg); 108 if (ret == 0) { 109 memcpy(data, rx_buf, len); 110 ret = msg.status; 111 } 112 if (ret && netif_msg_drv(priv)) 113 dev_printk(KERN_DEBUG, dev, "%s() failed: ret = %d\n", 114 __func__, ret); 115 116 return ret; 117 } 118 119 /* 120 * SPI write buffer 121 */ 122 static int spi_write_buf(struct enc28j60_net *priv, int len, const u8 *data) 123 { 124 struct device *dev = &priv->spi->dev; 125 int ret; 126 127 if (len > SPI_TRANSFER_BUF_LEN - 1 || len <= 0) 128 ret = -EINVAL; 129 else { 130 priv->spi_transfer_buf[0] = ENC28J60_WRITE_BUF_MEM; 131 memcpy(&priv->spi_transfer_buf[1], data, len); 132 ret = spi_write(priv->spi, priv->spi_transfer_buf, len + 1); 133 if (ret && netif_msg_drv(priv)) 134 dev_printk(KERN_DEBUG, dev, "%s() failed: ret = %d\n", 135 __func__, ret); 136 } 137 return ret; 138 } 139 140 /* 141 * basic SPI read operation 142 */ 143 static u8 spi_read_op(struct enc28j60_net *priv, u8 op, u8 addr) 144 { 145 struct device *dev = &priv->spi->dev; 146 u8 tx_buf[2]; 147 u8 rx_buf[4]; 148 u8 val = 0; 149 int ret; 150 int slen = SPI_OPLEN; 151 152 /* do dummy read if needed */ 153 if (addr & SPRD_MASK) 154 slen++; 155 156 tx_buf[0] = op | (addr & ADDR_MASK); 157 ret = spi_write_then_read(priv->spi, tx_buf, 1, rx_buf, slen); 158 if (ret) 159 dev_printk(KERN_DEBUG, dev, "%s() failed: ret = %d\n", 160 __func__, ret); 161 else 162 val = rx_buf[slen - 1]; 163 164 return val; 165 } 166 167 /* 168 * basic SPI write operation 169 */ 170 static int spi_write_op(struct enc28j60_net *priv, u8 op, u8 addr, u8 val) 171 { 172 struct device *dev = &priv->spi->dev; 173 int ret; 174 175 priv->spi_transfer_buf[0] = op | (addr & ADDR_MASK); 176 priv->spi_transfer_buf[1] = val; 177 ret = spi_write(priv->spi, priv->spi_transfer_buf, 2); 178 if (ret && netif_msg_drv(priv)) 179 dev_printk(KERN_DEBUG, dev, "%s() failed: ret = %d\n", 180 __func__, ret); 181 return ret; 182 } 183 184 static void enc28j60_soft_reset(struct enc28j60_net *priv) 185 { 186 spi_write_op(priv, ENC28J60_SOFT_RESET, 0, ENC28J60_SOFT_RESET); 187 /* Errata workaround #1, CLKRDY check is unreliable, 188 * delay at least 1 ms instead */ 189 udelay(2000); 190 } 191 192 /* 193 * select the current register bank if necessary 194 */ 195 static void enc28j60_set_bank(struct enc28j60_net *priv, u8 addr) 196 { 197 u8 b = (addr & BANK_MASK) >> 5; 198 199 /* These registers (EIE, EIR, ESTAT, ECON2, ECON1) 200 * are present in all banks, no need to switch bank. 201 */ 202 if (addr >= EIE && addr <= ECON1) 203 return; 204 205 /* Clear or set each bank selection bit as needed */ 206 if ((b & ECON1_BSEL0) != (priv->bank & ECON1_BSEL0)) { 207 if (b & ECON1_BSEL0) 208 spi_write_op(priv, ENC28J60_BIT_FIELD_SET, ECON1, 209 ECON1_BSEL0); 210 else 211 spi_write_op(priv, ENC28J60_BIT_FIELD_CLR, ECON1, 212 ECON1_BSEL0); 213 } 214 if ((b & ECON1_BSEL1) != (priv->bank & ECON1_BSEL1)) { 215 if (b & ECON1_BSEL1) 216 spi_write_op(priv, ENC28J60_BIT_FIELD_SET, ECON1, 217 ECON1_BSEL1); 218 else 219 spi_write_op(priv, ENC28J60_BIT_FIELD_CLR, ECON1, 220 ECON1_BSEL1); 221 } 222 priv->bank = b; 223 } 224 225 /* 226 * Register access routines through the SPI bus. 227 * Every register access comes in two flavours: 228 * - nolock_xxx: caller needs to invoke mutex_lock, usually to access 229 * atomically more than one register 230 * - locked_xxx: caller doesn't need to invoke mutex_lock, single access 231 * 232 * Some registers can be accessed through the bit field clear and 233 * bit field set to avoid a read modify write cycle. 234 */ 235 236 /* 237 * Register bit field Set 238 */ 239 static void nolock_reg_bfset(struct enc28j60_net *priv, u8 addr, u8 mask) 240 { 241 enc28j60_set_bank(priv, addr); 242 spi_write_op(priv, ENC28J60_BIT_FIELD_SET, addr, mask); 243 } 244 245 static void locked_reg_bfset(struct enc28j60_net *priv, u8 addr, u8 mask) 246 { 247 mutex_lock(&priv->lock); 248 nolock_reg_bfset(priv, addr, mask); 249 mutex_unlock(&priv->lock); 250 } 251 252 /* 253 * Register bit field Clear 254 */ 255 static void nolock_reg_bfclr(struct enc28j60_net *priv, u8 addr, u8 mask) 256 { 257 enc28j60_set_bank(priv, addr); 258 spi_write_op(priv, ENC28J60_BIT_FIELD_CLR, addr, mask); 259 } 260 261 static void locked_reg_bfclr(struct enc28j60_net *priv, u8 addr, u8 mask) 262 { 263 mutex_lock(&priv->lock); 264 nolock_reg_bfclr(priv, addr, mask); 265 mutex_unlock(&priv->lock); 266 } 267 268 /* 269 * Register byte read 270 */ 271 static int nolock_regb_read(struct enc28j60_net *priv, u8 address) 272 { 273 enc28j60_set_bank(priv, address); 274 return spi_read_op(priv, ENC28J60_READ_CTRL_REG, address); 275 } 276 277 static int locked_regb_read(struct enc28j60_net *priv, u8 address) 278 { 279 int ret; 280 281 mutex_lock(&priv->lock); 282 ret = nolock_regb_read(priv, address); 283 mutex_unlock(&priv->lock); 284 285 return ret; 286 } 287 288 /* 289 * Register word read 290 */ 291 static int nolock_regw_read(struct enc28j60_net *priv, u8 address) 292 { 293 int rl, rh; 294 295 enc28j60_set_bank(priv, address); 296 rl = spi_read_op(priv, ENC28J60_READ_CTRL_REG, address); 297 rh = spi_read_op(priv, ENC28J60_READ_CTRL_REG, address + 1); 298 299 return (rh << 8) | rl; 300 } 301 302 static int locked_regw_read(struct enc28j60_net *priv, u8 address) 303 { 304 int ret; 305 306 mutex_lock(&priv->lock); 307 ret = nolock_regw_read(priv, address); 308 mutex_unlock(&priv->lock); 309 310 return ret; 311 } 312 313 /* 314 * Register byte write 315 */ 316 static void nolock_regb_write(struct enc28j60_net *priv, u8 address, u8 data) 317 { 318 enc28j60_set_bank(priv, address); 319 spi_write_op(priv, ENC28J60_WRITE_CTRL_REG, address, data); 320 } 321 322 static void locked_regb_write(struct enc28j60_net *priv, u8 address, u8 data) 323 { 324 mutex_lock(&priv->lock); 325 nolock_regb_write(priv, address, data); 326 mutex_unlock(&priv->lock); 327 } 328 329 /* 330 * Register word write 331 */ 332 static void nolock_regw_write(struct enc28j60_net *priv, u8 address, u16 data) 333 { 334 enc28j60_set_bank(priv, address); 335 spi_write_op(priv, ENC28J60_WRITE_CTRL_REG, address, (u8) data); 336 spi_write_op(priv, ENC28J60_WRITE_CTRL_REG, address + 1, 337 (u8) (data >> 8)); 338 } 339 340 static void locked_regw_write(struct enc28j60_net *priv, u8 address, u16 data) 341 { 342 mutex_lock(&priv->lock); 343 nolock_regw_write(priv, address, data); 344 mutex_unlock(&priv->lock); 345 } 346 347 /* 348 * Buffer memory read 349 * Select the starting address and execute a SPI buffer read. 350 */ 351 static void enc28j60_mem_read(struct enc28j60_net *priv, u16 addr, int len, 352 u8 *data) 353 { 354 mutex_lock(&priv->lock); 355 nolock_regw_write(priv, ERDPTL, addr); 356 #ifdef CONFIG_ENC28J60_WRITEVERIFY 357 if (netif_msg_drv(priv)) { 358 struct device *dev = &priv->spi->dev; 359 u16 reg; 360 361 reg = nolock_regw_read(priv, ERDPTL); 362 if (reg != addr) 363 dev_printk(KERN_DEBUG, dev, 364 "%s() error writing ERDPT (0x%04x - 0x%04x)\n", 365 __func__, reg, addr); 366 } 367 #endif 368 spi_read_buf(priv, len, data); 369 mutex_unlock(&priv->lock); 370 } 371 372 /* 373 * Write packet to enc28j60 TX buffer memory 374 */ 375 static void 376 enc28j60_packet_write(struct enc28j60_net *priv, int len, const u8 *data) 377 { 378 struct device *dev = &priv->spi->dev; 379 380 mutex_lock(&priv->lock); 381 /* Set the write pointer to start of transmit buffer area */ 382 nolock_regw_write(priv, EWRPTL, TXSTART_INIT); 383 #ifdef CONFIG_ENC28J60_WRITEVERIFY 384 if (netif_msg_drv(priv)) { 385 u16 reg; 386 reg = nolock_regw_read(priv, EWRPTL); 387 if (reg != TXSTART_INIT) 388 dev_printk(KERN_DEBUG, dev, 389 "%s() ERWPT:0x%04x != 0x%04x\n", 390 __func__, reg, TXSTART_INIT); 391 } 392 #endif 393 /* Set the TXND pointer to correspond to the packet size given */ 394 nolock_regw_write(priv, ETXNDL, TXSTART_INIT + len); 395 /* write per-packet control byte */ 396 spi_write_op(priv, ENC28J60_WRITE_BUF_MEM, 0, 0x00); 397 if (netif_msg_hw(priv)) 398 dev_printk(KERN_DEBUG, dev, 399 "%s() after control byte ERWPT:0x%04x\n", 400 __func__, nolock_regw_read(priv, EWRPTL)); 401 /* copy the packet into the transmit buffer */ 402 spi_write_buf(priv, len, data); 403 if (netif_msg_hw(priv)) 404 dev_printk(KERN_DEBUG, dev, 405 "%s() after write packet ERWPT:0x%04x, len=%d\n", 406 __func__, nolock_regw_read(priv, EWRPTL), len); 407 mutex_unlock(&priv->lock); 408 } 409 410 static int poll_ready(struct enc28j60_net *priv, u8 reg, u8 mask, u8 val) 411 { 412 struct device *dev = &priv->spi->dev; 413 unsigned long timeout = jiffies + msecs_to_jiffies(20); 414 415 /* 20 msec timeout read */ 416 while ((nolock_regb_read(priv, reg) & mask) != val) { 417 if (time_after(jiffies, timeout)) { 418 if (netif_msg_drv(priv)) 419 dev_dbg(dev, "reg %02x ready timeout!\n", reg); 420 return -ETIMEDOUT; 421 } 422 cpu_relax(); 423 } 424 return 0; 425 } 426 427 /* 428 * Wait until the PHY operation is complete. 429 */ 430 static int wait_phy_ready(struct enc28j60_net *priv) 431 { 432 return poll_ready(priv, MISTAT, MISTAT_BUSY, 0) ? 0 : 1; 433 } 434 435 /* 436 * PHY register read 437 * PHY registers are not accessed directly, but through the MII. 438 */ 439 static u16 enc28j60_phy_read(struct enc28j60_net *priv, u8 address) 440 { 441 u16 ret; 442 443 mutex_lock(&priv->lock); 444 /* set the PHY register address */ 445 nolock_regb_write(priv, MIREGADR, address); 446 /* start the register read operation */ 447 nolock_regb_write(priv, MICMD, MICMD_MIIRD); 448 /* wait until the PHY read completes */ 449 wait_phy_ready(priv); 450 /* quit reading */ 451 nolock_regb_write(priv, MICMD, 0x00); 452 /* return the data */ 453 ret = nolock_regw_read(priv, MIRDL); 454 mutex_unlock(&priv->lock); 455 456 return ret; 457 } 458 459 static int enc28j60_phy_write(struct enc28j60_net *priv, u8 address, u16 data) 460 { 461 int ret; 462 463 mutex_lock(&priv->lock); 464 /* set the PHY register address */ 465 nolock_regb_write(priv, MIREGADR, address); 466 /* write the PHY data */ 467 nolock_regw_write(priv, MIWRL, data); 468 /* wait until the PHY write completes and return */ 469 ret = wait_phy_ready(priv); 470 mutex_unlock(&priv->lock); 471 472 return ret; 473 } 474 475 /* 476 * Program the hardware MAC address from dev->dev_addr. 477 */ 478 static int enc28j60_set_hw_macaddr(struct net_device *ndev) 479 { 480 int ret; 481 struct enc28j60_net *priv = netdev_priv(ndev); 482 struct device *dev = &priv->spi->dev; 483 484 mutex_lock(&priv->lock); 485 if (!priv->hw_enable) { 486 if (netif_msg_drv(priv)) 487 dev_info(dev, "%s: Setting MAC address to %pM\n", 488 ndev->name, ndev->dev_addr); 489 /* NOTE: MAC address in ENC28J60 is byte-backward */ 490 nolock_regb_write(priv, MAADR5, ndev->dev_addr[0]); 491 nolock_regb_write(priv, MAADR4, ndev->dev_addr[1]); 492 nolock_regb_write(priv, MAADR3, ndev->dev_addr[2]); 493 nolock_regb_write(priv, MAADR2, ndev->dev_addr[3]); 494 nolock_regb_write(priv, MAADR1, ndev->dev_addr[4]); 495 nolock_regb_write(priv, MAADR0, ndev->dev_addr[5]); 496 ret = 0; 497 } else { 498 if (netif_msg_drv(priv)) 499 dev_printk(KERN_DEBUG, dev, 500 "%s() Hardware must be disabled to set Mac address\n", 501 __func__); 502 ret = -EBUSY; 503 } 504 mutex_unlock(&priv->lock); 505 return ret; 506 } 507 508 /* 509 * Store the new hardware address in dev->dev_addr, and update the MAC. 510 */ 511 static int enc28j60_set_mac_address(struct net_device *dev, void *addr) 512 { 513 struct sockaddr *address = addr; 514 515 if (netif_running(dev)) 516 return -EBUSY; 517 if (!is_valid_ether_addr(address->sa_data)) 518 return -EADDRNOTAVAIL; 519 520 ether_addr_copy(dev->dev_addr, address->sa_data); 521 return enc28j60_set_hw_macaddr(dev); 522 } 523 524 /* 525 * Debug routine to dump useful register contents 526 */ 527 static void enc28j60_dump_regs(struct enc28j60_net *priv, const char *msg) 528 { 529 struct device *dev = &priv->spi->dev; 530 531 mutex_lock(&priv->lock); 532 dev_printk(KERN_DEBUG, dev, 533 " %s\n" 534 "HwRevID: 0x%02x\n" 535 "Cntrl: ECON1 ECON2 ESTAT EIR EIE\n" 536 " 0x%02x 0x%02x 0x%02x 0x%02x 0x%02x\n" 537 "MAC : MACON1 MACON3 MACON4\n" 538 " 0x%02x 0x%02x 0x%02x\n" 539 "Rx : ERXST ERXND ERXWRPT ERXRDPT ERXFCON EPKTCNT MAMXFL\n" 540 " 0x%04x 0x%04x 0x%04x 0x%04x " 541 "0x%02x 0x%02x 0x%04x\n" 542 "Tx : ETXST ETXND MACLCON1 MACLCON2 MAPHSUP\n" 543 " 0x%04x 0x%04x 0x%02x 0x%02x 0x%02x\n", 544 msg, nolock_regb_read(priv, EREVID), 545 nolock_regb_read(priv, ECON1), nolock_regb_read(priv, ECON2), 546 nolock_regb_read(priv, ESTAT), nolock_regb_read(priv, EIR), 547 nolock_regb_read(priv, EIE), nolock_regb_read(priv, MACON1), 548 nolock_regb_read(priv, MACON3), nolock_regb_read(priv, MACON4), 549 nolock_regw_read(priv, ERXSTL), nolock_regw_read(priv, ERXNDL), 550 nolock_regw_read(priv, ERXWRPTL), 551 nolock_regw_read(priv, ERXRDPTL), 552 nolock_regb_read(priv, ERXFCON), 553 nolock_regb_read(priv, EPKTCNT), 554 nolock_regw_read(priv, MAMXFLL), nolock_regw_read(priv, ETXSTL), 555 nolock_regw_read(priv, ETXNDL), 556 nolock_regb_read(priv, MACLCON1), 557 nolock_regb_read(priv, MACLCON2), 558 nolock_regb_read(priv, MAPHSUP)); 559 mutex_unlock(&priv->lock); 560 } 561 562 /* 563 * ERXRDPT need to be set always at odd addresses, refer to errata datasheet 564 */ 565 static u16 erxrdpt_workaround(u16 next_packet_ptr, u16 start, u16 end) 566 { 567 u16 erxrdpt; 568 569 if ((next_packet_ptr - 1 < start) || (next_packet_ptr - 1 > end)) 570 erxrdpt = end; 571 else 572 erxrdpt = next_packet_ptr - 1; 573 574 return erxrdpt; 575 } 576 577 /* 578 * Calculate wrap around when reading beyond the end of the RX buffer 579 */ 580 static u16 rx_packet_start(u16 ptr) 581 { 582 if (ptr + RSV_SIZE > RXEND_INIT) 583 return (ptr + RSV_SIZE) - (RXEND_INIT - RXSTART_INIT + 1); 584 else 585 return ptr + RSV_SIZE; 586 } 587 588 static void nolock_rxfifo_init(struct enc28j60_net *priv, u16 start, u16 end) 589 { 590 struct device *dev = &priv->spi->dev; 591 u16 erxrdpt; 592 593 if (start > 0x1FFF || end > 0x1FFF || start > end) { 594 if (netif_msg_drv(priv)) 595 dev_err(dev, "%s(%d, %d) RXFIFO bad parameters!\n", 596 __func__, start, end); 597 return; 598 } 599 /* set receive buffer start + end */ 600 priv->next_pk_ptr = start; 601 nolock_regw_write(priv, ERXSTL, start); 602 erxrdpt = erxrdpt_workaround(priv->next_pk_ptr, start, end); 603 nolock_regw_write(priv, ERXRDPTL, erxrdpt); 604 nolock_regw_write(priv, ERXNDL, end); 605 } 606 607 static void nolock_txfifo_init(struct enc28j60_net *priv, u16 start, u16 end) 608 { 609 struct device *dev = &priv->spi->dev; 610 611 if (start > 0x1FFF || end > 0x1FFF || start > end) { 612 if (netif_msg_drv(priv)) 613 dev_err(dev, "%s(%d, %d) TXFIFO bad parameters!\n", 614 __func__, start, end); 615 return; 616 } 617 /* set transmit buffer start + end */ 618 nolock_regw_write(priv, ETXSTL, start); 619 nolock_regw_write(priv, ETXNDL, end); 620 } 621 622 /* 623 * Low power mode shrinks power consumption about 100x, so we'd like 624 * the chip to be in that mode whenever it's inactive. (However, we 625 * can't stay in low power mode during suspend with WOL active.) 626 */ 627 static void enc28j60_lowpower(struct enc28j60_net *priv, bool is_low) 628 { 629 struct device *dev = &priv->spi->dev; 630 631 if (netif_msg_drv(priv)) 632 dev_dbg(dev, "%s power...\n", is_low ? "low" : "high"); 633 634 mutex_lock(&priv->lock); 635 if (is_low) { 636 nolock_reg_bfclr(priv, ECON1, ECON1_RXEN); 637 poll_ready(priv, ESTAT, ESTAT_RXBUSY, 0); 638 poll_ready(priv, ECON1, ECON1_TXRTS, 0); 639 /* ECON2_VRPS was set during initialization */ 640 nolock_reg_bfset(priv, ECON2, ECON2_PWRSV); 641 } else { 642 nolock_reg_bfclr(priv, ECON2, ECON2_PWRSV); 643 poll_ready(priv, ESTAT, ESTAT_CLKRDY, ESTAT_CLKRDY); 644 /* caller sets ECON1_RXEN */ 645 } 646 mutex_unlock(&priv->lock); 647 } 648 649 static int enc28j60_hw_init(struct enc28j60_net *priv) 650 { 651 struct device *dev = &priv->spi->dev; 652 u8 reg; 653 654 if (netif_msg_drv(priv)) 655 dev_printk(KERN_DEBUG, dev, "%s() - %s\n", __func__, 656 priv->full_duplex ? "FullDuplex" : "HalfDuplex"); 657 658 mutex_lock(&priv->lock); 659 /* first reset the chip */ 660 enc28j60_soft_reset(priv); 661 /* Clear ECON1 */ 662 spi_write_op(priv, ENC28J60_WRITE_CTRL_REG, ECON1, 0x00); 663 priv->bank = 0; 664 priv->hw_enable = false; 665 priv->tx_retry_count = 0; 666 priv->max_pk_counter = 0; 667 priv->rxfilter = RXFILTER_NORMAL; 668 /* enable address auto increment and voltage regulator powersave */ 669 nolock_regb_write(priv, ECON2, ECON2_AUTOINC | ECON2_VRPS); 670 671 nolock_rxfifo_init(priv, RXSTART_INIT, RXEND_INIT); 672 nolock_txfifo_init(priv, TXSTART_INIT, TXEND_INIT); 673 mutex_unlock(&priv->lock); 674 675 /* 676 * Check the RevID. 677 * If it's 0x00 or 0xFF probably the enc28j60 is not mounted or 678 * damaged. 679 */ 680 reg = locked_regb_read(priv, EREVID); 681 if (netif_msg_drv(priv)) 682 dev_info(dev, "chip RevID: 0x%02x\n", reg); 683 if (reg == 0x00 || reg == 0xff) { 684 if (netif_msg_drv(priv)) 685 dev_printk(KERN_DEBUG, dev, "%s() Invalid RevId %d\n", 686 __func__, reg); 687 return 0; 688 } 689 690 /* default filter mode: (unicast OR broadcast) AND crc valid */ 691 locked_regb_write(priv, ERXFCON, 692 ERXFCON_UCEN | ERXFCON_CRCEN | ERXFCON_BCEN); 693 694 /* enable MAC receive */ 695 locked_regb_write(priv, MACON1, 696 MACON1_MARXEN | MACON1_TXPAUS | MACON1_RXPAUS); 697 /* enable automatic padding and CRC operations */ 698 if (priv->full_duplex) { 699 locked_regb_write(priv, MACON3, 700 MACON3_PADCFG0 | MACON3_TXCRCEN | 701 MACON3_FRMLNEN | MACON3_FULDPX); 702 /* set inter-frame gap (non-back-to-back) */ 703 locked_regb_write(priv, MAIPGL, 0x12); 704 /* set inter-frame gap (back-to-back) */ 705 locked_regb_write(priv, MABBIPG, 0x15); 706 } else { 707 locked_regb_write(priv, MACON3, 708 MACON3_PADCFG0 | MACON3_TXCRCEN | 709 MACON3_FRMLNEN); 710 locked_regb_write(priv, MACON4, 1 << 6); /* DEFER bit */ 711 /* set inter-frame gap (non-back-to-back) */ 712 locked_regw_write(priv, MAIPGL, 0x0C12); 713 /* set inter-frame gap (back-to-back) */ 714 locked_regb_write(priv, MABBIPG, 0x12); 715 } 716 /* 717 * MACLCON1 (default) 718 * MACLCON2 (default) 719 * Set the maximum packet size which the controller will accept. 720 */ 721 locked_regw_write(priv, MAMXFLL, MAX_FRAMELEN); 722 723 /* Configure LEDs */ 724 if (!enc28j60_phy_write(priv, PHLCON, ENC28J60_LAMPS_MODE)) 725 return 0; 726 727 if (priv->full_duplex) { 728 if (!enc28j60_phy_write(priv, PHCON1, PHCON1_PDPXMD)) 729 return 0; 730 if (!enc28j60_phy_write(priv, PHCON2, 0x00)) 731 return 0; 732 } else { 733 if (!enc28j60_phy_write(priv, PHCON1, 0x00)) 734 return 0; 735 if (!enc28j60_phy_write(priv, PHCON2, PHCON2_HDLDIS)) 736 return 0; 737 } 738 if (netif_msg_hw(priv)) 739 enc28j60_dump_regs(priv, "Hw initialized."); 740 741 return 1; 742 } 743 744 static void enc28j60_hw_enable(struct enc28j60_net *priv) 745 { 746 struct device *dev = &priv->spi->dev; 747 748 /* enable interrupts */ 749 if (netif_msg_hw(priv)) 750 dev_printk(KERN_DEBUG, dev, "%s() enabling interrupts.\n", 751 __func__); 752 753 enc28j60_phy_write(priv, PHIE, PHIE_PGEIE | PHIE_PLNKIE); 754 755 mutex_lock(&priv->lock); 756 nolock_reg_bfclr(priv, EIR, EIR_DMAIF | EIR_LINKIF | 757 EIR_TXIF | EIR_TXERIF | EIR_RXERIF | EIR_PKTIF); 758 nolock_regb_write(priv, EIE, EIE_INTIE | EIE_PKTIE | EIE_LINKIE | 759 EIE_TXIE | EIE_TXERIE | EIE_RXERIE); 760 761 /* enable receive logic */ 762 nolock_reg_bfset(priv, ECON1, ECON1_RXEN); 763 priv->hw_enable = true; 764 mutex_unlock(&priv->lock); 765 } 766 767 static void enc28j60_hw_disable(struct enc28j60_net *priv) 768 { 769 mutex_lock(&priv->lock); 770 /* disable interrupts and packet reception */ 771 nolock_regb_write(priv, EIE, 0x00); 772 nolock_reg_bfclr(priv, ECON1, ECON1_RXEN); 773 priv->hw_enable = false; 774 mutex_unlock(&priv->lock); 775 } 776 777 static int 778 enc28j60_setlink(struct net_device *ndev, u8 autoneg, u16 speed, u8 duplex) 779 { 780 struct enc28j60_net *priv = netdev_priv(ndev); 781 int ret = 0; 782 783 if (!priv->hw_enable) { 784 /* link is in low power mode now; duplex setting 785 * will take effect on next enc28j60_hw_init(). 786 */ 787 if (autoneg == AUTONEG_DISABLE && speed == SPEED_10) 788 priv->full_duplex = (duplex == DUPLEX_FULL); 789 else { 790 if (netif_msg_link(priv)) 791 netdev_warn(ndev, "unsupported link setting\n"); 792 ret = -EOPNOTSUPP; 793 } 794 } else { 795 if (netif_msg_link(priv)) 796 netdev_warn(ndev, "Warning: hw must be disabled to set link mode\n"); 797 ret = -EBUSY; 798 } 799 return ret; 800 } 801 802 /* 803 * Read the Transmit Status Vector 804 */ 805 static void enc28j60_read_tsv(struct enc28j60_net *priv, u8 tsv[TSV_SIZE]) 806 { 807 struct device *dev = &priv->spi->dev; 808 int endptr; 809 810 endptr = locked_regw_read(priv, ETXNDL); 811 if (netif_msg_hw(priv)) 812 dev_printk(KERN_DEBUG, dev, "reading TSV at addr:0x%04x\n", 813 endptr + 1); 814 enc28j60_mem_read(priv, endptr + 1, TSV_SIZE, tsv); 815 } 816 817 static void enc28j60_dump_tsv(struct enc28j60_net *priv, const char *msg, 818 u8 tsv[TSV_SIZE]) 819 { 820 struct device *dev = &priv->spi->dev; 821 u16 tmp1, tmp2; 822 823 dev_printk(KERN_DEBUG, dev, "%s - TSV:\n", msg); 824 tmp1 = tsv[1]; 825 tmp1 <<= 8; 826 tmp1 |= tsv[0]; 827 828 tmp2 = tsv[5]; 829 tmp2 <<= 8; 830 tmp2 |= tsv[4]; 831 832 dev_printk(KERN_DEBUG, dev, 833 "ByteCount: %d, CollisionCount: %d, TotByteOnWire: %d\n", 834 tmp1, tsv[2] & 0x0f, tmp2); 835 dev_printk(KERN_DEBUG, dev, 836 "TxDone: %d, CRCErr:%d, LenChkErr: %d, LenOutOfRange: %d\n", 837 TSV_GETBIT(tsv, TSV_TXDONE), 838 TSV_GETBIT(tsv, TSV_TXCRCERROR), 839 TSV_GETBIT(tsv, TSV_TXLENCHKERROR), 840 TSV_GETBIT(tsv, TSV_TXLENOUTOFRANGE)); 841 dev_printk(KERN_DEBUG, dev, 842 "Multicast: %d, Broadcast: %d, PacketDefer: %d, ExDefer: %d\n", 843 TSV_GETBIT(tsv, TSV_TXMULTICAST), 844 TSV_GETBIT(tsv, TSV_TXBROADCAST), 845 TSV_GETBIT(tsv, TSV_TXPACKETDEFER), 846 TSV_GETBIT(tsv, TSV_TXEXDEFER)); 847 dev_printk(KERN_DEBUG, dev, 848 "ExCollision: %d, LateCollision: %d, Giant: %d, Underrun: %d\n", 849 TSV_GETBIT(tsv, TSV_TXEXCOLLISION), 850 TSV_GETBIT(tsv, TSV_TXLATECOLLISION), 851 TSV_GETBIT(tsv, TSV_TXGIANT), TSV_GETBIT(tsv, TSV_TXUNDERRUN)); 852 dev_printk(KERN_DEBUG, dev, 853 "ControlFrame: %d, PauseFrame: %d, BackPressApp: %d, VLanTagFrame: %d\n", 854 TSV_GETBIT(tsv, TSV_TXCONTROLFRAME), 855 TSV_GETBIT(tsv, TSV_TXPAUSEFRAME), 856 TSV_GETBIT(tsv, TSV_BACKPRESSUREAPP), 857 TSV_GETBIT(tsv, TSV_TXVLANTAGFRAME)); 858 } 859 860 /* 861 * Receive Status vector 862 */ 863 static void enc28j60_dump_rsv(struct enc28j60_net *priv, const char *msg, 864 u16 pk_ptr, int len, u16 sts) 865 { 866 struct device *dev = &priv->spi->dev; 867 868 dev_printk(KERN_DEBUG, dev, "%s - NextPk: 0x%04x - RSV:\n", msg, pk_ptr); 869 dev_printk(KERN_DEBUG, dev, "ByteCount: %d, DribbleNibble: %d\n", 870 len, RSV_GETBIT(sts, RSV_DRIBBLENIBBLE)); 871 dev_printk(KERN_DEBUG, dev, 872 "RxOK: %d, CRCErr:%d, LenChkErr: %d, LenOutOfRange: %d\n", 873 RSV_GETBIT(sts, RSV_RXOK), 874 RSV_GETBIT(sts, RSV_CRCERROR), 875 RSV_GETBIT(sts, RSV_LENCHECKERR), 876 RSV_GETBIT(sts, RSV_LENOUTOFRANGE)); 877 dev_printk(KERN_DEBUG, dev, 878 "Multicast: %d, Broadcast: %d, LongDropEvent: %d, CarrierEvent: %d\n", 879 RSV_GETBIT(sts, RSV_RXMULTICAST), 880 RSV_GETBIT(sts, RSV_RXBROADCAST), 881 RSV_GETBIT(sts, RSV_RXLONGEVDROPEV), 882 RSV_GETBIT(sts, RSV_CARRIEREV)); 883 dev_printk(KERN_DEBUG, dev, 884 "ControlFrame: %d, PauseFrame: %d, UnknownOp: %d, VLanTagFrame: %d\n", 885 RSV_GETBIT(sts, RSV_RXCONTROLFRAME), 886 RSV_GETBIT(sts, RSV_RXPAUSEFRAME), 887 RSV_GETBIT(sts, RSV_RXUNKNOWNOPCODE), 888 RSV_GETBIT(sts, RSV_RXTYPEVLAN)); 889 } 890 891 static void dump_packet(const char *msg, int len, const char *data) 892 { 893 printk(KERN_DEBUG DRV_NAME ": %s - packet len:%d\n", msg, len); 894 print_hex_dump(KERN_DEBUG, "pk data: ", DUMP_PREFIX_OFFSET, 16, 1, 895 data, len, true); 896 } 897 898 /* 899 * Hardware receive function. 900 * Read the buffer memory, update the FIFO pointer to free the buffer, 901 * check the status vector and decrement the packet counter. 902 */ 903 static void enc28j60_hw_rx(struct net_device *ndev) 904 { 905 struct enc28j60_net *priv = netdev_priv(ndev); 906 struct device *dev = &priv->spi->dev; 907 struct sk_buff *skb = NULL; 908 u16 erxrdpt, next_packet, rxstat; 909 u8 rsv[RSV_SIZE]; 910 int len; 911 912 if (netif_msg_rx_status(priv)) 913 netdev_printk(KERN_DEBUG, ndev, "RX pk_addr:0x%04x\n", 914 priv->next_pk_ptr); 915 916 if (unlikely(priv->next_pk_ptr > RXEND_INIT)) { 917 if (netif_msg_rx_err(priv)) 918 netdev_err(ndev, "%s() Invalid packet address!! 0x%04x\n", 919 __func__, priv->next_pk_ptr); 920 /* packet address corrupted: reset RX logic */ 921 mutex_lock(&priv->lock); 922 nolock_reg_bfclr(priv, ECON1, ECON1_RXEN); 923 nolock_reg_bfset(priv, ECON1, ECON1_RXRST); 924 nolock_reg_bfclr(priv, ECON1, ECON1_RXRST); 925 nolock_rxfifo_init(priv, RXSTART_INIT, RXEND_INIT); 926 nolock_reg_bfclr(priv, EIR, EIR_RXERIF); 927 nolock_reg_bfset(priv, ECON1, ECON1_RXEN); 928 mutex_unlock(&priv->lock); 929 ndev->stats.rx_errors++; 930 return; 931 } 932 /* Read next packet pointer and rx status vector */ 933 enc28j60_mem_read(priv, priv->next_pk_ptr, sizeof(rsv), rsv); 934 935 next_packet = rsv[1]; 936 next_packet <<= 8; 937 next_packet |= rsv[0]; 938 939 len = rsv[3]; 940 len <<= 8; 941 len |= rsv[2]; 942 943 rxstat = rsv[5]; 944 rxstat <<= 8; 945 rxstat |= rsv[4]; 946 947 if (netif_msg_rx_status(priv)) 948 enc28j60_dump_rsv(priv, __func__, next_packet, len, rxstat); 949 950 if (!RSV_GETBIT(rxstat, RSV_RXOK) || len > MAX_FRAMELEN) { 951 if (netif_msg_rx_err(priv)) 952 netdev_err(ndev, "Rx Error (%04x)\n", rxstat); 953 ndev->stats.rx_errors++; 954 if (RSV_GETBIT(rxstat, RSV_CRCERROR)) 955 ndev->stats.rx_crc_errors++; 956 if (RSV_GETBIT(rxstat, RSV_LENCHECKERR)) 957 ndev->stats.rx_frame_errors++; 958 if (len > MAX_FRAMELEN) 959 ndev->stats.rx_over_errors++; 960 } else { 961 skb = netdev_alloc_skb(ndev, len + NET_IP_ALIGN); 962 if (!skb) { 963 if (netif_msg_rx_err(priv)) 964 netdev_err(ndev, "out of memory for Rx'd frame\n"); 965 ndev->stats.rx_dropped++; 966 } else { 967 skb_reserve(skb, NET_IP_ALIGN); 968 /* copy the packet from the receive buffer */ 969 enc28j60_mem_read(priv, 970 rx_packet_start(priv->next_pk_ptr), 971 len, skb_put(skb, len)); 972 if (netif_msg_pktdata(priv)) 973 dump_packet(__func__, skb->len, skb->data); 974 skb->protocol = eth_type_trans(skb, ndev); 975 /* update statistics */ 976 ndev->stats.rx_packets++; 977 ndev->stats.rx_bytes += len; 978 netif_rx_ni(skb); 979 } 980 } 981 /* 982 * Move the RX read pointer to the start of the next 983 * received packet. 984 * This frees the memory we just read out. 985 */ 986 erxrdpt = erxrdpt_workaround(next_packet, RXSTART_INIT, RXEND_INIT); 987 if (netif_msg_hw(priv)) 988 dev_printk(KERN_DEBUG, dev, "%s() ERXRDPT:0x%04x\n", 989 __func__, erxrdpt); 990 991 mutex_lock(&priv->lock); 992 nolock_regw_write(priv, ERXRDPTL, erxrdpt); 993 #ifdef CONFIG_ENC28J60_WRITEVERIFY 994 if (netif_msg_drv(priv)) { 995 u16 reg; 996 reg = nolock_regw_read(priv, ERXRDPTL); 997 if (reg != erxrdpt) 998 dev_printk(KERN_DEBUG, dev, 999 "%s() ERXRDPT verify error (0x%04x - 0x%04x)\n", 1000 __func__, reg, erxrdpt); 1001 } 1002 #endif 1003 priv->next_pk_ptr = next_packet; 1004 /* we are done with this packet, decrement the packet counter */ 1005 nolock_reg_bfset(priv, ECON2, ECON2_PKTDEC); 1006 mutex_unlock(&priv->lock); 1007 } 1008 1009 /* 1010 * Calculate free space in RxFIFO 1011 */ 1012 static int enc28j60_get_free_rxfifo(struct enc28j60_net *priv) 1013 { 1014 struct net_device *ndev = priv->netdev; 1015 int epkcnt, erxst, erxnd, erxwr, erxrd; 1016 int free_space; 1017 1018 mutex_lock(&priv->lock); 1019 epkcnt = nolock_regb_read(priv, EPKTCNT); 1020 if (epkcnt >= 255) 1021 free_space = -1; 1022 else { 1023 erxst = nolock_regw_read(priv, ERXSTL); 1024 erxnd = nolock_regw_read(priv, ERXNDL); 1025 erxwr = nolock_regw_read(priv, ERXWRPTL); 1026 erxrd = nolock_regw_read(priv, ERXRDPTL); 1027 1028 if (erxwr > erxrd) 1029 free_space = (erxnd - erxst) - (erxwr - erxrd); 1030 else if (erxwr == erxrd) 1031 free_space = (erxnd - erxst); 1032 else 1033 free_space = erxrd - erxwr - 1; 1034 } 1035 mutex_unlock(&priv->lock); 1036 if (netif_msg_rx_status(priv)) 1037 netdev_printk(KERN_DEBUG, ndev, "%s() free_space = %d\n", 1038 __func__, free_space); 1039 return free_space; 1040 } 1041 1042 /* 1043 * Access the PHY to determine link status 1044 */ 1045 static void enc28j60_check_link_status(struct net_device *ndev) 1046 { 1047 struct enc28j60_net *priv = netdev_priv(ndev); 1048 struct device *dev = &priv->spi->dev; 1049 u16 reg; 1050 int duplex; 1051 1052 reg = enc28j60_phy_read(priv, PHSTAT2); 1053 if (netif_msg_hw(priv)) 1054 dev_printk(KERN_DEBUG, dev, 1055 "%s() PHSTAT1: %04x, PHSTAT2: %04x\n", __func__, 1056 enc28j60_phy_read(priv, PHSTAT1), reg); 1057 duplex = reg & PHSTAT2_DPXSTAT; 1058 1059 if (reg & PHSTAT2_LSTAT) { 1060 netif_carrier_on(ndev); 1061 if (netif_msg_ifup(priv)) 1062 netdev_info(ndev, "link up - %s\n", 1063 duplex ? "Full duplex" : "Half duplex"); 1064 } else { 1065 if (netif_msg_ifdown(priv)) 1066 netdev_info(ndev, "link down\n"); 1067 netif_carrier_off(ndev); 1068 } 1069 } 1070 1071 static void enc28j60_tx_clear(struct net_device *ndev, bool err) 1072 { 1073 struct enc28j60_net *priv = netdev_priv(ndev); 1074 1075 if (err) 1076 ndev->stats.tx_errors++; 1077 else 1078 ndev->stats.tx_packets++; 1079 1080 if (priv->tx_skb) { 1081 if (!err) 1082 ndev->stats.tx_bytes += priv->tx_skb->len; 1083 dev_kfree_skb(priv->tx_skb); 1084 priv->tx_skb = NULL; 1085 } 1086 locked_reg_bfclr(priv, ECON1, ECON1_TXRTS); 1087 netif_wake_queue(ndev); 1088 } 1089 1090 /* 1091 * RX handler 1092 * Ignore PKTIF because is unreliable! (Look at the errata datasheet) 1093 * Check EPKTCNT is the suggested workaround. 1094 * We don't need to clear interrupt flag, automatically done when 1095 * enc28j60_hw_rx() decrements the packet counter. 1096 * Returns how many packet processed. 1097 */ 1098 static int enc28j60_rx_interrupt(struct net_device *ndev) 1099 { 1100 struct enc28j60_net *priv = netdev_priv(ndev); 1101 int pk_counter, ret; 1102 1103 pk_counter = locked_regb_read(priv, EPKTCNT); 1104 if (pk_counter && netif_msg_intr(priv)) 1105 netdev_printk(KERN_DEBUG, ndev, "intRX, pk_cnt: %d\n", 1106 pk_counter); 1107 if (pk_counter > priv->max_pk_counter) { 1108 /* update statistics */ 1109 priv->max_pk_counter = pk_counter; 1110 if (netif_msg_rx_status(priv) && priv->max_pk_counter > 1) 1111 netdev_printk(KERN_DEBUG, ndev, "RX max_pk_cnt: %d\n", 1112 priv->max_pk_counter); 1113 } 1114 ret = pk_counter; 1115 while (pk_counter-- > 0) 1116 enc28j60_hw_rx(ndev); 1117 1118 return ret; 1119 } 1120 1121 static void enc28j60_irq_work_handler(struct work_struct *work) 1122 { 1123 struct enc28j60_net *priv = 1124 container_of(work, struct enc28j60_net, irq_work); 1125 struct net_device *ndev = priv->netdev; 1126 int intflags, loop; 1127 1128 /* disable further interrupts */ 1129 locked_reg_bfclr(priv, EIE, EIE_INTIE); 1130 1131 do { 1132 loop = 0; 1133 intflags = locked_regb_read(priv, EIR); 1134 /* DMA interrupt handler (not currently used) */ 1135 if ((intflags & EIR_DMAIF) != 0) { 1136 loop++; 1137 if (netif_msg_intr(priv)) 1138 netdev_printk(KERN_DEBUG, ndev, "intDMA(%d)\n", 1139 loop); 1140 locked_reg_bfclr(priv, EIR, EIR_DMAIF); 1141 } 1142 /* LINK changed handler */ 1143 if ((intflags & EIR_LINKIF) != 0) { 1144 loop++; 1145 if (netif_msg_intr(priv)) 1146 netdev_printk(KERN_DEBUG, ndev, "intLINK(%d)\n", 1147 loop); 1148 enc28j60_check_link_status(ndev); 1149 /* read PHIR to clear the flag */ 1150 enc28j60_phy_read(priv, PHIR); 1151 } 1152 /* TX complete handler */ 1153 if (((intflags & EIR_TXIF) != 0) && 1154 ((intflags & EIR_TXERIF) == 0)) { 1155 bool err = false; 1156 loop++; 1157 if (netif_msg_intr(priv)) 1158 netdev_printk(KERN_DEBUG, ndev, "intTX(%d)\n", 1159 loop); 1160 priv->tx_retry_count = 0; 1161 if (locked_regb_read(priv, ESTAT) & ESTAT_TXABRT) { 1162 if (netif_msg_tx_err(priv)) 1163 netdev_err(ndev, "Tx Error (aborted)\n"); 1164 err = true; 1165 } 1166 if (netif_msg_tx_done(priv)) { 1167 u8 tsv[TSV_SIZE]; 1168 enc28j60_read_tsv(priv, tsv); 1169 enc28j60_dump_tsv(priv, "Tx Done", tsv); 1170 } 1171 enc28j60_tx_clear(ndev, err); 1172 locked_reg_bfclr(priv, EIR, EIR_TXIF); 1173 } 1174 /* TX Error handler */ 1175 if ((intflags & EIR_TXERIF) != 0) { 1176 u8 tsv[TSV_SIZE]; 1177 1178 loop++; 1179 if (netif_msg_intr(priv)) 1180 netdev_printk(KERN_DEBUG, ndev, "intTXErr(%d)\n", 1181 loop); 1182 locked_reg_bfclr(priv, ECON1, ECON1_TXRTS); 1183 enc28j60_read_tsv(priv, tsv); 1184 if (netif_msg_tx_err(priv)) 1185 enc28j60_dump_tsv(priv, "Tx Error", tsv); 1186 /* Reset TX logic */ 1187 mutex_lock(&priv->lock); 1188 nolock_reg_bfset(priv, ECON1, ECON1_TXRST); 1189 nolock_reg_bfclr(priv, ECON1, ECON1_TXRST); 1190 nolock_txfifo_init(priv, TXSTART_INIT, TXEND_INIT); 1191 mutex_unlock(&priv->lock); 1192 /* Transmit Late collision check for retransmit */ 1193 if (TSV_GETBIT(tsv, TSV_TXLATECOLLISION)) { 1194 if (netif_msg_tx_err(priv)) 1195 netdev_printk(KERN_DEBUG, ndev, 1196 "LateCollision TXErr (%d)\n", 1197 priv->tx_retry_count); 1198 if (priv->tx_retry_count++ < MAX_TX_RETRYCOUNT) 1199 locked_reg_bfset(priv, ECON1, 1200 ECON1_TXRTS); 1201 else 1202 enc28j60_tx_clear(ndev, true); 1203 } else 1204 enc28j60_tx_clear(ndev, true); 1205 locked_reg_bfclr(priv, EIR, EIR_TXERIF | EIR_TXIF); 1206 } 1207 /* RX Error handler */ 1208 if ((intflags & EIR_RXERIF) != 0) { 1209 loop++; 1210 if (netif_msg_intr(priv)) 1211 netdev_printk(KERN_DEBUG, ndev, "intRXErr(%d)\n", 1212 loop); 1213 /* Check free FIFO space to flag RX overrun */ 1214 if (enc28j60_get_free_rxfifo(priv) <= 0) { 1215 if (netif_msg_rx_err(priv)) 1216 netdev_printk(KERN_DEBUG, ndev, "RX Overrun\n"); 1217 ndev->stats.rx_dropped++; 1218 } 1219 locked_reg_bfclr(priv, EIR, EIR_RXERIF); 1220 } 1221 /* RX handler */ 1222 if (enc28j60_rx_interrupt(ndev)) 1223 loop++; 1224 } while (loop); 1225 1226 /* re-enable interrupts */ 1227 locked_reg_bfset(priv, EIE, EIE_INTIE); 1228 } 1229 1230 /* 1231 * Hardware transmit function. 1232 * Fill the buffer memory and send the contents of the transmit buffer 1233 * onto the network 1234 */ 1235 static void enc28j60_hw_tx(struct enc28j60_net *priv) 1236 { 1237 struct net_device *ndev = priv->netdev; 1238 1239 BUG_ON(!priv->tx_skb); 1240 1241 if (netif_msg_tx_queued(priv)) 1242 netdev_printk(KERN_DEBUG, ndev, "Tx Packet Len:%d\n", 1243 priv->tx_skb->len); 1244 1245 if (netif_msg_pktdata(priv)) 1246 dump_packet(__func__, 1247 priv->tx_skb->len, priv->tx_skb->data); 1248 enc28j60_packet_write(priv, priv->tx_skb->len, priv->tx_skb->data); 1249 1250 #ifdef CONFIG_ENC28J60_WRITEVERIFY 1251 /* readback and verify written data */ 1252 if (netif_msg_drv(priv)) { 1253 struct device *dev = &priv->spi->dev; 1254 int test_len, k; 1255 u8 test_buf[64]; /* limit the test to the first 64 bytes */ 1256 int okflag; 1257 1258 test_len = priv->tx_skb->len; 1259 if (test_len > sizeof(test_buf)) 1260 test_len = sizeof(test_buf); 1261 1262 /* + 1 to skip control byte */ 1263 enc28j60_mem_read(priv, TXSTART_INIT + 1, test_len, test_buf); 1264 okflag = 1; 1265 for (k = 0; k < test_len; k++) { 1266 if (priv->tx_skb->data[k] != test_buf[k]) { 1267 dev_printk(KERN_DEBUG, dev, 1268 "Error, %d location differ: 0x%02x-0x%02x\n", 1269 k, priv->tx_skb->data[k], test_buf[k]); 1270 okflag = 0; 1271 } 1272 } 1273 if (!okflag) 1274 dev_printk(KERN_DEBUG, dev, "Tx write buffer, verify ERROR!\n"); 1275 } 1276 #endif 1277 /* set TX request flag */ 1278 locked_reg_bfset(priv, ECON1, ECON1_TXRTS); 1279 } 1280 1281 static netdev_tx_t enc28j60_send_packet(struct sk_buff *skb, 1282 struct net_device *dev) 1283 { 1284 struct enc28j60_net *priv = netdev_priv(dev); 1285 1286 /* If some error occurs while trying to transmit this 1287 * packet, you should return '1' from this function. 1288 * In such a case you _may not_ do anything to the 1289 * SKB, it is still owned by the network queueing 1290 * layer when an error is returned. This means you 1291 * may not modify any SKB fields, you may not free 1292 * the SKB, etc. 1293 */ 1294 netif_stop_queue(dev); 1295 1296 /* Remember the skb for deferred processing */ 1297 priv->tx_skb = skb; 1298 schedule_work(&priv->tx_work); 1299 1300 return NETDEV_TX_OK; 1301 } 1302 1303 static void enc28j60_tx_work_handler(struct work_struct *work) 1304 { 1305 struct enc28j60_net *priv = 1306 container_of(work, struct enc28j60_net, tx_work); 1307 1308 /* actual delivery of data */ 1309 enc28j60_hw_tx(priv); 1310 } 1311 1312 static irqreturn_t enc28j60_irq(int irq, void *dev_id) 1313 { 1314 struct enc28j60_net *priv = dev_id; 1315 1316 /* 1317 * Can't do anything in interrupt context because we need to 1318 * block (spi_sync() is blocking) so fire of the interrupt 1319 * handling workqueue. 1320 * Remember that we access enc28j60 registers through SPI bus 1321 * via spi_sync() call. 1322 */ 1323 schedule_work(&priv->irq_work); 1324 1325 return IRQ_HANDLED; 1326 } 1327 1328 static void enc28j60_tx_timeout(struct net_device *ndev, unsigned int txqueue) 1329 { 1330 struct enc28j60_net *priv = netdev_priv(ndev); 1331 1332 if (netif_msg_timer(priv)) 1333 netdev_err(ndev, "tx timeout\n"); 1334 1335 ndev->stats.tx_errors++; 1336 /* can't restart safely under softirq */ 1337 schedule_work(&priv->restart_work); 1338 } 1339 1340 /* 1341 * Open/initialize the board. This is called (in the current kernel) 1342 * sometime after booting when the 'ifconfig' program is run. 1343 * 1344 * This routine should set everything up anew at each open, even 1345 * registers that "should" only need to be set once at boot, so that 1346 * there is non-reboot way to recover if something goes wrong. 1347 */ 1348 static int enc28j60_net_open(struct net_device *dev) 1349 { 1350 struct enc28j60_net *priv = netdev_priv(dev); 1351 1352 if (!is_valid_ether_addr(dev->dev_addr)) { 1353 if (netif_msg_ifup(priv)) 1354 netdev_err(dev, "invalid MAC address %pM\n", dev->dev_addr); 1355 return -EADDRNOTAVAIL; 1356 } 1357 /* Reset the hardware here (and take it out of low power mode) */ 1358 enc28j60_lowpower(priv, false); 1359 enc28j60_hw_disable(priv); 1360 if (!enc28j60_hw_init(priv)) { 1361 if (netif_msg_ifup(priv)) 1362 netdev_err(dev, "hw_reset() failed\n"); 1363 return -EINVAL; 1364 } 1365 /* Update the MAC address (in case user has changed it) */ 1366 enc28j60_set_hw_macaddr(dev); 1367 /* Enable interrupts */ 1368 enc28j60_hw_enable(priv); 1369 /* check link status */ 1370 enc28j60_check_link_status(dev); 1371 /* We are now ready to accept transmit requests from 1372 * the queueing layer of the networking. 1373 */ 1374 netif_start_queue(dev); 1375 1376 return 0; 1377 } 1378 1379 /* The inverse routine to net_open(). */ 1380 static int enc28j60_net_close(struct net_device *dev) 1381 { 1382 struct enc28j60_net *priv = netdev_priv(dev); 1383 1384 enc28j60_hw_disable(priv); 1385 enc28j60_lowpower(priv, true); 1386 netif_stop_queue(dev); 1387 1388 return 0; 1389 } 1390 1391 /* 1392 * Set or clear the multicast filter for this adapter 1393 * num_addrs == -1 Promiscuous mode, receive all packets 1394 * num_addrs == 0 Normal mode, filter out multicast packets 1395 * num_addrs > 0 Multicast mode, receive normal and MC packets 1396 */ 1397 static void enc28j60_set_multicast_list(struct net_device *dev) 1398 { 1399 struct enc28j60_net *priv = netdev_priv(dev); 1400 int oldfilter = priv->rxfilter; 1401 1402 if (dev->flags & IFF_PROMISC) { 1403 if (netif_msg_link(priv)) 1404 netdev_info(dev, "promiscuous mode\n"); 1405 priv->rxfilter = RXFILTER_PROMISC; 1406 } else if ((dev->flags & IFF_ALLMULTI) || !netdev_mc_empty(dev)) { 1407 if (netif_msg_link(priv)) 1408 netdev_info(dev, "%smulticast mode\n", 1409 (dev->flags & IFF_ALLMULTI) ? "all-" : ""); 1410 priv->rxfilter = RXFILTER_MULTI; 1411 } else { 1412 if (netif_msg_link(priv)) 1413 netdev_info(dev, "normal mode\n"); 1414 priv->rxfilter = RXFILTER_NORMAL; 1415 } 1416 1417 if (oldfilter != priv->rxfilter) 1418 schedule_work(&priv->setrx_work); 1419 } 1420 1421 static void enc28j60_setrx_work_handler(struct work_struct *work) 1422 { 1423 struct enc28j60_net *priv = 1424 container_of(work, struct enc28j60_net, setrx_work); 1425 struct device *dev = &priv->spi->dev; 1426 1427 if (priv->rxfilter == RXFILTER_PROMISC) { 1428 if (netif_msg_drv(priv)) 1429 dev_printk(KERN_DEBUG, dev, "promiscuous mode\n"); 1430 locked_regb_write(priv, ERXFCON, 0x00); 1431 } else if (priv->rxfilter == RXFILTER_MULTI) { 1432 if (netif_msg_drv(priv)) 1433 dev_printk(KERN_DEBUG, dev, "multicast mode\n"); 1434 locked_regb_write(priv, ERXFCON, 1435 ERXFCON_UCEN | ERXFCON_CRCEN | 1436 ERXFCON_BCEN | ERXFCON_MCEN); 1437 } else { 1438 if (netif_msg_drv(priv)) 1439 dev_printk(KERN_DEBUG, dev, "normal mode\n"); 1440 locked_regb_write(priv, ERXFCON, 1441 ERXFCON_UCEN | ERXFCON_CRCEN | 1442 ERXFCON_BCEN); 1443 } 1444 } 1445 1446 static void enc28j60_restart_work_handler(struct work_struct *work) 1447 { 1448 struct enc28j60_net *priv = 1449 container_of(work, struct enc28j60_net, restart_work); 1450 struct net_device *ndev = priv->netdev; 1451 int ret; 1452 1453 rtnl_lock(); 1454 if (netif_running(ndev)) { 1455 enc28j60_net_close(ndev); 1456 ret = enc28j60_net_open(ndev); 1457 if (unlikely(ret)) { 1458 netdev_info(ndev, "could not restart %d\n", ret); 1459 dev_close(ndev); 1460 } 1461 } 1462 rtnl_unlock(); 1463 } 1464 1465 /* ......................... ETHTOOL SUPPORT ........................... */ 1466 1467 static void 1468 enc28j60_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info) 1469 { 1470 strlcpy(info->driver, DRV_NAME, sizeof(info->driver)); 1471 strlcpy(info->version, DRV_VERSION, sizeof(info->version)); 1472 strlcpy(info->bus_info, 1473 dev_name(dev->dev.parent), sizeof(info->bus_info)); 1474 } 1475 1476 static int 1477 enc28j60_get_link_ksettings(struct net_device *dev, 1478 struct ethtool_link_ksettings *cmd) 1479 { 1480 struct enc28j60_net *priv = netdev_priv(dev); 1481 1482 ethtool_link_ksettings_zero_link_mode(cmd, supported); 1483 ethtool_link_ksettings_add_link_mode(cmd, supported, 10baseT_Half); 1484 ethtool_link_ksettings_add_link_mode(cmd, supported, 10baseT_Full); 1485 ethtool_link_ksettings_add_link_mode(cmd, supported, TP); 1486 1487 cmd->base.speed = SPEED_10; 1488 cmd->base.duplex = priv->full_duplex ? DUPLEX_FULL : DUPLEX_HALF; 1489 cmd->base.port = PORT_TP; 1490 cmd->base.autoneg = AUTONEG_DISABLE; 1491 1492 return 0; 1493 } 1494 1495 static int 1496 enc28j60_set_link_ksettings(struct net_device *dev, 1497 const struct ethtool_link_ksettings *cmd) 1498 { 1499 return enc28j60_setlink(dev, cmd->base.autoneg, 1500 cmd->base.speed, cmd->base.duplex); 1501 } 1502 1503 static u32 enc28j60_get_msglevel(struct net_device *dev) 1504 { 1505 struct enc28j60_net *priv = netdev_priv(dev); 1506 return priv->msg_enable; 1507 } 1508 1509 static void enc28j60_set_msglevel(struct net_device *dev, u32 val) 1510 { 1511 struct enc28j60_net *priv = netdev_priv(dev); 1512 priv->msg_enable = val; 1513 } 1514 1515 static const struct ethtool_ops enc28j60_ethtool_ops = { 1516 .get_drvinfo = enc28j60_get_drvinfo, 1517 .get_msglevel = enc28j60_get_msglevel, 1518 .set_msglevel = enc28j60_set_msglevel, 1519 .get_link_ksettings = enc28j60_get_link_ksettings, 1520 .set_link_ksettings = enc28j60_set_link_ksettings, 1521 }; 1522 1523 static int enc28j60_chipset_init(struct net_device *dev) 1524 { 1525 struct enc28j60_net *priv = netdev_priv(dev); 1526 1527 return enc28j60_hw_init(priv); 1528 } 1529 1530 static const struct net_device_ops enc28j60_netdev_ops = { 1531 .ndo_open = enc28j60_net_open, 1532 .ndo_stop = enc28j60_net_close, 1533 .ndo_start_xmit = enc28j60_send_packet, 1534 .ndo_set_rx_mode = enc28j60_set_multicast_list, 1535 .ndo_set_mac_address = enc28j60_set_mac_address, 1536 .ndo_tx_timeout = enc28j60_tx_timeout, 1537 .ndo_validate_addr = eth_validate_addr, 1538 }; 1539 1540 static int enc28j60_probe(struct spi_device *spi) 1541 { 1542 unsigned char macaddr[ETH_ALEN]; 1543 struct net_device *dev; 1544 struct enc28j60_net *priv; 1545 int ret = 0; 1546 1547 if (netif_msg_drv(&debug)) 1548 dev_info(&spi->dev, "Ethernet driver %s loaded\n", DRV_VERSION); 1549 1550 dev = alloc_etherdev(sizeof(struct enc28j60_net)); 1551 if (!dev) { 1552 ret = -ENOMEM; 1553 goto error_alloc; 1554 } 1555 priv = netdev_priv(dev); 1556 1557 priv->netdev = dev; /* priv to netdev reference */ 1558 priv->spi = spi; /* priv to spi reference */ 1559 priv->msg_enable = netif_msg_init(debug.msg_enable, ENC28J60_MSG_DEFAULT); 1560 mutex_init(&priv->lock); 1561 INIT_WORK(&priv->tx_work, enc28j60_tx_work_handler); 1562 INIT_WORK(&priv->setrx_work, enc28j60_setrx_work_handler); 1563 INIT_WORK(&priv->irq_work, enc28j60_irq_work_handler); 1564 INIT_WORK(&priv->restart_work, enc28j60_restart_work_handler); 1565 spi_set_drvdata(spi, priv); /* spi to priv reference */ 1566 SET_NETDEV_DEV(dev, &spi->dev); 1567 1568 if (!enc28j60_chipset_init(dev)) { 1569 if (netif_msg_probe(priv)) 1570 dev_info(&spi->dev, "chip not found\n"); 1571 ret = -EIO; 1572 goto error_irq; 1573 } 1574 1575 if (device_get_mac_address(&spi->dev, macaddr, sizeof(macaddr))) 1576 ether_addr_copy(dev->dev_addr, macaddr); 1577 else 1578 eth_hw_addr_random(dev); 1579 enc28j60_set_hw_macaddr(dev); 1580 1581 /* Board setup must set the relevant edge trigger type; 1582 * level triggers won't currently work. 1583 */ 1584 ret = request_irq(spi->irq, enc28j60_irq, 0, DRV_NAME, priv); 1585 if (ret < 0) { 1586 if (netif_msg_probe(priv)) 1587 dev_err(&spi->dev, "request irq %d failed (ret = %d)\n", 1588 spi->irq, ret); 1589 goto error_irq; 1590 } 1591 1592 dev->if_port = IF_PORT_10BASET; 1593 dev->irq = spi->irq; 1594 dev->netdev_ops = &enc28j60_netdev_ops; 1595 dev->watchdog_timeo = TX_TIMEOUT; 1596 dev->ethtool_ops = &enc28j60_ethtool_ops; 1597 1598 enc28j60_lowpower(priv, true); 1599 1600 ret = register_netdev(dev); 1601 if (ret) { 1602 if (netif_msg_probe(priv)) 1603 dev_err(&spi->dev, "register netdev failed (ret = %d)\n", 1604 ret); 1605 goto error_register; 1606 } 1607 1608 return 0; 1609 1610 error_register: 1611 free_irq(spi->irq, priv); 1612 error_irq: 1613 free_netdev(dev); 1614 error_alloc: 1615 return ret; 1616 } 1617 1618 static int enc28j60_remove(struct spi_device *spi) 1619 { 1620 struct enc28j60_net *priv = spi_get_drvdata(spi); 1621 1622 unregister_netdev(priv->netdev); 1623 free_irq(spi->irq, priv); 1624 free_netdev(priv->netdev); 1625 1626 return 0; 1627 } 1628 1629 static const struct of_device_id enc28j60_dt_ids[] = { 1630 { .compatible = "microchip,enc28j60" }, 1631 { /* sentinel */ } 1632 }; 1633 MODULE_DEVICE_TABLE(of, enc28j60_dt_ids); 1634 1635 static struct spi_driver enc28j60_driver = { 1636 .driver = { 1637 .name = DRV_NAME, 1638 .of_match_table = enc28j60_dt_ids, 1639 }, 1640 .probe = enc28j60_probe, 1641 .remove = enc28j60_remove, 1642 }; 1643 module_spi_driver(enc28j60_driver); 1644 1645 MODULE_DESCRIPTION(DRV_NAME " ethernet driver"); 1646 MODULE_AUTHOR("Claudio Lanconelli <lanconelli.claudio@eptar.com>"); 1647 MODULE_LICENSE("GPL"); 1648 module_param_named(debug, debug.msg_enable, int, 0); 1649 MODULE_PARM_DESC(debug, "Debug verbosity level in amount of bits set (0=none, ..., 31=all)"); 1650 MODULE_ALIAS("spi:" DRV_NAME); 1651