1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Microchip ENC28J60 ethernet driver (MAC + PHY) 4 * 5 * Copyright (C) 2007 Eurek srl 6 * Author: Claudio Lanconelli <lanconelli.claudio@eptar.com> 7 * based on enc28j60.c written by David Anders for 2.4 kernel version 8 * 9 * $Id: enc28j60.c,v 1.22 2007/12/20 10:47:01 claudio Exp $ 10 */ 11 12 #include <linux/module.h> 13 #include <linux/kernel.h> 14 #include <linux/types.h> 15 #include <linux/fcntl.h> 16 #include <linux/interrupt.h> 17 #include <linux/property.h> 18 #include <linux/string.h> 19 #include <linux/errno.h> 20 #include <linux/netdevice.h> 21 #include <linux/etherdevice.h> 22 #include <linux/ethtool.h> 23 #include <linux/tcp.h> 24 #include <linux/skbuff.h> 25 #include <linux/delay.h> 26 #include <linux/spi/spi.h> 27 28 #include "enc28j60_hw.h" 29 30 #define DRV_NAME "enc28j60" 31 #define DRV_VERSION "1.02" 32 33 #define SPI_OPLEN 1 34 35 #define ENC28J60_MSG_DEFAULT \ 36 (NETIF_MSG_PROBE | NETIF_MSG_IFUP | NETIF_MSG_IFDOWN | NETIF_MSG_LINK) 37 38 /* Buffer size required for the largest SPI transfer (i.e., reading a 39 * frame). 40 */ 41 #define SPI_TRANSFER_BUF_LEN (4 + MAX_FRAMELEN) 42 43 #define TX_TIMEOUT (4 * HZ) 44 45 /* Max TX retries in case of collision as suggested by errata datasheet */ 46 #define MAX_TX_RETRYCOUNT 16 47 48 enum { 49 RXFILTER_NORMAL, 50 RXFILTER_MULTI, 51 RXFILTER_PROMISC 52 }; 53 54 /* Driver local data */ 55 struct enc28j60_net { 56 struct net_device *netdev; 57 struct spi_device *spi; 58 struct mutex lock; 59 struct sk_buff *tx_skb; 60 struct work_struct tx_work; 61 struct work_struct setrx_work; 62 struct work_struct restart_work; 63 u8 bank; /* current register bank selected */ 64 u16 next_pk_ptr; /* next packet pointer within FIFO */ 65 u16 max_pk_counter; /* statistics: max packet counter */ 66 u16 tx_retry_count; 67 bool hw_enable; 68 bool full_duplex; 69 int rxfilter; 70 u32 msg_enable; 71 u8 spi_transfer_buf[SPI_TRANSFER_BUF_LEN]; 72 }; 73 74 /* use ethtool to change the level for any given device */ 75 static struct { 76 u32 msg_enable; 77 } debug = { -1 }; 78 79 /* 80 * SPI read buffer 81 * Wait for the SPI transfer and copy received data to destination. 82 */ 83 static int 84 spi_read_buf(struct enc28j60_net *priv, int len, u8 *data) 85 { 86 struct device *dev = &priv->spi->dev; 87 u8 *rx_buf = priv->spi_transfer_buf + 4; 88 u8 *tx_buf = priv->spi_transfer_buf; 89 struct spi_transfer tx = { 90 .tx_buf = tx_buf, 91 .len = SPI_OPLEN, 92 }; 93 struct spi_transfer rx = { 94 .rx_buf = rx_buf, 95 .len = len, 96 }; 97 struct spi_message msg; 98 int ret; 99 100 tx_buf[0] = ENC28J60_READ_BUF_MEM; 101 102 spi_message_init(&msg); 103 spi_message_add_tail(&tx, &msg); 104 spi_message_add_tail(&rx, &msg); 105 106 ret = spi_sync(priv->spi, &msg); 107 if (ret == 0) { 108 memcpy(data, rx_buf, len); 109 ret = msg.status; 110 } 111 if (ret && netif_msg_drv(priv)) 112 dev_printk(KERN_DEBUG, dev, "%s() failed: ret = %d\n", 113 __func__, ret); 114 115 return ret; 116 } 117 118 /* 119 * SPI write buffer 120 */ 121 static int spi_write_buf(struct enc28j60_net *priv, int len, const u8 *data) 122 { 123 struct device *dev = &priv->spi->dev; 124 int ret; 125 126 if (len > SPI_TRANSFER_BUF_LEN - 1 || len <= 0) 127 ret = -EINVAL; 128 else { 129 priv->spi_transfer_buf[0] = ENC28J60_WRITE_BUF_MEM; 130 memcpy(&priv->spi_transfer_buf[1], data, len); 131 ret = spi_write(priv->spi, priv->spi_transfer_buf, len + 1); 132 if (ret && netif_msg_drv(priv)) 133 dev_printk(KERN_DEBUG, dev, "%s() failed: ret = %d\n", 134 __func__, ret); 135 } 136 return ret; 137 } 138 139 /* 140 * basic SPI read operation 141 */ 142 static u8 spi_read_op(struct enc28j60_net *priv, u8 op, u8 addr) 143 { 144 struct device *dev = &priv->spi->dev; 145 u8 tx_buf[2]; 146 u8 rx_buf[4]; 147 u8 val = 0; 148 int ret; 149 int slen = SPI_OPLEN; 150 151 /* do dummy read if needed */ 152 if (addr & SPRD_MASK) 153 slen++; 154 155 tx_buf[0] = op | (addr & ADDR_MASK); 156 ret = spi_write_then_read(priv->spi, tx_buf, 1, rx_buf, slen); 157 if (ret) 158 dev_printk(KERN_DEBUG, dev, "%s() failed: ret = %d\n", 159 __func__, ret); 160 else 161 val = rx_buf[slen - 1]; 162 163 return val; 164 } 165 166 /* 167 * basic SPI write operation 168 */ 169 static int spi_write_op(struct enc28j60_net *priv, u8 op, u8 addr, u8 val) 170 { 171 struct device *dev = &priv->spi->dev; 172 int ret; 173 174 priv->spi_transfer_buf[0] = op | (addr & ADDR_MASK); 175 priv->spi_transfer_buf[1] = val; 176 ret = spi_write(priv->spi, priv->spi_transfer_buf, 2); 177 if (ret && netif_msg_drv(priv)) 178 dev_printk(KERN_DEBUG, dev, "%s() failed: ret = %d\n", 179 __func__, ret); 180 return ret; 181 } 182 183 static void enc28j60_soft_reset(struct enc28j60_net *priv) 184 { 185 spi_write_op(priv, ENC28J60_SOFT_RESET, 0, ENC28J60_SOFT_RESET); 186 /* Errata workaround #1, CLKRDY check is unreliable, 187 * delay at least 1 ms instead */ 188 udelay(2000); 189 } 190 191 /* 192 * select the current register bank if necessary 193 */ 194 static void enc28j60_set_bank(struct enc28j60_net *priv, u8 addr) 195 { 196 u8 b = (addr & BANK_MASK) >> 5; 197 198 /* These registers (EIE, EIR, ESTAT, ECON2, ECON1) 199 * are present in all banks, no need to switch bank. 200 */ 201 if (addr >= EIE && addr <= ECON1) 202 return; 203 204 /* Clear or set each bank selection bit as needed */ 205 if ((b & ECON1_BSEL0) != (priv->bank & ECON1_BSEL0)) { 206 if (b & ECON1_BSEL0) 207 spi_write_op(priv, ENC28J60_BIT_FIELD_SET, ECON1, 208 ECON1_BSEL0); 209 else 210 spi_write_op(priv, ENC28J60_BIT_FIELD_CLR, ECON1, 211 ECON1_BSEL0); 212 } 213 if ((b & ECON1_BSEL1) != (priv->bank & ECON1_BSEL1)) { 214 if (b & ECON1_BSEL1) 215 spi_write_op(priv, ENC28J60_BIT_FIELD_SET, ECON1, 216 ECON1_BSEL1); 217 else 218 spi_write_op(priv, ENC28J60_BIT_FIELD_CLR, ECON1, 219 ECON1_BSEL1); 220 } 221 priv->bank = b; 222 } 223 224 /* 225 * Register access routines through the SPI bus. 226 * Every register access comes in two flavours: 227 * - nolock_xxx: caller needs to invoke mutex_lock, usually to access 228 * atomically more than one register 229 * - locked_xxx: caller doesn't need to invoke mutex_lock, single access 230 * 231 * Some registers can be accessed through the bit field clear and 232 * bit field set to avoid a read modify write cycle. 233 */ 234 235 /* 236 * Register bit field Set 237 */ 238 static void nolock_reg_bfset(struct enc28j60_net *priv, u8 addr, u8 mask) 239 { 240 enc28j60_set_bank(priv, addr); 241 spi_write_op(priv, ENC28J60_BIT_FIELD_SET, addr, mask); 242 } 243 244 static void locked_reg_bfset(struct enc28j60_net *priv, u8 addr, u8 mask) 245 { 246 mutex_lock(&priv->lock); 247 nolock_reg_bfset(priv, addr, mask); 248 mutex_unlock(&priv->lock); 249 } 250 251 /* 252 * Register bit field Clear 253 */ 254 static void nolock_reg_bfclr(struct enc28j60_net *priv, u8 addr, u8 mask) 255 { 256 enc28j60_set_bank(priv, addr); 257 spi_write_op(priv, ENC28J60_BIT_FIELD_CLR, addr, mask); 258 } 259 260 static void locked_reg_bfclr(struct enc28j60_net *priv, u8 addr, u8 mask) 261 { 262 mutex_lock(&priv->lock); 263 nolock_reg_bfclr(priv, addr, mask); 264 mutex_unlock(&priv->lock); 265 } 266 267 /* 268 * Register byte read 269 */ 270 static int nolock_regb_read(struct enc28j60_net *priv, u8 address) 271 { 272 enc28j60_set_bank(priv, address); 273 return spi_read_op(priv, ENC28J60_READ_CTRL_REG, address); 274 } 275 276 static int locked_regb_read(struct enc28j60_net *priv, u8 address) 277 { 278 int ret; 279 280 mutex_lock(&priv->lock); 281 ret = nolock_regb_read(priv, address); 282 mutex_unlock(&priv->lock); 283 284 return ret; 285 } 286 287 /* 288 * Register word read 289 */ 290 static int nolock_regw_read(struct enc28j60_net *priv, u8 address) 291 { 292 int rl, rh; 293 294 enc28j60_set_bank(priv, address); 295 rl = spi_read_op(priv, ENC28J60_READ_CTRL_REG, address); 296 rh = spi_read_op(priv, ENC28J60_READ_CTRL_REG, address + 1); 297 298 return (rh << 8) | rl; 299 } 300 301 static int locked_regw_read(struct enc28j60_net *priv, u8 address) 302 { 303 int ret; 304 305 mutex_lock(&priv->lock); 306 ret = nolock_regw_read(priv, address); 307 mutex_unlock(&priv->lock); 308 309 return ret; 310 } 311 312 /* 313 * Register byte write 314 */ 315 static void nolock_regb_write(struct enc28j60_net *priv, u8 address, u8 data) 316 { 317 enc28j60_set_bank(priv, address); 318 spi_write_op(priv, ENC28J60_WRITE_CTRL_REG, address, data); 319 } 320 321 static void locked_regb_write(struct enc28j60_net *priv, u8 address, u8 data) 322 { 323 mutex_lock(&priv->lock); 324 nolock_regb_write(priv, address, data); 325 mutex_unlock(&priv->lock); 326 } 327 328 /* 329 * Register word write 330 */ 331 static void nolock_regw_write(struct enc28j60_net *priv, u8 address, u16 data) 332 { 333 enc28j60_set_bank(priv, address); 334 spi_write_op(priv, ENC28J60_WRITE_CTRL_REG, address, (u8) data); 335 spi_write_op(priv, ENC28J60_WRITE_CTRL_REG, address + 1, 336 (u8) (data >> 8)); 337 } 338 339 static void locked_regw_write(struct enc28j60_net *priv, u8 address, u16 data) 340 { 341 mutex_lock(&priv->lock); 342 nolock_regw_write(priv, address, data); 343 mutex_unlock(&priv->lock); 344 } 345 346 /* 347 * Buffer memory read 348 * Select the starting address and execute a SPI buffer read. 349 */ 350 static void enc28j60_mem_read(struct enc28j60_net *priv, u16 addr, int len, 351 u8 *data) 352 { 353 mutex_lock(&priv->lock); 354 nolock_regw_write(priv, ERDPTL, addr); 355 #ifdef CONFIG_ENC28J60_WRITEVERIFY 356 if (netif_msg_drv(priv)) { 357 struct device *dev = &priv->spi->dev; 358 u16 reg; 359 360 reg = nolock_regw_read(priv, ERDPTL); 361 if (reg != addr) 362 dev_printk(KERN_DEBUG, dev, 363 "%s() error writing ERDPT (0x%04x - 0x%04x)\n", 364 __func__, reg, addr); 365 } 366 #endif 367 spi_read_buf(priv, len, data); 368 mutex_unlock(&priv->lock); 369 } 370 371 /* 372 * Write packet to enc28j60 TX buffer memory 373 */ 374 static void 375 enc28j60_packet_write(struct enc28j60_net *priv, int len, const u8 *data) 376 { 377 struct device *dev = &priv->spi->dev; 378 379 mutex_lock(&priv->lock); 380 /* Set the write pointer to start of transmit buffer area */ 381 nolock_regw_write(priv, EWRPTL, TXSTART_INIT); 382 #ifdef CONFIG_ENC28J60_WRITEVERIFY 383 if (netif_msg_drv(priv)) { 384 u16 reg; 385 reg = nolock_regw_read(priv, EWRPTL); 386 if (reg != TXSTART_INIT) 387 dev_printk(KERN_DEBUG, dev, 388 "%s() ERWPT:0x%04x != 0x%04x\n", 389 __func__, reg, TXSTART_INIT); 390 } 391 #endif 392 /* Set the TXND pointer to correspond to the packet size given */ 393 nolock_regw_write(priv, ETXNDL, TXSTART_INIT + len); 394 /* write per-packet control byte */ 395 spi_write_op(priv, ENC28J60_WRITE_BUF_MEM, 0, 0x00); 396 if (netif_msg_hw(priv)) 397 dev_printk(KERN_DEBUG, dev, 398 "%s() after control byte ERWPT:0x%04x\n", 399 __func__, nolock_regw_read(priv, EWRPTL)); 400 /* copy the packet into the transmit buffer */ 401 spi_write_buf(priv, len, data); 402 if (netif_msg_hw(priv)) 403 dev_printk(KERN_DEBUG, dev, 404 "%s() after write packet ERWPT:0x%04x, len=%d\n", 405 __func__, nolock_regw_read(priv, EWRPTL), len); 406 mutex_unlock(&priv->lock); 407 } 408 409 static int poll_ready(struct enc28j60_net *priv, u8 reg, u8 mask, u8 val) 410 { 411 struct device *dev = &priv->spi->dev; 412 unsigned long timeout = jiffies + msecs_to_jiffies(20); 413 414 /* 20 msec timeout read */ 415 while ((nolock_regb_read(priv, reg) & mask) != val) { 416 if (time_after(jiffies, timeout)) { 417 if (netif_msg_drv(priv)) 418 dev_dbg(dev, "reg %02x ready timeout!\n", reg); 419 return -ETIMEDOUT; 420 } 421 cpu_relax(); 422 } 423 return 0; 424 } 425 426 /* 427 * Wait until the PHY operation is complete. 428 */ 429 static int wait_phy_ready(struct enc28j60_net *priv) 430 { 431 return poll_ready(priv, MISTAT, MISTAT_BUSY, 0) ? 0 : 1; 432 } 433 434 /* 435 * PHY register read 436 * PHY registers are not accessed directly, but through the MII. 437 */ 438 static u16 enc28j60_phy_read(struct enc28j60_net *priv, u8 address) 439 { 440 u16 ret; 441 442 mutex_lock(&priv->lock); 443 /* set the PHY register address */ 444 nolock_regb_write(priv, MIREGADR, address); 445 /* start the register read operation */ 446 nolock_regb_write(priv, MICMD, MICMD_MIIRD); 447 /* wait until the PHY read completes */ 448 wait_phy_ready(priv); 449 /* quit reading */ 450 nolock_regb_write(priv, MICMD, 0x00); 451 /* return the data */ 452 ret = nolock_regw_read(priv, MIRDL); 453 mutex_unlock(&priv->lock); 454 455 return ret; 456 } 457 458 static int enc28j60_phy_write(struct enc28j60_net *priv, u8 address, u16 data) 459 { 460 int ret; 461 462 mutex_lock(&priv->lock); 463 /* set the PHY register address */ 464 nolock_regb_write(priv, MIREGADR, address); 465 /* write the PHY data */ 466 nolock_regw_write(priv, MIWRL, data); 467 /* wait until the PHY write completes and return */ 468 ret = wait_phy_ready(priv); 469 mutex_unlock(&priv->lock); 470 471 return ret; 472 } 473 474 /* 475 * Program the hardware MAC address from dev->dev_addr. 476 */ 477 static int enc28j60_set_hw_macaddr(struct net_device *ndev) 478 { 479 int ret; 480 struct enc28j60_net *priv = netdev_priv(ndev); 481 struct device *dev = &priv->spi->dev; 482 483 mutex_lock(&priv->lock); 484 if (!priv->hw_enable) { 485 if (netif_msg_drv(priv)) 486 dev_info(dev, "%s: Setting MAC address to %pM\n", 487 ndev->name, ndev->dev_addr); 488 /* NOTE: MAC address in ENC28J60 is byte-backward */ 489 nolock_regb_write(priv, MAADR5, ndev->dev_addr[0]); 490 nolock_regb_write(priv, MAADR4, ndev->dev_addr[1]); 491 nolock_regb_write(priv, MAADR3, ndev->dev_addr[2]); 492 nolock_regb_write(priv, MAADR2, ndev->dev_addr[3]); 493 nolock_regb_write(priv, MAADR1, ndev->dev_addr[4]); 494 nolock_regb_write(priv, MAADR0, ndev->dev_addr[5]); 495 ret = 0; 496 } else { 497 if (netif_msg_drv(priv)) 498 dev_printk(KERN_DEBUG, dev, 499 "%s() Hardware must be disabled to set Mac address\n", 500 __func__); 501 ret = -EBUSY; 502 } 503 mutex_unlock(&priv->lock); 504 return ret; 505 } 506 507 /* 508 * Store the new hardware address in dev->dev_addr, and update the MAC. 509 */ 510 static int enc28j60_set_mac_address(struct net_device *dev, void *addr) 511 { 512 struct sockaddr *address = addr; 513 514 if (netif_running(dev)) 515 return -EBUSY; 516 if (!is_valid_ether_addr(address->sa_data)) 517 return -EADDRNOTAVAIL; 518 519 eth_hw_addr_set(dev, address->sa_data); 520 return enc28j60_set_hw_macaddr(dev); 521 } 522 523 /* 524 * Debug routine to dump useful register contents 525 */ 526 static void enc28j60_dump_regs(struct enc28j60_net *priv, const char *msg) 527 { 528 struct device *dev = &priv->spi->dev; 529 530 mutex_lock(&priv->lock); 531 dev_printk(KERN_DEBUG, dev, 532 " %s\n" 533 "HwRevID: 0x%02x\n" 534 "Cntrl: ECON1 ECON2 ESTAT EIR EIE\n" 535 " 0x%02x 0x%02x 0x%02x 0x%02x 0x%02x\n" 536 "MAC : MACON1 MACON3 MACON4\n" 537 " 0x%02x 0x%02x 0x%02x\n" 538 "Rx : ERXST ERXND ERXWRPT ERXRDPT ERXFCON EPKTCNT MAMXFL\n" 539 " 0x%04x 0x%04x 0x%04x 0x%04x " 540 "0x%02x 0x%02x 0x%04x\n" 541 "Tx : ETXST ETXND MACLCON1 MACLCON2 MAPHSUP\n" 542 " 0x%04x 0x%04x 0x%02x 0x%02x 0x%02x\n", 543 msg, nolock_regb_read(priv, EREVID), 544 nolock_regb_read(priv, ECON1), nolock_regb_read(priv, ECON2), 545 nolock_regb_read(priv, ESTAT), nolock_regb_read(priv, EIR), 546 nolock_regb_read(priv, EIE), nolock_regb_read(priv, MACON1), 547 nolock_regb_read(priv, MACON3), nolock_regb_read(priv, MACON4), 548 nolock_regw_read(priv, ERXSTL), nolock_regw_read(priv, ERXNDL), 549 nolock_regw_read(priv, ERXWRPTL), 550 nolock_regw_read(priv, ERXRDPTL), 551 nolock_regb_read(priv, ERXFCON), 552 nolock_regb_read(priv, EPKTCNT), 553 nolock_regw_read(priv, MAMXFLL), nolock_regw_read(priv, ETXSTL), 554 nolock_regw_read(priv, ETXNDL), 555 nolock_regb_read(priv, MACLCON1), 556 nolock_regb_read(priv, MACLCON2), 557 nolock_regb_read(priv, MAPHSUP)); 558 mutex_unlock(&priv->lock); 559 } 560 561 /* 562 * ERXRDPT need to be set always at odd addresses, refer to errata datasheet 563 */ 564 static u16 erxrdpt_workaround(u16 next_packet_ptr, u16 start, u16 end) 565 { 566 u16 erxrdpt; 567 568 if ((next_packet_ptr - 1 < start) || (next_packet_ptr - 1 > end)) 569 erxrdpt = end; 570 else 571 erxrdpt = next_packet_ptr - 1; 572 573 return erxrdpt; 574 } 575 576 /* 577 * Calculate wrap around when reading beyond the end of the RX buffer 578 */ 579 static u16 rx_packet_start(u16 ptr) 580 { 581 if (ptr + RSV_SIZE > RXEND_INIT) 582 return (ptr + RSV_SIZE) - (RXEND_INIT - RXSTART_INIT + 1); 583 else 584 return ptr + RSV_SIZE; 585 } 586 587 static void nolock_rxfifo_init(struct enc28j60_net *priv, u16 start, u16 end) 588 { 589 struct device *dev = &priv->spi->dev; 590 u16 erxrdpt; 591 592 if (start > 0x1FFF || end > 0x1FFF || start > end) { 593 if (netif_msg_drv(priv)) 594 dev_err(dev, "%s(%d, %d) RXFIFO bad parameters!\n", 595 __func__, start, end); 596 return; 597 } 598 /* set receive buffer start + end */ 599 priv->next_pk_ptr = start; 600 nolock_regw_write(priv, ERXSTL, start); 601 erxrdpt = erxrdpt_workaround(priv->next_pk_ptr, start, end); 602 nolock_regw_write(priv, ERXRDPTL, erxrdpt); 603 nolock_regw_write(priv, ERXNDL, end); 604 } 605 606 static void nolock_txfifo_init(struct enc28j60_net *priv, u16 start, u16 end) 607 { 608 struct device *dev = &priv->spi->dev; 609 610 if (start > 0x1FFF || end > 0x1FFF || start > end) { 611 if (netif_msg_drv(priv)) 612 dev_err(dev, "%s(%d, %d) TXFIFO bad parameters!\n", 613 __func__, start, end); 614 return; 615 } 616 /* set transmit buffer start + end */ 617 nolock_regw_write(priv, ETXSTL, start); 618 nolock_regw_write(priv, ETXNDL, end); 619 } 620 621 /* 622 * Low power mode shrinks power consumption about 100x, so we'd like 623 * the chip to be in that mode whenever it's inactive. (However, we 624 * can't stay in low power mode during suspend with WOL active.) 625 */ 626 static void enc28j60_lowpower(struct enc28j60_net *priv, bool is_low) 627 { 628 struct device *dev = &priv->spi->dev; 629 630 if (netif_msg_drv(priv)) 631 dev_dbg(dev, "%s power...\n", is_low ? "low" : "high"); 632 633 mutex_lock(&priv->lock); 634 if (is_low) { 635 nolock_reg_bfclr(priv, ECON1, ECON1_RXEN); 636 poll_ready(priv, ESTAT, ESTAT_RXBUSY, 0); 637 poll_ready(priv, ECON1, ECON1_TXRTS, 0); 638 /* ECON2_VRPS was set during initialization */ 639 nolock_reg_bfset(priv, ECON2, ECON2_PWRSV); 640 } else { 641 nolock_reg_bfclr(priv, ECON2, ECON2_PWRSV); 642 poll_ready(priv, ESTAT, ESTAT_CLKRDY, ESTAT_CLKRDY); 643 /* caller sets ECON1_RXEN */ 644 } 645 mutex_unlock(&priv->lock); 646 } 647 648 static int enc28j60_hw_init(struct enc28j60_net *priv) 649 { 650 struct device *dev = &priv->spi->dev; 651 u8 reg; 652 653 if (netif_msg_drv(priv)) 654 dev_printk(KERN_DEBUG, dev, "%s() - %s\n", __func__, 655 priv->full_duplex ? "FullDuplex" : "HalfDuplex"); 656 657 mutex_lock(&priv->lock); 658 /* first reset the chip */ 659 enc28j60_soft_reset(priv); 660 /* Clear ECON1 */ 661 spi_write_op(priv, ENC28J60_WRITE_CTRL_REG, ECON1, 0x00); 662 priv->bank = 0; 663 priv->hw_enable = false; 664 priv->tx_retry_count = 0; 665 priv->max_pk_counter = 0; 666 priv->rxfilter = RXFILTER_NORMAL; 667 /* enable address auto increment and voltage regulator powersave */ 668 nolock_regb_write(priv, ECON2, ECON2_AUTOINC | ECON2_VRPS); 669 670 nolock_rxfifo_init(priv, RXSTART_INIT, RXEND_INIT); 671 nolock_txfifo_init(priv, TXSTART_INIT, TXEND_INIT); 672 mutex_unlock(&priv->lock); 673 674 /* 675 * Check the RevID. 676 * If it's 0x00 or 0xFF probably the enc28j60 is not mounted or 677 * damaged. 678 */ 679 reg = locked_regb_read(priv, EREVID); 680 if (netif_msg_drv(priv)) 681 dev_info(dev, "chip RevID: 0x%02x\n", reg); 682 if (reg == 0x00 || reg == 0xff) { 683 if (netif_msg_drv(priv)) 684 dev_printk(KERN_DEBUG, dev, "%s() Invalid RevId %d\n", 685 __func__, reg); 686 return 0; 687 } 688 689 /* default filter mode: (unicast OR broadcast) AND crc valid */ 690 locked_regb_write(priv, ERXFCON, 691 ERXFCON_UCEN | ERXFCON_CRCEN | ERXFCON_BCEN); 692 693 /* enable MAC receive */ 694 locked_regb_write(priv, MACON1, 695 MACON1_MARXEN | MACON1_TXPAUS | MACON1_RXPAUS); 696 /* enable automatic padding and CRC operations */ 697 if (priv->full_duplex) { 698 locked_regb_write(priv, MACON3, 699 MACON3_PADCFG0 | MACON3_TXCRCEN | 700 MACON3_FRMLNEN | MACON3_FULDPX); 701 /* set inter-frame gap (non-back-to-back) */ 702 locked_regb_write(priv, MAIPGL, 0x12); 703 /* set inter-frame gap (back-to-back) */ 704 locked_regb_write(priv, MABBIPG, 0x15); 705 } else { 706 locked_regb_write(priv, MACON3, 707 MACON3_PADCFG0 | MACON3_TXCRCEN | 708 MACON3_FRMLNEN); 709 locked_regb_write(priv, MACON4, 1 << 6); /* DEFER bit */ 710 /* set inter-frame gap (non-back-to-back) */ 711 locked_regw_write(priv, MAIPGL, 0x0C12); 712 /* set inter-frame gap (back-to-back) */ 713 locked_regb_write(priv, MABBIPG, 0x12); 714 } 715 /* 716 * MACLCON1 (default) 717 * MACLCON2 (default) 718 * Set the maximum packet size which the controller will accept. 719 */ 720 locked_regw_write(priv, MAMXFLL, MAX_FRAMELEN); 721 722 /* Configure LEDs */ 723 if (!enc28j60_phy_write(priv, PHLCON, ENC28J60_LAMPS_MODE)) 724 return 0; 725 726 if (priv->full_duplex) { 727 if (!enc28j60_phy_write(priv, PHCON1, PHCON1_PDPXMD)) 728 return 0; 729 if (!enc28j60_phy_write(priv, PHCON2, 0x00)) 730 return 0; 731 } else { 732 if (!enc28j60_phy_write(priv, PHCON1, 0x00)) 733 return 0; 734 if (!enc28j60_phy_write(priv, PHCON2, PHCON2_HDLDIS)) 735 return 0; 736 } 737 if (netif_msg_hw(priv)) 738 enc28j60_dump_regs(priv, "Hw initialized."); 739 740 return 1; 741 } 742 743 static void enc28j60_hw_enable(struct enc28j60_net *priv) 744 { 745 struct device *dev = &priv->spi->dev; 746 747 /* enable interrupts */ 748 if (netif_msg_hw(priv)) 749 dev_printk(KERN_DEBUG, dev, "%s() enabling interrupts.\n", 750 __func__); 751 752 enc28j60_phy_write(priv, PHIE, PHIE_PGEIE | PHIE_PLNKIE); 753 754 mutex_lock(&priv->lock); 755 nolock_reg_bfclr(priv, EIR, EIR_DMAIF | EIR_LINKIF | 756 EIR_TXIF | EIR_TXERIF | EIR_RXERIF | EIR_PKTIF); 757 nolock_regb_write(priv, EIE, EIE_INTIE | EIE_PKTIE | EIE_LINKIE | 758 EIE_TXIE | EIE_TXERIE | EIE_RXERIE); 759 760 /* enable receive logic */ 761 nolock_reg_bfset(priv, ECON1, ECON1_RXEN); 762 priv->hw_enable = true; 763 mutex_unlock(&priv->lock); 764 } 765 766 static void enc28j60_hw_disable(struct enc28j60_net *priv) 767 { 768 mutex_lock(&priv->lock); 769 /* disable interrupts and packet reception */ 770 nolock_regb_write(priv, EIE, 0x00); 771 nolock_reg_bfclr(priv, ECON1, ECON1_RXEN); 772 priv->hw_enable = false; 773 mutex_unlock(&priv->lock); 774 } 775 776 static int 777 enc28j60_setlink(struct net_device *ndev, u8 autoneg, u16 speed, u8 duplex) 778 { 779 struct enc28j60_net *priv = netdev_priv(ndev); 780 int ret = 0; 781 782 if (!priv->hw_enable) { 783 /* link is in low power mode now; duplex setting 784 * will take effect on next enc28j60_hw_init(). 785 */ 786 if (autoneg == AUTONEG_DISABLE && speed == SPEED_10) 787 priv->full_duplex = (duplex == DUPLEX_FULL); 788 else { 789 if (netif_msg_link(priv)) 790 netdev_warn(ndev, "unsupported link setting\n"); 791 ret = -EOPNOTSUPP; 792 } 793 } else { 794 if (netif_msg_link(priv)) 795 netdev_warn(ndev, "Warning: hw must be disabled to set link mode\n"); 796 ret = -EBUSY; 797 } 798 return ret; 799 } 800 801 /* 802 * Read the Transmit Status Vector 803 */ 804 static void enc28j60_read_tsv(struct enc28j60_net *priv, u8 tsv[TSV_SIZE]) 805 { 806 struct device *dev = &priv->spi->dev; 807 int endptr; 808 809 endptr = locked_regw_read(priv, ETXNDL); 810 if (netif_msg_hw(priv)) 811 dev_printk(KERN_DEBUG, dev, "reading TSV at addr:0x%04x\n", 812 endptr + 1); 813 enc28j60_mem_read(priv, endptr + 1, TSV_SIZE, tsv); 814 } 815 816 static void enc28j60_dump_tsv(struct enc28j60_net *priv, const char *msg, 817 u8 tsv[TSV_SIZE]) 818 { 819 struct device *dev = &priv->spi->dev; 820 u16 tmp1, tmp2; 821 822 dev_printk(KERN_DEBUG, dev, "%s - TSV:\n", msg); 823 tmp1 = tsv[1]; 824 tmp1 <<= 8; 825 tmp1 |= tsv[0]; 826 827 tmp2 = tsv[5]; 828 tmp2 <<= 8; 829 tmp2 |= tsv[4]; 830 831 dev_printk(KERN_DEBUG, dev, 832 "ByteCount: %d, CollisionCount: %d, TotByteOnWire: %d\n", 833 tmp1, tsv[2] & 0x0f, tmp2); 834 dev_printk(KERN_DEBUG, dev, 835 "TxDone: %d, CRCErr:%d, LenChkErr: %d, LenOutOfRange: %d\n", 836 TSV_GETBIT(tsv, TSV_TXDONE), 837 TSV_GETBIT(tsv, TSV_TXCRCERROR), 838 TSV_GETBIT(tsv, TSV_TXLENCHKERROR), 839 TSV_GETBIT(tsv, TSV_TXLENOUTOFRANGE)); 840 dev_printk(KERN_DEBUG, dev, 841 "Multicast: %d, Broadcast: %d, PacketDefer: %d, ExDefer: %d\n", 842 TSV_GETBIT(tsv, TSV_TXMULTICAST), 843 TSV_GETBIT(tsv, TSV_TXBROADCAST), 844 TSV_GETBIT(tsv, TSV_TXPACKETDEFER), 845 TSV_GETBIT(tsv, TSV_TXEXDEFER)); 846 dev_printk(KERN_DEBUG, dev, 847 "ExCollision: %d, LateCollision: %d, Giant: %d, Underrun: %d\n", 848 TSV_GETBIT(tsv, TSV_TXEXCOLLISION), 849 TSV_GETBIT(tsv, TSV_TXLATECOLLISION), 850 TSV_GETBIT(tsv, TSV_TXGIANT), TSV_GETBIT(tsv, TSV_TXUNDERRUN)); 851 dev_printk(KERN_DEBUG, dev, 852 "ControlFrame: %d, PauseFrame: %d, BackPressApp: %d, VLanTagFrame: %d\n", 853 TSV_GETBIT(tsv, TSV_TXCONTROLFRAME), 854 TSV_GETBIT(tsv, TSV_TXPAUSEFRAME), 855 TSV_GETBIT(tsv, TSV_BACKPRESSUREAPP), 856 TSV_GETBIT(tsv, TSV_TXVLANTAGFRAME)); 857 } 858 859 /* 860 * Receive Status vector 861 */ 862 static void enc28j60_dump_rsv(struct enc28j60_net *priv, const char *msg, 863 u16 pk_ptr, int len, u16 sts) 864 { 865 struct device *dev = &priv->spi->dev; 866 867 dev_printk(KERN_DEBUG, dev, "%s - NextPk: 0x%04x - RSV:\n", msg, pk_ptr); 868 dev_printk(KERN_DEBUG, dev, "ByteCount: %d, DribbleNibble: %d\n", 869 len, RSV_GETBIT(sts, RSV_DRIBBLENIBBLE)); 870 dev_printk(KERN_DEBUG, dev, 871 "RxOK: %d, CRCErr:%d, LenChkErr: %d, LenOutOfRange: %d\n", 872 RSV_GETBIT(sts, RSV_RXOK), 873 RSV_GETBIT(sts, RSV_CRCERROR), 874 RSV_GETBIT(sts, RSV_LENCHECKERR), 875 RSV_GETBIT(sts, RSV_LENOUTOFRANGE)); 876 dev_printk(KERN_DEBUG, dev, 877 "Multicast: %d, Broadcast: %d, LongDropEvent: %d, CarrierEvent: %d\n", 878 RSV_GETBIT(sts, RSV_RXMULTICAST), 879 RSV_GETBIT(sts, RSV_RXBROADCAST), 880 RSV_GETBIT(sts, RSV_RXLONGEVDROPEV), 881 RSV_GETBIT(sts, RSV_CARRIEREV)); 882 dev_printk(KERN_DEBUG, dev, 883 "ControlFrame: %d, PauseFrame: %d, UnknownOp: %d, VLanTagFrame: %d\n", 884 RSV_GETBIT(sts, RSV_RXCONTROLFRAME), 885 RSV_GETBIT(sts, RSV_RXPAUSEFRAME), 886 RSV_GETBIT(sts, RSV_RXUNKNOWNOPCODE), 887 RSV_GETBIT(sts, RSV_RXTYPEVLAN)); 888 } 889 890 static void dump_packet(const char *msg, int len, const char *data) 891 { 892 printk(KERN_DEBUG DRV_NAME ": %s - packet len:%d\n", msg, len); 893 print_hex_dump(KERN_DEBUG, "pk data: ", DUMP_PREFIX_OFFSET, 16, 1, 894 data, len, true); 895 } 896 897 /* 898 * Hardware receive function. 899 * Read the buffer memory, update the FIFO pointer to free the buffer, 900 * check the status vector and decrement the packet counter. 901 */ 902 static void enc28j60_hw_rx(struct net_device *ndev) 903 { 904 struct enc28j60_net *priv = netdev_priv(ndev); 905 struct device *dev = &priv->spi->dev; 906 struct sk_buff *skb = NULL; 907 u16 erxrdpt, next_packet, rxstat; 908 u8 rsv[RSV_SIZE]; 909 int len; 910 911 if (netif_msg_rx_status(priv)) 912 netdev_printk(KERN_DEBUG, ndev, "RX pk_addr:0x%04x\n", 913 priv->next_pk_ptr); 914 915 if (unlikely(priv->next_pk_ptr > RXEND_INIT)) { 916 if (netif_msg_rx_err(priv)) 917 netdev_err(ndev, "%s() Invalid packet address!! 0x%04x\n", 918 __func__, priv->next_pk_ptr); 919 /* packet address corrupted: reset RX logic */ 920 mutex_lock(&priv->lock); 921 nolock_reg_bfclr(priv, ECON1, ECON1_RXEN); 922 nolock_reg_bfset(priv, ECON1, ECON1_RXRST); 923 nolock_reg_bfclr(priv, ECON1, ECON1_RXRST); 924 nolock_rxfifo_init(priv, RXSTART_INIT, RXEND_INIT); 925 nolock_reg_bfclr(priv, EIR, EIR_RXERIF); 926 nolock_reg_bfset(priv, ECON1, ECON1_RXEN); 927 mutex_unlock(&priv->lock); 928 ndev->stats.rx_errors++; 929 return; 930 } 931 /* Read next packet pointer and rx status vector */ 932 enc28j60_mem_read(priv, priv->next_pk_ptr, sizeof(rsv), rsv); 933 934 next_packet = rsv[1]; 935 next_packet <<= 8; 936 next_packet |= rsv[0]; 937 938 len = rsv[3]; 939 len <<= 8; 940 len |= rsv[2]; 941 942 rxstat = rsv[5]; 943 rxstat <<= 8; 944 rxstat |= rsv[4]; 945 946 if (netif_msg_rx_status(priv)) 947 enc28j60_dump_rsv(priv, __func__, next_packet, len, rxstat); 948 949 if (!RSV_GETBIT(rxstat, RSV_RXOK) || len > MAX_FRAMELEN) { 950 if (netif_msg_rx_err(priv)) 951 netdev_err(ndev, "Rx Error (%04x)\n", rxstat); 952 ndev->stats.rx_errors++; 953 if (RSV_GETBIT(rxstat, RSV_CRCERROR)) 954 ndev->stats.rx_crc_errors++; 955 if (RSV_GETBIT(rxstat, RSV_LENCHECKERR)) 956 ndev->stats.rx_frame_errors++; 957 if (len > MAX_FRAMELEN) 958 ndev->stats.rx_over_errors++; 959 } else { 960 skb = netdev_alloc_skb(ndev, len + NET_IP_ALIGN); 961 if (!skb) { 962 if (netif_msg_rx_err(priv)) 963 netdev_err(ndev, "out of memory for Rx'd frame\n"); 964 ndev->stats.rx_dropped++; 965 } else { 966 skb_reserve(skb, NET_IP_ALIGN); 967 /* copy the packet from the receive buffer */ 968 enc28j60_mem_read(priv, 969 rx_packet_start(priv->next_pk_ptr), 970 len, skb_put(skb, len)); 971 if (netif_msg_pktdata(priv)) 972 dump_packet(__func__, skb->len, skb->data); 973 skb->protocol = eth_type_trans(skb, ndev); 974 /* update statistics */ 975 ndev->stats.rx_packets++; 976 ndev->stats.rx_bytes += len; 977 netif_rx(skb); 978 } 979 } 980 /* 981 * Move the RX read pointer to the start of the next 982 * received packet. 983 * This frees the memory we just read out. 984 */ 985 erxrdpt = erxrdpt_workaround(next_packet, RXSTART_INIT, RXEND_INIT); 986 if (netif_msg_hw(priv)) 987 dev_printk(KERN_DEBUG, dev, "%s() ERXRDPT:0x%04x\n", 988 __func__, erxrdpt); 989 990 mutex_lock(&priv->lock); 991 nolock_regw_write(priv, ERXRDPTL, erxrdpt); 992 #ifdef CONFIG_ENC28J60_WRITEVERIFY 993 if (netif_msg_drv(priv)) { 994 u16 reg; 995 reg = nolock_regw_read(priv, ERXRDPTL); 996 if (reg != erxrdpt) 997 dev_printk(KERN_DEBUG, dev, 998 "%s() ERXRDPT verify error (0x%04x - 0x%04x)\n", 999 __func__, reg, erxrdpt); 1000 } 1001 #endif 1002 priv->next_pk_ptr = next_packet; 1003 /* we are done with this packet, decrement the packet counter */ 1004 nolock_reg_bfset(priv, ECON2, ECON2_PKTDEC); 1005 mutex_unlock(&priv->lock); 1006 } 1007 1008 /* 1009 * Calculate free space in RxFIFO 1010 */ 1011 static int enc28j60_get_free_rxfifo(struct enc28j60_net *priv) 1012 { 1013 struct net_device *ndev = priv->netdev; 1014 int epkcnt, erxst, erxnd, erxwr, erxrd; 1015 int free_space; 1016 1017 mutex_lock(&priv->lock); 1018 epkcnt = nolock_regb_read(priv, EPKTCNT); 1019 if (epkcnt >= 255) 1020 free_space = -1; 1021 else { 1022 erxst = nolock_regw_read(priv, ERXSTL); 1023 erxnd = nolock_regw_read(priv, ERXNDL); 1024 erxwr = nolock_regw_read(priv, ERXWRPTL); 1025 erxrd = nolock_regw_read(priv, ERXRDPTL); 1026 1027 if (erxwr > erxrd) 1028 free_space = (erxnd - erxst) - (erxwr - erxrd); 1029 else if (erxwr == erxrd) 1030 free_space = (erxnd - erxst); 1031 else 1032 free_space = erxrd - erxwr - 1; 1033 } 1034 mutex_unlock(&priv->lock); 1035 if (netif_msg_rx_status(priv)) 1036 netdev_printk(KERN_DEBUG, ndev, "%s() free_space = %d\n", 1037 __func__, free_space); 1038 return free_space; 1039 } 1040 1041 /* 1042 * Access the PHY to determine link status 1043 */ 1044 static void enc28j60_check_link_status(struct net_device *ndev) 1045 { 1046 struct enc28j60_net *priv = netdev_priv(ndev); 1047 struct device *dev = &priv->spi->dev; 1048 u16 reg; 1049 int duplex; 1050 1051 reg = enc28j60_phy_read(priv, PHSTAT2); 1052 if (netif_msg_hw(priv)) 1053 dev_printk(KERN_DEBUG, dev, 1054 "%s() PHSTAT1: %04x, PHSTAT2: %04x\n", __func__, 1055 enc28j60_phy_read(priv, PHSTAT1), reg); 1056 duplex = reg & PHSTAT2_DPXSTAT; 1057 1058 if (reg & PHSTAT2_LSTAT) { 1059 netif_carrier_on(ndev); 1060 if (netif_msg_ifup(priv)) 1061 netdev_info(ndev, "link up - %s\n", 1062 duplex ? "Full duplex" : "Half duplex"); 1063 } else { 1064 if (netif_msg_ifdown(priv)) 1065 netdev_info(ndev, "link down\n"); 1066 netif_carrier_off(ndev); 1067 } 1068 } 1069 1070 static void enc28j60_tx_clear(struct net_device *ndev, bool err) 1071 { 1072 struct enc28j60_net *priv = netdev_priv(ndev); 1073 1074 if (err) 1075 ndev->stats.tx_errors++; 1076 else 1077 ndev->stats.tx_packets++; 1078 1079 if (priv->tx_skb) { 1080 if (!err) 1081 ndev->stats.tx_bytes += priv->tx_skb->len; 1082 dev_kfree_skb(priv->tx_skb); 1083 priv->tx_skb = NULL; 1084 } 1085 locked_reg_bfclr(priv, ECON1, ECON1_TXRTS); 1086 netif_wake_queue(ndev); 1087 } 1088 1089 /* 1090 * RX handler 1091 * Ignore PKTIF because is unreliable! (Look at the errata datasheet) 1092 * Check EPKTCNT is the suggested workaround. 1093 * We don't need to clear interrupt flag, automatically done when 1094 * enc28j60_hw_rx() decrements the packet counter. 1095 * Returns how many packet processed. 1096 */ 1097 static int enc28j60_rx_interrupt(struct net_device *ndev) 1098 { 1099 struct enc28j60_net *priv = netdev_priv(ndev); 1100 int pk_counter, ret; 1101 1102 pk_counter = locked_regb_read(priv, EPKTCNT); 1103 if (pk_counter && netif_msg_intr(priv)) 1104 netdev_printk(KERN_DEBUG, ndev, "intRX, pk_cnt: %d\n", 1105 pk_counter); 1106 if (pk_counter > priv->max_pk_counter) { 1107 /* update statistics */ 1108 priv->max_pk_counter = pk_counter; 1109 if (netif_msg_rx_status(priv) && priv->max_pk_counter > 1) 1110 netdev_printk(KERN_DEBUG, ndev, "RX max_pk_cnt: %d\n", 1111 priv->max_pk_counter); 1112 } 1113 ret = pk_counter; 1114 while (pk_counter-- > 0) 1115 enc28j60_hw_rx(ndev); 1116 1117 return ret; 1118 } 1119 1120 static irqreturn_t enc28j60_irq(int irq, void *dev_id) 1121 { 1122 struct enc28j60_net *priv = dev_id; 1123 struct net_device *ndev = priv->netdev; 1124 int intflags, loop; 1125 1126 /* disable further interrupts */ 1127 locked_reg_bfclr(priv, EIE, EIE_INTIE); 1128 1129 do { 1130 loop = 0; 1131 intflags = locked_regb_read(priv, EIR); 1132 /* DMA interrupt handler (not currently used) */ 1133 if ((intflags & EIR_DMAIF) != 0) { 1134 loop++; 1135 if (netif_msg_intr(priv)) 1136 netdev_printk(KERN_DEBUG, ndev, "intDMA(%d)\n", 1137 loop); 1138 locked_reg_bfclr(priv, EIR, EIR_DMAIF); 1139 } 1140 /* LINK changed handler */ 1141 if ((intflags & EIR_LINKIF) != 0) { 1142 loop++; 1143 if (netif_msg_intr(priv)) 1144 netdev_printk(KERN_DEBUG, ndev, "intLINK(%d)\n", 1145 loop); 1146 enc28j60_check_link_status(ndev); 1147 /* read PHIR to clear the flag */ 1148 enc28j60_phy_read(priv, PHIR); 1149 } 1150 /* TX complete handler */ 1151 if (((intflags & EIR_TXIF) != 0) && 1152 ((intflags & EIR_TXERIF) == 0)) { 1153 bool err = false; 1154 loop++; 1155 if (netif_msg_intr(priv)) 1156 netdev_printk(KERN_DEBUG, ndev, "intTX(%d)\n", 1157 loop); 1158 priv->tx_retry_count = 0; 1159 if (locked_regb_read(priv, ESTAT) & ESTAT_TXABRT) { 1160 if (netif_msg_tx_err(priv)) 1161 netdev_err(ndev, "Tx Error (aborted)\n"); 1162 err = true; 1163 } 1164 if (netif_msg_tx_done(priv)) { 1165 u8 tsv[TSV_SIZE]; 1166 enc28j60_read_tsv(priv, tsv); 1167 enc28j60_dump_tsv(priv, "Tx Done", tsv); 1168 } 1169 enc28j60_tx_clear(ndev, err); 1170 locked_reg_bfclr(priv, EIR, EIR_TXIF); 1171 } 1172 /* TX Error handler */ 1173 if ((intflags & EIR_TXERIF) != 0) { 1174 u8 tsv[TSV_SIZE]; 1175 1176 loop++; 1177 if (netif_msg_intr(priv)) 1178 netdev_printk(KERN_DEBUG, ndev, "intTXErr(%d)\n", 1179 loop); 1180 locked_reg_bfclr(priv, ECON1, ECON1_TXRTS); 1181 enc28j60_read_tsv(priv, tsv); 1182 if (netif_msg_tx_err(priv)) 1183 enc28j60_dump_tsv(priv, "Tx Error", tsv); 1184 /* Reset TX logic */ 1185 mutex_lock(&priv->lock); 1186 nolock_reg_bfset(priv, ECON1, ECON1_TXRST); 1187 nolock_reg_bfclr(priv, ECON1, ECON1_TXRST); 1188 nolock_txfifo_init(priv, TXSTART_INIT, TXEND_INIT); 1189 mutex_unlock(&priv->lock); 1190 /* Transmit Late collision check for retransmit */ 1191 if (TSV_GETBIT(tsv, TSV_TXLATECOLLISION)) { 1192 if (netif_msg_tx_err(priv)) 1193 netdev_printk(KERN_DEBUG, ndev, 1194 "LateCollision TXErr (%d)\n", 1195 priv->tx_retry_count); 1196 if (priv->tx_retry_count++ < MAX_TX_RETRYCOUNT) 1197 locked_reg_bfset(priv, ECON1, 1198 ECON1_TXRTS); 1199 else 1200 enc28j60_tx_clear(ndev, true); 1201 } else 1202 enc28j60_tx_clear(ndev, true); 1203 locked_reg_bfclr(priv, EIR, EIR_TXERIF | EIR_TXIF); 1204 } 1205 /* RX Error handler */ 1206 if ((intflags & EIR_RXERIF) != 0) { 1207 loop++; 1208 if (netif_msg_intr(priv)) 1209 netdev_printk(KERN_DEBUG, ndev, "intRXErr(%d)\n", 1210 loop); 1211 /* Check free FIFO space to flag RX overrun */ 1212 if (enc28j60_get_free_rxfifo(priv) <= 0) { 1213 if (netif_msg_rx_err(priv)) 1214 netdev_printk(KERN_DEBUG, ndev, "RX Overrun\n"); 1215 ndev->stats.rx_dropped++; 1216 } 1217 locked_reg_bfclr(priv, EIR, EIR_RXERIF); 1218 } 1219 /* RX handler */ 1220 if (enc28j60_rx_interrupt(ndev)) 1221 loop++; 1222 } while (loop); 1223 1224 /* re-enable interrupts */ 1225 locked_reg_bfset(priv, EIE, EIE_INTIE); 1226 1227 return IRQ_HANDLED; 1228 } 1229 1230 /* 1231 * Hardware transmit function. 1232 * Fill the buffer memory and send the contents of the transmit buffer 1233 * onto the network 1234 */ 1235 static void enc28j60_hw_tx(struct enc28j60_net *priv) 1236 { 1237 struct net_device *ndev = priv->netdev; 1238 1239 BUG_ON(!priv->tx_skb); 1240 1241 if (netif_msg_tx_queued(priv)) 1242 netdev_printk(KERN_DEBUG, ndev, "Tx Packet Len:%d\n", 1243 priv->tx_skb->len); 1244 1245 if (netif_msg_pktdata(priv)) 1246 dump_packet(__func__, 1247 priv->tx_skb->len, priv->tx_skb->data); 1248 enc28j60_packet_write(priv, priv->tx_skb->len, priv->tx_skb->data); 1249 1250 #ifdef CONFIG_ENC28J60_WRITEVERIFY 1251 /* readback and verify written data */ 1252 if (netif_msg_drv(priv)) { 1253 struct device *dev = &priv->spi->dev; 1254 int test_len, k; 1255 u8 test_buf[64]; /* limit the test to the first 64 bytes */ 1256 int okflag; 1257 1258 test_len = priv->tx_skb->len; 1259 if (test_len > sizeof(test_buf)) 1260 test_len = sizeof(test_buf); 1261 1262 /* + 1 to skip control byte */ 1263 enc28j60_mem_read(priv, TXSTART_INIT + 1, test_len, test_buf); 1264 okflag = 1; 1265 for (k = 0; k < test_len; k++) { 1266 if (priv->tx_skb->data[k] != test_buf[k]) { 1267 dev_printk(KERN_DEBUG, dev, 1268 "Error, %d location differ: 0x%02x-0x%02x\n", 1269 k, priv->tx_skb->data[k], test_buf[k]); 1270 okflag = 0; 1271 } 1272 } 1273 if (!okflag) 1274 dev_printk(KERN_DEBUG, dev, "Tx write buffer, verify ERROR!\n"); 1275 } 1276 #endif 1277 /* set TX request flag */ 1278 locked_reg_bfset(priv, ECON1, ECON1_TXRTS); 1279 } 1280 1281 static netdev_tx_t enc28j60_send_packet(struct sk_buff *skb, 1282 struct net_device *dev) 1283 { 1284 struct enc28j60_net *priv = netdev_priv(dev); 1285 1286 /* If some error occurs while trying to transmit this 1287 * packet, you should return '1' from this function. 1288 * In such a case you _may not_ do anything to the 1289 * SKB, it is still owned by the network queueing 1290 * layer when an error is returned. This means you 1291 * may not modify any SKB fields, you may not free 1292 * the SKB, etc. 1293 */ 1294 netif_stop_queue(dev); 1295 1296 /* Remember the skb for deferred processing */ 1297 priv->tx_skb = skb; 1298 schedule_work(&priv->tx_work); 1299 1300 return NETDEV_TX_OK; 1301 } 1302 1303 static void enc28j60_tx_work_handler(struct work_struct *work) 1304 { 1305 struct enc28j60_net *priv = 1306 container_of(work, struct enc28j60_net, tx_work); 1307 1308 /* actual delivery of data */ 1309 enc28j60_hw_tx(priv); 1310 } 1311 1312 static void enc28j60_tx_timeout(struct net_device *ndev, unsigned int txqueue) 1313 { 1314 struct enc28j60_net *priv = netdev_priv(ndev); 1315 1316 if (netif_msg_timer(priv)) 1317 netdev_err(ndev, "tx timeout\n"); 1318 1319 ndev->stats.tx_errors++; 1320 /* can't restart safely under softirq */ 1321 schedule_work(&priv->restart_work); 1322 } 1323 1324 /* 1325 * Open/initialize the board. This is called (in the current kernel) 1326 * sometime after booting when the 'ifconfig' program is run. 1327 * 1328 * This routine should set everything up anew at each open, even 1329 * registers that "should" only need to be set once at boot, so that 1330 * there is non-reboot way to recover if something goes wrong. 1331 */ 1332 static int enc28j60_net_open(struct net_device *dev) 1333 { 1334 struct enc28j60_net *priv = netdev_priv(dev); 1335 1336 if (!is_valid_ether_addr(dev->dev_addr)) { 1337 if (netif_msg_ifup(priv)) 1338 netdev_err(dev, "invalid MAC address %pM\n", dev->dev_addr); 1339 return -EADDRNOTAVAIL; 1340 } 1341 /* Reset the hardware here (and take it out of low power mode) */ 1342 enc28j60_lowpower(priv, false); 1343 enc28j60_hw_disable(priv); 1344 if (!enc28j60_hw_init(priv)) { 1345 if (netif_msg_ifup(priv)) 1346 netdev_err(dev, "hw_reset() failed\n"); 1347 return -EINVAL; 1348 } 1349 /* Update the MAC address (in case user has changed it) */ 1350 enc28j60_set_hw_macaddr(dev); 1351 /* Enable interrupts */ 1352 enc28j60_hw_enable(priv); 1353 /* check link status */ 1354 enc28j60_check_link_status(dev); 1355 /* We are now ready to accept transmit requests from 1356 * the queueing layer of the networking. 1357 */ 1358 netif_start_queue(dev); 1359 1360 return 0; 1361 } 1362 1363 /* The inverse routine to net_open(). */ 1364 static int enc28j60_net_close(struct net_device *dev) 1365 { 1366 struct enc28j60_net *priv = netdev_priv(dev); 1367 1368 enc28j60_hw_disable(priv); 1369 enc28j60_lowpower(priv, true); 1370 netif_stop_queue(dev); 1371 1372 return 0; 1373 } 1374 1375 /* 1376 * Set or clear the multicast filter for this adapter 1377 * num_addrs == -1 Promiscuous mode, receive all packets 1378 * num_addrs == 0 Normal mode, filter out multicast packets 1379 * num_addrs > 0 Multicast mode, receive normal and MC packets 1380 */ 1381 static void enc28j60_set_multicast_list(struct net_device *dev) 1382 { 1383 struct enc28j60_net *priv = netdev_priv(dev); 1384 int oldfilter = priv->rxfilter; 1385 1386 if (dev->flags & IFF_PROMISC) { 1387 if (netif_msg_link(priv)) 1388 netdev_info(dev, "promiscuous mode\n"); 1389 priv->rxfilter = RXFILTER_PROMISC; 1390 } else if ((dev->flags & IFF_ALLMULTI) || !netdev_mc_empty(dev)) { 1391 if (netif_msg_link(priv)) 1392 netdev_info(dev, "%smulticast mode\n", 1393 (dev->flags & IFF_ALLMULTI) ? "all-" : ""); 1394 priv->rxfilter = RXFILTER_MULTI; 1395 } else { 1396 if (netif_msg_link(priv)) 1397 netdev_info(dev, "normal mode\n"); 1398 priv->rxfilter = RXFILTER_NORMAL; 1399 } 1400 1401 if (oldfilter != priv->rxfilter) 1402 schedule_work(&priv->setrx_work); 1403 } 1404 1405 static void enc28j60_setrx_work_handler(struct work_struct *work) 1406 { 1407 struct enc28j60_net *priv = 1408 container_of(work, struct enc28j60_net, setrx_work); 1409 struct device *dev = &priv->spi->dev; 1410 1411 if (priv->rxfilter == RXFILTER_PROMISC) { 1412 if (netif_msg_drv(priv)) 1413 dev_printk(KERN_DEBUG, dev, "promiscuous mode\n"); 1414 locked_regb_write(priv, ERXFCON, 0x00); 1415 } else if (priv->rxfilter == RXFILTER_MULTI) { 1416 if (netif_msg_drv(priv)) 1417 dev_printk(KERN_DEBUG, dev, "multicast mode\n"); 1418 locked_regb_write(priv, ERXFCON, 1419 ERXFCON_UCEN | ERXFCON_CRCEN | 1420 ERXFCON_BCEN | ERXFCON_MCEN); 1421 } else { 1422 if (netif_msg_drv(priv)) 1423 dev_printk(KERN_DEBUG, dev, "normal mode\n"); 1424 locked_regb_write(priv, ERXFCON, 1425 ERXFCON_UCEN | ERXFCON_CRCEN | 1426 ERXFCON_BCEN); 1427 } 1428 } 1429 1430 static void enc28j60_restart_work_handler(struct work_struct *work) 1431 { 1432 struct enc28j60_net *priv = 1433 container_of(work, struct enc28j60_net, restart_work); 1434 struct net_device *ndev = priv->netdev; 1435 int ret; 1436 1437 rtnl_lock(); 1438 if (netif_running(ndev)) { 1439 enc28j60_net_close(ndev); 1440 ret = enc28j60_net_open(ndev); 1441 if (unlikely(ret)) { 1442 netdev_info(ndev, "could not restart %d\n", ret); 1443 dev_close(ndev); 1444 } 1445 } 1446 rtnl_unlock(); 1447 } 1448 1449 /* ......................... ETHTOOL SUPPORT ........................... */ 1450 1451 static void 1452 enc28j60_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info) 1453 { 1454 strscpy(info->driver, DRV_NAME, sizeof(info->driver)); 1455 strscpy(info->version, DRV_VERSION, sizeof(info->version)); 1456 strscpy(info->bus_info, 1457 dev_name(dev->dev.parent), sizeof(info->bus_info)); 1458 } 1459 1460 static int 1461 enc28j60_get_link_ksettings(struct net_device *dev, 1462 struct ethtool_link_ksettings *cmd) 1463 { 1464 struct enc28j60_net *priv = netdev_priv(dev); 1465 1466 ethtool_link_ksettings_zero_link_mode(cmd, supported); 1467 ethtool_link_ksettings_add_link_mode(cmd, supported, 10baseT_Half); 1468 ethtool_link_ksettings_add_link_mode(cmd, supported, 10baseT_Full); 1469 ethtool_link_ksettings_add_link_mode(cmd, supported, TP); 1470 1471 cmd->base.speed = SPEED_10; 1472 cmd->base.duplex = priv->full_duplex ? DUPLEX_FULL : DUPLEX_HALF; 1473 cmd->base.port = PORT_TP; 1474 cmd->base.autoneg = AUTONEG_DISABLE; 1475 1476 return 0; 1477 } 1478 1479 static int 1480 enc28j60_set_link_ksettings(struct net_device *dev, 1481 const struct ethtool_link_ksettings *cmd) 1482 { 1483 return enc28j60_setlink(dev, cmd->base.autoneg, 1484 cmd->base.speed, cmd->base.duplex); 1485 } 1486 1487 static u32 enc28j60_get_msglevel(struct net_device *dev) 1488 { 1489 struct enc28j60_net *priv = netdev_priv(dev); 1490 return priv->msg_enable; 1491 } 1492 1493 static void enc28j60_set_msglevel(struct net_device *dev, u32 val) 1494 { 1495 struct enc28j60_net *priv = netdev_priv(dev); 1496 priv->msg_enable = val; 1497 } 1498 1499 static const struct ethtool_ops enc28j60_ethtool_ops = { 1500 .get_drvinfo = enc28j60_get_drvinfo, 1501 .get_msglevel = enc28j60_get_msglevel, 1502 .set_msglevel = enc28j60_set_msglevel, 1503 .get_link_ksettings = enc28j60_get_link_ksettings, 1504 .set_link_ksettings = enc28j60_set_link_ksettings, 1505 }; 1506 1507 static int enc28j60_chipset_init(struct net_device *dev) 1508 { 1509 struct enc28j60_net *priv = netdev_priv(dev); 1510 1511 return enc28j60_hw_init(priv); 1512 } 1513 1514 static const struct net_device_ops enc28j60_netdev_ops = { 1515 .ndo_open = enc28j60_net_open, 1516 .ndo_stop = enc28j60_net_close, 1517 .ndo_start_xmit = enc28j60_send_packet, 1518 .ndo_set_rx_mode = enc28j60_set_multicast_list, 1519 .ndo_set_mac_address = enc28j60_set_mac_address, 1520 .ndo_tx_timeout = enc28j60_tx_timeout, 1521 .ndo_validate_addr = eth_validate_addr, 1522 }; 1523 1524 static int enc28j60_probe(struct spi_device *spi) 1525 { 1526 struct net_device *dev; 1527 struct enc28j60_net *priv; 1528 int ret = 0; 1529 1530 if (netif_msg_drv(&debug)) 1531 dev_info(&spi->dev, "Ethernet driver %s loaded\n", DRV_VERSION); 1532 1533 dev = alloc_etherdev(sizeof(struct enc28j60_net)); 1534 if (!dev) { 1535 ret = -ENOMEM; 1536 goto error_alloc; 1537 } 1538 priv = netdev_priv(dev); 1539 1540 priv->netdev = dev; /* priv to netdev reference */ 1541 priv->spi = spi; /* priv to spi reference */ 1542 priv->msg_enable = netif_msg_init(debug.msg_enable, ENC28J60_MSG_DEFAULT); 1543 mutex_init(&priv->lock); 1544 INIT_WORK(&priv->tx_work, enc28j60_tx_work_handler); 1545 INIT_WORK(&priv->setrx_work, enc28j60_setrx_work_handler); 1546 INIT_WORK(&priv->restart_work, enc28j60_restart_work_handler); 1547 spi_set_drvdata(spi, priv); /* spi to priv reference */ 1548 SET_NETDEV_DEV(dev, &spi->dev); 1549 1550 if (!enc28j60_chipset_init(dev)) { 1551 if (netif_msg_probe(priv)) 1552 dev_info(&spi->dev, "chip not found\n"); 1553 ret = -EIO; 1554 goto error_irq; 1555 } 1556 1557 if (device_get_ethdev_address(&spi->dev, dev)) 1558 eth_hw_addr_random(dev); 1559 enc28j60_set_hw_macaddr(dev); 1560 1561 /* Board setup must set the relevant edge trigger type; 1562 * level triggers won't currently work. 1563 */ 1564 ret = request_threaded_irq(spi->irq, NULL, enc28j60_irq, IRQF_ONESHOT, 1565 DRV_NAME, priv); 1566 if (ret < 0) { 1567 if (netif_msg_probe(priv)) 1568 dev_err(&spi->dev, "request irq %d failed (ret = %d)\n", 1569 spi->irq, ret); 1570 goto error_irq; 1571 } 1572 1573 dev->if_port = IF_PORT_10BASET; 1574 dev->irq = spi->irq; 1575 dev->netdev_ops = &enc28j60_netdev_ops; 1576 dev->watchdog_timeo = TX_TIMEOUT; 1577 dev->ethtool_ops = &enc28j60_ethtool_ops; 1578 1579 enc28j60_lowpower(priv, true); 1580 1581 ret = register_netdev(dev); 1582 if (ret) { 1583 if (netif_msg_probe(priv)) 1584 dev_err(&spi->dev, "register netdev failed (ret = %d)\n", 1585 ret); 1586 goto error_register; 1587 } 1588 1589 return 0; 1590 1591 error_register: 1592 free_irq(spi->irq, priv); 1593 error_irq: 1594 free_netdev(dev); 1595 error_alloc: 1596 return ret; 1597 } 1598 1599 static void enc28j60_remove(struct spi_device *spi) 1600 { 1601 struct enc28j60_net *priv = spi_get_drvdata(spi); 1602 1603 unregister_netdev(priv->netdev); 1604 free_irq(spi->irq, priv); 1605 free_netdev(priv->netdev); 1606 } 1607 1608 static const struct of_device_id enc28j60_dt_ids[] = { 1609 { .compatible = "microchip,enc28j60" }, 1610 { /* sentinel */ } 1611 }; 1612 MODULE_DEVICE_TABLE(of, enc28j60_dt_ids); 1613 1614 static struct spi_driver enc28j60_driver = { 1615 .driver = { 1616 .name = DRV_NAME, 1617 .of_match_table = enc28j60_dt_ids, 1618 }, 1619 .probe = enc28j60_probe, 1620 .remove = enc28j60_remove, 1621 }; 1622 module_spi_driver(enc28j60_driver); 1623 1624 MODULE_DESCRIPTION(DRV_NAME " ethernet driver"); 1625 MODULE_AUTHOR("Claudio Lanconelli <lanconelli.claudio@eptar.com>"); 1626 MODULE_LICENSE("GPL"); 1627 module_param_named(debug, debug.msg_enable, int, 0); 1628 MODULE_PARM_DESC(debug, "Debug verbosity level in amount of bits set (0=none, ..., 31=all)"); 1629 MODULE_ALIAS("spi:" DRV_NAME); 1630