1 /* 2 * Microchip ENC28J60 ethernet driver (MAC + PHY) 3 * 4 * Copyright (C) 2007 Eurek srl 5 * Author: Claudio Lanconelli <lanconelli.claudio@eptar.com> 6 * based on enc28j60.c written by David Anders for 2.4 kernel version 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License as published by 10 * the Free Software Foundation; either version 2 of the License, or 11 * (at your option) any later version. 12 * 13 * $Id: enc28j60.c,v 1.22 2007/12/20 10:47:01 claudio Exp $ 14 */ 15 16 #include <linux/module.h> 17 #include <linux/kernel.h> 18 #include <linux/types.h> 19 #include <linux/fcntl.h> 20 #include <linux/interrupt.h> 21 #include <linux/string.h> 22 #include <linux/errno.h> 23 #include <linux/init.h> 24 #include <linux/netdevice.h> 25 #include <linux/etherdevice.h> 26 #include <linux/ethtool.h> 27 #include <linux/tcp.h> 28 #include <linux/skbuff.h> 29 #include <linux/delay.h> 30 #include <linux/spi/spi.h> 31 32 #include "enc28j60_hw.h" 33 34 #define DRV_NAME "enc28j60" 35 #define DRV_VERSION "1.01" 36 37 #define SPI_OPLEN 1 38 39 #define ENC28J60_MSG_DEFAULT \ 40 (NETIF_MSG_PROBE | NETIF_MSG_IFUP | NETIF_MSG_IFDOWN | NETIF_MSG_LINK) 41 42 /* Buffer size required for the largest SPI transfer (i.e., reading a 43 * frame). */ 44 #define SPI_TRANSFER_BUF_LEN (4 + MAX_FRAMELEN) 45 46 #define TX_TIMEOUT (4 * HZ) 47 48 /* Max TX retries in case of collision as suggested by errata datasheet */ 49 #define MAX_TX_RETRYCOUNT 16 50 51 enum { 52 RXFILTER_NORMAL, 53 RXFILTER_MULTI, 54 RXFILTER_PROMISC 55 }; 56 57 /* Driver local data */ 58 struct enc28j60_net { 59 struct net_device *netdev; 60 struct spi_device *spi; 61 struct mutex lock; 62 struct sk_buff *tx_skb; 63 struct work_struct tx_work; 64 struct work_struct irq_work; 65 struct work_struct setrx_work; 66 struct work_struct restart_work; 67 u8 bank; /* current register bank selected */ 68 u16 next_pk_ptr; /* next packet pointer within FIFO */ 69 u16 max_pk_counter; /* statistics: max packet counter */ 70 u16 tx_retry_count; 71 bool hw_enable; 72 bool full_duplex; 73 int rxfilter; 74 u32 msg_enable; 75 u8 spi_transfer_buf[SPI_TRANSFER_BUF_LEN]; 76 }; 77 78 /* use ethtool to change the level for any given device */ 79 static struct { 80 u32 msg_enable; 81 } debug = { -1 }; 82 83 /* 84 * SPI read buffer 85 * wait for the SPI transfer and copy received data to destination 86 */ 87 static int 88 spi_read_buf(struct enc28j60_net *priv, int len, u8 *data) 89 { 90 u8 *rx_buf = priv->spi_transfer_buf + 4; 91 u8 *tx_buf = priv->spi_transfer_buf; 92 struct spi_transfer t = { 93 .tx_buf = tx_buf, 94 .rx_buf = rx_buf, 95 .len = SPI_OPLEN + len, 96 }; 97 struct spi_message msg; 98 int ret; 99 100 tx_buf[0] = ENC28J60_READ_BUF_MEM; 101 tx_buf[1] = tx_buf[2] = tx_buf[3] = 0; /* don't care */ 102 103 spi_message_init(&msg); 104 spi_message_add_tail(&t, &msg); 105 ret = spi_sync(priv->spi, &msg); 106 if (ret == 0) { 107 memcpy(data, &rx_buf[SPI_OPLEN], len); 108 ret = msg.status; 109 } 110 if (ret && netif_msg_drv(priv)) 111 printk(KERN_DEBUG DRV_NAME ": %s() failed: ret = %d\n", 112 __func__, ret); 113 114 return ret; 115 } 116 117 /* 118 * SPI write buffer 119 */ 120 static int spi_write_buf(struct enc28j60_net *priv, int len, 121 const u8 *data) 122 { 123 int ret; 124 125 if (len > SPI_TRANSFER_BUF_LEN - 1 || len <= 0) 126 ret = -EINVAL; 127 else { 128 priv->spi_transfer_buf[0] = ENC28J60_WRITE_BUF_MEM; 129 memcpy(&priv->spi_transfer_buf[1], data, len); 130 ret = spi_write(priv->spi, priv->spi_transfer_buf, len + 1); 131 if (ret && netif_msg_drv(priv)) 132 printk(KERN_DEBUG DRV_NAME ": %s() failed: ret = %d\n", 133 __func__, ret); 134 } 135 return ret; 136 } 137 138 /* 139 * basic SPI read operation 140 */ 141 static u8 spi_read_op(struct enc28j60_net *priv, u8 op, 142 u8 addr) 143 { 144 u8 tx_buf[2]; 145 u8 rx_buf[4]; 146 u8 val = 0; 147 int ret; 148 int slen = SPI_OPLEN; 149 150 /* do dummy read if needed */ 151 if (addr & SPRD_MASK) 152 slen++; 153 154 tx_buf[0] = op | (addr & ADDR_MASK); 155 ret = spi_write_then_read(priv->spi, tx_buf, 1, rx_buf, slen); 156 if (ret) 157 printk(KERN_DEBUG DRV_NAME ": %s() failed: ret = %d\n", 158 __func__, ret); 159 else 160 val = rx_buf[slen - 1]; 161 162 return val; 163 } 164 165 /* 166 * basic SPI write operation 167 */ 168 static int spi_write_op(struct enc28j60_net *priv, u8 op, 169 u8 addr, u8 val) 170 { 171 int ret; 172 173 priv->spi_transfer_buf[0] = op | (addr & ADDR_MASK); 174 priv->spi_transfer_buf[1] = val; 175 ret = spi_write(priv->spi, priv->spi_transfer_buf, 2); 176 if (ret && netif_msg_drv(priv)) 177 printk(KERN_DEBUG DRV_NAME ": %s() failed: ret = %d\n", 178 __func__, ret); 179 return ret; 180 } 181 182 static void enc28j60_soft_reset(struct enc28j60_net *priv) 183 { 184 if (netif_msg_hw(priv)) 185 printk(KERN_DEBUG DRV_NAME ": %s() enter\n", __func__); 186 187 spi_write_op(priv, ENC28J60_SOFT_RESET, 0, ENC28J60_SOFT_RESET); 188 /* Errata workaround #1, CLKRDY check is unreliable, 189 * delay at least 1 mS instead */ 190 udelay(2000); 191 } 192 193 /* 194 * select the current register bank if necessary 195 */ 196 static void enc28j60_set_bank(struct enc28j60_net *priv, u8 addr) 197 { 198 u8 b = (addr & BANK_MASK) >> 5; 199 200 /* These registers (EIE, EIR, ESTAT, ECON2, ECON1) 201 * are present in all banks, no need to switch bank 202 */ 203 if (addr >= EIE && addr <= ECON1) 204 return; 205 206 /* Clear or set each bank selection bit as needed */ 207 if ((b & ECON1_BSEL0) != (priv->bank & ECON1_BSEL0)) { 208 if (b & ECON1_BSEL0) 209 spi_write_op(priv, ENC28J60_BIT_FIELD_SET, ECON1, 210 ECON1_BSEL0); 211 else 212 spi_write_op(priv, ENC28J60_BIT_FIELD_CLR, ECON1, 213 ECON1_BSEL0); 214 } 215 if ((b & ECON1_BSEL1) != (priv->bank & ECON1_BSEL1)) { 216 if (b & ECON1_BSEL1) 217 spi_write_op(priv, ENC28J60_BIT_FIELD_SET, ECON1, 218 ECON1_BSEL1); 219 else 220 spi_write_op(priv, ENC28J60_BIT_FIELD_CLR, ECON1, 221 ECON1_BSEL1); 222 } 223 priv->bank = b; 224 } 225 226 /* 227 * Register access routines through the SPI bus. 228 * Every register access comes in two flavours: 229 * - nolock_xxx: caller needs to invoke mutex_lock, usually to access 230 * atomically more than one register 231 * - locked_xxx: caller doesn't need to invoke mutex_lock, single access 232 * 233 * Some registers can be accessed through the bit field clear and 234 * bit field set to avoid a read modify write cycle. 235 */ 236 237 /* 238 * Register bit field Set 239 */ 240 static void nolock_reg_bfset(struct enc28j60_net *priv, 241 u8 addr, u8 mask) 242 { 243 enc28j60_set_bank(priv, addr); 244 spi_write_op(priv, ENC28J60_BIT_FIELD_SET, addr, mask); 245 } 246 247 static void locked_reg_bfset(struct enc28j60_net *priv, 248 u8 addr, u8 mask) 249 { 250 mutex_lock(&priv->lock); 251 nolock_reg_bfset(priv, addr, mask); 252 mutex_unlock(&priv->lock); 253 } 254 255 /* 256 * Register bit field Clear 257 */ 258 static void nolock_reg_bfclr(struct enc28j60_net *priv, 259 u8 addr, u8 mask) 260 { 261 enc28j60_set_bank(priv, addr); 262 spi_write_op(priv, ENC28J60_BIT_FIELD_CLR, addr, mask); 263 } 264 265 static void locked_reg_bfclr(struct enc28j60_net *priv, 266 u8 addr, u8 mask) 267 { 268 mutex_lock(&priv->lock); 269 nolock_reg_bfclr(priv, addr, mask); 270 mutex_unlock(&priv->lock); 271 } 272 273 /* 274 * Register byte read 275 */ 276 static int nolock_regb_read(struct enc28j60_net *priv, 277 u8 address) 278 { 279 enc28j60_set_bank(priv, address); 280 return spi_read_op(priv, ENC28J60_READ_CTRL_REG, address); 281 } 282 283 static int locked_regb_read(struct enc28j60_net *priv, 284 u8 address) 285 { 286 int ret; 287 288 mutex_lock(&priv->lock); 289 ret = nolock_regb_read(priv, address); 290 mutex_unlock(&priv->lock); 291 292 return ret; 293 } 294 295 /* 296 * Register word read 297 */ 298 static int nolock_regw_read(struct enc28j60_net *priv, 299 u8 address) 300 { 301 int rl, rh; 302 303 enc28j60_set_bank(priv, address); 304 rl = spi_read_op(priv, ENC28J60_READ_CTRL_REG, address); 305 rh = spi_read_op(priv, ENC28J60_READ_CTRL_REG, address + 1); 306 307 return (rh << 8) | rl; 308 } 309 310 static int locked_regw_read(struct enc28j60_net *priv, 311 u8 address) 312 { 313 int ret; 314 315 mutex_lock(&priv->lock); 316 ret = nolock_regw_read(priv, address); 317 mutex_unlock(&priv->lock); 318 319 return ret; 320 } 321 322 /* 323 * Register byte write 324 */ 325 static void nolock_regb_write(struct enc28j60_net *priv, 326 u8 address, u8 data) 327 { 328 enc28j60_set_bank(priv, address); 329 spi_write_op(priv, ENC28J60_WRITE_CTRL_REG, address, data); 330 } 331 332 static void locked_regb_write(struct enc28j60_net *priv, 333 u8 address, u8 data) 334 { 335 mutex_lock(&priv->lock); 336 nolock_regb_write(priv, address, data); 337 mutex_unlock(&priv->lock); 338 } 339 340 /* 341 * Register word write 342 */ 343 static void nolock_regw_write(struct enc28j60_net *priv, 344 u8 address, u16 data) 345 { 346 enc28j60_set_bank(priv, address); 347 spi_write_op(priv, ENC28J60_WRITE_CTRL_REG, address, (u8) data); 348 spi_write_op(priv, ENC28J60_WRITE_CTRL_REG, address + 1, 349 (u8) (data >> 8)); 350 } 351 352 static void locked_regw_write(struct enc28j60_net *priv, 353 u8 address, u16 data) 354 { 355 mutex_lock(&priv->lock); 356 nolock_regw_write(priv, address, data); 357 mutex_unlock(&priv->lock); 358 } 359 360 /* 361 * Buffer memory read 362 * Select the starting address and execute a SPI buffer read 363 */ 364 static void enc28j60_mem_read(struct enc28j60_net *priv, 365 u16 addr, int len, u8 *data) 366 { 367 mutex_lock(&priv->lock); 368 nolock_regw_write(priv, ERDPTL, addr); 369 #ifdef CONFIG_ENC28J60_WRITEVERIFY 370 if (netif_msg_drv(priv)) { 371 u16 reg; 372 reg = nolock_regw_read(priv, ERDPTL); 373 if (reg != addr) 374 printk(KERN_DEBUG DRV_NAME ": %s() error writing ERDPT " 375 "(0x%04x - 0x%04x)\n", __func__, reg, addr); 376 } 377 #endif 378 spi_read_buf(priv, len, data); 379 mutex_unlock(&priv->lock); 380 } 381 382 /* 383 * Write packet to enc28j60 TX buffer memory 384 */ 385 static void 386 enc28j60_packet_write(struct enc28j60_net *priv, int len, const u8 *data) 387 { 388 mutex_lock(&priv->lock); 389 /* Set the write pointer to start of transmit buffer area */ 390 nolock_regw_write(priv, EWRPTL, TXSTART_INIT); 391 #ifdef CONFIG_ENC28J60_WRITEVERIFY 392 if (netif_msg_drv(priv)) { 393 u16 reg; 394 reg = nolock_regw_read(priv, EWRPTL); 395 if (reg != TXSTART_INIT) 396 printk(KERN_DEBUG DRV_NAME 397 ": %s() ERWPT:0x%04x != 0x%04x\n", 398 __func__, reg, TXSTART_INIT); 399 } 400 #endif 401 /* Set the TXND pointer to correspond to the packet size given */ 402 nolock_regw_write(priv, ETXNDL, TXSTART_INIT + len); 403 /* write per-packet control byte */ 404 spi_write_op(priv, ENC28J60_WRITE_BUF_MEM, 0, 0x00); 405 if (netif_msg_hw(priv)) 406 printk(KERN_DEBUG DRV_NAME 407 ": %s() after control byte ERWPT:0x%04x\n", 408 __func__, nolock_regw_read(priv, EWRPTL)); 409 /* copy the packet into the transmit buffer */ 410 spi_write_buf(priv, len, data); 411 if (netif_msg_hw(priv)) 412 printk(KERN_DEBUG DRV_NAME 413 ": %s() after write packet ERWPT:0x%04x, len=%d\n", 414 __func__, nolock_regw_read(priv, EWRPTL), len); 415 mutex_unlock(&priv->lock); 416 } 417 418 static unsigned long msec20_to_jiffies; 419 420 static int poll_ready(struct enc28j60_net *priv, u8 reg, u8 mask, u8 val) 421 { 422 unsigned long timeout = jiffies + msec20_to_jiffies; 423 424 /* 20 msec timeout read */ 425 while ((nolock_regb_read(priv, reg) & mask) != val) { 426 if (time_after(jiffies, timeout)) { 427 if (netif_msg_drv(priv)) 428 dev_dbg(&priv->spi->dev, 429 "reg %02x ready timeout!\n", reg); 430 return -ETIMEDOUT; 431 } 432 cpu_relax(); 433 } 434 return 0; 435 } 436 437 /* 438 * Wait until the PHY operation is complete. 439 */ 440 static int wait_phy_ready(struct enc28j60_net *priv) 441 { 442 return poll_ready(priv, MISTAT, MISTAT_BUSY, 0) ? 0 : 1; 443 } 444 445 /* 446 * PHY register read 447 * PHY registers are not accessed directly, but through the MII 448 */ 449 static u16 enc28j60_phy_read(struct enc28j60_net *priv, u8 address) 450 { 451 u16 ret; 452 453 mutex_lock(&priv->lock); 454 /* set the PHY register address */ 455 nolock_regb_write(priv, MIREGADR, address); 456 /* start the register read operation */ 457 nolock_regb_write(priv, MICMD, MICMD_MIIRD); 458 /* wait until the PHY read completes */ 459 wait_phy_ready(priv); 460 /* quit reading */ 461 nolock_regb_write(priv, MICMD, 0x00); 462 /* return the data */ 463 ret = nolock_regw_read(priv, MIRDL); 464 mutex_unlock(&priv->lock); 465 466 return ret; 467 } 468 469 static int enc28j60_phy_write(struct enc28j60_net *priv, u8 address, u16 data) 470 { 471 int ret; 472 473 mutex_lock(&priv->lock); 474 /* set the PHY register address */ 475 nolock_regb_write(priv, MIREGADR, address); 476 /* write the PHY data */ 477 nolock_regw_write(priv, MIWRL, data); 478 /* wait until the PHY write completes and return */ 479 ret = wait_phy_ready(priv); 480 mutex_unlock(&priv->lock); 481 482 return ret; 483 } 484 485 /* 486 * Program the hardware MAC address from dev->dev_addr. 487 */ 488 static int enc28j60_set_hw_macaddr(struct net_device *ndev) 489 { 490 int ret; 491 struct enc28j60_net *priv = netdev_priv(ndev); 492 493 mutex_lock(&priv->lock); 494 if (!priv->hw_enable) { 495 if (netif_msg_drv(priv)) 496 printk(KERN_INFO DRV_NAME 497 ": %s: Setting MAC address to %pM\n", 498 ndev->name, ndev->dev_addr); 499 /* NOTE: MAC address in ENC28J60 is byte-backward */ 500 nolock_regb_write(priv, MAADR5, ndev->dev_addr[0]); 501 nolock_regb_write(priv, MAADR4, ndev->dev_addr[1]); 502 nolock_regb_write(priv, MAADR3, ndev->dev_addr[2]); 503 nolock_regb_write(priv, MAADR2, ndev->dev_addr[3]); 504 nolock_regb_write(priv, MAADR1, ndev->dev_addr[4]); 505 nolock_regb_write(priv, MAADR0, ndev->dev_addr[5]); 506 ret = 0; 507 } else { 508 if (netif_msg_drv(priv)) 509 printk(KERN_DEBUG DRV_NAME 510 ": %s() Hardware must be disabled to set " 511 "Mac address\n", __func__); 512 ret = -EBUSY; 513 } 514 mutex_unlock(&priv->lock); 515 return ret; 516 } 517 518 /* 519 * Store the new hardware address in dev->dev_addr, and update the MAC. 520 */ 521 static int enc28j60_set_mac_address(struct net_device *dev, void *addr) 522 { 523 struct sockaddr *address = addr; 524 525 if (netif_running(dev)) 526 return -EBUSY; 527 if (!is_valid_ether_addr(address->sa_data)) 528 return -EADDRNOTAVAIL; 529 530 dev->addr_assign_type &= ~NET_ADDR_RANDOM; 531 memcpy(dev->dev_addr, address->sa_data, dev->addr_len); 532 return enc28j60_set_hw_macaddr(dev); 533 } 534 535 /* 536 * Debug routine to dump useful register contents 537 */ 538 static void enc28j60_dump_regs(struct enc28j60_net *priv, const char *msg) 539 { 540 mutex_lock(&priv->lock); 541 printk(KERN_DEBUG DRV_NAME " %s\n" 542 "HwRevID: 0x%02x\n" 543 "Cntrl: ECON1 ECON2 ESTAT EIR EIE\n" 544 " 0x%02x 0x%02x 0x%02x 0x%02x 0x%02x\n" 545 "MAC : MACON1 MACON3 MACON4\n" 546 " 0x%02x 0x%02x 0x%02x\n" 547 "Rx : ERXST ERXND ERXWRPT ERXRDPT ERXFCON EPKTCNT MAMXFL\n" 548 " 0x%04x 0x%04x 0x%04x 0x%04x " 549 "0x%02x 0x%02x 0x%04x\n" 550 "Tx : ETXST ETXND MACLCON1 MACLCON2 MAPHSUP\n" 551 " 0x%04x 0x%04x 0x%02x 0x%02x 0x%02x\n", 552 msg, nolock_regb_read(priv, EREVID), 553 nolock_regb_read(priv, ECON1), nolock_regb_read(priv, ECON2), 554 nolock_regb_read(priv, ESTAT), nolock_regb_read(priv, EIR), 555 nolock_regb_read(priv, EIE), nolock_regb_read(priv, MACON1), 556 nolock_regb_read(priv, MACON3), nolock_regb_read(priv, MACON4), 557 nolock_regw_read(priv, ERXSTL), nolock_regw_read(priv, ERXNDL), 558 nolock_regw_read(priv, ERXWRPTL), 559 nolock_regw_read(priv, ERXRDPTL), 560 nolock_regb_read(priv, ERXFCON), 561 nolock_regb_read(priv, EPKTCNT), 562 nolock_regw_read(priv, MAMXFLL), nolock_regw_read(priv, ETXSTL), 563 nolock_regw_read(priv, ETXNDL), 564 nolock_regb_read(priv, MACLCON1), 565 nolock_regb_read(priv, MACLCON2), 566 nolock_regb_read(priv, MAPHSUP)); 567 mutex_unlock(&priv->lock); 568 } 569 570 /* 571 * ERXRDPT need to be set always at odd addresses, refer to errata datasheet 572 */ 573 static u16 erxrdpt_workaround(u16 next_packet_ptr, u16 start, u16 end) 574 { 575 u16 erxrdpt; 576 577 if ((next_packet_ptr - 1 < start) || (next_packet_ptr - 1 > end)) 578 erxrdpt = end; 579 else 580 erxrdpt = next_packet_ptr - 1; 581 582 return erxrdpt; 583 } 584 585 /* 586 * Calculate wrap around when reading beyond the end of the RX buffer 587 */ 588 static u16 rx_packet_start(u16 ptr) 589 { 590 if (ptr + RSV_SIZE > RXEND_INIT) 591 return (ptr + RSV_SIZE) - (RXEND_INIT - RXSTART_INIT + 1); 592 else 593 return ptr + RSV_SIZE; 594 } 595 596 static void nolock_rxfifo_init(struct enc28j60_net *priv, u16 start, u16 end) 597 { 598 u16 erxrdpt; 599 600 if (start > 0x1FFF || end > 0x1FFF || start > end) { 601 if (netif_msg_drv(priv)) 602 printk(KERN_ERR DRV_NAME ": %s(%d, %d) RXFIFO " 603 "bad parameters!\n", __func__, start, end); 604 return; 605 } 606 /* set receive buffer start + end */ 607 priv->next_pk_ptr = start; 608 nolock_regw_write(priv, ERXSTL, start); 609 erxrdpt = erxrdpt_workaround(priv->next_pk_ptr, start, end); 610 nolock_regw_write(priv, ERXRDPTL, erxrdpt); 611 nolock_regw_write(priv, ERXNDL, end); 612 } 613 614 static void nolock_txfifo_init(struct enc28j60_net *priv, u16 start, u16 end) 615 { 616 if (start > 0x1FFF || end > 0x1FFF || start > end) { 617 if (netif_msg_drv(priv)) 618 printk(KERN_ERR DRV_NAME ": %s(%d, %d) TXFIFO " 619 "bad parameters!\n", __func__, start, end); 620 return; 621 } 622 /* set transmit buffer start + end */ 623 nolock_regw_write(priv, ETXSTL, start); 624 nolock_regw_write(priv, ETXNDL, end); 625 } 626 627 /* 628 * Low power mode shrinks power consumption about 100x, so we'd like 629 * the chip to be in that mode whenever it's inactive. (However, we 630 * can't stay in lowpower mode during suspend with WOL active.) 631 */ 632 static void enc28j60_lowpower(struct enc28j60_net *priv, bool is_low) 633 { 634 if (netif_msg_drv(priv)) 635 dev_dbg(&priv->spi->dev, "%s power...\n", 636 is_low ? "low" : "high"); 637 638 mutex_lock(&priv->lock); 639 if (is_low) { 640 nolock_reg_bfclr(priv, ECON1, ECON1_RXEN); 641 poll_ready(priv, ESTAT, ESTAT_RXBUSY, 0); 642 poll_ready(priv, ECON1, ECON1_TXRTS, 0); 643 /* ECON2_VRPS was set during initialization */ 644 nolock_reg_bfset(priv, ECON2, ECON2_PWRSV); 645 } else { 646 nolock_reg_bfclr(priv, ECON2, ECON2_PWRSV); 647 poll_ready(priv, ESTAT, ESTAT_CLKRDY, ESTAT_CLKRDY); 648 /* caller sets ECON1_RXEN */ 649 } 650 mutex_unlock(&priv->lock); 651 } 652 653 static int enc28j60_hw_init(struct enc28j60_net *priv) 654 { 655 u8 reg; 656 657 if (netif_msg_drv(priv)) 658 printk(KERN_DEBUG DRV_NAME ": %s() - %s\n", __func__, 659 priv->full_duplex ? "FullDuplex" : "HalfDuplex"); 660 661 mutex_lock(&priv->lock); 662 /* first reset the chip */ 663 enc28j60_soft_reset(priv); 664 /* Clear ECON1 */ 665 spi_write_op(priv, ENC28J60_WRITE_CTRL_REG, ECON1, 0x00); 666 priv->bank = 0; 667 priv->hw_enable = false; 668 priv->tx_retry_count = 0; 669 priv->max_pk_counter = 0; 670 priv->rxfilter = RXFILTER_NORMAL; 671 /* enable address auto increment and voltage regulator powersave */ 672 nolock_regb_write(priv, ECON2, ECON2_AUTOINC | ECON2_VRPS); 673 674 nolock_rxfifo_init(priv, RXSTART_INIT, RXEND_INIT); 675 nolock_txfifo_init(priv, TXSTART_INIT, TXEND_INIT); 676 mutex_unlock(&priv->lock); 677 678 /* 679 * Check the RevID. 680 * If it's 0x00 or 0xFF probably the enc28j60 is not mounted or 681 * damaged 682 */ 683 reg = locked_regb_read(priv, EREVID); 684 if (netif_msg_drv(priv)) 685 printk(KERN_INFO DRV_NAME ": chip RevID: 0x%02x\n", reg); 686 if (reg == 0x00 || reg == 0xff) { 687 if (netif_msg_drv(priv)) 688 printk(KERN_DEBUG DRV_NAME ": %s() Invalid RevId %d\n", 689 __func__, reg); 690 return 0; 691 } 692 693 /* default filter mode: (unicast OR broadcast) AND crc valid */ 694 locked_regb_write(priv, ERXFCON, 695 ERXFCON_UCEN | ERXFCON_CRCEN | ERXFCON_BCEN); 696 697 /* enable MAC receive */ 698 locked_regb_write(priv, MACON1, 699 MACON1_MARXEN | MACON1_TXPAUS | MACON1_RXPAUS); 700 /* enable automatic padding and CRC operations */ 701 if (priv->full_duplex) { 702 locked_regb_write(priv, MACON3, 703 MACON3_PADCFG0 | MACON3_TXCRCEN | 704 MACON3_FRMLNEN | MACON3_FULDPX); 705 /* set inter-frame gap (non-back-to-back) */ 706 locked_regb_write(priv, MAIPGL, 0x12); 707 /* set inter-frame gap (back-to-back) */ 708 locked_regb_write(priv, MABBIPG, 0x15); 709 } else { 710 locked_regb_write(priv, MACON3, 711 MACON3_PADCFG0 | MACON3_TXCRCEN | 712 MACON3_FRMLNEN); 713 locked_regb_write(priv, MACON4, 1 << 6); /* DEFER bit */ 714 /* set inter-frame gap (non-back-to-back) */ 715 locked_regw_write(priv, MAIPGL, 0x0C12); 716 /* set inter-frame gap (back-to-back) */ 717 locked_regb_write(priv, MABBIPG, 0x12); 718 } 719 /* 720 * MACLCON1 (default) 721 * MACLCON2 (default) 722 * Set the maximum packet size which the controller will accept 723 */ 724 locked_regw_write(priv, MAMXFLL, MAX_FRAMELEN); 725 726 /* Configure LEDs */ 727 if (!enc28j60_phy_write(priv, PHLCON, ENC28J60_LAMPS_MODE)) 728 return 0; 729 730 if (priv->full_duplex) { 731 if (!enc28j60_phy_write(priv, PHCON1, PHCON1_PDPXMD)) 732 return 0; 733 if (!enc28j60_phy_write(priv, PHCON2, 0x00)) 734 return 0; 735 } else { 736 if (!enc28j60_phy_write(priv, PHCON1, 0x00)) 737 return 0; 738 if (!enc28j60_phy_write(priv, PHCON2, PHCON2_HDLDIS)) 739 return 0; 740 } 741 if (netif_msg_hw(priv)) 742 enc28j60_dump_regs(priv, "Hw initialized."); 743 744 return 1; 745 } 746 747 static void enc28j60_hw_enable(struct enc28j60_net *priv) 748 { 749 /* enable interrupts */ 750 if (netif_msg_hw(priv)) 751 printk(KERN_DEBUG DRV_NAME ": %s() enabling interrupts.\n", 752 __func__); 753 754 enc28j60_phy_write(priv, PHIE, PHIE_PGEIE | PHIE_PLNKIE); 755 756 mutex_lock(&priv->lock); 757 nolock_reg_bfclr(priv, EIR, EIR_DMAIF | EIR_LINKIF | 758 EIR_TXIF | EIR_TXERIF | EIR_RXERIF | EIR_PKTIF); 759 nolock_regb_write(priv, EIE, EIE_INTIE | EIE_PKTIE | EIE_LINKIE | 760 EIE_TXIE | EIE_TXERIE | EIE_RXERIE); 761 762 /* enable receive logic */ 763 nolock_reg_bfset(priv, ECON1, ECON1_RXEN); 764 priv->hw_enable = true; 765 mutex_unlock(&priv->lock); 766 } 767 768 static void enc28j60_hw_disable(struct enc28j60_net *priv) 769 { 770 mutex_lock(&priv->lock); 771 /* disable interrutps and packet reception */ 772 nolock_regb_write(priv, EIE, 0x00); 773 nolock_reg_bfclr(priv, ECON1, ECON1_RXEN); 774 priv->hw_enable = false; 775 mutex_unlock(&priv->lock); 776 } 777 778 static int 779 enc28j60_setlink(struct net_device *ndev, u8 autoneg, u16 speed, u8 duplex) 780 { 781 struct enc28j60_net *priv = netdev_priv(ndev); 782 int ret = 0; 783 784 if (!priv->hw_enable) { 785 /* link is in low power mode now; duplex setting 786 * will take effect on next enc28j60_hw_init(). 787 */ 788 if (autoneg == AUTONEG_DISABLE && speed == SPEED_10) 789 priv->full_duplex = (duplex == DUPLEX_FULL); 790 else { 791 if (netif_msg_link(priv)) 792 dev_warn(&ndev->dev, 793 "unsupported link setting\n"); 794 ret = -EOPNOTSUPP; 795 } 796 } else { 797 if (netif_msg_link(priv)) 798 dev_warn(&ndev->dev, "Warning: hw must be disabled " 799 "to set link mode\n"); 800 ret = -EBUSY; 801 } 802 return ret; 803 } 804 805 /* 806 * Read the Transmit Status Vector 807 */ 808 static void enc28j60_read_tsv(struct enc28j60_net *priv, u8 tsv[TSV_SIZE]) 809 { 810 int endptr; 811 812 endptr = locked_regw_read(priv, ETXNDL); 813 if (netif_msg_hw(priv)) 814 printk(KERN_DEBUG DRV_NAME ": reading TSV at addr:0x%04x\n", 815 endptr + 1); 816 enc28j60_mem_read(priv, endptr + 1, TSV_SIZE, tsv); 817 } 818 819 static void enc28j60_dump_tsv(struct enc28j60_net *priv, const char *msg, 820 u8 tsv[TSV_SIZE]) 821 { 822 u16 tmp1, tmp2; 823 824 printk(KERN_DEBUG DRV_NAME ": %s - TSV:\n", msg); 825 tmp1 = tsv[1]; 826 tmp1 <<= 8; 827 tmp1 |= tsv[0]; 828 829 tmp2 = tsv[5]; 830 tmp2 <<= 8; 831 tmp2 |= tsv[4]; 832 833 printk(KERN_DEBUG DRV_NAME ": ByteCount: %d, CollisionCount: %d," 834 " TotByteOnWire: %d\n", tmp1, tsv[2] & 0x0f, tmp2); 835 printk(KERN_DEBUG DRV_NAME ": TxDone: %d, CRCErr:%d, LenChkErr: %d," 836 " LenOutOfRange: %d\n", TSV_GETBIT(tsv, TSV_TXDONE), 837 TSV_GETBIT(tsv, TSV_TXCRCERROR), 838 TSV_GETBIT(tsv, TSV_TXLENCHKERROR), 839 TSV_GETBIT(tsv, TSV_TXLENOUTOFRANGE)); 840 printk(KERN_DEBUG DRV_NAME ": Multicast: %d, Broadcast: %d, " 841 "PacketDefer: %d, ExDefer: %d\n", 842 TSV_GETBIT(tsv, TSV_TXMULTICAST), 843 TSV_GETBIT(tsv, TSV_TXBROADCAST), 844 TSV_GETBIT(tsv, TSV_TXPACKETDEFER), 845 TSV_GETBIT(tsv, TSV_TXEXDEFER)); 846 printk(KERN_DEBUG DRV_NAME ": ExCollision: %d, LateCollision: %d, " 847 "Giant: %d, Underrun: %d\n", 848 TSV_GETBIT(tsv, TSV_TXEXCOLLISION), 849 TSV_GETBIT(tsv, TSV_TXLATECOLLISION), 850 TSV_GETBIT(tsv, TSV_TXGIANT), TSV_GETBIT(tsv, TSV_TXUNDERRUN)); 851 printk(KERN_DEBUG DRV_NAME ": ControlFrame: %d, PauseFrame: %d, " 852 "BackPressApp: %d, VLanTagFrame: %d\n", 853 TSV_GETBIT(tsv, TSV_TXCONTROLFRAME), 854 TSV_GETBIT(tsv, TSV_TXPAUSEFRAME), 855 TSV_GETBIT(tsv, TSV_BACKPRESSUREAPP), 856 TSV_GETBIT(tsv, TSV_TXVLANTAGFRAME)); 857 } 858 859 /* 860 * Receive Status vector 861 */ 862 static void enc28j60_dump_rsv(struct enc28j60_net *priv, const char *msg, 863 u16 pk_ptr, int len, u16 sts) 864 { 865 printk(KERN_DEBUG DRV_NAME ": %s - NextPk: 0x%04x - RSV:\n", 866 msg, pk_ptr); 867 printk(KERN_DEBUG DRV_NAME ": ByteCount: %d, DribbleNibble: %d\n", len, 868 RSV_GETBIT(sts, RSV_DRIBBLENIBBLE)); 869 printk(KERN_DEBUG DRV_NAME ": RxOK: %d, CRCErr:%d, LenChkErr: %d," 870 " LenOutOfRange: %d\n", RSV_GETBIT(sts, RSV_RXOK), 871 RSV_GETBIT(sts, RSV_CRCERROR), 872 RSV_GETBIT(sts, RSV_LENCHECKERR), 873 RSV_GETBIT(sts, RSV_LENOUTOFRANGE)); 874 printk(KERN_DEBUG DRV_NAME ": Multicast: %d, Broadcast: %d, " 875 "LongDropEvent: %d, CarrierEvent: %d\n", 876 RSV_GETBIT(sts, RSV_RXMULTICAST), 877 RSV_GETBIT(sts, RSV_RXBROADCAST), 878 RSV_GETBIT(sts, RSV_RXLONGEVDROPEV), 879 RSV_GETBIT(sts, RSV_CARRIEREV)); 880 printk(KERN_DEBUG DRV_NAME ": ControlFrame: %d, PauseFrame: %d," 881 " UnknownOp: %d, VLanTagFrame: %d\n", 882 RSV_GETBIT(sts, RSV_RXCONTROLFRAME), 883 RSV_GETBIT(sts, RSV_RXPAUSEFRAME), 884 RSV_GETBIT(sts, RSV_RXUNKNOWNOPCODE), 885 RSV_GETBIT(sts, RSV_RXTYPEVLAN)); 886 } 887 888 static void dump_packet(const char *msg, int len, const char *data) 889 { 890 printk(KERN_DEBUG DRV_NAME ": %s - packet len:%d\n", msg, len); 891 print_hex_dump(KERN_DEBUG, "pk data: ", DUMP_PREFIX_OFFSET, 16, 1, 892 data, len, true); 893 } 894 895 /* 896 * Hardware receive function. 897 * Read the buffer memory, update the FIFO pointer to free the buffer, 898 * check the status vector and decrement the packet counter. 899 */ 900 static void enc28j60_hw_rx(struct net_device *ndev) 901 { 902 struct enc28j60_net *priv = netdev_priv(ndev); 903 struct sk_buff *skb = NULL; 904 u16 erxrdpt, next_packet, rxstat; 905 u8 rsv[RSV_SIZE]; 906 int len; 907 908 if (netif_msg_rx_status(priv)) 909 printk(KERN_DEBUG DRV_NAME ": RX pk_addr:0x%04x\n", 910 priv->next_pk_ptr); 911 912 if (unlikely(priv->next_pk_ptr > RXEND_INIT)) { 913 if (netif_msg_rx_err(priv)) 914 dev_err(&ndev->dev, 915 "%s() Invalid packet address!! 0x%04x\n", 916 __func__, priv->next_pk_ptr); 917 /* packet address corrupted: reset RX logic */ 918 mutex_lock(&priv->lock); 919 nolock_reg_bfclr(priv, ECON1, ECON1_RXEN); 920 nolock_reg_bfset(priv, ECON1, ECON1_RXRST); 921 nolock_reg_bfclr(priv, ECON1, ECON1_RXRST); 922 nolock_rxfifo_init(priv, RXSTART_INIT, RXEND_INIT); 923 nolock_reg_bfclr(priv, EIR, EIR_RXERIF); 924 nolock_reg_bfset(priv, ECON1, ECON1_RXEN); 925 mutex_unlock(&priv->lock); 926 ndev->stats.rx_errors++; 927 return; 928 } 929 /* Read next packet pointer and rx status vector */ 930 enc28j60_mem_read(priv, priv->next_pk_ptr, sizeof(rsv), rsv); 931 932 next_packet = rsv[1]; 933 next_packet <<= 8; 934 next_packet |= rsv[0]; 935 936 len = rsv[3]; 937 len <<= 8; 938 len |= rsv[2]; 939 940 rxstat = rsv[5]; 941 rxstat <<= 8; 942 rxstat |= rsv[4]; 943 944 if (netif_msg_rx_status(priv)) 945 enc28j60_dump_rsv(priv, __func__, next_packet, len, rxstat); 946 947 if (!RSV_GETBIT(rxstat, RSV_RXOK) || len > MAX_FRAMELEN) { 948 if (netif_msg_rx_err(priv)) 949 dev_err(&ndev->dev, "Rx Error (%04x)\n", rxstat); 950 ndev->stats.rx_errors++; 951 if (RSV_GETBIT(rxstat, RSV_CRCERROR)) 952 ndev->stats.rx_crc_errors++; 953 if (RSV_GETBIT(rxstat, RSV_LENCHECKERR)) 954 ndev->stats.rx_frame_errors++; 955 if (len > MAX_FRAMELEN) 956 ndev->stats.rx_over_errors++; 957 } else { 958 skb = netdev_alloc_skb(ndev, len + NET_IP_ALIGN); 959 if (!skb) { 960 if (netif_msg_rx_err(priv)) 961 dev_err(&ndev->dev, 962 "out of memory for Rx'd frame\n"); 963 ndev->stats.rx_dropped++; 964 } else { 965 skb_reserve(skb, NET_IP_ALIGN); 966 /* copy the packet from the receive buffer */ 967 enc28j60_mem_read(priv, 968 rx_packet_start(priv->next_pk_ptr), 969 len, skb_put(skb, len)); 970 if (netif_msg_pktdata(priv)) 971 dump_packet(__func__, skb->len, skb->data); 972 skb->protocol = eth_type_trans(skb, ndev); 973 /* update statistics */ 974 ndev->stats.rx_packets++; 975 ndev->stats.rx_bytes += len; 976 netif_rx_ni(skb); 977 } 978 } 979 /* 980 * Move the RX read pointer to the start of the next 981 * received packet. 982 * This frees the memory we just read out 983 */ 984 erxrdpt = erxrdpt_workaround(next_packet, RXSTART_INIT, RXEND_INIT); 985 if (netif_msg_hw(priv)) 986 printk(KERN_DEBUG DRV_NAME ": %s() ERXRDPT:0x%04x\n", 987 __func__, erxrdpt); 988 989 mutex_lock(&priv->lock); 990 nolock_regw_write(priv, ERXRDPTL, erxrdpt); 991 #ifdef CONFIG_ENC28J60_WRITEVERIFY 992 if (netif_msg_drv(priv)) { 993 u16 reg; 994 reg = nolock_regw_read(priv, ERXRDPTL); 995 if (reg != erxrdpt) 996 printk(KERN_DEBUG DRV_NAME ": %s() ERXRDPT verify " 997 "error (0x%04x - 0x%04x)\n", __func__, 998 reg, erxrdpt); 999 } 1000 #endif 1001 priv->next_pk_ptr = next_packet; 1002 /* we are done with this packet, decrement the packet counter */ 1003 nolock_reg_bfset(priv, ECON2, ECON2_PKTDEC); 1004 mutex_unlock(&priv->lock); 1005 } 1006 1007 /* 1008 * Calculate free space in RxFIFO 1009 */ 1010 static int enc28j60_get_free_rxfifo(struct enc28j60_net *priv) 1011 { 1012 int epkcnt, erxst, erxnd, erxwr, erxrd; 1013 int free_space; 1014 1015 mutex_lock(&priv->lock); 1016 epkcnt = nolock_regb_read(priv, EPKTCNT); 1017 if (epkcnt >= 255) 1018 free_space = -1; 1019 else { 1020 erxst = nolock_regw_read(priv, ERXSTL); 1021 erxnd = nolock_regw_read(priv, ERXNDL); 1022 erxwr = nolock_regw_read(priv, ERXWRPTL); 1023 erxrd = nolock_regw_read(priv, ERXRDPTL); 1024 1025 if (erxwr > erxrd) 1026 free_space = (erxnd - erxst) - (erxwr - erxrd); 1027 else if (erxwr == erxrd) 1028 free_space = (erxnd - erxst); 1029 else 1030 free_space = erxrd - erxwr - 1; 1031 } 1032 mutex_unlock(&priv->lock); 1033 if (netif_msg_rx_status(priv)) 1034 printk(KERN_DEBUG DRV_NAME ": %s() free_space = %d\n", 1035 __func__, free_space); 1036 return free_space; 1037 } 1038 1039 /* 1040 * Access the PHY to determine link status 1041 */ 1042 static void enc28j60_check_link_status(struct net_device *ndev) 1043 { 1044 struct enc28j60_net *priv = netdev_priv(ndev); 1045 u16 reg; 1046 int duplex; 1047 1048 reg = enc28j60_phy_read(priv, PHSTAT2); 1049 if (netif_msg_hw(priv)) 1050 printk(KERN_DEBUG DRV_NAME ": %s() PHSTAT1: %04x, " 1051 "PHSTAT2: %04x\n", __func__, 1052 enc28j60_phy_read(priv, PHSTAT1), reg); 1053 duplex = reg & PHSTAT2_DPXSTAT; 1054 1055 if (reg & PHSTAT2_LSTAT) { 1056 netif_carrier_on(ndev); 1057 if (netif_msg_ifup(priv)) 1058 dev_info(&ndev->dev, "link up - %s\n", 1059 duplex ? "Full duplex" : "Half duplex"); 1060 } else { 1061 if (netif_msg_ifdown(priv)) 1062 dev_info(&ndev->dev, "link down\n"); 1063 netif_carrier_off(ndev); 1064 } 1065 } 1066 1067 static void enc28j60_tx_clear(struct net_device *ndev, bool err) 1068 { 1069 struct enc28j60_net *priv = netdev_priv(ndev); 1070 1071 if (err) 1072 ndev->stats.tx_errors++; 1073 else 1074 ndev->stats.tx_packets++; 1075 1076 if (priv->tx_skb) { 1077 if (!err) 1078 ndev->stats.tx_bytes += priv->tx_skb->len; 1079 dev_kfree_skb(priv->tx_skb); 1080 priv->tx_skb = NULL; 1081 } 1082 locked_reg_bfclr(priv, ECON1, ECON1_TXRTS); 1083 netif_wake_queue(ndev); 1084 } 1085 1086 /* 1087 * RX handler 1088 * ignore PKTIF because is unreliable! (look at the errata datasheet) 1089 * check EPKTCNT is the suggested workaround. 1090 * We don't need to clear interrupt flag, automatically done when 1091 * enc28j60_hw_rx() decrements the packet counter. 1092 * Returns how many packet processed. 1093 */ 1094 static int enc28j60_rx_interrupt(struct net_device *ndev) 1095 { 1096 struct enc28j60_net *priv = netdev_priv(ndev); 1097 int pk_counter, ret; 1098 1099 pk_counter = locked_regb_read(priv, EPKTCNT); 1100 if (pk_counter && netif_msg_intr(priv)) 1101 printk(KERN_DEBUG DRV_NAME ": intRX, pk_cnt: %d\n", pk_counter); 1102 if (pk_counter > priv->max_pk_counter) { 1103 /* update statistics */ 1104 priv->max_pk_counter = pk_counter; 1105 if (netif_msg_rx_status(priv) && priv->max_pk_counter > 1) 1106 printk(KERN_DEBUG DRV_NAME ": RX max_pk_cnt: %d\n", 1107 priv->max_pk_counter); 1108 } 1109 ret = pk_counter; 1110 while (pk_counter-- > 0) 1111 enc28j60_hw_rx(ndev); 1112 1113 return ret; 1114 } 1115 1116 static void enc28j60_irq_work_handler(struct work_struct *work) 1117 { 1118 struct enc28j60_net *priv = 1119 container_of(work, struct enc28j60_net, irq_work); 1120 struct net_device *ndev = priv->netdev; 1121 int intflags, loop; 1122 1123 if (netif_msg_intr(priv)) 1124 printk(KERN_DEBUG DRV_NAME ": %s() enter\n", __func__); 1125 /* disable further interrupts */ 1126 locked_reg_bfclr(priv, EIE, EIE_INTIE); 1127 1128 do { 1129 loop = 0; 1130 intflags = locked_regb_read(priv, EIR); 1131 /* DMA interrupt handler (not currently used) */ 1132 if ((intflags & EIR_DMAIF) != 0) { 1133 loop++; 1134 if (netif_msg_intr(priv)) 1135 printk(KERN_DEBUG DRV_NAME 1136 ": intDMA(%d)\n", loop); 1137 locked_reg_bfclr(priv, EIR, EIR_DMAIF); 1138 } 1139 /* LINK changed handler */ 1140 if ((intflags & EIR_LINKIF) != 0) { 1141 loop++; 1142 if (netif_msg_intr(priv)) 1143 printk(KERN_DEBUG DRV_NAME 1144 ": intLINK(%d)\n", loop); 1145 enc28j60_check_link_status(ndev); 1146 /* read PHIR to clear the flag */ 1147 enc28j60_phy_read(priv, PHIR); 1148 } 1149 /* TX complete handler */ 1150 if ((intflags & EIR_TXIF) != 0) { 1151 bool err = false; 1152 loop++; 1153 if (netif_msg_intr(priv)) 1154 printk(KERN_DEBUG DRV_NAME 1155 ": intTX(%d)\n", loop); 1156 priv->tx_retry_count = 0; 1157 if (locked_regb_read(priv, ESTAT) & ESTAT_TXABRT) { 1158 if (netif_msg_tx_err(priv)) 1159 dev_err(&ndev->dev, 1160 "Tx Error (aborted)\n"); 1161 err = true; 1162 } 1163 if (netif_msg_tx_done(priv)) { 1164 u8 tsv[TSV_SIZE]; 1165 enc28j60_read_tsv(priv, tsv); 1166 enc28j60_dump_tsv(priv, "Tx Done", tsv); 1167 } 1168 enc28j60_tx_clear(ndev, err); 1169 locked_reg_bfclr(priv, EIR, EIR_TXIF); 1170 } 1171 /* TX Error handler */ 1172 if ((intflags & EIR_TXERIF) != 0) { 1173 u8 tsv[TSV_SIZE]; 1174 1175 loop++; 1176 if (netif_msg_intr(priv)) 1177 printk(KERN_DEBUG DRV_NAME 1178 ": intTXErr(%d)\n", loop); 1179 locked_reg_bfclr(priv, ECON1, ECON1_TXRTS); 1180 enc28j60_read_tsv(priv, tsv); 1181 if (netif_msg_tx_err(priv)) 1182 enc28j60_dump_tsv(priv, "Tx Error", tsv); 1183 /* Reset TX logic */ 1184 mutex_lock(&priv->lock); 1185 nolock_reg_bfset(priv, ECON1, ECON1_TXRST); 1186 nolock_reg_bfclr(priv, ECON1, ECON1_TXRST); 1187 nolock_txfifo_init(priv, TXSTART_INIT, TXEND_INIT); 1188 mutex_unlock(&priv->lock); 1189 /* Transmit Late collision check for retransmit */ 1190 if (TSV_GETBIT(tsv, TSV_TXLATECOLLISION)) { 1191 if (netif_msg_tx_err(priv)) 1192 printk(KERN_DEBUG DRV_NAME 1193 ": LateCollision TXErr (%d)\n", 1194 priv->tx_retry_count); 1195 if (priv->tx_retry_count++ < MAX_TX_RETRYCOUNT) 1196 locked_reg_bfset(priv, ECON1, 1197 ECON1_TXRTS); 1198 else 1199 enc28j60_tx_clear(ndev, true); 1200 } else 1201 enc28j60_tx_clear(ndev, true); 1202 locked_reg_bfclr(priv, EIR, EIR_TXERIF); 1203 } 1204 /* RX Error handler */ 1205 if ((intflags & EIR_RXERIF) != 0) { 1206 loop++; 1207 if (netif_msg_intr(priv)) 1208 printk(KERN_DEBUG DRV_NAME 1209 ": intRXErr(%d)\n", loop); 1210 /* Check free FIFO space to flag RX overrun */ 1211 if (enc28j60_get_free_rxfifo(priv) <= 0) { 1212 if (netif_msg_rx_err(priv)) 1213 printk(KERN_DEBUG DRV_NAME 1214 ": RX Overrun\n"); 1215 ndev->stats.rx_dropped++; 1216 } 1217 locked_reg_bfclr(priv, EIR, EIR_RXERIF); 1218 } 1219 /* RX handler */ 1220 if (enc28j60_rx_interrupt(ndev)) 1221 loop++; 1222 } while (loop); 1223 1224 /* re-enable interrupts */ 1225 locked_reg_bfset(priv, EIE, EIE_INTIE); 1226 if (netif_msg_intr(priv)) 1227 printk(KERN_DEBUG DRV_NAME ": %s() exit\n", __func__); 1228 } 1229 1230 /* 1231 * Hardware transmit function. 1232 * Fill the buffer memory and send the contents of the transmit buffer 1233 * onto the network 1234 */ 1235 static void enc28j60_hw_tx(struct enc28j60_net *priv) 1236 { 1237 if (netif_msg_tx_queued(priv)) 1238 printk(KERN_DEBUG DRV_NAME 1239 ": Tx Packet Len:%d\n", priv->tx_skb->len); 1240 1241 if (netif_msg_pktdata(priv)) 1242 dump_packet(__func__, 1243 priv->tx_skb->len, priv->tx_skb->data); 1244 enc28j60_packet_write(priv, priv->tx_skb->len, priv->tx_skb->data); 1245 1246 #ifdef CONFIG_ENC28J60_WRITEVERIFY 1247 /* readback and verify written data */ 1248 if (netif_msg_drv(priv)) { 1249 int test_len, k; 1250 u8 test_buf[64]; /* limit the test to the first 64 bytes */ 1251 int okflag; 1252 1253 test_len = priv->tx_skb->len; 1254 if (test_len > sizeof(test_buf)) 1255 test_len = sizeof(test_buf); 1256 1257 /* + 1 to skip control byte */ 1258 enc28j60_mem_read(priv, TXSTART_INIT + 1, test_len, test_buf); 1259 okflag = 1; 1260 for (k = 0; k < test_len; k++) { 1261 if (priv->tx_skb->data[k] != test_buf[k]) { 1262 printk(KERN_DEBUG DRV_NAME 1263 ": Error, %d location differ: " 1264 "0x%02x-0x%02x\n", k, 1265 priv->tx_skb->data[k], test_buf[k]); 1266 okflag = 0; 1267 } 1268 } 1269 if (!okflag) 1270 printk(KERN_DEBUG DRV_NAME ": Tx write buffer, " 1271 "verify ERROR!\n"); 1272 } 1273 #endif 1274 /* set TX request flag */ 1275 locked_reg_bfset(priv, ECON1, ECON1_TXRTS); 1276 } 1277 1278 static netdev_tx_t enc28j60_send_packet(struct sk_buff *skb, 1279 struct net_device *dev) 1280 { 1281 struct enc28j60_net *priv = netdev_priv(dev); 1282 1283 if (netif_msg_tx_queued(priv)) 1284 printk(KERN_DEBUG DRV_NAME ": %s() enter\n", __func__); 1285 1286 /* If some error occurs while trying to transmit this 1287 * packet, you should return '1' from this function. 1288 * In such a case you _may not_ do anything to the 1289 * SKB, it is still owned by the network queueing 1290 * layer when an error is returned. This means you 1291 * may not modify any SKB fields, you may not free 1292 * the SKB, etc. 1293 */ 1294 netif_stop_queue(dev); 1295 1296 /* Remember the skb for deferred processing */ 1297 priv->tx_skb = skb; 1298 schedule_work(&priv->tx_work); 1299 1300 return NETDEV_TX_OK; 1301 } 1302 1303 static void enc28j60_tx_work_handler(struct work_struct *work) 1304 { 1305 struct enc28j60_net *priv = 1306 container_of(work, struct enc28j60_net, tx_work); 1307 1308 /* actual delivery of data */ 1309 enc28j60_hw_tx(priv); 1310 } 1311 1312 static irqreturn_t enc28j60_irq(int irq, void *dev_id) 1313 { 1314 struct enc28j60_net *priv = dev_id; 1315 1316 /* 1317 * Can't do anything in interrupt context because we need to 1318 * block (spi_sync() is blocking) so fire of the interrupt 1319 * handling workqueue. 1320 * Remember that we access enc28j60 registers through SPI bus 1321 * via spi_sync() call. 1322 */ 1323 schedule_work(&priv->irq_work); 1324 1325 return IRQ_HANDLED; 1326 } 1327 1328 static void enc28j60_tx_timeout(struct net_device *ndev) 1329 { 1330 struct enc28j60_net *priv = netdev_priv(ndev); 1331 1332 if (netif_msg_timer(priv)) 1333 dev_err(&ndev->dev, DRV_NAME " tx timeout\n"); 1334 1335 ndev->stats.tx_errors++; 1336 /* can't restart safely under softirq */ 1337 schedule_work(&priv->restart_work); 1338 } 1339 1340 /* 1341 * Open/initialize the board. This is called (in the current kernel) 1342 * sometime after booting when the 'ifconfig' program is run. 1343 * 1344 * This routine should set everything up anew at each open, even 1345 * registers that "should" only need to be set once at boot, so that 1346 * there is non-reboot way to recover if something goes wrong. 1347 */ 1348 static int enc28j60_net_open(struct net_device *dev) 1349 { 1350 struct enc28j60_net *priv = netdev_priv(dev); 1351 1352 if (netif_msg_drv(priv)) 1353 printk(KERN_DEBUG DRV_NAME ": %s() enter\n", __func__); 1354 1355 if (!is_valid_ether_addr(dev->dev_addr)) { 1356 if (netif_msg_ifup(priv)) 1357 dev_err(&dev->dev, "invalid MAC address %pM\n", 1358 dev->dev_addr); 1359 return -EADDRNOTAVAIL; 1360 } 1361 /* Reset the hardware here (and take it out of low power mode) */ 1362 enc28j60_lowpower(priv, false); 1363 enc28j60_hw_disable(priv); 1364 if (!enc28j60_hw_init(priv)) { 1365 if (netif_msg_ifup(priv)) 1366 dev_err(&dev->dev, "hw_reset() failed\n"); 1367 return -EINVAL; 1368 } 1369 /* Update the MAC address (in case user has changed it) */ 1370 enc28j60_set_hw_macaddr(dev); 1371 /* Enable interrupts */ 1372 enc28j60_hw_enable(priv); 1373 /* check link status */ 1374 enc28j60_check_link_status(dev); 1375 /* We are now ready to accept transmit requests from 1376 * the queueing layer of the networking. 1377 */ 1378 netif_start_queue(dev); 1379 1380 return 0; 1381 } 1382 1383 /* The inverse routine to net_open(). */ 1384 static int enc28j60_net_close(struct net_device *dev) 1385 { 1386 struct enc28j60_net *priv = netdev_priv(dev); 1387 1388 if (netif_msg_drv(priv)) 1389 printk(KERN_DEBUG DRV_NAME ": %s() enter\n", __func__); 1390 1391 enc28j60_hw_disable(priv); 1392 enc28j60_lowpower(priv, true); 1393 netif_stop_queue(dev); 1394 1395 return 0; 1396 } 1397 1398 /* 1399 * Set or clear the multicast filter for this adapter 1400 * num_addrs == -1 Promiscuous mode, receive all packets 1401 * num_addrs == 0 Normal mode, filter out multicast packets 1402 * num_addrs > 0 Multicast mode, receive normal and MC packets 1403 */ 1404 static void enc28j60_set_multicast_list(struct net_device *dev) 1405 { 1406 struct enc28j60_net *priv = netdev_priv(dev); 1407 int oldfilter = priv->rxfilter; 1408 1409 if (dev->flags & IFF_PROMISC) { 1410 if (netif_msg_link(priv)) 1411 dev_info(&dev->dev, "promiscuous mode\n"); 1412 priv->rxfilter = RXFILTER_PROMISC; 1413 } else if ((dev->flags & IFF_ALLMULTI) || !netdev_mc_empty(dev)) { 1414 if (netif_msg_link(priv)) 1415 dev_info(&dev->dev, "%smulticast mode\n", 1416 (dev->flags & IFF_ALLMULTI) ? "all-" : ""); 1417 priv->rxfilter = RXFILTER_MULTI; 1418 } else { 1419 if (netif_msg_link(priv)) 1420 dev_info(&dev->dev, "normal mode\n"); 1421 priv->rxfilter = RXFILTER_NORMAL; 1422 } 1423 1424 if (oldfilter != priv->rxfilter) 1425 schedule_work(&priv->setrx_work); 1426 } 1427 1428 static void enc28j60_setrx_work_handler(struct work_struct *work) 1429 { 1430 struct enc28j60_net *priv = 1431 container_of(work, struct enc28j60_net, setrx_work); 1432 1433 if (priv->rxfilter == RXFILTER_PROMISC) { 1434 if (netif_msg_drv(priv)) 1435 printk(KERN_DEBUG DRV_NAME ": promiscuous mode\n"); 1436 locked_regb_write(priv, ERXFCON, 0x00); 1437 } else if (priv->rxfilter == RXFILTER_MULTI) { 1438 if (netif_msg_drv(priv)) 1439 printk(KERN_DEBUG DRV_NAME ": multicast mode\n"); 1440 locked_regb_write(priv, ERXFCON, 1441 ERXFCON_UCEN | ERXFCON_CRCEN | 1442 ERXFCON_BCEN | ERXFCON_MCEN); 1443 } else { 1444 if (netif_msg_drv(priv)) 1445 printk(KERN_DEBUG DRV_NAME ": normal mode\n"); 1446 locked_regb_write(priv, ERXFCON, 1447 ERXFCON_UCEN | ERXFCON_CRCEN | 1448 ERXFCON_BCEN); 1449 } 1450 } 1451 1452 static void enc28j60_restart_work_handler(struct work_struct *work) 1453 { 1454 struct enc28j60_net *priv = 1455 container_of(work, struct enc28j60_net, restart_work); 1456 struct net_device *ndev = priv->netdev; 1457 int ret; 1458 1459 rtnl_lock(); 1460 if (netif_running(ndev)) { 1461 enc28j60_net_close(ndev); 1462 ret = enc28j60_net_open(ndev); 1463 if (unlikely(ret)) { 1464 dev_info(&ndev->dev, " could not restart %d\n", ret); 1465 dev_close(ndev); 1466 } 1467 } 1468 rtnl_unlock(); 1469 } 1470 1471 /* ......................... ETHTOOL SUPPORT ........................... */ 1472 1473 static void 1474 enc28j60_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info) 1475 { 1476 strlcpy(info->driver, DRV_NAME, sizeof(info->driver)); 1477 strlcpy(info->version, DRV_VERSION, sizeof(info->version)); 1478 strlcpy(info->bus_info, 1479 dev_name(dev->dev.parent), sizeof(info->bus_info)); 1480 } 1481 1482 static int 1483 enc28j60_get_settings(struct net_device *dev, struct ethtool_cmd *cmd) 1484 { 1485 struct enc28j60_net *priv = netdev_priv(dev); 1486 1487 cmd->transceiver = XCVR_INTERNAL; 1488 cmd->supported = SUPPORTED_10baseT_Half 1489 | SUPPORTED_10baseT_Full 1490 | SUPPORTED_TP; 1491 ethtool_cmd_speed_set(cmd, SPEED_10); 1492 cmd->duplex = priv->full_duplex ? DUPLEX_FULL : DUPLEX_HALF; 1493 cmd->port = PORT_TP; 1494 cmd->autoneg = AUTONEG_DISABLE; 1495 1496 return 0; 1497 } 1498 1499 static int 1500 enc28j60_set_settings(struct net_device *dev, struct ethtool_cmd *cmd) 1501 { 1502 return enc28j60_setlink(dev, cmd->autoneg, 1503 ethtool_cmd_speed(cmd), cmd->duplex); 1504 } 1505 1506 static u32 enc28j60_get_msglevel(struct net_device *dev) 1507 { 1508 struct enc28j60_net *priv = netdev_priv(dev); 1509 return priv->msg_enable; 1510 } 1511 1512 static void enc28j60_set_msglevel(struct net_device *dev, u32 val) 1513 { 1514 struct enc28j60_net *priv = netdev_priv(dev); 1515 priv->msg_enable = val; 1516 } 1517 1518 static const struct ethtool_ops enc28j60_ethtool_ops = { 1519 .get_settings = enc28j60_get_settings, 1520 .set_settings = enc28j60_set_settings, 1521 .get_drvinfo = enc28j60_get_drvinfo, 1522 .get_msglevel = enc28j60_get_msglevel, 1523 .set_msglevel = enc28j60_set_msglevel, 1524 }; 1525 1526 static int enc28j60_chipset_init(struct net_device *dev) 1527 { 1528 struct enc28j60_net *priv = netdev_priv(dev); 1529 1530 return enc28j60_hw_init(priv); 1531 } 1532 1533 static const struct net_device_ops enc28j60_netdev_ops = { 1534 .ndo_open = enc28j60_net_open, 1535 .ndo_stop = enc28j60_net_close, 1536 .ndo_start_xmit = enc28j60_send_packet, 1537 .ndo_set_rx_mode = enc28j60_set_multicast_list, 1538 .ndo_set_mac_address = enc28j60_set_mac_address, 1539 .ndo_tx_timeout = enc28j60_tx_timeout, 1540 .ndo_change_mtu = eth_change_mtu, 1541 .ndo_validate_addr = eth_validate_addr, 1542 }; 1543 1544 static int __devinit enc28j60_probe(struct spi_device *spi) 1545 { 1546 struct net_device *dev; 1547 struct enc28j60_net *priv; 1548 int ret = 0; 1549 1550 if (netif_msg_drv(&debug)) 1551 dev_info(&spi->dev, DRV_NAME " Ethernet driver %s loaded\n", 1552 DRV_VERSION); 1553 1554 dev = alloc_etherdev(sizeof(struct enc28j60_net)); 1555 if (!dev) { 1556 ret = -ENOMEM; 1557 goto error_alloc; 1558 } 1559 priv = netdev_priv(dev); 1560 1561 priv->netdev = dev; /* priv to netdev reference */ 1562 priv->spi = spi; /* priv to spi reference */ 1563 priv->msg_enable = netif_msg_init(debug.msg_enable, 1564 ENC28J60_MSG_DEFAULT); 1565 mutex_init(&priv->lock); 1566 INIT_WORK(&priv->tx_work, enc28j60_tx_work_handler); 1567 INIT_WORK(&priv->setrx_work, enc28j60_setrx_work_handler); 1568 INIT_WORK(&priv->irq_work, enc28j60_irq_work_handler); 1569 INIT_WORK(&priv->restart_work, enc28j60_restart_work_handler); 1570 dev_set_drvdata(&spi->dev, priv); /* spi to priv reference */ 1571 SET_NETDEV_DEV(dev, &spi->dev); 1572 1573 if (!enc28j60_chipset_init(dev)) { 1574 if (netif_msg_probe(priv)) 1575 dev_info(&spi->dev, DRV_NAME " chip not found\n"); 1576 ret = -EIO; 1577 goto error_irq; 1578 } 1579 eth_hw_addr_random(dev); 1580 enc28j60_set_hw_macaddr(dev); 1581 1582 /* Board setup must set the relevant edge trigger type; 1583 * level triggers won't currently work. 1584 */ 1585 ret = request_irq(spi->irq, enc28j60_irq, 0, DRV_NAME, priv); 1586 if (ret < 0) { 1587 if (netif_msg_probe(priv)) 1588 dev_err(&spi->dev, DRV_NAME ": request irq %d failed " 1589 "(ret = %d)\n", spi->irq, ret); 1590 goto error_irq; 1591 } 1592 1593 dev->if_port = IF_PORT_10BASET; 1594 dev->irq = spi->irq; 1595 dev->netdev_ops = &enc28j60_netdev_ops; 1596 dev->watchdog_timeo = TX_TIMEOUT; 1597 SET_ETHTOOL_OPS(dev, &enc28j60_ethtool_ops); 1598 1599 enc28j60_lowpower(priv, true); 1600 1601 ret = register_netdev(dev); 1602 if (ret) { 1603 if (netif_msg_probe(priv)) 1604 dev_err(&spi->dev, "register netdev " DRV_NAME 1605 " failed (ret = %d)\n", ret); 1606 goto error_register; 1607 } 1608 dev_info(&dev->dev, DRV_NAME " driver registered\n"); 1609 1610 return 0; 1611 1612 error_register: 1613 free_irq(spi->irq, priv); 1614 error_irq: 1615 free_netdev(dev); 1616 error_alloc: 1617 return ret; 1618 } 1619 1620 static int __devexit enc28j60_remove(struct spi_device *spi) 1621 { 1622 struct enc28j60_net *priv = dev_get_drvdata(&spi->dev); 1623 1624 if (netif_msg_drv(priv)) 1625 printk(KERN_DEBUG DRV_NAME ": remove\n"); 1626 1627 unregister_netdev(priv->netdev); 1628 free_irq(spi->irq, priv); 1629 free_netdev(priv->netdev); 1630 1631 return 0; 1632 } 1633 1634 static struct spi_driver enc28j60_driver = { 1635 .driver = { 1636 .name = DRV_NAME, 1637 .owner = THIS_MODULE, 1638 }, 1639 .probe = enc28j60_probe, 1640 .remove = __devexit_p(enc28j60_remove), 1641 }; 1642 1643 static int __init enc28j60_init(void) 1644 { 1645 msec20_to_jiffies = msecs_to_jiffies(20); 1646 1647 return spi_register_driver(&enc28j60_driver); 1648 } 1649 1650 module_init(enc28j60_init); 1651 1652 static void __exit enc28j60_exit(void) 1653 { 1654 spi_unregister_driver(&enc28j60_driver); 1655 } 1656 1657 module_exit(enc28j60_exit); 1658 1659 MODULE_DESCRIPTION(DRV_NAME " ethernet driver"); 1660 MODULE_AUTHOR("Claudio Lanconelli <lanconelli.claudio@eptar.com>"); 1661 MODULE_LICENSE("GPL"); 1662 module_param_named(debug, debug.msg_enable, int, 0); 1663 MODULE_PARM_DESC(debug, "Debug verbosity level (0=none, ..., ffff=all)"); 1664 MODULE_ALIAS("spi:" DRV_NAME); 1665