1 /**
2  * drivers/net/ethernet/micrel/ksx884x.c - Micrel KSZ8841/2 PCI Ethernet driver
3  *
4  * Copyright (c) 2009-2010 Micrel, Inc.
5  * 	Tristram Ha <Tristram.Ha@micrel.com>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  */
16 
17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
18 
19 #include <linux/init.h>
20 #include <linux/interrupt.h>
21 #include <linux/kernel.h>
22 #include <linux/module.h>
23 #include <linux/ioport.h>
24 #include <linux/pci.h>
25 #include <linux/proc_fs.h>
26 #include <linux/mii.h>
27 #include <linux/platform_device.h>
28 #include <linux/ethtool.h>
29 #include <linux/etherdevice.h>
30 #include <linux/in.h>
31 #include <linux/ip.h>
32 #include <linux/if_vlan.h>
33 #include <linux/crc32.h>
34 #include <linux/sched.h>
35 #include <linux/slab.h>
36 
37 
38 /* DMA Registers */
39 
40 #define KS_DMA_TX_CTRL			0x0000
41 #define DMA_TX_ENABLE			0x00000001
42 #define DMA_TX_CRC_ENABLE		0x00000002
43 #define DMA_TX_PAD_ENABLE		0x00000004
44 #define DMA_TX_LOOPBACK			0x00000100
45 #define DMA_TX_FLOW_ENABLE		0x00000200
46 #define DMA_TX_CSUM_IP			0x00010000
47 #define DMA_TX_CSUM_TCP			0x00020000
48 #define DMA_TX_CSUM_UDP			0x00040000
49 #define DMA_TX_BURST_SIZE		0x3F000000
50 
51 #define KS_DMA_RX_CTRL			0x0004
52 #define DMA_RX_ENABLE			0x00000001
53 #define KS884X_DMA_RX_MULTICAST		0x00000002
54 #define DMA_RX_PROMISCUOUS		0x00000004
55 #define DMA_RX_ERROR			0x00000008
56 #define DMA_RX_UNICAST			0x00000010
57 #define DMA_RX_ALL_MULTICAST		0x00000020
58 #define DMA_RX_BROADCAST		0x00000040
59 #define DMA_RX_FLOW_ENABLE		0x00000200
60 #define DMA_RX_CSUM_IP			0x00010000
61 #define DMA_RX_CSUM_TCP			0x00020000
62 #define DMA_RX_CSUM_UDP			0x00040000
63 #define DMA_RX_BURST_SIZE		0x3F000000
64 
65 #define DMA_BURST_SHIFT			24
66 #define DMA_BURST_DEFAULT		8
67 
68 #define KS_DMA_TX_START			0x0008
69 #define KS_DMA_RX_START			0x000C
70 #define DMA_START			0x00000001
71 
72 #define KS_DMA_TX_ADDR			0x0010
73 #define KS_DMA_RX_ADDR			0x0014
74 
75 #define DMA_ADDR_LIST_MASK		0xFFFFFFFC
76 #define DMA_ADDR_LIST_SHIFT		2
77 
78 /* MTR0 */
79 #define KS884X_MULTICAST_0_OFFSET	0x0020
80 #define KS884X_MULTICAST_1_OFFSET	0x0021
81 #define KS884X_MULTICAST_2_OFFSET	0x0022
82 #define KS884x_MULTICAST_3_OFFSET	0x0023
83 /* MTR1 */
84 #define KS884X_MULTICAST_4_OFFSET	0x0024
85 #define KS884X_MULTICAST_5_OFFSET	0x0025
86 #define KS884X_MULTICAST_6_OFFSET	0x0026
87 #define KS884X_MULTICAST_7_OFFSET	0x0027
88 
89 /* Interrupt Registers */
90 
91 /* INTEN */
92 #define KS884X_INTERRUPTS_ENABLE	0x0028
93 /* INTST */
94 #define KS884X_INTERRUPTS_STATUS	0x002C
95 
96 #define KS884X_INT_RX_STOPPED		0x02000000
97 #define KS884X_INT_TX_STOPPED		0x04000000
98 #define KS884X_INT_RX_OVERRUN		0x08000000
99 #define KS884X_INT_TX_EMPTY		0x10000000
100 #define KS884X_INT_RX			0x20000000
101 #define KS884X_INT_TX			0x40000000
102 #define KS884X_INT_PHY			0x80000000
103 
104 #define KS884X_INT_RX_MASK		\
105 	(KS884X_INT_RX | KS884X_INT_RX_OVERRUN)
106 #define KS884X_INT_TX_MASK		\
107 	(KS884X_INT_TX | KS884X_INT_TX_EMPTY)
108 #define KS884X_INT_MASK	(KS884X_INT_RX | KS884X_INT_TX | KS884X_INT_PHY)
109 
110 /* MAC Additional Station Address */
111 
112 /* MAAL0 */
113 #define KS_ADD_ADDR_0_LO		0x0080
114 /* MAAH0 */
115 #define KS_ADD_ADDR_0_HI		0x0084
116 /* MAAL1 */
117 #define KS_ADD_ADDR_1_LO		0x0088
118 /* MAAH1 */
119 #define KS_ADD_ADDR_1_HI		0x008C
120 /* MAAL2 */
121 #define KS_ADD_ADDR_2_LO		0x0090
122 /* MAAH2 */
123 #define KS_ADD_ADDR_2_HI		0x0094
124 /* MAAL3 */
125 #define KS_ADD_ADDR_3_LO		0x0098
126 /* MAAH3 */
127 #define KS_ADD_ADDR_3_HI		0x009C
128 /* MAAL4 */
129 #define KS_ADD_ADDR_4_LO		0x00A0
130 /* MAAH4 */
131 #define KS_ADD_ADDR_4_HI		0x00A4
132 /* MAAL5 */
133 #define KS_ADD_ADDR_5_LO		0x00A8
134 /* MAAH5 */
135 #define KS_ADD_ADDR_5_HI		0x00AC
136 /* MAAL6 */
137 #define KS_ADD_ADDR_6_LO		0x00B0
138 /* MAAH6 */
139 #define KS_ADD_ADDR_6_HI		0x00B4
140 /* MAAL7 */
141 #define KS_ADD_ADDR_7_LO		0x00B8
142 /* MAAH7 */
143 #define KS_ADD_ADDR_7_HI		0x00BC
144 /* MAAL8 */
145 #define KS_ADD_ADDR_8_LO		0x00C0
146 /* MAAH8 */
147 #define KS_ADD_ADDR_8_HI		0x00C4
148 /* MAAL9 */
149 #define KS_ADD_ADDR_9_LO		0x00C8
150 /* MAAH9 */
151 #define KS_ADD_ADDR_9_HI		0x00CC
152 /* MAAL10 */
153 #define KS_ADD_ADDR_A_LO		0x00D0
154 /* MAAH10 */
155 #define KS_ADD_ADDR_A_HI		0x00D4
156 /* MAAL11 */
157 #define KS_ADD_ADDR_B_LO		0x00D8
158 /* MAAH11 */
159 #define KS_ADD_ADDR_B_HI		0x00DC
160 /* MAAL12 */
161 #define KS_ADD_ADDR_C_LO		0x00E0
162 /* MAAH12 */
163 #define KS_ADD_ADDR_C_HI		0x00E4
164 /* MAAL13 */
165 #define KS_ADD_ADDR_D_LO		0x00E8
166 /* MAAH13 */
167 #define KS_ADD_ADDR_D_HI		0x00EC
168 /* MAAL14 */
169 #define KS_ADD_ADDR_E_LO		0x00F0
170 /* MAAH14 */
171 #define KS_ADD_ADDR_E_HI		0x00F4
172 /* MAAL15 */
173 #define KS_ADD_ADDR_F_LO		0x00F8
174 /* MAAH15 */
175 #define KS_ADD_ADDR_F_HI		0x00FC
176 
177 #define ADD_ADDR_HI_MASK		0x0000FFFF
178 #define ADD_ADDR_ENABLE			0x80000000
179 #define ADD_ADDR_INCR			8
180 
181 /* Miscellaneous Registers */
182 
183 /* MARL */
184 #define KS884X_ADDR_0_OFFSET		0x0200
185 #define KS884X_ADDR_1_OFFSET		0x0201
186 /* MARM */
187 #define KS884X_ADDR_2_OFFSET		0x0202
188 #define KS884X_ADDR_3_OFFSET		0x0203
189 /* MARH */
190 #define KS884X_ADDR_4_OFFSET		0x0204
191 #define KS884X_ADDR_5_OFFSET		0x0205
192 
193 /* OBCR */
194 #define KS884X_BUS_CTRL_OFFSET		0x0210
195 
196 #define BUS_SPEED_125_MHZ		0x0000
197 #define BUS_SPEED_62_5_MHZ		0x0001
198 #define BUS_SPEED_41_66_MHZ		0x0002
199 #define BUS_SPEED_25_MHZ		0x0003
200 
201 /* EEPCR */
202 #define KS884X_EEPROM_CTRL_OFFSET	0x0212
203 
204 #define EEPROM_CHIP_SELECT		0x0001
205 #define EEPROM_SERIAL_CLOCK		0x0002
206 #define EEPROM_DATA_OUT			0x0004
207 #define EEPROM_DATA_IN			0x0008
208 #define EEPROM_ACCESS_ENABLE		0x0010
209 
210 /* MBIR */
211 #define KS884X_MEM_INFO_OFFSET		0x0214
212 
213 #define RX_MEM_TEST_FAILED		0x0008
214 #define RX_MEM_TEST_FINISHED		0x0010
215 #define TX_MEM_TEST_FAILED		0x0800
216 #define TX_MEM_TEST_FINISHED		0x1000
217 
218 /* GCR */
219 #define KS884X_GLOBAL_CTRL_OFFSET	0x0216
220 #define GLOBAL_SOFTWARE_RESET		0x0001
221 
222 #define KS8841_POWER_MANAGE_OFFSET	0x0218
223 
224 /* WFCR */
225 #define KS8841_WOL_CTRL_OFFSET		0x021A
226 #define KS8841_WOL_MAGIC_ENABLE		0x0080
227 #define KS8841_WOL_FRAME3_ENABLE	0x0008
228 #define KS8841_WOL_FRAME2_ENABLE	0x0004
229 #define KS8841_WOL_FRAME1_ENABLE	0x0002
230 #define KS8841_WOL_FRAME0_ENABLE	0x0001
231 
232 /* WF0 */
233 #define KS8841_WOL_FRAME_CRC_OFFSET	0x0220
234 #define KS8841_WOL_FRAME_BYTE0_OFFSET	0x0224
235 #define KS8841_WOL_FRAME_BYTE2_OFFSET	0x0228
236 
237 /* IACR */
238 #define KS884X_IACR_P			0x04A0
239 #define KS884X_IACR_OFFSET		KS884X_IACR_P
240 
241 /* IADR1 */
242 #define KS884X_IADR1_P			0x04A2
243 #define KS884X_IADR2_P			0x04A4
244 #define KS884X_IADR3_P			0x04A6
245 #define KS884X_IADR4_P			0x04A8
246 #define KS884X_IADR5_P			0x04AA
247 
248 #define KS884X_ACC_CTRL_SEL_OFFSET	KS884X_IACR_P
249 #define KS884X_ACC_CTRL_INDEX_OFFSET	(KS884X_ACC_CTRL_SEL_OFFSET + 1)
250 
251 #define KS884X_ACC_DATA_0_OFFSET	KS884X_IADR4_P
252 #define KS884X_ACC_DATA_1_OFFSET	(KS884X_ACC_DATA_0_OFFSET + 1)
253 #define KS884X_ACC_DATA_2_OFFSET	KS884X_IADR5_P
254 #define KS884X_ACC_DATA_3_OFFSET	(KS884X_ACC_DATA_2_OFFSET + 1)
255 #define KS884X_ACC_DATA_4_OFFSET	KS884X_IADR2_P
256 #define KS884X_ACC_DATA_5_OFFSET	(KS884X_ACC_DATA_4_OFFSET + 1)
257 #define KS884X_ACC_DATA_6_OFFSET	KS884X_IADR3_P
258 #define KS884X_ACC_DATA_7_OFFSET	(KS884X_ACC_DATA_6_OFFSET + 1)
259 #define KS884X_ACC_DATA_8_OFFSET	KS884X_IADR1_P
260 
261 /* P1MBCR */
262 #define KS884X_P1MBCR_P			0x04D0
263 #define KS884X_P1MBSR_P			0x04D2
264 #define KS884X_PHY1ILR_P		0x04D4
265 #define KS884X_PHY1IHR_P		0x04D6
266 #define KS884X_P1ANAR_P			0x04D8
267 #define KS884X_P1ANLPR_P		0x04DA
268 
269 /* P2MBCR */
270 #define KS884X_P2MBCR_P			0x04E0
271 #define KS884X_P2MBSR_P			0x04E2
272 #define KS884X_PHY2ILR_P		0x04E4
273 #define KS884X_PHY2IHR_P		0x04E6
274 #define KS884X_P2ANAR_P			0x04E8
275 #define KS884X_P2ANLPR_P		0x04EA
276 
277 #define KS884X_PHY_1_CTRL_OFFSET	KS884X_P1MBCR_P
278 #define PHY_CTRL_INTERVAL		(KS884X_P2MBCR_P - KS884X_P1MBCR_P)
279 
280 #define KS884X_PHY_CTRL_OFFSET		0x00
281 
282 /* Mode Control Register */
283 #define PHY_REG_CTRL			0
284 
285 #define PHY_RESET			0x8000
286 #define PHY_LOOPBACK			0x4000
287 #define PHY_SPEED_100MBIT		0x2000
288 #define PHY_AUTO_NEG_ENABLE		0x1000
289 #define PHY_POWER_DOWN			0x0800
290 #define PHY_MII_DISABLE			0x0400
291 #define PHY_AUTO_NEG_RESTART		0x0200
292 #define PHY_FULL_DUPLEX			0x0100
293 #define PHY_COLLISION_TEST		0x0080
294 #define PHY_HP_MDIX			0x0020
295 #define PHY_FORCE_MDIX			0x0010
296 #define PHY_AUTO_MDIX_DISABLE		0x0008
297 #define PHY_REMOTE_FAULT_DISABLE	0x0004
298 #define PHY_TRANSMIT_DISABLE		0x0002
299 #define PHY_LED_DISABLE			0x0001
300 
301 #define KS884X_PHY_STATUS_OFFSET	0x02
302 
303 /* Mode Status Register */
304 #define PHY_REG_STATUS			1
305 
306 #define PHY_100BT4_CAPABLE		0x8000
307 #define PHY_100BTX_FD_CAPABLE		0x4000
308 #define PHY_100BTX_CAPABLE		0x2000
309 #define PHY_10BT_FD_CAPABLE		0x1000
310 #define PHY_10BT_CAPABLE		0x0800
311 #define PHY_MII_SUPPRESS_CAPABLE	0x0040
312 #define PHY_AUTO_NEG_ACKNOWLEDGE	0x0020
313 #define PHY_REMOTE_FAULT		0x0010
314 #define PHY_AUTO_NEG_CAPABLE		0x0008
315 #define PHY_LINK_STATUS			0x0004
316 #define PHY_JABBER_DETECT		0x0002
317 #define PHY_EXTENDED_CAPABILITY		0x0001
318 
319 #define KS884X_PHY_ID_1_OFFSET		0x04
320 #define KS884X_PHY_ID_2_OFFSET		0x06
321 
322 /* PHY Identifier Registers */
323 #define PHY_REG_ID_1			2
324 #define PHY_REG_ID_2			3
325 
326 #define KS884X_PHY_AUTO_NEG_OFFSET	0x08
327 
328 /* Auto-Negotiation Advertisement Register */
329 #define PHY_REG_AUTO_NEGOTIATION	4
330 
331 #define PHY_AUTO_NEG_NEXT_PAGE		0x8000
332 #define PHY_AUTO_NEG_REMOTE_FAULT	0x2000
333 /* Not supported. */
334 #define PHY_AUTO_NEG_ASYM_PAUSE		0x0800
335 #define PHY_AUTO_NEG_SYM_PAUSE		0x0400
336 #define PHY_AUTO_NEG_100BT4		0x0200
337 #define PHY_AUTO_NEG_100BTX_FD		0x0100
338 #define PHY_AUTO_NEG_100BTX		0x0080
339 #define PHY_AUTO_NEG_10BT_FD		0x0040
340 #define PHY_AUTO_NEG_10BT		0x0020
341 #define PHY_AUTO_NEG_SELECTOR		0x001F
342 #define PHY_AUTO_NEG_802_3		0x0001
343 
344 #define PHY_AUTO_NEG_PAUSE  (PHY_AUTO_NEG_SYM_PAUSE | PHY_AUTO_NEG_ASYM_PAUSE)
345 
346 #define KS884X_PHY_REMOTE_CAP_OFFSET	0x0A
347 
348 /* Auto-Negotiation Link Partner Ability Register */
349 #define PHY_REG_REMOTE_CAPABILITY	5
350 
351 #define PHY_REMOTE_NEXT_PAGE		0x8000
352 #define PHY_REMOTE_ACKNOWLEDGE		0x4000
353 #define PHY_REMOTE_REMOTE_FAULT		0x2000
354 #define PHY_REMOTE_SYM_PAUSE		0x0400
355 #define PHY_REMOTE_100BTX_FD		0x0100
356 #define PHY_REMOTE_100BTX		0x0080
357 #define PHY_REMOTE_10BT_FD		0x0040
358 #define PHY_REMOTE_10BT			0x0020
359 
360 /* P1VCT */
361 #define KS884X_P1VCT_P			0x04F0
362 #define KS884X_P1PHYCTRL_P		0x04F2
363 
364 /* P2VCT */
365 #define KS884X_P2VCT_P			0x04F4
366 #define KS884X_P2PHYCTRL_P		0x04F6
367 
368 #define KS884X_PHY_SPECIAL_OFFSET	KS884X_P1VCT_P
369 #define PHY_SPECIAL_INTERVAL		(KS884X_P2VCT_P - KS884X_P1VCT_P)
370 
371 #define KS884X_PHY_LINK_MD_OFFSET	0x00
372 
373 #define PHY_START_CABLE_DIAG		0x8000
374 #define PHY_CABLE_DIAG_RESULT		0x6000
375 #define PHY_CABLE_STAT_NORMAL		0x0000
376 #define PHY_CABLE_STAT_OPEN		0x2000
377 #define PHY_CABLE_STAT_SHORT		0x4000
378 #define PHY_CABLE_STAT_FAILED		0x6000
379 #define PHY_CABLE_10M_SHORT		0x1000
380 #define PHY_CABLE_FAULT_COUNTER		0x01FF
381 
382 #define KS884X_PHY_PHY_CTRL_OFFSET	0x02
383 
384 #define PHY_STAT_REVERSED_POLARITY	0x0020
385 #define PHY_STAT_MDIX			0x0010
386 #define PHY_FORCE_LINK			0x0008
387 #define PHY_POWER_SAVING_DISABLE	0x0004
388 #define PHY_REMOTE_LOOPBACK		0x0002
389 
390 /* SIDER */
391 #define KS884X_SIDER_P			0x0400
392 #define KS884X_CHIP_ID_OFFSET		KS884X_SIDER_P
393 #define KS884X_FAMILY_ID_OFFSET		(KS884X_CHIP_ID_OFFSET + 1)
394 
395 #define REG_FAMILY_ID			0x88
396 
397 #define REG_CHIP_ID_41			0x8810
398 #define REG_CHIP_ID_42			0x8800
399 
400 #define KS884X_CHIP_ID_MASK_41		0xFF10
401 #define KS884X_CHIP_ID_MASK		0xFFF0
402 #define KS884X_CHIP_ID_SHIFT		4
403 #define KS884X_REVISION_MASK		0x000E
404 #define KS884X_REVISION_SHIFT		1
405 #define KS8842_START			0x0001
406 
407 #define CHIP_IP_41_M			0x8810
408 #define CHIP_IP_42_M			0x8800
409 #define CHIP_IP_61_M			0x8890
410 #define CHIP_IP_62_M			0x8880
411 
412 #define CHIP_IP_41_P			0x8850
413 #define CHIP_IP_42_P			0x8840
414 #define CHIP_IP_61_P			0x88D0
415 #define CHIP_IP_62_P			0x88C0
416 
417 /* SGCR1 */
418 #define KS8842_SGCR1_P			0x0402
419 #define KS8842_SWITCH_CTRL_1_OFFSET	KS8842_SGCR1_P
420 
421 #define SWITCH_PASS_ALL			0x8000
422 #define SWITCH_TX_FLOW_CTRL		0x2000
423 #define SWITCH_RX_FLOW_CTRL		0x1000
424 #define SWITCH_CHECK_LENGTH		0x0800
425 #define SWITCH_AGING_ENABLE		0x0400
426 #define SWITCH_FAST_AGING		0x0200
427 #define SWITCH_AGGR_BACKOFF		0x0100
428 #define SWITCH_PASS_PAUSE		0x0008
429 #define SWITCH_LINK_AUTO_AGING		0x0001
430 
431 /* SGCR2 */
432 #define KS8842_SGCR2_P			0x0404
433 #define KS8842_SWITCH_CTRL_2_OFFSET	KS8842_SGCR2_P
434 
435 #define SWITCH_VLAN_ENABLE		0x8000
436 #define SWITCH_IGMP_SNOOP		0x4000
437 #define IPV6_MLD_SNOOP_ENABLE		0x2000
438 #define IPV6_MLD_SNOOP_OPTION		0x1000
439 #define PRIORITY_SCHEME_SELECT		0x0800
440 #define SWITCH_MIRROR_RX_TX		0x0100
441 #define UNICAST_VLAN_BOUNDARY		0x0080
442 #define MULTICAST_STORM_DISABLE		0x0040
443 #define SWITCH_BACK_PRESSURE		0x0020
444 #define FAIR_FLOW_CTRL			0x0010
445 #define NO_EXC_COLLISION_DROP		0x0008
446 #define SWITCH_HUGE_PACKET		0x0004
447 #define SWITCH_LEGAL_PACKET		0x0002
448 #define SWITCH_BUF_RESERVE		0x0001
449 
450 /* SGCR3 */
451 #define KS8842_SGCR3_P			0x0406
452 #define KS8842_SWITCH_CTRL_3_OFFSET	KS8842_SGCR3_P
453 
454 #define BROADCAST_STORM_RATE_LO		0xFF00
455 #define SWITCH_REPEATER			0x0080
456 #define SWITCH_HALF_DUPLEX		0x0040
457 #define SWITCH_FLOW_CTRL		0x0020
458 #define SWITCH_10_MBIT			0x0010
459 #define SWITCH_REPLACE_NULL_VID		0x0008
460 #define BROADCAST_STORM_RATE_HI		0x0007
461 
462 #define BROADCAST_STORM_RATE		0x07FF
463 
464 /* SGCR4 */
465 #define KS8842_SGCR4_P			0x0408
466 
467 /* SGCR5 */
468 #define KS8842_SGCR5_P			0x040A
469 #define KS8842_SWITCH_CTRL_5_OFFSET	KS8842_SGCR5_P
470 
471 #define LED_MODE			0x8200
472 #define LED_SPEED_DUPLEX_ACT		0x0000
473 #define LED_SPEED_DUPLEX_LINK_ACT	0x8000
474 #define LED_DUPLEX_10_100		0x0200
475 
476 /* SGCR6 */
477 #define KS8842_SGCR6_P			0x0410
478 #define KS8842_SWITCH_CTRL_6_OFFSET	KS8842_SGCR6_P
479 
480 #define KS8842_PRIORITY_MASK		3
481 #define KS8842_PRIORITY_SHIFT		2
482 
483 /* SGCR7 */
484 #define KS8842_SGCR7_P			0x0412
485 #define KS8842_SWITCH_CTRL_7_OFFSET	KS8842_SGCR7_P
486 
487 #define SWITCH_UNK_DEF_PORT_ENABLE	0x0008
488 #define SWITCH_UNK_DEF_PORT_3		0x0004
489 #define SWITCH_UNK_DEF_PORT_2		0x0002
490 #define SWITCH_UNK_DEF_PORT_1		0x0001
491 
492 /* MACAR1 */
493 #define KS8842_MACAR1_P			0x0470
494 #define KS8842_MACAR2_P			0x0472
495 #define KS8842_MACAR3_P			0x0474
496 #define KS8842_MAC_ADDR_1_OFFSET	KS8842_MACAR1_P
497 #define KS8842_MAC_ADDR_0_OFFSET	(KS8842_MAC_ADDR_1_OFFSET + 1)
498 #define KS8842_MAC_ADDR_3_OFFSET	KS8842_MACAR2_P
499 #define KS8842_MAC_ADDR_2_OFFSET	(KS8842_MAC_ADDR_3_OFFSET + 1)
500 #define KS8842_MAC_ADDR_5_OFFSET	KS8842_MACAR3_P
501 #define KS8842_MAC_ADDR_4_OFFSET	(KS8842_MAC_ADDR_5_OFFSET + 1)
502 
503 /* TOSR1 */
504 #define KS8842_TOSR1_P			0x0480
505 #define KS8842_TOSR2_P			0x0482
506 #define KS8842_TOSR3_P			0x0484
507 #define KS8842_TOSR4_P			0x0486
508 #define KS8842_TOSR5_P			0x0488
509 #define KS8842_TOSR6_P			0x048A
510 #define KS8842_TOSR7_P			0x0490
511 #define KS8842_TOSR8_P			0x0492
512 #define KS8842_TOS_1_OFFSET		KS8842_TOSR1_P
513 #define KS8842_TOS_2_OFFSET		KS8842_TOSR2_P
514 #define KS8842_TOS_3_OFFSET		KS8842_TOSR3_P
515 #define KS8842_TOS_4_OFFSET		KS8842_TOSR4_P
516 #define KS8842_TOS_5_OFFSET		KS8842_TOSR5_P
517 #define KS8842_TOS_6_OFFSET		KS8842_TOSR6_P
518 
519 #define KS8842_TOS_7_OFFSET		KS8842_TOSR7_P
520 #define KS8842_TOS_8_OFFSET		KS8842_TOSR8_P
521 
522 /* P1CR1 */
523 #define KS8842_P1CR1_P			0x0500
524 #define KS8842_P1CR2_P			0x0502
525 #define KS8842_P1VIDR_P			0x0504
526 #define KS8842_P1CR3_P			0x0506
527 #define KS8842_P1IRCR_P			0x0508
528 #define KS8842_P1ERCR_P			0x050A
529 #define KS884X_P1SCSLMD_P		0x0510
530 #define KS884X_P1CR4_P			0x0512
531 #define KS884X_P1SR_P			0x0514
532 
533 /* P2CR1 */
534 #define KS8842_P2CR1_P			0x0520
535 #define KS8842_P2CR2_P			0x0522
536 #define KS8842_P2VIDR_P			0x0524
537 #define KS8842_P2CR3_P			0x0526
538 #define KS8842_P2IRCR_P			0x0528
539 #define KS8842_P2ERCR_P			0x052A
540 #define KS884X_P2SCSLMD_P		0x0530
541 #define KS884X_P2CR4_P			0x0532
542 #define KS884X_P2SR_P			0x0534
543 
544 /* P3CR1 */
545 #define KS8842_P3CR1_P			0x0540
546 #define KS8842_P3CR2_P			0x0542
547 #define KS8842_P3VIDR_P			0x0544
548 #define KS8842_P3CR3_P			0x0546
549 #define KS8842_P3IRCR_P			0x0548
550 #define KS8842_P3ERCR_P			0x054A
551 
552 #define KS8842_PORT_1_CTRL_1		KS8842_P1CR1_P
553 #define KS8842_PORT_2_CTRL_1		KS8842_P2CR1_P
554 #define KS8842_PORT_3_CTRL_1		KS8842_P3CR1_P
555 
556 #define PORT_CTRL_ADDR(port, addr)		\
557 	(addr = KS8842_PORT_1_CTRL_1 + (port) *	\
558 		(KS8842_PORT_2_CTRL_1 - KS8842_PORT_1_CTRL_1))
559 
560 #define KS8842_PORT_CTRL_1_OFFSET	0x00
561 
562 #define PORT_BROADCAST_STORM		0x0080
563 #define PORT_DIFFSERV_ENABLE		0x0040
564 #define PORT_802_1P_ENABLE		0x0020
565 #define PORT_BASED_PRIORITY_MASK	0x0018
566 #define PORT_BASED_PRIORITY_BASE	0x0003
567 #define PORT_BASED_PRIORITY_SHIFT	3
568 #define PORT_BASED_PRIORITY_0		0x0000
569 #define PORT_BASED_PRIORITY_1		0x0008
570 #define PORT_BASED_PRIORITY_2		0x0010
571 #define PORT_BASED_PRIORITY_3		0x0018
572 #define PORT_INSERT_TAG			0x0004
573 #define PORT_REMOVE_TAG			0x0002
574 #define PORT_PRIO_QUEUE_ENABLE		0x0001
575 
576 #define KS8842_PORT_CTRL_2_OFFSET	0x02
577 
578 #define PORT_INGRESS_VLAN_FILTER	0x4000
579 #define PORT_DISCARD_NON_VID		0x2000
580 #define PORT_FORCE_FLOW_CTRL		0x1000
581 #define PORT_BACK_PRESSURE		0x0800
582 #define PORT_TX_ENABLE			0x0400
583 #define PORT_RX_ENABLE			0x0200
584 #define PORT_LEARN_DISABLE		0x0100
585 #define PORT_MIRROR_SNIFFER		0x0080
586 #define PORT_MIRROR_RX			0x0040
587 #define PORT_MIRROR_TX			0x0020
588 #define PORT_USER_PRIORITY_CEILING	0x0008
589 #define PORT_VLAN_MEMBERSHIP		0x0007
590 
591 #define KS8842_PORT_CTRL_VID_OFFSET	0x04
592 
593 #define PORT_DEFAULT_VID		0x0001
594 
595 #define KS8842_PORT_CTRL_3_OFFSET	0x06
596 
597 #define PORT_INGRESS_LIMIT_MODE		0x000C
598 #define PORT_INGRESS_ALL		0x0000
599 #define PORT_INGRESS_UNICAST		0x0004
600 #define PORT_INGRESS_MULTICAST		0x0008
601 #define PORT_INGRESS_BROADCAST		0x000C
602 #define PORT_COUNT_IFG			0x0002
603 #define PORT_COUNT_PREAMBLE		0x0001
604 
605 #define KS8842_PORT_IN_RATE_OFFSET	0x08
606 #define KS8842_PORT_OUT_RATE_OFFSET	0x0A
607 
608 #define PORT_PRIORITY_RATE		0x0F
609 #define PORT_PRIORITY_RATE_SHIFT	4
610 
611 #define KS884X_PORT_LINK_MD		0x10
612 
613 #define PORT_CABLE_10M_SHORT		0x8000
614 #define PORT_CABLE_DIAG_RESULT		0x6000
615 #define PORT_CABLE_STAT_NORMAL		0x0000
616 #define PORT_CABLE_STAT_OPEN		0x2000
617 #define PORT_CABLE_STAT_SHORT		0x4000
618 #define PORT_CABLE_STAT_FAILED		0x6000
619 #define PORT_START_CABLE_DIAG		0x1000
620 #define PORT_FORCE_LINK			0x0800
621 #define PORT_POWER_SAVING_DISABLE	0x0400
622 #define PORT_PHY_REMOTE_LOOPBACK	0x0200
623 #define PORT_CABLE_FAULT_COUNTER	0x01FF
624 
625 #define KS884X_PORT_CTRL_4_OFFSET	0x12
626 
627 #define PORT_LED_OFF			0x8000
628 #define PORT_TX_DISABLE			0x4000
629 #define PORT_AUTO_NEG_RESTART		0x2000
630 #define PORT_REMOTE_FAULT_DISABLE	0x1000
631 #define PORT_POWER_DOWN			0x0800
632 #define PORT_AUTO_MDIX_DISABLE		0x0400
633 #define PORT_FORCE_MDIX			0x0200
634 #define PORT_LOOPBACK			0x0100
635 #define PORT_AUTO_NEG_ENABLE		0x0080
636 #define PORT_FORCE_100_MBIT		0x0040
637 #define PORT_FORCE_FULL_DUPLEX		0x0020
638 #define PORT_AUTO_NEG_SYM_PAUSE		0x0010
639 #define PORT_AUTO_NEG_100BTX_FD		0x0008
640 #define PORT_AUTO_NEG_100BTX		0x0004
641 #define PORT_AUTO_NEG_10BT_FD		0x0002
642 #define PORT_AUTO_NEG_10BT		0x0001
643 
644 #define KS884X_PORT_STATUS_OFFSET	0x14
645 
646 #define PORT_HP_MDIX			0x8000
647 #define PORT_REVERSED_POLARITY		0x2000
648 #define PORT_RX_FLOW_CTRL		0x0800
649 #define PORT_TX_FLOW_CTRL		0x1000
650 #define PORT_STATUS_SPEED_100MBIT	0x0400
651 #define PORT_STATUS_FULL_DUPLEX		0x0200
652 #define PORT_REMOTE_FAULT		0x0100
653 #define PORT_MDIX_STATUS		0x0080
654 #define PORT_AUTO_NEG_COMPLETE		0x0040
655 #define PORT_STATUS_LINK_GOOD		0x0020
656 #define PORT_REMOTE_SYM_PAUSE		0x0010
657 #define PORT_REMOTE_100BTX_FD		0x0008
658 #define PORT_REMOTE_100BTX		0x0004
659 #define PORT_REMOTE_10BT_FD		0x0002
660 #define PORT_REMOTE_10BT		0x0001
661 
662 /*
663 #define STATIC_MAC_TABLE_ADDR		00-0000FFFF-FFFFFFFF
664 #define STATIC_MAC_TABLE_FWD_PORTS	00-00070000-00000000
665 #define STATIC_MAC_TABLE_VALID		00-00080000-00000000
666 #define STATIC_MAC_TABLE_OVERRIDE	00-00100000-00000000
667 #define STATIC_MAC_TABLE_USE_FID	00-00200000-00000000
668 #define STATIC_MAC_TABLE_FID		00-03C00000-00000000
669 */
670 
671 #define STATIC_MAC_TABLE_ADDR		0x0000FFFF
672 #define STATIC_MAC_TABLE_FWD_PORTS	0x00070000
673 #define STATIC_MAC_TABLE_VALID		0x00080000
674 #define STATIC_MAC_TABLE_OVERRIDE	0x00100000
675 #define STATIC_MAC_TABLE_USE_FID	0x00200000
676 #define STATIC_MAC_TABLE_FID		0x03C00000
677 
678 #define STATIC_MAC_FWD_PORTS_SHIFT	16
679 #define STATIC_MAC_FID_SHIFT		22
680 
681 /*
682 #define VLAN_TABLE_VID			00-00000000-00000FFF
683 #define VLAN_TABLE_FID			00-00000000-0000F000
684 #define VLAN_TABLE_MEMBERSHIP		00-00000000-00070000
685 #define VLAN_TABLE_VALID		00-00000000-00080000
686 */
687 
688 #define VLAN_TABLE_VID			0x00000FFF
689 #define VLAN_TABLE_FID			0x0000F000
690 #define VLAN_TABLE_MEMBERSHIP		0x00070000
691 #define VLAN_TABLE_VALID		0x00080000
692 
693 #define VLAN_TABLE_FID_SHIFT		12
694 #define VLAN_TABLE_MEMBERSHIP_SHIFT	16
695 
696 /*
697 #define DYNAMIC_MAC_TABLE_ADDR		00-0000FFFF-FFFFFFFF
698 #define DYNAMIC_MAC_TABLE_FID		00-000F0000-00000000
699 #define DYNAMIC_MAC_TABLE_SRC_PORT	00-00300000-00000000
700 #define DYNAMIC_MAC_TABLE_TIMESTAMP	00-00C00000-00000000
701 #define DYNAMIC_MAC_TABLE_ENTRIES	03-FF000000-00000000
702 #define DYNAMIC_MAC_TABLE_MAC_EMPTY	04-00000000-00000000
703 #define DYNAMIC_MAC_TABLE_RESERVED	78-00000000-00000000
704 #define DYNAMIC_MAC_TABLE_NOT_READY	80-00000000-00000000
705 */
706 
707 #define DYNAMIC_MAC_TABLE_ADDR		0x0000FFFF
708 #define DYNAMIC_MAC_TABLE_FID		0x000F0000
709 #define DYNAMIC_MAC_TABLE_SRC_PORT	0x00300000
710 #define DYNAMIC_MAC_TABLE_TIMESTAMP	0x00C00000
711 #define DYNAMIC_MAC_TABLE_ENTRIES	0xFF000000
712 
713 #define DYNAMIC_MAC_TABLE_ENTRIES_H	0x03
714 #define DYNAMIC_MAC_TABLE_MAC_EMPTY	0x04
715 #define DYNAMIC_MAC_TABLE_RESERVED	0x78
716 #define DYNAMIC_MAC_TABLE_NOT_READY	0x80
717 
718 #define DYNAMIC_MAC_FID_SHIFT		16
719 #define DYNAMIC_MAC_SRC_PORT_SHIFT	20
720 #define DYNAMIC_MAC_TIMESTAMP_SHIFT	22
721 #define DYNAMIC_MAC_ENTRIES_SHIFT	24
722 #define DYNAMIC_MAC_ENTRIES_H_SHIFT	8
723 
724 /*
725 #define MIB_COUNTER_VALUE		00-00000000-3FFFFFFF
726 #define MIB_COUNTER_VALID		00-00000000-40000000
727 #define MIB_COUNTER_OVERFLOW		00-00000000-80000000
728 */
729 
730 #define MIB_COUNTER_VALUE		0x3FFFFFFF
731 #define MIB_COUNTER_VALID		0x40000000
732 #define MIB_COUNTER_OVERFLOW		0x80000000
733 
734 #define MIB_PACKET_DROPPED		0x0000FFFF
735 
736 #define KS_MIB_PACKET_DROPPED_TX_0	0x100
737 #define KS_MIB_PACKET_DROPPED_TX_1	0x101
738 #define KS_MIB_PACKET_DROPPED_TX	0x102
739 #define KS_MIB_PACKET_DROPPED_RX_0	0x103
740 #define KS_MIB_PACKET_DROPPED_RX_1	0x104
741 #define KS_MIB_PACKET_DROPPED_RX	0x105
742 
743 /* Change default LED mode. */
744 #define SET_DEFAULT_LED			LED_SPEED_DUPLEX_ACT
745 
746 #define MAC_ADDR_ORDER(i)		(ETH_ALEN - 1 - (i))
747 
748 #define MAX_ETHERNET_BODY_SIZE		1500
749 #define ETHERNET_HEADER_SIZE		(14 + VLAN_HLEN)
750 
751 #define MAX_ETHERNET_PACKET_SIZE	\
752 	(MAX_ETHERNET_BODY_SIZE + ETHERNET_HEADER_SIZE)
753 
754 #define REGULAR_RX_BUF_SIZE		(MAX_ETHERNET_PACKET_SIZE + 4)
755 #define MAX_RX_BUF_SIZE			(1912 + 4)
756 
757 #define ADDITIONAL_ENTRIES		16
758 #define MAX_MULTICAST_LIST		32
759 
760 #define HW_MULTICAST_SIZE		8
761 
762 #define HW_TO_DEV_PORT(port)		(port - 1)
763 
764 enum {
765 	media_connected,
766 	media_disconnected
767 };
768 
769 enum {
770 	OID_COUNTER_UNKOWN,
771 
772 	OID_COUNTER_FIRST,
773 
774 	/* total transmit errors */
775 	OID_COUNTER_XMIT_ERROR,
776 
777 	/* total receive errors */
778 	OID_COUNTER_RCV_ERROR,
779 
780 	OID_COUNTER_LAST
781 };
782 
783 /*
784  * Hardware descriptor definitions
785  */
786 
787 #define DESC_ALIGNMENT			16
788 #define BUFFER_ALIGNMENT		8
789 
790 #define NUM_OF_RX_DESC			64
791 #define NUM_OF_TX_DESC			64
792 
793 #define KS_DESC_RX_FRAME_LEN		0x000007FF
794 #define KS_DESC_RX_FRAME_TYPE		0x00008000
795 #define KS_DESC_RX_ERROR_CRC		0x00010000
796 #define KS_DESC_RX_ERROR_RUNT		0x00020000
797 #define KS_DESC_RX_ERROR_TOO_LONG	0x00040000
798 #define KS_DESC_RX_ERROR_PHY		0x00080000
799 #define KS884X_DESC_RX_PORT_MASK	0x00300000
800 #define KS_DESC_RX_MULTICAST		0x01000000
801 #define KS_DESC_RX_ERROR		0x02000000
802 #define KS_DESC_RX_ERROR_CSUM_UDP	0x04000000
803 #define KS_DESC_RX_ERROR_CSUM_TCP	0x08000000
804 #define KS_DESC_RX_ERROR_CSUM_IP	0x10000000
805 #define KS_DESC_RX_LAST			0x20000000
806 #define KS_DESC_RX_FIRST		0x40000000
807 #define KS_DESC_RX_ERROR_COND		\
808 	(KS_DESC_RX_ERROR_CRC |		\
809 	KS_DESC_RX_ERROR_RUNT |		\
810 	KS_DESC_RX_ERROR_PHY |		\
811 	KS_DESC_RX_ERROR_TOO_LONG)
812 
813 #define KS_DESC_HW_OWNED		0x80000000
814 
815 #define KS_DESC_BUF_SIZE		0x000007FF
816 #define KS884X_DESC_TX_PORT_MASK	0x00300000
817 #define KS_DESC_END_OF_RING		0x02000000
818 #define KS_DESC_TX_CSUM_GEN_UDP		0x04000000
819 #define KS_DESC_TX_CSUM_GEN_TCP		0x08000000
820 #define KS_DESC_TX_CSUM_GEN_IP		0x10000000
821 #define KS_DESC_TX_LAST			0x20000000
822 #define KS_DESC_TX_FIRST		0x40000000
823 #define KS_DESC_TX_INTERRUPT		0x80000000
824 
825 #define KS_DESC_PORT_SHIFT		20
826 
827 #define KS_DESC_RX_MASK			(KS_DESC_BUF_SIZE)
828 
829 #define KS_DESC_TX_MASK			\
830 	(KS_DESC_TX_INTERRUPT |		\
831 	KS_DESC_TX_FIRST |		\
832 	KS_DESC_TX_LAST |		\
833 	KS_DESC_TX_CSUM_GEN_IP |	\
834 	KS_DESC_TX_CSUM_GEN_TCP |	\
835 	KS_DESC_TX_CSUM_GEN_UDP |	\
836 	KS_DESC_BUF_SIZE)
837 
838 struct ksz_desc_rx_stat {
839 #ifdef __BIG_ENDIAN_BITFIELD
840 	u32 hw_owned:1;
841 	u32 first_desc:1;
842 	u32 last_desc:1;
843 	u32 csum_err_ip:1;
844 	u32 csum_err_tcp:1;
845 	u32 csum_err_udp:1;
846 	u32 error:1;
847 	u32 multicast:1;
848 	u32 src_port:4;
849 	u32 err_phy:1;
850 	u32 err_too_long:1;
851 	u32 err_runt:1;
852 	u32 err_crc:1;
853 	u32 frame_type:1;
854 	u32 reserved1:4;
855 	u32 frame_len:11;
856 #else
857 	u32 frame_len:11;
858 	u32 reserved1:4;
859 	u32 frame_type:1;
860 	u32 err_crc:1;
861 	u32 err_runt:1;
862 	u32 err_too_long:1;
863 	u32 err_phy:1;
864 	u32 src_port:4;
865 	u32 multicast:1;
866 	u32 error:1;
867 	u32 csum_err_udp:1;
868 	u32 csum_err_tcp:1;
869 	u32 csum_err_ip:1;
870 	u32 last_desc:1;
871 	u32 first_desc:1;
872 	u32 hw_owned:1;
873 #endif
874 };
875 
876 struct ksz_desc_tx_stat {
877 #ifdef __BIG_ENDIAN_BITFIELD
878 	u32 hw_owned:1;
879 	u32 reserved1:31;
880 #else
881 	u32 reserved1:31;
882 	u32 hw_owned:1;
883 #endif
884 };
885 
886 struct ksz_desc_rx_buf {
887 #ifdef __BIG_ENDIAN_BITFIELD
888 	u32 reserved4:6;
889 	u32 end_of_ring:1;
890 	u32 reserved3:14;
891 	u32 buf_size:11;
892 #else
893 	u32 buf_size:11;
894 	u32 reserved3:14;
895 	u32 end_of_ring:1;
896 	u32 reserved4:6;
897 #endif
898 };
899 
900 struct ksz_desc_tx_buf {
901 #ifdef __BIG_ENDIAN_BITFIELD
902 	u32 intr:1;
903 	u32 first_seg:1;
904 	u32 last_seg:1;
905 	u32 csum_gen_ip:1;
906 	u32 csum_gen_tcp:1;
907 	u32 csum_gen_udp:1;
908 	u32 end_of_ring:1;
909 	u32 reserved4:1;
910 	u32 dest_port:4;
911 	u32 reserved3:9;
912 	u32 buf_size:11;
913 #else
914 	u32 buf_size:11;
915 	u32 reserved3:9;
916 	u32 dest_port:4;
917 	u32 reserved4:1;
918 	u32 end_of_ring:1;
919 	u32 csum_gen_udp:1;
920 	u32 csum_gen_tcp:1;
921 	u32 csum_gen_ip:1;
922 	u32 last_seg:1;
923 	u32 first_seg:1;
924 	u32 intr:1;
925 #endif
926 };
927 
928 union desc_stat {
929 	struct ksz_desc_rx_stat rx;
930 	struct ksz_desc_tx_stat tx;
931 	u32 data;
932 };
933 
934 union desc_buf {
935 	struct ksz_desc_rx_buf rx;
936 	struct ksz_desc_tx_buf tx;
937 	u32 data;
938 };
939 
940 /**
941  * struct ksz_hw_desc - Hardware descriptor data structure
942  * @ctrl:	Descriptor control value.
943  * @buf:	Descriptor buffer value.
944  * @addr:	Physical address of memory buffer.
945  * @next:	Pointer to next hardware descriptor.
946  */
947 struct ksz_hw_desc {
948 	union desc_stat ctrl;
949 	union desc_buf buf;
950 	u32 addr;
951 	u32 next;
952 };
953 
954 /**
955  * struct ksz_sw_desc - Software descriptor data structure
956  * @ctrl:	Descriptor control value.
957  * @buf:	Descriptor buffer value.
958  * @buf_size:	Current buffers size value in hardware descriptor.
959  */
960 struct ksz_sw_desc {
961 	union desc_stat ctrl;
962 	union desc_buf buf;
963 	u32 buf_size;
964 };
965 
966 /**
967  * struct ksz_dma_buf - OS dependent DMA buffer data structure
968  * @skb:	Associated socket buffer.
969  * @dma:	Associated physical DMA address.
970  * len:		Actual len used.
971  */
972 struct ksz_dma_buf {
973 	struct sk_buff *skb;
974 	dma_addr_t dma;
975 	int len;
976 };
977 
978 /**
979  * struct ksz_desc - Descriptor structure
980  * @phw:	Hardware descriptor pointer to uncached physical memory.
981  * @sw:		Cached memory to hold hardware descriptor values for
982  * 		manipulation.
983  * @dma_buf:	Operating system dependent data structure to hold physical
984  * 		memory buffer allocation information.
985  */
986 struct ksz_desc {
987 	struct ksz_hw_desc *phw;
988 	struct ksz_sw_desc sw;
989 	struct ksz_dma_buf dma_buf;
990 };
991 
992 #define DMA_BUFFER(desc)  ((struct ksz_dma_buf *)(&(desc)->dma_buf))
993 
994 /**
995  * struct ksz_desc_info - Descriptor information data structure
996  * @ring:	First descriptor in the ring.
997  * @cur:	Current descriptor being manipulated.
998  * @ring_virt:	First hardware descriptor in the ring.
999  * @ring_phys:	The physical address of the first descriptor of the ring.
1000  * @size:	Size of hardware descriptor.
1001  * @alloc:	Number of descriptors allocated.
1002  * @avail:	Number of descriptors available for use.
1003  * @last:	Index for last descriptor released to hardware.
1004  * @next:	Index for next descriptor available for use.
1005  * @mask:	Mask for index wrapping.
1006  */
1007 struct ksz_desc_info {
1008 	struct ksz_desc *ring;
1009 	struct ksz_desc *cur;
1010 	struct ksz_hw_desc *ring_virt;
1011 	u32 ring_phys;
1012 	int size;
1013 	int alloc;
1014 	int avail;
1015 	int last;
1016 	int next;
1017 	int mask;
1018 };
1019 
1020 /*
1021  * KSZ8842 switch definitions
1022  */
1023 
1024 enum {
1025 	TABLE_STATIC_MAC = 0,
1026 	TABLE_VLAN,
1027 	TABLE_DYNAMIC_MAC,
1028 	TABLE_MIB
1029 };
1030 
1031 #define LEARNED_MAC_TABLE_ENTRIES	1024
1032 #define STATIC_MAC_TABLE_ENTRIES	8
1033 
1034 /**
1035  * struct ksz_mac_table - Static MAC table data structure
1036  * @mac_addr:	MAC address to filter.
1037  * @vid:	VID value.
1038  * @fid:	FID value.
1039  * @ports:	Port membership.
1040  * @override:	Override setting.
1041  * @use_fid:	FID use setting.
1042  * @valid:	Valid setting indicating the entry is being used.
1043  */
1044 struct ksz_mac_table {
1045 	u8 mac_addr[ETH_ALEN];
1046 	u16 vid;
1047 	u8 fid;
1048 	u8 ports;
1049 	u8 override:1;
1050 	u8 use_fid:1;
1051 	u8 valid:1;
1052 };
1053 
1054 #define VLAN_TABLE_ENTRIES		16
1055 
1056 /**
1057  * struct ksz_vlan_table - VLAN table data structure
1058  * @vid:	VID value.
1059  * @fid:	FID value.
1060  * @member:	Port membership.
1061  */
1062 struct ksz_vlan_table {
1063 	u16 vid;
1064 	u8 fid;
1065 	u8 member;
1066 };
1067 
1068 #define DIFFSERV_ENTRIES		64
1069 #define PRIO_802_1P_ENTRIES		8
1070 #define PRIO_QUEUES			4
1071 
1072 #define SWITCH_PORT_NUM			2
1073 #define TOTAL_PORT_NUM			(SWITCH_PORT_NUM + 1)
1074 #define HOST_MASK			(1 << SWITCH_PORT_NUM)
1075 #define PORT_MASK			7
1076 
1077 #define MAIN_PORT			0
1078 #define OTHER_PORT			1
1079 #define HOST_PORT			SWITCH_PORT_NUM
1080 
1081 #define PORT_COUNTER_NUM		0x20
1082 #define TOTAL_PORT_COUNTER_NUM		(PORT_COUNTER_NUM + 2)
1083 
1084 #define MIB_COUNTER_RX_LO_PRIORITY	0x00
1085 #define MIB_COUNTER_RX_HI_PRIORITY	0x01
1086 #define MIB_COUNTER_RX_UNDERSIZE	0x02
1087 #define MIB_COUNTER_RX_FRAGMENT		0x03
1088 #define MIB_COUNTER_RX_OVERSIZE		0x04
1089 #define MIB_COUNTER_RX_JABBER		0x05
1090 #define MIB_COUNTER_RX_SYMBOL_ERR	0x06
1091 #define MIB_COUNTER_RX_CRC_ERR		0x07
1092 #define MIB_COUNTER_RX_ALIGNMENT_ERR	0x08
1093 #define MIB_COUNTER_RX_CTRL_8808	0x09
1094 #define MIB_COUNTER_RX_PAUSE		0x0A
1095 #define MIB_COUNTER_RX_BROADCAST	0x0B
1096 #define MIB_COUNTER_RX_MULTICAST	0x0C
1097 #define MIB_COUNTER_RX_UNICAST		0x0D
1098 #define MIB_COUNTER_RX_OCTET_64		0x0E
1099 #define MIB_COUNTER_RX_OCTET_65_127	0x0F
1100 #define MIB_COUNTER_RX_OCTET_128_255	0x10
1101 #define MIB_COUNTER_RX_OCTET_256_511	0x11
1102 #define MIB_COUNTER_RX_OCTET_512_1023	0x12
1103 #define MIB_COUNTER_RX_OCTET_1024_1522	0x13
1104 #define MIB_COUNTER_TX_LO_PRIORITY	0x14
1105 #define MIB_COUNTER_TX_HI_PRIORITY	0x15
1106 #define MIB_COUNTER_TX_LATE_COLLISION	0x16
1107 #define MIB_COUNTER_TX_PAUSE		0x17
1108 #define MIB_COUNTER_TX_BROADCAST	0x18
1109 #define MIB_COUNTER_TX_MULTICAST	0x19
1110 #define MIB_COUNTER_TX_UNICAST		0x1A
1111 #define MIB_COUNTER_TX_DEFERRED		0x1B
1112 #define MIB_COUNTER_TX_TOTAL_COLLISION	0x1C
1113 #define MIB_COUNTER_TX_EXCESS_COLLISION	0x1D
1114 #define MIB_COUNTER_TX_SINGLE_COLLISION	0x1E
1115 #define MIB_COUNTER_TX_MULTI_COLLISION	0x1F
1116 
1117 #define MIB_COUNTER_RX_DROPPED_PACKET	0x20
1118 #define MIB_COUNTER_TX_DROPPED_PACKET	0x21
1119 
1120 /**
1121  * struct ksz_port_mib - Port MIB data structure
1122  * @cnt_ptr:	Current pointer to MIB counter index.
1123  * @link_down:	Indication the link has just gone down.
1124  * @state:	Connection status of the port.
1125  * @mib_start:	The starting counter index.  Some ports do not start at 0.
1126  * @counter:	64-bit MIB counter value.
1127  * @dropped:	Temporary buffer to remember last read packet dropped values.
1128  *
1129  * MIB counters needs to be read periodically so that counters do not get
1130  * overflowed and give incorrect values.  A right balance is needed to
1131  * satisfy this condition and not waste too much CPU time.
1132  *
1133  * It is pointless to read MIB counters when the port is disconnected.  The
1134  * @state provides the connection status so that MIB counters are read only
1135  * when the port is connected.  The @link_down indicates the port is just
1136  * disconnected so that all MIB counters are read one last time to update the
1137  * information.
1138  */
1139 struct ksz_port_mib {
1140 	u8 cnt_ptr;
1141 	u8 link_down;
1142 	u8 state;
1143 	u8 mib_start;
1144 
1145 	u64 counter[TOTAL_PORT_COUNTER_NUM];
1146 	u32 dropped[2];
1147 };
1148 
1149 /**
1150  * struct ksz_port_cfg - Port configuration data structure
1151  * @vid:	VID value.
1152  * @member:	Port membership.
1153  * @port_prio:	Port priority.
1154  * @rx_rate:	Receive priority rate.
1155  * @tx_rate:	Transmit priority rate.
1156  * @stp_state:	Current Spanning Tree Protocol state.
1157  */
1158 struct ksz_port_cfg {
1159 	u16 vid;
1160 	u8 member;
1161 	u8 port_prio;
1162 	u32 rx_rate[PRIO_QUEUES];
1163 	u32 tx_rate[PRIO_QUEUES];
1164 	int stp_state;
1165 };
1166 
1167 /**
1168  * struct ksz_switch - KSZ8842 switch data structure
1169  * @mac_table:	MAC table entries information.
1170  * @vlan_table:	VLAN table entries information.
1171  * @port_cfg:	Port configuration information.
1172  * @diffserv:	DiffServ priority settings.  Possible values from 6-bit of ToS
1173  * 		(bit7 ~ bit2) field.
1174  * @p_802_1p:	802.1P priority settings.  Possible values from 3-bit of 802.1p
1175  * 		Tag priority field.
1176  * @br_addr:	Bridge address.  Used for STP.
1177  * @other_addr:	Other MAC address.  Used for multiple network device mode.
1178  * @broad_per:	Broadcast storm percentage.
1179  * @member:	Current port membership.  Used for STP.
1180  */
1181 struct ksz_switch {
1182 	struct ksz_mac_table mac_table[STATIC_MAC_TABLE_ENTRIES];
1183 	struct ksz_vlan_table vlan_table[VLAN_TABLE_ENTRIES];
1184 	struct ksz_port_cfg port_cfg[TOTAL_PORT_NUM];
1185 
1186 	u8 diffserv[DIFFSERV_ENTRIES];
1187 	u8 p_802_1p[PRIO_802_1P_ENTRIES];
1188 
1189 	u8 br_addr[ETH_ALEN];
1190 	u8 other_addr[ETH_ALEN];
1191 
1192 	u8 broad_per;
1193 	u8 member;
1194 };
1195 
1196 #define TX_RATE_UNIT			10000
1197 
1198 /**
1199  * struct ksz_port_info - Port information data structure
1200  * @state:	Connection status of the port.
1201  * @tx_rate:	Transmit rate divided by 10000 to get Mbit.
1202  * @duplex:	Duplex mode.
1203  * @advertised:	Advertised auto-negotiation setting.  Used to determine link.
1204  * @partner:	Auto-negotiation partner setting.  Used to determine link.
1205  * @port_id:	Port index to access actual hardware register.
1206  * @pdev:	Pointer to OS dependent network device.
1207  */
1208 struct ksz_port_info {
1209 	uint state;
1210 	uint tx_rate;
1211 	u8 duplex;
1212 	u8 advertised;
1213 	u8 partner;
1214 	u8 port_id;
1215 	void *pdev;
1216 };
1217 
1218 #define MAX_TX_HELD_SIZE		52000
1219 
1220 /* Hardware features and bug fixes. */
1221 #define LINK_INT_WORKING		(1 << 0)
1222 #define SMALL_PACKET_TX_BUG		(1 << 1)
1223 #define HALF_DUPLEX_SIGNAL_BUG		(1 << 2)
1224 #define RX_HUGE_FRAME			(1 << 4)
1225 #define STP_SUPPORT			(1 << 8)
1226 
1227 /* Software overrides. */
1228 #define PAUSE_FLOW_CTRL			(1 << 0)
1229 #define FAST_AGING			(1 << 1)
1230 
1231 /**
1232  * struct ksz_hw - KSZ884X hardware data structure
1233  * @io:			Virtual address assigned.
1234  * @ksz_switch:		Pointer to KSZ8842 switch.
1235  * @port_info:		Port information.
1236  * @port_mib:		Port MIB information.
1237  * @dev_count:		Number of network devices this hardware supports.
1238  * @dst_ports:		Destination ports in switch for transmission.
1239  * @id:			Hardware ID.  Used for display only.
1240  * @mib_cnt:		Number of MIB counters this hardware has.
1241  * @mib_port_cnt:	Number of ports with MIB counters.
1242  * @tx_cfg:		Cached transmit control settings.
1243  * @rx_cfg:		Cached receive control settings.
1244  * @intr_mask:		Current interrupt mask.
1245  * @intr_set:		Current interrup set.
1246  * @intr_blocked:	Interrupt blocked.
1247  * @rx_desc_info:	Receive descriptor information.
1248  * @tx_desc_info:	Transmit descriptor information.
1249  * @tx_int_cnt:		Transmit interrupt count.  Used for TX optimization.
1250  * @tx_int_mask:	Transmit interrupt mask.  Used for TX optimization.
1251  * @tx_size:		Transmit data size.  Used for TX optimization.
1252  * 			The maximum is defined by MAX_TX_HELD_SIZE.
1253  * @perm_addr:		Permanent MAC address.
1254  * @override_addr:	Overrided MAC address.
1255  * @address:		Additional MAC address entries.
1256  * @addr_list_size:	Additional MAC address list size.
1257  * @mac_override:	Indication of MAC address overrided.
1258  * @promiscuous:	Counter to keep track of promiscuous mode set.
1259  * @all_multi:		Counter to keep track of all multicast mode set.
1260  * @multi_list:		Multicast address entries.
1261  * @multi_bits:		Cached multicast hash table settings.
1262  * @multi_list_size:	Multicast address list size.
1263  * @enabled:		Indication of hardware enabled.
1264  * @rx_stop:		Indication of receive process stop.
1265  * @features:		Hardware features to enable.
1266  * @overrides:		Hardware features to override.
1267  * @parent:		Pointer to parent, network device private structure.
1268  */
1269 struct ksz_hw {
1270 	void __iomem *io;
1271 
1272 	struct ksz_switch *ksz_switch;
1273 	struct ksz_port_info port_info[SWITCH_PORT_NUM];
1274 	struct ksz_port_mib port_mib[TOTAL_PORT_NUM];
1275 	int dev_count;
1276 	int dst_ports;
1277 	int id;
1278 	int mib_cnt;
1279 	int mib_port_cnt;
1280 
1281 	u32 tx_cfg;
1282 	u32 rx_cfg;
1283 	u32 intr_mask;
1284 	u32 intr_set;
1285 	uint intr_blocked;
1286 
1287 	struct ksz_desc_info rx_desc_info;
1288 	struct ksz_desc_info tx_desc_info;
1289 
1290 	int tx_int_cnt;
1291 	int tx_int_mask;
1292 	int tx_size;
1293 
1294 	u8 perm_addr[ETH_ALEN];
1295 	u8 override_addr[ETH_ALEN];
1296 	u8 address[ADDITIONAL_ENTRIES][ETH_ALEN];
1297 	u8 addr_list_size;
1298 	u8 mac_override;
1299 	u8 promiscuous;
1300 	u8 all_multi;
1301 	u8 multi_list[MAX_MULTICAST_LIST][ETH_ALEN];
1302 	u8 multi_bits[HW_MULTICAST_SIZE];
1303 	u8 multi_list_size;
1304 
1305 	u8 enabled;
1306 	u8 rx_stop;
1307 	u8 reserved2[1];
1308 
1309 	uint features;
1310 	uint overrides;
1311 
1312 	void *parent;
1313 };
1314 
1315 enum {
1316 	PHY_NO_FLOW_CTRL,
1317 	PHY_FLOW_CTRL,
1318 	PHY_TX_ONLY,
1319 	PHY_RX_ONLY
1320 };
1321 
1322 /**
1323  * struct ksz_port - Virtual port data structure
1324  * @duplex:		Duplex mode setting.  1 for half duplex, 2 for full
1325  * 			duplex, and 0 for auto, which normally results in full
1326  * 			duplex.
1327  * @speed:		Speed setting.  10 for 10 Mbit, 100 for 100 Mbit, and
1328  * 			0 for auto, which normally results in 100 Mbit.
1329  * @force_link:		Force link setting.  0 for auto-negotiation, and 1 for
1330  * 			force.
1331  * @flow_ctrl:		Flow control setting.  PHY_NO_FLOW_CTRL for no flow
1332  * 			control, and PHY_FLOW_CTRL for flow control.
1333  * 			PHY_TX_ONLY and PHY_RX_ONLY are not supported for 100
1334  * 			Mbit PHY.
1335  * @first_port:		Index of first port this port supports.
1336  * @mib_port_cnt:	Number of ports with MIB counters.
1337  * @port_cnt:		Number of ports this port supports.
1338  * @counter:		Port statistics counter.
1339  * @hw:			Pointer to hardware structure.
1340  * @linked:		Pointer to port information linked to this port.
1341  */
1342 struct ksz_port {
1343 	u8 duplex;
1344 	u8 speed;
1345 	u8 force_link;
1346 	u8 flow_ctrl;
1347 
1348 	int first_port;
1349 	int mib_port_cnt;
1350 	int port_cnt;
1351 	u64 counter[OID_COUNTER_LAST];
1352 
1353 	struct ksz_hw *hw;
1354 	struct ksz_port_info *linked;
1355 };
1356 
1357 /**
1358  * struct ksz_timer_info - Timer information data structure
1359  * @timer:	Kernel timer.
1360  * @cnt:	Running timer counter.
1361  * @max:	Number of times to run timer; -1 for infinity.
1362  * @period:	Timer period in jiffies.
1363  */
1364 struct ksz_timer_info {
1365 	struct timer_list timer;
1366 	int cnt;
1367 	int max;
1368 	int period;
1369 };
1370 
1371 /**
1372  * struct ksz_shared_mem - OS dependent shared memory data structure
1373  * @dma_addr:	Physical DMA address allocated.
1374  * @alloc_size:	Allocation size.
1375  * @phys:	Actual physical address used.
1376  * @alloc_virt:	Virtual address allocated.
1377  * @virt:	Actual virtual address used.
1378  */
1379 struct ksz_shared_mem {
1380 	dma_addr_t dma_addr;
1381 	uint alloc_size;
1382 	uint phys;
1383 	u8 *alloc_virt;
1384 	u8 *virt;
1385 };
1386 
1387 /**
1388  * struct ksz_counter_info - OS dependent counter information data structure
1389  * @counter:	Wait queue to wakeup after counters are read.
1390  * @time:	Next time in jiffies to read counter.
1391  * @read:	Indication of counters read in full or not.
1392  */
1393 struct ksz_counter_info {
1394 	wait_queue_head_t counter;
1395 	unsigned long time;
1396 	int read;
1397 };
1398 
1399 /**
1400  * struct dev_info - Network device information data structure
1401  * @dev:		Pointer to network device.
1402  * @pdev:		Pointer to PCI device.
1403  * @hw:			Hardware structure.
1404  * @desc_pool:		Physical memory used for descriptor pool.
1405  * @hwlock:		Spinlock to prevent hardware from accessing.
1406  * @lock:		Mutex lock to prevent device from accessing.
1407  * @dev_rcv:		Receive process function used.
1408  * @last_skb:		Socket buffer allocated for descriptor rx fragments.
1409  * @skb_index:		Buffer index for receiving fragments.
1410  * @skb_len:		Buffer length for receiving fragments.
1411  * @mib_read:		Workqueue to read MIB counters.
1412  * @mib_timer_info:	Timer to read MIB counters.
1413  * @counter:		Used for MIB reading.
1414  * @mtu:		Current MTU used.  The default is REGULAR_RX_BUF_SIZE;
1415  * 			the maximum is MAX_RX_BUF_SIZE.
1416  * @opened:		Counter to keep track of device open.
1417  * @rx_tasklet:		Receive processing tasklet.
1418  * @tx_tasklet:		Transmit processing tasklet.
1419  * @wol_enable:		Wake-on-LAN enable set by ethtool.
1420  * @wol_support:	Wake-on-LAN support used by ethtool.
1421  * @pme_wait:		Used for KSZ8841 power management.
1422  */
1423 struct dev_info {
1424 	struct net_device *dev;
1425 	struct pci_dev *pdev;
1426 
1427 	struct ksz_hw hw;
1428 	struct ksz_shared_mem desc_pool;
1429 
1430 	spinlock_t hwlock;
1431 	struct mutex lock;
1432 
1433 	int (*dev_rcv)(struct dev_info *);
1434 
1435 	struct sk_buff *last_skb;
1436 	int skb_index;
1437 	int skb_len;
1438 
1439 	struct work_struct mib_read;
1440 	struct ksz_timer_info mib_timer_info;
1441 	struct ksz_counter_info counter[TOTAL_PORT_NUM];
1442 
1443 	int mtu;
1444 	int opened;
1445 
1446 	struct tasklet_struct rx_tasklet;
1447 	struct tasklet_struct tx_tasklet;
1448 
1449 	int wol_enable;
1450 	int wol_support;
1451 	unsigned long pme_wait;
1452 };
1453 
1454 /**
1455  * struct dev_priv - Network device private data structure
1456  * @adapter:		Adapter device information.
1457  * @port:		Port information.
1458  * @monitor_time_info:	Timer to monitor ports.
1459  * @proc_sem:		Semaphore for proc accessing.
1460  * @id:			Device ID.
1461  * @mii_if:		MII interface information.
1462  * @advertising:	Temporary variable to store advertised settings.
1463  * @msg_enable:		The message flags controlling driver output.
1464  * @media_state:	The connection status of the device.
1465  * @multicast:		The all multicast state of the device.
1466  * @promiscuous:	The promiscuous state of the device.
1467  */
1468 struct dev_priv {
1469 	struct dev_info *adapter;
1470 	struct ksz_port port;
1471 	struct ksz_timer_info monitor_timer_info;
1472 
1473 	struct semaphore proc_sem;
1474 	int id;
1475 
1476 	struct mii_if_info mii_if;
1477 	u32 advertising;
1478 
1479 	u32 msg_enable;
1480 	int media_state;
1481 	int multicast;
1482 	int promiscuous;
1483 };
1484 
1485 #define DRV_NAME		"KSZ884X PCI"
1486 #define DEVICE_NAME		"KSZ884x PCI"
1487 #define DRV_VERSION		"1.0.0"
1488 #define DRV_RELDATE		"Feb 8, 2010"
1489 
1490 static char version[] =
1491 	"Micrel " DEVICE_NAME " " DRV_VERSION " (" DRV_RELDATE ")";
1492 
1493 static u8 DEFAULT_MAC_ADDRESS[] = { 0x00, 0x10, 0xA1, 0x88, 0x42, 0x01 };
1494 
1495 /*
1496  * Interrupt processing primary routines
1497  */
1498 
1499 static inline void hw_ack_intr(struct ksz_hw *hw, uint interrupt)
1500 {
1501 	writel(interrupt, hw->io + KS884X_INTERRUPTS_STATUS);
1502 }
1503 
1504 static inline void hw_dis_intr(struct ksz_hw *hw)
1505 {
1506 	hw->intr_blocked = hw->intr_mask;
1507 	writel(0, hw->io + KS884X_INTERRUPTS_ENABLE);
1508 	hw->intr_set = readl(hw->io + KS884X_INTERRUPTS_ENABLE);
1509 }
1510 
1511 static inline void hw_set_intr(struct ksz_hw *hw, uint interrupt)
1512 {
1513 	hw->intr_set = interrupt;
1514 	writel(interrupt, hw->io + KS884X_INTERRUPTS_ENABLE);
1515 }
1516 
1517 static inline void hw_ena_intr(struct ksz_hw *hw)
1518 {
1519 	hw->intr_blocked = 0;
1520 	hw_set_intr(hw, hw->intr_mask);
1521 }
1522 
1523 static inline void hw_dis_intr_bit(struct ksz_hw *hw, uint bit)
1524 {
1525 	hw->intr_mask &= ~(bit);
1526 }
1527 
1528 static inline void hw_turn_off_intr(struct ksz_hw *hw, uint interrupt)
1529 {
1530 	u32 read_intr;
1531 
1532 	read_intr = readl(hw->io + KS884X_INTERRUPTS_ENABLE);
1533 	hw->intr_set = read_intr & ~interrupt;
1534 	writel(hw->intr_set, hw->io + KS884X_INTERRUPTS_ENABLE);
1535 	hw_dis_intr_bit(hw, interrupt);
1536 }
1537 
1538 /**
1539  * hw_turn_on_intr - turn on specified interrupts
1540  * @hw: 	The hardware instance.
1541  * @bit:	The interrupt bits to be on.
1542  *
1543  * This routine turns on the specified interrupts in the interrupt mask so that
1544  * those interrupts will be enabled.
1545  */
1546 static void hw_turn_on_intr(struct ksz_hw *hw, u32 bit)
1547 {
1548 	hw->intr_mask |= bit;
1549 
1550 	if (!hw->intr_blocked)
1551 		hw_set_intr(hw, hw->intr_mask);
1552 }
1553 
1554 static inline void hw_ena_intr_bit(struct ksz_hw *hw, uint interrupt)
1555 {
1556 	u32 read_intr;
1557 
1558 	read_intr = readl(hw->io + KS884X_INTERRUPTS_ENABLE);
1559 	hw->intr_set = read_intr | interrupt;
1560 	writel(hw->intr_set, hw->io + KS884X_INTERRUPTS_ENABLE);
1561 }
1562 
1563 static inline void hw_read_intr(struct ksz_hw *hw, uint *status)
1564 {
1565 	*status = readl(hw->io + KS884X_INTERRUPTS_STATUS);
1566 	*status = *status & hw->intr_set;
1567 }
1568 
1569 static inline void hw_restore_intr(struct ksz_hw *hw, uint interrupt)
1570 {
1571 	if (interrupt)
1572 		hw_ena_intr(hw);
1573 }
1574 
1575 /**
1576  * hw_block_intr - block hardware interrupts
1577  *
1578  * This function blocks all interrupts of the hardware and returns the current
1579  * interrupt enable mask so that interrupts can be restored later.
1580  *
1581  * Return the current interrupt enable mask.
1582  */
1583 static uint hw_block_intr(struct ksz_hw *hw)
1584 {
1585 	uint interrupt = 0;
1586 
1587 	if (!hw->intr_blocked) {
1588 		hw_dis_intr(hw);
1589 		interrupt = hw->intr_blocked;
1590 	}
1591 	return interrupt;
1592 }
1593 
1594 /*
1595  * Hardware descriptor routines
1596  */
1597 
1598 static inline void reset_desc(struct ksz_desc *desc, union desc_stat status)
1599 {
1600 	status.rx.hw_owned = 0;
1601 	desc->phw->ctrl.data = cpu_to_le32(status.data);
1602 }
1603 
1604 static inline void release_desc(struct ksz_desc *desc)
1605 {
1606 	desc->sw.ctrl.tx.hw_owned = 1;
1607 	if (desc->sw.buf_size != desc->sw.buf.data) {
1608 		desc->sw.buf_size = desc->sw.buf.data;
1609 		desc->phw->buf.data = cpu_to_le32(desc->sw.buf.data);
1610 	}
1611 	desc->phw->ctrl.data = cpu_to_le32(desc->sw.ctrl.data);
1612 }
1613 
1614 static void get_rx_pkt(struct ksz_desc_info *info, struct ksz_desc **desc)
1615 {
1616 	*desc = &info->ring[info->last];
1617 	info->last++;
1618 	info->last &= info->mask;
1619 	info->avail--;
1620 	(*desc)->sw.buf.data &= ~KS_DESC_RX_MASK;
1621 }
1622 
1623 static inline void set_rx_buf(struct ksz_desc *desc, u32 addr)
1624 {
1625 	desc->phw->addr = cpu_to_le32(addr);
1626 }
1627 
1628 static inline void set_rx_len(struct ksz_desc *desc, u32 len)
1629 {
1630 	desc->sw.buf.rx.buf_size = len;
1631 }
1632 
1633 static inline void get_tx_pkt(struct ksz_desc_info *info,
1634 	struct ksz_desc **desc)
1635 {
1636 	*desc = &info->ring[info->next];
1637 	info->next++;
1638 	info->next &= info->mask;
1639 	info->avail--;
1640 	(*desc)->sw.buf.data &= ~KS_DESC_TX_MASK;
1641 }
1642 
1643 static inline void set_tx_buf(struct ksz_desc *desc, u32 addr)
1644 {
1645 	desc->phw->addr = cpu_to_le32(addr);
1646 }
1647 
1648 static inline void set_tx_len(struct ksz_desc *desc, u32 len)
1649 {
1650 	desc->sw.buf.tx.buf_size = len;
1651 }
1652 
1653 /* Switch functions */
1654 
1655 #define TABLE_READ			0x10
1656 #define TABLE_SEL_SHIFT			2
1657 
1658 #define HW_DELAY(hw, reg)			\
1659 	do {					\
1660 		u16 dummy;			\
1661 		dummy = readw(hw->io + reg);	\
1662 	} while (0)
1663 
1664 /**
1665  * sw_r_table - read 4 bytes of data from switch table
1666  * @hw:		The hardware instance.
1667  * @table:	The table selector.
1668  * @addr:	The address of the table entry.
1669  * @data:	Buffer to store the read data.
1670  *
1671  * This routine reads 4 bytes of data from the table of the switch.
1672  * Hardware interrupts are disabled to minimize corruption of read data.
1673  */
1674 static void sw_r_table(struct ksz_hw *hw, int table, u16 addr, u32 *data)
1675 {
1676 	u16 ctrl_addr;
1677 	uint interrupt;
1678 
1679 	ctrl_addr = (((table << TABLE_SEL_SHIFT) | TABLE_READ) << 8) | addr;
1680 
1681 	interrupt = hw_block_intr(hw);
1682 
1683 	writew(ctrl_addr, hw->io + KS884X_IACR_OFFSET);
1684 	HW_DELAY(hw, KS884X_IACR_OFFSET);
1685 	*data = readl(hw->io + KS884X_ACC_DATA_0_OFFSET);
1686 
1687 	hw_restore_intr(hw, interrupt);
1688 }
1689 
1690 /**
1691  * sw_w_table_64 - write 8 bytes of data to the switch table
1692  * @hw:		The hardware instance.
1693  * @table:	The table selector.
1694  * @addr:	The address of the table entry.
1695  * @data_hi:	The high part of data to be written (bit63 ~ bit32).
1696  * @data_lo:	The low part of data to be written (bit31 ~ bit0).
1697  *
1698  * This routine writes 8 bytes of data to the table of the switch.
1699  * Hardware interrupts are disabled to minimize corruption of written data.
1700  */
1701 static void sw_w_table_64(struct ksz_hw *hw, int table, u16 addr, u32 data_hi,
1702 	u32 data_lo)
1703 {
1704 	u16 ctrl_addr;
1705 	uint interrupt;
1706 
1707 	ctrl_addr = ((table << TABLE_SEL_SHIFT) << 8) | addr;
1708 
1709 	interrupt = hw_block_intr(hw);
1710 
1711 	writel(data_hi, hw->io + KS884X_ACC_DATA_4_OFFSET);
1712 	writel(data_lo, hw->io + KS884X_ACC_DATA_0_OFFSET);
1713 
1714 	writew(ctrl_addr, hw->io + KS884X_IACR_OFFSET);
1715 	HW_DELAY(hw, KS884X_IACR_OFFSET);
1716 
1717 	hw_restore_intr(hw, interrupt);
1718 }
1719 
1720 /**
1721  * sw_w_sta_mac_table - write to the static MAC table
1722  * @hw: 	The hardware instance.
1723  * @addr:	The address of the table entry.
1724  * @mac_addr:	The MAC address.
1725  * @ports:	The port members.
1726  * @override:	The flag to override the port receive/transmit settings.
1727  * @valid:	The flag to indicate entry is valid.
1728  * @use_fid:	The flag to indicate the FID is valid.
1729  * @fid:	The FID value.
1730  *
1731  * This routine writes an entry of the static MAC table of the switch.  It
1732  * calls sw_w_table_64() to write the data.
1733  */
1734 static void sw_w_sta_mac_table(struct ksz_hw *hw, u16 addr, u8 *mac_addr,
1735 	u8 ports, int override, int valid, int use_fid, u8 fid)
1736 {
1737 	u32 data_hi;
1738 	u32 data_lo;
1739 
1740 	data_lo = ((u32) mac_addr[2] << 24) |
1741 		((u32) mac_addr[3] << 16) |
1742 		((u32) mac_addr[4] << 8) | mac_addr[5];
1743 	data_hi = ((u32) mac_addr[0] << 8) | mac_addr[1];
1744 	data_hi |= (u32) ports << STATIC_MAC_FWD_PORTS_SHIFT;
1745 
1746 	if (override)
1747 		data_hi |= STATIC_MAC_TABLE_OVERRIDE;
1748 	if (use_fid) {
1749 		data_hi |= STATIC_MAC_TABLE_USE_FID;
1750 		data_hi |= (u32) fid << STATIC_MAC_FID_SHIFT;
1751 	}
1752 	if (valid)
1753 		data_hi |= STATIC_MAC_TABLE_VALID;
1754 
1755 	sw_w_table_64(hw, TABLE_STATIC_MAC, addr, data_hi, data_lo);
1756 }
1757 
1758 /**
1759  * sw_r_vlan_table - read from the VLAN table
1760  * @hw: 	The hardware instance.
1761  * @addr:	The address of the table entry.
1762  * @vid:	Buffer to store the VID.
1763  * @fid:	Buffer to store the VID.
1764  * @member:	Buffer to store the port membership.
1765  *
1766  * This function reads an entry of the VLAN table of the switch.  It calls
1767  * sw_r_table() to get the data.
1768  *
1769  * Return 0 if the entry is valid; otherwise -1.
1770  */
1771 static int sw_r_vlan_table(struct ksz_hw *hw, u16 addr, u16 *vid, u8 *fid,
1772 	u8 *member)
1773 {
1774 	u32 data;
1775 
1776 	sw_r_table(hw, TABLE_VLAN, addr, &data);
1777 	if (data & VLAN_TABLE_VALID) {
1778 		*vid = (u16)(data & VLAN_TABLE_VID);
1779 		*fid = (u8)((data & VLAN_TABLE_FID) >> VLAN_TABLE_FID_SHIFT);
1780 		*member = (u8)((data & VLAN_TABLE_MEMBERSHIP) >>
1781 			VLAN_TABLE_MEMBERSHIP_SHIFT);
1782 		return 0;
1783 	}
1784 	return -1;
1785 }
1786 
1787 /**
1788  * port_r_mib_cnt - read MIB counter
1789  * @hw: 	The hardware instance.
1790  * @port:	The port index.
1791  * @addr:	The address of the counter.
1792  * @cnt:	Buffer to store the counter.
1793  *
1794  * This routine reads a MIB counter of the port.
1795  * Hardware interrupts are disabled to minimize corruption of read data.
1796  */
1797 static void port_r_mib_cnt(struct ksz_hw *hw, int port, u16 addr, u64 *cnt)
1798 {
1799 	u32 data;
1800 	u16 ctrl_addr;
1801 	uint interrupt;
1802 	int timeout;
1803 
1804 	ctrl_addr = addr + PORT_COUNTER_NUM * port;
1805 
1806 	interrupt = hw_block_intr(hw);
1807 
1808 	ctrl_addr |= (((TABLE_MIB << TABLE_SEL_SHIFT) | TABLE_READ) << 8);
1809 	writew(ctrl_addr, hw->io + KS884X_IACR_OFFSET);
1810 	HW_DELAY(hw, KS884X_IACR_OFFSET);
1811 
1812 	for (timeout = 100; timeout > 0; timeout--) {
1813 		data = readl(hw->io + KS884X_ACC_DATA_0_OFFSET);
1814 
1815 		if (data & MIB_COUNTER_VALID) {
1816 			if (data & MIB_COUNTER_OVERFLOW)
1817 				*cnt += MIB_COUNTER_VALUE + 1;
1818 			*cnt += data & MIB_COUNTER_VALUE;
1819 			break;
1820 		}
1821 	}
1822 
1823 	hw_restore_intr(hw, interrupt);
1824 }
1825 
1826 /**
1827  * port_r_mib_pkt - read dropped packet counts
1828  * @hw: 	The hardware instance.
1829  * @port:	The port index.
1830  * @cnt:	Buffer to store the receive and transmit dropped packet counts.
1831  *
1832  * This routine reads the dropped packet counts of the port.
1833  * Hardware interrupts are disabled to minimize corruption of read data.
1834  */
1835 static void port_r_mib_pkt(struct ksz_hw *hw, int port, u32 *last, u64 *cnt)
1836 {
1837 	u32 cur;
1838 	u32 data;
1839 	u16 ctrl_addr;
1840 	uint interrupt;
1841 	int index;
1842 
1843 	index = KS_MIB_PACKET_DROPPED_RX_0 + port;
1844 	do {
1845 		interrupt = hw_block_intr(hw);
1846 
1847 		ctrl_addr = (u16) index;
1848 		ctrl_addr |= (((TABLE_MIB << TABLE_SEL_SHIFT) | TABLE_READ)
1849 			<< 8);
1850 		writew(ctrl_addr, hw->io + KS884X_IACR_OFFSET);
1851 		HW_DELAY(hw, KS884X_IACR_OFFSET);
1852 		data = readl(hw->io + KS884X_ACC_DATA_0_OFFSET);
1853 
1854 		hw_restore_intr(hw, interrupt);
1855 
1856 		data &= MIB_PACKET_DROPPED;
1857 		cur = *last;
1858 		if (data != cur) {
1859 			*last = data;
1860 			if (data < cur)
1861 				data += MIB_PACKET_DROPPED + 1;
1862 			data -= cur;
1863 			*cnt += data;
1864 		}
1865 		++last;
1866 		++cnt;
1867 		index -= KS_MIB_PACKET_DROPPED_TX -
1868 			KS_MIB_PACKET_DROPPED_TX_0 + 1;
1869 	} while (index >= KS_MIB_PACKET_DROPPED_TX_0 + port);
1870 }
1871 
1872 /**
1873  * port_r_cnt - read MIB counters periodically
1874  * @hw: 	The hardware instance.
1875  * @port:	The port index.
1876  *
1877  * This routine is used to read the counters of the port periodically to avoid
1878  * counter overflow.  The hardware should be acquired first before calling this
1879  * routine.
1880  *
1881  * Return non-zero when not all counters not read.
1882  */
1883 static int port_r_cnt(struct ksz_hw *hw, int port)
1884 {
1885 	struct ksz_port_mib *mib = &hw->port_mib[port];
1886 
1887 	if (mib->mib_start < PORT_COUNTER_NUM)
1888 		while (mib->cnt_ptr < PORT_COUNTER_NUM) {
1889 			port_r_mib_cnt(hw, port, mib->cnt_ptr,
1890 				&mib->counter[mib->cnt_ptr]);
1891 			++mib->cnt_ptr;
1892 		}
1893 	if (hw->mib_cnt > PORT_COUNTER_NUM)
1894 		port_r_mib_pkt(hw, port, mib->dropped,
1895 			&mib->counter[PORT_COUNTER_NUM]);
1896 	mib->cnt_ptr = 0;
1897 	return 0;
1898 }
1899 
1900 /**
1901  * port_init_cnt - initialize MIB counter values
1902  * @hw: 	The hardware instance.
1903  * @port:	The port index.
1904  *
1905  * This routine is used to initialize all counters to zero if the hardware
1906  * cannot do it after reset.
1907  */
1908 static void port_init_cnt(struct ksz_hw *hw, int port)
1909 {
1910 	struct ksz_port_mib *mib = &hw->port_mib[port];
1911 
1912 	mib->cnt_ptr = 0;
1913 	if (mib->mib_start < PORT_COUNTER_NUM)
1914 		do {
1915 			port_r_mib_cnt(hw, port, mib->cnt_ptr,
1916 				&mib->counter[mib->cnt_ptr]);
1917 			++mib->cnt_ptr;
1918 		} while (mib->cnt_ptr < PORT_COUNTER_NUM);
1919 	if (hw->mib_cnt > PORT_COUNTER_NUM)
1920 		port_r_mib_pkt(hw, port, mib->dropped,
1921 			&mib->counter[PORT_COUNTER_NUM]);
1922 	memset((void *) mib->counter, 0, sizeof(u64) * TOTAL_PORT_COUNTER_NUM);
1923 	mib->cnt_ptr = 0;
1924 }
1925 
1926 /*
1927  * Port functions
1928  */
1929 
1930 /**
1931  * port_chk - check port register bits
1932  * @hw: 	The hardware instance.
1933  * @port:	The port index.
1934  * @offset:	The offset of the port register.
1935  * @bits:	The data bits to check.
1936  *
1937  * This function checks whether the specified bits of the port register are set
1938  * or not.
1939  *
1940  * Return 0 if the bits are not set.
1941  */
1942 static int port_chk(struct ksz_hw *hw, int port, int offset, u16 bits)
1943 {
1944 	u32 addr;
1945 	u16 data;
1946 
1947 	PORT_CTRL_ADDR(port, addr);
1948 	addr += offset;
1949 	data = readw(hw->io + addr);
1950 	return (data & bits) == bits;
1951 }
1952 
1953 /**
1954  * port_cfg - set port register bits
1955  * @hw: 	The hardware instance.
1956  * @port:	The port index.
1957  * @offset:	The offset of the port register.
1958  * @bits:	The data bits to set.
1959  * @set:	The flag indicating whether the bits are to be set or not.
1960  *
1961  * This routine sets or resets the specified bits of the port register.
1962  */
1963 static void port_cfg(struct ksz_hw *hw, int port, int offset, u16 bits,
1964 	int set)
1965 {
1966 	u32 addr;
1967 	u16 data;
1968 
1969 	PORT_CTRL_ADDR(port, addr);
1970 	addr += offset;
1971 	data = readw(hw->io + addr);
1972 	if (set)
1973 		data |= bits;
1974 	else
1975 		data &= ~bits;
1976 	writew(data, hw->io + addr);
1977 }
1978 
1979 /**
1980  * port_chk_shift - check port bit
1981  * @hw: 	The hardware instance.
1982  * @port:	The port index.
1983  * @offset:	The offset of the register.
1984  * @shift:	Number of bits to shift.
1985  *
1986  * This function checks whether the specified port is set in the register or
1987  * not.
1988  *
1989  * Return 0 if the port is not set.
1990  */
1991 static int port_chk_shift(struct ksz_hw *hw, int port, u32 addr, int shift)
1992 {
1993 	u16 data;
1994 	u16 bit = 1 << port;
1995 
1996 	data = readw(hw->io + addr);
1997 	data >>= shift;
1998 	return (data & bit) == bit;
1999 }
2000 
2001 /**
2002  * port_cfg_shift - set port bit
2003  * @hw: 	The hardware instance.
2004  * @port:	The port index.
2005  * @offset:	The offset of the register.
2006  * @shift:	Number of bits to shift.
2007  * @set:	The flag indicating whether the port is to be set or not.
2008  *
2009  * This routine sets or resets the specified port in the register.
2010  */
2011 static void port_cfg_shift(struct ksz_hw *hw, int port, u32 addr, int shift,
2012 	int set)
2013 {
2014 	u16 data;
2015 	u16 bits = 1 << port;
2016 
2017 	data = readw(hw->io + addr);
2018 	bits <<= shift;
2019 	if (set)
2020 		data |= bits;
2021 	else
2022 		data &= ~bits;
2023 	writew(data, hw->io + addr);
2024 }
2025 
2026 /**
2027  * port_r8 - read byte from port register
2028  * @hw: 	The hardware instance.
2029  * @port:	The port index.
2030  * @offset:	The offset of the port register.
2031  * @data:	Buffer to store the data.
2032  *
2033  * This routine reads a byte from the port register.
2034  */
2035 static void port_r8(struct ksz_hw *hw, int port, int offset, u8 *data)
2036 {
2037 	u32 addr;
2038 
2039 	PORT_CTRL_ADDR(port, addr);
2040 	addr += offset;
2041 	*data = readb(hw->io + addr);
2042 }
2043 
2044 /**
2045  * port_r16 - read word from port register.
2046  * @hw: 	The hardware instance.
2047  * @port:	The port index.
2048  * @offset:	The offset of the port register.
2049  * @data:	Buffer to store the data.
2050  *
2051  * This routine reads a word from the port register.
2052  */
2053 static void port_r16(struct ksz_hw *hw, int port, int offset, u16 *data)
2054 {
2055 	u32 addr;
2056 
2057 	PORT_CTRL_ADDR(port, addr);
2058 	addr += offset;
2059 	*data = readw(hw->io + addr);
2060 }
2061 
2062 /**
2063  * port_w16 - write word to port register.
2064  * @hw: 	The hardware instance.
2065  * @port:	The port index.
2066  * @offset:	The offset of the port register.
2067  * @data:	Data to write.
2068  *
2069  * This routine writes a word to the port register.
2070  */
2071 static void port_w16(struct ksz_hw *hw, int port, int offset, u16 data)
2072 {
2073 	u32 addr;
2074 
2075 	PORT_CTRL_ADDR(port, addr);
2076 	addr += offset;
2077 	writew(data, hw->io + addr);
2078 }
2079 
2080 /**
2081  * sw_chk - check switch register bits
2082  * @hw: 	The hardware instance.
2083  * @addr:	The address of the switch register.
2084  * @bits:	The data bits to check.
2085  *
2086  * This function checks whether the specified bits of the switch register are
2087  * set or not.
2088  *
2089  * Return 0 if the bits are not set.
2090  */
2091 static int sw_chk(struct ksz_hw *hw, u32 addr, u16 bits)
2092 {
2093 	u16 data;
2094 
2095 	data = readw(hw->io + addr);
2096 	return (data & bits) == bits;
2097 }
2098 
2099 /**
2100  * sw_cfg - set switch register bits
2101  * @hw: 	The hardware instance.
2102  * @addr:	The address of the switch register.
2103  * @bits:	The data bits to set.
2104  * @set:	The flag indicating whether the bits are to be set or not.
2105  *
2106  * This function sets or resets the specified bits of the switch register.
2107  */
2108 static void sw_cfg(struct ksz_hw *hw, u32 addr, u16 bits, int set)
2109 {
2110 	u16 data;
2111 
2112 	data = readw(hw->io + addr);
2113 	if (set)
2114 		data |= bits;
2115 	else
2116 		data &= ~bits;
2117 	writew(data, hw->io + addr);
2118 }
2119 
2120 /* Bandwidth */
2121 
2122 static inline void port_cfg_broad_storm(struct ksz_hw *hw, int p, int set)
2123 {
2124 	port_cfg(hw, p,
2125 		KS8842_PORT_CTRL_1_OFFSET, PORT_BROADCAST_STORM, set);
2126 }
2127 
2128 static inline int port_chk_broad_storm(struct ksz_hw *hw, int p)
2129 {
2130 	return port_chk(hw, p,
2131 		KS8842_PORT_CTRL_1_OFFSET, PORT_BROADCAST_STORM);
2132 }
2133 
2134 /* Driver set switch broadcast storm protection at 10% rate. */
2135 #define BROADCAST_STORM_PROTECTION_RATE	10
2136 
2137 /* 148,800 frames * 67 ms / 100 */
2138 #define BROADCAST_STORM_VALUE		9969
2139 
2140 /**
2141  * sw_cfg_broad_storm - configure broadcast storm threshold
2142  * @hw: 	The hardware instance.
2143  * @percent:	Broadcast storm threshold in percent of transmit rate.
2144  *
2145  * This routine configures the broadcast storm threshold of the switch.
2146  */
2147 static void sw_cfg_broad_storm(struct ksz_hw *hw, u8 percent)
2148 {
2149 	u16 data;
2150 	u32 value = ((u32) BROADCAST_STORM_VALUE * (u32) percent / 100);
2151 
2152 	if (value > BROADCAST_STORM_RATE)
2153 		value = BROADCAST_STORM_RATE;
2154 
2155 	data = readw(hw->io + KS8842_SWITCH_CTRL_3_OFFSET);
2156 	data &= ~(BROADCAST_STORM_RATE_LO | BROADCAST_STORM_RATE_HI);
2157 	data |= ((value & 0x00FF) << 8) | ((value & 0xFF00) >> 8);
2158 	writew(data, hw->io + KS8842_SWITCH_CTRL_3_OFFSET);
2159 }
2160 
2161 /**
2162  * sw_get_board_storm - get broadcast storm threshold
2163  * @hw: 	The hardware instance.
2164  * @percent:	Buffer to store the broadcast storm threshold percentage.
2165  *
2166  * This routine retrieves the broadcast storm threshold of the switch.
2167  */
2168 static void sw_get_broad_storm(struct ksz_hw *hw, u8 *percent)
2169 {
2170 	int num;
2171 	u16 data;
2172 
2173 	data = readw(hw->io + KS8842_SWITCH_CTRL_3_OFFSET);
2174 	num = (data & BROADCAST_STORM_RATE_HI);
2175 	num <<= 8;
2176 	num |= (data & BROADCAST_STORM_RATE_LO) >> 8;
2177 	num = (num * 100 + BROADCAST_STORM_VALUE / 2) / BROADCAST_STORM_VALUE;
2178 	*percent = (u8) num;
2179 }
2180 
2181 /**
2182  * sw_dis_broad_storm - disable broadstorm
2183  * @hw: 	The hardware instance.
2184  * @port:	The port index.
2185  *
2186  * This routine disables the broadcast storm limit function of the switch.
2187  */
2188 static void sw_dis_broad_storm(struct ksz_hw *hw, int port)
2189 {
2190 	port_cfg_broad_storm(hw, port, 0);
2191 }
2192 
2193 /**
2194  * sw_ena_broad_storm - enable broadcast storm
2195  * @hw: 	The hardware instance.
2196  * @port:	The port index.
2197  *
2198  * This routine enables the broadcast storm limit function of the switch.
2199  */
2200 static void sw_ena_broad_storm(struct ksz_hw *hw, int port)
2201 {
2202 	sw_cfg_broad_storm(hw, hw->ksz_switch->broad_per);
2203 	port_cfg_broad_storm(hw, port, 1);
2204 }
2205 
2206 /**
2207  * sw_init_broad_storm - initialize broadcast storm
2208  * @hw: 	The hardware instance.
2209  *
2210  * This routine initializes the broadcast storm limit function of the switch.
2211  */
2212 static void sw_init_broad_storm(struct ksz_hw *hw)
2213 {
2214 	int port;
2215 
2216 	hw->ksz_switch->broad_per = 1;
2217 	sw_cfg_broad_storm(hw, hw->ksz_switch->broad_per);
2218 	for (port = 0; port < TOTAL_PORT_NUM; port++)
2219 		sw_dis_broad_storm(hw, port);
2220 	sw_cfg(hw, KS8842_SWITCH_CTRL_2_OFFSET, MULTICAST_STORM_DISABLE, 1);
2221 }
2222 
2223 /**
2224  * hw_cfg_broad_storm - configure broadcast storm
2225  * @hw: 	The hardware instance.
2226  * @percent:	Broadcast storm threshold in percent of transmit rate.
2227  *
2228  * This routine configures the broadcast storm threshold of the switch.
2229  * It is called by user functions.  The hardware should be acquired first.
2230  */
2231 static void hw_cfg_broad_storm(struct ksz_hw *hw, u8 percent)
2232 {
2233 	if (percent > 100)
2234 		percent = 100;
2235 
2236 	sw_cfg_broad_storm(hw, percent);
2237 	sw_get_broad_storm(hw, &percent);
2238 	hw->ksz_switch->broad_per = percent;
2239 }
2240 
2241 /**
2242  * sw_dis_prio_rate - disable switch priority rate
2243  * @hw: 	The hardware instance.
2244  * @port:	The port index.
2245  *
2246  * This routine disables the priority rate function of the switch.
2247  */
2248 static void sw_dis_prio_rate(struct ksz_hw *hw, int port)
2249 {
2250 	u32 addr;
2251 
2252 	PORT_CTRL_ADDR(port, addr);
2253 	addr += KS8842_PORT_IN_RATE_OFFSET;
2254 	writel(0, hw->io + addr);
2255 }
2256 
2257 /**
2258  * sw_init_prio_rate - initialize switch prioirty rate
2259  * @hw: 	The hardware instance.
2260  *
2261  * This routine initializes the priority rate function of the switch.
2262  */
2263 static void sw_init_prio_rate(struct ksz_hw *hw)
2264 {
2265 	int port;
2266 	int prio;
2267 	struct ksz_switch *sw = hw->ksz_switch;
2268 
2269 	for (port = 0; port < TOTAL_PORT_NUM; port++) {
2270 		for (prio = 0; prio < PRIO_QUEUES; prio++) {
2271 			sw->port_cfg[port].rx_rate[prio] =
2272 			sw->port_cfg[port].tx_rate[prio] = 0;
2273 		}
2274 		sw_dis_prio_rate(hw, port);
2275 	}
2276 }
2277 
2278 /* Communication */
2279 
2280 static inline void port_cfg_back_pressure(struct ksz_hw *hw, int p, int set)
2281 {
2282 	port_cfg(hw, p,
2283 		KS8842_PORT_CTRL_2_OFFSET, PORT_BACK_PRESSURE, set);
2284 }
2285 
2286 static inline void port_cfg_force_flow_ctrl(struct ksz_hw *hw, int p, int set)
2287 {
2288 	port_cfg(hw, p,
2289 		KS8842_PORT_CTRL_2_OFFSET, PORT_FORCE_FLOW_CTRL, set);
2290 }
2291 
2292 static inline int port_chk_back_pressure(struct ksz_hw *hw, int p)
2293 {
2294 	return port_chk(hw, p,
2295 		KS8842_PORT_CTRL_2_OFFSET, PORT_BACK_PRESSURE);
2296 }
2297 
2298 static inline int port_chk_force_flow_ctrl(struct ksz_hw *hw, int p)
2299 {
2300 	return port_chk(hw, p,
2301 		KS8842_PORT_CTRL_2_OFFSET, PORT_FORCE_FLOW_CTRL);
2302 }
2303 
2304 /* Spanning Tree */
2305 
2306 static inline void port_cfg_dis_learn(struct ksz_hw *hw, int p, int set)
2307 {
2308 	port_cfg(hw, p,
2309 		KS8842_PORT_CTRL_2_OFFSET, PORT_LEARN_DISABLE, set);
2310 }
2311 
2312 static inline void port_cfg_rx(struct ksz_hw *hw, int p, int set)
2313 {
2314 	port_cfg(hw, p,
2315 		KS8842_PORT_CTRL_2_OFFSET, PORT_RX_ENABLE, set);
2316 }
2317 
2318 static inline void port_cfg_tx(struct ksz_hw *hw, int p, int set)
2319 {
2320 	port_cfg(hw, p,
2321 		KS8842_PORT_CTRL_2_OFFSET, PORT_TX_ENABLE, set);
2322 }
2323 
2324 static inline void sw_cfg_fast_aging(struct ksz_hw *hw, int set)
2325 {
2326 	sw_cfg(hw, KS8842_SWITCH_CTRL_1_OFFSET, SWITCH_FAST_AGING, set);
2327 }
2328 
2329 static inline void sw_flush_dyn_mac_table(struct ksz_hw *hw)
2330 {
2331 	if (!(hw->overrides & FAST_AGING)) {
2332 		sw_cfg_fast_aging(hw, 1);
2333 		mdelay(1);
2334 		sw_cfg_fast_aging(hw, 0);
2335 	}
2336 }
2337 
2338 /* VLAN */
2339 
2340 static inline void port_cfg_ins_tag(struct ksz_hw *hw, int p, int insert)
2341 {
2342 	port_cfg(hw, p,
2343 		KS8842_PORT_CTRL_1_OFFSET, PORT_INSERT_TAG, insert);
2344 }
2345 
2346 static inline void port_cfg_rmv_tag(struct ksz_hw *hw, int p, int remove)
2347 {
2348 	port_cfg(hw, p,
2349 		KS8842_PORT_CTRL_1_OFFSET, PORT_REMOVE_TAG, remove);
2350 }
2351 
2352 static inline int port_chk_ins_tag(struct ksz_hw *hw, int p)
2353 {
2354 	return port_chk(hw, p,
2355 		KS8842_PORT_CTRL_1_OFFSET, PORT_INSERT_TAG);
2356 }
2357 
2358 static inline int port_chk_rmv_tag(struct ksz_hw *hw, int p)
2359 {
2360 	return port_chk(hw, p,
2361 		KS8842_PORT_CTRL_1_OFFSET, PORT_REMOVE_TAG);
2362 }
2363 
2364 static inline void port_cfg_dis_non_vid(struct ksz_hw *hw, int p, int set)
2365 {
2366 	port_cfg(hw, p,
2367 		KS8842_PORT_CTRL_2_OFFSET, PORT_DISCARD_NON_VID, set);
2368 }
2369 
2370 static inline void port_cfg_in_filter(struct ksz_hw *hw, int p, int set)
2371 {
2372 	port_cfg(hw, p,
2373 		KS8842_PORT_CTRL_2_OFFSET, PORT_INGRESS_VLAN_FILTER, set);
2374 }
2375 
2376 static inline int port_chk_dis_non_vid(struct ksz_hw *hw, int p)
2377 {
2378 	return port_chk(hw, p,
2379 		KS8842_PORT_CTRL_2_OFFSET, PORT_DISCARD_NON_VID);
2380 }
2381 
2382 static inline int port_chk_in_filter(struct ksz_hw *hw, int p)
2383 {
2384 	return port_chk(hw, p,
2385 		KS8842_PORT_CTRL_2_OFFSET, PORT_INGRESS_VLAN_FILTER);
2386 }
2387 
2388 /* Mirroring */
2389 
2390 static inline void port_cfg_mirror_sniffer(struct ksz_hw *hw, int p, int set)
2391 {
2392 	port_cfg(hw, p,
2393 		KS8842_PORT_CTRL_2_OFFSET, PORT_MIRROR_SNIFFER, set);
2394 }
2395 
2396 static inline void port_cfg_mirror_rx(struct ksz_hw *hw, int p, int set)
2397 {
2398 	port_cfg(hw, p,
2399 		KS8842_PORT_CTRL_2_OFFSET, PORT_MIRROR_RX, set);
2400 }
2401 
2402 static inline void port_cfg_mirror_tx(struct ksz_hw *hw, int p, int set)
2403 {
2404 	port_cfg(hw, p,
2405 		KS8842_PORT_CTRL_2_OFFSET, PORT_MIRROR_TX, set);
2406 }
2407 
2408 static inline void sw_cfg_mirror_rx_tx(struct ksz_hw *hw, int set)
2409 {
2410 	sw_cfg(hw, KS8842_SWITCH_CTRL_2_OFFSET, SWITCH_MIRROR_RX_TX, set);
2411 }
2412 
2413 static void sw_init_mirror(struct ksz_hw *hw)
2414 {
2415 	int port;
2416 
2417 	for (port = 0; port < TOTAL_PORT_NUM; port++) {
2418 		port_cfg_mirror_sniffer(hw, port, 0);
2419 		port_cfg_mirror_rx(hw, port, 0);
2420 		port_cfg_mirror_tx(hw, port, 0);
2421 	}
2422 	sw_cfg_mirror_rx_tx(hw, 0);
2423 }
2424 
2425 static inline void sw_cfg_unk_def_deliver(struct ksz_hw *hw, int set)
2426 {
2427 	sw_cfg(hw, KS8842_SWITCH_CTRL_7_OFFSET,
2428 		SWITCH_UNK_DEF_PORT_ENABLE, set);
2429 }
2430 
2431 static inline int sw_cfg_chk_unk_def_deliver(struct ksz_hw *hw)
2432 {
2433 	return sw_chk(hw, KS8842_SWITCH_CTRL_7_OFFSET,
2434 		SWITCH_UNK_DEF_PORT_ENABLE);
2435 }
2436 
2437 static inline void sw_cfg_unk_def_port(struct ksz_hw *hw, int port, int set)
2438 {
2439 	port_cfg_shift(hw, port, KS8842_SWITCH_CTRL_7_OFFSET, 0, set);
2440 }
2441 
2442 static inline int sw_chk_unk_def_port(struct ksz_hw *hw, int port)
2443 {
2444 	return port_chk_shift(hw, port, KS8842_SWITCH_CTRL_7_OFFSET, 0);
2445 }
2446 
2447 /* Priority */
2448 
2449 static inline void port_cfg_diffserv(struct ksz_hw *hw, int p, int set)
2450 {
2451 	port_cfg(hw, p,
2452 		KS8842_PORT_CTRL_1_OFFSET, PORT_DIFFSERV_ENABLE, set);
2453 }
2454 
2455 static inline void port_cfg_802_1p(struct ksz_hw *hw, int p, int set)
2456 {
2457 	port_cfg(hw, p,
2458 		KS8842_PORT_CTRL_1_OFFSET, PORT_802_1P_ENABLE, set);
2459 }
2460 
2461 static inline void port_cfg_replace_vid(struct ksz_hw *hw, int p, int set)
2462 {
2463 	port_cfg(hw, p,
2464 		KS8842_PORT_CTRL_2_OFFSET, PORT_USER_PRIORITY_CEILING, set);
2465 }
2466 
2467 static inline void port_cfg_prio(struct ksz_hw *hw, int p, int set)
2468 {
2469 	port_cfg(hw, p,
2470 		KS8842_PORT_CTRL_1_OFFSET, PORT_PRIO_QUEUE_ENABLE, set);
2471 }
2472 
2473 static inline int port_chk_diffserv(struct ksz_hw *hw, int p)
2474 {
2475 	return port_chk(hw, p,
2476 		KS8842_PORT_CTRL_1_OFFSET, PORT_DIFFSERV_ENABLE);
2477 }
2478 
2479 static inline int port_chk_802_1p(struct ksz_hw *hw, int p)
2480 {
2481 	return port_chk(hw, p,
2482 		KS8842_PORT_CTRL_1_OFFSET, PORT_802_1P_ENABLE);
2483 }
2484 
2485 static inline int port_chk_replace_vid(struct ksz_hw *hw, int p)
2486 {
2487 	return port_chk(hw, p,
2488 		KS8842_PORT_CTRL_2_OFFSET, PORT_USER_PRIORITY_CEILING);
2489 }
2490 
2491 static inline int port_chk_prio(struct ksz_hw *hw, int p)
2492 {
2493 	return port_chk(hw, p,
2494 		KS8842_PORT_CTRL_1_OFFSET, PORT_PRIO_QUEUE_ENABLE);
2495 }
2496 
2497 /**
2498  * sw_dis_diffserv - disable switch DiffServ priority
2499  * @hw: 	The hardware instance.
2500  * @port:	The port index.
2501  *
2502  * This routine disables the DiffServ priority function of the switch.
2503  */
2504 static void sw_dis_diffserv(struct ksz_hw *hw, int port)
2505 {
2506 	port_cfg_diffserv(hw, port, 0);
2507 }
2508 
2509 /**
2510  * sw_dis_802_1p - disable switch 802.1p priority
2511  * @hw: 	The hardware instance.
2512  * @port:	The port index.
2513  *
2514  * This routine disables the 802.1p priority function of the switch.
2515  */
2516 static void sw_dis_802_1p(struct ksz_hw *hw, int port)
2517 {
2518 	port_cfg_802_1p(hw, port, 0);
2519 }
2520 
2521 /**
2522  * sw_cfg_replace_null_vid -
2523  * @hw: 	The hardware instance.
2524  * @set:	The flag to disable or enable.
2525  *
2526  */
2527 static void sw_cfg_replace_null_vid(struct ksz_hw *hw, int set)
2528 {
2529 	sw_cfg(hw, KS8842_SWITCH_CTRL_3_OFFSET, SWITCH_REPLACE_NULL_VID, set);
2530 }
2531 
2532 /**
2533  * sw_cfg_replace_vid - enable switch 802.10 priority re-mapping
2534  * @hw: 	The hardware instance.
2535  * @port:	The port index.
2536  * @set:	The flag to disable or enable.
2537  *
2538  * This routine enables the 802.1p priority re-mapping function of the switch.
2539  * That allows 802.1p priority field to be replaced with the port's default
2540  * tag's priority value if the ingress packet's 802.1p priority has a higher
2541  * priority than port's default tag's priority.
2542  */
2543 static void sw_cfg_replace_vid(struct ksz_hw *hw, int port, int set)
2544 {
2545 	port_cfg_replace_vid(hw, port, set);
2546 }
2547 
2548 /**
2549  * sw_cfg_port_based - configure switch port based priority
2550  * @hw: 	The hardware instance.
2551  * @port:	The port index.
2552  * @prio:	The priority to set.
2553  *
2554  * This routine configures the port based priority of the switch.
2555  */
2556 static void sw_cfg_port_based(struct ksz_hw *hw, int port, u8 prio)
2557 {
2558 	u16 data;
2559 
2560 	if (prio > PORT_BASED_PRIORITY_BASE)
2561 		prio = PORT_BASED_PRIORITY_BASE;
2562 
2563 	hw->ksz_switch->port_cfg[port].port_prio = prio;
2564 
2565 	port_r16(hw, port, KS8842_PORT_CTRL_1_OFFSET, &data);
2566 	data &= ~PORT_BASED_PRIORITY_MASK;
2567 	data |= prio << PORT_BASED_PRIORITY_SHIFT;
2568 	port_w16(hw, port, KS8842_PORT_CTRL_1_OFFSET, data);
2569 }
2570 
2571 /**
2572  * sw_dis_multi_queue - disable transmit multiple queues
2573  * @hw: 	The hardware instance.
2574  * @port:	The port index.
2575  *
2576  * This routine disables the transmit multiple queues selection of the switch
2577  * port.  Only single transmit queue on the port.
2578  */
2579 static void sw_dis_multi_queue(struct ksz_hw *hw, int port)
2580 {
2581 	port_cfg_prio(hw, port, 0);
2582 }
2583 
2584 /**
2585  * sw_init_prio - initialize switch priority
2586  * @hw: 	The hardware instance.
2587  *
2588  * This routine initializes the switch QoS priority functions.
2589  */
2590 static void sw_init_prio(struct ksz_hw *hw)
2591 {
2592 	int port;
2593 	int tos;
2594 	struct ksz_switch *sw = hw->ksz_switch;
2595 
2596 	/*
2597 	 * Init all the 802.1p tag priority value to be assigned to different
2598 	 * priority queue.
2599 	 */
2600 	sw->p_802_1p[0] = 0;
2601 	sw->p_802_1p[1] = 0;
2602 	sw->p_802_1p[2] = 1;
2603 	sw->p_802_1p[3] = 1;
2604 	sw->p_802_1p[4] = 2;
2605 	sw->p_802_1p[5] = 2;
2606 	sw->p_802_1p[6] = 3;
2607 	sw->p_802_1p[7] = 3;
2608 
2609 	/*
2610 	 * Init all the DiffServ priority value to be assigned to priority
2611 	 * queue 0.
2612 	 */
2613 	for (tos = 0; tos < DIFFSERV_ENTRIES; tos++)
2614 		sw->diffserv[tos] = 0;
2615 
2616 	/* All QoS functions disabled. */
2617 	for (port = 0; port < TOTAL_PORT_NUM; port++) {
2618 		sw_dis_multi_queue(hw, port);
2619 		sw_dis_diffserv(hw, port);
2620 		sw_dis_802_1p(hw, port);
2621 		sw_cfg_replace_vid(hw, port, 0);
2622 
2623 		sw->port_cfg[port].port_prio = 0;
2624 		sw_cfg_port_based(hw, port, sw->port_cfg[port].port_prio);
2625 	}
2626 	sw_cfg_replace_null_vid(hw, 0);
2627 }
2628 
2629 /**
2630  * port_get_def_vid - get port default VID.
2631  * @hw: 	The hardware instance.
2632  * @port:	The port index.
2633  * @vid:	Buffer to store the VID.
2634  *
2635  * This routine retrieves the default VID of the port.
2636  */
2637 static void port_get_def_vid(struct ksz_hw *hw, int port, u16 *vid)
2638 {
2639 	u32 addr;
2640 
2641 	PORT_CTRL_ADDR(port, addr);
2642 	addr += KS8842_PORT_CTRL_VID_OFFSET;
2643 	*vid = readw(hw->io + addr);
2644 }
2645 
2646 /**
2647  * sw_init_vlan - initialize switch VLAN
2648  * @hw: 	The hardware instance.
2649  *
2650  * This routine initializes the VLAN function of the switch.
2651  */
2652 static void sw_init_vlan(struct ksz_hw *hw)
2653 {
2654 	int port;
2655 	int entry;
2656 	struct ksz_switch *sw = hw->ksz_switch;
2657 
2658 	/* Read 16 VLAN entries from device's VLAN table. */
2659 	for (entry = 0; entry < VLAN_TABLE_ENTRIES; entry++) {
2660 		sw_r_vlan_table(hw, entry,
2661 			&sw->vlan_table[entry].vid,
2662 			&sw->vlan_table[entry].fid,
2663 			&sw->vlan_table[entry].member);
2664 	}
2665 
2666 	for (port = 0; port < TOTAL_PORT_NUM; port++) {
2667 		port_get_def_vid(hw, port, &sw->port_cfg[port].vid);
2668 		sw->port_cfg[port].member = PORT_MASK;
2669 	}
2670 }
2671 
2672 /**
2673  * sw_cfg_port_base_vlan - configure port-based VLAN membership
2674  * @hw: 	The hardware instance.
2675  * @port:	The port index.
2676  * @member:	The port-based VLAN membership.
2677  *
2678  * This routine configures the port-based VLAN membership of the port.
2679  */
2680 static void sw_cfg_port_base_vlan(struct ksz_hw *hw, int port, u8 member)
2681 {
2682 	u32 addr;
2683 	u8 data;
2684 
2685 	PORT_CTRL_ADDR(port, addr);
2686 	addr += KS8842_PORT_CTRL_2_OFFSET;
2687 
2688 	data = readb(hw->io + addr);
2689 	data &= ~PORT_VLAN_MEMBERSHIP;
2690 	data |= (member & PORT_MASK);
2691 	writeb(data, hw->io + addr);
2692 
2693 	hw->ksz_switch->port_cfg[port].member = member;
2694 }
2695 
2696 /**
2697  * sw_get_addr - get the switch MAC address.
2698  * @hw: 	The hardware instance.
2699  * @mac_addr:	Buffer to store the MAC address.
2700  *
2701  * This function retrieves the MAC address of the switch.
2702  */
2703 static inline void sw_get_addr(struct ksz_hw *hw, u8 *mac_addr)
2704 {
2705 	int i;
2706 
2707 	for (i = 0; i < 6; i += 2) {
2708 		mac_addr[i] = readb(hw->io + KS8842_MAC_ADDR_0_OFFSET + i);
2709 		mac_addr[1 + i] = readb(hw->io + KS8842_MAC_ADDR_1_OFFSET + i);
2710 	}
2711 }
2712 
2713 /**
2714  * sw_set_addr - configure switch MAC address
2715  * @hw: 	The hardware instance.
2716  * @mac_addr:	The MAC address.
2717  *
2718  * This function configures the MAC address of the switch.
2719  */
2720 static void sw_set_addr(struct ksz_hw *hw, u8 *mac_addr)
2721 {
2722 	int i;
2723 
2724 	for (i = 0; i < 6; i += 2) {
2725 		writeb(mac_addr[i], hw->io + KS8842_MAC_ADDR_0_OFFSET + i);
2726 		writeb(mac_addr[1 + i], hw->io + KS8842_MAC_ADDR_1_OFFSET + i);
2727 	}
2728 }
2729 
2730 /**
2731  * sw_set_global_ctrl - set switch global control
2732  * @hw: 	The hardware instance.
2733  *
2734  * This routine sets the global control of the switch function.
2735  */
2736 static void sw_set_global_ctrl(struct ksz_hw *hw)
2737 {
2738 	u16 data;
2739 
2740 	/* Enable switch MII flow control. */
2741 	data = readw(hw->io + KS8842_SWITCH_CTRL_3_OFFSET);
2742 	data |= SWITCH_FLOW_CTRL;
2743 	writew(data, hw->io + KS8842_SWITCH_CTRL_3_OFFSET);
2744 
2745 	data = readw(hw->io + KS8842_SWITCH_CTRL_1_OFFSET);
2746 
2747 	/* Enable aggressive back off algorithm in half duplex mode. */
2748 	data |= SWITCH_AGGR_BACKOFF;
2749 
2750 	/* Enable automatic fast aging when link changed detected. */
2751 	data |= SWITCH_AGING_ENABLE;
2752 	data |= SWITCH_LINK_AUTO_AGING;
2753 
2754 	if (hw->overrides & FAST_AGING)
2755 		data |= SWITCH_FAST_AGING;
2756 	else
2757 		data &= ~SWITCH_FAST_AGING;
2758 	writew(data, hw->io + KS8842_SWITCH_CTRL_1_OFFSET);
2759 
2760 	data = readw(hw->io + KS8842_SWITCH_CTRL_2_OFFSET);
2761 
2762 	/* Enable no excessive collision drop. */
2763 	data |= NO_EXC_COLLISION_DROP;
2764 	writew(data, hw->io + KS8842_SWITCH_CTRL_2_OFFSET);
2765 }
2766 
2767 enum {
2768 	STP_STATE_DISABLED = 0,
2769 	STP_STATE_LISTENING,
2770 	STP_STATE_LEARNING,
2771 	STP_STATE_FORWARDING,
2772 	STP_STATE_BLOCKED,
2773 	STP_STATE_SIMPLE
2774 };
2775 
2776 /**
2777  * port_set_stp_state - configure port spanning tree state
2778  * @hw: 	The hardware instance.
2779  * @port:	The port index.
2780  * @state:	The spanning tree state.
2781  *
2782  * This routine configures the spanning tree state of the port.
2783  */
2784 static void port_set_stp_state(struct ksz_hw *hw, int port, int state)
2785 {
2786 	u16 data;
2787 
2788 	port_r16(hw, port, KS8842_PORT_CTRL_2_OFFSET, &data);
2789 	switch (state) {
2790 	case STP_STATE_DISABLED:
2791 		data &= ~(PORT_TX_ENABLE | PORT_RX_ENABLE);
2792 		data |= PORT_LEARN_DISABLE;
2793 		break;
2794 	case STP_STATE_LISTENING:
2795 /*
2796  * No need to turn on transmit because of port direct mode.
2797  * Turning on receive is required if static MAC table is not setup.
2798  */
2799 		data &= ~PORT_TX_ENABLE;
2800 		data |= PORT_RX_ENABLE;
2801 		data |= PORT_LEARN_DISABLE;
2802 		break;
2803 	case STP_STATE_LEARNING:
2804 		data &= ~PORT_TX_ENABLE;
2805 		data |= PORT_RX_ENABLE;
2806 		data &= ~PORT_LEARN_DISABLE;
2807 		break;
2808 	case STP_STATE_FORWARDING:
2809 		data |= (PORT_TX_ENABLE | PORT_RX_ENABLE);
2810 		data &= ~PORT_LEARN_DISABLE;
2811 		break;
2812 	case STP_STATE_BLOCKED:
2813 /*
2814  * Need to setup static MAC table with override to keep receiving BPDU
2815  * messages.  See sw_init_stp routine.
2816  */
2817 		data &= ~(PORT_TX_ENABLE | PORT_RX_ENABLE);
2818 		data |= PORT_LEARN_DISABLE;
2819 		break;
2820 	case STP_STATE_SIMPLE:
2821 		data |= (PORT_TX_ENABLE | PORT_RX_ENABLE);
2822 		data |= PORT_LEARN_DISABLE;
2823 		break;
2824 	}
2825 	port_w16(hw, port, KS8842_PORT_CTRL_2_OFFSET, data);
2826 	hw->ksz_switch->port_cfg[port].stp_state = state;
2827 }
2828 
2829 #define STP_ENTRY			0
2830 #define BROADCAST_ENTRY			1
2831 #define BRIDGE_ADDR_ENTRY		2
2832 #define IPV6_ADDR_ENTRY			3
2833 
2834 /**
2835  * sw_clr_sta_mac_table - clear static MAC table
2836  * @hw: 	The hardware instance.
2837  *
2838  * This routine clears the static MAC table.
2839  */
2840 static void sw_clr_sta_mac_table(struct ksz_hw *hw)
2841 {
2842 	struct ksz_mac_table *entry;
2843 	int i;
2844 
2845 	for (i = 0; i < STATIC_MAC_TABLE_ENTRIES; i++) {
2846 		entry = &hw->ksz_switch->mac_table[i];
2847 		sw_w_sta_mac_table(hw, i,
2848 			entry->mac_addr, entry->ports,
2849 			entry->override, 0,
2850 			entry->use_fid, entry->fid);
2851 	}
2852 }
2853 
2854 /**
2855  * sw_init_stp - initialize switch spanning tree support
2856  * @hw: 	The hardware instance.
2857  *
2858  * This routine initializes the spanning tree support of the switch.
2859  */
2860 static void sw_init_stp(struct ksz_hw *hw)
2861 {
2862 	struct ksz_mac_table *entry;
2863 
2864 	entry = &hw->ksz_switch->mac_table[STP_ENTRY];
2865 	entry->mac_addr[0] = 0x01;
2866 	entry->mac_addr[1] = 0x80;
2867 	entry->mac_addr[2] = 0xC2;
2868 	entry->mac_addr[3] = 0x00;
2869 	entry->mac_addr[4] = 0x00;
2870 	entry->mac_addr[5] = 0x00;
2871 	entry->ports = HOST_MASK;
2872 	entry->override = 1;
2873 	entry->valid = 1;
2874 	sw_w_sta_mac_table(hw, STP_ENTRY,
2875 		entry->mac_addr, entry->ports,
2876 		entry->override, entry->valid,
2877 		entry->use_fid, entry->fid);
2878 }
2879 
2880 /**
2881  * sw_block_addr - block certain packets from the host port
2882  * @hw: 	The hardware instance.
2883  *
2884  * This routine blocks certain packets from reaching to the host port.
2885  */
2886 static void sw_block_addr(struct ksz_hw *hw)
2887 {
2888 	struct ksz_mac_table *entry;
2889 	int i;
2890 
2891 	for (i = BROADCAST_ENTRY; i <= IPV6_ADDR_ENTRY; i++) {
2892 		entry = &hw->ksz_switch->mac_table[i];
2893 		entry->valid = 0;
2894 		sw_w_sta_mac_table(hw, i,
2895 			entry->mac_addr, entry->ports,
2896 			entry->override, entry->valid,
2897 			entry->use_fid, entry->fid);
2898 	}
2899 }
2900 
2901 #define PHY_LINK_SUPPORT		\
2902 	(PHY_AUTO_NEG_ASYM_PAUSE |	\
2903 	PHY_AUTO_NEG_SYM_PAUSE |	\
2904 	PHY_AUTO_NEG_100BT4 |		\
2905 	PHY_AUTO_NEG_100BTX_FD |	\
2906 	PHY_AUTO_NEG_100BTX |		\
2907 	PHY_AUTO_NEG_10BT_FD |		\
2908 	PHY_AUTO_NEG_10BT)
2909 
2910 static inline void hw_r_phy_ctrl(struct ksz_hw *hw, int phy, u16 *data)
2911 {
2912 	*data = readw(hw->io + phy + KS884X_PHY_CTRL_OFFSET);
2913 }
2914 
2915 static inline void hw_w_phy_ctrl(struct ksz_hw *hw, int phy, u16 data)
2916 {
2917 	writew(data, hw->io + phy + KS884X_PHY_CTRL_OFFSET);
2918 }
2919 
2920 static inline void hw_r_phy_link_stat(struct ksz_hw *hw, int phy, u16 *data)
2921 {
2922 	*data = readw(hw->io + phy + KS884X_PHY_STATUS_OFFSET);
2923 }
2924 
2925 static inline void hw_r_phy_auto_neg(struct ksz_hw *hw, int phy, u16 *data)
2926 {
2927 	*data = readw(hw->io + phy + KS884X_PHY_AUTO_NEG_OFFSET);
2928 }
2929 
2930 static inline void hw_w_phy_auto_neg(struct ksz_hw *hw, int phy, u16 data)
2931 {
2932 	writew(data, hw->io + phy + KS884X_PHY_AUTO_NEG_OFFSET);
2933 }
2934 
2935 static inline void hw_r_phy_rem_cap(struct ksz_hw *hw, int phy, u16 *data)
2936 {
2937 	*data = readw(hw->io + phy + KS884X_PHY_REMOTE_CAP_OFFSET);
2938 }
2939 
2940 static inline void hw_r_phy_crossover(struct ksz_hw *hw, int phy, u16 *data)
2941 {
2942 	*data = readw(hw->io + phy + KS884X_PHY_CTRL_OFFSET);
2943 }
2944 
2945 static inline void hw_w_phy_crossover(struct ksz_hw *hw, int phy, u16 data)
2946 {
2947 	writew(data, hw->io + phy + KS884X_PHY_CTRL_OFFSET);
2948 }
2949 
2950 static inline void hw_r_phy_polarity(struct ksz_hw *hw, int phy, u16 *data)
2951 {
2952 	*data = readw(hw->io + phy + KS884X_PHY_PHY_CTRL_OFFSET);
2953 }
2954 
2955 static inline void hw_w_phy_polarity(struct ksz_hw *hw, int phy, u16 data)
2956 {
2957 	writew(data, hw->io + phy + KS884X_PHY_PHY_CTRL_OFFSET);
2958 }
2959 
2960 static inline void hw_r_phy_link_md(struct ksz_hw *hw, int phy, u16 *data)
2961 {
2962 	*data = readw(hw->io + phy + KS884X_PHY_LINK_MD_OFFSET);
2963 }
2964 
2965 static inline void hw_w_phy_link_md(struct ksz_hw *hw, int phy, u16 data)
2966 {
2967 	writew(data, hw->io + phy + KS884X_PHY_LINK_MD_OFFSET);
2968 }
2969 
2970 /**
2971  * hw_r_phy - read data from PHY register
2972  * @hw: 	The hardware instance.
2973  * @port:	Port to read.
2974  * @reg:	PHY register to read.
2975  * @val:	Buffer to store the read data.
2976  *
2977  * This routine reads data from the PHY register.
2978  */
2979 static void hw_r_phy(struct ksz_hw *hw, int port, u16 reg, u16 *val)
2980 {
2981 	int phy;
2982 
2983 	phy = KS884X_PHY_1_CTRL_OFFSET + port * PHY_CTRL_INTERVAL + reg;
2984 	*val = readw(hw->io + phy);
2985 }
2986 
2987 /**
2988  * port_w_phy - write data to PHY register
2989  * @hw: 	The hardware instance.
2990  * @port:	Port to write.
2991  * @reg:	PHY register to write.
2992  * @val:	Word data to write.
2993  *
2994  * This routine writes data to the PHY register.
2995  */
2996 static void hw_w_phy(struct ksz_hw *hw, int port, u16 reg, u16 val)
2997 {
2998 	int phy;
2999 
3000 	phy = KS884X_PHY_1_CTRL_OFFSET + port * PHY_CTRL_INTERVAL + reg;
3001 	writew(val, hw->io + phy);
3002 }
3003 
3004 /*
3005  * EEPROM access functions
3006  */
3007 
3008 #define AT93C_CODE			0
3009 #define AT93C_WR_OFF			0x00
3010 #define AT93C_WR_ALL			0x10
3011 #define AT93C_ER_ALL			0x20
3012 #define AT93C_WR_ON			0x30
3013 
3014 #define AT93C_WRITE			1
3015 #define AT93C_READ			2
3016 #define AT93C_ERASE			3
3017 
3018 #define EEPROM_DELAY			4
3019 
3020 static inline void drop_gpio(struct ksz_hw *hw, u8 gpio)
3021 {
3022 	u16 data;
3023 
3024 	data = readw(hw->io + KS884X_EEPROM_CTRL_OFFSET);
3025 	data &= ~gpio;
3026 	writew(data, hw->io + KS884X_EEPROM_CTRL_OFFSET);
3027 }
3028 
3029 static inline void raise_gpio(struct ksz_hw *hw, u8 gpio)
3030 {
3031 	u16 data;
3032 
3033 	data = readw(hw->io + KS884X_EEPROM_CTRL_OFFSET);
3034 	data |= gpio;
3035 	writew(data, hw->io + KS884X_EEPROM_CTRL_OFFSET);
3036 }
3037 
3038 static inline u8 state_gpio(struct ksz_hw *hw, u8 gpio)
3039 {
3040 	u16 data;
3041 
3042 	data = readw(hw->io + KS884X_EEPROM_CTRL_OFFSET);
3043 	return (u8)(data & gpio);
3044 }
3045 
3046 static void eeprom_clk(struct ksz_hw *hw)
3047 {
3048 	raise_gpio(hw, EEPROM_SERIAL_CLOCK);
3049 	udelay(EEPROM_DELAY);
3050 	drop_gpio(hw, EEPROM_SERIAL_CLOCK);
3051 	udelay(EEPROM_DELAY);
3052 }
3053 
3054 static u16 spi_r(struct ksz_hw *hw)
3055 {
3056 	int i;
3057 	u16 temp = 0;
3058 
3059 	for (i = 15; i >= 0; i--) {
3060 		raise_gpio(hw, EEPROM_SERIAL_CLOCK);
3061 		udelay(EEPROM_DELAY);
3062 
3063 		temp |= (state_gpio(hw, EEPROM_DATA_IN)) ? 1 << i : 0;
3064 
3065 		drop_gpio(hw, EEPROM_SERIAL_CLOCK);
3066 		udelay(EEPROM_DELAY);
3067 	}
3068 	return temp;
3069 }
3070 
3071 static void spi_w(struct ksz_hw *hw, u16 data)
3072 {
3073 	int i;
3074 
3075 	for (i = 15; i >= 0; i--) {
3076 		(data & (0x01 << i)) ? raise_gpio(hw, EEPROM_DATA_OUT) :
3077 			drop_gpio(hw, EEPROM_DATA_OUT);
3078 		eeprom_clk(hw);
3079 	}
3080 }
3081 
3082 static void spi_reg(struct ksz_hw *hw, u8 data, u8 reg)
3083 {
3084 	int i;
3085 
3086 	/* Initial start bit */
3087 	raise_gpio(hw, EEPROM_DATA_OUT);
3088 	eeprom_clk(hw);
3089 
3090 	/* AT93C operation */
3091 	for (i = 1; i >= 0; i--) {
3092 		(data & (0x01 << i)) ? raise_gpio(hw, EEPROM_DATA_OUT) :
3093 			drop_gpio(hw, EEPROM_DATA_OUT);
3094 		eeprom_clk(hw);
3095 	}
3096 
3097 	/* Address location */
3098 	for (i = 5; i >= 0; i--) {
3099 		(reg & (0x01 << i)) ? raise_gpio(hw, EEPROM_DATA_OUT) :
3100 			drop_gpio(hw, EEPROM_DATA_OUT);
3101 		eeprom_clk(hw);
3102 	}
3103 }
3104 
3105 #define EEPROM_DATA_RESERVED		0
3106 #define EEPROM_DATA_MAC_ADDR_0		1
3107 #define EEPROM_DATA_MAC_ADDR_1		2
3108 #define EEPROM_DATA_MAC_ADDR_2		3
3109 #define EEPROM_DATA_SUBSYS_ID		4
3110 #define EEPROM_DATA_SUBSYS_VEN_ID	5
3111 #define EEPROM_DATA_PM_CAP		6
3112 
3113 /* User defined EEPROM data */
3114 #define EEPROM_DATA_OTHER_MAC_ADDR	9
3115 
3116 /**
3117  * eeprom_read - read from AT93C46 EEPROM
3118  * @hw: 	The hardware instance.
3119  * @reg:	The register offset.
3120  *
3121  * This function reads a word from the AT93C46 EEPROM.
3122  *
3123  * Return the data value.
3124  */
3125 static u16 eeprom_read(struct ksz_hw *hw, u8 reg)
3126 {
3127 	u16 data;
3128 
3129 	raise_gpio(hw, EEPROM_ACCESS_ENABLE | EEPROM_CHIP_SELECT);
3130 
3131 	spi_reg(hw, AT93C_READ, reg);
3132 	data = spi_r(hw);
3133 
3134 	drop_gpio(hw, EEPROM_ACCESS_ENABLE | EEPROM_CHIP_SELECT);
3135 
3136 	return data;
3137 }
3138 
3139 /**
3140  * eeprom_write - write to AT93C46 EEPROM
3141  * @hw: 	The hardware instance.
3142  * @reg:	The register offset.
3143  * @data:	The data value.
3144  *
3145  * This procedure writes a word to the AT93C46 EEPROM.
3146  */
3147 static void eeprom_write(struct ksz_hw *hw, u8 reg, u16 data)
3148 {
3149 	int timeout;
3150 
3151 	raise_gpio(hw, EEPROM_ACCESS_ENABLE | EEPROM_CHIP_SELECT);
3152 
3153 	/* Enable write. */
3154 	spi_reg(hw, AT93C_CODE, AT93C_WR_ON);
3155 	drop_gpio(hw, EEPROM_CHIP_SELECT);
3156 	udelay(1);
3157 
3158 	/* Erase the register. */
3159 	raise_gpio(hw, EEPROM_CHIP_SELECT);
3160 	spi_reg(hw, AT93C_ERASE, reg);
3161 	drop_gpio(hw, EEPROM_CHIP_SELECT);
3162 	udelay(1);
3163 
3164 	/* Check operation complete. */
3165 	raise_gpio(hw, EEPROM_CHIP_SELECT);
3166 	timeout = 8;
3167 	mdelay(2);
3168 	do {
3169 		mdelay(1);
3170 	} while (!state_gpio(hw, EEPROM_DATA_IN) && --timeout);
3171 	drop_gpio(hw, EEPROM_CHIP_SELECT);
3172 	udelay(1);
3173 
3174 	/* Write the register. */
3175 	raise_gpio(hw, EEPROM_CHIP_SELECT);
3176 	spi_reg(hw, AT93C_WRITE, reg);
3177 	spi_w(hw, data);
3178 	drop_gpio(hw, EEPROM_CHIP_SELECT);
3179 	udelay(1);
3180 
3181 	/* Check operation complete. */
3182 	raise_gpio(hw, EEPROM_CHIP_SELECT);
3183 	timeout = 8;
3184 	mdelay(2);
3185 	do {
3186 		mdelay(1);
3187 	} while (!state_gpio(hw, EEPROM_DATA_IN) && --timeout);
3188 	drop_gpio(hw, EEPROM_CHIP_SELECT);
3189 	udelay(1);
3190 
3191 	/* Disable write. */
3192 	raise_gpio(hw, EEPROM_CHIP_SELECT);
3193 	spi_reg(hw, AT93C_CODE, AT93C_WR_OFF);
3194 
3195 	drop_gpio(hw, EEPROM_ACCESS_ENABLE | EEPROM_CHIP_SELECT);
3196 }
3197 
3198 /*
3199  * Link detection routines
3200  */
3201 
3202 static u16 advertised_flow_ctrl(struct ksz_port *port, u16 ctrl)
3203 {
3204 	ctrl &= ~PORT_AUTO_NEG_SYM_PAUSE;
3205 	switch (port->flow_ctrl) {
3206 	case PHY_FLOW_CTRL:
3207 		ctrl |= PORT_AUTO_NEG_SYM_PAUSE;
3208 		break;
3209 	/* Not supported. */
3210 	case PHY_TX_ONLY:
3211 	case PHY_RX_ONLY:
3212 	default:
3213 		break;
3214 	}
3215 	return ctrl;
3216 }
3217 
3218 static void set_flow_ctrl(struct ksz_hw *hw, int rx, int tx)
3219 {
3220 	u32 rx_cfg;
3221 	u32 tx_cfg;
3222 
3223 	rx_cfg = hw->rx_cfg;
3224 	tx_cfg = hw->tx_cfg;
3225 	if (rx)
3226 		hw->rx_cfg |= DMA_RX_FLOW_ENABLE;
3227 	else
3228 		hw->rx_cfg &= ~DMA_RX_FLOW_ENABLE;
3229 	if (tx)
3230 		hw->tx_cfg |= DMA_TX_FLOW_ENABLE;
3231 	else
3232 		hw->tx_cfg &= ~DMA_TX_FLOW_ENABLE;
3233 	if (hw->enabled) {
3234 		if (rx_cfg != hw->rx_cfg)
3235 			writel(hw->rx_cfg, hw->io + KS_DMA_RX_CTRL);
3236 		if (tx_cfg != hw->tx_cfg)
3237 			writel(hw->tx_cfg, hw->io + KS_DMA_TX_CTRL);
3238 	}
3239 }
3240 
3241 static void determine_flow_ctrl(struct ksz_hw *hw, struct ksz_port *port,
3242 	u16 local, u16 remote)
3243 {
3244 	int rx;
3245 	int tx;
3246 
3247 	if (hw->overrides & PAUSE_FLOW_CTRL)
3248 		return;
3249 
3250 	rx = tx = 0;
3251 	if (port->force_link)
3252 		rx = tx = 1;
3253 	if (remote & PHY_AUTO_NEG_SYM_PAUSE) {
3254 		if (local & PHY_AUTO_NEG_SYM_PAUSE) {
3255 			rx = tx = 1;
3256 		} else if ((remote & PHY_AUTO_NEG_ASYM_PAUSE) &&
3257 				(local & PHY_AUTO_NEG_PAUSE) ==
3258 				PHY_AUTO_NEG_ASYM_PAUSE) {
3259 			tx = 1;
3260 		}
3261 	} else if (remote & PHY_AUTO_NEG_ASYM_PAUSE) {
3262 		if ((local & PHY_AUTO_NEG_PAUSE) == PHY_AUTO_NEG_PAUSE)
3263 			rx = 1;
3264 	}
3265 	if (!hw->ksz_switch)
3266 		set_flow_ctrl(hw, rx, tx);
3267 }
3268 
3269 static inline void port_cfg_change(struct ksz_hw *hw, struct ksz_port *port,
3270 	struct ksz_port_info *info, u16 link_status)
3271 {
3272 	if ((hw->features & HALF_DUPLEX_SIGNAL_BUG) &&
3273 			!(hw->overrides & PAUSE_FLOW_CTRL)) {
3274 		u32 cfg = hw->tx_cfg;
3275 
3276 		/* Disable flow control in the half duplex mode. */
3277 		if (1 == info->duplex)
3278 			hw->tx_cfg &= ~DMA_TX_FLOW_ENABLE;
3279 		if (hw->enabled && cfg != hw->tx_cfg)
3280 			writel(hw->tx_cfg, hw->io + KS_DMA_TX_CTRL);
3281 	}
3282 }
3283 
3284 /**
3285  * port_get_link_speed - get current link status
3286  * @port: 	The port instance.
3287  *
3288  * This routine reads PHY registers to determine the current link status of the
3289  * switch ports.
3290  */
3291 static void port_get_link_speed(struct ksz_port *port)
3292 {
3293 	uint interrupt;
3294 	struct ksz_port_info *info;
3295 	struct ksz_port_info *linked = NULL;
3296 	struct ksz_hw *hw = port->hw;
3297 	u16 data;
3298 	u16 status;
3299 	u8 local;
3300 	u8 remote;
3301 	int i;
3302 	int p;
3303 	int change = 0;
3304 
3305 	interrupt = hw_block_intr(hw);
3306 
3307 	for (i = 0, p = port->first_port; i < port->port_cnt; i++, p++) {
3308 		info = &hw->port_info[p];
3309 		port_r16(hw, p, KS884X_PORT_CTRL_4_OFFSET, &data);
3310 		port_r16(hw, p, KS884X_PORT_STATUS_OFFSET, &status);
3311 
3312 		/*
3313 		 * Link status is changing all the time even when there is no
3314 		 * cable connection!
3315 		 */
3316 		remote = status & (PORT_AUTO_NEG_COMPLETE |
3317 			PORT_STATUS_LINK_GOOD);
3318 		local = (u8) data;
3319 
3320 		/* No change to status. */
3321 		if (local == info->advertised && remote == info->partner)
3322 			continue;
3323 
3324 		info->advertised = local;
3325 		info->partner = remote;
3326 		if (status & PORT_STATUS_LINK_GOOD) {
3327 
3328 			/* Remember the first linked port. */
3329 			if (!linked)
3330 				linked = info;
3331 
3332 			info->tx_rate = 10 * TX_RATE_UNIT;
3333 			if (status & PORT_STATUS_SPEED_100MBIT)
3334 				info->tx_rate = 100 * TX_RATE_UNIT;
3335 
3336 			info->duplex = 1;
3337 			if (status & PORT_STATUS_FULL_DUPLEX)
3338 				info->duplex = 2;
3339 
3340 			if (media_connected != info->state) {
3341 				hw_r_phy(hw, p, KS884X_PHY_AUTO_NEG_OFFSET,
3342 					&data);
3343 				hw_r_phy(hw, p, KS884X_PHY_REMOTE_CAP_OFFSET,
3344 					&status);
3345 				determine_flow_ctrl(hw, port, data, status);
3346 				if (hw->ksz_switch) {
3347 					port_cfg_back_pressure(hw, p,
3348 						(1 == info->duplex));
3349 				}
3350 				change |= 1 << i;
3351 				port_cfg_change(hw, port, info, status);
3352 			}
3353 			info->state = media_connected;
3354 		} else {
3355 			if (media_disconnected != info->state) {
3356 				change |= 1 << i;
3357 
3358 				/* Indicate the link just goes down. */
3359 				hw->port_mib[p].link_down = 1;
3360 			}
3361 			info->state = media_disconnected;
3362 		}
3363 		hw->port_mib[p].state = (u8) info->state;
3364 	}
3365 
3366 	if (linked && media_disconnected == port->linked->state)
3367 		port->linked = linked;
3368 
3369 	hw_restore_intr(hw, interrupt);
3370 }
3371 
3372 #define PHY_RESET_TIMEOUT		10
3373 
3374 /**
3375  * port_set_link_speed - set port speed
3376  * @port: 	The port instance.
3377  *
3378  * This routine sets the link speed of the switch ports.
3379  */
3380 static void port_set_link_speed(struct ksz_port *port)
3381 {
3382 	struct ksz_port_info *info;
3383 	struct ksz_hw *hw = port->hw;
3384 	u16 data;
3385 	u16 cfg;
3386 	u8 status;
3387 	int i;
3388 	int p;
3389 
3390 	for (i = 0, p = port->first_port; i < port->port_cnt; i++, p++) {
3391 		info = &hw->port_info[p];
3392 
3393 		port_r16(hw, p, KS884X_PORT_CTRL_4_OFFSET, &data);
3394 		port_r8(hw, p, KS884X_PORT_STATUS_OFFSET, &status);
3395 
3396 		cfg = 0;
3397 		if (status & PORT_STATUS_LINK_GOOD)
3398 			cfg = data;
3399 
3400 		data |= PORT_AUTO_NEG_ENABLE;
3401 		data = advertised_flow_ctrl(port, data);
3402 
3403 		data |= PORT_AUTO_NEG_100BTX_FD | PORT_AUTO_NEG_100BTX |
3404 			PORT_AUTO_NEG_10BT_FD | PORT_AUTO_NEG_10BT;
3405 
3406 		/* Check if manual configuration is specified by the user. */
3407 		if (port->speed || port->duplex) {
3408 			if (10 == port->speed)
3409 				data &= ~(PORT_AUTO_NEG_100BTX_FD |
3410 					PORT_AUTO_NEG_100BTX);
3411 			else if (100 == port->speed)
3412 				data &= ~(PORT_AUTO_NEG_10BT_FD |
3413 					PORT_AUTO_NEG_10BT);
3414 			if (1 == port->duplex)
3415 				data &= ~(PORT_AUTO_NEG_100BTX_FD |
3416 					PORT_AUTO_NEG_10BT_FD);
3417 			else if (2 == port->duplex)
3418 				data &= ~(PORT_AUTO_NEG_100BTX |
3419 					PORT_AUTO_NEG_10BT);
3420 		}
3421 		if (data != cfg) {
3422 			data |= PORT_AUTO_NEG_RESTART;
3423 			port_w16(hw, p, KS884X_PORT_CTRL_4_OFFSET, data);
3424 		}
3425 	}
3426 }
3427 
3428 /**
3429  * port_force_link_speed - force port speed
3430  * @port: 	The port instance.
3431  *
3432  * This routine forces the link speed of the switch ports.
3433  */
3434 static void port_force_link_speed(struct ksz_port *port)
3435 {
3436 	struct ksz_hw *hw = port->hw;
3437 	u16 data;
3438 	int i;
3439 	int phy;
3440 	int p;
3441 
3442 	for (i = 0, p = port->first_port; i < port->port_cnt; i++, p++) {
3443 		phy = KS884X_PHY_1_CTRL_OFFSET + p * PHY_CTRL_INTERVAL;
3444 		hw_r_phy_ctrl(hw, phy, &data);
3445 
3446 		data &= ~PHY_AUTO_NEG_ENABLE;
3447 
3448 		if (10 == port->speed)
3449 			data &= ~PHY_SPEED_100MBIT;
3450 		else if (100 == port->speed)
3451 			data |= PHY_SPEED_100MBIT;
3452 		if (1 == port->duplex)
3453 			data &= ~PHY_FULL_DUPLEX;
3454 		else if (2 == port->duplex)
3455 			data |= PHY_FULL_DUPLEX;
3456 		hw_w_phy_ctrl(hw, phy, data);
3457 	}
3458 }
3459 
3460 static void port_set_power_saving(struct ksz_port *port, int enable)
3461 {
3462 	struct ksz_hw *hw = port->hw;
3463 	int i;
3464 	int p;
3465 
3466 	for (i = 0, p = port->first_port; i < port->port_cnt; i++, p++)
3467 		port_cfg(hw, p,
3468 			KS884X_PORT_CTRL_4_OFFSET, PORT_POWER_DOWN, enable);
3469 }
3470 
3471 /*
3472  * KSZ8841 power management functions
3473  */
3474 
3475 /**
3476  * hw_chk_wol_pme_status - check PMEN pin
3477  * @hw: 	The hardware instance.
3478  *
3479  * This function is used to check PMEN pin is asserted.
3480  *
3481  * Return 1 if PMEN pin is asserted; otherwise, 0.
3482  */
3483 static int hw_chk_wol_pme_status(struct ksz_hw *hw)
3484 {
3485 	struct dev_info *hw_priv = container_of(hw, struct dev_info, hw);
3486 	struct pci_dev *pdev = hw_priv->pdev;
3487 	u16 data;
3488 
3489 	if (!pdev->pm_cap)
3490 		return 0;
3491 	pci_read_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, &data);
3492 	return (data & PCI_PM_CTRL_PME_STATUS) == PCI_PM_CTRL_PME_STATUS;
3493 }
3494 
3495 /**
3496  * hw_clr_wol_pme_status - clear PMEN pin
3497  * @hw: 	The hardware instance.
3498  *
3499  * This routine is used to clear PME_Status to deassert PMEN pin.
3500  */
3501 static void hw_clr_wol_pme_status(struct ksz_hw *hw)
3502 {
3503 	struct dev_info *hw_priv = container_of(hw, struct dev_info, hw);
3504 	struct pci_dev *pdev = hw_priv->pdev;
3505 	u16 data;
3506 
3507 	if (!pdev->pm_cap)
3508 		return;
3509 
3510 	/* Clear PME_Status to deassert PMEN pin. */
3511 	pci_read_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, &data);
3512 	data |= PCI_PM_CTRL_PME_STATUS;
3513 	pci_write_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, data);
3514 }
3515 
3516 /**
3517  * hw_cfg_wol_pme - enable or disable Wake-on-LAN
3518  * @hw: 	The hardware instance.
3519  * @set:	The flag indicating whether to enable or disable.
3520  *
3521  * This routine is used to enable or disable Wake-on-LAN.
3522  */
3523 static void hw_cfg_wol_pme(struct ksz_hw *hw, int set)
3524 {
3525 	struct dev_info *hw_priv = container_of(hw, struct dev_info, hw);
3526 	struct pci_dev *pdev = hw_priv->pdev;
3527 	u16 data;
3528 
3529 	if (!pdev->pm_cap)
3530 		return;
3531 	pci_read_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, &data);
3532 	data &= ~PCI_PM_CTRL_STATE_MASK;
3533 	if (set)
3534 		data |= PCI_PM_CTRL_PME_ENABLE | PCI_D3hot;
3535 	else
3536 		data &= ~PCI_PM_CTRL_PME_ENABLE;
3537 	pci_write_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, data);
3538 }
3539 
3540 /**
3541  * hw_cfg_wol - configure Wake-on-LAN features
3542  * @hw: 	The hardware instance.
3543  * @frame:	The pattern frame bit.
3544  * @set:	The flag indicating whether to enable or disable.
3545  *
3546  * This routine is used to enable or disable certain Wake-on-LAN features.
3547  */
3548 static void hw_cfg_wol(struct ksz_hw *hw, u16 frame, int set)
3549 {
3550 	u16 data;
3551 
3552 	data = readw(hw->io + KS8841_WOL_CTRL_OFFSET);
3553 	if (set)
3554 		data |= frame;
3555 	else
3556 		data &= ~frame;
3557 	writew(data, hw->io + KS8841_WOL_CTRL_OFFSET);
3558 }
3559 
3560 /**
3561  * hw_set_wol_frame - program Wake-on-LAN pattern
3562  * @hw: 	The hardware instance.
3563  * @i:		The frame index.
3564  * @mask_size:	The size of the mask.
3565  * @mask:	Mask to ignore certain bytes in the pattern.
3566  * @frame_size:	The size of the frame.
3567  * @pattern:	The frame data.
3568  *
3569  * This routine is used to program Wake-on-LAN pattern.
3570  */
3571 static void hw_set_wol_frame(struct ksz_hw *hw, int i, uint mask_size,
3572 	const u8 *mask, uint frame_size, const u8 *pattern)
3573 {
3574 	int bits;
3575 	int from;
3576 	int len;
3577 	int to;
3578 	u32 crc;
3579 	u8 data[64];
3580 	u8 val = 0;
3581 
3582 	if (frame_size > mask_size * 8)
3583 		frame_size = mask_size * 8;
3584 	if (frame_size > 64)
3585 		frame_size = 64;
3586 
3587 	i *= 0x10;
3588 	writel(0, hw->io + KS8841_WOL_FRAME_BYTE0_OFFSET + i);
3589 	writel(0, hw->io + KS8841_WOL_FRAME_BYTE2_OFFSET + i);
3590 
3591 	bits = len = from = to = 0;
3592 	do {
3593 		if (bits) {
3594 			if ((val & 1))
3595 				data[to++] = pattern[from];
3596 			val >>= 1;
3597 			++from;
3598 			--bits;
3599 		} else {
3600 			val = mask[len];
3601 			writeb(val, hw->io + KS8841_WOL_FRAME_BYTE0_OFFSET + i
3602 				+ len);
3603 			++len;
3604 			if (val)
3605 				bits = 8;
3606 			else
3607 				from += 8;
3608 		}
3609 	} while (from < (int) frame_size);
3610 	if (val) {
3611 		bits = mask[len - 1];
3612 		val <<= (from % 8);
3613 		bits &= ~val;
3614 		writeb(bits, hw->io + KS8841_WOL_FRAME_BYTE0_OFFSET + i + len -
3615 			1);
3616 	}
3617 	crc = ether_crc(to, data);
3618 	writel(crc, hw->io + KS8841_WOL_FRAME_CRC_OFFSET + i);
3619 }
3620 
3621 /**
3622  * hw_add_wol_arp - add ARP pattern
3623  * @hw: 	The hardware instance.
3624  * @ip_addr:	The IPv4 address assigned to the device.
3625  *
3626  * This routine is used to add ARP pattern for waking up the host.
3627  */
3628 static void hw_add_wol_arp(struct ksz_hw *hw, const u8 *ip_addr)
3629 {
3630 	static const u8 mask[6] = { 0x3F, 0xF0, 0x3F, 0x00, 0xC0, 0x03 };
3631 	u8 pattern[42] = {
3632 		0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
3633 		0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
3634 		0x08, 0x06,
3635 		0x00, 0x01, 0x08, 0x00, 0x06, 0x04, 0x00, 0x01,
3636 		0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
3637 		0x00, 0x00, 0x00, 0x00,
3638 		0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
3639 		0x00, 0x00, 0x00, 0x00 };
3640 
3641 	memcpy(&pattern[38], ip_addr, 4);
3642 	hw_set_wol_frame(hw, 3, 6, mask, 42, pattern);
3643 }
3644 
3645 /**
3646  * hw_add_wol_bcast - add broadcast pattern
3647  * @hw: 	The hardware instance.
3648  *
3649  * This routine is used to add broadcast pattern for waking up the host.
3650  */
3651 static void hw_add_wol_bcast(struct ksz_hw *hw)
3652 {
3653 	static const u8 mask[] = { 0x3F };
3654 	static const u8 pattern[] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
3655 
3656 	hw_set_wol_frame(hw, 2, 1, mask, ETH_ALEN, pattern);
3657 }
3658 
3659 /**
3660  * hw_add_wol_mcast - add multicast pattern
3661  * @hw: 	The hardware instance.
3662  *
3663  * This routine is used to add multicast pattern for waking up the host.
3664  *
3665  * It is assumed the multicast packet is the ICMPv6 neighbor solicitation used
3666  * by IPv6 ping command.  Note that multicast packets are filtred through the
3667  * multicast hash table, so not all multicast packets can wake up the host.
3668  */
3669 static void hw_add_wol_mcast(struct ksz_hw *hw)
3670 {
3671 	static const u8 mask[] = { 0x3F };
3672 	u8 pattern[] = { 0x33, 0x33, 0xFF, 0x00, 0x00, 0x00 };
3673 
3674 	memcpy(&pattern[3], &hw->override_addr[3], 3);
3675 	hw_set_wol_frame(hw, 1, 1, mask, 6, pattern);
3676 }
3677 
3678 /**
3679  * hw_add_wol_ucast - add unicast pattern
3680  * @hw: 	The hardware instance.
3681  *
3682  * This routine is used to add unicast pattern to wakeup the host.
3683  *
3684  * It is assumed the unicast packet is directed to the device, as the hardware
3685  * can only receive them in normal case.
3686  */
3687 static void hw_add_wol_ucast(struct ksz_hw *hw)
3688 {
3689 	static const u8 mask[] = { 0x3F };
3690 
3691 	hw_set_wol_frame(hw, 0, 1, mask, ETH_ALEN, hw->override_addr);
3692 }
3693 
3694 /**
3695  * hw_enable_wol - enable Wake-on-LAN
3696  * @hw: 	The hardware instance.
3697  * @wol_enable:	The Wake-on-LAN settings.
3698  * @net_addr:	The IPv4 address assigned to the device.
3699  *
3700  * This routine is used to enable Wake-on-LAN depending on driver settings.
3701  */
3702 static void hw_enable_wol(struct ksz_hw *hw, u32 wol_enable, const u8 *net_addr)
3703 {
3704 	hw_cfg_wol(hw, KS8841_WOL_MAGIC_ENABLE, (wol_enable & WAKE_MAGIC));
3705 	hw_cfg_wol(hw, KS8841_WOL_FRAME0_ENABLE, (wol_enable & WAKE_UCAST));
3706 	hw_add_wol_ucast(hw);
3707 	hw_cfg_wol(hw, KS8841_WOL_FRAME1_ENABLE, (wol_enable & WAKE_MCAST));
3708 	hw_add_wol_mcast(hw);
3709 	hw_cfg_wol(hw, KS8841_WOL_FRAME2_ENABLE, (wol_enable & WAKE_BCAST));
3710 	hw_cfg_wol(hw, KS8841_WOL_FRAME3_ENABLE, (wol_enable & WAKE_ARP));
3711 	hw_add_wol_arp(hw, net_addr);
3712 }
3713 
3714 /**
3715  * hw_init - check driver is correct for the hardware
3716  * @hw: 	The hardware instance.
3717  *
3718  * This function checks the hardware is correct for this driver and sets the
3719  * hardware up for proper initialization.
3720  *
3721  * Return number of ports or 0 if not right.
3722  */
3723 static int hw_init(struct ksz_hw *hw)
3724 {
3725 	int rc = 0;
3726 	u16 data;
3727 	u16 revision;
3728 
3729 	/* Set bus speed to 125MHz. */
3730 	writew(BUS_SPEED_125_MHZ, hw->io + KS884X_BUS_CTRL_OFFSET);
3731 
3732 	/* Check KSZ884x chip ID. */
3733 	data = readw(hw->io + KS884X_CHIP_ID_OFFSET);
3734 
3735 	revision = (data & KS884X_REVISION_MASK) >> KS884X_REVISION_SHIFT;
3736 	data &= KS884X_CHIP_ID_MASK_41;
3737 	if (REG_CHIP_ID_41 == data)
3738 		rc = 1;
3739 	else if (REG_CHIP_ID_42 == data)
3740 		rc = 2;
3741 	else
3742 		return 0;
3743 
3744 	/* Setup hardware features or bug workarounds. */
3745 	if (revision <= 1) {
3746 		hw->features |= SMALL_PACKET_TX_BUG;
3747 		if (1 == rc)
3748 			hw->features |= HALF_DUPLEX_SIGNAL_BUG;
3749 	}
3750 	return rc;
3751 }
3752 
3753 /**
3754  * hw_reset - reset the hardware
3755  * @hw: 	The hardware instance.
3756  *
3757  * This routine resets the hardware.
3758  */
3759 static void hw_reset(struct ksz_hw *hw)
3760 {
3761 	writew(GLOBAL_SOFTWARE_RESET, hw->io + KS884X_GLOBAL_CTRL_OFFSET);
3762 
3763 	/* Wait for device to reset. */
3764 	mdelay(10);
3765 
3766 	/* Write 0 to clear device reset. */
3767 	writew(0, hw->io + KS884X_GLOBAL_CTRL_OFFSET);
3768 }
3769 
3770 /**
3771  * hw_setup - setup the hardware
3772  * @hw: 	The hardware instance.
3773  *
3774  * This routine setup the hardware for proper operation.
3775  */
3776 static void hw_setup(struct ksz_hw *hw)
3777 {
3778 #if SET_DEFAULT_LED
3779 	u16 data;
3780 
3781 	/* Change default LED mode. */
3782 	data = readw(hw->io + KS8842_SWITCH_CTRL_5_OFFSET);
3783 	data &= ~LED_MODE;
3784 	data |= SET_DEFAULT_LED;
3785 	writew(data, hw->io + KS8842_SWITCH_CTRL_5_OFFSET);
3786 #endif
3787 
3788 	/* Setup transmit control. */
3789 	hw->tx_cfg = (DMA_TX_PAD_ENABLE | DMA_TX_CRC_ENABLE |
3790 		(DMA_BURST_DEFAULT << DMA_BURST_SHIFT) | DMA_TX_ENABLE);
3791 
3792 	/* Setup receive control. */
3793 	hw->rx_cfg = (DMA_RX_BROADCAST | DMA_RX_UNICAST |
3794 		(DMA_BURST_DEFAULT << DMA_BURST_SHIFT) | DMA_RX_ENABLE);
3795 	hw->rx_cfg |= KS884X_DMA_RX_MULTICAST;
3796 
3797 	/* Hardware cannot handle UDP packet in IP fragments. */
3798 	hw->rx_cfg |= (DMA_RX_CSUM_TCP | DMA_RX_CSUM_IP);
3799 
3800 	if (hw->all_multi)
3801 		hw->rx_cfg |= DMA_RX_ALL_MULTICAST;
3802 	if (hw->promiscuous)
3803 		hw->rx_cfg |= DMA_RX_PROMISCUOUS;
3804 }
3805 
3806 /**
3807  * hw_setup_intr - setup interrupt mask
3808  * @hw: 	The hardware instance.
3809  *
3810  * This routine setup the interrupt mask for proper operation.
3811  */
3812 static void hw_setup_intr(struct ksz_hw *hw)
3813 {
3814 	hw->intr_mask = KS884X_INT_MASK | KS884X_INT_RX_OVERRUN;
3815 }
3816 
3817 static void ksz_check_desc_num(struct ksz_desc_info *info)
3818 {
3819 #define MIN_DESC_SHIFT  2
3820 
3821 	int alloc = info->alloc;
3822 	int shift;
3823 
3824 	shift = 0;
3825 	while (!(alloc & 1)) {
3826 		shift++;
3827 		alloc >>= 1;
3828 	}
3829 	if (alloc != 1 || shift < MIN_DESC_SHIFT) {
3830 		pr_alert("Hardware descriptor numbers not right!\n");
3831 		while (alloc) {
3832 			shift++;
3833 			alloc >>= 1;
3834 		}
3835 		if (shift < MIN_DESC_SHIFT)
3836 			shift = MIN_DESC_SHIFT;
3837 		alloc = 1 << shift;
3838 		info->alloc = alloc;
3839 	}
3840 	info->mask = info->alloc - 1;
3841 }
3842 
3843 static void hw_init_desc(struct ksz_desc_info *desc_info, int transmit)
3844 {
3845 	int i;
3846 	u32 phys = desc_info->ring_phys;
3847 	struct ksz_hw_desc *desc = desc_info->ring_virt;
3848 	struct ksz_desc *cur = desc_info->ring;
3849 	struct ksz_desc *previous = NULL;
3850 
3851 	for (i = 0; i < desc_info->alloc; i++) {
3852 		cur->phw = desc++;
3853 		phys += desc_info->size;
3854 		previous = cur++;
3855 		previous->phw->next = cpu_to_le32(phys);
3856 	}
3857 	previous->phw->next = cpu_to_le32(desc_info->ring_phys);
3858 	previous->sw.buf.rx.end_of_ring = 1;
3859 	previous->phw->buf.data = cpu_to_le32(previous->sw.buf.data);
3860 
3861 	desc_info->avail = desc_info->alloc;
3862 	desc_info->last = desc_info->next = 0;
3863 
3864 	desc_info->cur = desc_info->ring;
3865 }
3866 
3867 /**
3868  * hw_set_desc_base - set descriptor base addresses
3869  * @hw: 	The hardware instance.
3870  * @tx_addr:	The transmit descriptor base.
3871  * @rx_addr:	The receive descriptor base.
3872  *
3873  * This routine programs the descriptor base addresses after reset.
3874  */
3875 static void hw_set_desc_base(struct ksz_hw *hw, u32 tx_addr, u32 rx_addr)
3876 {
3877 	/* Set base address of Tx/Rx descriptors. */
3878 	writel(tx_addr, hw->io + KS_DMA_TX_ADDR);
3879 	writel(rx_addr, hw->io + KS_DMA_RX_ADDR);
3880 }
3881 
3882 static void hw_reset_pkts(struct ksz_desc_info *info)
3883 {
3884 	info->cur = info->ring;
3885 	info->avail = info->alloc;
3886 	info->last = info->next = 0;
3887 }
3888 
3889 static inline void hw_resume_rx(struct ksz_hw *hw)
3890 {
3891 	writel(DMA_START, hw->io + KS_DMA_RX_START);
3892 }
3893 
3894 /**
3895  * hw_start_rx - start receiving
3896  * @hw: 	The hardware instance.
3897  *
3898  * This routine starts the receive function of the hardware.
3899  */
3900 static void hw_start_rx(struct ksz_hw *hw)
3901 {
3902 	writel(hw->rx_cfg, hw->io + KS_DMA_RX_CTRL);
3903 
3904 	/* Notify when the receive stops. */
3905 	hw->intr_mask |= KS884X_INT_RX_STOPPED;
3906 
3907 	writel(DMA_START, hw->io + KS_DMA_RX_START);
3908 	hw_ack_intr(hw, KS884X_INT_RX_STOPPED);
3909 	hw->rx_stop++;
3910 
3911 	/* Variable overflows. */
3912 	if (0 == hw->rx_stop)
3913 		hw->rx_stop = 2;
3914 }
3915 
3916 /**
3917  * hw_stop_rx - stop receiving
3918  * @hw: 	The hardware instance.
3919  *
3920  * This routine stops the receive function of the hardware.
3921  */
3922 static void hw_stop_rx(struct ksz_hw *hw)
3923 {
3924 	hw->rx_stop = 0;
3925 	hw_turn_off_intr(hw, KS884X_INT_RX_STOPPED);
3926 	writel((hw->rx_cfg & ~DMA_RX_ENABLE), hw->io + KS_DMA_RX_CTRL);
3927 }
3928 
3929 /**
3930  * hw_start_tx - start transmitting
3931  * @hw: 	The hardware instance.
3932  *
3933  * This routine starts the transmit function of the hardware.
3934  */
3935 static void hw_start_tx(struct ksz_hw *hw)
3936 {
3937 	writel(hw->tx_cfg, hw->io + KS_DMA_TX_CTRL);
3938 }
3939 
3940 /**
3941  * hw_stop_tx - stop transmitting
3942  * @hw: 	The hardware instance.
3943  *
3944  * This routine stops the transmit function of the hardware.
3945  */
3946 static void hw_stop_tx(struct ksz_hw *hw)
3947 {
3948 	writel((hw->tx_cfg & ~DMA_TX_ENABLE), hw->io + KS_DMA_TX_CTRL);
3949 }
3950 
3951 /**
3952  * hw_disable - disable hardware
3953  * @hw: 	The hardware instance.
3954  *
3955  * This routine disables the hardware.
3956  */
3957 static void hw_disable(struct ksz_hw *hw)
3958 {
3959 	hw_stop_rx(hw);
3960 	hw_stop_tx(hw);
3961 	hw->enabled = 0;
3962 }
3963 
3964 /**
3965  * hw_enable - enable hardware
3966  * @hw: 	The hardware instance.
3967  *
3968  * This routine enables the hardware.
3969  */
3970 static void hw_enable(struct ksz_hw *hw)
3971 {
3972 	hw_start_tx(hw);
3973 	hw_start_rx(hw);
3974 	hw->enabled = 1;
3975 }
3976 
3977 /**
3978  * hw_alloc_pkt - allocate enough descriptors for transmission
3979  * @hw: 	The hardware instance.
3980  * @length:	The length of the packet.
3981  * @physical:	Number of descriptors required.
3982  *
3983  * This function allocates descriptors for transmission.
3984  *
3985  * Return 0 if not successful; 1 for buffer copy; or number of descriptors.
3986  */
3987 static int hw_alloc_pkt(struct ksz_hw *hw, int length, int physical)
3988 {
3989 	/* Always leave one descriptor free. */
3990 	if (hw->tx_desc_info.avail <= 1)
3991 		return 0;
3992 
3993 	/* Allocate a descriptor for transmission and mark it current. */
3994 	get_tx_pkt(&hw->tx_desc_info, &hw->tx_desc_info.cur);
3995 	hw->tx_desc_info.cur->sw.buf.tx.first_seg = 1;
3996 
3997 	/* Keep track of number of transmit descriptors used so far. */
3998 	++hw->tx_int_cnt;
3999 	hw->tx_size += length;
4000 
4001 	/* Cannot hold on too much data. */
4002 	if (hw->tx_size >= MAX_TX_HELD_SIZE)
4003 		hw->tx_int_cnt = hw->tx_int_mask + 1;
4004 
4005 	if (physical > hw->tx_desc_info.avail)
4006 		return 1;
4007 
4008 	return hw->tx_desc_info.avail;
4009 }
4010 
4011 /**
4012  * hw_send_pkt - mark packet for transmission
4013  * @hw: 	The hardware instance.
4014  *
4015  * This routine marks the packet for transmission in PCI version.
4016  */
4017 static void hw_send_pkt(struct ksz_hw *hw)
4018 {
4019 	struct ksz_desc *cur = hw->tx_desc_info.cur;
4020 
4021 	cur->sw.buf.tx.last_seg = 1;
4022 
4023 	/* Interrupt only after specified number of descriptors used. */
4024 	if (hw->tx_int_cnt > hw->tx_int_mask) {
4025 		cur->sw.buf.tx.intr = 1;
4026 		hw->tx_int_cnt = 0;
4027 		hw->tx_size = 0;
4028 	}
4029 
4030 	/* KSZ8842 supports port directed transmission. */
4031 	cur->sw.buf.tx.dest_port = hw->dst_ports;
4032 
4033 	release_desc(cur);
4034 
4035 	writel(0, hw->io + KS_DMA_TX_START);
4036 }
4037 
4038 static int empty_addr(u8 *addr)
4039 {
4040 	u32 *addr1 = (u32 *) addr;
4041 	u16 *addr2 = (u16 *) &addr[4];
4042 
4043 	return 0 == *addr1 && 0 == *addr2;
4044 }
4045 
4046 /**
4047  * hw_set_addr - set MAC address
4048  * @hw: 	The hardware instance.
4049  *
4050  * This routine programs the MAC address of the hardware when the address is
4051  * overrided.
4052  */
4053 static void hw_set_addr(struct ksz_hw *hw)
4054 {
4055 	int i;
4056 
4057 	for (i = 0; i < ETH_ALEN; i++)
4058 		writeb(hw->override_addr[MAC_ADDR_ORDER(i)],
4059 			hw->io + KS884X_ADDR_0_OFFSET + i);
4060 
4061 	sw_set_addr(hw, hw->override_addr);
4062 }
4063 
4064 /**
4065  * hw_read_addr - read MAC address
4066  * @hw: 	The hardware instance.
4067  *
4068  * This routine retrieves the MAC address of the hardware.
4069  */
4070 static void hw_read_addr(struct ksz_hw *hw)
4071 {
4072 	int i;
4073 
4074 	for (i = 0; i < ETH_ALEN; i++)
4075 		hw->perm_addr[MAC_ADDR_ORDER(i)] = readb(hw->io +
4076 			KS884X_ADDR_0_OFFSET + i);
4077 
4078 	if (!hw->mac_override) {
4079 		memcpy(hw->override_addr, hw->perm_addr, ETH_ALEN);
4080 		if (empty_addr(hw->override_addr)) {
4081 			memcpy(hw->perm_addr, DEFAULT_MAC_ADDRESS, ETH_ALEN);
4082 			memcpy(hw->override_addr, DEFAULT_MAC_ADDRESS,
4083 			       ETH_ALEN);
4084 			hw->override_addr[5] += hw->id;
4085 			hw_set_addr(hw);
4086 		}
4087 	}
4088 }
4089 
4090 static void hw_ena_add_addr(struct ksz_hw *hw, int index, u8 *mac_addr)
4091 {
4092 	int i;
4093 	u32 mac_addr_lo;
4094 	u32 mac_addr_hi;
4095 
4096 	mac_addr_hi = 0;
4097 	for (i = 0; i < 2; i++) {
4098 		mac_addr_hi <<= 8;
4099 		mac_addr_hi |= mac_addr[i];
4100 	}
4101 	mac_addr_hi |= ADD_ADDR_ENABLE;
4102 	mac_addr_lo = 0;
4103 	for (i = 2; i < 6; i++) {
4104 		mac_addr_lo <<= 8;
4105 		mac_addr_lo |= mac_addr[i];
4106 	}
4107 	index *= ADD_ADDR_INCR;
4108 
4109 	writel(mac_addr_lo, hw->io + index + KS_ADD_ADDR_0_LO);
4110 	writel(mac_addr_hi, hw->io + index + KS_ADD_ADDR_0_HI);
4111 }
4112 
4113 static void hw_set_add_addr(struct ksz_hw *hw)
4114 {
4115 	int i;
4116 
4117 	for (i = 0; i < ADDITIONAL_ENTRIES; i++) {
4118 		if (empty_addr(hw->address[i]))
4119 			writel(0, hw->io + ADD_ADDR_INCR * i +
4120 				KS_ADD_ADDR_0_HI);
4121 		else
4122 			hw_ena_add_addr(hw, i, hw->address[i]);
4123 	}
4124 }
4125 
4126 static int hw_add_addr(struct ksz_hw *hw, u8 *mac_addr)
4127 {
4128 	int i;
4129 	int j = ADDITIONAL_ENTRIES;
4130 
4131 	if (!memcmp(hw->override_addr, mac_addr, ETH_ALEN))
4132 		return 0;
4133 	for (i = 0; i < hw->addr_list_size; i++) {
4134 		if (!memcmp(hw->address[i], mac_addr, ETH_ALEN))
4135 			return 0;
4136 		if (ADDITIONAL_ENTRIES == j && empty_addr(hw->address[i]))
4137 			j = i;
4138 	}
4139 	if (j < ADDITIONAL_ENTRIES) {
4140 		memcpy(hw->address[j], mac_addr, ETH_ALEN);
4141 		hw_ena_add_addr(hw, j, hw->address[j]);
4142 		return 0;
4143 	}
4144 	return -1;
4145 }
4146 
4147 static int hw_del_addr(struct ksz_hw *hw, u8 *mac_addr)
4148 {
4149 	int i;
4150 
4151 	for (i = 0; i < hw->addr_list_size; i++) {
4152 		if (!memcmp(hw->address[i], mac_addr, ETH_ALEN)) {
4153 			memset(hw->address[i], 0, ETH_ALEN);
4154 			writel(0, hw->io + ADD_ADDR_INCR * i +
4155 				KS_ADD_ADDR_0_HI);
4156 			return 0;
4157 		}
4158 	}
4159 	return -1;
4160 }
4161 
4162 /**
4163  * hw_clr_multicast - clear multicast addresses
4164  * @hw: 	The hardware instance.
4165  *
4166  * This routine removes all multicast addresses set in the hardware.
4167  */
4168 static void hw_clr_multicast(struct ksz_hw *hw)
4169 {
4170 	int i;
4171 
4172 	for (i = 0; i < HW_MULTICAST_SIZE; i++) {
4173 		hw->multi_bits[i] = 0;
4174 
4175 		writeb(0, hw->io + KS884X_MULTICAST_0_OFFSET + i);
4176 	}
4177 }
4178 
4179 /**
4180  * hw_set_grp_addr - set multicast addresses
4181  * @hw: 	The hardware instance.
4182  *
4183  * This routine programs multicast addresses for the hardware to accept those
4184  * addresses.
4185  */
4186 static void hw_set_grp_addr(struct ksz_hw *hw)
4187 {
4188 	int i;
4189 	int index;
4190 	int position;
4191 	int value;
4192 
4193 	memset(hw->multi_bits, 0, sizeof(u8) * HW_MULTICAST_SIZE);
4194 
4195 	for (i = 0; i < hw->multi_list_size; i++) {
4196 		position = (ether_crc(6, hw->multi_list[i]) >> 26) & 0x3f;
4197 		index = position >> 3;
4198 		value = 1 << (position & 7);
4199 		hw->multi_bits[index] |= (u8) value;
4200 	}
4201 
4202 	for (i = 0; i < HW_MULTICAST_SIZE; i++)
4203 		writeb(hw->multi_bits[i], hw->io + KS884X_MULTICAST_0_OFFSET +
4204 			i);
4205 }
4206 
4207 /**
4208  * hw_set_multicast - enable or disable all multicast receiving
4209  * @hw: 	The hardware instance.
4210  * @multicast:	To turn on or off the all multicast feature.
4211  *
4212  * This routine enables/disables the hardware to accept all multicast packets.
4213  */
4214 static void hw_set_multicast(struct ksz_hw *hw, u8 multicast)
4215 {
4216 	/* Stop receiving for reconfiguration. */
4217 	hw_stop_rx(hw);
4218 
4219 	if (multicast)
4220 		hw->rx_cfg |= DMA_RX_ALL_MULTICAST;
4221 	else
4222 		hw->rx_cfg &= ~DMA_RX_ALL_MULTICAST;
4223 
4224 	if (hw->enabled)
4225 		hw_start_rx(hw);
4226 }
4227 
4228 /**
4229  * hw_set_promiscuous - enable or disable promiscuous receiving
4230  * @hw: 	The hardware instance.
4231  * @prom:	To turn on or off the promiscuous feature.
4232  *
4233  * This routine enables/disables the hardware to accept all packets.
4234  */
4235 static void hw_set_promiscuous(struct ksz_hw *hw, u8 prom)
4236 {
4237 	/* Stop receiving for reconfiguration. */
4238 	hw_stop_rx(hw);
4239 
4240 	if (prom)
4241 		hw->rx_cfg |= DMA_RX_PROMISCUOUS;
4242 	else
4243 		hw->rx_cfg &= ~DMA_RX_PROMISCUOUS;
4244 
4245 	if (hw->enabled)
4246 		hw_start_rx(hw);
4247 }
4248 
4249 /**
4250  * sw_enable - enable the switch
4251  * @hw: 	The hardware instance.
4252  * @enable:	The flag to enable or disable the switch
4253  *
4254  * This routine is used to enable/disable the switch in KSZ8842.
4255  */
4256 static void sw_enable(struct ksz_hw *hw, int enable)
4257 {
4258 	int port;
4259 
4260 	for (port = 0; port < SWITCH_PORT_NUM; port++) {
4261 		if (hw->dev_count > 1) {
4262 			/* Set port-base vlan membership with host port. */
4263 			sw_cfg_port_base_vlan(hw, port,
4264 				HOST_MASK | (1 << port));
4265 			port_set_stp_state(hw, port, STP_STATE_DISABLED);
4266 		} else {
4267 			sw_cfg_port_base_vlan(hw, port, PORT_MASK);
4268 			port_set_stp_state(hw, port, STP_STATE_FORWARDING);
4269 		}
4270 	}
4271 	if (hw->dev_count > 1)
4272 		port_set_stp_state(hw, SWITCH_PORT_NUM, STP_STATE_SIMPLE);
4273 	else
4274 		port_set_stp_state(hw, SWITCH_PORT_NUM, STP_STATE_FORWARDING);
4275 
4276 	if (enable)
4277 		enable = KS8842_START;
4278 	writew(enable, hw->io + KS884X_CHIP_ID_OFFSET);
4279 }
4280 
4281 /**
4282  * sw_setup - setup the switch
4283  * @hw: 	The hardware instance.
4284  *
4285  * This routine setup the hardware switch engine for default operation.
4286  */
4287 static void sw_setup(struct ksz_hw *hw)
4288 {
4289 	int port;
4290 
4291 	sw_set_global_ctrl(hw);
4292 
4293 	/* Enable switch broadcast storm protection at 10% percent rate. */
4294 	sw_init_broad_storm(hw);
4295 	hw_cfg_broad_storm(hw, BROADCAST_STORM_PROTECTION_RATE);
4296 	for (port = 0; port < SWITCH_PORT_NUM; port++)
4297 		sw_ena_broad_storm(hw, port);
4298 
4299 	sw_init_prio(hw);
4300 
4301 	sw_init_mirror(hw);
4302 
4303 	sw_init_prio_rate(hw);
4304 
4305 	sw_init_vlan(hw);
4306 
4307 	if (hw->features & STP_SUPPORT)
4308 		sw_init_stp(hw);
4309 	if (!sw_chk(hw, KS8842_SWITCH_CTRL_1_OFFSET,
4310 			SWITCH_TX_FLOW_CTRL | SWITCH_RX_FLOW_CTRL))
4311 		hw->overrides |= PAUSE_FLOW_CTRL;
4312 	sw_enable(hw, 1);
4313 }
4314 
4315 /**
4316  * ksz_start_timer - start kernel timer
4317  * @info:	Kernel timer information.
4318  * @time:	The time tick.
4319  *
4320  * This routine starts the kernel timer after the specified time tick.
4321  */
4322 static void ksz_start_timer(struct ksz_timer_info *info, int time)
4323 {
4324 	info->cnt = 0;
4325 	info->timer.expires = jiffies + time;
4326 	add_timer(&info->timer);
4327 
4328 	/* infinity */
4329 	info->max = -1;
4330 }
4331 
4332 /**
4333  * ksz_stop_timer - stop kernel timer
4334  * @info:	Kernel timer information.
4335  *
4336  * This routine stops the kernel timer.
4337  */
4338 static void ksz_stop_timer(struct ksz_timer_info *info)
4339 {
4340 	if (info->max) {
4341 		info->max = 0;
4342 		del_timer_sync(&info->timer);
4343 	}
4344 }
4345 
4346 static void ksz_init_timer(struct ksz_timer_info *info, int period,
4347 	void (*function)(unsigned long), void *data)
4348 {
4349 	info->max = 0;
4350 	info->period = period;
4351 	init_timer(&info->timer);
4352 	info->timer.function = function;
4353 	info->timer.data = (unsigned long) data;
4354 }
4355 
4356 static void ksz_update_timer(struct ksz_timer_info *info)
4357 {
4358 	++info->cnt;
4359 	if (info->max > 0) {
4360 		if (info->cnt < info->max) {
4361 			info->timer.expires = jiffies + info->period;
4362 			add_timer(&info->timer);
4363 		} else
4364 			info->max = 0;
4365 	} else if (info->max < 0) {
4366 		info->timer.expires = jiffies + info->period;
4367 		add_timer(&info->timer);
4368 	}
4369 }
4370 
4371 /**
4372  * ksz_alloc_soft_desc - allocate software descriptors
4373  * @desc_info:	Descriptor information structure.
4374  * @transmit:	Indication that descriptors are for transmit.
4375  *
4376  * This local function allocates software descriptors for manipulation in
4377  * memory.
4378  *
4379  * Return 0 if successful.
4380  */
4381 static int ksz_alloc_soft_desc(struct ksz_desc_info *desc_info, int transmit)
4382 {
4383 	desc_info->ring = kzalloc(sizeof(struct ksz_desc) * desc_info->alloc,
4384 				  GFP_KERNEL);
4385 	if (!desc_info->ring)
4386 		return 1;
4387 	hw_init_desc(desc_info, transmit);
4388 	return 0;
4389 }
4390 
4391 /**
4392  * ksz_alloc_desc - allocate hardware descriptors
4393  * @adapter:	Adapter information structure.
4394  *
4395  * This local function allocates hardware descriptors for receiving and
4396  * transmitting.
4397  *
4398  * Return 0 if successful.
4399  */
4400 static int ksz_alloc_desc(struct dev_info *adapter)
4401 {
4402 	struct ksz_hw *hw = &adapter->hw;
4403 	int offset;
4404 
4405 	/* Allocate memory for RX & TX descriptors. */
4406 	adapter->desc_pool.alloc_size =
4407 		hw->rx_desc_info.size * hw->rx_desc_info.alloc +
4408 		hw->tx_desc_info.size * hw->tx_desc_info.alloc +
4409 		DESC_ALIGNMENT;
4410 
4411 	adapter->desc_pool.alloc_virt =
4412 		pci_alloc_consistent(
4413 			adapter->pdev, adapter->desc_pool.alloc_size,
4414 			&adapter->desc_pool.dma_addr);
4415 	if (adapter->desc_pool.alloc_virt == NULL) {
4416 		adapter->desc_pool.alloc_size = 0;
4417 		return 1;
4418 	}
4419 	memset(adapter->desc_pool.alloc_virt, 0, adapter->desc_pool.alloc_size);
4420 
4421 	/* Align to the next cache line boundary. */
4422 	offset = (((ulong) adapter->desc_pool.alloc_virt % DESC_ALIGNMENT) ?
4423 		(DESC_ALIGNMENT -
4424 		((ulong) adapter->desc_pool.alloc_virt % DESC_ALIGNMENT)) : 0);
4425 	adapter->desc_pool.virt = adapter->desc_pool.alloc_virt + offset;
4426 	adapter->desc_pool.phys = adapter->desc_pool.dma_addr + offset;
4427 
4428 	/* Allocate receive/transmit descriptors. */
4429 	hw->rx_desc_info.ring_virt = (struct ksz_hw_desc *)
4430 		adapter->desc_pool.virt;
4431 	hw->rx_desc_info.ring_phys = adapter->desc_pool.phys;
4432 	offset = hw->rx_desc_info.alloc * hw->rx_desc_info.size;
4433 	hw->tx_desc_info.ring_virt = (struct ksz_hw_desc *)
4434 		(adapter->desc_pool.virt + offset);
4435 	hw->tx_desc_info.ring_phys = adapter->desc_pool.phys + offset;
4436 
4437 	if (ksz_alloc_soft_desc(&hw->rx_desc_info, 0))
4438 		return 1;
4439 	if (ksz_alloc_soft_desc(&hw->tx_desc_info, 1))
4440 		return 1;
4441 
4442 	return 0;
4443 }
4444 
4445 /**
4446  * free_dma_buf - release DMA buffer resources
4447  * @adapter:	Adapter information structure.
4448  *
4449  * This routine is just a helper function to release the DMA buffer resources.
4450  */
4451 static void free_dma_buf(struct dev_info *adapter, struct ksz_dma_buf *dma_buf,
4452 	int direction)
4453 {
4454 	pci_unmap_single(adapter->pdev, dma_buf->dma, dma_buf->len, direction);
4455 	dev_kfree_skb(dma_buf->skb);
4456 	dma_buf->skb = NULL;
4457 	dma_buf->dma = 0;
4458 }
4459 
4460 /**
4461  * ksz_init_rx_buffers - initialize receive descriptors
4462  * @adapter:	Adapter information structure.
4463  *
4464  * This routine initializes DMA buffers for receiving.
4465  */
4466 static void ksz_init_rx_buffers(struct dev_info *adapter)
4467 {
4468 	int i;
4469 	struct ksz_desc *desc;
4470 	struct ksz_dma_buf *dma_buf;
4471 	struct ksz_hw *hw = &adapter->hw;
4472 	struct ksz_desc_info *info = &hw->rx_desc_info;
4473 
4474 	for (i = 0; i < hw->rx_desc_info.alloc; i++) {
4475 		get_rx_pkt(info, &desc);
4476 
4477 		dma_buf = DMA_BUFFER(desc);
4478 		if (dma_buf->skb && dma_buf->len != adapter->mtu)
4479 			free_dma_buf(adapter, dma_buf, PCI_DMA_FROMDEVICE);
4480 		dma_buf->len = adapter->mtu;
4481 		if (!dma_buf->skb)
4482 			dma_buf->skb = alloc_skb(dma_buf->len, GFP_ATOMIC);
4483 		if (dma_buf->skb && !dma_buf->dma)
4484 			dma_buf->dma = pci_map_single(
4485 				adapter->pdev,
4486 				skb_tail_pointer(dma_buf->skb),
4487 				dma_buf->len,
4488 				PCI_DMA_FROMDEVICE);
4489 
4490 		/* Set descriptor. */
4491 		set_rx_buf(desc, dma_buf->dma);
4492 		set_rx_len(desc, dma_buf->len);
4493 		release_desc(desc);
4494 	}
4495 }
4496 
4497 /**
4498  * ksz_alloc_mem - allocate memory for hardware descriptors
4499  * @adapter:	Adapter information structure.
4500  *
4501  * This function allocates memory for use by hardware descriptors for receiving
4502  * and transmitting.
4503  *
4504  * Return 0 if successful.
4505  */
4506 static int ksz_alloc_mem(struct dev_info *adapter)
4507 {
4508 	struct ksz_hw *hw = &adapter->hw;
4509 
4510 	/* Determine the number of receive and transmit descriptors. */
4511 	hw->rx_desc_info.alloc = NUM_OF_RX_DESC;
4512 	hw->tx_desc_info.alloc = NUM_OF_TX_DESC;
4513 
4514 	/* Determine how many descriptors to skip transmit interrupt. */
4515 	hw->tx_int_cnt = 0;
4516 	hw->tx_int_mask = NUM_OF_TX_DESC / 4;
4517 	if (hw->tx_int_mask > 8)
4518 		hw->tx_int_mask = 8;
4519 	while (hw->tx_int_mask) {
4520 		hw->tx_int_cnt++;
4521 		hw->tx_int_mask >>= 1;
4522 	}
4523 	if (hw->tx_int_cnt) {
4524 		hw->tx_int_mask = (1 << (hw->tx_int_cnt - 1)) - 1;
4525 		hw->tx_int_cnt = 0;
4526 	}
4527 
4528 	/* Determine the descriptor size. */
4529 	hw->rx_desc_info.size =
4530 		(((sizeof(struct ksz_hw_desc) + DESC_ALIGNMENT - 1) /
4531 		DESC_ALIGNMENT) * DESC_ALIGNMENT);
4532 	hw->tx_desc_info.size =
4533 		(((sizeof(struct ksz_hw_desc) + DESC_ALIGNMENT - 1) /
4534 		DESC_ALIGNMENT) * DESC_ALIGNMENT);
4535 	if (hw->rx_desc_info.size != sizeof(struct ksz_hw_desc))
4536 		pr_alert("Hardware descriptor size not right!\n");
4537 	ksz_check_desc_num(&hw->rx_desc_info);
4538 	ksz_check_desc_num(&hw->tx_desc_info);
4539 
4540 	/* Allocate descriptors. */
4541 	if (ksz_alloc_desc(adapter))
4542 		return 1;
4543 
4544 	return 0;
4545 }
4546 
4547 /**
4548  * ksz_free_desc - free software and hardware descriptors
4549  * @adapter:	Adapter information structure.
4550  *
4551  * This local routine frees the software and hardware descriptors allocated by
4552  * ksz_alloc_desc().
4553  */
4554 static void ksz_free_desc(struct dev_info *adapter)
4555 {
4556 	struct ksz_hw *hw = &adapter->hw;
4557 
4558 	/* Reset descriptor. */
4559 	hw->rx_desc_info.ring_virt = NULL;
4560 	hw->tx_desc_info.ring_virt = NULL;
4561 	hw->rx_desc_info.ring_phys = 0;
4562 	hw->tx_desc_info.ring_phys = 0;
4563 
4564 	/* Free memory. */
4565 	if (adapter->desc_pool.alloc_virt)
4566 		pci_free_consistent(
4567 			adapter->pdev,
4568 			adapter->desc_pool.alloc_size,
4569 			adapter->desc_pool.alloc_virt,
4570 			adapter->desc_pool.dma_addr);
4571 
4572 	/* Reset resource pool. */
4573 	adapter->desc_pool.alloc_size = 0;
4574 	adapter->desc_pool.alloc_virt = NULL;
4575 
4576 	kfree(hw->rx_desc_info.ring);
4577 	hw->rx_desc_info.ring = NULL;
4578 	kfree(hw->tx_desc_info.ring);
4579 	hw->tx_desc_info.ring = NULL;
4580 }
4581 
4582 /**
4583  * ksz_free_buffers - free buffers used in the descriptors
4584  * @adapter:	Adapter information structure.
4585  * @desc_info:	Descriptor information structure.
4586  *
4587  * This local routine frees buffers used in the DMA buffers.
4588  */
4589 static void ksz_free_buffers(struct dev_info *adapter,
4590 	struct ksz_desc_info *desc_info, int direction)
4591 {
4592 	int i;
4593 	struct ksz_dma_buf *dma_buf;
4594 	struct ksz_desc *desc = desc_info->ring;
4595 
4596 	for (i = 0; i < desc_info->alloc; i++) {
4597 		dma_buf = DMA_BUFFER(desc);
4598 		if (dma_buf->skb)
4599 			free_dma_buf(adapter, dma_buf, direction);
4600 		desc++;
4601 	}
4602 }
4603 
4604 /**
4605  * ksz_free_mem - free all resources used by descriptors
4606  * @adapter:	Adapter information structure.
4607  *
4608  * This local routine frees all the resources allocated by ksz_alloc_mem().
4609  */
4610 static void ksz_free_mem(struct dev_info *adapter)
4611 {
4612 	/* Free transmit buffers. */
4613 	ksz_free_buffers(adapter, &adapter->hw.tx_desc_info,
4614 		PCI_DMA_TODEVICE);
4615 
4616 	/* Free receive buffers. */
4617 	ksz_free_buffers(adapter, &adapter->hw.rx_desc_info,
4618 		PCI_DMA_FROMDEVICE);
4619 
4620 	/* Free descriptors. */
4621 	ksz_free_desc(adapter);
4622 }
4623 
4624 static void get_mib_counters(struct ksz_hw *hw, int first, int cnt,
4625 	u64 *counter)
4626 {
4627 	int i;
4628 	int mib;
4629 	int port;
4630 	struct ksz_port_mib *port_mib;
4631 
4632 	memset(counter, 0, sizeof(u64) * TOTAL_PORT_COUNTER_NUM);
4633 	for (i = 0, port = first; i < cnt; i++, port++) {
4634 		port_mib = &hw->port_mib[port];
4635 		for (mib = port_mib->mib_start; mib < hw->mib_cnt; mib++)
4636 			counter[mib] += port_mib->counter[mib];
4637 	}
4638 }
4639 
4640 /**
4641  * send_packet - send packet
4642  * @skb:	Socket buffer.
4643  * @dev:	Network device.
4644  *
4645  * This routine is used to send a packet out to the network.
4646  */
4647 static void send_packet(struct sk_buff *skb, struct net_device *dev)
4648 {
4649 	struct ksz_desc *desc;
4650 	struct ksz_desc *first;
4651 	struct dev_priv *priv = netdev_priv(dev);
4652 	struct dev_info *hw_priv = priv->adapter;
4653 	struct ksz_hw *hw = &hw_priv->hw;
4654 	struct ksz_desc_info *info = &hw->tx_desc_info;
4655 	struct ksz_dma_buf *dma_buf;
4656 	int len;
4657 	int last_frag = skb_shinfo(skb)->nr_frags;
4658 
4659 	/*
4660 	 * KSZ8842 with multiple device interfaces needs to be told which port
4661 	 * to send.
4662 	 */
4663 	if (hw->dev_count > 1)
4664 		hw->dst_ports = 1 << priv->port.first_port;
4665 
4666 	/* Hardware will pad the length to 60. */
4667 	len = skb->len;
4668 
4669 	/* Remember the very first descriptor. */
4670 	first = info->cur;
4671 	desc = first;
4672 
4673 	dma_buf = DMA_BUFFER(desc);
4674 	if (last_frag) {
4675 		int frag;
4676 		skb_frag_t *this_frag;
4677 
4678 		dma_buf->len = skb_headlen(skb);
4679 
4680 		dma_buf->dma = pci_map_single(
4681 			hw_priv->pdev, skb->data, dma_buf->len,
4682 			PCI_DMA_TODEVICE);
4683 		set_tx_buf(desc, dma_buf->dma);
4684 		set_tx_len(desc, dma_buf->len);
4685 
4686 		frag = 0;
4687 		do {
4688 			this_frag = &skb_shinfo(skb)->frags[frag];
4689 
4690 			/* Get a new descriptor. */
4691 			get_tx_pkt(info, &desc);
4692 
4693 			/* Keep track of descriptors used so far. */
4694 			++hw->tx_int_cnt;
4695 
4696 			dma_buf = DMA_BUFFER(desc);
4697 			dma_buf->len = skb_frag_size(this_frag);
4698 
4699 			dma_buf->dma = pci_map_single(
4700 				hw_priv->pdev,
4701 				skb_frag_address(this_frag),
4702 				dma_buf->len,
4703 				PCI_DMA_TODEVICE);
4704 			set_tx_buf(desc, dma_buf->dma);
4705 			set_tx_len(desc, dma_buf->len);
4706 
4707 			frag++;
4708 			if (frag == last_frag)
4709 				break;
4710 
4711 			/* Do not release the last descriptor here. */
4712 			release_desc(desc);
4713 		} while (1);
4714 
4715 		/* current points to the last descriptor. */
4716 		info->cur = desc;
4717 
4718 		/* Release the first descriptor. */
4719 		release_desc(first);
4720 	} else {
4721 		dma_buf->len = len;
4722 
4723 		dma_buf->dma = pci_map_single(
4724 			hw_priv->pdev, skb->data, dma_buf->len,
4725 			PCI_DMA_TODEVICE);
4726 		set_tx_buf(desc, dma_buf->dma);
4727 		set_tx_len(desc, dma_buf->len);
4728 	}
4729 
4730 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
4731 		(desc)->sw.buf.tx.csum_gen_tcp = 1;
4732 		(desc)->sw.buf.tx.csum_gen_udp = 1;
4733 	}
4734 
4735 	/*
4736 	 * The last descriptor holds the packet so that it can be returned to
4737 	 * network subsystem after all descriptors are transmitted.
4738 	 */
4739 	dma_buf->skb = skb;
4740 
4741 	hw_send_pkt(hw);
4742 
4743 	/* Update transmit statistics. */
4744 	dev->stats.tx_packets++;
4745 	dev->stats.tx_bytes += len;
4746 }
4747 
4748 /**
4749  * transmit_cleanup - clean up transmit descriptors
4750  * @dev:	Network device.
4751  *
4752  * This routine is called to clean up the transmitted buffers.
4753  */
4754 static void transmit_cleanup(struct dev_info *hw_priv, int normal)
4755 {
4756 	int last;
4757 	union desc_stat status;
4758 	struct ksz_hw *hw = &hw_priv->hw;
4759 	struct ksz_desc_info *info = &hw->tx_desc_info;
4760 	struct ksz_desc *desc;
4761 	struct ksz_dma_buf *dma_buf;
4762 	struct net_device *dev = NULL;
4763 
4764 	spin_lock_irq(&hw_priv->hwlock);
4765 	last = info->last;
4766 
4767 	while (info->avail < info->alloc) {
4768 		/* Get next descriptor which is not hardware owned. */
4769 		desc = &info->ring[last];
4770 		status.data = le32_to_cpu(desc->phw->ctrl.data);
4771 		if (status.tx.hw_owned) {
4772 			if (normal)
4773 				break;
4774 			else
4775 				reset_desc(desc, status);
4776 		}
4777 
4778 		dma_buf = DMA_BUFFER(desc);
4779 		pci_unmap_single(
4780 			hw_priv->pdev, dma_buf->dma, dma_buf->len,
4781 			PCI_DMA_TODEVICE);
4782 
4783 		/* This descriptor contains the last buffer in the packet. */
4784 		if (dma_buf->skb) {
4785 			dev = dma_buf->skb->dev;
4786 
4787 			/* Release the packet back to network subsystem. */
4788 			dev_kfree_skb_irq(dma_buf->skb);
4789 			dma_buf->skb = NULL;
4790 		}
4791 
4792 		/* Free the transmitted descriptor. */
4793 		last++;
4794 		last &= info->mask;
4795 		info->avail++;
4796 	}
4797 	info->last = last;
4798 	spin_unlock_irq(&hw_priv->hwlock);
4799 
4800 	/* Notify the network subsystem that the packet has been sent. */
4801 	if (dev)
4802 		dev->trans_start = jiffies;
4803 }
4804 
4805 /**
4806  * transmit_done - transmit done processing
4807  * @dev:	Network device.
4808  *
4809  * This routine is called when the transmit interrupt is triggered, indicating
4810  * either a packet is sent successfully or there are transmit errors.
4811  */
4812 static void tx_done(struct dev_info *hw_priv)
4813 {
4814 	struct ksz_hw *hw = &hw_priv->hw;
4815 	int port;
4816 
4817 	transmit_cleanup(hw_priv, 1);
4818 
4819 	for (port = 0; port < hw->dev_count; port++) {
4820 		struct net_device *dev = hw->port_info[port].pdev;
4821 
4822 		if (netif_running(dev) && netif_queue_stopped(dev))
4823 			netif_wake_queue(dev);
4824 	}
4825 }
4826 
4827 static inline void copy_old_skb(struct sk_buff *old, struct sk_buff *skb)
4828 {
4829 	skb->dev = old->dev;
4830 	skb->protocol = old->protocol;
4831 	skb->ip_summed = old->ip_summed;
4832 	skb->csum = old->csum;
4833 	skb_set_network_header(skb, ETH_HLEN);
4834 
4835 	dev_kfree_skb(old);
4836 }
4837 
4838 /**
4839  * netdev_tx - send out packet
4840  * @skb:	Socket buffer.
4841  * @dev:	Network device.
4842  *
4843  * This function is used by the upper network layer to send out a packet.
4844  *
4845  * Return 0 if successful; otherwise an error code indicating failure.
4846  */
4847 static netdev_tx_t netdev_tx(struct sk_buff *skb, struct net_device *dev)
4848 {
4849 	struct dev_priv *priv = netdev_priv(dev);
4850 	struct dev_info *hw_priv = priv->adapter;
4851 	struct ksz_hw *hw = &hw_priv->hw;
4852 	int left;
4853 	int num = 1;
4854 	int rc = 0;
4855 
4856 	if (hw->features & SMALL_PACKET_TX_BUG) {
4857 		struct sk_buff *org_skb = skb;
4858 
4859 		if (skb->len <= 48) {
4860 			if (skb_end_pointer(skb) - skb->data >= 50) {
4861 				memset(&skb->data[skb->len], 0, 50 - skb->len);
4862 				skb->len = 50;
4863 			} else {
4864 				skb = netdev_alloc_skb(dev, 50);
4865 				if (!skb)
4866 					return NETDEV_TX_BUSY;
4867 				memcpy(skb->data, org_skb->data, org_skb->len);
4868 				memset(&skb->data[org_skb->len], 0,
4869 					50 - org_skb->len);
4870 				skb->len = 50;
4871 				copy_old_skb(org_skb, skb);
4872 			}
4873 		}
4874 	}
4875 
4876 	spin_lock_irq(&hw_priv->hwlock);
4877 
4878 	num = skb_shinfo(skb)->nr_frags + 1;
4879 	left = hw_alloc_pkt(hw, skb->len, num);
4880 	if (left) {
4881 		if (left < num ||
4882 		    (CHECKSUM_PARTIAL == skb->ip_summed &&
4883 		     skb->protocol == htons(ETH_P_IPV6))) {
4884 			struct sk_buff *org_skb = skb;
4885 
4886 			skb = netdev_alloc_skb(dev, org_skb->len);
4887 			if (!skb) {
4888 				rc = NETDEV_TX_BUSY;
4889 				goto unlock;
4890 			}
4891 			skb_copy_and_csum_dev(org_skb, skb->data);
4892 			org_skb->ip_summed = CHECKSUM_NONE;
4893 			skb->len = org_skb->len;
4894 			copy_old_skb(org_skb, skb);
4895 		}
4896 		send_packet(skb, dev);
4897 		if (left <= num)
4898 			netif_stop_queue(dev);
4899 	} else {
4900 		/* Stop the transmit queue until packet is allocated. */
4901 		netif_stop_queue(dev);
4902 		rc = NETDEV_TX_BUSY;
4903 	}
4904 unlock:
4905 	spin_unlock_irq(&hw_priv->hwlock);
4906 
4907 	return rc;
4908 }
4909 
4910 /**
4911  * netdev_tx_timeout - transmit timeout processing
4912  * @dev:	Network device.
4913  *
4914  * This routine is called when the transmit timer expires.  That indicates the
4915  * hardware is not running correctly because transmit interrupts are not
4916  * triggered to free up resources so that the transmit routine can continue
4917  * sending out packets.  The hardware is reset to correct the problem.
4918  */
4919 static void netdev_tx_timeout(struct net_device *dev)
4920 {
4921 	static unsigned long last_reset;
4922 
4923 	struct dev_priv *priv = netdev_priv(dev);
4924 	struct dev_info *hw_priv = priv->adapter;
4925 	struct ksz_hw *hw = &hw_priv->hw;
4926 	int port;
4927 
4928 	if (hw->dev_count > 1) {
4929 		/*
4930 		 * Only reset the hardware if time between calls is long
4931 		 * enough.
4932 		 */
4933 		if (jiffies - last_reset <= dev->watchdog_timeo)
4934 			hw_priv = NULL;
4935 	}
4936 
4937 	last_reset = jiffies;
4938 	if (hw_priv) {
4939 		hw_dis_intr(hw);
4940 		hw_disable(hw);
4941 
4942 		transmit_cleanup(hw_priv, 0);
4943 		hw_reset_pkts(&hw->rx_desc_info);
4944 		hw_reset_pkts(&hw->tx_desc_info);
4945 		ksz_init_rx_buffers(hw_priv);
4946 
4947 		hw_reset(hw);
4948 
4949 		hw_set_desc_base(hw,
4950 			hw->tx_desc_info.ring_phys,
4951 			hw->rx_desc_info.ring_phys);
4952 		hw_set_addr(hw);
4953 		if (hw->all_multi)
4954 			hw_set_multicast(hw, hw->all_multi);
4955 		else if (hw->multi_list_size)
4956 			hw_set_grp_addr(hw);
4957 
4958 		if (hw->dev_count > 1) {
4959 			hw_set_add_addr(hw);
4960 			for (port = 0; port < SWITCH_PORT_NUM; port++) {
4961 				struct net_device *port_dev;
4962 
4963 				port_set_stp_state(hw, port,
4964 					STP_STATE_DISABLED);
4965 
4966 				port_dev = hw->port_info[port].pdev;
4967 				if (netif_running(port_dev))
4968 					port_set_stp_state(hw, port,
4969 						STP_STATE_SIMPLE);
4970 			}
4971 		}
4972 
4973 		hw_enable(hw);
4974 		hw_ena_intr(hw);
4975 	}
4976 
4977 	dev->trans_start = jiffies;
4978 	netif_wake_queue(dev);
4979 }
4980 
4981 static inline void csum_verified(struct sk_buff *skb)
4982 {
4983 	unsigned short protocol;
4984 	struct iphdr *iph;
4985 
4986 	protocol = skb->protocol;
4987 	skb_reset_network_header(skb);
4988 	iph = (struct iphdr *) skb_network_header(skb);
4989 	if (protocol == htons(ETH_P_8021Q)) {
4990 		protocol = iph->tot_len;
4991 		skb_set_network_header(skb, VLAN_HLEN);
4992 		iph = (struct iphdr *) skb_network_header(skb);
4993 	}
4994 	if (protocol == htons(ETH_P_IP)) {
4995 		if (iph->protocol == IPPROTO_TCP)
4996 			skb->ip_summed = CHECKSUM_UNNECESSARY;
4997 	}
4998 }
4999 
5000 static inline int rx_proc(struct net_device *dev, struct ksz_hw* hw,
5001 	struct ksz_desc *desc, union desc_stat status)
5002 {
5003 	int packet_len;
5004 	struct dev_priv *priv = netdev_priv(dev);
5005 	struct dev_info *hw_priv = priv->adapter;
5006 	struct ksz_dma_buf *dma_buf;
5007 	struct sk_buff *skb;
5008 	int rx_status;
5009 
5010 	/* Received length includes 4-byte CRC. */
5011 	packet_len = status.rx.frame_len - 4;
5012 
5013 	dma_buf = DMA_BUFFER(desc);
5014 	pci_dma_sync_single_for_cpu(
5015 		hw_priv->pdev, dma_buf->dma, packet_len + 4,
5016 		PCI_DMA_FROMDEVICE);
5017 
5018 	do {
5019 		/* skb->data != skb->head */
5020 		skb = netdev_alloc_skb(dev, packet_len + 2);
5021 		if (!skb) {
5022 			dev->stats.rx_dropped++;
5023 			return -ENOMEM;
5024 		}
5025 
5026 		/*
5027 		 * Align socket buffer in 4-byte boundary for better
5028 		 * performance.
5029 		 */
5030 		skb_reserve(skb, 2);
5031 
5032 		memcpy(skb_put(skb, packet_len),
5033 			dma_buf->skb->data, packet_len);
5034 	} while (0);
5035 
5036 	skb->protocol = eth_type_trans(skb, dev);
5037 
5038 	if (hw->rx_cfg & (DMA_RX_CSUM_UDP | DMA_RX_CSUM_TCP))
5039 		csum_verified(skb);
5040 
5041 	/* Update receive statistics. */
5042 	dev->stats.rx_packets++;
5043 	dev->stats.rx_bytes += packet_len;
5044 
5045 	/* Notify upper layer for received packet. */
5046 	rx_status = netif_rx(skb);
5047 
5048 	return 0;
5049 }
5050 
5051 static int dev_rcv_packets(struct dev_info *hw_priv)
5052 {
5053 	int next;
5054 	union desc_stat status;
5055 	struct ksz_hw *hw = &hw_priv->hw;
5056 	struct net_device *dev = hw->port_info[0].pdev;
5057 	struct ksz_desc_info *info = &hw->rx_desc_info;
5058 	int left = info->alloc;
5059 	struct ksz_desc *desc;
5060 	int received = 0;
5061 
5062 	next = info->next;
5063 	while (left--) {
5064 		/* Get next descriptor which is not hardware owned. */
5065 		desc = &info->ring[next];
5066 		status.data = le32_to_cpu(desc->phw->ctrl.data);
5067 		if (status.rx.hw_owned)
5068 			break;
5069 
5070 		/* Status valid only when last descriptor bit is set. */
5071 		if (status.rx.last_desc && status.rx.first_desc) {
5072 			if (rx_proc(dev, hw, desc, status))
5073 				goto release_packet;
5074 			received++;
5075 		}
5076 
5077 release_packet:
5078 		release_desc(desc);
5079 		next++;
5080 		next &= info->mask;
5081 	}
5082 	info->next = next;
5083 
5084 	return received;
5085 }
5086 
5087 static int port_rcv_packets(struct dev_info *hw_priv)
5088 {
5089 	int next;
5090 	union desc_stat status;
5091 	struct ksz_hw *hw = &hw_priv->hw;
5092 	struct net_device *dev = hw->port_info[0].pdev;
5093 	struct ksz_desc_info *info = &hw->rx_desc_info;
5094 	int left = info->alloc;
5095 	struct ksz_desc *desc;
5096 	int received = 0;
5097 
5098 	next = info->next;
5099 	while (left--) {
5100 		/* Get next descriptor which is not hardware owned. */
5101 		desc = &info->ring[next];
5102 		status.data = le32_to_cpu(desc->phw->ctrl.data);
5103 		if (status.rx.hw_owned)
5104 			break;
5105 
5106 		if (hw->dev_count > 1) {
5107 			/* Get received port number. */
5108 			int p = HW_TO_DEV_PORT(status.rx.src_port);
5109 
5110 			dev = hw->port_info[p].pdev;
5111 			if (!netif_running(dev))
5112 				goto release_packet;
5113 		}
5114 
5115 		/* Status valid only when last descriptor bit is set. */
5116 		if (status.rx.last_desc && status.rx.first_desc) {
5117 			if (rx_proc(dev, hw, desc, status))
5118 				goto release_packet;
5119 			received++;
5120 		}
5121 
5122 release_packet:
5123 		release_desc(desc);
5124 		next++;
5125 		next &= info->mask;
5126 	}
5127 	info->next = next;
5128 
5129 	return received;
5130 }
5131 
5132 static int dev_rcv_special(struct dev_info *hw_priv)
5133 {
5134 	int next;
5135 	union desc_stat status;
5136 	struct ksz_hw *hw = &hw_priv->hw;
5137 	struct net_device *dev = hw->port_info[0].pdev;
5138 	struct ksz_desc_info *info = &hw->rx_desc_info;
5139 	int left = info->alloc;
5140 	struct ksz_desc *desc;
5141 	int received = 0;
5142 
5143 	next = info->next;
5144 	while (left--) {
5145 		/* Get next descriptor which is not hardware owned. */
5146 		desc = &info->ring[next];
5147 		status.data = le32_to_cpu(desc->phw->ctrl.data);
5148 		if (status.rx.hw_owned)
5149 			break;
5150 
5151 		if (hw->dev_count > 1) {
5152 			/* Get received port number. */
5153 			int p = HW_TO_DEV_PORT(status.rx.src_port);
5154 
5155 			dev = hw->port_info[p].pdev;
5156 			if (!netif_running(dev))
5157 				goto release_packet;
5158 		}
5159 
5160 		/* Status valid only when last descriptor bit is set. */
5161 		if (status.rx.last_desc && status.rx.first_desc) {
5162 			/*
5163 			 * Receive without error.  With receive errors
5164 			 * disabled, packets with receive errors will be
5165 			 * dropped, so no need to check the error bit.
5166 			 */
5167 			if (!status.rx.error || (status.data &
5168 					KS_DESC_RX_ERROR_COND) ==
5169 					KS_DESC_RX_ERROR_TOO_LONG) {
5170 				if (rx_proc(dev, hw, desc, status))
5171 					goto release_packet;
5172 				received++;
5173 			} else {
5174 				struct dev_priv *priv = netdev_priv(dev);
5175 
5176 				/* Update receive error statistics. */
5177 				priv->port.counter[OID_COUNTER_RCV_ERROR]++;
5178 			}
5179 		}
5180 
5181 release_packet:
5182 		release_desc(desc);
5183 		next++;
5184 		next &= info->mask;
5185 	}
5186 	info->next = next;
5187 
5188 	return received;
5189 }
5190 
5191 static void rx_proc_task(unsigned long data)
5192 {
5193 	struct dev_info *hw_priv = (struct dev_info *) data;
5194 	struct ksz_hw *hw = &hw_priv->hw;
5195 
5196 	if (!hw->enabled)
5197 		return;
5198 	if (unlikely(!hw_priv->dev_rcv(hw_priv))) {
5199 
5200 		/* In case receive process is suspended because of overrun. */
5201 		hw_resume_rx(hw);
5202 
5203 		/* tasklets are interruptible. */
5204 		spin_lock_irq(&hw_priv->hwlock);
5205 		hw_turn_on_intr(hw, KS884X_INT_RX_MASK);
5206 		spin_unlock_irq(&hw_priv->hwlock);
5207 	} else {
5208 		hw_ack_intr(hw, KS884X_INT_RX);
5209 		tasklet_schedule(&hw_priv->rx_tasklet);
5210 	}
5211 }
5212 
5213 static void tx_proc_task(unsigned long data)
5214 {
5215 	struct dev_info *hw_priv = (struct dev_info *) data;
5216 	struct ksz_hw *hw = &hw_priv->hw;
5217 
5218 	hw_ack_intr(hw, KS884X_INT_TX_MASK);
5219 
5220 	tx_done(hw_priv);
5221 
5222 	/* tasklets are interruptible. */
5223 	spin_lock_irq(&hw_priv->hwlock);
5224 	hw_turn_on_intr(hw, KS884X_INT_TX);
5225 	spin_unlock_irq(&hw_priv->hwlock);
5226 }
5227 
5228 static inline void handle_rx_stop(struct ksz_hw *hw)
5229 {
5230 	/* Receive just has been stopped. */
5231 	if (0 == hw->rx_stop)
5232 		hw->intr_mask &= ~KS884X_INT_RX_STOPPED;
5233 	else if (hw->rx_stop > 1) {
5234 		if (hw->enabled && (hw->rx_cfg & DMA_RX_ENABLE)) {
5235 			hw_start_rx(hw);
5236 		} else {
5237 			hw->intr_mask &= ~KS884X_INT_RX_STOPPED;
5238 			hw->rx_stop = 0;
5239 		}
5240 	} else
5241 		/* Receive just has been started. */
5242 		hw->rx_stop++;
5243 }
5244 
5245 /**
5246  * netdev_intr - interrupt handling
5247  * @irq:	Interrupt number.
5248  * @dev_id:	Network device.
5249  *
5250  * This function is called by upper network layer to signal interrupt.
5251  *
5252  * Return IRQ_HANDLED if interrupt is handled.
5253  */
5254 static irqreturn_t netdev_intr(int irq, void *dev_id)
5255 {
5256 	uint int_enable = 0;
5257 	struct net_device *dev = (struct net_device *) dev_id;
5258 	struct dev_priv *priv = netdev_priv(dev);
5259 	struct dev_info *hw_priv = priv->adapter;
5260 	struct ksz_hw *hw = &hw_priv->hw;
5261 
5262 	spin_lock(&hw_priv->hwlock);
5263 
5264 	hw_read_intr(hw, &int_enable);
5265 
5266 	/* Not our interrupt! */
5267 	if (!int_enable) {
5268 		spin_unlock(&hw_priv->hwlock);
5269 		return IRQ_NONE;
5270 	}
5271 
5272 	do {
5273 		hw_ack_intr(hw, int_enable);
5274 		int_enable &= hw->intr_mask;
5275 
5276 		if (unlikely(int_enable & KS884X_INT_TX_MASK)) {
5277 			hw_dis_intr_bit(hw, KS884X_INT_TX_MASK);
5278 			tasklet_schedule(&hw_priv->tx_tasklet);
5279 		}
5280 
5281 		if (likely(int_enable & KS884X_INT_RX)) {
5282 			hw_dis_intr_bit(hw, KS884X_INT_RX);
5283 			tasklet_schedule(&hw_priv->rx_tasklet);
5284 		}
5285 
5286 		if (unlikely(int_enable & KS884X_INT_RX_OVERRUN)) {
5287 			dev->stats.rx_fifo_errors++;
5288 			hw_resume_rx(hw);
5289 		}
5290 
5291 		if (unlikely(int_enable & KS884X_INT_PHY)) {
5292 			struct ksz_port *port = &priv->port;
5293 
5294 			hw->features |= LINK_INT_WORKING;
5295 			port_get_link_speed(port);
5296 		}
5297 
5298 		if (unlikely(int_enable & KS884X_INT_RX_STOPPED)) {
5299 			handle_rx_stop(hw);
5300 			break;
5301 		}
5302 
5303 		if (unlikely(int_enable & KS884X_INT_TX_STOPPED)) {
5304 			u32 data;
5305 
5306 			hw->intr_mask &= ~KS884X_INT_TX_STOPPED;
5307 			pr_info("Tx stopped\n");
5308 			data = readl(hw->io + KS_DMA_TX_CTRL);
5309 			if (!(data & DMA_TX_ENABLE))
5310 				pr_info("Tx disabled\n");
5311 			break;
5312 		}
5313 	} while (0);
5314 
5315 	hw_ena_intr(hw);
5316 
5317 	spin_unlock(&hw_priv->hwlock);
5318 
5319 	return IRQ_HANDLED;
5320 }
5321 
5322 /*
5323  * Linux network device functions
5324  */
5325 
5326 static unsigned long next_jiffies;
5327 
5328 #ifdef CONFIG_NET_POLL_CONTROLLER
5329 static void netdev_netpoll(struct net_device *dev)
5330 {
5331 	struct dev_priv *priv = netdev_priv(dev);
5332 	struct dev_info *hw_priv = priv->adapter;
5333 
5334 	hw_dis_intr(&hw_priv->hw);
5335 	netdev_intr(dev->irq, dev);
5336 }
5337 #endif
5338 
5339 static void bridge_change(struct ksz_hw *hw)
5340 {
5341 	int port;
5342 	u8  member;
5343 	struct ksz_switch *sw = hw->ksz_switch;
5344 
5345 	/* No ports in forwarding state. */
5346 	if (!sw->member) {
5347 		port_set_stp_state(hw, SWITCH_PORT_NUM, STP_STATE_SIMPLE);
5348 		sw_block_addr(hw);
5349 	}
5350 	for (port = 0; port < SWITCH_PORT_NUM; port++) {
5351 		if (STP_STATE_FORWARDING == sw->port_cfg[port].stp_state)
5352 			member = HOST_MASK | sw->member;
5353 		else
5354 			member = HOST_MASK | (1 << port);
5355 		if (member != sw->port_cfg[port].member)
5356 			sw_cfg_port_base_vlan(hw, port, member);
5357 	}
5358 }
5359 
5360 /**
5361  * netdev_close - close network device
5362  * @dev:	Network device.
5363  *
5364  * This function process the close operation of network device.  This is caused
5365  * by the user command "ifconfig ethX down."
5366  *
5367  * Return 0 if successful; otherwise an error code indicating failure.
5368  */
5369 static int netdev_close(struct net_device *dev)
5370 {
5371 	struct dev_priv *priv = netdev_priv(dev);
5372 	struct dev_info *hw_priv = priv->adapter;
5373 	struct ksz_port *port = &priv->port;
5374 	struct ksz_hw *hw = &hw_priv->hw;
5375 	int pi;
5376 
5377 	netif_stop_queue(dev);
5378 
5379 	ksz_stop_timer(&priv->monitor_timer_info);
5380 
5381 	/* Need to shut the port manually in multiple device interfaces mode. */
5382 	if (hw->dev_count > 1) {
5383 		port_set_stp_state(hw, port->first_port, STP_STATE_DISABLED);
5384 
5385 		/* Port is closed.  Need to change bridge setting. */
5386 		if (hw->features & STP_SUPPORT) {
5387 			pi = 1 << port->first_port;
5388 			if (hw->ksz_switch->member & pi) {
5389 				hw->ksz_switch->member &= ~pi;
5390 				bridge_change(hw);
5391 			}
5392 		}
5393 	}
5394 	if (port->first_port > 0)
5395 		hw_del_addr(hw, dev->dev_addr);
5396 	if (!hw_priv->wol_enable)
5397 		port_set_power_saving(port, true);
5398 
5399 	if (priv->multicast)
5400 		--hw->all_multi;
5401 	if (priv->promiscuous)
5402 		--hw->promiscuous;
5403 
5404 	hw_priv->opened--;
5405 	if (!(hw_priv->opened)) {
5406 		ksz_stop_timer(&hw_priv->mib_timer_info);
5407 		flush_work(&hw_priv->mib_read);
5408 
5409 		hw_dis_intr(hw);
5410 		hw_disable(hw);
5411 		hw_clr_multicast(hw);
5412 
5413 		/* Delay for receive task to stop scheduling itself. */
5414 		msleep(2000 / HZ);
5415 
5416 		tasklet_kill(&hw_priv->rx_tasklet);
5417 		tasklet_kill(&hw_priv->tx_tasklet);
5418 		free_irq(dev->irq, hw_priv->dev);
5419 
5420 		transmit_cleanup(hw_priv, 0);
5421 		hw_reset_pkts(&hw->rx_desc_info);
5422 		hw_reset_pkts(&hw->tx_desc_info);
5423 
5424 		/* Clean out static MAC table when the switch is shutdown. */
5425 		if (hw->features & STP_SUPPORT)
5426 			sw_clr_sta_mac_table(hw);
5427 	}
5428 
5429 	return 0;
5430 }
5431 
5432 static void hw_cfg_huge_frame(struct dev_info *hw_priv, struct ksz_hw *hw)
5433 {
5434 	if (hw->ksz_switch) {
5435 		u32 data;
5436 
5437 		data = readw(hw->io + KS8842_SWITCH_CTRL_2_OFFSET);
5438 		if (hw->features & RX_HUGE_FRAME)
5439 			data |= SWITCH_HUGE_PACKET;
5440 		else
5441 			data &= ~SWITCH_HUGE_PACKET;
5442 		writew(data, hw->io + KS8842_SWITCH_CTRL_2_OFFSET);
5443 	}
5444 	if (hw->features & RX_HUGE_FRAME) {
5445 		hw->rx_cfg |= DMA_RX_ERROR;
5446 		hw_priv->dev_rcv = dev_rcv_special;
5447 	} else {
5448 		hw->rx_cfg &= ~DMA_RX_ERROR;
5449 		if (hw->dev_count > 1)
5450 			hw_priv->dev_rcv = port_rcv_packets;
5451 		else
5452 			hw_priv->dev_rcv = dev_rcv_packets;
5453 	}
5454 }
5455 
5456 static int prepare_hardware(struct net_device *dev)
5457 {
5458 	struct dev_priv *priv = netdev_priv(dev);
5459 	struct dev_info *hw_priv = priv->adapter;
5460 	struct ksz_hw *hw = &hw_priv->hw;
5461 	int rc = 0;
5462 
5463 	/* Remember the network device that requests interrupts. */
5464 	hw_priv->dev = dev;
5465 	rc = request_irq(dev->irq, netdev_intr, IRQF_SHARED, dev->name, dev);
5466 	if (rc)
5467 		return rc;
5468 	tasklet_init(&hw_priv->rx_tasklet, rx_proc_task,
5469 		     (unsigned long) hw_priv);
5470 	tasklet_init(&hw_priv->tx_tasklet, tx_proc_task,
5471 		     (unsigned long) hw_priv);
5472 
5473 	hw->promiscuous = 0;
5474 	hw->all_multi = 0;
5475 	hw->multi_list_size = 0;
5476 
5477 	hw_reset(hw);
5478 
5479 	hw_set_desc_base(hw,
5480 		hw->tx_desc_info.ring_phys, hw->rx_desc_info.ring_phys);
5481 	hw_set_addr(hw);
5482 	hw_cfg_huge_frame(hw_priv, hw);
5483 	ksz_init_rx_buffers(hw_priv);
5484 	return 0;
5485 }
5486 
5487 static void set_media_state(struct net_device *dev, int media_state)
5488 {
5489 	struct dev_priv *priv = netdev_priv(dev);
5490 
5491 	if (media_state == priv->media_state)
5492 		netif_carrier_on(dev);
5493 	else
5494 		netif_carrier_off(dev);
5495 	netif_info(priv, link, dev, "link %s\n",
5496 		   media_state == priv->media_state ? "on" : "off");
5497 }
5498 
5499 /**
5500  * netdev_open - open network device
5501  * @dev:	Network device.
5502  *
5503  * This function process the open operation of network device.  This is caused
5504  * by the user command "ifconfig ethX up."
5505  *
5506  * Return 0 if successful; otherwise an error code indicating failure.
5507  */
5508 static int netdev_open(struct net_device *dev)
5509 {
5510 	struct dev_priv *priv = netdev_priv(dev);
5511 	struct dev_info *hw_priv = priv->adapter;
5512 	struct ksz_hw *hw = &hw_priv->hw;
5513 	struct ksz_port *port = &priv->port;
5514 	int i;
5515 	int p;
5516 	int rc = 0;
5517 
5518 	priv->multicast = 0;
5519 	priv->promiscuous = 0;
5520 
5521 	/* Reset device statistics. */
5522 	memset(&dev->stats, 0, sizeof(struct net_device_stats));
5523 	memset((void *) port->counter, 0,
5524 		(sizeof(u64) * OID_COUNTER_LAST));
5525 
5526 	if (!(hw_priv->opened)) {
5527 		rc = prepare_hardware(dev);
5528 		if (rc)
5529 			return rc;
5530 		for (i = 0; i < hw->mib_port_cnt; i++) {
5531 			if (next_jiffies < jiffies)
5532 				next_jiffies = jiffies + HZ * 2;
5533 			else
5534 				next_jiffies += HZ * 1;
5535 			hw_priv->counter[i].time = next_jiffies;
5536 			hw->port_mib[i].state = media_disconnected;
5537 			port_init_cnt(hw, i);
5538 		}
5539 		if (hw->ksz_switch)
5540 			hw->port_mib[HOST_PORT].state = media_connected;
5541 		else {
5542 			hw_add_wol_bcast(hw);
5543 			hw_cfg_wol_pme(hw, 0);
5544 			hw_clr_wol_pme_status(&hw_priv->hw);
5545 		}
5546 	}
5547 	port_set_power_saving(port, false);
5548 
5549 	for (i = 0, p = port->first_port; i < port->port_cnt; i++, p++) {
5550 		/*
5551 		 * Initialize to invalid value so that link detection
5552 		 * is done.
5553 		 */
5554 		hw->port_info[p].partner = 0xFF;
5555 		hw->port_info[p].state = media_disconnected;
5556 	}
5557 
5558 	/* Need to open the port in multiple device interfaces mode. */
5559 	if (hw->dev_count > 1) {
5560 		port_set_stp_state(hw, port->first_port, STP_STATE_SIMPLE);
5561 		if (port->first_port > 0)
5562 			hw_add_addr(hw, dev->dev_addr);
5563 	}
5564 
5565 	port_get_link_speed(port);
5566 	if (port->force_link)
5567 		port_force_link_speed(port);
5568 	else
5569 		port_set_link_speed(port);
5570 
5571 	if (!(hw_priv->opened)) {
5572 		hw_setup_intr(hw);
5573 		hw_enable(hw);
5574 		hw_ena_intr(hw);
5575 
5576 		if (hw->mib_port_cnt)
5577 			ksz_start_timer(&hw_priv->mib_timer_info,
5578 				hw_priv->mib_timer_info.period);
5579 	}
5580 
5581 	hw_priv->opened++;
5582 
5583 	ksz_start_timer(&priv->monitor_timer_info,
5584 		priv->monitor_timer_info.period);
5585 
5586 	priv->media_state = port->linked->state;
5587 
5588 	set_media_state(dev, media_connected);
5589 	netif_start_queue(dev);
5590 
5591 	return 0;
5592 }
5593 
5594 /* RX errors = rx_errors */
5595 /* RX dropped = rx_dropped */
5596 /* RX overruns = rx_fifo_errors */
5597 /* RX frame = rx_crc_errors + rx_frame_errors + rx_length_errors */
5598 /* TX errors = tx_errors */
5599 /* TX dropped = tx_dropped */
5600 /* TX overruns = tx_fifo_errors */
5601 /* TX carrier = tx_aborted_errors + tx_carrier_errors + tx_window_errors */
5602 /* collisions = collisions */
5603 
5604 /**
5605  * netdev_query_statistics - query network device statistics
5606  * @dev:	Network device.
5607  *
5608  * This function returns the statistics of the network device.  The device
5609  * needs not be opened.
5610  *
5611  * Return network device statistics.
5612  */
5613 static struct net_device_stats *netdev_query_statistics(struct net_device *dev)
5614 {
5615 	struct dev_priv *priv = netdev_priv(dev);
5616 	struct ksz_port *port = &priv->port;
5617 	struct ksz_hw *hw = &priv->adapter->hw;
5618 	struct ksz_port_mib *mib;
5619 	int i;
5620 	int p;
5621 
5622 	dev->stats.rx_errors = port->counter[OID_COUNTER_RCV_ERROR];
5623 	dev->stats.tx_errors = port->counter[OID_COUNTER_XMIT_ERROR];
5624 
5625 	/* Reset to zero to add count later. */
5626 	dev->stats.multicast = 0;
5627 	dev->stats.collisions = 0;
5628 	dev->stats.rx_length_errors = 0;
5629 	dev->stats.rx_crc_errors = 0;
5630 	dev->stats.rx_frame_errors = 0;
5631 	dev->stats.tx_window_errors = 0;
5632 
5633 	for (i = 0, p = port->first_port; i < port->mib_port_cnt; i++, p++) {
5634 		mib = &hw->port_mib[p];
5635 
5636 		dev->stats.multicast += (unsigned long)
5637 			mib->counter[MIB_COUNTER_RX_MULTICAST];
5638 
5639 		dev->stats.collisions += (unsigned long)
5640 			mib->counter[MIB_COUNTER_TX_TOTAL_COLLISION];
5641 
5642 		dev->stats.rx_length_errors += (unsigned long)(
5643 			mib->counter[MIB_COUNTER_RX_UNDERSIZE] +
5644 			mib->counter[MIB_COUNTER_RX_FRAGMENT] +
5645 			mib->counter[MIB_COUNTER_RX_OVERSIZE] +
5646 			mib->counter[MIB_COUNTER_RX_JABBER]);
5647 		dev->stats.rx_crc_errors += (unsigned long)
5648 			mib->counter[MIB_COUNTER_RX_CRC_ERR];
5649 		dev->stats.rx_frame_errors += (unsigned long)(
5650 			mib->counter[MIB_COUNTER_RX_ALIGNMENT_ERR] +
5651 			mib->counter[MIB_COUNTER_RX_SYMBOL_ERR]);
5652 
5653 		dev->stats.tx_window_errors += (unsigned long)
5654 			mib->counter[MIB_COUNTER_TX_LATE_COLLISION];
5655 	}
5656 
5657 	return &dev->stats;
5658 }
5659 
5660 /**
5661  * netdev_set_mac_address - set network device MAC address
5662  * @dev:	Network device.
5663  * @addr:	Buffer of MAC address.
5664  *
5665  * This function is used to set the MAC address of the network device.
5666  *
5667  * Return 0 to indicate success.
5668  */
5669 static int netdev_set_mac_address(struct net_device *dev, void *addr)
5670 {
5671 	struct dev_priv *priv = netdev_priv(dev);
5672 	struct dev_info *hw_priv = priv->adapter;
5673 	struct ksz_hw *hw = &hw_priv->hw;
5674 	struct sockaddr *mac = addr;
5675 	uint interrupt;
5676 
5677 	if (priv->port.first_port > 0)
5678 		hw_del_addr(hw, dev->dev_addr);
5679 	else {
5680 		hw->mac_override = 1;
5681 		memcpy(hw->override_addr, mac->sa_data, ETH_ALEN);
5682 	}
5683 
5684 	memcpy(dev->dev_addr, mac->sa_data, ETH_ALEN);
5685 
5686 	interrupt = hw_block_intr(hw);
5687 
5688 	if (priv->port.first_port > 0)
5689 		hw_add_addr(hw, dev->dev_addr);
5690 	else
5691 		hw_set_addr(hw);
5692 	hw_restore_intr(hw, interrupt);
5693 
5694 	return 0;
5695 }
5696 
5697 static void dev_set_promiscuous(struct net_device *dev, struct dev_priv *priv,
5698 	struct ksz_hw *hw, int promiscuous)
5699 {
5700 	if (promiscuous != priv->promiscuous) {
5701 		u8 prev_state = hw->promiscuous;
5702 
5703 		if (promiscuous)
5704 			++hw->promiscuous;
5705 		else
5706 			--hw->promiscuous;
5707 		priv->promiscuous = promiscuous;
5708 
5709 		/* Turn on/off promiscuous mode. */
5710 		if (hw->promiscuous <= 1 && prev_state <= 1)
5711 			hw_set_promiscuous(hw, hw->promiscuous);
5712 
5713 		/*
5714 		 * Port is not in promiscuous mode, meaning it is released
5715 		 * from the bridge.
5716 		 */
5717 		if ((hw->features & STP_SUPPORT) && !promiscuous &&
5718 		    (dev->priv_flags & IFF_BRIDGE_PORT)) {
5719 			struct ksz_switch *sw = hw->ksz_switch;
5720 			int port = priv->port.first_port;
5721 
5722 			port_set_stp_state(hw, port, STP_STATE_DISABLED);
5723 			port = 1 << port;
5724 			if (sw->member & port) {
5725 				sw->member &= ~port;
5726 				bridge_change(hw);
5727 			}
5728 		}
5729 	}
5730 }
5731 
5732 static void dev_set_multicast(struct dev_priv *priv, struct ksz_hw *hw,
5733 	int multicast)
5734 {
5735 	if (multicast != priv->multicast) {
5736 		u8 all_multi = hw->all_multi;
5737 
5738 		if (multicast)
5739 			++hw->all_multi;
5740 		else
5741 			--hw->all_multi;
5742 		priv->multicast = multicast;
5743 
5744 		/* Turn on/off all multicast mode. */
5745 		if (hw->all_multi <= 1 && all_multi <= 1)
5746 			hw_set_multicast(hw, hw->all_multi);
5747 	}
5748 }
5749 
5750 /**
5751  * netdev_set_rx_mode
5752  * @dev:	Network device.
5753  *
5754  * This routine is used to set multicast addresses or put the network device
5755  * into promiscuous mode.
5756  */
5757 static void netdev_set_rx_mode(struct net_device *dev)
5758 {
5759 	struct dev_priv *priv = netdev_priv(dev);
5760 	struct dev_info *hw_priv = priv->adapter;
5761 	struct ksz_hw *hw = &hw_priv->hw;
5762 	struct netdev_hw_addr *ha;
5763 	int multicast = (dev->flags & IFF_ALLMULTI);
5764 
5765 	dev_set_promiscuous(dev, priv, hw, (dev->flags & IFF_PROMISC));
5766 
5767 	if (hw_priv->hw.dev_count > 1)
5768 		multicast |= (dev->flags & IFF_MULTICAST);
5769 	dev_set_multicast(priv, hw, multicast);
5770 
5771 	/* Cannot use different hashes in multiple device interfaces mode. */
5772 	if (hw_priv->hw.dev_count > 1)
5773 		return;
5774 
5775 	if ((dev->flags & IFF_MULTICAST) && !netdev_mc_empty(dev)) {
5776 		int i = 0;
5777 
5778 		/* List too big to support so turn on all multicast mode. */
5779 		if (netdev_mc_count(dev) > MAX_MULTICAST_LIST) {
5780 			if (MAX_MULTICAST_LIST != hw->multi_list_size) {
5781 				hw->multi_list_size = MAX_MULTICAST_LIST;
5782 				++hw->all_multi;
5783 				hw_set_multicast(hw, hw->all_multi);
5784 			}
5785 			return;
5786 		}
5787 
5788 		netdev_for_each_mc_addr(ha, dev) {
5789 			if (i >= MAX_MULTICAST_LIST)
5790 				break;
5791 			memcpy(hw->multi_list[i++], ha->addr, ETH_ALEN);
5792 		}
5793 		hw->multi_list_size = (u8) i;
5794 		hw_set_grp_addr(hw);
5795 	} else {
5796 		if (MAX_MULTICAST_LIST == hw->multi_list_size) {
5797 			--hw->all_multi;
5798 			hw_set_multicast(hw, hw->all_multi);
5799 		}
5800 		hw->multi_list_size = 0;
5801 		hw_clr_multicast(hw);
5802 	}
5803 }
5804 
5805 static int netdev_change_mtu(struct net_device *dev, int new_mtu)
5806 {
5807 	struct dev_priv *priv = netdev_priv(dev);
5808 	struct dev_info *hw_priv = priv->adapter;
5809 	struct ksz_hw *hw = &hw_priv->hw;
5810 	int hw_mtu;
5811 
5812 	if (netif_running(dev))
5813 		return -EBUSY;
5814 
5815 	/* Cannot use different MTU in multiple device interfaces mode. */
5816 	if (hw->dev_count > 1)
5817 		if (dev != hw_priv->dev)
5818 			return 0;
5819 	if (new_mtu < 60)
5820 		return -EINVAL;
5821 
5822 	if (dev->mtu != new_mtu) {
5823 		hw_mtu = new_mtu + ETHERNET_HEADER_SIZE + 4;
5824 		if (hw_mtu > MAX_RX_BUF_SIZE)
5825 			return -EINVAL;
5826 		if (hw_mtu > REGULAR_RX_BUF_SIZE) {
5827 			hw->features |= RX_HUGE_FRAME;
5828 			hw_mtu = MAX_RX_BUF_SIZE;
5829 		} else {
5830 			hw->features &= ~RX_HUGE_FRAME;
5831 			hw_mtu = REGULAR_RX_BUF_SIZE;
5832 		}
5833 		hw_mtu = (hw_mtu + 3) & ~3;
5834 		hw_priv->mtu = hw_mtu;
5835 		dev->mtu = new_mtu;
5836 	}
5837 	return 0;
5838 }
5839 
5840 /**
5841  * netdev_ioctl - I/O control processing
5842  * @dev:	Network device.
5843  * @ifr:	Interface request structure.
5844  * @cmd:	I/O control code.
5845  *
5846  * This function is used to process I/O control calls.
5847  *
5848  * Return 0 to indicate success.
5849  */
5850 static int netdev_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
5851 {
5852 	struct dev_priv *priv = netdev_priv(dev);
5853 	struct dev_info *hw_priv = priv->adapter;
5854 	struct ksz_hw *hw = &hw_priv->hw;
5855 	struct ksz_port *port = &priv->port;
5856 	int rc;
5857 	int result = 0;
5858 	struct mii_ioctl_data *data = if_mii(ifr);
5859 
5860 	if (down_interruptible(&priv->proc_sem))
5861 		return -ERESTARTSYS;
5862 
5863 	/* assume success */
5864 	rc = 0;
5865 	switch (cmd) {
5866 	/* Get address of MII PHY in use. */
5867 	case SIOCGMIIPHY:
5868 		data->phy_id = priv->id;
5869 
5870 		/* Fallthrough... */
5871 
5872 	/* Read MII PHY register. */
5873 	case SIOCGMIIREG:
5874 		if (data->phy_id != priv->id || data->reg_num >= 6)
5875 			result = -EIO;
5876 		else
5877 			hw_r_phy(hw, port->linked->port_id, data->reg_num,
5878 				&data->val_out);
5879 		break;
5880 
5881 	/* Write MII PHY register. */
5882 	case SIOCSMIIREG:
5883 		if (!capable(CAP_NET_ADMIN))
5884 			result = -EPERM;
5885 		else if (data->phy_id != priv->id || data->reg_num >= 6)
5886 			result = -EIO;
5887 		else
5888 			hw_w_phy(hw, port->linked->port_id, data->reg_num,
5889 				data->val_in);
5890 		break;
5891 
5892 	default:
5893 		result = -EOPNOTSUPP;
5894 	}
5895 
5896 	up(&priv->proc_sem);
5897 
5898 	return result;
5899 }
5900 
5901 /*
5902  * MII support
5903  */
5904 
5905 /**
5906  * mdio_read - read PHY register
5907  * @dev:	Network device.
5908  * @phy_id:	The PHY id.
5909  * @reg_num:	The register number.
5910  *
5911  * This function returns the PHY register value.
5912  *
5913  * Return the register value.
5914  */
5915 static int mdio_read(struct net_device *dev, int phy_id, int reg_num)
5916 {
5917 	struct dev_priv *priv = netdev_priv(dev);
5918 	struct ksz_port *port = &priv->port;
5919 	struct ksz_hw *hw = port->hw;
5920 	u16 val_out;
5921 
5922 	hw_r_phy(hw, port->linked->port_id, reg_num << 1, &val_out);
5923 	return val_out;
5924 }
5925 
5926 /**
5927  * mdio_write - set PHY register
5928  * @dev:	Network device.
5929  * @phy_id:	The PHY id.
5930  * @reg_num:	The register number.
5931  * @val:	The register value.
5932  *
5933  * This procedure sets the PHY register value.
5934  */
5935 static void mdio_write(struct net_device *dev, int phy_id, int reg_num, int val)
5936 {
5937 	struct dev_priv *priv = netdev_priv(dev);
5938 	struct ksz_port *port = &priv->port;
5939 	struct ksz_hw *hw = port->hw;
5940 	int i;
5941 	int pi;
5942 
5943 	for (i = 0, pi = port->first_port; i < port->port_cnt; i++, pi++)
5944 		hw_w_phy(hw, pi, reg_num << 1, val);
5945 }
5946 
5947 /*
5948  * ethtool support
5949  */
5950 
5951 #define EEPROM_SIZE			0x40
5952 
5953 static u16 eeprom_data[EEPROM_SIZE] = { 0 };
5954 
5955 #define ADVERTISED_ALL			\
5956 	(ADVERTISED_10baseT_Half |	\
5957 	ADVERTISED_10baseT_Full |	\
5958 	ADVERTISED_100baseT_Half |	\
5959 	ADVERTISED_100baseT_Full)
5960 
5961 /* These functions use the MII functions in mii.c. */
5962 
5963 /**
5964  * netdev_get_settings - get network device settings
5965  * @dev:	Network device.
5966  * @cmd:	Ethtool command.
5967  *
5968  * This function queries the PHY and returns its state in the ethtool command.
5969  *
5970  * Return 0 if successful; otherwise an error code.
5971  */
5972 static int netdev_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
5973 {
5974 	struct dev_priv *priv = netdev_priv(dev);
5975 	struct dev_info *hw_priv = priv->adapter;
5976 
5977 	mutex_lock(&hw_priv->lock);
5978 	mii_ethtool_gset(&priv->mii_if, cmd);
5979 	cmd->advertising |= SUPPORTED_TP;
5980 	mutex_unlock(&hw_priv->lock);
5981 
5982 	/* Save advertised settings for workaround in next function. */
5983 	priv->advertising = cmd->advertising;
5984 	return 0;
5985 }
5986 
5987 /**
5988  * netdev_set_settings - set network device settings
5989  * @dev:	Network device.
5990  * @cmd:	Ethtool command.
5991  *
5992  * This function sets the PHY according to the ethtool command.
5993  *
5994  * Return 0 if successful; otherwise an error code.
5995  */
5996 static int netdev_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
5997 {
5998 	struct dev_priv *priv = netdev_priv(dev);
5999 	struct dev_info *hw_priv = priv->adapter;
6000 	struct ksz_port *port = &priv->port;
6001 	u32 speed = ethtool_cmd_speed(cmd);
6002 	int rc;
6003 
6004 	/*
6005 	 * ethtool utility does not change advertised setting if auto
6006 	 * negotiation is not specified explicitly.
6007 	 */
6008 	if (cmd->autoneg && priv->advertising == cmd->advertising) {
6009 		cmd->advertising |= ADVERTISED_ALL;
6010 		if (10 == speed)
6011 			cmd->advertising &=
6012 				~(ADVERTISED_100baseT_Full |
6013 				ADVERTISED_100baseT_Half);
6014 		else if (100 == speed)
6015 			cmd->advertising &=
6016 				~(ADVERTISED_10baseT_Full |
6017 				ADVERTISED_10baseT_Half);
6018 		if (0 == cmd->duplex)
6019 			cmd->advertising &=
6020 				~(ADVERTISED_100baseT_Full |
6021 				ADVERTISED_10baseT_Full);
6022 		else if (1 == cmd->duplex)
6023 			cmd->advertising &=
6024 				~(ADVERTISED_100baseT_Half |
6025 				ADVERTISED_10baseT_Half);
6026 	}
6027 	mutex_lock(&hw_priv->lock);
6028 	if (cmd->autoneg &&
6029 			(cmd->advertising & ADVERTISED_ALL) ==
6030 			ADVERTISED_ALL) {
6031 		port->duplex = 0;
6032 		port->speed = 0;
6033 		port->force_link = 0;
6034 	} else {
6035 		port->duplex = cmd->duplex + 1;
6036 		if (1000 != speed)
6037 			port->speed = speed;
6038 		if (cmd->autoneg)
6039 			port->force_link = 0;
6040 		else
6041 			port->force_link = 1;
6042 	}
6043 	rc = mii_ethtool_sset(&priv->mii_if, cmd);
6044 	mutex_unlock(&hw_priv->lock);
6045 	return rc;
6046 }
6047 
6048 /**
6049  * netdev_nway_reset - restart auto-negotiation
6050  * @dev:	Network device.
6051  *
6052  * This function restarts the PHY for auto-negotiation.
6053  *
6054  * Return 0 if successful; otherwise an error code.
6055  */
6056 static int netdev_nway_reset(struct net_device *dev)
6057 {
6058 	struct dev_priv *priv = netdev_priv(dev);
6059 	struct dev_info *hw_priv = priv->adapter;
6060 	int rc;
6061 
6062 	mutex_lock(&hw_priv->lock);
6063 	rc = mii_nway_restart(&priv->mii_if);
6064 	mutex_unlock(&hw_priv->lock);
6065 	return rc;
6066 }
6067 
6068 /**
6069  * netdev_get_link - get network device link status
6070  * @dev:	Network device.
6071  *
6072  * This function gets the link status from the PHY.
6073  *
6074  * Return true if PHY is linked and false otherwise.
6075  */
6076 static u32 netdev_get_link(struct net_device *dev)
6077 {
6078 	struct dev_priv *priv = netdev_priv(dev);
6079 	int rc;
6080 
6081 	rc = mii_link_ok(&priv->mii_if);
6082 	return rc;
6083 }
6084 
6085 /**
6086  * netdev_get_drvinfo - get network driver information
6087  * @dev:	Network device.
6088  * @info:	Ethtool driver info data structure.
6089  *
6090  * This procedure returns the driver information.
6091  */
6092 static void netdev_get_drvinfo(struct net_device *dev,
6093 	struct ethtool_drvinfo *info)
6094 {
6095 	struct dev_priv *priv = netdev_priv(dev);
6096 	struct dev_info *hw_priv = priv->adapter;
6097 
6098 	strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
6099 	strlcpy(info->version, DRV_VERSION, sizeof(info->version));
6100 	strlcpy(info->bus_info, pci_name(hw_priv->pdev),
6101 		sizeof(info->bus_info));
6102 }
6103 
6104 /**
6105  * netdev_get_regs_len - get length of register dump
6106  * @dev:	Network device.
6107  *
6108  * This function returns the length of the register dump.
6109  *
6110  * Return length of the register dump.
6111  */
6112 static struct hw_regs {
6113 	int start;
6114 	int end;
6115 } hw_regs_range[] = {
6116 	{ KS_DMA_TX_CTRL,	KS884X_INTERRUPTS_STATUS },
6117 	{ KS_ADD_ADDR_0_LO,	KS_ADD_ADDR_F_HI },
6118 	{ KS884X_ADDR_0_OFFSET,	KS8841_WOL_FRAME_BYTE2_OFFSET },
6119 	{ KS884X_SIDER_P,	KS8842_SGCR7_P },
6120 	{ KS8842_MACAR1_P,	KS8842_TOSR8_P },
6121 	{ KS884X_P1MBCR_P,	KS8842_P3ERCR_P },
6122 	{ 0, 0 }
6123 };
6124 
6125 static int netdev_get_regs_len(struct net_device *dev)
6126 {
6127 	struct hw_regs *range = hw_regs_range;
6128 	int regs_len = 0x10 * sizeof(u32);
6129 
6130 	while (range->end > range->start) {
6131 		regs_len += (range->end - range->start + 3) / 4 * 4;
6132 		range++;
6133 	}
6134 	return regs_len;
6135 }
6136 
6137 /**
6138  * netdev_get_regs - get register dump
6139  * @dev:	Network device.
6140  * @regs:	Ethtool registers data structure.
6141  * @ptr:	Buffer to store the register values.
6142  *
6143  * This procedure dumps the register values in the provided buffer.
6144  */
6145 static void netdev_get_regs(struct net_device *dev, struct ethtool_regs *regs,
6146 	void *ptr)
6147 {
6148 	struct dev_priv *priv = netdev_priv(dev);
6149 	struct dev_info *hw_priv = priv->adapter;
6150 	struct ksz_hw *hw = &hw_priv->hw;
6151 	int *buf = (int *) ptr;
6152 	struct hw_regs *range = hw_regs_range;
6153 	int len;
6154 
6155 	mutex_lock(&hw_priv->lock);
6156 	regs->version = 0;
6157 	for (len = 0; len < 0x40; len += 4) {
6158 		pci_read_config_dword(hw_priv->pdev, len, buf);
6159 		buf++;
6160 	}
6161 	while (range->end > range->start) {
6162 		for (len = range->start; len < range->end; len += 4) {
6163 			*buf = readl(hw->io + len);
6164 			buf++;
6165 		}
6166 		range++;
6167 	}
6168 	mutex_unlock(&hw_priv->lock);
6169 }
6170 
6171 #define WOL_SUPPORT			\
6172 	(WAKE_PHY | WAKE_MAGIC |	\
6173 	WAKE_UCAST | WAKE_MCAST |	\
6174 	WAKE_BCAST | WAKE_ARP)
6175 
6176 /**
6177  * netdev_get_wol - get Wake-on-LAN support
6178  * @dev:	Network device.
6179  * @wol:	Ethtool Wake-on-LAN data structure.
6180  *
6181  * This procedure returns Wake-on-LAN support.
6182  */
6183 static void netdev_get_wol(struct net_device *dev,
6184 	struct ethtool_wolinfo *wol)
6185 {
6186 	struct dev_priv *priv = netdev_priv(dev);
6187 	struct dev_info *hw_priv = priv->adapter;
6188 
6189 	wol->supported = hw_priv->wol_support;
6190 	wol->wolopts = hw_priv->wol_enable;
6191 	memset(&wol->sopass, 0, sizeof(wol->sopass));
6192 }
6193 
6194 /**
6195  * netdev_set_wol - set Wake-on-LAN support
6196  * @dev:	Network device.
6197  * @wol:	Ethtool Wake-on-LAN data structure.
6198  *
6199  * This function sets Wake-on-LAN support.
6200  *
6201  * Return 0 if successful; otherwise an error code.
6202  */
6203 static int netdev_set_wol(struct net_device *dev,
6204 	struct ethtool_wolinfo *wol)
6205 {
6206 	struct dev_priv *priv = netdev_priv(dev);
6207 	struct dev_info *hw_priv = priv->adapter;
6208 
6209 	/* Need to find a way to retrieve the device IP address. */
6210 	static const u8 net_addr[] = { 192, 168, 1, 1 };
6211 
6212 	if (wol->wolopts & ~hw_priv->wol_support)
6213 		return -EINVAL;
6214 
6215 	hw_priv->wol_enable = wol->wolopts;
6216 
6217 	/* Link wakeup cannot really be disabled. */
6218 	if (wol->wolopts)
6219 		hw_priv->wol_enable |= WAKE_PHY;
6220 	hw_enable_wol(&hw_priv->hw, hw_priv->wol_enable, net_addr);
6221 	return 0;
6222 }
6223 
6224 /**
6225  * netdev_get_msglevel - get debug message level
6226  * @dev:	Network device.
6227  *
6228  * This function returns current debug message level.
6229  *
6230  * Return current debug message flags.
6231  */
6232 static u32 netdev_get_msglevel(struct net_device *dev)
6233 {
6234 	struct dev_priv *priv = netdev_priv(dev);
6235 
6236 	return priv->msg_enable;
6237 }
6238 
6239 /**
6240  * netdev_set_msglevel - set debug message level
6241  * @dev:	Network device.
6242  * @value:	Debug message flags.
6243  *
6244  * This procedure sets debug message level.
6245  */
6246 static void netdev_set_msglevel(struct net_device *dev, u32 value)
6247 {
6248 	struct dev_priv *priv = netdev_priv(dev);
6249 
6250 	priv->msg_enable = value;
6251 }
6252 
6253 /**
6254  * netdev_get_eeprom_len - get EEPROM length
6255  * @dev:	Network device.
6256  *
6257  * This function returns the length of the EEPROM.
6258  *
6259  * Return length of the EEPROM.
6260  */
6261 static int netdev_get_eeprom_len(struct net_device *dev)
6262 {
6263 	return EEPROM_SIZE * 2;
6264 }
6265 
6266 /**
6267  * netdev_get_eeprom - get EEPROM data
6268  * @dev:	Network device.
6269  * @eeprom:	Ethtool EEPROM data structure.
6270  * @data:	Buffer to store the EEPROM data.
6271  *
6272  * This function dumps the EEPROM data in the provided buffer.
6273  *
6274  * Return 0 if successful; otherwise an error code.
6275  */
6276 #define EEPROM_MAGIC			0x10A18842
6277 
6278 static int netdev_get_eeprom(struct net_device *dev,
6279 	struct ethtool_eeprom *eeprom, u8 *data)
6280 {
6281 	struct dev_priv *priv = netdev_priv(dev);
6282 	struct dev_info *hw_priv = priv->adapter;
6283 	u8 *eeprom_byte = (u8 *) eeprom_data;
6284 	int i;
6285 	int len;
6286 
6287 	len = (eeprom->offset + eeprom->len + 1) / 2;
6288 	for (i = eeprom->offset / 2; i < len; i++)
6289 		eeprom_data[i] = eeprom_read(&hw_priv->hw, i);
6290 	eeprom->magic = EEPROM_MAGIC;
6291 	memcpy(data, &eeprom_byte[eeprom->offset], eeprom->len);
6292 
6293 	return 0;
6294 }
6295 
6296 /**
6297  * netdev_set_eeprom - write EEPROM data
6298  * @dev:	Network device.
6299  * @eeprom:	Ethtool EEPROM data structure.
6300  * @data:	Data buffer.
6301  *
6302  * This function modifies the EEPROM data one byte at a time.
6303  *
6304  * Return 0 if successful; otherwise an error code.
6305  */
6306 static int netdev_set_eeprom(struct net_device *dev,
6307 	struct ethtool_eeprom *eeprom, u8 *data)
6308 {
6309 	struct dev_priv *priv = netdev_priv(dev);
6310 	struct dev_info *hw_priv = priv->adapter;
6311 	u16 eeprom_word[EEPROM_SIZE];
6312 	u8 *eeprom_byte = (u8 *) eeprom_word;
6313 	int i;
6314 	int len;
6315 
6316 	if (eeprom->magic != EEPROM_MAGIC)
6317 		return -EINVAL;
6318 
6319 	len = (eeprom->offset + eeprom->len + 1) / 2;
6320 	for (i = eeprom->offset / 2; i < len; i++)
6321 		eeprom_data[i] = eeprom_read(&hw_priv->hw, i);
6322 	memcpy(eeprom_word, eeprom_data, EEPROM_SIZE * 2);
6323 	memcpy(&eeprom_byte[eeprom->offset], data, eeprom->len);
6324 	for (i = 0; i < EEPROM_SIZE; i++)
6325 		if (eeprom_word[i] != eeprom_data[i]) {
6326 			eeprom_data[i] = eeprom_word[i];
6327 			eeprom_write(&hw_priv->hw, i, eeprom_data[i]);
6328 	}
6329 
6330 	return 0;
6331 }
6332 
6333 /**
6334  * netdev_get_pauseparam - get flow control parameters
6335  * @dev:	Network device.
6336  * @pause:	Ethtool PAUSE settings data structure.
6337  *
6338  * This procedure returns the PAUSE control flow settings.
6339  */
6340 static void netdev_get_pauseparam(struct net_device *dev,
6341 	struct ethtool_pauseparam *pause)
6342 {
6343 	struct dev_priv *priv = netdev_priv(dev);
6344 	struct dev_info *hw_priv = priv->adapter;
6345 	struct ksz_hw *hw = &hw_priv->hw;
6346 
6347 	pause->autoneg = (hw->overrides & PAUSE_FLOW_CTRL) ? 0 : 1;
6348 	if (!hw->ksz_switch) {
6349 		pause->rx_pause =
6350 			(hw->rx_cfg & DMA_RX_FLOW_ENABLE) ? 1 : 0;
6351 		pause->tx_pause =
6352 			(hw->tx_cfg & DMA_TX_FLOW_ENABLE) ? 1 : 0;
6353 	} else {
6354 		pause->rx_pause =
6355 			(sw_chk(hw, KS8842_SWITCH_CTRL_1_OFFSET,
6356 				SWITCH_RX_FLOW_CTRL)) ? 1 : 0;
6357 		pause->tx_pause =
6358 			(sw_chk(hw, KS8842_SWITCH_CTRL_1_OFFSET,
6359 				SWITCH_TX_FLOW_CTRL)) ? 1 : 0;
6360 	}
6361 }
6362 
6363 /**
6364  * netdev_set_pauseparam - set flow control parameters
6365  * @dev:	Network device.
6366  * @pause:	Ethtool PAUSE settings data structure.
6367  *
6368  * This function sets the PAUSE control flow settings.
6369  * Not implemented yet.
6370  *
6371  * Return 0 if successful; otherwise an error code.
6372  */
6373 static int netdev_set_pauseparam(struct net_device *dev,
6374 	struct ethtool_pauseparam *pause)
6375 {
6376 	struct dev_priv *priv = netdev_priv(dev);
6377 	struct dev_info *hw_priv = priv->adapter;
6378 	struct ksz_hw *hw = &hw_priv->hw;
6379 	struct ksz_port *port = &priv->port;
6380 
6381 	mutex_lock(&hw_priv->lock);
6382 	if (pause->autoneg) {
6383 		if (!pause->rx_pause && !pause->tx_pause)
6384 			port->flow_ctrl = PHY_NO_FLOW_CTRL;
6385 		else
6386 			port->flow_ctrl = PHY_FLOW_CTRL;
6387 		hw->overrides &= ~PAUSE_FLOW_CTRL;
6388 		port->force_link = 0;
6389 		if (hw->ksz_switch) {
6390 			sw_cfg(hw, KS8842_SWITCH_CTRL_1_OFFSET,
6391 				SWITCH_RX_FLOW_CTRL, 1);
6392 			sw_cfg(hw, KS8842_SWITCH_CTRL_1_OFFSET,
6393 				SWITCH_TX_FLOW_CTRL, 1);
6394 		}
6395 		port_set_link_speed(port);
6396 	} else {
6397 		hw->overrides |= PAUSE_FLOW_CTRL;
6398 		if (hw->ksz_switch) {
6399 			sw_cfg(hw, KS8842_SWITCH_CTRL_1_OFFSET,
6400 				SWITCH_RX_FLOW_CTRL, pause->rx_pause);
6401 			sw_cfg(hw, KS8842_SWITCH_CTRL_1_OFFSET,
6402 				SWITCH_TX_FLOW_CTRL, pause->tx_pause);
6403 		} else
6404 			set_flow_ctrl(hw, pause->rx_pause, pause->tx_pause);
6405 	}
6406 	mutex_unlock(&hw_priv->lock);
6407 
6408 	return 0;
6409 }
6410 
6411 /**
6412  * netdev_get_ringparam - get tx/rx ring parameters
6413  * @dev:	Network device.
6414  * @pause:	Ethtool RING settings data structure.
6415  *
6416  * This procedure returns the TX/RX ring settings.
6417  */
6418 static void netdev_get_ringparam(struct net_device *dev,
6419 	struct ethtool_ringparam *ring)
6420 {
6421 	struct dev_priv *priv = netdev_priv(dev);
6422 	struct dev_info *hw_priv = priv->adapter;
6423 	struct ksz_hw *hw = &hw_priv->hw;
6424 
6425 	ring->tx_max_pending = (1 << 9);
6426 	ring->tx_pending = hw->tx_desc_info.alloc;
6427 	ring->rx_max_pending = (1 << 9);
6428 	ring->rx_pending = hw->rx_desc_info.alloc;
6429 }
6430 
6431 #define STATS_LEN			(TOTAL_PORT_COUNTER_NUM)
6432 
6433 static struct {
6434 	char string[ETH_GSTRING_LEN];
6435 } ethtool_stats_keys[STATS_LEN] = {
6436 	{ "rx_lo_priority_octets" },
6437 	{ "rx_hi_priority_octets" },
6438 	{ "rx_undersize_packets" },
6439 	{ "rx_fragments" },
6440 	{ "rx_oversize_packets" },
6441 	{ "rx_jabbers" },
6442 	{ "rx_symbol_errors" },
6443 	{ "rx_crc_errors" },
6444 	{ "rx_align_errors" },
6445 	{ "rx_mac_ctrl_packets" },
6446 	{ "rx_pause_packets" },
6447 	{ "rx_bcast_packets" },
6448 	{ "rx_mcast_packets" },
6449 	{ "rx_ucast_packets" },
6450 	{ "rx_64_or_less_octet_packets" },
6451 	{ "rx_65_to_127_octet_packets" },
6452 	{ "rx_128_to_255_octet_packets" },
6453 	{ "rx_256_to_511_octet_packets" },
6454 	{ "rx_512_to_1023_octet_packets" },
6455 	{ "rx_1024_to_1522_octet_packets" },
6456 
6457 	{ "tx_lo_priority_octets" },
6458 	{ "tx_hi_priority_octets" },
6459 	{ "tx_late_collisions" },
6460 	{ "tx_pause_packets" },
6461 	{ "tx_bcast_packets" },
6462 	{ "tx_mcast_packets" },
6463 	{ "tx_ucast_packets" },
6464 	{ "tx_deferred" },
6465 	{ "tx_total_collisions" },
6466 	{ "tx_excessive_collisions" },
6467 	{ "tx_single_collisions" },
6468 	{ "tx_mult_collisions" },
6469 
6470 	{ "rx_discards" },
6471 	{ "tx_discards" },
6472 };
6473 
6474 /**
6475  * netdev_get_strings - get statistics identity strings
6476  * @dev:	Network device.
6477  * @stringset:	String set identifier.
6478  * @buf:	Buffer to store the strings.
6479  *
6480  * This procedure returns the strings used to identify the statistics.
6481  */
6482 static void netdev_get_strings(struct net_device *dev, u32 stringset, u8 *buf)
6483 {
6484 	struct dev_priv *priv = netdev_priv(dev);
6485 	struct dev_info *hw_priv = priv->adapter;
6486 	struct ksz_hw *hw = &hw_priv->hw;
6487 
6488 	if (ETH_SS_STATS == stringset)
6489 		memcpy(buf, &ethtool_stats_keys,
6490 			ETH_GSTRING_LEN * hw->mib_cnt);
6491 }
6492 
6493 /**
6494  * netdev_get_sset_count - get statistics size
6495  * @dev:	Network device.
6496  * @sset:	The statistics set number.
6497  *
6498  * This function returns the size of the statistics to be reported.
6499  *
6500  * Return size of the statistics to be reported.
6501  */
6502 static int netdev_get_sset_count(struct net_device *dev, int sset)
6503 {
6504 	struct dev_priv *priv = netdev_priv(dev);
6505 	struct dev_info *hw_priv = priv->adapter;
6506 	struct ksz_hw *hw = &hw_priv->hw;
6507 
6508 	switch (sset) {
6509 	case ETH_SS_STATS:
6510 		return hw->mib_cnt;
6511 	default:
6512 		return -EOPNOTSUPP;
6513 	}
6514 }
6515 
6516 /**
6517  * netdev_get_ethtool_stats - get network device statistics
6518  * @dev:	Network device.
6519  * @stats:	Ethtool statistics data structure.
6520  * @data:	Buffer to store the statistics.
6521  *
6522  * This procedure returns the statistics.
6523  */
6524 static void netdev_get_ethtool_stats(struct net_device *dev,
6525 	struct ethtool_stats *stats, u64 *data)
6526 {
6527 	struct dev_priv *priv = netdev_priv(dev);
6528 	struct dev_info *hw_priv = priv->adapter;
6529 	struct ksz_hw *hw = &hw_priv->hw;
6530 	struct ksz_port *port = &priv->port;
6531 	int n_stats = stats->n_stats;
6532 	int i;
6533 	int n;
6534 	int p;
6535 	int rc;
6536 	u64 counter[TOTAL_PORT_COUNTER_NUM];
6537 
6538 	mutex_lock(&hw_priv->lock);
6539 	n = SWITCH_PORT_NUM;
6540 	for (i = 0, p = port->first_port; i < port->mib_port_cnt; i++, p++) {
6541 		if (media_connected == hw->port_mib[p].state) {
6542 			hw_priv->counter[p].read = 1;
6543 
6544 			/* Remember first port that requests read. */
6545 			if (n == SWITCH_PORT_NUM)
6546 				n = p;
6547 		}
6548 	}
6549 	mutex_unlock(&hw_priv->lock);
6550 
6551 	if (n < SWITCH_PORT_NUM)
6552 		schedule_work(&hw_priv->mib_read);
6553 
6554 	if (1 == port->mib_port_cnt && n < SWITCH_PORT_NUM) {
6555 		p = n;
6556 		rc = wait_event_interruptible_timeout(
6557 			hw_priv->counter[p].counter,
6558 			2 == hw_priv->counter[p].read,
6559 			HZ * 1);
6560 	} else
6561 		for (i = 0, p = n; i < port->mib_port_cnt - n; i++, p++) {
6562 			if (0 == i) {
6563 				rc = wait_event_interruptible_timeout(
6564 					hw_priv->counter[p].counter,
6565 					2 == hw_priv->counter[p].read,
6566 					HZ * 2);
6567 			} else if (hw->port_mib[p].cnt_ptr) {
6568 				rc = wait_event_interruptible_timeout(
6569 					hw_priv->counter[p].counter,
6570 					2 == hw_priv->counter[p].read,
6571 					HZ * 1);
6572 			}
6573 		}
6574 
6575 	get_mib_counters(hw, port->first_port, port->mib_port_cnt, counter);
6576 	n = hw->mib_cnt;
6577 	if (n > n_stats)
6578 		n = n_stats;
6579 	n_stats -= n;
6580 	for (i = 0; i < n; i++)
6581 		*data++ = counter[i];
6582 }
6583 
6584 /**
6585  * netdev_set_features - set receive checksum support
6586  * @dev:	Network device.
6587  * @features:	New device features (offloads).
6588  *
6589  * This function sets receive checksum support setting.
6590  *
6591  * Return 0 if successful; otherwise an error code.
6592  */
6593 static int netdev_set_features(struct net_device *dev,
6594 	netdev_features_t features)
6595 {
6596 	struct dev_priv *priv = netdev_priv(dev);
6597 	struct dev_info *hw_priv = priv->adapter;
6598 	struct ksz_hw *hw = &hw_priv->hw;
6599 
6600 	mutex_lock(&hw_priv->lock);
6601 
6602 	/* see note in hw_setup() */
6603 	if (features & NETIF_F_RXCSUM)
6604 		hw->rx_cfg |= DMA_RX_CSUM_TCP | DMA_RX_CSUM_IP;
6605 	else
6606 		hw->rx_cfg &= ~(DMA_RX_CSUM_TCP | DMA_RX_CSUM_IP);
6607 
6608 	if (hw->enabled)
6609 		writel(hw->rx_cfg, hw->io + KS_DMA_RX_CTRL);
6610 
6611 	mutex_unlock(&hw_priv->lock);
6612 
6613 	return 0;
6614 }
6615 
6616 static const struct ethtool_ops netdev_ethtool_ops = {
6617 	.get_settings		= netdev_get_settings,
6618 	.set_settings		= netdev_set_settings,
6619 	.nway_reset		= netdev_nway_reset,
6620 	.get_link		= netdev_get_link,
6621 	.get_drvinfo		= netdev_get_drvinfo,
6622 	.get_regs_len		= netdev_get_regs_len,
6623 	.get_regs		= netdev_get_regs,
6624 	.get_wol		= netdev_get_wol,
6625 	.set_wol		= netdev_set_wol,
6626 	.get_msglevel		= netdev_get_msglevel,
6627 	.set_msglevel		= netdev_set_msglevel,
6628 	.get_eeprom_len		= netdev_get_eeprom_len,
6629 	.get_eeprom		= netdev_get_eeprom,
6630 	.set_eeprom		= netdev_set_eeprom,
6631 	.get_pauseparam		= netdev_get_pauseparam,
6632 	.set_pauseparam		= netdev_set_pauseparam,
6633 	.get_ringparam		= netdev_get_ringparam,
6634 	.get_strings		= netdev_get_strings,
6635 	.get_sset_count		= netdev_get_sset_count,
6636 	.get_ethtool_stats	= netdev_get_ethtool_stats,
6637 };
6638 
6639 /*
6640  * Hardware monitoring
6641  */
6642 
6643 static void update_link(struct net_device *dev, struct dev_priv *priv,
6644 	struct ksz_port *port)
6645 {
6646 	if (priv->media_state != port->linked->state) {
6647 		priv->media_state = port->linked->state;
6648 		if (netif_running(dev))
6649 			set_media_state(dev, media_connected);
6650 	}
6651 }
6652 
6653 static void mib_read_work(struct work_struct *work)
6654 {
6655 	struct dev_info *hw_priv =
6656 		container_of(work, struct dev_info, mib_read);
6657 	struct ksz_hw *hw = &hw_priv->hw;
6658 	struct ksz_port_mib *mib;
6659 	int i;
6660 
6661 	next_jiffies = jiffies;
6662 	for (i = 0; i < hw->mib_port_cnt; i++) {
6663 		mib = &hw->port_mib[i];
6664 
6665 		/* Reading MIB counters or requested to read. */
6666 		if (mib->cnt_ptr || 1 == hw_priv->counter[i].read) {
6667 
6668 			/* Need to process receive interrupt. */
6669 			if (port_r_cnt(hw, i))
6670 				break;
6671 			hw_priv->counter[i].read = 0;
6672 
6673 			/* Finish reading counters. */
6674 			if (0 == mib->cnt_ptr) {
6675 				hw_priv->counter[i].read = 2;
6676 				wake_up_interruptible(
6677 					&hw_priv->counter[i].counter);
6678 			}
6679 		} else if (jiffies >= hw_priv->counter[i].time) {
6680 			/* Only read MIB counters when the port is connected. */
6681 			if (media_connected == mib->state)
6682 				hw_priv->counter[i].read = 1;
6683 			next_jiffies += HZ * 1 * hw->mib_port_cnt;
6684 			hw_priv->counter[i].time = next_jiffies;
6685 
6686 		/* Port is just disconnected. */
6687 		} else if (mib->link_down) {
6688 			mib->link_down = 0;
6689 
6690 			/* Read counters one last time after link is lost. */
6691 			hw_priv->counter[i].read = 1;
6692 		}
6693 	}
6694 }
6695 
6696 static void mib_monitor(unsigned long ptr)
6697 {
6698 	struct dev_info *hw_priv = (struct dev_info *) ptr;
6699 
6700 	mib_read_work(&hw_priv->mib_read);
6701 
6702 	/* This is used to verify Wake-on-LAN is working. */
6703 	if (hw_priv->pme_wait) {
6704 		if (hw_priv->pme_wait <= jiffies) {
6705 			hw_clr_wol_pme_status(&hw_priv->hw);
6706 			hw_priv->pme_wait = 0;
6707 		}
6708 	} else if (hw_chk_wol_pme_status(&hw_priv->hw)) {
6709 
6710 		/* PME is asserted.  Wait 2 seconds to clear it. */
6711 		hw_priv->pme_wait = jiffies + HZ * 2;
6712 	}
6713 
6714 	ksz_update_timer(&hw_priv->mib_timer_info);
6715 }
6716 
6717 /**
6718  * dev_monitor - periodic monitoring
6719  * @ptr:	Network device pointer.
6720  *
6721  * This routine is run in a kernel timer to monitor the network device.
6722  */
6723 static void dev_monitor(unsigned long ptr)
6724 {
6725 	struct net_device *dev = (struct net_device *) ptr;
6726 	struct dev_priv *priv = netdev_priv(dev);
6727 	struct dev_info *hw_priv = priv->adapter;
6728 	struct ksz_hw *hw = &hw_priv->hw;
6729 	struct ksz_port *port = &priv->port;
6730 
6731 	if (!(hw->features & LINK_INT_WORKING))
6732 		port_get_link_speed(port);
6733 	update_link(dev, priv, port);
6734 
6735 	ksz_update_timer(&priv->monitor_timer_info);
6736 }
6737 
6738 /*
6739  * Linux network device interface functions
6740  */
6741 
6742 /* Driver exported variables */
6743 
6744 static int msg_enable;
6745 
6746 static char *macaddr = ":";
6747 static char *mac1addr = ":";
6748 
6749 /*
6750  * This enables multiple network device mode for KSZ8842, which contains a
6751  * switch with two physical ports.  Some users like to take control of the
6752  * ports for running Spanning Tree Protocol.  The driver will create an
6753  * additional eth? device for the other port.
6754  *
6755  * Some limitations are the network devices cannot have different MTU and
6756  * multicast hash tables.
6757  */
6758 static int multi_dev;
6759 
6760 /*
6761  * As most users select multiple network device mode to use Spanning Tree
6762  * Protocol, this enables a feature in which most unicast and multicast packets
6763  * are forwarded inside the switch and not passed to the host.  Only packets
6764  * that need the host's attention are passed to it.  This prevents the host
6765  * wasting CPU time to examine each and every incoming packets and do the
6766  * forwarding itself.
6767  *
6768  * As the hack requires the private bridge header, the driver cannot compile
6769  * with just the kernel headers.
6770  *
6771  * Enabling STP support also turns on multiple network device mode.
6772  */
6773 static int stp;
6774 
6775 /*
6776  * This enables fast aging in the KSZ8842 switch.  Not sure what situation
6777  * needs that.  However, fast aging is used to flush the dynamic MAC table when
6778  * STP support is enabled.
6779  */
6780 static int fast_aging;
6781 
6782 /**
6783  * netdev_init - initialize network device.
6784  * @dev:	Network device.
6785  *
6786  * This function initializes the network device.
6787  *
6788  * Return 0 if successful; otherwise an error code indicating failure.
6789  */
6790 static int __init netdev_init(struct net_device *dev)
6791 {
6792 	struct dev_priv *priv = netdev_priv(dev);
6793 
6794 	/* 500 ms timeout */
6795 	ksz_init_timer(&priv->monitor_timer_info, 500 * HZ / 1000,
6796 		dev_monitor, dev);
6797 
6798 	/* 500 ms timeout */
6799 	dev->watchdog_timeo = HZ / 2;
6800 
6801 	dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG | NETIF_F_RXCSUM;
6802 
6803 	/*
6804 	 * Hardware does not really support IPv6 checksum generation, but
6805 	 * driver actually runs faster with this on.
6806 	 */
6807 	dev->hw_features |= NETIF_F_IPV6_CSUM;
6808 
6809 	dev->features |= dev->hw_features;
6810 
6811 	sema_init(&priv->proc_sem, 1);
6812 
6813 	priv->mii_if.phy_id_mask = 0x1;
6814 	priv->mii_if.reg_num_mask = 0x7;
6815 	priv->mii_if.dev = dev;
6816 	priv->mii_if.mdio_read = mdio_read;
6817 	priv->mii_if.mdio_write = mdio_write;
6818 	priv->mii_if.phy_id = priv->port.first_port + 1;
6819 
6820 	priv->msg_enable = netif_msg_init(msg_enable,
6821 		(NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK));
6822 
6823 	return 0;
6824 }
6825 
6826 static const struct net_device_ops netdev_ops = {
6827 	.ndo_init		= netdev_init,
6828 	.ndo_open		= netdev_open,
6829 	.ndo_stop		= netdev_close,
6830 	.ndo_get_stats		= netdev_query_statistics,
6831 	.ndo_start_xmit		= netdev_tx,
6832 	.ndo_tx_timeout		= netdev_tx_timeout,
6833 	.ndo_change_mtu		= netdev_change_mtu,
6834 	.ndo_set_features	= netdev_set_features,
6835 	.ndo_set_mac_address	= netdev_set_mac_address,
6836 	.ndo_validate_addr	= eth_validate_addr,
6837 	.ndo_do_ioctl		= netdev_ioctl,
6838 	.ndo_set_rx_mode	= netdev_set_rx_mode,
6839 #ifdef CONFIG_NET_POLL_CONTROLLER
6840 	.ndo_poll_controller	= netdev_netpoll,
6841 #endif
6842 };
6843 
6844 static void netdev_free(struct net_device *dev)
6845 {
6846 	if (dev->watchdog_timeo)
6847 		unregister_netdev(dev);
6848 
6849 	free_netdev(dev);
6850 }
6851 
6852 struct platform_info {
6853 	struct dev_info dev_info;
6854 	struct net_device *netdev[SWITCH_PORT_NUM];
6855 };
6856 
6857 static int net_device_present;
6858 
6859 static void get_mac_addr(struct dev_info *hw_priv, u8 *macaddr, int port)
6860 {
6861 	int i;
6862 	int j;
6863 	int got_num;
6864 	int num;
6865 
6866 	i = j = num = got_num = 0;
6867 	while (j < ETH_ALEN) {
6868 		if (macaddr[i]) {
6869 			int digit;
6870 
6871 			got_num = 1;
6872 			digit = hex_to_bin(macaddr[i]);
6873 			if (digit >= 0)
6874 				num = num * 16 + digit;
6875 			else if (':' == macaddr[i])
6876 				got_num = 2;
6877 			else
6878 				break;
6879 		} else if (got_num)
6880 			got_num = 2;
6881 		else
6882 			break;
6883 		if (2 == got_num) {
6884 			if (MAIN_PORT == port) {
6885 				hw_priv->hw.override_addr[j++] = (u8) num;
6886 				hw_priv->hw.override_addr[5] +=
6887 					hw_priv->hw.id;
6888 			} else {
6889 				hw_priv->hw.ksz_switch->other_addr[j++] =
6890 					(u8) num;
6891 				hw_priv->hw.ksz_switch->other_addr[5] +=
6892 					hw_priv->hw.id;
6893 			}
6894 			num = got_num = 0;
6895 		}
6896 		i++;
6897 	}
6898 	if (ETH_ALEN == j) {
6899 		if (MAIN_PORT == port)
6900 			hw_priv->hw.mac_override = 1;
6901 	}
6902 }
6903 
6904 #define KS884X_DMA_MASK			(~0x0UL)
6905 
6906 static void read_other_addr(struct ksz_hw *hw)
6907 {
6908 	int i;
6909 	u16 data[3];
6910 	struct ksz_switch *sw = hw->ksz_switch;
6911 
6912 	for (i = 0; i < 3; i++)
6913 		data[i] = eeprom_read(hw, i + EEPROM_DATA_OTHER_MAC_ADDR);
6914 	if ((data[0] || data[1] || data[2]) && data[0] != 0xffff) {
6915 		sw->other_addr[5] = (u8) data[0];
6916 		sw->other_addr[4] = (u8)(data[0] >> 8);
6917 		sw->other_addr[3] = (u8) data[1];
6918 		sw->other_addr[2] = (u8)(data[1] >> 8);
6919 		sw->other_addr[1] = (u8) data[2];
6920 		sw->other_addr[0] = (u8)(data[2] >> 8);
6921 	}
6922 }
6923 
6924 #ifndef PCI_VENDOR_ID_MICREL_KS
6925 #define PCI_VENDOR_ID_MICREL_KS		0x16c6
6926 #endif
6927 
6928 static int pcidev_init(struct pci_dev *pdev, const struct pci_device_id *id)
6929 {
6930 	struct net_device *dev;
6931 	struct dev_priv *priv;
6932 	struct dev_info *hw_priv;
6933 	struct ksz_hw *hw;
6934 	struct platform_info *info;
6935 	struct ksz_port *port;
6936 	unsigned long reg_base;
6937 	unsigned long reg_len;
6938 	int cnt;
6939 	int i;
6940 	int mib_port_count;
6941 	int pi;
6942 	int port_count;
6943 	int result;
6944 	char banner[sizeof(version)];
6945 	struct ksz_switch *sw = NULL;
6946 
6947 	result = pci_enable_device(pdev);
6948 	if (result)
6949 		return result;
6950 
6951 	result = -ENODEV;
6952 
6953 	if (pci_set_dma_mask(pdev, DMA_BIT_MASK(32)) ||
6954 			pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32)))
6955 		return result;
6956 
6957 	reg_base = pci_resource_start(pdev, 0);
6958 	reg_len = pci_resource_len(pdev, 0);
6959 	if ((pci_resource_flags(pdev, 0) & IORESOURCE_IO) != 0)
6960 		return result;
6961 
6962 	if (!request_mem_region(reg_base, reg_len, DRV_NAME))
6963 		return result;
6964 	pci_set_master(pdev);
6965 
6966 	result = -ENOMEM;
6967 
6968 	info = kzalloc(sizeof(struct platform_info), GFP_KERNEL);
6969 	if (!info)
6970 		goto pcidev_init_dev_err;
6971 
6972 	hw_priv = &info->dev_info;
6973 	hw_priv->pdev = pdev;
6974 
6975 	hw = &hw_priv->hw;
6976 
6977 	hw->io = ioremap(reg_base, reg_len);
6978 	if (!hw->io)
6979 		goto pcidev_init_io_err;
6980 
6981 	cnt = hw_init(hw);
6982 	if (!cnt) {
6983 		if (msg_enable & NETIF_MSG_PROBE)
6984 			pr_alert("chip not detected\n");
6985 		result = -ENODEV;
6986 		goto pcidev_init_alloc_err;
6987 	}
6988 
6989 	snprintf(banner, sizeof(banner), "%s", version);
6990 	banner[13] = cnt + '0';		/* Replace x in "Micrel KSZ884x" */
6991 	dev_info(&hw_priv->pdev->dev, "%s\n", banner);
6992 	dev_dbg(&hw_priv->pdev->dev, "Mem = %p; IRQ = %d\n", hw->io, pdev->irq);
6993 
6994 	/* Assume device is KSZ8841. */
6995 	hw->dev_count = 1;
6996 	port_count = 1;
6997 	mib_port_count = 1;
6998 	hw->addr_list_size = 0;
6999 	hw->mib_cnt = PORT_COUNTER_NUM;
7000 	hw->mib_port_cnt = 1;
7001 
7002 	/* KSZ8842 has a switch with multiple ports. */
7003 	if (2 == cnt) {
7004 		if (fast_aging)
7005 			hw->overrides |= FAST_AGING;
7006 
7007 		hw->mib_cnt = TOTAL_PORT_COUNTER_NUM;
7008 
7009 		/* Multiple network device interfaces are required. */
7010 		if (multi_dev) {
7011 			hw->dev_count = SWITCH_PORT_NUM;
7012 			hw->addr_list_size = SWITCH_PORT_NUM - 1;
7013 		}
7014 
7015 		/* Single network device has multiple ports. */
7016 		if (1 == hw->dev_count) {
7017 			port_count = SWITCH_PORT_NUM;
7018 			mib_port_count = SWITCH_PORT_NUM;
7019 		}
7020 		hw->mib_port_cnt = TOTAL_PORT_NUM;
7021 		hw->ksz_switch = kzalloc(sizeof(struct ksz_switch), GFP_KERNEL);
7022 		if (!hw->ksz_switch)
7023 			goto pcidev_init_alloc_err;
7024 
7025 		sw = hw->ksz_switch;
7026 	}
7027 	for (i = 0; i < hw->mib_port_cnt; i++)
7028 		hw->port_mib[i].mib_start = 0;
7029 
7030 	hw->parent = hw_priv;
7031 
7032 	/* Default MTU is 1500. */
7033 	hw_priv->mtu = (REGULAR_RX_BUF_SIZE + 3) & ~3;
7034 
7035 	if (ksz_alloc_mem(hw_priv))
7036 		goto pcidev_init_mem_err;
7037 
7038 	hw_priv->hw.id = net_device_present;
7039 
7040 	spin_lock_init(&hw_priv->hwlock);
7041 	mutex_init(&hw_priv->lock);
7042 
7043 	for (i = 0; i < TOTAL_PORT_NUM; i++)
7044 		init_waitqueue_head(&hw_priv->counter[i].counter);
7045 
7046 	if (macaddr[0] != ':')
7047 		get_mac_addr(hw_priv, macaddr, MAIN_PORT);
7048 
7049 	/* Read MAC address and initialize override address if not overrided. */
7050 	hw_read_addr(hw);
7051 
7052 	/* Multiple device interfaces mode requires a second MAC address. */
7053 	if (hw->dev_count > 1) {
7054 		memcpy(sw->other_addr, hw->override_addr, ETH_ALEN);
7055 		read_other_addr(hw);
7056 		if (mac1addr[0] != ':')
7057 			get_mac_addr(hw_priv, mac1addr, OTHER_PORT);
7058 	}
7059 
7060 	hw_setup(hw);
7061 	if (hw->ksz_switch)
7062 		sw_setup(hw);
7063 	else {
7064 		hw_priv->wol_support = WOL_SUPPORT;
7065 		hw_priv->wol_enable = 0;
7066 	}
7067 
7068 	INIT_WORK(&hw_priv->mib_read, mib_read_work);
7069 
7070 	/* 500 ms timeout */
7071 	ksz_init_timer(&hw_priv->mib_timer_info, 500 * HZ / 1000,
7072 		mib_monitor, hw_priv);
7073 
7074 	for (i = 0; i < hw->dev_count; i++) {
7075 		dev = alloc_etherdev(sizeof(struct dev_priv));
7076 		if (!dev)
7077 			goto pcidev_init_reg_err;
7078 		info->netdev[i] = dev;
7079 
7080 		priv = netdev_priv(dev);
7081 		priv->adapter = hw_priv;
7082 		priv->id = net_device_present++;
7083 
7084 		port = &priv->port;
7085 		port->port_cnt = port_count;
7086 		port->mib_port_cnt = mib_port_count;
7087 		port->first_port = i;
7088 		port->flow_ctrl = PHY_FLOW_CTRL;
7089 
7090 		port->hw = hw;
7091 		port->linked = &hw->port_info[port->first_port];
7092 
7093 		for (cnt = 0, pi = i; cnt < port_count; cnt++, pi++) {
7094 			hw->port_info[pi].port_id = pi;
7095 			hw->port_info[pi].pdev = dev;
7096 			hw->port_info[pi].state = media_disconnected;
7097 		}
7098 
7099 		dev->mem_start = (unsigned long) hw->io;
7100 		dev->mem_end = dev->mem_start + reg_len - 1;
7101 		dev->irq = pdev->irq;
7102 		if (MAIN_PORT == i)
7103 			memcpy(dev->dev_addr, hw_priv->hw.override_addr,
7104 			       ETH_ALEN);
7105 		else {
7106 			memcpy(dev->dev_addr, sw->other_addr, ETH_ALEN);
7107 			if (!memcmp(sw->other_addr, hw->override_addr,
7108 				    ETH_ALEN))
7109 				dev->dev_addr[5] += port->first_port;
7110 		}
7111 
7112 		dev->netdev_ops = &netdev_ops;
7113 		SET_ETHTOOL_OPS(dev, &netdev_ethtool_ops);
7114 		if (register_netdev(dev))
7115 			goto pcidev_init_reg_err;
7116 		port_set_power_saving(port, true);
7117 	}
7118 
7119 	pci_dev_get(hw_priv->pdev);
7120 	pci_set_drvdata(pdev, info);
7121 	return 0;
7122 
7123 pcidev_init_reg_err:
7124 	for (i = 0; i < hw->dev_count; i++) {
7125 		if (info->netdev[i]) {
7126 			netdev_free(info->netdev[i]);
7127 			info->netdev[i] = NULL;
7128 		}
7129 	}
7130 
7131 pcidev_init_mem_err:
7132 	ksz_free_mem(hw_priv);
7133 	kfree(hw->ksz_switch);
7134 
7135 pcidev_init_alloc_err:
7136 	iounmap(hw->io);
7137 
7138 pcidev_init_io_err:
7139 	kfree(info);
7140 
7141 pcidev_init_dev_err:
7142 	release_mem_region(reg_base, reg_len);
7143 
7144 	return result;
7145 }
7146 
7147 static void pcidev_exit(struct pci_dev *pdev)
7148 {
7149 	int i;
7150 	struct platform_info *info = pci_get_drvdata(pdev);
7151 	struct dev_info *hw_priv = &info->dev_info;
7152 
7153 	pci_set_drvdata(pdev, NULL);
7154 
7155 	release_mem_region(pci_resource_start(pdev, 0),
7156 		pci_resource_len(pdev, 0));
7157 	for (i = 0; i < hw_priv->hw.dev_count; i++) {
7158 		if (info->netdev[i])
7159 			netdev_free(info->netdev[i]);
7160 	}
7161 	if (hw_priv->hw.io)
7162 		iounmap(hw_priv->hw.io);
7163 	ksz_free_mem(hw_priv);
7164 	kfree(hw_priv->hw.ksz_switch);
7165 	pci_dev_put(hw_priv->pdev);
7166 	kfree(info);
7167 }
7168 
7169 #ifdef CONFIG_PM
7170 static int pcidev_resume(struct pci_dev *pdev)
7171 {
7172 	int i;
7173 	struct platform_info *info = pci_get_drvdata(pdev);
7174 	struct dev_info *hw_priv = &info->dev_info;
7175 	struct ksz_hw *hw = &hw_priv->hw;
7176 
7177 	pci_set_power_state(pdev, PCI_D0);
7178 	pci_restore_state(pdev);
7179 	pci_enable_wake(pdev, PCI_D0, 0);
7180 
7181 	if (hw_priv->wol_enable)
7182 		hw_cfg_wol_pme(hw, 0);
7183 	for (i = 0; i < hw->dev_count; i++) {
7184 		if (info->netdev[i]) {
7185 			struct net_device *dev = info->netdev[i];
7186 
7187 			if (netif_running(dev)) {
7188 				netdev_open(dev);
7189 				netif_device_attach(dev);
7190 			}
7191 		}
7192 	}
7193 	return 0;
7194 }
7195 
7196 static int pcidev_suspend(struct pci_dev *pdev, pm_message_t state)
7197 {
7198 	int i;
7199 	struct platform_info *info = pci_get_drvdata(pdev);
7200 	struct dev_info *hw_priv = &info->dev_info;
7201 	struct ksz_hw *hw = &hw_priv->hw;
7202 
7203 	/* Need to find a way to retrieve the device IP address. */
7204 	static const u8 net_addr[] = { 192, 168, 1, 1 };
7205 
7206 	for (i = 0; i < hw->dev_count; i++) {
7207 		if (info->netdev[i]) {
7208 			struct net_device *dev = info->netdev[i];
7209 
7210 			if (netif_running(dev)) {
7211 				netif_device_detach(dev);
7212 				netdev_close(dev);
7213 			}
7214 		}
7215 	}
7216 	if (hw_priv->wol_enable) {
7217 		hw_enable_wol(hw, hw_priv->wol_enable, net_addr);
7218 		hw_cfg_wol_pme(hw, 1);
7219 	}
7220 
7221 	pci_save_state(pdev);
7222 	pci_enable_wake(pdev, pci_choose_state(pdev, state), 1);
7223 	pci_set_power_state(pdev, pci_choose_state(pdev, state));
7224 	return 0;
7225 }
7226 #endif
7227 
7228 static char pcidev_name[] = "ksz884xp";
7229 
7230 static struct pci_device_id pcidev_table[] = {
7231 	{ PCI_VENDOR_ID_MICREL_KS, 0x8841,
7232 		PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
7233 	{ PCI_VENDOR_ID_MICREL_KS, 0x8842,
7234 		PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
7235 	{ 0 }
7236 };
7237 
7238 MODULE_DEVICE_TABLE(pci, pcidev_table);
7239 
7240 static struct pci_driver pci_device_driver = {
7241 #ifdef CONFIG_PM
7242 	.suspend	= pcidev_suspend,
7243 	.resume		= pcidev_resume,
7244 #endif
7245 	.name		= pcidev_name,
7246 	.id_table	= pcidev_table,
7247 	.probe		= pcidev_init,
7248 	.remove		= pcidev_exit
7249 };
7250 
7251 module_pci_driver(pci_device_driver);
7252 
7253 MODULE_DESCRIPTION("KSZ8841/2 PCI network driver");
7254 MODULE_AUTHOR("Tristram Ha <Tristram.Ha@micrel.com>");
7255 MODULE_LICENSE("GPL");
7256 
7257 module_param_named(message, msg_enable, int, 0);
7258 MODULE_PARM_DESC(message, "Message verbosity level (0=none, 31=all)");
7259 
7260 module_param(macaddr, charp, 0);
7261 module_param(mac1addr, charp, 0);
7262 module_param(fast_aging, int, 0);
7263 module_param(multi_dev, int, 0);
7264 module_param(stp, int, 0);
7265 MODULE_PARM_DESC(macaddr, "MAC address");
7266 MODULE_PARM_DESC(mac1addr, "Second MAC address");
7267 MODULE_PARM_DESC(fast_aging, "Fast aging");
7268 MODULE_PARM_DESC(multi_dev, "Multiple device interfaces");
7269 MODULE_PARM_DESC(stp, "STP support");
7270