1 /**
2  * drivers/net/ethernet/micrel/ksx884x.c - Micrel KSZ8841/2 PCI Ethernet driver
3  *
4  * Copyright (c) 2009-2010 Micrel, Inc.
5  * 	Tristram Ha <Tristram.Ha@micrel.com>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  */
16 
17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
18 
19 #include <linux/init.h>
20 #include <linux/interrupt.h>
21 #include <linux/kernel.h>
22 #include <linux/module.h>
23 #include <linux/ioport.h>
24 #include <linux/pci.h>
25 #include <linux/proc_fs.h>
26 #include <linux/mii.h>
27 #include <linux/platform_device.h>
28 #include <linux/ethtool.h>
29 #include <linux/etherdevice.h>
30 #include <linux/in.h>
31 #include <linux/ip.h>
32 #include <linux/if_vlan.h>
33 #include <linux/crc32.h>
34 #include <linux/sched.h>
35 #include <linux/slab.h>
36 
37 
38 /* DMA Registers */
39 
40 #define KS_DMA_TX_CTRL			0x0000
41 #define DMA_TX_ENABLE			0x00000001
42 #define DMA_TX_CRC_ENABLE		0x00000002
43 #define DMA_TX_PAD_ENABLE		0x00000004
44 #define DMA_TX_LOOPBACK			0x00000100
45 #define DMA_TX_FLOW_ENABLE		0x00000200
46 #define DMA_TX_CSUM_IP			0x00010000
47 #define DMA_TX_CSUM_TCP			0x00020000
48 #define DMA_TX_CSUM_UDP			0x00040000
49 #define DMA_TX_BURST_SIZE		0x3F000000
50 
51 #define KS_DMA_RX_CTRL			0x0004
52 #define DMA_RX_ENABLE			0x00000001
53 #define KS884X_DMA_RX_MULTICAST		0x00000002
54 #define DMA_RX_PROMISCUOUS		0x00000004
55 #define DMA_RX_ERROR			0x00000008
56 #define DMA_RX_UNICAST			0x00000010
57 #define DMA_RX_ALL_MULTICAST		0x00000020
58 #define DMA_RX_BROADCAST		0x00000040
59 #define DMA_RX_FLOW_ENABLE		0x00000200
60 #define DMA_RX_CSUM_IP			0x00010000
61 #define DMA_RX_CSUM_TCP			0x00020000
62 #define DMA_RX_CSUM_UDP			0x00040000
63 #define DMA_RX_BURST_SIZE		0x3F000000
64 
65 #define DMA_BURST_SHIFT			24
66 #define DMA_BURST_DEFAULT		8
67 
68 #define KS_DMA_TX_START			0x0008
69 #define KS_DMA_RX_START			0x000C
70 #define DMA_START			0x00000001
71 
72 #define KS_DMA_TX_ADDR			0x0010
73 #define KS_DMA_RX_ADDR			0x0014
74 
75 #define DMA_ADDR_LIST_MASK		0xFFFFFFFC
76 #define DMA_ADDR_LIST_SHIFT		2
77 
78 /* MTR0 */
79 #define KS884X_MULTICAST_0_OFFSET	0x0020
80 #define KS884X_MULTICAST_1_OFFSET	0x0021
81 #define KS884X_MULTICAST_2_OFFSET	0x0022
82 #define KS884x_MULTICAST_3_OFFSET	0x0023
83 /* MTR1 */
84 #define KS884X_MULTICAST_4_OFFSET	0x0024
85 #define KS884X_MULTICAST_5_OFFSET	0x0025
86 #define KS884X_MULTICAST_6_OFFSET	0x0026
87 #define KS884X_MULTICAST_7_OFFSET	0x0027
88 
89 /* Interrupt Registers */
90 
91 /* INTEN */
92 #define KS884X_INTERRUPTS_ENABLE	0x0028
93 /* INTST */
94 #define KS884X_INTERRUPTS_STATUS	0x002C
95 
96 #define KS884X_INT_RX_STOPPED		0x02000000
97 #define KS884X_INT_TX_STOPPED		0x04000000
98 #define KS884X_INT_RX_OVERRUN		0x08000000
99 #define KS884X_INT_TX_EMPTY		0x10000000
100 #define KS884X_INT_RX			0x20000000
101 #define KS884X_INT_TX			0x40000000
102 #define KS884X_INT_PHY			0x80000000
103 
104 #define KS884X_INT_RX_MASK		\
105 	(KS884X_INT_RX | KS884X_INT_RX_OVERRUN)
106 #define KS884X_INT_TX_MASK		\
107 	(KS884X_INT_TX | KS884X_INT_TX_EMPTY)
108 #define KS884X_INT_MASK	(KS884X_INT_RX | KS884X_INT_TX | KS884X_INT_PHY)
109 
110 /* MAC Additional Station Address */
111 
112 /* MAAL0 */
113 #define KS_ADD_ADDR_0_LO		0x0080
114 /* MAAH0 */
115 #define KS_ADD_ADDR_0_HI		0x0084
116 /* MAAL1 */
117 #define KS_ADD_ADDR_1_LO		0x0088
118 /* MAAH1 */
119 #define KS_ADD_ADDR_1_HI		0x008C
120 /* MAAL2 */
121 #define KS_ADD_ADDR_2_LO		0x0090
122 /* MAAH2 */
123 #define KS_ADD_ADDR_2_HI		0x0094
124 /* MAAL3 */
125 #define KS_ADD_ADDR_3_LO		0x0098
126 /* MAAH3 */
127 #define KS_ADD_ADDR_3_HI		0x009C
128 /* MAAL4 */
129 #define KS_ADD_ADDR_4_LO		0x00A0
130 /* MAAH4 */
131 #define KS_ADD_ADDR_4_HI		0x00A4
132 /* MAAL5 */
133 #define KS_ADD_ADDR_5_LO		0x00A8
134 /* MAAH5 */
135 #define KS_ADD_ADDR_5_HI		0x00AC
136 /* MAAL6 */
137 #define KS_ADD_ADDR_6_LO		0x00B0
138 /* MAAH6 */
139 #define KS_ADD_ADDR_6_HI		0x00B4
140 /* MAAL7 */
141 #define KS_ADD_ADDR_7_LO		0x00B8
142 /* MAAH7 */
143 #define KS_ADD_ADDR_7_HI		0x00BC
144 /* MAAL8 */
145 #define KS_ADD_ADDR_8_LO		0x00C0
146 /* MAAH8 */
147 #define KS_ADD_ADDR_8_HI		0x00C4
148 /* MAAL9 */
149 #define KS_ADD_ADDR_9_LO		0x00C8
150 /* MAAH9 */
151 #define KS_ADD_ADDR_9_HI		0x00CC
152 /* MAAL10 */
153 #define KS_ADD_ADDR_A_LO		0x00D0
154 /* MAAH10 */
155 #define KS_ADD_ADDR_A_HI		0x00D4
156 /* MAAL11 */
157 #define KS_ADD_ADDR_B_LO		0x00D8
158 /* MAAH11 */
159 #define KS_ADD_ADDR_B_HI		0x00DC
160 /* MAAL12 */
161 #define KS_ADD_ADDR_C_LO		0x00E0
162 /* MAAH12 */
163 #define KS_ADD_ADDR_C_HI		0x00E4
164 /* MAAL13 */
165 #define KS_ADD_ADDR_D_LO		0x00E8
166 /* MAAH13 */
167 #define KS_ADD_ADDR_D_HI		0x00EC
168 /* MAAL14 */
169 #define KS_ADD_ADDR_E_LO		0x00F0
170 /* MAAH14 */
171 #define KS_ADD_ADDR_E_HI		0x00F4
172 /* MAAL15 */
173 #define KS_ADD_ADDR_F_LO		0x00F8
174 /* MAAH15 */
175 #define KS_ADD_ADDR_F_HI		0x00FC
176 
177 #define ADD_ADDR_HI_MASK		0x0000FFFF
178 #define ADD_ADDR_ENABLE			0x80000000
179 #define ADD_ADDR_INCR			8
180 
181 /* Miscellaneous Registers */
182 
183 /* MARL */
184 #define KS884X_ADDR_0_OFFSET		0x0200
185 #define KS884X_ADDR_1_OFFSET		0x0201
186 /* MARM */
187 #define KS884X_ADDR_2_OFFSET		0x0202
188 #define KS884X_ADDR_3_OFFSET		0x0203
189 /* MARH */
190 #define KS884X_ADDR_4_OFFSET		0x0204
191 #define KS884X_ADDR_5_OFFSET		0x0205
192 
193 /* OBCR */
194 #define KS884X_BUS_CTRL_OFFSET		0x0210
195 
196 #define BUS_SPEED_125_MHZ		0x0000
197 #define BUS_SPEED_62_5_MHZ		0x0001
198 #define BUS_SPEED_41_66_MHZ		0x0002
199 #define BUS_SPEED_25_MHZ		0x0003
200 
201 /* EEPCR */
202 #define KS884X_EEPROM_CTRL_OFFSET	0x0212
203 
204 #define EEPROM_CHIP_SELECT		0x0001
205 #define EEPROM_SERIAL_CLOCK		0x0002
206 #define EEPROM_DATA_OUT			0x0004
207 #define EEPROM_DATA_IN			0x0008
208 #define EEPROM_ACCESS_ENABLE		0x0010
209 
210 /* MBIR */
211 #define KS884X_MEM_INFO_OFFSET		0x0214
212 
213 #define RX_MEM_TEST_FAILED		0x0008
214 #define RX_MEM_TEST_FINISHED		0x0010
215 #define TX_MEM_TEST_FAILED		0x0800
216 #define TX_MEM_TEST_FINISHED		0x1000
217 
218 /* GCR */
219 #define KS884X_GLOBAL_CTRL_OFFSET	0x0216
220 #define GLOBAL_SOFTWARE_RESET		0x0001
221 
222 #define KS8841_POWER_MANAGE_OFFSET	0x0218
223 
224 /* WFCR */
225 #define KS8841_WOL_CTRL_OFFSET		0x021A
226 #define KS8841_WOL_MAGIC_ENABLE		0x0080
227 #define KS8841_WOL_FRAME3_ENABLE	0x0008
228 #define KS8841_WOL_FRAME2_ENABLE	0x0004
229 #define KS8841_WOL_FRAME1_ENABLE	0x0002
230 #define KS8841_WOL_FRAME0_ENABLE	0x0001
231 
232 /* WF0 */
233 #define KS8841_WOL_FRAME_CRC_OFFSET	0x0220
234 #define KS8841_WOL_FRAME_BYTE0_OFFSET	0x0224
235 #define KS8841_WOL_FRAME_BYTE2_OFFSET	0x0228
236 
237 /* IACR */
238 #define KS884X_IACR_P			0x04A0
239 #define KS884X_IACR_OFFSET		KS884X_IACR_P
240 
241 /* IADR1 */
242 #define KS884X_IADR1_P			0x04A2
243 #define KS884X_IADR2_P			0x04A4
244 #define KS884X_IADR3_P			0x04A6
245 #define KS884X_IADR4_P			0x04A8
246 #define KS884X_IADR5_P			0x04AA
247 
248 #define KS884X_ACC_CTRL_SEL_OFFSET	KS884X_IACR_P
249 #define KS884X_ACC_CTRL_INDEX_OFFSET	(KS884X_ACC_CTRL_SEL_OFFSET + 1)
250 
251 #define KS884X_ACC_DATA_0_OFFSET	KS884X_IADR4_P
252 #define KS884X_ACC_DATA_1_OFFSET	(KS884X_ACC_DATA_0_OFFSET + 1)
253 #define KS884X_ACC_DATA_2_OFFSET	KS884X_IADR5_P
254 #define KS884X_ACC_DATA_3_OFFSET	(KS884X_ACC_DATA_2_OFFSET + 1)
255 #define KS884X_ACC_DATA_4_OFFSET	KS884X_IADR2_P
256 #define KS884X_ACC_DATA_5_OFFSET	(KS884X_ACC_DATA_4_OFFSET + 1)
257 #define KS884X_ACC_DATA_6_OFFSET	KS884X_IADR3_P
258 #define KS884X_ACC_DATA_7_OFFSET	(KS884X_ACC_DATA_6_OFFSET + 1)
259 #define KS884X_ACC_DATA_8_OFFSET	KS884X_IADR1_P
260 
261 /* P1MBCR */
262 #define KS884X_P1MBCR_P			0x04D0
263 #define KS884X_P1MBSR_P			0x04D2
264 #define KS884X_PHY1ILR_P		0x04D4
265 #define KS884X_PHY1IHR_P		0x04D6
266 #define KS884X_P1ANAR_P			0x04D8
267 #define KS884X_P1ANLPR_P		0x04DA
268 
269 /* P2MBCR */
270 #define KS884X_P2MBCR_P			0x04E0
271 #define KS884X_P2MBSR_P			0x04E2
272 #define KS884X_PHY2ILR_P		0x04E4
273 #define KS884X_PHY2IHR_P		0x04E6
274 #define KS884X_P2ANAR_P			0x04E8
275 #define KS884X_P2ANLPR_P		0x04EA
276 
277 #define KS884X_PHY_1_CTRL_OFFSET	KS884X_P1MBCR_P
278 #define PHY_CTRL_INTERVAL		(KS884X_P2MBCR_P - KS884X_P1MBCR_P)
279 
280 #define KS884X_PHY_CTRL_OFFSET		0x00
281 
282 /* Mode Control Register */
283 #define PHY_REG_CTRL			0
284 
285 #define PHY_RESET			0x8000
286 #define PHY_LOOPBACK			0x4000
287 #define PHY_SPEED_100MBIT		0x2000
288 #define PHY_AUTO_NEG_ENABLE		0x1000
289 #define PHY_POWER_DOWN			0x0800
290 #define PHY_MII_DISABLE			0x0400
291 #define PHY_AUTO_NEG_RESTART		0x0200
292 #define PHY_FULL_DUPLEX			0x0100
293 #define PHY_COLLISION_TEST		0x0080
294 #define PHY_HP_MDIX			0x0020
295 #define PHY_FORCE_MDIX			0x0010
296 #define PHY_AUTO_MDIX_DISABLE		0x0008
297 #define PHY_REMOTE_FAULT_DISABLE	0x0004
298 #define PHY_TRANSMIT_DISABLE		0x0002
299 #define PHY_LED_DISABLE			0x0001
300 
301 #define KS884X_PHY_STATUS_OFFSET	0x02
302 
303 /* Mode Status Register */
304 #define PHY_REG_STATUS			1
305 
306 #define PHY_100BT4_CAPABLE		0x8000
307 #define PHY_100BTX_FD_CAPABLE		0x4000
308 #define PHY_100BTX_CAPABLE		0x2000
309 #define PHY_10BT_FD_CAPABLE		0x1000
310 #define PHY_10BT_CAPABLE		0x0800
311 #define PHY_MII_SUPPRESS_CAPABLE	0x0040
312 #define PHY_AUTO_NEG_ACKNOWLEDGE	0x0020
313 #define PHY_REMOTE_FAULT		0x0010
314 #define PHY_AUTO_NEG_CAPABLE		0x0008
315 #define PHY_LINK_STATUS			0x0004
316 #define PHY_JABBER_DETECT		0x0002
317 #define PHY_EXTENDED_CAPABILITY		0x0001
318 
319 #define KS884X_PHY_ID_1_OFFSET		0x04
320 #define KS884X_PHY_ID_2_OFFSET		0x06
321 
322 /* PHY Identifier Registers */
323 #define PHY_REG_ID_1			2
324 #define PHY_REG_ID_2			3
325 
326 #define KS884X_PHY_AUTO_NEG_OFFSET	0x08
327 
328 /* Auto-Negotiation Advertisement Register */
329 #define PHY_REG_AUTO_NEGOTIATION	4
330 
331 #define PHY_AUTO_NEG_NEXT_PAGE		0x8000
332 #define PHY_AUTO_NEG_REMOTE_FAULT	0x2000
333 /* Not supported. */
334 #define PHY_AUTO_NEG_ASYM_PAUSE		0x0800
335 #define PHY_AUTO_NEG_SYM_PAUSE		0x0400
336 #define PHY_AUTO_NEG_100BT4		0x0200
337 #define PHY_AUTO_NEG_100BTX_FD		0x0100
338 #define PHY_AUTO_NEG_100BTX		0x0080
339 #define PHY_AUTO_NEG_10BT_FD		0x0040
340 #define PHY_AUTO_NEG_10BT		0x0020
341 #define PHY_AUTO_NEG_SELECTOR		0x001F
342 #define PHY_AUTO_NEG_802_3		0x0001
343 
344 #define PHY_AUTO_NEG_PAUSE  (PHY_AUTO_NEG_SYM_PAUSE | PHY_AUTO_NEG_ASYM_PAUSE)
345 
346 #define KS884X_PHY_REMOTE_CAP_OFFSET	0x0A
347 
348 /* Auto-Negotiation Link Partner Ability Register */
349 #define PHY_REG_REMOTE_CAPABILITY	5
350 
351 #define PHY_REMOTE_NEXT_PAGE		0x8000
352 #define PHY_REMOTE_ACKNOWLEDGE		0x4000
353 #define PHY_REMOTE_REMOTE_FAULT		0x2000
354 #define PHY_REMOTE_SYM_PAUSE		0x0400
355 #define PHY_REMOTE_100BTX_FD		0x0100
356 #define PHY_REMOTE_100BTX		0x0080
357 #define PHY_REMOTE_10BT_FD		0x0040
358 #define PHY_REMOTE_10BT			0x0020
359 
360 /* P1VCT */
361 #define KS884X_P1VCT_P			0x04F0
362 #define KS884X_P1PHYCTRL_P		0x04F2
363 
364 /* P2VCT */
365 #define KS884X_P2VCT_P			0x04F4
366 #define KS884X_P2PHYCTRL_P		0x04F6
367 
368 #define KS884X_PHY_SPECIAL_OFFSET	KS884X_P1VCT_P
369 #define PHY_SPECIAL_INTERVAL		(KS884X_P2VCT_P - KS884X_P1VCT_P)
370 
371 #define KS884X_PHY_LINK_MD_OFFSET	0x00
372 
373 #define PHY_START_CABLE_DIAG		0x8000
374 #define PHY_CABLE_DIAG_RESULT		0x6000
375 #define PHY_CABLE_STAT_NORMAL		0x0000
376 #define PHY_CABLE_STAT_OPEN		0x2000
377 #define PHY_CABLE_STAT_SHORT		0x4000
378 #define PHY_CABLE_STAT_FAILED		0x6000
379 #define PHY_CABLE_10M_SHORT		0x1000
380 #define PHY_CABLE_FAULT_COUNTER		0x01FF
381 
382 #define KS884X_PHY_PHY_CTRL_OFFSET	0x02
383 
384 #define PHY_STAT_REVERSED_POLARITY	0x0020
385 #define PHY_STAT_MDIX			0x0010
386 #define PHY_FORCE_LINK			0x0008
387 #define PHY_POWER_SAVING_DISABLE	0x0004
388 #define PHY_REMOTE_LOOPBACK		0x0002
389 
390 /* SIDER */
391 #define KS884X_SIDER_P			0x0400
392 #define KS884X_CHIP_ID_OFFSET		KS884X_SIDER_P
393 #define KS884X_FAMILY_ID_OFFSET		(KS884X_CHIP_ID_OFFSET + 1)
394 
395 #define REG_FAMILY_ID			0x88
396 
397 #define REG_CHIP_ID_41			0x8810
398 #define REG_CHIP_ID_42			0x8800
399 
400 #define KS884X_CHIP_ID_MASK_41		0xFF10
401 #define KS884X_CHIP_ID_MASK		0xFFF0
402 #define KS884X_CHIP_ID_SHIFT		4
403 #define KS884X_REVISION_MASK		0x000E
404 #define KS884X_REVISION_SHIFT		1
405 #define KS8842_START			0x0001
406 
407 #define CHIP_IP_41_M			0x8810
408 #define CHIP_IP_42_M			0x8800
409 #define CHIP_IP_61_M			0x8890
410 #define CHIP_IP_62_M			0x8880
411 
412 #define CHIP_IP_41_P			0x8850
413 #define CHIP_IP_42_P			0x8840
414 #define CHIP_IP_61_P			0x88D0
415 #define CHIP_IP_62_P			0x88C0
416 
417 /* SGCR1 */
418 #define KS8842_SGCR1_P			0x0402
419 #define KS8842_SWITCH_CTRL_1_OFFSET	KS8842_SGCR1_P
420 
421 #define SWITCH_PASS_ALL			0x8000
422 #define SWITCH_TX_FLOW_CTRL		0x2000
423 #define SWITCH_RX_FLOW_CTRL		0x1000
424 #define SWITCH_CHECK_LENGTH		0x0800
425 #define SWITCH_AGING_ENABLE		0x0400
426 #define SWITCH_FAST_AGING		0x0200
427 #define SWITCH_AGGR_BACKOFF		0x0100
428 #define SWITCH_PASS_PAUSE		0x0008
429 #define SWITCH_LINK_AUTO_AGING		0x0001
430 
431 /* SGCR2 */
432 #define KS8842_SGCR2_P			0x0404
433 #define KS8842_SWITCH_CTRL_2_OFFSET	KS8842_SGCR2_P
434 
435 #define SWITCH_VLAN_ENABLE		0x8000
436 #define SWITCH_IGMP_SNOOP		0x4000
437 #define IPV6_MLD_SNOOP_ENABLE		0x2000
438 #define IPV6_MLD_SNOOP_OPTION		0x1000
439 #define PRIORITY_SCHEME_SELECT		0x0800
440 #define SWITCH_MIRROR_RX_TX		0x0100
441 #define UNICAST_VLAN_BOUNDARY		0x0080
442 #define MULTICAST_STORM_DISABLE		0x0040
443 #define SWITCH_BACK_PRESSURE		0x0020
444 #define FAIR_FLOW_CTRL			0x0010
445 #define NO_EXC_COLLISION_DROP		0x0008
446 #define SWITCH_HUGE_PACKET		0x0004
447 #define SWITCH_LEGAL_PACKET		0x0002
448 #define SWITCH_BUF_RESERVE		0x0001
449 
450 /* SGCR3 */
451 #define KS8842_SGCR3_P			0x0406
452 #define KS8842_SWITCH_CTRL_3_OFFSET	KS8842_SGCR3_P
453 
454 #define BROADCAST_STORM_RATE_LO		0xFF00
455 #define SWITCH_REPEATER			0x0080
456 #define SWITCH_HALF_DUPLEX		0x0040
457 #define SWITCH_FLOW_CTRL		0x0020
458 #define SWITCH_10_MBIT			0x0010
459 #define SWITCH_REPLACE_NULL_VID		0x0008
460 #define BROADCAST_STORM_RATE_HI		0x0007
461 
462 #define BROADCAST_STORM_RATE		0x07FF
463 
464 /* SGCR4 */
465 #define KS8842_SGCR4_P			0x0408
466 
467 /* SGCR5 */
468 #define KS8842_SGCR5_P			0x040A
469 #define KS8842_SWITCH_CTRL_5_OFFSET	KS8842_SGCR5_P
470 
471 #define LED_MODE			0x8200
472 #define LED_SPEED_DUPLEX_ACT		0x0000
473 #define LED_SPEED_DUPLEX_LINK_ACT	0x8000
474 #define LED_DUPLEX_10_100		0x0200
475 
476 /* SGCR6 */
477 #define KS8842_SGCR6_P			0x0410
478 #define KS8842_SWITCH_CTRL_6_OFFSET	KS8842_SGCR6_P
479 
480 #define KS8842_PRIORITY_MASK		3
481 #define KS8842_PRIORITY_SHIFT		2
482 
483 /* SGCR7 */
484 #define KS8842_SGCR7_P			0x0412
485 #define KS8842_SWITCH_CTRL_7_OFFSET	KS8842_SGCR7_P
486 
487 #define SWITCH_UNK_DEF_PORT_ENABLE	0x0008
488 #define SWITCH_UNK_DEF_PORT_3		0x0004
489 #define SWITCH_UNK_DEF_PORT_2		0x0002
490 #define SWITCH_UNK_DEF_PORT_1		0x0001
491 
492 /* MACAR1 */
493 #define KS8842_MACAR1_P			0x0470
494 #define KS8842_MACAR2_P			0x0472
495 #define KS8842_MACAR3_P			0x0474
496 #define KS8842_MAC_ADDR_1_OFFSET	KS8842_MACAR1_P
497 #define KS8842_MAC_ADDR_0_OFFSET	(KS8842_MAC_ADDR_1_OFFSET + 1)
498 #define KS8842_MAC_ADDR_3_OFFSET	KS8842_MACAR2_P
499 #define KS8842_MAC_ADDR_2_OFFSET	(KS8842_MAC_ADDR_3_OFFSET + 1)
500 #define KS8842_MAC_ADDR_5_OFFSET	KS8842_MACAR3_P
501 #define KS8842_MAC_ADDR_4_OFFSET	(KS8842_MAC_ADDR_5_OFFSET + 1)
502 
503 /* TOSR1 */
504 #define KS8842_TOSR1_P			0x0480
505 #define KS8842_TOSR2_P			0x0482
506 #define KS8842_TOSR3_P			0x0484
507 #define KS8842_TOSR4_P			0x0486
508 #define KS8842_TOSR5_P			0x0488
509 #define KS8842_TOSR6_P			0x048A
510 #define KS8842_TOSR7_P			0x0490
511 #define KS8842_TOSR8_P			0x0492
512 #define KS8842_TOS_1_OFFSET		KS8842_TOSR1_P
513 #define KS8842_TOS_2_OFFSET		KS8842_TOSR2_P
514 #define KS8842_TOS_3_OFFSET		KS8842_TOSR3_P
515 #define KS8842_TOS_4_OFFSET		KS8842_TOSR4_P
516 #define KS8842_TOS_5_OFFSET		KS8842_TOSR5_P
517 #define KS8842_TOS_6_OFFSET		KS8842_TOSR6_P
518 
519 #define KS8842_TOS_7_OFFSET		KS8842_TOSR7_P
520 #define KS8842_TOS_8_OFFSET		KS8842_TOSR8_P
521 
522 /* P1CR1 */
523 #define KS8842_P1CR1_P			0x0500
524 #define KS8842_P1CR2_P			0x0502
525 #define KS8842_P1VIDR_P			0x0504
526 #define KS8842_P1CR3_P			0x0506
527 #define KS8842_P1IRCR_P			0x0508
528 #define KS8842_P1ERCR_P			0x050A
529 #define KS884X_P1SCSLMD_P		0x0510
530 #define KS884X_P1CR4_P			0x0512
531 #define KS884X_P1SR_P			0x0514
532 
533 /* P2CR1 */
534 #define KS8842_P2CR1_P			0x0520
535 #define KS8842_P2CR2_P			0x0522
536 #define KS8842_P2VIDR_P			0x0524
537 #define KS8842_P2CR3_P			0x0526
538 #define KS8842_P2IRCR_P			0x0528
539 #define KS8842_P2ERCR_P			0x052A
540 #define KS884X_P2SCSLMD_P		0x0530
541 #define KS884X_P2CR4_P			0x0532
542 #define KS884X_P2SR_P			0x0534
543 
544 /* P3CR1 */
545 #define KS8842_P3CR1_P			0x0540
546 #define KS8842_P3CR2_P			0x0542
547 #define KS8842_P3VIDR_P			0x0544
548 #define KS8842_P3CR3_P			0x0546
549 #define KS8842_P3IRCR_P			0x0548
550 #define KS8842_P3ERCR_P			0x054A
551 
552 #define KS8842_PORT_1_CTRL_1		KS8842_P1CR1_P
553 #define KS8842_PORT_2_CTRL_1		KS8842_P2CR1_P
554 #define KS8842_PORT_3_CTRL_1		KS8842_P3CR1_P
555 
556 #define PORT_CTRL_ADDR(port, addr)		\
557 	(addr = KS8842_PORT_1_CTRL_1 + (port) *	\
558 		(KS8842_PORT_2_CTRL_1 - KS8842_PORT_1_CTRL_1))
559 
560 #define KS8842_PORT_CTRL_1_OFFSET	0x00
561 
562 #define PORT_BROADCAST_STORM		0x0080
563 #define PORT_DIFFSERV_ENABLE		0x0040
564 #define PORT_802_1P_ENABLE		0x0020
565 #define PORT_BASED_PRIORITY_MASK	0x0018
566 #define PORT_BASED_PRIORITY_BASE	0x0003
567 #define PORT_BASED_PRIORITY_SHIFT	3
568 #define PORT_BASED_PRIORITY_0		0x0000
569 #define PORT_BASED_PRIORITY_1		0x0008
570 #define PORT_BASED_PRIORITY_2		0x0010
571 #define PORT_BASED_PRIORITY_3		0x0018
572 #define PORT_INSERT_TAG			0x0004
573 #define PORT_REMOVE_TAG			0x0002
574 #define PORT_PRIO_QUEUE_ENABLE		0x0001
575 
576 #define KS8842_PORT_CTRL_2_OFFSET	0x02
577 
578 #define PORT_INGRESS_VLAN_FILTER	0x4000
579 #define PORT_DISCARD_NON_VID		0x2000
580 #define PORT_FORCE_FLOW_CTRL		0x1000
581 #define PORT_BACK_PRESSURE		0x0800
582 #define PORT_TX_ENABLE			0x0400
583 #define PORT_RX_ENABLE			0x0200
584 #define PORT_LEARN_DISABLE		0x0100
585 #define PORT_MIRROR_SNIFFER		0x0080
586 #define PORT_MIRROR_RX			0x0040
587 #define PORT_MIRROR_TX			0x0020
588 #define PORT_USER_PRIORITY_CEILING	0x0008
589 #define PORT_VLAN_MEMBERSHIP		0x0007
590 
591 #define KS8842_PORT_CTRL_VID_OFFSET	0x04
592 
593 #define PORT_DEFAULT_VID		0x0001
594 
595 #define KS8842_PORT_CTRL_3_OFFSET	0x06
596 
597 #define PORT_INGRESS_LIMIT_MODE		0x000C
598 #define PORT_INGRESS_ALL		0x0000
599 #define PORT_INGRESS_UNICAST		0x0004
600 #define PORT_INGRESS_MULTICAST		0x0008
601 #define PORT_INGRESS_BROADCAST		0x000C
602 #define PORT_COUNT_IFG			0x0002
603 #define PORT_COUNT_PREAMBLE		0x0001
604 
605 #define KS8842_PORT_IN_RATE_OFFSET	0x08
606 #define KS8842_PORT_OUT_RATE_OFFSET	0x0A
607 
608 #define PORT_PRIORITY_RATE		0x0F
609 #define PORT_PRIORITY_RATE_SHIFT	4
610 
611 #define KS884X_PORT_LINK_MD		0x10
612 
613 #define PORT_CABLE_10M_SHORT		0x8000
614 #define PORT_CABLE_DIAG_RESULT		0x6000
615 #define PORT_CABLE_STAT_NORMAL		0x0000
616 #define PORT_CABLE_STAT_OPEN		0x2000
617 #define PORT_CABLE_STAT_SHORT		0x4000
618 #define PORT_CABLE_STAT_FAILED		0x6000
619 #define PORT_START_CABLE_DIAG		0x1000
620 #define PORT_FORCE_LINK			0x0800
621 #define PORT_POWER_SAVING_DISABLE	0x0400
622 #define PORT_PHY_REMOTE_LOOPBACK	0x0200
623 #define PORT_CABLE_FAULT_COUNTER	0x01FF
624 
625 #define KS884X_PORT_CTRL_4_OFFSET	0x12
626 
627 #define PORT_LED_OFF			0x8000
628 #define PORT_TX_DISABLE			0x4000
629 #define PORT_AUTO_NEG_RESTART		0x2000
630 #define PORT_REMOTE_FAULT_DISABLE	0x1000
631 #define PORT_POWER_DOWN			0x0800
632 #define PORT_AUTO_MDIX_DISABLE		0x0400
633 #define PORT_FORCE_MDIX			0x0200
634 #define PORT_LOOPBACK			0x0100
635 #define PORT_AUTO_NEG_ENABLE		0x0080
636 #define PORT_FORCE_100_MBIT		0x0040
637 #define PORT_FORCE_FULL_DUPLEX		0x0020
638 #define PORT_AUTO_NEG_SYM_PAUSE		0x0010
639 #define PORT_AUTO_NEG_100BTX_FD		0x0008
640 #define PORT_AUTO_NEG_100BTX		0x0004
641 #define PORT_AUTO_NEG_10BT_FD		0x0002
642 #define PORT_AUTO_NEG_10BT		0x0001
643 
644 #define KS884X_PORT_STATUS_OFFSET	0x14
645 
646 #define PORT_HP_MDIX			0x8000
647 #define PORT_REVERSED_POLARITY		0x2000
648 #define PORT_RX_FLOW_CTRL		0x0800
649 #define PORT_TX_FLOW_CTRL		0x1000
650 #define PORT_STATUS_SPEED_100MBIT	0x0400
651 #define PORT_STATUS_FULL_DUPLEX		0x0200
652 #define PORT_REMOTE_FAULT		0x0100
653 #define PORT_MDIX_STATUS		0x0080
654 #define PORT_AUTO_NEG_COMPLETE		0x0040
655 #define PORT_STATUS_LINK_GOOD		0x0020
656 #define PORT_REMOTE_SYM_PAUSE		0x0010
657 #define PORT_REMOTE_100BTX_FD		0x0008
658 #define PORT_REMOTE_100BTX		0x0004
659 #define PORT_REMOTE_10BT_FD		0x0002
660 #define PORT_REMOTE_10BT		0x0001
661 
662 /*
663 #define STATIC_MAC_TABLE_ADDR		00-0000FFFF-FFFFFFFF
664 #define STATIC_MAC_TABLE_FWD_PORTS	00-00070000-00000000
665 #define STATIC_MAC_TABLE_VALID		00-00080000-00000000
666 #define STATIC_MAC_TABLE_OVERRIDE	00-00100000-00000000
667 #define STATIC_MAC_TABLE_USE_FID	00-00200000-00000000
668 #define STATIC_MAC_TABLE_FID		00-03C00000-00000000
669 */
670 
671 #define STATIC_MAC_TABLE_ADDR		0x0000FFFF
672 #define STATIC_MAC_TABLE_FWD_PORTS	0x00070000
673 #define STATIC_MAC_TABLE_VALID		0x00080000
674 #define STATIC_MAC_TABLE_OVERRIDE	0x00100000
675 #define STATIC_MAC_TABLE_USE_FID	0x00200000
676 #define STATIC_MAC_TABLE_FID		0x03C00000
677 
678 #define STATIC_MAC_FWD_PORTS_SHIFT	16
679 #define STATIC_MAC_FID_SHIFT		22
680 
681 /*
682 #define VLAN_TABLE_VID			00-00000000-00000FFF
683 #define VLAN_TABLE_FID			00-00000000-0000F000
684 #define VLAN_TABLE_MEMBERSHIP		00-00000000-00070000
685 #define VLAN_TABLE_VALID		00-00000000-00080000
686 */
687 
688 #define VLAN_TABLE_VID			0x00000FFF
689 #define VLAN_TABLE_FID			0x0000F000
690 #define VLAN_TABLE_MEMBERSHIP		0x00070000
691 #define VLAN_TABLE_VALID		0x00080000
692 
693 #define VLAN_TABLE_FID_SHIFT		12
694 #define VLAN_TABLE_MEMBERSHIP_SHIFT	16
695 
696 /*
697 #define DYNAMIC_MAC_TABLE_ADDR		00-0000FFFF-FFFFFFFF
698 #define DYNAMIC_MAC_TABLE_FID		00-000F0000-00000000
699 #define DYNAMIC_MAC_TABLE_SRC_PORT	00-00300000-00000000
700 #define DYNAMIC_MAC_TABLE_TIMESTAMP	00-00C00000-00000000
701 #define DYNAMIC_MAC_TABLE_ENTRIES	03-FF000000-00000000
702 #define DYNAMIC_MAC_TABLE_MAC_EMPTY	04-00000000-00000000
703 #define DYNAMIC_MAC_TABLE_RESERVED	78-00000000-00000000
704 #define DYNAMIC_MAC_TABLE_NOT_READY	80-00000000-00000000
705 */
706 
707 #define DYNAMIC_MAC_TABLE_ADDR		0x0000FFFF
708 #define DYNAMIC_MAC_TABLE_FID		0x000F0000
709 #define DYNAMIC_MAC_TABLE_SRC_PORT	0x00300000
710 #define DYNAMIC_MAC_TABLE_TIMESTAMP	0x00C00000
711 #define DYNAMIC_MAC_TABLE_ENTRIES	0xFF000000
712 
713 #define DYNAMIC_MAC_TABLE_ENTRIES_H	0x03
714 #define DYNAMIC_MAC_TABLE_MAC_EMPTY	0x04
715 #define DYNAMIC_MAC_TABLE_RESERVED	0x78
716 #define DYNAMIC_MAC_TABLE_NOT_READY	0x80
717 
718 #define DYNAMIC_MAC_FID_SHIFT		16
719 #define DYNAMIC_MAC_SRC_PORT_SHIFT	20
720 #define DYNAMIC_MAC_TIMESTAMP_SHIFT	22
721 #define DYNAMIC_MAC_ENTRIES_SHIFT	24
722 #define DYNAMIC_MAC_ENTRIES_H_SHIFT	8
723 
724 /*
725 #define MIB_COUNTER_VALUE		00-00000000-3FFFFFFF
726 #define MIB_COUNTER_VALID		00-00000000-40000000
727 #define MIB_COUNTER_OVERFLOW		00-00000000-80000000
728 */
729 
730 #define MIB_COUNTER_VALUE		0x3FFFFFFF
731 #define MIB_COUNTER_VALID		0x40000000
732 #define MIB_COUNTER_OVERFLOW		0x80000000
733 
734 #define MIB_PACKET_DROPPED		0x0000FFFF
735 
736 #define KS_MIB_PACKET_DROPPED_TX_0	0x100
737 #define KS_MIB_PACKET_DROPPED_TX_1	0x101
738 #define KS_MIB_PACKET_DROPPED_TX	0x102
739 #define KS_MIB_PACKET_DROPPED_RX_0	0x103
740 #define KS_MIB_PACKET_DROPPED_RX_1	0x104
741 #define KS_MIB_PACKET_DROPPED_RX	0x105
742 
743 /* Change default LED mode. */
744 #define SET_DEFAULT_LED			LED_SPEED_DUPLEX_ACT
745 
746 #define MAC_ADDR_ORDER(i)		(ETH_ALEN - 1 - (i))
747 
748 #define MAX_ETHERNET_BODY_SIZE		1500
749 #define ETHERNET_HEADER_SIZE		(14 + VLAN_HLEN)
750 
751 #define MAX_ETHERNET_PACKET_SIZE	\
752 	(MAX_ETHERNET_BODY_SIZE + ETHERNET_HEADER_SIZE)
753 
754 #define REGULAR_RX_BUF_SIZE		(MAX_ETHERNET_PACKET_SIZE + 4)
755 #define MAX_RX_BUF_SIZE			(1912 + 4)
756 
757 #define ADDITIONAL_ENTRIES		16
758 #define MAX_MULTICAST_LIST		32
759 
760 #define HW_MULTICAST_SIZE		8
761 
762 #define HW_TO_DEV_PORT(port)		(port - 1)
763 
764 enum {
765 	media_connected,
766 	media_disconnected
767 };
768 
769 enum {
770 	OID_COUNTER_UNKOWN,
771 
772 	OID_COUNTER_FIRST,
773 
774 	/* total transmit errors */
775 	OID_COUNTER_XMIT_ERROR,
776 
777 	/* total receive errors */
778 	OID_COUNTER_RCV_ERROR,
779 
780 	OID_COUNTER_LAST
781 };
782 
783 /*
784  * Hardware descriptor definitions
785  */
786 
787 #define DESC_ALIGNMENT			16
788 #define BUFFER_ALIGNMENT		8
789 
790 #define NUM_OF_RX_DESC			64
791 #define NUM_OF_TX_DESC			64
792 
793 #define KS_DESC_RX_FRAME_LEN		0x000007FF
794 #define KS_DESC_RX_FRAME_TYPE		0x00008000
795 #define KS_DESC_RX_ERROR_CRC		0x00010000
796 #define KS_DESC_RX_ERROR_RUNT		0x00020000
797 #define KS_DESC_RX_ERROR_TOO_LONG	0x00040000
798 #define KS_DESC_RX_ERROR_PHY		0x00080000
799 #define KS884X_DESC_RX_PORT_MASK	0x00300000
800 #define KS_DESC_RX_MULTICAST		0x01000000
801 #define KS_DESC_RX_ERROR		0x02000000
802 #define KS_DESC_RX_ERROR_CSUM_UDP	0x04000000
803 #define KS_DESC_RX_ERROR_CSUM_TCP	0x08000000
804 #define KS_DESC_RX_ERROR_CSUM_IP	0x10000000
805 #define KS_DESC_RX_LAST			0x20000000
806 #define KS_DESC_RX_FIRST		0x40000000
807 #define KS_DESC_RX_ERROR_COND		\
808 	(KS_DESC_RX_ERROR_CRC |		\
809 	KS_DESC_RX_ERROR_RUNT |		\
810 	KS_DESC_RX_ERROR_PHY |		\
811 	KS_DESC_RX_ERROR_TOO_LONG)
812 
813 #define KS_DESC_HW_OWNED		0x80000000
814 
815 #define KS_DESC_BUF_SIZE		0x000007FF
816 #define KS884X_DESC_TX_PORT_MASK	0x00300000
817 #define KS_DESC_END_OF_RING		0x02000000
818 #define KS_DESC_TX_CSUM_GEN_UDP		0x04000000
819 #define KS_DESC_TX_CSUM_GEN_TCP		0x08000000
820 #define KS_DESC_TX_CSUM_GEN_IP		0x10000000
821 #define KS_DESC_TX_LAST			0x20000000
822 #define KS_DESC_TX_FIRST		0x40000000
823 #define KS_DESC_TX_INTERRUPT		0x80000000
824 
825 #define KS_DESC_PORT_SHIFT		20
826 
827 #define KS_DESC_RX_MASK			(KS_DESC_BUF_SIZE)
828 
829 #define KS_DESC_TX_MASK			\
830 	(KS_DESC_TX_INTERRUPT |		\
831 	KS_DESC_TX_FIRST |		\
832 	KS_DESC_TX_LAST |		\
833 	KS_DESC_TX_CSUM_GEN_IP |	\
834 	KS_DESC_TX_CSUM_GEN_TCP |	\
835 	KS_DESC_TX_CSUM_GEN_UDP |	\
836 	KS_DESC_BUF_SIZE)
837 
838 struct ksz_desc_rx_stat {
839 #ifdef __BIG_ENDIAN_BITFIELD
840 	u32 hw_owned:1;
841 	u32 first_desc:1;
842 	u32 last_desc:1;
843 	u32 csum_err_ip:1;
844 	u32 csum_err_tcp:1;
845 	u32 csum_err_udp:1;
846 	u32 error:1;
847 	u32 multicast:1;
848 	u32 src_port:4;
849 	u32 err_phy:1;
850 	u32 err_too_long:1;
851 	u32 err_runt:1;
852 	u32 err_crc:1;
853 	u32 frame_type:1;
854 	u32 reserved1:4;
855 	u32 frame_len:11;
856 #else
857 	u32 frame_len:11;
858 	u32 reserved1:4;
859 	u32 frame_type:1;
860 	u32 err_crc:1;
861 	u32 err_runt:1;
862 	u32 err_too_long:1;
863 	u32 err_phy:1;
864 	u32 src_port:4;
865 	u32 multicast:1;
866 	u32 error:1;
867 	u32 csum_err_udp:1;
868 	u32 csum_err_tcp:1;
869 	u32 csum_err_ip:1;
870 	u32 last_desc:1;
871 	u32 first_desc:1;
872 	u32 hw_owned:1;
873 #endif
874 };
875 
876 struct ksz_desc_tx_stat {
877 #ifdef __BIG_ENDIAN_BITFIELD
878 	u32 hw_owned:1;
879 	u32 reserved1:31;
880 #else
881 	u32 reserved1:31;
882 	u32 hw_owned:1;
883 #endif
884 };
885 
886 struct ksz_desc_rx_buf {
887 #ifdef __BIG_ENDIAN_BITFIELD
888 	u32 reserved4:6;
889 	u32 end_of_ring:1;
890 	u32 reserved3:14;
891 	u32 buf_size:11;
892 #else
893 	u32 buf_size:11;
894 	u32 reserved3:14;
895 	u32 end_of_ring:1;
896 	u32 reserved4:6;
897 #endif
898 };
899 
900 struct ksz_desc_tx_buf {
901 #ifdef __BIG_ENDIAN_BITFIELD
902 	u32 intr:1;
903 	u32 first_seg:1;
904 	u32 last_seg:1;
905 	u32 csum_gen_ip:1;
906 	u32 csum_gen_tcp:1;
907 	u32 csum_gen_udp:1;
908 	u32 end_of_ring:1;
909 	u32 reserved4:1;
910 	u32 dest_port:4;
911 	u32 reserved3:9;
912 	u32 buf_size:11;
913 #else
914 	u32 buf_size:11;
915 	u32 reserved3:9;
916 	u32 dest_port:4;
917 	u32 reserved4:1;
918 	u32 end_of_ring:1;
919 	u32 csum_gen_udp:1;
920 	u32 csum_gen_tcp:1;
921 	u32 csum_gen_ip:1;
922 	u32 last_seg:1;
923 	u32 first_seg:1;
924 	u32 intr:1;
925 #endif
926 };
927 
928 union desc_stat {
929 	struct ksz_desc_rx_stat rx;
930 	struct ksz_desc_tx_stat tx;
931 	u32 data;
932 };
933 
934 union desc_buf {
935 	struct ksz_desc_rx_buf rx;
936 	struct ksz_desc_tx_buf tx;
937 	u32 data;
938 };
939 
940 /**
941  * struct ksz_hw_desc - Hardware descriptor data structure
942  * @ctrl:	Descriptor control value.
943  * @buf:	Descriptor buffer value.
944  * @addr:	Physical address of memory buffer.
945  * @next:	Pointer to next hardware descriptor.
946  */
947 struct ksz_hw_desc {
948 	union desc_stat ctrl;
949 	union desc_buf buf;
950 	u32 addr;
951 	u32 next;
952 };
953 
954 /**
955  * struct ksz_sw_desc - Software descriptor data structure
956  * @ctrl:	Descriptor control value.
957  * @buf:	Descriptor buffer value.
958  * @buf_size:	Current buffers size value in hardware descriptor.
959  */
960 struct ksz_sw_desc {
961 	union desc_stat ctrl;
962 	union desc_buf buf;
963 	u32 buf_size;
964 };
965 
966 /**
967  * struct ksz_dma_buf - OS dependent DMA buffer data structure
968  * @skb:	Associated socket buffer.
969  * @dma:	Associated physical DMA address.
970  * len:		Actual len used.
971  */
972 struct ksz_dma_buf {
973 	struct sk_buff *skb;
974 	dma_addr_t dma;
975 	int len;
976 };
977 
978 /**
979  * struct ksz_desc - Descriptor structure
980  * @phw:	Hardware descriptor pointer to uncached physical memory.
981  * @sw:		Cached memory to hold hardware descriptor values for
982  * 		manipulation.
983  * @dma_buf:	Operating system dependent data structure to hold physical
984  * 		memory buffer allocation information.
985  */
986 struct ksz_desc {
987 	struct ksz_hw_desc *phw;
988 	struct ksz_sw_desc sw;
989 	struct ksz_dma_buf dma_buf;
990 };
991 
992 #define DMA_BUFFER(desc)  ((struct ksz_dma_buf *)(&(desc)->dma_buf))
993 
994 /**
995  * struct ksz_desc_info - Descriptor information data structure
996  * @ring:	First descriptor in the ring.
997  * @cur:	Current descriptor being manipulated.
998  * @ring_virt:	First hardware descriptor in the ring.
999  * @ring_phys:	The physical address of the first descriptor of the ring.
1000  * @size:	Size of hardware descriptor.
1001  * @alloc:	Number of descriptors allocated.
1002  * @avail:	Number of descriptors available for use.
1003  * @last:	Index for last descriptor released to hardware.
1004  * @next:	Index for next descriptor available for use.
1005  * @mask:	Mask for index wrapping.
1006  */
1007 struct ksz_desc_info {
1008 	struct ksz_desc *ring;
1009 	struct ksz_desc *cur;
1010 	struct ksz_hw_desc *ring_virt;
1011 	u32 ring_phys;
1012 	int size;
1013 	int alloc;
1014 	int avail;
1015 	int last;
1016 	int next;
1017 	int mask;
1018 };
1019 
1020 /*
1021  * KSZ8842 switch definitions
1022  */
1023 
1024 enum {
1025 	TABLE_STATIC_MAC = 0,
1026 	TABLE_VLAN,
1027 	TABLE_DYNAMIC_MAC,
1028 	TABLE_MIB
1029 };
1030 
1031 #define LEARNED_MAC_TABLE_ENTRIES	1024
1032 #define STATIC_MAC_TABLE_ENTRIES	8
1033 
1034 /**
1035  * struct ksz_mac_table - Static MAC table data structure
1036  * @mac_addr:	MAC address to filter.
1037  * @vid:	VID value.
1038  * @fid:	FID value.
1039  * @ports:	Port membership.
1040  * @override:	Override setting.
1041  * @use_fid:	FID use setting.
1042  * @valid:	Valid setting indicating the entry is being used.
1043  */
1044 struct ksz_mac_table {
1045 	u8 mac_addr[ETH_ALEN];
1046 	u16 vid;
1047 	u8 fid;
1048 	u8 ports;
1049 	u8 override:1;
1050 	u8 use_fid:1;
1051 	u8 valid:1;
1052 };
1053 
1054 #define VLAN_TABLE_ENTRIES		16
1055 
1056 /**
1057  * struct ksz_vlan_table - VLAN table data structure
1058  * @vid:	VID value.
1059  * @fid:	FID value.
1060  * @member:	Port membership.
1061  */
1062 struct ksz_vlan_table {
1063 	u16 vid;
1064 	u8 fid;
1065 	u8 member;
1066 };
1067 
1068 #define DIFFSERV_ENTRIES		64
1069 #define PRIO_802_1P_ENTRIES		8
1070 #define PRIO_QUEUES			4
1071 
1072 #define SWITCH_PORT_NUM			2
1073 #define TOTAL_PORT_NUM			(SWITCH_PORT_NUM + 1)
1074 #define HOST_MASK			(1 << SWITCH_PORT_NUM)
1075 #define PORT_MASK			7
1076 
1077 #define MAIN_PORT			0
1078 #define OTHER_PORT			1
1079 #define HOST_PORT			SWITCH_PORT_NUM
1080 
1081 #define PORT_COUNTER_NUM		0x20
1082 #define TOTAL_PORT_COUNTER_NUM		(PORT_COUNTER_NUM + 2)
1083 
1084 #define MIB_COUNTER_RX_LO_PRIORITY	0x00
1085 #define MIB_COUNTER_RX_HI_PRIORITY	0x01
1086 #define MIB_COUNTER_RX_UNDERSIZE	0x02
1087 #define MIB_COUNTER_RX_FRAGMENT		0x03
1088 #define MIB_COUNTER_RX_OVERSIZE		0x04
1089 #define MIB_COUNTER_RX_JABBER		0x05
1090 #define MIB_COUNTER_RX_SYMBOL_ERR	0x06
1091 #define MIB_COUNTER_RX_CRC_ERR		0x07
1092 #define MIB_COUNTER_RX_ALIGNMENT_ERR	0x08
1093 #define MIB_COUNTER_RX_CTRL_8808	0x09
1094 #define MIB_COUNTER_RX_PAUSE		0x0A
1095 #define MIB_COUNTER_RX_BROADCAST	0x0B
1096 #define MIB_COUNTER_RX_MULTICAST	0x0C
1097 #define MIB_COUNTER_RX_UNICAST		0x0D
1098 #define MIB_COUNTER_RX_OCTET_64		0x0E
1099 #define MIB_COUNTER_RX_OCTET_65_127	0x0F
1100 #define MIB_COUNTER_RX_OCTET_128_255	0x10
1101 #define MIB_COUNTER_RX_OCTET_256_511	0x11
1102 #define MIB_COUNTER_RX_OCTET_512_1023	0x12
1103 #define MIB_COUNTER_RX_OCTET_1024_1522	0x13
1104 #define MIB_COUNTER_TX_LO_PRIORITY	0x14
1105 #define MIB_COUNTER_TX_HI_PRIORITY	0x15
1106 #define MIB_COUNTER_TX_LATE_COLLISION	0x16
1107 #define MIB_COUNTER_TX_PAUSE		0x17
1108 #define MIB_COUNTER_TX_BROADCAST	0x18
1109 #define MIB_COUNTER_TX_MULTICAST	0x19
1110 #define MIB_COUNTER_TX_UNICAST		0x1A
1111 #define MIB_COUNTER_TX_DEFERRED		0x1B
1112 #define MIB_COUNTER_TX_TOTAL_COLLISION	0x1C
1113 #define MIB_COUNTER_TX_EXCESS_COLLISION	0x1D
1114 #define MIB_COUNTER_TX_SINGLE_COLLISION	0x1E
1115 #define MIB_COUNTER_TX_MULTI_COLLISION	0x1F
1116 
1117 #define MIB_COUNTER_RX_DROPPED_PACKET	0x20
1118 #define MIB_COUNTER_TX_DROPPED_PACKET	0x21
1119 
1120 /**
1121  * struct ksz_port_mib - Port MIB data structure
1122  * @cnt_ptr:	Current pointer to MIB counter index.
1123  * @link_down:	Indication the link has just gone down.
1124  * @state:	Connection status of the port.
1125  * @mib_start:	The starting counter index.  Some ports do not start at 0.
1126  * @counter:	64-bit MIB counter value.
1127  * @dropped:	Temporary buffer to remember last read packet dropped values.
1128  *
1129  * MIB counters needs to be read periodically so that counters do not get
1130  * overflowed and give incorrect values.  A right balance is needed to
1131  * satisfy this condition and not waste too much CPU time.
1132  *
1133  * It is pointless to read MIB counters when the port is disconnected.  The
1134  * @state provides the connection status so that MIB counters are read only
1135  * when the port is connected.  The @link_down indicates the port is just
1136  * disconnected so that all MIB counters are read one last time to update the
1137  * information.
1138  */
1139 struct ksz_port_mib {
1140 	u8 cnt_ptr;
1141 	u8 link_down;
1142 	u8 state;
1143 	u8 mib_start;
1144 
1145 	u64 counter[TOTAL_PORT_COUNTER_NUM];
1146 	u32 dropped[2];
1147 };
1148 
1149 /**
1150  * struct ksz_port_cfg - Port configuration data structure
1151  * @vid:	VID value.
1152  * @member:	Port membership.
1153  * @port_prio:	Port priority.
1154  * @rx_rate:	Receive priority rate.
1155  * @tx_rate:	Transmit priority rate.
1156  * @stp_state:	Current Spanning Tree Protocol state.
1157  */
1158 struct ksz_port_cfg {
1159 	u16 vid;
1160 	u8 member;
1161 	u8 port_prio;
1162 	u32 rx_rate[PRIO_QUEUES];
1163 	u32 tx_rate[PRIO_QUEUES];
1164 	int stp_state;
1165 };
1166 
1167 /**
1168  * struct ksz_switch - KSZ8842 switch data structure
1169  * @mac_table:	MAC table entries information.
1170  * @vlan_table:	VLAN table entries information.
1171  * @port_cfg:	Port configuration information.
1172  * @diffserv:	DiffServ priority settings.  Possible values from 6-bit of ToS
1173  * 		(bit7 ~ bit2) field.
1174  * @p_802_1p:	802.1P priority settings.  Possible values from 3-bit of 802.1p
1175  * 		Tag priority field.
1176  * @br_addr:	Bridge address.  Used for STP.
1177  * @other_addr:	Other MAC address.  Used for multiple network device mode.
1178  * @broad_per:	Broadcast storm percentage.
1179  * @member:	Current port membership.  Used for STP.
1180  */
1181 struct ksz_switch {
1182 	struct ksz_mac_table mac_table[STATIC_MAC_TABLE_ENTRIES];
1183 	struct ksz_vlan_table vlan_table[VLAN_TABLE_ENTRIES];
1184 	struct ksz_port_cfg port_cfg[TOTAL_PORT_NUM];
1185 
1186 	u8 diffserv[DIFFSERV_ENTRIES];
1187 	u8 p_802_1p[PRIO_802_1P_ENTRIES];
1188 
1189 	u8 br_addr[ETH_ALEN];
1190 	u8 other_addr[ETH_ALEN];
1191 
1192 	u8 broad_per;
1193 	u8 member;
1194 };
1195 
1196 #define TX_RATE_UNIT			10000
1197 
1198 /**
1199  * struct ksz_port_info - Port information data structure
1200  * @state:	Connection status of the port.
1201  * @tx_rate:	Transmit rate divided by 10000 to get Mbit.
1202  * @duplex:	Duplex mode.
1203  * @advertised:	Advertised auto-negotiation setting.  Used to determine link.
1204  * @partner:	Auto-negotiation partner setting.  Used to determine link.
1205  * @port_id:	Port index to access actual hardware register.
1206  * @pdev:	Pointer to OS dependent network device.
1207  */
1208 struct ksz_port_info {
1209 	uint state;
1210 	uint tx_rate;
1211 	u8 duplex;
1212 	u8 advertised;
1213 	u8 partner;
1214 	u8 port_id;
1215 	void *pdev;
1216 };
1217 
1218 #define MAX_TX_HELD_SIZE		52000
1219 
1220 /* Hardware features and bug fixes. */
1221 #define LINK_INT_WORKING		(1 << 0)
1222 #define SMALL_PACKET_TX_BUG		(1 << 1)
1223 #define HALF_DUPLEX_SIGNAL_BUG		(1 << 2)
1224 #define RX_HUGE_FRAME			(1 << 4)
1225 #define STP_SUPPORT			(1 << 8)
1226 
1227 /* Software overrides. */
1228 #define PAUSE_FLOW_CTRL			(1 << 0)
1229 #define FAST_AGING			(1 << 1)
1230 
1231 /**
1232  * struct ksz_hw - KSZ884X hardware data structure
1233  * @io:			Virtual address assigned.
1234  * @ksz_switch:		Pointer to KSZ8842 switch.
1235  * @port_info:		Port information.
1236  * @port_mib:		Port MIB information.
1237  * @dev_count:		Number of network devices this hardware supports.
1238  * @dst_ports:		Destination ports in switch for transmission.
1239  * @id:			Hardware ID.  Used for display only.
1240  * @mib_cnt:		Number of MIB counters this hardware has.
1241  * @mib_port_cnt:	Number of ports with MIB counters.
1242  * @tx_cfg:		Cached transmit control settings.
1243  * @rx_cfg:		Cached receive control settings.
1244  * @intr_mask:		Current interrupt mask.
1245  * @intr_set:		Current interrup set.
1246  * @intr_blocked:	Interrupt blocked.
1247  * @rx_desc_info:	Receive descriptor information.
1248  * @tx_desc_info:	Transmit descriptor information.
1249  * @tx_int_cnt:		Transmit interrupt count.  Used for TX optimization.
1250  * @tx_int_mask:	Transmit interrupt mask.  Used for TX optimization.
1251  * @tx_size:		Transmit data size.  Used for TX optimization.
1252  * 			The maximum is defined by MAX_TX_HELD_SIZE.
1253  * @perm_addr:		Permanent MAC address.
1254  * @override_addr:	Overridden MAC address.
1255  * @address:		Additional MAC address entries.
1256  * @addr_list_size:	Additional MAC address list size.
1257  * @mac_override:	Indication of MAC address overridden.
1258  * @promiscuous:	Counter to keep track of promiscuous mode set.
1259  * @all_multi:		Counter to keep track of all multicast mode set.
1260  * @multi_list:		Multicast address entries.
1261  * @multi_bits:		Cached multicast hash table settings.
1262  * @multi_list_size:	Multicast address list size.
1263  * @enabled:		Indication of hardware enabled.
1264  * @rx_stop:		Indication of receive process stop.
1265  * @features:		Hardware features to enable.
1266  * @overrides:		Hardware features to override.
1267  * @parent:		Pointer to parent, network device private structure.
1268  */
1269 struct ksz_hw {
1270 	void __iomem *io;
1271 
1272 	struct ksz_switch *ksz_switch;
1273 	struct ksz_port_info port_info[SWITCH_PORT_NUM];
1274 	struct ksz_port_mib port_mib[TOTAL_PORT_NUM];
1275 	int dev_count;
1276 	int dst_ports;
1277 	int id;
1278 	int mib_cnt;
1279 	int mib_port_cnt;
1280 
1281 	u32 tx_cfg;
1282 	u32 rx_cfg;
1283 	u32 intr_mask;
1284 	u32 intr_set;
1285 	uint intr_blocked;
1286 
1287 	struct ksz_desc_info rx_desc_info;
1288 	struct ksz_desc_info tx_desc_info;
1289 
1290 	int tx_int_cnt;
1291 	int tx_int_mask;
1292 	int tx_size;
1293 
1294 	u8 perm_addr[ETH_ALEN];
1295 	u8 override_addr[ETH_ALEN];
1296 	u8 address[ADDITIONAL_ENTRIES][ETH_ALEN];
1297 	u8 addr_list_size;
1298 	u8 mac_override;
1299 	u8 promiscuous;
1300 	u8 all_multi;
1301 	u8 multi_list[MAX_MULTICAST_LIST][ETH_ALEN];
1302 	u8 multi_bits[HW_MULTICAST_SIZE];
1303 	u8 multi_list_size;
1304 
1305 	u8 enabled;
1306 	u8 rx_stop;
1307 	u8 reserved2[1];
1308 
1309 	uint features;
1310 	uint overrides;
1311 
1312 	void *parent;
1313 };
1314 
1315 enum {
1316 	PHY_NO_FLOW_CTRL,
1317 	PHY_FLOW_CTRL,
1318 	PHY_TX_ONLY,
1319 	PHY_RX_ONLY
1320 };
1321 
1322 /**
1323  * struct ksz_port - Virtual port data structure
1324  * @duplex:		Duplex mode setting.  1 for half duplex, 2 for full
1325  * 			duplex, and 0 for auto, which normally results in full
1326  * 			duplex.
1327  * @speed:		Speed setting.  10 for 10 Mbit, 100 for 100 Mbit, and
1328  * 			0 for auto, which normally results in 100 Mbit.
1329  * @force_link:		Force link setting.  0 for auto-negotiation, and 1 for
1330  * 			force.
1331  * @flow_ctrl:		Flow control setting.  PHY_NO_FLOW_CTRL for no flow
1332  * 			control, and PHY_FLOW_CTRL for flow control.
1333  * 			PHY_TX_ONLY and PHY_RX_ONLY are not supported for 100
1334  * 			Mbit PHY.
1335  * @first_port:		Index of first port this port supports.
1336  * @mib_port_cnt:	Number of ports with MIB counters.
1337  * @port_cnt:		Number of ports this port supports.
1338  * @counter:		Port statistics counter.
1339  * @hw:			Pointer to hardware structure.
1340  * @linked:		Pointer to port information linked to this port.
1341  */
1342 struct ksz_port {
1343 	u8 duplex;
1344 	u8 speed;
1345 	u8 force_link;
1346 	u8 flow_ctrl;
1347 
1348 	int first_port;
1349 	int mib_port_cnt;
1350 	int port_cnt;
1351 	u64 counter[OID_COUNTER_LAST];
1352 
1353 	struct ksz_hw *hw;
1354 	struct ksz_port_info *linked;
1355 };
1356 
1357 /**
1358  * struct ksz_timer_info - Timer information data structure
1359  * @timer:	Kernel timer.
1360  * @cnt:	Running timer counter.
1361  * @max:	Number of times to run timer; -1 for infinity.
1362  * @period:	Timer period in jiffies.
1363  */
1364 struct ksz_timer_info {
1365 	struct timer_list timer;
1366 	int cnt;
1367 	int max;
1368 	int period;
1369 };
1370 
1371 /**
1372  * struct ksz_shared_mem - OS dependent shared memory data structure
1373  * @dma_addr:	Physical DMA address allocated.
1374  * @alloc_size:	Allocation size.
1375  * @phys:	Actual physical address used.
1376  * @alloc_virt:	Virtual address allocated.
1377  * @virt:	Actual virtual address used.
1378  */
1379 struct ksz_shared_mem {
1380 	dma_addr_t dma_addr;
1381 	uint alloc_size;
1382 	uint phys;
1383 	u8 *alloc_virt;
1384 	u8 *virt;
1385 };
1386 
1387 /**
1388  * struct ksz_counter_info - OS dependent counter information data structure
1389  * @counter:	Wait queue to wakeup after counters are read.
1390  * @time:	Next time in jiffies to read counter.
1391  * @read:	Indication of counters read in full or not.
1392  */
1393 struct ksz_counter_info {
1394 	wait_queue_head_t counter;
1395 	unsigned long time;
1396 	int read;
1397 };
1398 
1399 /**
1400  * struct dev_info - Network device information data structure
1401  * @dev:		Pointer to network device.
1402  * @pdev:		Pointer to PCI device.
1403  * @hw:			Hardware structure.
1404  * @desc_pool:		Physical memory used for descriptor pool.
1405  * @hwlock:		Spinlock to prevent hardware from accessing.
1406  * @lock:		Mutex lock to prevent device from accessing.
1407  * @dev_rcv:		Receive process function used.
1408  * @last_skb:		Socket buffer allocated for descriptor rx fragments.
1409  * @skb_index:		Buffer index for receiving fragments.
1410  * @skb_len:		Buffer length for receiving fragments.
1411  * @mib_read:		Workqueue to read MIB counters.
1412  * @mib_timer_info:	Timer to read MIB counters.
1413  * @counter:		Used for MIB reading.
1414  * @mtu:		Current MTU used.  The default is REGULAR_RX_BUF_SIZE;
1415  * 			the maximum is MAX_RX_BUF_SIZE.
1416  * @opened:		Counter to keep track of device open.
1417  * @rx_tasklet:		Receive processing tasklet.
1418  * @tx_tasklet:		Transmit processing tasklet.
1419  * @wol_enable:		Wake-on-LAN enable set by ethtool.
1420  * @wol_support:	Wake-on-LAN support used by ethtool.
1421  * @pme_wait:		Used for KSZ8841 power management.
1422  */
1423 struct dev_info {
1424 	struct net_device *dev;
1425 	struct pci_dev *pdev;
1426 
1427 	struct ksz_hw hw;
1428 	struct ksz_shared_mem desc_pool;
1429 
1430 	spinlock_t hwlock;
1431 	struct mutex lock;
1432 
1433 	int (*dev_rcv)(struct dev_info *);
1434 
1435 	struct sk_buff *last_skb;
1436 	int skb_index;
1437 	int skb_len;
1438 
1439 	struct work_struct mib_read;
1440 	struct ksz_timer_info mib_timer_info;
1441 	struct ksz_counter_info counter[TOTAL_PORT_NUM];
1442 
1443 	int mtu;
1444 	int opened;
1445 
1446 	struct tasklet_struct rx_tasklet;
1447 	struct tasklet_struct tx_tasklet;
1448 
1449 	int wol_enable;
1450 	int wol_support;
1451 	unsigned long pme_wait;
1452 };
1453 
1454 /**
1455  * struct dev_priv - Network device private data structure
1456  * @adapter:		Adapter device information.
1457  * @port:		Port information.
1458  * @monitor_time_info:	Timer to monitor ports.
1459  * @proc_sem:		Semaphore for proc accessing.
1460  * @id:			Device ID.
1461  * @mii_if:		MII interface information.
1462  * @advertising:	Temporary variable to store advertised settings.
1463  * @msg_enable:		The message flags controlling driver output.
1464  * @media_state:	The connection status of the device.
1465  * @multicast:		The all multicast state of the device.
1466  * @promiscuous:	The promiscuous state of the device.
1467  */
1468 struct dev_priv {
1469 	struct dev_info *adapter;
1470 	struct ksz_port port;
1471 	struct ksz_timer_info monitor_timer_info;
1472 
1473 	struct semaphore proc_sem;
1474 	int id;
1475 
1476 	struct mii_if_info mii_if;
1477 	u32 advertising;
1478 
1479 	u32 msg_enable;
1480 	int media_state;
1481 	int multicast;
1482 	int promiscuous;
1483 };
1484 
1485 #define DRV_NAME		"KSZ884X PCI"
1486 #define DEVICE_NAME		"KSZ884x PCI"
1487 #define DRV_VERSION		"1.0.0"
1488 #define DRV_RELDATE		"Feb 8, 2010"
1489 
1490 static char version[] =
1491 	"Micrel " DEVICE_NAME " " DRV_VERSION " (" DRV_RELDATE ")";
1492 
1493 static u8 DEFAULT_MAC_ADDRESS[] = { 0x00, 0x10, 0xA1, 0x88, 0x42, 0x01 };
1494 
1495 /*
1496  * Interrupt processing primary routines
1497  */
1498 
1499 static inline void hw_ack_intr(struct ksz_hw *hw, uint interrupt)
1500 {
1501 	writel(interrupt, hw->io + KS884X_INTERRUPTS_STATUS);
1502 }
1503 
1504 static inline void hw_dis_intr(struct ksz_hw *hw)
1505 {
1506 	hw->intr_blocked = hw->intr_mask;
1507 	writel(0, hw->io + KS884X_INTERRUPTS_ENABLE);
1508 	hw->intr_set = readl(hw->io + KS884X_INTERRUPTS_ENABLE);
1509 }
1510 
1511 static inline void hw_set_intr(struct ksz_hw *hw, uint interrupt)
1512 {
1513 	hw->intr_set = interrupt;
1514 	writel(interrupt, hw->io + KS884X_INTERRUPTS_ENABLE);
1515 }
1516 
1517 static inline void hw_ena_intr(struct ksz_hw *hw)
1518 {
1519 	hw->intr_blocked = 0;
1520 	hw_set_intr(hw, hw->intr_mask);
1521 }
1522 
1523 static inline void hw_dis_intr_bit(struct ksz_hw *hw, uint bit)
1524 {
1525 	hw->intr_mask &= ~(bit);
1526 }
1527 
1528 static inline void hw_turn_off_intr(struct ksz_hw *hw, uint interrupt)
1529 {
1530 	u32 read_intr;
1531 
1532 	read_intr = readl(hw->io + KS884X_INTERRUPTS_ENABLE);
1533 	hw->intr_set = read_intr & ~interrupt;
1534 	writel(hw->intr_set, hw->io + KS884X_INTERRUPTS_ENABLE);
1535 	hw_dis_intr_bit(hw, interrupt);
1536 }
1537 
1538 /**
1539  * hw_turn_on_intr - turn on specified interrupts
1540  * @hw: 	The hardware instance.
1541  * @bit:	The interrupt bits to be on.
1542  *
1543  * This routine turns on the specified interrupts in the interrupt mask so that
1544  * those interrupts will be enabled.
1545  */
1546 static void hw_turn_on_intr(struct ksz_hw *hw, u32 bit)
1547 {
1548 	hw->intr_mask |= bit;
1549 
1550 	if (!hw->intr_blocked)
1551 		hw_set_intr(hw, hw->intr_mask);
1552 }
1553 
1554 static inline void hw_ena_intr_bit(struct ksz_hw *hw, uint interrupt)
1555 {
1556 	u32 read_intr;
1557 
1558 	read_intr = readl(hw->io + KS884X_INTERRUPTS_ENABLE);
1559 	hw->intr_set = read_intr | interrupt;
1560 	writel(hw->intr_set, hw->io + KS884X_INTERRUPTS_ENABLE);
1561 }
1562 
1563 static inline void hw_read_intr(struct ksz_hw *hw, uint *status)
1564 {
1565 	*status = readl(hw->io + KS884X_INTERRUPTS_STATUS);
1566 	*status = *status & hw->intr_set;
1567 }
1568 
1569 static inline void hw_restore_intr(struct ksz_hw *hw, uint interrupt)
1570 {
1571 	if (interrupt)
1572 		hw_ena_intr(hw);
1573 }
1574 
1575 /**
1576  * hw_block_intr - block hardware interrupts
1577  *
1578  * This function blocks all interrupts of the hardware and returns the current
1579  * interrupt enable mask so that interrupts can be restored later.
1580  *
1581  * Return the current interrupt enable mask.
1582  */
1583 static uint hw_block_intr(struct ksz_hw *hw)
1584 {
1585 	uint interrupt = 0;
1586 
1587 	if (!hw->intr_blocked) {
1588 		hw_dis_intr(hw);
1589 		interrupt = hw->intr_blocked;
1590 	}
1591 	return interrupt;
1592 }
1593 
1594 /*
1595  * Hardware descriptor routines
1596  */
1597 
1598 static inline void reset_desc(struct ksz_desc *desc, union desc_stat status)
1599 {
1600 	status.rx.hw_owned = 0;
1601 	desc->phw->ctrl.data = cpu_to_le32(status.data);
1602 }
1603 
1604 static inline void release_desc(struct ksz_desc *desc)
1605 {
1606 	desc->sw.ctrl.tx.hw_owned = 1;
1607 	if (desc->sw.buf_size != desc->sw.buf.data) {
1608 		desc->sw.buf_size = desc->sw.buf.data;
1609 		desc->phw->buf.data = cpu_to_le32(desc->sw.buf.data);
1610 	}
1611 	desc->phw->ctrl.data = cpu_to_le32(desc->sw.ctrl.data);
1612 }
1613 
1614 static void get_rx_pkt(struct ksz_desc_info *info, struct ksz_desc **desc)
1615 {
1616 	*desc = &info->ring[info->last];
1617 	info->last++;
1618 	info->last &= info->mask;
1619 	info->avail--;
1620 	(*desc)->sw.buf.data &= ~KS_DESC_RX_MASK;
1621 }
1622 
1623 static inline void set_rx_buf(struct ksz_desc *desc, u32 addr)
1624 {
1625 	desc->phw->addr = cpu_to_le32(addr);
1626 }
1627 
1628 static inline void set_rx_len(struct ksz_desc *desc, u32 len)
1629 {
1630 	desc->sw.buf.rx.buf_size = len;
1631 }
1632 
1633 static inline void get_tx_pkt(struct ksz_desc_info *info,
1634 	struct ksz_desc **desc)
1635 {
1636 	*desc = &info->ring[info->next];
1637 	info->next++;
1638 	info->next &= info->mask;
1639 	info->avail--;
1640 	(*desc)->sw.buf.data &= ~KS_DESC_TX_MASK;
1641 }
1642 
1643 static inline void set_tx_buf(struct ksz_desc *desc, u32 addr)
1644 {
1645 	desc->phw->addr = cpu_to_le32(addr);
1646 }
1647 
1648 static inline void set_tx_len(struct ksz_desc *desc, u32 len)
1649 {
1650 	desc->sw.buf.tx.buf_size = len;
1651 }
1652 
1653 /* Switch functions */
1654 
1655 #define TABLE_READ			0x10
1656 #define TABLE_SEL_SHIFT			2
1657 
1658 #define HW_DELAY(hw, reg)			\
1659 	do {					\
1660 		u16 dummy;			\
1661 		dummy = readw(hw->io + reg);	\
1662 	} while (0)
1663 
1664 /**
1665  * sw_r_table - read 4 bytes of data from switch table
1666  * @hw:		The hardware instance.
1667  * @table:	The table selector.
1668  * @addr:	The address of the table entry.
1669  * @data:	Buffer to store the read data.
1670  *
1671  * This routine reads 4 bytes of data from the table of the switch.
1672  * Hardware interrupts are disabled to minimize corruption of read data.
1673  */
1674 static void sw_r_table(struct ksz_hw *hw, int table, u16 addr, u32 *data)
1675 {
1676 	u16 ctrl_addr;
1677 	uint interrupt;
1678 
1679 	ctrl_addr = (((table << TABLE_SEL_SHIFT) | TABLE_READ) << 8) | addr;
1680 
1681 	interrupt = hw_block_intr(hw);
1682 
1683 	writew(ctrl_addr, hw->io + KS884X_IACR_OFFSET);
1684 	HW_DELAY(hw, KS884X_IACR_OFFSET);
1685 	*data = readl(hw->io + KS884X_ACC_DATA_0_OFFSET);
1686 
1687 	hw_restore_intr(hw, interrupt);
1688 }
1689 
1690 /**
1691  * sw_w_table_64 - write 8 bytes of data to the switch table
1692  * @hw:		The hardware instance.
1693  * @table:	The table selector.
1694  * @addr:	The address of the table entry.
1695  * @data_hi:	The high part of data to be written (bit63 ~ bit32).
1696  * @data_lo:	The low part of data to be written (bit31 ~ bit0).
1697  *
1698  * This routine writes 8 bytes of data to the table of the switch.
1699  * Hardware interrupts are disabled to minimize corruption of written data.
1700  */
1701 static void sw_w_table_64(struct ksz_hw *hw, int table, u16 addr, u32 data_hi,
1702 	u32 data_lo)
1703 {
1704 	u16 ctrl_addr;
1705 	uint interrupt;
1706 
1707 	ctrl_addr = ((table << TABLE_SEL_SHIFT) << 8) | addr;
1708 
1709 	interrupt = hw_block_intr(hw);
1710 
1711 	writel(data_hi, hw->io + KS884X_ACC_DATA_4_OFFSET);
1712 	writel(data_lo, hw->io + KS884X_ACC_DATA_0_OFFSET);
1713 
1714 	writew(ctrl_addr, hw->io + KS884X_IACR_OFFSET);
1715 	HW_DELAY(hw, KS884X_IACR_OFFSET);
1716 
1717 	hw_restore_intr(hw, interrupt);
1718 }
1719 
1720 /**
1721  * sw_w_sta_mac_table - write to the static MAC table
1722  * @hw: 	The hardware instance.
1723  * @addr:	The address of the table entry.
1724  * @mac_addr:	The MAC address.
1725  * @ports:	The port members.
1726  * @override:	The flag to override the port receive/transmit settings.
1727  * @valid:	The flag to indicate entry is valid.
1728  * @use_fid:	The flag to indicate the FID is valid.
1729  * @fid:	The FID value.
1730  *
1731  * This routine writes an entry of the static MAC table of the switch.  It
1732  * calls sw_w_table_64() to write the data.
1733  */
1734 static void sw_w_sta_mac_table(struct ksz_hw *hw, u16 addr, u8 *mac_addr,
1735 	u8 ports, int override, int valid, int use_fid, u8 fid)
1736 {
1737 	u32 data_hi;
1738 	u32 data_lo;
1739 
1740 	data_lo = ((u32) mac_addr[2] << 24) |
1741 		((u32) mac_addr[3] << 16) |
1742 		((u32) mac_addr[4] << 8) | mac_addr[5];
1743 	data_hi = ((u32) mac_addr[0] << 8) | mac_addr[1];
1744 	data_hi |= (u32) ports << STATIC_MAC_FWD_PORTS_SHIFT;
1745 
1746 	if (override)
1747 		data_hi |= STATIC_MAC_TABLE_OVERRIDE;
1748 	if (use_fid) {
1749 		data_hi |= STATIC_MAC_TABLE_USE_FID;
1750 		data_hi |= (u32) fid << STATIC_MAC_FID_SHIFT;
1751 	}
1752 	if (valid)
1753 		data_hi |= STATIC_MAC_TABLE_VALID;
1754 
1755 	sw_w_table_64(hw, TABLE_STATIC_MAC, addr, data_hi, data_lo);
1756 }
1757 
1758 /**
1759  * sw_r_vlan_table - read from the VLAN table
1760  * @hw: 	The hardware instance.
1761  * @addr:	The address of the table entry.
1762  * @vid:	Buffer to store the VID.
1763  * @fid:	Buffer to store the VID.
1764  * @member:	Buffer to store the port membership.
1765  *
1766  * This function reads an entry of the VLAN table of the switch.  It calls
1767  * sw_r_table() to get the data.
1768  *
1769  * Return 0 if the entry is valid; otherwise -1.
1770  */
1771 static int sw_r_vlan_table(struct ksz_hw *hw, u16 addr, u16 *vid, u8 *fid,
1772 	u8 *member)
1773 {
1774 	u32 data;
1775 
1776 	sw_r_table(hw, TABLE_VLAN, addr, &data);
1777 	if (data & VLAN_TABLE_VALID) {
1778 		*vid = (u16)(data & VLAN_TABLE_VID);
1779 		*fid = (u8)((data & VLAN_TABLE_FID) >> VLAN_TABLE_FID_SHIFT);
1780 		*member = (u8)((data & VLAN_TABLE_MEMBERSHIP) >>
1781 			VLAN_TABLE_MEMBERSHIP_SHIFT);
1782 		return 0;
1783 	}
1784 	return -1;
1785 }
1786 
1787 /**
1788  * port_r_mib_cnt - read MIB counter
1789  * @hw: 	The hardware instance.
1790  * @port:	The port index.
1791  * @addr:	The address of the counter.
1792  * @cnt:	Buffer to store the counter.
1793  *
1794  * This routine reads a MIB counter of the port.
1795  * Hardware interrupts are disabled to minimize corruption of read data.
1796  */
1797 static void port_r_mib_cnt(struct ksz_hw *hw, int port, u16 addr, u64 *cnt)
1798 {
1799 	u32 data;
1800 	u16 ctrl_addr;
1801 	uint interrupt;
1802 	int timeout;
1803 
1804 	ctrl_addr = addr + PORT_COUNTER_NUM * port;
1805 
1806 	interrupt = hw_block_intr(hw);
1807 
1808 	ctrl_addr |= (((TABLE_MIB << TABLE_SEL_SHIFT) | TABLE_READ) << 8);
1809 	writew(ctrl_addr, hw->io + KS884X_IACR_OFFSET);
1810 	HW_DELAY(hw, KS884X_IACR_OFFSET);
1811 
1812 	for (timeout = 100; timeout > 0; timeout--) {
1813 		data = readl(hw->io + KS884X_ACC_DATA_0_OFFSET);
1814 
1815 		if (data & MIB_COUNTER_VALID) {
1816 			if (data & MIB_COUNTER_OVERFLOW)
1817 				*cnt += MIB_COUNTER_VALUE + 1;
1818 			*cnt += data & MIB_COUNTER_VALUE;
1819 			break;
1820 		}
1821 	}
1822 
1823 	hw_restore_intr(hw, interrupt);
1824 }
1825 
1826 /**
1827  * port_r_mib_pkt - read dropped packet counts
1828  * @hw: 	The hardware instance.
1829  * @port:	The port index.
1830  * @cnt:	Buffer to store the receive and transmit dropped packet counts.
1831  *
1832  * This routine reads the dropped packet counts of the port.
1833  * Hardware interrupts are disabled to minimize corruption of read data.
1834  */
1835 static void port_r_mib_pkt(struct ksz_hw *hw, int port, u32 *last, u64 *cnt)
1836 {
1837 	u32 cur;
1838 	u32 data;
1839 	u16 ctrl_addr;
1840 	uint interrupt;
1841 	int index;
1842 
1843 	index = KS_MIB_PACKET_DROPPED_RX_0 + port;
1844 	do {
1845 		interrupt = hw_block_intr(hw);
1846 
1847 		ctrl_addr = (u16) index;
1848 		ctrl_addr |= (((TABLE_MIB << TABLE_SEL_SHIFT) | TABLE_READ)
1849 			<< 8);
1850 		writew(ctrl_addr, hw->io + KS884X_IACR_OFFSET);
1851 		HW_DELAY(hw, KS884X_IACR_OFFSET);
1852 		data = readl(hw->io + KS884X_ACC_DATA_0_OFFSET);
1853 
1854 		hw_restore_intr(hw, interrupt);
1855 
1856 		data &= MIB_PACKET_DROPPED;
1857 		cur = *last;
1858 		if (data != cur) {
1859 			*last = data;
1860 			if (data < cur)
1861 				data += MIB_PACKET_DROPPED + 1;
1862 			data -= cur;
1863 			*cnt += data;
1864 		}
1865 		++last;
1866 		++cnt;
1867 		index -= KS_MIB_PACKET_DROPPED_TX -
1868 			KS_MIB_PACKET_DROPPED_TX_0 + 1;
1869 	} while (index >= KS_MIB_PACKET_DROPPED_TX_0 + port);
1870 }
1871 
1872 /**
1873  * port_r_cnt - read MIB counters periodically
1874  * @hw: 	The hardware instance.
1875  * @port:	The port index.
1876  *
1877  * This routine is used to read the counters of the port periodically to avoid
1878  * counter overflow.  The hardware should be acquired first before calling this
1879  * routine.
1880  *
1881  * Return non-zero when not all counters not read.
1882  */
1883 static int port_r_cnt(struct ksz_hw *hw, int port)
1884 {
1885 	struct ksz_port_mib *mib = &hw->port_mib[port];
1886 
1887 	if (mib->mib_start < PORT_COUNTER_NUM)
1888 		while (mib->cnt_ptr < PORT_COUNTER_NUM) {
1889 			port_r_mib_cnt(hw, port, mib->cnt_ptr,
1890 				&mib->counter[mib->cnt_ptr]);
1891 			++mib->cnt_ptr;
1892 		}
1893 	if (hw->mib_cnt > PORT_COUNTER_NUM)
1894 		port_r_mib_pkt(hw, port, mib->dropped,
1895 			&mib->counter[PORT_COUNTER_NUM]);
1896 	mib->cnt_ptr = 0;
1897 	return 0;
1898 }
1899 
1900 /**
1901  * port_init_cnt - initialize MIB counter values
1902  * @hw: 	The hardware instance.
1903  * @port:	The port index.
1904  *
1905  * This routine is used to initialize all counters to zero if the hardware
1906  * cannot do it after reset.
1907  */
1908 static void port_init_cnt(struct ksz_hw *hw, int port)
1909 {
1910 	struct ksz_port_mib *mib = &hw->port_mib[port];
1911 
1912 	mib->cnt_ptr = 0;
1913 	if (mib->mib_start < PORT_COUNTER_NUM)
1914 		do {
1915 			port_r_mib_cnt(hw, port, mib->cnt_ptr,
1916 				&mib->counter[mib->cnt_ptr]);
1917 			++mib->cnt_ptr;
1918 		} while (mib->cnt_ptr < PORT_COUNTER_NUM);
1919 	if (hw->mib_cnt > PORT_COUNTER_NUM)
1920 		port_r_mib_pkt(hw, port, mib->dropped,
1921 			&mib->counter[PORT_COUNTER_NUM]);
1922 	memset((void *) mib->counter, 0, sizeof(u64) * TOTAL_PORT_COUNTER_NUM);
1923 	mib->cnt_ptr = 0;
1924 }
1925 
1926 /*
1927  * Port functions
1928  */
1929 
1930 /**
1931  * port_chk - check port register bits
1932  * @hw: 	The hardware instance.
1933  * @port:	The port index.
1934  * @offset:	The offset of the port register.
1935  * @bits:	The data bits to check.
1936  *
1937  * This function checks whether the specified bits of the port register are set
1938  * or not.
1939  *
1940  * Return 0 if the bits are not set.
1941  */
1942 static int port_chk(struct ksz_hw *hw, int port, int offset, u16 bits)
1943 {
1944 	u32 addr;
1945 	u16 data;
1946 
1947 	PORT_CTRL_ADDR(port, addr);
1948 	addr += offset;
1949 	data = readw(hw->io + addr);
1950 	return (data & bits) == bits;
1951 }
1952 
1953 /**
1954  * port_cfg - set port register bits
1955  * @hw: 	The hardware instance.
1956  * @port:	The port index.
1957  * @offset:	The offset of the port register.
1958  * @bits:	The data bits to set.
1959  * @set:	The flag indicating whether the bits are to be set or not.
1960  *
1961  * This routine sets or resets the specified bits of the port register.
1962  */
1963 static void port_cfg(struct ksz_hw *hw, int port, int offset, u16 bits,
1964 	int set)
1965 {
1966 	u32 addr;
1967 	u16 data;
1968 
1969 	PORT_CTRL_ADDR(port, addr);
1970 	addr += offset;
1971 	data = readw(hw->io + addr);
1972 	if (set)
1973 		data |= bits;
1974 	else
1975 		data &= ~bits;
1976 	writew(data, hw->io + addr);
1977 }
1978 
1979 /**
1980  * port_chk_shift - check port bit
1981  * @hw: 	The hardware instance.
1982  * @port:	The port index.
1983  * @offset:	The offset of the register.
1984  * @shift:	Number of bits to shift.
1985  *
1986  * This function checks whether the specified port is set in the register or
1987  * not.
1988  *
1989  * Return 0 if the port is not set.
1990  */
1991 static int port_chk_shift(struct ksz_hw *hw, int port, u32 addr, int shift)
1992 {
1993 	u16 data;
1994 	u16 bit = 1 << port;
1995 
1996 	data = readw(hw->io + addr);
1997 	data >>= shift;
1998 	return (data & bit) == bit;
1999 }
2000 
2001 /**
2002  * port_cfg_shift - set port bit
2003  * @hw: 	The hardware instance.
2004  * @port:	The port index.
2005  * @offset:	The offset of the register.
2006  * @shift:	Number of bits to shift.
2007  * @set:	The flag indicating whether the port is to be set or not.
2008  *
2009  * This routine sets or resets the specified port in the register.
2010  */
2011 static void port_cfg_shift(struct ksz_hw *hw, int port, u32 addr, int shift,
2012 	int set)
2013 {
2014 	u16 data;
2015 	u16 bits = 1 << port;
2016 
2017 	data = readw(hw->io + addr);
2018 	bits <<= shift;
2019 	if (set)
2020 		data |= bits;
2021 	else
2022 		data &= ~bits;
2023 	writew(data, hw->io + addr);
2024 }
2025 
2026 /**
2027  * port_r8 - read byte from port register
2028  * @hw: 	The hardware instance.
2029  * @port:	The port index.
2030  * @offset:	The offset of the port register.
2031  * @data:	Buffer to store the data.
2032  *
2033  * This routine reads a byte from the port register.
2034  */
2035 static void port_r8(struct ksz_hw *hw, int port, int offset, u8 *data)
2036 {
2037 	u32 addr;
2038 
2039 	PORT_CTRL_ADDR(port, addr);
2040 	addr += offset;
2041 	*data = readb(hw->io + addr);
2042 }
2043 
2044 /**
2045  * port_r16 - read word from port register.
2046  * @hw: 	The hardware instance.
2047  * @port:	The port index.
2048  * @offset:	The offset of the port register.
2049  * @data:	Buffer to store the data.
2050  *
2051  * This routine reads a word from the port register.
2052  */
2053 static void port_r16(struct ksz_hw *hw, int port, int offset, u16 *data)
2054 {
2055 	u32 addr;
2056 
2057 	PORT_CTRL_ADDR(port, addr);
2058 	addr += offset;
2059 	*data = readw(hw->io + addr);
2060 }
2061 
2062 /**
2063  * port_w16 - write word to port register.
2064  * @hw: 	The hardware instance.
2065  * @port:	The port index.
2066  * @offset:	The offset of the port register.
2067  * @data:	Data to write.
2068  *
2069  * This routine writes a word to the port register.
2070  */
2071 static void port_w16(struct ksz_hw *hw, int port, int offset, u16 data)
2072 {
2073 	u32 addr;
2074 
2075 	PORT_CTRL_ADDR(port, addr);
2076 	addr += offset;
2077 	writew(data, hw->io + addr);
2078 }
2079 
2080 /**
2081  * sw_chk - check switch register bits
2082  * @hw: 	The hardware instance.
2083  * @addr:	The address of the switch register.
2084  * @bits:	The data bits to check.
2085  *
2086  * This function checks whether the specified bits of the switch register are
2087  * set or not.
2088  *
2089  * Return 0 if the bits are not set.
2090  */
2091 static int sw_chk(struct ksz_hw *hw, u32 addr, u16 bits)
2092 {
2093 	u16 data;
2094 
2095 	data = readw(hw->io + addr);
2096 	return (data & bits) == bits;
2097 }
2098 
2099 /**
2100  * sw_cfg - set switch register bits
2101  * @hw: 	The hardware instance.
2102  * @addr:	The address of the switch register.
2103  * @bits:	The data bits to set.
2104  * @set:	The flag indicating whether the bits are to be set or not.
2105  *
2106  * This function sets or resets the specified bits of the switch register.
2107  */
2108 static void sw_cfg(struct ksz_hw *hw, u32 addr, u16 bits, int set)
2109 {
2110 	u16 data;
2111 
2112 	data = readw(hw->io + addr);
2113 	if (set)
2114 		data |= bits;
2115 	else
2116 		data &= ~bits;
2117 	writew(data, hw->io + addr);
2118 }
2119 
2120 /* Bandwidth */
2121 
2122 static inline void port_cfg_broad_storm(struct ksz_hw *hw, int p, int set)
2123 {
2124 	port_cfg(hw, p,
2125 		KS8842_PORT_CTRL_1_OFFSET, PORT_BROADCAST_STORM, set);
2126 }
2127 
2128 static inline int port_chk_broad_storm(struct ksz_hw *hw, int p)
2129 {
2130 	return port_chk(hw, p,
2131 		KS8842_PORT_CTRL_1_OFFSET, PORT_BROADCAST_STORM);
2132 }
2133 
2134 /* Driver set switch broadcast storm protection at 10% rate. */
2135 #define BROADCAST_STORM_PROTECTION_RATE	10
2136 
2137 /* 148,800 frames * 67 ms / 100 */
2138 #define BROADCAST_STORM_VALUE		9969
2139 
2140 /**
2141  * sw_cfg_broad_storm - configure broadcast storm threshold
2142  * @hw: 	The hardware instance.
2143  * @percent:	Broadcast storm threshold in percent of transmit rate.
2144  *
2145  * This routine configures the broadcast storm threshold of the switch.
2146  */
2147 static void sw_cfg_broad_storm(struct ksz_hw *hw, u8 percent)
2148 {
2149 	u16 data;
2150 	u32 value = ((u32) BROADCAST_STORM_VALUE * (u32) percent / 100);
2151 
2152 	if (value > BROADCAST_STORM_RATE)
2153 		value = BROADCAST_STORM_RATE;
2154 
2155 	data = readw(hw->io + KS8842_SWITCH_CTRL_3_OFFSET);
2156 	data &= ~(BROADCAST_STORM_RATE_LO | BROADCAST_STORM_RATE_HI);
2157 	data |= ((value & 0x00FF) << 8) | ((value & 0xFF00) >> 8);
2158 	writew(data, hw->io + KS8842_SWITCH_CTRL_3_OFFSET);
2159 }
2160 
2161 /**
2162  * sw_get_board_storm - get broadcast storm threshold
2163  * @hw: 	The hardware instance.
2164  * @percent:	Buffer to store the broadcast storm threshold percentage.
2165  *
2166  * This routine retrieves the broadcast storm threshold of the switch.
2167  */
2168 static void sw_get_broad_storm(struct ksz_hw *hw, u8 *percent)
2169 {
2170 	int num;
2171 	u16 data;
2172 
2173 	data = readw(hw->io + KS8842_SWITCH_CTRL_3_OFFSET);
2174 	num = (data & BROADCAST_STORM_RATE_HI);
2175 	num <<= 8;
2176 	num |= (data & BROADCAST_STORM_RATE_LO) >> 8;
2177 	num = (num * 100 + BROADCAST_STORM_VALUE / 2) / BROADCAST_STORM_VALUE;
2178 	*percent = (u8) num;
2179 }
2180 
2181 /**
2182  * sw_dis_broad_storm - disable broadstorm
2183  * @hw: 	The hardware instance.
2184  * @port:	The port index.
2185  *
2186  * This routine disables the broadcast storm limit function of the switch.
2187  */
2188 static void sw_dis_broad_storm(struct ksz_hw *hw, int port)
2189 {
2190 	port_cfg_broad_storm(hw, port, 0);
2191 }
2192 
2193 /**
2194  * sw_ena_broad_storm - enable broadcast storm
2195  * @hw: 	The hardware instance.
2196  * @port:	The port index.
2197  *
2198  * This routine enables the broadcast storm limit function of the switch.
2199  */
2200 static void sw_ena_broad_storm(struct ksz_hw *hw, int port)
2201 {
2202 	sw_cfg_broad_storm(hw, hw->ksz_switch->broad_per);
2203 	port_cfg_broad_storm(hw, port, 1);
2204 }
2205 
2206 /**
2207  * sw_init_broad_storm - initialize broadcast storm
2208  * @hw: 	The hardware instance.
2209  *
2210  * This routine initializes the broadcast storm limit function of the switch.
2211  */
2212 static void sw_init_broad_storm(struct ksz_hw *hw)
2213 {
2214 	int port;
2215 
2216 	hw->ksz_switch->broad_per = 1;
2217 	sw_cfg_broad_storm(hw, hw->ksz_switch->broad_per);
2218 	for (port = 0; port < TOTAL_PORT_NUM; port++)
2219 		sw_dis_broad_storm(hw, port);
2220 	sw_cfg(hw, KS8842_SWITCH_CTRL_2_OFFSET, MULTICAST_STORM_DISABLE, 1);
2221 }
2222 
2223 /**
2224  * hw_cfg_broad_storm - configure broadcast storm
2225  * @hw: 	The hardware instance.
2226  * @percent:	Broadcast storm threshold in percent of transmit rate.
2227  *
2228  * This routine configures the broadcast storm threshold of the switch.
2229  * It is called by user functions.  The hardware should be acquired first.
2230  */
2231 static void hw_cfg_broad_storm(struct ksz_hw *hw, u8 percent)
2232 {
2233 	if (percent > 100)
2234 		percent = 100;
2235 
2236 	sw_cfg_broad_storm(hw, percent);
2237 	sw_get_broad_storm(hw, &percent);
2238 	hw->ksz_switch->broad_per = percent;
2239 }
2240 
2241 /**
2242  * sw_dis_prio_rate - disable switch priority rate
2243  * @hw: 	The hardware instance.
2244  * @port:	The port index.
2245  *
2246  * This routine disables the priority rate function of the switch.
2247  */
2248 static void sw_dis_prio_rate(struct ksz_hw *hw, int port)
2249 {
2250 	u32 addr;
2251 
2252 	PORT_CTRL_ADDR(port, addr);
2253 	addr += KS8842_PORT_IN_RATE_OFFSET;
2254 	writel(0, hw->io + addr);
2255 }
2256 
2257 /**
2258  * sw_init_prio_rate - initialize switch prioirty rate
2259  * @hw: 	The hardware instance.
2260  *
2261  * This routine initializes the priority rate function of the switch.
2262  */
2263 static void sw_init_prio_rate(struct ksz_hw *hw)
2264 {
2265 	int port;
2266 	int prio;
2267 	struct ksz_switch *sw = hw->ksz_switch;
2268 
2269 	for (port = 0; port < TOTAL_PORT_NUM; port++) {
2270 		for (prio = 0; prio < PRIO_QUEUES; prio++) {
2271 			sw->port_cfg[port].rx_rate[prio] =
2272 			sw->port_cfg[port].tx_rate[prio] = 0;
2273 		}
2274 		sw_dis_prio_rate(hw, port);
2275 	}
2276 }
2277 
2278 /* Communication */
2279 
2280 static inline void port_cfg_back_pressure(struct ksz_hw *hw, int p, int set)
2281 {
2282 	port_cfg(hw, p,
2283 		KS8842_PORT_CTRL_2_OFFSET, PORT_BACK_PRESSURE, set);
2284 }
2285 
2286 static inline void port_cfg_force_flow_ctrl(struct ksz_hw *hw, int p, int set)
2287 {
2288 	port_cfg(hw, p,
2289 		KS8842_PORT_CTRL_2_OFFSET, PORT_FORCE_FLOW_CTRL, set);
2290 }
2291 
2292 static inline int port_chk_back_pressure(struct ksz_hw *hw, int p)
2293 {
2294 	return port_chk(hw, p,
2295 		KS8842_PORT_CTRL_2_OFFSET, PORT_BACK_PRESSURE);
2296 }
2297 
2298 static inline int port_chk_force_flow_ctrl(struct ksz_hw *hw, int p)
2299 {
2300 	return port_chk(hw, p,
2301 		KS8842_PORT_CTRL_2_OFFSET, PORT_FORCE_FLOW_CTRL);
2302 }
2303 
2304 /* Spanning Tree */
2305 
2306 static inline void port_cfg_rx(struct ksz_hw *hw, int p, int set)
2307 {
2308 	port_cfg(hw, p,
2309 		KS8842_PORT_CTRL_2_OFFSET, PORT_RX_ENABLE, set);
2310 }
2311 
2312 static inline void port_cfg_tx(struct ksz_hw *hw, int p, int set)
2313 {
2314 	port_cfg(hw, p,
2315 		KS8842_PORT_CTRL_2_OFFSET, PORT_TX_ENABLE, set);
2316 }
2317 
2318 static inline void sw_cfg_fast_aging(struct ksz_hw *hw, int set)
2319 {
2320 	sw_cfg(hw, KS8842_SWITCH_CTRL_1_OFFSET, SWITCH_FAST_AGING, set);
2321 }
2322 
2323 static inline void sw_flush_dyn_mac_table(struct ksz_hw *hw)
2324 {
2325 	if (!(hw->overrides & FAST_AGING)) {
2326 		sw_cfg_fast_aging(hw, 1);
2327 		mdelay(1);
2328 		sw_cfg_fast_aging(hw, 0);
2329 	}
2330 }
2331 
2332 /* VLAN */
2333 
2334 static inline void port_cfg_ins_tag(struct ksz_hw *hw, int p, int insert)
2335 {
2336 	port_cfg(hw, p,
2337 		KS8842_PORT_CTRL_1_OFFSET, PORT_INSERT_TAG, insert);
2338 }
2339 
2340 static inline void port_cfg_rmv_tag(struct ksz_hw *hw, int p, int remove)
2341 {
2342 	port_cfg(hw, p,
2343 		KS8842_PORT_CTRL_1_OFFSET, PORT_REMOVE_TAG, remove);
2344 }
2345 
2346 static inline int port_chk_ins_tag(struct ksz_hw *hw, int p)
2347 {
2348 	return port_chk(hw, p,
2349 		KS8842_PORT_CTRL_1_OFFSET, PORT_INSERT_TAG);
2350 }
2351 
2352 static inline int port_chk_rmv_tag(struct ksz_hw *hw, int p)
2353 {
2354 	return port_chk(hw, p,
2355 		KS8842_PORT_CTRL_1_OFFSET, PORT_REMOVE_TAG);
2356 }
2357 
2358 static inline void port_cfg_dis_non_vid(struct ksz_hw *hw, int p, int set)
2359 {
2360 	port_cfg(hw, p,
2361 		KS8842_PORT_CTRL_2_OFFSET, PORT_DISCARD_NON_VID, set);
2362 }
2363 
2364 static inline void port_cfg_in_filter(struct ksz_hw *hw, int p, int set)
2365 {
2366 	port_cfg(hw, p,
2367 		KS8842_PORT_CTRL_2_OFFSET, PORT_INGRESS_VLAN_FILTER, set);
2368 }
2369 
2370 static inline int port_chk_dis_non_vid(struct ksz_hw *hw, int p)
2371 {
2372 	return port_chk(hw, p,
2373 		KS8842_PORT_CTRL_2_OFFSET, PORT_DISCARD_NON_VID);
2374 }
2375 
2376 static inline int port_chk_in_filter(struct ksz_hw *hw, int p)
2377 {
2378 	return port_chk(hw, p,
2379 		KS8842_PORT_CTRL_2_OFFSET, PORT_INGRESS_VLAN_FILTER);
2380 }
2381 
2382 /* Mirroring */
2383 
2384 static inline void port_cfg_mirror_sniffer(struct ksz_hw *hw, int p, int set)
2385 {
2386 	port_cfg(hw, p,
2387 		KS8842_PORT_CTRL_2_OFFSET, PORT_MIRROR_SNIFFER, set);
2388 }
2389 
2390 static inline void port_cfg_mirror_rx(struct ksz_hw *hw, int p, int set)
2391 {
2392 	port_cfg(hw, p,
2393 		KS8842_PORT_CTRL_2_OFFSET, PORT_MIRROR_RX, set);
2394 }
2395 
2396 static inline void port_cfg_mirror_tx(struct ksz_hw *hw, int p, int set)
2397 {
2398 	port_cfg(hw, p,
2399 		KS8842_PORT_CTRL_2_OFFSET, PORT_MIRROR_TX, set);
2400 }
2401 
2402 static inline void sw_cfg_mirror_rx_tx(struct ksz_hw *hw, int set)
2403 {
2404 	sw_cfg(hw, KS8842_SWITCH_CTRL_2_OFFSET, SWITCH_MIRROR_RX_TX, set);
2405 }
2406 
2407 static void sw_init_mirror(struct ksz_hw *hw)
2408 {
2409 	int port;
2410 
2411 	for (port = 0; port < TOTAL_PORT_NUM; port++) {
2412 		port_cfg_mirror_sniffer(hw, port, 0);
2413 		port_cfg_mirror_rx(hw, port, 0);
2414 		port_cfg_mirror_tx(hw, port, 0);
2415 	}
2416 	sw_cfg_mirror_rx_tx(hw, 0);
2417 }
2418 
2419 static inline void sw_cfg_unk_def_deliver(struct ksz_hw *hw, int set)
2420 {
2421 	sw_cfg(hw, KS8842_SWITCH_CTRL_7_OFFSET,
2422 		SWITCH_UNK_DEF_PORT_ENABLE, set);
2423 }
2424 
2425 static inline int sw_cfg_chk_unk_def_deliver(struct ksz_hw *hw)
2426 {
2427 	return sw_chk(hw, KS8842_SWITCH_CTRL_7_OFFSET,
2428 		SWITCH_UNK_DEF_PORT_ENABLE);
2429 }
2430 
2431 static inline void sw_cfg_unk_def_port(struct ksz_hw *hw, int port, int set)
2432 {
2433 	port_cfg_shift(hw, port, KS8842_SWITCH_CTRL_7_OFFSET, 0, set);
2434 }
2435 
2436 static inline int sw_chk_unk_def_port(struct ksz_hw *hw, int port)
2437 {
2438 	return port_chk_shift(hw, port, KS8842_SWITCH_CTRL_7_OFFSET, 0);
2439 }
2440 
2441 /* Priority */
2442 
2443 static inline void port_cfg_diffserv(struct ksz_hw *hw, int p, int set)
2444 {
2445 	port_cfg(hw, p,
2446 		KS8842_PORT_CTRL_1_OFFSET, PORT_DIFFSERV_ENABLE, set);
2447 }
2448 
2449 static inline void port_cfg_802_1p(struct ksz_hw *hw, int p, int set)
2450 {
2451 	port_cfg(hw, p,
2452 		KS8842_PORT_CTRL_1_OFFSET, PORT_802_1P_ENABLE, set);
2453 }
2454 
2455 static inline void port_cfg_replace_vid(struct ksz_hw *hw, int p, int set)
2456 {
2457 	port_cfg(hw, p,
2458 		KS8842_PORT_CTRL_2_OFFSET, PORT_USER_PRIORITY_CEILING, set);
2459 }
2460 
2461 static inline void port_cfg_prio(struct ksz_hw *hw, int p, int set)
2462 {
2463 	port_cfg(hw, p,
2464 		KS8842_PORT_CTRL_1_OFFSET, PORT_PRIO_QUEUE_ENABLE, set);
2465 }
2466 
2467 static inline int port_chk_diffserv(struct ksz_hw *hw, int p)
2468 {
2469 	return port_chk(hw, p,
2470 		KS8842_PORT_CTRL_1_OFFSET, PORT_DIFFSERV_ENABLE);
2471 }
2472 
2473 static inline int port_chk_802_1p(struct ksz_hw *hw, int p)
2474 {
2475 	return port_chk(hw, p,
2476 		KS8842_PORT_CTRL_1_OFFSET, PORT_802_1P_ENABLE);
2477 }
2478 
2479 static inline int port_chk_replace_vid(struct ksz_hw *hw, int p)
2480 {
2481 	return port_chk(hw, p,
2482 		KS8842_PORT_CTRL_2_OFFSET, PORT_USER_PRIORITY_CEILING);
2483 }
2484 
2485 static inline int port_chk_prio(struct ksz_hw *hw, int p)
2486 {
2487 	return port_chk(hw, p,
2488 		KS8842_PORT_CTRL_1_OFFSET, PORT_PRIO_QUEUE_ENABLE);
2489 }
2490 
2491 /**
2492  * sw_dis_diffserv - disable switch DiffServ priority
2493  * @hw: 	The hardware instance.
2494  * @port:	The port index.
2495  *
2496  * This routine disables the DiffServ priority function of the switch.
2497  */
2498 static void sw_dis_diffserv(struct ksz_hw *hw, int port)
2499 {
2500 	port_cfg_diffserv(hw, port, 0);
2501 }
2502 
2503 /**
2504  * sw_dis_802_1p - disable switch 802.1p priority
2505  * @hw: 	The hardware instance.
2506  * @port:	The port index.
2507  *
2508  * This routine disables the 802.1p priority function of the switch.
2509  */
2510 static void sw_dis_802_1p(struct ksz_hw *hw, int port)
2511 {
2512 	port_cfg_802_1p(hw, port, 0);
2513 }
2514 
2515 /**
2516  * sw_cfg_replace_null_vid -
2517  * @hw: 	The hardware instance.
2518  * @set:	The flag to disable or enable.
2519  *
2520  */
2521 static void sw_cfg_replace_null_vid(struct ksz_hw *hw, int set)
2522 {
2523 	sw_cfg(hw, KS8842_SWITCH_CTRL_3_OFFSET, SWITCH_REPLACE_NULL_VID, set);
2524 }
2525 
2526 /**
2527  * sw_cfg_replace_vid - enable switch 802.10 priority re-mapping
2528  * @hw: 	The hardware instance.
2529  * @port:	The port index.
2530  * @set:	The flag to disable or enable.
2531  *
2532  * This routine enables the 802.1p priority re-mapping function of the switch.
2533  * That allows 802.1p priority field to be replaced with the port's default
2534  * tag's priority value if the ingress packet's 802.1p priority has a higher
2535  * priority than port's default tag's priority.
2536  */
2537 static void sw_cfg_replace_vid(struct ksz_hw *hw, int port, int set)
2538 {
2539 	port_cfg_replace_vid(hw, port, set);
2540 }
2541 
2542 /**
2543  * sw_cfg_port_based - configure switch port based priority
2544  * @hw: 	The hardware instance.
2545  * @port:	The port index.
2546  * @prio:	The priority to set.
2547  *
2548  * This routine configures the port based priority of the switch.
2549  */
2550 static void sw_cfg_port_based(struct ksz_hw *hw, int port, u8 prio)
2551 {
2552 	u16 data;
2553 
2554 	if (prio > PORT_BASED_PRIORITY_BASE)
2555 		prio = PORT_BASED_PRIORITY_BASE;
2556 
2557 	hw->ksz_switch->port_cfg[port].port_prio = prio;
2558 
2559 	port_r16(hw, port, KS8842_PORT_CTRL_1_OFFSET, &data);
2560 	data &= ~PORT_BASED_PRIORITY_MASK;
2561 	data |= prio << PORT_BASED_PRIORITY_SHIFT;
2562 	port_w16(hw, port, KS8842_PORT_CTRL_1_OFFSET, data);
2563 }
2564 
2565 /**
2566  * sw_dis_multi_queue - disable transmit multiple queues
2567  * @hw: 	The hardware instance.
2568  * @port:	The port index.
2569  *
2570  * This routine disables the transmit multiple queues selection of the switch
2571  * port.  Only single transmit queue on the port.
2572  */
2573 static void sw_dis_multi_queue(struct ksz_hw *hw, int port)
2574 {
2575 	port_cfg_prio(hw, port, 0);
2576 }
2577 
2578 /**
2579  * sw_init_prio - initialize switch priority
2580  * @hw: 	The hardware instance.
2581  *
2582  * This routine initializes the switch QoS priority functions.
2583  */
2584 static void sw_init_prio(struct ksz_hw *hw)
2585 {
2586 	int port;
2587 	int tos;
2588 	struct ksz_switch *sw = hw->ksz_switch;
2589 
2590 	/*
2591 	 * Init all the 802.1p tag priority value to be assigned to different
2592 	 * priority queue.
2593 	 */
2594 	sw->p_802_1p[0] = 0;
2595 	sw->p_802_1p[1] = 0;
2596 	sw->p_802_1p[2] = 1;
2597 	sw->p_802_1p[3] = 1;
2598 	sw->p_802_1p[4] = 2;
2599 	sw->p_802_1p[5] = 2;
2600 	sw->p_802_1p[6] = 3;
2601 	sw->p_802_1p[7] = 3;
2602 
2603 	/*
2604 	 * Init all the DiffServ priority value to be assigned to priority
2605 	 * queue 0.
2606 	 */
2607 	for (tos = 0; tos < DIFFSERV_ENTRIES; tos++)
2608 		sw->diffserv[tos] = 0;
2609 
2610 	/* All QoS functions disabled. */
2611 	for (port = 0; port < TOTAL_PORT_NUM; port++) {
2612 		sw_dis_multi_queue(hw, port);
2613 		sw_dis_diffserv(hw, port);
2614 		sw_dis_802_1p(hw, port);
2615 		sw_cfg_replace_vid(hw, port, 0);
2616 
2617 		sw->port_cfg[port].port_prio = 0;
2618 		sw_cfg_port_based(hw, port, sw->port_cfg[port].port_prio);
2619 	}
2620 	sw_cfg_replace_null_vid(hw, 0);
2621 }
2622 
2623 /**
2624  * port_get_def_vid - get port default VID.
2625  * @hw: 	The hardware instance.
2626  * @port:	The port index.
2627  * @vid:	Buffer to store the VID.
2628  *
2629  * This routine retrieves the default VID of the port.
2630  */
2631 static void port_get_def_vid(struct ksz_hw *hw, int port, u16 *vid)
2632 {
2633 	u32 addr;
2634 
2635 	PORT_CTRL_ADDR(port, addr);
2636 	addr += KS8842_PORT_CTRL_VID_OFFSET;
2637 	*vid = readw(hw->io + addr);
2638 }
2639 
2640 /**
2641  * sw_init_vlan - initialize switch VLAN
2642  * @hw: 	The hardware instance.
2643  *
2644  * This routine initializes the VLAN function of the switch.
2645  */
2646 static void sw_init_vlan(struct ksz_hw *hw)
2647 {
2648 	int port;
2649 	int entry;
2650 	struct ksz_switch *sw = hw->ksz_switch;
2651 
2652 	/* Read 16 VLAN entries from device's VLAN table. */
2653 	for (entry = 0; entry < VLAN_TABLE_ENTRIES; entry++) {
2654 		sw_r_vlan_table(hw, entry,
2655 			&sw->vlan_table[entry].vid,
2656 			&sw->vlan_table[entry].fid,
2657 			&sw->vlan_table[entry].member);
2658 	}
2659 
2660 	for (port = 0; port < TOTAL_PORT_NUM; port++) {
2661 		port_get_def_vid(hw, port, &sw->port_cfg[port].vid);
2662 		sw->port_cfg[port].member = PORT_MASK;
2663 	}
2664 }
2665 
2666 /**
2667  * sw_cfg_port_base_vlan - configure port-based VLAN membership
2668  * @hw: 	The hardware instance.
2669  * @port:	The port index.
2670  * @member:	The port-based VLAN membership.
2671  *
2672  * This routine configures the port-based VLAN membership of the port.
2673  */
2674 static void sw_cfg_port_base_vlan(struct ksz_hw *hw, int port, u8 member)
2675 {
2676 	u32 addr;
2677 	u8 data;
2678 
2679 	PORT_CTRL_ADDR(port, addr);
2680 	addr += KS8842_PORT_CTRL_2_OFFSET;
2681 
2682 	data = readb(hw->io + addr);
2683 	data &= ~PORT_VLAN_MEMBERSHIP;
2684 	data |= (member & PORT_MASK);
2685 	writeb(data, hw->io + addr);
2686 
2687 	hw->ksz_switch->port_cfg[port].member = member;
2688 }
2689 
2690 /**
2691  * sw_get_addr - get the switch MAC address.
2692  * @hw: 	The hardware instance.
2693  * @mac_addr:	Buffer to store the MAC address.
2694  *
2695  * This function retrieves the MAC address of the switch.
2696  */
2697 static inline void sw_get_addr(struct ksz_hw *hw, u8 *mac_addr)
2698 {
2699 	int i;
2700 
2701 	for (i = 0; i < 6; i += 2) {
2702 		mac_addr[i] = readb(hw->io + KS8842_MAC_ADDR_0_OFFSET + i);
2703 		mac_addr[1 + i] = readb(hw->io + KS8842_MAC_ADDR_1_OFFSET + i);
2704 	}
2705 }
2706 
2707 /**
2708  * sw_set_addr - configure switch MAC address
2709  * @hw: 	The hardware instance.
2710  * @mac_addr:	The MAC address.
2711  *
2712  * This function configures the MAC address of the switch.
2713  */
2714 static void sw_set_addr(struct ksz_hw *hw, u8 *mac_addr)
2715 {
2716 	int i;
2717 
2718 	for (i = 0; i < 6; i += 2) {
2719 		writeb(mac_addr[i], hw->io + KS8842_MAC_ADDR_0_OFFSET + i);
2720 		writeb(mac_addr[1 + i], hw->io + KS8842_MAC_ADDR_1_OFFSET + i);
2721 	}
2722 }
2723 
2724 /**
2725  * sw_set_global_ctrl - set switch global control
2726  * @hw: 	The hardware instance.
2727  *
2728  * This routine sets the global control of the switch function.
2729  */
2730 static void sw_set_global_ctrl(struct ksz_hw *hw)
2731 {
2732 	u16 data;
2733 
2734 	/* Enable switch MII flow control. */
2735 	data = readw(hw->io + KS8842_SWITCH_CTRL_3_OFFSET);
2736 	data |= SWITCH_FLOW_CTRL;
2737 	writew(data, hw->io + KS8842_SWITCH_CTRL_3_OFFSET);
2738 
2739 	data = readw(hw->io + KS8842_SWITCH_CTRL_1_OFFSET);
2740 
2741 	/* Enable aggressive back off algorithm in half duplex mode. */
2742 	data |= SWITCH_AGGR_BACKOFF;
2743 
2744 	/* Enable automatic fast aging when link changed detected. */
2745 	data |= SWITCH_AGING_ENABLE;
2746 	data |= SWITCH_LINK_AUTO_AGING;
2747 
2748 	if (hw->overrides & FAST_AGING)
2749 		data |= SWITCH_FAST_AGING;
2750 	else
2751 		data &= ~SWITCH_FAST_AGING;
2752 	writew(data, hw->io + KS8842_SWITCH_CTRL_1_OFFSET);
2753 
2754 	data = readw(hw->io + KS8842_SWITCH_CTRL_2_OFFSET);
2755 
2756 	/* Enable no excessive collision drop. */
2757 	data |= NO_EXC_COLLISION_DROP;
2758 	writew(data, hw->io + KS8842_SWITCH_CTRL_2_OFFSET);
2759 }
2760 
2761 enum {
2762 	STP_STATE_DISABLED = 0,
2763 	STP_STATE_LISTENING,
2764 	STP_STATE_LEARNING,
2765 	STP_STATE_FORWARDING,
2766 	STP_STATE_BLOCKED,
2767 	STP_STATE_SIMPLE
2768 };
2769 
2770 /**
2771  * port_set_stp_state - configure port spanning tree state
2772  * @hw: 	The hardware instance.
2773  * @port:	The port index.
2774  * @state:	The spanning tree state.
2775  *
2776  * This routine configures the spanning tree state of the port.
2777  */
2778 static void port_set_stp_state(struct ksz_hw *hw, int port, int state)
2779 {
2780 	u16 data;
2781 
2782 	port_r16(hw, port, KS8842_PORT_CTRL_2_OFFSET, &data);
2783 	switch (state) {
2784 	case STP_STATE_DISABLED:
2785 		data &= ~(PORT_TX_ENABLE | PORT_RX_ENABLE);
2786 		data |= PORT_LEARN_DISABLE;
2787 		break;
2788 	case STP_STATE_LISTENING:
2789 /*
2790  * No need to turn on transmit because of port direct mode.
2791  * Turning on receive is required if static MAC table is not setup.
2792  */
2793 		data &= ~PORT_TX_ENABLE;
2794 		data |= PORT_RX_ENABLE;
2795 		data |= PORT_LEARN_DISABLE;
2796 		break;
2797 	case STP_STATE_LEARNING:
2798 		data &= ~PORT_TX_ENABLE;
2799 		data |= PORT_RX_ENABLE;
2800 		data &= ~PORT_LEARN_DISABLE;
2801 		break;
2802 	case STP_STATE_FORWARDING:
2803 		data |= (PORT_TX_ENABLE | PORT_RX_ENABLE);
2804 		data &= ~PORT_LEARN_DISABLE;
2805 		break;
2806 	case STP_STATE_BLOCKED:
2807 /*
2808  * Need to setup static MAC table with override to keep receiving BPDU
2809  * messages.  See sw_init_stp routine.
2810  */
2811 		data &= ~(PORT_TX_ENABLE | PORT_RX_ENABLE);
2812 		data |= PORT_LEARN_DISABLE;
2813 		break;
2814 	case STP_STATE_SIMPLE:
2815 		data |= (PORT_TX_ENABLE | PORT_RX_ENABLE);
2816 		data |= PORT_LEARN_DISABLE;
2817 		break;
2818 	}
2819 	port_w16(hw, port, KS8842_PORT_CTRL_2_OFFSET, data);
2820 	hw->ksz_switch->port_cfg[port].stp_state = state;
2821 }
2822 
2823 #define STP_ENTRY			0
2824 #define BROADCAST_ENTRY			1
2825 #define BRIDGE_ADDR_ENTRY		2
2826 #define IPV6_ADDR_ENTRY			3
2827 
2828 /**
2829  * sw_clr_sta_mac_table - clear static MAC table
2830  * @hw: 	The hardware instance.
2831  *
2832  * This routine clears the static MAC table.
2833  */
2834 static void sw_clr_sta_mac_table(struct ksz_hw *hw)
2835 {
2836 	struct ksz_mac_table *entry;
2837 	int i;
2838 
2839 	for (i = 0; i < STATIC_MAC_TABLE_ENTRIES; i++) {
2840 		entry = &hw->ksz_switch->mac_table[i];
2841 		sw_w_sta_mac_table(hw, i,
2842 			entry->mac_addr, entry->ports,
2843 			entry->override, 0,
2844 			entry->use_fid, entry->fid);
2845 	}
2846 }
2847 
2848 /**
2849  * sw_init_stp - initialize switch spanning tree support
2850  * @hw: 	The hardware instance.
2851  *
2852  * This routine initializes the spanning tree support of the switch.
2853  */
2854 static void sw_init_stp(struct ksz_hw *hw)
2855 {
2856 	struct ksz_mac_table *entry;
2857 
2858 	entry = &hw->ksz_switch->mac_table[STP_ENTRY];
2859 	entry->mac_addr[0] = 0x01;
2860 	entry->mac_addr[1] = 0x80;
2861 	entry->mac_addr[2] = 0xC2;
2862 	entry->mac_addr[3] = 0x00;
2863 	entry->mac_addr[4] = 0x00;
2864 	entry->mac_addr[5] = 0x00;
2865 	entry->ports = HOST_MASK;
2866 	entry->override = 1;
2867 	entry->valid = 1;
2868 	sw_w_sta_mac_table(hw, STP_ENTRY,
2869 		entry->mac_addr, entry->ports,
2870 		entry->override, entry->valid,
2871 		entry->use_fid, entry->fid);
2872 }
2873 
2874 /**
2875  * sw_block_addr - block certain packets from the host port
2876  * @hw: 	The hardware instance.
2877  *
2878  * This routine blocks certain packets from reaching to the host port.
2879  */
2880 static void sw_block_addr(struct ksz_hw *hw)
2881 {
2882 	struct ksz_mac_table *entry;
2883 	int i;
2884 
2885 	for (i = BROADCAST_ENTRY; i <= IPV6_ADDR_ENTRY; i++) {
2886 		entry = &hw->ksz_switch->mac_table[i];
2887 		entry->valid = 0;
2888 		sw_w_sta_mac_table(hw, i,
2889 			entry->mac_addr, entry->ports,
2890 			entry->override, entry->valid,
2891 			entry->use_fid, entry->fid);
2892 	}
2893 }
2894 
2895 #define PHY_LINK_SUPPORT		\
2896 	(PHY_AUTO_NEG_ASYM_PAUSE |	\
2897 	PHY_AUTO_NEG_SYM_PAUSE |	\
2898 	PHY_AUTO_NEG_100BT4 |		\
2899 	PHY_AUTO_NEG_100BTX_FD |	\
2900 	PHY_AUTO_NEG_100BTX |		\
2901 	PHY_AUTO_NEG_10BT_FD |		\
2902 	PHY_AUTO_NEG_10BT)
2903 
2904 static inline void hw_r_phy_ctrl(struct ksz_hw *hw, int phy, u16 *data)
2905 {
2906 	*data = readw(hw->io + phy + KS884X_PHY_CTRL_OFFSET);
2907 }
2908 
2909 static inline void hw_w_phy_ctrl(struct ksz_hw *hw, int phy, u16 data)
2910 {
2911 	writew(data, hw->io + phy + KS884X_PHY_CTRL_OFFSET);
2912 }
2913 
2914 static inline void hw_r_phy_link_stat(struct ksz_hw *hw, int phy, u16 *data)
2915 {
2916 	*data = readw(hw->io + phy + KS884X_PHY_STATUS_OFFSET);
2917 }
2918 
2919 static inline void hw_r_phy_auto_neg(struct ksz_hw *hw, int phy, u16 *data)
2920 {
2921 	*data = readw(hw->io + phy + KS884X_PHY_AUTO_NEG_OFFSET);
2922 }
2923 
2924 static inline void hw_w_phy_auto_neg(struct ksz_hw *hw, int phy, u16 data)
2925 {
2926 	writew(data, hw->io + phy + KS884X_PHY_AUTO_NEG_OFFSET);
2927 }
2928 
2929 static inline void hw_r_phy_rem_cap(struct ksz_hw *hw, int phy, u16 *data)
2930 {
2931 	*data = readw(hw->io + phy + KS884X_PHY_REMOTE_CAP_OFFSET);
2932 }
2933 
2934 static inline void hw_r_phy_crossover(struct ksz_hw *hw, int phy, u16 *data)
2935 {
2936 	*data = readw(hw->io + phy + KS884X_PHY_CTRL_OFFSET);
2937 }
2938 
2939 static inline void hw_w_phy_crossover(struct ksz_hw *hw, int phy, u16 data)
2940 {
2941 	writew(data, hw->io + phy + KS884X_PHY_CTRL_OFFSET);
2942 }
2943 
2944 static inline void hw_r_phy_polarity(struct ksz_hw *hw, int phy, u16 *data)
2945 {
2946 	*data = readw(hw->io + phy + KS884X_PHY_PHY_CTRL_OFFSET);
2947 }
2948 
2949 static inline void hw_w_phy_polarity(struct ksz_hw *hw, int phy, u16 data)
2950 {
2951 	writew(data, hw->io + phy + KS884X_PHY_PHY_CTRL_OFFSET);
2952 }
2953 
2954 static inline void hw_r_phy_link_md(struct ksz_hw *hw, int phy, u16 *data)
2955 {
2956 	*data = readw(hw->io + phy + KS884X_PHY_LINK_MD_OFFSET);
2957 }
2958 
2959 static inline void hw_w_phy_link_md(struct ksz_hw *hw, int phy, u16 data)
2960 {
2961 	writew(data, hw->io + phy + KS884X_PHY_LINK_MD_OFFSET);
2962 }
2963 
2964 /**
2965  * hw_r_phy - read data from PHY register
2966  * @hw: 	The hardware instance.
2967  * @port:	Port to read.
2968  * @reg:	PHY register to read.
2969  * @val:	Buffer to store the read data.
2970  *
2971  * This routine reads data from the PHY register.
2972  */
2973 static void hw_r_phy(struct ksz_hw *hw, int port, u16 reg, u16 *val)
2974 {
2975 	int phy;
2976 
2977 	phy = KS884X_PHY_1_CTRL_OFFSET + port * PHY_CTRL_INTERVAL + reg;
2978 	*val = readw(hw->io + phy);
2979 }
2980 
2981 /**
2982  * port_w_phy - write data to PHY register
2983  * @hw: 	The hardware instance.
2984  * @port:	Port to write.
2985  * @reg:	PHY register to write.
2986  * @val:	Word data to write.
2987  *
2988  * This routine writes data to the PHY register.
2989  */
2990 static void hw_w_phy(struct ksz_hw *hw, int port, u16 reg, u16 val)
2991 {
2992 	int phy;
2993 
2994 	phy = KS884X_PHY_1_CTRL_OFFSET + port * PHY_CTRL_INTERVAL + reg;
2995 	writew(val, hw->io + phy);
2996 }
2997 
2998 /*
2999  * EEPROM access functions
3000  */
3001 
3002 #define AT93C_CODE			0
3003 #define AT93C_WR_OFF			0x00
3004 #define AT93C_WR_ALL			0x10
3005 #define AT93C_ER_ALL			0x20
3006 #define AT93C_WR_ON			0x30
3007 
3008 #define AT93C_WRITE			1
3009 #define AT93C_READ			2
3010 #define AT93C_ERASE			3
3011 
3012 #define EEPROM_DELAY			4
3013 
3014 static inline void drop_gpio(struct ksz_hw *hw, u8 gpio)
3015 {
3016 	u16 data;
3017 
3018 	data = readw(hw->io + KS884X_EEPROM_CTRL_OFFSET);
3019 	data &= ~gpio;
3020 	writew(data, hw->io + KS884X_EEPROM_CTRL_OFFSET);
3021 }
3022 
3023 static inline void raise_gpio(struct ksz_hw *hw, u8 gpio)
3024 {
3025 	u16 data;
3026 
3027 	data = readw(hw->io + KS884X_EEPROM_CTRL_OFFSET);
3028 	data |= gpio;
3029 	writew(data, hw->io + KS884X_EEPROM_CTRL_OFFSET);
3030 }
3031 
3032 static inline u8 state_gpio(struct ksz_hw *hw, u8 gpio)
3033 {
3034 	u16 data;
3035 
3036 	data = readw(hw->io + KS884X_EEPROM_CTRL_OFFSET);
3037 	return (u8)(data & gpio);
3038 }
3039 
3040 static void eeprom_clk(struct ksz_hw *hw)
3041 {
3042 	raise_gpio(hw, EEPROM_SERIAL_CLOCK);
3043 	udelay(EEPROM_DELAY);
3044 	drop_gpio(hw, EEPROM_SERIAL_CLOCK);
3045 	udelay(EEPROM_DELAY);
3046 }
3047 
3048 static u16 spi_r(struct ksz_hw *hw)
3049 {
3050 	int i;
3051 	u16 temp = 0;
3052 
3053 	for (i = 15; i >= 0; i--) {
3054 		raise_gpio(hw, EEPROM_SERIAL_CLOCK);
3055 		udelay(EEPROM_DELAY);
3056 
3057 		temp |= (state_gpio(hw, EEPROM_DATA_IN)) ? 1 << i : 0;
3058 
3059 		drop_gpio(hw, EEPROM_SERIAL_CLOCK);
3060 		udelay(EEPROM_DELAY);
3061 	}
3062 	return temp;
3063 }
3064 
3065 static void spi_w(struct ksz_hw *hw, u16 data)
3066 {
3067 	int i;
3068 
3069 	for (i = 15; i >= 0; i--) {
3070 		(data & (0x01 << i)) ? raise_gpio(hw, EEPROM_DATA_OUT) :
3071 			drop_gpio(hw, EEPROM_DATA_OUT);
3072 		eeprom_clk(hw);
3073 	}
3074 }
3075 
3076 static void spi_reg(struct ksz_hw *hw, u8 data, u8 reg)
3077 {
3078 	int i;
3079 
3080 	/* Initial start bit */
3081 	raise_gpio(hw, EEPROM_DATA_OUT);
3082 	eeprom_clk(hw);
3083 
3084 	/* AT93C operation */
3085 	for (i = 1; i >= 0; i--) {
3086 		(data & (0x01 << i)) ? raise_gpio(hw, EEPROM_DATA_OUT) :
3087 			drop_gpio(hw, EEPROM_DATA_OUT);
3088 		eeprom_clk(hw);
3089 	}
3090 
3091 	/* Address location */
3092 	for (i = 5; i >= 0; i--) {
3093 		(reg & (0x01 << i)) ? raise_gpio(hw, EEPROM_DATA_OUT) :
3094 			drop_gpio(hw, EEPROM_DATA_OUT);
3095 		eeprom_clk(hw);
3096 	}
3097 }
3098 
3099 #define EEPROM_DATA_RESERVED		0
3100 #define EEPROM_DATA_MAC_ADDR_0		1
3101 #define EEPROM_DATA_MAC_ADDR_1		2
3102 #define EEPROM_DATA_MAC_ADDR_2		3
3103 #define EEPROM_DATA_SUBSYS_ID		4
3104 #define EEPROM_DATA_SUBSYS_VEN_ID	5
3105 #define EEPROM_DATA_PM_CAP		6
3106 
3107 /* User defined EEPROM data */
3108 #define EEPROM_DATA_OTHER_MAC_ADDR	9
3109 
3110 /**
3111  * eeprom_read - read from AT93C46 EEPROM
3112  * @hw: 	The hardware instance.
3113  * @reg:	The register offset.
3114  *
3115  * This function reads a word from the AT93C46 EEPROM.
3116  *
3117  * Return the data value.
3118  */
3119 static u16 eeprom_read(struct ksz_hw *hw, u8 reg)
3120 {
3121 	u16 data;
3122 
3123 	raise_gpio(hw, EEPROM_ACCESS_ENABLE | EEPROM_CHIP_SELECT);
3124 
3125 	spi_reg(hw, AT93C_READ, reg);
3126 	data = spi_r(hw);
3127 
3128 	drop_gpio(hw, EEPROM_ACCESS_ENABLE | EEPROM_CHIP_SELECT);
3129 
3130 	return data;
3131 }
3132 
3133 /**
3134  * eeprom_write - write to AT93C46 EEPROM
3135  * @hw: 	The hardware instance.
3136  * @reg:	The register offset.
3137  * @data:	The data value.
3138  *
3139  * This procedure writes a word to the AT93C46 EEPROM.
3140  */
3141 static void eeprom_write(struct ksz_hw *hw, u8 reg, u16 data)
3142 {
3143 	int timeout;
3144 
3145 	raise_gpio(hw, EEPROM_ACCESS_ENABLE | EEPROM_CHIP_SELECT);
3146 
3147 	/* Enable write. */
3148 	spi_reg(hw, AT93C_CODE, AT93C_WR_ON);
3149 	drop_gpio(hw, EEPROM_CHIP_SELECT);
3150 	udelay(1);
3151 
3152 	/* Erase the register. */
3153 	raise_gpio(hw, EEPROM_CHIP_SELECT);
3154 	spi_reg(hw, AT93C_ERASE, reg);
3155 	drop_gpio(hw, EEPROM_CHIP_SELECT);
3156 	udelay(1);
3157 
3158 	/* Check operation complete. */
3159 	raise_gpio(hw, EEPROM_CHIP_SELECT);
3160 	timeout = 8;
3161 	mdelay(2);
3162 	do {
3163 		mdelay(1);
3164 	} while (!state_gpio(hw, EEPROM_DATA_IN) && --timeout);
3165 	drop_gpio(hw, EEPROM_CHIP_SELECT);
3166 	udelay(1);
3167 
3168 	/* Write the register. */
3169 	raise_gpio(hw, EEPROM_CHIP_SELECT);
3170 	spi_reg(hw, AT93C_WRITE, reg);
3171 	spi_w(hw, data);
3172 	drop_gpio(hw, EEPROM_CHIP_SELECT);
3173 	udelay(1);
3174 
3175 	/* Check operation complete. */
3176 	raise_gpio(hw, EEPROM_CHIP_SELECT);
3177 	timeout = 8;
3178 	mdelay(2);
3179 	do {
3180 		mdelay(1);
3181 	} while (!state_gpio(hw, EEPROM_DATA_IN) && --timeout);
3182 	drop_gpio(hw, EEPROM_CHIP_SELECT);
3183 	udelay(1);
3184 
3185 	/* Disable write. */
3186 	raise_gpio(hw, EEPROM_CHIP_SELECT);
3187 	spi_reg(hw, AT93C_CODE, AT93C_WR_OFF);
3188 
3189 	drop_gpio(hw, EEPROM_ACCESS_ENABLE | EEPROM_CHIP_SELECT);
3190 }
3191 
3192 /*
3193  * Link detection routines
3194  */
3195 
3196 static u16 advertised_flow_ctrl(struct ksz_port *port, u16 ctrl)
3197 {
3198 	ctrl &= ~PORT_AUTO_NEG_SYM_PAUSE;
3199 	switch (port->flow_ctrl) {
3200 	case PHY_FLOW_CTRL:
3201 		ctrl |= PORT_AUTO_NEG_SYM_PAUSE;
3202 		break;
3203 	/* Not supported. */
3204 	case PHY_TX_ONLY:
3205 	case PHY_RX_ONLY:
3206 	default:
3207 		break;
3208 	}
3209 	return ctrl;
3210 }
3211 
3212 static void set_flow_ctrl(struct ksz_hw *hw, int rx, int tx)
3213 {
3214 	u32 rx_cfg;
3215 	u32 tx_cfg;
3216 
3217 	rx_cfg = hw->rx_cfg;
3218 	tx_cfg = hw->tx_cfg;
3219 	if (rx)
3220 		hw->rx_cfg |= DMA_RX_FLOW_ENABLE;
3221 	else
3222 		hw->rx_cfg &= ~DMA_RX_FLOW_ENABLE;
3223 	if (tx)
3224 		hw->tx_cfg |= DMA_TX_FLOW_ENABLE;
3225 	else
3226 		hw->tx_cfg &= ~DMA_TX_FLOW_ENABLE;
3227 	if (hw->enabled) {
3228 		if (rx_cfg != hw->rx_cfg)
3229 			writel(hw->rx_cfg, hw->io + KS_DMA_RX_CTRL);
3230 		if (tx_cfg != hw->tx_cfg)
3231 			writel(hw->tx_cfg, hw->io + KS_DMA_TX_CTRL);
3232 	}
3233 }
3234 
3235 static void determine_flow_ctrl(struct ksz_hw *hw, struct ksz_port *port,
3236 	u16 local, u16 remote)
3237 {
3238 	int rx;
3239 	int tx;
3240 
3241 	if (hw->overrides & PAUSE_FLOW_CTRL)
3242 		return;
3243 
3244 	rx = tx = 0;
3245 	if (port->force_link)
3246 		rx = tx = 1;
3247 	if (remote & PHY_AUTO_NEG_SYM_PAUSE) {
3248 		if (local & PHY_AUTO_NEG_SYM_PAUSE) {
3249 			rx = tx = 1;
3250 		} else if ((remote & PHY_AUTO_NEG_ASYM_PAUSE) &&
3251 				(local & PHY_AUTO_NEG_PAUSE) ==
3252 				PHY_AUTO_NEG_ASYM_PAUSE) {
3253 			tx = 1;
3254 		}
3255 	} else if (remote & PHY_AUTO_NEG_ASYM_PAUSE) {
3256 		if ((local & PHY_AUTO_NEG_PAUSE) == PHY_AUTO_NEG_PAUSE)
3257 			rx = 1;
3258 	}
3259 	if (!hw->ksz_switch)
3260 		set_flow_ctrl(hw, rx, tx);
3261 }
3262 
3263 static inline void port_cfg_change(struct ksz_hw *hw, struct ksz_port *port,
3264 	struct ksz_port_info *info, u16 link_status)
3265 {
3266 	if ((hw->features & HALF_DUPLEX_SIGNAL_BUG) &&
3267 			!(hw->overrides & PAUSE_FLOW_CTRL)) {
3268 		u32 cfg = hw->tx_cfg;
3269 
3270 		/* Disable flow control in the half duplex mode. */
3271 		if (1 == info->duplex)
3272 			hw->tx_cfg &= ~DMA_TX_FLOW_ENABLE;
3273 		if (hw->enabled && cfg != hw->tx_cfg)
3274 			writel(hw->tx_cfg, hw->io + KS_DMA_TX_CTRL);
3275 	}
3276 }
3277 
3278 /**
3279  * port_get_link_speed - get current link status
3280  * @port: 	The port instance.
3281  *
3282  * This routine reads PHY registers to determine the current link status of the
3283  * switch ports.
3284  */
3285 static void port_get_link_speed(struct ksz_port *port)
3286 {
3287 	uint interrupt;
3288 	struct ksz_port_info *info;
3289 	struct ksz_port_info *linked = NULL;
3290 	struct ksz_hw *hw = port->hw;
3291 	u16 data;
3292 	u16 status;
3293 	u8 local;
3294 	u8 remote;
3295 	int i;
3296 	int p;
3297 	int change = 0;
3298 
3299 	interrupt = hw_block_intr(hw);
3300 
3301 	for (i = 0, p = port->first_port; i < port->port_cnt; i++, p++) {
3302 		info = &hw->port_info[p];
3303 		port_r16(hw, p, KS884X_PORT_CTRL_4_OFFSET, &data);
3304 		port_r16(hw, p, KS884X_PORT_STATUS_OFFSET, &status);
3305 
3306 		/*
3307 		 * Link status is changing all the time even when there is no
3308 		 * cable connection!
3309 		 */
3310 		remote = status & (PORT_AUTO_NEG_COMPLETE |
3311 			PORT_STATUS_LINK_GOOD);
3312 		local = (u8) data;
3313 
3314 		/* No change to status. */
3315 		if (local == info->advertised && remote == info->partner)
3316 			continue;
3317 
3318 		info->advertised = local;
3319 		info->partner = remote;
3320 		if (status & PORT_STATUS_LINK_GOOD) {
3321 
3322 			/* Remember the first linked port. */
3323 			if (!linked)
3324 				linked = info;
3325 
3326 			info->tx_rate = 10 * TX_RATE_UNIT;
3327 			if (status & PORT_STATUS_SPEED_100MBIT)
3328 				info->tx_rate = 100 * TX_RATE_UNIT;
3329 
3330 			info->duplex = 1;
3331 			if (status & PORT_STATUS_FULL_DUPLEX)
3332 				info->duplex = 2;
3333 
3334 			if (media_connected != info->state) {
3335 				hw_r_phy(hw, p, KS884X_PHY_AUTO_NEG_OFFSET,
3336 					&data);
3337 				hw_r_phy(hw, p, KS884X_PHY_REMOTE_CAP_OFFSET,
3338 					&status);
3339 				determine_flow_ctrl(hw, port, data, status);
3340 				if (hw->ksz_switch) {
3341 					port_cfg_back_pressure(hw, p,
3342 						(1 == info->duplex));
3343 				}
3344 				change |= 1 << i;
3345 				port_cfg_change(hw, port, info, status);
3346 			}
3347 			info->state = media_connected;
3348 		} else {
3349 			if (media_disconnected != info->state) {
3350 				change |= 1 << i;
3351 
3352 				/* Indicate the link just goes down. */
3353 				hw->port_mib[p].link_down = 1;
3354 			}
3355 			info->state = media_disconnected;
3356 		}
3357 		hw->port_mib[p].state = (u8) info->state;
3358 	}
3359 
3360 	if (linked && media_disconnected == port->linked->state)
3361 		port->linked = linked;
3362 
3363 	hw_restore_intr(hw, interrupt);
3364 }
3365 
3366 #define PHY_RESET_TIMEOUT		10
3367 
3368 /**
3369  * port_set_link_speed - set port speed
3370  * @port: 	The port instance.
3371  *
3372  * This routine sets the link speed of the switch ports.
3373  */
3374 static void port_set_link_speed(struct ksz_port *port)
3375 {
3376 	struct ksz_hw *hw = port->hw;
3377 	u16 data;
3378 	u16 cfg;
3379 	u8 status;
3380 	int i;
3381 	int p;
3382 
3383 	for (i = 0, p = port->first_port; i < port->port_cnt; i++, p++) {
3384 		port_r16(hw, p, KS884X_PORT_CTRL_4_OFFSET, &data);
3385 		port_r8(hw, p, KS884X_PORT_STATUS_OFFSET, &status);
3386 
3387 		cfg = 0;
3388 		if (status & PORT_STATUS_LINK_GOOD)
3389 			cfg = data;
3390 
3391 		data |= PORT_AUTO_NEG_ENABLE;
3392 		data = advertised_flow_ctrl(port, data);
3393 
3394 		data |= PORT_AUTO_NEG_100BTX_FD | PORT_AUTO_NEG_100BTX |
3395 			PORT_AUTO_NEG_10BT_FD | PORT_AUTO_NEG_10BT;
3396 
3397 		/* Check if manual configuration is specified by the user. */
3398 		if (port->speed || port->duplex) {
3399 			if (10 == port->speed)
3400 				data &= ~(PORT_AUTO_NEG_100BTX_FD |
3401 					PORT_AUTO_NEG_100BTX);
3402 			else if (100 == port->speed)
3403 				data &= ~(PORT_AUTO_NEG_10BT_FD |
3404 					PORT_AUTO_NEG_10BT);
3405 			if (1 == port->duplex)
3406 				data &= ~(PORT_AUTO_NEG_100BTX_FD |
3407 					PORT_AUTO_NEG_10BT_FD);
3408 			else if (2 == port->duplex)
3409 				data &= ~(PORT_AUTO_NEG_100BTX |
3410 					PORT_AUTO_NEG_10BT);
3411 		}
3412 		if (data != cfg) {
3413 			data |= PORT_AUTO_NEG_RESTART;
3414 			port_w16(hw, p, KS884X_PORT_CTRL_4_OFFSET, data);
3415 		}
3416 	}
3417 }
3418 
3419 /**
3420  * port_force_link_speed - force port speed
3421  * @port: 	The port instance.
3422  *
3423  * This routine forces the link speed of the switch ports.
3424  */
3425 static void port_force_link_speed(struct ksz_port *port)
3426 {
3427 	struct ksz_hw *hw = port->hw;
3428 	u16 data;
3429 	int i;
3430 	int phy;
3431 	int p;
3432 
3433 	for (i = 0, p = port->first_port; i < port->port_cnt; i++, p++) {
3434 		phy = KS884X_PHY_1_CTRL_OFFSET + p * PHY_CTRL_INTERVAL;
3435 		hw_r_phy_ctrl(hw, phy, &data);
3436 
3437 		data &= ~PHY_AUTO_NEG_ENABLE;
3438 
3439 		if (10 == port->speed)
3440 			data &= ~PHY_SPEED_100MBIT;
3441 		else if (100 == port->speed)
3442 			data |= PHY_SPEED_100MBIT;
3443 		if (1 == port->duplex)
3444 			data &= ~PHY_FULL_DUPLEX;
3445 		else if (2 == port->duplex)
3446 			data |= PHY_FULL_DUPLEX;
3447 		hw_w_phy_ctrl(hw, phy, data);
3448 	}
3449 }
3450 
3451 static void port_set_power_saving(struct ksz_port *port, int enable)
3452 {
3453 	struct ksz_hw *hw = port->hw;
3454 	int i;
3455 	int p;
3456 
3457 	for (i = 0, p = port->first_port; i < port->port_cnt; i++, p++)
3458 		port_cfg(hw, p,
3459 			KS884X_PORT_CTRL_4_OFFSET, PORT_POWER_DOWN, enable);
3460 }
3461 
3462 /*
3463  * KSZ8841 power management functions
3464  */
3465 
3466 /**
3467  * hw_chk_wol_pme_status - check PMEN pin
3468  * @hw: 	The hardware instance.
3469  *
3470  * This function is used to check PMEN pin is asserted.
3471  *
3472  * Return 1 if PMEN pin is asserted; otherwise, 0.
3473  */
3474 static int hw_chk_wol_pme_status(struct ksz_hw *hw)
3475 {
3476 	struct dev_info *hw_priv = container_of(hw, struct dev_info, hw);
3477 	struct pci_dev *pdev = hw_priv->pdev;
3478 	u16 data;
3479 
3480 	if (!pdev->pm_cap)
3481 		return 0;
3482 	pci_read_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, &data);
3483 	return (data & PCI_PM_CTRL_PME_STATUS) == PCI_PM_CTRL_PME_STATUS;
3484 }
3485 
3486 /**
3487  * hw_clr_wol_pme_status - clear PMEN pin
3488  * @hw: 	The hardware instance.
3489  *
3490  * This routine is used to clear PME_Status to deassert PMEN pin.
3491  */
3492 static void hw_clr_wol_pme_status(struct ksz_hw *hw)
3493 {
3494 	struct dev_info *hw_priv = container_of(hw, struct dev_info, hw);
3495 	struct pci_dev *pdev = hw_priv->pdev;
3496 	u16 data;
3497 
3498 	if (!pdev->pm_cap)
3499 		return;
3500 
3501 	/* Clear PME_Status to deassert PMEN pin. */
3502 	pci_read_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, &data);
3503 	data |= PCI_PM_CTRL_PME_STATUS;
3504 	pci_write_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, data);
3505 }
3506 
3507 /**
3508  * hw_cfg_wol_pme - enable or disable Wake-on-LAN
3509  * @hw: 	The hardware instance.
3510  * @set:	The flag indicating whether to enable or disable.
3511  *
3512  * This routine is used to enable or disable Wake-on-LAN.
3513  */
3514 static void hw_cfg_wol_pme(struct ksz_hw *hw, int set)
3515 {
3516 	struct dev_info *hw_priv = container_of(hw, struct dev_info, hw);
3517 	struct pci_dev *pdev = hw_priv->pdev;
3518 	u16 data;
3519 
3520 	if (!pdev->pm_cap)
3521 		return;
3522 	pci_read_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, &data);
3523 	data &= ~PCI_PM_CTRL_STATE_MASK;
3524 	if (set)
3525 		data |= PCI_PM_CTRL_PME_ENABLE | PCI_D3hot;
3526 	else
3527 		data &= ~PCI_PM_CTRL_PME_ENABLE;
3528 	pci_write_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, data);
3529 }
3530 
3531 /**
3532  * hw_cfg_wol - configure Wake-on-LAN features
3533  * @hw: 	The hardware instance.
3534  * @frame:	The pattern frame bit.
3535  * @set:	The flag indicating whether to enable or disable.
3536  *
3537  * This routine is used to enable or disable certain Wake-on-LAN features.
3538  */
3539 static void hw_cfg_wol(struct ksz_hw *hw, u16 frame, int set)
3540 {
3541 	u16 data;
3542 
3543 	data = readw(hw->io + KS8841_WOL_CTRL_OFFSET);
3544 	if (set)
3545 		data |= frame;
3546 	else
3547 		data &= ~frame;
3548 	writew(data, hw->io + KS8841_WOL_CTRL_OFFSET);
3549 }
3550 
3551 /**
3552  * hw_set_wol_frame - program Wake-on-LAN pattern
3553  * @hw: 	The hardware instance.
3554  * @i:		The frame index.
3555  * @mask_size:	The size of the mask.
3556  * @mask:	Mask to ignore certain bytes in the pattern.
3557  * @frame_size:	The size of the frame.
3558  * @pattern:	The frame data.
3559  *
3560  * This routine is used to program Wake-on-LAN pattern.
3561  */
3562 static void hw_set_wol_frame(struct ksz_hw *hw, int i, uint mask_size,
3563 	const u8 *mask, uint frame_size, const u8 *pattern)
3564 {
3565 	int bits;
3566 	int from;
3567 	int len;
3568 	int to;
3569 	u32 crc;
3570 	u8 data[64];
3571 	u8 val = 0;
3572 
3573 	if (frame_size > mask_size * 8)
3574 		frame_size = mask_size * 8;
3575 	if (frame_size > 64)
3576 		frame_size = 64;
3577 
3578 	i *= 0x10;
3579 	writel(0, hw->io + KS8841_WOL_FRAME_BYTE0_OFFSET + i);
3580 	writel(0, hw->io + KS8841_WOL_FRAME_BYTE2_OFFSET + i);
3581 
3582 	bits = len = from = to = 0;
3583 	do {
3584 		if (bits) {
3585 			if ((val & 1))
3586 				data[to++] = pattern[from];
3587 			val >>= 1;
3588 			++from;
3589 			--bits;
3590 		} else {
3591 			val = mask[len];
3592 			writeb(val, hw->io + KS8841_WOL_FRAME_BYTE0_OFFSET + i
3593 				+ len);
3594 			++len;
3595 			if (val)
3596 				bits = 8;
3597 			else
3598 				from += 8;
3599 		}
3600 	} while (from < (int) frame_size);
3601 	if (val) {
3602 		bits = mask[len - 1];
3603 		val <<= (from % 8);
3604 		bits &= ~val;
3605 		writeb(bits, hw->io + KS8841_WOL_FRAME_BYTE0_OFFSET + i + len -
3606 			1);
3607 	}
3608 	crc = ether_crc(to, data);
3609 	writel(crc, hw->io + KS8841_WOL_FRAME_CRC_OFFSET + i);
3610 }
3611 
3612 /**
3613  * hw_add_wol_arp - add ARP pattern
3614  * @hw: 	The hardware instance.
3615  * @ip_addr:	The IPv4 address assigned to the device.
3616  *
3617  * This routine is used to add ARP pattern for waking up the host.
3618  */
3619 static void hw_add_wol_arp(struct ksz_hw *hw, const u8 *ip_addr)
3620 {
3621 	static const u8 mask[6] = { 0x3F, 0xF0, 0x3F, 0x00, 0xC0, 0x03 };
3622 	u8 pattern[42] = {
3623 		0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
3624 		0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
3625 		0x08, 0x06,
3626 		0x00, 0x01, 0x08, 0x00, 0x06, 0x04, 0x00, 0x01,
3627 		0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
3628 		0x00, 0x00, 0x00, 0x00,
3629 		0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
3630 		0x00, 0x00, 0x00, 0x00 };
3631 
3632 	memcpy(&pattern[38], ip_addr, 4);
3633 	hw_set_wol_frame(hw, 3, 6, mask, 42, pattern);
3634 }
3635 
3636 /**
3637  * hw_add_wol_bcast - add broadcast pattern
3638  * @hw: 	The hardware instance.
3639  *
3640  * This routine is used to add broadcast pattern for waking up the host.
3641  */
3642 static void hw_add_wol_bcast(struct ksz_hw *hw)
3643 {
3644 	static const u8 mask[] = { 0x3F };
3645 	static const u8 pattern[] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
3646 
3647 	hw_set_wol_frame(hw, 2, 1, mask, ETH_ALEN, pattern);
3648 }
3649 
3650 /**
3651  * hw_add_wol_mcast - add multicast pattern
3652  * @hw: 	The hardware instance.
3653  *
3654  * This routine is used to add multicast pattern for waking up the host.
3655  *
3656  * It is assumed the multicast packet is the ICMPv6 neighbor solicitation used
3657  * by IPv6 ping command.  Note that multicast packets are filtred through the
3658  * multicast hash table, so not all multicast packets can wake up the host.
3659  */
3660 static void hw_add_wol_mcast(struct ksz_hw *hw)
3661 {
3662 	static const u8 mask[] = { 0x3F };
3663 	u8 pattern[] = { 0x33, 0x33, 0xFF, 0x00, 0x00, 0x00 };
3664 
3665 	memcpy(&pattern[3], &hw->override_addr[3], 3);
3666 	hw_set_wol_frame(hw, 1, 1, mask, 6, pattern);
3667 }
3668 
3669 /**
3670  * hw_add_wol_ucast - add unicast pattern
3671  * @hw: 	The hardware instance.
3672  *
3673  * This routine is used to add unicast pattern to wakeup the host.
3674  *
3675  * It is assumed the unicast packet is directed to the device, as the hardware
3676  * can only receive them in normal case.
3677  */
3678 static void hw_add_wol_ucast(struct ksz_hw *hw)
3679 {
3680 	static const u8 mask[] = { 0x3F };
3681 
3682 	hw_set_wol_frame(hw, 0, 1, mask, ETH_ALEN, hw->override_addr);
3683 }
3684 
3685 /**
3686  * hw_enable_wol - enable Wake-on-LAN
3687  * @hw: 	The hardware instance.
3688  * @wol_enable:	The Wake-on-LAN settings.
3689  * @net_addr:	The IPv4 address assigned to the device.
3690  *
3691  * This routine is used to enable Wake-on-LAN depending on driver settings.
3692  */
3693 static void hw_enable_wol(struct ksz_hw *hw, u32 wol_enable, const u8 *net_addr)
3694 {
3695 	hw_cfg_wol(hw, KS8841_WOL_MAGIC_ENABLE, (wol_enable & WAKE_MAGIC));
3696 	hw_cfg_wol(hw, KS8841_WOL_FRAME0_ENABLE, (wol_enable & WAKE_UCAST));
3697 	hw_add_wol_ucast(hw);
3698 	hw_cfg_wol(hw, KS8841_WOL_FRAME1_ENABLE, (wol_enable & WAKE_MCAST));
3699 	hw_add_wol_mcast(hw);
3700 	hw_cfg_wol(hw, KS8841_WOL_FRAME2_ENABLE, (wol_enable & WAKE_BCAST));
3701 	hw_cfg_wol(hw, KS8841_WOL_FRAME3_ENABLE, (wol_enable & WAKE_ARP));
3702 	hw_add_wol_arp(hw, net_addr);
3703 }
3704 
3705 /**
3706  * hw_init - check driver is correct for the hardware
3707  * @hw: 	The hardware instance.
3708  *
3709  * This function checks the hardware is correct for this driver and sets the
3710  * hardware up for proper initialization.
3711  *
3712  * Return number of ports or 0 if not right.
3713  */
3714 static int hw_init(struct ksz_hw *hw)
3715 {
3716 	int rc = 0;
3717 	u16 data;
3718 	u16 revision;
3719 
3720 	/* Set bus speed to 125MHz. */
3721 	writew(BUS_SPEED_125_MHZ, hw->io + KS884X_BUS_CTRL_OFFSET);
3722 
3723 	/* Check KSZ884x chip ID. */
3724 	data = readw(hw->io + KS884X_CHIP_ID_OFFSET);
3725 
3726 	revision = (data & KS884X_REVISION_MASK) >> KS884X_REVISION_SHIFT;
3727 	data &= KS884X_CHIP_ID_MASK_41;
3728 	if (REG_CHIP_ID_41 == data)
3729 		rc = 1;
3730 	else if (REG_CHIP_ID_42 == data)
3731 		rc = 2;
3732 	else
3733 		return 0;
3734 
3735 	/* Setup hardware features or bug workarounds. */
3736 	if (revision <= 1) {
3737 		hw->features |= SMALL_PACKET_TX_BUG;
3738 		if (1 == rc)
3739 			hw->features |= HALF_DUPLEX_SIGNAL_BUG;
3740 	}
3741 	return rc;
3742 }
3743 
3744 /**
3745  * hw_reset - reset the hardware
3746  * @hw: 	The hardware instance.
3747  *
3748  * This routine resets the hardware.
3749  */
3750 static void hw_reset(struct ksz_hw *hw)
3751 {
3752 	writew(GLOBAL_SOFTWARE_RESET, hw->io + KS884X_GLOBAL_CTRL_OFFSET);
3753 
3754 	/* Wait for device to reset. */
3755 	mdelay(10);
3756 
3757 	/* Write 0 to clear device reset. */
3758 	writew(0, hw->io + KS884X_GLOBAL_CTRL_OFFSET);
3759 }
3760 
3761 /**
3762  * hw_setup - setup the hardware
3763  * @hw: 	The hardware instance.
3764  *
3765  * This routine setup the hardware for proper operation.
3766  */
3767 static void hw_setup(struct ksz_hw *hw)
3768 {
3769 #if SET_DEFAULT_LED
3770 	u16 data;
3771 
3772 	/* Change default LED mode. */
3773 	data = readw(hw->io + KS8842_SWITCH_CTRL_5_OFFSET);
3774 	data &= ~LED_MODE;
3775 	data |= SET_DEFAULT_LED;
3776 	writew(data, hw->io + KS8842_SWITCH_CTRL_5_OFFSET);
3777 #endif
3778 
3779 	/* Setup transmit control. */
3780 	hw->tx_cfg = (DMA_TX_PAD_ENABLE | DMA_TX_CRC_ENABLE |
3781 		(DMA_BURST_DEFAULT << DMA_BURST_SHIFT) | DMA_TX_ENABLE);
3782 
3783 	/* Setup receive control. */
3784 	hw->rx_cfg = (DMA_RX_BROADCAST | DMA_RX_UNICAST |
3785 		(DMA_BURST_DEFAULT << DMA_BURST_SHIFT) | DMA_RX_ENABLE);
3786 	hw->rx_cfg |= KS884X_DMA_RX_MULTICAST;
3787 
3788 	/* Hardware cannot handle UDP packet in IP fragments. */
3789 	hw->rx_cfg |= (DMA_RX_CSUM_TCP | DMA_RX_CSUM_IP);
3790 
3791 	if (hw->all_multi)
3792 		hw->rx_cfg |= DMA_RX_ALL_MULTICAST;
3793 	if (hw->promiscuous)
3794 		hw->rx_cfg |= DMA_RX_PROMISCUOUS;
3795 }
3796 
3797 /**
3798  * hw_setup_intr - setup interrupt mask
3799  * @hw: 	The hardware instance.
3800  *
3801  * This routine setup the interrupt mask for proper operation.
3802  */
3803 static void hw_setup_intr(struct ksz_hw *hw)
3804 {
3805 	hw->intr_mask = KS884X_INT_MASK | KS884X_INT_RX_OVERRUN;
3806 }
3807 
3808 static void ksz_check_desc_num(struct ksz_desc_info *info)
3809 {
3810 #define MIN_DESC_SHIFT  2
3811 
3812 	int alloc = info->alloc;
3813 	int shift;
3814 
3815 	shift = 0;
3816 	while (!(alloc & 1)) {
3817 		shift++;
3818 		alloc >>= 1;
3819 	}
3820 	if (alloc != 1 || shift < MIN_DESC_SHIFT) {
3821 		pr_alert("Hardware descriptor numbers not right!\n");
3822 		while (alloc) {
3823 			shift++;
3824 			alloc >>= 1;
3825 		}
3826 		if (shift < MIN_DESC_SHIFT)
3827 			shift = MIN_DESC_SHIFT;
3828 		alloc = 1 << shift;
3829 		info->alloc = alloc;
3830 	}
3831 	info->mask = info->alloc - 1;
3832 }
3833 
3834 static void hw_init_desc(struct ksz_desc_info *desc_info, int transmit)
3835 {
3836 	int i;
3837 	u32 phys = desc_info->ring_phys;
3838 	struct ksz_hw_desc *desc = desc_info->ring_virt;
3839 	struct ksz_desc *cur = desc_info->ring;
3840 	struct ksz_desc *previous = NULL;
3841 
3842 	for (i = 0; i < desc_info->alloc; i++) {
3843 		cur->phw = desc++;
3844 		phys += desc_info->size;
3845 		previous = cur++;
3846 		previous->phw->next = cpu_to_le32(phys);
3847 	}
3848 	previous->phw->next = cpu_to_le32(desc_info->ring_phys);
3849 	previous->sw.buf.rx.end_of_ring = 1;
3850 	previous->phw->buf.data = cpu_to_le32(previous->sw.buf.data);
3851 
3852 	desc_info->avail = desc_info->alloc;
3853 	desc_info->last = desc_info->next = 0;
3854 
3855 	desc_info->cur = desc_info->ring;
3856 }
3857 
3858 /**
3859  * hw_set_desc_base - set descriptor base addresses
3860  * @hw: 	The hardware instance.
3861  * @tx_addr:	The transmit descriptor base.
3862  * @rx_addr:	The receive descriptor base.
3863  *
3864  * This routine programs the descriptor base addresses after reset.
3865  */
3866 static void hw_set_desc_base(struct ksz_hw *hw, u32 tx_addr, u32 rx_addr)
3867 {
3868 	/* Set base address of Tx/Rx descriptors. */
3869 	writel(tx_addr, hw->io + KS_DMA_TX_ADDR);
3870 	writel(rx_addr, hw->io + KS_DMA_RX_ADDR);
3871 }
3872 
3873 static void hw_reset_pkts(struct ksz_desc_info *info)
3874 {
3875 	info->cur = info->ring;
3876 	info->avail = info->alloc;
3877 	info->last = info->next = 0;
3878 }
3879 
3880 static inline void hw_resume_rx(struct ksz_hw *hw)
3881 {
3882 	writel(DMA_START, hw->io + KS_DMA_RX_START);
3883 }
3884 
3885 /**
3886  * hw_start_rx - start receiving
3887  * @hw: 	The hardware instance.
3888  *
3889  * This routine starts the receive function of the hardware.
3890  */
3891 static void hw_start_rx(struct ksz_hw *hw)
3892 {
3893 	writel(hw->rx_cfg, hw->io + KS_DMA_RX_CTRL);
3894 
3895 	/* Notify when the receive stops. */
3896 	hw->intr_mask |= KS884X_INT_RX_STOPPED;
3897 
3898 	writel(DMA_START, hw->io + KS_DMA_RX_START);
3899 	hw_ack_intr(hw, KS884X_INT_RX_STOPPED);
3900 	hw->rx_stop++;
3901 
3902 	/* Variable overflows. */
3903 	if (0 == hw->rx_stop)
3904 		hw->rx_stop = 2;
3905 }
3906 
3907 /**
3908  * hw_stop_rx - stop receiving
3909  * @hw: 	The hardware instance.
3910  *
3911  * This routine stops the receive function of the hardware.
3912  */
3913 static void hw_stop_rx(struct ksz_hw *hw)
3914 {
3915 	hw->rx_stop = 0;
3916 	hw_turn_off_intr(hw, KS884X_INT_RX_STOPPED);
3917 	writel((hw->rx_cfg & ~DMA_RX_ENABLE), hw->io + KS_DMA_RX_CTRL);
3918 }
3919 
3920 /**
3921  * hw_start_tx - start transmitting
3922  * @hw: 	The hardware instance.
3923  *
3924  * This routine starts the transmit function of the hardware.
3925  */
3926 static void hw_start_tx(struct ksz_hw *hw)
3927 {
3928 	writel(hw->tx_cfg, hw->io + KS_DMA_TX_CTRL);
3929 }
3930 
3931 /**
3932  * hw_stop_tx - stop transmitting
3933  * @hw: 	The hardware instance.
3934  *
3935  * This routine stops the transmit function of the hardware.
3936  */
3937 static void hw_stop_tx(struct ksz_hw *hw)
3938 {
3939 	writel((hw->tx_cfg & ~DMA_TX_ENABLE), hw->io + KS_DMA_TX_CTRL);
3940 }
3941 
3942 /**
3943  * hw_disable - disable hardware
3944  * @hw: 	The hardware instance.
3945  *
3946  * This routine disables the hardware.
3947  */
3948 static void hw_disable(struct ksz_hw *hw)
3949 {
3950 	hw_stop_rx(hw);
3951 	hw_stop_tx(hw);
3952 	hw->enabled = 0;
3953 }
3954 
3955 /**
3956  * hw_enable - enable hardware
3957  * @hw: 	The hardware instance.
3958  *
3959  * This routine enables the hardware.
3960  */
3961 static void hw_enable(struct ksz_hw *hw)
3962 {
3963 	hw_start_tx(hw);
3964 	hw_start_rx(hw);
3965 	hw->enabled = 1;
3966 }
3967 
3968 /**
3969  * hw_alloc_pkt - allocate enough descriptors for transmission
3970  * @hw: 	The hardware instance.
3971  * @length:	The length of the packet.
3972  * @physical:	Number of descriptors required.
3973  *
3974  * This function allocates descriptors for transmission.
3975  *
3976  * Return 0 if not successful; 1 for buffer copy; or number of descriptors.
3977  */
3978 static int hw_alloc_pkt(struct ksz_hw *hw, int length, int physical)
3979 {
3980 	/* Always leave one descriptor free. */
3981 	if (hw->tx_desc_info.avail <= 1)
3982 		return 0;
3983 
3984 	/* Allocate a descriptor for transmission and mark it current. */
3985 	get_tx_pkt(&hw->tx_desc_info, &hw->tx_desc_info.cur);
3986 	hw->tx_desc_info.cur->sw.buf.tx.first_seg = 1;
3987 
3988 	/* Keep track of number of transmit descriptors used so far. */
3989 	++hw->tx_int_cnt;
3990 	hw->tx_size += length;
3991 
3992 	/* Cannot hold on too much data. */
3993 	if (hw->tx_size >= MAX_TX_HELD_SIZE)
3994 		hw->tx_int_cnt = hw->tx_int_mask + 1;
3995 
3996 	if (physical > hw->tx_desc_info.avail)
3997 		return 1;
3998 
3999 	return hw->tx_desc_info.avail;
4000 }
4001 
4002 /**
4003  * hw_send_pkt - mark packet for transmission
4004  * @hw: 	The hardware instance.
4005  *
4006  * This routine marks the packet for transmission in PCI version.
4007  */
4008 static void hw_send_pkt(struct ksz_hw *hw)
4009 {
4010 	struct ksz_desc *cur = hw->tx_desc_info.cur;
4011 
4012 	cur->sw.buf.tx.last_seg = 1;
4013 
4014 	/* Interrupt only after specified number of descriptors used. */
4015 	if (hw->tx_int_cnt > hw->tx_int_mask) {
4016 		cur->sw.buf.tx.intr = 1;
4017 		hw->tx_int_cnt = 0;
4018 		hw->tx_size = 0;
4019 	}
4020 
4021 	/* KSZ8842 supports port directed transmission. */
4022 	cur->sw.buf.tx.dest_port = hw->dst_ports;
4023 
4024 	release_desc(cur);
4025 
4026 	writel(0, hw->io + KS_DMA_TX_START);
4027 }
4028 
4029 static int empty_addr(u8 *addr)
4030 {
4031 	u32 *addr1 = (u32 *) addr;
4032 	u16 *addr2 = (u16 *) &addr[4];
4033 
4034 	return 0 == *addr1 && 0 == *addr2;
4035 }
4036 
4037 /**
4038  * hw_set_addr - set MAC address
4039  * @hw: 	The hardware instance.
4040  *
4041  * This routine programs the MAC address of the hardware when the address is
4042  * overridden.
4043  */
4044 static void hw_set_addr(struct ksz_hw *hw)
4045 {
4046 	int i;
4047 
4048 	for (i = 0; i < ETH_ALEN; i++)
4049 		writeb(hw->override_addr[MAC_ADDR_ORDER(i)],
4050 			hw->io + KS884X_ADDR_0_OFFSET + i);
4051 
4052 	sw_set_addr(hw, hw->override_addr);
4053 }
4054 
4055 /**
4056  * hw_read_addr - read MAC address
4057  * @hw: 	The hardware instance.
4058  *
4059  * This routine retrieves the MAC address of the hardware.
4060  */
4061 static void hw_read_addr(struct ksz_hw *hw)
4062 {
4063 	int i;
4064 
4065 	for (i = 0; i < ETH_ALEN; i++)
4066 		hw->perm_addr[MAC_ADDR_ORDER(i)] = readb(hw->io +
4067 			KS884X_ADDR_0_OFFSET + i);
4068 
4069 	if (!hw->mac_override) {
4070 		memcpy(hw->override_addr, hw->perm_addr, ETH_ALEN);
4071 		if (empty_addr(hw->override_addr)) {
4072 			memcpy(hw->perm_addr, DEFAULT_MAC_ADDRESS, ETH_ALEN);
4073 			memcpy(hw->override_addr, DEFAULT_MAC_ADDRESS,
4074 			       ETH_ALEN);
4075 			hw->override_addr[5] += hw->id;
4076 			hw_set_addr(hw);
4077 		}
4078 	}
4079 }
4080 
4081 static void hw_ena_add_addr(struct ksz_hw *hw, int index, u8 *mac_addr)
4082 {
4083 	int i;
4084 	u32 mac_addr_lo;
4085 	u32 mac_addr_hi;
4086 
4087 	mac_addr_hi = 0;
4088 	for (i = 0; i < 2; i++) {
4089 		mac_addr_hi <<= 8;
4090 		mac_addr_hi |= mac_addr[i];
4091 	}
4092 	mac_addr_hi |= ADD_ADDR_ENABLE;
4093 	mac_addr_lo = 0;
4094 	for (i = 2; i < 6; i++) {
4095 		mac_addr_lo <<= 8;
4096 		mac_addr_lo |= mac_addr[i];
4097 	}
4098 	index *= ADD_ADDR_INCR;
4099 
4100 	writel(mac_addr_lo, hw->io + index + KS_ADD_ADDR_0_LO);
4101 	writel(mac_addr_hi, hw->io + index + KS_ADD_ADDR_0_HI);
4102 }
4103 
4104 static void hw_set_add_addr(struct ksz_hw *hw)
4105 {
4106 	int i;
4107 
4108 	for (i = 0; i < ADDITIONAL_ENTRIES; i++) {
4109 		if (empty_addr(hw->address[i]))
4110 			writel(0, hw->io + ADD_ADDR_INCR * i +
4111 				KS_ADD_ADDR_0_HI);
4112 		else
4113 			hw_ena_add_addr(hw, i, hw->address[i]);
4114 	}
4115 }
4116 
4117 static int hw_add_addr(struct ksz_hw *hw, u8 *mac_addr)
4118 {
4119 	int i;
4120 	int j = ADDITIONAL_ENTRIES;
4121 
4122 	if (ether_addr_equal(hw->override_addr, mac_addr))
4123 		return 0;
4124 	for (i = 0; i < hw->addr_list_size; i++) {
4125 		if (ether_addr_equal(hw->address[i], mac_addr))
4126 			return 0;
4127 		if (ADDITIONAL_ENTRIES == j && empty_addr(hw->address[i]))
4128 			j = i;
4129 	}
4130 	if (j < ADDITIONAL_ENTRIES) {
4131 		memcpy(hw->address[j], mac_addr, ETH_ALEN);
4132 		hw_ena_add_addr(hw, j, hw->address[j]);
4133 		return 0;
4134 	}
4135 	return -1;
4136 }
4137 
4138 static int hw_del_addr(struct ksz_hw *hw, u8 *mac_addr)
4139 {
4140 	int i;
4141 
4142 	for (i = 0; i < hw->addr_list_size; i++) {
4143 		if (ether_addr_equal(hw->address[i], mac_addr)) {
4144 			eth_zero_addr(hw->address[i]);
4145 			writel(0, hw->io + ADD_ADDR_INCR * i +
4146 				KS_ADD_ADDR_0_HI);
4147 			return 0;
4148 		}
4149 	}
4150 	return -1;
4151 }
4152 
4153 /**
4154  * hw_clr_multicast - clear multicast addresses
4155  * @hw: 	The hardware instance.
4156  *
4157  * This routine removes all multicast addresses set in the hardware.
4158  */
4159 static void hw_clr_multicast(struct ksz_hw *hw)
4160 {
4161 	int i;
4162 
4163 	for (i = 0; i < HW_MULTICAST_SIZE; i++) {
4164 		hw->multi_bits[i] = 0;
4165 
4166 		writeb(0, hw->io + KS884X_MULTICAST_0_OFFSET + i);
4167 	}
4168 }
4169 
4170 /**
4171  * hw_set_grp_addr - set multicast addresses
4172  * @hw: 	The hardware instance.
4173  *
4174  * This routine programs multicast addresses for the hardware to accept those
4175  * addresses.
4176  */
4177 static void hw_set_grp_addr(struct ksz_hw *hw)
4178 {
4179 	int i;
4180 	int index;
4181 	int position;
4182 	int value;
4183 
4184 	memset(hw->multi_bits, 0, sizeof(u8) * HW_MULTICAST_SIZE);
4185 
4186 	for (i = 0; i < hw->multi_list_size; i++) {
4187 		position = (ether_crc(6, hw->multi_list[i]) >> 26) & 0x3f;
4188 		index = position >> 3;
4189 		value = 1 << (position & 7);
4190 		hw->multi_bits[index] |= (u8) value;
4191 	}
4192 
4193 	for (i = 0; i < HW_MULTICAST_SIZE; i++)
4194 		writeb(hw->multi_bits[i], hw->io + KS884X_MULTICAST_0_OFFSET +
4195 			i);
4196 }
4197 
4198 /**
4199  * hw_set_multicast - enable or disable all multicast receiving
4200  * @hw: 	The hardware instance.
4201  * @multicast:	To turn on or off the all multicast feature.
4202  *
4203  * This routine enables/disables the hardware to accept all multicast packets.
4204  */
4205 static void hw_set_multicast(struct ksz_hw *hw, u8 multicast)
4206 {
4207 	/* Stop receiving for reconfiguration. */
4208 	hw_stop_rx(hw);
4209 
4210 	if (multicast)
4211 		hw->rx_cfg |= DMA_RX_ALL_MULTICAST;
4212 	else
4213 		hw->rx_cfg &= ~DMA_RX_ALL_MULTICAST;
4214 
4215 	if (hw->enabled)
4216 		hw_start_rx(hw);
4217 }
4218 
4219 /**
4220  * hw_set_promiscuous - enable or disable promiscuous receiving
4221  * @hw: 	The hardware instance.
4222  * @prom:	To turn on or off the promiscuous feature.
4223  *
4224  * This routine enables/disables the hardware to accept all packets.
4225  */
4226 static void hw_set_promiscuous(struct ksz_hw *hw, u8 prom)
4227 {
4228 	/* Stop receiving for reconfiguration. */
4229 	hw_stop_rx(hw);
4230 
4231 	if (prom)
4232 		hw->rx_cfg |= DMA_RX_PROMISCUOUS;
4233 	else
4234 		hw->rx_cfg &= ~DMA_RX_PROMISCUOUS;
4235 
4236 	if (hw->enabled)
4237 		hw_start_rx(hw);
4238 }
4239 
4240 /**
4241  * sw_enable - enable the switch
4242  * @hw: 	The hardware instance.
4243  * @enable:	The flag to enable or disable the switch
4244  *
4245  * This routine is used to enable/disable the switch in KSZ8842.
4246  */
4247 static void sw_enable(struct ksz_hw *hw, int enable)
4248 {
4249 	int port;
4250 
4251 	for (port = 0; port < SWITCH_PORT_NUM; port++) {
4252 		if (hw->dev_count > 1) {
4253 			/* Set port-base vlan membership with host port. */
4254 			sw_cfg_port_base_vlan(hw, port,
4255 				HOST_MASK | (1 << port));
4256 			port_set_stp_state(hw, port, STP_STATE_DISABLED);
4257 		} else {
4258 			sw_cfg_port_base_vlan(hw, port, PORT_MASK);
4259 			port_set_stp_state(hw, port, STP_STATE_FORWARDING);
4260 		}
4261 	}
4262 	if (hw->dev_count > 1)
4263 		port_set_stp_state(hw, SWITCH_PORT_NUM, STP_STATE_SIMPLE);
4264 	else
4265 		port_set_stp_state(hw, SWITCH_PORT_NUM, STP_STATE_FORWARDING);
4266 
4267 	if (enable)
4268 		enable = KS8842_START;
4269 	writew(enable, hw->io + KS884X_CHIP_ID_OFFSET);
4270 }
4271 
4272 /**
4273  * sw_setup - setup the switch
4274  * @hw: 	The hardware instance.
4275  *
4276  * This routine setup the hardware switch engine for default operation.
4277  */
4278 static void sw_setup(struct ksz_hw *hw)
4279 {
4280 	int port;
4281 
4282 	sw_set_global_ctrl(hw);
4283 
4284 	/* Enable switch broadcast storm protection at 10% percent rate. */
4285 	sw_init_broad_storm(hw);
4286 	hw_cfg_broad_storm(hw, BROADCAST_STORM_PROTECTION_RATE);
4287 	for (port = 0; port < SWITCH_PORT_NUM; port++)
4288 		sw_ena_broad_storm(hw, port);
4289 
4290 	sw_init_prio(hw);
4291 
4292 	sw_init_mirror(hw);
4293 
4294 	sw_init_prio_rate(hw);
4295 
4296 	sw_init_vlan(hw);
4297 
4298 	if (hw->features & STP_SUPPORT)
4299 		sw_init_stp(hw);
4300 	if (!sw_chk(hw, KS8842_SWITCH_CTRL_1_OFFSET,
4301 			SWITCH_TX_FLOW_CTRL | SWITCH_RX_FLOW_CTRL))
4302 		hw->overrides |= PAUSE_FLOW_CTRL;
4303 	sw_enable(hw, 1);
4304 }
4305 
4306 /**
4307  * ksz_start_timer - start kernel timer
4308  * @info:	Kernel timer information.
4309  * @time:	The time tick.
4310  *
4311  * This routine starts the kernel timer after the specified time tick.
4312  */
4313 static void ksz_start_timer(struct ksz_timer_info *info, int time)
4314 {
4315 	info->cnt = 0;
4316 	info->timer.expires = jiffies + time;
4317 	add_timer(&info->timer);
4318 
4319 	/* infinity */
4320 	info->max = -1;
4321 }
4322 
4323 /**
4324  * ksz_stop_timer - stop kernel timer
4325  * @info:	Kernel timer information.
4326  *
4327  * This routine stops the kernel timer.
4328  */
4329 static void ksz_stop_timer(struct ksz_timer_info *info)
4330 {
4331 	if (info->max) {
4332 		info->max = 0;
4333 		del_timer_sync(&info->timer);
4334 	}
4335 }
4336 
4337 static void ksz_init_timer(struct ksz_timer_info *info, int period,
4338 	void (*function)(struct timer_list *))
4339 {
4340 	info->max = 0;
4341 	info->period = period;
4342 	timer_setup(&info->timer, function, 0);
4343 }
4344 
4345 static void ksz_update_timer(struct ksz_timer_info *info)
4346 {
4347 	++info->cnt;
4348 	if (info->max > 0) {
4349 		if (info->cnt < info->max) {
4350 			info->timer.expires = jiffies + info->period;
4351 			add_timer(&info->timer);
4352 		} else
4353 			info->max = 0;
4354 	} else if (info->max < 0) {
4355 		info->timer.expires = jiffies + info->period;
4356 		add_timer(&info->timer);
4357 	}
4358 }
4359 
4360 /**
4361  * ksz_alloc_soft_desc - allocate software descriptors
4362  * @desc_info:	Descriptor information structure.
4363  * @transmit:	Indication that descriptors are for transmit.
4364  *
4365  * This local function allocates software descriptors for manipulation in
4366  * memory.
4367  *
4368  * Return 0 if successful.
4369  */
4370 static int ksz_alloc_soft_desc(struct ksz_desc_info *desc_info, int transmit)
4371 {
4372 	desc_info->ring = kcalloc(desc_info->alloc, sizeof(struct ksz_desc),
4373 				  GFP_KERNEL);
4374 	if (!desc_info->ring)
4375 		return 1;
4376 	hw_init_desc(desc_info, transmit);
4377 	return 0;
4378 }
4379 
4380 /**
4381  * ksz_alloc_desc - allocate hardware descriptors
4382  * @adapter:	Adapter information structure.
4383  *
4384  * This local function allocates hardware descriptors for receiving and
4385  * transmitting.
4386  *
4387  * Return 0 if successful.
4388  */
4389 static int ksz_alloc_desc(struct dev_info *adapter)
4390 {
4391 	struct ksz_hw *hw = &adapter->hw;
4392 	int offset;
4393 
4394 	/* Allocate memory for RX & TX descriptors. */
4395 	adapter->desc_pool.alloc_size =
4396 		hw->rx_desc_info.size * hw->rx_desc_info.alloc +
4397 		hw->tx_desc_info.size * hw->tx_desc_info.alloc +
4398 		DESC_ALIGNMENT;
4399 
4400 	adapter->desc_pool.alloc_virt =
4401 		pci_zalloc_consistent(adapter->pdev,
4402 				      adapter->desc_pool.alloc_size,
4403 				      &adapter->desc_pool.dma_addr);
4404 	if (adapter->desc_pool.alloc_virt == NULL) {
4405 		adapter->desc_pool.alloc_size = 0;
4406 		return 1;
4407 	}
4408 
4409 	/* Align to the next cache line boundary. */
4410 	offset = (((ulong) adapter->desc_pool.alloc_virt % DESC_ALIGNMENT) ?
4411 		(DESC_ALIGNMENT -
4412 		((ulong) adapter->desc_pool.alloc_virt % DESC_ALIGNMENT)) : 0);
4413 	adapter->desc_pool.virt = adapter->desc_pool.alloc_virt + offset;
4414 	adapter->desc_pool.phys = adapter->desc_pool.dma_addr + offset;
4415 
4416 	/* Allocate receive/transmit descriptors. */
4417 	hw->rx_desc_info.ring_virt = (struct ksz_hw_desc *)
4418 		adapter->desc_pool.virt;
4419 	hw->rx_desc_info.ring_phys = adapter->desc_pool.phys;
4420 	offset = hw->rx_desc_info.alloc * hw->rx_desc_info.size;
4421 	hw->tx_desc_info.ring_virt = (struct ksz_hw_desc *)
4422 		(adapter->desc_pool.virt + offset);
4423 	hw->tx_desc_info.ring_phys = adapter->desc_pool.phys + offset;
4424 
4425 	if (ksz_alloc_soft_desc(&hw->rx_desc_info, 0))
4426 		return 1;
4427 	if (ksz_alloc_soft_desc(&hw->tx_desc_info, 1))
4428 		return 1;
4429 
4430 	return 0;
4431 }
4432 
4433 /**
4434  * free_dma_buf - release DMA buffer resources
4435  * @adapter:	Adapter information structure.
4436  *
4437  * This routine is just a helper function to release the DMA buffer resources.
4438  */
4439 static void free_dma_buf(struct dev_info *adapter, struct ksz_dma_buf *dma_buf,
4440 	int direction)
4441 {
4442 	pci_unmap_single(adapter->pdev, dma_buf->dma, dma_buf->len, direction);
4443 	dev_kfree_skb(dma_buf->skb);
4444 	dma_buf->skb = NULL;
4445 	dma_buf->dma = 0;
4446 }
4447 
4448 /**
4449  * ksz_init_rx_buffers - initialize receive descriptors
4450  * @adapter:	Adapter information structure.
4451  *
4452  * This routine initializes DMA buffers for receiving.
4453  */
4454 static void ksz_init_rx_buffers(struct dev_info *adapter)
4455 {
4456 	int i;
4457 	struct ksz_desc *desc;
4458 	struct ksz_dma_buf *dma_buf;
4459 	struct ksz_hw *hw = &adapter->hw;
4460 	struct ksz_desc_info *info = &hw->rx_desc_info;
4461 
4462 	for (i = 0; i < hw->rx_desc_info.alloc; i++) {
4463 		get_rx_pkt(info, &desc);
4464 
4465 		dma_buf = DMA_BUFFER(desc);
4466 		if (dma_buf->skb && dma_buf->len != adapter->mtu)
4467 			free_dma_buf(adapter, dma_buf, PCI_DMA_FROMDEVICE);
4468 		dma_buf->len = adapter->mtu;
4469 		if (!dma_buf->skb)
4470 			dma_buf->skb = alloc_skb(dma_buf->len, GFP_ATOMIC);
4471 		if (dma_buf->skb && !dma_buf->dma)
4472 			dma_buf->dma = pci_map_single(
4473 				adapter->pdev,
4474 				skb_tail_pointer(dma_buf->skb),
4475 				dma_buf->len,
4476 				PCI_DMA_FROMDEVICE);
4477 
4478 		/* Set descriptor. */
4479 		set_rx_buf(desc, dma_buf->dma);
4480 		set_rx_len(desc, dma_buf->len);
4481 		release_desc(desc);
4482 	}
4483 }
4484 
4485 /**
4486  * ksz_alloc_mem - allocate memory for hardware descriptors
4487  * @adapter:	Adapter information structure.
4488  *
4489  * This function allocates memory for use by hardware descriptors for receiving
4490  * and transmitting.
4491  *
4492  * Return 0 if successful.
4493  */
4494 static int ksz_alloc_mem(struct dev_info *adapter)
4495 {
4496 	struct ksz_hw *hw = &adapter->hw;
4497 
4498 	/* Determine the number of receive and transmit descriptors. */
4499 	hw->rx_desc_info.alloc = NUM_OF_RX_DESC;
4500 	hw->tx_desc_info.alloc = NUM_OF_TX_DESC;
4501 
4502 	/* Determine how many descriptors to skip transmit interrupt. */
4503 	hw->tx_int_cnt = 0;
4504 	hw->tx_int_mask = NUM_OF_TX_DESC / 4;
4505 	if (hw->tx_int_mask > 8)
4506 		hw->tx_int_mask = 8;
4507 	while (hw->tx_int_mask) {
4508 		hw->tx_int_cnt++;
4509 		hw->tx_int_mask >>= 1;
4510 	}
4511 	if (hw->tx_int_cnt) {
4512 		hw->tx_int_mask = (1 << (hw->tx_int_cnt - 1)) - 1;
4513 		hw->tx_int_cnt = 0;
4514 	}
4515 
4516 	/* Determine the descriptor size. */
4517 	hw->rx_desc_info.size =
4518 		(((sizeof(struct ksz_hw_desc) + DESC_ALIGNMENT - 1) /
4519 		DESC_ALIGNMENT) * DESC_ALIGNMENT);
4520 	hw->tx_desc_info.size =
4521 		(((sizeof(struct ksz_hw_desc) + DESC_ALIGNMENT - 1) /
4522 		DESC_ALIGNMENT) * DESC_ALIGNMENT);
4523 	if (hw->rx_desc_info.size != sizeof(struct ksz_hw_desc))
4524 		pr_alert("Hardware descriptor size not right!\n");
4525 	ksz_check_desc_num(&hw->rx_desc_info);
4526 	ksz_check_desc_num(&hw->tx_desc_info);
4527 
4528 	/* Allocate descriptors. */
4529 	if (ksz_alloc_desc(adapter))
4530 		return 1;
4531 
4532 	return 0;
4533 }
4534 
4535 /**
4536  * ksz_free_desc - free software and hardware descriptors
4537  * @adapter:	Adapter information structure.
4538  *
4539  * This local routine frees the software and hardware descriptors allocated by
4540  * ksz_alloc_desc().
4541  */
4542 static void ksz_free_desc(struct dev_info *adapter)
4543 {
4544 	struct ksz_hw *hw = &adapter->hw;
4545 
4546 	/* Reset descriptor. */
4547 	hw->rx_desc_info.ring_virt = NULL;
4548 	hw->tx_desc_info.ring_virt = NULL;
4549 	hw->rx_desc_info.ring_phys = 0;
4550 	hw->tx_desc_info.ring_phys = 0;
4551 
4552 	/* Free memory. */
4553 	if (adapter->desc_pool.alloc_virt)
4554 		pci_free_consistent(
4555 			adapter->pdev,
4556 			adapter->desc_pool.alloc_size,
4557 			adapter->desc_pool.alloc_virt,
4558 			adapter->desc_pool.dma_addr);
4559 
4560 	/* Reset resource pool. */
4561 	adapter->desc_pool.alloc_size = 0;
4562 	adapter->desc_pool.alloc_virt = NULL;
4563 
4564 	kfree(hw->rx_desc_info.ring);
4565 	hw->rx_desc_info.ring = NULL;
4566 	kfree(hw->tx_desc_info.ring);
4567 	hw->tx_desc_info.ring = NULL;
4568 }
4569 
4570 /**
4571  * ksz_free_buffers - free buffers used in the descriptors
4572  * @adapter:	Adapter information structure.
4573  * @desc_info:	Descriptor information structure.
4574  *
4575  * This local routine frees buffers used in the DMA buffers.
4576  */
4577 static void ksz_free_buffers(struct dev_info *adapter,
4578 	struct ksz_desc_info *desc_info, int direction)
4579 {
4580 	int i;
4581 	struct ksz_dma_buf *dma_buf;
4582 	struct ksz_desc *desc = desc_info->ring;
4583 
4584 	for (i = 0; i < desc_info->alloc; i++) {
4585 		dma_buf = DMA_BUFFER(desc);
4586 		if (dma_buf->skb)
4587 			free_dma_buf(adapter, dma_buf, direction);
4588 		desc++;
4589 	}
4590 }
4591 
4592 /**
4593  * ksz_free_mem - free all resources used by descriptors
4594  * @adapter:	Adapter information structure.
4595  *
4596  * This local routine frees all the resources allocated by ksz_alloc_mem().
4597  */
4598 static void ksz_free_mem(struct dev_info *adapter)
4599 {
4600 	/* Free transmit buffers. */
4601 	ksz_free_buffers(adapter, &adapter->hw.tx_desc_info,
4602 		PCI_DMA_TODEVICE);
4603 
4604 	/* Free receive buffers. */
4605 	ksz_free_buffers(adapter, &adapter->hw.rx_desc_info,
4606 		PCI_DMA_FROMDEVICE);
4607 
4608 	/* Free descriptors. */
4609 	ksz_free_desc(adapter);
4610 }
4611 
4612 static void get_mib_counters(struct ksz_hw *hw, int first, int cnt,
4613 	u64 *counter)
4614 {
4615 	int i;
4616 	int mib;
4617 	int port;
4618 	struct ksz_port_mib *port_mib;
4619 
4620 	memset(counter, 0, sizeof(u64) * TOTAL_PORT_COUNTER_NUM);
4621 	for (i = 0, port = first; i < cnt; i++, port++) {
4622 		port_mib = &hw->port_mib[port];
4623 		for (mib = port_mib->mib_start; mib < hw->mib_cnt; mib++)
4624 			counter[mib] += port_mib->counter[mib];
4625 	}
4626 }
4627 
4628 /**
4629  * send_packet - send packet
4630  * @skb:	Socket buffer.
4631  * @dev:	Network device.
4632  *
4633  * This routine is used to send a packet out to the network.
4634  */
4635 static void send_packet(struct sk_buff *skb, struct net_device *dev)
4636 {
4637 	struct ksz_desc *desc;
4638 	struct ksz_desc *first;
4639 	struct dev_priv *priv = netdev_priv(dev);
4640 	struct dev_info *hw_priv = priv->adapter;
4641 	struct ksz_hw *hw = &hw_priv->hw;
4642 	struct ksz_desc_info *info = &hw->tx_desc_info;
4643 	struct ksz_dma_buf *dma_buf;
4644 	int len;
4645 	int last_frag = skb_shinfo(skb)->nr_frags;
4646 
4647 	/*
4648 	 * KSZ8842 with multiple device interfaces needs to be told which port
4649 	 * to send.
4650 	 */
4651 	if (hw->dev_count > 1)
4652 		hw->dst_ports = 1 << priv->port.first_port;
4653 
4654 	/* Hardware will pad the length to 60. */
4655 	len = skb->len;
4656 
4657 	/* Remember the very first descriptor. */
4658 	first = info->cur;
4659 	desc = first;
4660 
4661 	dma_buf = DMA_BUFFER(desc);
4662 	if (last_frag) {
4663 		int frag;
4664 		skb_frag_t *this_frag;
4665 
4666 		dma_buf->len = skb_headlen(skb);
4667 
4668 		dma_buf->dma = pci_map_single(
4669 			hw_priv->pdev, skb->data, dma_buf->len,
4670 			PCI_DMA_TODEVICE);
4671 		set_tx_buf(desc, dma_buf->dma);
4672 		set_tx_len(desc, dma_buf->len);
4673 
4674 		frag = 0;
4675 		do {
4676 			this_frag = &skb_shinfo(skb)->frags[frag];
4677 
4678 			/* Get a new descriptor. */
4679 			get_tx_pkt(info, &desc);
4680 
4681 			/* Keep track of descriptors used so far. */
4682 			++hw->tx_int_cnt;
4683 
4684 			dma_buf = DMA_BUFFER(desc);
4685 			dma_buf->len = skb_frag_size(this_frag);
4686 
4687 			dma_buf->dma = pci_map_single(
4688 				hw_priv->pdev,
4689 				skb_frag_address(this_frag),
4690 				dma_buf->len,
4691 				PCI_DMA_TODEVICE);
4692 			set_tx_buf(desc, dma_buf->dma);
4693 			set_tx_len(desc, dma_buf->len);
4694 
4695 			frag++;
4696 			if (frag == last_frag)
4697 				break;
4698 
4699 			/* Do not release the last descriptor here. */
4700 			release_desc(desc);
4701 		} while (1);
4702 
4703 		/* current points to the last descriptor. */
4704 		info->cur = desc;
4705 
4706 		/* Release the first descriptor. */
4707 		release_desc(first);
4708 	} else {
4709 		dma_buf->len = len;
4710 
4711 		dma_buf->dma = pci_map_single(
4712 			hw_priv->pdev, skb->data, dma_buf->len,
4713 			PCI_DMA_TODEVICE);
4714 		set_tx_buf(desc, dma_buf->dma);
4715 		set_tx_len(desc, dma_buf->len);
4716 	}
4717 
4718 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
4719 		(desc)->sw.buf.tx.csum_gen_tcp = 1;
4720 		(desc)->sw.buf.tx.csum_gen_udp = 1;
4721 	}
4722 
4723 	/*
4724 	 * The last descriptor holds the packet so that it can be returned to
4725 	 * network subsystem after all descriptors are transmitted.
4726 	 */
4727 	dma_buf->skb = skb;
4728 
4729 	hw_send_pkt(hw);
4730 
4731 	/* Update transmit statistics. */
4732 	dev->stats.tx_packets++;
4733 	dev->stats.tx_bytes += len;
4734 }
4735 
4736 /**
4737  * transmit_cleanup - clean up transmit descriptors
4738  * @dev:	Network device.
4739  *
4740  * This routine is called to clean up the transmitted buffers.
4741  */
4742 static void transmit_cleanup(struct dev_info *hw_priv, int normal)
4743 {
4744 	int last;
4745 	union desc_stat status;
4746 	struct ksz_hw *hw = &hw_priv->hw;
4747 	struct ksz_desc_info *info = &hw->tx_desc_info;
4748 	struct ksz_desc *desc;
4749 	struct ksz_dma_buf *dma_buf;
4750 	struct net_device *dev = NULL;
4751 
4752 	spin_lock_irq(&hw_priv->hwlock);
4753 	last = info->last;
4754 
4755 	while (info->avail < info->alloc) {
4756 		/* Get next descriptor which is not hardware owned. */
4757 		desc = &info->ring[last];
4758 		status.data = le32_to_cpu(desc->phw->ctrl.data);
4759 		if (status.tx.hw_owned) {
4760 			if (normal)
4761 				break;
4762 			else
4763 				reset_desc(desc, status);
4764 		}
4765 
4766 		dma_buf = DMA_BUFFER(desc);
4767 		pci_unmap_single(
4768 			hw_priv->pdev, dma_buf->dma, dma_buf->len,
4769 			PCI_DMA_TODEVICE);
4770 
4771 		/* This descriptor contains the last buffer in the packet. */
4772 		if (dma_buf->skb) {
4773 			dev = dma_buf->skb->dev;
4774 
4775 			/* Release the packet back to network subsystem. */
4776 			dev_kfree_skb_irq(dma_buf->skb);
4777 			dma_buf->skb = NULL;
4778 		}
4779 
4780 		/* Free the transmitted descriptor. */
4781 		last++;
4782 		last &= info->mask;
4783 		info->avail++;
4784 	}
4785 	info->last = last;
4786 	spin_unlock_irq(&hw_priv->hwlock);
4787 
4788 	/* Notify the network subsystem that the packet has been sent. */
4789 	if (dev)
4790 		netif_trans_update(dev);
4791 }
4792 
4793 /**
4794  * transmit_done - transmit done processing
4795  * @dev:	Network device.
4796  *
4797  * This routine is called when the transmit interrupt is triggered, indicating
4798  * either a packet is sent successfully or there are transmit errors.
4799  */
4800 static void tx_done(struct dev_info *hw_priv)
4801 {
4802 	struct ksz_hw *hw = &hw_priv->hw;
4803 	int port;
4804 
4805 	transmit_cleanup(hw_priv, 1);
4806 
4807 	for (port = 0; port < hw->dev_count; port++) {
4808 		struct net_device *dev = hw->port_info[port].pdev;
4809 
4810 		if (netif_running(dev) && netif_queue_stopped(dev))
4811 			netif_wake_queue(dev);
4812 	}
4813 }
4814 
4815 static inline void copy_old_skb(struct sk_buff *old, struct sk_buff *skb)
4816 {
4817 	skb->dev = old->dev;
4818 	skb->protocol = old->protocol;
4819 	skb->ip_summed = old->ip_summed;
4820 	skb->csum = old->csum;
4821 	skb_set_network_header(skb, ETH_HLEN);
4822 
4823 	dev_consume_skb_any(old);
4824 }
4825 
4826 /**
4827  * netdev_tx - send out packet
4828  * @skb:	Socket buffer.
4829  * @dev:	Network device.
4830  *
4831  * This function is used by the upper network layer to send out a packet.
4832  *
4833  * Return 0 if successful; otherwise an error code indicating failure.
4834  */
4835 static netdev_tx_t netdev_tx(struct sk_buff *skb, struct net_device *dev)
4836 {
4837 	struct dev_priv *priv = netdev_priv(dev);
4838 	struct dev_info *hw_priv = priv->adapter;
4839 	struct ksz_hw *hw = &hw_priv->hw;
4840 	int left;
4841 	int num = 1;
4842 	int rc = 0;
4843 
4844 	if (hw->features & SMALL_PACKET_TX_BUG) {
4845 		struct sk_buff *org_skb = skb;
4846 
4847 		if (skb->len <= 48) {
4848 			if (skb_end_pointer(skb) - skb->data >= 50) {
4849 				memset(&skb->data[skb->len], 0, 50 - skb->len);
4850 				skb->len = 50;
4851 			} else {
4852 				skb = netdev_alloc_skb(dev, 50);
4853 				if (!skb)
4854 					return NETDEV_TX_BUSY;
4855 				memcpy(skb->data, org_skb->data, org_skb->len);
4856 				memset(&skb->data[org_skb->len], 0,
4857 					50 - org_skb->len);
4858 				skb->len = 50;
4859 				copy_old_skb(org_skb, skb);
4860 			}
4861 		}
4862 	}
4863 
4864 	spin_lock_irq(&hw_priv->hwlock);
4865 
4866 	num = skb_shinfo(skb)->nr_frags + 1;
4867 	left = hw_alloc_pkt(hw, skb->len, num);
4868 	if (left) {
4869 		if (left < num ||
4870 		    (CHECKSUM_PARTIAL == skb->ip_summed &&
4871 		     skb->protocol == htons(ETH_P_IPV6))) {
4872 			struct sk_buff *org_skb = skb;
4873 
4874 			skb = netdev_alloc_skb(dev, org_skb->len);
4875 			if (!skb) {
4876 				rc = NETDEV_TX_BUSY;
4877 				goto unlock;
4878 			}
4879 			skb_copy_and_csum_dev(org_skb, skb->data);
4880 			org_skb->ip_summed = CHECKSUM_NONE;
4881 			skb->len = org_skb->len;
4882 			copy_old_skb(org_skb, skb);
4883 		}
4884 		send_packet(skb, dev);
4885 		if (left <= num)
4886 			netif_stop_queue(dev);
4887 	} else {
4888 		/* Stop the transmit queue until packet is allocated. */
4889 		netif_stop_queue(dev);
4890 		rc = NETDEV_TX_BUSY;
4891 	}
4892 unlock:
4893 	spin_unlock_irq(&hw_priv->hwlock);
4894 
4895 	return rc;
4896 }
4897 
4898 /**
4899  * netdev_tx_timeout - transmit timeout processing
4900  * @dev:	Network device.
4901  *
4902  * This routine is called when the transmit timer expires.  That indicates the
4903  * hardware is not running correctly because transmit interrupts are not
4904  * triggered to free up resources so that the transmit routine can continue
4905  * sending out packets.  The hardware is reset to correct the problem.
4906  */
4907 static void netdev_tx_timeout(struct net_device *dev)
4908 {
4909 	static unsigned long last_reset;
4910 
4911 	struct dev_priv *priv = netdev_priv(dev);
4912 	struct dev_info *hw_priv = priv->adapter;
4913 	struct ksz_hw *hw = &hw_priv->hw;
4914 	int port;
4915 
4916 	if (hw->dev_count > 1) {
4917 		/*
4918 		 * Only reset the hardware if time between calls is long
4919 		 * enough.
4920 		 */
4921 		if (time_before_eq(jiffies, last_reset + dev->watchdog_timeo))
4922 			hw_priv = NULL;
4923 	}
4924 
4925 	last_reset = jiffies;
4926 	if (hw_priv) {
4927 		hw_dis_intr(hw);
4928 		hw_disable(hw);
4929 
4930 		transmit_cleanup(hw_priv, 0);
4931 		hw_reset_pkts(&hw->rx_desc_info);
4932 		hw_reset_pkts(&hw->tx_desc_info);
4933 		ksz_init_rx_buffers(hw_priv);
4934 
4935 		hw_reset(hw);
4936 
4937 		hw_set_desc_base(hw,
4938 			hw->tx_desc_info.ring_phys,
4939 			hw->rx_desc_info.ring_phys);
4940 		hw_set_addr(hw);
4941 		if (hw->all_multi)
4942 			hw_set_multicast(hw, hw->all_multi);
4943 		else if (hw->multi_list_size)
4944 			hw_set_grp_addr(hw);
4945 
4946 		if (hw->dev_count > 1) {
4947 			hw_set_add_addr(hw);
4948 			for (port = 0; port < SWITCH_PORT_NUM; port++) {
4949 				struct net_device *port_dev;
4950 
4951 				port_set_stp_state(hw, port,
4952 					STP_STATE_DISABLED);
4953 
4954 				port_dev = hw->port_info[port].pdev;
4955 				if (netif_running(port_dev))
4956 					port_set_stp_state(hw, port,
4957 						STP_STATE_SIMPLE);
4958 			}
4959 		}
4960 
4961 		hw_enable(hw);
4962 		hw_ena_intr(hw);
4963 	}
4964 
4965 	netif_trans_update(dev);
4966 	netif_wake_queue(dev);
4967 }
4968 
4969 static inline void csum_verified(struct sk_buff *skb)
4970 {
4971 	unsigned short protocol;
4972 	struct iphdr *iph;
4973 
4974 	protocol = skb->protocol;
4975 	skb_reset_network_header(skb);
4976 	iph = (struct iphdr *) skb_network_header(skb);
4977 	if (protocol == htons(ETH_P_8021Q)) {
4978 		protocol = iph->tot_len;
4979 		skb_set_network_header(skb, VLAN_HLEN);
4980 		iph = (struct iphdr *) skb_network_header(skb);
4981 	}
4982 	if (protocol == htons(ETH_P_IP)) {
4983 		if (iph->protocol == IPPROTO_TCP)
4984 			skb->ip_summed = CHECKSUM_UNNECESSARY;
4985 	}
4986 }
4987 
4988 static inline int rx_proc(struct net_device *dev, struct ksz_hw* hw,
4989 	struct ksz_desc *desc, union desc_stat status)
4990 {
4991 	int packet_len;
4992 	struct dev_priv *priv = netdev_priv(dev);
4993 	struct dev_info *hw_priv = priv->adapter;
4994 	struct ksz_dma_buf *dma_buf;
4995 	struct sk_buff *skb;
4996 	int rx_status;
4997 
4998 	/* Received length includes 4-byte CRC. */
4999 	packet_len = status.rx.frame_len - 4;
5000 
5001 	dma_buf = DMA_BUFFER(desc);
5002 	pci_dma_sync_single_for_cpu(
5003 		hw_priv->pdev, dma_buf->dma, packet_len + 4,
5004 		PCI_DMA_FROMDEVICE);
5005 
5006 	do {
5007 		/* skb->data != skb->head */
5008 		skb = netdev_alloc_skb(dev, packet_len + 2);
5009 		if (!skb) {
5010 			dev->stats.rx_dropped++;
5011 			return -ENOMEM;
5012 		}
5013 
5014 		/*
5015 		 * Align socket buffer in 4-byte boundary for better
5016 		 * performance.
5017 		 */
5018 		skb_reserve(skb, 2);
5019 
5020 		skb_put_data(skb, dma_buf->skb->data, packet_len);
5021 	} while (0);
5022 
5023 	skb->protocol = eth_type_trans(skb, dev);
5024 
5025 	if (hw->rx_cfg & (DMA_RX_CSUM_UDP | DMA_RX_CSUM_TCP))
5026 		csum_verified(skb);
5027 
5028 	/* Update receive statistics. */
5029 	dev->stats.rx_packets++;
5030 	dev->stats.rx_bytes += packet_len;
5031 
5032 	/* Notify upper layer for received packet. */
5033 	rx_status = netif_rx(skb);
5034 
5035 	return 0;
5036 }
5037 
5038 static int dev_rcv_packets(struct dev_info *hw_priv)
5039 {
5040 	int next;
5041 	union desc_stat status;
5042 	struct ksz_hw *hw = &hw_priv->hw;
5043 	struct net_device *dev = hw->port_info[0].pdev;
5044 	struct ksz_desc_info *info = &hw->rx_desc_info;
5045 	int left = info->alloc;
5046 	struct ksz_desc *desc;
5047 	int received = 0;
5048 
5049 	next = info->next;
5050 	while (left--) {
5051 		/* Get next descriptor which is not hardware owned. */
5052 		desc = &info->ring[next];
5053 		status.data = le32_to_cpu(desc->phw->ctrl.data);
5054 		if (status.rx.hw_owned)
5055 			break;
5056 
5057 		/* Status valid only when last descriptor bit is set. */
5058 		if (status.rx.last_desc && status.rx.first_desc) {
5059 			if (rx_proc(dev, hw, desc, status))
5060 				goto release_packet;
5061 			received++;
5062 		}
5063 
5064 release_packet:
5065 		release_desc(desc);
5066 		next++;
5067 		next &= info->mask;
5068 	}
5069 	info->next = next;
5070 
5071 	return received;
5072 }
5073 
5074 static int port_rcv_packets(struct dev_info *hw_priv)
5075 {
5076 	int next;
5077 	union desc_stat status;
5078 	struct ksz_hw *hw = &hw_priv->hw;
5079 	struct net_device *dev = hw->port_info[0].pdev;
5080 	struct ksz_desc_info *info = &hw->rx_desc_info;
5081 	int left = info->alloc;
5082 	struct ksz_desc *desc;
5083 	int received = 0;
5084 
5085 	next = info->next;
5086 	while (left--) {
5087 		/* Get next descriptor which is not hardware owned. */
5088 		desc = &info->ring[next];
5089 		status.data = le32_to_cpu(desc->phw->ctrl.data);
5090 		if (status.rx.hw_owned)
5091 			break;
5092 
5093 		if (hw->dev_count > 1) {
5094 			/* Get received port number. */
5095 			int p = HW_TO_DEV_PORT(status.rx.src_port);
5096 
5097 			dev = hw->port_info[p].pdev;
5098 			if (!netif_running(dev))
5099 				goto release_packet;
5100 		}
5101 
5102 		/* Status valid only when last descriptor bit is set. */
5103 		if (status.rx.last_desc && status.rx.first_desc) {
5104 			if (rx_proc(dev, hw, desc, status))
5105 				goto release_packet;
5106 			received++;
5107 		}
5108 
5109 release_packet:
5110 		release_desc(desc);
5111 		next++;
5112 		next &= info->mask;
5113 	}
5114 	info->next = next;
5115 
5116 	return received;
5117 }
5118 
5119 static int dev_rcv_special(struct dev_info *hw_priv)
5120 {
5121 	int next;
5122 	union desc_stat status;
5123 	struct ksz_hw *hw = &hw_priv->hw;
5124 	struct net_device *dev = hw->port_info[0].pdev;
5125 	struct ksz_desc_info *info = &hw->rx_desc_info;
5126 	int left = info->alloc;
5127 	struct ksz_desc *desc;
5128 	int received = 0;
5129 
5130 	next = info->next;
5131 	while (left--) {
5132 		/* Get next descriptor which is not hardware owned. */
5133 		desc = &info->ring[next];
5134 		status.data = le32_to_cpu(desc->phw->ctrl.data);
5135 		if (status.rx.hw_owned)
5136 			break;
5137 
5138 		if (hw->dev_count > 1) {
5139 			/* Get received port number. */
5140 			int p = HW_TO_DEV_PORT(status.rx.src_port);
5141 
5142 			dev = hw->port_info[p].pdev;
5143 			if (!netif_running(dev))
5144 				goto release_packet;
5145 		}
5146 
5147 		/* Status valid only when last descriptor bit is set. */
5148 		if (status.rx.last_desc && status.rx.first_desc) {
5149 			/*
5150 			 * Receive without error.  With receive errors
5151 			 * disabled, packets with receive errors will be
5152 			 * dropped, so no need to check the error bit.
5153 			 */
5154 			if (!status.rx.error || (status.data &
5155 					KS_DESC_RX_ERROR_COND) ==
5156 					KS_DESC_RX_ERROR_TOO_LONG) {
5157 				if (rx_proc(dev, hw, desc, status))
5158 					goto release_packet;
5159 				received++;
5160 			} else {
5161 				struct dev_priv *priv = netdev_priv(dev);
5162 
5163 				/* Update receive error statistics. */
5164 				priv->port.counter[OID_COUNTER_RCV_ERROR]++;
5165 			}
5166 		}
5167 
5168 release_packet:
5169 		release_desc(desc);
5170 		next++;
5171 		next &= info->mask;
5172 	}
5173 	info->next = next;
5174 
5175 	return received;
5176 }
5177 
5178 static void rx_proc_task(unsigned long data)
5179 {
5180 	struct dev_info *hw_priv = (struct dev_info *) data;
5181 	struct ksz_hw *hw = &hw_priv->hw;
5182 
5183 	if (!hw->enabled)
5184 		return;
5185 	if (unlikely(!hw_priv->dev_rcv(hw_priv))) {
5186 
5187 		/* In case receive process is suspended because of overrun. */
5188 		hw_resume_rx(hw);
5189 
5190 		/* tasklets are interruptible. */
5191 		spin_lock_irq(&hw_priv->hwlock);
5192 		hw_turn_on_intr(hw, KS884X_INT_RX_MASK);
5193 		spin_unlock_irq(&hw_priv->hwlock);
5194 	} else {
5195 		hw_ack_intr(hw, KS884X_INT_RX);
5196 		tasklet_schedule(&hw_priv->rx_tasklet);
5197 	}
5198 }
5199 
5200 static void tx_proc_task(unsigned long data)
5201 {
5202 	struct dev_info *hw_priv = (struct dev_info *) data;
5203 	struct ksz_hw *hw = &hw_priv->hw;
5204 
5205 	hw_ack_intr(hw, KS884X_INT_TX_MASK);
5206 
5207 	tx_done(hw_priv);
5208 
5209 	/* tasklets are interruptible. */
5210 	spin_lock_irq(&hw_priv->hwlock);
5211 	hw_turn_on_intr(hw, KS884X_INT_TX);
5212 	spin_unlock_irq(&hw_priv->hwlock);
5213 }
5214 
5215 static inline void handle_rx_stop(struct ksz_hw *hw)
5216 {
5217 	/* Receive just has been stopped. */
5218 	if (0 == hw->rx_stop)
5219 		hw->intr_mask &= ~KS884X_INT_RX_STOPPED;
5220 	else if (hw->rx_stop > 1) {
5221 		if (hw->enabled && (hw->rx_cfg & DMA_RX_ENABLE)) {
5222 			hw_start_rx(hw);
5223 		} else {
5224 			hw->intr_mask &= ~KS884X_INT_RX_STOPPED;
5225 			hw->rx_stop = 0;
5226 		}
5227 	} else
5228 		/* Receive just has been started. */
5229 		hw->rx_stop++;
5230 }
5231 
5232 /**
5233  * netdev_intr - interrupt handling
5234  * @irq:	Interrupt number.
5235  * @dev_id:	Network device.
5236  *
5237  * This function is called by upper network layer to signal interrupt.
5238  *
5239  * Return IRQ_HANDLED if interrupt is handled.
5240  */
5241 static irqreturn_t netdev_intr(int irq, void *dev_id)
5242 {
5243 	uint int_enable = 0;
5244 	struct net_device *dev = (struct net_device *) dev_id;
5245 	struct dev_priv *priv = netdev_priv(dev);
5246 	struct dev_info *hw_priv = priv->adapter;
5247 	struct ksz_hw *hw = &hw_priv->hw;
5248 
5249 	spin_lock(&hw_priv->hwlock);
5250 
5251 	hw_read_intr(hw, &int_enable);
5252 
5253 	/* Not our interrupt! */
5254 	if (!int_enable) {
5255 		spin_unlock(&hw_priv->hwlock);
5256 		return IRQ_NONE;
5257 	}
5258 
5259 	do {
5260 		hw_ack_intr(hw, int_enable);
5261 		int_enable &= hw->intr_mask;
5262 
5263 		if (unlikely(int_enable & KS884X_INT_TX_MASK)) {
5264 			hw_dis_intr_bit(hw, KS884X_INT_TX_MASK);
5265 			tasklet_schedule(&hw_priv->tx_tasklet);
5266 		}
5267 
5268 		if (likely(int_enable & KS884X_INT_RX)) {
5269 			hw_dis_intr_bit(hw, KS884X_INT_RX);
5270 			tasklet_schedule(&hw_priv->rx_tasklet);
5271 		}
5272 
5273 		if (unlikely(int_enable & KS884X_INT_RX_OVERRUN)) {
5274 			dev->stats.rx_fifo_errors++;
5275 			hw_resume_rx(hw);
5276 		}
5277 
5278 		if (unlikely(int_enable & KS884X_INT_PHY)) {
5279 			struct ksz_port *port = &priv->port;
5280 
5281 			hw->features |= LINK_INT_WORKING;
5282 			port_get_link_speed(port);
5283 		}
5284 
5285 		if (unlikely(int_enable & KS884X_INT_RX_STOPPED)) {
5286 			handle_rx_stop(hw);
5287 			break;
5288 		}
5289 
5290 		if (unlikely(int_enable & KS884X_INT_TX_STOPPED)) {
5291 			u32 data;
5292 
5293 			hw->intr_mask &= ~KS884X_INT_TX_STOPPED;
5294 			pr_info("Tx stopped\n");
5295 			data = readl(hw->io + KS_DMA_TX_CTRL);
5296 			if (!(data & DMA_TX_ENABLE))
5297 				pr_info("Tx disabled\n");
5298 			break;
5299 		}
5300 	} while (0);
5301 
5302 	hw_ena_intr(hw);
5303 
5304 	spin_unlock(&hw_priv->hwlock);
5305 
5306 	return IRQ_HANDLED;
5307 }
5308 
5309 /*
5310  * Linux network device functions
5311  */
5312 
5313 static unsigned long next_jiffies;
5314 
5315 #ifdef CONFIG_NET_POLL_CONTROLLER
5316 static void netdev_netpoll(struct net_device *dev)
5317 {
5318 	struct dev_priv *priv = netdev_priv(dev);
5319 	struct dev_info *hw_priv = priv->adapter;
5320 
5321 	hw_dis_intr(&hw_priv->hw);
5322 	netdev_intr(dev->irq, dev);
5323 }
5324 #endif
5325 
5326 static void bridge_change(struct ksz_hw *hw)
5327 {
5328 	int port;
5329 	u8  member;
5330 	struct ksz_switch *sw = hw->ksz_switch;
5331 
5332 	/* No ports in forwarding state. */
5333 	if (!sw->member) {
5334 		port_set_stp_state(hw, SWITCH_PORT_NUM, STP_STATE_SIMPLE);
5335 		sw_block_addr(hw);
5336 	}
5337 	for (port = 0; port < SWITCH_PORT_NUM; port++) {
5338 		if (STP_STATE_FORWARDING == sw->port_cfg[port].stp_state)
5339 			member = HOST_MASK | sw->member;
5340 		else
5341 			member = HOST_MASK | (1 << port);
5342 		if (member != sw->port_cfg[port].member)
5343 			sw_cfg_port_base_vlan(hw, port, member);
5344 	}
5345 }
5346 
5347 /**
5348  * netdev_close - close network device
5349  * @dev:	Network device.
5350  *
5351  * This function process the close operation of network device.  This is caused
5352  * by the user command "ifconfig ethX down."
5353  *
5354  * Return 0 if successful; otherwise an error code indicating failure.
5355  */
5356 static int netdev_close(struct net_device *dev)
5357 {
5358 	struct dev_priv *priv = netdev_priv(dev);
5359 	struct dev_info *hw_priv = priv->adapter;
5360 	struct ksz_port *port = &priv->port;
5361 	struct ksz_hw *hw = &hw_priv->hw;
5362 	int pi;
5363 
5364 	netif_stop_queue(dev);
5365 
5366 	ksz_stop_timer(&priv->monitor_timer_info);
5367 
5368 	/* Need to shut the port manually in multiple device interfaces mode. */
5369 	if (hw->dev_count > 1) {
5370 		port_set_stp_state(hw, port->first_port, STP_STATE_DISABLED);
5371 
5372 		/* Port is closed.  Need to change bridge setting. */
5373 		if (hw->features & STP_SUPPORT) {
5374 			pi = 1 << port->first_port;
5375 			if (hw->ksz_switch->member & pi) {
5376 				hw->ksz_switch->member &= ~pi;
5377 				bridge_change(hw);
5378 			}
5379 		}
5380 	}
5381 	if (port->first_port > 0)
5382 		hw_del_addr(hw, dev->dev_addr);
5383 	if (!hw_priv->wol_enable)
5384 		port_set_power_saving(port, true);
5385 
5386 	if (priv->multicast)
5387 		--hw->all_multi;
5388 	if (priv->promiscuous)
5389 		--hw->promiscuous;
5390 
5391 	hw_priv->opened--;
5392 	if (!(hw_priv->opened)) {
5393 		ksz_stop_timer(&hw_priv->mib_timer_info);
5394 		flush_work(&hw_priv->mib_read);
5395 
5396 		hw_dis_intr(hw);
5397 		hw_disable(hw);
5398 		hw_clr_multicast(hw);
5399 
5400 		/* Delay for receive task to stop scheduling itself. */
5401 		msleep(2000 / HZ);
5402 
5403 		tasklet_kill(&hw_priv->rx_tasklet);
5404 		tasklet_kill(&hw_priv->tx_tasklet);
5405 		free_irq(dev->irq, hw_priv->dev);
5406 
5407 		transmit_cleanup(hw_priv, 0);
5408 		hw_reset_pkts(&hw->rx_desc_info);
5409 		hw_reset_pkts(&hw->tx_desc_info);
5410 
5411 		/* Clean out static MAC table when the switch is shutdown. */
5412 		if (hw->features & STP_SUPPORT)
5413 			sw_clr_sta_mac_table(hw);
5414 	}
5415 
5416 	return 0;
5417 }
5418 
5419 static void hw_cfg_huge_frame(struct dev_info *hw_priv, struct ksz_hw *hw)
5420 {
5421 	if (hw->ksz_switch) {
5422 		u32 data;
5423 
5424 		data = readw(hw->io + KS8842_SWITCH_CTRL_2_OFFSET);
5425 		if (hw->features & RX_HUGE_FRAME)
5426 			data |= SWITCH_HUGE_PACKET;
5427 		else
5428 			data &= ~SWITCH_HUGE_PACKET;
5429 		writew(data, hw->io + KS8842_SWITCH_CTRL_2_OFFSET);
5430 	}
5431 	if (hw->features & RX_HUGE_FRAME) {
5432 		hw->rx_cfg |= DMA_RX_ERROR;
5433 		hw_priv->dev_rcv = dev_rcv_special;
5434 	} else {
5435 		hw->rx_cfg &= ~DMA_RX_ERROR;
5436 		if (hw->dev_count > 1)
5437 			hw_priv->dev_rcv = port_rcv_packets;
5438 		else
5439 			hw_priv->dev_rcv = dev_rcv_packets;
5440 	}
5441 }
5442 
5443 static int prepare_hardware(struct net_device *dev)
5444 {
5445 	struct dev_priv *priv = netdev_priv(dev);
5446 	struct dev_info *hw_priv = priv->adapter;
5447 	struct ksz_hw *hw = &hw_priv->hw;
5448 	int rc = 0;
5449 
5450 	/* Remember the network device that requests interrupts. */
5451 	hw_priv->dev = dev;
5452 	rc = request_irq(dev->irq, netdev_intr, IRQF_SHARED, dev->name, dev);
5453 	if (rc)
5454 		return rc;
5455 	tasklet_init(&hw_priv->rx_tasklet, rx_proc_task,
5456 		     (unsigned long) hw_priv);
5457 	tasklet_init(&hw_priv->tx_tasklet, tx_proc_task,
5458 		     (unsigned long) hw_priv);
5459 
5460 	hw->promiscuous = 0;
5461 	hw->all_multi = 0;
5462 	hw->multi_list_size = 0;
5463 
5464 	hw_reset(hw);
5465 
5466 	hw_set_desc_base(hw,
5467 		hw->tx_desc_info.ring_phys, hw->rx_desc_info.ring_phys);
5468 	hw_set_addr(hw);
5469 	hw_cfg_huge_frame(hw_priv, hw);
5470 	ksz_init_rx_buffers(hw_priv);
5471 	return 0;
5472 }
5473 
5474 static void set_media_state(struct net_device *dev, int media_state)
5475 {
5476 	struct dev_priv *priv = netdev_priv(dev);
5477 
5478 	if (media_state == priv->media_state)
5479 		netif_carrier_on(dev);
5480 	else
5481 		netif_carrier_off(dev);
5482 	netif_info(priv, link, dev, "link %s\n",
5483 		   media_state == priv->media_state ? "on" : "off");
5484 }
5485 
5486 /**
5487  * netdev_open - open network device
5488  * @dev:	Network device.
5489  *
5490  * This function process the open operation of network device.  This is caused
5491  * by the user command "ifconfig ethX up."
5492  *
5493  * Return 0 if successful; otherwise an error code indicating failure.
5494  */
5495 static int netdev_open(struct net_device *dev)
5496 {
5497 	struct dev_priv *priv = netdev_priv(dev);
5498 	struct dev_info *hw_priv = priv->adapter;
5499 	struct ksz_hw *hw = &hw_priv->hw;
5500 	struct ksz_port *port = &priv->port;
5501 	int i;
5502 	int p;
5503 	int rc = 0;
5504 
5505 	priv->multicast = 0;
5506 	priv->promiscuous = 0;
5507 
5508 	/* Reset device statistics. */
5509 	memset(&dev->stats, 0, sizeof(struct net_device_stats));
5510 	memset((void *) port->counter, 0,
5511 		(sizeof(u64) * OID_COUNTER_LAST));
5512 
5513 	if (!(hw_priv->opened)) {
5514 		rc = prepare_hardware(dev);
5515 		if (rc)
5516 			return rc;
5517 		for (i = 0; i < hw->mib_port_cnt; i++) {
5518 			if (next_jiffies < jiffies)
5519 				next_jiffies = jiffies + HZ * 2;
5520 			else
5521 				next_jiffies += HZ * 1;
5522 			hw_priv->counter[i].time = next_jiffies;
5523 			hw->port_mib[i].state = media_disconnected;
5524 			port_init_cnt(hw, i);
5525 		}
5526 		if (hw->ksz_switch)
5527 			hw->port_mib[HOST_PORT].state = media_connected;
5528 		else {
5529 			hw_add_wol_bcast(hw);
5530 			hw_cfg_wol_pme(hw, 0);
5531 			hw_clr_wol_pme_status(&hw_priv->hw);
5532 		}
5533 	}
5534 	port_set_power_saving(port, false);
5535 
5536 	for (i = 0, p = port->first_port; i < port->port_cnt; i++, p++) {
5537 		/*
5538 		 * Initialize to invalid value so that link detection
5539 		 * is done.
5540 		 */
5541 		hw->port_info[p].partner = 0xFF;
5542 		hw->port_info[p].state = media_disconnected;
5543 	}
5544 
5545 	/* Need to open the port in multiple device interfaces mode. */
5546 	if (hw->dev_count > 1) {
5547 		port_set_stp_state(hw, port->first_port, STP_STATE_SIMPLE);
5548 		if (port->first_port > 0)
5549 			hw_add_addr(hw, dev->dev_addr);
5550 	}
5551 
5552 	port_get_link_speed(port);
5553 	if (port->force_link)
5554 		port_force_link_speed(port);
5555 	else
5556 		port_set_link_speed(port);
5557 
5558 	if (!(hw_priv->opened)) {
5559 		hw_setup_intr(hw);
5560 		hw_enable(hw);
5561 		hw_ena_intr(hw);
5562 
5563 		if (hw->mib_port_cnt)
5564 			ksz_start_timer(&hw_priv->mib_timer_info,
5565 				hw_priv->mib_timer_info.period);
5566 	}
5567 
5568 	hw_priv->opened++;
5569 
5570 	ksz_start_timer(&priv->monitor_timer_info,
5571 		priv->monitor_timer_info.period);
5572 
5573 	priv->media_state = port->linked->state;
5574 
5575 	set_media_state(dev, media_connected);
5576 	netif_start_queue(dev);
5577 
5578 	return 0;
5579 }
5580 
5581 /* RX errors = rx_errors */
5582 /* RX dropped = rx_dropped */
5583 /* RX overruns = rx_fifo_errors */
5584 /* RX frame = rx_crc_errors + rx_frame_errors + rx_length_errors */
5585 /* TX errors = tx_errors */
5586 /* TX dropped = tx_dropped */
5587 /* TX overruns = tx_fifo_errors */
5588 /* TX carrier = tx_aborted_errors + tx_carrier_errors + tx_window_errors */
5589 /* collisions = collisions */
5590 
5591 /**
5592  * netdev_query_statistics - query network device statistics
5593  * @dev:	Network device.
5594  *
5595  * This function returns the statistics of the network device.  The device
5596  * needs not be opened.
5597  *
5598  * Return network device statistics.
5599  */
5600 static struct net_device_stats *netdev_query_statistics(struct net_device *dev)
5601 {
5602 	struct dev_priv *priv = netdev_priv(dev);
5603 	struct ksz_port *port = &priv->port;
5604 	struct ksz_hw *hw = &priv->adapter->hw;
5605 	struct ksz_port_mib *mib;
5606 	int i;
5607 	int p;
5608 
5609 	dev->stats.rx_errors = port->counter[OID_COUNTER_RCV_ERROR];
5610 	dev->stats.tx_errors = port->counter[OID_COUNTER_XMIT_ERROR];
5611 
5612 	/* Reset to zero to add count later. */
5613 	dev->stats.multicast = 0;
5614 	dev->stats.collisions = 0;
5615 	dev->stats.rx_length_errors = 0;
5616 	dev->stats.rx_crc_errors = 0;
5617 	dev->stats.rx_frame_errors = 0;
5618 	dev->stats.tx_window_errors = 0;
5619 
5620 	for (i = 0, p = port->first_port; i < port->mib_port_cnt; i++, p++) {
5621 		mib = &hw->port_mib[p];
5622 
5623 		dev->stats.multicast += (unsigned long)
5624 			mib->counter[MIB_COUNTER_RX_MULTICAST];
5625 
5626 		dev->stats.collisions += (unsigned long)
5627 			mib->counter[MIB_COUNTER_TX_TOTAL_COLLISION];
5628 
5629 		dev->stats.rx_length_errors += (unsigned long)(
5630 			mib->counter[MIB_COUNTER_RX_UNDERSIZE] +
5631 			mib->counter[MIB_COUNTER_RX_FRAGMENT] +
5632 			mib->counter[MIB_COUNTER_RX_OVERSIZE] +
5633 			mib->counter[MIB_COUNTER_RX_JABBER]);
5634 		dev->stats.rx_crc_errors += (unsigned long)
5635 			mib->counter[MIB_COUNTER_RX_CRC_ERR];
5636 		dev->stats.rx_frame_errors += (unsigned long)(
5637 			mib->counter[MIB_COUNTER_RX_ALIGNMENT_ERR] +
5638 			mib->counter[MIB_COUNTER_RX_SYMBOL_ERR]);
5639 
5640 		dev->stats.tx_window_errors += (unsigned long)
5641 			mib->counter[MIB_COUNTER_TX_LATE_COLLISION];
5642 	}
5643 
5644 	return &dev->stats;
5645 }
5646 
5647 /**
5648  * netdev_set_mac_address - set network device MAC address
5649  * @dev:	Network device.
5650  * @addr:	Buffer of MAC address.
5651  *
5652  * This function is used to set the MAC address of the network device.
5653  *
5654  * Return 0 to indicate success.
5655  */
5656 static int netdev_set_mac_address(struct net_device *dev, void *addr)
5657 {
5658 	struct dev_priv *priv = netdev_priv(dev);
5659 	struct dev_info *hw_priv = priv->adapter;
5660 	struct ksz_hw *hw = &hw_priv->hw;
5661 	struct sockaddr *mac = addr;
5662 	uint interrupt;
5663 
5664 	if (priv->port.first_port > 0)
5665 		hw_del_addr(hw, dev->dev_addr);
5666 	else {
5667 		hw->mac_override = 1;
5668 		memcpy(hw->override_addr, mac->sa_data, ETH_ALEN);
5669 	}
5670 
5671 	memcpy(dev->dev_addr, mac->sa_data, ETH_ALEN);
5672 
5673 	interrupt = hw_block_intr(hw);
5674 
5675 	if (priv->port.first_port > 0)
5676 		hw_add_addr(hw, dev->dev_addr);
5677 	else
5678 		hw_set_addr(hw);
5679 	hw_restore_intr(hw, interrupt);
5680 
5681 	return 0;
5682 }
5683 
5684 static void dev_set_promiscuous(struct net_device *dev, struct dev_priv *priv,
5685 	struct ksz_hw *hw, int promiscuous)
5686 {
5687 	if (promiscuous != priv->promiscuous) {
5688 		u8 prev_state = hw->promiscuous;
5689 
5690 		if (promiscuous)
5691 			++hw->promiscuous;
5692 		else
5693 			--hw->promiscuous;
5694 		priv->promiscuous = promiscuous;
5695 
5696 		/* Turn on/off promiscuous mode. */
5697 		if (hw->promiscuous <= 1 && prev_state <= 1)
5698 			hw_set_promiscuous(hw, hw->promiscuous);
5699 
5700 		/*
5701 		 * Port is not in promiscuous mode, meaning it is released
5702 		 * from the bridge.
5703 		 */
5704 		if ((hw->features & STP_SUPPORT) && !promiscuous &&
5705 		    (dev->priv_flags & IFF_BRIDGE_PORT)) {
5706 			struct ksz_switch *sw = hw->ksz_switch;
5707 			int port = priv->port.first_port;
5708 
5709 			port_set_stp_state(hw, port, STP_STATE_DISABLED);
5710 			port = 1 << port;
5711 			if (sw->member & port) {
5712 				sw->member &= ~port;
5713 				bridge_change(hw);
5714 			}
5715 		}
5716 	}
5717 }
5718 
5719 static void dev_set_multicast(struct dev_priv *priv, struct ksz_hw *hw,
5720 	int multicast)
5721 {
5722 	if (multicast != priv->multicast) {
5723 		u8 all_multi = hw->all_multi;
5724 
5725 		if (multicast)
5726 			++hw->all_multi;
5727 		else
5728 			--hw->all_multi;
5729 		priv->multicast = multicast;
5730 
5731 		/* Turn on/off all multicast mode. */
5732 		if (hw->all_multi <= 1 && all_multi <= 1)
5733 			hw_set_multicast(hw, hw->all_multi);
5734 	}
5735 }
5736 
5737 /**
5738  * netdev_set_rx_mode
5739  * @dev:	Network device.
5740  *
5741  * This routine is used to set multicast addresses or put the network device
5742  * into promiscuous mode.
5743  */
5744 static void netdev_set_rx_mode(struct net_device *dev)
5745 {
5746 	struct dev_priv *priv = netdev_priv(dev);
5747 	struct dev_info *hw_priv = priv->adapter;
5748 	struct ksz_hw *hw = &hw_priv->hw;
5749 	struct netdev_hw_addr *ha;
5750 	int multicast = (dev->flags & IFF_ALLMULTI);
5751 
5752 	dev_set_promiscuous(dev, priv, hw, (dev->flags & IFF_PROMISC));
5753 
5754 	if (hw_priv->hw.dev_count > 1)
5755 		multicast |= (dev->flags & IFF_MULTICAST);
5756 	dev_set_multicast(priv, hw, multicast);
5757 
5758 	/* Cannot use different hashes in multiple device interfaces mode. */
5759 	if (hw_priv->hw.dev_count > 1)
5760 		return;
5761 
5762 	if ((dev->flags & IFF_MULTICAST) && !netdev_mc_empty(dev)) {
5763 		int i = 0;
5764 
5765 		/* List too big to support so turn on all multicast mode. */
5766 		if (netdev_mc_count(dev) > MAX_MULTICAST_LIST) {
5767 			if (MAX_MULTICAST_LIST != hw->multi_list_size) {
5768 				hw->multi_list_size = MAX_MULTICAST_LIST;
5769 				++hw->all_multi;
5770 				hw_set_multicast(hw, hw->all_multi);
5771 			}
5772 			return;
5773 		}
5774 
5775 		netdev_for_each_mc_addr(ha, dev) {
5776 			if (i >= MAX_MULTICAST_LIST)
5777 				break;
5778 			memcpy(hw->multi_list[i++], ha->addr, ETH_ALEN);
5779 		}
5780 		hw->multi_list_size = (u8) i;
5781 		hw_set_grp_addr(hw);
5782 	} else {
5783 		if (MAX_MULTICAST_LIST == hw->multi_list_size) {
5784 			--hw->all_multi;
5785 			hw_set_multicast(hw, hw->all_multi);
5786 		}
5787 		hw->multi_list_size = 0;
5788 		hw_clr_multicast(hw);
5789 	}
5790 }
5791 
5792 static int netdev_change_mtu(struct net_device *dev, int new_mtu)
5793 {
5794 	struct dev_priv *priv = netdev_priv(dev);
5795 	struct dev_info *hw_priv = priv->adapter;
5796 	struct ksz_hw *hw = &hw_priv->hw;
5797 	int hw_mtu;
5798 
5799 	if (netif_running(dev))
5800 		return -EBUSY;
5801 
5802 	/* Cannot use different MTU in multiple device interfaces mode. */
5803 	if (hw->dev_count > 1)
5804 		if (dev != hw_priv->dev)
5805 			return 0;
5806 
5807 	hw_mtu = new_mtu + ETHERNET_HEADER_SIZE + 4;
5808 	if (hw_mtu > REGULAR_RX_BUF_SIZE) {
5809 		hw->features |= RX_HUGE_FRAME;
5810 		hw_mtu = MAX_RX_BUF_SIZE;
5811 	} else {
5812 		hw->features &= ~RX_HUGE_FRAME;
5813 		hw_mtu = REGULAR_RX_BUF_SIZE;
5814 	}
5815 	hw_mtu = (hw_mtu + 3) & ~3;
5816 	hw_priv->mtu = hw_mtu;
5817 	dev->mtu = new_mtu;
5818 
5819 	return 0;
5820 }
5821 
5822 /**
5823  * netdev_ioctl - I/O control processing
5824  * @dev:	Network device.
5825  * @ifr:	Interface request structure.
5826  * @cmd:	I/O control code.
5827  *
5828  * This function is used to process I/O control calls.
5829  *
5830  * Return 0 to indicate success.
5831  */
5832 static int netdev_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
5833 {
5834 	struct dev_priv *priv = netdev_priv(dev);
5835 	struct dev_info *hw_priv = priv->adapter;
5836 	struct ksz_hw *hw = &hw_priv->hw;
5837 	struct ksz_port *port = &priv->port;
5838 	int result = 0;
5839 	struct mii_ioctl_data *data = if_mii(ifr);
5840 
5841 	if (down_interruptible(&priv->proc_sem))
5842 		return -ERESTARTSYS;
5843 
5844 	switch (cmd) {
5845 	/* Get address of MII PHY in use. */
5846 	case SIOCGMIIPHY:
5847 		data->phy_id = priv->id;
5848 
5849 		/* Fallthrough... */
5850 
5851 	/* Read MII PHY register. */
5852 	case SIOCGMIIREG:
5853 		if (data->phy_id != priv->id || data->reg_num >= 6)
5854 			result = -EIO;
5855 		else
5856 			hw_r_phy(hw, port->linked->port_id, data->reg_num,
5857 				&data->val_out);
5858 		break;
5859 
5860 	/* Write MII PHY register. */
5861 	case SIOCSMIIREG:
5862 		if (!capable(CAP_NET_ADMIN))
5863 			result = -EPERM;
5864 		else if (data->phy_id != priv->id || data->reg_num >= 6)
5865 			result = -EIO;
5866 		else
5867 			hw_w_phy(hw, port->linked->port_id, data->reg_num,
5868 				data->val_in);
5869 		break;
5870 
5871 	default:
5872 		result = -EOPNOTSUPP;
5873 	}
5874 
5875 	up(&priv->proc_sem);
5876 
5877 	return result;
5878 }
5879 
5880 /*
5881  * MII support
5882  */
5883 
5884 /**
5885  * mdio_read - read PHY register
5886  * @dev:	Network device.
5887  * @phy_id:	The PHY id.
5888  * @reg_num:	The register number.
5889  *
5890  * This function returns the PHY register value.
5891  *
5892  * Return the register value.
5893  */
5894 static int mdio_read(struct net_device *dev, int phy_id, int reg_num)
5895 {
5896 	struct dev_priv *priv = netdev_priv(dev);
5897 	struct ksz_port *port = &priv->port;
5898 	struct ksz_hw *hw = port->hw;
5899 	u16 val_out;
5900 
5901 	hw_r_phy(hw, port->linked->port_id, reg_num << 1, &val_out);
5902 	return val_out;
5903 }
5904 
5905 /**
5906  * mdio_write - set PHY register
5907  * @dev:	Network device.
5908  * @phy_id:	The PHY id.
5909  * @reg_num:	The register number.
5910  * @val:	The register value.
5911  *
5912  * This procedure sets the PHY register value.
5913  */
5914 static void mdio_write(struct net_device *dev, int phy_id, int reg_num, int val)
5915 {
5916 	struct dev_priv *priv = netdev_priv(dev);
5917 	struct ksz_port *port = &priv->port;
5918 	struct ksz_hw *hw = port->hw;
5919 	int i;
5920 	int pi;
5921 
5922 	for (i = 0, pi = port->first_port; i < port->port_cnt; i++, pi++)
5923 		hw_w_phy(hw, pi, reg_num << 1, val);
5924 }
5925 
5926 /*
5927  * ethtool support
5928  */
5929 
5930 #define EEPROM_SIZE			0x40
5931 
5932 static u16 eeprom_data[EEPROM_SIZE] = { 0 };
5933 
5934 #define ADVERTISED_ALL			\
5935 	(ADVERTISED_10baseT_Half |	\
5936 	ADVERTISED_10baseT_Full |	\
5937 	ADVERTISED_100baseT_Half |	\
5938 	ADVERTISED_100baseT_Full)
5939 
5940 /* These functions use the MII functions in mii.c. */
5941 
5942 /**
5943  * netdev_get_link_ksettings - get network device settings
5944  * @dev:	Network device.
5945  * @cmd:	Ethtool command.
5946  *
5947  * This function queries the PHY and returns its state in the ethtool command.
5948  *
5949  * Return 0 if successful; otherwise an error code.
5950  */
5951 static int netdev_get_link_ksettings(struct net_device *dev,
5952 				     struct ethtool_link_ksettings *cmd)
5953 {
5954 	struct dev_priv *priv = netdev_priv(dev);
5955 	struct dev_info *hw_priv = priv->adapter;
5956 
5957 	mutex_lock(&hw_priv->lock);
5958 	mii_ethtool_get_link_ksettings(&priv->mii_if, cmd);
5959 	ethtool_link_ksettings_add_link_mode(cmd, advertising, TP);
5960 	mutex_unlock(&hw_priv->lock);
5961 
5962 	/* Save advertised settings for workaround in next function. */
5963 	ethtool_convert_link_mode_to_legacy_u32(&priv->advertising,
5964 						cmd->link_modes.advertising);
5965 
5966 	return 0;
5967 }
5968 
5969 /**
5970  * netdev_set_link_ksettings - set network device settings
5971  * @dev:	Network device.
5972  * @cmd:	Ethtool command.
5973  *
5974  * This function sets the PHY according to the ethtool command.
5975  *
5976  * Return 0 if successful; otherwise an error code.
5977  */
5978 static int netdev_set_link_ksettings(struct net_device *dev,
5979 				     const struct ethtool_link_ksettings *cmd)
5980 {
5981 	struct dev_priv *priv = netdev_priv(dev);
5982 	struct dev_info *hw_priv = priv->adapter;
5983 	struct ksz_port *port = &priv->port;
5984 	struct ethtool_link_ksettings copy_cmd;
5985 	u32 speed = cmd->base.speed;
5986 	u32 advertising;
5987 	int rc;
5988 
5989 	ethtool_convert_link_mode_to_legacy_u32(&advertising,
5990 						cmd->link_modes.advertising);
5991 
5992 	/*
5993 	 * ethtool utility does not change advertised setting if auto
5994 	 * negotiation is not specified explicitly.
5995 	 */
5996 	if (cmd->base.autoneg && priv->advertising == advertising) {
5997 		advertising |= ADVERTISED_ALL;
5998 		if (10 == speed)
5999 			advertising &=
6000 				~(ADVERTISED_100baseT_Full |
6001 				ADVERTISED_100baseT_Half);
6002 		else if (100 == speed)
6003 			advertising &=
6004 				~(ADVERTISED_10baseT_Full |
6005 				ADVERTISED_10baseT_Half);
6006 		if (0 == cmd->base.duplex)
6007 			advertising &=
6008 				~(ADVERTISED_100baseT_Full |
6009 				ADVERTISED_10baseT_Full);
6010 		else if (1 == cmd->base.duplex)
6011 			advertising &=
6012 				~(ADVERTISED_100baseT_Half |
6013 				ADVERTISED_10baseT_Half);
6014 	}
6015 	mutex_lock(&hw_priv->lock);
6016 	if (cmd->base.autoneg &&
6017 	    (advertising & ADVERTISED_ALL) == ADVERTISED_ALL) {
6018 		port->duplex = 0;
6019 		port->speed = 0;
6020 		port->force_link = 0;
6021 	} else {
6022 		port->duplex = cmd->base.duplex + 1;
6023 		if (1000 != speed)
6024 			port->speed = speed;
6025 		if (cmd->base.autoneg)
6026 			port->force_link = 0;
6027 		else
6028 			port->force_link = 1;
6029 	}
6030 
6031 	memcpy(&copy_cmd, cmd, sizeof(copy_cmd));
6032 	ethtool_convert_legacy_u32_to_link_mode(copy_cmd.link_modes.advertising,
6033 						advertising);
6034 	rc = mii_ethtool_set_link_ksettings(
6035 		&priv->mii_if,
6036 		(const struct ethtool_link_ksettings *)&copy_cmd);
6037 	mutex_unlock(&hw_priv->lock);
6038 	return rc;
6039 }
6040 
6041 /**
6042  * netdev_nway_reset - restart auto-negotiation
6043  * @dev:	Network device.
6044  *
6045  * This function restarts the PHY for auto-negotiation.
6046  *
6047  * Return 0 if successful; otherwise an error code.
6048  */
6049 static int netdev_nway_reset(struct net_device *dev)
6050 {
6051 	struct dev_priv *priv = netdev_priv(dev);
6052 	struct dev_info *hw_priv = priv->adapter;
6053 	int rc;
6054 
6055 	mutex_lock(&hw_priv->lock);
6056 	rc = mii_nway_restart(&priv->mii_if);
6057 	mutex_unlock(&hw_priv->lock);
6058 	return rc;
6059 }
6060 
6061 /**
6062  * netdev_get_link - get network device link status
6063  * @dev:	Network device.
6064  *
6065  * This function gets the link status from the PHY.
6066  *
6067  * Return true if PHY is linked and false otherwise.
6068  */
6069 static u32 netdev_get_link(struct net_device *dev)
6070 {
6071 	struct dev_priv *priv = netdev_priv(dev);
6072 	int rc;
6073 
6074 	rc = mii_link_ok(&priv->mii_if);
6075 	return rc;
6076 }
6077 
6078 /**
6079  * netdev_get_drvinfo - get network driver information
6080  * @dev:	Network device.
6081  * @info:	Ethtool driver info data structure.
6082  *
6083  * This procedure returns the driver information.
6084  */
6085 static void netdev_get_drvinfo(struct net_device *dev,
6086 	struct ethtool_drvinfo *info)
6087 {
6088 	struct dev_priv *priv = netdev_priv(dev);
6089 	struct dev_info *hw_priv = priv->adapter;
6090 
6091 	strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
6092 	strlcpy(info->version, DRV_VERSION, sizeof(info->version));
6093 	strlcpy(info->bus_info, pci_name(hw_priv->pdev),
6094 		sizeof(info->bus_info));
6095 }
6096 
6097 /**
6098  * netdev_get_regs_len - get length of register dump
6099  * @dev:	Network device.
6100  *
6101  * This function returns the length of the register dump.
6102  *
6103  * Return length of the register dump.
6104  */
6105 static struct hw_regs {
6106 	int start;
6107 	int end;
6108 } hw_regs_range[] = {
6109 	{ KS_DMA_TX_CTRL,	KS884X_INTERRUPTS_STATUS },
6110 	{ KS_ADD_ADDR_0_LO,	KS_ADD_ADDR_F_HI },
6111 	{ KS884X_ADDR_0_OFFSET,	KS8841_WOL_FRAME_BYTE2_OFFSET },
6112 	{ KS884X_SIDER_P,	KS8842_SGCR7_P },
6113 	{ KS8842_MACAR1_P,	KS8842_TOSR8_P },
6114 	{ KS884X_P1MBCR_P,	KS8842_P3ERCR_P },
6115 	{ 0, 0 }
6116 };
6117 
6118 static int netdev_get_regs_len(struct net_device *dev)
6119 {
6120 	struct hw_regs *range = hw_regs_range;
6121 	int regs_len = 0x10 * sizeof(u32);
6122 
6123 	while (range->end > range->start) {
6124 		regs_len += (range->end - range->start + 3) / 4 * 4;
6125 		range++;
6126 	}
6127 	return regs_len;
6128 }
6129 
6130 /**
6131  * netdev_get_regs - get register dump
6132  * @dev:	Network device.
6133  * @regs:	Ethtool registers data structure.
6134  * @ptr:	Buffer to store the register values.
6135  *
6136  * This procedure dumps the register values in the provided buffer.
6137  */
6138 static void netdev_get_regs(struct net_device *dev, struct ethtool_regs *regs,
6139 	void *ptr)
6140 {
6141 	struct dev_priv *priv = netdev_priv(dev);
6142 	struct dev_info *hw_priv = priv->adapter;
6143 	struct ksz_hw *hw = &hw_priv->hw;
6144 	int *buf = (int *) ptr;
6145 	struct hw_regs *range = hw_regs_range;
6146 	int len;
6147 
6148 	mutex_lock(&hw_priv->lock);
6149 	regs->version = 0;
6150 	for (len = 0; len < 0x40; len += 4) {
6151 		pci_read_config_dword(hw_priv->pdev, len, buf);
6152 		buf++;
6153 	}
6154 	while (range->end > range->start) {
6155 		for (len = range->start; len < range->end; len += 4) {
6156 			*buf = readl(hw->io + len);
6157 			buf++;
6158 		}
6159 		range++;
6160 	}
6161 	mutex_unlock(&hw_priv->lock);
6162 }
6163 
6164 #define WOL_SUPPORT			\
6165 	(WAKE_PHY | WAKE_MAGIC |	\
6166 	WAKE_UCAST | WAKE_MCAST |	\
6167 	WAKE_BCAST | WAKE_ARP)
6168 
6169 /**
6170  * netdev_get_wol - get Wake-on-LAN support
6171  * @dev:	Network device.
6172  * @wol:	Ethtool Wake-on-LAN data structure.
6173  *
6174  * This procedure returns Wake-on-LAN support.
6175  */
6176 static void netdev_get_wol(struct net_device *dev,
6177 	struct ethtool_wolinfo *wol)
6178 {
6179 	struct dev_priv *priv = netdev_priv(dev);
6180 	struct dev_info *hw_priv = priv->adapter;
6181 
6182 	wol->supported = hw_priv->wol_support;
6183 	wol->wolopts = hw_priv->wol_enable;
6184 	memset(&wol->sopass, 0, sizeof(wol->sopass));
6185 }
6186 
6187 /**
6188  * netdev_set_wol - set Wake-on-LAN support
6189  * @dev:	Network device.
6190  * @wol:	Ethtool Wake-on-LAN data structure.
6191  *
6192  * This function sets Wake-on-LAN support.
6193  *
6194  * Return 0 if successful; otherwise an error code.
6195  */
6196 static int netdev_set_wol(struct net_device *dev,
6197 	struct ethtool_wolinfo *wol)
6198 {
6199 	struct dev_priv *priv = netdev_priv(dev);
6200 	struct dev_info *hw_priv = priv->adapter;
6201 
6202 	/* Need to find a way to retrieve the device IP address. */
6203 	static const u8 net_addr[] = { 192, 168, 1, 1 };
6204 
6205 	if (wol->wolopts & ~hw_priv->wol_support)
6206 		return -EINVAL;
6207 
6208 	hw_priv->wol_enable = wol->wolopts;
6209 
6210 	/* Link wakeup cannot really be disabled. */
6211 	if (wol->wolopts)
6212 		hw_priv->wol_enable |= WAKE_PHY;
6213 	hw_enable_wol(&hw_priv->hw, hw_priv->wol_enable, net_addr);
6214 	return 0;
6215 }
6216 
6217 /**
6218  * netdev_get_msglevel - get debug message level
6219  * @dev:	Network device.
6220  *
6221  * This function returns current debug message level.
6222  *
6223  * Return current debug message flags.
6224  */
6225 static u32 netdev_get_msglevel(struct net_device *dev)
6226 {
6227 	struct dev_priv *priv = netdev_priv(dev);
6228 
6229 	return priv->msg_enable;
6230 }
6231 
6232 /**
6233  * netdev_set_msglevel - set debug message level
6234  * @dev:	Network device.
6235  * @value:	Debug message flags.
6236  *
6237  * This procedure sets debug message level.
6238  */
6239 static void netdev_set_msglevel(struct net_device *dev, u32 value)
6240 {
6241 	struct dev_priv *priv = netdev_priv(dev);
6242 
6243 	priv->msg_enable = value;
6244 }
6245 
6246 /**
6247  * netdev_get_eeprom_len - get EEPROM length
6248  * @dev:	Network device.
6249  *
6250  * This function returns the length of the EEPROM.
6251  *
6252  * Return length of the EEPROM.
6253  */
6254 static int netdev_get_eeprom_len(struct net_device *dev)
6255 {
6256 	return EEPROM_SIZE * 2;
6257 }
6258 
6259 /**
6260  * netdev_get_eeprom - get EEPROM data
6261  * @dev:	Network device.
6262  * @eeprom:	Ethtool EEPROM data structure.
6263  * @data:	Buffer to store the EEPROM data.
6264  *
6265  * This function dumps the EEPROM data in the provided buffer.
6266  *
6267  * Return 0 if successful; otherwise an error code.
6268  */
6269 #define EEPROM_MAGIC			0x10A18842
6270 
6271 static int netdev_get_eeprom(struct net_device *dev,
6272 	struct ethtool_eeprom *eeprom, u8 *data)
6273 {
6274 	struct dev_priv *priv = netdev_priv(dev);
6275 	struct dev_info *hw_priv = priv->adapter;
6276 	u8 *eeprom_byte = (u8 *) eeprom_data;
6277 	int i;
6278 	int len;
6279 
6280 	len = (eeprom->offset + eeprom->len + 1) / 2;
6281 	for (i = eeprom->offset / 2; i < len; i++)
6282 		eeprom_data[i] = eeprom_read(&hw_priv->hw, i);
6283 	eeprom->magic = EEPROM_MAGIC;
6284 	memcpy(data, &eeprom_byte[eeprom->offset], eeprom->len);
6285 
6286 	return 0;
6287 }
6288 
6289 /**
6290  * netdev_set_eeprom - write EEPROM data
6291  * @dev:	Network device.
6292  * @eeprom:	Ethtool EEPROM data structure.
6293  * @data:	Data buffer.
6294  *
6295  * This function modifies the EEPROM data one byte at a time.
6296  *
6297  * Return 0 if successful; otherwise an error code.
6298  */
6299 static int netdev_set_eeprom(struct net_device *dev,
6300 	struct ethtool_eeprom *eeprom, u8 *data)
6301 {
6302 	struct dev_priv *priv = netdev_priv(dev);
6303 	struct dev_info *hw_priv = priv->adapter;
6304 	u16 eeprom_word[EEPROM_SIZE];
6305 	u8 *eeprom_byte = (u8 *) eeprom_word;
6306 	int i;
6307 	int len;
6308 
6309 	if (eeprom->magic != EEPROM_MAGIC)
6310 		return -EINVAL;
6311 
6312 	len = (eeprom->offset + eeprom->len + 1) / 2;
6313 	for (i = eeprom->offset / 2; i < len; i++)
6314 		eeprom_data[i] = eeprom_read(&hw_priv->hw, i);
6315 	memcpy(eeprom_word, eeprom_data, EEPROM_SIZE * 2);
6316 	memcpy(&eeprom_byte[eeprom->offset], data, eeprom->len);
6317 	for (i = 0; i < EEPROM_SIZE; i++)
6318 		if (eeprom_word[i] != eeprom_data[i]) {
6319 			eeprom_data[i] = eeprom_word[i];
6320 			eeprom_write(&hw_priv->hw, i, eeprom_data[i]);
6321 	}
6322 
6323 	return 0;
6324 }
6325 
6326 /**
6327  * netdev_get_pauseparam - get flow control parameters
6328  * @dev:	Network device.
6329  * @pause:	Ethtool PAUSE settings data structure.
6330  *
6331  * This procedure returns the PAUSE control flow settings.
6332  */
6333 static void netdev_get_pauseparam(struct net_device *dev,
6334 	struct ethtool_pauseparam *pause)
6335 {
6336 	struct dev_priv *priv = netdev_priv(dev);
6337 	struct dev_info *hw_priv = priv->adapter;
6338 	struct ksz_hw *hw = &hw_priv->hw;
6339 
6340 	pause->autoneg = (hw->overrides & PAUSE_FLOW_CTRL) ? 0 : 1;
6341 	if (!hw->ksz_switch) {
6342 		pause->rx_pause =
6343 			(hw->rx_cfg & DMA_RX_FLOW_ENABLE) ? 1 : 0;
6344 		pause->tx_pause =
6345 			(hw->tx_cfg & DMA_TX_FLOW_ENABLE) ? 1 : 0;
6346 	} else {
6347 		pause->rx_pause =
6348 			(sw_chk(hw, KS8842_SWITCH_CTRL_1_OFFSET,
6349 				SWITCH_RX_FLOW_CTRL)) ? 1 : 0;
6350 		pause->tx_pause =
6351 			(sw_chk(hw, KS8842_SWITCH_CTRL_1_OFFSET,
6352 				SWITCH_TX_FLOW_CTRL)) ? 1 : 0;
6353 	}
6354 }
6355 
6356 /**
6357  * netdev_set_pauseparam - set flow control parameters
6358  * @dev:	Network device.
6359  * @pause:	Ethtool PAUSE settings data structure.
6360  *
6361  * This function sets the PAUSE control flow settings.
6362  * Not implemented yet.
6363  *
6364  * Return 0 if successful; otherwise an error code.
6365  */
6366 static int netdev_set_pauseparam(struct net_device *dev,
6367 	struct ethtool_pauseparam *pause)
6368 {
6369 	struct dev_priv *priv = netdev_priv(dev);
6370 	struct dev_info *hw_priv = priv->adapter;
6371 	struct ksz_hw *hw = &hw_priv->hw;
6372 	struct ksz_port *port = &priv->port;
6373 
6374 	mutex_lock(&hw_priv->lock);
6375 	if (pause->autoneg) {
6376 		if (!pause->rx_pause && !pause->tx_pause)
6377 			port->flow_ctrl = PHY_NO_FLOW_CTRL;
6378 		else
6379 			port->flow_ctrl = PHY_FLOW_CTRL;
6380 		hw->overrides &= ~PAUSE_FLOW_CTRL;
6381 		port->force_link = 0;
6382 		if (hw->ksz_switch) {
6383 			sw_cfg(hw, KS8842_SWITCH_CTRL_1_OFFSET,
6384 				SWITCH_RX_FLOW_CTRL, 1);
6385 			sw_cfg(hw, KS8842_SWITCH_CTRL_1_OFFSET,
6386 				SWITCH_TX_FLOW_CTRL, 1);
6387 		}
6388 		port_set_link_speed(port);
6389 	} else {
6390 		hw->overrides |= PAUSE_FLOW_CTRL;
6391 		if (hw->ksz_switch) {
6392 			sw_cfg(hw, KS8842_SWITCH_CTRL_1_OFFSET,
6393 				SWITCH_RX_FLOW_CTRL, pause->rx_pause);
6394 			sw_cfg(hw, KS8842_SWITCH_CTRL_1_OFFSET,
6395 				SWITCH_TX_FLOW_CTRL, pause->tx_pause);
6396 		} else
6397 			set_flow_ctrl(hw, pause->rx_pause, pause->tx_pause);
6398 	}
6399 	mutex_unlock(&hw_priv->lock);
6400 
6401 	return 0;
6402 }
6403 
6404 /**
6405  * netdev_get_ringparam - get tx/rx ring parameters
6406  * @dev:	Network device.
6407  * @pause:	Ethtool RING settings data structure.
6408  *
6409  * This procedure returns the TX/RX ring settings.
6410  */
6411 static void netdev_get_ringparam(struct net_device *dev,
6412 	struct ethtool_ringparam *ring)
6413 {
6414 	struct dev_priv *priv = netdev_priv(dev);
6415 	struct dev_info *hw_priv = priv->adapter;
6416 	struct ksz_hw *hw = &hw_priv->hw;
6417 
6418 	ring->tx_max_pending = (1 << 9);
6419 	ring->tx_pending = hw->tx_desc_info.alloc;
6420 	ring->rx_max_pending = (1 << 9);
6421 	ring->rx_pending = hw->rx_desc_info.alloc;
6422 }
6423 
6424 #define STATS_LEN			(TOTAL_PORT_COUNTER_NUM)
6425 
6426 static struct {
6427 	char string[ETH_GSTRING_LEN];
6428 } ethtool_stats_keys[STATS_LEN] = {
6429 	{ "rx_lo_priority_octets" },
6430 	{ "rx_hi_priority_octets" },
6431 	{ "rx_undersize_packets" },
6432 	{ "rx_fragments" },
6433 	{ "rx_oversize_packets" },
6434 	{ "rx_jabbers" },
6435 	{ "rx_symbol_errors" },
6436 	{ "rx_crc_errors" },
6437 	{ "rx_align_errors" },
6438 	{ "rx_mac_ctrl_packets" },
6439 	{ "rx_pause_packets" },
6440 	{ "rx_bcast_packets" },
6441 	{ "rx_mcast_packets" },
6442 	{ "rx_ucast_packets" },
6443 	{ "rx_64_or_less_octet_packets" },
6444 	{ "rx_65_to_127_octet_packets" },
6445 	{ "rx_128_to_255_octet_packets" },
6446 	{ "rx_256_to_511_octet_packets" },
6447 	{ "rx_512_to_1023_octet_packets" },
6448 	{ "rx_1024_to_1522_octet_packets" },
6449 
6450 	{ "tx_lo_priority_octets" },
6451 	{ "tx_hi_priority_octets" },
6452 	{ "tx_late_collisions" },
6453 	{ "tx_pause_packets" },
6454 	{ "tx_bcast_packets" },
6455 	{ "tx_mcast_packets" },
6456 	{ "tx_ucast_packets" },
6457 	{ "tx_deferred" },
6458 	{ "tx_total_collisions" },
6459 	{ "tx_excessive_collisions" },
6460 	{ "tx_single_collisions" },
6461 	{ "tx_mult_collisions" },
6462 
6463 	{ "rx_discards" },
6464 	{ "tx_discards" },
6465 };
6466 
6467 /**
6468  * netdev_get_strings - get statistics identity strings
6469  * @dev:	Network device.
6470  * @stringset:	String set identifier.
6471  * @buf:	Buffer to store the strings.
6472  *
6473  * This procedure returns the strings used to identify the statistics.
6474  */
6475 static void netdev_get_strings(struct net_device *dev, u32 stringset, u8 *buf)
6476 {
6477 	struct dev_priv *priv = netdev_priv(dev);
6478 	struct dev_info *hw_priv = priv->adapter;
6479 	struct ksz_hw *hw = &hw_priv->hw;
6480 
6481 	if (ETH_SS_STATS == stringset)
6482 		memcpy(buf, &ethtool_stats_keys,
6483 			ETH_GSTRING_LEN * hw->mib_cnt);
6484 }
6485 
6486 /**
6487  * netdev_get_sset_count - get statistics size
6488  * @dev:	Network device.
6489  * @sset:	The statistics set number.
6490  *
6491  * This function returns the size of the statistics to be reported.
6492  *
6493  * Return size of the statistics to be reported.
6494  */
6495 static int netdev_get_sset_count(struct net_device *dev, int sset)
6496 {
6497 	struct dev_priv *priv = netdev_priv(dev);
6498 	struct dev_info *hw_priv = priv->adapter;
6499 	struct ksz_hw *hw = &hw_priv->hw;
6500 
6501 	switch (sset) {
6502 	case ETH_SS_STATS:
6503 		return hw->mib_cnt;
6504 	default:
6505 		return -EOPNOTSUPP;
6506 	}
6507 }
6508 
6509 /**
6510  * netdev_get_ethtool_stats - get network device statistics
6511  * @dev:	Network device.
6512  * @stats:	Ethtool statistics data structure.
6513  * @data:	Buffer to store the statistics.
6514  *
6515  * This procedure returns the statistics.
6516  */
6517 static void netdev_get_ethtool_stats(struct net_device *dev,
6518 	struct ethtool_stats *stats, u64 *data)
6519 {
6520 	struct dev_priv *priv = netdev_priv(dev);
6521 	struct dev_info *hw_priv = priv->adapter;
6522 	struct ksz_hw *hw = &hw_priv->hw;
6523 	struct ksz_port *port = &priv->port;
6524 	int n_stats = stats->n_stats;
6525 	int i;
6526 	int n;
6527 	int p;
6528 	int rc;
6529 	u64 counter[TOTAL_PORT_COUNTER_NUM];
6530 
6531 	mutex_lock(&hw_priv->lock);
6532 	n = SWITCH_PORT_NUM;
6533 	for (i = 0, p = port->first_port; i < port->mib_port_cnt; i++, p++) {
6534 		if (media_connected == hw->port_mib[p].state) {
6535 			hw_priv->counter[p].read = 1;
6536 
6537 			/* Remember first port that requests read. */
6538 			if (n == SWITCH_PORT_NUM)
6539 				n = p;
6540 		}
6541 	}
6542 	mutex_unlock(&hw_priv->lock);
6543 
6544 	if (n < SWITCH_PORT_NUM)
6545 		schedule_work(&hw_priv->mib_read);
6546 
6547 	if (1 == port->mib_port_cnt && n < SWITCH_PORT_NUM) {
6548 		p = n;
6549 		rc = wait_event_interruptible_timeout(
6550 			hw_priv->counter[p].counter,
6551 			2 == hw_priv->counter[p].read,
6552 			HZ * 1);
6553 	} else
6554 		for (i = 0, p = n; i < port->mib_port_cnt - n; i++, p++) {
6555 			if (0 == i) {
6556 				rc = wait_event_interruptible_timeout(
6557 					hw_priv->counter[p].counter,
6558 					2 == hw_priv->counter[p].read,
6559 					HZ * 2);
6560 			} else if (hw->port_mib[p].cnt_ptr) {
6561 				rc = wait_event_interruptible_timeout(
6562 					hw_priv->counter[p].counter,
6563 					2 == hw_priv->counter[p].read,
6564 					HZ * 1);
6565 			}
6566 		}
6567 
6568 	get_mib_counters(hw, port->first_port, port->mib_port_cnt, counter);
6569 	n = hw->mib_cnt;
6570 	if (n > n_stats)
6571 		n = n_stats;
6572 	n_stats -= n;
6573 	for (i = 0; i < n; i++)
6574 		*data++ = counter[i];
6575 }
6576 
6577 /**
6578  * netdev_set_features - set receive checksum support
6579  * @dev:	Network device.
6580  * @features:	New device features (offloads).
6581  *
6582  * This function sets receive checksum support setting.
6583  *
6584  * Return 0 if successful; otherwise an error code.
6585  */
6586 static int netdev_set_features(struct net_device *dev,
6587 	netdev_features_t features)
6588 {
6589 	struct dev_priv *priv = netdev_priv(dev);
6590 	struct dev_info *hw_priv = priv->adapter;
6591 	struct ksz_hw *hw = &hw_priv->hw;
6592 
6593 	mutex_lock(&hw_priv->lock);
6594 
6595 	/* see note in hw_setup() */
6596 	if (features & NETIF_F_RXCSUM)
6597 		hw->rx_cfg |= DMA_RX_CSUM_TCP | DMA_RX_CSUM_IP;
6598 	else
6599 		hw->rx_cfg &= ~(DMA_RX_CSUM_TCP | DMA_RX_CSUM_IP);
6600 
6601 	if (hw->enabled)
6602 		writel(hw->rx_cfg, hw->io + KS_DMA_RX_CTRL);
6603 
6604 	mutex_unlock(&hw_priv->lock);
6605 
6606 	return 0;
6607 }
6608 
6609 static const struct ethtool_ops netdev_ethtool_ops = {
6610 	.nway_reset		= netdev_nway_reset,
6611 	.get_link		= netdev_get_link,
6612 	.get_drvinfo		= netdev_get_drvinfo,
6613 	.get_regs_len		= netdev_get_regs_len,
6614 	.get_regs		= netdev_get_regs,
6615 	.get_wol		= netdev_get_wol,
6616 	.set_wol		= netdev_set_wol,
6617 	.get_msglevel		= netdev_get_msglevel,
6618 	.set_msglevel		= netdev_set_msglevel,
6619 	.get_eeprom_len		= netdev_get_eeprom_len,
6620 	.get_eeprom		= netdev_get_eeprom,
6621 	.set_eeprom		= netdev_set_eeprom,
6622 	.get_pauseparam		= netdev_get_pauseparam,
6623 	.set_pauseparam		= netdev_set_pauseparam,
6624 	.get_ringparam		= netdev_get_ringparam,
6625 	.get_strings		= netdev_get_strings,
6626 	.get_sset_count		= netdev_get_sset_count,
6627 	.get_ethtool_stats	= netdev_get_ethtool_stats,
6628 	.get_link_ksettings	= netdev_get_link_ksettings,
6629 	.set_link_ksettings	= netdev_set_link_ksettings,
6630 };
6631 
6632 /*
6633  * Hardware monitoring
6634  */
6635 
6636 static void update_link(struct net_device *dev, struct dev_priv *priv,
6637 	struct ksz_port *port)
6638 {
6639 	if (priv->media_state != port->linked->state) {
6640 		priv->media_state = port->linked->state;
6641 		if (netif_running(dev))
6642 			set_media_state(dev, media_connected);
6643 	}
6644 }
6645 
6646 static void mib_read_work(struct work_struct *work)
6647 {
6648 	struct dev_info *hw_priv =
6649 		container_of(work, struct dev_info, mib_read);
6650 	struct ksz_hw *hw = &hw_priv->hw;
6651 	struct ksz_port_mib *mib;
6652 	int i;
6653 
6654 	next_jiffies = jiffies;
6655 	for (i = 0; i < hw->mib_port_cnt; i++) {
6656 		mib = &hw->port_mib[i];
6657 
6658 		/* Reading MIB counters or requested to read. */
6659 		if (mib->cnt_ptr || 1 == hw_priv->counter[i].read) {
6660 
6661 			/* Need to process receive interrupt. */
6662 			if (port_r_cnt(hw, i))
6663 				break;
6664 			hw_priv->counter[i].read = 0;
6665 
6666 			/* Finish reading counters. */
6667 			if (0 == mib->cnt_ptr) {
6668 				hw_priv->counter[i].read = 2;
6669 				wake_up_interruptible(
6670 					&hw_priv->counter[i].counter);
6671 			}
6672 		} else if (time_after_eq(jiffies, hw_priv->counter[i].time)) {
6673 			/* Only read MIB counters when the port is connected. */
6674 			if (media_connected == mib->state)
6675 				hw_priv->counter[i].read = 1;
6676 			next_jiffies += HZ * 1 * hw->mib_port_cnt;
6677 			hw_priv->counter[i].time = next_jiffies;
6678 
6679 		/* Port is just disconnected. */
6680 		} else if (mib->link_down) {
6681 			mib->link_down = 0;
6682 
6683 			/* Read counters one last time after link is lost. */
6684 			hw_priv->counter[i].read = 1;
6685 		}
6686 	}
6687 }
6688 
6689 static void mib_monitor(struct timer_list *t)
6690 {
6691 	struct dev_info *hw_priv = from_timer(hw_priv, t, mib_timer_info.timer);
6692 
6693 	mib_read_work(&hw_priv->mib_read);
6694 
6695 	/* This is used to verify Wake-on-LAN is working. */
6696 	if (hw_priv->pme_wait) {
6697 		if (time_is_before_eq_jiffies(hw_priv->pme_wait)) {
6698 			hw_clr_wol_pme_status(&hw_priv->hw);
6699 			hw_priv->pme_wait = 0;
6700 		}
6701 	} else if (hw_chk_wol_pme_status(&hw_priv->hw)) {
6702 
6703 		/* PME is asserted.  Wait 2 seconds to clear it. */
6704 		hw_priv->pme_wait = jiffies + HZ * 2;
6705 	}
6706 
6707 	ksz_update_timer(&hw_priv->mib_timer_info);
6708 }
6709 
6710 /**
6711  * dev_monitor - periodic monitoring
6712  * @ptr:	Network device pointer.
6713  *
6714  * This routine is run in a kernel timer to monitor the network device.
6715  */
6716 static void dev_monitor(struct timer_list *t)
6717 {
6718 	struct dev_priv *priv = from_timer(priv, t, monitor_timer_info.timer);
6719 	struct net_device *dev = priv->mii_if.dev;
6720 	struct dev_info *hw_priv = priv->adapter;
6721 	struct ksz_hw *hw = &hw_priv->hw;
6722 	struct ksz_port *port = &priv->port;
6723 
6724 	if (!(hw->features & LINK_INT_WORKING))
6725 		port_get_link_speed(port);
6726 	update_link(dev, priv, port);
6727 
6728 	ksz_update_timer(&priv->monitor_timer_info);
6729 }
6730 
6731 /*
6732  * Linux network device interface functions
6733  */
6734 
6735 /* Driver exported variables */
6736 
6737 static int msg_enable;
6738 
6739 static char *macaddr = ":";
6740 static char *mac1addr = ":";
6741 
6742 /*
6743  * This enables multiple network device mode for KSZ8842, which contains a
6744  * switch with two physical ports.  Some users like to take control of the
6745  * ports for running Spanning Tree Protocol.  The driver will create an
6746  * additional eth? device for the other port.
6747  *
6748  * Some limitations are the network devices cannot have different MTU and
6749  * multicast hash tables.
6750  */
6751 static int multi_dev;
6752 
6753 /*
6754  * As most users select multiple network device mode to use Spanning Tree
6755  * Protocol, this enables a feature in which most unicast and multicast packets
6756  * are forwarded inside the switch and not passed to the host.  Only packets
6757  * that need the host's attention are passed to it.  This prevents the host
6758  * wasting CPU time to examine each and every incoming packets and do the
6759  * forwarding itself.
6760  *
6761  * As the hack requires the private bridge header, the driver cannot compile
6762  * with just the kernel headers.
6763  *
6764  * Enabling STP support also turns on multiple network device mode.
6765  */
6766 static int stp;
6767 
6768 /*
6769  * This enables fast aging in the KSZ8842 switch.  Not sure what situation
6770  * needs that.  However, fast aging is used to flush the dynamic MAC table when
6771  * STP support is enabled.
6772  */
6773 static int fast_aging;
6774 
6775 /**
6776  * netdev_init - initialize network device.
6777  * @dev:	Network device.
6778  *
6779  * This function initializes the network device.
6780  *
6781  * Return 0 if successful; otherwise an error code indicating failure.
6782  */
6783 static int __init netdev_init(struct net_device *dev)
6784 {
6785 	struct dev_priv *priv = netdev_priv(dev);
6786 
6787 	/* 500 ms timeout */
6788 	ksz_init_timer(&priv->monitor_timer_info, 500 * HZ / 1000,
6789 		dev_monitor);
6790 
6791 	/* 500 ms timeout */
6792 	dev->watchdog_timeo = HZ / 2;
6793 
6794 	dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG | NETIF_F_RXCSUM;
6795 
6796 	/*
6797 	 * Hardware does not really support IPv6 checksum generation, but
6798 	 * driver actually runs faster with this on.
6799 	 */
6800 	dev->hw_features |= NETIF_F_IPV6_CSUM;
6801 
6802 	dev->features |= dev->hw_features;
6803 
6804 	sema_init(&priv->proc_sem, 1);
6805 
6806 	priv->mii_if.phy_id_mask = 0x1;
6807 	priv->mii_if.reg_num_mask = 0x7;
6808 	priv->mii_if.dev = dev;
6809 	priv->mii_if.mdio_read = mdio_read;
6810 	priv->mii_if.mdio_write = mdio_write;
6811 	priv->mii_if.phy_id = priv->port.first_port + 1;
6812 
6813 	priv->msg_enable = netif_msg_init(msg_enable,
6814 		(NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK));
6815 
6816 	return 0;
6817 }
6818 
6819 static const struct net_device_ops netdev_ops = {
6820 	.ndo_init		= netdev_init,
6821 	.ndo_open		= netdev_open,
6822 	.ndo_stop		= netdev_close,
6823 	.ndo_get_stats		= netdev_query_statistics,
6824 	.ndo_start_xmit		= netdev_tx,
6825 	.ndo_tx_timeout		= netdev_tx_timeout,
6826 	.ndo_change_mtu		= netdev_change_mtu,
6827 	.ndo_set_features	= netdev_set_features,
6828 	.ndo_set_mac_address	= netdev_set_mac_address,
6829 	.ndo_validate_addr	= eth_validate_addr,
6830 	.ndo_do_ioctl		= netdev_ioctl,
6831 	.ndo_set_rx_mode	= netdev_set_rx_mode,
6832 #ifdef CONFIG_NET_POLL_CONTROLLER
6833 	.ndo_poll_controller	= netdev_netpoll,
6834 #endif
6835 };
6836 
6837 static void netdev_free(struct net_device *dev)
6838 {
6839 	if (dev->watchdog_timeo)
6840 		unregister_netdev(dev);
6841 
6842 	free_netdev(dev);
6843 }
6844 
6845 struct platform_info {
6846 	struct dev_info dev_info;
6847 	struct net_device *netdev[SWITCH_PORT_NUM];
6848 };
6849 
6850 static int net_device_present;
6851 
6852 static void get_mac_addr(struct dev_info *hw_priv, u8 *macaddr, int port)
6853 {
6854 	int i;
6855 	int j;
6856 	int got_num;
6857 	int num;
6858 
6859 	i = j = num = got_num = 0;
6860 	while (j < ETH_ALEN) {
6861 		if (macaddr[i]) {
6862 			int digit;
6863 
6864 			got_num = 1;
6865 			digit = hex_to_bin(macaddr[i]);
6866 			if (digit >= 0)
6867 				num = num * 16 + digit;
6868 			else if (':' == macaddr[i])
6869 				got_num = 2;
6870 			else
6871 				break;
6872 		} else if (got_num)
6873 			got_num = 2;
6874 		else
6875 			break;
6876 		if (2 == got_num) {
6877 			if (MAIN_PORT == port) {
6878 				hw_priv->hw.override_addr[j++] = (u8) num;
6879 				hw_priv->hw.override_addr[5] +=
6880 					hw_priv->hw.id;
6881 			} else {
6882 				hw_priv->hw.ksz_switch->other_addr[j++] =
6883 					(u8) num;
6884 				hw_priv->hw.ksz_switch->other_addr[5] +=
6885 					hw_priv->hw.id;
6886 			}
6887 			num = got_num = 0;
6888 		}
6889 		i++;
6890 	}
6891 	if (ETH_ALEN == j) {
6892 		if (MAIN_PORT == port)
6893 			hw_priv->hw.mac_override = 1;
6894 	}
6895 }
6896 
6897 #define KS884X_DMA_MASK			(~0x0UL)
6898 
6899 static void read_other_addr(struct ksz_hw *hw)
6900 {
6901 	int i;
6902 	u16 data[3];
6903 	struct ksz_switch *sw = hw->ksz_switch;
6904 
6905 	for (i = 0; i < 3; i++)
6906 		data[i] = eeprom_read(hw, i + EEPROM_DATA_OTHER_MAC_ADDR);
6907 	if ((data[0] || data[1] || data[2]) && data[0] != 0xffff) {
6908 		sw->other_addr[5] = (u8) data[0];
6909 		sw->other_addr[4] = (u8)(data[0] >> 8);
6910 		sw->other_addr[3] = (u8) data[1];
6911 		sw->other_addr[2] = (u8)(data[1] >> 8);
6912 		sw->other_addr[1] = (u8) data[2];
6913 		sw->other_addr[0] = (u8)(data[2] >> 8);
6914 	}
6915 }
6916 
6917 #ifndef PCI_VENDOR_ID_MICREL_KS
6918 #define PCI_VENDOR_ID_MICREL_KS		0x16c6
6919 #endif
6920 
6921 static int pcidev_init(struct pci_dev *pdev, const struct pci_device_id *id)
6922 {
6923 	struct net_device *dev;
6924 	struct dev_priv *priv;
6925 	struct dev_info *hw_priv;
6926 	struct ksz_hw *hw;
6927 	struct platform_info *info;
6928 	struct ksz_port *port;
6929 	unsigned long reg_base;
6930 	unsigned long reg_len;
6931 	int cnt;
6932 	int i;
6933 	int mib_port_count;
6934 	int pi;
6935 	int port_count;
6936 	int result;
6937 	char banner[sizeof(version)];
6938 	struct ksz_switch *sw = NULL;
6939 
6940 	result = pci_enable_device(pdev);
6941 	if (result)
6942 		return result;
6943 
6944 	result = -ENODEV;
6945 
6946 	if (pci_set_dma_mask(pdev, DMA_BIT_MASK(32)) ||
6947 			pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32)))
6948 		return result;
6949 
6950 	reg_base = pci_resource_start(pdev, 0);
6951 	reg_len = pci_resource_len(pdev, 0);
6952 	if ((pci_resource_flags(pdev, 0) & IORESOURCE_IO) != 0)
6953 		return result;
6954 
6955 	if (!request_mem_region(reg_base, reg_len, DRV_NAME))
6956 		return result;
6957 	pci_set_master(pdev);
6958 
6959 	result = -ENOMEM;
6960 
6961 	info = kzalloc(sizeof(struct platform_info), GFP_KERNEL);
6962 	if (!info)
6963 		goto pcidev_init_dev_err;
6964 
6965 	hw_priv = &info->dev_info;
6966 	hw_priv->pdev = pdev;
6967 
6968 	hw = &hw_priv->hw;
6969 
6970 	hw->io = ioremap(reg_base, reg_len);
6971 	if (!hw->io)
6972 		goto pcidev_init_io_err;
6973 
6974 	cnt = hw_init(hw);
6975 	if (!cnt) {
6976 		if (msg_enable & NETIF_MSG_PROBE)
6977 			pr_alert("chip not detected\n");
6978 		result = -ENODEV;
6979 		goto pcidev_init_alloc_err;
6980 	}
6981 
6982 	snprintf(banner, sizeof(banner), "%s", version);
6983 	banner[13] = cnt + '0';		/* Replace x in "Micrel KSZ884x" */
6984 	dev_info(&hw_priv->pdev->dev, "%s\n", banner);
6985 	dev_dbg(&hw_priv->pdev->dev, "Mem = %p; IRQ = %d\n", hw->io, pdev->irq);
6986 
6987 	/* Assume device is KSZ8841. */
6988 	hw->dev_count = 1;
6989 	port_count = 1;
6990 	mib_port_count = 1;
6991 	hw->addr_list_size = 0;
6992 	hw->mib_cnt = PORT_COUNTER_NUM;
6993 	hw->mib_port_cnt = 1;
6994 
6995 	/* KSZ8842 has a switch with multiple ports. */
6996 	if (2 == cnt) {
6997 		if (fast_aging)
6998 			hw->overrides |= FAST_AGING;
6999 
7000 		hw->mib_cnt = TOTAL_PORT_COUNTER_NUM;
7001 
7002 		/* Multiple network device interfaces are required. */
7003 		if (multi_dev) {
7004 			hw->dev_count = SWITCH_PORT_NUM;
7005 			hw->addr_list_size = SWITCH_PORT_NUM - 1;
7006 		}
7007 
7008 		/* Single network device has multiple ports. */
7009 		if (1 == hw->dev_count) {
7010 			port_count = SWITCH_PORT_NUM;
7011 			mib_port_count = SWITCH_PORT_NUM;
7012 		}
7013 		hw->mib_port_cnt = TOTAL_PORT_NUM;
7014 		hw->ksz_switch = kzalloc(sizeof(struct ksz_switch), GFP_KERNEL);
7015 		if (!hw->ksz_switch)
7016 			goto pcidev_init_alloc_err;
7017 
7018 		sw = hw->ksz_switch;
7019 	}
7020 	for (i = 0; i < hw->mib_port_cnt; i++)
7021 		hw->port_mib[i].mib_start = 0;
7022 
7023 	hw->parent = hw_priv;
7024 
7025 	/* Default MTU is 1500. */
7026 	hw_priv->mtu = (REGULAR_RX_BUF_SIZE + 3) & ~3;
7027 
7028 	if (ksz_alloc_mem(hw_priv))
7029 		goto pcidev_init_mem_err;
7030 
7031 	hw_priv->hw.id = net_device_present;
7032 
7033 	spin_lock_init(&hw_priv->hwlock);
7034 	mutex_init(&hw_priv->lock);
7035 
7036 	for (i = 0; i < TOTAL_PORT_NUM; i++)
7037 		init_waitqueue_head(&hw_priv->counter[i].counter);
7038 
7039 	if (macaddr[0] != ':')
7040 		get_mac_addr(hw_priv, macaddr, MAIN_PORT);
7041 
7042 	/* Read MAC address and initialize override address if not overridden. */
7043 	hw_read_addr(hw);
7044 
7045 	/* Multiple device interfaces mode requires a second MAC address. */
7046 	if (hw->dev_count > 1) {
7047 		memcpy(sw->other_addr, hw->override_addr, ETH_ALEN);
7048 		read_other_addr(hw);
7049 		if (mac1addr[0] != ':')
7050 			get_mac_addr(hw_priv, mac1addr, OTHER_PORT);
7051 	}
7052 
7053 	hw_setup(hw);
7054 	if (hw->ksz_switch)
7055 		sw_setup(hw);
7056 	else {
7057 		hw_priv->wol_support = WOL_SUPPORT;
7058 		hw_priv->wol_enable = 0;
7059 	}
7060 
7061 	INIT_WORK(&hw_priv->mib_read, mib_read_work);
7062 
7063 	/* 500 ms timeout */
7064 	ksz_init_timer(&hw_priv->mib_timer_info, 500 * HZ / 1000,
7065 		mib_monitor);
7066 
7067 	for (i = 0; i < hw->dev_count; i++) {
7068 		dev = alloc_etherdev(sizeof(struct dev_priv));
7069 		if (!dev)
7070 			goto pcidev_init_reg_err;
7071 		SET_NETDEV_DEV(dev, &pdev->dev);
7072 		info->netdev[i] = dev;
7073 
7074 		priv = netdev_priv(dev);
7075 		priv->adapter = hw_priv;
7076 		priv->id = net_device_present++;
7077 
7078 		port = &priv->port;
7079 		port->port_cnt = port_count;
7080 		port->mib_port_cnt = mib_port_count;
7081 		port->first_port = i;
7082 		port->flow_ctrl = PHY_FLOW_CTRL;
7083 
7084 		port->hw = hw;
7085 		port->linked = &hw->port_info[port->first_port];
7086 
7087 		for (cnt = 0, pi = i; cnt < port_count; cnt++, pi++) {
7088 			hw->port_info[pi].port_id = pi;
7089 			hw->port_info[pi].pdev = dev;
7090 			hw->port_info[pi].state = media_disconnected;
7091 		}
7092 
7093 		dev->mem_start = (unsigned long) hw->io;
7094 		dev->mem_end = dev->mem_start + reg_len - 1;
7095 		dev->irq = pdev->irq;
7096 		if (MAIN_PORT == i)
7097 			memcpy(dev->dev_addr, hw_priv->hw.override_addr,
7098 			       ETH_ALEN);
7099 		else {
7100 			memcpy(dev->dev_addr, sw->other_addr, ETH_ALEN);
7101 			if (ether_addr_equal(sw->other_addr, hw->override_addr))
7102 				dev->dev_addr[5] += port->first_port;
7103 		}
7104 
7105 		dev->netdev_ops = &netdev_ops;
7106 		dev->ethtool_ops = &netdev_ethtool_ops;
7107 
7108 		/* MTU range: 60 - 1894 */
7109 		dev->min_mtu = ETH_ZLEN;
7110 		dev->max_mtu = MAX_RX_BUF_SIZE -
7111 			       (ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN);
7112 
7113 		if (register_netdev(dev))
7114 			goto pcidev_init_reg_err;
7115 		port_set_power_saving(port, true);
7116 	}
7117 
7118 	pci_dev_get(hw_priv->pdev);
7119 	pci_set_drvdata(pdev, info);
7120 	return 0;
7121 
7122 pcidev_init_reg_err:
7123 	for (i = 0; i < hw->dev_count; i++) {
7124 		if (info->netdev[i]) {
7125 			netdev_free(info->netdev[i]);
7126 			info->netdev[i] = NULL;
7127 		}
7128 	}
7129 
7130 pcidev_init_mem_err:
7131 	ksz_free_mem(hw_priv);
7132 	kfree(hw->ksz_switch);
7133 
7134 pcidev_init_alloc_err:
7135 	iounmap(hw->io);
7136 
7137 pcidev_init_io_err:
7138 	kfree(info);
7139 
7140 pcidev_init_dev_err:
7141 	release_mem_region(reg_base, reg_len);
7142 
7143 	return result;
7144 }
7145 
7146 static void pcidev_exit(struct pci_dev *pdev)
7147 {
7148 	int i;
7149 	struct platform_info *info = pci_get_drvdata(pdev);
7150 	struct dev_info *hw_priv = &info->dev_info;
7151 
7152 	release_mem_region(pci_resource_start(pdev, 0),
7153 		pci_resource_len(pdev, 0));
7154 	for (i = 0; i < hw_priv->hw.dev_count; i++) {
7155 		if (info->netdev[i])
7156 			netdev_free(info->netdev[i]);
7157 	}
7158 	if (hw_priv->hw.io)
7159 		iounmap(hw_priv->hw.io);
7160 	ksz_free_mem(hw_priv);
7161 	kfree(hw_priv->hw.ksz_switch);
7162 	pci_dev_put(hw_priv->pdev);
7163 	kfree(info);
7164 }
7165 
7166 #ifdef CONFIG_PM
7167 static int pcidev_resume(struct pci_dev *pdev)
7168 {
7169 	int i;
7170 	struct platform_info *info = pci_get_drvdata(pdev);
7171 	struct dev_info *hw_priv = &info->dev_info;
7172 	struct ksz_hw *hw = &hw_priv->hw;
7173 
7174 	pci_set_power_state(pdev, PCI_D0);
7175 	pci_restore_state(pdev);
7176 	pci_enable_wake(pdev, PCI_D0, 0);
7177 
7178 	if (hw_priv->wol_enable)
7179 		hw_cfg_wol_pme(hw, 0);
7180 	for (i = 0; i < hw->dev_count; i++) {
7181 		if (info->netdev[i]) {
7182 			struct net_device *dev = info->netdev[i];
7183 
7184 			if (netif_running(dev)) {
7185 				netdev_open(dev);
7186 				netif_device_attach(dev);
7187 			}
7188 		}
7189 	}
7190 	return 0;
7191 }
7192 
7193 static int pcidev_suspend(struct pci_dev *pdev, pm_message_t state)
7194 {
7195 	int i;
7196 	struct platform_info *info = pci_get_drvdata(pdev);
7197 	struct dev_info *hw_priv = &info->dev_info;
7198 	struct ksz_hw *hw = &hw_priv->hw;
7199 
7200 	/* Need to find a way to retrieve the device IP address. */
7201 	static const u8 net_addr[] = { 192, 168, 1, 1 };
7202 
7203 	for (i = 0; i < hw->dev_count; i++) {
7204 		if (info->netdev[i]) {
7205 			struct net_device *dev = info->netdev[i];
7206 
7207 			if (netif_running(dev)) {
7208 				netif_device_detach(dev);
7209 				netdev_close(dev);
7210 			}
7211 		}
7212 	}
7213 	if (hw_priv->wol_enable) {
7214 		hw_enable_wol(hw, hw_priv->wol_enable, net_addr);
7215 		hw_cfg_wol_pme(hw, 1);
7216 	}
7217 
7218 	pci_save_state(pdev);
7219 	pci_enable_wake(pdev, pci_choose_state(pdev, state), 1);
7220 	pci_set_power_state(pdev, pci_choose_state(pdev, state));
7221 	return 0;
7222 }
7223 #endif
7224 
7225 static char pcidev_name[] = "ksz884xp";
7226 
7227 static const struct pci_device_id pcidev_table[] = {
7228 	{ PCI_VENDOR_ID_MICREL_KS, 0x8841,
7229 		PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
7230 	{ PCI_VENDOR_ID_MICREL_KS, 0x8842,
7231 		PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
7232 	{ 0 }
7233 };
7234 
7235 MODULE_DEVICE_TABLE(pci, pcidev_table);
7236 
7237 static struct pci_driver pci_device_driver = {
7238 #ifdef CONFIG_PM
7239 	.suspend	= pcidev_suspend,
7240 	.resume		= pcidev_resume,
7241 #endif
7242 	.name		= pcidev_name,
7243 	.id_table	= pcidev_table,
7244 	.probe		= pcidev_init,
7245 	.remove		= pcidev_exit
7246 };
7247 
7248 module_pci_driver(pci_device_driver);
7249 
7250 MODULE_DESCRIPTION("KSZ8841/2 PCI network driver");
7251 MODULE_AUTHOR("Tristram Ha <Tristram.Ha@micrel.com>");
7252 MODULE_LICENSE("GPL");
7253 
7254 module_param_named(message, msg_enable, int, 0);
7255 MODULE_PARM_DESC(message, "Message verbosity level (0=none, 31=all)");
7256 
7257 module_param(macaddr, charp, 0);
7258 module_param(mac1addr, charp, 0);
7259 module_param(fast_aging, int, 0);
7260 module_param(multi_dev, int, 0);
7261 module_param(stp, int, 0);
7262 MODULE_PARM_DESC(macaddr, "MAC address");
7263 MODULE_PARM_DESC(mac1addr, "Second MAC address");
7264 MODULE_PARM_DESC(fast_aging, "Fast aging");
7265 MODULE_PARM_DESC(multi_dev, "Multiple device interfaces");
7266 MODULE_PARM_DESC(stp, "STP support");
7267