xref: /openbmc/linux/drivers/net/ethernet/micrel/ksz884x.c (revision a8f4fcdd8ba7d191c29ae87a2315906fe90368d6)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * drivers/net/ethernet/micrel/ksx884x.c - Micrel KSZ8841/2 PCI Ethernet driver
4  *
5  * Copyright (c) 2009-2010 Micrel, Inc.
6  * 	Tristram Ha <Tristram.Ha@micrel.com>
7  */
8 
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10 
11 #include <linux/init.h>
12 #include <linux/interrupt.h>
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/ioport.h>
16 #include <linux/pci.h>
17 #include <linux/proc_fs.h>
18 #include <linux/mii.h>
19 #include <linux/platform_device.h>
20 #include <linux/ethtool.h>
21 #include <linux/etherdevice.h>
22 #include <linux/in.h>
23 #include <linux/ip.h>
24 #include <linux/if_vlan.h>
25 #include <linux/crc32.h>
26 #include <linux/sched.h>
27 #include <linux/slab.h>
28 #include <linux/micrel_phy.h>
29 
30 
31 /* DMA Registers */
32 
33 #define KS_DMA_TX_CTRL			0x0000
34 #define DMA_TX_ENABLE			0x00000001
35 #define DMA_TX_CRC_ENABLE		0x00000002
36 #define DMA_TX_PAD_ENABLE		0x00000004
37 #define DMA_TX_LOOPBACK			0x00000100
38 #define DMA_TX_FLOW_ENABLE		0x00000200
39 #define DMA_TX_CSUM_IP			0x00010000
40 #define DMA_TX_CSUM_TCP			0x00020000
41 #define DMA_TX_CSUM_UDP			0x00040000
42 #define DMA_TX_BURST_SIZE		0x3F000000
43 
44 #define KS_DMA_RX_CTRL			0x0004
45 #define DMA_RX_ENABLE			0x00000001
46 #define KS884X_DMA_RX_MULTICAST		0x00000002
47 #define DMA_RX_PROMISCUOUS		0x00000004
48 #define DMA_RX_ERROR			0x00000008
49 #define DMA_RX_UNICAST			0x00000010
50 #define DMA_RX_ALL_MULTICAST		0x00000020
51 #define DMA_RX_BROADCAST		0x00000040
52 #define DMA_RX_FLOW_ENABLE		0x00000200
53 #define DMA_RX_CSUM_IP			0x00010000
54 #define DMA_RX_CSUM_TCP			0x00020000
55 #define DMA_RX_CSUM_UDP			0x00040000
56 #define DMA_RX_BURST_SIZE		0x3F000000
57 
58 #define DMA_BURST_SHIFT			24
59 #define DMA_BURST_DEFAULT		8
60 
61 #define KS_DMA_TX_START			0x0008
62 #define KS_DMA_RX_START			0x000C
63 #define DMA_START			0x00000001
64 
65 #define KS_DMA_TX_ADDR			0x0010
66 #define KS_DMA_RX_ADDR			0x0014
67 
68 #define DMA_ADDR_LIST_MASK		0xFFFFFFFC
69 #define DMA_ADDR_LIST_SHIFT		2
70 
71 /* MTR0 */
72 #define KS884X_MULTICAST_0_OFFSET	0x0020
73 #define KS884X_MULTICAST_1_OFFSET	0x0021
74 #define KS884X_MULTICAST_2_OFFSET	0x0022
75 #define KS884x_MULTICAST_3_OFFSET	0x0023
76 /* MTR1 */
77 #define KS884X_MULTICAST_4_OFFSET	0x0024
78 #define KS884X_MULTICAST_5_OFFSET	0x0025
79 #define KS884X_MULTICAST_6_OFFSET	0x0026
80 #define KS884X_MULTICAST_7_OFFSET	0x0027
81 
82 /* Interrupt Registers */
83 
84 /* INTEN */
85 #define KS884X_INTERRUPTS_ENABLE	0x0028
86 /* INTST */
87 #define KS884X_INTERRUPTS_STATUS	0x002C
88 
89 #define KS884X_INT_RX_STOPPED		0x02000000
90 #define KS884X_INT_TX_STOPPED		0x04000000
91 #define KS884X_INT_RX_OVERRUN		0x08000000
92 #define KS884X_INT_TX_EMPTY		0x10000000
93 #define KS884X_INT_RX			0x20000000
94 #define KS884X_INT_TX			0x40000000
95 #define KS884X_INT_PHY			0x80000000
96 
97 #define KS884X_INT_RX_MASK		\
98 	(KS884X_INT_RX | KS884X_INT_RX_OVERRUN)
99 #define KS884X_INT_TX_MASK		\
100 	(KS884X_INT_TX | KS884X_INT_TX_EMPTY)
101 #define KS884X_INT_MASK	(KS884X_INT_RX | KS884X_INT_TX | KS884X_INT_PHY)
102 
103 /* MAC Additional Station Address */
104 
105 /* MAAL0 */
106 #define KS_ADD_ADDR_0_LO		0x0080
107 /* MAAH0 */
108 #define KS_ADD_ADDR_0_HI		0x0084
109 /* MAAL1 */
110 #define KS_ADD_ADDR_1_LO		0x0088
111 /* MAAH1 */
112 #define KS_ADD_ADDR_1_HI		0x008C
113 /* MAAL2 */
114 #define KS_ADD_ADDR_2_LO		0x0090
115 /* MAAH2 */
116 #define KS_ADD_ADDR_2_HI		0x0094
117 /* MAAL3 */
118 #define KS_ADD_ADDR_3_LO		0x0098
119 /* MAAH3 */
120 #define KS_ADD_ADDR_3_HI		0x009C
121 /* MAAL4 */
122 #define KS_ADD_ADDR_4_LO		0x00A0
123 /* MAAH4 */
124 #define KS_ADD_ADDR_4_HI		0x00A4
125 /* MAAL5 */
126 #define KS_ADD_ADDR_5_LO		0x00A8
127 /* MAAH5 */
128 #define KS_ADD_ADDR_5_HI		0x00AC
129 /* MAAL6 */
130 #define KS_ADD_ADDR_6_LO		0x00B0
131 /* MAAH6 */
132 #define KS_ADD_ADDR_6_HI		0x00B4
133 /* MAAL7 */
134 #define KS_ADD_ADDR_7_LO		0x00B8
135 /* MAAH7 */
136 #define KS_ADD_ADDR_7_HI		0x00BC
137 /* MAAL8 */
138 #define KS_ADD_ADDR_8_LO		0x00C0
139 /* MAAH8 */
140 #define KS_ADD_ADDR_8_HI		0x00C4
141 /* MAAL9 */
142 #define KS_ADD_ADDR_9_LO		0x00C8
143 /* MAAH9 */
144 #define KS_ADD_ADDR_9_HI		0x00CC
145 /* MAAL10 */
146 #define KS_ADD_ADDR_A_LO		0x00D0
147 /* MAAH10 */
148 #define KS_ADD_ADDR_A_HI		0x00D4
149 /* MAAL11 */
150 #define KS_ADD_ADDR_B_LO		0x00D8
151 /* MAAH11 */
152 #define KS_ADD_ADDR_B_HI		0x00DC
153 /* MAAL12 */
154 #define KS_ADD_ADDR_C_LO		0x00E0
155 /* MAAH12 */
156 #define KS_ADD_ADDR_C_HI		0x00E4
157 /* MAAL13 */
158 #define KS_ADD_ADDR_D_LO		0x00E8
159 /* MAAH13 */
160 #define KS_ADD_ADDR_D_HI		0x00EC
161 /* MAAL14 */
162 #define KS_ADD_ADDR_E_LO		0x00F0
163 /* MAAH14 */
164 #define KS_ADD_ADDR_E_HI		0x00F4
165 /* MAAL15 */
166 #define KS_ADD_ADDR_F_LO		0x00F8
167 /* MAAH15 */
168 #define KS_ADD_ADDR_F_HI		0x00FC
169 
170 #define ADD_ADDR_HI_MASK		0x0000FFFF
171 #define ADD_ADDR_ENABLE			0x80000000
172 #define ADD_ADDR_INCR			8
173 
174 /* Miscellaneous Registers */
175 
176 /* MARL */
177 #define KS884X_ADDR_0_OFFSET		0x0200
178 #define KS884X_ADDR_1_OFFSET		0x0201
179 /* MARM */
180 #define KS884X_ADDR_2_OFFSET		0x0202
181 #define KS884X_ADDR_3_OFFSET		0x0203
182 /* MARH */
183 #define KS884X_ADDR_4_OFFSET		0x0204
184 #define KS884X_ADDR_5_OFFSET		0x0205
185 
186 /* OBCR */
187 #define KS884X_BUS_CTRL_OFFSET		0x0210
188 
189 #define BUS_SPEED_125_MHZ		0x0000
190 #define BUS_SPEED_62_5_MHZ		0x0001
191 #define BUS_SPEED_41_66_MHZ		0x0002
192 #define BUS_SPEED_25_MHZ		0x0003
193 
194 /* EEPCR */
195 #define KS884X_EEPROM_CTRL_OFFSET	0x0212
196 
197 #define EEPROM_CHIP_SELECT		0x0001
198 #define EEPROM_SERIAL_CLOCK		0x0002
199 #define EEPROM_DATA_OUT			0x0004
200 #define EEPROM_DATA_IN			0x0008
201 #define EEPROM_ACCESS_ENABLE		0x0010
202 
203 /* MBIR */
204 #define KS884X_MEM_INFO_OFFSET		0x0214
205 
206 #define RX_MEM_TEST_FAILED		0x0008
207 #define RX_MEM_TEST_FINISHED		0x0010
208 #define TX_MEM_TEST_FAILED		0x0800
209 #define TX_MEM_TEST_FINISHED		0x1000
210 
211 /* GCR */
212 #define KS884X_GLOBAL_CTRL_OFFSET	0x0216
213 #define GLOBAL_SOFTWARE_RESET		0x0001
214 
215 #define KS8841_POWER_MANAGE_OFFSET	0x0218
216 
217 /* WFCR */
218 #define KS8841_WOL_CTRL_OFFSET		0x021A
219 #define KS8841_WOL_MAGIC_ENABLE		0x0080
220 #define KS8841_WOL_FRAME3_ENABLE	0x0008
221 #define KS8841_WOL_FRAME2_ENABLE	0x0004
222 #define KS8841_WOL_FRAME1_ENABLE	0x0002
223 #define KS8841_WOL_FRAME0_ENABLE	0x0001
224 
225 /* WF0 */
226 #define KS8841_WOL_FRAME_CRC_OFFSET	0x0220
227 #define KS8841_WOL_FRAME_BYTE0_OFFSET	0x0224
228 #define KS8841_WOL_FRAME_BYTE2_OFFSET	0x0228
229 
230 /* IACR */
231 #define KS884X_IACR_P			0x04A0
232 #define KS884X_IACR_OFFSET		KS884X_IACR_P
233 
234 /* IADR1 */
235 #define KS884X_IADR1_P			0x04A2
236 #define KS884X_IADR2_P			0x04A4
237 #define KS884X_IADR3_P			0x04A6
238 #define KS884X_IADR4_P			0x04A8
239 #define KS884X_IADR5_P			0x04AA
240 
241 #define KS884X_ACC_CTRL_SEL_OFFSET	KS884X_IACR_P
242 #define KS884X_ACC_CTRL_INDEX_OFFSET	(KS884X_ACC_CTRL_SEL_OFFSET + 1)
243 
244 #define KS884X_ACC_DATA_0_OFFSET	KS884X_IADR4_P
245 #define KS884X_ACC_DATA_1_OFFSET	(KS884X_ACC_DATA_0_OFFSET + 1)
246 #define KS884X_ACC_DATA_2_OFFSET	KS884X_IADR5_P
247 #define KS884X_ACC_DATA_3_OFFSET	(KS884X_ACC_DATA_2_OFFSET + 1)
248 #define KS884X_ACC_DATA_4_OFFSET	KS884X_IADR2_P
249 #define KS884X_ACC_DATA_5_OFFSET	(KS884X_ACC_DATA_4_OFFSET + 1)
250 #define KS884X_ACC_DATA_6_OFFSET	KS884X_IADR3_P
251 #define KS884X_ACC_DATA_7_OFFSET	(KS884X_ACC_DATA_6_OFFSET + 1)
252 #define KS884X_ACC_DATA_8_OFFSET	KS884X_IADR1_P
253 
254 /* P1MBCR */
255 #define KS884X_P1MBCR_P			0x04D0
256 #define KS884X_P1MBSR_P			0x04D2
257 #define KS884X_PHY1ILR_P		0x04D4
258 #define KS884X_PHY1IHR_P		0x04D6
259 #define KS884X_P1ANAR_P			0x04D8
260 #define KS884X_P1ANLPR_P		0x04DA
261 
262 /* P2MBCR */
263 #define KS884X_P2MBCR_P			0x04E0
264 #define KS884X_P2MBSR_P			0x04E2
265 #define KS884X_PHY2ILR_P		0x04E4
266 #define KS884X_PHY2IHR_P		0x04E6
267 #define KS884X_P2ANAR_P			0x04E8
268 #define KS884X_P2ANLPR_P		0x04EA
269 
270 #define KS884X_PHY_1_CTRL_OFFSET	KS884X_P1MBCR_P
271 #define PHY_CTRL_INTERVAL		(KS884X_P2MBCR_P - KS884X_P1MBCR_P)
272 
273 #define KS884X_PHY_CTRL_OFFSET		0x00
274 
275 #define KS884X_PHY_STATUS_OFFSET	0x02
276 
277 #define KS884X_PHY_ID_1_OFFSET		0x04
278 #define KS884X_PHY_ID_2_OFFSET		0x06
279 
280 #define KS884X_PHY_AUTO_NEG_OFFSET	0x08
281 
282 #define KS884X_PHY_REMOTE_CAP_OFFSET	0x0A
283 
284 /* P1VCT */
285 #define KS884X_P1VCT_P			0x04F0
286 #define KS884X_P1PHYCTRL_P		0x04F2
287 
288 /* P2VCT */
289 #define KS884X_P2VCT_P			0x04F4
290 #define KS884X_P2PHYCTRL_P		0x04F6
291 
292 #define KS884X_PHY_SPECIAL_OFFSET	KS884X_P1VCT_P
293 #define PHY_SPECIAL_INTERVAL		(KS884X_P2VCT_P - KS884X_P1VCT_P)
294 
295 #define KS884X_PHY_LINK_MD_OFFSET	0x00
296 
297 #define PHY_START_CABLE_DIAG		0x8000
298 #define PHY_CABLE_DIAG_RESULT		0x6000
299 #define PHY_CABLE_STAT_NORMAL		0x0000
300 #define PHY_CABLE_STAT_OPEN		0x2000
301 #define PHY_CABLE_STAT_SHORT		0x4000
302 #define PHY_CABLE_STAT_FAILED		0x6000
303 #define PHY_CABLE_10M_SHORT		0x1000
304 #define PHY_CABLE_FAULT_COUNTER		0x01FF
305 
306 #define KS884X_PHY_PHY_CTRL_OFFSET	0x02
307 
308 #define PHY_STAT_REVERSED_POLARITY	0x0020
309 #define PHY_STAT_MDIX			0x0010
310 #define PHY_FORCE_LINK			0x0008
311 #define PHY_POWER_SAVING_DISABLE	0x0004
312 #define PHY_REMOTE_LOOPBACK		0x0002
313 
314 /* SIDER */
315 #define KS884X_SIDER_P			0x0400
316 #define KS884X_CHIP_ID_OFFSET		KS884X_SIDER_P
317 #define KS884X_FAMILY_ID_OFFSET		(KS884X_CHIP_ID_OFFSET + 1)
318 
319 #define REG_FAMILY_ID			0x88
320 
321 #define REG_CHIP_ID_41			0x8810
322 #define REG_CHIP_ID_42			0x8800
323 
324 #define KS884X_CHIP_ID_MASK_41		0xFF10
325 #define KS884X_CHIP_ID_MASK		0xFFF0
326 #define KS884X_CHIP_ID_SHIFT		4
327 #define KS884X_REVISION_MASK		0x000E
328 #define KS884X_REVISION_SHIFT		1
329 #define KS8842_START			0x0001
330 
331 #define CHIP_IP_41_M			0x8810
332 #define CHIP_IP_42_M			0x8800
333 #define CHIP_IP_61_M			0x8890
334 #define CHIP_IP_62_M			0x8880
335 
336 #define CHIP_IP_41_P			0x8850
337 #define CHIP_IP_42_P			0x8840
338 #define CHIP_IP_61_P			0x88D0
339 #define CHIP_IP_62_P			0x88C0
340 
341 /* SGCR1 */
342 #define KS8842_SGCR1_P			0x0402
343 #define KS8842_SWITCH_CTRL_1_OFFSET	KS8842_SGCR1_P
344 
345 #define SWITCH_PASS_ALL			0x8000
346 #define SWITCH_TX_FLOW_CTRL		0x2000
347 #define SWITCH_RX_FLOW_CTRL		0x1000
348 #define SWITCH_CHECK_LENGTH		0x0800
349 #define SWITCH_AGING_ENABLE		0x0400
350 #define SWITCH_FAST_AGING		0x0200
351 #define SWITCH_AGGR_BACKOFF		0x0100
352 #define SWITCH_PASS_PAUSE		0x0008
353 #define SWITCH_LINK_AUTO_AGING		0x0001
354 
355 /* SGCR2 */
356 #define KS8842_SGCR2_P			0x0404
357 #define KS8842_SWITCH_CTRL_2_OFFSET	KS8842_SGCR2_P
358 
359 #define SWITCH_VLAN_ENABLE		0x8000
360 #define SWITCH_IGMP_SNOOP		0x4000
361 #define IPV6_MLD_SNOOP_ENABLE		0x2000
362 #define IPV6_MLD_SNOOP_OPTION		0x1000
363 #define PRIORITY_SCHEME_SELECT		0x0800
364 #define SWITCH_MIRROR_RX_TX		0x0100
365 #define UNICAST_VLAN_BOUNDARY		0x0080
366 #define MULTICAST_STORM_DISABLE		0x0040
367 #define SWITCH_BACK_PRESSURE		0x0020
368 #define FAIR_FLOW_CTRL			0x0010
369 #define NO_EXC_COLLISION_DROP		0x0008
370 #define SWITCH_HUGE_PACKET		0x0004
371 #define SWITCH_LEGAL_PACKET		0x0002
372 #define SWITCH_BUF_RESERVE		0x0001
373 
374 /* SGCR3 */
375 #define KS8842_SGCR3_P			0x0406
376 #define KS8842_SWITCH_CTRL_3_OFFSET	KS8842_SGCR3_P
377 
378 #define BROADCAST_STORM_RATE_LO		0xFF00
379 #define SWITCH_REPEATER			0x0080
380 #define SWITCH_HALF_DUPLEX		0x0040
381 #define SWITCH_FLOW_CTRL		0x0020
382 #define SWITCH_10_MBIT			0x0010
383 #define SWITCH_REPLACE_NULL_VID		0x0008
384 #define BROADCAST_STORM_RATE_HI		0x0007
385 
386 #define BROADCAST_STORM_RATE		0x07FF
387 
388 /* SGCR4 */
389 #define KS8842_SGCR4_P			0x0408
390 
391 /* SGCR5 */
392 #define KS8842_SGCR5_P			0x040A
393 #define KS8842_SWITCH_CTRL_5_OFFSET	KS8842_SGCR5_P
394 
395 #define LED_MODE			0x8200
396 #define LED_SPEED_DUPLEX_ACT		0x0000
397 #define LED_SPEED_DUPLEX_LINK_ACT	0x8000
398 #define LED_DUPLEX_10_100		0x0200
399 
400 /* SGCR6 */
401 #define KS8842_SGCR6_P			0x0410
402 #define KS8842_SWITCH_CTRL_6_OFFSET	KS8842_SGCR6_P
403 
404 #define KS8842_PRIORITY_MASK		3
405 #define KS8842_PRIORITY_SHIFT		2
406 
407 /* SGCR7 */
408 #define KS8842_SGCR7_P			0x0412
409 #define KS8842_SWITCH_CTRL_7_OFFSET	KS8842_SGCR7_P
410 
411 #define SWITCH_UNK_DEF_PORT_ENABLE	0x0008
412 #define SWITCH_UNK_DEF_PORT_3		0x0004
413 #define SWITCH_UNK_DEF_PORT_2		0x0002
414 #define SWITCH_UNK_DEF_PORT_1		0x0001
415 
416 /* MACAR1 */
417 #define KS8842_MACAR1_P			0x0470
418 #define KS8842_MACAR2_P			0x0472
419 #define KS8842_MACAR3_P			0x0474
420 #define KS8842_MAC_ADDR_1_OFFSET	KS8842_MACAR1_P
421 #define KS8842_MAC_ADDR_0_OFFSET	(KS8842_MAC_ADDR_1_OFFSET + 1)
422 #define KS8842_MAC_ADDR_3_OFFSET	KS8842_MACAR2_P
423 #define KS8842_MAC_ADDR_2_OFFSET	(KS8842_MAC_ADDR_3_OFFSET + 1)
424 #define KS8842_MAC_ADDR_5_OFFSET	KS8842_MACAR3_P
425 #define KS8842_MAC_ADDR_4_OFFSET	(KS8842_MAC_ADDR_5_OFFSET + 1)
426 
427 /* TOSR1 */
428 #define KS8842_TOSR1_P			0x0480
429 #define KS8842_TOSR2_P			0x0482
430 #define KS8842_TOSR3_P			0x0484
431 #define KS8842_TOSR4_P			0x0486
432 #define KS8842_TOSR5_P			0x0488
433 #define KS8842_TOSR6_P			0x048A
434 #define KS8842_TOSR7_P			0x0490
435 #define KS8842_TOSR8_P			0x0492
436 #define KS8842_TOS_1_OFFSET		KS8842_TOSR1_P
437 #define KS8842_TOS_2_OFFSET		KS8842_TOSR2_P
438 #define KS8842_TOS_3_OFFSET		KS8842_TOSR3_P
439 #define KS8842_TOS_4_OFFSET		KS8842_TOSR4_P
440 #define KS8842_TOS_5_OFFSET		KS8842_TOSR5_P
441 #define KS8842_TOS_6_OFFSET		KS8842_TOSR6_P
442 
443 #define KS8842_TOS_7_OFFSET		KS8842_TOSR7_P
444 #define KS8842_TOS_8_OFFSET		KS8842_TOSR8_P
445 
446 /* P1CR1 */
447 #define KS8842_P1CR1_P			0x0500
448 #define KS8842_P1CR2_P			0x0502
449 #define KS8842_P1VIDR_P			0x0504
450 #define KS8842_P1CR3_P			0x0506
451 #define KS8842_P1IRCR_P			0x0508
452 #define KS8842_P1ERCR_P			0x050A
453 #define KS884X_P1SCSLMD_P		0x0510
454 #define KS884X_P1CR4_P			0x0512
455 #define KS884X_P1SR_P			0x0514
456 
457 /* P2CR1 */
458 #define KS8842_P2CR1_P			0x0520
459 #define KS8842_P2CR2_P			0x0522
460 #define KS8842_P2VIDR_P			0x0524
461 #define KS8842_P2CR3_P			0x0526
462 #define KS8842_P2IRCR_P			0x0528
463 #define KS8842_P2ERCR_P			0x052A
464 #define KS884X_P2SCSLMD_P		0x0530
465 #define KS884X_P2CR4_P			0x0532
466 #define KS884X_P2SR_P			0x0534
467 
468 /* P3CR1 */
469 #define KS8842_P3CR1_P			0x0540
470 #define KS8842_P3CR2_P			0x0542
471 #define KS8842_P3VIDR_P			0x0544
472 #define KS8842_P3CR3_P			0x0546
473 #define KS8842_P3IRCR_P			0x0548
474 #define KS8842_P3ERCR_P			0x054A
475 
476 #define KS8842_PORT_1_CTRL_1		KS8842_P1CR1_P
477 #define KS8842_PORT_2_CTRL_1		KS8842_P2CR1_P
478 #define KS8842_PORT_3_CTRL_1		KS8842_P3CR1_P
479 
480 #define PORT_CTRL_ADDR(port, addr)		\
481 	(addr = KS8842_PORT_1_CTRL_1 + (port) *	\
482 		(KS8842_PORT_2_CTRL_1 - KS8842_PORT_1_CTRL_1))
483 
484 #define KS8842_PORT_CTRL_1_OFFSET	0x00
485 
486 #define PORT_BROADCAST_STORM		0x0080
487 #define PORT_DIFFSERV_ENABLE		0x0040
488 #define PORT_802_1P_ENABLE		0x0020
489 #define PORT_BASED_PRIORITY_MASK	0x0018
490 #define PORT_BASED_PRIORITY_BASE	0x0003
491 #define PORT_BASED_PRIORITY_SHIFT	3
492 #define PORT_BASED_PRIORITY_0		0x0000
493 #define PORT_BASED_PRIORITY_1		0x0008
494 #define PORT_BASED_PRIORITY_2		0x0010
495 #define PORT_BASED_PRIORITY_3		0x0018
496 #define PORT_INSERT_TAG			0x0004
497 #define PORT_REMOVE_TAG			0x0002
498 #define PORT_PRIO_QUEUE_ENABLE		0x0001
499 
500 #define KS8842_PORT_CTRL_2_OFFSET	0x02
501 
502 #define PORT_INGRESS_VLAN_FILTER	0x4000
503 #define PORT_DISCARD_NON_VID		0x2000
504 #define PORT_FORCE_FLOW_CTRL		0x1000
505 #define PORT_BACK_PRESSURE		0x0800
506 #define PORT_TX_ENABLE			0x0400
507 #define PORT_RX_ENABLE			0x0200
508 #define PORT_LEARN_DISABLE		0x0100
509 #define PORT_MIRROR_SNIFFER		0x0080
510 #define PORT_MIRROR_RX			0x0040
511 #define PORT_MIRROR_TX			0x0020
512 #define PORT_USER_PRIORITY_CEILING	0x0008
513 #define PORT_VLAN_MEMBERSHIP		0x0007
514 
515 #define KS8842_PORT_CTRL_VID_OFFSET	0x04
516 
517 #define PORT_DEFAULT_VID		0x0001
518 
519 #define KS8842_PORT_CTRL_3_OFFSET	0x06
520 
521 #define PORT_INGRESS_LIMIT_MODE		0x000C
522 #define PORT_INGRESS_ALL		0x0000
523 #define PORT_INGRESS_UNICAST		0x0004
524 #define PORT_INGRESS_MULTICAST		0x0008
525 #define PORT_INGRESS_BROADCAST		0x000C
526 #define PORT_COUNT_IFG			0x0002
527 #define PORT_COUNT_PREAMBLE		0x0001
528 
529 #define KS8842_PORT_IN_RATE_OFFSET	0x08
530 #define KS8842_PORT_OUT_RATE_OFFSET	0x0A
531 
532 #define PORT_PRIORITY_RATE		0x0F
533 #define PORT_PRIORITY_RATE_SHIFT	4
534 
535 #define KS884X_PORT_LINK_MD		0x10
536 
537 #define PORT_CABLE_10M_SHORT		0x8000
538 #define PORT_CABLE_DIAG_RESULT		0x6000
539 #define PORT_CABLE_STAT_NORMAL		0x0000
540 #define PORT_CABLE_STAT_OPEN		0x2000
541 #define PORT_CABLE_STAT_SHORT		0x4000
542 #define PORT_CABLE_STAT_FAILED		0x6000
543 #define PORT_START_CABLE_DIAG		0x1000
544 #define PORT_FORCE_LINK			0x0800
545 #define PORT_POWER_SAVING_DISABLE	0x0400
546 #define PORT_PHY_REMOTE_LOOPBACK	0x0200
547 #define PORT_CABLE_FAULT_COUNTER	0x01FF
548 
549 #define KS884X_PORT_CTRL_4_OFFSET	0x12
550 
551 #define PORT_LED_OFF			0x8000
552 #define PORT_TX_DISABLE			0x4000
553 #define PORT_AUTO_NEG_RESTART		0x2000
554 #define PORT_REMOTE_FAULT_DISABLE	0x1000
555 #define PORT_POWER_DOWN			0x0800
556 #define PORT_AUTO_MDIX_DISABLE		0x0400
557 #define PORT_FORCE_MDIX			0x0200
558 #define PORT_LOOPBACK			0x0100
559 #define PORT_AUTO_NEG_ENABLE		0x0080
560 #define PORT_FORCE_100_MBIT		0x0040
561 #define PORT_FORCE_FULL_DUPLEX		0x0020
562 #define PORT_AUTO_NEG_SYM_PAUSE		0x0010
563 #define PORT_AUTO_NEG_100BTX_FD		0x0008
564 #define PORT_AUTO_NEG_100BTX		0x0004
565 #define PORT_AUTO_NEG_10BT_FD		0x0002
566 #define PORT_AUTO_NEG_10BT		0x0001
567 
568 #define KS884X_PORT_STATUS_OFFSET	0x14
569 
570 #define PORT_HP_MDIX			0x8000
571 #define PORT_REVERSED_POLARITY		0x2000
572 #define PORT_RX_FLOW_CTRL		0x0800
573 #define PORT_TX_FLOW_CTRL		0x1000
574 #define PORT_STATUS_SPEED_100MBIT	0x0400
575 #define PORT_STATUS_FULL_DUPLEX		0x0200
576 #define PORT_REMOTE_FAULT		0x0100
577 #define PORT_MDIX_STATUS		0x0080
578 #define PORT_AUTO_NEG_COMPLETE		0x0040
579 #define PORT_STATUS_LINK_GOOD		0x0020
580 #define PORT_REMOTE_SYM_PAUSE		0x0010
581 #define PORT_REMOTE_100BTX_FD		0x0008
582 #define PORT_REMOTE_100BTX		0x0004
583 #define PORT_REMOTE_10BT_FD		0x0002
584 #define PORT_REMOTE_10BT		0x0001
585 
586 /*
587 #define STATIC_MAC_TABLE_ADDR		00-0000FFFF-FFFFFFFF
588 #define STATIC_MAC_TABLE_FWD_PORTS	00-00070000-00000000
589 #define STATIC_MAC_TABLE_VALID		00-00080000-00000000
590 #define STATIC_MAC_TABLE_OVERRIDE	00-00100000-00000000
591 #define STATIC_MAC_TABLE_USE_FID	00-00200000-00000000
592 #define STATIC_MAC_TABLE_FID		00-03C00000-00000000
593 */
594 
595 #define STATIC_MAC_TABLE_ADDR		0x0000FFFF
596 #define STATIC_MAC_TABLE_FWD_PORTS	0x00070000
597 #define STATIC_MAC_TABLE_VALID		0x00080000
598 #define STATIC_MAC_TABLE_OVERRIDE	0x00100000
599 #define STATIC_MAC_TABLE_USE_FID	0x00200000
600 #define STATIC_MAC_TABLE_FID		0x03C00000
601 
602 #define STATIC_MAC_FWD_PORTS_SHIFT	16
603 #define STATIC_MAC_FID_SHIFT		22
604 
605 /*
606 #define VLAN_TABLE_VID			00-00000000-00000FFF
607 #define VLAN_TABLE_FID			00-00000000-0000F000
608 #define VLAN_TABLE_MEMBERSHIP		00-00000000-00070000
609 #define VLAN_TABLE_VALID		00-00000000-00080000
610 */
611 
612 #define VLAN_TABLE_VID			0x00000FFF
613 #define VLAN_TABLE_FID			0x0000F000
614 #define VLAN_TABLE_MEMBERSHIP		0x00070000
615 #define VLAN_TABLE_VALID		0x00080000
616 
617 #define VLAN_TABLE_FID_SHIFT		12
618 #define VLAN_TABLE_MEMBERSHIP_SHIFT	16
619 
620 /*
621 #define DYNAMIC_MAC_TABLE_ADDR		00-0000FFFF-FFFFFFFF
622 #define DYNAMIC_MAC_TABLE_FID		00-000F0000-00000000
623 #define DYNAMIC_MAC_TABLE_SRC_PORT	00-00300000-00000000
624 #define DYNAMIC_MAC_TABLE_TIMESTAMP	00-00C00000-00000000
625 #define DYNAMIC_MAC_TABLE_ENTRIES	03-FF000000-00000000
626 #define DYNAMIC_MAC_TABLE_MAC_EMPTY	04-00000000-00000000
627 #define DYNAMIC_MAC_TABLE_RESERVED	78-00000000-00000000
628 #define DYNAMIC_MAC_TABLE_NOT_READY	80-00000000-00000000
629 */
630 
631 #define DYNAMIC_MAC_TABLE_ADDR		0x0000FFFF
632 #define DYNAMIC_MAC_TABLE_FID		0x000F0000
633 #define DYNAMIC_MAC_TABLE_SRC_PORT	0x00300000
634 #define DYNAMIC_MAC_TABLE_TIMESTAMP	0x00C00000
635 #define DYNAMIC_MAC_TABLE_ENTRIES	0xFF000000
636 
637 #define DYNAMIC_MAC_TABLE_ENTRIES_H	0x03
638 #define DYNAMIC_MAC_TABLE_MAC_EMPTY	0x04
639 #define DYNAMIC_MAC_TABLE_RESERVED	0x78
640 #define DYNAMIC_MAC_TABLE_NOT_READY	0x80
641 
642 #define DYNAMIC_MAC_FID_SHIFT		16
643 #define DYNAMIC_MAC_SRC_PORT_SHIFT	20
644 #define DYNAMIC_MAC_TIMESTAMP_SHIFT	22
645 #define DYNAMIC_MAC_ENTRIES_SHIFT	24
646 #define DYNAMIC_MAC_ENTRIES_H_SHIFT	8
647 
648 /*
649 #define MIB_COUNTER_VALUE		00-00000000-3FFFFFFF
650 #define MIB_COUNTER_VALID		00-00000000-40000000
651 #define MIB_COUNTER_OVERFLOW		00-00000000-80000000
652 */
653 
654 #define MIB_COUNTER_VALUE		0x3FFFFFFF
655 #define MIB_COUNTER_VALID		0x40000000
656 #define MIB_COUNTER_OVERFLOW		0x80000000
657 
658 #define MIB_PACKET_DROPPED		0x0000FFFF
659 
660 #define KS_MIB_PACKET_DROPPED_TX_0	0x100
661 #define KS_MIB_PACKET_DROPPED_TX_1	0x101
662 #define KS_MIB_PACKET_DROPPED_TX	0x102
663 #define KS_MIB_PACKET_DROPPED_RX_0	0x103
664 #define KS_MIB_PACKET_DROPPED_RX_1	0x104
665 #define KS_MIB_PACKET_DROPPED_RX	0x105
666 
667 /* Change default LED mode. */
668 #define SET_DEFAULT_LED			LED_SPEED_DUPLEX_ACT
669 
670 #define MAC_ADDR_ORDER(i)		(ETH_ALEN - 1 - (i))
671 
672 #define MAX_ETHERNET_BODY_SIZE		1500
673 #define ETHERNET_HEADER_SIZE		(14 + VLAN_HLEN)
674 
675 #define MAX_ETHERNET_PACKET_SIZE	\
676 	(MAX_ETHERNET_BODY_SIZE + ETHERNET_HEADER_SIZE)
677 
678 #define REGULAR_RX_BUF_SIZE		(MAX_ETHERNET_PACKET_SIZE + 4)
679 #define MAX_RX_BUF_SIZE			(1912 + 4)
680 
681 #define ADDITIONAL_ENTRIES		16
682 #define MAX_MULTICAST_LIST		32
683 
684 #define HW_MULTICAST_SIZE		8
685 
686 #define HW_TO_DEV_PORT(port)		(port - 1)
687 
688 enum {
689 	media_connected,
690 	media_disconnected
691 };
692 
693 enum {
694 	OID_COUNTER_UNKOWN,
695 
696 	OID_COUNTER_FIRST,
697 
698 	/* total transmit errors */
699 	OID_COUNTER_XMIT_ERROR,
700 
701 	/* total receive errors */
702 	OID_COUNTER_RCV_ERROR,
703 
704 	OID_COUNTER_LAST
705 };
706 
707 /*
708  * Hardware descriptor definitions
709  */
710 
711 #define DESC_ALIGNMENT			16
712 #define BUFFER_ALIGNMENT		8
713 
714 #define NUM_OF_RX_DESC			64
715 #define NUM_OF_TX_DESC			64
716 
717 #define KS_DESC_RX_FRAME_LEN		0x000007FF
718 #define KS_DESC_RX_FRAME_TYPE		0x00008000
719 #define KS_DESC_RX_ERROR_CRC		0x00010000
720 #define KS_DESC_RX_ERROR_RUNT		0x00020000
721 #define KS_DESC_RX_ERROR_TOO_LONG	0x00040000
722 #define KS_DESC_RX_ERROR_PHY		0x00080000
723 #define KS884X_DESC_RX_PORT_MASK	0x00300000
724 #define KS_DESC_RX_MULTICAST		0x01000000
725 #define KS_DESC_RX_ERROR		0x02000000
726 #define KS_DESC_RX_ERROR_CSUM_UDP	0x04000000
727 #define KS_DESC_RX_ERROR_CSUM_TCP	0x08000000
728 #define KS_DESC_RX_ERROR_CSUM_IP	0x10000000
729 #define KS_DESC_RX_LAST			0x20000000
730 #define KS_DESC_RX_FIRST		0x40000000
731 #define KS_DESC_RX_ERROR_COND		\
732 	(KS_DESC_RX_ERROR_CRC |		\
733 	KS_DESC_RX_ERROR_RUNT |		\
734 	KS_DESC_RX_ERROR_PHY |		\
735 	KS_DESC_RX_ERROR_TOO_LONG)
736 
737 #define KS_DESC_HW_OWNED		0x80000000
738 
739 #define KS_DESC_BUF_SIZE		0x000007FF
740 #define KS884X_DESC_TX_PORT_MASK	0x00300000
741 #define KS_DESC_END_OF_RING		0x02000000
742 #define KS_DESC_TX_CSUM_GEN_UDP		0x04000000
743 #define KS_DESC_TX_CSUM_GEN_TCP		0x08000000
744 #define KS_DESC_TX_CSUM_GEN_IP		0x10000000
745 #define KS_DESC_TX_LAST			0x20000000
746 #define KS_DESC_TX_FIRST		0x40000000
747 #define KS_DESC_TX_INTERRUPT		0x80000000
748 
749 #define KS_DESC_PORT_SHIFT		20
750 
751 #define KS_DESC_RX_MASK			(KS_DESC_BUF_SIZE)
752 
753 #define KS_DESC_TX_MASK			\
754 	(KS_DESC_TX_INTERRUPT |		\
755 	KS_DESC_TX_FIRST |		\
756 	KS_DESC_TX_LAST |		\
757 	KS_DESC_TX_CSUM_GEN_IP |	\
758 	KS_DESC_TX_CSUM_GEN_TCP |	\
759 	KS_DESC_TX_CSUM_GEN_UDP |	\
760 	KS_DESC_BUF_SIZE)
761 
762 struct ksz_desc_rx_stat {
763 #ifdef __BIG_ENDIAN_BITFIELD
764 	u32 hw_owned:1;
765 	u32 first_desc:1;
766 	u32 last_desc:1;
767 	u32 csum_err_ip:1;
768 	u32 csum_err_tcp:1;
769 	u32 csum_err_udp:1;
770 	u32 error:1;
771 	u32 multicast:1;
772 	u32 src_port:4;
773 	u32 err_phy:1;
774 	u32 err_too_long:1;
775 	u32 err_runt:1;
776 	u32 err_crc:1;
777 	u32 frame_type:1;
778 	u32 reserved1:4;
779 	u32 frame_len:11;
780 #else
781 	u32 frame_len:11;
782 	u32 reserved1:4;
783 	u32 frame_type:1;
784 	u32 err_crc:1;
785 	u32 err_runt:1;
786 	u32 err_too_long:1;
787 	u32 err_phy:1;
788 	u32 src_port:4;
789 	u32 multicast:1;
790 	u32 error:1;
791 	u32 csum_err_udp:1;
792 	u32 csum_err_tcp:1;
793 	u32 csum_err_ip:1;
794 	u32 last_desc:1;
795 	u32 first_desc:1;
796 	u32 hw_owned:1;
797 #endif
798 };
799 
800 struct ksz_desc_tx_stat {
801 #ifdef __BIG_ENDIAN_BITFIELD
802 	u32 hw_owned:1;
803 	u32 reserved1:31;
804 #else
805 	u32 reserved1:31;
806 	u32 hw_owned:1;
807 #endif
808 };
809 
810 struct ksz_desc_rx_buf {
811 #ifdef __BIG_ENDIAN_BITFIELD
812 	u32 reserved4:6;
813 	u32 end_of_ring:1;
814 	u32 reserved3:14;
815 	u32 buf_size:11;
816 #else
817 	u32 buf_size:11;
818 	u32 reserved3:14;
819 	u32 end_of_ring:1;
820 	u32 reserved4:6;
821 #endif
822 };
823 
824 struct ksz_desc_tx_buf {
825 #ifdef __BIG_ENDIAN_BITFIELD
826 	u32 intr:1;
827 	u32 first_seg:1;
828 	u32 last_seg:1;
829 	u32 csum_gen_ip:1;
830 	u32 csum_gen_tcp:1;
831 	u32 csum_gen_udp:1;
832 	u32 end_of_ring:1;
833 	u32 reserved4:1;
834 	u32 dest_port:4;
835 	u32 reserved3:9;
836 	u32 buf_size:11;
837 #else
838 	u32 buf_size:11;
839 	u32 reserved3:9;
840 	u32 dest_port:4;
841 	u32 reserved4:1;
842 	u32 end_of_ring:1;
843 	u32 csum_gen_udp:1;
844 	u32 csum_gen_tcp:1;
845 	u32 csum_gen_ip:1;
846 	u32 last_seg:1;
847 	u32 first_seg:1;
848 	u32 intr:1;
849 #endif
850 };
851 
852 union desc_stat {
853 	struct ksz_desc_rx_stat rx;
854 	struct ksz_desc_tx_stat tx;
855 	u32 data;
856 };
857 
858 union desc_buf {
859 	struct ksz_desc_rx_buf rx;
860 	struct ksz_desc_tx_buf tx;
861 	u32 data;
862 };
863 
864 /**
865  * struct ksz_hw_desc - Hardware descriptor data structure
866  * @ctrl:	Descriptor control value.
867  * @buf:	Descriptor buffer value.
868  * @addr:	Physical address of memory buffer.
869  * @next:	Pointer to next hardware descriptor.
870  */
871 struct ksz_hw_desc {
872 	union desc_stat ctrl;
873 	union desc_buf buf;
874 	u32 addr;
875 	u32 next;
876 };
877 
878 /**
879  * struct ksz_sw_desc - Software descriptor data structure
880  * @ctrl:	Descriptor control value.
881  * @buf:	Descriptor buffer value.
882  * @buf_size:	Current buffers size value in hardware descriptor.
883  */
884 struct ksz_sw_desc {
885 	union desc_stat ctrl;
886 	union desc_buf buf;
887 	u32 buf_size;
888 };
889 
890 /**
891  * struct ksz_dma_buf - OS dependent DMA buffer data structure
892  * @skb:	Associated socket buffer.
893  * @dma:	Associated physical DMA address.
894  * @len:	Actual len used.
895  */
896 struct ksz_dma_buf {
897 	struct sk_buff *skb;
898 	dma_addr_t dma;
899 	int len;
900 };
901 
902 /**
903  * struct ksz_desc - Descriptor structure
904  * @phw:	Hardware descriptor pointer to uncached physical memory.
905  * @sw:		Cached memory to hold hardware descriptor values for
906  * 		manipulation.
907  * @dma_buf:	Operating system dependent data structure to hold physical
908  * 		memory buffer allocation information.
909  */
910 struct ksz_desc {
911 	struct ksz_hw_desc *phw;
912 	struct ksz_sw_desc sw;
913 	struct ksz_dma_buf dma_buf;
914 };
915 
916 #define DMA_BUFFER(desc)  ((struct ksz_dma_buf *)(&(desc)->dma_buf))
917 
918 /**
919  * struct ksz_desc_info - Descriptor information data structure
920  * @ring:	First descriptor in the ring.
921  * @cur:	Current descriptor being manipulated.
922  * @ring_virt:	First hardware descriptor in the ring.
923  * @ring_phys:	The physical address of the first descriptor of the ring.
924  * @size:	Size of hardware descriptor.
925  * @alloc:	Number of descriptors allocated.
926  * @avail:	Number of descriptors available for use.
927  * @last:	Index for last descriptor released to hardware.
928  * @next:	Index for next descriptor available for use.
929  * @mask:	Mask for index wrapping.
930  */
931 struct ksz_desc_info {
932 	struct ksz_desc *ring;
933 	struct ksz_desc *cur;
934 	struct ksz_hw_desc *ring_virt;
935 	u32 ring_phys;
936 	int size;
937 	int alloc;
938 	int avail;
939 	int last;
940 	int next;
941 	int mask;
942 };
943 
944 /*
945  * KSZ8842 switch definitions
946  */
947 
948 enum {
949 	TABLE_STATIC_MAC = 0,
950 	TABLE_VLAN,
951 	TABLE_DYNAMIC_MAC,
952 	TABLE_MIB
953 };
954 
955 #define LEARNED_MAC_TABLE_ENTRIES	1024
956 #define STATIC_MAC_TABLE_ENTRIES	8
957 
958 /**
959  * struct ksz_mac_table - Static MAC table data structure
960  * @mac_addr:	MAC address to filter.
961  * @vid:	VID value.
962  * @fid:	FID value.
963  * @ports:	Port membership.
964  * @override:	Override setting.
965  * @use_fid:	FID use setting.
966  * @valid:	Valid setting indicating the entry is being used.
967  */
968 struct ksz_mac_table {
969 	u8 mac_addr[ETH_ALEN];
970 	u16 vid;
971 	u8 fid;
972 	u8 ports;
973 	u8 override:1;
974 	u8 use_fid:1;
975 	u8 valid:1;
976 };
977 
978 #define VLAN_TABLE_ENTRIES		16
979 
980 /**
981  * struct ksz_vlan_table - VLAN table data structure
982  * @vid:	VID value.
983  * @fid:	FID value.
984  * @member:	Port membership.
985  */
986 struct ksz_vlan_table {
987 	u16 vid;
988 	u8 fid;
989 	u8 member;
990 };
991 
992 #define DIFFSERV_ENTRIES		64
993 #define PRIO_802_1P_ENTRIES		8
994 #define PRIO_QUEUES			4
995 
996 #define SWITCH_PORT_NUM			2
997 #define TOTAL_PORT_NUM			(SWITCH_PORT_NUM + 1)
998 #define HOST_MASK			(1 << SWITCH_PORT_NUM)
999 #define PORT_MASK			7
1000 
1001 #define MAIN_PORT			0
1002 #define OTHER_PORT			1
1003 #define HOST_PORT			SWITCH_PORT_NUM
1004 
1005 #define PORT_COUNTER_NUM		0x20
1006 #define TOTAL_PORT_COUNTER_NUM		(PORT_COUNTER_NUM + 2)
1007 
1008 #define MIB_COUNTER_RX_LO_PRIORITY	0x00
1009 #define MIB_COUNTER_RX_HI_PRIORITY	0x01
1010 #define MIB_COUNTER_RX_UNDERSIZE	0x02
1011 #define MIB_COUNTER_RX_FRAGMENT		0x03
1012 #define MIB_COUNTER_RX_OVERSIZE		0x04
1013 #define MIB_COUNTER_RX_JABBER		0x05
1014 #define MIB_COUNTER_RX_SYMBOL_ERR	0x06
1015 #define MIB_COUNTER_RX_CRC_ERR		0x07
1016 #define MIB_COUNTER_RX_ALIGNMENT_ERR	0x08
1017 #define MIB_COUNTER_RX_CTRL_8808	0x09
1018 #define MIB_COUNTER_RX_PAUSE		0x0A
1019 #define MIB_COUNTER_RX_BROADCAST	0x0B
1020 #define MIB_COUNTER_RX_MULTICAST	0x0C
1021 #define MIB_COUNTER_RX_UNICAST		0x0D
1022 #define MIB_COUNTER_RX_OCTET_64		0x0E
1023 #define MIB_COUNTER_RX_OCTET_65_127	0x0F
1024 #define MIB_COUNTER_RX_OCTET_128_255	0x10
1025 #define MIB_COUNTER_RX_OCTET_256_511	0x11
1026 #define MIB_COUNTER_RX_OCTET_512_1023	0x12
1027 #define MIB_COUNTER_RX_OCTET_1024_1522	0x13
1028 #define MIB_COUNTER_TX_LO_PRIORITY	0x14
1029 #define MIB_COUNTER_TX_HI_PRIORITY	0x15
1030 #define MIB_COUNTER_TX_LATE_COLLISION	0x16
1031 #define MIB_COUNTER_TX_PAUSE		0x17
1032 #define MIB_COUNTER_TX_BROADCAST	0x18
1033 #define MIB_COUNTER_TX_MULTICAST	0x19
1034 #define MIB_COUNTER_TX_UNICAST		0x1A
1035 #define MIB_COUNTER_TX_DEFERRED		0x1B
1036 #define MIB_COUNTER_TX_TOTAL_COLLISION	0x1C
1037 #define MIB_COUNTER_TX_EXCESS_COLLISION	0x1D
1038 #define MIB_COUNTER_TX_SINGLE_COLLISION	0x1E
1039 #define MIB_COUNTER_TX_MULTI_COLLISION	0x1F
1040 
1041 #define MIB_COUNTER_RX_DROPPED_PACKET	0x20
1042 #define MIB_COUNTER_TX_DROPPED_PACKET	0x21
1043 
1044 /**
1045  * struct ksz_port_mib - Port MIB data structure
1046  * @cnt_ptr:	Current pointer to MIB counter index.
1047  * @link_down:	Indication the link has just gone down.
1048  * @state:	Connection status of the port.
1049  * @mib_start:	The starting counter index.  Some ports do not start at 0.
1050  * @counter:	64-bit MIB counter value.
1051  * @dropped:	Temporary buffer to remember last read packet dropped values.
1052  *
1053  * MIB counters needs to be read periodically so that counters do not get
1054  * overflowed and give incorrect values.  A right balance is needed to
1055  * satisfy this condition and not waste too much CPU time.
1056  *
1057  * It is pointless to read MIB counters when the port is disconnected.  The
1058  * @state provides the connection status so that MIB counters are read only
1059  * when the port is connected.  The @link_down indicates the port is just
1060  * disconnected so that all MIB counters are read one last time to update the
1061  * information.
1062  */
1063 struct ksz_port_mib {
1064 	u8 cnt_ptr;
1065 	u8 link_down;
1066 	u8 state;
1067 	u8 mib_start;
1068 
1069 	u64 counter[TOTAL_PORT_COUNTER_NUM];
1070 	u32 dropped[2];
1071 };
1072 
1073 /**
1074  * struct ksz_port_cfg - Port configuration data structure
1075  * @vid:	VID value.
1076  * @member:	Port membership.
1077  * @port_prio:	Port priority.
1078  * @rx_rate:	Receive priority rate.
1079  * @tx_rate:	Transmit priority rate.
1080  * @stp_state:	Current Spanning Tree Protocol state.
1081  */
1082 struct ksz_port_cfg {
1083 	u16 vid;
1084 	u8 member;
1085 	u8 port_prio;
1086 	u32 rx_rate[PRIO_QUEUES];
1087 	u32 tx_rate[PRIO_QUEUES];
1088 	int stp_state;
1089 };
1090 
1091 /**
1092  * struct ksz_switch - KSZ8842 switch data structure
1093  * @mac_table:	MAC table entries information.
1094  * @vlan_table:	VLAN table entries information.
1095  * @port_cfg:	Port configuration information.
1096  * @diffserv:	DiffServ priority settings.  Possible values from 6-bit of ToS
1097  * 		(bit7 ~ bit2) field.
1098  * @p_802_1p:	802.1P priority settings.  Possible values from 3-bit of 802.1p
1099  * 		Tag priority field.
1100  * @br_addr:	Bridge address.  Used for STP.
1101  * @other_addr:	Other MAC address.  Used for multiple network device mode.
1102  * @broad_per:	Broadcast storm percentage.
1103  * @member:	Current port membership.  Used for STP.
1104  */
1105 struct ksz_switch {
1106 	struct ksz_mac_table mac_table[STATIC_MAC_TABLE_ENTRIES];
1107 	struct ksz_vlan_table vlan_table[VLAN_TABLE_ENTRIES];
1108 	struct ksz_port_cfg port_cfg[TOTAL_PORT_NUM];
1109 
1110 	u8 diffserv[DIFFSERV_ENTRIES];
1111 	u8 p_802_1p[PRIO_802_1P_ENTRIES];
1112 
1113 	u8 br_addr[ETH_ALEN];
1114 	u8 other_addr[ETH_ALEN];
1115 
1116 	u8 broad_per;
1117 	u8 member;
1118 };
1119 
1120 #define TX_RATE_UNIT			10000
1121 
1122 /**
1123  * struct ksz_port_info - Port information data structure
1124  * @state:	Connection status of the port.
1125  * @tx_rate:	Transmit rate divided by 10000 to get Mbit.
1126  * @duplex:	Duplex mode.
1127  * @advertised:	Advertised auto-negotiation setting.  Used to determine link.
1128  * @partner:	Auto-negotiation partner setting.  Used to determine link.
1129  * @port_id:	Port index to access actual hardware register.
1130  * @pdev:	Pointer to OS dependent network device.
1131  */
1132 struct ksz_port_info {
1133 	uint state;
1134 	uint tx_rate;
1135 	u8 duplex;
1136 	u8 advertised;
1137 	u8 partner;
1138 	u8 port_id;
1139 	void *pdev;
1140 };
1141 
1142 #define MAX_TX_HELD_SIZE		52000
1143 
1144 /* Hardware features and bug fixes. */
1145 #define LINK_INT_WORKING		(1 << 0)
1146 #define SMALL_PACKET_TX_BUG		(1 << 1)
1147 #define HALF_DUPLEX_SIGNAL_BUG		(1 << 2)
1148 #define RX_HUGE_FRAME			(1 << 4)
1149 #define STP_SUPPORT			(1 << 8)
1150 
1151 /* Software overrides. */
1152 #define PAUSE_FLOW_CTRL			(1 << 0)
1153 #define FAST_AGING			(1 << 1)
1154 
1155 /**
1156  * struct ksz_hw - KSZ884X hardware data structure
1157  * @io:			Virtual address assigned.
1158  * @ksz_switch:		Pointer to KSZ8842 switch.
1159  * @port_info:		Port information.
1160  * @port_mib:		Port MIB information.
1161  * @dev_count:		Number of network devices this hardware supports.
1162  * @dst_ports:		Destination ports in switch for transmission.
1163  * @id:			Hardware ID.  Used for display only.
1164  * @mib_cnt:		Number of MIB counters this hardware has.
1165  * @mib_port_cnt:	Number of ports with MIB counters.
1166  * @tx_cfg:		Cached transmit control settings.
1167  * @rx_cfg:		Cached receive control settings.
1168  * @intr_mask:		Current interrupt mask.
1169  * @intr_set:		Current interrup set.
1170  * @intr_blocked:	Interrupt blocked.
1171  * @rx_desc_info:	Receive descriptor information.
1172  * @tx_desc_info:	Transmit descriptor information.
1173  * @tx_int_cnt:		Transmit interrupt count.  Used for TX optimization.
1174  * @tx_int_mask:	Transmit interrupt mask.  Used for TX optimization.
1175  * @tx_size:		Transmit data size.  Used for TX optimization.
1176  * 			The maximum is defined by MAX_TX_HELD_SIZE.
1177  * @perm_addr:		Permanent MAC address.
1178  * @override_addr:	Overridden MAC address.
1179  * @address:		Additional MAC address entries.
1180  * @addr_list_size:	Additional MAC address list size.
1181  * @mac_override:	Indication of MAC address overridden.
1182  * @promiscuous:	Counter to keep track of promiscuous mode set.
1183  * @all_multi:		Counter to keep track of all multicast mode set.
1184  * @multi_list:		Multicast address entries.
1185  * @multi_bits:		Cached multicast hash table settings.
1186  * @multi_list_size:	Multicast address list size.
1187  * @enabled:		Indication of hardware enabled.
1188  * @rx_stop:		Indication of receive process stop.
1189  * @reserved2:		none
1190  * @features:		Hardware features to enable.
1191  * @overrides:		Hardware features to override.
1192  * @parent:		Pointer to parent, network device private structure.
1193  */
1194 struct ksz_hw {
1195 	void __iomem *io;
1196 
1197 	struct ksz_switch *ksz_switch;
1198 	struct ksz_port_info port_info[SWITCH_PORT_NUM];
1199 	struct ksz_port_mib port_mib[TOTAL_PORT_NUM];
1200 	int dev_count;
1201 	int dst_ports;
1202 	int id;
1203 	int mib_cnt;
1204 	int mib_port_cnt;
1205 
1206 	u32 tx_cfg;
1207 	u32 rx_cfg;
1208 	u32 intr_mask;
1209 	u32 intr_set;
1210 	uint intr_blocked;
1211 
1212 	struct ksz_desc_info rx_desc_info;
1213 	struct ksz_desc_info tx_desc_info;
1214 
1215 	int tx_int_cnt;
1216 	int tx_int_mask;
1217 	int tx_size;
1218 
1219 	u8 perm_addr[ETH_ALEN];
1220 	u8 override_addr[ETH_ALEN];
1221 	u8 address[ADDITIONAL_ENTRIES][ETH_ALEN];
1222 	u8 addr_list_size;
1223 	u8 mac_override;
1224 	u8 promiscuous;
1225 	u8 all_multi;
1226 	u8 multi_list[MAX_MULTICAST_LIST][ETH_ALEN];
1227 	u8 multi_bits[HW_MULTICAST_SIZE];
1228 	u8 multi_list_size;
1229 
1230 	u8 enabled;
1231 	u8 rx_stop;
1232 	u8 reserved2[1];
1233 
1234 	uint features;
1235 	uint overrides;
1236 
1237 	void *parent;
1238 };
1239 
1240 enum {
1241 	PHY_NO_FLOW_CTRL,
1242 	PHY_FLOW_CTRL,
1243 	PHY_TX_ONLY,
1244 	PHY_RX_ONLY
1245 };
1246 
1247 /**
1248  * struct ksz_port - Virtual port data structure
1249  * @duplex:		Duplex mode setting.  1 for half duplex, 2 for full
1250  * 			duplex, and 0 for auto, which normally results in full
1251  * 			duplex.
1252  * @speed:		Speed setting.  10 for 10 Mbit, 100 for 100 Mbit, and
1253  * 			0 for auto, which normally results in 100 Mbit.
1254  * @force_link:		Force link setting.  0 for auto-negotiation, and 1 for
1255  * 			force.
1256  * @flow_ctrl:		Flow control setting.  PHY_NO_FLOW_CTRL for no flow
1257  * 			control, and PHY_FLOW_CTRL for flow control.
1258  * 			PHY_TX_ONLY and PHY_RX_ONLY are not supported for 100
1259  * 			Mbit PHY.
1260  * @first_port:		Index of first port this port supports.
1261  * @mib_port_cnt:	Number of ports with MIB counters.
1262  * @port_cnt:		Number of ports this port supports.
1263  * @counter:		Port statistics counter.
1264  * @hw:			Pointer to hardware structure.
1265  * @linked:		Pointer to port information linked to this port.
1266  */
1267 struct ksz_port {
1268 	u8 duplex;
1269 	u8 speed;
1270 	u8 force_link;
1271 	u8 flow_ctrl;
1272 
1273 	int first_port;
1274 	int mib_port_cnt;
1275 	int port_cnt;
1276 	u64 counter[OID_COUNTER_LAST];
1277 
1278 	struct ksz_hw *hw;
1279 	struct ksz_port_info *linked;
1280 };
1281 
1282 /**
1283  * struct ksz_timer_info - Timer information data structure
1284  * @timer:	Kernel timer.
1285  * @cnt:	Running timer counter.
1286  * @max:	Number of times to run timer; -1 for infinity.
1287  * @period:	Timer period in jiffies.
1288  */
1289 struct ksz_timer_info {
1290 	struct timer_list timer;
1291 	int cnt;
1292 	int max;
1293 	int period;
1294 };
1295 
1296 /**
1297  * struct ksz_shared_mem - OS dependent shared memory data structure
1298  * @dma_addr:	Physical DMA address allocated.
1299  * @alloc_size:	Allocation size.
1300  * @phys:	Actual physical address used.
1301  * @alloc_virt:	Virtual address allocated.
1302  * @virt:	Actual virtual address used.
1303  */
1304 struct ksz_shared_mem {
1305 	dma_addr_t dma_addr;
1306 	uint alloc_size;
1307 	uint phys;
1308 	u8 *alloc_virt;
1309 	u8 *virt;
1310 };
1311 
1312 /**
1313  * struct ksz_counter_info - OS dependent counter information data structure
1314  * @counter:	Wait queue to wakeup after counters are read.
1315  * @time:	Next time in jiffies to read counter.
1316  * @read:	Indication of counters read in full or not.
1317  */
1318 struct ksz_counter_info {
1319 	wait_queue_head_t counter;
1320 	unsigned long time;
1321 	int read;
1322 };
1323 
1324 /**
1325  * struct dev_info - Network device information data structure
1326  * @dev:		Pointer to network device.
1327  * @pdev:		Pointer to PCI device.
1328  * @hw:			Hardware structure.
1329  * @desc_pool:		Physical memory used for descriptor pool.
1330  * @hwlock:		Spinlock to prevent hardware from accessing.
1331  * @lock:		Mutex lock to prevent device from accessing.
1332  * @dev_rcv:		Receive process function used.
1333  * @last_skb:		Socket buffer allocated for descriptor rx fragments.
1334  * @skb_index:		Buffer index for receiving fragments.
1335  * @skb_len:		Buffer length for receiving fragments.
1336  * @mib_read:		Workqueue to read MIB counters.
1337  * @mib_timer_info:	Timer to read MIB counters.
1338  * @counter:		Used for MIB reading.
1339  * @mtu:		Current MTU used.  The default is REGULAR_RX_BUF_SIZE;
1340  * 			the maximum is MAX_RX_BUF_SIZE.
1341  * @opened:		Counter to keep track of device open.
1342  * @rx_tasklet:		Receive processing tasklet.
1343  * @tx_tasklet:		Transmit processing tasklet.
1344  * @wol_enable:		Wake-on-LAN enable set by ethtool.
1345  * @wol_support:	Wake-on-LAN support used by ethtool.
1346  * @pme_wait:		Used for KSZ8841 power management.
1347  */
1348 struct dev_info {
1349 	struct net_device *dev;
1350 	struct pci_dev *pdev;
1351 
1352 	struct ksz_hw hw;
1353 	struct ksz_shared_mem desc_pool;
1354 
1355 	spinlock_t hwlock;
1356 	struct mutex lock;
1357 
1358 	int (*dev_rcv)(struct dev_info *);
1359 
1360 	struct sk_buff *last_skb;
1361 	int skb_index;
1362 	int skb_len;
1363 
1364 	struct work_struct mib_read;
1365 	struct ksz_timer_info mib_timer_info;
1366 	struct ksz_counter_info counter[TOTAL_PORT_NUM];
1367 
1368 	int mtu;
1369 	int opened;
1370 
1371 	struct tasklet_struct rx_tasklet;
1372 	struct tasklet_struct tx_tasklet;
1373 
1374 	int wol_enable;
1375 	int wol_support;
1376 	unsigned long pme_wait;
1377 };
1378 
1379 /**
1380  * struct dev_priv - Network device private data structure
1381  * @adapter:		Adapter device information.
1382  * @port:		Port information.
1383  * @monitor_timer_info:	Timer to monitor ports.
1384  * @proc_sem:		Semaphore for proc accessing.
1385  * @id:			Device ID.
1386  * @mii_if:		MII interface information.
1387  * @advertising:	Temporary variable to store advertised settings.
1388  * @msg_enable:		The message flags controlling driver output.
1389  * @media_state:	The connection status of the device.
1390  * @multicast:		The all multicast state of the device.
1391  * @promiscuous:	The promiscuous state of the device.
1392  */
1393 struct dev_priv {
1394 	struct dev_info *adapter;
1395 	struct ksz_port port;
1396 	struct ksz_timer_info monitor_timer_info;
1397 
1398 	struct semaphore proc_sem;
1399 	int id;
1400 
1401 	struct mii_if_info mii_if;
1402 	u32 advertising;
1403 
1404 	u32 msg_enable;
1405 	int media_state;
1406 	int multicast;
1407 	int promiscuous;
1408 };
1409 
1410 #define DRV_NAME		"KSZ884X PCI"
1411 #define DEVICE_NAME		"KSZ884x PCI"
1412 #define DRV_VERSION		"1.0.0"
1413 #define DRV_RELDATE		"Feb 8, 2010"
1414 
1415 static char version[] =
1416 	"Micrel " DEVICE_NAME " " DRV_VERSION " (" DRV_RELDATE ")";
1417 
1418 static u8 DEFAULT_MAC_ADDRESS[] = { 0x00, 0x10, 0xA1, 0x88, 0x42, 0x01 };
1419 
1420 /*
1421  * Interrupt processing primary routines
1422  */
1423 
1424 static inline void hw_ack_intr(struct ksz_hw *hw, uint interrupt)
1425 {
1426 	writel(interrupt, hw->io + KS884X_INTERRUPTS_STATUS);
1427 }
1428 
1429 static inline void hw_dis_intr(struct ksz_hw *hw)
1430 {
1431 	hw->intr_blocked = hw->intr_mask;
1432 	writel(0, hw->io + KS884X_INTERRUPTS_ENABLE);
1433 	hw->intr_set = readl(hw->io + KS884X_INTERRUPTS_ENABLE);
1434 }
1435 
1436 static inline void hw_set_intr(struct ksz_hw *hw, uint interrupt)
1437 {
1438 	hw->intr_set = interrupt;
1439 	writel(interrupt, hw->io + KS884X_INTERRUPTS_ENABLE);
1440 }
1441 
1442 static inline void hw_ena_intr(struct ksz_hw *hw)
1443 {
1444 	hw->intr_blocked = 0;
1445 	hw_set_intr(hw, hw->intr_mask);
1446 }
1447 
1448 static inline void hw_dis_intr_bit(struct ksz_hw *hw, uint bit)
1449 {
1450 	hw->intr_mask &= ~(bit);
1451 }
1452 
1453 static inline void hw_turn_off_intr(struct ksz_hw *hw, uint interrupt)
1454 {
1455 	u32 read_intr;
1456 
1457 	read_intr = readl(hw->io + KS884X_INTERRUPTS_ENABLE);
1458 	hw->intr_set = read_intr & ~interrupt;
1459 	writel(hw->intr_set, hw->io + KS884X_INTERRUPTS_ENABLE);
1460 	hw_dis_intr_bit(hw, interrupt);
1461 }
1462 
1463 /**
1464  * hw_turn_on_intr - turn on specified interrupts
1465  * @hw: 	The hardware instance.
1466  * @bit:	The interrupt bits to be on.
1467  *
1468  * This routine turns on the specified interrupts in the interrupt mask so that
1469  * those interrupts will be enabled.
1470  */
1471 static void hw_turn_on_intr(struct ksz_hw *hw, u32 bit)
1472 {
1473 	hw->intr_mask |= bit;
1474 
1475 	if (!hw->intr_blocked)
1476 		hw_set_intr(hw, hw->intr_mask);
1477 }
1478 
1479 static inline void hw_ena_intr_bit(struct ksz_hw *hw, uint interrupt)
1480 {
1481 	u32 read_intr;
1482 
1483 	read_intr = readl(hw->io + KS884X_INTERRUPTS_ENABLE);
1484 	hw->intr_set = read_intr | interrupt;
1485 	writel(hw->intr_set, hw->io + KS884X_INTERRUPTS_ENABLE);
1486 }
1487 
1488 static inline void hw_read_intr(struct ksz_hw *hw, uint *status)
1489 {
1490 	*status = readl(hw->io + KS884X_INTERRUPTS_STATUS);
1491 	*status = *status & hw->intr_set;
1492 }
1493 
1494 static inline void hw_restore_intr(struct ksz_hw *hw, uint interrupt)
1495 {
1496 	if (interrupt)
1497 		hw_ena_intr(hw);
1498 }
1499 
1500 /**
1501  * hw_block_intr - block hardware interrupts
1502  * @hw: The hardware instance.
1503  *
1504  * This function blocks all interrupts of the hardware and returns the current
1505  * interrupt enable mask so that interrupts can be restored later.
1506  *
1507  * Return the current interrupt enable mask.
1508  */
1509 static uint hw_block_intr(struct ksz_hw *hw)
1510 {
1511 	uint interrupt = 0;
1512 
1513 	if (!hw->intr_blocked) {
1514 		hw_dis_intr(hw);
1515 		interrupt = hw->intr_blocked;
1516 	}
1517 	return interrupt;
1518 }
1519 
1520 /*
1521  * Hardware descriptor routines
1522  */
1523 
1524 static inline void reset_desc(struct ksz_desc *desc, union desc_stat status)
1525 {
1526 	status.rx.hw_owned = 0;
1527 	desc->phw->ctrl.data = cpu_to_le32(status.data);
1528 }
1529 
1530 static inline void release_desc(struct ksz_desc *desc)
1531 {
1532 	desc->sw.ctrl.tx.hw_owned = 1;
1533 	if (desc->sw.buf_size != desc->sw.buf.data) {
1534 		desc->sw.buf_size = desc->sw.buf.data;
1535 		desc->phw->buf.data = cpu_to_le32(desc->sw.buf.data);
1536 	}
1537 	desc->phw->ctrl.data = cpu_to_le32(desc->sw.ctrl.data);
1538 }
1539 
1540 static void get_rx_pkt(struct ksz_desc_info *info, struct ksz_desc **desc)
1541 {
1542 	*desc = &info->ring[info->last];
1543 	info->last++;
1544 	info->last &= info->mask;
1545 	info->avail--;
1546 	(*desc)->sw.buf.data &= ~KS_DESC_RX_MASK;
1547 }
1548 
1549 static inline void set_rx_buf(struct ksz_desc *desc, u32 addr)
1550 {
1551 	desc->phw->addr = cpu_to_le32(addr);
1552 }
1553 
1554 static inline void set_rx_len(struct ksz_desc *desc, u32 len)
1555 {
1556 	desc->sw.buf.rx.buf_size = len;
1557 }
1558 
1559 static inline void get_tx_pkt(struct ksz_desc_info *info,
1560 	struct ksz_desc **desc)
1561 {
1562 	*desc = &info->ring[info->next];
1563 	info->next++;
1564 	info->next &= info->mask;
1565 	info->avail--;
1566 	(*desc)->sw.buf.data &= ~KS_DESC_TX_MASK;
1567 }
1568 
1569 static inline void set_tx_buf(struct ksz_desc *desc, u32 addr)
1570 {
1571 	desc->phw->addr = cpu_to_le32(addr);
1572 }
1573 
1574 static inline void set_tx_len(struct ksz_desc *desc, u32 len)
1575 {
1576 	desc->sw.buf.tx.buf_size = len;
1577 }
1578 
1579 /* Switch functions */
1580 
1581 #define TABLE_READ			0x10
1582 #define TABLE_SEL_SHIFT			2
1583 
1584 #define HW_DELAY(hw, reg)			\
1585 	do {					\
1586 		readw(hw->io + reg);		\
1587 	} while (0)
1588 
1589 /**
1590  * sw_r_table - read 4 bytes of data from switch table
1591  * @hw:		The hardware instance.
1592  * @table:	The table selector.
1593  * @addr:	The address of the table entry.
1594  * @data:	Buffer to store the read data.
1595  *
1596  * This routine reads 4 bytes of data from the table of the switch.
1597  * Hardware interrupts are disabled to minimize corruption of read data.
1598  */
1599 static void sw_r_table(struct ksz_hw *hw, int table, u16 addr, u32 *data)
1600 {
1601 	u16 ctrl_addr;
1602 	uint interrupt;
1603 
1604 	ctrl_addr = (((table << TABLE_SEL_SHIFT) | TABLE_READ) << 8) | addr;
1605 
1606 	interrupt = hw_block_intr(hw);
1607 
1608 	writew(ctrl_addr, hw->io + KS884X_IACR_OFFSET);
1609 	HW_DELAY(hw, KS884X_IACR_OFFSET);
1610 	*data = readl(hw->io + KS884X_ACC_DATA_0_OFFSET);
1611 
1612 	hw_restore_intr(hw, interrupt);
1613 }
1614 
1615 /**
1616  * sw_w_table_64 - write 8 bytes of data to the switch table
1617  * @hw:		The hardware instance.
1618  * @table:	The table selector.
1619  * @addr:	The address of the table entry.
1620  * @data_hi:	The high part of data to be written (bit63 ~ bit32).
1621  * @data_lo:	The low part of data to be written (bit31 ~ bit0).
1622  *
1623  * This routine writes 8 bytes of data to the table of the switch.
1624  * Hardware interrupts are disabled to minimize corruption of written data.
1625  */
1626 static void sw_w_table_64(struct ksz_hw *hw, int table, u16 addr, u32 data_hi,
1627 	u32 data_lo)
1628 {
1629 	u16 ctrl_addr;
1630 	uint interrupt;
1631 
1632 	ctrl_addr = ((table << TABLE_SEL_SHIFT) << 8) | addr;
1633 
1634 	interrupt = hw_block_intr(hw);
1635 
1636 	writel(data_hi, hw->io + KS884X_ACC_DATA_4_OFFSET);
1637 	writel(data_lo, hw->io + KS884X_ACC_DATA_0_OFFSET);
1638 
1639 	writew(ctrl_addr, hw->io + KS884X_IACR_OFFSET);
1640 	HW_DELAY(hw, KS884X_IACR_OFFSET);
1641 
1642 	hw_restore_intr(hw, interrupt);
1643 }
1644 
1645 /**
1646  * sw_w_sta_mac_table - write to the static MAC table
1647  * @hw: 	The hardware instance.
1648  * @addr:	The address of the table entry.
1649  * @mac_addr:	The MAC address.
1650  * @ports:	The port members.
1651  * @override:	The flag to override the port receive/transmit settings.
1652  * @valid:	The flag to indicate entry is valid.
1653  * @use_fid:	The flag to indicate the FID is valid.
1654  * @fid:	The FID value.
1655  *
1656  * This routine writes an entry of the static MAC table of the switch.  It
1657  * calls sw_w_table_64() to write the data.
1658  */
1659 static void sw_w_sta_mac_table(struct ksz_hw *hw, u16 addr, u8 *mac_addr,
1660 	u8 ports, int override, int valid, int use_fid, u8 fid)
1661 {
1662 	u32 data_hi;
1663 	u32 data_lo;
1664 
1665 	data_lo = ((u32) mac_addr[2] << 24) |
1666 		((u32) mac_addr[3] << 16) |
1667 		((u32) mac_addr[4] << 8) | mac_addr[5];
1668 	data_hi = ((u32) mac_addr[0] << 8) | mac_addr[1];
1669 	data_hi |= (u32) ports << STATIC_MAC_FWD_PORTS_SHIFT;
1670 
1671 	if (override)
1672 		data_hi |= STATIC_MAC_TABLE_OVERRIDE;
1673 	if (use_fid) {
1674 		data_hi |= STATIC_MAC_TABLE_USE_FID;
1675 		data_hi |= (u32) fid << STATIC_MAC_FID_SHIFT;
1676 	}
1677 	if (valid)
1678 		data_hi |= STATIC_MAC_TABLE_VALID;
1679 
1680 	sw_w_table_64(hw, TABLE_STATIC_MAC, addr, data_hi, data_lo);
1681 }
1682 
1683 /**
1684  * sw_r_vlan_table - read from the VLAN table
1685  * @hw: 	The hardware instance.
1686  * @addr:	The address of the table entry.
1687  * @vid:	Buffer to store the VID.
1688  * @fid:	Buffer to store the VID.
1689  * @member:	Buffer to store the port membership.
1690  *
1691  * This function reads an entry of the VLAN table of the switch.  It calls
1692  * sw_r_table() to get the data.
1693  *
1694  * Return 0 if the entry is valid; otherwise -1.
1695  */
1696 static int sw_r_vlan_table(struct ksz_hw *hw, u16 addr, u16 *vid, u8 *fid,
1697 	u8 *member)
1698 {
1699 	u32 data;
1700 
1701 	sw_r_table(hw, TABLE_VLAN, addr, &data);
1702 	if (data & VLAN_TABLE_VALID) {
1703 		*vid = (u16)(data & VLAN_TABLE_VID);
1704 		*fid = (u8)((data & VLAN_TABLE_FID) >> VLAN_TABLE_FID_SHIFT);
1705 		*member = (u8)((data & VLAN_TABLE_MEMBERSHIP) >>
1706 			VLAN_TABLE_MEMBERSHIP_SHIFT);
1707 		return 0;
1708 	}
1709 	return -1;
1710 }
1711 
1712 /**
1713  * port_r_mib_cnt - read MIB counter
1714  * @hw: 	The hardware instance.
1715  * @port:	The port index.
1716  * @addr:	The address of the counter.
1717  * @cnt:	Buffer to store the counter.
1718  *
1719  * This routine reads a MIB counter of the port.
1720  * Hardware interrupts are disabled to minimize corruption of read data.
1721  */
1722 static void port_r_mib_cnt(struct ksz_hw *hw, int port, u16 addr, u64 *cnt)
1723 {
1724 	u32 data;
1725 	u16 ctrl_addr;
1726 	uint interrupt;
1727 	int timeout;
1728 
1729 	ctrl_addr = addr + PORT_COUNTER_NUM * port;
1730 
1731 	interrupt = hw_block_intr(hw);
1732 
1733 	ctrl_addr |= (((TABLE_MIB << TABLE_SEL_SHIFT) | TABLE_READ) << 8);
1734 	writew(ctrl_addr, hw->io + KS884X_IACR_OFFSET);
1735 	HW_DELAY(hw, KS884X_IACR_OFFSET);
1736 
1737 	for (timeout = 100; timeout > 0; timeout--) {
1738 		data = readl(hw->io + KS884X_ACC_DATA_0_OFFSET);
1739 
1740 		if (data & MIB_COUNTER_VALID) {
1741 			if (data & MIB_COUNTER_OVERFLOW)
1742 				*cnt += MIB_COUNTER_VALUE + 1;
1743 			*cnt += data & MIB_COUNTER_VALUE;
1744 			break;
1745 		}
1746 	}
1747 
1748 	hw_restore_intr(hw, interrupt);
1749 }
1750 
1751 /**
1752  * port_r_mib_pkt - read dropped packet counts
1753  * @hw: 	The hardware instance.
1754  * @port:	The port index.
1755  * @last:	last one
1756  * @cnt:	Buffer to store the receive and transmit dropped packet counts.
1757  *
1758  * This routine reads the dropped packet counts of the port.
1759  * Hardware interrupts are disabled to minimize corruption of read data.
1760  */
1761 static void port_r_mib_pkt(struct ksz_hw *hw, int port, u32 *last, u64 *cnt)
1762 {
1763 	u32 cur;
1764 	u32 data;
1765 	u16 ctrl_addr;
1766 	uint interrupt;
1767 	int index;
1768 
1769 	index = KS_MIB_PACKET_DROPPED_RX_0 + port;
1770 	do {
1771 		interrupt = hw_block_intr(hw);
1772 
1773 		ctrl_addr = (u16) index;
1774 		ctrl_addr |= (((TABLE_MIB << TABLE_SEL_SHIFT) | TABLE_READ)
1775 			<< 8);
1776 		writew(ctrl_addr, hw->io + KS884X_IACR_OFFSET);
1777 		HW_DELAY(hw, KS884X_IACR_OFFSET);
1778 		data = readl(hw->io + KS884X_ACC_DATA_0_OFFSET);
1779 
1780 		hw_restore_intr(hw, interrupt);
1781 
1782 		data &= MIB_PACKET_DROPPED;
1783 		cur = *last;
1784 		if (data != cur) {
1785 			*last = data;
1786 			if (data < cur)
1787 				data += MIB_PACKET_DROPPED + 1;
1788 			data -= cur;
1789 			*cnt += data;
1790 		}
1791 		++last;
1792 		++cnt;
1793 		index -= KS_MIB_PACKET_DROPPED_TX -
1794 			KS_MIB_PACKET_DROPPED_TX_0 + 1;
1795 	} while (index >= KS_MIB_PACKET_DROPPED_TX_0 + port);
1796 }
1797 
1798 /**
1799  * port_r_cnt - read MIB counters periodically
1800  * @hw: 	The hardware instance.
1801  * @port:	The port index.
1802  *
1803  * This routine is used to read the counters of the port periodically to avoid
1804  * counter overflow.  The hardware should be acquired first before calling this
1805  * routine.
1806  *
1807  * Return non-zero when not all counters not read.
1808  */
1809 static int port_r_cnt(struct ksz_hw *hw, int port)
1810 {
1811 	struct ksz_port_mib *mib = &hw->port_mib[port];
1812 
1813 	if (mib->mib_start < PORT_COUNTER_NUM)
1814 		while (mib->cnt_ptr < PORT_COUNTER_NUM) {
1815 			port_r_mib_cnt(hw, port, mib->cnt_ptr,
1816 				&mib->counter[mib->cnt_ptr]);
1817 			++mib->cnt_ptr;
1818 		}
1819 	if (hw->mib_cnt > PORT_COUNTER_NUM)
1820 		port_r_mib_pkt(hw, port, mib->dropped,
1821 			&mib->counter[PORT_COUNTER_NUM]);
1822 	mib->cnt_ptr = 0;
1823 	return 0;
1824 }
1825 
1826 /**
1827  * port_init_cnt - initialize MIB counter values
1828  * @hw: 	The hardware instance.
1829  * @port:	The port index.
1830  *
1831  * This routine is used to initialize all counters to zero if the hardware
1832  * cannot do it after reset.
1833  */
1834 static void port_init_cnt(struct ksz_hw *hw, int port)
1835 {
1836 	struct ksz_port_mib *mib = &hw->port_mib[port];
1837 
1838 	mib->cnt_ptr = 0;
1839 	if (mib->mib_start < PORT_COUNTER_NUM)
1840 		do {
1841 			port_r_mib_cnt(hw, port, mib->cnt_ptr,
1842 				&mib->counter[mib->cnt_ptr]);
1843 			++mib->cnt_ptr;
1844 		} while (mib->cnt_ptr < PORT_COUNTER_NUM);
1845 	if (hw->mib_cnt > PORT_COUNTER_NUM)
1846 		port_r_mib_pkt(hw, port, mib->dropped,
1847 			&mib->counter[PORT_COUNTER_NUM]);
1848 	memset((void *) mib->counter, 0, sizeof(u64) * TOTAL_PORT_COUNTER_NUM);
1849 	mib->cnt_ptr = 0;
1850 }
1851 
1852 /*
1853  * Port functions
1854  */
1855 
1856 /**
1857  * port_chk - check port register bits
1858  * @hw: 	The hardware instance.
1859  * @port:	The port index.
1860  * @offset:	The offset of the port register.
1861  * @bits:	The data bits to check.
1862  *
1863  * This function checks whether the specified bits of the port register are set
1864  * or not.
1865  *
1866  * Return 0 if the bits are not set.
1867  */
1868 static int port_chk(struct ksz_hw *hw, int port, int offset, u16 bits)
1869 {
1870 	u32 addr;
1871 	u16 data;
1872 
1873 	PORT_CTRL_ADDR(port, addr);
1874 	addr += offset;
1875 	data = readw(hw->io + addr);
1876 	return (data & bits) == bits;
1877 }
1878 
1879 /**
1880  * port_cfg - set port register bits
1881  * @hw: 	The hardware instance.
1882  * @port:	The port index.
1883  * @offset:	The offset of the port register.
1884  * @bits:	The data bits to set.
1885  * @set:	The flag indicating whether the bits are to be set or not.
1886  *
1887  * This routine sets or resets the specified bits of the port register.
1888  */
1889 static void port_cfg(struct ksz_hw *hw, int port, int offset, u16 bits,
1890 	int set)
1891 {
1892 	u32 addr;
1893 	u16 data;
1894 
1895 	PORT_CTRL_ADDR(port, addr);
1896 	addr += offset;
1897 	data = readw(hw->io + addr);
1898 	if (set)
1899 		data |= bits;
1900 	else
1901 		data &= ~bits;
1902 	writew(data, hw->io + addr);
1903 }
1904 
1905 /**
1906  * port_chk_shift - check port bit
1907  * @hw: 	The hardware instance.
1908  * @port:	The port index.
1909  * @addr:	The offset of the register.
1910  * @shift:	Number of bits to shift.
1911  *
1912  * This function checks whether the specified port is set in the register or
1913  * not.
1914  *
1915  * Return 0 if the port is not set.
1916  */
1917 static int port_chk_shift(struct ksz_hw *hw, int port, u32 addr, int shift)
1918 {
1919 	u16 data;
1920 	u16 bit = 1 << port;
1921 
1922 	data = readw(hw->io + addr);
1923 	data >>= shift;
1924 	return (data & bit) == bit;
1925 }
1926 
1927 /**
1928  * port_cfg_shift - set port bit
1929  * @hw: 	The hardware instance.
1930  * @port:	The port index.
1931  * @addr:	The offset of the register.
1932  * @shift:	Number of bits to shift.
1933  * @set:	The flag indicating whether the port is to be set or not.
1934  *
1935  * This routine sets or resets the specified port in the register.
1936  */
1937 static void port_cfg_shift(struct ksz_hw *hw, int port, u32 addr, int shift,
1938 	int set)
1939 {
1940 	u16 data;
1941 	u16 bits = 1 << port;
1942 
1943 	data = readw(hw->io + addr);
1944 	bits <<= shift;
1945 	if (set)
1946 		data |= bits;
1947 	else
1948 		data &= ~bits;
1949 	writew(data, hw->io + addr);
1950 }
1951 
1952 /**
1953  * port_r8 - read byte from port register
1954  * @hw: 	The hardware instance.
1955  * @port:	The port index.
1956  * @offset:	The offset of the port register.
1957  * @data:	Buffer to store the data.
1958  *
1959  * This routine reads a byte from the port register.
1960  */
1961 static void port_r8(struct ksz_hw *hw, int port, int offset, u8 *data)
1962 {
1963 	u32 addr;
1964 
1965 	PORT_CTRL_ADDR(port, addr);
1966 	addr += offset;
1967 	*data = readb(hw->io + addr);
1968 }
1969 
1970 /**
1971  * port_r16 - read word from port register.
1972  * @hw: 	The hardware instance.
1973  * @port:	The port index.
1974  * @offset:	The offset of the port register.
1975  * @data:	Buffer to store the data.
1976  *
1977  * This routine reads a word from the port register.
1978  */
1979 static void port_r16(struct ksz_hw *hw, int port, int offset, u16 *data)
1980 {
1981 	u32 addr;
1982 
1983 	PORT_CTRL_ADDR(port, addr);
1984 	addr += offset;
1985 	*data = readw(hw->io + addr);
1986 }
1987 
1988 /**
1989  * port_w16 - write word to port register.
1990  * @hw: 	The hardware instance.
1991  * @port:	The port index.
1992  * @offset:	The offset of the port register.
1993  * @data:	Data to write.
1994  *
1995  * This routine writes a word to the port register.
1996  */
1997 static void port_w16(struct ksz_hw *hw, int port, int offset, u16 data)
1998 {
1999 	u32 addr;
2000 
2001 	PORT_CTRL_ADDR(port, addr);
2002 	addr += offset;
2003 	writew(data, hw->io + addr);
2004 }
2005 
2006 /**
2007  * sw_chk - check switch register bits
2008  * @hw: 	The hardware instance.
2009  * @addr:	The address of the switch register.
2010  * @bits:	The data bits to check.
2011  *
2012  * This function checks whether the specified bits of the switch register are
2013  * set or not.
2014  *
2015  * Return 0 if the bits are not set.
2016  */
2017 static int sw_chk(struct ksz_hw *hw, u32 addr, u16 bits)
2018 {
2019 	u16 data;
2020 
2021 	data = readw(hw->io + addr);
2022 	return (data & bits) == bits;
2023 }
2024 
2025 /**
2026  * sw_cfg - set switch register bits
2027  * @hw: 	The hardware instance.
2028  * @addr:	The address of the switch register.
2029  * @bits:	The data bits to set.
2030  * @set:	The flag indicating whether the bits are to be set or not.
2031  *
2032  * This function sets or resets the specified bits of the switch register.
2033  */
2034 static void sw_cfg(struct ksz_hw *hw, u32 addr, u16 bits, int set)
2035 {
2036 	u16 data;
2037 
2038 	data = readw(hw->io + addr);
2039 	if (set)
2040 		data |= bits;
2041 	else
2042 		data &= ~bits;
2043 	writew(data, hw->io + addr);
2044 }
2045 
2046 /* Bandwidth */
2047 
2048 static inline void port_cfg_broad_storm(struct ksz_hw *hw, int p, int set)
2049 {
2050 	port_cfg(hw, p,
2051 		KS8842_PORT_CTRL_1_OFFSET, PORT_BROADCAST_STORM, set);
2052 }
2053 
2054 static inline int port_chk_broad_storm(struct ksz_hw *hw, int p)
2055 {
2056 	return port_chk(hw, p,
2057 		KS8842_PORT_CTRL_1_OFFSET, PORT_BROADCAST_STORM);
2058 }
2059 
2060 /* Driver set switch broadcast storm protection at 10% rate. */
2061 #define BROADCAST_STORM_PROTECTION_RATE	10
2062 
2063 /* 148,800 frames * 67 ms / 100 */
2064 #define BROADCAST_STORM_VALUE		9969
2065 
2066 /**
2067  * sw_cfg_broad_storm - configure broadcast storm threshold
2068  * @hw: 	The hardware instance.
2069  * @percent:	Broadcast storm threshold in percent of transmit rate.
2070  *
2071  * This routine configures the broadcast storm threshold of the switch.
2072  */
2073 static void sw_cfg_broad_storm(struct ksz_hw *hw, u8 percent)
2074 {
2075 	u16 data;
2076 	u32 value = ((u32) BROADCAST_STORM_VALUE * (u32) percent / 100);
2077 
2078 	if (value > BROADCAST_STORM_RATE)
2079 		value = BROADCAST_STORM_RATE;
2080 
2081 	data = readw(hw->io + KS8842_SWITCH_CTRL_3_OFFSET);
2082 	data &= ~(BROADCAST_STORM_RATE_LO | BROADCAST_STORM_RATE_HI);
2083 	data |= ((value & 0x00FF) << 8) | ((value & 0xFF00) >> 8);
2084 	writew(data, hw->io + KS8842_SWITCH_CTRL_3_OFFSET);
2085 }
2086 
2087 /**
2088  * sw_get_broad_storm - get broadcast storm threshold
2089  * @hw: 	The hardware instance.
2090  * @percent:	Buffer to store the broadcast storm threshold percentage.
2091  *
2092  * This routine retrieves the broadcast storm threshold of the switch.
2093  */
2094 static void sw_get_broad_storm(struct ksz_hw *hw, u8 *percent)
2095 {
2096 	int num;
2097 	u16 data;
2098 
2099 	data = readw(hw->io + KS8842_SWITCH_CTRL_3_OFFSET);
2100 	num = (data & BROADCAST_STORM_RATE_HI);
2101 	num <<= 8;
2102 	num |= (data & BROADCAST_STORM_RATE_LO) >> 8;
2103 	num = DIV_ROUND_CLOSEST(num * 100, BROADCAST_STORM_VALUE);
2104 	*percent = (u8) num;
2105 }
2106 
2107 /**
2108  * sw_dis_broad_storm - disable broadstorm
2109  * @hw: 	The hardware instance.
2110  * @port:	The port index.
2111  *
2112  * This routine disables the broadcast storm limit function of the switch.
2113  */
2114 static void sw_dis_broad_storm(struct ksz_hw *hw, int port)
2115 {
2116 	port_cfg_broad_storm(hw, port, 0);
2117 }
2118 
2119 /**
2120  * sw_ena_broad_storm - enable broadcast storm
2121  * @hw: 	The hardware instance.
2122  * @port:	The port index.
2123  *
2124  * This routine enables the broadcast storm limit function of the switch.
2125  */
2126 static void sw_ena_broad_storm(struct ksz_hw *hw, int port)
2127 {
2128 	sw_cfg_broad_storm(hw, hw->ksz_switch->broad_per);
2129 	port_cfg_broad_storm(hw, port, 1);
2130 }
2131 
2132 /**
2133  * sw_init_broad_storm - initialize broadcast storm
2134  * @hw: 	The hardware instance.
2135  *
2136  * This routine initializes the broadcast storm limit function of the switch.
2137  */
2138 static void sw_init_broad_storm(struct ksz_hw *hw)
2139 {
2140 	int port;
2141 
2142 	hw->ksz_switch->broad_per = 1;
2143 	sw_cfg_broad_storm(hw, hw->ksz_switch->broad_per);
2144 	for (port = 0; port < TOTAL_PORT_NUM; port++)
2145 		sw_dis_broad_storm(hw, port);
2146 	sw_cfg(hw, KS8842_SWITCH_CTRL_2_OFFSET, MULTICAST_STORM_DISABLE, 1);
2147 }
2148 
2149 /**
2150  * hw_cfg_broad_storm - configure broadcast storm
2151  * @hw: 	The hardware instance.
2152  * @percent:	Broadcast storm threshold in percent of transmit rate.
2153  *
2154  * This routine configures the broadcast storm threshold of the switch.
2155  * It is called by user functions.  The hardware should be acquired first.
2156  */
2157 static void hw_cfg_broad_storm(struct ksz_hw *hw, u8 percent)
2158 {
2159 	if (percent > 100)
2160 		percent = 100;
2161 
2162 	sw_cfg_broad_storm(hw, percent);
2163 	sw_get_broad_storm(hw, &percent);
2164 	hw->ksz_switch->broad_per = percent;
2165 }
2166 
2167 /**
2168  * sw_dis_prio_rate - disable switch priority rate
2169  * @hw: 	The hardware instance.
2170  * @port:	The port index.
2171  *
2172  * This routine disables the priority rate function of the switch.
2173  */
2174 static void sw_dis_prio_rate(struct ksz_hw *hw, int port)
2175 {
2176 	u32 addr;
2177 
2178 	PORT_CTRL_ADDR(port, addr);
2179 	addr += KS8842_PORT_IN_RATE_OFFSET;
2180 	writel(0, hw->io + addr);
2181 }
2182 
2183 /**
2184  * sw_init_prio_rate - initialize switch prioirty rate
2185  * @hw: 	The hardware instance.
2186  *
2187  * This routine initializes the priority rate function of the switch.
2188  */
2189 static void sw_init_prio_rate(struct ksz_hw *hw)
2190 {
2191 	int port;
2192 	int prio;
2193 	struct ksz_switch *sw = hw->ksz_switch;
2194 
2195 	for (port = 0; port < TOTAL_PORT_NUM; port++) {
2196 		for (prio = 0; prio < PRIO_QUEUES; prio++) {
2197 			sw->port_cfg[port].rx_rate[prio] =
2198 			sw->port_cfg[port].tx_rate[prio] = 0;
2199 		}
2200 		sw_dis_prio_rate(hw, port);
2201 	}
2202 }
2203 
2204 /* Communication */
2205 
2206 static inline void port_cfg_back_pressure(struct ksz_hw *hw, int p, int set)
2207 {
2208 	port_cfg(hw, p,
2209 		KS8842_PORT_CTRL_2_OFFSET, PORT_BACK_PRESSURE, set);
2210 }
2211 
2212 static inline void port_cfg_force_flow_ctrl(struct ksz_hw *hw, int p, int set)
2213 {
2214 	port_cfg(hw, p,
2215 		KS8842_PORT_CTRL_2_OFFSET, PORT_FORCE_FLOW_CTRL, set);
2216 }
2217 
2218 static inline int port_chk_back_pressure(struct ksz_hw *hw, int p)
2219 {
2220 	return port_chk(hw, p,
2221 		KS8842_PORT_CTRL_2_OFFSET, PORT_BACK_PRESSURE);
2222 }
2223 
2224 static inline int port_chk_force_flow_ctrl(struct ksz_hw *hw, int p)
2225 {
2226 	return port_chk(hw, p,
2227 		KS8842_PORT_CTRL_2_OFFSET, PORT_FORCE_FLOW_CTRL);
2228 }
2229 
2230 /* Spanning Tree */
2231 
2232 static inline void port_cfg_rx(struct ksz_hw *hw, int p, int set)
2233 {
2234 	port_cfg(hw, p,
2235 		KS8842_PORT_CTRL_2_OFFSET, PORT_RX_ENABLE, set);
2236 }
2237 
2238 static inline void port_cfg_tx(struct ksz_hw *hw, int p, int set)
2239 {
2240 	port_cfg(hw, p,
2241 		KS8842_PORT_CTRL_2_OFFSET, PORT_TX_ENABLE, set);
2242 }
2243 
2244 static inline void sw_cfg_fast_aging(struct ksz_hw *hw, int set)
2245 {
2246 	sw_cfg(hw, KS8842_SWITCH_CTRL_1_OFFSET, SWITCH_FAST_AGING, set);
2247 }
2248 
2249 static inline void sw_flush_dyn_mac_table(struct ksz_hw *hw)
2250 {
2251 	if (!(hw->overrides & FAST_AGING)) {
2252 		sw_cfg_fast_aging(hw, 1);
2253 		mdelay(1);
2254 		sw_cfg_fast_aging(hw, 0);
2255 	}
2256 }
2257 
2258 /* VLAN */
2259 
2260 static inline void port_cfg_ins_tag(struct ksz_hw *hw, int p, int insert)
2261 {
2262 	port_cfg(hw, p,
2263 		KS8842_PORT_CTRL_1_OFFSET, PORT_INSERT_TAG, insert);
2264 }
2265 
2266 static inline void port_cfg_rmv_tag(struct ksz_hw *hw, int p, int remove)
2267 {
2268 	port_cfg(hw, p,
2269 		KS8842_PORT_CTRL_1_OFFSET, PORT_REMOVE_TAG, remove);
2270 }
2271 
2272 static inline int port_chk_ins_tag(struct ksz_hw *hw, int p)
2273 {
2274 	return port_chk(hw, p,
2275 		KS8842_PORT_CTRL_1_OFFSET, PORT_INSERT_TAG);
2276 }
2277 
2278 static inline int port_chk_rmv_tag(struct ksz_hw *hw, int p)
2279 {
2280 	return port_chk(hw, p,
2281 		KS8842_PORT_CTRL_1_OFFSET, PORT_REMOVE_TAG);
2282 }
2283 
2284 static inline void port_cfg_dis_non_vid(struct ksz_hw *hw, int p, int set)
2285 {
2286 	port_cfg(hw, p,
2287 		KS8842_PORT_CTRL_2_OFFSET, PORT_DISCARD_NON_VID, set);
2288 }
2289 
2290 static inline void port_cfg_in_filter(struct ksz_hw *hw, int p, int set)
2291 {
2292 	port_cfg(hw, p,
2293 		KS8842_PORT_CTRL_2_OFFSET, PORT_INGRESS_VLAN_FILTER, set);
2294 }
2295 
2296 static inline int port_chk_dis_non_vid(struct ksz_hw *hw, int p)
2297 {
2298 	return port_chk(hw, p,
2299 		KS8842_PORT_CTRL_2_OFFSET, PORT_DISCARD_NON_VID);
2300 }
2301 
2302 static inline int port_chk_in_filter(struct ksz_hw *hw, int p)
2303 {
2304 	return port_chk(hw, p,
2305 		KS8842_PORT_CTRL_2_OFFSET, PORT_INGRESS_VLAN_FILTER);
2306 }
2307 
2308 /* Mirroring */
2309 
2310 static inline void port_cfg_mirror_sniffer(struct ksz_hw *hw, int p, int set)
2311 {
2312 	port_cfg(hw, p,
2313 		KS8842_PORT_CTRL_2_OFFSET, PORT_MIRROR_SNIFFER, set);
2314 }
2315 
2316 static inline void port_cfg_mirror_rx(struct ksz_hw *hw, int p, int set)
2317 {
2318 	port_cfg(hw, p,
2319 		KS8842_PORT_CTRL_2_OFFSET, PORT_MIRROR_RX, set);
2320 }
2321 
2322 static inline void port_cfg_mirror_tx(struct ksz_hw *hw, int p, int set)
2323 {
2324 	port_cfg(hw, p,
2325 		KS8842_PORT_CTRL_2_OFFSET, PORT_MIRROR_TX, set);
2326 }
2327 
2328 static inline void sw_cfg_mirror_rx_tx(struct ksz_hw *hw, int set)
2329 {
2330 	sw_cfg(hw, KS8842_SWITCH_CTRL_2_OFFSET, SWITCH_MIRROR_RX_TX, set);
2331 }
2332 
2333 static void sw_init_mirror(struct ksz_hw *hw)
2334 {
2335 	int port;
2336 
2337 	for (port = 0; port < TOTAL_PORT_NUM; port++) {
2338 		port_cfg_mirror_sniffer(hw, port, 0);
2339 		port_cfg_mirror_rx(hw, port, 0);
2340 		port_cfg_mirror_tx(hw, port, 0);
2341 	}
2342 	sw_cfg_mirror_rx_tx(hw, 0);
2343 }
2344 
2345 static inline void sw_cfg_unk_def_deliver(struct ksz_hw *hw, int set)
2346 {
2347 	sw_cfg(hw, KS8842_SWITCH_CTRL_7_OFFSET,
2348 		SWITCH_UNK_DEF_PORT_ENABLE, set);
2349 }
2350 
2351 static inline int sw_cfg_chk_unk_def_deliver(struct ksz_hw *hw)
2352 {
2353 	return sw_chk(hw, KS8842_SWITCH_CTRL_7_OFFSET,
2354 		SWITCH_UNK_DEF_PORT_ENABLE);
2355 }
2356 
2357 static inline void sw_cfg_unk_def_port(struct ksz_hw *hw, int port, int set)
2358 {
2359 	port_cfg_shift(hw, port, KS8842_SWITCH_CTRL_7_OFFSET, 0, set);
2360 }
2361 
2362 static inline int sw_chk_unk_def_port(struct ksz_hw *hw, int port)
2363 {
2364 	return port_chk_shift(hw, port, KS8842_SWITCH_CTRL_7_OFFSET, 0);
2365 }
2366 
2367 /* Priority */
2368 
2369 static inline void port_cfg_diffserv(struct ksz_hw *hw, int p, int set)
2370 {
2371 	port_cfg(hw, p,
2372 		KS8842_PORT_CTRL_1_OFFSET, PORT_DIFFSERV_ENABLE, set);
2373 }
2374 
2375 static inline void port_cfg_802_1p(struct ksz_hw *hw, int p, int set)
2376 {
2377 	port_cfg(hw, p,
2378 		KS8842_PORT_CTRL_1_OFFSET, PORT_802_1P_ENABLE, set);
2379 }
2380 
2381 static inline void port_cfg_replace_vid(struct ksz_hw *hw, int p, int set)
2382 {
2383 	port_cfg(hw, p,
2384 		KS8842_PORT_CTRL_2_OFFSET, PORT_USER_PRIORITY_CEILING, set);
2385 }
2386 
2387 static inline void port_cfg_prio(struct ksz_hw *hw, int p, int set)
2388 {
2389 	port_cfg(hw, p,
2390 		KS8842_PORT_CTRL_1_OFFSET, PORT_PRIO_QUEUE_ENABLE, set);
2391 }
2392 
2393 static inline int port_chk_diffserv(struct ksz_hw *hw, int p)
2394 {
2395 	return port_chk(hw, p,
2396 		KS8842_PORT_CTRL_1_OFFSET, PORT_DIFFSERV_ENABLE);
2397 }
2398 
2399 static inline int port_chk_802_1p(struct ksz_hw *hw, int p)
2400 {
2401 	return port_chk(hw, p,
2402 		KS8842_PORT_CTRL_1_OFFSET, PORT_802_1P_ENABLE);
2403 }
2404 
2405 static inline int port_chk_replace_vid(struct ksz_hw *hw, int p)
2406 {
2407 	return port_chk(hw, p,
2408 		KS8842_PORT_CTRL_2_OFFSET, PORT_USER_PRIORITY_CEILING);
2409 }
2410 
2411 static inline int port_chk_prio(struct ksz_hw *hw, int p)
2412 {
2413 	return port_chk(hw, p,
2414 		KS8842_PORT_CTRL_1_OFFSET, PORT_PRIO_QUEUE_ENABLE);
2415 }
2416 
2417 /**
2418  * sw_dis_diffserv - disable switch DiffServ priority
2419  * @hw: 	The hardware instance.
2420  * @port:	The port index.
2421  *
2422  * This routine disables the DiffServ priority function of the switch.
2423  */
2424 static void sw_dis_diffserv(struct ksz_hw *hw, int port)
2425 {
2426 	port_cfg_diffserv(hw, port, 0);
2427 }
2428 
2429 /**
2430  * sw_dis_802_1p - disable switch 802.1p priority
2431  * @hw: 	The hardware instance.
2432  * @port:	The port index.
2433  *
2434  * This routine disables the 802.1p priority function of the switch.
2435  */
2436 static void sw_dis_802_1p(struct ksz_hw *hw, int port)
2437 {
2438 	port_cfg_802_1p(hw, port, 0);
2439 }
2440 
2441 /**
2442  * sw_cfg_replace_null_vid -
2443  * @hw: 	The hardware instance.
2444  * @set:	The flag to disable or enable.
2445  *
2446  */
2447 static void sw_cfg_replace_null_vid(struct ksz_hw *hw, int set)
2448 {
2449 	sw_cfg(hw, KS8842_SWITCH_CTRL_3_OFFSET, SWITCH_REPLACE_NULL_VID, set);
2450 }
2451 
2452 /**
2453  * sw_cfg_replace_vid - enable switch 802.10 priority re-mapping
2454  * @hw: 	The hardware instance.
2455  * @port:	The port index.
2456  * @set:	The flag to disable or enable.
2457  *
2458  * This routine enables the 802.1p priority re-mapping function of the switch.
2459  * That allows 802.1p priority field to be replaced with the port's default
2460  * tag's priority value if the ingress packet's 802.1p priority has a higher
2461  * priority than port's default tag's priority.
2462  */
2463 static void sw_cfg_replace_vid(struct ksz_hw *hw, int port, int set)
2464 {
2465 	port_cfg_replace_vid(hw, port, set);
2466 }
2467 
2468 /**
2469  * sw_cfg_port_based - configure switch port based priority
2470  * @hw: 	The hardware instance.
2471  * @port:	The port index.
2472  * @prio:	The priority to set.
2473  *
2474  * This routine configures the port based priority of the switch.
2475  */
2476 static void sw_cfg_port_based(struct ksz_hw *hw, int port, u8 prio)
2477 {
2478 	u16 data;
2479 
2480 	if (prio > PORT_BASED_PRIORITY_BASE)
2481 		prio = PORT_BASED_PRIORITY_BASE;
2482 
2483 	hw->ksz_switch->port_cfg[port].port_prio = prio;
2484 
2485 	port_r16(hw, port, KS8842_PORT_CTRL_1_OFFSET, &data);
2486 	data &= ~PORT_BASED_PRIORITY_MASK;
2487 	data |= prio << PORT_BASED_PRIORITY_SHIFT;
2488 	port_w16(hw, port, KS8842_PORT_CTRL_1_OFFSET, data);
2489 }
2490 
2491 /**
2492  * sw_dis_multi_queue - disable transmit multiple queues
2493  * @hw: 	The hardware instance.
2494  * @port:	The port index.
2495  *
2496  * This routine disables the transmit multiple queues selection of the switch
2497  * port.  Only single transmit queue on the port.
2498  */
2499 static void sw_dis_multi_queue(struct ksz_hw *hw, int port)
2500 {
2501 	port_cfg_prio(hw, port, 0);
2502 }
2503 
2504 /**
2505  * sw_init_prio - initialize switch priority
2506  * @hw: 	The hardware instance.
2507  *
2508  * This routine initializes the switch QoS priority functions.
2509  */
2510 static void sw_init_prio(struct ksz_hw *hw)
2511 {
2512 	int port;
2513 	int tos;
2514 	struct ksz_switch *sw = hw->ksz_switch;
2515 
2516 	/*
2517 	 * Init all the 802.1p tag priority value to be assigned to different
2518 	 * priority queue.
2519 	 */
2520 	sw->p_802_1p[0] = 0;
2521 	sw->p_802_1p[1] = 0;
2522 	sw->p_802_1p[2] = 1;
2523 	sw->p_802_1p[3] = 1;
2524 	sw->p_802_1p[4] = 2;
2525 	sw->p_802_1p[5] = 2;
2526 	sw->p_802_1p[6] = 3;
2527 	sw->p_802_1p[7] = 3;
2528 
2529 	/*
2530 	 * Init all the DiffServ priority value to be assigned to priority
2531 	 * queue 0.
2532 	 */
2533 	for (tos = 0; tos < DIFFSERV_ENTRIES; tos++)
2534 		sw->diffserv[tos] = 0;
2535 
2536 	/* All QoS functions disabled. */
2537 	for (port = 0; port < TOTAL_PORT_NUM; port++) {
2538 		sw_dis_multi_queue(hw, port);
2539 		sw_dis_diffserv(hw, port);
2540 		sw_dis_802_1p(hw, port);
2541 		sw_cfg_replace_vid(hw, port, 0);
2542 
2543 		sw->port_cfg[port].port_prio = 0;
2544 		sw_cfg_port_based(hw, port, sw->port_cfg[port].port_prio);
2545 	}
2546 	sw_cfg_replace_null_vid(hw, 0);
2547 }
2548 
2549 /**
2550  * port_get_def_vid - get port default VID.
2551  * @hw: 	The hardware instance.
2552  * @port:	The port index.
2553  * @vid:	Buffer to store the VID.
2554  *
2555  * This routine retrieves the default VID of the port.
2556  */
2557 static void port_get_def_vid(struct ksz_hw *hw, int port, u16 *vid)
2558 {
2559 	u32 addr;
2560 
2561 	PORT_CTRL_ADDR(port, addr);
2562 	addr += KS8842_PORT_CTRL_VID_OFFSET;
2563 	*vid = readw(hw->io + addr);
2564 }
2565 
2566 /**
2567  * sw_init_vlan - initialize switch VLAN
2568  * @hw: 	The hardware instance.
2569  *
2570  * This routine initializes the VLAN function of the switch.
2571  */
2572 static void sw_init_vlan(struct ksz_hw *hw)
2573 {
2574 	int port;
2575 	int entry;
2576 	struct ksz_switch *sw = hw->ksz_switch;
2577 
2578 	/* Read 16 VLAN entries from device's VLAN table. */
2579 	for (entry = 0; entry < VLAN_TABLE_ENTRIES; entry++) {
2580 		sw_r_vlan_table(hw, entry,
2581 			&sw->vlan_table[entry].vid,
2582 			&sw->vlan_table[entry].fid,
2583 			&sw->vlan_table[entry].member);
2584 	}
2585 
2586 	for (port = 0; port < TOTAL_PORT_NUM; port++) {
2587 		port_get_def_vid(hw, port, &sw->port_cfg[port].vid);
2588 		sw->port_cfg[port].member = PORT_MASK;
2589 	}
2590 }
2591 
2592 /**
2593  * sw_cfg_port_base_vlan - configure port-based VLAN membership
2594  * @hw: 	The hardware instance.
2595  * @port:	The port index.
2596  * @member:	The port-based VLAN membership.
2597  *
2598  * This routine configures the port-based VLAN membership of the port.
2599  */
2600 static void sw_cfg_port_base_vlan(struct ksz_hw *hw, int port, u8 member)
2601 {
2602 	u32 addr;
2603 	u8 data;
2604 
2605 	PORT_CTRL_ADDR(port, addr);
2606 	addr += KS8842_PORT_CTRL_2_OFFSET;
2607 
2608 	data = readb(hw->io + addr);
2609 	data &= ~PORT_VLAN_MEMBERSHIP;
2610 	data |= (member & PORT_MASK);
2611 	writeb(data, hw->io + addr);
2612 
2613 	hw->ksz_switch->port_cfg[port].member = member;
2614 }
2615 
2616 /**
2617  * sw_get_addr - get the switch MAC address.
2618  * @hw: 	The hardware instance.
2619  * @mac_addr:	Buffer to store the MAC address.
2620  *
2621  * This function retrieves the MAC address of the switch.
2622  */
2623 static inline void sw_get_addr(struct ksz_hw *hw, u8 *mac_addr)
2624 {
2625 	int i;
2626 
2627 	for (i = 0; i < 6; i += 2) {
2628 		mac_addr[i] = readb(hw->io + KS8842_MAC_ADDR_0_OFFSET + i);
2629 		mac_addr[1 + i] = readb(hw->io + KS8842_MAC_ADDR_1_OFFSET + i);
2630 	}
2631 }
2632 
2633 /**
2634  * sw_set_addr - configure switch MAC address
2635  * @hw: 	The hardware instance.
2636  * @mac_addr:	The MAC address.
2637  *
2638  * This function configures the MAC address of the switch.
2639  */
2640 static void sw_set_addr(struct ksz_hw *hw, u8 *mac_addr)
2641 {
2642 	int i;
2643 
2644 	for (i = 0; i < 6; i += 2) {
2645 		writeb(mac_addr[i], hw->io + KS8842_MAC_ADDR_0_OFFSET + i);
2646 		writeb(mac_addr[1 + i], hw->io + KS8842_MAC_ADDR_1_OFFSET + i);
2647 	}
2648 }
2649 
2650 /**
2651  * sw_set_global_ctrl - set switch global control
2652  * @hw: 	The hardware instance.
2653  *
2654  * This routine sets the global control of the switch function.
2655  */
2656 static void sw_set_global_ctrl(struct ksz_hw *hw)
2657 {
2658 	u16 data;
2659 
2660 	/* Enable switch MII flow control. */
2661 	data = readw(hw->io + KS8842_SWITCH_CTRL_3_OFFSET);
2662 	data |= SWITCH_FLOW_CTRL;
2663 	writew(data, hw->io + KS8842_SWITCH_CTRL_3_OFFSET);
2664 
2665 	data = readw(hw->io + KS8842_SWITCH_CTRL_1_OFFSET);
2666 
2667 	/* Enable aggressive back off algorithm in half duplex mode. */
2668 	data |= SWITCH_AGGR_BACKOFF;
2669 
2670 	/* Enable automatic fast aging when link changed detected. */
2671 	data |= SWITCH_AGING_ENABLE;
2672 	data |= SWITCH_LINK_AUTO_AGING;
2673 
2674 	if (hw->overrides & FAST_AGING)
2675 		data |= SWITCH_FAST_AGING;
2676 	else
2677 		data &= ~SWITCH_FAST_AGING;
2678 	writew(data, hw->io + KS8842_SWITCH_CTRL_1_OFFSET);
2679 
2680 	data = readw(hw->io + KS8842_SWITCH_CTRL_2_OFFSET);
2681 
2682 	/* Enable no excessive collision drop. */
2683 	data |= NO_EXC_COLLISION_DROP;
2684 	writew(data, hw->io + KS8842_SWITCH_CTRL_2_OFFSET);
2685 }
2686 
2687 enum {
2688 	STP_STATE_DISABLED = 0,
2689 	STP_STATE_LISTENING,
2690 	STP_STATE_LEARNING,
2691 	STP_STATE_FORWARDING,
2692 	STP_STATE_BLOCKED,
2693 	STP_STATE_SIMPLE
2694 };
2695 
2696 /**
2697  * port_set_stp_state - configure port spanning tree state
2698  * @hw: 	The hardware instance.
2699  * @port:	The port index.
2700  * @state:	The spanning tree state.
2701  *
2702  * This routine configures the spanning tree state of the port.
2703  */
2704 static void port_set_stp_state(struct ksz_hw *hw, int port, int state)
2705 {
2706 	u16 data;
2707 
2708 	port_r16(hw, port, KS8842_PORT_CTRL_2_OFFSET, &data);
2709 	switch (state) {
2710 	case STP_STATE_DISABLED:
2711 		data &= ~(PORT_TX_ENABLE | PORT_RX_ENABLE);
2712 		data |= PORT_LEARN_DISABLE;
2713 		break;
2714 	case STP_STATE_LISTENING:
2715 /*
2716  * No need to turn on transmit because of port direct mode.
2717  * Turning on receive is required if static MAC table is not setup.
2718  */
2719 		data &= ~PORT_TX_ENABLE;
2720 		data |= PORT_RX_ENABLE;
2721 		data |= PORT_LEARN_DISABLE;
2722 		break;
2723 	case STP_STATE_LEARNING:
2724 		data &= ~PORT_TX_ENABLE;
2725 		data |= PORT_RX_ENABLE;
2726 		data &= ~PORT_LEARN_DISABLE;
2727 		break;
2728 	case STP_STATE_FORWARDING:
2729 		data |= (PORT_TX_ENABLE | PORT_RX_ENABLE);
2730 		data &= ~PORT_LEARN_DISABLE;
2731 		break;
2732 	case STP_STATE_BLOCKED:
2733 /*
2734  * Need to setup static MAC table with override to keep receiving BPDU
2735  * messages.  See sw_init_stp routine.
2736  */
2737 		data &= ~(PORT_TX_ENABLE | PORT_RX_ENABLE);
2738 		data |= PORT_LEARN_DISABLE;
2739 		break;
2740 	case STP_STATE_SIMPLE:
2741 		data |= (PORT_TX_ENABLE | PORT_RX_ENABLE);
2742 		data |= PORT_LEARN_DISABLE;
2743 		break;
2744 	}
2745 	port_w16(hw, port, KS8842_PORT_CTRL_2_OFFSET, data);
2746 	hw->ksz_switch->port_cfg[port].stp_state = state;
2747 }
2748 
2749 #define STP_ENTRY			0
2750 #define BROADCAST_ENTRY			1
2751 #define BRIDGE_ADDR_ENTRY		2
2752 #define IPV6_ADDR_ENTRY			3
2753 
2754 /**
2755  * sw_clr_sta_mac_table - clear static MAC table
2756  * @hw: 	The hardware instance.
2757  *
2758  * This routine clears the static MAC table.
2759  */
2760 static void sw_clr_sta_mac_table(struct ksz_hw *hw)
2761 {
2762 	struct ksz_mac_table *entry;
2763 	int i;
2764 
2765 	for (i = 0; i < STATIC_MAC_TABLE_ENTRIES; i++) {
2766 		entry = &hw->ksz_switch->mac_table[i];
2767 		sw_w_sta_mac_table(hw, i,
2768 			entry->mac_addr, entry->ports,
2769 			entry->override, 0,
2770 			entry->use_fid, entry->fid);
2771 	}
2772 }
2773 
2774 /**
2775  * sw_init_stp - initialize switch spanning tree support
2776  * @hw: 	The hardware instance.
2777  *
2778  * This routine initializes the spanning tree support of the switch.
2779  */
2780 static void sw_init_stp(struct ksz_hw *hw)
2781 {
2782 	struct ksz_mac_table *entry;
2783 
2784 	entry = &hw->ksz_switch->mac_table[STP_ENTRY];
2785 	entry->mac_addr[0] = 0x01;
2786 	entry->mac_addr[1] = 0x80;
2787 	entry->mac_addr[2] = 0xC2;
2788 	entry->mac_addr[3] = 0x00;
2789 	entry->mac_addr[4] = 0x00;
2790 	entry->mac_addr[5] = 0x00;
2791 	entry->ports = HOST_MASK;
2792 	entry->override = 1;
2793 	entry->valid = 1;
2794 	sw_w_sta_mac_table(hw, STP_ENTRY,
2795 		entry->mac_addr, entry->ports,
2796 		entry->override, entry->valid,
2797 		entry->use_fid, entry->fid);
2798 }
2799 
2800 /**
2801  * sw_block_addr - block certain packets from the host port
2802  * @hw: 	The hardware instance.
2803  *
2804  * This routine blocks certain packets from reaching to the host port.
2805  */
2806 static void sw_block_addr(struct ksz_hw *hw)
2807 {
2808 	struct ksz_mac_table *entry;
2809 	int i;
2810 
2811 	for (i = BROADCAST_ENTRY; i <= IPV6_ADDR_ENTRY; i++) {
2812 		entry = &hw->ksz_switch->mac_table[i];
2813 		entry->valid = 0;
2814 		sw_w_sta_mac_table(hw, i,
2815 			entry->mac_addr, entry->ports,
2816 			entry->override, entry->valid,
2817 			entry->use_fid, entry->fid);
2818 	}
2819 }
2820 
2821 static inline void hw_r_phy_ctrl(struct ksz_hw *hw, int phy, u16 *data)
2822 {
2823 	*data = readw(hw->io + phy + KS884X_PHY_CTRL_OFFSET);
2824 }
2825 
2826 static inline void hw_w_phy_ctrl(struct ksz_hw *hw, int phy, u16 data)
2827 {
2828 	writew(data, hw->io + phy + KS884X_PHY_CTRL_OFFSET);
2829 }
2830 
2831 static inline void hw_r_phy_link_stat(struct ksz_hw *hw, int phy, u16 *data)
2832 {
2833 	*data = readw(hw->io + phy + KS884X_PHY_STATUS_OFFSET);
2834 }
2835 
2836 static inline void hw_r_phy_auto_neg(struct ksz_hw *hw, int phy, u16 *data)
2837 {
2838 	*data = readw(hw->io + phy + KS884X_PHY_AUTO_NEG_OFFSET);
2839 }
2840 
2841 static inline void hw_w_phy_auto_neg(struct ksz_hw *hw, int phy, u16 data)
2842 {
2843 	writew(data, hw->io + phy + KS884X_PHY_AUTO_NEG_OFFSET);
2844 }
2845 
2846 static inline void hw_r_phy_rem_cap(struct ksz_hw *hw, int phy, u16 *data)
2847 {
2848 	*data = readw(hw->io + phy + KS884X_PHY_REMOTE_CAP_OFFSET);
2849 }
2850 
2851 static inline void hw_r_phy_crossover(struct ksz_hw *hw, int phy, u16 *data)
2852 {
2853 	*data = readw(hw->io + phy + KS884X_PHY_CTRL_OFFSET);
2854 }
2855 
2856 static inline void hw_w_phy_crossover(struct ksz_hw *hw, int phy, u16 data)
2857 {
2858 	writew(data, hw->io + phy + KS884X_PHY_CTRL_OFFSET);
2859 }
2860 
2861 static inline void hw_r_phy_polarity(struct ksz_hw *hw, int phy, u16 *data)
2862 {
2863 	*data = readw(hw->io + phy + KS884X_PHY_PHY_CTRL_OFFSET);
2864 }
2865 
2866 static inline void hw_w_phy_polarity(struct ksz_hw *hw, int phy, u16 data)
2867 {
2868 	writew(data, hw->io + phy + KS884X_PHY_PHY_CTRL_OFFSET);
2869 }
2870 
2871 static inline void hw_r_phy_link_md(struct ksz_hw *hw, int phy, u16 *data)
2872 {
2873 	*data = readw(hw->io + phy + KS884X_PHY_LINK_MD_OFFSET);
2874 }
2875 
2876 static inline void hw_w_phy_link_md(struct ksz_hw *hw, int phy, u16 data)
2877 {
2878 	writew(data, hw->io + phy + KS884X_PHY_LINK_MD_OFFSET);
2879 }
2880 
2881 /**
2882  * hw_r_phy - read data from PHY register
2883  * @hw: 	The hardware instance.
2884  * @port:	Port to read.
2885  * @reg:	PHY register to read.
2886  * @val:	Buffer to store the read data.
2887  *
2888  * This routine reads data from the PHY register.
2889  */
2890 static void hw_r_phy(struct ksz_hw *hw, int port, u16 reg, u16 *val)
2891 {
2892 	int phy;
2893 
2894 	phy = KS884X_PHY_1_CTRL_OFFSET + port * PHY_CTRL_INTERVAL + reg;
2895 	*val = readw(hw->io + phy);
2896 }
2897 
2898 /**
2899  * hw_w_phy - write data to PHY register
2900  * @hw: 	The hardware instance.
2901  * @port:	Port to write.
2902  * @reg:	PHY register to write.
2903  * @val:	Word data to write.
2904  *
2905  * This routine writes data to the PHY register.
2906  */
2907 static void hw_w_phy(struct ksz_hw *hw, int port, u16 reg, u16 val)
2908 {
2909 	int phy;
2910 
2911 	phy = KS884X_PHY_1_CTRL_OFFSET + port * PHY_CTRL_INTERVAL + reg;
2912 	writew(val, hw->io + phy);
2913 }
2914 
2915 /*
2916  * EEPROM access functions
2917  */
2918 
2919 #define AT93C_CODE			0
2920 #define AT93C_WR_OFF			0x00
2921 #define AT93C_WR_ALL			0x10
2922 #define AT93C_ER_ALL			0x20
2923 #define AT93C_WR_ON			0x30
2924 
2925 #define AT93C_WRITE			1
2926 #define AT93C_READ			2
2927 #define AT93C_ERASE			3
2928 
2929 #define EEPROM_DELAY			4
2930 
2931 static inline void drop_gpio(struct ksz_hw *hw, u8 gpio)
2932 {
2933 	u16 data;
2934 
2935 	data = readw(hw->io + KS884X_EEPROM_CTRL_OFFSET);
2936 	data &= ~gpio;
2937 	writew(data, hw->io + KS884X_EEPROM_CTRL_OFFSET);
2938 }
2939 
2940 static inline void raise_gpio(struct ksz_hw *hw, u8 gpio)
2941 {
2942 	u16 data;
2943 
2944 	data = readw(hw->io + KS884X_EEPROM_CTRL_OFFSET);
2945 	data |= gpio;
2946 	writew(data, hw->io + KS884X_EEPROM_CTRL_OFFSET);
2947 }
2948 
2949 static inline u8 state_gpio(struct ksz_hw *hw, u8 gpio)
2950 {
2951 	u16 data;
2952 
2953 	data = readw(hw->io + KS884X_EEPROM_CTRL_OFFSET);
2954 	return (u8)(data & gpio);
2955 }
2956 
2957 static void eeprom_clk(struct ksz_hw *hw)
2958 {
2959 	raise_gpio(hw, EEPROM_SERIAL_CLOCK);
2960 	udelay(EEPROM_DELAY);
2961 	drop_gpio(hw, EEPROM_SERIAL_CLOCK);
2962 	udelay(EEPROM_DELAY);
2963 }
2964 
2965 static u16 spi_r(struct ksz_hw *hw)
2966 {
2967 	int i;
2968 	u16 temp = 0;
2969 
2970 	for (i = 15; i >= 0; i--) {
2971 		raise_gpio(hw, EEPROM_SERIAL_CLOCK);
2972 		udelay(EEPROM_DELAY);
2973 
2974 		temp |= (state_gpio(hw, EEPROM_DATA_IN)) ? 1 << i : 0;
2975 
2976 		drop_gpio(hw, EEPROM_SERIAL_CLOCK);
2977 		udelay(EEPROM_DELAY);
2978 	}
2979 	return temp;
2980 }
2981 
2982 static void spi_w(struct ksz_hw *hw, u16 data)
2983 {
2984 	int i;
2985 
2986 	for (i = 15; i >= 0; i--) {
2987 		(data & (0x01 << i)) ? raise_gpio(hw, EEPROM_DATA_OUT) :
2988 			drop_gpio(hw, EEPROM_DATA_OUT);
2989 		eeprom_clk(hw);
2990 	}
2991 }
2992 
2993 static void spi_reg(struct ksz_hw *hw, u8 data, u8 reg)
2994 {
2995 	int i;
2996 
2997 	/* Initial start bit */
2998 	raise_gpio(hw, EEPROM_DATA_OUT);
2999 	eeprom_clk(hw);
3000 
3001 	/* AT93C operation */
3002 	for (i = 1; i >= 0; i--) {
3003 		(data & (0x01 << i)) ? raise_gpio(hw, EEPROM_DATA_OUT) :
3004 			drop_gpio(hw, EEPROM_DATA_OUT);
3005 		eeprom_clk(hw);
3006 	}
3007 
3008 	/* Address location */
3009 	for (i = 5; i >= 0; i--) {
3010 		(reg & (0x01 << i)) ? raise_gpio(hw, EEPROM_DATA_OUT) :
3011 			drop_gpio(hw, EEPROM_DATA_OUT);
3012 		eeprom_clk(hw);
3013 	}
3014 }
3015 
3016 #define EEPROM_DATA_RESERVED		0
3017 #define EEPROM_DATA_MAC_ADDR_0		1
3018 #define EEPROM_DATA_MAC_ADDR_1		2
3019 #define EEPROM_DATA_MAC_ADDR_2		3
3020 #define EEPROM_DATA_SUBSYS_ID		4
3021 #define EEPROM_DATA_SUBSYS_VEN_ID	5
3022 #define EEPROM_DATA_PM_CAP		6
3023 
3024 /* User defined EEPROM data */
3025 #define EEPROM_DATA_OTHER_MAC_ADDR	9
3026 
3027 /**
3028  * eeprom_read - read from AT93C46 EEPROM
3029  * @hw: 	The hardware instance.
3030  * @reg:	The register offset.
3031  *
3032  * This function reads a word from the AT93C46 EEPROM.
3033  *
3034  * Return the data value.
3035  */
3036 static u16 eeprom_read(struct ksz_hw *hw, u8 reg)
3037 {
3038 	u16 data;
3039 
3040 	raise_gpio(hw, EEPROM_ACCESS_ENABLE | EEPROM_CHIP_SELECT);
3041 
3042 	spi_reg(hw, AT93C_READ, reg);
3043 	data = spi_r(hw);
3044 
3045 	drop_gpio(hw, EEPROM_ACCESS_ENABLE | EEPROM_CHIP_SELECT);
3046 
3047 	return data;
3048 }
3049 
3050 /**
3051  * eeprom_write - write to AT93C46 EEPROM
3052  * @hw: 	The hardware instance.
3053  * @reg:	The register offset.
3054  * @data:	The data value.
3055  *
3056  * This procedure writes a word to the AT93C46 EEPROM.
3057  */
3058 static void eeprom_write(struct ksz_hw *hw, u8 reg, u16 data)
3059 {
3060 	int timeout;
3061 
3062 	raise_gpio(hw, EEPROM_ACCESS_ENABLE | EEPROM_CHIP_SELECT);
3063 
3064 	/* Enable write. */
3065 	spi_reg(hw, AT93C_CODE, AT93C_WR_ON);
3066 	drop_gpio(hw, EEPROM_CHIP_SELECT);
3067 	udelay(1);
3068 
3069 	/* Erase the register. */
3070 	raise_gpio(hw, EEPROM_CHIP_SELECT);
3071 	spi_reg(hw, AT93C_ERASE, reg);
3072 	drop_gpio(hw, EEPROM_CHIP_SELECT);
3073 	udelay(1);
3074 
3075 	/* Check operation complete. */
3076 	raise_gpio(hw, EEPROM_CHIP_SELECT);
3077 	timeout = 8;
3078 	mdelay(2);
3079 	do {
3080 		mdelay(1);
3081 	} while (!state_gpio(hw, EEPROM_DATA_IN) && --timeout);
3082 	drop_gpio(hw, EEPROM_CHIP_SELECT);
3083 	udelay(1);
3084 
3085 	/* Write the register. */
3086 	raise_gpio(hw, EEPROM_CHIP_SELECT);
3087 	spi_reg(hw, AT93C_WRITE, reg);
3088 	spi_w(hw, data);
3089 	drop_gpio(hw, EEPROM_CHIP_SELECT);
3090 	udelay(1);
3091 
3092 	/* Check operation complete. */
3093 	raise_gpio(hw, EEPROM_CHIP_SELECT);
3094 	timeout = 8;
3095 	mdelay(2);
3096 	do {
3097 		mdelay(1);
3098 	} while (!state_gpio(hw, EEPROM_DATA_IN) && --timeout);
3099 	drop_gpio(hw, EEPROM_CHIP_SELECT);
3100 	udelay(1);
3101 
3102 	/* Disable write. */
3103 	raise_gpio(hw, EEPROM_CHIP_SELECT);
3104 	spi_reg(hw, AT93C_CODE, AT93C_WR_OFF);
3105 
3106 	drop_gpio(hw, EEPROM_ACCESS_ENABLE | EEPROM_CHIP_SELECT);
3107 }
3108 
3109 /*
3110  * Link detection routines
3111  */
3112 
3113 static u16 advertised_flow_ctrl(struct ksz_port *port, u16 ctrl)
3114 {
3115 	ctrl &= ~PORT_AUTO_NEG_SYM_PAUSE;
3116 	switch (port->flow_ctrl) {
3117 	case PHY_FLOW_CTRL:
3118 		ctrl |= PORT_AUTO_NEG_SYM_PAUSE;
3119 		break;
3120 	/* Not supported. */
3121 	case PHY_TX_ONLY:
3122 	case PHY_RX_ONLY:
3123 	default:
3124 		break;
3125 	}
3126 	return ctrl;
3127 }
3128 
3129 static void set_flow_ctrl(struct ksz_hw *hw, int rx, int tx)
3130 {
3131 	u32 rx_cfg;
3132 	u32 tx_cfg;
3133 
3134 	rx_cfg = hw->rx_cfg;
3135 	tx_cfg = hw->tx_cfg;
3136 	if (rx)
3137 		hw->rx_cfg |= DMA_RX_FLOW_ENABLE;
3138 	else
3139 		hw->rx_cfg &= ~DMA_RX_FLOW_ENABLE;
3140 	if (tx)
3141 		hw->tx_cfg |= DMA_TX_FLOW_ENABLE;
3142 	else
3143 		hw->tx_cfg &= ~DMA_TX_FLOW_ENABLE;
3144 	if (hw->enabled) {
3145 		if (rx_cfg != hw->rx_cfg)
3146 			writel(hw->rx_cfg, hw->io + KS_DMA_RX_CTRL);
3147 		if (tx_cfg != hw->tx_cfg)
3148 			writel(hw->tx_cfg, hw->io + KS_DMA_TX_CTRL);
3149 	}
3150 }
3151 
3152 static void determine_flow_ctrl(struct ksz_hw *hw, struct ksz_port *port,
3153 	u16 local, u16 remote)
3154 {
3155 	int rx;
3156 	int tx;
3157 
3158 	if (hw->overrides & PAUSE_FLOW_CTRL)
3159 		return;
3160 
3161 	rx = tx = 0;
3162 	if (port->force_link)
3163 		rx = tx = 1;
3164 	if (remote & LPA_PAUSE_CAP) {
3165 		if (local & ADVERTISE_PAUSE_CAP) {
3166 			rx = tx = 1;
3167 		} else if ((remote & LPA_PAUSE_ASYM) &&
3168 			   (local &
3169 			    (ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM)) ==
3170 			   ADVERTISE_PAUSE_ASYM) {
3171 			tx = 1;
3172 		}
3173 	} else if (remote & LPA_PAUSE_ASYM) {
3174 		if ((local & (ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM))
3175 		    == (ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM))
3176 			rx = 1;
3177 	}
3178 	if (!hw->ksz_switch)
3179 		set_flow_ctrl(hw, rx, tx);
3180 }
3181 
3182 static inline void port_cfg_change(struct ksz_hw *hw, struct ksz_port *port,
3183 	struct ksz_port_info *info, u16 link_status)
3184 {
3185 	if ((hw->features & HALF_DUPLEX_SIGNAL_BUG) &&
3186 			!(hw->overrides & PAUSE_FLOW_CTRL)) {
3187 		u32 cfg = hw->tx_cfg;
3188 
3189 		/* Disable flow control in the half duplex mode. */
3190 		if (1 == info->duplex)
3191 			hw->tx_cfg &= ~DMA_TX_FLOW_ENABLE;
3192 		if (hw->enabled && cfg != hw->tx_cfg)
3193 			writel(hw->tx_cfg, hw->io + KS_DMA_TX_CTRL);
3194 	}
3195 }
3196 
3197 /**
3198  * port_get_link_speed - get current link status
3199  * @port: 	The port instance.
3200  *
3201  * This routine reads PHY registers to determine the current link status of the
3202  * switch ports.
3203  */
3204 static void port_get_link_speed(struct ksz_port *port)
3205 {
3206 	uint interrupt;
3207 	struct ksz_port_info *info;
3208 	struct ksz_port_info *linked = NULL;
3209 	struct ksz_hw *hw = port->hw;
3210 	u16 data;
3211 	u16 status;
3212 	u8 local;
3213 	u8 remote;
3214 	int i;
3215 	int p;
3216 	int change = 0;
3217 
3218 	interrupt = hw_block_intr(hw);
3219 
3220 	for (i = 0, p = port->first_port; i < port->port_cnt; i++, p++) {
3221 		info = &hw->port_info[p];
3222 		port_r16(hw, p, KS884X_PORT_CTRL_4_OFFSET, &data);
3223 		port_r16(hw, p, KS884X_PORT_STATUS_OFFSET, &status);
3224 
3225 		/*
3226 		 * Link status is changing all the time even when there is no
3227 		 * cable connection!
3228 		 */
3229 		remote = status & (PORT_AUTO_NEG_COMPLETE |
3230 			PORT_STATUS_LINK_GOOD);
3231 		local = (u8) data;
3232 
3233 		/* No change to status. */
3234 		if (local == info->advertised && remote == info->partner)
3235 			continue;
3236 
3237 		info->advertised = local;
3238 		info->partner = remote;
3239 		if (status & PORT_STATUS_LINK_GOOD) {
3240 
3241 			/* Remember the first linked port. */
3242 			if (!linked)
3243 				linked = info;
3244 
3245 			info->tx_rate = 10 * TX_RATE_UNIT;
3246 			if (status & PORT_STATUS_SPEED_100MBIT)
3247 				info->tx_rate = 100 * TX_RATE_UNIT;
3248 
3249 			info->duplex = 1;
3250 			if (status & PORT_STATUS_FULL_DUPLEX)
3251 				info->duplex = 2;
3252 
3253 			if (media_connected != info->state) {
3254 				hw_r_phy(hw, p, KS884X_PHY_AUTO_NEG_OFFSET,
3255 					&data);
3256 				hw_r_phy(hw, p, KS884X_PHY_REMOTE_CAP_OFFSET,
3257 					&status);
3258 				determine_flow_ctrl(hw, port, data, status);
3259 				if (hw->ksz_switch) {
3260 					port_cfg_back_pressure(hw, p,
3261 						(1 == info->duplex));
3262 				}
3263 				change |= 1 << i;
3264 				port_cfg_change(hw, port, info, status);
3265 			}
3266 			info->state = media_connected;
3267 		} else {
3268 			if (media_disconnected != info->state) {
3269 				change |= 1 << i;
3270 
3271 				/* Indicate the link just goes down. */
3272 				hw->port_mib[p].link_down = 1;
3273 			}
3274 			info->state = media_disconnected;
3275 		}
3276 		hw->port_mib[p].state = (u8) info->state;
3277 	}
3278 
3279 	if (linked && media_disconnected == port->linked->state)
3280 		port->linked = linked;
3281 
3282 	hw_restore_intr(hw, interrupt);
3283 }
3284 
3285 #define PHY_RESET_TIMEOUT		10
3286 
3287 /**
3288  * port_set_link_speed - set port speed
3289  * @port: 	The port instance.
3290  *
3291  * This routine sets the link speed of the switch ports.
3292  */
3293 static void port_set_link_speed(struct ksz_port *port)
3294 {
3295 	struct ksz_hw *hw = port->hw;
3296 	u16 data;
3297 	u16 cfg;
3298 	u8 status;
3299 	int i;
3300 	int p;
3301 
3302 	for (i = 0, p = port->first_port; i < port->port_cnt; i++, p++) {
3303 		port_r16(hw, p, KS884X_PORT_CTRL_4_OFFSET, &data);
3304 		port_r8(hw, p, KS884X_PORT_STATUS_OFFSET, &status);
3305 
3306 		cfg = 0;
3307 		if (status & PORT_STATUS_LINK_GOOD)
3308 			cfg = data;
3309 
3310 		data |= PORT_AUTO_NEG_ENABLE;
3311 		data = advertised_flow_ctrl(port, data);
3312 
3313 		data |= PORT_AUTO_NEG_100BTX_FD | PORT_AUTO_NEG_100BTX |
3314 			PORT_AUTO_NEG_10BT_FD | PORT_AUTO_NEG_10BT;
3315 
3316 		/* Check if manual configuration is specified by the user. */
3317 		if (port->speed || port->duplex) {
3318 			if (10 == port->speed)
3319 				data &= ~(PORT_AUTO_NEG_100BTX_FD |
3320 					PORT_AUTO_NEG_100BTX);
3321 			else if (100 == port->speed)
3322 				data &= ~(PORT_AUTO_NEG_10BT_FD |
3323 					PORT_AUTO_NEG_10BT);
3324 			if (1 == port->duplex)
3325 				data &= ~(PORT_AUTO_NEG_100BTX_FD |
3326 					PORT_AUTO_NEG_10BT_FD);
3327 			else if (2 == port->duplex)
3328 				data &= ~(PORT_AUTO_NEG_100BTX |
3329 					PORT_AUTO_NEG_10BT);
3330 		}
3331 		if (data != cfg) {
3332 			data |= PORT_AUTO_NEG_RESTART;
3333 			port_w16(hw, p, KS884X_PORT_CTRL_4_OFFSET, data);
3334 		}
3335 	}
3336 }
3337 
3338 /**
3339  * port_force_link_speed - force port speed
3340  * @port: 	The port instance.
3341  *
3342  * This routine forces the link speed of the switch ports.
3343  */
3344 static void port_force_link_speed(struct ksz_port *port)
3345 {
3346 	struct ksz_hw *hw = port->hw;
3347 	u16 data;
3348 	int i;
3349 	int phy;
3350 	int p;
3351 
3352 	for (i = 0, p = port->first_port; i < port->port_cnt; i++, p++) {
3353 		phy = KS884X_PHY_1_CTRL_OFFSET + p * PHY_CTRL_INTERVAL;
3354 		hw_r_phy_ctrl(hw, phy, &data);
3355 
3356 		data &= ~BMCR_ANENABLE;
3357 
3358 		if (10 == port->speed)
3359 			data &= ~BMCR_SPEED100;
3360 		else if (100 == port->speed)
3361 			data |= BMCR_SPEED100;
3362 		if (1 == port->duplex)
3363 			data &= ~BMCR_FULLDPLX;
3364 		else if (2 == port->duplex)
3365 			data |= BMCR_FULLDPLX;
3366 		hw_w_phy_ctrl(hw, phy, data);
3367 	}
3368 }
3369 
3370 static void port_set_power_saving(struct ksz_port *port, int enable)
3371 {
3372 	struct ksz_hw *hw = port->hw;
3373 	int i;
3374 	int p;
3375 
3376 	for (i = 0, p = port->first_port; i < port->port_cnt; i++, p++)
3377 		port_cfg(hw, p,
3378 			KS884X_PORT_CTRL_4_OFFSET, PORT_POWER_DOWN, enable);
3379 }
3380 
3381 /*
3382  * KSZ8841 power management functions
3383  */
3384 
3385 /**
3386  * hw_chk_wol_pme_status - check PMEN pin
3387  * @hw: 	The hardware instance.
3388  *
3389  * This function is used to check PMEN pin is asserted.
3390  *
3391  * Return 1 if PMEN pin is asserted; otherwise, 0.
3392  */
3393 static int hw_chk_wol_pme_status(struct ksz_hw *hw)
3394 {
3395 	struct dev_info *hw_priv = container_of(hw, struct dev_info, hw);
3396 	struct pci_dev *pdev = hw_priv->pdev;
3397 	u16 data;
3398 
3399 	if (!pdev->pm_cap)
3400 		return 0;
3401 	pci_read_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, &data);
3402 	return (data & PCI_PM_CTRL_PME_STATUS) == PCI_PM_CTRL_PME_STATUS;
3403 }
3404 
3405 /**
3406  * hw_clr_wol_pme_status - clear PMEN pin
3407  * @hw: 	The hardware instance.
3408  *
3409  * This routine is used to clear PME_Status to deassert PMEN pin.
3410  */
3411 static void hw_clr_wol_pme_status(struct ksz_hw *hw)
3412 {
3413 	struct dev_info *hw_priv = container_of(hw, struct dev_info, hw);
3414 	struct pci_dev *pdev = hw_priv->pdev;
3415 	u16 data;
3416 
3417 	if (!pdev->pm_cap)
3418 		return;
3419 
3420 	/* Clear PME_Status to deassert PMEN pin. */
3421 	pci_read_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, &data);
3422 	data |= PCI_PM_CTRL_PME_STATUS;
3423 	pci_write_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, data);
3424 }
3425 
3426 /**
3427  * hw_cfg_wol_pme - enable or disable Wake-on-LAN
3428  * @hw: 	The hardware instance.
3429  * @set:	The flag indicating whether to enable or disable.
3430  *
3431  * This routine is used to enable or disable Wake-on-LAN.
3432  */
3433 static void hw_cfg_wol_pme(struct ksz_hw *hw, int set)
3434 {
3435 	struct dev_info *hw_priv = container_of(hw, struct dev_info, hw);
3436 	struct pci_dev *pdev = hw_priv->pdev;
3437 	u16 data;
3438 
3439 	if (!pdev->pm_cap)
3440 		return;
3441 	pci_read_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, &data);
3442 	data &= ~PCI_PM_CTRL_STATE_MASK;
3443 	if (set)
3444 		data |= PCI_PM_CTRL_PME_ENABLE | PCI_D3hot;
3445 	else
3446 		data &= ~PCI_PM_CTRL_PME_ENABLE;
3447 	pci_write_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, data);
3448 }
3449 
3450 /**
3451  * hw_cfg_wol - configure Wake-on-LAN features
3452  * @hw: 	The hardware instance.
3453  * @frame:	The pattern frame bit.
3454  * @set:	The flag indicating whether to enable or disable.
3455  *
3456  * This routine is used to enable or disable certain Wake-on-LAN features.
3457  */
3458 static void hw_cfg_wol(struct ksz_hw *hw, u16 frame, int set)
3459 {
3460 	u16 data;
3461 
3462 	data = readw(hw->io + KS8841_WOL_CTRL_OFFSET);
3463 	if (set)
3464 		data |= frame;
3465 	else
3466 		data &= ~frame;
3467 	writew(data, hw->io + KS8841_WOL_CTRL_OFFSET);
3468 }
3469 
3470 /**
3471  * hw_set_wol_frame - program Wake-on-LAN pattern
3472  * @hw: 	The hardware instance.
3473  * @i:		The frame index.
3474  * @mask_size:	The size of the mask.
3475  * @mask:	Mask to ignore certain bytes in the pattern.
3476  * @frame_size:	The size of the frame.
3477  * @pattern:	The frame data.
3478  *
3479  * This routine is used to program Wake-on-LAN pattern.
3480  */
3481 static void hw_set_wol_frame(struct ksz_hw *hw, int i, uint mask_size,
3482 	const u8 *mask, uint frame_size, const u8 *pattern)
3483 {
3484 	int bits;
3485 	int from;
3486 	int len;
3487 	int to;
3488 	u32 crc;
3489 	u8 data[64];
3490 	u8 val = 0;
3491 
3492 	if (frame_size > mask_size * 8)
3493 		frame_size = mask_size * 8;
3494 	if (frame_size > 64)
3495 		frame_size = 64;
3496 
3497 	i *= 0x10;
3498 	writel(0, hw->io + KS8841_WOL_FRAME_BYTE0_OFFSET + i);
3499 	writel(0, hw->io + KS8841_WOL_FRAME_BYTE2_OFFSET + i);
3500 
3501 	bits = len = from = to = 0;
3502 	do {
3503 		if (bits) {
3504 			if ((val & 1))
3505 				data[to++] = pattern[from];
3506 			val >>= 1;
3507 			++from;
3508 			--bits;
3509 		} else {
3510 			val = mask[len];
3511 			writeb(val, hw->io + KS8841_WOL_FRAME_BYTE0_OFFSET + i
3512 				+ len);
3513 			++len;
3514 			if (val)
3515 				bits = 8;
3516 			else
3517 				from += 8;
3518 		}
3519 	} while (from < (int) frame_size);
3520 	if (val) {
3521 		bits = mask[len - 1];
3522 		val <<= (from % 8);
3523 		bits &= ~val;
3524 		writeb(bits, hw->io + KS8841_WOL_FRAME_BYTE0_OFFSET + i + len -
3525 			1);
3526 	}
3527 	crc = ether_crc(to, data);
3528 	writel(crc, hw->io + KS8841_WOL_FRAME_CRC_OFFSET + i);
3529 }
3530 
3531 /**
3532  * hw_add_wol_arp - add ARP pattern
3533  * @hw: 	The hardware instance.
3534  * @ip_addr:	The IPv4 address assigned to the device.
3535  *
3536  * This routine is used to add ARP pattern for waking up the host.
3537  */
3538 static void hw_add_wol_arp(struct ksz_hw *hw, const u8 *ip_addr)
3539 {
3540 	static const u8 mask[6] = { 0x3F, 0xF0, 0x3F, 0x00, 0xC0, 0x03 };
3541 	u8 pattern[42] = {
3542 		0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
3543 		0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
3544 		0x08, 0x06,
3545 		0x00, 0x01, 0x08, 0x00, 0x06, 0x04, 0x00, 0x01,
3546 		0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
3547 		0x00, 0x00, 0x00, 0x00,
3548 		0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
3549 		0x00, 0x00, 0x00, 0x00 };
3550 
3551 	memcpy(&pattern[38], ip_addr, 4);
3552 	hw_set_wol_frame(hw, 3, 6, mask, 42, pattern);
3553 }
3554 
3555 /**
3556  * hw_add_wol_bcast - add broadcast pattern
3557  * @hw: 	The hardware instance.
3558  *
3559  * This routine is used to add broadcast pattern for waking up the host.
3560  */
3561 static void hw_add_wol_bcast(struct ksz_hw *hw)
3562 {
3563 	static const u8 mask[] = { 0x3F };
3564 	static const u8 pattern[] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
3565 
3566 	hw_set_wol_frame(hw, 2, 1, mask, ETH_ALEN, pattern);
3567 }
3568 
3569 /**
3570  * hw_add_wol_mcast - add multicast pattern
3571  * @hw: 	The hardware instance.
3572  *
3573  * This routine is used to add multicast pattern for waking up the host.
3574  *
3575  * It is assumed the multicast packet is the ICMPv6 neighbor solicitation used
3576  * by IPv6 ping command.  Note that multicast packets are filtred through the
3577  * multicast hash table, so not all multicast packets can wake up the host.
3578  */
3579 static void hw_add_wol_mcast(struct ksz_hw *hw)
3580 {
3581 	static const u8 mask[] = { 0x3F };
3582 	u8 pattern[] = { 0x33, 0x33, 0xFF, 0x00, 0x00, 0x00 };
3583 
3584 	memcpy(&pattern[3], &hw->override_addr[3], 3);
3585 	hw_set_wol_frame(hw, 1, 1, mask, 6, pattern);
3586 }
3587 
3588 /**
3589  * hw_add_wol_ucast - add unicast pattern
3590  * @hw: 	The hardware instance.
3591  *
3592  * This routine is used to add unicast pattern to wakeup the host.
3593  *
3594  * It is assumed the unicast packet is directed to the device, as the hardware
3595  * can only receive them in normal case.
3596  */
3597 static void hw_add_wol_ucast(struct ksz_hw *hw)
3598 {
3599 	static const u8 mask[] = { 0x3F };
3600 
3601 	hw_set_wol_frame(hw, 0, 1, mask, ETH_ALEN, hw->override_addr);
3602 }
3603 
3604 /**
3605  * hw_enable_wol - enable Wake-on-LAN
3606  * @hw: 	The hardware instance.
3607  * @wol_enable:	The Wake-on-LAN settings.
3608  * @net_addr:	The IPv4 address assigned to the device.
3609  *
3610  * This routine is used to enable Wake-on-LAN depending on driver settings.
3611  */
3612 static void hw_enable_wol(struct ksz_hw *hw, u32 wol_enable, const u8 *net_addr)
3613 {
3614 	hw_cfg_wol(hw, KS8841_WOL_MAGIC_ENABLE, (wol_enable & WAKE_MAGIC));
3615 	hw_cfg_wol(hw, KS8841_WOL_FRAME0_ENABLE, (wol_enable & WAKE_UCAST));
3616 	hw_add_wol_ucast(hw);
3617 	hw_cfg_wol(hw, KS8841_WOL_FRAME1_ENABLE, (wol_enable & WAKE_MCAST));
3618 	hw_add_wol_mcast(hw);
3619 	hw_cfg_wol(hw, KS8841_WOL_FRAME2_ENABLE, (wol_enable & WAKE_BCAST));
3620 	hw_cfg_wol(hw, KS8841_WOL_FRAME3_ENABLE, (wol_enable & WAKE_ARP));
3621 	hw_add_wol_arp(hw, net_addr);
3622 }
3623 
3624 /**
3625  * hw_init - check driver is correct for the hardware
3626  * @hw: 	The hardware instance.
3627  *
3628  * This function checks the hardware is correct for this driver and sets the
3629  * hardware up for proper initialization.
3630  *
3631  * Return number of ports or 0 if not right.
3632  */
3633 static int hw_init(struct ksz_hw *hw)
3634 {
3635 	int rc = 0;
3636 	u16 data;
3637 	u16 revision;
3638 
3639 	/* Set bus speed to 125MHz. */
3640 	writew(BUS_SPEED_125_MHZ, hw->io + KS884X_BUS_CTRL_OFFSET);
3641 
3642 	/* Check KSZ884x chip ID. */
3643 	data = readw(hw->io + KS884X_CHIP_ID_OFFSET);
3644 
3645 	revision = (data & KS884X_REVISION_MASK) >> KS884X_REVISION_SHIFT;
3646 	data &= KS884X_CHIP_ID_MASK_41;
3647 	if (REG_CHIP_ID_41 == data)
3648 		rc = 1;
3649 	else if (REG_CHIP_ID_42 == data)
3650 		rc = 2;
3651 	else
3652 		return 0;
3653 
3654 	/* Setup hardware features or bug workarounds. */
3655 	if (revision <= 1) {
3656 		hw->features |= SMALL_PACKET_TX_BUG;
3657 		if (1 == rc)
3658 			hw->features |= HALF_DUPLEX_SIGNAL_BUG;
3659 	}
3660 	return rc;
3661 }
3662 
3663 /**
3664  * hw_reset - reset the hardware
3665  * @hw: 	The hardware instance.
3666  *
3667  * This routine resets the hardware.
3668  */
3669 static void hw_reset(struct ksz_hw *hw)
3670 {
3671 	writew(GLOBAL_SOFTWARE_RESET, hw->io + KS884X_GLOBAL_CTRL_OFFSET);
3672 
3673 	/* Wait for device to reset. */
3674 	mdelay(10);
3675 
3676 	/* Write 0 to clear device reset. */
3677 	writew(0, hw->io + KS884X_GLOBAL_CTRL_OFFSET);
3678 }
3679 
3680 /**
3681  * hw_setup - setup the hardware
3682  * @hw: 	The hardware instance.
3683  *
3684  * This routine setup the hardware for proper operation.
3685  */
3686 static void hw_setup(struct ksz_hw *hw)
3687 {
3688 #if SET_DEFAULT_LED
3689 	u16 data;
3690 
3691 	/* Change default LED mode. */
3692 	data = readw(hw->io + KS8842_SWITCH_CTRL_5_OFFSET);
3693 	data &= ~LED_MODE;
3694 	data |= SET_DEFAULT_LED;
3695 	writew(data, hw->io + KS8842_SWITCH_CTRL_5_OFFSET);
3696 #endif
3697 
3698 	/* Setup transmit control. */
3699 	hw->tx_cfg = (DMA_TX_PAD_ENABLE | DMA_TX_CRC_ENABLE |
3700 		(DMA_BURST_DEFAULT << DMA_BURST_SHIFT) | DMA_TX_ENABLE);
3701 
3702 	/* Setup receive control. */
3703 	hw->rx_cfg = (DMA_RX_BROADCAST | DMA_RX_UNICAST |
3704 		(DMA_BURST_DEFAULT << DMA_BURST_SHIFT) | DMA_RX_ENABLE);
3705 	hw->rx_cfg |= KS884X_DMA_RX_MULTICAST;
3706 
3707 	/* Hardware cannot handle UDP packet in IP fragments. */
3708 	hw->rx_cfg |= (DMA_RX_CSUM_TCP | DMA_RX_CSUM_IP);
3709 
3710 	if (hw->all_multi)
3711 		hw->rx_cfg |= DMA_RX_ALL_MULTICAST;
3712 	if (hw->promiscuous)
3713 		hw->rx_cfg |= DMA_RX_PROMISCUOUS;
3714 }
3715 
3716 /**
3717  * hw_setup_intr - setup interrupt mask
3718  * @hw: 	The hardware instance.
3719  *
3720  * This routine setup the interrupt mask for proper operation.
3721  */
3722 static void hw_setup_intr(struct ksz_hw *hw)
3723 {
3724 	hw->intr_mask = KS884X_INT_MASK | KS884X_INT_RX_OVERRUN;
3725 }
3726 
3727 static void ksz_check_desc_num(struct ksz_desc_info *info)
3728 {
3729 #define MIN_DESC_SHIFT  2
3730 
3731 	int alloc = info->alloc;
3732 	int shift;
3733 
3734 	shift = 0;
3735 	while (!(alloc & 1)) {
3736 		shift++;
3737 		alloc >>= 1;
3738 	}
3739 	if (alloc != 1 || shift < MIN_DESC_SHIFT) {
3740 		pr_alert("Hardware descriptor numbers not right!\n");
3741 		while (alloc) {
3742 			shift++;
3743 			alloc >>= 1;
3744 		}
3745 		if (shift < MIN_DESC_SHIFT)
3746 			shift = MIN_DESC_SHIFT;
3747 		alloc = 1 << shift;
3748 		info->alloc = alloc;
3749 	}
3750 	info->mask = info->alloc - 1;
3751 }
3752 
3753 static void hw_init_desc(struct ksz_desc_info *desc_info, int transmit)
3754 {
3755 	int i;
3756 	u32 phys = desc_info->ring_phys;
3757 	struct ksz_hw_desc *desc = desc_info->ring_virt;
3758 	struct ksz_desc *cur = desc_info->ring;
3759 	struct ksz_desc *previous = NULL;
3760 
3761 	for (i = 0; i < desc_info->alloc; i++) {
3762 		cur->phw = desc++;
3763 		phys += desc_info->size;
3764 		previous = cur++;
3765 		previous->phw->next = cpu_to_le32(phys);
3766 	}
3767 	previous->phw->next = cpu_to_le32(desc_info->ring_phys);
3768 	previous->sw.buf.rx.end_of_ring = 1;
3769 	previous->phw->buf.data = cpu_to_le32(previous->sw.buf.data);
3770 
3771 	desc_info->avail = desc_info->alloc;
3772 	desc_info->last = desc_info->next = 0;
3773 
3774 	desc_info->cur = desc_info->ring;
3775 }
3776 
3777 /**
3778  * hw_set_desc_base - set descriptor base addresses
3779  * @hw: 	The hardware instance.
3780  * @tx_addr:	The transmit descriptor base.
3781  * @rx_addr:	The receive descriptor base.
3782  *
3783  * This routine programs the descriptor base addresses after reset.
3784  */
3785 static void hw_set_desc_base(struct ksz_hw *hw, u32 tx_addr, u32 rx_addr)
3786 {
3787 	/* Set base address of Tx/Rx descriptors. */
3788 	writel(tx_addr, hw->io + KS_DMA_TX_ADDR);
3789 	writel(rx_addr, hw->io + KS_DMA_RX_ADDR);
3790 }
3791 
3792 static void hw_reset_pkts(struct ksz_desc_info *info)
3793 {
3794 	info->cur = info->ring;
3795 	info->avail = info->alloc;
3796 	info->last = info->next = 0;
3797 }
3798 
3799 static inline void hw_resume_rx(struct ksz_hw *hw)
3800 {
3801 	writel(DMA_START, hw->io + KS_DMA_RX_START);
3802 }
3803 
3804 /**
3805  * hw_start_rx - start receiving
3806  * @hw: 	The hardware instance.
3807  *
3808  * This routine starts the receive function of the hardware.
3809  */
3810 static void hw_start_rx(struct ksz_hw *hw)
3811 {
3812 	writel(hw->rx_cfg, hw->io + KS_DMA_RX_CTRL);
3813 
3814 	/* Notify when the receive stops. */
3815 	hw->intr_mask |= KS884X_INT_RX_STOPPED;
3816 
3817 	writel(DMA_START, hw->io + KS_DMA_RX_START);
3818 	hw_ack_intr(hw, KS884X_INT_RX_STOPPED);
3819 	hw->rx_stop++;
3820 
3821 	/* Variable overflows. */
3822 	if (0 == hw->rx_stop)
3823 		hw->rx_stop = 2;
3824 }
3825 
3826 /**
3827  * hw_stop_rx - stop receiving
3828  * @hw: 	The hardware instance.
3829  *
3830  * This routine stops the receive function of the hardware.
3831  */
3832 static void hw_stop_rx(struct ksz_hw *hw)
3833 {
3834 	hw->rx_stop = 0;
3835 	hw_turn_off_intr(hw, KS884X_INT_RX_STOPPED);
3836 	writel((hw->rx_cfg & ~DMA_RX_ENABLE), hw->io + KS_DMA_RX_CTRL);
3837 }
3838 
3839 /**
3840  * hw_start_tx - start transmitting
3841  * @hw: 	The hardware instance.
3842  *
3843  * This routine starts the transmit function of the hardware.
3844  */
3845 static void hw_start_tx(struct ksz_hw *hw)
3846 {
3847 	writel(hw->tx_cfg, hw->io + KS_DMA_TX_CTRL);
3848 }
3849 
3850 /**
3851  * hw_stop_tx - stop transmitting
3852  * @hw: 	The hardware instance.
3853  *
3854  * This routine stops the transmit function of the hardware.
3855  */
3856 static void hw_stop_tx(struct ksz_hw *hw)
3857 {
3858 	writel((hw->tx_cfg & ~DMA_TX_ENABLE), hw->io + KS_DMA_TX_CTRL);
3859 }
3860 
3861 /**
3862  * hw_disable - disable hardware
3863  * @hw: 	The hardware instance.
3864  *
3865  * This routine disables the hardware.
3866  */
3867 static void hw_disable(struct ksz_hw *hw)
3868 {
3869 	hw_stop_rx(hw);
3870 	hw_stop_tx(hw);
3871 	hw->enabled = 0;
3872 }
3873 
3874 /**
3875  * hw_enable - enable hardware
3876  * @hw: 	The hardware instance.
3877  *
3878  * This routine enables the hardware.
3879  */
3880 static void hw_enable(struct ksz_hw *hw)
3881 {
3882 	hw_start_tx(hw);
3883 	hw_start_rx(hw);
3884 	hw->enabled = 1;
3885 }
3886 
3887 /**
3888  * hw_alloc_pkt - allocate enough descriptors for transmission
3889  * @hw: 	The hardware instance.
3890  * @length:	The length of the packet.
3891  * @physical:	Number of descriptors required.
3892  *
3893  * This function allocates descriptors for transmission.
3894  *
3895  * Return 0 if not successful; 1 for buffer copy; or number of descriptors.
3896  */
3897 static int hw_alloc_pkt(struct ksz_hw *hw, int length, int physical)
3898 {
3899 	/* Always leave one descriptor free. */
3900 	if (hw->tx_desc_info.avail <= 1)
3901 		return 0;
3902 
3903 	/* Allocate a descriptor for transmission and mark it current. */
3904 	get_tx_pkt(&hw->tx_desc_info, &hw->tx_desc_info.cur);
3905 	hw->tx_desc_info.cur->sw.buf.tx.first_seg = 1;
3906 
3907 	/* Keep track of number of transmit descriptors used so far. */
3908 	++hw->tx_int_cnt;
3909 	hw->tx_size += length;
3910 
3911 	/* Cannot hold on too much data. */
3912 	if (hw->tx_size >= MAX_TX_HELD_SIZE)
3913 		hw->tx_int_cnt = hw->tx_int_mask + 1;
3914 
3915 	if (physical > hw->tx_desc_info.avail)
3916 		return 1;
3917 
3918 	return hw->tx_desc_info.avail;
3919 }
3920 
3921 /**
3922  * hw_send_pkt - mark packet for transmission
3923  * @hw: 	The hardware instance.
3924  *
3925  * This routine marks the packet for transmission in PCI version.
3926  */
3927 static void hw_send_pkt(struct ksz_hw *hw)
3928 {
3929 	struct ksz_desc *cur = hw->tx_desc_info.cur;
3930 
3931 	cur->sw.buf.tx.last_seg = 1;
3932 
3933 	/* Interrupt only after specified number of descriptors used. */
3934 	if (hw->tx_int_cnt > hw->tx_int_mask) {
3935 		cur->sw.buf.tx.intr = 1;
3936 		hw->tx_int_cnt = 0;
3937 		hw->tx_size = 0;
3938 	}
3939 
3940 	/* KSZ8842 supports port directed transmission. */
3941 	cur->sw.buf.tx.dest_port = hw->dst_ports;
3942 
3943 	release_desc(cur);
3944 
3945 	writel(0, hw->io + KS_DMA_TX_START);
3946 }
3947 
3948 static int empty_addr(u8 *addr)
3949 {
3950 	u32 *addr1 = (u32 *) addr;
3951 	u16 *addr2 = (u16 *) &addr[4];
3952 
3953 	return 0 == *addr1 && 0 == *addr2;
3954 }
3955 
3956 /**
3957  * hw_set_addr - set MAC address
3958  * @hw: 	The hardware instance.
3959  *
3960  * This routine programs the MAC address of the hardware when the address is
3961  * overridden.
3962  */
3963 static void hw_set_addr(struct ksz_hw *hw)
3964 {
3965 	int i;
3966 
3967 	for (i = 0; i < ETH_ALEN; i++)
3968 		writeb(hw->override_addr[MAC_ADDR_ORDER(i)],
3969 			hw->io + KS884X_ADDR_0_OFFSET + i);
3970 
3971 	sw_set_addr(hw, hw->override_addr);
3972 }
3973 
3974 /**
3975  * hw_read_addr - read MAC address
3976  * @hw: 	The hardware instance.
3977  *
3978  * This routine retrieves the MAC address of the hardware.
3979  */
3980 static void hw_read_addr(struct ksz_hw *hw)
3981 {
3982 	int i;
3983 
3984 	for (i = 0; i < ETH_ALEN; i++)
3985 		hw->perm_addr[MAC_ADDR_ORDER(i)] = readb(hw->io +
3986 			KS884X_ADDR_0_OFFSET + i);
3987 
3988 	if (!hw->mac_override) {
3989 		memcpy(hw->override_addr, hw->perm_addr, ETH_ALEN);
3990 		if (empty_addr(hw->override_addr)) {
3991 			memcpy(hw->perm_addr, DEFAULT_MAC_ADDRESS, ETH_ALEN);
3992 			memcpy(hw->override_addr, DEFAULT_MAC_ADDRESS,
3993 			       ETH_ALEN);
3994 			hw->override_addr[5] += hw->id;
3995 			hw_set_addr(hw);
3996 		}
3997 	}
3998 }
3999 
4000 static void hw_ena_add_addr(struct ksz_hw *hw, int index, u8 *mac_addr)
4001 {
4002 	int i;
4003 	u32 mac_addr_lo;
4004 	u32 mac_addr_hi;
4005 
4006 	mac_addr_hi = 0;
4007 	for (i = 0; i < 2; i++) {
4008 		mac_addr_hi <<= 8;
4009 		mac_addr_hi |= mac_addr[i];
4010 	}
4011 	mac_addr_hi |= ADD_ADDR_ENABLE;
4012 	mac_addr_lo = 0;
4013 	for (i = 2; i < 6; i++) {
4014 		mac_addr_lo <<= 8;
4015 		mac_addr_lo |= mac_addr[i];
4016 	}
4017 	index *= ADD_ADDR_INCR;
4018 
4019 	writel(mac_addr_lo, hw->io + index + KS_ADD_ADDR_0_LO);
4020 	writel(mac_addr_hi, hw->io + index + KS_ADD_ADDR_0_HI);
4021 }
4022 
4023 static void hw_set_add_addr(struct ksz_hw *hw)
4024 {
4025 	int i;
4026 
4027 	for (i = 0; i < ADDITIONAL_ENTRIES; i++) {
4028 		if (empty_addr(hw->address[i]))
4029 			writel(0, hw->io + ADD_ADDR_INCR * i +
4030 				KS_ADD_ADDR_0_HI);
4031 		else
4032 			hw_ena_add_addr(hw, i, hw->address[i]);
4033 	}
4034 }
4035 
4036 static int hw_add_addr(struct ksz_hw *hw, const u8 *mac_addr)
4037 {
4038 	int i;
4039 	int j = ADDITIONAL_ENTRIES;
4040 
4041 	if (ether_addr_equal(hw->override_addr, mac_addr))
4042 		return 0;
4043 	for (i = 0; i < hw->addr_list_size; i++) {
4044 		if (ether_addr_equal(hw->address[i], mac_addr))
4045 			return 0;
4046 		if (ADDITIONAL_ENTRIES == j && empty_addr(hw->address[i]))
4047 			j = i;
4048 	}
4049 	if (j < ADDITIONAL_ENTRIES) {
4050 		memcpy(hw->address[j], mac_addr, ETH_ALEN);
4051 		hw_ena_add_addr(hw, j, hw->address[j]);
4052 		return 0;
4053 	}
4054 	return -1;
4055 }
4056 
4057 static int hw_del_addr(struct ksz_hw *hw, const u8 *mac_addr)
4058 {
4059 	int i;
4060 
4061 	for (i = 0; i < hw->addr_list_size; i++) {
4062 		if (ether_addr_equal(hw->address[i], mac_addr)) {
4063 			eth_zero_addr(hw->address[i]);
4064 			writel(0, hw->io + ADD_ADDR_INCR * i +
4065 				KS_ADD_ADDR_0_HI);
4066 			return 0;
4067 		}
4068 	}
4069 	return -1;
4070 }
4071 
4072 /**
4073  * hw_clr_multicast - clear multicast addresses
4074  * @hw: 	The hardware instance.
4075  *
4076  * This routine removes all multicast addresses set in the hardware.
4077  */
4078 static void hw_clr_multicast(struct ksz_hw *hw)
4079 {
4080 	int i;
4081 
4082 	for (i = 0; i < HW_MULTICAST_SIZE; i++) {
4083 		hw->multi_bits[i] = 0;
4084 
4085 		writeb(0, hw->io + KS884X_MULTICAST_0_OFFSET + i);
4086 	}
4087 }
4088 
4089 /**
4090  * hw_set_grp_addr - set multicast addresses
4091  * @hw: 	The hardware instance.
4092  *
4093  * This routine programs multicast addresses for the hardware to accept those
4094  * addresses.
4095  */
4096 static void hw_set_grp_addr(struct ksz_hw *hw)
4097 {
4098 	int i;
4099 	int index;
4100 	int position;
4101 	int value;
4102 
4103 	memset(hw->multi_bits, 0, sizeof(u8) * HW_MULTICAST_SIZE);
4104 
4105 	for (i = 0; i < hw->multi_list_size; i++) {
4106 		position = (ether_crc(6, hw->multi_list[i]) >> 26) & 0x3f;
4107 		index = position >> 3;
4108 		value = 1 << (position & 7);
4109 		hw->multi_bits[index] |= (u8) value;
4110 	}
4111 
4112 	for (i = 0; i < HW_MULTICAST_SIZE; i++)
4113 		writeb(hw->multi_bits[i], hw->io + KS884X_MULTICAST_0_OFFSET +
4114 			i);
4115 }
4116 
4117 /**
4118  * hw_set_multicast - enable or disable all multicast receiving
4119  * @hw: 	The hardware instance.
4120  * @multicast:	To turn on or off the all multicast feature.
4121  *
4122  * This routine enables/disables the hardware to accept all multicast packets.
4123  */
4124 static void hw_set_multicast(struct ksz_hw *hw, u8 multicast)
4125 {
4126 	/* Stop receiving for reconfiguration. */
4127 	hw_stop_rx(hw);
4128 
4129 	if (multicast)
4130 		hw->rx_cfg |= DMA_RX_ALL_MULTICAST;
4131 	else
4132 		hw->rx_cfg &= ~DMA_RX_ALL_MULTICAST;
4133 
4134 	if (hw->enabled)
4135 		hw_start_rx(hw);
4136 }
4137 
4138 /**
4139  * hw_set_promiscuous - enable or disable promiscuous receiving
4140  * @hw: 	The hardware instance.
4141  * @prom:	To turn on or off the promiscuous feature.
4142  *
4143  * This routine enables/disables the hardware to accept all packets.
4144  */
4145 static void hw_set_promiscuous(struct ksz_hw *hw, u8 prom)
4146 {
4147 	/* Stop receiving for reconfiguration. */
4148 	hw_stop_rx(hw);
4149 
4150 	if (prom)
4151 		hw->rx_cfg |= DMA_RX_PROMISCUOUS;
4152 	else
4153 		hw->rx_cfg &= ~DMA_RX_PROMISCUOUS;
4154 
4155 	if (hw->enabled)
4156 		hw_start_rx(hw);
4157 }
4158 
4159 /**
4160  * sw_enable - enable the switch
4161  * @hw: 	The hardware instance.
4162  * @enable:	The flag to enable or disable the switch
4163  *
4164  * This routine is used to enable/disable the switch in KSZ8842.
4165  */
4166 static void sw_enable(struct ksz_hw *hw, int enable)
4167 {
4168 	int port;
4169 
4170 	for (port = 0; port < SWITCH_PORT_NUM; port++) {
4171 		if (hw->dev_count > 1) {
4172 			/* Set port-base vlan membership with host port. */
4173 			sw_cfg_port_base_vlan(hw, port,
4174 				HOST_MASK | (1 << port));
4175 			port_set_stp_state(hw, port, STP_STATE_DISABLED);
4176 		} else {
4177 			sw_cfg_port_base_vlan(hw, port, PORT_MASK);
4178 			port_set_stp_state(hw, port, STP_STATE_FORWARDING);
4179 		}
4180 	}
4181 	if (hw->dev_count > 1)
4182 		port_set_stp_state(hw, SWITCH_PORT_NUM, STP_STATE_SIMPLE);
4183 	else
4184 		port_set_stp_state(hw, SWITCH_PORT_NUM, STP_STATE_FORWARDING);
4185 
4186 	if (enable)
4187 		enable = KS8842_START;
4188 	writew(enable, hw->io + KS884X_CHIP_ID_OFFSET);
4189 }
4190 
4191 /**
4192  * sw_setup - setup the switch
4193  * @hw: 	The hardware instance.
4194  *
4195  * This routine setup the hardware switch engine for default operation.
4196  */
4197 static void sw_setup(struct ksz_hw *hw)
4198 {
4199 	int port;
4200 
4201 	sw_set_global_ctrl(hw);
4202 
4203 	/* Enable switch broadcast storm protection at 10% percent rate. */
4204 	sw_init_broad_storm(hw);
4205 	hw_cfg_broad_storm(hw, BROADCAST_STORM_PROTECTION_RATE);
4206 	for (port = 0; port < SWITCH_PORT_NUM; port++)
4207 		sw_ena_broad_storm(hw, port);
4208 
4209 	sw_init_prio(hw);
4210 
4211 	sw_init_mirror(hw);
4212 
4213 	sw_init_prio_rate(hw);
4214 
4215 	sw_init_vlan(hw);
4216 
4217 	if (hw->features & STP_SUPPORT)
4218 		sw_init_stp(hw);
4219 	if (!sw_chk(hw, KS8842_SWITCH_CTRL_1_OFFSET,
4220 			SWITCH_TX_FLOW_CTRL | SWITCH_RX_FLOW_CTRL))
4221 		hw->overrides |= PAUSE_FLOW_CTRL;
4222 	sw_enable(hw, 1);
4223 }
4224 
4225 /**
4226  * ksz_start_timer - start kernel timer
4227  * @info:	Kernel timer information.
4228  * @time:	The time tick.
4229  *
4230  * This routine starts the kernel timer after the specified time tick.
4231  */
4232 static void ksz_start_timer(struct ksz_timer_info *info, int time)
4233 {
4234 	info->cnt = 0;
4235 	info->timer.expires = jiffies + time;
4236 	add_timer(&info->timer);
4237 
4238 	/* infinity */
4239 	info->max = -1;
4240 }
4241 
4242 /**
4243  * ksz_stop_timer - stop kernel timer
4244  * @info:	Kernel timer information.
4245  *
4246  * This routine stops the kernel timer.
4247  */
4248 static void ksz_stop_timer(struct ksz_timer_info *info)
4249 {
4250 	if (info->max) {
4251 		info->max = 0;
4252 		del_timer_sync(&info->timer);
4253 	}
4254 }
4255 
4256 static void ksz_init_timer(struct ksz_timer_info *info, int period,
4257 	void (*function)(struct timer_list *))
4258 {
4259 	info->max = 0;
4260 	info->period = period;
4261 	timer_setup(&info->timer, function, 0);
4262 }
4263 
4264 static void ksz_update_timer(struct ksz_timer_info *info)
4265 {
4266 	++info->cnt;
4267 	if (info->max > 0) {
4268 		if (info->cnt < info->max) {
4269 			info->timer.expires = jiffies + info->period;
4270 			add_timer(&info->timer);
4271 		} else
4272 			info->max = 0;
4273 	} else if (info->max < 0) {
4274 		info->timer.expires = jiffies + info->period;
4275 		add_timer(&info->timer);
4276 	}
4277 }
4278 
4279 /**
4280  * ksz_alloc_soft_desc - allocate software descriptors
4281  * @desc_info:	Descriptor information structure.
4282  * @transmit:	Indication that descriptors are for transmit.
4283  *
4284  * This local function allocates software descriptors for manipulation in
4285  * memory.
4286  *
4287  * Return 0 if successful.
4288  */
4289 static int ksz_alloc_soft_desc(struct ksz_desc_info *desc_info, int transmit)
4290 {
4291 	desc_info->ring = kcalloc(desc_info->alloc, sizeof(struct ksz_desc),
4292 				  GFP_KERNEL);
4293 	if (!desc_info->ring)
4294 		return 1;
4295 	hw_init_desc(desc_info, transmit);
4296 	return 0;
4297 }
4298 
4299 /**
4300  * ksz_alloc_desc - allocate hardware descriptors
4301  * @adapter:	Adapter information structure.
4302  *
4303  * This local function allocates hardware descriptors for receiving and
4304  * transmitting.
4305  *
4306  * Return 0 if successful.
4307  */
4308 static int ksz_alloc_desc(struct dev_info *adapter)
4309 {
4310 	struct ksz_hw *hw = &adapter->hw;
4311 	int offset;
4312 
4313 	/* Allocate memory for RX & TX descriptors. */
4314 	adapter->desc_pool.alloc_size =
4315 		hw->rx_desc_info.size * hw->rx_desc_info.alloc +
4316 		hw->tx_desc_info.size * hw->tx_desc_info.alloc +
4317 		DESC_ALIGNMENT;
4318 
4319 	adapter->desc_pool.alloc_virt =
4320 		dma_alloc_coherent(&adapter->pdev->dev,
4321 				   adapter->desc_pool.alloc_size,
4322 				   &adapter->desc_pool.dma_addr, GFP_KERNEL);
4323 	if (adapter->desc_pool.alloc_virt == NULL) {
4324 		adapter->desc_pool.alloc_size = 0;
4325 		return 1;
4326 	}
4327 
4328 	/* Align to the next cache line boundary. */
4329 	offset = (((ulong) adapter->desc_pool.alloc_virt % DESC_ALIGNMENT) ?
4330 		(DESC_ALIGNMENT -
4331 		((ulong) adapter->desc_pool.alloc_virt % DESC_ALIGNMENT)) : 0);
4332 	adapter->desc_pool.virt = adapter->desc_pool.alloc_virt + offset;
4333 	adapter->desc_pool.phys = adapter->desc_pool.dma_addr + offset;
4334 
4335 	/* Allocate receive/transmit descriptors. */
4336 	hw->rx_desc_info.ring_virt = (struct ksz_hw_desc *)
4337 		adapter->desc_pool.virt;
4338 	hw->rx_desc_info.ring_phys = adapter->desc_pool.phys;
4339 	offset = hw->rx_desc_info.alloc * hw->rx_desc_info.size;
4340 	hw->tx_desc_info.ring_virt = (struct ksz_hw_desc *)
4341 		(adapter->desc_pool.virt + offset);
4342 	hw->tx_desc_info.ring_phys = adapter->desc_pool.phys + offset;
4343 
4344 	if (ksz_alloc_soft_desc(&hw->rx_desc_info, 0))
4345 		return 1;
4346 	if (ksz_alloc_soft_desc(&hw->tx_desc_info, 1))
4347 		return 1;
4348 
4349 	return 0;
4350 }
4351 
4352 /**
4353  * free_dma_buf - release DMA buffer resources
4354  * @adapter:	Adapter information structure.
4355  * @dma_buf:	pointer to buf
4356  * @direction:	to or from device
4357  *
4358  * This routine is just a helper function to release the DMA buffer resources.
4359  */
4360 static void free_dma_buf(struct dev_info *adapter, struct ksz_dma_buf *dma_buf,
4361 	int direction)
4362 {
4363 	dma_unmap_single(&adapter->pdev->dev, dma_buf->dma, dma_buf->len,
4364 			 direction);
4365 	dev_kfree_skb(dma_buf->skb);
4366 	dma_buf->skb = NULL;
4367 	dma_buf->dma = 0;
4368 }
4369 
4370 /**
4371  * ksz_init_rx_buffers - initialize receive descriptors
4372  * @adapter:	Adapter information structure.
4373  *
4374  * This routine initializes DMA buffers for receiving.
4375  */
4376 static void ksz_init_rx_buffers(struct dev_info *adapter)
4377 {
4378 	int i;
4379 	struct ksz_desc *desc;
4380 	struct ksz_dma_buf *dma_buf;
4381 	struct ksz_hw *hw = &adapter->hw;
4382 	struct ksz_desc_info *info = &hw->rx_desc_info;
4383 
4384 	for (i = 0; i < hw->rx_desc_info.alloc; i++) {
4385 		get_rx_pkt(info, &desc);
4386 
4387 		dma_buf = DMA_BUFFER(desc);
4388 		if (dma_buf->skb && dma_buf->len != adapter->mtu)
4389 			free_dma_buf(adapter, dma_buf, DMA_FROM_DEVICE);
4390 		dma_buf->len = adapter->mtu;
4391 		if (!dma_buf->skb)
4392 			dma_buf->skb = alloc_skb(dma_buf->len, GFP_ATOMIC);
4393 		if (dma_buf->skb && !dma_buf->dma)
4394 			dma_buf->dma = dma_map_single(&adapter->pdev->dev,
4395 						skb_tail_pointer(dma_buf->skb),
4396 						dma_buf->len,
4397 						DMA_FROM_DEVICE);
4398 
4399 		/* Set descriptor. */
4400 		set_rx_buf(desc, dma_buf->dma);
4401 		set_rx_len(desc, dma_buf->len);
4402 		release_desc(desc);
4403 	}
4404 }
4405 
4406 /**
4407  * ksz_alloc_mem - allocate memory for hardware descriptors
4408  * @adapter:	Adapter information structure.
4409  *
4410  * This function allocates memory for use by hardware descriptors for receiving
4411  * and transmitting.
4412  *
4413  * Return 0 if successful.
4414  */
4415 static int ksz_alloc_mem(struct dev_info *adapter)
4416 {
4417 	struct ksz_hw *hw = &adapter->hw;
4418 
4419 	/* Determine the number of receive and transmit descriptors. */
4420 	hw->rx_desc_info.alloc = NUM_OF_RX_DESC;
4421 	hw->tx_desc_info.alloc = NUM_OF_TX_DESC;
4422 
4423 	/* Determine how many descriptors to skip transmit interrupt. */
4424 	hw->tx_int_cnt = 0;
4425 	hw->tx_int_mask = NUM_OF_TX_DESC / 4;
4426 	if (hw->tx_int_mask > 8)
4427 		hw->tx_int_mask = 8;
4428 	while (hw->tx_int_mask) {
4429 		hw->tx_int_cnt++;
4430 		hw->tx_int_mask >>= 1;
4431 	}
4432 	if (hw->tx_int_cnt) {
4433 		hw->tx_int_mask = (1 << (hw->tx_int_cnt - 1)) - 1;
4434 		hw->tx_int_cnt = 0;
4435 	}
4436 
4437 	/* Determine the descriptor size. */
4438 	hw->rx_desc_info.size =
4439 		(((sizeof(struct ksz_hw_desc) + DESC_ALIGNMENT - 1) /
4440 		DESC_ALIGNMENT) * DESC_ALIGNMENT);
4441 	hw->tx_desc_info.size =
4442 		(((sizeof(struct ksz_hw_desc) + DESC_ALIGNMENT - 1) /
4443 		DESC_ALIGNMENT) * DESC_ALIGNMENT);
4444 	if (hw->rx_desc_info.size != sizeof(struct ksz_hw_desc))
4445 		pr_alert("Hardware descriptor size not right!\n");
4446 	ksz_check_desc_num(&hw->rx_desc_info);
4447 	ksz_check_desc_num(&hw->tx_desc_info);
4448 
4449 	/* Allocate descriptors. */
4450 	if (ksz_alloc_desc(adapter))
4451 		return 1;
4452 
4453 	return 0;
4454 }
4455 
4456 /**
4457  * ksz_free_desc - free software and hardware descriptors
4458  * @adapter:	Adapter information structure.
4459  *
4460  * This local routine frees the software and hardware descriptors allocated by
4461  * ksz_alloc_desc().
4462  */
4463 static void ksz_free_desc(struct dev_info *adapter)
4464 {
4465 	struct ksz_hw *hw = &adapter->hw;
4466 
4467 	/* Reset descriptor. */
4468 	hw->rx_desc_info.ring_virt = NULL;
4469 	hw->tx_desc_info.ring_virt = NULL;
4470 	hw->rx_desc_info.ring_phys = 0;
4471 	hw->tx_desc_info.ring_phys = 0;
4472 
4473 	/* Free memory. */
4474 	if (adapter->desc_pool.alloc_virt)
4475 		dma_free_coherent(&adapter->pdev->dev,
4476 				  adapter->desc_pool.alloc_size,
4477 				  adapter->desc_pool.alloc_virt,
4478 				  adapter->desc_pool.dma_addr);
4479 
4480 	/* Reset resource pool. */
4481 	adapter->desc_pool.alloc_size = 0;
4482 	adapter->desc_pool.alloc_virt = NULL;
4483 
4484 	kfree(hw->rx_desc_info.ring);
4485 	hw->rx_desc_info.ring = NULL;
4486 	kfree(hw->tx_desc_info.ring);
4487 	hw->tx_desc_info.ring = NULL;
4488 }
4489 
4490 /**
4491  * ksz_free_buffers - free buffers used in the descriptors
4492  * @adapter:	Adapter information structure.
4493  * @desc_info:	Descriptor information structure.
4494  * @direction:	to or from device
4495  *
4496  * This local routine frees buffers used in the DMA buffers.
4497  */
4498 static void ksz_free_buffers(struct dev_info *adapter,
4499 	struct ksz_desc_info *desc_info, int direction)
4500 {
4501 	int i;
4502 	struct ksz_dma_buf *dma_buf;
4503 	struct ksz_desc *desc = desc_info->ring;
4504 
4505 	for (i = 0; i < desc_info->alloc; i++) {
4506 		dma_buf = DMA_BUFFER(desc);
4507 		if (dma_buf->skb)
4508 			free_dma_buf(adapter, dma_buf, direction);
4509 		desc++;
4510 	}
4511 }
4512 
4513 /**
4514  * ksz_free_mem - free all resources used by descriptors
4515  * @adapter:	Adapter information structure.
4516  *
4517  * This local routine frees all the resources allocated by ksz_alloc_mem().
4518  */
4519 static void ksz_free_mem(struct dev_info *adapter)
4520 {
4521 	/* Free transmit buffers. */
4522 	ksz_free_buffers(adapter, &adapter->hw.tx_desc_info, DMA_TO_DEVICE);
4523 
4524 	/* Free receive buffers. */
4525 	ksz_free_buffers(adapter, &adapter->hw.rx_desc_info, DMA_FROM_DEVICE);
4526 
4527 	/* Free descriptors. */
4528 	ksz_free_desc(adapter);
4529 }
4530 
4531 static void get_mib_counters(struct ksz_hw *hw, int first, int cnt,
4532 	u64 *counter)
4533 {
4534 	int i;
4535 	int mib;
4536 	int port;
4537 	struct ksz_port_mib *port_mib;
4538 
4539 	memset(counter, 0, sizeof(u64) * TOTAL_PORT_COUNTER_NUM);
4540 	for (i = 0, port = first; i < cnt; i++, port++) {
4541 		port_mib = &hw->port_mib[port];
4542 		for (mib = port_mib->mib_start; mib < hw->mib_cnt; mib++)
4543 			counter[mib] += port_mib->counter[mib];
4544 	}
4545 }
4546 
4547 /**
4548  * send_packet - send packet
4549  * @skb:	Socket buffer.
4550  * @dev:	Network device.
4551  *
4552  * This routine is used to send a packet out to the network.
4553  */
4554 static void send_packet(struct sk_buff *skb, struct net_device *dev)
4555 {
4556 	struct ksz_desc *desc;
4557 	struct ksz_desc *first;
4558 	struct dev_priv *priv = netdev_priv(dev);
4559 	struct dev_info *hw_priv = priv->adapter;
4560 	struct ksz_hw *hw = &hw_priv->hw;
4561 	struct ksz_desc_info *info = &hw->tx_desc_info;
4562 	struct ksz_dma_buf *dma_buf;
4563 	int len;
4564 	int last_frag = skb_shinfo(skb)->nr_frags;
4565 
4566 	/*
4567 	 * KSZ8842 with multiple device interfaces needs to be told which port
4568 	 * to send.
4569 	 */
4570 	if (hw->dev_count > 1)
4571 		hw->dst_ports = 1 << priv->port.first_port;
4572 
4573 	/* Hardware will pad the length to 60. */
4574 	len = skb->len;
4575 
4576 	/* Remember the very first descriptor. */
4577 	first = info->cur;
4578 	desc = first;
4579 
4580 	dma_buf = DMA_BUFFER(desc);
4581 	if (last_frag) {
4582 		int frag;
4583 		skb_frag_t *this_frag;
4584 
4585 		dma_buf->len = skb_headlen(skb);
4586 
4587 		dma_buf->dma = dma_map_single(&hw_priv->pdev->dev, skb->data,
4588 					      dma_buf->len, DMA_TO_DEVICE);
4589 		set_tx_buf(desc, dma_buf->dma);
4590 		set_tx_len(desc, dma_buf->len);
4591 
4592 		frag = 0;
4593 		do {
4594 			this_frag = &skb_shinfo(skb)->frags[frag];
4595 
4596 			/* Get a new descriptor. */
4597 			get_tx_pkt(info, &desc);
4598 
4599 			/* Keep track of descriptors used so far. */
4600 			++hw->tx_int_cnt;
4601 
4602 			dma_buf = DMA_BUFFER(desc);
4603 			dma_buf->len = skb_frag_size(this_frag);
4604 
4605 			dma_buf->dma = dma_map_single(&hw_priv->pdev->dev,
4606 						      skb_frag_address(this_frag),
4607 						      dma_buf->len,
4608 						      DMA_TO_DEVICE);
4609 			set_tx_buf(desc, dma_buf->dma);
4610 			set_tx_len(desc, dma_buf->len);
4611 
4612 			frag++;
4613 			if (frag == last_frag)
4614 				break;
4615 
4616 			/* Do not release the last descriptor here. */
4617 			release_desc(desc);
4618 		} while (1);
4619 
4620 		/* current points to the last descriptor. */
4621 		info->cur = desc;
4622 
4623 		/* Release the first descriptor. */
4624 		release_desc(first);
4625 	} else {
4626 		dma_buf->len = len;
4627 
4628 		dma_buf->dma = dma_map_single(&hw_priv->pdev->dev, skb->data,
4629 					      dma_buf->len, DMA_TO_DEVICE);
4630 		set_tx_buf(desc, dma_buf->dma);
4631 		set_tx_len(desc, dma_buf->len);
4632 	}
4633 
4634 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
4635 		(desc)->sw.buf.tx.csum_gen_tcp = 1;
4636 		(desc)->sw.buf.tx.csum_gen_udp = 1;
4637 	}
4638 
4639 	/*
4640 	 * The last descriptor holds the packet so that it can be returned to
4641 	 * network subsystem after all descriptors are transmitted.
4642 	 */
4643 	dma_buf->skb = skb;
4644 
4645 	hw_send_pkt(hw);
4646 
4647 	/* Update transmit statistics. */
4648 	dev->stats.tx_packets++;
4649 	dev->stats.tx_bytes += len;
4650 }
4651 
4652 /**
4653  * transmit_cleanup - clean up transmit descriptors
4654  * @hw_priv:	Network device.
4655  * @normal:	break if owned
4656  *
4657  * This routine is called to clean up the transmitted buffers.
4658  */
4659 static void transmit_cleanup(struct dev_info *hw_priv, int normal)
4660 {
4661 	int last;
4662 	union desc_stat status;
4663 	struct ksz_hw *hw = &hw_priv->hw;
4664 	struct ksz_desc_info *info = &hw->tx_desc_info;
4665 	struct ksz_desc *desc;
4666 	struct ksz_dma_buf *dma_buf;
4667 	struct net_device *dev = NULL;
4668 
4669 	spin_lock_irq(&hw_priv->hwlock);
4670 	last = info->last;
4671 
4672 	while (info->avail < info->alloc) {
4673 		/* Get next descriptor which is not hardware owned. */
4674 		desc = &info->ring[last];
4675 		status.data = le32_to_cpu(desc->phw->ctrl.data);
4676 		if (status.tx.hw_owned) {
4677 			if (normal)
4678 				break;
4679 			else
4680 				reset_desc(desc, status);
4681 		}
4682 
4683 		dma_buf = DMA_BUFFER(desc);
4684 		dma_unmap_single(&hw_priv->pdev->dev, dma_buf->dma,
4685 				 dma_buf->len, DMA_TO_DEVICE);
4686 
4687 		/* This descriptor contains the last buffer in the packet. */
4688 		if (dma_buf->skb) {
4689 			dev = dma_buf->skb->dev;
4690 
4691 			/* Release the packet back to network subsystem. */
4692 			dev_kfree_skb_irq(dma_buf->skb);
4693 			dma_buf->skb = NULL;
4694 		}
4695 
4696 		/* Free the transmitted descriptor. */
4697 		last++;
4698 		last &= info->mask;
4699 		info->avail++;
4700 	}
4701 	info->last = last;
4702 	spin_unlock_irq(&hw_priv->hwlock);
4703 
4704 	/* Notify the network subsystem that the packet has been sent. */
4705 	if (dev)
4706 		netif_trans_update(dev);
4707 }
4708 
4709 /**
4710  * tx_done - transmit done processing
4711  * @hw_priv:	Network device.
4712  *
4713  * This routine is called when the transmit interrupt is triggered, indicating
4714  * either a packet is sent successfully or there are transmit errors.
4715  */
4716 static void tx_done(struct dev_info *hw_priv)
4717 {
4718 	struct ksz_hw *hw = &hw_priv->hw;
4719 	int port;
4720 
4721 	transmit_cleanup(hw_priv, 1);
4722 
4723 	for (port = 0; port < hw->dev_count; port++) {
4724 		struct net_device *dev = hw->port_info[port].pdev;
4725 
4726 		if (netif_running(dev) && netif_queue_stopped(dev))
4727 			netif_wake_queue(dev);
4728 	}
4729 }
4730 
4731 static inline void copy_old_skb(struct sk_buff *old, struct sk_buff *skb)
4732 {
4733 	skb->dev = old->dev;
4734 	skb->protocol = old->protocol;
4735 	skb->ip_summed = old->ip_summed;
4736 	skb->csum = old->csum;
4737 	skb_set_network_header(skb, ETH_HLEN);
4738 
4739 	dev_consume_skb_any(old);
4740 }
4741 
4742 /**
4743  * netdev_tx - send out packet
4744  * @skb:	Socket buffer.
4745  * @dev:	Network device.
4746  *
4747  * This function is used by the upper network layer to send out a packet.
4748  *
4749  * Return 0 if successful; otherwise an error code indicating failure.
4750  */
4751 static netdev_tx_t netdev_tx(struct sk_buff *skb, struct net_device *dev)
4752 {
4753 	struct dev_priv *priv = netdev_priv(dev);
4754 	struct dev_info *hw_priv = priv->adapter;
4755 	struct ksz_hw *hw = &hw_priv->hw;
4756 	int left;
4757 	int num = 1;
4758 	int rc = 0;
4759 
4760 	if (hw->features & SMALL_PACKET_TX_BUG) {
4761 		struct sk_buff *org_skb = skb;
4762 
4763 		if (skb->len <= 48) {
4764 			if (skb_end_pointer(skb) - skb->data >= 50) {
4765 				memset(&skb->data[skb->len], 0, 50 - skb->len);
4766 				skb->len = 50;
4767 			} else {
4768 				skb = netdev_alloc_skb(dev, 50);
4769 				if (!skb)
4770 					return NETDEV_TX_BUSY;
4771 				memcpy(skb->data, org_skb->data, org_skb->len);
4772 				memset(&skb->data[org_skb->len], 0,
4773 					50 - org_skb->len);
4774 				skb->len = 50;
4775 				copy_old_skb(org_skb, skb);
4776 			}
4777 		}
4778 	}
4779 
4780 	spin_lock_irq(&hw_priv->hwlock);
4781 
4782 	num = skb_shinfo(skb)->nr_frags + 1;
4783 	left = hw_alloc_pkt(hw, skb->len, num);
4784 	if (left) {
4785 		if (left < num ||
4786 		    (CHECKSUM_PARTIAL == skb->ip_summed &&
4787 		     skb->protocol == htons(ETH_P_IPV6))) {
4788 			struct sk_buff *org_skb = skb;
4789 
4790 			skb = netdev_alloc_skb(dev, org_skb->len);
4791 			if (!skb) {
4792 				rc = NETDEV_TX_BUSY;
4793 				goto unlock;
4794 			}
4795 			skb_copy_and_csum_dev(org_skb, skb->data);
4796 			org_skb->ip_summed = CHECKSUM_NONE;
4797 			skb->len = org_skb->len;
4798 			copy_old_skb(org_skb, skb);
4799 		}
4800 		send_packet(skb, dev);
4801 		if (left <= num)
4802 			netif_stop_queue(dev);
4803 	} else {
4804 		/* Stop the transmit queue until packet is allocated. */
4805 		netif_stop_queue(dev);
4806 		rc = NETDEV_TX_BUSY;
4807 	}
4808 unlock:
4809 	spin_unlock_irq(&hw_priv->hwlock);
4810 
4811 	return rc;
4812 }
4813 
4814 /**
4815  * netdev_tx_timeout - transmit timeout processing
4816  * @dev:	Network device.
4817  * @txqueue:	index of hanging queue
4818  *
4819  * This routine is called when the transmit timer expires.  That indicates the
4820  * hardware is not running correctly because transmit interrupts are not
4821  * triggered to free up resources so that the transmit routine can continue
4822  * sending out packets.  The hardware is reset to correct the problem.
4823  */
4824 static void netdev_tx_timeout(struct net_device *dev, unsigned int txqueue)
4825 {
4826 	static unsigned long last_reset;
4827 
4828 	struct dev_priv *priv = netdev_priv(dev);
4829 	struct dev_info *hw_priv = priv->adapter;
4830 	struct ksz_hw *hw = &hw_priv->hw;
4831 	int port;
4832 
4833 	if (hw->dev_count > 1) {
4834 		/*
4835 		 * Only reset the hardware if time between calls is long
4836 		 * enough.
4837 		 */
4838 		if (time_before_eq(jiffies, last_reset + dev->watchdog_timeo))
4839 			hw_priv = NULL;
4840 	}
4841 
4842 	last_reset = jiffies;
4843 	if (hw_priv) {
4844 		hw_dis_intr(hw);
4845 		hw_disable(hw);
4846 
4847 		transmit_cleanup(hw_priv, 0);
4848 		hw_reset_pkts(&hw->rx_desc_info);
4849 		hw_reset_pkts(&hw->tx_desc_info);
4850 		ksz_init_rx_buffers(hw_priv);
4851 
4852 		hw_reset(hw);
4853 
4854 		hw_set_desc_base(hw,
4855 			hw->tx_desc_info.ring_phys,
4856 			hw->rx_desc_info.ring_phys);
4857 		hw_set_addr(hw);
4858 		if (hw->all_multi)
4859 			hw_set_multicast(hw, hw->all_multi);
4860 		else if (hw->multi_list_size)
4861 			hw_set_grp_addr(hw);
4862 
4863 		if (hw->dev_count > 1) {
4864 			hw_set_add_addr(hw);
4865 			for (port = 0; port < SWITCH_PORT_NUM; port++) {
4866 				struct net_device *port_dev;
4867 
4868 				port_set_stp_state(hw, port,
4869 					STP_STATE_DISABLED);
4870 
4871 				port_dev = hw->port_info[port].pdev;
4872 				if (netif_running(port_dev))
4873 					port_set_stp_state(hw, port,
4874 						STP_STATE_SIMPLE);
4875 			}
4876 		}
4877 
4878 		hw_enable(hw);
4879 		hw_ena_intr(hw);
4880 	}
4881 
4882 	netif_trans_update(dev);
4883 	netif_wake_queue(dev);
4884 }
4885 
4886 static inline void csum_verified(struct sk_buff *skb)
4887 {
4888 	unsigned short protocol;
4889 	struct iphdr *iph;
4890 
4891 	protocol = skb->protocol;
4892 	skb_reset_network_header(skb);
4893 	iph = (struct iphdr *) skb_network_header(skb);
4894 	if (protocol == htons(ETH_P_8021Q)) {
4895 		protocol = iph->tot_len;
4896 		skb_set_network_header(skb, VLAN_HLEN);
4897 		iph = (struct iphdr *) skb_network_header(skb);
4898 	}
4899 	if (protocol == htons(ETH_P_IP)) {
4900 		if (iph->protocol == IPPROTO_TCP)
4901 			skb->ip_summed = CHECKSUM_UNNECESSARY;
4902 	}
4903 }
4904 
4905 static inline int rx_proc(struct net_device *dev, struct ksz_hw* hw,
4906 	struct ksz_desc *desc, union desc_stat status)
4907 {
4908 	int packet_len;
4909 	struct dev_priv *priv = netdev_priv(dev);
4910 	struct dev_info *hw_priv = priv->adapter;
4911 	struct ksz_dma_buf *dma_buf;
4912 	struct sk_buff *skb;
4913 
4914 	/* Received length includes 4-byte CRC. */
4915 	packet_len = status.rx.frame_len - 4;
4916 
4917 	dma_buf = DMA_BUFFER(desc);
4918 	dma_sync_single_for_cpu(&hw_priv->pdev->dev, dma_buf->dma,
4919 				packet_len + 4, DMA_FROM_DEVICE);
4920 
4921 	do {
4922 		/* skb->data != skb->head */
4923 		skb = netdev_alloc_skb(dev, packet_len + 2);
4924 		if (!skb) {
4925 			dev->stats.rx_dropped++;
4926 			return -ENOMEM;
4927 		}
4928 
4929 		/*
4930 		 * Align socket buffer in 4-byte boundary for better
4931 		 * performance.
4932 		 */
4933 		skb_reserve(skb, 2);
4934 
4935 		skb_put_data(skb, dma_buf->skb->data, packet_len);
4936 	} while (0);
4937 
4938 	skb->protocol = eth_type_trans(skb, dev);
4939 
4940 	if (hw->rx_cfg & (DMA_RX_CSUM_UDP | DMA_RX_CSUM_TCP))
4941 		csum_verified(skb);
4942 
4943 	/* Update receive statistics. */
4944 	dev->stats.rx_packets++;
4945 	dev->stats.rx_bytes += packet_len;
4946 
4947 	/* Notify upper layer for received packet. */
4948 	netif_rx(skb);
4949 
4950 	return 0;
4951 }
4952 
4953 static int dev_rcv_packets(struct dev_info *hw_priv)
4954 {
4955 	int next;
4956 	union desc_stat status;
4957 	struct ksz_hw *hw = &hw_priv->hw;
4958 	struct net_device *dev = hw->port_info[0].pdev;
4959 	struct ksz_desc_info *info = &hw->rx_desc_info;
4960 	int left = info->alloc;
4961 	struct ksz_desc *desc;
4962 	int received = 0;
4963 
4964 	next = info->next;
4965 	while (left--) {
4966 		/* Get next descriptor which is not hardware owned. */
4967 		desc = &info->ring[next];
4968 		status.data = le32_to_cpu(desc->phw->ctrl.data);
4969 		if (status.rx.hw_owned)
4970 			break;
4971 
4972 		/* Status valid only when last descriptor bit is set. */
4973 		if (status.rx.last_desc && status.rx.first_desc) {
4974 			if (rx_proc(dev, hw, desc, status))
4975 				goto release_packet;
4976 			received++;
4977 		}
4978 
4979 release_packet:
4980 		release_desc(desc);
4981 		next++;
4982 		next &= info->mask;
4983 	}
4984 	info->next = next;
4985 
4986 	return received;
4987 }
4988 
4989 static int port_rcv_packets(struct dev_info *hw_priv)
4990 {
4991 	int next;
4992 	union desc_stat status;
4993 	struct ksz_hw *hw = &hw_priv->hw;
4994 	struct net_device *dev = hw->port_info[0].pdev;
4995 	struct ksz_desc_info *info = &hw->rx_desc_info;
4996 	int left = info->alloc;
4997 	struct ksz_desc *desc;
4998 	int received = 0;
4999 
5000 	next = info->next;
5001 	while (left--) {
5002 		/* Get next descriptor which is not hardware owned. */
5003 		desc = &info->ring[next];
5004 		status.data = le32_to_cpu(desc->phw->ctrl.data);
5005 		if (status.rx.hw_owned)
5006 			break;
5007 
5008 		if (hw->dev_count > 1) {
5009 			/* Get received port number. */
5010 			int p = HW_TO_DEV_PORT(status.rx.src_port);
5011 
5012 			dev = hw->port_info[p].pdev;
5013 			if (!netif_running(dev))
5014 				goto release_packet;
5015 		}
5016 
5017 		/* Status valid only when last descriptor bit is set. */
5018 		if (status.rx.last_desc && status.rx.first_desc) {
5019 			if (rx_proc(dev, hw, desc, status))
5020 				goto release_packet;
5021 			received++;
5022 		}
5023 
5024 release_packet:
5025 		release_desc(desc);
5026 		next++;
5027 		next &= info->mask;
5028 	}
5029 	info->next = next;
5030 
5031 	return received;
5032 }
5033 
5034 static int dev_rcv_special(struct dev_info *hw_priv)
5035 {
5036 	int next;
5037 	union desc_stat status;
5038 	struct ksz_hw *hw = &hw_priv->hw;
5039 	struct net_device *dev = hw->port_info[0].pdev;
5040 	struct ksz_desc_info *info = &hw->rx_desc_info;
5041 	int left = info->alloc;
5042 	struct ksz_desc *desc;
5043 	int received = 0;
5044 
5045 	next = info->next;
5046 	while (left--) {
5047 		/* Get next descriptor which is not hardware owned. */
5048 		desc = &info->ring[next];
5049 		status.data = le32_to_cpu(desc->phw->ctrl.data);
5050 		if (status.rx.hw_owned)
5051 			break;
5052 
5053 		if (hw->dev_count > 1) {
5054 			/* Get received port number. */
5055 			int p = HW_TO_DEV_PORT(status.rx.src_port);
5056 
5057 			dev = hw->port_info[p].pdev;
5058 			if (!netif_running(dev))
5059 				goto release_packet;
5060 		}
5061 
5062 		/* Status valid only when last descriptor bit is set. */
5063 		if (status.rx.last_desc && status.rx.first_desc) {
5064 			/*
5065 			 * Receive without error.  With receive errors
5066 			 * disabled, packets with receive errors will be
5067 			 * dropped, so no need to check the error bit.
5068 			 */
5069 			if (!status.rx.error || (status.data &
5070 					KS_DESC_RX_ERROR_COND) ==
5071 					KS_DESC_RX_ERROR_TOO_LONG) {
5072 				if (rx_proc(dev, hw, desc, status))
5073 					goto release_packet;
5074 				received++;
5075 			} else {
5076 				struct dev_priv *priv = netdev_priv(dev);
5077 
5078 				/* Update receive error statistics. */
5079 				priv->port.counter[OID_COUNTER_RCV_ERROR]++;
5080 			}
5081 		}
5082 
5083 release_packet:
5084 		release_desc(desc);
5085 		next++;
5086 		next &= info->mask;
5087 	}
5088 	info->next = next;
5089 
5090 	return received;
5091 }
5092 
5093 static void rx_proc_task(struct tasklet_struct *t)
5094 {
5095 	struct dev_info *hw_priv = from_tasklet(hw_priv, t, rx_tasklet);
5096 	struct ksz_hw *hw = &hw_priv->hw;
5097 
5098 	if (!hw->enabled)
5099 		return;
5100 	if (unlikely(!hw_priv->dev_rcv(hw_priv))) {
5101 
5102 		/* In case receive process is suspended because of overrun. */
5103 		hw_resume_rx(hw);
5104 
5105 		/* tasklets are interruptible. */
5106 		spin_lock_irq(&hw_priv->hwlock);
5107 		hw_turn_on_intr(hw, KS884X_INT_RX_MASK);
5108 		spin_unlock_irq(&hw_priv->hwlock);
5109 	} else {
5110 		hw_ack_intr(hw, KS884X_INT_RX);
5111 		tasklet_schedule(&hw_priv->rx_tasklet);
5112 	}
5113 }
5114 
5115 static void tx_proc_task(struct tasklet_struct *t)
5116 {
5117 	struct dev_info *hw_priv = from_tasklet(hw_priv, t, tx_tasklet);
5118 	struct ksz_hw *hw = &hw_priv->hw;
5119 
5120 	hw_ack_intr(hw, KS884X_INT_TX_MASK);
5121 
5122 	tx_done(hw_priv);
5123 
5124 	/* tasklets are interruptible. */
5125 	spin_lock_irq(&hw_priv->hwlock);
5126 	hw_turn_on_intr(hw, KS884X_INT_TX);
5127 	spin_unlock_irq(&hw_priv->hwlock);
5128 }
5129 
5130 static inline void handle_rx_stop(struct ksz_hw *hw)
5131 {
5132 	/* Receive just has been stopped. */
5133 	if (0 == hw->rx_stop)
5134 		hw->intr_mask &= ~KS884X_INT_RX_STOPPED;
5135 	else if (hw->rx_stop > 1) {
5136 		if (hw->enabled && (hw->rx_cfg & DMA_RX_ENABLE)) {
5137 			hw_start_rx(hw);
5138 		} else {
5139 			hw->intr_mask &= ~KS884X_INT_RX_STOPPED;
5140 			hw->rx_stop = 0;
5141 		}
5142 	} else
5143 		/* Receive just has been started. */
5144 		hw->rx_stop++;
5145 }
5146 
5147 /**
5148  * netdev_intr - interrupt handling
5149  * @irq:	Interrupt number.
5150  * @dev_id:	Network device.
5151  *
5152  * This function is called by upper network layer to signal interrupt.
5153  *
5154  * Return IRQ_HANDLED if interrupt is handled.
5155  */
5156 static irqreturn_t netdev_intr(int irq, void *dev_id)
5157 {
5158 	uint int_enable = 0;
5159 	struct net_device *dev = (struct net_device *) dev_id;
5160 	struct dev_priv *priv = netdev_priv(dev);
5161 	struct dev_info *hw_priv = priv->adapter;
5162 	struct ksz_hw *hw = &hw_priv->hw;
5163 
5164 	spin_lock(&hw_priv->hwlock);
5165 
5166 	hw_read_intr(hw, &int_enable);
5167 
5168 	/* Not our interrupt! */
5169 	if (!int_enable) {
5170 		spin_unlock(&hw_priv->hwlock);
5171 		return IRQ_NONE;
5172 	}
5173 
5174 	do {
5175 		hw_ack_intr(hw, int_enable);
5176 		int_enable &= hw->intr_mask;
5177 
5178 		if (unlikely(int_enable & KS884X_INT_TX_MASK)) {
5179 			hw_dis_intr_bit(hw, KS884X_INT_TX_MASK);
5180 			tasklet_schedule(&hw_priv->tx_tasklet);
5181 		}
5182 
5183 		if (likely(int_enable & KS884X_INT_RX)) {
5184 			hw_dis_intr_bit(hw, KS884X_INT_RX);
5185 			tasklet_schedule(&hw_priv->rx_tasklet);
5186 		}
5187 
5188 		if (unlikely(int_enable & KS884X_INT_RX_OVERRUN)) {
5189 			dev->stats.rx_fifo_errors++;
5190 			hw_resume_rx(hw);
5191 		}
5192 
5193 		if (unlikely(int_enable & KS884X_INT_PHY)) {
5194 			struct ksz_port *port = &priv->port;
5195 
5196 			hw->features |= LINK_INT_WORKING;
5197 			port_get_link_speed(port);
5198 		}
5199 
5200 		if (unlikely(int_enable & KS884X_INT_RX_STOPPED)) {
5201 			handle_rx_stop(hw);
5202 			break;
5203 		}
5204 
5205 		if (unlikely(int_enable & KS884X_INT_TX_STOPPED)) {
5206 			u32 data;
5207 
5208 			hw->intr_mask &= ~KS884X_INT_TX_STOPPED;
5209 			pr_info("Tx stopped\n");
5210 			data = readl(hw->io + KS_DMA_TX_CTRL);
5211 			if (!(data & DMA_TX_ENABLE))
5212 				pr_info("Tx disabled\n");
5213 			break;
5214 		}
5215 	} while (0);
5216 
5217 	hw_ena_intr(hw);
5218 
5219 	spin_unlock(&hw_priv->hwlock);
5220 
5221 	return IRQ_HANDLED;
5222 }
5223 
5224 /*
5225  * Linux network device functions
5226  */
5227 
5228 static unsigned long next_jiffies;
5229 
5230 #ifdef CONFIG_NET_POLL_CONTROLLER
5231 static void netdev_netpoll(struct net_device *dev)
5232 {
5233 	struct dev_priv *priv = netdev_priv(dev);
5234 	struct dev_info *hw_priv = priv->adapter;
5235 
5236 	hw_dis_intr(&hw_priv->hw);
5237 	netdev_intr(dev->irq, dev);
5238 }
5239 #endif
5240 
5241 static void bridge_change(struct ksz_hw *hw)
5242 {
5243 	int port;
5244 	u8  member;
5245 	struct ksz_switch *sw = hw->ksz_switch;
5246 
5247 	/* No ports in forwarding state. */
5248 	if (!sw->member) {
5249 		port_set_stp_state(hw, SWITCH_PORT_NUM, STP_STATE_SIMPLE);
5250 		sw_block_addr(hw);
5251 	}
5252 	for (port = 0; port < SWITCH_PORT_NUM; port++) {
5253 		if (STP_STATE_FORWARDING == sw->port_cfg[port].stp_state)
5254 			member = HOST_MASK | sw->member;
5255 		else
5256 			member = HOST_MASK | (1 << port);
5257 		if (member != sw->port_cfg[port].member)
5258 			sw_cfg_port_base_vlan(hw, port, member);
5259 	}
5260 }
5261 
5262 /**
5263  * netdev_close - close network device
5264  * @dev:	Network device.
5265  *
5266  * This function process the close operation of network device.  This is caused
5267  * by the user command "ifconfig ethX down."
5268  *
5269  * Return 0 if successful; otherwise an error code indicating failure.
5270  */
5271 static int netdev_close(struct net_device *dev)
5272 {
5273 	struct dev_priv *priv = netdev_priv(dev);
5274 	struct dev_info *hw_priv = priv->adapter;
5275 	struct ksz_port *port = &priv->port;
5276 	struct ksz_hw *hw = &hw_priv->hw;
5277 	int pi;
5278 
5279 	netif_stop_queue(dev);
5280 
5281 	ksz_stop_timer(&priv->monitor_timer_info);
5282 
5283 	/* Need to shut the port manually in multiple device interfaces mode. */
5284 	if (hw->dev_count > 1) {
5285 		port_set_stp_state(hw, port->first_port, STP_STATE_DISABLED);
5286 
5287 		/* Port is closed.  Need to change bridge setting. */
5288 		if (hw->features & STP_SUPPORT) {
5289 			pi = 1 << port->first_port;
5290 			if (hw->ksz_switch->member & pi) {
5291 				hw->ksz_switch->member &= ~pi;
5292 				bridge_change(hw);
5293 			}
5294 		}
5295 	}
5296 	if (port->first_port > 0)
5297 		hw_del_addr(hw, dev->dev_addr);
5298 	if (!hw_priv->wol_enable)
5299 		port_set_power_saving(port, true);
5300 
5301 	if (priv->multicast)
5302 		--hw->all_multi;
5303 	if (priv->promiscuous)
5304 		--hw->promiscuous;
5305 
5306 	hw_priv->opened--;
5307 	if (!(hw_priv->opened)) {
5308 		ksz_stop_timer(&hw_priv->mib_timer_info);
5309 		flush_work(&hw_priv->mib_read);
5310 
5311 		hw_dis_intr(hw);
5312 		hw_disable(hw);
5313 		hw_clr_multicast(hw);
5314 
5315 		/* Delay for receive task to stop scheduling itself. */
5316 		msleep(2000 / HZ);
5317 
5318 		tasklet_kill(&hw_priv->rx_tasklet);
5319 		tasklet_kill(&hw_priv->tx_tasklet);
5320 		free_irq(dev->irq, hw_priv->dev);
5321 
5322 		transmit_cleanup(hw_priv, 0);
5323 		hw_reset_pkts(&hw->rx_desc_info);
5324 		hw_reset_pkts(&hw->tx_desc_info);
5325 
5326 		/* Clean out static MAC table when the switch is shutdown. */
5327 		if (hw->features & STP_SUPPORT)
5328 			sw_clr_sta_mac_table(hw);
5329 	}
5330 
5331 	return 0;
5332 }
5333 
5334 static void hw_cfg_huge_frame(struct dev_info *hw_priv, struct ksz_hw *hw)
5335 {
5336 	if (hw->ksz_switch) {
5337 		u32 data;
5338 
5339 		data = readw(hw->io + KS8842_SWITCH_CTRL_2_OFFSET);
5340 		if (hw->features & RX_HUGE_FRAME)
5341 			data |= SWITCH_HUGE_PACKET;
5342 		else
5343 			data &= ~SWITCH_HUGE_PACKET;
5344 		writew(data, hw->io + KS8842_SWITCH_CTRL_2_OFFSET);
5345 	}
5346 	if (hw->features & RX_HUGE_FRAME) {
5347 		hw->rx_cfg |= DMA_RX_ERROR;
5348 		hw_priv->dev_rcv = dev_rcv_special;
5349 	} else {
5350 		hw->rx_cfg &= ~DMA_RX_ERROR;
5351 		if (hw->dev_count > 1)
5352 			hw_priv->dev_rcv = port_rcv_packets;
5353 		else
5354 			hw_priv->dev_rcv = dev_rcv_packets;
5355 	}
5356 }
5357 
5358 static int prepare_hardware(struct net_device *dev)
5359 {
5360 	struct dev_priv *priv = netdev_priv(dev);
5361 	struct dev_info *hw_priv = priv->adapter;
5362 	struct ksz_hw *hw = &hw_priv->hw;
5363 	int rc = 0;
5364 
5365 	/* Remember the network device that requests interrupts. */
5366 	hw_priv->dev = dev;
5367 	rc = request_irq(dev->irq, netdev_intr, IRQF_SHARED, dev->name, dev);
5368 	if (rc)
5369 		return rc;
5370 	tasklet_setup(&hw_priv->rx_tasklet, rx_proc_task);
5371 	tasklet_setup(&hw_priv->tx_tasklet, tx_proc_task);
5372 
5373 	hw->promiscuous = 0;
5374 	hw->all_multi = 0;
5375 	hw->multi_list_size = 0;
5376 
5377 	hw_reset(hw);
5378 
5379 	hw_set_desc_base(hw,
5380 		hw->tx_desc_info.ring_phys, hw->rx_desc_info.ring_phys);
5381 	hw_set_addr(hw);
5382 	hw_cfg_huge_frame(hw_priv, hw);
5383 	ksz_init_rx_buffers(hw_priv);
5384 	return 0;
5385 }
5386 
5387 static void set_media_state(struct net_device *dev, int media_state)
5388 {
5389 	struct dev_priv *priv = netdev_priv(dev);
5390 
5391 	if (media_state == priv->media_state)
5392 		netif_carrier_on(dev);
5393 	else
5394 		netif_carrier_off(dev);
5395 	netif_info(priv, link, dev, "link %s\n",
5396 		   media_state == priv->media_state ? "on" : "off");
5397 }
5398 
5399 /**
5400  * netdev_open - open network device
5401  * @dev:	Network device.
5402  *
5403  * This function process the open operation of network device.  This is caused
5404  * by the user command "ifconfig ethX up."
5405  *
5406  * Return 0 if successful; otherwise an error code indicating failure.
5407  */
5408 static int netdev_open(struct net_device *dev)
5409 {
5410 	struct dev_priv *priv = netdev_priv(dev);
5411 	struct dev_info *hw_priv = priv->adapter;
5412 	struct ksz_hw *hw = &hw_priv->hw;
5413 	struct ksz_port *port = &priv->port;
5414 	int i;
5415 	int p;
5416 	int rc = 0;
5417 
5418 	priv->multicast = 0;
5419 	priv->promiscuous = 0;
5420 
5421 	/* Reset device statistics. */
5422 	memset(&dev->stats, 0, sizeof(struct net_device_stats));
5423 	memset((void *) port->counter, 0,
5424 		(sizeof(u64) * OID_COUNTER_LAST));
5425 
5426 	if (!(hw_priv->opened)) {
5427 		rc = prepare_hardware(dev);
5428 		if (rc)
5429 			return rc;
5430 		for (i = 0; i < hw->mib_port_cnt; i++) {
5431 			if (next_jiffies < jiffies)
5432 				next_jiffies = jiffies + HZ * 2;
5433 			else
5434 				next_jiffies += HZ * 1;
5435 			hw_priv->counter[i].time = next_jiffies;
5436 			hw->port_mib[i].state = media_disconnected;
5437 			port_init_cnt(hw, i);
5438 		}
5439 		if (hw->ksz_switch)
5440 			hw->port_mib[HOST_PORT].state = media_connected;
5441 		else {
5442 			hw_add_wol_bcast(hw);
5443 			hw_cfg_wol_pme(hw, 0);
5444 			hw_clr_wol_pme_status(&hw_priv->hw);
5445 		}
5446 	}
5447 	port_set_power_saving(port, false);
5448 
5449 	for (i = 0, p = port->first_port; i < port->port_cnt; i++, p++) {
5450 		/*
5451 		 * Initialize to invalid value so that link detection
5452 		 * is done.
5453 		 */
5454 		hw->port_info[p].partner = 0xFF;
5455 		hw->port_info[p].state = media_disconnected;
5456 	}
5457 
5458 	/* Need to open the port in multiple device interfaces mode. */
5459 	if (hw->dev_count > 1) {
5460 		port_set_stp_state(hw, port->first_port, STP_STATE_SIMPLE);
5461 		if (port->first_port > 0)
5462 			hw_add_addr(hw, dev->dev_addr);
5463 	}
5464 
5465 	port_get_link_speed(port);
5466 	if (port->force_link)
5467 		port_force_link_speed(port);
5468 	else
5469 		port_set_link_speed(port);
5470 
5471 	if (!(hw_priv->opened)) {
5472 		hw_setup_intr(hw);
5473 		hw_enable(hw);
5474 		hw_ena_intr(hw);
5475 
5476 		if (hw->mib_port_cnt)
5477 			ksz_start_timer(&hw_priv->mib_timer_info,
5478 				hw_priv->mib_timer_info.period);
5479 	}
5480 
5481 	hw_priv->opened++;
5482 
5483 	ksz_start_timer(&priv->monitor_timer_info,
5484 		priv->monitor_timer_info.period);
5485 
5486 	priv->media_state = port->linked->state;
5487 
5488 	set_media_state(dev, media_connected);
5489 	netif_start_queue(dev);
5490 
5491 	return 0;
5492 }
5493 
5494 /* RX errors = rx_errors */
5495 /* RX dropped = rx_dropped */
5496 /* RX overruns = rx_fifo_errors */
5497 /* RX frame = rx_crc_errors + rx_frame_errors + rx_length_errors */
5498 /* TX errors = tx_errors */
5499 /* TX dropped = tx_dropped */
5500 /* TX overruns = tx_fifo_errors */
5501 /* TX carrier = tx_aborted_errors + tx_carrier_errors + tx_window_errors */
5502 /* collisions = collisions */
5503 
5504 /**
5505  * netdev_query_statistics - query network device statistics
5506  * @dev:	Network device.
5507  *
5508  * This function returns the statistics of the network device.  The device
5509  * needs not be opened.
5510  *
5511  * Return network device statistics.
5512  */
5513 static struct net_device_stats *netdev_query_statistics(struct net_device *dev)
5514 {
5515 	struct dev_priv *priv = netdev_priv(dev);
5516 	struct ksz_port *port = &priv->port;
5517 	struct ksz_hw *hw = &priv->adapter->hw;
5518 	struct ksz_port_mib *mib;
5519 	int i;
5520 	int p;
5521 
5522 	dev->stats.rx_errors = port->counter[OID_COUNTER_RCV_ERROR];
5523 	dev->stats.tx_errors = port->counter[OID_COUNTER_XMIT_ERROR];
5524 
5525 	/* Reset to zero to add count later. */
5526 	dev->stats.multicast = 0;
5527 	dev->stats.collisions = 0;
5528 	dev->stats.rx_length_errors = 0;
5529 	dev->stats.rx_crc_errors = 0;
5530 	dev->stats.rx_frame_errors = 0;
5531 	dev->stats.tx_window_errors = 0;
5532 
5533 	for (i = 0, p = port->first_port; i < port->mib_port_cnt; i++, p++) {
5534 		mib = &hw->port_mib[p];
5535 
5536 		dev->stats.multicast += (unsigned long)
5537 			mib->counter[MIB_COUNTER_RX_MULTICAST];
5538 
5539 		dev->stats.collisions += (unsigned long)
5540 			mib->counter[MIB_COUNTER_TX_TOTAL_COLLISION];
5541 
5542 		dev->stats.rx_length_errors += (unsigned long)(
5543 			mib->counter[MIB_COUNTER_RX_UNDERSIZE] +
5544 			mib->counter[MIB_COUNTER_RX_FRAGMENT] +
5545 			mib->counter[MIB_COUNTER_RX_OVERSIZE] +
5546 			mib->counter[MIB_COUNTER_RX_JABBER]);
5547 		dev->stats.rx_crc_errors += (unsigned long)
5548 			mib->counter[MIB_COUNTER_RX_CRC_ERR];
5549 		dev->stats.rx_frame_errors += (unsigned long)(
5550 			mib->counter[MIB_COUNTER_RX_ALIGNMENT_ERR] +
5551 			mib->counter[MIB_COUNTER_RX_SYMBOL_ERR]);
5552 
5553 		dev->stats.tx_window_errors += (unsigned long)
5554 			mib->counter[MIB_COUNTER_TX_LATE_COLLISION];
5555 	}
5556 
5557 	return &dev->stats;
5558 }
5559 
5560 /**
5561  * netdev_set_mac_address - set network device MAC address
5562  * @dev:	Network device.
5563  * @addr:	Buffer of MAC address.
5564  *
5565  * This function is used to set the MAC address of the network device.
5566  *
5567  * Return 0 to indicate success.
5568  */
5569 static int netdev_set_mac_address(struct net_device *dev, void *addr)
5570 {
5571 	struct dev_priv *priv = netdev_priv(dev);
5572 	struct dev_info *hw_priv = priv->adapter;
5573 	struct ksz_hw *hw = &hw_priv->hw;
5574 	struct sockaddr *mac = addr;
5575 	uint interrupt;
5576 
5577 	if (priv->port.first_port > 0)
5578 		hw_del_addr(hw, dev->dev_addr);
5579 	else {
5580 		hw->mac_override = 1;
5581 		memcpy(hw->override_addr, mac->sa_data, ETH_ALEN);
5582 	}
5583 
5584 	eth_hw_addr_set(dev, mac->sa_data);
5585 
5586 	interrupt = hw_block_intr(hw);
5587 
5588 	if (priv->port.first_port > 0)
5589 		hw_add_addr(hw, dev->dev_addr);
5590 	else
5591 		hw_set_addr(hw);
5592 	hw_restore_intr(hw, interrupt);
5593 
5594 	return 0;
5595 }
5596 
5597 static void dev_set_promiscuous(struct net_device *dev, struct dev_priv *priv,
5598 	struct ksz_hw *hw, int promiscuous)
5599 {
5600 	if (promiscuous != priv->promiscuous) {
5601 		u8 prev_state = hw->promiscuous;
5602 
5603 		if (promiscuous)
5604 			++hw->promiscuous;
5605 		else
5606 			--hw->promiscuous;
5607 		priv->promiscuous = promiscuous;
5608 
5609 		/* Turn on/off promiscuous mode. */
5610 		if (hw->promiscuous <= 1 && prev_state <= 1)
5611 			hw_set_promiscuous(hw, hw->promiscuous);
5612 
5613 		/*
5614 		 * Port is not in promiscuous mode, meaning it is released
5615 		 * from the bridge.
5616 		 */
5617 		if ((hw->features & STP_SUPPORT) && !promiscuous &&
5618 		    netif_is_bridge_port(dev)) {
5619 			struct ksz_switch *sw = hw->ksz_switch;
5620 			int port = priv->port.first_port;
5621 
5622 			port_set_stp_state(hw, port, STP_STATE_DISABLED);
5623 			port = 1 << port;
5624 			if (sw->member & port) {
5625 				sw->member &= ~port;
5626 				bridge_change(hw);
5627 			}
5628 		}
5629 	}
5630 }
5631 
5632 static void dev_set_multicast(struct dev_priv *priv, struct ksz_hw *hw,
5633 	int multicast)
5634 {
5635 	if (multicast != priv->multicast) {
5636 		u8 all_multi = hw->all_multi;
5637 
5638 		if (multicast)
5639 			++hw->all_multi;
5640 		else
5641 			--hw->all_multi;
5642 		priv->multicast = multicast;
5643 
5644 		/* Turn on/off all multicast mode. */
5645 		if (hw->all_multi <= 1 && all_multi <= 1)
5646 			hw_set_multicast(hw, hw->all_multi);
5647 	}
5648 }
5649 
5650 /**
5651  * netdev_set_rx_mode
5652  * @dev:	Network device.
5653  *
5654  * This routine is used to set multicast addresses or put the network device
5655  * into promiscuous mode.
5656  */
5657 static void netdev_set_rx_mode(struct net_device *dev)
5658 {
5659 	struct dev_priv *priv = netdev_priv(dev);
5660 	struct dev_info *hw_priv = priv->adapter;
5661 	struct ksz_hw *hw = &hw_priv->hw;
5662 	struct netdev_hw_addr *ha;
5663 	int multicast = (dev->flags & IFF_ALLMULTI);
5664 
5665 	dev_set_promiscuous(dev, priv, hw, (dev->flags & IFF_PROMISC));
5666 
5667 	if (hw_priv->hw.dev_count > 1)
5668 		multicast |= (dev->flags & IFF_MULTICAST);
5669 	dev_set_multicast(priv, hw, multicast);
5670 
5671 	/* Cannot use different hashes in multiple device interfaces mode. */
5672 	if (hw_priv->hw.dev_count > 1)
5673 		return;
5674 
5675 	if ((dev->flags & IFF_MULTICAST) && !netdev_mc_empty(dev)) {
5676 		int i = 0;
5677 
5678 		/* List too big to support so turn on all multicast mode. */
5679 		if (netdev_mc_count(dev) > MAX_MULTICAST_LIST) {
5680 			if (MAX_MULTICAST_LIST != hw->multi_list_size) {
5681 				hw->multi_list_size = MAX_MULTICAST_LIST;
5682 				++hw->all_multi;
5683 				hw_set_multicast(hw, hw->all_multi);
5684 			}
5685 			return;
5686 		}
5687 
5688 		netdev_for_each_mc_addr(ha, dev) {
5689 			if (i >= MAX_MULTICAST_LIST)
5690 				break;
5691 			memcpy(hw->multi_list[i++], ha->addr, ETH_ALEN);
5692 		}
5693 		hw->multi_list_size = (u8) i;
5694 		hw_set_grp_addr(hw);
5695 	} else {
5696 		if (MAX_MULTICAST_LIST == hw->multi_list_size) {
5697 			--hw->all_multi;
5698 			hw_set_multicast(hw, hw->all_multi);
5699 		}
5700 		hw->multi_list_size = 0;
5701 		hw_clr_multicast(hw);
5702 	}
5703 }
5704 
5705 static int netdev_change_mtu(struct net_device *dev, int new_mtu)
5706 {
5707 	struct dev_priv *priv = netdev_priv(dev);
5708 	struct dev_info *hw_priv = priv->adapter;
5709 	struct ksz_hw *hw = &hw_priv->hw;
5710 	int hw_mtu;
5711 
5712 	if (netif_running(dev))
5713 		return -EBUSY;
5714 
5715 	/* Cannot use different MTU in multiple device interfaces mode. */
5716 	if (hw->dev_count > 1)
5717 		if (dev != hw_priv->dev)
5718 			return 0;
5719 
5720 	hw_mtu = new_mtu + ETHERNET_HEADER_SIZE + 4;
5721 	if (hw_mtu > REGULAR_RX_BUF_SIZE) {
5722 		hw->features |= RX_HUGE_FRAME;
5723 		hw_mtu = MAX_RX_BUF_SIZE;
5724 	} else {
5725 		hw->features &= ~RX_HUGE_FRAME;
5726 		hw_mtu = REGULAR_RX_BUF_SIZE;
5727 	}
5728 	hw_mtu = (hw_mtu + 3) & ~3;
5729 	hw_priv->mtu = hw_mtu;
5730 	dev->mtu = new_mtu;
5731 
5732 	return 0;
5733 }
5734 
5735 /**
5736  * netdev_ioctl - I/O control processing
5737  * @dev:	Network device.
5738  * @ifr:	Interface request structure.
5739  * @cmd:	I/O control code.
5740  *
5741  * This function is used to process I/O control calls.
5742  *
5743  * Return 0 to indicate success.
5744  */
5745 static int netdev_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
5746 {
5747 	struct dev_priv *priv = netdev_priv(dev);
5748 	struct dev_info *hw_priv = priv->adapter;
5749 	struct ksz_hw *hw = &hw_priv->hw;
5750 	struct ksz_port *port = &priv->port;
5751 	int result = 0;
5752 	struct mii_ioctl_data *data = if_mii(ifr);
5753 
5754 	if (down_interruptible(&priv->proc_sem))
5755 		return -ERESTARTSYS;
5756 
5757 	switch (cmd) {
5758 	/* Get address of MII PHY in use. */
5759 	case SIOCGMIIPHY:
5760 		data->phy_id = priv->id;
5761 		fallthrough;
5762 
5763 	/* Read MII PHY register. */
5764 	case SIOCGMIIREG:
5765 		if (data->phy_id != priv->id || data->reg_num >= 6)
5766 			result = -EIO;
5767 		else
5768 			hw_r_phy(hw, port->linked->port_id, data->reg_num,
5769 				&data->val_out);
5770 		break;
5771 
5772 	/* Write MII PHY register. */
5773 	case SIOCSMIIREG:
5774 		if (!capable(CAP_NET_ADMIN))
5775 			result = -EPERM;
5776 		else if (data->phy_id != priv->id || data->reg_num >= 6)
5777 			result = -EIO;
5778 		else
5779 			hw_w_phy(hw, port->linked->port_id, data->reg_num,
5780 				data->val_in);
5781 		break;
5782 
5783 	default:
5784 		result = -EOPNOTSUPP;
5785 	}
5786 
5787 	up(&priv->proc_sem);
5788 
5789 	return result;
5790 }
5791 
5792 /*
5793  * MII support
5794  */
5795 
5796 /**
5797  * mdio_read - read PHY register
5798  * @dev:	Network device.
5799  * @phy_id:	The PHY id.
5800  * @reg_num:	The register number.
5801  *
5802  * This function returns the PHY register value.
5803  *
5804  * Return the register value.
5805  */
5806 static int mdio_read(struct net_device *dev, int phy_id, int reg_num)
5807 {
5808 	struct dev_priv *priv = netdev_priv(dev);
5809 	struct ksz_port *port = &priv->port;
5810 	struct ksz_hw *hw = port->hw;
5811 	u16 val_out;
5812 
5813 	hw_r_phy(hw, port->linked->port_id, reg_num << 1, &val_out);
5814 	return val_out;
5815 }
5816 
5817 /**
5818  * mdio_write - set PHY register
5819  * @dev:	Network device.
5820  * @phy_id:	The PHY id.
5821  * @reg_num:	The register number.
5822  * @val:	The register value.
5823  *
5824  * This procedure sets the PHY register value.
5825  */
5826 static void mdio_write(struct net_device *dev, int phy_id, int reg_num, int val)
5827 {
5828 	struct dev_priv *priv = netdev_priv(dev);
5829 	struct ksz_port *port = &priv->port;
5830 	struct ksz_hw *hw = port->hw;
5831 	int i;
5832 	int pi;
5833 
5834 	for (i = 0, pi = port->first_port; i < port->port_cnt; i++, pi++)
5835 		hw_w_phy(hw, pi, reg_num << 1, val);
5836 }
5837 
5838 /*
5839  * ethtool support
5840  */
5841 
5842 #define EEPROM_SIZE			0x40
5843 
5844 static u16 eeprom_data[EEPROM_SIZE] = { 0 };
5845 
5846 #define ADVERTISED_ALL			\
5847 	(ADVERTISED_10baseT_Half |	\
5848 	ADVERTISED_10baseT_Full |	\
5849 	ADVERTISED_100baseT_Half |	\
5850 	ADVERTISED_100baseT_Full)
5851 
5852 /* These functions use the MII functions in mii.c. */
5853 
5854 /**
5855  * netdev_get_link_ksettings - get network device settings
5856  * @dev:	Network device.
5857  * @cmd:	Ethtool command.
5858  *
5859  * This function queries the PHY and returns its state in the ethtool command.
5860  *
5861  * Return 0 if successful; otherwise an error code.
5862  */
5863 static int netdev_get_link_ksettings(struct net_device *dev,
5864 				     struct ethtool_link_ksettings *cmd)
5865 {
5866 	struct dev_priv *priv = netdev_priv(dev);
5867 	struct dev_info *hw_priv = priv->adapter;
5868 
5869 	mutex_lock(&hw_priv->lock);
5870 	mii_ethtool_get_link_ksettings(&priv->mii_if, cmd);
5871 	ethtool_link_ksettings_add_link_mode(cmd, advertising, TP);
5872 	mutex_unlock(&hw_priv->lock);
5873 
5874 	/* Save advertised settings for workaround in next function. */
5875 	ethtool_convert_link_mode_to_legacy_u32(&priv->advertising,
5876 						cmd->link_modes.advertising);
5877 
5878 	return 0;
5879 }
5880 
5881 /**
5882  * netdev_set_link_ksettings - set network device settings
5883  * @dev:	Network device.
5884  * @cmd:	Ethtool command.
5885  *
5886  * This function sets the PHY according to the ethtool command.
5887  *
5888  * Return 0 if successful; otherwise an error code.
5889  */
5890 static int netdev_set_link_ksettings(struct net_device *dev,
5891 				     const struct ethtool_link_ksettings *cmd)
5892 {
5893 	struct dev_priv *priv = netdev_priv(dev);
5894 	struct dev_info *hw_priv = priv->adapter;
5895 	struct ksz_port *port = &priv->port;
5896 	struct ethtool_link_ksettings copy_cmd;
5897 	u32 speed = cmd->base.speed;
5898 	u32 advertising;
5899 	int rc;
5900 
5901 	ethtool_convert_link_mode_to_legacy_u32(&advertising,
5902 						cmd->link_modes.advertising);
5903 
5904 	/*
5905 	 * ethtool utility does not change advertised setting if auto
5906 	 * negotiation is not specified explicitly.
5907 	 */
5908 	if (cmd->base.autoneg && priv->advertising == advertising) {
5909 		advertising |= ADVERTISED_ALL;
5910 		if (10 == speed)
5911 			advertising &=
5912 				~(ADVERTISED_100baseT_Full |
5913 				ADVERTISED_100baseT_Half);
5914 		else if (100 == speed)
5915 			advertising &=
5916 				~(ADVERTISED_10baseT_Full |
5917 				ADVERTISED_10baseT_Half);
5918 		if (0 == cmd->base.duplex)
5919 			advertising &=
5920 				~(ADVERTISED_100baseT_Full |
5921 				ADVERTISED_10baseT_Full);
5922 		else if (1 == cmd->base.duplex)
5923 			advertising &=
5924 				~(ADVERTISED_100baseT_Half |
5925 				ADVERTISED_10baseT_Half);
5926 	}
5927 	mutex_lock(&hw_priv->lock);
5928 	if (cmd->base.autoneg &&
5929 	    (advertising & ADVERTISED_ALL) == ADVERTISED_ALL) {
5930 		port->duplex = 0;
5931 		port->speed = 0;
5932 		port->force_link = 0;
5933 	} else {
5934 		port->duplex = cmd->base.duplex + 1;
5935 		if (1000 != speed)
5936 			port->speed = speed;
5937 		if (cmd->base.autoneg)
5938 			port->force_link = 0;
5939 		else
5940 			port->force_link = 1;
5941 	}
5942 
5943 	memcpy(&copy_cmd, cmd, sizeof(copy_cmd));
5944 	ethtool_convert_legacy_u32_to_link_mode(copy_cmd.link_modes.advertising,
5945 						advertising);
5946 	rc = mii_ethtool_set_link_ksettings(
5947 		&priv->mii_if,
5948 		(const struct ethtool_link_ksettings *)&copy_cmd);
5949 	mutex_unlock(&hw_priv->lock);
5950 	return rc;
5951 }
5952 
5953 /**
5954  * netdev_nway_reset - restart auto-negotiation
5955  * @dev:	Network device.
5956  *
5957  * This function restarts the PHY for auto-negotiation.
5958  *
5959  * Return 0 if successful; otherwise an error code.
5960  */
5961 static int netdev_nway_reset(struct net_device *dev)
5962 {
5963 	struct dev_priv *priv = netdev_priv(dev);
5964 	struct dev_info *hw_priv = priv->adapter;
5965 	int rc;
5966 
5967 	mutex_lock(&hw_priv->lock);
5968 	rc = mii_nway_restart(&priv->mii_if);
5969 	mutex_unlock(&hw_priv->lock);
5970 	return rc;
5971 }
5972 
5973 /**
5974  * netdev_get_link - get network device link status
5975  * @dev:	Network device.
5976  *
5977  * This function gets the link status from the PHY.
5978  *
5979  * Return true if PHY is linked and false otherwise.
5980  */
5981 static u32 netdev_get_link(struct net_device *dev)
5982 {
5983 	struct dev_priv *priv = netdev_priv(dev);
5984 	int rc;
5985 
5986 	rc = mii_link_ok(&priv->mii_if);
5987 	return rc;
5988 }
5989 
5990 /**
5991  * netdev_get_drvinfo - get network driver information
5992  * @dev:	Network device.
5993  * @info:	Ethtool driver info data structure.
5994  *
5995  * This procedure returns the driver information.
5996  */
5997 static void netdev_get_drvinfo(struct net_device *dev,
5998 	struct ethtool_drvinfo *info)
5999 {
6000 	struct dev_priv *priv = netdev_priv(dev);
6001 	struct dev_info *hw_priv = priv->adapter;
6002 
6003 	strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
6004 	strlcpy(info->version, DRV_VERSION, sizeof(info->version));
6005 	strlcpy(info->bus_info, pci_name(hw_priv->pdev),
6006 		sizeof(info->bus_info));
6007 }
6008 
6009 static struct hw_regs {
6010 	int start;
6011 	int end;
6012 } hw_regs_range[] = {
6013 	{ KS_DMA_TX_CTRL,	KS884X_INTERRUPTS_STATUS },
6014 	{ KS_ADD_ADDR_0_LO,	KS_ADD_ADDR_F_HI },
6015 	{ KS884X_ADDR_0_OFFSET,	KS8841_WOL_FRAME_BYTE2_OFFSET },
6016 	{ KS884X_SIDER_P,	KS8842_SGCR7_P },
6017 	{ KS8842_MACAR1_P,	KS8842_TOSR8_P },
6018 	{ KS884X_P1MBCR_P,	KS8842_P3ERCR_P },
6019 	{ 0, 0 }
6020 };
6021 
6022 /**
6023  * netdev_get_regs_len - get length of register dump
6024  * @dev:	Network device.
6025  *
6026  * This function returns the length of the register dump.
6027  *
6028  * Return length of the register dump.
6029  */
6030 static int netdev_get_regs_len(struct net_device *dev)
6031 {
6032 	struct hw_regs *range = hw_regs_range;
6033 	int regs_len = 0x10 * sizeof(u32);
6034 
6035 	while (range->end > range->start) {
6036 		regs_len += (range->end - range->start + 3) / 4 * 4;
6037 		range++;
6038 	}
6039 	return regs_len;
6040 }
6041 
6042 /**
6043  * netdev_get_regs - get register dump
6044  * @dev:	Network device.
6045  * @regs:	Ethtool registers data structure.
6046  * @ptr:	Buffer to store the register values.
6047  *
6048  * This procedure dumps the register values in the provided buffer.
6049  */
6050 static void netdev_get_regs(struct net_device *dev, struct ethtool_regs *regs,
6051 	void *ptr)
6052 {
6053 	struct dev_priv *priv = netdev_priv(dev);
6054 	struct dev_info *hw_priv = priv->adapter;
6055 	struct ksz_hw *hw = &hw_priv->hw;
6056 	int *buf = (int *) ptr;
6057 	struct hw_regs *range = hw_regs_range;
6058 	int len;
6059 
6060 	mutex_lock(&hw_priv->lock);
6061 	regs->version = 0;
6062 	for (len = 0; len < 0x40; len += 4) {
6063 		pci_read_config_dword(hw_priv->pdev, len, buf);
6064 		buf++;
6065 	}
6066 	while (range->end > range->start) {
6067 		for (len = range->start; len < range->end; len += 4) {
6068 			*buf = readl(hw->io + len);
6069 			buf++;
6070 		}
6071 		range++;
6072 	}
6073 	mutex_unlock(&hw_priv->lock);
6074 }
6075 
6076 #define WOL_SUPPORT			\
6077 	(WAKE_PHY | WAKE_MAGIC |	\
6078 	WAKE_UCAST | WAKE_MCAST |	\
6079 	WAKE_BCAST | WAKE_ARP)
6080 
6081 /**
6082  * netdev_get_wol - get Wake-on-LAN support
6083  * @dev:	Network device.
6084  * @wol:	Ethtool Wake-on-LAN data structure.
6085  *
6086  * This procedure returns Wake-on-LAN support.
6087  */
6088 static void netdev_get_wol(struct net_device *dev,
6089 	struct ethtool_wolinfo *wol)
6090 {
6091 	struct dev_priv *priv = netdev_priv(dev);
6092 	struct dev_info *hw_priv = priv->adapter;
6093 
6094 	wol->supported = hw_priv->wol_support;
6095 	wol->wolopts = hw_priv->wol_enable;
6096 	memset(&wol->sopass, 0, sizeof(wol->sopass));
6097 }
6098 
6099 /**
6100  * netdev_set_wol - set Wake-on-LAN support
6101  * @dev:	Network device.
6102  * @wol:	Ethtool Wake-on-LAN data structure.
6103  *
6104  * This function sets Wake-on-LAN support.
6105  *
6106  * Return 0 if successful; otherwise an error code.
6107  */
6108 static int netdev_set_wol(struct net_device *dev,
6109 	struct ethtool_wolinfo *wol)
6110 {
6111 	struct dev_priv *priv = netdev_priv(dev);
6112 	struct dev_info *hw_priv = priv->adapter;
6113 
6114 	/* Need to find a way to retrieve the device IP address. */
6115 	static const u8 net_addr[] = { 192, 168, 1, 1 };
6116 
6117 	if (wol->wolopts & ~hw_priv->wol_support)
6118 		return -EINVAL;
6119 
6120 	hw_priv->wol_enable = wol->wolopts;
6121 
6122 	/* Link wakeup cannot really be disabled. */
6123 	if (wol->wolopts)
6124 		hw_priv->wol_enable |= WAKE_PHY;
6125 	hw_enable_wol(&hw_priv->hw, hw_priv->wol_enable, net_addr);
6126 	return 0;
6127 }
6128 
6129 /**
6130  * netdev_get_msglevel - get debug message level
6131  * @dev:	Network device.
6132  *
6133  * This function returns current debug message level.
6134  *
6135  * Return current debug message flags.
6136  */
6137 static u32 netdev_get_msglevel(struct net_device *dev)
6138 {
6139 	struct dev_priv *priv = netdev_priv(dev);
6140 
6141 	return priv->msg_enable;
6142 }
6143 
6144 /**
6145  * netdev_set_msglevel - set debug message level
6146  * @dev:	Network device.
6147  * @value:	Debug message flags.
6148  *
6149  * This procedure sets debug message level.
6150  */
6151 static void netdev_set_msglevel(struct net_device *dev, u32 value)
6152 {
6153 	struct dev_priv *priv = netdev_priv(dev);
6154 
6155 	priv->msg_enable = value;
6156 }
6157 
6158 /**
6159  * netdev_get_eeprom_len - get EEPROM length
6160  * @dev:	Network device.
6161  *
6162  * This function returns the length of the EEPROM.
6163  *
6164  * Return length of the EEPROM.
6165  */
6166 static int netdev_get_eeprom_len(struct net_device *dev)
6167 {
6168 	return EEPROM_SIZE * 2;
6169 }
6170 
6171 #define EEPROM_MAGIC			0x10A18842
6172 
6173 /**
6174  * netdev_get_eeprom - get EEPROM data
6175  * @dev:	Network device.
6176  * @eeprom:	Ethtool EEPROM data structure.
6177  * @data:	Buffer to store the EEPROM data.
6178  *
6179  * This function dumps the EEPROM data in the provided buffer.
6180  *
6181  * Return 0 if successful; otherwise an error code.
6182  */
6183 static int netdev_get_eeprom(struct net_device *dev,
6184 	struct ethtool_eeprom *eeprom, u8 *data)
6185 {
6186 	struct dev_priv *priv = netdev_priv(dev);
6187 	struct dev_info *hw_priv = priv->adapter;
6188 	u8 *eeprom_byte = (u8 *) eeprom_data;
6189 	int i;
6190 	int len;
6191 
6192 	len = (eeprom->offset + eeprom->len + 1) / 2;
6193 	for (i = eeprom->offset / 2; i < len; i++)
6194 		eeprom_data[i] = eeprom_read(&hw_priv->hw, i);
6195 	eeprom->magic = EEPROM_MAGIC;
6196 	memcpy(data, &eeprom_byte[eeprom->offset], eeprom->len);
6197 
6198 	return 0;
6199 }
6200 
6201 /**
6202  * netdev_set_eeprom - write EEPROM data
6203  * @dev:	Network device.
6204  * @eeprom:	Ethtool EEPROM data structure.
6205  * @data:	Data buffer.
6206  *
6207  * This function modifies the EEPROM data one byte at a time.
6208  *
6209  * Return 0 if successful; otherwise an error code.
6210  */
6211 static int netdev_set_eeprom(struct net_device *dev,
6212 	struct ethtool_eeprom *eeprom, u8 *data)
6213 {
6214 	struct dev_priv *priv = netdev_priv(dev);
6215 	struct dev_info *hw_priv = priv->adapter;
6216 	u16 eeprom_word[EEPROM_SIZE];
6217 	u8 *eeprom_byte = (u8 *) eeprom_word;
6218 	int i;
6219 	int len;
6220 
6221 	if (eeprom->magic != EEPROM_MAGIC)
6222 		return -EINVAL;
6223 
6224 	len = (eeprom->offset + eeprom->len + 1) / 2;
6225 	for (i = eeprom->offset / 2; i < len; i++)
6226 		eeprom_data[i] = eeprom_read(&hw_priv->hw, i);
6227 	memcpy(eeprom_word, eeprom_data, EEPROM_SIZE * 2);
6228 	memcpy(&eeprom_byte[eeprom->offset], data, eeprom->len);
6229 	for (i = 0; i < EEPROM_SIZE; i++)
6230 		if (eeprom_word[i] != eeprom_data[i]) {
6231 			eeprom_data[i] = eeprom_word[i];
6232 			eeprom_write(&hw_priv->hw, i, eeprom_data[i]);
6233 	}
6234 
6235 	return 0;
6236 }
6237 
6238 /**
6239  * netdev_get_pauseparam - get flow control parameters
6240  * @dev:	Network device.
6241  * @pause:	Ethtool PAUSE settings data structure.
6242  *
6243  * This procedure returns the PAUSE control flow settings.
6244  */
6245 static void netdev_get_pauseparam(struct net_device *dev,
6246 	struct ethtool_pauseparam *pause)
6247 {
6248 	struct dev_priv *priv = netdev_priv(dev);
6249 	struct dev_info *hw_priv = priv->adapter;
6250 	struct ksz_hw *hw = &hw_priv->hw;
6251 
6252 	pause->autoneg = (hw->overrides & PAUSE_FLOW_CTRL) ? 0 : 1;
6253 	if (!hw->ksz_switch) {
6254 		pause->rx_pause =
6255 			(hw->rx_cfg & DMA_RX_FLOW_ENABLE) ? 1 : 0;
6256 		pause->tx_pause =
6257 			(hw->tx_cfg & DMA_TX_FLOW_ENABLE) ? 1 : 0;
6258 	} else {
6259 		pause->rx_pause =
6260 			(sw_chk(hw, KS8842_SWITCH_CTRL_1_OFFSET,
6261 				SWITCH_RX_FLOW_CTRL)) ? 1 : 0;
6262 		pause->tx_pause =
6263 			(sw_chk(hw, KS8842_SWITCH_CTRL_1_OFFSET,
6264 				SWITCH_TX_FLOW_CTRL)) ? 1 : 0;
6265 	}
6266 }
6267 
6268 /**
6269  * netdev_set_pauseparam - set flow control parameters
6270  * @dev:	Network device.
6271  * @pause:	Ethtool PAUSE settings data structure.
6272  *
6273  * This function sets the PAUSE control flow settings.
6274  * Not implemented yet.
6275  *
6276  * Return 0 if successful; otherwise an error code.
6277  */
6278 static int netdev_set_pauseparam(struct net_device *dev,
6279 	struct ethtool_pauseparam *pause)
6280 {
6281 	struct dev_priv *priv = netdev_priv(dev);
6282 	struct dev_info *hw_priv = priv->adapter;
6283 	struct ksz_hw *hw = &hw_priv->hw;
6284 	struct ksz_port *port = &priv->port;
6285 
6286 	mutex_lock(&hw_priv->lock);
6287 	if (pause->autoneg) {
6288 		if (!pause->rx_pause && !pause->tx_pause)
6289 			port->flow_ctrl = PHY_NO_FLOW_CTRL;
6290 		else
6291 			port->flow_ctrl = PHY_FLOW_CTRL;
6292 		hw->overrides &= ~PAUSE_FLOW_CTRL;
6293 		port->force_link = 0;
6294 		if (hw->ksz_switch) {
6295 			sw_cfg(hw, KS8842_SWITCH_CTRL_1_OFFSET,
6296 				SWITCH_RX_FLOW_CTRL, 1);
6297 			sw_cfg(hw, KS8842_SWITCH_CTRL_1_OFFSET,
6298 				SWITCH_TX_FLOW_CTRL, 1);
6299 		}
6300 		port_set_link_speed(port);
6301 	} else {
6302 		hw->overrides |= PAUSE_FLOW_CTRL;
6303 		if (hw->ksz_switch) {
6304 			sw_cfg(hw, KS8842_SWITCH_CTRL_1_OFFSET,
6305 				SWITCH_RX_FLOW_CTRL, pause->rx_pause);
6306 			sw_cfg(hw, KS8842_SWITCH_CTRL_1_OFFSET,
6307 				SWITCH_TX_FLOW_CTRL, pause->tx_pause);
6308 		} else
6309 			set_flow_ctrl(hw, pause->rx_pause, pause->tx_pause);
6310 	}
6311 	mutex_unlock(&hw_priv->lock);
6312 
6313 	return 0;
6314 }
6315 
6316 /**
6317  * netdev_get_ringparam - get tx/rx ring parameters
6318  * @dev:	Network device.
6319  * @ring:	Ethtool RING settings data structure.
6320  *
6321  * This procedure returns the TX/RX ring settings.
6322  */
6323 static void netdev_get_ringparam(struct net_device *dev,
6324 	struct ethtool_ringparam *ring)
6325 {
6326 	struct dev_priv *priv = netdev_priv(dev);
6327 	struct dev_info *hw_priv = priv->adapter;
6328 	struct ksz_hw *hw = &hw_priv->hw;
6329 
6330 	ring->tx_max_pending = (1 << 9);
6331 	ring->tx_pending = hw->tx_desc_info.alloc;
6332 	ring->rx_max_pending = (1 << 9);
6333 	ring->rx_pending = hw->rx_desc_info.alloc;
6334 }
6335 
6336 #define STATS_LEN			(TOTAL_PORT_COUNTER_NUM)
6337 
6338 static struct {
6339 	char string[ETH_GSTRING_LEN];
6340 } ethtool_stats_keys[STATS_LEN] = {
6341 	{ "rx_lo_priority_octets" },
6342 	{ "rx_hi_priority_octets" },
6343 	{ "rx_undersize_packets" },
6344 	{ "rx_fragments" },
6345 	{ "rx_oversize_packets" },
6346 	{ "rx_jabbers" },
6347 	{ "rx_symbol_errors" },
6348 	{ "rx_crc_errors" },
6349 	{ "rx_align_errors" },
6350 	{ "rx_mac_ctrl_packets" },
6351 	{ "rx_pause_packets" },
6352 	{ "rx_bcast_packets" },
6353 	{ "rx_mcast_packets" },
6354 	{ "rx_ucast_packets" },
6355 	{ "rx_64_or_less_octet_packets" },
6356 	{ "rx_65_to_127_octet_packets" },
6357 	{ "rx_128_to_255_octet_packets" },
6358 	{ "rx_256_to_511_octet_packets" },
6359 	{ "rx_512_to_1023_octet_packets" },
6360 	{ "rx_1024_to_1522_octet_packets" },
6361 
6362 	{ "tx_lo_priority_octets" },
6363 	{ "tx_hi_priority_octets" },
6364 	{ "tx_late_collisions" },
6365 	{ "tx_pause_packets" },
6366 	{ "tx_bcast_packets" },
6367 	{ "tx_mcast_packets" },
6368 	{ "tx_ucast_packets" },
6369 	{ "tx_deferred" },
6370 	{ "tx_total_collisions" },
6371 	{ "tx_excessive_collisions" },
6372 	{ "tx_single_collisions" },
6373 	{ "tx_mult_collisions" },
6374 
6375 	{ "rx_discards" },
6376 	{ "tx_discards" },
6377 };
6378 
6379 /**
6380  * netdev_get_strings - get statistics identity strings
6381  * @dev:	Network device.
6382  * @stringset:	String set identifier.
6383  * @buf:	Buffer to store the strings.
6384  *
6385  * This procedure returns the strings used to identify the statistics.
6386  */
6387 static void netdev_get_strings(struct net_device *dev, u32 stringset, u8 *buf)
6388 {
6389 	struct dev_priv *priv = netdev_priv(dev);
6390 	struct dev_info *hw_priv = priv->adapter;
6391 	struct ksz_hw *hw = &hw_priv->hw;
6392 
6393 	if (ETH_SS_STATS == stringset)
6394 		memcpy(buf, &ethtool_stats_keys,
6395 			ETH_GSTRING_LEN * hw->mib_cnt);
6396 }
6397 
6398 /**
6399  * netdev_get_sset_count - get statistics size
6400  * @dev:	Network device.
6401  * @sset:	The statistics set number.
6402  *
6403  * This function returns the size of the statistics to be reported.
6404  *
6405  * Return size of the statistics to be reported.
6406  */
6407 static int netdev_get_sset_count(struct net_device *dev, int sset)
6408 {
6409 	struct dev_priv *priv = netdev_priv(dev);
6410 	struct dev_info *hw_priv = priv->adapter;
6411 	struct ksz_hw *hw = &hw_priv->hw;
6412 
6413 	switch (sset) {
6414 	case ETH_SS_STATS:
6415 		return hw->mib_cnt;
6416 	default:
6417 		return -EOPNOTSUPP;
6418 	}
6419 }
6420 
6421 /**
6422  * netdev_get_ethtool_stats - get network device statistics
6423  * @dev:	Network device.
6424  * @stats:	Ethtool statistics data structure.
6425  * @data:	Buffer to store the statistics.
6426  *
6427  * This procedure returns the statistics.
6428  */
6429 static void netdev_get_ethtool_stats(struct net_device *dev,
6430 	struct ethtool_stats *stats, u64 *data)
6431 {
6432 	struct dev_priv *priv = netdev_priv(dev);
6433 	struct dev_info *hw_priv = priv->adapter;
6434 	struct ksz_hw *hw = &hw_priv->hw;
6435 	struct ksz_port *port = &priv->port;
6436 	int n_stats = stats->n_stats;
6437 	int i;
6438 	int n;
6439 	int p;
6440 	u64 counter[TOTAL_PORT_COUNTER_NUM];
6441 
6442 	mutex_lock(&hw_priv->lock);
6443 	n = SWITCH_PORT_NUM;
6444 	for (i = 0, p = port->first_port; i < port->mib_port_cnt; i++, p++) {
6445 		if (media_connected == hw->port_mib[p].state) {
6446 			hw_priv->counter[p].read = 1;
6447 
6448 			/* Remember first port that requests read. */
6449 			if (n == SWITCH_PORT_NUM)
6450 				n = p;
6451 		}
6452 	}
6453 	mutex_unlock(&hw_priv->lock);
6454 
6455 	if (n < SWITCH_PORT_NUM)
6456 		schedule_work(&hw_priv->mib_read);
6457 
6458 	if (1 == port->mib_port_cnt && n < SWITCH_PORT_NUM) {
6459 		p = n;
6460 		wait_event_interruptible_timeout(
6461 			hw_priv->counter[p].counter,
6462 			2 == hw_priv->counter[p].read,
6463 			HZ * 1);
6464 	} else
6465 		for (i = 0, p = n; i < port->mib_port_cnt - n; i++, p++) {
6466 			if (0 == i) {
6467 				wait_event_interruptible_timeout(
6468 					hw_priv->counter[p].counter,
6469 					2 == hw_priv->counter[p].read,
6470 					HZ * 2);
6471 			} else if (hw->port_mib[p].cnt_ptr) {
6472 				wait_event_interruptible_timeout(
6473 					hw_priv->counter[p].counter,
6474 					2 == hw_priv->counter[p].read,
6475 					HZ * 1);
6476 			}
6477 		}
6478 
6479 	get_mib_counters(hw, port->first_port, port->mib_port_cnt, counter);
6480 	n = hw->mib_cnt;
6481 	if (n > n_stats)
6482 		n = n_stats;
6483 	n_stats -= n;
6484 	for (i = 0; i < n; i++)
6485 		*data++ = counter[i];
6486 }
6487 
6488 /**
6489  * netdev_set_features - set receive checksum support
6490  * @dev:	Network device.
6491  * @features:	New device features (offloads).
6492  *
6493  * This function sets receive checksum support setting.
6494  *
6495  * Return 0 if successful; otherwise an error code.
6496  */
6497 static int netdev_set_features(struct net_device *dev,
6498 	netdev_features_t features)
6499 {
6500 	struct dev_priv *priv = netdev_priv(dev);
6501 	struct dev_info *hw_priv = priv->adapter;
6502 	struct ksz_hw *hw = &hw_priv->hw;
6503 
6504 	mutex_lock(&hw_priv->lock);
6505 
6506 	/* see note in hw_setup() */
6507 	if (features & NETIF_F_RXCSUM)
6508 		hw->rx_cfg |= DMA_RX_CSUM_TCP | DMA_RX_CSUM_IP;
6509 	else
6510 		hw->rx_cfg &= ~(DMA_RX_CSUM_TCP | DMA_RX_CSUM_IP);
6511 
6512 	if (hw->enabled)
6513 		writel(hw->rx_cfg, hw->io + KS_DMA_RX_CTRL);
6514 
6515 	mutex_unlock(&hw_priv->lock);
6516 
6517 	return 0;
6518 }
6519 
6520 static const struct ethtool_ops netdev_ethtool_ops = {
6521 	.nway_reset		= netdev_nway_reset,
6522 	.get_link		= netdev_get_link,
6523 	.get_drvinfo		= netdev_get_drvinfo,
6524 	.get_regs_len		= netdev_get_regs_len,
6525 	.get_regs		= netdev_get_regs,
6526 	.get_wol		= netdev_get_wol,
6527 	.set_wol		= netdev_set_wol,
6528 	.get_msglevel		= netdev_get_msglevel,
6529 	.set_msglevel		= netdev_set_msglevel,
6530 	.get_eeprom_len		= netdev_get_eeprom_len,
6531 	.get_eeprom		= netdev_get_eeprom,
6532 	.set_eeprom		= netdev_set_eeprom,
6533 	.get_pauseparam		= netdev_get_pauseparam,
6534 	.set_pauseparam		= netdev_set_pauseparam,
6535 	.get_ringparam		= netdev_get_ringparam,
6536 	.get_strings		= netdev_get_strings,
6537 	.get_sset_count		= netdev_get_sset_count,
6538 	.get_ethtool_stats	= netdev_get_ethtool_stats,
6539 	.get_link_ksettings	= netdev_get_link_ksettings,
6540 	.set_link_ksettings	= netdev_set_link_ksettings,
6541 };
6542 
6543 /*
6544  * Hardware monitoring
6545  */
6546 
6547 static void update_link(struct net_device *dev, struct dev_priv *priv,
6548 	struct ksz_port *port)
6549 {
6550 	if (priv->media_state != port->linked->state) {
6551 		priv->media_state = port->linked->state;
6552 		if (netif_running(dev))
6553 			set_media_state(dev, media_connected);
6554 	}
6555 }
6556 
6557 static void mib_read_work(struct work_struct *work)
6558 {
6559 	struct dev_info *hw_priv =
6560 		container_of(work, struct dev_info, mib_read);
6561 	struct ksz_hw *hw = &hw_priv->hw;
6562 	struct ksz_port_mib *mib;
6563 	int i;
6564 
6565 	next_jiffies = jiffies;
6566 	for (i = 0; i < hw->mib_port_cnt; i++) {
6567 		mib = &hw->port_mib[i];
6568 
6569 		/* Reading MIB counters or requested to read. */
6570 		if (mib->cnt_ptr || 1 == hw_priv->counter[i].read) {
6571 
6572 			/* Need to process receive interrupt. */
6573 			if (port_r_cnt(hw, i))
6574 				break;
6575 			hw_priv->counter[i].read = 0;
6576 
6577 			/* Finish reading counters. */
6578 			if (0 == mib->cnt_ptr) {
6579 				hw_priv->counter[i].read = 2;
6580 				wake_up_interruptible(
6581 					&hw_priv->counter[i].counter);
6582 			}
6583 		} else if (time_after_eq(jiffies, hw_priv->counter[i].time)) {
6584 			/* Only read MIB counters when the port is connected. */
6585 			if (media_connected == mib->state)
6586 				hw_priv->counter[i].read = 1;
6587 			next_jiffies += HZ * 1 * hw->mib_port_cnt;
6588 			hw_priv->counter[i].time = next_jiffies;
6589 
6590 		/* Port is just disconnected. */
6591 		} else if (mib->link_down) {
6592 			mib->link_down = 0;
6593 
6594 			/* Read counters one last time after link is lost. */
6595 			hw_priv->counter[i].read = 1;
6596 		}
6597 	}
6598 }
6599 
6600 static void mib_monitor(struct timer_list *t)
6601 {
6602 	struct dev_info *hw_priv = from_timer(hw_priv, t, mib_timer_info.timer);
6603 
6604 	mib_read_work(&hw_priv->mib_read);
6605 
6606 	/* This is used to verify Wake-on-LAN is working. */
6607 	if (hw_priv->pme_wait) {
6608 		if (time_is_before_eq_jiffies(hw_priv->pme_wait)) {
6609 			hw_clr_wol_pme_status(&hw_priv->hw);
6610 			hw_priv->pme_wait = 0;
6611 		}
6612 	} else if (hw_chk_wol_pme_status(&hw_priv->hw)) {
6613 
6614 		/* PME is asserted.  Wait 2 seconds to clear it. */
6615 		hw_priv->pme_wait = jiffies + HZ * 2;
6616 	}
6617 
6618 	ksz_update_timer(&hw_priv->mib_timer_info);
6619 }
6620 
6621 /**
6622  * dev_monitor - periodic monitoring
6623  * @t:	timer list containing a network device pointer.
6624  *
6625  * This routine is run in a kernel timer to monitor the network device.
6626  */
6627 static void dev_monitor(struct timer_list *t)
6628 {
6629 	struct dev_priv *priv = from_timer(priv, t, monitor_timer_info.timer);
6630 	struct net_device *dev = priv->mii_if.dev;
6631 	struct dev_info *hw_priv = priv->adapter;
6632 	struct ksz_hw *hw = &hw_priv->hw;
6633 	struct ksz_port *port = &priv->port;
6634 
6635 	if (!(hw->features & LINK_INT_WORKING))
6636 		port_get_link_speed(port);
6637 	update_link(dev, priv, port);
6638 
6639 	ksz_update_timer(&priv->monitor_timer_info);
6640 }
6641 
6642 /*
6643  * Linux network device interface functions
6644  */
6645 
6646 /* Driver exported variables */
6647 
6648 static int msg_enable;
6649 
6650 static char *macaddr = ":";
6651 static char *mac1addr = ":";
6652 
6653 /*
6654  * This enables multiple network device mode for KSZ8842, which contains a
6655  * switch with two physical ports.  Some users like to take control of the
6656  * ports for running Spanning Tree Protocol.  The driver will create an
6657  * additional eth? device for the other port.
6658  *
6659  * Some limitations are the network devices cannot have different MTU and
6660  * multicast hash tables.
6661  */
6662 static int multi_dev;
6663 
6664 /*
6665  * As most users select multiple network device mode to use Spanning Tree
6666  * Protocol, this enables a feature in which most unicast and multicast packets
6667  * are forwarded inside the switch and not passed to the host.  Only packets
6668  * that need the host's attention are passed to it.  This prevents the host
6669  * wasting CPU time to examine each and every incoming packets and do the
6670  * forwarding itself.
6671  *
6672  * As the hack requires the private bridge header, the driver cannot compile
6673  * with just the kernel headers.
6674  *
6675  * Enabling STP support also turns on multiple network device mode.
6676  */
6677 static int stp;
6678 
6679 /*
6680  * This enables fast aging in the KSZ8842 switch.  Not sure what situation
6681  * needs that.  However, fast aging is used to flush the dynamic MAC table when
6682  * STP support is enabled.
6683  */
6684 static int fast_aging;
6685 
6686 /**
6687  * netdev_init - initialize network device.
6688  * @dev:	Network device.
6689  *
6690  * This function initializes the network device.
6691  *
6692  * Return 0 if successful; otherwise an error code indicating failure.
6693  */
6694 static int __init netdev_init(struct net_device *dev)
6695 {
6696 	struct dev_priv *priv = netdev_priv(dev);
6697 
6698 	/* 500 ms timeout */
6699 	ksz_init_timer(&priv->monitor_timer_info, 500 * HZ / 1000,
6700 		dev_monitor);
6701 
6702 	/* 500 ms timeout */
6703 	dev->watchdog_timeo = HZ / 2;
6704 
6705 	dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG | NETIF_F_RXCSUM;
6706 
6707 	/*
6708 	 * Hardware does not really support IPv6 checksum generation, but
6709 	 * driver actually runs faster with this on.
6710 	 */
6711 	dev->hw_features |= NETIF_F_IPV6_CSUM;
6712 
6713 	dev->features |= dev->hw_features;
6714 
6715 	sema_init(&priv->proc_sem, 1);
6716 
6717 	priv->mii_if.phy_id_mask = 0x1;
6718 	priv->mii_if.reg_num_mask = 0x7;
6719 	priv->mii_if.dev = dev;
6720 	priv->mii_if.mdio_read = mdio_read;
6721 	priv->mii_if.mdio_write = mdio_write;
6722 	priv->mii_if.phy_id = priv->port.first_port + 1;
6723 
6724 	priv->msg_enable = netif_msg_init(msg_enable,
6725 		(NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK));
6726 
6727 	return 0;
6728 }
6729 
6730 static const struct net_device_ops netdev_ops = {
6731 	.ndo_init		= netdev_init,
6732 	.ndo_open		= netdev_open,
6733 	.ndo_stop		= netdev_close,
6734 	.ndo_get_stats		= netdev_query_statistics,
6735 	.ndo_start_xmit		= netdev_tx,
6736 	.ndo_tx_timeout		= netdev_tx_timeout,
6737 	.ndo_change_mtu		= netdev_change_mtu,
6738 	.ndo_set_features	= netdev_set_features,
6739 	.ndo_set_mac_address	= netdev_set_mac_address,
6740 	.ndo_validate_addr	= eth_validate_addr,
6741 	.ndo_eth_ioctl		= netdev_ioctl,
6742 	.ndo_set_rx_mode	= netdev_set_rx_mode,
6743 #ifdef CONFIG_NET_POLL_CONTROLLER
6744 	.ndo_poll_controller	= netdev_netpoll,
6745 #endif
6746 };
6747 
6748 static void netdev_free(struct net_device *dev)
6749 {
6750 	if (dev->watchdog_timeo)
6751 		unregister_netdev(dev);
6752 
6753 	free_netdev(dev);
6754 }
6755 
6756 struct platform_info {
6757 	struct dev_info dev_info;
6758 	struct net_device *netdev[SWITCH_PORT_NUM];
6759 };
6760 
6761 static int net_device_present;
6762 
6763 static void get_mac_addr(struct dev_info *hw_priv, u8 *macaddr, int port)
6764 {
6765 	int i;
6766 	int j;
6767 	int got_num;
6768 	int num;
6769 
6770 	i = j = num = got_num = 0;
6771 	while (j < ETH_ALEN) {
6772 		if (macaddr[i]) {
6773 			int digit;
6774 
6775 			got_num = 1;
6776 			digit = hex_to_bin(macaddr[i]);
6777 			if (digit >= 0)
6778 				num = num * 16 + digit;
6779 			else if (':' == macaddr[i])
6780 				got_num = 2;
6781 			else
6782 				break;
6783 		} else if (got_num)
6784 			got_num = 2;
6785 		else
6786 			break;
6787 		if (2 == got_num) {
6788 			if (MAIN_PORT == port) {
6789 				hw_priv->hw.override_addr[j++] = (u8) num;
6790 				hw_priv->hw.override_addr[5] +=
6791 					hw_priv->hw.id;
6792 			} else {
6793 				hw_priv->hw.ksz_switch->other_addr[j++] =
6794 					(u8) num;
6795 				hw_priv->hw.ksz_switch->other_addr[5] +=
6796 					hw_priv->hw.id;
6797 			}
6798 			num = got_num = 0;
6799 		}
6800 		i++;
6801 	}
6802 	if (ETH_ALEN == j) {
6803 		if (MAIN_PORT == port)
6804 			hw_priv->hw.mac_override = 1;
6805 	}
6806 }
6807 
6808 #define KS884X_DMA_MASK			(~0x0UL)
6809 
6810 static void read_other_addr(struct ksz_hw *hw)
6811 {
6812 	int i;
6813 	u16 data[3];
6814 	struct ksz_switch *sw = hw->ksz_switch;
6815 
6816 	for (i = 0; i < 3; i++)
6817 		data[i] = eeprom_read(hw, i + EEPROM_DATA_OTHER_MAC_ADDR);
6818 	if ((data[0] || data[1] || data[2]) && data[0] != 0xffff) {
6819 		sw->other_addr[5] = (u8) data[0];
6820 		sw->other_addr[4] = (u8)(data[0] >> 8);
6821 		sw->other_addr[3] = (u8) data[1];
6822 		sw->other_addr[2] = (u8)(data[1] >> 8);
6823 		sw->other_addr[1] = (u8) data[2];
6824 		sw->other_addr[0] = (u8)(data[2] >> 8);
6825 	}
6826 }
6827 
6828 #ifndef PCI_VENDOR_ID_MICREL_KS
6829 #define PCI_VENDOR_ID_MICREL_KS		0x16c6
6830 #endif
6831 
6832 static int pcidev_init(struct pci_dev *pdev, const struct pci_device_id *id)
6833 {
6834 	struct net_device *dev;
6835 	struct dev_priv *priv;
6836 	struct dev_info *hw_priv;
6837 	struct ksz_hw *hw;
6838 	struct platform_info *info;
6839 	struct ksz_port *port;
6840 	unsigned long reg_base;
6841 	unsigned long reg_len;
6842 	int cnt;
6843 	int i;
6844 	int mib_port_count;
6845 	int pi;
6846 	int port_count;
6847 	int result;
6848 	char banner[sizeof(version)];
6849 	struct ksz_switch *sw = NULL;
6850 
6851 	result = pci_enable_device(pdev);
6852 	if (result)
6853 		return result;
6854 
6855 	result = -ENODEV;
6856 
6857 	if (dma_set_mask(&pdev->dev, DMA_BIT_MASK(32)) ||
6858 	    dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32)))
6859 		return result;
6860 
6861 	reg_base = pci_resource_start(pdev, 0);
6862 	reg_len = pci_resource_len(pdev, 0);
6863 	if ((pci_resource_flags(pdev, 0) & IORESOURCE_IO) != 0)
6864 		return result;
6865 
6866 	if (!request_mem_region(reg_base, reg_len, DRV_NAME))
6867 		return result;
6868 	pci_set_master(pdev);
6869 
6870 	result = -ENOMEM;
6871 
6872 	info = kzalloc(sizeof(struct platform_info), GFP_KERNEL);
6873 	if (!info)
6874 		goto pcidev_init_dev_err;
6875 
6876 	hw_priv = &info->dev_info;
6877 	hw_priv->pdev = pdev;
6878 
6879 	hw = &hw_priv->hw;
6880 
6881 	hw->io = ioremap(reg_base, reg_len);
6882 	if (!hw->io)
6883 		goto pcidev_init_io_err;
6884 
6885 	cnt = hw_init(hw);
6886 	if (!cnt) {
6887 		if (msg_enable & NETIF_MSG_PROBE)
6888 			pr_alert("chip not detected\n");
6889 		result = -ENODEV;
6890 		goto pcidev_init_alloc_err;
6891 	}
6892 
6893 	snprintf(banner, sizeof(banner), "%s", version);
6894 	banner[13] = cnt + '0';		/* Replace x in "Micrel KSZ884x" */
6895 	dev_info(&hw_priv->pdev->dev, "%s\n", banner);
6896 	dev_dbg(&hw_priv->pdev->dev, "Mem = %p; IRQ = %d\n", hw->io, pdev->irq);
6897 
6898 	/* Assume device is KSZ8841. */
6899 	hw->dev_count = 1;
6900 	port_count = 1;
6901 	mib_port_count = 1;
6902 	hw->addr_list_size = 0;
6903 	hw->mib_cnt = PORT_COUNTER_NUM;
6904 	hw->mib_port_cnt = 1;
6905 
6906 	/* KSZ8842 has a switch with multiple ports. */
6907 	if (2 == cnt) {
6908 		if (fast_aging)
6909 			hw->overrides |= FAST_AGING;
6910 
6911 		hw->mib_cnt = TOTAL_PORT_COUNTER_NUM;
6912 
6913 		/* Multiple network device interfaces are required. */
6914 		if (multi_dev) {
6915 			hw->dev_count = SWITCH_PORT_NUM;
6916 			hw->addr_list_size = SWITCH_PORT_NUM - 1;
6917 		}
6918 
6919 		/* Single network device has multiple ports. */
6920 		if (1 == hw->dev_count) {
6921 			port_count = SWITCH_PORT_NUM;
6922 			mib_port_count = SWITCH_PORT_NUM;
6923 		}
6924 		hw->mib_port_cnt = TOTAL_PORT_NUM;
6925 		hw->ksz_switch = kzalloc(sizeof(struct ksz_switch), GFP_KERNEL);
6926 		if (!hw->ksz_switch)
6927 			goto pcidev_init_alloc_err;
6928 
6929 		sw = hw->ksz_switch;
6930 	}
6931 	for (i = 0; i < hw->mib_port_cnt; i++)
6932 		hw->port_mib[i].mib_start = 0;
6933 
6934 	hw->parent = hw_priv;
6935 
6936 	/* Default MTU is 1500. */
6937 	hw_priv->mtu = (REGULAR_RX_BUF_SIZE + 3) & ~3;
6938 
6939 	if (ksz_alloc_mem(hw_priv))
6940 		goto pcidev_init_mem_err;
6941 
6942 	hw_priv->hw.id = net_device_present;
6943 
6944 	spin_lock_init(&hw_priv->hwlock);
6945 	mutex_init(&hw_priv->lock);
6946 
6947 	for (i = 0; i < TOTAL_PORT_NUM; i++)
6948 		init_waitqueue_head(&hw_priv->counter[i].counter);
6949 
6950 	if (macaddr[0] != ':')
6951 		get_mac_addr(hw_priv, macaddr, MAIN_PORT);
6952 
6953 	/* Read MAC address and initialize override address if not overridden. */
6954 	hw_read_addr(hw);
6955 
6956 	/* Multiple device interfaces mode requires a second MAC address. */
6957 	if (hw->dev_count > 1) {
6958 		memcpy(sw->other_addr, hw->override_addr, ETH_ALEN);
6959 		read_other_addr(hw);
6960 		if (mac1addr[0] != ':')
6961 			get_mac_addr(hw_priv, mac1addr, OTHER_PORT);
6962 	}
6963 
6964 	hw_setup(hw);
6965 	if (hw->ksz_switch)
6966 		sw_setup(hw);
6967 	else {
6968 		hw_priv->wol_support = WOL_SUPPORT;
6969 		hw_priv->wol_enable = 0;
6970 	}
6971 
6972 	INIT_WORK(&hw_priv->mib_read, mib_read_work);
6973 
6974 	/* 500 ms timeout */
6975 	ksz_init_timer(&hw_priv->mib_timer_info, 500 * HZ / 1000,
6976 		mib_monitor);
6977 
6978 	for (i = 0; i < hw->dev_count; i++) {
6979 		dev = alloc_etherdev(sizeof(struct dev_priv));
6980 		if (!dev)
6981 			goto pcidev_init_reg_err;
6982 		SET_NETDEV_DEV(dev, &pdev->dev);
6983 		info->netdev[i] = dev;
6984 
6985 		priv = netdev_priv(dev);
6986 		priv->adapter = hw_priv;
6987 		priv->id = net_device_present++;
6988 
6989 		port = &priv->port;
6990 		port->port_cnt = port_count;
6991 		port->mib_port_cnt = mib_port_count;
6992 		port->first_port = i;
6993 		port->flow_ctrl = PHY_FLOW_CTRL;
6994 
6995 		port->hw = hw;
6996 		port->linked = &hw->port_info[port->first_port];
6997 
6998 		for (cnt = 0, pi = i; cnt < port_count; cnt++, pi++) {
6999 			hw->port_info[pi].port_id = pi;
7000 			hw->port_info[pi].pdev = dev;
7001 			hw->port_info[pi].state = media_disconnected;
7002 		}
7003 
7004 		dev->mem_start = (unsigned long) hw->io;
7005 		dev->mem_end = dev->mem_start + reg_len - 1;
7006 		dev->irq = pdev->irq;
7007 		if (MAIN_PORT == i)
7008 			eth_hw_addr_set(dev, hw_priv->hw.override_addr);
7009 		else {
7010 			u8 addr[ETH_ALEN];
7011 
7012 			ether_addr_copy(addr, sw->other_addr);
7013 			if (ether_addr_equal(sw->other_addr, hw->override_addr))
7014 				addr[5] += port->first_port;
7015 			eth_hw_addr_set(dev, addr);
7016 		}
7017 
7018 		dev->netdev_ops = &netdev_ops;
7019 		dev->ethtool_ops = &netdev_ethtool_ops;
7020 
7021 		/* MTU range: 60 - 1894 */
7022 		dev->min_mtu = ETH_ZLEN;
7023 		dev->max_mtu = MAX_RX_BUF_SIZE -
7024 			       (ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN);
7025 
7026 		if (register_netdev(dev))
7027 			goto pcidev_init_reg_err;
7028 		port_set_power_saving(port, true);
7029 	}
7030 
7031 	pci_dev_get(hw_priv->pdev);
7032 	pci_set_drvdata(pdev, info);
7033 	return 0;
7034 
7035 pcidev_init_reg_err:
7036 	for (i = 0; i < hw->dev_count; i++) {
7037 		if (info->netdev[i]) {
7038 			netdev_free(info->netdev[i]);
7039 			info->netdev[i] = NULL;
7040 		}
7041 	}
7042 
7043 pcidev_init_mem_err:
7044 	ksz_free_mem(hw_priv);
7045 	kfree(hw->ksz_switch);
7046 
7047 pcidev_init_alloc_err:
7048 	iounmap(hw->io);
7049 
7050 pcidev_init_io_err:
7051 	kfree(info);
7052 
7053 pcidev_init_dev_err:
7054 	release_mem_region(reg_base, reg_len);
7055 
7056 	return result;
7057 }
7058 
7059 static void pcidev_exit(struct pci_dev *pdev)
7060 {
7061 	int i;
7062 	struct platform_info *info = pci_get_drvdata(pdev);
7063 	struct dev_info *hw_priv = &info->dev_info;
7064 
7065 	release_mem_region(pci_resource_start(pdev, 0),
7066 		pci_resource_len(pdev, 0));
7067 	for (i = 0; i < hw_priv->hw.dev_count; i++) {
7068 		if (info->netdev[i])
7069 			netdev_free(info->netdev[i]);
7070 	}
7071 	if (hw_priv->hw.io)
7072 		iounmap(hw_priv->hw.io);
7073 	ksz_free_mem(hw_priv);
7074 	kfree(hw_priv->hw.ksz_switch);
7075 	pci_dev_put(hw_priv->pdev);
7076 	kfree(info);
7077 }
7078 
7079 static int __maybe_unused pcidev_resume(struct device *dev_d)
7080 {
7081 	int i;
7082 	struct platform_info *info = dev_get_drvdata(dev_d);
7083 	struct dev_info *hw_priv = &info->dev_info;
7084 	struct ksz_hw *hw = &hw_priv->hw;
7085 
7086 	device_wakeup_disable(dev_d);
7087 
7088 	if (hw_priv->wol_enable)
7089 		hw_cfg_wol_pme(hw, 0);
7090 	for (i = 0; i < hw->dev_count; i++) {
7091 		if (info->netdev[i]) {
7092 			struct net_device *dev = info->netdev[i];
7093 
7094 			if (netif_running(dev)) {
7095 				netdev_open(dev);
7096 				netif_device_attach(dev);
7097 			}
7098 		}
7099 	}
7100 	return 0;
7101 }
7102 
7103 static int __maybe_unused pcidev_suspend(struct device *dev_d)
7104 {
7105 	int i;
7106 	struct platform_info *info = dev_get_drvdata(dev_d);
7107 	struct dev_info *hw_priv = &info->dev_info;
7108 	struct ksz_hw *hw = &hw_priv->hw;
7109 
7110 	/* Need to find a way to retrieve the device IP address. */
7111 	static const u8 net_addr[] = { 192, 168, 1, 1 };
7112 
7113 	for (i = 0; i < hw->dev_count; i++) {
7114 		if (info->netdev[i]) {
7115 			struct net_device *dev = info->netdev[i];
7116 
7117 			if (netif_running(dev)) {
7118 				netif_device_detach(dev);
7119 				netdev_close(dev);
7120 			}
7121 		}
7122 	}
7123 	if (hw_priv->wol_enable) {
7124 		hw_enable_wol(hw, hw_priv->wol_enable, net_addr);
7125 		hw_cfg_wol_pme(hw, 1);
7126 	}
7127 
7128 	device_wakeup_enable(dev_d);
7129 	return 0;
7130 }
7131 
7132 static char pcidev_name[] = "ksz884xp";
7133 
7134 static const struct pci_device_id pcidev_table[] = {
7135 	{ PCI_VENDOR_ID_MICREL_KS, 0x8841,
7136 		PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
7137 	{ PCI_VENDOR_ID_MICREL_KS, 0x8842,
7138 		PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
7139 	{ 0 }
7140 };
7141 
7142 MODULE_DEVICE_TABLE(pci, pcidev_table);
7143 
7144 static SIMPLE_DEV_PM_OPS(pcidev_pm_ops, pcidev_suspend, pcidev_resume);
7145 
7146 static struct pci_driver pci_device_driver = {
7147 	.driver.pm	= &pcidev_pm_ops,
7148 	.name		= pcidev_name,
7149 	.id_table	= pcidev_table,
7150 	.probe		= pcidev_init,
7151 	.remove		= pcidev_exit
7152 };
7153 
7154 module_pci_driver(pci_device_driver);
7155 
7156 MODULE_DESCRIPTION("KSZ8841/2 PCI network driver");
7157 MODULE_AUTHOR("Tristram Ha <Tristram.Ha@micrel.com>");
7158 MODULE_LICENSE("GPL");
7159 
7160 module_param_named(message, msg_enable, int, 0);
7161 MODULE_PARM_DESC(message, "Message verbosity level (0=none, 31=all)");
7162 
7163 module_param(macaddr, charp, 0);
7164 module_param(mac1addr, charp, 0);
7165 module_param(fast_aging, int, 0);
7166 module_param(multi_dev, int, 0);
7167 module_param(stp, int, 0);
7168 MODULE_PARM_DESC(macaddr, "MAC address");
7169 MODULE_PARM_DESC(mac1addr, "Second MAC address");
7170 MODULE_PARM_DESC(fast_aging, "Fast aging");
7171 MODULE_PARM_DESC(multi_dev, "Multiple device interfaces");
7172 MODULE_PARM_DESC(stp, "STP support");
7173