1 /** 2 * drivers/net/ethernet/micrel/ksx884x.c - Micrel KSZ8841/2 PCI Ethernet driver 3 * 4 * Copyright (c) 2009-2010 Micrel, Inc. 5 * Tristram Ha <Tristram.Ha@micrel.com> 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 */ 16 17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 18 19 #include <linux/init.h> 20 #include <linux/interrupt.h> 21 #include <linux/kernel.h> 22 #include <linux/module.h> 23 #include <linux/ioport.h> 24 #include <linux/pci.h> 25 #include <linux/proc_fs.h> 26 #include <linux/mii.h> 27 #include <linux/platform_device.h> 28 #include <linux/ethtool.h> 29 #include <linux/etherdevice.h> 30 #include <linux/in.h> 31 #include <linux/ip.h> 32 #include <linux/if_vlan.h> 33 #include <linux/crc32.h> 34 #include <linux/sched.h> 35 #include <linux/slab.h> 36 37 38 /* DMA Registers */ 39 40 #define KS_DMA_TX_CTRL 0x0000 41 #define DMA_TX_ENABLE 0x00000001 42 #define DMA_TX_CRC_ENABLE 0x00000002 43 #define DMA_TX_PAD_ENABLE 0x00000004 44 #define DMA_TX_LOOPBACK 0x00000100 45 #define DMA_TX_FLOW_ENABLE 0x00000200 46 #define DMA_TX_CSUM_IP 0x00010000 47 #define DMA_TX_CSUM_TCP 0x00020000 48 #define DMA_TX_CSUM_UDP 0x00040000 49 #define DMA_TX_BURST_SIZE 0x3F000000 50 51 #define KS_DMA_RX_CTRL 0x0004 52 #define DMA_RX_ENABLE 0x00000001 53 #define KS884X_DMA_RX_MULTICAST 0x00000002 54 #define DMA_RX_PROMISCUOUS 0x00000004 55 #define DMA_RX_ERROR 0x00000008 56 #define DMA_RX_UNICAST 0x00000010 57 #define DMA_RX_ALL_MULTICAST 0x00000020 58 #define DMA_RX_BROADCAST 0x00000040 59 #define DMA_RX_FLOW_ENABLE 0x00000200 60 #define DMA_RX_CSUM_IP 0x00010000 61 #define DMA_RX_CSUM_TCP 0x00020000 62 #define DMA_RX_CSUM_UDP 0x00040000 63 #define DMA_RX_BURST_SIZE 0x3F000000 64 65 #define DMA_BURST_SHIFT 24 66 #define DMA_BURST_DEFAULT 8 67 68 #define KS_DMA_TX_START 0x0008 69 #define KS_DMA_RX_START 0x000C 70 #define DMA_START 0x00000001 71 72 #define KS_DMA_TX_ADDR 0x0010 73 #define KS_DMA_RX_ADDR 0x0014 74 75 #define DMA_ADDR_LIST_MASK 0xFFFFFFFC 76 #define DMA_ADDR_LIST_SHIFT 2 77 78 /* MTR0 */ 79 #define KS884X_MULTICAST_0_OFFSET 0x0020 80 #define KS884X_MULTICAST_1_OFFSET 0x0021 81 #define KS884X_MULTICAST_2_OFFSET 0x0022 82 #define KS884x_MULTICAST_3_OFFSET 0x0023 83 /* MTR1 */ 84 #define KS884X_MULTICAST_4_OFFSET 0x0024 85 #define KS884X_MULTICAST_5_OFFSET 0x0025 86 #define KS884X_MULTICAST_6_OFFSET 0x0026 87 #define KS884X_MULTICAST_7_OFFSET 0x0027 88 89 /* Interrupt Registers */ 90 91 /* INTEN */ 92 #define KS884X_INTERRUPTS_ENABLE 0x0028 93 /* INTST */ 94 #define KS884X_INTERRUPTS_STATUS 0x002C 95 96 #define KS884X_INT_RX_STOPPED 0x02000000 97 #define KS884X_INT_TX_STOPPED 0x04000000 98 #define KS884X_INT_RX_OVERRUN 0x08000000 99 #define KS884X_INT_TX_EMPTY 0x10000000 100 #define KS884X_INT_RX 0x20000000 101 #define KS884X_INT_TX 0x40000000 102 #define KS884X_INT_PHY 0x80000000 103 104 #define KS884X_INT_RX_MASK \ 105 (KS884X_INT_RX | KS884X_INT_RX_OVERRUN) 106 #define KS884X_INT_TX_MASK \ 107 (KS884X_INT_TX | KS884X_INT_TX_EMPTY) 108 #define KS884X_INT_MASK (KS884X_INT_RX | KS884X_INT_TX | KS884X_INT_PHY) 109 110 /* MAC Additional Station Address */ 111 112 /* MAAL0 */ 113 #define KS_ADD_ADDR_0_LO 0x0080 114 /* MAAH0 */ 115 #define KS_ADD_ADDR_0_HI 0x0084 116 /* MAAL1 */ 117 #define KS_ADD_ADDR_1_LO 0x0088 118 /* MAAH1 */ 119 #define KS_ADD_ADDR_1_HI 0x008C 120 /* MAAL2 */ 121 #define KS_ADD_ADDR_2_LO 0x0090 122 /* MAAH2 */ 123 #define KS_ADD_ADDR_2_HI 0x0094 124 /* MAAL3 */ 125 #define KS_ADD_ADDR_3_LO 0x0098 126 /* MAAH3 */ 127 #define KS_ADD_ADDR_3_HI 0x009C 128 /* MAAL4 */ 129 #define KS_ADD_ADDR_4_LO 0x00A0 130 /* MAAH4 */ 131 #define KS_ADD_ADDR_4_HI 0x00A4 132 /* MAAL5 */ 133 #define KS_ADD_ADDR_5_LO 0x00A8 134 /* MAAH5 */ 135 #define KS_ADD_ADDR_5_HI 0x00AC 136 /* MAAL6 */ 137 #define KS_ADD_ADDR_6_LO 0x00B0 138 /* MAAH6 */ 139 #define KS_ADD_ADDR_6_HI 0x00B4 140 /* MAAL7 */ 141 #define KS_ADD_ADDR_7_LO 0x00B8 142 /* MAAH7 */ 143 #define KS_ADD_ADDR_7_HI 0x00BC 144 /* MAAL8 */ 145 #define KS_ADD_ADDR_8_LO 0x00C0 146 /* MAAH8 */ 147 #define KS_ADD_ADDR_8_HI 0x00C4 148 /* MAAL9 */ 149 #define KS_ADD_ADDR_9_LO 0x00C8 150 /* MAAH9 */ 151 #define KS_ADD_ADDR_9_HI 0x00CC 152 /* MAAL10 */ 153 #define KS_ADD_ADDR_A_LO 0x00D0 154 /* MAAH10 */ 155 #define KS_ADD_ADDR_A_HI 0x00D4 156 /* MAAL11 */ 157 #define KS_ADD_ADDR_B_LO 0x00D8 158 /* MAAH11 */ 159 #define KS_ADD_ADDR_B_HI 0x00DC 160 /* MAAL12 */ 161 #define KS_ADD_ADDR_C_LO 0x00E0 162 /* MAAH12 */ 163 #define KS_ADD_ADDR_C_HI 0x00E4 164 /* MAAL13 */ 165 #define KS_ADD_ADDR_D_LO 0x00E8 166 /* MAAH13 */ 167 #define KS_ADD_ADDR_D_HI 0x00EC 168 /* MAAL14 */ 169 #define KS_ADD_ADDR_E_LO 0x00F0 170 /* MAAH14 */ 171 #define KS_ADD_ADDR_E_HI 0x00F4 172 /* MAAL15 */ 173 #define KS_ADD_ADDR_F_LO 0x00F8 174 /* MAAH15 */ 175 #define KS_ADD_ADDR_F_HI 0x00FC 176 177 #define ADD_ADDR_HI_MASK 0x0000FFFF 178 #define ADD_ADDR_ENABLE 0x80000000 179 #define ADD_ADDR_INCR 8 180 181 /* Miscellaneous Registers */ 182 183 /* MARL */ 184 #define KS884X_ADDR_0_OFFSET 0x0200 185 #define KS884X_ADDR_1_OFFSET 0x0201 186 /* MARM */ 187 #define KS884X_ADDR_2_OFFSET 0x0202 188 #define KS884X_ADDR_3_OFFSET 0x0203 189 /* MARH */ 190 #define KS884X_ADDR_4_OFFSET 0x0204 191 #define KS884X_ADDR_5_OFFSET 0x0205 192 193 /* OBCR */ 194 #define KS884X_BUS_CTRL_OFFSET 0x0210 195 196 #define BUS_SPEED_125_MHZ 0x0000 197 #define BUS_SPEED_62_5_MHZ 0x0001 198 #define BUS_SPEED_41_66_MHZ 0x0002 199 #define BUS_SPEED_25_MHZ 0x0003 200 201 /* EEPCR */ 202 #define KS884X_EEPROM_CTRL_OFFSET 0x0212 203 204 #define EEPROM_CHIP_SELECT 0x0001 205 #define EEPROM_SERIAL_CLOCK 0x0002 206 #define EEPROM_DATA_OUT 0x0004 207 #define EEPROM_DATA_IN 0x0008 208 #define EEPROM_ACCESS_ENABLE 0x0010 209 210 /* MBIR */ 211 #define KS884X_MEM_INFO_OFFSET 0x0214 212 213 #define RX_MEM_TEST_FAILED 0x0008 214 #define RX_MEM_TEST_FINISHED 0x0010 215 #define TX_MEM_TEST_FAILED 0x0800 216 #define TX_MEM_TEST_FINISHED 0x1000 217 218 /* GCR */ 219 #define KS884X_GLOBAL_CTRL_OFFSET 0x0216 220 #define GLOBAL_SOFTWARE_RESET 0x0001 221 222 #define KS8841_POWER_MANAGE_OFFSET 0x0218 223 224 /* WFCR */ 225 #define KS8841_WOL_CTRL_OFFSET 0x021A 226 #define KS8841_WOL_MAGIC_ENABLE 0x0080 227 #define KS8841_WOL_FRAME3_ENABLE 0x0008 228 #define KS8841_WOL_FRAME2_ENABLE 0x0004 229 #define KS8841_WOL_FRAME1_ENABLE 0x0002 230 #define KS8841_WOL_FRAME0_ENABLE 0x0001 231 232 /* WF0 */ 233 #define KS8841_WOL_FRAME_CRC_OFFSET 0x0220 234 #define KS8841_WOL_FRAME_BYTE0_OFFSET 0x0224 235 #define KS8841_WOL_FRAME_BYTE2_OFFSET 0x0228 236 237 /* IACR */ 238 #define KS884X_IACR_P 0x04A0 239 #define KS884X_IACR_OFFSET KS884X_IACR_P 240 241 /* IADR1 */ 242 #define KS884X_IADR1_P 0x04A2 243 #define KS884X_IADR2_P 0x04A4 244 #define KS884X_IADR3_P 0x04A6 245 #define KS884X_IADR4_P 0x04A8 246 #define KS884X_IADR5_P 0x04AA 247 248 #define KS884X_ACC_CTRL_SEL_OFFSET KS884X_IACR_P 249 #define KS884X_ACC_CTRL_INDEX_OFFSET (KS884X_ACC_CTRL_SEL_OFFSET + 1) 250 251 #define KS884X_ACC_DATA_0_OFFSET KS884X_IADR4_P 252 #define KS884X_ACC_DATA_1_OFFSET (KS884X_ACC_DATA_0_OFFSET + 1) 253 #define KS884X_ACC_DATA_2_OFFSET KS884X_IADR5_P 254 #define KS884X_ACC_DATA_3_OFFSET (KS884X_ACC_DATA_2_OFFSET + 1) 255 #define KS884X_ACC_DATA_4_OFFSET KS884X_IADR2_P 256 #define KS884X_ACC_DATA_5_OFFSET (KS884X_ACC_DATA_4_OFFSET + 1) 257 #define KS884X_ACC_DATA_6_OFFSET KS884X_IADR3_P 258 #define KS884X_ACC_DATA_7_OFFSET (KS884X_ACC_DATA_6_OFFSET + 1) 259 #define KS884X_ACC_DATA_8_OFFSET KS884X_IADR1_P 260 261 /* P1MBCR */ 262 #define KS884X_P1MBCR_P 0x04D0 263 #define KS884X_P1MBSR_P 0x04D2 264 #define KS884X_PHY1ILR_P 0x04D4 265 #define KS884X_PHY1IHR_P 0x04D6 266 #define KS884X_P1ANAR_P 0x04D8 267 #define KS884X_P1ANLPR_P 0x04DA 268 269 /* P2MBCR */ 270 #define KS884X_P2MBCR_P 0x04E0 271 #define KS884X_P2MBSR_P 0x04E2 272 #define KS884X_PHY2ILR_P 0x04E4 273 #define KS884X_PHY2IHR_P 0x04E6 274 #define KS884X_P2ANAR_P 0x04E8 275 #define KS884X_P2ANLPR_P 0x04EA 276 277 #define KS884X_PHY_1_CTRL_OFFSET KS884X_P1MBCR_P 278 #define PHY_CTRL_INTERVAL (KS884X_P2MBCR_P - KS884X_P1MBCR_P) 279 280 #define KS884X_PHY_CTRL_OFFSET 0x00 281 282 /* Mode Control Register */ 283 #define PHY_REG_CTRL 0 284 285 #define PHY_RESET 0x8000 286 #define PHY_LOOPBACK 0x4000 287 #define PHY_SPEED_100MBIT 0x2000 288 #define PHY_AUTO_NEG_ENABLE 0x1000 289 #define PHY_POWER_DOWN 0x0800 290 #define PHY_MII_DISABLE 0x0400 291 #define PHY_AUTO_NEG_RESTART 0x0200 292 #define PHY_FULL_DUPLEX 0x0100 293 #define PHY_COLLISION_TEST 0x0080 294 #define PHY_HP_MDIX 0x0020 295 #define PHY_FORCE_MDIX 0x0010 296 #define PHY_AUTO_MDIX_DISABLE 0x0008 297 #define PHY_REMOTE_FAULT_DISABLE 0x0004 298 #define PHY_TRANSMIT_DISABLE 0x0002 299 #define PHY_LED_DISABLE 0x0001 300 301 #define KS884X_PHY_STATUS_OFFSET 0x02 302 303 /* Mode Status Register */ 304 #define PHY_REG_STATUS 1 305 306 #define PHY_100BT4_CAPABLE 0x8000 307 #define PHY_100BTX_FD_CAPABLE 0x4000 308 #define PHY_100BTX_CAPABLE 0x2000 309 #define PHY_10BT_FD_CAPABLE 0x1000 310 #define PHY_10BT_CAPABLE 0x0800 311 #define PHY_MII_SUPPRESS_CAPABLE 0x0040 312 #define PHY_AUTO_NEG_ACKNOWLEDGE 0x0020 313 #define PHY_REMOTE_FAULT 0x0010 314 #define PHY_AUTO_NEG_CAPABLE 0x0008 315 #define PHY_LINK_STATUS 0x0004 316 #define PHY_JABBER_DETECT 0x0002 317 #define PHY_EXTENDED_CAPABILITY 0x0001 318 319 #define KS884X_PHY_ID_1_OFFSET 0x04 320 #define KS884X_PHY_ID_2_OFFSET 0x06 321 322 /* PHY Identifier Registers */ 323 #define PHY_REG_ID_1 2 324 #define PHY_REG_ID_2 3 325 326 #define KS884X_PHY_AUTO_NEG_OFFSET 0x08 327 328 /* Auto-Negotiation Advertisement Register */ 329 #define PHY_REG_AUTO_NEGOTIATION 4 330 331 #define PHY_AUTO_NEG_NEXT_PAGE 0x8000 332 #define PHY_AUTO_NEG_REMOTE_FAULT 0x2000 333 /* Not supported. */ 334 #define PHY_AUTO_NEG_ASYM_PAUSE 0x0800 335 #define PHY_AUTO_NEG_SYM_PAUSE 0x0400 336 #define PHY_AUTO_NEG_100BT4 0x0200 337 #define PHY_AUTO_NEG_100BTX_FD 0x0100 338 #define PHY_AUTO_NEG_100BTX 0x0080 339 #define PHY_AUTO_NEG_10BT_FD 0x0040 340 #define PHY_AUTO_NEG_10BT 0x0020 341 #define PHY_AUTO_NEG_SELECTOR 0x001F 342 #define PHY_AUTO_NEG_802_3 0x0001 343 344 #define PHY_AUTO_NEG_PAUSE (PHY_AUTO_NEG_SYM_PAUSE | PHY_AUTO_NEG_ASYM_PAUSE) 345 346 #define KS884X_PHY_REMOTE_CAP_OFFSET 0x0A 347 348 /* Auto-Negotiation Link Partner Ability Register */ 349 #define PHY_REG_REMOTE_CAPABILITY 5 350 351 #define PHY_REMOTE_NEXT_PAGE 0x8000 352 #define PHY_REMOTE_ACKNOWLEDGE 0x4000 353 #define PHY_REMOTE_REMOTE_FAULT 0x2000 354 #define PHY_REMOTE_SYM_PAUSE 0x0400 355 #define PHY_REMOTE_100BTX_FD 0x0100 356 #define PHY_REMOTE_100BTX 0x0080 357 #define PHY_REMOTE_10BT_FD 0x0040 358 #define PHY_REMOTE_10BT 0x0020 359 360 /* P1VCT */ 361 #define KS884X_P1VCT_P 0x04F0 362 #define KS884X_P1PHYCTRL_P 0x04F2 363 364 /* P2VCT */ 365 #define KS884X_P2VCT_P 0x04F4 366 #define KS884X_P2PHYCTRL_P 0x04F6 367 368 #define KS884X_PHY_SPECIAL_OFFSET KS884X_P1VCT_P 369 #define PHY_SPECIAL_INTERVAL (KS884X_P2VCT_P - KS884X_P1VCT_P) 370 371 #define KS884X_PHY_LINK_MD_OFFSET 0x00 372 373 #define PHY_START_CABLE_DIAG 0x8000 374 #define PHY_CABLE_DIAG_RESULT 0x6000 375 #define PHY_CABLE_STAT_NORMAL 0x0000 376 #define PHY_CABLE_STAT_OPEN 0x2000 377 #define PHY_CABLE_STAT_SHORT 0x4000 378 #define PHY_CABLE_STAT_FAILED 0x6000 379 #define PHY_CABLE_10M_SHORT 0x1000 380 #define PHY_CABLE_FAULT_COUNTER 0x01FF 381 382 #define KS884X_PHY_PHY_CTRL_OFFSET 0x02 383 384 #define PHY_STAT_REVERSED_POLARITY 0x0020 385 #define PHY_STAT_MDIX 0x0010 386 #define PHY_FORCE_LINK 0x0008 387 #define PHY_POWER_SAVING_DISABLE 0x0004 388 #define PHY_REMOTE_LOOPBACK 0x0002 389 390 /* SIDER */ 391 #define KS884X_SIDER_P 0x0400 392 #define KS884X_CHIP_ID_OFFSET KS884X_SIDER_P 393 #define KS884X_FAMILY_ID_OFFSET (KS884X_CHIP_ID_OFFSET + 1) 394 395 #define REG_FAMILY_ID 0x88 396 397 #define REG_CHIP_ID_41 0x8810 398 #define REG_CHIP_ID_42 0x8800 399 400 #define KS884X_CHIP_ID_MASK_41 0xFF10 401 #define KS884X_CHIP_ID_MASK 0xFFF0 402 #define KS884X_CHIP_ID_SHIFT 4 403 #define KS884X_REVISION_MASK 0x000E 404 #define KS884X_REVISION_SHIFT 1 405 #define KS8842_START 0x0001 406 407 #define CHIP_IP_41_M 0x8810 408 #define CHIP_IP_42_M 0x8800 409 #define CHIP_IP_61_M 0x8890 410 #define CHIP_IP_62_M 0x8880 411 412 #define CHIP_IP_41_P 0x8850 413 #define CHIP_IP_42_P 0x8840 414 #define CHIP_IP_61_P 0x88D0 415 #define CHIP_IP_62_P 0x88C0 416 417 /* SGCR1 */ 418 #define KS8842_SGCR1_P 0x0402 419 #define KS8842_SWITCH_CTRL_1_OFFSET KS8842_SGCR1_P 420 421 #define SWITCH_PASS_ALL 0x8000 422 #define SWITCH_TX_FLOW_CTRL 0x2000 423 #define SWITCH_RX_FLOW_CTRL 0x1000 424 #define SWITCH_CHECK_LENGTH 0x0800 425 #define SWITCH_AGING_ENABLE 0x0400 426 #define SWITCH_FAST_AGING 0x0200 427 #define SWITCH_AGGR_BACKOFF 0x0100 428 #define SWITCH_PASS_PAUSE 0x0008 429 #define SWITCH_LINK_AUTO_AGING 0x0001 430 431 /* SGCR2 */ 432 #define KS8842_SGCR2_P 0x0404 433 #define KS8842_SWITCH_CTRL_2_OFFSET KS8842_SGCR2_P 434 435 #define SWITCH_VLAN_ENABLE 0x8000 436 #define SWITCH_IGMP_SNOOP 0x4000 437 #define IPV6_MLD_SNOOP_ENABLE 0x2000 438 #define IPV6_MLD_SNOOP_OPTION 0x1000 439 #define PRIORITY_SCHEME_SELECT 0x0800 440 #define SWITCH_MIRROR_RX_TX 0x0100 441 #define UNICAST_VLAN_BOUNDARY 0x0080 442 #define MULTICAST_STORM_DISABLE 0x0040 443 #define SWITCH_BACK_PRESSURE 0x0020 444 #define FAIR_FLOW_CTRL 0x0010 445 #define NO_EXC_COLLISION_DROP 0x0008 446 #define SWITCH_HUGE_PACKET 0x0004 447 #define SWITCH_LEGAL_PACKET 0x0002 448 #define SWITCH_BUF_RESERVE 0x0001 449 450 /* SGCR3 */ 451 #define KS8842_SGCR3_P 0x0406 452 #define KS8842_SWITCH_CTRL_3_OFFSET KS8842_SGCR3_P 453 454 #define BROADCAST_STORM_RATE_LO 0xFF00 455 #define SWITCH_REPEATER 0x0080 456 #define SWITCH_HALF_DUPLEX 0x0040 457 #define SWITCH_FLOW_CTRL 0x0020 458 #define SWITCH_10_MBIT 0x0010 459 #define SWITCH_REPLACE_NULL_VID 0x0008 460 #define BROADCAST_STORM_RATE_HI 0x0007 461 462 #define BROADCAST_STORM_RATE 0x07FF 463 464 /* SGCR4 */ 465 #define KS8842_SGCR4_P 0x0408 466 467 /* SGCR5 */ 468 #define KS8842_SGCR5_P 0x040A 469 #define KS8842_SWITCH_CTRL_5_OFFSET KS8842_SGCR5_P 470 471 #define LED_MODE 0x8200 472 #define LED_SPEED_DUPLEX_ACT 0x0000 473 #define LED_SPEED_DUPLEX_LINK_ACT 0x8000 474 #define LED_DUPLEX_10_100 0x0200 475 476 /* SGCR6 */ 477 #define KS8842_SGCR6_P 0x0410 478 #define KS8842_SWITCH_CTRL_6_OFFSET KS8842_SGCR6_P 479 480 #define KS8842_PRIORITY_MASK 3 481 #define KS8842_PRIORITY_SHIFT 2 482 483 /* SGCR7 */ 484 #define KS8842_SGCR7_P 0x0412 485 #define KS8842_SWITCH_CTRL_7_OFFSET KS8842_SGCR7_P 486 487 #define SWITCH_UNK_DEF_PORT_ENABLE 0x0008 488 #define SWITCH_UNK_DEF_PORT_3 0x0004 489 #define SWITCH_UNK_DEF_PORT_2 0x0002 490 #define SWITCH_UNK_DEF_PORT_1 0x0001 491 492 /* MACAR1 */ 493 #define KS8842_MACAR1_P 0x0470 494 #define KS8842_MACAR2_P 0x0472 495 #define KS8842_MACAR3_P 0x0474 496 #define KS8842_MAC_ADDR_1_OFFSET KS8842_MACAR1_P 497 #define KS8842_MAC_ADDR_0_OFFSET (KS8842_MAC_ADDR_1_OFFSET + 1) 498 #define KS8842_MAC_ADDR_3_OFFSET KS8842_MACAR2_P 499 #define KS8842_MAC_ADDR_2_OFFSET (KS8842_MAC_ADDR_3_OFFSET + 1) 500 #define KS8842_MAC_ADDR_5_OFFSET KS8842_MACAR3_P 501 #define KS8842_MAC_ADDR_4_OFFSET (KS8842_MAC_ADDR_5_OFFSET + 1) 502 503 /* TOSR1 */ 504 #define KS8842_TOSR1_P 0x0480 505 #define KS8842_TOSR2_P 0x0482 506 #define KS8842_TOSR3_P 0x0484 507 #define KS8842_TOSR4_P 0x0486 508 #define KS8842_TOSR5_P 0x0488 509 #define KS8842_TOSR6_P 0x048A 510 #define KS8842_TOSR7_P 0x0490 511 #define KS8842_TOSR8_P 0x0492 512 #define KS8842_TOS_1_OFFSET KS8842_TOSR1_P 513 #define KS8842_TOS_2_OFFSET KS8842_TOSR2_P 514 #define KS8842_TOS_3_OFFSET KS8842_TOSR3_P 515 #define KS8842_TOS_4_OFFSET KS8842_TOSR4_P 516 #define KS8842_TOS_5_OFFSET KS8842_TOSR5_P 517 #define KS8842_TOS_6_OFFSET KS8842_TOSR6_P 518 519 #define KS8842_TOS_7_OFFSET KS8842_TOSR7_P 520 #define KS8842_TOS_8_OFFSET KS8842_TOSR8_P 521 522 /* P1CR1 */ 523 #define KS8842_P1CR1_P 0x0500 524 #define KS8842_P1CR2_P 0x0502 525 #define KS8842_P1VIDR_P 0x0504 526 #define KS8842_P1CR3_P 0x0506 527 #define KS8842_P1IRCR_P 0x0508 528 #define KS8842_P1ERCR_P 0x050A 529 #define KS884X_P1SCSLMD_P 0x0510 530 #define KS884X_P1CR4_P 0x0512 531 #define KS884X_P1SR_P 0x0514 532 533 /* P2CR1 */ 534 #define KS8842_P2CR1_P 0x0520 535 #define KS8842_P2CR2_P 0x0522 536 #define KS8842_P2VIDR_P 0x0524 537 #define KS8842_P2CR3_P 0x0526 538 #define KS8842_P2IRCR_P 0x0528 539 #define KS8842_P2ERCR_P 0x052A 540 #define KS884X_P2SCSLMD_P 0x0530 541 #define KS884X_P2CR4_P 0x0532 542 #define KS884X_P2SR_P 0x0534 543 544 /* P3CR1 */ 545 #define KS8842_P3CR1_P 0x0540 546 #define KS8842_P3CR2_P 0x0542 547 #define KS8842_P3VIDR_P 0x0544 548 #define KS8842_P3CR3_P 0x0546 549 #define KS8842_P3IRCR_P 0x0548 550 #define KS8842_P3ERCR_P 0x054A 551 552 #define KS8842_PORT_1_CTRL_1 KS8842_P1CR1_P 553 #define KS8842_PORT_2_CTRL_1 KS8842_P2CR1_P 554 #define KS8842_PORT_3_CTRL_1 KS8842_P3CR1_P 555 556 #define PORT_CTRL_ADDR(port, addr) \ 557 (addr = KS8842_PORT_1_CTRL_1 + (port) * \ 558 (KS8842_PORT_2_CTRL_1 - KS8842_PORT_1_CTRL_1)) 559 560 #define KS8842_PORT_CTRL_1_OFFSET 0x00 561 562 #define PORT_BROADCAST_STORM 0x0080 563 #define PORT_DIFFSERV_ENABLE 0x0040 564 #define PORT_802_1P_ENABLE 0x0020 565 #define PORT_BASED_PRIORITY_MASK 0x0018 566 #define PORT_BASED_PRIORITY_BASE 0x0003 567 #define PORT_BASED_PRIORITY_SHIFT 3 568 #define PORT_BASED_PRIORITY_0 0x0000 569 #define PORT_BASED_PRIORITY_1 0x0008 570 #define PORT_BASED_PRIORITY_2 0x0010 571 #define PORT_BASED_PRIORITY_3 0x0018 572 #define PORT_INSERT_TAG 0x0004 573 #define PORT_REMOVE_TAG 0x0002 574 #define PORT_PRIO_QUEUE_ENABLE 0x0001 575 576 #define KS8842_PORT_CTRL_2_OFFSET 0x02 577 578 #define PORT_INGRESS_VLAN_FILTER 0x4000 579 #define PORT_DISCARD_NON_VID 0x2000 580 #define PORT_FORCE_FLOW_CTRL 0x1000 581 #define PORT_BACK_PRESSURE 0x0800 582 #define PORT_TX_ENABLE 0x0400 583 #define PORT_RX_ENABLE 0x0200 584 #define PORT_LEARN_DISABLE 0x0100 585 #define PORT_MIRROR_SNIFFER 0x0080 586 #define PORT_MIRROR_RX 0x0040 587 #define PORT_MIRROR_TX 0x0020 588 #define PORT_USER_PRIORITY_CEILING 0x0008 589 #define PORT_VLAN_MEMBERSHIP 0x0007 590 591 #define KS8842_PORT_CTRL_VID_OFFSET 0x04 592 593 #define PORT_DEFAULT_VID 0x0001 594 595 #define KS8842_PORT_CTRL_3_OFFSET 0x06 596 597 #define PORT_INGRESS_LIMIT_MODE 0x000C 598 #define PORT_INGRESS_ALL 0x0000 599 #define PORT_INGRESS_UNICAST 0x0004 600 #define PORT_INGRESS_MULTICAST 0x0008 601 #define PORT_INGRESS_BROADCAST 0x000C 602 #define PORT_COUNT_IFG 0x0002 603 #define PORT_COUNT_PREAMBLE 0x0001 604 605 #define KS8842_PORT_IN_RATE_OFFSET 0x08 606 #define KS8842_PORT_OUT_RATE_OFFSET 0x0A 607 608 #define PORT_PRIORITY_RATE 0x0F 609 #define PORT_PRIORITY_RATE_SHIFT 4 610 611 #define KS884X_PORT_LINK_MD 0x10 612 613 #define PORT_CABLE_10M_SHORT 0x8000 614 #define PORT_CABLE_DIAG_RESULT 0x6000 615 #define PORT_CABLE_STAT_NORMAL 0x0000 616 #define PORT_CABLE_STAT_OPEN 0x2000 617 #define PORT_CABLE_STAT_SHORT 0x4000 618 #define PORT_CABLE_STAT_FAILED 0x6000 619 #define PORT_START_CABLE_DIAG 0x1000 620 #define PORT_FORCE_LINK 0x0800 621 #define PORT_POWER_SAVING_DISABLE 0x0400 622 #define PORT_PHY_REMOTE_LOOPBACK 0x0200 623 #define PORT_CABLE_FAULT_COUNTER 0x01FF 624 625 #define KS884X_PORT_CTRL_4_OFFSET 0x12 626 627 #define PORT_LED_OFF 0x8000 628 #define PORT_TX_DISABLE 0x4000 629 #define PORT_AUTO_NEG_RESTART 0x2000 630 #define PORT_REMOTE_FAULT_DISABLE 0x1000 631 #define PORT_POWER_DOWN 0x0800 632 #define PORT_AUTO_MDIX_DISABLE 0x0400 633 #define PORT_FORCE_MDIX 0x0200 634 #define PORT_LOOPBACK 0x0100 635 #define PORT_AUTO_NEG_ENABLE 0x0080 636 #define PORT_FORCE_100_MBIT 0x0040 637 #define PORT_FORCE_FULL_DUPLEX 0x0020 638 #define PORT_AUTO_NEG_SYM_PAUSE 0x0010 639 #define PORT_AUTO_NEG_100BTX_FD 0x0008 640 #define PORT_AUTO_NEG_100BTX 0x0004 641 #define PORT_AUTO_NEG_10BT_FD 0x0002 642 #define PORT_AUTO_NEG_10BT 0x0001 643 644 #define KS884X_PORT_STATUS_OFFSET 0x14 645 646 #define PORT_HP_MDIX 0x8000 647 #define PORT_REVERSED_POLARITY 0x2000 648 #define PORT_RX_FLOW_CTRL 0x0800 649 #define PORT_TX_FLOW_CTRL 0x1000 650 #define PORT_STATUS_SPEED_100MBIT 0x0400 651 #define PORT_STATUS_FULL_DUPLEX 0x0200 652 #define PORT_REMOTE_FAULT 0x0100 653 #define PORT_MDIX_STATUS 0x0080 654 #define PORT_AUTO_NEG_COMPLETE 0x0040 655 #define PORT_STATUS_LINK_GOOD 0x0020 656 #define PORT_REMOTE_SYM_PAUSE 0x0010 657 #define PORT_REMOTE_100BTX_FD 0x0008 658 #define PORT_REMOTE_100BTX 0x0004 659 #define PORT_REMOTE_10BT_FD 0x0002 660 #define PORT_REMOTE_10BT 0x0001 661 662 /* 663 #define STATIC_MAC_TABLE_ADDR 00-0000FFFF-FFFFFFFF 664 #define STATIC_MAC_TABLE_FWD_PORTS 00-00070000-00000000 665 #define STATIC_MAC_TABLE_VALID 00-00080000-00000000 666 #define STATIC_MAC_TABLE_OVERRIDE 00-00100000-00000000 667 #define STATIC_MAC_TABLE_USE_FID 00-00200000-00000000 668 #define STATIC_MAC_TABLE_FID 00-03C00000-00000000 669 */ 670 671 #define STATIC_MAC_TABLE_ADDR 0x0000FFFF 672 #define STATIC_MAC_TABLE_FWD_PORTS 0x00070000 673 #define STATIC_MAC_TABLE_VALID 0x00080000 674 #define STATIC_MAC_TABLE_OVERRIDE 0x00100000 675 #define STATIC_MAC_TABLE_USE_FID 0x00200000 676 #define STATIC_MAC_TABLE_FID 0x03C00000 677 678 #define STATIC_MAC_FWD_PORTS_SHIFT 16 679 #define STATIC_MAC_FID_SHIFT 22 680 681 /* 682 #define VLAN_TABLE_VID 00-00000000-00000FFF 683 #define VLAN_TABLE_FID 00-00000000-0000F000 684 #define VLAN_TABLE_MEMBERSHIP 00-00000000-00070000 685 #define VLAN_TABLE_VALID 00-00000000-00080000 686 */ 687 688 #define VLAN_TABLE_VID 0x00000FFF 689 #define VLAN_TABLE_FID 0x0000F000 690 #define VLAN_TABLE_MEMBERSHIP 0x00070000 691 #define VLAN_TABLE_VALID 0x00080000 692 693 #define VLAN_TABLE_FID_SHIFT 12 694 #define VLAN_TABLE_MEMBERSHIP_SHIFT 16 695 696 /* 697 #define DYNAMIC_MAC_TABLE_ADDR 00-0000FFFF-FFFFFFFF 698 #define DYNAMIC_MAC_TABLE_FID 00-000F0000-00000000 699 #define DYNAMIC_MAC_TABLE_SRC_PORT 00-00300000-00000000 700 #define DYNAMIC_MAC_TABLE_TIMESTAMP 00-00C00000-00000000 701 #define DYNAMIC_MAC_TABLE_ENTRIES 03-FF000000-00000000 702 #define DYNAMIC_MAC_TABLE_MAC_EMPTY 04-00000000-00000000 703 #define DYNAMIC_MAC_TABLE_RESERVED 78-00000000-00000000 704 #define DYNAMIC_MAC_TABLE_NOT_READY 80-00000000-00000000 705 */ 706 707 #define DYNAMIC_MAC_TABLE_ADDR 0x0000FFFF 708 #define DYNAMIC_MAC_TABLE_FID 0x000F0000 709 #define DYNAMIC_MAC_TABLE_SRC_PORT 0x00300000 710 #define DYNAMIC_MAC_TABLE_TIMESTAMP 0x00C00000 711 #define DYNAMIC_MAC_TABLE_ENTRIES 0xFF000000 712 713 #define DYNAMIC_MAC_TABLE_ENTRIES_H 0x03 714 #define DYNAMIC_MAC_TABLE_MAC_EMPTY 0x04 715 #define DYNAMIC_MAC_TABLE_RESERVED 0x78 716 #define DYNAMIC_MAC_TABLE_NOT_READY 0x80 717 718 #define DYNAMIC_MAC_FID_SHIFT 16 719 #define DYNAMIC_MAC_SRC_PORT_SHIFT 20 720 #define DYNAMIC_MAC_TIMESTAMP_SHIFT 22 721 #define DYNAMIC_MAC_ENTRIES_SHIFT 24 722 #define DYNAMIC_MAC_ENTRIES_H_SHIFT 8 723 724 /* 725 #define MIB_COUNTER_VALUE 00-00000000-3FFFFFFF 726 #define MIB_COUNTER_VALID 00-00000000-40000000 727 #define MIB_COUNTER_OVERFLOW 00-00000000-80000000 728 */ 729 730 #define MIB_COUNTER_VALUE 0x3FFFFFFF 731 #define MIB_COUNTER_VALID 0x40000000 732 #define MIB_COUNTER_OVERFLOW 0x80000000 733 734 #define MIB_PACKET_DROPPED 0x0000FFFF 735 736 #define KS_MIB_PACKET_DROPPED_TX_0 0x100 737 #define KS_MIB_PACKET_DROPPED_TX_1 0x101 738 #define KS_MIB_PACKET_DROPPED_TX 0x102 739 #define KS_MIB_PACKET_DROPPED_RX_0 0x103 740 #define KS_MIB_PACKET_DROPPED_RX_1 0x104 741 #define KS_MIB_PACKET_DROPPED_RX 0x105 742 743 /* Change default LED mode. */ 744 #define SET_DEFAULT_LED LED_SPEED_DUPLEX_ACT 745 746 #define MAC_ADDR_ORDER(i) (ETH_ALEN - 1 - (i)) 747 748 #define MAX_ETHERNET_BODY_SIZE 1500 749 #define ETHERNET_HEADER_SIZE (14 + VLAN_HLEN) 750 751 #define MAX_ETHERNET_PACKET_SIZE \ 752 (MAX_ETHERNET_BODY_SIZE + ETHERNET_HEADER_SIZE) 753 754 #define REGULAR_RX_BUF_SIZE (MAX_ETHERNET_PACKET_SIZE + 4) 755 #define MAX_RX_BUF_SIZE (1912 + 4) 756 757 #define ADDITIONAL_ENTRIES 16 758 #define MAX_MULTICAST_LIST 32 759 760 #define HW_MULTICAST_SIZE 8 761 762 #define HW_TO_DEV_PORT(port) (port - 1) 763 764 enum { 765 media_connected, 766 media_disconnected 767 }; 768 769 enum { 770 OID_COUNTER_UNKOWN, 771 772 OID_COUNTER_FIRST, 773 774 /* total transmit errors */ 775 OID_COUNTER_XMIT_ERROR, 776 777 /* total receive errors */ 778 OID_COUNTER_RCV_ERROR, 779 780 OID_COUNTER_LAST 781 }; 782 783 /* 784 * Hardware descriptor definitions 785 */ 786 787 #define DESC_ALIGNMENT 16 788 #define BUFFER_ALIGNMENT 8 789 790 #define NUM_OF_RX_DESC 64 791 #define NUM_OF_TX_DESC 64 792 793 #define KS_DESC_RX_FRAME_LEN 0x000007FF 794 #define KS_DESC_RX_FRAME_TYPE 0x00008000 795 #define KS_DESC_RX_ERROR_CRC 0x00010000 796 #define KS_DESC_RX_ERROR_RUNT 0x00020000 797 #define KS_DESC_RX_ERROR_TOO_LONG 0x00040000 798 #define KS_DESC_RX_ERROR_PHY 0x00080000 799 #define KS884X_DESC_RX_PORT_MASK 0x00300000 800 #define KS_DESC_RX_MULTICAST 0x01000000 801 #define KS_DESC_RX_ERROR 0x02000000 802 #define KS_DESC_RX_ERROR_CSUM_UDP 0x04000000 803 #define KS_DESC_RX_ERROR_CSUM_TCP 0x08000000 804 #define KS_DESC_RX_ERROR_CSUM_IP 0x10000000 805 #define KS_DESC_RX_LAST 0x20000000 806 #define KS_DESC_RX_FIRST 0x40000000 807 #define KS_DESC_RX_ERROR_COND \ 808 (KS_DESC_RX_ERROR_CRC | \ 809 KS_DESC_RX_ERROR_RUNT | \ 810 KS_DESC_RX_ERROR_PHY | \ 811 KS_DESC_RX_ERROR_TOO_LONG) 812 813 #define KS_DESC_HW_OWNED 0x80000000 814 815 #define KS_DESC_BUF_SIZE 0x000007FF 816 #define KS884X_DESC_TX_PORT_MASK 0x00300000 817 #define KS_DESC_END_OF_RING 0x02000000 818 #define KS_DESC_TX_CSUM_GEN_UDP 0x04000000 819 #define KS_DESC_TX_CSUM_GEN_TCP 0x08000000 820 #define KS_DESC_TX_CSUM_GEN_IP 0x10000000 821 #define KS_DESC_TX_LAST 0x20000000 822 #define KS_DESC_TX_FIRST 0x40000000 823 #define KS_DESC_TX_INTERRUPT 0x80000000 824 825 #define KS_DESC_PORT_SHIFT 20 826 827 #define KS_DESC_RX_MASK (KS_DESC_BUF_SIZE) 828 829 #define KS_DESC_TX_MASK \ 830 (KS_DESC_TX_INTERRUPT | \ 831 KS_DESC_TX_FIRST | \ 832 KS_DESC_TX_LAST | \ 833 KS_DESC_TX_CSUM_GEN_IP | \ 834 KS_DESC_TX_CSUM_GEN_TCP | \ 835 KS_DESC_TX_CSUM_GEN_UDP | \ 836 KS_DESC_BUF_SIZE) 837 838 struct ksz_desc_rx_stat { 839 #ifdef __BIG_ENDIAN_BITFIELD 840 u32 hw_owned:1; 841 u32 first_desc:1; 842 u32 last_desc:1; 843 u32 csum_err_ip:1; 844 u32 csum_err_tcp:1; 845 u32 csum_err_udp:1; 846 u32 error:1; 847 u32 multicast:1; 848 u32 src_port:4; 849 u32 err_phy:1; 850 u32 err_too_long:1; 851 u32 err_runt:1; 852 u32 err_crc:1; 853 u32 frame_type:1; 854 u32 reserved1:4; 855 u32 frame_len:11; 856 #else 857 u32 frame_len:11; 858 u32 reserved1:4; 859 u32 frame_type:1; 860 u32 err_crc:1; 861 u32 err_runt:1; 862 u32 err_too_long:1; 863 u32 err_phy:1; 864 u32 src_port:4; 865 u32 multicast:1; 866 u32 error:1; 867 u32 csum_err_udp:1; 868 u32 csum_err_tcp:1; 869 u32 csum_err_ip:1; 870 u32 last_desc:1; 871 u32 first_desc:1; 872 u32 hw_owned:1; 873 #endif 874 }; 875 876 struct ksz_desc_tx_stat { 877 #ifdef __BIG_ENDIAN_BITFIELD 878 u32 hw_owned:1; 879 u32 reserved1:31; 880 #else 881 u32 reserved1:31; 882 u32 hw_owned:1; 883 #endif 884 }; 885 886 struct ksz_desc_rx_buf { 887 #ifdef __BIG_ENDIAN_BITFIELD 888 u32 reserved4:6; 889 u32 end_of_ring:1; 890 u32 reserved3:14; 891 u32 buf_size:11; 892 #else 893 u32 buf_size:11; 894 u32 reserved3:14; 895 u32 end_of_ring:1; 896 u32 reserved4:6; 897 #endif 898 }; 899 900 struct ksz_desc_tx_buf { 901 #ifdef __BIG_ENDIAN_BITFIELD 902 u32 intr:1; 903 u32 first_seg:1; 904 u32 last_seg:1; 905 u32 csum_gen_ip:1; 906 u32 csum_gen_tcp:1; 907 u32 csum_gen_udp:1; 908 u32 end_of_ring:1; 909 u32 reserved4:1; 910 u32 dest_port:4; 911 u32 reserved3:9; 912 u32 buf_size:11; 913 #else 914 u32 buf_size:11; 915 u32 reserved3:9; 916 u32 dest_port:4; 917 u32 reserved4:1; 918 u32 end_of_ring:1; 919 u32 csum_gen_udp:1; 920 u32 csum_gen_tcp:1; 921 u32 csum_gen_ip:1; 922 u32 last_seg:1; 923 u32 first_seg:1; 924 u32 intr:1; 925 #endif 926 }; 927 928 union desc_stat { 929 struct ksz_desc_rx_stat rx; 930 struct ksz_desc_tx_stat tx; 931 u32 data; 932 }; 933 934 union desc_buf { 935 struct ksz_desc_rx_buf rx; 936 struct ksz_desc_tx_buf tx; 937 u32 data; 938 }; 939 940 /** 941 * struct ksz_hw_desc - Hardware descriptor data structure 942 * @ctrl: Descriptor control value. 943 * @buf: Descriptor buffer value. 944 * @addr: Physical address of memory buffer. 945 * @next: Pointer to next hardware descriptor. 946 */ 947 struct ksz_hw_desc { 948 union desc_stat ctrl; 949 union desc_buf buf; 950 u32 addr; 951 u32 next; 952 }; 953 954 /** 955 * struct ksz_sw_desc - Software descriptor data structure 956 * @ctrl: Descriptor control value. 957 * @buf: Descriptor buffer value. 958 * @buf_size: Current buffers size value in hardware descriptor. 959 */ 960 struct ksz_sw_desc { 961 union desc_stat ctrl; 962 union desc_buf buf; 963 u32 buf_size; 964 }; 965 966 /** 967 * struct ksz_dma_buf - OS dependent DMA buffer data structure 968 * @skb: Associated socket buffer. 969 * @dma: Associated physical DMA address. 970 * len: Actual len used. 971 */ 972 struct ksz_dma_buf { 973 struct sk_buff *skb; 974 dma_addr_t dma; 975 int len; 976 }; 977 978 /** 979 * struct ksz_desc - Descriptor structure 980 * @phw: Hardware descriptor pointer to uncached physical memory. 981 * @sw: Cached memory to hold hardware descriptor values for 982 * manipulation. 983 * @dma_buf: Operating system dependent data structure to hold physical 984 * memory buffer allocation information. 985 */ 986 struct ksz_desc { 987 struct ksz_hw_desc *phw; 988 struct ksz_sw_desc sw; 989 struct ksz_dma_buf dma_buf; 990 }; 991 992 #define DMA_BUFFER(desc) ((struct ksz_dma_buf *)(&(desc)->dma_buf)) 993 994 /** 995 * struct ksz_desc_info - Descriptor information data structure 996 * @ring: First descriptor in the ring. 997 * @cur: Current descriptor being manipulated. 998 * @ring_virt: First hardware descriptor in the ring. 999 * @ring_phys: The physical address of the first descriptor of the ring. 1000 * @size: Size of hardware descriptor. 1001 * @alloc: Number of descriptors allocated. 1002 * @avail: Number of descriptors available for use. 1003 * @last: Index for last descriptor released to hardware. 1004 * @next: Index for next descriptor available for use. 1005 * @mask: Mask for index wrapping. 1006 */ 1007 struct ksz_desc_info { 1008 struct ksz_desc *ring; 1009 struct ksz_desc *cur; 1010 struct ksz_hw_desc *ring_virt; 1011 u32 ring_phys; 1012 int size; 1013 int alloc; 1014 int avail; 1015 int last; 1016 int next; 1017 int mask; 1018 }; 1019 1020 /* 1021 * KSZ8842 switch definitions 1022 */ 1023 1024 enum { 1025 TABLE_STATIC_MAC = 0, 1026 TABLE_VLAN, 1027 TABLE_DYNAMIC_MAC, 1028 TABLE_MIB 1029 }; 1030 1031 #define LEARNED_MAC_TABLE_ENTRIES 1024 1032 #define STATIC_MAC_TABLE_ENTRIES 8 1033 1034 /** 1035 * struct ksz_mac_table - Static MAC table data structure 1036 * @mac_addr: MAC address to filter. 1037 * @vid: VID value. 1038 * @fid: FID value. 1039 * @ports: Port membership. 1040 * @override: Override setting. 1041 * @use_fid: FID use setting. 1042 * @valid: Valid setting indicating the entry is being used. 1043 */ 1044 struct ksz_mac_table { 1045 u8 mac_addr[ETH_ALEN]; 1046 u16 vid; 1047 u8 fid; 1048 u8 ports; 1049 u8 override:1; 1050 u8 use_fid:1; 1051 u8 valid:1; 1052 }; 1053 1054 #define VLAN_TABLE_ENTRIES 16 1055 1056 /** 1057 * struct ksz_vlan_table - VLAN table data structure 1058 * @vid: VID value. 1059 * @fid: FID value. 1060 * @member: Port membership. 1061 */ 1062 struct ksz_vlan_table { 1063 u16 vid; 1064 u8 fid; 1065 u8 member; 1066 }; 1067 1068 #define DIFFSERV_ENTRIES 64 1069 #define PRIO_802_1P_ENTRIES 8 1070 #define PRIO_QUEUES 4 1071 1072 #define SWITCH_PORT_NUM 2 1073 #define TOTAL_PORT_NUM (SWITCH_PORT_NUM + 1) 1074 #define HOST_MASK (1 << SWITCH_PORT_NUM) 1075 #define PORT_MASK 7 1076 1077 #define MAIN_PORT 0 1078 #define OTHER_PORT 1 1079 #define HOST_PORT SWITCH_PORT_NUM 1080 1081 #define PORT_COUNTER_NUM 0x20 1082 #define TOTAL_PORT_COUNTER_NUM (PORT_COUNTER_NUM + 2) 1083 1084 #define MIB_COUNTER_RX_LO_PRIORITY 0x00 1085 #define MIB_COUNTER_RX_HI_PRIORITY 0x01 1086 #define MIB_COUNTER_RX_UNDERSIZE 0x02 1087 #define MIB_COUNTER_RX_FRAGMENT 0x03 1088 #define MIB_COUNTER_RX_OVERSIZE 0x04 1089 #define MIB_COUNTER_RX_JABBER 0x05 1090 #define MIB_COUNTER_RX_SYMBOL_ERR 0x06 1091 #define MIB_COUNTER_RX_CRC_ERR 0x07 1092 #define MIB_COUNTER_RX_ALIGNMENT_ERR 0x08 1093 #define MIB_COUNTER_RX_CTRL_8808 0x09 1094 #define MIB_COUNTER_RX_PAUSE 0x0A 1095 #define MIB_COUNTER_RX_BROADCAST 0x0B 1096 #define MIB_COUNTER_RX_MULTICAST 0x0C 1097 #define MIB_COUNTER_RX_UNICAST 0x0D 1098 #define MIB_COUNTER_RX_OCTET_64 0x0E 1099 #define MIB_COUNTER_RX_OCTET_65_127 0x0F 1100 #define MIB_COUNTER_RX_OCTET_128_255 0x10 1101 #define MIB_COUNTER_RX_OCTET_256_511 0x11 1102 #define MIB_COUNTER_RX_OCTET_512_1023 0x12 1103 #define MIB_COUNTER_RX_OCTET_1024_1522 0x13 1104 #define MIB_COUNTER_TX_LO_PRIORITY 0x14 1105 #define MIB_COUNTER_TX_HI_PRIORITY 0x15 1106 #define MIB_COUNTER_TX_LATE_COLLISION 0x16 1107 #define MIB_COUNTER_TX_PAUSE 0x17 1108 #define MIB_COUNTER_TX_BROADCAST 0x18 1109 #define MIB_COUNTER_TX_MULTICAST 0x19 1110 #define MIB_COUNTER_TX_UNICAST 0x1A 1111 #define MIB_COUNTER_TX_DEFERRED 0x1B 1112 #define MIB_COUNTER_TX_TOTAL_COLLISION 0x1C 1113 #define MIB_COUNTER_TX_EXCESS_COLLISION 0x1D 1114 #define MIB_COUNTER_TX_SINGLE_COLLISION 0x1E 1115 #define MIB_COUNTER_TX_MULTI_COLLISION 0x1F 1116 1117 #define MIB_COUNTER_RX_DROPPED_PACKET 0x20 1118 #define MIB_COUNTER_TX_DROPPED_PACKET 0x21 1119 1120 /** 1121 * struct ksz_port_mib - Port MIB data structure 1122 * @cnt_ptr: Current pointer to MIB counter index. 1123 * @link_down: Indication the link has just gone down. 1124 * @state: Connection status of the port. 1125 * @mib_start: The starting counter index. Some ports do not start at 0. 1126 * @counter: 64-bit MIB counter value. 1127 * @dropped: Temporary buffer to remember last read packet dropped values. 1128 * 1129 * MIB counters needs to be read periodically so that counters do not get 1130 * overflowed and give incorrect values. A right balance is needed to 1131 * satisfy this condition and not waste too much CPU time. 1132 * 1133 * It is pointless to read MIB counters when the port is disconnected. The 1134 * @state provides the connection status so that MIB counters are read only 1135 * when the port is connected. The @link_down indicates the port is just 1136 * disconnected so that all MIB counters are read one last time to update the 1137 * information. 1138 */ 1139 struct ksz_port_mib { 1140 u8 cnt_ptr; 1141 u8 link_down; 1142 u8 state; 1143 u8 mib_start; 1144 1145 u64 counter[TOTAL_PORT_COUNTER_NUM]; 1146 u32 dropped[2]; 1147 }; 1148 1149 /** 1150 * struct ksz_port_cfg - Port configuration data structure 1151 * @vid: VID value. 1152 * @member: Port membership. 1153 * @port_prio: Port priority. 1154 * @rx_rate: Receive priority rate. 1155 * @tx_rate: Transmit priority rate. 1156 * @stp_state: Current Spanning Tree Protocol state. 1157 */ 1158 struct ksz_port_cfg { 1159 u16 vid; 1160 u8 member; 1161 u8 port_prio; 1162 u32 rx_rate[PRIO_QUEUES]; 1163 u32 tx_rate[PRIO_QUEUES]; 1164 int stp_state; 1165 }; 1166 1167 /** 1168 * struct ksz_switch - KSZ8842 switch data structure 1169 * @mac_table: MAC table entries information. 1170 * @vlan_table: VLAN table entries information. 1171 * @port_cfg: Port configuration information. 1172 * @diffserv: DiffServ priority settings. Possible values from 6-bit of ToS 1173 * (bit7 ~ bit2) field. 1174 * @p_802_1p: 802.1P priority settings. Possible values from 3-bit of 802.1p 1175 * Tag priority field. 1176 * @br_addr: Bridge address. Used for STP. 1177 * @other_addr: Other MAC address. Used for multiple network device mode. 1178 * @broad_per: Broadcast storm percentage. 1179 * @member: Current port membership. Used for STP. 1180 */ 1181 struct ksz_switch { 1182 struct ksz_mac_table mac_table[STATIC_MAC_TABLE_ENTRIES]; 1183 struct ksz_vlan_table vlan_table[VLAN_TABLE_ENTRIES]; 1184 struct ksz_port_cfg port_cfg[TOTAL_PORT_NUM]; 1185 1186 u8 diffserv[DIFFSERV_ENTRIES]; 1187 u8 p_802_1p[PRIO_802_1P_ENTRIES]; 1188 1189 u8 br_addr[ETH_ALEN]; 1190 u8 other_addr[ETH_ALEN]; 1191 1192 u8 broad_per; 1193 u8 member; 1194 }; 1195 1196 #define TX_RATE_UNIT 10000 1197 1198 /** 1199 * struct ksz_port_info - Port information data structure 1200 * @state: Connection status of the port. 1201 * @tx_rate: Transmit rate divided by 10000 to get Mbit. 1202 * @duplex: Duplex mode. 1203 * @advertised: Advertised auto-negotiation setting. Used to determine link. 1204 * @partner: Auto-negotiation partner setting. Used to determine link. 1205 * @port_id: Port index to access actual hardware register. 1206 * @pdev: Pointer to OS dependent network device. 1207 */ 1208 struct ksz_port_info { 1209 uint state; 1210 uint tx_rate; 1211 u8 duplex; 1212 u8 advertised; 1213 u8 partner; 1214 u8 port_id; 1215 void *pdev; 1216 }; 1217 1218 #define MAX_TX_HELD_SIZE 52000 1219 1220 /* Hardware features and bug fixes. */ 1221 #define LINK_INT_WORKING (1 << 0) 1222 #define SMALL_PACKET_TX_BUG (1 << 1) 1223 #define HALF_DUPLEX_SIGNAL_BUG (1 << 2) 1224 #define RX_HUGE_FRAME (1 << 4) 1225 #define STP_SUPPORT (1 << 8) 1226 1227 /* Software overrides. */ 1228 #define PAUSE_FLOW_CTRL (1 << 0) 1229 #define FAST_AGING (1 << 1) 1230 1231 /** 1232 * struct ksz_hw - KSZ884X hardware data structure 1233 * @io: Virtual address assigned. 1234 * @ksz_switch: Pointer to KSZ8842 switch. 1235 * @port_info: Port information. 1236 * @port_mib: Port MIB information. 1237 * @dev_count: Number of network devices this hardware supports. 1238 * @dst_ports: Destination ports in switch for transmission. 1239 * @id: Hardware ID. Used for display only. 1240 * @mib_cnt: Number of MIB counters this hardware has. 1241 * @mib_port_cnt: Number of ports with MIB counters. 1242 * @tx_cfg: Cached transmit control settings. 1243 * @rx_cfg: Cached receive control settings. 1244 * @intr_mask: Current interrupt mask. 1245 * @intr_set: Current interrup set. 1246 * @intr_blocked: Interrupt blocked. 1247 * @rx_desc_info: Receive descriptor information. 1248 * @tx_desc_info: Transmit descriptor information. 1249 * @tx_int_cnt: Transmit interrupt count. Used for TX optimization. 1250 * @tx_int_mask: Transmit interrupt mask. Used for TX optimization. 1251 * @tx_size: Transmit data size. Used for TX optimization. 1252 * The maximum is defined by MAX_TX_HELD_SIZE. 1253 * @perm_addr: Permanent MAC address. 1254 * @override_addr: Overrided MAC address. 1255 * @address: Additional MAC address entries. 1256 * @addr_list_size: Additional MAC address list size. 1257 * @mac_override: Indication of MAC address overrided. 1258 * @promiscuous: Counter to keep track of promiscuous mode set. 1259 * @all_multi: Counter to keep track of all multicast mode set. 1260 * @multi_list: Multicast address entries. 1261 * @multi_bits: Cached multicast hash table settings. 1262 * @multi_list_size: Multicast address list size. 1263 * @enabled: Indication of hardware enabled. 1264 * @rx_stop: Indication of receive process stop. 1265 * @features: Hardware features to enable. 1266 * @overrides: Hardware features to override. 1267 * @parent: Pointer to parent, network device private structure. 1268 */ 1269 struct ksz_hw { 1270 void __iomem *io; 1271 1272 struct ksz_switch *ksz_switch; 1273 struct ksz_port_info port_info[SWITCH_PORT_NUM]; 1274 struct ksz_port_mib port_mib[TOTAL_PORT_NUM]; 1275 int dev_count; 1276 int dst_ports; 1277 int id; 1278 int mib_cnt; 1279 int mib_port_cnt; 1280 1281 u32 tx_cfg; 1282 u32 rx_cfg; 1283 u32 intr_mask; 1284 u32 intr_set; 1285 uint intr_blocked; 1286 1287 struct ksz_desc_info rx_desc_info; 1288 struct ksz_desc_info tx_desc_info; 1289 1290 int tx_int_cnt; 1291 int tx_int_mask; 1292 int tx_size; 1293 1294 u8 perm_addr[ETH_ALEN]; 1295 u8 override_addr[ETH_ALEN]; 1296 u8 address[ADDITIONAL_ENTRIES][ETH_ALEN]; 1297 u8 addr_list_size; 1298 u8 mac_override; 1299 u8 promiscuous; 1300 u8 all_multi; 1301 u8 multi_list[MAX_MULTICAST_LIST][ETH_ALEN]; 1302 u8 multi_bits[HW_MULTICAST_SIZE]; 1303 u8 multi_list_size; 1304 1305 u8 enabled; 1306 u8 rx_stop; 1307 u8 reserved2[1]; 1308 1309 uint features; 1310 uint overrides; 1311 1312 void *parent; 1313 }; 1314 1315 enum { 1316 PHY_NO_FLOW_CTRL, 1317 PHY_FLOW_CTRL, 1318 PHY_TX_ONLY, 1319 PHY_RX_ONLY 1320 }; 1321 1322 /** 1323 * struct ksz_port - Virtual port data structure 1324 * @duplex: Duplex mode setting. 1 for half duplex, 2 for full 1325 * duplex, and 0 for auto, which normally results in full 1326 * duplex. 1327 * @speed: Speed setting. 10 for 10 Mbit, 100 for 100 Mbit, and 1328 * 0 for auto, which normally results in 100 Mbit. 1329 * @force_link: Force link setting. 0 for auto-negotiation, and 1 for 1330 * force. 1331 * @flow_ctrl: Flow control setting. PHY_NO_FLOW_CTRL for no flow 1332 * control, and PHY_FLOW_CTRL for flow control. 1333 * PHY_TX_ONLY and PHY_RX_ONLY are not supported for 100 1334 * Mbit PHY. 1335 * @first_port: Index of first port this port supports. 1336 * @mib_port_cnt: Number of ports with MIB counters. 1337 * @port_cnt: Number of ports this port supports. 1338 * @counter: Port statistics counter. 1339 * @hw: Pointer to hardware structure. 1340 * @linked: Pointer to port information linked to this port. 1341 */ 1342 struct ksz_port { 1343 u8 duplex; 1344 u8 speed; 1345 u8 force_link; 1346 u8 flow_ctrl; 1347 1348 int first_port; 1349 int mib_port_cnt; 1350 int port_cnt; 1351 u64 counter[OID_COUNTER_LAST]; 1352 1353 struct ksz_hw *hw; 1354 struct ksz_port_info *linked; 1355 }; 1356 1357 /** 1358 * struct ksz_timer_info - Timer information data structure 1359 * @timer: Kernel timer. 1360 * @cnt: Running timer counter. 1361 * @max: Number of times to run timer; -1 for infinity. 1362 * @period: Timer period in jiffies. 1363 */ 1364 struct ksz_timer_info { 1365 struct timer_list timer; 1366 int cnt; 1367 int max; 1368 int period; 1369 }; 1370 1371 /** 1372 * struct ksz_shared_mem - OS dependent shared memory data structure 1373 * @dma_addr: Physical DMA address allocated. 1374 * @alloc_size: Allocation size. 1375 * @phys: Actual physical address used. 1376 * @alloc_virt: Virtual address allocated. 1377 * @virt: Actual virtual address used. 1378 */ 1379 struct ksz_shared_mem { 1380 dma_addr_t dma_addr; 1381 uint alloc_size; 1382 uint phys; 1383 u8 *alloc_virt; 1384 u8 *virt; 1385 }; 1386 1387 /** 1388 * struct ksz_counter_info - OS dependent counter information data structure 1389 * @counter: Wait queue to wakeup after counters are read. 1390 * @time: Next time in jiffies to read counter. 1391 * @read: Indication of counters read in full or not. 1392 */ 1393 struct ksz_counter_info { 1394 wait_queue_head_t counter; 1395 unsigned long time; 1396 int read; 1397 }; 1398 1399 /** 1400 * struct dev_info - Network device information data structure 1401 * @dev: Pointer to network device. 1402 * @pdev: Pointer to PCI device. 1403 * @hw: Hardware structure. 1404 * @desc_pool: Physical memory used for descriptor pool. 1405 * @hwlock: Spinlock to prevent hardware from accessing. 1406 * @lock: Mutex lock to prevent device from accessing. 1407 * @dev_rcv: Receive process function used. 1408 * @last_skb: Socket buffer allocated for descriptor rx fragments. 1409 * @skb_index: Buffer index for receiving fragments. 1410 * @skb_len: Buffer length for receiving fragments. 1411 * @mib_read: Workqueue to read MIB counters. 1412 * @mib_timer_info: Timer to read MIB counters. 1413 * @counter: Used for MIB reading. 1414 * @mtu: Current MTU used. The default is REGULAR_RX_BUF_SIZE; 1415 * the maximum is MAX_RX_BUF_SIZE. 1416 * @opened: Counter to keep track of device open. 1417 * @rx_tasklet: Receive processing tasklet. 1418 * @tx_tasklet: Transmit processing tasklet. 1419 * @wol_enable: Wake-on-LAN enable set by ethtool. 1420 * @wol_support: Wake-on-LAN support used by ethtool. 1421 * @pme_wait: Used for KSZ8841 power management. 1422 */ 1423 struct dev_info { 1424 struct net_device *dev; 1425 struct pci_dev *pdev; 1426 1427 struct ksz_hw hw; 1428 struct ksz_shared_mem desc_pool; 1429 1430 spinlock_t hwlock; 1431 struct mutex lock; 1432 1433 int (*dev_rcv)(struct dev_info *); 1434 1435 struct sk_buff *last_skb; 1436 int skb_index; 1437 int skb_len; 1438 1439 struct work_struct mib_read; 1440 struct ksz_timer_info mib_timer_info; 1441 struct ksz_counter_info counter[TOTAL_PORT_NUM]; 1442 1443 int mtu; 1444 int opened; 1445 1446 struct tasklet_struct rx_tasklet; 1447 struct tasklet_struct tx_tasklet; 1448 1449 int wol_enable; 1450 int wol_support; 1451 unsigned long pme_wait; 1452 }; 1453 1454 /** 1455 * struct dev_priv - Network device private data structure 1456 * @adapter: Adapter device information. 1457 * @port: Port information. 1458 * @monitor_time_info: Timer to monitor ports. 1459 * @proc_sem: Semaphore for proc accessing. 1460 * @id: Device ID. 1461 * @mii_if: MII interface information. 1462 * @advertising: Temporary variable to store advertised settings. 1463 * @msg_enable: The message flags controlling driver output. 1464 * @media_state: The connection status of the device. 1465 * @multicast: The all multicast state of the device. 1466 * @promiscuous: The promiscuous state of the device. 1467 */ 1468 struct dev_priv { 1469 struct dev_info *adapter; 1470 struct ksz_port port; 1471 struct ksz_timer_info monitor_timer_info; 1472 1473 struct semaphore proc_sem; 1474 int id; 1475 1476 struct mii_if_info mii_if; 1477 u32 advertising; 1478 1479 u32 msg_enable; 1480 int media_state; 1481 int multicast; 1482 int promiscuous; 1483 }; 1484 1485 #define DRV_NAME "KSZ884X PCI" 1486 #define DEVICE_NAME "KSZ884x PCI" 1487 #define DRV_VERSION "1.0.0" 1488 #define DRV_RELDATE "Feb 8, 2010" 1489 1490 static char version[] __devinitdata = 1491 "Micrel " DEVICE_NAME " " DRV_VERSION " (" DRV_RELDATE ")"; 1492 1493 static u8 DEFAULT_MAC_ADDRESS[] = { 0x00, 0x10, 0xA1, 0x88, 0x42, 0x01 }; 1494 1495 /* 1496 * Interrupt processing primary routines 1497 */ 1498 1499 static inline void hw_ack_intr(struct ksz_hw *hw, uint interrupt) 1500 { 1501 writel(interrupt, hw->io + KS884X_INTERRUPTS_STATUS); 1502 } 1503 1504 static inline void hw_dis_intr(struct ksz_hw *hw) 1505 { 1506 hw->intr_blocked = hw->intr_mask; 1507 writel(0, hw->io + KS884X_INTERRUPTS_ENABLE); 1508 hw->intr_set = readl(hw->io + KS884X_INTERRUPTS_ENABLE); 1509 } 1510 1511 static inline void hw_set_intr(struct ksz_hw *hw, uint interrupt) 1512 { 1513 hw->intr_set = interrupt; 1514 writel(interrupt, hw->io + KS884X_INTERRUPTS_ENABLE); 1515 } 1516 1517 static inline void hw_ena_intr(struct ksz_hw *hw) 1518 { 1519 hw->intr_blocked = 0; 1520 hw_set_intr(hw, hw->intr_mask); 1521 } 1522 1523 static inline void hw_dis_intr_bit(struct ksz_hw *hw, uint bit) 1524 { 1525 hw->intr_mask &= ~(bit); 1526 } 1527 1528 static inline void hw_turn_off_intr(struct ksz_hw *hw, uint interrupt) 1529 { 1530 u32 read_intr; 1531 1532 read_intr = readl(hw->io + KS884X_INTERRUPTS_ENABLE); 1533 hw->intr_set = read_intr & ~interrupt; 1534 writel(hw->intr_set, hw->io + KS884X_INTERRUPTS_ENABLE); 1535 hw_dis_intr_bit(hw, interrupt); 1536 } 1537 1538 /** 1539 * hw_turn_on_intr - turn on specified interrupts 1540 * @hw: The hardware instance. 1541 * @bit: The interrupt bits to be on. 1542 * 1543 * This routine turns on the specified interrupts in the interrupt mask so that 1544 * those interrupts will be enabled. 1545 */ 1546 static void hw_turn_on_intr(struct ksz_hw *hw, u32 bit) 1547 { 1548 hw->intr_mask |= bit; 1549 1550 if (!hw->intr_blocked) 1551 hw_set_intr(hw, hw->intr_mask); 1552 } 1553 1554 static inline void hw_ena_intr_bit(struct ksz_hw *hw, uint interrupt) 1555 { 1556 u32 read_intr; 1557 1558 read_intr = readl(hw->io + KS884X_INTERRUPTS_ENABLE); 1559 hw->intr_set = read_intr | interrupt; 1560 writel(hw->intr_set, hw->io + KS884X_INTERRUPTS_ENABLE); 1561 } 1562 1563 static inline void hw_read_intr(struct ksz_hw *hw, uint *status) 1564 { 1565 *status = readl(hw->io + KS884X_INTERRUPTS_STATUS); 1566 *status = *status & hw->intr_set; 1567 } 1568 1569 static inline void hw_restore_intr(struct ksz_hw *hw, uint interrupt) 1570 { 1571 if (interrupt) 1572 hw_ena_intr(hw); 1573 } 1574 1575 /** 1576 * hw_block_intr - block hardware interrupts 1577 * 1578 * This function blocks all interrupts of the hardware and returns the current 1579 * interrupt enable mask so that interrupts can be restored later. 1580 * 1581 * Return the current interrupt enable mask. 1582 */ 1583 static uint hw_block_intr(struct ksz_hw *hw) 1584 { 1585 uint interrupt = 0; 1586 1587 if (!hw->intr_blocked) { 1588 hw_dis_intr(hw); 1589 interrupt = hw->intr_blocked; 1590 } 1591 return interrupt; 1592 } 1593 1594 /* 1595 * Hardware descriptor routines 1596 */ 1597 1598 static inline void reset_desc(struct ksz_desc *desc, union desc_stat status) 1599 { 1600 status.rx.hw_owned = 0; 1601 desc->phw->ctrl.data = cpu_to_le32(status.data); 1602 } 1603 1604 static inline void release_desc(struct ksz_desc *desc) 1605 { 1606 desc->sw.ctrl.tx.hw_owned = 1; 1607 if (desc->sw.buf_size != desc->sw.buf.data) { 1608 desc->sw.buf_size = desc->sw.buf.data; 1609 desc->phw->buf.data = cpu_to_le32(desc->sw.buf.data); 1610 } 1611 desc->phw->ctrl.data = cpu_to_le32(desc->sw.ctrl.data); 1612 } 1613 1614 static void get_rx_pkt(struct ksz_desc_info *info, struct ksz_desc **desc) 1615 { 1616 *desc = &info->ring[info->last]; 1617 info->last++; 1618 info->last &= info->mask; 1619 info->avail--; 1620 (*desc)->sw.buf.data &= ~KS_DESC_RX_MASK; 1621 } 1622 1623 static inline void set_rx_buf(struct ksz_desc *desc, u32 addr) 1624 { 1625 desc->phw->addr = cpu_to_le32(addr); 1626 } 1627 1628 static inline void set_rx_len(struct ksz_desc *desc, u32 len) 1629 { 1630 desc->sw.buf.rx.buf_size = len; 1631 } 1632 1633 static inline void get_tx_pkt(struct ksz_desc_info *info, 1634 struct ksz_desc **desc) 1635 { 1636 *desc = &info->ring[info->next]; 1637 info->next++; 1638 info->next &= info->mask; 1639 info->avail--; 1640 (*desc)->sw.buf.data &= ~KS_DESC_TX_MASK; 1641 } 1642 1643 static inline void set_tx_buf(struct ksz_desc *desc, u32 addr) 1644 { 1645 desc->phw->addr = cpu_to_le32(addr); 1646 } 1647 1648 static inline void set_tx_len(struct ksz_desc *desc, u32 len) 1649 { 1650 desc->sw.buf.tx.buf_size = len; 1651 } 1652 1653 /* Switch functions */ 1654 1655 #define TABLE_READ 0x10 1656 #define TABLE_SEL_SHIFT 2 1657 1658 #define HW_DELAY(hw, reg) \ 1659 do { \ 1660 u16 dummy; \ 1661 dummy = readw(hw->io + reg); \ 1662 } while (0) 1663 1664 /** 1665 * sw_r_table - read 4 bytes of data from switch table 1666 * @hw: The hardware instance. 1667 * @table: The table selector. 1668 * @addr: The address of the table entry. 1669 * @data: Buffer to store the read data. 1670 * 1671 * This routine reads 4 bytes of data from the table of the switch. 1672 * Hardware interrupts are disabled to minimize corruption of read data. 1673 */ 1674 static void sw_r_table(struct ksz_hw *hw, int table, u16 addr, u32 *data) 1675 { 1676 u16 ctrl_addr; 1677 uint interrupt; 1678 1679 ctrl_addr = (((table << TABLE_SEL_SHIFT) | TABLE_READ) << 8) | addr; 1680 1681 interrupt = hw_block_intr(hw); 1682 1683 writew(ctrl_addr, hw->io + KS884X_IACR_OFFSET); 1684 HW_DELAY(hw, KS884X_IACR_OFFSET); 1685 *data = readl(hw->io + KS884X_ACC_DATA_0_OFFSET); 1686 1687 hw_restore_intr(hw, interrupt); 1688 } 1689 1690 /** 1691 * sw_w_table_64 - write 8 bytes of data to the switch table 1692 * @hw: The hardware instance. 1693 * @table: The table selector. 1694 * @addr: The address of the table entry. 1695 * @data_hi: The high part of data to be written (bit63 ~ bit32). 1696 * @data_lo: The low part of data to be written (bit31 ~ bit0). 1697 * 1698 * This routine writes 8 bytes of data to the table of the switch. 1699 * Hardware interrupts are disabled to minimize corruption of written data. 1700 */ 1701 static void sw_w_table_64(struct ksz_hw *hw, int table, u16 addr, u32 data_hi, 1702 u32 data_lo) 1703 { 1704 u16 ctrl_addr; 1705 uint interrupt; 1706 1707 ctrl_addr = ((table << TABLE_SEL_SHIFT) << 8) | addr; 1708 1709 interrupt = hw_block_intr(hw); 1710 1711 writel(data_hi, hw->io + KS884X_ACC_DATA_4_OFFSET); 1712 writel(data_lo, hw->io + KS884X_ACC_DATA_0_OFFSET); 1713 1714 writew(ctrl_addr, hw->io + KS884X_IACR_OFFSET); 1715 HW_DELAY(hw, KS884X_IACR_OFFSET); 1716 1717 hw_restore_intr(hw, interrupt); 1718 } 1719 1720 /** 1721 * sw_w_sta_mac_table - write to the static MAC table 1722 * @hw: The hardware instance. 1723 * @addr: The address of the table entry. 1724 * @mac_addr: The MAC address. 1725 * @ports: The port members. 1726 * @override: The flag to override the port receive/transmit settings. 1727 * @valid: The flag to indicate entry is valid. 1728 * @use_fid: The flag to indicate the FID is valid. 1729 * @fid: The FID value. 1730 * 1731 * This routine writes an entry of the static MAC table of the switch. It 1732 * calls sw_w_table_64() to write the data. 1733 */ 1734 static void sw_w_sta_mac_table(struct ksz_hw *hw, u16 addr, u8 *mac_addr, 1735 u8 ports, int override, int valid, int use_fid, u8 fid) 1736 { 1737 u32 data_hi; 1738 u32 data_lo; 1739 1740 data_lo = ((u32) mac_addr[2] << 24) | 1741 ((u32) mac_addr[3] << 16) | 1742 ((u32) mac_addr[4] << 8) | mac_addr[5]; 1743 data_hi = ((u32) mac_addr[0] << 8) | mac_addr[1]; 1744 data_hi |= (u32) ports << STATIC_MAC_FWD_PORTS_SHIFT; 1745 1746 if (override) 1747 data_hi |= STATIC_MAC_TABLE_OVERRIDE; 1748 if (use_fid) { 1749 data_hi |= STATIC_MAC_TABLE_USE_FID; 1750 data_hi |= (u32) fid << STATIC_MAC_FID_SHIFT; 1751 } 1752 if (valid) 1753 data_hi |= STATIC_MAC_TABLE_VALID; 1754 1755 sw_w_table_64(hw, TABLE_STATIC_MAC, addr, data_hi, data_lo); 1756 } 1757 1758 /** 1759 * sw_r_vlan_table - read from the VLAN table 1760 * @hw: The hardware instance. 1761 * @addr: The address of the table entry. 1762 * @vid: Buffer to store the VID. 1763 * @fid: Buffer to store the VID. 1764 * @member: Buffer to store the port membership. 1765 * 1766 * This function reads an entry of the VLAN table of the switch. It calls 1767 * sw_r_table() to get the data. 1768 * 1769 * Return 0 if the entry is valid; otherwise -1. 1770 */ 1771 static int sw_r_vlan_table(struct ksz_hw *hw, u16 addr, u16 *vid, u8 *fid, 1772 u8 *member) 1773 { 1774 u32 data; 1775 1776 sw_r_table(hw, TABLE_VLAN, addr, &data); 1777 if (data & VLAN_TABLE_VALID) { 1778 *vid = (u16)(data & VLAN_TABLE_VID); 1779 *fid = (u8)((data & VLAN_TABLE_FID) >> VLAN_TABLE_FID_SHIFT); 1780 *member = (u8)((data & VLAN_TABLE_MEMBERSHIP) >> 1781 VLAN_TABLE_MEMBERSHIP_SHIFT); 1782 return 0; 1783 } 1784 return -1; 1785 } 1786 1787 /** 1788 * port_r_mib_cnt - read MIB counter 1789 * @hw: The hardware instance. 1790 * @port: The port index. 1791 * @addr: The address of the counter. 1792 * @cnt: Buffer to store the counter. 1793 * 1794 * This routine reads a MIB counter of the port. 1795 * Hardware interrupts are disabled to minimize corruption of read data. 1796 */ 1797 static void port_r_mib_cnt(struct ksz_hw *hw, int port, u16 addr, u64 *cnt) 1798 { 1799 u32 data; 1800 u16 ctrl_addr; 1801 uint interrupt; 1802 int timeout; 1803 1804 ctrl_addr = addr + PORT_COUNTER_NUM * port; 1805 1806 interrupt = hw_block_intr(hw); 1807 1808 ctrl_addr |= (((TABLE_MIB << TABLE_SEL_SHIFT) | TABLE_READ) << 8); 1809 writew(ctrl_addr, hw->io + KS884X_IACR_OFFSET); 1810 HW_DELAY(hw, KS884X_IACR_OFFSET); 1811 1812 for (timeout = 100; timeout > 0; timeout--) { 1813 data = readl(hw->io + KS884X_ACC_DATA_0_OFFSET); 1814 1815 if (data & MIB_COUNTER_VALID) { 1816 if (data & MIB_COUNTER_OVERFLOW) 1817 *cnt += MIB_COUNTER_VALUE + 1; 1818 *cnt += data & MIB_COUNTER_VALUE; 1819 break; 1820 } 1821 } 1822 1823 hw_restore_intr(hw, interrupt); 1824 } 1825 1826 /** 1827 * port_r_mib_pkt - read dropped packet counts 1828 * @hw: The hardware instance. 1829 * @port: The port index. 1830 * @cnt: Buffer to store the receive and transmit dropped packet counts. 1831 * 1832 * This routine reads the dropped packet counts of the port. 1833 * Hardware interrupts are disabled to minimize corruption of read data. 1834 */ 1835 static void port_r_mib_pkt(struct ksz_hw *hw, int port, u32 *last, u64 *cnt) 1836 { 1837 u32 cur; 1838 u32 data; 1839 u16 ctrl_addr; 1840 uint interrupt; 1841 int index; 1842 1843 index = KS_MIB_PACKET_DROPPED_RX_0 + port; 1844 do { 1845 interrupt = hw_block_intr(hw); 1846 1847 ctrl_addr = (u16) index; 1848 ctrl_addr |= (((TABLE_MIB << TABLE_SEL_SHIFT) | TABLE_READ) 1849 << 8); 1850 writew(ctrl_addr, hw->io + KS884X_IACR_OFFSET); 1851 HW_DELAY(hw, KS884X_IACR_OFFSET); 1852 data = readl(hw->io + KS884X_ACC_DATA_0_OFFSET); 1853 1854 hw_restore_intr(hw, interrupt); 1855 1856 data &= MIB_PACKET_DROPPED; 1857 cur = *last; 1858 if (data != cur) { 1859 *last = data; 1860 if (data < cur) 1861 data += MIB_PACKET_DROPPED + 1; 1862 data -= cur; 1863 *cnt += data; 1864 } 1865 ++last; 1866 ++cnt; 1867 index -= KS_MIB_PACKET_DROPPED_TX - 1868 KS_MIB_PACKET_DROPPED_TX_0 + 1; 1869 } while (index >= KS_MIB_PACKET_DROPPED_TX_0 + port); 1870 } 1871 1872 /** 1873 * port_r_cnt - read MIB counters periodically 1874 * @hw: The hardware instance. 1875 * @port: The port index. 1876 * 1877 * This routine is used to read the counters of the port periodically to avoid 1878 * counter overflow. The hardware should be acquired first before calling this 1879 * routine. 1880 * 1881 * Return non-zero when not all counters not read. 1882 */ 1883 static int port_r_cnt(struct ksz_hw *hw, int port) 1884 { 1885 struct ksz_port_mib *mib = &hw->port_mib[port]; 1886 1887 if (mib->mib_start < PORT_COUNTER_NUM) 1888 while (mib->cnt_ptr < PORT_COUNTER_NUM) { 1889 port_r_mib_cnt(hw, port, mib->cnt_ptr, 1890 &mib->counter[mib->cnt_ptr]); 1891 ++mib->cnt_ptr; 1892 } 1893 if (hw->mib_cnt > PORT_COUNTER_NUM) 1894 port_r_mib_pkt(hw, port, mib->dropped, 1895 &mib->counter[PORT_COUNTER_NUM]); 1896 mib->cnt_ptr = 0; 1897 return 0; 1898 } 1899 1900 /** 1901 * port_init_cnt - initialize MIB counter values 1902 * @hw: The hardware instance. 1903 * @port: The port index. 1904 * 1905 * This routine is used to initialize all counters to zero if the hardware 1906 * cannot do it after reset. 1907 */ 1908 static void port_init_cnt(struct ksz_hw *hw, int port) 1909 { 1910 struct ksz_port_mib *mib = &hw->port_mib[port]; 1911 1912 mib->cnt_ptr = 0; 1913 if (mib->mib_start < PORT_COUNTER_NUM) 1914 do { 1915 port_r_mib_cnt(hw, port, mib->cnt_ptr, 1916 &mib->counter[mib->cnt_ptr]); 1917 ++mib->cnt_ptr; 1918 } while (mib->cnt_ptr < PORT_COUNTER_NUM); 1919 if (hw->mib_cnt > PORT_COUNTER_NUM) 1920 port_r_mib_pkt(hw, port, mib->dropped, 1921 &mib->counter[PORT_COUNTER_NUM]); 1922 memset((void *) mib->counter, 0, sizeof(u64) * TOTAL_PORT_COUNTER_NUM); 1923 mib->cnt_ptr = 0; 1924 } 1925 1926 /* 1927 * Port functions 1928 */ 1929 1930 /** 1931 * port_chk - check port register bits 1932 * @hw: The hardware instance. 1933 * @port: The port index. 1934 * @offset: The offset of the port register. 1935 * @bits: The data bits to check. 1936 * 1937 * This function checks whether the specified bits of the port register are set 1938 * or not. 1939 * 1940 * Return 0 if the bits are not set. 1941 */ 1942 static int port_chk(struct ksz_hw *hw, int port, int offset, u16 bits) 1943 { 1944 u32 addr; 1945 u16 data; 1946 1947 PORT_CTRL_ADDR(port, addr); 1948 addr += offset; 1949 data = readw(hw->io + addr); 1950 return (data & bits) == bits; 1951 } 1952 1953 /** 1954 * port_cfg - set port register bits 1955 * @hw: The hardware instance. 1956 * @port: The port index. 1957 * @offset: The offset of the port register. 1958 * @bits: The data bits to set. 1959 * @set: The flag indicating whether the bits are to be set or not. 1960 * 1961 * This routine sets or resets the specified bits of the port register. 1962 */ 1963 static void port_cfg(struct ksz_hw *hw, int port, int offset, u16 bits, 1964 int set) 1965 { 1966 u32 addr; 1967 u16 data; 1968 1969 PORT_CTRL_ADDR(port, addr); 1970 addr += offset; 1971 data = readw(hw->io + addr); 1972 if (set) 1973 data |= bits; 1974 else 1975 data &= ~bits; 1976 writew(data, hw->io + addr); 1977 } 1978 1979 /** 1980 * port_chk_shift - check port bit 1981 * @hw: The hardware instance. 1982 * @port: The port index. 1983 * @offset: The offset of the register. 1984 * @shift: Number of bits to shift. 1985 * 1986 * This function checks whether the specified port is set in the register or 1987 * not. 1988 * 1989 * Return 0 if the port is not set. 1990 */ 1991 static int port_chk_shift(struct ksz_hw *hw, int port, u32 addr, int shift) 1992 { 1993 u16 data; 1994 u16 bit = 1 << port; 1995 1996 data = readw(hw->io + addr); 1997 data >>= shift; 1998 return (data & bit) == bit; 1999 } 2000 2001 /** 2002 * port_cfg_shift - set port bit 2003 * @hw: The hardware instance. 2004 * @port: The port index. 2005 * @offset: The offset of the register. 2006 * @shift: Number of bits to shift. 2007 * @set: The flag indicating whether the port is to be set or not. 2008 * 2009 * This routine sets or resets the specified port in the register. 2010 */ 2011 static void port_cfg_shift(struct ksz_hw *hw, int port, u32 addr, int shift, 2012 int set) 2013 { 2014 u16 data; 2015 u16 bits = 1 << port; 2016 2017 data = readw(hw->io + addr); 2018 bits <<= shift; 2019 if (set) 2020 data |= bits; 2021 else 2022 data &= ~bits; 2023 writew(data, hw->io + addr); 2024 } 2025 2026 /** 2027 * port_r8 - read byte from port register 2028 * @hw: The hardware instance. 2029 * @port: The port index. 2030 * @offset: The offset of the port register. 2031 * @data: Buffer to store the data. 2032 * 2033 * This routine reads a byte from the port register. 2034 */ 2035 static void port_r8(struct ksz_hw *hw, int port, int offset, u8 *data) 2036 { 2037 u32 addr; 2038 2039 PORT_CTRL_ADDR(port, addr); 2040 addr += offset; 2041 *data = readb(hw->io + addr); 2042 } 2043 2044 /** 2045 * port_r16 - read word from port register. 2046 * @hw: The hardware instance. 2047 * @port: The port index. 2048 * @offset: The offset of the port register. 2049 * @data: Buffer to store the data. 2050 * 2051 * This routine reads a word from the port register. 2052 */ 2053 static void port_r16(struct ksz_hw *hw, int port, int offset, u16 *data) 2054 { 2055 u32 addr; 2056 2057 PORT_CTRL_ADDR(port, addr); 2058 addr += offset; 2059 *data = readw(hw->io + addr); 2060 } 2061 2062 /** 2063 * port_w16 - write word to port register. 2064 * @hw: The hardware instance. 2065 * @port: The port index. 2066 * @offset: The offset of the port register. 2067 * @data: Data to write. 2068 * 2069 * This routine writes a word to the port register. 2070 */ 2071 static void port_w16(struct ksz_hw *hw, int port, int offset, u16 data) 2072 { 2073 u32 addr; 2074 2075 PORT_CTRL_ADDR(port, addr); 2076 addr += offset; 2077 writew(data, hw->io + addr); 2078 } 2079 2080 /** 2081 * sw_chk - check switch register bits 2082 * @hw: The hardware instance. 2083 * @addr: The address of the switch register. 2084 * @bits: The data bits to check. 2085 * 2086 * This function checks whether the specified bits of the switch register are 2087 * set or not. 2088 * 2089 * Return 0 if the bits are not set. 2090 */ 2091 static int sw_chk(struct ksz_hw *hw, u32 addr, u16 bits) 2092 { 2093 u16 data; 2094 2095 data = readw(hw->io + addr); 2096 return (data & bits) == bits; 2097 } 2098 2099 /** 2100 * sw_cfg - set switch register bits 2101 * @hw: The hardware instance. 2102 * @addr: The address of the switch register. 2103 * @bits: The data bits to set. 2104 * @set: The flag indicating whether the bits are to be set or not. 2105 * 2106 * This function sets or resets the specified bits of the switch register. 2107 */ 2108 static void sw_cfg(struct ksz_hw *hw, u32 addr, u16 bits, int set) 2109 { 2110 u16 data; 2111 2112 data = readw(hw->io + addr); 2113 if (set) 2114 data |= bits; 2115 else 2116 data &= ~bits; 2117 writew(data, hw->io + addr); 2118 } 2119 2120 /* Bandwidth */ 2121 2122 static inline void port_cfg_broad_storm(struct ksz_hw *hw, int p, int set) 2123 { 2124 port_cfg(hw, p, 2125 KS8842_PORT_CTRL_1_OFFSET, PORT_BROADCAST_STORM, set); 2126 } 2127 2128 static inline int port_chk_broad_storm(struct ksz_hw *hw, int p) 2129 { 2130 return port_chk(hw, p, 2131 KS8842_PORT_CTRL_1_OFFSET, PORT_BROADCAST_STORM); 2132 } 2133 2134 /* Driver set switch broadcast storm protection at 10% rate. */ 2135 #define BROADCAST_STORM_PROTECTION_RATE 10 2136 2137 /* 148,800 frames * 67 ms / 100 */ 2138 #define BROADCAST_STORM_VALUE 9969 2139 2140 /** 2141 * sw_cfg_broad_storm - configure broadcast storm threshold 2142 * @hw: The hardware instance. 2143 * @percent: Broadcast storm threshold in percent of transmit rate. 2144 * 2145 * This routine configures the broadcast storm threshold of the switch. 2146 */ 2147 static void sw_cfg_broad_storm(struct ksz_hw *hw, u8 percent) 2148 { 2149 u16 data; 2150 u32 value = ((u32) BROADCAST_STORM_VALUE * (u32) percent / 100); 2151 2152 if (value > BROADCAST_STORM_RATE) 2153 value = BROADCAST_STORM_RATE; 2154 2155 data = readw(hw->io + KS8842_SWITCH_CTRL_3_OFFSET); 2156 data &= ~(BROADCAST_STORM_RATE_LO | BROADCAST_STORM_RATE_HI); 2157 data |= ((value & 0x00FF) << 8) | ((value & 0xFF00) >> 8); 2158 writew(data, hw->io + KS8842_SWITCH_CTRL_3_OFFSET); 2159 } 2160 2161 /** 2162 * sw_get_board_storm - get broadcast storm threshold 2163 * @hw: The hardware instance. 2164 * @percent: Buffer to store the broadcast storm threshold percentage. 2165 * 2166 * This routine retrieves the broadcast storm threshold of the switch. 2167 */ 2168 static void sw_get_broad_storm(struct ksz_hw *hw, u8 *percent) 2169 { 2170 int num; 2171 u16 data; 2172 2173 data = readw(hw->io + KS8842_SWITCH_CTRL_3_OFFSET); 2174 num = (data & BROADCAST_STORM_RATE_HI); 2175 num <<= 8; 2176 num |= (data & BROADCAST_STORM_RATE_LO) >> 8; 2177 num = (num * 100 + BROADCAST_STORM_VALUE / 2) / BROADCAST_STORM_VALUE; 2178 *percent = (u8) num; 2179 } 2180 2181 /** 2182 * sw_dis_broad_storm - disable broadstorm 2183 * @hw: The hardware instance. 2184 * @port: The port index. 2185 * 2186 * This routine disables the broadcast storm limit function of the switch. 2187 */ 2188 static void sw_dis_broad_storm(struct ksz_hw *hw, int port) 2189 { 2190 port_cfg_broad_storm(hw, port, 0); 2191 } 2192 2193 /** 2194 * sw_ena_broad_storm - enable broadcast storm 2195 * @hw: The hardware instance. 2196 * @port: The port index. 2197 * 2198 * This routine enables the broadcast storm limit function of the switch. 2199 */ 2200 static void sw_ena_broad_storm(struct ksz_hw *hw, int port) 2201 { 2202 sw_cfg_broad_storm(hw, hw->ksz_switch->broad_per); 2203 port_cfg_broad_storm(hw, port, 1); 2204 } 2205 2206 /** 2207 * sw_init_broad_storm - initialize broadcast storm 2208 * @hw: The hardware instance. 2209 * 2210 * This routine initializes the broadcast storm limit function of the switch. 2211 */ 2212 static void sw_init_broad_storm(struct ksz_hw *hw) 2213 { 2214 int port; 2215 2216 hw->ksz_switch->broad_per = 1; 2217 sw_cfg_broad_storm(hw, hw->ksz_switch->broad_per); 2218 for (port = 0; port < TOTAL_PORT_NUM; port++) 2219 sw_dis_broad_storm(hw, port); 2220 sw_cfg(hw, KS8842_SWITCH_CTRL_2_OFFSET, MULTICAST_STORM_DISABLE, 1); 2221 } 2222 2223 /** 2224 * hw_cfg_broad_storm - configure broadcast storm 2225 * @hw: The hardware instance. 2226 * @percent: Broadcast storm threshold in percent of transmit rate. 2227 * 2228 * This routine configures the broadcast storm threshold of the switch. 2229 * It is called by user functions. The hardware should be acquired first. 2230 */ 2231 static void hw_cfg_broad_storm(struct ksz_hw *hw, u8 percent) 2232 { 2233 if (percent > 100) 2234 percent = 100; 2235 2236 sw_cfg_broad_storm(hw, percent); 2237 sw_get_broad_storm(hw, &percent); 2238 hw->ksz_switch->broad_per = percent; 2239 } 2240 2241 /** 2242 * sw_dis_prio_rate - disable switch priority rate 2243 * @hw: The hardware instance. 2244 * @port: The port index. 2245 * 2246 * This routine disables the priority rate function of the switch. 2247 */ 2248 static void sw_dis_prio_rate(struct ksz_hw *hw, int port) 2249 { 2250 u32 addr; 2251 2252 PORT_CTRL_ADDR(port, addr); 2253 addr += KS8842_PORT_IN_RATE_OFFSET; 2254 writel(0, hw->io + addr); 2255 } 2256 2257 /** 2258 * sw_init_prio_rate - initialize switch prioirty rate 2259 * @hw: The hardware instance. 2260 * 2261 * This routine initializes the priority rate function of the switch. 2262 */ 2263 static void sw_init_prio_rate(struct ksz_hw *hw) 2264 { 2265 int port; 2266 int prio; 2267 struct ksz_switch *sw = hw->ksz_switch; 2268 2269 for (port = 0; port < TOTAL_PORT_NUM; port++) { 2270 for (prio = 0; prio < PRIO_QUEUES; prio++) { 2271 sw->port_cfg[port].rx_rate[prio] = 2272 sw->port_cfg[port].tx_rate[prio] = 0; 2273 } 2274 sw_dis_prio_rate(hw, port); 2275 } 2276 } 2277 2278 /* Communication */ 2279 2280 static inline void port_cfg_back_pressure(struct ksz_hw *hw, int p, int set) 2281 { 2282 port_cfg(hw, p, 2283 KS8842_PORT_CTRL_2_OFFSET, PORT_BACK_PRESSURE, set); 2284 } 2285 2286 static inline void port_cfg_force_flow_ctrl(struct ksz_hw *hw, int p, int set) 2287 { 2288 port_cfg(hw, p, 2289 KS8842_PORT_CTRL_2_OFFSET, PORT_FORCE_FLOW_CTRL, set); 2290 } 2291 2292 static inline int port_chk_back_pressure(struct ksz_hw *hw, int p) 2293 { 2294 return port_chk(hw, p, 2295 KS8842_PORT_CTRL_2_OFFSET, PORT_BACK_PRESSURE); 2296 } 2297 2298 static inline int port_chk_force_flow_ctrl(struct ksz_hw *hw, int p) 2299 { 2300 return port_chk(hw, p, 2301 KS8842_PORT_CTRL_2_OFFSET, PORT_FORCE_FLOW_CTRL); 2302 } 2303 2304 /* Spanning Tree */ 2305 2306 static inline void port_cfg_dis_learn(struct ksz_hw *hw, int p, int set) 2307 { 2308 port_cfg(hw, p, 2309 KS8842_PORT_CTRL_2_OFFSET, PORT_LEARN_DISABLE, set); 2310 } 2311 2312 static inline void port_cfg_rx(struct ksz_hw *hw, int p, int set) 2313 { 2314 port_cfg(hw, p, 2315 KS8842_PORT_CTRL_2_OFFSET, PORT_RX_ENABLE, set); 2316 } 2317 2318 static inline void port_cfg_tx(struct ksz_hw *hw, int p, int set) 2319 { 2320 port_cfg(hw, p, 2321 KS8842_PORT_CTRL_2_OFFSET, PORT_TX_ENABLE, set); 2322 } 2323 2324 static inline void sw_cfg_fast_aging(struct ksz_hw *hw, int set) 2325 { 2326 sw_cfg(hw, KS8842_SWITCH_CTRL_1_OFFSET, SWITCH_FAST_AGING, set); 2327 } 2328 2329 static inline void sw_flush_dyn_mac_table(struct ksz_hw *hw) 2330 { 2331 if (!(hw->overrides & FAST_AGING)) { 2332 sw_cfg_fast_aging(hw, 1); 2333 mdelay(1); 2334 sw_cfg_fast_aging(hw, 0); 2335 } 2336 } 2337 2338 /* VLAN */ 2339 2340 static inline void port_cfg_ins_tag(struct ksz_hw *hw, int p, int insert) 2341 { 2342 port_cfg(hw, p, 2343 KS8842_PORT_CTRL_1_OFFSET, PORT_INSERT_TAG, insert); 2344 } 2345 2346 static inline void port_cfg_rmv_tag(struct ksz_hw *hw, int p, int remove) 2347 { 2348 port_cfg(hw, p, 2349 KS8842_PORT_CTRL_1_OFFSET, PORT_REMOVE_TAG, remove); 2350 } 2351 2352 static inline int port_chk_ins_tag(struct ksz_hw *hw, int p) 2353 { 2354 return port_chk(hw, p, 2355 KS8842_PORT_CTRL_1_OFFSET, PORT_INSERT_TAG); 2356 } 2357 2358 static inline int port_chk_rmv_tag(struct ksz_hw *hw, int p) 2359 { 2360 return port_chk(hw, p, 2361 KS8842_PORT_CTRL_1_OFFSET, PORT_REMOVE_TAG); 2362 } 2363 2364 static inline void port_cfg_dis_non_vid(struct ksz_hw *hw, int p, int set) 2365 { 2366 port_cfg(hw, p, 2367 KS8842_PORT_CTRL_2_OFFSET, PORT_DISCARD_NON_VID, set); 2368 } 2369 2370 static inline void port_cfg_in_filter(struct ksz_hw *hw, int p, int set) 2371 { 2372 port_cfg(hw, p, 2373 KS8842_PORT_CTRL_2_OFFSET, PORT_INGRESS_VLAN_FILTER, set); 2374 } 2375 2376 static inline int port_chk_dis_non_vid(struct ksz_hw *hw, int p) 2377 { 2378 return port_chk(hw, p, 2379 KS8842_PORT_CTRL_2_OFFSET, PORT_DISCARD_NON_VID); 2380 } 2381 2382 static inline int port_chk_in_filter(struct ksz_hw *hw, int p) 2383 { 2384 return port_chk(hw, p, 2385 KS8842_PORT_CTRL_2_OFFSET, PORT_INGRESS_VLAN_FILTER); 2386 } 2387 2388 /* Mirroring */ 2389 2390 static inline void port_cfg_mirror_sniffer(struct ksz_hw *hw, int p, int set) 2391 { 2392 port_cfg(hw, p, 2393 KS8842_PORT_CTRL_2_OFFSET, PORT_MIRROR_SNIFFER, set); 2394 } 2395 2396 static inline void port_cfg_mirror_rx(struct ksz_hw *hw, int p, int set) 2397 { 2398 port_cfg(hw, p, 2399 KS8842_PORT_CTRL_2_OFFSET, PORT_MIRROR_RX, set); 2400 } 2401 2402 static inline void port_cfg_mirror_tx(struct ksz_hw *hw, int p, int set) 2403 { 2404 port_cfg(hw, p, 2405 KS8842_PORT_CTRL_2_OFFSET, PORT_MIRROR_TX, set); 2406 } 2407 2408 static inline void sw_cfg_mirror_rx_tx(struct ksz_hw *hw, int set) 2409 { 2410 sw_cfg(hw, KS8842_SWITCH_CTRL_2_OFFSET, SWITCH_MIRROR_RX_TX, set); 2411 } 2412 2413 static void sw_init_mirror(struct ksz_hw *hw) 2414 { 2415 int port; 2416 2417 for (port = 0; port < TOTAL_PORT_NUM; port++) { 2418 port_cfg_mirror_sniffer(hw, port, 0); 2419 port_cfg_mirror_rx(hw, port, 0); 2420 port_cfg_mirror_tx(hw, port, 0); 2421 } 2422 sw_cfg_mirror_rx_tx(hw, 0); 2423 } 2424 2425 static inline void sw_cfg_unk_def_deliver(struct ksz_hw *hw, int set) 2426 { 2427 sw_cfg(hw, KS8842_SWITCH_CTRL_7_OFFSET, 2428 SWITCH_UNK_DEF_PORT_ENABLE, set); 2429 } 2430 2431 static inline int sw_cfg_chk_unk_def_deliver(struct ksz_hw *hw) 2432 { 2433 return sw_chk(hw, KS8842_SWITCH_CTRL_7_OFFSET, 2434 SWITCH_UNK_DEF_PORT_ENABLE); 2435 } 2436 2437 static inline void sw_cfg_unk_def_port(struct ksz_hw *hw, int port, int set) 2438 { 2439 port_cfg_shift(hw, port, KS8842_SWITCH_CTRL_7_OFFSET, 0, set); 2440 } 2441 2442 static inline int sw_chk_unk_def_port(struct ksz_hw *hw, int port) 2443 { 2444 return port_chk_shift(hw, port, KS8842_SWITCH_CTRL_7_OFFSET, 0); 2445 } 2446 2447 /* Priority */ 2448 2449 static inline void port_cfg_diffserv(struct ksz_hw *hw, int p, int set) 2450 { 2451 port_cfg(hw, p, 2452 KS8842_PORT_CTRL_1_OFFSET, PORT_DIFFSERV_ENABLE, set); 2453 } 2454 2455 static inline void port_cfg_802_1p(struct ksz_hw *hw, int p, int set) 2456 { 2457 port_cfg(hw, p, 2458 KS8842_PORT_CTRL_1_OFFSET, PORT_802_1P_ENABLE, set); 2459 } 2460 2461 static inline void port_cfg_replace_vid(struct ksz_hw *hw, int p, int set) 2462 { 2463 port_cfg(hw, p, 2464 KS8842_PORT_CTRL_2_OFFSET, PORT_USER_PRIORITY_CEILING, set); 2465 } 2466 2467 static inline void port_cfg_prio(struct ksz_hw *hw, int p, int set) 2468 { 2469 port_cfg(hw, p, 2470 KS8842_PORT_CTRL_1_OFFSET, PORT_PRIO_QUEUE_ENABLE, set); 2471 } 2472 2473 static inline int port_chk_diffserv(struct ksz_hw *hw, int p) 2474 { 2475 return port_chk(hw, p, 2476 KS8842_PORT_CTRL_1_OFFSET, PORT_DIFFSERV_ENABLE); 2477 } 2478 2479 static inline int port_chk_802_1p(struct ksz_hw *hw, int p) 2480 { 2481 return port_chk(hw, p, 2482 KS8842_PORT_CTRL_1_OFFSET, PORT_802_1P_ENABLE); 2483 } 2484 2485 static inline int port_chk_replace_vid(struct ksz_hw *hw, int p) 2486 { 2487 return port_chk(hw, p, 2488 KS8842_PORT_CTRL_2_OFFSET, PORT_USER_PRIORITY_CEILING); 2489 } 2490 2491 static inline int port_chk_prio(struct ksz_hw *hw, int p) 2492 { 2493 return port_chk(hw, p, 2494 KS8842_PORT_CTRL_1_OFFSET, PORT_PRIO_QUEUE_ENABLE); 2495 } 2496 2497 /** 2498 * sw_dis_diffserv - disable switch DiffServ priority 2499 * @hw: The hardware instance. 2500 * @port: The port index. 2501 * 2502 * This routine disables the DiffServ priority function of the switch. 2503 */ 2504 static void sw_dis_diffserv(struct ksz_hw *hw, int port) 2505 { 2506 port_cfg_diffserv(hw, port, 0); 2507 } 2508 2509 /** 2510 * sw_dis_802_1p - disable switch 802.1p priority 2511 * @hw: The hardware instance. 2512 * @port: The port index. 2513 * 2514 * This routine disables the 802.1p priority function of the switch. 2515 */ 2516 static void sw_dis_802_1p(struct ksz_hw *hw, int port) 2517 { 2518 port_cfg_802_1p(hw, port, 0); 2519 } 2520 2521 /** 2522 * sw_cfg_replace_null_vid - 2523 * @hw: The hardware instance. 2524 * @set: The flag to disable or enable. 2525 * 2526 */ 2527 static void sw_cfg_replace_null_vid(struct ksz_hw *hw, int set) 2528 { 2529 sw_cfg(hw, KS8842_SWITCH_CTRL_3_OFFSET, SWITCH_REPLACE_NULL_VID, set); 2530 } 2531 2532 /** 2533 * sw_cfg_replace_vid - enable switch 802.10 priority re-mapping 2534 * @hw: The hardware instance. 2535 * @port: The port index. 2536 * @set: The flag to disable or enable. 2537 * 2538 * This routine enables the 802.1p priority re-mapping function of the switch. 2539 * That allows 802.1p priority field to be replaced with the port's default 2540 * tag's priority value if the ingress packet's 802.1p priority has a higher 2541 * priority than port's default tag's priority. 2542 */ 2543 static void sw_cfg_replace_vid(struct ksz_hw *hw, int port, int set) 2544 { 2545 port_cfg_replace_vid(hw, port, set); 2546 } 2547 2548 /** 2549 * sw_cfg_port_based - configure switch port based priority 2550 * @hw: The hardware instance. 2551 * @port: The port index. 2552 * @prio: The priority to set. 2553 * 2554 * This routine configures the port based priority of the switch. 2555 */ 2556 static void sw_cfg_port_based(struct ksz_hw *hw, int port, u8 prio) 2557 { 2558 u16 data; 2559 2560 if (prio > PORT_BASED_PRIORITY_BASE) 2561 prio = PORT_BASED_PRIORITY_BASE; 2562 2563 hw->ksz_switch->port_cfg[port].port_prio = prio; 2564 2565 port_r16(hw, port, KS8842_PORT_CTRL_1_OFFSET, &data); 2566 data &= ~PORT_BASED_PRIORITY_MASK; 2567 data |= prio << PORT_BASED_PRIORITY_SHIFT; 2568 port_w16(hw, port, KS8842_PORT_CTRL_1_OFFSET, data); 2569 } 2570 2571 /** 2572 * sw_dis_multi_queue - disable transmit multiple queues 2573 * @hw: The hardware instance. 2574 * @port: The port index. 2575 * 2576 * This routine disables the transmit multiple queues selection of the switch 2577 * port. Only single transmit queue on the port. 2578 */ 2579 static void sw_dis_multi_queue(struct ksz_hw *hw, int port) 2580 { 2581 port_cfg_prio(hw, port, 0); 2582 } 2583 2584 /** 2585 * sw_init_prio - initialize switch priority 2586 * @hw: The hardware instance. 2587 * 2588 * This routine initializes the switch QoS priority functions. 2589 */ 2590 static void sw_init_prio(struct ksz_hw *hw) 2591 { 2592 int port; 2593 int tos; 2594 struct ksz_switch *sw = hw->ksz_switch; 2595 2596 /* 2597 * Init all the 802.1p tag priority value to be assigned to different 2598 * priority queue. 2599 */ 2600 sw->p_802_1p[0] = 0; 2601 sw->p_802_1p[1] = 0; 2602 sw->p_802_1p[2] = 1; 2603 sw->p_802_1p[3] = 1; 2604 sw->p_802_1p[4] = 2; 2605 sw->p_802_1p[5] = 2; 2606 sw->p_802_1p[6] = 3; 2607 sw->p_802_1p[7] = 3; 2608 2609 /* 2610 * Init all the DiffServ priority value to be assigned to priority 2611 * queue 0. 2612 */ 2613 for (tos = 0; tos < DIFFSERV_ENTRIES; tos++) 2614 sw->diffserv[tos] = 0; 2615 2616 /* All QoS functions disabled. */ 2617 for (port = 0; port < TOTAL_PORT_NUM; port++) { 2618 sw_dis_multi_queue(hw, port); 2619 sw_dis_diffserv(hw, port); 2620 sw_dis_802_1p(hw, port); 2621 sw_cfg_replace_vid(hw, port, 0); 2622 2623 sw->port_cfg[port].port_prio = 0; 2624 sw_cfg_port_based(hw, port, sw->port_cfg[port].port_prio); 2625 } 2626 sw_cfg_replace_null_vid(hw, 0); 2627 } 2628 2629 /** 2630 * port_get_def_vid - get port default VID. 2631 * @hw: The hardware instance. 2632 * @port: The port index. 2633 * @vid: Buffer to store the VID. 2634 * 2635 * This routine retrieves the default VID of the port. 2636 */ 2637 static void port_get_def_vid(struct ksz_hw *hw, int port, u16 *vid) 2638 { 2639 u32 addr; 2640 2641 PORT_CTRL_ADDR(port, addr); 2642 addr += KS8842_PORT_CTRL_VID_OFFSET; 2643 *vid = readw(hw->io + addr); 2644 } 2645 2646 /** 2647 * sw_init_vlan - initialize switch VLAN 2648 * @hw: The hardware instance. 2649 * 2650 * This routine initializes the VLAN function of the switch. 2651 */ 2652 static void sw_init_vlan(struct ksz_hw *hw) 2653 { 2654 int port; 2655 int entry; 2656 struct ksz_switch *sw = hw->ksz_switch; 2657 2658 /* Read 16 VLAN entries from device's VLAN table. */ 2659 for (entry = 0; entry < VLAN_TABLE_ENTRIES; entry++) { 2660 sw_r_vlan_table(hw, entry, 2661 &sw->vlan_table[entry].vid, 2662 &sw->vlan_table[entry].fid, 2663 &sw->vlan_table[entry].member); 2664 } 2665 2666 for (port = 0; port < TOTAL_PORT_NUM; port++) { 2667 port_get_def_vid(hw, port, &sw->port_cfg[port].vid); 2668 sw->port_cfg[port].member = PORT_MASK; 2669 } 2670 } 2671 2672 /** 2673 * sw_cfg_port_base_vlan - configure port-based VLAN membership 2674 * @hw: The hardware instance. 2675 * @port: The port index. 2676 * @member: The port-based VLAN membership. 2677 * 2678 * This routine configures the port-based VLAN membership of the port. 2679 */ 2680 static void sw_cfg_port_base_vlan(struct ksz_hw *hw, int port, u8 member) 2681 { 2682 u32 addr; 2683 u8 data; 2684 2685 PORT_CTRL_ADDR(port, addr); 2686 addr += KS8842_PORT_CTRL_2_OFFSET; 2687 2688 data = readb(hw->io + addr); 2689 data &= ~PORT_VLAN_MEMBERSHIP; 2690 data |= (member & PORT_MASK); 2691 writeb(data, hw->io + addr); 2692 2693 hw->ksz_switch->port_cfg[port].member = member; 2694 } 2695 2696 /** 2697 * sw_get_addr - get the switch MAC address. 2698 * @hw: The hardware instance. 2699 * @mac_addr: Buffer to store the MAC address. 2700 * 2701 * This function retrieves the MAC address of the switch. 2702 */ 2703 static inline void sw_get_addr(struct ksz_hw *hw, u8 *mac_addr) 2704 { 2705 int i; 2706 2707 for (i = 0; i < 6; i += 2) { 2708 mac_addr[i] = readb(hw->io + KS8842_MAC_ADDR_0_OFFSET + i); 2709 mac_addr[1 + i] = readb(hw->io + KS8842_MAC_ADDR_1_OFFSET + i); 2710 } 2711 } 2712 2713 /** 2714 * sw_set_addr - configure switch MAC address 2715 * @hw: The hardware instance. 2716 * @mac_addr: The MAC address. 2717 * 2718 * This function configures the MAC address of the switch. 2719 */ 2720 static void sw_set_addr(struct ksz_hw *hw, u8 *mac_addr) 2721 { 2722 int i; 2723 2724 for (i = 0; i < 6; i += 2) { 2725 writeb(mac_addr[i], hw->io + KS8842_MAC_ADDR_0_OFFSET + i); 2726 writeb(mac_addr[1 + i], hw->io + KS8842_MAC_ADDR_1_OFFSET + i); 2727 } 2728 } 2729 2730 /** 2731 * sw_set_global_ctrl - set switch global control 2732 * @hw: The hardware instance. 2733 * 2734 * This routine sets the global control of the switch function. 2735 */ 2736 static void sw_set_global_ctrl(struct ksz_hw *hw) 2737 { 2738 u16 data; 2739 2740 /* Enable switch MII flow control. */ 2741 data = readw(hw->io + KS8842_SWITCH_CTRL_3_OFFSET); 2742 data |= SWITCH_FLOW_CTRL; 2743 writew(data, hw->io + KS8842_SWITCH_CTRL_3_OFFSET); 2744 2745 data = readw(hw->io + KS8842_SWITCH_CTRL_1_OFFSET); 2746 2747 /* Enable aggressive back off algorithm in half duplex mode. */ 2748 data |= SWITCH_AGGR_BACKOFF; 2749 2750 /* Enable automatic fast aging when link changed detected. */ 2751 data |= SWITCH_AGING_ENABLE; 2752 data |= SWITCH_LINK_AUTO_AGING; 2753 2754 if (hw->overrides & FAST_AGING) 2755 data |= SWITCH_FAST_AGING; 2756 else 2757 data &= ~SWITCH_FAST_AGING; 2758 writew(data, hw->io + KS8842_SWITCH_CTRL_1_OFFSET); 2759 2760 data = readw(hw->io + KS8842_SWITCH_CTRL_2_OFFSET); 2761 2762 /* Enable no excessive collision drop. */ 2763 data |= NO_EXC_COLLISION_DROP; 2764 writew(data, hw->io + KS8842_SWITCH_CTRL_2_OFFSET); 2765 } 2766 2767 enum { 2768 STP_STATE_DISABLED = 0, 2769 STP_STATE_LISTENING, 2770 STP_STATE_LEARNING, 2771 STP_STATE_FORWARDING, 2772 STP_STATE_BLOCKED, 2773 STP_STATE_SIMPLE 2774 }; 2775 2776 /** 2777 * port_set_stp_state - configure port spanning tree state 2778 * @hw: The hardware instance. 2779 * @port: The port index. 2780 * @state: The spanning tree state. 2781 * 2782 * This routine configures the spanning tree state of the port. 2783 */ 2784 static void port_set_stp_state(struct ksz_hw *hw, int port, int state) 2785 { 2786 u16 data; 2787 2788 port_r16(hw, port, KS8842_PORT_CTRL_2_OFFSET, &data); 2789 switch (state) { 2790 case STP_STATE_DISABLED: 2791 data &= ~(PORT_TX_ENABLE | PORT_RX_ENABLE); 2792 data |= PORT_LEARN_DISABLE; 2793 break; 2794 case STP_STATE_LISTENING: 2795 /* 2796 * No need to turn on transmit because of port direct mode. 2797 * Turning on receive is required if static MAC table is not setup. 2798 */ 2799 data &= ~PORT_TX_ENABLE; 2800 data |= PORT_RX_ENABLE; 2801 data |= PORT_LEARN_DISABLE; 2802 break; 2803 case STP_STATE_LEARNING: 2804 data &= ~PORT_TX_ENABLE; 2805 data |= PORT_RX_ENABLE; 2806 data &= ~PORT_LEARN_DISABLE; 2807 break; 2808 case STP_STATE_FORWARDING: 2809 data |= (PORT_TX_ENABLE | PORT_RX_ENABLE); 2810 data &= ~PORT_LEARN_DISABLE; 2811 break; 2812 case STP_STATE_BLOCKED: 2813 /* 2814 * Need to setup static MAC table with override to keep receiving BPDU 2815 * messages. See sw_init_stp routine. 2816 */ 2817 data &= ~(PORT_TX_ENABLE | PORT_RX_ENABLE); 2818 data |= PORT_LEARN_DISABLE; 2819 break; 2820 case STP_STATE_SIMPLE: 2821 data |= (PORT_TX_ENABLE | PORT_RX_ENABLE); 2822 data |= PORT_LEARN_DISABLE; 2823 break; 2824 } 2825 port_w16(hw, port, KS8842_PORT_CTRL_2_OFFSET, data); 2826 hw->ksz_switch->port_cfg[port].stp_state = state; 2827 } 2828 2829 #define STP_ENTRY 0 2830 #define BROADCAST_ENTRY 1 2831 #define BRIDGE_ADDR_ENTRY 2 2832 #define IPV6_ADDR_ENTRY 3 2833 2834 /** 2835 * sw_clr_sta_mac_table - clear static MAC table 2836 * @hw: The hardware instance. 2837 * 2838 * This routine clears the static MAC table. 2839 */ 2840 static void sw_clr_sta_mac_table(struct ksz_hw *hw) 2841 { 2842 struct ksz_mac_table *entry; 2843 int i; 2844 2845 for (i = 0; i < STATIC_MAC_TABLE_ENTRIES; i++) { 2846 entry = &hw->ksz_switch->mac_table[i]; 2847 sw_w_sta_mac_table(hw, i, 2848 entry->mac_addr, entry->ports, 2849 entry->override, 0, 2850 entry->use_fid, entry->fid); 2851 } 2852 } 2853 2854 /** 2855 * sw_init_stp - initialize switch spanning tree support 2856 * @hw: The hardware instance. 2857 * 2858 * This routine initializes the spanning tree support of the switch. 2859 */ 2860 static void sw_init_stp(struct ksz_hw *hw) 2861 { 2862 struct ksz_mac_table *entry; 2863 2864 entry = &hw->ksz_switch->mac_table[STP_ENTRY]; 2865 entry->mac_addr[0] = 0x01; 2866 entry->mac_addr[1] = 0x80; 2867 entry->mac_addr[2] = 0xC2; 2868 entry->mac_addr[3] = 0x00; 2869 entry->mac_addr[4] = 0x00; 2870 entry->mac_addr[5] = 0x00; 2871 entry->ports = HOST_MASK; 2872 entry->override = 1; 2873 entry->valid = 1; 2874 sw_w_sta_mac_table(hw, STP_ENTRY, 2875 entry->mac_addr, entry->ports, 2876 entry->override, entry->valid, 2877 entry->use_fid, entry->fid); 2878 } 2879 2880 /** 2881 * sw_block_addr - block certain packets from the host port 2882 * @hw: The hardware instance. 2883 * 2884 * This routine blocks certain packets from reaching to the host port. 2885 */ 2886 static void sw_block_addr(struct ksz_hw *hw) 2887 { 2888 struct ksz_mac_table *entry; 2889 int i; 2890 2891 for (i = BROADCAST_ENTRY; i <= IPV6_ADDR_ENTRY; i++) { 2892 entry = &hw->ksz_switch->mac_table[i]; 2893 entry->valid = 0; 2894 sw_w_sta_mac_table(hw, i, 2895 entry->mac_addr, entry->ports, 2896 entry->override, entry->valid, 2897 entry->use_fid, entry->fid); 2898 } 2899 } 2900 2901 #define PHY_LINK_SUPPORT \ 2902 (PHY_AUTO_NEG_ASYM_PAUSE | \ 2903 PHY_AUTO_NEG_SYM_PAUSE | \ 2904 PHY_AUTO_NEG_100BT4 | \ 2905 PHY_AUTO_NEG_100BTX_FD | \ 2906 PHY_AUTO_NEG_100BTX | \ 2907 PHY_AUTO_NEG_10BT_FD | \ 2908 PHY_AUTO_NEG_10BT) 2909 2910 static inline void hw_r_phy_ctrl(struct ksz_hw *hw, int phy, u16 *data) 2911 { 2912 *data = readw(hw->io + phy + KS884X_PHY_CTRL_OFFSET); 2913 } 2914 2915 static inline void hw_w_phy_ctrl(struct ksz_hw *hw, int phy, u16 data) 2916 { 2917 writew(data, hw->io + phy + KS884X_PHY_CTRL_OFFSET); 2918 } 2919 2920 static inline void hw_r_phy_link_stat(struct ksz_hw *hw, int phy, u16 *data) 2921 { 2922 *data = readw(hw->io + phy + KS884X_PHY_STATUS_OFFSET); 2923 } 2924 2925 static inline void hw_r_phy_auto_neg(struct ksz_hw *hw, int phy, u16 *data) 2926 { 2927 *data = readw(hw->io + phy + KS884X_PHY_AUTO_NEG_OFFSET); 2928 } 2929 2930 static inline void hw_w_phy_auto_neg(struct ksz_hw *hw, int phy, u16 data) 2931 { 2932 writew(data, hw->io + phy + KS884X_PHY_AUTO_NEG_OFFSET); 2933 } 2934 2935 static inline void hw_r_phy_rem_cap(struct ksz_hw *hw, int phy, u16 *data) 2936 { 2937 *data = readw(hw->io + phy + KS884X_PHY_REMOTE_CAP_OFFSET); 2938 } 2939 2940 static inline void hw_r_phy_crossover(struct ksz_hw *hw, int phy, u16 *data) 2941 { 2942 *data = readw(hw->io + phy + KS884X_PHY_CTRL_OFFSET); 2943 } 2944 2945 static inline void hw_w_phy_crossover(struct ksz_hw *hw, int phy, u16 data) 2946 { 2947 writew(data, hw->io + phy + KS884X_PHY_CTRL_OFFSET); 2948 } 2949 2950 static inline void hw_r_phy_polarity(struct ksz_hw *hw, int phy, u16 *data) 2951 { 2952 *data = readw(hw->io + phy + KS884X_PHY_PHY_CTRL_OFFSET); 2953 } 2954 2955 static inline void hw_w_phy_polarity(struct ksz_hw *hw, int phy, u16 data) 2956 { 2957 writew(data, hw->io + phy + KS884X_PHY_PHY_CTRL_OFFSET); 2958 } 2959 2960 static inline void hw_r_phy_link_md(struct ksz_hw *hw, int phy, u16 *data) 2961 { 2962 *data = readw(hw->io + phy + KS884X_PHY_LINK_MD_OFFSET); 2963 } 2964 2965 static inline void hw_w_phy_link_md(struct ksz_hw *hw, int phy, u16 data) 2966 { 2967 writew(data, hw->io + phy + KS884X_PHY_LINK_MD_OFFSET); 2968 } 2969 2970 /** 2971 * hw_r_phy - read data from PHY register 2972 * @hw: The hardware instance. 2973 * @port: Port to read. 2974 * @reg: PHY register to read. 2975 * @val: Buffer to store the read data. 2976 * 2977 * This routine reads data from the PHY register. 2978 */ 2979 static void hw_r_phy(struct ksz_hw *hw, int port, u16 reg, u16 *val) 2980 { 2981 int phy; 2982 2983 phy = KS884X_PHY_1_CTRL_OFFSET + port * PHY_CTRL_INTERVAL + reg; 2984 *val = readw(hw->io + phy); 2985 } 2986 2987 /** 2988 * port_w_phy - write data to PHY register 2989 * @hw: The hardware instance. 2990 * @port: Port to write. 2991 * @reg: PHY register to write. 2992 * @val: Word data to write. 2993 * 2994 * This routine writes data to the PHY register. 2995 */ 2996 static void hw_w_phy(struct ksz_hw *hw, int port, u16 reg, u16 val) 2997 { 2998 int phy; 2999 3000 phy = KS884X_PHY_1_CTRL_OFFSET + port * PHY_CTRL_INTERVAL + reg; 3001 writew(val, hw->io + phy); 3002 } 3003 3004 /* 3005 * EEPROM access functions 3006 */ 3007 3008 #define AT93C_CODE 0 3009 #define AT93C_WR_OFF 0x00 3010 #define AT93C_WR_ALL 0x10 3011 #define AT93C_ER_ALL 0x20 3012 #define AT93C_WR_ON 0x30 3013 3014 #define AT93C_WRITE 1 3015 #define AT93C_READ 2 3016 #define AT93C_ERASE 3 3017 3018 #define EEPROM_DELAY 4 3019 3020 static inline void drop_gpio(struct ksz_hw *hw, u8 gpio) 3021 { 3022 u16 data; 3023 3024 data = readw(hw->io + KS884X_EEPROM_CTRL_OFFSET); 3025 data &= ~gpio; 3026 writew(data, hw->io + KS884X_EEPROM_CTRL_OFFSET); 3027 } 3028 3029 static inline void raise_gpio(struct ksz_hw *hw, u8 gpio) 3030 { 3031 u16 data; 3032 3033 data = readw(hw->io + KS884X_EEPROM_CTRL_OFFSET); 3034 data |= gpio; 3035 writew(data, hw->io + KS884X_EEPROM_CTRL_OFFSET); 3036 } 3037 3038 static inline u8 state_gpio(struct ksz_hw *hw, u8 gpio) 3039 { 3040 u16 data; 3041 3042 data = readw(hw->io + KS884X_EEPROM_CTRL_OFFSET); 3043 return (u8)(data & gpio); 3044 } 3045 3046 static void eeprom_clk(struct ksz_hw *hw) 3047 { 3048 raise_gpio(hw, EEPROM_SERIAL_CLOCK); 3049 udelay(EEPROM_DELAY); 3050 drop_gpio(hw, EEPROM_SERIAL_CLOCK); 3051 udelay(EEPROM_DELAY); 3052 } 3053 3054 static u16 spi_r(struct ksz_hw *hw) 3055 { 3056 int i; 3057 u16 temp = 0; 3058 3059 for (i = 15; i >= 0; i--) { 3060 raise_gpio(hw, EEPROM_SERIAL_CLOCK); 3061 udelay(EEPROM_DELAY); 3062 3063 temp |= (state_gpio(hw, EEPROM_DATA_IN)) ? 1 << i : 0; 3064 3065 drop_gpio(hw, EEPROM_SERIAL_CLOCK); 3066 udelay(EEPROM_DELAY); 3067 } 3068 return temp; 3069 } 3070 3071 static void spi_w(struct ksz_hw *hw, u16 data) 3072 { 3073 int i; 3074 3075 for (i = 15; i >= 0; i--) { 3076 (data & (0x01 << i)) ? raise_gpio(hw, EEPROM_DATA_OUT) : 3077 drop_gpio(hw, EEPROM_DATA_OUT); 3078 eeprom_clk(hw); 3079 } 3080 } 3081 3082 static void spi_reg(struct ksz_hw *hw, u8 data, u8 reg) 3083 { 3084 int i; 3085 3086 /* Initial start bit */ 3087 raise_gpio(hw, EEPROM_DATA_OUT); 3088 eeprom_clk(hw); 3089 3090 /* AT93C operation */ 3091 for (i = 1; i >= 0; i--) { 3092 (data & (0x01 << i)) ? raise_gpio(hw, EEPROM_DATA_OUT) : 3093 drop_gpio(hw, EEPROM_DATA_OUT); 3094 eeprom_clk(hw); 3095 } 3096 3097 /* Address location */ 3098 for (i = 5; i >= 0; i--) { 3099 (reg & (0x01 << i)) ? raise_gpio(hw, EEPROM_DATA_OUT) : 3100 drop_gpio(hw, EEPROM_DATA_OUT); 3101 eeprom_clk(hw); 3102 } 3103 } 3104 3105 #define EEPROM_DATA_RESERVED 0 3106 #define EEPROM_DATA_MAC_ADDR_0 1 3107 #define EEPROM_DATA_MAC_ADDR_1 2 3108 #define EEPROM_DATA_MAC_ADDR_2 3 3109 #define EEPROM_DATA_SUBSYS_ID 4 3110 #define EEPROM_DATA_SUBSYS_VEN_ID 5 3111 #define EEPROM_DATA_PM_CAP 6 3112 3113 /* User defined EEPROM data */ 3114 #define EEPROM_DATA_OTHER_MAC_ADDR 9 3115 3116 /** 3117 * eeprom_read - read from AT93C46 EEPROM 3118 * @hw: The hardware instance. 3119 * @reg: The register offset. 3120 * 3121 * This function reads a word from the AT93C46 EEPROM. 3122 * 3123 * Return the data value. 3124 */ 3125 static u16 eeprom_read(struct ksz_hw *hw, u8 reg) 3126 { 3127 u16 data; 3128 3129 raise_gpio(hw, EEPROM_ACCESS_ENABLE | EEPROM_CHIP_SELECT); 3130 3131 spi_reg(hw, AT93C_READ, reg); 3132 data = spi_r(hw); 3133 3134 drop_gpio(hw, EEPROM_ACCESS_ENABLE | EEPROM_CHIP_SELECT); 3135 3136 return data; 3137 } 3138 3139 /** 3140 * eeprom_write - write to AT93C46 EEPROM 3141 * @hw: The hardware instance. 3142 * @reg: The register offset. 3143 * @data: The data value. 3144 * 3145 * This procedure writes a word to the AT93C46 EEPROM. 3146 */ 3147 static void eeprom_write(struct ksz_hw *hw, u8 reg, u16 data) 3148 { 3149 int timeout; 3150 3151 raise_gpio(hw, EEPROM_ACCESS_ENABLE | EEPROM_CHIP_SELECT); 3152 3153 /* Enable write. */ 3154 spi_reg(hw, AT93C_CODE, AT93C_WR_ON); 3155 drop_gpio(hw, EEPROM_CHIP_SELECT); 3156 udelay(1); 3157 3158 /* Erase the register. */ 3159 raise_gpio(hw, EEPROM_CHIP_SELECT); 3160 spi_reg(hw, AT93C_ERASE, reg); 3161 drop_gpio(hw, EEPROM_CHIP_SELECT); 3162 udelay(1); 3163 3164 /* Check operation complete. */ 3165 raise_gpio(hw, EEPROM_CHIP_SELECT); 3166 timeout = 8; 3167 mdelay(2); 3168 do { 3169 mdelay(1); 3170 } while (!state_gpio(hw, EEPROM_DATA_IN) && --timeout); 3171 drop_gpio(hw, EEPROM_CHIP_SELECT); 3172 udelay(1); 3173 3174 /* Write the register. */ 3175 raise_gpio(hw, EEPROM_CHIP_SELECT); 3176 spi_reg(hw, AT93C_WRITE, reg); 3177 spi_w(hw, data); 3178 drop_gpio(hw, EEPROM_CHIP_SELECT); 3179 udelay(1); 3180 3181 /* Check operation complete. */ 3182 raise_gpio(hw, EEPROM_CHIP_SELECT); 3183 timeout = 8; 3184 mdelay(2); 3185 do { 3186 mdelay(1); 3187 } while (!state_gpio(hw, EEPROM_DATA_IN) && --timeout); 3188 drop_gpio(hw, EEPROM_CHIP_SELECT); 3189 udelay(1); 3190 3191 /* Disable write. */ 3192 raise_gpio(hw, EEPROM_CHIP_SELECT); 3193 spi_reg(hw, AT93C_CODE, AT93C_WR_OFF); 3194 3195 drop_gpio(hw, EEPROM_ACCESS_ENABLE | EEPROM_CHIP_SELECT); 3196 } 3197 3198 /* 3199 * Link detection routines 3200 */ 3201 3202 static u16 advertised_flow_ctrl(struct ksz_port *port, u16 ctrl) 3203 { 3204 ctrl &= ~PORT_AUTO_NEG_SYM_PAUSE; 3205 switch (port->flow_ctrl) { 3206 case PHY_FLOW_CTRL: 3207 ctrl |= PORT_AUTO_NEG_SYM_PAUSE; 3208 break; 3209 /* Not supported. */ 3210 case PHY_TX_ONLY: 3211 case PHY_RX_ONLY: 3212 default: 3213 break; 3214 } 3215 return ctrl; 3216 } 3217 3218 static void set_flow_ctrl(struct ksz_hw *hw, int rx, int tx) 3219 { 3220 u32 rx_cfg; 3221 u32 tx_cfg; 3222 3223 rx_cfg = hw->rx_cfg; 3224 tx_cfg = hw->tx_cfg; 3225 if (rx) 3226 hw->rx_cfg |= DMA_RX_FLOW_ENABLE; 3227 else 3228 hw->rx_cfg &= ~DMA_RX_FLOW_ENABLE; 3229 if (tx) 3230 hw->tx_cfg |= DMA_TX_FLOW_ENABLE; 3231 else 3232 hw->tx_cfg &= ~DMA_TX_FLOW_ENABLE; 3233 if (hw->enabled) { 3234 if (rx_cfg != hw->rx_cfg) 3235 writel(hw->rx_cfg, hw->io + KS_DMA_RX_CTRL); 3236 if (tx_cfg != hw->tx_cfg) 3237 writel(hw->tx_cfg, hw->io + KS_DMA_TX_CTRL); 3238 } 3239 } 3240 3241 static void determine_flow_ctrl(struct ksz_hw *hw, struct ksz_port *port, 3242 u16 local, u16 remote) 3243 { 3244 int rx; 3245 int tx; 3246 3247 if (hw->overrides & PAUSE_FLOW_CTRL) 3248 return; 3249 3250 rx = tx = 0; 3251 if (port->force_link) 3252 rx = tx = 1; 3253 if (remote & PHY_AUTO_NEG_SYM_PAUSE) { 3254 if (local & PHY_AUTO_NEG_SYM_PAUSE) { 3255 rx = tx = 1; 3256 } else if ((remote & PHY_AUTO_NEG_ASYM_PAUSE) && 3257 (local & PHY_AUTO_NEG_PAUSE) == 3258 PHY_AUTO_NEG_ASYM_PAUSE) { 3259 tx = 1; 3260 } 3261 } else if (remote & PHY_AUTO_NEG_ASYM_PAUSE) { 3262 if ((local & PHY_AUTO_NEG_PAUSE) == PHY_AUTO_NEG_PAUSE) 3263 rx = 1; 3264 } 3265 if (!hw->ksz_switch) 3266 set_flow_ctrl(hw, rx, tx); 3267 } 3268 3269 static inline void port_cfg_change(struct ksz_hw *hw, struct ksz_port *port, 3270 struct ksz_port_info *info, u16 link_status) 3271 { 3272 if ((hw->features & HALF_DUPLEX_SIGNAL_BUG) && 3273 !(hw->overrides & PAUSE_FLOW_CTRL)) { 3274 u32 cfg = hw->tx_cfg; 3275 3276 /* Disable flow control in the half duplex mode. */ 3277 if (1 == info->duplex) 3278 hw->tx_cfg &= ~DMA_TX_FLOW_ENABLE; 3279 if (hw->enabled && cfg != hw->tx_cfg) 3280 writel(hw->tx_cfg, hw->io + KS_DMA_TX_CTRL); 3281 } 3282 } 3283 3284 /** 3285 * port_get_link_speed - get current link status 3286 * @port: The port instance. 3287 * 3288 * This routine reads PHY registers to determine the current link status of the 3289 * switch ports. 3290 */ 3291 static void port_get_link_speed(struct ksz_port *port) 3292 { 3293 uint interrupt; 3294 struct ksz_port_info *info; 3295 struct ksz_port_info *linked = NULL; 3296 struct ksz_hw *hw = port->hw; 3297 u16 data; 3298 u16 status; 3299 u8 local; 3300 u8 remote; 3301 int i; 3302 int p; 3303 int change = 0; 3304 3305 interrupt = hw_block_intr(hw); 3306 3307 for (i = 0, p = port->first_port; i < port->port_cnt; i++, p++) { 3308 info = &hw->port_info[p]; 3309 port_r16(hw, p, KS884X_PORT_CTRL_4_OFFSET, &data); 3310 port_r16(hw, p, KS884X_PORT_STATUS_OFFSET, &status); 3311 3312 /* 3313 * Link status is changing all the time even when there is no 3314 * cable connection! 3315 */ 3316 remote = status & (PORT_AUTO_NEG_COMPLETE | 3317 PORT_STATUS_LINK_GOOD); 3318 local = (u8) data; 3319 3320 /* No change to status. */ 3321 if (local == info->advertised && remote == info->partner) 3322 continue; 3323 3324 info->advertised = local; 3325 info->partner = remote; 3326 if (status & PORT_STATUS_LINK_GOOD) { 3327 3328 /* Remember the first linked port. */ 3329 if (!linked) 3330 linked = info; 3331 3332 info->tx_rate = 10 * TX_RATE_UNIT; 3333 if (status & PORT_STATUS_SPEED_100MBIT) 3334 info->tx_rate = 100 * TX_RATE_UNIT; 3335 3336 info->duplex = 1; 3337 if (status & PORT_STATUS_FULL_DUPLEX) 3338 info->duplex = 2; 3339 3340 if (media_connected != info->state) { 3341 hw_r_phy(hw, p, KS884X_PHY_AUTO_NEG_OFFSET, 3342 &data); 3343 hw_r_phy(hw, p, KS884X_PHY_REMOTE_CAP_OFFSET, 3344 &status); 3345 determine_flow_ctrl(hw, port, data, status); 3346 if (hw->ksz_switch) { 3347 port_cfg_back_pressure(hw, p, 3348 (1 == info->duplex)); 3349 } 3350 change |= 1 << i; 3351 port_cfg_change(hw, port, info, status); 3352 } 3353 info->state = media_connected; 3354 } else { 3355 if (media_disconnected != info->state) { 3356 change |= 1 << i; 3357 3358 /* Indicate the link just goes down. */ 3359 hw->port_mib[p].link_down = 1; 3360 } 3361 info->state = media_disconnected; 3362 } 3363 hw->port_mib[p].state = (u8) info->state; 3364 } 3365 3366 if (linked && media_disconnected == port->linked->state) 3367 port->linked = linked; 3368 3369 hw_restore_intr(hw, interrupt); 3370 } 3371 3372 #define PHY_RESET_TIMEOUT 10 3373 3374 /** 3375 * port_set_link_speed - set port speed 3376 * @port: The port instance. 3377 * 3378 * This routine sets the link speed of the switch ports. 3379 */ 3380 static void port_set_link_speed(struct ksz_port *port) 3381 { 3382 struct ksz_port_info *info; 3383 struct ksz_hw *hw = port->hw; 3384 u16 data; 3385 u16 cfg; 3386 u8 status; 3387 int i; 3388 int p; 3389 3390 for (i = 0, p = port->first_port; i < port->port_cnt; i++, p++) { 3391 info = &hw->port_info[p]; 3392 3393 port_r16(hw, p, KS884X_PORT_CTRL_4_OFFSET, &data); 3394 port_r8(hw, p, KS884X_PORT_STATUS_OFFSET, &status); 3395 3396 cfg = 0; 3397 if (status & PORT_STATUS_LINK_GOOD) 3398 cfg = data; 3399 3400 data |= PORT_AUTO_NEG_ENABLE; 3401 data = advertised_flow_ctrl(port, data); 3402 3403 data |= PORT_AUTO_NEG_100BTX_FD | PORT_AUTO_NEG_100BTX | 3404 PORT_AUTO_NEG_10BT_FD | PORT_AUTO_NEG_10BT; 3405 3406 /* Check if manual configuration is specified by the user. */ 3407 if (port->speed || port->duplex) { 3408 if (10 == port->speed) 3409 data &= ~(PORT_AUTO_NEG_100BTX_FD | 3410 PORT_AUTO_NEG_100BTX); 3411 else if (100 == port->speed) 3412 data &= ~(PORT_AUTO_NEG_10BT_FD | 3413 PORT_AUTO_NEG_10BT); 3414 if (1 == port->duplex) 3415 data &= ~(PORT_AUTO_NEG_100BTX_FD | 3416 PORT_AUTO_NEG_10BT_FD); 3417 else if (2 == port->duplex) 3418 data &= ~(PORT_AUTO_NEG_100BTX | 3419 PORT_AUTO_NEG_10BT); 3420 } 3421 if (data != cfg) { 3422 data |= PORT_AUTO_NEG_RESTART; 3423 port_w16(hw, p, KS884X_PORT_CTRL_4_OFFSET, data); 3424 } 3425 } 3426 } 3427 3428 /** 3429 * port_force_link_speed - force port speed 3430 * @port: The port instance. 3431 * 3432 * This routine forces the link speed of the switch ports. 3433 */ 3434 static void port_force_link_speed(struct ksz_port *port) 3435 { 3436 struct ksz_hw *hw = port->hw; 3437 u16 data; 3438 int i; 3439 int phy; 3440 int p; 3441 3442 for (i = 0, p = port->first_port; i < port->port_cnt; i++, p++) { 3443 phy = KS884X_PHY_1_CTRL_OFFSET + p * PHY_CTRL_INTERVAL; 3444 hw_r_phy_ctrl(hw, phy, &data); 3445 3446 data &= ~PHY_AUTO_NEG_ENABLE; 3447 3448 if (10 == port->speed) 3449 data &= ~PHY_SPEED_100MBIT; 3450 else if (100 == port->speed) 3451 data |= PHY_SPEED_100MBIT; 3452 if (1 == port->duplex) 3453 data &= ~PHY_FULL_DUPLEX; 3454 else if (2 == port->duplex) 3455 data |= PHY_FULL_DUPLEX; 3456 hw_w_phy_ctrl(hw, phy, data); 3457 } 3458 } 3459 3460 static void port_set_power_saving(struct ksz_port *port, int enable) 3461 { 3462 struct ksz_hw *hw = port->hw; 3463 int i; 3464 int p; 3465 3466 for (i = 0, p = port->first_port; i < port->port_cnt; i++, p++) 3467 port_cfg(hw, p, 3468 KS884X_PORT_CTRL_4_OFFSET, PORT_POWER_DOWN, enable); 3469 } 3470 3471 /* 3472 * KSZ8841 power management functions 3473 */ 3474 3475 /** 3476 * hw_chk_wol_pme_status - check PMEN pin 3477 * @hw: The hardware instance. 3478 * 3479 * This function is used to check PMEN pin is asserted. 3480 * 3481 * Return 1 if PMEN pin is asserted; otherwise, 0. 3482 */ 3483 static int hw_chk_wol_pme_status(struct ksz_hw *hw) 3484 { 3485 struct dev_info *hw_priv = container_of(hw, struct dev_info, hw); 3486 struct pci_dev *pdev = hw_priv->pdev; 3487 u16 data; 3488 3489 if (!pdev->pm_cap) 3490 return 0; 3491 pci_read_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, &data); 3492 return (data & PCI_PM_CTRL_PME_STATUS) == PCI_PM_CTRL_PME_STATUS; 3493 } 3494 3495 /** 3496 * hw_clr_wol_pme_status - clear PMEN pin 3497 * @hw: The hardware instance. 3498 * 3499 * This routine is used to clear PME_Status to deassert PMEN pin. 3500 */ 3501 static void hw_clr_wol_pme_status(struct ksz_hw *hw) 3502 { 3503 struct dev_info *hw_priv = container_of(hw, struct dev_info, hw); 3504 struct pci_dev *pdev = hw_priv->pdev; 3505 u16 data; 3506 3507 if (!pdev->pm_cap) 3508 return; 3509 3510 /* Clear PME_Status to deassert PMEN pin. */ 3511 pci_read_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, &data); 3512 data |= PCI_PM_CTRL_PME_STATUS; 3513 pci_write_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, data); 3514 } 3515 3516 /** 3517 * hw_cfg_wol_pme - enable or disable Wake-on-LAN 3518 * @hw: The hardware instance. 3519 * @set: The flag indicating whether to enable or disable. 3520 * 3521 * This routine is used to enable or disable Wake-on-LAN. 3522 */ 3523 static void hw_cfg_wol_pme(struct ksz_hw *hw, int set) 3524 { 3525 struct dev_info *hw_priv = container_of(hw, struct dev_info, hw); 3526 struct pci_dev *pdev = hw_priv->pdev; 3527 u16 data; 3528 3529 if (!pdev->pm_cap) 3530 return; 3531 pci_read_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, &data); 3532 data &= ~PCI_PM_CTRL_STATE_MASK; 3533 if (set) 3534 data |= PCI_PM_CTRL_PME_ENABLE | PCI_D3hot; 3535 else 3536 data &= ~PCI_PM_CTRL_PME_ENABLE; 3537 pci_write_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, data); 3538 } 3539 3540 /** 3541 * hw_cfg_wol - configure Wake-on-LAN features 3542 * @hw: The hardware instance. 3543 * @frame: The pattern frame bit. 3544 * @set: The flag indicating whether to enable or disable. 3545 * 3546 * This routine is used to enable or disable certain Wake-on-LAN features. 3547 */ 3548 static void hw_cfg_wol(struct ksz_hw *hw, u16 frame, int set) 3549 { 3550 u16 data; 3551 3552 data = readw(hw->io + KS8841_WOL_CTRL_OFFSET); 3553 if (set) 3554 data |= frame; 3555 else 3556 data &= ~frame; 3557 writew(data, hw->io + KS8841_WOL_CTRL_OFFSET); 3558 } 3559 3560 /** 3561 * hw_set_wol_frame - program Wake-on-LAN pattern 3562 * @hw: The hardware instance. 3563 * @i: The frame index. 3564 * @mask_size: The size of the mask. 3565 * @mask: Mask to ignore certain bytes in the pattern. 3566 * @frame_size: The size of the frame. 3567 * @pattern: The frame data. 3568 * 3569 * This routine is used to program Wake-on-LAN pattern. 3570 */ 3571 static void hw_set_wol_frame(struct ksz_hw *hw, int i, uint mask_size, 3572 const u8 *mask, uint frame_size, const u8 *pattern) 3573 { 3574 int bits; 3575 int from; 3576 int len; 3577 int to; 3578 u32 crc; 3579 u8 data[64]; 3580 u8 val = 0; 3581 3582 if (frame_size > mask_size * 8) 3583 frame_size = mask_size * 8; 3584 if (frame_size > 64) 3585 frame_size = 64; 3586 3587 i *= 0x10; 3588 writel(0, hw->io + KS8841_WOL_FRAME_BYTE0_OFFSET + i); 3589 writel(0, hw->io + KS8841_WOL_FRAME_BYTE2_OFFSET + i); 3590 3591 bits = len = from = to = 0; 3592 do { 3593 if (bits) { 3594 if ((val & 1)) 3595 data[to++] = pattern[from]; 3596 val >>= 1; 3597 ++from; 3598 --bits; 3599 } else { 3600 val = mask[len]; 3601 writeb(val, hw->io + KS8841_WOL_FRAME_BYTE0_OFFSET + i 3602 + len); 3603 ++len; 3604 if (val) 3605 bits = 8; 3606 else 3607 from += 8; 3608 } 3609 } while (from < (int) frame_size); 3610 if (val) { 3611 bits = mask[len - 1]; 3612 val <<= (from % 8); 3613 bits &= ~val; 3614 writeb(bits, hw->io + KS8841_WOL_FRAME_BYTE0_OFFSET + i + len - 3615 1); 3616 } 3617 crc = ether_crc(to, data); 3618 writel(crc, hw->io + KS8841_WOL_FRAME_CRC_OFFSET + i); 3619 } 3620 3621 /** 3622 * hw_add_wol_arp - add ARP pattern 3623 * @hw: The hardware instance. 3624 * @ip_addr: The IPv4 address assigned to the device. 3625 * 3626 * This routine is used to add ARP pattern for waking up the host. 3627 */ 3628 static void hw_add_wol_arp(struct ksz_hw *hw, const u8 *ip_addr) 3629 { 3630 static const u8 mask[6] = { 0x3F, 0xF0, 0x3F, 0x00, 0xC0, 0x03 }; 3631 u8 pattern[42] = { 3632 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 3633 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 3634 0x08, 0x06, 3635 0x00, 0x01, 0x08, 0x00, 0x06, 0x04, 0x00, 0x01, 3636 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 3637 0x00, 0x00, 0x00, 0x00, 3638 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 3639 0x00, 0x00, 0x00, 0x00 }; 3640 3641 memcpy(&pattern[38], ip_addr, 4); 3642 hw_set_wol_frame(hw, 3, 6, mask, 42, pattern); 3643 } 3644 3645 /** 3646 * hw_add_wol_bcast - add broadcast pattern 3647 * @hw: The hardware instance. 3648 * 3649 * This routine is used to add broadcast pattern for waking up the host. 3650 */ 3651 static void hw_add_wol_bcast(struct ksz_hw *hw) 3652 { 3653 static const u8 mask[] = { 0x3F }; 3654 static const u8 pattern[] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF }; 3655 3656 hw_set_wol_frame(hw, 2, 1, mask, ETH_ALEN, pattern); 3657 } 3658 3659 /** 3660 * hw_add_wol_mcast - add multicast pattern 3661 * @hw: The hardware instance. 3662 * 3663 * This routine is used to add multicast pattern for waking up the host. 3664 * 3665 * It is assumed the multicast packet is the ICMPv6 neighbor solicitation used 3666 * by IPv6 ping command. Note that multicast packets are filtred through the 3667 * multicast hash table, so not all multicast packets can wake up the host. 3668 */ 3669 static void hw_add_wol_mcast(struct ksz_hw *hw) 3670 { 3671 static const u8 mask[] = { 0x3F }; 3672 u8 pattern[] = { 0x33, 0x33, 0xFF, 0x00, 0x00, 0x00 }; 3673 3674 memcpy(&pattern[3], &hw->override_addr[3], 3); 3675 hw_set_wol_frame(hw, 1, 1, mask, 6, pattern); 3676 } 3677 3678 /** 3679 * hw_add_wol_ucast - add unicast pattern 3680 * @hw: The hardware instance. 3681 * 3682 * This routine is used to add unicast pattern to wakeup the host. 3683 * 3684 * It is assumed the unicast packet is directed to the device, as the hardware 3685 * can only receive them in normal case. 3686 */ 3687 static void hw_add_wol_ucast(struct ksz_hw *hw) 3688 { 3689 static const u8 mask[] = { 0x3F }; 3690 3691 hw_set_wol_frame(hw, 0, 1, mask, ETH_ALEN, hw->override_addr); 3692 } 3693 3694 /** 3695 * hw_enable_wol - enable Wake-on-LAN 3696 * @hw: The hardware instance. 3697 * @wol_enable: The Wake-on-LAN settings. 3698 * @net_addr: The IPv4 address assigned to the device. 3699 * 3700 * This routine is used to enable Wake-on-LAN depending on driver settings. 3701 */ 3702 static void hw_enable_wol(struct ksz_hw *hw, u32 wol_enable, const u8 *net_addr) 3703 { 3704 hw_cfg_wol(hw, KS8841_WOL_MAGIC_ENABLE, (wol_enable & WAKE_MAGIC)); 3705 hw_cfg_wol(hw, KS8841_WOL_FRAME0_ENABLE, (wol_enable & WAKE_UCAST)); 3706 hw_add_wol_ucast(hw); 3707 hw_cfg_wol(hw, KS8841_WOL_FRAME1_ENABLE, (wol_enable & WAKE_MCAST)); 3708 hw_add_wol_mcast(hw); 3709 hw_cfg_wol(hw, KS8841_WOL_FRAME2_ENABLE, (wol_enable & WAKE_BCAST)); 3710 hw_cfg_wol(hw, KS8841_WOL_FRAME3_ENABLE, (wol_enable & WAKE_ARP)); 3711 hw_add_wol_arp(hw, net_addr); 3712 } 3713 3714 /** 3715 * hw_init - check driver is correct for the hardware 3716 * @hw: The hardware instance. 3717 * 3718 * This function checks the hardware is correct for this driver and sets the 3719 * hardware up for proper initialization. 3720 * 3721 * Return number of ports or 0 if not right. 3722 */ 3723 static int hw_init(struct ksz_hw *hw) 3724 { 3725 int rc = 0; 3726 u16 data; 3727 u16 revision; 3728 3729 /* Set bus speed to 125MHz. */ 3730 writew(BUS_SPEED_125_MHZ, hw->io + KS884X_BUS_CTRL_OFFSET); 3731 3732 /* Check KSZ884x chip ID. */ 3733 data = readw(hw->io + KS884X_CHIP_ID_OFFSET); 3734 3735 revision = (data & KS884X_REVISION_MASK) >> KS884X_REVISION_SHIFT; 3736 data &= KS884X_CHIP_ID_MASK_41; 3737 if (REG_CHIP_ID_41 == data) 3738 rc = 1; 3739 else if (REG_CHIP_ID_42 == data) 3740 rc = 2; 3741 else 3742 return 0; 3743 3744 /* Setup hardware features or bug workarounds. */ 3745 if (revision <= 1) { 3746 hw->features |= SMALL_PACKET_TX_BUG; 3747 if (1 == rc) 3748 hw->features |= HALF_DUPLEX_SIGNAL_BUG; 3749 } 3750 return rc; 3751 } 3752 3753 /** 3754 * hw_reset - reset the hardware 3755 * @hw: The hardware instance. 3756 * 3757 * This routine resets the hardware. 3758 */ 3759 static void hw_reset(struct ksz_hw *hw) 3760 { 3761 writew(GLOBAL_SOFTWARE_RESET, hw->io + KS884X_GLOBAL_CTRL_OFFSET); 3762 3763 /* Wait for device to reset. */ 3764 mdelay(10); 3765 3766 /* Write 0 to clear device reset. */ 3767 writew(0, hw->io + KS884X_GLOBAL_CTRL_OFFSET); 3768 } 3769 3770 /** 3771 * hw_setup - setup the hardware 3772 * @hw: The hardware instance. 3773 * 3774 * This routine setup the hardware for proper operation. 3775 */ 3776 static void hw_setup(struct ksz_hw *hw) 3777 { 3778 #if SET_DEFAULT_LED 3779 u16 data; 3780 3781 /* Change default LED mode. */ 3782 data = readw(hw->io + KS8842_SWITCH_CTRL_5_OFFSET); 3783 data &= ~LED_MODE; 3784 data |= SET_DEFAULT_LED; 3785 writew(data, hw->io + KS8842_SWITCH_CTRL_5_OFFSET); 3786 #endif 3787 3788 /* Setup transmit control. */ 3789 hw->tx_cfg = (DMA_TX_PAD_ENABLE | DMA_TX_CRC_ENABLE | 3790 (DMA_BURST_DEFAULT << DMA_BURST_SHIFT) | DMA_TX_ENABLE); 3791 3792 /* Setup receive control. */ 3793 hw->rx_cfg = (DMA_RX_BROADCAST | DMA_RX_UNICAST | 3794 (DMA_BURST_DEFAULT << DMA_BURST_SHIFT) | DMA_RX_ENABLE); 3795 hw->rx_cfg |= KS884X_DMA_RX_MULTICAST; 3796 3797 /* Hardware cannot handle UDP packet in IP fragments. */ 3798 hw->rx_cfg |= (DMA_RX_CSUM_TCP | DMA_RX_CSUM_IP); 3799 3800 if (hw->all_multi) 3801 hw->rx_cfg |= DMA_RX_ALL_MULTICAST; 3802 if (hw->promiscuous) 3803 hw->rx_cfg |= DMA_RX_PROMISCUOUS; 3804 } 3805 3806 /** 3807 * hw_setup_intr - setup interrupt mask 3808 * @hw: The hardware instance. 3809 * 3810 * This routine setup the interrupt mask for proper operation. 3811 */ 3812 static void hw_setup_intr(struct ksz_hw *hw) 3813 { 3814 hw->intr_mask = KS884X_INT_MASK | KS884X_INT_RX_OVERRUN; 3815 } 3816 3817 static void ksz_check_desc_num(struct ksz_desc_info *info) 3818 { 3819 #define MIN_DESC_SHIFT 2 3820 3821 int alloc = info->alloc; 3822 int shift; 3823 3824 shift = 0; 3825 while (!(alloc & 1)) { 3826 shift++; 3827 alloc >>= 1; 3828 } 3829 if (alloc != 1 || shift < MIN_DESC_SHIFT) { 3830 pr_alert("Hardware descriptor numbers not right!\n"); 3831 while (alloc) { 3832 shift++; 3833 alloc >>= 1; 3834 } 3835 if (shift < MIN_DESC_SHIFT) 3836 shift = MIN_DESC_SHIFT; 3837 alloc = 1 << shift; 3838 info->alloc = alloc; 3839 } 3840 info->mask = info->alloc - 1; 3841 } 3842 3843 static void hw_init_desc(struct ksz_desc_info *desc_info, int transmit) 3844 { 3845 int i; 3846 u32 phys = desc_info->ring_phys; 3847 struct ksz_hw_desc *desc = desc_info->ring_virt; 3848 struct ksz_desc *cur = desc_info->ring; 3849 struct ksz_desc *previous = NULL; 3850 3851 for (i = 0; i < desc_info->alloc; i++) { 3852 cur->phw = desc++; 3853 phys += desc_info->size; 3854 previous = cur++; 3855 previous->phw->next = cpu_to_le32(phys); 3856 } 3857 previous->phw->next = cpu_to_le32(desc_info->ring_phys); 3858 previous->sw.buf.rx.end_of_ring = 1; 3859 previous->phw->buf.data = cpu_to_le32(previous->sw.buf.data); 3860 3861 desc_info->avail = desc_info->alloc; 3862 desc_info->last = desc_info->next = 0; 3863 3864 desc_info->cur = desc_info->ring; 3865 } 3866 3867 /** 3868 * hw_set_desc_base - set descriptor base addresses 3869 * @hw: The hardware instance. 3870 * @tx_addr: The transmit descriptor base. 3871 * @rx_addr: The receive descriptor base. 3872 * 3873 * This routine programs the descriptor base addresses after reset. 3874 */ 3875 static void hw_set_desc_base(struct ksz_hw *hw, u32 tx_addr, u32 rx_addr) 3876 { 3877 /* Set base address of Tx/Rx descriptors. */ 3878 writel(tx_addr, hw->io + KS_DMA_TX_ADDR); 3879 writel(rx_addr, hw->io + KS_DMA_RX_ADDR); 3880 } 3881 3882 static void hw_reset_pkts(struct ksz_desc_info *info) 3883 { 3884 info->cur = info->ring; 3885 info->avail = info->alloc; 3886 info->last = info->next = 0; 3887 } 3888 3889 static inline void hw_resume_rx(struct ksz_hw *hw) 3890 { 3891 writel(DMA_START, hw->io + KS_DMA_RX_START); 3892 } 3893 3894 /** 3895 * hw_start_rx - start receiving 3896 * @hw: The hardware instance. 3897 * 3898 * This routine starts the receive function of the hardware. 3899 */ 3900 static void hw_start_rx(struct ksz_hw *hw) 3901 { 3902 writel(hw->rx_cfg, hw->io + KS_DMA_RX_CTRL); 3903 3904 /* Notify when the receive stops. */ 3905 hw->intr_mask |= KS884X_INT_RX_STOPPED; 3906 3907 writel(DMA_START, hw->io + KS_DMA_RX_START); 3908 hw_ack_intr(hw, KS884X_INT_RX_STOPPED); 3909 hw->rx_stop++; 3910 3911 /* Variable overflows. */ 3912 if (0 == hw->rx_stop) 3913 hw->rx_stop = 2; 3914 } 3915 3916 /* 3917 * hw_stop_rx - stop receiving 3918 * @hw: The hardware instance. 3919 * 3920 * This routine stops the receive function of the hardware. 3921 */ 3922 static void hw_stop_rx(struct ksz_hw *hw) 3923 { 3924 hw->rx_stop = 0; 3925 hw_turn_off_intr(hw, KS884X_INT_RX_STOPPED); 3926 writel((hw->rx_cfg & ~DMA_RX_ENABLE), hw->io + KS_DMA_RX_CTRL); 3927 } 3928 3929 /** 3930 * hw_start_tx - start transmitting 3931 * @hw: The hardware instance. 3932 * 3933 * This routine starts the transmit function of the hardware. 3934 */ 3935 static void hw_start_tx(struct ksz_hw *hw) 3936 { 3937 writel(hw->tx_cfg, hw->io + KS_DMA_TX_CTRL); 3938 } 3939 3940 /** 3941 * hw_stop_tx - stop transmitting 3942 * @hw: The hardware instance. 3943 * 3944 * This routine stops the transmit function of the hardware. 3945 */ 3946 static void hw_stop_tx(struct ksz_hw *hw) 3947 { 3948 writel((hw->tx_cfg & ~DMA_TX_ENABLE), hw->io + KS_DMA_TX_CTRL); 3949 } 3950 3951 /** 3952 * hw_disable - disable hardware 3953 * @hw: The hardware instance. 3954 * 3955 * This routine disables the hardware. 3956 */ 3957 static void hw_disable(struct ksz_hw *hw) 3958 { 3959 hw_stop_rx(hw); 3960 hw_stop_tx(hw); 3961 hw->enabled = 0; 3962 } 3963 3964 /** 3965 * hw_enable - enable hardware 3966 * @hw: The hardware instance. 3967 * 3968 * This routine enables the hardware. 3969 */ 3970 static void hw_enable(struct ksz_hw *hw) 3971 { 3972 hw_start_tx(hw); 3973 hw_start_rx(hw); 3974 hw->enabled = 1; 3975 } 3976 3977 /** 3978 * hw_alloc_pkt - allocate enough descriptors for transmission 3979 * @hw: The hardware instance. 3980 * @length: The length of the packet. 3981 * @physical: Number of descriptors required. 3982 * 3983 * This function allocates descriptors for transmission. 3984 * 3985 * Return 0 if not successful; 1 for buffer copy; or number of descriptors. 3986 */ 3987 static int hw_alloc_pkt(struct ksz_hw *hw, int length, int physical) 3988 { 3989 /* Always leave one descriptor free. */ 3990 if (hw->tx_desc_info.avail <= 1) 3991 return 0; 3992 3993 /* Allocate a descriptor for transmission and mark it current. */ 3994 get_tx_pkt(&hw->tx_desc_info, &hw->tx_desc_info.cur); 3995 hw->tx_desc_info.cur->sw.buf.tx.first_seg = 1; 3996 3997 /* Keep track of number of transmit descriptors used so far. */ 3998 ++hw->tx_int_cnt; 3999 hw->tx_size += length; 4000 4001 /* Cannot hold on too much data. */ 4002 if (hw->tx_size >= MAX_TX_HELD_SIZE) 4003 hw->tx_int_cnt = hw->tx_int_mask + 1; 4004 4005 if (physical > hw->tx_desc_info.avail) 4006 return 1; 4007 4008 return hw->tx_desc_info.avail; 4009 } 4010 4011 /** 4012 * hw_send_pkt - mark packet for transmission 4013 * @hw: The hardware instance. 4014 * 4015 * This routine marks the packet for transmission in PCI version. 4016 */ 4017 static void hw_send_pkt(struct ksz_hw *hw) 4018 { 4019 struct ksz_desc *cur = hw->tx_desc_info.cur; 4020 4021 cur->sw.buf.tx.last_seg = 1; 4022 4023 /* Interrupt only after specified number of descriptors used. */ 4024 if (hw->tx_int_cnt > hw->tx_int_mask) { 4025 cur->sw.buf.tx.intr = 1; 4026 hw->tx_int_cnt = 0; 4027 hw->tx_size = 0; 4028 } 4029 4030 /* KSZ8842 supports port directed transmission. */ 4031 cur->sw.buf.tx.dest_port = hw->dst_ports; 4032 4033 release_desc(cur); 4034 4035 writel(0, hw->io + KS_DMA_TX_START); 4036 } 4037 4038 static int empty_addr(u8 *addr) 4039 { 4040 u32 *addr1 = (u32 *) addr; 4041 u16 *addr2 = (u16 *) &addr[4]; 4042 4043 return 0 == *addr1 && 0 == *addr2; 4044 } 4045 4046 /** 4047 * hw_set_addr - set MAC address 4048 * @hw: The hardware instance. 4049 * 4050 * This routine programs the MAC address of the hardware when the address is 4051 * overrided. 4052 */ 4053 static void hw_set_addr(struct ksz_hw *hw) 4054 { 4055 int i; 4056 4057 for (i = 0; i < ETH_ALEN; i++) 4058 writeb(hw->override_addr[MAC_ADDR_ORDER(i)], 4059 hw->io + KS884X_ADDR_0_OFFSET + i); 4060 4061 sw_set_addr(hw, hw->override_addr); 4062 } 4063 4064 /** 4065 * hw_read_addr - read MAC address 4066 * @hw: The hardware instance. 4067 * 4068 * This routine retrieves the MAC address of the hardware. 4069 */ 4070 static void hw_read_addr(struct ksz_hw *hw) 4071 { 4072 int i; 4073 4074 for (i = 0; i < ETH_ALEN; i++) 4075 hw->perm_addr[MAC_ADDR_ORDER(i)] = readb(hw->io + 4076 KS884X_ADDR_0_OFFSET + i); 4077 4078 if (!hw->mac_override) { 4079 memcpy(hw->override_addr, hw->perm_addr, ETH_ALEN); 4080 if (empty_addr(hw->override_addr)) { 4081 memcpy(hw->perm_addr, DEFAULT_MAC_ADDRESS, ETH_ALEN); 4082 memcpy(hw->override_addr, DEFAULT_MAC_ADDRESS, 4083 ETH_ALEN); 4084 hw->override_addr[5] += hw->id; 4085 hw_set_addr(hw); 4086 } 4087 } 4088 } 4089 4090 static void hw_ena_add_addr(struct ksz_hw *hw, int index, u8 *mac_addr) 4091 { 4092 int i; 4093 u32 mac_addr_lo; 4094 u32 mac_addr_hi; 4095 4096 mac_addr_hi = 0; 4097 for (i = 0; i < 2; i++) { 4098 mac_addr_hi <<= 8; 4099 mac_addr_hi |= mac_addr[i]; 4100 } 4101 mac_addr_hi |= ADD_ADDR_ENABLE; 4102 mac_addr_lo = 0; 4103 for (i = 2; i < 6; i++) { 4104 mac_addr_lo <<= 8; 4105 mac_addr_lo |= mac_addr[i]; 4106 } 4107 index *= ADD_ADDR_INCR; 4108 4109 writel(mac_addr_lo, hw->io + index + KS_ADD_ADDR_0_LO); 4110 writel(mac_addr_hi, hw->io + index + KS_ADD_ADDR_0_HI); 4111 } 4112 4113 static void hw_set_add_addr(struct ksz_hw *hw) 4114 { 4115 int i; 4116 4117 for (i = 0; i < ADDITIONAL_ENTRIES; i++) { 4118 if (empty_addr(hw->address[i])) 4119 writel(0, hw->io + ADD_ADDR_INCR * i + 4120 KS_ADD_ADDR_0_HI); 4121 else 4122 hw_ena_add_addr(hw, i, hw->address[i]); 4123 } 4124 } 4125 4126 static int hw_add_addr(struct ksz_hw *hw, u8 *mac_addr) 4127 { 4128 int i; 4129 int j = ADDITIONAL_ENTRIES; 4130 4131 if (!memcmp(hw->override_addr, mac_addr, ETH_ALEN)) 4132 return 0; 4133 for (i = 0; i < hw->addr_list_size; i++) { 4134 if (!memcmp(hw->address[i], mac_addr, ETH_ALEN)) 4135 return 0; 4136 if (ADDITIONAL_ENTRIES == j && empty_addr(hw->address[i])) 4137 j = i; 4138 } 4139 if (j < ADDITIONAL_ENTRIES) { 4140 memcpy(hw->address[j], mac_addr, ETH_ALEN); 4141 hw_ena_add_addr(hw, j, hw->address[j]); 4142 return 0; 4143 } 4144 return -1; 4145 } 4146 4147 static int hw_del_addr(struct ksz_hw *hw, u8 *mac_addr) 4148 { 4149 int i; 4150 4151 for (i = 0; i < hw->addr_list_size; i++) { 4152 if (!memcmp(hw->address[i], mac_addr, ETH_ALEN)) { 4153 memset(hw->address[i], 0, ETH_ALEN); 4154 writel(0, hw->io + ADD_ADDR_INCR * i + 4155 KS_ADD_ADDR_0_HI); 4156 return 0; 4157 } 4158 } 4159 return -1; 4160 } 4161 4162 /** 4163 * hw_clr_multicast - clear multicast addresses 4164 * @hw: The hardware instance. 4165 * 4166 * This routine removes all multicast addresses set in the hardware. 4167 */ 4168 static void hw_clr_multicast(struct ksz_hw *hw) 4169 { 4170 int i; 4171 4172 for (i = 0; i < HW_MULTICAST_SIZE; i++) { 4173 hw->multi_bits[i] = 0; 4174 4175 writeb(0, hw->io + KS884X_MULTICAST_0_OFFSET + i); 4176 } 4177 } 4178 4179 /** 4180 * hw_set_grp_addr - set multicast addresses 4181 * @hw: The hardware instance. 4182 * 4183 * This routine programs multicast addresses for the hardware to accept those 4184 * addresses. 4185 */ 4186 static void hw_set_grp_addr(struct ksz_hw *hw) 4187 { 4188 int i; 4189 int index; 4190 int position; 4191 int value; 4192 4193 memset(hw->multi_bits, 0, sizeof(u8) * HW_MULTICAST_SIZE); 4194 4195 for (i = 0; i < hw->multi_list_size; i++) { 4196 position = (ether_crc(6, hw->multi_list[i]) >> 26) & 0x3f; 4197 index = position >> 3; 4198 value = 1 << (position & 7); 4199 hw->multi_bits[index] |= (u8) value; 4200 } 4201 4202 for (i = 0; i < HW_MULTICAST_SIZE; i++) 4203 writeb(hw->multi_bits[i], hw->io + KS884X_MULTICAST_0_OFFSET + 4204 i); 4205 } 4206 4207 /** 4208 * hw_set_multicast - enable or disable all multicast receiving 4209 * @hw: The hardware instance. 4210 * @multicast: To turn on or off the all multicast feature. 4211 * 4212 * This routine enables/disables the hardware to accept all multicast packets. 4213 */ 4214 static void hw_set_multicast(struct ksz_hw *hw, u8 multicast) 4215 { 4216 /* Stop receiving for reconfiguration. */ 4217 hw_stop_rx(hw); 4218 4219 if (multicast) 4220 hw->rx_cfg |= DMA_RX_ALL_MULTICAST; 4221 else 4222 hw->rx_cfg &= ~DMA_RX_ALL_MULTICAST; 4223 4224 if (hw->enabled) 4225 hw_start_rx(hw); 4226 } 4227 4228 /** 4229 * hw_set_promiscuous - enable or disable promiscuous receiving 4230 * @hw: The hardware instance. 4231 * @prom: To turn on or off the promiscuous feature. 4232 * 4233 * This routine enables/disables the hardware to accept all packets. 4234 */ 4235 static void hw_set_promiscuous(struct ksz_hw *hw, u8 prom) 4236 { 4237 /* Stop receiving for reconfiguration. */ 4238 hw_stop_rx(hw); 4239 4240 if (prom) 4241 hw->rx_cfg |= DMA_RX_PROMISCUOUS; 4242 else 4243 hw->rx_cfg &= ~DMA_RX_PROMISCUOUS; 4244 4245 if (hw->enabled) 4246 hw_start_rx(hw); 4247 } 4248 4249 /** 4250 * sw_enable - enable the switch 4251 * @hw: The hardware instance. 4252 * @enable: The flag to enable or disable the switch 4253 * 4254 * This routine is used to enable/disable the switch in KSZ8842. 4255 */ 4256 static void sw_enable(struct ksz_hw *hw, int enable) 4257 { 4258 int port; 4259 4260 for (port = 0; port < SWITCH_PORT_NUM; port++) { 4261 if (hw->dev_count > 1) { 4262 /* Set port-base vlan membership with host port. */ 4263 sw_cfg_port_base_vlan(hw, port, 4264 HOST_MASK | (1 << port)); 4265 port_set_stp_state(hw, port, STP_STATE_DISABLED); 4266 } else { 4267 sw_cfg_port_base_vlan(hw, port, PORT_MASK); 4268 port_set_stp_state(hw, port, STP_STATE_FORWARDING); 4269 } 4270 } 4271 if (hw->dev_count > 1) 4272 port_set_stp_state(hw, SWITCH_PORT_NUM, STP_STATE_SIMPLE); 4273 else 4274 port_set_stp_state(hw, SWITCH_PORT_NUM, STP_STATE_FORWARDING); 4275 4276 if (enable) 4277 enable = KS8842_START; 4278 writew(enable, hw->io + KS884X_CHIP_ID_OFFSET); 4279 } 4280 4281 /** 4282 * sw_setup - setup the switch 4283 * @hw: The hardware instance. 4284 * 4285 * This routine setup the hardware switch engine for default operation. 4286 */ 4287 static void sw_setup(struct ksz_hw *hw) 4288 { 4289 int port; 4290 4291 sw_set_global_ctrl(hw); 4292 4293 /* Enable switch broadcast storm protection at 10% percent rate. */ 4294 sw_init_broad_storm(hw); 4295 hw_cfg_broad_storm(hw, BROADCAST_STORM_PROTECTION_RATE); 4296 for (port = 0; port < SWITCH_PORT_NUM; port++) 4297 sw_ena_broad_storm(hw, port); 4298 4299 sw_init_prio(hw); 4300 4301 sw_init_mirror(hw); 4302 4303 sw_init_prio_rate(hw); 4304 4305 sw_init_vlan(hw); 4306 4307 if (hw->features & STP_SUPPORT) 4308 sw_init_stp(hw); 4309 if (!sw_chk(hw, KS8842_SWITCH_CTRL_1_OFFSET, 4310 SWITCH_TX_FLOW_CTRL | SWITCH_RX_FLOW_CTRL)) 4311 hw->overrides |= PAUSE_FLOW_CTRL; 4312 sw_enable(hw, 1); 4313 } 4314 4315 /** 4316 * ksz_start_timer - start kernel timer 4317 * @info: Kernel timer information. 4318 * @time: The time tick. 4319 * 4320 * This routine starts the kernel timer after the specified time tick. 4321 */ 4322 static void ksz_start_timer(struct ksz_timer_info *info, int time) 4323 { 4324 info->cnt = 0; 4325 info->timer.expires = jiffies + time; 4326 add_timer(&info->timer); 4327 4328 /* infinity */ 4329 info->max = -1; 4330 } 4331 4332 /** 4333 * ksz_stop_timer - stop kernel timer 4334 * @info: Kernel timer information. 4335 * 4336 * This routine stops the kernel timer. 4337 */ 4338 static void ksz_stop_timer(struct ksz_timer_info *info) 4339 { 4340 if (info->max) { 4341 info->max = 0; 4342 del_timer_sync(&info->timer); 4343 } 4344 } 4345 4346 static void ksz_init_timer(struct ksz_timer_info *info, int period, 4347 void (*function)(unsigned long), void *data) 4348 { 4349 info->max = 0; 4350 info->period = period; 4351 init_timer(&info->timer); 4352 info->timer.function = function; 4353 info->timer.data = (unsigned long) data; 4354 } 4355 4356 static void ksz_update_timer(struct ksz_timer_info *info) 4357 { 4358 ++info->cnt; 4359 if (info->max > 0) { 4360 if (info->cnt < info->max) { 4361 info->timer.expires = jiffies + info->period; 4362 add_timer(&info->timer); 4363 } else 4364 info->max = 0; 4365 } else if (info->max < 0) { 4366 info->timer.expires = jiffies + info->period; 4367 add_timer(&info->timer); 4368 } 4369 } 4370 4371 /** 4372 * ksz_alloc_soft_desc - allocate software descriptors 4373 * @desc_info: Descriptor information structure. 4374 * @transmit: Indication that descriptors are for transmit. 4375 * 4376 * This local function allocates software descriptors for manipulation in 4377 * memory. 4378 * 4379 * Return 0 if successful. 4380 */ 4381 static int ksz_alloc_soft_desc(struct ksz_desc_info *desc_info, int transmit) 4382 { 4383 desc_info->ring = kzalloc(sizeof(struct ksz_desc) * desc_info->alloc, 4384 GFP_KERNEL); 4385 if (!desc_info->ring) 4386 return 1; 4387 hw_init_desc(desc_info, transmit); 4388 return 0; 4389 } 4390 4391 /** 4392 * ksz_alloc_desc - allocate hardware descriptors 4393 * @adapter: Adapter information structure. 4394 * 4395 * This local function allocates hardware descriptors for receiving and 4396 * transmitting. 4397 * 4398 * Return 0 if successful. 4399 */ 4400 static int ksz_alloc_desc(struct dev_info *adapter) 4401 { 4402 struct ksz_hw *hw = &adapter->hw; 4403 int offset; 4404 4405 /* Allocate memory for RX & TX descriptors. */ 4406 adapter->desc_pool.alloc_size = 4407 hw->rx_desc_info.size * hw->rx_desc_info.alloc + 4408 hw->tx_desc_info.size * hw->tx_desc_info.alloc + 4409 DESC_ALIGNMENT; 4410 4411 adapter->desc_pool.alloc_virt = 4412 pci_alloc_consistent( 4413 adapter->pdev, adapter->desc_pool.alloc_size, 4414 &adapter->desc_pool.dma_addr); 4415 if (adapter->desc_pool.alloc_virt == NULL) { 4416 adapter->desc_pool.alloc_size = 0; 4417 return 1; 4418 } 4419 memset(adapter->desc_pool.alloc_virt, 0, adapter->desc_pool.alloc_size); 4420 4421 /* Align to the next cache line boundary. */ 4422 offset = (((ulong) adapter->desc_pool.alloc_virt % DESC_ALIGNMENT) ? 4423 (DESC_ALIGNMENT - 4424 ((ulong) adapter->desc_pool.alloc_virt % DESC_ALIGNMENT)) : 0); 4425 adapter->desc_pool.virt = adapter->desc_pool.alloc_virt + offset; 4426 adapter->desc_pool.phys = adapter->desc_pool.dma_addr + offset; 4427 4428 /* Allocate receive/transmit descriptors. */ 4429 hw->rx_desc_info.ring_virt = (struct ksz_hw_desc *) 4430 adapter->desc_pool.virt; 4431 hw->rx_desc_info.ring_phys = adapter->desc_pool.phys; 4432 offset = hw->rx_desc_info.alloc * hw->rx_desc_info.size; 4433 hw->tx_desc_info.ring_virt = (struct ksz_hw_desc *) 4434 (adapter->desc_pool.virt + offset); 4435 hw->tx_desc_info.ring_phys = adapter->desc_pool.phys + offset; 4436 4437 if (ksz_alloc_soft_desc(&hw->rx_desc_info, 0)) 4438 return 1; 4439 if (ksz_alloc_soft_desc(&hw->tx_desc_info, 1)) 4440 return 1; 4441 4442 return 0; 4443 } 4444 4445 /** 4446 * free_dma_buf - release DMA buffer resources 4447 * @adapter: Adapter information structure. 4448 * 4449 * This routine is just a helper function to release the DMA buffer resources. 4450 */ 4451 static void free_dma_buf(struct dev_info *adapter, struct ksz_dma_buf *dma_buf, 4452 int direction) 4453 { 4454 pci_unmap_single(adapter->pdev, dma_buf->dma, dma_buf->len, direction); 4455 dev_kfree_skb(dma_buf->skb); 4456 dma_buf->skb = NULL; 4457 dma_buf->dma = 0; 4458 } 4459 4460 /** 4461 * ksz_init_rx_buffers - initialize receive descriptors 4462 * @adapter: Adapter information structure. 4463 * 4464 * This routine initializes DMA buffers for receiving. 4465 */ 4466 static void ksz_init_rx_buffers(struct dev_info *adapter) 4467 { 4468 int i; 4469 struct ksz_desc *desc; 4470 struct ksz_dma_buf *dma_buf; 4471 struct ksz_hw *hw = &adapter->hw; 4472 struct ksz_desc_info *info = &hw->rx_desc_info; 4473 4474 for (i = 0; i < hw->rx_desc_info.alloc; i++) { 4475 get_rx_pkt(info, &desc); 4476 4477 dma_buf = DMA_BUFFER(desc); 4478 if (dma_buf->skb && dma_buf->len != adapter->mtu) 4479 free_dma_buf(adapter, dma_buf, PCI_DMA_FROMDEVICE); 4480 dma_buf->len = adapter->mtu; 4481 if (!dma_buf->skb) 4482 dma_buf->skb = alloc_skb(dma_buf->len, GFP_ATOMIC); 4483 if (dma_buf->skb && !dma_buf->dma) { 4484 dma_buf->skb->dev = adapter->dev; 4485 dma_buf->dma = pci_map_single( 4486 adapter->pdev, 4487 skb_tail_pointer(dma_buf->skb), 4488 dma_buf->len, 4489 PCI_DMA_FROMDEVICE); 4490 } 4491 4492 /* Set descriptor. */ 4493 set_rx_buf(desc, dma_buf->dma); 4494 set_rx_len(desc, dma_buf->len); 4495 release_desc(desc); 4496 } 4497 } 4498 4499 /** 4500 * ksz_alloc_mem - allocate memory for hardware descriptors 4501 * @adapter: Adapter information structure. 4502 * 4503 * This function allocates memory for use by hardware descriptors for receiving 4504 * and transmitting. 4505 * 4506 * Return 0 if successful. 4507 */ 4508 static int ksz_alloc_mem(struct dev_info *adapter) 4509 { 4510 struct ksz_hw *hw = &adapter->hw; 4511 4512 /* Determine the number of receive and transmit descriptors. */ 4513 hw->rx_desc_info.alloc = NUM_OF_RX_DESC; 4514 hw->tx_desc_info.alloc = NUM_OF_TX_DESC; 4515 4516 /* Determine how many descriptors to skip transmit interrupt. */ 4517 hw->tx_int_cnt = 0; 4518 hw->tx_int_mask = NUM_OF_TX_DESC / 4; 4519 if (hw->tx_int_mask > 8) 4520 hw->tx_int_mask = 8; 4521 while (hw->tx_int_mask) { 4522 hw->tx_int_cnt++; 4523 hw->tx_int_mask >>= 1; 4524 } 4525 if (hw->tx_int_cnt) { 4526 hw->tx_int_mask = (1 << (hw->tx_int_cnt - 1)) - 1; 4527 hw->tx_int_cnt = 0; 4528 } 4529 4530 /* Determine the descriptor size. */ 4531 hw->rx_desc_info.size = 4532 (((sizeof(struct ksz_hw_desc) + DESC_ALIGNMENT - 1) / 4533 DESC_ALIGNMENT) * DESC_ALIGNMENT); 4534 hw->tx_desc_info.size = 4535 (((sizeof(struct ksz_hw_desc) + DESC_ALIGNMENT - 1) / 4536 DESC_ALIGNMENT) * DESC_ALIGNMENT); 4537 if (hw->rx_desc_info.size != sizeof(struct ksz_hw_desc)) 4538 pr_alert("Hardware descriptor size not right!\n"); 4539 ksz_check_desc_num(&hw->rx_desc_info); 4540 ksz_check_desc_num(&hw->tx_desc_info); 4541 4542 /* Allocate descriptors. */ 4543 if (ksz_alloc_desc(adapter)) 4544 return 1; 4545 4546 return 0; 4547 } 4548 4549 /** 4550 * ksz_free_desc - free software and hardware descriptors 4551 * @adapter: Adapter information structure. 4552 * 4553 * This local routine frees the software and hardware descriptors allocated by 4554 * ksz_alloc_desc(). 4555 */ 4556 static void ksz_free_desc(struct dev_info *adapter) 4557 { 4558 struct ksz_hw *hw = &adapter->hw; 4559 4560 /* Reset descriptor. */ 4561 hw->rx_desc_info.ring_virt = NULL; 4562 hw->tx_desc_info.ring_virt = NULL; 4563 hw->rx_desc_info.ring_phys = 0; 4564 hw->tx_desc_info.ring_phys = 0; 4565 4566 /* Free memory. */ 4567 if (adapter->desc_pool.alloc_virt) 4568 pci_free_consistent( 4569 adapter->pdev, 4570 adapter->desc_pool.alloc_size, 4571 adapter->desc_pool.alloc_virt, 4572 adapter->desc_pool.dma_addr); 4573 4574 /* Reset resource pool. */ 4575 adapter->desc_pool.alloc_size = 0; 4576 adapter->desc_pool.alloc_virt = NULL; 4577 4578 kfree(hw->rx_desc_info.ring); 4579 hw->rx_desc_info.ring = NULL; 4580 kfree(hw->tx_desc_info.ring); 4581 hw->tx_desc_info.ring = NULL; 4582 } 4583 4584 /** 4585 * ksz_free_buffers - free buffers used in the descriptors 4586 * @adapter: Adapter information structure. 4587 * @desc_info: Descriptor information structure. 4588 * 4589 * This local routine frees buffers used in the DMA buffers. 4590 */ 4591 static void ksz_free_buffers(struct dev_info *adapter, 4592 struct ksz_desc_info *desc_info, int direction) 4593 { 4594 int i; 4595 struct ksz_dma_buf *dma_buf; 4596 struct ksz_desc *desc = desc_info->ring; 4597 4598 for (i = 0; i < desc_info->alloc; i++) { 4599 dma_buf = DMA_BUFFER(desc); 4600 if (dma_buf->skb) 4601 free_dma_buf(adapter, dma_buf, direction); 4602 desc++; 4603 } 4604 } 4605 4606 /** 4607 * ksz_free_mem - free all resources used by descriptors 4608 * @adapter: Adapter information structure. 4609 * 4610 * This local routine frees all the resources allocated by ksz_alloc_mem(). 4611 */ 4612 static void ksz_free_mem(struct dev_info *adapter) 4613 { 4614 /* Free transmit buffers. */ 4615 ksz_free_buffers(adapter, &adapter->hw.tx_desc_info, 4616 PCI_DMA_TODEVICE); 4617 4618 /* Free receive buffers. */ 4619 ksz_free_buffers(adapter, &adapter->hw.rx_desc_info, 4620 PCI_DMA_FROMDEVICE); 4621 4622 /* Free descriptors. */ 4623 ksz_free_desc(adapter); 4624 } 4625 4626 static void get_mib_counters(struct ksz_hw *hw, int first, int cnt, 4627 u64 *counter) 4628 { 4629 int i; 4630 int mib; 4631 int port; 4632 struct ksz_port_mib *port_mib; 4633 4634 memset(counter, 0, sizeof(u64) * TOTAL_PORT_COUNTER_NUM); 4635 for (i = 0, port = first; i < cnt; i++, port++) { 4636 port_mib = &hw->port_mib[port]; 4637 for (mib = port_mib->mib_start; mib < hw->mib_cnt; mib++) 4638 counter[mib] += port_mib->counter[mib]; 4639 } 4640 } 4641 4642 /** 4643 * send_packet - send packet 4644 * @skb: Socket buffer. 4645 * @dev: Network device. 4646 * 4647 * This routine is used to send a packet out to the network. 4648 */ 4649 static void send_packet(struct sk_buff *skb, struct net_device *dev) 4650 { 4651 struct ksz_desc *desc; 4652 struct ksz_desc *first; 4653 struct dev_priv *priv = netdev_priv(dev); 4654 struct dev_info *hw_priv = priv->adapter; 4655 struct ksz_hw *hw = &hw_priv->hw; 4656 struct ksz_desc_info *info = &hw->tx_desc_info; 4657 struct ksz_dma_buf *dma_buf; 4658 int len; 4659 int last_frag = skb_shinfo(skb)->nr_frags; 4660 4661 /* 4662 * KSZ8842 with multiple device interfaces needs to be told which port 4663 * to send. 4664 */ 4665 if (hw->dev_count > 1) 4666 hw->dst_ports = 1 << priv->port.first_port; 4667 4668 /* Hardware will pad the length to 60. */ 4669 len = skb->len; 4670 4671 /* Remember the very first descriptor. */ 4672 first = info->cur; 4673 desc = first; 4674 4675 dma_buf = DMA_BUFFER(desc); 4676 if (last_frag) { 4677 int frag; 4678 skb_frag_t *this_frag; 4679 4680 dma_buf->len = skb_headlen(skb); 4681 4682 dma_buf->dma = pci_map_single( 4683 hw_priv->pdev, skb->data, dma_buf->len, 4684 PCI_DMA_TODEVICE); 4685 set_tx_buf(desc, dma_buf->dma); 4686 set_tx_len(desc, dma_buf->len); 4687 4688 frag = 0; 4689 do { 4690 this_frag = &skb_shinfo(skb)->frags[frag]; 4691 4692 /* Get a new descriptor. */ 4693 get_tx_pkt(info, &desc); 4694 4695 /* Keep track of descriptors used so far. */ 4696 ++hw->tx_int_cnt; 4697 4698 dma_buf = DMA_BUFFER(desc); 4699 dma_buf->len = skb_frag_size(this_frag); 4700 4701 dma_buf->dma = pci_map_single( 4702 hw_priv->pdev, 4703 skb_frag_address(this_frag), 4704 dma_buf->len, 4705 PCI_DMA_TODEVICE); 4706 set_tx_buf(desc, dma_buf->dma); 4707 set_tx_len(desc, dma_buf->len); 4708 4709 frag++; 4710 if (frag == last_frag) 4711 break; 4712 4713 /* Do not release the last descriptor here. */ 4714 release_desc(desc); 4715 } while (1); 4716 4717 /* current points to the last descriptor. */ 4718 info->cur = desc; 4719 4720 /* Release the first descriptor. */ 4721 release_desc(first); 4722 } else { 4723 dma_buf->len = len; 4724 4725 dma_buf->dma = pci_map_single( 4726 hw_priv->pdev, skb->data, dma_buf->len, 4727 PCI_DMA_TODEVICE); 4728 set_tx_buf(desc, dma_buf->dma); 4729 set_tx_len(desc, dma_buf->len); 4730 } 4731 4732 if (skb->ip_summed == CHECKSUM_PARTIAL) { 4733 (desc)->sw.buf.tx.csum_gen_tcp = 1; 4734 (desc)->sw.buf.tx.csum_gen_udp = 1; 4735 } 4736 4737 /* 4738 * The last descriptor holds the packet so that it can be returned to 4739 * network subsystem after all descriptors are transmitted. 4740 */ 4741 dma_buf->skb = skb; 4742 4743 hw_send_pkt(hw); 4744 4745 /* Update transmit statistics. */ 4746 dev->stats.tx_packets++; 4747 dev->stats.tx_bytes += len; 4748 } 4749 4750 /** 4751 * transmit_cleanup - clean up transmit descriptors 4752 * @dev: Network device. 4753 * 4754 * This routine is called to clean up the transmitted buffers. 4755 */ 4756 static void transmit_cleanup(struct dev_info *hw_priv, int normal) 4757 { 4758 int last; 4759 union desc_stat status; 4760 struct ksz_hw *hw = &hw_priv->hw; 4761 struct ksz_desc_info *info = &hw->tx_desc_info; 4762 struct ksz_desc *desc; 4763 struct ksz_dma_buf *dma_buf; 4764 struct net_device *dev = NULL; 4765 4766 spin_lock(&hw_priv->hwlock); 4767 last = info->last; 4768 4769 while (info->avail < info->alloc) { 4770 /* Get next descriptor which is not hardware owned. */ 4771 desc = &info->ring[last]; 4772 status.data = le32_to_cpu(desc->phw->ctrl.data); 4773 if (status.tx.hw_owned) { 4774 if (normal) 4775 break; 4776 else 4777 reset_desc(desc, status); 4778 } 4779 4780 dma_buf = DMA_BUFFER(desc); 4781 pci_unmap_single( 4782 hw_priv->pdev, dma_buf->dma, dma_buf->len, 4783 PCI_DMA_TODEVICE); 4784 4785 /* This descriptor contains the last buffer in the packet. */ 4786 if (dma_buf->skb) { 4787 dev = dma_buf->skb->dev; 4788 4789 /* Release the packet back to network subsystem. */ 4790 dev_kfree_skb_irq(dma_buf->skb); 4791 dma_buf->skb = NULL; 4792 } 4793 4794 /* Free the transmitted descriptor. */ 4795 last++; 4796 last &= info->mask; 4797 info->avail++; 4798 } 4799 info->last = last; 4800 spin_unlock(&hw_priv->hwlock); 4801 4802 /* Notify the network subsystem that the packet has been sent. */ 4803 if (dev) 4804 dev->trans_start = jiffies; 4805 } 4806 4807 /** 4808 * transmit_done - transmit done processing 4809 * @dev: Network device. 4810 * 4811 * This routine is called when the transmit interrupt is triggered, indicating 4812 * either a packet is sent successfully or there are transmit errors. 4813 */ 4814 static void tx_done(struct dev_info *hw_priv) 4815 { 4816 struct ksz_hw *hw = &hw_priv->hw; 4817 int port; 4818 4819 transmit_cleanup(hw_priv, 1); 4820 4821 for (port = 0; port < hw->dev_count; port++) { 4822 struct net_device *dev = hw->port_info[port].pdev; 4823 4824 if (netif_running(dev) && netif_queue_stopped(dev)) 4825 netif_wake_queue(dev); 4826 } 4827 } 4828 4829 static inline void copy_old_skb(struct sk_buff *old, struct sk_buff *skb) 4830 { 4831 skb->dev = old->dev; 4832 skb->protocol = old->protocol; 4833 skb->ip_summed = old->ip_summed; 4834 skb->csum = old->csum; 4835 skb_set_network_header(skb, ETH_HLEN); 4836 4837 dev_kfree_skb(old); 4838 } 4839 4840 /** 4841 * netdev_tx - send out packet 4842 * @skb: Socket buffer. 4843 * @dev: Network device. 4844 * 4845 * This function is used by the upper network layer to send out a packet. 4846 * 4847 * Return 0 if successful; otherwise an error code indicating failure. 4848 */ 4849 static netdev_tx_t netdev_tx(struct sk_buff *skb, struct net_device *dev) 4850 { 4851 struct dev_priv *priv = netdev_priv(dev); 4852 struct dev_info *hw_priv = priv->adapter; 4853 struct ksz_hw *hw = &hw_priv->hw; 4854 int left; 4855 int num = 1; 4856 int rc = 0; 4857 4858 if (hw->features & SMALL_PACKET_TX_BUG) { 4859 struct sk_buff *org_skb = skb; 4860 4861 if (skb->len <= 48) { 4862 if (skb_end_pointer(skb) - skb->data >= 50) { 4863 memset(&skb->data[skb->len], 0, 50 - skb->len); 4864 skb->len = 50; 4865 } else { 4866 skb = netdev_alloc_skb(dev, 50); 4867 if (!skb) 4868 return NETDEV_TX_BUSY; 4869 memcpy(skb->data, org_skb->data, org_skb->len); 4870 memset(&skb->data[org_skb->len], 0, 4871 50 - org_skb->len); 4872 skb->len = 50; 4873 copy_old_skb(org_skb, skb); 4874 } 4875 } 4876 } 4877 4878 spin_lock_irq(&hw_priv->hwlock); 4879 4880 num = skb_shinfo(skb)->nr_frags + 1; 4881 left = hw_alloc_pkt(hw, skb->len, num); 4882 if (left) { 4883 if (left < num || 4884 ((CHECKSUM_PARTIAL == skb->ip_summed) && 4885 (ETH_P_IPV6 == htons(skb->protocol)))) { 4886 struct sk_buff *org_skb = skb; 4887 4888 skb = netdev_alloc_skb(dev, org_skb->len); 4889 if (!skb) { 4890 rc = NETDEV_TX_BUSY; 4891 goto unlock; 4892 } 4893 skb_copy_and_csum_dev(org_skb, skb->data); 4894 org_skb->ip_summed = CHECKSUM_NONE; 4895 skb->len = org_skb->len; 4896 copy_old_skb(org_skb, skb); 4897 } 4898 send_packet(skb, dev); 4899 if (left <= num) 4900 netif_stop_queue(dev); 4901 } else { 4902 /* Stop the transmit queue until packet is allocated. */ 4903 netif_stop_queue(dev); 4904 rc = NETDEV_TX_BUSY; 4905 } 4906 unlock: 4907 spin_unlock_irq(&hw_priv->hwlock); 4908 4909 return rc; 4910 } 4911 4912 /** 4913 * netdev_tx_timeout - transmit timeout processing 4914 * @dev: Network device. 4915 * 4916 * This routine is called when the transmit timer expires. That indicates the 4917 * hardware is not running correctly because transmit interrupts are not 4918 * triggered to free up resources so that the transmit routine can continue 4919 * sending out packets. The hardware is reset to correct the problem. 4920 */ 4921 static void netdev_tx_timeout(struct net_device *dev) 4922 { 4923 static unsigned long last_reset; 4924 4925 struct dev_priv *priv = netdev_priv(dev); 4926 struct dev_info *hw_priv = priv->adapter; 4927 struct ksz_hw *hw = &hw_priv->hw; 4928 int port; 4929 4930 if (hw->dev_count > 1) { 4931 /* 4932 * Only reset the hardware if time between calls is long 4933 * enough. 4934 */ 4935 if (jiffies - last_reset <= dev->watchdog_timeo) 4936 hw_priv = NULL; 4937 } 4938 4939 last_reset = jiffies; 4940 if (hw_priv) { 4941 hw_dis_intr(hw); 4942 hw_disable(hw); 4943 4944 transmit_cleanup(hw_priv, 0); 4945 hw_reset_pkts(&hw->rx_desc_info); 4946 hw_reset_pkts(&hw->tx_desc_info); 4947 ksz_init_rx_buffers(hw_priv); 4948 4949 hw_reset(hw); 4950 4951 hw_set_desc_base(hw, 4952 hw->tx_desc_info.ring_phys, 4953 hw->rx_desc_info.ring_phys); 4954 hw_set_addr(hw); 4955 if (hw->all_multi) 4956 hw_set_multicast(hw, hw->all_multi); 4957 else if (hw->multi_list_size) 4958 hw_set_grp_addr(hw); 4959 4960 if (hw->dev_count > 1) { 4961 hw_set_add_addr(hw); 4962 for (port = 0; port < SWITCH_PORT_NUM; port++) { 4963 struct net_device *port_dev; 4964 4965 port_set_stp_state(hw, port, 4966 STP_STATE_DISABLED); 4967 4968 port_dev = hw->port_info[port].pdev; 4969 if (netif_running(port_dev)) 4970 port_set_stp_state(hw, port, 4971 STP_STATE_SIMPLE); 4972 } 4973 } 4974 4975 hw_enable(hw); 4976 hw_ena_intr(hw); 4977 } 4978 4979 dev->trans_start = jiffies; 4980 netif_wake_queue(dev); 4981 } 4982 4983 static inline void csum_verified(struct sk_buff *skb) 4984 { 4985 unsigned short protocol; 4986 struct iphdr *iph; 4987 4988 protocol = skb->protocol; 4989 skb_reset_network_header(skb); 4990 iph = (struct iphdr *) skb_network_header(skb); 4991 if (protocol == htons(ETH_P_8021Q)) { 4992 protocol = iph->tot_len; 4993 skb_set_network_header(skb, VLAN_HLEN); 4994 iph = (struct iphdr *) skb_network_header(skb); 4995 } 4996 if (protocol == htons(ETH_P_IP)) { 4997 if (iph->protocol == IPPROTO_TCP) 4998 skb->ip_summed = CHECKSUM_UNNECESSARY; 4999 } 5000 } 5001 5002 static inline int rx_proc(struct net_device *dev, struct ksz_hw* hw, 5003 struct ksz_desc *desc, union desc_stat status) 5004 { 5005 int packet_len; 5006 struct dev_priv *priv = netdev_priv(dev); 5007 struct dev_info *hw_priv = priv->adapter; 5008 struct ksz_dma_buf *dma_buf; 5009 struct sk_buff *skb; 5010 int rx_status; 5011 5012 /* Received length includes 4-byte CRC. */ 5013 packet_len = status.rx.frame_len - 4; 5014 5015 dma_buf = DMA_BUFFER(desc); 5016 pci_dma_sync_single_for_cpu( 5017 hw_priv->pdev, dma_buf->dma, packet_len + 4, 5018 PCI_DMA_FROMDEVICE); 5019 5020 do { 5021 /* skb->data != skb->head */ 5022 skb = netdev_alloc_skb(dev, packet_len + 2); 5023 if (!skb) { 5024 dev->stats.rx_dropped++; 5025 return -ENOMEM; 5026 } 5027 5028 /* 5029 * Align socket buffer in 4-byte boundary for better 5030 * performance. 5031 */ 5032 skb_reserve(skb, 2); 5033 5034 memcpy(skb_put(skb, packet_len), 5035 dma_buf->skb->data, packet_len); 5036 } while (0); 5037 5038 skb->protocol = eth_type_trans(skb, dev); 5039 5040 if (hw->rx_cfg & (DMA_RX_CSUM_UDP | DMA_RX_CSUM_TCP)) 5041 csum_verified(skb); 5042 5043 /* Update receive statistics. */ 5044 dev->stats.rx_packets++; 5045 dev->stats.rx_bytes += packet_len; 5046 5047 /* Notify upper layer for received packet. */ 5048 rx_status = netif_rx(skb); 5049 5050 return 0; 5051 } 5052 5053 static int dev_rcv_packets(struct dev_info *hw_priv) 5054 { 5055 int next; 5056 union desc_stat status; 5057 struct ksz_hw *hw = &hw_priv->hw; 5058 struct net_device *dev = hw->port_info[0].pdev; 5059 struct ksz_desc_info *info = &hw->rx_desc_info; 5060 int left = info->alloc; 5061 struct ksz_desc *desc; 5062 int received = 0; 5063 5064 next = info->next; 5065 while (left--) { 5066 /* Get next descriptor which is not hardware owned. */ 5067 desc = &info->ring[next]; 5068 status.data = le32_to_cpu(desc->phw->ctrl.data); 5069 if (status.rx.hw_owned) 5070 break; 5071 5072 /* Status valid only when last descriptor bit is set. */ 5073 if (status.rx.last_desc && status.rx.first_desc) { 5074 if (rx_proc(dev, hw, desc, status)) 5075 goto release_packet; 5076 received++; 5077 } 5078 5079 release_packet: 5080 release_desc(desc); 5081 next++; 5082 next &= info->mask; 5083 } 5084 info->next = next; 5085 5086 return received; 5087 } 5088 5089 static int port_rcv_packets(struct dev_info *hw_priv) 5090 { 5091 int next; 5092 union desc_stat status; 5093 struct ksz_hw *hw = &hw_priv->hw; 5094 struct net_device *dev = hw->port_info[0].pdev; 5095 struct ksz_desc_info *info = &hw->rx_desc_info; 5096 int left = info->alloc; 5097 struct ksz_desc *desc; 5098 int received = 0; 5099 5100 next = info->next; 5101 while (left--) { 5102 /* Get next descriptor which is not hardware owned. */ 5103 desc = &info->ring[next]; 5104 status.data = le32_to_cpu(desc->phw->ctrl.data); 5105 if (status.rx.hw_owned) 5106 break; 5107 5108 if (hw->dev_count > 1) { 5109 /* Get received port number. */ 5110 int p = HW_TO_DEV_PORT(status.rx.src_port); 5111 5112 dev = hw->port_info[p].pdev; 5113 if (!netif_running(dev)) 5114 goto release_packet; 5115 } 5116 5117 /* Status valid only when last descriptor bit is set. */ 5118 if (status.rx.last_desc && status.rx.first_desc) { 5119 if (rx_proc(dev, hw, desc, status)) 5120 goto release_packet; 5121 received++; 5122 } 5123 5124 release_packet: 5125 release_desc(desc); 5126 next++; 5127 next &= info->mask; 5128 } 5129 info->next = next; 5130 5131 return received; 5132 } 5133 5134 static int dev_rcv_special(struct dev_info *hw_priv) 5135 { 5136 int next; 5137 union desc_stat status; 5138 struct ksz_hw *hw = &hw_priv->hw; 5139 struct net_device *dev = hw->port_info[0].pdev; 5140 struct ksz_desc_info *info = &hw->rx_desc_info; 5141 int left = info->alloc; 5142 struct ksz_desc *desc; 5143 int received = 0; 5144 5145 next = info->next; 5146 while (left--) { 5147 /* Get next descriptor which is not hardware owned. */ 5148 desc = &info->ring[next]; 5149 status.data = le32_to_cpu(desc->phw->ctrl.data); 5150 if (status.rx.hw_owned) 5151 break; 5152 5153 if (hw->dev_count > 1) { 5154 /* Get received port number. */ 5155 int p = HW_TO_DEV_PORT(status.rx.src_port); 5156 5157 dev = hw->port_info[p].pdev; 5158 if (!netif_running(dev)) 5159 goto release_packet; 5160 } 5161 5162 /* Status valid only when last descriptor bit is set. */ 5163 if (status.rx.last_desc && status.rx.first_desc) { 5164 /* 5165 * Receive without error. With receive errors 5166 * disabled, packets with receive errors will be 5167 * dropped, so no need to check the error bit. 5168 */ 5169 if (!status.rx.error || (status.data & 5170 KS_DESC_RX_ERROR_COND) == 5171 KS_DESC_RX_ERROR_TOO_LONG) { 5172 if (rx_proc(dev, hw, desc, status)) 5173 goto release_packet; 5174 received++; 5175 } else { 5176 struct dev_priv *priv = netdev_priv(dev); 5177 5178 /* Update receive error statistics. */ 5179 priv->port.counter[OID_COUNTER_RCV_ERROR]++; 5180 } 5181 } 5182 5183 release_packet: 5184 release_desc(desc); 5185 next++; 5186 next &= info->mask; 5187 } 5188 info->next = next; 5189 5190 return received; 5191 } 5192 5193 static void rx_proc_task(unsigned long data) 5194 { 5195 struct dev_info *hw_priv = (struct dev_info *) data; 5196 struct ksz_hw *hw = &hw_priv->hw; 5197 5198 if (!hw->enabled) 5199 return; 5200 if (unlikely(!hw_priv->dev_rcv(hw_priv))) { 5201 5202 /* In case receive process is suspended because of overrun. */ 5203 hw_resume_rx(hw); 5204 5205 /* tasklets are interruptible. */ 5206 spin_lock_irq(&hw_priv->hwlock); 5207 hw_turn_on_intr(hw, KS884X_INT_RX_MASK); 5208 spin_unlock_irq(&hw_priv->hwlock); 5209 } else { 5210 hw_ack_intr(hw, KS884X_INT_RX); 5211 tasklet_schedule(&hw_priv->rx_tasklet); 5212 } 5213 } 5214 5215 static void tx_proc_task(unsigned long data) 5216 { 5217 struct dev_info *hw_priv = (struct dev_info *) data; 5218 struct ksz_hw *hw = &hw_priv->hw; 5219 5220 hw_ack_intr(hw, KS884X_INT_TX_MASK); 5221 5222 tx_done(hw_priv); 5223 5224 /* tasklets are interruptible. */ 5225 spin_lock_irq(&hw_priv->hwlock); 5226 hw_turn_on_intr(hw, KS884X_INT_TX); 5227 spin_unlock_irq(&hw_priv->hwlock); 5228 } 5229 5230 static inline void handle_rx_stop(struct ksz_hw *hw) 5231 { 5232 /* Receive just has been stopped. */ 5233 if (0 == hw->rx_stop) 5234 hw->intr_mask &= ~KS884X_INT_RX_STOPPED; 5235 else if (hw->rx_stop > 1) { 5236 if (hw->enabled && (hw->rx_cfg & DMA_RX_ENABLE)) { 5237 hw_start_rx(hw); 5238 } else { 5239 hw->intr_mask &= ~KS884X_INT_RX_STOPPED; 5240 hw->rx_stop = 0; 5241 } 5242 } else 5243 /* Receive just has been started. */ 5244 hw->rx_stop++; 5245 } 5246 5247 /** 5248 * netdev_intr - interrupt handling 5249 * @irq: Interrupt number. 5250 * @dev_id: Network device. 5251 * 5252 * This function is called by upper network layer to signal interrupt. 5253 * 5254 * Return IRQ_HANDLED if interrupt is handled. 5255 */ 5256 static irqreturn_t netdev_intr(int irq, void *dev_id) 5257 { 5258 uint int_enable = 0; 5259 struct net_device *dev = (struct net_device *) dev_id; 5260 struct dev_priv *priv = netdev_priv(dev); 5261 struct dev_info *hw_priv = priv->adapter; 5262 struct ksz_hw *hw = &hw_priv->hw; 5263 5264 hw_read_intr(hw, &int_enable); 5265 5266 /* Not our interrupt! */ 5267 if (!int_enable) 5268 return IRQ_NONE; 5269 5270 do { 5271 hw_ack_intr(hw, int_enable); 5272 int_enable &= hw->intr_mask; 5273 5274 if (unlikely(int_enable & KS884X_INT_TX_MASK)) { 5275 hw_dis_intr_bit(hw, KS884X_INT_TX_MASK); 5276 tasklet_schedule(&hw_priv->tx_tasklet); 5277 } 5278 5279 if (likely(int_enable & KS884X_INT_RX)) { 5280 hw_dis_intr_bit(hw, KS884X_INT_RX); 5281 tasklet_schedule(&hw_priv->rx_tasklet); 5282 } 5283 5284 if (unlikely(int_enable & KS884X_INT_RX_OVERRUN)) { 5285 dev->stats.rx_fifo_errors++; 5286 hw_resume_rx(hw); 5287 } 5288 5289 if (unlikely(int_enable & KS884X_INT_PHY)) { 5290 struct ksz_port *port = &priv->port; 5291 5292 hw->features |= LINK_INT_WORKING; 5293 port_get_link_speed(port); 5294 } 5295 5296 if (unlikely(int_enable & KS884X_INT_RX_STOPPED)) { 5297 handle_rx_stop(hw); 5298 break; 5299 } 5300 5301 if (unlikely(int_enable & KS884X_INT_TX_STOPPED)) { 5302 u32 data; 5303 5304 hw->intr_mask &= ~KS884X_INT_TX_STOPPED; 5305 pr_info("Tx stopped\n"); 5306 data = readl(hw->io + KS_DMA_TX_CTRL); 5307 if (!(data & DMA_TX_ENABLE)) 5308 pr_info("Tx disabled\n"); 5309 break; 5310 } 5311 } while (0); 5312 5313 hw_ena_intr(hw); 5314 5315 return IRQ_HANDLED; 5316 } 5317 5318 /* 5319 * Linux network device functions 5320 */ 5321 5322 static unsigned long next_jiffies; 5323 5324 #ifdef CONFIG_NET_POLL_CONTROLLER 5325 static void netdev_netpoll(struct net_device *dev) 5326 { 5327 struct dev_priv *priv = netdev_priv(dev); 5328 struct dev_info *hw_priv = priv->adapter; 5329 5330 hw_dis_intr(&hw_priv->hw); 5331 netdev_intr(dev->irq, dev); 5332 } 5333 #endif 5334 5335 static void bridge_change(struct ksz_hw *hw) 5336 { 5337 int port; 5338 u8 member; 5339 struct ksz_switch *sw = hw->ksz_switch; 5340 5341 /* No ports in forwarding state. */ 5342 if (!sw->member) { 5343 port_set_stp_state(hw, SWITCH_PORT_NUM, STP_STATE_SIMPLE); 5344 sw_block_addr(hw); 5345 } 5346 for (port = 0; port < SWITCH_PORT_NUM; port++) { 5347 if (STP_STATE_FORWARDING == sw->port_cfg[port].stp_state) 5348 member = HOST_MASK | sw->member; 5349 else 5350 member = HOST_MASK | (1 << port); 5351 if (member != sw->port_cfg[port].member) 5352 sw_cfg_port_base_vlan(hw, port, member); 5353 } 5354 } 5355 5356 /** 5357 * netdev_close - close network device 5358 * @dev: Network device. 5359 * 5360 * This function process the close operation of network device. This is caused 5361 * by the user command "ifconfig ethX down." 5362 * 5363 * Return 0 if successful; otherwise an error code indicating failure. 5364 */ 5365 static int netdev_close(struct net_device *dev) 5366 { 5367 struct dev_priv *priv = netdev_priv(dev); 5368 struct dev_info *hw_priv = priv->adapter; 5369 struct ksz_port *port = &priv->port; 5370 struct ksz_hw *hw = &hw_priv->hw; 5371 int pi; 5372 5373 netif_stop_queue(dev); 5374 5375 ksz_stop_timer(&priv->monitor_timer_info); 5376 5377 /* Need to shut the port manually in multiple device interfaces mode. */ 5378 if (hw->dev_count > 1) { 5379 port_set_stp_state(hw, port->first_port, STP_STATE_DISABLED); 5380 5381 /* Port is closed. Need to change bridge setting. */ 5382 if (hw->features & STP_SUPPORT) { 5383 pi = 1 << port->first_port; 5384 if (hw->ksz_switch->member & pi) { 5385 hw->ksz_switch->member &= ~pi; 5386 bridge_change(hw); 5387 } 5388 } 5389 } 5390 if (port->first_port > 0) 5391 hw_del_addr(hw, dev->dev_addr); 5392 if (!hw_priv->wol_enable) 5393 port_set_power_saving(port, true); 5394 5395 if (priv->multicast) 5396 --hw->all_multi; 5397 if (priv->promiscuous) 5398 --hw->promiscuous; 5399 5400 hw_priv->opened--; 5401 if (!(hw_priv->opened)) { 5402 ksz_stop_timer(&hw_priv->mib_timer_info); 5403 flush_work(&hw_priv->mib_read); 5404 5405 hw_dis_intr(hw); 5406 hw_disable(hw); 5407 hw_clr_multicast(hw); 5408 5409 /* Delay for receive task to stop scheduling itself. */ 5410 msleep(2000 / HZ); 5411 5412 tasklet_disable(&hw_priv->rx_tasklet); 5413 tasklet_disable(&hw_priv->tx_tasklet); 5414 free_irq(dev->irq, hw_priv->dev); 5415 5416 transmit_cleanup(hw_priv, 0); 5417 hw_reset_pkts(&hw->rx_desc_info); 5418 hw_reset_pkts(&hw->tx_desc_info); 5419 5420 /* Clean out static MAC table when the switch is shutdown. */ 5421 if (hw->features & STP_SUPPORT) 5422 sw_clr_sta_mac_table(hw); 5423 } 5424 5425 return 0; 5426 } 5427 5428 static void hw_cfg_huge_frame(struct dev_info *hw_priv, struct ksz_hw *hw) 5429 { 5430 if (hw->ksz_switch) { 5431 u32 data; 5432 5433 data = readw(hw->io + KS8842_SWITCH_CTRL_2_OFFSET); 5434 if (hw->features & RX_HUGE_FRAME) 5435 data |= SWITCH_HUGE_PACKET; 5436 else 5437 data &= ~SWITCH_HUGE_PACKET; 5438 writew(data, hw->io + KS8842_SWITCH_CTRL_2_OFFSET); 5439 } 5440 if (hw->features & RX_HUGE_FRAME) { 5441 hw->rx_cfg |= DMA_RX_ERROR; 5442 hw_priv->dev_rcv = dev_rcv_special; 5443 } else { 5444 hw->rx_cfg &= ~DMA_RX_ERROR; 5445 if (hw->dev_count > 1) 5446 hw_priv->dev_rcv = port_rcv_packets; 5447 else 5448 hw_priv->dev_rcv = dev_rcv_packets; 5449 } 5450 } 5451 5452 static int prepare_hardware(struct net_device *dev) 5453 { 5454 struct dev_priv *priv = netdev_priv(dev); 5455 struct dev_info *hw_priv = priv->adapter; 5456 struct ksz_hw *hw = &hw_priv->hw; 5457 int rc = 0; 5458 5459 /* Remember the network device that requests interrupts. */ 5460 hw_priv->dev = dev; 5461 rc = request_irq(dev->irq, netdev_intr, IRQF_SHARED, dev->name, dev); 5462 if (rc) 5463 return rc; 5464 tasklet_enable(&hw_priv->rx_tasklet); 5465 tasklet_enable(&hw_priv->tx_tasklet); 5466 5467 hw->promiscuous = 0; 5468 hw->all_multi = 0; 5469 hw->multi_list_size = 0; 5470 5471 hw_reset(hw); 5472 5473 hw_set_desc_base(hw, 5474 hw->tx_desc_info.ring_phys, hw->rx_desc_info.ring_phys); 5475 hw_set_addr(hw); 5476 hw_cfg_huge_frame(hw_priv, hw); 5477 ksz_init_rx_buffers(hw_priv); 5478 return 0; 5479 } 5480 5481 static void set_media_state(struct net_device *dev, int media_state) 5482 { 5483 struct dev_priv *priv = netdev_priv(dev); 5484 5485 if (media_state == priv->media_state) 5486 netif_carrier_on(dev); 5487 else 5488 netif_carrier_off(dev); 5489 netif_info(priv, link, dev, "link %s\n", 5490 media_state == priv->media_state ? "on" : "off"); 5491 } 5492 5493 /** 5494 * netdev_open - open network device 5495 * @dev: Network device. 5496 * 5497 * This function process the open operation of network device. This is caused 5498 * by the user command "ifconfig ethX up." 5499 * 5500 * Return 0 if successful; otherwise an error code indicating failure. 5501 */ 5502 static int netdev_open(struct net_device *dev) 5503 { 5504 struct dev_priv *priv = netdev_priv(dev); 5505 struct dev_info *hw_priv = priv->adapter; 5506 struct ksz_hw *hw = &hw_priv->hw; 5507 struct ksz_port *port = &priv->port; 5508 int i; 5509 int p; 5510 int rc = 0; 5511 5512 priv->multicast = 0; 5513 priv->promiscuous = 0; 5514 5515 /* Reset device statistics. */ 5516 memset(&dev->stats, 0, sizeof(struct net_device_stats)); 5517 memset((void *) port->counter, 0, 5518 (sizeof(u64) * OID_COUNTER_LAST)); 5519 5520 if (!(hw_priv->opened)) { 5521 rc = prepare_hardware(dev); 5522 if (rc) 5523 return rc; 5524 for (i = 0; i < hw->mib_port_cnt; i++) { 5525 if (next_jiffies < jiffies) 5526 next_jiffies = jiffies + HZ * 2; 5527 else 5528 next_jiffies += HZ * 1; 5529 hw_priv->counter[i].time = next_jiffies; 5530 hw->port_mib[i].state = media_disconnected; 5531 port_init_cnt(hw, i); 5532 } 5533 if (hw->ksz_switch) 5534 hw->port_mib[HOST_PORT].state = media_connected; 5535 else { 5536 hw_add_wol_bcast(hw); 5537 hw_cfg_wol_pme(hw, 0); 5538 hw_clr_wol_pme_status(&hw_priv->hw); 5539 } 5540 } 5541 port_set_power_saving(port, false); 5542 5543 for (i = 0, p = port->first_port; i < port->port_cnt; i++, p++) { 5544 /* 5545 * Initialize to invalid value so that link detection 5546 * is done. 5547 */ 5548 hw->port_info[p].partner = 0xFF; 5549 hw->port_info[p].state = media_disconnected; 5550 } 5551 5552 /* Need to open the port in multiple device interfaces mode. */ 5553 if (hw->dev_count > 1) { 5554 port_set_stp_state(hw, port->first_port, STP_STATE_SIMPLE); 5555 if (port->first_port > 0) 5556 hw_add_addr(hw, dev->dev_addr); 5557 } 5558 5559 port_get_link_speed(port); 5560 if (port->force_link) 5561 port_force_link_speed(port); 5562 else 5563 port_set_link_speed(port); 5564 5565 if (!(hw_priv->opened)) { 5566 hw_setup_intr(hw); 5567 hw_enable(hw); 5568 hw_ena_intr(hw); 5569 5570 if (hw->mib_port_cnt) 5571 ksz_start_timer(&hw_priv->mib_timer_info, 5572 hw_priv->mib_timer_info.period); 5573 } 5574 5575 hw_priv->opened++; 5576 5577 ksz_start_timer(&priv->monitor_timer_info, 5578 priv->monitor_timer_info.period); 5579 5580 priv->media_state = port->linked->state; 5581 5582 set_media_state(dev, media_connected); 5583 netif_start_queue(dev); 5584 5585 return 0; 5586 } 5587 5588 /* RX errors = rx_errors */ 5589 /* RX dropped = rx_dropped */ 5590 /* RX overruns = rx_fifo_errors */ 5591 /* RX frame = rx_crc_errors + rx_frame_errors + rx_length_errors */ 5592 /* TX errors = tx_errors */ 5593 /* TX dropped = tx_dropped */ 5594 /* TX overruns = tx_fifo_errors */ 5595 /* TX carrier = tx_aborted_errors + tx_carrier_errors + tx_window_errors */ 5596 /* collisions = collisions */ 5597 5598 /** 5599 * netdev_query_statistics - query network device statistics 5600 * @dev: Network device. 5601 * 5602 * This function returns the statistics of the network device. The device 5603 * needs not be opened. 5604 * 5605 * Return network device statistics. 5606 */ 5607 static struct net_device_stats *netdev_query_statistics(struct net_device *dev) 5608 { 5609 struct dev_priv *priv = netdev_priv(dev); 5610 struct ksz_port *port = &priv->port; 5611 struct ksz_hw *hw = &priv->adapter->hw; 5612 struct ksz_port_mib *mib; 5613 int i; 5614 int p; 5615 5616 dev->stats.rx_errors = port->counter[OID_COUNTER_RCV_ERROR]; 5617 dev->stats.tx_errors = port->counter[OID_COUNTER_XMIT_ERROR]; 5618 5619 /* Reset to zero to add count later. */ 5620 dev->stats.multicast = 0; 5621 dev->stats.collisions = 0; 5622 dev->stats.rx_length_errors = 0; 5623 dev->stats.rx_crc_errors = 0; 5624 dev->stats.rx_frame_errors = 0; 5625 dev->stats.tx_window_errors = 0; 5626 5627 for (i = 0, p = port->first_port; i < port->mib_port_cnt; i++, p++) { 5628 mib = &hw->port_mib[p]; 5629 5630 dev->stats.multicast += (unsigned long) 5631 mib->counter[MIB_COUNTER_RX_MULTICAST]; 5632 5633 dev->stats.collisions += (unsigned long) 5634 mib->counter[MIB_COUNTER_TX_TOTAL_COLLISION]; 5635 5636 dev->stats.rx_length_errors += (unsigned long)( 5637 mib->counter[MIB_COUNTER_RX_UNDERSIZE] + 5638 mib->counter[MIB_COUNTER_RX_FRAGMENT] + 5639 mib->counter[MIB_COUNTER_RX_OVERSIZE] + 5640 mib->counter[MIB_COUNTER_RX_JABBER]); 5641 dev->stats.rx_crc_errors += (unsigned long) 5642 mib->counter[MIB_COUNTER_RX_CRC_ERR]; 5643 dev->stats.rx_frame_errors += (unsigned long)( 5644 mib->counter[MIB_COUNTER_RX_ALIGNMENT_ERR] + 5645 mib->counter[MIB_COUNTER_RX_SYMBOL_ERR]); 5646 5647 dev->stats.tx_window_errors += (unsigned long) 5648 mib->counter[MIB_COUNTER_TX_LATE_COLLISION]; 5649 } 5650 5651 return &dev->stats; 5652 } 5653 5654 /** 5655 * netdev_set_mac_address - set network device MAC address 5656 * @dev: Network device. 5657 * @addr: Buffer of MAC address. 5658 * 5659 * This function is used to set the MAC address of the network device. 5660 * 5661 * Return 0 to indicate success. 5662 */ 5663 static int netdev_set_mac_address(struct net_device *dev, void *addr) 5664 { 5665 struct dev_priv *priv = netdev_priv(dev); 5666 struct dev_info *hw_priv = priv->adapter; 5667 struct ksz_hw *hw = &hw_priv->hw; 5668 struct sockaddr *mac = addr; 5669 uint interrupt; 5670 5671 if (priv->port.first_port > 0) 5672 hw_del_addr(hw, dev->dev_addr); 5673 else { 5674 hw->mac_override = 1; 5675 memcpy(hw->override_addr, mac->sa_data, ETH_ALEN); 5676 } 5677 5678 memcpy(dev->dev_addr, mac->sa_data, ETH_ALEN); 5679 5680 interrupt = hw_block_intr(hw); 5681 5682 if (priv->port.first_port > 0) 5683 hw_add_addr(hw, dev->dev_addr); 5684 else 5685 hw_set_addr(hw); 5686 hw_restore_intr(hw, interrupt); 5687 5688 return 0; 5689 } 5690 5691 static void dev_set_promiscuous(struct net_device *dev, struct dev_priv *priv, 5692 struct ksz_hw *hw, int promiscuous) 5693 { 5694 if (promiscuous != priv->promiscuous) { 5695 u8 prev_state = hw->promiscuous; 5696 5697 if (promiscuous) 5698 ++hw->promiscuous; 5699 else 5700 --hw->promiscuous; 5701 priv->promiscuous = promiscuous; 5702 5703 /* Turn on/off promiscuous mode. */ 5704 if (hw->promiscuous <= 1 && prev_state <= 1) 5705 hw_set_promiscuous(hw, hw->promiscuous); 5706 5707 /* 5708 * Port is not in promiscuous mode, meaning it is released 5709 * from the bridge. 5710 */ 5711 if ((hw->features & STP_SUPPORT) && !promiscuous && 5712 (dev->priv_flags & IFF_BRIDGE_PORT)) { 5713 struct ksz_switch *sw = hw->ksz_switch; 5714 int port = priv->port.first_port; 5715 5716 port_set_stp_state(hw, port, STP_STATE_DISABLED); 5717 port = 1 << port; 5718 if (sw->member & port) { 5719 sw->member &= ~port; 5720 bridge_change(hw); 5721 } 5722 } 5723 } 5724 } 5725 5726 static void dev_set_multicast(struct dev_priv *priv, struct ksz_hw *hw, 5727 int multicast) 5728 { 5729 if (multicast != priv->multicast) { 5730 u8 all_multi = hw->all_multi; 5731 5732 if (multicast) 5733 ++hw->all_multi; 5734 else 5735 --hw->all_multi; 5736 priv->multicast = multicast; 5737 5738 /* Turn on/off all multicast mode. */ 5739 if (hw->all_multi <= 1 && all_multi <= 1) 5740 hw_set_multicast(hw, hw->all_multi); 5741 } 5742 } 5743 5744 /** 5745 * netdev_set_rx_mode 5746 * @dev: Network device. 5747 * 5748 * This routine is used to set multicast addresses or put the network device 5749 * into promiscuous mode. 5750 */ 5751 static void netdev_set_rx_mode(struct net_device *dev) 5752 { 5753 struct dev_priv *priv = netdev_priv(dev); 5754 struct dev_info *hw_priv = priv->adapter; 5755 struct ksz_hw *hw = &hw_priv->hw; 5756 struct netdev_hw_addr *ha; 5757 int multicast = (dev->flags & IFF_ALLMULTI); 5758 5759 dev_set_promiscuous(dev, priv, hw, (dev->flags & IFF_PROMISC)); 5760 5761 if (hw_priv->hw.dev_count > 1) 5762 multicast |= (dev->flags & IFF_MULTICAST); 5763 dev_set_multicast(priv, hw, multicast); 5764 5765 /* Cannot use different hashes in multiple device interfaces mode. */ 5766 if (hw_priv->hw.dev_count > 1) 5767 return; 5768 5769 if ((dev->flags & IFF_MULTICAST) && !netdev_mc_empty(dev)) { 5770 int i = 0; 5771 5772 /* List too big to support so turn on all multicast mode. */ 5773 if (netdev_mc_count(dev) > MAX_MULTICAST_LIST) { 5774 if (MAX_MULTICAST_LIST != hw->multi_list_size) { 5775 hw->multi_list_size = MAX_MULTICAST_LIST; 5776 ++hw->all_multi; 5777 hw_set_multicast(hw, hw->all_multi); 5778 } 5779 return; 5780 } 5781 5782 netdev_for_each_mc_addr(ha, dev) { 5783 if (i >= MAX_MULTICAST_LIST) 5784 break; 5785 memcpy(hw->multi_list[i++], ha->addr, ETH_ALEN); 5786 } 5787 hw->multi_list_size = (u8) i; 5788 hw_set_grp_addr(hw); 5789 } else { 5790 if (MAX_MULTICAST_LIST == hw->multi_list_size) { 5791 --hw->all_multi; 5792 hw_set_multicast(hw, hw->all_multi); 5793 } 5794 hw->multi_list_size = 0; 5795 hw_clr_multicast(hw); 5796 } 5797 } 5798 5799 static int netdev_change_mtu(struct net_device *dev, int new_mtu) 5800 { 5801 struct dev_priv *priv = netdev_priv(dev); 5802 struct dev_info *hw_priv = priv->adapter; 5803 struct ksz_hw *hw = &hw_priv->hw; 5804 int hw_mtu; 5805 5806 if (netif_running(dev)) 5807 return -EBUSY; 5808 5809 /* Cannot use different MTU in multiple device interfaces mode. */ 5810 if (hw->dev_count > 1) 5811 if (dev != hw_priv->dev) 5812 return 0; 5813 if (new_mtu < 60) 5814 return -EINVAL; 5815 5816 if (dev->mtu != new_mtu) { 5817 hw_mtu = new_mtu + ETHERNET_HEADER_SIZE + 4; 5818 if (hw_mtu > MAX_RX_BUF_SIZE) 5819 return -EINVAL; 5820 if (hw_mtu > REGULAR_RX_BUF_SIZE) { 5821 hw->features |= RX_HUGE_FRAME; 5822 hw_mtu = MAX_RX_BUF_SIZE; 5823 } else { 5824 hw->features &= ~RX_HUGE_FRAME; 5825 hw_mtu = REGULAR_RX_BUF_SIZE; 5826 } 5827 hw_mtu = (hw_mtu + 3) & ~3; 5828 hw_priv->mtu = hw_mtu; 5829 dev->mtu = new_mtu; 5830 } 5831 return 0; 5832 } 5833 5834 /** 5835 * netdev_ioctl - I/O control processing 5836 * @dev: Network device. 5837 * @ifr: Interface request structure. 5838 * @cmd: I/O control code. 5839 * 5840 * This function is used to process I/O control calls. 5841 * 5842 * Return 0 to indicate success. 5843 */ 5844 static int netdev_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) 5845 { 5846 struct dev_priv *priv = netdev_priv(dev); 5847 struct dev_info *hw_priv = priv->adapter; 5848 struct ksz_hw *hw = &hw_priv->hw; 5849 struct ksz_port *port = &priv->port; 5850 int rc; 5851 int result = 0; 5852 struct mii_ioctl_data *data = if_mii(ifr); 5853 5854 if (down_interruptible(&priv->proc_sem)) 5855 return -ERESTARTSYS; 5856 5857 /* assume success */ 5858 rc = 0; 5859 switch (cmd) { 5860 /* Get address of MII PHY in use. */ 5861 case SIOCGMIIPHY: 5862 data->phy_id = priv->id; 5863 5864 /* Fallthrough... */ 5865 5866 /* Read MII PHY register. */ 5867 case SIOCGMIIREG: 5868 if (data->phy_id != priv->id || data->reg_num >= 6) 5869 result = -EIO; 5870 else 5871 hw_r_phy(hw, port->linked->port_id, data->reg_num, 5872 &data->val_out); 5873 break; 5874 5875 /* Write MII PHY register. */ 5876 case SIOCSMIIREG: 5877 if (!capable(CAP_NET_ADMIN)) 5878 result = -EPERM; 5879 else if (data->phy_id != priv->id || data->reg_num >= 6) 5880 result = -EIO; 5881 else 5882 hw_w_phy(hw, port->linked->port_id, data->reg_num, 5883 data->val_in); 5884 break; 5885 5886 default: 5887 result = -EOPNOTSUPP; 5888 } 5889 5890 up(&priv->proc_sem); 5891 5892 return result; 5893 } 5894 5895 /* 5896 * MII support 5897 */ 5898 5899 /** 5900 * mdio_read - read PHY register 5901 * @dev: Network device. 5902 * @phy_id: The PHY id. 5903 * @reg_num: The register number. 5904 * 5905 * This function returns the PHY register value. 5906 * 5907 * Return the register value. 5908 */ 5909 static int mdio_read(struct net_device *dev, int phy_id, int reg_num) 5910 { 5911 struct dev_priv *priv = netdev_priv(dev); 5912 struct ksz_port *port = &priv->port; 5913 struct ksz_hw *hw = port->hw; 5914 u16 val_out; 5915 5916 hw_r_phy(hw, port->linked->port_id, reg_num << 1, &val_out); 5917 return val_out; 5918 } 5919 5920 /** 5921 * mdio_write - set PHY register 5922 * @dev: Network device. 5923 * @phy_id: The PHY id. 5924 * @reg_num: The register number. 5925 * @val: The register value. 5926 * 5927 * This procedure sets the PHY register value. 5928 */ 5929 static void mdio_write(struct net_device *dev, int phy_id, int reg_num, int val) 5930 { 5931 struct dev_priv *priv = netdev_priv(dev); 5932 struct ksz_port *port = &priv->port; 5933 struct ksz_hw *hw = port->hw; 5934 int i; 5935 int pi; 5936 5937 for (i = 0, pi = port->first_port; i < port->port_cnt; i++, pi++) 5938 hw_w_phy(hw, pi, reg_num << 1, val); 5939 } 5940 5941 /* 5942 * ethtool support 5943 */ 5944 5945 #define EEPROM_SIZE 0x40 5946 5947 static u16 eeprom_data[EEPROM_SIZE] = { 0 }; 5948 5949 #define ADVERTISED_ALL \ 5950 (ADVERTISED_10baseT_Half | \ 5951 ADVERTISED_10baseT_Full | \ 5952 ADVERTISED_100baseT_Half | \ 5953 ADVERTISED_100baseT_Full) 5954 5955 /* These functions use the MII functions in mii.c. */ 5956 5957 /** 5958 * netdev_get_settings - get network device settings 5959 * @dev: Network device. 5960 * @cmd: Ethtool command. 5961 * 5962 * This function queries the PHY and returns its state in the ethtool command. 5963 * 5964 * Return 0 if successful; otherwise an error code. 5965 */ 5966 static int netdev_get_settings(struct net_device *dev, struct ethtool_cmd *cmd) 5967 { 5968 struct dev_priv *priv = netdev_priv(dev); 5969 struct dev_info *hw_priv = priv->adapter; 5970 5971 mutex_lock(&hw_priv->lock); 5972 mii_ethtool_gset(&priv->mii_if, cmd); 5973 cmd->advertising |= SUPPORTED_TP; 5974 mutex_unlock(&hw_priv->lock); 5975 5976 /* Save advertised settings for workaround in next function. */ 5977 priv->advertising = cmd->advertising; 5978 return 0; 5979 } 5980 5981 /** 5982 * netdev_set_settings - set network device settings 5983 * @dev: Network device. 5984 * @cmd: Ethtool command. 5985 * 5986 * This function sets the PHY according to the ethtool command. 5987 * 5988 * Return 0 if successful; otherwise an error code. 5989 */ 5990 static int netdev_set_settings(struct net_device *dev, struct ethtool_cmd *cmd) 5991 { 5992 struct dev_priv *priv = netdev_priv(dev); 5993 struct dev_info *hw_priv = priv->adapter; 5994 struct ksz_port *port = &priv->port; 5995 u32 speed = ethtool_cmd_speed(cmd); 5996 int rc; 5997 5998 /* 5999 * ethtool utility does not change advertised setting if auto 6000 * negotiation is not specified explicitly. 6001 */ 6002 if (cmd->autoneg && priv->advertising == cmd->advertising) { 6003 cmd->advertising |= ADVERTISED_ALL; 6004 if (10 == speed) 6005 cmd->advertising &= 6006 ~(ADVERTISED_100baseT_Full | 6007 ADVERTISED_100baseT_Half); 6008 else if (100 == speed) 6009 cmd->advertising &= 6010 ~(ADVERTISED_10baseT_Full | 6011 ADVERTISED_10baseT_Half); 6012 if (0 == cmd->duplex) 6013 cmd->advertising &= 6014 ~(ADVERTISED_100baseT_Full | 6015 ADVERTISED_10baseT_Full); 6016 else if (1 == cmd->duplex) 6017 cmd->advertising &= 6018 ~(ADVERTISED_100baseT_Half | 6019 ADVERTISED_10baseT_Half); 6020 } 6021 mutex_lock(&hw_priv->lock); 6022 if (cmd->autoneg && 6023 (cmd->advertising & ADVERTISED_ALL) == 6024 ADVERTISED_ALL) { 6025 port->duplex = 0; 6026 port->speed = 0; 6027 port->force_link = 0; 6028 } else { 6029 port->duplex = cmd->duplex + 1; 6030 if (1000 != speed) 6031 port->speed = speed; 6032 if (cmd->autoneg) 6033 port->force_link = 0; 6034 else 6035 port->force_link = 1; 6036 } 6037 rc = mii_ethtool_sset(&priv->mii_if, cmd); 6038 mutex_unlock(&hw_priv->lock); 6039 return rc; 6040 } 6041 6042 /** 6043 * netdev_nway_reset - restart auto-negotiation 6044 * @dev: Network device. 6045 * 6046 * This function restarts the PHY for auto-negotiation. 6047 * 6048 * Return 0 if successful; otherwise an error code. 6049 */ 6050 static int netdev_nway_reset(struct net_device *dev) 6051 { 6052 struct dev_priv *priv = netdev_priv(dev); 6053 struct dev_info *hw_priv = priv->adapter; 6054 int rc; 6055 6056 mutex_lock(&hw_priv->lock); 6057 rc = mii_nway_restart(&priv->mii_if); 6058 mutex_unlock(&hw_priv->lock); 6059 return rc; 6060 } 6061 6062 /** 6063 * netdev_get_link - get network device link status 6064 * @dev: Network device. 6065 * 6066 * This function gets the link status from the PHY. 6067 * 6068 * Return true if PHY is linked and false otherwise. 6069 */ 6070 static u32 netdev_get_link(struct net_device *dev) 6071 { 6072 struct dev_priv *priv = netdev_priv(dev); 6073 int rc; 6074 6075 rc = mii_link_ok(&priv->mii_if); 6076 return rc; 6077 } 6078 6079 /** 6080 * netdev_get_drvinfo - get network driver information 6081 * @dev: Network device. 6082 * @info: Ethtool driver info data structure. 6083 * 6084 * This procedure returns the driver information. 6085 */ 6086 static void netdev_get_drvinfo(struct net_device *dev, 6087 struct ethtool_drvinfo *info) 6088 { 6089 struct dev_priv *priv = netdev_priv(dev); 6090 struct dev_info *hw_priv = priv->adapter; 6091 6092 strlcpy(info->driver, DRV_NAME, sizeof(info->driver)); 6093 strlcpy(info->version, DRV_VERSION, sizeof(info->version)); 6094 strlcpy(info->bus_info, pci_name(hw_priv->pdev), 6095 sizeof(info->bus_info)); 6096 } 6097 6098 /** 6099 * netdev_get_regs_len - get length of register dump 6100 * @dev: Network device. 6101 * 6102 * This function returns the length of the register dump. 6103 * 6104 * Return length of the register dump. 6105 */ 6106 static struct hw_regs { 6107 int start; 6108 int end; 6109 } hw_regs_range[] = { 6110 { KS_DMA_TX_CTRL, KS884X_INTERRUPTS_STATUS }, 6111 { KS_ADD_ADDR_0_LO, KS_ADD_ADDR_F_HI }, 6112 { KS884X_ADDR_0_OFFSET, KS8841_WOL_FRAME_BYTE2_OFFSET }, 6113 { KS884X_SIDER_P, KS8842_SGCR7_P }, 6114 { KS8842_MACAR1_P, KS8842_TOSR8_P }, 6115 { KS884X_P1MBCR_P, KS8842_P3ERCR_P }, 6116 { 0, 0 } 6117 }; 6118 6119 static int netdev_get_regs_len(struct net_device *dev) 6120 { 6121 struct hw_regs *range = hw_regs_range; 6122 int regs_len = 0x10 * sizeof(u32); 6123 6124 while (range->end > range->start) { 6125 regs_len += (range->end - range->start + 3) / 4 * 4; 6126 range++; 6127 } 6128 return regs_len; 6129 } 6130 6131 /** 6132 * netdev_get_regs - get register dump 6133 * @dev: Network device. 6134 * @regs: Ethtool registers data structure. 6135 * @ptr: Buffer to store the register values. 6136 * 6137 * This procedure dumps the register values in the provided buffer. 6138 */ 6139 static void netdev_get_regs(struct net_device *dev, struct ethtool_regs *regs, 6140 void *ptr) 6141 { 6142 struct dev_priv *priv = netdev_priv(dev); 6143 struct dev_info *hw_priv = priv->adapter; 6144 struct ksz_hw *hw = &hw_priv->hw; 6145 int *buf = (int *) ptr; 6146 struct hw_regs *range = hw_regs_range; 6147 int len; 6148 6149 mutex_lock(&hw_priv->lock); 6150 regs->version = 0; 6151 for (len = 0; len < 0x40; len += 4) { 6152 pci_read_config_dword(hw_priv->pdev, len, buf); 6153 buf++; 6154 } 6155 while (range->end > range->start) { 6156 for (len = range->start; len < range->end; len += 4) { 6157 *buf = readl(hw->io + len); 6158 buf++; 6159 } 6160 range++; 6161 } 6162 mutex_unlock(&hw_priv->lock); 6163 } 6164 6165 #define WOL_SUPPORT \ 6166 (WAKE_PHY | WAKE_MAGIC | \ 6167 WAKE_UCAST | WAKE_MCAST | \ 6168 WAKE_BCAST | WAKE_ARP) 6169 6170 /** 6171 * netdev_get_wol - get Wake-on-LAN support 6172 * @dev: Network device. 6173 * @wol: Ethtool Wake-on-LAN data structure. 6174 * 6175 * This procedure returns Wake-on-LAN support. 6176 */ 6177 static void netdev_get_wol(struct net_device *dev, 6178 struct ethtool_wolinfo *wol) 6179 { 6180 struct dev_priv *priv = netdev_priv(dev); 6181 struct dev_info *hw_priv = priv->adapter; 6182 6183 wol->supported = hw_priv->wol_support; 6184 wol->wolopts = hw_priv->wol_enable; 6185 memset(&wol->sopass, 0, sizeof(wol->sopass)); 6186 } 6187 6188 /** 6189 * netdev_set_wol - set Wake-on-LAN support 6190 * @dev: Network device. 6191 * @wol: Ethtool Wake-on-LAN data structure. 6192 * 6193 * This function sets Wake-on-LAN support. 6194 * 6195 * Return 0 if successful; otherwise an error code. 6196 */ 6197 static int netdev_set_wol(struct net_device *dev, 6198 struct ethtool_wolinfo *wol) 6199 { 6200 struct dev_priv *priv = netdev_priv(dev); 6201 struct dev_info *hw_priv = priv->adapter; 6202 6203 /* Need to find a way to retrieve the device IP address. */ 6204 static const u8 net_addr[] = { 192, 168, 1, 1 }; 6205 6206 if (wol->wolopts & ~hw_priv->wol_support) 6207 return -EINVAL; 6208 6209 hw_priv->wol_enable = wol->wolopts; 6210 6211 /* Link wakeup cannot really be disabled. */ 6212 if (wol->wolopts) 6213 hw_priv->wol_enable |= WAKE_PHY; 6214 hw_enable_wol(&hw_priv->hw, hw_priv->wol_enable, net_addr); 6215 return 0; 6216 } 6217 6218 /** 6219 * netdev_get_msglevel - get debug message level 6220 * @dev: Network device. 6221 * 6222 * This function returns current debug message level. 6223 * 6224 * Return current debug message flags. 6225 */ 6226 static u32 netdev_get_msglevel(struct net_device *dev) 6227 { 6228 struct dev_priv *priv = netdev_priv(dev); 6229 6230 return priv->msg_enable; 6231 } 6232 6233 /** 6234 * netdev_set_msglevel - set debug message level 6235 * @dev: Network device. 6236 * @value: Debug message flags. 6237 * 6238 * This procedure sets debug message level. 6239 */ 6240 static void netdev_set_msglevel(struct net_device *dev, u32 value) 6241 { 6242 struct dev_priv *priv = netdev_priv(dev); 6243 6244 priv->msg_enable = value; 6245 } 6246 6247 /** 6248 * netdev_get_eeprom_len - get EEPROM length 6249 * @dev: Network device. 6250 * 6251 * This function returns the length of the EEPROM. 6252 * 6253 * Return length of the EEPROM. 6254 */ 6255 static int netdev_get_eeprom_len(struct net_device *dev) 6256 { 6257 return EEPROM_SIZE * 2; 6258 } 6259 6260 /** 6261 * netdev_get_eeprom - get EEPROM data 6262 * @dev: Network device. 6263 * @eeprom: Ethtool EEPROM data structure. 6264 * @data: Buffer to store the EEPROM data. 6265 * 6266 * This function dumps the EEPROM data in the provided buffer. 6267 * 6268 * Return 0 if successful; otherwise an error code. 6269 */ 6270 #define EEPROM_MAGIC 0x10A18842 6271 6272 static int netdev_get_eeprom(struct net_device *dev, 6273 struct ethtool_eeprom *eeprom, u8 *data) 6274 { 6275 struct dev_priv *priv = netdev_priv(dev); 6276 struct dev_info *hw_priv = priv->adapter; 6277 u8 *eeprom_byte = (u8 *) eeprom_data; 6278 int i; 6279 int len; 6280 6281 len = (eeprom->offset + eeprom->len + 1) / 2; 6282 for (i = eeprom->offset / 2; i < len; i++) 6283 eeprom_data[i] = eeprom_read(&hw_priv->hw, i); 6284 eeprom->magic = EEPROM_MAGIC; 6285 memcpy(data, &eeprom_byte[eeprom->offset], eeprom->len); 6286 6287 return 0; 6288 } 6289 6290 /** 6291 * netdev_set_eeprom - write EEPROM data 6292 * @dev: Network device. 6293 * @eeprom: Ethtool EEPROM data structure. 6294 * @data: Data buffer. 6295 * 6296 * This function modifies the EEPROM data one byte at a time. 6297 * 6298 * Return 0 if successful; otherwise an error code. 6299 */ 6300 static int netdev_set_eeprom(struct net_device *dev, 6301 struct ethtool_eeprom *eeprom, u8 *data) 6302 { 6303 struct dev_priv *priv = netdev_priv(dev); 6304 struct dev_info *hw_priv = priv->adapter; 6305 u16 eeprom_word[EEPROM_SIZE]; 6306 u8 *eeprom_byte = (u8 *) eeprom_word; 6307 int i; 6308 int len; 6309 6310 if (eeprom->magic != EEPROM_MAGIC) 6311 return -EINVAL; 6312 6313 len = (eeprom->offset + eeprom->len + 1) / 2; 6314 for (i = eeprom->offset / 2; i < len; i++) 6315 eeprom_data[i] = eeprom_read(&hw_priv->hw, i); 6316 memcpy(eeprom_word, eeprom_data, EEPROM_SIZE * 2); 6317 memcpy(&eeprom_byte[eeprom->offset], data, eeprom->len); 6318 for (i = 0; i < EEPROM_SIZE; i++) 6319 if (eeprom_word[i] != eeprom_data[i]) { 6320 eeprom_data[i] = eeprom_word[i]; 6321 eeprom_write(&hw_priv->hw, i, eeprom_data[i]); 6322 } 6323 6324 return 0; 6325 } 6326 6327 /** 6328 * netdev_get_pauseparam - get flow control parameters 6329 * @dev: Network device. 6330 * @pause: Ethtool PAUSE settings data structure. 6331 * 6332 * This procedure returns the PAUSE control flow settings. 6333 */ 6334 static void netdev_get_pauseparam(struct net_device *dev, 6335 struct ethtool_pauseparam *pause) 6336 { 6337 struct dev_priv *priv = netdev_priv(dev); 6338 struct dev_info *hw_priv = priv->adapter; 6339 struct ksz_hw *hw = &hw_priv->hw; 6340 6341 pause->autoneg = (hw->overrides & PAUSE_FLOW_CTRL) ? 0 : 1; 6342 if (!hw->ksz_switch) { 6343 pause->rx_pause = 6344 (hw->rx_cfg & DMA_RX_FLOW_ENABLE) ? 1 : 0; 6345 pause->tx_pause = 6346 (hw->tx_cfg & DMA_TX_FLOW_ENABLE) ? 1 : 0; 6347 } else { 6348 pause->rx_pause = 6349 (sw_chk(hw, KS8842_SWITCH_CTRL_1_OFFSET, 6350 SWITCH_RX_FLOW_CTRL)) ? 1 : 0; 6351 pause->tx_pause = 6352 (sw_chk(hw, KS8842_SWITCH_CTRL_1_OFFSET, 6353 SWITCH_TX_FLOW_CTRL)) ? 1 : 0; 6354 } 6355 } 6356 6357 /** 6358 * netdev_set_pauseparam - set flow control parameters 6359 * @dev: Network device. 6360 * @pause: Ethtool PAUSE settings data structure. 6361 * 6362 * This function sets the PAUSE control flow settings. 6363 * Not implemented yet. 6364 * 6365 * Return 0 if successful; otherwise an error code. 6366 */ 6367 static int netdev_set_pauseparam(struct net_device *dev, 6368 struct ethtool_pauseparam *pause) 6369 { 6370 struct dev_priv *priv = netdev_priv(dev); 6371 struct dev_info *hw_priv = priv->adapter; 6372 struct ksz_hw *hw = &hw_priv->hw; 6373 struct ksz_port *port = &priv->port; 6374 6375 mutex_lock(&hw_priv->lock); 6376 if (pause->autoneg) { 6377 if (!pause->rx_pause && !pause->tx_pause) 6378 port->flow_ctrl = PHY_NO_FLOW_CTRL; 6379 else 6380 port->flow_ctrl = PHY_FLOW_CTRL; 6381 hw->overrides &= ~PAUSE_FLOW_CTRL; 6382 port->force_link = 0; 6383 if (hw->ksz_switch) { 6384 sw_cfg(hw, KS8842_SWITCH_CTRL_1_OFFSET, 6385 SWITCH_RX_FLOW_CTRL, 1); 6386 sw_cfg(hw, KS8842_SWITCH_CTRL_1_OFFSET, 6387 SWITCH_TX_FLOW_CTRL, 1); 6388 } 6389 port_set_link_speed(port); 6390 } else { 6391 hw->overrides |= PAUSE_FLOW_CTRL; 6392 if (hw->ksz_switch) { 6393 sw_cfg(hw, KS8842_SWITCH_CTRL_1_OFFSET, 6394 SWITCH_RX_FLOW_CTRL, pause->rx_pause); 6395 sw_cfg(hw, KS8842_SWITCH_CTRL_1_OFFSET, 6396 SWITCH_TX_FLOW_CTRL, pause->tx_pause); 6397 } else 6398 set_flow_ctrl(hw, pause->rx_pause, pause->tx_pause); 6399 } 6400 mutex_unlock(&hw_priv->lock); 6401 6402 return 0; 6403 } 6404 6405 /** 6406 * netdev_get_ringparam - get tx/rx ring parameters 6407 * @dev: Network device. 6408 * @pause: Ethtool RING settings data structure. 6409 * 6410 * This procedure returns the TX/RX ring settings. 6411 */ 6412 static void netdev_get_ringparam(struct net_device *dev, 6413 struct ethtool_ringparam *ring) 6414 { 6415 struct dev_priv *priv = netdev_priv(dev); 6416 struct dev_info *hw_priv = priv->adapter; 6417 struct ksz_hw *hw = &hw_priv->hw; 6418 6419 ring->tx_max_pending = (1 << 9); 6420 ring->tx_pending = hw->tx_desc_info.alloc; 6421 ring->rx_max_pending = (1 << 9); 6422 ring->rx_pending = hw->rx_desc_info.alloc; 6423 } 6424 6425 #define STATS_LEN (TOTAL_PORT_COUNTER_NUM) 6426 6427 static struct { 6428 char string[ETH_GSTRING_LEN]; 6429 } ethtool_stats_keys[STATS_LEN] = { 6430 { "rx_lo_priority_octets" }, 6431 { "rx_hi_priority_octets" }, 6432 { "rx_undersize_packets" }, 6433 { "rx_fragments" }, 6434 { "rx_oversize_packets" }, 6435 { "rx_jabbers" }, 6436 { "rx_symbol_errors" }, 6437 { "rx_crc_errors" }, 6438 { "rx_align_errors" }, 6439 { "rx_mac_ctrl_packets" }, 6440 { "rx_pause_packets" }, 6441 { "rx_bcast_packets" }, 6442 { "rx_mcast_packets" }, 6443 { "rx_ucast_packets" }, 6444 { "rx_64_or_less_octet_packets" }, 6445 { "rx_65_to_127_octet_packets" }, 6446 { "rx_128_to_255_octet_packets" }, 6447 { "rx_256_to_511_octet_packets" }, 6448 { "rx_512_to_1023_octet_packets" }, 6449 { "rx_1024_to_1522_octet_packets" }, 6450 6451 { "tx_lo_priority_octets" }, 6452 { "tx_hi_priority_octets" }, 6453 { "tx_late_collisions" }, 6454 { "tx_pause_packets" }, 6455 { "tx_bcast_packets" }, 6456 { "tx_mcast_packets" }, 6457 { "tx_ucast_packets" }, 6458 { "tx_deferred" }, 6459 { "tx_total_collisions" }, 6460 { "tx_excessive_collisions" }, 6461 { "tx_single_collisions" }, 6462 { "tx_mult_collisions" }, 6463 6464 { "rx_discards" }, 6465 { "tx_discards" }, 6466 }; 6467 6468 /** 6469 * netdev_get_strings - get statistics identity strings 6470 * @dev: Network device. 6471 * @stringset: String set identifier. 6472 * @buf: Buffer to store the strings. 6473 * 6474 * This procedure returns the strings used to identify the statistics. 6475 */ 6476 static void netdev_get_strings(struct net_device *dev, u32 stringset, u8 *buf) 6477 { 6478 struct dev_priv *priv = netdev_priv(dev); 6479 struct dev_info *hw_priv = priv->adapter; 6480 struct ksz_hw *hw = &hw_priv->hw; 6481 6482 if (ETH_SS_STATS == stringset) 6483 memcpy(buf, ðtool_stats_keys, 6484 ETH_GSTRING_LEN * hw->mib_cnt); 6485 } 6486 6487 /** 6488 * netdev_get_sset_count - get statistics size 6489 * @dev: Network device. 6490 * @sset: The statistics set number. 6491 * 6492 * This function returns the size of the statistics to be reported. 6493 * 6494 * Return size of the statistics to be reported. 6495 */ 6496 static int netdev_get_sset_count(struct net_device *dev, int sset) 6497 { 6498 struct dev_priv *priv = netdev_priv(dev); 6499 struct dev_info *hw_priv = priv->adapter; 6500 struct ksz_hw *hw = &hw_priv->hw; 6501 6502 switch (sset) { 6503 case ETH_SS_STATS: 6504 return hw->mib_cnt; 6505 default: 6506 return -EOPNOTSUPP; 6507 } 6508 } 6509 6510 /** 6511 * netdev_get_ethtool_stats - get network device statistics 6512 * @dev: Network device. 6513 * @stats: Ethtool statistics data structure. 6514 * @data: Buffer to store the statistics. 6515 * 6516 * This procedure returns the statistics. 6517 */ 6518 static void netdev_get_ethtool_stats(struct net_device *dev, 6519 struct ethtool_stats *stats, u64 *data) 6520 { 6521 struct dev_priv *priv = netdev_priv(dev); 6522 struct dev_info *hw_priv = priv->adapter; 6523 struct ksz_hw *hw = &hw_priv->hw; 6524 struct ksz_port *port = &priv->port; 6525 int n_stats = stats->n_stats; 6526 int i; 6527 int n; 6528 int p; 6529 int rc; 6530 u64 counter[TOTAL_PORT_COUNTER_NUM]; 6531 6532 mutex_lock(&hw_priv->lock); 6533 n = SWITCH_PORT_NUM; 6534 for (i = 0, p = port->first_port; i < port->mib_port_cnt; i++, p++) { 6535 if (media_connected == hw->port_mib[p].state) { 6536 hw_priv->counter[p].read = 1; 6537 6538 /* Remember first port that requests read. */ 6539 if (n == SWITCH_PORT_NUM) 6540 n = p; 6541 } 6542 } 6543 mutex_unlock(&hw_priv->lock); 6544 6545 if (n < SWITCH_PORT_NUM) 6546 schedule_work(&hw_priv->mib_read); 6547 6548 if (1 == port->mib_port_cnt && n < SWITCH_PORT_NUM) { 6549 p = n; 6550 rc = wait_event_interruptible_timeout( 6551 hw_priv->counter[p].counter, 6552 2 == hw_priv->counter[p].read, 6553 HZ * 1); 6554 } else 6555 for (i = 0, p = n; i < port->mib_port_cnt - n; i++, p++) { 6556 if (0 == i) { 6557 rc = wait_event_interruptible_timeout( 6558 hw_priv->counter[p].counter, 6559 2 == hw_priv->counter[p].read, 6560 HZ * 2); 6561 } else if (hw->port_mib[p].cnt_ptr) { 6562 rc = wait_event_interruptible_timeout( 6563 hw_priv->counter[p].counter, 6564 2 == hw_priv->counter[p].read, 6565 HZ * 1); 6566 } 6567 } 6568 6569 get_mib_counters(hw, port->first_port, port->mib_port_cnt, counter); 6570 n = hw->mib_cnt; 6571 if (n > n_stats) 6572 n = n_stats; 6573 n_stats -= n; 6574 for (i = 0; i < n; i++) 6575 *data++ = counter[i]; 6576 } 6577 6578 /** 6579 * netdev_set_features - set receive checksum support 6580 * @dev: Network device. 6581 * @features: New device features (offloads). 6582 * 6583 * This function sets receive checksum support setting. 6584 * 6585 * Return 0 if successful; otherwise an error code. 6586 */ 6587 static int netdev_set_features(struct net_device *dev, 6588 netdev_features_t features) 6589 { 6590 struct dev_priv *priv = netdev_priv(dev); 6591 struct dev_info *hw_priv = priv->adapter; 6592 struct ksz_hw *hw = &hw_priv->hw; 6593 6594 mutex_lock(&hw_priv->lock); 6595 6596 /* see note in hw_setup() */ 6597 if (features & NETIF_F_RXCSUM) 6598 hw->rx_cfg |= DMA_RX_CSUM_TCP | DMA_RX_CSUM_IP; 6599 else 6600 hw->rx_cfg &= ~(DMA_RX_CSUM_TCP | DMA_RX_CSUM_IP); 6601 6602 if (hw->enabled) 6603 writel(hw->rx_cfg, hw->io + KS_DMA_RX_CTRL); 6604 6605 mutex_unlock(&hw_priv->lock); 6606 6607 return 0; 6608 } 6609 6610 static const struct ethtool_ops netdev_ethtool_ops = { 6611 .get_settings = netdev_get_settings, 6612 .set_settings = netdev_set_settings, 6613 .nway_reset = netdev_nway_reset, 6614 .get_link = netdev_get_link, 6615 .get_drvinfo = netdev_get_drvinfo, 6616 .get_regs_len = netdev_get_regs_len, 6617 .get_regs = netdev_get_regs, 6618 .get_wol = netdev_get_wol, 6619 .set_wol = netdev_set_wol, 6620 .get_msglevel = netdev_get_msglevel, 6621 .set_msglevel = netdev_set_msglevel, 6622 .get_eeprom_len = netdev_get_eeprom_len, 6623 .get_eeprom = netdev_get_eeprom, 6624 .set_eeprom = netdev_set_eeprom, 6625 .get_pauseparam = netdev_get_pauseparam, 6626 .set_pauseparam = netdev_set_pauseparam, 6627 .get_ringparam = netdev_get_ringparam, 6628 .get_strings = netdev_get_strings, 6629 .get_sset_count = netdev_get_sset_count, 6630 .get_ethtool_stats = netdev_get_ethtool_stats, 6631 }; 6632 6633 /* 6634 * Hardware monitoring 6635 */ 6636 6637 static void update_link(struct net_device *dev, struct dev_priv *priv, 6638 struct ksz_port *port) 6639 { 6640 if (priv->media_state != port->linked->state) { 6641 priv->media_state = port->linked->state; 6642 if (netif_running(dev)) 6643 set_media_state(dev, media_connected); 6644 } 6645 } 6646 6647 static void mib_read_work(struct work_struct *work) 6648 { 6649 struct dev_info *hw_priv = 6650 container_of(work, struct dev_info, mib_read); 6651 struct ksz_hw *hw = &hw_priv->hw; 6652 struct ksz_port_mib *mib; 6653 int i; 6654 6655 next_jiffies = jiffies; 6656 for (i = 0; i < hw->mib_port_cnt; i++) { 6657 mib = &hw->port_mib[i]; 6658 6659 /* Reading MIB counters or requested to read. */ 6660 if (mib->cnt_ptr || 1 == hw_priv->counter[i].read) { 6661 6662 /* Need to process receive interrupt. */ 6663 if (port_r_cnt(hw, i)) 6664 break; 6665 hw_priv->counter[i].read = 0; 6666 6667 /* Finish reading counters. */ 6668 if (0 == mib->cnt_ptr) { 6669 hw_priv->counter[i].read = 2; 6670 wake_up_interruptible( 6671 &hw_priv->counter[i].counter); 6672 } 6673 } else if (jiffies >= hw_priv->counter[i].time) { 6674 /* Only read MIB counters when the port is connected. */ 6675 if (media_connected == mib->state) 6676 hw_priv->counter[i].read = 1; 6677 next_jiffies += HZ * 1 * hw->mib_port_cnt; 6678 hw_priv->counter[i].time = next_jiffies; 6679 6680 /* Port is just disconnected. */ 6681 } else if (mib->link_down) { 6682 mib->link_down = 0; 6683 6684 /* Read counters one last time after link is lost. */ 6685 hw_priv->counter[i].read = 1; 6686 } 6687 } 6688 } 6689 6690 static void mib_monitor(unsigned long ptr) 6691 { 6692 struct dev_info *hw_priv = (struct dev_info *) ptr; 6693 6694 mib_read_work(&hw_priv->mib_read); 6695 6696 /* This is used to verify Wake-on-LAN is working. */ 6697 if (hw_priv->pme_wait) { 6698 if (hw_priv->pme_wait <= jiffies) { 6699 hw_clr_wol_pme_status(&hw_priv->hw); 6700 hw_priv->pme_wait = 0; 6701 } 6702 } else if (hw_chk_wol_pme_status(&hw_priv->hw)) { 6703 6704 /* PME is asserted. Wait 2 seconds to clear it. */ 6705 hw_priv->pme_wait = jiffies + HZ * 2; 6706 } 6707 6708 ksz_update_timer(&hw_priv->mib_timer_info); 6709 } 6710 6711 /** 6712 * dev_monitor - periodic monitoring 6713 * @ptr: Network device pointer. 6714 * 6715 * This routine is run in a kernel timer to monitor the network device. 6716 */ 6717 static void dev_monitor(unsigned long ptr) 6718 { 6719 struct net_device *dev = (struct net_device *) ptr; 6720 struct dev_priv *priv = netdev_priv(dev); 6721 struct dev_info *hw_priv = priv->adapter; 6722 struct ksz_hw *hw = &hw_priv->hw; 6723 struct ksz_port *port = &priv->port; 6724 6725 if (!(hw->features & LINK_INT_WORKING)) 6726 port_get_link_speed(port); 6727 update_link(dev, priv, port); 6728 6729 ksz_update_timer(&priv->monitor_timer_info); 6730 } 6731 6732 /* 6733 * Linux network device interface functions 6734 */ 6735 6736 /* Driver exported variables */ 6737 6738 static int msg_enable; 6739 6740 static char *macaddr = ":"; 6741 static char *mac1addr = ":"; 6742 6743 /* 6744 * This enables multiple network device mode for KSZ8842, which contains a 6745 * switch with two physical ports. Some users like to take control of the 6746 * ports for running Spanning Tree Protocol. The driver will create an 6747 * additional eth? device for the other port. 6748 * 6749 * Some limitations are the network devices cannot have different MTU and 6750 * multicast hash tables. 6751 */ 6752 static int multi_dev; 6753 6754 /* 6755 * As most users select multiple network device mode to use Spanning Tree 6756 * Protocol, this enables a feature in which most unicast and multicast packets 6757 * are forwarded inside the switch and not passed to the host. Only packets 6758 * that need the host's attention are passed to it. This prevents the host 6759 * wasting CPU time to examine each and every incoming packets and do the 6760 * forwarding itself. 6761 * 6762 * As the hack requires the private bridge header, the driver cannot compile 6763 * with just the kernel headers. 6764 * 6765 * Enabling STP support also turns on multiple network device mode. 6766 */ 6767 static int stp; 6768 6769 /* 6770 * This enables fast aging in the KSZ8842 switch. Not sure what situation 6771 * needs that. However, fast aging is used to flush the dynamic MAC table when 6772 * STP suport is enabled. 6773 */ 6774 static int fast_aging; 6775 6776 /** 6777 * netdev_init - initialize network device. 6778 * @dev: Network device. 6779 * 6780 * This function initializes the network device. 6781 * 6782 * Return 0 if successful; otherwise an error code indicating failure. 6783 */ 6784 static int __init netdev_init(struct net_device *dev) 6785 { 6786 struct dev_priv *priv = netdev_priv(dev); 6787 6788 /* 500 ms timeout */ 6789 ksz_init_timer(&priv->monitor_timer_info, 500 * HZ / 1000, 6790 dev_monitor, dev); 6791 6792 /* 500 ms timeout */ 6793 dev->watchdog_timeo = HZ / 2; 6794 6795 dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG | NETIF_F_RXCSUM; 6796 6797 /* 6798 * Hardware does not really support IPv6 checksum generation, but 6799 * driver actually runs faster with this on. 6800 */ 6801 dev->hw_features |= NETIF_F_IPV6_CSUM; 6802 6803 dev->features |= dev->hw_features; 6804 6805 sema_init(&priv->proc_sem, 1); 6806 6807 priv->mii_if.phy_id_mask = 0x1; 6808 priv->mii_if.reg_num_mask = 0x7; 6809 priv->mii_if.dev = dev; 6810 priv->mii_if.mdio_read = mdio_read; 6811 priv->mii_if.mdio_write = mdio_write; 6812 priv->mii_if.phy_id = priv->port.first_port + 1; 6813 6814 priv->msg_enable = netif_msg_init(msg_enable, 6815 (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK)); 6816 6817 return 0; 6818 } 6819 6820 static const struct net_device_ops netdev_ops = { 6821 .ndo_init = netdev_init, 6822 .ndo_open = netdev_open, 6823 .ndo_stop = netdev_close, 6824 .ndo_get_stats = netdev_query_statistics, 6825 .ndo_start_xmit = netdev_tx, 6826 .ndo_tx_timeout = netdev_tx_timeout, 6827 .ndo_change_mtu = netdev_change_mtu, 6828 .ndo_set_features = netdev_set_features, 6829 .ndo_set_mac_address = netdev_set_mac_address, 6830 .ndo_validate_addr = eth_validate_addr, 6831 .ndo_do_ioctl = netdev_ioctl, 6832 .ndo_set_rx_mode = netdev_set_rx_mode, 6833 #ifdef CONFIG_NET_POLL_CONTROLLER 6834 .ndo_poll_controller = netdev_netpoll, 6835 #endif 6836 }; 6837 6838 static void netdev_free(struct net_device *dev) 6839 { 6840 if (dev->watchdog_timeo) 6841 unregister_netdev(dev); 6842 6843 free_netdev(dev); 6844 } 6845 6846 struct platform_info { 6847 struct dev_info dev_info; 6848 struct net_device *netdev[SWITCH_PORT_NUM]; 6849 }; 6850 6851 static int net_device_present; 6852 6853 static void get_mac_addr(struct dev_info *hw_priv, u8 *macaddr, int port) 6854 { 6855 int i; 6856 int j; 6857 int got_num; 6858 int num; 6859 6860 i = j = num = got_num = 0; 6861 while (j < ETH_ALEN) { 6862 if (macaddr[i]) { 6863 int digit; 6864 6865 got_num = 1; 6866 digit = hex_to_bin(macaddr[i]); 6867 if (digit >= 0) 6868 num = num * 16 + digit; 6869 else if (':' == macaddr[i]) 6870 got_num = 2; 6871 else 6872 break; 6873 } else if (got_num) 6874 got_num = 2; 6875 else 6876 break; 6877 if (2 == got_num) { 6878 if (MAIN_PORT == port) { 6879 hw_priv->hw.override_addr[j++] = (u8) num; 6880 hw_priv->hw.override_addr[5] += 6881 hw_priv->hw.id; 6882 } else { 6883 hw_priv->hw.ksz_switch->other_addr[j++] = 6884 (u8) num; 6885 hw_priv->hw.ksz_switch->other_addr[5] += 6886 hw_priv->hw.id; 6887 } 6888 num = got_num = 0; 6889 } 6890 i++; 6891 } 6892 if (ETH_ALEN == j) { 6893 if (MAIN_PORT == port) 6894 hw_priv->hw.mac_override = 1; 6895 } 6896 } 6897 6898 #define KS884X_DMA_MASK (~0x0UL) 6899 6900 static void read_other_addr(struct ksz_hw *hw) 6901 { 6902 int i; 6903 u16 data[3]; 6904 struct ksz_switch *sw = hw->ksz_switch; 6905 6906 for (i = 0; i < 3; i++) 6907 data[i] = eeprom_read(hw, i + EEPROM_DATA_OTHER_MAC_ADDR); 6908 if ((data[0] || data[1] || data[2]) && data[0] != 0xffff) { 6909 sw->other_addr[5] = (u8) data[0]; 6910 sw->other_addr[4] = (u8)(data[0] >> 8); 6911 sw->other_addr[3] = (u8) data[1]; 6912 sw->other_addr[2] = (u8)(data[1] >> 8); 6913 sw->other_addr[1] = (u8) data[2]; 6914 sw->other_addr[0] = (u8)(data[2] >> 8); 6915 } 6916 } 6917 6918 #ifndef PCI_VENDOR_ID_MICREL_KS 6919 #define PCI_VENDOR_ID_MICREL_KS 0x16c6 6920 #endif 6921 6922 static int __devinit pcidev_init(struct pci_dev *pdev, 6923 const struct pci_device_id *id) 6924 { 6925 struct net_device *dev; 6926 struct dev_priv *priv; 6927 struct dev_info *hw_priv; 6928 struct ksz_hw *hw; 6929 struct platform_info *info; 6930 struct ksz_port *port; 6931 unsigned long reg_base; 6932 unsigned long reg_len; 6933 int cnt; 6934 int i; 6935 int mib_port_count; 6936 int pi; 6937 int port_count; 6938 int result; 6939 char banner[sizeof(version)]; 6940 struct ksz_switch *sw = NULL; 6941 6942 result = pci_enable_device(pdev); 6943 if (result) 6944 return result; 6945 6946 result = -ENODEV; 6947 6948 if (pci_set_dma_mask(pdev, DMA_BIT_MASK(32)) || 6949 pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32))) 6950 return result; 6951 6952 reg_base = pci_resource_start(pdev, 0); 6953 reg_len = pci_resource_len(pdev, 0); 6954 if ((pci_resource_flags(pdev, 0) & IORESOURCE_IO) != 0) 6955 return result; 6956 6957 if (!request_mem_region(reg_base, reg_len, DRV_NAME)) 6958 return result; 6959 pci_set_master(pdev); 6960 6961 result = -ENOMEM; 6962 6963 info = kzalloc(sizeof(struct platform_info), GFP_KERNEL); 6964 if (!info) 6965 goto pcidev_init_dev_err; 6966 6967 hw_priv = &info->dev_info; 6968 hw_priv->pdev = pdev; 6969 6970 hw = &hw_priv->hw; 6971 6972 hw->io = ioremap(reg_base, reg_len); 6973 if (!hw->io) 6974 goto pcidev_init_io_err; 6975 6976 cnt = hw_init(hw); 6977 if (!cnt) { 6978 if (msg_enable & NETIF_MSG_PROBE) 6979 pr_alert("chip not detected\n"); 6980 result = -ENODEV; 6981 goto pcidev_init_alloc_err; 6982 } 6983 6984 snprintf(banner, sizeof(banner), "%s", version); 6985 banner[13] = cnt + '0'; /* Replace x in "Micrel KSZ884x" */ 6986 dev_info(&hw_priv->pdev->dev, "%s\n", banner); 6987 dev_dbg(&hw_priv->pdev->dev, "Mem = %p; IRQ = %d\n", hw->io, pdev->irq); 6988 6989 /* Assume device is KSZ8841. */ 6990 hw->dev_count = 1; 6991 port_count = 1; 6992 mib_port_count = 1; 6993 hw->addr_list_size = 0; 6994 hw->mib_cnt = PORT_COUNTER_NUM; 6995 hw->mib_port_cnt = 1; 6996 6997 /* KSZ8842 has a switch with multiple ports. */ 6998 if (2 == cnt) { 6999 if (fast_aging) 7000 hw->overrides |= FAST_AGING; 7001 7002 hw->mib_cnt = TOTAL_PORT_COUNTER_NUM; 7003 7004 /* Multiple network device interfaces are required. */ 7005 if (multi_dev) { 7006 hw->dev_count = SWITCH_PORT_NUM; 7007 hw->addr_list_size = SWITCH_PORT_NUM - 1; 7008 } 7009 7010 /* Single network device has multiple ports. */ 7011 if (1 == hw->dev_count) { 7012 port_count = SWITCH_PORT_NUM; 7013 mib_port_count = SWITCH_PORT_NUM; 7014 } 7015 hw->mib_port_cnt = TOTAL_PORT_NUM; 7016 hw->ksz_switch = kzalloc(sizeof(struct ksz_switch), GFP_KERNEL); 7017 if (!hw->ksz_switch) 7018 goto pcidev_init_alloc_err; 7019 7020 sw = hw->ksz_switch; 7021 } 7022 for (i = 0; i < hw->mib_port_cnt; i++) 7023 hw->port_mib[i].mib_start = 0; 7024 7025 hw->parent = hw_priv; 7026 7027 /* Default MTU is 1500. */ 7028 hw_priv->mtu = (REGULAR_RX_BUF_SIZE + 3) & ~3; 7029 7030 if (ksz_alloc_mem(hw_priv)) 7031 goto pcidev_init_mem_err; 7032 7033 hw_priv->hw.id = net_device_present; 7034 7035 spin_lock_init(&hw_priv->hwlock); 7036 mutex_init(&hw_priv->lock); 7037 7038 /* tasklet is enabled. */ 7039 tasklet_init(&hw_priv->rx_tasklet, rx_proc_task, 7040 (unsigned long) hw_priv); 7041 tasklet_init(&hw_priv->tx_tasklet, tx_proc_task, 7042 (unsigned long) hw_priv); 7043 7044 /* tasklet_enable will decrement the atomic counter. */ 7045 tasklet_disable(&hw_priv->rx_tasklet); 7046 tasklet_disable(&hw_priv->tx_tasklet); 7047 7048 for (i = 0; i < TOTAL_PORT_NUM; i++) 7049 init_waitqueue_head(&hw_priv->counter[i].counter); 7050 7051 if (macaddr[0] != ':') 7052 get_mac_addr(hw_priv, macaddr, MAIN_PORT); 7053 7054 /* Read MAC address and initialize override address if not overrided. */ 7055 hw_read_addr(hw); 7056 7057 /* Multiple device interfaces mode requires a second MAC address. */ 7058 if (hw->dev_count > 1) { 7059 memcpy(sw->other_addr, hw->override_addr, ETH_ALEN); 7060 read_other_addr(hw); 7061 if (mac1addr[0] != ':') 7062 get_mac_addr(hw_priv, mac1addr, OTHER_PORT); 7063 } 7064 7065 hw_setup(hw); 7066 if (hw->ksz_switch) 7067 sw_setup(hw); 7068 else { 7069 hw_priv->wol_support = WOL_SUPPORT; 7070 hw_priv->wol_enable = 0; 7071 } 7072 7073 INIT_WORK(&hw_priv->mib_read, mib_read_work); 7074 7075 /* 500 ms timeout */ 7076 ksz_init_timer(&hw_priv->mib_timer_info, 500 * HZ / 1000, 7077 mib_monitor, hw_priv); 7078 7079 for (i = 0; i < hw->dev_count; i++) { 7080 dev = alloc_etherdev(sizeof(struct dev_priv)); 7081 if (!dev) 7082 goto pcidev_init_reg_err; 7083 info->netdev[i] = dev; 7084 7085 priv = netdev_priv(dev); 7086 priv->adapter = hw_priv; 7087 priv->id = net_device_present++; 7088 7089 port = &priv->port; 7090 port->port_cnt = port_count; 7091 port->mib_port_cnt = mib_port_count; 7092 port->first_port = i; 7093 port->flow_ctrl = PHY_FLOW_CTRL; 7094 7095 port->hw = hw; 7096 port->linked = &hw->port_info[port->first_port]; 7097 7098 for (cnt = 0, pi = i; cnt < port_count; cnt++, pi++) { 7099 hw->port_info[pi].port_id = pi; 7100 hw->port_info[pi].pdev = dev; 7101 hw->port_info[pi].state = media_disconnected; 7102 } 7103 7104 dev->mem_start = (unsigned long) hw->io; 7105 dev->mem_end = dev->mem_start + reg_len - 1; 7106 dev->irq = pdev->irq; 7107 if (MAIN_PORT == i) 7108 memcpy(dev->dev_addr, hw_priv->hw.override_addr, 7109 ETH_ALEN); 7110 else { 7111 memcpy(dev->dev_addr, sw->other_addr, ETH_ALEN); 7112 if (!memcmp(sw->other_addr, hw->override_addr, 7113 ETH_ALEN)) 7114 dev->dev_addr[5] += port->first_port; 7115 } 7116 7117 dev->netdev_ops = &netdev_ops; 7118 SET_ETHTOOL_OPS(dev, &netdev_ethtool_ops); 7119 if (register_netdev(dev)) 7120 goto pcidev_init_reg_err; 7121 port_set_power_saving(port, true); 7122 } 7123 7124 pci_dev_get(hw_priv->pdev); 7125 pci_set_drvdata(pdev, info); 7126 return 0; 7127 7128 pcidev_init_reg_err: 7129 for (i = 0; i < hw->dev_count; i++) { 7130 if (info->netdev[i]) { 7131 netdev_free(info->netdev[i]); 7132 info->netdev[i] = NULL; 7133 } 7134 } 7135 7136 pcidev_init_mem_err: 7137 ksz_free_mem(hw_priv); 7138 kfree(hw->ksz_switch); 7139 7140 pcidev_init_alloc_err: 7141 iounmap(hw->io); 7142 7143 pcidev_init_io_err: 7144 kfree(info); 7145 7146 pcidev_init_dev_err: 7147 release_mem_region(reg_base, reg_len); 7148 7149 return result; 7150 } 7151 7152 static void pcidev_exit(struct pci_dev *pdev) 7153 { 7154 int i; 7155 struct platform_info *info = pci_get_drvdata(pdev); 7156 struct dev_info *hw_priv = &info->dev_info; 7157 7158 pci_set_drvdata(pdev, NULL); 7159 7160 release_mem_region(pci_resource_start(pdev, 0), 7161 pci_resource_len(pdev, 0)); 7162 for (i = 0; i < hw_priv->hw.dev_count; i++) { 7163 if (info->netdev[i]) 7164 netdev_free(info->netdev[i]); 7165 } 7166 if (hw_priv->hw.io) 7167 iounmap(hw_priv->hw.io); 7168 ksz_free_mem(hw_priv); 7169 kfree(hw_priv->hw.ksz_switch); 7170 pci_dev_put(hw_priv->pdev); 7171 kfree(info); 7172 } 7173 7174 #ifdef CONFIG_PM 7175 static int pcidev_resume(struct pci_dev *pdev) 7176 { 7177 int i; 7178 struct platform_info *info = pci_get_drvdata(pdev); 7179 struct dev_info *hw_priv = &info->dev_info; 7180 struct ksz_hw *hw = &hw_priv->hw; 7181 7182 pci_set_power_state(pdev, PCI_D0); 7183 pci_restore_state(pdev); 7184 pci_enable_wake(pdev, PCI_D0, 0); 7185 7186 if (hw_priv->wol_enable) 7187 hw_cfg_wol_pme(hw, 0); 7188 for (i = 0; i < hw->dev_count; i++) { 7189 if (info->netdev[i]) { 7190 struct net_device *dev = info->netdev[i]; 7191 7192 if (netif_running(dev)) { 7193 netdev_open(dev); 7194 netif_device_attach(dev); 7195 } 7196 } 7197 } 7198 return 0; 7199 } 7200 7201 static int pcidev_suspend(struct pci_dev *pdev, pm_message_t state) 7202 { 7203 int i; 7204 struct platform_info *info = pci_get_drvdata(pdev); 7205 struct dev_info *hw_priv = &info->dev_info; 7206 struct ksz_hw *hw = &hw_priv->hw; 7207 7208 /* Need to find a way to retrieve the device IP address. */ 7209 static const u8 net_addr[] = { 192, 168, 1, 1 }; 7210 7211 for (i = 0; i < hw->dev_count; i++) { 7212 if (info->netdev[i]) { 7213 struct net_device *dev = info->netdev[i]; 7214 7215 if (netif_running(dev)) { 7216 netif_device_detach(dev); 7217 netdev_close(dev); 7218 } 7219 } 7220 } 7221 if (hw_priv->wol_enable) { 7222 hw_enable_wol(hw, hw_priv->wol_enable, net_addr); 7223 hw_cfg_wol_pme(hw, 1); 7224 } 7225 7226 pci_save_state(pdev); 7227 pci_enable_wake(pdev, pci_choose_state(pdev, state), 1); 7228 pci_set_power_state(pdev, pci_choose_state(pdev, state)); 7229 return 0; 7230 } 7231 #endif 7232 7233 static char pcidev_name[] = "ksz884xp"; 7234 7235 static struct pci_device_id pcidev_table[] = { 7236 { PCI_VENDOR_ID_MICREL_KS, 0x8841, 7237 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 }, 7238 { PCI_VENDOR_ID_MICREL_KS, 0x8842, 7239 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 }, 7240 { 0 } 7241 }; 7242 7243 MODULE_DEVICE_TABLE(pci, pcidev_table); 7244 7245 static struct pci_driver pci_device_driver = { 7246 #ifdef CONFIG_PM 7247 .suspend = pcidev_suspend, 7248 .resume = pcidev_resume, 7249 #endif 7250 .name = pcidev_name, 7251 .id_table = pcidev_table, 7252 .probe = pcidev_init, 7253 .remove = pcidev_exit 7254 }; 7255 7256 static int __init ksz884x_init_module(void) 7257 { 7258 return pci_register_driver(&pci_device_driver); 7259 } 7260 7261 static void __exit ksz884x_cleanup_module(void) 7262 { 7263 pci_unregister_driver(&pci_device_driver); 7264 } 7265 7266 module_init(ksz884x_init_module); 7267 module_exit(ksz884x_cleanup_module); 7268 7269 MODULE_DESCRIPTION("KSZ8841/2 PCI network driver"); 7270 MODULE_AUTHOR("Tristram Ha <Tristram.Ha@micrel.com>"); 7271 MODULE_LICENSE("GPL"); 7272 7273 module_param_named(message, msg_enable, int, 0); 7274 MODULE_PARM_DESC(message, "Message verbosity level (0=none, 31=all)"); 7275 7276 module_param(macaddr, charp, 0); 7277 module_param(mac1addr, charp, 0); 7278 module_param(fast_aging, int, 0); 7279 module_param(multi_dev, int, 0); 7280 module_param(stp, int, 0); 7281 MODULE_PARM_DESC(macaddr, "MAC address"); 7282 MODULE_PARM_DESC(mac1addr, "Second MAC address"); 7283 MODULE_PARM_DESC(fast_aging, "Fast aging"); 7284 MODULE_PARM_DESC(multi_dev, "Multiple device interfaces"); 7285 MODULE_PARM_DESC(stp, "STP support"); 7286