xref: /openbmc/linux/drivers/net/ethernet/micrel/ksz884x.c (revision 4f727ecefefbd180de10e25b3e74c03dce3f1e75)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /**
3  * drivers/net/ethernet/micrel/ksx884x.c - Micrel KSZ8841/2 PCI Ethernet driver
4  *
5  * Copyright (c) 2009-2010 Micrel, Inc.
6  * 	Tristram Ha <Tristram.Ha@micrel.com>
7  */
8 
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10 
11 #include <linux/init.h>
12 #include <linux/interrupt.h>
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/ioport.h>
16 #include <linux/pci.h>
17 #include <linux/proc_fs.h>
18 #include <linux/mii.h>
19 #include <linux/platform_device.h>
20 #include <linux/ethtool.h>
21 #include <linux/etherdevice.h>
22 #include <linux/in.h>
23 #include <linux/ip.h>
24 #include <linux/if_vlan.h>
25 #include <linux/crc32.h>
26 #include <linux/sched.h>
27 #include <linux/slab.h>
28 
29 
30 /* DMA Registers */
31 
32 #define KS_DMA_TX_CTRL			0x0000
33 #define DMA_TX_ENABLE			0x00000001
34 #define DMA_TX_CRC_ENABLE		0x00000002
35 #define DMA_TX_PAD_ENABLE		0x00000004
36 #define DMA_TX_LOOPBACK			0x00000100
37 #define DMA_TX_FLOW_ENABLE		0x00000200
38 #define DMA_TX_CSUM_IP			0x00010000
39 #define DMA_TX_CSUM_TCP			0x00020000
40 #define DMA_TX_CSUM_UDP			0x00040000
41 #define DMA_TX_BURST_SIZE		0x3F000000
42 
43 #define KS_DMA_RX_CTRL			0x0004
44 #define DMA_RX_ENABLE			0x00000001
45 #define KS884X_DMA_RX_MULTICAST		0x00000002
46 #define DMA_RX_PROMISCUOUS		0x00000004
47 #define DMA_RX_ERROR			0x00000008
48 #define DMA_RX_UNICAST			0x00000010
49 #define DMA_RX_ALL_MULTICAST		0x00000020
50 #define DMA_RX_BROADCAST		0x00000040
51 #define DMA_RX_FLOW_ENABLE		0x00000200
52 #define DMA_RX_CSUM_IP			0x00010000
53 #define DMA_RX_CSUM_TCP			0x00020000
54 #define DMA_RX_CSUM_UDP			0x00040000
55 #define DMA_RX_BURST_SIZE		0x3F000000
56 
57 #define DMA_BURST_SHIFT			24
58 #define DMA_BURST_DEFAULT		8
59 
60 #define KS_DMA_TX_START			0x0008
61 #define KS_DMA_RX_START			0x000C
62 #define DMA_START			0x00000001
63 
64 #define KS_DMA_TX_ADDR			0x0010
65 #define KS_DMA_RX_ADDR			0x0014
66 
67 #define DMA_ADDR_LIST_MASK		0xFFFFFFFC
68 #define DMA_ADDR_LIST_SHIFT		2
69 
70 /* MTR0 */
71 #define KS884X_MULTICAST_0_OFFSET	0x0020
72 #define KS884X_MULTICAST_1_OFFSET	0x0021
73 #define KS884X_MULTICAST_2_OFFSET	0x0022
74 #define KS884x_MULTICAST_3_OFFSET	0x0023
75 /* MTR1 */
76 #define KS884X_MULTICAST_4_OFFSET	0x0024
77 #define KS884X_MULTICAST_5_OFFSET	0x0025
78 #define KS884X_MULTICAST_6_OFFSET	0x0026
79 #define KS884X_MULTICAST_7_OFFSET	0x0027
80 
81 /* Interrupt Registers */
82 
83 /* INTEN */
84 #define KS884X_INTERRUPTS_ENABLE	0x0028
85 /* INTST */
86 #define KS884X_INTERRUPTS_STATUS	0x002C
87 
88 #define KS884X_INT_RX_STOPPED		0x02000000
89 #define KS884X_INT_TX_STOPPED		0x04000000
90 #define KS884X_INT_RX_OVERRUN		0x08000000
91 #define KS884X_INT_TX_EMPTY		0x10000000
92 #define KS884X_INT_RX			0x20000000
93 #define KS884X_INT_TX			0x40000000
94 #define KS884X_INT_PHY			0x80000000
95 
96 #define KS884X_INT_RX_MASK		\
97 	(KS884X_INT_RX | KS884X_INT_RX_OVERRUN)
98 #define KS884X_INT_TX_MASK		\
99 	(KS884X_INT_TX | KS884X_INT_TX_EMPTY)
100 #define KS884X_INT_MASK	(KS884X_INT_RX | KS884X_INT_TX | KS884X_INT_PHY)
101 
102 /* MAC Additional Station Address */
103 
104 /* MAAL0 */
105 #define KS_ADD_ADDR_0_LO		0x0080
106 /* MAAH0 */
107 #define KS_ADD_ADDR_0_HI		0x0084
108 /* MAAL1 */
109 #define KS_ADD_ADDR_1_LO		0x0088
110 /* MAAH1 */
111 #define KS_ADD_ADDR_1_HI		0x008C
112 /* MAAL2 */
113 #define KS_ADD_ADDR_2_LO		0x0090
114 /* MAAH2 */
115 #define KS_ADD_ADDR_2_HI		0x0094
116 /* MAAL3 */
117 #define KS_ADD_ADDR_3_LO		0x0098
118 /* MAAH3 */
119 #define KS_ADD_ADDR_3_HI		0x009C
120 /* MAAL4 */
121 #define KS_ADD_ADDR_4_LO		0x00A0
122 /* MAAH4 */
123 #define KS_ADD_ADDR_4_HI		0x00A4
124 /* MAAL5 */
125 #define KS_ADD_ADDR_5_LO		0x00A8
126 /* MAAH5 */
127 #define KS_ADD_ADDR_5_HI		0x00AC
128 /* MAAL6 */
129 #define KS_ADD_ADDR_6_LO		0x00B0
130 /* MAAH6 */
131 #define KS_ADD_ADDR_6_HI		0x00B4
132 /* MAAL7 */
133 #define KS_ADD_ADDR_7_LO		0x00B8
134 /* MAAH7 */
135 #define KS_ADD_ADDR_7_HI		0x00BC
136 /* MAAL8 */
137 #define KS_ADD_ADDR_8_LO		0x00C0
138 /* MAAH8 */
139 #define KS_ADD_ADDR_8_HI		0x00C4
140 /* MAAL9 */
141 #define KS_ADD_ADDR_9_LO		0x00C8
142 /* MAAH9 */
143 #define KS_ADD_ADDR_9_HI		0x00CC
144 /* MAAL10 */
145 #define KS_ADD_ADDR_A_LO		0x00D0
146 /* MAAH10 */
147 #define KS_ADD_ADDR_A_HI		0x00D4
148 /* MAAL11 */
149 #define KS_ADD_ADDR_B_LO		0x00D8
150 /* MAAH11 */
151 #define KS_ADD_ADDR_B_HI		0x00DC
152 /* MAAL12 */
153 #define KS_ADD_ADDR_C_LO		0x00E0
154 /* MAAH12 */
155 #define KS_ADD_ADDR_C_HI		0x00E4
156 /* MAAL13 */
157 #define KS_ADD_ADDR_D_LO		0x00E8
158 /* MAAH13 */
159 #define KS_ADD_ADDR_D_HI		0x00EC
160 /* MAAL14 */
161 #define KS_ADD_ADDR_E_LO		0x00F0
162 /* MAAH14 */
163 #define KS_ADD_ADDR_E_HI		0x00F4
164 /* MAAL15 */
165 #define KS_ADD_ADDR_F_LO		0x00F8
166 /* MAAH15 */
167 #define KS_ADD_ADDR_F_HI		0x00FC
168 
169 #define ADD_ADDR_HI_MASK		0x0000FFFF
170 #define ADD_ADDR_ENABLE			0x80000000
171 #define ADD_ADDR_INCR			8
172 
173 /* Miscellaneous Registers */
174 
175 /* MARL */
176 #define KS884X_ADDR_0_OFFSET		0x0200
177 #define KS884X_ADDR_1_OFFSET		0x0201
178 /* MARM */
179 #define KS884X_ADDR_2_OFFSET		0x0202
180 #define KS884X_ADDR_3_OFFSET		0x0203
181 /* MARH */
182 #define KS884X_ADDR_4_OFFSET		0x0204
183 #define KS884X_ADDR_5_OFFSET		0x0205
184 
185 /* OBCR */
186 #define KS884X_BUS_CTRL_OFFSET		0x0210
187 
188 #define BUS_SPEED_125_MHZ		0x0000
189 #define BUS_SPEED_62_5_MHZ		0x0001
190 #define BUS_SPEED_41_66_MHZ		0x0002
191 #define BUS_SPEED_25_MHZ		0x0003
192 
193 /* EEPCR */
194 #define KS884X_EEPROM_CTRL_OFFSET	0x0212
195 
196 #define EEPROM_CHIP_SELECT		0x0001
197 #define EEPROM_SERIAL_CLOCK		0x0002
198 #define EEPROM_DATA_OUT			0x0004
199 #define EEPROM_DATA_IN			0x0008
200 #define EEPROM_ACCESS_ENABLE		0x0010
201 
202 /* MBIR */
203 #define KS884X_MEM_INFO_OFFSET		0x0214
204 
205 #define RX_MEM_TEST_FAILED		0x0008
206 #define RX_MEM_TEST_FINISHED		0x0010
207 #define TX_MEM_TEST_FAILED		0x0800
208 #define TX_MEM_TEST_FINISHED		0x1000
209 
210 /* GCR */
211 #define KS884X_GLOBAL_CTRL_OFFSET	0x0216
212 #define GLOBAL_SOFTWARE_RESET		0x0001
213 
214 #define KS8841_POWER_MANAGE_OFFSET	0x0218
215 
216 /* WFCR */
217 #define KS8841_WOL_CTRL_OFFSET		0x021A
218 #define KS8841_WOL_MAGIC_ENABLE		0x0080
219 #define KS8841_WOL_FRAME3_ENABLE	0x0008
220 #define KS8841_WOL_FRAME2_ENABLE	0x0004
221 #define KS8841_WOL_FRAME1_ENABLE	0x0002
222 #define KS8841_WOL_FRAME0_ENABLE	0x0001
223 
224 /* WF0 */
225 #define KS8841_WOL_FRAME_CRC_OFFSET	0x0220
226 #define KS8841_WOL_FRAME_BYTE0_OFFSET	0x0224
227 #define KS8841_WOL_FRAME_BYTE2_OFFSET	0x0228
228 
229 /* IACR */
230 #define KS884X_IACR_P			0x04A0
231 #define KS884X_IACR_OFFSET		KS884X_IACR_P
232 
233 /* IADR1 */
234 #define KS884X_IADR1_P			0x04A2
235 #define KS884X_IADR2_P			0x04A4
236 #define KS884X_IADR3_P			0x04A6
237 #define KS884X_IADR4_P			0x04A8
238 #define KS884X_IADR5_P			0x04AA
239 
240 #define KS884X_ACC_CTRL_SEL_OFFSET	KS884X_IACR_P
241 #define KS884X_ACC_CTRL_INDEX_OFFSET	(KS884X_ACC_CTRL_SEL_OFFSET + 1)
242 
243 #define KS884X_ACC_DATA_0_OFFSET	KS884X_IADR4_P
244 #define KS884X_ACC_DATA_1_OFFSET	(KS884X_ACC_DATA_0_OFFSET + 1)
245 #define KS884X_ACC_DATA_2_OFFSET	KS884X_IADR5_P
246 #define KS884X_ACC_DATA_3_OFFSET	(KS884X_ACC_DATA_2_OFFSET + 1)
247 #define KS884X_ACC_DATA_4_OFFSET	KS884X_IADR2_P
248 #define KS884X_ACC_DATA_5_OFFSET	(KS884X_ACC_DATA_4_OFFSET + 1)
249 #define KS884X_ACC_DATA_6_OFFSET	KS884X_IADR3_P
250 #define KS884X_ACC_DATA_7_OFFSET	(KS884X_ACC_DATA_6_OFFSET + 1)
251 #define KS884X_ACC_DATA_8_OFFSET	KS884X_IADR1_P
252 
253 /* P1MBCR */
254 #define KS884X_P1MBCR_P			0x04D0
255 #define KS884X_P1MBSR_P			0x04D2
256 #define KS884X_PHY1ILR_P		0x04D4
257 #define KS884X_PHY1IHR_P		0x04D6
258 #define KS884X_P1ANAR_P			0x04D8
259 #define KS884X_P1ANLPR_P		0x04DA
260 
261 /* P2MBCR */
262 #define KS884X_P2MBCR_P			0x04E0
263 #define KS884X_P2MBSR_P			0x04E2
264 #define KS884X_PHY2ILR_P		0x04E4
265 #define KS884X_PHY2IHR_P		0x04E6
266 #define KS884X_P2ANAR_P			0x04E8
267 #define KS884X_P2ANLPR_P		0x04EA
268 
269 #define KS884X_PHY_1_CTRL_OFFSET	KS884X_P1MBCR_P
270 #define PHY_CTRL_INTERVAL		(KS884X_P2MBCR_P - KS884X_P1MBCR_P)
271 
272 #define KS884X_PHY_CTRL_OFFSET		0x00
273 
274 /* Mode Control Register */
275 #define PHY_REG_CTRL			0
276 
277 #define PHY_RESET			0x8000
278 #define PHY_LOOPBACK			0x4000
279 #define PHY_SPEED_100MBIT		0x2000
280 #define PHY_AUTO_NEG_ENABLE		0x1000
281 #define PHY_POWER_DOWN			0x0800
282 #define PHY_MII_DISABLE			0x0400
283 #define PHY_AUTO_NEG_RESTART		0x0200
284 #define PHY_FULL_DUPLEX			0x0100
285 #define PHY_COLLISION_TEST		0x0080
286 #define PHY_HP_MDIX			0x0020
287 #define PHY_FORCE_MDIX			0x0010
288 #define PHY_AUTO_MDIX_DISABLE		0x0008
289 #define PHY_REMOTE_FAULT_DISABLE	0x0004
290 #define PHY_TRANSMIT_DISABLE		0x0002
291 #define PHY_LED_DISABLE			0x0001
292 
293 #define KS884X_PHY_STATUS_OFFSET	0x02
294 
295 /* Mode Status Register */
296 #define PHY_REG_STATUS			1
297 
298 #define PHY_100BT4_CAPABLE		0x8000
299 #define PHY_100BTX_FD_CAPABLE		0x4000
300 #define PHY_100BTX_CAPABLE		0x2000
301 #define PHY_10BT_FD_CAPABLE		0x1000
302 #define PHY_10BT_CAPABLE		0x0800
303 #define PHY_MII_SUPPRESS_CAPABLE	0x0040
304 #define PHY_AUTO_NEG_ACKNOWLEDGE	0x0020
305 #define PHY_REMOTE_FAULT		0x0010
306 #define PHY_AUTO_NEG_CAPABLE		0x0008
307 #define PHY_LINK_STATUS			0x0004
308 #define PHY_JABBER_DETECT		0x0002
309 #define PHY_EXTENDED_CAPABILITY		0x0001
310 
311 #define KS884X_PHY_ID_1_OFFSET		0x04
312 #define KS884X_PHY_ID_2_OFFSET		0x06
313 
314 /* PHY Identifier Registers */
315 #define PHY_REG_ID_1			2
316 #define PHY_REG_ID_2			3
317 
318 #define KS884X_PHY_AUTO_NEG_OFFSET	0x08
319 
320 /* Auto-Negotiation Advertisement Register */
321 #define PHY_REG_AUTO_NEGOTIATION	4
322 
323 #define PHY_AUTO_NEG_NEXT_PAGE		0x8000
324 #define PHY_AUTO_NEG_REMOTE_FAULT	0x2000
325 /* Not supported. */
326 #define PHY_AUTO_NEG_ASYM_PAUSE		0x0800
327 #define PHY_AUTO_NEG_SYM_PAUSE		0x0400
328 #define PHY_AUTO_NEG_100BT4		0x0200
329 #define PHY_AUTO_NEG_100BTX_FD		0x0100
330 #define PHY_AUTO_NEG_100BTX		0x0080
331 #define PHY_AUTO_NEG_10BT_FD		0x0040
332 #define PHY_AUTO_NEG_10BT		0x0020
333 #define PHY_AUTO_NEG_SELECTOR		0x001F
334 #define PHY_AUTO_NEG_802_3		0x0001
335 
336 #define PHY_AUTO_NEG_PAUSE  (PHY_AUTO_NEG_SYM_PAUSE | PHY_AUTO_NEG_ASYM_PAUSE)
337 
338 #define KS884X_PHY_REMOTE_CAP_OFFSET	0x0A
339 
340 /* Auto-Negotiation Link Partner Ability Register */
341 #define PHY_REG_REMOTE_CAPABILITY	5
342 
343 #define PHY_REMOTE_NEXT_PAGE		0x8000
344 #define PHY_REMOTE_ACKNOWLEDGE		0x4000
345 #define PHY_REMOTE_REMOTE_FAULT		0x2000
346 #define PHY_REMOTE_SYM_PAUSE		0x0400
347 #define PHY_REMOTE_100BTX_FD		0x0100
348 #define PHY_REMOTE_100BTX		0x0080
349 #define PHY_REMOTE_10BT_FD		0x0040
350 #define PHY_REMOTE_10BT			0x0020
351 
352 /* P1VCT */
353 #define KS884X_P1VCT_P			0x04F0
354 #define KS884X_P1PHYCTRL_P		0x04F2
355 
356 /* P2VCT */
357 #define KS884X_P2VCT_P			0x04F4
358 #define KS884X_P2PHYCTRL_P		0x04F6
359 
360 #define KS884X_PHY_SPECIAL_OFFSET	KS884X_P1VCT_P
361 #define PHY_SPECIAL_INTERVAL		(KS884X_P2VCT_P - KS884X_P1VCT_P)
362 
363 #define KS884X_PHY_LINK_MD_OFFSET	0x00
364 
365 #define PHY_START_CABLE_DIAG		0x8000
366 #define PHY_CABLE_DIAG_RESULT		0x6000
367 #define PHY_CABLE_STAT_NORMAL		0x0000
368 #define PHY_CABLE_STAT_OPEN		0x2000
369 #define PHY_CABLE_STAT_SHORT		0x4000
370 #define PHY_CABLE_STAT_FAILED		0x6000
371 #define PHY_CABLE_10M_SHORT		0x1000
372 #define PHY_CABLE_FAULT_COUNTER		0x01FF
373 
374 #define KS884X_PHY_PHY_CTRL_OFFSET	0x02
375 
376 #define PHY_STAT_REVERSED_POLARITY	0x0020
377 #define PHY_STAT_MDIX			0x0010
378 #define PHY_FORCE_LINK			0x0008
379 #define PHY_POWER_SAVING_DISABLE	0x0004
380 #define PHY_REMOTE_LOOPBACK		0x0002
381 
382 /* SIDER */
383 #define KS884X_SIDER_P			0x0400
384 #define KS884X_CHIP_ID_OFFSET		KS884X_SIDER_P
385 #define KS884X_FAMILY_ID_OFFSET		(KS884X_CHIP_ID_OFFSET + 1)
386 
387 #define REG_FAMILY_ID			0x88
388 
389 #define REG_CHIP_ID_41			0x8810
390 #define REG_CHIP_ID_42			0x8800
391 
392 #define KS884X_CHIP_ID_MASK_41		0xFF10
393 #define KS884X_CHIP_ID_MASK		0xFFF0
394 #define KS884X_CHIP_ID_SHIFT		4
395 #define KS884X_REVISION_MASK		0x000E
396 #define KS884X_REVISION_SHIFT		1
397 #define KS8842_START			0x0001
398 
399 #define CHIP_IP_41_M			0x8810
400 #define CHIP_IP_42_M			0x8800
401 #define CHIP_IP_61_M			0x8890
402 #define CHIP_IP_62_M			0x8880
403 
404 #define CHIP_IP_41_P			0x8850
405 #define CHIP_IP_42_P			0x8840
406 #define CHIP_IP_61_P			0x88D0
407 #define CHIP_IP_62_P			0x88C0
408 
409 /* SGCR1 */
410 #define KS8842_SGCR1_P			0x0402
411 #define KS8842_SWITCH_CTRL_1_OFFSET	KS8842_SGCR1_P
412 
413 #define SWITCH_PASS_ALL			0x8000
414 #define SWITCH_TX_FLOW_CTRL		0x2000
415 #define SWITCH_RX_FLOW_CTRL		0x1000
416 #define SWITCH_CHECK_LENGTH		0x0800
417 #define SWITCH_AGING_ENABLE		0x0400
418 #define SWITCH_FAST_AGING		0x0200
419 #define SWITCH_AGGR_BACKOFF		0x0100
420 #define SWITCH_PASS_PAUSE		0x0008
421 #define SWITCH_LINK_AUTO_AGING		0x0001
422 
423 /* SGCR2 */
424 #define KS8842_SGCR2_P			0x0404
425 #define KS8842_SWITCH_CTRL_2_OFFSET	KS8842_SGCR2_P
426 
427 #define SWITCH_VLAN_ENABLE		0x8000
428 #define SWITCH_IGMP_SNOOP		0x4000
429 #define IPV6_MLD_SNOOP_ENABLE		0x2000
430 #define IPV6_MLD_SNOOP_OPTION		0x1000
431 #define PRIORITY_SCHEME_SELECT		0x0800
432 #define SWITCH_MIRROR_RX_TX		0x0100
433 #define UNICAST_VLAN_BOUNDARY		0x0080
434 #define MULTICAST_STORM_DISABLE		0x0040
435 #define SWITCH_BACK_PRESSURE		0x0020
436 #define FAIR_FLOW_CTRL			0x0010
437 #define NO_EXC_COLLISION_DROP		0x0008
438 #define SWITCH_HUGE_PACKET		0x0004
439 #define SWITCH_LEGAL_PACKET		0x0002
440 #define SWITCH_BUF_RESERVE		0x0001
441 
442 /* SGCR3 */
443 #define KS8842_SGCR3_P			0x0406
444 #define KS8842_SWITCH_CTRL_3_OFFSET	KS8842_SGCR3_P
445 
446 #define BROADCAST_STORM_RATE_LO		0xFF00
447 #define SWITCH_REPEATER			0x0080
448 #define SWITCH_HALF_DUPLEX		0x0040
449 #define SWITCH_FLOW_CTRL		0x0020
450 #define SWITCH_10_MBIT			0x0010
451 #define SWITCH_REPLACE_NULL_VID		0x0008
452 #define BROADCAST_STORM_RATE_HI		0x0007
453 
454 #define BROADCAST_STORM_RATE		0x07FF
455 
456 /* SGCR4 */
457 #define KS8842_SGCR4_P			0x0408
458 
459 /* SGCR5 */
460 #define KS8842_SGCR5_P			0x040A
461 #define KS8842_SWITCH_CTRL_5_OFFSET	KS8842_SGCR5_P
462 
463 #define LED_MODE			0x8200
464 #define LED_SPEED_DUPLEX_ACT		0x0000
465 #define LED_SPEED_DUPLEX_LINK_ACT	0x8000
466 #define LED_DUPLEX_10_100		0x0200
467 
468 /* SGCR6 */
469 #define KS8842_SGCR6_P			0x0410
470 #define KS8842_SWITCH_CTRL_6_OFFSET	KS8842_SGCR6_P
471 
472 #define KS8842_PRIORITY_MASK		3
473 #define KS8842_PRIORITY_SHIFT		2
474 
475 /* SGCR7 */
476 #define KS8842_SGCR7_P			0x0412
477 #define KS8842_SWITCH_CTRL_7_OFFSET	KS8842_SGCR7_P
478 
479 #define SWITCH_UNK_DEF_PORT_ENABLE	0x0008
480 #define SWITCH_UNK_DEF_PORT_3		0x0004
481 #define SWITCH_UNK_DEF_PORT_2		0x0002
482 #define SWITCH_UNK_DEF_PORT_1		0x0001
483 
484 /* MACAR1 */
485 #define KS8842_MACAR1_P			0x0470
486 #define KS8842_MACAR2_P			0x0472
487 #define KS8842_MACAR3_P			0x0474
488 #define KS8842_MAC_ADDR_1_OFFSET	KS8842_MACAR1_P
489 #define KS8842_MAC_ADDR_0_OFFSET	(KS8842_MAC_ADDR_1_OFFSET + 1)
490 #define KS8842_MAC_ADDR_3_OFFSET	KS8842_MACAR2_P
491 #define KS8842_MAC_ADDR_2_OFFSET	(KS8842_MAC_ADDR_3_OFFSET + 1)
492 #define KS8842_MAC_ADDR_5_OFFSET	KS8842_MACAR3_P
493 #define KS8842_MAC_ADDR_4_OFFSET	(KS8842_MAC_ADDR_5_OFFSET + 1)
494 
495 /* TOSR1 */
496 #define KS8842_TOSR1_P			0x0480
497 #define KS8842_TOSR2_P			0x0482
498 #define KS8842_TOSR3_P			0x0484
499 #define KS8842_TOSR4_P			0x0486
500 #define KS8842_TOSR5_P			0x0488
501 #define KS8842_TOSR6_P			0x048A
502 #define KS8842_TOSR7_P			0x0490
503 #define KS8842_TOSR8_P			0x0492
504 #define KS8842_TOS_1_OFFSET		KS8842_TOSR1_P
505 #define KS8842_TOS_2_OFFSET		KS8842_TOSR2_P
506 #define KS8842_TOS_3_OFFSET		KS8842_TOSR3_P
507 #define KS8842_TOS_4_OFFSET		KS8842_TOSR4_P
508 #define KS8842_TOS_5_OFFSET		KS8842_TOSR5_P
509 #define KS8842_TOS_6_OFFSET		KS8842_TOSR6_P
510 
511 #define KS8842_TOS_7_OFFSET		KS8842_TOSR7_P
512 #define KS8842_TOS_8_OFFSET		KS8842_TOSR8_P
513 
514 /* P1CR1 */
515 #define KS8842_P1CR1_P			0x0500
516 #define KS8842_P1CR2_P			0x0502
517 #define KS8842_P1VIDR_P			0x0504
518 #define KS8842_P1CR3_P			0x0506
519 #define KS8842_P1IRCR_P			0x0508
520 #define KS8842_P1ERCR_P			0x050A
521 #define KS884X_P1SCSLMD_P		0x0510
522 #define KS884X_P1CR4_P			0x0512
523 #define KS884X_P1SR_P			0x0514
524 
525 /* P2CR1 */
526 #define KS8842_P2CR1_P			0x0520
527 #define KS8842_P2CR2_P			0x0522
528 #define KS8842_P2VIDR_P			0x0524
529 #define KS8842_P2CR3_P			0x0526
530 #define KS8842_P2IRCR_P			0x0528
531 #define KS8842_P2ERCR_P			0x052A
532 #define KS884X_P2SCSLMD_P		0x0530
533 #define KS884X_P2CR4_P			0x0532
534 #define KS884X_P2SR_P			0x0534
535 
536 /* P3CR1 */
537 #define KS8842_P3CR1_P			0x0540
538 #define KS8842_P3CR2_P			0x0542
539 #define KS8842_P3VIDR_P			0x0544
540 #define KS8842_P3CR3_P			0x0546
541 #define KS8842_P3IRCR_P			0x0548
542 #define KS8842_P3ERCR_P			0x054A
543 
544 #define KS8842_PORT_1_CTRL_1		KS8842_P1CR1_P
545 #define KS8842_PORT_2_CTRL_1		KS8842_P2CR1_P
546 #define KS8842_PORT_3_CTRL_1		KS8842_P3CR1_P
547 
548 #define PORT_CTRL_ADDR(port, addr)		\
549 	(addr = KS8842_PORT_1_CTRL_1 + (port) *	\
550 		(KS8842_PORT_2_CTRL_1 - KS8842_PORT_1_CTRL_1))
551 
552 #define KS8842_PORT_CTRL_1_OFFSET	0x00
553 
554 #define PORT_BROADCAST_STORM		0x0080
555 #define PORT_DIFFSERV_ENABLE		0x0040
556 #define PORT_802_1P_ENABLE		0x0020
557 #define PORT_BASED_PRIORITY_MASK	0x0018
558 #define PORT_BASED_PRIORITY_BASE	0x0003
559 #define PORT_BASED_PRIORITY_SHIFT	3
560 #define PORT_BASED_PRIORITY_0		0x0000
561 #define PORT_BASED_PRIORITY_1		0x0008
562 #define PORT_BASED_PRIORITY_2		0x0010
563 #define PORT_BASED_PRIORITY_3		0x0018
564 #define PORT_INSERT_TAG			0x0004
565 #define PORT_REMOVE_TAG			0x0002
566 #define PORT_PRIO_QUEUE_ENABLE		0x0001
567 
568 #define KS8842_PORT_CTRL_2_OFFSET	0x02
569 
570 #define PORT_INGRESS_VLAN_FILTER	0x4000
571 #define PORT_DISCARD_NON_VID		0x2000
572 #define PORT_FORCE_FLOW_CTRL		0x1000
573 #define PORT_BACK_PRESSURE		0x0800
574 #define PORT_TX_ENABLE			0x0400
575 #define PORT_RX_ENABLE			0x0200
576 #define PORT_LEARN_DISABLE		0x0100
577 #define PORT_MIRROR_SNIFFER		0x0080
578 #define PORT_MIRROR_RX			0x0040
579 #define PORT_MIRROR_TX			0x0020
580 #define PORT_USER_PRIORITY_CEILING	0x0008
581 #define PORT_VLAN_MEMBERSHIP		0x0007
582 
583 #define KS8842_PORT_CTRL_VID_OFFSET	0x04
584 
585 #define PORT_DEFAULT_VID		0x0001
586 
587 #define KS8842_PORT_CTRL_3_OFFSET	0x06
588 
589 #define PORT_INGRESS_LIMIT_MODE		0x000C
590 #define PORT_INGRESS_ALL		0x0000
591 #define PORT_INGRESS_UNICAST		0x0004
592 #define PORT_INGRESS_MULTICAST		0x0008
593 #define PORT_INGRESS_BROADCAST		0x000C
594 #define PORT_COUNT_IFG			0x0002
595 #define PORT_COUNT_PREAMBLE		0x0001
596 
597 #define KS8842_PORT_IN_RATE_OFFSET	0x08
598 #define KS8842_PORT_OUT_RATE_OFFSET	0x0A
599 
600 #define PORT_PRIORITY_RATE		0x0F
601 #define PORT_PRIORITY_RATE_SHIFT	4
602 
603 #define KS884X_PORT_LINK_MD		0x10
604 
605 #define PORT_CABLE_10M_SHORT		0x8000
606 #define PORT_CABLE_DIAG_RESULT		0x6000
607 #define PORT_CABLE_STAT_NORMAL		0x0000
608 #define PORT_CABLE_STAT_OPEN		0x2000
609 #define PORT_CABLE_STAT_SHORT		0x4000
610 #define PORT_CABLE_STAT_FAILED		0x6000
611 #define PORT_START_CABLE_DIAG		0x1000
612 #define PORT_FORCE_LINK			0x0800
613 #define PORT_POWER_SAVING_DISABLE	0x0400
614 #define PORT_PHY_REMOTE_LOOPBACK	0x0200
615 #define PORT_CABLE_FAULT_COUNTER	0x01FF
616 
617 #define KS884X_PORT_CTRL_4_OFFSET	0x12
618 
619 #define PORT_LED_OFF			0x8000
620 #define PORT_TX_DISABLE			0x4000
621 #define PORT_AUTO_NEG_RESTART		0x2000
622 #define PORT_REMOTE_FAULT_DISABLE	0x1000
623 #define PORT_POWER_DOWN			0x0800
624 #define PORT_AUTO_MDIX_DISABLE		0x0400
625 #define PORT_FORCE_MDIX			0x0200
626 #define PORT_LOOPBACK			0x0100
627 #define PORT_AUTO_NEG_ENABLE		0x0080
628 #define PORT_FORCE_100_MBIT		0x0040
629 #define PORT_FORCE_FULL_DUPLEX		0x0020
630 #define PORT_AUTO_NEG_SYM_PAUSE		0x0010
631 #define PORT_AUTO_NEG_100BTX_FD		0x0008
632 #define PORT_AUTO_NEG_100BTX		0x0004
633 #define PORT_AUTO_NEG_10BT_FD		0x0002
634 #define PORT_AUTO_NEG_10BT		0x0001
635 
636 #define KS884X_PORT_STATUS_OFFSET	0x14
637 
638 #define PORT_HP_MDIX			0x8000
639 #define PORT_REVERSED_POLARITY		0x2000
640 #define PORT_RX_FLOW_CTRL		0x0800
641 #define PORT_TX_FLOW_CTRL		0x1000
642 #define PORT_STATUS_SPEED_100MBIT	0x0400
643 #define PORT_STATUS_FULL_DUPLEX		0x0200
644 #define PORT_REMOTE_FAULT		0x0100
645 #define PORT_MDIX_STATUS		0x0080
646 #define PORT_AUTO_NEG_COMPLETE		0x0040
647 #define PORT_STATUS_LINK_GOOD		0x0020
648 #define PORT_REMOTE_SYM_PAUSE		0x0010
649 #define PORT_REMOTE_100BTX_FD		0x0008
650 #define PORT_REMOTE_100BTX		0x0004
651 #define PORT_REMOTE_10BT_FD		0x0002
652 #define PORT_REMOTE_10BT		0x0001
653 
654 /*
655 #define STATIC_MAC_TABLE_ADDR		00-0000FFFF-FFFFFFFF
656 #define STATIC_MAC_TABLE_FWD_PORTS	00-00070000-00000000
657 #define STATIC_MAC_TABLE_VALID		00-00080000-00000000
658 #define STATIC_MAC_TABLE_OVERRIDE	00-00100000-00000000
659 #define STATIC_MAC_TABLE_USE_FID	00-00200000-00000000
660 #define STATIC_MAC_TABLE_FID		00-03C00000-00000000
661 */
662 
663 #define STATIC_MAC_TABLE_ADDR		0x0000FFFF
664 #define STATIC_MAC_TABLE_FWD_PORTS	0x00070000
665 #define STATIC_MAC_TABLE_VALID		0x00080000
666 #define STATIC_MAC_TABLE_OVERRIDE	0x00100000
667 #define STATIC_MAC_TABLE_USE_FID	0x00200000
668 #define STATIC_MAC_TABLE_FID		0x03C00000
669 
670 #define STATIC_MAC_FWD_PORTS_SHIFT	16
671 #define STATIC_MAC_FID_SHIFT		22
672 
673 /*
674 #define VLAN_TABLE_VID			00-00000000-00000FFF
675 #define VLAN_TABLE_FID			00-00000000-0000F000
676 #define VLAN_TABLE_MEMBERSHIP		00-00000000-00070000
677 #define VLAN_TABLE_VALID		00-00000000-00080000
678 */
679 
680 #define VLAN_TABLE_VID			0x00000FFF
681 #define VLAN_TABLE_FID			0x0000F000
682 #define VLAN_TABLE_MEMBERSHIP		0x00070000
683 #define VLAN_TABLE_VALID		0x00080000
684 
685 #define VLAN_TABLE_FID_SHIFT		12
686 #define VLAN_TABLE_MEMBERSHIP_SHIFT	16
687 
688 /*
689 #define DYNAMIC_MAC_TABLE_ADDR		00-0000FFFF-FFFFFFFF
690 #define DYNAMIC_MAC_TABLE_FID		00-000F0000-00000000
691 #define DYNAMIC_MAC_TABLE_SRC_PORT	00-00300000-00000000
692 #define DYNAMIC_MAC_TABLE_TIMESTAMP	00-00C00000-00000000
693 #define DYNAMIC_MAC_TABLE_ENTRIES	03-FF000000-00000000
694 #define DYNAMIC_MAC_TABLE_MAC_EMPTY	04-00000000-00000000
695 #define DYNAMIC_MAC_TABLE_RESERVED	78-00000000-00000000
696 #define DYNAMIC_MAC_TABLE_NOT_READY	80-00000000-00000000
697 */
698 
699 #define DYNAMIC_MAC_TABLE_ADDR		0x0000FFFF
700 #define DYNAMIC_MAC_TABLE_FID		0x000F0000
701 #define DYNAMIC_MAC_TABLE_SRC_PORT	0x00300000
702 #define DYNAMIC_MAC_TABLE_TIMESTAMP	0x00C00000
703 #define DYNAMIC_MAC_TABLE_ENTRIES	0xFF000000
704 
705 #define DYNAMIC_MAC_TABLE_ENTRIES_H	0x03
706 #define DYNAMIC_MAC_TABLE_MAC_EMPTY	0x04
707 #define DYNAMIC_MAC_TABLE_RESERVED	0x78
708 #define DYNAMIC_MAC_TABLE_NOT_READY	0x80
709 
710 #define DYNAMIC_MAC_FID_SHIFT		16
711 #define DYNAMIC_MAC_SRC_PORT_SHIFT	20
712 #define DYNAMIC_MAC_TIMESTAMP_SHIFT	22
713 #define DYNAMIC_MAC_ENTRIES_SHIFT	24
714 #define DYNAMIC_MAC_ENTRIES_H_SHIFT	8
715 
716 /*
717 #define MIB_COUNTER_VALUE		00-00000000-3FFFFFFF
718 #define MIB_COUNTER_VALID		00-00000000-40000000
719 #define MIB_COUNTER_OVERFLOW		00-00000000-80000000
720 */
721 
722 #define MIB_COUNTER_VALUE		0x3FFFFFFF
723 #define MIB_COUNTER_VALID		0x40000000
724 #define MIB_COUNTER_OVERFLOW		0x80000000
725 
726 #define MIB_PACKET_DROPPED		0x0000FFFF
727 
728 #define KS_MIB_PACKET_DROPPED_TX_0	0x100
729 #define KS_MIB_PACKET_DROPPED_TX_1	0x101
730 #define KS_MIB_PACKET_DROPPED_TX	0x102
731 #define KS_MIB_PACKET_DROPPED_RX_0	0x103
732 #define KS_MIB_PACKET_DROPPED_RX_1	0x104
733 #define KS_MIB_PACKET_DROPPED_RX	0x105
734 
735 /* Change default LED mode. */
736 #define SET_DEFAULT_LED			LED_SPEED_DUPLEX_ACT
737 
738 #define MAC_ADDR_ORDER(i)		(ETH_ALEN - 1 - (i))
739 
740 #define MAX_ETHERNET_BODY_SIZE		1500
741 #define ETHERNET_HEADER_SIZE		(14 + VLAN_HLEN)
742 
743 #define MAX_ETHERNET_PACKET_SIZE	\
744 	(MAX_ETHERNET_BODY_SIZE + ETHERNET_HEADER_SIZE)
745 
746 #define REGULAR_RX_BUF_SIZE		(MAX_ETHERNET_PACKET_SIZE + 4)
747 #define MAX_RX_BUF_SIZE			(1912 + 4)
748 
749 #define ADDITIONAL_ENTRIES		16
750 #define MAX_MULTICAST_LIST		32
751 
752 #define HW_MULTICAST_SIZE		8
753 
754 #define HW_TO_DEV_PORT(port)		(port - 1)
755 
756 enum {
757 	media_connected,
758 	media_disconnected
759 };
760 
761 enum {
762 	OID_COUNTER_UNKOWN,
763 
764 	OID_COUNTER_FIRST,
765 
766 	/* total transmit errors */
767 	OID_COUNTER_XMIT_ERROR,
768 
769 	/* total receive errors */
770 	OID_COUNTER_RCV_ERROR,
771 
772 	OID_COUNTER_LAST
773 };
774 
775 /*
776  * Hardware descriptor definitions
777  */
778 
779 #define DESC_ALIGNMENT			16
780 #define BUFFER_ALIGNMENT		8
781 
782 #define NUM_OF_RX_DESC			64
783 #define NUM_OF_TX_DESC			64
784 
785 #define KS_DESC_RX_FRAME_LEN		0x000007FF
786 #define KS_DESC_RX_FRAME_TYPE		0x00008000
787 #define KS_DESC_RX_ERROR_CRC		0x00010000
788 #define KS_DESC_RX_ERROR_RUNT		0x00020000
789 #define KS_DESC_RX_ERROR_TOO_LONG	0x00040000
790 #define KS_DESC_RX_ERROR_PHY		0x00080000
791 #define KS884X_DESC_RX_PORT_MASK	0x00300000
792 #define KS_DESC_RX_MULTICAST		0x01000000
793 #define KS_DESC_RX_ERROR		0x02000000
794 #define KS_DESC_RX_ERROR_CSUM_UDP	0x04000000
795 #define KS_DESC_RX_ERROR_CSUM_TCP	0x08000000
796 #define KS_DESC_RX_ERROR_CSUM_IP	0x10000000
797 #define KS_DESC_RX_LAST			0x20000000
798 #define KS_DESC_RX_FIRST		0x40000000
799 #define KS_DESC_RX_ERROR_COND		\
800 	(KS_DESC_RX_ERROR_CRC |		\
801 	KS_DESC_RX_ERROR_RUNT |		\
802 	KS_DESC_RX_ERROR_PHY |		\
803 	KS_DESC_RX_ERROR_TOO_LONG)
804 
805 #define KS_DESC_HW_OWNED		0x80000000
806 
807 #define KS_DESC_BUF_SIZE		0x000007FF
808 #define KS884X_DESC_TX_PORT_MASK	0x00300000
809 #define KS_DESC_END_OF_RING		0x02000000
810 #define KS_DESC_TX_CSUM_GEN_UDP		0x04000000
811 #define KS_DESC_TX_CSUM_GEN_TCP		0x08000000
812 #define KS_DESC_TX_CSUM_GEN_IP		0x10000000
813 #define KS_DESC_TX_LAST			0x20000000
814 #define KS_DESC_TX_FIRST		0x40000000
815 #define KS_DESC_TX_INTERRUPT		0x80000000
816 
817 #define KS_DESC_PORT_SHIFT		20
818 
819 #define KS_DESC_RX_MASK			(KS_DESC_BUF_SIZE)
820 
821 #define KS_DESC_TX_MASK			\
822 	(KS_DESC_TX_INTERRUPT |		\
823 	KS_DESC_TX_FIRST |		\
824 	KS_DESC_TX_LAST |		\
825 	KS_DESC_TX_CSUM_GEN_IP |	\
826 	KS_DESC_TX_CSUM_GEN_TCP |	\
827 	KS_DESC_TX_CSUM_GEN_UDP |	\
828 	KS_DESC_BUF_SIZE)
829 
830 struct ksz_desc_rx_stat {
831 #ifdef __BIG_ENDIAN_BITFIELD
832 	u32 hw_owned:1;
833 	u32 first_desc:1;
834 	u32 last_desc:1;
835 	u32 csum_err_ip:1;
836 	u32 csum_err_tcp:1;
837 	u32 csum_err_udp:1;
838 	u32 error:1;
839 	u32 multicast:1;
840 	u32 src_port:4;
841 	u32 err_phy:1;
842 	u32 err_too_long:1;
843 	u32 err_runt:1;
844 	u32 err_crc:1;
845 	u32 frame_type:1;
846 	u32 reserved1:4;
847 	u32 frame_len:11;
848 #else
849 	u32 frame_len:11;
850 	u32 reserved1:4;
851 	u32 frame_type:1;
852 	u32 err_crc:1;
853 	u32 err_runt:1;
854 	u32 err_too_long:1;
855 	u32 err_phy:1;
856 	u32 src_port:4;
857 	u32 multicast:1;
858 	u32 error:1;
859 	u32 csum_err_udp:1;
860 	u32 csum_err_tcp:1;
861 	u32 csum_err_ip:1;
862 	u32 last_desc:1;
863 	u32 first_desc:1;
864 	u32 hw_owned:1;
865 #endif
866 };
867 
868 struct ksz_desc_tx_stat {
869 #ifdef __BIG_ENDIAN_BITFIELD
870 	u32 hw_owned:1;
871 	u32 reserved1:31;
872 #else
873 	u32 reserved1:31;
874 	u32 hw_owned:1;
875 #endif
876 };
877 
878 struct ksz_desc_rx_buf {
879 #ifdef __BIG_ENDIAN_BITFIELD
880 	u32 reserved4:6;
881 	u32 end_of_ring:1;
882 	u32 reserved3:14;
883 	u32 buf_size:11;
884 #else
885 	u32 buf_size:11;
886 	u32 reserved3:14;
887 	u32 end_of_ring:1;
888 	u32 reserved4:6;
889 #endif
890 };
891 
892 struct ksz_desc_tx_buf {
893 #ifdef __BIG_ENDIAN_BITFIELD
894 	u32 intr:1;
895 	u32 first_seg:1;
896 	u32 last_seg:1;
897 	u32 csum_gen_ip:1;
898 	u32 csum_gen_tcp:1;
899 	u32 csum_gen_udp:1;
900 	u32 end_of_ring:1;
901 	u32 reserved4:1;
902 	u32 dest_port:4;
903 	u32 reserved3:9;
904 	u32 buf_size:11;
905 #else
906 	u32 buf_size:11;
907 	u32 reserved3:9;
908 	u32 dest_port:4;
909 	u32 reserved4:1;
910 	u32 end_of_ring:1;
911 	u32 csum_gen_udp:1;
912 	u32 csum_gen_tcp:1;
913 	u32 csum_gen_ip:1;
914 	u32 last_seg:1;
915 	u32 first_seg:1;
916 	u32 intr:1;
917 #endif
918 };
919 
920 union desc_stat {
921 	struct ksz_desc_rx_stat rx;
922 	struct ksz_desc_tx_stat tx;
923 	u32 data;
924 };
925 
926 union desc_buf {
927 	struct ksz_desc_rx_buf rx;
928 	struct ksz_desc_tx_buf tx;
929 	u32 data;
930 };
931 
932 /**
933  * struct ksz_hw_desc - Hardware descriptor data structure
934  * @ctrl:	Descriptor control value.
935  * @buf:	Descriptor buffer value.
936  * @addr:	Physical address of memory buffer.
937  * @next:	Pointer to next hardware descriptor.
938  */
939 struct ksz_hw_desc {
940 	union desc_stat ctrl;
941 	union desc_buf buf;
942 	u32 addr;
943 	u32 next;
944 };
945 
946 /**
947  * struct ksz_sw_desc - Software descriptor data structure
948  * @ctrl:	Descriptor control value.
949  * @buf:	Descriptor buffer value.
950  * @buf_size:	Current buffers size value in hardware descriptor.
951  */
952 struct ksz_sw_desc {
953 	union desc_stat ctrl;
954 	union desc_buf buf;
955 	u32 buf_size;
956 };
957 
958 /**
959  * struct ksz_dma_buf - OS dependent DMA buffer data structure
960  * @skb:	Associated socket buffer.
961  * @dma:	Associated physical DMA address.
962  * len:		Actual len used.
963  */
964 struct ksz_dma_buf {
965 	struct sk_buff *skb;
966 	dma_addr_t dma;
967 	int len;
968 };
969 
970 /**
971  * struct ksz_desc - Descriptor structure
972  * @phw:	Hardware descriptor pointer to uncached physical memory.
973  * @sw:		Cached memory to hold hardware descriptor values for
974  * 		manipulation.
975  * @dma_buf:	Operating system dependent data structure to hold physical
976  * 		memory buffer allocation information.
977  */
978 struct ksz_desc {
979 	struct ksz_hw_desc *phw;
980 	struct ksz_sw_desc sw;
981 	struct ksz_dma_buf dma_buf;
982 };
983 
984 #define DMA_BUFFER(desc)  ((struct ksz_dma_buf *)(&(desc)->dma_buf))
985 
986 /**
987  * struct ksz_desc_info - Descriptor information data structure
988  * @ring:	First descriptor in the ring.
989  * @cur:	Current descriptor being manipulated.
990  * @ring_virt:	First hardware descriptor in the ring.
991  * @ring_phys:	The physical address of the first descriptor of the ring.
992  * @size:	Size of hardware descriptor.
993  * @alloc:	Number of descriptors allocated.
994  * @avail:	Number of descriptors available for use.
995  * @last:	Index for last descriptor released to hardware.
996  * @next:	Index for next descriptor available for use.
997  * @mask:	Mask for index wrapping.
998  */
999 struct ksz_desc_info {
1000 	struct ksz_desc *ring;
1001 	struct ksz_desc *cur;
1002 	struct ksz_hw_desc *ring_virt;
1003 	u32 ring_phys;
1004 	int size;
1005 	int alloc;
1006 	int avail;
1007 	int last;
1008 	int next;
1009 	int mask;
1010 };
1011 
1012 /*
1013  * KSZ8842 switch definitions
1014  */
1015 
1016 enum {
1017 	TABLE_STATIC_MAC = 0,
1018 	TABLE_VLAN,
1019 	TABLE_DYNAMIC_MAC,
1020 	TABLE_MIB
1021 };
1022 
1023 #define LEARNED_MAC_TABLE_ENTRIES	1024
1024 #define STATIC_MAC_TABLE_ENTRIES	8
1025 
1026 /**
1027  * struct ksz_mac_table - Static MAC table data structure
1028  * @mac_addr:	MAC address to filter.
1029  * @vid:	VID value.
1030  * @fid:	FID value.
1031  * @ports:	Port membership.
1032  * @override:	Override setting.
1033  * @use_fid:	FID use setting.
1034  * @valid:	Valid setting indicating the entry is being used.
1035  */
1036 struct ksz_mac_table {
1037 	u8 mac_addr[ETH_ALEN];
1038 	u16 vid;
1039 	u8 fid;
1040 	u8 ports;
1041 	u8 override:1;
1042 	u8 use_fid:1;
1043 	u8 valid:1;
1044 };
1045 
1046 #define VLAN_TABLE_ENTRIES		16
1047 
1048 /**
1049  * struct ksz_vlan_table - VLAN table data structure
1050  * @vid:	VID value.
1051  * @fid:	FID value.
1052  * @member:	Port membership.
1053  */
1054 struct ksz_vlan_table {
1055 	u16 vid;
1056 	u8 fid;
1057 	u8 member;
1058 };
1059 
1060 #define DIFFSERV_ENTRIES		64
1061 #define PRIO_802_1P_ENTRIES		8
1062 #define PRIO_QUEUES			4
1063 
1064 #define SWITCH_PORT_NUM			2
1065 #define TOTAL_PORT_NUM			(SWITCH_PORT_NUM + 1)
1066 #define HOST_MASK			(1 << SWITCH_PORT_NUM)
1067 #define PORT_MASK			7
1068 
1069 #define MAIN_PORT			0
1070 #define OTHER_PORT			1
1071 #define HOST_PORT			SWITCH_PORT_NUM
1072 
1073 #define PORT_COUNTER_NUM		0x20
1074 #define TOTAL_PORT_COUNTER_NUM		(PORT_COUNTER_NUM + 2)
1075 
1076 #define MIB_COUNTER_RX_LO_PRIORITY	0x00
1077 #define MIB_COUNTER_RX_HI_PRIORITY	0x01
1078 #define MIB_COUNTER_RX_UNDERSIZE	0x02
1079 #define MIB_COUNTER_RX_FRAGMENT		0x03
1080 #define MIB_COUNTER_RX_OVERSIZE		0x04
1081 #define MIB_COUNTER_RX_JABBER		0x05
1082 #define MIB_COUNTER_RX_SYMBOL_ERR	0x06
1083 #define MIB_COUNTER_RX_CRC_ERR		0x07
1084 #define MIB_COUNTER_RX_ALIGNMENT_ERR	0x08
1085 #define MIB_COUNTER_RX_CTRL_8808	0x09
1086 #define MIB_COUNTER_RX_PAUSE		0x0A
1087 #define MIB_COUNTER_RX_BROADCAST	0x0B
1088 #define MIB_COUNTER_RX_MULTICAST	0x0C
1089 #define MIB_COUNTER_RX_UNICAST		0x0D
1090 #define MIB_COUNTER_RX_OCTET_64		0x0E
1091 #define MIB_COUNTER_RX_OCTET_65_127	0x0F
1092 #define MIB_COUNTER_RX_OCTET_128_255	0x10
1093 #define MIB_COUNTER_RX_OCTET_256_511	0x11
1094 #define MIB_COUNTER_RX_OCTET_512_1023	0x12
1095 #define MIB_COUNTER_RX_OCTET_1024_1522	0x13
1096 #define MIB_COUNTER_TX_LO_PRIORITY	0x14
1097 #define MIB_COUNTER_TX_HI_PRIORITY	0x15
1098 #define MIB_COUNTER_TX_LATE_COLLISION	0x16
1099 #define MIB_COUNTER_TX_PAUSE		0x17
1100 #define MIB_COUNTER_TX_BROADCAST	0x18
1101 #define MIB_COUNTER_TX_MULTICAST	0x19
1102 #define MIB_COUNTER_TX_UNICAST		0x1A
1103 #define MIB_COUNTER_TX_DEFERRED		0x1B
1104 #define MIB_COUNTER_TX_TOTAL_COLLISION	0x1C
1105 #define MIB_COUNTER_TX_EXCESS_COLLISION	0x1D
1106 #define MIB_COUNTER_TX_SINGLE_COLLISION	0x1E
1107 #define MIB_COUNTER_TX_MULTI_COLLISION	0x1F
1108 
1109 #define MIB_COUNTER_RX_DROPPED_PACKET	0x20
1110 #define MIB_COUNTER_TX_DROPPED_PACKET	0x21
1111 
1112 /**
1113  * struct ksz_port_mib - Port MIB data structure
1114  * @cnt_ptr:	Current pointer to MIB counter index.
1115  * @link_down:	Indication the link has just gone down.
1116  * @state:	Connection status of the port.
1117  * @mib_start:	The starting counter index.  Some ports do not start at 0.
1118  * @counter:	64-bit MIB counter value.
1119  * @dropped:	Temporary buffer to remember last read packet dropped values.
1120  *
1121  * MIB counters needs to be read periodically so that counters do not get
1122  * overflowed and give incorrect values.  A right balance is needed to
1123  * satisfy this condition and not waste too much CPU time.
1124  *
1125  * It is pointless to read MIB counters when the port is disconnected.  The
1126  * @state provides the connection status so that MIB counters are read only
1127  * when the port is connected.  The @link_down indicates the port is just
1128  * disconnected so that all MIB counters are read one last time to update the
1129  * information.
1130  */
1131 struct ksz_port_mib {
1132 	u8 cnt_ptr;
1133 	u8 link_down;
1134 	u8 state;
1135 	u8 mib_start;
1136 
1137 	u64 counter[TOTAL_PORT_COUNTER_NUM];
1138 	u32 dropped[2];
1139 };
1140 
1141 /**
1142  * struct ksz_port_cfg - Port configuration data structure
1143  * @vid:	VID value.
1144  * @member:	Port membership.
1145  * @port_prio:	Port priority.
1146  * @rx_rate:	Receive priority rate.
1147  * @tx_rate:	Transmit priority rate.
1148  * @stp_state:	Current Spanning Tree Protocol state.
1149  */
1150 struct ksz_port_cfg {
1151 	u16 vid;
1152 	u8 member;
1153 	u8 port_prio;
1154 	u32 rx_rate[PRIO_QUEUES];
1155 	u32 tx_rate[PRIO_QUEUES];
1156 	int stp_state;
1157 };
1158 
1159 /**
1160  * struct ksz_switch - KSZ8842 switch data structure
1161  * @mac_table:	MAC table entries information.
1162  * @vlan_table:	VLAN table entries information.
1163  * @port_cfg:	Port configuration information.
1164  * @diffserv:	DiffServ priority settings.  Possible values from 6-bit of ToS
1165  * 		(bit7 ~ bit2) field.
1166  * @p_802_1p:	802.1P priority settings.  Possible values from 3-bit of 802.1p
1167  * 		Tag priority field.
1168  * @br_addr:	Bridge address.  Used for STP.
1169  * @other_addr:	Other MAC address.  Used for multiple network device mode.
1170  * @broad_per:	Broadcast storm percentage.
1171  * @member:	Current port membership.  Used for STP.
1172  */
1173 struct ksz_switch {
1174 	struct ksz_mac_table mac_table[STATIC_MAC_TABLE_ENTRIES];
1175 	struct ksz_vlan_table vlan_table[VLAN_TABLE_ENTRIES];
1176 	struct ksz_port_cfg port_cfg[TOTAL_PORT_NUM];
1177 
1178 	u8 diffserv[DIFFSERV_ENTRIES];
1179 	u8 p_802_1p[PRIO_802_1P_ENTRIES];
1180 
1181 	u8 br_addr[ETH_ALEN];
1182 	u8 other_addr[ETH_ALEN];
1183 
1184 	u8 broad_per;
1185 	u8 member;
1186 };
1187 
1188 #define TX_RATE_UNIT			10000
1189 
1190 /**
1191  * struct ksz_port_info - Port information data structure
1192  * @state:	Connection status of the port.
1193  * @tx_rate:	Transmit rate divided by 10000 to get Mbit.
1194  * @duplex:	Duplex mode.
1195  * @advertised:	Advertised auto-negotiation setting.  Used to determine link.
1196  * @partner:	Auto-negotiation partner setting.  Used to determine link.
1197  * @port_id:	Port index to access actual hardware register.
1198  * @pdev:	Pointer to OS dependent network device.
1199  */
1200 struct ksz_port_info {
1201 	uint state;
1202 	uint tx_rate;
1203 	u8 duplex;
1204 	u8 advertised;
1205 	u8 partner;
1206 	u8 port_id;
1207 	void *pdev;
1208 };
1209 
1210 #define MAX_TX_HELD_SIZE		52000
1211 
1212 /* Hardware features and bug fixes. */
1213 #define LINK_INT_WORKING		(1 << 0)
1214 #define SMALL_PACKET_TX_BUG		(1 << 1)
1215 #define HALF_DUPLEX_SIGNAL_BUG		(1 << 2)
1216 #define RX_HUGE_FRAME			(1 << 4)
1217 #define STP_SUPPORT			(1 << 8)
1218 
1219 /* Software overrides. */
1220 #define PAUSE_FLOW_CTRL			(1 << 0)
1221 #define FAST_AGING			(1 << 1)
1222 
1223 /**
1224  * struct ksz_hw - KSZ884X hardware data structure
1225  * @io:			Virtual address assigned.
1226  * @ksz_switch:		Pointer to KSZ8842 switch.
1227  * @port_info:		Port information.
1228  * @port_mib:		Port MIB information.
1229  * @dev_count:		Number of network devices this hardware supports.
1230  * @dst_ports:		Destination ports in switch for transmission.
1231  * @id:			Hardware ID.  Used for display only.
1232  * @mib_cnt:		Number of MIB counters this hardware has.
1233  * @mib_port_cnt:	Number of ports with MIB counters.
1234  * @tx_cfg:		Cached transmit control settings.
1235  * @rx_cfg:		Cached receive control settings.
1236  * @intr_mask:		Current interrupt mask.
1237  * @intr_set:		Current interrup set.
1238  * @intr_blocked:	Interrupt blocked.
1239  * @rx_desc_info:	Receive descriptor information.
1240  * @tx_desc_info:	Transmit descriptor information.
1241  * @tx_int_cnt:		Transmit interrupt count.  Used for TX optimization.
1242  * @tx_int_mask:	Transmit interrupt mask.  Used for TX optimization.
1243  * @tx_size:		Transmit data size.  Used for TX optimization.
1244  * 			The maximum is defined by MAX_TX_HELD_SIZE.
1245  * @perm_addr:		Permanent MAC address.
1246  * @override_addr:	Overridden MAC address.
1247  * @address:		Additional MAC address entries.
1248  * @addr_list_size:	Additional MAC address list size.
1249  * @mac_override:	Indication of MAC address overridden.
1250  * @promiscuous:	Counter to keep track of promiscuous mode set.
1251  * @all_multi:		Counter to keep track of all multicast mode set.
1252  * @multi_list:		Multicast address entries.
1253  * @multi_bits:		Cached multicast hash table settings.
1254  * @multi_list_size:	Multicast address list size.
1255  * @enabled:		Indication of hardware enabled.
1256  * @rx_stop:		Indication of receive process stop.
1257  * @features:		Hardware features to enable.
1258  * @overrides:		Hardware features to override.
1259  * @parent:		Pointer to parent, network device private structure.
1260  */
1261 struct ksz_hw {
1262 	void __iomem *io;
1263 
1264 	struct ksz_switch *ksz_switch;
1265 	struct ksz_port_info port_info[SWITCH_PORT_NUM];
1266 	struct ksz_port_mib port_mib[TOTAL_PORT_NUM];
1267 	int dev_count;
1268 	int dst_ports;
1269 	int id;
1270 	int mib_cnt;
1271 	int mib_port_cnt;
1272 
1273 	u32 tx_cfg;
1274 	u32 rx_cfg;
1275 	u32 intr_mask;
1276 	u32 intr_set;
1277 	uint intr_blocked;
1278 
1279 	struct ksz_desc_info rx_desc_info;
1280 	struct ksz_desc_info tx_desc_info;
1281 
1282 	int tx_int_cnt;
1283 	int tx_int_mask;
1284 	int tx_size;
1285 
1286 	u8 perm_addr[ETH_ALEN];
1287 	u8 override_addr[ETH_ALEN];
1288 	u8 address[ADDITIONAL_ENTRIES][ETH_ALEN];
1289 	u8 addr_list_size;
1290 	u8 mac_override;
1291 	u8 promiscuous;
1292 	u8 all_multi;
1293 	u8 multi_list[MAX_MULTICAST_LIST][ETH_ALEN];
1294 	u8 multi_bits[HW_MULTICAST_SIZE];
1295 	u8 multi_list_size;
1296 
1297 	u8 enabled;
1298 	u8 rx_stop;
1299 	u8 reserved2[1];
1300 
1301 	uint features;
1302 	uint overrides;
1303 
1304 	void *parent;
1305 };
1306 
1307 enum {
1308 	PHY_NO_FLOW_CTRL,
1309 	PHY_FLOW_CTRL,
1310 	PHY_TX_ONLY,
1311 	PHY_RX_ONLY
1312 };
1313 
1314 /**
1315  * struct ksz_port - Virtual port data structure
1316  * @duplex:		Duplex mode setting.  1 for half duplex, 2 for full
1317  * 			duplex, and 0 for auto, which normally results in full
1318  * 			duplex.
1319  * @speed:		Speed setting.  10 for 10 Mbit, 100 for 100 Mbit, and
1320  * 			0 for auto, which normally results in 100 Mbit.
1321  * @force_link:		Force link setting.  0 for auto-negotiation, and 1 for
1322  * 			force.
1323  * @flow_ctrl:		Flow control setting.  PHY_NO_FLOW_CTRL for no flow
1324  * 			control, and PHY_FLOW_CTRL for flow control.
1325  * 			PHY_TX_ONLY and PHY_RX_ONLY are not supported for 100
1326  * 			Mbit PHY.
1327  * @first_port:		Index of first port this port supports.
1328  * @mib_port_cnt:	Number of ports with MIB counters.
1329  * @port_cnt:		Number of ports this port supports.
1330  * @counter:		Port statistics counter.
1331  * @hw:			Pointer to hardware structure.
1332  * @linked:		Pointer to port information linked to this port.
1333  */
1334 struct ksz_port {
1335 	u8 duplex;
1336 	u8 speed;
1337 	u8 force_link;
1338 	u8 flow_ctrl;
1339 
1340 	int first_port;
1341 	int mib_port_cnt;
1342 	int port_cnt;
1343 	u64 counter[OID_COUNTER_LAST];
1344 
1345 	struct ksz_hw *hw;
1346 	struct ksz_port_info *linked;
1347 };
1348 
1349 /**
1350  * struct ksz_timer_info - Timer information data structure
1351  * @timer:	Kernel timer.
1352  * @cnt:	Running timer counter.
1353  * @max:	Number of times to run timer; -1 for infinity.
1354  * @period:	Timer period in jiffies.
1355  */
1356 struct ksz_timer_info {
1357 	struct timer_list timer;
1358 	int cnt;
1359 	int max;
1360 	int period;
1361 };
1362 
1363 /**
1364  * struct ksz_shared_mem - OS dependent shared memory data structure
1365  * @dma_addr:	Physical DMA address allocated.
1366  * @alloc_size:	Allocation size.
1367  * @phys:	Actual physical address used.
1368  * @alloc_virt:	Virtual address allocated.
1369  * @virt:	Actual virtual address used.
1370  */
1371 struct ksz_shared_mem {
1372 	dma_addr_t dma_addr;
1373 	uint alloc_size;
1374 	uint phys;
1375 	u8 *alloc_virt;
1376 	u8 *virt;
1377 };
1378 
1379 /**
1380  * struct ksz_counter_info - OS dependent counter information data structure
1381  * @counter:	Wait queue to wakeup after counters are read.
1382  * @time:	Next time in jiffies to read counter.
1383  * @read:	Indication of counters read in full or not.
1384  */
1385 struct ksz_counter_info {
1386 	wait_queue_head_t counter;
1387 	unsigned long time;
1388 	int read;
1389 };
1390 
1391 /**
1392  * struct dev_info - Network device information data structure
1393  * @dev:		Pointer to network device.
1394  * @pdev:		Pointer to PCI device.
1395  * @hw:			Hardware structure.
1396  * @desc_pool:		Physical memory used for descriptor pool.
1397  * @hwlock:		Spinlock to prevent hardware from accessing.
1398  * @lock:		Mutex lock to prevent device from accessing.
1399  * @dev_rcv:		Receive process function used.
1400  * @last_skb:		Socket buffer allocated for descriptor rx fragments.
1401  * @skb_index:		Buffer index for receiving fragments.
1402  * @skb_len:		Buffer length for receiving fragments.
1403  * @mib_read:		Workqueue to read MIB counters.
1404  * @mib_timer_info:	Timer to read MIB counters.
1405  * @counter:		Used for MIB reading.
1406  * @mtu:		Current MTU used.  The default is REGULAR_RX_BUF_SIZE;
1407  * 			the maximum is MAX_RX_BUF_SIZE.
1408  * @opened:		Counter to keep track of device open.
1409  * @rx_tasklet:		Receive processing tasklet.
1410  * @tx_tasklet:		Transmit processing tasklet.
1411  * @wol_enable:		Wake-on-LAN enable set by ethtool.
1412  * @wol_support:	Wake-on-LAN support used by ethtool.
1413  * @pme_wait:		Used for KSZ8841 power management.
1414  */
1415 struct dev_info {
1416 	struct net_device *dev;
1417 	struct pci_dev *pdev;
1418 
1419 	struct ksz_hw hw;
1420 	struct ksz_shared_mem desc_pool;
1421 
1422 	spinlock_t hwlock;
1423 	struct mutex lock;
1424 
1425 	int (*dev_rcv)(struct dev_info *);
1426 
1427 	struct sk_buff *last_skb;
1428 	int skb_index;
1429 	int skb_len;
1430 
1431 	struct work_struct mib_read;
1432 	struct ksz_timer_info mib_timer_info;
1433 	struct ksz_counter_info counter[TOTAL_PORT_NUM];
1434 
1435 	int mtu;
1436 	int opened;
1437 
1438 	struct tasklet_struct rx_tasklet;
1439 	struct tasklet_struct tx_tasklet;
1440 
1441 	int wol_enable;
1442 	int wol_support;
1443 	unsigned long pme_wait;
1444 };
1445 
1446 /**
1447  * struct dev_priv - Network device private data structure
1448  * @adapter:		Adapter device information.
1449  * @port:		Port information.
1450  * @monitor_time_info:	Timer to monitor ports.
1451  * @proc_sem:		Semaphore for proc accessing.
1452  * @id:			Device ID.
1453  * @mii_if:		MII interface information.
1454  * @advertising:	Temporary variable to store advertised settings.
1455  * @msg_enable:		The message flags controlling driver output.
1456  * @media_state:	The connection status of the device.
1457  * @multicast:		The all multicast state of the device.
1458  * @promiscuous:	The promiscuous state of the device.
1459  */
1460 struct dev_priv {
1461 	struct dev_info *adapter;
1462 	struct ksz_port port;
1463 	struct ksz_timer_info monitor_timer_info;
1464 
1465 	struct semaphore proc_sem;
1466 	int id;
1467 
1468 	struct mii_if_info mii_if;
1469 	u32 advertising;
1470 
1471 	u32 msg_enable;
1472 	int media_state;
1473 	int multicast;
1474 	int promiscuous;
1475 };
1476 
1477 #define DRV_NAME		"KSZ884X PCI"
1478 #define DEVICE_NAME		"KSZ884x PCI"
1479 #define DRV_VERSION		"1.0.0"
1480 #define DRV_RELDATE		"Feb 8, 2010"
1481 
1482 static char version[] =
1483 	"Micrel " DEVICE_NAME " " DRV_VERSION " (" DRV_RELDATE ")";
1484 
1485 static u8 DEFAULT_MAC_ADDRESS[] = { 0x00, 0x10, 0xA1, 0x88, 0x42, 0x01 };
1486 
1487 /*
1488  * Interrupt processing primary routines
1489  */
1490 
1491 static inline void hw_ack_intr(struct ksz_hw *hw, uint interrupt)
1492 {
1493 	writel(interrupt, hw->io + KS884X_INTERRUPTS_STATUS);
1494 }
1495 
1496 static inline void hw_dis_intr(struct ksz_hw *hw)
1497 {
1498 	hw->intr_blocked = hw->intr_mask;
1499 	writel(0, hw->io + KS884X_INTERRUPTS_ENABLE);
1500 	hw->intr_set = readl(hw->io + KS884X_INTERRUPTS_ENABLE);
1501 }
1502 
1503 static inline void hw_set_intr(struct ksz_hw *hw, uint interrupt)
1504 {
1505 	hw->intr_set = interrupt;
1506 	writel(interrupt, hw->io + KS884X_INTERRUPTS_ENABLE);
1507 }
1508 
1509 static inline void hw_ena_intr(struct ksz_hw *hw)
1510 {
1511 	hw->intr_blocked = 0;
1512 	hw_set_intr(hw, hw->intr_mask);
1513 }
1514 
1515 static inline void hw_dis_intr_bit(struct ksz_hw *hw, uint bit)
1516 {
1517 	hw->intr_mask &= ~(bit);
1518 }
1519 
1520 static inline void hw_turn_off_intr(struct ksz_hw *hw, uint interrupt)
1521 {
1522 	u32 read_intr;
1523 
1524 	read_intr = readl(hw->io + KS884X_INTERRUPTS_ENABLE);
1525 	hw->intr_set = read_intr & ~interrupt;
1526 	writel(hw->intr_set, hw->io + KS884X_INTERRUPTS_ENABLE);
1527 	hw_dis_intr_bit(hw, interrupt);
1528 }
1529 
1530 /**
1531  * hw_turn_on_intr - turn on specified interrupts
1532  * @hw: 	The hardware instance.
1533  * @bit:	The interrupt bits to be on.
1534  *
1535  * This routine turns on the specified interrupts in the interrupt mask so that
1536  * those interrupts will be enabled.
1537  */
1538 static void hw_turn_on_intr(struct ksz_hw *hw, u32 bit)
1539 {
1540 	hw->intr_mask |= bit;
1541 
1542 	if (!hw->intr_blocked)
1543 		hw_set_intr(hw, hw->intr_mask);
1544 }
1545 
1546 static inline void hw_ena_intr_bit(struct ksz_hw *hw, uint interrupt)
1547 {
1548 	u32 read_intr;
1549 
1550 	read_intr = readl(hw->io + KS884X_INTERRUPTS_ENABLE);
1551 	hw->intr_set = read_intr | interrupt;
1552 	writel(hw->intr_set, hw->io + KS884X_INTERRUPTS_ENABLE);
1553 }
1554 
1555 static inline void hw_read_intr(struct ksz_hw *hw, uint *status)
1556 {
1557 	*status = readl(hw->io + KS884X_INTERRUPTS_STATUS);
1558 	*status = *status & hw->intr_set;
1559 }
1560 
1561 static inline void hw_restore_intr(struct ksz_hw *hw, uint interrupt)
1562 {
1563 	if (interrupt)
1564 		hw_ena_intr(hw);
1565 }
1566 
1567 /**
1568  * hw_block_intr - block hardware interrupts
1569  *
1570  * This function blocks all interrupts of the hardware and returns the current
1571  * interrupt enable mask so that interrupts can be restored later.
1572  *
1573  * Return the current interrupt enable mask.
1574  */
1575 static uint hw_block_intr(struct ksz_hw *hw)
1576 {
1577 	uint interrupt = 0;
1578 
1579 	if (!hw->intr_blocked) {
1580 		hw_dis_intr(hw);
1581 		interrupt = hw->intr_blocked;
1582 	}
1583 	return interrupt;
1584 }
1585 
1586 /*
1587  * Hardware descriptor routines
1588  */
1589 
1590 static inline void reset_desc(struct ksz_desc *desc, union desc_stat status)
1591 {
1592 	status.rx.hw_owned = 0;
1593 	desc->phw->ctrl.data = cpu_to_le32(status.data);
1594 }
1595 
1596 static inline void release_desc(struct ksz_desc *desc)
1597 {
1598 	desc->sw.ctrl.tx.hw_owned = 1;
1599 	if (desc->sw.buf_size != desc->sw.buf.data) {
1600 		desc->sw.buf_size = desc->sw.buf.data;
1601 		desc->phw->buf.data = cpu_to_le32(desc->sw.buf.data);
1602 	}
1603 	desc->phw->ctrl.data = cpu_to_le32(desc->sw.ctrl.data);
1604 }
1605 
1606 static void get_rx_pkt(struct ksz_desc_info *info, struct ksz_desc **desc)
1607 {
1608 	*desc = &info->ring[info->last];
1609 	info->last++;
1610 	info->last &= info->mask;
1611 	info->avail--;
1612 	(*desc)->sw.buf.data &= ~KS_DESC_RX_MASK;
1613 }
1614 
1615 static inline void set_rx_buf(struct ksz_desc *desc, u32 addr)
1616 {
1617 	desc->phw->addr = cpu_to_le32(addr);
1618 }
1619 
1620 static inline void set_rx_len(struct ksz_desc *desc, u32 len)
1621 {
1622 	desc->sw.buf.rx.buf_size = len;
1623 }
1624 
1625 static inline void get_tx_pkt(struct ksz_desc_info *info,
1626 	struct ksz_desc **desc)
1627 {
1628 	*desc = &info->ring[info->next];
1629 	info->next++;
1630 	info->next &= info->mask;
1631 	info->avail--;
1632 	(*desc)->sw.buf.data &= ~KS_DESC_TX_MASK;
1633 }
1634 
1635 static inline void set_tx_buf(struct ksz_desc *desc, u32 addr)
1636 {
1637 	desc->phw->addr = cpu_to_le32(addr);
1638 }
1639 
1640 static inline void set_tx_len(struct ksz_desc *desc, u32 len)
1641 {
1642 	desc->sw.buf.tx.buf_size = len;
1643 }
1644 
1645 /* Switch functions */
1646 
1647 #define TABLE_READ			0x10
1648 #define TABLE_SEL_SHIFT			2
1649 
1650 #define HW_DELAY(hw, reg)			\
1651 	do {					\
1652 		u16 dummy;			\
1653 		dummy = readw(hw->io + reg);	\
1654 	} while (0)
1655 
1656 /**
1657  * sw_r_table - read 4 bytes of data from switch table
1658  * @hw:		The hardware instance.
1659  * @table:	The table selector.
1660  * @addr:	The address of the table entry.
1661  * @data:	Buffer to store the read data.
1662  *
1663  * This routine reads 4 bytes of data from the table of the switch.
1664  * Hardware interrupts are disabled to minimize corruption of read data.
1665  */
1666 static void sw_r_table(struct ksz_hw *hw, int table, u16 addr, u32 *data)
1667 {
1668 	u16 ctrl_addr;
1669 	uint interrupt;
1670 
1671 	ctrl_addr = (((table << TABLE_SEL_SHIFT) | TABLE_READ) << 8) | addr;
1672 
1673 	interrupt = hw_block_intr(hw);
1674 
1675 	writew(ctrl_addr, hw->io + KS884X_IACR_OFFSET);
1676 	HW_DELAY(hw, KS884X_IACR_OFFSET);
1677 	*data = readl(hw->io + KS884X_ACC_DATA_0_OFFSET);
1678 
1679 	hw_restore_intr(hw, interrupt);
1680 }
1681 
1682 /**
1683  * sw_w_table_64 - write 8 bytes of data to the switch table
1684  * @hw:		The hardware instance.
1685  * @table:	The table selector.
1686  * @addr:	The address of the table entry.
1687  * @data_hi:	The high part of data to be written (bit63 ~ bit32).
1688  * @data_lo:	The low part of data to be written (bit31 ~ bit0).
1689  *
1690  * This routine writes 8 bytes of data to the table of the switch.
1691  * Hardware interrupts are disabled to minimize corruption of written data.
1692  */
1693 static void sw_w_table_64(struct ksz_hw *hw, int table, u16 addr, u32 data_hi,
1694 	u32 data_lo)
1695 {
1696 	u16 ctrl_addr;
1697 	uint interrupt;
1698 
1699 	ctrl_addr = ((table << TABLE_SEL_SHIFT) << 8) | addr;
1700 
1701 	interrupt = hw_block_intr(hw);
1702 
1703 	writel(data_hi, hw->io + KS884X_ACC_DATA_4_OFFSET);
1704 	writel(data_lo, hw->io + KS884X_ACC_DATA_0_OFFSET);
1705 
1706 	writew(ctrl_addr, hw->io + KS884X_IACR_OFFSET);
1707 	HW_DELAY(hw, KS884X_IACR_OFFSET);
1708 
1709 	hw_restore_intr(hw, interrupt);
1710 }
1711 
1712 /**
1713  * sw_w_sta_mac_table - write to the static MAC table
1714  * @hw: 	The hardware instance.
1715  * @addr:	The address of the table entry.
1716  * @mac_addr:	The MAC address.
1717  * @ports:	The port members.
1718  * @override:	The flag to override the port receive/transmit settings.
1719  * @valid:	The flag to indicate entry is valid.
1720  * @use_fid:	The flag to indicate the FID is valid.
1721  * @fid:	The FID value.
1722  *
1723  * This routine writes an entry of the static MAC table of the switch.  It
1724  * calls sw_w_table_64() to write the data.
1725  */
1726 static void sw_w_sta_mac_table(struct ksz_hw *hw, u16 addr, u8 *mac_addr,
1727 	u8 ports, int override, int valid, int use_fid, u8 fid)
1728 {
1729 	u32 data_hi;
1730 	u32 data_lo;
1731 
1732 	data_lo = ((u32) mac_addr[2] << 24) |
1733 		((u32) mac_addr[3] << 16) |
1734 		((u32) mac_addr[4] << 8) | mac_addr[5];
1735 	data_hi = ((u32) mac_addr[0] << 8) | mac_addr[1];
1736 	data_hi |= (u32) ports << STATIC_MAC_FWD_PORTS_SHIFT;
1737 
1738 	if (override)
1739 		data_hi |= STATIC_MAC_TABLE_OVERRIDE;
1740 	if (use_fid) {
1741 		data_hi |= STATIC_MAC_TABLE_USE_FID;
1742 		data_hi |= (u32) fid << STATIC_MAC_FID_SHIFT;
1743 	}
1744 	if (valid)
1745 		data_hi |= STATIC_MAC_TABLE_VALID;
1746 
1747 	sw_w_table_64(hw, TABLE_STATIC_MAC, addr, data_hi, data_lo);
1748 }
1749 
1750 /**
1751  * sw_r_vlan_table - read from the VLAN table
1752  * @hw: 	The hardware instance.
1753  * @addr:	The address of the table entry.
1754  * @vid:	Buffer to store the VID.
1755  * @fid:	Buffer to store the VID.
1756  * @member:	Buffer to store the port membership.
1757  *
1758  * This function reads an entry of the VLAN table of the switch.  It calls
1759  * sw_r_table() to get the data.
1760  *
1761  * Return 0 if the entry is valid; otherwise -1.
1762  */
1763 static int sw_r_vlan_table(struct ksz_hw *hw, u16 addr, u16 *vid, u8 *fid,
1764 	u8 *member)
1765 {
1766 	u32 data;
1767 
1768 	sw_r_table(hw, TABLE_VLAN, addr, &data);
1769 	if (data & VLAN_TABLE_VALID) {
1770 		*vid = (u16)(data & VLAN_TABLE_VID);
1771 		*fid = (u8)((data & VLAN_TABLE_FID) >> VLAN_TABLE_FID_SHIFT);
1772 		*member = (u8)((data & VLAN_TABLE_MEMBERSHIP) >>
1773 			VLAN_TABLE_MEMBERSHIP_SHIFT);
1774 		return 0;
1775 	}
1776 	return -1;
1777 }
1778 
1779 /**
1780  * port_r_mib_cnt - read MIB counter
1781  * @hw: 	The hardware instance.
1782  * @port:	The port index.
1783  * @addr:	The address of the counter.
1784  * @cnt:	Buffer to store the counter.
1785  *
1786  * This routine reads a MIB counter of the port.
1787  * Hardware interrupts are disabled to minimize corruption of read data.
1788  */
1789 static void port_r_mib_cnt(struct ksz_hw *hw, int port, u16 addr, u64 *cnt)
1790 {
1791 	u32 data;
1792 	u16 ctrl_addr;
1793 	uint interrupt;
1794 	int timeout;
1795 
1796 	ctrl_addr = addr + PORT_COUNTER_NUM * port;
1797 
1798 	interrupt = hw_block_intr(hw);
1799 
1800 	ctrl_addr |= (((TABLE_MIB << TABLE_SEL_SHIFT) | TABLE_READ) << 8);
1801 	writew(ctrl_addr, hw->io + KS884X_IACR_OFFSET);
1802 	HW_DELAY(hw, KS884X_IACR_OFFSET);
1803 
1804 	for (timeout = 100; timeout > 0; timeout--) {
1805 		data = readl(hw->io + KS884X_ACC_DATA_0_OFFSET);
1806 
1807 		if (data & MIB_COUNTER_VALID) {
1808 			if (data & MIB_COUNTER_OVERFLOW)
1809 				*cnt += MIB_COUNTER_VALUE + 1;
1810 			*cnt += data & MIB_COUNTER_VALUE;
1811 			break;
1812 		}
1813 	}
1814 
1815 	hw_restore_intr(hw, interrupt);
1816 }
1817 
1818 /**
1819  * port_r_mib_pkt - read dropped packet counts
1820  * @hw: 	The hardware instance.
1821  * @port:	The port index.
1822  * @cnt:	Buffer to store the receive and transmit dropped packet counts.
1823  *
1824  * This routine reads the dropped packet counts of the port.
1825  * Hardware interrupts are disabled to minimize corruption of read data.
1826  */
1827 static void port_r_mib_pkt(struct ksz_hw *hw, int port, u32 *last, u64 *cnt)
1828 {
1829 	u32 cur;
1830 	u32 data;
1831 	u16 ctrl_addr;
1832 	uint interrupt;
1833 	int index;
1834 
1835 	index = KS_MIB_PACKET_DROPPED_RX_0 + port;
1836 	do {
1837 		interrupt = hw_block_intr(hw);
1838 
1839 		ctrl_addr = (u16) index;
1840 		ctrl_addr |= (((TABLE_MIB << TABLE_SEL_SHIFT) | TABLE_READ)
1841 			<< 8);
1842 		writew(ctrl_addr, hw->io + KS884X_IACR_OFFSET);
1843 		HW_DELAY(hw, KS884X_IACR_OFFSET);
1844 		data = readl(hw->io + KS884X_ACC_DATA_0_OFFSET);
1845 
1846 		hw_restore_intr(hw, interrupt);
1847 
1848 		data &= MIB_PACKET_DROPPED;
1849 		cur = *last;
1850 		if (data != cur) {
1851 			*last = data;
1852 			if (data < cur)
1853 				data += MIB_PACKET_DROPPED + 1;
1854 			data -= cur;
1855 			*cnt += data;
1856 		}
1857 		++last;
1858 		++cnt;
1859 		index -= KS_MIB_PACKET_DROPPED_TX -
1860 			KS_MIB_PACKET_DROPPED_TX_0 + 1;
1861 	} while (index >= KS_MIB_PACKET_DROPPED_TX_0 + port);
1862 }
1863 
1864 /**
1865  * port_r_cnt - read MIB counters periodically
1866  * @hw: 	The hardware instance.
1867  * @port:	The port index.
1868  *
1869  * This routine is used to read the counters of the port periodically to avoid
1870  * counter overflow.  The hardware should be acquired first before calling this
1871  * routine.
1872  *
1873  * Return non-zero when not all counters not read.
1874  */
1875 static int port_r_cnt(struct ksz_hw *hw, int port)
1876 {
1877 	struct ksz_port_mib *mib = &hw->port_mib[port];
1878 
1879 	if (mib->mib_start < PORT_COUNTER_NUM)
1880 		while (mib->cnt_ptr < PORT_COUNTER_NUM) {
1881 			port_r_mib_cnt(hw, port, mib->cnt_ptr,
1882 				&mib->counter[mib->cnt_ptr]);
1883 			++mib->cnt_ptr;
1884 		}
1885 	if (hw->mib_cnt > PORT_COUNTER_NUM)
1886 		port_r_mib_pkt(hw, port, mib->dropped,
1887 			&mib->counter[PORT_COUNTER_NUM]);
1888 	mib->cnt_ptr = 0;
1889 	return 0;
1890 }
1891 
1892 /**
1893  * port_init_cnt - initialize MIB counter values
1894  * @hw: 	The hardware instance.
1895  * @port:	The port index.
1896  *
1897  * This routine is used to initialize all counters to zero if the hardware
1898  * cannot do it after reset.
1899  */
1900 static void port_init_cnt(struct ksz_hw *hw, int port)
1901 {
1902 	struct ksz_port_mib *mib = &hw->port_mib[port];
1903 
1904 	mib->cnt_ptr = 0;
1905 	if (mib->mib_start < PORT_COUNTER_NUM)
1906 		do {
1907 			port_r_mib_cnt(hw, port, mib->cnt_ptr,
1908 				&mib->counter[mib->cnt_ptr]);
1909 			++mib->cnt_ptr;
1910 		} while (mib->cnt_ptr < PORT_COUNTER_NUM);
1911 	if (hw->mib_cnt > PORT_COUNTER_NUM)
1912 		port_r_mib_pkt(hw, port, mib->dropped,
1913 			&mib->counter[PORT_COUNTER_NUM]);
1914 	memset((void *) mib->counter, 0, sizeof(u64) * TOTAL_PORT_COUNTER_NUM);
1915 	mib->cnt_ptr = 0;
1916 }
1917 
1918 /*
1919  * Port functions
1920  */
1921 
1922 /**
1923  * port_chk - check port register bits
1924  * @hw: 	The hardware instance.
1925  * @port:	The port index.
1926  * @offset:	The offset of the port register.
1927  * @bits:	The data bits to check.
1928  *
1929  * This function checks whether the specified bits of the port register are set
1930  * or not.
1931  *
1932  * Return 0 if the bits are not set.
1933  */
1934 static int port_chk(struct ksz_hw *hw, int port, int offset, u16 bits)
1935 {
1936 	u32 addr;
1937 	u16 data;
1938 
1939 	PORT_CTRL_ADDR(port, addr);
1940 	addr += offset;
1941 	data = readw(hw->io + addr);
1942 	return (data & bits) == bits;
1943 }
1944 
1945 /**
1946  * port_cfg - set port register bits
1947  * @hw: 	The hardware instance.
1948  * @port:	The port index.
1949  * @offset:	The offset of the port register.
1950  * @bits:	The data bits to set.
1951  * @set:	The flag indicating whether the bits are to be set or not.
1952  *
1953  * This routine sets or resets the specified bits of the port register.
1954  */
1955 static void port_cfg(struct ksz_hw *hw, int port, int offset, u16 bits,
1956 	int set)
1957 {
1958 	u32 addr;
1959 	u16 data;
1960 
1961 	PORT_CTRL_ADDR(port, addr);
1962 	addr += offset;
1963 	data = readw(hw->io + addr);
1964 	if (set)
1965 		data |= bits;
1966 	else
1967 		data &= ~bits;
1968 	writew(data, hw->io + addr);
1969 }
1970 
1971 /**
1972  * port_chk_shift - check port bit
1973  * @hw: 	The hardware instance.
1974  * @port:	The port index.
1975  * @offset:	The offset of the register.
1976  * @shift:	Number of bits to shift.
1977  *
1978  * This function checks whether the specified port is set in the register or
1979  * not.
1980  *
1981  * Return 0 if the port is not set.
1982  */
1983 static int port_chk_shift(struct ksz_hw *hw, int port, u32 addr, int shift)
1984 {
1985 	u16 data;
1986 	u16 bit = 1 << port;
1987 
1988 	data = readw(hw->io + addr);
1989 	data >>= shift;
1990 	return (data & bit) == bit;
1991 }
1992 
1993 /**
1994  * port_cfg_shift - set port bit
1995  * @hw: 	The hardware instance.
1996  * @port:	The port index.
1997  * @offset:	The offset of the register.
1998  * @shift:	Number of bits to shift.
1999  * @set:	The flag indicating whether the port is to be set or not.
2000  *
2001  * This routine sets or resets the specified port in the register.
2002  */
2003 static void port_cfg_shift(struct ksz_hw *hw, int port, u32 addr, int shift,
2004 	int set)
2005 {
2006 	u16 data;
2007 	u16 bits = 1 << port;
2008 
2009 	data = readw(hw->io + addr);
2010 	bits <<= shift;
2011 	if (set)
2012 		data |= bits;
2013 	else
2014 		data &= ~bits;
2015 	writew(data, hw->io + addr);
2016 }
2017 
2018 /**
2019  * port_r8 - read byte from port register
2020  * @hw: 	The hardware instance.
2021  * @port:	The port index.
2022  * @offset:	The offset of the port register.
2023  * @data:	Buffer to store the data.
2024  *
2025  * This routine reads a byte from the port register.
2026  */
2027 static void port_r8(struct ksz_hw *hw, int port, int offset, u8 *data)
2028 {
2029 	u32 addr;
2030 
2031 	PORT_CTRL_ADDR(port, addr);
2032 	addr += offset;
2033 	*data = readb(hw->io + addr);
2034 }
2035 
2036 /**
2037  * port_r16 - read word from port register.
2038  * @hw: 	The hardware instance.
2039  * @port:	The port index.
2040  * @offset:	The offset of the port register.
2041  * @data:	Buffer to store the data.
2042  *
2043  * This routine reads a word from the port register.
2044  */
2045 static void port_r16(struct ksz_hw *hw, int port, int offset, u16 *data)
2046 {
2047 	u32 addr;
2048 
2049 	PORT_CTRL_ADDR(port, addr);
2050 	addr += offset;
2051 	*data = readw(hw->io + addr);
2052 }
2053 
2054 /**
2055  * port_w16 - write word to port register.
2056  * @hw: 	The hardware instance.
2057  * @port:	The port index.
2058  * @offset:	The offset of the port register.
2059  * @data:	Data to write.
2060  *
2061  * This routine writes a word to the port register.
2062  */
2063 static void port_w16(struct ksz_hw *hw, int port, int offset, u16 data)
2064 {
2065 	u32 addr;
2066 
2067 	PORT_CTRL_ADDR(port, addr);
2068 	addr += offset;
2069 	writew(data, hw->io + addr);
2070 }
2071 
2072 /**
2073  * sw_chk - check switch register bits
2074  * @hw: 	The hardware instance.
2075  * @addr:	The address of the switch register.
2076  * @bits:	The data bits to check.
2077  *
2078  * This function checks whether the specified bits of the switch register are
2079  * set or not.
2080  *
2081  * Return 0 if the bits are not set.
2082  */
2083 static int sw_chk(struct ksz_hw *hw, u32 addr, u16 bits)
2084 {
2085 	u16 data;
2086 
2087 	data = readw(hw->io + addr);
2088 	return (data & bits) == bits;
2089 }
2090 
2091 /**
2092  * sw_cfg - set switch register bits
2093  * @hw: 	The hardware instance.
2094  * @addr:	The address of the switch register.
2095  * @bits:	The data bits to set.
2096  * @set:	The flag indicating whether the bits are to be set or not.
2097  *
2098  * This function sets or resets the specified bits of the switch register.
2099  */
2100 static void sw_cfg(struct ksz_hw *hw, u32 addr, u16 bits, int set)
2101 {
2102 	u16 data;
2103 
2104 	data = readw(hw->io + addr);
2105 	if (set)
2106 		data |= bits;
2107 	else
2108 		data &= ~bits;
2109 	writew(data, hw->io + addr);
2110 }
2111 
2112 /* Bandwidth */
2113 
2114 static inline void port_cfg_broad_storm(struct ksz_hw *hw, int p, int set)
2115 {
2116 	port_cfg(hw, p,
2117 		KS8842_PORT_CTRL_1_OFFSET, PORT_BROADCAST_STORM, set);
2118 }
2119 
2120 static inline int port_chk_broad_storm(struct ksz_hw *hw, int p)
2121 {
2122 	return port_chk(hw, p,
2123 		KS8842_PORT_CTRL_1_OFFSET, PORT_BROADCAST_STORM);
2124 }
2125 
2126 /* Driver set switch broadcast storm protection at 10% rate. */
2127 #define BROADCAST_STORM_PROTECTION_RATE	10
2128 
2129 /* 148,800 frames * 67 ms / 100 */
2130 #define BROADCAST_STORM_VALUE		9969
2131 
2132 /**
2133  * sw_cfg_broad_storm - configure broadcast storm threshold
2134  * @hw: 	The hardware instance.
2135  * @percent:	Broadcast storm threshold in percent of transmit rate.
2136  *
2137  * This routine configures the broadcast storm threshold of the switch.
2138  */
2139 static void sw_cfg_broad_storm(struct ksz_hw *hw, u8 percent)
2140 {
2141 	u16 data;
2142 	u32 value = ((u32) BROADCAST_STORM_VALUE * (u32) percent / 100);
2143 
2144 	if (value > BROADCAST_STORM_RATE)
2145 		value = BROADCAST_STORM_RATE;
2146 
2147 	data = readw(hw->io + KS8842_SWITCH_CTRL_3_OFFSET);
2148 	data &= ~(BROADCAST_STORM_RATE_LO | BROADCAST_STORM_RATE_HI);
2149 	data |= ((value & 0x00FF) << 8) | ((value & 0xFF00) >> 8);
2150 	writew(data, hw->io + KS8842_SWITCH_CTRL_3_OFFSET);
2151 }
2152 
2153 /**
2154  * sw_get_board_storm - get broadcast storm threshold
2155  * @hw: 	The hardware instance.
2156  * @percent:	Buffer to store the broadcast storm threshold percentage.
2157  *
2158  * This routine retrieves the broadcast storm threshold of the switch.
2159  */
2160 static void sw_get_broad_storm(struct ksz_hw *hw, u8 *percent)
2161 {
2162 	int num;
2163 	u16 data;
2164 
2165 	data = readw(hw->io + KS8842_SWITCH_CTRL_3_OFFSET);
2166 	num = (data & BROADCAST_STORM_RATE_HI);
2167 	num <<= 8;
2168 	num |= (data & BROADCAST_STORM_RATE_LO) >> 8;
2169 	num = (num * 100 + BROADCAST_STORM_VALUE / 2) / BROADCAST_STORM_VALUE;
2170 	*percent = (u8) num;
2171 }
2172 
2173 /**
2174  * sw_dis_broad_storm - disable broadstorm
2175  * @hw: 	The hardware instance.
2176  * @port:	The port index.
2177  *
2178  * This routine disables the broadcast storm limit function of the switch.
2179  */
2180 static void sw_dis_broad_storm(struct ksz_hw *hw, int port)
2181 {
2182 	port_cfg_broad_storm(hw, port, 0);
2183 }
2184 
2185 /**
2186  * sw_ena_broad_storm - enable broadcast storm
2187  * @hw: 	The hardware instance.
2188  * @port:	The port index.
2189  *
2190  * This routine enables the broadcast storm limit function of the switch.
2191  */
2192 static void sw_ena_broad_storm(struct ksz_hw *hw, int port)
2193 {
2194 	sw_cfg_broad_storm(hw, hw->ksz_switch->broad_per);
2195 	port_cfg_broad_storm(hw, port, 1);
2196 }
2197 
2198 /**
2199  * sw_init_broad_storm - initialize broadcast storm
2200  * @hw: 	The hardware instance.
2201  *
2202  * This routine initializes the broadcast storm limit function of the switch.
2203  */
2204 static void sw_init_broad_storm(struct ksz_hw *hw)
2205 {
2206 	int port;
2207 
2208 	hw->ksz_switch->broad_per = 1;
2209 	sw_cfg_broad_storm(hw, hw->ksz_switch->broad_per);
2210 	for (port = 0; port < TOTAL_PORT_NUM; port++)
2211 		sw_dis_broad_storm(hw, port);
2212 	sw_cfg(hw, KS8842_SWITCH_CTRL_2_OFFSET, MULTICAST_STORM_DISABLE, 1);
2213 }
2214 
2215 /**
2216  * hw_cfg_broad_storm - configure broadcast storm
2217  * @hw: 	The hardware instance.
2218  * @percent:	Broadcast storm threshold in percent of transmit rate.
2219  *
2220  * This routine configures the broadcast storm threshold of the switch.
2221  * It is called by user functions.  The hardware should be acquired first.
2222  */
2223 static void hw_cfg_broad_storm(struct ksz_hw *hw, u8 percent)
2224 {
2225 	if (percent > 100)
2226 		percent = 100;
2227 
2228 	sw_cfg_broad_storm(hw, percent);
2229 	sw_get_broad_storm(hw, &percent);
2230 	hw->ksz_switch->broad_per = percent;
2231 }
2232 
2233 /**
2234  * sw_dis_prio_rate - disable switch priority rate
2235  * @hw: 	The hardware instance.
2236  * @port:	The port index.
2237  *
2238  * This routine disables the priority rate function of the switch.
2239  */
2240 static void sw_dis_prio_rate(struct ksz_hw *hw, int port)
2241 {
2242 	u32 addr;
2243 
2244 	PORT_CTRL_ADDR(port, addr);
2245 	addr += KS8842_PORT_IN_RATE_OFFSET;
2246 	writel(0, hw->io + addr);
2247 }
2248 
2249 /**
2250  * sw_init_prio_rate - initialize switch prioirty rate
2251  * @hw: 	The hardware instance.
2252  *
2253  * This routine initializes the priority rate function of the switch.
2254  */
2255 static void sw_init_prio_rate(struct ksz_hw *hw)
2256 {
2257 	int port;
2258 	int prio;
2259 	struct ksz_switch *sw = hw->ksz_switch;
2260 
2261 	for (port = 0; port < TOTAL_PORT_NUM; port++) {
2262 		for (prio = 0; prio < PRIO_QUEUES; prio++) {
2263 			sw->port_cfg[port].rx_rate[prio] =
2264 			sw->port_cfg[port].tx_rate[prio] = 0;
2265 		}
2266 		sw_dis_prio_rate(hw, port);
2267 	}
2268 }
2269 
2270 /* Communication */
2271 
2272 static inline void port_cfg_back_pressure(struct ksz_hw *hw, int p, int set)
2273 {
2274 	port_cfg(hw, p,
2275 		KS8842_PORT_CTRL_2_OFFSET, PORT_BACK_PRESSURE, set);
2276 }
2277 
2278 static inline void port_cfg_force_flow_ctrl(struct ksz_hw *hw, int p, int set)
2279 {
2280 	port_cfg(hw, p,
2281 		KS8842_PORT_CTRL_2_OFFSET, PORT_FORCE_FLOW_CTRL, set);
2282 }
2283 
2284 static inline int port_chk_back_pressure(struct ksz_hw *hw, int p)
2285 {
2286 	return port_chk(hw, p,
2287 		KS8842_PORT_CTRL_2_OFFSET, PORT_BACK_PRESSURE);
2288 }
2289 
2290 static inline int port_chk_force_flow_ctrl(struct ksz_hw *hw, int p)
2291 {
2292 	return port_chk(hw, p,
2293 		KS8842_PORT_CTRL_2_OFFSET, PORT_FORCE_FLOW_CTRL);
2294 }
2295 
2296 /* Spanning Tree */
2297 
2298 static inline void port_cfg_rx(struct ksz_hw *hw, int p, int set)
2299 {
2300 	port_cfg(hw, p,
2301 		KS8842_PORT_CTRL_2_OFFSET, PORT_RX_ENABLE, set);
2302 }
2303 
2304 static inline void port_cfg_tx(struct ksz_hw *hw, int p, int set)
2305 {
2306 	port_cfg(hw, p,
2307 		KS8842_PORT_CTRL_2_OFFSET, PORT_TX_ENABLE, set);
2308 }
2309 
2310 static inline void sw_cfg_fast_aging(struct ksz_hw *hw, int set)
2311 {
2312 	sw_cfg(hw, KS8842_SWITCH_CTRL_1_OFFSET, SWITCH_FAST_AGING, set);
2313 }
2314 
2315 static inline void sw_flush_dyn_mac_table(struct ksz_hw *hw)
2316 {
2317 	if (!(hw->overrides & FAST_AGING)) {
2318 		sw_cfg_fast_aging(hw, 1);
2319 		mdelay(1);
2320 		sw_cfg_fast_aging(hw, 0);
2321 	}
2322 }
2323 
2324 /* VLAN */
2325 
2326 static inline void port_cfg_ins_tag(struct ksz_hw *hw, int p, int insert)
2327 {
2328 	port_cfg(hw, p,
2329 		KS8842_PORT_CTRL_1_OFFSET, PORT_INSERT_TAG, insert);
2330 }
2331 
2332 static inline void port_cfg_rmv_tag(struct ksz_hw *hw, int p, int remove)
2333 {
2334 	port_cfg(hw, p,
2335 		KS8842_PORT_CTRL_1_OFFSET, PORT_REMOVE_TAG, remove);
2336 }
2337 
2338 static inline int port_chk_ins_tag(struct ksz_hw *hw, int p)
2339 {
2340 	return port_chk(hw, p,
2341 		KS8842_PORT_CTRL_1_OFFSET, PORT_INSERT_TAG);
2342 }
2343 
2344 static inline int port_chk_rmv_tag(struct ksz_hw *hw, int p)
2345 {
2346 	return port_chk(hw, p,
2347 		KS8842_PORT_CTRL_1_OFFSET, PORT_REMOVE_TAG);
2348 }
2349 
2350 static inline void port_cfg_dis_non_vid(struct ksz_hw *hw, int p, int set)
2351 {
2352 	port_cfg(hw, p,
2353 		KS8842_PORT_CTRL_2_OFFSET, PORT_DISCARD_NON_VID, set);
2354 }
2355 
2356 static inline void port_cfg_in_filter(struct ksz_hw *hw, int p, int set)
2357 {
2358 	port_cfg(hw, p,
2359 		KS8842_PORT_CTRL_2_OFFSET, PORT_INGRESS_VLAN_FILTER, set);
2360 }
2361 
2362 static inline int port_chk_dis_non_vid(struct ksz_hw *hw, int p)
2363 {
2364 	return port_chk(hw, p,
2365 		KS8842_PORT_CTRL_2_OFFSET, PORT_DISCARD_NON_VID);
2366 }
2367 
2368 static inline int port_chk_in_filter(struct ksz_hw *hw, int p)
2369 {
2370 	return port_chk(hw, p,
2371 		KS8842_PORT_CTRL_2_OFFSET, PORT_INGRESS_VLAN_FILTER);
2372 }
2373 
2374 /* Mirroring */
2375 
2376 static inline void port_cfg_mirror_sniffer(struct ksz_hw *hw, int p, int set)
2377 {
2378 	port_cfg(hw, p,
2379 		KS8842_PORT_CTRL_2_OFFSET, PORT_MIRROR_SNIFFER, set);
2380 }
2381 
2382 static inline void port_cfg_mirror_rx(struct ksz_hw *hw, int p, int set)
2383 {
2384 	port_cfg(hw, p,
2385 		KS8842_PORT_CTRL_2_OFFSET, PORT_MIRROR_RX, set);
2386 }
2387 
2388 static inline void port_cfg_mirror_tx(struct ksz_hw *hw, int p, int set)
2389 {
2390 	port_cfg(hw, p,
2391 		KS8842_PORT_CTRL_2_OFFSET, PORT_MIRROR_TX, set);
2392 }
2393 
2394 static inline void sw_cfg_mirror_rx_tx(struct ksz_hw *hw, int set)
2395 {
2396 	sw_cfg(hw, KS8842_SWITCH_CTRL_2_OFFSET, SWITCH_MIRROR_RX_TX, set);
2397 }
2398 
2399 static void sw_init_mirror(struct ksz_hw *hw)
2400 {
2401 	int port;
2402 
2403 	for (port = 0; port < TOTAL_PORT_NUM; port++) {
2404 		port_cfg_mirror_sniffer(hw, port, 0);
2405 		port_cfg_mirror_rx(hw, port, 0);
2406 		port_cfg_mirror_tx(hw, port, 0);
2407 	}
2408 	sw_cfg_mirror_rx_tx(hw, 0);
2409 }
2410 
2411 static inline void sw_cfg_unk_def_deliver(struct ksz_hw *hw, int set)
2412 {
2413 	sw_cfg(hw, KS8842_SWITCH_CTRL_7_OFFSET,
2414 		SWITCH_UNK_DEF_PORT_ENABLE, set);
2415 }
2416 
2417 static inline int sw_cfg_chk_unk_def_deliver(struct ksz_hw *hw)
2418 {
2419 	return sw_chk(hw, KS8842_SWITCH_CTRL_7_OFFSET,
2420 		SWITCH_UNK_DEF_PORT_ENABLE);
2421 }
2422 
2423 static inline void sw_cfg_unk_def_port(struct ksz_hw *hw, int port, int set)
2424 {
2425 	port_cfg_shift(hw, port, KS8842_SWITCH_CTRL_7_OFFSET, 0, set);
2426 }
2427 
2428 static inline int sw_chk_unk_def_port(struct ksz_hw *hw, int port)
2429 {
2430 	return port_chk_shift(hw, port, KS8842_SWITCH_CTRL_7_OFFSET, 0);
2431 }
2432 
2433 /* Priority */
2434 
2435 static inline void port_cfg_diffserv(struct ksz_hw *hw, int p, int set)
2436 {
2437 	port_cfg(hw, p,
2438 		KS8842_PORT_CTRL_1_OFFSET, PORT_DIFFSERV_ENABLE, set);
2439 }
2440 
2441 static inline void port_cfg_802_1p(struct ksz_hw *hw, int p, int set)
2442 {
2443 	port_cfg(hw, p,
2444 		KS8842_PORT_CTRL_1_OFFSET, PORT_802_1P_ENABLE, set);
2445 }
2446 
2447 static inline void port_cfg_replace_vid(struct ksz_hw *hw, int p, int set)
2448 {
2449 	port_cfg(hw, p,
2450 		KS8842_PORT_CTRL_2_OFFSET, PORT_USER_PRIORITY_CEILING, set);
2451 }
2452 
2453 static inline void port_cfg_prio(struct ksz_hw *hw, int p, int set)
2454 {
2455 	port_cfg(hw, p,
2456 		KS8842_PORT_CTRL_1_OFFSET, PORT_PRIO_QUEUE_ENABLE, set);
2457 }
2458 
2459 static inline int port_chk_diffserv(struct ksz_hw *hw, int p)
2460 {
2461 	return port_chk(hw, p,
2462 		KS8842_PORT_CTRL_1_OFFSET, PORT_DIFFSERV_ENABLE);
2463 }
2464 
2465 static inline int port_chk_802_1p(struct ksz_hw *hw, int p)
2466 {
2467 	return port_chk(hw, p,
2468 		KS8842_PORT_CTRL_1_OFFSET, PORT_802_1P_ENABLE);
2469 }
2470 
2471 static inline int port_chk_replace_vid(struct ksz_hw *hw, int p)
2472 {
2473 	return port_chk(hw, p,
2474 		KS8842_PORT_CTRL_2_OFFSET, PORT_USER_PRIORITY_CEILING);
2475 }
2476 
2477 static inline int port_chk_prio(struct ksz_hw *hw, int p)
2478 {
2479 	return port_chk(hw, p,
2480 		KS8842_PORT_CTRL_1_OFFSET, PORT_PRIO_QUEUE_ENABLE);
2481 }
2482 
2483 /**
2484  * sw_dis_diffserv - disable switch DiffServ priority
2485  * @hw: 	The hardware instance.
2486  * @port:	The port index.
2487  *
2488  * This routine disables the DiffServ priority function of the switch.
2489  */
2490 static void sw_dis_diffserv(struct ksz_hw *hw, int port)
2491 {
2492 	port_cfg_diffserv(hw, port, 0);
2493 }
2494 
2495 /**
2496  * sw_dis_802_1p - disable switch 802.1p priority
2497  * @hw: 	The hardware instance.
2498  * @port:	The port index.
2499  *
2500  * This routine disables the 802.1p priority function of the switch.
2501  */
2502 static void sw_dis_802_1p(struct ksz_hw *hw, int port)
2503 {
2504 	port_cfg_802_1p(hw, port, 0);
2505 }
2506 
2507 /**
2508  * sw_cfg_replace_null_vid -
2509  * @hw: 	The hardware instance.
2510  * @set:	The flag to disable or enable.
2511  *
2512  */
2513 static void sw_cfg_replace_null_vid(struct ksz_hw *hw, int set)
2514 {
2515 	sw_cfg(hw, KS8842_SWITCH_CTRL_3_OFFSET, SWITCH_REPLACE_NULL_VID, set);
2516 }
2517 
2518 /**
2519  * sw_cfg_replace_vid - enable switch 802.10 priority re-mapping
2520  * @hw: 	The hardware instance.
2521  * @port:	The port index.
2522  * @set:	The flag to disable or enable.
2523  *
2524  * This routine enables the 802.1p priority re-mapping function of the switch.
2525  * That allows 802.1p priority field to be replaced with the port's default
2526  * tag's priority value if the ingress packet's 802.1p priority has a higher
2527  * priority than port's default tag's priority.
2528  */
2529 static void sw_cfg_replace_vid(struct ksz_hw *hw, int port, int set)
2530 {
2531 	port_cfg_replace_vid(hw, port, set);
2532 }
2533 
2534 /**
2535  * sw_cfg_port_based - configure switch port based priority
2536  * @hw: 	The hardware instance.
2537  * @port:	The port index.
2538  * @prio:	The priority to set.
2539  *
2540  * This routine configures the port based priority of the switch.
2541  */
2542 static void sw_cfg_port_based(struct ksz_hw *hw, int port, u8 prio)
2543 {
2544 	u16 data;
2545 
2546 	if (prio > PORT_BASED_PRIORITY_BASE)
2547 		prio = PORT_BASED_PRIORITY_BASE;
2548 
2549 	hw->ksz_switch->port_cfg[port].port_prio = prio;
2550 
2551 	port_r16(hw, port, KS8842_PORT_CTRL_1_OFFSET, &data);
2552 	data &= ~PORT_BASED_PRIORITY_MASK;
2553 	data |= prio << PORT_BASED_PRIORITY_SHIFT;
2554 	port_w16(hw, port, KS8842_PORT_CTRL_1_OFFSET, data);
2555 }
2556 
2557 /**
2558  * sw_dis_multi_queue - disable transmit multiple queues
2559  * @hw: 	The hardware instance.
2560  * @port:	The port index.
2561  *
2562  * This routine disables the transmit multiple queues selection of the switch
2563  * port.  Only single transmit queue on the port.
2564  */
2565 static void sw_dis_multi_queue(struct ksz_hw *hw, int port)
2566 {
2567 	port_cfg_prio(hw, port, 0);
2568 }
2569 
2570 /**
2571  * sw_init_prio - initialize switch priority
2572  * @hw: 	The hardware instance.
2573  *
2574  * This routine initializes the switch QoS priority functions.
2575  */
2576 static void sw_init_prio(struct ksz_hw *hw)
2577 {
2578 	int port;
2579 	int tos;
2580 	struct ksz_switch *sw = hw->ksz_switch;
2581 
2582 	/*
2583 	 * Init all the 802.1p tag priority value to be assigned to different
2584 	 * priority queue.
2585 	 */
2586 	sw->p_802_1p[0] = 0;
2587 	sw->p_802_1p[1] = 0;
2588 	sw->p_802_1p[2] = 1;
2589 	sw->p_802_1p[3] = 1;
2590 	sw->p_802_1p[4] = 2;
2591 	sw->p_802_1p[5] = 2;
2592 	sw->p_802_1p[6] = 3;
2593 	sw->p_802_1p[7] = 3;
2594 
2595 	/*
2596 	 * Init all the DiffServ priority value to be assigned to priority
2597 	 * queue 0.
2598 	 */
2599 	for (tos = 0; tos < DIFFSERV_ENTRIES; tos++)
2600 		sw->diffserv[tos] = 0;
2601 
2602 	/* All QoS functions disabled. */
2603 	for (port = 0; port < TOTAL_PORT_NUM; port++) {
2604 		sw_dis_multi_queue(hw, port);
2605 		sw_dis_diffserv(hw, port);
2606 		sw_dis_802_1p(hw, port);
2607 		sw_cfg_replace_vid(hw, port, 0);
2608 
2609 		sw->port_cfg[port].port_prio = 0;
2610 		sw_cfg_port_based(hw, port, sw->port_cfg[port].port_prio);
2611 	}
2612 	sw_cfg_replace_null_vid(hw, 0);
2613 }
2614 
2615 /**
2616  * port_get_def_vid - get port default VID.
2617  * @hw: 	The hardware instance.
2618  * @port:	The port index.
2619  * @vid:	Buffer to store the VID.
2620  *
2621  * This routine retrieves the default VID of the port.
2622  */
2623 static void port_get_def_vid(struct ksz_hw *hw, int port, u16 *vid)
2624 {
2625 	u32 addr;
2626 
2627 	PORT_CTRL_ADDR(port, addr);
2628 	addr += KS8842_PORT_CTRL_VID_OFFSET;
2629 	*vid = readw(hw->io + addr);
2630 }
2631 
2632 /**
2633  * sw_init_vlan - initialize switch VLAN
2634  * @hw: 	The hardware instance.
2635  *
2636  * This routine initializes the VLAN function of the switch.
2637  */
2638 static void sw_init_vlan(struct ksz_hw *hw)
2639 {
2640 	int port;
2641 	int entry;
2642 	struct ksz_switch *sw = hw->ksz_switch;
2643 
2644 	/* Read 16 VLAN entries from device's VLAN table. */
2645 	for (entry = 0; entry < VLAN_TABLE_ENTRIES; entry++) {
2646 		sw_r_vlan_table(hw, entry,
2647 			&sw->vlan_table[entry].vid,
2648 			&sw->vlan_table[entry].fid,
2649 			&sw->vlan_table[entry].member);
2650 	}
2651 
2652 	for (port = 0; port < TOTAL_PORT_NUM; port++) {
2653 		port_get_def_vid(hw, port, &sw->port_cfg[port].vid);
2654 		sw->port_cfg[port].member = PORT_MASK;
2655 	}
2656 }
2657 
2658 /**
2659  * sw_cfg_port_base_vlan - configure port-based VLAN membership
2660  * @hw: 	The hardware instance.
2661  * @port:	The port index.
2662  * @member:	The port-based VLAN membership.
2663  *
2664  * This routine configures the port-based VLAN membership of the port.
2665  */
2666 static void sw_cfg_port_base_vlan(struct ksz_hw *hw, int port, u8 member)
2667 {
2668 	u32 addr;
2669 	u8 data;
2670 
2671 	PORT_CTRL_ADDR(port, addr);
2672 	addr += KS8842_PORT_CTRL_2_OFFSET;
2673 
2674 	data = readb(hw->io + addr);
2675 	data &= ~PORT_VLAN_MEMBERSHIP;
2676 	data |= (member & PORT_MASK);
2677 	writeb(data, hw->io + addr);
2678 
2679 	hw->ksz_switch->port_cfg[port].member = member;
2680 }
2681 
2682 /**
2683  * sw_get_addr - get the switch MAC address.
2684  * @hw: 	The hardware instance.
2685  * @mac_addr:	Buffer to store the MAC address.
2686  *
2687  * This function retrieves the MAC address of the switch.
2688  */
2689 static inline void sw_get_addr(struct ksz_hw *hw, u8 *mac_addr)
2690 {
2691 	int i;
2692 
2693 	for (i = 0; i < 6; i += 2) {
2694 		mac_addr[i] = readb(hw->io + KS8842_MAC_ADDR_0_OFFSET + i);
2695 		mac_addr[1 + i] = readb(hw->io + KS8842_MAC_ADDR_1_OFFSET + i);
2696 	}
2697 }
2698 
2699 /**
2700  * sw_set_addr - configure switch MAC address
2701  * @hw: 	The hardware instance.
2702  * @mac_addr:	The MAC address.
2703  *
2704  * This function configures the MAC address of the switch.
2705  */
2706 static void sw_set_addr(struct ksz_hw *hw, u8 *mac_addr)
2707 {
2708 	int i;
2709 
2710 	for (i = 0; i < 6; i += 2) {
2711 		writeb(mac_addr[i], hw->io + KS8842_MAC_ADDR_0_OFFSET + i);
2712 		writeb(mac_addr[1 + i], hw->io + KS8842_MAC_ADDR_1_OFFSET + i);
2713 	}
2714 }
2715 
2716 /**
2717  * sw_set_global_ctrl - set switch global control
2718  * @hw: 	The hardware instance.
2719  *
2720  * This routine sets the global control of the switch function.
2721  */
2722 static void sw_set_global_ctrl(struct ksz_hw *hw)
2723 {
2724 	u16 data;
2725 
2726 	/* Enable switch MII flow control. */
2727 	data = readw(hw->io + KS8842_SWITCH_CTRL_3_OFFSET);
2728 	data |= SWITCH_FLOW_CTRL;
2729 	writew(data, hw->io + KS8842_SWITCH_CTRL_3_OFFSET);
2730 
2731 	data = readw(hw->io + KS8842_SWITCH_CTRL_1_OFFSET);
2732 
2733 	/* Enable aggressive back off algorithm in half duplex mode. */
2734 	data |= SWITCH_AGGR_BACKOFF;
2735 
2736 	/* Enable automatic fast aging when link changed detected. */
2737 	data |= SWITCH_AGING_ENABLE;
2738 	data |= SWITCH_LINK_AUTO_AGING;
2739 
2740 	if (hw->overrides & FAST_AGING)
2741 		data |= SWITCH_FAST_AGING;
2742 	else
2743 		data &= ~SWITCH_FAST_AGING;
2744 	writew(data, hw->io + KS8842_SWITCH_CTRL_1_OFFSET);
2745 
2746 	data = readw(hw->io + KS8842_SWITCH_CTRL_2_OFFSET);
2747 
2748 	/* Enable no excessive collision drop. */
2749 	data |= NO_EXC_COLLISION_DROP;
2750 	writew(data, hw->io + KS8842_SWITCH_CTRL_2_OFFSET);
2751 }
2752 
2753 enum {
2754 	STP_STATE_DISABLED = 0,
2755 	STP_STATE_LISTENING,
2756 	STP_STATE_LEARNING,
2757 	STP_STATE_FORWARDING,
2758 	STP_STATE_BLOCKED,
2759 	STP_STATE_SIMPLE
2760 };
2761 
2762 /**
2763  * port_set_stp_state - configure port spanning tree state
2764  * @hw: 	The hardware instance.
2765  * @port:	The port index.
2766  * @state:	The spanning tree state.
2767  *
2768  * This routine configures the spanning tree state of the port.
2769  */
2770 static void port_set_stp_state(struct ksz_hw *hw, int port, int state)
2771 {
2772 	u16 data;
2773 
2774 	port_r16(hw, port, KS8842_PORT_CTRL_2_OFFSET, &data);
2775 	switch (state) {
2776 	case STP_STATE_DISABLED:
2777 		data &= ~(PORT_TX_ENABLE | PORT_RX_ENABLE);
2778 		data |= PORT_LEARN_DISABLE;
2779 		break;
2780 	case STP_STATE_LISTENING:
2781 /*
2782  * No need to turn on transmit because of port direct mode.
2783  * Turning on receive is required if static MAC table is not setup.
2784  */
2785 		data &= ~PORT_TX_ENABLE;
2786 		data |= PORT_RX_ENABLE;
2787 		data |= PORT_LEARN_DISABLE;
2788 		break;
2789 	case STP_STATE_LEARNING:
2790 		data &= ~PORT_TX_ENABLE;
2791 		data |= PORT_RX_ENABLE;
2792 		data &= ~PORT_LEARN_DISABLE;
2793 		break;
2794 	case STP_STATE_FORWARDING:
2795 		data |= (PORT_TX_ENABLE | PORT_RX_ENABLE);
2796 		data &= ~PORT_LEARN_DISABLE;
2797 		break;
2798 	case STP_STATE_BLOCKED:
2799 /*
2800  * Need to setup static MAC table with override to keep receiving BPDU
2801  * messages.  See sw_init_stp routine.
2802  */
2803 		data &= ~(PORT_TX_ENABLE | PORT_RX_ENABLE);
2804 		data |= PORT_LEARN_DISABLE;
2805 		break;
2806 	case STP_STATE_SIMPLE:
2807 		data |= (PORT_TX_ENABLE | PORT_RX_ENABLE);
2808 		data |= PORT_LEARN_DISABLE;
2809 		break;
2810 	}
2811 	port_w16(hw, port, KS8842_PORT_CTRL_2_OFFSET, data);
2812 	hw->ksz_switch->port_cfg[port].stp_state = state;
2813 }
2814 
2815 #define STP_ENTRY			0
2816 #define BROADCAST_ENTRY			1
2817 #define BRIDGE_ADDR_ENTRY		2
2818 #define IPV6_ADDR_ENTRY			3
2819 
2820 /**
2821  * sw_clr_sta_mac_table - clear static MAC table
2822  * @hw: 	The hardware instance.
2823  *
2824  * This routine clears the static MAC table.
2825  */
2826 static void sw_clr_sta_mac_table(struct ksz_hw *hw)
2827 {
2828 	struct ksz_mac_table *entry;
2829 	int i;
2830 
2831 	for (i = 0; i < STATIC_MAC_TABLE_ENTRIES; i++) {
2832 		entry = &hw->ksz_switch->mac_table[i];
2833 		sw_w_sta_mac_table(hw, i,
2834 			entry->mac_addr, entry->ports,
2835 			entry->override, 0,
2836 			entry->use_fid, entry->fid);
2837 	}
2838 }
2839 
2840 /**
2841  * sw_init_stp - initialize switch spanning tree support
2842  * @hw: 	The hardware instance.
2843  *
2844  * This routine initializes the spanning tree support of the switch.
2845  */
2846 static void sw_init_stp(struct ksz_hw *hw)
2847 {
2848 	struct ksz_mac_table *entry;
2849 
2850 	entry = &hw->ksz_switch->mac_table[STP_ENTRY];
2851 	entry->mac_addr[0] = 0x01;
2852 	entry->mac_addr[1] = 0x80;
2853 	entry->mac_addr[2] = 0xC2;
2854 	entry->mac_addr[3] = 0x00;
2855 	entry->mac_addr[4] = 0x00;
2856 	entry->mac_addr[5] = 0x00;
2857 	entry->ports = HOST_MASK;
2858 	entry->override = 1;
2859 	entry->valid = 1;
2860 	sw_w_sta_mac_table(hw, STP_ENTRY,
2861 		entry->mac_addr, entry->ports,
2862 		entry->override, entry->valid,
2863 		entry->use_fid, entry->fid);
2864 }
2865 
2866 /**
2867  * sw_block_addr - block certain packets from the host port
2868  * @hw: 	The hardware instance.
2869  *
2870  * This routine blocks certain packets from reaching to the host port.
2871  */
2872 static void sw_block_addr(struct ksz_hw *hw)
2873 {
2874 	struct ksz_mac_table *entry;
2875 	int i;
2876 
2877 	for (i = BROADCAST_ENTRY; i <= IPV6_ADDR_ENTRY; i++) {
2878 		entry = &hw->ksz_switch->mac_table[i];
2879 		entry->valid = 0;
2880 		sw_w_sta_mac_table(hw, i,
2881 			entry->mac_addr, entry->ports,
2882 			entry->override, entry->valid,
2883 			entry->use_fid, entry->fid);
2884 	}
2885 }
2886 
2887 #define PHY_LINK_SUPPORT		\
2888 	(PHY_AUTO_NEG_ASYM_PAUSE |	\
2889 	PHY_AUTO_NEG_SYM_PAUSE |	\
2890 	PHY_AUTO_NEG_100BT4 |		\
2891 	PHY_AUTO_NEG_100BTX_FD |	\
2892 	PHY_AUTO_NEG_100BTX |		\
2893 	PHY_AUTO_NEG_10BT_FD |		\
2894 	PHY_AUTO_NEG_10BT)
2895 
2896 static inline void hw_r_phy_ctrl(struct ksz_hw *hw, int phy, u16 *data)
2897 {
2898 	*data = readw(hw->io + phy + KS884X_PHY_CTRL_OFFSET);
2899 }
2900 
2901 static inline void hw_w_phy_ctrl(struct ksz_hw *hw, int phy, u16 data)
2902 {
2903 	writew(data, hw->io + phy + KS884X_PHY_CTRL_OFFSET);
2904 }
2905 
2906 static inline void hw_r_phy_link_stat(struct ksz_hw *hw, int phy, u16 *data)
2907 {
2908 	*data = readw(hw->io + phy + KS884X_PHY_STATUS_OFFSET);
2909 }
2910 
2911 static inline void hw_r_phy_auto_neg(struct ksz_hw *hw, int phy, u16 *data)
2912 {
2913 	*data = readw(hw->io + phy + KS884X_PHY_AUTO_NEG_OFFSET);
2914 }
2915 
2916 static inline void hw_w_phy_auto_neg(struct ksz_hw *hw, int phy, u16 data)
2917 {
2918 	writew(data, hw->io + phy + KS884X_PHY_AUTO_NEG_OFFSET);
2919 }
2920 
2921 static inline void hw_r_phy_rem_cap(struct ksz_hw *hw, int phy, u16 *data)
2922 {
2923 	*data = readw(hw->io + phy + KS884X_PHY_REMOTE_CAP_OFFSET);
2924 }
2925 
2926 static inline void hw_r_phy_crossover(struct ksz_hw *hw, int phy, u16 *data)
2927 {
2928 	*data = readw(hw->io + phy + KS884X_PHY_CTRL_OFFSET);
2929 }
2930 
2931 static inline void hw_w_phy_crossover(struct ksz_hw *hw, int phy, u16 data)
2932 {
2933 	writew(data, hw->io + phy + KS884X_PHY_CTRL_OFFSET);
2934 }
2935 
2936 static inline void hw_r_phy_polarity(struct ksz_hw *hw, int phy, u16 *data)
2937 {
2938 	*data = readw(hw->io + phy + KS884X_PHY_PHY_CTRL_OFFSET);
2939 }
2940 
2941 static inline void hw_w_phy_polarity(struct ksz_hw *hw, int phy, u16 data)
2942 {
2943 	writew(data, hw->io + phy + KS884X_PHY_PHY_CTRL_OFFSET);
2944 }
2945 
2946 static inline void hw_r_phy_link_md(struct ksz_hw *hw, int phy, u16 *data)
2947 {
2948 	*data = readw(hw->io + phy + KS884X_PHY_LINK_MD_OFFSET);
2949 }
2950 
2951 static inline void hw_w_phy_link_md(struct ksz_hw *hw, int phy, u16 data)
2952 {
2953 	writew(data, hw->io + phy + KS884X_PHY_LINK_MD_OFFSET);
2954 }
2955 
2956 /**
2957  * hw_r_phy - read data from PHY register
2958  * @hw: 	The hardware instance.
2959  * @port:	Port to read.
2960  * @reg:	PHY register to read.
2961  * @val:	Buffer to store the read data.
2962  *
2963  * This routine reads data from the PHY register.
2964  */
2965 static void hw_r_phy(struct ksz_hw *hw, int port, u16 reg, u16 *val)
2966 {
2967 	int phy;
2968 
2969 	phy = KS884X_PHY_1_CTRL_OFFSET + port * PHY_CTRL_INTERVAL + reg;
2970 	*val = readw(hw->io + phy);
2971 }
2972 
2973 /**
2974  * port_w_phy - write data to PHY register
2975  * @hw: 	The hardware instance.
2976  * @port:	Port to write.
2977  * @reg:	PHY register to write.
2978  * @val:	Word data to write.
2979  *
2980  * This routine writes data to the PHY register.
2981  */
2982 static void hw_w_phy(struct ksz_hw *hw, int port, u16 reg, u16 val)
2983 {
2984 	int phy;
2985 
2986 	phy = KS884X_PHY_1_CTRL_OFFSET + port * PHY_CTRL_INTERVAL + reg;
2987 	writew(val, hw->io + phy);
2988 }
2989 
2990 /*
2991  * EEPROM access functions
2992  */
2993 
2994 #define AT93C_CODE			0
2995 #define AT93C_WR_OFF			0x00
2996 #define AT93C_WR_ALL			0x10
2997 #define AT93C_ER_ALL			0x20
2998 #define AT93C_WR_ON			0x30
2999 
3000 #define AT93C_WRITE			1
3001 #define AT93C_READ			2
3002 #define AT93C_ERASE			3
3003 
3004 #define EEPROM_DELAY			4
3005 
3006 static inline void drop_gpio(struct ksz_hw *hw, u8 gpio)
3007 {
3008 	u16 data;
3009 
3010 	data = readw(hw->io + KS884X_EEPROM_CTRL_OFFSET);
3011 	data &= ~gpio;
3012 	writew(data, hw->io + KS884X_EEPROM_CTRL_OFFSET);
3013 }
3014 
3015 static inline void raise_gpio(struct ksz_hw *hw, u8 gpio)
3016 {
3017 	u16 data;
3018 
3019 	data = readw(hw->io + KS884X_EEPROM_CTRL_OFFSET);
3020 	data |= gpio;
3021 	writew(data, hw->io + KS884X_EEPROM_CTRL_OFFSET);
3022 }
3023 
3024 static inline u8 state_gpio(struct ksz_hw *hw, u8 gpio)
3025 {
3026 	u16 data;
3027 
3028 	data = readw(hw->io + KS884X_EEPROM_CTRL_OFFSET);
3029 	return (u8)(data & gpio);
3030 }
3031 
3032 static void eeprom_clk(struct ksz_hw *hw)
3033 {
3034 	raise_gpio(hw, EEPROM_SERIAL_CLOCK);
3035 	udelay(EEPROM_DELAY);
3036 	drop_gpio(hw, EEPROM_SERIAL_CLOCK);
3037 	udelay(EEPROM_DELAY);
3038 }
3039 
3040 static u16 spi_r(struct ksz_hw *hw)
3041 {
3042 	int i;
3043 	u16 temp = 0;
3044 
3045 	for (i = 15; i >= 0; i--) {
3046 		raise_gpio(hw, EEPROM_SERIAL_CLOCK);
3047 		udelay(EEPROM_DELAY);
3048 
3049 		temp |= (state_gpio(hw, EEPROM_DATA_IN)) ? 1 << i : 0;
3050 
3051 		drop_gpio(hw, EEPROM_SERIAL_CLOCK);
3052 		udelay(EEPROM_DELAY);
3053 	}
3054 	return temp;
3055 }
3056 
3057 static void spi_w(struct ksz_hw *hw, u16 data)
3058 {
3059 	int i;
3060 
3061 	for (i = 15; i >= 0; i--) {
3062 		(data & (0x01 << i)) ? raise_gpio(hw, EEPROM_DATA_OUT) :
3063 			drop_gpio(hw, EEPROM_DATA_OUT);
3064 		eeprom_clk(hw);
3065 	}
3066 }
3067 
3068 static void spi_reg(struct ksz_hw *hw, u8 data, u8 reg)
3069 {
3070 	int i;
3071 
3072 	/* Initial start bit */
3073 	raise_gpio(hw, EEPROM_DATA_OUT);
3074 	eeprom_clk(hw);
3075 
3076 	/* AT93C operation */
3077 	for (i = 1; i >= 0; i--) {
3078 		(data & (0x01 << i)) ? raise_gpio(hw, EEPROM_DATA_OUT) :
3079 			drop_gpio(hw, EEPROM_DATA_OUT);
3080 		eeprom_clk(hw);
3081 	}
3082 
3083 	/* Address location */
3084 	for (i = 5; i >= 0; i--) {
3085 		(reg & (0x01 << i)) ? raise_gpio(hw, EEPROM_DATA_OUT) :
3086 			drop_gpio(hw, EEPROM_DATA_OUT);
3087 		eeprom_clk(hw);
3088 	}
3089 }
3090 
3091 #define EEPROM_DATA_RESERVED		0
3092 #define EEPROM_DATA_MAC_ADDR_0		1
3093 #define EEPROM_DATA_MAC_ADDR_1		2
3094 #define EEPROM_DATA_MAC_ADDR_2		3
3095 #define EEPROM_DATA_SUBSYS_ID		4
3096 #define EEPROM_DATA_SUBSYS_VEN_ID	5
3097 #define EEPROM_DATA_PM_CAP		6
3098 
3099 /* User defined EEPROM data */
3100 #define EEPROM_DATA_OTHER_MAC_ADDR	9
3101 
3102 /**
3103  * eeprom_read - read from AT93C46 EEPROM
3104  * @hw: 	The hardware instance.
3105  * @reg:	The register offset.
3106  *
3107  * This function reads a word from the AT93C46 EEPROM.
3108  *
3109  * Return the data value.
3110  */
3111 static u16 eeprom_read(struct ksz_hw *hw, u8 reg)
3112 {
3113 	u16 data;
3114 
3115 	raise_gpio(hw, EEPROM_ACCESS_ENABLE | EEPROM_CHIP_SELECT);
3116 
3117 	spi_reg(hw, AT93C_READ, reg);
3118 	data = spi_r(hw);
3119 
3120 	drop_gpio(hw, EEPROM_ACCESS_ENABLE | EEPROM_CHIP_SELECT);
3121 
3122 	return data;
3123 }
3124 
3125 /**
3126  * eeprom_write - write to AT93C46 EEPROM
3127  * @hw: 	The hardware instance.
3128  * @reg:	The register offset.
3129  * @data:	The data value.
3130  *
3131  * This procedure writes a word to the AT93C46 EEPROM.
3132  */
3133 static void eeprom_write(struct ksz_hw *hw, u8 reg, u16 data)
3134 {
3135 	int timeout;
3136 
3137 	raise_gpio(hw, EEPROM_ACCESS_ENABLE | EEPROM_CHIP_SELECT);
3138 
3139 	/* Enable write. */
3140 	spi_reg(hw, AT93C_CODE, AT93C_WR_ON);
3141 	drop_gpio(hw, EEPROM_CHIP_SELECT);
3142 	udelay(1);
3143 
3144 	/* Erase the register. */
3145 	raise_gpio(hw, EEPROM_CHIP_SELECT);
3146 	spi_reg(hw, AT93C_ERASE, reg);
3147 	drop_gpio(hw, EEPROM_CHIP_SELECT);
3148 	udelay(1);
3149 
3150 	/* Check operation complete. */
3151 	raise_gpio(hw, EEPROM_CHIP_SELECT);
3152 	timeout = 8;
3153 	mdelay(2);
3154 	do {
3155 		mdelay(1);
3156 	} while (!state_gpio(hw, EEPROM_DATA_IN) && --timeout);
3157 	drop_gpio(hw, EEPROM_CHIP_SELECT);
3158 	udelay(1);
3159 
3160 	/* Write the register. */
3161 	raise_gpio(hw, EEPROM_CHIP_SELECT);
3162 	spi_reg(hw, AT93C_WRITE, reg);
3163 	spi_w(hw, data);
3164 	drop_gpio(hw, EEPROM_CHIP_SELECT);
3165 	udelay(1);
3166 
3167 	/* Check operation complete. */
3168 	raise_gpio(hw, EEPROM_CHIP_SELECT);
3169 	timeout = 8;
3170 	mdelay(2);
3171 	do {
3172 		mdelay(1);
3173 	} while (!state_gpio(hw, EEPROM_DATA_IN) && --timeout);
3174 	drop_gpio(hw, EEPROM_CHIP_SELECT);
3175 	udelay(1);
3176 
3177 	/* Disable write. */
3178 	raise_gpio(hw, EEPROM_CHIP_SELECT);
3179 	spi_reg(hw, AT93C_CODE, AT93C_WR_OFF);
3180 
3181 	drop_gpio(hw, EEPROM_ACCESS_ENABLE | EEPROM_CHIP_SELECT);
3182 }
3183 
3184 /*
3185  * Link detection routines
3186  */
3187 
3188 static u16 advertised_flow_ctrl(struct ksz_port *port, u16 ctrl)
3189 {
3190 	ctrl &= ~PORT_AUTO_NEG_SYM_PAUSE;
3191 	switch (port->flow_ctrl) {
3192 	case PHY_FLOW_CTRL:
3193 		ctrl |= PORT_AUTO_NEG_SYM_PAUSE;
3194 		break;
3195 	/* Not supported. */
3196 	case PHY_TX_ONLY:
3197 	case PHY_RX_ONLY:
3198 	default:
3199 		break;
3200 	}
3201 	return ctrl;
3202 }
3203 
3204 static void set_flow_ctrl(struct ksz_hw *hw, int rx, int tx)
3205 {
3206 	u32 rx_cfg;
3207 	u32 tx_cfg;
3208 
3209 	rx_cfg = hw->rx_cfg;
3210 	tx_cfg = hw->tx_cfg;
3211 	if (rx)
3212 		hw->rx_cfg |= DMA_RX_FLOW_ENABLE;
3213 	else
3214 		hw->rx_cfg &= ~DMA_RX_FLOW_ENABLE;
3215 	if (tx)
3216 		hw->tx_cfg |= DMA_TX_FLOW_ENABLE;
3217 	else
3218 		hw->tx_cfg &= ~DMA_TX_FLOW_ENABLE;
3219 	if (hw->enabled) {
3220 		if (rx_cfg != hw->rx_cfg)
3221 			writel(hw->rx_cfg, hw->io + KS_DMA_RX_CTRL);
3222 		if (tx_cfg != hw->tx_cfg)
3223 			writel(hw->tx_cfg, hw->io + KS_DMA_TX_CTRL);
3224 	}
3225 }
3226 
3227 static void determine_flow_ctrl(struct ksz_hw *hw, struct ksz_port *port,
3228 	u16 local, u16 remote)
3229 {
3230 	int rx;
3231 	int tx;
3232 
3233 	if (hw->overrides & PAUSE_FLOW_CTRL)
3234 		return;
3235 
3236 	rx = tx = 0;
3237 	if (port->force_link)
3238 		rx = tx = 1;
3239 	if (remote & PHY_AUTO_NEG_SYM_PAUSE) {
3240 		if (local & PHY_AUTO_NEG_SYM_PAUSE) {
3241 			rx = tx = 1;
3242 		} else if ((remote & PHY_AUTO_NEG_ASYM_PAUSE) &&
3243 				(local & PHY_AUTO_NEG_PAUSE) ==
3244 				PHY_AUTO_NEG_ASYM_PAUSE) {
3245 			tx = 1;
3246 		}
3247 	} else if (remote & PHY_AUTO_NEG_ASYM_PAUSE) {
3248 		if ((local & PHY_AUTO_NEG_PAUSE) == PHY_AUTO_NEG_PAUSE)
3249 			rx = 1;
3250 	}
3251 	if (!hw->ksz_switch)
3252 		set_flow_ctrl(hw, rx, tx);
3253 }
3254 
3255 static inline void port_cfg_change(struct ksz_hw *hw, struct ksz_port *port,
3256 	struct ksz_port_info *info, u16 link_status)
3257 {
3258 	if ((hw->features & HALF_DUPLEX_SIGNAL_BUG) &&
3259 			!(hw->overrides & PAUSE_FLOW_CTRL)) {
3260 		u32 cfg = hw->tx_cfg;
3261 
3262 		/* Disable flow control in the half duplex mode. */
3263 		if (1 == info->duplex)
3264 			hw->tx_cfg &= ~DMA_TX_FLOW_ENABLE;
3265 		if (hw->enabled && cfg != hw->tx_cfg)
3266 			writel(hw->tx_cfg, hw->io + KS_DMA_TX_CTRL);
3267 	}
3268 }
3269 
3270 /**
3271  * port_get_link_speed - get current link status
3272  * @port: 	The port instance.
3273  *
3274  * This routine reads PHY registers to determine the current link status of the
3275  * switch ports.
3276  */
3277 static void port_get_link_speed(struct ksz_port *port)
3278 {
3279 	uint interrupt;
3280 	struct ksz_port_info *info;
3281 	struct ksz_port_info *linked = NULL;
3282 	struct ksz_hw *hw = port->hw;
3283 	u16 data;
3284 	u16 status;
3285 	u8 local;
3286 	u8 remote;
3287 	int i;
3288 	int p;
3289 	int change = 0;
3290 
3291 	interrupt = hw_block_intr(hw);
3292 
3293 	for (i = 0, p = port->first_port; i < port->port_cnt; i++, p++) {
3294 		info = &hw->port_info[p];
3295 		port_r16(hw, p, KS884X_PORT_CTRL_4_OFFSET, &data);
3296 		port_r16(hw, p, KS884X_PORT_STATUS_OFFSET, &status);
3297 
3298 		/*
3299 		 * Link status is changing all the time even when there is no
3300 		 * cable connection!
3301 		 */
3302 		remote = status & (PORT_AUTO_NEG_COMPLETE |
3303 			PORT_STATUS_LINK_GOOD);
3304 		local = (u8) data;
3305 
3306 		/* No change to status. */
3307 		if (local == info->advertised && remote == info->partner)
3308 			continue;
3309 
3310 		info->advertised = local;
3311 		info->partner = remote;
3312 		if (status & PORT_STATUS_LINK_GOOD) {
3313 
3314 			/* Remember the first linked port. */
3315 			if (!linked)
3316 				linked = info;
3317 
3318 			info->tx_rate = 10 * TX_RATE_UNIT;
3319 			if (status & PORT_STATUS_SPEED_100MBIT)
3320 				info->tx_rate = 100 * TX_RATE_UNIT;
3321 
3322 			info->duplex = 1;
3323 			if (status & PORT_STATUS_FULL_DUPLEX)
3324 				info->duplex = 2;
3325 
3326 			if (media_connected != info->state) {
3327 				hw_r_phy(hw, p, KS884X_PHY_AUTO_NEG_OFFSET,
3328 					&data);
3329 				hw_r_phy(hw, p, KS884X_PHY_REMOTE_CAP_OFFSET,
3330 					&status);
3331 				determine_flow_ctrl(hw, port, data, status);
3332 				if (hw->ksz_switch) {
3333 					port_cfg_back_pressure(hw, p,
3334 						(1 == info->duplex));
3335 				}
3336 				change |= 1 << i;
3337 				port_cfg_change(hw, port, info, status);
3338 			}
3339 			info->state = media_connected;
3340 		} else {
3341 			if (media_disconnected != info->state) {
3342 				change |= 1 << i;
3343 
3344 				/* Indicate the link just goes down. */
3345 				hw->port_mib[p].link_down = 1;
3346 			}
3347 			info->state = media_disconnected;
3348 		}
3349 		hw->port_mib[p].state = (u8) info->state;
3350 	}
3351 
3352 	if (linked && media_disconnected == port->linked->state)
3353 		port->linked = linked;
3354 
3355 	hw_restore_intr(hw, interrupt);
3356 }
3357 
3358 #define PHY_RESET_TIMEOUT		10
3359 
3360 /**
3361  * port_set_link_speed - set port speed
3362  * @port: 	The port instance.
3363  *
3364  * This routine sets the link speed of the switch ports.
3365  */
3366 static void port_set_link_speed(struct ksz_port *port)
3367 {
3368 	struct ksz_hw *hw = port->hw;
3369 	u16 data;
3370 	u16 cfg;
3371 	u8 status;
3372 	int i;
3373 	int p;
3374 
3375 	for (i = 0, p = port->first_port; i < port->port_cnt; i++, p++) {
3376 		port_r16(hw, p, KS884X_PORT_CTRL_4_OFFSET, &data);
3377 		port_r8(hw, p, KS884X_PORT_STATUS_OFFSET, &status);
3378 
3379 		cfg = 0;
3380 		if (status & PORT_STATUS_LINK_GOOD)
3381 			cfg = data;
3382 
3383 		data |= PORT_AUTO_NEG_ENABLE;
3384 		data = advertised_flow_ctrl(port, data);
3385 
3386 		data |= PORT_AUTO_NEG_100BTX_FD | PORT_AUTO_NEG_100BTX |
3387 			PORT_AUTO_NEG_10BT_FD | PORT_AUTO_NEG_10BT;
3388 
3389 		/* Check if manual configuration is specified by the user. */
3390 		if (port->speed || port->duplex) {
3391 			if (10 == port->speed)
3392 				data &= ~(PORT_AUTO_NEG_100BTX_FD |
3393 					PORT_AUTO_NEG_100BTX);
3394 			else if (100 == port->speed)
3395 				data &= ~(PORT_AUTO_NEG_10BT_FD |
3396 					PORT_AUTO_NEG_10BT);
3397 			if (1 == port->duplex)
3398 				data &= ~(PORT_AUTO_NEG_100BTX_FD |
3399 					PORT_AUTO_NEG_10BT_FD);
3400 			else if (2 == port->duplex)
3401 				data &= ~(PORT_AUTO_NEG_100BTX |
3402 					PORT_AUTO_NEG_10BT);
3403 		}
3404 		if (data != cfg) {
3405 			data |= PORT_AUTO_NEG_RESTART;
3406 			port_w16(hw, p, KS884X_PORT_CTRL_4_OFFSET, data);
3407 		}
3408 	}
3409 }
3410 
3411 /**
3412  * port_force_link_speed - force port speed
3413  * @port: 	The port instance.
3414  *
3415  * This routine forces the link speed of the switch ports.
3416  */
3417 static void port_force_link_speed(struct ksz_port *port)
3418 {
3419 	struct ksz_hw *hw = port->hw;
3420 	u16 data;
3421 	int i;
3422 	int phy;
3423 	int p;
3424 
3425 	for (i = 0, p = port->first_port; i < port->port_cnt; i++, p++) {
3426 		phy = KS884X_PHY_1_CTRL_OFFSET + p * PHY_CTRL_INTERVAL;
3427 		hw_r_phy_ctrl(hw, phy, &data);
3428 
3429 		data &= ~PHY_AUTO_NEG_ENABLE;
3430 
3431 		if (10 == port->speed)
3432 			data &= ~PHY_SPEED_100MBIT;
3433 		else if (100 == port->speed)
3434 			data |= PHY_SPEED_100MBIT;
3435 		if (1 == port->duplex)
3436 			data &= ~PHY_FULL_DUPLEX;
3437 		else if (2 == port->duplex)
3438 			data |= PHY_FULL_DUPLEX;
3439 		hw_w_phy_ctrl(hw, phy, data);
3440 	}
3441 }
3442 
3443 static void port_set_power_saving(struct ksz_port *port, int enable)
3444 {
3445 	struct ksz_hw *hw = port->hw;
3446 	int i;
3447 	int p;
3448 
3449 	for (i = 0, p = port->first_port; i < port->port_cnt; i++, p++)
3450 		port_cfg(hw, p,
3451 			KS884X_PORT_CTRL_4_OFFSET, PORT_POWER_DOWN, enable);
3452 }
3453 
3454 /*
3455  * KSZ8841 power management functions
3456  */
3457 
3458 /**
3459  * hw_chk_wol_pme_status - check PMEN pin
3460  * @hw: 	The hardware instance.
3461  *
3462  * This function is used to check PMEN pin is asserted.
3463  *
3464  * Return 1 if PMEN pin is asserted; otherwise, 0.
3465  */
3466 static int hw_chk_wol_pme_status(struct ksz_hw *hw)
3467 {
3468 	struct dev_info *hw_priv = container_of(hw, struct dev_info, hw);
3469 	struct pci_dev *pdev = hw_priv->pdev;
3470 	u16 data;
3471 
3472 	if (!pdev->pm_cap)
3473 		return 0;
3474 	pci_read_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, &data);
3475 	return (data & PCI_PM_CTRL_PME_STATUS) == PCI_PM_CTRL_PME_STATUS;
3476 }
3477 
3478 /**
3479  * hw_clr_wol_pme_status - clear PMEN pin
3480  * @hw: 	The hardware instance.
3481  *
3482  * This routine is used to clear PME_Status to deassert PMEN pin.
3483  */
3484 static void hw_clr_wol_pme_status(struct ksz_hw *hw)
3485 {
3486 	struct dev_info *hw_priv = container_of(hw, struct dev_info, hw);
3487 	struct pci_dev *pdev = hw_priv->pdev;
3488 	u16 data;
3489 
3490 	if (!pdev->pm_cap)
3491 		return;
3492 
3493 	/* Clear PME_Status to deassert PMEN pin. */
3494 	pci_read_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, &data);
3495 	data |= PCI_PM_CTRL_PME_STATUS;
3496 	pci_write_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, data);
3497 }
3498 
3499 /**
3500  * hw_cfg_wol_pme - enable or disable Wake-on-LAN
3501  * @hw: 	The hardware instance.
3502  * @set:	The flag indicating whether to enable or disable.
3503  *
3504  * This routine is used to enable or disable Wake-on-LAN.
3505  */
3506 static void hw_cfg_wol_pme(struct ksz_hw *hw, int set)
3507 {
3508 	struct dev_info *hw_priv = container_of(hw, struct dev_info, hw);
3509 	struct pci_dev *pdev = hw_priv->pdev;
3510 	u16 data;
3511 
3512 	if (!pdev->pm_cap)
3513 		return;
3514 	pci_read_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, &data);
3515 	data &= ~PCI_PM_CTRL_STATE_MASK;
3516 	if (set)
3517 		data |= PCI_PM_CTRL_PME_ENABLE | PCI_D3hot;
3518 	else
3519 		data &= ~PCI_PM_CTRL_PME_ENABLE;
3520 	pci_write_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, data);
3521 }
3522 
3523 /**
3524  * hw_cfg_wol - configure Wake-on-LAN features
3525  * @hw: 	The hardware instance.
3526  * @frame:	The pattern frame bit.
3527  * @set:	The flag indicating whether to enable or disable.
3528  *
3529  * This routine is used to enable or disable certain Wake-on-LAN features.
3530  */
3531 static void hw_cfg_wol(struct ksz_hw *hw, u16 frame, int set)
3532 {
3533 	u16 data;
3534 
3535 	data = readw(hw->io + KS8841_WOL_CTRL_OFFSET);
3536 	if (set)
3537 		data |= frame;
3538 	else
3539 		data &= ~frame;
3540 	writew(data, hw->io + KS8841_WOL_CTRL_OFFSET);
3541 }
3542 
3543 /**
3544  * hw_set_wol_frame - program Wake-on-LAN pattern
3545  * @hw: 	The hardware instance.
3546  * @i:		The frame index.
3547  * @mask_size:	The size of the mask.
3548  * @mask:	Mask to ignore certain bytes in the pattern.
3549  * @frame_size:	The size of the frame.
3550  * @pattern:	The frame data.
3551  *
3552  * This routine is used to program Wake-on-LAN pattern.
3553  */
3554 static void hw_set_wol_frame(struct ksz_hw *hw, int i, uint mask_size,
3555 	const u8 *mask, uint frame_size, const u8 *pattern)
3556 {
3557 	int bits;
3558 	int from;
3559 	int len;
3560 	int to;
3561 	u32 crc;
3562 	u8 data[64];
3563 	u8 val = 0;
3564 
3565 	if (frame_size > mask_size * 8)
3566 		frame_size = mask_size * 8;
3567 	if (frame_size > 64)
3568 		frame_size = 64;
3569 
3570 	i *= 0x10;
3571 	writel(0, hw->io + KS8841_WOL_FRAME_BYTE0_OFFSET + i);
3572 	writel(0, hw->io + KS8841_WOL_FRAME_BYTE2_OFFSET + i);
3573 
3574 	bits = len = from = to = 0;
3575 	do {
3576 		if (bits) {
3577 			if ((val & 1))
3578 				data[to++] = pattern[from];
3579 			val >>= 1;
3580 			++from;
3581 			--bits;
3582 		} else {
3583 			val = mask[len];
3584 			writeb(val, hw->io + KS8841_WOL_FRAME_BYTE0_OFFSET + i
3585 				+ len);
3586 			++len;
3587 			if (val)
3588 				bits = 8;
3589 			else
3590 				from += 8;
3591 		}
3592 	} while (from < (int) frame_size);
3593 	if (val) {
3594 		bits = mask[len - 1];
3595 		val <<= (from % 8);
3596 		bits &= ~val;
3597 		writeb(bits, hw->io + KS8841_WOL_FRAME_BYTE0_OFFSET + i + len -
3598 			1);
3599 	}
3600 	crc = ether_crc(to, data);
3601 	writel(crc, hw->io + KS8841_WOL_FRAME_CRC_OFFSET + i);
3602 }
3603 
3604 /**
3605  * hw_add_wol_arp - add ARP pattern
3606  * @hw: 	The hardware instance.
3607  * @ip_addr:	The IPv4 address assigned to the device.
3608  *
3609  * This routine is used to add ARP pattern for waking up the host.
3610  */
3611 static void hw_add_wol_arp(struct ksz_hw *hw, const u8 *ip_addr)
3612 {
3613 	static const u8 mask[6] = { 0x3F, 0xF0, 0x3F, 0x00, 0xC0, 0x03 };
3614 	u8 pattern[42] = {
3615 		0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
3616 		0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
3617 		0x08, 0x06,
3618 		0x00, 0x01, 0x08, 0x00, 0x06, 0x04, 0x00, 0x01,
3619 		0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
3620 		0x00, 0x00, 0x00, 0x00,
3621 		0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
3622 		0x00, 0x00, 0x00, 0x00 };
3623 
3624 	memcpy(&pattern[38], ip_addr, 4);
3625 	hw_set_wol_frame(hw, 3, 6, mask, 42, pattern);
3626 }
3627 
3628 /**
3629  * hw_add_wol_bcast - add broadcast pattern
3630  * @hw: 	The hardware instance.
3631  *
3632  * This routine is used to add broadcast pattern for waking up the host.
3633  */
3634 static void hw_add_wol_bcast(struct ksz_hw *hw)
3635 {
3636 	static const u8 mask[] = { 0x3F };
3637 	static const u8 pattern[] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
3638 
3639 	hw_set_wol_frame(hw, 2, 1, mask, ETH_ALEN, pattern);
3640 }
3641 
3642 /**
3643  * hw_add_wol_mcast - add multicast pattern
3644  * @hw: 	The hardware instance.
3645  *
3646  * This routine is used to add multicast pattern for waking up the host.
3647  *
3648  * It is assumed the multicast packet is the ICMPv6 neighbor solicitation used
3649  * by IPv6 ping command.  Note that multicast packets are filtred through the
3650  * multicast hash table, so not all multicast packets can wake up the host.
3651  */
3652 static void hw_add_wol_mcast(struct ksz_hw *hw)
3653 {
3654 	static const u8 mask[] = { 0x3F };
3655 	u8 pattern[] = { 0x33, 0x33, 0xFF, 0x00, 0x00, 0x00 };
3656 
3657 	memcpy(&pattern[3], &hw->override_addr[3], 3);
3658 	hw_set_wol_frame(hw, 1, 1, mask, 6, pattern);
3659 }
3660 
3661 /**
3662  * hw_add_wol_ucast - add unicast pattern
3663  * @hw: 	The hardware instance.
3664  *
3665  * This routine is used to add unicast pattern to wakeup the host.
3666  *
3667  * It is assumed the unicast packet is directed to the device, as the hardware
3668  * can only receive them in normal case.
3669  */
3670 static void hw_add_wol_ucast(struct ksz_hw *hw)
3671 {
3672 	static const u8 mask[] = { 0x3F };
3673 
3674 	hw_set_wol_frame(hw, 0, 1, mask, ETH_ALEN, hw->override_addr);
3675 }
3676 
3677 /**
3678  * hw_enable_wol - enable Wake-on-LAN
3679  * @hw: 	The hardware instance.
3680  * @wol_enable:	The Wake-on-LAN settings.
3681  * @net_addr:	The IPv4 address assigned to the device.
3682  *
3683  * This routine is used to enable Wake-on-LAN depending on driver settings.
3684  */
3685 static void hw_enable_wol(struct ksz_hw *hw, u32 wol_enable, const u8 *net_addr)
3686 {
3687 	hw_cfg_wol(hw, KS8841_WOL_MAGIC_ENABLE, (wol_enable & WAKE_MAGIC));
3688 	hw_cfg_wol(hw, KS8841_WOL_FRAME0_ENABLE, (wol_enable & WAKE_UCAST));
3689 	hw_add_wol_ucast(hw);
3690 	hw_cfg_wol(hw, KS8841_WOL_FRAME1_ENABLE, (wol_enable & WAKE_MCAST));
3691 	hw_add_wol_mcast(hw);
3692 	hw_cfg_wol(hw, KS8841_WOL_FRAME2_ENABLE, (wol_enable & WAKE_BCAST));
3693 	hw_cfg_wol(hw, KS8841_WOL_FRAME3_ENABLE, (wol_enable & WAKE_ARP));
3694 	hw_add_wol_arp(hw, net_addr);
3695 }
3696 
3697 /**
3698  * hw_init - check driver is correct for the hardware
3699  * @hw: 	The hardware instance.
3700  *
3701  * This function checks the hardware is correct for this driver and sets the
3702  * hardware up for proper initialization.
3703  *
3704  * Return number of ports or 0 if not right.
3705  */
3706 static int hw_init(struct ksz_hw *hw)
3707 {
3708 	int rc = 0;
3709 	u16 data;
3710 	u16 revision;
3711 
3712 	/* Set bus speed to 125MHz. */
3713 	writew(BUS_SPEED_125_MHZ, hw->io + KS884X_BUS_CTRL_OFFSET);
3714 
3715 	/* Check KSZ884x chip ID. */
3716 	data = readw(hw->io + KS884X_CHIP_ID_OFFSET);
3717 
3718 	revision = (data & KS884X_REVISION_MASK) >> KS884X_REVISION_SHIFT;
3719 	data &= KS884X_CHIP_ID_MASK_41;
3720 	if (REG_CHIP_ID_41 == data)
3721 		rc = 1;
3722 	else if (REG_CHIP_ID_42 == data)
3723 		rc = 2;
3724 	else
3725 		return 0;
3726 
3727 	/* Setup hardware features or bug workarounds. */
3728 	if (revision <= 1) {
3729 		hw->features |= SMALL_PACKET_TX_BUG;
3730 		if (1 == rc)
3731 			hw->features |= HALF_DUPLEX_SIGNAL_BUG;
3732 	}
3733 	return rc;
3734 }
3735 
3736 /**
3737  * hw_reset - reset the hardware
3738  * @hw: 	The hardware instance.
3739  *
3740  * This routine resets the hardware.
3741  */
3742 static void hw_reset(struct ksz_hw *hw)
3743 {
3744 	writew(GLOBAL_SOFTWARE_RESET, hw->io + KS884X_GLOBAL_CTRL_OFFSET);
3745 
3746 	/* Wait for device to reset. */
3747 	mdelay(10);
3748 
3749 	/* Write 0 to clear device reset. */
3750 	writew(0, hw->io + KS884X_GLOBAL_CTRL_OFFSET);
3751 }
3752 
3753 /**
3754  * hw_setup - setup the hardware
3755  * @hw: 	The hardware instance.
3756  *
3757  * This routine setup the hardware for proper operation.
3758  */
3759 static void hw_setup(struct ksz_hw *hw)
3760 {
3761 #if SET_DEFAULT_LED
3762 	u16 data;
3763 
3764 	/* Change default LED mode. */
3765 	data = readw(hw->io + KS8842_SWITCH_CTRL_5_OFFSET);
3766 	data &= ~LED_MODE;
3767 	data |= SET_DEFAULT_LED;
3768 	writew(data, hw->io + KS8842_SWITCH_CTRL_5_OFFSET);
3769 #endif
3770 
3771 	/* Setup transmit control. */
3772 	hw->tx_cfg = (DMA_TX_PAD_ENABLE | DMA_TX_CRC_ENABLE |
3773 		(DMA_BURST_DEFAULT << DMA_BURST_SHIFT) | DMA_TX_ENABLE);
3774 
3775 	/* Setup receive control. */
3776 	hw->rx_cfg = (DMA_RX_BROADCAST | DMA_RX_UNICAST |
3777 		(DMA_BURST_DEFAULT << DMA_BURST_SHIFT) | DMA_RX_ENABLE);
3778 	hw->rx_cfg |= KS884X_DMA_RX_MULTICAST;
3779 
3780 	/* Hardware cannot handle UDP packet in IP fragments. */
3781 	hw->rx_cfg |= (DMA_RX_CSUM_TCP | DMA_RX_CSUM_IP);
3782 
3783 	if (hw->all_multi)
3784 		hw->rx_cfg |= DMA_RX_ALL_MULTICAST;
3785 	if (hw->promiscuous)
3786 		hw->rx_cfg |= DMA_RX_PROMISCUOUS;
3787 }
3788 
3789 /**
3790  * hw_setup_intr - setup interrupt mask
3791  * @hw: 	The hardware instance.
3792  *
3793  * This routine setup the interrupt mask for proper operation.
3794  */
3795 static void hw_setup_intr(struct ksz_hw *hw)
3796 {
3797 	hw->intr_mask = KS884X_INT_MASK | KS884X_INT_RX_OVERRUN;
3798 }
3799 
3800 static void ksz_check_desc_num(struct ksz_desc_info *info)
3801 {
3802 #define MIN_DESC_SHIFT  2
3803 
3804 	int alloc = info->alloc;
3805 	int shift;
3806 
3807 	shift = 0;
3808 	while (!(alloc & 1)) {
3809 		shift++;
3810 		alloc >>= 1;
3811 	}
3812 	if (alloc != 1 || shift < MIN_DESC_SHIFT) {
3813 		pr_alert("Hardware descriptor numbers not right!\n");
3814 		while (alloc) {
3815 			shift++;
3816 			alloc >>= 1;
3817 		}
3818 		if (shift < MIN_DESC_SHIFT)
3819 			shift = MIN_DESC_SHIFT;
3820 		alloc = 1 << shift;
3821 		info->alloc = alloc;
3822 	}
3823 	info->mask = info->alloc - 1;
3824 }
3825 
3826 static void hw_init_desc(struct ksz_desc_info *desc_info, int transmit)
3827 {
3828 	int i;
3829 	u32 phys = desc_info->ring_phys;
3830 	struct ksz_hw_desc *desc = desc_info->ring_virt;
3831 	struct ksz_desc *cur = desc_info->ring;
3832 	struct ksz_desc *previous = NULL;
3833 
3834 	for (i = 0; i < desc_info->alloc; i++) {
3835 		cur->phw = desc++;
3836 		phys += desc_info->size;
3837 		previous = cur++;
3838 		previous->phw->next = cpu_to_le32(phys);
3839 	}
3840 	previous->phw->next = cpu_to_le32(desc_info->ring_phys);
3841 	previous->sw.buf.rx.end_of_ring = 1;
3842 	previous->phw->buf.data = cpu_to_le32(previous->sw.buf.data);
3843 
3844 	desc_info->avail = desc_info->alloc;
3845 	desc_info->last = desc_info->next = 0;
3846 
3847 	desc_info->cur = desc_info->ring;
3848 }
3849 
3850 /**
3851  * hw_set_desc_base - set descriptor base addresses
3852  * @hw: 	The hardware instance.
3853  * @tx_addr:	The transmit descriptor base.
3854  * @rx_addr:	The receive descriptor base.
3855  *
3856  * This routine programs the descriptor base addresses after reset.
3857  */
3858 static void hw_set_desc_base(struct ksz_hw *hw, u32 tx_addr, u32 rx_addr)
3859 {
3860 	/* Set base address of Tx/Rx descriptors. */
3861 	writel(tx_addr, hw->io + KS_DMA_TX_ADDR);
3862 	writel(rx_addr, hw->io + KS_DMA_RX_ADDR);
3863 }
3864 
3865 static void hw_reset_pkts(struct ksz_desc_info *info)
3866 {
3867 	info->cur = info->ring;
3868 	info->avail = info->alloc;
3869 	info->last = info->next = 0;
3870 }
3871 
3872 static inline void hw_resume_rx(struct ksz_hw *hw)
3873 {
3874 	writel(DMA_START, hw->io + KS_DMA_RX_START);
3875 }
3876 
3877 /**
3878  * hw_start_rx - start receiving
3879  * @hw: 	The hardware instance.
3880  *
3881  * This routine starts the receive function of the hardware.
3882  */
3883 static void hw_start_rx(struct ksz_hw *hw)
3884 {
3885 	writel(hw->rx_cfg, hw->io + KS_DMA_RX_CTRL);
3886 
3887 	/* Notify when the receive stops. */
3888 	hw->intr_mask |= KS884X_INT_RX_STOPPED;
3889 
3890 	writel(DMA_START, hw->io + KS_DMA_RX_START);
3891 	hw_ack_intr(hw, KS884X_INT_RX_STOPPED);
3892 	hw->rx_stop++;
3893 
3894 	/* Variable overflows. */
3895 	if (0 == hw->rx_stop)
3896 		hw->rx_stop = 2;
3897 }
3898 
3899 /**
3900  * hw_stop_rx - stop receiving
3901  * @hw: 	The hardware instance.
3902  *
3903  * This routine stops the receive function of the hardware.
3904  */
3905 static void hw_stop_rx(struct ksz_hw *hw)
3906 {
3907 	hw->rx_stop = 0;
3908 	hw_turn_off_intr(hw, KS884X_INT_RX_STOPPED);
3909 	writel((hw->rx_cfg & ~DMA_RX_ENABLE), hw->io + KS_DMA_RX_CTRL);
3910 }
3911 
3912 /**
3913  * hw_start_tx - start transmitting
3914  * @hw: 	The hardware instance.
3915  *
3916  * This routine starts the transmit function of the hardware.
3917  */
3918 static void hw_start_tx(struct ksz_hw *hw)
3919 {
3920 	writel(hw->tx_cfg, hw->io + KS_DMA_TX_CTRL);
3921 }
3922 
3923 /**
3924  * hw_stop_tx - stop transmitting
3925  * @hw: 	The hardware instance.
3926  *
3927  * This routine stops the transmit function of the hardware.
3928  */
3929 static void hw_stop_tx(struct ksz_hw *hw)
3930 {
3931 	writel((hw->tx_cfg & ~DMA_TX_ENABLE), hw->io + KS_DMA_TX_CTRL);
3932 }
3933 
3934 /**
3935  * hw_disable - disable hardware
3936  * @hw: 	The hardware instance.
3937  *
3938  * This routine disables the hardware.
3939  */
3940 static void hw_disable(struct ksz_hw *hw)
3941 {
3942 	hw_stop_rx(hw);
3943 	hw_stop_tx(hw);
3944 	hw->enabled = 0;
3945 }
3946 
3947 /**
3948  * hw_enable - enable hardware
3949  * @hw: 	The hardware instance.
3950  *
3951  * This routine enables the hardware.
3952  */
3953 static void hw_enable(struct ksz_hw *hw)
3954 {
3955 	hw_start_tx(hw);
3956 	hw_start_rx(hw);
3957 	hw->enabled = 1;
3958 }
3959 
3960 /**
3961  * hw_alloc_pkt - allocate enough descriptors for transmission
3962  * @hw: 	The hardware instance.
3963  * @length:	The length of the packet.
3964  * @physical:	Number of descriptors required.
3965  *
3966  * This function allocates descriptors for transmission.
3967  *
3968  * Return 0 if not successful; 1 for buffer copy; or number of descriptors.
3969  */
3970 static int hw_alloc_pkt(struct ksz_hw *hw, int length, int physical)
3971 {
3972 	/* Always leave one descriptor free. */
3973 	if (hw->tx_desc_info.avail <= 1)
3974 		return 0;
3975 
3976 	/* Allocate a descriptor for transmission and mark it current. */
3977 	get_tx_pkt(&hw->tx_desc_info, &hw->tx_desc_info.cur);
3978 	hw->tx_desc_info.cur->sw.buf.tx.first_seg = 1;
3979 
3980 	/* Keep track of number of transmit descriptors used so far. */
3981 	++hw->tx_int_cnt;
3982 	hw->tx_size += length;
3983 
3984 	/* Cannot hold on too much data. */
3985 	if (hw->tx_size >= MAX_TX_HELD_SIZE)
3986 		hw->tx_int_cnt = hw->tx_int_mask + 1;
3987 
3988 	if (physical > hw->tx_desc_info.avail)
3989 		return 1;
3990 
3991 	return hw->tx_desc_info.avail;
3992 }
3993 
3994 /**
3995  * hw_send_pkt - mark packet for transmission
3996  * @hw: 	The hardware instance.
3997  *
3998  * This routine marks the packet for transmission in PCI version.
3999  */
4000 static void hw_send_pkt(struct ksz_hw *hw)
4001 {
4002 	struct ksz_desc *cur = hw->tx_desc_info.cur;
4003 
4004 	cur->sw.buf.tx.last_seg = 1;
4005 
4006 	/* Interrupt only after specified number of descriptors used. */
4007 	if (hw->tx_int_cnt > hw->tx_int_mask) {
4008 		cur->sw.buf.tx.intr = 1;
4009 		hw->tx_int_cnt = 0;
4010 		hw->tx_size = 0;
4011 	}
4012 
4013 	/* KSZ8842 supports port directed transmission. */
4014 	cur->sw.buf.tx.dest_port = hw->dst_ports;
4015 
4016 	release_desc(cur);
4017 
4018 	writel(0, hw->io + KS_DMA_TX_START);
4019 }
4020 
4021 static int empty_addr(u8 *addr)
4022 {
4023 	u32 *addr1 = (u32 *) addr;
4024 	u16 *addr2 = (u16 *) &addr[4];
4025 
4026 	return 0 == *addr1 && 0 == *addr2;
4027 }
4028 
4029 /**
4030  * hw_set_addr - set MAC address
4031  * @hw: 	The hardware instance.
4032  *
4033  * This routine programs the MAC address of the hardware when the address is
4034  * overridden.
4035  */
4036 static void hw_set_addr(struct ksz_hw *hw)
4037 {
4038 	int i;
4039 
4040 	for (i = 0; i < ETH_ALEN; i++)
4041 		writeb(hw->override_addr[MAC_ADDR_ORDER(i)],
4042 			hw->io + KS884X_ADDR_0_OFFSET + i);
4043 
4044 	sw_set_addr(hw, hw->override_addr);
4045 }
4046 
4047 /**
4048  * hw_read_addr - read MAC address
4049  * @hw: 	The hardware instance.
4050  *
4051  * This routine retrieves the MAC address of the hardware.
4052  */
4053 static void hw_read_addr(struct ksz_hw *hw)
4054 {
4055 	int i;
4056 
4057 	for (i = 0; i < ETH_ALEN; i++)
4058 		hw->perm_addr[MAC_ADDR_ORDER(i)] = readb(hw->io +
4059 			KS884X_ADDR_0_OFFSET + i);
4060 
4061 	if (!hw->mac_override) {
4062 		memcpy(hw->override_addr, hw->perm_addr, ETH_ALEN);
4063 		if (empty_addr(hw->override_addr)) {
4064 			memcpy(hw->perm_addr, DEFAULT_MAC_ADDRESS, ETH_ALEN);
4065 			memcpy(hw->override_addr, DEFAULT_MAC_ADDRESS,
4066 			       ETH_ALEN);
4067 			hw->override_addr[5] += hw->id;
4068 			hw_set_addr(hw);
4069 		}
4070 	}
4071 }
4072 
4073 static void hw_ena_add_addr(struct ksz_hw *hw, int index, u8 *mac_addr)
4074 {
4075 	int i;
4076 	u32 mac_addr_lo;
4077 	u32 mac_addr_hi;
4078 
4079 	mac_addr_hi = 0;
4080 	for (i = 0; i < 2; i++) {
4081 		mac_addr_hi <<= 8;
4082 		mac_addr_hi |= mac_addr[i];
4083 	}
4084 	mac_addr_hi |= ADD_ADDR_ENABLE;
4085 	mac_addr_lo = 0;
4086 	for (i = 2; i < 6; i++) {
4087 		mac_addr_lo <<= 8;
4088 		mac_addr_lo |= mac_addr[i];
4089 	}
4090 	index *= ADD_ADDR_INCR;
4091 
4092 	writel(mac_addr_lo, hw->io + index + KS_ADD_ADDR_0_LO);
4093 	writel(mac_addr_hi, hw->io + index + KS_ADD_ADDR_0_HI);
4094 }
4095 
4096 static void hw_set_add_addr(struct ksz_hw *hw)
4097 {
4098 	int i;
4099 
4100 	for (i = 0; i < ADDITIONAL_ENTRIES; i++) {
4101 		if (empty_addr(hw->address[i]))
4102 			writel(0, hw->io + ADD_ADDR_INCR * i +
4103 				KS_ADD_ADDR_0_HI);
4104 		else
4105 			hw_ena_add_addr(hw, i, hw->address[i]);
4106 	}
4107 }
4108 
4109 static int hw_add_addr(struct ksz_hw *hw, u8 *mac_addr)
4110 {
4111 	int i;
4112 	int j = ADDITIONAL_ENTRIES;
4113 
4114 	if (ether_addr_equal(hw->override_addr, mac_addr))
4115 		return 0;
4116 	for (i = 0; i < hw->addr_list_size; i++) {
4117 		if (ether_addr_equal(hw->address[i], mac_addr))
4118 			return 0;
4119 		if (ADDITIONAL_ENTRIES == j && empty_addr(hw->address[i]))
4120 			j = i;
4121 	}
4122 	if (j < ADDITIONAL_ENTRIES) {
4123 		memcpy(hw->address[j], mac_addr, ETH_ALEN);
4124 		hw_ena_add_addr(hw, j, hw->address[j]);
4125 		return 0;
4126 	}
4127 	return -1;
4128 }
4129 
4130 static int hw_del_addr(struct ksz_hw *hw, u8 *mac_addr)
4131 {
4132 	int i;
4133 
4134 	for (i = 0; i < hw->addr_list_size; i++) {
4135 		if (ether_addr_equal(hw->address[i], mac_addr)) {
4136 			eth_zero_addr(hw->address[i]);
4137 			writel(0, hw->io + ADD_ADDR_INCR * i +
4138 				KS_ADD_ADDR_0_HI);
4139 			return 0;
4140 		}
4141 	}
4142 	return -1;
4143 }
4144 
4145 /**
4146  * hw_clr_multicast - clear multicast addresses
4147  * @hw: 	The hardware instance.
4148  *
4149  * This routine removes all multicast addresses set in the hardware.
4150  */
4151 static void hw_clr_multicast(struct ksz_hw *hw)
4152 {
4153 	int i;
4154 
4155 	for (i = 0; i < HW_MULTICAST_SIZE; i++) {
4156 		hw->multi_bits[i] = 0;
4157 
4158 		writeb(0, hw->io + KS884X_MULTICAST_0_OFFSET + i);
4159 	}
4160 }
4161 
4162 /**
4163  * hw_set_grp_addr - set multicast addresses
4164  * @hw: 	The hardware instance.
4165  *
4166  * This routine programs multicast addresses for the hardware to accept those
4167  * addresses.
4168  */
4169 static void hw_set_grp_addr(struct ksz_hw *hw)
4170 {
4171 	int i;
4172 	int index;
4173 	int position;
4174 	int value;
4175 
4176 	memset(hw->multi_bits, 0, sizeof(u8) * HW_MULTICAST_SIZE);
4177 
4178 	for (i = 0; i < hw->multi_list_size; i++) {
4179 		position = (ether_crc(6, hw->multi_list[i]) >> 26) & 0x3f;
4180 		index = position >> 3;
4181 		value = 1 << (position & 7);
4182 		hw->multi_bits[index] |= (u8) value;
4183 	}
4184 
4185 	for (i = 0; i < HW_MULTICAST_SIZE; i++)
4186 		writeb(hw->multi_bits[i], hw->io + KS884X_MULTICAST_0_OFFSET +
4187 			i);
4188 }
4189 
4190 /**
4191  * hw_set_multicast - enable or disable all multicast receiving
4192  * @hw: 	The hardware instance.
4193  * @multicast:	To turn on or off the all multicast feature.
4194  *
4195  * This routine enables/disables the hardware to accept all multicast packets.
4196  */
4197 static void hw_set_multicast(struct ksz_hw *hw, u8 multicast)
4198 {
4199 	/* Stop receiving for reconfiguration. */
4200 	hw_stop_rx(hw);
4201 
4202 	if (multicast)
4203 		hw->rx_cfg |= DMA_RX_ALL_MULTICAST;
4204 	else
4205 		hw->rx_cfg &= ~DMA_RX_ALL_MULTICAST;
4206 
4207 	if (hw->enabled)
4208 		hw_start_rx(hw);
4209 }
4210 
4211 /**
4212  * hw_set_promiscuous - enable or disable promiscuous receiving
4213  * @hw: 	The hardware instance.
4214  * @prom:	To turn on or off the promiscuous feature.
4215  *
4216  * This routine enables/disables the hardware to accept all packets.
4217  */
4218 static void hw_set_promiscuous(struct ksz_hw *hw, u8 prom)
4219 {
4220 	/* Stop receiving for reconfiguration. */
4221 	hw_stop_rx(hw);
4222 
4223 	if (prom)
4224 		hw->rx_cfg |= DMA_RX_PROMISCUOUS;
4225 	else
4226 		hw->rx_cfg &= ~DMA_RX_PROMISCUOUS;
4227 
4228 	if (hw->enabled)
4229 		hw_start_rx(hw);
4230 }
4231 
4232 /**
4233  * sw_enable - enable the switch
4234  * @hw: 	The hardware instance.
4235  * @enable:	The flag to enable or disable the switch
4236  *
4237  * This routine is used to enable/disable the switch in KSZ8842.
4238  */
4239 static void sw_enable(struct ksz_hw *hw, int enable)
4240 {
4241 	int port;
4242 
4243 	for (port = 0; port < SWITCH_PORT_NUM; port++) {
4244 		if (hw->dev_count > 1) {
4245 			/* Set port-base vlan membership with host port. */
4246 			sw_cfg_port_base_vlan(hw, port,
4247 				HOST_MASK | (1 << port));
4248 			port_set_stp_state(hw, port, STP_STATE_DISABLED);
4249 		} else {
4250 			sw_cfg_port_base_vlan(hw, port, PORT_MASK);
4251 			port_set_stp_state(hw, port, STP_STATE_FORWARDING);
4252 		}
4253 	}
4254 	if (hw->dev_count > 1)
4255 		port_set_stp_state(hw, SWITCH_PORT_NUM, STP_STATE_SIMPLE);
4256 	else
4257 		port_set_stp_state(hw, SWITCH_PORT_NUM, STP_STATE_FORWARDING);
4258 
4259 	if (enable)
4260 		enable = KS8842_START;
4261 	writew(enable, hw->io + KS884X_CHIP_ID_OFFSET);
4262 }
4263 
4264 /**
4265  * sw_setup - setup the switch
4266  * @hw: 	The hardware instance.
4267  *
4268  * This routine setup the hardware switch engine for default operation.
4269  */
4270 static void sw_setup(struct ksz_hw *hw)
4271 {
4272 	int port;
4273 
4274 	sw_set_global_ctrl(hw);
4275 
4276 	/* Enable switch broadcast storm protection at 10% percent rate. */
4277 	sw_init_broad_storm(hw);
4278 	hw_cfg_broad_storm(hw, BROADCAST_STORM_PROTECTION_RATE);
4279 	for (port = 0; port < SWITCH_PORT_NUM; port++)
4280 		sw_ena_broad_storm(hw, port);
4281 
4282 	sw_init_prio(hw);
4283 
4284 	sw_init_mirror(hw);
4285 
4286 	sw_init_prio_rate(hw);
4287 
4288 	sw_init_vlan(hw);
4289 
4290 	if (hw->features & STP_SUPPORT)
4291 		sw_init_stp(hw);
4292 	if (!sw_chk(hw, KS8842_SWITCH_CTRL_1_OFFSET,
4293 			SWITCH_TX_FLOW_CTRL | SWITCH_RX_FLOW_CTRL))
4294 		hw->overrides |= PAUSE_FLOW_CTRL;
4295 	sw_enable(hw, 1);
4296 }
4297 
4298 /**
4299  * ksz_start_timer - start kernel timer
4300  * @info:	Kernel timer information.
4301  * @time:	The time tick.
4302  *
4303  * This routine starts the kernel timer after the specified time tick.
4304  */
4305 static void ksz_start_timer(struct ksz_timer_info *info, int time)
4306 {
4307 	info->cnt = 0;
4308 	info->timer.expires = jiffies + time;
4309 	add_timer(&info->timer);
4310 
4311 	/* infinity */
4312 	info->max = -1;
4313 }
4314 
4315 /**
4316  * ksz_stop_timer - stop kernel timer
4317  * @info:	Kernel timer information.
4318  *
4319  * This routine stops the kernel timer.
4320  */
4321 static void ksz_stop_timer(struct ksz_timer_info *info)
4322 {
4323 	if (info->max) {
4324 		info->max = 0;
4325 		del_timer_sync(&info->timer);
4326 	}
4327 }
4328 
4329 static void ksz_init_timer(struct ksz_timer_info *info, int period,
4330 	void (*function)(struct timer_list *))
4331 {
4332 	info->max = 0;
4333 	info->period = period;
4334 	timer_setup(&info->timer, function, 0);
4335 }
4336 
4337 static void ksz_update_timer(struct ksz_timer_info *info)
4338 {
4339 	++info->cnt;
4340 	if (info->max > 0) {
4341 		if (info->cnt < info->max) {
4342 			info->timer.expires = jiffies + info->period;
4343 			add_timer(&info->timer);
4344 		} else
4345 			info->max = 0;
4346 	} else if (info->max < 0) {
4347 		info->timer.expires = jiffies + info->period;
4348 		add_timer(&info->timer);
4349 	}
4350 }
4351 
4352 /**
4353  * ksz_alloc_soft_desc - allocate software descriptors
4354  * @desc_info:	Descriptor information structure.
4355  * @transmit:	Indication that descriptors are for transmit.
4356  *
4357  * This local function allocates software descriptors for manipulation in
4358  * memory.
4359  *
4360  * Return 0 if successful.
4361  */
4362 static int ksz_alloc_soft_desc(struct ksz_desc_info *desc_info, int transmit)
4363 {
4364 	desc_info->ring = kcalloc(desc_info->alloc, sizeof(struct ksz_desc),
4365 				  GFP_KERNEL);
4366 	if (!desc_info->ring)
4367 		return 1;
4368 	hw_init_desc(desc_info, transmit);
4369 	return 0;
4370 }
4371 
4372 /**
4373  * ksz_alloc_desc - allocate hardware descriptors
4374  * @adapter:	Adapter information structure.
4375  *
4376  * This local function allocates hardware descriptors for receiving and
4377  * transmitting.
4378  *
4379  * Return 0 if successful.
4380  */
4381 static int ksz_alloc_desc(struct dev_info *adapter)
4382 {
4383 	struct ksz_hw *hw = &adapter->hw;
4384 	int offset;
4385 
4386 	/* Allocate memory for RX & TX descriptors. */
4387 	adapter->desc_pool.alloc_size =
4388 		hw->rx_desc_info.size * hw->rx_desc_info.alloc +
4389 		hw->tx_desc_info.size * hw->tx_desc_info.alloc +
4390 		DESC_ALIGNMENT;
4391 
4392 	adapter->desc_pool.alloc_virt =
4393 		pci_zalloc_consistent(adapter->pdev,
4394 				      adapter->desc_pool.alloc_size,
4395 				      &adapter->desc_pool.dma_addr);
4396 	if (adapter->desc_pool.alloc_virt == NULL) {
4397 		adapter->desc_pool.alloc_size = 0;
4398 		return 1;
4399 	}
4400 
4401 	/* Align to the next cache line boundary. */
4402 	offset = (((ulong) adapter->desc_pool.alloc_virt % DESC_ALIGNMENT) ?
4403 		(DESC_ALIGNMENT -
4404 		((ulong) adapter->desc_pool.alloc_virt % DESC_ALIGNMENT)) : 0);
4405 	adapter->desc_pool.virt = adapter->desc_pool.alloc_virt + offset;
4406 	adapter->desc_pool.phys = adapter->desc_pool.dma_addr + offset;
4407 
4408 	/* Allocate receive/transmit descriptors. */
4409 	hw->rx_desc_info.ring_virt = (struct ksz_hw_desc *)
4410 		adapter->desc_pool.virt;
4411 	hw->rx_desc_info.ring_phys = adapter->desc_pool.phys;
4412 	offset = hw->rx_desc_info.alloc * hw->rx_desc_info.size;
4413 	hw->tx_desc_info.ring_virt = (struct ksz_hw_desc *)
4414 		(adapter->desc_pool.virt + offset);
4415 	hw->tx_desc_info.ring_phys = adapter->desc_pool.phys + offset;
4416 
4417 	if (ksz_alloc_soft_desc(&hw->rx_desc_info, 0))
4418 		return 1;
4419 	if (ksz_alloc_soft_desc(&hw->tx_desc_info, 1))
4420 		return 1;
4421 
4422 	return 0;
4423 }
4424 
4425 /**
4426  * free_dma_buf - release DMA buffer resources
4427  * @adapter:	Adapter information structure.
4428  *
4429  * This routine is just a helper function to release the DMA buffer resources.
4430  */
4431 static void free_dma_buf(struct dev_info *adapter, struct ksz_dma_buf *dma_buf,
4432 	int direction)
4433 {
4434 	pci_unmap_single(adapter->pdev, dma_buf->dma, dma_buf->len, direction);
4435 	dev_kfree_skb(dma_buf->skb);
4436 	dma_buf->skb = NULL;
4437 	dma_buf->dma = 0;
4438 }
4439 
4440 /**
4441  * ksz_init_rx_buffers - initialize receive descriptors
4442  * @adapter:	Adapter information structure.
4443  *
4444  * This routine initializes DMA buffers for receiving.
4445  */
4446 static void ksz_init_rx_buffers(struct dev_info *adapter)
4447 {
4448 	int i;
4449 	struct ksz_desc *desc;
4450 	struct ksz_dma_buf *dma_buf;
4451 	struct ksz_hw *hw = &adapter->hw;
4452 	struct ksz_desc_info *info = &hw->rx_desc_info;
4453 
4454 	for (i = 0; i < hw->rx_desc_info.alloc; i++) {
4455 		get_rx_pkt(info, &desc);
4456 
4457 		dma_buf = DMA_BUFFER(desc);
4458 		if (dma_buf->skb && dma_buf->len != adapter->mtu)
4459 			free_dma_buf(adapter, dma_buf, PCI_DMA_FROMDEVICE);
4460 		dma_buf->len = adapter->mtu;
4461 		if (!dma_buf->skb)
4462 			dma_buf->skb = alloc_skb(dma_buf->len, GFP_ATOMIC);
4463 		if (dma_buf->skb && !dma_buf->dma)
4464 			dma_buf->dma = pci_map_single(
4465 				adapter->pdev,
4466 				skb_tail_pointer(dma_buf->skb),
4467 				dma_buf->len,
4468 				PCI_DMA_FROMDEVICE);
4469 
4470 		/* Set descriptor. */
4471 		set_rx_buf(desc, dma_buf->dma);
4472 		set_rx_len(desc, dma_buf->len);
4473 		release_desc(desc);
4474 	}
4475 }
4476 
4477 /**
4478  * ksz_alloc_mem - allocate memory for hardware descriptors
4479  * @adapter:	Adapter information structure.
4480  *
4481  * This function allocates memory for use by hardware descriptors for receiving
4482  * and transmitting.
4483  *
4484  * Return 0 if successful.
4485  */
4486 static int ksz_alloc_mem(struct dev_info *adapter)
4487 {
4488 	struct ksz_hw *hw = &adapter->hw;
4489 
4490 	/* Determine the number of receive and transmit descriptors. */
4491 	hw->rx_desc_info.alloc = NUM_OF_RX_DESC;
4492 	hw->tx_desc_info.alloc = NUM_OF_TX_DESC;
4493 
4494 	/* Determine how many descriptors to skip transmit interrupt. */
4495 	hw->tx_int_cnt = 0;
4496 	hw->tx_int_mask = NUM_OF_TX_DESC / 4;
4497 	if (hw->tx_int_mask > 8)
4498 		hw->tx_int_mask = 8;
4499 	while (hw->tx_int_mask) {
4500 		hw->tx_int_cnt++;
4501 		hw->tx_int_mask >>= 1;
4502 	}
4503 	if (hw->tx_int_cnt) {
4504 		hw->tx_int_mask = (1 << (hw->tx_int_cnt - 1)) - 1;
4505 		hw->tx_int_cnt = 0;
4506 	}
4507 
4508 	/* Determine the descriptor size. */
4509 	hw->rx_desc_info.size =
4510 		(((sizeof(struct ksz_hw_desc) + DESC_ALIGNMENT - 1) /
4511 		DESC_ALIGNMENT) * DESC_ALIGNMENT);
4512 	hw->tx_desc_info.size =
4513 		(((sizeof(struct ksz_hw_desc) + DESC_ALIGNMENT - 1) /
4514 		DESC_ALIGNMENT) * DESC_ALIGNMENT);
4515 	if (hw->rx_desc_info.size != sizeof(struct ksz_hw_desc))
4516 		pr_alert("Hardware descriptor size not right!\n");
4517 	ksz_check_desc_num(&hw->rx_desc_info);
4518 	ksz_check_desc_num(&hw->tx_desc_info);
4519 
4520 	/* Allocate descriptors. */
4521 	if (ksz_alloc_desc(adapter))
4522 		return 1;
4523 
4524 	return 0;
4525 }
4526 
4527 /**
4528  * ksz_free_desc - free software and hardware descriptors
4529  * @adapter:	Adapter information structure.
4530  *
4531  * This local routine frees the software and hardware descriptors allocated by
4532  * ksz_alloc_desc().
4533  */
4534 static void ksz_free_desc(struct dev_info *adapter)
4535 {
4536 	struct ksz_hw *hw = &adapter->hw;
4537 
4538 	/* Reset descriptor. */
4539 	hw->rx_desc_info.ring_virt = NULL;
4540 	hw->tx_desc_info.ring_virt = NULL;
4541 	hw->rx_desc_info.ring_phys = 0;
4542 	hw->tx_desc_info.ring_phys = 0;
4543 
4544 	/* Free memory. */
4545 	if (adapter->desc_pool.alloc_virt)
4546 		pci_free_consistent(
4547 			adapter->pdev,
4548 			adapter->desc_pool.alloc_size,
4549 			adapter->desc_pool.alloc_virt,
4550 			adapter->desc_pool.dma_addr);
4551 
4552 	/* Reset resource pool. */
4553 	adapter->desc_pool.alloc_size = 0;
4554 	adapter->desc_pool.alloc_virt = NULL;
4555 
4556 	kfree(hw->rx_desc_info.ring);
4557 	hw->rx_desc_info.ring = NULL;
4558 	kfree(hw->tx_desc_info.ring);
4559 	hw->tx_desc_info.ring = NULL;
4560 }
4561 
4562 /**
4563  * ksz_free_buffers - free buffers used in the descriptors
4564  * @adapter:	Adapter information structure.
4565  * @desc_info:	Descriptor information structure.
4566  *
4567  * This local routine frees buffers used in the DMA buffers.
4568  */
4569 static void ksz_free_buffers(struct dev_info *adapter,
4570 	struct ksz_desc_info *desc_info, int direction)
4571 {
4572 	int i;
4573 	struct ksz_dma_buf *dma_buf;
4574 	struct ksz_desc *desc = desc_info->ring;
4575 
4576 	for (i = 0; i < desc_info->alloc; i++) {
4577 		dma_buf = DMA_BUFFER(desc);
4578 		if (dma_buf->skb)
4579 			free_dma_buf(adapter, dma_buf, direction);
4580 		desc++;
4581 	}
4582 }
4583 
4584 /**
4585  * ksz_free_mem - free all resources used by descriptors
4586  * @adapter:	Adapter information structure.
4587  *
4588  * This local routine frees all the resources allocated by ksz_alloc_mem().
4589  */
4590 static void ksz_free_mem(struct dev_info *adapter)
4591 {
4592 	/* Free transmit buffers. */
4593 	ksz_free_buffers(adapter, &adapter->hw.tx_desc_info,
4594 		PCI_DMA_TODEVICE);
4595 
4596 	/* Free receive buffers. */
4597 	ksz_free_buffers(adapter, &adapter->hw.rx_desc_info,
4598 		PCI_DMA_FROMDEVICE);
4599 
4600 	/* Free descriptors. */
4601 	ksz_free_desc(adapter);
4602 }
4603 
4604 static void get_mib_counters(struct ksz_hw *hw, int first, int cnt,
4605 	u64 *counter)
4606 {
4607 	int i;
4608 	int mib;
4609 	int port;
4610 	struct ksz_port_mib *port_mib;
4611 
4612 	memset(counter, 0, sizeof(u64) * TOTAL_PORT_COUNTER_NUM);
4613 	for (i = 0, port = first; i < cnt; i++, port++) {
4614 		port_mib = &hw->port_mib[port];
4615 		for (mib = port_mib->mib_start; mib < hw->mib_cnt; mib++)
4616 			counter[mib] += port_mib->counter[mib];
4617 	}
4618 }
4619 
4620 /**
4621  * send_packet - send packet
4622  * @skb:	Socket buffer.
4623  * @dev:	Network device.
4624  *
4625  * This routine is used to send a packet out to the network.
4626  */
4627 static void send_packet(struct sk_buff *skb, struct net_device *dev)
4628 {
4629 	struct ksz_desc *desc;
4630 	struct ksz_desc *first;
4631 	struct dev_priv *priv = netdev_priv(dev);
4632 	struct dev_info *hw_priv = priv->adapter;
4633 	struct ksz_hw *hw = &hw_priv->hw;
4634 	struct ksz_desc_info *info = &hw->tx_desc_info;
4635 	struct ksz_dma_buf *dma_buf;
4636 	int len;
4637 	int last_frag = skb_shinfo(skb)->nr_frags;
4638 
4639 	/*
4640 	 * KSZ8842 with multiple device interfaces needs to be told which port
4641 	 * to send.
4642 	 */
4643 	if (hw->dev_count > 1)
4644 		hw->dst_ports = 1 << priv->port.first_port;
4645 
4646 	/* Hardware will pad the length to 60. */
4647 	len = skb->len;
4648 
4649 	/* Remember the very first descriptor. */
4650 	first = info->cur;
4651 	desc = first;
4652 
4653 	dma_buf = DMA_BUFFER(desc);
4654 	if (last_frag) {
4655 		int frag;
4656 		skb_frag_t *this_frag;
4657 
4658 		dma_buf->len = skb_headlen(skb);
4659 
4660 		dma_buf->dma = pci_map_single(
4661 			hw_priv->pdev, skb->data, dma_buf->len,
4662 			PCI_DMA_TODEVICE);
4663 		set_tx_buf(desc, dma_buf->dma);
4664 		set_tx_len(desc, dma_buf->len);
4665 
4666 		frag = 0;
4667 		do {
4668 			this_frag = &skb_shinfo(skb)->frags[frag];
4669 
4670 			/* Get a new descriptor. */
4671 			get_tx_pkt(info, &desc);
4672 
4673 			/* Keep track of descriptors used so far. */
4674 			++hw->tx_int_cnt;
4675 
4676 			dma_buf = DMA_BUFFER(desc);
4677 			dma_buf->len = skb_frag_size(this_frag);
4678 
4679 			dma_buf->dma = pci_map_single(
4680 				hw_priv->pdev,
4681 				skb_frag_address(this_frag),
4682 				dma_buf->len,
4683 				PCI_DMA_TODEVICE);
4684 			set_tx_buf(desc, dma_buf->dma);
4685 			set_tx_len(desc, dma_buf->len);
4686 
4687 			frag++;
4688 			if (frag == last_frag)
4689 				break;
4690 
4691 			/* Do not release the last descriptor here. */
4692 			release_desc(desc);
4693 		} while (1);
4694 
4695 		/* current points to the last descriptor. */
4696 		info->cur = desc;
4697 
4698 		/* Release the first descriptor. */
4699 		release_desc(first);
4700 	} else {
4701 		dma_buf->len = len;
4702 
4703 		dma_buf->dma = pci_map_single(
4704 			hw_priv->pdev, skb->data, dma_buf->len,
4705 			PCI_DMA_TODEVICE);
4706 		set_tx_buf(desc, dma_buf->dma);
4707 		set_tx_len(desc, dma_buf->len);
4708 	}
4709 
4710 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
4711 		(desc)->sw.buf.tx.csum_gen_tcp = 1;
4712 		(desc)->sw.buf.tx.csum_gen_udp = 1;
4713 	}
4714 
4715 	/*
4716 	 * The last descriptor holds the packet so that it can be returned to
4717 	 * network subsystem after all descriptors are transmitted.
4718 	 */
4719 	dma_buf->skb = skb;
4720 
4721 	hw_send_pkt(hw);
4722 
4723 	/* Update transmit statistics. */
4724 	dev->stats.tx_packets++;
4725 	dev->stats.tx_bytes += len;
4726 }
4727 
4728 /**
4729  * transmit_cleanup - clean up transmit descriptors
4730  * @dev:	Network device.
4731  *
4732  * This routine is called to clean up the transmitted buffers.
4733  */
4734 static void transmit_cleanup(struct dev_info *hw_priv, int normal)
4735 {
4736 	int last;
4737 	union desc_stat status;
4738 	struct ksz_hw *hw = &hw_priv->hw;
4739 	struct ksz_desc_info *info = &hw->tx_desc_info;
4740 	struct ksz_desc *desc;
4741 	struct ksz_dma_buf *dma_buf;
4742 	struct net_device *dev = NULL;
4743 
4744 	spin_lock_irq(&hw_priv->hwlock);
4745 	last = info->last;
4746 
4747 	while (info->avail < info->alloc) {
4748 		/* Get next descriptor which is not hardware owned. */
4749 		desc = &info->ring[last];
4750 		status.data = le32_to_cpu(desc->phw->ctrl.data);
4751 		if (status.tx.hw_owned) {
4752 			if (normal)
4753 				break;
4754 			else
4755 				reset_desc(desc, status);
4756 		}
4757 
4758 		dma_buf = DMA_BUFFER(desc);
4759 		pci_unmap_single(
4760 			hw_priv->pdev, dma_buf->dma, dma_buf->len,
4761 			PCI_DMA_TODEVICE);
4762 
4763 		/* This descriptor contains the last buffer in the packet. */
4764 		if (dma_buf->skb) {
4765 			dev = dma_buf->skb->dev;
4766 
4767 			/* Release the packet back to network subsystem. */
4768 			dev_kfree_skb_irq(dma_buf->skb);
4769 			dma_buf->skb = NULL;
4770 		}
4771 
4772 		/* Free the transmitted descriptor. */
4773 		last++;
4774 		last &= info->mask;
4775 		info->avail++;
4776 	}
4777 	info->last = last;
4778 	spin_unlock_irq(&hw_priv->hwlock);
4779 
4780 	/* Notify the network subsystem that the packet has been sent. */
4781 	if (dev)
4782 		netif_trans_update(dev);
4783 }
4784 
4785 /**
4786  * transmit_done - transmit done processing
4787  * @dev:	Network device.
4788  *
4789  * This routine is called when the transmit interrupt is triggered, indicating
4790  * either a packet is sent successfully or there are transmit errors.
4791  */
4792 static void tx_done(struct dev_info *hw_priv)
4793 {
4794 	struct ksz_hw *hw = &hw_priv->hw;
4795 	int port;
4796 
4797 	transmit_cleanup(hw_priv, 1);
4798 
4799 	for (port = 0; port < hw->dev_count; port++) {
4800 		struct net_device *dev = hw->port_info[port].pdev;
4801 
4802 		if (netif_running(dev) && netif_queue_stopped(dev))
4803 			netif_wake_queue(dev);
4804 	}
4805 }
4806 
4807 static inline void copy_old_skb(struct sk_buff *old, struct sk_buff *skb)
4808 {
4809 	skb->dev = old->dev;
4810 	skb->protocol = old->protocol;
4811 	skb->ip_summed = old->ip_summed;
4812 	skb->csum = old->csum;
4813 	skb_set_network_header(skb, ETH_HLEN);
4814 
4815 	dev_consume_skb_any(old);
4816 }
4817 
4818 /**
4819  * netdev_tx - send out packet
4820  * @skb:	Socket buffer.
4821  * @dev:	Network device.
4822  *
4823  * This function is used by the upper network layer to send out a packet.
4824  *
4825  * Return 0 if successful; otherwise an error code indicating failure.
4826  */
4827 static netdev_tx_t netdev_tx(struct sk_buff *skb, struct net_device *dev)
4828 {
4829 	struct dev_priv *priv = netdev_priv(dev);
4830 	struct dev_info *hw_priv = priv->adapter;
4831 	struct ksz_hw *hw = &hw_priv->hw;
4832 	int left;
4833 	int num = 1;
4834 	int rc = 0;
4835 
4836 	if (hw->features & SMALL_PACKET_TX_BUG) {
4837 		struct sk_buff *org_skb = skb;
4838 
4839 		if (skb->len <= 48) {
4840 			if (skb_end_pointer(skb) - skb->data >= 50) {
4841 				memset(&skb->data[skb->len], 0, 50 - skb->len);
4842 				skb->len = 50;
4843 			} else {
4844 				skb = netdev_alloc_skb(dev, 50);
4845 				if (!skb)
4846 					return NETDEV_TX_BUSY;
4847 				memcpy(skb->data, org_skb->data, org_skb->len);
4848 				memset(&skb->data[org_skb->len], 0,
4849 					50 - org_skb->len);
4850 				skb->len = 50;
4851 				copy_old_skb(org_skb, skb);
4852 			}
4853 		}
4854 	}
4855 
4856 	spin_lock_irq(&hw_priv->hwlock);
4857 
4858 	num = skb_shinfo(skb)->nr_frags + 1;
4859 	left = hw_alloc_pkt(hw, skb->len, num);
4860 	if (left) {
4861 		if (left < num ||
4862 		    (CHECKSUM_PARTIAL == skb->ip_summed &&
4863 		     skb->protocol == htons(ETH_P_IPV6))) {
4864 			struct sk_buff *org_skb = skb;
4865 
4866 			skb = netdev_alloc_skb(dev, org_skb->len);
4867 			if (!skb) {
4868 				rc = NETDEV_TX_BUSY;
4869 				goto unlock;
4870 			}
4871 			skb_copy_and_csum_dev(org_skb, skb->data);
4872 			org_skb->ip_summed = CHECKSUM_NONE;
4873 			skb->len = org_skb->len;
4874 			copy_old_skb(org_skb, skb);
4875 		}
4876 		send_packet(skb, dev);
4877 		if (left <= num)
4878 			netif_stop_queue(dev);
4879 	} else {
4880 		/* Stop the transmit queue until packet is allocated. */
4881 		netif_stop_queue(dev);
4882 		rc = NETDEV_TX_BUSY;
4883 	}
4884 unlock:
4885 	spin_unlock_irq(&hw_priv->hwlock);
4886 
4887 	return rc;
4888 }
4889 
4890 /**
4891  * netdev_tx_timeout - transmit timeout processing
4892  * @dev:	Network device.
4893  *
4894  * This routine is called when the transmit timer expires.  That indicates the
4895  * hardware is not running correctly because transmit interrupts are not
4896  * triggered to free up resources so that the transmit routine can continue
4897  * sending out packets.  The hardware is reset to correct the problem.
4898  */
4899 static void netdev_tx_timeout(struct net_device *dev)
4900 {
4901 	static unsigned long last_reset;
4902 
4903 	struct dev_priv *priv = netdev_priv(dev);
4904 	struct dev_info *hw_priv = priv->adapter;
4905 	struct ksz_hw *hw = &hw_priv->hw;
4906 	int port;
4907 
4908 	if (hw->dev_count > 1) {
4909 		/*
4910 		 * Only reset the hardware if time between calls is long
4911 		 * enough.
4912 		 */
4913 		if (time_before_eq(jiffies, last_reset + dev->watchdog_timeo))
4914 			hw_priv = NULL;
4915 	}
4916 
4917 	last_reset = jiffies;
4918 	if (hw_priv) {
4919 		hw_dis_intr(hw);
4920 		hw_disable(hw);
4921 
4922 		transmit_cleanup(hw_priv, 0);
4923 		hw_reset_pkts(&hw->rx_desc_info);
4924 		hw_reset_pkts(&hw->tx_desc_info);
4925 		ksz_init_rx_buffers(hw_priv);
4926 
4927 		hw_reset(hw);
4928 
4929 		hw_set_desc_base(hw,
4930 			hw->tx_desc_info.ring_phys,
4931 			hw->rx_desc_info.ring_phys);
4932 		hw_set_addr(hw);
4933 		if (hw->all_multi)
4934 			hw_set_multicast(hw, hw->all_multi);
4935 		else if (hw->multi_list_size)
4936 			hw_set_grp_addr(hw);
4937 
4938 		if (hw->dev_count > 1) {
4939 			hw_set_add_addr(hw);
4940 			for (port = 0; port < SWITCH_PORT_NUM; port++) {
4941 				struct net_device *port_dev;
4942 
4943 				port_set_stp_state(hw, port,
4944 					STP_STATE_DISABLED);
4945 
4946 				port_dev = hw->port_info[port].pdev;
4947 				if (netif_running(port_dev))
4948 					port_set_stp_state(hw, port,
4949 						STP_STATE_SIMPLE);
4950 			}
4951 		}
4952 
4953 		hw_enable(hw);
4954 		hw_ena_intr(hw);
4955 	}
4956 
4957 	netif_trans_update(dev);
4958 	netif_wake_queue(dev);
4959 }
4960 
4961 static inline void csum_verified(struct sk_buff *skb)
4962 {
4963 	unsigned short protocol;
4964 	struct iphdr *iph;
4965 
4966 	protocol = skb->protocol;
4967 	skb_reset_network_header(skb);
4968 	iph = (struct iphdr *) skb_network_header(skb);
4969 	if (protocol == htons(ETH_P_8021Q)) {
4970 		protocol = iph->tot_len;
4971 		skb_set_network_header(skb, VLAN_HLEN);
4972 		iph = (struct iphdr *) skb_network_header(skb);
4973 	}
4974 	if (protocol == htons(ETH_P_IP)) {
4975 		if (iph->protocol == IPPROTO_TCP)
4976 			skb->ip_summed = CHECKSUM_UNNECESSARY;
4977 	}
4978 }
4979 
4980 static inline int rx_proc(struct net_device *dev, struct ksz_hw* hw,
4981 	struct ksz_desc *desc, union desc_stat status)
4982 {
4983 	int packet_len;
4984 	struct dev_priv *priv = netdev_priv(dev);
4985 	struct dev_info *hw_priv = priv->adapter;
4986 	struct ksz_dma_buf *dma_buf;
4987 	struct sk_buff *skb;
4988 	int rx_status;
4989 
4990 	/* Received length includes 4-byte CRC. */
4991 	packet_len = status.rx.frame_len - 4;
4992 
4993 	dma_buf = DMA_BUFFER(desc);
4994 	pci_dma_sync_single_for_cpu(
4995 		hw_priv->pdev, dma_buf->dma, packet_len + 4,
4996 		PCI_DMA_FROMDEVICE);
4997 
4998 	do {
4999 		/* skb->data != skb->head */
5000 		skb = netdev_alloc_skb(dev, packet_len + 2);
5001 		if (!skb) {
5002 			dev->stats.rx_dropped++;
5003 			return -ENOMEM;
5004 		}
5005 
5006 		/*
5007 		 * Align socket buffer in 4-byte boundary for better
5008 		 * performance.
5009 		 */
5010 		skb_reserve(skb, 2);
5011 
5012 		skb_put_data(skb, dma_buf->skb->data, packet_len);
5013 	} while (0);
5014 
5015 	skb->protocol = eth_type_trans(skb, dev);
5016 
5017 	if (hw->rx_cfg & (DMA_RX_CSUM_UDP | DMA_RX_CSUM_TCP))
5018 		csum_verified(skb);
5019 
5020 	/* Update receive statistics. */
5021 	dev->stats.rx_packets++;
5022 	dev->stats.rx_bytes += packet_len;
5023 
5024 	/* Notify upper layer for received packet. */
5025 	rx_status = netif_rx(skb);
5026 
5027 	return 0;
5028 }
5029 
5030 static int dev_rcv_packets(struct dev_info *hw_priv)
5031 {
5032 	int next;
5033 	union desc_stat status;
5034 	struct ksz_hw *hw = &hw_priv->hw;
5035 	struct net_device *dev = hw->port_info[0].pdev;
5036 	struct ksz_desc_info *info = &hw->rx_desc_info;
5037 	int left = info->alloc;
5038 	struct ksz_desc *desc;
5039 	int received = 0;
5040 
5041 	next = info->next;
5042 	while (left--) {
5043 		/* Get next descriptor which is not hardware owned. */
5044 		desc = &info->ring[next];
5045 		status.data = le32_to_cpu(desc->phw->ctrl.data);
5046 		if (status.rx.hw_owned)
5047 			break;
5048 
5049 		/* Status valid only when last descriptor bit is set. */
5050 		if (status.rx.last_desc && status.rx.first_desc) {
5051 			if (rx_proc(dev, hw, desc, status))
5052 				goto release_packet;
5053 			received++;
5054 		}
5055 
5056 release_packet:
5057 		release_desc(desc);
5058 		next++;
5059 		next &= info->mask;
5060 	}
5061 	info->next = next;
5062 
5063 	return received;
5064 }
5065 
5066 static int port_rcv_packets(struct dev_info *hw_priv)
5067 {
5068 	int next;
5069 	union desc_stat status;
5070 	struct ksz_hw *hw = &hw_priv->hw;
5071 	struct net_device *dev = hw->port_info[0].pdev;
5072 	struct ksz_desc_info *info = &hw->rx_desc_info;
5073 	int left = info->alloc;
5074 	struct ksz_desc *desc;
5075 	int received = 0;
5076 
5077 	next = info->next;
5078 	while (left--) {
5079 		/* Get next descriptor which is not hardware owned. */
5080 		desc = &info->ring[next];
5081 		status.data = le32_to_cpu(desc->phw->ctrl.data);
5082 		if (status.rx.hw_owned)
5083 			break;
5084 
5085 		if (hw->dev_count > 1) {
5086 			/* Get received port number. */
5087 			int p = HW_TO_DEV_PORT(status.rx.src_port);
5088 
5089 			dev = hw->port_info[p].pdev;
5090 			if (!netif_running(dev))
5091 				goto release_packet;
5092 		}
5093 
5094 		/* Status valid only when last descriptor bit is set. */
5095 		if (status.rx.last_desc && status.rx.first_desc) {
5096 			if (rx_proc(dev, hw, desc, status))
5097 				goto release_packet;
5098 			received++;
5099 		}
5100 
5101 release_packet:
5102 		release_desc(desc);
5103 		next++;
5104 		next &= info->mask;
5105 	}
5106 	info->next = next;
5107 
5108 	return received;
5109 }
5110 
5111 static int dev_rcv_special(struct dev_info *hw_priv)
5112 {
5113 	int next;
5114 	union desc_stat status;
5115 	struct ksz_hw *hw = &hw_priv->hw;
5116 	struct net_device *dev = hw->port_info[0].pdev;
5117 	struct ksz_desc_info *info = &hw->rx_desc_info;
5118 	int left = info->alloc;
5119 	struct ksz_desc *desc;
5120 	int received = 0;
5121 
5122 	next = info->next;
5123 	while (left--) {
5124 		/* Get next descriptor which is not hardware owned. */
5125 		desc = &info->ring[next];
5126 		status.data = le32_to_cpu(desc->phw->ctrl.data);
5127 		if (status.rx.hw_owned)
5128 			break;
5129 
5130 		if (hw->dev_count > 1) {
5131 			/* Get received port number. */
5132 			int p = HW_TO_DEV_PORT(status.rx.src_port);
5133 
5134 			dev = hw->port_info[p].pdev;
5135 			if (!netif_running(dev))
5136 				goto release_packet;
5137 		}
5138 
5139 		/* Status valid only when last descriptor bit is set. */
5140 		if (status.rx.last_desc && status.rx.first_desc) {
5141 			/*
5142 			 * Receive without error.  With receive errors
5143 			 * disabled, packets with receive errors will be
5144 			 * dropped, so no need to check the error bit.
5145 			 */
5146 			if (!status.rx.error || (status.data &
5147 					KS_DESC_RX_ERROR_COND) ==
5148 					KS_DESC_RX_ERROR_TOO_LONG) {
5149 				if (rx_proc(dev, hw, desc, status))
5150 					goto release_packet;
5151 				received++;
5152 			} else {
5153 				struct dev_priv *priv = netdev_priv(dev);
5154 
5155 				/* Update receive error statistics. */
5156 				priv->port.counter[OID_COUNTER_RCV_ERROR]++;
5157 			}
5158 		}
5159 
5160 release_packet:
5161 		release_desc(desc);
5162 		next++;
5163 		next &= info->mask;
5164 	}
5165 	info->next = next;
5166 
5167 	return received;
5168 }
5169 
5170 static void rx_proc_task(unsigned long data)
5171 {
5172 	struct dev_info *hw_priv = (struct dev_info *) data;
5173 	struct ksz_hw *hw = &hw_priv->hw;
5174 
5175 	if (!hw->enabled)
5176 		return;
5177 	if (unlikely(!hw_priv->dev_rcv(hw_priv))) {
5178 
5179 		/* In case receive process is suspended because of overrun. */
5180 		hw_resume_rx(hw);
5181 
5182 		/* tasklets are interruptible. */
5183 		spin_lock_irq(&hw_priv->hwlock);
5184 		hw_turn_on_intr(hw, KS884X_INT_RX_MASK);
5185 		spin_unlock_irq(&hw_priv->hwlock);
5186 	} else {
5187 		hw_ack_intr(hw, KS884X_INT_RX);
5188 		tasklet_schedule(&hw_priv->rx_tasklet);
5189 	}
5190 }
5191 
5192 static void tx_proc_task(unsigned long data)
5193 {
5194 	struct dev_info *hw_priv = (struct dev_info *) data;
5195 	struct ksz_hw *hw = &hw_priv->hw;
5196 
5197 	hw_ack_intr(hw, KS884X_INT_TX_MASK);
5198 
5199 	tx_done(hw_priv);
5200 
5201 	/* tasklets are interruptible. */
5202 	spin_lock_irq(&hw_priv->hwlock);
5203 	hw_turn_on_intr(hw, KS884X_INT_TX);
5204 	spin_unlock_irq(&hw_priv->hwlock);
5205 }
5206 
5207 static inline void handle_rx_stop(struct ksz_hw *hw)
5208 {
5209 	/* Receive just has been stopped. */
5210 	if (0 == hw->rx_stop)
5211 		hw->intr_mask &= ~KS884X_INT_RX_STOPPED;
5212 	else if (hw->rx_stop > 1) {
5213 		if (hw->enabled && (hw->rx_cfg & DMA_RX_ENABLE)) {
5214 			hw_start_rx(hw);
5215 		} else {
5216 			hw->intr_mask &= ~KS884X_INT_RX_STOPPED;
5217 			hw->rx_stop = 0;
5218 		}
5219 	} else
5220 		/* Receive just has been started. */
5221 		hw->rx_stop++;
5222 }
5223 
5224 /**
5225  * netdev_intr - interrupt handling
5226  * @irq:	Interrupt number.
5227  * @dev_id:	Network device.
5228  *
5229  * This function is called by upper network layer to signal interrupt.
5230  *
5231  * Return IRQ_HANDLED if interrupt is handled.
5232  */
5233 static irqreturn_t netdev_intr(int irq, void *dev_id)
5234 {
5235 	uint int_enable = 0;
5236 	struct net_device *dev = (struct net_device *) dev_id;
5237 	struct dev_priv *priv = netdev_priv(dev);
5238 	struct dev_info *hw_priv = priv->adapter;
5239 	struct ksz_hw *hw = &hw_priv->hw;
5240 
5241 	spin_lock(&hw_priv->hwlock);
5242 
5243 	hw_read_intr(hw, &int_enable);
5244 
5245 	/* Not our interrupt! */
5246 	if (!int_enable) {
5247 		spin_unlock(&hw_priv->hwlock);
5248 		return IRQ_NONE;
5249 	}
5250 
5251 	do {
5252 		hw_ack_intr(hw, int_enable);
5253 		int_enable &= hw->intr_mask;
5254 
5255 		if (unlikely(int_enable & KS884X_INT_TX_MASK)) {
5256 			hw_dis_intr_bit(hw, KS884X_INT_TX_MASK);
5257 			tasklet_schedule(&hw_priv->tx_tasklet);
5258 		}
5259 
5260 		if (likely(int_enable & KS884X_INT_RX)) {
5261 			hw_dis_intr_bit(hw, KS884X_INT_RX);
5262 			tasklet_schedule(&hw_priv->rx_tasklet);
5263 		}
5264 
5265 		if (unlikely(int_enable & KS884X_INT_RX_OVERRUN)) {
5266 			dev->stats.rx_fifo_errors++;
5267 			hw_resume_rx(hw);
5268 		}
5269 
5270 		if (unlikely(int_enable & KS884X_INT_PHY)) {
5271 			struct ksz_port *port = &priv->port;
5272 
5273 			hw->features |= LINK_INT_WORKING;
5274 			port_get_link_speed(port);
5275 		}
5276 
5277 		if (unlikely(int_enable & KS884X_INT_RX_STOPPED)) {
5278 			handle_rx_stop(hw);
5279 			break;
5280 		}
5281 
5282 		if (unlikely(int_enable & KS884X_INT_TX_STOPPED)) {
5283 			u32 data;
5284 
5285 			hw->intr_mask &= ~KS884X_INT_TX_STOPPED;
5286 			pr_info("Tx stopped\n");
5287 			data = readl(hw->io + KS_DMA_TX_CTRL);
5288 			if (!(data & DMA_TX_ENABLE))
5289 				pr_info("Tx disabled\n");
5290 			break;
5291 		}
5292 	} while (0);
5293 
5294 	hw_ena_intr(hw);
5295 
5296 	spin_unlock(&hw_priv->hwlock);
5297 
5298 	return IRQ_HANDLED;
5299 }
5300 
5301 /*
5302  * Linux network device functions
5303  */
5304 
5305 static unsigned long next_jiffies;
5306 
5307 #ifdef CONFIG_NET_POLL_CONTROLLER
5308 static void netdev_netpoll(struct net_device *dev)
5309 {
5310 	struct dev_priv *priv = netdev_priv(dev);
5311 	struct dev_info *hw_priv = priv->adapter;
5312 
5313 	hw_dis_intr(&hw_priv->hw);
5314 	netdev_intr(dev->irq, dev);
5315 }
5316 #endif
5317 
5318 static void bridge_change(struct ksz_hw *hw)
5319 {
5320 	int port;
5321 	u8  member;
5322 	struct ksz_switch *sw = hw->ksz_switch;
5323 
5324 	/* No ports in forwarding state. */
5325 	if (!sw->member) {
5326 		port_set_stp_state(hw, SWITCH_PORT_NUM, STP_STATE_SIMPLE);
5327 		sw_block_addr(hw);
5328 	}
5329 	for (port = 0; port < SWITCH_PORT_NUM; port++) {
5330 		if (STP_STATE_FORWARDING == sw->port_cfg[port].stp_state)
5331 			member = HOST_MASK | sw->member;
5332 		else
5333 			member = HOST_MASK | (1 << port);
5334 		if (member != sw->port_cfg[port].member)
5335 			sw_cfg_port_base_vlan(hw, port, member);
5336 	}
5337 }
5338 
5339 /**
5340  * netdev_close - close network device
5341  * @dev:	Network device.
5342  *
5343  * This function process the close operation of network device.  This is caused
5344  * by the user command "ifconfig ethX down."
5345  *
5346  * Return 0 if successful; otherwise an error code indicating failure.
5347  */
5348 static int netdev_close(struct net_device *dev)
5349 {
5350 	struct dev_priv *priv = netdev_priv(dev);
5351 	struct dev_info *hw_priv = priv->adapter;
5352 	struct ksz_port *port = &priv->port;
5353 	struct ksz_hw *hw = &hw_priv->hw;
5354 	int pi;
5355 
5356 	netif_stop_queue(dev);
5357 
5358 	ksz_stop_timer(&priv->monitor_timer_info);
5359 
5360 	/* Need to shut the port manually in multiple device interfaces mode. */
5361 	if (hw->dev_count > 1) {
5362 		port_set_stp_state(hw, port->first_port, STP_STATE_DISABLED);
5363 
5364 		/* Port is closed.  Need to change bridge setting. */
5365 		if (hw->features & STP_SUPPORT) {
5366 			pi = 1 << port->first_port;
5367 			if (hw->ksz_switch->member & pi) {
5368 				hw->ksz_switch->member &= ~pi;
5369 				bridge_change(hw);
5370 			}
5371 		}
5372 	}
5373 	if (port->first_port > 0)
5374 		hw_del_addr(hw, dev->dev_addr);
5375 	if (!hw_priv->wol_enable)
5376 		port_set_power_saving(port, true);
5377 
5378 	if (priv->multicast)
5379 		--hw->all_multi;
5380 	if (priv->promiscuous)
5381 		--hw->promiscuous;
5382 
5383 	hw_priv->opened--;
5384 	if (!(hw_priv->opened)) {
5385 		ksz_stop_timer(&hw_priv->mib_timer_info);
5386 		flush_work(&hw_priv->mib_read);
5387 
5388 		hw_dis_intr(hw);
5389 		hw_disable(hw);
5390 		hw_clr_multicast(hw);
5391 
5392 		/* Delay for receive task to stop scheduling itself. */
5393 		msleep(2000 / HZ);
5394 
5395 		tasklet_kill(&hw_priv->rx_tasklet);
5396 		tasklet_kill(&hw_priv->tx_tasklet);
5397 		free_irq(dev->irq, hw_priv->dev);
5398 
5399 		transmit_cleanup(hw_priv, 0);
5400 		hw_reset_pkts(&hw->rx_desc_info);
5401 		hw_reset_pkts(&hw->tx_desc_info);
5402 
5403 		/* Clean out static MAC table when the switch is shutdown. */
5404 		if (hw->features & STP_SUPPORT)
5405 			sw_clr_sta_mac_table(hw);
5406 	}
5407 
5408 	return 0;
5409 }
5410 
5411 static void hw_cfg_huge_frame(struct dev_info *hw_priv, struct ksz_hw *hw)
5412 {
5413 	if (hw->ksz_switch) {
5414 		u32 data;
5415 
5416 		data = readw(hw->io + KS8842_SWITCH_CTRL_2_OFFSET);
5417 		if (hw->features & RX_HUGE_FRAME)
5418 			data |= SWITCH_HUGE_PACKET;
5419 		else
5420 			data &= ~SWITCH_HUGE_PACKET;
5421 		writew(data, hw->io + KS8842_SWITCH_CTRL_2_OFFSET);
5422 	}
5423 	if (hw->features & RX_HUGE_FRAME) {
5424 		hw->rx_cfg |= DMA_RX_ERROR;
5425 		hw_priv->dev_rcv = dev_rcv_special;
5426 	} else {
5427 		hw->rx_cfg &= ~DMA_RX_ERROR;
5428 		if (hw->dev_count > 1)
5429 			hw_priv->dev_rcv = port_rcv_packets;
5430 		else
5431 			hw_priv->dev_rcv = dev_rcv_packets;
5432 	}
5433 }
5434 
5435 static int prepare_hardware(struct net_device *dev)
5436 {
5437 	struct dev_priv *priv = netdev_priv(dev);
5438 	struct dev_info *hw_priv = priv->adapter;
5439 	struct ksz_hw *hw = &hw_priv->hw;
5440 	int rc = 0;
5441 
5442 	/* Remember the network device that requests interrupts. */
5443 	hw_priv->dev = dev;
5444 	rc = request_irq(dev->irq, netdev_intr, IRQF_SHARED, dev->name, dev);
5445 	if (rc)
5446 		return rc;
5447 	tasklet_init(&hw_priv->rx_tasklet, rx_proc_task,
5448 		     (unsigned long) hw_priv);
5449 	tasklet_init(&hw_priv->tx_tasklet, tx_proc_task,
5450 		     (unsigned long) hw_priv);
5451 
5452 	hw->promiscuous = 0;
5453 	hw->all_multi = 0;
5454 	hw->multi_list_size = 0;
5455 
5456 	hw_reset(hw);
5457 
5458 	hw_set_desc_base(hw,
5459 		hw->tx_desc_info.ring_phys, hw->rx_desc_info.ring_phys);
5460 	hw_set_addr(hw);
5461 	hw_cfg_huge_frame(hw_priv, hw);
5462 	ksz_init_rx_buffers(hw_priv);
5463 	return 0;
5464 }
5465 
5466 static void set_media_state(struct net_device *dev, int media_state)
5467 {
5468 	struct dev_priv *priv = netdev_priv(dev);
5469 
5470 	if (media_state == priv->media_state)
5471 		netif_carrier_on(dev);
5472 	else
5473 		netif_carrier_off(dev);
5474 	netif_info(priv, link, dev, "link %s\n",
5475 		   media_state == priv->media_state ? "on" : "off");
5476 }
5477 
5478 /**
5479  * netdev_open - open network device
5480  * @dev:	Network device.
5481  *
5482  * This function process the open operation of network device.  This is caused
5483  * by the user command "ifconfig ethX up."
5484  *
5485  * Return 0 if successful; otherwise an error code indicating failure.
5486  */
5487 static int netdev_open(struct net_device *dev)
5488 {
5489 	struct dev_priv *priv = netdev_priv(dev);
5490 	struct dev_info *hw_priv = priv->adapter;
5491 	struct ksz_hw *hw = &hw_priv->hw;
5492 	struct ksz_port *port = &priv->port;
5493 	int i;
5494 	int p;
5495 	int rc = 0;
5496 
5497 	priv->multicast = 0;
5498 	priv->promiscuous = 0;
5499 
5500 	/* Reset device statistics. */
5501 	memset(&dev->stats, 0, sizeof(struct net_device_stats));
5502 	memset((void *) port->counter, 0,
5503 		(sizeof(u64) * OID_COUNTER_LAST));
5504 
5505 	if (!(hw_priv->opened)) {
5506 		rc = prepare_hardware(dev);
5507 		if (rc)
5508 			return rc;
5509 		for (i = 0; i < hw->mib_port_cnt; i++) {
5510 			if (next_jiffies < jiffies)
5511 				next_jiffies = jiffies + HZ * 2;
5512 			else
5513 				next_jiffies += HZ * 1;
5514 			hw_priv->counter[i].time = next_jiffies;
5515 			hw->port_mib[i].state = media_disconnected;
5516 			port_init_cnt(hw, i);
5517 		}
5518 		if (hw->ksz_switch)
5519 			hw->port_mib[HOST_PORT].state = media_connected;
5520 		else {
5521 			hw_add_wol_bcast(hw);
5522 			hw_cfg_wol_pme(hw, 0);
5523 			hw_clr_wol_pme_status(&hw_priv->hw);
5524 		}
5525 	}
5526 	port_set_power_saving(port, false);
5527 
5528 	for (i = 0, p = port->first_port; i < port->port_cnt; i++, p++) {
5529 		/*
5530 		 * Initialize to invalid value so that link detection
5531 		 * is done.
5532 		 */
5533 		hw->port_info[p].partner = 0xFF;
5534 		hw->port_info[p].state = media_disconnected;
5535 	}
5536 
5537 	/* Need to open the port in multiple device interfaces mode. */
5538 	if (hw->dev_count > 1) {
5539 		port_set_stp_state(hw, port->first_port, STP_STATE_SIMPLE);
5540 		if (port->first_port > 0)
5541 			hw_add_addr(hw, dev->dev_addr);
5542 	}
5543 
5544 	port_get_link_speed(port);
5545 	if (port->force_link)
5546 		port_force_link_speed(port);
5547 	else
5548 		port_set_link_speed(port);
5549 
5550 	if (!(hw_priv->opened)) {
5551 		hw_setup_intr(hw);
5552 		hw_enable(hw);
5553 		hw_ena_intr(hw);
5554 
5555 		if (hw->mib_port_cnt)
5556 			ksz_start_timer(&hw_priv->mib_timer_info,
5557 				hw_priv->mib_timer_info.period);
5558 	}
5559 
5560 	hw_priv->opened++;
5561 
5562 	ksz_start_timer(&priv->monitor_timer_info,
5563 		priv->monitor_timer_info.period);
5564 
5565 	priv->media_state = port->linked->state;
5566 
5567 	set_media_state(dev, media_connected);
5568 	netif_start_queue(dev);
5569 
5570 	return 0;
5571 }
5572 
5573 /* RX errors = rx_errors */
5574 /* RX dropped = rx_dropped */
5575 /* RX overruns = rx_fifo_errors */
5576 /* RX frame = rx_crc_errors + rx_frame_errors + rx_length_errors */
5577 /* TX errors = tx_errors */
5578 /* TX dropped = tx_dropped */
5579 /* TX overruns = tx_fifo_errors */
5580 /* TX carrier = tx_aborted_errors + tx_carrier_errors + tx_window_errors */
5581 /* collisions = collisions */
5582 
5583 /**
5584  * netdev_query_statistics - query network device statistics
5585  * @dev:	Network device.
5586  *
5587  * This function returns the statistics of the network device.  The device
5588  * needs not be opened.
5589  *
5590  * Return network device statistics.
5591  */
5592 static struct net_device_stats *netdev_query_statistics(struct net_device *dev)
5593 {
5594 	struct dev_priv *priv = netdev_priv(dev);
5595 	struct ksz_port *port = &priv->port;
5596 	struct ksz_hw *hw = &priv->adapter->hw;
5597 	struct ksz_port_mib *mib;
5598 	int i;
5599 	int p;
5600 
5601 	dev->stats.rx_errors = port->counter[OID_COUNTER_RCV_ERROR];
5602 	dev->stats.tx_errors = port->counter[OID_COUNTER_XMIT_ERROR];
5603 
5604 	/* Reset to zero to add count later. */
5605 	dev->stats.multicast = 0;
5606 	dev->stats.collisions = 0;
5607 	dev->stats.rx_length_errors = 0;
5608 	dev->stats.rx_crc_errors = 0;
5609 	dev->stats.rx_frame_errors = 0;
5610 	dev->stats.tx_window_errors = 0;
5611 
5612 	for (i = 0, p = port->first_port; i < port->mib_port_cnt; i++, p++) {
5613 		mib = &hw->port_mib[p];
5614 
5615 		dev->stats.multicast += (unsigned long)
5616 			mib->counter[MIB_COUNTER_RX_MULTICAST];
5617 
5618 		dev->stats.collisions += (unsigned long)
5619 			mib->counter[MIB_COUNTER_TX_TOTAL_COLLISION];
5620 
5621 		dev->stats.rx_length_errors += (unsigned long)(
5622 			mib->counter[MIB_COUNTER_RX_UNDERSIZE] +
5623 			mib->counter[MIB_COUNTER_RX_FRAGMENT] +
5624 			mib->counter[MIB_COUNTER_RX_OVERSIZE] +
5625 			mib->counter[MIB_COUNTER_RX_JABBER]);
5626 		dev->stats.rx_crc_errors += (unsigned long)
5627 			mib->counter[MIB_COUNTER_RX_CRC_ERR];
5628 		dev->stats.rx_frame_errors += (unsigned long)(
5629 			mib->counter[MIB_COUNTER_RX_ALIGNMENT_ERR] +
5630 			mib->counter[MIB_COUNTER_RX_SYMBOL_ERR]);
5631 
5632 		dev->stats.tx_window_errors += (unsigned long)
5633 			mib->counter[MIB_COUNTER_TX_LATE_COLLISION];
5634 	}
5635 
5636 	return &dev->stats;
5637 }
5638 
5639 /**
5640  * netdev_set_mac_address - set network device MAC address
5641  * @dev:	Network device.
5642  * @addr:	Buffer of MAC address.
5643  *
5644  * This function is used to set the MAC address of the network device.
5645  *
5646  * Return 0 to indicate success.
5647  */
5648 static int netdev_set_mac_address(struct net_device *dev, void *addr)
5649 {
5650 	struct dev_priv *priv = netdev_priv(dev);
5651 	struct dev_info *hw_priv = priv->adapter;
5652 	struct ksz_hw *hw = &hw_priv->hw;
5653 	struct sockaddr *mac = addr;
5654 	uint interrupt;
5655 
5656 	if (priv->port.first_port > 0)
5657 		hw_del_addr(hw, dev->dev_addr);
5658 	else {
5659 		hw->mac_override = 1;
5660 		memcpy(hw->override_addr, mac->sa_data, ETH_ALEN);
5661 	}
5662 
5663 	memcpy(dev->dev_addr, mac->sa_data, ETH_ALEN);
5664 
5665 	interrupt = hw_block_intr(hw);
5666 
5667 	if (priv->port.first_port > 0)
5668 		hw_add_addr(hw, dev->dev_addr);
5669 	else
5670 		hw_set_addr(hw);
5671 	hw_restore_intr(hw, interrupt);
5672 
5673 	return 0;
5674 }
5675 
5676 static void dev_set_promiscuous(struct net_device *dev, struct dev_priv *priv,
5677 	struct ksz_hw *hw, int promiscuous)
5678 {
5679 	if (promiscuous != priv->promiscuous) {
5680 		u8 prev_state = hw->promiscuous;
5681 
5682 		if (promiscuous)
5683 			++hw->promiscuous;
5684 		else
5685 			--hw->promiscuous;
5686 		priv->promiscuous = promiscuous;
5687 
5688 		/* Turn on/off promiscuous mode. */
5689 		if (hw->promiscuous <= 1 && prev_state <= 1)
5690 			hw_set_promiscuous(hw, hw->promiscuous);
5691 
5692 		/*
5693 		 * Port is not in promiscuous mode, meaning it is released
5694 		 * from the bridge.
5695 		 */
5696 		if ((hw->features & STP_SUPPORT) && !promiscuous &&
5697 		    (dev->priv_flags & IFF_BRIDGE_PORT)) {
5698 			struct ksz_switch *sw = hw->ksz_switch;
5699 			int port = priv->port.first_port;
5700 
5701 			port_set_stp_state(hw, port, STP_STATE_DISABLED);
5702 			port = 1 << port;
5703 			if (sw->member & port) {
5704 				sw->member &= ~port;
5705 				bridge_change(hw);
5706 			}
5707 		}
5708 	}
5709 }
5710 
5711 static void dev_set_multicast(struct dev_priv *priv, struct ksz_hw *hw,
5712 	int multicast)
5713 {
5714 	if (multicast != priv->multicast) {
5715 		u8 all_multi = hw->all_multi;
5716 
5717 		if (multicast)
5718 			++hw->all_multi;
5719 		else
5720 			--hw->all_multi;
5721 		priv->multicast = multicast;
5722 
5723 		/* Turn on/off all multicast mode. */
5724 		if (hw->all_multi <= 1 && all_multi <= 1)
5725 			hw_set_multicast(hw, hw->all_multi);
5726 	}
5727 }
5728 
5729 /**
5730  * netdev_set_rx_mode
5731  * @dev:	Network device.
5732  *
5733  * This routine is used to set multicast addresses or put the network device
5734  * into promiscuous mode.
5735  */
5736 static void netdev_set_rx_mode(struct net_device *dev)
5737 {
5738 	struct dev_priv *priv = netdev_priv(dev);
5739 	struct dev_info *hw_priv = priv->adapter;
5740 	struct ksz_hw *hw = &hw_priv->hw;
5741 	struct netdev_hw_addr *ha;
5742 	int multicast = (dev->flags & IFF_ALLMULTI);
5743 
5744 	dev_set_promiscuous(dev, priv, hw, (dev->flags & IFF_PROMISC));
5745 
5746 	if (hw_priv->hw.dev_count > 1)
5747 		multicast |= (dev->flags & IFF_MULTICAST);
5748 	dev_set_multicast(priv, hw, multicast);
5749 
5750 	/* Cannot use different hashes in multiple device interfaces mode. */
5751 	if (hw_priv->hw.dev_count > 1)
5752 		return;
5753 
5754 	if ((dev->flags & IFF_MULTICAST) && !netdev_mc_empty(dev)) {
5755 		int i = 0;
5756 
5757 		/* List too big to support so turn on all multicast mode. */
5758 		if (netdev_mc_count(dev) > MAX_MULTICAST_LIST) {
5759 			if (MAX_MULTICAST_LIST != hw->multi_list_size) {
5760 				hw->multi_list_size = MAX_MULTICAST_LIST;
5761 				++hw->all_multi;
5762 				hw_set_multicast(hw, hw->all_multi);
5763 			}
5764 			return;
5765 		}
5766 
5767 		netdev_for_each_mc_addr(ha, dev) {
5768 			if (i >= MAX_MULTICAST_LIST)
5769 				break;
5770 			memcpy(hw->multi_list[i++], ha->addr, ETH_ALEN);
5771 		}
5772 		hw->multi_list_size = (u8) i;
5773 		hw_set_grp_addr(hw);
5774 	} else {
5775 		if (MAX_MULTICAST_LIST == hw->multi_list_size) {
5776 			--hw->all_multi;
5777 			hw_set_multicast(hw, hw->all_multi);
5778 		}
5779 		hw->multi_list_size = 0;
5780 		hw_clr_multicast(hw);
5781 	}
5782 }
5783 
5784 static int netdev_change_mtu(struct net_device *dev, int new_mtu)
5785 {
5786 	struct dev_priv *priv = netdev_priv(dev);
5787 	struct dev_info *hw_priv = priv->adapter;
5788 	struct ksz_hw *hw = &hw_priv->hw;
5789 	int hw_mtu;
5790 
5791 	if (netif_running(dev))
5792 		return -EBUSY;
5793 
5794 	/* Cannot use different MTU in multiple device interfaces mode. */
5795 	if (hw->dev_count > 1)
5796 		if (dev != hw_priv->dev)
5797 			return 0;
5798 
5799 	hw_mtu = new_mtu + ETHERNET_HEADER_SIZE + 4;
5800 	if (hw_mtu > REGULAR_RX_BUF_SIZE) {
5801 		hw->features |= RX_HUGE_FRAME;
5802 		hw_mtu = MAX_RX_BUF_SIZE;
5803 	} else {
5804 		hw->features &= ~RX_HUGE_FRAME;
5805 		hw_mtu = REGULAR_RX_BUF_SIZE;
5806 	}
5807 	hw_mtu = (hw_mtu + 3) & ~3;
5808 	hw_priv->mtu = hw_mtu;
5809 	dev->mtu = new_mtu;
5810 
5811 	return 0;
5812 }
5813 
5814 /**
5815  * netdev_ioctl - I/O control processing
5816  * @dev:	Network device.
5817  * @ifr:	Interface request structure.
5818  * @cmd:	I/O control code.
5819  *
5820  * This function is used to process I/O control calls.
5821  *
5822  * Return 0 to indicate success.
5823  */
5824 static int netdev_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
5825 {
5826 	struct dev_priv *priv = netdev_priv(dev);
5827 	struct dev_info *hw_priv = priv->adapter;
5828 	struct ksz_hw *hw = &hw_priv->hw;
5829 	struct ksz_port *port = &priv->port;
5830 	int result = 0;
5831 	struct mii_ioctl_data *data = if_mii(ifr);
5832 
5833 	if (down_interruptible(&priv->proc_sem))
5834 		return -ERESTARTSYS;
5835 
5836 	switch (cmd) {
5837 	/* Get address of MII PHY in use. */
5838 	case SIOCGMIIPHY:
5839 		data->phy_id = priv->id;
5840 
5841 		/* Fallthrough... */
5842 
5843 	/* Read MII PHY register. */
5844 	case SIOCGMIIREG:
5845 		if (data->phy_id != priv->id || data->reg_num >= 6)
5846 			result = -EIO;
5847 		else
5848 			hw_r_phy(hw, port->linked->port_id, data->reg_num,
5849 				&data->val_out);
5850 		break;
5851 
5852 	/* Write MII PHY register. */
5853 	case SIOCSMIIREG:
5854 		if (!capable(CAP_NET_ADMIN))
5855 			result = -EPERM;
5856 		else if (data->phy_id != priv->id || data->reg_num >= 6)
5857 			result = -EIO;
5858 		else
5859 			hw_w_phy(hw, port->linked->port_id, data->reg_num,
5860 				data->val_in);
5861 		break;
5862 
5863 	default:
5864 		result = -EOPNOTSUPP;
5865 	}
5866 
5867 	up(&priv->proc_sem);
5868 
5869 	return result;
5870 }
5871 
5872 /*
5873  * MII support
5874  */
5875 
5876 /**
5877  * mdio_read - read PHY register
5878  * @dev:	Network device.
5879  * @phy_id:	The PHY id.
5880  * @reg_num:	The register number.
5881  *
5882  * This function returns the PHY register value.
5883  *
5884  * Return the register value.
5885  */
5886 static int mdio_read(struct net_device *dev, int phy_id, int reg_num)
5887 {
5888 	struct dev_priv *priv = netdev_priv(dev);
5889 	struct ksz_port *port = &priv->port;
5890 	struct ksz_hw *hw = port->hw;
5891 	u16 val_out;
5892 
5893 	hw_r_phy(hw, port->linked->port_id, reg_num << 1, &val_out);
5894 	return val_out;
5895 }
5896 
5897 /**
5898  * mdio_write - set PHY register
5899  * @dev:	Network device.
5900  * @phy_id:	The PHY id.
5901  * @reg_num:	The register number.
5902  * @val:	The register value.
5903  *
5904  * This procedure sets the PHY register value.
5905  */
5906 static void mdio_write(struct net_device *dev, int phy_id, int reg_num, int val)
5907 {
5908 	struct dev_priv *priv = netdev_priv(dev);
5909 	struct ksz_port *port = &priv->port;
5910 	struct ksz_hw *hw = port->hw;
5911 	int i;
5912 	int pi;
5913 
5914 	for (i = 0, pi = port->first_port; i < port->port_cnt; i++, pi++)
5915 		hw_w_phy(hw, pi, reg_num << 1, val);
5916 }
5917 
5918 /*
5919  * ethtool support
5920  */
5921 
5922 #define EEPROM_SIZE			0x40
5923 
5924 static u16 eeprom_data[EEPROM_SIZE] = { 0 };
5925 
5926 #define ADVERTISED_ALL			\
5927 	(ADVERTISED_10baseT_Half |	\
5928 	ADVERTISED_10baseT_Full |	\
5929 	ADVERTISED_100baseT_Half |	\
5930 	ADVERTISED_100baseT_Full)
5931 
5932 /* These functions use the MII functions in mii.c. */
5933 
5934 /**
5935  * netdev_get_link_ksettings - get network device settings
5936  * @dev:	Network device.
5937  * @cmd:	Ethtool command.
5938  *
5939  * This function queries the PHY and returns its state in the ethtool command.
5940  *
5941  * Return 0 if successful; otherwise an error code.
5942  */
5943 static int netdev_get_link_ksettings(struct net_device *dev,
5944 				     struct ethtool_link_ksettings *cmd)
5945 {
5946 	struct dev_priv *priv = netdev_priv(dev);
5947 	struct dev_info *hw_priv = priv->adapter;
5948 
5949 	mutex_lock(&hw_priv->lock);
5950 	mii_ethtool_get_link_ksettings(&priv->mii_if, cmd);
5951 	ethtool_link_ksettings_add_link_mode(cmd, advertising, TP);
5952 	mutex_unlock(&hw_priv->lock);
5953 
5954 	/* Save advertised settings for workaround in next function. */
5955 	ethtool_convert_link_mode_to_legacy_u32(&priv->advertising,
5956 						cmd->link_modes.advertising);
5957 
5958 	return 0;
5959 }
5960 
5961 /**
5962  * netdev_set_link_ksettings - set network device settings
5963  * @dev:	Network device.
5964  * @cmd:	Ethtool command.
5965  *
5966  * This function sets the PHY according to the ethtool command.
5967  *
5968  * Return 0 if successful; otherwise an error code.
5969  */
5970 static int netdev_set_link_ksettings(struct net_device *dev,
5971 				     const struct ethtool_link_ksettings *cmd)
5972 {
5973 	struct dev_priv *priv = netdev_priv(dev);
5974 	struct dev_info *hw_priv = priv->adapter;
5975 	struct ksz_port *port = &priv->port;
5976 	struct ethtool_link_ksettings copy_cmd;
5977 	u32 speed = cmd->base.speed;
5978 	u32 advertising;
5979 	int rc;
5980 
5981 	ethtool_convert_link_mode_to_legacy_u32(&advertising,
5982 						cmd->link_modes.advertising);
5983 
5984 	/*
5985 	 * ethtool utility does not change advertised setting if auto
5986 	 * negotiation is not specified explicitly.
5987 	 */
5988 	if (cmd->base.autoneg && priv->advertising == advertising) {
5989 		advertising |= ADVERTISED_ALL;
5990 		if (10 == speed)
5991 			advertising &=
5992 				~(ADVERTISED_100baseT_Full |
5993 				ADVERTISED_100baseT_Half);
5994 		else if (100 == speed)
5995 			advertising &=
5996 				~(ADVERTISED_10baseT_Full |
5997 				ADVERTISED_10baseT_Half);
5998 		if (0 == cmd->base.duplex)
5999 			advertising &=
6000 				~(ADVERTISED_100baseT_Full |
6001 				ADVERTISED_10baseT_Full);
6002 		else if (1 == cmd->base.duplex)
6003 			advertising &=
6004 				~(ADVERTISED_100baseT_Half |
6005 				ADVERTISED_10baseT_Half);
6006 	}
6007 	mutex_lock(&hw_priv->lock);
6008 	if (cmd->base.autoneg &&
6009 	    (advertising & ADVERTISED_ALL) == ADVERTISED_ALL) {
6010 		port->duplex = 0;
6011 		port->speed = 0;
6012 		port->force_link = 0;
6013 	} else {
6014 		port->duplex = cmd->base.duplex + 1;
6015 		if (1000 != speed)
6016 			port->speed = speed;
6017 		if (cmd->base.autoneg)
6018 			port->force_link = 0;
6019 		else
6020 			port->force_link = 1;
6021 	}
6022 
6023 	memcpy(&copy_cmd, cmd, sizeof(copy_cmd));
6024 	ethtool_convert_legacy_u32_to_link_mode(copy_cmd.link_modes.advertising,
6025 						advertising);
6026 	rc = mii_ethtool_set_link_ksettings(
6027 		&priv->mii_if,
6028 		(const struct ethtool_link_ksettings *)&copy_cmd);
6029 	mutex_unlock(&hw_priv->lock);
6030 	return rc;
6031 }
6032 
6033 /**
6034  * netdev_nway_reset - restart auto-negotiation
6035  * @dev:	Network device.
6036  *
6037  * This function restarts the PHY for auto-negotiation.
6038  *
6039  * Return 0 if successful; otherwise an error code.
6040  */
6041 static int netdev_nway_reset(struct net_device *dev)
6042 {
6043 	struct dev_priv *priv = netdev_priv(dev);
6044 	struct dev_info *hw_priv = priv->adapter;
6045 	int rc;
6046 
6047 	mutex_lock(&hw_priv->lock);
6048 	rc = mii_nway_restart(&priv->mii_if);
6049 	mutex_unlock(&hw_priv->lock);
6050 	return rc;
6051 }
6052 
6053 /**
6054  * netdev_get_link - get network device link status
6055  * @dev:	Network device.
6056  *
6057  * This function gets the link status from the PHY.
6058  *
6059  * Return true if PHY is linked and false otherwise.
6060  */
6061 static u32 netdev_get_link(struct net_device *dev)
6062 {
6063 	struct dev_priv *priv = netdev_priv(dev);
6064 	int rc;
6065 
6066 	rc = mii_link_ok(&priv->mii_if);
6067 	return rc;
6068 }
6069 
6070 /**
6071  * netdev_get_drvinfo - get network driver information
6072  * @dev:	Network device.
6073  * @info:	Ethtool driver info data structure.
6074  *
6075  * This procedure returns the driver information.
6076  */
6077 static void netdev_get_drvinfo(struct net_device *dev,
6078 	struct ethtool_drvinfo *info)
6079 {
6080 	struct dev_priv *priv = netdev_priv(dev);
6081 	struct dev_info *hw_priv = priv->adapter;
6082 
6083 	strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
6084 	strlcpy(info->version, DRV_VERSION, sizeof(info->version));
6085 	strlcpy(info->bus_info, pci_name(hw_priv->pdev),
6086 		sizeof(info->bus_info));
6087 }
6088 
6089 /**
6090  * netdev_get_regs_len - get length of register dump
6091  * @dev:	Network device.
6092  *
6093  * This function returns the length of the register dump.
6094  *
6095  * Return length of the register dump.
6096  */
6097 static struct hw_regs {
6098 	int start;
6099 	int end;
6100 } hw_regs_range[] = {
6101 	{ KS_DMA_TX_CTRL,	KS884X_INTERRUPTS_STATUS },
6102 	{ KS_ADD_ADDR_0_LO,	KS_ADD_ADDR_F_HI },
6103 	{ KS884X_ADDR_0_OFFSET,	KS8841_WOL_FRAME_BYTE2_OFFSET },
6104 	{ KS884X_SIDER_P,	KS8842_SGCR7_P },
6105 	{ KS8842_MACAR1_P,	KS8842_TOSR8_P },
6106 	{ KS884X_P1MBCR_P,	KS8842_P3ERCR_P },
6107 	{ 0, 0 }
6108 };
6109 
6110 static int netdev_get_regs_len(struct net_device *dev)
6111 {
6112 	struct hw_regs *range = hw_regs_range;
6113 	int regs_len = 0x10 * sizeof(u32);
6114 
6115 	while (range->end > range->start) {
6116 		regs_len += (range->end - range->start + 3) / 4 * 4;
6117 		range++;
6118 	}
6119 	return regs_len;
6120 }
6121 
6122 /**
6123  * netdev_get_regs - get register dump
6124  * @dev:	Network device.
6125  * @regs:	Ethtool registers data structure.
6126  * @ptr:	Buffer to store the register values.
6127  *
6128  * This procedure dumps the register values in the provided buffer.
6129  */
6130 static void netdev_get_regs(struct net_device *dev, struct ethtool_regs *regs,
6131 	void *ptr)
6132 {
6133 	struct dev_priv *priv = netdev_priv(dev);
6134 	struct dev_info *hw_priv = priv->adapter;
6135 	struct ksz_hw *hw = &hw_priv->hw;
6136 	int *buf = (int *) ptr;
6137 	struct hw_regs *range = hw_regs_range;
6138 	int len;
6139 
6140 	mutex_lock(&hw_priv->lock);
6141 	regs->version = 0;
6142 	for (len = 0; len < 0x40; len += 4) {
6143 		pci_read_config_dword(hw_priv->pdev, len, buf);
6144 		buf++;
6145 	}
6146 	while (range->end > range->start) {
6147 		for (len = range->start; len < range->end; len += 4) {
6148 			*buf = readl(hw->io + len);
6149 			buf++;
6150 		}
6151 		range++;
6152 	}
6153 	mutex_unlock(&hw_priv->lock);
6154 }
6155 
6156 #define WOL_SUPPORT			\
6157 	(WAKE_PHY | WAKE_MAGIC |	\
6158 	WAKE_UCAST | WAKE_MCAST |	\
6159 	WAKE_BCAST | WAKE_ARP)
6160 
6161 /**
6162  * netdev_get_wol - get Wake-on-LAN support
6163  * @dev:	Network device.
6164  * @wol:	Ethtool Wake-on-LAN data structure.
6165  *
6166  * This procedure returns Wake-on-LAN support.
6167  */
6168 static void netdev_get_wol(struct net_device *dev,
6169 	struct ethtool_wolinfo *wol)
6170 {
6171 	struct dev_priv *priv = netdev_priv(dev);
6172 	struct dev_info *hw_priv = priv->adapter;
6173 
6174 	wol->supported = hw_priv->wol_support;
6175 	wol->wolopts = hw_priv->wol_enable;
6176 	memset(&wol->sopass, 0, sizeof(wol->sopass));
6177 }
6178 
6179 /**
6180  * netdev_set_wol - set Wake-on-LAN support
6181  * @dev:	Network device.
6182  * @wol:	Ethtool Wake-on-LAN data structure.
6183  *
6184  * This function sets Wake-on-LAN support.
6185  *
6186  * Return 0 if successful; otherwise an error code.
6187  */
6188 static int netdev_set_wol(struct net_device *dev,
6189 	struct ethtool_wolinfo *wol)
6190 {
6191 	struct dev_priv *priv = netdev_priv(dev);
6192 	struct dev_info *hw_priv = priv->adapter;
6193 
6194 	/* Need to find a way to retrieve the device IP address. */
6195 	static const u8 net_addr[] = { 192, 168, 1, 1 };
6196 
6197 	if (wol->wolopts & ~hw_priv->wol_support)
6198 		return -EINVAL;
6199 
6200 	hw_priv->wol_enable = wol->wolopts;
6201 
6202 	/* Link wakeup cannot really be disabled. */
6203 	if (wol->wolopts)
6204 		hw_priv->wol_enable |= WAKE_PHY;
6205 	hw_enable_wol(&hw_priv->hw, hw_priv->wol_enable, net_addr);
6206 	return 0;
6207 }
6208 
6209 /**
6210  * netdev_get_msglevel - get debug message level
6211  * @dev:	Network device.
6212  *
6213  * This function returns current debug message level.
6214  *
6215  * Return current debug message flags.
6216  */
6217 static u32 netdev_get_msglevel(struct net_device *dev)
6218 {
6219 	struct dev_priv *priv = netdev_priv(dev);
6220 
6221 	return priv->msg_enable;
6222 }
6223 
6224 /**
6225  * netdev_set_msglevel - set debug message level
6226  * @dev:	Network device.
6227  * @value:	Debug message flags.
6228  *
6229  * This procedure sets debug message level.
6230  */
6231 static void netdev_set_msglevel(struct net_device *dev, u32 value)
6232 {
6233 	struct dev_priv *priv = netdev_priv(dev);
6234 
6235 	priv->msg_enable = value;
6236 }
6237 
6238 /**
6239  * netdev_get_eeprom_len - get EEPROM length
6240  * @dev:	Network device.
6241  *
6242  * This function returns the length of the EEPROM.
6243  *
6244  * Return length of the EEPROM.
6245  */
6246 static int netdev_get_eeprom_len(struct net_device *dev)
6247 {
6248 	return EEPROM_SIZE * 2;
6249 }
6250 
6251 /**
6252  * netdev_get_eeprom - get EEPROM data
6253  * @dev:	Network device.
6254  * @eeprom:	Ethtool EEPROM data structure.
6255  * @data:	Buffer to store the EEPROM data.
6256  *
6257  * This function dumps the EEPROM data in the provided buffer.
6258  *
6259  * Return 0 if successful; otherwise an error code.
6260  */
6261 #define EEPROM_MAGIC			0x10A18842
6262 
6263 static int netdev_get_eeprom(struct net_device *dev,
6264 	struct ethtool_eeprom *eeprom, u8 *data)
6265 {
6266 	struct dev_priv *priv = netdev_priv(dev);
6267 	struct dev_info *hw_priv = priv->adapter;
6268 	u8 *eeprom_byte = (u8 *) eeprom_data;
6269 	int i;
6270 	int len;
6271 
6272 	len = (eeprom->offset + eeprom->len + 1) / 2;
6273 	for (i = eeprom->offset / 2; i < len; i++)
6274 		eeprom_data[i] = eeprom_read(&hw_priv->hw, i);
6275 	eeprom->magic = EEPROM_MAGIC;
6276 	memcpy(data, &eeprom_byte[eeprom->offset], eeprom->len);
6277 
6278 	return 0;
6279 }
6280 
6281 /**
6282  * netdev_set_eeprom - write EEPROM data
6283  * @dev:	Network device.
6284  * @eeprom:	Ethtool EEPROM data structure.
6285  * @data:	Data buffer.
6286  *
6287  * This function modifies the EEPROM data one byte at a time.
6288  *
6289  * Return 0 if successful; otherwise an error code.
6290  */
6291 static int netdev_set_eeprom(struct net_device *dev,
6292 	struct ethtool_eeprom *eeprom, u8 *data)
6293 {
6294 	struct dev_priv *priv = netdev_priv(dev);
6295 	struct dev_info *hw_priv = priv->adapter;
6296 	u16 eeprom_word[EEPROM_SIZE];
6297 	u8 *eeprom_byte = (u8 *) eeprom_word;
6298 	int i;
6299 	int len;
6300 
6301 	if (eeprom->magic != EEPROM_MAGIC)
6302 		return -EINVAL;
6303 
6304 	len = (eeprom->offset + eeprom->len + 1) / 2;
6305 	for (i = eeprom->offset / 2; i < len; i++)
6306 		eeprom_data[i] = eeprom_read(&hw_priv->hw, i);
6307 	memcpy(eeprom_word, eeprom_data, EEPROM_SIZE * 2);
6308 	memcpy(&eeprom_byte[eeprom->offset], data, eeprom->len);
6309 	for (i = 0; i < EEPROM_SIZE; i++)
6310 		if (eeprom_word[i] != eeprom_data[i]) {
6311 			eeprom_data[i] = eeprom_word[i];
6312 			eeprom_write(&hw_priv->hw, i, eeprom_data[i]);
6313 	}
6314 
6315 	return 0;
6316 }
6317 
6318 /**
6319  * netdev_get_pauseparam - get flow control parameters
6320  * @dev:	Network device.
6321  * @pause:	Ethtool PAUSE settings data structure.
6322  *
6323  * This procedure returns the PAUSE control flow settings.
6324  */
6325 static void netdev_get_pauseparam(struct net_device *dev,
6326 	struct ethtool_pauseparam *pause)
6327 {
6328 	struct dev_priv *priv = netdev_priv(dev);
6329 	struct dev_info *hw_priv = priv->adapter;
6330 	struct ksz_hw *hw = &hw_priv->hw;
6331 
6332 	pause->autoneg = (hw->overrides & PAUSE_FLOW_CTRL) ? 0 : 1;
6333 	if (!hw->ksz_switch) {
6334 		pause->rx_pause =
6335 			(hw->rx_cfg & DMA_RX_FLOW_ENABLE) ? 1 : 0;
6336 		pause->tx_pause =
6337 			(hw->tx_cfg & DMA_TX_FLOW_ENABLE) ? 1 : 0;
6338 	} else {
6339 		pause->rx_pause =
6340 			(sw_chk(hw, KS8842_SWITCH_CTRL_1_OFFSET,
6341 				SWITCH_RX_FLOW_CTRL)) ? 1 : 0;
6342 		pause->tx_pause =
6343 			(sw_chk(hw, KS8842_SWITCH_CTRL_1_OFFSET,
6344 				SWITCH_TX_FLOW_CTRL)) ? 1 : 0;
6345 	}
6346 }
6347 
6348 /**
6349  * netdev_set_pauseparam - set flow control parameters
6350  * @dev:	Network device.
6351  * @pause:	Ethtool PAUSE settings data structure.
6352  *
6353  * This function sets the PAUSE control flow settings.
6354  * Not implemented yet.
6355  *
6356  * Return 0 if successful; otherwise an error code.
6357  */
6358 static int netdev_set_pauseparam(struct net_device *dev,
6359 	struct ethtool_pauseparam *pause)
6360 {
6361 	struct dev_priv *priv = netdev_priv(dev);
6362 	struct dev_info *hw_priv = priv->adapter;
6363 	struct ksz_hw *hw = &hw_priv->hw;
6364 	struct ksz_port *port = &priv->port;
6365 
6366 	mutex_lock(&hw_priv->lock);
6367 	if (pause->autoneg) {
6368 		if (!pause->rx_pause && !pause->tx_pause)
6369 			port->flow_ctrl = PHY_NO_FLOW_CTRL;
6370 		else
6371 			port->flow_ctrl = PHY_FLOW_CTRL;
6372 		hw->overrides &= ~PAUSE_FLOW_CTRL;
6373 		port->force_link = 0;
6374 		if (hw->ksz_switch) {
6375 			sw_cfg(hw, KS8842_SWITCH_CTRL_1_OFFSET,
6376 				SWITCH_RX_FLOW_CTRL, 1);
6377 			sw_cfg(hw, KS8842_SWITCH_CTRL_1_OFFSET,
6378 				SWITCH_TX_FLOW_CTRL, 1);
6379 		}
6380 		port_set_link_speed(port);
6381 	} else {
6382 		hw->overrides |= PAUSE_FLOW_CTRL;
6383 		if (hw->ksz_switch) {
6384 			sw_cfg(hw, KS8842_SWITCH_CTRL_1_OFFSET,
6385 				SWITCH_RX_FLOW_CTRL, pause->rx_pause);
6386 			sw_cfg(hw, KS8842_SWITCH_CTRL_1_OFFSET,
6387 				SWITCH_TX_FLOW_CTRL, pause->tx_pause);
6388 		} else
6389 			set_flow_ctrl(hw, pause->rx_pause, pause->tx_pause);
6390 	}
6391 	mutex_unlock(&hw_priv->lock);
6392 
6393 	return 0;
6394 }
6395 
6396 /**
6397  * netdev_get_ringparam - get tx/rx ring parameters
6398  * @dev:	Network device.
6399  * @pause:	Ethtool RING settings data structure.
6400  *
6401  * This procedure returns the TX/RX ring settings.
6402  */
6403 static void netdev_get_ringparam(struct net_device *dev,
6404 	struct ethtool_ringparam *ring)
6405 {
6406 	struct dev_priv *priv = netdev_priv(dev);
6407 	struct dev_info *hw_priv = priv->adapter;
6408 	struct ksz_hw *hw = &hw_priv->hw;
6409 
6410 	ring->tx_max_pending = (1 << 9);
6411 	ring->tx_pending = hw->tx_desc_info.alloc;
6412 	ring->rx_max_pending = (1 << 9);
6413 	ring->rx_pending = hw->rx_desc_info.alloc;
6414 }
6415 
6416 #define STATS_LEN			(TOTAL_PORT_COUNTER_NUM)
6417 
6418 static struct {
6419 	char string[ETH_GSTRING_LEN];
6420 } ethtool_stats_keys[STATS_LEN] = {
6421 	{ "rx_lo_priority_octets" },
6422 	{ "rx_hi_priority_octets" },
6423 	{ "rx_undersize_packets" },
6424 	{ "rx_fragments" },
6425 	{ "rx_oversize_packets" },
6426 	{ "rx_jabbers" },
6427 	{ "rx_symbol_errors" },
6428 	{ "rx_crc_errors" },
6429 	{ "rx_align_errors" },
6430 	{ "rx_mac_ctrl_packets" },
6431 	{ "rx_pause_packets" },
6432 	{ "rx_bcast_packets" },
6433 	{ "rx_mcast_packets" },
6434 	{ "rx_ucast_packets" },
6435 	{ "rx_64_or_less_octet_packets" },
6436 	{ "rx_65_to_127_octet_packets" },
6437 	{ "rx_128_to_255_octet_packets" },
6438 	{ "rx_256_to_511_octet_packets" },
6439 	{ "rx_512_to_1023_octet_packets" },
6440 	{ "rx_1024_to_1522_octet_packets" },
6441 
6442 	{ "tx_lo_priority_octets" },
6443 	{ "tx_hi_priority_octets" },
6444 	{ "tx_late_collisions" },
6445 	{ "tx_pause_packets" },
6446 	{ "tx_bcast_packets" },
6447 	{ "tx_mcast_packets" },
6448 	{ "tx_ucast_packets" },
6449 	{ "tx_deferred" },
6450 	{ "tx_total_collisions" },
6451 	{ "tx_excessive_collisions" },
6452 	{ "tx_single_collisions" },
6453 	{ "tx_mult_collisions" },
6454 
6455 	{ "rx_discards" },
6456 	{ "tx_discards" },
6457 };
6458 
6459 /**
6460  * netdev_get_strings - get statistics identity strings
6461  * @dev:	Network device.
6462  * @stringset:	String set identifier.
6463  * @buf:	Buffer to store the strings.
6464  *
6465  * This procedure returns the strings used to identify the statistics.
6466  */
6467 static void netdev_get_strings(struct net_device *dev, u32 stringset, u8 *buf)
6468 {
6469 	struct dev_priv *priv = netdev_priv(dev);
6470 	struct dev_info *hw_priv = priv->adapter;
6471 	struct ksz_hw *hw = &hw_priv->hw;
6472 
6473 	if (ETH_SS_STATS == stringset)
6474 		memcpy(buf, &ethtool_stats_keys,
6475 			ETH_GSTRING_LEN * hw->mib_cnt);
6476 }
6477 
6478 /**
6479  * netdev_get_sset_count - get statistics size
6480  * @dev:	Network device.
6481  * @sset:	The statistics set number.
6482  *
6483  * This function returns the size of the statistics to be reported.
6484  *
6485  * Return size of the statistics to be reported.
6486  */
6487 static int netdev_get_sset_count(struct net_device *dev, int sset)
6488 {
6489 	struct dev_priv *priv = netdev_priv(dev);
6490 	struct dev_info *hw_priv = priv->adapter;
6491 	struct ksz_hw *hw = &hw_priv->hw;
6492 
6493 	switch (sset) {
6494 	case ETH_SS_STATS:
6495 		return hw->mib_cnt;
6496 	default:
6497 		return -EOPNOTSUPP;
6498 	}
6499 }
6500 
6501 /**
6502  * netdev_get_ethtool_stats - get network device statistics
6503  * @dev:	Network device.
6504  * @stats:	Ethtool statistics data structure.
6505  * @data:	Buffer to store the statistics.
6506  *
6507  * This procedure returns the statistics.
6508  */
6509 static void netdev_get_ethtool_stats(struct net_device *dev,
6510 	struct ethtool_stats *stats, u64 *data)
6511 {
6512 	struct dev_priv *priv = netdev_priv(dev);
6513 	struct dev_info *hw_priv = priv->adapter;
6514 	struct ksz_hw *hw = &hw_priv->hw;
6515 	struct ksz_port *port = &priv->port;
6516 	int n_stats = stats->n_stats;
6517 	int i;
6518 	int n;
6519 	int p;
6520 	int rc;
6521 	u64 counter[TOTAL_PORT_COUNTER_NUM];
6522 
6523 	mutex_lock(&hw_priv->lock);
6524 	n = SWITCH_PORT_NUM;
6525 	for (i = 0, p = port->first_port; i < port->mib_port_cnt; i++, p++) {
6526 		if (media_connected == hw->port_mib[p].state) {
6527 			hw_priv->counter[p].read = 1;
6528 
6529 			/* Remember first port that requests read. */
6530 			if (n == SWITCH_PORT_NUM)
6531 				n = p;
6532 		}
6533 	}
6534 	mutex_unlock(&hw_priv->lock);
6535 
6536 	if (n < SWITCH_PORT_NUM)
6537 		schedule_work(&hw_priv->mib_read);
6538 
6539 	if (1 == port->mib_port_cnt && n < SWITCH_PORT_NUM) {
6540 		p = n;
6541 		rc = wait_event_interruptible_timeout(
6542 			hw_priv->counter[p].counter,
6543 			2 == hw_priv->counter[p].read,
6544 			HZ * 1);
6545 	} else
6546 		for (i = 0, p = n; i < port->mib_port_cnt - n; i++, p++) {
6547 			if (0 == i) {
6548 				rc = wait_event_interruptible_timeout(
6549 					hw_priv->counter[p].counter,
6550 					2 == hw_priv->counter[p].read,
6551 					HZ * 2);
6552 			} else if (hw->port_mib[p].cnt_ptr) {
6553 				rc = wait_event_interruptible_timeout(
6554 					hw_priv->counter[p].counter,
6555 					2 == hw_priv->counter[p].read,
6556 					HZ * 1);
6557 			}
6558 		}
6559 
6560 	get_mib_counters(hw, port->first_port, port->mib_port_cnt, counter);
6561 	n = hw->mib_cnt;
6562 	if (n > n_stats)
6563 		n = n_stats;
6564 	n_stats -= n;
6565 	for (i = 0; i < n; i++)
6566 		*data++ = counter[i];
6567 }
6568 
6569 /**
6570  * netdev_set_features - set receive checksum support
6571  * @dev:	Network device.
6572  * @features:	New device features (offloads).
6573  *
6574  * This function sets receive checksum support setting.
6575  *
6576  * Return 0 if successful; otherwise an error code.
6577  */
6578 static int netdev_set_features(struct net_device *dev,
6579 	netdev_features_t features)
6580 {
6581 	struct dev_priv *priv = netdev_priv(dev);
6582 	struct dev_info *hw_priv = priv->adapter;
6583 	struct ksz_hw *hw = &hw_priv->hw;
6584 
6585 	mutex_lock(&hw_priv->lock);
6586 
6587 	/* see note in hw_setup() */
6588 	if (features & NETIF_F_RXCSUM)
6589 		hw->rx_cfg |= DMA_RX_CSUM_TCP | DMA_RX_CSUM_IP;
6590 	else
6591 		hw->rx_cfg &= ~(DMA_RX_CSUM_TCP | DMA_RX_CSUM_IP);
6592 
6593 	if (hw->enabled)
6594 		writel(hw->rx_cfg, hw->io + KS_DMA_RX_CTRL);
6595 
6596 	mutex_unlock(&hw_priv->lock);
6597 
6598 	return 0;
6599 }
6600 
6601 static const struct ethtool_ops netdev_ethtool_ops = {
6602 	.nway_reset		= netdev_nway_reset,
6603 	.get_link		= netdev_get_link,
6604 	.get_drvinfo		= netdev_get_drvinfo,
6605 	.get_regs_len		= netdev_get_regs_len,
6606 	.get_regs		= netdev_get_regs,
6607 	.get_wol		= netdev_get_wol,
6608 	.set_wol		= netdev_set_wol,
6609 	.get_msglevel		= netdev_get_msglevel,
6610 	.set_msglevel		= netdev_set_msglevel,
6611 	.get_eeprom_len		= netdev_get_eeprom_len,
6612 	.get_eeprom		= netdev_get_eeprom,
6613 	.set_eeprom		= netdev_set_eeprom,
6614 	.get_pauseparam		= netdev_get_pauseparam,
6615 	.set_pauseparam		= netdev_set_pauseparam,
6616 	.get_ringparam		= netdev_get_ringparam,
6617 	.get_strings		= netdev_get_strings,
6618 	.get_sset_count		= netdev_get_sset_count,
6619 	.get_ethtool_stats	= netdev_get_ethtool_stats,
6620 	.get_link_ksettings	= netdev_get_link_ksettings,
6621 	.set_link_ksettings	= netdev_set_link_ksettings,
6622 };
6623 
6624 /*
6625  * Hardware monitoring
6626  */
6627 
6628 static void update_link(struct net_device *dev, struct dev_priv *priv,
6629 	struct ksz_port *port)
6630 {
6631 	if (priv->media_state != port->linked->state) {
6632 		priv->media_state = port->linked->state;
6633 		if (netif_running(dev))
6634 			set_media_state(dev, media_connected);
6635 	}
6636 }
6637 
6638 static void mib_read_work(struct work_struct *work)
6639 {
6640 	struct dev_info *hw_priv =
6641 		container_of(work, struct dev_info, mib_read);
6642 	struct ksz_hw *hw = &hw_priv->hw;
6643 	struct ksz_port_mib *mib;
6644 	int i;
6645 
6646 	next_jiffies = jiffies;
6647 	for (i = 0; i < hw->mib_port_cnt; i++) {
6648 		mib = &hw->port_mib[i];
6649 
6650 		/* Reading MIB counters or requested to read. */
6651 		if (mib->cnt_ptr || 1 == hw_priv->counter[i].read) {
6652 
6653 			/* Need to process receive interrupt. */
6654 			if (port_r_cnt(hw, i))
6655 				break;
6656 			hw_priv->counter[i].read = 0;
6657 
6658 			/* Finish reading counters. */
6659 			if (0 == mib->cnt_ptr) {
6660 				hw_priv->counter[i].read = 2;
6661 				wake_up_interruptible(
6662 					&hw_priv->counter[i].counter);
6663 			}
6664 		} else if (time_after_eq(jiffies, hw_priv->counter[i].time)) {
6665 			/* Only read MIB counters when the port is connected. */
6666 			if (media_connected == mib->state)
6667 				hw_priv->counter[i].read = 1;
6668 			next_jiffies += HZ * 1 * hw->mib_port_cnt;
6669 			hw_priv->counter[i].time = next_jiffies;
6670 
6671 		/* Port is just disconnected. */
6672 		} else if (mib->link_down) {
6673 			mib->link_down = 0;
6674 
6675 			/* Read counters one last time after link is lost. */
6676 			hw_priv->counter[i].read = 1;
6677 		}
6678 	}
6679 }
6680 
6681 static void mib_monitor(struct timer_list *t)
6682 {
6683 	struct dev_info *hw_priv = from_timer(hw_priv, t, mib_timer_info.timer);
6684 
6685 	mib_read_work(&hw_priv->mib_read);
6686 
6687 	/* This is used to verify Wake-on-LAN is working. */
6688 	if (hw_priv->pme_wait) {
6689 		if (time_is_before_eq_jiffies(hw_priv->pme_wait)) {
6690 			hw_clr_wol_pme_status(&hw_priv->hw);
6691 			hw_priv->pme_wait = 0;
6692 		}
6693 	} else if (hw_chk_wol_pme_status(&hw_priv->hw)) {
6694 
6695 		/* PME is asserted.  Wait 2 seconds to clear it. */
6696 		hw_priv->pme_wait = jiffies + HZ * 2;
6697 	}
6698 
6699 	ksz_update_timer(&hw_priv->mib_timer_info);
6700 }
6701 
6702 /**
6703  * dev_monitor - periodic monitoring
6704  * @ptr:	Network device pointer.
6705  *
6706  * This routine is run in a kernel timer to monitor the network device.
6707  */
6708 static void dev_monitor(struct timer_list *t)
6709 {
6710 	struct dev_priv *priv = from_timer(priv, t, monitor_timer_info.timer);
6711 	struct net_device *dev = priv->mii_if.dev;
6712 	struct dev_info *hw_priv = priv->adapter;
6713 	struct ksz_hw *hw = &hw_priv->hw;
6714 	struct ksz_port *port = &priv->port;
6715 
6716 	if (!(hw->features & LINK_INT_WORKING))
6717 		port_get_link_speed(port);
6718 	update_link(dev, priv, port);
6719 
6720 	ksz_update_timer(&priv->monitor_timer_info);
6721 }
6722 
6723 /*
6724  * Linux network device interface functions
6725  */
6726 
6727 /* Driver exported variables */
6728 
6729 static int msg_enable;
6730 
6731 static char *macaddr = ":";
6732 static char *mac1addr = ":";
6733 
6734 /*
6735  * This enables multiple network device mode for KSZ8842, which contains a
6736  * switch with two physical ports.  Some users like to take control of the
6737  * ports for running Spanning Tree Protocol.  The driver will create an
6738  * additional eth? device for the other port.
6739  *
6740  * Some limitations are the network devices cannot have different MTU and
6741  * multicast hash tables.
6742  */
6743 static int multi_dev;
6744 
6745 /*
6746  * As most users select multiple network device mode to use Spanning Tree
6747  * Protocol, this enables a feature in which most unicast and multicast packets
6748  * are forwarded inside the switch and not passed to the host.  Only packets
6749  * that need the host's attention are passed to it.  This prevents the host
6750  * wasting CPU time to examine each and every incoming packets and do the
6751  * forwarding itself.
6752  *
6753  * As the hack requires the private bridge header, the driver cannot compile
6754  * with just the kernel headers.
6755  *
6756  * Enabling STP support also turns on multiple network device mode.
6757  */
6758 static int stp;
6759 
6760 /*
6761  * This enables fast aging in the KSZ8842 switch.  Not sure what situation
6762  * needs that.  However, fast aging is used to flush the dynamic MAC table when
6763  * STP support is enabled.
6764  */
6765 static int fast_aging;
6766 
6767 /**
6768  * netdev_init - initialize network device.
6769  * @dev:	Network device.
6770  *
6771  * This function initializes the network device.
6772  *
6773  * Return 0 if successful; otherwise an error code indicating failure.
6774  */
6775 static int __init netdev_init(struct net_device *dev)
6776 {
6777 	struct dev_priv *priv = netdev_priv(dev);
6778 
6779 	/* 500 ms timeout */
6780 	ksz_init_timer(&priv->monitor_timer_info, 500 * HZ / 1000,
6781 		dev_monitor);
6782 
6783 	/* 500 ms timeout */
6784 	dev->watchdog_timeo = HZ / 2;
6785 
6786 	dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG | NETIF_F_RXCSUM;
6787 
6788 	/*
6789 	 * Hardware does not really support IPv6 checksum generation, but
6790 	 * driver actually runs faster with this on.
6791 	 */
6792 	dev->hw_features |= NETIF_F_IPV6_CSUM;
6793 
6794 	dev->features |= dev->hw_features;
6795 
6796 	sema_init(&priv->proc_sem, 1);
6797 
6798 	priv->mii_if.phy_id_mask = 0x1;
6799 	priv->mii_if.reg_num_mask = 0x7;
6800 	priv->mii_if.dev = dev;
6801 	priv->mii_if.mdio_read = mdio_read;
6802 	priv->mii_if.mdio_write = mdio_write;
6803 	priv->mii_if.phy_id = priv->port.first_port + 1;
6804 
6805 	priv->msg_enable = netif_msg_init(msg_enable,
6806 		(NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK));
6807 
6808 	return 0;
6809 }
6810 
6811 static const struct net_device_ops netdev_ops = {
6812 	.ndo_init		= netdev_init,
6813 	.ndo_open		= netdev_open,
6814 	.ndo_stop		= netdev_close,
6815 	.ndo_get_stats		= netdev_query_statistics,
6816 	.ndo_start_xmit		= netdev_tx,
6817 	.ndo_tx_timeout		= netdev_tx_timeout,
6818 	.ndo_change_mtu		= netdev_change_mtu,
6819 	.ndo_set_features	= netdev_set_features,
6820 	.ndo_set_mac_address	= netdev_set_mac_address,
6821 	.ndo_validate_addr	= eth_validate_addr,
6822 	.ndo_do_ioctl		= netdev_ioctl,
6823 	.ndo_set_rx_mode	= netdev_set_rx_mode,
6824 #ifdef CONFIG_NET_POLL_CONTROLLER
6825 	.ndo_poll_controller	= netdev_netpoll,
6826 #endif
6827 };
6828 
6829 static void netdev_free(struct net_device *dev)
6830 {
6831 	if (dev->watchdog_timeo)
6832 		unregister_netdev(dev);
6833 
6834 	free_netdev(dev);
6835 }
6836 
6837 struct platform_info {
6838 	struct dev_info dev_info;
6839 	struct net_device *netdev[SWITCH_PORT_NUM];
6840 };
6841 
6842 static int net_device_present;
6843 
6844 static void get_mac_addr(struct dev_info *hw_priv, u8 *macaddr, int port)
6845 {
6846 	int i;
6847 	int j;
6848 	int got_num;
6849 	int num;
6850 
6851 	i = j = num = got_num = 0;
6852 	while (j < ETH_ALEN) {
6853 		if (macaddr[i]) {
6854 			int digit;
6855 
6856 			got_num = 1;
6857 			digit = hex_to_bin(macaddr[i]);
6858 			if (digit >= 0)
6859 				num = num * 16 + digit;
6860 			else if (':' == macaddr[i])
6861 				got_num = 2;
6862 			else
6863 				break;
6864 		} else if (got_num)
6865 			got_num = 2;
6866 		else
6867 			break;
6868 		if (2 == got_num) {
6869 			if (MAIN_PORT == port) {
6870 				hw_priv->hw.override_addr[j++] = (u8) num;
6871 				hw_priv->hw.override_addr[5] +=
6872 					hw_priv->hw.id;
6873 			} else {
6874 				hw_priv->hw.ksz_switch->other_addr[j++] =
6875 					(u8) num;
6876 				hw_priv->hw.ksz_switch->other_addr[5] +=
6877 					hw_priv->hw.id;
6878 			}
6879 			num = got_num = 0;
6880 		}
6881 		i++;
6882 	}
6883 	if (ETH_ALEN == j) {
6884 		if (MAIN_PORT == port)
6885 			hw_priv->hw.mac_override = 1;
6886 	}
6887 }
6888 
6889 #define KS884X_DMA_MASK			(~0x0UL)
6890 
6891 static void read_other_addr(struct ksz_hw *hw)
6892 {
6893 	int i;
6894 	u16 data[3];
6895 	struct ksz_switch *sw = hw->ksz_switch;
6896 
6897 	for (i = 0; i < 3; i++)
6898 		data[i] = eeprom_read(hw, i + EEPROM_DATA_OTHER_MAC_ADDR);
6899 	if ((data[0] || data[1] || data[2]) && data[0] != 0xffff) {
6900 		sw->other_addr[5] = (u8) data[0];
6901 		sw->other_addr[4] = (u8)(data[0] >> 8);
6902 		sw->other_addr[3] = (u8) data[1];
6903 		sw->other_addr[2] = (u8)(data[1] >> 8);
6904 		sw->other_addr[1] = (u8) data[2];
6905 		sw->other_addr[0] = (u8)(data[2] >> 8);
6906 	}
6907 }
6908 
6909 #ifndef PCI_VENDOR_ID_MICREL_KS
6910 #define PCI_VENDOR_ID_MICREL_KS		0x16c6
6911 #endif
6912 
6913 static int pcidev_init(struct pci_dev *pdev, const struct pci_device_id *id)
6914 {
6915 	struct net_device *dev;
6916 	struct dev_priv *priv;
6917 	struct dev_info *hw_priv;
6918 	struct ksz_hw *hw;
6919 	struct platform_info *info;
6920 	struct ksz_port *port;
6921 	unsigned long reg_base;
6922 	unsigned long reg_len;
6923 	int cnt;
6924 	int i;
6925 	int mib_port_count;
6926 	int pi;
6927 	int port_count;
6928 	int result;
6929 	char banner[sizeof(version)];
6930 	struct ksz_switch *sw = NULL;
6931 
6932 	result = pci_enable_device(pdev);
6933 	if (result)
6934 		return result;
6935 
6936 	result = -ENODEV;
6937 
6938 	if (pci_set_dma_mask(pdev, DMA_BIT_MASK(32)) ||
6939 			pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32)))
6940 		return result;
6941 
6942 	reg_base = pci_resource_start(pdev, 0);
6943 	reg_len = pci_resource_len(pdev, 0);
6944 	if ((pci_resource_flags(pdev, 0) & IORESOURCE_IO) != 0)
6945 		return result;
6946 
6947 	if (!request_mem_region(reg_base, reg_len, DRV_NAME))
6948 		return result;
6949 	pci_set_master(pdev);
6950 
6951 	result = -ENOMEM;
6952 
6953 	info = kzalloc(sizeof(struct platform_info), GFP_KERNEL);
6954 	if (!info)
6955 		goto pcidev_init_dev_err;
6956 
6957 	hw_priv = &info->dev_info;
6958 	hw_priv->pdev = pdev;
6959 
6960 	hw = &hw_priv->hw;
6961 
6962 	hw->io = ioremap(reg_base, reg_len);
6963 	if (!hw->io)
6964 		goto pcidev_init_io_err;
6965 
6966 	cnt = hw_init(hw);
6967 	if (!cnt) {
6968 		if (msg_enable & NETIF_MSG_PROBE)
6969 			pr_alert("chip not detected\n");
6970 		result = -ENODEV;
6971 		goto pcidev_init_alloc_err;
6972 	}
6973 
6974 	snprintf(banner, sizeof(banner), "%s", version);
6975 	banner[13] = cnt + '0';		/* Replace x in "Micrel KSZ884x" */
6976 	dev_info(&hw_priv->pdev->dev, "%s\n", banner);
6977 	dev_dbg(&hw_priv->pdev->dev, "Mem = %p; IRQ = %d\n", hw->io, pdev->irq);
6978 
6979 	/* Assume device is KSZ8841. */
6980 	hw->dev_count = 1;
6981 	port_count = 1;
6982 	mib_port_count = 1;
6983 	hw->addr_list_size = 0;
6984 	hw->mib_cnt = PORT_COUNTER_NUM;
6985 	hw->mib_port_cnt = 1;
6986 
6987 	/* KSZ8842 has a switch with multiple ports. */
6988 	if (2 == cnt) {
6989 		if (fast_aging)
6990 			hw->overrides |= FAST_AGING;
6991 
6992 		hw->mib_cnt = TOTAL_PORT_COUNTER_NUM;
6993 
6994 		/* Multiple network device interfaces are required. */
6995 		if (multi_dev) {
6996 			hw->dev_count = SWITCH_PORT_NUM;
6997 			hw->addr_list_size = SWITCH_PORT_NUM - 1;
6998 		}
6999 
7000 		/* Single network device has multiple ports. */
7001 		if (1 == hw->dev_count) {
7002 			port_count = SWITCH_PORT_NUM;
7003 			mib_port_count = SWITCH_PORT_NUM;
7004 		}
7005 		hw->mib_port_cnt = TOTAL_PORT_NUM;
7006 		hw->ksz_switch = kzalloc(sizeof(struct ksz_switch), GFP_KERNEL);
7007 		if (!hw->ksz_switch)
7008 			goto pcidev_init_alloc_err;
7009 
7010 		sw = hw->ksz_switch;
7011 	}
7012 	for (i = 0; i < hw->mib_port_cnt; i++)
7013 		hw->port_mib[i].mib_start = 0;
7014 
7015 	hw->parent = hw_priv;
7016 
7017 	/* Default MTU is 1500. */
7018 	hw_priv->mtu = (REGULAR_RX_BUF_SIZE + 3) & ~3;
7019 
7020 	if (ksz_alloc_mem(hw_priv))
7021 		goto pcidev_init_mem_err;
7022 
7023 	hw_priv->hw.id = net_device_present;
7024 
7025 	spin_lock_init(&hw_priv->hwlock);
7026 	mutex_init(&hw_priv->lock);
7027 
7028 	for (i = 0; i < TOTAL_PORT_NUM; i++)
7029 		init_waitqueue_head(&hw_priv->counter[i].counter);
7030 
7031 	if (macaddr[0] != ':')
7032 		get_mac_addr(hw_priv, macaddr, MAIN_PORT);
7033 
7034 	/* Read MAC address and initialize override address if not overridden. */
7035 	hw_read_addr(hw);
7036 
7037 	/* Multiple device interfaces mode requires a second MAC address. */
7038 	if (hw->dev_count > 1) {
7039 		memcpy(sw->other_addr, hw->override_addr, ETH_ALEN);
7040 		read_other_addr(hw);
7041 		if (mac1addr[0] != ':')
7042 			get_mac_addr(hw_priv, mac1addr, OTHER_PORT);
7043 	}
7044 
7045 	hw_setup(hw);
7046 	if (hw->ksz_switch)
7047 		sw_setup(hw);
7048 	else {
7049 		hw_priv->wol_support = WOL_SUPPORT;
7050 		hw_priv->wol_enable = 0;
7051 	}
7052 
7053 	INIT_WORK(&hw_priv->mib_read, mib_read_work);
7054 
7055 	/* 500 ms timeout */
7056 	ksz_init_timer(&hw_priv->mib_timer_info, 500 * HZ / 1000,
7057 		mib_monitor);
7058 
7059 	for (i = 0; i < hw->dev_count; i++) {
7060 		dev = alloc_etherdev(sizeof(struct dev_priv));
7061 		if (!dev)
7062 			goto pcidev_init_reg_err;
7063 		SET_NETDEV_DEV(dev, &pdev->dev);
7064 		info->netdev[i] = dev;
7065 
7066 		priv = netdev_priv(dev);
7067 		priv->adapter = hw_priv;
7068 		priv->id = net_device_present++;
7069 
7070 		port = &priv->port;
7071 		port->port_cnt = port_count;
7072 		port->mib_port_cnt = mib_port_count;
7073 		port->first_port = i;
7074 		port->flow_ctrl = PHY_FLOW_CTRL;
7075 
7076 		port->hw = hw;
7077 		port->linked = &hw->port_info[port->first_port];
7078 
7079 		for (cnt = 0, pi = i; cnt < port_count; cnt++, pi++) {
7080 			hw->port_info[pi].port_id = pi;
7081 			hw->port_info[pi].pdev = dev;
7082 			hw->port_info[pi].state = media_disconnected;
7083 		}
7084 
7085 		dev->mem_start = (unsigned long) hw->io;
7086 		dev->mem_end = dev->mem_start + reg_len - 1;
7087 		dev->irq = pdev->irq;
7088 		if (MAIN_PORT == i)
7089 			memcpy(dev->dev_addr, hw_priv->hw.override_addr,
7090 			       ETH_ALEN);
7091 		else {
7092 			memcpy(dev->dev_addr, sw->other_addr, ETH_ALEN);
7093 			if (ether_addr_equal(sw->other_addr, hw->override_addr))
7094 				dev->dev_addr[5] += port->first_port;
7095 		}
7096 
7097 		dev->netdev_ops = &netdev_ops;
7098 		dev->ethtool_ops = &netdev_ethtool_ops;
7099 
7100 		/* MTU range: 60 - 1894 */
7101 		dev->min_mtu = ETH_ZLEN;
7102 		dev->max_mtu = MAX_RX_BUF_SIZE -
7103 			       (ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN);
7104 
7105 		if (register_netdev(dev))
7106 			goto pcidev_init_reg_err;
7107 		port_set_power_saving(port, true);
7108 	}
7109 
7110 	pci_dev_get(hw_priv->pdev);
7111 	pci_set_drvdata(pdev, info);
7112 	return 0;
7113 
7114 pcidev_init_reg_err:
7115 	for (i = 0; i < hw->dev_count; i++) {
7116 		if (info->netdev[i]) {
7117 			netdev_free(info->netdev[i]);
7118 			info->netdev[i] = NULL;
7119 		}
7120 	}
7121 
7122 pcidev_init_mem_err:
7123 	ksz_free_mem(hw_priv);
7124 	kfree(hw->ksz_switch);
7125 
7126 pcidev_init_alloc_err:
7127 	iounmap(hw->io);
7128 
7129 pcidev_init_io_err:
7130 	kfree(info);
7131 
7132 pcidev_init_dev_err:
7133 	release_mem_region(reg_base, reg_len);
7134 
7135 	return result;
7136 }
7137 
7138 static void pcidev_exit(struct pci_dev *pdev)
7139 {
7140 	int i;
7141 	struct platform_info *info = pci_get_drvdata(pdev);
7142 	struct dev_info *hw_priv = &info->dev_info;
7143 
7144 	release_mem_region(pci_resource_start(pdev, 0),
7145 		pci_resource_len(pdev, 0));
7146 	for (i = 0; i < hw_priv->hw.dev_count; i++) {
7147 		if (info->netdev[i])
7148 			netdev_free(info->netdev[i]);
7149 	}
7150 	if (hw_priv->hw.io)
7151 		iounmap(hw_priv->hw.io);
7152 	ksz_free_mem(hw_priv);
7153 	kfree(hw_priv->hw.ksz_switch);
7154 	pci_dev_put(hw_priv->pdev);
7155 	kfree(info);
7156 }
7157 
7158 #ifdef CONFIG_PM
7159 static int pcidev_resume(struct pci_dev *pdev)
7160 {
7161 	int i;
7162 	struct platform_info *info = pci_get_drvdata(pdev);
7163 	struct dev_info *hw_priv = &info->dev_info;
7164 	struct ksz_hw *hw = &hw_priv->hw;
7165 
7166 	pci_set_power_state(pdev, PCI_D0);
7167 	pci_restore_state(pdev);
7168 	pci_enable_wake(pdev, PCI_D0, 0);
7169 
7170 	if (hw_priv->wol_enable)
7171 		hw_cfg_wol_pme(hw, 0);
7172 	for (i = 0; i < hw->dev_count; i++) {
7173 		if (info->netdev[i]) {
7174 			struct net_device *dev = info->netdev[i];
7175 
7176 			if (netif_running(dev)) {
7177 				netdev_open(dev);
7178 				netif_device_attach(dev);
7179 			}
7180 		}
7181 	}
7182 	return 0;
7183 }
7184 
7185 static int pcidev_suspend(struct pci_dev *pdev, pm_message_t state)
7186 {
7187 	int i;
7188 	struct platform_info *info = pci_get_drvdata(pdev);
7189 	struct dev_info *hw_priv = &info->dev_info;
7190 	struct ksz_hw *hw = &hw_priv->hw;
7191 
7192 	/* Need to find a way to retrieve the device IP address. */
7193 	static const u8 net_addr[] = { 192, 168, 1, 1 };
7194 
7195 	for (i = 0; i < hw->dev_count; i++) {
7196 		if (info->netdev[i]) {
7197 			struct net_device *dev = info->netdev[i];
7198 
7199 			if (netif_running(dev)) {
7200 				netif_device_detach(dev);
7201 				netdev_close(dev);
7202 			}
7203 		}
7204 	}
7205 	if (hw_priv->wol_enable) {
7206 		hw_enable_wol(hw, hw_priv->wol_enable, net_addr);
7207 		hw_cfg_wol_pme(hw, 1);
7208 	}
7209 
7210 	pci_save_state(pdev);
7211 	pci_enable_wake(pdev, pci_choose_state(pdev, state), 1);
7212 	pci_set_power_state(pdev, pci_choose_state(pdev, state));
7213 	return 0;
7214 }
7215 #endif
7216 
7217 static char pcidev_name[] = "ksz884xp";
7218 
7219 static const struct pci_device_id pcidev_table[] = {
7220 	{ PCI_VENDOR_ID_MICREL_KS, 0x8841,
7221 		PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
7222 	{ PCI_VENDOR_ID_MICREL_KS, 0x8842,
7223 		PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
7224 	{ 0 }
7225 };
7226 
7227 MODULE_DEVICE_TABLE(pci, pcidev_table);
7228 
7229 static struct pci_driver pci_device_driver = {
7230 #ifdef CONFIG_PM
7231 	.suspend	= pcidev_suspend,
7232 	.resume		= pcidev_resume,
7233 #endif
7234 	.name		= pcidev_name,
7235 	.id_table	= pcidev_table,
7236 	.probe		= pcidev_init,
7237 	.remove		= pcidev_exit
7238 };
7239 
7240 module_pci_driver(pci_device_driver);
7241 
7242 MODULE_DESCRIPTION("KSZ8841/2 PCI network driver");
7243 MODULE_AUTHOR("Tristram Ha <Tristram.Ha@micrel.com>");
7244 MODULE_LICENSE("GPL");
7245 
7246 module_param_named(message, msg_enable, int, 0);
7247 MODULE_PARM_DESC(message, "Message verbosity level (0=none, 31=all)");
7248 
7249 module_param(macaddr, charp, 0);
7250 module_param(mac1addr, charp, 0);
7251 module_param(fast_aging, int, 0);
7252 module_param(multi_dev, int, 0);
7253 module_param(stp, int, 0);
7254 MODULE_PARM_DESC(macaddr, "MAC address");
7255 MODULE_PARM_DESC(mac1addr, "Second MAC address");
7256 MODULE_PARM_DESC(fast_aging, "Fast aging");
7257 MODULE_PARM_DESC(multi_dev, "Multiple device interfaces");
7258 MODULE_PARM_DESC(stp, "STP support");
7259