1 /**
2  * drivers/net/ethernet/micrel/ksx884x.c - Micrel KSZ8841/2 PCI Ethernet driver
3  *
4  * Copyright (c) 2009-2010 Micrel, Inc.
5  * 	Tristram Ha <Tristram.Ha@micrel.com>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  */
16 
17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
18 
19 #include <linux/init.h>
20 #include <linux/interrupt.h>
21 #include <linux/kernel.h>
22 #include <linux/module.h>
23 #include <linux/ioport.h>
24 #include <linux/pci.h>
25 #include <linux/proc_fs.h>
26 #include <linux/mii.h>
27 #include <linux/platform_device.h>
28 #include <linux/ethtool.h>
29 #include <linux/etherdevice.h>
30 #include <linux/in.h>
31 #include <linux/ip.h>
32 #include <linux/if_vlan.h>
33 #include <linux/crc32.h>
34 #include <linux/sched.h>
35 #include <linux/slab.h>
36 
37 
38 /* DMA Registers */
39 
40 #define KS_DMA_TX_CTRL			0x0000
41 #define DMA_TX_ENABLE			0x00000001
42 #define DMA_TX_CRC_ENABLE		0x00000002
43 #define DMA_TX_PAD_ENABLE		0x00000004
44 #define DMA_TX_LOOPBACK			0x00000100
45 #define DMA_TX_FLOW_ENABLE		0x00000200
46 #define DMA_TX_CSUM_IP			0x00010000
47 #define DMA_TX_CSUM_TCP			0x00020000
48 #define DMA_TX_CSUM_UDP			0x00040000
49 #define DMA_TX_BURST_SIZE		0x3F000000
50 
51 #define KS_DMA_RX_CTRL			0x0004
52 #define DMA_RX_ENABLE			0x00000001
53 #define KS884X_DMA_RX_MULTICAST		0x00000002
54 #define DMA_RX_PROMISCUOUS		0x00000004
55 #define DMA_RX_ERROR			0x00000008
56 #define DMA_RX_UNICAST			0x00000010
57 #define DMA_RX_ALL_MULTICAST		0x00000020
58 #define DMA_RX_BROADCAST		0x00000040
59 #define DMA_RX_FLOW_ENABLE		0x00000200
60 #define DMA_RX_CSUM_IP			0x00010000
61 #define DMA_RX_CSUM_TCP			0x00020000
62 #define DMA_RX_CSUM_UDP			0x00040000
63 #define DMA_RX_BURST_SIZE		0x3F000000
64 
65 #define DMA_BURST_SHIFT			24
66 #define DMA_BURST_DEFAULT		8
67 
68 #define KS_DMA_TX_START			0x0008
69 #define KS_DMA_RX_START			0x000C
70 #define DMA_START			0x00000001
71 
72 #define KS_DMA_TX_ADDR			0x0010
73 #define KS_DMA_RX_ADDR			0x0014
74 
75 #define DMA_ADDR_LIST_MASK		0xFFFFFFFC
76 #define DMA_ADDR_LIST_SHIFT		2
77 
78 /* MTR0 */
79 #define KS884X_MULTICAST_0_OFFSET	0x0020
80 #define KS884X_MULTICAST_1_OFFSET	0x0021
81 #define KS884X_MULTICAST_2_OFFSET	0x0022
82 #define KS884x_MULTICAST_3_OFFSET	0x0023
83 /* MTR1 */
84 #define KS884X_MULTICAST_4_OFFSET	0x0024
85 #define KS884X_MULTICAST_5_OFFSET	0x0025
86 #define KS884X_MULTICAST_6_OFFSET	0x0026
87 #define KS884X_MULTICAST_7_OFFSET	0x0027
88 
89 /* Interrupt Registers */
90 
91 /* INTEN */
92 #define KS884X_INTERRUPTS_ENABLE	0x0028
93 /* INTST */
94 #define KS884X_INTERRUPTS_STATUS	0x002C
95 
96 #define KS884X_INT_RX_STOPPED		0x02000000
97 #define KS884X_INT_TX_STOPPED		0x04000000
98 #define KS884X_INT_RX_OVERRUN		0x08000000
99 #define KS884X_INT_TX_EMPTY		0x10000000
100 #define KS884X_INT_RX			0x20000000
101 #define KS884X_INT_TX			0x40000000
102 #define KS884X_INT_PHY			0x80000000
103 
104 #define KS884X_INT_RX_MASK		\
105 	(KS884X_INT_RX | KS884X_INT_RX_OVERRUN)
106 #define KS884X_INT_TX_MASK		\
107 	(KS884X_INT_TX | KS884X_INT_TX_EMPTY)
108 #define KS884X_INT_MASK	(KS884X_INT_RX | KS884X_INT_TX | KS884X_INT_PHY)
109 
110 /* MAC Additional Station Address */
111 
112 /* MAAL0 */
113 #define KS_ADD_ADDR_0_LO		0x0080
114 /* MAAH0 */
115 #define KS_ADD_ADDR_0_HI		0x0084
116 /* MAAL1 */
117 #define KS_ADD_ADDR_1_LO		0x0088
118 /* MAAH1 */
119 #define KS_ADD_ADDR_1_HI		0x008C
120 /* MAAL2 */
121 #define KS_ADD_ADDR_2_LO		0x0090
122 /* MAAH2 */
123 #define KS_ADD_ADDR_2_HI		0x0094
124 /* MAAL3 */
125 #define KS_ADD_ADDR_3_LO		0x0098
126 /* MAAH3 */
127 #define KS_ADD_ADDR_3_HI		0x009C
128 /* MAAL4 */
129 #define KS_ADD_ADDR_4_LO		0x00A0
130 /* MAAH4 */
131 #define KS_ADD_ADDR_4_HI		0x00A4
132 /* MAAL5 */
133 #define KS_ADD_ADDR_5_LO		0x00A8
134 /* MAAH5 */
135 #define KS_ADD_ADDR_5_HI		0x00AC
136 /* MAAL6 */
137 #define KS_ADD_ADDR_6_LO		0x00B0
138 /* MAAH6 */
139 #define KS_ADD_ADDR_6_HI		0x00B4
140 /* MAAL7 */
141 #define KS_ADD_ADDR_7_LO		0x00B8
142 /* MAAH7 */
143 #define KS_ADD_ADDR_7_HI		0x00BC
144 /* MAAL8 */
145 #define KS_ADD_ADDR_8_LO		0x00C0
146 /* MAAH8 */
147 #define KS_ADD_ADDR_8_HI		0x00C4
148 /* MAAL9 */
149 #define KS_ADD_ADDR_9_LO		0x00C8
150 /* MAAH9 */
151 #define KS_ADD_ADDR_9_HI		0x00CC
152 /* MAAL10 */
153 #define KS_ADD_ADDR_A_LO		0x00D0
154 /* MAAH10 */
155 #define KS_ADD_ADDR_A_HI		0x00D4
156 /* MAAL11 */
157 #define KS_ADD_ADDR_B_LO		0x00D8
158 /* MAAH11 */
159 #define KS_ADD_ADDR_B_HI		0x00DC
160 /* MAAL12 */
161 #define KS_ADD_ADDR_C_LO		0x00E0
162 /* MAAH12 */
163 #define KS_ADD_ADDR_C_HI		0x00E4
164 /* MAAL13 */
165 #define KS_ADD_ADDR_D_LO		0x00E8
166 /* MAAH13 */
167 #define KS_ADD_ADDR_D_HI		0x00EC
168 /* MAAL14 */
169 #define KS_ADD_ADDR_E_LO		0x00F0
170 /* MAAH14 */
171 #define KS_ADD_ADDR_E_HI		0x00F4
172 /* MAAL15 */
173 #define KS_ADD_ADDR_F_LO		0x00F8
174 /* MAAH15 */
175 #define KS_ADD_ADDR_F_HI		0x00FC
176 
177 #define ADD_ADDR_HI_MASK		0x0000FFFF
178 #define ADD_ADDR_ENABLE			0x80000000
179 #define ADD_ADDR_INCR			8
180 
181 /* Miscellaneous Registers */
182 
183 /* MARL */
184 #define KS884X_ADDR_0_OFFSET		0x0200
185 #define KS884X_ADDR_1_OFFSET		0x0201
186 /* MARM */
187 #define KS884X_ADDR_2_OFFSET		0x0202
188 #define KS884X_ADDR_3_OFFSET		0x0203
189 /* MARH */
190 #define KS884X_ADDR_4_OFFSET		0x0204
191 #define KS884X_ADDR_5_OFFSET		0x0205
192 
193 /* OBCR */
194 #define KS884X_BUS_CTRL_OFFSET		0x0210
195 
196 #define BUS_SPEED_125_MHZ		0x0000
197 #define BUS_SPEED_62_5_MHZ		0x0001
198 #define BUS_SPEED_41_66_MHZ		0x0002
199 #define BUS_SPEED_25_MHZ		0x0003
200 
201 /* EEPCR */
202 #define KS884X_EEPROM_CTRL_OFFSET	0x0212
203 
204 #define EEPROM_CHIP_SELECT		0x0001
205 #define EEPROM_SERIAL_CLOCK		0x0002
206 #define EEPROM_DATA_OUT			0x0004
207 #define EEPROM_DATA_IN			0x0008
208 #define EEPROM_ACCESS_ENABLE		0x0010
209 
210 /* MBIR */
211 #define KS884X_MEM_INFO_OFFSET		0x0214
212 
213 #define RX_MEM_TEST_FAILED		0x0008
214 #define RX_MEM_TEST_FINISHED		0x0010
215 #define TX_MEM_TEST_FAILED		0x0800
216 #define TX_MEM_TEST_FINISHED		0x1000
217 
218 /* GCR */
219 #define KS884X_GLOBAL_CTRL_OFFSET	0x0216
220 #define GLOBAL_SOFTWARE_RESET		0x0001
221 
222 #define KS8841_POWER_MANAGE_OFFSET	0x0218
223 
224 /* WFCR */
225 #define KS8841_WOL_CTRL_OFFSET		0x021A
226 #define KS8841_WOL_MAGIC_ENABLE		0x0080
227 #define KS8841_WOL_FRAME3_ENABLE	0x0008
228 #define KS8841_WOL_FRAME2_ENABLE	0x0004
229 #define KS8841_WOL_FRAME1_ENABLE	0x0002
230 #define KS8841_WOL_FRAME0_ENABLE	0x0001
231 
232 /* WF0 */
233 #define KS8841_WOL_FRAME_CRC_OFFSET	0x0220
234 #define KS8841_WOL_FRAME_BYTE0_OFFSET	0x0224
235 #define KS8841_WOL_FRAME_BYTE2_OFFSET	0x0228
236 
237 /* IACR */
238 #define KS884X_IACR_P			0x04A0
239 #define KS884X_IACR_OFFSET		KS884X_IACR_P
240 
241 /* IADR1 */
242 #define KS884X_IADR1_P			0x04A2
243 #define KS884X_IADR2_P			0x04A4
244 #define KS884X_IADR3_P			0x04A6
245 #define KS884X_IADR4_P			0x04A8
246 #define KS884X_IADR5_P			0x04AA
247 
248 #define KS884X_ACC_CTRL_SEL_OFFSET	KS884X_IACR_P
249 #define KS884X_ACC_CTRL_INDEX_OFFSET	(KS884X_ACC_CTRL_SEL_OFFSET + 1)
250 
251 #define KS884X_ACC_DATA_0_OFFSET	KS884X_IADR4_P
252 #define KS884X_ACC_DATA_1_OFFSET	(KS884X_ACC_DATA_0_OFFSET + 1)
253 #define KS884X_ACC_DATA_2_OFFSET	KS884X_IADR5_P
254 #define KS884X_ACC_DATA_3_OFFSET	(KS884X_ACC_DATA_2_OFFSET + 1)
255 #define KS884X_ACC_DATA_4_OFFSET	KS884X_IADR2_P
256 #define KS884X_ACC_DATA_5_OFFSET	(KS884X_ACC_DATA_4_OFFSET + 1)
257 #define KS884X_ACC_DATA_6_OFFSET	KS884X_IADR3_P
258 #define KS884X_ACC_DATA_7_OFFSET	(KS884X_ACC_DATA_6_OFFSET + 1)
259 #define KS884X_ACC_DATA_8_OFFSET	KS884X_IADR1_P
260 
261 /* P1MBCR */
262 #define KS884X_P1MBCR_P			0x04D0
263 #define KS884X_P1MBSR_P			0x04D2
264 #define KS884X_PHY1ILR_P		0x04D4
265 #define KS884X_PHY1IHR_P		0x04D6
266 #define KS884X_P1ANAR_P			0x04D8
267 #define KS884X_P1ANLPR_P		0x04DA
268 
269 /* P2MBCR */
270 #define KS884X_P2MBCR_P			0x04E0
271 #define KS884X_P2MBSR_P			0x04E2
272 #define KS884X_PHY2ILR_P		0x04E4
273 #define KS884X_PHY2IHR_P		0x04E6
274 #define KS884X_P2ANAR_P			0x04E8
275 #define KS884X_P2ANLPR_P		0x04EA
276 
277 #define KS884X_PHY_1_CTRL_OFFSET	KS884X_P1MBCR_P
278 #define PHY_CTRL_INTERVAL		(KS884X_P2MBCR_P - KS884X_P1MBCR_P)
279 
280 #define KS884X_PHY_CTRL_OFFSET		0x00
281 
282 /* Mode Control Register */
283 #define PHY_REG_CTRL			0
284 
285 #define PHY_RESET			0x8000
286 #define PHY_LOOPBACK			0x4000
287 #define PHY_SPEED_100MBIT		0x2000
288 #define PHY_AUTO_NEG_ENABLE		0x1000
289 #define PHY_POWER_DOWN			0x0800
290 #define PHY_MII_DISABLE			0x0400
291 #define PHY_AUTO_NEG_RESTART		0x0200
292 #define PHY_FULL_DUPLEX			0x0100
293 #define PHY_COLLISION_TEST		0x0080
294 #define PHY_HP_MDIX			0x0020
295 #define PHY_FORCE_MDIX			0x0010
296 #define PHY_AUTO_MDIX_DISABLE		0x0008
297 #define PHY_REMOTE_FAULT_DISABLE	0x0004
298 #define PHY_TRANSMIT_DISABLE		0x0002
299 #define PHY_LED_DISABLE			0x0001
300 
301 #define KS884X_PHY_STATUS_OFFSET	0x02
302 
303 /* Mode Status Register */
304 #define PHY_REG_STATUS			1
305 
306 #define PHY_100BT4_CAPABLE		0x8000
307 #define PHY_100BTX_FD_CAPABLE		0x4000
308 #define PHY_100BTX_CAPABLE		0x2000
309 #define PHY_10BT_FD_CAPABLE		0x1000
310 #define PHY_10BT_CAPABLE		0x0800
311 #define PHY_MII_SUPPRESS_CAPABLE	0x0040
312 #define PHY_AUTO_NEG_ACKNOWLEDGE	0x0020
313 #define PHY_REMOTE_FAULT		0x0010
314 #define PHY_AUTO_NEG_CAPABLE		0x0008
315 #define PHY_LINK_STATUS			0x0004
316 #define PHY_JABBER_DETECT		0x0002
317 #define PHY_EXTENDED_CAPABILITY		0x0001
318 
319 #define KS884X_PHY_ID_1_OFFSET		0x04
320 #define KS884X_PHY_ID_2_OFFSET		0x06
321 
322 /* PHY Identifier Registers */
323 #define PHY_REG_ID_1			2
324 #define PHY_REG_ID_2			3
325 
326 #define KS884X_PHY_AUTO_NEG_OFFSET	0x08
327 
328 /* Auto-Negotiation Advertisement Register */
329 #define PHY_REG_AUTO_NEGOTIATION	4
330 
331 #define PHY_AUTO_NEG_NEXT_PAGE		0x8000
332 #define PHY_AUTO_NEG_REMOTE_FAULT	0x2000
333 /* Not supported. */
334 #define PHY_AUTO_NEG_ASYM_PAUSE		0x0800
335 #define PHY_AUTO_NEG_SYM_PAUSE		0x0400
336 #define PHY_AUTO_NEG_100BT4		0x0200
337 #define PHY_AUTO_NEG_100BTX_FD		0x0100
338 #define PHY_AUTO_NEG_100BTX		0x0080
339 #define PHY_AUTO_NEG_10BT_FD		0x0040
340 #define PHY_AUTO_NEG_10BT		0x0020
341 #define PHY_AUTO_NEG_SELECTOR		0x001F
342 #define PHY_AUTO_NEG_802_3		0x0001
343 
344 #define PHY_AUTO_NEG_PAUSE  (PHY_AUTO_NEG_SYM_PAUSE | PHY_AUTO_NEG_ASYM_PAUSE)
345 
346 #define KS884X_PHY_REMOTE_CAP_OFFSET	0x0A
347 
348 /* Auto-Negotiation Link Partner Ability Register */
349 #define PHY_REG_REMOTE_CAPABILITY	5
350 
351 #define PHY_REMOTE_NEXT_PAGE		0x8000
352 #define PHY_REMOTE_ACKNOWLEDGE		0x4000
353 #define PHY_REMOTE_REMOTE_FAULT		0x2000
354 #define PHY_REMOTE_SYM_PAUSE		0x0400
355 #define PHY_REMOTE_100BTX_FD		0x0100
356 #define PHY_REMOTE_100BTX		0x0080
357 #define PHY_REMOTE_10BT_FD		0x0040
358 #define PHY_REMOTE_10BT			0x0020
359 
360 /* P1VCT */
361 #define KS884X_P1VCT_P			0x04F0
362 #define KS884X_P1PHYCTRL_P		0x04F2
363 
364 /* P2VCT */
365 #define KS884X_P2VCT_P			0x04F4
366 #define KS884X_P2PHYCTRL_P		0x04F6
367 
368 #define KS884X_PHY_SPECIAL_OFFSET	KS884X_P1VCT_P
369 #define PHY_SPECIAL_INTERVAL		(KS884X_P2VCT_P - KS884X_P1VCT_P)
370 
371 #define KS884X_PHY_LINK_MD_OFFSET	0x00
372 
373 #define PHY_START_CABLE_DIAG		0x8000
374 #define PHY_CABLE_DIAG_RESULT		0x6000
375 #define PHY_CABLE_STAT_NORMAL		0x0000
376 #define PHY_CABLE_STAT_OPEN		0x2000
377 #define PHY_CABLE_STAT_SHORT		0x4000
378 #define PHY_CABLE_STAT_FAILED		0x6000
379 #define PHY_CABLE_10M_SHORT		0x1000
380 #define PHY_CABLE_FAULT_COUNTER		0x01FF
381 
382 #define KS884X_PHY_PHY_CTRL_OFFSET	0x02
383 
384 #define PHY_STAT_REVERSED_POLARITY	0x0020
385 #define PHY_STAT_MDIX			0x0010
386 #define PHY_FORCE_LINK			0x0008
387 #define PHY_POWER_SAVING_DISABLE	0x0004
388 #define PHY_REMOTE_LOOPBACK		0x0002
389 
390 /* SIDER */
391 #define KS884X_SIDER_P			0x0400
392 #define KS884X_CHIP_ID_OFFSET		KS884X_SIDER_P
393 #define KS884X_FAMILY_ID_OFFSET		(KS884X_CHIP_ID_OFFSET + 1)
394 
395 #define REG_FAMILY_ID			0x88
396 
397 #define REG_CHIP_ID_41			0x8810
398 #define REG_CHIP_ID_42			0x8800
399 
400 #define KS884X_CHIP_ID_MASK_41		0xFF10
401 #define KS884X_CHIP_ID_MASK		0xFFF0
402 #define KS884X_CHIP_ID_SHIFT		4
403 #define KS884X_REVISION_MASK		0x000E
404 #define KS884X_REVISION_SHIFT		1
405 #define KS8842_START			0x0001
406 
407 #define CHIP_IP_41_M			0x8810
408 #define CHIP_IP_42_M			0x8800
409 #define CHIP_IP_61_M			0x8890
410 #define CHIP_IP_62_M			0x8880
411 
412 #define CHIP_IP_41_P			0x8850
413 #define CHIP_IP_42_P			0x8840
414 #define CHIP_IP_61_P			0x88D0
415 #define CHIP_IP_62_P			0x88C0
416 
417 /* SGCR1 */
418 #define KS8842_SGCR1_P			0x0402
419 #define KS8842_SWITCH_CTRL_1_OFFSET	KS8842_SGCR1_P
420 
421 #define SWITCH_PASS_ALL			0x8000
422 #define SWITCH_TX_FLOW_CTRL		0x2000
423 #define SWITCH_RX_FLOW_CTRL		0x1000
424 #define SWITCH_CHECK_LENGTH		0x0800
425 #define SWITCH_AGING_ENABLE		0x0400
426 #define SWITCH_FAST_AGING		0x0200
427 #define SWITCH_AGGR_BACKOFF		0x0100
428 #define SWITCH_PASS_PAUSE		0x0008
429 #define SWITCH_LINK_AUTO_AGING		0x0001
430 
431 /* SGCR2 */
432 #define KS8842_SGCR2_P			0x0404
433 #define KS8842_SWITCH_CTRL_2_OFFSET	KS8842_SGCR2_P
434 
435 #define SWITCH_VLAN_ENABLE		0x8000
436 #define SWITCH_IGMP_SNOOP		0x4000
437 #define IPV6_MLD_SNOOP_ENABLE		0x2000
438 #define IPV6_MLD_SNOOP_OPTION		0x1000
439 #define PRIORITY_SCHEME_SELECT		0x0800
440 #define SWITCH_MIRROR_RX_TX		0x0100
441 #define UNICAST_VLAN_BOUNDARY		0x0080
442 #define MULTICAST_STORM_DISABLE		0x0040
443 #define SWITCH_BACK_PRESSURE		0x0020
444 #define FAIR_FLOW_CTRL			0x0010
445 #define NO_EXC_COLLISION_DROP		0x0008
446 #define SWITCH_HUGE_PACKET		0x0004
447 #define SWITCH_LEGAL_PACKET		0x0002
448 #define SWITCH_BUF_RESERVE		0x0001
449 
450 /* SGCR3 */
451 #define KS8842_SGCR3_P			0x0406
452 #define KS8842_SWITCH_CTRL_3_OFFSET	KS8842_SGCR3_P
453 
454 #define BROADCAST_STORM_RATE_LO		0xFF00
455 #define SWITCH_REPEATER			0x0080
456 #define SWITCH_HALF_DUPLEX		0x0040
457 #define SWITCH_FLOW_CTRL		0x0020
458 #define SWITCH_10_MBIT			0x0010
459 #define SWITCH_REPLACE_NULL_VID		0x0008
460 #define BROADCAST_STORM_RATE_HI		0x0007
461 
462 #define BROADCAST_STORM_RATE		0x07FF
463 
464 /* SGCR4 */
465 #define KS8842_SGCR4_P			0x0408
466 
467 /* SGCR5 */
468 #define KS8842_SGCR5_P			0x040A
469 #define KS8842_SWITCH_CTRL_5_OFFSET	KS8842_SGCR5_P
470 
471 #define LED_MODE			0x8200
472 #define LED_SPEED_DUPLEX_ACT		0x0000
473 #define LED_SPEED_DUPLEX_LINK_ACT	0x8000
474 #define LED_DUPLEX_10_100		0x0200
475 
476 /* SGCR6 */
477 #define KS8842_SGCR6_P			0x0410
478 #define KS8842_SWITCH_CTRL_6_OFFSET	KS8842_SGCR6_P
479 
480 #define KS8842_PRIORITY_MASK		3
481 #define KS8842_PRIORITY_SHIFT		2
482 
483 /* SGCR7 */
484 #define KS8842_SGCR7_P			0x0412
485 #define KS8842_SWITCH_CTRL_7_OFFSET	KS8842_SGCR7_P
486 
487 #define SWITCH_UNK_DEF_PORT_ENABLE	0x0008
488 #define SWITCH_UNK_DEF_PORT_3		0x0004
489 #define SWITCH_UNK_DEF_PORT_2		0x0002
490 #define SWITCH_UNK_DEF_PORT_1		0x0001
491 
492 /* MACAR1 */
493 #define KS8842_MACAR1_P			0x0470
494 #define KS8842_MACAR2_P			0x0472
495 #define KS8842_MACAR3_P			0x0474
496 #define KS8842_MAC_ADDR_1_OFFSET	KS8842_MACAR1_P
497 #define KS8842_MAC_ADDR_0_OFFSET	(KS8842_MAC_ADDR_1_OFFSET + 1)
498 #define KS8842_MAC_ADDR_3_OFFSET	KS8842_MACAR2_P
499 #define KS8842_MAC_ADDR_2_OFFSET	(KS8842_MAC_ADDR_3_OFFSET + 1)
500 #define KS8842_MAC_ADDR_5_OFFSET	KS8842_MACAR3_P
501 #define KS8842_MAC_ADDR_4_OFFSET	(KS8842_MAC_ADDR_5_OFFSET + 1)
502 
503 /* TOSR1 */
504 #define KS8842_TOSR1_P			0x0480
505 #define KS8842_TOSR2_P			0x0482
506 #define KS8842_TOSR3_P			0x0484
507 #define KS8842_TOSR4_P			0x0486
508 #define KS8842_TOSR5_P			0x0488
509 #define KS8842_TOSR6_P			0x048A
510 #define KS8842_TOSR7_P			0x0490
511 #define KS8842_TOSR8_P			0x0492
512 #define KS8842_TOS_1_OFFSET		KS8842_TOSR1_P
513 #define KS8842_TOS_2_OFFSET		KS8842_TOSR2_P
514 #define KS8842_TOS_3_OFFSET		KS8842_TOSR3_P
515 #define KS8842_TOS_4_OFFSET		KS8842_TOSR4_P
516 #define KS8842_TOS_5_OFFSET		KS8842_TOSR5_P
517 #define KS8842_TOS_6_OFFSET		KS8842_TOSR6_P
518 
519 #define KS8842_TOS_7_OFFSET		KS8842_TOSR7_P
520 #define KS8842_TOS_8_OFFSET		KS8842_TOSR8_P
521 
522 /* P1CR1 */
523 #define KS8842_P1CR1_P			0x0500
524 #define KS8842_P1CR2_P			0x0502
525 #define KS8842_P1VIDR_P			0x0504
526 #define KS8842_P1CR3_P			0x0506
527 #define KS8842_P1IRCR_P			0x0508
528 #define KS8842_P1ERCR_P			0x050A
529 #define KS884X_P1SCSLMD_P		0x0510
530 #define KS884X_P1CR4_P			0x0512
531 #define KS884X_P1SR_P			0x0514
532 
533 /* P2CR1 */
534 #define KS8842_P2CR1_P			0x0520
535 #define KS8842_P2CR2_P			0x0522
536 #define KS8842_P2VIDR_P			0x0524
537 #define KS8842_P2CR3_P			0x0526
538 #define KS8842_P2IRCR_P			0x0528
539 #define KS8842_P2ERCR_P			0x052A
540 #define KS884X_P2SCSLMD_P		0x0530
541 #define KS884X_P2CR4_P			0x0532
542 #define KS884X_P2SR_P			0x0534
543 
544 /* P3CR1 */
545 #define KS8842_P3CR1_P			0x0540
546 #define KS8842_P3CR2_P			0x0542
547 #define KS8842_P3VIDR_P			0x0544
548 #define KS8842_P3CR3_P			0x0546
549 #define KS8842_P3IRCR_P			0x0548
550 #define KS8842_P3ERCR_P			0x054A
551 
552 #define KS8842_PORT_1_CTRL_1		KS8842_P1CR1_P
553 #define KS8842_PORT_2_CTRL_1		KS8842_P2CR1_P
554 #define KS8842_PORT_3_CTRL_1		KS8842_P3CR1_P
555 
556 #define PORT_CTRL_ADDR(port, addr)		\
557 	(addr = KS8842_PORT_1_CTRL_1 + (port) *	\
558 		(KS8842_PORT_2_CTRL_1 - KS8842_PORT_1_CTRL_1))
559 
560 #define KS8842_PORT_CTRL_1_OFFSET	0x00
561 
562 #define PORT_BROADCAST_STORM		0x0080
563 #define PORT_DIFFSERV_ENABLE		0x0040
564 #define PORT_802_1P_ENABLE		0x0020
565 #define PORT_BASED_PRIORITY_MASK	0x0018
566 #define PORT_BASED_PRIORITY_BASE	0x0003
567 #define PORT_BASED_PRIORITY_SHIFT	3
568 #define PORT_BASED_PRIORITY_0		0x0000
569 #define PORT_BASED_PRIORITY_1		0x0008
570 #define PORT_BASED_PRIORITY_2		0x0010
571 #define PORT_BASED_PRIORITY_3		0x0018
572 #define PORT_INSERT_TAG			0x0004
573 #define PORT_REMOVE_TAG			0x0002
574 #define PORT_PRIO_QUEUE_ENABLE		0x0001
575 
576 #define KS8842_PORT_CTRL_2_OFFSET	0x02
577 
578 #define PORT_INGRESS_VLAN_FILTER	0x4000
579 #define PORT_DISCARD_NON_VID		0x2000
580 #define PORT_FORCE_FLOW_CTRL		0x1000
581 #define PORT_BACK_PRESSURE		0x0800
582 #define PORT_TX_ENABLE			0x0400
583 #define PORT_RX_ENABLE			0x0200
584 #define PORT_LEARN_DISABLE		0x0100
585 #define PORT_MIRROR_SNIFFER		0x0080
586 #define PORT_MIRROR_RX			0x0040
587 #define PORT_MIRROR_TX			0x0020
588 #define PORT_USER_PRIORITY_CEILING	0x0008
589 #define PORT_VLAN_MEMBERSHIP		0x0007
590 
591 #define KS8842_PORT_CTRL_VID_OFFSET	0x04
592 
593 #define PORT_DEFAULT_VID		0x0001
594 
595 #define KS8842_PORT_CTRL_3_OFFSET	0x06
596 
597 #define PORT_INGRESS_LIMIT_MODE		0x000C
598 #define PORT_INGRESS_ALL		0x0000
599 #define PORT_INGRESS_UNICAST		0x0004
600 #define PORT_INGRESS_MULTICAST		0x0008
601 #define PORT_INGRESS_BROADCAST		0x000C
602 #define PORT_COUNT_IFG			0x0002
603 #define PORT_COUNT_PREAMBLE		0x0001
604 
605 #define KS8842_PORT_IN_RATE_OFFSET	0x08
606 #define KS8842_PORT_OUT_RATE_OFFSET	0x0A
607 
608 #define PORT_PRIORITY_RATE		0x0F
609 #define PORT_PRIORITY_RATE_SHIFT	4
610 
611 #define KS884X_PORT_LINK_MD		0x10
612 
613 #define PORT_CABLE_10M_SHORT		0x8000
614 #define PORT_CABLE_DIAG_RESULT		0x6000
615 #define PORT_CABLE_STAT_NORMAL		0x0000
616 #define PORT_CABLE_STAT_OPEN		0x2000
617 #define PORT_CABLE_STAT_SHORT		0x4000
618 #define PORT_CABLE_STAT_FAILED		0x6000
619 #define PORT_START_CABLE_DIAG		0x1000
620 #define PORT_FORCE_LINK			0x0800
621 #define PORT_POWER_SAVING_DISABLE	0x0400
622 #define PORT_PHY_REMOTE_LOOPBACK	0x0200
623 #define PORT_CABLE_FAULT_COUNTER	0x01FF
624 
625 #define KS884X_PORT_CTRL_4_OFFSET	0x12
626 
627 #define PORT_LED_OFF			0x8000
628 #define PORT_TX_DISABLE			0x4000
629 #define PORT_AUTO_NEG_RESTART		0x2000
630 #define PORT_REMOTE_FAULT_DISABLE	0x1000
631 #define PORT_POWER_DOWN			0x0800
632 #define PORT_AUTO_MDIX_DISABLE		0x0400
633 #define PORT_FORCE_MDIX			0x0200
634 #define PORT_LOOPBACK			0x0100
635 #define PORT_AUTO_NEG_ENABLE		0x0080
636 #define PORT_FORCE_100_MBIT		0x0040
637 #define PORT_FORCE_FULL_DUPLEX		0x0020
638 #define PORT_AUTO_NEG_SYM_PAUSE		0x0010
639 #define PORT_AUTO_NEG_100BTX_FD		0x0008
640 #define PORT_AUTO_NEG_100BTX		0x0004
641 #define PORT_AUTO_NEG_10BT_FD		0x0002
642 #define PORT_AUTO_NEG_10BT		0x0001
643 
644 #define KS884X_PORT_STATUS_OFFSET	0x14
645 
646 #define PORT_HP_MDIX			0x8000
647 #define PORT_REVERSED_POLARITY		0x2000
648 #define PORT_RX_FLOW_CTRL		0x0800
649 #define PORT_TX_FLOW_CTRL		0x1000
650 #define PORT_STATUS_SPEED_100MBIT	0x0400
651 #define PORT_STATUS_FULL_DUPLEX		0x0200
652 #define PORT_REMOTE_FAULT		0x0100
653 #define PORT_MDIX_STATUS		0x0080
654 #define PORT_AUTO_NEG_COMPLETE		0x0040
655 #define PORT_STATUS_LINK_GOOD		0x0020
656 #define PORT_REMOTE_SYM_PAUSE		0x0010
657 #define PORT_REMOTE_100BTX_FD		0x0008
658 #define PORT_REMOTE_100BTX		0x0004
659 #define PORT_REMOTE_10BT_FD		0x0002
660 #define PORT_REMOTE_10BT		0x0001
661 
662 /*
663 #define STATIC_MAC_TABLE_ADDR		00-0000FFFF-FFFFFFFF
664 #define STATIC_MAC_TABLE_FWD_PORTS	00-00070000-00000000
665 #define STATIC_MAC_TABLE_VALID		00-00080000-00000000
666 #define STATIC_MAC_TABLE_OVERRIDE	00-00100000-00000000
667 #define STATIC_MAC_TABLE_USE_FID	00-00200000-00000000
668 #define STATIC_MAC_TABLE_FID		00-03C00000-00000000
669 */
670 
671 #define STATIC_MAC_TABLE_ADDR		0x0000FFFF
672 #define STATIC_MAC_TABLE_FWD_PORTS	0x00070000
673 #define STATIC_MAC_TABLE_VALID		0x00080000
674 #define STATIC_MAC_TABLE_OVERRIDE	0x00100000
675 #define STATIC_MAC_TABLE_USE_FID	0x00200000
676 #define STATIC_MAC_TABLE_FID		0x03C00000
677 
678 #define STATIC_MAC_FWD_PORTS_SHIFT	16
679 #define STATIC_MAC_FID_SHIFT		22
680 
681 /*
682 #define VLAN_TABLE_VID			00-00000000-00000FFF
683 #define VLAN_TABLE_FID			00-00000000-0000F000
684 #define VLAN_TABLE_MEMBERSHIP		00-00000000-00070000
685 #define VLAN_TABLE_VALID		00-00000000-00080000
686 */
687 
688 #define VLAN_TABLE_VID			0x00000FFF
689 #define VLAN_TABLE_FID			0x0000F000
690 #define VLAN_TABLE_MEMBERSHIP		0x00070000
691 #define VLAN_TABLE_VALID		0x00080000
692 
693 #define VLAN_TABLE_FID_SHIFT		12
694 #define VLAN_TABLE_MEMBERSHIP_SHIFT	16
695 
696 /*
697 #define DYNAMIC_MAC_TABLE_ADDR		00-0000FFFF-FFFFFFFF
698 #define DYNAMIC_MAC_TABLE_FID		00-000F0000-00000000
699 #define DYNAMIC_MAC_TABLE_SRC_PORT	00-00300000-00000000
700 #define DYNAMIC_MAC_TABLE_TIMESTAMP	00-00C00000-00000000
701 #define DYNAMIC_MAC_TABLE_ENTRIES	03-FF000000-00000000
702 #define DYNAMIC_MAC_TABLE_MAC_EMPTY	04-00000000-00000000
703 #define DYNAMIC_MAC_TABLE_RESERVED	78-00000000-00000000
704 #define DYNAMIC_MAC_TABLE_NOT_READY	80-00000000-00000000
705 */
706 
707 #define DYNAMIC_MAC_TABLE_ADDR		0x0000FFFF
708 #define DYNAMIC_MAC_TABLE_FID		0x000F0000
709 #define DYNAMIC_MAC_TABLE_SRC_PORT	0x00300000
710 #define DYNAMIC_MAC_TABLE_TIMESTAMP	0x00C00000
711 #define DYNAMIC_MAC_TABLE_ENTRIES	0xFF000000
712 
713 #define DYNAMIC_MAC_TABLE_ENTRIES_H	0x03
714 #define DYNAMIC_MAC_TABLE_MAC_EMPTY	0x04
715 #define DYNAMIC_MAC_TABLE_RESERVED	0x78
716 #define DYNAMIC_MAC_TABLE_NOT_READY	0x80
717 
718 #define DYNAMIC_MAC_FID_SHIFT		16
719 #define DYNAMIC_MAC_SRC_PORT_SHIFT	20
720 #define DYNAMIC_MAC_TIMESTAMP_SHIFT	22
721 #define DYNAMIC_MAC_ENTRIES_SHIFT	24
722 #define DYNAMIC_MAC_ENTRIES_H_SHIFT	8
723 
724 /*
725 #define MIB_COUNTER_VALUE		00-00000000-3FFFFFFF
726 #define MIB_COUNTER_VALID		00-00000000-40000000
727 #define MIB_COUNTER_OVERFLOW		00-00000000-80000000
728 */
729 
730 #define MIB_COUNTER_VALUE		0x3FFFFFFF
731 #define MIB_COUNTER_VALID		0x40000000
732 #define MIB_COUNTER_OVERFLOW		0x80000000
733 
734 #define MIB_PACKET_DROPPED		0x0000FFFF
735 
736 #define KS_MIB_PACKET_DROPPED_TX_0	0x100
737 #define KS_MIB_PACKET_DROPPED_TX_1	0x101
738 #define KS_MIB_PACKET_DROPPED_TX	0x102
739 #define KS_MIB_PACKET_DROPPED_RX_0	0x103
740 #define KS_MIB_PACKET_DROPPED_RX_1	0x104
741 #define KS_MIB_PACKET_DROPPED_RX	0x105
742 
743 /* Change default LED mode. */
744 #define SET_DEFAULT_LED			LED_SPEED_DUPLEX_ACT
745 
746 #define MAC_ADDR_ORDER(i)		(ETH_ALEN - 1 - (i))
747 
748 #define MAX_ETHERNET_BODY_SIZE		1500
749 #define ETHERNET_HEADER_SIZE		(14 + VLAN_HLEN)
750 
751 #define MAX_ETHERNET_PACKET_SIZE	\
752 	(MAX_ETHERNET_BODY_SIZE + ETHERNET_HEADER_SIZE)
753 
754 #define REGULAR_RX_BUF_SIZE		(MAX_ETHERNET_PACKET_SIZE + 4)
755 #define MAX_RX_BUF_SIZE			(1912 + 4)
756 
757 #define ADDITIONAL_ENTRIES		16
758 #define MAX_MULTICAST_LIST		32
759 
760 #define HW_MULTICAST_SIZE		8
761 
762 #define HW_TO_DEV_PORT(port)		(port - 1)
763 
764 enum {
765 	media_connected,
766 	media_disconnected
767 };
768 
769 enum {
770 	OID_COUNTER_UNKOWN,
771 
772 	OID_COUNTER_FIRST,
773 
774 	/* total transmit errors */
775 	OID_COUNTER_XMIT_ERROR,
776 
777 	/* total receive errors */
778 	OID_COUNTER_RCV_ERROR,
779 
780 	OID_COUNTER_LAST
781 };
782 
783 /*
784  * Hardware descriptor definitions
785  */
786 
787 #define DESC_ALIGNMENT			16
788 #define BUFFER_ALIGNMENT		8
789 
790 #define NUM_OF_RX_DESC			64
791 #define NUM_OF_TX_DESC			64
792 
793 #define KS_DESC_RX_FRAME_LEN		0x000007FF
794 #define KS_DESC_RX_FRAME_TYPE		0x00008000
795 #define KS_DESC_RX_ERROR_CRC		0x00010000
796 #define KS_DESC_RX_ERROR_RUNT		0x00020000
797 #define KS_DESC_RX_ERROR_TOO_LONG	0x00040000
798 #define KS_DESC_RX_ERROR_PHY		0x00080000
799 #define KS884X_DESC_RX_PORT_MASK	0x00300000
800 #define KS_DESC_RX_MULTICAST		0x01000000
801 #define KS_DESC_RX_ERROR		0x02000000
802 #define KS_DESC_RX_ERROR_CSUM_UDP	0x04000000
803 #define KS_DESC_RX_ERROR_CSUM_TCP	0x08000000
804 #define KS_DESC_RX_ERROR_CSUM_IP	0x10000000
805 #define KS_DESC_RX_LAST			0x20000000
806 #define KS_DESC_RX_FIRST		0x40000000
807 #define KS_DESC_RX_ERROR_COND		\
808 	(KS_DESC_RX_ERROR_CRC |		\
809 	KS_DESC_RX_ERROR_RUNT |		\
810 	KS_DESC_RX_ERROR_PHY |		\
811 	KS_DESC_RX_ERROR_TOO_LONG)
812 
813 #define KS_DESC_HW_OWNED		0x80000000
814 
815 #define KS_DESC_BUF_SIZE		0x000007FF
816 #define KS884X_DESC_TX_PORT_MASK	0x00300000
817 #define KS_DESC_END_OF_RING		0x02000000
818 #define KS_DESC_TX_CSUM_GEN_UDP		0x04000000
819 #define KS_DESC_TX_CSUM_GEN_TCP		0x08000000
820 #define KS_DESC_TX_CSUM_GEN_IP		0x10000000
821 #define KS_DESC_TX_LAST			0x20000000
822 #define KS_DESC_TX_FIRST		0x40000000
823 #define KS_DESC_TX_INTERRUPT		0x80000000
824 
825 #define KS_DESC_PORT_SHIFT		20
826 
827 #define KS_DESC_RX_MASK			(KS_DESC_BUF_SIZE)
828 
829 #define KS_DESC_TX_MASK			\
830 	(KS_DESC_TX_INTERRUPT |		\
831 	KS_DESC_TX_FIRST |		\
832 	KS_DESC_TX_LAST |		\
833 	KS_DESC_TX_CSUM_GEN_IP |	\
834 	KS_DESC_TX_CSUM_GEN_TCP |	\
835 	KS_DESC_TX_CSUM_GEN_UDP |	\
836 	KS_DESC_BUF_SIZE)
837 
838 struct ksz_desc_rx_stat {
839 #ifdef __BIG_ENDIAN_BITFIELD
840 	u32 hw_owned:1;
841 	u32 first_desc:1;
842 	u32 last_desc:1;
843 	u32 csum_err_ip:1;
844 	u32 csum_err_tcp:1;
845 	u32 csum_err_udp:1;
846 	u32 error:1;
847 	u32 multicast:1;
848 	u32 src_port:4;
849 	u32 err_phy:1;
850 	u32 err_too_long:1;
851 	u32 err_runt:1;
852 	u32 err_crc:1;
853 	u32 frame_type:1;
854 	u32 reserved1:4;
855 	u32 frame_len:11;
856 #else
857 	u32 frame_len:11;
858 	u32 reserved1:4;
859 	u32 frame_type:1;
860 	u32 err_crc:1;
861 	u32 err_runt:1;
862 	u32 err_too_long:1;
863 	u32 err_phy:1;
864 	u32 src_port:4;
865 	u32 multicast:1;
866 	u32 error:1;
867 	u32 csum_err_udp:1;
868 	u32 csum_err_tcp:1;
869 	u32 csum_err_ip:1;
870 	u32 last_desc:1;
871 	u32 first_desc:1;
872 	u32 hw_owned:1;
873 #endif
874 };
875 
876 struct ksz_desc_tx_stat {
877 #ifdef __BIG_ENDIAN_BITFIELD
878 	u32 hw_owned:1;
879 	u32 reserved1:31;
880 #else
881 	u32 reserved1:31;
882 	u32 hw_owned:1;
883 #endif
884 };
885 
886 struct ksz_desc_rx_buf {
887 #ifdef __BIG_ENDIAN_BITFIELD
888 	u32 reserved4:6;
889 	u32 end_of_ring:1;
890 	u32 reserved3:14;
891 	u32 buf_size:11;
892 #else
893 	u32 buf_size:11;
894 	u32 reserved3:14;
895 	u32 end_of_ring:1;
896 	u32 reserved4:6;
897 #endif
898 };
899 
900 struct ksz_desc_tx_buf {
901 #ifdef __BIG_ENDIAN_BITFIELD
902 	u32 intr:1;
903 	u32 first_seg:1;
904 	u32 last_seg:1;
905 	u32 csum_gen_ip:1;
906 	u32 csum_gen_tcp:1;
907 	u32 csum_gen_udp:1;
908 	u32 end_of_ring:1;
909 	u32 reserved4:1;
910 	u32 dest_port:4;
911 	u32 reserved3:9;
912 	u32 buf_size:11;
913 #else
914 	u32 buf_size:11;
915 	u32 reserved3:9;
916 	u32 dest_port:4;
917 	u32 reserved4:1;
918 	u32 end_of_ring:1;
919 	u32 csum_gen_udp:1;
920 	u32 csum_gen_tcp:1;
921 	u32 csum_gen_ip:1;
922 	u32 last_seg:1;
923 	u32 first_seg:1;
924 	u32 intr:1;
925 #endif
926 };
927 
928 union desc_stat {
929 	struct ksz_desc_rx_stat rx;
930 	struct ksz_desc_tx_stat tx;
931 	u32 data;
932 };
933 
934 union desc_buf {
935 	struct ksz_desc_rx_buf rx;
936 	struct ksz_desc_tx_buf tx;
937 	u32 data;
938 };
939 
940 /**
941  * struct ksz_hw_desc - Hardware descriptor data structure
942  * @ctrl:	Descriptor control value.
943  * @buf:	Descriptor buffer value.
944  * @addr:	Physical address of memory buffer.
945  * @next:	Pointer to next hardware descriptor.
946  */
947 struct ksz_hw_desc {
948 	union desc_stat ctrl;
949 	union desc_buf buf;
950 	u32 addr;
951 	u32 next;
952 };
953 
954 /**
955  * struct ksz_sw_desc - Software descriptor data structure
956  * @ctrl:	Descriptor control value.
957  * @buf:	Descriptor buffer value.
958  * @buf_size:	Current buffers size value in hardware descriptor.
959  */
960 struct ksz_sw_desc {
961 	union desc_stat ctrl;
962 	union desc_buf buf;
963 	u32 buf_size;
964 };
965 
966 /**
967  * struct ksz_dma_buf - OS dependent DMA buffer data structure
968  * @skb:	Associated socket buffer.
969  * @dma:	Associated physical DMA address.
970  * len:		Actual len used.
971  */
972 struct ksz_dma_buf {
973 	struct sk_buff *skb;
974 	dma_addr_t dma;
975 	int len;
976 };
977 
978 /**
979  * struct ksz_desc - Descriptor structure
980  * @phw:	Hardware descriptor pointer to uncached physical memory.
981  * @sw:		Cached memory to hold hardware descriptor values for
982  * 		manipulation.
983  * @dma_buf:	Operating system dependent data structure to hold physical
984  * 		memory buffer allocation information.
985  */
986 struct ksz_desc {
987 	struct ksz_hw_desc *phw;
988 	struct ksz_sw_desc sw;
989 	struct ksz_dma_buf dma_buf;
990 };
991 
992 #define DMA_BUFFER(desc)  ((struct ksz_dma_buf *)(&(desc)->dma_buf))
993 
994 /**
995  * struct ksz_desc_info - Descriptor information data structure
996  * @ring:	First descriptor in the ring.
997  * @cur:	Current descriptor being manipulated.
998  * @ring_virt:	First hardware descriptor in the ring.
999  * @ring_phys:	The physical address of the first descriptor of the ring.
1000  * @size:	Size of hardware descriptor.
1001  * @alloc:	Number of descriptors allocated.
1002  * @avail:	Number of descriptors available for use.
1003  * @last:	Index for last descriptor released to hardware.
1004  * @next:	Index for next descriptor available for use.
1005  * @mask:	Mask for index wrapping.
1006  */
1007 struct ksz_desc_info {
1008 	struct ksz_desc *ring;
1009 	struct ksz_desc *cur;
1010 	struct ksz_hw_desc *ring_virt;
1011 	u32 ring_phys;
1012 	int size;
1013 	int alloc;
1014 	int avail;
1015 	int last;
1016 	int next;
1017 	int mask;
1018 };
1019 
1020 /*
1021  * KSZ8842 switch definitions
1022  */
1023 
1024 enum {
1025 	TABLE_STATIC_MAC = 0,
1026 	TABLE_VLAN,
1027 	TABLE_DYNAMIC_MAC,
1028 	TABLE_MIB
1029 };
1030 
1031 #define LEARNED_MAC_TABLE_ENTRIES	1024
1032 #define STATIC_MAC_TABLE_ENTRIES	8
1033 
1034 /**
1035  * struct ksz_mac_table - Static MAC table data structure
1036  * @mac_addr:	MAC address to filter.
1037  * @vid:	VID value.
1038  * @fid:	FID value.
1039  * @ports:	Port membership.
1040  * @override:	Override setting.
1041  * @use_fid:	FID use setting.
1042  * @valid:	Valid setting indicating the entry is being used.
1043  */
1044 struct ksz_mac_table {
1045 	u8 mac_addr[ETH_ALEN];
1046 	u16 vid;
1047 	u8 fid;
1048 	u8 ports;
1049 	u8 override:1;
1050 	u8 use_fid:1;
1051 	u8 valid:1;
1052 };
1053 
1054 #define VLAN_TABLE_ENTRIES		16
1055 
1056 /**
1057  * struct ksz_vlan_table - VLAN table data structure
1058  * @vid:	VID value.
1059  * @fid:	FID value.
1060  * @member:	Port membership.
1061  */
1062 struct ksz_vlan_table {
1063 	u16 vid;
1064 	u8 fid;
1065 	u8 member;
1066 };
1067 
1068 #define DIFFSERV_ENTRIES		64
1069 #define PRIO_802_1P_ENTRIES		8
1070 #define PRIO_QUEUES			4
1071 
1072 #define SWITCH_PORT_NUM			2
1073 #define TOTAL_PORT_NUM			(SWITCH_PORT_NUM + 1)
1074 #define HOST_MASK			(1 << SWITCH_PORT_NUM)
1075 #define PORT_MASK			7
1076 
1077 #define MAIN_PORT			0
1078 #define OTHER_PORT			1
1079 #define HOST_PORT			SWITCH_PORT_NUM
1080 
1081 #define PORT_COUNTER_NUM		0x20
1082 #define TOTAL_PORT_COUNTER_NUM		(PORT_COUNTER_NUM + 2)
1083 
1084 #define MIB_COUNTER_RX_LO_PRIORITY	0x00
1085 #define MIB_COUNTER_RX_HI_PRIORITY	0x01
1086 #define MIB_COUNTER_RX_UNDERSIZE	0x02
1087 #define MIB_COUNTER_RX_FRAGMENT		0x03
1088 #define MIB_COUNTER_RX_OVERSIZE		0x04
1089 #define MIB_COUNTER_RX_JABBER		0x05
1090 #define MIB_COUNTER_RX_SYMBOL_ERR	0x06
1091 #define MIB_COUNTER_RX_CRC_ERR		0x07
1092 #define MIB_COUNTER_RX_ALIGNMENT_ERR	0x08
1093 #define MIB_COUNTER_RX_CTRL_8808	0x09
1094 #define MIB_COUNTER_RX_PAUSE		0x0A
1095 #define MIB_COUNTER_RX_BROADCAST	0x0B
1096 #define MIB_COUNTER_RX_MULTICAST	0x0C
1097 #define MIB_COUNTER_RX_UNICAST		0x0D
1098 #define MIB_COUNTER_RX_OCTET_64		0x0E
1099 #define MIB_COUNTER_RX_OCTET_65_127	0x0F
1100 #define MIB_COUNTER_RX_OCTET_128_255	0x10
1101 #define MIB_COUNTER_RX_OCTET_256_511	0x11
1102 #define MIB_COUNTER_RX_OCTET_512_1023	0x12
1103 #define MIB_COUNTER_RX_OCTET_1024_1522	0x13
1104 #define MIB_COUNTER_TX_LO_PRIORITY	0x14
1105 #define MIB_COUNTER_TX_HI_PRIORITY	0x15
1106 #define MIB_COUNTER_TX_LATE_COLLISION	0x16
1107 #define MIB_COUNTER_TX_PAUSE		0x17
1108 #define MIB_COUNTER_TX_BROADCAST	0x18
1109 #define MIB_COUNTER_TX_MULTICAST	0x19
1110 #define MIB_COUNTER_TX_UNICAST		0x1A
1111 #define MIB_COUNTER_TX_DEFERRED		0x1B
1112 #define MIB_COUNTER_TX_TOTAL_COLLISION	0x1C
1113 #define MIB_COUNTER_TX_EXCESS_COLLISION	0x1D
1114 #define MIB_COUNTER_TX_SINGLE_COLLISION	0x1E
1115 #define MIB_COUNTER_TX_MULTI_COLLISION	0x1F
1116 
1117 #define MIB_COUNTER_RX_DROPPED_PACKET	0x20
1118 #define MIB_COUNTER_TX_DROPPED_PACKET	0x21
1119 
1120 /**
1121  * struct ksz_port_mib - Port MIB data structure
1122  * @cnt_ptr:	Current pointer to MIB counter index.
1123  * @link_down:	Indication the link has just gone down.
1124  * @state:	Connection status of the port.
1125  * @mib_start:	The starting counter index.  Some ports do not start at 0.
1126  * @counter:	64-bit MIB counter value.
1127  * @dropped:	Temporary buffer to remember last read packet dropped values.
1128  *
1129  * MIB counters needs to be read periodically so that counters do not get
1130  * overflowed and give incorrect values.  A right balance is needed to
1131  * satisfy this condition and not waste too much CPU time.
1132  *
1133  * It is pointless to read MIB counters when the port is disconnected.  The
1134  * @state provides the connection status so that MIB counters are read only
1135  * when the port is connected.  The @link_down indicates the port is just
1136  * disconnected so that all MIB counters are read one last time to update the
1137  * information.
1138  */
1139 struct ksz_port_mib {
1140 	u8 cnt_ptr;
1141 	u8 link_down;
1142 	u8 state;
1143 	u8 mib_start;
1144 
1145 	u64 counter[TOTAL_PORT_COUNTER_NUM];
1146 	u32 dropped[2];
1147 };
1148 
1149 /**
1150  * struct ksz_port_cfg - Port configuration data structure
1151  * @vid:	VID value.
1152  * @member:	Port membership.
1153  * @port_prio:	Port priority.
1154  * @rx_rate:	Receive priority rate.
1155  * @tx_rate:	Transmit priority rate.
1156  * @stp_state:	Current Spanning Tree Protocol state.
1157  */
1158 struct ksz_port_cfg {
1159 	u16 vid;
1160 	u8 member;
1161 	u8 port_prio;
1162 	u32 rx_rate[PRIO_QUEUES];
1163 	u32 tx_rate[PRIO_QUEUES];
1164 	int stp_state;
1165 };
1166 
1167 /**
1168  * struct ksz_switch - KSZ8842 switch data structure
1169  * @mac_table:	MAC table entries information.
1170  * @vlan_table:	VLAN table entries information.
1171  * @port_cfg:	Port configuration information.
1172  * @diffserv:	DiffServ priority settings.  Possible values from 6-bit of ToS
1173  * 		(bit7 ~ bit2) field.
1174  * @p_802_1p:	802.1P priority settings.  Possible values from 3-bit of 802.1p
1175  * 		Tag priority field.
1176  * @br_addr:	Bridge address.  Used for STP.
1177  * @other_addr:	Other MAC address.  Used for multiple network device mode.
1178  * @broad_per:	Broadcast storm percentage.
1179  * @member:	Current port membership.  Used for STP.
1180  */
1181 struct ksz_switch {
1182 	struct ksz_mac_table mac_table[STATIC_MAC_TABLE_ENTRIES];
1183 	struct ksz_vlan_table vlan_table[VLAN_TABLE_ENTRIES];
1184 	struct ksz_port_cfg port_cfg[TOTAL_PORT_NUM];
1185 
1186 	u8 diffserv[DIFFSERV_ENTRIES];
1187 	u8 p_802_1p[PRIO_802_1P_ENTRIES];
1188 
1189 	u8 br_addr[ETH_ALEN];
1190 	u8 other_addr[ETH_ALEN];
1191 
1192 	u8 broad_per;
1193 	u8 member;
1194 };
1195 
1196 #define TX_RATE_UNIT			10000
1197 
1198 /**
1199  * struct ksz_port_info - Port information data structure
1200  * @state:	Connection status of the port.
1201  * @tx_rate:	Transmit rate divided by 10000 to get Mbit.
1202  * @duplex:	Duplex mode.
1203  * @advertised:	Advertised auto-negotiation setting.  Used to determine link.
1204  * @partner:	Auto-negotiation partner setting.  Used to determine link.
1205  * @port_id:	Port index to access actual hardware register.
1206  * @pdev:	Pointer to OS dependent network device.
1207  */
1208 struct ksz_port_info {
1209 	uint state;
1210 	uint tx_rate;
1211 	u8 duplex;
1212 	u8 advertised;
1213 	u8 partner;
1214 	u8 port_id;
1215 	void *pdev;
1216 };
1217 
1218 #define MAX_TX_HELD_SIZE		52000
1219 
1220 /* Hardware features and bug fixes. */
1221 #define LINK_INT_WORKING		(1 << 0)
1222 #define SMALL_PACKET_TX_BUG		(1 << 1)
1223 #define HALF_DUPLEX_SIGNAL_BUG		(1 << 2)
1224 #define RX_HUGE_FRAME			(1 << 4)
1225 #define STP_SUPPORT			(1 << 8)
1226 
1227 /* Software overrides. */
1228 #define PAUSE_FLOW_CTRL			(1 << 0)
1229 #define FAST_AGING			(1 << 1)
1230 
1231 /**
1232  * struct ksz_hw - KSZ884X hardware data structure
1233  * @io:			Virtual address assigned.
1234  * @ksz_switch:		Pointer to KSZ8842 switch.
1235  * @port_info:		Port information.
1236  * @port_mib:		Port MIB information.
1237  * @dev_count:		Number of network devices this hardware supports.
1238  * @dst_ports:		Destination ports in switch for transmission.
1239  * @id:			Hardware ID.  Used for display only.
1240  * @mib_cnt:		Number of MIB counters this hardware has.
1241  * @mib_port_cnt:	Number of ports with MIB counters.
1242  * @tx_cfg:		Cached transmit control settings.
1243  * @rx_cfg:		Cached receive control settings.
1244  * @intr_mask:		Current interrupt mask.
1245  * @intr_set:		Current interrup set.
1246  * @intr_blocked:	Interrupt blocked.
1247  * @rx_desc_info:	Receive descriptor information.
1248  * @tx_desc_info:	Transmit descriptor information.
1249  * @tx_int_cnt:		Transmit interrupt count.  Used for TX optimization.
1250  * @tx_int_mask:	Transmit interrupt mask.  Used for TX optimization.
1251  * @tx_size:		Transmit data size.  Used for TX optimization.
1252  * 			The maximum is defined by MAX_TX_HELD_SIZE.
1253  * @perm_addr:		Permanent MAC address.
1254  * @override_addr:	Overridden MAC address.
1255  * @address:		Additional MAC address entries.
1256  * @addr_list_size:	Additional MAC address list size.
1257  * @mac_override:	Indication of MAC address overridden.
1258  * @promiscuous:	Counter to keep track of promiscuous mode set.
1259  * @all_multi:		Counter to keep track of all multicast mode set.
1260  * @multi_list:		Multicast address entries.
1261  * @multi_bits:		Cached multicast hash table settings.
1262  * @multi_list_size:	Multicast address list size.
1263  * @enabled:		Indication of hardware enabled.
1264  * @rx_stop:		Indication of receive process stop.
1265  * @features:		Hardware features to enable.
1266  * @overrides:		Hardware features to override.
1267  * @parent:		Pointer to parent, network device private structure.
1268  */
1269 struct ksz_hw {
1270 	void __iomem *io;
1271 
1272 	struct ksz_switch *ksz_switch;
1273 	struct ksz_port_info port_info[SWITCH_PORT_NUM];
1274 	struct ksz_port_mib port_mib[TOTAL_PORT_NUM];
1275 	int dev_count;
1276 	int dst_ports;
1277 	int id;
1278 	int mib_cnt;
1279 	int mib_port_cnt;
1280 
1281 	u32 tx_cfg;
1282 	u32 rx_cfg;
1283 	u32 intr_mask;
1284 	u32 intr_set;
1285 	uint intr_blocked;
1286 
1287 	struct ksz_desc_info rx_desc_info;
1288 	struct ksz_desc_info tx_desc_info;
1289 
1290 	int tx_int_cnt;
1291 	int tx_int_mask;
1292 	int tx_size;
1293 
1294 	u8 perm_addr[ETH_ALEN];
1295 	u8 override_addr[ETH_ALEN];
1296 	u8 address[ADDITIONAL_ENTRIES][ETH_ALEN];
1297 	u8 addr_list_size;
1298 	u8 mac_override;
1299 	u8 promiscuous;
1300 	u8 all_multi;
1301 	u8 multi_list[MAX_MULTICAST_LIST][ETH_ALEN];
1302 	u8 multi_bits[HW_MULTICAST_SIZE];
1303 	u8 multi_list_size;
1304 
1305 	u8 enabled;
1306 	u8 rx_stop;
1307 	u8 reserved2[1];
1308 
1309 	uint features;
1310 	uint overrides;
1311 
1312 	void *parent;
1313 };
1314 
1315 enum {
1316 	PHY_NO_FLOW_CTRL,
1317 	PHY_FLOW_CTRL,
1318 	PHY_TX_ONLY,
1319 	PHY_RX_ONLY
1320 };
1321 
1322 /**
1323  * struct ksz_port - Virtual port data structure
1324  * @duplex:		Duplex mode setting.  1 for half duplex, 2 for full
1325  * 			duplex, and 0 for auto, which normally results in full
1326  * 			duplex.
1327  * @speed:		Speed setting.  10 for 10 Mbit, 100 for 100 Mbit, and
1328  * 			0 for auto, which normally results in 100 Mbit.
1329  * @force_link:		Force link setting.  0 for auto-negotiation, and 1 for
1330  * 			force.
1331  * @flow_ctrl:		Flow control setting.  PHY_NO_FLOW_CTRL for no flow
1332  * 			control, and PHY_FLOW_CTRL for flow control.
1333  * 			PHY_TX_ONLY and PHY_RX_ONLY are not supported for 100
1334  * 			Mbit PHY.
1335  * @first_port:		Index of first port this port supports.
1336  * @mib_port_cnt:	Number of ports with MIB counters.
1337  * @port_cnt:		Number of ports this port supports.
1338  * @counter:		Port statistics counter.
1339  * @hw:			Pointer to hardware structure.
1340  * @linked:		Pointer to port information linked to this port.
1341  */
1342 struct ksz_port {
1343 	u8 duplex;
1344 	u8 speed;
1345 	u8 force_link;
1346 	u8 flow_ctrl;
1347 
1348 	int first_port;
1349 	int mib_port_cnt;
1350 	int port_cnt;
1351 	u64 counter[OID_COUNTER_LAST];
1352 
1353 	struct ksz_hw *hw;
1354 	struct ksz_port_info *linked;
1355 };
1356 
1357 /**
1358  * struct ksz_timer_info - Timer information data structure
1359  * @timer:	Kernel timer.
1360  * @cnt:	Running timer counter.
1361  * @max:	Number of times to run timer; -1 for infinity.
1362  * @period:	Timer period in jiffies.
1363  */
1364 struct ksz_timer_info {
1365 	struct timer_list timer;
1366 	int cnt;
1367 	int max;
1368 	int period;
1369 };
1370 
1371 /**
1372  * struct ksz_shared_mem - OS dependent shared memory data structure
1373  * @dma_addr:	Physical DMA address allocated.
1374  * @alloc_size:	Allocation size.
1375  * @phys:	Actual physical address used.
1376  * @alloc_virt:	Virtual address allocated.
1377  * @virt:	Actual virtual address used.
1378  */
1379 struct ksz_shared_mem {
1380 	dma_addr_t dma_addr;
1381 	uint alloc_size;
1382 	uint phys;
1383 	u8 *alloc_virt;
1384 	u8 *virt;
1385 };
1386 
1387 /**
1388  * struct ksz_counter_info - OS dependent counter information data structure
1389  * @counter:	Wait queue to wakeup after counters are read.
1390  * @time:	Next time in jiffies to read counter.
1391  * @read:	Indication of counters read in full or not.
1392  */
1393 struct ksz_counter_info {
1394 	wait_queue_head_t counter;
1395 	unsigned long time;
1396 	int read;
1397 };
1398 
1399 /**
1400  * struct dev_info - Network device information data structure
1401  * @dev:		Pointer to network device.
1402  * @pdev:		Pointer to PCI device.
1403  * @hw:			Hardware structure.
1404  * @desc_pool:		Physical memory used for descriptor pool.
1405  * @hwlock:		Spinlock to prevent hardware from accessing.
1406  * @lock:		Mutex lock to prevent device from accessing.
1407  * @dev_rcv:		Receive process function used.
1408  * @last_skb:		Socket buffer allocated for descriptor rx fragments.
1409  * @skb_index:		Buffer index for receiving fragments.
1410  * @skb_len:		Buffer length for receiving fragments.
1411  * @mib_read:		Workqueue to read MIB counters.
1412  * @mib_timer_info:	Timer to read MIB counters.
1413  * @counter:		Used for MIB reading.
1414  * @mtu:		Current MTU used.  The default is REGULAR_RX_BUF_SIZE;
1415  * 			the maximum is MAX_RX_BUF_SIZE.
1416  * @opened:		Counter to keep track of device open.
1417  * @rx_tasklet:		Receive processing tasklet.
1418  * @tx_tasklet:		Transmit processing tasklet.
1419  * @wol_enable:		Wake-on-LAN enable set by ethtool.
1420  * @wol_support:	Wake-on-LAN support used by ethtool.
1421  * @pme_wait:		Used for KSZ8841 power management.
1422  */
1423 struct dev_info {
1424 	struct net_device *dev;
1425 	struct pci_dev *pdev;
1426 
1427 	struct ksz_hw hw;
1428 	struct ksz_shared_mem desc_pool;
1429 
1430 	spinlock_t hwlock;
1431 	struct mutex lock;
1432 
1433 	int (*dev_rcv)(struct dev_info *);
1434 
1435 	struct sk_buff *last_skb;
1436 	int skb_index;
1437 	int skb_len;
1438 
1439 	struct work_struct mib_read;
1440 	struct ksz_timer_info mib_timer_info;
1441 	struct ksz_counter_info counter[TOTAL_PORT_NUM];
1442 
1443 	int mtu;
1444 	int opened;
1445 
1446 	struct tasklet_struct rx_tasklet;
1447 	struct tasklet_struct tx_tasklet;
1448 
1449 	int wol_enable;
1450 	int wol_support;
1451 	unsigned long pme_wait;
1452 };
1453 
1454 /**
1455  * struct dev_priv - Network device private data structure
1456  * @adapter:		Adapter device information.
1457  * @port:		Port information.
1458  * @monitor_time_info:	Timer to monitor ports.
1459  * @proc_sem:		Semaphore for proc accessing.
1460  * @id:			Device ID.
1461  * @mii_if:		MII interface information.
1462  * @advertising:	Temporary variable to store advertised settings.
1463  * @msg_enable:		The message flags controlling driver output.
1464  * @media_state:	The connection status of the device.
1465  * @multicast:		The all multicast state of the device.
1466  * @promiscuous:	The promiscuous state of the device.
1467  */
1468 struct dev_priv {
1469 	struct dev_info *adapter;
1470 	struct ksz_port port;
1471 	struct ksz_timer_info monitor_timer_info;
1472 
1473 	struct semaphore proc_sem;
1474 	int id;
1475 
1476 	struct mii_if_info mii_if;
1477 	u32 advertising;
1478 
1479 	u32 msg_enable;
1480 	int media_state;
1481 	int multicast;
1482 	int promiscuous;
1483 };
1484 
1485 #define DRV_NAME		"KSZ884X PCI"
1486 #define DEVICE_NAME		"KSZ884x PCI"
1487 #define DRV_VERSION		"1.0.0"
1488 #define DRV_RELDATE		"Feb 8, 2010"
1489 
1490 static char version[] =
1491 	"Micrel " DEVICE_NAME " " DRV_VERSION " (" DRV_RELDATE ")";
1492 
1493 static u8 DEFAULT_MAC_ADDRESS[] = { 0x00, 0x10, 0xA1, 0x88, 0x42, 0x01 };
1494 
1495 /*
1496  * Interrupt processing primary routines
1497  */
1498 
1499 static inline void hw_ack_intr(struct ksz_hw *hw, uint interrupt)
1500 {
1501 	writel(interrupt, hw->io + KS884X_INTERRUPTS_STATUS);
1502 }
1503 
1504 static inline void hw_dis_intr(struct ksz_hw *hw)
1505 {
1506 	hw->intr_blocked = hw->intr_mask;
1507 	writel(0, hw->io + KS884X_INTERRUPTS_ENABLE);
1508 	hw->intr_set = readl(hw->io + KS884X_INTERRUPTS_ENABLE);
1509 }
1510 
1511 static inline void hw_set_intr(struct ksz_hw *hw, uint interrupt)
1512 {
1513 	hw->intr_set = interrupt;
1514 	writel(interrupt, hw->io + KS884X_INTERRUPTS_ENABLE);
1515 }
1516 
1517 static inline void hw_ena_intr(struct ksz_hw *hw)
1518 {
1519 	hw->intr_blocked = 0;
1520 	hw_set_intr(hw, hw->intr_mask);
1521 }
1522 
1523 static inline void hw_dis_intr_bit(struct ksz_hw *hw, uint bit)
1524 {
1525 	hw->intr_mask &= ~(bit);
1526 }
1527 
1528 static inline void hw_turn_off_intr(struct ksz_hw *hw, uint interrupt)
1529 {
1530 	u32 read_intr;
1531 
1532 	read_intr = readl(hw->io + KS884X_INTERRUPTS_ENABLE);
1533 	hw->intr_set = read_intr & ~interrupt;
1534 	writel(hw->intr_set, hw->io + KS884X_INTERRUPTS_ENABLE);
1535 	hw_dis_intr_bit(hw, interrupt);
1536 }
1537 
1538 /**
1539  * hw_turn_on_intr - turn on specified interrupts
1540  * @hw: 	The hardware instance.
1541  * @bit:	The interrupt bits to be on.
1542  *
1543  * This routine turns on the specified interrupts in the interrupt mask so that
1544  * those interrupts will be enabled.
1545  */
1546 static void hw_turn_on_intr(struct ksz_hw *hw, u32 bit)
1547 {
1548 	hw->intr_mask |= bit;
1549 
1550 	if (!hw->intr_blocked)
1551 		hw_set_intr(hw, hw->intr_mask);
1552 }
1553 
1554 static inline void hw_ena_intr_bit(struct ksz_hw *hw, uint interrupt)
1555 {
1556 	u32 read_intr;
1557 
1558 	read_intr = readl(hw->io + KS884X_INTERRUPTS_ENABLE);
1559 	hw->intr_set = read_intr | interrupt;
1560 	writel(hw->intr_set, hw->io + KS884X_INTERRUPTS_ENABLE);
1561 }
1562 
1563 static inline void hw_read_intr(struct ksz_hw *hw, uint *status)
1564 {
1565 	*status = readl(hw->io + KS884X_INTERRUPTS_STATUS);
1566 	*status = *status & hw->intr_set;
1567 }
1568 
1569 static inline void hw_restore_intr(struct ksz_hw *hw, uint interrupt)
1570 {
1571 	if (interrupt)
1572 		hw_ena_intr(hw);
1573 }
1574 
1575 /**
1576  * hw_block_intr - block hardware interrupts
1577  *
1578  * This function blocks all interrupts of the hardware and returns the current
1579  * interrupt enable mask so that interrupts can be restored later.
1580  *
1581  * Return the current interrupt enable mask.
1582  */
1583 static uint hw_block_intr(struct ksz_hw *hw)
1584 {
1585 	uint interrupt = 0;
1586 
1587 	if (!hw->intr_blocked) {
1588 		hw_dis_intr(hw);
1589 		interrupt = hw->intr_blocked;
1590 	}
1591 	return interrupt;
1592 }
1593 
1594 /*
1595  * Hardware descriptor routines
1596  */
1597 
1598 static inline void reset_desc(struct ksz_desc *desc, union desc_stat status)
1599 {
1600 	status.rx.hw_owned = 0;
1601 	desc->phw->ctrl.data = cpu_to_le32(status.data);
1602 }
1603 
1604 static inline void release_desc(struct ksz_desc *desc)
1605 {
1606 	desc->sw.ctrl.tx.hw_owned = 1;
1607 	if (desc->sw.buf_size != desc->sw.buf.data) {
1608 		desc->sw.buf_size = desc->sw.buf.data;
1609 		desc->phw->buf.data = cpu_to_le32(desc->sw.buf.data);
1610 	}
1611 	desc->phw->ctrl.data = cpu_to_le32(desc->sw.ctrl.data);
1612 }
1613 
1614 static void get_rx_pkt(struct ksz_desc_info *info, struct ksz_desc **desc)
1615 {
1616 	*desc = &info->ring[info->last];
1617 	info->last++;
1618 	info->last &= info->mask;
1619 	info->avail--;
1620 	(*desc)->sw.buf.data &= ~KS_DESC_RX_MASK;
1621 }
1622 
1623 static inline void set_rx_buf(struct ksz_desc *desc, u32 addr)
1624 {
1625 	desc->phw->addr = cpu_to_le32(addr);
1626 }
1627 
1628 static inline void set_rx_len(struct ksz_desc *desc, u32 len)
1629 {
1630 	desc->sw.buf.rx.buf_size = len;
1631 }
1632 
1633 static inline void get_tx_pkt(struct ksz_desc_info *info,
1634 	struct ksz_desc **desc)
1635 {
1636 	*desc = &info->ring[info->next];
1637 	info->next++;
1638 	info->next &= info->mask;
1639 	info->avail--;
1640 	(*desc)->sw.buf.data &= ~KS_DESC_TX_MASK;
1641 }
1642 
1643 static inline void set_tx_buf(struct ksz_desc *desc, u32 addr)
1644 {
1645 	desc->phw->addr = cpu_to_le32(addr);
1646 }
1647 
1648 static inline void set_tx_len(struct ksz_desc *desc, u32 len)
1649 {
1650 	desc->sw.buf.tx.buf_size = len;
1651 }
1652 
1653 /* Switch functions */
1654 
1655 #define TABLE_READ			0x10
1656 #define TABLE_SEL_SHIFT			2
1657 
1658 #define HW_DELAY(hw, reg)			\
1659 	do {					\
1660 		u16 dummy;			\
1661 		dummy = readw(hw->io + reg);	\
1662 	} while (0)
1663 
1664 /**
1665  * sw_r_table - read 4 bytes of data from switch table
1666  * @hw:		The hardware instance.
1667  * @table:	The table selector.
1668  * @addr:	The address of the table entry.
1669  * @data:	Buffer to store the read data.
1670  *
1671  * This routine reads 4 bytes of data from the table of the switch.
1672  * Hardware interrupts are disabled to minimize corruption of read data.
1673  */
1674 static void sw_r_table(struct ksz_hw *hw, int table, u16 addr, u32 *data)
1675 {
1676 	u16 ctrl_addr;
1677 	uint interrupt;
1678 
1679 	ctrl_addr = (((table << TABLE_SEL_SHIFT) | TABLE_READ) << 8) | addr;
1680 
1681 	interrupt = hw_block_intr(hw);
1682 
1683 	writew(ctrl_addr, hw->io + KS884X_IACR_OFFSET);
1684 	HW_DELAY(hw, KS884X_IACR_OFFSET);
1685 	*data = readl(hw->io + KS884X_ACC_DATA_0_OFFSET);
1686 
1687 	hw_restore_intr(hw, interrupt);
1688 }
1689 
1690 /**
1691  * sw_w_table_64 - write 8 bytes of data to the switch table
1692  * @hw:		The hardware instance.
1693  * @table:	The table selector.
1694  * @addr:	The address of the table entry.
1695  * @data_hi:	The high part of data to be written (bit63 ~ bit32).
1696  * @data_lo:	The low part of data to be written (bit31 ~ bit0).
1697  *
1698  * This routine writes 8 bytes of data to the table of the switch.
1699  * Hardware interrupts are disabled to minimize corruption of written data.
1700  */
1701 static void sw_w_table_64(struct ksz_hw *hw, int table, u16 addr, u32 data_hi,
1702 	u32 data_lo)
1703 {
1704 	u16 ctrl_addr;
1705 	uint interrupt;
1706 
1707 	ctrl_addr = ((table << TABLE_SEL_SHIFT) << 8) | addr;
1708 
1709 	interrupt = hw_block_intr(hw);
1710 
1711 	writel(data_hi, hw->io + KS884X_ACC_DATA_4_OFFSET);
1712 	writel(data_lo, hw->io + KS884X_ACC_DATA_0_OFFSET);
1713 
1714 	writew(ctrl_addr, hw->io + KS884X_IACR_OFFSET);
1715 	HW_DELAY(hw, KS884X_IACR_OFFSET);
1716 
1717 	hw_restore_intr(hw, interrupt);
1718 }
1719 
1720 /**
1721  * sw_w_sta_mac_table - write to the static MAC table
1722  * @hw: 	The hardware instance.
1723  * @addr:	The address of the table entry.
1724  * @mac_addr:	The MAC address.
1725  * @ports:	The port members.
1726  * @override:	The flag to override the port receive/transmit settings.
1727  * @valid:	The flag to indicate entry is valid.
1728  * @use_fid:	The flag to indicate the FID is valid.
1729  * @fid:	The FID value.
1730  *
1731  * This routine writes an entry of the static MAC table of the switch.  It
1732  * calls sw_w_table_64() to write the data.
1733  */
1734 static void sw_w_sta_mac_table(struct ksz_hw *hw, u16 addr, u8 *mac_addr,
1735 	u8 ports, int override, int valid, int use_fid, u8 fid)
1736 {
1737 	u32 data_hi;
1738 	u32 data_lo;
1739 
1740 	data_lo = ((u32) mac_addr[2] << 24) |
1741 		((u32) mac_addr[3] << 16) |
1742 		((u32) mac_addr[4] << 8) | mac_addr[5];
1743 	data_hi = ((u32) mac_addr[0] << 8) | mac_addr[1];
1744 	data_hi |= (u32) ports << STATIC_MAC_FWD_PORTS_SHIFT;
1745 
1746 	if (override)
1747 		data_hi |= STATIC_MAC_TABLE_OVERRIDE;
1748 	if (use_fid) {
1749 		data_hi |= STATIC_MAC_TABLE_USE_FID;
1750 		data_hi |= (u32) fid << STATIC_MAC_FID_SHIFT;
1751 	}
1752 	if (valid)
1753 		data_hi |= STATIC_MAC_TABLE_VALID;
1754 
1755 	sw_w_table_64(hw, TABLE_STATIC_MAC, addr, data_hi, data_lo);
1756 }
1757 
1758 /**
1759  * sw_r_vlan_table - read from the VLAN table
1760  * @hw: 	The hardware instance.
1761  * @addr:	The address of the table entry.
1762  * @vid:	Buffer to store the VID.
1763  * @fid:	Buffer to store the VID.
1764  * @member:	Buffer to store the port membership.
1765  *
1766  * This function reads an entry of the VLAN table of the switch.  It calls
1767  * sw_r_table() to get the data.
1768  *
1769  * Return 0 if the entry is valid; otherwise -1.
1770  */
1771 static int sw_r_vlan_table(struct ksz_hw *hw, u16 addr, u16 *vid, u8 *fid,
1772 	u8 *member)
1773 {
1774 	u32 data;
1775 
1776 	sw_r_table(hw, TABLE_VLAN, addr, &data);
1777 	if (data & VLAN_TABLE_VALID) {
1778 		*vid = (u16)(data & VLAN_TABLE_VID);
1779 		*fid = (u8)((data & VLAN_TABLE_FID) >> VLAN_TABLE_FID_SHIFT);
1780 		*member = (u8)((data & VLAN_TABLE_MEMBERSHIP) >>
1781 			VLAN_TABLE_MEMBERSHIP_SHIFT);
1782 		return 0;
1783 	}
1784 	return -1;
1785 }
1786 
1787 /**
1788  * port_r_mib_cnt - read MIB counter
1789  * @hw: 	The hardware instance.
1790  * @port:	The port index.
1791  * @addr:	The address of the counter.
1792  * @cnt:	Buffer to store the counter.
1793  *
1794  * This routine reads a MIB counter of the port.
1795  * Hardware interrupts are disabled to minimize corruption of read data.
1796  */
1797 static void port_r_mib_cnt(struct ksz_hw *hw, int port, u16 addr, u64 *cnt)
1798 {
1799 	u32 data;
1800 	u16 ctrl_addr;
1801 	uint interrupt;
1802 	int timeout;
1803 
1804 	ctrl_addr = addr + PORT_COUNTER_NUM * port;
1805 
1806 	interrupt = hw_block_intr(hw);
1807 
1808 	ctrl_addr |= (((TABLE_MIB << TABLE_SEL_SHIFT) | TABLE_READ) << 8);
1809 	writew(ctrl_addr, hw->io + KS884X_IACR_OFFSET);
1810 	HW_DELAY(hw, KS884X_IACR_OFFSET);
1811 
1812 	for (timeout = 100; timeout > 0; timeout--) {
1813 		data = readl(hw->io + KS884X_ACC_DATA_0_OFFSET);
1814 
1815 		if (data & MIB_COUNTER_VALID) {
1816 			if (data & MIB_COUNTER_OVERFLOW)
1817 				*cnt += MIB_COUNTER_VALUE + 1;
1818 			*cnt += data & MIB_COUNTER_VALUE;
1819 			break;
1820 		}
1821 	}
1822 
1823 	hw_restore_intr(hw, interrupt);
1824 }
1825 
1826 /**
1827  * port_r_mib_pkt - read dropped packet counts
1828  * @hw: 	The hardware instance.
1829  * @port:	The port index.
1830  * @cnt:	Buffer to store the receive and transmit dropped packet counts.
1831  *
1832  * This routine reads the dropped packet counts of the port.
1833  * Hardware interrupts are disabled to minimize corruption of read data.
1834  */
1835 static void port_r_mib_pkt(struct ksz_hw *hw, int port, u32 *last, u64 *cnt)
1836 {
1837 	u32 cur;
1838 	u32 data;
1839 	u16 ctrl_addr;
1840 	uint interrupt;
1841 	int index;
1842 
1843 	index = KS_MIB_PACKET_DROPPED_RX_0 + port;
1844 	do {
1845 		interrupt = hw_block_intr(hw);
1846 
1847 		ctrl_addr = (u16) index;
1848 		ctrl_addr |= (((TABLE_MIB << TABLE_SEL_SHIFT) | TABLE_READ)
1849 			<< 8);
1850 		writew(ctrl_addr, hw->io + KS884X_IACR_OFFSET);
1851 		HW_DELAY(hw, KS884X_IACR_OFFSET);
1852 		data = readl(hw->io + KS884X_ACC_DATA_0_OFFSET);
1853 
1854 		hw_restore_intr(hw, interrupt);
1855 
1856 		data &= MIB_PACKET_DROPPED;
1857 		cur = *last;
1858 		if (data != cur) {
1859 			*last = data;
1860 			if (data < cur)
1861 				data += MIB_PACKET_DROPPED + 1;
1862 			data -= cur;
1863 			*cnt += data;
1864 		}
1865 		++last;
1866 		++cnt;
1867 		index -= KS_MIB_PACKET_DROPPED_TX -
1868 			KS_MIB_PACKET_DROPPED_TX_0 + 1;
1869 	} while (index >= KS_MIB_PACKET_DROPPED_TX_0 + port);
1870 }
1871 
1872 /**
1873  * port_r_cnt - read MIB counters periodically
1874  * @hw: 	The hardware instance.
1875  * @port:	The port index.
1876  *
1877  * This routine is used to read the counters of the port periodically to avoid
1878  * counter overflow.  The hardware should be acquired first before calling this
1879  * routine.
1880  *
1881  * Return non-zero when not all counters not read.
1882  */
1883 static int port_r_cnt(struct ksz_hw *hw, int port)
1884 {
1885 	struct ksz_port_mib *mib = &hw->port_mib[port];
1886 
1887 	if (mib->mib_start < PORT_COUNTER_NUM)
1888 		while (mib->cnt_ptr < PORT_COUNTER_NUM) {
1889 			port_r_mib_cnt(hw, port, mib->cnt_ptr,
1890 				&mib->counter[mib->cnt_ptr]);
1891 			++mib->cnt_ptr;
1892 		}
1893 	if (hw->mib_cnt > PORT_COUNTER_NUM)
1894 		port_r_mib_pkt(hw, port, mib->dropped,
1895 			&mib->counter[PORT_COUNTER_NUM]);
1896 	mib->cnt_ptr = 0;
1897 	return 0;
1898 }
1899 
1900 /**
1901  * port_init_cnt - initialize MIB counter values
1902  * @hw: 	The hardware instance.
1903  * @port:	The port index.
1904  *
1905  * This routine is used to initialize all counters to zero if the hardware
1906  * cannot do it after reset.
1907  */
1908 static void port_init_cnt(struct ksz_hw *hw, int port)
1909 {
1910 	struct ksz_port_mib *mib = &hw->port_mib[port];
1911 
1912 	mib->cnt_ptr = 0;
1913 	if (mib->mib_start < PORT_COUNTER_NUM)
1914 		do {
1915 			port_r_mib_cnt(hw, port, mib->cnt_ptr,
1916 				&mib->counter[mib->cnt_ptr]);
1917 			++mib->cnt_ptr;
1918 		} while (mib->cnt_ptr < PORT_COUNTER_NUM);
1919 	if (hw->mib_cnt > PORT_COUNTER_NUM)
1920 		port_r_mib_pkt(hw, port, mib->dropped,
1921 			&mib->counter[PORT_COUNTER_NUM]);
1922 	memset((void *) mib->counter, 0, sizeof(u64) * TOTAL_PORT_COUNTER_NUM);
1923 	mib->cnt_ptr = 0;
1924 }
1925 
1926 /*
1927  * Port functions
1928  */
1929 
1930 /**
1931  * port_chk - check port register bits
1932  * @hw: 	The hardware instance.
1933  * @port:	The port index.
1934  * @offset:	The offset of the port register.
1935  * @bits:	The data bits to check.
1936  *
1937  * This function checks whether the specified bits of the port register are set
1938  * or not.
1939  *
1940  * Return 0 if the bits are not set.
1941  */
1942 static int port_chk(struct ksz_hw *hw, int port, int offset, u16 bits)
1943 {
1944 	u32 addr;
1945 	u16 data;
1946 
1947 	PORT_CTRL_ADDR(port, addr);
1948 	addr += offset;
1949 	data = readw(hw->io + addr);
1950 	return (data & bits) == bits;
1951 }
1952 
1953 /**
1954  * port_cfg - set port register bits
1955  * @hw: 	The hardware instance.
1956  * @port:	The port index.
1957  * @offset:	The offset of the port register.
1958  * @bits:	The data bits to set.
1959  * @set:	The flag indicating whether the bits are to be set or not.
1960  *
1961  * This routine sets or resets the specified bits of the port register.
1962  */
1963 static void port_cfg(struct ksz_hw *hw, int port, int offset, u16 bits,
1964 	int set)
1965 {
1966 	u32 addr;
1967 	u16 data;
1968 
1969 	PORT_CTRL_ADDR(port, addr);
1970 	addr += offset;
1971 	data = readw(hw->io + addr);
1972 	if (set)
1973 		data |= bits;
1974 	else
1975 		data &= ~bits;
1976 	writew(data, hw->io + addr);
1977 }
1978 
1979 /**
1980  * port_chk_shift - check port bit
1981  * @hw: 	The hardware instance.
1982  * @port:	The port index.
1983  * @offset:	The offset of the register.
1984  * @shift:	Number of bits to shift.
1985  *
1986  * This function checks whether the specified port is set in the register or
1987  * not.
1988  *
1989  * Return 0 if the port is not set.
1990  */
1991 static int port_chk_shift(struct ksz_hw *hw, int port, u32 addr, int shift)
1992 {
1993 	u16 data;
1994 	u16 bit = 1 << port;
1995 
1996 	data = readw(hw->io + addr);
1997 	data >>= shift;
1998 	return (data & bit) == bit;
1999 }
2000 
2001 /**
2002  * port_cfg_shift - set port bit
2003  * @hw: 	The hardware instance.
2004  * @port:	The port index.
2005  * @offset:	The offset of the register.
2006  * @shift:	Number of bits to shift.
2007  * @set:	The flag indicating whether the port is to be set or not.
2008  *
2009  * This routine sets or resets the specified port in the register.
2010  */
2011 static void port_cfg_shift(struct ksz_hw *hw, int port, u32 addr, int shift,
2012 	int set)
2013 {
2014 	u16 data;
2015 	u16 bits = 1 << port;
2016 
2017 	data = readw(hw->io + addr);
2018 	bits <<= shift;
2019 	if (set)
2020 		data |= bits;
2021 	else
2022 		data &= ~bits;
2023 	writew(data, hw->io + addr);
2024 }
2025 
2026 /**
2027  * port_r8 - read byte from port register
2028  * @hw: 	The hardware instance.
2029  * @port:	The port index.
2030  * @offset:	The offset of the port register.
2031  * @data:	Buffer to store the data.
2032  *
2033  * This routine reads a byte from the port register.
2034  */
2035 static void port_r8(struct ksz_hw *hw, int port, int offset, u8 *data)
2036 {
2037 	u32 addr;
2038 
2039 	PORT_CTRL_ADDR(port, addr);
2040 	addr += offset;
2041 	*data = readb(hw->io + addr);
2042 }
2043 
2044 /**
2045  * port_r16 - read word from port register.
2046  * @hw: 	The hardware instance.
2047  * @port:	The port index.
2048  * @offset:	The offset of the port register.
2049  * @data:	Buffer to store the data.
2050  *
2051  * This routine reads a word from the port register.
2052  */
2053 static void port_r16(struct ksz_hw *hw, int port, int offset, u16 *data)
2054 {
2055 	u32 addr;
2056 
2057 	PORT_CTRL_ADDR(port, addr);
2058 	addr += offset;
2059 	*data = readw(hw->io + addr);
2060 }
2061 
2062 /**
2063  * port_w16 - write word to port register.
2064  * @hw: 	The hardware instance.
2065  * @port:	The port index.
2066  * @offset:	The offset of the port register.
2067  * @data:	Data to write.
2068  *
2069  * This routine writes a word to the port register.
2070  */
2071 static void port_w16(struct ksz_hw *hw, int port, int offset, u16 data)
2072 {
2073 	u32 addr;
2074 
2075 	PORT_CTRL_ADDR(port, addr);
2076 	addr += offset;
2077 	writew(data, hw->io + addr);
2078 }
2079 
2080 /**
2081  * sw_chk - check switch register bits
2082  * @hw: 	The hardware instance.
2083  * @addr:	The address of the switch register.
2084  * @bits:	The data bits to check.
2085  *
2086  * This function checks whether the specified bits of the switch register are
2087  * set or not.
2088  *
2089  * Return 0 if the bits are not set.
2090  */
2091 static int sw_chk(struct ksz_hw *hw, u32 addr, u16 bits)
2092 {
2093 	u16 data;
2094 
2095 	data = readw(hw->io + addr);
2096 	return (data & bits) == bits;
2097 }
2098 
2099 /**
2100  * sw_cfg - set switch register bits
2101  * @hw: 	The hardware instance.
2102  * @addr:	The address of the switch register.
2103  * @bits:	The data bits to set.
2104  * @set:	The flag indicating whether the bits are to be set or not.
2105  *
2106  * This function sets or resets the specified bits of the switch register.
2107  */
2108 static void sw_cfg(struct ksz_hw *hw, u32 addr, u16 bits, int set)
2109 {
2110 	u16 data;
2111 
2112 	data = readw(hw->io + addr);
2113 	if (set)
2114 		data |= bits;
2115 	else
2116 		data &= ~bits;
2117 	writew(data, hw->io + addr);
2118 }
2119 
2120 /* Bandwidth */
2121 
2122 static inline void port_cfg_broad_storm(struct ksz_hw *hw, int p, int set)
2123 {
2124 	port_cfg(hw, p,
2125 		KS8842_PORT_CTRL_1_OFFSET, PORT_BROADCAST_STORM, set);
2126 }
2127 
2128 static inline int port_chk_broad_storm(struct ksz_hw *hw, int p)
2129 {
2130 	return port_chk(hw, p,
2131 		KS8842_PORT_CTRL_1_OFFSET, PORT_BROADCAST_STORM);
2132 }
2133 
2134 /* Driver set switch broadcast storm protection at 10% rate. */
2135 #define BROADCAST_STORM_PROTECTION_RATE	10
2136 
2137 /* 148,800 frames * 67 ms / 100 */
2138 #define BROADCAST_STORM_VALUE		9969
2139 
2140 /**
2141  * sw_cfg_broad_storm - configure broadcast storm threshold
2142  * @hw: 	The hardware instance.
2143  * @percent:	Broadcast storm threshold in percent of transmit rate.
2144  *
2145  * This routine configures the broadcast storm threshold of the switch.
2146  */
2147 static void sw_cfg_broad_storm(struct ksz_hw *hw, u8 percent)
2148 {
2149 	u16 data;
2150 	u32 value = ((u32) BROADCAST_STORM_VALUE * (u32) percent / 100);
2151 
2152 	if (value > BROADCAST_STORM_RATE)
2153 		value = BROADCAST_STORM_RATE;
2154 
2155 	data = readw(hw->io + KS8842_SWITCH_CTRL_3_OFFSET);
2156 	data &= ~(BROADCAST_STORM_RATE_LO | BROADCAST_STORM_RATE_HI);
2157 	data |= ((value & 0x00FF) << 8) | ((value & 0xFF00) >> 8);
2158 	writew(data, hw->io + KS8842_SWITCH_CTRL_3_OFFSET);
2159 }
2160 
2161 /**
2162  * sw_get_board_storm - get broadcast storm threshold
2163  * @hw: 	The hardware instance.
2164  * @percent:	Buffer to store the broadcast storm threshold percentage.
2165  *
2166  * This routine retrieves the broadcast storm threshold of the switch.
2167  */
2168 static void sw_get_broad_storm(struct ksz_hw *hw, u8 *percent)
2169 {
2170 	int num;
2171 	u16 data;
2172 
2173 	data = readw(hw->io + KS8842_SWITCH_CTRL_3_OFFSET);
2174 	num = (data & BROADCAST_STORM_RATE_HI);
2175 	num <<= 8;
2176 	num |= (data & BROADCAST_STORM_RATE_LO) >> 8;
2177 	num = (num * 100 + BROADCAST_STORM_VALUE / 2) / BROADCAST_STORM_VALUE;
2178 	*percent = (u8) num;
2179 }
2180 
2181 /**
2182  * sw_dis_broad_storm - disable broadstorm
2183  * @hw: 	The hardware instance.
2184  * @port:	The port index.
2185  *
2186  * This routine disables the broadcast storm limit function of the switch.
2187  */
2188 static void sw_dis_broad_storm(struct ksz_hw *hw, int port)
2189 {
2190 	port_cfg_broad_storm(hw, port, 0);
2191 }
2192 
2193 /**
2194  * sw_ena_broad_storm - enable broadcast storm
2195  * @hw: 	The hardware instance.
2196  * @port:	The port index.
2197  *
2198  * This routine enables the broadcast storm limit function of the switch.
2199  */
2200 static void sw_ena_broad_storm(struct ksz_hw *hw, int port)
2201 {
2202 	sw_cfg_broad_storm(hw, hw->ksz_switch->broad_per);
2203 	port_cfg_broad_storm(hw, port, 1);
2204 }
2205 
2206 /**
2207  * sw_init_broad_storm - initialize broadcast storm
2208  * @hw: 	The hardware instance.
2209  *
2210  * This routine initializes the broadcast storm limit function of the switch.
2211  */
2212 static void sw_init_broad_storm(struct ksz_hw *hw)
2213 {
2214 	int port;
2215 
2216 	hw->ksz_switch->broad_per = 1;
2217 	sw_cfg_broad_storm(hw, hw->ksz_switch->broad_per);
2218 	for (port = 0; port < TOTAL_PORT_NUM; port++)
2219 		sw_dis_broad_storm(hw, port);
2220 	sw_cfg(hw, KS8842_SWITCH_CTRL_2_OFFSET, MULTICAST_STORM_DISABLE, 1);
2221 }
2222 
2223 /**
2224  * hw_cfg_broad_storm - configure broadcast storm
2225  * @hw: 	The hardware instance.
2226  * @percent:	Broadcast storm threshold in percent of transmit rate.
2227  *
2228  * This routine configures the broadcast storm threshold of the switch.
2229  * It is called by user functions.  The hardware should be acquired first.
2230  */
2231 static void hw_cfg_broad_storm(struct ksz_hw *hw, u8 percent)
2232 {
2233 	if (percent > 100)
2234 		percent = 100;
2235 
2236 	sw_cfg_broad_storm(hw, percent);
2237 	sw_get_broad_storm(hw, &percent);
2238 	hw->ksz_switch->broad_per = percent;
2239 }
2240 
2241 /**
2242  * sw_dis_prio_rate - disable switch priority rate
2243  * @hw: 	The hardware instance.
2244  * @port:	The port index.
2245  *
2246  * This routine disables the priority rate function of the switch.
2247  */
2248 static void sw_dis_prio_rate(struct ksz_hw *hw, int port)
2249 {
2250 	u32 addr;
2251 
2252 	PORT_CTRL_ADDR(port, addr);
2253 	addr += KS8842_PORT_IN_RATE_OFFSET;
2254 	writel(0, hw->io + addr);
2255 }
2256 
2257 /**
2258  * sw_init_prio_rate - initialize switch prioirty rate
2259  * @hw: 	The hardware instance.
2260  *
2261  * This routine initializes the priority rate function of the switch.
2262  */
2263 static void sw_init_prio_rate(struct ksz_hw *hw)
2264 {
2265 	int port;
2266 	int prio;
2267 	struct ksz_switch *sw = hw->ksz_switch;
2268 
2269 	for (port = 0; port < TOTAL_PORT_NUM; port++) {
2270 		for (prio = 0; prio < PRIO_QUEUES; prio++) {
2271 			sw->port_cfg[port].rx_rate[prio] =
2272 			sw->port_cfg[port].tx_rate[prio] = 0;
2273 		}
2274 		sw_dis_prio_rate(hw, port);
2275 	}
2276 }
2277 
2278 /* Communication */
2279 
2280 static inline void port_cfg_back_pressure(struct ksz_hw *hw, int p, int set)
2281 {
2282 	port_cfg(hw, p,
2283 		KS8842_PORT_CTRL_2_OFFSET, PORT_BACK_PRESSURE, set);
2284 }
2285 
2286 static inline void port_cfg_force_flow_ctrl(struct ksz_hw *hw, int p, int set)
2287 {
2288 	port_cfg(hw, p,
2289 		KS8842_PORT_CTRL_2_OFFSET, PORT_FORCE_FLOW_CTRL, set);
2290 }
2291 
2292 static inline int port_chk_back_pressure(struct ksz_hw *hw, int p)
2293 {
2294 	return port_chk(hw, p,
2295 		KS8842_PORT_CTRL_2_OFFSET, PORT_BACK_PRESSURE);
2296 }
2297 
2298 static inline int port_chk_force_flow_ctrl(struct ksz_hw *hw, int p)
2299 {
2300 	return port_chk(hw, p,
2301 		KS8842_PORT_CTRL_2_OFFSET, PORT_FORCE_FLOW_CTRL);
2302 }
2303 
2304 /* Spanning Tree */
2305 
2306 static inline void port_cfg_rx(struct ksz_hw *hw, int p, int set)
2307 {
2308 	port_cfg(hw, p,
2309 		KS8842_PORT_CTRL_2_OFFSET, PORT_RX_ENABLE, set);
2310 }
2311 
2312 static inline void port_cfg_tx(struct ksz_hw *hw, int p, int set)
2313 {
2314 	port_cfg(hw, p,
2315 		KS8842_PORT_CTRL_2_OFFSET, PORT_TX_ENABLE, set);
2316 }
2317 
2318 static inline void sw_cfg_fast_aging(struct ksz_hw *hw, int set)
2319 {
2320 	sw_cfg(hw, KS8842_SWITCH_CTRL_1_OFFSET, SWITCH_FAST_AGING, set);
2321 }
2322 
2323 static inline void sw_flush_dyn_mac_table(struct ksz_hw *hw)
2324 {
2325 	if (!(hw->overrides & FAST_AGING)) {
2326 		sw_cfg_fast_aging(hw, 1);
2327 		mdelay(1);
2328 		sw_cfg_fast_aging(hw, 0);
2329 	}
2330 }
2331 
2332 /* VLAN */
2333 
2334 static inline void port_cfg_ins_tag(struct ksz_hw *hw, int p, int insert)
2335 {
2336 	port_cfg(hw, p,
2337 		KS8842_PORT_CTRL_1_OFFSET, PORT_INSERT_TAG, insert);
2338 }
2339 
2340 static inline void port_cfg_rmv_tag(struct ksz_hw *hw, int p, int remove)
2341 {
2342 	port_cfg(hw, p,
2343 		KS8842_PORT_CTRL_1_OFFSET, PORT_REMOVE_TAG, remove);
2344 }
2345 
2346 static inline int port_chk_ins_tag(struct ksz_hw *hw, int p)
2347 {
2348 	return port_chk(hw, p,
2349 		KS8842_PORT_CTRL_1_OFFSET, PORT_INSERT_TAG);
2350 }
2351 
2352 static inline int port_chk_rmv_tag(struct ksz_hw *hw, int p)
2353 {
2354 	return port_chk(hw, p,
2355 		KS8842_PORT_CTRL_1_OFFSET, PORT_REMOVE_TAG);
2356 }
2357 
2358 static inline void port_cfg_dis_non_vid(struct ksz_hw *hw, int p, int set)
2359 {
2360 	port_cfg(hw, p,
2361 		KS8842_PORT_CTRL_2_OFFSET, PORT_DISCARD_NON_VID, set);
2362 }
2363 
2364 static inline void port_cfg_in_filter(struct ksz_hw *hw, int p, int set)
2365 {
2366 	port_cfg(hw, p,
2367 		KS8842_PORT_CTRL_2_OFFSET, PORT_INGRESS_VLAN_FILTER, set);
2368 }
2369 
2370 static inline int port_chk_dis_non_vid(struct ksz_hw *hw, int p)
2371 {
2372 	return port_chk(hw, p,
2373 		KS8842_PORT_CTRL_2_OFFSET, PORT_DISCARD_NON_VID);
2374 }
2375 
2376 static inline int port_chk_in_filter(struct ksz_hw *hw, int p)
2377 {
2378 	return port_chk(hw, p,
2379 		KS8842_PORT_CTRL_2_OFFSET, PORT_INGRESS_VLAN_FILTER);
2380 }
2381 
2382 /* Mirroring */
2383 
2384 static inline void port_cfg_mirror_sniffer(struct ksz_hw *hw, int p, int set)
2385 {
2386 	port_cfg(hw, p,
2387 		KS8842_PORT_CTRL_2_OFFSET, PORT_MIRROR_SNIFFER, set);
2388 }
2389 
2390 static inline void port_cfg_mirror_rx(struct ksz_hw *hw, int p, int set)
2391 {
2392 	port_cfg(hw, p,
2393 		KS8842_PORT_CTRL_2_OFFSET, PORT_MIRROR_RX, set);
2394 }
2395 
2396 static inline void port_cfg_mirror_tx(struct ksz_hw *hw, int p, int set)
2397 {
2398 	port_cfg(hw, p,
2399 		KS8842_PORT_CTRL_2_OFFSET, PORT_MIRROR_TX, set);
2400 }
2401 
2402 static inline void sw_cfg_mirror_rx_tx(struct ksz_hw *hw, int set)
2403 {
2404 	sw_cfg(hw, KS8842_SWITCH_CTRL_2_OFFSET, SWITCH_MIRROR_RX_TX, set);
2405 }
2406 
2407 static void sw_init_mirror(struct ksz_hw *hw)
2408 {
2409 	int port;
2410 
2411 	for (port = 0; port < TOTAL_PORT_NUM; port++) {
2412 		port_cfg_mirror_sniffer(hw, port, 0);
2413 		port_cfg_mirror_rx(hw, port, 0);
2414 		port_cfg_mirror_tx(hw, port, 0);
2415 	}
2416 	sw_cfg_mirror_rx_tx(hw, 0);
2417 }
2418 
2419 static inline void sw_cfg_unk_def_deliver(struct ksz_hw *hw, int set)
2420 {
2421 	sw_cfg(hw, KS8842_SWITCH_CTRL_7_OFFSET,
2422 		SWITCH_UNK_DEF_PORT_ENABLE, set);
2423 }
2424 
2425 static inline int sw_cfg_chk_unk_def_deliver(struct ksz_hw *hw)
2426 {
2427 	return sw_chk(hw, KS8842_SWITCH_CTRL_7_OFFSET,
2428 		SWITCH_UNK_DEF_PORT_ENABLE);
2429 }
2430 
2431 static inline void sw_cfg_unk_def_port(struct ksz_hw *hw, int port, int set)
2432 {
2433 	port_cfg_shift(hw, port, KS8842_SWITCH_CTRL_7_OFFSET, 0, set);
2434 }
2435 
2436 static inline int sw_chk_unk_def_port(struct ksz_hw *hw, int port)
2437 {
2438 	return port_chk_shift(hw, port, KS8842_SWITCH_CTRL_7_OFFSET, 0);
2439 }
2440 
2441 /* Priority */
2442 
2443 static inline void port_cfg_diffserv(struct ksz_hw *hw, int p, int set)
2444 {
2445 	port_cfg(hw, p,
2446 		KS8842_PORT_CTRL_1_OFFSET, PORT_DIFFSERV_ENABLE, set);
2447 }
2448 
2449 static inline void port_cfg_802_1p(struct ksz_hw *hw, int p, int set)
2450 {
2451 	port_cfg(hw, p,
2452 		KS8842_PORT_CTRL_1_OFFSET, PORT_802_1P_ENABLE, set);
2453 }
2454 
2455 static inline void port_cfg_replace_vid(struct ksz_hw *hw, int p, int set)
2456 {
2457 	port_cfg(hw, p,
2458 		KS8842_PORT_CTRL_2_OFFSET, PORT_USER_PRIORITY_CEILING, set);
2459 }
2460 
2461 static inline void port_cfg_prio(struct ksz_hw *hw, int p, int set)
2462 {
2463 	port_cfg(hw, p,
2464 		KS8842_PORT_CTRL_1_OFFSET, PORT_PRIO_QUEUE_ENABLE, set);
2465 }
2466 
2467 static inline int port_chk_diffserv(struct ksz_hw *hw, int p)
2468 {
2469 	return port_chk(hw, p,
2470 		KS8842_PORT_CTRL_1_OFFSET, PORT_DIFFSERV_ENABLE);
2471 }
2472 
2473 static inline int port_chk_802_1p(struct ksz_hw *hw, int p)
2474 {
2475 	return port_chk(hw, p,
2476 		KS8842_PORT_CTRL_1_OFFSET, PORT_802_1P_ENABLE);
2477 }
2478 
2479 static inline int port_chk_replace_vid(struct ksz_hw *hw, int p)
2480 {
2481 	return port_chk(hw, p,
2482 		KS8842_PORT_CTRL_2_OFFSET, PORT_USER_PRIORITY_CEILING);
2483 }
2484 
2485 static inline int port_chk_prio(struct ksz_hw *hw, int p)
2486 {
2487 	return port_chk(hw, p,
2488 		KS8842_PORT_CTRL_1_OFFSET, PORT_PRIO_QUEUE_ENABLE);
2489 }
2490 
2491 /**
2492  * sw_dis_diffserv - disable switch DiffServ priority
2493  * @hw: 	The hardware instance.
2494  * @port:	The port index.
2495  *
2496  * This routine disables the DiffServ priority function of the switch.
2497  */
2498 static void sw_dis_diffserv(struct ksz_hw *hw, int port)
2499 {
2500 	port_cfg_diffserv(hw, port, 0);
2501 }
2502 
2503 /**
2504  * sw_dis_802_1p - disable switch 802.1p priority
2505  * @hw: 	The hardware instance.
2506  * @port:	The port index.
2507  *
2508  * This routine disables the 802.1p priority function of the switch.
2509  */
2510 static void sw_dis_802_1p(struct ksz_hw *hw, int port)
2511 {
2512 	port_cfg_802_1p(hw, port, 0);
2513 }
2514 
2515 /**
2516  * sw_cfg_replace_null_vid -
2517  * @hw: 	The hardware instance.
2518  * @set:	The flag to disable or enable.
2519  *
2520  */
2521 static void sw_cfg_replace_null_vid(struct ksz_hw *hw, int set)
2522 {
2523 	sw_cfg(hw, KS8842_SWITCH_CTRL_3_OFFSET, SWITCH_REPLACE_NULL_VID, set);
2524 }
2525 
2526 /**
2527  * sw_cfg_replace_vid - enable switch 802.10 priority re-mapping
2528  * @hw: 	The hardware instance.
2529  * @port:	The port index.
2530  * @set:	The flag to disable or enable.
2531  *
2532  * This routine enables the 802.1p priority re-mapping function of the switch.
2533  * That allows 802.1p priority field to be replaced with the port's default
2534  * tag's priority value if the ingress packet's 802.1p priority has a higher
2535  * priority than port's default tag's priority.
2536  */
2537 static void sw_cfg_replace_vid(struct ksz_hw *hw, int port, int set)
2538 {
2539 	port_cfg_replace_vid(hw, port, set);
2540 }
2541 
2542 /**
2543  * sw_cfg_port_based - configure switch port based priority
2544  * @hw: 	The hardware instance.
2545  * @port:	The port index.
2546  * @prio:	The priority to set.
2547  *
2548  * This routine configures the port based priority of the switch.
2549  */
2550 static void sw_cfg_port_based(struct ksz_hw *hw, int port, u8 prio)
2551 {
2552 	u16 data;
2553 
2554 	if (prio > PORT_BASED_PRIORITY_BASE)
2555 		prio = PORT_BASED_PRIORITY_BASE;
2556 
2557 	hw->ksz_switch->port_cfg[port].port_prio = prio;
2558 
2559 	port_r16(hw, port, KS8842_PORT_CTRL_1_OFFSET, &data);
2560 	data &= ~PORT_BASED_PRIORITY_MASK;
2561 	data |= prio << PORT_BASED_PRIORITY_SHIFT;
2562 	port_w16(hw, port, KS8842_PORT_CTRL_1_OFFSET, data);
2563 }
2564 
2565 /**
2566  * sw_dis_multi_queue - disable transmit multiple queues
2567  * @hw: 	The hardware instance.
2568  * @port:	The port index.
2569  *
2570  * This routine disables the transmit multiple queues selection of the switch
2571  * port.  Only single transmit queue on the port.
2572  */
2573 static void sw_dis_multi_queue(struct ksz_hw *hw, int port)
2574 {
2575 	port_cfg_prio(hw, port, 0);
2576 }
2577 
2578 /**
2579  * sw_init_prio - initialize switch priority
2580  * @hw: 	The hardware instance.
2581  *
2582  * This routine initializes the switch QoS priority functions.
2583  */
2584 static void sw_init_prio(struct ksz_hw *hw)
2585 {
2586 	int port;
2587 	int tos;
2588 	struct ksz_switch *sw = hw->ksz_switch;
2589 
2590 	/*
2591 	 * Init all the 802.1p tag priority value to be assigned to different
2592 	 * priority queue.
2593 	 */
2594 	sw->p_802_1p[0] = 0;
2595 	sw->p_802_1p[1] = 0;
2596 	sw->p_802_1p[2] = 1;
2597 	sw->p_802_1p[3] = 1;
2598 	sw->p_802_1p[4] = 2;
2599 	sw->p_802_1p[5] = 2;
2600 	sw->p_802_1p[6] = 3;
2601 	sw->p_802_1p[7] = 3;
2602 
2603 	/*
2604 	 * Init all the DiffServ priority value to be assigned to priority
2605 	 * queue 0.
2606 	 */
2607 	for (tos = 0; tos < DIFFSERV_ENTRIES; tos++)
2608 		sw->diffserv[tos] = 0;
2609 
2610 	/* All QoS functions disabled. */
2611 	for (port = 0; port < TOTAL_PORT_NUM; port++) {
2612 		sw_dis_multi_queue(hw, port);
2613 		sw_dis_diffserv(hw, port);
2614 		sw_dis_802_1p(hw, port);
2615 		sw_cfg_replace_vid(hw, port, 0);
2616 
2617 		sw->port_cfg[port].port_prio = 0;
2618 		sw_cfg_port_based(hw, port, sw->port_cfg[port].port_prio);
2619 	}
2620 	sw_cfg_replace_null_vid(hw, 0);
2621 }
2622 
2623 /**
2624  * port_get_def_vid - get port default VID.
2625  * @hw: 	The hardware instance.
2626  * @port:	The port index.
2627  * @vid:	Buffer to store the VID.
2628  *
2629  * This routine retrieves the default VID of the port.
2630  */
2631 static void port_get_def_vid(struct ksz_hw *hw, int port, u16 *vid)
2632 {
2633 	u32 addr;
2634 
2635 	PORT_CTRL_ADDR(port, addr);
2636 	addr += KS8842_PORT_CTRL_VID_OFFSET;
2637 	*vid = readw(hw->io + addr);
2638 }
2639 
2640 /**
2641  * sw_init_vlan - initialize switch VLAN
2642  * @hw: 	The hardware instance.
2643  *
2644  * This routine initializes the VLAN function of the switch.
2645  */
2646 static void sw_init_vlan(struct ksz_hw *hw)
2647 {
2648 	int port;
2649 	int entry;
2650 	struct ksz_switch *sw = hw->ksz_switch;
2651 
2652 	/* Read 16 VLAN entries from device's VLAN table. */
2653 	for (entry = 0; entry < VLAN_TABLE_ENTRIES; entry++) {
2654 		sw_r_vlan_table(hw, entry,
2655 			&sw->vlan_table[entry].vid,
2656 			&sw->vlan_table[entry].fid,
2657 			&sw->vlan_table[entry].member);
2658 	}
2659 
2660 	for (port = 0; port < TOTAL_PORT_NUM; port++) {
2661 		port_get_def_vid(hw, port, &sw->port_cfg[port].vid);
2662 		sw->port_cfg[port].member = PORT_MASK;
2663 	}
2664 }
2665 
2666 /**
2667  * sw_cfg_port_base_vlan - configure port-based VLAN membership
2668  * @hw: 	The hardware instance.
2669  * @port:	The port index.
2670  * @member:	The port-based VLAN membership.
2671  *
2672  * This routine configures the port-based VLAN membership of the port.
2673  */
2674 static void sw_cfg_port_base_vlan(struct ksz_hw *hw, int port, u8 member)
2675 {
2676 	u32 addr;
2677 	u8 data;
2678 
2679 	PORT_CTRL_ADDR(port, addr);
2680 	addr += KS8842_PORT_CTRL_2_OFFSET;
2681 
2682 	data = readb(hw->io + addr);
2683 	data &= ~PORT_VLAN_MEMBERSHIP;
2684 	data |= (member & PORT_MASK);
2685 	writeb(data, hw->io + addr);
2686 
2687 	hw->ksz_switch->port_cfg[port].member = member;
2688 }
2689 
2690 /**
2691  * sw_get_addr - get the switch MAC address.
2692  * @hw: 	The hardware instance.
2693  * @mac_addr:	Buffer to store the MAC address.
2694  *
2695  * This function retrieves the MAC address of the switch.
2696  */
2697 static inline void sw_get_addr(struct ksz_hw *hw, u8 *mac_addr)
2698 {
2699 	int i;
2700 
2701 	for (i = 0; i < 6; i += 2) {
2702 		mac_addr[i] = readb(hw->io + KS8842_MAC_ADDR_0_OFFSET + i);
2703 		mac_addr[1 + i] = readb(hw->io + KS8842_MAC_ADDR_1_OFFSET + i);
2704 	}
2705 }
2706 
2707 /**
2708  * sw_set_addr - configure switch MAC address
2709  * @hw: 	The hardware instance.
2710  * @mac_addr:	The MAC address.
2711  *
2712  * This function configures the MAC address of the switch.
2713  */
2714 static void sw_set_addr(struct ksz_hw *hw, u8 *mac_addr)
2715 {
2716 	int i;
2717 
2718 	for (i = 0; i < 6; i += 2) {
2719 		writeb(mac_addr[i], hw->io + KS8842_MAC_ADDR_0_OFFSET + i);
2720 		writeb(mac_addr[1 + i], hw->io + KS8842_MAC_ADDR_1_OFFSET + i);
2721 	}
2722 }
2723 
2724 /**
2725  * sw_set_global_ctrl - set switch global control
2726  * @hw: 	The hardware instance.
2727  *
2728  * This routine sets the global control of the switch function.
2729  */
2730 static void sw_set_global_ctrl(struct ksz_hw *hw)
2731 {
2732 	u16 data;
2733 
2734 	/* Enable switch MII flow control. */
2735 	data = readw(hw->io + KS8842_SWITCH_CTRL_3_OFFSET);
2736 	data |= SWITCH_FLOW_CTRL;
2737 	writew(data, hw->io + KS8842_SWITCH_CTRL_3_OFFSET);
2738 
2739 	data = readw(hw->io + KS8842_SWITCH_CTRL_1_OFFSET);
2740 
2741 	/* Enable aggressive back off algorithm in half duplex mode. */
2742 	data |= SWITCH_AGGR_BACKOFF;
2743 
2744 	/* Enable automatic fast aging when link changed detected. */
2745 	data |= SWITCH_AGING_ENABLE;
2746 	data |= SWITCH_LINK_AUTO_AGING;
2747 
2748 	if (hw->overrides & FAST_AGING)
2749 		data |= SWITCH_FAST_AGING;
2750 	else
2751 		data &= ~SWITCH_FAST_AGING;
2752 	writew(data, hw->io + KS8842_SWITCH_CTRL_1_OFFSET);
2753 
2754 	data = readw(hw->io + KS8842_SWITCH_CTRL_2_OFFSET);
2755 
2756 	/* Enable no excessive collision drop. */
2757 	data |= NO_EXC_COLLISION_DROP;
2758 	writew(data, hw->io + KS8842_SWITCH_CTRL_2_OFFSET);
2759 }
2760 
2761 enum {
2762 	STP_STATE_DISABLED = 0,
2763 	STP_STATE_LISTENING,
2764 	STP_STATE_LEARNING,
2765 	STP_STATE_FORWARDING,
2766 	STP_STATE_BLOCKED,
2767 	STP_STATE_SIMPLE
2768 };
2769 
2770 /**
2771  * port_set_stp_state - configure port spanning tree state
2772  * @hw: 	The hardware instance.
2773  * @port:	The port index.
2774  * @state:	The spanning tree state.
2775  *
2776  * This routine configures the spanning tree state of the port.
2777  */
2778 static void port_set_stp_state(struct ksz_hw *hw, int port, int state)
2779 {
2780 	u16 data;
2781 
2782 	port_r16(hw, port, KS8842_PORT_CTRL_2_OFFSET, &data);
2783 	switch (state) {
2784 	case STP_STATE_DISABLED:
2785 		data &= ~(PORT_TX_ENABLE | PORT_RX_ENABLE);
2786 		data |= PORT_LEARN_DISABLE;
2787 		break;
2788 	case STP_STATE_LISTENING:
2789 /*
2790  * No need to turn on transmit because of port direct mode.
2791  * Turning on receive is required if static MAC table is not setup.
2792  */
2793 		data &= ~PORT_TX_ENABLE;
2794 		data |= PORT_RX_ENABLE;
2795 		data |= PORT_LEARN_DISABLE;
2796 		break;
2797 	case STP_STATE_LEARNING:
2798 		data &= ~PORT_TX_ENABLE;
2799 		data |= PORT_RX_ENABLE;
2800 		data &= ~PORT_LEARN_DISABLE;
2801 		break;
2802 	case STP_STATE_FORWARDING:
2803 		data |= (PORT_TX_ENABLE | PORT_RX_ENABLE);
2804 		data &= ~PORT_LEARN_DISABLE;
2805 		break;
2806 	case STP_STATE_BLOCKED:
2807 /*
2808  * Need to setup static MAC table with override to keep receiving BPDU
2809  * messages.  See sw_init_stp routine.
2810  */
2811 		data &= ~(PORT_TX_ENABLE | PORT_RX_ENABLE);
2812 		data |= PORT_LEARN_DISABLE;
2813 		break;
2814 	case STP_STATE_SIMPLE:
2815 		data |= (PORT_TX_ENABLE | PORT_RX_ENABLE);
2816 		data |= PORT_LEARN_DISABLE;
2817 		break;
2818 	}
2819 	port_w16(hw, port, KS8842_PORT_CTRL_2_OFFSET, data);
2820 	hw->ksz_switch->port_cfg[port].stp_state = state;
2821 }
2822 
2823 #define STP_ENTRY			0
2824 #define BROADCAST_ENTRY			1
2825 #define BRIDGE_ADDR_ENTRY		2
2826 #define IPV6_ADDR_ENTRY			3
2827 
2828 /**
2829  * sw_clr_sta_mac_table - clear static MAC table
2830  * @hw: 	The hardware instance.
2831  *
2832  * This routine clears the static MAC table.
2833  */
2834 static void sw_clr_sta_mac_table(struct ksz_hw *hw)
2835 {
2836 	struct ksz_mac_table *entry;
2837 	int i;
2838 
2839 	for (i = 0; i < STATIC_MAC_TABLE_ENTRIES; i++) {
2840 		entry = &hw->ksz_switch->mac_table[i];
2841 		sw_w_sta_mac_table(hw, i,
2842 			entry->mac_addr, entry->ports,
2843 			entry->override, 0,
2844 			entry->use_fid, entry->fid);
2845 	}
2846 }
2847 
2848 /**
2849  * sw_init_stp - initialize switch spanning tree support
2850  * @hw: 	The hardware instance.
2851  *
2852  * This routine initializes the spanning tree support of the switch.
2853  */
2854 static void sw_init_stp(struct ksz_hw *hw)
2855 {
2856 	struct ksz_mac_table *entry;
2857 
2858 	entry = &hw->ksz_switch->mac_table[STP_ENTRY];
2859 	entry->mac_addr[0] = 0x01;
2860 	entry->mac_addr[1] = 0x80;
2861 	entry->mac_addr[2] = 0xC2;
2862 	entry->mac_addr[3] = 0x00;
2863 	entry->mac_addr[4] = 0x00;
2864 	entry->mac_addr[5] = 0x00;
2865 	entry->ports = HOST_MASK;
2866 	entry->override = 1;
2867 	entry->valid = 1;
2868 	sw_w_sta_mac_table(hw, STP_ENTRY,
2869 		entry->mac_addr, entry->ports,
2870 		entry->override, entry->valid,
2871 		entry->use_fid, entry->fid);
2872 }
2873 
2874 /**
2875  * sw_block_addr - block certain packets from the host port
2876  * @hw: 	The hardware instance.
2877  *
2878  * This routine blocks certain packets from reaching to the host port.
2879  */
2880 static void sw_block_addr(struct ksz_hw *hw)
2881 {
2882 	struct ksz_mac_table *entry;
2883 	int i;
2884 
2885 	for (i = BROADCAST_ENTRY; i <= IPV6_ADDR_ENTRY; i++) {
2886 		entry = &hw->ksz_switch->mac_table[i];
2887 		entry->valid = 0;
2888 		sw_w_sta_mac_table(hw, i,
2889 			entry->mac_addr, entry->ports,
2890 			entry->override, entry->valid,
2891 			entry->use_fid, entry->fid);
2892 	}
2893 }
2894 
2895 #define PHY_LINK_SUPPORT		\
2896 	(PHY_AUTO_NEG_ASYM_PAUSE |	\
2897 	PHY_AUTO_NEG_SYM_PAUSE |	\
2898 	PHY_AUTO_NEG_100BT4 |		\
2899 	PHY_AUTO_NEG_100BTX_FD |	\
2900 	PHY_AUTO_NEG_100BTX |		\
2901 	PHY_AUTO_NEG_10BT_FD |		\
2902 	PHY_AUTO_NEG_10BT)
2903 
2904 static inline void hw_r_phy_ctrl(struct ksz_hw *hw, int phy, u16 *data)
2905 {
2906 	*data = readw(hw->io + phy + KS884X_PHY_CTRL_OFFSET);
2907 }
2908 
2909 static inline void hw_w_phy_ctrl(struct ksz_hw *hw, int phy, u16 data)
2910 {
2911 	writew(data, hw->io + phy + KS884X_PHY_CTRL_OFFSET);
2912 }
2913 
2914 static inline void hw_r_phy_link_stat(struct ksz_hw *hw, int phy, u16 *data)
2915 {
2916 	*data = readw(hw->io + phy + KS884X_PHY_STATUS_OFFSET);
2917 }
2918 
2919 static inline void hw_r_phy_auto_neg(struct ksz_hw *hw, int phy, u16 *data)
2920 {
2921 	*data = readw(hw->io + phy + KS884X_PHY_AUTO_NEG_OFFSET);
2922 }
2923 
2924 static inline void hw_w_phy_auto_neg(struct ksz_hw *hw, int phy, u16 data)
2925 {
2926 	writew(data, hw->io + phy + KS884X_PHY_AUTO_NEG_OFFSET);
2927 }
2928 
2929 static inline void hw_r_phy_rem_cap(struct ksz_hw *hw, int phy, u16 *data)
2930 {
2931 	*data = readw(hw->io + phy + KS884X_PHY_REMOTE_CAP_OFFSET);
2932 }
2933 
2934 static inline void hw_r_phy_crossover(struct ksz_hw *hw, int phy, u16 *data)
2935 {
2936 	*data = readw(hw->io + phy + KS884X_PHY_CTRL_OFFSET);
2937 }
2938 
2939 static inline void hw_w_phy_crossover(struct ksz_hw *hw, int phy, u16 data)
2940 {
2941 	writew(data, hw->io + phy + KS884X_PHY_CTRL_OFFSET);
2942 }
2943 
2944 static inline void hw_r_phy_polarity(struct ksz_hw *hw, int phy, u16 *data)
2945 {
2946 	*data = readw(hw->io + phy + KS884X_PHY_PHY_CTRL_OFFSET);
2947 }
2948 
2949 static inline void hw_w_phy_polarity(struct ksz_hw *hw, int phy, u16 data)
2950 {
2951 	writew(data, hw->io + phy + KS884X_PHY_PHY_CTRL_OFFSET);
2952 }
2953 
2954 static inline void hw_r_phy_link_md(struct ksz_hw *hw, int phy, u16 *data)
2955 {
2956 	*data = readw(hw->io + phy + KS884X_PHY_LINK_MD_OFFSET);
2957 }
2958 
2959 static inline void hw_w_phy_link_md(struct ksz_hw *hw, int phy, u16 data)
2960 {
2961 	writew(data, hw->io + phy + KS884X_PHY_LINK_MD_OFFSET);
2962 }
2963 
2964 /**
2965  * hw_r_phy - read data from PHY register
2966  * @hw: 	The hardware instance.
2967  * @port:	Port to read.
2968  * @reg:	PHY register to read.
2969  * @val:	Buffer to store the read data.
2970  *
2971  * This routine reads data from the PHY register.
2972  */
2973 static void hw_r_phy(struct ksz_hw *hw, int port, u16 reg, u16 *val)
2974 {
2975 	int phy;
2976 
2977 	phy = KS884X_PHY_1_CTRL_OFFSET + port * PHY_CTRL_INTERVAL + reg;
2978 	*val = readw(hw->io + phy);
2979 }
2980 
2981 /**
2982  * port_w_phy - write data to PHY register
2983  * @hw: 	The hardware instance.
2984  * @port:	Port to write.
2985  * @reg:	PHY register to write.
2986  * @val:	Word data to write.
2987  *
2988  * This routine writes data to the PHY register.
2989  */
2990 static void hw_w_phy(struct ksz_hw *hw, int port, u16 reg, u16 val)
2991 {
2992 	int phy;
2993 
2994 	phy = KS884X_PHY_1_CTRL_OFFSET + port * PHY_CTRL_INTERVAL + reg;
2995 	writew(val, hw->io + phy);
2996 }
2997 
2998 /*
2999  * EEPROM access functions
3000  */
3001 
3002 #define AT93C_CODE			0
3003 #define AT93C_WR_OFF			0x00
3004 #define AT93C_WR_ALL			0x10
3005 #define AT93C_ER_ALL			0x20
3006 #define AT93C_WR_ON			0x30
3007 
3008 #define AT93C_WRITE			1
3009 #define AT93C_READ			2
3010 #define AT93C_ERASE			3
3011 
3012 #define EEPROM_DELAY			4
3013 
3014 static inline void drop_gpio(struct ksz_hw *hw, u8 gpio)
3015 {
3016 	u16 data;
3017 
3018 	data = readw(hw->io + KS884X_EEPROM_CTRL_OFFSET);
3019 	data &= ~gpio;
3020 	writew(data, hw->io + KS884X_EEPROM_CTRL_OFFSET);
3021 }
3022 
3023 static inline void raise_gpio(struct ksz_hw *hw, u8 gpio)
3024 {
3025 	u16 data;
3026 
3027 	data = readw(hw->io + KS884X_EEPROM_CTRL_OFFSET);
3028 	data |= gpio;
3029 	writew(data, hw->io + KS884X_EEPROM_CTRL_OFFSET);
3030 }
3031 
3032 static inline u8 state_gpio(struct ksz_hw *hw, u8 gpio)
3033 {
3034 	u16 data;
3035 
3036 	data = readw(hw->io + KS884X_EEPROM_CTRL_OFFSET);
3037 	return (u8)(data & gpio);
3038 }
3039 
3040 static void eeprom_clk(struct ksz_hw *hw)
3041 {
3042 	raise_gpio(hw, EEPROM_SERIAL_CLOCK);
3043 	udelay(EEPROM_DELAY);
3044 	drop_gpio(hw, EEPROM_SERIAL_CLOCK);
3045 	udelay(EEPROM_DELAY);
3046 }
3047 
3048 static u16 spi_r(struct ksz_hw *hw)
3049 {
3050 	int i;
3051 	u16 temp = 0;
3052 
3053 	for (i = 15; i >= 0; i--) {
3054 		raise_gpio(hw, EEPROM_SERIAL_CLOCK);
3055 		udelay(EEPROM_DELAY);
3056 
3057 		temp |= (state_gpio(hw, EEPROM_DATA_IN)) ? 1 << i : 0;
3058 
3059 		drop_gpio(hw, EEPROM_SERIAL_CLOCK);
3060 		udelay(EEPROM_DELAY);
3061 	}
3062 	return temp;
3063 }
3064 
3065 static void spi_w(struct ksz_hw *hw, u16 data)
3066 {
3067 	int i;
3068 
3069 	for (i = 15; i >= 0; i--) {
3070 		(data & (0x01 << i)) ? raise_gpio(hw, EEPROM_DATA_OUT) :
3071 			drop_gpio(hw, EEPROM_DATA_OUT);
3072 		eeprom_clk(hw);
3073 	}
3074 }
3075 
3076 static void spi_reg(struct ksz_hw *hw, u8 data, u8 reg)
3077 {
3078 	int i;
3079 
3080 	/* Initial start bit */
3081 	raise_gpio(hw, EEPROM_DATA_OUT);
3082 	eeprom_clk(hw);
3083 
3084 	/* AT93C operation */
3085 	for (i = 1; i >= 0; i--) {
3086 		(data & (0x01 << i)) ? raise_gpio(hw, EEPROM_DATA_OUT) :
3087 			drop_gpio(hw, EEPROM_DATA_OUT);
3088 		eeprom_clk(hw);
3089 	}
3090 
3091 	/* Address location */
3092 	for (i = 5; i >= 0; i--) {
3093 		(reg & (0x01 << i)) ? raise_gpio(hw, EEPROM_DATA_OUT) :
3094 			drop_gpio(hw, EEPROM_DATA_OUT);
3095 		eeprom_clk(hw);
3096 	}
3097 }
3098 
3099 #define EEPROM_DATA_RESERVED		0
3100 #define EEPROM_DATA_MAC_ADDR_0		1
3101 #define EEPROM_DATA_MAC_ADDR_1		2
3102 #define EEPROM_DATA_MAC_ADDR_2		3
3103 #define EEPROM_DATA_SUBSYS_ID		4
3104 #define EEPROM_DATA_SUBSYS_VEN_ID	5
3105 #define EEPROM_DATA_PM_CAP		6
3106 
3107 /* User defined EEPROM data */
3108 #define EEPROM_DATA_OTHER_MAC_ADDR	9
3109 
3110 /**
3111  * eeprom_read - read from AT93C46 EEPROM
3112  * @hw: 	The hardware instance.
3113  * @reg:	The register offset.
3114  *
3115  * This function reads a word from the AT93C46 EEPROM.
3116  *
3117  * Return the data value.
3118  */
3119 static u16 eeprom_read(struct ksz_hw *hw, u8 reg)
3120 {
3121 	u16 data;
3122 
3123 	raise_gpio(hw, EEPROM_ACCESS_ENABLE | EEPROM_CHIP_SELECT);
3124 
3125 	spi_reg(hw, AT93C_READ, reg);
3126 	data = spi_r(hw);
3127 
3128 	drop_gpio(hw, EEPROM_ACCESS_ENABLE | EEPROM_CHIP_SELECT);
3129 
3130 	return data;
3131 }
3132 
3133 /**
3134  * eeprom_write - write to AT93C46 EEPROM
3135  * @hw: 	The hardware instance.
3136  * @reg:	The register offset.
3137  * @data:	The data value.
3138  *
3139  * This procedure writes a word to the AT93C46 EEPROM.
3140  */
3141 static void eeprom_write(struct ksz_hw *hw, u8 reg, u16 data)
3142 {
3143 	int timeout;
3144 
3145 	raise_gpio(hw, EEPROM_ACCESS_ENABLE | EEPROM_CHIP_SELECT);
3146 
3147 	/* Enable write. */
3148 	spi_reg(hw, AT93C_CODE, AT93C_WR_ON);
3149 	drop_gpio(hw, EEPROM_CHIP_SELECT);
3150 	udelay(1);
3151 
3152 	/* Erase the register. */
3153 	raise_gpio(hw, EEPROM_CHIP_SELECT);
3154 	spi_reg(hw, AT93C_ERASE, reg);
3155 	drop_gpio(hw, EEPROM_CHIP_SELECT);
3156 	udelay(1);
3157 
3158 	/* Check operation complete. */
3159 	raise_gpio(hw, EEPROM_CHIP_SELECT);
3160 	timeout = 8;
3161 	mdelay(2);
3162 	do {
3163 		mdelay(1);
3164 	} while (!state_gpio(hw, EEPROM_DATA_IN) && --timeout);
3165 	drop_gpio(hw, EEPROM_CHIP_SELECT);
3166 	udelay(1);
3167 
3168 	/* Write the register. */
3169 	raise_gpio(hw, EEPROM_CHIP_SELECT);
3170 	spi_reg(hw, AT93C_WRITE, reg);
3171 	spi_w(hw, data);
3172 	drop_gpio(hw, EEPROM_CHIP_SELECT);
3173 	udelay(1);
3174 
3175 	/* Check operation complete. */
3176 	raise_gpio(hw, EEPROM_CHIP_SELECT);
3177 	timeout = 8;
3178 	mdelay(2);
3179 	do {
3180 		mdelay(1);
3181 	} while (!state_gpio(hw, EEPROM_DATA_IN) && --timeout);
3182 	drop_gpio(hw, EEPROM_CHIP_SELECT);
3183 	udelay(1);
3184 
3185 	/* Disable write. */
3186 	raise_gpio(hw, EEPROM_CHIP_SELECT);
3187 	spi_reg(hw, AT93C_CODE, AT93C_WR_OFF);
3188 
3189 	drop_gpio(hw, EEPROM_ACCESS_ENABLE | EEPROM_CHIP_SELECT);
3190 }
3191 
3192 /*
3193  * Link detection routines
3194  */
3195 
3196 static u16 advertised_flow_ctrl(struct ksz_port *port, u16 ctrl)
3197 {
3198 	ctrl &= ~PORT_AUTO_NEG_SYM_PAUSE;
3199 	switch (port->flow_ctrl) {
3200 	case PHY_FLOW_CTRL:
3201 		ctrl |= PORT_AUTO_NEG_SYM_PAUSE;
3202 		break;
3203 	/* Not supported. */
3204 	case PHY_TX_ONLY:
3205 	case PHY_RX_ONLY:
3206 	default:
3207 		break;
3208 	}
3209 	return ctrl;
3210 }
3211 
3212 static void set_flow_ctrl(struct ksz_hw *hw, int rx, int tx)
3213 {
3214 	u32 rx_cfg;
3215 	u32 tx_cfg;
3216 
3217 	rx_cfg = hw->rx_cfg;
3218 	tx_cfg = hw->tx_cfg;
3219 	if (rx)
3220 		hw->rx_cfg |= DMA_RX_FLOW_ENABLE;
3221 	else
3222 		hw->rx_cfg &= ~DMA_RX_FLOW_ENABLE;
3223 	if (tx)
3224 		hw->tx_cfg |= DMA_TX_FLOW_ENABLE;
3225 	else
3226 		hw->tx_cfg &= ~DMA_TX_FLOW_ENABLE;
3227 	if (hw->enabled) {
3228 		if (rx_cfg != hw->rx_cfg)
3229 			writel(hw->rx_cfg, hw->io + KS_DMA_RX_CTRL);
3230 		if (tx_cfg != hw->tx_cfg)
3231 			writel(hw->tx_cfg, hw->io + KS_DMA_TX_CTRL);
3232 	}
3233 }
3234 
3235 static void determine_flow_ctrl(struct ksz_hw *hw, struct ksz_port *port,
3236 	u16 local, u16 remote)
3237 {
3238 	int rx;
3239 	int tx;
3240 
3241 	if (hw->overrides & PAUSE_FLOW_CTRL)
3242 		return;
3243 
3244 	rx = tx = 0;
3245 	if (port->force_link)
3246 		rx = tx = 1;
3247 	if (remote & PHY_AUTO_NEG_SYM_PAUSE) {
3248 		if (local & PHY_AUTO_NEG_SYM_PAUSE) {
3249 			rx = tx = 1;
3250 		} else if ((remote & PHY_AUTO_NEG_ASYM_PAUSE) &&
3251 				(local & PHY_AUTO_NEG_PAUSE) ==
3252 				PHY_AUTO_NEG_ASYM_PAUSE) {
3253 			tx = 1;
3254 		}
3255 	} else if (remote & PHY_AUTO_NEG_ASYM_PAUSE) {
3256 		if ((local & PHY_AUTO_NEG_PAUSE) == PHY_AUTO_NEG_PAUSE)
3257 			rx = 1;
3258 	}
3259 	if (!hw->ksz_switch)
3260 		set_flow_ctrl(hw, rx, tx);
3261 }
3262 
3263 static inline void port_cfg_change(struct ksz_hw *hw, struct ksz_port *port,
3264 	struct ksz_port_info *info, u16 link_status)
3265 {
3266 	if ((hw->features & HALF_DUPLEX_SIGNAL_BUG) &&
3267 			!(hw->overrides & PAUSE_FLOW_CTRL)) {
3268 		u32 cfg = hw->tx_cfg;
3269 
3270 		/* Disable flow control in the half duplex mode. */
3271 		if (1 == info->duplex)
3272 			hw->tx_cfg &= ~DMA_TX_FLOW_ENABLE;
3273 		if (hw->enabled && cfg != hw->tx_cfg)
3274 			writel(hw->tx_cfg, hw->io + KS_DMA_TX_CTRL);
3275 	}
3276 }
3277 
3278 /**
3279  * port_get_link_speed - get current link status
3280  * @port: 	The port instance.
3281  *
3282  * This routine reads PHY registers to determine the current link status of the
3283  * switch ports.
3284  */
3285 static void port_get_link_speed(struct ksz_port *port)
3286 {
3287 	uint interrupt;
3288 	struct ksz_port_info *info;
3289 	struct ksz_port_info *linked = NULL;
3290 	struct ksz_hw *hw = port->hw;
3291 	u16 data;
3292 	u16 status;
3293 	u8 local;
3294 	u8 remote;
3295 	int i;
3296 	int p;
3297 	int change = 0;
3298 
3299 	interrupt = hw_block_intr(hw);
3300 
3301 	for (i = 0, p = port->first_port; i < port->port_cnt; i++, p++) {
3302 		info = &hw->port_info[p];
3303 		port_r16(hw, p, KS884X_PORT_CTRL_4_OFFSET, &data);
3304 		port_r16(hw, p, KS884X_PORT_STATUS_OFFSET, &status);
3305 
3306 		/*
3307 		 * Link status is changing all the time even when there is no
3308 		 * cable connection!
3309 		 */
3310 		remote = status & (PORT_AUTO_NEG_COMPLETE |
3311 			PORT_STATUS_LINK_GOOD);
3312 		local = (u8) data;
3313 
3314 		/* No change to status. */
3315 		if (local == info->advertised && remote == info->partner)
3316 			continue;
3317 
3318 		info->advertised = local;
3319 		info->partner = remote;
3320 		if (status & PORT_STATUS_LINK_GOOD) {
3321 
3322 			/* Remember the first linked port. */
3323 			if (!linked)
3324 				linked = info;
3325 
3326 			info->tx_rate = 10 * TX_RATE_UNIT;
3327 			if (status & PORT_STATUS_SPEED_100MBIT)
3328 				info->tx_rate = 100 * TX_RATE_UNIT;
3329 
3330 			info->duplex = 1;
3331 			if (status & PORT_STATUS_FULL_DUPLEX)
3332 				info->duplex = 2;
3333 
3334 			if (media_connected != info->state) {
3335 				hw_r_phy(hw, p, KS884X_PHY_AUTO_NEG_OFFSET,
3336 					&data);
3337 				hw_r_phy(hw, p, KS884X_PHY_REMOTE_CAP_OFFSET,
3338 					&status);
3339 				determine_flow_ctrl(hw, port, data, status);
3340 				if (hw->ksz_switch) {
3341 					port_cfg_back_pressure(hw, p,
3342 						(1 == info->duplex));
3343 				}
3344 				change |= 1 << i;
3345 				port_cfg_change(hw, port, info, status);
3346 			}
3347 			info->state = media_connected;
3348 		} else {
3349 			if (media_disconnected != info->state) {
3350 				change |= 1 << i;
3351 
3352 				/* Indicate the link just goes down. */
3353 				hw->port_mib[p].link_down = 1;
3354 			}
3355 			info->state = media_disconnected;
3356 		}
3357 		hw->port_mib[p].state = (u8) info->state;
3358 	}
3359 
3360 	if (linked && media_disconnected == port->linked->state)
3361 		port->linked = linked;
3362 
3363 	hw_restore_intr(hw, interrupt);
3364 }
3365 
3366 #define PHY_RESET_TIMEOUT		10
3367 
3368 /**
3369  * port_set_link_speed - set port speed
3370  * @port: 	The port instance.
3371  *
3372  * This routine sets the link speed of the switch ports.
3373  */
3374 static void port_set_link_speed(struct ksz_port *port)
3375 {
3376 	struct ksz_port_info *info;
3377 	struct ksz_hw *hw = port->hw;
3378 	u16 data;
3379 	u16 cfg;
3380 	u8 status;
3381 	int i;
3382 	int p;
3383 
3384 	for (i = 0, p = port->first_port; i < port->port_cnt; i++, p++) {
3385 		info = &hw->port_info[p];
3386 
3387 		port_r16(hw, p, KS884X_PORT_CTRL_4_OFFSET, &data);
3388 		port_r8(hw, p, KS884X_PORT_STATUS_OFFSET, &status);
3389 
3390 		cfg = 0;
3391 		if (status & PORT_STATUS_LINK_GOOD)
3392 			cfg = data;
3393 
3394 		data |= PORT_AUTO_NEG_ENABLE;
3395 		data = advertised_flow_ctrl(port, data);
3396 
3397 		data |= PORT_AUTO_NEG_100BTX_FD | PORT_AUTO_NEG_100BTX |
3398 			PORT_AUTO_NEG_10BT_FD | PORT_AUTO_NEG_10BT;
3399 
3400 		/* Check if manual configuration is specified by the user. */
3401 		if (port->speed || port->duplex) {
3402 			if (10 == port->speed)
3403 				data &= ~(PORT_AUTO_NEG_100BTX_FD |
3404 					PORT_AUTO_NEG_100BTX);
3405 			else if (100 == port->speed)
3406 				data &= ~(PORT_AUTO_NEG_10BT_FD |
3407 					PORT_AUTO_NEG_10BT);
3408 			if (1 == port->duplex)
3409 				data &= ~(PORT_AUTO_NEG_100BTX_FD |
3410 					PORT_AUTO_NEG_10BT_FD);
3411 			else if (2 == port->duplex)
3412 				data &= ~(PORT_AUTO_NEG_100BTX |
3413 					PORT_AUTO_NEG_10BT);
3414 		}
3415 		if (data != cfg) {
3416 			data |= PORT_AUTO_NEG_RESTART;
3417 			port_w16(hw, p, KS884X_PORT_CTRL_4_OFFSET, data);
3418 		}
3419 	}
3420 }
3421 
3422 /**
3423  * port_force_link_speed - force port speed
3424  * @port: 	The port instance.
3425  *
3426  * This routine forces the link speed of the switch ports.
3427  */
3428 static void port_force_link_speed(struct ksz_port *port)
3429 {
3430 	struct ksz_hw *hw = port->hw;
3431 	u16 data;
3432 	int i;
3433 	int phy;
3434 	int p;
3435 
3436 	for (i = 0, p = port->first_port; i < port->port_cnt; i++, p++) {
3437 		phy = KS884X_PHY_1_CTRL_OFFSET + p * PHY_CTRL_INTERVAL;
3438 		hw_r_phy_ctrl(hw, phy, &data);
3439 
3440 		data &= ~PHY_AUTO_NEG_ENABLE;
3441 
3442 		if (10 == port->speed)
3443 			data &= ~PHY_SPEED_100MBIT;
3444 		else if (100 == port->speed)
3445 			data |= PHY_SPEED_100MBIT;
3446 		if (1 == port->duplex)
3447 			data &= ~PHY_FULL_DUPLEX;
3448 		else if (2 == port->duplex)
3449 			data |= PHY_FULL_DUPLEX;
3450 		hw_w_phy_ctrl(hw, phy, data);
3451 	}
3452 }
3453 
3454 static void port_set_power_saving(struct ksz_port *port, int enable)
3455 {
3456 	struct ksz_hw *hw = port->hw;
3457 	int i;
3458 	int p;
3459 
3460 	for (i = 0, p = port->first_port; i < port->port_cnt; i++, p++)
3461 		port_cfg(hw, p,
3462 			KS884X_PORT_CTRL_4_OFFSET, PORT_POWER_DOWN, enable);
3463 }
3464 
3465 /*
3466  * KSZ8841 power management functions
3467  */
3468 
3469 /**
3470  * hw_chk_wol_pme_status - check PMEN pin
3471  * @hw: 	The hardware instance.
3472  *
3473  * This function is used to check PMEN pin is asserted.
3474  *
3475  * Return 1 if PMEN pin is asserted; otherwise, 0.
3476  */
3477 static int hw_chk_wol_pme_status(struct ksz_hw *hw)
3478 {
3479 	struct dev_info *hw_priv = container_of(hw, struct dev_info, hw);
3480 	struct pci_dev *pdev = hw_priv->pdev;
3481 	u16 data;
3482 
3483 	if (!pdev->pm_cap)
3484 		return 0;
3485 	pci_read_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, &data);
3486 	return (data & PCI_PM_CTRL_PME_STATUS) == PCI_PM_CTRL_PME_STATUS;
3487 }
3488 
3489 /**
3490  * hw_clr_wol_pme_status - clear PMEN pin
3491  * @hw: 	The hardware instance.
3492  *
3493  * This routine is used to clear PME_Status to deassert PMEN pin.
3494  */
3495 static void hw_clr_wol_pme_status(struct ksz_hw *hw)
3496 {
3497 	struct dev_info *hw_priv = container_of(hw, struct dev_info, hw);
3498 	struct pci_dev *pdev = hw_priv->pdev;
3499 	u16 data;
3500 
3501 	if (!pdev->pm_cap)
3502 		return;
3503 
3504 	/* Clear PME_Status to deassert PMEN pin. */
3505 	pci_read_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, &data);
3506 	data |= PCI_PM_CTRL_PME_STATUS;
3507 	pci_write_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, data);
3508 }
3509 
3510 /**
3511  * hw_cfg_wol_pme - enable or disable Wake-on-LAN
3512  * @hw: 	The hardware instance.
3513  * @set:	The flag indicating whether to enable or disable.
3514  *
3515  * This routine is used to enable or disable Wake-on-LAN.
3516  */
3517 static void hw_cfg_wol_pme(struct ksz_hw *hw, int set)
3518 {
3519 	struct dev_info *hw_priv = container_of(hw, struct dev_info, hw);
3520 	struct pci_dev *pdev = hw_priv->pdev;
3521 	u16 data;
3522 
3523 	if (!pdev->pm_cap)
3524 		return;
3525 	pci_read_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, &data);
3526 	data &= ~PCI_PM_CTRL_STATE_MASK;
3527 	if (set)
3528 		data |= PCI_PM_CTRL_PME_ENABLE | PCI_D3hot;
3529 	else
3530 		data &= ~PCI_PM_CTRL_PME_ENABLE;
3531 	pci_write_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, data);
3532 }
3533 
3534 /**
3535  * hw_cfg_wol - configure Wake-on-LAN features
3536  * @hw: 	The hardware instance.
3537  * @frame:	The pattern frame bit.
3538  * @set:	The flag indicating whether to enable or disable.
3539  *
3540  * This routine is used to enable or disable certain Wake-on-LAN features.
3541  */
3542 static void hw_cfg_wol(struct ksz_hw *hw, u16 frame, int set)
3543 {
3544 	u16 data;
3545 
3546 	data = readw(hw->io + KS8841_WOL_CTRL_OFFSET);
3547 	if (set)
3548 		data |= frame;
3549 	else
3550 		data &= ~frame;
3551 	writew(data, hw->io + KS8841_WOL_CTRL_OFFSET);
3552 }
3553 
3554 /**
3555  * hw_set_wol_frame - program Wake-on-LAN pattern
3556  * @hw: 	The hardware instance.
3557  * @i:		The frame index.
3558  * @mask_size:	The size of the mask.
3559  * @mask:	Mask to ignore certain bytes in the pattern.
3560  * @frame_size:	The size of the frame.
3561  * @pattern:	The frame data.
3562  *
3563  * This routine is used to program Wake-on-LAN pattern.
3564  */
3565 static void hw_set_wol_frame(struct ksz_hw *hw, int i, uint mask_size,
3566 	const u8 *mask, uint frame_size, const u8 *pattern)
3567 {
3568 	int bits;
3569 	int from;
3570 	int len;
3571 	int to;
3572 	u32 crc;
3573 	u8 data[64];
3574 	u8 val = 0;
3575 
3576 	if (frame_size > mask_size * 8)
3577 		frame_size = mask_size * 8;
3578 	if (frame_size > 64)
3579 		frame_size = 64;
3580 
3581 	i *= 0x10;
3582 	writel(0, hw->io + KS8841_WOL_FRAME_BYTE0_OFFSET + i);
3583 	writel(0, hw->io + KS8841_WOL_FRAME_BYTE2_OFFSET + i);
3584 
3585 	bits = len = from = to = 0;
3586 	do {
3587 		if (bits) {
3588 			if ((val & 1))
3589 				data[to++] = pattern[from];
3590 			val >>= 1;
3591 			++from;
3592 			--bits;
3593 		} else {
3594 			val = mask[len];
3595 			writeb(val, hw->io + KS8841_WOL_FRAME_BYTE0_OFFSET + i
3596 				+ len);
3597 			++len;
3598 			if (val)
3599 				bits = 8;
3600 			else
3601 				from += 8;
3602 		}
3603 	} while (from < (int) frame_size);
3604 	if (val) {
3605 		bits = mask[len - 1];
3606 		val <<= (from % 8);
3607 		bits &= ~val;
3608 		writeb(bits, hw->io + KS8841_WOL_FRAME_BYTE0_OFFSET + i + len -
3609 			1);
3610 	}
3611 	crc = ether_crc(to, data);
3612 	writel(crc, hw->io + KS8841_WOL_FRAME_CRC_OFFSET + i);
3613 }
3614 
3615 /**
3616  * hw_add_wol_arp - add ARP pattern
3617  * @hw: 	The hardware instance.
3618  * @ip_addr:	The IPv4 address assigned to the device.
3619  *
3620  * This routine is used to add ARP pattern for waking up the host.
3621  */
3622 static void hw_add_wol_arp(struct ksz_hw *hw, const u8 *ip_addr)
3623 {
3624 	static const u8 mask[6] = { 0x3F, 0xF0, 0x3F, 0x00, 0xC0, 0x03 };
3625 	u8 pattern[42] = {
3626 		0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
3627 		0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
3628 		0x08, 0x06,
3629 		0x00, 0x01, 0x08, 0x00, 0x06, 0x04, 0x00, 0x01,
3630 		0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
3631 		0x00, 0x00, 0x00, 0x00,
3632 		0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
3633 		0x00, 0x00, 0x00, 0x00 };
3634 
3635 	memcpy(&pattern[38], ip_addr, 4);
3636 	hw_set_wol_frame(hw, 3, 6, mask, 42, pattern);
3637 }
3638 
3639 /**
3640  * hw_add_wol_bcast - add broadcast pattern
3641  * @hw: 	The hardware instance.
3642  *
3643  * This routine is used to add broadcast pattern for waking up the host.
3644  */
3645 static void hw_add_wol_bcast(struct ksz_hw *hw)
3646 {
3647 	static const u8 mask[] = { 0x3F };
3648 	static const u8 pattern[] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
3649 
3650 	hw_set_wol_frame(hw, 2, 1, mask, ETH_ALEN, pattern);
3651 }
3652 
3653 /**
3654  * hw_add_wol_mcast - add multicast pattern
3655  * @hw: 	The hardware instance.
3656  *
3657  * This routine is used to add multicast pattern for waking up the host.
3658  *
3659  * It is assumed the multicast packet is the ICMPv6 neighbor solicitation used
3660  * by IPv6 ping command.  Note that multicast packets are filtred through the
3661  * multicast hash table, so not all multicast packets can wake up the host.
3662  */
3663 static void hw_add_wol_mcast(struct ksz_hw *hw)
3664 {
3665 	static const u8 mask[] = { 0x3F };
3666 	u8 pattern[] = { 0x33, 0x33, 0xFF, 0x00, 0x00, 0x00 };
3667 
3668 	memcpy(&pattern[3], &hw->override_addr[3], 3);
3669 	hw_set_wol_frame(hw, 1, 1, mask, 6, pattern);
3670 }
3671 
3672 /**
3673  * hw_add_wol_ucast - add unicast pattern
3674  * @hw: 	The hardware instance.
3675  *
3676  * This routine is used to add unicast pattern to wakeup the host.
3677  *
3678  * It is assumed the unicast packet is directed to the device, as the hardware
3679  * can only receive them in normal case.
3680  */
3681 static void hw_add_wol_ucast(struct ksz_hw *hw)
3682 {
3683 	static const u8 mask[] = { 0x3F };
3684 
3685 	hw_set_wol_frame(hw, 0, 1, mask, ETH_ALEN, hw->override_addr);
3686 }
3687 
3688 /**
3689  * hw_enable_wol - enable Wake-on-LAN
3690  * @hw: 	The hardware instance.
3691  * @wol_enable:	The Wake-on-LAN settings.
3692  * @net_addr:	The IPv4 address assigned to the device.
3693  *
3694  * This routine is used to enable Wake-on-LAN depending on driver settings.
3695  */
3696 static void hw_enable_wol(struct ksz_hw *hw, u32 wol_enable, const u8 *net_addr)
3697 {
3698 	hw_cfg_wol(hw, KS8841_WOL_MAGIC_ENABLE, (wol_enable & WAKE_MAGIC));
3699 	hw_cfg_wol(hw, KS8841_WOL_FRAME0_ENABLE, (wol_enable & WAKE_UCAST));
3700 	hw_add_wol_ucast(hw);
3701 	hw_cfg_wol(hw, KS8841_WOL_FRAME1_ENABLE, (wol_enable & WAKE_MCAST));
3702 	hw_add_wol_mcast(hw);
3703 	hw_cfg_wol(hw, KS8841_WOL_FRAME2_ENABLE, (wol_enable & WAKE_BCAST));
3704 	hw_cfg_wol(hw, KS8841_WOL_FRAME3_ENABLE, (wol_enable & WAKE_ARP));
3705 	hw_add_wol_arp(hw, net_addr);
3706 }
3707 
3708 /**
3709  * hw_init - check driver is correct for the hardware
3710  * @hw: 	The hardware instance.
3711  *
3712  * This function checks the hardware is correct for this driver and sets the
3713  * hardware up for proper initialization.
3714  *
3715  * Return number of ports or 0 if not right.
3716  */
3717 static int hw_init(struct ksz_hw *hw)
3718 {
3719 	int rc = 0;
3720 	u16 data;
3721 	u16 revision;
3722 
3723 	/* Set bus speed to 125MHz. */
3724 	writew(BUS_SPEED_125_MHZ, hw->io + KS884X_BUS_CTRL_OFFSET);
3725 
3726 	/* Check KSZ884x chip ID. */
3727 	data = readw(hw->io + KS884X_CHIP_ID_OFFSET);
3728 
3729 	revision = (data & KS884X_REVISION_MASK) >> KS884X_REVISION_SHIFT;
3730 	data &= KS884X_CHIP_ID_MASK_41;
3731 	if (REG_CHIP_ID_41 == data)
3732 		rc = 1;
3733 	else if (REG_CHIP_ID_42 == data)
3734 		rc = 2;
3735 	else
3736 		return 0;
3737 
3738 	/* Setup hardware features or bug workarounds. */
3739 	if (revision <= 1) {
3740 		hw->features |= SMALL_PACKET_TX_BUG;
3741 		if (1 == rc)
3742 			hw->features |= HALF_DUPLEX_SIGNAL_BUG;
3743 	}
3744 	return rc;
3745 }
3746 
3747 /**
3748  * hw_reset - reset the hardware
3749  * @hw: 	The hardware instance.
3750  *
3751  * This routine resets the hardware.
3752  */
3753 static void hw_reset(struct ksz_hw *hw)
3754 {
3755 	writew(GLOBAL_SOFTWARE_RESET, hw->io + KS884X_GLOBAL_CTRL_OFFSET);
3756 
3757 	/* Wait for device to reset. */
3758 	mdelay(10);
3759 
3760 	/* Write 0 to clear device reset. */
3761 	writew(0, hw->io + KS884X_GLOBAL_CTRL_OFFSET);
3762 }
3763 
3764 /**
3765  * hw_setup - setup the hardware
3766  * @hw: 	The hardware instance.
3767  *
3768  * This routine setup the hardware for proper operation.
3769  */
3770 static void hw_setup(struct ksz_hw *hw)
3771 {
3772 #if SET_DEFAULT_LED
3773 	u16 data;
3774 
3775 	/* Change default LED mode. */
3776 	data = readw(hw->io + KS8842_SWITCH_CTRL_5_OFFSET);
3777 	data &= ~LED_MODE;
3778 	data |= SET_DEFAULT_LED;
3779 	writew(data, hw->io + KS8842_SWITCH_CTRL_5_OFFSET);
3780 #endif
3781 
3782 	/* Setup transmit control. */
3783 	hw->tx_cfg = (DMA_TX_PAD_ENABLE | DMA_TX_CRC_ENABLE |
3784 		(DMA_BURST_DEFAULT << DMA_BURST_SHIFT) | DMA_TX_ENABLE);
3785 
3786 	/* Setup receive control. */
3787 	hw->rx_cfg = (DMA_RX_BROADCAST | DMA_RX_UNICAST |
3788 		(DMA_BURST_DEFAULT << DMA_BURST_SHIFT) | DMA_RX_ENABLE);
3789 	hw->rx_cfg |= KS884X_DMA_RX_MULTICAST;
3790 
3791 	/* Hardware cannot handle UDP packet in IP fragments. */
3792 	hw->rx_cfg |= (DMA_RX_CSUM_TCP | DMA_RX_CSUM_IP);
3793 
3794 	if (hw->all_multi)
3795 		hw->rx_cfg |= DMA_RX_ALL_MULTICAST;
3796 	if (hw->promiscuous)
3797 		hw->rx_cfg |= DMA_RX_PROMISCUOUS;
3798 }
3799 
3800 /**
3801  * hw_setup_intr - setup interrupt mask
3802  * @hw: 	The hardware instance.
3803  *
3804  * This routine setup the interrupt mask for proper operation.
3805  */
3806 static void hw_setup_intr(struct ksz_hw *hw)
3807 {
3808 	hw->intr_mask = KS884X_INT_MASK | KS884X_INT_RX_OVERRUN;
3809 }
3810 
3811 static void ksz_check_desc_num(struct ksz_desc_info *info)
3812 {
3813 #define MIN_DESC_SHIFT  2
3814 
3815 	int alloc = info->alloc;
3816 	int shift;
3817 
3818 	shift = 0;
3819 	while (!(alloc & 1)) {
3820 		shift++;
3821 		alloc >>= 1;
3822 	}
3823 	if (alloc != 1 || shift < MIN_DESC_SHIFT) {
3824 		pr_alert("Hardware descriptor numbers not right!\n");
3825 		while (alloc) {
3826 			shift++;
3827 			alloc >>= 1;
3828 		}
3829 		if (shift < MIN_DESC_SHIFT)
3830 			shift = MIN_DESC_SHIFT;
3831 		alloc = 1 << shift;
3832 		info->alloc = alloc;
3833 	}
3834 	info->mask = info->alloc - 1;
3835 }
3836 
3837 static void hw_init_desc(struct ksz_desc_info *desc_info, int transmit)
3838 {
3839 	int i;
3840 	u32 phys = desc_info->ring_phys;
3841 	struct ksz_hw_desc *desc = desc_info->ring_virt;
3842 	struct ksz_desc *cur = desc_info->ring;
3843 	struct ksz_desc *previous = NULL;
3844 
3845 	for (i = 0; i < desc_info->alloc; i++) {
3846 		cur->phw = desc++;
3847 		phys += desc_info->size;
3848 		previous = cur++;
3849 		previous->phw->next = cpu_to_le32(phys);
3850 	}
3851 	previous->phw->next = cpu_to_le32(desc_info->ring_phys);
3852 	previous->sw.buf.rx.end_of_ring = 1;
3853 	previous->phw->buf.data = cpu_to_le32(previous->sw.buf.data);
3854 
3855 	desc_info->avail = desc_info->alloc;
3856 	desc_info->last = desc_info->next = 0;
3857 
3858 	desc_info->cur = desc_info->ring;
3859 }
3860 
3861 /**
3862  * hw_set_desc_base - set descriptor base addresses
3863  * @hw: 	The hardware instance.
3864  * @tx_addr:	The transmit descriptor base.
3865  * @rx_addr:	The receive descriptor base.
3866  *
3867  * This routine programs the descriptor base addresses after reset.
3868  */
3869 static void hw_set_desc_base(struct ksz_hw *hw, u32 tx_addr, u32 rx_addr)
3870 {
3871 	/* Set base address of Tx/Rx descriptors. */
3872 	writel(tx_addr, hw->io + KS_DMA_TX_ADDR);
3873 	writel(rx_addr, hw->io + KS_DMA_RX_ADDR);
3874 }
3875 
3876 static void hw_reset_pkts(struct ksz_desc_info *info)
3877 {
3878 	info->cur = info->ring;
3879 	info->avail = info->alloc;
3880 	info->last = info->next = 0;
3881 }
3882 
3883 static inline void hw_resume_rx(struct ksz_hw *hw)
3884 {
3885 	writel(DMA_START, hw->io + KS_DMA_RX_START);
3886 }
3887 
3888 /**
3889  * hw_start_rx - start receiving
3890  * @hw: 	The hardware instance.
3891  *
3892  * This routine starts the receive function of the hardware.
3893  */
3894 static void hw_start_rx(struct ksz_hw *hw)
3895 {
3896 	writel(hw->rx_cfg, hw->io + KS_DMA_RX_CTRL);
3897 
3898 	/* Notify when the receive stops. */
3899 	hw->intr_mask |= KS884X_INT_RX_STOPPED;
3900 
3901 	writel(DMA_START, hw->io + KS_DMA_RX_START);
3902 	hw_ack_intr(hw, KS884X_INT_RX_STOPPED);
3903 	hw->rx_stop++;
3904 
3905 	/* Variable overflows. */
3906 	if (0 == hw->rx_stop)
3907 		hw->rx_stop = 2;
3908 }
3909 
3910 /**
3911  * hw_stop_rx - stop receiving
3912  * @hw: 	The hardware instance.
3913  *
3914  * This routine stops the receive function of the hardware.
3915  */
3916 static void hw_stop_rx(struct ksz_hw *hw)
3917 {
3918 	hw->rx_stop = 0;
3919 	hw_turn_off_intr(hw, KS884X_INT_RX_STOPPED);
3920 	writel((hw->rx_cfg & ~DMA_RX_ENABLE), hw->io + KS_DMA_RX_CTRL);
3921 }
3922 
3923 /**
3924  * hw_start_tx - start transmitting
3925  * @hw: 	The hardware instance.
3926  *
3927  * This routine starts the transmit function of the hardware.
3928  */
3929 static void hw_start_tx(struct ksz_hw *hw)
3930 {
3931 	writel(hw->tx_cfg, hw->io + KS_DMA_TX_CTRL);
3932 }
3933 
3934 /**
3935  * hw_stop_tx - stop transmitting
3936  * @hw: 	The hardware instance.
3937  *
3938  * This routine stops the transmit function of the hardware.
3939  */
3940 static void hw_stop_tx(struct ksz_hw *hw)
3941 {
3942 	writel((hw->tx_cfg & ~DMA_TX_ENABLE), hw->io + KS_DMA_TX_CTRL);
3943 }
3944 
3945 /**
3946  * hw_disable - disable hardware
3947  * @hw: 	The hardware instance.
3948  *
3949  * This routine disables the hardware.
3950  */
3951 static void hw_disable(struct ksz_hw *hw)
3952 {
3953 	hw_stop_rx(hw);
3954 	hw_stop_tx(hw);
3955 	hw->enabled = 0;
3956 }
3957 
3958 /**
3959  * hw_enable - enable hardware
3960  * @hw: 	The hardware instance.
3961  *
3962  * This routine enables the hardware.
3963  */
3964 static void hw_enable(struct ksz_hw *hw)
3965 {
3966 	hw_start_tx(hw);
3967 	hw_start_rx(hw);
3968 	hw->enabled = 1;
3969 }
3970 
3971 /**
3972  * hw_alloc_pkt - allocate enough descriptors for transmission
3973  * @hw: 	The hardware instance.
3974  * @length:	The length of the packet.
3975  * @physical:	Number of descriptors required.
3976  *
3977  * This function allocates descriptors for transmission.
3978  *
3979  * Return 0 if not successful; 1 for buffer copy; or number of descriptors.
3980  */
3981 static int hw_alloc_pkt(struct ksz_hw *hw, int length, int physical)
3982 {
3983 	/* Always leave one descriptor free. */
3984 	if (hw->tx_desc_info.avail <= 1)
3985 		return 0;
3986 
3987 	/* Allocate a descriptor for transmission and mark it current. */
3988 	get_tx_pkt(&hw->tx_desc_info, &hw->tx_desc_info.cur);
3989 	hw->tx_desc_info.cur->sw.buf.tx.first_seg = 1;
3990 
3991 	/* Keep track of number of transmit descriptors used so far. */
3992 	++hw->tx_int_cnt;
3993 	hw->tx_size += length;
3994 
3995 	/* Cannot hold on too much data. */
3996 	if (hw->tx_size >= MAX_TX_HELD_SIZE)
3997 		hw->tx_int_cnt = hw->tx_int_mask + 1;
3998 
3999 	if (physical > hw->tx_desc_info.avail)
4000 		return 1;
4001 
4002 	return hw->tx_desc_info.avail;
4003 }
4004 
4005 /**
4006  * hw_send_pkt - mark packet for transmission
4007  * @hw: 	The hardware instance.
4008  *
4009  * This routine marks the packet for transmission in PCI version.
4010  */
4011 static void hw_send_pkt(struct ksz_hw *hw)
4012 {
4013 	struct ksz_desc *cur = hw->tx_desc_info.cur;
4014 
4015 	cur->sw.buf.tx.last_seg = 1;
4016 
4017 	/* Interrupt only after specified number of descriptors used. */
4018 	if (hw->tx_int_cnt > hw->tx_int_mask) {
4019 		cur->sw.buf.tx.intr = 1;
4020 		hw->tx_int_cnt = 0;
4021 		hw->tx_size = 0;
4022 	}
4023 
4024 	/* KSZ8842 supports port directed transmission. */
4025 	cur->sw.buf.tx.dest_port = hw->dst_ports;
4026 
4027 	release_desc(cur);
4028 
4029 	writel(0, hw->io + KS_DMA_TX_START);
4030 }
4031 
4032 static int empty_addr(u8 *addr)
4033 {
4034 	u32 *addr1 = (u32 *) addr;
4035 	u16 *addr2 = (u16 *) &addr[4];
4036 
4037 	return 0 == *addr1 && 0 == *addr2;
4038 }
4039 
4040 /**
4041  * hw_set_addr - set MAC address
4042  * @hw: 	The hardware instance.
4043  *
4044  * This routine programs the MAC address of the hardware when the address is
4045  * overridden.
4046  */
4047 static void hw_set_addr(struct ksz_hw *hw)
4048 {
4049 	int i;
4050 
4051 	for (i = 0; i < ETH_ALEN; i++)
4052 		writeb(hw->override_addr[MAC_ADDR_ORDER(i)],
4053 			hw->io + KS884X_ADDR_0_OFFSET + i);
4054 
4055 	sw_set_addr(hw, hw->override_addr);
4056 }
4057 
4058 /**
4059  * hw_read_addr - read MAC address
4060  * @hw: 	The hardware instance.
4061  *
4062  * This routine retrieves the MAC address of the hardware.
4063  */
4064 static void hw_read_addr(struct ksz_hw *hw)
4065 {
4066 	int i;
4067 
4068 	for (i = 0; i < ETH_ALEN; i++)
4069 		hw->perm_addr[MAC_ADDR_ORDER(i)] = readb(hw->io +
4070 			KS884X_ADDR_0_OFFSET + i);
4071 
4072 	if (!hw->mac_override) {
4073 		memcpy(hw->override_addr, hw->perm_addr, ETH_ALEN);
4074 		if (empty_addr(hw->override_addr)) {
4075 			memcpy(hw->perm_addr, DEFAULT_MAC_ADDRESS, ETH_ALEN);
4076 			memcpy(hw->override_addr, DEFAULT_MAC_ADDRESS,
4077 			       ETH_ALEN);
4078 			hw->override_addr[5] += hw->id;
4079 			hw_set_addr(hw);
4080 		}
4081 	}
4082 }
4083 
4084 static void hw_ena_add_addr(struct ksz_hw *hw, int index, u8 *mac_addr)
4085 {
4086 	int i;
4087 	u32 mac_addr_lo;
4088 	u32 mac_addr_hi;
4089 
4090 	mac_addr_hi = 0;
4091 	for (i = 0; i < 2; i++) {
4092 		mac_addr_hi <<= 8;
4093 		mac_addr_hi |= mac_addr[i];
4094 	}
4095 	mac_addr_hi |= ADD_ADDR_ENABLE;
4096 	mac_addr_lo = 0;
4097 	for (i = 2; i < 6; i++) {
4098 		mac_addr_lo <<= 8;
4099 		mac_addr_lo |= mac_addr[i];
4100 	}
4101 	index *= ADD_ADDR_INCR;
4102 
4103 	writel(mac_addr_lo, hw->io + index + KS_ADD_ADDR_0_LO);
4104 	writel(mac_addr_hi, hw->io + index + KS_ADD_ADDR_0_HI);
4105 }
4106 
4107 static void hw_set_add_addr(struct ksz_hw *hw)
4108 {
4109 	int i;
4110 
4111 	for (i = 0; i < ADDITIONAL_ENTRIES; i++) {
4112 		if (empty_addr(hw->address[i]))
4113 			writel(0, hw->io + ADD_ADDR_INCR * i +
4114 				KS_ADD_ADDR_0_HI);
4115 		else
4116 			hw_ena_add_addr(hw, i, hw->address[i]);
4117 	}
4118 }
4119 
4120 static int hw_add_addr(struct ksz_hw *hw, u8 *mac_addr)
4121 {
4122 	int i;
4123 	int j = ADDITIONAL_ENTRIES;
4124 
4125 	if (ether_addr_equal(hw->override_addr, mac_addr))
4126 		return 0;
4127 	for (i = 0; i < hw->addr_list_size; i++) {
4128 		if (ether_addr_equal(hw->address[i], mac_addr))
4129 			return 0;
4130 		if (ADDITIONAL_ENTRIES == j && empty_addr(hw->address[i]))
4131 			j = i;
4132 	}
4133 	if (j < ADDITIONAL_ENTRIES) {
4134 		memcpy(hw->address[j], mac_addr, ETH_ALEN);
4135 		hw_ena_add_addr(hw, j, hw->address[j]);
4136 		return 0;
4137 	}
4138 	return -1;
4139 }
4140 
4141 static int hw_del_addr(struct ksz_hw *hw, u8 *mac_addr)
4142 {
4143 	int i;
4144 
4145 	for (i = 0; i < hw->addr_list_size; i++) {
4146 		if (ether_addr_equal(hw->address[i], mac_addr)) {
4147 			eth_zero_addr(hw->address[i]);
4148 			writel(0, hw->io + ADD_ADDR_INCR * i +
4149 				KS_ADD_ADDR_0_HI);
4150 			return 0;
4151 		}
4152 	}
4153 	return -1;
4154 }
4155 
4156 /**
4157  * hw_clr_multicast - clear multicast addresses
4158  * @hw: 	The hardware instance.
4159  *
4160  * This routine removes all multicast addresses set in the hardware.
4161  */
4162 static void hw_clr_multicast(struct ksz_hw *hw)
4163 {
4164 	int i;
4165 
4166 	for (i = 0; i < HW_MULTICAST_SIZE; i++) {
4167 		hw->multi_bits[i] = 0;
4168 
4169 		writeb(0, hw->io + KS884X_MULTICAST_0_OFFSET + i);
4170 	}
4171 }
4172 
4173 /**
4174  * hw_set_grp_addr - set multicast addresses
4175  * @hw: 	The hardware instance.
4176  *
4177  * This routine programs multicast addresses for the hardware to accept those
4178  * addresses.
4179  */
4180 static void hw_set_grp_addr(struct ksz_hw *hw)
4181 {
4182 	int i;
4183 	int index;
4184 	int position;
4185 	int value;
4186 
4187 	memset(hw->multi_bits, 0, sizeof(u8) * HW_MULTICAST_SIZE);
4188 
4189 	for (i = 0; i < hw->multi_list_size; i++) {
4190 		position = (ether_crc(6, hw->multi_list[i]) >> 26) & 0x3f;
4191 		index = position >> 3;
4192 		value = 1 << (position & 7);
4193 		hw->multi_bits[index] |= (u8) value;
4194 	}
4195 
4196 	for (i = 0; i < HW_MULTICAST_SIZE; i++)
4197 		writeb(hw->multi_bits[i], hw->io + KS884X_MULTICAST_0_OFFSET +
4198 			i);
4199 }
4200 
4201 /**
4202  * hw_set_multicast - enable or disable all multicast receiving
4203  * @hw: 	The hardware instance.
4204  * @multicast:	To turn on or off the all multicast feature.
4205  *
4206  * This routine enables/disables the hardware to accept all multicast packets.
4207  */
4208 static void hw_set_multicast(struct ksz_hw *hw, u8 multicast)
4209 {
4210 	/* Stop receiving for reconfiguration. */
4211 	hw_stop_rx(hw);
4212 
4213 	if (multicast)
4214 		hw->rx_cfg |= DMA_RX_ALL_MULTICAST;
4215 	else
4216 		hw->rx_cfg &= ~DMA_RX_ALL_MULTICAST;
4217 
4218 	if (hw->enabled)
4219 		hw_start_rx(hw);
4220 }
4221 
4222 /**
4223  * hw_set_promiscuous - enable or disable promiscuous receiving
4224  * @hw: 	The hardware instance.
4225  * @prom:	To turn on or off the promiscuous feature.
4226  *
4227  * This routine enables/disables the hardware to accept all packets.
4228  */
4229 static void hw_set_promiscuous(struct ksz_hw *hw, u8 prom)
4230 {
4231 	/* Stop receiving for reconfiguration. */
4232 	hw_stop_rx(hw);
4233 
4234 	if (prom)
4235 		hw->rx_cfg |= DMA_RX_PROMISCUOUS;
4236 	else
4237 		hw->rx_cfg &= ~DMA_RX_PROMISCUOUS;
4238 
4239 	if (hw->enabled)
4240 		hw_start_rx(hw);
4241 }
4242 
4243 /**
4244  * sw_enable - enable the switch
4245  * @hw: 	The hardware instance.
4246  * @enable:	The flag to enable or disable the switch
4247  *
4248  * This routine is used to enable/disable the switch in KSZ8842.
4249  */
4250 static void sw_enable(struct ksz_hw *hw, int enable)
4251 {
4252 	int port;
4253 
4254 	for (port = 0; port < SWITCH_PORT_NUM; port++) {
4255 		if (hw->dev_count > 1) {
4256 			/* Set port-base vlan membership with host port. */
4257 			sw_cfg_port_base_vlan(hw, port,
4258 				HOST_MASK | (1 << port));
4259 			port_set_stp_state(hw, port, STP_STATE_DISABLED);
4260 		} else {
4261 			sw_cfg_port_base_vlan(hw, port, PORT_MASK);
4262 			port_set_stp_state(hw, port, STP_STATE_FORWARDING);
4263 		}
4264 	}
4265 	if (hw->dev_count > 1)
4266 		port_set_stp_state(hw, SWITCH_PORT_NUM, STP_STATE_SIMPLE);
4267 	else
4268 		port_set_stp_state(hw, SWITCH_PORT_NUM, STP_STATE_FORWARDING);
4269 
4270 	if (enable)
4271 		enable = KS8842_START;
4272 	writew(enable, hw->io + KS884X_CHIP_ID_OFFSET);
4273 }
4274 
4275 /**
4276  * sw_setup - setup the switch
4277  * @hw: 	The hardware instance.
4278  *
4279  * This routine setup the hardware switch engine for default operation.
4280  */
4281 static void sw_setup(struct ksz_hw *hw)
4282 {
4283 	int port;
4284 
4285 	sw_set_global_ctrl(hw);
4286 
4287 	/* Enable switch broadcast storm protection at 10% percent rate. */
4288 	sw_init_broad_storm(hw);
4289 	hw_cfg_broad_storm(hw, BROADCAST_STORM_PROTECTION_RATE);
4290 	for (port = 0; port < SWITCH_PORT_NUM; port++)
4291 		sw_ena_broad_storm(hw, port);
4292 
4293 	sw_init_prio(hw);
4294 
4295 	sw_init_mirror(hw);
4296 
4297 	sw_init_prio_rate(hw);
4298 
4299 	sw_init_vlan(hw);
4300 
4301 	if (hw->features & STP_SUPPORT)
4302 		sw_init_stp(hw);
4303 	if (!sw_chk(hw, KS8842_SWITCH_CTRL_1_OFFSET,
4304 			SWITCH_TX_FLOW_CTRL | SWITCH_RX_FLOW_CTRL))
4305 		hw->overrides |= PAUSE_FLOW_CTRL;
4306 	sw_enable(hw, 1);
4307 }
4308 
4309 /**
4310  * ksz_start_timer - start kernel timer
4311  * @info:	Kernel timer information.
4312  * @time:	The time tick.
4313  *
4314  * This routine starts the kernel timer after the specified time tick.
4315  */
4316 static void ksz_start_timer(struct ksz_timer_info *info, int time)
4317 {
4318 	info->cnt = 0;
4319 	info->timer.expires = jiffies + time;
4320 	add_timer(&info->timer);
4321 
4322 	/* infinity */
4323 	info->max = -1;
4324 }
4325 
4326 /**
4327  * ksz_stop_timer - stop kernel timer
4328  * @info:	Kernel timer information.
4329  *
4330  * This routine stops the kernel timer.
4331  */
4332 static void ksz_stop_timer(struct ksz_timer_info *info)
4333 {
4334 	if (info->max) {
4335 		info->max = 0;
4336 		del_timer_sync(&info->timer);
4337 	}
4338 }
4339 
4340 static void ksz_init_timer(struct ksz_timer_info *info, int period,
4341 	void (*function)(unsigned long), void *data)
4342 {
4343 	info->max = 0;
4344 	info->period = period;
4345 	setup_timer(&info->timer, function, (unsigned long)data);
4346 }
4347 
4348 static void ksz_update_timer(struct ksz_timer_info *info)
4349 {
4350 	++info->cnt;
4351 	if (info->max > 0) {
4352 		if (info->cnt < info->max) {
4353 			info->timer.expires = jiffies + info->period;
4354 			add_timer(&info->timer);
4355 		} else
4356 			info->max = 0;
4357 	} else if (info->max < 0) {
4358 		info->timer.expires = jiffies + info->period;
4359 		add_timer(&info->timer);
4360 	}
4361 }
4362 
4363 /**
4364  * ksz_alloc_soft_desc - allocate software descriptors
4365  * @desc_info:	Descriptor information structure.
4366  * @transmit:	Indication that descriptors are for transmit.
4367  *
4368  * This local function allocates software descriptors for manipulation in
4369  * memory.
4370  *
4371  * Return 0 if successful.
4372  */
4373 static int ksz_alloc_soft_desc(struct ksz_desc_info *desc_info, int transmit)
4374 {
4375 	desc_info->ring = kzalloc(sizeof(struct ksz_desc) * desc_info->alloc,
4376 				  GFP_KERNEL);
4377 	if (!desc_info->ring)
4378 		return 1;
4379 	hw_init_desc(desc_info, transmit);
4380 	return 0;
4381 }
4382 
4383 /**
4384  * ksz_alloc_desc - allocate hardware descriptors
4385  * @adapter:	Adapter information structure.
4386  *
4387  * This local function allocates hardware descriptors for receiving and
4388  * transmitting.
4389  *
4390  * Return 0 if successful.
4391  */
4392 static int ksz_alloc_desc(struct dev_info *adapter)
4393 {
4394 	struct ksz_hw *hw = &adapter->hw;
4395 	int offset;
4396 
4397 	/* Allocate memory for RX & TX descriptors. */
4398 	adapter->desc_pool.alloc_size =
4399 		hw->rx_desc_info.size * hw->rx_desc_info.alloc +
4400 		hw->tx_desc_info.size * hw->tx_desc_info.alloc +
4401 		DESC_ALIGNMENT;
4402 
4403 	adapter->desc_pool.alloc_virt =
4404 		pci_zalloc_consistent(adapter->pdev,
4405 				      adapter->desc_pool.alloc_size,
4406 				      &adapter->desc_pool.dma_addr);
4407 	if (adapter->desc_pool.alloc_virt == NULL) {
4408 		adapter->desc_pool.alloc_size = 0;
4409 		return 1;
4410 	}
4411 
4412 	/* Align to the next cache line boundary. */
4413 	offset = (((ulong) adapter->desc_pool.alloc_virt % DESC_ALIGNMENT) ?
4414 		(DESC_ALIGNMENT -
4415 		((ulong) adapter->desc_pool.alloc_virt % DESC_ALIGNMENT)) : 0);
4416 	adapter->desc_pool.virt = adapter->desc_pool.alloc_virt + offset;
4417 	adapter->desc_pool.phys = adapter->desc_pool.dma_addr + offset;
4418 
4419 	/* Allocate receive/transmit descriptors. */
4420 	hw->rx_desc_info.ring_virt = (struct ksz_hw_desc *)
4421 		adapter->desc_pool.virt;
4422 	hw->rx_desc_info.ring_phys = adapter->desc_pool.phys;
4423 	offset = hw->rx_desc_info.alloc * hw->rx_desc_info.size;
4424 	hw->tx_desc_info.ring_virt = (struct ksz_hw_desc *)
4425 		(adapter->desc_pool.virt + offset);
4426 	hw->tx_desc_info.ring_phys = adapter->desc_pool.phys + offset;
4427 
4428 	if (ksz_alloc_soft_desc(&hw->rx_desc_info, 0))
4429 		return 1;
4430 	if (ksz_alloc_soft_desc(&hw->tx_desc_info, 1))
4431 		return 1;
4432 
4433 	return 0;
4434 }
4435 
4436 /**
4437  * free_dma_buf - release DMA buffer resources
4438  * @adapter:	Adapter information structure.
4439  *
4440  * This routine is just a helper function to release the DMA buffer resources.
4441  */
4442 static void free_dma_buf(struct dev_info *adapter, struct ksz_dma_buf *dma_buf,
4443 	int direction)
4444 {
4445 	pci_unmap_single(adapter->pdev, dma_buf->dma, dma_buf->len, direction);
4446 	dev_kfree_skb(dma_buf->skb);
4447 	dma_buf->skb = NULL;
4448 	dma_buf->dma = 0;
4449 }
4450 
4451 /**
4452  * ksz_init_rx_buffers - initialize receive descriptors
4453  * @adapter:	Adapter information structure.
4454  *
4455  * This routine initializes DMA buffers for receiving.
4456  */
4457 static void ksz_init_rx_buffers(struct dev_info *adapter)
4458 {
4459 	int i;
4460 	struct ksz_desc *desc;
4461 	struct ksz_dma_buf *dma_buf;
4462 	struct ksz_hw *hw = &adapter->hw;
4463 	struct ksz_desc_info *info = &hw->rx_desc_info;
4464 
4465 	for (i = 0; i < hw->rx_desc_info.alloc; i++) {
4466 		get_rx_pkt(info, &desc);
4467 
4468 		dma_buf = DMA_BUFFER(desc);
4469 		if (dma_buf->skb && dma_buf->len != adapter->mtu)
4470 			free_dma_buf(adapter, dma_buf, PCI_DMA_FROMDEVICE);
4471 		dma_buf->len = adapter->mtu;
4472 		if (!dma_buf->skb)
4473 			dma_buf->skb = alloc_skb(dma_buf->len, GFP_ATOMIC);
4474 		if (dma_buf->skb && !dma_buf->dma)
4475 			dma_buf->dma = pci_map_single(
4476 				adapter->pdev,
4477 				skb_tail_pointer(dma_buf->skb),
4478 				dma_buf->len,
4479 				PCI_DMA_FROMDEVICE);
4480 
4481 		/* Set descriptor. */
4482 		set_rx_buf(desc, dma_buf->dma);
4483 		set_rx_len(desc, dma_buf->len);
4484 		release_desc(desc);
4485 	}
4486 }
4487 
4488 /**
4489  * ksz_alloc_mem - allocate memory for hardware descriptors
4490  * @adapter:	Adapter information structure.
4491  *
4492  * This function allocates memory for use by hardware descriptors for receiving
4493  * and transmitting.
4494  *
4495  * Return 0 if successful.
4496  */
4497 static int ksz_alloc_mem(struct dev_info *adapter)
4498 {
4499 	struct ksz_hw *hw = &adapter->hw;
4500 
4501 	/* Determine the number of receive and transmit descriptors. */
4502 	hw->rx_desc_info.alloc = NUM_OF_RX_DESC;
4503 	hw->tx_desc_info.alloc = NUM_OF_TX_DESC;
4504 
4505 	/* Determine how many descriptors to skip transmit interrupt. */
4506 	hw->tx_int_cnt = 0;
4507 	hw->tx_int_mask = NUM_OF_TX_DESC / 4;
4508 	if (hw->tx_int_mask > 8)
4509 		hw->tx_int_mask = 8;
4510 	while (hw->tx_int_mask) {
4511 		hw->tx_int_cnt++;
4512 		hw->tx_int_mask >>= 1;
4513 	}
4514 	if (hw->tx_int_cnt) {
4515 		hw->tx_int_mask = (1 << (hw->tx_int_cnt - 1)) - 1;
4516 		hw->tx_int_cnt = 0;
4517 	}
4518 
4519 	/* Determine the descriptor size. */
4520 	hw->rx_desc_info.size =
4521 		(((sizeof(struct ksz_hw_desc) + DESC_ALIGNMENT - 1) /
4522 		DESC_ALIGNMENT) * DESC_ALIGNMENT);
4523 	hw->tx_desc_info.size =
4524 		(((sizeof(struct ksz_hw_desc) + DESC_ALIGNMENT - 1) /
4525 		DESC_ALIGNMENT) * DESC_ALIGNMENT);
4526 	if (hw->rx_desc_info.size != sizeof(struct ksz_hw_desc))
4527 		pr_alert("Hardware descriptor size not right!\n");
4528 	ksz_check_desc_num(&hw->rx_desc_info);
4529 	ksz_check_desc_num(&hw->tx_desc_info);
4530 
4531 	/* Allocate descriptors. */
4532 	if (ksz_alloc_desc(adapter))
4533 		return 1;
4534 
4535 	return 0;
4536 }
4537 
4538 /**
4539  * ksz_free_desc - free software and hardware descriptors
4540  * @adapter:	Adapter information structure.
4541  *
4542  * This local routine frees the software and hardware descriptors allocated by
4543  * ksz_alloc_desc().
4544  */
4545 static void ksz_free_desc(struct dev_info *adapter)
4546 {
4547 	struct ksz_hw *hw = &adapter->hw;
4548 
4549 	/* Reset descriptor. */
4550 	hw->rx_desc_info.ring_virt = NULL;
4551 	hw->tx_desc_info.ring_virt = NULL;
4552 	hw->rx_desc_info.ring_phys = 0;
4553 	hw->tx_desc_info.ring_phys = 0;
4554 
4555 	/* Free memory. */
4556 	if (adapter->desc_pool.alloc_virt)
4557 		pci_free_consistent(
4558 			adapter->pdev,
4559 			adapter->desc_pool.alloc_size,
4560 			adapter->desc_pool.alloc_virt,
4561 			adapter->desc_pool.dma_addr);
4562 
4563 	/* Reset resource pool. */
4564 	adapter->desc_pool.alloc_size = 0;
4565 	adapter->desc_pool.alloc_virt = NULL;
4566 
4567 	kfree(hw->rx_desc_info.ring);
4568 	hw->rx_desc_info.ring = NULL;
4569 	kfree(hw->tx_desc_info.ring);
4570 	hw->tx_desc_info.ring = NULL;
4571 }
4572 
4573 /**
4574  * ksz_free_buffers - free buffers used in the descriptors
4575  * @adapter:	Adapter information structure.
4576  * @desc_info:	Descriptor information structure.
4577  *
4578  * This local routine frees buffers used in the DMA buffers.
4579  */
4580 static void ksz_free_buffers(struct dev_info *adapter,
4581 	struct ksz_desc_info *desc_info, int direction)
4582 {
4583 	int i;
4584 	struct ksz_dma_buf *dma_buf;
4585 	struct ksz_desc *desc = desc_info->ring;
4586 
4587 	for (i = 0; i < desc_info->alloc; i++) {
4588 		dma_buf = DMA_BUFFER(desc);
4589 		if (dma_buf->skb)
4590 			free_dma_buf(adapter, dma_buf, direction);
4591 		desc++;
4592 	}
4593 }
4594 
4595 /**
4596  * ksz_free_mem - free all resources used by descriptors
4597  * @adapter:	Adapter information structure.
4598  *
4599  * This local routine frees all the resources allocated by ksz_alloc_mem().
4600  */
4601 static void ksz_free_mem(struct dev_info *adapter)
4602 {
4603 	/* Free transmit buffers. */
4604 	ksz_free_buffers(adapter, &adapter->hw.tx_desc_info,
4605 		PCI_DMA_TODEVICE);
4606 
4607 	/* Free receive buffers. */
4608 	ksz_free_buffers(adapter, &adapter->hw.rx_desc_info,
4609 		PCI_DMA_FROMDEVICE);
4610 
4611 	/* Free descriptors. */
4612 	ksz_free_desc(adapter);
4613 }
4614 
4615 static void get_mib_counters(struct ksz_hw *hw, int first, int cnt,
4616 	u64 *counter)
4617 {
4618 	int i;
4619 	int mib;
4620 	int port;
4621 	struct ksz_port_mib *port_mib;
4622 
4623 	memset(counter, 0, sizeof(u64) * TOTAL_PORT_COUNTER_NUM);
4624 	for (i = 0, port = first; i < cnt; i++, port++) {
4625 		port_mib = &hw->port_mib[port];
4626 		for (mib = port_mib->mib_start; mib < hw->mib_cnt; mib++)
4627 			counter[mib] += port_mib->counter[mib];
4628 	}
4629 }
4630 
4631 /**
4632  * send_packet - send packet
4633  * @skb:	Socket buffer.
4634  * @dev:	Network device.
4635  *
4636  * This routine is used to send a packet out to the network.
4637  */
4638 static void send_packet(struct sk_buff *skb, struct net_device *dev)
4639 {
4640 	struct ksz_desc *desc;
4641 	struct ksz_desc *first;
4642 	struct dev_priv *priv = netdev_priv(dev);
4643 	struct dev_info *hw_priv = priv->adapter;
4644 	struct ksz_hw *hw = &hw_priv->hw;
4645 	struct ksz_desc_info *info = &hw->tx_desc_info;
4646 	struct ksz_dma_buf *dma_buf;
4647 	int len;
4648 	int last_frag = skb_shinfo(skb)->nr_frags;
4649 
4650 	/*
4651 	 * KSZ8842 with multiple device interfaces needs to be told which port
4652 	 * to send.
4653 	 */
4654 	if (hw->dev_count > 1)
4655 		hw->dst_ports = 1 << priv->port.first_port;
4656 
4657 	/* Hardware will pad the length to 60. */
4658 	len = skb->len;
4659 
4660 	/* Remember the very first descriptor. */
4661 	first = info->cur;
4662 	desc = first;
4663 
4664 	dma_buf = DMA_BUFFER(desc);
4665 	if (last_frag) {
4666 		int frag;
4667 		skb_frag_t *this_frag;
4668 
4669 		dma_buf->len = skb_headlen(skb);
4670 
4671 		dma_buf->dma = pci_map_single(
4672 			hw_priv->pdev, skb->data, dma_buf->len,
4673 			PCI_DMA_TODEVICE);
4674 		set_tx_buf(desc, dma_buf->dma);
4675 		set_tx_len(desc, dma_buf->len);
4676 
4677 		frag = 0;
4678 		do {
4679 			this_frag = &skb_shinfo(skb)->frags[frag];
4680 
4681 			/* Get a new descriptor. */
4682 			get_tx_pkt(info, &desc);
4683 
4684 			/* Keep track of descriptors used so far. */
4685 			++hw->tx_int_cnt;
4686 
4687 			dma_buf = DMA_BUFFER(desc);
4688 			dma_buf->len = skb_frag_size(this_frag);
4689 
4690 			dma_buf->dma = pci_map_single(
4691 				hw_priv->pdev,
4692 				skb_frag_address(this_frag),
4693 				dma_buf->len,
4694 				PCI_DMA_TODEVICE);
4695 			set_tx_buf(desc, dma_buf->dma);
4696 			set_tx_len(desc, dma_buf->len);
4697 
4698 			frag++;
4699 			if (frag == last_frag)
4700 				break;
4701 
4702 			/* Do not release the last descriptor here. */
4703 			release_desc(desc);
4704 		} while (1);
4705 
4706 		/* current points to the last descriptor. */
4707 		info->cur = desc;
4708 
4709 		/* Release the first descriptor. */
4710 		release_desc(first);
4711 	} else {
4712 		dma_buf->len = len;
4713 
4714 		dma_buf->dma = pci_map_single(
4715 			hw_priv->pdev, skb->data, dma_buf->len,
4716 			PCI_DMA_TODEVICE);
4717 		set_tx_buf(desc, dma_buf->dma);
4718 		set_tx_len(desc, dma_buf->len);
4719 	}
4720 
4721 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
4722 		(desc)->sw.buf.tx.csum_gen_tcp = 1;
4723 		(desc)->sw.buf.tx.csum_gen_udp = 1;
4724 	}
4725 
4726 	/*
4727 	 * The last descriptor holds the packet so that it can be returned to
4728 	 * network subsystem after all descriptors are transmitted.
4729 	 */
4730 	dma_buf->skb = skb;
4731 
4732 	hw_send_pkt(hw);
4733 
4734 	/* Update transmit statistics. */
4735 	dev->stats.tx_packets++;
4736 	dev->stats.tx_bytes += len;
4737 }
4738 
4739 /**
4740  * transmit_cleanup - clean up transmit descriptors
4741  * @dev:	Network device.
4742  *
4743  * This routine is called to clean up the transmitted buffers.
4744  */
4745 static void transmit_cleanup(struct dev_info *hw_priv, int normal)
4746 {
4747 	int last;
4748 	union desc_stat status;
4749 	struct ksz_hw *hw = &hw_priv->hw;
4750 	struct ksz_desc_info *info = &hw->tx_desc_info;
4751 	struct ksz_desc *desc;
4752 	struct ksz_dma_buf *dma_buf;
4753 	struct net_device *dev = NULL;
4754 
4755 	spin_lock_irq(&hw_priv->hwlock);
4756 	last = info->last;
4757 
4758 	while (info->avail < info->alloc) {
4759 		/* Get next descriptor which is not hardware owned. */
4760 		desc = &info->ring[last];
4761 		status.data = le32_to_cpu(desc->phw->ctrl.data);
4762 		if (status.tx.hw_owned) {
4763 			if (normal)
4764 				break;
4765 			else
4766 				reset_desc(desc, status);
4767 		}
4768 
4769 		dma_buf = DMA_BUFFER(desc);
4770 		pci_unmap_single(
4771 			hw_priv->pdev, dma_buf->dma, dma_buf->len,
4772 			PCI_DMA_TODEVICE);
4773 
4774 		/* This descriptor contains the last buffer in the packet. */
4775 		if (dma_buf->skb) {
4776 			dev = dma_buf->skb->dev;
4777 
4778 			/* Release the packet back to network subsystem. */
4779 			dev_kfree_skb_irq(dma_buf->skb);
4780 			dma_buf->skb = NULL;
4781 		}
4782 
4783 		/* Free the transmitted descriptor. */
4784 		last++;
4785 		last &= info->mask;
4786 		info->avail++;
4787 	}
4788 	info->last = last;
4789 	spin_unlock_irq(&hw_priv->hwlock);
4790 
4791 	/* Notify the network subsystem that the packet has been sent. */
4792 	if (dev)
4793 		netif_trans_update(dev);
4794 }
4795 
4796 /**
4797  * transmit_done - transmit done processing
4798  * @dev:	Network device.
4799  *
4800  * This routine is called when the transmit interrupt is triggered, indicating
4801  * either a packet is sent successfully or there are transmit errors.
4802  */
4803 static void tx_done(struct dev_info *hw_priv)
4804 {
4805 	struct ksz_hw *hw = &hw_priv->hw;
4806 	int port;
4807 
4808 	transmit_cleanup(hw_priv, 1);
4809 
4810 	for (port = 0; port < hw->dev_count; port++) {
4811 		struct net_device *dev = hw->port_info[port].pdev;
4812 
4813 		if (netif_running(dev) && netif_queue_stopped(dev))
4814 			netif_wake_queue(dev);
4815 	}
4816 }
4817 
4818 static inline void copy_old_skb(struct sk_buff *old, struct sk_buff *skb)
4819 {
4820 	skb->dev = old->dev;
4821 	skb->protocol = old->protocol;
4822 	skb->ip_summed = old->ip_summed;
4823 	skb->csum = old->csum;
4824 	skb_set_network_header(skb, ETH_HLEN);
4825 
4826 	dev_consume_skb_any(old);
4827 }
4828 
4829 /**
4830  * netdev_tx - send out packet
4831  * @skb:	Socket buffer.
4832  * @dev:	Network device.
4833  *
4834  * This function is used by the upper network layer to send out a packet.
4835  *
4836  * Return 0 if successful; otherwise an error code indicating failure.
4837  */
4838 static netdev_tx_t netdev_tx(struct sk_buff *skb, struct net_device *dev)
4839 {
4840 	struct dev_priv *priv = netdev_priv(dev);
4841 	struct dev_info *hw_priv = priv->adapter;
4842 	struct ksz_hw *hw = &hw_priv->hw;
4843 	int left;
4844 	int num = 1;
4845 	int rc = 0;
4846 
4847 	if (hw->features & SMALL_PACKET_TX_BUG) {
4848 		struct sk_buff *org_skb = skb;
4849 
4850 		if (skb->len <= 48) {
4851 			if (skb_end_pointer(skb) - skb->data >= 50) {
4852 				memset(&skb->data[skb->len], 0, 50 - skb->len);
4853 				skb->len = 50;
4854 			} else {
4855 				skb = netdev_alloc_skb(dev, 50);
4856 				if (!skb)
4857 					return NETDEV_TX_BUSY;
4858 				memcpy(skb->data, org_skb->data, org_skb->len);
4859 				memset(&skb->data[org_skb->len], 0,
4860 					50 - org_skb->len);
4861 				skb->len = 50;
4862 				copy_old_skb(org_skb, skb);
4863 			}
4864 		}
4865 	}
4866 
4867 	spin_lock_irq(&hw_priv->hwlock);
4868 
4869 	num = skb_shinfo(skb)->nr_frags + 1;
4870 	left = hw_alloc_pkt(hw, skb->len, num);
4871 	if (left) {
4872 		if (left < num ||
4873 		    (CHECKSUM_PARTIAL == skb->ip_summed &&
4874 		     skb->protocol == htons(ETH_P_IPV6))) {
4875 			struct sk_buff *org_skb = skb;
4876 
4877 			skb = netdev_alloc_skb(dev, org_skb->len);
4878 			if (!skb) {
4879 				rc = NETDEV_TX_BUSY;
4880 				goto unlock;
4881 			}
4882 			skb_copy_and_csum_dev(org_skb, skb->data);
4883 			org_skb->ip_summed = CHECKSUM_NONE;
4884 			skb->len = org_skb->len;
4885 			copy_old_skb(org_skb, skb);
4886 		}
4887 		send_packet(skb, dev);
4888 		if (left <= num)
4889 			netif_stop_queue(dev);
4890 	} else {
4891 		/* Stop the transmit queue until packet is allocated. */
4892 		netif_stop_queue(dev);
4893 		rc = NETDEV_TX_BUSY;
4894 	}
4895 unlock:
4896 	spin_unlock_irq(&hw_priv->hwlock);
4897 
4898 	return rc;
4899 }
4900 
4901 /**
4902  * netdev_tx_timeout - transmit timeout processing
4903  * @dev:	Network device.
4904  *
4905  * This routine is called when the transmit timer expires.  That indicates the
4906  * hardware is not running correctly because transmit interrupts are not
4907  * triggered to free up resources so that the transmit routine can continue
4908  * sending out packets.  The hardware is reset to correct the problem.
4909  */
4910 static void netdev_tx_timeout(struct net_device *dev)
4911 {
4912 	static unsigned long last_reset;
4913 
4914 	struct dev_priv *priv = netdev_priv(dev);
4915 	struct dev_info *hw_priv = priv->adapter;
4916 	struct ksz_hw *hw = &hw_priv->hw;
4917 	int port;
4918 
4919 	if (hw->dev_count > 1) {
4920 		/*
4921 		 * Only reset the hardware if time between calls is long
4922 		 * enough.
4923 		 */
4924 		if (time_before_eq(jiffies, last_reset + dev->watchdog_timeo))
4925 			hw_priv = NULL;
4926 	}
4927 
4928 	last_reset = jiffies;
4929 	if (hw_priv) {
4930 		hw_dis_intr(hw);
4931 		hw_disable(hw);
4932 
4933 		transmit_cleanup(hw_priv, 0);
4934 		hw_reset_pkts(&hw->rx_desc_info);
4935 		hw_reset_pkts(&hw->tx_desc_info);
4936 		ksz_init_rx_buffers(hw_priv);
4937 
4938 		hw_reset(hw);
4939 
4940 		hw_set_desc_base(hw,
4941 			hw->tx_desc_info.ring_phys,
4942 			hw->rx_desc_info.ring_phys);
4943 		hw_set_addr(hw);
4944 		if (hw->all_multi)
4945 			hw_set_multicast(hw, hw->all_multi);
4946 		else if (hw->multi_list_size)
4947 			hw_set_grp_addr(hw);
4948 
4949 		if (hw->dev_count > 1) {
4950 			hw_set_add_addr(hw);
4951 			for (port = 0; port < SWITCH_PORT_NUM; port++) {
4952 				struct net_device *port_dev;
4953 
4954 				port_set_stp_state(hw, port,
4955 					STP_STATE_DISABLED);
4956 
4957 				port_dev = hw->port_info[port].pdev;
4958 				if (netif_running(port_dev))
4959 					port_set_stp_state(hw, port,
4960 						STP_STATE_SIMPLE);
4961 			}
4962 		}
4963 
4964 		hw_enable(hw);
4965 		hw_ena_intr(hw);
4966 	}
4967 
4968 	netif_trans_update(dev);
4969 	netif_wake_queue(dev);
4970 }
4971 
4972 static inline void csum_verified(struct sk_buff *skb)
4973 {
4974 	unsigned short protocol;
4975 	struct iphdr *iph;
4976 
4977 	protocol = skb->protocol;
4978 	skb_reset_network_header(skb);
4979 	iph = (struct iphdr *) skb_network_header(skb);
4980 	if (protocol == htons(ETH_P_8021Q)) {
4981 		protocol = iph->tot_len;
4982 		skb_set_network_header(skb, VLAN_HLEN);
4983 		iph = (struct iphdr *) skb_network_header(skb);
4984 	}
4985 	if (protocol == htons(ETH_P_IP)) {
4986 		if (iph->protocol == IPPROTO_TCP)
4987 			skb->ip_summed = CHECKSUM_UNNECESSARY;
4988 	}
4989 }
4990 
4991 static inline int rx_proc(struct net_device *dev, struct ksz_hw* hw,
4992 	struct ksz_desc *desc, union desc_stat status)
4993 {
4994 	int packet_len;
4995 	struct dev_priv *priv = netdev_priv(dev);
4996 	struct dev_info *hw_priv = priv->adapter;
4997 	struct ksz_dma_buf *dma_buf;
4998 	struct sk_buff *skb;
4999 	int rx_status;
5000 
5001 	/* Received length includes 4-byte CRC. */
5002 	packet_len = status.rx.frame_len - 4;
5003 
5004 	dma_buf = DMA_BUFFER(desc);
5005 	pci_dma_sync_single_for_cpu(
5006 		hw_priv->pdev, dma_buf->dma, packet_len + 4,
5007 		PCI_DMA_FROMDEVICE);
5008 
5009 	do {
5010 		/* skb->data != skb->head */
5011 		skb = netdev_alloc_skb(dev, packet_len + 2);
5012 		if (!skb) {
5013 			dev->stats.rx_dropped++;
5014 			return -ENOMEM;
5015 		}
5016 
5017 		/*
5018 		 * Align socket buffer in 4-byte boundary for better
5019 		 * performance.
5020 		 */
5021 		skb_reserve(skb, 2);
5022 
5023 		memcpy(skb_put(skb, packet_len),
5024 			dma_buf->skb->data, packet_len);
5025 	} while (0);
5026 
5027 	skb->protocol = eth_type_trans(skb, dev);
5028 
5029 	if (hw->rx_cfg & (DMA_RX_CSUM_UDP | DMA_RX_CSUM_TCP))
5030 		csum_verified(skb);
5031 
5032 	/* Update receive statistics. */
5033 	dev->stats.rx_packets++;
5034 	dev->stats.rx_bytes += packet_len;
5035 
5036 	/* Notify upper layer for received packet. */
5037 	rx_status = netif_rx(skb);
5038 
5039 	return 0;
5040 }
5041 
5042 static int dev_rcv_packets(struct dev_info *hw_priv)
5043 {
5044 	int next;
5045 	union desc_stat status;
5046 	struct ksz_hw *hw = &hw_priv->hw;
5047 	struct net_device *dev = hw->port_info[0].pdev;
5048 	struct ksz_desc_info *info = &hw->rx_desc_info;
5049 	int left = info->alloc;
5050 	struct ksz_desc *desc;
5051 	int received = 0;
5052 
5053 	next = info->next;
5054 	while (left--) {
5055 		/* Get next descriptor which is not hardware owned. */
5056 		desc = &info->ring[next];
5057 		status.data = le32_to_cpu(desc->phw->ctrl.data);
5058 		if (status.rx.hw_owned)
5059 			break;
5060 
5061 		/* Status valid only when last descriptor bit is set. */
5062 		if (status.rx.last_desc && status.rx.first_desc) {
5063 			if (rx_proc(dev, hw, desc, status))
5064 				goto release_packet;
5065 			received++;
5066 		}
5067 
5068 release_packet:
5069 		release_desc(desc);
5070 		next++;
5071 		next &= info->mask;
5072 	}
5073 	info->next = next;
5074 
5075 	return received;
5076 }
5077 
5078 static int port_rcv_packets(struct dev_info *hw_priv)
5079 {
5080 	int next;
5081 	union desc_stat status;
5082 	struct ksz_hw *hw = &hw_priv->hw;
5083 	struct net_device *dev = hw->port_info[0].pdev;
5084 	struct ksz_desc_info *info = &hw->rx_desc_info;
5085 	int left = info->alloc;
5086 	struct ksz_desc *desc;
5087 	int received = 0;
5088 
5089 	next = info->next;
5090 	while (left--) {
5091 		/* Get next descriptor which is not hardware owned. */
5092 		desc = &info->ring[next];
5093 		status.data = le32_to_cpu(desc->phw->ctrl.data);
5094 		if (status.rx.hw_owned)
5095 			break;
5096 
5097 		if (hw->dev_count > 1) {
5098 			/* Get received port number. */
5099 			int p = HW_TO_DEV_PORT(status.rx.src_port);
5100 
5101 			dev = hw->port_info[p].pdev;
5102 			if (!netif_running(dev))
5103 				goto release_packet;
5104 		}
5105 
5106 		/* Status valid only when last descriptor bit is set. */
5107 		if (status.rx.last_desc && status.rx.first_desc) {
5108 			if (rx_proc(dev, hw, desc, status))
5109 				goto release_packet;
5110 			received++;
5111 		}
5112 
5113 release_packet:
5114 		release_desc(desc);
5115 		next++;
5116 		next &= info->mask;
5117 	}
5118 	info->next = next;
5119 
5120 	return received;
5121 }
5122 
5123 static int dev_rcv_special(struct dev_info *hw_priv)
5124 {
5125 	int next;
5126 	union desc_stat status;
5127 	struct ksz_hw *hw = &hw_priv->hw;
5128 	struct net_device *dev = hw->port_info[0].pdev;
5129 	struct ksz_desc_info *info = &hw->rx_desc_info;
5130 	int left = info->alloc;
5131 	struct ksz_desc *desc;
5132 	int received = 0;
5133 
5134 	next = info->next;
5135 	while (left--) {
5136 		/* Get next descriptor which is not hardware owned. */
5137 		desc = &info->ring[next];
5138 		status.data = le32_to_cpu(desc->phw->ctrl.data);
5139 		if (status.rx.hw_owned)
5140 			break;
5141 
5142 		if (hw->dev_count > 1) {
5143 			/* Get received port number. */
5144 			int p = HW_TO_DEV_PORT(status.rx.src_port);
5145 
5146 			dev = hw->port_info[p].pdev;
5147 			if (!netif_running(dev))
5148 				goto release_packet;
5149 		}
5150 
5151 		/* Status valid only when last descriptor bit is set. */
5152 		if (status.rx.last_desc && status.rx.first_desc) {
5153 			/*
5154 			 * Receive without error.  With receive errors
5155 			 * disabled, packets with receive errors will be
5156 			 * dropped, so no need to check the error bit.
5157 			 */
5158 			if (!status.rx.error || (status.data &
5159 					KS_DESC_RX_ERROR_COND) ==
5160 					KS_DESC_RX_ERROR_TOO_LONG) {
5161 				if (rx_proc(dev, hw, desc, status))
5162 					goto release_packet;
5163 				received++;
5164 			} else {
5165 				struct dev_priv *priv = netdev_priv(dev);
5166 
5167 				/* Update receive error statistics. */
5168 				priv->port.counter[OID_COUNTER_RCV_ERROR]++;
5169 			}
5170 		}
5171 
5172 release_packet:
5173 		release_desc(desc);
5174 		next++;
5175 		next &= info->mask;
5176 	}
5177 	info->next = next;
5178 
5179 	return received;
5180 }
5181 
5182 static void rx_proc_task(unsigned long data)
5183 {
5184 	struct dev_info *hw_priv = (struct dev_info *) data;
5185 	struct ksz_hw *hw = &hw_priv->hw;
5186 
5187 	if (!hw->enabled)
5188 		return;
5189 	if (unlikely(!hw_priv->dev_rcv(hw_priv))) {
5190 
5191 		/* In case receive process is suspended because of overrun. */
5192 		hw_resume_rx(hw);
5193 
5194 		/* tasklets are interruptible. */
5195 		spin_lock_irq(&hw_priv->hwlock);
5196 		hw_turn_on_intr(hw, KS884X_INT_RX_MASK);
5197 		spin_unlock_irq(&hw_priv->hwlock);
5198 	} else {
5199 		hw_ack_intr(hw, KS884X_INT_RX);
5200 		tasklet_schedule(&hw_priv->rx_tasklet);
5201 	}
5202 }
5203 
5204 static void tx_proc_task(unsigned long data)
5205 {
5206 	struct dev_info *hw_priv = (struct dev_info *) data;
5207 	struct ksz_hw *hw = &hw_priv->hw;
5208 
5209 	hw_ack_intr(hw, KS884X_INT_TX_MASK);
5210 
5211 	tx_done(hw_priv);
5212 
5213 	/* tasklets are interruptible. */
5214 	spin_lock_irq(&hw_priv->hwlock);
5215 	hw_turn_on_intr(hw, KS884X_INT_TX);
5216 	spin_unlock_irq(&hw_priv->hwlock);
5217 }
5218 
5219 static inline void handle_rx_stop(struct ksz_hw *hw)
5220 {
5221 	/* Receive just has been stopped. */
5222 	if (0 == hw->rx_stop)
5223 		hw->intr_mask &= ~KS884X_INT_RX_STOPPED;
5224 	else if (hw->rx_stop > 1) {
5225 		if (hw->enabled && (hw->rx_cfg & DMA_RX_ENABLE)) {
5226 			hw_start_rx(hw);
5227 		} else {
5228 			hw->intr_mask &= ~KS884X_INT_RX_STOPPED;
5229 			hw->rx_stop = 0;
5230 		}
5231 	} else
5232 		/* Receive just has been started. */
5233 		hw->rx_stop++;
5234 }
5235 
5236 /**
5237  * netdev_intr - interrupt handling
5238  * @irq:	Interrupt number.
5239  * @dev_id:	Network device.
5240  *
5241  * This function is called by upper network layer to signal interrupt.
5242  *
5243  * Return IRQ_HANDLED if interrupt is handled.
5244  */
5245 static irqreturn_t netdev_intr(int irq, void *dev_id)
5246 {
5247 	uint int_enable = 0;
5248 	struct net_device *dev = (struct net_device *) dev_id;
5249 	struct dev_priv *priv = netdev_priv(dev);
5250 	struct dev_info *hw_priv = priv->adapter;
5251 	struct ksz_hw *hw = &hw_priv->hw;
5252 
5253 	spin_lock(&hw_priv->hwlock);
5254 
5255 	hw_read_intr(hw, &int_enable);
5256 
5257 	/* Not our interrupt! */
5258 	if (!int_enable) {
5259 		spin_unlock(&hw_priv->hwlock);
5260 		return IRQ_NONE;
5261 	}
5262 
5263 	do {
5264 		hw_ack_intr(hw, int_enable);
5265 		int_enable &= hw->intr_mask;
5266 
5267 		if (unlikely(int_enable & KS884X_INT_TX_MASK)) {
5268 			hw_dis_intr_bit(hw, KS884X_INT_TX_MASK);
5269 			tasklet_schedule(&hw_priv->tx_tasklet);
5270 		}
5271 
5272 		if (likely(int_enable & KS884X_INT_RX)) {
5273 			hw_dis_intr_bit(hw, KS884X_INT_RX);
5274 			tasklet_schedule(&hw_priv->rx_tasklet);
5275 		}
5276 
5277 		if (unlikely(int_enable & KS884X_INT_RX_OVERRUN)) {
5278 			dev->stats.rx_fifo_errors++;
5279 			hw_resume_rx(hw);
5280 		}
5281 
5282 		if (unlikely(int_enable & KS884X_INT_PHY)) {
5283 			struct ksz_port *port = &priv->port;
5284 
5285 			hw->features |= LINK_INT_WORKING;
5286 			port_get_link_speed(port);
5287 		}
5288 
5289 		if (unlikely(int_enable & KS884X_INT_RX_STOPPED)) {
5290 			handle_rx_stop(hw);
5291 			break;
5292 		}
5293 
5294 		if (unlikely(int_enable & KS884X_INT_TX_STOPPED)) {
5295 			u32 data;
5296 
5297 			hw->intr_mask &= ~KS884X_INT_TX_STOPPED;
5298 			pr_info("Tx stopped\n");
5299 			data = readl(hw->io + KS_DMA_TX_CTRL);
5300 			if (!(data & DMA_TX_ENABLE))
5301 				pr_info("Tx disabled\n");
5302 			break;
5303 		}
5304 	} while (0);
5305 
5306 	hw_ena_intr(hw);
5307 
5308 	spin_unlock(&hw_priv->hwlock);
5309 
5310 	return IRQ_HANDLED;
5311 }
5312 
5313 /*
5314  * Linux network device functions
5315  */
5316 
5317 static unsigned long next_jiffies;
5318 
5319 #ifdef CONFIG_NET_POLL_CONTROLLER
5320 static void netdev_netpoll(struct net_device *dev)
5321 {
5322 	struct dev_priv *priv = netdev_priv(dev);
5323 	struct dev_info *hw_priv = priv->adapter;
5324 
5325 	hw_dis_intr(&hw_priv->hw);
5326 	netdev_intr(dev->irq, dev);
5327 }
5328 #endif
5329 
5330 static void bridge_change(struct ksz_hw *hw)
5331 {
5332 	int port;
5333 	u8  member;
5334 	struct ksz_switch *sw = hw->ksz_switch;
5335 
5336 	/* No ports in forwarding state. */
5337 	if (!sw->member) {
5338 		port_set_stp_state(hw, SWITCH_PORT_NUM, STP_STATE_SIMPLE);
5339 		sw_block_addr(hw);
5340 	}
5341 	for (port = 0; port < SWITCH_PORT_NUM; port++) {
5342 		if (STP_STATE_FORWARDING == sw->port_cfg[port].stp_state)
5343 			member = HOST_MASK | sw->member;
5344 		else
5345 			member = HOST_MASK | (1 << port);
5346 		if (member != sw->port_cfg[port].member)
5347 			sw_cfg_port_base_vlan(hw, port, member);
5348 	}
5349 }
5350 
5351 /**
5352  * netdev_close - close network device
5353  * @dev:	Network device.
5354  *
5355  * This function process the close operation of network device.  This is caused
5356  * by the user command "ifconfig ethX down."
5357  *
5358  * Return 0 if successful; otherwise an error code indicating failure.
5359  */
5360 static int netdev_close(struct net_device *dev)
5361 {
5362 	struct dev_priv *priv = netdev_priv(dev);
5363 	struct dev_info *hw_priv = priv->adapter;
5364 	struct ksz_port *port = &priv->port;
5365 	struct ksz_hw *hw = &hw_priv->hw;
5366 	int pi;
5367 
5368 	netif_stop_queue(dev);
5369 
5370 	ksz_stop_timer(&priv->monitor_timer_info);
5371 
5372 	/* Need to shut the port manually in multiple device interfaces mode. */
5373 	if (hw->dev_count > 1) {
5374 		port_set_stp_state(hw, port->first_port, STP_STATE_DISABLED);
5375 
5376 		/* Port is closed.  Need to change bridge setting. */
5377 		if (hw->features & STP_SUPPORT) {
5378 			pi = 1 << port->first_port;
5379 			if (hw->ksz_switch->member & pi) {
5380 				hw->ksz_switch->member &= ~pi;
5381 				bridge_change(hw);
5382 			}
5383 		}
5384 	}
5385 	if (port->first_port > 0)
5386 		hw_del_addr(hw, dev->dev_addr);
5387 	if (!hw_priv->wol_enable)
5388 		port_set_power_saving(port, true);
5389 
5390 	if (priv->multicast)
5391 		--hw->all_multi;
5392 	if (priv->promiscuous)
5393 		--hw->promiscuous;
5394 
5395 	hw_priv->opened--;
5396 	if (!(hw_priv->opened)) {
5397 		ksz_stop_timer(&hw_priv->mib_timer_info);
5398 		flush_work(&hw_priv->mib_read);
5399 
5400 		hw_dis_intr(hw);
5401 		hw_disable(hw);
5402 		hw_clr_multicast(hw);
5403 
5404 		/* Delay for receive task to stop scheduling itself. */
5405 		msleep(2000 / HZ);
5406 
5407 		tasklet_kill(&hw_priv->rx_tasklet);
5408 		tasklet_kill(&hw_priv->tx_tasklet);
5409 		free_irq(dev->irq, hw_priv->dev);
5410 
5411 		transmit_cleanup(hw_priv, 0);
5412 		hw_reset_pkts(&hw->rx_desc_info);
5413 		hw_reset_pkts(&hw->tx_desc_info);
5414 
5415 		/* Clean out static MAC table when the switch is shutdown. */
5416 		if (hw->features & STP_SUPPORT)
5417 			sw_clr_sta_mac_table(hw);
5418 	}
5419 
5420 	return 0;
5421 }
5422 
5423 static void hw_cfg_huge_frame(struct dev_info *hw_priv, struct ksz_hw *hw)
5424 {
5425 	if (hw->ksz_switch) {
5426 		u32 data;
5427 
5428 		data = readw(hw->io + KS8842_SWITCH_CTRL_2_OFFSET);
5429 		if (hw->features & RX_HUGE_FRAME)
5430 			data |= SWITCH_HUGE_PACKET;
5431 		else
5432 			data &= ~SWITCH_HUGE_PACKET;
5433 		writew(data, hw->io + KS8842_SWITCH_CTRL_2_OFFSET);
5434 	}
5435 	if (hw->features & RX_HUGE_FRAME) {
5436 		hw->rx_cfg |= DMA_RX_ERROR;
5437 		hw_priv->dev_rcv = dev_rcv_special;
5438 	} else {
5439 		hw->rx_cfg &= ~DMA_RX_ERROR;
5440 		if (hw->dev_count > 1)
5441 			hw_priv->dev_rcv = port_rcv_packets;
5442 		else
5443 			hw_priv->dev_rcv = dev_rcv_packets;
5444 	}
5445 }
5446 
5447 static int prepare_hardware(struct net_device *dev)
5448 {
5449 	struct dev_priv *priv = netdev_priv(dev);
5450 	struct dev_info *hw_priv = priv->adapter;
5451 	struct ksz_hw *hw = &hw_priv->hw;
5452 	int rc = 0;
5453 
5454 	/* Remember the network device that requests interrupts. */
5455 	hw_priv->dev = dev;
5456 	rc = request_irq(dev->irq, netdev_intr, IRQF_SHARED, dev->name, dev);
5457 	if (rc)
5458 		return rc;
5459 	tasklet_init(&hw_priv->rx_tasklet, rx_proc_task,
5460 		     (unsigned long) hw_priv);
5461 	tasklet_init(&hw_priv->tx_tasklet, tx_proc_task,
5462 		     (unsigned long) hw_priv);
5463 
5464 	hw->promiscuous = 0;
5465 	hw->all_multi = 0;
5466 	hw->multi_list_size = 0;
5467 
5468 	hw_reset(hw);
5469 
5470 	hw_set_desc_base(hw,
5471 		hw->tx_desc_info.ring_phys, hw->rx_desc_info.ring_phys);
5472 	hw_set_addr(hw);
5473 	hw_cfg_huge_frame(hw_priv, hw);
5474 	ksz_init_rx_buffers(hw_priv);
5475 	return 0;
5476 }
5477 
5478 static void set_media_state(struct net_device *dev, int media_state)
5479 {
5480 	struct dev_priv *priv = netdev_priv(dev);
5481 
5482 	if (media_state == priv->media_state)
5483 		netif_carrier_on(dev);
5484 	else
5485 		netif_carrier_off(dev);
5486 	netif_info(priv, link, dev, "link %s\n",
5487 		   media_state == priv->media_state ? "on" : "off");
5488 }
5489 
5490 /**
5491  * netdev_open - open network device
5492  * @dev:	Network device.
5493  *
5494  * This function process the open operation of network device.  This is caused
5495  * by the user command "ifconfig ethX up."
5496  *
5497  * Return 0 if successful; otherwise an error code indicating failure.
5498  */
5499 static int netdev_open(struct net_device *dev)
5500 {
5501 	struct dev_priv *priv = netdev_priv(dev);
5502 	struct dev_info *hw_priv = priv->adapter;
5503 	struct ksz_hw *hw = &hw_priv->hw;
5504 	struct ksz_port *port = &priv->port;
5505 	int i;
5506 	int p;
5507 	int rc = 0;
5508 
5509 	priv->multicast = 0;
5510 	priv->promiscuous = 0;
5511 
5512 	/* Reset device statistics. */
5513 	memset(&dev->stats, 0, sizeof(struct net_device_stats));
5514 	memset((void *) port->counter, 0,
5515 		(sizeof(u64) * OID_COUNTER_LAST));
5516 
5517 	if (!(hw_priv->opened)) {
5518 		rc = prepare_hardware(dev);
5519 		if (rc)
5520 			return rc;
5521 		for (i = 0; i < hw->mib_port_cnt; i++) {
5522 			if (next_jiffies < jiffies)
5523 				next_jiffies = jiffies + HZ * 2;
5524 			else
5525 				next_jiffies += HZ * 1;
5526 			hw_priv->counter[i].time = next_jiffies;
5527 			hw->port_mib[i].state = media_disconnected;
5528 			port_init_cnt(hw, i);
5529 		}
5530 		if (hw->ksz_switch)
5531 			hw->port_mib[HOST_PORT].state = media_connected;
5532 		else {
5533 			hw_add_wol_bcast(hw);
5534 			hw_cfg_wol_pme(hw, 0);
5535 			hw_clr_wol_pme_status(&hw_priv->hw);
5536 		}
5537 	}
5538 	port_set_power_saving(port, false);
5539 
5540 	for (i = 0, p = port->first_port; i < port->port_cnt; i++, p++) {
5541 		/*
5542 		 * Initialize to invalid value so that link detection
5543 		 * is done.
5544 		 */
5545 		hw->port_info[p].partner = 0xFF;
5546 		hw->port_info[p].state = media_disconnected;
5547 	}
5548 
5549 	/* Need to open the port in multiple device interfaces mode. */
5550 	if (hw->dev_count > 1) {
5551 		port_set_stp_state(hw, port->first_port, STP_STATE_SIMPLE);
5552 		if (port->first_port > 0)
5553 			hw_add_addr(hw, dev->dev_addr);
5554 	}
5555 
5556 	port_get_link_speed(port);
5557 	if (port->force_link)
5558 		port_force_link_speed(port);
5559 	else
5560 		port_set_link_speed(port);
5561 
5562 	if (!(hw_priv->opened)) {
5563 		hw_setup_intr(hw);
5564 		hw_enable(hw);
5565 		hw_ena_intr(hw);
5566 
5567 		if (hw->mib_port_cnt)
5568 			ksz_start_timer(&hw_priv->mib_timer_info,
5569 				hw_priv->mib_timer_info.period);
5570 	}
5571 
5572 	hw_priv->opened++;
5573 
5574 	ksz_start_timer(&priv->monitor_timer_info,
5575 		priv->monitor_timer_info.period);
5576 
5577 	priv->media_state = port->linked->state;
5578 
5579 	set_media_state(dev, media_connected);
5580 	netif_start_queue(dev);
5581 
5582 	return 0;
5583 }
5584 
5585 /* RX errors = rx_errors */
5586 /* RX dropped = rx_dropped */
5587 /* RX overruns = rx_fifo_errors */
5588 /* RX frame = rx_crc_errors + rx_frame_errors + rx_length_errors */
5589 /* TX errors = tx_errors */
5590 /* TX dropped = tx_dropped */
5591 /* TX overruns = tx_fifo_errors */
5592 /* TX carrier = tx_aborted_errors + tx_carrier_errors + tx_window_errors */
5593 /* collisions = collisions */
5594 
5595 /**
5596  * netdev_query_statistics - query network device statistics
5597  * @dev:	Network device.
5598  *
5599  * This function returns the statistics of the network device.  The device
5600  * needs not be opened.
5601  *
5602  * Return network device statistics.
5603  */
5604 static struct net_device_stats *netdev_query_statistics(struct net_device *dev)
5605 {
5606 	struct dev_priv *priv = netdev_priv(dev);
5607 	struct ksz_port *port = &priv->port;
5608 	struct ksz_hw *hw = &priv->adapter->hw;
5609 	struct ksz_port_mib *mib;
5610 	int i;
5611 	int p;
5612 
5613 	dev->stats.rx_errors = port->counter[OID_COUNTER_RCV_ERROR];
5614 	dev->stats.tx_errors = port->counter[OID_COUNTER_XMIT_ERROR];
5615 
5616 	/* Reset to zero to add count later. */
5617 	dev->stats.multicast = 0;
5618 	dev->stats.collisions = 0;
5619 	dev->stats.rx_length_errors = 0;
5620 	dev->stats.rx_crc_errors = 0;
5621 	dev->stats.rx_frame_errors = 0;
5622 	dev->stats.tx_window_errors = 0;
5623 
5624 	for (i = 0, p = port->first_port; i < port->mib_port_cnt; i++, p++) {
5625 		mib = &hw->port_mib[p];
5626 
5627 		dev->stats.multicast += (unsigned long)
5628 			mib->counter[MIB_COUNTER_RX_MULTICAST];
5629 
5630 		dev->stats.collisions += (unsigned long)
5631 			mib->counter[MIB_COUNTER_TX_TOTAL_COLLISION];
5632 
5633 		dev->stats.rx_length_errors += (unsigned long)(
5634 			mib->counter[MIB_COUNTER_RX_UNDERSIZE] +
5635 			mib->counter[MIB_COUNTER_RX_FRAGMENT] +
5636 			mib->counter[MIB_COUNTER_RX_OVERSIZE] +
5637 			mib->counter[MIB_COUNTER_RX_JABBER]);
5638 		dev->stats.rx_crc_errors += (unsigned long)
5639 			mib->counter[MIB_COUNTER_RX_CRC_ERR];
5640 		dev->stats.rx_frame_errors += (unsigned long)(
5641 			mib->counter[MIB_COUNTER_RX_ALIGNMENT_ERR] +
5642 			mib->counter[MIB_COUNTER_RX_SYMBOL_ERR]);
5643 
5644 		dev->stats.tx_window_errors += (unsigned long)
5645 			mib->counter[MIB_COUNTER_TX_LATE_COLLISION];
5646 	}
5647 
5648 	return &dev->stats;
5649 }
5650 
5651 /**
5652  * netdev_set_mac_address - set network device MAC address
5653  * @dev:	Network device.
5654  * @addr:	Buffer of MAC address.
5655  *
5656  * This function is used to set the MAC address of the network device.
5657  *
5658  * Return 0 to indicate success.
5659  */
5660 static int netdev_set_mac_address(struct net_device *dev, void *addr)
5661 {
5662 	struct dev_priv *priv = netdev_priv(dev);
5663 	struct dev_info *hw_priv = priv->adapter;
5664 	struct ksz_hw *hw = &hw_priv->hw;
5665 	struct sockaddr *mac = addr;
5666 	uint interrupt;
5667 
5668 	if (priv->port.first_port > 0)
5669 		hw_del_addr(hw, dev->dev_addr);
5670 	else {
5671 		hw->mac_override = 1;
5672 		memcpy(hw->override_addr, mac->sa_data, ETH_ALEN);
5673 	}
5674 
5675 	memcpy(dev->dev_addr, mac->sa_data, ETH_ALEN);
5676 
5677 	interrupt = hw_block_intr(hw);
5678 
5679 	if (priv->port.first_port > 0)
5680 		hw_add_addr(hw, dev->dev_addr);
5681 	else
5682 		hw_set_addr(hw);
5683 	hw_restore_intr(hw, interrupt);
5684 
5685 	return 0;
5686 }
5687 
5688 static void dev_set_promiscuous(struct net_device *dev, struct dev_priv *priv,
5689 	struct ksz_hw *hw, int promiscuous)
5690 {
5691 	if (promiscuous != priv->promiscuous) {
5692 		u8 prev_state = hw->promiscuous;
5693 
5694 		if (promiscuous)
5695 			++hw->promiscuous;
5696 		else
5697 			--hw->promiscuous;
5698 		priv->promiscuous = promiscuous;
5699 
5700 		/* Turn on/off promiscuous mode. */
5701 		if (hw->promiscuous <= 1 && prev_state <= 1)
5702 			hw_set_promiscuous(hw, hw->promiscuous);
5703 
5704 		/*
5705 		 * Port is not in promiscuous mode, meaning it is released
5706 		 * from the bridge.
5707 		 */
5708 		if ((hw->features & STP_SUPPORT) && !promiscuous &&
5709 		    (dev->priv_flags & IFF_BRIDGE_PORT)) {
5710 			struct ksz_switch *sw = hw->ksz_switch;
5711 			int port = priv->port.first_port;
5712 
5713 			port_set_stp_state(hw, port, STP_STATE_DISABLED);
5714 			port = 1 << port;
5715 			if (sw->member & port) {
5716 				sw->member &= ~port;
5717 				bridge_change(hw);
5718 			}
5719 		}
5720 	}
5721 }
5722 
5723 static void dev_set_multicast(struct dev_priv *priv, struct ksz_hw *hw,
5724 	int multicast)
5725 {
5726 	if (multicast != priv->multicast) {
5727 		u8 all_multi = hw->all_multi;
5728 
5729 		if (multicast)
5730 			++hw->all_multi;
5731 		else
5732 			--hw->all_multi;
5733 		priv->multicast = multicast;
5734 
5735 		/* Turn on/off all multicast mode. */
5736 		if (hw->all_multi <= 1 && all_multi <= 1)
5737 			hw_set_multicast(hw, hw->all_multi);
5738 	}
5739 }
5740 
5741 /**
5742  * netdev_set_rx_mode
5743  * @dev:	Network device.
5744  *
5745  * This routine is used to set multicast addresses or put the network device
5746  * into promiscuous mode.
5747  */
5748 static void netdev_set_rx_mode(struct net_device *dev)
5749 {
5750 	struct dev_priv *priv = netdev_priv(dev);
5751 	struct dev_info *hw_priv = priv->adapter;
5752 	struct ksz_hw *hw = &hw_priv->hw;
5753 	struct netdev_hw_addr *ha;
5754 	int multicast = (dev->flags & IFF_ALLMULTI);
5755 
5756 	dev_set_promiscuous(dev, priv, hw, (dev->flags & IFF_PROMISC));
5757 
5758 	if (hw_priv->hw.dev_count > 1)
5759 		multicast |= (dev->flags & IFF_MULTICAST);
5760 	dev_set_multicast(priv, hw, multicast);
5761 
5762 	/* Cannot use different hashes in multiple device interfaces mode. */
5763 	if (hw_priv->hw.dev_count > 1)
5764 		return;
5765 
5766 	if ((dev->flags & IFF_MULTICAST) && !netdev_mc_empty(dev)) {
5767 		int i = 0;
5768 
5769 		/* List too big to support so turn on all multicast mode. */
5770 		if (netdev_mc_count(dev) > MAX_MULTICAST_LIST) {
5771 			if (MAX_MULTICAST_LIST != hw->multi_list_size) {
5772 				hw->multi_list_size = MAX_MULTICAST_LIST;
5773 				++hw->all_multi;
5774 				hw_set_multicast(hw, hw->all_multi);
5775 			}
5776 			return;
5777 		}
5778 
5779 		netdev_for_each_mc_addr(ha, dev) {
5780 			if (i >= MAX_MULTICAST_LIST)
5781 				break;
5782 			memcpy(hw->multi_list[i++], ha->addr, ETH_ALEN);
5783 		}
5784 		hw->multi_list_size = (u8) i;
5785 		hw_set_grp_addr(hw);
5786 	} else {
5787 		if (MAX_MULTICAST_LIST == hw->multi_list_size) {
5788 			--hw->all_multi;
5789 			hw_set_multicast(hw, hw->all_multi);
5790 		}
5791 		hw->multi_list_size = 0;
5792 		hw_clr_multicast(hw);
5793 	}
5794 }
5795 
5796 static int netdev_change_mtu(struct net_device *dev, int new_mtu)
5797 {
5798 	struct dev_priv *priv = netdev_priv(dev);
5799 	struct dev_info *hw_priv = priv->adapter;
5800 	struct ksz_hw *hw = &hw_priv->hw;
5801 	int hw_mtu;
5802 
5803 	if (netif_running(dev))
5804 		return -EBUSY;
5805 
5806 	/* Cannot use different MTU in multiple device interfaces mode. */
5807 	if (hw->dev_count > 1)
5808 		if (dev != hw_priv->dev)
5809 			return 0;
5810 
5811 	hw_mtu = new_mtu + ETHERNET_HEADER_SIZE + 4;
5812 	if (hw_mtu > REGULAR_RX_BUF_SIZE) {
5813 		hw->features |= RX_HUGE_FRAME;
5814 		hw_mtu = MAX_RX_BUF_SIZE;
5815 	} else {
5816 		hw->features &= ~RX_HUGE_FRAME;
5817 		hw_mtu = REGULAR_RX_BUF_SIZE;
5818 	}
5819 	hw_mtu = (hw_mtu + 3) & ~3;
5820 	hw_priv->mtu = hw_mtu;
5821 	dev->mtu = new_mtu;
5822 
5823 	return 0;
5824 }
5825 
5826 /**
5827  * netdev_ioctl - I/O control processing
5828  * @dev:	Network device.
5829  * @ifr:	Interface request structure.
5830  * @cmd:	I/O control code.
5831  *
5832  * This function is used to process I/O control calls.
5833  *
5834  * Return 0 to indicate success.
5835  */
5836 static int netdev_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
5837 {
5838 	struct dev_priv *priv = netdev_priv(dev);
5839 	struct dev_info *hw_priv = priv->adapter;
5840 	struct ksz_hw *hw = &hw_priv->hw;
5841 	struct ksz_port *port = &priv->port;
5842 	int result = 0;
5843 	struct mii_ioctl_data *data = if_mii(ifr);
5844 
5845 	if (down_interruptible(&priv->proc_sem))
5846 		return -ERESTARTSYS;
5847 
5848 	switch (cmd) {
5849 	/* Get address of MII PHY in use. */
5850 	case SIOCGMIIPHY:
5851 		data->phy_id = priv->id;
5852 
5853 		/* Fallthrough... */
5854 
5855 	/* Read MII PHY register. */
5856 	case SIOCGMIIREG:
5857 		if (data->phy_id != priv->id || data->reg_num >= 6)
5858 			result = -EIO;
5859 		else
5860 			hw_r_phy(hw, port->linked->port_id, data->reg_num,
5861 				&data->val_out);
5862 		break;
5863 
5864 	/* Write MII PHY register. */
5865 	case SIOCSMIIREG:
5866 		if (!capable(CAP_NET_ADMIN))
5867 			result = -EPERM;
5868 		else if (data->phy_id != priv->id || data->reg_num >= 6)
5869 			result = -EIO;
5870 		else
5871 			hw_w_phy(hw, port->linked->port_id, data->reg_num,
5872 				data->val_in);
5873 		break;
5874 
5875 	default:
5876 		result = -EOPNOTSUPP;
5877 	}
5878 
5879 	up(&priv->proc_sem);
5880 
5881 	return result;
5882 }
5883 
5884 /*
5885  * MII support
5886  */
5887 
5888 /**
5889  * mdio_read - read PHY register
5890  * @dev:	Network device.
5891  * @phy_id:	The PHY id.
5892  * @reg_num:	The register number.
5893  *
5894  * This function returns the PHY register value.
5895  *
5896  * Return the register value.
5897  */
5898 static int mdio_read(struct net_device *dev, int phy_id, int reg_num)
5899 {
5900 	struct dev_priv *priv = netdev_priv(dev);
5901 	struct ksz_port *port = &priv->port;
5902 	struct ksz_hw *hw = port->hw;
5903 	u16 val_out;
5904 
5905 	hw_r_phy(hw, port->linked->port_id, reg_num << 1, &val_out);
5906 	return val_out;
5907 }
5908 
5909 /**
5910  * mdio_write - set PHY register
5911  * @dev:	Network device.
5912  * @phy_id:	The PHY id.
5913  * @reg_num:	The register number.
5914  * @val:	The register value.
5915  *
5916  * This procedure sets the PHY register value.
5917  */
5918 static void mdio_write(struct net_device *dev, int phy_id, int reg_num, int val)
5919 {
5920 	struct dev_priv *priv = netdev_priv(dev);
5921 	struct ksz_port *port = &priv->port;
5922 	struct ksz_hw *hw = port->hw;
5923 	int i;
5924 	int pi;
5925 
5926 	for (i = 0, pi = port->first_port; i < port->port_cnt; i++, pi++)
5927 		hw_w_phy(hw, pi, reg_num << 1, val);
5928 }
5929 
5930 /*
5931  * ethtool support
5932  */
5933 
5934 #define EEPROM_SIZE			0x40
5935 
5936 static u16 eeprom_data[EEPROM_SIZE] = { 0 };
5937 
5938 #define ADVERTISED_ALL			\
5939 	(ADVERTISED_10baseT_Half |	\
5940 	ADVERTISED_10baseT_Full |	\
5941 	ADVERTISED_100baseT_Half |	\
5942 	ADVERTISED_100baseT_Full)
5943 
5944 /* These functions use the MII functions in mii.c. */
5945 
5946 /**
5947  * netdev_get_link_ksettings - get network device settings
5948  * @dev:	Network device.
5949  * @cmd:	Ethtool command.
5950  *
5951  * This function queries the PHY and returns its state in the ethtool command.
5952  *
5953  * Return 0 if successful; otherwise an error code.
5954  */
5955 static int netdev_get_link_ksettings(struct net_device *dev,
5956 				     struct ethtool_link_ksettings *cmd)
5957 {
5958 	struct dev_priv *priv = netdev_priv(dev);
5959 	struct dev_info *hw_priv = priv->adapter;
5960 
5961 	mutex_lock(&hw_priv->lock);
5962 	mii_ethtool_get_link_ksettings(&priv->mii_if, cmd);
5963 	ethtool_link_ksettings_add_link_mode(cmd, advertising, TP);
5964 	mutex_unlock(&hw_priv->lock);
5965 
5966 	/* Save advertised settings for workaround in next function. */
5967 	ethtool_convert_link_mode_to_legacy_u32(&priv->advertising,
5968 						cmd->link_modes.advertising);
5969 
5970 	return 0;
5971 }
5972 
5973 /**
5974  * netdev_set_link_ksettings - set network device settings
5975  * @dev:	Network device.
5976  * @cmd:	Ethtool command.
5977  *
5978  * This function sets the PHY according to the ethtool command.
5979  *
5980  * Return 0 if successful; otherwise an error code.
5981  */
5982 static int netdev_set_link_ksettings(struct net_device *dev,
5983 				     const struct ethtool_link_ksettings *cmd)
5984 {
5985 	struct dev_priv *priv = netdev_priv(dev);
5986 	struct dev_info *hw_priv = priv->adapter;
5987 	struct ksz_port *port = &priv->port;
5988 	struct ethtool_link_ksettings copy_cmd;
5989 	u32 speed = cmd->base.speed;
5990 	u32 advertising;
5991 	int rc;
5992 
5993 	ethtool_convert_link_mode_to_legacy_u32(&advertising,
5994 						cmd->link_modes.advertising);
5995 
5996 	/*
5997 	 * ethtool utility does not change advertised setting if auto
5998 	 * negotiation is not specified explicitly.
5999 	 */
6000 	if (cmd->base.autoneg && priv->advertising == advertising) {
6001 		advertising |= ADVERTISED_ALL;
6002 		if (10 == speed)
6003 			advertising &=
6004 				~(ADVERTISED_100baseT_Full |
6005 				ADVERTISED_100baseT_Half);
6006 		else if (100 == speed)
6007 			advertising &=
6008 				~(ADVERTISED_10baseT_Full |
6009 				ADVERTISED_10baseT_Half);
6010 		if (0 == cmd->base.duplex)
6011 			advertising &=
6012 				~(ADVERTISED_100baseT_Full |
6013 				ADVERTISED_10baseT_Full);
6014 		else if (1 == cmd->base.duplex)
6015 			advertising &=
6016 				~(ADVERTISED_100baseT_Half |
6017 				ADVERTISED_10baseT_Half);
6018 	}
6019 	mutex_lock(&hw_priv->lock);
6020 	if (cmd->base.autoneg &&
6021 	    (advertising & ADVERTISED_ALL) == ADVERTISED_ALL) {
6022 		port->duplex = 0;
6023 		port->speed = 0;
6024 		port->force_link = 0;
6025 	} else {
6026 		port->duplex = cmd->base.duplex + 1;
6027 		if (1000 != speed)
6028 			port->speed = speed;
6029 		if (cmd->base.autoneg)
6030 			port->force_link = 0;
6031 		else
6032 			port->force_link = 1;
6033 	}
6034 
6035 	memcpy(&copy_cmd, cmd, sizeof(copy_cmd));
6036 	ethtool_convert_legacy_u32_to_link_mode(copy_cmd.link_modes.advertising,
6037 						advertising);
6038 	rc = mii_ethtool_set_link_ksettings(
6039 		&priv->mii_if,
6040 		(const struct ethtool_link_ksettings *)&copy_cmd);
6041 	mutex_unlock(&hw_priv->lock);
6042 	return rc;
6043 }
6044 
6045 /**
6046  * netdev_nway_reset - restart auto-negotiation
6047  * @dev:	Network device.
6048  *
6049  * This function restarts the PHY for auto-negotiation.
6050  *
6051  * Return 0 if successful; otherwise an error code.
6052  */
6053 static int netdev_nway_reset(struct net_device *dev)
6054 {
6055 	struct dev_priv *priv = netdev_priv(dev);
6056 	struct dev_info *hw_priv = priv->adapter;
6057 	int rc;
6058 
6059 	mutex_lock(&hw_priv->lock);
6060 	rc = mii_nway_restart(&priv->mii_if);
6061 	mutex_unlock(&hw_priv->lock);
6062 	return rc;
6063 }
6064 
6065 /**
6066  * netdev_get_link - get network device link status
6067  * @dev:	Network device.
6068  *
6069  * This function gets the link status from the PHY.
6070  *
6071  * Return true if PHY is linked and false otherwise.
6072  */
6073 static u32 netdev_get_link(struct net_device *dev)
6074 {
6075 	struct dev_priv *priv = netdev_priv(dev);
6076 	int rc;
6077 
6078 	rc = mii_link_ok(&priv->mii_if);
6079 	return rc;
6080 }
6081 
6082 /**
6083  * netdev_get_drvinfo - get network driver information
6084  * @dev:	Network device.
6085  * @info:	Ethtool driver info data structure.
6086  *
6087  * This procedure returns the driver information.
6088  */
6089 static void netdev_get_drvinfo(struct net_device *dev,
6090 	struct ethtool_drvinfo *info)
6091 {
6092 	struct dev_priv *priv = netdev_priv(dev);
6093 	struct dev_info *hw_priv = priv->adapter;
6094 
6095 	strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
6096 	strlcpy(info->version, DRV_VERSION, sizeof(info->version));
6097 	strlcpy(info->bus_info, pci_name(hw_priv->pdev),
6098 		sizeof(info->bus_info));
6099 }
6100 
6101 /**
6102  * netdev_get_regs_len - get length of register dump
6103  * @dev:	Network device.
6104  *
6105  * This function returns the length of the register dump.
6106  *
6107  * Return length of the register dump.
6108  */
6109 static struct hw_regs {
6110 	int start;
6111 	int end;
6112 } hw_regs_range[] = {
6113 	{ KS_DMA_TX_CTRL,	KS884X_INTERRUPTS_STATUS },
6114 	{ KS_ADD_ADDR_0_LO,	KS_ADD_ADDR_F_HI },
6115 	{ KS884X_ADDR_0_OFFSET,	KS8841_WOL_FRAME_BYTE2_OFFSET },
6116 	{ KS884X_SIDER_P,	KS8842_SGCR7_P },
6117 	{ KS8842_MACAR1_P,	KS8842_TOSR8_P },
6118 	{ KS884X_P1MBCR_P,	KS8842_P3ERCR_P },
6119 	{ 0, 0 }
6120 };
6121 
6122 static int netdev_get_regs_len(struct net_device *dev)
6123 {
6124 	struct hw_regs *range = hw_regs_range;
6125 	int regs_len = 0x10 * sizeof(u32);
6126 
6127 	while (range->end > range->start) {
6128 		regs_len += (range->end - range->start + 3) / 4 * 4;
6129 		range++;
6130 	}
6131 	return regs_len;
6132 }
6133 
6134 /**
6135  * netdev_get_regs - get register dump
6136  * @dev:	Network device.
6137  * @regs:	Ethtool registers data structure.
6138  * @ptr:	Buffer to store the register values.
6139  *
6140  * This procedure dumps the register values in the provided buffer.
6141  */
6142 static void netdev_get_regs(struct net_device *dev, struct ethtool_regs *regs,
6143 	void *ptr)
6144 {
6145 	struct dev_priv *priv = netdev_priv(dev);
6146 	struct dev_info *hw_priv = priv->adapter;
6147 	struct ksz_hw *hw = &hw_priv->hw;
6148 	int *buf = (int *) ptr;
6149 	struct hw_regs *range = hw_regs_range;
6150 	int len;
6151 
6152 	mutex_lock(&hw_priv->lock);
6153 	regs->version = 0;
6154 	for (len = 0; len < 0x40; len += 4) {
6155 		pci_read_config_dword(hw_priv->pdev, len, buf);
6156 		buf++;
6157 	}
6158 	while (range->end > range->start) {
6159 		for (len = range->start; len < range->end; len += 4) {
6160 			*buf = readl(hw->io + len);
6161 			buf++;
6162 		}
6163 		range++;
6164 	}
6165 	mutex_unlock(&hw_priv->lock);
6166 }
6167 
6168 #define WOL_SUPPORT			\
6169 	(WAKE_PHY | WAKE_MAGIC |	\
6170 	WAKE_UCAST | WAKE_MCAST |	\
6171 	WAKE_BCAST | WAKE_ARP)
6172 
6173 /**
6174  * netdev_get_wol - get Wake-on-LAN support
6175  * @dev:	Network device.
6176  * @wol:	Ethtool Wake-on-LAN data structure.
6177  *
6178  * This procedure returns Wake-on-LAN support.
6179  */
6180 static void netdev_get_wol(struct net_device *dev,
6181 	struct ethtool_wolinfo *wol)
6182 {
6183 	struct dev_priv *priv = netdev_priv(dev);
6184 	struct dev_info *hw_priv = priv->adapter;
6185 
6186 	wol->supported = hw_priv->wol_support;
6187 	wol->wolopts = hw_priv->wol_enable;
6188 	memset(&wol->sopass, 0, sizeof(wol->sopass));
6189 }
6190 
6191 /**
6192  * netdev_set_wol - set Wake-on-LAN support
6193  * @dev:	Network device.
6194  * @wol:	Ethtool Wake-on-LAN data structure.
6195  *
6196  * This function sets Wake-on-LAN support.
6197  *
6198  * Return 0 if successful; otherwise an error code.
6199  */
6200 static int netdev_set_wol(struct net_device *dev,
6201 	struct ethtool_wolinfo *wol)
6202 {
6203 	struct dev_priv *priv = netdev_priv(dev);
6204 	struct dev_info *hw_priv = priv->adapter;
6205 
6206 	/* Need to find a way to retrieve the device IP address. */
6207 	static const u8 net_addr[] = { 192, 168, 1, 1 };
6208 
6209 	if (wol->wolopts & ~hw_priv->wol_support)
6210 		return -EINVAL;
6211 
6212 	hw_priv->wol_enable = wol->wolopts;
6213 
6214 	/* Link wakeup cannot really be disabled. */
6215 	if (wol->wolopts)
6216 		hw_priv->wol_enable |= WAKE_PHY;
6217 	hw_enable_wol(&hw_priv->hw, hw_priv->wol_enable, net_addr);
6218 	return 0;
6219 }
6220 
6221 /**
6222  * netdev_get_msglevel - get debug message level
6223  * @dev:	Network device.
6224  *
6225  * This function returns current debug message level.
6226  *
6227  * Return current debug message flags.
6228  */
6229 static u32 netdev_get_msglevel(struct net_device *dev)
6230 {
6231 	struct dev_priv *priv = netdev_priv(dev);
6232 
6233 	return priv->msg_enable;
6234 }
6235 
6236 /**
6237  * netdev_set_msglevel - set debug message level
6238  * @dev:	Network device.
6239  * @value:	Debug message flags.
6240  *
6241  * This procedure sets debug message level.
6242  */
6243 static void netdev_set_msglevel(struct net_device *dev, u32 value)
6244 {
6245 	struct dev_priv *priv = netdev_priv(dev);
6246 
6247 	priv->msg_enable = value;
6248 }
6249 
6250 /**
6251  * netdev_get_eeprom_len - get EEPROM length
6252  * @dev:	Network device.
6253  *
6254  * This function returns the length of the EEPROM.
6255  *
6256  * Return length of the EEPROM.
6257  */
6258 static int netdev_get_eeprom_len(struct net_device *dev)
6259 {
6260 	return EEPROM_SIZE * 2;
6261 }
6262 
6263 /**
6264  * netdev_get_eeprom - get EEPROM data
6265  * @dev:	Network device.
6266  * @eeprom:	Ethtool EEPROM data structure.
6267  * @data:	Buffer to store the EEPROM data.
6268  *
6269  * This function dumps the EEPROM data in the provided buffer.
6270  *
6271  * Return 0 if successful; otherwise an error code.
6272  */
6273 #define EEPROM_MAGIC			0x10A18842
6274 
6275 static int netdev_get_eeprom(struct net_device *dev,
6276 	struct ethtool_eeprom *eeprom, u8 *data)
6277 {
6278 	struct dev_priv *priv = netdev_priv(dev);
6279 	struct dev_info *hw_priv = priv->adapter;
6280 	u8 *eeprom_byte = (u8 *) eeprom_data;
6281 	int i;
6282 	int len;
6283 
6284 	len = (eeprom->offset + eeprom->len + 1) / 2;
6285 	for (i = eeprom->offset / 2; i < len; i++)
6286 		eeprom_data[i] = eeprom_read(&hw_priv->hw, i);
6287 	eeprom->magic = EEPROM_MAGIC;
6288 	memcpy(data, &eeprom_byte[eeprom->offset], eeprom->len);
6289 
6290 	return 0;
6291 }
6292 
6293 /**
6294  * netdev_set_eeprom - write EEPROM data
6295  * @dev:	Network device.
6296  * @eeprom:	Ethtool EEPROM data structure.
6297  * @data:	Data buffer.
6298  *
6299  * This function modifies the EEPROM data one byte at a time.
6300  *
6301  * Return 0 if successful; otherwise an error code.
6302  */
6303 static int netdev_set_eeprom(struct net_device *dev,
6304 	struct ethtool_eeprom *eeprom, u8 *data)
6305 {
6306 	struct dev_priv *priv = netdev_priv(dev);
6307 	struct dev_info *hw_priv = priv->adapter;
6308 	u16 eeprom_word[EEPROM_SIZE];
6309 	u8 *eeprom_byte = (u8 *) eeprom_word;
6310 	int i;
6311 	int len;
6312 
6313 	if (eeprom->magic != EEPROM_MAGIC)
6314 		return -EINVAL;
6315 
6316 	len = (eeprom->offset + eeprom->len + 1) / 2;
6317 	for (i = eeprom->offset / 2; i < len; i++)
6318 		eeprom_data[i] = eeprom_read(&hw_priv->hw, i);
6319 	memcpy(eeprom_word, eeprom_data, EEPROM_SIZE * 2);
6320 	memcpy(&eeprom_byte[eeprom->offset], data, eeprom->len);
6321 	for (i = 0; i < EEPROM_SIZE; i++)
6322 		if (eeprom_word[i] != eeprom_data[i]) {
6323 			eeprom_data[i] = eeprom_word[i];
6324 			eeprom_write(&hw_priv->hw, i, eeprom_data[i]);
6325 	}
6326 
6327 	return 0;
6328 }
6329 
6330 /**
6331  * netdev_get_pauseparam - get flow control parameters
6332  * @dev:	Network device.
6333  * @pause:	Ethtool PAUSE settings data structure.
6334  *
6335  * This procedure returns the PAUSE control flow settings.
6336  */
6337 static void netdev_get_pauseparam(struct net_device *dev,
6338 	struct ethtool_pauseparam *pause)
6339 {
6340 	struct dev_priv *priv = netdev_priv(dev);
6341 	struct dev_info *hw_priv = priv->adapter;
6342 	struct ksz_hw *hw = &hw_priv->hw;
6343 
6344 	pause->autoneg = (hw->overrides & PAUSE_FLOW_CTRL) ? 0 : 1;
6345 	if (!hw->ksz_switch) {
6346 		pause->rx_pause =
6347 			(hw->rx_cfg & DMA_RX_FLOW_ENABLE) ? 1 : 0;
6348 		pause->tx_pause =
6349 			(hw->tx_cfg & DMA_TX_FLOW_ENABLE) ? 1 : 0;
6350 	} else {
6351 		pause->rx_pause =
6352 			(sw_chk(hw, KS8842_SWITCH_CTRL_1_OFFSET,
6353 				SWITCH_RX_FLOW_CTRL)) ? 1 : 0;
6354 		pause->tx_pause =
6355 			(sw_chk(hw, KS8842_SWITCH_CTRL_1_OFFSET,
6356 				SWITCH_TX_FLOW_CTRL)) ? 1 : 0;
6357 	}
6358 }
6359 
6360 /**
6361  * netdev_set_pauseparam - set flow control parameters
6362  * @dev:	Network device.
6363  * @pause:	Ethtool PAUSE settings data structure.
6364  *
6365  * This function sets the PAUSE control flow settings.
6366  * Not implemented yet.
6367  *
6368  * Return 0 if successful; otherwise an error code.
6369  */
6370 static int netdev_set_pauseparam(struct net_device *dev,
6371 	struct ethtool_pauseparam *pause)
6372 {
6373 	struct dev_priv *priv = netdev_priv(dev);
6374 	struct dev_info *hw_priv = priv->adapter;
6375 	struct ksz_hw *hw = &hw_priv->hw;
6376 	struct ksz_port *port = &priv->port;
6377 
6378 	mutex_lock(&hw_priv->lock);
6379 	if (pause->autoneg) {
6380 		if (!pause->rx_pause && !pause->tx_pause)
6381 			port->flow_ctrl = PHY_NO_FLOW_CTRL;
6382 		else
6383 			port->flow_ctrl = PHY_FLOW_CTRL;
6384 		hw->overrides &= ~PAUSE_FLOW_CTRL;
6385 		port->force_link = 0;
6386 		if (hw->ksz_switch) {
6387 			sw_cfg(hw, KS8842_SWITCH_CTRL_1_OFFSET,
6388 				SWITCH_RX_FLOW_CTRL, 1);
6389 			sw_cfg(hw, KS8842_SWITCH_CTRL_1_OFFSET,
6390 				SWITCH_TX_FLOW_CTRL, 1);
6391 		}
6392 		port_set_link_speed(port);
6393 	} else {
6394 		hw->overrides |= PAUSE_FLOW_CTRL;
6395 		if (hw->ksz_switch) {
6396 			sw_cfg(hw, KS8842_SWITCH_CTRL_1_OFFSET,
6397 				SWITCH_RX_FLOW_CTRL, pause->rx_pause);
6398 			sw_cfg(hw, KS8842_SWITCH_CTRL_1_OFFSET,
6399 				SWITCH_TX_FLOW_CTRL, pause->tx_pause);
6400 		} else
6401 			set_flow_ctrl(hw, pause->rx_pause, pause->tx_pause);
6402 	}
6403 	mutex_unlock(&hw_priv->lock);
6404 
6405 	return 0;
6406 }
6407 
6408 /**
6409  * netdev_get_ringparam - get tx/rx ring parameters
6410  * @dev:	Network device.
6411  * @pause:	Ethtool RING settings data structure.
6412  *
6413  * This procedure returns the TX/RX ring settings.
6414  */
6415 static void netdev_get_ringparam(struct net_device *dev,
6416 	struct ethtool_ringparam *ring)
6417 {
6418 	struct dev_priv *priv = netdev_priv(dev);
6419 	struct dev_info *hw_priv = priv->adapter;
6420 	struct ksz_hw *hw = &hw_priv->hw;
6421 
6422 	ring->tx_max_pending = (1 << 9);
6423 	ring->tx_pending = hw->tx_desc_info.alloc;
6424 	ring->rx_max_pending = (1 << 9);
6425 	ring->rx_pending = hw->rx_desc_info.alloc;
6426 }
6427 
6428 #define STATS_LEN			(TOTAL_PORT_COUNTER_NUM)
6429 
6430 static struct {
6431 	char string[ETH_GSTRING_LEN];
6432 } ethtool_stats_keys[STATS_LEN] = {
6433 	{ "rx_lo_priority_octets" },
6434 	{ "rx_hi_priority_octets" },
6435 	{ "rx_undersize_packets" },
6436 	{ "rx_fragments" },
6437 	{ "rx_oversize_packets" },
6438 	{ "rx_jabbers" },
6439 	{ "rx_symbol_errors" },
6440 	{ "rx_crc_errors" },
6441 	{ "rx_align_errors" },
6442 	{ "rx_mac_ctrl_packets" },
6443 	{ "rx_pause_packets" },
6444 	{ "rx_bcast_packets" },
6445 	{ "rx_mcast_packets" },
6446 	{ "rx_ucast_packets" },
6447 	{ "rx_64_or_less_octet_packets" },
6448 	{ "rx_65_to_127_octet_packets" },
6449 	{ "rx_128_to_255_octet_packets" },
6450 	{ "rx_256_to_511_octet_packets" },
6451 	{ "rx_512_to_1023_octet_packets" },
6452 	{ "rx_1024_to_1522_octet_packets" },
6453 
6454 	{ "tx_lo_priority_octets" },
6455 	{ "tx_hi_priority_octets" },
6456 	{ "tx_late_collisions" },
6457 	{ "tx_pause_packets" },
6458 	{ "tx_bcast_packets" },
6459 	{ "tx_mcast_packets" },
6460 	{ "tx_ucast_packets" },
6461 	{ "tx_deferred" },
6462 	{ "tx_total_collisions" },
6463 	{ "tx_excessive_collisions" },
6464 	{ "tx_single_collisions" },
6465 	{ "tx_mult_collisions" },
6466 
6467 	{ "rx_discards" },
6468 	{ "tx_discards" },
6469 };
6470 
6471 /**
6472  * netdev_get_strings - get statistics identity strings
6473  * @dev:	Network device.
6474  * @stringset:	String set identifier.
6475  * @buf:	Buffer to store the strings.
6476  *
6477  * This procedure returns the strings used to identify the statistics.
6478  */
6479 static void netdev_get_strings(struct net_device *dev, u32 stringset, u8 *buf)
6480 {
6481 	struct dev_priv *priv = netdev_priv(dev);
6482 	struct dev_info *hw_priv = priv->adapter;
6483 	struct ksz_hw *hw = &hw_priv->hw;
6484 
6485 	if (ETH_SS_STATS == stringset)
6486 		memcpy(buf, &ethtool_stats_keys,
6487 			ETH_GSTRING_LEN * hw->mib_cnt);
6488 }
6489 
6490 /**
6491  * netdev_get_sset_count - get statistics size
6492  * @dev:	Network device.
6493  * @sset:	The statistics set number.
6494  *
6495  * This function returns the size of the statistics to be reported.
6496  *
6497  * Return size of the statistics to be reported.
6498  */
6499 static int netdev_get_sset_count(struct net_device *dev, int sset)
6500 {
6501 	struct dev_priv *priv = netdev_priv(dev);
6502 	struct dev_info *hw_priv = priv->adapter;
6503 	struct ksz_hw *hw = &hw_priv->hw;
6504 
6505 	switch (sset) {
6506 	case ETH_SS_STATS:
6507 		return hw->mib_cnt;
6508 	default:
6509 		return -EOPNOTSUPP;
6510 	}
6511 }
6512 
6513 /**
6514  * netdev_get_ethtool_stats - get network device statistics
6515  * @dev:	Network device.
6516  * @stats:	Ethtool statistics data structure.
6517  * @data:	Buffer to store the statistics.
6518  *
6519  * This procedure returns the statistics.
6520  */
6521 static void netdev_get_ethtool_stats(struct net_device *dev,
6522 	struct ethtool_stats *stats, u64 *data)
6523 {
6524 	struct dev_priv *priv = netdev_priv(dev);
6525 	struct dev_info *hw_priv = priv->adapter;
6526 	struct ksz_hw *hw = &hw_priv->hw;
6527 	struct ksz_port *port = &priv->port;
6528 	int n_stats = stats->n_stats;
6529 	int i;
6530 	int n;
6531 	int p;
6532 	int rc;
6533 	u64 counter[TOTAL_PORT_COUNTER_NUM];
6534 
6535 	mutex_lock(&hw_priv->lock);
6536 	n = SWITCH_PORT_NUM;
6537 	for (i = 0, p = port->first_port; i < port->mib_port_cnt; i++, p++) {
6538 		if (media_connected == hw->port_mib[p].state) {
6539 			hw_priv->counter[p].read = 1;
6540 
6541 			/* Remember first port that requests read. */
6542 			if (n == SWITCH_PORT_NUM)
6543 				n = p;
6544 		}
6545 	}
6546 	mutex_unlock(&hw_priv->lock);
6547 
6548 	if (n < SWITCH_PORT_NUM)
6549 		schedule_work(&hw_priv->mib_read);
6550 
6551 	if (1 == port->mib_port_cnt && n < SWITCH_PORT_NUM) {
6552 		p = n;
6553 		rc = wait_event_interruptible_timeout(
6554 			hw_priv->counter[p].counter,
6555 			2 == hw_priv->counter[p].read,
6556 			HZ * 1);
6557 	} else
6558 		for (i = 0, p = n; i < port->mib_port_cnt - n; i++, p++) {
6559 			if (0 == i) {
6560 				rc = wait_event_interruptible_timeout(
6561 					hw_priv->counter[p].counter,
6562 					2 == hw_priv->counter[p].read,
6563 					HZ * 2);
6564 			} else if (hw->port_mib[p].cnt_ptr) {
6565 				rc = wait_event_interruptible_timeout(
6566 					hw_priv->counter[p].counter,
6567 					2 == hw_priv->counter[p].read,
6568 					HZ * 1);
6569 			}
6570 		}
6571 
6572 	get_mib_counters(hw, port->first_port, port->mib_port_cnt, counter);
6573 	n = hw->mib_cnt;
6574 	if (n > n_stats)
6575 		n = n_stats;
6576 	n_stats -= n;
6577 	for (i = 0; i < n; i++)
6578 		*data++ = counter[i];
6579 }
6580 
6581 /**
6582  * netdev_set_features - set receive checksum support
6583  * @dev:	Network device.
6584  * @features:	New device features (offloads).
6585  *
6586  * This function sets receive checksum support setting.
6587  *
6588  * Return 0 if successful; otherwise an error code.
6589  */
6590 static int netdev_set_features(struct net_device *dev,
6591 	netdev_features_t features)
6592 {
6593 	struct dev_priv *priv = netdev_priv(dev);
6594 	struct dev_info *hw_priv = priv->adapter;
6595 	struct ksz_hw *hw = &hw_priv->hw;
6596 
6597 	mutex_lock(&hw_priv->lock);
6598 
6599 	/* see note in hw_setup() */
6600 	if (features & NETIF_F_RXCSUM)
6601 		hw->rx_cfg |= DMA_RX_CSUM_TCP | DMA_RX_CSUM_IP;
6602 	else
6603 		hw->rx_cfg &= ~(DMA_RX_CSUM_TCP | DMA_RX_CSUM_IP);
6604 
6605 	if (hw->enabled)
6606 		writel(hw->rx_cfg, hw->io + KS_DMA_RX_CTRL);
6607 
6608 	mutex_unlock(&hw_priv->lock);
6609 
6610 	return 0;
6611 }
6612 
6613 static const struct ethtool_ops netdev_ethtool_ops = {
6614 	.nway_reset		= netdev_nway_reset,
6615 	.get_link		= netdev_get_link,
6616 	.get_drvinfo		= netdev_get_drvinfo,
6617 	.get_regs_len		= netdev_get_regs_len,
6618 	.get_regs		= netdev_get_regs,
6619 	.get_wol		= netdev_get_wol,
6620 	.set_wol		= netdev_set_wol,
6621 	.get_msglevel		= netdev_get_msglevel,
6622 	.set_msglevel		= netdev_set_msglevel,
6623 	.get_eeprom_len		= netdev_get_eeprom_len,
6624 	.get_eeprom		= netdev_get_eeprom,
6625 	.set_eeprom		= netdev_set_eeprom,
6626 	.get_pauseparam		= netdev_get_pauseparam,
6627 	.set_pauseparam		= netdev_set_pauseparam,
6628 	.get_ringparam		= netdev_get_ringparam,
6629 	.get_strings		= netdev_get_strings,
6630 	.get_sset_count		= netdev_get_sset_count,
6631 	.get_ethtool_stats	= netdev_get_ethtool_stats,
6632 	.get_link_ksettings	= netdev_get_link_ksettings,
6633 	.set_link_ksettings	= netdev_set_link_ksettings,
6634 };
6635 
6636 /*
6637  * Hardware monitoring
6638  */
6639 
6640 static void update_link(struct net_device *dev, struct dev_priv *priv,
6641 	struct ksz_port *port)
6642 {
6643 	if (priv->media_state != port->linked->state) {
6644 		priv->media_state = port->linked->state;
6645 		if (netif_running(dev))
6646 			set_media_state(dev, media_connected);
6647 	}
6648 }
6649 
6650 static void mib_read_work(struct work_struct *work)
6651 {
6652 	struct dev_info *hw_priv =
6653 		container_of(work, struct dev_info, mib_read);
6654 	struct ksz_hw *hw = &hw_priv->hw;
6655 	struct ksz_port_mib *mib;
6656 	int i;
6657 
6658 	next_jiffies = jiffies;
6659 	for (i = 0; i < hw->mib_port_cnt; i++) {
6660 		mib = &hw->port_mib[i];
6661 
6662 		/* Reading MIB counters or requested to read. */
6663 		if (mib->cnt_ptr || 1 == hw_priv->counter[i].read) {
6664 
6665 			/* Need to process receive interrupt. */
6666 			if (port_r_cnt(hw, i))
6667 				break;
6668 			hw_priv->counter[i].read = 0;
6669 
6670 			/* Finish reading counters. */
6671 			if (0 == mib->cnt_ptr) {
6672 				hw_priv->counter[i].read = 2;
6673 				wake_up_interruptible(
6674 					&hw_priv->counter[i].counter);
6675 			}
6676 		} else if (time_after_eq(jiffies, hw_priv->counter[i].time)) {
6677 			/* Only read MIB counters when the port is connected. */
6678 			if (media_connected == mib->state)
6679 				hw_priv->counter[i].read = 1;
6680 			next_jiffies += HZ * 1 * hw->mib_port_cnt;
6681 			hw_priv->counter[i].time = next_jiffies;
6682 
6683 		/* Port is just disconnected. */
6684 		} else if (mib->link_down) {
6685 			mib->link_down = 0;
6686 
6687 			/* Read counters one last time after link is lost. */
6688 			hw_priv->counter[i].read = 1;
6689 		}
6690 	}
6691 }
6692 
6693 static void mib_monitor(unsigned long ptr)
6694 {
6695 	struct dev_info *hw_priv = (struct dev_info *) ptr;
6696 
6697 	mib_read_work(&hw_priv->mib_read);
6698 
6699 	/* This is used to verify Wake-on-LAN is working. */
6700 	if (hw_priv->pme_wait) {
6701 		if (time_is_before_eq_jiffies(hw_priv->pme_wait)) {
6702 			hw_clr_wol_pme_status(&hw_priv->hw);
6703 			hw_priv->pme_wait = 0;
6704 		}
6705 	} else if (hw_chk_wol_pme_status(&hw_priv->hw)) {
6706 
6707 		/* PME is asserted.  Wait 2 seconds to clear it. */
6708 		hw_priv->pme_wait = jiffies + HZ * 2;
6709 	}
6710 
6711 	ksz_update_timer(&hw_priv->mib_timer_info);
6712 }
6713 
6714 /**
6715  * dev_monitor - periodic monitoring
6716  * @ptr:	Network device pointer.
6717  *
6718  * This routine is run in a kernel timer to monitor the network device.
6719  */
6720 static void dev_monitor(unsigned long ptr)
6721 {
6722 	struct net_device *dev = (struct net_device *) ptr;
6723 	struct dev_priv *priv = netdev_priv(dev);
6724 	struct dev_info *hw_priv = priv->adapter;
6725 	struct ksz_hw *hw = &hw_priv->hw;
6726 	struct ksz_port *port = &priv->port;
6727 
6728 	if (!(hw->features & LINK_INT_WORKING))
6729 		port_get_link_speed(port);
6730 	update_link(dev, priv, port);
6731 
6732 	ksz_update_timer(&priv->monitor_timer_info);
6733 }
6734 
6735 /*
6736  * Linux network device interface functions
6737  */
6738 
6739 /* Driver exported variables */
6740 
6741 static int msg_enable;
6742 
6743 static char *macaddr = ":";
6744 static char *mac1addr = ":";
6745 
6746 /*
6747  * This enables multiple network device mode for KSZ8842, which contains a
6748  * switch with two physical ports.  Some users like to take control of the
6749  * ports for running Spanning Tree Protocol.  The driver will create an
6750  * additional eth? device for the other port.
6751  *
6752  * Some limitations are the network devices cannot have different MTU and
6753  * multicast hash tables.
6754  */
6755 static int multi_dev;
6756 
6757 /*
6758  * As most users select multiple network device mode to use Spanning Tree
6759  * Protocol, this enables a feature in which most unicast and multicast packets
6760  * are forwarded inside the switch and not passed to the host.  Only packets
6761  * that need the host's attention are passed to it.  This prevents the host
6762  * wasting CPU time to examine each and every incoming packets and do the
6763  * forwarding itself.
6764  *
6765  * As the hack requires the private bridge header, the driver cannot compile
6766  * with just the kernel headers.
6767  *
6768  * Enabling STP support also turns on multiple network device mode.
6769  */
6770 static int stp;
6771 
6772 /*
6773  * This enables fast aging in the KSZ8842 switch.  Not sure what situation
6774  * needs that.  However, fast aging is used to flush the dynamic MAC table when
6775  * STP support is enabled.
6776  */
6777 static int fast_aging;
6778 
6779 /**
6780  * netdev_init - initialize network device.
6781  * @dev:	Network device.
6782  *
6783  * This function initializes the network device.
6784  *
6785  * Return 0 if successful; otherwise an error code indicating failure.
6786  */
6787 static int __init netdev_init(struct net_device *dev)
6788 {
6789 	struct dev_priv *priv = netdev_priv(dev);
6790 
6791 	/* 500 ms timeout */
6792 	ksz_init_timer(&priv->monitor_timer_info, 500 * HZ / 1000,
6793 		dev_monitor, dev);
6794 
6795 	/* 500 ms timeout */
6796 	dev->watchdog_timeo = HZ / 2;
6797 
6798 	dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG | NETIF_F_RXCSUM;
6799 
6800 	/*
6801 	 * Hardware does not really support IPv6 checksum generation, but
6802 	 * driver actually runs faster with this on.
6803 	 */
6804 	dev->hw_features |= NETIF_F_IPV6_CSUM;
6805 
6806 	dev->features |= dev->hw_features;
6807 
6808 	sema_init(&priv->proc_sem, 1);
6809 
6810 	priv->mii_if.phy_id_mask = 0x1;
6811 	priv->mii_if.reg_num_mask = 0x7;
6812 	priv->mii_if.dev = dev;
6813 	priv->mii_if.mdio_read = mdio_read;
6814 	priv->mii_if.mdio_write = mdio_write;
6815 	priv->mii_if.phy_id = priv->port.first_port + 1;
6816 
6817 	priv->msg_enable = netif_msg_init(msg_enable,
6818 		(NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK));
6819 
6820 	return 0;
6821 }
6822 
6823 static const struct net_device_ops netdev_ops = {
6824 	.ndo_init		= netdev_init,
6825 	.ndo_open		= netdev_open,
6826 	.ndo_stop		= netdev_close,
6827 	.ndo_get_stats		= netdev_query_statistics,
6828 	.ndo_start_xmit		= netdev_tx,
6829 	.ndo_tx_timeout		= netdev_tx_timeout,
6830 	.ndo_change_mtu		= netdev_change_mtu,
6831 	.ndo_set_features	= netdev_set_features,
6832 	.ndo_set_mac_address	= netdev_set_mac_address,
6833 	.ndo_validate_addr	= eth_validate_addr,
6834 	.ndo_do_ioctl		= netdev_ioctl,
6835 	.ndo_set_rx_mode	= netdev_set_rx_mode,
6836 #ifdef CONFIG_NET_POLL_CONTROLLER
6837 	.ndo_poll_controller	= netdev_netpoll,
6838 #endif
6839 };
6840 
6841 static void netdev_free(struct net_device *dev)
6842 {
6843 	if (dev->watchdog_timeo)
6844 		unregister_netdev(dev);
6845 
6846 	free_netdev(dev);
6847 }
6848 
6849 struct platform_info {
6850 	struct dev_info dev_info;
6851 	struct net_device *netdev[SWITCH_PORT_NUM];
6852 };
6853 
6854 static int net_device_present;
6855 
6856 static void get_mac_addr(struct dev_info *hw_priv, u8 *macaddr, int port)
6857 {
6858 	int i;
6859 	int j;
6860 	int got_num;
6861 	int num;
6862 
6863 	i = j = num = got_num = 0;
6864 	while (j < ETH_ALEN) {
6865 		if (macaddr[i]) {
6866 			int digit;
6867 
6868 			got_num = 1;
6869 			digit = hex_to_bin(macaddr[i]);
6870 			if (digit >= 0)
6871 				num = num * 16 + digit;
6872 			else if (':' == macaddr[i])
6873 				got_num = 2;
6874 			else
6875 				break;
6876 		} else if (got_num)
6877 			got_num = 2;
6878 		else
6879 			break;
6880 		if (2 == got_num) {
6881 			if (MAIN_PORT == port) {
6882 				hw_priv->hw.override_addr[j++] = (u8) num;
6883 				hw_priv->hw.override_addr[5] +=
6884 					hw_priv->hw.id;
6885 			} else {
6886 				hw_priv->hw.ksz_switch->other_addr[j++] =
6887 					(u8) num;
6888 				hw_priv->hw.ksz_switch->other_addr[5] +=
6889 					hw_priv->hw.id;
6890 			}
6891 			num = got_num = 0;
6892 		}
6893 		i++;
6894 	}
6895 	if (ETH_ALEN == j) {
6896 		if (MAIN_PORT == port)
6897 			hw_priv->hw.mac_override = 1;
6898 	}
6899 }
6900 
6901 #define KS884X_DMA_MASK			(~0x0UL)
6902 
6903 static void read_other_addr(struct ksz_hw *hw)
6904 {
6905 	int i;
6906 	u16 data[3];
6907 	struct ksz_switch *sw = hw->ksz_switch;
6908 
6909 	for (i = 0; i < 3; i++)
6910 		data[i] = eeprom_read(hw, i + EEPROM_DATA_OTHER_MAC_ADDR);
6911 	if ((data[0] || data[1] || data[2]) && data[0] != 0xffff) {
6912 		sw->other_addr[5] = (u8) data[0];
6913 		sw->other_addr[4] = (u8)(data[0] >> 8);
6914 		sw->other_addr[3] = (u8) data[1];
6915 		sw->other_addr[2] = (u8)(data[1] >> 8);
6916 		sw->other_addr[1] = (u8) data[2];
6917 		sw->other_addr[0] = (u8)(data[2] >> 8);
6918 	}
6919 }
6920 
6921 #ifndef PCI_VENDOR_ID_MICREL_KS
6922 #define PCI_VENDOR_ID_MICREL_KS		0x16c6
6923 #endif
6924 
6925 static int pcidev_init(struct pci_dev *pdev, const struct pci_device_id *id)
6926 {
6927 	struct net_device *dev;
6928 	struct dev_priv *priv;
6929 	struct dev_info *hw_priv;
6930 	struct ksz_hw *hw;
6931 	struct platform_info *info;
6932 	struct ksz_port *port;
6933 	unsigned long reg_base;
6934 	unsigned long reg_len;
6935 	int cnt;
6936 	int i;
6937 	int mib_port_count;
6938 	int pi;
6939 	int port_count;
6940 	int result;
6941 	char banner[sizeof(version)];
6942 	struct ksz_switch *sw = NULL;
6943 
6944 	result = pci_enable_device(pdev);
6945 	if (result)
6946 		return result;
6947 
6948 	result = -ENODEV;
6949 
6950 	if (pci_set_dma_mask(pdev, DMA_BIT_MASK(32)) ||
6951 			pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32)))
6952 		return result;
6953 
6954 	reg_base = pci_resource_start(pdev, 0);
6955 	reg_len = pci_resource_len(pdev, 0);
6956 	if ((pci_resource_flags(pdev, 0) & IORESOURCE_IO) != 0)
6957 		return result;
6958 
6959 	if (!request_mem_region(reg_base, reg_len, DRV_NAME))
6960 		return result;
6961 	pci_set_master(pdev);
6962 
6963 	result = -ENOMEM;
6964 
6965 	info = kzalloc(sizeof(struct platform_info), GFP_KERNEL);
6966 	if (!info)
6967 		goto pcidev_init_dev_err;
6968 
6969 	hw_priv = &info->dev_info;
6970 	hw_priv->pdev = pdev;
6971 
6972 	hw = &hw_priv->hw;
6973 
6974 	hw->io = ioremap(reg_base, reg_len);
6975 	if (!hw->io)
6976 		goto pcidev_init_io_err;
6977 
6978 	cnt = hw_init(hw);
6979 	if (!cnt) {
6980 		if (msg_enable & NETIF_MSG_PROBE)
6981 			pr_alert("chip not detected\n");
6982 		result = -ENODEV;
6983 		goto pcidev_init_alloc_err;
6984 	}
6985 
6986 	snprintf(banner, sizeof(banner), "%s", version);
6987 	banner[13] = cnt + '0';		/* Replace x in "Micrel KSZ884x" */
6988 	dev_info(&hw_priv->pdev->dev, "%s\n", banner);
6989 	dev_dbg(&hw_priv->pdev->dev, "Mem = %p; IRQ = %d\n", hw->io, pdev->irq);
6990 
6991 	/* Assume device is KSZ8841. */
6992 	hw->dev_count = 1;
6993 	port_count = 1;
6994 	mib_port_count = 1;
6995 	hw->addr_list_size = 0;
6996 	hw->mib_cnt = PORT_COUNTER_NUM;
6997 	hw->mib_port_cnt = 1;
6998 
6999 	/* KSZ8842 has a switch with multiple ports. */
7000 	if (2 == cnt) {
7001 		if (fast_aging)
7002 			hw->overrides |= FAST_AGING;
7003 
7004 		hw->mib_cnt = TOTAL_PORT_COUNTER_NUM;
7005 
7006 		/* Multiple network device interfaces are required. */
7007 		if (multi_dev) {
7008 			hw->dev_count = SWITCH_PORT_NUM;
7009 			hw->addr_list_size = SWITCH_PORT_NUM - 1;
7010 		}
7011 
7012 		/* Single network device has multiple ports. */
7013 		if (1 == hw->dev_count) {
7014 			port_count = SWITCH_PORT_NUM;
7015 			mib_port_count = SWITCH_PORT_NUM;
7016 		}
7017 		hw->mib_port_cnt = TOTAL_PORT_NUM;
7018 		hw->ksz_switch = kzalloc(sizeof(struct ksz_switch), GFP_KERNEL);
7019 		if (!hw->ksz_switch)
7020 			goto pcidev_init_alloc_err;
7021 
7022 		sw = hw->ksz_switch;
7023 	}
7024 	for (i = 0; i < hw->mib_port_cnt; i++)
7025 		hw->port_mib[i].mib_start = 0;
7026 
7027 	hw->parent = hw_priv;
7028 
7029 	/* Default MTU is 1500. */
7030 	hw_priv->mtu = (REGULAR_RX_BUF_SIZE + 3) & ~3;
7031 
7032 	if (ksz_alloc_mem(hw_priv))
7033 		goto pcidev_init_mem_err;
7034 
7035 	hw_priv->hw.id = net_device_present;
7036 
7037 	spin_lock_init(&hw_priv->hwlock);
7038 	mutex_init(&hw_priv->lock);
7039 
7040 	for (i = 0; i < TOTAL_PORT_NUM; i++)
7041 		init_waitqueue_head(&hw_priv->counter[i].counter);
7042 
7043 	if (macaddr[0] != ':')
7044 		get_mac_addr(hw_priv, macaddr, MAIN_PORT);
7045 
7046 	/* Read MAC address and initialize override address if not overridden. */
7047 	hw_read_addr(hw);
7048 
7049 	/* Multiple device interfaces mode requires a second MAC address. */
7050 	if (hw->dev_count > 1) {
7051 		memcpy(sw->other_addr, hw->override_addr, ETH_ALEN);
7052 		read_other_addr(hw);
7053 		if (mac1addr[0] != ':')
7054 			get_mac_addr(hw_priv, mac1addr, OTHER_PORT);
7055 	}
7056 
7057 	hw_setup(hw);
7058 	if (hw->ksz_switch)
7059 		sw_setup(hw);
7060 	else {
7061 		hw_priv->wol_support = WOL_SUPPORT;
7062 		hw_priv->wol_enable = 0;
7063 	}
7064 
7065 	INIT_WORK(&hw_priv->mib_read, mib_read_work);
7066 
7067 	/* 500 ms timeout */
7068 	ksz_init_timer(&hw_priv->mib_timer_info, 500 * HZ / 1000,
7069 		mib_monitor, hw_priv);
7070 
7071 	for (i = 0; i < hw->dev_count; i++) {
7072 		dev = alloc_etherdev(sizeof(struct dev_priv));
7073 		if (!dev)
7074 			goto pcidev_init_reg_err;
7075 		SET_NETDEV_DEV(dev, &pdev->dev);
7076 		info->netdev[i] = dev;
7077 
7078 		priv = netdev_priv(dev);
7079 		priv->adapter = hw_priv;
7080 		priv->id = net_device_present++;
7081 
7082 		port = &priv->port;
7083 		port->port_cnt = port_count;
7084 		port->mib_port_cnt = mib_port_count;
7085 		port->first_port = i;
7086 		port->flow_ctrl = PHY_FLOW_CTRL;
7087 
7088 		port->hw = hw;
7089 		port->linked = &hw->port_info[port->first_port];
7090 
7091 		for (cnt = 0, pi = i; cnt < port_count; cnt++, pi++) {
7092 			hw->port_info[pi].port_id = pi;
7093 			hw->port_info[pi].pdev = dev;
7094 			hw->port_info[pi].state = media_disconnected;
7095 		}
7096 
7097 		dev->mem_start = (unsigned long) hw->io;
7098 		dev->mem_end = dev->mem_start + reg_len - 1;
7099 		dev->irq = pdev->irq;
7100 		if (MAIN_PORT == i)
7101 			memcpy(dev->dev_addr, hw_priv->hw.override_addr,
7102 			       ETH_ALEN);
7103 		else {
7104 			memcpy(dev->dev_addr, sw->other_addr, ETH_ALEN);
7105 			if (ether_addr_equal(sw->other_addr, hw->override_addr))
7106 				dev->dev_addr[5] += port->first_port;
7107 		}
7108 
7109 		dev->netdev_ops = &netdev_ops;
7110 		dev->ethtool_ops = &netdev_ethtool_ops;
7111 
7112 		/* MTU range: 60 - 1894 */
7113 		dev->min_mtu = ETH_ZLEN;
7114 		dev->max_mtu = MAX_RX_BUF_SIZE -
7115 			       (ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN);
7116 
7117 		if (register_netdev(dev))
7118 			goto pcidev_init_reg_err;
7119 		port_set_power_saving(port, true);
7120 	}
7121 
7122 	pci_dev_get(hw_priv->pdev);
7123 	pci_set_drvdata(pdev, info);
7124 	return 0;
7125 
7126 pcidev_init_reg_err:
7127 	for (i = 0; i < hw->dev_count; i++) {
7128 		if (info->netdev[i]) {
7129 			netdev_free(info->netdev[i]);
7130 			info->netdev[i] = NULL;
7131 		}
7132 	}
7133 
7134 pcidev_init_mem_err:
7135 	ksz_free_mem(hw_priv);
7136 	kfree(hw->ksz_switch);
7137 
7138 pcidev_init_alloc_err:
7139 	iounmap(hw->io);
7140 
7141 pcidev_init_io_err:
7142 	kfree(info);
7143 
7144 pcidev_init_dev_err:
7145 	release_mem_region(reg_base, reg_len);
7146 
7147 	return result;
7148 }
7149 
7150 static void pcidev_exit(struct pci_dev *pdev)
7151 {
7152 	int i;
7153 	struct platform_info *info = pci_get_drvdata(pdev);
7154 	struct dev_info *hw_priv = &info->dev_info;
7155 
7156 	release_mem_region(pci_resource_start(pdev, 0),
7157 		pci_resource_len(pdev, 0));
7158 	for (i = 0; i < hw_priv->hw.dev_count; i++) {
7159 		if (info->netdev[i])
7160 			netdev_free(info->netdev[i]);
7161 	}
7162 	if (hw_priv->hw.io)
7163 		iounmap(hw_priv->hw.io);
7164 	ksz_free_mem(hw_priv);
7165 	kfree(hw_priv->hw.ksz_switch);
7166 	pci_dev_put(hw_priv->pdev);
7167 	kfree(info);
7168 }
7169 
7170 #ifdef CONFIG_PM
7171 static int pcidev_resume(struct pci_dev *pdev)
7172 {
7173 	int i;
7174 	struct platform_info *info = pci_get_drvdata(pdev);
7175 	struct dev_info *hw_priv = &info->dev_info;
7176 	struct ksz_hw *hw = &hw_priv->hw;
7177 
7178 	pci_set_power_state(pdev, PCI_D0);
7179 	pci_restore_state(pdev);
7180 	pci_enable_wake(pdev, PCI_D0, 0);
7181 
7182 	if (hw_priv->wol_enable)
7183 		hw_cfg_wol_pme(hw, 0);
7184 	for (i = 0; i < hw->dev_count; i++) {
7185 		if (info->netdev[i]) {
7186 			struct net_device *dev = info->netdev[i];
7187 
7188 			if (netif_running(dev)) {
7189 				netdev_open(dev);
7190 				netif_device_attach(dev);
7191 			}
7192 		}
7193 	}
7194 	return 0;
7195 }
7196 
7197 static int pcidev_suspend(struct pci_dev *pdev, pm_message_t state)
7198 {
7199 	int i;
7200 	struct platform_info *info = pci_get_drvdata(pdev);
7201 	struct dev_info *hw_priv = &info->dev_info;
7202 	struct ksz_hw *hw = &hw_priv->hw;
7203 
7204 	/* Need to find a way to retrieve the device IP address. */
7205 	static const u8 net_addr[] = { 192, 168, 1, 1 };
7206 
7207 	for (i = 0; i < hw->dev_count; i++) {
7208 		if (info->netdev[i]) {
7209 			struct net_device *dev = info->netdev[i];
7210 
7211 			if (netif_running(dev)) {
7212 				netif_device_detach(dev);
7213 				netdev_close(dev);
7214 			}
7215 		}
7216 	}
7217 	if (hw_priv->wol_enable) {
7218 		hw_enable_wol(hw, hw_priv->wol_enable, net_addr);
7219 		hw_cfg_wol_pme(hw, 1);
7220 	}
7221 
7222 	pci_save_state(pdev);
7223 	pci_enable_wake(pdev, pci_choose_state(pdev, state), 1);
7224 	pci_set_power_state(pdev, pci_choose_state(pdev, state));
7225 	return 0;
7226 }
7227 #endif
7228 
7229 static char pcidev_name[] = "ksz884xp";
7230 
7231 static const struct pci_device_id pcidev_table[] = {
7232 	{ PCI_VENDOR_ID_MICREL_KS, 0x8841,
7233 		PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
7234 	{ PCI_VENDOR_ID_MICREL_KS, 0x8842,
7235 		PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
7236 	{ 0 }
7237 };
7238 
7239 MODULE_DEVICE_TABLE(pci, pcidev_table);
7240 
7241 static struct pci_driver pci_device_driver = {
7242 #ifdef CONFIG_PM
7243 	.suspend	= pcidev_suspend,
7244 	.resume		= pcidev_resume,
7245 #endif
7246 	.name		= pcidev_name,
7247 	.id_table	= pcidev_table,
7248 	.probe		= pcidev_init,
7249 	.remove		= pcidev_exit
7250 };
7251 
7252 module_pci_driver(pci_device_driver);
7253 
7254 MODULE_DESCRIPTION("KSZ8841/2 PCI network driver");
7255 MODULE_AUTHOR("Tristram Ha <Tristram.Ha@micrel.com>");
7256 MODULE_LICENSE("GPL");
7257 
7258 module_param_named(message, msg_enable, int, 0);
7259 MODULE_PARM_DESC(message, "Message verbosity level (0=none, 31=all)");
7260 
7261 module_param(macaddr, charp, 0);
7262 module_param(mac1addr, charp, 0);
7263 module_param(fast_aging, int, 0);
7264 module_param(multi_dev, int, 0);
7265 module_param(stp, int, 0);
7266 MODULE_PARM_DESC(macaddr, "MAC address");
7267 MODULE_PARM_DESC(mac1addr, "Second MAC address");
7268 MODULE_PARM_DESC(fast_aging, "Fast aging");
7269 MODULE_PARM_DESC(multi_dev, "Multiple device interfaces");
7270 MODULE_PARM_DESC(stp, "STP support");
7271