1 // SPDX-License-Identifier: GPL-2.0-only 2 /** 3 * drivers/net/ethernet/micrel/ksx884x.c - Micrel KSZ8841/2 PCI Ethernet driver 4 * 5 * Copyright (c) 2009-2010 Micrel, Inc. 6 * Tristram Ha <Tristram.Ha@micrel.com> 7 */ 8 9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 10 11 #include <linux/init.h> 12 #include <linux/interrupt.h> 13 #include <linux/kernel.h> 14 #include <linux/module.h> 15 #include <linux/ioport.h> 16 #include <linux/pci.h> 17 #include <linux/proc_fs.h> 18 #include <linux/mii.h> 19 #include <linux/platform_device.h> 20 #include <linux/ethtool.h> 21 #include <linux/etherdevice.h> 22 #include <linux/in.h> 23 #include <linux/ip.h> 24 #include <linux/if_vlan.h> 25 #include <linux/crc32.h> 26 #include <linux/sched.h> 27 #include <linux/slab.h> 28 29 30 /* DMA Registers */ 31 32 #define KS_DMA_TX_CTRL 0x0000 33 #define DMA_TX_ENABLE 0x00000001 34 #define DMA_TX_CRC_ENABLE 0x00000002 35 #define DMA_TX_PAD_ENABLE 0x00000004 36 #define DMA_TX_LOOPBACK 0x00000100 37 #define DMA_TX_FLOW_ENABLE 0x00000200 38 #define DMA_TX_CSUM_IP 0x00010000 39 #define DMA_TX_CSUM_TCP 0x00020000 40 #define DMA_TX_CSUM_UDP 0x00040000 41 #define DMA_TX_BURST_SIZE 0x3F000000 42 43 #define KS_DMA_RX_CTRL 0x0004 44 #define DMA_RX_ENABLE 0x00000001 45 #define KS884X_DMA_RX_MULTICAST 0x00000002 46 #define DMA_RX_PROMISCUOUS 0x00000004 47 #define DMA_RX_ERROR 0x00000008 48 #define DMA_RX_UNICAST 0x00000010 49 #define DMA_RX_ALL_MULTICAST 0x00000020 50 #define DMA_RX_BROADCAST 0x00000040 51 #define DMA_RX_FLOW_ENABLE 0x00000200 52 #define DMA_RX_CSUM_IP 0x00010000 53 #define DMA_RX_CSUM_TCP 0x00020000 54 #define DMA_RX_CSUM_UDP 0x00040000 55 #define DMA_RX_BURST_SIZE 0x3F000000 56 57 #define DMA_BURST_SHIFT 24 58 #define DMA_BURST_DEFAULT 8 59 60 #define KS_DMA_TX_START 0x0008 61 #define KS_DMA_RX_START 0x000C 62 #define DMA_START 0x00000001 63 64 #define KS_DMA_TX_ADDR 0x0010 65 #define KS_DMA_RX_ADDR 0x0014 66 67 #define DMA_ADDR_LIST_MASK 0xFFFFFFFC 68 #define DMA_ADDR_LIST_SHIFT 2 69 70 /* MTR0 */ 71 #define KS884X_MULTICAST_0_OFFSET 0x0020 72 #define KS884X_MULTICAST_1_OFFSET 0x0021 73 #define KS884X_MULTICAST_2_OFFSET 0x0022 74 #define KS884x_MULTICAST_3_OFFSET 0x0023 75 /* MTR1 */ 76 #define KS884X_MULTICAST_4_OFFSET 0x0024 77 #define KS884X_MULTICAST_5_OFFSET 0x0025 78 #define KS884X_MULTICAST_6_OFFSET 0x0026 79 #define KS884X_MULTICAST_7_OFFSET 0x0027 80 81 /* Interrupt Registers */ 82 83 /* INTEN */ 84 #define KS884X_INTERRUPTS_ENABLE 0x0028 85 /* INTST */ 86 #define KS884X_INTERRUPTS_STATUS 0x002C 87 88 #define KS884X_INT_RX_STOPPED 0x02000000 89 #define KS884X_INT_TX_STOPPED 0x04000000 90 #define KS884X_INT_RX_OVERRUN 0x08000000 91 #define KS884X_INT_TX_EMPTY 0x10000000 92 #define KS884X_INT_RX 0x20000000 93 #define KS884X_INT_TX 0x40000000 94 #define KS884X_INT_PHY 0x80000000 95 96 #define KS884X_INT_RX_MASK \ 97 (KS884X_INT_RX | KS884X_INT_RX_OVERRUN) 98 #define KS884X_INT_TX_MASK \ 99 (KS884X_INT_TX | KS884X_INT_TX_EMPTY) 100 #define KS884X_INT_MASK (KS884X_INT_RX | KS884X_INT_TX | KS884X_INT_PHY) 101 102 /* MAC Additional Station Address */ 103 104 /* MAAL0 */ 105 #define KS_ADD_ADDR_0_LO 0x0080 106 /* MAAH0 */ 107 #define KS_ADD_ADDR_0_HI 0x0084 108 /* MAAL1 */ 109 #define KS_ADD_ADDR_1_LO 0x0088 110 /* MAAH1 */ 111 #define KS_ADD_ADDR_1_HI 0x008C 112 /* MAAL2 */ 113 #define KS_ADD_ADDR_2_LO 0x0090 114 /* MAAH2 */ 115 #define KS_ADD_ADDR_2_HI 0x0094 116 /* MAAL3 */ 117 #define KS_ADD_ADDR_3_LO 0x0098 118 /* MAAH3 */ 119 #define KS_ADD_ADDR_3_HI 0x009C 120 /* MAAL4 */ 121 #define KS_ADD_ADDR_4_LO 0x00A0 122 /* MAAH4 */ 123 #define KS_ADD_ADDR_4_HI 0x00A4 124 /* MAAL5 */ 125 #define KS_ADD_ADDR_5_LO 0x00A8 126 /* MAAH5 */ 127 #define KS_ADD_ADDR_5_HI 0x00AC 128 /* MAAL6 */ 129 #define KS_ADD_ADDR_6_LO 0x00B0 130 /* MAAH6 */ 131 #define KS_ADD_ADDR_6_HI 0x00B4 132 /* MAAL7 */ 133 #define KS_ADD_ADDR_7_LO 0x00B8 134 /* MAAH7 */ 135 #define KS_ADD_ADDR_7_HI 0x00BC 136 /* MAAL8 */ 137 #define KS_ADD_ADDR_8_LO 0x00C0 138 /* MAAH8 */ 139 #define KS_ADD_ADDR_8_HI 0x00C4 140 /* MAAL9 */ 141 #define KS_ADD_ADDR_9_LO 0x00C8 142 /* MAAH9 */ 143 #define KS_ADD_ADDR_9_HI 0x00CC 144 /* MAAL10 */ 145 #define KS_ADD_ADDR_A_LO 0x00D0 146 /* MAAH10 */ 147 #define KS_ADD_ADDR_A_HI 0x00D4 148 /* MAAL11 */ 149 #define KS_ADD_ADDR_B_LO 0x00D8 150 /* MAAH11 */ 151 #define KS_ADD_ADDR_B_HI 0x00DC 152 /* MAAL12 */ 153 #define KS_ADD_ADDR_C_LO 0x00E0 154 /* MAAH12 */ 155 #define KS_ADD_ADDR_C_HI 0x00E4 156 /* MAAL13 */ 157 #define KS_ADD_ADDR_D_LO 0x00E8 158 /* MAAH13 */ 159 #define KS_ADD_ADDR_D_HI 0x00EC 160 /* MAAL14 */ 161 #define KS_ADD_ADDR_E_LO 0x00F0 162 /* MAAH14 */ 163 #define KS_ADD_ADDR_E_HI 0x00F4 164 /* MAAL15 */ 165 #define KS_ADD_ADDR_F_LO 0x00F8 166 /* MAAH15 */ 167 #define KS_ADD_ADDR_F_HI 0x00FC 168 169 #define ADD_ADDR_HI_MASK 0x0000FFFF 170 #define ADD_ADDR_ENABLE 0x80000000 171 #define ADD_ADDR_INCR 8 172 173 /* Miscellaneous Registers */ 174 175 /* MARL */ 176 #define KS884X_ADDR_0_OFFSET 0x0200 177 #define KS884X_ADDR_1_OFFSET 0x0201 178 /* MARM */ 179 #define KS884X_ADDR_2_OFFSET 0x0202 180 #define KS884X_ADDR_3_OFFSET 0x0203 181 /* MARH */ 182 #define KS884X_ADDR_4_OFFSET 0x0204 183 #define KS884X_ADDR_5_OFFSET 0x0205 184 185 /* OBCR */ 186 #define KS884X_BUS_CTRL_OFFSET 0x0210 187 188 #define BUS_SPEED_125_MHZ 0x0000 189 #define BUS_SPEED_62_5_MHZ 0x0001 190 #define BUS_SPEED_41_66_MHZ 0x0002 191 #define BUS_SPEED_25_MHZ 0x0003 192 193 /* EEPCR */ 194 #define KS884X_EEPROM_CTRL_OFFSET 0x0212 195 196 #define EEPROM_CHIP_SELECT 0x0001 197 #define EEPROM_SERIAL_CLOCK 0x0002 198 #define EEPROM_DATA_OUT 0x0004 199 #define EEPROM_DATA_IN 0x0008 200 #define EEPROM_ACCESS_ENABLE 0x0010 201 202 /* MBIR */ 203 #define KS884X_MEM_INFO_OFFSET 0x0214 204 205 #define RX_MEM_TEST_FAILED 0x0008 206 #define RX_MEM_TEST_FINISHED 0x0010 207 #define TX_MEM_TEST_FAILED 0x0800 208 #define TX_MEM_TEST_FINISHED 0x1000 209 210 /* GCR */ 211 #define KS884X_GLOBAL_CTRL_OFFSET 0x0216 212 #define GLOBAL_SOFTWARE_RESET 0x0001 213 214 #define KS8841_POWER_MANAGE_OFFSET 0x0218 215 216 /* WFCR */ 217 #define KS8841_WOL_CTRL_OFFSET 0x021A 218 #define KS8841_WOL_MAGIC_ENABLE 0x0080 219 #define KS8841_WOL_FRAME3_ENABLE 0x0008 220 #define KS8841_WOL_FRAME2_ENABLE 0x0004 221 #define KS8841_WOL_FRAME1_ENABLE 0x0002 222 #define KS8841_WOL_FRAME0_ENABLE 0x0001 223 224 /* WF0 */ 225 #define KS8841_WOL_FRAME_CRC_OFFSET 0x0220 226 #define KS8841_WOL_FRAME_BYTE0_OFFSET 0x0224 227 #define KS8841_WOL_FRAME_BYTE2_OFFSET 0x0228 228 229 /* IACR */ 230 #define KS884X_IACR_P 0x04A0 231 #define KS884X_IACR_OFFSET KS884X_IACR_P 232 233 /* IADR1 */ 234 #define KS884X_IADR1_P 0x04A2 235 #define KS884X_IADR2_P 0x04A4 236 #define KS884X_IADR3_P 0x04A6 237 #define KS884X_IADR4_P 0x04A8 238 #define KS884X_IADR5_P 0x04AA 239 240 #define KS884X_ACC_CTRL_SEL_OFFSET KS884X_IACR_P 241 #define KS884X_ACC_CTRL_INDEX_OFFSET (KS884X_ACC_CTRL_SEL_OFFSET + 1) 242 243 #define KS884X_ACC_DATA_0_OFFSET KS884X_IADR4_P 244 #define KS884X_ACC_DATA_1_OFFSET (KS884X_ACC_DATA_0_OFFSET + 1) 245 #define KS884X_ACC_DATA_2_OFFSET KS884X_IADR5_P 246 #define KS884X_ACC_DATA_3_OFFSET (KS884X_ACC_DATA_2_OFFSET + 1) 247 #define KS884X_ACC_DATA_4_OFFSET KS884X_IADR2_P 248 #define KS884X_ACC_DATA_5_OFFSET (KS884X_ACC_DATA_4_OFFSET + 1) 249 #define KS884X_ACC_DATA_6_OFFSET KS884X_IADR3_P 250 #define KS884X_ACC_DATA_7_OFFSET (KS884X_ACC_DATA_6_OFFSET + 1) 251 #define KS884X_ACC_DATA_8_OFFSET KS884X_IADR1_P 252 253 /* P1MBCR */ 254 #define KS884X_P1MBCR_P 0x04D0 255 #define KS884X_P1MBSR_P 0x04D2 256 #define KS884X_PHY1ILR_P 0x04D4 257 #define KS884X_PHY1IHR_P 0x04D6 258 #define KS884X_P1ANAR_P 0x04D8 259 #define KS884X_P1ANLPR_P 0x04DA 260 261 /* P2MBCR */ 262 #define KS884X_P2MBCR_P 0x04E0 263 #define KS884X_P2MBSR_P 0x04E2 264 #define KS884X_PHY2ILR_P 0x04E4 265 #define KS884X_PHY2IHR_P 0x04E6 266 #define KS884X_P2ANAR_P 0x04E8 267 #define KS884X_P2ANLPR_P 0x04EA 268 269 #define KS884X_PHY_1_CTRL_OFFSET KS884X_P1MBCR_P 270 #define PHY_CTRL_INTERVAL (KS884X_P2MBCR_P - KS884X_P1MBCR_P) 271 272 #define KS884X_PHY_CTRL_OFFSET 0x00 273 274 /* Mode Control Register */ 275 #define PHY_REG_CTRL 0 276 277 #define PHY_RESET 0x8000 278 #define PHY_LOOPBACK 0x4000 279 #define PHY_SPEED_100MBIT 0x2000 280 #define PHY_AUTO_NEG_ENABLE 0x1000 281 #define PHY_POWER_DOWN 0x0800 282 #define PHY_MII_DISABLE 0x0400 283 #define PHY_AUTO_NEG_RESTART 0x0200 284 #define PHY_FULL_DUPLEX 0x0100 285 #define PHY_COLLISION_TEST 0x0080 286 #define PHY_HP_MDIX 0x0020 287 #define PHY_FORCE_MDIX 0x0010 288 #define PHY_AUTO_MDIX_DISABLE 0x0008 289 #define PHY_REMOTE_FAULT_DISABLE 0x0004 290 #define PHY_TRANSMIT_DISABLE 0x0002 291 #define PHY_LED_DISABLE 0x0001 292 293 #define KS884X_PHY_STATUS_OFFSET 0x02 294 295 /* Mode Status Register */ 296 #define PHY_REG_STATUS 1 297 298 #define PHY_100BT4_CAPABLE 0x8000 299 #define PHY_100BTX_FD_CAPABLE 0x4000 300 #define PHY_100BTX_CAPABLE 0x2000 301 #define PHY_10BT_FD_CAPABLE 0x1000 302 #define PHY_10BT_CAPABLE 0x0800 303 #define PHY_MII_SUPPRESS_CAPABLE 0x0040 304 #define PHY_AUTO_NEG_ACKNOWLEDGE 0x0020 305 #define PHY_REMOTE_FAULT 0x0010 306 #define PHY_AUTO_NEG_CAPABLE 0x0008 307 #define PHY_LINK_STATUS 0x0004 308 #define PHY_JABBER_DETECT 0x0002 309 #define PHY_EXTENDED_CAPABILITY 0x0001 310 311 #define KS884X_PHY_ID_1_OFFSET 0x04 312 #define KS884X_PHY_ID_2_OFFSET 0x06 313 314 /* PHY Identifier Registers */ 315 #define PHY_REG_ID_1 2 316 #define PHY_REG_ID_2 3 317 318 #define KS884X_PHY_AUTO_NEG_OFFSET 0x08 319 320 /* Auto-Negotiation Advertisement Register */ 321 #define PHY_REG_AUTO_NEGOTIATION 4 322 323 #define PHY_AUTO_NEG_NEXT_PAGE 0x8000 324 #define PHY_AUTO_NEG_REMOTE_FAULT 0x2000 325 /* Not supported. */ 326 #define PHY_AUTO_NEG_ASYM_PAUSE 0x0800 327 #define PHY_AUTO_NEG_SYM_PAUSE 0x0400 328 #define PHY_AUTO_NEG_100BT4 0x0200 329 #define PHY_AUTO_NEG_100BTX_FD 0x0100 330 #define PHY_AUTO_NEG_100BTX 0x0080 331 #define PHY_AUTO_NEG_10BT_FD 0x0040 332 #define PHY_AUTO_NEG_10BT 0x0020 333 #define PHY_AUTO_NEG_SELECTOR 0x001F 334 #define PHY_AUTO_NEG_802_3 0x0001 335 336 #define PHY_AUTO_NEG_PAUSE (PHY_AUTO_NEG_SYM_PAUSE | PHY_AUTO_NEG_ASYM_PAUSE) 337 338 #define KS884X_PHY_REMOTE_CAP_OFFSET 0x0A 339 340 /* Auto-Negotiation Link Partner Ability Register */ 341 #define PHY_REG_REMOTE_CAPABILITY 5 342 343 #define PHY_REMOTE_NEXT_PAGE 0x8000 344 #define PHY_REMOTE_ACKNOWLEDGE 0x4000 345 #define PHY_REMOTE_REMOTE_FAULT 0x2000 346 #define PHY_REMOTE_SYM_PAUSE 0x0400 347 #define PHY_REMOTE_100BTX_FD 0x0100 348 #define PHY_REMOTE_100BTX 0x0080 349 #define PHY_REMOTE_10BT_FD 0x0040 350 #define PHY_REMOTE_10BT 0x0020 351 352 /* P1VCT */ 353 #define KS884X_P1VCT_P 0x04F0 354 #define KS884X_P1PHYCTRL_P 0x04F2 355 356 /* P2VCT */ 357 #define KS884X_P2VCT_P 0x04F4 358 #define KS884X_P2PHYCTRL_P 0x04F6 359 360 #define KS884X_PHY_SPECIAL_OFFSET KS884X_P1VCT_P 361 #define PHY_SPECIAL_INTERVAL (KS884X_P2VCT_P - KS884X_P1VCT_P) 362 363 #define KS884X_PHY_LINK_MD_OFFSET 0x00 364 365 #define PHY_START_CABLE_DIAG 0x8000 366 #define PHY_CABLE_DIAG_RESULT 0x6000 367 #define PHY_CABLE_STAT_NORMAL 0x0000 368 #define PHY_CABLE_STAT_OPEN 0x2000 369 #define PHY_CABLE_STAT_SHORT 0x4000 370 #define PHY_CABLE_STAT_FAILED 0x6000 371 #define PHY_CABLE_10M_SHORT 0x1000 372 #define PHY_CABLE_FAULT_COUNTER 0x01FF 373 374 #define KS884X_PHY_PHY_CTRL_OFFSET 0x02 375 376 #define PHY_STAT_REVERSED_POLARITY 0x0020 377 #define PHY_STAT_MDIX 0x0010 378 #define PHY_FORCE_LINK 0x0008 379 #define PHY_POWER_SAVING_DISABLE 0x0004 380 #define PHY_REMOTE_LOOPBACK 0x0002 381 382 /* SIDER */ 383 #define KS884X_SIDER_P 0x0400 384 #define KS884X_CHIP_ID_OFFSET KS884X_SIDER_P 385 #define KS884X_FAMILY_ID_OFFSET (KS884X_CHIP_ID_OFFSET + 1) 386 387 #define REG_FAMILY_ID 0x88 388 389 #define REG_CHIP_ID_41 0x8810 390 #define REG_CHIP_ID_42 0x8800 391 392 #define KS884X_CHIP_ID_MASK_41 0xFF10 393 #define KS884X_CHIP_ID_MASK 0xFFF0 394 #define KS884X_CHIP_ID_SHIFT 4 395 #define KS884X_REVISION_MASK 0x000E 396 #define KS884X_REVISION_SHIFT 1 397 #define KS8842_START 0x0001 398 399 #define CHIP_IP_41_M 0x8810 400 #define CHIP_IP_42_M 0x8800 401 #define CHIP_IP_61_M 0x8890 402 #define CHIP_IP_62_M 0x8880 403 404 #define CHIP_IP_41_P 0x8850 405 #define CHIP_IP_42_P 0x8840 406 #define CHIP_IP_61_P 0x88D0 407 #define CHIP_IP_62_P 0x88C0 408 409 /* SGCR1 */ 410 #define KS8842_SGCR1_P 0x0402 411 #define KS8842_SWITCH_CTRL_1_OFFSET KS8842_SGCR1_P 412 413 #define SWITCH_PASS_ALL 0x8000 414 #define SWITCH_TX_FLOW_CTRL 0x2000 415 #define SWITCH_RX_FLOW_CTRL 0x1000 416 #define SWITCH_CHECK_LENGTH 0x0800 417 #define SWITCH_AGING_ENABLE 0x0400 418 #define SWITCH_FAST_AGING 0x0200 419 #define SWITCH_AGGR_BACKOFF 0x0100 420 #define SWITCH_PASS_PAUSE 0x0008 421 #define SWITCH_LINK_AUTO_AGING 0x0001 422 423 /* SGCR2 */ 424 #define KS8842_SGCR2_P 0x0404 425 #define KS8842_SWITCH_CTRL_2_OFFSET KS8842_SGCR2_P 426 427 #define SWITCH_VLAN_ENABLE 0x8000 428 #define SWITCH_IGMP_SNOOP 0x4000 429 #define IPV6_MLD_SNOOP_ENABLE 0x2000 430 #define IPV6_MLD_SNOOP_OPTION 0x1000 431 #define PRIORITY_SCHEME_SELECT 0x0800 432 #define SWITCH_MIRROR_RX_TX 0x0100 433 #define UNICAST_VLAN_BOUNDARY 0x0080 434 #define MULTICAST_STORM_DISABLE 0x0040 435 #define SWITCH_BACK_PRESSURE 0x0020 436 #define FAIR_FLOW_CTRL 0x0010 437 #define NO_EXC_COLLISION_DROP 0x0008 438 #define SWITCH_HUGE_PACKET 0x0004 439 #define SWITCH_LEGAL_PACKET 0x0002 440 #define SWITCH_BUF_RESERVE 0x0001 441 442 /* SGCR3 */ 443 #define KS8842_SGCR3_P 0x0406 444 #define KS8842_SWITCH_CTRL_3_OFFSET KS8842_SGCR3_P 445 446 #define BROADCAST_STORM_RATE_LO 0xFF00 447 #define SWITCH_REPEATER 0x0080 448 #define SWITCH_HALF_DUPLEX 0x0040 449 #define SWITCH_FLOW_CTRL 0x0020 450 #define SWITCH_10_MBIT 0x0010 451 #define SWITCH_REPLACE_NULL_VID 0x0008 452 #define BROADCAST_STORM_RATE_HI 0x0007 453 454 #define BROADCAST_STORM_RATE 0x07FF 455 456 /* SGCR4 */ 457 #define KS8842_SGCR4_P 0x0408 458 459 /* SGCR5 */ 460 #define KS8842_SGCR5_P 0x040A 461 #define KS8842_SWITCH_CTRL_5_OFFSET KS8842_SGCR5_P 462 463 #define LED_MODE 0x8200 464 #define LED_SPEED_DUPLEX_ACT 0x0000 465 #define LED_SPEED_DUPLEX_LINK_ACT 0x8000 466 #define LED_DUPLEX_10_100 0x0200 467 468 /* SGCR6 */ 469 #define KS8842_SGCR6_P 0x0410 470 #define KS8842_SWITCH_CTRL_6_OFFSET KS8842_SGCR6_P 471 472 #define KS8842_PRIORITY_MASK 3 473 #define KS8842_PRIORITY_SHIFT 2 474 475 /* SGCR7 */ 476 #define KS8842_SGCR7_P 0x0412 477 #define KS8842_SWITCH_CTRL_7_OFFSET KS8842_SGCR7_P 478 479 #define SWITCH_UNK_DEF_PORT_ENABLE 0x0008 480 #define SWITCH_UNK_DEF_PORT_3 0x0004 481 #define SWITCH_UNK_DEF_PORT_2 0x0002 482 #define SWITCH_UNK_DEF_PORT_1 0x0001 483 484 /* MACAR1 */ 485 #define KS8842_MACAR1_P 0x0470 486 #define KS8842_MACAR2_P 0x0472 487 #define KS8842_MACAR3_P 0x0474 488 #define KS8842_MAC_ADDR_1_OFFSET KS8842_MACAR1_P 489 #define KS8842_MAC_ADDR_0_OFFSET (KS8842_MAC_ADDR_1_OFFSET + 1) 490 #define KS8842_MAC_ADDR_3_OFFSET KS8842_MACAR2_P 491 #define KS8842_MAC_ADDR_2_OFFSET (KS8842_MAC_ADDR_3_OFFSET + 1) 492 #define KS8842_MAC_ADDR_5_OFFSET KS8842_MACAR3_P 493 #define KS8842_MAC_ADDR_4_OFFSET (KS8842_MAC_ADDR_5_OFFSET + 1) 494 495 /* TOSR1 */ 496 #define KS8842_TOSR1_P 0x0480 497 #define KS8842_TOSR2_P 0x0482 498 #define KS8842_TOSR3_P 0x0484 499 #define KS8842_TOSR4_P 0x0486 500 #define KS8842_TOSR5_P 0x0488 501 #define KS8842_TOSR6_P 0x048A 502 #define KS8842_TOSR7_P 0x0490 503 #define KS8842_TOSR8_P 0x0492 504 #define KS8842_TOS_1_OFFSET KS8842_TOSR1_P 505 #define KS8842_TOS_2_OFFSET KS8842_TOSR2_P 506 #define KS8842_TOS_3_OFFSET KS8842_TOSR3_P 507 #define KS8842_TOS_4_OFFSET KS8842_TOSR4_P 508 #define KS8842_TOS_5_OFFSET KS8842_TOSR5_P 509 #define KS8842_TOS_6_OFFSET KS8842_TOSR6_P 510 511 #define KS8842_TOS_7_OFFSET KS8842_TOSR7_P 512 #define KS8842_TOS_8_OFFSET KS8842_TOSR8_P 513 514 /* P1CR1 */ 515 #define KS8842_P1CR1_P 0x0500 516 #define KS8842_P1CR2_P 0x0502 517 #define KS8842_P1VIDR_P 0x0504 518 #define KS8842_P1CR3_P 0x0506 519 #define KS8842_P1IRCR_P 0x0508 520 #define KS8842_P1ERCR_P 0x050A 521 #define KS884X_P1SCSLMD_P 0x0510 522 #define KS884X_P1CR4_P 0x0512 523 #define KS884X_P1SR_P 0x0514 524 525 /* P2CR1 */ 526 #define KS8842_P2CR1_P 0x0520 527 #define KS8842_P2CR2_P 0x0522 528 #define KS8842_P2VIDR_P 0x0524 529 #define KS8842_P2CR3_P 0x0526 530 #define KS8842_P2IRCR_P 0x0528 531 #define KS8842_P2ERCR_P 0x052A 532 #define KS884X_P2SCSLMD_P 0x0530 533 #define KS884X_P2CR4_P 0x0532 534 #define KS884X_P2SR_P 0x0534 535 536 /* P3CR1 */ 537 #define KS8842_P3CR1_P 0x0540 538 #define KS8842_P3CR2_P 0x0542 539 #define KS8842_P3VIDR_P 0x0544 540 #define KS8842_P3CR3_P 0x0546 541 #define KS8842_P3IRCR_P 0x0548 542 #define KS8842_P3ERCR_P 0x054A 543 544 #define KS8842_PORT_1_CTRL_1 KS8842_P1CR1_P 545 #define KS8842_PORT_2_CTRL_1 KS8842_P2CR1_P 546 #define KS8842_PORT_3_CTRL_1 KS8842_P3CR1_P 547 548 #define PORT_CTRL_ADDR(port, addr) \ 549 (addr = KS8842_PORT_1_CTRL_1 + (port) * \ 550 (KS8842_PORT_2_CTRL_1 - KS8842_PORT_1_CTRL_1)) 551 552 #define KS8842_PORT_CTRL_1_OFFSET 0x00 553 554 #define PORT_BROADCAST_STORM 0x0080 555 #define PORT_DIFFSERV_ENABLE 0x0040 556 #define PORT_802_1P_ENABLE 0x0020 557 #define PORT_BASED_PRIORITY_MASK 0x0018 558 #define PORT_BASED_PRIORITY_BASE 0x0003 559 #define PORT_BASED_PRIORITY_SHIFT 3 560 #define PORT_BASED_PRIORITY_0 0x0000 561 #define PORT_BASED_PRIORITY_1 0x0008 562 #define PORT_BASED_PRIORITY_2 0x0010 563 #define PORT_BASED_PRIORITY_3 0x0018 564 #define PORT_INSERT_TAG 0x0004 565 #define PORT_REMOVE_TAG 0x0002 566 #define PORT_PRIO_QUEUE_ENABLE 0x0001 567 568 #define KS8842_PORT_CTRL_2_OFFSET 0x02 569 570 #define PORT_INGRESS_VLAN_FILTER 0x4000 571 #define PORT_DISCARD_NON_VID 0x2000 572 #define PORT_FORCE_FLOW_CTRL 0x1000 573 #define PORT_BACK_PRESSURE 0x0800 574 #define PORT_TX_ENABLE 0x0400 575 #define PORT_RX_ENABLE 0x0200 576 #define PORT_LEARN_DISABLE 0x0100 577 #define PORT_MIRROR_SNIFFER 0x0080 578 #define PORT_MIRROR_RX 0x0040 579 #define PORT_MIRROR_TX 0x0020 580 #define PORT_USER_PRIORITY_CEILING 0x0008 581 #define PORT_VLAN_MEMBERSHIP 0x0007 582 583 #define KS8842_PORT_CTRL_VID_OFFSET 0x04 584 585 #define PORT_DEFAULT_VID 0x0001 586 587 #define KS8842_PORT_CTRL_3_OFFSET 0x06 588 589 #define PORT_INGRESS_LIMIT_MODE 0x000C 590 #define PORT_INGRESS_ALL 0x0000 591 #define PORT_INGRESS_UNICAST 0x0004 592 #define PORT_INGRESS_MULTICAST 0x0008 593 #define PORT_INGRESS_BROADCAST 0x000C 594 #define PORT_COUNT_IFG 0x0002 595 #define PORT_COUNT_PREAMBLE 0x0001 596 597 #define KS8842_PORT_IN_RATE_OFFSET 0x08 598 #define KS8842_PORT_OUT_RATE_OFFSET 0x0A 599 600 #define PORT_PRIORITY_RATE 0x0F 601 #define PORT_PRIORITY_RATE_SHIFT 4 602 603 #define KS884X_PORT_LINK_MD 0x10 604 605 #define PORT_CABLE_10M_SHORT 0x8000 606 #define PORT_CABLE_DIAG_RESULT 0x6000 607 #define PORT_CABLE_STAT_NORMAL 0x0000 608 #define PORT_CABLE_STAT_OPEN 0x2000 609 #define PORT_CABLE_STAT_SHORT 0x4000 610 #define PORT_CABLE_STAT_FAILED 0x6000 611 #define PORT_START_CABLE_DIAG 0x1000 612 #define PORT_FORCE_LINK 0x0800 613 #define PORT_POWER_SAVING_DISABLE 0x0400 614 #define PORT_PHY_REMOTE_LOOPBACK 0x0200 615 #define PORT_CABLE_FAULT_COUNTER 0x01FF 616 617 #define KS884X_PORT_CTRL_4_OFFSET 0x12 618 619 #define PORT_LED_OFF 0x8000 620 #define PORT_TX_DISABLE 0x4000 621 #define PORT_AUTO_NEG_RESTART 0x2000 622 #define PORT_REMOTE_FAULT_DISABLE 0x1000 623 #define PORT_POWER_DOWN 0x0800 624 #define PORT_AUTO_MDIX_DISABLE 0x0400 625 #define PORT_FORCE_MDIX 0x0200 626 #define PORT_LOOPBACK 0x0100 627 #define PORT_AUTO_NEG_ENABLE 0x0080 628 #define PORT_FORCE_100_MBIT 0x0040 629 #define PORT_FORCE_FULL_DUPLEX 0x0020 630 #define PORT_AUTO_NEG_SYM_PAUSE 0x0010 631 #define PORT_AUTO_NEG_100BTX_FD 0x0008 632 #define PORT_AUTO_NEG_100BTX 0x0004 633 #define PORT_AUTO_NEG_10BT_FD 0x0002 634 #define PORT_AUTO_NEG_10BT 0x0001 635 636 #define KS884X_PORT_STATUS_OFFSET 0x14 637 638 #define PORT_HP_MDIX 0x8000 639 #define PORT_REVERSED_POLARITY 0x2000 640 #define PORT_RX_FLOW_CTRL 0x0800 641 #define PORT_TX_FLOW_CTRL 0x1000 642 #define PORT_STATUS_SPEED_100MBIT 0x0400 643 #define PORT_STATUS_FULL_DUPLEX 0x0200 644 #define PORT_REMOTE_FAULT 0x0100 645 #define PORT_MDIX_STATUS 0x0080 646 #define PORT_AUTO_NEG_COMPLETE 0x0040 647 #define PORT_STATUS_LINK_GOOD 0x0020 648 #define PORT_REMOTE_SYM_PAUSE 0x0010 649 #define PORT_REMOTE_100BTX_FD 0x0008 650 #define PORT_REMOTE_100BTX 0x0004 651 #define PORT_REMOTE_10BT_FD 0x0002 652 #define PORT_REMOTE_10BT 0x0001 653 654 /* 655 #define STATIC_MAC_TABLE_ADDR 00-0000FFFF-FFFFFFFF 656 #define STATIC_MAC_TABLE_FWD_PORTS 00-00070000-00000000 657 #define STATIC_MAC_TABLE_VALID 00-00080000-00000000 658 #define STATIC_MAC_TABLE_OVERRIDE 00-00100000-00000000 659 #define STATIC_MAC_TABLE_USE_FID 00-00200000-00000000 660 #define STATIC_MAC_TABLE_FID 00-03C00000-00000000 661 */ 662 663 #define STATIC_MAC_TABLE_ADDR 0x0000FFFF 664 #define STATIC_MAC_TABLE_FWD_PORTS 0x00070000 665 #define STATIC_MAC_TABLE_VALID 0x00080000 666 #define STATIC_MAC_TABLE_OVERRIDE 0x00100000 667 #define STATIC_MAC_TABLE_USE_FID 0x00200000 668 #define STATIC_MAC_TABLE_FID 0x03C00000 669 670 #define STATIC_MAC_FWD_PORTS_SHIFT 16 671 #define STATIC_MAC_FID_SHIFT 22 672 673 /* 674 #define VLAN_TABLE_VID 00-00000000-00000FFF 675 #define VLAN_TABLE_FID 00-00000000-0000F000 676 #define VLAN_TABLE_MEMBERSHIP 00-00000000-00070000 677 #define VLAN_TABLE_VALID 00-00000000-00080000 678 */ 679 680 #define VLAN_TABLE_VID 0x00000FFF 681 #define VLAN_TABLE_FID 0x0000F000 682 #define VLAN_TABLE_MEMBERSHIP 0x00070000 683 #define VLAN_TABLE_VALID 0x00080000 684 685 #define VLAN_TABLE_FID_SHIFT 12 686 #define VLAN_TABLE_MEMBERSHIP_SHIFT 16 687 688 /* 689 #define DYNAMIC_MAC_TABLE_ADDR 00-0000FFFF-FFFFFFFF 690 #define DYNAMIC_MAC_TABLE_FID 00-000F0000-00000000 691 #define DYNAMIC_MAC_TABLE_SRC_PORT 00-00300000-00000000 692 #define DYNAMIC_MAC_TABLE_TIMESTAMP 00-00C00000-00000000 693 #define DYNAMIC_MAC_TABLE_ENTRIES 03-FF000000-00000000 694 #define DYNAMIC_MAC_TABLE_MAC_EMPTY 04-00000000-00000000 695 #define DYNAMIC_MAC_TABLE_RESERVED 78-00000000-00000000 696 #define DYNAMIC_MAC_TABLE_NOT_READY 80-00000000-00000000 697 */ 698 699 #define DYNAMIC_MAC_TABLE_ADDR 0x0000FFFF 700 #define DYNAMIC_MAC_TABLE_FID 0x000F0000 701 #define DYNAMIC_MAC_TABLE_SRC_PORT 0x00300000 702 #define DYNAMIC_MAC_TABLE_TIMESTAMP 0x00C00000 703 #define DYNAMIC_MAC_TABLE_ENTRIES 0xFF000000 704 705 #define DYNAMIC_MAC_TABLE_ENTRIES_H 0x03 706 #define DYNAMIC_MAC_TABLE_MAC_EMPTY 0x04 707 #define DYNAMIC_MAC_TABLE_RESERVED 0x78 708 #define DYNAMIC_MAC_TABLE_NOT_READY 0x80 709 710 #define DYNAMIC_MAC_FID_SHIFT 16 711 #define DYNAMIC_MAC_SRC_PORT_SHIFT 20 712 #define DYNAMIC_MAC_TIMESTAMP_SHIFT 22 713 #define DYNAMIC_MAC_ENTRIES_SHIFT 24 714 #define DYNAMIC_MAC_ENTRIES_H_SHIFT 8 715 716 /* 717 #define MIB_COUNTER_VALUE 00-00000000-3FFFFFFF 718 #define MIB_COUNTER_VALID 00-00000000-40000000 719 #define MIB_COUNTER_OVERFLOW 00-00000000-80000000 720 */ 721 722 #define MIB_COUNTER_VALUE 0x3FFFFFFF 723 #define MIB_COUNTER_VALID 0x40000000 724 #define MIB_COUNTER_OVERFLOW 0x80000000 725 726 #define MIB_PACKET_DROPPED 0x0000FFFF 727 728 #define KS_MIB_PACKET_DROPPED_TX_0 0x100 729 #define KS_MIB_PACKET_DROPPED_TX_1 0x101 730 #define KS_MIB_PACKET_DROPPED_TX 0x102 731 #define KS_MIB_PACKET_DROPPED_RX_0 0x103 732 #define KS_MIB_PACKET_DROPPED_RX_1 0x104 733 #define KS_MIB_PACKET_DROPPED_RX 0x105 734 735 /* Change default LED mode. */ 736 #define SET_DEFAULT_LED LED_SPEED_DUPLEX_ACT 737 738 #define MAC_ADDR_ORDER(i) (ETH_ALEN - 1 - (i)) 739 740 #define MAX_ETHERNET_BODY_SIZE 1500 741 #define ETHERNET_HEADER_SIZE (14 + VLAN_HLEN) 742 743 #define MAX_ETHERNET_PACKET_SIZE \ 744 (MAX_ETHERNET_BODY_SIZE + ETHERNET_HEADER_SIZE) 745 746 #define REGULAR_RX_BUF_SIZE (MAX_ETHERNET_PACKET_SIZE + 4) 747 #define MAX_RX_BUF_SIZE (1912 + 4) 748 749 #define ADDITIONAL_ENTRIES 16 750 #define MAX_MULTICAST_LIST 32 751 752 #define HW_MULTICAST_SIZE 8 753 754 #define HW_TO_DEV_PORT(port) (port - 1) 755 756 enum { 757 media_connected, 758 media_disconnected 759 }; 760 761 enum { 762 OID_COUNTER_UNKOWN, 763 764 OID_COUNTER_FIRST, 765 766 /* total transmit errors */ 767 OID_COUNTER_XMIT_ERROR, 768 769 /* total receive errors */ 770 OID_COUNTER_RCV_ERROR, 771 772 OID_COUNTER_LAST 773 }; 774 775 /* 776 * Hardware descriptor definitions 777 */ 778 779 #define DESC_ALIGNMENT 16 780 #define BUFFER_ALIGNMENT 8 781 782 #define NUM_OF_RX_DESC 64 783 #define NUM_OF_TX_DESC 64 784 785 #define KS_DESC_RX_FRAME_LEN 0x000007FF 786 #define KS_DESC_RX_FRAME_TYPE 0x00008000 787 #define KS_DESC_RX_ERROR_CRC 0x00010000 788 #define KS_DESC_RX_ERROR_RUNT 0x00020000 789 #define KS_DESC_RX_ERROR_TOO_LONG 0x00040000 790 #define KS_DESC_RX_ERROR_PHY 0x00080000 791 #define KS884X_DESC_RX_PORT_MASK 0x00300000 792 #define KS_DESC_RX_MULTICAST 0x01000000 793 #define KS_DESC_RX_ERROR 0x02000000 794 #define KS_DESC_RX_ERROR_CSUM_UDP 0x04000000 795 #define KS_DESC_RX_ERROR_CSUM_TCP 0x08000000 796 #define KS_DESC_RX_ERROR_CSUM_IP 0x10000000 797 #define KS_DESC_RX_LAST 0x20000000 798 #define KS_DESC_RX_FIRST 0x40000000 799 #define KS_DESC_RX_ERROR_COND \ 800 (KS_DESC_RX_ERROR_CRC | \ 801 KS_DESC_RX_ERROR_RUNT | \ 802 KS_DESC_RX_ERROR_PHY | \ 803 KS_DESC_RX_ERROR_TOO_LONG) 804 805 #define KS_DESC_HW_OWNED 0x80000000 806 807 #define KS_DESC_BUF_SIZE 0x000007FF 808 #define KS884X_DESC_TX_PORT_MASK 0x00300000 809 #define KS_DESC_END_OF_RING 0x02000000 810 #define KS_DESC_TX_CSUM_GEN_UDP 0x04000000 811 #define KS_DESC_TX_CSUM_GEN_TCP 0x08000000 812 #define KS_DESC_TX_CSUM_GEN_IP 0x10000000 813 #define KS_DESC_TX_LAST 0x20000000 814 #define KS_DESC_TX_FIRST 0x40000000 815 #define KS_DESC_TX_INTERRUPT 0x80000000 816 817 #define KS_DESC_PORT_SHIFT 20 818 819 #define KS_DESC_RX_MASK (KS_DESC_BUF_SIZE) 820 821 #define KS_DESC_TX_MASK \ 822 (KS_DESC_TX_INTERRUPT | \ 823 KS_DESC_TX_FIRST | \ 824 KS_DESC_TX_LAST | \ 825 KS_DESC_TX_CSUM_GEN_IP | \ 826 KS_DESC_TX_CSUM_GEN_TCP | \ 827 KS_DESC_TX_CSUM_GEN_UDP | \ 828 KS_DESC_BUF_SIZE) 829 830 struct ksz_desc_rx_stat { 831 #ifdef __BIG_ENDIAN_BITFIELD 832 u32 hw_owned:1; 833 u32 first_desc:1; 834 u32 last_desc:1; 835 u32 csum_err_ip:1; 836 u32 csum_err_tcp:1; 837 u32 csum_err_udp:1; 838 u32 error:1; 839 u32 multicast:1; 840 u32 src_port:4; 841 u32 err_phy:1; 842 u32 err_too_long:1; 843 u32 err_runt:1; 844 u32 err_crc:1; 845 u32 frame_type:1; 846 u32 reserved1:4; 847 u32 frame_len:11; 848 #else 849 u32 frame_len:11; 850 u32 reserved1:4; 851 u32 frame_type:1; 852 u32 err_crc:1; 853 u32 err_runt:1; 854 u32 err_too_long:1; 855 u32 err_phy:1; 856 u32 src_port:4; 857 u32 multicast:1; 858 u32 error:1; 859 u32 csum_err_udp:1; 860 u32 csum_err_tcp:1; 861 u32 csum_err_ip:1; 862 u32 last_desc:1; 863 u32 first_desc:1; 864 u32 hw_owned:1; 865 #endif 866 }; 867 868 struct ksz_desc_tx_stat { 869 #ifdef __BIG_ENDIAN_BITFIELD 870 u32 hw_owned:1; 871 u32 reserved1:31; 872 #else 873 u32 reserved1:31; 874 u32 hw_owned:1; 875 #endif 876 }; 877 878 struct ksz_desc_rx_buf { 879 #ifdef __BIG_ENDIAN_BITFIELD 880 u32 reserved4:6; 881 u32 end_of_ring:1; 882 u32 reserved3:14; 883 u32 buf_size:11; 884 #else 885 u32 buf_size:11; 886 u32 reserved3:14; 887 u32 end_of_ring:1; 888 u32 reserved4:6; 889 #endif 890 }; 891 892 struct ksz_desc_tx_buf { 893 #ifdef __BIG_ENDIAN_BITFIELD 894 u32 intr:1; 895 u32 first_seg:1; 896 u32 last_seg:1; 897 u32 csum_gen_ip:1; 898 u32 csum_gen_tcp:1; 899 u32 csum_gen_udp:1; 900 u32 end_of_ring:1; 901 u32 reserved4:1; 902 u32 dest_port:4; 903 u32 reserved3:9; 904 u32 buf_size:11; 905 #else 906 u32 buf_size:11; 907 u32 reserved3:9; 908 u32 dest_port:4; 909 u32 reserved4:1; 910 u32 end_of_ring:1; 911 u32 csum_gen_udp:1; 912 u32 csum_gen_tcp:1; 913 u32 csum_gen_ip:1; 914 u32 last_seg:1; 915 u32 first_seg:1; 916 u32 intr:1; 917 #endif 918 }; 919 920 union desc_stat { 921 struct ksz_desc_rx_stat rx; 922 struct ksz_desc_tx_stat tx; 923 u32 data; 924 }; 925 926 union desc_buf { 927 struct ksz_desc_rx_buf rx; 928 struct ksz_desc_tx_buf tx; 929 u32 data; 930 }; 931 932 /** 933 * struct ksz_hw_desc - Hardware descriptor data structure 934 * @ctrl: Descriptor control value. 935 * @buf: Descriptor buffer value. 936 * @addr: Physical address of memory buffer. 937 * @next: Pointer to next hardware descriptor. 938 */ 939 struct ksz_hw_desc { 940 union desc_stat ctrl; 941 union desc_buf buf; 942 u32 addr; 943 u32 next; 944 }; 945 946 /** 947 * struct ksz_sw_desc - Software descriptor data structure 948 * @ctrl: Descriptor control value. 949 * @buf: Descriptor buffer value. 950 * @buf_size: Current buffers size value in hardware descriptor. 951 */ 952 struct ksz_sw_desc { 953 union desc_stat ctrl; 954 union desc_buf buf; 955 u32 buf_size; 956 }; 957 958 /** 959 * struct ksz_dma_buf - OS dependent DMA buffer data structure 960 * @skb: Associated socket buffer. 961 * @dma: Associated physical DMA address. 962 * len: Actual len used. 963 */ 964 struct ksz_dma_buf { 965 struct sk_buff *skb; 966 dma_addr_t dma; 967 int len; 968 }; 969 970 /** 971 * struct ksz_desc - Descriptor structure 972 * @phw: Hardware descriptor pointer to uncached physical memory. 973 * @sw: Cached memory to hold hardware descriptor values for 974 * manipulation. 975 * @dma_buf: Operating system dependent data structure to hold physical 976 * memory buffer allocation information. 977 */ 978 struct ksz_desc { 979 struct ksz_hw_desc *phw; 980 struct ksz_sw_desc sw; 981 struct ksz_dma_buf dma_buf; 982 }; 983 984 #define DMA_BUFFER(desc) ((struct ksz_dma_buf *)(&(desc)->dma_buf)) 985 986 /** 987 * struct ksz_desc_info - Descriptor information data structure 988 * @ring: First descriptor in the ring. 989 * @cur: Current descriptor being manipulated. 990 * @ring_virt: First hardware descriptor in the ring. 991 * @ring_phys: The physical address of the first descriptor of the ring. 992 * @size: Size of hardware descriptor. 993 * @alloc: Number of descriptors allocated. 994 * @avail: Number of descriptors available for use. 995 * @last: Index for last descriptor released to hardware. 996 * @next: Index for next descriptor available for use. 997 * @mask: Mask for index wrapping. 998 */ 999 struct ksz_desc_info { 1000 struct ksz_desc *ring; 1001 struct ksz_desc *cur; 1002 struct ksz_hw_desc *ring_virt; 1003 u32 ring_phys; 1004 int size; 1005 int alloc; 1006 int avail; 1007 int last; 1008 int next; 1009 int mask; 1010 }; 1011 1012 /* 1013 * KSZ8842 switch definitions 1014 */ 1015 1016 enum { 1017 TABLE_STATIC_MAC = 0, 1018 TABLE_VLAN, 1019 TABLE_DYNAMIC_MAC, 1020 TABLE_MIB 1021 }; 1022 1023 #define LEARNED_MAC_TABLE_ENTRIES 1024 1024 #define STATIC_MAC_TABLE_ENTRIES 8 1025 1026 /** 1027 * struct ksz_mac_table - Static MAC table data structure 1028 * @mac_addr: MAC address to filter. 1029 * @vid: VID value. 1030 * @fid: FID value. 1031 * @ports: Port membership. 1032 * @override: Override setting. 1033 * @use_fid: FID use setting. 1034 * @valid: Valid setting indicating the entry is being used. 1035 */ 1036 struct ksz_mac_table { 1037 u8 mac_addr[ETH_ALEN]; 1038 u16 vid; 1039 u8 fid; 1040 u8 ports; 1041 u8 override:1; 1042 u8 use_fid:1; 1043 u8 valid:1; 1044 }; 1045 1046 #define VLAN_TABLE_ENTRIES 16 1047 1048 /** 1049 * struct ksz_vlan_table - VLAN table data structure 1050 * @vid: VID value. 1051 * @fid: FID value. 1052 * @member: Port membership. 1053 */ 1054 struct ksz_vlan_table { 1055 u16 vid; 1056 u8 fid; 1057 u8 member; 1058 }; 1059 1060 #define DIFFSERV_ENTRIES 64 1061 #define PRIO_802_1P_ENTRIES 8 1062 #define PRIO_QUEUES 4 1063 1064 #define SWITCH_PORT_NUM 2 1065 #define TOTAL_PORT_NUM (SWITCH_PORT_NUM + 1) 1066 #define HOST_MASK (1 << SWITCH_PORT_NUM) 1067 #define PORT_MASK 7 1068 1069 #define MAIN_PORT 0 1070 #define OTHER_PORT 1 1071 #define HOST_PORT SWITCH_PORT_NUM 1072 1073 #define PORT_COUNTER_NUM 0x20 1074 #define TOTAL_PORT_COUNTER_NUM (PORT_COUNTER_NUM + 2) 1075 1076 #define MIB_COUNTER_RX_LO_PRIORITY 0x00 1077 #define MIB_COUNTER_RX_HI_PRIORITY 0x01 1078 #define MIB_COUNTER_RX_UNDERSIZE 0x02 1079 #define MIB_COUNTER_RX_FRAGMENT 0x03 1080 #define MIB_COUNTER_RX_OVERSIZE 0x04 1081 #define MIB_COUNTER_RX_JABBER 0x05 1082 #define MIB_COUNTER_RX_SYMBOL_ERR 0x06 1083 #define MIB_COUNTER_RX_CRC_ERR 0x07 1084 #define MIB_COUNTER_RX_ALIGNMENT_ERR 0x08 1085 #define MIB_COUNTER_RX_CTRL_8808 0x09 1086 #define MIB_COUNTER_RX_PAUSE 0x0A 1087 #define MIB_COUNTER_RX_BROADCAST 0x0B 1088 #define MIB_COUNTER_RX_MULTICAST 0x0C 1089 #define MIB_COUNTER_RX_UNICAST 0x0D 1090 #define MIB_COUNTER_RX_OCTET_64 0x0E 1091 #define MIB_COUNTER_RX_OCTET_65_127 0x0F 1092 #define MIB_COUNTER_RX_OCTET_128_255 0x10 1093 #define MIB_COUNTER_RX_OCTET_256_511 0x11 1094 #define MIB_COUNTER_RX_OCTET_512_1023 0x12 1095 #define MIB_COUNTER_RX_OCTET_1024_1522 0x13 1096 #define MIB_COUNTER_TX_LO_PRIORITY 0x14 1097 #define MIB_COUNTER_TX_HI_PRIORITY 0x15 1098 #define MIB_COUNTER_TX_LATE_COLLISION 0x16 1099 #define MIB_COUNTER_TX_PAUSE 0x17 1100 #define MIB_COUNTER_TX_BROADCAST 0x18 1101 #define MIB_COUNTER_TX_MULTICAST 0x19 1102 #define MIB_COUNTER_TX_UNICAST 0x1A 1103 #define MIB_COUNTER_TX_DEFERRED 0x1B 1104 #define MIB_COUNTER_TX_TOTAL_COLLISION 0x1C 1105 #define MIB_COUNTER_TX_EXCESS_COLLISION 0x1D 1106 #define MIB_COUNTER_TX_SINGLE_COLLISION 0x1E 1107 #define MIB_COUNTER_TX_MULTI_COLLISION 0x1F 1108 1109 #define MIB_COUNTER_RX_DROPPED_PACKET 0x20 1110 #define MIB_COUNTER_TX_DROPPED_PACKET 0x21 1111 1112 /** 1113 * struct ksz_port_mib - Port MIB data structure 1114 * @cnt_ptr: Current pointer to MIB counter index. 1115 * @link_down: Indication the link has just gone down. 1116 * @state: Connection status of the port. 1117 * @mib_start: The starting counter index. Some ports do not start at 0. 1118 * @counter: 64-bit MIB counter value. 1119 * @dropped: Temporary buffer to remember last read packet dropped values. 1120 * 1121 * MIB counters needs to be read periodically so that counters do not get 1122 * overflowed and give incorrect values. A right balance is needed to 1123 * satisfy this condition and not waste too much CPU time. 1124 * 1125 * It is pointless to read MIB counters when the port is disconnected. The 1126 * @state provides the connection status so that MIB counters are read only 1127 * when the port is connected. The @link_down indicates the port is just 1128 * disconnected so that all MIB counters are read one last time to update the 1129 * information. 1130 */ 1131 struct ksz_port_mib { 1132 u8 cnt_ptr; 1133 u8 link_down; 1134 u8 state; 1135 u8 mib_start; 1136 1137 u64 counter[TOTAL_PORT_COUNTER_NUM]; 1138 u32 dropped[2]; 1139 }; 1140 1141 /** 1142 * struct ksz_port_cfg - Port configuration data structure 1143 * @vid: VID value. 1144 * @member: Port membership. 1145 * @port_prio: Port priority. 1146 * @rx_rate: Receive priority rate. 1147 * @tx_rate: Transmit priority rate. 1148 * @stp_state: Current Spanning Tree Protocol state. 1149 */ 1150 struct ksz_port_cfg { 1151 u16 vid; 1152 u8 member; 1153 u8 port_prio; 1154 u32 rx_rate[PRIO_QUEUES]; 1155 u32 tx_rate[PRIO_QUEUES]; 1156 int stp_state; 1157 }; 1158 1159 /** 1160 * struct ksz_switch - KSZ8842 switch data structure 1161 * @mac_table: MAC table entries information. 1162 * @vlan_table: VLAN table entries information. 1163 * @port_cfg: Port configuration information. 1164 * @diffserv: DiffServ priority settings. Possible values from 6-bit of ToS 1165 * (bit7 ~ bit2) field. 1166 * @p_802_1p: 802.1P priority settings. Possible values from 3-bit of 802.1p 1167 * Tag priority field. 1168 * @br_addr: Bridge address. Used for STP. 1169 * @other_addr: Other MAC address. Used for multiple network device mode. 1170 * @broad_per: Broadcast storm percentage. 1171 * @member: Current port membership. Used for STP. 1172 */ 1173 struct ksz_switch { 1174 struct ksz_mac_table mac_table[STATIC_MAC_TABLE_ENTRIES]; 1175 struct ksz_vlan_table vlan_table[VLAN_TABLE_ENTRIES]; 1176 struct ksz_port_cfg port_cfg[TOTAL_PORT_NUM]; 1177 1178 u8 diffserv[DIFFSERV_ENTRIES]; 1179 u8 p_802_1p[PRIO_802_1P_ENTRIES]; 1180 1181 u8 br_addr[ETH_ALEN]; 1182 u8 other_addr[ETH_ALEN]; 1183 1184 u8 broad_per; 1185 u8 member; 1186 }; 1187 1188 #define TX_RATE_UNIT 10000 1189 1190 /** 1191 * struct ksz_port_info - Port information data structure 1192 * @state: Connection status of the port. 1193 * @tx_rate: Transmit rate divided by 10000 to get Mbit. 1194 * @duplex: Duplex mode. 1195 * @advertised: Advertised auto-negotiation setting. Used to determine link. 1196 * @partner: Auto-negotiation partner setting. Used to determine link. 1197 * @port_id: Port index to access actual hardware register. 1198 * @pdev: Pointer to OS dependent network device. 1199 */ 1200 struct ksz_port_info { 1201 uint state; 1202 uint tx_rate; 1203 u8 duplex; 1204 u8 advertised; 1205 u8 partner; 1206 u8 port_id; 1207 void *pdev; 1208 }; 1209 1210 #define MAX_TX_HELD_SIZE 52000 1211 1212 /* Hardware features and bug fixes. */ 1213 #define LINK_INT_WORKING (1 << 0) 1214 #define SMALL_PACKET_TX_BUG (1 << 1) 1215 #define HALF_DUPLEX_SIGNAL_BUG (1 << 2) 1216 #define RX_HUGE_FRAME (1 << 4) 1217 #define STP_SUPPORT (1 << 8) 1218 1219 /* Software overrides. */ 1220 #define PAUSE_FLOW_CTRL (1 << 0) 1221 #define FAST_AGING (1 << 1) 1222 1223 /** 1224 * struct ksz_hw - KSZ884X hardware data structure 1225 * @io: Virtual address assigned. 1226 * @ksz_switch: Pointer to KSZ8842 switch. 1227 * @port_info: Port information. 1228 * @port_mib: Port MIB information. 1229 * @dev_count: Number of network devices this hardware supports. 1230 * @dst_ports: Destination ports in switch for transmission. 1231 * @id: Hardware ID. Used for display only. 1232 * @mib_cnt: Number of MIB counters this hardware has. 1233 * @mib_port_cnt: Number of ports with MIB counters. 1234 * @tx_cfg: Cached transmit control settings. 1235 * @rx_cfg: Cached receive control settings. 1236 * @intr_mask: Current interrupt mask. 1237 * @intr_set: Current interrup set. 1238 * @intr_blocked: Interrupt blocked. 1239 * @rx_desc_info: Receive descriptor information. 1240 * @tx_desc_info: Transmit descriptor information. 1241 * @tx_int_cnt: Transmit interrupt count. Used for TX optimization. 1242 * @tx_int_mask: Transmit interrupt mask. Used for TX optimization. 1243 * @tx_size: Transmit data size. Used for TX optimization. 1244 * The maximum is defined by MAX_TX_HELD_SIZE. 1245 * @perm_addr: Permanent MAC address. 1246 * @override_addr: Overridden MAC address. 1247 * @address: Additional MAC address entries. 1248 * @addr_list_size: Additional MAC address list size. 1249 * @mac_override: Indication of MAC address overridden. 1250 * @promiscuous: Counter to keep track of promiscuous mode set. 1251 * @all_multi: Counter to keep track of all multicast mode set. 1252 * @multi_list: Multicast address entries. 1253 * @multi_bits: Cached multicast hash table settings. 1254 * @multi_list_size: Multicast address list size. 1255 * @enabled: Indication of hardware enabled. 1256 * @rx_stop: Indication of receive process stop. 1257 * @features: Hardware features to enable. 1258 * @overrides: Hardware features to override. 1259 * @parent: Pointer to parent, network device private structure. 1260 */ 1261 struct ksz_hw { 1262 void __iomem *io; 1263 1264 struct ksz_switch *ksz_switch; 1265 struct ksz_port_info port_info[SWITCH_PORT_NUM]; 1266 struct ksz_port_mib port_mib[TOTAL_PORT_NUM]; 1267 int dev_count; 1268 int dst_ports; 1269 int id; 1270 int mib_cnt; 1271 int mib_port_cnt; 1272 1273 u32 tx_cfg; 1274 u32 rx_cfg; 1275 u32 intr_mask; 1276 u32 intr_set; 1277 uint intr_blocked; 1278 1279 struct ksz_desc_info rx_desc_info; 1280 struct ksz_desc_info tx_desc_info; 1281 1282 int tx_int_cnt; 1283 int tx_int_mask; 1284 int tx_size; 1285 1286 u8 perm_addr[ETH_ALEN]; 1287 u8 override_addr[ETH_ALEN]; 1288 u8 address[ADDITIONAL_ENTRIES][ETH_ALEN]; 1289 u8 addr_list_size; 1290 u8 mac_override; 1291 u8 promiscuous; 1292 u8 all_multi; 1293 u8 multi_list[MAX_MULTICAST_LIST][ETH_ALEN]; 1294 u8 multi_bits[HW_MULTICAST_SIZE]; 1295 u8 multi_list_size; 1296 1297 u8 enabled; 1298 u8 rx_stop; 1299 u8 reserved2[1]; 1300 1301 uint features; 1302 uint overrides; 1303 1304 void *parent; 1305 }; 1306 1307 enum { 1308 PHY_NO_FLOW_CTRL, 1309 PHY_FLOW_CTRL, 1310 PHY_TX_ONLY, 1311 PHY_RX_ONLY 1312 }; 1313 1314 /** 1315 * struct ksz_port - Virtual port data structure 1316 * @duplex: Duplex mode setting. 1 for half duplex, 2 for full 1317 * duplex, and 0 for auto, which normally results in full 1318 * duplex. 1319 * @speed: Speed setting. 10 for 10 Mbit, 100 for 100 Mbit, and 1320 * 0 for auto, which normally results in 100 Mbit. 1321 * @force_link: Force link setting. 0 for auto-negotiation, and 1 for 1322 * force. 1323 * @flow_ctrl: Flow control setting. PHY_NO_FLOW_CTRL for no flow 1324 * control, and PHY_FLOW_CTRL for flow control. 1325 * PHY_TX_ONLY and PHY_RX_ONLY are not supported for 100 1326 * Mbit PHY. 1327 * @first_port: Index of first port this port supports. 1328 * @mib_port_cnt: Number of ports with MIB counters. 1329 * @port_cnt: Number of ports this port supports. 1330 * @counter: Port statistics counter. 1331 * @hw: Pointer to hardware structure. 1332 * @linked: Pointer to port information linked to this port. 1333 */ 1334 struct ksz_port { 1335 u8 duplex; 1336 u8 speed; 1337 u8 force_link; 1338 u8 flow_ctrl; 1339 1340 int first_port; 1341 int mib_port_cnt; 1342 int port_cnt; 1343 u64 counter[OID_COUNTER_LAST]; 1344 1345 struct ksz_hw *hw; 1346 struct ksz_port_info *linked; 1347 }; 1348 1349 /** 1350 * struct ksz_timer_info - Timer information data structure 1351 * @timer: Kernel timer. 1352 * @cnt: Running timer counter. 1353 * @max: Number of times to run timer; -1 for infinity. 1354 * @period: Timer period in jiffies. 1355 */ 1356 struct ksz_timer_info { 1357 struct timer_list timer; 1358 int cnt; 1359 int max; 1360 int period; 1361 }; 1362 1363 /** 1364 * struct ksz_shared_mem - OS dependent shared memory data structure 1365 * @dma_addr: Physical DMA address allocated. 1366 * @alloc_size: Allocation size. 1367 * @phys: Actual physical address used. 1368 * @alloc_virt: Virtual address allocated. 1369 * @virt: Actual virtual address used. 1370 */ 1371 struct ksz_shared_mem { 1372 dma_addr_t dma_addr; 1373 uint alloc_size; 1374 uint phys; 1375 u8 *alloc_virt; 1376 u8 *virt; 1377 }; 1378 1379 /** 1380 * struct ksz_counter_info - OS dependent counter information data structure 1381 * @counter: Wait queue to wakeup after counters are read. 1382 * @time: Next time in jiffies to read counter. 1383 * @read: Indication of counters read in full or not. 1384 */ 1385 struct ksz_counter_info { 1386 wait_queue_head_t counter; 1387 unsigned long time; 1388 int read; 1389 }; 1390 1391 /** 1392 * struct dev_info - Network device information data structure 1393 * @dev: Pointer to network device. 1394 * @pdev: Pointer to PCI device. 1395 * @hw: Hardware structure. 1396 * @desc_pool: Physical memory used for descriptor pool. 1397 * @hwlock: Spinlock to prevent hardware from accessing. 1398 * @lock: Mutex lock to prevent device from accessing. 1399 * @dev_rcv: Receive process function used. 1400 * @last_skb: Socket buffer allocated for descriptor rx fragments. 1401 * @skb_index: Buffer index for receiving fragments. 1402 * @skb_len: Buffer length for receiving fragments. 1403 * @mib_read: Workqueue to read MIB counters. 1404 * @mib_timer_info: Timer to read MIB counters. 1405 * @counter: Used for MIB reading. 1406 * @mtu: Current MTU used. The default is REGULAR_RX_BUF_SIZE; 1407 * the maximum is MAX_RX_BUF_SIZE. 1408 * @opened: Counter to keep track of device open. 1409 * @rx_tasklet: Receive processing tasklet. 1410 * @tx_tasklet: Transmit processing tasklet. 1411 * @wol_enable: Wake-on-LAN enable set by ethtool. 1412 * @wol_support: Wake-on-LAN support used by ethtool. 1413 * @pme_wait: Used for KSZ8841 power management. 1414 */ 1415 struct dev_info { 1416 struct net_device *dev; 1417 struct pci_dev *pdev; 1418 1419 struct ksz_hw hw; 1420 struct ksz_shared_mem desc_pool; 1421 1422 spinlock_t hwlock; 1423 struct mutex lock; 1424 1425 int (*dev_rcv)(struct dev_info *); 1426 1427 struct sk_buff *last_skb; 1428 int skb_index; 1429 int skb_len; 1430 1431 struct work_struct mib_read; 1432 struct ksz_timer_info mib_timer_info; 1433 struct ksz_counter_info counter[TOTAL_PORT_NUM]; 1434 1435 int mtu; 1436 int opened; 1437 1438 struct tasklet_struct rx_tasklet; 1439 struct tasklet_struct tx_tasklet; 1440 1441 int wol_enable; 1442 int wol_support; 1443 unsigned long pme_wait; 1444 }; 1445 1446 /** 1447 * struct dev_priv - Network device private data structure 1448 * @adapter: Adapter device information. 1449 * @port: Port information. 1450 * @monitor_time_info: Timer to monitor ports. 1451 * @proc_sem: Semaphore for proc accessing. 1452 * @id: Device ID. 1453 * @mii_if: MII interface information. 1454 * @advertising: Temporary variable to store advertised settings. 1455 * @msg_enable: The message flags controlling driver output. 1456 * @media_state: The connection status of the device. 1457 * @multicast: The all multicast state of the device. 1458 * @promiscuous: The promiscuous state of the device. 1459 */ 1460 struct dev_priv { 1461 struct dev_info *adapter; 1462 struct ksz_port port; 1463 struct ksz_timer_info monitor_timer_info; 1464 1465 struct semaphore proc_sem; 1466 int id; 1467 1468 struct mii_if_info mii_if; 1469 u32 advertising; 1470 1471 u32 msg_enable; 1472 int media_state; 1473 int multicast; 1474 int promiscuous; 1475 }; 1476 1477 #define DRV_NAME "KSZ884X PCI" 1478 #define DEVICE_NAME "KSZ884x PCI" 1479 #define DRV_VERSION "1.0.0" 1480 #define DRV_RELDATE "Feb 8, 2010" 1481 1482 static char version[] = 1483 "Micrel " DEVICE_NAME " " DRV_VERSION " (" DRV_RELDATE ")"; 1484 1485 static u8 DEFAULT_MAC_ADDRESS[] = { 0x00, 0x10, 0xA1, 0x88, 0x42, 0x01 }; 1486 1487 /* 1488 * Interrupt processing primary routines 1489 */ 1490 1491 static inline void hw_ack_intr(struct ksz_hw *hw, uint interrupt) 1492 { 1493 writel(interrupt, hw->io + KS884X_INTERRUPTS_STATUS); 1494 } 1495 1496 static inline void hw_dis_intr(struct ksz_hw *hw) 1497 { 1498 hw->intr_blocked = hw->intr_mask; 1499 writel(0, hw->io + KS884X_INTERRUPTS_ENABLE); 1500 hw->intr_set = readl(hw->io + KS884X_INTERRUPTS_ENABLE); 1501 } 1502 1503 static inline void hw_set_intr(struct ksz_hw *hw, uint interrupt) 1504 { 1505 hw->intr_set = interrupt; 1506 writel(interrupt, hw->io + KS884X_INTERRUPTS_ENABLE); 1507 } 1508 1509 static inline void hw_ena_intr(struct ksz_hw *hw) 1510 { 1511 hw->intr_blocked = 0; 1512 hw_set_intr(hw, hw->intr_mask); 1513 } 1514 1515 static inline void hw_dis_intr_bit(struct ksz_hw *hw, uint bit) 1516 { 1517 hw->intr_mask &= ~(bit); 1518 } 1519 1520 static inline void hw_turn_off_intr(struct ksz_hw *hw, uint interrupt) 1521 { 1522 u32 read_intr; 1523 1524 read_intr = readl(hw->io + KS884X_INTERRUPTS_ENABLE); 1525 hw->intr_set = read_intr & ~interrupt; 1526 writel(hw->intr_set, hw->io + KS884X_INTERRUPTS_ENABLE); 1527 hw_dis_intr_bit(hw, interrupt); 1528 } 1529 1530 /** 1531 * hw_turn_on_intr - turn on specified interrupts 1532 * @hw: The hardware instance. 1533 * @bit: The interrupt bits to be on. 1534 * 1535 * This routine turns on the specified interrupts in the interrupt mask so that 1536 * those interrupts will be enabled. 1537 */ 1538 static void hw_turn_on_intr(struct ksz_hw *hw, u32 bit) 1539 { 1540 hw->intr_mask |= bit; 1541 1542 if (!hw->intr_blocked) 1543 hw_set_intr(hw, hw->intr_mask); 1544 } 1545 1546 static inline void hw_ena_intr_bit(struct ksz_hw *hw, uint interrupt) 1547 { 1548 u32 read_intr; 1549 1550 read_intr = readl(hw->io + KS884X_INTERRUPTS_ENABLE); 1551 hw->intr_set = read_intr | interrupt; 1552 writel(hw->intr_set, hw->io + KS884X_INTERRUPTS_ENABLE); 1553 } 1554 1555 static inline void hw_read_intr(struct ksz_hw *hw, uint *status) 1556 { 1557 *status = readl(hw->io + KS884X_INTERRUPTS_STATUS); 1558 *status = *status & hw->intr_set; 1559 } 1560 1561 static inline void hw_restore_intr(struct ksz_hw *hw, uint interrupt) 1562 { 1563 if (interrupt) 1564 hw_ena_intr(hw); 1565 } 1566 1567 /** 1568 * hw_block_intr - block hardware interrupts 1569 * 1570 * This function blocks all interrupts of the hardware and returns the current 1571 * interrupt enable mask so that interrupts can be restored later. 1572 * 1573 * Return the current interrupt enable mask. 1574 */ 1575 static uint hw_block_intr(struct ksz_hw *hw) 1576 { 1577 uint interrupt = 0; 1578 1579 if (!hw->intr_blocked) { 1580 hw_dis_intr(hw); 1581 interrupt = hw->intr_blocked; 1582 } 1583 return interrupt; 1584 } 1585 1586 /* 1587 * Hardware descriptor routines 1588 */ 1589 1590 static inline void reset_desc(struct ksz_desc *desc, union desc_stat status) 1591 { 1592 status.rx.hw_owned = 0; 1593 desc->phw->ctrl.data = cpu_to_le32(status.data); 1594 } 1595 1596 static inline void release_desc(struct ksz_desc *desc) 1597 { 1598 desc->sw.ctrl.tx.hw_owned = 1; 1599 if (desc->sw.buf_size != desc->sw.buf.data) { 1600 desc->sw.buf_size = desc->sw.buf.data; 1601 desc->phw->buf.data = cpu_to_le32(desc->sw.buf.data); 1602 } 1603 desc->phw->ctrl.data = cpu_to_le32(desc->sw.ctrl.data); 1604 } 1605 1606 static void get_rx_pkt(struct ksz_desc_info *info, struct ksz_desc **desc) 1607 { 1608 *desc = &info->ring[info->last]; 1609 info->last++; 1610 info->last &= info->mask; 1611 info->avail--; 1612 (*desc)->sw.buf.data &= ~KS_DESC_RX_MASK; 1613 } 1614 1615 static inline void set_rx_buf(struct ksz_desc *desc, u32 addr) 1616 { 1617 desc->phw->addr = cpu_to_le32(addr); 1618 } 1619 1620 static inline void set_rx_len(struct ksz_desc *desc, u32 len) 1621 { 1622 desc->sw.buf.rx.buf_size = len; 1623 } 1624 1625 static inline void get_tx_pkt(struct ksz_desc_info *info, 1626 struct ksz_desc **desc) 1627 { 1628 *desc = &info->ring[info->next]; 1629 info->next++; 1630 info->next &= info->mask; 1631 info->avail--; 1632 (*desc)->sw.buf.data &= ~KS_DESC_TX_MASK; 1633 } 1634 1635 static inline void set_tx_buf(struct ksz_desc *desc, u32 addr) 1636 { 1637 desc->phw->addr = cpu_to_le32(addr); 1638 } 1639 1640 static inline void set_tx_len(struct ksz_desc *desc, u32 len) 1641 { 1642 desc->sw.buf.tx.buf_size = len; 1643 } 1644 1645 /* Switch functions */ 1646 1647 #define TABLE_READ 0x10 1648 #define TABLE_SEL_SHIFT 2 1649 1650 #define HW_DELAY(hw, reg) \ 1651 do { \ 1652 u16 dummy; \ 1653 dummy = readw(hw->io + reg); \ 1654 } while (0) 1655 1656 /** 1657 * sw_r_table - read 4 bytes of data from switch table 1658 * @hw: The hardware instance. 1659 * @table: The table selector. 1660 * @addr: The address of the table entry. 1661 * @data: Buffer to store the read data. 1662 * 1663 * This routine reads 4 bytes of data from the table of the switch. 1664 * Hardware interrupts are disabled to minimize corruption of read data. 1665 */ 1666 static void sw_r_table(struct ksz_hw *hw, int table, u16 addr, u32 *data) 1667 { 1668 u16 ctrl_addr; 1669 uint interrupt; 1670 1671 ctrl_addr = (((table << TABLE_SEL_SHIFT) | TABLE_READ) << 8) | addr; 1672 1673 interrupt = hw_block_intr(hw); 1674 1675 writew(ctrl_addr, hw->io + KS884X_IACR_OFFSET); 1676 HW_DELAY(hw, KS884X_IACR_OFFSET); 1677 *data = readl(hw->io + KS884X_ACC_DATA_0_OFFSET); 1678 1679 hw_restore_intr(hw, interrupt); 1680 } 1681 1682 /** 1683 * sw_w_table_64 - write 8 bytes of data to the switch table 1684 * @hw: The hardware instance. 1685 * @table: The table selector. 1686 * @addr: The address of the table entry. 1687 * @data_hi: The high part of data to be written (bit63 ~ bit32). 1688 * @data_lo: The low part of data to be written (bit31 ~ bit0). 1689 * 1690 * This routine writes 8 bytes of data to the table of the switch. 1691 * Hardware interrupts are disabled to minimize corruption of written data. 1692 */ 1693 static void sw_w_table_64(struct ksz_hw *hw, int table, u16 addr, u32 data_hi, 1694 u32 data_lo) 1695 { 1696 u16 ctrl_addr; 1697 uint interrupt; 1698 1699 ctrl_addr = ((table << TABLE_SEL_SHIFT) << 8) | addr; 1700 1701 interrupt = hw_block_intr(hw); 1702 1703 writel(data_hi, hw->io + KS884X_ACC_DATA_4_OFFSET); 1704 writel(data_lo, hw->io + KS884X_ACC_DATA_0_OFFSET); 1705 1706 writew(ctrl_addr, hw->io + KS884X_IACR_OFFSET); 1707 HW_DELAY(hw, KS884X_IACR_OFFSET); 1708 1709 hw_restore_intr(hw, interrupt); 1710 } 1711 1712 /** 1713 * sw_w_sta_mac_table - write to the static MAC table 1714 * @hw: The hardware instance. 1715 * @addr: The address of the table entry. 1716 * @mac_addr: The MAC address. 1717 * @ports: The port members. 1718 * @override: The flag to override the port receive/transmit settings. 1719 * @valid: The flag to indicate entry is valid. 1720 * @use_fid: The flag to indicate the FID is valid. 1721 * @fid: The FID value. 1722 * 1723 * This routine writes an entry of the static MAC table of the switch. It 1724 * calls sw_w_table_64() to write the data. 1725 */ 1726 static void sw_w_sta_mac_table(struct ksz_hw *hw, u16 addr, u8 *mac_addr, 1727 u8 ports, int override, int valid, int use_fid, u8 fid) 1728 { 1729 u32 data_hi; 1730 u32 data_lo; 1731 1732 data_lo = ((u32) mac_addr[2] << 24) | 1733 ((u32) mac_addr[3] << 16) | 1734 ((u32) mac_addr[4] << 8) | mac_addr[5]; 1735 data_hi = ((u32) mac_addr[0] << 8) | mac_addr[1]; 1736 data_hi |= (u32) ports << STATIC_MAC_FWD_PORTS_SHIFT; 1737 1738 if (override) 1739 data_hi |= STATIC_MAC_TABLE_OVERRIDE; 1740 if (use_fid) { 1741 data_hi |= STATIC_MAC_TABLE_USE_FID; 1742 data_hi |= (u32) fid << STATIC_MAC_FID_SHIFT; 1743 } 1744 if (valid) 1745 data_hi |= STATIC_MAC_TABLE_VALID; 1746 1747 sw_w_table_64(hw, TABLE_STATIC_MAC, addr, data_hi, data_lo); 1748 } 1749 1750 /** 1751 * sw_r_vlan_table - read from the VLAN table 1752 * @hw: The hardware instance. 1753 * @addr: The address of the table entry. 1754 * @vid: Buffer to store the VID. 1755 * @fid: Buffer to store the VID. 1756 * @member: Buffer to store the port membership. 1757 * 1758 * This function reads an entry of the VLAN table of the switch. It calls 1759 * sw_r_table() to get the data. 1760 * 1761 * Return 0 if the entry is valid; otherwise -1. 1762 */ 1763 static int sw_r_vlan_table(struct ksz_hw *hw, u16 addr, u16 *vid, u8 *fid, 1764 u8 *member) 1765 { 1766 u32 data; 1767 1768 sw_r_table(hw, TABLE_VLAN, addr, &data); 1769 if (data & VLAN_TABLE_VALID) { 1770 *vid = (u16)(data & VLAN_TABLE_VID); 1771 *fid = (u8)((data & VLAN_TABLE_FID) >> VLAN_TABLE_FID_SHIFT); 1772 *member = (u8)((data & VLAN_TABLE_MEMBERSHIP) >> 1773 VLAN_TABLE_MEMBERSHIP_SHIFT); 1774 return 0; 1775 } 1776 return -1; 1777 } 1778 1779 /** 1780 * port_r_mib_cnt - read MIB counter 1781 * @hw: The hardware instance. 1782 * @port: The port index. 1783 * @addr: The address of the counter. 1784 * @cnt: Buffer to store the counter. 1785 * 1786 * This routine reads a MIB counter of the port. 1787 * Hardware interrupts are disabled to minimize corruption of read data. 1788 */ 1789 static void port_r_mib_cnt(struct ksz_hw *hw, int port, u16 addr, u64 *cnt) 1790 { 1791 u32 data; 1792 u16 ctrl_addr; 1793 uint interrupt; 1794 int timeout; 1795 1796 ctrl_addr = addr + PORT_COUNTER_NUM * port; 1797 1798 interrupt = hw_block_intr(hw); 1799 1800 ctrl_addr |= (((TABLE_MIB << TABLE_SEL_SHIFT) | TABLE_READ) << 8); 1801 writew(ctrl_addr, hw->io + KS884X_IACR_OFFSET); 1802 HW_DELAY(hw, KS884X_IACR_OFFSET); 1803 1804 for (timeout = 100; timeout > 0; timeout--) { 1805 data = readl(hw->io + KS884X_ACC_DATA_0_OFFSET); 1806 1807 if (data & MIB_COUNTER_VALID) { 1808 if (data & MIB_COUNTER_OVERFLOW) 1809 *cnt += MIB_COUNTER_VALUE + 1; 1810 *cnt += data & MIB_COUNTER_VALUE; 1811 break; 1812 } 1813 } 1814 1815 hw_restore_intr(hw, interrupt); 1816 } 1817 1818 /** 1819 * port_r_mib_pkt - read dropped packet counts 1820 * @hw: The hardware instance. 1821 * @port: The port index. 1822 * @cnt: Buffer to store the receive and transmit dropped packet counts. 1823 * 1824 * This routine reads the dropped packet counts of the port. 1825 * Hardware interrupts are disabled to minimize corruption of read data. 1826 */ 1827 static void port_r_mib_pkt(struct ksz_hw *hw, int port, u32 *last, u64 *cnt) 1828 { 1829 u32 cur; 1830 u32 data; 1831 u16 ctrl_addr; 1832 uint interrupt; 1833 int index; 1834 1835 index = KS_MIB_PACKET_DROPPED_RX_0 + port; 1836 do { 1837 interrupt = hw_block_intr(hw); 1838 1839 ctrl_addr = (u16) index; 1840 ctrl_addr |= (((TABLE_MIB << TABLE_SEL_SHIFT) | TABLE_READ) 1841 << 8); 1842 writew(ctrl_addr, hw->io + KS884X_IACR_OFFSET); 1843 HW_DELAY(hw, KS884X_IACR_OFFSET); 1844 data = readl(hw->io + KS884X_ACC_DATA_0_OFFSET); 1845 1846 hw_restore_intr(hw, interrupt); 1847 1848 data &= MIB_PACKET_DROPPED; 1849 cur = *last; 1850 if (data != cur) { 1851 *last = data; 1852 if (data < cur) 1853 data += MIB_PACKET_DROPPED + 1; 1854 data -= cur; 1855 *cnt += data; 1856 } 1857 ++last; 1858 ++cnt; 1859 index -= KS_MIB_PACKET_DROPPED_TX - 1860 KS_MIB_PACKET_DROPPED_TX_0 + 1; 1861 } while (index >= KS_MIB_PACKET_DROPPED_TX_0 + port); 1862 } 1863 1864 /** 1865 * port_r_cnt - read MIB counters periodically 1866 * @hw: The hardware instance. 1867 * @port: The port index. 1868 * 1869 * This routine is used to read the counters of the port periodically to avoid 1870 * counter overflow. The hardware should be acquired first before calling this 1871 * routine. 1872 * 1873 * Return non-zero when not all counters not read. 1874 */ 1875 static int port_r_cnt(struct ksz_hw *hw, int port) 1876 { 1877 struct ksz_port_mib *mib = &hw->port_mib[port]; 1878 1879 if (mib->mib_start < PORT_COUNTER_NUM) 1880 while (mib->cnt_ptr < PORT_COUNTER_NUM) { 1881 port_r_mib_cnt(hw, port, mib->cnt_ptr, 1882 &mib->counter[mib->cnt_ptr]); 1883 ++mib->cnt_ptr; 1884 } 1885 if (hw->mib_cnt > PORT_COUNTER_NUM) 1886 port_r_mib_pkt(hw, port, mib->dropped, 1887 &mib->counter[PORT_COUNTER_NUM]); 1888 mib->cnt_ptr = 0; 1889 return 0; 1890 } 1891 1892 /** 1893 * port_init_cnt - initialize MIB counter values 1894 * @hw: The hardware instance. 1895 * @port: The port index. 1896 * 1897 * This routine is used to initialize all counters to zero if the hardware 1898 * cannot do it after reset. 1899 */ 1900 static void port_init_cnt(struct ksz_hw *hw, int port) 1901 { 1902 struct ksz_port_mib *mib = &hw->port_mib[port]; 1903 1904 mib->cnt_ptr = 0; 1905 if (mib->mib_start < PORT_COUNTER_NUM) 1906 do { 1907 port_r_mib_cnt(hw, port, mib->cnt_ptr, 1908 &mib->counter[mib->cnt_ptr]); 1909 ++mib->cnt_ptr; 1910 } while (mib->cnt_ptr < PORT_COUNTER_NUM); 1911 if (hw->mib_cnt > PORT_COUNTER_NUM) 1912 port_r_mib_pkt(hw, port, mib->dropped, 1913 &mib->counter[PORT_COUNTER_NUM]); 1914 memset((void *) mib->counter, 0, sizeof(u64) * TOTAL_PORT_COUNTER_NUM); 1915 mib->cnt_ptr = 0; 1916 } 1917 1918 /* 1919 * Port functions 1920 */ 1921 1922 /** 1923 * port_chk - check port register bits 1924 * @hw: The hardware instance. 1925 * @port: The port index. 1926 * @offset: The offset of the port register. 1927 * @bits: The data bits to check. 1928 * 1929 * This function checks whether the specified bits of the port register are set 1930 * or not. 1931 * 1932 * Return 0 if the bits are not set. 1933 */ 1934 static int port_chk(struct ksz_hw *hw, int port, int offset, u16 bits) 1935 { 1936 u32 addr; 1937 u16 data; 1938 1939 PORT_CTRL_ADDR(port, addr); 1940 addr += offset; 1941 data = readw(hw->io + addr); 1942 return (data & bits) == bits; 1943 } 1944 1945 /** 1946 * port_cfg - set port register bits 1947 * @hw: The hardware instance. 1948 * @port: The port index. 1949 * @offset: The offset of the port register. 1950 * @bits: The data bits to set. 1951 * @set: The flag indicating whether the bits are to be set or not. 1952 * 1953 * This routine sets or resets the specified bits of the port register. 1954 */ 1955 static void port_cfg(struct ksz_hw *hw, int port, int offset, u16 bits, 1956 int set) 1957 { 1958 u32 addr; 1959 u16 data; 1960 1961 PORT_CTRL_ADDR(port, addr); 1962 addr += offset; 1963 data = readw(hw->io + addr); 1964 if (set) 1965 data |= bits; 1966 else 1967 data &= ~bits; 1968 writew(data, hw->io + addr); 1969 } 1970 1971 /** 1972 * port_chk_shift - check port bit 1973 * @hw: The hardware instance. 1974 * @port: The port index. 1975 * @offset: The offset of the register. 1976 * @shift: Number of bits to shift. 1977 * 1978 * This function checks whether the specified port is set in the register or 1979 * not. 1980 * 1981 * Return 0 if the port is not set. 1982 */ 1983 static int port_chk_shift(struct ksz_hw *hw, int port, u32 addr, int shift) 1984 { 1985 u16 data; 1986 u16 bit = 1 << port; 1987 1988 data = readw(hw->io + addr); 1989 data >>= shift; 1990 return (data & bit) == bit; 1991 } 1992 1993 /** 1994 * port_cfg_shift - set port bit 1995 * @hw: The hardware instance. 1996 * @port: The port index. 1997 * @offset: The offset of the register. 1998 * @shift: Number of bits to shift. 1999 * @set: The flag indicating whether the port is to be set or not. 2000 * 2001 * This routine sets or resets the specified port in the register. 2002 */ 2003 static void port_cfg_shift(struct ksz_hw *hw, int port, u32 addr, int shift, 2004 int set) 2005 { 2006 u16 data; 2007 u16 bits = 1 << port; 2008 2009 data = readw(hw->io + addr); 2010 bits <<= shift; 2011 if (set) 2012 data |= bits; 2013 else 2014 data &= ~bits; 2015 writew(data, hw->io + addr); 2016 } 2017 2018 /** 2019 * port_r8 - read byte from port register 2020 * @hw: The hardware instance. 2021 * @port: The port index. 2022 * @offset: The offset of the port register. 2023 * @data: Buffer to store the data. 2024 * 2025 * This routine reads a byte from the port register. 2026 */ 2027 static void port_r8(struct ksz_hw *hw, int port, int offset, u8 *data) 2028 { 2029 u32 addr; 2030 2031 PORT_CTRL_ADDR(port, addr); 2032 addr += offset; 2033 *data = readb(hw->io + addr); 2034 } 2035 2036 /** 2037 * port_r16 - read word from port register. 2038 * @hw: The hardware instance. 2039 * @port: The port index. 2040 * @offset: The offset of the port register. 2041 * @data: Buffer to store the data. 2042 * 2043 * This routine reads a word from the port register. 2044 */ 2045 static void port_r16(struct ksz_hw *hw, int port, int offset, u16 *data) 2046 { 2047 u32 addr; 2048 2049 PORT_CTRL_ADDR(port, addr); 2050 addr += offset; 2051 *data = readw(hw->io + addr); 2052 } 2053 2054 /** 2055 * port_w16 - write word to port register. 2056 * @hw: The hardware instance. 2057 * @port: The port index. 2058 * @offset: The offset of the port register. 2059 * @data: Data to write. 2060 * 2061 * This routine writes a word to the port register. 2062 */ 2063 static void port_w16(struct ksz_hw *hw, int port, int offset, u16 data) 2064 { 2065 u32 addr; 2066 2067 PORT_CTRL_ADDR(port, addr); 2068 addr += offset; 2069 writew(data, hw->io + addr); 2070 } 2071 2072 /** 2073 * sw_chk - check switch register bits 2074 * @hw: The hardware instance. 2075 * @addr: The address of the switch register. 2076 * @bits: The data bits to check. 2077 * 2078 * This function checks whether the specified bits of the switch register are 2079 * set or not. 2080 * 2081 * Return 0 if the bits are not set. 2082 */ 2083 static int sw_chk(struct ksz_hw *hw, u32 addr, u16 bits) 2084 { 2085 u16 data; 2086 2087 data = readw(hw->io + addr); 2088 return (data & bits) == bits; 2089 } 2090 2091 /** 2092 * sw_cfg - set switch register bits 2093 * @hw: The hardware instance. 2094 * @addr: The address of the switch register. 2095 * @bits: The data bits to set. 2096 * @set: The flag indicating whether the bits are to be set or not. 2097 * 2098 * This function sets or resets the specified bits of the switch register. 2099 */ 2100 static void sw_cfg(struct ksz_hw *hw, u32 addr, u16 bits, int set) 2101 { 2102 u16 data; 2103 2104 data = readw(hw->io + addr); 2105 if (set) 2106 data |= bits; 2107 else 2108 data &= ~bits; 2109 writew(data, hw->io + addr); 2110 } 2111 2112 /* Bandwidth */ 2113 2114 static inline void port_cfg_broad_storm(struct ksz_hw *hw, int p, int set) 2115 { 2116 port_cfg(hw, p, 2117 KS8842_PORT_CTRL_1_OFFSET, PORT_BROADCAST_STORM, set); 2118 } 2119 2120 static inline int port_chk_broad_storm(struct ksz_hw *hw, int p) 2121 { 2122 return port_chk(hw, p, 2123 KS8842_PORT_CTRL_1_OFFSET, PORT_BROADCAST_STORM); 2124 } 2125 2126 /* Driver set switch broadcast storm protection at 10% rate. */ 2127 #define BROADCAST_STORM_PROTECTION_RATE 10 2128 2129 /* 148,800 frames * 67 ms / 100 */ 2130 #define BROADCAST_STORM_VALUE 9969 2131 2132 /** 2133 * sw_cfg_broad_storm - configure broadcast storm threshold 2134 * @hw: The hardware instance. 2135 * @percent: Broadcast storm threshold in percent of transmit rate. 2136 * 2137 * This routine configures the broadcast storm threshold of the switch. 2138 */ 2139 static void sw_cfg_broad_storm(struct ksz_hw *hw, u8 percent) 2140 { 2141 u16 data; 2142 u32 value = ((u32) BROADCAST_STORM_VALUE * (u32) percent / 100); 2143 2144 if (value > BROADCAST_STORM_RATE) 2145 value = BROADCAST_STORM_RATE; 2146 2147 data = readw(hw->io + KS8842_SWITCH_CTRL_3_OFFSET); 2148 data &= ~(BROADCAST_STORM_RATE_LO | BROADCAST_STORM_RATE_HI); 2149 data |= ((value & 0x00FF) << 8) | ((value & 0xFF00) >> 8); 2150 writew(data, hw->io + KS8842_SWITCH_CTRL_3_OFFSET); 2151 } 2152 2153 /** 2154 * sw_get_board_storm - get broadcast storm threshold 2155 * @hw: The hardware instance. 2156 * @percent: Buffer to store the broadcast storm threshold percentage. 2157 * 2158 * This routine retrieves the broadcast storm threshold of the switch. 2159 */ 2160 static void sw_get_broad_storm(struct ksz_hw *hw, u8 *percent) 2161 { 2162 int num; 2163 u16 data; 2164 2165 data = readw(hw->io + KS8842_SWITCH_CTRL_3_OFFSET); 2166 num = (data & BROADCAST_STORM_RATE_HI); 2167 num <<= 8; 2168 num |= (data & BROADCAST_STORM_RATE_LO) >> 8; 2169 num = DIV_ROUND_CLOSEST(num * 100, BROADCAST_STORM_VALUE); 2170 *percent = (u8) num; 2171 } 2172 2173 /** 2174 * sw_dis_broad_storm - disable broadstorm 2175 * @hw: The hardware instance. 2176 * @port: The port index. 2177 * 2178 * This routine disables the broadcast storm limit function of the switch. 2179 */ 2180 static void sw_dis_broad_storm(struct ksz_hw *hw, int port) 2181 { 2182 port_cfg_broad_storm(hw, port, 0); 2183 } 2184 2185 /** 2186 * sw_ena_broad_storm - enable broadcast storm 2187 * @hw: The hardware instance. 2188 * @port: The port index. 2189 * 2190 * This routine enables the broadcast storm limit function of the switch. 2191 */ 2192 static void sw_ena_broad_storm(struct ksz_hw *hw, int port) 2193 { 2194 sw_cfg_broad_storm(hw, hw->ksz_switch->broad_per); 2195 port_cfg_broad_storm(hw, port, 1); 2196 } 2197 2198 /** 2199 * sw_init_broad_storm - initialize broadcast storm 2200 * @hw: The hardware instance. 2201 * 2202 * This routine initializes the broadcast storm limit function of the switch. 2203 */ 2204 static void sw_init_broad_storm(struct ksz_hw *hw) 2205 { 2206 int port; 2207 2208 hw->ksz_switch->broad_per = 1; 2209 sw_cfg_broad_storm(hw, hw->ksz_switch->broad_per); 2210 for (port = 0; port < TOTAL_PORT_NUM; port++) 2211 sw_dis_broad_storm(hw, port); 2212 sw_cfg(hw, KS8842_SWITCH_CTRL_2_OFFSET, MULTICAST_STORM_DISABLE, 1); 2213 } 2214 2215 /** 2216 * hw_cfg_broad_storm - configure broadcast storm 2217 * @hw: The hardware instance. 2218 * @percent: Broadcast storm threshold in percent of transmit rate. 2219 * 2220 * This routine configures the broadcast storm threshold of the switch. 2221 * It is called by user functions. The hardware should be acquired first. 2222 */ 2223 static void hw_cfg_broad_storm(struct ksz_hw *hw, u8 percent) 2224 { 2225 if (percent > 100) 2226 percent = 100; 2227 2228 sw_cfg_broad_storm(hw, percent); 2229 sw_get_broad_storm(hw, &percent); 2230 hw->ksz_switch->broad_per = percent; 2231 } 2232 2233 /** 2234 * sw_dis_prio_rate - disable switch priority rate 2235 * @hw: The hardware instance. 2236 * @port: The port index. 2237 * 2238 * This routine disables the priority rate function of the switch. 2239 */ 2240 static void sw_dis_prio_rate(struct ksz_hw *hw, int port) 2241 { 2242 u32 addr; 2243 2244 PORT_CTRL_ADDR(port, addr); 2245 addr += KS8842_PORT_IN_RATE_OFFSET; 2246 writel(0, hw->io + addr); 2247 } 2248 2249 /** 2250 * sw_init_prio_rate - initialize switch prioirty rate 2251 * @hw: The hardware instance. 2252 * 2253 * This routine initializes the priority rate function of the switch. 2254 */ 2255 static void sw_init_prio_rate(struct ksz_hw *hw) 2256 { 2257 int port; 2258 int prio; 2259 struct ksz_switch *sw = hw->ksz_switch; 2260 2261 for (port = 0; port < TOTAL_PORT_NUM; port++) { 2262 for (prio = 0; prio < PRIO_QUEUES; prio++) { 2263 sw->port_cfg[port].rx_rate[prio] = 2264 sw->port_cfg[port].tx_rate[prio] = 0; 2265 } 2266 sw_dis_prio_rate(hw, port); 2267 } 2268 } 2269 2270 /* Communication */ 2271 2272 static inline void port_cfg_back_pressure(struct ksz_hw *hw, int p, int set) 2273 { 2274 port_cfg(hw, p, 2275 KS8842_PORT_CTRL_2_OFFSET, PORT_BACK_PRESSURE, set); 2276 } 2277 2278 static inline void port_cfg_force_flow_ctrl(struct ksz_hw *hw, int p, int set) 2279 { 2280 port_cfg(hw, p, 2281 KS8842_PORT_CTRL_2_OFFSET, PORT_FORCE_FLOW_CTRL, set); 2282 } 2283 2284 static inline int port_chk_back_pressure(struct ksz_hw *hw, int p) 2285 { 2286 return port_chk(hw, p, 2287 KS8842_PORT_CTRL_2_OFFSET, PORT_BACK_PRESSURE); 2288 } 2289 2290 static inline int port_chk_force_flow_ctrl(struct ksz_hw *hw, int p) 2291 { 2292 return port_chk(hw, p, 2293 KS8842_PORT_CTRL_2_OFFSET, PORT_FORCE_FLOW_CTRL); 2294 } 2295 2296 /* Spanning Tree */ 2297 2298 static inline void port_cfg_rx(struct ksz_hw *hw, int p, int set) 2299 { 2300 port_cfg(hw, p, 2301 KS8842_PORT_CTRL_2_OFFSET, PORT_RX_ENABLE, set); 2302 } 2303 2304 static inline void port_cfg_tx(struct ksz_hw *hw, int p, int set) 2305 { 2306 port_cfg(hw, p, 2307 KS8842_PORT_CTRL_2_OFFSET, PORT_TX_ENABLE, set); 2308 } 2309 2310 static inline void sw_cfg_fast_aging(struct ksz_hw *hw, int set) 2311 { 2312 sw_cfg(hw, KS8842_SWITCH_CTRL_1_OFFSET, SWITCH_FAST_AGING, set); 2313 } 2314 2315 static inline void sw_flush_dyn_mac_table(struct ksz_hw *hw) 2316 { 2317 if (!(hw->overrides & FAST_AGING)) { 2318 sw_cfg_fast_aging(hw, 1); 2319 mdelay(1); 2320 sw_cfg_fast_aging(hw, 0); 2321 } 2322 } 2323 2324 /* VLAN */ 2325 2326 static inline void port_cfg_ins_tag(struct ksz_hw *hw, int p, int insert) 2327 { 2328 port_cfg(hw, p, 2329 KS8842_PORT_CTRL_1_OFFSET, PORT_INSERT_TAG, insert); 2330 } 2331 2332 static inline void port_cfg_rmv_tag(struct ksz_hw *hw, int p, int remove) 2333 { 2334 port_cfg(hw, p, 2335 KS8842_PORT_CTRL_1_OFFSET, PORT_REMOVE_TAG, remove); 2336 } 2337 2338 static inline int port_chk_ins_tag(struct ksz_hw *hw, int p) 2339 { 2340 return port_chk(hw, p, 2341 KS8842_PORT_CTRL_1_OFFSET, PORT_INSERT_TAG); 2342 } 2343 2344 static inline int port_chk_rmv_tag(struct ksz_hw *hw, int p) 2345 { 2346 return port_chk(hw, p, 2347 KS8842_PORT_CTRL_1_OFFSET, PORT_REMOVE_TAG); 2348 } 2349 2350 static inline void port_cfg_dis_non_vid(struct ksz_hw *hw, int p, int set) 2351 { 2352 port_cfg(hw, p, 2353 KS8842_PORT_CTRL_2_OFFSET, PORT_DISCARD_NON_VID, set); 2354 } 2355 2356 static inline void port_cfg_in_filter(struct ksz_hw *hw, int p, int set) 2357 { 2358 port_cfg(hw, p, 2359 KS8842_PORT_CTRL_2_OFFSET, PORT_INGRESS_VLAN_FILTER, set); 2360 } 2361 2362 static inline int port_chk_dis_non_vid(struct ksz_hw *hw, int p) 2363 { 2364 return port_chk(hw, p, 2365 KS8842_PORT_CTRL_2_OFFSET, PORT_DISCARD_NON_VID); 2366 } 2367 2368 static inline int port_chk_in_filter(struct ksz_hw *hw, int p) 2369 { 2370 return port_chk(hw, p, 2371 KS8842_PORT_CTRL_2_OFFSET, PORT_INGRESS_VLAN_FILTER); 2372 } 2373 2374 /* Mirroring */ 2375 2376 static inline void port_cfg_mirror_sniffer(struct ksz_hw *hw, int p, int set) 2377 { 2378 port_cfg(hw, p, 2379 KS8842_PORT_CTRL_2_OFFSET, PORT_MIRROR_SNIFFER, set); 2380 } 2381 2382 static inline void port_cfg_mirror_rx(struct ksz_hw *hw, int p, int set) 2383 { 2384 port_cfg(hw, p, 2385 KS8842_PORT_CTRL_2_OFFSET, PORT_MIRROR_RX, set); 2386 } 2387 2388 static inline void port_cfg_mirror_tx(struct ksz_hw *hw, int p, int set) 2389 { 2390 port_cfg(hw, p, 2391 KS8842_PORT_CTRL_2_OFFSET, PORT_MIRROR_TX, set); 2392 } 2393 2394 static inline void sw_cfg_mirror_rx_tx(struct ksz_hw *hw, int set) 2395 { 2396 sw_cfg(hw, KS8842_SWITCH_CTRL_2_OFFSET, SWITCH_MIRROR_RX_TX, set); 2397 } 2398 2399 static void sw_init_mirror(struct ksz_hw *hw) 2400 { 2401 int port; 2402 2403 for (port = 0; port < TOTAL_PORT_NUM; port++) { 2404 port_cfg_mirror_sniffer(hw, port, 0); 2405 port_cfg_mirror_rx(hw, port, 0); 2406 port_cfg_mirror_tx(hw, port, 0); 2407 } 2408 sw_cfg_mirror_rx_tx(hw, 0); 2409 } 2410 2411 static inline void sw_cfg_unk_def_deliver(struct ksz_hw *hw, int set) 2412 { 2413 sw_cfg(hw, KS8842_SWITCH_CTRL_7_OFFSET, 2414 SWITCH_UNK_DEF_PORT_ENABLE, set); 2415 } 2416 2417 static inline int sw_cfg_chk_unk_def_deliver(struct ksz_hw *hw) 2418 { 2419 return sw_chk(hw, KS8842_SWITCH_CTRL_7_OFFSET, 2420 SWITCH_UNK_DEF_PORT_ENABLE); 2421 } 2422 2423 static inline void sw_cfg_unk_def_port(struct ksz_hw *hw, int port, int set) 2424 { 2425 port_cfg_shift(hw, port, KS8842_SWITCH_CTRL_7_OFFSET, 0, set); 2426 } 2427 2428 static inline int sw_chk_unk_def_port(struct ksz_hw *hw, int port) 2429 { 2430 return port_chk_shift(hw, port, KS8842_SWITCH_CTRL_7_OFFSET, 0); 2431 } 2432 2433 /* Priority */ 2434 2435 static inline void port_cfg_diffserv(struct ksz_hw *hw, int p, int set) 2436 { 2437 port_cfg(hw, p, 2438 KS8842_PORT_CTRL_1_OFFSET, PORT_DIFFSERV_ENABLE, set); 2439 } 2440 2441 static inline void port_cfg_802_1p(struct ksz_hw *hw, int p, int set) 2442 { 2443 port_cfg(hw, p, 2444 KS8842_PORT_CTRL_1_OFFSET, PORT_802_1P_ENABLE, set); 2445 } 2446 2447 static inline void port_cfg_replace_vid(struct ksz_hw *hw, int p, int set) 2448 { 2449 port_cfg(hw, p, 2450 KS8842_PORT_CTRL_2_OFFSET, PORT_USER_PRIORITY_CEILING, set); 2451 } 2452 2453 static inline void port_cfg_prio(struct ksz_hw *hw, int p, int set) 2454 { 2455 port_cfg(hw, p, 2456 KS8842_PORT_CTRL_1_OFFSET, PORT_PRIO_QUEUE_ENABLE, set); 2457 } 2458 2459 static inline int port_chk_diffserv(struct ksz_hw *hw, int p) 2460 { 2461 return port_chk(hw, p, 2462 KS8842_PORT_CTRL_1_OFFSET, PORT_DIFFSERV_ENABLE); 2463 } 2464 2465 static inline int port_chk_802_1p(struct ksz_hw *hw, int p) 2466 { 2467 return port_chk(hw, p, 2468 KS8842_PORT_CTRL_1_OFFSET, PORT_802_1P_ENABLE); 2469 } 2470 2471 static inline int port_chk_replace_vid(struct ksz_hw *hw, int p) 2472 { 2473 return port_chk(hw, p, 2474 KS8842_PORT_CTRL_2_OFFSET, PORT_USER_PRIORITY_CEILING); 2475 } 2476 2477 static inline int port_chk_prio(struct ksz_hw *hw, int p) 2478 { 2479 return port_chk(hw, p, 2480 KS8842_PORT_CTRL_1_OFFSET, PORT_PRIO_QUEUE_ENABLE); 2481 } 2482 2483 /** 2484 * sw_dis_diffserv - disable switch DiffServ priority 2485 * @hw: The hardware instance. 2486 * @port: The port index. 2487 * 2488 * This routine disables the DiffServ priority function of the switch. 2489 */ 2490 static void sw_dis_diffserv(struct ksz_hw *hw, int port) 2491 { 2492 port_cfg_diffserv(hw, port, 0); 2493 } 2494 2495 /** 2496 * sw_dis_802_1p - disable switch 802.1p priority 2497 * @hw: The hardware instance. 2498 * @port: The port index. 2499 * 2500 * This routine disables the 802.1p priority function of the switch. 2501 */ 2502 static void sw_dis_802_1p(struct ksz_hw *hw, int port) 2503 { 2504 port_cfg_802_1p(hw, port, 0); 2505 } 2506 2507 /** 2508 * sw_cfg_replace_null_vid - 2509 * @hw: The hardware instance. 2510 * @set: The flag to disable or enable. 2511 * 2512 */ 2513 static void sw_cfg_replace_null_vid(struct ksz_hw *hw, int set) 2514 { 2515 sw_cfg(hw, KS8842_SWITCH_CTRL_3_OFFSET, SWITCH_REPLACE_NULL_VID, set); 2516 } 2517 2518 /** 2519 * sw_cfg_replace_vid - enable switch 802.10 priority re-mapping 2520 * @hw: The hardware instance. 2521 * @port: The port index. 2522 * @set: The flag to disable or enable. 2523 * 2524 * This routine enables the 802.1p priority re-mapping function of the switch. 2525 * That allows 802.1p priority field to be replaced with the port's default 2526 * tag's priority value if the ingress packet's 802.1p priority has a higher 2527 * priority than port's default tag's priority. 2528 */ 2529 static void sw_cfg_replace_vid(struct ksz_hw *hw, int port, int set) 2530 { 2531 port_cfg_replace_vid(hw, port, set); 2532 } 2533 2534 /** 2535 * sw_cfg_port_based - configure switch port based priority 2536 * @hw: The hardware instance. 2537 * @port: The port index. 2538 * @prio: The priority to set. 2539 * 2540 * This routine configures the port based priority of the switch. 2541 */ 2542 static void sw_cfg_port_based(struct ksz_hw *hw, int port, u8 prio) 2543 { 2544 u16 data; 2545 2546 if (prio > PORT_BASED_PRIORITY_BASE) 2547 prio = PORT_BASED_PRIORITY_BASE; 2548 2549 hw->ksz_switch->port_cfg[port].port_prio = prio; 2550 2551 port_r16(hw, port, KS8842_PORT_CTRL_1_OFFSET, &data); 2552 data &= ~PORT_BASED_PRIORITY_MASK; 2553 data |= prio << PORT_BASED_PRIORITY_SHIFT; 2554 port_w16(hw, port, KS8842_PORT_CTRL_1_OFFSET, data); 2555 } 2556 2557 /** 2558 * sw_dis_multi_queue - disable transmit multiple queues 2559 * @hw: The hardware instance. 2560 * @port: The port index. 2561 * 2562 * This routine disables the transmit multiple queues selection of the switch 2563 * port. Only single transmit queue on the port. 2564 */ 2565 static void sw_dis_multi_queue(struct ksz_hw *hw, int port) 2566 { 2567 port_cfg_prio(hw, port, 0); 2568 } 2569 2570 /** 2571 * sw_init_prio - initialize switch priority 2572 * @hw: The hardware instance. 2573 * 2574 * This routine initializes the switch QoS priority functions. 2575 */ 2576 static void sw_init_prio(struct ksz_hw *hw) 2577 { 2578 int port; 2579 int tos; 2580 struct ksz_switch *sw = hw->ksz_switch; 2581 2582 /* 2583 * Init all the 802.1p tag priority value to be assigned to different 2584 * priority queue. 2585 */ 2586 sw->p_802_1p[0] = 0; 2587 sw->p_802_1p[1] = 0; 2588 sw->p_802_1p[2] = 1; 2589 sw->p_802_1p[3] = 1; 2590 sw->p_802_1p[4] = 2; 2591 sw->p_802_1p[5] = 2; 2592 sw->p_802_1p[6] = 3; 2593 sw->p_802_1p[7] = 3; 2594 2595 /* 2596 * Init all the DiffServ priority value to be assigned to priority 2597 * queue 0. 2598 */ 2599 for (tos = 0; tos < DIFFSERV_ENTRIES; tos++) 2600 sw->diffserv[tos] = 0; 2601 2602 /* All QoS functions disabled. */ 2603 for (port = 0; port < TOTAL_PORT_NUM; port++) { 2604 sw_dis_multi_queue(hw, port); 2605 sw_dis_diffserv(hw, port); 2606 sw_dis_802_1p(hw, port); 2607 sw_cfg_replace_vid(hw, port, 0); 2608 2609 sw->port_cfg[port].port_prio = 0; 2610 sw_cfg_port_based(hw, port, sw->port_cfg[port].port_prio); 2611 } 2612 sw_cfg_replace_null_vid(hw, 0); 2613 } 2614 2615 /** 2616 * port_get_def_vid - get port default VID. 2617 * @hw: The hardware instance. 2618 * @port: The port index. 2619 * @vid: Buffer to store the VID. 2620 * 2621 * This routine retrieves the default VID of the port. 2622 */ 2623 static void port_get_def_vid(struct ksz_hw *hw, int port, u16 *vid) 2624 { 2625 u32 addr; 2626 2627 PORT_CTRL_ADDR(port, addr); 2628 addr += KS8842_PORT_CTRL_VID_OFFSET; 2629 *vid = readw(hw->io + addr); 2630 } 2631 2632 /** 2633 * sw_init_vlan - initialize switch VLAN 2634 * @hw: The hardware instance. 2635 * 2636 * This routine initializes the VLAN function of the switch. 2637 */ 2638 static void sw_init_vlan(struct ksz_hw *hw) 2639 { 2640 int port; 2641 int entry; 2642 struct ksz_switch *sw = hw->ksz_switch; 2643 2644 /* Read 16 VLAN entries from device's VLAN table. */ 2645 for (entry = 0; entry < VLAN_TABLE_ENTRIES; entry++) { 2646 sw_r_vlan_table(hw, entry, 2647 &sw->vlan_table[entry].vid, 2648 &sw->vlan_table[entry].fid, 2649 &sw->vlan_table[entry].member); 2650 } 2651 2652 for (port = 0; port < TOTAL_PORT_NUM; port++) { 2653 port_get_def_vid(hw, port, &sw->port_cfg[port].vid); 2654 sw->port_cfg[port].member = PORT_MASK; 2655 } 2656 } 2657 2658 /** 2659 * sw_cfg_port_base_vlan - configure port-based VLAN membership 2660 * @hw: The hardware instance. 2661 * @port: The port index. 2662 * @member: The port-based VLAN membership. 2663 * 2664 * This routine configures the port-based VLAN membership of the port. 2665 */ 2666 static void sw_cfg_port_base_vlan(struct ksz_hw *hw, int port, u8 member) 2667 { 2668 u32 addr; 2669 u8 data; 2670 2671 PORT_CTRL_ADDR(port, addr); 2672 addr += KS8842_PORT_CTRL_2_OFFSET; 2673 2674 data = readb(hw->io + addr); 2675 data &= ~PORT_VLAN_MEMBERSHIP; 2676 data |= (member & PORT_MASK); 2677 writeb(data, hw->io + addr); 2678 2679 hw->ksz_switch->port_cfg[port].member = member; 2680 } 2681 2682 /** 2683 * sw_get_addr - get the switch MAC address. 2684 * @hw: The hardware instance. 2685 * @mac_addr: Buffer to store the MAC address. 2686 * 2687 * This function retrieves the MAC address of the switch. 2688 */ 2689 static inline void sw_get_addr(struct ksz_hw *hw, u8 *mac_addr) 2690 { 2691 int i; 2692 2693 for (i = 0; i < 6; i += 2) { 2694 mac_addr[i] = readb(hw->io + KS8842_MAC_ADDR_0_OFFSET + i); 2695 mac_addr[1 + i] = readb(hw->io + KS8842_MAC_ADDR_1_OFFSET + i); 2696 } 2697 } 2698 2699 /** 2700 * sw_set_addr - configure switch MAC address 2701 * @hw: The hardware instance. 2702 * @mac_addr: The MAC address. 2703 * 2704 * This function configures the MAC address of the switch. 2705 */ 2706 static void sw_set_addr(struct ksz_hw *hw, u8 *mac_addr) 2707 { 2708 int i; 2709 2710 for (i = 0; i < 6; i += 2) { 2711 writeb(mac_addr[i], hw->io + KS8842_MAC_ADDR_0_OFFSET + i); 2712 writeb(mac_addr[1 + i], hw->io + KS8842_MAC_ADDR_1_OFFSET + i); 2713 } 2714 } 2715 2716 /** 2717 * sw_set_global_ctrl - set switch global control 2718 * @hw: The hardware instance. 2719 * 2720 * This routine sets the global control of the switch function. 2721 */ 2722 static void sw_set_global_ctrl(struct ksz_hw *hw) 2723 { 2724 u16 data; 2725 2726 /* Enable switch MII flow control. */ 2727 data = readw(hw->io + KS8842_SWITCH_CTRL_3_OFFSET); 2728 data |= SWITCH_FLOW_CTRL; 2729 writew(data, hw->io + KS8842_SWITCH_CTRL_3_OFFSET); 2730 2731 data = readw(hw->io + KS8842_SWITCH_CTRL_1_OFFSET); 2732 2733 /* Enable aggressive back off algorithm in half duplex mode. */ 2734 data |= SWITCH_AGGR_BACKOFF; 2735 2736 /* Enable automatic fast aging when link changed detected. */ 2737 data |= SWITCH_AGING_ENABLE; 2738 data |= SWITCH_LINK_AUTO_AGING; 2739 2740 if (hw->overrides & FAST_AGING) 2741 data |= SWITCH_FAST_AGING; 2742 else 2743 data &= ~SWITCH_FAST_AGING; 2744 writew(data, hw->io + KS8842_SWITCH_CTRL_1_OFFSET); 2745 2746 data = readw(hw->io + KS8842_SWITCH_CTRL_2_OFFSET); 2747 2748 /* Enable no excessive collision drop. */ 2749 data |= NO_EXC_COLLISION_DROP; 2750 writew(data, hw->io + KS8842_SWITCH_CTRL_2_OFFSET); 2751 } 2752 2753 enum { 2754 STP_STATE_DISABLED = 0, 2755 STP_STATE_LISTENING, 2756 STP_STATE_LEARNING, 2757 STP_STATE_FORWARDING, 2758 STP_STATE_BLOCKED, 2759 STP_STATE_SIMPLE 2760 }; 2761 2762 /** 2763 * port_set_stp_state - configure port spanning tree state 2764 * @hw: The hardware instance. 2765 * @port: The port index. 2766 * @state: The spanning tree state. 2767 * 2768 * This routine configures the spanning tree state of the port. 2769 */ 2770 static void port_set_stp_state(struct ksz_hw *hw, int port, int state) 2771 { 2772 u16 data; 2773 2774 port_r16(hw, port, KS8842_PORT_CTRL_2_OFFSET, &data); 2775 switch (state) { 2776 case STP_STATE_DISABLED: 2777 data &= ~(PORT_TX_ENABLE | PORT_RX_ENABLE); 2778 data |= PORT_LEARN_DISABLE; 2779 break; 2780 case STP_STATE_LISTENING: 2781 /* 2782 * No need to turn on transmit because of port direct mode. 2783 * Turning on receive is required if static MAC table is not setup. 2784 */ 2785 data &= ~PORT_TX_ENABLE; 2786 data |= PORT_RX_ENABLE; 2787 data |= PORT_LEARN_DISABLE; 2788 break; 2789 case STP_STATE_LEARNING: 2790 data &= ~PORT_TX_ENABLE; 2791 data |= PORT_RX_ENABLE; 2792 data &= ~PORT_LEARN_DISABLE; 2793 break; 2794 case STP_STATE_FORWARDING: 2795 data |= (PORT_TX_ENABLE | PORT_RX_ENABLE); 2796 data &= ~PORT_LEARN_DISABLE; 2797 break; 2798 case STP_STATE_BLOCKED: 2799 /* 2800 * Need to setup static MAC table with override to keep receiving BPDU 2801 * messages. See sw_init_stp routine. 2802 */ 2803 data &= ~(PORT_TX_ENABLE | PORT_RX_ENABLE); 2804 data |= PORT_LEARN_DISABLE; 2805 break; 2806 case STP_STATE_SIMPLE: 2807 data |= (PORT_TX_ENABLE | PORT_RX_ENABLE); 2808 data |= PORT_LEARN_DISABLE; 2809 break; 2810 } 2811 port_w16(hw, port, KS8842_PORT_CTRL_2_OFFSET, data); 2812 hw->ksz_switch->port_cfg[port].stp_state = state; 2813 } 2814 2815 #define STP_ENTRY 0 2816 #define BROADCAST_ENTRY 1 2817 #define BRIDGE_ADDR_ENTRY 2 2818 #define IPV6_ADDR_ENTRY 3 2819 2820 /** 2821 * sw_clr_sta_mac_table - clear static MAC table 2822 * @hw: The hardware instance. 2823 * 2824 * This routine clears the static MAC table. 2825 */ 2826 static void sw_clr_sta_mac_table(struct ksz_hw *hw) 2827 { 2828 struct ksz_mac_table *entry; 2829 int i; 2830 2831 for (i = 0; i < STATIC_MAC_TABLE_ENTRIES; i++) { 2832 entry = &hw->ksz_switch->mac_table[i]; 2833 sw_w_sta_mac_table(hw, i, 2834 entry->mac_addr, entry->ports, 2835 entry->override, 0, 2836 entry->use_fid, entry->fid); 2837 } 2838 } 2839 2840 /** 2841 * sw_init_stp - initialize switch spanning tree support 2842 * @hw: The hardware instance. 2843 * 2844 * This routine initializes the spanning tree support of the switch. 2845 */ 2846 static void sw_init_stp(struct ksz_hw *hw) 2847 { 2848 struct ksz_mac_table *entry; 2849 2850 entry = &hw->ksz_switch->mac_table[STP_ENTRY]; 2851 entry->mac_addr[0] = 0x01; 2852 entry->mac_addr[1] = 0x80; 2853 entry->mac_addr[2] = 0xC2; 2854 entry->mac_addr[3] = 0x00; 2855 entry->mac_addr[4] = 0x00; 2856 entry->mac_addr[5] = 0x00; 2857 entry->ports = HOST_MASK; 2858 entry->override = 1; 2859 entry->valid = 1; 2860 sw_w_sta_mac_table(hw, STP_ENTRY, 2861 entry->mac_addr, entry->ports, 2862 entry->override, entry->valid, 2863 entry->use_fid, entry->fid); 2864 } 2865 2866 /** 2867 * sw_block_addr - block certain packets from the host port 2868 * @hw: The hardware instance. 2869 * 2870 * This routine blocks certain packets from reaching to the host port. 2871 */ 2872 static void sw_block_addr(struct ksz_hw *hw) 2873 { 2874 struct ksz_mac_table *entry; 2875 int i; 2876 2877 for (i = BROADCAST_ENTRY; i <= IPV6_ADDR_ENTRY; i++) { 2878 entry = &hw->ksz_switch->mac_table[i]; 2879 entry->valid = 0; 2880 sw_w_sta_mac_table(hw, i, 2881 entry->mac_addr, entry->ports, 2882 entry->override, entry->valid, 2883 entry->use_fid, entry->fid); 2884 } 2885 } 2886 2887 #define PHY_LINK_SUPPORT \ 2888 (PHY_AUTO_NEG_ASYM_PAUSE | \ 2889 PHY_AUTO_NEG_SYM_PAUSE | \ 2890 PHY_AUTO_NEG_100BT4 | \ 2891 PHY_AUTO_NEG_100BTX_FD | \ 2892 PHY_AUTO_NEG_100BTX | \ 2893 PHY_AUTO_NEG_10BT_FD | \ 2894 PHY_AUTO_NEG_10BT) 2895 2896 static inline void hw_r_phy_ctrl(struct ksz_hw *hw, int phy, u16 *data) 2897 { 2898 *data = readw(hw->io + phy + KS884X_PHY_CTRL_OFFSET); 2899 } 2900 2901 static inline void hw_w_phy_ctrl(struct ksz_hw *hw, int phy, u16 data) 2902 { 2903 writew(data, hw->io + phy + KS884X_PHY_CTRL_OFFSET); 2904 } 2905 2906 static inline void hw_r_phy_link_stat(struct ksz_hw *hw, int phy, u16 *data) 2907 { 2908 *data = readw(hw->io + phy + KS884X_PHY_STATUS_OFFSET); 2909 } 2910 2911 static inline void hw_r_phy_auto_neg(struct ksz_hw *hw, int phy, u16 *data) 2912 { 2913 *data = readw(hw->io + phy + KS884X_PHY_AUTO_NEG_OFFSET); 2914 } 2915 2916 static inline void hw_w_phy_auto_neg(struct ksz_hw *hw, int phy, u16 data) 2917 { 2918 writew(data, hw->io + phy + KS884X_PHY_AUTO_NEG_OFFSET); 2919 } 2920 2921 static inline void hw_r_phy_rem_cap(struct ksz_hw *hw, int phy, u16 *data) 2922 { 2923 *data = readw(hw->io + phy + KS884X_PHY_REMOTE_CAP_OFFSET); 2924 } 2925 2926 static inline void hw_r_phy_crossover(struct ksz_hw *hw, int phy, u16 *data) 2927 { 2928 *data = readw(hw->io + phy + KS884X_PHY_CTRL_OFFSET); 2929 } 2930 2931 static inline void hw_w_phy_crossover(struct ksz_hw *hw, int phy, u16 data) 2932 { 2933 writew(data, hw->io + phy + KS884X_PHY_CTRL_OFFSET); 2934 } 2935 2936 static inline void hw_r_phy_polarity(struct ksz_hw *hw, int phy, u16 *data) 2937 { 2938 *data = readw(hw->io + phy + KS884X_PHY_PHY_CTRL_OFFSET); 2939 } 2940 2941 static inline void hw_w_phy_polarity(struct ksz_hw *hw, int phy, u16 data) 2942 { 2943 writew(data, hw->io + phy + KS884X_PHY_PHY_CTRL_OFFSET); 2944 } 2945 2946 static inline void hw_r_phy_link_md(struct ksz_hw *hw, int phy, u16 *data) 2947 { 2948 *data = readw(hw->io + phy + KS884X_PHY_LINK_MD_OFFSET); 2949 } 2950 2951 static inline void hw_w_phy_link_md(struct ksz_hw *hw, int phy, u16 data) 2952 { 2953 writew(data, hw->io + phy + KS884X_PHY_LINK_MD_OFFSET); 2954 } 2955 2956 /** 2957 * hw_r_phy - read data from PHY register 2958 * @hw: The hardware instance. 2959 * @port: Port to read. 2960 * @reg: PHY register to read. 2961 * @val: Buffer to store the read data. 2962 * 2963 * This routine reads data from the PHY register. 2964 */ 2965 static void hw_r_phy(struct ksz_hw *hw, int port, u16 reg, u16 *val) 2966 { 2967 int phy; 2968 2969 phy = KS884X_PHY_1_CTRL_OFFSET + port * PHY_CTRL_INTERVAL + reg; 2970 *val = readw(hw->io + phy); 2971 } 2972 2973 /** 2974 * port_w_phy - write data to PHY register 2975 * @hw: The hardware instance. 2976 * @port: Port to write. 2977 * @reg: PHY register to write. 2978 * @val: Word data to write. 2979 * 2980 * This routine writes data to the PHY register. 2981 */ 2982 static void hw_w_phy(struct ksz_hw *hw, int port, u16 reg, u16 val) 2983 { 2984 int phy; 2985 2986 phy = KS884X_PHY_1_CTRL_OFFSET + port * PHY_CTRL_INTERVAL + reg; 2987 writew(val, hw->io + phy); 2988 } 2989 2990 /* 2991 * EEPROM access functions 2992 */ 2993 2994 #define AT93C_CODE 0 2995 #define AT93C_WR_OFF 0x00 2996 #define AT93C_WR_ALL 0x10 2997 #define AT93C_ER_ALL 0x20 2998 #define AT93C_WR_ON 0x30 2999 3000 #define AT93C_WRITE 1 3001 #define AT93C_READ 2 3002 #define AT93C_ERASE 3 3003 3004 #define EEPROM_DELAY 4 3005 3006 static inline void drop_gpio(struct ksz_hw *hw, u8 gpio) 3007 { 3008 u16 data; 3009 3010 data = readw(hw->io + KS884X_EEPROM_CTRL_OFFSET); 3011 data &= ~gpio; 3012 writew(data, hw->io + KS884X_EEPROM_CTRL_OFFSET); 3013 } 3014 3015 static inline void raise_gpio(struct ksz_hw *hw, u8 gpio) 3016 { 3017 u16 data; 3018 3019 data = readw(hw->io + KS884X_EEPROM_CTRL_OFFSET); 3020 data |= gpio; 3021 writew(data, hw->io + KS884X_EEPROM_CTRL_OFFSET); 3022 } 3023 3024 static inline u8 state_gpio(struct ksz_hw *hw, u8 gpio) 3025 { 3026 u16 data; 3027 3028 data = readw(hw->io + KS884X_EEPROM_CTRL_OFFSET); 3029 return (u8)(data & gpio); 3030 } 3031 3032 static void eeprom_clk(struct ksz_hw *hw) 3033 { 3034 raise_gpio(hw, EEPROM_SERIAL_CLOCK); 3035 udelay(EEPROM_DELAY); 3036 drop_gpio(hw, EEPROM_SERIAL_CLOCK); 3037 udelay(EEPROM_DELAY); 3038 } 3039 3040 static u16 spi_r(struct ksz_hw *hw) 3041 { 3042 int i; 3043 u16 temp = 0; 3044 3045 for (i = 15; i >= 0; i--) { 3046 raise_gpio(hw, EEPROM_SERIAL_CLOCK); 3047 udelay(EEPROM_DELAY); 3048 3049 temp |= (state_gpio(hw, EEPROM_DATA_IN)) ? 1 << i : 0; 3050 3051 drop_gpio(hw, EEPROM_SERIAL_CLOCK); 3052 udelay(EEPROM_DELAY); 3053 } 3054 return temp; 3055 } 3056 3057 static void spi_w(struct ksz_hw *hw, u16 data) 3058 { 3059 int i; 3060 3061 for (i = 15; i >= 0; i--) { 3062 (data & (0x01 << i)) ? raise_gpio(hw, EEPROM_DATA_OUT) : 3063 drop_gpio(hw, EEPROM_DATA_OUT); 3064 eeprom_clk(hw); 3065 } 3066 } 3067 3068 static void spi_reg(struct ksz_hw *hw, u8 data, u8 reg) 3069 { 3070 int i; 3071 3072 /* Initial start bit */ 3073 raise_gpio(hw, EEPROM_DATA_OUT); 3074 eeprom_clk(hw); 3075 3076 /* AT93C operation */ 3077 for (i = 1; i >= 0; i--) { 3078 (data & (0x01 << i)) ? raise_gpio(hw, EEPROM_DATA_OUT) : 3079 drop_gpio(hw, EEPROM_DATA_OUT); 3080 eeprom_clk(hw); 3081 } 3082 3083 /* Address location */ 3084 for (i = 5; i >= 0; i--) { 3085 (reg & (0x01 << i)) ? raise_gpio(hw, EEPROM_DATA_OUT) : 3086 drop_gpio(hw, EEPROM_DATA_OUT); 3087 eeprom_clk(hw); 3088 } 3089 } 3090 3091 #define EEPROM_DATA_RESERVED 0 3092 #define EEPROM_DATA_MAC_ADDR_0 1 3093 #define EEPROM_DATA_MAC_ADDR_1 2 3094 #define EEPROM_DATA_MAC_ADDR_2 3 3095 #define EEPROM_DATA_SUBSYS_ID 4 3096 #define EEPROM_DATA_SUBSYS_VEN_ID 5 3097 #define EEPROM_DATA_PM_CAP 6 3098 3099 /* User defined EEPROM data */ 3100 #define EEPROM_DATA_OTHER_MAC_ADDR 9 3101 3102 /** 3103 * eeprom_read - read from AT93C46 EEPROM 3104 * @hw: The hardware instance. 3105 * @reg: The register offset. 3106 * 3107 * This function reads a word from the AT93C46 EEPROM. 3108 * 3109 * Return the data value. 3110 */ 3111 static u16 eeprom_read(struct ksz_hw *hw, u8 reg) 3112 { 3113 u16 data; 3114 3115 raise_gpio(hw, EEPROM_ACCESS_ENABLE | EEPROM_CHIP_SELECT); 3116 3117 spi_reg(hw, AT93C_READ, reg); 3118 data = spi_r(hw); 3119 3120 drop_gpio(hw, EEPROM_ACCESS_ENABLE | EEPROM_CHIP_SELECT); 3121 3122 return data; 3123 } 3124 3125 /** 3126 * eeprom_write - write to AT93C46 EEPROM 3127 * @hw: The hardware instance. 3128 * @reg: The register offset. 3129 * @data: The data value. 3130 * 3131 * This procedure writes a word to the AT93C46 EEPROM. 3132 */ 3133 static void eeprom_write(struct ksz_hw *hw, u8 reg, u16 data) 3134 { 3135 int timeout; 3136 3137 raise_gpio(hw, EEPROM_ACCESS_ENABLE | EEPROM_CHIP_SELECT); 3138 3139 /* Enable write. */ 3140 spi_reg(hw, AT93C_CODE, AT93C_WR_ON); 3141 drop_gpio(hw, EEPROM_CHIP_SELECT); 3142 udelay(1); 3143 3144 /* Erase the register. */ 3145 raise_gpio(hw, EEPROM_CHIP_SELECT); 3146 spi_reg(hw, AT93C_ERASE, reg); 3147 drop_gpio(hw, EEPROM_CHIP_SELECT); 3148 udelay(1); 3149 3150 /* Check operation complete. */ 3151 raise_gpio(hw, EEPROM_CHIP_SELECT); 3152 timeout = 8; 3153 mdelay(2); 3154 do { 3155 mdelay(1); 3156 } while (!state_gpio(hw, EEPROM_DATA_IN) && --timeout); 3157 drop_gpio(hw, EEPROM_CHIP_SELECT); 3158 udelay(1); 3159 3160 /* Write the register. */ 3161 raise_gpio(hw, EEPROM_CHIP_SELECT); 3162 spi_reg(hw, AT93C_WRITE, reg); 3163 spi_w(hw, data); 3164 drop_gpio(hw, EEPROM_CHIP_SELECT); 3165 udelay(1); 3166 3167 /* Check operation complete. */ 3168 raise_gpio(hw, EEPROM_CHIP_SELECT); 3169 timeout = 8; 3170 mdelay(2); 3171 do { 3172 mdelay(1); 3173 } while (!state_gpio(hw, EEPROM_DATA_IN) && --timeout); 3174 drop_gpio(hw, EEPROM_CHIP_SELECT); 3175 udelay(1); 3176 3177 /* Disable write. */ 3178 raise_gpio(hw, EEPROM_CHIP_SELECT); 3179 spi_reg(hw, AT93C_CODE, AT93C_WR_OFF); 3180 3181 drop_gpio(hw, EEPROM_ACCESS_ENABLE | EEPROM_CHIP_SELECT); 3182 } 3183 3184 /* 3185 * Link detection routines 3186 */ 3187 3188 static u16 advertised_flow_ctrl(struct ksz_port *port, u16 ctrl) 3189 { 3190 ctrl &= ~PORT_AUTO_NEG_SYM_PAUSE; 3191 switch (port->flow_ctrl) { 3192 case PHY_FLOW_CTRL: 3193 ctrl |= PORT_AUTO_NEG_SYM_PAUSE; 3194 break; 3195 /* Not supported. */ 3196 case PHY_TX_ONLY: 3197 case PHY_RX_ONLY: 3198 default: 3199 break; 3200 } 3201 return ctrl; 3202 } 3203 3204 static void set_flow_ctrl(struct ksz_hw *hw, int rx, int tx) 3205 { 3206 u32 rx_cfg; 3207 u32 tx_cfg; 3208 3209 rx_cfg = hw->rx_cfg; 3210 tx_cfg = hw->tx_cfg; 3211 if (rx) 3212 hw->rx_cfg |= DMA_RX_FLOW_ENABLE; 3213 else 3214 hw->rx_cfg &= ~DMA_RX_FLOW_ENABLE; 3215 if (tx) 3216 hw->tx_cfg |= DMA_TX_FLOW_ENABLE; 3217 else 3218 hw->tx_cfg &= ~DMA_TX_FLOW_ENABLE; 3219 if (hw->enabled) { 3220 if (rx_cfg != hw->rx_cfg) 3221 writel(hw->rx_cfg, hw->io + KS_DMA_RX_CTRL); 3222 if (tx_cfg != hw->tx_cfg) 3223 writel(hw->tx_cfg, hw->io + KS_DMA_TX_CTRL); 3224 } 3225 } 3226 3227 static void determine_flow_ctrl(struct ksz_hw *hw, struct ksz_port *port, 3228 u16 local, u16 remote) 3229 { 3230 int rx; 3231 int tx; 3232 3233 if (hw->overrides & PAUSE_FLOW_CTRL) 3234 return; 3235 3236 rx = tx = 0; 3237 if (port->force_link) 3238 rx = tx = 1; 3239 if (remote & PHY_AUTO_NEG_SYM_PAUSE) { 3240 if (local & PHY_AUTO_NEG_SYM_PAUSE) { 3241 rx = tx = 1; 3242 } else if ((remote & PHY_AUTO_NEG_ASYM_PAUSE) && 3243 (local & PHY_AUTO_NEG_PAUSE) == 3244 PHY_AUTO_NEG_ASYM_PAUSE) { 3245 tx = 1; 3246 } 3247 } else if (remote & PHY_AUTO_NEG_ASYM_PAUSE) { 3248 if ((local & PHY_AUTO_NEG_PAUSE) == PHY_AUTO_NEG_PAUSE) 3249 rx = 1; 3250 } 3251 if (!hw->ksz_switch) 3252 set_flow_ctrl(hw, rx, tx); 3253 } 3254 3255 static inline void port_cfg_change(struct ksz_hw *hw, struct ksz_port *port, 3256 struct ksz_port_info *info, u16 link_status) 3257 { 3258 if ((hw->features & HALF_DUPLEX_SIGNAL_BUG) && 3259 !(hw->overrides & PAUSE_FLOW_CTRL)) { 3260 u32 cfg = hw->tx_cfg; 3261 3262 /* Disable flow control in the half duplex mode. */ 3263 if (1 == info->duplex) 3264 hw->tx_cfg &= ~DMA_TX_FLOW_ENABLE; 3265 if (hw->enabled && cfg != hw->tx_cfg) 3266 writel(hw->tx_cfg, hw->io + KS_DMA_TX_CTRL); 3267 } 3268 } 3269 3270 /** 3271 * port_get_link_speed - get current link status 3272 * @port: The port instance. 3273 * 3274 * This routine reads PHY registers to determine the current link status of the 3275 * switch ports. 3276 */ 3277 static void port_get_link_speed(struct ksz_port *port) 3278 { 3279 uint interrupt; 3280 struct ksz_port_info *info; 3281 struct ksz_port_info *linked = NULL; 3282 struct ksz_hw *hw = port->hw; 3283 u16 data; 3284 u16 status; 3285 u8 local; 3286 u8 remote; 3287 int i; 3288 int p; 3289 int change = 0; 3290 3291 interrupt = hw_block_intr(hw); 3292 3293 for (i = 0, p = port->first_port; i < port->port_cnt; i++, p++) { 3294 info = &hw->port_info[p]; 3295 port_r16(hw, p, KS884X_PORT_CTRL_4_OFFSET, &data); 3296 port_r16(hw, p, KS884X_PORT_STATUS_OFFSET, &status); 3297 3298 /* 3299 * Link status is changing all the time even when there is no 3300 * cable connection! 3301 */ 3302 remote = status & (PORT_AUTO_NEG_COMPLETE | 3303 PORT_STATUS_LINK_GOOD); 3304 local = (u8) data; 3305 3306 /* No change to status. */ 3307 if (local == info->advertised && remote == info->partner) 3308 continue; 3309 3310 info->advertised = local; 3311 info->partner = remote; 3312 if (status & PORT_STATUS_LINK_GOOD) { 3313 3314 /* Remember the first linked port. */ 3315 if (!linked) 3316 linked = info; 3317 3318 info->tx_rate = 10 * TX_RATE_UNIT; 3319 if (status & PORT_STATUS_SPEED_100MBIT) 3320 info->tx_rate = 100 * TX_RATE_UNIT; 3321 3322 info->duplex = 1; 3323 if (status & PORT_STATUS_FULL_DUPLEX) 3324 info->duplex = 2; 3325 3326 if (media_connected != info->state) { 3327 hw_r_phy(hw, p, KS884X_PHY_AUTO_NEG_OFFSET, 3328 &data); 3329 hw_r_phy(hw, p, KS884X_PHY_REMOTE_CAP_OFFSET, 3330 &status); 3331 determine_flow_ctrl(hw, port, data, status); 3332 if (hw->ksz_switch) { 3333 port_cfg_back_pressure(hw, p, 3334 (1 == info->duplex)); 3335 } 3336 change |= 1 << i; 3337 port_cfg_change(hw, port, info, status); 3338 } 3339 info->state = media_connected; 3340 } else { 3341 if (media_disconnected != info->state) { 3342 change |= 1 << i; 3343 3344 /* Indicate the link just goes down. */ 3345 hw->port_mib[p].link_down = 1; 3346 } 3347 info->state = media_disconnected; 3348 } 3349 hw->port_mib[p].state = (u8) info->state; 3350 } 3351 3352 if (linked && media_disconnected == port->linked->state) 3353 port->linked = linked; 3354 3355 hw_restore_intr(hw, interrupt); 3356 } 3357 3358 #define PHY_RESET_TIMEOUT 10 3359 3360 /** 3361 * port_set_link_speed - set port speed 3362 * @port: The port instance. 3363 * 3364 * This routine sets the link speed of the switch ports. 3365 */ 3366 static void port_set_link_speed(struct ksz_port *port) 3367 { 3368 struct ksz_hw *hw = port->hw; 3369 u16 data; 3370 u16 cfg; 3371 u8 status; 3372 int i; 3373 int p; 3374 3375 for (i = 0, p = port->first_port; i < port->port_cnt; i++, p++) { 3376 port_r16(hw, p, KS884X_PORT_CTRL_4_OFFSET, &data); 3377 port_r8(hw, p, KS884X_PORT_STATUS_OFFSET, &status); 3378 3379 cfg = 0; 3380 if (status & PORT_STATUS_LINK_GOOD) 3381 cfg = data; 3382 3383 data |= PORT_AUTO_NEG_ENABLE; 3384 data = advertised_flow_ctrl(port, data); 3385 3386 data |= PORT_AUTO_NEG_100BTX_FD | PORT_AUTO_NEG_100BTX | 3387 PORT_AUTO_NEG_10BT_FD | PORT_AUTO_NEG_10BT; 3388 3389 /* Check if manual configuration is specified by the user. */ 3390 if (port->speed || port->duplex) { 3391 if (10 == port->speed) 3392 data &= ~(PORT_AUTO_NEG_100BTX_FD | 3393 PORT_AUTO_NEG_100BTX); 3394 else if (100 == port->speed) 3395 data &= ~(PORT_AUTO_NEG_10BT_FD | 3396 PORT_AUTO_NEG_10BT); 3397 if (1 == port->duplex) 3398 data &= ~(PORT_AUTO_NEG_100BTX_FD | 3399 PORT_AUTO_NEG_10BT_FD); 3400 else if (2 == port->duplex) 3401 data &= ~(PORT_AUTO_NEG_100BTX | 3402 PORT_AUTO_NEG_10BT); 3403 } 3404 if (data != cfg) { 3405 data |= PORT_AUTO_NEG_RESTART; 3406 port_w16(hw, p, KS884X_PORT_CTRL_4_OFFSET, data); 3407 } 3408 } 3409 } 3410 3411 /** 3412 * port_force_link_speed - force port speed 3413 * @port: The port instance. 3414 * 3415 * This routine forces the link speed of the switch ports. 3416 */ 3417 static void port_force_link_speed(struct ksz_port *port) 3418 { 3419 struct ksz_hw *hw = port->hw; 3420 u16 data; 3421 int i; 3422 int phy; 3423 int p; 3424 3425 for (i = 0, p = port->first_port; i < port->port_cnt; i++, p++) { 3426 phy = KS884X_PHY_1_CTRL_OFFSET + p * PHY_CTRL_INTERVAL; 3427 hw_r_phy_ctrl(hw, phy, &data); 3428 3429 data &= ~PHY_AUTO_NEG_ENABLE; 3430 3431 if (10 == port->speed) 3432 data &= ~PHY_SPEED_100MBIT; 3433 else if (100 == port->speed) 3434 data |= PHY_SPEED_100MBIT; 3435 if (1 == port->duplex) 3436 data &= ~PHY_FULL_DUPLEX; 3437 else if (2 == port->duplex) 3438 data |= PHY_FULL_DUPLEX; 3439 hw_w_phy_ctrl(hw, phy, data); 3440 } 3441 } 3442 3443 static void port_set_power_saving(struct ksz_port *port, int enable) 3444 { 3445 struct ksz_hw *hw = port->hw; 3446 int i; 3447 int p; 3448 3449 for (i = 0, p = port->first_port; i < port->port_cnt; i++, p++) 3450 port_cfg(hw, p, 3451 KS884X_PORT_CTRL_4_OFFSET, PORT_POWER_DOWN, enable); 3452 } 3453 3454 /* 3455 * KSZ8841 power management functions 3456 */ 3457 3458 /** 3459 * hw_chk_wol_pme_status - check PMEN pin 3460 * @hw: The hardware instance. 3461 * 3462 * This function is used to check PMEN pin is asserted. 3463 * 3464 * Return 1 if PMEN pin is asserted; otherwise, 0. 3465 */ 3466 static int hw_chk_wol_pme_status(struct ksz_hw *hw) 3467 { 3468 struct dev_info *hw_priv = container_of(hw, struct dev_info, hw); 3469 struct pci_dev *pdev = hw_priv->pdev; 3470 u16 data; 3471 3472 if (!pdev->pm_cap) 3473 return 0; 3474 pci_read_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, &data); 3475 return (data & PCI_PM_CTRL_PME_STATUS) == PCI_PM_CTRL_PME_STATUS; 3476 } 3477 3478 /** 3479 * hw_clr_wol_pme_status - clear PMEN pin 3480 * @hw: The hardware instance. 3481 * 3482 * This routine is used to clear PME_Status to deassert PMEN pin. 3483 */ 3484 static void hw_clr_wol_pme_status(struct ksz_hw *hw) 3485 { 3486 struct dev_info *hw_priv = container_of(hw, struct dev_info, hw); 3487 struct pci_dev *pdev = hw_priv->pdev; 3488 u16 data; 3489 3490 if (!pdev->pm_cap) 3491 return; 3492 3493 /* Clear PME_Status to deassert PMEN pin. */ 3494 pci_read_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, &data); 3495 data |= PCI_PM_CTRL_PME_STATUS; 3496 pci_write_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, data); 3497 } 3498 3499 /** 3500 * hw_cfg_wol_pme - enable or disable Wake-on-LAN 3501 * @hw: The hardware instance. 3502 * @set: The flag indicating whether to enable or disable. 3503 * 3504 * This routine is used to enable or disable Wake-on-LAN. 3505 */ 3506 static void hw_cfg_wol_pme(struct ksz_hw *hw, int set) 3507 { 3508 struct dev_info *hw_priv = container_of(hw, struct dev_info, hw); 3509 struct pci_dev *pdev = hw_priv->pdev; 3510 u16 data; 3511 3512 if (!pdev->pm_cap) 3513 return; 3514 pci_read_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, &data); 3515 data &= ~PCI_PM_CTRL_STATE_MASK; 3516 if (set) 3517 data |= PCI_PM_CTRL_PME_ENABLE | PCI_D3hot; 3518 else 3519 data &= ~PCI_PM_CTRL_PME_ENABLE; 3520 pci_write_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, data); 3521 } 3522 3523 /** 3524 * hw_cfg_wol - configure Wake-on-LAN features 3525 * @hw: The hardware instance. 3526 * @frame: The pattern frame bit. 3527 * @set: The flag indicating whether to enable or disable. 3528 * 3529 * This routine is used to enable or disable certain Wake-on-LAN features. 3530 */ 3531 static void hw_cfg_wol(struct ksz_hw *hw, u16 frame, int set) 3532 { 3533 u16 data; 3534 3535 data = readw(hw->io + KS8841_WOL_CTRL_OFFSET); 3536 if (set) 3537 data |= frame; 3538 else 3539 data &= ~frame; 3540 writew(data, hw->io + KS8841_WOL_CTRL_OFFSET); 3541 } 3542 3543 /** 3544 * hw_set_wol_frame - program Wake-on-LAN pattern 3545 * @hw: The hardware instance. 3546 * @i: The frame index. 3547 * @mask_size: The size of the mask. 3548 * @mask: Mask to ignore certain bytes in the pattern. 3549 * @frame_size: The size of the frame. 3550 * @pattern: The frame data. 3551 * 3552 * This routine is used to program Wake-on-LAN pattern. 3553 */ 3554 static void hw_set_wol_frame(struct ksz_hw *hw, int i, uint mask_size, 3555 const u8 *mask, uint frame_size, const u8 *pattern) 3556 { 3557 int bits; 3558 int from; 3559 int len; 3560 int to; 3561 u32 crc; 3562 u8 data[64]; 3563 u8 val = 0; 3564 3565 if (frame_size > mask_size * 8) 3566 frame_size = mask_size * 8; 3567 if (frame_size > 64) 3568 frame_size = 64; 3569 3570 i *= 0x10; 3571 writel(0, hw->io + KS8841_WOL_FRAME_BYTE0_OFFSET + i); 3572 writel(0, hw->io + KS8841_WOL_FRAME_BYTE2_OFFSET + i); 3573 3574 bits = len = from = to = 0; 3575 do { 3576 if (bits) { 3577 if ((val & 1)) 3578 data[to++] = pattern[from]; 3579 val >>= 1; 3580 ++from; 3581 --bits; 3582 } else { 3583 val = mask[len]; 3584 writeb(val, hw->io + KS8841_WOL_FRAME_BYTE0_OFFSET + i 3585 + len); 3586 ++len; 3587 if (val) 3588 bits = 8; 3589 else 3590 from += 8; 3591 } 3592 } while (from < (int) frame_size); 3593 if (val) { 3594 bits = mask[len - 1]; 3595 val <<= (from % 8); 3596 bits &= ~val; 3597 writeb(bits, hw->io + KS8841_WOL_FRAME_BYTE0_OFFSET + i + len - 3598 1); 3599 } 3600 crc = ether_crc(to, data); 3601 writel(crc, hw->io + KS8841_WOL_FRAME_CRC_OFFSET + i); 3602 } 3603 3604 /** 3605 * hw_add_wol_arp - add ARP pattern 3606 * @hw: The hardware instance. 3607 * @ip_addr: The IPv4 address assigned to the device. 3608 * 3609 * This routine is used to add ARP pattern for waking up the host. 3610 */ 3611 static void hw_add_wol_arp(struct ksz_hw *hw, const u8 *ip_addr) 3612 { 3613 static const u8 mask[6] = { 0x3F, 0xF0, 0x3F, 0x00, 0xC0, 0x03 }; 3614 u8 pattern[42] = { 3615 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 3616 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 3617 0x08, 0x06, 3618 0x00, 0x01, 0x08, 0x00, 0x06, 0x04, 0x00, 0x01, 3619 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 3620 0x00, 0x00, 0x00, 0x00, 3621 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 3622 0x00, 0x00, 0x00, 0x00 }; 3623 3624 memcpy(&pattern[38], ip_addr, 4); 3625 hw_set_wol_frame(hw, 3, 6, mask, 42, pattern); 3626 } 3627 3628 /** 3629 * hw_add_wol_bcast - add broadcast pattern 3630 * @hw: The hardware instance. 3631 * 3632 * This routine is used to add broadcast pattern for waking up the host. 3633 */ 3634 static void hw_add_wol_bcast(struct ksz_hw *hw) 3635 { 3636 static const u8 mask[] = { 0x3F }; 3637 static const u8 pattern[] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF }; 3638 3639 hw_set_wol_frame(hw, 2, 1, mask, ETH_ALEN, pattern); 3640 } 3641 3642 /** 3643 * hw_add_wol_mcast - add multicast pattern 3644 * @hw: The hardware instance. 3645 * 3646 * This routine is used to add multicast pattern for waking up the host. 3647 * 3648 * It is assumed the multicast packet is the ICMPv6 neighbor solicitation used 3649 * by IPv6 ping command. Note that multicast packets are filtred through the 3650 * multicast hash table, so not all multicast packets can wake up the host. 3651 */ 3652 static void hw_add_wol_mcast(struct ksz_hw *hw) 3653 { 3654 static const u8 mask[] = { 0x3F }; 3655 u8 pattern[] = { 0x33, 0x33, 0xFF, 0x00, 0x00, 0x00 }; 3656 3657 memcpy(&pattern[3], &hw->override_addr[3], 3); 3658 hw_set_wol_frame(hw, 1, 1, mask, 6, pattern); 3659 } 3660 3661 /** 3662 * hw_add_wol_ucast - add unicast pattern 3663 * @hw: The hardware instance. 3664 * 3665 * This routine is used to add unicast pattern to wakeup the host. 3666 * 3667 * It is assumed the unicast packet is directed to the device, as the hardware 3668 * can only receive them in normal case. 3669 */ 3670 static void hw_add_wol_ucast(struct ksz_hw *hw) 3671 { 3672 static const u8 mask[] = { 0x3F }; 3673 3674 hw_set_wol_frame(hw, 0, 1, mask, ETH_ALEN, hw->override_addr); 3675 } 3676 3677 /** 3678 * hw_enable_wol - enable Wake-on-LAN 3679 * @hw: The hardware instance. 3680 * @wol_enable: The Wake-on-LAN settings. 3681 * @net_addr: The IPv4 address assigned to the device. 3682 * 3683 * This routine is used to enable Wake-on-LAN depending on driver settings. 3684 */ 3685 static void hw_enable_wol(struct ksz_hw *hw, u32 wol_enable, const u8 *net_addr) 3686 { 3687 hw_cfg_wol(hw, KS8841_WOL_MAGIC_ENABLE, (wol_enable & WAKE_MAGIC)); 3688 hw_cfg_wol(hw, KS8841_WOL_FRAME0_ENABLE, (wol_enable & WAKE_UCAST)); 3689 hw_add_wol_ucast(hw); 3690 hw_cfg_wol(hw, KS8841_WOL_FRAME1_ENABLE, (wol_enable & WAKE_MCAST)); 3691 hw_add_wol_mcast(hw); 3692 hw_cfg_wol(hw, KS8841_WOL_FRAME2_ENABLE, (wol_enable & WAKE_BCAST)); 3693 hw_cfg_wol(hw, KS8841_WOL_FRAME3_ENABLE, (wol_enable & WAKE_ARP)); 3694 hw_add_wol_arp(hw, net_addr); 3695 } 3696 3697 /** 3698 * hw_init - check driver is correct for the hardware 3699 * @hw: The hardware instance. 3700 * 3701 * This function checks the hardware is correct for this driver and sets the 3702 * hardware up for proper initialization. 3703 * 3704 * Return number of ports or 0 if not right. 3705 */ 3706 static int hw_init(struct ksz_hw *hw) 3707 { 3708 int rc = 0; 3709 u16 data; 3710 u16 revision; 3711 3712 /* Set bus speed to 125MHz. */ 3713 writew(BUS_SPEED_125_MHZ, hw->io + KS884X_BUS_CTRL_OFFSET); 3714 3715 /* Check KSZ884x chip ID. */ 3716 data = readw(hw->io + KS884X_CHIP_ID_OFFSET); 3717 3718 revision = (data & KS884X_REVISION_MASK) >> KS884X_REVISION_SHIFT; 3719 data &= KS884X_CHIP_ID_MASK_41; 3720 if (REG_CHIP_ID_41 == data) 3721 rc = 1; 3722 else if (REG_CHIP_ID_42 == data) 3723 rc = 2; 3724 else 3725 return 0; 3726 3727 /* Setup hardware features or bug workarounds. */ 3728 if (revision <= 1) { 3729 hw->features |= SMALL_PACKET_TX_BUG; 3730 if (1 == rc) 3731 hw->features |= HALF_DUPLEX_SIGNAL_BUG; 3732 } 3733 return rc; 3734 } 3735 3736 /** 3737 * hw_reset - reset the hardware 3738 * @hw: The hardware instance. 3739 * 3740 * This routine resets the hardware. 3741 */ 3742 static void hw_reset(struct ksz_hw *hw) 3743 { 3744 writew(GLOBAL_SOFTWARE_RESET, hw->io + KS884X_GLOBAL_CTRL_OFFSET); 3745 3746 /* Wait for device to reset. */ 3747 mdelay(10); 3748 3749 /* Write 0 to clear device reset. */ 3750 writew(0, hw->io + KS884X_GLOBAL_CTRL_OFFSET); 3751 } 3752 3753 /** 3754 * hw_setup - setup the hardware 3755 * @hw: The hardware instance. 3756 * 3757 * This routine setup the hardware for proper operation. 3758 */ 3759 static void hw_setup(struct ksz_hw *hw) 3760 { 3761 #if SET_DEFAULT_LED 3762 u16 data; 3763 3764 /* Change default LED mode. */ 3765 data = readw(hw->io + KS8842_SWITCH_CTRL_5_OFFSET); 3766 data &= ~LED_MODE; 3767 data |= SET_DEFAULT_LED; 3768 writew(data, hw->io + KS8842_SWITCH_CTRL_5_OFFSET); 3769 #endif 3770 3771 /* Setup transmit control. */ 3772 hw->tx_cfg = (DMA_TX_PAD_ENABLE | DMA_TX_CRC_ENABLE | 3773 (DMA_BURST_DEFAULT << DMA_BURST_SHIFT) | DMA_TX_ENABLE); 3774 3775 /* Setup receive control. */ 3776 hw->rx_cfg = (DMA_RX_BROADCAST | DMA_RX_UNICAST | 3777 (DMA_BURST_DEFAULT << DMA_BURST_SHIFT) | DMA_RX_ENABLE); 3778 hw->rx_cfg |= KS884X_DMA_RX_MULTICAST; 3779 3780 /* Hardware cannot handle UDP packet in IP fragments. */ 3781 hw->rx_cfg |= (DMA_RX_CSUM_TCP | DMA_RX_CSUM_IP); 3782 3783 if (hw->all_multi) 3784 hw->rx_cfg |= DMA_RX_ALL_MULTICAST; 3785 if (hw->promiscuous) 3786 hw->rx_cfg |= DMA_RX_PROMISCUOUS; 3787 } 3788 3789 /** 3790 * hw_setup_intr - setup interrupt mask 3791 * @hw: The hardware instance. 3792 * 3793 * This routine setup the interrupt mask for proper operation. 3794 */ 3795 static void hw_setup_intr(struct ksz_hw *hw) 3796 { 3797 hw->intr_mask = KS884X_INT_MASK | KS884X_INT_RX_OVERRUN; 3798 } 3799 3800 static void ksz_check_desc_num(struct ksz_desc_info *info) 3801 { 3802 #define MIN_DESC_SHIFT 2 3803 3804 int alloc = info->alloc; 3805 int shift; 3806 3807 shift = 0; 3808 while (!(alloc & 1)) { 3809 shift++; 3810 alloc >>= 1; 3811 } 3812 if (alloc != 1 || shift < MIN_DESC_SHIFT) { 3813 pr_alert("Hardware descriptor numbers not right!\n"); 3814 while (alloc) { 3815 shift++; 3816 alloc >>= 1; 3817 } 3818 if (shift < MIN_DESC_SHIFT) 3819 shift = MIN_DESC_SHIFT; 3820 alloc = 1 << shift; 3821 info->alloc = alloc; 3822 } 3823 info->mask = info->alloc - 1; 3824 } 3825 3826 static void hw_init_desc(struct ksz_desc_info *desc_info, int transmit) 3827 { 3828 int i; 3829 u32 phys = desc_info->ring_phys; 3830 struct ksz_hw_desc *desc = desc_info->ring_virt; 3831 struct ksz_desc *cur = desc_info->ring; 3832 struct ksz_desc *previous = NULL; 3833 3834 for (i = 0; i < desc_info->alloc; i++) { 3835 cur->phw = desc++; 3836 phys += desc_info->size; 3837 previous = cur++; 3838 previous->phw->next = cpu_to_le32(phys); 3839 } 3840 previous->phw->next = cpu_to_le32(desc_info->ring_phys); 3841 previous->sw.buf.rx.end_of_ring = 1; 3842 previous->phw->buf.data = cpu_to_le32(previous->sw.buf.data); 3843 3844 desc_info->avail = desc_info->alloc; 3845 desc_info->last = desc_info->next = 0; 3846 3847 desc_info->cur = desc_info->ring; 3848 } 3849 3850 /** 3851 * hw_set_desc_base - set descriptor base addresses 3852 * @hw: The hardware instance. 3853 * @tx_addr: The transmit descriptor base. 3854 * @rx_addr: The receive descriptor base. 3855 * 3856 * This routine programs the descriptor base addresses after reset. 3857 */ 3858 static void hw_set_desc_base(struct ksz_hw *hw, u32 tx_addr, u32 rx_addr) 3859 { 3860 /* Set base address of Tx/Rx descriptors. */ 3861 writel(tx_addr, hw->io + KS_DMA_TX_ADDR); 3862 writel(rx_addr, hw->io + KS_DMA_RX_ADDR); 3863 } 3864 3865 static void hw_reset_pkts(struct ksz_desc_info *info) 3866 { 3867 info->cur = info->ring; 3868 info->avail = info->alloc; 3869 info->last = info->next = 0; 3870 } 3871 3872 static inline void hw_resume_rx(struct ksz_hw *hw) 3873 { 3874 writel(DMA_START, hw->io + KS_DMA_RX_START); 3875 } 3876 3877 /** 3878 * hw_start_rx - start receiving 3879 * @hw: The hardware instance. 3880 * 3881 * This routine starts the receive function of the hardware. 3882 */ 3883 static void hw_start_rx(struct ksz_hw *hw) 3884 { 3885 writel(hw->rx_cfg, hw->io + KS_DMA_RX_CTRL); 3886 3887 /* Notify when the receive stops. */ 3888 hw->intr_mask |= KS884X_INT_RX_STOPPED; 3889 3890 writel(DMA_START, hw->io + KS_DMA_RX_START); 3891 hw_ack_intr(hw, KS884X_INT_RX_STOPPED); 3892 hw->rx_stop++; 3893 3894 /* Variable overflows. */ 3895 if (0 == hw->rx_stop) 3896 hw->rx_stop = 2; 3897 } 3898 3899 /** 3900 * hw_stop_rx - stop receiving 3901 * @hw: The hardware instance. 3902 * 3903 * This routine stops the receive function of the hardware. 3904 */ 3905 static void hw_stop_rx(struct ksz_hw *hw) 3906 { 3907 hw->rx_stop = 0; 3908 hw_turn_off_intr(hw, KS884X_INT_RX_STOPPED); 3909 writel((hw->rx_cfg & ~DMA_RX_ENABLE), hw->io + KS_DMA_RX_CTRL); 3910 } 3911 3912 /** 3913 * hw_start_tx - start transmitting 3914 * @hw: The hardware instance. 3915 * 3916 * This routine starts the transmit function of the hardware. 3917 */ 3918 static void hw_start_tx(struct ksz_hw *hw) 3919 { 3920 writel(hw->tx_cfg, hw->io + KS_DMA_TX_CTRL); 3921 } 3922 3923 /** 3924 * hw_stop_tx - stop transmitting 3925 * @hw: The hardware instance. 3926 * 3927 * This routine stops the transmit function of the hardware. 3928 */ 3929 static void hw_stop_tx(struct ksz_hw *hw) 3930 { 3931 writel((hw->tx_cfg & ~DMA_TX_ENABLE), hw->io + KS_DMA_TX_CTRL); 3932 } 3933 3934 /** 3935 * hw_disable - disable hardware 3936 * @hw: The hardware instance. 3937 * 3938 * This routine disables the hardware. 3939 */ 3940 static void hw_disable(struct ksz_hw *hw) 3941 { 3942 hw_stop_rx(hw); 3943 hw_stop_tx(hw); 3944 hw->enabled = 0; 3945 } 3946 3947 /** 3948 * hw_enable - enable hardware 3949 * @hw: The hardware instance. 3950 * 3951 * This routine enables the hardware. 3952 */ 3953 static void hw_enable(struct ksz_hw *hw) 3954 { 3955 hw_start_tx(hw); 3956 hw_start_rx(hw); 3957 hw->enabled = 1; 3958 } 3959 3960 /** 3961 * hw_alloc_pkt - allocate enough descriptors for transmission 3962 * @hw: The hardware instance. 3963 * @length: The length of the packet. 3964 * @physical: Number of descriptors required. 3965 * 3966 * This function allocates descriptors for transmission. 3967 * 3968 * Return 0 if not successful; 1 for buffer copy; or number of descriptors. 3969 */ 3970 static int hw_alloc_pkt(struct ksz_hw *hw, int length, int physical) 3971 { 3972 /* Always leave one descriptor free. */ 3973 if (hw->tx_desc_info.avail <= 1) 3974 return 0; 3975 3976 /* Allocate a descriptor for transmission and mark it current. */ 3977 get_tx_pkt(&hw->tx_desc_info, &hw->tx_desc_info.cur); 3978 hw->tx_desc_info.cur->sw.buf.tx.first_seg = 1; 3979 3980 /* Keep track of number of transmit descriptors used so far. */ 3981 ++hw->tx_int_cnt; 3982 hw->tx_size += length; 3983 3984 /* Cannot hold on too much data. */ 3985 if (hw->tx_size >= MAX_TX_HELD_SIZE) 3986 hw->tx_int_cnt = hw->tx_int_mask + 1; 3987 3988 if (physical > hw->tx_desc_info.avail) 3989 return 1; 3990 3991 return hw->tx_desc_info.avail; 3992 } 3993 3994 /** 3995 * hw_send_pkt - mark packet for transmission 3996 * @hw: The hardware instance. 3997 * 3998 * This routine marks the packet for transmission in PCI version. 3999 */ 4000 static void hw_send_pkt(struct ksz_hw *hw) 4001 { 4002 struct ksz_desc *cur = hw->tx_desc_info.cur; 4003 4004 cur->sw.buf.tx.last_seg = 1; 4005 4006 /* Interrupt only after specified number of descriptors used. */ 4007 if (hw->tx_int_cnt > hw->tx_int_mask) { 4008 cur->sw.buf.tx.intr = 1; 4009 hw->tx_int_cnt = 0; 4010 hw->tx_size = 0; 4011 } 4012 4013 /* KSZ8842 supports port directed transmission. */ 4014 cur->sw.buf.tx.dest_port = hw->dst_ports; 4015 4016 release_desc(cur); 4017 4018 writel(0, hw->io + KS_DMA_TX_START); 4019 } 4020 4021 static int empty_addr(u8 *addr) 4022 { 4023 u32 *addr1 = (u32 *) addr; 4024 u16 *addr2 = (u16 *) &addr[4]; 4025 4026 return 0 == *addr1 && 0 == *addr2; 4027 } 4028 4029 /** 4030 * hw_set_addr - set MAC address 4031 * @hw: The hardware instance. 4032 * 4033 * This routine programs the MAC address of the hardware when the address is 4034 * overridden. 4035 */ 4036 static void hw_set_addr(struct ksz_hw *hw) 4037 { 4038 int i; 4039 4040 for (i = 0; i < ETH_ALEN; i++) 4041 writeb(hw->override_addr[MAC_ADDR_ORDER(i)], 4042 hw->io + KS884X_ADDR_0_OFFSET + i); 4043 4044 sw_set_addr(hw, hw->override_addr); 4045 } 4046 4047 /** 4048 * hw_read_addr - read MAC address 4049 * @hw: The hardware instance. 4050 * 4051 * This routine retrieves the MAC address of the hardware. 4052 */ 4053 static void hw_read_addr(struct ksz_hw *hw) 4054 { 4055 int i; 4056 4057 for (i = 0; i < ETH_ALEN; i++) 4058 hw->perm_addr[MAC_ADDR_ORDER(i)] = readb(hw->io + 4059 KS884X_ADDR_0_OFFSET + i); 4060 4061 if (!hw->mac_override) { 4062 memcpy(hw->override_addr, hw->perm_addr, ETH_ALEN); 4063 if (empty_addr(hw->override_addr)) { 4064 memcpy(hw->perm_addr, DEFAULT_MAC_ADDRESS, ETH_ALEN); 4065 memcpy(hw->override_addr, DEFAULT_MAC_ADDRESS, 4066 ETH_ALEN); 4067 hw->override_addr[5] += hw->id; 4068 hw_set_addr(hw); 4069 } 4070 } 4071 } 4072 4073 static void hw_ena_add_addr(struct ksz_hw *hw, int index, u8 *mac_addr) 4074 { 4075 int i; 4076 u32 mac_addr_lo; 4077 u32 mac_addr_hi; 4078 4079 mac_addr_hi = 0; 4080 for (i = 0; i < 2; i++) { 4081 mac_addr_hi <<= 8; 4082 mac_addr_hi |= mac_addr[i]; 4083 } 4084 mac_addr_hi |= ADD_ADDR_ENABLE; 4085 mac_addr_lo = 0; 4086 for (i = 2; i < 6; i++) { 4087 mac_addr_lo <<= 8; 4088 mac_addr_lo |= mac_addr[i]; 4089 } 4090 index *= ADD_ADDR_INCR; 4091 4092 writel(mac_addr_lo, hw->io + index + KS_ADD_ADDR_0_LO); 4093 writel(mac_addr_hi, hw->io + index + KS_ADD_ADDR_0_HI); 4094 } 4095 4096 static void hw_set_add_addr(struct ksz_hw *hw) 4097 { 4098 int i; 4099 4100 for (i = 0; i < ADDITIONAL_ENTRIES; i++) { 4101 if (empty_addr(hw->address[i])) 4102 writel(0, hw->io + ADD_ADDR_INCR * i + 4103 KS_ADD_ADDR_0_HI); 4104 else 4105 hw_ena_add_addr(hw, i, hw->address[i]); 4106 } 4107 } 4108 4109 static int hw_add_addr(struct ksz_hw *hw, u8 *mac_addr) 4110 { 4111 int i; 4112 int j = ADDITIONAL_ENTRIES; 4113 4114 if (ether_addr_equal(hw->override_addr, mac_addr)) 4115 return 0; 4116 for (i = 0; i < hw->addr_list_size; i++) { 4117 if (ether_addr_equal(hw->address[i], mac_addr)) 4118 return 0; 4119 if (ADDITIONAL_ENTRIES == j && empty_addr(hw->address[i])) 4120 j = i; 4121 } 4122 if (j < ADDITIONAL_ENTRIES) { 4123 memcpy(hw->address[j], mac_addr, ETH_ALEN); 4124 hw_ena_add_addr(hw, j, hw->address[j]); 4125 return 0; 4126 } 4127 return -1; 4128 } 4129 4130 static int hw_del_addr(struct ksz_hw *hw, u8 *mac_addr) 4131 { 4132 int i; 4133 4134 for (i = 0; i < hw->addr_list_size; i++) { 4135 if (ether_addr_equal(hw->address[i], mac_addr)) { 4136 eth_zero_addr(hw->address[i]); 4137 writel(0, hw->io + ADD_ADDR_INCR * i + 4138 KS_ADD_ADDR_0_HI); 4139 return 0; 4140 } 4141 } 4142 return -1; 4143 } 4144 4145 /** 4146 * hw_clr_multicast - clear multicast addresses 4147 * @hw: The hardware instance. 4148 * 4149 * This routine removes all multicast addresses set in the hardware. 4150 */ 4151 static void hw_clr_multicast(struct ksz_hw *hw) 4152 { 4153 int i; 4154 4155 for (i = 0; i < HW_MULTICAST_SIZE; i++) { 4156 hw->multi_bits[i] = 0; 4157 4158 writeb(0, hw->io + KS884X_MULTICAST_0_OFFSET + i); 4159 } 4160 } 4161 4162 /** 4163 * hw_set_grp_addr - set multicast addresses 4164 * @hw: The hardware instance. 4165 * 4166 * This routine programs multicast addresses for the hardware to accept those 4167 * addresses. 4168 */ 4169 static void hw_set_grp_addr(struct ksz_hw *hw) 4170 { 4171 int i; 4172 int index; 4173 int position; 4174 int value; 4175 4176 memset(hw->multi_bits, 0, sizeof(u8) * HW_MULTICAST_SIZE); 4177 4178 for (i = 0; i < hw->multi_list_size; i++) { 4179 position = (ether_crc(6, hw->multi_list[i]) >> 26) & 0x3f; 4180 index = position >> 3; 4181 value = 1 << (position & 7); 4182 hw->multi_bits[index] |= (u8) value; 4183 } 4184 4185 for (i = 0; i < HW_MULTICAST_SIZE; i++) 4186 writeb(hw->multi_bits[i], hw->io + KS884X_MULTICAST_0_OFFSET + 4187 i); 4188 } 4189 4190 /** 4191 * hw_set_multicast - enable or disable all multicast receiving 4192 * @hw: The hardware instance. 4193 * @multicast: To turn on or off the all multicast feature. 4194 * 4195 * This routine enables/disables the hardware to accept all multicast packets. 4196 */ 4197 static void hw_set_multicast(struct ksz_hw *hw, u8 multicast) 4198 { 4199 /* Stop receiving for reconfiguration. */ 4200 hw_stop_rx(hw); 4201 4202 if (multicast) 4203 hw->rx_cfg |= DMA_RX_ALL_MULTICAST; 4204 else 4205 hw->rx_cfg &= ~DMA_RX_ALL_MULTICAST; 4206 4207 if (hw->enabled) 4208 hw_start_rx(hw); 4209 } 4210 4211 /** 4212 * hw_set_promiscuous - enable or disable promiscuous receiving 4213 * @hw: The hardware instance. 4214 * @prom: To turn on or off the promiscuous feature. 4215 * 4216 * This routine enables/disables the hardware to accept all packets. 4217 */ 4218 static void hw_set_promiscuous(struct ksz_hw *hw, u8 prom) 4219 { 4220 /* Stop receiving for reconfiguration. */ 4221 hw_stop_rx(hw); 4222 4223 if (prom) 4224 hw->rx_cfg |= DMA_RX_PROMISCUOUS; 4225 else 4226 hw->rx_cfg &= ~DMA_RX_PROMISCUOUS; 4227 4228 if (hw->enabled) 4229 hw_start_rx(hw); 4230 } 4231 4232 /** 4233 * sw_enable - enable the switch 4234 * @hw: The hardware instance. 4235 * @enable: The flag to enable or disable the switch 4236 * 4237 * This routine is used to enable/disable the switch in KSZ8842. 4238 */ 4239 static void sw_enable(struct ksz_hw *hw, int enable) 4240 { 4241 int port; 4242 4243 for (port = 0; port < SWITCH_PORT_NUM; port++) { 4244 if (hw->dev_count > 1) { 4245 /* Set port-base vlan membership with host port. */ 4246 sw_cfg_port_base_vlan(hw, port, 4247 HOST_MASK | (1 << port)); 4248 port_set_stp_state(hw, port, STP_STATE_DISABLED); 4249 } else { 4250 sw_cfg_port_base_vlan(hw, port, PORT_MASK); 4251 port_set_stp_state(hw, port, STP_STATE_FORWARDING); 4252 } 4253 } 4254 if (hw->dev_count > 1) 4255 port_set_stp_state(hw, SWITCH_PORT_NUM, STP_STATE_SIMPLE); 4256 else 4257 port_set_stp_state(hw, SWITCH_PORT_NUM, STP_STATE_FORWARDING); 4258 4259 if (enable) 4260 enable = KS8842_START; 4261 writew(enable, hw->io + KS884X_CHIP_ID_OFFSET); 4262 } 4263 4264 /** 4265 * sw_setup - setup the switch 4266 * @hw: The hardware instance. 4267 * 4268 * This routine setup the hardware switch engine for default operation. 4269 */ 4270 static void sw_setup(struct ksz_hw *hw) 4271 { 4272 int port; 4273 4274 sw_set_global_ctrl(hw); 4275 4276 /* Enable switch broadcast storm protection at 10% percent rate. */ 4277 sw_init_broad_storm(hw); 4278 hw_cfg_broad_storm(hw, BROADCAST_STORM_PROTECTION_RATE); 4279 for (port = 0; port < SWITCH_PORT_NUM; port++) 4280 sw_ena_broad_storm(hw, port); 4281 4282 sw_init_prio(hw); 4283 4284 sw_init_mirror(hw); 4285 4286 sw_init_prio_rate(hw); 4287 4288 sw_init_vlan(hw); 4289 4290 if (hw->features & STP_SUPPORT) 4291 sw_init_stp(hw); 4292 if (!sw_chk(hw, KS8842_SWITCH_CTRL_1_OFFSET, 4293 SWITCH_TX_FLOW_CTRL | SWITCH_RX_FLOW_CTRL)) 4294 hw->overrides |= PAUSE_FLOW_CTRL; 4295 sw_enable(hw, 1); 4296 } 4297 4298 /** 4299 * ksz_start_timer - start kernel timer 4300 * @info: Kernel timer information. 4301 * @time: The time tick. 4302 * 4303 * This routine starts the kernel timer after the specified time tick. 4304 */ 4305 static void ksz_start_timer(struct ksz_timer_info *info, int time) 4306 { 4307 info->cnt = 0; 4308 info->timer.expires = jiffies + time; 4309 add_timer(&info->timer); 4310 4311 /* infinity */ 4312 info->max = -1; 4313 } 4314 4315 /** 4316 * ksz_stop_timer - stop kernel timer 4317 * @info: Kernel timer information. 4318 * 4319 * This routine stops the kernel timer. 4320 */ 4321 static void ksz_stop_timer(struct ksz_timer_info *info) 4322 { 4323 if (info->max) { 4324 info->max = 0; 4325 del_timer_sync(&info->timer); 4326 } 4327 } 4328 4329 static void ksz_init_timer(struct ksz_timer_info *info, int period, 4330 void (*function)(struct timer_list *)) 4331 { 4332 info->max = 0; 4333 info->period = period; 4334 timer_setup(&info->timer, function, 0); 4335 } 4336 4337 static void ksz_update_timer(struct ksz_timer_info *info) 4338 { 4339 ++info->cnt; 4340 if (info->max > 0) { 4341 if (info->cnt < info->max) { 4342 info->timer.expires = jiffies + info->period; 4343 add_timer(&info->timer); 4344 } else 4345 info->max = 0; 4346 } else if (info->max < 0) { 4347 info->timer.expires = jiffies + info->period; 4348 add_timer(&info->timer); 4349 } 4350 } 4351 4352 /** 4353 * ksz_alloc_soft_desc - allocate software descriptors 4354 * @desc_info: Descriptor information structure. 4355 * @transmit: Indication that descriptors are for transmit. 4356 * 4357 * This local function allocates software descriptors for manipulation in 4358 * memory. 4359 * 4360 * Return 0 if successful. 4361 */ 4362 static int ksz_alloc_soft_desc(struct ksz_desc_info *desc_info, int transmit) 4363 { 4364 desc_info->ring = kcalloc(desc_info->alloc, sizeof(struct ksz_desc), 4365 GFP_KERNEL); 4366 if (!desc_info->ring) 4367 return 1; 4368 hw_init_desc(desc_info, transmit); 4369 return 0; 4370 } 4371 4372 /** 4373 * ksz_alloc_desc - allocate hardware descriptors 4374 * @adapter: Adapter information structure. 4375 * 4376 * This local function allocates hardware descriptors for receiving and 4377 * transmitting. 4378 * 4379 * Return 0 if successful. 4380 */ 4381 static int ksz_alloc_desc(struct dev_info *adapter) 4382 { 4383 struct ksz_hw *hw = &adapter->hw; 4384 int offset; 4385 4386 /* Allocate memory for RX & TX descriptors. */ 4387 adapter->desc_pool.alloc_size = 4388 hw->rx_desc_info.size * hw->rx_desc_info.alloc + 4389 hw->tx_desc_info.size * hw->tx_desc_info.alloc + 4390 DESC_ALIGNMENT; 4391 4392 adapter->desc_pool.alloc_virt = 4393 dma_alloc_coherent(&adapter->pdev->dev, 4394 adapter->desc_pool.alloc_size, 4395 &adapter->desc_pool.dma_addr, GFP_KERNEL); 4396 if (adapter->desc_pool.alloc_virt == NULL) { 4397 adapter->desc_pool.alloc_size = 0; 4398 return 1; 4399 } 4400 4401 /* Align to the next cache line boundary. */ 4402 offset = (((ulong) adapter->desc_pool.alloc_virt % DESC_ALIGNMENT) ? 4403 (DESC_ALIGNMENT - 4404 ((ulong) adapter->desc_pool.alloc_virt % DESC_ALIGNMENT)) : 0); 4405 adapter->desc_pool.virt = adapter->desc_pool.alloc_virt + offset; 4406 adapter->desc_pool.phys = adapter->desc_pool.dma_addr + offset; 4407 4408 /* Allocate receive/transmit descriptors. */ 4409 hw->rx_desc_info.ring_virt = (struct ksz_hw_desc *) 4410 adapter->desc_pool.virt; 4411 hw->rx_desc_info.ring_phys = adapter->desc_pool.phys; 4412 offset = hw->rx_desc_info.alloc * hw->rx_desc_info.size; 4413 hw->tx_desc_info.ring_virt = (struct ksz_hw_desc *) 4414 (adapter->desc_pool.virt + offset); 4415 hw->tx_desc_info.ring_phys = adapter->desc_pool.phys + offset; 4416 4417 if (ksz_alloc_soft_desc(&hw->rx_desc_info, 0)) 4418 return 1; 4419 if (ksz_alloc_soft_desc(&hw->tx_desc_info, 1)) 4420 return 1; 4421 4422 return 0; 4423 } 4424 4425 /** 4426 * free_dma_buf - release DMA buffer resources 4427 * @adapter: Adapter information structure. 4428 * 4429 * This routine is just a helper function to release the DMA buffer resources. 4430 */ 4431 static void free_dma_buf(struct dev_info *adapter, struct ksz_dma_buf *dma_buf, 4432 int direction) 4433 { 4434 dma_unmap_single(&adapter->pdev->dev, dma_buf->dma, dma_buf->len, 4435 direction); 4436 dev_kfree_skb(dma_buf->skb); 4437 dma_buf->skb = NULL; 4438 dma_buf->dma = 0; 4439 } 4440 4441 /** 4442 * ksz_init_rx_buffers - initialize receive descriptors 4443 * @adapter: Adapter information structure. 4444 * 4445 * This routine initializes DMA buffers for receiving. 4446 */ 4447 static void ksz_init_rx_buffers(struct dev_info *adapter) 4448 { 4449 int i; 4450 struct ksz_desc *desc; 4451 struct ksz_dma_buf *dma_buf; 4452 struct ksz_hw *hw = &adapter->hw; 4453 struct ksz_desc_info *info = &hw->rx_desc_info; 4454 4455 for (i = 0; i < hw->rx_desc_info.alloc; i++) { 4456 get_rx_pkt(info, &desc); 4457 4458 dma_buf = DMA_BUFFER(desc); 4459 if (dma_buf->skb && dma_buf->len != adapter->mtu) 4460 free_dma_buf(adapter, dma_buf, DMA_FROM_DEVICE); 4461 dma_buf->len = adapter->mtu; 4462 if (!dma_buf->skb) 4463 dma_buf->skb = alloc_skb(dma_buf->len, GFP_ATOMIC); 4464 if (dma_buf->skb && !dma_buf->dma) 4465 dma_buf->dma = dma_map_single(&adapter->pdev->dev, 4466 skb_tail_pointer(dma_buf->skb), 4467 dma_buf->len, 4468 DMA_FROM_DEVICE); 4469 4470 /* Set descriptor. */ 4471 set_rx_buf(desc, dma_buf->dma); 4472 set_rx_len(desc, dma_buf->len); 4473 release_desc(desc); 4474 } 4475 } 4476 4477 /** 4478 * ksz_alloc_mem - allocate memory for hardware descriptors 4479 * @adapter: Adapter information structure. 4480 * 4481 * This function allocates memory for use by hardware descriptors for receiving 4482 * and transmitting. 4483 * 4484 * Return 0 if successful. 4485 */ 4486 static int ksz_alloc_mem(struct dev_info *adapter) 4487 { 4488 struct ksz_hw *hw = &adapter->hw; 4489 4490 /* Determine the number of receive and transmit descriptors. */ 4491 hw->rx_desc_info.alloc = NUM_OF_RX_DESC; 4492 hw->tx_desc_info.alloc = NUM_OF_TX_DESC; 4493 4494 /* Determine how many descriptors to skip transmit interrupt. */ 4495 hw->tx_int_cnt = 0; 4496 hw->tx_int_mask = NUM_OF_TX_DESC / 4; 4497 if (hw->tx_int_mask > 8) 4498 hw->tx_int_mask = 8; 4499 while (hw->tx_int_mask) { 4500 hw->tx_int_cnt++; 4501 hw->tx_int_mask >>= 1; 4502 } 4503 if (hw->tx_int_cnt) { 4504 hw->tx_int_mask = (1 << (hw->tx_int_cnt - 1)) - 1; 4505 hw->tx_int_cnt = 0; 4506 } 4507 4508 /* Determine the descriptor size. */ 4509 hw->rx_desc_info.size = 4510 (((sizeof(struct ksz_hw_desc) + DESC_ALIGNMENT - 1) / 4511 DESC_ALIGNMENT) * DESC_ALIGNMENT); 4512 hw->tx_desc_info.size = 4513 (((sizeof(struct ksz_hw_desc) + DESC_ALIGNMENT - 1) / 4514 DESC_ALIGNMENT) * DESC_ALIGNMENT); 4515 if (hw->rx_desc_info.size != sizeof(struct ksz_hw_desc)) 4516 pr_alert("Hardware descriptor size not right!\n"); 4517 ksz_check_desc_num(&hw->rx_desc_info); 4518 ksz_check_desc_num(&hw->tx_desc_info); 4519 4520 /* Allocate descriptors. */ 4521 if (ksz_alloc_desc(adapter)) 4522 return 1; 4523 4524 return 0; 4525 } 4526 4527 /** 4528 * ksz_free_desc - free software and hardware descriptors 4529 * @adapter: Adapter information structure. 4530 * 4531 * This local routine frees the software and hardware descriptors allocated by 4532 * ksz_alloc_desc(). 4533 */ 4534 static void ksz_free_desc(struct dev_info *adapter) 4535 { 4536 struct ksz_hw *hw = &adapter->hw; 4537 4538 /* Reset descriptor. */ 4539 hw->rx_desc_info.ring_virt = NULL; 4540 hw->tx_desc_info.ring_virt = NULL; 4541 hw->rx_desc_info.ring_phys = 0; 4542 hw->tx_desc_info.ring_phys = 0; 4543 4544 /* Free memory. */ 4545 if (adapter->desc_pool.alloc_virt) 4546 dma_free_coherent(&adapter->pdev->dev, 4547 adapter->desc_pool.alloc_size, 4548 adapter->desc_pool.alloc_virt, 4549 adapter->desc_pool.dma_addr); 4550 4551 /* Reset resource pool. */ 4552 adapter->desc_pool.alloc_size = 0; 4553 adapter->desc_pool.alloc_virt = NULL; 4554 4555 kfree(hw->rx_desc_info.ring); 4556 hw->rx_desc_info.ring = NULL; 4557 kfree(hw->tx_desc_info.ring); 4558 hw->tx_desc_info.ring = NULL; 4559 } 4560 4561 /** 4562 * ksz_free_buffers - free buffers used in the descriptors 4563 * @adapter: Adapter information structure. 4564 * @desc_info: Descriptor information structure. 4565 * 4566 * This local routine frees buffers used in the DMA buffers. 4567 */ 4568 static void ksz_free_buffers(struct dev_info *adapter, 4569 struct ksz_desc_info *desc_info, int direction) 4570 { 4571 int i; 4572 struct ksz_dma_buf *dma_buf; 4573 struct ksz_desc *desc = desc_info->ring; 4574 4575 for (i = 0; i < desc_info->alloc; i++) { 4576 dma_buf = DMA_BUFFER(desc); 4577 if (dma_buf->skb) 4578 free_dma_buf(adapter, dma_buf, direction); 4579 desc++; 4580 } 4581 } 4582 4583 /** 4584 * ksz_free_mem - free all resources used by descriptors 4585 * @adapter: Adapter information structure. 4586 * 4587 * This local routine frees all the resources allocated by ksz_alloc_mem(). 4588 */ 4589 static void ksz_free_mem(struct dev_info *adapter) 4590 { 4591 /* Free transmit buffers. */ 4592 ksz_free_buffers(adapter, &adapter->hw.tx_desc_info, DMA_TO_DEVICE); 4593 4594 /* Free receive buffers. */ 4595 ksz_free_buffers(adapter, &adapter->hw.rx_desc_info, DMA_FROM_DEVICE); 4596 4597 /* Free descriptors. */ 4598 ksz_free_desc(adapter); 4599 } 4600 4601 static void get_mib_counters(struct ksz_hw *hw, int first, int cnt, 4602 u64 *counter) 4603 { 4604 int i; 4605 int mib; 4606 int port; 4607 struct ksz_port_mib *port_mib; 4608 4609 memset(counter, 0, sizeof(u64) * TOTAL_PORT_COUNTER_NUM); 4610 for (i = 0, port = first; i < cnt; i++, port++) { 4611 port_mib = &hw->port_mib[port]; 4612 for (mib = port_mib->mib_start; mib < hw->mib_cnt; mib++) 4613 counter[mib] += port_mib->counter[mib]; 4614 } 4615 } 4616 4617 /** 4618 * send_packet - send packet 4619 * @skb: Socket buffer. 4620 * @dev: Network device. 4621 * 4622 * This routine is used to send a packet out to the network. 4623 */ 4624 static void send_packet(struct sk_buff *skb, struct net_device *dev) 4625 { 4626 struct ksz_desc *desc; 4627 struct ksz_desc *first; 4628 struct dev_priv *priv = netdev_priv(dev); 4629 struct dev_info *hw_priv = priv->adapter; 4630 struct ksz_hw *hw = &hw_priv->hw; 4631 struct ksz_desc_info *info = &hw->tx_desc_info; 4632 struct ksz_dma_buf *dma_buf; 4633 int len; 4634 int last_frag = skb_shinfo(skb)->nr_frags; 4635 4636 /* 4637 * KSZ8842 with multiple device interfaces needs to be told which port 4638 * to send. 4639 */ 4640 if (hw->dev_count > 1) 4641 hw->dst_ports = 1 << priv->port.first_port; 4642 4643 /* Hardware will pad the length to 60. */ 4644 len = skb->len; 4645 4646 /* Remember the very first descriptor. */ 4647 first = info->cur; 4648 desc = first; 4649 4650 dma_buf = DMA_BUFFER(desc); 4651 if (last_frag) { 4652 int frag; 4653 skb_frag_t *this_frag; 4654 4655 dma_buf->len = skb_headlen(skb); 4656 4657 dma_buf->dma = dma_map_single(&hw_priv->pdev->dev, skb->data, 4658 dma_buf->len, DMA_TO_DEVICE); 4659 set_tx_buf(desc, dma_buf->dma); 4660 set_tx_len(desc, dma_buf->len); 4661 4662 frag = 0; 4663 do { 4664 this_frag = &skb_shinfo(skb)->frags[frag]; 4665 4666 /* Get a new descriptor. */ 4667 get_tx_pkt(info, &desc); 4668 4669 /* Keep track of descriptors used so far. */ 4670 ++hw->tx_int_cnt; 4671 4672 dma_buf = DMA_BUFFER(desc); 4673 dma_buf->len = skb_frag_size(this_frag); 4674 4675 dma_buf->dma = dma_map_single(&hw_priv->pdev->dev, 4676 skb_frag_address(this_frag), 4677 dma_buf->len, 4678 DMA_TO_DEVICE); 4679 set_tx_buf(desc, dma_buf->dma); 4680 set_tx_len(desc, dma_buf->len); 4681 4682 frag++; 4683 if (frag == last_frag) 4684 break; 4685 4686 /* Do not release the last descriptor here. */ 4687 release_desc(desc); 4688 } while (1); 4689 4690 /* current points to the last descriptor. */ 4691 info->cur = desc; 4692 4693 /* Release the first descriptor. */ 4694 release_desc(first); 4695 } else { 4696 dma_buf->len = len; 4697 4698 dma_buf->dma = dma_map_single(&hw_priv->pdev->dev, skb->data, 4699 dma_buf->len, DMA_TO_DEVICE); 4700 set_tx_buf(desc, dma_buf->dma); 4701 set_tx_len(desc, dma_buf->len); 4702 } 4703 4704 if (skb->ip_summed == CHECKSUM_PARTIAL) { 4705 (desc)->sw.buf.tx.csum_gen_tcp = 1; 4706 (desc)->sw.buf.tx.csum_gen_udp = 1; 4707 } 4708 4709 /* 4710 * The last descriptor holds the packet so that it can be returned to 4711 * network subsystem after all descriptors are transmitted. 4712 */ 4713 dma_buf->skb = skb; 4714 4715 hw_send_pkt(hw); 4716 4717 /* Update transmit statistics. */ 4718 dev->stats.tx_packets++; 4719 dev->stats.tx_bytes += len; 4720 } 4721 4722 /** 4723 * transmit_cleanup - clean up transmit descriptors 4724 * @dev: Network device. 4725 * 4726 * This routine is called to clean up the transmitted buffers. 4727 */ 4728 static void transmit_cleanup(struct dev_info *hw_priv, int normal) 4729 { 4730 int last; 4731 union desc_stat status; 4732 struct ksz_hw *hw = &hw_priv->hw; 4733 struct ksz_desc_info *info = &hw->tx_desc_info; 4734 struct ksz_desc *desc; 4735 struct ksz_dma_buf *dma_buf; 4736 struct net_device *dev = NULL; 4737 4738 spin_lock_irq(&hw_priv->hwlock); 4739 last = info->last; 4740 4741 while (info->avail < info->alloc) { 4742 /* Get next descriptor which is not hardware owned. */ 4743 desc = &info->ring[last]; 4744 status.data = le32_to_cpu(desc->phw->ctrl.data); 4745 if (status.tx.hw_owned) { 4746 if (normal) 4747 break; 4748 else 4749 reset_desc(desc, status); 4750 } 4751 4752 dma_buf = DMA_BUFFER(desc); 4753 dma_unmap_single(&hw_priv->pdev->dev, dma_buf->dma, 4754 dma_buf->len, DMA_TO_DEVICE); 4755 4756 /* This descriptor contains the last buffer in the packet. */ 4757 if (dma_buf->skb) { 4758 dev = dma_buf->skb->dev; 4759 4760 /* Release the packet back to network subsystem. */ 4761 dev_kfree_skb_irq(dma_buf->skb); 4762 dma_buf->skb = NULL; 4763 } 4764 4765 /* Free the transmitted descriptor. */ 4766 last++; 4767 last &= info->mask; 4768 info->avail++; 4769 } 4770 info->last = last; 4771 spin_unlock_irq(&hw_priv->hwlock); 4772 4773 /* Notify the network subsystem that the packet has been sent. */ 4774 if (dev) 4775 netif_trans_update(dev); 4776 } 4777 4778 /** 4779 * transmit_done - transmit done processing 4780 * @dev: Network device. 4781 * 4782 * This routine is called when the transmit interrupt is triggered, indicating 4783 * either a packet is sent successfully or there are transmit errors. 4784 */ 4785 static void tx_done(struct dev_info *hw_priv) 4786 { 4787 struct ksz_hw *hw = &hw_priv->hw; 4788 int port; 4789 4790 transmit_cleanup(hw_priv, 1); 4791 4792 for (port = 0; port < hw->dev_count; port++) { 4793 struct net_device *dev = hw->port_info[port].pdev; 4794 4795 if (netif_running(dev) && netif_queue_stopped(dev)) 4796 netif_wake_queue(dev); 4797 } 4798 } 4799 4800 static inline void copy_old_skb(struct sk_buff *old, struct sk_buff *skb) 4801 { 4802 skb->dev = old->dev; 4803 skb->protocol = old->protocol; 4804 skb->ip_summed = old->ip_summed; 4805 skb->csum = old->csum; 4806 skb_set_network_header(skb, ETH_HLEN); 4807 4808 dev_consume_skb_any(old); 4809 } 4810 4811 /** 4812 * netdev_tx - send out packet 4813 * @skb: Socket buffer. 4814 * @dev: Network device. 4815 * 4816 * This function is used by the upper network layer to send out a packet. 4817 * 4818 * Return 0 if successful; otherwise an error code indicating failure. 4819 */ 4820 static netdev_tx_t netdev_tx(struct sk_buff *skb, struct net_device *dev) 4821 { 4822 struct dev_priv *priv = netdev_priv(dev); 4823 struct dev_info *hw_priv = priv->adapter; 4824 struct ksz_hw *hw = &hw_priv->hw; 4825 int left; 4826 int num = 1; 4827 int rc = 0; 4828 4829 if (hw->features & SMALL_PACKET_TX_BUG) { 4830 struct sk_buff *org_skb = skb; 4831 4832 if (skb->len <= 48) { 4833 if (skb_end_pointer(skb) - skb->data >= 50) { 4834 memset(&skb->data[skb->len], 0, 50 - skb->len); 4835 skb->len = 50; 4836 } else { 4837 skb = netdev_alloc_skb(dev, 50); 4838 if (!skb) 4839 return NETDEV_TX_BUSY; 4840 memcpy(skb->data, org_skb->data, org_skb->len); 4841 memset(&skb->data[org_skb->len], 0, 4842 50 - org_skb->len); 4843 skb->len = 50; 4844 copy_old_skb(org_skb, skb); 4845 } 4846 } 4847 } 4848 4849 spin_lock_irq(&hw_priv->hwlock); 4850 4851 num = skb_shinfo(skb)->nr_frags + 1; 4852 left = hw_alloc_pkt(hw, skb->len, num); 4853 if (left) { 4854 if (left < num || 4855 (CHECKSUM_PARTIAL == skb->ip_summed && 4856 skb->protocol == htons(ETH_P_IPV6))) { 4857 struct sk_buff *org_skb = skb; 4858 4859 skb = netdev_alloc_skb(dev, org_skb->len); 4860 if (!skb) { 4861 rc = NETDEV_TX_BUSY; 4862 goto unlock; 4863 } 4864 skb_copy_and_csum_dev(org_skb, skb->data); 4865 org_skb->ip_summed = CHECKSUM_NONE; 4866 skb->len = org_skb->len; 4867 copy_old_skb(org_skb, skb); 4868 } 4869 send_packet(skb, dev); 4870 if (left <= num) 4871 netif_stop_queue(dev); 4872 } else { 4873 /* Stop the transmit queue until packet is allocated. */ 4874 netif_stop_queue(dev); 4875 rc = NETDEV_TX_BUSY; 4876 } 4877 unlock: 4878 spin_unlock_irq(&hw_priv->hwlock); 4879 4880 return rc; 4881 } 4882 4883 /** 4884 * netdev_tx_timeout - transmit timeout processing 4885 * @dev: Network device. 4886 * 4887 * This routine is called when the transmit timer expires. That indicates the 4888 * hardware is not running correctly because transmit interrupts are not 4889 * triggered to free up resources so that the transmit routine can continue 4890 * sending out packets. The hardware is reset to correct the problem. 4891 */ 4892 static void netdev_tx_timeout(struct net_device *dev, unsigned int txqueue) 4893 { 4894 static unsigned long last_reset; 4895 4896 struct dev_priv *priv = netdev_priv(dev); 4897 struct dev_info *hw_priv = priv->adapter; 4898 struct ksz_hw *hw = &hw_priv->hw; 4899 int port; 4900 4901 if (hw->dev_count > 1) { 4902 /* 4903 * Only reset the hardware if time between calls is long 4904 * enough. 4905 */ 4906 if (time_before_eq(jiffies, last_reset + dev->watchdog_timeo)) 4907 hw_priv = NULL; 4908 } 4909 4910 last_reset = jiffies; 4911 if (hw_priv) { 4912 hw_dis_intr(hw); 4913 hw_disable(hw); 4914 4915 transmit_cleanup(hw_priv, 0); 4916 hw_reset_pkts(&hw->rx_desc_info); 4917 hw_reset_pkts(&hw->tx_desc_info); 4918 ksz_init_rx_buffers(hw_priv); 4919 4920 hw_reset(hw); 4921 4922 hw_set_desc_base(hw, 4923 hw->tx_desc_info.ring_phys, 4924 hw->rx_desc_info.ring_phys); 4925 hw_set_addr(hw); 4926 if (hw->all_multi) 4927 hw_set_multicast(hw, hw->all_multi); 4928 else if (hw->multi_list_size) 4929 hw_set_grp_addr(hw); 4930 4931 if (hw->dev_count > 1) { 4932 hw_set_add_addr(hw); 4933 for (port = 0; port < SWITCH_PORT_NUM; port++) { 4934 struct net_device *port_dev; 4935 4936 port_set_stp_state(hw, port, 4937 STP_STATE_DISABLED); 4938 4939 port_dev = hw->port_info[port].pdev; 4940 if (netif_running(port_dev)) 4941 port_set_stp_state(hw, port, 4942 STP_STATE_SIMPLE); 4943 } 4944 } 4945 4946 hw_enable(hw); 4947 hw_ena_intr(hw); 4948 } 4949 4950 netif_trans_update(dev); 4951 netif_wake_queue(dev); 4952 } 4953 4954 static inline void csum_verified(struct sk_buff *skb) 4955 { 4956 unsigned short protocol; 4957 struct iphdr *iph; 4958 4959 protocol = skb->protocol; 4960 skb_reset_network_header(skb); 4961 iph = (struct iphdr *) skb_network_header(skb); 4962 if (protocol == htons(ETH_P_8021Q)) { 4963 protocol = iph->tot_len; 4964 skb_set_network_header(skb, VLAN_HLEN); 4965 iph = (struct iphdr *) skb_network_header(skb); 4966 } 4967 if (protocol == htons(ETH_P_IP)) { 4968 if (iph->protocol == IPPROTO_TCP) 4969 skb->ip_summed = CHECKSUM_UNNECESSARY; 4970 } 4971 } 4972 4973 static inline int rx_proc(struct net_device *dev, struct ksz_hw* hw, 4974 struct ksz_desc *desc, union desc_stat status) 4975 { 4976 int packet_len; 4977 struct dev_priv *priv = netdev_priv(dev); 4978 struct dev_info *hw_priv = priv->adapter; 4979 struct ksz_dma_buf *dma_buf; 4980 struct sk_buff *skb; 4981 int rx_status; 4982 4983 /* Received length includes 4-byte CRC. */ 4984 packet_len = status.rx.frame_len - 4; 4985 4986 dma_buf = DMA_BUFFER(desc); 4987 dma_sync_single_for_cpu(&hw_priv->pdev->dev, dma_buf->dma, 4988 packet_len + 4, DMA_FROM_DEVICE); 4989 4990 do { 4991 /* skb->data != skb->head */ 4992 skb = netdev_alloc_skb(dev, packet_len + 2); 4993 if (!skb) { 4994 dev->stats.rx_dropped++; 4995 return -ENOMEM; 4996 } 4997 4998 /* 4999 * Align socket buffer in 4-byte boundary for better 5000 * performance. 5001 */ 5002 skb_reserve(skb, 2); 5003 5004 skb_put_data(skb, dma_buf->skb->data, packet_len); 5005 } while (0); 5006 5007 skb->protocol = eth_type_trans(skb, dev); 5008 5009 if (hw->rx_cfg & (DMA_RX_CSUM_UDP | DMA_RX_CSUM_TCP)) 5010 csum_verified(skb); 5011 5012 /* Update receive statistics. */ 5013 dev->stats.rx_packets++; 5014 dev->stats.rx_bytes += packet_len; 5015 5016 /* Notify upper layer for received packet. */ 5017 rx_status = netif_rx(skb); 5018 5019 return 0; 5020 } 5021 5022 static int dev_rcv_packets(struct dev_info *hw_priv) 5023 { 5024 int next; 5025 union desc_stat status; 5026 struct ksz_hw *hw = &hw_priv->hw; 5027 struct net_device *dev = hw->port_info[0].pdev; 5028 struct ksz_desc_info *info = &hw->rx_desc_info; 5029 int left = info->alloc; 5030 struct ksz_desc *desc; 5031 int received = 0; 5032 5033 next = info->next; 5034 while (left--) { 5035 /* Get next descriptor which is not hardware owned. */ 5036 desc = &info->ring[next]; 5037 status.data = le32_to_cpu(desc->phw->ctrl.data); 5038 if (status.rx.hw_owned) 5039 break; 5040 5041 /* Status valid only when last descriptor bit is set. */ 5042 if (status.rx.last_desc && status.rx.first_desc) { 5043 if (rx_proc(dev, hw, desc, status)) 5044 goto release_packet; 5045 received++; 5046 } 5047 5048 release_packet: 5049 release_desc(desc); 5050 next++; 5051 next &= info->mask; 5052 } 5053 info->next = next; 5054 5055 return received; 5056 } 5057 5058 static int port_rcv_packets(struct dev_info *hw_priv) 5059 { 5060 int next; 5061 union desc_stat status; 5062 struct ksz_hw *hw = &hw_priv->hw; 5063 struct net_device *dev = hw->port_info[0].pdev; 5064 struct ksz_desc_info *info = &hw->rx_desc_info; 5065 int left = info->alloc; 5066 struct ksz_desc *desc; 5067 int received = 0; 5068 5069 next = info->next; 5070 while (left--) { 5071 /* Get next descriptor which is not hardware owned. */ 5072 desc = &info->ring[next]; 5073 status.data = le32_to_cpu(desc->phw->ctrl.data); 5074 if (status.rx.hw_owned) 5075 break; 5076 5077 if (hw->dev_count > 1) { 5078 /* Get received port number. */ 5079 int p = HW_TO_DEV_PORT(status.rx.src_port); 5080 5081 dev = hw->port_info[p].pdev; 5082 if (!netif_running(dev)) 5083 goto release_packet; 5084 } 5085 5086 /* Status valid only when last descriptor bit is set. */ 5087 if (status.rx.last_desc && status.rx.first_desc) { 5088 if (rx_proc(dev, hw, desc, status)) 5089 goto release_packet; 5090 received++; 5091 } 5092 5093 release_packet: 5094 release_desc(desc); 5095 next++; 5096 next &= info->mask; 5097 } 5098 info->next = next; 5099 5100 return received; 5101 } 5102 5103 static int dev_rcv_special(struct dev_info *hw_priv) 5104 { 5105 int next; 5106 union desc_stat status; 5107 struct ksz_hw *hw = &hw_priv->hw; 5108 struct net_device *dev = hw->port_info[0].pdev; 5109 struct ksz_desc_info *info = &hw->rx_desc_info; 5110 int left = info->alloc; 5111 struct ksz_desc *desc; 5112 int received = 0; 5113 5114 next = info->next; 5115 while (left--) { 5116 /* Get next descriptor which is not hardware owned. */ 5117 desc = &info->ring[next]; 5118 status.data = le32_to_cpu(desc->phw->ctrl.data); 5119 if (status.rx.hw_owned) 5120 break; 5121 5122 if (hw->dev_count > 1) { 5123 /* Get received port number. */ 5124 int p = HW_TO_DEV_PORT(status.rx.src_port); 5125 5126 dev = hw->port_info[p].pdev; 5127 if (!netif_running(dev)) 5128 goto release_packet; 5129 } 5130 5131 /* Status valid only when last descriptor bit is set. */ 5132 if (status.rx.last_desc && status.rx.first_desc) { 5133 /* 5134 * Receive without error. With receive errors 5135 * disabled, packets with receive errors will be 5136 * dropped, so no need to check the error bit. 5137 */ 5138 if (!status.rx.error || (status.data & 5139 KS_DESC_RX_ERROR_COND) == 5140 KS_DESC_RX_ERROR_TOO_LONG) { 5141 if (rx_proc(dev, hw, desc, status)) 5142 goto release_packet; 5143 received++; 5144 } else { 5145 struct dev_priv *priv = netdev_priv(dev); 5146 5147 /* Update receive error statistics. */ 5148 priv->port.counter[OID_COUNTER_RCV_ERROR]++; 5149 } 5150 } 5151 5152 release_packet: 5153 release_desc(desc); 5154 next++; 5155 next &= info->mask; 5156 } 5157 info->next = next; 5158 5159 return received; 5160 } 5161 5162 static void rx_proc_task(unsigned long data) 5163 { 5164 struct dev_info *hw_priv = (struct dev_info *) data; 5165 struct ksz_hw *hw = &hw_priv->hw; 5166 5167 if (!hw->enabled) 5168 return; 5169 if (unlikely(!hw_priv->dev_rcv(hw_priv))) { 5170 5171 /* In case receive process is suspended because of overrun. */ 5172 hw_resume_rx(hw); 5173 5174 /* tasklets are interruptible. */ 5175 spin_lock_irq(&hw_priv->hwlock); 5176 hw_turn_on_intr(hw, KS884X_INT_RX_MASK); 5177 spin_unlock_irq(&hw_priv->hwlock); 5178 } else { 5179 hw_ack_intr(hw, KS884X_INT_RX); 5180 tasklet_schedule(&hw_priv->rx_tasklet); 5181 } 5182 } 5183 5184 static void tx_proc_task(unsigned long data) 5185 { 5186 struct dev_info *hw_priv = (struct dev_info *) data; 5187 struct ksz_hw *hw = &hw_priv->hw; 5188 5189 hw_ack_intr(hw, KS884X_INT_TX_MASK); 5190 5191 tx_done(hw_priv); 5192 5193 /* tasklets are interruptible. */ 5194 spin_lock_irq(&hw_priv->hwlock); 5195 hw_turn_on_intr(hw, KS884X_INT_TX); 5196 spin_unlock_irq(&hw_priv->hwlock); 5197 } 5198 5199 static inline void handle_rx_stop(struct ksz_hw *hw) 5200 { 5201 /* Receive just has been stopped. */ 5202 if (0 == hw->rx_stop) 5203 hw->intr_mask &= ~KS884X_INT_RX_STOPPED; 5204 else if (hw->rx_stop > 1) { 5205 if (hw->enabled && (hw->rx_cfg & DMA_RX_ENABLE)) { 5206 hw_start_rx(hw); 5207 } else { 5208 hw->intr_mask &= ~KS884X_INT_RX_STOPPED; 5209 hw->rx_stop = 0; 5210 } 5211 } else 5212 /* Receive just has been started. */ 5213 hw->rx_stop++; 5214 } 5215 5216 /** 5217 * netdev_intr - interrupt handling 5218 * @irq: Interrupt number. 5219 * @dev_id: Network device. 5220 * 5221 * This function is called by upper network layer to signal interrupt. 5222 * 5223 * Return IRQ_HANDLED if interrupt is handled. 5224 */ 5225 static irqreturn_t netdev_intr(int irq, void *dev_id) 5226 { 5227 uint int_enable = 0; 5228 struct net_device *dev = (struct net_device *) dev_id; 5229 struct dev_priv *priv = netdev_priv(dev); 5230 struct dev_info *hw_priv = priv->adapter; 5231 struct ksz_hw *hw = &hw_priv->hw; 5232 5233 spin_lock(&hw_priv->hwlock); 5234 5235 hw_read_intr(hw, &int_enable); 5236 5237 /* Not our interrupt! */ 5238 if (!int_enable) { 5239 spin_unlock(&hw_priv->hwlock); 5240 return IRQ_NONE; 5241 } 5242 5243 do { 5244 hw_ack_intr(hw, int_enable); 5245 int_enable &= hw->intr_mask; 5246 5247 if (unlikely(int_enable & KS884X_INT_TX_MASK)) { 5248 hw_dis_intr_bit(hw, KS884X_INT_TX_MASK); 5249 tasklet_schedule(&hw_priv->tx_tasklet); 5250 } 5251 5252 if (likely(int_enable & KS884X_INT_RX)) { 5253 hw_dis_intr_bit(hw, KS884X_INT_RX); 5254 tasklet_schedule(&hw_priv->rx_tasklet); 5255 } 5256 5257 if (unlikely(int_enable & KS884X_INT_RX_OVERRUN)) { 5258 dev->stats.rx_fifo_errors++; 5259 hw_resume_rx(hw); 5260 } 5261 5262 if (unlikely(int_enable & KS884X_INT_PHY)) { 5263 struct ksz_port *port = &priv->port; 5264 5265 hw->features |= LINK_INT_WORKING; 5266 port_get_link_speed(port); 5267 } 5268 5269 if (unlikely(int_enable & KS884X_INT_RX_STOPPED)) { 5270 handle_rx_stop(hw); 5271 break; 5272 } 5273 5274 if (unlikely(int_enable & KS884X_INT_TX_STOPPED)) { 5275 u32 data; 5276 5277 hw->intr_mask &= ~KS884X_INT_TX_STOPPED; 5278 pr_info("Tx stopped\n"); 5279 data = readl(hw->io + KS_DMA_TX_CTRL); 5280 if (!(data & DMA_TX_ENABLE)) 5281 pr_info("Tx disabled\n"); 5282 break; 5283 } 5284 } while (0); 5285 5286 hw_ena_intr(hw); 5287 5288 spin_unlock(&hw_priv->hwlock); 5289 5290 return IRQ_HANDLED; 5291 } 5292 5293 /* 5294 * Linux network device functions 5295 */ 5296 5297 static unsigned long next_jiffies; 5298 5299 #ifdef CONFIG_NET_POLL_CONTROLLER 5300 static void netdev_netpoll(struct net_device *dev) 5301 { 5302 struct dev_priv *priv = netdev_priv(dev); 5303 struct dev_info *hw_priv = priv->adapter; 5304 5305 hw_dis_intr(&hw_priv->hw); 5306 netdev_intr(dev->irq, dev); 5307 } 5308 #endif 5309 5310 static void bridge_change(struct ksz_hw *hw) 5311 { 5312 int port; 5313 u8 member; 5314 struct ksz_switch *sw = hw->ksz_switch; 5315 5316 /* No ports in forwarding state. */ 5317 if (!sw->member) { 5318 port_set_stp_state(hw, SWITCH_PORT_NUM, STP_STATE_SIMPLE); 5319 sw_block_addr(hw); 5320 } 5321 for (port = 0; port < SWITCH_PORT_NUM; port++) { 5322 if (STP_STATE_FORWARDING == sw->port_cfg[port].stp_state) 5323 member = HOST_MASK | sw->member; 5324 else 5325 member = HOST_MASK | (1 << port); 5326 if (member != sw->port_cfg[port].member) 5327 sw_cfg_port_base_vlan(hw, port, member); 5328 } 5329 } 5330 5331 /** 5332 * netdev_close - close network device 5333 * @dev: Network device. 5334 * 5335 * This function process the close operation of network device. This is caused 5336 * by the user command "ifconfig ethX down." 5337 * 5338 * Return 0 if successful; otherwise an error code indicating failure. 5339 */ 5340 static int netdev_close(struct net_device *dev) 5341 { 5342 struct dev_priv *priv = netdev_priv(dev); 5343 struct dev_info *hw_priv = priv->adapter; 5344 struct ksz_port *port = &priv->port; 5345 struct ksz_hw *hw = &hw_priv->hw; 5346 int pi; 5347 5348 netif_stop_queue(dev); 5349 5350 ksz_stop_timer(&priv->monitor_timer_info); 5351 5352 /* Need to shut the port manually in multiple device interfaces mode. */ 5353 if (hw->dev_count > 1) { 5354 port_set_stp_state(hw, port->first_port, STP_STATE_DISABLED); 5355 5356 /* Port is closed. Need to change bridge setting. */ 5357 if (hw->features & STP_SUPPORT) { 5358 pi = 1 << port->first_port; 5359 if (hw->ksz_switch->member & pi) { 5360 hw->ksz_switch->member &= ~pi; 5361 bridge_change(hw); 5362 } 5363 } 5364 } 5365 if (port->first_port > 0) 5366 hw_del_addr(hw, dev->dev_addr); 5367 if (!hw_priv->wol_enable) 5368 port_set_power_saving(port, true); 5369 5370 if (priv->multicast) 5371 --hw->all_multi; 5372 if (priv->promiscuous) 5373 --hw->promiscuous; 5374 5375 hw_priv->opened--; 5376 if (!(hw_priv->opened)) { 5377 ksz_stop_timer(&hw_priv->mib_timer_info); 5378 flush_work(&hw_priv->mib_read); 5379 5380 hw_dis_intr(hw); 5381 hw_disable(hw); 5382 hw_clr_multicast(hw); 5383 5384 /* Delay for receive task to stop scheduling itself. */ 5385 msleep(2000 / HZ); 5386 5387 tasklet_kill(&hw_priv->rx_tasklet); 5388 tasklet_kill(&hw_priv->tx_tasklet); 5389 free_irq(dev->irq, hw_priv->dev); 5390 5391 transmit_cleanup(hw_priv, 0); 5392 hw_reset_pkts(&hw->rx_desc_info); 5393 hw_reset_pkts(&hw->tx_desc_info); 5394 5395 /* Clean out static MAC table when the switch is shutdown. */ 5396 if (hw->features & STP_SUPPORT) 5397 sw_clr_sta_mac_table(hw); 5398 } 5399 5400 return 0; 5401 } 5402 5403 static void hw_cfg_huge_frame(struct dev_info *hw_priv, struct ksz_hw *hw) 5404 { 5405 if (hw->ksz_switch) { 5406 u32 data; 5407 5408 data = readw(hw->io + KS8842_SWITCH_CTRL_2_OFFSET); 5409 if (hw->features & RX_HUGE_FRAME) 5410 data |= SWITCH_HUGE_PACKET; 5411 else 5412 data &= ~SWITCH_HUGE_PACKET; 5413 writew(data, hw->io + KS8842_SWITCH_CTRL_2_OFFSET); 5414 } 5415 if (hw->features & RX_HUGE_FRAME) { 5416 hw->rx_cfg |= DMA_RX_ERROR; 5417 hw_priv->dev_rcv = dev_rcv_special; 5418 } else { 5419 hw->rx_cfg &= ~DMA_RX_ERROR; 5420 if (hw->dev_count > 1) 5421 hw_priv->dev_rcv = port_rcv_packets; 5422 else 5423 hw_priv->dev_rcv = dev_rcv_packets; 5424 } 5425 } 5426 5427 static int prepare_hardware(struct net_device *dev) 5428 { 5429 struct dev_priv *priv = netdev_priv(dev); 5430 struct dev_info *hw_priv = priv->adapter; 5431 struct ksz_hw *hw = &hw_priv->hw; 5432 int rc = 0; 5433 5434 /* Remember the network device that requests interrupts. */ 5435 hw_priv->dev = dev; 5436 rc = request_irq(dev->irq, netdev_intr, IRQF_SHARED, dev->name, dev); 5437 if (rc) 5438 return rc; 5439 tasklet_init(&hw_priv->rx_tasklet, rx_proc_task, 5440 (unsigned long) hw_priv); 5441 tasklet_init(&hw_priv->tx_tasklet, tx_proc_task, 5442 (unsigned long) hw_priv); 5443 5444 hw->promiscuous = 0; 5445 hw->all_multi = 0; 5446 hw->multi_list_size = 0; 5447 5448 hw_reset(hw); 5449 5450 hw_set_desc_base(hw, 5451 hw->tx_desc_info.ring_phys, hw->rx_desc_info.ring_phys); 5452 hw_set_addr(hw); 5453 hw_cfg_huge_frame(hw_priv, hw); 5454 ksz_init_rx_buffers(hw_priv); 5455 return 0; 5456 } 5457 5458 static void set_media_state(struct net_device *dev, int media_state) 5459 { 5460 struct dev_priv *priv = netdev_priv(dev); 5461 5462 if (media_state == priv->media_state) 5463 netif_carrier_on(dev); 5464 else 5465 netif_carrier_off(dev); 5466 netif_info(priv, link, dev, "link %s\n", 5467 media_state == priv->media_state ? "on" : "off"); 5468 } 5469 5470 /** 5471 * netdev_open - open network device 5472 * @dev: Network device. 5473 * 5474 * This function process the open operation of network device. This is caused 5475 * by the user command "ifconfig ethX up." 5476 * 5477 * Return 0 if successful; otherwise an error code indicating failure. 5478 */ 5479 static int netdev_open(struct net_device *dev) 5480 { 5481 struct dev_priv *priv = netdev_priv(dev); 5482 struct dev_info *hw_priv = priv->adapter; 5483 struct ksz_hw *hw = &hw_priv->hw; 5484 struct ksz_port *port = &priv->port; 5485 int i; 5486 int p; 5487 int rc = 0; 5488 5489 priv->multicast = 0; 5490 priv->promiscuous = 0; 5491 5492 /* Reset device statistics. */ 5493 memset(&dev->stats, 0, sizeof(struct net_device_stats)); 5494 memset((void *) port->counter, 0, 5495 (sizeof(u64) * OID_COUNTER_LAST)); 5496 5497 if (!(hw_priv->opened)) { 5498 rc = prepare_hardware(dev); 5499 if (rc) 5500 return rc; 5501 for (i = 0; i < hw->mib_port_cnt; i++) { 5502 if (next_jiffies < jiffies) 5503 next_jiffies = jiffies + HZ * 2; 5504 else 5505 next_jiffies += HZ * 1; 5506 hw_priv->counter[i].time = next_jiffies; 5507 hw->port_mib[i].state = media_disconnected; 5508 port_init_cnt(hw, i); 5509 } 5510 if (hw->ksz_switch) 5511 hw->port_mib[HOST_PORT].state = media_connected; 5512 else { 5513 hw_add_wol_bcast(hw); 5514 hw_cfg_wol_pme(hw, 0); 5515 hw_clr_wol_pme_status(&hw_priv->hw); 5516 } 5517 } 5518 port_set_power_saving(port, false); 5519 5520 for (i = 0, p = port->first_port; i < port->port_cnt; i++, p++) { 5521 /* 5522 * Initialize to invalid value so that link detection 5523 * is done. 5524 */ 5525 hw->port_info[p].partner = 0xFF; 5526 hw->port_info[p].state = media_disconnected; 5527 } 5528 5529 /* Need to open the port in multiple device interfaces mode. */ 5530 if (hw->dev_count > 1) { 5531 port_set_stp_state(hw, port->first_port, STP_STATE_SIMPLE); 5532 if (port->first_port > 0) 5533 hw_add_addr(hw, dev->dev_addr); 5534 } 5535 5536 port_get_link_speed(port); 5537 if (port->force_link) 5538 port_force_link_speed(port); 5539 else 5540 port_set_link_speed(port); 5541 5542 if (!(hw_priv->opened)) { 5543 hw_setup_intr(hw); 5544 hw_enable(hw); 5545 hw_ena_intr(hw); 5546 5547 if (hw->mib_port_cnt) 5548 ksz_start_timer(&hw_priv->mib_timer_info, 5549 hw_priv->mib_timer_info.period); 5550 } 5551 5552 hw_priv->opened++; 5553 5554 ksz_start_timer(&priv->monitor_timer_info, 5555 priv->monitor_timer_info.period); 5556 5557 priv->media_state = port->linked->state; 5558 5559 set_media_state(dev, media_connected); 5560 netif_start_queue(dev); 5561 5562 return 0; 5563 } 5564 5565 /* RX errors = rx_errors */ 5566 /* RX dropped = rx_dropped */ 5567 /* RX overruns = rx_fifo_errors */ 5568 /* RX frame = rx_crc_errors + rx_frame_errors + rx_length_errors */ 5569 /* TX errors = tx_errors */ 5570 /* TX dropped = tx_dropped */ 5571 /* TX overruns = tx_fifo_errors */ 5572 /* TX carrier = tx_aborted_errors + tx_carrier_errors + tx_window_errors */ 5573 /* collisions = collisions */ 5574 5575 /** 5576 * netdev_query_statistics - query network device statistics 5577 * @dev: Network device. 5578 * 5579 * This function returns the statistics of the network device. The device 5580 * needs not be opened. 5581 * 5582 * Return network device statistics. 5583 */ 5584 static struct net_device_stats *netdev_query_statistics(struct net_device *dev) 5585 { 5586 struct dev_priv *priv = netdev_priv(dev); 5587 struct ksz_port *port = &priv->port; 5588 struct ksz_hw *hw = &priv->adapter->hw; 5589 struct ksz_port_mib *mib; 5590 int i; 5591 int p; 5592 5593 dev->stats.rx_errors = port->counter[OID_COUNTER_RCV_ERROR]; 5594 dev->stats.tx_errors = port->counter[OID_COUNTER_XMIT_ERROR]; 5595 5596 /* Reset to zero to add count later. */ 5597 dev->stats.multicast = 0; 5598 dev->stats.collisions = 0; 5599 dev->stats.rx_length_errors = 0; 5600 dev->stats.rx_crc_errors = 0; 5601 dev->stats.rx_frame_errors = 0; 5602 dev->stats.tx_window_errors = 0; 5603 5604 for (i = 0, p = port->first_port; i < port->mib_port_cnt; i++, p++) { 5605 mib = &hw->port_mib[p]; 5606 5607 dev->stats.multicast += (unsigned long) 5608 mib->counter[MIB_COUNTER_RX_MULTICAST]; 5609 5610 dev->stats.collisions += (unsigned long) 5611 mib->counter[MIB_COUNTER_TX_TOTAL_COLLISION]; 5612 5613 dev->stats.rx_length_errors += (unsigned long)( 5614 mib->counter[MIB_COUNTER_RX_UNDERSIZE] + 5615 mib->counter[MIB_COUNTER_RX_FRAGMENT] + 5616 mib->counter[MIB_COUNTER_RX_OVERSIZE] + 5617 mib->counter[MIB_COUNTER_RX_JABBER]); 5618 dev->stats.rx_crc_errors += (unsigned long) 5619 mib->counter[MIB_COUNTER_RX_CRC_ERR]; 5620 dev->stats.rx_frame_errors += (unsigned long)( 5621 mib->counter[MIB_COUNTER_RX_ALIGNMENT_ERR] + 5622 mib->counter[MIB_COUNTER_RX_SYMBOL_ERR]); 5623 5624 dev->stats.tx_window_errors += (unsigned long) 5625 mib->counter[MIB_COUNTER_TX_LATE_COLLISION]; 5626 } 5627 5628 return &dev->stats; 5629 } 5630 5631 /** 5632 * netdev_set_mac_address - set network device MAC address 5633 * @dev: Network device. 5634 * @addr: Buffer of MAC address. 5635 * 5636 * This function is used to set the MAC address of the network device. 5637 * 5638 * Return 0 to indicate success. 5639 */ 5640 static int netdev_set_mac_address(struct net_device *dev, void *addr) 5641 { 5642 struct dev_priv *priv = netdev_priv(dev); 5643 struct dev_info *hw_priv = priv->adapter; 5644 struct ksz_hw *hw = &hw_priv->hw; 5645 struct sockaddr *mac = addr; 5646 uint interrupt; 5647 5648 if (priv->port.first_port > 0) 5649 hw_del_addr(hw, dev->dev_addr); 5650 else { 5651 hw->mac_override = 1; 5652 memcpy(hw->override_addr, mac->sa_data, ETH_ALEN); 5653 } 5654 5655 memcpy(dev->dev_addr, mac->sa_data, ETH_ALEN); 5656 5657 interrupt = hw_block_intr(hw); 5658 5659 if (priv->port.first_port > 0) 5660 hw_add_addr(hw, dev->dev_addr); 5661 else 5662 hw_set_addr(hw); 5663 hw_restore_intr(hw, interrupt); 5664 5665 return 0; 5666 } 5667 5668 static void dev_set_promiscuous(struct net_device *dev, struct dev_priv *priv, 5669 struct ksz_hw *hw, int promiscuous) 5670 { 5671 if (promiscuous != priv->promiscuous) { 5672 u8 prev_state = hw->promiscuous; 5673 5674 if (promiscuous) 5675 ++hw->promiscuous; 5676 else 5677 --hw->promiscuous; 5678 priv->promiscuous = promiscuous; 5679 5680 /* Turn on/off promiscuous mode. */ 5681 if (hw->promiscuous <= 1 && prev_state <= 1) 5682 hw_set_promiscuous(hw, hw->promiscuous); 5683 5684 /* 5685 * Port is not in promiscuous mode, meaning it is released 5686 * from the bridge. 5687 */ 5688 if ((hw->features & STP_SUPPORT) && !promiscuous && 5689 netif_is_bridge_port(dev)) { 5690 struct ksz_switch *sw = hw->ksz_switch; 5691 int port = priv->port.first_port; 5692 5693 port_set_stp_state(hw, port, STP_STATE_DISABLED); 5694 port = 1 << port; 5695 if (sw->member & port) { 5696 sw->member &= ~port; 5697 bridge_change(hw); 5698 } 5699 } 5700 } 5701 } 5702 5703 static void dev_set_multicast(struct dev_priv *priv, struct ksz_hw *hw, 5704 int multicast) 5705 { 5706 if (multicast != priv->multicast) { 5707 u8 all_multi = hw->all_multi; 5708 5709 if (multicast) 5710 ++hw->all_multi; 5711 else 5712 --hw->all_multi; 5713 priv->multicast = multicast; 5714 5715 /* Turn on/off all multicast mode. */ 5716 if (hw->all_multi <= 1 && all_multi <= 1) 5717 hw_set_multicast(hw, hw->all_multi); 5718 } 5719 } 5720 5721 /** 5722 * netdev_set_rx_mode 5723 * @dev: Network device. 5724 * 5725 * This routine is used to set multicast addresses or put the network device 5726 * into promiscuous mode. 5727 */ 5728 static void netdev_set_rx_mode(struct net_device *dev) 5729 { 5730 struct dev_priv *priv = netdev_priv(dev); 5731 struct dev_info *hw_priv = priv->adapter; 5732 struct ksz_hw *hw = &hw_priv->hw; 5733 struct netdev_hw_addr *ha; 5734 int multicast = (dev->flags & IFF_ALLMULTI); 5735 5736 dev_set_promiscuous(dev, priv, hw, (dev->flags & IFF_PROMISC)); 5737 5738 if (hw_priv->hw.dev_count > 1) 5739 multicast |= (dev->flags & IFF_MULTICAST); 5740 dev_set_multicast(priv, hw, multicast); 5741 5742 /* Cannot use different hashes in multiple device interfaces mode. */ 5743 if (hw_priv->hw.dev_count > 1) 5744 return; 5745 5746 if ((dev->flags & IFF_MULTICAST) && !netdev_mc_empty(dev)) { 5747 int i = 0; 5748 5749 /* List too big to support so turn on all multicast mode. */ 5750 if (netdev_mc_count(dev) > MAX_MULTICAST_LIST) { 5751 if (MAX_MULTICAST_LIST != hw->multi_list_size) { 5752 hw->multi_list_size = MAX_MULTICAST_LIST; 5753 ++hw->all_multi; 5754 hw_set_multicast(hw, hw->all_multi); 5755 } 5756 return; 5757 } 5758 5759 netdev_for_each_mc_addr(ha, dev) { 5760 if (i >= MAX_MULTICAST_LIST) 5761 break; 5762 memcpy(hw->multi_list[i++], ha->addr, ETH_ALEN); 5763 } 5764 hw->multi_list_size = (u8) i; 5765 hw_set_grp_addr(hw); 5766 } else { 5767 if (MAX_MULTICAST_LIST == hw->multi_list_size) { 5768 --hw->all_multi; 5769 hw_set_multicast(hw, hw->all_multi); 5770 } 5771 hw->multi_list_size = 0; 5772 hw_clr_multicast(hw); 5773 } 5774 } 5775 5776 static int netdev_change_mtu(struct net_device *dev, int new_mtu) 5777 { 5778 struct dev_priv *priv = netdev_priv(dev); 5779 struct dev_info *hw_priv = priv->adapter; 5780 struct ksz_hw *hw = &hw_priv->hw; 5781 int hw_mtu; 5782 5783 if (netif_running(dev)) 5784 return -EBUSY; 5785 5786 /* Cannot use different MTU in multiple device interfaces mode. */ 5787 if (hw->dev_count > 1) 5788 if (dev != hw_priv->dev) 5789 return 0; 5790 5791 hw_mtu = new_mtu + ETHERNET_HEADER_SIZE + 4; 5792 if (hw_mtu > REGULAR_RX_BUF_SIZE) { 5793 hw->features |= RX_HUGE_FRAME; 5794 hw_mtu = MAX_RX_BUF_SIZE; 5795 } else { 5796 hw->features &= ~RX_HUGE_FRAME; 5797 hw_mtu = REGULAR_RX_BUF_SIZE; 5798 } 5799 hw_mtu = (hw_mtu + 3) & ~3; 5800 hw_priv->mtu = hw_mtu; 5801 dev->mtu = new_mtu; 5802 5803 return 0; 5804 } 5805 5806 /** 5807 * netdev_ioctl - I/O control processing 5808 * @dev: Network device. 5809 * @ifr: Interface request structure. 5810 * @cmd: I/O control code. 5811 * 5812 * This function is used to process I/O control calls. 5813 * 5814 * Return 0 to indicate success. 5815 */ 5816 static int netdev_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) 5817 { 5818 struct dev_priv *priv = netdev_priv(dev); 5819 struct dev_info *hw_priv = priv->adapter; 5820 struct ksz_hw *hw = &hw_priv->hw; 5821 struct ksz_port *port = &priv->port; 5822 int result = 0; 5823 struct mii_ioctl_data *data = if_mii(ifr); 5824 5825 if (down_interruptible(&priv->proc_sem)) 5826 return -ERESTARTSYS; 5827 5828 switch (cmd) { 5829 /* Get address of MII PHY in use. */ 5830 case SIOCGMIIPHY: 5831 data->phy_id = priv->id; 5832 5833 /* Fallthrough... */ 5834 5835 /* Read MII PHY register. */ 5836 case SIOCGMIIREG: 5837 if (data->phy_id != priv->id || data->reg_num >= 6) 5838 result = -EIO; 5839 else 5840 hw_r_phy(hw, port->linked->port_id, data->reg_num, 5841 &data->val_out); 5842 break; 5843 5844 /* Write MII PHY register. */ 5845 case SIOCSMIIREG: 5846 if (!capable(CAP_NET_ADMIN)) 5847 result = -EPERM; 5848 else if (data->phy_id != priv->id || data->reg_num >= 6) 5849 result = -EIO; 5850 else 5851 hw_w_phy(hw, port->linked->port_id, data->reg_num, 5852 data->val_in); 5853 break; 5854 5855 default: 5856 result = -EOPNOTSUPP; 5857 } 5858 5859 up(&priv->proc_sem); 5860 5861 return result; 5862 } 5863 5864 /* 5865 * MII support 5866 */ 5867 5868 /** 5869 * mdio_read - read PHY register 5870 * @dev: Network device. 5871 * @phy_id: The PHY id. 5872 * @reg_num: The register number. 5873 * 5874 * This function returns the PHY register value. 5875 * 5876 * Return the register value. 5877 */ 5878 static int mdio_read(struct net_device *dev, int phy_id, int reg_num) 5879 { 5880 struct dev_priv *priv = netdev_priv(dev); 5881 struct ksz_port *port = &priv->port; 5882 struct ksz_hw *hw = port->hw; 5883 u16 val_out; 5884 5885 hw_r_phy(hw, port->linked->port_id, reg_num << 1, &val_out); 5886 return val_out; 5887 } 5888 5889 /** 5890 * mdio_write - set PHY register 5891 * @dev: Network device. 5892 * @phy_id: The PHY id. 5893 * @reg_num: The register number. 5894 * @val: The register value. 5895 * 5896 * This procedure sets the PHY register value. 5897 */ 5898 static void mdio_write(struct net_device *dev, int phy_id, int reg_num, int val) 5899 { 5900 struct dev_priv *priv = netdev_priv(dev); 5901 struct ksz_port *port = &priv->port; 5902 struct ksz_hw *hw = port->hw; 5903 int i; 5904 int pi; 5905 5906 for (i = 0, pi = port->first_port; i < port->port_cnt; i++, pi++) 5907 hw_w_phy(hw, pi, reg_num << 1, val); 5908 } 5909 5910 /* 5911 * ethtool support 5912 */ 5913 5914 #define EEPROM_SIZE 0x40 5915 5916 static u16 eeprom_data[EEPROM_SIZE] = { 0 }; 5917 5918 #define ADVERTISED_ALL \ 5919 (ADVERTISED_10baseT_Half | \ 5920 ADVERTISED_10baseT_Full | \ 5921 ADVERTISED_100baseT_Half | \ 5922 ADVERTISED_100baseT_Full) 5923 5924 /* These functions use the MII functions in mii.c. */ 5925 5926 /** 5927 * netdev_get_link_ksettings - get network device settings 5928 * @dev: Network device. 5929 * @cmd: Ethtool command. 5930 * 5931 * This function queries the PHY and returns its state in the ethtool command. 5932 * 5933 * Return 0 if successful; otherwise an error code. 5934 */ 5935 static int netdev_get_link_ksettings(struct net_device *dev, 5936 struct ethtool_link_ksettings *cmd) 5937 { 5938 struct dev_priv *priv = netdev_priv(dev); 5939 struct dev_info *hw_priv = priv->adapter; 5940 5941 mutex_lock(&hw_priv->lock); 5942 mii_ethtool_get_link_ksettings(&priv->mii_if, cmd); 5943 ethtool_link_ksettings_add_link_mode(cmd, advertising, TP); 5944 mutex_unlock(&hw_priv->lock); 5945 5946 /* Save advertised settings for workaround in next function. */ 5947 ethtool_convert_link_mode_to_legacy_u32(&priv->advertising, 5948 cmd->link_modes.advertising); 5949 5950 return 0; 5951 } 5952 5953 /** 5954 * netdev_set_link_ksettings - set network device settings 5955 * @dev: Network device. 5956 * @cmd: Ethtool command. 5957 * 5958 * This function sets the PHY according to the ethtool command. 5959 * 5960 * Return 0 if successful; otherwise an error code. 5961 */ 5962 static int netdev_set_link_ksettings(struct net_device *dev, 5963 const struct ethtool_link_ksettings *cmd) 5964 { 5965 struct dev_priv *priv = netdev_priv(dev); 5966 struct dev_info *hw_priv = priv->adapter; 5967 struct ksz_port *port = &priv->port; 5968 struct ethtool_link_ksettings copy_cmd; 5969 u32 speed = cmd->base.speed; 5970 u32 advertising; 5971 int rc; 5972 5973 ethtool_convert_link_mode_to_legacy_u32(&advertising, 5974 cmd->link_modes.advertising); 5975 5976 /* 5977 * ethtool utility does not change advertised setting if auto 5978 * negotiation is not specified explicitly. 5979 */ 5980 if (cmd->base.autoneg && priv->advertising == advertising) { 5981 advertising |= ADVERTISED_ALL; 5982 if (10 == speed) 5983 advertising &= 5984 ~(ADVERTISED_100baseT_Full | 5985 ADVERTISED_100baseT_Half); 5986 else if (100 == speed) 5987 advertising &= 5988 ~(ADVERTISED_10baseT_Full | 5989 ADVERTISED_10baseT_Half); 5990 if (0 == cmd->base.duplex) 5991 advertising &= 5992 ~(ADVERTISED_100baseT_Full | 5993 ADVERTISED_10baseT_Full); 5994 else if (1 == cmd->base.duplex) 5995 advertising &= 5996 ~(ADVERTISED_100baseT_Half | 5997 ADVERTISED_10baseT_Half); 5998 } 5999 mutex_lock(&hw_priv->lock); 6000 if (cmd->base.autoneg && 6001 (advertising & ADVERTISED_ALL) == ADVERTISED_ALL) { 6002 port->duplex = 0; 6003 port->speed = 0; 6004 port->force_link = 0; 6005 } else { 6006 port->duplex = cmd->base.duplex + 1; 6007 if (1000 != speed) 6008 port->speed = speed; 6009 if (cmd->base.autoneg) 6010 port->force_link = 0; 6011 else 6012 port->force_link = 1; 6013 } 6014 6015 memcpy(©_cmd, cmd, sizeof(copy_cmd)); 6016 ethtool_convert_legacy_u32_to_link_mode(copy_cmd.link_modes.advertising, 6017 advertising); 6018 rc = mii_ethtool_set_link_ksettings( 6019 &priv->mii_if, 6020 (const struct ethtool_link_ksettings *)©_cmd); 6021 mutex_unlock(&hw_priv->lock); 6022 return rc; 6023 } 6024 6025 /** 6026 * netdev_nway_reset - restart auto-negotiation 6027 * @dev: Network device. 6028 * 6029 * This function restarts the PHY for auto-negotiation. 6030 * 6031 * Return 0 if successful; otherwise an error code. 6032 */ 6033 static int netdev_nway_reset(struct net_device *dev) 6034 { 6035 struct dev_priv *priv = netdev_priv(dev); 6036 struct dev_info *hw_priv = priv->adapter; 6037 int rc; 6038 6039 mutex_lock(&hw_priv->lock); 6040 rc = mii_nway_restart(&priv->mii_if); 6041 mutex_unlock(&hw_priv->lock); 6042 return rc; 6043 } 6044 6045 /** 6046 * netdev_get_link - get network device link status 6047 * @dev: Network device. 6048 * 6049 * This function gets the link status from the PHY. 6050 * 6051 * Return true if PHY is linked and false otherwise. 6052 */ 6053 static u32 netdev_get_link(struct net_device *dev) 6054 { 6055 struct dev_priv *priv = netdev_priv(dev); 6056 int rc; 6057 6058 rc = mii_link_ok(&priv->mii_if); 6059 return rc; 6060 } 6061 6062 /** 6063 * netdev_get_drvinfo - get network driver information 6064 * @dev: Network device. 6065 * @info: Ethtool driver info data structure. 6066 * 6067 * This procedure returns the driver information. 6068 */ 6069 static void netdev_get_drvinfo(struct net_device *dev, 6070 struct ethtool_drvinfo *info) 6071 { 6072 struct dev_priv *priv = netdev_priv(dev); 6073 struct dev_info *hw_priv = priv->adapter; 6074 6075 strlcpy(info->driver, DRV_NAME, sizeof(info->driver)); 6076 strlcpy(info->version, DRV_VERSION, sizeof(info->version)); 6077 strlcpy(info->bus_info, pci_name(hw_priv->pdev), 6078 sizeof(info->bus_info)); 6079 } 6080 6081 /** 6082 * netdev_get_regs_len - get length of register dump 6083 * @dev: Network device. 6084 * 6085 * This function returns the length of the register dump. 6086 * 6087 * Return length of the register dump. 6088 */ 6089 static struct hw_regs { 6090 int start; 6091 int end; 6092 } hw_regs_range[] = { 6093 { KS_DMA_TX_CTRL, KS884X_INTERRUPTS_STATUS }, 6094 { KS_ADD_ADDR_0_LO, KS_ADD_ADDR_F_HI }, 6095 { KS884X_ADDR_0_OFFSET, KS8841_WOL_FRAME_BYTE2_OFFSET }, 6096 { KS884X_SIDER_P, KS8842_SGCR7_P }, 6097 { KS8842_MACAR1_P, KS8842_TOSR8_P }, 6098 { KS884X_P1MBCR_P, KS8842_P3ERCR_P }, 6099 { 0, 0 } 6100 }; 6101 6102 static int netdev_get_regs_len(struct net_device *dev) 6103 { 6104 struct hw_regs *range = hw_regs_range; 6105 int regs_len = 0x10 * sizeof(u32); 6106 6107 while (range->end > range->start) { 6108 regs_len += (range->end - range->start + 3) / 4 * 4; 6109 range++; 6110 } 6111 return regs_len; 6112 } 6113 6114 /** 6115 * netdev_get_regs - get register dump 6116 * @dev: Network device. 6117 * @regs: Ethtool registers data structure. 6118 * @ptr: Buffer to store the register values. 6119 * 6120 * This procedure dumps the register values in the provided buffer. 6121 */ 6122 static void netdev_get_regs(struct net_device *dev, struct ethtool_regs *regs, 6123 void *ptr) 6124 { 6125 struct dev_priv *priv = netdev_priv(dev); 6126 struct dev_info *hw_priv = priv->adapter; 6127 struct ksz_hw *hw = &hw_priv->hw; 6128 int *buf = (int *) ptr; 6129 struct hw_regs *range = hw_regs_range; 6130 int len; 6131 6132 mutex_lock(&hw_priv->lock); 6133 regs->version = 0; 6134 for (len = 0; len < 0x40; len += 4) { 6135 pci_read_config_dword(hw_priv->pdev, len, buf); 6136 buf++; 6137 } 6138 while (range->end > range->start) { 6139 for (len = range->start; len < range->end; len += 4) { 6140 *buf = readl(hw->io + len); 6141 buf++; 6142 } 6143 range++; 6144 } 6145 mutex_unlock(&hw_priv->lock); 6146 } 6147 6148 #define WOL_SUPPORT \ 6149 (WAKE_PHY | WAKE_MAGIC | \ 6150 WAKE_UCAST | WAKE_MCAST | \ 6151 WAKE_BCAST | WAKE_ARP) 6152 6153 /** 6154 * netdev_get_wol - get Wake-on-LAN support 6155 * @dev: Network device. 6156 * @wol: Ethtool Wake-on-LAN data structure. 6157 * 6158 * This procedure returns Wake-on-LAN support. 6159 */ 6160 static void netdev_get_wol(struct net_device *dev, 6161 struct ethtool_wolinfo *wol) 6162 { 6163 struct dev_priv *priv = netdev_priv(dev); 6164 struct dev_info *hw_priv = priv->adapter; 6165 6166 wol->supported = hw_priv->wol_support; 6167 wol->wolopts = hw_priv->wol_enable; 6168 memset(&wol->sopass, 0, sizeof(wol->sopass)); 6169 } 6170 6171 /** 6172 * netdev_set_wol - set Wake-on-LAN support 6173 * @dev: Network device. 6174 * @wol: Ethtool Wake-on-LAN data structure. 6175 * 6176 * This function sets Wake-on-LAN support. 6177 * 6178 * Return 0 if successful; otherwise an error code. 6179 */ 6180 static int netdev_set_wol(struct net_device *dev, 6181 struct ethtool_wolinfo *wol) 6182 { 6183 struct dev_priv *priv = netdev_priv(dev); 6184 struct dev_info *hw_priv = priv->adapter; 6185 6186 /* Need to find a way to retrieve the device IP address. */ 6187 static const u8 net_addr[] = { 192, 168, 1, 1 }; 6188 6189 if (wol->wolopts & ~hw_priv->wol_support) 6190 return -EINVAL; 6191 6192 hw_priv->wol_enable = wol->wolopts; 6193 6194 /* Link wakeup cannot really be disabled. */ 6195 if (wol->wolopts) 6196 hw_priv->wol_enable |= WAKE_PHY; 6197 hw_enable_wol(&hw_priv->hw, hw_priv->wol_enable, net_addr); 6198 return 0; 6199 } 6200 6201 /** 6202 * netdev_get_msglevel - get debug message level 6203 * @dev: Network device. 6204 * 6205 * This function returns current debug message level. 6206 * 6207 * Return current debug message flags. 6208 */ 6209 static u32 netdev_get_msglevel(struct net_device *dev) 6210 { 6211 struct dev_priv *priv = netdev_priv(dev); 6212 6213 return priv->msg_enable; 6214 } 6215 6216 /** 6217 * netdev_set_msglevel - set debug message level 6218 * @dev: Network device. 6219 * @value: Debug message flags. 6220 * 6221 * This procedure sets debug message level. 6222 */ 6223 static void netdev_set_msglevel(struct net_device *dev, u32 value) 6224 { 6225 struct dev_priv *priv = netdev_priv(dev); 6226 6227 priv->msg_enable = value; 6228 } 6229 6230 /** 6231 * netdev_get_eeprom_len - get EEPROM length 6232 * @dev: Network device. 6233 * 6234 * This function returns the length of the EEPROM. 6235 * 6236 * Return length of the EEPROM. 6237 */ 6238 static int netdev_get_eeprom_len(struct net_device *dev) 6239 { 6240 return EEPROM_SIZE * 2; 6241 } 6242 6243 /** 6244 * netdev_get_eeprom - get EEPROM data 6245 * @dev: Network device. 6246 * @eeprom: Ethtool EEPROM data structure. 6247 * @data: Buffer to store the EEPROM data. 6248 * 6249 * This function dumps the EEPROM data in the provided buffer. 6250 * 6251 * Return 0 if successful; otherwise an error code. 6252 */ 6253 #define EEPROM_MAGIC 0x10A18842 6254 6255 static int netdev_get_eeprom(struct net_device *dev, 6256 struct ethtool_eeprom *eeprom, u8 *data) 6257 { 6258 struct dev_priv *priv = netdev_priv(dev); 6259 struct dev_info *hw_priv = priv->adapter; 6260 u8 *eeprom_byte = (u8 *) eeprom_data; 6261 int i; 6262 int len; 6263 6264 len = (eeprom->offset + eeprom->len + 1) / 2; 6265 for (i = eeprom->offset / 2; i < len; i++) 6266 eeprom_data[i] = eeprom_read(&hw_priv->hw, i); 6267 eeprom->magic = EEPROM_MAGIC; 6268 memcpy(data, &eeprom_byte[eeprom->offset], eeprom->len); 6269 6270 return 0; 6271 } 6272 6273 /** 6274 * netdev_set_eeprom - write EEPROM data 6275 * @dev: Network device. 6276 * @eeprom: Ethtool EEPROM data structure. 6277 * @data: Data buffer. 6278 * 6279 * This function modifies the EEPROM data one byte at a time. 6280 * 6281 * Return 0 if successful; otherwise an error code. 6282 */ 6283 static int netdev_set_eeprom(struct net_device *dev, 6284 struct ethtool_eeprom *eeprom, u8 *data) 6285 { 6286 struct dev_priv *priv = netdev_priv(dev); 6287 struct dev_info *hw_priv = priv->adapter; 6288 u16 eeprom_word[EEPROM_SIZE]; 6289 u8 *eeprom_byte = (u8 *) eeprom_word; 6290 int i; 6291 int len; 6292 6293 if (eeprom->magic != EEPROM_MAGIC) 6294 return -EINVAL; 6295 6296 len = (eeprom->offset + eeprom->len + 1) / 2; 6297 for (i = eeprom->offset / 2; i < len; i++) 6298 eeprom_data[i] = eeprom_read(&hw_priv->hw, i); 6299 memcpy(eeprom_word, eeprom_data, EEPROM_SIZE * 2); 6300 memcpy(&eeprom_byte[eeprom->offset], data, eeprom->len); 6301 for (i = 0; i < EEPROM_SIZE; i++) 6302 if (eeprom_word[i] != eeprom_data[i]) { 6303 eeprom_data[i] = eeprom_word[i]; 6304 eeprom_write(&hw_priv->hw, i, eeprom_data[i]); 6305 } 6306 6307 return 0; 6308 } 6309 6310 /** 6311 * netdev_get_pauseparam - get flow control parameters 6312 * @dev: Network device. 6313 * @pause: Ethtool PAUSE settings data structure. 6314 * 6315 * This procedure returns the PAUSE control flow settings. 6316 */ 6317 static void netdev_get_pauseparam(struct net_device *dev, 6318 struct ethtool_pauseparam *pause) 6319 { 6320 struct dev_priv *priv = netdev_priv(dev); 6321 struct dev_info *hw_priv = priv->adapter; 6322 struct ksz_hw *hw = &hw_priv->hw; 6323 6324 pause->autoneg = (hw->overrides & PAUSE_FLOW_CTRL) ? 0 : 1; 6325 if (!hw->ksz_switch) { 6326 pause->rx_pause = 6327 (hw->rx_cfg & DMA_RX_FLOW_ENABLE) ? 1 : 0; 6328 pause->tx_pause = 6329 (hw->tx_cfg & DMA_TX_FLOW_ENABLE) ? 1 : 0; 6330 } else { 6331 pause->rx_pause = 6332 (sw_chk(hw, KS8842_SWITCH_CTRL_1_OFFSET, 6333 SWITCH_RX_FLOW_CTRL)) ? 1 : 0; 6334 pause->tx_pause = 6335 (sw_chk(hw, KS8842_SWITCH_CTRL_1_OFFSET, 6336 SWITCH_TX_FLOW_CTRL)) ? 1 : 0; 6337 } 6338 } 6339 6340 /** 6341 * netdev_set_pauseparam - set flow control parameters 6342 * @dev: Network device. 6343 * @pause: Ethtool PAUSE settings data structure. 6344 * 6345 * This function sets the PAUSE control flow settings. 6346 * Not implemented yet. 6347 * 6348 * Return 0 if successful; otherwise an error code. 6349 */ 6350 static int netdev_set_pauseparam(struct net_device *dev, 6351 struct ethtool_pauseparam *pause) 6352 { 6353 struct dev_priv *priv = netdev_priv(dev); 6354 struct dev_info *hw_priv = priv->adapter; 6355 struct ksz_hw *hw = &hw_priv->hw; 6356 struct ksz_port *port = &priv->port; 6357 6358 mutex_lock(&hw_priv->lock); 6359 if (pause->autoneg) { 6360 if (!pause->rx_pause && !pause->tx_pause) 6361 port->flow_ctrl = PHY_NO_FLOW_CTRL; 6362 else 6363 port->flow_ctrl = PHY_FLOW_CTRL; 6364 hw->overrides &= ~PAUSE_FLOW_CTRL; 6365 port->force_link = 0; 6366 if (hw->ksz_switch) { 6367 sw_cfg(hw, KS8842_SWITCH_CTRL_1_OFFSET, 6368 SWITCH_RX_FLOW_CTRL, 1); 6369 sw_cfg(hw, KS8842_SWITCH_CTRL_1_OFFSET, 6370 SWITCH_TX_FLOW_CTRL, 1); 6371 } 6372 port_set_link_speed(port); 6373 } else { 6374 hw->overrides |= PAUSE_FLOW_CTRL; 6375 if (hw->ksz_switch) { 6376 sw_cfg(hw, KS8842_SWITCH_CTRL_1_OFFSET, 6377 SWITCH_RX_FLOW_CTRL, pause->rx_pause); 6378 sw_cfg(hw, KS8842_SWITCH_CTRL_1_OFFSET, 6379 SWITCH_TX_FLOW_CTRL, pause->tx_pause); 6380 } else 6381 set_flow_ctrl(hw, pause->rx_pause, pause->tx_pause); 6382 } 6383 mutex_unlock(&hw_priv->lock); 6384 6385 return 0; 6386 } 6387 6388 /** 6389 * netdev_get_ringparam - get tx/rx ring parameters 6390 * @dev: Network device. 6391 * @pause: Ethtool RING settings data structure. 6392 * 6393 * This procedure returns the TX/RX ring settings. 6394 */ 6395 static void netdev_get_ringparam(struct net_device *dev, 6396 struct ethtool_ringparam *ring) 6397 { 6398 struct dev_priv *priv = netdev_priv(dev); 6399 struct dev_info *hw_priv = priv->adapter; 6400 struct ksz_hw *hw = &hw_priv->hw; 6401 6402 ring->tx_max_pending = (1 << 9); 6403 ring->tx_pending = hw->tx_desc_info.alloc; 6404 ring->rx_max_pending = (1 << 9); 6405 ring->rx_pending = hw->rx_desc_info.alloc; 6406 } 6407 6408 #define STATS_LEN (TOTAL_PORT_COUNTER_NUM) 6409 6410 static struct { 6411 char string[ETH_GSTRING_LEN]; 6412 } ethtool_stats_keys[STATS_LEN] = { 6413 { "rx_lo_priority_octets" }, 6414 { "rx_hi_priority_octets" }, 6415 { "rx_undersize_packets" }, 6416 { "rx_fragments" }, 6417 { "rx_oversize_packets" }, 6418 { "rx_jabbers" }, 6419 { "rx_symbol_errors" }, 6420 { "rx_crc_errors" }, 6421 { "rx_align_errors" }, 6422 { "rx_mac_ctrl_packets" }, 6423 { "rx_pause_packets" }, 6424 { "rx_bcast_packets" }, 6425 { "rx_mcast_packets" }, 6426 { "rx_ucast_packets" }, 6427 { "rx_64_or_less_octet_packets" }, 6428 { "rx_65_to_127_octet_packets" }, 6429 { "rx_128_to_255_octet_packets" }, 6430 { "rx_256_to_511_octet_packets" }, 6431 { "rx_512_to_1023_octet_packets" }, 6432 { "rx_1024_to_1522_octet_packets" }, 6433 6434 { "tx_lo_priority_octets" }, 6435 { "tx_hi_priority_octets" }, 6436 { "tx_late_collisions" }, 6437 { "tx_pause_packets" }, 6438 { "tx_bcast_packets" }, 6439 { "tx_mcast_packets" }, 6440 { "tx_ucast_packets" }, 6441 { "tx_deferred" }, 6442 { "tx_total_collisions" }, 6443 { "tx_excessive_collisions" }, 6444 { "tx_single_collisions" }, 6445 { "tx_mult_collisions" }, 6446 6447 { "rx_discards" }, 6448 { "tx_discards" }, 6449 }; 6450 6451 /** 6452 * netdev_get_strings - get statistics identity strings 6453 * @dev: Network device. 6454 * @stringset: String set identifier. 6455 * @buf: Buffer to store the strings. 6456 * 6457 * This procedure returns the strings used to identify the statistics. 6458 */ 6459 static void netdev_get_strings(struct net_device *dev, u32 stringset, u8 *buf) 6460 { 6461 struct dev_priv *priv = netdev_priv(dev); 6462 struct dev_info *hw_priv = priv->adapter; 6463 struct ksz_hw *hw = &hw_priv->hw; 6464 6465 if (ETH_SS_STATS == stringset) 6466 memcpy(buf, ðtool_stats_keys, 6467 ETH_GSTRING_LEN * hw->mib_cnt); 6468 } 6469 6470 /** 6471 * netdev_get_sset_count - get statistics size 6472 * @dev: Network device. 6473 * @sset: The statistics set number. 6474 * 6475 * This function returns the size of the statistics to be reported. 6476 * 6477 * Return size of the statistics to be reported. 6478 */ 6479 static int netdev_get_sset_count(struct net_device *dev, int sset) 6480 { 6481 struct dev_priv *priv = netdev_priv(dev); 6482 struct dev_info *hw_priv = priv->adapter; 6483 struct ksz_hw *hw = &hw_priv->hw; 6484 6485 switch (sset) { 6486 case ETH_SS_STATS: 6487 return hw->mib_cnt; 6488 default: 6489 return -EOPNOTSUPP; 6490 } 6491 } 6492 6493 /** 6494 * netdev_get_ethtool_stats - get network device statistics 6495 * @dev: Network device. 6496 * @stats: Ethtool statistics data structure. 6497 * @data: Buffer to store the statistics. 6498 * 6499 * This procedure returns the statistics. 6500 */ 6501 static void netdev_get_ethtool_stats(struct net_device *dev, 6502 struct ethtool_stats *stats, u64 *data) 6503 { 6504 struct dev_priv *priv = netdev_priv(dev); 6505 struct dev_info *hw_priv = priv->adapter; 6506 struct ksz_hw *hw = &hw_priv->hw; 6507 struct ksz_port *port = &priv->port; 6508 int n_stats = stats->n_stats; 6509 int i; 6510 int n; 6511 int p; 6512 int rc; 6513 u64 counter[TOTAL_PORT_COUNTER_NUM]; 6514 6515 mutex_lock(&hw_priv->lock); 6516 n = SWITCH_PORT_NUM; 6517 for (i = 0, p = port->first_port; i < port->mib_port_cnt; i++, p++) { 6518 if (media_connected == hw->port_mib[p].state) { 6519 hw_priv->counter[p].read = 1; 6520 6521 /* Remember first port that requests read. */ 6522 if (n == SWITCH_PORT_NUM) 6523 n = p; 6524 } 6525 } 6526 mutex_unlock(&hw_priv->lock); 6527 6528 if (n < SWITCH_PORT_NUM) 6529 schedule_work(&hw_priv->mib_read); 6530 6531 if (1 == port->mib_port_cnt && n < SWITCH_PORT_NUM) { 6532 p = n; 6533 rc = wait_event_interruptible_timeout( 6534 hw_priv->counter[p].counter, 6535 2 == hw_priv->counter[p].read, 6536 HZ * 1); 6537 } else 6538 for (i = 0, p = n; i < port->mib_port_cnt - n; i++, p++) { 6539 if (0 == i) { 6540 rc = wait_event_interruptible_timeout( 6541 hw_priv->counter[p].counter, 6542 2 == hw_priv->counter[p].read, 6543 HZ * 2); 6544 } else if (hw->port_mib[p].cnt_ptr) { 6545 rc = wait_event_interruptible_timeout( 6546 hw_priv->counter[p].counter, 6547 2 == hw_priv->counter[p].read, 6548 HZ * 1); 6549 } 6550 } 6551 6552 get_mib_counters(hw, port->first_port, port->mib_port_cnt, counter); 6553 n = hw->mib_cnt; 6554 if (n > n_stats) 6555 n = n_stats; 6556 n_stats -= n; 6557 for (i = 0; i < n; i++) 6558 *data++ = counter[i]; 6559 } 6560 6561 /** 6562 * netdev_set_features - set receive checksum support 6563 * @dev: Network device. 6564 * @features: New device features (offloads). 6565 * 6566 * This function sets receive checksum support setting. 6567 * 6568 * Return 0 if successful; otherwise an error code. 6569 */ 6570 static int netdev_set_features(struct net_device *dev, 6571 netdev_features_t features) 6572 { 6573 struct dev_priv *priv = netdev_priv(dev); 6574 struct dev_info *hw_priv = priv->adapter; 6575 struct ksz_hw *hw = &hw_priv->hw; 6576 6577 mutex_lock(&hw_priv->lock); 6578 6579 /* see note in hw_setup() */ 6580 if (features & NETIF_F_RXCSUM) 6581 hw->rx_cfg |= DMA_RX_CSUM_TCP | DMA_RX_CSUM_IP; 6582 else 6583 hw->rx_cfg &= ~(DMA_RX_CSUM_TCP | DMA_RX_CSUM_IP); 6584 6585 if (hw->enabled) 6586 writel(hw->rx_cfg, hw->io + KS_DMA_RX_CTRL); 6587 6588 mutex_unlock(&hw_priv->lock); 6589 6590 return 0; 6591 } 6592 6593 static const struct ethtool_ops netdev_ethtool_ops = { 6594 .nway_reset = netdev_nway_reset, 6595 .get_link = netdev_get_link, 6596 .get_drvinfo = netdev_get_drvinfo, 6597 .get_regs_len = netdev_get_regs_len, 6598 .get_regs = netdev_get_regs, 6599 .get_wol = netdev_get_wol, 6600 .set_wol = netdev_set_wol, 6601 .get_msglevel = netdev_get_msglevel, 6602 .set_msglevel = netdev_set_msglevel, 6603 .get_eeprom_len = netdev_get_eeprom_len, 6604 .get_eeprom = netdev_get_eeprom, 6605 .set_eeprom = netdev_set_eeprom, 6606 .get_pauseparam = netdev_get_pauseparam, 6607 .set_pauseparam = netdev_set_pauseparam, 6608 .get_ringparam = netdev_get_ringparam, 6609 .get_strings = netdev_get_strings, 6610 .get_sset_count = netdev_get_sset_count, 6611 .get_ethtool_stats = netdev_get_ethtool_stats, 6612 .get_link_ksettings = netdev_get_link_ksettings, 6613 .set_link_ksettings = netdev_set_link_ksettings, 6614 }; 6615 6616 /* 6617 * Hardware monitoring 6618 */ 6619 6620 static void update_link(struct net_device *dev, struct dev_priv *priv, 6621 struct ksz_port *port) 6622 { 6623 if (priv->media_state != port->linked->state) { 6624 priv->media_state = port->linked->state; 6625 if (netif_running(dev)) 6626 set_media_state(dev, media_connected); 6627 } 6628 } 6629 6630 static void mib_read_work(struct work_struct *work) 6631 { 6632 struct dev_info *hw_priv = 6633 container_of(work, struct dev_info, mib_read); 6634 struct ksz_hw *hw = &hw_priv->hw; 6635 struct ksz_port_mib *mib; 6636 int i; 6637 6638 next_jiffies = jiffies; 6639 for (i = 0; i < hw->mib_port_cnt; i++) { 6640 mib = &hw->port_mib[i]; 6641 6642 /* Reading MIB counters or requested to read. */ 6643 if (mib->cnt_ptr || 1 == hw_priv->counter[i].read) { 6644 6645 /* Need to process receive interrupt. */ 6646 if (port_r_cnt(hw, i)) 6647 break; 6648 hw_priv->counter[i].read = 0; 6649 6650 /* Finish reading counters. */ 6651 if (0 == mib->cnt_ptr) { 6652 hw_priv->counter[i].read = 2; 6653 wake_up_interruptible( 6654 &hw_priv->counter[i].counter); 6655 } 6656 } else if (time_after_eq(jiffies, hw_priv->counter[i].time)) { 6657 /* Only read MIB counters when the port is connected. */ 6658 if (media_connected == mib->state) 6659 hw_priv->counter[i].read = 1; 6660 next_jiffies += HZ * 1 * hw->mib_port_cnt; 6661 hw_priv->counter[i].time = next_jiffies; 6662 6663 /* Port is just disconnected. */ 6664 } else if (mib->link_down) { 6665 mib->link_down = 0; 6666 6667 /* Read counters one last time after link is lost. */ 6668 hw_priv->counter[i].read = 1; 6669 } 6670 } 6671 } 6672 6673 static void mib_monitor(struct timer_list *t) 6674 { 6675 struct dev_info *hw_priv = from_timer(hw_priv, t, mib_timer_info.timer); 6676 6677 mib_read_work(&hw_priv->mib_read); 6678 6679 /* This is used to verify Wake-on-LAN is working. */ 6680 if (hw_priv->pme_wait) { 6681 if (time_is_before_eq_jiffies(hw_priv->pme_wait)) { 6682 hw_clr_wol_pme_status(&hw_priv->hw); 6683 hw_priv->pme_wait = 0; 6684 } 6685 } else if (hw_chk_wol_pme_status(&hw_priv->hw)) { 6686 6687 /* PME is asserted. Wait 2 seconds to clear it. */ 6688 hw_priv->pme_wait = jiffies + HZ * 2; 6689 } 6690 6691 ksz_update_timer(&hw_priv->mib_timer_info); 6692 } 6693 6694 /** 6695 * dev_monitor - periodic monitoring 6696 * @ptr: Network device pointer. 6697 * 6698 * This routine is run in a kernel timer to monitor the network device. 6699 */ 6700 static void dev_monitor(struct timer_list *t) 6701 { 6702 struct dev_priv *priv = from_timer(priv, t, monitor_timer_info.timer); 6703 struct net_device *dev = priv->mii_if.dev; 6704 struct dev_info *hw_priv = priv->adapter; 6705 struct ksz_hw *hw = &hw_priv->hw; 6706 struct ksz_port *port = &priv->port; 6707 6708 if (!(hw->features & LINK_INT_WORKING)) 6709 port_get_link_speed(port); 6710 update_link(dev, priv, port); 6711 6712 ksz_update_timer(&priv->monitor_timer_info); 6713 } 6714 6715 /* 6716 * Linux network device interface functions 6717 */ 6718 6719 /* Driver exported variables */ 6720 6721 static int msg_enable; 6722 6723 static char *macaddr = ":"; 6724 static char *mac1addr = ":"; 6725 6726 /* 6727 * This enables multiple network device mode for KSZ8842, which contains a 6728 * switch with two physical ports. Some users like to take control of the 6729 * ports for running Spanning Tree Protocol. The driver will create an 6730 * additional eth? device for the other port. 6731 * 6732 * Some limitations are the network devices cannot have different MTU and 6733 * multicast hash tables. 6734 */ 6735 static int multi_dev; 6736 6737 /* 6738 * As most users select multiple network device mode to use Spanning Tree 6739 * Protocol, this enables a feature in which most unicast and multicast packets 6740 * are forwarded inside the switch and not passed to the host. Only packets 6741 * that need the host's attention are passed to it. This prevents the host 6742 * wasting CPU time to examine each and every incoming packets and do the 6743 * forwarding itself. 6744 * 6745 * As the hack requires the private bridge header, the driver cannot compile 6746 * with just the kernel headers. 6747 * 6748 * Enabling STP support also turns on multiple network device mode. 6749 */ 6750 static int stp; 6751 6752 /* 6753 * This enables fast aging in the KSZ8842 switch. Not sure what situation 6754 * needs that. However, fast aging is used to flush the dynamic MAC table when 6755 * STP support is enabled. 6756 */ 6757 static int fast_aging; 6758 6759 /** 6760 * netdev_init - initialize network device. 6761 * @dev: Network device. 6762 * 6763 * This function initializes the network device. 6764 * 6765 * Return 0 if successful; otherwise an error code indicating failure. 6766 */ 6767 static int __init netdev_init(struct net_device *dev) 6768 { 6769 struct dev_priv *priv = netdev_priv(dev); 6770 6771 /* 500 ms timeout */ 6772 ksz_init_timer(&priv->monitor_timer_info, 500 * HZ / 1000, 6773 dev_monitor); 6774 6775 /* 500 ms timeout */ 6776 dev->watchdog_timeo = HZ / 2; 6777 6778 dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG | NETIF_F_RXCSUM; 6779 6780 /* 6781 * Hardware does not really support IPv6 checksum generation, but 6782 * driver actually runs faster with this on. 6783 */ 6784 dev->hw_features |= NETIF_F_IPV6_CSUM; 6785 6786 dev->features |= dev->hw_features; 6787 6788 sema_init(&priv->proc_sem, 1); 6789 6790 priv->mii_if.phy_id_mask = 0x1; 6791 priv->mii_if.reg_num_mask = 0x7; 6792 priv->mii_if.dev = dev; 6793 priv->mii_if.mdio_read = mdio_read; 6794 priv->mii_if.mdio_write = mdio_write; 6795 priv->mii_if.phy_id = priv->port.first_port + 1; 6796 6797 priv->msg_enable = netif_msg_init(msg_enable, 6798 (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK)); 6799 6800 return 0; 6801 } 6802 6803 static const struct net_device_ops netdev_ops = { 6804 .ndo_init = netdev_init, 6805 .ndo_open = netdev_open, 6806 .ndo_stop = netdev_close, 6807 .ndo_get_stats = netdev_query_statistics, 6808 .ndo_start_xmit = netdev_tx, 6809 .ndo_tx_timeout = netdev_tx_timeout, 6810 .ndo_change_mtu = netdev_change_mtu, 6811 .ndo_set_features = netdev_set_features, 6812 .ndo_set_mac_address = netdev_set_mac_address, 6813 .ndo_validate_addr = eth_validate_addr, 6814 .ndo_do_ioctl = netdev_ioctl, 6815 .ndo_set_rx_mode = netdev_set_rx_mode, 6816 #ifdef CONFIG_NET_POLL_CONTROLLER 6817 .ndo_poll_controller = netdev_netpoll, 6818 #endif 6819 }; 6820 6821 static void netdev_free(struct net_device *dev) 6822 { 6823 if (dev->watchdog_timeo) 6824 unregister_netdev(dev); 6825 6826 free_netdev(dev); 6827 } 6828 6829 struct platform_info { 6830 struct dev_info dev_info; 6831 struct net_device *netdev[SWITCH_PORT_NUM]; 6832 }; 6833 6834 static int net_device_present; 6835 6836 static void get_mac_addr(struct dev_info *hw_priv, u8 *macaddr, int port) 6837 { 6838 int i; 6839 int j; 6840 int got_num; 6841 int num; 6842 6843 i = j = num = got_num = 0; 6844 while (j < ETH_ALEN) { 6845 if (macaddr[i]) { 6846 int digit; 6847 6848 got_num = 1; 6849 digit = hex_to_bin(macaddr[i]); 6850 if (digit >= 0) 6851 num = num * 16 + digit; 6852 else if (':' == macaddr[i]) 6853 got_num = 2; 6854 else 6855 break; 6856 } else if (got_num) 6857 got_num = 2; 6858 else 6859 break; 6860 if (2 == got_num) { 6861 if (MAIN_PORT == port) { 6862 hw_priv->hw.override_addr[j++] = (u8) num; 6863 hw_priv->hw.override_addr[5] += 6864 hw_priv->hw.id; 6865 } else { 6866 hw_priv->hw.ksz_switch->other_addr[j++] = 6867 (u8) num; 6868 hw_priv->hw.ksz_switch->other_addr[5] += 6869 hw_priv->hw.id; 6870 } 6871 num = got_num = 0; 6872 } 6873 i++; 6874 } 6875 if (ETH_ALEN == j) { 6876 if (MAIN_PORT == port) 6877 hw_priv->hw.mac_override = 1; 6878 } 6879 } 6880 6881 #define KS884X_DMA_MASK (~0x0UL) 6882 6883 static void read_other_addr(struct ksz_hw *hw) 6884 { 6885 int i; 6886 u16 data[3]; 6887 struct ksz_switch *sw = hw->ksz_switch; 6888 6889 for (i = 0; i < 3; i++) 6890 data[i] = eeprom_read(hw, i + EEPROM_DATA_OTHER_MAC_ADDR); 6891 if ((data[0] || data[1] || data[2]) && data[0] != 0xffff) { 6892 sw->other_addr[5] = (u8) data[0]; 6893 sw->other_addr[4] = (u8)(data[0] >> 8); 6894 sw->other_addr[3] = (u8) data[1]; 6895 sw->other_addr[2] = (u8)(data[1] >> 8); 6896 sw->other_addr[1] = (u8) data[2]; 6897 sw->other_addr[0] = (u8)(data[2] >> 8); 6898 } 6899 } 6900 6901 #ifndef PCI_VENDOR_ID_MICREL_KS 6902 #define PCI_VENDOR_ID_MICREL_KS 0x16c6 6903 #endif 6904 6905 static int pcidev_init(struct pci_dev *pdev, const struct pci_device_id *id) 6906 { 6907 struct net_device *dev; 6908 struct dev_priv *priv; 6909 struct dev_info *hw_priv; 6910 struct ksz_hw *hw; 6911 struct platform_info *info; 6912 struct ksz_port *port; 6913 unsigned long reg_base; 6914 unsigned long reg_len; 6915 int cnt; 6916 int i; 6917 int mib_port_count; 6918 int pi; 6919 int port_count; 6920 int result; 6921 char banner[sizeof(version)]; 6922 struct ksz_switch *sw = NULL; 6923 6924 result = pci_enable_device(pdev); 6925 if (result) 6926 return result; 6927 6928 result = -ENODEV; 6929 6930 if (dma_set_mask(&pdev->dev, DMA_BIT_MASK(32)) || 6931 dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32))) 6932 return result; 6933 6934 reg_base = pci_resource_start(pdev, 0); 6935 reg_len = pci_resource_len(pdev, 0); 6936 if ((pci_resource_flags(pdev, 0) & IORESOURCE_IO) != 0) 6937 return result; 6938 6939 if (!request_mem_region(reg_base, reg_len, DRV_NAME)) 6940 return result; 6941 pci_set_master(pdev); 6942 6943 result = -ENOMEM; 6944 6945 info = kzalloc(sizeof(struct platform_info), GFP_KERNEL); 6946 if (!info) 6947 goto pcidev_init_dev_err; 6948 6949 hw_priv = &info->dev_info; 6950 hw_priv->pdev = pdev; 6951 6952 hw = &hw_priv->hw; 6953 6954 hw->io = ioremap(reg_base, reg_len); 6955 if (!hw->io) 6956 goto pcidev_init_io_err; 6957 6958 cnt = hw_init(hw); 6959 if (!cnt) { 6960 if (msg_enable & NETIF_MSG_PROBE) 6961 pr_alert("chip not detected\n"); 6962 result = -ENODEV; 6963 goto pcidev_init_alloc_err; 6964 } 6965 6966 snprintf(banner, sizeof(banner), "%s", version); 6967 banner[13] = cnt + '0'; /* Replace x in "Micrel KSZ884x" */ 6968 dev_info(&hw_priv->pdev->dev, "%s\n", banner); 6969 dev_dbg(&hw_priv->pdev->dev, "Mem = %p; IRQ = %d\n", hw->io, pdev->irq); 6970 6971 /* Assume device is KSZ8841. */ 6972 hw->dev_count = 1; 6973 port_count = 1; 6974 mib_port_count = 1; 6975 hw->addr_list_size = 0; 6976 hw->mib_cnt = PORT_COUNTER_NUM; 6977 hw->mib_port_cnt = 1; 6978 6979 /* KSZ8842 has a switch with multiple ports. */ 6980 if (2 == cnt) { 6981 if (fast_aging) 6982 hw->overrides |= FAST_AGING; 6983 6984 hw->mib_cnt = TOTAL_PORT_COUNTER_NUM; 6985 6986 /* Multiple network device interfaces are required. */ 6987 if (multi_dev) { 6988 hw->dev_count = SWITCH_PORT_NUM; 6989 hw->addr_list_size = SWITCH_PORT_NUM - 1; 6990 } 6991 6992 /* Single network device has multiple ports. */ 6993 if (1 == hw->dev_count) { 6994 port_count = SWITCH_PORT_NUM; 6995 mib_port_count = SWITCH_PORT_NUM; 6996 } 6997 hw->mib_port_cnt = TOTAL_PORT_NUM; 6998 hw->ksz_switch = kzalloc(sizeof(struct ksz_switch), GFP_KERNEL); 6999 if (!hw->ksz_switch) 7000 goto pcidev_init_alloc_err; 7001 7002 sw = hw->ksz_switch; 7003 } 7004 for (i = 0; i < hw->mib_port_cnt; i++) 7005 hw->port_mib[i].mib_start = 0; 7006 7007 hw->parent = hw_priv; 7008 7009 /* Default MTU is 1500. */ 7010 hw_priv->mtu = (REGULAR_RX_BUF_SIZE + 3) & ~3; 7011 7012 if (ksz_alloc_mem(hw_priv)) 7013 goto pcidev_init_mem_err; 7014 7015 hw_priv->hw.id = net_device_present; 7016 7017 spin_lock_init(&hw_priv->hwlock); 7018 mutex_init(&hw_priv->lock); 7019 7020 for (i = 0; i < TOTAL_PORT_NUM; i++) 7021 init_waitqueue_head(&hw_priv->counter[i].counter); 7022 7023 if (macaddr[0] != ':') 7024 get_mac_addr(hw_priv, macaddr, MAIN_PORT); 7025 7026 /* Read MAC address and initialize override address if not overridden. */ 7027 hw_read_addr(hw); 7028 7029 /* Multiple device interfaces mode requires a second MAC address. */ 7030 if (hw->dev_count > 1) { 7031 memcpy(sw->other_addr, hw->override_addr, ETH_ALEN); 7032 read_other_addr(hw); 7033 if (mac1addr[0] != ':') 7034 get_mac_addr(hw_priv, mac1addr, OTHER_PORT); 7035 } 7036 7037 hw_setup(hw); 7038 if (hw->ksz_switch) 7039 sw_setup(hw); 7040 else { 7041 hw_priv->wol_support = WOL_SUPPORT; 7042 hw_priv->wol_enable = 0; 7043 } 7044 7045 INIT_WORK(&hw_priv->mib_read, mib_read_work); 7046 7047 /* 500 ms timeout */ 7048 ksz_init_timer(&hw_priv->mib_timer_info, 500 * HZ / 1000, 7049 mib_monitor); 7050 7051 for (i = 0; i < hw->dev_count; i++) { 7052 dev = alloc_etherdev(sizeof(struct dev_priv)); 7053 if (!dev) 7054 goto pcidev_init_reg_err; 7055 SET_NETDEV_DEV(dev, &pdev->dev); 7056 info->netdev[i] = dev; 7057 7058 priv = netdev_priv(dev); 7059 priv->adapter = hw_priv; 7060 priv->id = net_device_present++; 7061 7062 port = &priv->port; 7063 port->port_cnt = port_count; 7064 port->mib_port_cnt = mib_port_count; 7065 port->first_port = i; 7066 port->flow_ctrl = PHY_FLOW_CTRL; 7067 7068 port->hw = hw; 7069 port->linked = &hw->port_info[port->first_port]; 7070 7071 for (cnt = 0, pi = i; cnt < port_count; cnt++, pi++) { 7072 hw->port_info[pi].port_id = pi; 7073 hw->port_info[pi].pdev = dev; 7074 hw->port_info[pi].state = media_disconnected; 7075 } 7076 7077 dev->mem_start = (unsigned long) hw->io; 7078 dev->mem_end = dev->mem_start + reg_len - 1; 7079 dev->irq = pdev->irq; 7080 if (MAIN_PORT == i) 7081 memcpy(dev->dev_addr, hw_priv->hw.override_addr, 7082 ETH_ALEN); 7083 else { 7084 memcpy(dev->dev_addr, sw->other_addr, ETH_ALEN); 7085 if (ether_addr_equal(sw->other_addr, hw->override_addr)) 7086 dev->dev_addr[5] += port->first_port; 7087 } 7088 7089 dev->netdev_ops = &netdev_ops; 7090 dev->ethtool_ops = &netdev_ethtool_ops; 7091 7092 /* MTU range: 60 - 1894 */ 7093 dev->min_mtu = ETH_ZLEN; 7094 dev->max_mtu = MAX_RX_BUF_SIZE - 7095 (ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN); 7096 7097 if (register_netdev(dev)) 7098 goto pcidev_init_reg_err; 7099 port_set_power_saving(port, true); 7100 } 7101 7102 pci_dev_get(hw_priv->pdev); 7103 pci_set_drvdata(pdev, info); 7104 return 0; 7105 7106 pcidev_init_reg_err: 7107 for (i = 0; i < hw->dev_count; i++) { 7108 if (info->netdev[i]) { 7109 netdev_free(info->netdev[i]); 7110 info->netdev[i] = NULL; 7111 } 7112 } 7113 7114 pcidev_init_mem_err: 7115 ksz_free_mem(hw_priv); 7116 kfree(hw->ksz_switch); 7117 7118 pcidev_init_alloc_err: 7119 iounmap(hw->io); 7120 7121 pcidev_init_io_err: 7122 kfree(info); 7123 7124 pcidev_init_dev_err: 7125 release_mem_region(reg_base, reg_len); 7126 7127 return result; 7128 } 7129 7130 static void pcidev_exit(struct pci_dev *pdev) 7131 { 7132 int i; 7133 struct platform_info *info = pci_get_drvdata(pdev); 7134 struct dev_info *hw_priv = &info->dev_info; 7135 7136 release_mem_region(pci_resource_start(pdev, 0), 7137 pci_resource_len(pdev, 0)); 7138 for (i = 0; i < hw_priv->hw.dev_count; i++) { 7139 if (info->netdev[i]) 7140 netdev_free(info->netdev[i]); 7141 } 7142 if (hw_priv->hw.io) 7143 iounmap(hw_priv->hw.io); 7144 ksz_free_mem(hw_priv); 7145 kfree(hw_priv->hw.ksz_switch); 7146 pci_dev_put(hw_priv->pdev); 7147 kfree(info); 7148 } 7149 7150 static int __maybe_unused pcidev_resume(struct device *dev_d) 7151 { 7152 int i; 7153 struct platform_info *info = dev_get_drvdata(dev_d); 7154 struct dev_info *hw_priv = &info->dev_info; 7155 struct ksz_hw *hw = &hw_priv->hw; 7156 7157 device_wakeup_disable(dev_d); 7158 7159 if (hw_priv->wol_enable) 7160 hw_cfg_wol_pme(hw, 0); 7161 for (i = 0; i < hw->dev_count; i++) { 7162 if (info->netdev[i]) { 7163 struct net_device *dev = info->netdev[i]; 7164 7165 if (netif_running(dev)) { 7166 netdev_open(dev); 7167 netif_device_attach(dev); 7168 } 7169 } 7170 } 7171 return 0; 7172 } 7173 7174 static int __maybe_unused pcidev_suspend(struct device *dev_d) 7175 { 7176 int i; 7177 struct platform_info *info = dev_get_drvdata(dev_d); 7178 struct dev_info *hw_priv = &info->dev_info; 7179 struct ksz_hw *hw = &hw_priv->hw; 7180 7181 /* Need to find a way to retrieve the device IP address. */ 7182 static const u8 net_addr[] = { 192, 168, 1, 1 }; 7183 7184 for (i = 0; i < hw->dev_count; i++) { 7185 if (info->netdev[i]) { 7186 struct net_device *dev = info->netdev[i]; 7187 7188 if (netif_running(dev)) { 7189 netif_device_detach(dev); 7190 netdev_close(dev); 7191 } 7192 } 7193 } 7194 if (hw_priv->wol_enable) { 7195 hw_enable_wol(hw, hw_priv->wol_enable, net_addr); 7196 hw_cfg_wol_pme(hw, 1); 7197 } 7198 7199 device_wakeup_enable(dev_d); 7200 return 0; 7201 } 7202 7203 static char pcidev_name[] = "ksz884xp"; 7204 7205 static const struct pci_device_id pcidev_table[] = { 7206 { PCI_VENDOR_ID_MICREL_KS, 0x8841, 7207 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 }, 7208 { PCI_VENDOR_ID_MICREL_KS, 0x8842, 7209 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 }, 7210 { 0 } 7211 }; 7212 7213 MODULE_DEVICE_TABLE(pci, pcidev_table); 7214 7215 static SIMPLE_DEV_PM_OPS(pcidev_pm_ops, pcidev_suspend, pcidev_resume); 7216 7217 static struct pci_driver pci_device_driver = { 7218 .driver.pm = &pcidev_pm_ops, 7219 .name = pcidev_name, 7220 .id_table = pcidev_table, 7221 .probe = pcidev_init, 7222 .remove = pcidev_exit 7223 }; 7224 7225 module_pci_driver(pci_device_driver); 7226 7227 MODULE_DESCRIPTION("KSZ8841/2 PCI network driver"); 7228 MODULE_AUTHOR("Tristram Ha <Tristram.Ha@micrel.com>"); 7229 MODULE_LICENSE("GPL"); 7230 7231 module_param_named(message, msg_enable, int, 0); 7232 MODULE_PARM_DESC(message, "Message verbosity level (0=none, 31=all)"); 7233 7234 module_param(macaddr, charp, 0); 7235 module_param(mac1addr, charp, 0); 7236 module_param(fast_aging, int, 0); 7237 module_param(multi_dev, int, 0); 7238 module_param(stp, int, 0); 7239 MODULE_PARM_DESC(macaddr, "MAC address"); 7240 MODULE_PARM_DESC(mac1addr, "Second MAC address"); 7241 MODULE_PARM_DESC(fast_aging, "Fast aging"); 7242 MODULE_PARM_DESC(multi_dev, "Multiple device interfaces"); 7243 MODULE_PARM_DESC(stp, "STP support"); 7244