1 /**
2  * drivers/net/ethernet/micrel/ksx884x.c - Micrel KSZ8841/2 PCI Ethernet driver
3  *
4  * Copyright (c) 2009-2010 Micrel, Inc.
5  * 	Tristram Ha <Tristram.Ha@micrel.com>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  */
16 
17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
18 
19 #include <linux/init.h>
20 #include <linux/interrupt.h>
21 #include <linux/kernel.h>
22 #include <linux/module.h>
23 #include <linux/ioport.h>
24 #include <linux/pci.h>
25 #include <linux/proc_fs.h>
26 #include <linux/mii.h>
27 #include <linux/platform_device.h>
28 #include <linux/ethtool.h>
29 #include <linux/etherdevice.h>
30 #include <linux/in.h>
31 #include <linux/ip.h>
32 #include <linux/if_vlan.h>
33 #include <linux/crc32.h>
34 #include <linux/sched.h>
35 #include <linux/slab.h>
36 
37 
38 /* DMA Registers */
39 
40 #define KS_DMA_TX_CTRL			0x0000
41 #define DMA_TX_ENABLE			0x00000001
42 #define DMA_TX_CRC_ENABLE		0x00000002
43 #define DMA_TX_PAD_ENABLE		0x00000004
44 #define DMA_TX_LOOPBACK			0x00000100
45 #define DMA_TX_FLOW_ENABLE		0x00000200
46 #define DMA_TX_CSUM_IP			0x00010000
47 #define DMA_TX_CSUM_TCP			0x00020000
48 #define DMA_TX_CSUM_UDP			0x00040000
49 #define DMA_TX_BURST_SIZE		0x3F000000
50 
51 #define KS_DMA_RX_CTRL			0x0004
52 #define DMA_RX_ENABLE			0x00000001
53 #define KS884X_DMA_RX_MULTICAST		0x00000002
54 #define DMA_RX_PROMISCUOUS		0x00000004
55 #define DMA_RX_ERROR			0x00000008
56 #define DMA_RX_UNICAST			0x00000010
57 #define DMA_RX_ALL_MULTICAST		0x00000020
58 #define DMA_RX_BROADCAST		0x00000040
59 #define DMA_RX_FLOW_ENABLE		0x00000200
60 #define DMA_RX_CSUM_IP			0x00010000
61 #define DMA_RX_CSUM_TCP			0x00020000
62 #define DMA_RX_CSUM_UDP			0x00040000
63 #define DMA_RX_BURST_SIZE		0x3F000000
64 
65 #define DMA_BURST_SHIFT			24
66 #define DMA_BURST_DEFAULT		8
67 
68 #define KS_DMA_TX_START			0x0008
69 #define KS_DMA_RX_START			0x000C
70 #define DMA_START			0x00000001
71 
72 #define KS_DMA_TX_ADDR			0x0010
73 #define KS_DMA_RX_ADDR			0x0014
74 
75 #define DMA_ADDR_LIST_MASK		0xFFFFFFFC
76 #define DMA_ADDR_LIST_SHIFT		2
77 
78 /* MTR0 */
79 #define KS884X_MULTICAST_0_OFFSET	0x0020
80 #define KS884X_MULTICAST_1_OFFSET	0x0021
81 #define KS884X_MULTICAST_2_OFFSET	0x0022
82 #define KS884x_MULTICAST_3_OFFSET	0x0023
83 /* MTR1 */
84 #define KS884X_MULTICAST_4_OFFSET	0x0024
85 #define KS884X_MULTICAST_5_OFFSET	0x0025
86 #define KS884X_MULTICAST_6_OFFSET	0x0026
87 #define KS884X_MULTICAST_7_OFFSET	0x0027
88 
89 /* Interrupt Registers */
90 
91 /* INTEN */
92 #define KS884X_INTERRUPTS_ENABLE	0x0028
93 /* INTST */
94 #define KS884X_INTERRUPTS_STATUS	0x002C
95 
96 #define KS884X_INT_RX_STOPPED		0x02000000
97 #define KS884X_INT_TX_STOPPED		0x04000000
98 #define KS884X_INT_RX_OVERRUN		0x08000000
99 #define KS884X_INT_TX_EMPTY		0x10000000
100 #define KS884X_INT_RX			0x20000000
101 #define KS884X_INT_TX			0x40000000
102 #define KS884X_INT_PHY			0x80000000
103 
104 #define KS884X_INT_RX_MASK		\
105 	(KS884X_INT_RX | KS884X_INT_RX_OVERRUN)
106 #define KS884X_INT_TX_MASK		\
107 	(KS884X_INT_TX | KS884X_INT_TX_EMPTY)
108 #define KS884X_INT_MASK	(KS884X_INT_RX | KS884X_INT_TX | KS884X_INT_PHY)
109 
110 /* MAC Additional Station Address */
111 
112 /* MAAL0 */
113 #define KS_ADD_ADDR_0_LO		0x0080
114 /* MAAH0 */
115 #define KS_ADD_ADDR_0_HI		0x0084
116 /* MAAL1 */
117 #define KS_ADD_ADDR_1_LO		0x0088
118 /* MAAH1 */
119 #define KS_ADD_ADDR_1_HI		0x008C
120 /* MAAL2 */
121 #define KS_ADD_ADDR_2_LO		0x0090
122 /* MAAH2 */
123 #define KS_ADD_ADDR_2_HI		0x0094
124 /* MAAL3 */
125 #define KS_ADD_ADDR_3_LO		0x0098
126 /* MAAH3 */
127 #define KS_ADD_ADDR_3_HI		0x009C
128 /* MAAL4 */
129 #define KS_ADD_ADDR_4_LO		0x00A0
130 /* MAAH4 */
131 #define KS_ADD_ADDR_4_HI		0x00A4
132 /* MAAL5 */
133 #define KS_ADD_ADDR_5_LO		0x00A8
134 /* MAAH5 */
135 #define KS_ADD_ADDR_5_HI		0x00AC
136 /* MAAL6 */
137 #define KS_ADD_ADDR_6_LO		0x00B0
138 /* MAAH6 */
139 #define KS_ADD_ADDR_6_HI		0x00B4
140 /* MAAL7 */
141 #define KS_ADD_ADDR_7_LO		0x00B8
142 /* MAAH7 */
143 #define KS_ADD_ADDR_7_HI		0x00BC
144 /* MAAL8 */
145 #define KS_ADD_ADDR_8_LO		0x00C0
146 /* MAAH8 */
147 #define KS_ADD_ADDR_8_HI		0x00C4
148 /* MAAL9 */
149 #define KS_ADD_ADDR_9_LO		0x00C8
150 /* MAAH9 */
151 #define KS_ADD_ADDR_9_HI		0x00CC
152 /* MAAL10 */
153 #define KS_ADD_ADDR_A_LO		0x00D0
154 /* MAAH10 */
155 #define KS_ADD_ADDR_A_HI		0x00D4
156 /* MAAL11 */
157 #define KS_ADD_ADDR_B_LO		0x00D8
158 /* MAAH11 */
159 #define KS_ADD_ADDR_B_HI		0x00DC
160 /* MAAL12 */
161 #define KS_ADD_ADDR_C_LO		0x00E0
162 /* MAAH12 */
163 #define KS_ADD_ADDR_C_HI		0x00E4
164 /* MAAL13 */
165 #define KS_ADD_ADDR_D_LO		0x00E8
166 /* MAAH13 */
167 #define KS_ADD_ADDR_D_HI		0x00EC
168 /* MAAL14 */
169 #define KS_ADD_ADDR_E_LO		0x00F0
170 /* MAAH14 */
171 #define KS_ADD_ADDR_E_HI		0x00F4
172 /* MAAL15 */
173 #define KS_ADD_ADDR_F_LO		0x00F8
174 /* MAAH15 */
175 #define KS_ADD_ADDR_F_HI		0x00FC
176 
177 #define ADD_ADDR_HI_MASK		0x0000FFFF
178 #define ADD_ADDR_ENABLE			0x80000000
179 #define ADD_ADDR_INCR			8
180 
181 /* Miscellaneous Registers */
182 
183 /* MARL */
184 #define KS884X_ADDR_0_OFFSET		0x0200
185 #define KS884X_ADDR_1_OFFSET		0x0201
186 /* MARM */
187 #define KS884X_ADDR_2_OFFSET		0x0202
188 #define KS884X_ADDR_3_OFFSET		0x0203
189 /* MARH */
190 #define KS884X_ADDR_4_OFFSET		0x0204
191 #define KS884X_ADDR_5_OFFSET		0x0205
192 
193 /* OBCR */
194 #define KS884X_BUS_CTRL_OFFSET		0x0210
195 
196 #define BUS_SPEED_125_MHZ		0x0000
197 #define BUS_SPEED_62_5_MHZ		0x0001
198 #define BUS_SPEED_41_66_MHZ		0x0002
199 #define BUS_SPEED_25_MHZ		0x0003
200 
201 /* EEPCR */
202 #define KS884X_EEPROM_CTRL_OFFSET	0x0212
203 
204 #define EEPROM_CHIP_SELECT		0x0001
205 #define EEPROM_SERIAL_CLOCK		0x0002
206 #define EEPROM_DATA_OUT			0x0004
207 #define EEPROM_DATA_IN			0x0008
208 #define EEPROM_ACCESS_ENABLE		0x0010
209 
210 /* MBIR */
211 #define KS884X_MEM_INFO_OFFSET		0x0214
212 
213 #define RX_MEM_TEST_FAILED		0x0008
214 #define RX_MEM_TEST_FINISHED		0x0010
215 #define TX_MEM_TEST_FAILED		0x0800
216 #define TX_MEM_TEST_FINISHED		0x1000
217 
218 /* GCR */
219 #define KS884X_GLOBAL_CTRL_OFFSET	0x0216
220 #define GLOBAL_SOFTWARE_RESET		0x0001
221 
222 #define KS8841_POWER_MANAGE_OFFSET	0x0218
223 
224 /* WFCR */
225 #define KS8841_WOL_CTRL_OFFSET		0x021A
226 #define KS8841_WOL_MAGIC_ENABLE		0x0080
227 #define KS8841_WOL_FRAME3_ENABLE	0x0008
228 #define KS8841_WOL_FRAME2_ENABLE	0x0004
229 #define KS8841_WOL_FRAME1_ENABLE	0x0002
230 #define KS8841_WOL_FRAME0_ENABLE	0x0001
231 
232 /* WF0 */
233 #define KS8841_WOL_FRAME_CRC_OFFSET	0x0220
234 #define KS8841_WOL_FRAME_BYTE0_OFFSET	0x0224
235 #define KS8841_WOL_FRAME_BYTE2_OFFSET	0x0228
236 
237 /* IACR */
238 #define KS884X_IACR_P			0x04A0
239 #define KS884X_IACR_OFFSET		KS884X_IACR_P
240 
241 /* IADR1 */
242 #define KS884X_IADR1_P			0x04A2
243 #define KS884X_IADR2_P			0x04A4
244 #define KS884X_IADR3_P			0x04A6
245 #define KS884X_IADR4_P			0x04A8
246 #define KS884X_IADR5_P			0x04AA
247 
248 #define KS884X_ACC_CTRL_SEL_OFFSET	KS884X_IACR_P
249 #define KS884X_ACC_CTRL_INDEX_OFFSET	(KS884X_ACC_CTRL_SEL_OFFSET + 1)
250 
251 #define KS884X_ACC_DATA_0_OFFSET	KS884X_IADR4_P
252 #define KS884X_ACC_DATA_1_OFFSET	(KS884X_ACC_DATA_0_OFFSET + 1)
253 #define KS884X_ACC_DATA_2_OFFSET	KS884X_IADR5_P
254 #define KS884X_ACC_DATA_3_OFFSET	(KS884X_ACC_DATA_2_OFFSET + 1)
255 #define KS884X_ACC_DATA_4_OFFSET	KS884X_IADR2_P
256 #define KS884X_ACC_DATA_5_OFFSET	(KS884X_ACC_DATA_4_OFFSET + 1)
257 #define KS884X_ACC_DATA_6_OFFSET	KS884X_IADR3_P
258 #define KS884X_ACC_DATA_7_OFFSET	(KS884X_ACC_DATA_6_OFFSET + 1)
259 #define KS884X_ACC_DATA_8_OFFSET	KS884X_IADR1_P
260 
261 /* P1MBCR */
262 #define KS884X_P1MBCR_P			0x04D0
263 #define KS884X_P1MBSR_P			0x04D2
264 #define KS884X_PHY1ILR_P		0x04D4
265 #define KS884X_PHY1IHR_P		0x04D6
266 #define KS884X_P1ANAR_P			0x04D8
267 #define KS884X_P1ANLPR_P		0x04DA
268 
269 /* P2MBCR */
270 #define KS884X_P2MBCR_P			0x04E0
271 #define KS884X_P2MBSR_P			0x04E2
272 #define KS884X_PHY2ILR_P		0x04E4
273 #define KS884X_PHY2IHR_P		0x04E6
274 #define KS884X_P2ANAR_P			0x04E8
275 #define KS884X_P2ANLPR_P		0x04EA
276 
277 #define KS884X_PHY_1_CTRL_OFFSET	KS884X_P1MBCR_P
278 #define PHY_CTRL_INTERVAL		(KS884X_P2MBCR_P - KS884X_P1MBCR_P)
279 
280 #define KS884X_PHY_CTRL_OFFSET		0x00
281 
282 /* Mode Control Register */
283 #define PHY_REG_CTRL			0
284 
285 #define PHY_RESET			0x8000
286 #define PHY_LOOPBACK			0x4000
287 #define PHY_SPEED_100MBIT		0x2000
288 #define PHY_AUTO_NEG_ENABLE		0x1000
289 #define PHY_POWER_DOWN			0x0800
290 #define PHY_MII_DISABLE			0x0400
291 #define PHY_AUTO_NEG_RESTART		0x0200
292 #define PHY_FULL_DUPLEX			0x0100
293 #define PHY_COLLISION_TEST		0x0080
294 #define PHY_HP_MDIX			0x0020
295 #define PHY_FORCE_MDIX			0x0010
296 #define PHY_AUTO_MDIX_DISABLE		0x0008
297 #define PHY_REMOTE_FAULT_DISABLE	0x0004
298 #define PHY_TRANSMIT_DISABLE		0x0002
299 #define PHY_LED_DISABLE			0x0001
300 
301 #define KS884X_PHY_STATUS_OFFSET	0x02
302 
303 /* Mode Status Register */
304 #define PHY_REG_STATUS			1
305 
306 #define PHY_100BT4_CAPABLE		0x8000
307 #define PHY_100BTX_FD_CAPABLE		0x4000
308 #define PHY_100BTX_CAPABLE		0x2000
309 #define PHY_10BT_FD_CAPABLE		0x1000
310 #define PHY_10BT_CAPABLE		0x0800
311 #define PHY_MII_SUPPRESS_CAPABLE	0x0040
312 #define PHY_AUTO_NEG_ACKNOWLEDGE	0x0020
313 #define PHY_REMOTE_FAULT		0x0010
314 #define PHY_AUTO_NEG_CAPABLE		0x0008
315 #define PHY_LINK_STATUS			0x0004
316 #define PHY_JABBER_DETECT		0x0002
317 #define PHY_EXTENDED_CAPABILITY		0x0001
318 
319 #define KS884X_PHY_ID_1_OFFSET		0x04
320 #define KS884X_PHY_ID_2_OFFSET		0x06
321 
322 /* PHY Identifier Registers */
323 #define PHY_REG_ID_1			2
324 #define PHY_REG_ID_2			3
325 
326 #define KS884X_PHY_AUTO_NEG_OFFSET	0x08
327 
328 /* Auto-Negotiation Advertisement Register */
329 #define PHY_REG_AUTO_NEGOTIATION	4
330 
331 #define PHY_AUTO_NEG_NEXT_PAGE		0x8000
332 #define PHY_AUTO_NEG_REMOTE_FAULT	0x2000
333 /* Not supported. */
334 #define PHY_AUTO_NEG_ASYM_PAUSE		0x0800
335 #define PHY_AUTO_NEG_SYM_PAUSE		0x0400
336 #define PHY_AUTO_NEG_100BT4		0x0200
337 #define PHY_AUTO_NEG_100BTX_FD		0x0100
338 #define PHY_AUTO_NEG_100BTX		0x0080
339 #define PHY_AUTO_NEG_10BT_FD		0x0040
340 #define PHY_AUTO_NEG_10BT		0x0020
341 #define PHY_AUTO_NEG_SELECTOR		0x001F
342 #define PHY_AUTO_NEG_802_3		0x0001
343 
344 #define PHY_AUTO_NEG_PAUSE  (PHY_AUTO_NEG_SYM_PAUSE | PHY_AUTO_NEG_ASYM_PAUSE)
345 
346 #define KS884X_PHY_REMOTE_CAP_OFFSET	0x0A
347 
348 /* Auto-Negotiation Link Partner Ability Register */
349 #define PHY_REG_REMOTE_CAPABILITY	5
350 
351 #define PHY_REMOTE_NEXT_PAGE		0x8000
352 #define PHY_REMOTE_ACKNOWLEDGE		0x4000
353 #define PHY_REMOTE_REMOTE_FAULT		0x2000
354 #define PHY_REMOTE_SYM_PAUSE		0x0400
355 #define PHY_REMOTE_100BTX_FD		0x0100
356 #define PHY_REMOTE_100BTX		0x0080
357 #define PHY_REMOTE_10BT_FD		0x0040
358 #define PHY_REMOTE_10BT			0x0020
359 
360 /* P1VCT */
361 #define KS884X_P1VCT_P			0x04F0
362 #define KS884X_P1PHYCTRL_P		0x04F2
363 
364 /* P2VCT */
365 #define KS884X_P2VCT_P			0x04F4
366 #define KS884X_P2PHYCTRL_P		0x04F6
367 
368 #define KS884X_PHY_SPECIAL_OFFSET	KS884X_P1VCT_P
369 #define PHY_SPECIAL_INTERVAL		(KS884X_P2VCT_P - KS884X_P1VCT_P)
370 
371 #define KS884X_PHY_LINK_MD_OFFSET	0x00
372 
373 #define PHY_START_CABLE_DIAG		0x8000
374 #define PHY_CABLE_DIAG_RESULT		0x6000
375 #define PHY_CABLE_STAT_NORMAL		0x0000
376 #define PHY_CABLE_STAT_OPEN		0x2000
377 #define PHY_CABLE_STAT_SHORT		0x4000
378 #define PHY_CABLE_STAT_FAILED		0x6000
379 #define PHY_CABLE_10M_SHORT		0x1000
380 #define PHY_CABLE_FAULT_COUNTER		0x01FF
381 
382 #define KS884X_PHY_PHY_CTRL_OFFSET	0x02
383 
384 #define PHY_STAT_REVERSED_POLARITY	0x0020
385 #define PHY_STAT_MDIX			0x0010
386 #define PHY_FORCE_LINK			0x0008
387 #define PHY_POWER_SAVING_DISABLE	0x0004
388 #define PHY_REMOTE_LOOPBACK		0x0002
389 
390 /* SIDER */
391 #define KS884X_SIDER_P			0x0400
392 #define KS884X_CHIP_ID_OFFSET		KS884X_SIDER_P
393 #define KS884X_FAMILY_ID_OFFSET		(KS884X_CHIP_ID_OFFSET + 1)
394 
395 #define REG_FAMILY_ID			0x88
396 
397 #define REG_CHIP_ID_41			0x8810
398 #define REG_CHIP_ID_42			0x8800
399 
400 #define KS884X_CHIP_ID_MASK_41		0xFF10
401 #define KS884X_CHIP_ID_MASK		0xFFF0
402 #define KS884X_CHIP_ID_SHIFT		4
403 #define KS884X_REVISION_MASK		0x000E
404 #define KS884X_REVISION_SHIFT		1
405 #define KS8842_START			0x0001
406 
407 #define CHIP_IP_41_M			0x8810
408 #define CHIP_IP_42_M			0x8800
409 #define CHIP_IP_61_M			0x8890
410 #define CHIP_IP_62_M			0x8880
411 
412 #define CHIP_IP_41_P			0x8850
413 #define CHIP_IP_42_P			0x8840
414 #define CHIP_IP_61_P			0x88D0
415 #define CHIP_IP_62_P			0x88C0
416 
417 /* SGCR1 */
418 #define KS8842_SGCR1_P			0x0402
419 #define KS8842_SWITCH_CTRL_1_OFFSET	KS8842_SGCR1_P
420 
421 #define SWITCH_PASS_ALL			0x8000
422 #define SWITCH_TX_FLOW_CTRL		0x2000
423 #define SWITCH_RX_FLOW_CTRL		0x1000
424 #define SWITCH_CHECK_LENGTH		0x0800
425 #define SWITCH_AGING_ENABLE		0x0400
426 #define SWITCH_FAST_AGING		0x0200
427 #define SWITCH_AGGR_BACKOFF		0x0100
428 #define SWITCH_PASS_PAUSE		0x0008
429 #define SWITCH_LINK_AUTO_AGING		0x0001
430 
431 /* SGCR2 */
432 #define KS8842_SGCR2_P			0x0404
433 #define KS8842_SWITCH_CTRL_2_OFFSET	KS8842_SGCR2_P
434 
435 #define SWITCH_VLAN_ENABLE		0x8000
436 #define SWITCH_IGMP_SNOOP		0x4000
437 #define IPV6_MLD_SNOOP_ENABLE		0x2000
438 #define IPV6_MLD_SNOOP_OPTION		0x1000
439 #define PRIORITY_SCHEME_SELECT		0x0800
440 #define SWITCH_MIRROR_RX_TX		0x0100
441 #define UNICAST_VLAN_BOUNDARY		0x0080
442 #define MULTICAST_STORM_DISABLE		0x0040
443 #define SWITCH_BACK_PRESSURE		0x0020
444 #define FAIR_FLOW_CTRL			0x0010
445 #define NO_EXC_COLLISION_DROP		0x0008
446 #define SWITCH_HUGE_PACKET		0x0004
447 #define SWITCH_LEGAL_PACKET		0x0002
448 #define SWITCH_BUF_RESERVE		0x0001
449 
450 /* SGCR3 */
451 #define KS8842_SGCR3_P			0x0406
452 #define KS8842_SWITCH_CTRL_3_OFFSET	KS8842_SGCR3_P
453 
454 #define BROADCAST_STORM_RATE_LO		0xFF00
455 #define SWITCH_REPEATER			0x0080
456 #define SWITCH_HALF_DUPLEX		0x0040
457 #define SWITCH_FLOW_CTRL		0x0020
458 #define SWITCH_10_MBIT			0x0010
459 #define SWITCH_REPLACE_NULL_VID		0x0008
460 #define BROADCAST_STORM_RATE_HI		0x0007
461 
462 #define BROADCAST_STORM_RATE		0x07FF
463 
464 /* SGCR4 */
465 #define KS8842_SGCR4_P			0x0408
466 
467 /* SGCR5 */
468 #define KS8842_SGCR5_P			0x040A
469 #define KS8842_SWITCH_CTRL_5_OFFSET	KS8842_SGCR5_P
470 
471 #define LED_MODE			0x8200
472 #define LED_SPEED_DUPLEX_ACT		0x0000
473 #define LED_SPEED_DUPLEX_LINK_ACT	0x8000
474 #define LED_DUPLEX_10_100		0x0200
475 
476 /* SGCR6 */
477 #define KS8842_SGCR6_P			0x0410
478 #define KS8842_SWITCH_CTRL_6_OFFSET	KS8842_SGCR6_P
479 
480 #define KS8842_PRIORITY_MASK		3
481 #define KS8842_PRIORITY_SHIFT		2
482 
483 /* SGCR7 */
484 #define KS8842_SGCR7_P			0x0412
485 #define KS8842_SWITCH_CTRL_7_OFFSET	KS8842_SGCR7_P
486 
487 #define SWITCH_UNK_DEF_PORT_ENABLE	0x0008
488 #define SWITCH_UNK_DEF_PORT_3		0x0004
489 #define SWITCH_UNK_DEF_PORT_2		0x0002
490 #define SWITCH_UNK_DEF_PORT_1		0x0001
491 
492 /* MACAR1 */
493 #define KS8842_MACAR1_P			0x0470
494 #define KS8842_MACAR2_P			0x0472
495 #define KS8842_MACAR3_P			0x0474
496 #define KS8842_MAC_ADDR_1_OFFSET	KS8842_MACAR1_P
497 #define KS8842_MAC_ADDR_0_OFFSET	(KS8842_MAC_ADDR_1_OFFSET + 1)
498 #define KS8842_MAC_ADDR_3_OFFSET	KS8842_MACAR2_P
499 #define KS8842_MAC_ADDR_2_OFFSET	(KS8842_MAC_ADDR_3_OFFSET + 1)
500 #define KS8842_MAC_ADDR_5_OFFSET	KS8842_MACAR3_P
501 #define KS8842_MAC_ADDR_4_OFFSET	(KS8842_MAC_ADDR_5_OFFSET + 1)
502 
503 /* TOSR1 */
504 #define KS8842_TOSR1_P			0x0480
505 #define KS8842_TOSR2_P			0x0482
506 #define KS8842_TOSR3_P			0x0484
507 #define KS8842_TOSR4_P			0x0486
508 #define KS8842_TOSR5_P			0x0488
509 #define KS8842_TOSR6_P			0x048A
510 #define KS8842_TOSR7_P			0x0490
511 #define KS8842_TOSR8_P			0x0492
512 #define KS8842_TOS_1_OFFSET		KS8842_TOSR1_P
513 #define KS8842_TOS_2_OFFSET		KS8842_TOSR2_P
514 #define KS8842_TOS_3_OFFSET		KS8842_TOSR3_P
515 #define KS8842_TOS_4_OFFSET		KS8842_TOSR4_P
516 #define KS8842_TOS_5_OFFSET		KS8842_TOSR5_P
517 #define KS8842_TOS_6_OFFSET		KS8842_TOSR6_P
518 
519 #define KS8842_TOS_7_OFFSET		KS8842_TOSR7_P
520 #define KS8842_TOS_8_OFFSET		KS8842_TOSR8_P
521 
522 /* P1CR1 */
523 #define KS8842_P1CR1_P			0x0500
524 #define KS8842_P1CR2_P			0x0502
525 #define KS8842_P1VIDR_P			0x0504
526 #define KS8842_P1CR3_P			0x0506
527 #define KS8842_P1IRCR_P			0x0508
528 #define KS8842_P1ERCR_P			0x050A
529 #define KS884X_P1SCSLMD_P		0x0510
530 #define KS884X_P1CR4_P			0x0512
531 #define KS884X_P1SR_P			0x0514
532 
533 /* P2CR1 */
534 #define KS8842_P2CR1_P			0x0520
535 #define KS8842_P2CR2_P			0x0522
536 #define KS8842_P2VIDR_P			0x0524
537 #define KS8842_P2CR3_P			0x0526
538 #define KS8842_P2IRCR_P			0x0528
539 #define KS8842_P2ERCR_P			0x052A
540 #define KS884X_P2SCSLMD_P		0x0530
541 #define KS884X_P2CR4_P			0x0532
542 #define KS884X_P2SR_P			0x0534
543 
544 /* P3CR1 */
545 #define KS8842_P3CR1_P			0x0540
546 #define KS8842_P3CR2_P			0x0542
547 #define KS8842_P3VIDR_P			0x0544
548 #define KS8842_P3CR3_P			0x0546
549 #define KS8842_P3IRCR_P			0x0548
550 #define KS8842_P3ERCR_P			0x054A
551 
552 #define KS8842_PORT_1_CTRL_1		KS8842_P1CR1_P
553 #define KS8842_PORT_2_CTRL_1		KS8842_P2CR1_P
554 #define KS8842_PORT_3_CTRL_1		KS8842_P3CR1_P
555 
556 #define PORT_CTRL_ADDR(port, addr)		\
557 	(addr = KS8842_PORT_1_CTRL_1 + (port) *	\
558 		(KS8842_PORT_2_CTRL_1 - KS8842_PORT_1_CTRL_1))
559 
560 #define KS8842_PORT_CTRL_1_OFFSET	0x00
561 
562 #define PORT_BROADCAST_STORM		0x0080
563 #define PORT_DIFFSERV_ENABLE		0x0040
564 #define PORT_802_1P_ENABLE		0x0020
565 #define PORT_BASED_PRIORITY_MASK	0x0018
566 #define PORT_BASED_PRIORITY_BASE	0x0003
567 #define PORT_BASED_PRIORITY_SHIFT	3
568 #define PORT_BASED_PRIORITY_0		0x0000
569 #define PORT_BASED_PRIORITY_1		0x0008
570 #define PORT_BASED_PRIORITY_2		0x0010
571 #define PORT_BASED_PRIORITY_3		0x0018
572 #define PORT_INSERT_TAG			0x0004
573 #define PORT_REMOVE_TAG			0x0002
574 #define PORT_PRIO_QUEUE_ENABLE		0x0001
575 
576 #define KS8842_PORT_CTRL_2_OFFSET	0x02
577 
578 #define PORT_INGRESS_VLAN_FILTER	0x4000
579 #define PORT_DISCARD_NON_VID		0x2000
580 #define PORT_FORCE_FLOW_CTRL		0x1000
581 #define PORT_BACK_PRESSURE		0x0800
582 #define PORT_TX_ENABLE			0x0400
583 #define PORT_RX_ENABLE			0x0200
584 #define PORT_LEARN_DISABLE		0x0100
585 #define PORT_MIRROR_SNIFFER		0x0080
586 #define PORT_MIRROR_RX			0x0040
587 #define PORT_MIRROR_TX			0x0020
588 #define PORT_USER_PRIORITY_CEILING	0x0008
589 #define PORT_VLAN_MEMBERSHIP		0x0007
590 
591 #define KS8842_PORT_CTRL_VID_OFFSET	0x04
592 
593 #define PORT_DEFAULT_VID		0x0001
594 
595 #define KS8842_PORT_CTRL_3_OFFSET	0x06
596 
597 #define PORT_INGRESS_LIMIT_MODE		0x000C
598 #define PORT_INGRESS_ALL		0x0000
599 #define PORT_INGRESS_UNICAST		0x0004
600 #define PORT_INGRESS_MULTICAST		0x0008
601 #define PORT_INGRESS_BROADCAST		0x000C
602 #define PORT_COUNT_IFG			0x0002
603 #define PORT_COUNT_PREAMBLE		0x0001
604 
605 #define KS8842_PORT_IN_RATE_OFFSET	0x08
606 #define KS8842_PORT_OUT_RATE_OFFSET	0x0A
607 
608 #define PORT_PRIORITY_RATE		0x0F
609 #define PORT_PRIORITY_RATE_SHIFT	4
610 
611 #define KS884X_PORT_LINK_MD		0x10
612 
613 #define PORT_CABLE_10M_SHORT		0x8000
614 #define PORT_CABLE_DIAG_RESULT		0x6000
615 #define PORT_CABLE_STAT_NORMAL		0x0000
616 #define PORT_CABLE_STAT_OPEN		0x2000
617 #define PORT_CABLE_STAT_SHORT		0x4000
618 #define PORT_CABLE_STAT_FAILED		0x6000
619 #define PORT_START_CABLE_DIAG		0x1000
620 #define PORT_FORCE_LINK			0x0800
621 #define PORT_POWER_SAVING_DISABLE	0x0400
622 #define PORT_PHY_REMOTE_LOOPBACK	0x0200
623 #define PORT_CABLE_FAULT_COUNTER	0x01FF
624 
625 #define KS884X_PORT_CTRL_4_OFFSET	0x12
626 
627 #define PORT_LED_OFF			0x8000
628 #define PORT_TX_DISABLE			0x4000
629 #define PORT_AUTO_NEG_RESTART		0x2000
630 #define PORT_REMOTE_FAULT_DISABLE	0x1000
631 #define PORT_POWER_DOWN			0x0800
632 #define PORT_AUTO_MDIX_DISABLE		0x0400
633 #define PORT_FORCE_MDIX			0x0200
634 #define PORT_LOOPBACK			0x0100
635 #define PORT_AUTO_NEG_ENABLE		0x0080
636 #define PORT_FORCE_100_MBIT		0x0040
637 #define PORT_FORCE_FULL_DUPLEX		0x0020
638 #define PORT_AUTO_NEG_SYM_PAUSE		0x0010
639 #define PORT_AUTO_NEG_100BTX_FD		0x0008
640 #define PORT_AUTO_NEG_100BTX		0x0004
641 #define PORT_AUTO_NEG_10BT_FD		0x0002
642 #define PORT_AUTO_NEG_10BT		0x0001
643 
644 #define KS884X_PORT_STATUS_OFFSET	0x14
645 
646 #define PORT_HP_MDIX			0x8000
647 #define PORT_REVERSED_POLARITY		0x2000
648 #define PORT_RX_FLOW_CTRL		0x0800
649 #define PORT_TX_FLOW_CTRL		0x1000
650 #define PORT_STATUS_SPEED_100MBIT	0x0400
651 #define PORT_STATUS_FULL_DUPLEX		0x0200
652 #define PORT_REMOTE_FAULT		0x0100
653 #define PORT_MDIX_STATUS		0x0080
654 #define PORT_AUTO_NEG_COMPLETE		0x0040
655 #define PORT_STATUS_LINK_GOOD		0x0020
656 #define PORT_REMOTE_SYM_PAUSE		0x0010
657 #define PORT_REMOTE_100BTX_FD		0x0008
658 #define PORT_REMOTE_100BTX		0x0004
659 #define PORT_REMOTE_10BT_FD		0x0002
660 #define PORT_REMOTE_10BT		0x0001
661 
662 /*
663 #define STATIC_MAC_TABLE_ADDR		00-0000FFFF-FFFFFFFF
664 #define STATIC_MAC_TABLE_FWD_PORTS	00-00070000-00000000
665 #define STATIC_MAC_TABLE_VALID		00-00080000-00000000
666 #define STATIC_MAC_TABLE_OVERRIDE	00-00100000-00000000
667 #define STATIC_MAC_TABLE_USE_FID	00-00200000-00000000
668 #define STATIC_MAC_TABLE_FID		00-03C00000-00000000
669 */
670 
671 #define STATIC_MAC_TABLE_ADDR		0x0000FFFF
672 #define STATIC_MAC_TABLE_FWD_PORTS	0x00070000
673 #define STATIC_MAC_TABLE_VALID		0x00080000
674 #define STATIC_MAC_TABLE_OVERRIDE	0x00100000
675 #define STATIC_MAC_TABLE_USE_FID	0x00200000
676 #define STATIC_MAC_TABLE_FID		0x03C00000
677 
678 #define STATIC_MAC_FWD_PORTS_SHIFT	16
679 #define STATIC_MAC_FID_SHIFT		22
680 
681 /*
682 #define VLAN_TABLE_VID			00-00000000-00000FFF
683 #define VLAN_TABLE_FID			00-00000000-0000F000
684 #define VLAN_TABLE_MEMBERSHIP		00-00000000-00070000
685 #define VLAN_TABLE_VALID		00-00000000-00080000
686 */
687 
688 #define VLAN_TABLE_VID			0x00000FFF
689 #define VLAN_TABLE_FID			0x0000F000
690 #define VLAN_TABLE_MEMBERSHIP		0x00070000
691 #define VLAN_TABLE_VALID		0x00080000
692 
693 #define VLAN_TABLE_FID_SHIFT		12
694 #define VLAN_TABLE_MEMBERSHIP_SHIFT	16
695 
696 /*
697 #define DYNAMIC_MAC_TABLE_ADDR		00-0000FFFF-FFFFFFFF
698 #define DYNAMIC_MAC_TABLE_FID		00-000F0000-00000000
699 #define DYNAMIC_MAC_TABLE_SRC_PORT	00-00300000-00000000
700 #define DYNAMIC_MAC_TABLE_TIMESTAMP	00-00C00000-00000000
701 #define DYNAMIC_MAC_TABLE_ENTRIES	03-FF000000-00000000
702 #define DYNAMIC_MAC_TABLE_MAC_EMPTY	04-00000000-00000000
703 #define DYNAMIC_MAC_TABLE_RESERVED	78-00000000-00000000
704 #define DYNAMIC_MAC_TABLE_NOT_READY	80-00000000-00000000
705 */
706 
707 #define DYNAMIC_MAC_TABLE_ADDR		0x0000FFFF
708 #define DYNAMIC_MAC_TABLE_FID		0x000F0000
709 #define DYNAMIC_MAC_TABLE_SRC_PORT	0x00300000
710 #define DYNAMIC_MAC_TABLE_TIMESTAMP	0x00C00000
711 #define DYNAMIC_MAC_TABLE_ENTRIES	0xFF000000
712 
713 #define DYNAMIC_MAC_TABLE_ENTRIES_H	0x03
714 #define DYNAMIC_MAC_TABLE_MAC_EMPTY	0x04
715 #define DYNAMIC_MAC_TABLE_RESERVED	0x78
716 #define DYNAMIC_MAC_TABLE_NOT_READY	0x80
717 
718 #define DYNAMIC_MAC_FID_SHIFT		16
719 #define DYNAMIC_MAC_SRC_PORT_SHIFT	20
720 #define DYNAMIC_MAC_TIMESTAMP_SHIFT	22
721 #define DYNAMIC_MAC_ENTRIES_SHIFT	24
722 #define DYNAMIC_MAC_ENTRIES_H_SHIFT	8
723 
724 /*
725 #define MIB_COUNTER_VALUE		00-00000000-3FFFFFFF
726 #define MIB_COUNTER_VALID		00-00000000-40000000
727 #define MIB_COUNTER_OVERFLOW		00-00000000-80000000
728 */
729 
730 #define MIB_COUNTER_VALUE		0x3FFFFFFF
731 #define MIB_COUNTER_VALID		0x40000000
732 #define MIB_COUNTER_OVERFLOW		0x80000000
733 
734 #define MIB_PACKET_DROPPED		0x0000FFFF
735 
736 #define KS_MIB_PACKET_DROPPED_TX_0	0x100
737 #define KS_MIB_PACKET_DROPPED_TX_1	0x101
738 #define KS_MIB_PACKET_DROPPED_TX	0x102
739 #define KS_MIB_PACKET_DROPPED_RX_0	0x103
740 #define KS_MIB_PACKET_DROPPED_RX_1	0x104
741 #define KS_MIB_PACKET_DROPPED_RX	0x105
742 
743 /* Change default LED mode. */
744 #define SET_DEFAULT_LED			LED_SPEED_DUPLEX_ACT
745 
746 #define MAC_ADDR_ORDER(i)		(ETH_ALEN - 1 - (i))
747 
748 #define MAX_ETHERNET_BODY_SIZE		1500
749 #define ETHERNET_HEADER_SIZE		(14 + VLAN_HLEN)
750 
751 #define MAX_ETHERNET_PACKET_SIZE	\
752 	(MAX_ETHERNET_BODY_SIZE + ETHERNET_HEADER_SIZE)
753 
754 #define REGULAR_RX_BUF_SIZE		(MAX_ETHERNET_PACKET_SIZE + 4)
755 #define MAX_RX_BUF_SIZE			(1912 + 4)
756 
757 #define ADDITIONAL_ENTRIES		16
758 #define MAX_MULTICAST_LIST		32
759 
760 #define HW_MULTICAST_SIZE		8
761 
762 #define HW_TO_DEV_PORT(port)		(port - 1)
763 
764 enum {
765 	media_connected,
766 	media_disconnected
767 };
768 
769 enum {
770 	OID_COUNTER_UNKOWN,
771 
772 	OID_COUNTER_FIRST,
773 
774 	/* total transmit errors */
775 	OID_COUNTER_XMIT_ERROR,
776 
777 	/* total receive errors */
778 	OID_COUNTER_RCV_ERROR,
779 
780 	OID_COUNTER_LAST
781 };
782 
783 /*
784  * Hardware descriptor definitions
785  */
786 
787 #define DESC_ALIGNMENT			16
788 #define BUFFER_ALIGNMENT		8
789 
790 #define NUM_OF_RX_DESC			64
791 #define NUM_OF_TX_DESC			64
792 
793 #define KS_DESC_RX_FRAME_LEN		0x000007FF
794 #define KS_DESC_RX_FRAME_TYPE		0x00008000
795 #define KS_DESC_RX_ERROR_CRC		0x00010000
796 #define KS_DESC_RX_ERROR_RUNT		0x00020000
797 #define KS_DESC_RX_ERROR_TOO_LONG	0x00040000
798 #define KS_DESC_RX_ERROR_PHY		0x00080000
799 #define KS884X_DESC_RX_PORT_MASK	0x00300000
800 #define KS_DESC_RX_MULTICAST		0x01000000
801 #define KS_DESC_RX_ERROR		0x02000000
802 #define KS_DESC_RX_ERROR_CSUM_UDP	0x04000000
803 #define KS_DESC_RX_ERROR_CSUM_TCP	0x08000000
804 #define KS_DESC_RX_ERROR_CSUM_IP	0x10000000
805 #define KS_DESC_RX_LAST			0x20000000
806 #define KS_DESC_RX_FIRST		0x40000000
807 #define KS_DESC_RX_ERROR_COND		\
808 	(KS_DESC_RX_ERROR_CRC |		\
809 	KS_DESC_RX_ERROR_RUNT |		\
810 	KS_DESC_RX_ERROR_PHY |		\
811 	KS_DESC_RX_ERROR_TOO_LONG)
812 
813 #define KS_DESC_HW_OWNED		0x80000000
814 
815 #define KS_DESC_BUF_SIZE		0x000007FF
816 #define KS884X_DESC_TX_PORT_MASK	0x00300000
817 #define KS_DESC_END_OF_RING		0x02000000
818 #define KS_DESC_TX_CSUM_GEN_UDP		0x04000000
819 #define KS_DESC_TX_CSUM_GEN_TCP		0x08000000
820 #define KS_DESC_TX_CSUM_GEN_IP		0x10000000
821 #define KS_DESC_TX_LAST			0x20000000
822 #define KS_DESC_TX_FIRST		0x40000000
823 #define KS_DESC_TX_INTERRUPT		0x80000000
824 
825 #define KS_DESC_PORT_SHIFT		20
826 
827 #define KS_DESC_RX_MASK			(KS_DESC_BUF_SIZE)
828 
829 #define KS_DESC_TX_MASK			\
830 	(KS_DESC_TX_INTERRUPT |		\
831 	KS_DESC_TX_FIRST |		\
832 	KS_DESC_TX_LAST |		\
833 	KS_DESC_TX_CSUM_GEN_IP |	\
834 	KS_DESC_TX_CSUM_GEN_TCP |	\
835 	KS_DESC_TX_CSUM_GEN_UDP |	\
836 	KS_DESC_BUF_SIZE)
837 
838 struct ksz_desc_rx_stat {
839 #ifdef __BIG_ENDIAN_BITFIELD
840 	u32 hw_owned:1;
841 	u32 first_desc:1;
842 	u32 last_desc:1;
843 	u32 csum_err_ip:1;
844 	u32 csum_err_tcp:1;
845 	u32 csum_err_udp:1;
846 	u32 error:1;
847 	u32 multicast:1;
848 	u32 src_port:4;
849 	u32 err_phy:1;
850 	u32 err_too_long:1;
851 	u32 err_runt:1;
852 	u32 err_crc:1;
853 	u32 frame_type:1;
854 	u32 reserved1:4;
855 	u32 frame_len:11;
856 #else
857 	u32 frame_len:11;
858 	u32 reserved1:4;
859 	u32 frame_type:1;
860 	u32 err_crc:1;
861 	u32 err_runt:1;
862 	u32 err_too_long:1;
863 	u32 err_phy:1;
864 	u32 src_port:4;
865 	u32 multicast:1;
866 	u32 error:1;
867 	u32 csum_err_udp:1;
868 	u32 csum_err_tcp:1;
869 	u32 csum_err_ip:1;
870 	u32 last_desc:1;
871 	u32 first_desc:1;
872 	u32 hw_owned:1;
873 #endif
874 };
875 
876 struct ksz_desc_tx_stat {
877 #ifdef __BIG_ENDIAN_BITFIELD
878 	u32 hw_owned:1;
879 	u32 reserved1:31;
880 #else
881 	u32 reserved1:31;
882 	u32 hw_owned:1;
883 #endif
884 };
885 
886 struct ksz_desc_rx_buf {
887 #ifdef __BIG_ENDIAN_BITFIELD
888 	u32 reserved4:6;
889 	u32 end_of_ring:1;
890 	u32 reserved3:14;
891 	u32 buf_size:11;
892 #else
893 	u32 buf_size:11;
894 	u32 reserved3:14;
895 	u32 end_of_ring:1;
896 	u32 reserved4:6;
897 #endif
898 };
899 
900 struct ksz_desc_tx_buf {
901 #ifdef __BIG_ENDIAN_BITFIELD
902 	u32 intr:1;
903 	u32 first_seg:1;
904 	u32 last_seg:1;
905 	u32 csum_gen_ip:1;
906 	u32 csum_gen_tcp:1;
907 	u32 csum_gen_udp:1;
908 	u32 end_of_ring:1;
909 	u32 reserved4:1;
910 	u32 dest_port:4;
911 	u32 reserved3:9;
912 	u32 buf_size:11;
913 #else
914 	u32 buf_size:11;
915 	u32 reserved3:9;
916 	u32 dest_port:4;
917 	u32 reserved4:1;
918 	u32 end_of_ring:1;
919 	u32 csum_gen_udp:1;
920 	u32 csum_gen_tcp:1;
921 	u32 csum_gen_ip:1;
922 	u32 last_seg:1;
923 	u32 first_seg:1;
924 	u32 intr:1;
925 #endif
926 };
927 
928 union desc_stat {
929 	struct ksz_desc_rx_stat rx;
930 	struct ksz_desc_tx_stat tx;
931 	u32 data;
932 };
933 
934 union desc_buf {
935 	struct ksz_desc_rx_buf rx;
936 	struct ksz_desc_tx_buf tx;
937 	u32 data;
938 };
939 
940 /**
941  * struct ksz_hw_desc - Hardware descriptor data structure
942  * @ctrl:	Descriptor control value.
943  * @buf:	Descriptor buffer value.
944  * @addr:	Physical address of memory buffer.
945  * @next:	Pointer to next hardware descriptor.
946  */
947 struct ksz_hw_desc {
948 	union desc_stat ctrl;
949 	union desc_buf buf;
950 	u32 addr;
951 	u32 next;
952 };
953 
954 /**
955  * struct ksz_sw_desc - Software descriptor data structure
956  * @ctrl:	Descriptor control value.
957  * @buf:	Descriptor buffer value.
958  * @buf_size:	Current buffers size value in hardware descriptor.
959  */
960 struct ksz_sw_desc {
961 	union desc_stat ctrl;
962 	union desc_buf buf;
963 	u32 buf_size;
964 };
965 
966 /**
967  * struct ksz_dma_buf - OS dependent DMA buffer data structure
968  * @skb:	Associated socket buffer.
969  * @dma:	Associated physical DMA address.
970  * len:		Actual len used.
971  */
972 struct ksz_dma_buf {
973 	struct sk_buff *skb;
974 	dma_addr_t dma;
975 	int len;
976 };
977 
978 /**
979  * struct ksz_desc - Descriptor structure
980  * @phw:	Hardware descriptor pointer to uncached physical memory.
981  * @sw:		Cached memory to hold hardware descriptor values for
982  * 		manipulation.
983  * @dma_buf:	Operating system dependent data structure to hold physical
984  * 		memory buffer allocation information.
985  */
986 struct ksz_desc {
987 	struct ksz_hw_desc *phw;
988 	struct ksz_sw_desc sw;
989 	struct ksz_dma_buf dma_buf;
990 };
991 
992 #define DMA_BUFFER(desc)  ((struct ksz_dma_buf *)(&(desc)->dma_buf))
993 
994 /**
995  * struct ksz_desc_info - Descriptor information data structure
996  * @ring:	First descriptor in the ring.
997  * @cur:	Current descriptor being manipulated.
998  * @ring_virt:	First hardware descriptor in the ring.
999  * @ring_phys:	The physical address of the first descriptor of the ring.
1000  * @size:	Size of hardware descriptor.
1001  * @alloc:	Number of descriptors allocated.
1002  * @avail:	Number of descriptors available for use.
1003  * @last:	Index for last descriptor released to hardware.
1004  * @next:	Index for next descriptor available for use.
1005  * @mask:	Mask for index wrapping.
1006  */
1007 struct ksz_desc_info {
1008 	struct ksz_desc *ring;
1009 	struct ksz_desc *cur;
1010 	struct ksz_hw_desc *ring_virt;
1011 	u32 ring_phys;
1012 	int size;
1013 	int alloc;
1014 	int avail;
1015 	int last;
1016 	int next;
1017 	int mask;
1018 };
1019 
1020 /*
1021  * KSZ8842 switch definitions
1022  */
1023 
1024 enum {
1025 	TABLE_STATIC_MAC = 0,
1026 	TABLE_VLAN,
1027 	TABLE_DYNAMIC_MAC,
1028 	TABLE_MIB
1029 };
1030 
1031 #define LEARNED_MAC_TABLE_ENTRIES	1024
1032 #define STATIC_MAC_TABLE_ENTRIES	8
1033 
1034 /**
1035  * struct ksz_mac_table - Static MAC table data structure
1036  * @mac_addr:	MAC address to filter.
1037  * @vid:	VID value.
1038  * @fid:	FID value.
1039  * @ports:	Port membership.
1040  * @override:	Override setting.
1041  * @use_fid:	FID use setting.
1042  * @valid:	Valid setting indicating the entry is being used.
1043  */
1044 struct ksz_mac_table {
1045 	u8 mac_addr[ETH_ALEN];
1046 	u16 vid;
1047 	u8 fid;
1048 	u8 ports;
1049 	u8 override:1;
1050 	u8 use_fid:1;
1051 	u8 valid:1;
1052 };
1053 
1054 #define VLAN_TABLE_ENTRIES		16
1055 
1056 /**
1057  * struct ksz_vlan_table - VLAN table data structure
1058  * @vid:	VID value.
1059  * @fid:	FID value.
1060  * @member:	Port membership.
1061  */
1062 struct ksz_vlan_table {
1063 	u16 vid;
1064 	u8 fid;
1065 	u8 member;
1066 };
1067 
1068 #define DIFFSERV_ENTRIES		64
1069 #define PRIO_802_1P_ENTRIES		8
1070 #define PRIO_QUEUES			4
1071 
1072 #define SWITCH_PORT_NUM			2
1073 #define TOTAL_PORT_NUM			(SWITCH_PORT_NUM + 1)
1074 #define HOST_MASK			(1 << SWITCH_PORT_NUM)
1075 #define PORT_MASK			7
1076 
1077 #define MAIN_PORT			0
1078 #define OTHER_PORT			1
1079 #define HOST_PORT			SWITCH_PORT_NUM
1080 
1081 #define PORT_COUNTER_NUM		0x20
1082 #define TOTAL_PORT_COUNTER_NUM		(PORT_COUNTER_NUM + 2)
1083 
1084 #define MIB_COUNTER_RX_LO_PRIORITY	0x00
1085 #define MIB_COUNTER_RX_HI_PRIORITY	0x01
1086 #define MIB_COUNTER_RX_UNDERSIZE	0x02
1087 #define MIB_COUNTER_RX_FRAGMENT		0x03
1088 #define MIB_COUNTER_RX_OVERSIZE		0x04
1089 #define MIB_COUNTER_RX_JABBER		0x05
1090 #define MIB_COUNTER_RX_SYMBOL_ERR	0x06
1091 #define MIB_COUNTER_RX_CRC_ERR		0x07
1092 #define MIB_COUNTER_RX_ALIGNMENT_ERR	0x08
1093 #define MIB_COUNTER_RX_CTRL_8808	0x09
1094 #define MIB_COUNTER_RX_PAUSE		0x0A
1095 #define MIB_COUNTER_RX_BROADCAST	0x0B
1096 #define MIB_COUNTER_RX_MULTICAST	0x0C
1097 #define MIB_COUNTER_RX_UNICAST		0x0D
1098 #define MIB_COUNTER_RX_OCTET_64		0x0E
1099 #define MIB_COUNTER_RX_OCTET_65_127	0x0F
1100 #define MIB_COUNTER_RX_OCTET_128_255	0x10
1101 #define MIB_COUNTER_RX_OCTET_256_511	0x11
1102 #define MIB_COUNTER_RX_OCTET_512_1023	0x12
1103 #define MIB_COUNTER_RX_OCTET_1024_1522	0x13
1104 #define MIB_COUNTER_TX_LO_PRIORITY	0x14
1105 #define MIB_COUNTER_TX_HI_PRIORITY	0x15
1106 #define MIB_COUNTER_TX_LATE_COLLISION	0x16
1107 #define MIB_COUNTER_TX_PAUSE		0x17
1108 #define MIB_COUNTER_TX_BROADCAST	0x18
1109 #define MIB_COUNTER_TX_MULTICAST	0x19
1110 #define MIB_COUNTER_TX_UNICAST		0x1A
1111 #define MIB_COUNTER_TX_DEFERRED		0x1B
1112 #define MIB_COUNTER_TX_TOTAL_COLLISION	0x1C
1113 #define MIB_COUNTER_TX_EXCESS_COLLISION	0x1D
1114 #define MIB_COUNTER_TX_SINGLE_COLLISION	0x1E
1115 #define MIB_COUNTER_TX_MULTI_COLLISION	0x1F
1116 
1117 #define MIB_COUNTER_RX_DROPPED_PACKET	0x20
1118 #define MIB_COUNTER_TX_DROPPED_PACKET	0x21
1119 
1120 /**
1121  * struct ksz_port_mib - Port MIB data structure
1122  * @cnt_ptr:	Current pointer to MIB counter index.
1123  * @link_down:	Indication the link has just gone down.
1124  * @state:	Connection status of the port.
1125  * @mib_start:	The starting counter index.  Some ports do not start at 0.
1126  * @counter:	64-bit MIB counter value.
1127  * @dropped:	Temporary buffer to remember last read packet dropped values.
1128  *
1129  * MIB counters needs to be read periodically so that counters do not get
1130  * overflowed and give incorrect values.  A right balance is needed to
1131  * satisfy this condition and not waste too much CPU time.
1132  *
1133  * It is pointless to read MIB counters when the port is disconnected.  The
1134  * @state provides the connection status so that MIB counters are read only
1135  * when the port is connected.  The @link_down indicates the port is just
1136  * disconnected so that all MIB counters are read one last time to update the
1137  * information.
1138  */
1139 struct ksz_port_mib {
1140 	u8 cnt_ptr;
1141 	u8 link_down;
1142 	u8 state;
1143 	u8 mib_start;
1144 
1145 	u64 counter[TOTAL_PORT_COUNTER_NUM];
1146 	u32 dropped[2];
1147 };
1148 
1149 /**
1150  * struct ksz_port_cfg - Port configuration data structure
1151  * @vid:	VID value.
1152  * @member:	Port membership.
1153  * @port_prio:	Port priority.
1154  * @rx_rate:	Receive priority rate.
1155  * @tx_rate:	Transmit priority rate.
1156  * @stp_state:	Current Spanning Tree Protocol state.
1157  */
1158 struct ksz_port_cfg {
1159 	u16 vid;
1160 	u8 member;
1161 	u8 port_prio;
1162 	u32 rx_rate[PRIO_QUEUES];
1163 	u32 tx_rate[PRIO_QUEUES];
1164 	int stp_state;
1165 };
1166 
1167 /**
1168  * struct ksz_switch - KSZ8842 switch data structure
1169  * @mac_table:	MAC table entries information.
1170  * @vlan_table:	VLAN table entries information.
1171  * @port_cfg:	Port configuration information.
1172  * @diffserv:	DiffServ priority settings.  Possible values from 6-bit of ToS
1173  * 		(bit7 ~ bit2) field.
1174  * @p_802_1p:	802.1P priority settings.  Possible values from 3-bit of 802.1p
1175  * 		Tag priority field.
1176  * @br_addr:	Bridge address.  Used for STP.
1177  * @other_addr:	Other MAC address.  Used for multiple network device mode.
1178  * @broad_per:	Broadcast storm percentage.
1179  * @member:	Current port membership.  Used for STP.
1180  */
1181 struct ksz_switch {
1182 	struct ksz_mac_table mac_table[STATIC_MAC_TABLE_ENTRIES];
1183 	struct ksz_vlan_table vlan_table[VLAN_TABLE_ENTRIES];
1184 	struct ksz_port_cfg port_cfg[TOTAL_PORT_NUM];
1185 
1186 	u8 diffserv[DIFFSERV_ENTRIES];
1187 	u8 p_802_1p[PRIO_802_1P_ENTRIES];
1188 
1189 	u8 br_addr[ETH_ALEN];
1190 	u8 other_addr[ETH_ALEN];
1191 
1192 	u8 broad_per;
1193 	u8 member;
1194 };
1195 
1196 #define TX_RATE_UNIT			10000
1197 
1198 /**
1199  * struct ksz_port_info - Port information data structure
1200  * @state:	Connection status of the port.
1201  * @tx_rate:	Transmit rate divided by 10000 to get Mbit.
1202  * @duplex:	Duplex mode.
1203  * @advertised:	Advertised auto-negotiation setting.  Used to determine link.
1204  * @partner:	Auto-negotiation partner setting.  Used to determine link.
1205  * @port_id:	Port index to access actual hardware register.
1206  * @pdev:	Pointer to OS dependent network device.
1207  */
1208 struct ksz_port_info {
1209 	uint state;
1210 	uint tx_rate;
1211 	u8 duplex;
1212 	u8 advertised;
1213 	u8 partner;
1214 	u8 port_id;
1215 	void *pdev;
1216 };
1217 
1218 #define MAX_TX_HELD_SIZE		52000
1219 
1220 /* Hardware features and bug fixes. */
1221 #define LINK_INT_WORKING		(1 << 0)
1222 #define SMALL_PACKET_TX_BUG		(1 << 1)
1223 #define HALF_DUPLEX_SIGNAL_BUG		(1 << 2)
1224 #define RX_HUGE_FRAME			(1 << 4)
1225 #define STP_SUPPORT			(1 << 8)
1226 
1227 /* Software overrides. */
1228 #define PAUSE_FLOW_CTRL			(1 << 0)
1229 #define FAST_AGING			(1 << 1)
1230 
1231 /**
1232  * struct ksz_hw - KSZ884X hardware data structure
1233  * @io:			Virtual address assigned.
1234  * @ksz_switch:		Pointer to KSZ8842 switch.
1235  * @port_info:		Port information.
1236  * @port_mib:		Port MIB information.
1237  * @dev_count:		Number of network devices this hardware supports.
1238  * @dst_ports:		Destination ports in switch for transmission.
1239  * @id:			Hardware ID.  Used for display only.
1240  * @mib_cnt:		Number of MIB counters this hardware has.
1241  * @mib_port_cnt:	Number of ports with MIB counters.
1242  * @tx_cfg:		Cached transmit control settings.
1243  * @rx_cfg:		Cached receive control settings.
1244  * @intr_mask:		Current interrupt mask.
1245  * @intr_set:		Current interrup set.
1246  * @intr_blocked:	Interrupt blocked.
1247  * @rx_desc_info:	Receive descriptor information.
1248  * @tx_desc_info:	Transmit descriptor information.
1249  * @tx_int_cnt:		Transmit interrupt count.  Used for TX optimization.
1250  * @tx_int_mask:	Transmit interrupt mask.  Used for TX optimization.
1251  * @tx_size:		Transmit data size.  Used for TX optimization.
1252  * 			The maximum is defined by MAX_TX_HELD_SIZE.
1253  * @perm_addr:		Permanent MAC address.
1254  * @override_addr:	Overrided MAC address.
1255  * @address:		Additional MAC address entries.
1256  * @addr_list_size:	Additional MAC address list size.
1257  * @mac_override:	Indication of MAC address overrided.
1258  * @promiscuous:	Counter to keep track of promiscuous mode set.
1259  * @all_multi:		Counter to keep track of all multicast mode set.
1260  * @multi_list:		Multicast address entries.
1261  * @multi_bits:		Cached multicast hash table settings.
1262  * @multi_list_size:	Multicast address list size.
1263  * @enabled:		Indication of hardware enabled.
1264  * @rx_stop:		Indication of receive process stop.
1265  * @features:		Hardware features to enable.
1266  * @overrides:		Hardware features to override.
1267  * @parent:		Pointer to parent, network device private structure.
1268  */
1269 struct ksz_hw {
1270 	void __iomem *io;
1271 
1272 	struct ksz_switch *ksz_switch;
1273 	struct ksz_port_info port_info[SWITCH_PORT_NUM];
1274 	struct ksz_port_mib port_mib[TOTAL_PORT_NUM];
1275 	int dev_count;
1276 	int dst_ports;
1277 	int id;
1278 	int mib_cnt;
1279 	int mib_port_cnt;
1280 
1281 	u32 tx_cfg;
1282 	u32 rx_cfg;
1283 	u32 intr_mask;
1284 	u32 intr_set;
1285 	uint intr_blocked;
1286 
1287 	struct ksz_desc_info rx_desc_info;
1288 	struct ksz_desc_info tx_desc_info;
1289 
1290 	int tx_int_cnt;
1291 	int tx_int_mask;
1292 	int tx_size;
1293 
1294 	u8 perm_addr[ETH_ALEN];
1295 	u8 override_addr[ETH_ALEN];
1296 	u8 address[ADDITIONAL_ENTRIES][ETH_ALEN];
1297 	u8 addr_list_size;
1298 	u8 mac_override;
1299 	u8 promiscuous;
1300 	u8 all_multi;
1301 	u8 multi_list[MAX_MULTICAST_LIST][ETH_ALEN];
1302 	u8 multi_bits[HW_MULTICAST_SIZE];
1303 	u8 multi_list_size;
1304 
1305 	u8 enabled;
1306 	u8 rx_stop;
1307 	u8 reserved2[1];
1308 
1309 	uint features;
1310 	uint overrides;
1311 
1312 	void *parent;
1313 };
1314 
1315 enum {
1316 	PHY_NO_FLOW_CTRL,
1317 	PHY_FLOW_CTRL,
1318 	PHY_TX_ONLY,
1319 	PHY_RX_ONLY
1320 };
1321 
1322 /**
1323  * struct ksz_port - Virtual port data structure
1324  * @duplex:		Duplex mode setting.  1 for half duplex, 2 for full
1325  * 			duplex, and 0 for auto, which normally results in full
1326  * 			duplex.
1327  * @speed:		Speed setting.  10 for 10 Mbit, 100 for 100 Mbit, and
1328  * 			0 for auto, which normally results in 100 Mbit.
1329  * @force_link:		Force link setting.  0 for auto-negotiation, and 1 for
1330  * 			force.
1331  * @flow_ctrl:		Flow control setting.  PHY_NO_FLOW_CTRL for no flow
1332  * 			control, and PHY_FLOW_CTRL for flow control.
1333  * 			PHY_TX_ONLY and PHY_RX_ONLY are not supported for 100
1334  * 			Mbit PHY.
1335  * @first_port:		Index of first port this port supports.
1336  * @mib_port_cnt:	Number of ports with MIB counters.
1337  * @port_cnt:		Number of ports this port supports.
1338  * @counter:		Port statistics counter.
1339  * @hw:			Pointer to hardware structure.
1340  * @linked:		Pointer to port information linked to this port.
1341  */
1342 struct ksz_port {
1343 	u8 duplex;
1344 	u8 speed;
1345 	u8 force_link;
1346 	u8 flow_ctrl;
1347 
1348 	int first_port;
1349 	int mib_port_cnt;
1350 	int port_cnt;
1351 	u64 counter[OID_COUNTER_LAST];
1352 
1353 	struct ksz_hw *hw;
1354 	struct ksz_port_info *linked;
1355 };
1356 
1357 /**
1358  * struct ksz_timer_info - Timer information data structure
1359  * @timer:	Kernel timer.
1360  * @cnt:	Running timer counter.
1361  * @max:	Number of times to run timer; -1 for infinity.
1362  * @period:	Timer period in jiffies.
1363  */
1364 struct ksz_timer_info {
1365 	struct timer_list timer;
1366 	int cnt;
1367 	int max;
1368 	int period;
1369 };
1370 
1371 /**
1372  * struct ksz_shared_mem - OS dependent shared memory data structure
1373  * @dma_addr:	Physical DMA address allocated.
1374  * @alloc_size:	Allocation size.
1375  * @phys:	Actual physical address used.
1376  * @alloc_virt:	Virtual address allocated.
1377  * @virt:	Actual virtual address used.
1378  */
1379 struct ksz_shared_mem {
1380 	dma_addr_t dma_addr;
1381 	uint alloc_size;
1382 	uint phys;
1383 	u8 *alloc_virt;
1384 	u8 *virt;
1385 };
1386 
1387 /**
1388  * struct ksz_counter_info - OS dependent counter information data structure
1389  * @counter:	Wait queue to wakeup after counters are read.
1390  * @time:	Next time in jiffies to read counter.
1391  * @read:	Indication of counters read in full or not.
1392  */
1393 struct ksz_counter_info {
1394 	wait_queue_head_t counter;
1395 	unsigned long time;
1396 	int read;
1397 };
1398 
1399 /**
1400  * struct dev_info - Network device information data structure
1401  * @dev:		Pointer to network device.
1402  * @pdev:		Pointer to PCI device.
1403  * @hw:			Hardware structure.
1404  * @desc_pool:		Physical memory used for descriptor pool.
1405  * @hwlock:		Spinlock to prevent hardware from accessing.
1406  * @lock:		Mutex lock to prevent device from accessing.
1407  * @dev_rcv:		Receive process function used.
1408  * @last_skb:		Socket buffer allocated for descriptor rx fragments.
1409  * @skb_index:		Buffer index for receiving fragments.
1410  * @skb_len:		Buffer length for receiving fragments.
1411  * @mib_read:		Workqueue to read MIB counters.
1412  * @mib_timer_info:	Timer to read MIB counters.
1413  * @counter:		Used for MIB reading.
1414  * @mtu:		Current MTU used.  The default is REGULAR_RX_BUF_SIZE;
1415  * 			the maximum is MAX_RX_BUF_SIZE.
1416  * @opened:		Counter to keep track of device open.
1417  * @rx_tasklet:		Receive processing tasklet.
1418  * @tx_tasklet:		Transmit processing tasklet.
1419  * @wol_enable:		Wake-on-LAN enable set by ethtool.
1420  * @wol_support:	Wake-on-LAN support used by ethtool.
1421  * @pme_wait:		Used for KSZ8841 power management.
1422  */
1423 struct dev_info {
1424 	struct net_device *dev;
1425 	struct pci_dev *pdev;
1426 
1427 	struct ksz_hw hw;
1428 	struct ksz_shared_mem desc_pool;
1429 
1430 	spinlock_t hwlock;
1431 	struct mutex lock;
1432 
1433 	int (*dev_rcv)(struct dev_info *);
1434 
1435 	struct sk_buff *last_skb;
1436 	int skb_index;
1437 	int skb_len;
1438 
1439 	struct work_struct mib_read;
1440 	struct ksz_timer_info mib_timer_info;
1441 	struct ksz_counter_info counter[TOTAL_PORT_NUM];
1442 
1443 	int mtu;
1444 	int opened;
1445 
1446 	struct tasklet_struct rx_tasklet;
1447 	struct tasklet_struct tx_tasklet;
1448 
1449 	int wol_enable;
1450 	int wol_support;
1451 	unsigned long pme_wait;
1452 };
1453 
1454 /**
1455  * struct dev_priv - Network device private data structure
1456  * @adapter:		Adapter device information.
1457  * @port:		Port information.
1458  * @monitor_time_info:	Timer to monitor ports.
1459  * @proc_sem:		Semaphore for proc accessing.
1460  * @id:			Device ID.
1461  * @mii_if:		MII interface information.
1462  * @advertising:	Temporary variable to store advertised settings.
1463  * @msg_enable:		The message flags controlling driver output.
1464  * @media_state:	The connection status of the device.
1465  * @multicast:		The all multicast state of the device.
1466  * @promiscuous:	The promiscuous state of the device.
1467  */
1468 struct dev_priv {
1469 	struct dev_info *adapter;
1470 	struct ksz_port port;
1471 	struct ksz_timer_info monitor_timer_info;
1472 
1473 	struct semaphore proc_sem;
1474 	int id;
1475 
1476 	struct mii_if_info mii_if;
1477 	u32 advertising;
1478 
1479 	u32 msg_enable;
1480 	int media_state;
1481 	int multicast;
1482 	int promiscuous;
1483 };
1484 
1485 #define DRV_NAME		"KSZ884X PCI"
1486 #define DEVICE_NAME		"KSZ884x PCI"
1487 #define DRV_VERSION		"1.0.0"
1488 #define DRV_RELDATE		"Feb 8, 2010"
1489 
1490 static char version[] =
1491 	"Micrel " DEVICE_NAME " " DRV_VERSION " (" DRV_RELDATE ")";
1492 
1493 static u8 DEFAULT_MAC_ADDRESS[] = { 0x00, 0x10, 0xA1, 0x88, 0x42, 0x01 };
1494 
1495 /*
1496  * Interrupt processing primary routines
1497  */
1498 
1499 static inline void hw_ack_intr(struct ksz_hw *hw, uint interrupt)
1500 {
1501 	writel(interrupt, hw->io + KS884X_INTERRUPTS_STATUS);
1502 }
1503 
1504 static inline void hw_dis_intr(struct ksz_hw *hw)
1505 {
1506 	hw->intr_blocked = hw->intr_mask;
1507 	writel(0, hw->io + KS884X_INTERRUPTS_ENABLE);
1508 	hw->intr_set = readl(hw->io + KS884X_INTERRUPTS_ENABLE);
1509 }
1510 
1511 static inline void hw_set_intr(struct ksz_hw *hw, uint interrupt)
1512 {
1513 	hw->intr_set = interrupt;
1514 	writel(interrupt, hw->io + KS884X_INTERRUPTS_ENABLE);
1515 }
1516 
1517 static inline void hw_ena_intr(struct ksz_hw *hw)
1518 {
1519 	hw->intr_blocked = 0;
1520 	hw_set_intr(hw, hw->intr_mask);
1521 }
1522 
1523 static inline void hw_dis_intr_bit(struct ksz_hw *hw, uint bit)
1524 {
1525 	hw->intr_mask &= ~(bit);
1526 }
1527 
1528 static inline void hw_turn_off_intr(struct ksz_hw *hw, uint interrupt)
1529 {
1530 	u32 read_intr;
1531 
1532 	read_intr = readl(hw->io + KS884X_INTERRUPTS_ENABLE);
1533 	hw->intr_set = read_intr & ~interrupt;
1534 	writel(hw->intr_set, hw->io + KS884X_INTERRUPTS_ENABLE);
1535 	hw_dis_intr_bit(hw, interrupt);
1536 }
1537 
1538 /**
1539  * hw_turn_on_intr - turn on specified interrupts
1540  * @hw: 	The hardware instance.
1541  * @bit:	The interrupt bits to be on.
1542  *
1543  * This routine turns on the specified interrupts in the interrupt mask so that
1544  * those interrupts will be enabled.
1545  */
1546 static void hw_turn_on_intr(struct ksz_hw *hw, u32 bit)
1547 {
1548 	hw->intr_mask |= bit;
1549 
1550 	if (!hw->intr_blocked)
1551 		hw_set_intr(hw, hw->intr_mask);
1552 }
1553 
1554 static inline void hw_ena_intr_bit(struct ksz_hw *hw, uint interrupt)
1555 {
1556 	u32 read_intr;
1557 
1558 	read_intr = readl(hw->io + KS884X_INTERRUPTS_ENABLE);
1559 	hw->intr_set = read_intr | interrupt;
1560 	writel(hw->intr_set, hw->io + KS884X_INTERRUPTS_ENABLE);
1561 }
1562 
1563 static inline void hw_read_intr(struct ksz_hw *hw, uint *status)
1564 {
1565 	*status = readl(hw->io + KS884X_INTERRUPTS_STATUS);
1566 	*status = *status & hw->intr_set;
1567 }
1568 
1569 static inline void hw_restore_intr(struct ksz_hw *hw, uint interrupt)
1570 {
1571 	if (interrupt)
1572 		hw_ena_intr(hw);
1573 }
1574 
1575 /**
1576  * hw_block_intr - block hardware interrupts
1577  *
1578  * This function blocks all interrupts of the hardware and returns the current
1579  * interrupt enable mask so that interrupts can be restored later.
1580  *
1581  * Return the current interrupt enable mask.
1582  */
1583 static uint hw_block_intr(struct ksz_hw *hw)
1584 {
1585 	uint interrupt = 0;
1586 
1587 	if (!hw->intr_blocked) {
1588 		hw_dis_intr(hw);
1589 		interrupt = hw->intr_blocked;
1590 	}
1591 	return interrupt;
1592 }
1593 
1594 /*
1595  * Hardware descriptor routines
1596  */
1597 
1598 static inline void reset_desc(struct ksz_desc *desc, union desc_stat status)
1599 {
1600 	status.rx.hw_owned = 0;
1601 	desc->phw->ctrl.data = cpu_to_le32(status.data);
1602 }
1603 
1604 static inline void release_desc(struct ksz_desc *desc)
1605 {
1606 	desc->sw.ctrl.tx.hw_owned = 1;
1607 	if (desc->sw.buf_size != desc->sw.buf.data) {
1608 		desc->sw.buf_size = desc->sw.buf.data;
1609 		desc->phw->buf.data = cpu_to_le32(desc->sw.buf.data);
1610 	}
1611 	desc->phw->ctrl.data = cpu_to_le32(desc->sw.ctrl.data);
1612 }
1613 
1614 static void get_rx_pkt(struct ksz_desc_info *info, struct ksz_desc **desc)
1615 {
1616 	*desc = &info->ring[info->last];
1617 	info->last++;
1618 	info->last &= info->mask;
1619 	info->avail--;
1620 	(*desc)->sw.buf.data &= ~KS_DESC_RX_MASK;
1621 }
1622 
1623 static inline void set_rx_buf(struct ksz_desc *desc, u32 addr)
1624 {
1625 	desc->phw->addr = cpu_to_le32(addr);
1626 }
1627 
1628 static inline void set_rx_len(struct ksz_desc *desc, u32 len)
1629 {
1630 	desc->sw.buf.rx.buf_size = len;
1631 }
1632 
1633 static inline void get_tx_pkt(struct ksz_desc_info *info,
1634 	struct ksz_desc **desc)
1635 {
1636 	*desc = &info->ring[info->next];
1637 	info->next++;
1638 	info->next &= info->mask;
1639 	info->avail--;
1640 	(*desc)->sw.buf.data &= ~KS_DESC_TX_MASK;
1641 }
1642 
1643 static inline void set_tx_buf(struct ksz_desc *desc, u32 addr)
1644 {
1645 	desc->phw->addr = cpu_to_le32(addr);
1646 }
1647 
1648 static inline void set_tx_len(struct ksz_desc *desc, u32 len)
1649 {
1650 	desc->sw.buf.tx.buf_size = len;
1651 }
1652 
1653 /* Switch functions */
1654 
1655 #define TABLE_READ			0x10
1656 #define TABLE_SEL_SHIFT			2
1657 
1658 #define HW_DELAY(hw, reg)			\
1659 	do {					\
1660 		u16 dummy;			\
1661 		dummy = readw(hw->io + reg);	\
1662 	} while (0)
1663 
1664 /**
1665  * sw_r_table - read 4 bytes of data from switch table
1666  * @hw:		The hardware instance.
1667  * @table:	The table selector.
1668  * @addr:	The address of the table entry.
1669  * @data:	Buffer to store the read data.
1670  *
1671  * This routine reads 4 bytes of data from the table of the switch.
1672  * Hardware interrupts are disabled to minimize corruption of read data.
1673  */
1674 static void sw_r_table(struct ksz_hw *hw, int table, u16 addr, u32 *data)
1675 {
1676 	u16 ctrl_addr;
1677 	uint interrupt;
1678 
1679 	ctrl_addr = (((table << TABLE_SEL_SHIFT) | TABLE_READ) << 8) | addr;
1680 
1681 	interrupt = hw_block_intr(hw);
1682 
1683 	writew(ctrl_addr, hw->io + KS884X_IACR_OFFSET);
1684 	HW_DELAY(hw, KS884X_IACR_OFFSET);
1685 	*data = readl(hw->io + KS884X_ACC_DATA_0_OFFSET);
1686 
1687 	hw_restore_intr(hw, interrupt);
1688 }
1689 
1690 /**
1691  * sw_w_table_64 - write 8 bytes of data to the switch table
1692  * @hw:		The hardware instance.
1693  * @table:	The table selector.
1694  * @addr:	The address of the table entry.
1695  * @data_hi:	The high part of data to be written (bit63 ~ bit32).
1696  * @data_lo:	The low part of data to be written (bit31 ~ bit0).
1697  *
1698  * This routine writes 8 bytes of data to the table of the switch.
1699  * Hardware interrupts are disabled to minimize corruption of written data.
1700  */
1701 static void sw_w_table_64(struct ksz_hw *hw, int table, u16 addr, u32 data_hi,
1702 	u32 data_lo)
1703 {
1704 	u16 ctrl_addr;
1705 	uint interrupt;
1706 
1707 	ctrl_addr = ((table << TABLE_SEL_SHIFT) << 8) | addr;
1708 
1709 	interrupt = hw_block_intr(hw);
1710 
1711 	writel(data_hi, hw->io + KS884X_ACC_DATA_4_OFFSET);
1712 	writel(data_lo, hw->io + KS884X_ACC_DATA_0_OFFSET);
1713 
1714 	writew(ctrl_addr, hw->io + KS884X_IACR_OFFSET);
1715 	HW_DELAY(hw, KS884X_IACR_OFFSET);
1716 
1717 	hw_restore_intr(hw, interrupt);
1718 }
1719 
1720 /**
1721  * sw_w_sta_mac_table - write to the static MAC table
1722  * @hw: 	The hardware instance.
1723  * @addr:	The address of the table entry.
1724  * @mac_addr:	The MAC address.
1725  * @ports:	The port members.
1726  * @override:	The flag to override the port receive/transmit settings.
1727  * @valid:	The flag to indicate entry is valid.
1728  * @use_fid:	The flag to indicate the FID is valid.
1729  * @fid:	The FID value.
1730  *
1731  * This routine writes an entry of the static MAC table of the switch.  It
1732  * calls sw_w_table_64() to write the data.
1733  */
1734 static void sw_w_sta_mac_table(struct ksz_hw *hw, u16 addr, u8 *mac_addr,
1735 	u8 ports, int override, int valid, int use_fid, u8 fid)
1736 {
1737 	u32 data_hi;
1738 	u32 data_lo;
1739 
1740 	data_lo = ((u32) mac_addr[2] << 24) |
1741 		((u32) mac_addr[3] << 16) |
1742 		((u32) mac_addr[4] << 8) | mac_addr[5];
1743 	data_hi = ((u32) mac_addr[0] << 8) | mac_addr[1];
1744 	data_hi |= (u32) ports << STATIC_MAC_FWD_PORTS_SHIFT;
1745 
1746 	if (override)
1747 		data_hi |= STATIC_MAC_TABLE_OVERRIDE;
1748 	if (use_fid) {
1749 		data_hi |= STATIC_MAC_TABLE_USE_FID;
1750 		data_hi |= (u32) fid << STATIC_MAC_FID_SHIFT;
1751 	}
1752 	if (valid)
1753 		data_hi |= STATIC_MAC_TABLE_VALID;
1754 
1755 	sw_w_table_64(hw, TABLE_STATIC_MAC, addr, data_hi, data_lo);
1756 }
1757 
1758 /**
1759  * sw_r_vlan_table - read from the VLAN table
1760  * @hw: 	The hardware instance.
1761  * @addr:	The address of the table entry.
1762  * @vid:	Buffer to store the VID.
1763  * @fid:	Buffer to store the VID.
1764  * @member:	Buffer to store the port membership.
1765  *
1766  * This function reads an entry of the VLAN table of the switch.  It calls
1767  * sw_r_table() to get the data.
1768  *
1769  * Return 0 if the entry is valid; otherwise -1.
1770  */
1771 static int sw_r_vlan_table(struct ksz_hw *hw, u16 addr, u16 *vid, u8 *fid,
1772 	u8 *member)
1773 {
1774 	u32 data;
1775 
1776 	sw_r_table(hw, TABLE_VLAN, addr, &data);
1777 	if (data & VLAN_TABLE_VALID) {
1778 		*vid = (u16)(data & VLAN_TABLE_VID);
1779 		*fid = (u8)((data & VLAN_TABLE_FID) >> VLAN_TABLE_FID_SHIFT);
1780 		*member = (u8)((data & VLAN_TABLE_MEMBERSHIP) >>
1781 			VLAN_TABLE_MEMBERSHIP_SHIFT);
1782 		return 0;
1783 	}
1784 	return -1;
1785 }
1786 
1787 /**
1788  * port_r_mib_cnt - read MIB counter
1789  * @hw: 	The hardware instance.
1790  * @port:	The port index.
1791  * @addr:	The address of the counter.
1792  * @cnt:	Buffer to store the counter.
1793  *
1794  * This routine reads a MIB counter of the port.
1795  * Hardware interrupts are disabled to minimize corruption of read data.
1796  */
1797 static void port_r_mib_cnt(struct ksz_hw *hw, int port, u16 addr, u64 *cnt)
1798 {
1799 	u32 data;
1800 	u16 ctrl_addr;
1801 	uint interrupt;
1802 	int timeout;
1803 
1804 	ctrl_addr = addr + PORT_COUNTER_NUM * port;
1805 
1806 	interrupt = hw_block_intr(hw);
1807 
1808 	ctrl_addr |= (((TABLE_MIB << TABLE_SEL_SHIFT) | TABLE_READ) << 8);
1809 	writew(ctrl_addr, hw->io + KS884X_IACR_OFFSET);
1810 	HW_DELAY(hw, KS884X_IACR_OFFSET);
1811 
1812 	for (timeout = 100; timeout > 0; timeout--) {
1813 		data = readl(hw->io + KS884X_ACC_DATA_0_OFFSET);
1814 
1815 		if (data & MIB_COUNTER_VALID) {
1816 			if (data & MIB_COUNTER_OVERFLOW)
1817 				*cnt += MIB_COUNTER_VALUE + 1;
1818 			*cnt += data & MIB_COUNTER_VALUE;
1819 			break;
1820 		}
1821 	}
1822 
1823 	hw_restore_intr(hw, interrupt);
1824 }
1825 
1826 /**
1827  * port_r_mib_pkt - read dropped packet counts
1828  * @hw: 	The hardware instance.
1829  * @port:	The port index.
1830  * @cnt:	Buffer to store the receive and transmit dropped packet counts.
1831  *
1832  * This routine reads the dropped packet counts of the port.
1833  * Hardware interrupts are disabled to minimize corruption of read data.
1834  */
1835 static void port_r_mib_pkt(struct ksz_hw *hw, int port, u32 *last, u64 *cnt)
1836 {
1837 	u32 cur;
1838 	u32 data;
1839 	u16 ctrl_addr;
1840 	uint interrupt;
1841 	int index;
1842 
1843 	index = KS_MIB_PACKET_DROPPED_RX_0 + port;
1844 	do {
1845 		interrupt = hw_block_intr(hw);
1846 
1847 		ctrl_addr = (u16) index;
1848 		ctrl_addr |= (((TABLE_MIB << TABLE_SEL_SHIFT) | TABLE_READ)
1849 			<< 8);
1850 		writew(ctrl_addr, hw->io + KS884X_IACR_OFFSET);
1851 		HW_DELAY(hw, KS884X_IACR_OFFSET);
1852 		data = readl(hw->io + KS884X_ACC_DATA_0_OFFSET);
1853 
1854 		hw_restore_intr(hw, interrupt);
1855 
1856 		data &= MIB_PACKET_DROPPED;
1857 		cur = *last;
1858 		if (data != cur) {
1859 			*last = data;
1860 			if (data < cur)
1861 				data += MIB_PACKET_DROPPED + 1;
1862 			data -= cur;
1863 			*cnt += data;
1864 		}
1865 		++last;
1866 		++cnt;
1867 		index -= KS_MIB_PACKET_DROPPED_TX -
1868 			KS_MIB_PACKET_DROPPED_TX_0 + 1;
1869 	} while (index >= KS_MIB_PACKET_DROPPED_TX_0 + port);
1870 }
1871 
1872 /**
1873  * port_r_cnt - read MIB counters periodically
1874  * @hw: 	The hardware instance.
1875  * @port:	The port index.
1876  *
1877  * This routine is used to read the counters of the port periodically to avoid
1878  * counter overflow.  The hardware should be acquired first before calling this
1879  * routine.
1880  *
1881  * Return non-zero when not all counters not read.
1882  */
1883 static int port_r_cnt(struct ksz_hw *hw, int port)
1884 {
1885 	struct ksz_port_mib *mib = &hw->port_mib[port];
1886 
1887 	if (mib->mib_start < PORT_COUNTER_NUM)
1888 		while (mib->cnt_ptr < PORT_COUNTER_NUM) {
1889 			port_r_mib_cnt(hw, port, mib->cnt_ptr,
1890 				&mib->counter[mib->cnt_ptr]);
1891 			++mib->cnt_ptr;
1892 		}
1893 	if (hw->mib_cnt > PORT_COUNTER_NUM)
1894 		port_r_mib_pkt(hw, port, mib->dropped,
1895 			&mib->counter[PORT_COUNTER_NUM]);
1896 	mib->cnt_ptr = 0;
1897 	return 0;
1898 }
1899 
1900 /**
1901  * port_init_cnt - initialize MIB counter values
1902  * @hw: 	The hardware instance.
1903  * @port:	The port index.
1904  *
1905  * This routine is used to initialize all counters to zero if the hardware
1906  * cannot do it after reset.
1907  */
1908 static void port_init_cnt(struct ksz_hw *hw, int port)
1909 {
1910 	struct ksz_port_mib *mib = &hw->port_mib[port];
1911 
1912 	mib->cnt_ptr = 0;
1913 	if (mib->mib_start < PORT_COUNTER_NUM)
1914 		do {
1915 			port_r_mib_cnt(hw, port, mib->cnt_ptr,
1916 				&mib->counter[mib->cnt_ptr]);
1917 			++mib->cnt_ptr;
1918 		} while (mib->cnt_ptr < PORT_COUNTER_NUM);
1919 	if (hw->mib_cnt > PORT_COUNTER_NUM)
1920 		port_r_mib_pkt(hw, port, mib->dropped,
1921 			&mib->counter[PORT_COUNTER_NUM]);
1922 	memset((void *) mib->counter, 0, sizeof(u64) * TOTAL_PORT_COUNTER_NUM);
1923 	mib->cnt_ptr = 0;
1924 }
1925 
1926 /*
1927  * Port functions
1928  */
1929 
1930 /**
1931  * port_chk - check port register bits
1932  * @hw: 	The hardware instance.
1933  * @port:	The port index.
1934  * @offset:	The offset of the port register.
1935  * @bits:	The data bits to check.
1936  *
1937  * This function checks whether the specified bits of the port register are set
1938  * or not.
1939  *
1940  * Return 0 if the bits are not set.
1941  */
1942 static int port_chk(struct ksz_hw *hw, int port, int offset, u16 bits)
1943 {
1944 	u32 addr;
1945 	u16 data;
1946 
1947 	PORT_CTRL_ADDR(port, addr);
1948 	addr += offset;
1949 	data = readw(hw->io + addr);
1950 	return (data & bits) == bits;
1951 }
1952 
1953 /**
1954  * port_cfg - set port register bits
1955  * @hw: 	The hardware instance.
1956  * @port:	The port index.
1957  * @offset:	The offset of the port register.
1958  * @bits:	The data bits to set.
1959  * @set:	The flag indicating whether the bits are to be set or not.
1960  *
1961  * This routine sets or resets the specified bits of the port register.
1962  */
1963 static void port_cfg(struct ksz_hw *hw, int port, int offset, u16 bits,
1964 	int set)
1965 {
1966 	u32 addr;
1967 	u16 data;
1968 
1969 	PORT_CTRL_ADDR(port, addr);
1970 	addr += offset;
1971 	data = readw(hw->io + addr);
1972 	if (set)
1973 		data |= bits;
1974 	else
1975 		data &= ~bits;
1976 	writew(data, hw->io + addr);
1977 }
1978 
1979 /**
1980  * port_chk_shift - check port bit
1981  * @hw: 	The hardware instance.
1982  * @port:	The port index.
1983  * @offset:	The offset of the register.
1984  * @shift:	Number of bits to shift.
1985  *
1986  * This function checks whether the specified port is set in the register or
1987  * not.
1988  *
1989  * Return 0 if the port is not set.
1990  */
1991 static int port_chk_shift(struct ksz_hw *hw, int port, u32 addr, int shift)
1992 {
1993 	u16 data;
1994 	u16 bit = 1 << port;
1995 
1996 	data = readw(hw->io + addr);
1997 	data >>= shift;
1998 	return (data & bit) == bit;
1999 }
2000 
2001 /**
2002  * port_cfg_shift - set port bit
2003  * @hw: 	The hardware instance.
2004  * @port:	The port index.
2005  * @offset:	The offset of the register.
2006  * @shift:	Number of bits to shift.
2007  * @set:	The flag indicating whether the port is to be set or not.
2008  *
2009  * This routine sets or resets the specified port in the register.
2010  */
2011 static void port_cfg_shift(struct ksz_hw *hw, int port, u32 addr, int shift,
2012 	int set)
2013 {
2014 	u16 data;
2015 	u16 bits = 1 << port;
2016 
2017 	data = readw(hw->io + addr);
2018 	bits <<= shift;
2019 	if (set)
2020 		data |= bits;
2021 	else
2022 		data &= ~bits;
2023 	writew(data, hw->io + addr);
2024 }
2025 
2026 /**
2027  * port_r8 - read byte from port register
2028  * @hw: 	The hardware instance.
2029  * @port:	The port index.
2030  * @offset:	The offset of the port register.
2031  * @data:	Buffer to store the data.
2032  *
2033  * This routine reads a byte from the port register.
2034  */
2035 static void port_r8(struct ksz_hw *hw, int port, int offset, u8 *data)
2036 {
2037 	u32 addr;
2038 
2039 	PORT_CTRL_ADDR(port, addr);
2040 	addr += offset;
2041 	*data = readb(hw->io + addr);
2042 }
2043 
2044 /**
2045  * port_r16 - read word from port register.
2046  * @hw: 	The hardware instance.
2047  * @port:	The port index.
2048  * @offset:	The offset of the port register.
2049  * @data:	Buffer to store the data.
2050  *
2051  * This routine reads a word from the port register.
2052  */
2053 static void port_r16(struct ksz_hw *hw, int port, int offset, u16 *data)
2054 {
2055 	u32 addr;
2056 
2057 	PORT_CTRL_ADDR(port, addr);
2058 	addr += offset;
2059 	*data = readw(hw->io + addr);
2060 }
2061 
2062 /**
2063  * port_w16 - write word to port register.
2064  * @hw: 	The hardware instance.
2065  * @port:	The port index.
2066  * @offset:	The offset of the port register.
2067  * @data:	Data to write.
2068  *
2069  * This routine writes a word to the port register.
2070  */
2071 static void port_w16(struct ksz_hw *hw, int port, int offset, u16 data)
2072 {
2073 	u32 addr;
2074 
2075 	PORT_CTRL_ADDR(port, addr);
2076 	addr += offset;
2077 	writew(data, hw->io + addr);
2078 }
2079 
2080 /**
2081  * sw_chk - check switch register bits
2082  * @hw: 	The hardware instance.
2083  * @addr:	The address of the switch register.
2084  * @bits:	The data bits to check.
2085  *
2086  * This function checks whether the specified bits of the switch register are
2087  * set or not.
2088  *
2089  * Return 0 if the bits are not set.
2090  */
2091 static int sw_chk(struct ksz_hw *hw, u32 addr, u16 bits)
2092 {
2093 	u16 data;
2094 
2095 	data = readw(hw->io + addr);
2096 	return (data & bits) == bits;
2097 }
2098 
2099 /**
2100  * sw_cfg - set switch register bits
2101  * @hw: 	The hardware instance.
2102  * @addr:	The address of the switch register.
2103  * @bits:	The data bits to set.
2104  * @set:	The flag indicating whether the bits are to be set or not.
2105  *
2106  * This function sets or resets the specified bits of the switch register.
2107  */
2108 static void sw_cfg(struct ksz_hw *hw, u32 addr, u16 bits, int set)
2109 {
2110 	u16 data;
2111 
2112 	data = readw(hw->io + addr);
2113 	if (set)
2114 		data |= bits;
2115 	else
2116 		data &= ~bits;
2117 	writew(data, hw->io + addr);
2118 }
2119 
2120 /* Bandwidth */
2121 
2122 static inline void port_cfg_broad_storm(struct ksz_hw *hw, int p, int set)
2123 {
2124 	port_cfg(hw, p,
2125 		KS8842_PORT_CTRL_1_OFFSET, PORT_BROADCAST_STORM, set);
2126 }
2127 
2128 static inline int port_chk_broad_storm(struct ksz_hw *hw, int p)
2129 {
2130 	return port_chk(hw, p,
2131 		KS8842_PORT_CTRL_1_OFFSET, PORT_BROADCAST_STORM);
2132 }
2133 
2134 /* Driver set switch broadcast storm protection at 10% rate. */
2135 #define BROADCAST_STORM_PROTECTION_RATE	10
2136 
2137 /* 148,800 frames * 67 ms / 100 */
2138 #define BROADCAST_STORM_VALUE		9969
2139 
2140 /**
2141  * sw_cfg_broad_storm - configure broadcast storm threshold
2142  * @hw: 	The hardware instance.
2143  * @percent:	Broadcast storm threshold in percent of transmit rate.
2144  *
2145  * This routine configures the broadcast storm threshold of the switch.
2146  */
2147 static void sw_cfg_broad_storm(struct ksz_hw *hw, u8 percent)
2148 {
2149 	u16 data;
2150 	u32 value = ((u32) BROADCAST_STORM_VALUE * (u32) percent / 100);
2151 
2152 	if (value > BROADCAST_STORM_RATE)
2153 		value = BROADCAST_STORM_RATE;
2154 
2155 	data = readw(hw->io + KS8842_SWITCH_CTRL_3_OFFSET);
2156 	data &= ~(BROADCAST_STORM_RATE_LO | BROADCAST_STORM_RATE_HI);
2157 	data |= ((value & 0x00FF) << 8) | ((value & 0xFF00) >> 8);
2158 	writew(data, hw->io + KS8842_SWITCH_CTRL_3_OFFSET);
2159 }
2160 
2161 /**
2162  * sw_get_board_storm - get broadcast storm threshold
2163  * @hw: 	The hardware instance.
2164  * @percent:	Buffer to store the broadcast storm threshold percentage.
2165  *
2166  * This routine retrieves the broadcast storm threshold of the switch.
2167  */
2168 static void sw_get_broad_storm(struct ksz_hw *hw, u8 *percent)
2169 {
2170 	int num;
2171 	u16 data;
2172 
2173 	data = readw(hw->io + KS8842_SWITCH_CTRL_3_OFFSET);
2174 	num = (data & BROADCAST_STORM_RATE_HI);
2175 	num <<= 8;
2176 	num |= (data & BROADCAST_STORM_RATE_LO) >> 8;
2177 	num = (num * 100 + BROADCAST_STORM_VALUE / 2) / BROADCAST_STORM_VALUE;
2178 	*percent = (u8) num;
2179 }
2180 
2181 /**
2182  * sw_dis_broad_storm - disable broadstorm
2183  * @hw: 	The hardware instance.
2184  * @port:	The port index.
2185  *
2186  * This routine disables the broadcast storm limit function of the switch.
2187  */
2188 static void sw_dis_broad_storm(struct ksz_hw *hw, int port)
2189 {
2190 	port_cfg_broad_storm(hw, port, 0);
2191 }
2192 
2193 /**
2194  * sw_ena_broad_storm - enable broadcast storm
2195  * @hw: 	The hardware instance.
2196  * @port:	The port index.
2197  *
2198  * This routine enables the broadcast storm limit function of the switch.
2199  */
2200 static void sw_ena_broad_storm(struct ksz_hw *hw, int port)
2201 {
2202 	sw_cfg_broad_storm(hw, hw->ksz_switch->broad_per);
2203 	port_cfg_broad_storm(hw, port, 1);
2204 }
2205 
2206 /**
2207  * sw_init_broad_storm - initialize broadcast storm
2208  * @hw: 	The hardware instance.
2209  *
2210  * This routine initializes the broadcast storm limit function of the switch.
2211  */
2212 static void sw_init_broad_storm(struct ksz_hw *hw)
2213 {
2214 	int port;
2215 
2216 	hw->ksz_switch->broad_per = 1;
2217 	sw_cfg_broad_storm(hw, hw->ksz_switch->broad_per);
2218 	for (port = 0; port < TOTAL_PORT_NUM; port++)
2219 		sw_dis_broad_storm(hw, port);
2220 	sw_cfg(hw, KS8842_SWITCH_CTRL_2_OFFSET, MULTICAST_STORM_DISABLE, 1);
2221 }
2222 
2223 /**
2224  * hw_cfg_broad_storm - configure broadcast storm
2225  * @hw: 	The hardware instance.
2226  * @percent:	Broadcast storm threshold in percent of transmit rate.
2227  *
2228  * This routine configures the broadcast storm threshold of the switch.
2229  * It is called by user functions.  The hardware should be acquired first.
2230  */
2231 static void hw_cfg_broad_storm(struct ksz_hw *hw, u8 percent)
2232 {
2233 	if (percent > 100)
2234 		percent = 100;
2235 
2236 	sw_cfg_broad_storm(hw, percent);
2237 	sw_get_broad_storm(hw, &percent);
2238 	hw->ksz_switch->broad_per = percent;
2239 }
2240 
2241 /**
2242  * sw_dis_prio_rate - disable switch priority rate
2243  * @hw: 	The hardware instance.
2244  * @port:	The port index.
2245  *
2246  * This routine disables the priority rate function of the switch.
2247  */
2248 static void sw_dis_prio_rate(struct ksz_hw *hw, int port)
2249 {
2250 	u32 addr;
2251 
2252 	PORT_CTRL_ADDR(port, addr);
2253 	addr += KS8842_PORT_IN_RATE_OFFSET;
2254 	writel(0, hw->io + addr);
2255 }
2256 
2257 /**
2258  * sw_init_prio_rate - initialize switch prioirty rate
2259  * @hw: 	The hardware instance.
2260  *
2261  * This routine initializes the priority rate function of the switch.
2262  */
2263 static void sw_init_prio_rate(struct ksz_hw *hw)
2264 {
2265 	int port;
2266 	int prio;
2267 	struct ksz_switch *sw = hw->ksz_switch;
2268 
2269 	for (port = 0; port < TOTAL_PORT_NUM; port++) {
2270 		for (prio = 0; prio < PRIO_QUEUES; prio++) {
2271 			sw->port_cfg[port].rx_rate[prio] =
2272 			sw->port_cfg[port].tx_rate[prio] = 0;
2273 		}
2274 		sw_dis_prio_rate(hw, port);
2275 	}
2276 }
2277 
2278 /* Communication */
2279 
2280 static inline void port_cfg_back_pressure(struct ksz_hw *hw, int p, int set)
2281 {
2282 	port_cfg(hw, p,
2283 		KS8842_PORT_CTRL_2_OFFSET, PORT_BACK_PRESSURE, set);
2284 }
2285 
2286 static inline void port_cfg_force_flow_ctrl(struct ksz_hw *hw, int p, int set)
2287 {
2288 	port_cfg(hw, p,
2289 		KS8842_PORT_CTRL_2_OFFSET, PORT_FORCE_FLOW_CTRL, set);
2290 }
2291 
2292 static inline int port_chk_back_pressure(struct ksz_hw *hw, int p)
2293 {
2294 	return port_chk(hw, p,
2295 		KS8842_PORT_CTRL_2_OFFSET, PORT_BACK_PRESSURE);
2296 }
2297 
2298 static inline int port_chk_force_flow_ctrl(struct ksz_hw *hw, int p)
2299 {
2300 	return port_chk(hw, p,
2301 		KS8842_PORT_CTRL_2_OFFSET, PORT_FORCE_FLOW_CTRL);
2302 }
2303 
2304 /* Spanning Tree */
2305 
2306 static inline void port_cfg_rx(struct ksz_hw *hw, int p, int set)
2307 {
2308 	port_cfg(hw, p,
2309 		KS8842_PORT_CTRL_2_OFFSET, PORT_RX_ENABLE, set);
2310 }
2311 
2312 static inline void port_cfg_tx(struct ksz_hw *hw, int p, int set)
2313 {
2314 	port_cfg(hw, p,
2315 		KS8842_PORT_CTRL_2_OFFSET, PORT_TX_ENABLE, set);
2316 }
2317 
2318 static inline void sw_cfg_fast_aging(struct ksz_hw *hw, int set)
2319 {
2320 	sw_cfg(hw, KS8842_SWITCH_CTRL_1_OFFSET, SWITCH_FAST_AGING, set);
2321 }
2322 
2323 static inline void sw_flush_dyn_mac_table(struct ksz_hw *hw)
2324 {
2325 	if (!(hw->overrides & FAST_AGING)) {
2326 		sw_cfg_fast_aging(hw, 1);
2327 		mdelay(1);
2328 		sw_cfg_fast_aging(hw, 0);
2329 	}
2330 }
2331 
2332 /* VLAN */
2333 
2334 static inline void port_cfg_ins_tag(struct ksz_hw *hw, int p, int insert)
2335 {
2336 	port_cfg(hw, p,
2337 		KS8842_PORT_CTRL_1_OFFSET, PORT_INSERT_TAG, insert);
2338 }
2339 
2340 static inline void port_cfg_rmv_tag(struct ksz_hw *hw, int p, int remove)
2341 {
2342 	port_cfg(hw, p,
2343 		KS8842_PORT_CTRL_1_OFFSET, PORT_REMOVE_TAG, remove);
2344 }
2345 
2346 static inline int port_chk_ins_tag(struct ksz_hw *hw, int p)
2347 {
2348 	return port_chk(hw, p,
2349 		KS8842_PORT_CTRL_1_OFFSET, PORT_INSERT_TAG);
2350 }
2351 
2352 static inline int port_chk_rmv_tag(struct ksz_hw *hw, int p)
2353 {
2354 	return port_chk(hw, p,
2355 		KS8842_PORT_CTRL_1_OFFSET, PORT_REMOVE_TAG);
2356 }
2357 
2358 static inline void port_cfg_dis_non_vid(struct ksz_hw *hw, int p, int set)
2359 {
2360 	port_cfg(hw, p,
2361 		KS8842_PORT_CTRL_2_OFFSET, PORT_DISCARD_NON_VID, set);
2362 }
2363 
2364 static inline void port_cfg_in_filter(struct ksz_hw *hw, int p, int set)
2365 {
2366 	port_cfg(hw, p,
2367 		KS8842_PORT_CTRL_2_OFFSET, PORT_INGRESS_VLAN_FILTER, set);
2368 }
2369 
2370 static inline int port_chk_dis_non_vid(struct ksz_hw *hw, int p)
2371 {
2372 	return port_chk(hw, p,
2373 		KS8842_PORT_CTRL_2_OFFSET, PORT_DISCARD_NON_VID);
2374 }
2375 
2376 static inline int port_chk_in_filter(struct ksz_hw *hw, int p)
2377 {
2378 	return port_chk(hw, p,
2379 		KS8842_PORT_CTRL_2_OFFSET, PORT_INGRESS_VLAN_FILTER);
2380 }
2381 
2382 /* Mirroring */
2383 
2384 static inline void port_cfg_mirror_sniffer(struct ksz_hw *hw, int p, int set)
2385 {
2386 	port_cfg(hw, p,
2387 		KS8842_PORT_CTRL_2_OFFSET, PORT_MIRROR_SNIFFER, set);
2388 }
2389 
2390 static inline void port_cfg_mirror_rx(struct ksz_hw *hw, int p, int set)
2391 {
2392 	port_cfg(hw, p,
2393 		KS8842_PORT_CTRL_2_OFFSET, PORT_MIRROR_RX, set);
2394 }
2395 
2396 static inline void port_cfg_mirror_tx(struct ksz_hw *hw, int p, int set)
2397 {
2398 	port_cfg(hw, p,
2399 		KS8842_PORT_CTRL_2_OFFSET, PORT_MIRROR_TX, set);
2400 }
2401 
2402 static inline void sw_cfg_mirror_rx_tx(struct ksz_hw *hw, int set)
2403 {
2404 	sw_cfg(hw, KS8842_SWITCH_CTRL_2_OFFSET, SWITCH_MIRROR_RX_TX, set);
2405 }
2406 
2407 static void sw_init_mirror(struct ksz_hw *hw)
2408 {
2409 	int port;
2410 
2411 	for (port = 0; port < TOTAL_PORT_NUM; port++) {
2412 		port_cfg_mirror_sniffer(hw, port, 0);
2413 		port_cfg_mirror_rx(hw, port, 0);
2414 		port_cfg_mirror_tx(hw, port, 0);
2415 	}
2416 	sw_cfg_mirror_rx_tx(hw, 0);
2417 }
2418 
2419 static inline void sw_cfg_unk_def_deliver(struct ksz_hw *hw, int set)
2420 {
2421 	sw_cfg(hw, KS8842_SWITCH_CTRL_7_OFFSET,
2422 		SWITCH_UNK_DEF_PORT_ENABLE, set);
2423 }
2424 
2425 static inline int sw_cfg_chk_unk_def_deliver(struct ksz_hw *hw)
2426 {
2427 	return sw_chk(hw, KS8842_SWITCH_CTRL_7_OFFSET,
2428 		SWITCH_UNK_DEF_PORT_ENABLE);
2429 }
2430 
2431 static inline void sw_cfg_unk_def_port(struct ksz_hw *hw, int port, int set)
2432 {
2433 	port_cfg_shift(hw, port, KS8842_SWITCH_CTRL_7_OFFSET, 0, set);
2434 }
2435 
2436 static inline int sw_chk_unk_def_port(struct ksz_hw *hw, int port)
2437 {
2438 	return port_chk_shift(hw, port, KS8842_SWITCH_CTRL_7_OFFSET, 0);
2439 }
2440 
2441 /* Priority */
2442 
2443 static inline void port_cfg_diffserv(struct ksz_hw *hw, int p, int set)
2444 {
2445 	port_cfg(hw, p,
2446 		KS8842_PORT_CTRL_1_OFFSET, PORT_DIFFSERV_ENABLE, set);
2447 }
2448 
2449 static inline void port_cfg_802_1p(struct ksz_hw *hw, int p, int set)
2450 {
2451 	port_cfg(hw, p,
2452 		KS8842_PORT_CTRL_1_OFFSET, PORT_802_1P_ENABLE, set);
2453 }
2454 
2455 static inline void port_cfg_replace_vid(struct ksz_hw *hw, int p, int set)
2456 {
2457 	port_cfg(hw, p,
2458 		KS8842_PORT_CTRL_2_OFFSET, PORT_USER_PRIORITY_CEILING, set);
2459 }
2460 
2461 static inline void port_cfg_prio(struct ksz_hw *hw, int p, int set)
2462 {
2463 	port_cfg(hw, p,
2464 		KS8842_PORT_CTRL_1_OFFSET, PORT_PRIO_QUEUE_ENABLE, set);
2465 }
2466 
2467 static inline int port_chk_diffserv(struct ksz_hw *hw, int p)
2468 {
2469 	return port_chk(hw, p,
2470 		KS8842_PORT_CTRL_1_OFFSET, PORT_DIFFSERV_ENABLE);
2471 }
2472 
2473 static inline int port_chk_802_1p(struct ksz_hw *hw, int p)
2474 {
2475 	return port_chk(hw, p,
2476 		KS8842_PORT_CTRL_1_OFFSET, PORT_802_1P_ENABLE);
2477 }
2478 
2479 static inline int port_chk_replace_vid(struct ksz_hw *hw, int p)
2480 {
2481 	return port_chk(hw, p,
2482 		KS8842_PORT_CTRL_2_OFFSET, PORT_USER_PRIORITY_CEILING);
2483 }
2484 
2485 static inline int port_chk_prio(struct ksz_hw *hw, int p)
2486 {
2487 	return port_chk(hw, p,
2488 		KS8842_PORT_CTRL_1_OFFSET, PORT_PRIO_QUEUE_ENABLE);
2489 }
2490 
2491 /**
2492  * sw_dis_diffserv - disable switch DiffServ priority
2493  * @hw: 	The hardware instance.
2494  * @port:	The port index.
2495  *
2496  * This routine disables the DiffServ priority function of the switch.
2497  */
2498 static void sw_dis_diffserv(struct ksz_hw *hw, int port)
2499 {
2500 	port_cfg_diffserv(hw, port, 0);
2501 }
2502 
2503 /**
2504  * sw_dis_802_1p - disable switch 802.1p priority
2505  * @hw: 	The hardware instance.
2506  * @port:	The port index.
2507  *
2508  * This routine disables the 802.1p priority function of the switch.
2509  */
2510 static void sw_dis_802_1p(struct ksz_hw *hw, int port)
2511 {
2512 	port_cfg_802_1p(hw, port, 0);
2513 }
2514 
2515 /**
2516  * sw_cfg_replace_null_vid -
2517  * @hw: 	The hardware instance.
2518  * @set:	The flag to disable or enable.
2519  *
2520  */
2521 static void sw_cfg_replace_null_vid(struct ksz_hw *hw, int set)
2522 {
2523 	sw_cfg(hw, KS8842_SWITCH_CTRL_3_OFFSET, SWITCH_REPLACE_NULL_VID, set);
2524 }
2525 
2526 /**
2527  * sw_cfg_replace_vid - enable switch 802.10 priority re-mapping
2528  * @hw: 	The hardware instance.
2529  * @port:	The port index.
2530  * @set:	The flag to disable or enable.
2531  *
2532  * This routine enables the 802.1p priority re-mapping function of the switch.
2533  * That allows 802.1p priority field to be replaced with the port's default
2534  * tag's priority value if the ingress packet's 802.1p priority has a higher
2535  * priority than port's default tag's priority.
2536  */
2537 static void sw_cfg_replace_vid(struct ksz_hw *hw, int port, int set)
2538 {
2539 	port_cfg_replace_vid(hw, port, set);
2540 }
2541 
2542 /**
2543  * sw_cfg_port_based - configure switch port based priority
2544  * @hw: 	The hardware instance.
2545  * @port:	The port index.
2546  * @prio:	The priority to set.
2547  *
2548  * This routine configures the port based priority of the switch.
2549  */
2550 static void sw_cfg_port_based(struct ksz_hw *hw, int port, u8 prio)
2551 {
2552 	u16 data;
2553 
2554 	if (prio > PORT_BASED_PRIORITY_BASE)
2555 		prio = PORT_BASED_PRIORITY_BASE;
2556 
2557 	hw->ksz_switch->port_cfg[port].port_prio = prio;
2558 
2559 	port_r16(hw, port, KS8842_PORT_CTRL_1_OFFSET, &data);
2560 	data &= ~PORT_BASED_PRIORITY_MASK;
2561 	data |= prio << PORT_BASED_PRIORITY_SHIFT;
2562 	port_w16(hw, port, KS8842_PORT_CTRL_1_OFFSET, data);
2563 }
2564 
2565 /**
2566  * sw_dis_multi_queue - disable transmit multiple queues
2567  * @hw: 	The hardware instance.
2568  * @port:	The port index.
2569  *
2570  * This routine disables the transmit multiple queues selection of the switch
2571  * port.  Only single transmit queue on the port.
2572  */
2573 static void sw_dis_multi_queue(struct ksz_hw *hw, int port)
2574 {
2575 	port_cfg_prio(hw, port, 0);
2576 }
2577 
2578 /**
2579  * sw_init_prio - initialize switch priority
2580  * @hw: 	The hardware instance.
2581  *
2582  * This routine initializes the switch QoS priority functions.
2583  */
2584 static void sw_init_prio(struct ksz_hw *hw)
2585 {
2586 	int port;
2587 	int tos;
2588 	struct ksz_switch *sw = hw->ksz_switch;
2589 
2590 	/*
2591 	 * Init all the 802.1p tag priority value to be assigned to different
2592 	 * priority queue.
2593 	 */
2594 	sw->p_802_1p[0] = 0;
2595 	sw->p_802_1p[1] = 0;
2596 	sw->p_802_1p[2] = 1;
2597 	sw->p_802_1p[3] = 1;
2598 	sw->p_802_1p[4] = 2;
2599 	sw->p_802_1p[5] = 2;
2600 	sw->p_802_1p[6] = 3;
2601 	sw->p_802_1p[7] = 3;
2602 
2603 	/*
2604 	 * Init all the DiffServ priority value to be assigned to priority
2605 	 * queue 0.
2606 	 */
2607 	for (tos = 0; tos < DIFFSERV_ENTRIES; tos++)
2608 		sw->diffserv[tos] = 0;
2609 
2610 	/* All QoS functions disabled. */
2611 	for (port = 0; port < TOTAL_PORT_NUM; port++) {
2612 		sw_dis_multi_queue(hw, port);
2613 		sw_dis_diffserv(hw, port);
2614 		sw_dis_802_1p(hw, port);
2615 		sw_cfg_replace_vid(hw, port, 0);
2616 
2617 		sw->port_cfg[port].port_prio = 0;
2618 		sw_cfg_port_based(hw, port, sw->port_cfg[port].port_prio);
2619 	}
2620 	sw_cfg_replace_null_vid(hw, 0);
2621 }
2622 
2623 /**
2624  * port_get_def_vid - get port default VID.
2625  * @hw: 	The hardware instance.
2626  * @port:	The port index.
2627  * @vid:	Buffer to store the VID.
2628  *
2629  * This routine retrieves the default VID of the port.
2630  */
2631 static void port_get_def_vid(struct ksz_hw *hw, int port, u16 *vid)
2632 {
2633 	u32 addr;
2634 
2635 	PORT_CTRL_ADDR(port, addr);
2636 	addr += KS8842_PORT_CTRL_VID_OFFSET;
2637 	*vid = readw(hw->io + addr);
2638 }
2639 
2640 /**
2641  * sw_init_vlan - initialize switch VLAN
2642  * @hw: 	The hardware instance.
2643  *
2644  * This routine initializes the VLAN function of the switch.
2645  */
2646 static void sw_init_vlan(struct ksz_hw *hw)
2647 {
2648 	int port;
2649 	int entry;
2650 	struct ksz_switch *sw = hw->ksz_switch;
2651 
2652 	/* Read 16 VLAN entries from device's VLAN table. */
2653 	for (entry = 0; entry < VLAN_TABLE_ENTRIES; entry++) {
2654 		sw_r_vlan_table(hw, entry,
2655 			&sw->vlan_table[entry].vid,
2656 			&sw->vlan_table[entry].fid,
2657 			&sw->vlan_table[entry].member);
2658 	}
2659 
2660 	for (port = 0; port < TOTAL_PORT_NUM; port++) {
2661 		port_get_def_vid(hw, port, &sw->port_cfg[port].vid);
2662 		sw->port_cfg[port].member = PORT_MASK;
2663 	}
2664 }
2665 
2666 /**
2667  * sw_cfg_port_base_vlan - configure port-based VLAN membership
2668  * @hw: 	The hardware instance.
2669  * @port:	The port index.
2670  * @member:	The port-based VLAN membership.
2671  *
2672  * This routine configures the port-based VLAN membership of the port.
2673  */
2674 static void sw_cfg_port_base_vlan(struct ksz_hw *hw, int port, u8 member)
2675 {
2676 	u32 addr;
2677 	u8 data;
2678 
2679 	PORT_CTRL_ADDR(port, addr);
2680 	addr += KS8842_PORT_CTRL_2_OFFSET;
2681 
2682 	data = readb(hw->io + addr);
2683 	data &= ~PORT_VLAN_MEMBERSHIP;
2684 	data |= (member & PORT_MASK);
2685 	writeb(data, hw->io + addr);
2686 
2687 	hw->ksz_switch->port_cfg[port].member = member;
2688 }
2689 
2690 /**
2691  * sw_get_addr - get the switch MAC address.
2692  * @hw: 	The hardware instance.
2693  * @mac_addr:	Buffer to store the MAC address.
2694  *
2695  * This function retrieves the MAC address of the switch.
2696  */
2697 static inline void sw_get_addr(struct ksz_hw *hw, u8 *mac_addr)
2698 {
2699 	int i;
2700 
2701 	for (i = 0; i < 6; i += 2) {
2702 		mac_addr[i] = readb(hw->io + KS8842_MAC_ADDR_0_OFFSET + i);
2703 		mac_addr[1 + i] = readb(hw->io + KS8842_MAC_ADDR_1_OFFSET + i);
2704 	}
2705 }
2706 
2707 /**
2708  * sw_set_addr - configure switch MAC address
2709  * @hw: 	The hardware instance.
2710  * @mac_addr:	The MAC address.
2711  *
2712  * This function configures the MAC address of the switch.
2713  */
2714 static void sw_set_addr(struct ksz_hw *hw, u8 *mac_addr)
2715 {
2716 	int i;
2717 
2718 	for (i = 0; i < 6; i += 2) {
2719 		writeb(mac_addr[i], hw->io + KS8842_MAC_ADDR_0_OFFSET + i);
2720 		writeb(mac_addr[1 + i], hw->io + KS8842_MAC_ADDR_1_OFFSET + i);
2721 	}
2722 }
2723 
2724 /**
2725  * sw_set_global_ctrl - set switch global control
2726  * @hw: 	The hardware instance.
2727  *
2728  * This routine sets the global control of the switch function.
2729  */
2730 static void sw_set_global_ctrl(struct ksz_hw *hw)
2731 {
2732 	u16 data;
2733 
2734 	/* Enable switch MII flow control. */
2735 	data = readw(hw->io + KS8842_SWITCH_CTRL_3_OFFSET);
2736 	data |= SWITCH_FLOW_CTRL;
2737 	writew(data, hw->io + KS8842_SWITCH_CTRL_3_OFFSET);
2738 
2739 	data = readw(hw->io + KS8842_SWITCH_CTRL_1_OFFSET);
2740 
2741 	/* Enable aggressive back off algorithm in half duplex mode. */
2742 	data |= SWITCH_AGGR_BACKOFF;
2743 
2744 	/* Enable automatic fast aging when link changed detected. */
2745 	data |= SWITCH_AGING_ENABLE;
2746 	data |= SWITCH_LINK_AUTO_AGING;
2747 
2748 	if (hw->overrides & FAST_AGING)
2749 		data |= SWITCH_FAST_AGING;
2750 	else
2751 		data &= ~SWITCH_FAST_AGING;
2752 	writew(data, hw->io + KS8842_SWITCH_CTRL_1_OFFSET);
2753 
2754 	data = readw(hw->io + KS8842_SWITCH_CTRL_2_OFFSET);
2755 
2756 	/* Enable no excessive collision drop. */
2757 	data |= NO_EXC_COLLISION_DROP;
2758 	writew(data, hw->io + KS8842_SWITCH_CTRL_2_OFFSET);
2759 }
2760 
2761 enum {
2762 	STP_STATE_DISABLED = 0,
2763 	STP_STATE_LISTENING,
2764 	STP_STATE_LEARNING,
2765 	STP_STATE_FORWARDING,
2766 	STP_STATE_BLOCKED,
2767 	STP_STATE_SIMPLE
2768 };
2769 
2770 /**
2771  * port_set_stp_state - configure port spanning tree state
2772  * @hw: 	The hardware instance.
2773  * @port:	The port index.
2774  * @state:	The spanning tree state.
2775  *
2776  * This routine configures the spanning tree state of the port.
2777  */
2778 static void port_set_stp_state(struct ksz_hw *hw, int port, int state)
2779 {
2780 	u16 data;
2781 
2782 	port_r16(hw, port, KS8842_PORT_CTRL_2_OFFSET, &data);
2783 	switch (state) {
2784 	case STP_STATE_DISABLED:
2785 		data &= ~(PORT_TX_ENABLE | PORT_RX_ENABLE);
2786 		data |= PORT_LEARN_DISABLE;
2787 		break;
2788 	case STP_STATE_LISTENING:
2789 /*
2790  * No need to turn on transmit because of port direct mode.
2791  * Turning on receive is required if static MAC table is not setup.
2792  */
2793 		data &= ~PORT_TX_ENABLE;
2794 		data |= PORT_RX_ENABLE;
2795 		data |= PORT_LEARN_DISABLE;
2796 		break;
2797 	case STP_STATE_LEARNING:
2798 		data &= ~PORT_TX_ENABLE;
2799 		data |= PORT_RX_ENABLE;
2800 		data &= ~PORT_LEARN_DISABLE;
2801 		break;
2802 	case STP_STATE_FORWARDING:
2803 		data |= (PORT_TX_ENABLE | PORT_RX_ENABLE);
2804 		data &= ~PORT_LEARN_DISABLE;
2805 		break;
2806 	case STP_STATE_BLOCKED:
2807 /*
2808  * Need to setup static MAC table with override to keep receiving BPDU
2809  * messages.  See sw_init_stp routine.
2810  */
2811 		data &= ~(PORT_TX_ENABLE | PORT_RX_ENABLE);
2812 		data |= PORT_LEARN_DISABLE;
2813 		break;
2814 	case STP_STATE_SIMPLE:
2815 		data |= (PORT_TX_ENABLE | PORT_RX_ENABLE);
2816 		data |= PORT_LEARN_DISABLE;
2817 		break;
2818 	}
2819 	port_w16(hw, port, KS8842_PORT_CTRL_2_OFFSET, data);
2820 	hw->ksz_switch->port_cfg[port].stp_state = state;
2821 }
2822 
2823 #define STP_ENTRY			0
2824 #define BROADCAST_ENTRY			1
2825 #define BRIDGE_ADDR_ENTRY		2
2826 #define IPV6_ADDR_ENTRY			3
2827 
2828 /**
2829  * sw_clr_sta_mac_table - clear static MAC table
2830  * @hw: 	The hardware instance.
2831  *
2832  * This routine clears the static MAC table.
2833  */
2834 static void sw_clr_sta_mac_table(struct ksz_hw *hw)
2835 {
2836 	struct ksz_mac_table *entry;
2837 	int i;
2838 
2839 	for (i = 0; i < STATIC_MAC_TABLE_ENTRIES; i++) {
2840 		entry = &hw->ksz_switch->mac_table[i];
2841 		sw_w_sta_mac_table(hw, i,
2842 			entry->mac_addr, entry->ports,
2843 			entry->override, 0,
2844 			entry->use_fid, entry->fid);
2845 	}
2846 }
2847 
2848 /**
2849  * sw_init_stp - initialize switch spanning tree support
2850  * @hw: 	The hardware instance.
2851  *
2852  * This routine initializes the spanning tree support of the switch.
2853  */
2854 static void sw_init_stp(struct ksz_hw *hw)
2855 {
2856 	struct ksz_mac_table *entry;
2857 
2858 	entry = &hw->ksz_switch->mac_table[STP_ENTRY];
2859 	entry->mac_addr[0] = 0x01;
2860 	entry->mac_addr[1] = 0x80;
2861 	entry->mac_addr[2] = 0xC2;
2862 	entry->mac_addr[3] = 0x00;
2863 	entry->mac_addr[4] = 0x00;
2864 	entry->mac_addr[5] = 0x00;
2865 	entry->ports = HOST_MASK;
2866 	entry->override = 1;
2867 	entry->valid = 1;
2868 	sw_w_sta_mac_table(hw, STP_ENTRY,
2869 		entry->mac_addr, entry->ports,
2870 		entry->override, entry->valid,
2871 		entry->use_fid, entry->fid);
2872 }
2873 
2874 /**
2875  * sw_block_addr - block certain packets from the host port
2876  * @hw: 	The hardware instance.
2877  *
2878  * This routine blocks certain packets from reaching to the host port.
2879  */
2880 static void sw_block_addr(struct ksz_hw *hw)
2881 {
2882 	struct ksz_mac_table *entry;
2883 	int i;
2884 
2885 	for (i = BROADCAST_ENTRY; i <= IPV6_ADDR_ENTRY; i++) {
2886 		entry = &hw->ksz_switch->mac_table[i];
2887 		entry->valid = 0;
2888 		sw_w_sta_mac_table(hw, i,
2889 			entry->mac_addr, entry->ports,
2890 			entry->override, entry->valid,
2891 			entry->use_fid, entry->fid);
2892 	}
2893 }
2894 
2895 #define PHY_LINK_SUPPORT		\
2896 	(PHY_AUTO_NEG_ASYM_PAUSE |	\
2897 	PHY_AUTO_NEG_SYM_PAUSE |	\
2898 	PHY_AUTO_NEG_100BT4 |		\
2899 	PHY_AUTO_NEG_100BTX_FD |	\
2900 	PHY_AUTO_NEG_100BTX |		\
2901 	PHY_AUTO_NEG_10BT_FD |		\
2902 	PHY_AUTO_NEG_10BT)
2903 
2904 static inline void hw_r_phy_ctrl(struct ksz_hw *hw, int phy, u16 *data)
2905 {
2906 	*data = readw(hw->io + phy + KS884X_PHY_CTRL_OFFSET);
2907 }
2908 
2909 static inline void hw_w_phy_ctrl(struct ksz_hw *hw, int phy, u16 data)
2910 {
2911 	writew(data, hw->io + phy + KS884X_PHY_CTRL_OFFSET);
2912 }
2913 
2914 static inline void hw_r_phy_link_stat(struct ksz_hw *hw, int phy, u16 *data)
2915 {
2916 	*data = readw(hw->io + phy + KS884X_PHY_STATUS_OFFSET);
2917 }
2918 
2919 static inline void hw_r_phy_auto_neg(struct ksz_hw *hw, int phy, u16 *data)
2920 {
2921 	*data = readw(hw->io + phy + KS884X_PHY_AUTO_NEG_OFFSET);
2922 }
2923 
2924 static inline void hw_w_phy_auto_neg(struct ksz_hw *hw, int phy, u16 data)
2925 {
2926 	writew(data, hw->io + phy + KS884X_PHY_AUTO_NEG_OFFSET);
2927 }
2928 
2929 static inline void hw_r_phy_rem_cap(struct ksz_hw *hw, int phy, u16 *data)
2930 {
2931 	*data = readw(hw->io + phy + KS884X_PHY_REMOTE_CAP_OFFSET);
2932 }
2933 
2934 static inline void hw_r_phy_crossover(struct ksz_hw *hw, int phy, u16 *data)
2935 {
2936 	*data = readw(hw->io + phy + KS884X_PHY_CTRL_OFFSET);
2937 }
2938 
2939 static inline void hw_w_phy_crossover(struct ksz_hw *hw, int phy, u16 data)
2940 {
2941 	writew(data, hw->io + phy + KS884X_PHY_CTRL_OFFSET);
2942 }
2943 
2944 static inline void hw_r_phy_polarity(struct ksz_hw *hw, int phy, u16 *data)
2945 {
2946 	*data = readw(hw->io + phy + KS884X_PHY_PHY_CTRL_OFFSET);
2947 }
2948 
2949 static inline void hw_w_phy_polarity(struct ksz_hw *hw, int phy, u16 data)
2950 {
2951 	writew(data, hw->io + phy + KS884X_PHY_PHY_CTRL_OFFSET);
2952 }
2953 
2954 static inline void hw_r_phy_link_md(struct ksz_hw *hw, int phy, u16 *data)
2955 {
2956 	*data = readw(hw->io + phy + KS884X_PHY_LINK_MD_OFFSET);
2957 }
2958 
2959 static inline void hw_w_phy_link_md(struct ksz_hw *hw, int phy, u16 data)
2960 {
2961 	writew(data, hw->io + phy + KS884X_PHY_LINK_MD_OFFSET);
2962 }
2963 
2964 /**
2965  * hw_r_phy - read data from PHY register
2966  * @hw: 	The hardware instance.
2967  * @port:	Port to read.
2968  * @reg:	PHY register to read.
2969  * @val:	Buffer to store the read data.
2970  *
2971  * This routine reads data from the PHY register.
2972  */
2973 static void hw_r_phy(struct ksz_hw *hw, int port, u16 reg, u16 *val)
2974 {
2975 	int phy;
2976 
2977 	phy = KS884X_PHY_1_CTRL_OFFSET + port * PHY_CTRL_INTERVAL + reg;
2978 	*val = readw(hw->io + phy);
2979 }
2980 
2981 /**
2982  * port_w_phy - write data to PHY register
2983  * @hw: 	The hardware instance.
2984  * @port:	Port to write.
2985  * @reg:	PHY register to write.
2986  * @val:	Word data to write.
2987  *
2988  * This routine writes data to the PHY register.
2989  */
2990 static void hw_w_phy(struct ksz_hw *hw, int port, u16 reg, u16 val)
2991 {
2992 	int phy;
2993 
2994 	phy = KS884X_PHY_1_CTRL_OFFSET + port * PHY_CTRL_INTERVAL + reg;
2995 	writew(val, hw->io + phy);
2996 }
2997 
2998 /*
2999  * EEPROM access functions
3000  */
3001 
3002 #define AT93C_CODE			0
3003 #define AT93C_WR_OFF			0x00
3004 #define AT93C_WR_ALL			0x10
3005 #define AT93C_ER_ALL			0x20
3006 #define AT93C_WR_ON			0x30
3007 
3008 #define AT93C_WRITE			1
3009 #define AT93C_READ			2
3010 #define AT93C_ERASE			3
3011 
3012 #define EEPROM_DELAY			4
3013 
3014 static inline void drop_gpio(struct ksz_hw *hw, u8 gpio)
3015 {
3016 	u16 data;
3017 
3018 	data = readw(hw->io + KS884X_EEPROM_CTRL_OFFSET);
3019 	data &= ~gpio;
3020 	writew(data, hw->io + KS884X_EEPROM_CTRL_OFFSET);
3021 }
3022 
3023 static inline void raise_gpio(struct ksz_hw *hw, u8 gpio)
3024 {
3025 	u16 data;
3026 
3027 	data = readw(hw->io + KS884X_EEPROM_CTRL_OFFSET);
3028 	data |= gpio;
3029 	writew(data, hw->io + KS884X_EEPROM_CTRL_OFFSET);
3030 }
3031 
3032 static inline u8 state_gpio(struct ksz_hw *hw, u8 gpio)
3033 {
3034 	u16 data;
3035 
3036 	data = readw(hw->io + KS884X_EEPROM_CTRL_OFFSET);
3037 	return (u8)(data & gpio);
3038 }
3039 
3040 static void eeprom_clk(struct ksz_hw *hw)
3041 {
3042 	raise_gpio(hw, EEPROM_SERIAL_CLOCK);
3043 	udelay(EEPROM_DELAY);
3044 	drop_gpio(hw, EEPROM_SERIAL_CLOCK);
3045 	udelay(EEPROM_DELAY);
3046 }
3047 
3048 static u16 spi_r(struct ksz_hw *hw)
3049 {
3050 	int i;
3051 	u16 temp = 0;
3052 
3053 	for (i = 15; i >= 0; i--) {
3054 		raise_gpio(hw, EEPROM_SERIAL_CLOCK);
3055 		udelay(EEPROM_DELAY);
3056 
3057 		temp |= (state_gpio(hw, EEPROM_DATA_IN)) ? 1 << i : 0;
3058 
3059 		drop_gpio(hw, EEPROM_SERIAL_CLOCK);
3060 		udelay(EEPROM_DELAY);
3061 	}
3062 	return temp;
3063 }
3064 
3065 static void spi_w(struct ksz_hw *hw, u16 data)
3066 {
3067 	int i;
3068 
3069 	for (i = 15; i >= 0; i--) {
3070 		(data & (0x01 << i)) ? raise_gpio(hw, EEPROM_DATA_OUT) :
3071 			drop_gpio(hw, EEPROM_DATA_OUT);
3072 		eeprom_clk(hw);
3073 	}
3074 }
3075 
3076 static void spi_reg(struct ksz_hw *hw, u8 data, u8 reg)
3077 {
3078 	int i;
3079 
3080 	/* Initial start bit */
3081 	raise_gpio(hw, EEPROM_DATA_OUT);
3082 	eeprom_clk(hw);
3083 
3084 	/* AT93C operation */
3085 	for (i = 1; i >= 0; i--) {
3086 		(data & (0x01 << i)) ? raise_gpio(hw, EEPROM_DATA_OUT) :
3087 			drop_gpio(hw, EEPROM_DATA_OUT);
3088 		eeprom_clk(hw);
3089 	}
3090 
3091 	/* Address location */
3092 	for (i = 5; i >= 0; i--) {
3093 		(reg & (0x01 << i)) ? raise_gpio(hw, EEPROM_DATA_OUT) :
3094 			drop_gpio(hw, EEPROM_DATA_OUT);
3095 		eeprom_clk(hw);
3096 	}
3097 }
3098 
3099 #define EEPROM_DATA_RESERVED		0
3100 #define EEPROM_DATA_MAC_ADDR_0		1
3101 #define EEPROM_DATA_MAC_ADDR_1		2
3102 #define EEPROM_DATA_MAC_ADDR_2		3
3103 #define EEPROM_DATA_SUBSYS_ID		4
3104 #define EEPROM_DATA_SUBSYS_VEN_ID	5
3105 #define EEPROM_DATA_PM_CAP		6
3106 
3107 /* User defined EEPROM data */
3108 #define EEPROM_DATA_OTHER_MAC_ADDR	9
3109 
3110 /**
3111  * eeprom_read - read from AT93C46 EEPROM
3112  * @hw: 	The hardware instance.
3113  * @reg:	The register offset.
3114  *
3115  * This function reads a word from the AT93C46 EEPROM.
3116  *
3117  * Return the data value.
3118  */
3119 static u16 eeprom_read(struct ksz_hw *hw, u8 reg)
3120 {
3121 	u16 data;
3122 
3123 	raise_gpio(hw, EEPROM_ACCESS_ENABLE | EEPROM_CHIP_SELECT);
3124 
3125 	spi_reg(hw, AT93C_READ, reg);
3126 	data = spi_r(hw);
3127 
3128 	drop_gpio(hw, EEPROM_ACCESS_ENABLE | EEPROM_CHIP_SELECT);
3129 
3130 	return data;
3131 }
3132 
3133 /**
3134  * eeprom_write - write to AT93C46 EEPROM
3135  * @hw: 	The hardware instance.
3136  * @reg:	The register offset.
3137  * @data:	The data value.
3138  *
3139  * This procedure writes a word to the AT93C46 EEPROM.
3140  */
3141 static void eeprom_write(struct ksz_hw *hw, u8 reg, u16 data)
3142 {
3143 	int timeout;
3144 
3145 	raise_gpio(hw, EEPROM_ACCESS_ENABLE | EEPROM_CHIP_SELECT);
3146 
3147 	/* Enable write. */
3148 	spi_reg(hw, AT93C_CODE, AT93C_WR_ON);
3149 	drop_gpio(hw, EEPROM_CHIP_SELECT);
3150 	udelay(1);
3151 
3152 	/* Erase the register. */
3153 	raise_gpio(hw, EEPROM_CHIP_SELECT);
3154 	spi_reg(hw, AT93C_ERASE, reg);
3155 	drop_gpio(hw, EEPROM_CHIP_SELECT);
3156 	udelay(1);
3157 
3158 	/* Check operation complete. */
3159 	raise_gpio(hw, EEPROM_CHIP_SELECT);
3160 	timeout = 8;
3161 	mdelay(2);
3162 	do {
3163 		mdelay(1);
3164 	} while (!state_gpio(hw, EEPROM_DATA_IN) && --timeout);
3165 	drop_gpio(hw, EEPROM_CHIP_SELECT);
3166 	udelay(1);
3167 
3168 	/* Write the register. */
3169 	raise_gpio(hw, EEPROM_CHIP_SELECT);
3170 	spi_reg(hw, AT93C_WRITE, reg);
3171 	spi_w(hw, data);
3172 	drop_gpio(hw, EEPROM_CHIP_SELECT);
3173 	udelay(1);
3174 
3175 	/* Check operation complete. */
3176 	raise_gpio(hw, EEPROM_CHIP_SELECT);
3177 	timeout = 8;
3178 	mdelay(2);
3179 	do {
3180 		mdelay(1);
3181 	} while (!state_gpio(hw, EEPROM_DATA_IN) && --timeout);
3182 	drop_gpio(hw, EEPROM_CHIP_SELECT);
3183 	udelay(1);
3184 
3185 	/* Disable write. */
3186 	raise_gpio(hw, EEPROM_CHIP_SELECT);
3187 	spi_reg(hw, AT93C_CODE, AT93C_WR_OFF);
3188 
3189 	drop_gpio(hw, EEPROM_ACCESS_ENABLE | EEPROM_CHIP_SELECT);
3190 }
3191 
3192 /*
3193  * Link detection routines
3194  */
3195 
3196 static u16 advertised_flow_ctrl(struct ksz_port *port, u16 ctrl)
3197 {
3198 	ctrl &= ~PORT_AUTO_NEG_SYM_PAUSE;
3199 	switch (port->flow_ctrl) {
3200 	case PHY_FLOW_CTRL:
3201 		ctrl |= PORT_AUTO_NEG_SYM_PAUSE;
3202 		break;
3203 	/* Not supported. */
3204 	case PHY_TX_ONLY:
3205 	case PHY_RX_ONLY:
3206 	default:
3207 		break;
3208 	}
3209 	return ctrl;
3210 }
3211 
3212 static void set_flow_ctrl(struct ksz_hw *hw, int rx, int tx)
3213 {
3214 	u32 rx_cfg;
3215 	u32 tx_cfg;
3216 
3217 	rx_cfg = hw->rx_cfg;
3218 	tx_cfg = hw->tx_cfg;
3219 	if (rx)
3220 		hw->rx_cfg |= DMA_RX_FLOW_ENABLE;
3221 	else
3222 		hw->rx_cfg &= ~DMA_RX_FLOW_ENABLE;
3223 	if (tx)
3224 		hw->tx_cfg |= DMA_TX_FLOW_ENABLE;
3225 	else
3226 		hw->tx_cfg &= ~DMA_TX_FLOW_ENABLE;
3227 	if (hw->enabled) {
3228 		if (rx_cfg != hw->rx_cfg)
3229 			writel(hw->rx_cfg, hw->io + KS_DMA_RX_CTRL);
3230 		if (tx_cfg != hw->tx_cfg)
3231 			writel(hw->tx_cfg, hw->io + KS_DMA_TX_CTRL);
3232 	}
3233 }
3234 
3235 static void determine_flow_ctrl(struct ksz_hw *hw, struct ksz_port *port,
3236 	u16 local, u16 remote)
3237 {
3238 	int rx;
3239 	int tx;
3240 
3241 	if (hw->overrides & PAUSE_FLOW_CTRL)
3242 		return;
3243 
3244 	rx = tx = 0;
3245 	if (port->force_link)
3246 		rx = tx = 1;
3247 	if (remote & PHY_AUTO_NEG_SYM_PAUSE) {
3248 		if (local & PHY_AUTO_NEG_SYM_PAUSE) {
3249 			rx = tx = 1;
3250 		} else if ((remote & PHY_AUTO_NEG_ASYM_PAUSE) &&
3251 				(local & PHY_AUTO_NEG_PAUSE) ==
3252 				PHY_AUTO_NEG_ASYM_PAUSE) {
3253 			tx = 1;
3254 		}
3255 	} else if (remote & PHY_AUTO_NEG_ASYM_PAUSE) {
3256 		if ((local & PHY_AUTO_NEG_PAUSE) == PHY_AUTO_NEG_PAUSE)
3257 			rx = 1;
3258 	}
3259 	if (!hw->ksz_switch)
3260 		set_flow_ctrl(hw, rx, tx);
3261 }
3262 
3263 static inline void port_cfg_change(struct ksz_hw *hw, struct ksz_port *port,
3264 	struct ksz_port_info *info, u16 link_status)
3265 {
3266 	if ((hw->features & HALF_DUPLEX_SIGNAL_BUG) &&
3267 			!(hw->overrides & PAUSE_FLOW_CTRL)) {
3268 		u32 cfg = hw->tx_cfg;
3269 
3270 		/* Disable flow control in the half duplex mode. */
3271 		if (1 == info->duplex)
3272 			hw->tx_cfg &= ~DMA_TX_FLOW_ENABLE;
3273 		if (hw->enabled && cfg != hw->tx_cfg)
3274 			writel(hw->tx_cfg, hw->io + KS_DMA_TX_CTRL);
3275 	}
3276 }
3277 
3278 /**
3279  * port_get_link_speed - get current link status
3280  * @port: 	The port instance.
3281  *
3282  * This routine reads PHY registers to determine the current link status of the
3283  * switch ports.
3284  */
3285 static void port_get_link_speed(struct ksz_port *port)
3286 {
3287 	uint interrupt;
3288 	struct ksz_port_info *info;
3289 	struct ksz_port_info *linked = NULL;
3290 	struct ksz_hw *hw = port->hw;
3291 	u16 data;
3292 	u16 status;
3293 	u8 local;
3294 	u8 remote;
3295 	int i;
3296 	int p;
3297 	int change = 0;
3298 
3299 	interrupt = hw_block_intr(hw);
3300 
3301 	for (i = 0, p = port->first_port; i < port->port_cnt; i++, p++) {
3302 		info = &hw->port_info[p];
3303 		port_r16(hw, p, KS884X_PORT_CTRL_4_OFFSET, &data);
3304 		port_r16(hw, p, KS884X_PORT_STATUS_OFFSET, &status);
3305 
3306 		/*
3307 		 * Link status is changing all the time even when there is no
3308 		 * cable connection!
3309 		 */
3310 		remote = status & (PORT_AUTO_NEG_COMPLETE |
3311 			PORT_STATUS_LINK_GOOD);
3312 		local = (u8) data;
3313 
3314 		/* No change to status. */
3315 		if (local == info->advertised && remote == info->partner)
3316 			continue;
3317 
3318 		info->advertised = local;
3319 		info->partner = remote;
3320 		if (status & PORT_STATUS_LINK_GOOD) {
3321 
3322 			/* Remember the first linked port. */
3323 			if (!linked)
3324 				linked = info;
3325 
3326 			info->tx_rate = 10 * TX_RATE_UNIT;
3327 			if (status & PORT_STATUS_SPEED_100MBIT)
3328 				info->tx_rate = 100 * TX_RATE_UNIT;
3329 
3330 			info->duplex = 1;
3331 			if (status & PORT_STATUS_FULL_DUPLEX)
3332 				info->duplex = 2;
3333 
3334 			if (media_connected != info->state) {
3335 				hw_r_phy(hw, p, KS884X_PHY_AUTO_NEG_OFFSET,
3336 					&data);
3337 				hw_r_phy(hw, p, KS884X_PHY_REMOTE_CAP_OFFSET,
3338 					&status);
3339 				determine_flow_ctrl(hw, port, data, status);
3340 				if (hw->ksz_switch) {
3341 					port_cfg_back_pressure(hw, p,
3342 						(1 == info->duplex));
3343 				}
3344 				change |= 1 << i;
3345 				port_cfg_change(hw, port, info, status);
3346 			}
3347 			info->state = media_connected;
3348 		} else {
3349 			if (media_disconnected != info->state) {
3350 				change |= 1 << i;
3351 
3352 				/* Indicate the link just goes down. */
3353 				hw->port_mib[p].link_down = 1;
3354 			}
3355 			info->state = media_disconnected;
3356 		}
3357 		hw->port_mib[p].state = (u8) info->state;
3358 	}
3359 
3360 	if (linked && media_disconnected == port->linked->state)
3361 		port->linked = linked;
3362 
3363 	hw_restore_intr(hw, interrupt);
3364 }
3365 
3366 #define PHY_RESET_TIMEOUT		10
3367 
3368 /**
3369  * port_set_link_speed - set port speed
3370  * @port: 	The port instance.
3371  *
3372  * This routine sets the link speed of the switch ports.
3373  */
3374 static void port_set_link_speed(struct ksz_port *port)
3375 {
3376 	struct ksz_port_info *info;
3377 	struct ksz_hw *hw = port->hw;
3378 	u16 data;
3379 	u16 cfg;
3380 	u8 status;
3381 	int i;
3382 	int p;
3383 
3384 	for (i = 0, p = port->first_port; i < port->port_cnt; i++, p++) {
3385 		info = &hw->port_info[p];
3386 
3387 		port_r16(hw, p, KS884X_PORT_CTRL_4_OFFSET, &data);
3388 		port_r8(hw, p, KS884X_PORT_STATUS_OFFSET, &status);
3389 
3390 		cfg = 0;
3391 		if (status & PORT_STATUS_LINK_GOOD)
3392 			cfg = data;
3393 
3394 		data |= PORT_AUTO_NEG_ENABLE;
3395 		data = advertised_flow_ctrl(port, data);
3396 
3397 		data |= PORT_AUTO_NEG_100BTX_FD | PORT_AUTO_NEG_100BTX |
3398 			PORT_AUTO_NEG_10BT_FD | PORT_AUTO_NEG_10BT;
3399 
3400 		/* Check if manual configuration is specified by the user. */
3401 		if (port->speed || port->duplex) {
3402 			if (10 == port->speed)
3403 				data &= ~(PORT_AUTO_NEG_100BTX_FD |
3404 					PORT_AUTO_NEG_100BTX);
3405 			else if (100 == port->speed)
3406 				data &= ~(PORT_AUTO_NEG_10BT_FD |
3407 					PORT_AUTO_NEG_10BT);
3408 			if (1 == port->duplex)
3409 				data &= ~(PORT_AUTO_NEG_100BTX_FD |
3410 					PORT_AUTO_NEG_10BT_FD);
3411 			else if (2 == port->duplex)
3412 				data &= ~(PORT_AUTO_NEG_100BTX |
3413 					PORT_AUTO_NEG_10BT);
3414 		}
3415 		if (data != cfg) {
3416 			data |= PORT_AUTO_NEG_RESTART;
3417 			port_w16(hw, p, KS884X_PORT_CTRL_4_OFFSET, data);
3418 		}
3419 	}
3420 }
3421 
3422 /**
3423  * port_force_link_speed - force port speed
3424  * @port: 	The port instance.
3425  *
3426  * This routine forces the link speed of the switch ports.
3427  */
3428 static void port_force_link_speed(struct ksz_port *port)
3429 {
3430 	struct ksz_hw *hw = port->hw;
3431 	u16 data;
3432 	int i;
3433 	int phy;
3434 	int p;
3435 
3436 	for (i = 0, p = port->first_port; i < port->port_cnt; i++, p++) {
3437 		phy = KS884X_PHY_1_CTRL_OFFSET + p * PHY_CTRL_INTERVAL;
3438 		hw_r_phy_ctrl(hw, phy, &data);
3439 
3440 		data &= ~PHY_AUTO_NEG_ENABLE;
3441 
3442 		if (10 == port->speed)
3443 			data &= ~PHY_SPEED_100MBIT;
3444 		else if (100 == port->speed)
3445 			data |= PHY_SPEED_100MBIT;
3446 		if (1 == port->duplex)
3447 			data &= ~PHY_FULL_DUPLEX;
3448 		else if (2 == port->duplex)
3449 			data |= PHY_FULL_DUPLEX;
3450 		hw_w_phy_ctrl(hw, phy, data);
3451 	}
3452 }
3453 
3454 static void port_set_power_saving(struct ksz_port *port, int enable)
3455 {
3456 	struct ksz_hw *hw = port->hw;
3457 	int i;
3458 	int p;
3459 
3460 	for (i = 0, p = port->first_port; i < port->port_cnt; i++, p++)
3461 		port_cfg(hw, p,
3462 			KS884X_PORT_CTRL_4_OFFSET, PORT_POWER_DOWN, enable);
3463 }
3464 
3465 /*
3466  * KSZ8841 power management functions
3467  */
3468 
3469 /**
3470  * hw_chk_wol_pme_status - check PMEN pin
3471  * @hw: 	The hardware instance.
3472  *
3473  * This function is used to check PMEN pin is asserted.
3474  *
3475  * Return 1 if PMEN pin is asserted; otherwise, 0.
3476  */
3477 static int hw_chk_wol_pme_status(struct ksz_hw *hw)
3478 {
3479 	struct dev_info *hw_priv = container_of(hw, struct dev_info, hw);
3480 	struct pci_dev *pdev = hw_priv->pdev;
3481 	u16 data;
3482 
3483 	if (!pdev->pm_cap)
3484 		return 0;
3485 	pci_read_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, &data);
3486 	return (data & PCI_PM_CTRL_PME_STATUS) == PCI_PM_CTRL_PME_STATUS;
3487 }
3488 
3489 /**
3490  * hw_clr_wol_pme_status - clear PMEN pin
3491  * @hw: 	The hardware instance.
3492  *
3493  * This routine is used to clear PME_Status to deassert PMEN pin.
3494  */
3495 static void hw_clr_wol_pme_status(struct ksz_hw *hw)
3496 {
3497 	struct dev_info *hw_priv = container_of(hw, struct dev_info, hw);
3498 	struct pci_dev *pdev = hw_priv->pdev;
3499 	u16 data;
3500 
3501 	if (!pdev->pm_cap)
3502 		return;
3503 
3504 	/* Clear PME_Status to deassert PMEN pin. */
3505 	pci_read_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, &data);
3506 	data |= PCI_PM_CTRL_PME_STATUS;
3507 	pci_write_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, data);
3508 }
3509 
3510 /**
3511  * hw_cfg_wol_pme - enable or disable Wake-on-LAN
3512  * @hw: 	The hardware instance.
3513  * @set:	The flag indicating whether to enable or disable.
3514  *
3515  * This routine is used to enable or disable Wake-on-LAN.
3516  */
3517 static void hw_cfg_wol_pme(struct ksz_hw *hw, int set)
3518 {
3519 	struct dev_info *hw_priv = container_of(hw, struct dev_info, hw);
3520 	struct pci_dev *pdev = hw_priv->pdev;
3521 	u16 data;
3522 
3523 	if (!pdev->pm_cap)
3524 		return;
3525 	pci_read_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, &data);
3526 	data &= ~PCI_PM_CTRL_STATE_MASK;
3527 	if (set)
3528 		data |= PCI_PM_CTRL_PME_ENABLE | PCI_D3hot;
3529 	else
3530 		data &= ~PCI_PM_CTRL_PME_ENABLE;
3531 	pci_write_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, data);
3532 }
3533 
3534 /**
3535  * hw_cfg_wol - configure Wake-on-LAN features
3536  * @hw: 	The hardware instance.
3537  * @frame:	The pattern frame bit.
3538  * @set:	The flag indicating whether to enable or disable.
3539  *
3540  * This routine is used to enable or disable certain Wake-on-LAN features.
3541  */
3542 static void hw_cfg_wol(struct ksz_hw *hw, u16 frame, int set)
3543 {
3544 	u16 data;
3545 
3546 	data = readw(hw->io + KS8841_WOL_CTRL_OFFSET);
3547 	if (set)
3548 		data |= frame;
3549 	else
3550 		data &= ~frame;
3551 	writew(data, hw->io + KS8841_WOL_CTRL_OFFSET);
3552 }
3553 
3554 /**
3555  * hw_set_wol_frame - program Wake-on-LAN pattern
3556  * @hw: 	The hardware instance.
3557  * @i:		The frame index.
3558  * @mask_size:	The size of the mask.
3559  * @mask:	Mask to ignore certain bytes in the pattern.
3560  * @frame_size:	The size of the frame.
3561  * @pattern:	The frame data.
3562  *
3563  * This routine is used to program Wake-on-LAN pattern.
3564  */
3565 static void hw_set_wol_frame(struct ksz_hw *hw, int i, uint mask_size,
3566 	const u8 *mask, uint frame_size, const u8 *pattern)
3567 {
3568 	int bits;
3569 	int from;
3570 	int len;
3571 	int to;
3572 	u32 crc;
3573 	u8 data[64];
3574 	u8 val = 0;
3575 
3576 	if (frame_size > mask_size * 8)
3577 		frame_size = mask_size * 8;
3578 	if (frame_size > 64)
3579 		frame_size = 64;
3580 
3581 	i *= 0x10;
3582 	writel(0, hw->io + KS8841_WOL_FRAME_BYTE0_OFFSET + i);
3583 	writel(0, hw->io + KS8841_WOL_FRAME_BYTE2_OFFSET + i);
3584 
3585 	bits = len = from = to = 0;
3586 	do {
3587 		if (bits) {
3588 			if ((val & 1))
3589 				data[to++] = pattern[from];
3590 			val >>= 1;
3591 			++from;
3592 			--bits;
3593 		} else {
3594 			val = mask[len];
3595 			writeb(val, hw->io + KS8841_WOL_FRAME_BYTE0_OFFSET + i
3596 				+ len);
3597 			++len;
3598 			if (val)
3599 				bits = 8;
3600 			else
3601 				from += 8;
3602 		}
3603 	} while (from < (int) frame_size);
3604 	if (val) {
3605 		bits = mask[len - 1];
3606 		val <<= (from % 8);
3607 		bits &= ~val;
3608 		writeb(bits, hw->io + KS8841_WOL_FRAME_BYTE0_OFFSET + i + len -
3609 			1);
3610 	}
3611 	crc = ether_crc(to, data);
3612 	writel(crc, hw->io + KS8841_WOL_FRAME_CRC_OFFSET + i);
3613 }
3614 
3615 /**
3616  * hw_add_wol_arp - add ARP pattern
3617  * @hw: 	The hardware instance.
3618  * @ip_addr:	The IPv4 address assigned to the device.
3619  *
3620  * This routine is used to add ARP pattern for waking up the host.
3621  */
3622 static void hw_add_wol_arp(struct ksz_hw *hw, const u8 *ip_addr)
3623 {
3624 	static const u8 mask[6] = { 0x3F, 0xF0, 0x3F, 0x00, 0xC0, 0x03 };
3625 	u8 pattern[42] = {
3626 		0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
3627 		0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
3628 		0x08, 0x06,
3629 		0x00, 0x01, 0x08, 0x00, 0x06, 0x04, 0x00, 0x01,
3630 		0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
3631 		0x00, 0x00, 0x00, 0x00,
3632 		0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
3633 		0x00, 0x00, 0x00, 0x00 };
3634 
3635 	memcpy(&pattern[38], ip_addr, 4);
3636 	hw_set_wol_frame(hw, 3, 6, mask, 42, pattern);
3637 }
3638 
3639 /**
3640  * hw_add_wol_bcast - add broadcast pattern
3641  * @hw: 	The hardware instance.
3642  *
3643  * This routine is used to add broadcast pattern for waking up the host.
3644  */
3645 static void hw_add_wol_bcast(struct ksz_hw *hw)
3646 {
3647 	static const u8 mask[] = { 0x3F };
3648 	static const u8 pattern[] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
3649 
3650 	hw_set_wol_frame(hw, 2, 1, mask, ETH_ALEN, pattern);
3651 }
3652 
3653 /**
3654  * hw_add_wol_mcast - add multicast pattern
3655  * @hw: 	The hardware instance.
3656  *
3657  * This routine is used to add multicast pattern for waking up the host.
3658  *
3659  * It is assumed the multicast packet is the ICMPv6 neighbor solicitation used
3660  * by IPv6 ping command.  Note that multicast packets are filtred through the
3661  * multicast hash table, so not all multicast packets can wake up the host.
3662  */
3663 static void hw_add_wol_mcast(struct ksz_hw *hw)
3664 {
3665 	static const u8 mask[] = { 0x3F };
3666 	u8 pattern[] = { 0x33, 0x33, 0xFF, 0x00, 0x00, 0x00 };
3667 
3668 	memcpy(&pattern[3], &hw->override_addr[3], 3);
3669 	hw_set_wol_frame(hw, 1, 1, mask, 6, pattern);
3670 }
3671 
3672 /**
3673  * hw_add_wol_ucast - add unicast pattern
3674  * @hw: 	The hardware instance.
3675  *
3676  * This routine is used to add unicast pattern to wakeup the host.
3677  *
3678  * It is assumed the unicast packet is directed to the device, as the hardware
3679  * can only receive them in normal case.
3680  */
3681 static void hw_add_wol_ucast(struct ksz_hw *hw)
3682 {
3683 	static const u8 mask[] = { 0x3F };
3684 
3685 	hw_set_wol_frame(hw, 0, 1, mask, ETH_ALEN, hw->override_addr);
3686 }
3687 
3688 /**
3689  * hw_enable_wol - enable Wake-on-LAN
3690  * @hw: 	The hardware instance.
3691  * @wol_enable:	The Wake-on-LAN settings.
3692  * @net_addr:	The IPv4 address assigned to the device.
3693  *
3694  * This routine is used to enable Wake-on-LAN depending on driver settings.
3695  */
3696 static void hw_enable_wol(struct ksz_hw *hw, u32 wol_enable, const u8 *net_addr)
3697 {
3698 	hw_cfg_wol(hw, KS8841_WOL_MAGIC_ENABLE, (wol_enable & WAKE_MAGIC));
3699 	hw_cfg_wol(hw, KS8841_WOL_FRAME0_ENABLE, (wol_enable & WAKE_UCAST));
3700 	hw_add_wol_ucast(hw);
3701 	hw_cfg_wol(hw, KS8841_WOL_FRAME1_ENABLE, (wol_enable & WAKE_MCAST));
3702 	hw_add_wol_mcast(hw);
3703 	hw_cfg_wol(hw, KS8841_WOL_FRAME2_ENABLE, (wol_enable & WAKE_BCAST));
3704 	hw_cfg_wol(hw, KS8841_WOL_FRAME3_ENABLE, (wol_enable & WAKE_ARP));
3705 	hw_add_wol_arp(hw, net_addr);
3706 }
3707 
3708 /**
3709  * hw_init - check driver is correct for the hardware
3710  * @hw: 	The hardware instance.
3711  *
3712  * This function checks the hardware is correct for this driver and sets the
3713  * hardware up for proper initialization.
3714  *
3715  * Return number of ports or 0 if not right.
3716  */
3717 static int hw_init(struct ksz_hw *hw)
3718 {
3719 	int rc = 0;
3720 	u16 data;
3721 	u16 revision;
3722 
3723 	/* Set bus speed to 125MHz. */
3724 	writew(BUS_SPEED_125_MHZ, hw->io + KS884X_BUS_CTRL_OFFSET);
3725 
3726 	/* Check KSZ884x chip ID. */
3727 	data = readw(hw->io + KS884X_CHIP_ID_OFFSET);
3728 
3729 	revision = (data & KS884X_REVISION_MASK) >> KS884X_REVISION_SHIFT;
3730 	data &= KS884X_CHIP_ID_MASK_41;
3731 	if (REG_CHIP_ID_41 == data)
3732 		rc = 1;
3733 	else if (REG_CHIP_ID_42 == data)
3734 		rc = 2;
3735 	else
3736 		return 0;
3737 
3738 	/* Setup hardware features or bug workarounds. */
3739 	if (revision <= 1) {
3740 		hw->features |= SMALL_PACKET_TX_BUG;
3741 		if (1 == rc)
3742 			hw->features |= HALF_DUPLEX_SIGNAL_BUG;
3743 	}
3744 	return rc;
3745 }
3746 
3747 /**
3748  * hw_reset - reset the hardware
3749  * @hw: 	The hardware instance.
3750  *
3751  * This routine resets the hardware.
3752  */
3753 static void hw_reset(struct ksz_hw *hw)
3754 {
3755 	writew(GLOBAL_SOFTWARE_RESET, hw->io + KS884X_GLOBAL_CTRL_OFFSET);
3756 
3757 	/* Wait for device to reset. */
3758 	mdelay(10);
3759 
3760 	/* Write 0 to clear device reset. */
3761 	writew(0, hw->io + KS884X_GLOBAL_CTRL_OFFSET);
3762 }
3763 
3764 /**
3765  * hw_setup - setup the hardware
3766  * @hw: 	The hardware instance.
3767  *
3768  * This routine setup the hardware for proper operation.
3769  */
3770 static void hw_setup(struct ksz_hw *hw)
3771 {
3772 #if SET_DEFAULT_LED
3773 	u16 data;
3774 
3775 	/* Change default LED mode. */
3776 	data = readw(hw->io + KS8842_SWITCH_CTRL_5_OFFSET);
3777 	data &= ~LED_MODE;
3778 	data |= SET_DEFAULT_LED;
3779 	writew(data, hw->io + KS8842_SWITCH_CTRL_5_OFFSET);
3780 #endif
3781 
3782 	/* Setup transmit control. */
3783 	hw->tx_cfg = (DMA_TX_PAD_ENABLE | DMA_TX_CRC_ENABLE |
3784 		(DMA_BURST_DEFAULT << DMA_BURST_SHIFT) | DMA_TX_ENABLE);
3785 
3786 	/* Setup receive control. */
3787 	hw->rx_cfg = (DMA_RX_BROADCAST | DMA_RX_UNICAST |
3788 		(DMA_BURST_DEFAULT << DMA_BURST_SHIFT) | DMA_RX_ENABLE);
3789 	hw->rx_cfg |= KS884X_DMA_RX_MULTICAST;
3790 
3791 	/* Hardware cannot handle UDP packet in IP fragments. */
3792 	hw->rx_cfg |= (DMA_RX_CSUM_TCP | DMA_RX_CSUM_IP);
3793 
3794 	if (hw->all_multi)
3795 		hw->rx_cfg |= DMA_RX_ALL_MULTICAST;
3796 	if (hw->promiscuous)
3797 		hw->rx_cfg |= DMA_RX_PROMISCUOUS;
3798 }
3799 
3800 /**
3801  * hw_setup_intr - setup interrupt mask
3802  * @hw: 	The hardware instance.
3803  *
3804  * This routine setup the interrupt mask for proper operation.
3805  */
3806 static void hw_setup_intr(struct ksz_hw *hw)
3807 {
3808 	hw->intr_mask = KS884X_INT_MASK | KS884X_INT_RX_OVERRUN;
3809 }
3810 
3811 static void ksz_check_desc_num(struct ksz_desc_info *info)
3812 {
3813 #define MIN_DESC_SHIFT  2
3814 
3815 	int alloc = info->alloc;
3816 	int shift;
3817 
3818 	shift = 0;
3819 	while (!(alloc & 1)) {
3820 		shift++;
3821 		alloc >>= 1;
3822 	}
3823 	if (alloc != 1 || shift < MIN_DESC_SHIFT) {
3824 		pr_alert("Hardware descriptor numbers not right!\n");
3825 		while (alloc) {
3826 			shift++;
3827 			alloc >>= 1;
3828 		}
3829 		if (shift < MIN_DESC_SHIFT)
3830 			shift = MIN_DESC_SHIFT;
3831 		alloc = 1 << shift;
3832 		info->alloc = alloc;
3833 	}
3834 	info->mask = info->alloc - 1;
3835 }
3836 
3837 static void hw_init_desc(struct ksz_desc_info *desc_info, int transmit)
3838 {
3839 	int i;
3840 	u32 phys = desc_info->ring_phys;
3841 	struct ksz_hw_desc *desc = desc_info->ring_virt;
3842 	struct ksz_desc *cur = desc_info->ring;
3843 	struct ksz_desc *previous = NULL;
3844 
3845 	for (i = 0; i < desc_info->alloc; i++) {
3846 		cur->phw = desc++;
3847 		phys += desc_info->size;
3848 		previous = cur++;
3849 		previous->phw->next = cpu_to_le32(phys);
3850 	}
3851 	previous->phw->next = cpu_to_le32(desc_info->ring_phys);
3852 	previous->sw.buf.rx.end_of_ring = 1;
3853 	previous->phw->buf.data = cpu_to_le32(previous->sw.buf.data);
3854 
3855 	desc_info->avail = desc_info->alloc;
3856 	desc_info->last = desc_info->next = 0;
3857 
3858 	desc_info->cur = desc_info->ring;
3859 }
3860 
3861 /**
3862  * hw_set_desc_base - set descriptor base addresses
3863  * @hw: 	The hardware instance.
3864  * @tx_addr:	The transmit descriptor base.
3865  * @rx_addr:	The receive descriptor base.
3866  *
3867  * This routine programs the descriptor base addresses after reset.
3868  */
3869 static void hw_set_desc_base(struct ksz_hw *hw, u32 tx_addr, u32 rx_addr)
3870 {
3871 	/* Set base address of Tx/Rx descriptors. */
3872 	writel(tx_addr, hw->io + KS_DMA_TX_ADDR);
3873 	writel(rx_addr, hw->io + KS_DMA_RX_ADDR);
3874 }
3875 
3876 static void hw_reset_pkts(struct ksz_desc_info *info)
3877 {
3878 	info->cur = info->ring;
3879 	info->avail = info->alloc;
3880 	info->last = info->next = 0;
3881 }
3882 
3883 static inline void hw_resume_rx(struct ksz_hw *hw)
3884 {
3885 	writel(DMA_START, hw->io + KS_DMA_RX_START);
3886 }
3887 
3888 /**
3889  * hw_start_rx - start receiving
3890  * @hw: 	The hardware instance.
3891  *
3892  * This routine starts the receive function of the hardware.
3893  */
3894 static void hw_start_rx(struct ksz_hw *hw)
3895 {
3896 	writel(hw->rx_cfg, hw->io + KS_DMA_RX_CTRL);
3897 
3898 	/* Notify when the receive stops. */
3899 	hw->intr_mask |= KS884X_INT_RX_STOPPED;
3900 
3901 	writel(DMA_START, hw->io + KS_DMA_RX_START);
3902 	hw_ack_intr(hw, KS884X_INT_RX_STOPPED);
3903 	hw->rx_stop++;
3904 
3905 	/* Variable overflows. */
3906 	if (0 == hw->rx_stop)
3907 		hw->rx_stop = 2;
3908 }
3909 
3910 /**
3911  * hw_stop_rx - stop receiving
3912  * @hw: 	The hardware instance.
3913  *
3914  * This routine stops the receive function of the hardware.
3915  */
3916 static void hw_stop_rx(struct ksz_hw *hw)
3917 {
3918 	hw->rx_stop = 0;
3919 	hw_turn_off_intr(hw, KS884X_INT_RX_STOPPED);
3920 	writel((hw->rx_cfg & ~DMA_RX_ENABLE), hw->io + KS_DMA_RX_CTRL);
3921 }
3922 
3923 /**
3924  * hw_start_tx - start transmitting
3925  * @hw: 	The hardware instance.
3926  *
3927  * This routine starts the transmit function of the hardware.
3928  */
3929 static void hw_start_tx(struct ksz_hw *hw)
3930 {
3931 	writel(hw->tx_cfg, hw->io + KS_DMA_TX_CTRL);
3932 }
3933 
3934 /**
3935  * hw_stop_tx - stop transmitting
3936  * @hw: 	The hardware instance.
3937  *
3938  * This routine stops the transmit function of the hardware.
3939  */
3940 static void hw_stop_tx(struct ksz_hw *hw)
3941 {
3942 	writel((hw->tx_cfg & ~DMA_TX_ENABLE), hw->io + KS_DMA_TX_CTRL);
3943 }
3944 
3945 /**
3946  * hw_disable - disable hardware
3947  * @hw: 	The hardware instance.
3948  *
3949  * This routine disables the hardware.
3950  */
3951 static void hw_disable(struct ksz_hw *hw)
3952 {
3953 	hw_stop_rx(hw);
3954 	hw_stop_tx(hw);
3955 	hw->enabled = 0;
3956 }
3957 
3958 /**
3959  * hw_enable - enable hardware
3960  * @hw: 	The hardware instance.
3961  *
3962  * This routine enables the hardware.
3963  */
3964 static void hw_enable(struct ksz_hw *hw)
3965 {
3966 	hw_start_tx(hw);
3967 	hw_start_rx(hw);
3968 	hw->enabled = 1;
3969 }
3970 
3971 /**
3972  * hw_alloc_pkt - allocate enough descriptors for transmission
3973  * @hw: 	The hardware instance.
3974  * @length:	The length of the packet.
3975  * @physical:	Number of descriptors required.
3976  *
3977  * This function allocates descriptors for transmission.
3978  *
3979  * Return 0 if not successful; 1 for buffer copy; or number of descriptors.
3980  */
3981 static int hw_alloc_pkt(struct ksz_hw *hw, int length, int physical)
3982 {
3983 	/* Always leave one descriptor free. */
3984 	if (hw->tx_desc_info.avail <= 1)
3985 		return 0;
3986 
3987 	/* Allocate a descriptor for transmission and mark it current. */
3988 	get_tx_pkt(&hw->tx_desc_info, &hw->tx_desc_info.cur);
3989 	hw->tx_desc_info.cur->sw.buf.tx.first_seg = 1;
3990 
3991 	/* Keep track of number of transmit descriptors used so far. */
3992 	++hw->tx_int_cnt;
3993 	hw->tx_size += length;
3994 
3995 	/* Cannot hold on too much data. */
3996 	if (hw->tx_size >= MAX_TX_HELD_SIZE)
3997 		hw->tx_int_cnt = hw->tx_int_mask + 1;
3998 
3999 	if (physical > hw->tx_desc_info.avail)
4000 		return 1;
4001 
4002 	return hw->tx_desc_info.avail;
4003 }
4004 
4005 /**
4006  * hw_send_pkt - mark packet for transmission
4007  * @hw: 	The hardware instance.
4008  *
4009  * This routine marks the packet for transmission in PCI version.
4010  */
4011 static void hw_send_pkt(struct ksz_hw *hw)
4012 {
4013 	struct ksz_desc *cur = hw->tx_desc_info.cur;
4014 
4015 	cur->sw.buf.tx.last_seg = 1;
4016 
4017 	/* Interrupt only after specified number of descriptors used. */
4018 	if (hw->tx_int_cnt > hw->tx_int_mask) {
4019 		cur->sw.buf.tx.intr = 1;
4020 		hw->tx_int_cnt = 0;
4021 		hw->tx_size = 0;
4022 	}
4023 
4024 	/* KSZ8842 supports port directed transmission. */
4025 	cur->sw.buf.tx.dest_port = hw->dst_ports;
4026 
4027 	release_desc(cur);
4028 
4029 	writel(0, hw->io + KS_DMA_TX_START);
4030 }
4031 
4032 static int empty_addr(u8 *addr)
4033 {
4034 	u32 *addr1 = (u32 *) addr;
4035 	u16 *addr2 = (u16 *) &addr[4];
4036 
4037 	return 0 == *addr1 && 0 == *addr2;
4038 }
4039 
4040 /**
4041  * hw_set_addr - set MAC address
4042  * @hw: 	The hardware instance.
4043  *
4044  * This routine programs the MAC address of the hardware when the address is
4045  * overrided.
4046  */
4047 static void hw_set_addr(struct ksz_hw *hw)
4048 {
4049 	int i;
4050 
4051 	for (i = 0; i < ETH_ALEN; i++)
4052 		writeb(hw->override_addr[MAC_ADDR_ORDER(i)],
4053 			hw->io + KS884X_ADDR_0_OFFSET + i);
4054 
4055 	sw_set_addr(hw, hw->override_addr);
4056 }
4057 
4058 /**
4059  * hw_read_addr - read MAC address
4060  * @hw: 	The hardware instance.
4061  *
4062  * This routine retrieves the MAC address of the hardware.
4063  */
4064 static void hw_read_addr(struct ksz_hw *hw)
4065 {
4066 	int i;
4067 
4068 	for (i = 0; i < ETH_ALEN; i++)
4069 		hw->perm_addr[MAC_ADDR_ORDER(i)] = readb(hw->io +
4070 			KS884X_ADDR_0_OFFSET + i);
4071 
4072 	if (!hw->mac_override) {
4073 		memcpy(hw->override_addr, hw->perm_addr, ETH_ALEN);
4074 		if (empty_addr(hw->override_addr)) {
4075 			memcpy(hw->perm_addr, DEFAULT_MAC_ADDRESS, ETH_ALEN);
4076 			memcpy(hw->override_addr, DEFAULT_MAC_ADDRESS,
4077 			       ETH_ALEN);
4078 			hw->override_addr[5] += hw->id;
4079 			hw_set_addr(hw);
4080 		}
4081 	}
4082 }
4083 
4084 static void hw_ena_add_addr(struct ksz_hw *hw, int index, u8 *mac_addr)
4085 {
4086 	int i;
4087 	u32 mac_addr_lo;
4088 	u32 mac_addr_hi;
4089 
4090 	mac_addr_hi = 0;
4091 	for (i = 0; i < 2; i++) {
4092 		mac_addr_hi <<= 8;
4093 		mac_addr_hi |= mac_addr[i];
4094 	}
4095 	mac_addr_hi |= ADD_ADDR_ENABLE;
4096 	mac_addr_lo = 0;
4097 	for (i = 2; i < 6; i++) {
4098 		mac_addr_lo <<= 8;
4099 		mac_addr_lo |= mac_addr[i];
4100 	}
4101 	index *= ADD_ADDR_INCR;
4102 
4103 	writel(mac_addr_lo, hw->io + index + KS_ADD_ADDR_0_LO);
4104 	writel(mac_addr_hi, hw->io + index + KS_ADD_ADDR_0_HI);
4105 }
4106 
4107 static void hw_set_add_addr(struct ksz_hw *hw)
4108 {
4109 	int i;
4110 
4111 	for (i = 0; i < ADDITIONAL_ENTRIES; i++) {
4112 		if (empty_addr(hw->address[i]))
4113 			writel(0, hw->io + ADD_ADDR_INCR * i +
4114 				KS_ADD_ADDR_0_HI);
4115 		else
4116 			hw_ena_add_addr(hw, i, hw->address[i]);
4117 	}
4118 }
4119 
4120 static int hw_add_addr(struct ksz_hw *hw, u8 *mac_addr)
4121 {
4122 	int i;
4123 	int j = ADDITIONAL_ENTRIES;
4124 
4125 	if (ether_addr_equal(hw->override_addr, mac_addr))
4126 		return 0;
4127 	for (i = 0; i < hw->addr_list_size; i++) {
4128 		if (ether_addr_equal(hw->address[i], mac_addr))
4129 			return 0;
4130 		if (ADDITIONAL_ENTRIES == j && empty_addr(hw->address[i]))
4131 			j = i;
4132 	}
4133 	if (j < ADDITIONAL_ENTRIES) {
4134 		memcpy(hw->address[j], mac_addr, ETH_ALEN);
4135 		hw_ena_add_addr(hw, j, hw->address[j]);
4136 		return 0;
4137 	}
4138 	return -1;
4139 }
4140 
4141 static int hw_del_addr(struct ksz_hw *hw, u8 *mac_addr)
4142 {
4143 	int i;
4144 
4145 	for (i = 0; i < hw->addr_list_size; i++) {
4146 		if (ether_addr_equal(hw->address[i], mac_addr)) {
4147 			memset(hw->address[i], 0, ETH_ALEN);
4148 			writel(0, hw->io + ADD_ADDR_INCR * i +
4149 				KS_ADD_ADDR_0_HI);
4150 			return 0;
4151 		}
4152 	}
4153 	return -1;
4154 }
4155 
4156 /**
4157  * hw_clr_multicast - clear multicast addresses
4158  * @hw: 	The hardware instance.
4159  *
4160  * This routine removes all multicast addresses set in the hardware.
4161  */
4162 static void hw_clr_multicast(struct ksz_hw *hw)
4163 {
4164 	int i;
4165 
4166 	for (i = 0; i < HW_MULTICAST_SIZE; i++) {
4167 		hw->multi_bits[i] = 0;
4168 
4169 		writeb(0, hw->io + KS884X_MULTICAST_0_OFFSET + i);
4170 	}
4171 }
4172 
4173 /**
4174  * hw_set_grp_addr - set multicast addresses
4175  * @hw: 	The hardware instance.
4176  *
4177  * This routine programs multicast addresses for the hardware to accept those
4178  * addresses.
4179  */
4180 static void hw_set_grp_addr(struct ksz_hw *hw)
4181 {
4182 	int i;
4183 	int index;
4184 	int position;
4185 	int value;
4186 
4187 	memset(hw->multi_bits, 0, sizeof(u8) * HW_MULTICAST_SIZE);
4188 
4189 	for (i = 0; i < hw->multi_list_size; i++) {
4190 		position = (ether_crc(6, hw->multi_list[i]) >> 26) & 0x3f;
4191 		index = position >> 3;
4192 		value = 1 << (position & 7);
4193 		hw->multi_bits[index] |= (u8) value;
4194 	}
4195 
4196 	for (i = 0; i < HW_MULTICAST_SIZE; i++)
4197 		writeb(hw->multi_bits[i], hw->io + KS884X_MULTICAST_0_OFFSET +
4198 			i);
4199 }
4200 
4201 /**
4202  * hw_set_multicast - enable or disable all multicast receiving
4203  * @hw: 	The hardware instance.
4204  * @multicast:	To turn on or off the all multicast feature.
4205  *
4206  * This routine enables/disables the hardware to accept all multicast packets.
4207  */
4208 static void hw_set_multicast(struct ksz_hw *hw, u8 multicast)
4209 {
4210 	/* Stop receiving for reconfiguration. */
4211 	hw_stop_rx(hw);
4212 
4213 	if (multicast)
4214 		hw->rx_cfg |= DMA_RX_ALL_MULTICAST;
4215 	else
4216 		hw->rx_cfg &= ~DMA_RX_ALL_MULTICAST;
4217 
4218 	if (hw->enabled)
4219 		hw_start_rx(hw);
4220 }
4221 
4222 /**
4223  * hw_set_promiscuous - enable or disable promiscuous receiving
4224  * @hw: 	The hardware instance.
4225  * @prom:	To turn on or off the promiscuous feature.
4226  *
4227  * This routine enables/disables the hardware to accept all packets.
4228  */
4229 static void hw_set_promiscuous(struct ksz_hw *hw, u8 prom)
4230 {
4231 	/* Stop receiving for reconfiguration. */
4232 	hw_stop_rx(hw);
4233 
4234 	if (prom)
4235 		hw->rx_cfg |= DMA_RX_PROMISCUOUS;
4236 	else
4237 		hw->rx_cfg &= ~DMA_RX_PROMISCUOUS;
4238 
4239 	if (hw->enabled)
4240 		hw_start_rx(hw);
4241 }
4242 
4243 /**
4244  * sw_enable - enable the switch
4245  * @hw: 	The hardware instance.
4246  * @enable:	The flag to enable or disable the switch
4247  *
4248  * This routine is used to enable/disable the switch in KSZ8842.
4249  */
4250 static void sw_enable(struct ksz_hw *hw, int enable)
4251 {
4252 	int port;
4253 
4254 	for (port = 0; port < SWITCH_PORT_NUM; port++) {
4255 		if (hw->dev_count > 1) {
4256 			/* Set port-base vlan membership with host port. */
4257 			sw_cfg_port_base_vlan(hw, port,
4258 				HOST_MASK | (1 << port));
4259 			port_set_stp_state(hw, port, STP_STATE_DISABLED);
4260 		} else {
4261 			sw_cfg_port_base_vlan(hw, port, PORT_MASK);
4262 			port_set_stp_state(hw, port, STP_STATE_FORWARDING);
4263 		}
4264 	}
4265 	if (hw->dev_count > 1)
4266 		port_set_stp_state(hw, SWITCH_PORT_NUM, STP_STATE_SIMPLE);
4267 	else
4268 		port_set_stp_state(hw, SWITCH_PORT_NUM, STP_STATE_FORWARDING);
4269 
4270 	if (enable)
4271 		enable = KS8842_START;
4272 	writew(enable, hw->io + KS884X_CHIP_ID_OFFSET);
4273 }
4274 
4275 /**
4276  * sw_setup - setup the switch
4277  * @hw: 	The hardware instance.
4278  *
4279  * This routine setup the hardware switch engine for default operation.
4280  */
4281 static void sw_setup(struct ksz_hw *hw)
4282 {
4283 	int port;
4284 
4285 	sw_set_global_ctrl(hw);
4286 
4287 	/* Enable switch broadcast storm protection at 10% percent rate. */
4288 	sw_init_broad_storm(hw);
4289 	hw_cfg_broad_storm(hw, BROADCAST_STORM_PROTECTION_RATE);
4290 	for (port = 0; port < SWITCH_PORT_NUM; port++)
4291 		sw_ena_broad_storm(hw, port);
4292 
4293 	sw_init_prio(hw);
4294 
4295 	sw_init_mirror(hw);
4296 
4297 	sw_init_prio_rate(hw);
4298 
4299 	sw_init_vlan(hw);
4300 
4301 	if (hw->features & STP_SUPPORT)
4302 		sw_init_stp(hw);
4303 	if (!sw_chk(hw, KS8842_SWITCH_CTRL_1_OFFSET,
4304 			SWITCH_TX_FLOW_CTRL | SWITCH_RX_FLOW_CTRL))
4305 		hw->overrides |= PAUSE_FLOW_CTRL;
4306 	sw_enable(hw, 1);
4307 }
4308 
4309 /**
4310  * ksz_start_timer - start kernel timer
4311  * @info:	Kernel timer information.
4312  * @time:	The time tick.
4313  *
4314  * This routine starts the kernel timer after the specified time tick.
4315  */
4316 static void ksz_start_timer(struct ksz_timer_info *info, int time)
4317 {
4318 	info->cnt = 0;
4319 	info->timer.expires = jiffies + time;
4320 	add_timer(&info->timer);
4321 
4322 	/* infinity */
4323 	info->max = -1;
4324 }
4325 
4326 /**
4327  * ksz_stop_timer - stop kernel timer
4328  * @info:	Kernel timer information.
4329  *
4330  * This routine stops the kernel timer.
4331  */
4332 static void ksz_stop_timer(struct ksz_timer_info *info)
4333 {
4334 	if (info->max) {
4335 		info->max = 0;
4336 		del_timer_sync(&info->timer);
4337 	}
4338 }
4339 
4340 static void ksz_init_timer(struct ksz_timer_info *info, int period,
4341 	void (*function)(unsigned long), void *data)
4342 {
4343 	info->max = 0;
4344 	info->period = period;
4345 	init_timer(&info->timer);
4346 	info->timer.function = function;
4347 	info->timer.data = (unsigned long) data;
4348 }
4349 
4350 static void ksz_update_timer(struct ksz_timer_info *info)
4351 {
4352 	++info->cnt;
4353 	if (info->max > 0) {
4354 		if (info->cnt < info->max) {
4355 			info->timer.expires = jiffies + info->period;
4356 			add_timer(&info->timer);
4357 		} else
4358 			info->max = 0;
4359 	} else if (info->max < 0) {
4360 		info->timer.expires = jiffies + info->period;
4361 		add_timer(&info->timer);
4362 	}
4363 }
4364 
4365 /**
4366  * ksz_alloc_soft_desc - allocate software descriptors
4367  * @desc_info:	Descriptor information structure.
4368  * @transmit:	Indication that descriptors are for transmit.
4369  *
4370  * This local function allocates software descriptors for manipulation in
4371  * memory.
4372  *
4373  * Return 0 if successful.
4374  */
4375 static int ksz_alloc_soft_desc(struct ksz_desc_info *desc_info, int transmit)
4376 {
4377 	desc_info->ring = kzalloc(sizeof(struct ksz_desc) * desc_info->alloc,
4378 				  GFP_KERNEL);
4379 	if (!desc_info->ring)
4380 		return 1;
4381 	hw_init_desc(desc_info, transmit);
4382 	return 0;
4383 }
4384 
4385 /**
4386  * ksz_alloc_desc - allocate hardware descriptors
4387  * @adapter:	Adapter information structure.
4388  *
4389  * This local function allocates hardware descriptors for receiving and
4390  * transmitting.
4391  *
4392  * Return 0 if successful.
4393  */
4394 static int ksz_alloc_desc(struct dev_info *adapter)
4395 {
4396 	struct ksz_hw *hw = &adapter->hw;
4397 	int offset;
4398 
4399 	/* Allocate memory for RX & TX descriptors. */
4400 	adapter->desc_pool.alloc_size =
4401 		hw->rx_desc_info.size * hw->rx_desc_info.alloc +
4402 		hw->tx_desc_info.size * hw->tx_desc_info.alloc +
4403 		DESC_ALIGNMENT;
4404 
4405 	adapter->desc_pool.alloc_virt =
4406 		pci_zalloc_consistent(adapter->pdev,
4407 				      adapter->desc_pool.alloc_size,
4408 				      &adapter->desc_pool.dma_addr);
4409 	if (adapter->desc_pool.alloc_virt == NULL) {
4410 		adapter->desc_pool.alloc_size = 0;
4411 		return 1;
4412 	}
4413 
4414 	/* Align to the next cache line boundary. */
4415 	offset = (((ulong) adapter->desc_pool.alloc_virt % DESC_ALIGNMENT) ?
4416 		(DESC_ALIGNMENT -
4417 		((ulong) adapter->desc_pool.alloc_virt % DESC_ALIGNMENT)) : 0);
4418 	adapter->desc_pool.virt = adapter->desc_pool.alloc_virt + offset;
4419 	adapter->desc_pool.phys = adapter->desc_pool.dma_addr + offset;
4420 
4421 	/* Allocate receive/transmit descriptors. */
4422 	hw->rx_desc_info.ring_virt = (struct ksz_hw_desc *)
4423 		adapter->desc_pool.virt;
4424 	hw->rx_desc_info.ring_phys = adapter->desc_pool.phys;
4425 	offset = hw->rx_desc_info.alloc * hw->rx_desc_info.size;
4426 	hw->tx_desc_info.ring_virt = (struct ksz_hw_desc *)
4427 		(adapter->desc_pool.virt + offset);
4428 	hw->tx_desc_info.ring_phys = adapter->desc_pool.phys + offset;
4429 
4430 	if (ksz_alloc_soft_desc(&hw->rx_desc_info, 0))
4431 		return 1;
4432 	if (ksz_alloc_soft_desc(&hw->tx_desc_info, 1))
4433 		return 1;
4434 
4435 	return 0;
4436 }
4437 
4438 /**
4439  * free_dma_buf - release DMA buffer resources
4440  * @adapter:	Adapter information structure.
4441  *
4442  * This routine is just a helper function to release the DMA buffer resources.
4443  */
4444 static void free_dma_buf(struct dev_info *adapter, struct ksz_dma_buf *dma_buf,
4445 	int direction)
4446 {
4447 	pci_unmap_single(adapter->pdev, dma_buf->dma, dma_buf->len, direction);
4448 	dev_kfree_skb(dma_buf->skb);
4449 	dma_buf->skb = NULL;
4450 	dma_buf->dma = 0;
4451 }
4452 
4453 /**
4454  * ksz_init_rx_buffers - initialize receive descriptors
4455  * @adapter:	Adapter information structure.
4456  *
4457  * This routine initializes DMA buffers for receiving.
4458  */
4459 static void ksz_init_rx_buffers(struct dev_info *adapter)
4460 {
4461 	int i;
4462 	struct ksz_desc *desc;
4463 	struct ksz_dma_buf *dma_buf;
4464 	struct ksz_hw *hw = &adapter->hw;
4465 	struct ksz_desc_info *info = &hw->rx_desc_info;
4466 
4467 	for (i = 0; i < hw->rx_desc_info.alloc; i++) {
4468 		get_rx_pkt(info, &desc);
4469 
4470 		dma_buf = DMA_BUFFER(desc);
4471 		if (dma_buf->skb && dma_buf->len != adapter->mtu)
4472 			free_dma_buf(adapter, dma_buf, PCI_DMA_FROMDEVICE);
4473 		dma_buf->len = adapter->mtu;
4474 		if (!dma_buf->skb)
4475 			dma_buf->skb = alloc_skb(dma_buf->len, GFP_ATOMIC);
4476 		if (dma_buf->skb && !dma_buf->dma)
4477 			dma_buf->dma = pci_map_single(
4478 				adapter->pdev,
4479 				skb_tail_pointer(dma_buf->skb),
4480 				dma_buf->len,
4481 				PCI_DMA_FROMDEVICE);
4482 
4483 		/* Set descriptor. */
4484 		set_rx_buf(desc, dma_buf->dma);
4485 		set_rx_len(desc, dma_buf->len);
4486 		release_desc(desc);
4487 	}
4488 }
4489 
4490 /**
4491  * ksz_alloc_mem - allocate memory for hardware descriptors
4492  * @adapter:	Adapter information structure.
4493  *
4494  * This function allocates memory for use by hardware descriptors for receiving
4495  * and transmitting.
4496  *
4497  * Return 0 if successful.
4498  */
4499 static int ksz_alloc_mem(struct dev_info *adapter)
4500 {
4501 	struct ksz_hw *hw = &adapter->hw;
4502 
4503 	/* Determine the number of receive and transmit descriptors. */
4504 	hw->rx_desc_info.alloc = NUM_OF_RX_DESC;
4505 	hw->tx_desc_info.alloc = NUM_OF_TX_DESC;
4506 
4507 	/* Determine how many descriptors to skip transmit interrupt. */
4508 	hw->tx_int_cnt = 0;
4509 	hw->tx_int_mask = NUM_OF_TX_DESC / 4;
4510 	if (hw->tx_int_mask > 8)
4511 		hw->tx_int_mask = 8;
4512 	while (hw->tx_int_mask) {
4513 		hw->tx_int_cnt++;
4514 		hw->tx_int_mask >>= 1;
4515 	}
4516 	if (hw->tx_int_cnt) {
4517 		hw->tx_int_mask = (1 << (hw->tx_int_cnt - 1)) - 1;
4518 		hw->tx_int_cnt = 0;
4519 	}
4520 
4521 	/* Determine the descriptor size. */
4522 	hw->rx_desc_info.size =
4523 		(((sizeof(struct ksz_hw_desc) + DESC_ALIGNMENT - 1) /
4524 		DESC_ALIGNMENT) * DESC_ALIGNMENT);
4525 	hw->tx_desc_info.size =
4526 		(((sizeof(struct ksz_hw_desc) + DESC_ALIGNMENT - 1) /
4527 		DESC_ALIGNMENT) * DESC_ALIGNMENT);
4528 	if (hw->rx_desc_info.size != sizeof(struct ksz_hw_desc))
4529 		pr_alert("Hardware descriptor size not right!\n");
4530 	ksz_check_desc_num(&hw->rx_desc_info);
4531 	ksz_check_desc_num(&hw->tx_desc_info);
4532 
4533 	/* Allocate descriptors. */
4534 	if (ksz_alloc_desc(adapter))
4535 		return 1;
4536 
4537 	return 0;
4538 }
4539 
4540 /**
4541  * ksz_free_desc - free software and hardware descriptors
4542  * @adapter:	Adapter information structure.
4543  *
4544  * This local routine frees the software and hardware descriptors allocated by
4545  * ksz_alloc_desc().
4546  */
4547 static void ksz_free_desc(struct dev_info *adapter)
4548 {
4549 	struct ksz_hw *hw = &adapter->hw;
4550 
4551 	/* Reset descriptor. */
4552 	hw->rx_desc_info.ring_virt = NULL;
4553 	hw->tx_desc_info.ring_virt = NULL;
4554 	hw->rx_desc_info.ring_phys = 0;
4555 	hw->tx_desc_info.ring_phys = 0;
4556 
4557 	/* Free memory. */
4558 	if (adapter->desc_pool.alloc_virt)
4559 		pci_free_consistent(
4560 			adapter->pdev,
4561 			adapter->desc_pool.alloc_size,
4562 			adapter->desc_pool.alloc_virt,
4563 			adapter->desc_pool.dma_addr);
4564 
4565 	/* Reset resource pool. */
4566 	adapter->desc_pool.alloc_size = 0;
4567 	adapter->desc_pool.alloc_virt = NULL;
4568 
4569 	kfree(hw->rx_desc_info.ring);
4570 	hw->rx_desc_info.ring = NULL;
4571 	kfree(hw->tx_desc_info.ring);
4572 	hw->tx_desc_info.ring = NULL;
4573 }
4574 
4575 /**
4576  * ksz_free_buffers - free buffers used in the descriptors
4577  * @adapter:	Adapter information structure.
4578  * @desc_info:	Descriptor information structure.
4579  *
4580  * This local routine frees buffers used in the DMA buffers.
4581  */
4582 static void ksz_free_buffers(struct dev_info *adapter,
4583 	struct ksz_desc_info *desc_info, int direction)
4584 {
4585 	int i;
4586 	struct ksz_dma_buf *dma_buf;
4587 	struct ksz_desc *desc = desc_info->ring;
4588 
4589 	for (i = 0; i < desc_info->alloc; i++) {
4590 		dma_buf = DMA_BUFFER(desc);
4591 		if (dma_buf->skb)
4592 			free_dma_buf(adapter, dma_buf, direction);
4593 		desc++;
4594 	}
4595 }
4596 
4597 /**
4598  * ksz_free_mem - free all resources used by descriptors
4599  * @adapter:	Adapter information structure.
4600  *
4601  * This local routine frees all the resources allocated by ksz_alloc_mem().
4602  */
4603 static void ksz_free_mem(struct dev_info *adapter)
4604 {
4605 	/* Free transmit buffers. */
4606 	ksz_free_buffers(adapter, &adapter->hw.tx_desc_info,
4607 		PCI_DMA_TODEVICE);
4608 
4609 	/* Free receive buffers. */
4610 	ksz_free_buffers(adapter, &adapter->hw.rx_desc_info,
4611 		PCI_DMA_FROMDEVICE);
4612 
4613 	/* Free descriptors. */
4614 	ksz_free_desc(adapter);
4615 }
4616 
4617 static void get_mib_counters(struct ksz_hw *hw, int first, int cnt,
4618 	u64 *counter)
4619 {
4620 	int i;
4621 	int mib;
4622 	int port;
4623 	struct ksz_port_mib *port_mib;
4624 
4625 	memset(counter, 0, sizeof(u64) * TOTAL_PORT_COUNTER_NUM);
4626 	for (i = 0, port = first; i < cnt; i++, port++) {
4627 		port_mib = &hw->port_mib[port];
4628 		for (mib = port_mib->mib_start; mib < hw->mib_cnt; mib++)
4629 			counter[mib] += port_mib->counter[mib];
4630 	}
4631 }
4632 
4633 /**
4634  * send_packet - send packet
4635  * @skb:	Socket buffer.
4636  * @dev:	Network device.
4637  *
4638  * This routine is used to send a packet out to the network.
4639  */
4640 static void send_packet(struct sk_buff *skb, struct net_device *dev)
4641 {
4642 	struct ksz_desc *desc;
4643 	struct ksz_desc *first;
4644 	struct dev_priv *priv = netdev_priv(dev);
4645 	struct dev_info *hw_priv = priv->adapter;
4646 	struct ksz_hw *hw = &hw_priv->hw;
4647 	struct ksz_desc_info *info = &hw->tx_desc_info;
4648 	struct ksz_dma_buf *dma_buf;
4649 	int len;
4650 	int last_frag = skb_shinfo(skb)->nr_frags;
4651 
4652 	/*
4653 	 * KSZ8842 with multiple device interfaces needs to be told which port
4654 	 * to send.
4655 	 */
4656 	if (hw->dev_count > 1)
4657 		hw->dst_ports = 1 << priv->port.first_port;
4658 
4659 	/* Hardware will pad the length to 60. */
4660 	len = skb->len;
4661 
4662 	/* Remember the very first descriptor. */
4663 	first = info->cur;
4664 	desc = first;
4665 
4666 	dma_buf = DMA_BUFFER(desc);
4667 	if (last_frag) {
4668 		int frag;
4669 		skb_frag_t *this_frag;
4670 
4671 		dma_buf->len = skb_headlen(skb);
4672 
4673 		dma_buf->dma = pci_map_single(
4674 			hw_priv->pdev, skb->data, dma_buf->len,
4675 			PCI_DMA_TODEVICE);
4676 		set_tx_buf(desc, dma_buf->dma);
4677 		set_tx_len(desc, dma_buf->len);
4678 
4679 		frag = 0;
4680 		do {
4681 			this_frag = &skb_shinfo(skb)->frags[frag];
4682 
4683 			/* Get a new descriptor. */
4684 			get_tx_pkt(info, &desc);
4685 
4686 			/* Keep track of descriptors used so far. */
4687 			++hw->tx_int_cnt;
4688 
4689 			dma_buf = DMA_BUFFER(desc);
4690 			dma_buf->len = skb_frag_size(this_frag);
4691 
4692 			dma_buf->dma = pci_map_single(
4693 				hw_priv->pdev,
4694 				skb_frag_address(this_frag),
4695 				dma_buf->len,
4696 				PCI_DMA_TODEVICE);
4697 			set_tx_buf(desc, dma_buf->dma);
4698 			set_tx_len(desc, dma_buf->len);
4699 
4700 			frag++;
4701 			if (frag == last_frag)
4702 				break;
4703 
4704 			/* Do not release the last descriptor here. */
4705 			release_desc(desc);
4706 		} while (1);
4707 
4708 		/* current points to the last descriptor. */
4709 		info->cur = desc;
4710 
4711 		/* Release the first descriptor. */
4712 		release_desc(first);
4713 	} else {
4714 		dma_buf->len = len;
4715 
4716 		dma_buf->dma = pci_map_single(
4717 			hw_priv->pdev, skb->data, dma_buf->len,
4718 			PCI_DMA_TODEVICE);
4719 		set_tx_buf(desc, dma_buf->dma);
4720 		set_tx_len(desc, dma_buf->len);
4721 	}
4722 
4723 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
4724 		(desc)->sw.buf.tx.csum_gen_tcp = 1;
4725 		(desc)->sw.buf.tx.csum_gen_udp = 1;
4726 	}
4727 
4728 	/*
4729 	 * The last descriptor holds the packet so that it can be returned to
4730 	 * network subsystem after all descriptors are transmitted.
4731 	 */
4732 	dma_buf->skb = skb;
4733 
4734 	hw_send_pkt(hw);
4735 
4736 	/* Update transmit statistics. */
4737 	dev->stats.tx_packets++;
4738 	dev->stats.tx_bytes += len;
4739 }
4740 
4741 /**
4742  * transmit_cleanup - clean up transmit descriptors
4743  * @dev:	Network device.
4744  *
4745  * This routine is called to clean up the transmitted buffers.
4746  */
4747 static void transmit_cleanup(struct dev_info *hw_priv, int normal)
4748 {
4749 	int last;
4750 	union desc_stat status;
4751 	struct ksz_hw *hw = &hw_priv->hw;
4752 	struct ksz_desc_info *info = &hw->tx_desc_info;
4753 	struct ksz_desc *desc;
4754 	struct ksz_dma_buf *dma_buf;
4755 	struct net_device *dev = NULL;
4756 
4757 	spin_lock_irq(&hw_priv->hwlock);
4758 	last = info->last;
4759 
4760 	while (info->avail < info->alloc) {
4761 		/* Get next descriptor which is not hardware owned. */
4762 		desc = &info->ring[last];
4763 		status.data = le32_to_cpu(desc->phw->ctrl.data);
4764 		if (status.tx.hw_owned) {
4765 			if (normal)
4766 				break;
4767 			else
4768 				reset_desc(desc, status);
4769 		}
4770 
4771 		dma_buf = DMA_BUFFER(desc);
4772 		pci_unmap_single(
4773 			hw_priv->pdev, dma_buf->dma, dma_buf->len,
4774 			PCI_DMA_TODEVICE);
4775 
4776 		/* This descriptor contains the last buffer in the packet. */
4777 		if (dma_buf->skb) {
4778 			dev = dma_buf->skb->dev;
4779 
4780 			/* Release the packet back to network subsystem. */
4781 			dev_kfree_skb_irq(dma_buf->skb);
4782 			dma_buf->skb = NULL;
4783 		}
4784 
4785 		/* Free the transmitted descriptor. */
4786 		last++;
4787 		last &= info->mask;
4788 		info->avail++;
4789 	}
4790 	info->last = last;
4791 	spin_unlock_irq(&hw_priv->hwlock);
4792 
4793 	/* Notify the network subsystem that the packet has been sent. */
4794 	if (dev)
4795 		dev->trans_start = jiffies;
4796 }
4797 
4798 /**
4799  * transmit_done - transmit done processing
4800  * @dev:	Network device.
4801  *
4802  * This routine is called when the transmit interrupt is triggered, indicating
4803  * either a packet is sent successfully or there are transmit errors.
4804  */
4805 static void tx_done(struct dev_info *hw_priv)
4806 {
4807 	struct ksz_hw *hw = &hw_priv->hw;
4808 	int port;
4809 
4810 	transmit_cleanup(hw_priv, 1);
4811 
4812 	for (port = 0; port < hw->dev_count; port++) {
4813 		struct net_device *dev = hw->port_info[port].pdev;
4814 
4815 		if (netif_running(dev) && netif_queue_stopped(dev))
4816 			netif_wake_queue(dev);
4817 	}
4818 }
4819 
4820 static inline void copy_old_skb(struct sk_buff *old, struct sk_buff *skb)
4821 {
4822 	skb->dev = old->dev;
4823 	skb->protocol = old->protocol;
4824 	skb->ip_summed = old->ip_summed;
4825 	skb->csum = old->csum;
4826 	skb_set_network_header(skb, ETH_HLEN);
4827 
4828 	dev_consume_skb_any(old);
4829 }
4830 
4831 /**
4832  * netdev_tx - send out packet
4833  * @skb:	Socket buffer.
4834  * @dev:	Network device.
4835  *
4836  * This function is used by the upper network layer to send out a packet.
4837  *
4838  * Return 0 if successful; otherwise an error code indicating failure.
4839  */
4840 static netdev_tx_t netdev_tx(struct sk_buff *skb, struct net_device *dev)
4841 {
4842 	struct dev_priv *priv = netdev_priv(dev);
4843 	struct dev_info *hw_priv = priv->adapter;
4844 	struct ksz_hw *hw = &hw_priv->hw;
4845 	int left;
4846 	int num = 1;
4847 	int rc = 0;
4848 
4849 	if (hw->features & SMALL_PACKET_TX_BUG) {
4850 		struct sk_buff *org_skb = skb;
4851 
4852 		if (skb->len <= 48) {
4853 			if (skb_end_pointer(skb) - skb->data >= 50) {
4854 				memset(&skb->data[skb->len], 0, 50 - skb->len);
4855 				skb->len = 50;
4856 			} else {
4857 				skb = netdev_alloc_skb(dev, 50);
4858 				if (!skb)
4859 					return NETDEV_TX_BUSY;
4860 				memcpy(skb->data, org_skb->data, org_skb->len);
4861 				memset(&skb->data[org_skb->len], 0,
4862 					50 - org_skb->len);
4863 				skb->len = 50;
4864 				copy_old_skb(org_skb, skb);
4865 			}
4866 		}
4867 	}
4868 
4869 	spin_lock_irq(&hw_priv->hwlock);
4870 
4871 	num = skb_shinfo(skb)->nr_frags + 1;
4872 	left = hw_alloc_pkt(hw, skb->len, num);
4873 	if (left) {
4874 		if (left < num ||
4875 		    (CHECKSUM_PARTIAL == skb->ip_summed &&
4876 		     skb->protocol == htons(ETH_P_IPV6))) {
4877 			struct sk_buff *org_skb = skb;
4878 
4879 			skb = netdev_alloc_skb(dev, org_skb->len);
4880 			if (!skb) {
4881 				rc = NETDEV_TX_BUSY;
4882 				goto unlock;
4883 			}
4884 			skb_copy_and_csum_dev(org_skb, skb->data);
4885 			org_skb->ip_summed = CHECKSUM_NONE;
4886 			skb->len = org_skb->len;
4887 			copy_old_skb(org_skb, skb);
4888 		}
4889 		send_packet(skb, dev);
4890 		if (left <= num)
4891 			netif_stop_queue(dev);
4892 	} else {
4893 		/* Stop the transmit queue until packet is allocated. */
4894 		netif_stop_queue(dev);
4895 		rc = NETDEV_TX_BUSY;
4896 	}
4897 unlock:
4898 	spin_unlock_irq(&hw_priv->hwlock);
4899 
4900 	return rc;
4901 }
4902 
4903 /**
4904  * netdev_tx_timeout - transmit timeout processing
4905  * @dev:	Network device.
4906  *
4907  * This routine is called when the transmit timer expires.  That indicates the
4908  * hardware is not running correctly because transmit interrupts are not
4909  * triggered to free up resources so that the transmit routine can continue
4910  * sending out packets.  The hardware is reset to correct the problem.
4911  */
4912 static void netdev_tx_timeout(struct net_device *dev)
4913 {
4914 	static unsigned long last_reset;
4915 
4916 	struct dev_priv *priv = netdev_priv(dev);
4917 	struct dev_info *hw_priv = priv->adapter;
4918 	struct ksz_hw *hw = &hw_priv->hw;
4919 	int port;
4920 
4921 	if (hw->dev_count > 1) {
4922 		/*
4923 		 * Only reset the hardware if time between calls is long
4924 		 * enough.
4925 		 */
4926 		if (time_before_eq(jiffies, last_reset + dev->watchdog_timeo))
4927 			hw_priv = NULL;
4928 	}
4929 
4930 	last_reset = jiffies;
4931 	if (hw_priv) {
4932 		hw_dis_intr(hw);
4933 		hw_disable(hw);
4934 
4935 		transmit_cleanup(hw_priv, 0);
4936 		hw_reset_pkts(&hw->rx_desc_info);
4937 		hw_reset_pkts(&hw->tx_desc_info);
4938 		ksz_init_rx_buffers(hw_priv);
4939 
4940 		hw_reset(hw);
4941 
4942 		hw_set_desc_base(hw,
4943 			hw->tx_desc_info.ring_phys,
4944 			hw->rx_desc_info.ring_phys);
4945 		hw_set_addr(hw);
4946 		if (hw->all_multi)
4947 			hw_set_multicast(hw, hw->all_multi);
4948 		else if (hw->multi_list_size)
4949 			hw_set_grp_addr(hw);
4950 
4951 		if (hw->dev_count > 1) {
4952 			hw_set_add_addr(hw);
4953 			for (port = 0; port < SWITCH_PORT_NUM; port++) {
4954 				struct net_device *port_dev;
4955 
4956 				port_set_stp_state(hw, port,
4957 					STP_STATE_DISABLED);
4958 
4959 				port_dev = hw->port_info[port].pdev;
4960 				if (netif_running(port_dev))
4961 					port_set_stp_state(hw, port,
4962 						STP_STATE_SIMPLE);
4963 			}
4964 		}
4965 
4966 		hw_enable(hw);
4967 		hw_ena_intr(hw);
4968 	}
4969 
4970 	dev->trans_start = jiffies;
4971 	netif_wake_queue(dev);
4972 }
4973 
4974 static inline void csum_verified(struct sk_buff *skb)
4975 {
4976 	unsigned short protocol;
4977 	struct iphdr *iph;
4978 
4979 	protocol = skb->protocol;
4980 	skb_reset_network_header(skb);
4981 	iph = (struct iphdr *) skb_network_header(skb);
4982 	if (protocol == htons(ETH_P_8021Q)) {
4983 		protocol = iph->tot_len;
4984 		skb_set_network_header(skb, VLAN_HLEN);
4985 		iph = (struct iphdr *) skb_network_header(skb);
4986 	}
4987 	if (protocol == htons(ETH_P_IP)) {
4988 		if (iph->protocol == IPPROTO_TCP)
4989 			skb->ip_summed = CHECKSUM_UNNECESSARY;
4990 	}
4991 }
4992 
4993 static inline int rx_proc(struct net_device *dev, struct ksz_hw* hw,
4994 	struct ksz_desc *desc, union desc_stat status)
4995 {
4996 	int packet_len;
4997 	struct dev_priv *priv = netdev_priv(dev);
4998 	struct dev_info *hw_priv = priv->adapter;
4999 	struct ksz_dma_buf *dma_buf;
5000 	struct sk_buff *skb;
5001 	int rx_status;
5002 
5003 	/* Received length includes 4-byte CRC. */
5004 	packet_len = status.rx.frame_len - 4;
5005 
5006 	dma_buf = DMA_BUFFER(desc);
5007 	pci_dma_sync_single_for_cpu(
5008 		hw_priv->pdev, dma_buf->dma, packet_len + 4,
5009 		PCI_DMA_FROMDEVICE);
5010 
5011 	do {
5012 		/* skb->data != skb->head */
5013 		skb = netdev_alloc_skb(dev, packet_len + 2);
5014 		if (!skb) {
5015 			dev->stats.rx_dropped++;
5016 			return -ENOMEM;
5017 		}
5018 
5019 		/*
5020 		 * Align socket buffer in 4-byte boundary for better
5021 		 * performance.
5022 		 */
5023 		skb_reserve(skb, 2);
5024 
5025 		memcpy(skb_put(skb, packet_len),
5026 			dma_buf->skb->data, packet_len);
5027 	} while (0);
5028 
5029 	skb->protocol = eth_type_trans(skb, dev);
5030 
5031 	if (hw->rx_cfg & (DMA_RX_CSUM_UDP | DMA_RX_CSUM_TCP))
5032 		csum_verified(skb);
5033 
5034 	/* Update receive statistics. */
5035 	dev->stats.rx_packets++;
5036 	dev->stats.rx_bytes += packet_len;
5037 
5038 	/* Notify upper layer for received packet. */
5039 	rx_status = netif_rx(skb);
5040 
5041 	return 0;
5042 }
5043 
5044 static int dev_rcv_packets(struct dev_info *hw_priv)
5045 {
5046 	int next;
5047 	union desc_stat status;
5048 	struct ksz_hw *hw = &hw_priv->hw;
5049 	struct net_device *dev = hw->port_info[0].pdev;
5050 	struct ksz_desc_info *info = &hw->rx_desc_info;
5051 	int left = info->alloc;
5052 	struct ksz_desc *desc;
5053 	int received = 0;
5054 
5055 	next = info->next;
5056 	while (left--) {
5057 		/* Get next descriptor which is not hardware owned. */
5058 		desc = &info->ring[next];
5059 		status.data = le32_to_cpu(desc->phw->ctrl.data);
5060 		if (status.rx.hw_owned)
5061 			break;
5062 
5063 		/* Status valid only when last descriptor bit is set. */
5064 		if (status.rx.last_desc && status.rx.first_desc) {
5065 			if (rx_proc(dev, hw, desc, status))
5066 				goto release_packet;
5067 			received++;
5068 		}
5069 
5070 release_packet:
5071 		release_desc(desc);
5072 		next++;
5073 		next &= info->mask;
5074 	}
5075 	info->next = next;
5076 
5077 	return received;
5078 }
5079 
5080 static int port_rcv_packets(struct dev_info *hw_priv)
5081 {
5082 	int next;
5083 	union desc_stat status;
5084 	struct ksz_hw *hw = &hw_priv->hw;
5085 	struct net_device *dev = hw->port_info[0].pdev;
5086 	struct ksz_desc_info *info = &hw->rx_desc_info;
5087 	int left = info->alloc;
5088 	struct ksz_desc *desc;
5089 	int received = 0;
5090 
5091 	next = info->next;
5092 	while (left--) {
5093 		/* Get next descriptor which is not hardware owned. */
5094 		desc = &info->ring[next];
5095 		status.data = le32_to_cpu(desc->phw->ctrl.data);
5096 		if (status.rx.hw_owned)
5097 			break;
5098 
5099 		if (hw->dev_count > 1) {
5100 			/* Get received port number. */
5101 			int p = HW_TO_DEV_PORT(status.rx.src_port);
5102 
5103 			dev = hw->port_info[p].pdev;
5104 			if (!netif_running(dev))
5105 				goto release_packet;
5106 		}
5107 
5108 		/* Status valid only when last descriptor bit is set. */
5109 		if (status.rx.last_desc && status.rx.first_desc) {
5110 			if (rx_proc(dev, hw, desc, status))
5111 				goto release_packet;
5112 			received++;
5113 		}
5114 
5115 release_packet:
5116 		release_desc(desc);
5117 		next++;
5118 		next &= info->mask;
5119 	}
5120 	info->next = next;
5121 
5122 	return received;
5123 }
5124 
5125 static int dev_rcv_special(struct dev_info *hw_priv)
5126 {
5127 	int next;
5128 	union desc_stat status;
5129 	struct ksz_hw *hw = &hw_priv->hw;
5130 	struct net_device *dev = hw->port_info[0].pdev;
5131 	struct ksz_desc_info *info = &hw->rx_desc_info;
5132 	int left = info->alloc;
5133 	struct ksz_desc *desc;
5134 	int received = 0;
5135 
5136 	next = info->next;
5137 	while (left--) {
5138 		/* Get next descriptor which is not hardware owned. */
5139 		desc = &info->ring[next];
5140 		status.data = le32_to_cpu(desc->phw->ctrl.data);
5141 		if (status.rx.hw_owned)
5142 			break;
5143 
5144 		if (hw->dev_count > 1) {
5145 			/* Get received port number. */
5146 			int p = HW_TO_DEV_PORT(status.rx.src_port);
5147 
5148 			dev = hw->port_info[p].pdev;
5149 			if (!netif_running(dev))
5150 				goto release_packet;
5151 		}
5152 
5153 		/* Status valid only when last descriptor bit is set. */
5154 		if (status.rx.last_desc && status.rx.first_desc) {
5155 			/*
5156 			 * Receive without error.  With receive errors
5157 			 * disabled, packets with receive errors will be
5158 			 * dropped, so no need to check the error bit.
5159 			 */
5160 			if (!status.rx.error || (status.data &
5161 					KS_DESC_RX_ERROR_COND) ==
5162 					KS_DESC_RX_ERROR_TOO_LONG) {
5163 				if (rx_proc(dev, hw, desc, status))
5164 					goto release_packet;
5165 				received++;
5166 			} else {
5167 				struct dev_priv *priv = netdev_priv(dev);
5168 
5169 				/* Update receive error statistics. */
5170 				priv->port.counter[OID_COUNTER_RCV_ERROR]++;
5171 			}
5172 		}
5173 
5174 release_packet:
5175 		release_desc(desc);
5176 		next++;
5177 		next &= info->mask;
5178 	}
5179 	info->next = next;
5180 
5181 	return received;
5182 }
5183 
5184 static void rx_proc_task(unsigned long data)
5185 {
5186 	struct dev_info *hw_priv = (struct dev_info *) data;
5187 	struct ksz_hw *hw = &hw_priv->hw;
5188 
5189 	if (!hw->enabled)
5190 		return;
5191 	if (unlikely(!hw_priv->dev_rcv(hw_priv))) {
5192 
5193 		/* In case receive process is suspended because of overrun. */
5194 		hw_resume_rx(hw);
5195 
5196 		/* tasklets are interruptible. */
5197 		spin_lock_irq(&hw_priv->hwlock);
5198 		hw_turn_on_intr(hw, KS884X_INT_RX_MASK);
5199 		spin_unlock_irq(&hw_priv->hwlock);
5200 	} else {
5201 		hw_ack_intr(hw, KS884X_INT_RX);
5202 		tasklet_schedule(&hw_priv->rx_tasklet);
5203 	}
5204 }
5205 
5206 static void tx_proc_task(unsigned long data)
5207 {
5208 	struct dev_info *hw_priv = (struct dev_info *) data;
5209 	struct ksz_hw *hw = &hw_priv->hw;
5210 
5211 	hw_ack_intr(hw, KS884X_INT_TX_MASK);
5212 
5213 	tx_done(hw_priv);
5214 
5215 	/* tasklets are interruptible. */
5216 	spin_lock_irq(&hw_priv->hwlock);
5217 	hw_turn_on_intr(hw, KS884X_INT_TX);
5218 	spin_unlock_irq(&hw_priv->hwlock);
5219 }
5220 
5221 static inline void handle_rx_stop(struct ksz_hw *hw)
5222 {
5223 	/* Receive just has been stopped. */
5224 	if (0 == hw->rx_stop)
5225 		hw->intr_mask &= ~KS884X_INT_RX_STOPPED;
5226 	else if (hw->rx_stop > 1) {
5227 		if (hw->enabled && (hw->rx_cfg & DMA_RX_ENABLE)) {
5228 			hw_start_rx(hw);
5229 		} else {
5230 			hw->intr_mask &= ~KS884X_INT_RX_STOPPED;
5231 			hw->rx_stop = 0;
5232 		}
5233 	} else
5234 		/* Receive just has been started. */
5235 		hw->rx_stop++;
5236 }
5237 
5238 /**
5239  * netdev_intr - interrupt handling
5240  * @irq:	Interrupt number.
5241  * @dev_id:	Network device.
5242  *
5243  * This function is called by upper network layer to signal interrupt.
5244  *
5245  * Return IRQ_HANDLED if interrupt is handled.
5246  */
5247 static irqreturn_t netdev_intr(int irq, void *dev_id)
5248 {
5249 	uint int_enable = 0;
5250 	struct net_device *dev = (struct net_device *) dev_id;
5251 	struct dev_priv *priv = netdev_priv(dev);
5252 	struct dev_info *hw_priv = priv->adapter;
5253 	struct ksz_hw *hw = &hw_priv->hw;
5254 
5255 	spin_lock(&hw_priv->hwlock);
5256 
5257 	hw_read_intr(hw, &int_enable);
5258 
5259 	/* Not our interrupt! */
5260 	if (!int_enable) {
5261 		spin_unlock(&hw_priv->hwlock);
5262 		return IRQ_NONE;
5263 	}
5264 
5265 	do {
5266 		hw_ack_intr(hw, int_enable);
5267 		int_enable &= hw->intr_mask;
5268 
5269 		if (unlikely(int_enable & KS884X_INT_TX_MASK)) {
5270 			hw_dis_intr_bit(hw, KS884X_INT_TX_MASK);
5271 			tasklet_schedule(&hw_priv->tx_tasklet);
5272 		}
5273 
5274 		if (likely(int_enable & KS884X_INT_RX)) {
5275 			hw_dis_intr_bit(hw, KS884X_INT_RX);
5276 			tasklet_schedule(&hw_priv->rx_tasklet);
5277 		}
5278 
5279 		if (unlikely(int_enable & KS884X_INT_RX_OVERRUN)) {
5280 			dev->stats.rx_fifo_errors++;
5281 			hw_resume_rx(hw);
5282 		}
5283 
5284 		if (unlikely(int_enable & KS884X_INT_PHY)) {
5285 			struct ksz_port *port = &priv->port;
5286 
5287 			hw->features |= LINK_INT_WORKING;
5288 			port_get_link_speed(port);
5289 		}
5290 
5291 		if (unlikely(int_enable & KS884X_INT_RX_STOPPED)) {
5292 			handle_rx_stop(hw);
5293 			break;
5294 		}
5295 
5296 		if (unlikely(int_enable & KS884X_INT_TX_STOPPED)) {
5297 			u32 data;
5298 
5299 			hw->intr_mask &= ~KS884X_INT_TX_STOPPED;
5300 			pr_info("Tx stopped\n");
5301 			data = readl(hw->io + KS_DMA_TX_CTRL);
5302 			if (!(data & DMA_TX_ENABLE))
5303 				pr_info("Tx disabled\n");
5304 			break;
5305 		}
5306 	} while (0);
5307 
5308 	hw_ena_intr(hw);
5309 
5310 	spin_unlock(&hw_priv->hwlock);
5311 
5312 	return IRQ_HANDLED;
5313 }
5314 
5315 /*
5316  * Linux network device functions
5317  */
5318 
5319 static unsigned long next_jiffies;
5320 
5321 #ifdef CONFIG_NET_POLL_CONTROLLER
5322 static void netdev_netpoll(struct net_device *dev)
5323 {
5324 	struct dev_priv *priv = netdev_priv(dev);
5325 	struct dev_info *hw_priv = priv->adapter;
5326 
5327 	hw_dis_intr(&hw_priv->hw);
5328 	netdev_intr(dev->irq, dev);
5329 }
5330 #endif
5331 
5332 static void bridge_change(struct ksz_hw *hw)
5333 {
5334 	int port;
5335 	u8  member;
5336 	struct ksz_switch *sw = hw->ksz_switch;
5337 
5338 	/* No ports in forwarding state. */
5339 	if (!sw->member) {
5340 		port_set_stp_state(hw, SWITCH_PORT_NUM, STP_STATE_SIMPLE);
5341 		sw_block_addr(hw);
5342 	}
5343 	for (port = 0; port < SWITCH_PORT_NUM; port++) {
5344 		if (STP_STATE_FORWARDING == sw->port_cfg[port].stp_state)
5345 			member = HOST_MASK | sw->member;
5346 		else
5347 			member = HOST_MASK | (1 << port);
5348 		if (member != sw->port_cfg[port].member)
5349 			sw_cfg_port_base_vlan(hw, port, member);
5350 	}
5351 }
5352 
5353 /**
5354  * netdev_close - close network device
5355  * @dev:	Network device.
5356  *
5357  * This function process the close operation of network device.  This is caused
5358  * by the user command "ifconfig ethX down."
5359  *
5360  * Return 0 if successful; otherwise an error code indicating failure.
5361  */
5362 static int netdev_close(struct net_device *dev)
5363 {
5364 	struct dev_priv *priv = netdev_priv(dev);
5365 	struct dev_info *hw_priv = priv->adapter;
5366 	struct ksz_port *port = &priv->port;
5367 	struct ksz_hw *hw = &hw_priv->hw;
5368 	int pi;
5369 
5370 	netif_stop_queue(dev);
5371 
5372 	ksz_stop_timer(&priv->monitor_timer_info);
5373 
5374 	/* Need to shut the port manually in multiple device interfaces mode. */
5375 	if (hw->dev_count > 1) {
5376 		port_set_stp_state(hw, port->first_port, STP_STATE_DISABLED);
5377 
5378 		/* Port is closed.  Need to change bridge setting. */
5379 		if (hw->features & STP_SUPPORT) {
5380 			pi = 1 << port->first_port;
5381 			if (hw->ksz_switch->member & pi) {
5382 				hw->ksz_switch->member &= ~pi;
5383 				bridge_change(hw);
5384 			}
5385 		}
5386 	}
5387 	if (port->first_port > 0)
5388 		hw_del_addr(hw, dev->dev_addr);
5389 	if (!hw_priv->wol_enable)
5390 		port_set_power_saving(port, true);
5391 
5392 	if (priv->multicast)
5393 		--hw->all_multi;
5394 	if (priv->promiscuous)
5395 		--hw->promiscuous;
5396 
5397 	hw_priv->opened--;
5398 	if (!(hw_priv->opened)) {
5399 		ksz_stop_timer(&hw_priv->mib_timer_info);
5400 		flush_work(&hw_priv->mib_read);
5401 
5402 		hw_dis_intr(hw);
5403 		hw_disable(hw);
5404 		hw_clr_multicast(hw);
5405 
5406 		/* Delay for receive task to stop scheduling itself. */
5407 		msleep(2000 / HZ);
5408 
5409 		tasklet_kill(&hw_priv->rx_tasklet);
5410 		tasklet_kill(&hw_priv->tx_tasklet);
5411 		free_irq(dev->irq, hw_priv->dev);
5412 
5413 		transmit_cleanup(hw_priv, 0);
5414 		hw_reset_pkts(&hw->rx_desc_info);
5415 		hw_reset_pkts(&hw->tx_desc_info);
5416 
5417 		/* Clean out static MAC table when the switch is shutdown. */
5418 		if (hw->features & STP_SUPPORT)
5419 			sw_clr_sta_mac_table(hw);
5420 	}
5421 
5422 	return 0;
5423 }
5424 
5425 static void hw_cfg_huge_frame(struct dev_info *hw_priv, struct ksz_hw *hw)
5426 {
5427 	if (hw->ksz_switch) {
5428 		u32 data;
5429 
5430 		data = readw(hw->io + KS8842_SWITCH_CTRL_2_OFFSET);
5431 		if (hw->features & RX_HUGE_FRAME)
5432 			data |= SWITCH_HUGE_PACKET;
5433 		else
5434 			data &= ~SWITCH_HUGE_PACKET;
5435 		writew(data, hw->io + KS8842_SWITCH_CTRL_2_OFFSET);
5436 	}
5437 	if (hw->features & RX_HUGE_FRAME) {
5438 		hw->rx_cfg |= DMA_RX_ERROR;
5439 		hw_priv->dev_rcv = dev_rcv_special;
5440 	} else {
5441 		hw->rx_cfg &= ~DMA_RX_ERROR;
5442 		if (hw->dev_count > 1)
5443 			hw_priv->dev_rcv = port_rcv_packets;
5444 		else
5445 			hw_priv->dev_rcv = dev_rcv_packets;
5446 	}
5447 }
5448 
5449 static int prepare_hardware(struct net_device *dev)
5450 {
5451 	struct dev_priv *priv = netdev_priv(dev);
5452 	struct dev_info *hw_priv = priv->adapter;
5453 	struct ksz_hw *hw = &hw_priv->hw;
5454 	int rc = 0;
5455 
5456 	/* Remember the network device that requests interrupts. */
5457 	hw_priv->dev = dev;
5458 	rc = request_irq(dev->irq, netdev_intr, IRQF_SHARED, dev->name, dev);
5459 	if (rc)
5460 		return rc;
5461 	tasklet_init(&hw_priv->rx_tasklet, rx_proc_task,
5462 		     (unsigned long) hw_priv);
5463 	tasklet_init(&hw_priv->tx_tasklet, tx_proc_task,
5464 		     (unsigned long) hw_priv);
5465 
5466 	hw->promiscuous = 0;
5467 	hw->all_multi = 0;
5468 	hw->multi_list_size = 0;
5469 
5470 	hw_reset(hw);
5471 
5472 	hw_set_desc_base(hw,
5473 		hw->tx_desc_info.ring_phys, hw->rx_desc_info.ring_phys);
5474 	hw_set_addr(hw);
5475 	hw_cfg_huge_frame(hw_priv, hw);
5476 	ksz_init_rx_buffers(hw_priv);
5477 	return 0;
5478 }
5479 
5480 static void set_media_state(struct net_device *dev, int media_state)
5481 {
5482 	struct dev_priv *priv = netdev_priv(dev);
5483 
5484 	if (media_state == priv->media_state)
5485 		netif_carrier_on(dev);
5486 	else
5487 		netif_carrier_off(dev);
5488 	netif_info(priv, link, dev, "link %s\n",
5489 		   media_state == priv->media_state ? "on" : "off");
5490 }
5491 
5492 /**
5493  * netdev_open - open network device
5494  * @dev:	Network device.
5495  *
5496  * This function process the open operation of network device.  This is caused
5497  * by the user command "ifconfig ethX up."
5498  *
5499  * Return 0 if successful; otherwise an error code indicating failure.
5500  */
5501 static int netdev_open(struct net_device *dev)
5502 {
5503 	struct dev_priv *priv = netdev_priv(dev);
5504 	struct dev_info *hw_priv = priv->adapter;
5505 	struct ksz_hw *hw = &hw_priv->hw;
5506 	struct ksz_port *port = &priv->port;
5507 	int i;
5508 	int p;
5509 	int rc = 0;
5510 
5511 	priv->multicast = 0;
5512 	priv->promiscuous = 0;
5513 
5514 	/* Reset device statistics. */
5515 	memset(&dev->stats, 0, sizeof(struct net_device_stats));
5516 	memset((void *) port->counter, 0,
5517 		(sizeof(u64) * OID_COUNTER_LAST));
5518 
5519 	if (!(hw_priv->opened)) {
5520 		rc = prepare_hardware(dev);
5521 		if (rc)
5522 			return rc;
5523 		for (i = 0; i < hw->mib_port_cnt; i++) {
5524 			if (next_jiffies < jiffies)
5525 				next_jiffies = jiffies + HZ * 2;
5526 			else
5527 				next_jiffies += HZ * 1;
5528 			hw_priv->counter[i].time = next_jiffies;
5529 			hw->port_mib[i].state = media_disconnected;
5530 			port_init_cnt(hw, i);
5531 		}
5532 		if (hw->ksz_switch)
5533 			hw->port_mib[HOST_PORT].state = media_connected;
5534 		else {
5535 			hw_add_wol_bcast(hw);
5536 			hw_cfg_wol_pme(hw, 0);
5537 			hw_clr_wol_pme_status(&hw_priv->hw);
5538 		}
5539 	}
5540 	port_set_power_saving(port, false);
5541 
5542 	for (i = 0, p = port->first_port; i < port->port_cnt; i++, p++) {
5543 		/*
5544 		 * Initialize to invalid value so that link detection
5545 		 * is done.
5546 		 */
5547 		hw->port_info[p].partner = 0xFF;
5548 		hw->port_info[p].state = media_disconnected;
5549 	}
5550 
5551 	/* Need to open the port in multiple device interfaces mode. */
5552 	if (hw->dev_count > 1) {
5553 		port_set_stp_state(hw, port->first_port, STP_STATE_SIMPLE);
5554 		if (port->first_port > 0)
5555 			hw_add_addr(hw, dev->dev_addr);
5556 	}
5557 
5558 	port_get_link_speed(port);
5559 	if (port->force_link)
5560 		port_force_link_speed(port);
5561 	else
5562 		port_set_link_speed(port);
5563 
5564 	if (!(hw_priv->opened)) {
5565 		hw_setup_intr(hw);
5566 		hw_enable(hw);
5567 		hw_ena_intr(hw);
5568 
5569 		if (hw->mib_port_cnt)
5570 			ksz_start_timer(&hw_priv->mib_timer_info,
5571 				hw_priv->mib_timer_info.period);
5572 	}
5573 
5574 	hw_priv->opened++;
5575 
5576 	ksz_start_timer(&priv->monitor_timer_info,
5577 		priv->monitor_timer_info.period);
5578 
5579 	priv->media_state = port->linked->state;
5580 
5581 	set_media_state(dev, media_connected);
5582 	netif_start_queue(dev);
5583 
5584 	return 0;
5585 }
5586 
5587 /* RX errors = rx_errors */
5588 /* RX dropped = rx_dropped */
5589 /* RX overruns = rx_fifo_errors */
5590 /* RX frame = rx_crc_errors + rx_frame_errors + rx_length_errors */
5591 /* TX errors = tx_errors */
5592 /* TX dropped = tx_dropped */
5593 /* TX overruns = tx_fifo_errors */
5594 /* TX carrier = tx_aborted_errors + tx_carrier_errors + tx_window_errors */
5595 /* collisions = collisions */
5596 
5597 /**
5598  * netdev_query_statistics - query network device statistics
5599  * @dev:	Network device.
5600  *
5601  * This function returns the statistics of the network device.  The device
5602  * needs not be opened.
5603  *
5604  * Return network device statistics.
5605  */
5606 static struct net_device_stats *netdev_query_statistics(struct net_device *dev)
5607 {
5608 	struct dev_priv *priv = netdev_priv(dev);
5609 	struct ksz_port *port = &priv->port;
5610 	struct ksz_hw *hw = &priv->adapter->hw;
5611 	struct ksz_port_mib *mib;
5612 	int i;
5613 	int p;
5614 
5615 	dev->stats.rx_errors = port->counter[OID_COUNTER_RCV_ERROR];
5616 	dev->stats.tx_errors = port->counter[OID_COUNTER_XMIT_ERROR];
5617 
5618 	/* Reset to zero to add count later. */
5619 	dev->stats.multicast = 0;
5620 	dev->stats.collisions = 0;
5621 	dev->stats.rx_length_errors = 0;
5622 	dev->stats.rx_crc_errors = 0;
5623 	dev->stats.rx_frame_errors = 0;
5624 	dev->stats.tx_window_errors = 0;
5625 
5626 	for (i = 0, p = port->first_port; i < port->mib_port_cnt; i++, p++) {
5627 		mib = &hw->port_mib[p];
5628 
5629 		dev->stats.multicast += (unsigned long)
5630 			mib->counter[MIB_COUNTER_RX_MULTICAST];
5631 
5632 		dev->stats.collisions += (unsigned long)
5633 			mib->counter[MIB_COUNTER_TX_TOTAL_COLLISION];
5634 
5635 		dev->stats.rx_length_errors += (unsigned long)(
5636 			mib->counter[MIB_COUNTER_RX_UNDERSIZE] +
5637 			mib->counter[MIB_COUNTER_RX_FRAGMENT] +
5638 			mib->counter[MIB_COUNTER_RX_OVERSIZE] +
5639 			mib->counter[MIB_COUNTER_RX_JABBER]);
5640 		dev->stats.rx_crc_errors += (unsigned long)
5641 			mib->counter[MIB_COUNTER_RX_CRC_ERR];
5642 		dev->stats.rx_frame_errors += (unsigned long)(
5643 			mib->counter[MIB_COUNTER_RX_ALIGNMENT_ERR] +
5644 			mib->counter[MIB_COUNTER_RX_SYMBOL_ERR]);
5645 
5646 		dev->stats.tx_window_errors += (unsigned long)
5647 			mib->counter[MIB_COUNTER_TX_LATE_COLLISION];
5648 	}
5649 
5650 	return &dev->stats;
5651 }
5652 
5653 /**
5654  * netdev_set_mac_address - set network device MAC address
5655  * @dev:	Network device.
5656  * @addr:	Buffer of MAC address.
5657  *
5658  * This function is used to set the MAC address of the network device.
5659  *
5660  * Return 0 to indicate success.
5661  */
5662 static int netdev_set_mac_address(struct net_device *dev, void *addr)
5663 {
5664 	struct dev_priv *priv = netdev_priv(dev);
5665 	struct dev_info *hw_priv = priv->adapter;
5666 	struct ksz_hw *hw = &hw_priv->hw;
5667 	struct sockaddr *mac = addr;
5668 	uint interrupt;
5669 
5670 	if (priv->port.first_port > 0)
5671 		hw_del_addr(hw, dev->dev_addr);
5672 	else {
5673 		hw->mac_override = 1;
5674 		memcpy(hw->override_addr, mac->sa_data, ETH_ALEN);
5675 	}
5676 
5677 	memcpy(dev->dev_addr, mac->sa_data, ETH_ALEN);
5678 
5679 	interrupt = hw_block_intr(hw);
5680 
5681 	if (priv->port.first_port > 0)
5682 		hw_add_addr(hw, dev->dev_addr);
5683 	else
5684 		hw_set_addr(hw);
5685 	hw_restore_intr(hw, interrupt);
5686 
5687 	return 0;
5688 }
5689 
5690 static void dev_set_promiscuous(struct net_device *dev, struct dev_priv *priv,
5691 	struct ksz_hw *hw, int promiscuous)
5692 {
5693 	if (promiscuous != priv->promiscuous) {
5694 		u8 prev_state = hw->promiscuous;
5695 
5696 		if (promiscuous)
5697 			++hw->promiscuous;
5698 		else
5699 			--hw->promiscuous;
5700 		priv->promiscuous = promiscuous;
5701 
5702 		/* Turn on/off promiscuous mode. */
5703 		if (hw->promiscuous <= 1 && prev_state <= 1)
5704 			hw_set_promiscuous(hw, hw->promiscuous);
5705 
5706 		/*
5707 		 * Port is not in promiscuous mode, meaning it is released
5708 		 * from the bridge.
5709 		 */
5710 		if ((hw->features & STP_SUPPORT) && !promiscuous &&
5711 		    (dev->priv_flags & IFF_BRIDGE_PORT)) {
5712 			struct ksz_switch *sw = hw->ksz_switch;
5713 			int port = priv->port.first_port;
5714 
5715 			port_set_stp_state(hw, port, STP_STATE_DISABLED);
5716 			port = 1 << port;
5717 			if (sw->member & port) {
5718 				sw->member &= ~port;
5719 				bridge_change(hw);
5720 			}
5721 		}
5722 	}
5723 }
5724 
5725 static void dev_set_multicast(struct dev_priv *priv, struct ksz_hw *hw,
5726 	int multicast)
5727 {
5728 	if (multicast != priv->multicast) {
5729 		u8 all_multi = hw->all_multi;
5730 
5731 		if (multicast)
5732 			++hw->all_multi;
5733 		else
5734 			--hw->all_multi;
5735 		priv->multicast = multicast;
5736 
5737 		/* Turn on/off all multicast mode. */
5738 		if (hw->all_multi <= 1 && all_multi <= 1)
5739 			hw_set_multicast(hw, hw->all_multi);
5740 	}
5741 }
5742 
5743 /**
5744  * netdev_set_rx_mode
5745  * @dev:	Network device.
5746  *
5747  * This routine is used to set multicast addresses or put the network device
5748  * into promiscuous mode.
5749  */
5750 static void netdev_set_rx_mode(struct net_device *dev)
5751 {
5752 	struct dev_priv *priv = netdev_priv(dev);
5753 	struct dev_info *hw_priv = priv->adapter;
5754 	struct ksz_hw *hw = &hw_priv->hw;
5755 	struct netdev_hw_addr *ha;
5756 	int multicast = (dev->flags & IFF_ALLMULTI);
5757 
5758 	dev_set_promiscuous(dev, priv, hw, (dev->flags & IFF_PROMISC));
5759 
5760 	if (hw_priv->hw.dev_count > 1)
5761 		multicast |= (dev->flags & IFF_MULTICAST);
5762 	dev_set_multicast(priv, hw, multicast);
5763 
5764 	/* Cannot use different hashes in multiple device interfaces mode. */
5765 	if (hw_priv->hw.dev_count > 1)
5766 		return;
5767 
5768 	if ((dev->flags & IFF_MULTICAST) && !netdev_mc_empty(dev)) {
5769 		int i = 0;
5770 
5771 		/* List too big to support so turn on all multicast mode. */
5772 		if (netdev_mc_count(dev) > MAX_MULTICAST_LIST) {
5773 			if (MAX_MULTICAST_LIST != hw->multi_list_size) {
5774 				hw->multi_list_size = MAX_MULTICAST_LIST;
5775 				++hw->all_multi;
5776 				hw_set_multicast(hw, hw->all_multi);
5777 			}
5778 			return;
5779 		}
5780 
5781 		netdev_for_each_mc_addr(ha, dev) {
5782 			if (i >= MAX_MULTICAST_LIST)
5783 				break;
5784 			memcpy(hw->multi_list[i++], ha->addr, ETH_ALEN);
5785 		}
5786 		hw->multi_list_size = (u8) i;
5787 		hw_set_grp_addr(hw);
5788 	} else {
5789 		if (MAX_MULTICAST_LIST == hw->multi_list_size) {
5790 			--hw->all_multi;
5791 			hw_set_multicast(hw, hw->all_multi);
5792 		}
5793 		hw->multi_list_size = 0;
5794 		hw_clr_multicast(hw);
5795 	}
5796 }
5797 
5798 static int netdev_change_mtu(struct net_device *dev, int new_mtu)
5799 {
5800 	struct dev_priv *priv = netdev_priv(dev);
5801 	struct dev_info *hw_priv = priv->adapter;
5802 	struct ksz_hw *hw = &hw_priv->hw;
5803 	int hw_mtu;
5804 
5805 	if (netif_running(dev))
5806 		return -EBUSY;
5807 
5808 	/* Cannot use different MTU in multiple device interfaces mode. */
5809 	if (hw->dev_count > 1)
5810 		if (dev != hw_priv->dev)
5811 			return 0;
5812 	if (new_mtu < 60)
5813 		return -EINVAL;
5814 
5815 	if (dev->mtu != new_mtu) {
5816 		hw_mtu = new_mtu + ETHERNET_HEADER_SIZE + 4;
5817 		if (hw_mtu > MAX_RX_BUF_SIZE)
5818 			return -EINVAL;
5819 		if (hw_mtu > REGULAR_RX_BUF_SIZE) {
5820 			hw->features |= RX_HUGE_FRAME;
5821 			hw_mtu = MAX_RX_BUF_SIZE;
5822 		} else {
5823 			hw->features &= ~RX_HUGE_FRAME;
5824 			hw_mtu = REGULAR_RX_BUF_SIZE;
5825 		}
5826 		hw_mtu = (hw_mtu + 3) & ~3;
5827 		hw_priv->mtu = hw_mtu;
5828 		dev->mtu = new_mtu;
5829 	}
5830 	return 0;
5831 }
5832 
5833 /**
5834  * netdev_ioctl - I/O control processing
5835  * @dev:	Network device.
5836  * @ifr:	Interface request structure.
5837  * @cmd:	I/O control code.
5838  *
5839  * This function is used to process I/O control calls.
5840  *
5841  * Return 0 to indicate success.
5842  */
5843 static int netdev_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
5844 {
5845 	struct dev_priv *priv = netdev_priv(dev);
5846 	struct dev_info *hw_priv = priv->adapter;
5847 	struct ksz_hw *hw = &hw_priv->hw;
5848 	struct ksz_port *port = &priv->port;
5849 	int result = 0;
5850 	struct mii_ioctl_data *data = if_mii(ifr);
5851 
5852 	if (down_interruptible(&priv->proc_sem))
5853 		return -ERESTARTSYS;
5854 
5855 	switch (cmd) {
5856 	/* Get address of MII PHY in use. */
5857 	case SIOCGMIIPHY:
5858 		data->phy_id = priv->id;
5859 
5860 		/* Fallthrough... */
5861 
5862 	/* Read MII PHY register. */
5863 	case SIOCGMIIREG:
5864 		if (data->phy_id != priv->id || data->reg_num >= 6)
5865 			result = -EIO;
5866 		else
5867 			hw_r_phy(hw, port->linked->port_id, data->reg_num,
5868 				&data->val_out);
5869 		break;
5870 
5871 	/* Write MII PHY register. */
5872 	case SIOCSMIIREG:
5873 		if (!capable(CAP_NET_ADMIN))
5874 			result = -EPERM;
5875 		else if (data->phy_id != priv->id || data->reg_num >= 6)
5876 			result = -EIO;
5877 		else
5878 			hw_w_phy(hw, port->linked->port_id, data->reg_num,
5879 				data->val_in);
5880 		break;
5881 
5882 	default:
5883 		result = -EOPNOTSUPP;
5884 	}
5885 
5886 	up(&priv->proc_sem);
5887 
5888 	return result;
5889 }
5890 
5891 /*
5892  * MII support
5893  */
5894 
5895 /**
5896  * mdio_read - read PHY register
5897  * @dev:	Network device.
5898  * @phy_id:	The PHY id.
5899  * @reg_num:	The register number.
5900  *
5901  * This function returns the PHY register value.
5902  *
5903  * Return the register value.
5904  */
5905 static int mdio_read(struct net_device *dev, int phy_id, int reg_num)
5906 {
5907 	struct dev_priv *priv = netdev_priv(dev);
5908 	struct ksz_port *port = &priv->port;
5909 	struct ksz_hw *hw = port->hw;
5910 	u16 val_out;
5911 
5912 	hw_r_phy(hw, port->linked->port_id, reg_num << 1, &val_out);
5913 	return val_out;
5914 }
5915 
5916 /**
5917  * mdio_write - set PHY register
5918  * @dev:	Network device.
5919  * @phy_id:	The PHY id.
5920  * @reg_num:	The register number.
5921  * @val:	The register value.
5922  *
5923  * This procedure sets the PHY register value.
5924  */
5925 static void mdio_write(struct net_device *dev, int phy_id, int reg_num, int val)
5926 {
5927 	struct dev_priv *priv = netdev_priv(dev);
5928 	struct ksz_port *port = &priv->port;
5929 	struct ksz_hw *hw = port->hw;
5930 	int i;
5931 	int pi;
5932 
5933 	for (i = 0, pi = port->first_port; i < port->port_cnt; i++, pi++)
5934 		hw_w_phy(hw, pi, reg_num << 1, val);
5935 }
5936 
5937 /*
5938  * ethtool support
5939  */
5940 
5941 #define EEPROM_SIZE			0x40
5942 
5943 static u16 eeprom_data[EEPROM_SIZE] = { 0 };
5944 
5945 #define ADVERTISED_ALL			\
5946 	(ADVERTISED_10baseT_Half |	\
5947 	ADVERTISED_10baseT_Full |	\
5948 	ADVERTISED_100baseT_Half |	\
5949 	ADVERTISED_100baseT_Full)
5950 
5951 /* These functions use the MII functions in mii.c. */
5952 
5953 /**
5954  * netdev_get_settings - get network device settings
5955  * @dev:	Network device.
5956  * @cmd:	Ethtool command.
5957  *
5958  * This function queries the PHY and returns its state in the ethtool command.
5959  *
5960  * Return 0 if successful; otherwise an error code.
5961  */
5962 static int netdev_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
5963 {
5964 	struct dev_priv *priv = netdev_priv(dev);
5965 	struct dev_info *hw_priv = priv->adapter;
5966 
5967 	mutex_lock(&hw_priv->lock);
5968 	mii_ethtool_gset(&priv->mii_if, cmd);
5969 	cmd->advertising |= SUPPORTED_TP;
5970 	mutex_unlock(&hw_priv->lock);
5971 
5972 	/* Save advertised settings for workaround in next function. */
5973 	priv->advertising = cmd->advertising;
5974 	return 0;
5975 }
5976 
5977 /**
5978  * netdev_set_settings - set network device settings
5979  * @dev:	Network device.
5980  * @cmd:	Ethtool command.
5981  *
5982  * This function sets the PHY according to the ethtool command.
5983  *
5984  * Return 0 if successful; otherwise an error code.
5985  */
5986 static int netdev_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
5987 {
5988 	struct dev_priv *priv = netdev_priv(dev);
5989 	struct dev_info *hw_priv = priv->adapter;
5990 	struct ksz_port *port = &priv->port;
5991 	u32 speed = ethtool_cmd_speed(cmd);
5992 	int rc;
5993 
5994 	/*
5995 	 * ethtool utility does not change advertised setting if auto
5996 	 * negotiation is not specified explicitly.
5997 	 */
5998 	if (cmd->autoneg && priv->advertising == cmd->advertising) {
5999 		cmd->advertising |= ADVERTISED_ALL;
6000 		if (10 == speed)
6001 			cmd->advertising &=
6002 				~(ADVERTISED_100baseT_Full |
6003 				ADVERTISED_100baseT_Half);
6004 		else if (100 == speed)
6005 			cmd->advertising &=
6006 				~(ADVERTISED_10baseT_Full |
6007 				ADVERTISED_10baseT_Half);
6008 		if (0 == cmd->duplex)
6009 			cmd->advertising &=
6010 				~(ADVERTISED_100baseT_Full |
6011 				ADVERTISED_10baseT_Full);
6012 		else if (1 == cmd->duplex)
6013 			cmd->advertising &=
6014 				~(ADVERTISED_100baseT_Half |
6015 				ADVERTISED_10baseT_Half);
6016 	}
6017 	mutex_lock(&hw_priv->lock);
6018 	if (cmd->autoneg &&
6019 			(cmd->advertising & ADVERTISED_ALL) ==
6020 			ADVERTISED_ALL) {
6021 		port->duplex = 0;
6022 		port->speed = 0;
6023 		port->force_link = 0;
6024 	} else {
6025 		port->duplex = cmd->duplex + 1;
6026 		if (1000 != speed)
6027 			port->speed = speed;
6028 		if (cmd->autoneg)
6029 			port->force_link = 0;
6030 		else
6031 			port->force_link = 1;
6032 	}
6033 	rc = mii_ethtool_sset(&priv->mii_if, cmd);
6034 	mutex_unlock(&hw_priv->lock);
6035 	return rc;
6036 }
6037 
6038 /**
6039  * netdev_nway_reset - restart auto-negotiation
6040  * @dev:	Network device.
6041  *
6042  * This function restarts the PHY for auto-negotiation.
6043  *
6044  * Return 0 if successful; otherwise an error code.
6045  */
6046 static int netdev_nway_reset(struct net_device *dev)
6047 {
6048 	struct dev_priv *priv = netdev_priv(dev);
6049 	struct dev_info *hw_priv = priv->adapter;
6050 	int rc;
6051 
6052 	mutex_lock(&hw_priv->lock);
6053 	rc = mii_nway_restart(&priv->mii_if);
6054 	mutex_unlock(&hw_priv->lock);
6055 	return rc;
6056 }
6057 
6058 /**
6059  * netdev_get_link - get network device link status
6060  * @dev:	Network device.
6061  *
6062  * This function gets the link status from the PHY.
6063  *
6064  * Return true if PHY is linked and false otherwise.
6065  */
6066 static u32 netdev_get_link(struct net_device *dev)
6067 {
6068 	struct dev_priv *priv = netdev_priv(dev);
6069 	int rc;
6070 
6071 	rc = mii_link_ok(&priv->mii_if);
6072 	return rc;
6073 }
6074 
6075 /**
6076  * netdev_get_drvinfo - get network driver information
6077  * @dev:	Network device.
6078  * @info:	Ethtool driver info data structure.
6079  *
6080  * This procedure returns the driver information.
6081  */
6082 static void netdev_get_drvinfo(struct net_device *dev,
6083 	struct ethtool_drvinfo *info)
6084 {
6085 	struct dev_priv *priv = netdev_priv(dev);
6086 	struct dev_info *hw_priv = priv->adapter;
6087 
6088 	strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
6089 	strlcpy(info->version, DRV_VERSION, sizeof(info->version));
6090 	strlcpy(info->bus_info, pci_name(hw_priv->pdev),
6091 		sizeof(info->bus_info));
6092 }
6093 
6094 /**
6095  * netdev_get_regs_len - get length of register dump
6096  * @dev:	Network device.
6097  *
6098  * This function returns the length of the register dump.
6099  *
6100  * Return length of the register dump.
6101  */
6102 static struct hw_regs {
6103 	int start;
6104 	int end;
6105 } hw_regs_range[] = {
6106 	{ KS_DMA_TX_CTRL,	KS884X_INTERRUPTS_STATUS },
6107 	{ KS_ADD_ADDR_0_LO,	KS_ADD_ADDR_F_HI },
6108 	{ KS884X_ADDR_0_OFFSET,	KS8841_WOL_FRAME_BYTE2_OFFSET },
6109 	{ KS884X_SIDER_P,	KS8842_SGCR7_P },
6110 	{ KS8842_MACAR1_P,	KS8842_TOSR8_P },
6111 	{ KS884X_P1MBCR_P,	KS8842_P3ERCR_P },
6112 	{ 0, 0 }
6113 };
6114 
6115 static int netdev_get_regs_len(struct net_device *dev)
6116 {
6117 	struct hw_regs *range = hw_regs_range;
6118 	int regs_len = 0x10 * sizeof(u32);
6119 
6120 	while (range->end > range->start) {
6121 		regs_len += (range->end - range->start + 3) / 4 * 4;
6122 		range++;
6123 	}
6124 	return regs_len;
6125 }
6126 
6127 /**
6128  * netdev_get_regs - get register dump
6129  * @dev:	Network device.
6130  * @regs:	Ethtool registers data structure.
6131  * @ptr:	Buffer to store the register values.
6132  *
6133  * This procedure dumps the register values in the provided buffer.
6134  */
6135 static void netdev_get_regs(struct net_device *dev, struct ethtool_regs *regs,
6136 	void *ptr)
6137 {
6138 	struct dev_priv *priv = netdev_priv(dev);
6139 	struct dev_info *hw_priv = priv->adapter;
6140 	struct ksz_hw *hw = &hw_priv->hw;
6141 	int *buf = (int *) ptr;
6142 	struct hw_regs *range = hw_regs_range;
6143 	int len;
6144 
6145 	mutex_lock(&hw_priv->lock);
6146 	regs->version = 0;
6147 	for (len = 0; len < 0x40; len += 4) {
6148 		pci_read_config_dword(hw_priv->pdev, len, buf);
6149 		buf++;
6150 	}
6151 	while (range->end > range->start) {
6152 		for (len = range->start; len < range->end; len += 4) {
6153 			*buf = readl(hw->io + len);
6154 			buf++;
6155 		}
6156 		range++;
6157 	}
6158 	mutex_unlock(&hw_priv->lock);
6159 }
6160 
6161 #define WOL_SUPPORT			\
6162 	(WAKE_PHY | WAKE_MAGIC |	\
6163 	WAKE_UCAST | WAKE_MCAST |	\
6164 	WAKE_BCAST | WAKE_ARP)
6165 
6166 /**
6167  * netdev_get_wol - get Wake-on-LAN support
6168  * @dev:	Network device.
6169  * @wol:	Ethtool Wake-on-LAN data structure.
6170  *
6171  * This procedure returns Wake-on-LAN support.
6172  */
6173 static void netdev_get_wol(struct net_device *dev,
6174 	struct ethtool_wolinfo *wol)
6175 {
6176 	struct dev_priv *priv = netdev_priv(dev);
6177 	struct dev_info *hw_priv = priv->adapter;
6178 
6179 	wol->supported = hw_priv->wol_support;
6180 	wol->wolopts = hw_priv->wol_enable;
6181 	memset(&wol->sopass, 0, sizeof(wol->sopass));
6182 }
6183 
6184 /**
6185  * netdev_set_wol - set Wake-on-LAN support
6186  * @dev:	Network device.
6187  * @wol:	Ethtool Wake-on-LAN data structure.
6188  *
6189  * This function sets Wake-on-LAN support.
6190  *
6191  * Return 0 if successful; otherwise an error code.
6192  */
6193 static int netdev_set_wol(struct net_device *dev,
6194 	struct ethtool_wolinfo *wol)
6195 {
6196 	struct dev_priv *priv = netdev_priv(dev);
6197 	struct dev_info *hw_priv = priv->adapter;
6198 
6199 	/* Need to find a way to retrieve the device IP address. */
6200 	static const u8 net_addr[] = { 192, 168, 1, 1 };
6201 
6202 	if (wol->wolopts & ~hw_priv->wol_support)
6203 		return -EINVAL;
6204 
6205 	hw_priv->wol_enable = wol->wolopts;
6206 
6207 	/* Link wakeup cannot really be disabled. */
6208 	if (wol->wolopts)
6209 		hw_priv->wol_enable |= WAKE_PHY;
6210 	hw_enable_wol(&hw_priv->hw, hw_priv->wol_enable, net_addr);
6211 	return 0;
6212 }
6213 
6214 /**
6215  * netdev_get_msglevel - get debug message level
6216  * @dev:	Network device.
6217  *
6218  * This function returns current debug message level.
6219  *
6220  * Return current debug message flags.
6221  */
6222 static u32 netdev_get_msglevel(struct net_device *dev)
6223 {
6224 	struct dev_priv *priv = netdev_priv(dev);
6225 
6226 	return priv->msg_enable;
6227 }
6228 
6229 /**
6230  * netdev_set_msglevel - set debug message level
6231  * @dev:	Network device.
6232  * @value:	Debug message flags.
6233  *
6234  * This procedure sets debug message level.
6235  */
6236 static void netdev_set_msglevel(struct net_device *dev, u32 value)
6237 {
6238 	struct dev_priv *priv = netdev_priv(dev);
6239 
6240 	priv->msg_enable = value;
6241 }
6242 
6243 /**
6244  * netdev_get_eeprom_len - get EEPROM length
6245  * @dev:	Network device.
6246  *
6247  * This function returns the length of the EEPROM.
6248  *
6249  * Return length of the EEPROM.
6250  */
6251 static int netdev_get_eeprom_len(struct net_device *dev)
6252 {
6253 	return EEPROM_SIZE * 2;
6254 }
6255 
6256 /**
6257  * netdev_get_eeprom - get EEPROM data
6258  * @dev:	Network device.
6259  * @eeprom:	Ethtool EEPROM data structure.
6260  * @data:	Buffer to store the EEPROM data.
6261  *
6262  * This function dumps the EEPROM data in the provided buffer.
6263  *
6264  * Return 0 if successful; otherwise an error code.
6265  */
6266 #define EEPROM_MAGIC			0x10A18842
6267 
6268 static int netdev_get_eeprom(struct net_device *dev,
6269 	struct ethtool_eeprom *eeprom, u8 *data)
6270 {
6271 	struct dev_priv *priv = netdev_priv(dev);
6272 	struct dev_info *hw_priv = priv->adapter;
6273 	u8 *eeprom_byte = (u8 *) eeprom_data;
6274 	int i;
6275 	int len;
6276 
6277 	len = (eeprom->offset + eeprom->len + 1) / 2;
6278 	for (i = eeprom->offset / 2; i < len; i++)
6279 		eeprom_data[i] = eeprom_read(&hw_priv->hw, i);
6280 	eeprom->magic = EEPROM_MAGIC;
6281 	memcpy(data, &eeprom_byte[eeprom->offset], eeprom->len);
6282 
6283 	return 0;
6284 }
6285 
6286 /**
6287  * netdev_set_eeprom - write EEPROM data
6288  * @dev:	Network device.
6289  * @eeprom:	Ethtool EEPROM data structure.
6290  * @data:	Data buffer.
6291  *
6292  * This function modifies the EEPROM data one byte at a time.
6293  *
6294  * Return 0 if successful; otherwise an error code.
6295  */
6296 static int netdev_set_eeprom(struct net_device *dev,
6297 	struct ethtool_eeprom *eeprom, u8 *data)
6298 {
6299 	struct dev_priv *priv = netdev_priv(dev);
6300 	struct dev_info *hw_priv = priv->adapter;
6301 	u16 eeprom_word[EEPROM_SIZE];
6302 	u8 *eeprom_byte = (u8 *) eeprom_word;
6303 	int i;
6304 	int len;
6305 
6306 	if (eeprom->magic != EEPROM_MAGIC)
6307 		return -EINVAL;
6308 
6309 	len = (eeprom->offset + eeprom->len + 1) / 2;
6310 	for (i = eeprom->offset / 2; i < len; i++)
6311 		eeprom_data[i] = eeprom_read(&hw_priv->hw, i);
6312 	memcpy(eeprom_word, eeprom_data, EEPROM_SIZE * 2);
6313 	memcpy(&eeprom_byte[eeprom->offset], data, eeprom->len);
6314 	for (i = 0; i < EEPROM_SIZE; i++)
6315 		if (eeprom_word[i] != eeprom_data[i]) {
6316 			eeprom_data[i] = eeprom_word[i];
6317 			eeprom_write(&hw_priv->hw, i, eeprom_data[i]);
6318 	}
6319 
6320 	return 0;
6321 }
6322 
6323 /**
6324  * netdev_get_pauseparam - get flow control parameters
6325  * @dev:	Network device.
6326  * @pause:	Ethtool PAUSE settings data structure.
6327  *
6328  * This procedure returns the PAUSE control flow settings.
6329  */
6330 static void netdev_get_pauseparam(struct net_device *dev,
6331 	struct ethtool_pauseparam *pause)
6332 {
6333 	struct dev_priv *priv = netdev_priv(dev);
6334 	struct dev_info *hw_priv = priv->adapter;
6335 	struct ksz_hw *hw = &hw_priv->hw;
6336 
6337 	pause->autoneg = (hw->overrides & PAUSE_FLOW_CTRL) ? 0 : 1;
6338 	if (!hw->ksz_switch) {
6339 		pause->rx_pause =
6340 			(hw->rx_cfg & DMA_RX_FLOW_ENABLE) ? 1 : 0;
6341 		pause->tx_pause =
6342 			(hw->tx_cfg & DMA_TX_FLOW_ENABLE) ? 1 : 0;
6343 	} else {
6344 		pause->rx_pause =
6345 			(sw_chk(hw, KS8842_SWITCH_CTRL_1_OFFSET,
6346 				SWITCH_RX_FLOW_CTRL)) ? 1 : 0;
6347 		pause->tx_pause =
6348 			(sw_chk(hw, KS8842_SWITCH_CTRL_1_OFFSET,
6349 				SWITCH_TX_FLOW_CTRL)) ? 1 : 0;
6350 	}
6351 }
6352 
6353 /**
6354  * netdev_set_pauseparam - set flow control parameters
6355  * @dev:	Network device.
6356  * @pause:	Ethtool PAUSE settings data structure.
6357  *
6358  * This function sets the PAUSE control flow settings.
6359  * Not implemented yet.
6360  *
6361  * Return 0 if successful; otherwise an error code.
6362  */
6363 static int netdev_set_pauseparam(struct net_device *dev,
6364 	struct ethtool_pauseparam *pause)
6365 {
6366 	struct dev_priv *priv = netdev_priv(dev);
6367 	struct dev_info *hw_priv = priv->adapter;
6368 	struct ksz_hw *hw = &hw_priv->hw;
6369 	struct ksz_port *port = &priv->port;
6370 
6371 	mutex_lock(&hw_priv->lock);
6372 	if (pause->autoneg) {
6373 		if (!pause->rx_pause && !pause->tx_pause)
6374 			port->flow_ctrl = PHY_NO_FLOW_CTRL;
6375 		else
6376 			port->flow_ctrl = PHY_FLOW_CTRL;
6377 		hw->overrides &= ~PAUSE_FLOW_CTRL;
6378 		port->force_link = 0;
6379 		if (hw->ksz_switch) {
6380 			sw_cfg(hw, KS8842_SWITCH_CTRL_1_OFFSET,
6381 				SWITCH_RX_FLOW_CTRL, 1);
6382 			sw_cfg(hw, KS8842_SWITCH_CTRL_1_OFFSET,
6383 				SWITCH_TX_FLOW_CTRL, 1);
6384 		}
6385 		port_set_link_speed(port);
6386 	} else {
6387 		hw->overrides |= PAUSE_FLOW_CTRL;
6388 		if (hw->ksz_switch) {
6389 			sw_cfg(hw, KS8842_SWITCH_CTRL_1_OFFSET,
6390 				SWITCH_RX_FLOW_CTRL, pause->rx_pause);
6391 			sw_cfg(hw, KS8842_SWITCH_CTRL_1_OFFSET,
6392 				SWITCH_TX_FLOW_CTRL, pause->tx_pause);
6393 		} else
6394 			set_flow_ctrl(hw, pause->rx_pause, pause->tx_pause);
6395 	}
6396 	mutex_unlock(&hw_priv->lock);
6397 
6398 	return 0;
6399 }
6400 
6401 /**
6402  * netdev_get_ringparam - get tx/rx ring parameters
6403  * @dev:	Network device.
6404  * @pause:	Ethtool RING settings data structure.
6405  *
6406  * This procedure returns the TX/RX ring settings.
6407  */
6408 static void netdev_get_ringparam(struct net_device *dev,
6409 	struct ethtool_ringparam *ring)
6410 {
6411 	struct dev_priv *priv = netdev_priv(dev);
6412 	struct dev_info *hw_priv = priv->adapter;
6413 	struct ksz_hw *hw = &hw_priv->hw;
6414 
6415 	ring->tx_max_pending = (1 << 9);
6416 	ring->tx_pending = hw->tx_desc_info.alloc;
6417 	ring->rx_max_pending = (1 << 9);
6418 	ring->rx_pending = hw->rx_desc_info.alloc;
6419 }
6420 
6421 #define STATS_LEN			(TOTAL_PORT_COUNTER_NUM)
6422 
6423 static struct {
6424 	char string[ETH_GSTRING_LEN];
6425 } ethtool_stats_keys[STATS_LEN] = {
6426 	{ "rx_lo_priority_octets" },
6427 	{ "rx_hi_priority_octets" },
6428 	{ "rx_undersize_packets" },
6429 	{ "rx_fragments" },
6430 	{ "rx_oversize_packets" },
6431 	{ "rx_jabbers" },
6432 	{ "rx_symbol_errors" },
6433 	{ "rx_crc_errors" },
6434 	{ "rx_align_errors" },
6435 	{ "rx_mac_ctrl_packets" },
6436 	{ "rx_pause_packets" },
6437 	{ "rx_bcast_packets" },
6438 	{ "rx_mcast_packets" },
6439 	{ "rx_ucast_packets" },
6440 	{ "rx_64_or_less_octet_packets" },
6441 	{ "rx_65_to_127_octet_packets" },
6442 	{ "rx_128_to_255_octet_packets" },
6443 	{ "rx_256_to_511_octet_packets" },
6444 	{ "rx_512_to_1023_octet_packets" },
6445 	{ "rx_1024_to_1522_octet_packets" },
6446 
6447 	{ "tx_lo_priority_octets" },
6448 	{ "tx_hi_priority_octets" },
6449 	{ "tx_late_collisions" },
6450 	{ "tx_pause_packets" },
6451 	{ "tx_bcast_packets" },
6452 	{ "tx_mcast_packets" },
6453 	{ "tx_ucast_packets" },
6454 	{ "tx_deferred" },
6455 	{ "tx_total_collisions" },
6456 	{ "tx_excessive_collisions" },
6457 	{ "tx_single_collisions" },
6458 	{ "tx_mult_collisions" },
6459 
6460 	{ "rx_discards" },
6461 	{ "tx_discards" },
6462 };
6463 
6464 /**
6465  * netdev_get_strings - get statistics identity strings
6466  * @dev:	Network device.
6467  * @stringset:	String set identifier.
6468  * @buf:	Buffer to store the strings.
6469  *
6470  * This procedure returns the strings used to identify the statistics.
6471  */
6472 static void netdev_get_strings(struct net_device *dev, u32 stringset, u8 *buf)
6473 {
6474 	struct dev_priv *priv = netdev_priv(dev);
6475 	struct dev_info *hw_priv = priv->adapter;
6476 	struct ksz_hw *hw = &hw_priv->hw;
6477 
6478 	if (ETH_SS_STATS == stringset)
6479 		memcpy(buf, &ethtool_stats_keys,
6480 			ETH_GSTRING_LEN * hw->mib_cnt);
6481 }
6482 
6483 /**
6484  * netdev_get_sset_count - get statistics size
6485  * @dev:	Network device.
6486  * @sset:	The statistics set number.
6487  *
6488  * This function returns the size of the statistics to be reported.
6489  *
6490  * Return size of the statistics to be reported.
6491  */
6492 static int netdev_get_sset_count(struct net_device *dev, int sset)
6493 {
6494 	struct dev_priv *priv = netdev_priv(dev);
6495 	struct dev_info *hw_priv = priv->adapter;
6496 	struct ksz_hw *hw = &hw_priv->hw;
6497 
6498 	switch (sset) {
6499 	case ETH_SS_STATS:
6500 		return hw->mib_cnt;
6501 	default:
6502 		return -EOPNOTSUPP;
6503 	}
6504 }
6505 
6506 /**
6507  * netdev_get_ethtool_stats - get network device statistics
6508  * @dev:	Network device.
6509  * @stats:	Ethtool statistics data structure.
6510  * @data:	Buffer to store the statistics.
6511  *
6512  * This procedure returns the statistics.
6513  */
6514 static void netdev_get_ethtool_stats(struct net_device *dev,
6515 	struct ethtool_stats *stats, u64 *data)
6516 {
6517 	struct dev_priv *priv = netdev_priv(dev);
6518 	struct dev_info *hw_priv = priv->adapter;
6519 	struct ksz_hw *hw = &hw_priv->hw;
6520 	struct ksz_port *port = &priv->port;
6521 	int n_stats = stats->n_stats;
6522 	int i;
6523 	int n;
6524 	int p;
6525 	int rc;
6526 	u64 counter[TOTAL_PORT_COUNTER_NUM];
6527 
6528 	mutex_lock(&hw_priv->lock);
6529 	n = SWITCH_PORT_NUM;
6530 	for (i = 0, p = port->first_port; i < port->mib_port_cnt; i++, p++) {
6531 		if (media_connected == hw->port_mib[p].state) {
6532 			hw_priv->counter[p].read = 1;
6533 
6534 			/* Remember first port that requests read. */
6535 			if (n == SWITCH_PORT_NUM)
6536 				n = p;
6537 		}
6538 	}
6539 	mutex_unlock(&hw_priv->lock);
6540 
6541 	if (n < SWITCH_PORT_NUM)
6542 		schedule_work(&hw_priv->mib_read);
6543 
6544 	if (1 == port->mib_port_cnt && n < SWITCH_PORT_NUM) {
6545 		p = n;
6546 		rc = wait_event_interruptible_timeout(
6547 			hw_priv->counter[p].counter,
6548 			2 == hw_priv->counter[p].read,
6549 			HZ * 1);
6550 	} else
6551 		for (i = 0, p = n; i < port->mib_port_cnt - n; i++, p++) {
6552 			if (0 == i) {
6553 				rc = wait_event_interruptible_timeout(
6554 					hw_priv->counter[p].counter,
6555 					2 == hw_priv->counter[p].read,
6556 					HZ * 2);
6557 			} else if (hw->port_mib[p].cnt_ptr) {
6558 				rc = wait_event_interruptible_timeout(
6559 					hw_priv->counter[p].counter,
6560 					2 == hw_priv->counter[p].read,
6561 					HZ * 1);
6562 			}
6563 		}
6564 
6565 	get_mib_counters(hw, port->first_port, port->mib_port_cnt, counter);
6566 	n = hw->mib_cnt;
6567 	if (n > n_stats)
6568 		n = n_stats;
6569 	n_stats -= n;
6570 	for (i = 0; i < n; i++)
6571 		*data++ = counter[i];
6572 }
6573 
6574 /**
6575  * netdev_set_features - set receive checksum support
6576  * @dev:	Network device.
6577  * @features:	New device features (offloads).
6578  *
6579  * This function sets receive checksum support setting.
6580  *
6581  * Return 0 if successful; otherwise an error code.
6582  */
6583 static int netdev_set_features(struct net_device *dev,
6584 	netdev_features_t features)
6585 {
6586 	struct dev_priv *priv = netdev_priv(dev);
6587 	struct dev_info *hw_priv = priv->adapter;
6588 	struct ksz_hw *hw = &hw_priv->hw;
6589 
6590 	mutex_lock(&hw_priv->lock);
6591 
6592 	/* see note in hw_setup() */
6593 	if (features & NETIF_F_RXCSUM)
6594 		hw->rx_cfg |= DMA_RX_CSUM_TCP | DMA_RX_CSUM_IP;
6595 	else
6596 		hw->rx_cfg &= ~(DMA_RX_CSUM_TCP | DMA_RX_CSUM_IP);
6597 
6598 	if (hw->enabled)
6599 		writel(hw->rx_cfg, hw->io + KS_DMA_RX_CTRL);
6600 
6601 	mutex_unlock(&hw_priv->lock);
6602 
6603 	return 0;
6604 }
6605 
6606 static const struct ethtool_ops netdev_ethtool_ops = {
6607 	.get_settings		= netdev_get_settings,
6608 	.set_settings		= netdev_set_settings,
6609 	.nway_reset		= netdev_nway_reset,
6610 	.get_link		= netdev_get_link,
6611 	.get_drvinfo		= netdev_get_drvinfo,
6612 	.get_regs_len		= netdev_get_regs_len,
6613 	.get_regs		= netdev_get_regs,
6614 	.get_wol		= netdev_get_wol,
6615 	.set_wol		= netdev_set_wol,
6616 	.get_msglevel		= netdev_get_msglevel,
6617 	.set_msglevel		= netdev_set_msglevel,
6618 	.get_eeprom_len		= netdev_get_eeprom_len,
6619 	.get_eeprom		= netdev_get_eeprom,
6620 	.set_eeprom		= netdev_set_eeprom,
6621 	.get_pauseparam		= netdev_get_pauseparam,
6622 	.set_pauseparam		= netdev_set_pauseparam,
6623 	.get_ringparam		= netdev_get_ringparam,
6624 	.get_strings		= netdev_get_strings,
6625 	.get_sset_count		= netdev_get_sset_count,
6626 	.get_ethtool_stats	= netdev_get_ethtool_stats,
6627 };
6628 
6629 /*
6630  * Hardware monitoring
6631  */
6632 
6633 static void update_link(struct net_device *dev, struct dev_priv *priv,
6634 	struct ksz_port *port)
6635 {
6636 	if (priv->media_state != port->linked->state) {
6637 		priv->media_state = port->linked->state;
6638 		if (netif_running(dev))
6639 			set_media_state(dev, media_connected);
6640 	}
6641 }
6642 
6643 static void mib_read_work(struct work_struct *work)
6644 {
6645 	struct dev_info *hw_priv =
6646 		container_of(work, struct dev_info, mib_read);
6647 	struct ksz_hw *hw = &hw_priv->hw;
6648 	struct ksz_port_mib *mib;
6649 	int i;
6650 
6651 	next_jiffies = jiffies;
6652 	for (i = 0; i < hw->mib_port_cnt; i++) {
6653 		mib = &hw->port_mib[i];
6654 
6655 		/* Reading MIB counters or requested to read. */
6656 		if (mib->cnt_ptr || 1 == hw_priv->counter[i].read) {
6657 
6658 			/* Need to process receive interrupt. */
6659 			if (port_r_cnt(hw, i))
6660 				break;
6661 			hw_priv->counter[i].read = 0;
6662 
6663 			/* Finish reading counters. */
6664 			if (0 == mib->cnt_ptr) {
6665 				hw_priv->counter[i].read = 2;
6666 				wake_up_interruptible(
6667 					&hw_priv->counter[i].counter);
6668 			}
6669 		} else if (jiffies >= hw_priv->counter[i].time) {
6670 			/* Only read MIB counters when the port is connected. */
6671 			if (media_connected == mib->state)
6672 				hw_priv->counter[i].read = 1;
6673 			next_jiffies += HZ * 1 * hw->mib_port_cnt;
6674 			hw_priv->counter[i].time = next_jiffies;
6675 
6676 		/* Port is just disconnected. */
6677 		} else if (mib->link_down) {
6678 			mib->link_down = 0;
6679 
6680 			/* Read counters one last time after link is lost. */
6681 			hw_priv->counter[i].read = 1;
6682 		}
6683 	}
6684 }
6685 
6686 static void mib_monitor(unsigned long ptr)
6687 {
6688 	struct dev_info *hw_priv = (struct dev_info *) ptr;
6689 
6690 	mib_read_work(&hw_priv->mib_read);
6691 
6692 	/* This is used to verify Wake-on-LAN is working. */
6693 	if (hw_priv->pme_wait) {
6694 		if (hw_priv->pme_wait <= jiffies) {
6695 			hw_clr_wol_pme_status(&hw_priv->hw);
6696 			hw_priv->pme_wait = 0;
6697 		}
6698 	} else if (hw_chk_wol_pme_status(&hw_priv->hw)) {
6699 
6700 		/* PME is asserted.  Wait 2 seconds to clear it. */
6701 		hw_priv->pme_wait = jiffies + HZ * 2;
6702 	}
6703 
6704 	ksz_update_timer(&hw_priv->mib_timer_info);
6705 }
6706 
6707 /**
6708  * dev_monitor - periodic monitoring
6709  * @ptr:	Network device pointer.
6710  *
6711  * This routine is run in a kernel timer to monitor the network device.
6712  */
6713 static void dev_monitor(unsigned long ptr)
6714 {
6715 	struct net_device *dev = (struct net_device *) ptr;
6716 	struct dev_priv *priv = netdev_priv(dev);
6717 	struct dev_info *hw_priv = priv->adapter;
6718 	struct ksz_hw *hw = &hw_priv->hw;
6719 	struct ksz_port *port = &priv->port;
6720 
6721 	if (!(hw->features & LINK_INT_WORKING))
6722 		port_get_link_speed(port);
6723 	update_link(dev, priv, port);
6724 
6725 	ksz_update_timer(&priv->monitor_timer_info);
6726 }
6727 
6728 /*
6729  * Linux network device interface functions
6730  */
6731 
6732 /* Driver exported variables */
6733 
6734 static int msg_enable;
6735 
6736 static char *macaddr = ":";
6737 static char *mac1addr = ":";
6738 
6739 /*
6740  * This enables multiple network device mode for KSZ8842, which contains a
6741  * switch with two physical ports.  Some users like to take control of the
6742  * ports for running Spanning Tree Protocol.  The driver will create an
6743  * additional eth? device for the other port.
6744  *
6745  * Some limitations are the network devices cannot have different MTU and
6746  * multicast hash tables.
6747  */
6748 static int multi_dev;
6749 
6750 /*
6751  * As most users select multiple network device mode to use Spanning Tree
6752  * Protocol, this enables a feature in which most unicast and multicast packets
6753  * are forwarded inside the switch and not passed to the host.  Only packets
6754  * that need the host's attention are passed to it.  This prevents the host
6755  * wasting CPU time to examine each and every incoming packets and do the
6756  * forwarding itself.
6757  *
6758  * As the hack requires the private bridge header, the driver cannot compile
6759  * with just the kernel headers.
6760  *
6761  * Enabling STP support also turns on multiple network device mode.
6762  */
6763 static int stp;
6764 
6765 /*
6766  * This enables fast aging in the KSZ8842 switch.  Not sure what situation
6767  * needs that.  However, fast aging is used to flush the dynamic MAC table when
6768  * STP support is enabled.
6769  */
6770 static int fast_aging;
6771 
6772 /**
6773  * netdev_init - initialize network device.
6774  * @dev:	Network device.
6775  *
6776  * This function initializes the network device.
6777  *
6778  * Return 0 if successful; otherwise an error code indicating failure.
6779  */
6780 static int __init netdev_init(struct net_device *dev)
6781 {
6782 	struct dev_priv *priv = netdev_priv(dev);
6783 
6784 	/* 500 ms timeout */
6785 	ksz_init_timer(&priv->monitor_timer_info, 500 * HZ / 1000,
6786 		dev_monitor, dev);
6787 
6788 	/* 500 ms timeout */
6789 	dev->watchdog_timeo = HZ / 2;
6790 
6791 	dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG | NETIF_F_RXCSUM;
6792 
6793 	/*
6794 	 * Hardware does not really support IPv6 checksum generation, but
6795 	 * driver actually runs faster with this on.
6796 	 */
6797 	dev->hw_features |= NETIF_F_IPV6_CSUM;
6798 
6799 	dev->features |= dev->hw_features;
6800 
6801 	sema_init(&priv->proc_sem, 1);
6802 
6803 	priv->mii_if.phy_id_mask = 0x1;
6804 	priv->mii_if.reg_num_mask = 0x7;
6805 	priv->mii_if.dev = dev;
6806 	priv->mii_if.mdio_read = mdio_read;
6807 	priv->mii_if.mdio_write = mdio_write;
6808 	priv->mii_if.phy_id = priv->port.first_port + 1;
6809 
6810 	priv->msg_enable = netif_msg_init(msg_enable,
6811 		(NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK));
6812 
6813 	return 0;
6814 }
6815 
6816 static const struct net_device_ops netdev_ops = {
6817 	.ndo_init		= netdev_init,
6818 	.ndo_open		= netdev_open,
6819 	.ndo_stop		= netdev_close,
6820 	.ndo_get_stats		= netdev_query_statistics,
6821 	.ndo_start_xmit		= netdev_tx,
6822 	.ndo_tx_timeout		= netdev_tx_timeout,
6823 	.ndo_change_mtu		= netdev_change_mtu,
6824 	.ndo_set_features	= netdev_set_features,
6825 	.ndo_set_mac_address	= netdev_set_mac_address,
6826 	.ndo_validate_addr	= eth_validate_addr,
6827 	.ndo_do_ioctl		= netdev_ioctl,
6828 	.ndo_set_rx_mode	= netdev_set_rx_mode,
6829 #ifdef CONFIG_NET_POLL_CONTROLLER
6830 	.ndo_poll_controller	= netdev_netpoll,
6831 #endif
6832 };
6833 
6834 static void netdev_free(struct net_device *dev)
6835 {
6836 	if (dev->watchdog_timeo)
6837 		unregister_netdev(dev);
6838 
6839 	free_netdev(dev);
6840 }
6841 
6842 struct platform_info {
6843 	struct dev_info dev_info;
6844 	struct net_device *netdev[SWITCH_PORT_NUM];
6845 };
6846 
6847 static int net_device_present;
6848 
6849 static void get_mac_addr(struct dev_info *hw_priv, u8 *macaddr, int port)
6850 {
6851 	int i;
6852 	int j;
6853 	int got_num;
6854 	int num;
6855 
6856 	i = j = num = got_num = 0;
6857 	while (j < ETH_ALEN) {
6858 		if (macaddr[i]) {
6859 			int digit;
6860 
6861 			got_num = 1;
6862 			digit = hex_to_bin(macaddr[i]);
6863 			if (digit >= 0)
6864 				num = num * 16 + digit;
6865 			else if (':' == macaddr[i])
6866 				got_num = 2;
6867 			else
6868 				break;
6869 		} else if (got_num)
6870 			got_num = 2;
6871 		else
6872 			break;
6873 		if (2 == got_num) {
6874 			if (MAIN_PORT == port) {
6875 				hw_priv->hw.override_addr[j++] = (u8) num;
6876 				hw_priv->hw.override_addr[5] +=
6877 					hw_priv->hw.id;
6878 			} else {
6879 				hw_priv->hw.ksz_switch->other_addr[j++] =
6880 					(u8) num;
6881 				hw_priv->hw.ksz_switch->other_addr[5] +=
6882 					hw_priv->hw.id;
6883 			}
6884 			num = got_num = 0;
6885 		}
6886 		i++;
6887 	}
6888 	if (ETH_ALEN == j) {
6889 		if (MAIN_PORT == port)
6890 			hw_priv->hw.mac_override = 1;
6891 	}
6892 }
6893 
6894 #define KS884X_DMA_MASK			(~0x0UL)
6895 
6896 static void read_other_addr(struct ksz_hw *hw)
6897 {
6898 	int i;
6899 	u16 data[3];
6900 	struct ksz_switch *sw = hw->ksz_switch;
6901 
6902 	for (i = 0; i < 3; i++)
6903 		data[i] = eeprom_read(hw, i + EEPROM_DATA_OTHER_MAC_ADDR);
6904 	if ((data[0] || data[1] || data[2]) && data[0] != 0xffff) {
6905 		sw->other_addr[5] = (u8) data[0];
6906 		sw->other_addr[4] = (u8)(data[0] >> 8);
6907 		sw->other_addr[3] = (u8) data[1];
6908 		sw->other_addr[2] = (u8)(data[1] >> 8);
6909 		sw->other_addr[1] = (u8) data[2];
6910 		sw->other_addr[0] = (u8)(data[2] >> 8);
6911 	}
6912 }
6913 
6914 #ifndef PCI_VENDOR_ID_MICREL_KS
6915 #define PCI_VENDOR_ID_MICREL_KS		0x16c6
6916 #endif
6917 
6918 static int pcidev_init(struct pci_dev *pdev, const struct pci_device_id *id)
6919 {
6920 	struct net_device *dev;
6921 	struct dev_priv *priv;
6922 	struct dev_info *hw_priv;
6923 	struct ksz_hw *hw;
6924 	struct platform_info *info;
6925 	struct ksz_port *port;
6926 	unsigned long reg_base;
6927 	unsigned long reg_len;
6928 	int cnt;
6929 	int i;
6930 	int mib_port_count;
6931 	int pi;
6932 	int port_count;
6933 	int result;
6934 	char banner[sizeof(version)];
6935 	struct ksz_switch *sw = NULL;
6936 
6937 	result = pci_enable_device(pdev);
6938 	if (result)
6939 		return result;
6940 
6941 	result = -ENODEV;
6942 
6943 	if (pci_set_dma_mask(pdev, DMA_BIT_MASK(32)) ||
6944 			pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32)))
6945 		return result;
6946 
6947 	reg_base = pci_resource_start(pdev, 0);
6948 	reg_len = pci_resource_len(pdev, 0);
6949 	if ((pci_resource_flags(pdev, 0) & IORESOURCE_IO) != 0)
6950 		return result;
6951 
6952 	if (!request_mem_region(reg_base, reg_len, DRV_NAME))
6953 		return result;
6954 	pci_set_master(pdev);
6955 
6956 	result = -ENOMEM;
6957 
6958 	info = kzalloc(sizeof(struct platform_info), GFP_KERNEL);
6959 	if (!info)
6960 		goto pcidev_init_dev_err;
6961 
6962 	hw_priv = &info->dev_info;
6963 	hw_priv->pdev = pdev;
6964 
6965 	hw = &hw_priv->hw;
6966 
6967 	hw->io = ioremap(reg_base, reg_len);
6968 	if (!hw->io)
6969 		goto pcidev_init_io_err;
6970 
6971 	cnt = hw_init(hw);
6972 	if (!cnt) {
6973 		if (msg_enable & NETIF_MSG_PROBE)
6974 			pr_alert("chip not detected\n");
6975 		result = -ENODEV;
6976 		goto pcidev_init_alloc_err;
6977 	}
6978 
6979 	snprintf(banner, sizeof(banner), "%s", version);
6980 	banner[13] = cnt + '0';		/* Replace x in "Micrel KSZ884x" */
6981 	dev_info(&hw_priv->pdev->dev, "%s\n", banner);
6982 	dev_dbg(&hw_priv->pdev->dev, "Mem = %p; IRQ = %d\n", hw->io, pdev->irq);
6983 
6984 	/* Assume device is KSZ8841. */
6985 	hw->dev_count = 1;
6986 	port_count = 1;
6987 	mib_port_count = 1;
6988 	hw->addr_list_size = 0;
6989 	hw->mib_cnt = PORT_COUNTER_NUM;
6990 	hw->mib_port_cnt = 1;
6991 
6992 	/* KSZ8842 has a switch with multiple ports. */
6993 	if (2 == cnt) {
6994 		if (fast_aging)
6995 			hw->overrides |= FAST_AGING;
6996 
6997 		hw->mib_cnt = TOTAL_PORT_COUNTER_NUM;
6998 
6999 		/* Multiple network device interfaces are required. */
7000 		if (multi_dev) {
7001 			hw->dev_count = SWITCH_PORT_NUM;
7002 			hw->addr_list_size = SWITCH_PORT_NUM - 1;
7003 		}
7004 
7005 		/* Single network device has multiple ports. */
7006 		if (1 == hw->dev_count) {
7007 			port_count = SWITCH_PORT_NUM;
7008 			mib_port_count = SWITCH_PORT_NUM;
7009 		}
7010 		hw->mib_port_cnt = TOTAL_PORT_NUM;
7011 		hw->ksz_switch = kzalloc(sizeof(struct ksz_switch), GFP_KERNEL);
7012 		if (!hw->ksz_switch)
7013 			goto pcidev_init_alloc_err;
7014 
7015 		sw = hw->ksz_switch;
7016 	}
7017 	for (i = 0; i < hw->mib_port_cnt; i++)
7018 		hw->port_mib[i].mib_start = 0;
7019 
7020 	hw->parent = hw_priv;
7021 
7022 	/* Default MTU is 1500. */
7023 	hw_priv->mtu = (REGULAR_RX_BUF_SIZE + 3) & ~3;
7024 
7025 	if (ksz_alloc_mem(hw_priv))
7026 		goto pcidev_init_mem_err;
7027 
7028 	hw_priv->hw.id = net_device_present;
7029 
7030 	spin_lock_init(&hw_priv->hwlock);
7031 	mutex_init(&hw_priv->lock);
7032 
7033 	for (i = 0; i < TOTAL_PORT_NUM; i++)
7034 		init_waitqueue_head(&hw_priv->counter[i].counter);
7035 
7036 	if (macaddr[0] != ':')
7037 		get_mac_addr(hw_priv, macaddr, MAIN_PORT);
7038 
7039 	/* Read MAC address and initialize override address if not overrided. */
7040 	hw_read_addr(hw);
7041 
7042 	/* Multiple device interfaces mode requires a second MAC address. */
7043 	if (hw->dev_count > 1) {
7044 		memcpy(sw->other_addr, hw->override_addr, ETH_ALEN);
7045 		read_other_addr(hw);
7046 		if (mac1addr[0] != ':')
7047 			get_mac_addr(hw_priv, mac1addr, OTHER_PORT);
7048 	}
7049 
7050 	hw_setup(hw);
7051 	if (hw->ksz_switch)
7052 		sw_setup(hw);
7053 	else {
7054 		hw_priv->wol_support = WOL_SUPPORT;
7055 		hw_priv->wol_enable = 0;
7056 	}
7057 
7058 	INIT_WORK(&hw_priv->mib_read, mib_read_work);
7059 
7060 	/* 500 ms timeout */
7061 	ksz_init_timer(&hw_priv->mib_timer_info, 500 * HZ / 1000,
7062 		mib_monitor, hw_priv);
7063 
7064 	for (i = 0; i < hw->dev_count; i++) {
7065 		dev = alloc_etherdev(sizeof(struct dev_priv));
7066 		if (!dev)
7067 			goto pcidev_init_reg_err;
7068 		SET_NETDEV_DEV(dev, &pdev->dev);
7069 		info->netdev[i] = dev;
7070 
7071 		priv = netdev_priv(dev);
7072 		priv->adapter = hw_priv;
7073 		priv->id = net_device_present++;
7074 
7075 		port = &priv->port;
7076 		port->port_cnt = port_count;
7077 		port->mib_port_cnt = mib_port_count;
7078 		port->first_port = i;
7079 		port->flow_ctrl = PHY_FLOW_CTRL;
7080 
7081 		port->hw = hw;
7082 		port->linked = &hw->port_info[port->first_port];
7083 
7084 		for (cnt = 0, pi = i; cnt < port_count; cnt++, pi++) {
7085 			hw->port_info[pi].port_id = pi;
7086 			hw->port_info[pi].pdev = dev;
7087 			hw->port_info[pi].state = media_disconnected;
7088 		}
7089 
7090 		dev->mem_start = (unsigned long) hw->io;
7091 		dev->mem_end = dev->mem_start + reg_len - 1;
7092 		dev->irq = pdev->irq;
7093 		if (MAIN_PORT == i)
7094 			memcpy(dev->dev_addr, hw_priv->hw.override_addr,
7095 			       ETH_ALEN);
7096 		else {
7097 			memcpy(dev->dev_addr, sw->other_addr, ETH_ALEN);
7098 			if (ether_addr_equal(sw->other_addr, hw->override_addr))
7099 				dev->dev_addr[5] += port->first_port;
7100 		}
7101 
7102 		dev->netdev_ops = &netdev_ops;
7103 		dev->ethtool_ops = &netdev_ethtool_ops;
7104 		if (register_netdev(dev))
7105 			goto pcidev_init_reg_err;
7106 		port_set_power_saving(port, true);
7107 	}
7108 
7109 	pci_dev_get(hw_priv->pdev);
7110 	pci_set_drvdata(pdev, info);
7111 	return 0;
7112 
7113 pcidev_init_reg_err:
7114 	for (i = 0; i < hw->dev_count; i++) {
7115 		if (info->netdev[i]) {
7116 			netdev_free(info->netdev[i]);
7117 			info->netdev[i] = NULL;
7118 		}
7119 	}
7120 
7121 pcidev_init_mem_err:
7122 	ksz_free_mem(hw_priv);
7123 	kfree(hw->ksz_switch);
7124 
7125 pcidev_init_alloc_err:
7126 	iounmap(hw->io);
7127 
7128 pcidev_init_io_err:
7129 	kfree(info);
7130 
7131 pcidev_init_dev_err:
7132 	release_mem_region(reg_base, reg_len);
7133 
7134 	return result;
7135 }
7136 
7137 static void pcidev_exit(struct pci_dev *pdev)
7138 {
7139 	int i;
7140 	struct platform_info *info = pci_get_drvdata(pdev);
7141 	struct dev_info *hw_priv = &info->dev_info;
7142 
7143 	release_mem_region(pci_resource_start(pdev, 0),
7144 		pci_resource_len(pdev, 0));
7145 	for (i = 0; i < hw_priv->hw.dev_count; i++) {
7146 		if (info->netdev[i])
7147 			netdev_free(info->netdev[i]);
7148 	}
7149 	if (hw_priv->hw.io)
7150 		iounmap(hw_priv->hw.io);
7151 	ksz_free_mem(hw_priv);
7152 	kfree(hw_priv->hw.ksz_switch);
7153 	pci_dev_put(hw_priv->pdev);
7154 	kfree(info);
7155 }
7156 
7157 #ifdef CONFIG_PM
7158 static int pcidev_resume(struct pci_dev *pdev)
7159 {
7160 	int i;
7161 	struct platform_info *info = pci_get_drvdata(pdev);
7162 	struct dev_info *hw_priv = &info->dev_info;
7163 	struct ksz_hw *hw = &hw_priv->hw;
7164 
7165 	pci_set_power_state(pdev, PCI_D0);
7166 	pci_restore_state(pdev);
7167 	pci_enable_wake(pdev, PCI_D0, 0);
7168 
7169 	if (hw_priv->wol_enable)
7170 		hw_cfg_wol_pme(hw, 0);
7171 	for (i = 0; i < hw->dev_count; i++) {
7172 		if (info->netdev[i]) {
7173 			struct net_device *dev = info->netdev[i];
7174 
7175 			if (netif_running(dev)) {
7176 				netdev_open(dev);
7177 				netif_device_attach(dev);
7178 			}
7179 		}
7180 	}
7181 	return 0;
7182 }
7183 
7184 static int pcidev_suspend(struct pci_dev *pdev, pm_message_t state)
7185 {
7186 	int i;
7187 	struct platform_info *info = pci_get_drvdata(pdev);
7188 	struct dev_info *hw_priv = &info->dev_info;
7189 	struct ksz_hw *hw = &hw_priv->hw;
7190 
7191 	/* Need to find a way to retrieve the device IP address. */
7192 	static const u8 net_addr[] = { 192, 168, 1, 1 };
7193 
7194 	for (i = 0; i < hw->dev_count; i++) {
7195 		if (info->netdev[i]) {
7196 			struct net_device *dev = info->netdev[i];
7197 
7198 			if (netif_running(dev)) {
7199 				netif_device_detach(dev);
7200 				netdev_close(dev);
7201 			}
7202 		}
7203 	}
7204 	if (hw_priv->wol_enable) {
7205 		hw_enable_wol(hw, hw_priv->wol_enable, net_addr);
7206 		hw_cfg_wol_pme(hw, 1);
7207 	}
7208 
7209 	pci_save_state(pdev);
7210 	pci_enable_wake(pdev, pci_choose_state(pdev, state), 1);
7211 	pci_set_power_state(pdev, pci_choose_state(pdev, state));
7212 	return 0;
7213 }
7214 #endif
7215 
7216 static char pcidev_name[] = "ksz884xp";
7217 
7218 static const struct pci_device_id pcidev_table[] = {
7219 	{ PCI_VENDOR_ID_MICREL_KS, 0x8841,
7220 		PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
7221 	{ PCI_VENDOR_ID_MICREL_KS, 0x8842,
7222 		PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
7223 	{ 0 }
7224 };
7225 
7226 MODULE_DEVICE_TABLE(pci, pcidev_table);
7227 
7228 static struct pci_driver pci_device_driver = {
7229 #ifdef CONFIG_PM
7230 	.suspend	= pcidev_suspend,
7231 	.resume		= pcidev_resume,
7232 #endif
7233 	.name		= pcidev_name,
7234 	.id_table	= pcidev_table,
7235 	.probe		= pcidev_init,
7236 	.remove		= pcidev_exit
7237 };
7238 
7239 module_pci_driver(pci_device_driver);
7240 
7241 MODULE_DESCRIPTION("KSZ8841/2 PCI network driver");
7242 MODULE_AUTHOR("Tristram Ha <Tristram.Ha@micrel.com>");
7243 MODULE_LICENSE("GPL");
7244 
7245 module_param_named(message, msg_enable, int, 0);
7246 MODULE_PARM_DESC(message, "Message verbosity level (0=none, 31=all)");
7247 
7248 module_param(macaddr, charp, 0);
7249 module_param(mac1addr, charp, 0);
7250 module_param(fast_aging, int, 0);
7251 module_param(multi_dev, int, 0);
7252 module_param(stp, int, 0);
7253 MODULE_PARM_DESC(macaddr, "MAC address");
7254 MODULE_PARM_DESC(mac1addr, "Second MAC address");
7255 MODULE_PARM_DESC(fast_aging, "Fast aging");
7256 MODULE_PARM_DESC(multi_dev, "Multiple device interfaces");
7257 MODULE_PARM_DESC(stp, "STP support");
7258