1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * drivers/net/ethernet/micrel/ksx884x.c - Micrel KSZ8841/2 PCI Ethernet driver 4 * 5 * Copyright (c) 2009-2010 Micrel, Inc. 6 * Tristram Ha <Tristram.Ha@micrel.com> 7 */ 8 9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 10 11 #include <linux/init.h> 12 #include <linux/interrupt.h> 13 #include <linux/kernel.h> 14 #include <linux/module.h> 15 #include <linux/ioport.h> 16 #include <linux/pci.h> 17 #include <linux/proc_fs.h> 18 #include <linux/mii.h> 19 #include <linux/platform_device.h> 20 #include <linux/ethtool.h> 21 #include <linux/etherdevice.h> 22 #include <linux/in.h> 23 #include <linux/ip.h> 24 #include <linux/if_vlan.h> 25 #include <linux/crc32.h> 26 #include <linux/sched.h> 27 #include <linux/slab.h> 28 #include <linux/micrel_phy.h> 29 30 31 /* DMA Registers */ 32 33 #define KS_DMA_TX_CTRL 0x0000 34 #define DMA_TX_ENABLE 0x00000001 35 #define DMA_TX_CRC_ENABLE 0x00000002 36 #define DMA_TX_PAD_ENABLE 0x00000004 37 #define DMA_TX_LOOPBACK 0x00000100 38 #define DMA_TX_FLOW_ENABLE 0x00000200 39 #define DMA_TX_CSUM_IP 0x00010000 40 #define DMA_TX_CSUM_TCP 0x00020000 41 #define DMA_TX_CSUM_UDP 0x00040000 42 #define DMA_TX_BURST_SIZE 0x3F000000 43 44 #define KS_DMA_RX_CTRL 0x0004 45 #define DMA_RX_ENABLE 0x00000001 46 #define KS884X_DMA_RX_MULTICAST 0x00000002 47 #define DMA_RX_PROMISCUOUS 0x00000004 48 #define DMA_RX_ERROR 0x00000008 49 #define DMA_RX_UNICAST 0x00000010 50 #define DMA_RX_ALL_MULTICAST 0x00000020 51 #define DMA_RX_BROADCAST 0x00000040 52 #define DMA_RX_FLOW_ENABLE 0x00000200 53 #define DMA_RX_CSUM_IP 0x00010000 54 #define DMA_RX_CSUM_TCP 0x00020000 55 #define DMA_RX_CSUM_UDP 0x00040000 56 #define DMA_RX_BURST_SIZE 0x3F000000 57 58 #define DMA_BURST_SHIFT 24 59 #define DMA_BURST_DEFAULT 8 60 61 #define KS_DMA_TX_START 0x0008 62 #define KS_DMA_RX_START 0x000C 63 #define DMA_START 0x00000001 64 65 #define KS_DMA_TX_ADDR 0x0010 66 #define KS_DMA_RX_ADDR 0x0014 67 68 #define DMA_ADDR_LIST_MASK 0xFFFFFFFC 69 #define DMA_ADDR_LIST_SHIFT 2 70 71 /* MTR0 */ 72 #define KS884X_MULTICAST_0_OFFSET 0x0020 73 #define KS884X_MULTICAST_1_OFFSET 0x0021 74 #define KS884X_MULTICAST_2_OFFSET 0x0022 75 #define KS884x_MULTICAST_3_OFFSET 0x0023 76 /* MTR1 */ 77 #define KS884X_MULTICAST_4_OFFSET 0x0024 78 #define KS884X_MULTICAST_5_OFFSET 0x0025 79 #define KS884X_MULTICAST_6_OFFSET 0x0026 80 #define KS884X_MULTICAST_7_OFFSET 0x0027 81 82 /* Interrupt Registers */ 83 84 /* INTEN */ 85 #define KS884X_INTERRUPTS_ENABLE 0x0028 86 /* INTST */ 87 #define KS884X_INTERRUPTS_STATUS 0x002C 88 89 #define KS884X_INT_RX_STOPPED 0x02000000 90 #define KS884X_INT_TX_STOPPED 0x04000000 91 #define KS884X_INT_RX_OVERRUN 0x08000000 92 #define KS884X_INT_TX_EMPTY 0x10000000 93 #define KS884X_INT_RX 0x20000000 94 #define KS884X_INT_TX 0x40000000 95 #define KS884X_INT_PHY 0x80000000 96 97 #define KS884X_INT_RX_MASK \ 98 (KS884X_INT_RX | KS884X_INT_RX_OVERRUN) 99 #define KS884X_INT_TX_MASK \ 100 (KS884X_INT_TX | KS884X_INT_TX_EMPTY) 101 #define KS884X_INT_MASK (KS884X_INT_RX | KS884X_INT_TX | KS884X_INT_PHY) 102 103 /* MAC Additional Station Address */ 104 105 /* MAAL0 */ 106 #define KS_ADD_ADDR_0_LO 0x0080 107 /* MAAH0 */ 108 #define KS_ADD_ADDR_0_HI 0x0084 109 /* MAAL1 */ 110 #define KS_ADD_ADDR_1_LO 0x0088 111 /* MAAH1 */ 112 #define KS_ADD_ADDR_1_HI 0x008C 113 /* MAAL2 */ 114 #define KS_ADD_ADDR_2_LO 0x0090 115 /* MAAH2 */ 116 #define KS_ADD_ADDR_2_HI 0x0094 117 /* MAAL3 */ 118 #define KS_ADD_ADDR_3_LO 0x0098 119 /* MAAH3 */ 120 #define KS_ADD_ADDR_3_HI 0x009C 121 /* MAAL4 */ 122 #define KS_ADD_ADDR_4_LO 0x00A0 123 /* MAAH4 */ 124 #define KS_ADD_ADDR_4_HI 0x00A4 125 /* MAAL5 */ 126 #define KS_ADD_ADDR_5_LO 0x00A8 127 /* MAAH5 */ 128 #define KS_ADD_ADDR_5_HI 0x00AC 129 /* MAAL6 */ 130 #define KS_ADD_ADDR_6_LO 0x00B0 131 /* MAAH6 */ 132 #define KS_ADD_ADDR_6_HI 0x00B4 133 /* MAAL7 */ 134 #define KS_ADD_ADDR_7_LO 0x00B8 135 /* MAAH7 */ 136 #define KS_ADD_ADDR_7_HI 0x00BC 137 /* MAAL8 */ 138 #define KS_ADD_ADDR_8_LO 0x00C0 139 /* MAAH8 */ 140 #define KS_ADD_ADDR_8_HI 0x00C4 141 /* MAAL9 */ 142 #define KS_ADD_ADDR_9_LO 0x00C8 143 /* MAAH9 */ 144 #define KS_ADD_ADDR_9_HI 0x00CC 145 /* MAAL10 */ 146 #define KS_ADD_ADDR_A_LO 0x00D0 147 /* MAAH10 */ 148 #define KS_ADD_ADDR_A_HI 0x00D4 149 /* MAAL11 */ 150 #define KS_ADD_ADDR_B_LO 0x00D8 151 /* MAAH11 */ 152 #define KS_ADD_ADDR_B_HI 0x00DC 153 /* MAAL12 */ 154 #define KS_ADD_ADDR_C_LO 0x00E0 155 /* MAAH12 */ 156 #define KS_ADD_ADDR_C_HI 0x00E4 157 /* MAAL13 */ 158 #define KS_ADD_ADDR_D_LO 0x00E8 159 /* MAAH13 */ 160 #define KS_ADD_ADDR_D_HI 0x00EC 161 /* MAAL14 */ 162 #define KS_ADD_ADDR_E_LO 0x00F0 163 /* MAAH14 */ 164 #define KS_ADD_ADDR_E_HI 0x00F4 165 /* MAAL15 */ 166 #define KS_ADD_ADDR_F_LO 0x00F8 167 /* MAAH15 */ 168 #define KS_ADD_ADDR_F_HI 0x00FC 169 170 #define ADD_ADDR_HI_MASK 0x0000FFFF 171 #define ADD_ADDR_ENABLE 0x80000000 172 #define ADD_ADDR_INCR 8 173 174 /* Miscellaneous Registers */ 175 176 /* MARL */ 177 #define KS884X_ADDR_0_OFFSET 0x0200 178 #define KS884X_ADDR_1_OFFSET 0x0201 179 /* MARM */ 180 #define KS884X_ADDR_2_OFFSET 0x0202 181 #define KS884X_ADDR_3_OFFSET 0x0203 182 /* MARH */ 183 #define KS884X_ADDR_4_OFFSET 0x0204 184 #define KS884X_ADDR_5_OFFSET 0x0205 185 186 /* OBCR */ 187 #define KS884X_BUS_CTRL_OFFSET 0x0210 188 189 #define BUS_SPEED_125_MHZ 0x0000 190 #define BUS_SPEED_62_5_MHZ 0x0001 191 #define BUS_SPEED_41_66_MHZ 0x0002 192 #define BUS_SPEED_25_MHZ 0x0003 193 194 /* EEPCR */ 195 #define KS884X_EEPROM_CTRL_OFFSET 0x0212 196 197 #define EEPROM_CHIP_SELECT 0x0001 198 #define EEPROM_SERIAL_CLOCK 0x0002 199 #define EEPROM_DATA_OUT 0x0004 200 #define EEPROM_DATA_IN 0x0008 201 #define EEPROM_ACCESS_ENABLE 0x0010 202 203 /* MBIR */ 204 #define KS884X_MEM_INFO_OFFSET 0x0214 205 206 #define RX_MEM_TEST_FAILED 0x0008 207 #define RX_MEM_TEST_FINISHED 0x0010 208 #define TX_MEM_TEST_FAILED 0x0800 209 #define TX_MEM_TEST_FINISHED 0x1000 210 211 /* GCR */ 212 #define KS884X_GLOBAL_CTRL_OFFSET 0x0216 213 #define GLOBAL_SOFTWARE_RESET 0x0001 214 215 #define KS8841_POWER_MANAGE_OFFSET 0x0218 216 217 /* WFCR */ 218 #define KS8841_WOL_CTRL_OFFSET 0x021A 219 #define KS8841_WOL_MAGIC_ENABLE 0x0080 220 #define KS8841_WOL_FRAME3_ENABLE 0x0008 221 #define KS8841_WOL_FRAME2_ENABLE 0x0004 222 #define KS8841_WOL_FRAME1_ENABLE 0x0002 223 #define KS8841_WOL_FRAME0_ENABLE 0x0001 224 225 /* WF0 */ 226 #define KS8841_WOL_FRAME_CRC_OFFSET 0x0220 227 #define KS8841_WOL_FRAME_BYTE0_OFFSET 0x0224 228 #define KS8841_WOL_FRAME_BYTE2_OFFSET 0x0228 229 230 /* IACR */ 231 #define KS884X_IACR_P 0x04A0 232 #define KS884X_IACR_OFFSET KS884X_IACR_P 233 234 /* IADR1 */ 235 #define KS884X_IADR1_P 0x04A2 236 #define KS884X_IADR2_P 0x04A4 237 #define KS884X_IADR3_P 0x04A6 238 #define KS884X_IADR4_P 0x04A8 239 #define KS884X_IADR5_P 0x04AA 240 241 #define KS884X_ACC_CTRL_SEL_OFFSET KS884X_IACR_P 242 #define KS884X_ACC_CTRL_INDEX_OFFSET (KS884X_ACC_CTRL_SEL_OFFSET + 1) 243 244 #define KS884X_ACC_DATA_0_OFFSET KS884X_IADR4_P 245 #define KS884X_ACC_DATA_1_OFFSET (KS884X_ACC_DATA_0_OFFSET + 1) 246 #define KS884X_ACC_DATA_2_OFFSET KS884X_IADR5_P 247 #define KS884X_ACC_DATA_3_OFFSET (KS884X_ACC_DATA_2_OFFSET + 1) 248 #define KS884X_ACC_DATA_4_OFFSET KS884X_IADR2_P 249 #define KS884X_ACC_DATA_5_OFFSET (KS884X_ACC_DATA_4_OFFSET + 1) 250 #define KS884X_ACC_DATA_6_OFFSET KS884X_IADR3_P 251 #define KS884X_ACC_DATA_7_OFFSET (KS884X_ACC_DATA_6_OFFSET + 1) 252 #define KS884X_ACC_DATA_8_OFFSET KS884X_IADR1_P 253 254 /* P1MBCR */ 255 #define KS884X_P1MBCR_P 0x04D0 256 #define KS884X_P1MBSR_P 0x04D2 257 #define KS884X_PHY1ILR_P 0x04D4 258 #define KS884X_PHY1IHR_P 0x04D6 259 #define KS884X_P1ANAR_P 0x04D8 260 #define KS884X_P1ANLPR_P 0x04DA 261 262 /* P2MBCR */ 263 #define KS884X_P2MBCR_P 0x04E0 264 #define KS884X_P2MBSR_P 0x04E2 265 #define KS884X_PHY2ILR_P 0x04E4 266 #define KS884X_PHY2IHR_P 0x04E6 267 #define KS884X_P2ANAR_P 0x04E8 268 #define KS884X_P2ANLPR_P 0x04EA 269 270 #define KS884X_PHY_1_CTRL_OFFSET KS884X_P1MBCR_P 271 #define PHY_CTRL_INTERVAL (KS884X_P2MBCR_P - KS884X_P1MBCR_P) 272 273 #define KS884X_PHY_CTRL_OFFSET 0x00 274 275 #define KS884X_PHY_STATUS_OFFSET 0x02 276 277 #define KS884X_PHY_ID_1_OFFSET 0x04 278 #define KS884X_PHY_ID_2_OFFSET 0x06 279 280 #define KS884X_PHY_AUTO_NEG_OFFSET 0x08 281 282 #define KS884X_PHY_REMOTE_CAP_OFFSET 0x0A 283 284 /* P1VCT */ 285 #define KS884X_P1VCT_P 0x04F0 286 #define KS884X_P1PHYCTRL_P 0x04F2 287 288 /* P2VCT */ 289 #define KS884X_P2VCT_P 0x04F4 290 #define KS884X_P2PHYCTRL_P 0x04F6 291 292 #define KS884X_PHY_SPECIAL_OFFSET KS884X_P1VCT_P 293 #define PHY_SPECIAL_INTERVAL (KS884X_P2VCT_P - KS884X_P1VCT_P) 294 295 #define KS884X_PHY_LINK_MD_OFFSET 0x00 296 297 #define PHY_START_CABLE_DIAG 0x8000 298 #define PHY_CABLE_DIAG_RESULT 0x6000 299 #define PHY_CABLE_STAT_NORMAL 0x0000 300 #define PHY_CABLE_STAT_OPEN 0x2000 301 #define PHY_CABLE_STAT_SHORT 0x4000 302 #define PHY_CABLE_STAT_FAILED 0x6000 303 #define PHY_CABLE_10M_SHORT 0x1000 304 #define PHY_CABLE_FAULT_COUNTER 0x01FF 305 306 #define KS884X_PHY_PHY_CTRL_OFFSET 0x02 307 308 #define PHY_STAT_REVERSED_POLARITY 0x0020 309 #define PHY_STAT_MDIX 0x0010 310 #define PHY_FORCE_LINK 0x0008 311 #define PHY_POWER_SAVING_DISABLE 0x0004 312 #define PHY_REMOTE_LOOPBACK 0x0002 313 314 /* SIDER */ 315 #define KS884X_SIDER_P 0x0400 316 #define KS884X_CHIP_ID_OFFSET KS884X_SIDER_P 317 #define KS884X_FAMILY_ID_OFFSET (KS884X_CHIP_ID_OFFSET + 1) 318 319 #define REG_FAMILY_ID 0x88 320 321 #define REG_CHIP_ID_41 0x8810 322 #define REG_CHIP_ID_42 0x8800 323 324 #define KS884X_CHIP_ID_MASK_41 0xFF10 325 #define KS884X_CHIP_ID_MASK 0xFFF0 326 #define KS884X_CHIP_ID_SHIFT 4 327 #define KS884X_REVISION_MASK 0x000E 328 #define KS884X_REVISION_SHIFT 1 329 #define KS8842_START 0x0001 330 331 #define CHIP_IP_41_M 0x8810 332 #define CHIP_IP_42_M 0x8800 333 #define CHIP_IP_61_M 0x8890 334 #define CHIP_IP_62_M 0x8880 335 336 #define CHIP_IP_41_P 0x8850 337 #define CHIP_IP_42_P 0x8840 338 #define CHIP_IP_61_P 0x88D0 339 #define CHIP_IP_62_P 0x88C0 340 341 /* SGCR1 */ 342 #define KS8842_SGCR1_P 0x0402 343 #define KS8842_SWITCH_CTRL_1_OFFSET KS8842_SGCR1_P 344 345 #define SWITCH_PASS_ALL 0x8000 346 #define SWITCH_TX_FLOW_CTRL 0x2000 347 #define SWITCH_RX_FLOW_CTRL 0x1000 348 #define SWITCH_CHECK_LENGTH 0x0800 349 #define SWITCH_AGING_ENABLE 0x0400 350 #define SWITCH_FAST_AGING 0x0200 351 #define SWITCH_AGGR_BACKOFF 0x0100 352 #define SWITCH_PASS_PAUSE 0x0008 353 #define SWITCH_LINK_AUTO_AGING 0x0001 354 355 /* SGCR2 */ 356 #define KS8842_SGCR2_P 0x0404 357 #define KS8842_SWITCH_CTRL_2_OFFSET KS8842_SGCR2_P 358 359 #define SWITCH_VLAN_ENABLE 0x8000 360 #define SWITCH_IGMP_SNOOP 0x4000 361 #define IPV6_MLD_SNOOP_ENABLE 0x2000 362 #define IPV6_MLD_SNOOP_OPTION 0x1000 363 #define PRIORITY_SCHEME_SELECT 0x0800 364 #define SWITCH_MIRROR_RX_TX 0x0100 365 #define UNICAST_VLAN_BOUNDARY 0x0080 366 #define MULTICAST_STORM_DISABLE 0x0040 367 #define SWITCH_BACK_PRESSURE 0x0020 368 #define FAIR_FLOW_CTRL 0x0010 369 #define NO_EXC_COLLISION_DROP 0x0008 370 #define SWITCH_HUGE_PACKET 0x0004 371 #define SWITCH_LEGAL_PACKET 0x0002 372 #define SWITCH_BUF_RESERVE 0x0001 373 374 /* SGCR3 */ 375 #define KS8842_SGCR3_P 0x0406 376 #define KS8842_SWITCH_CTRL_3_OFFSET KS8842_SGCR3_P 377 378 #define BROADCAST_STORM_RATE_LO 0xFF00 379 #define SWITCH_REPEATER 0x0080 380 #define SWITCH_HALF_DUPLEX 0x0040 381 #define SWITCH_FLOW_CTRL 0x0020 382 #define SWITCH_10_MBIT 0x0010 383 #define SWITCH_REPLACE_NULL_VID 0x0008 384 #define BROADCAST_STORM_RATE_HI 0x0007 385 386 #define BROADCAST_STORM_RATE 0x07FF 387 388 /* SGCR4 */ 389 #define KS8842_SGCR4_P 0x0408 390 391 /* SGCR5 */ 392 #define KS8842_SGCR5_P 0x040A 393 #define KS8842_SWITCH_CTRL_5_OFFSET KS8842_SGCR5_P 394 395 #define LED_MODE 0x8200 396 #define LED_SPEED_DUPLEX_ACT 0x0000 397 #define LED_SPEED_DUPLEX_LINK_ACT 0x8000 398 #define LED_DUPLEX_10_100 0x0200 399 400 /* SGCR6 */ 401 #define KS8842_SGCR6_P 0x0410 402 #define KS8842_SWITCH_CTRL_6_OFFSET KS8842_SGCR6_P 403 404 #define KS8842_PRIORITY_MASK 3 405 #define KS8842_PRIORITY_SHIFT 2 406 407 /* SGCR7 */ 408 #define KS8842_SGCR7_P 0x0412 409 #define KS8842_SWITCH_CTRL_7_OFFSET KS8842_SGCR7_P 410 411 #define SWITCH_UNK_DEF_PORT_ENABLE 0x0008 412 #define SWITCH_UNK_DEF_PORT_3 0x0004 413 #define SWITCH_UNK_DEF_PORT_2 0x0002 414 #define SWITCH_UNK_DEF_PORT_1 0x0001 415 416 /* MACAR1 */ 417 #define KS8842_MACAR1_P 0x0470 418 #define KS8842_MACAR2_P 0x0472 419 #define KS8842_MACAR3_P 0x0474 420 #define KS8842_MAC_ADDR_1_OFFSET KS8842_MACAR1_P 421 #define KS8842_MAC_ADDR_0_OFFSET (KS8842_MAC_ADDR_1_OFFSET + 1) 422 #define KS8842_MAC_ADDR_3_OFFSET KS8842_MACAR2_P 423 #define KS8842_MAC_ADDR_2_OFFSET (KS8842_MAC_ADDR_3_OFFSET + 1) 424 #define KS8842_MAC_ADDR_5_OFFSET KS8842_MACAR3_P 425 #define KS8842_MAC_ADDR_4_OFFSET (KS8842_MAC_ADDR_5_OFFSET + 1) 426 427 /* TOSR1 */ 428 #define KS8842_TOSR1_P 0x0480 429 #define KS8842_TOSR2_P 0x0482 430 #define KS8842_TOSR3_P 0x0484 431 #define KS8842_TOSR4_P 0x0486 432 #define KS8842_TOSR5_P 0x0488 433 #define KS8842_TOSR6_P 0x048A 434 #define KS8842_TOSR7_P 0x0490 435 #define KS8842_TOSR8_P 0x0492 436 #define KS8842_TOS_1_OFFSET KS8842_TOSR1_P 437 #define KS8842_TOS_2_OFFSET KS8842_TOSR2_P 438 #define KS8842_TOS_3_OFFSET KS8842_TOSR3_P 439 #define KS8842_TOS_4_OFFSET KS8842_TOSR4_P 440 #define KS8842_TOS_5_OFFSET KS8842_TOSR5_P 441 #define KS8842_TOS_6_OFFSET KS8842_TOSR6_P 442 443 #define KS8842_TOS_7_OFFSET KS8842_TOSR7_P 444 #define KS8842_TOS_8_OFFSET KS8842_TOSR8_P 445 446 /* P1CR1 */ 447 #define KS8842_P1CR1_P 0x0500 448 #define KS8842_P1CR2_P 0x0502 449 #define KS8842_P1VIDR_P 0x0504 450 #define KS8842_P1CR3_P 0x0506 451 #define KS8842_P1IRCR_P 0x0508 452 #define KS8842_P1ERCR_P 0x050A 453 #define KS884X_P1SCSLMD_P 0x0510 454 #define KS884X_P1CR4_P 0x0512 455 #define KS884X_P1SR_P 0x0514 456 457 /* P2CR1 */ 458 #define KS8842_P2CR1_P 0x0520 459 #define KS8842_P2CR2_P 0x0522 460 #define KS8842_P2VIDR_P 0x0524 461 #define KS8842_P2CR3_P 0x0526 462 #define KS8842_P2IRCR_P 0x0528 463 #define KS8842_P2ERCR_P 0x052A 464 #define KS884X_P2SCSLMD_P 0x0530 465 #define KS884X_P2CR4_P 0x0532 466 #define KS884X_P2SR_P 0x0534 467 468 /* P3CR1 */ 469 #define KS8842_P3CR1_P 0x0540 470 #define KS8842_P3CR2_P 0x0542 471 #define KS8842_P3VIDR_P 0x0544 472 #define KS8842_P3CR3_P 0x0546 473 #define KS8842_P3IRCR_P 0x0548 474 #define KS8842_P3ERCR_P 0x054A 475 476 #define KS8842_PORT_1_CTRL_1 KS8842_P1CR1_P 477 #define KS8842_PORT_2_CTRL_1 KS8842_P2CR1_P 478 #define KS8842_PORT_3_CTRL_1 KS8842_P3CR1_P 479 480 #define PORT_CTRL_ADDR(port, addr) \ 481 (addr = KS8842_PORT_1_CTRL_1 + (port) * \ 482 (KS8842_PORT_2_CTRL_1 - KS8842_PORT_1_CTRL_1)) 483 484 #define KS8842_PORT_CTRL_1_OFFSET 0x00 485 486 #define PORT_BROADCAST_STORM 0x0080 487 #define PORT_DIFFSERV_ENABLE 0x0040 488 #define PORT_802_1P_ENABLE 0x0020 489 #define PORT_BASED_PRIORITY_MASK 0x0018 490 #define PORT_BASED_PRIORITY_BASE 0x0003 491 #define PORT_BASED_PRIORITY_SHIFT 3 492 #define PORT_BASED_PRIORITY_0 0x0000 493 #define PORT_BASED_PRIORITY_1 0x0008 494 #define PORT_BASED_PRIORITY_2 0x0010 495 #define PORT_BASED_PRIORITY_3 0x0018 496 #define PORT_INSERT_TAG 0x0004 497 #define PORT_REMOVE_TAG 0x0002 498 #define PORT_PRIO_QUEUE_ENABLE 0x0001 499 500 #define KS8842_PORT_CTRL_2_OFFSET 0x02 501 502 #define PORT_INGRESS_VLAN_FILTER 0x4000 503 #define PORT_DISCARD_NON_VID 0x2000 504 #define PORT_FORCE_FLOW_CTRL 0x1000 505 #define PORT_BACK_PRESSURE 0x0800 506 #define PORT_TX_ENABLE 0x0400 507 #define PORT_RX_ENABLE 0x0200 508 #define PORT_LEARN_DISABLE 0x0100 509 #define PORT_MIRROR_SNIFFER 0x0080 510 #define PORT_MIRROR_RX 0x0040 511 #define PORT_MIRROR_TX 0x0020 512 #define PORT_USER_PRIORITY_CEILING 0x0008 513 #define PORT_VLAN_MEMBERSHIP 0x0007 514 515 #define KS8842_PORT_CTRL_VID_OFFSET 0x04 516 517 #define PORT_DEFAULT_VID 0x0001 518 519 #define KS8842_PORT_CTRL_3_OFFSET 0x06 520 521 #define PORT_INGRESS_LIMIT_MODE 0x000C 522 #define PORT_INGRESS_ALL 0x0000 523 #define PORT_INGRESS_UNICAST 0x0004 524 #define PORT_INGRESS_MULTICAST 0x0008 525 #define PORT_INGRESS_BROADCAST 0x000C 526 #define PORT_COUNT_IFG 0x0002 527 #define PORT_COUNT_PREAMBLE 0x0001 528 529 #define KS8842_PORT_IN_RATE_OFFSET 0x08 530 #define KS8842_PORT_OUT_RATE_OFFSET 0x0A 531 532 #define PORT_PRIORITY_RATE 0x0F 533 #define PORT_PRIORITY_RATE_SHIFT 4 534 535 #define KS884X_PORT_LINK_MD 0x10 536 537 #define PORT_CABLE_10M_SHORT 0x8000 538 #define PORT_CABLE_DIAG_RESULT 0x6000 539 #define PORT_CABLE_STAT_NORMAL 0x0000 540 #define PORT_CABLE_STAT_OPEN 0x2000 541 #define PORT_CABLE_STAT_SHORT 0x4000 542 #define PORT_CABLE_STAT_FAILED 0x6000 543 #define PORT_START_CABLE_DIAG 0x1000 544 #define PORT_FORCE_LINK 0x0800 545 #define PORT_POWER_SAVING_DISABLE 0x0400 546 #define PORT_PHY_REMOTE_LOOPBACK 0x0200 547 #define PORT_CABLE_FAULT_COUNTER 0x01FF 548 549 #define KS884X_PORT_CTRL_4_OFFSET 0x12 550 551 #define PORT_LED_OFF 0x8000 552 #define PORT_TX_DISABLE 0x4000 553 #define PORT_AUTO_NEG_RESTART 0x2000 554 #define PORT_REMOTE_FAULT_DISABLE 0x1000 555 #define PORT_POWER_DOWN 0x0800 556 #define PORT_AUTO_MDIX_DISABLE 0x0400 557 #define PORT_FORCE_MDIX 0x0200 558 #define PORT_LOOPBACK 0x0100 559 #define PORT_AUTO_NEG_ENABLE 0x0080 560 #define PORT_FORCE_100_MBIT 0x0040 561 #define PORT_FORCE_FULL_DUPLEX 0x0020 562 #define PORT_AUTO_NEG_SYM_PAUSE 0x0010 563 #define PORT_AUTO_NEG_100BTX_FD 0x0008 564 #define PORT_AUTO_NEG_100BTX 0x0004 565 #define PORT_AUTO_NEG_10BT_FD 0x0002 566 #define PORT_AUTO_NEG_10BT 0x0001 567 568 #define KS884X_PORT_STATUS_OFFSET 0x14 569 570 #define PORT_HP_MDIX 0x8000 571 #define PORT_REVERSED_POLARITY 0x2000 572 #define PORT_RX_FLOW_CTRL 0x0800 573 #define PORT_TX_FLOW_CTRL 0x1000 574 #define PORT_STATUS_SPEED_100MBIT 0x0400 575 #define PORT_STATUS_FULL_DUPLEX 0x0200 576 #define PORT_REMOTE_FAULT 0x0100 577 #define PORT_MDIX_STATUS 0x0080 578 #define PORT_AUTO_NEG_COMPLETE 0x0040 579 #define PORT_STATUS_LINK_GOOD 0x0020 580 #define PORT_REMOTE_SYM_PAUSE 0x0010 581 #define PORT_REMOTE_100BTX_FD 0x0008 582 #define PORT_REMOTE_100BTX 0x0004 583 #define PORT_REMOTE_10BT_FD 0x0002 584 #define PORT_REMOTE_10BT 0x0001 585 586 /* 587 #define STATIC_MAC_TABLE_ADDR 00-0000FFFF-FFFFFFFF 588 #define STATIC_MAC_TABLE_FWD_PORTS 00-00070000-00000000 589 #define STATIC_MAC_TABLE_VALID 00-00080000-00000000 590 #define STATIC_MAC_TABLE_OVERRIDE 00-00100000-00000000 591 #define STATIC_MAC_TABLE_USE_FID 00-00200000-00000000 592 #define STATIC_MAC_TABLE_FID 00-03C00000-00000000 593 */ 594 595 #define STATIC_MAC_TABLE_ADDR 0x0000FFFF 596 #define STATIC_MAC_TABLE_FWD_PORTS 0x00070000 597 #define STATIC_MAC_TABLE_VALID 0x00080000 598 #define STATIC_MAC_TABLE_OVERRIDE 0x00100000 599 #define STATIC_MAC_TABLE_USE_FID 0x00200000 600 #define STATIC_MAC_TABLE_FID 0x03C00000 601 602 #define STATIC_MAC_FWD_PORTS_SHIFT 16 603 #define STATIC_MAC_FID_SHIFT 22 604 605 /* 606 #define VLAN_TABLE_VID 00-00000000-00000FFF 607 #define VLAN_TABLE_FID 00-00000000-0000F000 608 #define VLAN_TABLE_MEMBERSHIP 00-00000000-00070000 609 #define VLAN_TABLE_VALID 00-00000000-00080000 610 */ 611 612 #define VLAN_TABLE_VID 0x00000FFF 613 #define VLAN_TABLE_FID 0x0000F000 614 #define VLAN_TABLE_MEMBERSHIP 0x00070000 615 #define VLAN_TABLE_VALID 0x00080000 616 617 #define VLAN_TABLE_FID_SHIFT 12 618 #define VLAN_TABLE_MEMBERSHIP_SHIFT 16 619 620 /* 621 #define DYNAMIC_MAC_TABLE_ADDR 00-0000FFFF-FFFFFFFF 622 #define DYNAMIC_MAC_TABLE_FID 00-000F0000-00000000 623 #define DYNAMIC_MAC_TABLE_SRC_PORT 00-00300000-00000000 624 #define DYNAMIC_MAC_TABLE_TIMESTAMP 00-00C00000-00000000 625 #define DYNAMIC_MAC_TABLE_ENTRIES 03-FF000000-00000000 626 #define DYNAMIC_MAC_TABLE_MAC_EMPTY 04-00000000-00000000 627 #define DYNAMIC_MAC_TABLE_RESERVED 78-00000000-00000000 628 #define DYNAMIC_MAC_TABLE_NOT_READY 80-00000000-00000000 629 */ 630 631 #define DYNAMIC_MAC_TABLE_ADDR 0x0000FFFF 632 #define DYNAMIC_MAC_TABLE_FID 0x000F0000 633 #define DYNAMIC_MAC_TABLE_SRC_PORT 0x00300000 634 #define DYNAMIC_MAC_TABLE_TIMESTAMP 0x00C00000 635 #define DYNAMIC_MAC_TABLE_ENTRIES 0xFF000000 636 637 #define DYNAMIC_MAC_TABLE_ENTRIES_H 0x03 638 #define DYNAMIC_MAC_TABLE_MAC_EMPTY 0x04 639 #define DYNAMIC_MAC_TABLE_RESERVED 0x78 640 #define DYNAMIC_MAC_TABLE_NOT_READY 0x80 641 642 #define DYNAMIC_MAC_FID_SHIFT 16 643 #define DYNAMIC_MAC_SRC_PORT_SHIFT 20 644 #define DYNAMIC_MAC_TIMESTAMP_SHIFT 22 645 #define DYNAMIC_MAC_ENTRIES_SHIFT 24 646 #define DYNAMIC_MAC_ENTRIES_H_SHIFT 8 647 648 /* 649 #define MIB_COUNTER_VALUE 00-00000000-3FFFFFFF 650 #define MIB_COUNTER_VALID 00-00000000-40000000 651 #define MIB_COUNTER_OVERFLOW 00-00000000-80000000 652 */ 653 654 #define MIB_COUNTER_VALUE 0x3FFFFFFF 655 #define MIB_COUNTER_VALID 0x40000000 656 #define MIB_COUNTER_OVERFLOW 0x80000000 657 658 #define MIB_PACKET_DROPPED 0x0000FFFF 659 660 #define KS_MIB_PACKET_DROPPED_TX_0 0x100 661 #define KS_MIB_PACKET_DROPPED_TX_1 0x101 662 #define KS_MIB_PACKET_DROPPED_TX 0x102 663 #define KS_MIB_PACKET_DROPPED_RX_0 0x103 664 #define KS_MIB_PACKET_DROPPED_RX_1 0x104 665 #define KS_MIB_PACKET_DROPPED_RX 0x105 666 667 /* Change default LED mode. */ 668 #define SET_DEFAULT_LED LED_SPEED_DUPLEX_ACT 669 670 #define MAC_ADDR_ORDER(i) (ETH_ALEN - 1 - (i)) 671 672 #define MAX_ETHERNET_BODY_SIZE 1500 673 #define ETHERNET_HEADER_SIZE (14 + VLAN_HLEN) 674 675 #define MAX_ETHERNET_PACKET_SIZE \ 676 (MAX_ETHERNET_BODY_SIZE + ETHERNET_HEADER_SIZE) 677 678 #define REGULAR_RX_BUF_SIZE (MAX_ETHERNET_PACKET_SIZE + 4) 679 #define MAX_RX_BUF_SIZE (1912 + 4) 680 681 #define ADDITIONAL_ENTRIES 16 682 #define MAX_MULTICAST_LIST 32 683 684 #define HW_MULTICAST_SIZE 8 685 686 #define HW_TO_DEV_PORT(port) (port - 1) 687 688 enum { 689 media_connected, 690 media_disconnected 691 }; 692 693 enum { 694 OID_COUNTER_UNKOWN, 695 696 OID_COUNTER_FIRST, 697 698 /* total transmit errors */ 699 OID_COUNTER_XMIT_ERROR, 700 701 /* total receive errors */ 702 OID_COUNTER_RCV_ERROR, 703 704 OID_COUNTER_LAST 705 }; 706 707 /* 708 * Hardware descriptor definitions 709 */ 710 711 #define DESC_ALIGNMENT 16 712 #define BUFFER_ALIGNMENT 8 713 714 #define NUM_OF_RX_DESC 64 715 #define NUM_OF_TX_DESC 64 716 717 #define KS_DESC_RX_FRAME_LEN 0x000007FF 718 #define KS_DESC_RX_FRAME_TYPE 0x00008000 719 #define KS_DESC_RX_ERROR_CRC 0x00010000 720 #define KS_DESC_RX_ERROR_RUNT 0x00020000 721 #define KS_DESC_RX_ERROR_TOO_LONG 0x00040000 722 #define KS_DESC_RX_ERROR_PHY 0x00080000 723 #define KS884X_DESC_RX_PORT_MASK 0x00300000 724 #define KS_DESC_RX_MULTICAST 0x01000000 725 #define KS_DESC_RX_ERROR 0x02000000 726 #define KS_DESC_RX_ERROR_CSUM_UDP 0x04000000 727 #define KS_DESC_RX_ERROR_CSUM_TCP 0x08000000 728 #define KS_DESC_RX_ERROR_CSUM_IP 0x10000000 729 #define KS_DESC_RX_LAST 0x20000000 730 #define KS_DESC_RX_FIRST 0x40000000 731 #define KS_DESC_RX_ERROR_COND \ 732 (KS_DESC_RX_ERROR_CRC | \ 733 KS_DESC_RX_ERROR_RUNT | \ 734 KS_DESC_RX_ERROR_PHY | \ 735 KS_DESC_RX_ERROR_TOO_LONG) 736 737 #define KS_DESC_HW_OWNED 0x80000000 738 739 #define KS_DESC_BUF_SIZE 0x000007FF 740 #define KS884X_DESC_TX_PORT_MASK 0x00300000 741 #define KS_DESC_END_OF_RING 0x02000000 742 #define KS_DESC_TX_CSUM_GEN_UDP 0x04000000 743 #define KS_DESC_TX_CSUM_GEN_TCP 0x08000000 744 #define KS_DESC_TX_CSUM_GEN_IP 0x10000000 745 #define KS_DESC_TX_LAST 0x20000000 746 #define KS_DESC_TX_FIRST 0x40000000 747 #define KS_DESC_TX_INTERRUPT 0x80000000 748 749 #define KS_DESC_PORT_SHIFT 20 750 751 #define KS_DESC_RX_MASK (KS_DESC_BUF_SIZE) 752 753 #define KS_DESC_TX_MASK \ 754 (KS_DESC_TX_INTERRUPT | \ 755 KS_DESC_TX_FIRST | \ 756 KS_DESC_TX_LAST | \ 757 KS_DESC_TX_CSUM_GEN_IP | \ 758 KS_DESC_TX_CSUM_GEN_TCP | \ 759 KS_DESC_TX_CSUM_GEN_UDP | \ 760 KS_DESC_BUF_SIZE) 761 762 struct ksz_desc_rx_stat { 763 #ifdef __BIG_ENDIAN_BITFIELD 764 u32 hw_owned:1; 765 u32 first_desc:1; 766 u32 last_desc:1; 767 u32 csum_err_ip:1; 768 u32 csum_err_tcp:1; 769 u32 csum_err_udp:1; 770 u32 error:1; 771 u32 multicast:1; 772 u32 src_port:4; 773 u32 err_phy:1; 774 u32 err_too_long:1; 775 u32 err_runt:1; 776 u32 err_crc:1; 777 u32 frame_type:1; 778 u32 reserved1:4; 779 u32 frame_len:11; 780 #else 781 u32 frame_len:11; 782 u32 reserved1:4; 783 u32 frame_type:1; 784 u32 err_crc:1; 785 u32 err_runt:1; 786 u32 err_too_long:1; 787 u32 err_phy:1; 788 u32 src_port:4; 789 u32 multicast:1; 790 u32 error:1; 791 u32 csum_err_udp:1; 792 u32 csum_err_tcp:1; 793 u32 csum_err_ip:1; 794 u32 last_desc:1; 795 u32 first_desc:1; 796 u32 hw_owned:1; 797 #endif 798 }; 799 800 struct ksz_desc_tx_stat { 801 #ifdef __BIG_ENDIAN_BITFIELD 802 u32 hw_owned:1; 803 u32 reserved1:31; 804 #else 805 u32 reserved1:31; 806 u32 hw_owned:1; 807 #endif 808 }; 809 810 struct ksz_desc_rx_buf { 811 #ifdef __BIG_ENDIAN_BITFIELD 812 u32 reserved4:6; 813 u32 end_of_ring:1; 814 u32 reserved3:14; 815 u32 buf_size:11; 816 #else 817 u32 buf_size:11; 818 u32 reserved3:14; 819 u32 end_of_ring:1; 820 u32 reserved4:6; 821 #endif 822 }; 823 824 struct ksz_desc_tx_buf { 825 #ifdef __BIG_ENDIAN_BITFIELD 826 u32 intr:1; 827 u32 first_seg:1; 828 u32 last_seg:1; 829 u32 csum_gen_ip:1; 830 u32 csum_gen_tcp:1; 831 u32 csum_gen_udp:1; 832 u32 end_of_ring:1; 833 u32 reserved4:1; 834 u32 dest_port:4; 835 u32 reserved3:9; 836 u32 buf_size:11; 837 #else 838 u32 buf_size:11; 839 u32 reserved3:9; 840 u32 dest_port:4; 841 u32 reserved4:1; 842 u32 end_of_ring:1; 843 u32 csum_gen_udp:1; 844 u32 csum_gen_tcp:1; 845 u32 csum_gen_ip:1; 846 u32 last_seg:1; 847 u32 first_seg:1; 848 u32 intr:1; 849 #endif 850 }; 851 852 union desc_stat { 853 struct ksz_desc_rx_stat rx; 854 struct ksz_desc_tx_stat tx; 855 u32 data; 856 }; 857 858 union desc_buf { 859 struct ksz_desc_rx_buf rx; 860 struct ksz_desc_tx_buf tx; 861 u32 data; 862 }; 863 864 /** 865 * struct ksz_hw_desc - Hardware descriptor data structure 866 * @ctrl: Descriptor control value. 867 * @buf: Descriptor buffer value. 868 * @addr: Physical address of memory buffer. 869 * @next: Pointer to next hardware descriptor. 870 */ 871 struct ksz_hw_desc { 872 union desc_stat ctrl; 873 union desc_buf buf; 874 u32 addr; 875 u32 next; 876 }; 877 878 /** 879 * struct ksz_sw_desc - Software descriptor data structure 880 * @ctrl: Descriptor control value. 881 * @buf: Descriptor buffer value. 882 * @buf_size: Current buffers size value in hardware descriptor. 883 */ 884 struct ksz_sw_desc { 885 union desc_stat ctrl; 886 union desc_buf buf; 887 u32 buf_size; 888 }; 889 890 /** 891 * struct ksz_dma_buf - OS dependent DMA buffer data structure 892 * @skb: Associated socket buffer. 893 * @dma: Associated physical DMA address. 894 * @len: Actual len used. 895 */ 896 struct ksz_dma_buf { 897 struct sk_buff *skb; 898 dma_addr_t dma; 899 int len; 900 }; 901 902 /** 903 * struct ksz_desc - Descriptor structure 904 * @phw: Hardware descriptor pointer to uncached physical memory. 905 * @sw: Cached memory to hold hardware descriptor values for 906 * manipulation. 907 * @dma_buf: Operating system dependent data structure to hold physical 908 * memory buffer allocation information. 909 */ 910 struct ksz_desc { 911 struct ksz_hw_desc *phw; 912 struct ksz_sw_desc sw; 913 struct ksz_dma_buf dma_buf; 914 }; 915 916 #define DMA_BUFFER(desc) ((struct ksz_dma_buf *)(&(desc)->dma_buf)) 917 918 /** 919 * struct ksz_desc_info - Descriptor information data structure 920 * @ring: First descriptor in the ring. 921 * @cur: Current descriptor being manipulated. 922 * @ring_virt: First hardware descriptor in the ring. 923 * @ring_phys: The physical address of the first descriptor of the ring. 924 * @size: Size of hardware descriptor. 925 * @alloc: Number of descriptors allocated. 926 * @avail: Number of descriptors available for use. 927 * @last: Index for last descriptor released to hardware. 928 * @next: Index for next descriptor available for use. 929 * @mask: Mask for index wrapping. 930 */ 931 struct ksz_desc_info { 932 struct ksz_desc *ring; 933 struct ksz_desc *cur; 934 struct ksz_hw_desc *ring_virt; 935 u32 ring_phys; 936 int size; 937 int alloc; 938 int avail; 939 int last; 940 int next; 941 int mask; 942 }; 943 944 /* 945 * KSZ8842 switch definitions 946 */ 947 948 enum { 949 TABLE_STATIC_MAC = 0, 950 TABLE_VLAN, 951 TABLE_DYNAMIC_MAC, 952 TABLE_MIB 953 }; 954 955 #define LEARNED_MAC_TABLE_ENTRIES 1024 956 #define STATIC_MAC_TABLE_ENTRIES 8 957 958 /** 959 * struct ksz_mac_table - Static MAC table data structure 960 * @mac_addr: MAC address to filter. 961 * @vid: VID value. 962 * @fid: FID value. 963 * @ports: Port membership. 964 * @override: Override setting. 965 * @use_fid: FID use setting. 966 * @valid: Valid setting indicating the entry is being used. 967 */ 968 struct ksz_mac_table { 969 u8 mac_addr[ETH_ALEN]; 970 u16 vid; 971 u8 fid; 972 u8 ports; 973 u8 override:1; 974 u8 use_fid:1; 975 u8 valid:1; 976 }; 977 978 #define VLAN_TABLE_ENTRIES 16 979 980 /** 981 * struct ksz_vlan_table - VLAN table data structure 982 * @vid: VID value. 983 * @fid: FID value. 984 * @member: Port membership. 985 */ 986 struct ksz_vlan_table { 987 u16 vid; 988 u8 fid; 989 u8 member; 990 }; 991 992 #define DIFFSERV_ENTRIES 64 993 #define PRIO_802_1P_ENTRIES 8 994 #define PRIO_QUEUES 4 995 996 #define SWITCH_PORT_NUM 2 997 #define TOTAL_PORT_NUM (SWITCH_PORT_NUM + 1) 998 #define HOST_MASK (1 << SWITCH_PORT_NUM) 999 #define PORT_MASK 7 1000 1001 #define MAIN_PORT 0 1002 #define OTHER_PORT 1 1003 #define HOST_PORT SWITCH_PORT_NUM 1004 1005 #define PORT_COUNTER_NUM 0x20 1006 #define TOTAL_PORT_COUNTER_NUM (PORT_COUNTER_NUM + 2) 1007 1008 #define MIB_COUNTER_RX_LO_PRIORITY 0x00 1009 #define MIB_COUNTER_RX_HI_PRIORITY 0x01 1010 #define MIB_COUNTER_RX_UNDERSIZE 0x02 1011 #define MIB_COUNTER_RX_FRAGMENT 0x03 1012 #define MIB_COUNTER_RX_OVERSIZE 0x04 1013 #define MIB_COUNTER_RX_JABBER 0x05 1014 #define MIB_COUNTER_RX_SYMBOL_ERR 0x06 1015 #define MIB_COUNTER_RX_CRC_ERR 0x07 1016 #define MIB_COUNTER_RX_ALIGNMENT_ERR 0x08 1017 #define MIB_COUNTER_RX_CTRL_8808 0x09 1018 #define MIB_COUNTER_RX_PAUSE 0x0A 1019 #define MIB_COUNTER_RX_BROADCAST 0x0B 1020 #define MIB_COUNTER_RX_MULTICAST 0x0C 1021 #define MIB_COUNTER_RX_UNICAST 0x0D 1022 #define MIB_COUNTER_RX_OCTET_64 0x0E 1023 #define MIB_COUNTER_RX_OCTET_65_127 0x0F 1024 #define MIB_COUNTER_RX_OCTET_128_255 0x10 1025 #define MIB_COUNTER_RX_OCTET_256_511 0x11 1026 #define MIB_COUNTER_RX_OCTET_512_1023 0x12 1027 #define MIB_COUNTER_RX_OCTET_1024_1522 0x13 1028 #define MIB_COUNTER_TX_LO_PRIORITY 0x14 1029 #define MIB_COUNTER_TX_HI_PRIORITY 0x15 1030 #define MIB_COUNTER_TX_LATE_COLLISION 0x16 1031 #define MIB_COUNTER_TX_PAUSE 0x17 1032 #define MIB_COUNTER_TX_BROADCAST 0x18 1033 #define MIB_COUNTER_TX_MULTICAST 0x19 1034 #define MIB_COUNTER_TX_UNICAST 0x1A 1035 #define MIB_COUNTER_TX_DEFERRED 0x1B 1036 #define MIB_COUNTER_TX_TOTAL_COLLISION 0x1C 1037 #define MIB_COUNTER_TX_EXCESS_COLLISION 0x1D 1038 #define MIB_COUNTER_TX_SINGLE_COLLISION 0x1E 1039 #define MIB_COUNTER_TX_MULTI_COLLISION 0x1F 1040 1041 #define MIB_COUNTER_RX_DROPPED_PACKET 0x20 1042 #define MIB_COUNTER_TX_DROPPED_PACKET 0x21 1043 1044 /** 1045 * struct ksz_port_mib - Port MIB data structure 1046 * @cnt_ptr: Current pointer to MIB counter index. 1047 * @link_down: Indication the link has just gone down. 1048 * @state: Connection status of the port. 1049 * @mib_start: The starting counter index. Some ports do not start at 0. 1050 * @counter: 64-bit MIB counter value. 1051 * @dropped: Temporary buffer to remember last read packet dropped values. 1052 * 1053 * MIB counters needs to be read periodically so that counters do not get 1054 * overflowed and give incorrect values. A right balance is needed to 1055 * satisfy this condition and not waste too much CPU time. 1056 * 1057 * It is pointless to read MIB counters when the port is disconnected. The 1058 * @state provides the connection status so that MIB counters are read only 1059 * when the port is connected. The @link_down indicates the port is just 1060 * disconnected so that all MIB counters are read one last time to update the 1061 * information. 1062 */ 1063 struct ksz_port_mib { 1064 u8 cnt_ptr; 1065 u8 link_down; 1066 u8 state; 1067 u8 mib_start; 1068 1069 u64 counter[TOTAL_PORT_COUNTER_NUM]; 1070 u32 dropped[2]; 1071 }; 1072 1073 /** 1074 * struct ksz_port_cfg - Port configuration data structure 1075 * @vid: VID value. 1076 * @member: Port membership. 1077 * @port_prio: Port priority. 1078 * @rx_rate: Receive priority rate. 1079 * @tx_rate: Transmit priority rate. 1080 * @stp_state: Current Spanning Tree Protocol state. 1081 */ 1082 struct ksz_port_cfg { 1083 u16 vid; 1084 u8 member; 1085 u8 port_prio; 1086 u32 rx_rate[PRIO_QUEUES]; 1087 u32 tx_rate[PRIO_QUEUES]; 1088 int stp_state; 1089 }; 1090 1091 /** 1092 * struct ksz_switch - KSZ8842 switch data structure 1093 * @mac_table: MAC table entries information. 1094 * @vlan_table: VLAN table entries information. 1095 * @port_cfg: Port configuration information. 1096 * @diffserv: DiffServ priority settings. Possible values from 6-bit of ToS 1097 * (bit7 ~ bit2) field. 1098 * @p_802_1p: 802.1P priority settings. Possible values from 3-bit of 802.1p 1099 * Tag priority field. 1100 * @br_addr: Bridge address. Used for STP. 1101 * @other_addr: Other MAC address. Used for multiple network device mode. 1102 * @broad_per: Broadcast storm percentage. 1103 * @member: Current port membership. Used for STP. 1104 */ 1105 struct ksz_switch { 1106 struct ksz_mac_table mac_table[STATIC_MAC_TABLE_ENTRIES]; 1107 struct ksz_vlan_table vlan_table[VLAN_TABLE_ENTRIES]; 1108 struct ksz_port_cfg port_cfg[TOTAL_PORT_NUM]; 1109 1110 u8 diffserv[DIFFSERV_ENTRIES]; 1111 u8 p_802_1p[PRIO_802_1P_ENTRIES]; 1112 1113 u8 br_addr[ETH_ALEN]; 1114 u8 other_addr[ETH_ALEN]; 1115 1116 u8 broad_per; 1117 u8 member; 1118 }; 1119 1120 #define TX_RATE_UNIT 10000 1121 1122 /** 1123 * struct ksz_port_info - Port information data structure 1124 * @state: Connection status of the port. 1125 * @tx_rate: Transmit rate divided by 10000 to get Mbit. 1126 * @duplex: Duplex mode. 1127 * @advertised: Advertised auto-negotiation setting. Used to determine link. 1128 * @partner: Auto-negotiation partner setting. Used to determine link. 1129 * @port_id: Port index to access actual hardware register. 1130 * @pdev: Pointer to OS dependent network device. 1131 */ 1132 struct ksz_port_info { 1133 uint state; 1134 uint tx_rate; 1135 u8 duplex; 1136 u8 advertised; 1137 u8 partner; 1138 u8 port_id; 1139 void *pdev; 1140 }; 1141 1142 #define MAX_TX_HELD_SIZE 52000 1143 1144 /* Hardware features and bug fixes. */ 1145 #define LINK_INT_WORKING (1 << 0) 1146 #define SMALL_PACKET_TX_BUG (1 << 1) 1147 #define HALF_DUPLEX_SIGNAL_BUG (1 << 2) 1148 #define RX_HUGE_FRAME (1 << 4) 1149 #define STP_SUPPORT (1 << 8) 1150 1151 /* Software overrides. */ 1152 #define PAUSE_FLOW_CTRL (1 << 0) 1153 #define FAST_AGING (1 << 1) 1154 1155 /** 1156 * struct ksz_hw - KSZ884X hardware data structure 1157 * @io: Virtual address assigned. 1158 * @ksz_switch: Pointer to KSZ8842 switch. 1159 * @port_info: Port information. 1160 * @port_mib: Port MIB information. 1161 * @dev_count: Number of network devices this hardware supports. 1162 * @dst_ports: Destination ports in switch for transmission. 1163 * @id: Hardware ID. Used for display only. 1164 * @mib_cnt: Number of MIB counters this hardware has. 1165 * @mib_port_cnt: Number of ports with MIB counters. 1166 * @tx_cfg: Cached transmit control settings. 1167 * @rx_cfg: Cached receive control settings. 1168 * @intr_mask: Current interrupt mask. 1169 * @intr_set: Current interrup set. 1170 * @intr_blocked: Interrupt blocked. 1171 * @rx_desc_info: Receive descriptor information. 1172 * @tx_desc_info: Transmit descriptor information. 1173 * @tx_int_cnt: Transmit interrupt count. Used for TX optimization. 1174 * @tx_int_mask: Transmit interrupt mask. Used for TX optimization. 1175 * @tx_size: Transmit data size. Used for TX optimization. 1176 * The maximum is defined by MAX_TX_HELD_SIZE. 1177 * @perm_addr: Permanent MAC address. 1178 * @override_addr: Overridden MAC address. 1179 * @address: Additional MAC address entries. 1180 * @addr_list_size: Additional MAC address list size. 1181 * @mac_override: Indication of MAC address overridden. 1182 * @promiscuous: Counter to keep track of promiscuous mode set. 1183 * @all_multi: Counter to keep track of all multicast mode set. 1184 * @multi_list: Multicast address entries. 1185 * @multi_bits: Cached multicast hash table settings. 1186 * @multi_list_size: Multicast address list size. 1187 * @enabled: Indication of hardware enabled. 1188 * @rx_stop: Indication of receive process stop. 1189 * @reserved2: none 1190 * @features: Hardware features to enable. 1191 * @overrides: Hardware features to override. 1192 * @parent: Pointer to parent, network device private structure. 1193 */ 1194 struct ksz_hw { 1195 void __iomem *io; 1196 1197 struct ksz_switch *ksz_switch; 1198 struct ksz_port_info port_info[SWITCH_PORT_NUM]; 1199 struct ksz_port_mib port_mib[TOTAL_PORT_NUM]; 1200 int dev_count; 1201 int dst_ports; 1202 int id; 1203 int mib_cnt; 1204 int mib_port_cnt; 1205 1206 u32 tx_cfg; 1207 u32 rx_cfg; 1208 u32 intr_mask; 1209 u32 intr_set; 1210 uint intr_blocked; 1211 1212 struct ksz_desc_info rx_desc_info; 1213 struct ksz_desc_info tx_desc_info; 1214 1215 int tx_int_cnt; 1216 int tx_int_mask; 1217 int tx_size; 1218 1219 u8 perm_addr[ETH_ALEN]; 1220 u8 override_addr[ETH_ALEN]; 1221 u8 address[ADDITIONAL_ENTRIES][ETH_ALEN]; 1222 u8 addr_list_size; 1223 u8 mac_override; 1224 u8 promiscuous; 1225 u8 all_multi; 1226 u8 multi_list[MAX_MULTICAST_LIST][ETH_ALEN]; 1227 u8 multi_bits[HW_MULTICAST_SIZE]; 1228 u8 multi_list_size; 1229 1230 u8 enabled; 1231 u8 rx_stop; 1232 u8 reserved2[1]; 1233 1234 uint features; 1235 uint overrides; 1236 1237 void *parent; 1238 }; 1239 1240 enum { 1241 PHY_NO_FLOW_CTRL, 1242 PHY_FLOW_CTRL, 1243 PHY_TX_ONLY, 1244 PHY_RX_ONLY 1245 }; 1246 1247 /** 1248 * struct ksz_port - Virtual port data structure 1249 * @duplex: Duplex mode setting. 1 for half duplex, 2 for full 1250 * duplex, and 0 for auto, which normally results in full 1251 * duplex. 1252 * @speed: Speed setting. 10 for 10 Mbit, 100 for 100 Mbit, and 1253 * 0 for auto, which normally results in 100 Mbit. 1254 * @force_link: Force link setting. 0 for auto-negotiation, and 1 for 1255 * force. 1256 * @flow_ctrl: Flow control setting. PHY_NO_FLOW_CTRL for no flow 1257 * control, and PHY_FLOW_CTRL for flow control. 1258 * PHY_TX_ONLY and PHY_RX_ONLY are not supported for 100 1259 * Mbit PHY. 1260 * @first_port: Index of first port this port supports. 1261 * @mib_port_cnt: Number of ports with MIB counters. 1262 * @port_cnt: Number of ports this port supports. 1263 * @counter: Port statistics counter. 1264 * @hw: Pointer to hardware structure. 1265 * @linked: Pointer to port information linked to this port. 1266 */ 1267 struct ksz_port { 1268 u8 duplex; 1269 u8 speed; 1270 u8 force_link; 1271 u8 flow_ctrl; 1272 1273 int first_port; 1274 int mib_port_cnt; 1275 int port_cnt; 1276 u64 counter[OID_COUNTER_LAST]; 1277 1278 struct ksz_hw *hw; 1279 struct ksz_port_info *linked; 1280 }; 1281 1282 /** 1283 * struct ksz_timer_info - Timer information data structure 1284 * @timer: Kernel timer. 1285 * @cnt: Running timer counter. 1286 * @max: Number of times to run timer; -1 for infinity. 1287 * @period: Timer period in jiffies. 1288 */ 1289 struct ksz_timer_info { 1290 struct timer_list timer; 1291 int cnt; 1292 int max; 1293 int period; 1294 }; 1295 1296 /** 1297 * struct ksz_shared_mem - OS dependent shared memory data structure 1298 * @dma_addr: Physical DMA address allocated. 1299 * @alloc_size: Allocation size. 1300 * @phys: Actual physical address used. 1301 * @alloc_virt: Virtual address allocated. 1302 * @virt: Actual virtual address used. 1303 */ 1304 struct ksz_shared_mem { 1305 dma_addr_t dma_addr; 1306 uint alloc_size; 1307 uint phys; 1308 u8 *alloc_virt; 1309 u8 *virt; 1310 }; 1311 1312 /** 1313 * struct ksz_counter_info - OS dependent counter information data structure 1314 * @counter: Wait queue to wakeup after counters are read. 1315 * @time: Next time in jiffies to read counter. 1316 * @read: Indication of counters read in full or not. 1317 */ 1318 struct ksz_counter_info { 1319 wait_queue_head_t counter; 1320 unsigned long time; 1321 int read; 1322 }; 1323 1324 /** 1325 * struct dev_info - Network device information data structure 1326 * @dev: Pointer to network device. 1327 * @pdev: Pointer to PCI device. 1328 * @hw: Hardware structure. 1329 * @desc_pool: Physical memory used for descriptor pool. 1330 * @hwlock: Spinlock to prevent hardware from accessing. 1331 * @lock: Mutex lock to prevent device from accessing. 1332 * @dev_rcv: Receive process function used. 1333 * @last_skb: Socket buffer allocated for descriptor rx fragments. 1334 * @skb_index: Buffer index for receiving fragments. 1335 * @skb_len: Buffer length for receiving fragments. 1336 * @mib_read: Workqueue to read MIB counters. 1337 * @mib_timer_info: Timer to read MIB counters. 1338 * @counter: Used for MIB reading. 1339 * @mtu: Current MTU used. The default is REGULAR_RX_BUF_SIZE; 1340 * the maximum is MAX_RX_BUF_SIZE. 1341 * @opened: Counter to keep track of device open. 1342 * @rx_tasklet: Receive processing tasklet. 1343 * @tx_tasklet: Transmit processing tasklet. 1344 * @wol_enable: Wake-on-LAN enable set by ethtool. 1345 * @wol_support: Wake-on-LAN support used by ethtool. 1346 * @pme_wait: Used for KSZ8841 power management. 1347 */ 1348 struct dev_info { 1349 struct net_device *dev; 1350 struct pci_dev *pdev; 1351 1352 struct ksz_hw hw; 1353 struct ksz_shared_mem desc_pool; 1354 1355 spinlock_t hwlock; 1356 struct mutex lock; 1357 1358 int (*dev_rcv)(struct dev_info *); 1359 1360 struct sk_buff *last_skb; 1361 int skb_index; 1362 int skb_len; 1363 1364 struct work_struct mib_read; 1365 struct ksz_timer_info mib_timer_info; 1366 struct ksz_counter_info counter[TOTAL_PORT_NUM]; 1367 1368 int mtu; 1369 int opened; 1370 1371 struct tasklet_struct rx_tasklet; 1372 struct tasklet_struct tx_tasklet; 1373 1374 int wol_enable; 1375 int wol_support; 1376 unsigned long pme_wait; 1377 }; 1378 1379 /** 1380 * struct dev_priv - Network device private data structure 1381 * @adapter: Adapter device information. 1382 * @port: Port information. 1383 * @monitor_timer_info: Timer to monitor ports. 1384 * @proc_sem: Semaphore for proc accessing. 1385 * @id: Device ID. 1386 * @mii_if: MII interface information. 1387 * @advertising: Temporary variable to store advertised settings. 1388 * @msg_enable: The message flags controlling driver output. 1389 * @media_state: The connection status of the device. 1390 * @multicast: The all multicast state of the device. 1391 * @promiscuous: The promiscuous state of the device. 1392 */ 1393 struct dev_priv { 1394 struct dev_info *adapter; 1395 struct ksz_port port; 1396 struct ksz_timer_info monitor_timer_info; 1397 1398 struct semaphore proc_sem; 1399 int id; 1400 1401 struct mii_if_info mii_if; 1402 u32 advertising; 1403 1404 u32 msg_enable; 1405 int media_state; 1406 int multicast; 1407 int promiscuous; 1408 }; 1409 1410 #define DRV_NAME "KSZ884X PCI" 1411 #define DEVICE_NAME "KSZ884x PCI" 1412 #define DRV_VERSION "1.0.0" 1413 #define DRV_RELDATE "Feb 8, 2010" 1414 1415 static char version[] = 1416 "Micrel " DEVICE_NAME " " DRV_VERSION " (" DRV_RELDATE ")"; 1417 1418 static u8 DEFAULT_MAC_ADDRESS[] = { 0x00, 0x10, 0xA1, 0x88, 0x42, 0x01 }; 1419 1420 /* 1421 * Interrupt processing primary routines 1422 */ 1423 1424 static inline void hw_ack_intr(struct ksz_hw *hw, uint interrupt) 1425 { 1426 writel(interrupt, hw->io + KS884X_INTERRUPTS_STATUS); 1427 } 1428 1429 static inline void hw_dis_intr(struct ksz_hw *hw) 1430 { 1431 hw->intr_blocked = hw->intr_mask; 1432 writel(0, hw->io + KS884X_INTERRUPTS_ENABLE); 1433 hw->intr_set = readl(hw->io + KS884X_INTERRUPTS_ENABLE); 1434 } 1435 1436 static inline void hw_set_intr(struct ksz_hw *hw, uint interrupt) 1437 { 1438 hw->intr_set = interrupt; 1439 writel(interrupt, hw->io + KS884X_INTERRUPTS_ENABLE); 1440 } 1441 1442 static inline void hw_ena_intr(struct ksz_hw *hw) 1443 { 1444 hw->intr_blocked = 0; 1445 hw_set_intr(hw, hw->intr_mask); 1446 } 1447 1448 static inline void hw_dis_intr_bit(struct ksz_hw *hw, uint bit) 1449 { 1450 hw->intr_mask &= ~(bit); 1451 } 1452 1453 static inline void hw_turn_off_intr(struct ksz_hw *hw, uint interrupt) 1454 { 1455 u32 read_intr; 1456 1457 read_intr = readl(hw->io + KS884X_INTERRUPTS_ENABLE); 1458 hw->intr_set = read_intr & ~interrupt; 1459 writel(hw->intr_set, hw->io + KS884X_INTERRUPTS_ENABLE); 1460 hw_dis_intr_bit(hw, interrupt); 1461 } 1462 1463 /** 1464 * hw_turn_on_intr - turn on specified interrupts 1465 * @hw: The hardware instance. 1466 * @bit: The interrupt bits to be on. 1467 * 1468 * This routine turns on the specified interrupts in the interrupt mask so that 1469 * those interrupts will be enabled. 1470 */ 1471 static void hw_turn_on_intr(struct ksz_hw *hw, u32 bit) 1472 { 1473 hw->intr_mask |= bit; 1474 1475 if (!hw->intr_blocked) 1476 hw_set_intr(hw, hw->intr_mask); 1477 } 1478 1479 static inline void hw_ena_intr_bit(struct ksz_hw *hw, uint interrupt) 1480 { 1481 u32 read_intr; 1482 1483 read_intr = readl(hw->io + KS884X_INTERRUPTS_ENABLE); 1484 hw->intr_set = read_intr | interrupt; 1485 writel(hw->intr_set, hw->io + KS884X_INTERRUPTS_ENABLE); 1486 } 1487 1488 static inline void hw_read_intr(struct ksz_hw *hw, uint *status) 1489 { 1490 *status = readl(hw->io + KS884X_INTERRUPTS_STATUS); 1491 *status = *status & hw->intr_set; 1492 } 1493 1494 static inline void hw_restore_intr(struct ksz_hw *hw, uint interrupt) 1495 { 1496 if (interrupt) 1497 hw_ena_intr(hw); 1498 } 1499 1500 /** 1501 * hw_block_intr - block hardware interrupts 1502 * @hw: The hardware instance. 1503 * 1504 * This function blocks all interrupts of the hardware and returns the current 1505 * interrupt enable mask so that interrupts can be restored later. 1506 * 1507 * Return the current interrupt enable mask. 1508 */ 1509 static uint hw_block_intr(struct ksz_hw *hw) 1510 { 1511 uint interrupt = 0; 1512 1513 if (!hw->intr_blocked) { 1514 hw_dis_intr(hw); 1515 interrupt = hw->intr_blocked; 1516 } 1517 return interrupt; 1518 } 1519 1520 /* 1521 * Hardware descriptor routines 1522 */ 1523 1524 static inline void reset_desc(struct ksz_desc *desc, union desc_stat status) 1525 { 1526 status.rx.hw_owned = 0; 1527 desc->phw->ctrl.data = cpu_to_le32(status.data); 1528 } 1529 1530 static inline void release_desc(struct ksz_desc *desc) 1531 { 1532 desc->sw.ctrl.tx.hw_owned = 1; 1533 if (desc->sw.buf_size != desc->sw.buf.data) { 1534 desc->sw.buf_size = desc->sw.buf.data; 1535 desc->phw->buf.data = cpu_to_le32(desc->sw.buf.data); 1536 } 1537 desc->phw->ctrl.data = cpu_to_le32(desc->sw.ctrl.data); 1538 } 1539 1540 static void get_rx_pkt(struct ksz_desc_info *info, struct ksz_desc **desc) 1541 { 1542 *desc = &info->ring[info->last]; 1543 info->last++; 1544 info->last &= info->mask; 1545 info->avail--; 1546 (*desc)->sw.buf.data &= ~KS_DESC_RX_MASK; 1547 } 1548 1549 static inline void set_rx_buf(struct ksz_desc *desc, u32 addr) 1550 { 1551 desc->phw->addr = cpu_to_le32(addr); 1552 } 1553 1554 static inline void set_rx_len(struct ksz_desc *desc, u32 len) 1555 { 1556 desc->sw.buf.rx.buf_size = len; 1557 } 1558 1559 static inline void get_tx_pkt(struct ksz_desc_info *info, 1560 struct ksz_desc **desc) 1561 { 1562 *desc = &info->ring[info->next]; 1563 info->next++; 1564 info->next &= info->mask; 1565 info->avail--; 1566 (*desc)->sw.buf.data &= ~KS_DESC_TX_MASK; 1567 } 1568 1569 static inline void set_tx_buf(struct ksz_desc *desc, u32 addr) 1570 { 1571 desc->phw->addr = cpu_to_le32(addr); 1572 } 1573 1574 static inline void set_tx_len(struct ksz_desc *desc, u32 len) 1575 { 1576 desc->sw.buf.tx.buf_size = len; 1577 } 1578 1579 /* Switch functions */ 1580 1581 #define TABLE_READ 0x10 1582 #define TABLE_SEL_SHIFT 2 1583 1584 #define HW_DELAY(hw, reg) \ 1585 do { \ 1586 readw(hw->io + reg); \ 1587 } while (0) 1588 1589 /** 1590 * sw_r_table - read 4 bytes of data from switch table 1591 * @hw: The hardware instance. 1592 * @table: The table selector. 1593 * @addr: The address of the table entry. 1594 * @data: Buffer to store the read data. 1595 * 1596 * This routine reads 4 bytes of data from the table of the switch. 1597 * Hardware interrupts are disabled to minimize corruption of read data. 1598 */ 1599 static void sw_r_table(struct ksz_hw *hw, int table, u16 addr, u32 *data) 1600 { 1601 u16 ctrl_addr; 1602 uint interrupt; 1603 1604 ctrl_addr = (((table << TABLE_SEL_SHIFT) | TABLE_READ) << 8) | addr; 1605 1606 interrupt = hw_block_intr(hw); 1607 1608 writew(ctrl_addr, hw->io + KS884X_IACR_OFFSET); 1609 HW_DELAY(hw, KS884X_IACR_OFFSET); 1610 *data = readl(hw->io + KS884X_ACC_DATA_0_OFFSET); 1611 1612 hw_restore_intr(hw, interrupt); 1613 } 1614 1615 /** 1616 * sw_w_table_64 - write 8 bytes of data to the switch table 1617 * @hw: The hardware instance. 1618 * @table: The table selector. 1619 * @addr: The address of the table entry. 1620 * @data_hi: The high part of data to be written (bit63 ~ bit32). 1621 * @data_lo: The low part of data to be written (bit31 ~ bit0). 1622 * 1623 * This routine writes 8 bytes of data to the table of the switch. 1624 * Hardware interrupts are disabled to minimize corruption of written data. 1625 */ 1626 static void sw_w_table_64(struct ksz_hw *hw, int table, u16 addr, u32 data_hi, 1627 u32 data_lo) 1628 { 1629 u16 ctrl_addr; 1630 uint interrupt; 1631 1632 ctrl_addr = ((table << TABLE_SEL_SHIFT) << 8) | addr; 1633 1634 interrupt = hw_block_intr(hw); 1635 1636 writel(data_hi, hw->io + KS884X_ACC_DATA_4_OFFSET); 1637 writel(data_lo, hw->io + KS884X_ACC_DATA_0_OFFSET); 1638 1639 writew(ctrl_addr, hw->io + KS884X_IACR_OFFSET); 1640 HW_DELAY(hw, KS884X_IACR_OFFSET); 1641 1642 hw_restore_intr(hw, interrupt); 1643 } 1644 1645 /** 1646 * sw_w_sta_mac_table - write to the static MAC table 1647 * @hw: The hardware instance. 1648 * @addr: The address of the table entry. 1649 * @mac_addr: The MAC address. 1650 * @ports: The port members. 1651 * @override: The flag to override the port receive/transmit settings. 1652 * @valid: The flag to indicate entry is valid. 1653 * @use_fid: The flag to indicate the FID is valid. 1654 * @fid: The FID value. 1655 * 1656 * This routine writes an entry of the static MAC table of the switch. It 1657 * calls sw_w_table_64() to write the data. 1658 */ 1659 static void sw_w_sta_mac_table(struct ksz_hw *hw, u16 addr, u8 *mac_addr, 1660 u8 ports, int override, int valid, int use_fid, u8 fid) 1661 { 1662 u32 data_hi; 1663 u32 data_lo; 1664 1665 data_lo = ((u32) mac_addr[2] << 24) | 1666 ((u32) mac_addr[3] << 16) | 1667 ((u32) mac_addr[4] << 8) | mac_addr[5]; 1668 data_hi = ((u32) mac_addr[0] << 8) | mac_addr[1]; 1669 data_hi |= (u32) ports << STATIC_MAC_FWD_PORTS_SHIFT; 1670 1671 if (override) 1672 data_hi |= STATIC_MAC_TABLE_OVERRIDE; 1673 if (use_fid) { 1674 data_hi |= STATIC_MAC_TABLE_USE_FID; 1675 data_hi |= (u32) fid << STATIC_MAC_FID_SHIFT; 1676 } 1677 if (valid) 1678 data_hi |= STATIC_MAC_TABLE_VALID; 1679 1680 sw_w_table_64(hw, TABLE_STATIC_MAC, addr, data_hi, data_lo); 1681 } 1682 1683 /** 1684 * sw_r_vlan_table - read from the VLAN table 1685 * @hw: The hardware instance. 1686 * @addr: The address of the table entry. 1687 * @vid: Buffer to store the VID. 1688 * @fid: Buffer to store the VID. 1689 * @member: Buffer to store the port membership. 1690 * 1691 * This function reads an entry of the VLAN table of the switch. It calls 1692 * sw_r_table() to get the data. 1693 * 1694 * Return 0 if the entry is valid; otherwise -1. 1695 */ 1696 static int sw_r_vlan_table(struct ksz_hw *hw, u16 addr, u16 *vid, u8 *fid, 1697 u8 *member) 1698 { 1699 u32 data; 1700 1701 sw_r_table(hw, TABLE_VLAN, addr, &data); 1702 if (data & VLAN_TABLE_VALID) { 1703 *vid = (u16)(data & VLAN_TABLE_VID); 1704 *fid = (u8)((data & VLAN_TABLE_FID) >> VLAN_TABLE_FID_SHIFT); 1705 *member = (u8)((data & VLAN_TABLE_MEMBERSHIP) >> 1706 VLAN_TABLE_MEMBERSHIP_SHIFT); 1707 return 0; 1708 } 1709 return -1; 1710 } 1711 1712 /** 1713 * port_r_mib_cnt - read MIB counter 1714 * @hw: The hardware instance. 1715 * @port: The port index. 1716 * @addr: The address of the counter. 1717 * @cnt: Buffer to store the counter. 1718 * 1719 * This routine reads a MIB counter of the port. 1720 * Hardware interrupts are disabled to minimize corruption of read data. 1721 */ 1722 static void port_r_mib_cnt(struct ksz_hw *hw, int port, u16 addr, u64 *cnt) 1723 { 1724 u32 data; 1725 u16 ctrl_addr; 1726 uint interrupt; 1727 int timeout; 1728 1729 ctrl_addr = addr + PORT_COUNTER_NUM * port; 1730 1731 interrupt = hw_block_intr(hw); 1732 1733 ctrl_addr |= (((TABLE_MIB << TABLE_SEL_SHIFT) | TABLE_READ) << 8); 1734 writew(ctrl_addr, hw->io + KS884X_IACR_OFFSET); 1735 HW_DELAY(hw, KS884X_IACR_OFFSET); 1736 1737 for (timeout = 100; timeout > 0; timeout--) { 1738 data = readl(hw->io + KS884X_ACC_DATA_0_OFFSET); 1739 1740 if (data & MIB_COUNTER_VALID) { 1741 if (data & MIB_COUNTER_OVERFLOW) 1742 *cnt += MIB_COUNTER_VALUE + 1; 1743 *cnt += data & MIB_COUNTER_VALUE; 1744 break; 1745 } 1746 } 1747 1748 hw_restore_intr(hw, interrupt); 1749 } 1750 1751 /** 1752 * port_r_mib_pkt - read dropped packet counts 1753 * @hw: The hardware instance. 1754 * @port: The port index. 1755 * @last: last one 1756 * @cnt: Buffer to store the receive and transmit dropped packet counts. 1757 * 1758 * This routine reads the dropped packet counts of the port. 1759 * Hardware interrupts are disabled to minimize corruption of read data. 1760 */ 1761 static void port_r_mib_pkt(struct ksz_hw *hw, int port, u32 *last, u64 *cnt) 1762 { 1763 u32 cur; 1764 u32 data; 1765 u16 ctrl_addr; 1766 uint interrupt; 1767 int index; 1768 1769 index = KS_MIB_PACKET_DROPPED_RX_0 + port; 1770 do { 1771 interrupt = hw_block_intr(hw); 1772 1773 ctrl_addr = (u16) index; 1774 ctrl_addr |= (((TABLE_MIB << TABLE_SEL_SHIFT) | TABLE_READ) 1775 << 8); 1776 writew(ctrl_addr, hw->io + KS884X_IACR_OFFSET); 1777 HW_DELAY(hw, KS884X_IACR_OFFSET); 1778 data = readl(hw->io + KS884X_ACC_DATA_0_OFFSET); 1779 1780 hw_restore_intr(hw, interrupt); 1781 1782 data &= MIB_PACKET_DROPPED; 1783 cur = *last; 1784 if (data != cur) { 1785 *last = data; 1786 if (data < cur) 1787 data += MIB_PACKET_DROPPED + 1; 1788 data -= cur; 1789 *cnt += data; 1790 } 1791 ++last; 1792 ++cnt; 1793 index -= KS_MIB_PACKET_DROPPED_TX - 1794 KS_MIB_PACKET_DROPPED_TX_0 + 1; 1795 } while (index >= KS_MIB_PACKET_DROPPED_TX_0 + port); 1796 } 1797 1798 /** 1799 * port_r_cnt - read MIB counters periodically 1800 * @hw: The hardware instance. 1801 * @port: The port index. 1802 * 1803 * This routine is used to read the counters of the port periodically to avoid 1804 * counter overflow. The hardware should be acquired first before calling this 1805 * routine. 1806 * 1807 * Return non-zero when not all counters not read. 1808 */ 1809 static int port_r_cnt(struct ksz_hw *hw, int port) 1810 { 1811 struct ksz_port_mib *mib = &hw->port_mib[port]; 1812 1813 if (mib->mib_start < PORT_COUNTER_NUM) 1814 while (mib->cnt_ptr < PORT_COUNTER_NUM) { 1815 port_r_mib_cnt(hw, port, mib->cnt_ptr, 1816 &mib->counter[mib->cnt_ptr]); 1817 ++mib->cnt_ptr; 1818 } 1819 if (hw->mib_cnt > PORT_COUNTER_NUM) 1820 port_r_mib_pkt(hw, port, mib->dropped, 1821 &mib->counter[PORT_COUNTER_NUM]); 1822 mib->cnt_ptr = 0; 1823 return 0; 1824 } 1825 1826 /** 1827 * port_init_cnt - initialize MIB counter values 1828 * @hw: The hardware instance. 1829 * @port: The port index. 1830 * 1831 * This routine is used to initialize all counters to zero if the hardware 1832 * cannot do it after reset. 1833 */ 1834 static void port_init_cnt(struct ksz_hw *hw, int port) 1835 { 1836 struct ksz_port_mib *mib = &hw->port_mib[port]; 1837 1838 mib->cnt_ptr = 0; 1839 if (mib->mib_start < PORT_COUNTER_NUM) 1840 do { 1841 port_r_mib_cnt(hw, port, mib->cnt_ptr, 1842 &mib->counter[mib->cnt_ptr]); 1843 ++mib->cnt_ptr; 1844 } while (mib->cnt_ptr < PORT_COUNTER_NUM); 1845 if (hw->mib_cnt > PORT_COUNTER_NUM) 1846 port_r_mib_pkt(hw, port, mib->dropped, 1847 &mib->counter[PORT_COUNTER_NUM]); 1848 memset((void *) mib->counter, 0, sizeof(u64) * TOTAL_PORT_COUNTER_NUM); 1849 mib->cnt_ptr = 0; 1850 } 1851 1852 /* 1853 * Port functions 1854 */ 1855 1856 /** 1857 * port_chk - check port register bits 1858 * @hw: The hardware instance. 1859 * @port: The port index. 1860 * @offset: The offset of the port register. 1861 * @bits: The data bits to check. 1862 * 1863 * This function checks whether the specified bits of the port register are set 1864 * or not. 1865 * 1866 * Return 0 if the bits are not set. 1867 */ 1868 static int port_chk(struct ksz_hw *hw, int port, int offset, u16 bits) 1869 { 1870 u32 addr; 1871 u16 data; 1872 1873 PORT_CTRL_ADDR(port, addr); 1874 addr += offset; 1875 data = readw(hw->io + addr); 1876 return (data & bits) == bits; 1877 } 1878 1879 /** 1880 * port_cfg - set port register bits 1881 * @hw: The hardware instance. 1882 * @port: The port index. 1883 * @offset: The offset of the port register. 1884 * @bits: The data bits to set. 1885 * @set: The flag indicating whether the bits are to be set or not. 1886 * 1887 * This routine sets or resets the specified bits of the port register. 1888 */ 1889 static void port_cfg(struct ksz_hw *hw, int port, int offset, u16 bits, 1890 int set) 1891 { 1892 u32 addr; 1893 u16 data; 1894 1895 PORT_CTRL_ADDR(port, addr); 1896 addr += offset; 1897 data = readw(hw->io + addr); 1898 if (set) 1899 data |= bits; 1900 else 1901 data &= ~bits; 1902 writew(data, hw->io + addr); 1903 } 1904 1905 /** 1906 * port_chk_shift - check port bit 1907 * @hw: The hardware instance. 1908 * @port: The port index. 1909 * @addr: The offset of the register. 1910 * @shift: Number of bits to shift. 1911 * 1912 * This function checks whether the specified port is set in the register or 1913 * not. 1914 * 1915 * Return 0 if the port is not set. 1916 */ 1917 static int port_chk_shift(struct ksz_hw *hw, int port, u32 addr, int shift) 1918 { 1919 u16 data; 1920 u16 bit = 1 << port; 1921 1922 data = readw(hw->io + addr); 1923 data >>= shift; 1924 return (data & bit) == bit; 1925 } 1926 1927 /** 1928 * port_cfg_shift - set port bit 1929 * @hw: The hardware instance. 1930 * @port: The port index. 1931 * @addr: The offset of the register. 1932 * @shift: Number of bits to shift. 1933 * @set: The flag indicating whether the port is to be set or not. 1934 * 1935 * This routine sets or resets the specified port in the register. 1936 */ 1937 static void port_cfg_shift(struct ksz_hw *hw, int port, u32 addr, int shift, 1938 int set) 1939 { 1940 u16 data; 1941 u16 bits = 1 << port; 1942 1943 data = readw(hw->io + addr); 1944 bits <<= shift; 1945 if (set) 1946 data |= bits; 1947 else 1948 data &= ~bits; 1949 writew(data, hw->io + addr); 1950 } 1951 1952 /** 1953 * port_r8 - read byte from port register 1954 * @hw: The hardware instance. 1955 * @port: The port index. 1956 * @offset: The offset of the port register. 1957 * @data: Buffer to store the data. 1958 * 1959 * This routine reads a byte from the port register. 1960 */ 1961 static void port_r8(struct ksz_hw *hw, int port, int offset, u8 *data) 1962 { 1963 u32 addr; 1964 1965 PORT_CTRL_ADDR(port, addr); 1966 addr += offset; 1967 *data = readb(hw->io + addr); 1968 } 1969 1970 /** 1971 * port_r16 - read word from port register. 1972 * @hw: The hardware instance. 1973 * @port: The port index. 1974 * @offset: The offset of the port register. 1975 * @data: Buffer to store the data. 1976 * 1977 * This routine reads a word from the port register. 1978 */ 1979 static void port_r16(struct ksz_hw *hw, int port, int offset, u16 *data) 1980 { 1981 u32 addr; 1982 1983 PORT_CTRL_ADDR(port, addr); 1984 addr += offset; 1985 *data = readw(hw->io + addr); 1986 } 1987 1988 /** 1989 * port_w16 - write word to port register. 1990 * @hw: The hardware instance. 1991 * @port: The port index. 1992 * @offset: The offset of the port register. 1993 * @data: Data to write. 1994 * 1995 * This routine writes a word to the port register. 1996 */ 1997 static void port_w16(struct ksz_hw *hw, int port, int offset, u16 data) 1998 { 1999 u32 addr; 2000 2001 PORT_CTRL_ADDR(port, addr); 2002 addr += offset; 2003 writew(data, hw->io + addr); 2004 } 2005 2006 /** 2007 * sw_chk - check switch register bits 2008 * @hw: The hardware instance. 2009 * @addr: The address of the switch register. 2010 * @bits: The data bits to check. 2011 * 2012 * This function checks whether the specified bits of the switch register are 2013 * set or not. 2014 * 2015 * Return 0 if the bits are not set. 2016 */ 2017 static int sw_chk(struct ksz_hw *hw, u32 addr, u16 bits) 2018 { 2019 u16 data; 2020 2021 data = readw(hw->io + addr); 2022 return (data & bits) == bits; 2023 } 2024 2025 /** 2026 * sw_cfg - set switch register bits 2027 * @hw: The hardware instance. 2028 * @addr: The address of the switch register. 2029 * @bits: The data bits to set. 2030 * @set: The flag indicating whether the bits are to be set or not. 2031 * 2032 * This function sets or resets the specified bits of the switch register. 2033 */ 2034 static void sw_cfg(struct ksz_hw *hw, u32 addr, u16 bits, int set) 2035 { 2036 u16 data; 2037 2038 data = readw(hw->io + addr); 2039 if (set) 2040 data |= bits; 2041 else 2042 data &= ~bits; 2043 writew(data, hw->io + addr); 2044 } 2045 2046 /* Bandwidth */ 2047 2048 static inline void port_cfg_broad_storm(struct ksz_hw *hw, int p, int set) 2049 { 2050 port_cfg(hw, p, 2051 KS8842_PORT_CTRL_1_OFFSET, PORT_BROADCAST_STORM, set); 2052 } 2053 2054 static inline int port_chk_broad_storm(struct ksz_hw *hw, int p) 2055 { 2056 return port_chk(hw, p, 2057 KS8842_PORT_CTRL_1_OFFSET, PORT_BROADCAST_STORM); 2058 } 2059 2060 /* Driver set switch broadcast storm protection at 10% rate. */ 2061 #define BROADCAST_STORM_PROTECTION_RATE 10 2062 2063 /* 148,800 frames * 67 ms / 100 */ 2064 #define BROADCAST_STORM_VALUE 9969 2065 2066 /** 2067 * sw_cfg_broad_storm - configure broadcast storm threshold 2068 * @hw: The hardware instance. 2069 * @percent: Broadcast storm threshold in percent of transmit rate. 2070 * 2071 * This routine configures the broadcast storm threshold of the switch. 2072 */ 2073 static void sw_cfg_broad_storm(struct ksz_hw *hw, u8 percent) 2074 { 2075 u16 data; 2076 u32 value = ((u32) BROADCAST_STORM_VALUE * (u32) percent / 100); 2077 2078 if (value > BROADCAST_STORM_RATE) 2079 value = BROADCAST_STORM_RATE; 2080 2081 data = readw(hw->io + KS8842_SWITCH_CTRL_3_OFFSET); 2082 data &= ~(BROADCAST_STORM_RATE_LO | BROADCAST_STORM_RATE_HI); 2083 data |= ((value & 0x00FF) << 8) | ((value & 0xFF00) >> 8); 2084 writew(data, hw->io + KS8842_SWITCH_CTRL_3_OFFSET); 2085 } 2086 2087 /** 2088 * sw_get_broad_storm - get broadcast storm threshold 2089 * @hw: The hardware instance. 2090 * @percent: Buffer to store the broadcast storm threshold percentage. 2091 * 2092 * This routine retrieves the broadcast storm threshold of the switch. 2093 */ 2094 static void sw_get_broad_storm(struct ksz_hw *hw, u8 *percent) 2095 { 2096 int num; 2097 u16 data; 2098 2099 data = readw(hw->io + KS8842_SWITCH_CTRL_3_OFFSET); 2100 num = (data & BROADCAST_STORM_RATE_HI); 2101 num <<= 8; 2102 num |= (data & BROADCAST_STORM_RATE_LO) >> 8; 2103 num = DIV_ROUND_CLOSEST(num * 100, BROADCAST_STORM_VALUE); 2104 *percent = (u8) num; 2105 } 2106 2107 /** 2108 * sw_dis_broad_storm - disable broadstorm 2109 * @hw: The hardware instance. 2110 * @port: The port index. 2111 * 2112 * This routine disables the broadcast storm limit function of the switch. 2113 */ 2114 static void sw_dis_broad_storm(struct ksz_hw *hw, int port) 2115 { 2116 port_cfg_broad_storm(hw, port, 0); 2117 } 2118 2119 /** 2120 * sw_ena_broad_storm - enable broadcast storm 2121 * @hw: The hardware instance. 2122 * @port: The port index. 2123 * 2124 * This routine enables the broadcast storm limit function of the switch. 2125 */ 2126 static void sw_ena_broad_storm(struct ksz_hw *hw, int port) 2127 { 2128 sw_cfg_broad_storm(hw, hw->ksz_switch->broad_per); 2129 port_cfg_broad_storm(hw, port, 1); 2130 } 2131 2132 /** 2133 * sw_init_broad_storm - initialize broadcast storm 2134 * @hw: The hardware instance. 2135 * 2136 * This routine initializes the broadcast storm limit function of the switch. 2137 */ 2138 static void sw_init_broad_storm(struct ksz_hw *hw) 2139 { 2140 int port; 2141 2142 hw->ksz_switch->broad_per = 1; 2143 sw_cfg_broad_storm(hw, hw->ksz_switch->broad_per); 2144 for (port = 0; port < TOTAL_PORT_NUM; port++) 2145 sw_dis_broad_storm(hw, port); 2146 sw_cfg(hw, KS8842_SWITCH_CTRL_2_OFFSET, MULTICAST_STORM_DISABLE, 1); 2147 } 2148 2149 /** 2150 * hw_cfg_broad_storm - configure broadcast storm 2151 * @hw: The hardware instance. 2152 * @percent: Broadcast storm threshold in percent of transmit rate. 2153 * 2154 * This routine configures the broadcast storm threshold of the switch. 2155 * It is called by user functions. The hardware should be acquired first. 2156 */ 2157 static void hw_cfg_broad_storm(struct ksz_hw *hw, u8 percent) 2158 { 2159 if (percent > 100) 2160 percent = 100; 2161 2162 sw_cfg_broad_storm(hw, percent); 2163 sw_get_broad_storm(hw, &percent); 2164 hw->ksz_switch->broad_per = percent; 2165 } 2166 2167 /** 2168 * sw_dis_prio_rate - disable switch priority rate 2169 * @hw: The hardware instance. 2170 * @port: The port index. 2171 * 2172 * This routine disables the priority rate function of the switch. 2173 */ 2174 static void sw_dis_prio_rate(struct ksz_hw *hw, int port) 2175 { 2176 u32 addr; 2177 2178 PORT_CTRL_ADDR(port, addr); 2179 addr += KS8842_PORT_IN_RATE_OFFSET; 2180 writel(0, hw->io + addr); 2181 } 2182 2183 /** 2184 * sw_init_prio_rate - initialize switch prioirty rate 2185 * @hw: The hardware instance. 2186 * 2187 * This routine initializes the priority rate function of the switch. 2188 */ 2189 static void sw_init_prio_rate(struct ksz_hw *hw) 2190 { 2191 int port; 2192 int prio; 2193 struct ksz_switch *sw = hw->ksz_switch; 2194 2195 for (port = 0; port < TOTAL_PORT_NUM; port++) { 2196 for (prio = 0; prio < PRIO_QUEUES; prio++) { 2197 sw->port_cfg[port].rx_rate[prio] = 2198 sw->port_cfg[port].tx_rate[prio] = 0; 2199 } 2200 sw_dis_prio_rate(hw, port); 2201 } 2202 } 2203 2204 /* Communication */ 2205 2206 static inline void port_cfg_back_pressure(struct ksz_hw *hw, int p, int set) 2207 { 2208 port_cfg(hw, p, 2209 KS8842_PORT_CTRL_2_OFFSET, PORT_BACK_PRESSURE, set); 2210 } 2211 2212 static inline void port_cfg_force_flow_ctrl(struct ksz_hw *hw, int p, int set) 2213 { 2214 port_cfg(hw, p, 2215 KS8842_PORT_CTRL_2_OFFSET, PORT_FORCE_FLOW_CTRL, set); 2216 } 2217 2218 static inline int port_chk_back_pressure(struct ksz_hw *hw, int p) 2219 { 2220 return port_chk(hw, p, 2221 KS8842_PORT_CTRL_2_OFFSET, PORT_BACK_PRESSURE); 2222 } 2223 2224 static inline int port_chk_force_flow_ctrl(struct ksz_hw *hw, int p) 2225 { 2226 return port_chk(hw, p, 2227 KS8842_PORT_CTRL_2_OFFSET, PORT_FORCE_FLOW_CTRL); 2228 } 2229 2230 /* Spanning Tree */ 2231 2232 static inline void port_cfg_rx(struct ksz_hw *hw, int p, int set) 2233 { 2234 port_cfg(hw, p, 2235 KS8842_PORT_CTRL_2_OFFSET, PORT_RX_ENABLE, set); 2236 } 2237 2238 static inline void port_cfg_tx(struct ksz_hw *hw, int p, int set) 2239 { 2240 port_cfg(hw, p, 2241 KS8842_PORT_CTRL_2_OFFSET, PORT_TX_ENABLE, set); 2242 } 2243 2244 static inline void sw_cfg_fast_aging(struct ksz_hw *hw, int set) 2245 { 2246 sw_cfg(hw, KS8842_SWITCH_CTRL_1_OFFSET, SWITCH_FAST_AGING, set); 2247 } 2248 2249 static inline void sw_flush_dyn_mac_table(struct ksz_hw *hw) 2250 { 2251 if (!(hw->overrides & FAST_AGING)) { 2252 sw_cfg_fast_aging(hw, 1); 2253 mdelay(1); 2254 sw_cfg_fast_aging(hw, 0); 2255 } 2256 } 2257 2258 /* VLAN */ 2259 2260 static inline void port_cfg_ins_tag(struct ksz_hw *hw, int p, int insert) 2261 { 2262 port_cfg(hw, p, 2263 KS8842_PORT_CTRL_1_OFFSET, PORT_INSERT_TAG, insert); 2264 } 2265 2266 static inline void port_cfg_rmv_tag(struct ksz_hw *hw, int p, int remove) 2267 { 2268 port_cfg(hw, p, 2269 KS8842_PORT_CTRL_1_OFFSET, PORT_REMOVE_TAG, remove); 2270 } 2271 2272 static inline int port_chk_ins_tag(struct ksz_hw *hw, int p) 2273 { 2274 return port_chk(hw, p, 2275 KS8842_PORT_CTRL_1_OFFSET, PORT_INSERT_TAG); 2276 } 2277 2278 static inline int port_chk_rmv_tag(struct ksz_hw *hw, int p) 2279 { 2280 return port_chk(hw, p, 2281 KS8842_PORT_CTRL_1_OFFSET, PORT_REMOVE_TAG); 2282 } 2283 2284 static inline void port_cfg_dis_non_vid(struct ksz_hw *hw, int p, int set) 2285 { 2286 port_cfg(hw, p, 2287 KS8842_PORT_CTRL_2_OFFSET, PORT_DISCARD_NON_VID, set); 2288 } 2289 2290 static inline void port_cfg_in_filter(struct ksz_hw *hw, int p, int set) 2291 { 2292 port_cfg(hw, p, 2293 KS8842_PORT_CTRL_2_OFFSET, PORT_INGRESS_VLAN_FILTER, set); 2294 } 2295 2296 static inline int port_chk_dis_non_vid(struct ksz_hw *hw, int p) 2297 { 2298 return port_chk(hw, p, 2299 KS8842_PORT_CTRL_2_OFFSET, PORT_DISCARD_NON_VID); 2300 } 2301 2302 static inline int port_chk_in_filter(struct ksz_hw *hw, int p) 2303 { 2304 return port_chk(hw, p, 2305 KS8842_PORT_CTRL_2_OFFSET, PORT_INGRESS_VLAN_FILTER); 2306 } 2307 2308 /* Mirroring */ 2309 2310 static inline void port_cfg_mirror_sniffer(struct ksz_hw *hw, int p, int set) 2311 { 2312 port_cfg(hw, p, 2313 KS8842_PORT_CTRL_2_OFFSET, PORT_MIRROR_SNIFFER, set); 2314 } 2315 2316 static inline void port_cfg_mirror_rx(struct ksz_hw *hw, int p, int set) 2317 { 2318 port_cfg(hw, p, 2319 KS8842_PORT_CTRL_2_OFFSET, PORT_MIRROR_RX, set); 2320 } 2321 2322 static inline void port_cfg_mirror_tx(struct ksz_hw *hw, int p, int set) 2323 { 2324 port_cfg(hw, p, 2325 KS8842_PORT_CTRL_2_OFFSET, PORT_MIRROR_TX, set); 2326 } 2327 2328 static inline void sw_cfg_mirror_rx_tx(struct ksz_hw *hw, int set) 2329 { 2330 sw_cfg(hw, KS8842_SWITCH_CTRL_2_OFFSET, SWITCH_MIRROR_RX_TX, set); 2331 } 2332 2333 static void sw_init_mirror(struct ksz_hw *hw) 2334 { 2335 int port; 2336 2337 for (port = 0; port < TOTAL_PORT_NUM; port++) { 2338 port_cfg_mirror_sniffer(hw, port, 0); 2339 port_cfg_mirror_rx(hw, port, 0); 2340 port_cfg_mirror_tx(hw, port, 0); 2341 } 2342 sw_cfg_mirror_rx_tx(hw, 0); 2343 } 2344 2345 static inline void sw_cfg_unk_def_deliver(struct ksz_hw *hw, int set) 2346 { 2347 sw_cfg(hw, KS8842_SWITCH_CTRL_7_OFFSET, 2348 SWITCH_UNK_DEF_PORT_ENABLE, set); 2349 } 2350 2351 static inline int sw_cfg_chk_unk_def_deliver(struct ksz_hw *hw) 2352 { 2353 return sw_chk(hw, KS8842_SWITCH_CTRL_7_OFFSET, 2354 SWITCH_UNK_DEF_PORT_ENABLE); 2355 } 2356 2357 static inline void sw_cfg_unk_def_port(struct ksz_hw *hw, int port, int set) 2358 { 2359 port_cfg_shift(hw, port, KS8842_SWITCH_CTRL_7_OFFSET, 0, set); 2360 } 2361 2362 static inline int sw_chk_unk_def_port(struct ksz_hw *hw, int port) 2363 { 2364 return port_chk_shift(hw, port, KS8842_SWITCH_CTRL_7_OFFSET, 0); 2365 } 2366 2367 /* Priority */ 2368 2369 static inline void port_cfg_diffserv(struct ksz_hw *hw, int p, int set) 2370 { 2371 port_cfg(hw, p, 2372 KS8842_PORT_CTRL_1_OFFSET, PORT_DIFFSERV_ENABLE, set); 2373 } 2374 2375 static inline void port_cfg_802_1p(struct ksz_hw *hw, int p, int set) 2376 { 2377 port_cfg(hw, p, 2378 KS8842_PORT_CTRL_1_OFFSET, PORT_802_1P_ENABLE, set); 2379 } 2380 2381 static inline void port_cfg_replace_vid(struct ksz_hw *hw, int p, int set) 2382 { 2383 port_cfg(hw, p, 2384 KS8842_PORT_CTRL_2_OFFSET, PORT_USER_PRIORITY_CEILING, set); 2385 } 2386 2387 static inline void port_cfg_prio(struct ksz_hw *hw, int p, int set) 2388 { 2389 port_cfg(hw, p, 2390 KS8842_PORT_CTRL_1_OFFSET, PORT_PRIO_QUEUE_ENABLE, set); 2391 } 2392 2393 static inline int port_chk_diffserv(struct ksz_hw *hw, int p) 2394 { 2395 return port_chk(hw, p, 2396 KS8842_PORT_CTRL_1_OFFSET, PORT_DIFFSERV_ENABLE); 2397 } 2398 2399 static inline int port_chk_802_1p(struct ksz_hw *hw, int p) 2400 { 2401 return port_chk(hw, p, 2402 KS8842_PORT_CTRL_1_OFFSET, PORT_802_1P_ENABLE); 2403 } 2404 2405 static inline int port_chk_replace_vid(struct ksz_hw *hw, int p) 2406 { 2407 return port_chk(hw, p, 2408 KS8842_PORT_CTRL_2_OFFSET, PORT_USER_PRIORITY_CEILING); 2409 } 2410 2411 static inline int port_chk_prio(struct ksz_hw *hw, int p) 2412 { 2413 return port_chk(hw, p, 2414 KS8842_PORT_CTRL_1_OFFSET, PORT_PRIO_QUEUE_ENABLE); 2415 } 2416 2417 /** 2418 * sw_dis_diffserv - disable switch DiffServ priority 2419 * @hw: The hardware instance. 2420 * @port: The port index. 2421 * 2422 * This routine disables the DiffServ priority function of the switch. 2423 */ 2424 static void sw_dis_diffserv(struct ksz_hw *hw, int port) 2425 { 2426 port_cfg_diffserv(hw, port, 0); 2427 } 2428 2429 /** 2430 * sw_dis_802_1p - disable switch 802.1p priority 2431 * @hw: The hardware instance. 2432 * @port: The port index. 2433 * 2434 * This routine disables the 802.1p priority function of the switch. 2435 */ 2436 static void sw_dis_802_1p(struct ksz_hw *hw, int port) 2437 { 2438 port_cfg_802_1p(hw, port, 0); 2439 } 2440 2441 /** 2442 * sw_cfg_replace_null_vid - 2443 * @hw: The hardware instance. 2444 * @set: The flag to disable or enable. 2445 * 2446 */ 2447 static void sw_cfg_replace_null_vid(struct ksz_hw *hw, int set) 2448 { 2449 sw_cfg(hw, KS8842_SWITCH_CTRL_3_OFFSET, SWITCH_REPLACE_NULL_VID, set); 2450 } 2451 2452 /** 2453 * sw_cfg_replace_vid - enable switch 802.10 priority re-mapping 2454 * @hw: The hardware instance. 2455 * @port: The port index. 2456 * @set: The flag to disable or enable. 2457 * 2458 * This routine enables the 802.1p priority re-mapping function of the switch. 2459 * That allows 802.1p priority field to be replaced with the port's default 2460 * tag's priority value if the ingress packet's 802.1p priority has a higher 2461 * priority than port's default tag's priority. 2462 */ 2463 static void sw_cfg_replace_vid(struct ksz_hw *hw, int port, int set) 2464 { 2465 port_cfg_replace_vid(hw, port, set); 2466 } 2467 2468 /** 2469 * sw_cfg_port_based - configure switch port based priority 2470 * @hw: The hardware instance. 2471 * @port: The port index. 2472 * @prio: The priority to set. 2473 * 2474 * This routine configures the port based priority of the switch. 2475 */ 2476 static void sw_cfg_port_based(struct ksz_hw *hw, int port, u8 prio) 2477 { 2478 u16 data; 2479 2480 if (prio > PORT_BASED_PRIORITY_BASE) 2481 prio = PORT_BASED_PRIORITY_BASE; 2482 2483 hw->ksz_switch->port_cfg[port].port_prio = prio; 2484 2485 port_r16(hw, port, KS8842_PORT_CTRL_1_OFFSET, &data); 2486 data &= ~PORT_BASED_PRIORITY_MASK; 2487 data |= prio << PORT_BASED_PRIORITY_SHIFT; 2488 port_w16(hw, port, KS8842_PORT_CTRL_1_OFFSET, data); 2489 } 2490 2491 /** 2492 * sw_dis_multi_queue - disable transmit multiple queues 2493 * @hw: The hardware instance. 2494 * @port: The port index. 2495 * 2496 * This routine disables the transmit multiple queues selection of the switch 2497 * port. Only single transmit queue on the port. 2498 */ 2499 static void sw_dis_multi_queue(struct ksz_hw *hw, int port) 2500 { 2501 port_cfg_prio(hw, port, 0); 2502 } 2503 2504 /** 2505 * sw_init_prio - initialize switch priority 2506 * @hw: The hardware instance. 2507 * 2508 * This routine initializes the switch QoS priority functions. 2509 */ 2510 static void sw_init_prio(struct ksz_hw *hw) 2511 { 2512 int port; 2513 int tos; 2514 struct ksz_switch *sw = hw->ksz_switch; 2515 2516 /* 2517 * Init all the 802.1p tag priority value to be assigned to different 2518 * priority queue. 2519 */ 2520 sw->p_802_1p[0] = 0; 2521 sw->p_802_1p[1] = 0; 2522 sw->p_802_1p[2] = 1; 2523 sw->p_802_1p[3] = 1; 2524 sw->p_802_1p[4] = 2; 2525 sw->p_802_1p[5] = 2; 2526 sw->p_802_1p[6] = 3; 2527 sw->p_802_1p[7] = 3; 2528 2529 /* 2530 * Init all the DiffServ priority value to be assigned to priority 2531 * queue 0. 2532 */ 2533 for (tos = 0; tos < DIFFSERV_ENTRIES; tos++) 2534 sw->diffserv[tos] = 0; 2535 2536 /* All QoS functions disabled. */ 2537 for (port = 0; port < TOTAL_PORT_NUM; port++) { 2538 sw_dis_multi_queue(hw, port); 2539 sw_dis_diffserv(hw, port); 2540 sw_dis_802_1p(hw, port); 2541 sw_cfg_replace_vid(hw, port, 0); 2542 2543 sw->port_cfg[port].port_prio = 0; 2544 sw_cfg_port_based(hw, port, sw->port_cfg[port].port_prio); 2545 } 2546 sw_cfg_replace_null_vid(hw, 0); 2547 } 2548 2549 /** 2550 * port_get_def_vid - get port default VID. 2551 * @hw: The hardware instance. 2552 * @port: The port index. 2553 * @vid: Buffer to store the VID. 2554 * 2555 * This routine retrieves the default VID of the port. 2556 */ 2557 static void port_get_def_vid(struct ksz_hw *hw, int port, u16 *vid) 2558 { 2559 u32 addr; 2560 2561 PORT_CTRL_ADDR(port, addr); 2562 addr += KS8842_PORT_CTRL_VID_OFFSET; 2563 *vid = readw(hw->io + addr); 2564 } 2565 2566 /** 2567 * sw_init_vlan - initialize switch VLAN 2568 * @hw: The hardware instance. 2569 * 2570 * This routine initializes the VLAN function of the switch. 2571 */ 2572 static void sw_init_vlan(struct ksz_hw *hw) 2573 { 2574 int port; 2575 int entry; 2576 struct ksz_switch *sw = hw->ksz_switch; 2577 2578 /* Read 16 VLAN entries from device's VLAN table. */ 2579 for (entry = 0; entry < VLAN_TABLE_ENTRIES; entry++) { 2580 sw_r_vlan_table(hw, entry, 2581 &sw->vlan_table[entry].vid, 2582 &sw->vlan_table[entry].fid, 2583 &sw->vlan_table[entry].member); 2584 } 2585 2586 for (port = 0; port < TOTAL_PORT_NUM; port++) { 2587 port_get_def_vid(hw, port, &sw->port_cfg[port].vid); 2588 sw->port_cfg[port].member = PORT_MASK; 2589 } 2590 } 2591 2592 /** 2593 * sw_cfg_port_base_vlan - configure port-based VLAN membership 2594 * @hw: The hardware instance. 2595 * @port: The port index. 2596 * @member: The port-based VLAN membership. 2597 * 2598 * This routine configures the port-based VLAN membership of the port. 2599 */ 2600 static void sw_cfg_port_base_vlan(struct ksz_hw *hw, int port, u8 member) 2601 { 2602 u32 addr; 2603 u8 data; 2604 2605 PORT_CTRL_ADDR(port, addr); 2606 addr += KS8842_PORT_CTRL_2_OFFSET; 2607 2608 data = readb(hw->io + addr); 2609 data &= ~PORT_VLAN_MEMBERSHIP; 2610 data |= (member & PORT_MASK); 2611 writeb(data, hw->io + addr); 2612 2613 hw->ksz_switch->port_cfg[port].member = member; 2614 } 2615 2616 /** 2617 * sw_get_addr - get the switch MAC address. 2618 * @hw: The hardware instance. 2619 * @mac_addr: Buffer to store the MAC address. 2620 * 2621 * This function retrieves the MAC address of the switch. 2622 */ 2623 static inline void sw_get_addr(struct ksz_hw *hw, u8 *mac_addr) 2624 { 2625 int i; 2626 2627 for (i = 0; i < 6; i += 2) { 2628 mac_addr[i] = readb(hw->io + KS8842_MAC_ADDR_0_OFFSET + i); 2629 mac_addr[1 + i] = readb(hw->io + KS8842_MAC_ADDR_1_OFFSET + i); 2630 } 2631 } 2632 2633 /** 2634 * sw_set_addr - configure switch MAC address 2635 * @hw: The hardware instance. 2636 * @mac_addr: The MAC address. 2637 * 2638 * This function configures the MAC address of the switch. 2639 */ 2640 static void sw_set_addr(struct ksz_hw *hw, u8 *mac_addr) 2641 { 2642 int i; 2643 2644 for (i = 0; i < 6; i += 2) { 2645 writeb(mac_addr[i], hw->io + KS8842_MAC_ADDR_0_OFFSET + i); 2646 writeb(mac_addr[1 + i], hw->io + KS8842_MAC_ADDR_1_OFFSET + i); 2647 } 2648 } 2649 2650 /** 2651 * sw_set_global_ctrl - set switch global control 2652 * @hw: The hardware instance. 2653 * 2654 * This routine sets the global control of the switch function. 2655 */ 2656 static void sw_set_global_ctrl(struct ksz_hw *hw) 2657 { 2658 u16 data; 2659 2660 /* Enable switch MII flow control. */ 2661 data = readw(hw->io + KS8842_SWITCH_CTRL_3_OFFSET); 2662 data |= SWITCH_FLOW_CTRL; 2663 writew(data, hw->io + KS8842_SWITCH_CTRL_3_OFFSET); 2664 2665 data = readw(hw->io + KS8842_SWITCH_CTRL_1_OFFSET); 2666 2667 /* Enable aggressive back off algorithm in half duplex mode. */ 2668 data |= SWITCH_AGGR_BACKOFF; 2669 2670 /* Enable automatic fast aging when link changed detected. */ 2671 data |= SWITCH_AGING_ENABLE; 2672 data |= SWITCH_LINK_AUTO_AGING; 2673 2674 if (hw->overrides & FAST_AGING) 2675 data |= SWITCH_FAST_AGING; 2676 else 2677 data &= ~SWITCH_FAST_AGING; 2678 writew(data, hw->io + KS8842_SWITCH_CTRL_1_OFFSET); 2679 2680 data = readw(hw->io + KS8842_SWITCH_CTRL_2_OFFSET); 2681 2682 /* Enable no excessive collision drop. */ 2683 data |= NO_EXC_COLLISION_DROP; 2684 writew(data, hw->io + KS8842_SWITCH_CTRL_2_OFFSET); 2685 } 2686 2687 enum { 2688 STP_STATE_DISABLED = 0, 2689 STP_STATE_LISTENING, 2690 STP_STATE_LEARNING, 2691 STP_STATE_FORWARDING, 2692 STP_STATE_BLOCKED, 2693 STP_STATE_SIMPLE 2694 }; 2695 2696 /** 2697 * port_set_stp_state - configure port spanning tree state 2698 * @hw: The hardware instance. 2699 * @port: The port index. 2700 * @state: The spanning tree state. 2701 * 2702 * This routine configures the spanning tree state of the port. 2703 */ 2704 static void port_set_stp_state(struct ksz_hw *hw, int port, int state) 2705 { 2706 u16 data; 2707 2708 port_r16(hw, port, KS8842_PORT_CTRL_2_OFFSET, &data); 2709 switch (state) { 2710 case STP_STATE_DISABLED: 2711 data &= ~(PORT_TX_ENABLE | PORT_RX_ENABLE); 2712 data |= PORT_LEARN_DISABLE; 2713 break; 2714 case STP_STATE_LISTENING: 2715 /* 2716 * No need to turn on transmit because of port direct mode. 2717 * Turning on receive is required if static MAC table is not setup. 2718 */ 2719 data &= ~PORT_TX_ENABLE; 2720 data |= PORT_RX_ENABLE; 2721 data |= PORT_LEARN_DISABLE; 2722 break; 2723 case STP_STATE_LEARNING: 2724 data &= ~PORT_TX_ENABLE; 2725 data |= PORT_RX_ENABLE; 2726 data &= ~PORT_LEARN_DISABLE; 2727 break; 2728 case STP_STATE_FORWARDING: 2729 data |= (PORT_TX_ENABLE | PORT_RX_ENABLE); 2730 data &= ~PORT_LEARN_DISABLE; 2731 break; 2732 case STP_STATE_BLOCKED: 2733 /* 2734 * Need to setup static MAC table with override to keep receiving BPDU 2735 * messages. See sw_init_stp routine. 2736 */ 2737 data &= ~(PORT_TX_ENABLE | PORT_RX_ENABLE); 2738 data |= PORT_LEARN_DISABLE; 2739 break; 2740 case STP_STATE_SIMPLE: 2741 data |= (PORT_TX_ENABLE | PORT_RX_ENABLE); 2742 data |= PORT_LEARN_DISABLE; 2743 break; 2744 } 2745 port_w16(hw, port, KS8842_PORT_CTRL_2_OFFSET, data); 2746 hw->ksz_switch->port_cfg[port].stp_state = state; 2747 } 2748 2749 #define STP_ENTRY 0 2750 #define BROADCAST_ENTRY 1 2751 #define BRIDGE_ADDR_ENTRY 2 2752 #define IPV6_ADDR_ENTRY 3 2753 2754 /** 2755 * sw_clr_sta_mac_table - clear static MAC table 2756 * @hw: The hardware instance. 2757 * 2758 * This routine clears the static MAC table. 2759 */ 2760 static void sw_clr_sta_mac_table(struct ksz_hw *hw) 2761 { 2762 struct ksz_mac_table *entry; 2763 int i; 2764 2765 for (i = 0; i < STATIC_MAC_TABLE_ENTRIES; i++) { 2766 entry = &hw->ksz_switch->mac_table[i]; 2767 sw_w_sta_mac_table(hw, i, 2768 entry->mac_addr, entry->ports, 2769 entry->override, 0, 2770 entry->use_fid, entry->fid); 2771 } 2772 } 2773 2774 /** 2775 * sw_init_stp - initialize switch spanning tree support 2776 * @hw: The hardware instance. 2777 * 2778 * This routine initializes the spanning tree support of the switch. 2779 */ 2780 static void sw_init_stp(struct ksz_hw *hw) 2781 { 2782 struct ksz_mac_table *entry; 2783 2784 entry = &hw->ksz_switch->mac_table[STP_ENTRY]; 2785 entry->mac_addr[0] = 0x01; 2786 entry->mac_addr[1] = 0x80; 2787 entry->mac_addr[2] = 0xC2; 2788 entry->mac_addr[3] = 0x00; 2789 entry->mac_addr[4] = 0x00; 2790 entry->mac_addr[5] = 0x00; 2791 entry->ports = HOST_MASK; 2792 entry->override = 1; 2793 entry->valid = 1; 2794 sw_w_sta_mac_table(hw, STP_ENTRY, 2795 entry->mac_addr, entry->ports, 2796 entry->override, entry->valid, 2797 entry->use_fid, entry->fid); 2798 } 2799 2800 /** 2801 * sw_block_addr - block certain packets from the host port 2802 * @hw: The hardware instance. 2803 * 2804 * This routine blocks certain packets from reaching to the host port. 2805 */ 2806 static void sw_block_addr(struct ksz_hw *hw) 2807 { 2808 struct ksz_mac_table *entry; 2809 int i; 2810 2811 for (i = BROADCAST_ENTRY; i <= IPV6_ADDR_ENTRY; i++) { 2812 entry = &hw->ksz_switch->mac_table[i]; 2813 entry->valid = 0; 2814 sw_w_sta_mac_table(hw, i, 2815 entry->mac_addr, entry->ports, 2816 entry->override, entry->valid, 2817 entry->use_fid, entry->fid); 2818 } 2819 } 2820 2821 static inline void hw_r_phy_ctrl(struct ksz_hw *hw, int phy, u16 *data) 2822 { 2823 *data = readw(hw->io + phy + KS884X_PHY_CTRL_OFFSET); 2824 } 2825 2826 static inline void hw_w_phy_ctrl(struct ksz_hw *hw, int phy, u16 data) 2827 { 2828 writew(data, hw->io + phy + KS884X_PHY_CTRL_OFFSET); 2829 } 2830 2831 static inline void hw_r_phy_link_stat(struct ksz_hw *hw, int phy, u16 *data) 2832 { 2833 *data = readw(hw->io + phy + KS884X_PHY_STATUS_OFFSET); 2834 } 2835 2836 static inline void hw_r_phy_auto_neg(struct ksz_hw *hw, int phy, u16 *data) 2837 { 2838 *data = readw(hw->io + phy + KS884X_PHY_AUTO_NEG_OFFSET); 2839 } 2840 2841 static inline void hw_w_phy_auto_neg(struct ksz_hw *hw, int phy, u16 data) 2842 { 2843 writew(data, hw->io + phy + KS884X_PHY_AUTO_NEG_OFFSET); 2844 } 2845 2846 static inline void hw_r_phy_rem_cap(struct ksz_hw *hw, int phy, u16 *data) 2847 { 2848 *data = readw(hw->io + phy + KS884X_PHY_REMOTE_CAP_OFFSET); 2849 } 2850 2851 static inline void hw_r_phy_crossover(struct ksz_hw *hw, int phy, u16 *data) 2852 { 2853 *data = readw(hw->io + phy + KS884X_PHY_CTRL_OFFSET); 2854 } 2855 2856 static inline void hw_w_phy_crossover(struct ksz_hw *hw, int phy, u16 data) 2857 { 2858 writew(data, hw->io + phy + KS884X_PHY_CTRL_OFFSET); 2859 } 2860 2861 static inline void hw_r_phy_polarity(struct ksz_hw *hw, int phy, u16 *data) 2862 { 2863 *data = readw(hw->io + phy + KS884X_PHY_PHY_CTRL_OFFSET); 2864 } 2865 2866 static inline void hw_w_phy_polarity(struct ksz_hw *hw, int phy, u16 data) 2867 { 2868 writew(data, hw->io + phy + KS884X_PHY_PHY_CTRL_OFFSET); 2869 } 2870 2871 static inline void hw_r_phy_link_md(struct ksz_hw *hw, int phy, u16 *data) 2872 { 2873 *data = readw(hw->io + phy + KS884X_PHY_LINK_MD_OFFSET); 2874 } 2875 2876 static inline void hw_w_phy_link_md(struct ksz_hw *hw, int phy, u16 data) 2877 { 2878 writew(data, hw->io + phy + KS884X_PHY_LINK_MD_OFFSET); 2879 } 2880 2881 /** 2882 * hw_r_phy - read data from PHY register 2883 * @hw: The hardware instance. 2884 * @port: Port to read. 2885 * @reg: PHY register to read. 2886 * @val: Buffer to store the read data. 2887 * 2888 * This routine reads data from the PHY register. 2889 */ 2890 static void hw_r_phy(struct ksz_hw *hw, int port, u16 reg, u16 *val) 2891 { 2892 int phy; 2893 2894 phy = KS884X_PHY_1_CTRL_OFFSET + port * PHY_CTRL_INTERVAL + reg; 2895 *val = readw(hw->io + phy); 2896 } 2897 2898 /** 2899 * hw_w_phy - write data to PHY register 2900 * @hw: The hardware instance. 2901 * @port: Port to write. 2902 * @reg: PHY register to write. 2903 * @val: Word data to write. 2904 * 2905 * This routine writes data to the PHY register. 2906 */ 2907 static void hw_w_phy(struct ksz_hw *hw, int port, u16 reg, u16 val) 2908 { 2909 int phy; 2910 2911 phy = KS884X_PHY_1_CTRL_OFFSET + port * PHY_CTRL_INTERVAL + reg; 2912 writew(val, hw->io + phy); 2913 } 2914 2915 /* 2916 * EEPROM access functions 2917 */ 2918 2919 #define AT93C_CODE 0 2920 #define AT93C_WR_OFF 0x00 2921 #define AT93C_WR_ALL 0x10 2922 #define AT93C_ER_ALL 0x20 2923 #define AT93C_WR_ON 0x30 2924 2925 #define AT93C_WRITE 1 2926 #define AT93C_READ 2 2927 #define AT93C_ERASE 3 2928 2929 #define EEPROM_DELAY 4 2930 2931 static inline void drop_gpio(struct ksz_hw *hw, u8 gpio) 2932 { 2933 u16 data; 2934 2935 data = readw(hw->io + KS884X_EEPROM_CTRL_OFFSET); 2936 data &= ~gpio; 2937 writew(data, hw->io + KS884X_EEPROM_CTRL_OFFSET); 2938 } 2939 2940 static inline void raise_gpio(struct ksz_hw *hw, u8 gpio) 2941 { 2942 u16 data; 2943 2944 data = readw(hw->io + KS884X_EEPROM_CTRL_OFFSET); 2945 data |= gpio; 2946 writew(data, hw->io + KS884X_EEPROM_CTRL_OFFSET); 2947 } 2948 2949 static inline u8 state_gpio(struct ksz_hw *hw, u8 gpio) 2950 { 2951 u16 data; 2952 2953 data = readw(hw->io + KS884X_EEPROM_CTRL_OFFSET); 2954 return (u8)(data & gpio); 2955 } 2956 2957 static void eeprom_clk(struct ksz_hw *hw) 2958 { 2959 raise_gpio(hw, EEPROM_SERIAL_CLOCK); 2960 udelay(EEPROM_DELAY); 2961 drop_gpio(hw, EEPROM_SERIAL_CLOCK); 2962 udelay(EEPROM_DELAY); 2963 } 2964 2965 static u16 spi_r(struct ksz_hw *hw) 2966 { 2967 int i; 2968 u16 temp = 0; 2969 2970 for (i = 15; i >= 0; i--) { 2971 raise_gpio(hw, EEPROM_SERIAL_CLOCK); 2972 udelay(EEPROM_DELAY); 2973 2974 temp |= (state_gpio(hw, EEPROM_DATA_IN)) ? 1 << i : 0; 2975 2976 drop_gpio(hw, EEPROM_SERIAL_CLOCK); 2977 udelay(EEPROM_DELAY); 2978 } 2979 return temp; 2980 } 2981 2982 static void spi_w(struct ksz_hw *hw, u16 data) 2983 { 2984 int i; 2985 2986 for (i = 15; i >= 0; i--) { 2987 (data & (0x01 << i)) ? raise_gpio(hw, EEPROM_DATA_OUT) : 2988 drop_gpio(hw, EEPROM_DATA_OUT); 2989 eeprom_clk(hw); 2990 } 2991 } 2992 2993 static void spi_reg(struct ksz_hw *hw, u8 data, u8 reg) 2994 { 2995 int i; 2996 2997 /* Initial start bit */ 2998 raise_gpio(hw, EEPROM_DATA_OUT); 2999 eeprom_clk(hw); 3000 3001 /* AT93C operation */ 3002 for (i = 1; i >= 0; i--) { 3003 (data & (0x01 << i)) ? raise_gpio(hw, EEPROM_DATA_OUT) : 3004 drop_gpio(hw, EEPROM_DATA_OUT); 3005 eeprom_clk(hw); 3006 } 3007 3008 /* Address location */ 3009 for (i = 5; i >= 0; i--) { 3010 (reg & (0x01 << i)) ? raise_gpio(hw, EEPROM_DATA_OUT) : 3011 drop_gpio(hw, EEPROM_DATA_OUT); 3012 eeprom_clk(hw); 3013 } 3014 } 3015 3016 #define EEPROM_DATA_RESERVED 0 3017 #define EEPROM_DATA_MAC_ADDR_0 1 3018 #define EEPROM_DATA_MAC_ADDR_1 2 3019 #define EEPROM_DATA_MAC_ADDR_2 3 3020 #define EEPROM_DATA_SUBSYS_ID 4 3021 #define EEPROM_DATA_SUBSYS_VEN_ID 5 3022 #define EEPROM_DATA_PM_CAP 6 3023 3024 /* User defined EEPROM data */ 3025 #define EEPROM_DATA_OTHER_MAC_ADDR 9 3026 3027 /** 3028 * eeprom_read - read from AT93C46 EEPROM 3029 * @hw: The hardware instance. 3030 * @reg: The register offset. 3031 * 3032 * This function reads a word from the AT93C46 EEPROM. 3033 * 3034 * Return the data value. 3035 */ 3036 static u16 eeprom_read(struct ksz_hw *hw, u8 reg) 3037 { 3038 u16 data; 3039 3040 raise_gpio(hw, EEPROM_ACCESS_ENABLE | EEPROM_CHIP_SELECT); 3041 3042 spi_reg(hw, AT93C_READ, reg); 3043 data = spi_r(hw); 3044 3045 drop_gpio(hw, EEPROM_ACCESS_ENABLE | EEPROM_CHIP_SELECT); 3046 3047 return data; 3048 } 3049 3050 /** 3051 * eeprom_write - write to AT93C46 EEPROM 3052 * @hw: The hardware instance. 3053 * @reg: The register offset. 3054 * @data: The data value. 3055 * 3056 * This procedure writes a word to the AT93C46 EEPROM. 3057 */ 3058 static void eeprom_write(struct ksz_hw *hw, u8 reg, u16 data) 3059 { 3060 int timeout; 3061 3062 raise_gpio(hw, EEPROM_ACCESS_ENABLE | EEPROM_CHIP_SELECT); 3063 3064 /* Enable write. */ 3065 spi_reg(hw, AT93C_CODE, AT93C_WR_ON); 3066 drop_gpio(hw, EEPROM_CHIP_SELECT); 3067 udelay(1); 3068 3069 /* Erase the register. */ 3070 raise_gpio(hw, EEPROM_CHIP_SELECT); 3071 spi_reg(hw, AT93C_ERASE, reg); 3072 drop_gpio(hw, EEPROM_CHIP_SELECT); 3073 udelay(1); 3074 3075 /* Check operation complete. */ 3076 raise_gpio(hw, EEPROM_CHIP_SELECT); 3077 timeout = 8; 3078 mdelay(2); 3079 do { 3080 mdelay(1); 3081 } while (!state_gpio(hw, EEPROM_DATA_IN) && --timeout); 3082 drop_gpio(hw, EEPROM_CHIP_SELECT); 3083 udelay(1); 3084 3085 /* Write the register. */ 3086 raise_gpio(hw, EEPROM_CHIP_SELECT); 3087 spi_reg(hw, AT93C_WRITE, reg); 3088 spi_w(hw, data); 3089 drop_gpio(hw, EEPROM_CHIP_SELECT); 3090 udelay(1); 3091 3092 /* Check operation complete. */ 3093 raise_gpio(hw, EEPROM_CHIP_SELECT); 3094 timeout = 8; 3095 mdelay(2); 3096 do { 3097 mdelay(1); 3098 } while (!state_gpio(hw, EEPROM_DATA_IN) && --timeout); 3099 drop_gpio(hw, EEPROM_CHIP_SELECT); 3100 udelay(1); 3101 3102 /* Disable write. */ 3103 raise_gpio(hw, EEPROM_CHIP_SELECT); 3104 spi_reg(hw, AT93C_CODE, AT93C_WR_OFF); 3105 3106 drop_gpio(hw, EEPROM_ACCESS_ENABLE | EEPROM_CHIP_SELECT); 3107 } 3108 3109 /* 3110 * Link detection routines 3111 */ 3112 3113 static u16 advertised_flow_ctrl(struct ksz_port *port, u16 ctrl) 3114 { 3115 ctrl &= ~PORT_AUTO_NEG_SYM_PAUSE; 3116 switch (port->flow_ctrl) { 3117 case PHY_FLOW_CTRL: 3118 ctrl |= PORT_AUTO_NEG_SYM_PAUSE; 3119 break; 3120 /* Not supported. */ 3121 case PHY_TX_ONLY: 3122 case PHY_RX_ONLY: 3123 default: 3124 break; 3125 } 3126 return ctrl; 3127 } 3128 3129 static void set_flow_ctrl(struct ksz_hw *hw, int rx, int tx) 3130 { 3131 u32 rx_cfg; 3132 u32 tx_cfg; 3133 3134 rx_cfg = hw->rx_cfg; 3135 tx_cfg = hw->tx_cfg; 3136 if (rx) 3137 hw->rx_cfg |= DMA_RX_FLOW_ENABLE; 3138 else 3139 hw->rx_cfg &= ~DMA_RX_FLOW_ENABLE; 3140 if (tx) 3141 hw->tx_cfg |= DMA_TX_FLOW_ENABLE; 3142 else 3143 hw->tx_cfg &= ~DMA_TX_FLOW_ENABLE; 3144 if (hw->enabled) { 3145 if (rx_cfg != hw->rx_cfg) 3146 writel(hw->rx_cfg, hw->io + KS_DMA_RX_CTRL); 3147 if (tx_cfg != hw->tx_cfg) 3148 writel(hw->tx_cfg, hw->io + KS_DMA_TX_CTRL); 3149 } 3150 } 3151 3152 static void determine_flow_ctrl(struct ksz_hw *hw, struct ksz_port *port, 3153 u16 local, u16 remote) 3154 { 3155 int rx; 3156 int tx; 3157 3158 if (hw->overrides & PAUSE_FLOW_CTRL) 3159 return; 3160 3161 rx = tx = 0; 3162 if (port->force_link) 3163 rx = tx = 1; 3164 if (remote & LPA_PAUSE_CAP) { 3165 if (local & ADVERTISE_PAUSE_CAP) { 3166 rx = tx = 1; 3167 } else if ((remote & LPA_PAUSE_ASYM) && 3168 (local & 3169 (ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM)) == 3170 ADVERTISE_PAUSE_ASYM) { 3171 tx = 1; 3172 } 3173 } else if (remote & LPA_PAUSE_ASYM) { 3174 if ((local & (ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM)) 3175 == (ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM)) 3176 rx = 1; 3177 } 3178 if (!hw->ksz_switch) 3179 set_flow_ctrl(hw, rx, tx); 3180 } 3181 3182 static inline void port_cfg_change(struct ksz_hw *hw, struct ksz_port *port, 3183 struct ksz_port_info *info, u16 link_status) 3184 { 3185 if ((hw->features & HALF_DUPLEX_SIGNAL_BUG) && 3186 !(hw->overrides & PAUSE_FLOW_CTRL)) { 3187 u32 cfg = hw->tx_cfg; 3188 3189 /* Disable flow control in the half duplex mode. */ 3190 if (1 == info->duplex) 3191 hw->tx_cfg &= ~DMA_TX_FLOW_ENABLE; 3192 if (hw->enabled && cfg != hw->tx_cfg) 3193 writel(hw->tx_cfg, hw->io + KS_DMA_TX_CTRL); 3194 } 3195 } 3196 3197 /** 3198 * port_get_link_speed - get current link status 3199 * @port: The port instance. 3200 * 3201 * This routine reads PHY registers to determine the current link status of the 3202 * switch ports. 3203 */ 3204 static void port_get_link_speed(struct ksz_port *port) 3205 { 3206 uint interrupt; 3207 struct ksz_port_info *info; 3208 struct ksz_port_info *linked = NULL; 3209 struct ksz_hw *hw = port->hw; 3210 u16 data; 3211 u16 status; 3212 u8 local; 3213 u8 remote; 3214 int i; 3215 int p; 3216 int change = 0; 3217 3218 interrupt = hw_block_intr(hw); 3219 3220 for (i = 0, p = port->first_port; i < port->port_cnt; i++, p++) { 3221 info = &hw->port_info[p]; 3222 port_r16(hw, p, KS884X_PORT_CTRL_4_OFFSET, &data); 3223 port_r16(hw, p, KS884X_PORT_STATUS_OFFSET, &status); 3224 3225 /* 3226 * Link status is changing all the time even when there is no 3227 * cable connection! 3228 */ 3229 remote = status & (PORT_AUTO_NEG_COMPLETE | 3230 PORT_STATUS_LINK_GOOD); 3231 local = (u8) data; 3232 3233 /* No change to status. */ 3234 if (local == info->advertised && remote == info->partner) 3235 continue; 3236 3237 info->advertised = local; 3238 info->partner = remote; 3239 if (status & PORT_STATUS_LINK_GOOD) { 3240 3241 /* Remember the first linked port. */ 3242 if (!linked) 3243 linked = info; 3244 3245 info->tx_rate = 10 * TX_RATE_UNIT; 3246 if (status & PORT_STATUS_SPEED_100MBIT) 3247 info->tx_rate = 100 * TX_RATE_UNIT; 3248 3249 info->duplex = 1; 3250 if (status & PORT_STATUS_FULL_DUPLEX) 3251 info->duplex = 2; 3252 3253 if (media_connected != info->state) { 3254 hw_r_phy(hw, p, KS884X_PHY_AUTO_NEG_OFFSET, 3255 &data); 3256 hw_r_phy(hw, p, KS884X_PHY_REMOTE_CAP_OFFSET, 3257 &status); 3258 determine_flow_ctrl(hw, port, data, status); 3259 if (hw->ksz_switch) { 3260 port_cfg_back_pressure(hw, p, 3261 (1 == info->duplex)); 3262 } 3263 change |= 1 << i; 3264 port_cfg_change(hw, port, info, status); 3265 } 3266 info->state = media_connected; 3267 } else { 3268 if (media_disconnected != info->state) { 3269 change |= 1 << i; 3270 3271 /* Indicate the link just goes down. */ 3272 hw->port_mib[p].link_down = 1; 3273 } 3274 info->state = media_disconnected; 3275 } 3276 hw->port_mib[p].state = (u8) info->state; 3277 } 3278 3279 if (linked && media_disconnected == port->linked->state) 3280 port->linked = linked; 3281 3282 hw_restore_intr(hw, interrupt); 3283 } 3284 3285 #define PHY_RESET_TIMEOUT 10 3286 3287 /** 3288 * port_set_link_speed - set port speed 3289 * @port: The port instance. 3290 * 3291 * This routine sets the link speed of the switch ports. 3292 */ 3293 static void port_set_link_speed(struct ksz_port *port) 3294 { 3295 struct ksz_hw *hw = port->hw; 3296 u16 data; 3297 u16 cfg; 3298 u8 status; 3299 int i; 3300 int p; 3301 3302 for (i = 0, p = port->first_port; i < port->port_cnt; i++, p++) { 3303 port_r16(hw, p, KS884X_PORT_CTRL_4_OFFSET, &data); 3304 port_r8(hw, p, KS884X_PORT_STATUS_OFFSET, &status); 3305 3306 cfg = 0; 3307 if (status & PORT_STATUS_LINK_GOOD) 3308 cfg = data; 3309 3310 data |= PORT_AUTO_NEG_ENABLE; 3311 data = advertised_flow_ctrl(port, data); 3312 3313 data |= PORT_AUTO_NEG_100BTX_FD | PORT_AUTO_NEG_100BTX | 3314 PORT_AUTO_NEG_10BT_FD | PORT_AUTO_NEG_10BT; 3315 3316 /* Check if manual configuration is specified by the user. */ 3317 if (port->speed || port->duplex) { 3318 if (10 == port->speed) 3319 data &= ~(PORT_AUTO_NEG_100BTX_FD | 3320 PORT_AUTO_NEG_100BTX); 3321 else if (100 == port->speed) 3322 data &= ~(PORT_AUTO_NEG_10BT_FD | 3323 PORT_AUTO_NEG_10BT); 3324 if (1 == port->duplex) 3325 data &= ~(PORT_AUTO_NEG_100BTX_FD | 3326 PORT_AUTO_NEG_10BT_FD); 3327 else if (2 == port->duplex) 3328 data &= ~(PORT_AUTO_NEG_100BTX | 3329 PORT_AUTO_NEG_10BT); 3330 } 3331 if (data != cfg) { 3332 data |= PORT_AUTO_NEG_RESTART; 3333 port_w16(hw, p, KS884X_PORT_CTRL_4_OFFSET, data); 3334 } 3335 } 3336 } 3337 3338 /** 3339 * port_force_link_speed - force port speed 3340 * @port: The port instance. 3341 * 3342 * This routine forces the link speed of the switch ports. 3343 */ 3344 static void port_force_link_speed(struct ksz_port *port) 3345 { 3346 struct ksz_hw *hw = port->hw; 3347 u16 data; 3348 int i; 3349 int phy; 3350 int p; 3351 3352 for (i = 0, p = port->first_port; i < port->port_cnt; i++, p++) { 3353 phy = KS884X_PHY_1_CTRL_OFFSET + p * PHY_CTRL_INTERVAL; 3354 hw_r_phy_ctrl(hw, phy, &data); 3355 3356 data &= ~BMCR_ANENABLE; 3357 3358 if (10 == port->speed) 3359 data &= ~BMCR_SPEED100; 3360 else if (100 == port->speed) 3361 data |= BMCR_SPEED100; 3362 if (1 == port->duplex) 3363 data &= ~BMCR_FULLDPLX; 3364 else if (2 == port->duplex) 3365 data |= BMCR_FULLDPLX; 3366 hw_w_phy_ctrl(hw, phy, data); 3367 } 3368 } 3369 3370 static void port_set_power_saving(struct ksz_port *port, int enable) 3371 { 3372 struct ksz_hw *hw = port->hw; 3373 int i; 3374 int p; 3375 3376 for (i = 0, p = port->first_port; i < port->port_cnt; i++, p++) 3377 port_cfg(hw, p, 3378 KS884X_PORT_CTRL_4_OFFSET, PORT_POWER_DOWN, enable); 3379 } 3380 3381 /* 3382 * KSZ8841 power management functions 3383 */ 3384 3385 /** 3386 * hw_chk_wol_pme_status - check PMEN pin 3387 * @hw: The hardware instance. 3388 * 3389 * This function is used to check PMEN pin is asserted. 3390 * 3391 * Return 1 if PMEN pin is asserted; otherwise, 0. 3392 */ 3393 static int hw_chk_wol_pme_status(struct ksz_hw *hw) 3394 { 3395 struct dev_info *hw_priv = container_of(hw, struct dev_info, hw); 3396 struct pci_dev *pdev = hw_priv->pdev; 3397 u16 data; 3398 3399 if (!pdev->pm_cap) 3400 return 0; 3401 pci_read_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, &data); 3402 return (data & PCI_PM_CTRL_PME_STATUS) == PCI_PM_CTRL_PME_STATUS; 3403 } 3404 3405 /** 3406 * hw_clr_wol_pme_status - clear PMEN pin 3407 * @hw: The hardware instance. 3408 * 3409 * This routine is used to clear PME_Status to deassert PMEN pin. 3410 */ 3411 static void hw_clr_wol_pme_status(struct ksz_hw *hw) 3412 { 3413 struct dev_info *hw_priv = container_of(hw, struct dev_info, hw); 3414 struct pci_dev *pdev = hw_priv->pdev; 3415 u16 data; 3416 3417 if (!pdev->pm_cap) 3418 return; 3419 3420 /* Clear PME_Status to deassert PMEN pin. */ 3421 pci_read_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, &data); 3422 data |= PCI_PM_CTRL_PME_STATUS; 3423 pci_write_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, data); 3424 } 3425 3426 /** 3427 * hw_cfg_wol_pme - enable or disable Wake-on-LAN 3428 * @hw: The hardware instance. 3429 * @set: The flag indicating whether to enable or disable. 3430 * 3431 * This routine is used to enable or disable Wake-on-LAN. 3432 */ 3433 static void hw_cfg_wol_pme(struct ksz_hw *hw, int set) 3434 { 3435 struct dev_info *hw_priv = container_of(hw, struct dev_info, hw); 3436 struct pci_dev *pdev = hw_priv->pdev; 3437 u16 data; 3438 3439 if (!pdev->pm_cap) 3440 return; 3441 pci_read_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, &data); 3442 data &= ~PCI_PM_CTRL_STATE_MASK; 3443 if (set) 3444 data |= PCI_PM_CTRL_PME_ENABLE | PCI_D3hot; 3445 else 3446 data &= ~PCI_PM_CTRL_PME_ENABLE; 3447 pci_write_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, data); 3448 } 3449 3450 /** 3451 * hw_cfg_wol - configure Wake-on-LAN features 3452 * @hw: The hardware instance. 3453 * @frame: The pattern frame bit. 3454 * @set: The flag indicating whether to enable or disable. 3455 * 3456 * This routine is used to enable or disable certain Wake-on-LAN features. 3457 */ 3458 static void hw_cfg_wol(struct ksz_hw *hw, u16 frame, int set) 3459 { 3460 u16 data; 3461 3462 data = readw(hw->io + KS8841_WOL_CTRL_OFFSET); 3463 if (set) 3464 data |= frame; 3465 else 3466 data &= ~frame; 3467 writew(data, hw->io + KS8841_WOL_CTRL_OFFSET); 3468 } 3469 3470 /** 3471 * hw_set_wol_frame - program Wake-on-LAN pattern 3472 * @hw: The hardware instance. 3473 * @i: The frame index. 3474 * @mask_size: The size of the mask. 3475 * @mask: Mask to ignore certain bytes in the pattern. 3476 * @frame_size: The size of the frame. 3477 * @pattern: The frame data. 3478 * 3479 * This routine is used to program Wake-on-LAN pattern. 3480 */ 3481 static void hw_set_wol_frame(struct ksz_hw *hw, int i, uint mask_size, 3482 const u8 *mask, uint frame_size, const u8 *pattern) 3483 { 3484 int bits; 3485 int from; 3486 int len; 3487 int to; 3488 u32 crc; 3489 u8 data[64]; 3490 u8 val = 0; 3491 3492 if (frame_size > mask_size * 8) 3493 frame_size = mask_size * 8; 3494 if (frame_size > 64) 3495 frame_size = 64; 3496 3497 i *= 0x10; 3498 writel(0, hw->io + KS8841_WOL_FRAME_BYTE0_OFFSET + i); 3499 writel(0, hw->io + KS8841_WOL_FRAME_BYTE2_OFFSET + i); 3500 3501 bits = len = from = to = 0; 3502 do { 3503 if (bits) { 3504 if ((val & 1)) 3505 data[to++] = pattern[from]; 3506 val >>= 1; 3507 ++from; 3508 --bits; 3509 } else { 3510 val = mask[len]; 3511 writeb(val, hw->io + KS8841_WOL_FRAME_BYTE0_OFFSET + i 3512 + len); 3513 ++len; 3514 if (val) 3515 bits = 8; 3516 else 3517 from += 8; 3518 } 3519 } while (from < (int) frame_size); 3520 if (val) { 3521 bits = mask[len - 1]; 3522 val <<= (from % 8); 3523 bits &= ~val; 3524 writeb(bits, hw->io + KS8841_WOL_FRAME_BYTE0_OFFSET + i + len - 3525 1); 3526 } 3527 crc = ether_crc(to, data); 3528 writel(crc, hw->io + KS8841_WOL_FRAME_CRC_OFFSET + i); 3529 } 3530 3531 /** 3532 * hw_add_wol_arp - add ARP pattern 3533 * @hw: The hardware instance. 3534 * @ip_addr: The IPv4 address assigned to the device. 3535 * 3536 * This routine is used to add ARP pattern for waking up the host. 3537 */ 3538 static void hw_add_wol_arp(struct ksz_hw *hw, const u8 *ip_addr) 3539 { 3540 static const u8 mask[6] = { 0x3F, 0xF0, 0x3F, 0x00, 0xC0, 0x03 }; 3541 u8 pattern[42] = { 3542 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 3543 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 3544 0x08, 0x06, 3545 0x00, 0x01, 0x08, 0x00, 0x06, 0x04, 0x00, 0x01, 3546 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 3547 0x00, 0x00, 0x00, 0x00, 3548 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 3549 0x00, 0x00, 0x00, 0x00 }; 3550 3551 memcpy(&pattern[38], ip_addr, 4); 3552 hw_set_wol_frame(hw, 3, 6, mask, 42, pattern); 3553 } 3554 3555 /** 3556 * hw_add_wol_bcast - add broadcast pattern 3557 * @hw: The hardware instance. 3558 * 3559 * This routine is used to add broadcast pattern for waking up the host. 3560 */ 3561 static void hw_add_wol_bcast(struct ksz_hw *hw) 3562 { 3563 static const u8 mask[] = { 0x3F }; 3564 static const u8 pattern[] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF }; 3565 3566 hw_set_wol_frame(hw, 2, 1, mask, ETH_ALEN, pattern); 3567 } 3568 3569 /** 3570 * hw_add_wol_mcast - add multicast pattern 3571 * @hw: The hardware instance. 3572 * 3573 * This routine is used to add multicast pattern for waking up the host. 3574 * 3575 * It is assumed the multicast packet is the ICMPv6 neighbor solicitation used 3576 * by IPv6 ping command. Note that multicast packets are filtred through the 3577 * multicast hash table, so not all multicast packets can wake up the host. 3578 */ 3579 static void hw_add_wol_mcast(struct ksz_hw *hw) 3580 { 3581 static const u8 mask[] = { 0x3F }; 3582 u8 pattern[] = { 0x33, 0x33, 0xFF, 0x00, 0x00, 0x00 }; 3583 3584 memcpy(&pattern[3], &hw->override_addr[3], 3); 3585 hw_set_wol_frame(hw, 1, 1, mask, 6, pattern); 3586 } 3587 3588 /** 3589 * hw_add_wol_ucast - add unicast pattern 3590 * @hw: The hardware instance. 3591 * 3592 * This routine is used to add unicast pattern to wakeup the host. 3593 * 3594 * It is assumed the unicast packet is directed to the device, as the hardware 3595 * can only receive them in normal case. 3596 */ 3597 static void hw_add_wol_ucast(struct ksz_hw *hw) 3598 { 3599 static const u8 mask[] = { 0x3F }; 3600 3601 hw_set_wol_frame(hw, 0, 1, mask, ETH_ALEN, hw->override_addr); 3602 } 3603 3604 /** 3605 * hw_enable_wol - enable Wake-on-LAN 3606 * @hw: The hardware instance. 3607 * @wol_enable: The Wake-on-LAN settings. 3608 * @net_addr: The IPv4 address assigned to the device. 3609 * 3610 * This routine is used to enable Wake-on-LAN depending on driver settings. 3611 */ 3612 static void hw_enable_wol(struct ksz_hw *hw, u32 wol_enable, const u8 *net_addr) 3613 { 3614 hw_cfg_wol(hw, KS8841_WOL_MAGIC_ENABLE, (wol_enable & WAKE_MAGIC)); 3615 hw_cfg_wol(hw, KS8841_WOL_FRAME0_ENABLE, (wol_enable & WAKE_UCAST)); 3616 hw_add_wol_ucast(hw); 3617 hw_cfg_wol(hw, KS8841_WOL_FRAME1_ENABLE, (wol_enable & WAKE_MCAST)); 3618 hw_add_wol_mcast(hw); 3619 hw_cfg_wol(hw, KS8841_WOL_FRAME2_ENABLE, (wol_enable & WAKE_BCAST)); 3620 hw_cfg_wol(hw, KS8841_WOL_FRAME3_ENABLE, (wol_enable & WAKE_ARP)); 3621 hw_add_wol_arp(hw, net_addr); 3622 } 3623 3624 /** 3625 * hw_init - check driver is correct for the hardware 3626 * @hw: The hardware instance. 3627 * 3628 * This function checks the hardware is correct for this driver and sets the 3629 * hardware up for proper initialization. 3630 * 3631 * Return number of ports or 0 if not right. 3632 */ 3633 static int hw_init(struct ksz_hw *hw) 3634 { 3635 int rc = 0; 3636 u16 data; 3637 u16 revision; 3638 3639 /* Set bus speed to 125MHz. */ 3640 writew(BUS_SPEED_125_MHZ, hw->io + KS884X_BUS_CTRL_OFFSET); 3641 3642 /* Check KSZ884x chip ID. */ 3643 data = readw(hw->io + KS884X_CHIP_ID_OFFSET); 3644 3645 revision = (data & KS884X_REVISION_MASK) >> KS884X_REVISION_SHIFT; 3646 data &= KS884X_CHIP_ID_MASK_41; 3647 if (REG_CHIP_ID_41 == data) 3648 rc = 1; 3649 else if (REG_CHIP_ID_42 == data) 3650 rc = 2; 3651 else 3652 return 0; 3653 3654 /* Setup hardware features or bug workarounds. */ 3655 if (revision <= 1) { 3656 hw->features |= SMALL_PACKET_TX_BUG; 3657 if (1 == rc) 3658 hw->features |= HALF_DUPLEX_SIGNAL_BUG; 3659 } 3660 return rc; 3661 } 3662 3663 /** 3664 * hw_reset - reset the hardware 3665 * @hw: The hardware instance. 3666 * 3667 * This routine resets the hardware. 3668 */ 3669 static void hw_reset(struct ksz_hw *hw) 3670 { 3671 writew(GLOBAL_SOFTWARE_RESET, hw->io + KS884X_GLOBAL_CTRL_OFFSET); 3672 3673 /* Wait for device to reset. */ 3674 mdelay(10); 3675 3676 /* Write 0 to clear device reset. */ 3677 writew(0, hw->io + KS884X_GLOBAL_CTRL_OFFSET); 3678 } 3679 3680 /** 3681 * hw_setup - setup the hardware 3682 * @hw: The hardware instance. 3683 * 3684 * This routine setup the hardware for proper operation. 3685 */ 3686 static void hw_setup(struct ksz_hw *hw) 3687 { 3688 #if SET_DEFAULT_LED 3689 u16 data; 3690 3691 /* Change default LED mode. */ 3692 data = readw(hw->io + KS8842_SWITCH_CTRL_5_OFFSET); 3693 data &= ~LED_MODE; 3694 data |= SET_DEFAULT_LED; 3695 writew(data, hw->io + KS8842_SWITCH_CTRL_5_OFFSET); 3696 #endif 3697 3698 /* Setup transmit control. */ 3699 hw->tx_cfg = (DMA_TX_PAD_ENABLE | DMA_TX_CRC_ENABLE | 3700 (DMA_BURST_DEFAULT << DMA_BURST_SHIFT) | DMA_TX_ENABLE); 3701 3702 /* Setup receive control. */ 3703 hw->rx_cfg = (DMA_RX_BROADCAST | DMA_RX_UNICAST | 3704 (DMA_BURST_DEFAULT << DMA_BURST_SHIFT) | DMA_RX_ENABLE); 3705 hw->rx_cfg |= KS884X_DMA_RX_MULTICAST; 3706 3707 /* Hardware cannot handle UDP packet in IP fragments. */ 3708 hw->rx_cfg |= (DMA_RX_CSUM_TCP | DMA_RX_CSUM_IP); 3709 3710 if (hw->all_multi) 3711 hw->rx_cfg |= DMA_RX_ALL_MULTICAST; 3712 if (hw->promiscuous) 3713 hw->rx_cfg |= DMA_RX_PROMISCUOUS; 3714 } 3715 3716 /** 3717 * hw_setup_intr - setup interrupt mask 3718 * @hw: The hardware instance. 3719 * 3720 * This routine setup the interrupt mask for proper operation. 3721 */ 3722 static void hw_setup_intr(struct ksz_hw *hw) 3723 { 3724 hw->intr_mask = KS884X_INT_MASK | KS884X_INT_RX_OVERRUN; 3725 } 3726 3727 static void ksz_check_desc_num(struct ksz_desc_info *info) 3728 { 3729 #define MIN_DESC_SHIFT 2 3730 3731 int alloc = info->alloc; 3732 int shift; 3733 3734 shift = 0; 3735 while (!(alloc & 1)) { 3736 shift++; 3737 alloc >>= 1; 3738 } 3739 if (alloc != 1 || shift < MIN_DESC_SHIFT) { 3740 pr_alert("Hardware descriptor numbers not right!\n"); 3741 while (alloc) { 3742 shift++; 3743 alloc >>= 1; 3744 } 3745 if (shift < MIN_DESC_SHIFT) 3746 shift = MIN_DESC_SHIFT; 3747 alloc = 1 << shift; 3748 info->alloc = alloc; 3749 } 3750 info->mask = info->alloc - 1; 3751 } 3752 3753 static void hw_init_desc(struct ksz_desc_info *desc_info, int transmit) 3754 { 3755 int i; 3756 u32 phys = desc_info->ring_phys; 3757 struct ksz_hw_desc *desc = desc_info->ring_virt; 3758 struct ksz_desc *cur = desc_info->ring; 3759 struct ksz_desc *previous = NULL; 3760 3761 for (i = 0; i < desc_info->alloc; i++) { 3762 cur->phw = desc++; 3763 phys += desc_info->size; 3764 previous = cur++; 3765 previous->phw->next = cpu_to_le32(phys); 3766 } 3767 previous->phw->next = cpu_to_le32(desc_info->ring_phys); 3768 previous->sw.buf.rx.end_of_ring = 1; 3769 previous->phw->buf.data = cpu_to_le32(previous->sw.buf.data); 3770 3771 desc_info->avail = desc_info->alloc; 3772 desc_info->last = desc_info->next = 0; 3773 3774 desc_info->cur = desc_info->ring; 3775 } 3776 3777 /** 3778 * hw_set_desc_base - set descriptor base addresses 3779 * @hw: The hardware instance. 3780 * @tx_addr: The transmit descriptor base. 3781 * @rx_addr: The receive descriptor base. 3782 * 3783 * This routine programs the descriptor base addresses after reset. 3784 */ 3785 static void hw_set_desc_base(struct ksz_hw *hw, u32 tx_addr, u32 rx_addr) 3786 { 3787 /* Set base address of Tx/Rx descriptors. */ 3788 writel(tx_addr, hw->io + KS_DMA_TX_ADDR); 3789 writel(rx_addr, hw->io + KS_DMA_RX_ADDR); 3790 } 3791 3792 static void hw_reset_pkts(struct ksz_desc_info *info) 3793 { 3794 info->cur = info->ring; 3795 info->avail = info->alloc; 3796 info->last = info->next = 0; 3797 } 3798 3799 static inline void hw_resume_rx(struct ksz_hw *hw) 3800 { 3801 writel(DMA_START, hw->io + KS_DMA_RX_START); 3802 } 3803 3804 /** 3805 * hw_start_rx - start receiving 3806 * @hw: The hardware instance. 3807 * 3808 * This routine starts the receive function of the hardware. 3809 */ 3810 static void hw_start_rx(struct ksz_hw *hw) 3811 { 3812 writel(hw->rx_cfg, hw->io + KS_DMA_RX_CTRL); 3813 3814 /* Notify when the receive stops. */ 3815 hw->intr_mask |= KS884X_INT_RX_STOPPED; 3816 3817 writel(DMA_START, hw->io + KS_DMA_RX_START); 3818 hw_ack_intr(hw, KS884X_INT_RX_STOPPED); 3819 hw->rx_stop++; 3820 3821 /* Variable overflows. */ 3822 if (0 == hw->rx_stop) 3823 hw->rx_stop = 2; 3824 } 3825 3826 /** 3827 * hw_stop_rx - stop receiving 3828 * @hw: The hardware instance. 3829 * 3830 * This routine stops the receive function of the hardware. 3831 */ 3832 static void hw_stop_rx(struct ksz_hw *hw) 3833 { 3834 hw->rx_stop = 0; 3835 hw_turn_off_intr(hw, KS884X_INT_RX_STOPPED); 3836 writel((hw->rx_cfg & ~DMA_RX_ENABLE), hw->io + KS_DMA_RX_CTRL); 3837 } 3838 3839 /** 3840 * hw_start_tx - start transmitting 3841 * @hw: The hardware instance. 3842 * 3843 * This routine starts the transmit function of the hardware. 3844 */ 3845 static void hw_start_tx(struct ksz_hw *hw) 3846 { 3847 writel(hw->tx_cfg, hw->io + KS_DMA_TX_CTRL); 3848 } 3849 3850 /** 3851 * hw_stop_tx - stop transmitting 3852 * @hw: The hardware instance. 3853 * 3854 * This routine stops the transmit function of the hardware. 3855 */ 3856 static void hw_stop_tx(struct ksz_hw *hw) 3857 { 3858 writel((hw->tx_cfg & ~DMA_TX_ENABLE), hw->io + KS_DMA_TX_CTRL); 3859 } 3860 3861 /** 3862 * hw_disable - disable hardware 3863 * @hw: The hardware instance. 3864 * 3865 * This routine disables the hardware. 3866 */ 3867 static void hw_disable(struct ksz_hw *hw) 3868 { 3869 hw_stop_rx(hw); 3870 hw_stop_tx(hw); 3871 hw->enabled = 0; 3872 } 3873 3874 /** 3875 * hw_enable - enable hardware 3876 * @hw: The hardware instance. 3877 * 3878 * This routine enables the hardware. 3879 */ 3880 static void hw_enable(struct ksz_hw *hw) 3881 { 3882 hw_start_tx(hw); 3883 hw_start_rx(hw); 3884 hw->enabled = 1; 3885 } 3886 3887 /** 3888 * hw_alloc_pkt - allocate enough descriptors for transmission 3889 * @hw: The hardware instance. 3890 * @length: The length of the packet. 3891 * @physical: Number of descriptors required. 3892 * 3893 * This function allocates descriptors for transmission. 3894 * 3895 * Return 0 if not successful; 1 for buffer copy; or number of descriptors. 3896 */ 3897 static int hw_alloc_pkt(struct ksz_hw *hw, int length, int physical) 3898 { 3899 /* Always leave one descriptor free. */ 3900 if (hw->tx_desc_info.avail <= 1) 3901 return 0; 3902 3903 /* Allocate a descriptor for transmission and mark it current. */ 3904 get_tx_pkt(&hw->tx_desc_info, &hw->tx_desc_info.cur); 3905 hw->tx_desc_info.cur->sw.buf.tx.first_seg = 1; 3906 3907 /* Keep track of number of transmit descriptors used so far. */ 3908 ++hw->tx_int_cnt; 3909 hw->tx_size += length; 3910 3911 /* Cannot hold on too much data. */ 3912 if (hw->tx_size >= MAX_TX_HELD_SIZE) 3913 hw->tx_int_cnt = hw->tx_int_mask + 1; 3914 3915 if (physical > hw->tx_desc_info.avail) 3916 return 1; 3917 3918 return hw->tx_desc_info.avail; 3919 } 3920 3921 /** 3922 * hw_send_pkt - mark packet for transmission 3923 * @hw: The hardware instance. 3924 * 3925 * This routine marks the packet for transmission in PCI version. 3926 */ 3927 static void hw_send_pkt(struct ksz_hw *hw) 3928 { 3929 struct ksz_desc *cur = hw->tx_desc_info.cur; 3930 3931 cur->sw.buf.tx.last_seg = 1; 3932 3933 /* Interrupt only after specified number of descriptors used. */ 3934 if (hw->tx_int_cnt > hw->tx_int_mask) { 3935 cur->sw.buf.tx.intr = 1; 3936 hw->tx_int_cnt = 0; 3937 hw->tx_size = 0; 3938 } 3939 3940 /* KSZ8842 supports port directed transmission. */ 3941 cur->sw.buf.tx.dest_port = hw->dst_ports; 3942 3943 release_desc(cur); 3944 3945 writel(0, hw->io + KS_DMA_TX_START); 3946 } 3947 3948 static int empty_addr(u8 *addr) 3949 { 3950 u32 *addr1 = (u32 *) addr; 3951 u16 *addr2 = (u16 *) &addr[4]; 3952 3953 return 0 == *addr1 && 0 == *addr2; 3954 } 3955 3956 /** 3957 * hw_set_addr - set MAC address 3958 * @hw: The hardware instance. 3959 * 3960 * This routine programs the MAC address of the hardware when the address is 3961 * overridden. 3962 */ 3963 static void hw_set_addr(struct ksz_hw *hw) 3964 { 3965 int i; 3966 3967 for (i = 0; i < ETH_ALEN; i++) 3968 writeb(hw->override_addr[MAC_ADDR_ORDER(i)], 3969 hw->io + KS884X_ADDR_0_OFFSET + i); 3970 3971 sw_set_addr(hw, hw->override_addr); 3972 } 3973 3974 /** 3975 * hw_read_addr - read MAC address 3976 * @hw: The hardware instance. 3977 * 3978 * This routine retrieves the MAC address of the hardware. 3979 */ 3980 static void hw_read_addr(struct ksz_hw *hw) 3981 { 3982 int i; 3983 3984 for (i = 0; i < ETH_ALEN; i++) 3985 hw->perm_addr[MAC_ADDR_ORDER(i)] = readb(hw->io + 3986 KS884X_ADDR_0_OFFSET + i); 3987 3988 if (!hw->mac_override) { 3989 memcpy(hw->override_addr, hw->perm_addr, ETH_ALEN); 3990 if (empty_addr(hw->override_addr)) { 3991 memcpy(hw->perm_addr, DEFAULT_MAC_ADDRESS, ETH_ALEN); 3992 memcpy(hw->override_addr, DEFAULT_MAC_ADDRESS, 3993 ETH_ALEN); 3994 hw->override_addr[5] += hw->id; 3995 hw_set_addr(hw); 3996 } 3997 } 3998 } 3999 4000 static void hw_ena_add_addr(struct ksz_hw *hw, int index, u8 *mac_addr) 4001 { 4002 int i; 4003 u32 mac_addr_lo; 4004 u32 mac_addr_hi; 4005 4006 mac_addr_hi = 0; 4007 for (i = 0; i < 2; i++) { 4008 mac_addr_hi <<= 8; 4009 mac_addr_hi |= mac_addr[i]; 4010 } 4011 mac_addr_hi |= ADD_ADDR_ENABLE; 4012 mac_addr_lo = 0; 4013 for (i = 2; i < 6; i++) { 4014 mac_addr_lo <<= 8; 4015 mac_addr_lo |= mac_addr[i]; 4016 } 4017 index *= ADD_ADDR_INCR; 4018 4019 writel(mac_addr_lo, hw->io + index + KS_ADD_ADDR_0_LO); 4020 writel(mac_addr_hi, hw->io + index + KS_ADD_ADDR_0_HI); 4021 } 4022 4023 static void hw_set_add_addr(struct ksz_hw *hw) 4024 { 4025 int i; 4026 4027 for (i = 0; i < ADDITIONAL_ENTRIES; i++) { 4028 if (empty_addr(hw->address[i])) 4029 writel(0, hw->io + ADD_ADDR_INCR * i + 4030 KS_ADD_ADDR_0_HI); 4031 else 4032 hw_ena_add_addr(hw, i, hw->address[i]); 4033 } 4034 } 4035 4036 static int hw_add_addr(struct ksz_hw *hw, const u8 *mac_addr) 4037 { 4038 int i; 4039 int j = ADDITIONAL_ENTRIES; 4040 4041 if (ether_addr_equal(hw->override_addr, mac_addr)) 4042 return 0; 4043 for (i = 0; i < hw->addr_list_size; i++) { 4044 if (ether_addr_equal(hw->address[i], mac_addr)) 4045 return 0; 4046 if (ADDITIONAL_ENTRIES == j && empty_addr(hw->address[i])) 4047 j = i; 4048 } 4049 if (j < ADDITIONAL_ENTRIES) { 4050 memcpy(hw->address[j], mac_addr, ETH_ALEN); 4051 hw_ena_add_addr(hw, j, hw->address[j]); 4052 return 0; 4053 } 4054 return -1; 4055 } 4056 4057 static int hw_del_addr(struct ksz_hw *hw, const u8 *mac_addr) 4058 { 4059 int i; 4060 4061 for (i = 0; i < hw->addr_list_size; i++) { 4062 if (ether_addr_equal(hw->address[i], mac_addr)) { 4063 eth_zero_addr(hw->address[i]); 4064 writel(0, hw->io + ADD_ADDR_INCR * i + 4065 KS_ADD_ADDR_0_HI); 4066 return 0; 4067 } 4068 } 4069 return -1; 4070 } 4071 4072 /** 4073 * hw_clr_multicast - clear multicast addresses 4074 * @hw: The hardware instance. 4075 * 4076 * This routine removes all multicast addresses set in the hardware. 4077 */ 4078 static void hw_clr_multicast(struct ksz_hw *hw) 4079 { 4080 int i; 4081 4082 for (i = 0; i < HW_MULTICAST_SIZE; i++) { 4083 hw->multi_bits[i] = 0; 4084 4085 writeb(0, hw->io + KS884X_MULTICAST_0_OFFSET + i); 4086 } 4087 } 4088 4089 /** 4090 * hw_set_grp_addr - set multicast addresses 4091 * @hw: The hardware instance. 4092 * 4093 * This routine programs multicast addresses for the hardware to accept those 4094 * addresses. 4095 */ 4096 static void hw_set_grp_addr(struct ksz_hw *hw) 4097 { 4098 int i; 4099 int index; 4100 int position; 4101 int value; 4102 4103 memset(hw->multi_bits, 0, sizeof(u8) * HW_MULTICAST_SIZE); 4104 4105 for (i = 0; i < hw->multi_list_size; i++) { 4106 position = (ether_crc(6, hw->multi_list[i]) >> 26) & 0x3f; 4107 index = position >> 3; 4108 value = 1 << (position & 7); 4109 hw->multi_bits[index] |= (u8) value; 4110 } 4111 4112 for (i = 0; i < HW_MULTICAST_SIZE; i++) 4113 writeb(hw->multi_bits[i], hw->io + KS884X_MULTICAST_0_OFFSET + 4114 i); 4115 } 4116 4117 /** 4118 * hw_set_multicast - enable or disable all multicast receiving 4119 * @hw: The hardware instance. 4120 * @multicast: To turn on or off the all multicast feature. 4121 * 4122 * This routine enables/disables the hardware to accept all multicast packets. 4123 */ 4124 static void hw_set_multicast(struct ksz_hw *hw, u8 multicast) 4125 { 4126 /* Stop receiving for reconfiguration. */ 4127 hw_stop_rx(hw); 4128 4129 if (multicast) 4130 hw->rx_cfg |= DMA_RX_ALL_MULTICAST; 4131 else 4132 hw->rx_cfg &= ~DMA_RX_ALL_MULTICAST; 4133 4134 if (hw->enabled) 4135 hw_start_rx(hw); 4136 } 4137 4138 /** 4139 * hw_set_promiscuous - enable or disable promiscuous receiving 4140 * @hw: The hardware instance. 4141 * @prom: To turn on or off the promiscuous feature. 4142 * 4143 * This routine enables/disables the hardware to accept all packets. 4144 */ 4145 static void hw_set_promiscuous(struct ksz_hw *hw, u8 prom) 4146 { 4147 /* Stop receiving for reconfiguration. */ 4148 hw_stop_rx(hw); 4149 4150 if (prom) 4151 hw->rx_cfg |= DMA_RX_PROMISCUOUS; 4152 else 4153 hw->rx_cfg &= ~DMA_RX_PROMISCUOUS; 4154 4155 if (hw->enabled) 4156 hw_start_rx(hw); 4157 } 4158 4159 /** 4160 * sw_enable - enable the switch 4161 * @hw: The hardware instance. 4162 * @enable: The flag to enable or disable the switch 4163 * 4164 * This routine is used to enable/disable the switch in KSZ8842. 4165 */ 4166 static void sw_enable(struct ksz_hw *hw, int enable) 4167 { 4168 int port; 4169 4170 for (port = 0; port < SWITCH_PORT_NUM; port++) { 4171 if (hw->dev_count > 1) { 4172 /* Set port-base vlan membership with host port. */ 4173 sw_cfg_port_base_vlan(hw, port, 4174 HOST_MASK | (1 << port)); 4175 port_set_stp_state(hw, port, STP_STATE_DISABLED); 4176 } else { 4177 sw_cfg_port_base_vlan(hw, port, PORT_MASK); 4178 port_set_stp_state(hw, port, STP_STATE_FORWARDING); 4179 } 4180 } 4181 if (hw->dev_count > 1) 4182 port_set_stp_state(hw, SWITCH_PORT_NUM, STP_STATE_SIMPLE); 4183 else 4184 port_set_stp_state(hw, SWITCH_PORT_NUM, STP_STATE_FORWARDING); 4185 4186 if (enable) 4187 enable = KS8842_START; 4188 writew(enable, hw->io + KS884X_CHIP_ID_OFFSET); 4189 } 4190 4191 /** 4192 * sw_setup - setup the switch 4193 * @hw: The hardware instance. 4194 * 4195 * This routine setup the hardware switch engine for default operation. 4196 */ 4197 static void sw_setup(struct ksz_hw *hw) 4198 { 4199 int port; 4200 4201 sw_set_global_ctrl(hw); 4202 4203 /* Enable switch broadcast storm protection at 10% percent rate. */ 4204 sw_init_broad_storm(hw); 4205 hw_cfg_broad_storm(hw, BROADCAST_STORM_PROTECTION_RATE); 4206 for (port = 0; port < SWITCH_PORT_NUM; port++) 4207 sw_ena_broad_storm(hw, port); 4208 4209 sw_init_prio(hw); 4210 4211 sw_init_mirror(hw); 4212 4213 sw_init_prio_rate(hw); 4214 4215 sw_init_vlan(hw); 4216 4217 if (hw->features & STP_SUPPORT) 4218 sw_init_stp(hw); 4219 if (!sw_chk(hw, KS8842_SWITCH_CTRL_1_OFFSET, 4220 SWITCH_TX_FLOW_CTRL | SWITCH_RX_FLOW_CTRL)) 4221 hw->overrides |= PAUSE_FLOW_CTRL; 4222 sw_enable(hw, 1); 4223 } 4224 4225 /** 4226 * ksz_start_timer - start kernel timer 4227 * @info: Kernel timer information. 4228 * @time: The time tick. 4229 * 4230 * This routine starts the kernel timer after the specified time tick. 4231 */ 4232 static void ksz_start_timer(struct ksz_timer_info *info, int time) 4233 { 4234 info->cnt = 0; 4235 info->timer.expires = jiffies + time; 4236 add_timer(&info->timer); 4237 4238 /* infinity */ 4239 info->max = -1; 4240 } 4241 4242 /** 4243 * ksz_stop_timer - stop kernel timer 4244 * @info: Kernel timer information. 4245 * 4246 * This routine stops the kernel timer. 4247 */ 4248 static void ksz_stop_timer(struct ksz_timer_info *info) 4249 { 4250 if (info->max) { 4251 info->max = 0; 4252 del_timer_sync(&info->timer); 4253 } 4254 } 4255 4256 static void ksz_init_timer(struct ksz_timer_info *info, int period, 4257 void (*function)(struct timer_list *)) 4258 { 4259 info->max = 0; 4260 info->period = period; 4261 timer_setup(&info->timer, function, 0); 4262 } 4263 4264 static void ksz_update_timer(struct ksz_timer_info *info) 4265 { 4266 ++info->cnt; 4267 if (info->max > 0) { 4268 if (info->cnt < info->max) { 4269 info->timer.expires = jiffies + info->period; 4270 add_timer(&info->timer); 4271 } else 4272 info->max = 0; 4273 } else if (info->max < 0) { 4274 info->timer.expires = jiffies + info->period; 4275 add_timer(&info->timer); 4276 } 4277 } 4278 4279 /** 4280 * ksz_alloc_soft_desc - allocate software descriptors 4281 * @desc_info: Descriptor information structure. 4282 * @transmit: Indication that descriptors are for transmit. 4283 * 4284 * This local function allocates software descriptors for manipulation in 4285 * memory. 4286 * 4287 * Return 0 if successful. 4288 */ 4289 static int ksz_alloc_soft_desc(struct ksz_desc_info *desc_info, int transmit) 4290 { 4291 desc_info->ring = kcalloc(desc_info->alloc, sizeof(struct ksz_desc), 4292 GFP_KERNEL); 4293 if (!desc_info->ring) 4294 return 1; 4295 hw_init_desc(desc_info, transmit); 4296 return 0; 4297 } 4298 4299 /** 4300 * ksz_alloc_desc - allocate hardware descriptors 4301 * @adapter: Adapter information structure. 4302 * 4303 * This local function allocates hardware descriptors for receiving and 4304 * transmitting. 4305 * 4306 * Return 0 if successful. 4307 */ 4308 static int ksz_alloc_desc(struct dev_info *adapter) 4309 { 4310 struct ksz_hw *hw = &adapter->hw; 4311 int offset; 4312 4313 /* Allocate memory for RX & TX descriptors. */ 4314 adapter->desc_pool.alloc_size = 4315 hw->rx_desc_info.size * hw->rx_desc_info.alloc + 4316 hw->tx_desc_info.size * hw->tx_desc_info.alloc + 4317 DESC_ALIGNMENT; 4318 4319 adapter->desc_pool.alloc_virt = 4320 dma_alloc_coherent(&adapter->pdev->dev, 4321 adapter->desc_pool.alloc_size, 4322 &adapter->desc_pool.dma_addr, GFP_KERNEL); 4323 if (adapter->desc_pool.alloc_virt == NULL) { 4324 adapter->desc_pool.alloc_size = 0; 4325 return 1; 4326 } 4327 4328 /* Align to the next cache line boundary. */ 4329 offset = (((ulong) adapter->desc_pool.alloc_virt % DESC_ALIGNMENT) ? 4330 (DESC_ALIGNMENT - 4331 ((ulong) adapter->desc_pool.alloc_virt % DESC_ALIGNMENT)) : 0); 4332 adapter->desc_pool.virt = adapter->desc_pool.alloc_virt + offset; 4333 adapter->desc_pool.phys = adapter->desc_pool.dma_addr + offset; 4334 4335 /* Allocate receive/transmit descriptors. */ 4336 hw->rx_desc_info.ring_virt = (struct ksz_hw_desc *) 4337 adapter->desc_pool.virt; 4338 hw->rx_desc_info.ring_phys = adapter->desc_pool.phys; 4339 offset = hw->rx_desc_info.alloc * hw->rx_desc_info.size; 4340 hw->tx_desc_info.ring_virt = (struct ksz_hw_desc *) 4341 (adapter->desc_pool.virt + offset); 4342 hw->tx_desc_info.ring_phys = adapter->desc_pool.phys + offset; 4343 4344 if (ksz_alloc_soft_desc(&hw->rx_desc_info, 0)) 4345 return 1; 4346 if (ksz_alloc_soft_desc(&hw->tx_desc_info, 1)) 4347 return 1; 4348 4349 return 0; 4350 } 4351 4352 /** 4353 * free_dma_buf - release DMA buffer resources 4354 * @adapter: Adapter information structure. 4355 * @dma_buf: pointer to buf 4356 * @direction: to or from device 4357 * 4358 * This routine is just a helper function to release the DMA buffer resources. 4359 */ 4360 static void free_dma_buf(struct dev_info *adapter, struct ksz_dma_buf *dma_buf, 4361 int direction) 4362 { 4363 dma_unmap_single(&adapter->pdev->dev, dma_buf->dma, dma_buf->len, 4364 direction); 4365 dev_kfree_skb(dma_buf->skb); 4366 dma_buf->skb = NULL; 4367 dma_buf->dma = 0; 4368 } 4369 4370 /** 4371 * ksz_init_rx_buffers - initialize receive descriptors 4372 * @adapter: Adapter information structure. 4373 * 4374 * This routine initializes DMA buffers for receiving. 4375 */ 4376 static void ksz_init_rx_buffers(struct dev_info *adapter) 4377 { 4378 int i; 4379 struct ksz_desc *desc; 4380 struct ksz_dma_buf *dma_buf; 4381 struct ksz_hw *hw = &adapter->hw; 4382 struct ksz_desc_info *info = &hw->rx_desc_info; 4383 4384 for (i = 0; i < hw->rx_desc_info.alloc; i++) { 4385 get_rx_pkt(info, &desc); 4386 4387 dma_buf = DMA_BUFFER(desc); 4388 if (dma_buf->skb && dma_buf->len != adapter->mtu) 4389 free_dma_buf(adapter, dma_buf, DMA_FROM_DEVICE); 4390 dma_buf->len = adapter->mtu; 4391 if (!dma_buf->skb) 4392 dma_buf->skb = alloc_skb(dma_buf->len, GFP_ATOMIC); 4393 if (dma_buf->skb && !dma_buf->dma) 4394 dma_buf->dma = dma_map_single(&adapter->pdev->dev, 4395 skb_tail_pointer(dma_buf->skb), 4396 dma_buf->len, 4397 DMA_FROM_DEVICE); 4398 4399 /* Set descriptor. */ 4400 set_rx_buf(desc, dma_buf->dma); 4401 set_rx_len(desc, dma_buf->len); 4402 release_desc(desc); 4403 } 4404 } 4405 4406 /** 4407 * ksz_alloc_mem - allocate memory for hardware descriptors 4408 * @adapter: Adapter information structure. 4409 * 4410 * This function allocates memory for use by hardware descriptors for receiving 4411 * and transmitting. 4412 * 4413 * Return 0 if successful. 4414 */ 4415 static int ksz_alloc_mem(struct dev_info *adapter) 4416 { 4417 struct ksz_hw *hw = &adapter->hw; 4418 4419 /* Determine the number of receive and transmit descriptors. */ 4420 hw->rx_desc_info.alloc = NUM_OF_RX_DESC; 4421 hw->tx_desc_info.alloc = NUM_OF_TX_DESC; 4422 4423 /* Determine how many descriptors to skip transmit interrupt. */ 4424 hw->tx_int_cnt = 0; 4425 hw->tx_int_mask = NUM_OF_TX_DESC / 4; 4426 if (hw->tx_int_mask > 8) 4427 hw->tx_int_mask = 8; 4428 while (hw->tx_int_mask) { 4429 hw->tx_int_cnt++; 4430 hw->tx_int_mask >>= 1; 4431 } 4432 if (hw->tx_int_cnt) { 4433 hw->tx_int_mask = (1 << (hw->tx_int_cnt - 1)) - 1; 4434 hw->tx_int_cnt = 0; 4435 } 4436 4437 /* Determine the descriptor size. */ 4438 hw->rx_desc_info.size = 4439 (((sizeof(struct ksz_hw_desc) + DESC_ALIGNMENT - 1) / 4440 DESC_ALIGNMENT) * DESC_ALIGNMENT); 4441 hw->tx_desc_info.size = 4442 (((sizeof(struct ksz_hw_desc) + DESC_ALIGNMENT - 1) / 4443 DESC_ALIGNMENT) * DESC_ALIGNMENT); 4444 if (hw->rx_desc_info.size != sizeof(struct ksz_hw_desc)) 4445 pr_alert("Hardware descriptor size not right!\n"); 4446 ksz_check_desc_num(&hw->rx_desc_info); 4447 ksz_check_desc_num(&hw->tx_desc_info); 4448 4449 /* Allocate descriptors. */ 4450 if (ksz_alloc_desc(adapter)) 4451 return 1; 4452 4453 return 0; 4454 } 4455 4456 /** 4457 * ksz_free_desc - free software and hardware descriptors 4458 * @adapter: Adapter information structure. 4459 * 4460 * This local routine frees the software and hardware descriptors allocated by 4461 * ksz_alloc_desc(). 4462 */ 4463 static void ksz_free_desc(struct dev_info *adapter) 4464 { 4465 struct ksz_hw *hw = &adapter->hw; 4466 4467 /* Reset descriptor. */ 4468 hw->rx_desc_info.ring_virt = NULL; 4469 hw->tx_desc_info.ring_virt = NULL; 4470 hw->rx_desc_info.ring_phys = 0; 4471 hw->tx_desc_info.ring_phys = 0; 4472 4473 /* Free memory. */ 4474 if (adapter->desc_pool.alloc_virt) 4475 dma_free_coherent(&adapter->pdev->dev, 4476 adapter->desc_pool.alloc_size, 4477 adapter->desc_pool.alloc_virt, 4478 adapter->desc_pool.dma_addr); 4479 4480 /* Reset resource pool. */ 4481 adapter->desc_pool.alloc_size = 0; 4482 adapter->desc_pool.alloc_virt = NULL; 4483 4484 kfree(hw->rx_desc_info.ring); 4485 hw->rx_desc_info.ring = NULL; 4486 kfree(hw->tx_desc_info.ring); 4487 hw->tx_desc_info.ring = NULL; 4488 } 4489 4490 /** 4491 * ksz_free_buffers - free buffers used in the descriptors 4492 * @adapter: Adapter information structure. 4493 * @desc_info: Descriptor information structure. 4494 * @direction: to or from device 4495 * 4496 * This local routine frees buffers used in the DMA buffers. 4497 */ 4498 static void ksz_free_buffers(struct dev_info *adapter, 4499 struct ksz_desc_info *desc_info, int direction) 4500 { 4501 int i; 4502 struct ksz_dma_buf *dma_buf; 4503 struct ksz_desc *desc = desc_info->ring; 4504 4505 for (i = 0; i < desc_info->alloc; i++) { 4506 dma_buf = DMA_BUFFER(desc); 4507 if (dma_buf->skb) 4508 free_dma_buf(adapter, dma_buf, direction); 4509 desc++; 4510 } 4511 } 4512 4513 /** 4514 * ksz_free_mem - free all resources used by descriptors 4515 * @adapter: Adapter information structure. 4516 * 4517 * This local routine frees all the resources allocated by ksz_alloc_mem(). 4518 */ 4519 static void ksz_free_mem(struct dev_info *adapter) 4520 { 4521 /* Free transmit buffers. */ 4522 ksz_free_buffers(adapter, &adapter->hw.tx_desc_info, DMA_TO_DEVICE); 4523 4524 /* Free receive buffers. */ 4525 ksz_free_buffers(adapter, &adapter->hw.rx_desc_info, DMA_FROM_DEVICE); 4526 4527 /* Free descriptors. */ 4528 ksz_free_desc(adapter); 4529 } 4530 4531 static void get_mib_counters(struct ksz_hw *hw, int first, int cnt, 4532 u64 *counter) 4533 { 4534 int i; 4535 int mib; 4536 int port; 4537 struct ksz_port_mib *port_mib; 4538 4539 memset(counter, 0, sizeof(u64) * TOTAL_PORT_COUNTER_NUM); 4540 for (i = 0, port = first; i < cnt; i++, port++) { 4541 port_mib = &hw->port_mib[port]; 4542 for (mib = port_mib->mib_start; mib < hw->mib_cnt; mib++) 4543 counter[mib] += port_mib->counter[mib]; 4544 } 4545 } 4546 4547 /** 4548 * send_packet - send packet 4549 * @skb: Socket buffer. 4550 * @dev: Network device. 4551 * 4552 * This routine is used to send a packet out to the network. 4553 */ 4554 static void send_packet(struct sk_buff *skb, struct net_device *dev) 4555 { 4556 struct ksz_desc *desc; 4557 struct ksz_desc *first; 4558 struct dev_priv *priv = netdev_priv(dev); 4559 struct dev_info *hw_priv = priv->adapter; 4560 struct ksz_hw *hw = &hw_priv->hw; 4561 struct ksz_desc_info *info = &hw->tx_desc_info; 4562 struct ksz_dma_buf *dma_buf; 4563 int len; 4564 int last_frag = skb_shinfo(skb)->nr_frags; 4565 4566 /* 4567 * KSZ8842 with multiple device interfaces needs to be told which port 4568 * to send. 4569 */ 4570 if (hw->dev_count > 1) 4571 hw->dst_ports = 1 << priv->port.first_port; 4572 4573 /* Hardware will pad the length to 60. */ 4574 len = skb->len; 4575 4576 /* Remember the very first descriptor. */ 4577 first = info->cur; 4578 desc = first; 4579 4580 dma_buf = DMA_BUFFER(desc); 4581 if (last_frag) { 4582 int frag; 4583 skb_frag_t *this_frag; 4584 4585 dma_buf->len = skb_headlen(skb); 4586 4587 dma_buf->dma = dma_map_single(&hw_priv->pdev->dev, skb->data, 4588 dma_buf->len, DMA_TO_DEVICE); 4589 set_tx_buf(desc, dma_buf->dma); 4590 set_tx_len(desc, dma_buf->len); 4591 4592 frag = 0; 4593 do { 4594 this_frag = &skb_shinfo(skb)->frags[frag]; 4595 4596 /* Get a new descriptor. */ 4597 get_tx_pkt(info, &desc); 4598 4599 /* Keep track of descriptors used so far. */ 4600 ++hw->tx_int_cnt; 4601 4602 dma_buf = DMA_BUFFER(desc); 4603 dma_buf->len = skb_frag_size(this_frag); 4604 4605 dma_buf->dma = dma_map_single(&hw_priv->pdev->dev, 4606 skb_frag_address(this_frag), 4607 dma_buf->len, 4608 DMA_TO_DEVICE); 4609 set_tx_buf(desc, dma_buf->dma); 4610 set_tx_len(desc, dma_buf->len); 4611 4612 frag++; 4613 if (frag == last_frag) 4614 break; 4615 4616 /* Do not release the last descriptor here. */ 4617 release_desc(desc); 4618 } while (1); 4619 4620 /* current points to the last descriptor. */ 4621 info->cur = desc; 4622 4623 /* Release the first descriptor. */ 4624 release_desc(first); 4625 } else { 4626 dma_buf->len = len; 4627 4628 dma_buf->dma = dma_map_single(&hw_priv->pdev->dev, skb->data, 4629 dma_buf->len, DMA_TO_DEVICE); 4630 set_tx_buf(desc, dma_buf->dma); 4631 set_tx_len(desc, dma_buf->len); 4632 } 4633 4634 if (skb->ip_summed == CHECKSUM_PARTIAL) { 4635 (desc)->sw.buf.tx.csum_gen_tcp = 1; 4636 (desc)->sw.buf.tx.csum_gen_udp = 1; 4637 } 4638 4639 /* 4640 * The last descriptor holds the packet so that it can be returned to 4641 * network subsystem after all descriptors are transmitted. 4642 */ 4643 dma_buf->skb = skb; 4644 4645 hw_send_pkt(hw); 4646 4647 /* Update transmit statistics. */ 4648 dev->stats.tx_packets++; 4649 dev->stats.tx_bytes += len; 4650 } 4651 4652 /** 4653 * transmit_cleanup - clean up transmit descriptors 4654 * @hw_priv: Network device. 4655 * @normal: break if owned 4656 * 4657 * This routine is called to clean up the transmitted buffers. 4658 */ 4659 static void transmit_cleanup(struct dev_info *hw_priv, int normal) 4660 { 4661 int last; 4662 union desc_stat status; 4663 struct ksz_hw *hw = &hw_priv->hw; 4664 struct ksz_desc_info *info = &hw->tx_desc_info; 4665 struct ksz_desc *desc; 4666 struct ksz_dma_buf *dma_buf; 4667 struct net_device *dev = NULL; 4668 4669 spin_lock_irq(&hw_priv->hwlock); 4670 last = info->last; 4671 4672 while (info->avail < info->alloc) { 4673 /* Get next descriptor which is not hardware owned. */ 4674 desc = &info->ring[last]; 4675 status.data = le32_to_cpu(desc->phw->ctrl.data); 4676 if (status.tx.hw_owned) { 4677 if (normal) 4678 break; 4679 else 4680 reset_desc(desc, status); 4681 } 4682 4683 dma_buf = DMA_BUFFER(desc); 4684 dma_unmap_single(&hw_priv->pdev->dev, dma_buf->dma, 4685 dma_buf->len, DMA_TO_DEVICE); 4686 4687 /* This descriptor contains the last buffer in the packet. */ 4688 if (dma_buf->skb) { 4689 dev = dma_buf->skb->dev; 4690 4691 /* Release the packet back to network subsystem. */ 4692 dev_kfree_skb_irq(dma_buf->skb); 4693 dma_buf->skb = NULL; 4694 } 4695 4696 /* Free the transmitted descriptor. */ 4697 last++; 4698 last &= info->mask; 4699 info->avail++; 4700 } 4701 info->last = last; 4702 spin_unlock_irq(&hw_priv->hwlock); 4703 4704 /* Notify the network subsystem that the packet has been sent. */ 4705 if (dev) 4706 netif_trans_update(dev); 4707 } 4708 4709 /** 4710 * tx_done - transmit done processing 4711 * @hw_priv: Network device. 4712 * 4713 * This routine is called when the transmit interrupt is triggered, indicating 4714 * either a packet is sent successfully or there are transmit errors. 4715 */ 4716 static void tx_done(struct dev_info *hw_priv) 4717 { 4718 struct ksz_hw *hw = &hw_priv->hw; 4719 int port; 4720 4721 transmit_cleanup(hw_priv, 1); 4722 4723 for (port = 0; port < hw->dev_count; port++) { 4724 struct net_device *dev = hw->port_info[port].pdev; 4725 4726 if (netif_running(dev) && netif_queue_stopped(dev)) 4727 netif_wake_queue(dev); 4728 } 4729 } 4730 4731 static inline void copy_old_skb(struct sk_buff *old, struct sk_buff *skb) 4732 { 4733 skb->dev = old->dev; 4734 skb->protocol = old->protocol; 4735 skb->ip_summed = old->ip_summed; 4736 skb->csum = old->csum; 4737 skb_set_network_header(skb, ETH_HLEN); 4738 4739 dev_consume_skb_any(old); 4740 } 4741 4742 /** 4743 * netdev_tx - send out packet 4744 * @skb: Socket buffer. 4745 * @dev: Network device. 4746 * 4747 * This function is used by the upper network layer to send out a packet. 4748 * 4749 * Return 0 if successful; otherwise an error code indicating failure. 4750 */ 4751 static netdev_tx_t netdev_tx(struct sk_buff *skb, struct net_device *dev) 4752 { 4753 struct dev_priv *priv = netdev_priv(dev); 4754 struct dev_info *hw_priv = priv->adapter; 4755 struct ksz_hw *hw = &hw_priv->hw; 4756 int left; 4757 int num = 1; 4758 int rc = 0; 4759 4760 if (hw->features & SMALL_PACKET_TX_BUG) { 4761 struct sk_buff *org_skb = skb; 4762 4763 if (skb->len <= 48) { 4764 if (skb_end_pointer(skb) - skb->data >= 50) { 4765 memset(&skb->data[skb->len], 0, 50 - skb->len); 4766 skb->len = 50; 4767 } else { 4768 skb = netdev_alloc_skb(dev, 50); 4769 if (!skb) 4770 return NETDEV_TX_BUSY; 4771 memcpy(skb->data, org_skb->data, org_skb->len); 4772 memset(&skb->data[org_skb->len], 0, 4773 50 - org_skb->len); 4774 skb->len = 50; 4775 copy_old_skb(org_skb, skb); 4776 } 4777 } 4778 } 4779 4780 spin_lock_irq(&hw_priv->hwlock); 4781 4782 num = skb_shinfo(skb)->nr_frags + 1; 4783 left = hw_alloc_pkt(hw, skb->len, num); 4784 if (left) { 4785 if (left < num || 4786 (CHECKSUM_PARTIAL == skb->ip_summed && 4787 skb->protocol == htons(ETH_P_IPV6))) { 4788 struct sk_buff *org_skb = skb; 4789 4790 skb = netdev_alloc_skb(dev, org_skb->len); 4791 if (!skb) { 4792 rc = NETDEV_TX_BUSY; 4793 goto unlock; 4794 } 4795 skb_copy_and_csum_dev(org_skb, skb->data); 4796 org_skb->ip_summed = CHECKSUM_NONE; 4797 skb->len = org_skb->len; 4798 copy_old_skb(org_skb, skb); 4799 } 4800 send_packet(skb, dev); 4801 if (left <= num) 4802 netif_stop_queue(dev); 4803 } else { 4804 /* Stop the transmit queue until packet is allocated. */ 4805 netif_stop_queue(dev); 4806 rc = NETDEV_TX_BUSY; 4807 } 4808 unlock: 4809 spin_unlock_irq(&hw_priv->hwlock); 4810 4811 return rc; 4812 } 4813 4814 /** 4815 * netdev_tx_timeout - transmit timeout processing 4816 * @dev: Network device. 4817 * @txqueue: index of hanging queue 4818 * 4819 * This routine is called when the transmit timer expires. That indicates the 4820 * hardware is not running correctly because transmit interrupts are not 4821 * triggered to free up resources so that the transmit routine can continue 4822 * sending out packets. The hardware is reset to correct the problem. 4823 */ 4824 static void netdev_tx_timeout(struct net_device *dev, unsigned int txqueue) 4825 { 4826 static unsigned long last_reset; 4827 4828 struct dev_priv *priv = netdev_priv(dev); 4829 struct dev_info *hw_priv = priv->adapter; 4830 struct ksz_hw *hw = &hw_priv->hw; 4831 int port; 4832 4833 if (hw->dev_count > 1) { 4834 /* 4835 * Only reset the hardware if time between calls is long 4836 * enough. 4837 */ 4838 if (time_before_eq(jiffies, last_reset + dev->watchdog_timeo)) 4839 hw_priv = NULL; 4840 } 4841 4842 last_reset = jiffies; 4843 if (hw_priv) { 4844 hw_dis_intr(hw); 4845 hw_disable(hw); 4846 4847 transmit_cleanup(hw_priv, 0); 4848 hw_reset_pkts(&hw->rx_desc_info); 4849 hw_reset_pkts(&hw->tx_desc_info); 4850 ksz_init_rx_buffers(hw_priv); 4851 4852 hw_reset(hw); 4853 4854 hw_set_desc_base(hw, 4855 hw->tx_desc_info.ring_phys, 4856 hw->rx_desc_info.ring_phys); 4857 hw_set_addr(hw); 4858 if (hw->all_multi) 4859 hw_set_multicast(hw, hw->all_multi); 4860 else if (hw->multi_list_size) 4861 hw_set_grp_addr(hw); 4862 4863 if (hw->dev_count > 1) { 4864 hw_set_add_addr(hw); 4865 for (port = 0; port < SWITCH_PORT_NUM; port++) { 4866 struct net_device *port_dev; 4867 4868 port_set_stp_state(hw, port, 4869 STP_STATE_DISABLED); 4870 4871 port_dev = hw->port_info[port].pdev; 4872 if (netif_running(port_dev)) 4873 port_set_stp_state(hw, port, 4874 STP_STATE_SIMPLE); 4875 } 4876 } 4877 4878 hw_enable(hw); 4879 hw_ena_intr(hw); 4880 } 4881 4882 netif_trans_update(dev); 4883 netif_wake_queue(dev); 4884 } 4885 4886 static inline void csum_verified(struct sk_buff *skb) 4887 { 4888 unsigned short protocol; 4889 struct iphdr *iph; 4890 4891 protocol = skb->protocol; 4892 skb_reset_network_header(skb); 4893 iph = (struct iphdr *) skb_network_header(skb); 4894 if (protocol == htons(ETH_P_8021Q)) { 4895 protocol = iph->tot_len; 4896 skb_set_network_header(skb, VLAN_HLEN); 4897 iph = (struct iphdr *) skb_network_header(skb); 4898 } 4899 if (protocol == htons(ETH_P_IP)) { 4900 if (iph->protocol == IPPROTO_TCP) 4901 skb->ip_summed = CHECKSUM_UNNECESSARY; 4902 } 4903 } 4904 4905 static inline int rx_proc(struct net_device *dev, struct ksz_hw* hw, 4906 struct ksz_desc *desc, union desc_stat status) 4907 { 4908 int packet_len; 4909 struct dev_priv *priv = netdev_priv(dev); 4910 struct dev_info *hw_priv = priv->adapter; 4911 struct ksz_dma_buf *dma_buf; 4912 struct sk_buff *skb; 4913 4914 /* Received length includes 4-byte CRC. */ 4915 packet_len = status.rx.frame_len - 4; 4916 4917 dma_buf = DMA_BUFFER(desc); 4918 dma_sync_single_for_cpu(&hw_priv->pdev->dev, dma_buf->dma, 4919 packet_len + 4, DMA_FROM_DEVICE); 4920 4921 do { 4922 /* skb->data != skb->head */ 4923 skb = netdev_alloc_skb(dev, packet_len + 2); 4924 if (!skb) { 4925 dev->stats.rx_dropped++; 4926 return -ENOMEM; 4927 } 4928 4929 /* 4930 * Align socket buffer in 4-byte boundary for better 4931 * performance. 4932 */ 4933 skb_reserve(skb, 2); 4934 4935 skb_put_data(skb, dma_buf->skb->data, packet_len); 4936 } while (0); 4937 4938 skb->protocol = eth_type_trans(skb, dev); 4939 4940 if (hw->rx_cfg & (DMA_RX_CSUM_UDP | DMA_RX_CSUM_TCP)) 4941 csum_verified(skb); 4942 4943 /* Update receive statistics. */ 4944 dev->stats.rx_packets++; 4945 dev->stats.rx_bytes += packet_len; 4946 4947 /* Notify upper layer for received packet. */ 4948 netif_rx(skb); 4949 4950 return 0; 4951 } 4952 4953 static int dev_rcv_packets(struct dev_info *hw_priv) 4954 { 4955 int next; 4956 union desc_stat status; 4957 struct ksz_hw *hw = &hw_priv->hw; 4958 struct net_device *dev = hw->port_info[0].pdev; 4959 struct ksz_desc_info *info = &hw->rx_desc_info; 4960 int left = info->alloc; 4961 struct ksz_desc *desc; 4962 int received = 0; 4963 4964 next = info->next; 4965 while (left--) { 4966 /* Get next descriptor which is not hardware owned. */ 4967 desc = &info->ring[next]; 4968 status.data = le32_to_cpu(desc->phw->ctrl.data); 4969 if (status.rx.hw_owned) 4970 break; 4971 4972 /* Status valid only when last descriptor bit is set. */ 4973 if (status.rx.last_desc && status.rx.first_desc) { 4974 if (rx_proc(dev, hw, desc, status)) 4975 goto release_packet; 4976 received++; 4977 } 4978 4979 release_packet: 4980 release_desc(desc); 4981 next++; 4982 next &= info->mask; 4983 } 4984 info->next = next; 4985 4986 return received; 4987 } 4988 4989 static int port_rcv_packets(struct dev_info *hw_priv) 4990 { 4991 int next; 4992 union desc_stat status; 4993 struct ksz_hw *hw = &hw_priv->hw; 4994 struct net_device *dev = hw->port_info[0].pdev; 4995 struct ksz_desc_info *info = &hw->rx_desc_info; 4996 int left = info->alloc; 4997 struct ksz_desc *desc; 4998 int received = 0; 4999 5000 next = info->next; 5001 while (left--) { 5002 /* Get next descriptor which is not hardware owned. */ 5003 desc = &info->ring[next]; 5004 status.data = le32_to_cpu(desc->phw->ctrl.data); 5005 if (status.rx.hw_owned) 5006 break; 5007 5008 if (hw->dev_count > 1) { 5009 /* Get received port number. */ 5010 int p = HW_TO_DEV_PORT(status.rx.src_port); 5011 5012 dev = hw->port_info[p].pdev; 5013 if (!netif_running(dev)) 5014 goto release_packet; 5015 } 5016 5017 /* Status valid only when last descriptor bit is set. */ 5018 if (status.rx.last_desc && status.rx.first_desc) { 5019 if (rx_proc(dev, hw, desc, status)) 5020 goto release_packet; 5021 received++; 5022 } 5023 5024 release_packet: 5025 release_desc(desc); 5026 next++; 5027 next &= info->mask; 5028 } 5029 info->next = next; 5030 5031 return received; 5032 } 5033 5034 static int dev_rcv_special(struct dev_info *hw_priv) 5035 { 5036 int next; 5037 union desc_stat status; 5038 struct ksz_hw *hw = &hw_priv->hw; 5039 struct net_device *dev = hw->port_info[0].pdev; 5040 struct ksz_desc_info *info = &hw->rx_desc_info; 5041 int left = info->alloc; 5042 struct ksz_desc *desc; 5043 int received = 0; 5044 5045 next = info->next; 5046 while (left--) { 5047 /* Get next descriptor which is not hardware owned. */ 5048 desc = &info->ring[next]; 5049 status.data = le32_to_cpu(desc->phw->ctrl.data); 5050 if (status.rx.hw_owned) 5051 break; 5052 5053 if (hw->dev_count > 1) { 5054 /* Get received port number. */ 5055 int p = HW_TO_DEV_PORT(status.rx.src_port); 5056 5057 dev = hw->port_info[p].pdev; 5058 if (!netif_running(dev)) 5059 goto release_packet; 5060 } 5061 5062 /* Status valid only when last descriptor bit is set. */ 5063 if (status.rx.last_desc && status.rx.first_desc) { 5064 /* 5065 * Receive without error. With receive errors 5066 * disabled, packets with receive errors will be 5067 * dropped, so no need to check the error bit. 5068 */ 5069 if (!status.rx.error || (status.data & 5070 KS_DESC_RX_ERROR_COND) == 5071 KS_DESC_RX_ERROR_TOO_LONG) { 5072 if (rx_proc(dev, hw, desc, status)) 5073 goto release_packet; 5074 received++; 5075 } else { 5076 struct dev_priv *priv = netdev_priv(dev); 5077 5078 /* Update receive error statistics. */ 5079 priv->port.counter[OID_COUNTER_RCV_ERROR]++; 5080 } 5081 } 5082 5083 release_packet: 5084 release_desc(desc); 5085 next++; 5086 next &= info->mask; 5087 } 5088 info->next = next; 5089 5090 return received; 5091 } 5092 5093 static void rx_proc_task(struct tasklet_struct *t) 5094 { 5095 struct dev_info *hw_priv = from_tasklet(hw_priv, t, rx_tasklet); 5096 struct ksz_hw *hw = &hw_priv->hw; 5097 5098 if (!hw->enabled) 5099 return; 5100 if (unlikely(!hw_priv->dev_rcv(hw_priv))) { 5101 5102 /* In case receive process is suspended because of overrun. */ 5103 hw_resume_rx(hw); 5104 5105 /* tasklets are interruptible. */ 5106 spin_lock_irq(&hw_priv->hwlock); 5107 hw_turn_on_intr(hw, KS884X_INT_RX_MASK); 5108 spin_unlock_irq(&hw_priv->hwlock); 5109 } else { 5110 hw_ack_intr(hw, KS884X_INT_RX); 5111 tasklet_schedule(&hw_priv->rx_tasklet); 5112 } 5113 } 5114 5115 static void tx_proc_task(struct tasklet_struct *t) 5116 { 5117 struct dev_info *hw_priv = from_tasklet(hw_priv, t, tx_tasklet); 5118 struct ksz_hw *hw = &hw_priv->hw; 5119 5120 hw_ack_intr(hw, KS884X_INT_TX_MASK); 5121 5122 tx_done(hw_priv); 5123 5124 /* tasklets are interruptible. */ 5125 spin_lock_irq(&hw_priv->hwlock); 5126 hw_turn_on_intr(hw, KS884X_INT_TX); 5127 spin_unlock_irq(&hw_priv->hwlock); 5128 } 5129 5130 static inline void handle_rx_stop(struct ksz_hw *hw) 5131 { 5132 /* Receive just has been stopped. */ 5133 if (0 == hw->rx_stop) 5134 hw->intr_mask &= ~KS884X_INT_RX_STOPPED; 5135 else if (hw->rx_stop > 1) { 5136 if (hw->enabled && (hw->rx_cfg & DMA_RX_ENABLE)) { 5137 hw_start_rx(hw); 5138 } else { 5139 hw->intr_mask &= ~KS884X_INT_RX_STOPPED; 5140 hw->rx_stop = 0; 5141 } 5142 } else 5143 /* Receive just has been started. */ 5144 hw->rx_stop++; 5145 } 5146 5147 /** 5148 * netdev_intr - interrupt handling 5149 * @irq: Interrupt number. 5150 * @dev_id: Network device. 5151 * 5152 * This function is called by upper network layer to signal interrupt. 5153 * 5154 * Return IRQ_HANDLED if interrupt is handled. 5155 */ 5156 static irqreturn_t netdev_intr(int irq, void *dev_id) 5157 { 5158 uint int_enable = 0; 5159 struct net_device *dev = (struct net_device *) dev_id; 5160 struct dev_priv *priv = netdev_priv(dev); 5161 struct dev_info *hw_priv = priv->adapter; 5162 struct ksz_hw *hw = &hw_priv->hw; 5163 5164 spin_lock(&hw_priv->hwlock); 5165 5166 hw_read_intr(hw, &int_enable); 5167 5168 /* Not our interrupt! */ 5169 if (!int_enable) { 5170 spin_unlock(&hw_priv->hwlock); 5171 return IRQ_NONE; 5172 } 5173 5174 do { 5175 hw_ack_intr(hw, int_enable); 5176 int_enable &= hw->intr_mask; 5177 5178 if (unlikely(int_enable & KS884X_INT_TX_MASK)) { 5179 hw_dis_intr_bit(hw, KS884X_INT_TX_MASK); 5180 tasklet_schedule(&hw_priv->tx_tasklet); 5181 } 5182 5183 if (likely(int_enable & KS884X_INT_RX)) { 5184 hw_dis_intr_bit(hw, KS884X_INT_RX); 5185 tasklet_schedule(&hw_priv->rx_tasklet); 5186 } 5187 5188 if (unlikely(int_enable & KS884X_INT_RX_OVERRUN)) { 5189 dev->stats.rx_fifo_errors++; 5190 hw_resume_rx(hw); 5191 } 5192 5193 if (unlikely(int_enable & KS884X_INT_PHY)) { 5194 struct ksz_port *port = &priv->port; 5195 5196 hw->features |= LINK_INT_WORKING; 5197 port_get_link_speed(port); 5198 } 5199 5200 if (unlikely(int_enable & KS884X_INT_RX_STOPPED)) { 5201 handle_rx_stop(hw); 5202 break; 5203 } 5204 5205 if (unlikely(int_enable & KS884X_INT_TX_STOPPED)) { 5206 u32 data; 5207 5208 hw->intr_mask &= ~KS884X_INT_TX_STOPPED; 5209 pr_info("Tx stopped\n"); 5210 data = readl(hw->io + KS_DMA_TX_CTRL); 5211 if (!(data & DMA_TX_ENABLE)) 5212 pr_info("Tx disabled\n"); 5213 break; 5214 } 5215 } while (0); 5216 5217 hw_ena_intr(hw); 5218 5219 spin_unlock(&hw_priv->hwlock); 5220 5221 return IRQ_HANDLED; 5222 } 5223 5224 /* 5225 * Linux network device functions 5226 */ 5227 5228 static unsigned long next_jiffies; 5229 5230 #ifdef CONFIG_NET_POLL_CONTROLLER 5231 static void netdev_netpoll(struct net_device *dev) 5232 { 5233 struct dev_priv *priv = netdev_priv(dev); 5234 struct dev_info *hw_priv = priv->adapter; 5235 5236 hw_dis_intr(&hw_priv->hw); 5237 netdev_intr(dev->irq, dev); 5238 } 5239 #endif 5240 5241 static void bridge_change(struct ksz_hw *hw) 5242 { 5243 int port; 5244 u8 member; 5245 struct ksz_switch *sw = hw->ksz_switch; 5246 5247 /* No ports in forwarding state. */ 5248 if (!sw->member) { 5249 port_set_stp_state(hw, SWITCH_PORT_NUM, STP_STATE_SIMPLE); 5250 sw_block_addr(hw); 5251 } 5252 for (port = 0; port < SWITCH_PORT_NUM; port++) { 5253 if (STP_STATE_FORWARDING == sw->port_cfg[port].stp_state) 5254 member = HOST_MASK | sw->member; 5255 else 5256 member = HOST_MASK | (1 << port); 5257 if (member != sw->port_cfg[port].member) 5258 sw_cfg_port_base_vlan(hw, port, member); 5259 } 5260 } 5261 5262 /** 5263 * netdev_close - close network device 5264 * @dev: Network device. 5265 * 5266 * This function process the close operation of network device. This is caused 5267 * by the user command "ifconfig ethX down." 5268 * 5269 * Return 0 if successful; otherwise an error code indicating failure. 5270 */ 5271 static int netdev_close(struct net_device *dev) 5272 { 5273 struct dev_priv *priv = netdev_priv(dev); 5274 struct dev_info *hw_priv = priv->adapter; 5275 struct ksz_port *port = &priv->port; 5276 struct ksz_hw *hw = &hw_priv->hw; 5277 int pi; 5278 5279 netif_stop_queue(dev); 5280 5281 ksz_stop_timer(&priv->monitor_timer_info); 5282 5283 /* Need to shut the port manually in multiple device interfaces mode. */ 5284 if (hw->dev_count > 1) { 5285 port_set_stp_state(hw, port->first_port, STP_STATE_DISABLED); 5286 5287 /* Port is closed. Need to change bridge setting. */ 5288 if (hw->features & STP_SUPPORT) { 5289 pi = 1 << port->first_port; 5290 if (hw->ksz_switch->member & pi) { 5291 hw->ksz_switch->member &= ~pi; 5292 bridge_change(hw); 5293 } 5294 } 5295 } 5296 if (port->first_port > 0) 5297 hw_del_addr(hw, dev->dev_addr); 5298 if (!hw_priv->wol_enable) 5299 port_set_power_saving(port, true); 5300 5301 if (priv->multicast) 5302 --hw->all_multi; 5303 if (priv->promiscuous) 5304 --hw->promiscuous; 5305 5306 hw_priv->opened--; 5307 if (!(hw_priv->opened)) { 5308 ksz_stop_timer(&hw_priv->mib_timer_info); 5309 flush_work(&hw_priv->mib_read); 5310 5311 hw_dis_intr(hw); 5312 hw_disable(hw); 5313 hw_clr_multicast(hw); 5314 5315 /* Delay for receive task to stop scheduling itself. */ 5316 msleep(2000 / HZ); 5317 5318 tasklet_kill(&hw_priv->rx_tasklet); 5319 tasklet_kill(&hw_priv->tx_tasklet); 5320 free_irq(dev->irq, hw_priv->dev); 5321 5322 transmit_cleanup(hw_priv, 0); 5323 hw_reset_pkts(&hw->rx_desc_info); 5324 hw_reset_pkts(&hw->tx_desc_info); 5325 5326 /* Clean out static MAC table when the switch is shutdown. */ 5327 if (hw->features & STP_SUPPORT) 5328 sw_clr_sta_mac_table(hw); 5329 } 5330 5331 return 0; 5332 } 5333 5334 static void hw_cfg_huge_frame(struct dev_info *hw_priv, struct ksz_hw *hw) 5335 { 5336 if (hw->ksz_switch) { 5337 u32 data; 5338 5339 data = readw(hw->io + KS8842_SWITCH_CTRL_2_OFFSET); 5340 if (hw->features & RX_HUGE_FRAME) 5341 data |= SWITCH_HUGE_PACKET; 5342 else 5343 data &= ~SWITCH_HUGE_PACKET; 5344 writew(data, hw->io + KS8842_SWITCH_CTRL_2_OFFSET); 5345 } 5346 if (hw->features & RX_HUGE_FRAME) { 5347 hw->rx_cfg |= DMA_RX_ERROR; 5348 hw_priv->dev_rcv = dev_rcv_special; 5349 } else { 5350 hw->rx_cfg &= ~DMA_RX_ERROR; 5351 if (hw->dev_count > 1) 5352 hw_priv->dev_rcv = port_rcv_packets; 5353 else 5354 hw_priv->dev_rcv = dev_rcv_packets; 5355 } 5356 } 5357 5358 static int prepare_hardware(struct net_device *dev) 5359 { 5360 struct dev_priv *priv = netdev_priv(dev); 5361 struct dev_info *hw_priv = priv->adapter; 5362 struct ksz_hw *hw = &hw_priv->hw; 5363 int rc = 0; 5364 5365 /* Remember the network device that requests interrupts. */ 5366 hw_priv->dev = dev; 5367 rc = request_irq(dev->irq, netdev_intr, IRQF_SHARED, dev->name, dev); 5368 if (rc) 5369 return rc; 5370 tasklet_setup(&hw_priv->rx_tasklet, rx_proc_task); 5371 tasklet_setup(&hw_priv->tx_tasklet, tx_proc_task); 5372 5373 hw->promiscuous = 0; 5374 hw->all_multi = 0; 5375 hw->multi_list_size = 0; 5376 5377 hw_reset(hw); 5378 5379 hw_set_desc_base(hw, 5380 hw->tx_desc_info.ring_phys, hw->rx_desc_info.ring_phys); 5381 hw_set_addr(hw); 5382 hw_cfg_huge_frame(hw_priv, hw); 5383 ksz_init_rx_buffers(hw_priv); 5384 return 0; 5385 } 5386 5387 static void set_media_state(struct net_device *dev, int media_state) 5388 { 5389 struct dev_priv *priv = netdev_priv(dev); 5390 5391 if (media_state == priv->media_state) 5392 netif_carrier_on(dev); 5393 else 5394 netif_carrier_off(dev); 5395 netif_info(priv, link, dev, "link %s\n", 5396 media_state == priv->media_state ? "on" : "off"); 5397 } 5398 5399 /** 5400 * netdev_open - open network device 5401 * @dev: Network device. 5402 * 5403 * This function process the open operation of network device. This is caused 5404 * by the user command "ifconfig ethX up." 5405 * 5406 * Return 0 if successful; otherwise an error code indicating failure. 5407 */ 5408 static int netdev_open(struct net_device *dev) 5409 { 5410 struct dev_priv *priv = netdev_priv(dev); 5411 struct dev_info *hw_priv = priv->adapter; 5412 struct ksz_hw *hw = &hw_priv->hw; 5413 struct ksz_port *port = &priv->port; 5414 int i; 5415 int p; 5416 int rc = 0; 5417 5418 priv->multicast = 0; 5419 priv->promiscuous = 0; 5420 5421 /* Reset device statistics. */ 5422 memset(&dev->stats, 0, sizeof(struct net_device_stats)); 5423 memset((void *) port->counter, 0, 5424 (sizeof(u64) * OID_COUNTER_LAST)); 5425 5426 if (!(hw_priv->opened)) { 5427 rc = prepare_hardware(dev); 5428 if (rc) 5429 return rc; 5430 for (i = 0; i < hw->mib_port_cnt; i++) { 5431 if (next_jiffies < jiffies) 5432 next_jiffies = jiffies + HZ * 2; 5433 else 5434 next_jiffies += HZ * 1; 5435 hw_priv->counter[i].time = next_jiffies; 5436 hw->port_mib[i].state = media_disconnected; 5437 port_init_cnt(hw, i); 5438 } 5439 if (hw->ksz_switch) 5440 hw->port_mib[HOST_PORT].state = media_connected; 5441 else { 5442 hw_add_wol_bcast(hw); 5443 hw_cfg_wol_pme(hw, 0); 5444 hw_clr_wol_pme_status(&hw_priv->hw); 5445 } 5446 } 5447 port_set_power_saving(port, false); 5448 5449 for (i = 0, p = port->first_port; i < port->port_cnt; i++, p++) { 5450 /* 5451 * Initialize to invalid value so that link detection 5452 * is done. 5453 */ 5454 hw->port_info[p].partner = 0xFF; 5455 hw->port_info[p].state = media_disconnected; 5456 } 5457 5458 /* Need to open the port in multiple device interfaces mode. */ 5459 if (hw->dev_count > 1) { 5460 port_set_stp_state(hw, port->first_port, STP_STATE_SIMPLE); 5461 if (port->first_port > 0) 5462 hw_add_addr(hw, dev->dev_addr); 5463 } 5464 5465 port_get_link_speed(port); 5466 if (port->force_link) 5467 port_force_link_speed(port); 5468 else 5469 port_set_link_speed(port); 5470 5471 if (!(hw_priv->opened)) { 5472 hw_setup_intr(hw); 5473 hw_enable(hw); 5474 hw_ena_intr(hw); 5475 5476 if (hw->mib_port_cnt) 5477 ksz_start_timer(&hw_priv->mib_timer_info, 5478 hw_priv->mib_timer_info.period); 5479 } 5480 5481 hw_priv->opened++; 5482 5483 ksz_start_timer(&priv->monitor_timer_info, 5484 priv->monitor_timer_info.period); 5485 5486 priv->media_state = port->linked->state; 5487 5488 set_media_state(dev, media_connected); 5489 netif_start_queue(dev); 5490 5491 return 0; 5492 } 5493 5494 /* RX errors = rx_errors */ 5495 /* RX dropped = rx_dropped */ 5496 /* RX overruns = rx_fifo_errors */ 5497 /* RX frame = rx_crc_errors + rx_frame_errors + rx_length_errors */ 5498 /* TX errors = tx_errors */ 5499 /* TX dropped = tx_dropped */ 5500 /* TX overruns = tx_fifo_errors */ 5501 /* TX carrier = tx_aborted_errors + tx_carrier_errors + tx_window_errors */ 5502 /* collisions = collisions */ 5503 5504 /** 5505 * netdev_query_statistics - query network device statistics 5506 * @dev: Network device. 5507 * 5508 * This function returns the statistics of the network device. The device 5509 * needs not be opened. 5510 * 5511 * Return network device statistics. 5512 */ 5513 static struct net_device_stats *netdev_query_statistics(struct net_device *dev) 5514 { 5515 struct dev_priv *priv = netdev_priv(dev); 5516 struct ksz_port *port = &priv->port; 5517 struct ksz_hw *hw = &priv->adapter->hw; 5518 struct ksz_port_mib *mib; 5519 int i; 5520 int p; 5521 5522 dev->stats.rx_errors = port->counter[OID_COUNTER_RCV_ERROR]; 5523 dev->stats.tx_errors = port->counter[OID_COUNTER_XMIT_ERROR]; 5524 5525 /* Reset to zero to add count later. */ 5526 dev->stats.multicast = 0; 5527 dev->stats.collisions = 0; 5528 dev->stats.rx_length_errors = 0; 5529 dev->stats.rx_crc_errors = 0; 5530 dev->stats.rx_frame_errors = 0; 5531 dev->stats.tx_window_errors = 0; 5532 5533 for (i = 0, p = port->first_port; i < port->mib_port_cnt; i++, p++) { 5534 mib = &hw->port_mib[p]; 5535 5536 dev->stats.multicast += (unsigned long) 5537 mib->counter[MIB_COUNTER_RX_MULTICAST]; 5538 5539 dev->stats.collisions += (unsigned long) 5540 mib->counter[MIB_COUNTER_TX_TOTAL_COLLISION]; 5541 5542 dev->stats.rx_length_errors += (unsigned long)( 5543 mib->counter[MIB_COUNTER_RX_UNDERSIZE] + 5544 mib->counter[MIB_COUNTER_RX_FRAGMENT] + 5545 mib->counter[MIB_COUNTER_RX_OVERSIZE] + 5546 mib->counter[MIB_COUNTER_RX_JABBER]); 5547 dev->stats.rx_crc_errors += (unsigned long) 5548 mib->counter[MIB_COUNTER_RX_CRC_ERR]; 5549 dev->stats.rx_frame_errors += (unsigned long)( 5550 mib->counter[MIB_COUNTER_RX_ALIGNMENT_ERR] + 5551 mib->counter[MIB_COUNTER_RX_SYMBOL_ERR]); 5552 5553 dev->stats.tx_window_errors += (unsigned long) 5554 mib->counter[MIB_COUNTER_TX_LATE_COLLISION]; 5555 } 5556 5557 return &dev->stats; 5558 } 5559 5560 /** 5561 * netdev_set_mac_address - set network device MAC address 5562 * @dev: Network device. 5563 * @addr: Buffer of MAC address. 5564 * 5565 * This function is used to set the MAC address of the network device. 5566 * 5567 * Return 0 to indicate success. 5568 */ 5569 static int netdev_set_mac_address(struct net_device *dev, void *addr) 5570 { 5571 struct dev_priv *priv = netdev_priv(dev); 5572 struct dev_info *hw_priv = priv->adapter; 5573 struct ksz_hw *hw = &hw_priv->hw; 5574 struct sockaddr *mac = addr; 5575 uint interrupt; 5576 5577 if (priv->port.first_port > 0) 5578 hw_del_addr(hw, dev->dev_addr); 5579 else { 5580 hw->mac_override = 1; 5581 memcpy(hw->override_addr, mac->sa_data, ETH_ALEN); 5582 } 5583 5584 eth_hw_addr_set(dev, mac->sa_data); 5585 5586 interrupt = hw_block_intr(hw); 5587 5588 if (priv->port.first_port > 0) 5589 hw_add_addr(hw, dev->dev_addr); 5590 else 5591 hw_set_addr(hw); 5592 hw_restore_intr(hw, interrupt); 5593 5594 return 0; 5595 } 5596 5597 static void dev_set_promiscuous(struct net_device *dev, struct dev_priv *priv, 5598 struct ksz_hw *hw, int promiscuous) 5599 { 5600 if (promiscuous != priv->promiscuous) { 5601 u8 prev_state = hw->promiscuous; 5602 5603 if (promiscuous) 5604 ++hw->promiscuous; 5605 else 5606 --hw->promiscuous; 5607 priv->promiscuous = promiscuous; 5608 5609 /* Turn on/off promiscuous mode. */ 5610 if (hw->promiscuous <= 1 && prev_state <= 1) 5611 hw_set_promiscuous(hw, hw->promiscuous); 5612 5613 /* 5614 * Port is not in promiscuous mode, meaning it is released 5615 * from the bridge. 5616 */ 5617 if ((hw->features & STP_SUPPORT) && !promiscuous && 5618 netif_is_bridge_port(dev)) { 5619 struct ksz_switch *sw = hw->ksz_switch; 5620 int port = priv->port.first_port; 5621 5622 port_set_stp_state(hw, port, STP_STATE_DISABLED); 5623 port = 1 << port; 5624 if (sw->member & port) { 5625 sw->member &= ~port; 5626 bridge_change(hw); 5627 } 5628 } 5629 } 5630 } 5631 5632 static void dev_set_multicast(struct dev_priv *priv, struct ksz_hw *hw, 5633 int multicast) 5634 { 5635 if (multicast != priv->multicast) { 5636 u8 all_multi = hw->all_multi; 5637 5638 if (multicast) 5639 ++hw->all_multi; 5640 else 5641 --hw->all_multi; 5642 priv->multicast = multicast; 5643 5644 /* Turn on/off all multicast mode. */ 5645 if (hw->all_multi <= 1 && all_multi <= 1) 5646 hw_set_multicast(hw, hw->all_multi); 5647 } 5648 } 5649 5650 /** 5651 * netdev_set_rx_mode 5652 * @dev: Network device. 5653 * 5654 * This routine is used to set multicast addresses or put the network device 5655 * into promiscuous mode. 5656 */ 5657 static void netdev_set_rx_mode(struct net_device *dev) 5658 { 5659 struct dev_priv *priv = netdev_priv(dev); 5660 struct dev_info *hw_priv = priv->adapter; 5661 struct ksz_hw *hw = &hw_priv->hw; 5662 struct netdev_hw_addr *ha; 5663 int multicast = (dev->flags & IFF_ALLMULTI); 5664 5665 dev_set_promiscuous(dev, priv, hw, (dev->flags & IFF_PROMISC)); 5666 5667 if (hw_priv->hw.dev_count > 1) 5668 multicast |= (dev->flags & IFF_MULTICAST); 5669 dev_set_multicast(priv, hw, multicast); 5670 5671 /* Cannot use different hashes in multiple device interfaces mode. */ 5672 if (hw_priv->hw.dev_count > 1) 5673 return; 5674 5675 if ((dev->flags & IFF_MULTICAST) && !netdev_mc_empty(dev)) { 5676 int i = 0; 5677 5678 /* List too big to support so turn on all multicast mode. */ 5679 if (netdev_mc_count(dev) > MAX_MULTICAST_LIST) { 5680 if (MAX_MULTICAST_LIST != hw->multi_list_size) { 5681 hw->multi_list_size = MAX_MULTICAST_LIST; 5682 ++hw->all_multi; 5683 hw_set_multicast(hw, hw->all_multi); 5684 } 5685 return; 5686 } 5687 5688 netdev_for_each_mc_addr(ha, dev) { 5689 if (i >= MAX_MULTICAST_LIST) 5690 break; 5691 memcpy(hw->multi_list[i++], ha->addr, ETH_ALEN); 5692 } 5693 hw->multi_list_size = (u8) i; 5694 hw_set_grp_addr(hw); 5695 } else { 5696 if (MAX_MULTICAST_LIST == hw->multi_list_size) { 5697 --hw->all_multi; 5698 hw_set_multicast(hw, hw->all_multi); 5699 } 5700 hw->multi_list_size = 0; 5701 hw_clr_multicast(hw); 5702 } 5703 } 5704 5705 static int netdev_change_mtu(struct net_device *dev, int new_mtu) 5706 { 5707 struct dev_priv *priv = netdev_priv(dev); 5708 struct dev_info *hw_priv = priv->adapter; 5709 struct ksz_hw *hw = &hw_priv->hw; 5710 int hw_mtu; 5711 5712 if (netif_running(dev)) 5713 return -EBUSY; 5714 5715 /* Cannot use different MTU in multiple device interfaces mode. */ 5716 if (hw->dev_count > 1) 5717 if (dev != hw_priv->dev) 5718 return 0; 5719 5720 hw_mtu = new_mtu + ETHERNET_HEADER_SIZE + 4; 5721 if (hw_mtu > REGULAR_RX_BUF_SIZE) { 5722 hw->features |= RX_HUGE_FRAME; 5723 hw_mtu = MAX_RX_BUF_SIZE; 5724 } else { 5725 hw->features &= ~RX_HUGE_FRAME; 5726 hw_mtu = REGULAR_RX_BUF_SIZE; 5727 } 5728 hw_mtu = (hw_mtu + 3) & ~3; 5729 hw_priv->mtu = hw_mtu; 5730 dev->mtu = new_mtu; 5731 5732 return 0; 5733 } 5734 5735 /** 5736 * netdev_ioctl - I/O control processing 5737 * @dev: Network device. 5738 * @ifr: Interface request structure. 5739 * @cmd: I/O control code. 5740 * 5741 * This function is used to process I/O control calls. 5742 * 5743 * Return 0 to indicate success. 5744 */ 5745 static int netdev_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) 5746 { 5747 struct dev_priv *priv = netdev_priv(dev); 5748 struct dev_info *hw_priv = priv->adapter; 5749 struct ksz_hw *hw = &hw_priv->hw; 5750 struct ksz_port *port = &priv->port; 5751 int result = 0; 5752 struct mii_ioctl_data *data = if_mii(ifr); 5753 5754 if (down_interruptible(&priv->proc_sem)) 5755 return -ERESTARTSYS; 5756 5757 switch (cmd) { 5758 /* Get address of MII PHY in use. */ 5759 case SIOCGMIIPHY: 5760 data->phy_id = priv->id; 5761 fallthrough; 5762 5763 /* Read MII PHY register. */ 5764 case SIOCGMIIREG: 5765 if (data->phy_id != priv->id || data->reg_num >= 6) 5766 result = -EIO; 5767 else 5768 hw_r_phy(hw, port->linked->port_id, data->reg_num, 5769 &data->val_out); 5770 break; 5771 5772 /* Write MII PHY register. */ 5773 case SIOCSMIIREG: 5774 if (!capable(CAP_NET_ADMIN)) 5775 result = -EPERM; 5776 else if (data->phy_id != priv->id || data->reg_num >= 6) 5777 result = -EIO; 5778 else 5779 hw_w_phy(hw, port->linked->port_id, data->reg_num, 5780 data->val_in); 5781 break; 5782 5783 default: 5784 result = -EOPNOTSUPP; 5785 } 5786 5787 up(&priv->proc_sem); 5788 5789 return result; 5790 } 5791 5792 /* 5793 * MII support 5794 */ 5795 5796 /** 5797 * mdio_read - read PHY register 5798 * @dev: Network device. 5799 * @phy_id: The PHY id. 5800 * @reg_num: The register number. 5801 * 5802 * This function returns the PHY register value. 5803 * 5804 * Return the register value. 5805 */ 5806 static int mdio_read(struct net_device *dev, int phy_id, int reg_num) 5807 { 5808 struct dev_priv *priv = netdev_priv(dev); 5809 struct ksz_port *port = &priv->port; 5810 struct ksz_hw *hw = port->hw; 5811 u16 val_out; 5812 5813 hw_r_phy(hw, port->linked->port_id, reg_num << 1, &val_out); 5814 return val_out; 5815 } 5816 5817 /** 5818 * mdio_write - set PHY register 5819 * @dev: Network device. 5820 * @phy_id: The PHY id. 5821 * @reg_num: The register number. 5822 * @val: The register value. 5823 * 5824 * This procedure sets the PHY register value. 5825 */ 5826 static void mdio_write(struct net_device *dev, int phy_id, int reg_num, int val) 5827 { 5828 struct dev_priv *priv = netdev_priv(dev); 5829 struct ksz_port *port = &priv->port; 5830 struct ksz_hw *hw = port->hw; 5831 int i; 5832 int pi; 5833 5834 for (i = 0, pi = port->first_port; i < port->port_cnt; i++, pi++) 5835 hw_w_phy(hw, pi, reg_num << 1, val); 5836 } 5837 5838 /* 5839 * ethtool support 5840 */ 5841 5842 #define EEPROM_SIZE 0x40 5843 5844 static u16 eeprom_data[EEPROM_SIZE] = { 0 }; 5845 5846 #define ADVERTISED_ALL \ 5847 (ADVERTISED_10baseT_Half | \ 5848 ADVERTISED_10baseT_Full | \ 5849 ADVERTISED_100baseT_Half | \ 5850 ADVERTISED_100baseT_Full) 5851 5852 /* These functions use the MII functions in mii.c. */ 5853 5854 /** 5855 * netdev_get_link_ksettings - get network device settings 5856 * @dev: Network device. 5857 * @cmd: Ethtool command. 5858 * 5859 * This function queries the PHY and returns its state in the ethtool command. 5860 * 5861 * Return 0 if successful; otherwise an error code. 5862 */ 5863 static int netdev_get_link_ksettings(struct net_device *dev, 5864 struct ethtool_link_ksettings *cmd) 5865 { 5866 struct dev_priv *priv = netdev_priv(dev); 5867 struct dev_info *hw_priv = priv->adapter; 5868 5869 mutex_lock(&hw_priv->lock); 5870 mii_ethtool_get_link_ksettings(&priv->mii_if, cmd); 5871 ethtool_link_ksettings_add_link_mode(cmd, advertising, TP); 5872 mutex_unlock(&hw_priv->lock); 5873 5874 /* Save advertised settings for workaround in next function. */ 5875 ethtool_convert_link_mode_to_legacy_u32(&priv->advertising, 5876 cmd->link_modes.advertising); 5877 5878 return 0; 5879 } 5880 5881 /** 5882 * netdev_set_link_ksettings - set network device settings 5883 * @dev: Network device. 5884 * @cmd: Ethtool command. 5885 * 5886 * This function sets the PHY according to the ethtool command. 5887 * 5888 * Return 0 if successful; otherwise an error code. 5889 */ 5890 static int netdev_set_link_ksettings(struct net_device *dev, 5891 const struct ethtool_link_ksettings *cmd) 5892 { 5893 struct dev_priv *priv = netdev_priv(dev); 5894 struct dev_info *hw_priv = priv->adapter; 5895 struct ksz_port *port = &priv->port; 5896 struct ethtool_link_ksettings copy_cmd; 5897 u32 speed = cmd->base.speed; 5898 u32 advertising; 5899 int rc; 5900 5901 ethtool_convert_link_mode_to_legacy_u32(&advertising, 5902 cmd->link_modes.advertising); 5903 5904 /* 5905 * ethtool utility does not change advertised setting if auto 5906 * negotiation is not specified explicitly. 5907 */ 5908 if (cmd->base.autoneg && priv->advertising == advertising) { 5909 advertising |= ADVERTISED_ALL; 5910 if (10 == speed) 5911 advertising &= 5912 ~(ADVERTISED_100baseT_Full | 5913 ADVERTISED_100baseT_Half); 5914 else if (100 == speed) 5915 advertising &= 5916 ~(ADVERTISED_10baseT_Full | 5917 ADVERTISED_10baseT_Half); 5918 if (0 == cmd->base.duplex) 5919 advertising &= 5920 ~(ADVERTISED_100baseT_Full | 5921 ADVERTISED_10baseT_Full); 5922 else if (1 == cmd->base.duplex) 5923 advertising &= 5924 ~(ADVERTISED_100baseT_Half | 5925 ADVERTISED_10baseT_Half); 5926 } 5927 mutex_lock(&hw_priv->lock); 5928 if (cmd->base.autoneg && 5929 (advertising & ADVERTISED_ALL) == ADVERTISED_ALL) { 5930 port->duplex = 0; 5931 port->speed = 0; 5932 port->force_link = 0; 5933 } else { 5934 port->duplex = cmd->base.duplex + 1; 5935 if (1000 != speed) 5936 port->speed = speed; 5937 if (cmd->base.autoneg) 5938 port->force_link = 0; 5939 else 5940 port->force_link = 1; 5941 } 5942 5943 memcpy(©_cmd, cmd, sizeof(copy_cmd)); 5944 ethtool_convert_legacy_u32_to_link_mode(copy_cmd.link_modes.advertising, 5945 advertising); 5946 rc = mii_ethtool_set_link_ksettings( 5947 &priv->mii_if, 5948 (const struct ethtool_link_ksettings *)©_cmd); 5949 mutex_unlock(&hw_priv->lock); 5950 return rc; 5951 } 5952 5953 /** 5954 * netdev_nway_reset - restart auto-negotiation 5955 * @dev: Network device. 5956 * 5957 * This function restarts the PHY for auto-negotiation. 5958 * 5959 * Return 0 if successful; otherwise an error code. 5960 */ 5961 static int netdev_nway_reset(struct net_device *dev) 5962 { 5963 struct dev_priv *priv = netdev_priv(dev); 5964 struct dev_info *hw_priv = priv->adapter; 5965 int rc; 5966 5967 mutex_lock(&hw_priv->lock); 5968 rc = mii_nway_restart(&priv->mii_if); 5969 mutex_unlock(&hw_priv->lock); 5970 return rc; 5971 } 5972 5973 /** 5974 * netdev_get_link - get network device link status 5975 * @dev: Network device. 5976 * 5977 * This function gets the link status from the PHY. 5978 * 5979 * Return true if PHY is linked and false otherwise. 5980 */ 5981 static u32 netdev_get_link(struct net_device *dev) 5982 { 5983 struct dev_priv *priv = netdev_priv(dev); 5984 int rc; 5985 5986 rc = mii_link_ok(&priv->mii_if); 5987 return rc; 5988 } 5989 5990 /** 5991 * netdev_get_drvinfo - get network driver information 5992 * @dev: Network device. 5993 * @info: Ethtool driver info data structure. 5994 * 5995 * This procedure returns the driver information. 5996 */ 5997 static void netdev_get_drvinfo(struct net_device *dev, 5998 struct ethtool_drvinfo *info) 5999 { 6000 struct dev_priv *priv = netdev_priv(dev); 6001 struct dev_info *hw_priv = priv->adapter; 6002 6003 strlcpy(info->driver, DRV_NAME, sizeof(info->driver)); 6004 strlcpy(info->version, DRV_VERSION, sizeof(info->version)); 6005 strlcpy(info->bus_info, pci_name(hw_priv->pdev), 6006 sizeof(info->bus_info)); 6007 } 6008 6009 static struct hw_regs { 6010 int start; 6011 int end; 6012 } hw_regs_range[] = { 6013 { KS_DMA_TX_CTRL, KS884X_INTERRUPTS_STATUS }, 6014 { KS_ADD_ADDR_0_LO, KS_ADD_ADDR_F_HI }, 6015 { KS884X_ADDR_0_OFFSET, KS8841_WOL_FRAME_BYTE2_OFFSET }, 6016 { KS884X_SIDER_P, KS8842_SGCR7_P }, 6017 { KS8842_MACAR1_P, KS8842_TOSR8_P }, 6018 { KS884X_P1MBCR_P, KS8842_P3ERCR_P }, 6019 { 0, 0 } 6020 }; 6021 6022 /** 6023 * netdev_get_regs_len - get length of register dump 6024 * @dev: Network device. 6025 * 6026 * This function returns the length of the register dump. 6027 * 6028 * Return length of the register dump. 6029 */ 6030 static int netdev_get_regs_len(struct net_device *dev) 6031 { 6032 struct hw_regs *range = hw_regs_range; 6033 int regs_len = 0x10 * sizeof(u32); 6034 6035 while (range->end > range->start) { 6036 regs_len += (range->end - range->start + 3) / 4 * 4; 6037 range++; 6038 } 6039 return regs_len; 6040 } 6041 6042 /** 6043 * netdev_get_regs - get register dump 6044 * @dev: Network device. 6045 * @regs: Ethtool registers data structure. 6046 * @ptr: Buffer to store the register values. 6047 * 6048 * This procedure dumps the register values in the provided buffer. 6049 */ 6050 static void netdev_get_regs(struct net_device *dev, struct ethtool_regs *regs, 6051 void *ptr) 6052 { 6053 struct dev_priv *priv = netdev_priv(dev); 6054 struct dev_info *hw_priv = priv->adapter; 6055 struct ksz_hw *hw = &hw_priv->hw; 6056 int *buf = (int *) ptr; 6057 struct hw_regs *range = hw_regs_range; 6058 int len; 6059 6060 mutex_lock(&hw_priv->lock); 6061 regs->version = 0; 6062 for (len = 0; len < 0x40; len += 4) { 6063 pci_read_config_dword(hw_priv->pdev, len, buf); 6064 buf++; 6065 } 6066 while (range->end > range->start) { 6067 for (len = range->start; len < range->end; len += 4) { 6068 *buf = readl(hw->io + len); 6069 buf++; 6070 } 6071 range++; 6072 } 6073 mutex_unlock(&hw_priv->lock); 6074 } 6075 6076 #define WOL_SUPPORT \ 6077 (WAKE_PHY | WAKE_MAGIC | \ 6078 WAKE_UCAST | WAKE_MCAST | \ 6079 WAKE_BCAST | WAKE_ARP) 6080 6081 /** 6082 * netdev_get_wol - get Wake-on-LAN support 6083 * @dev: Network device. 6084 * @wol: Ethtool Wake-on-LAN data structure. 6085 * 6086 * This procedure returns Wake-on-LAN support. 6087 */ 6088 static void netdev_get_wol(struct net_device *dev, 6089 struct ethtool_wolinfo *wol) 6090 { 6091 struct dev_priv *priv = netdev_priv(dev); 6092 struct dev_info *hw_priv = priv->adapter; 6093 6094 wol->supported = hw_priv->wol_support; 6095 wol->wolopts = hw_priv->wol_enable; 6096 memset(&wol->sopass, 0, sizeof(wol->sopass)); 6097 } 6098 6099 /** 6100 * netdev_set_wol - set Wake-on-LAN support 6101 * @dev: Network device. 6102 * @wol: Ethtool Wake-on-LAN data structure. 6103 * 6104 * This function sets Wake-on-LAN support. 6105 * 6106 * Return 0 if successful; otherwise an error code. 6107 */ 6108 static int netdev_set_wol(struct net_device *dev, 6109 struct ethtool_wolinfo *wol) 6110 { 6111 struct dev_priv *priv = netdev_priv(dev); 6112 struct dev_info *hw_priv = priv->adapter; 6113 6114 /* Need to find a way to retrieve the device IP address. */ 6115 static const u8 net_addr[] = { 192, 168, 1, 1 }; 6116 6117 if (wol->wolopts & ~hw_priv->wol_support) 6118 return -EINVAL; 6119 6120 hw_priv->wol_enable = wol->wolopts; 6121 6122 /* Link wakeup cannot really be disabled. */ 6123 if (wol->wolopts) 6124 hw_priv->wol_enable |= WAKE_PHY; 6125 hw_enable_wol(&hw_priv->hw, hw_priv->wol_enable, net_addr); 6126 return 0; 6127 } 6128 6129 /** 6130 * netdev_get_msglevel - get debug message level 6131 * @dev: Network device. 6132 * 6133 * This function returns current debug message level. 6134 * 6135 * Return current debug message flags. 6136 */ 6137 static u32 netdev_get_msglevel(struct net_device *dev) 6138 { 6139 struct dev_priv *priv = netdev_priv(dev); 6140 6141 return priv->msg_enable; 6142 } 6143 6144 /** 6145 * netdev_set_msglevel - set debug message level 6146 * @dev: Network device. 6147 * @value: Debug message flags. 6148 * 6149 * This procedure sets debug message level. 6150 */ 6151 static void netdev_set_msglevel(struct net_device *dev, u32 value) 6152 { 6153 struct dev_priv *priv = netdev_priv(dev); 6154 6155 priv->msg_enable = value; 6156 } 6157 6158 /** 6159 * netdev_get_eeprom_len - get EEPROM length 6160 * @dev: Network device. 6161 * 6162 * This function returns the length of the EEPROM. 6163 * 6164 * Return length of the EEPROM. 6165 */ 6166 static int netdev_get_eeprom_len(struct net_device *dev) 6167 { 6168 return EEPROM_SIZE * 2; 6169 } 6170 6171 #define EEPROM_MAGIC 0x10A18842 6172 6173 /** 6174 * netdev_get_eeprom - get EEPROM data 6175 * @dev: Network device. 6176 * @eeprom: Ethtool EEPROM data structure. 6177 * @data: Buffer to store the EEPROM data. 6178 * 6179 * This function dumps the EEPROM data in the provided buffer. 6180 * 6181 * Return 0 if successful; otherwise an error code. 6182 */ 6183 static int netdev_get_eeprom(struct net_device *dev, 6184 struct ethtool_eeprom *eeprom, u8 *data) 6185 { 6186 struct dev_priv *priv = netdev_priv(dev); 6187 struct dev_info *hw_priv = priv->adapter; 6188 u8 *eeprom_byte = (u8 *) eeprom_data; 6189 int i; 6190 int len; 6191 6192 len = (eeprom->offset + eeprom->len + 1) / 2; 6193 for (i = eeprom->offset / 2; i < len; i++) 6194 eeprom_data[i] = eeprom_read(&hw_priv->hw, i); 6195 eeprom->magic = EEPROM_MAGIC; 6196 memcpy(data, &eeprom_byte[eeprom->offset], eeprom->len); 6197 6198 return 0; 6199 } 6200 6201 /** 6202 * netdev_set_eeprom - write EEPROM data 6203 * @dev: Network device. 6204 * @eeprom: Ethtool EEPROM data structure. 6205 * @data: Data buffer. 6206 * 6207 * This function modifies the EEPROM data one byte at a time. 6208 * 6209 * Return 0 if successful; otherwise an error code. 6210 */ 6211 static int netdev_set_eeprom(struct net_device *dev, 6212 struct ethtool_eeprom *eeprom, u8 *data) 6213 { 6214 struct dev_priv *priv = netdev_priv(dev); 6215 struct dev_info *hw_priv = priv->adapter; 6216 u16 eeprom_word[EEPROM_SIZE]; 6217 u8 *eeprom_byte = (u8 *) eeprom_word; 6218 int i; 6219 int len; 6220 6221 if (eeprom->magic != EEPROM_MAGIC) 6222 return -EINVAL; 6223 6224 len = (eeprom->offset + eeprom->len + 1) / 2; 6225 for (i = eeprom->offset / 2; i < len; i++) 6226 eeprom_data[i] = eeprom_read(&hw_priv->hw, i); 6227 memcpy(eeprom_word, eeprom_data, EEPROM_SIZE * 2); 6228 memcpy(&eeprom_byte[eeprom->offset], data, eeprom->len); 6229 for (i = 0; i < EEPROM_SIZE; i++) 6230 if (eeprom_word[i] != eeprom_data[i]) { 6231 eeprom_data[i] = eeprom_word[i]; 6232 eeprom_write(&hw_priv->hw, i, eeprom_data[i]); 6233 } 6234 6235 return 0; 6236 } 6237 6238 /** 6239 * netdev_get_pauseparam - get flow control parameters 6240 * @dev: Network device. 6241 * @pause: Ethtool PAUSE settings data structure. 6242 * 6243 * This procedure returns the PAUSE control flow settings. 6244 */ 6245 static void netdev_get_pauseparam(struct net_device *dev, 6246 struct ethtool_pauseparam *pause) 6247 { 6248 struct dev_priv *priv = netdev_priv(dev); 6249 struct dev_info *hw_priv = priv->adapter; 6250 struct ksz_hw *hw = &hw_priv->hw; 6251 6252 pause->autoneg = (hw->overrides & PAUSE_FLOW_CTRL) ? 0 : 1; 6253 if (!hw->ksz_switch) { 6254 pause->rx_pause = 6255 (hw->rx_cfg & DMA_RX_FLOW_ENABLE) ? 1 : 0; 6256 pause->tx_pause = 6257 (hw->tx_cfg & DMA_TX_FLOW_ENABLE) ? 1 : 0; 6258 } else { 6259 pause->rx_pause = 6260 (sw_chk(hw, KS8842_SWITCH_CTRL_1_OFFSET, 6261 SWITCH_RX_FLOW_CTRL)) ? 1 : 0; 6262 pause->tx_pause = 6263 (sw_chk(hw, KS8842_SWITCH_CTRL_1_OFFSET, 6264 SWITCH_TX_FLOW_CTRL)) ? 1 : 0; 6265 } 6266 } 6267 6268 /** 6269 * netdev_set_pauseparam - set flow control parameters 6270 * @dev: Network device. 6271 * @pause: Ethtool PAUSE settings data structure. 6272 * 6273 * This function sets the PAUSE control flow settings. 6274 * Not implemented yet. 6275 * 6276 * Return 0 if successful; otherwise an error code. 6277 */ 6278 static int netdev_set_pauseparam(struct net_device *dev, 6279 struct ethtool_pauseparam *pause) 6280 { 6281 struct dev_priv *priv = netdev_priv(dev); 6282 struct dev_info *hw_priv = priv->adapter; 6283 struct ksz_hw *hw = &hw_priv->hw; 6284 struct ksz_port *port = &priv->port; 6285 6286 mutex_lock(&hw_priv->lock); 6287 if (pause->autoneg) { 6288 if (!pause->rx_pause && !pause->tx_pause) 6289 port->flow_ctrl = PHY_NO_FLOW_CTRL; 6290 else 6291 port->flow_ctrl = PHY_FLOW_CTRL; 6292 hw->overrides &= ~PAUSE_FLOW_CTRL; 6293 port->force_link = 0; 6294 if (hw->ksz_switch) { 6295 sw_cfg(hw, KS8842_SWITCH_CTRL_1_OFFSET, 6296 SWITCH_RX_FLOW_CTRL, 1); 6297 sw_cfg(hw, KS8842_SWITCH_CTRL_1_OFFSET, 6298 SWITCH_TX_FLOW_CTRL, 1); 6299 } 6300 port_set_link_speed(port); 6301 } else { 6302 hw->overrides |= PAUSE_FLOW_CTRL; 6303 if (hw->ksz_switch) { 6304 sw_cfg(hw, KS8842_SWITCH_CTRL_1_OFFSET, 6305 SWITCH_RX_FLOW_CTRL, pause->rx_pause); 6306 sw_cfg(hw, KS8842_SWITCH_CTRL_1_OFFSET, 6307 SWITCH_TX_FLOW_CTRL, pause->tx_pause); 6308 } else 6309 set_flow_ctrl(hw, pause->rx_pause, pause->tx_pause); 6310 } 6311 mutex_unlock(&hw_priv->lock); 6312 6313 return 0; 6314 } 6315 6316 /** 6317 * netdev_get_ringparam - get tx/rx ring parameters 6318 * @dev: Network device. 6319 * @ring: Ethtool RING settings data structure. 6320 * @kernel_ring: Ethtool external RING settings data structure. 6321 * @extack: Netlink handle. 6322 * 6323 * This procedure returns the TX/RX ring settings. 6324 */ 6325 static void netdev_get_ringparam(struct net_device *dev, 6326 struct ethtool_ringparam *ring, 6327 struct kernel_ethtool_ringparam *kernel_ring, 6328 struct netlink_ext_ack *extack) 6329 { 6330 struct dev_priv *priv = netdev_priv(dev); 6331 struct dev_info *hw_priv = priv->adapter; 6332 struct ksz_hw *hw = &hw_priv->hw; 6333 6334 ring->tx_max_pending = (1 << 9); 6335 ring->tx_pending = hw->tx_desc_info.alloc; 6336 ring->rx_max_pending = (1 << 9); 6337 ring->rx_pending = hw->rx_desc_info.alloc; 6338 } 6339 6340 #define STATS_LEN (TOTAL_PORT_COUNTER_NUM) 6341 6342 static struct { 6343 char string[ETH_GSTRING_LEN]; 6344 } ethtool_stats_keys[STATS_LEN] = { 6345 { "rx_lo_priority_octets" }, 6346 { "rx_hi_priority_octets" }, 6347 { "rx_undersize_packets" }, 6348 { "rx_fragments" }, 6349 { "rx_oversize_packets" }, 6350 { "rx_jabbers" }, 6351 { "rx_symbol_errors" }, 6352 { "rx_crc_errors" }, 6353 { "rx_align_errors" }, 6354 { "rx_mac_ctrl_packets" }, 6355 { "rx_pause_packets" }, 6356 { "rx_bcast_packets" }, 6357 { "rx_mcast_packets" }, 6358 { "rx_ucast_packets" }, 6359 { "rx_64_or_less_octet_packets" }, 6360 { "rx_65_to_127_octet_packets" }, 6361 { "rx_128_to_255_octet_packets" }, 6362 { "rx_256_to_511_octet_packets" }, 6363 { "rx_512_to_1023_octet_packets" }, 6364 { "rx_1024_to_1522_octet_packets" }, 6365 6366 { "tx_lo_priority_octets" }, 6367 { "tx_hi_priority_octets" }, 6368 { "tx_late_collisions" }, 6369 { "tx_pause_packets" }, 6370 { "tx_bcast_packets" }, 6371 { "tx_mcast_packets" }, 6372 { "tx_ucast_packets" }, 6373 { "tx_deferred" }, 6374 { "tx_total_collisions" }, 6375 { "tx_excessive_collisions" }, 6376 { "tx_single_collisions" }, 6377 { "tx_mult_collisions" }, 6378 6379 { "rx_discards" }, 6380 { "tx_discards" }, 6381 }; 6382 6383 /** 6384 * netdev_get_strings - get statistics identity strings 6385 * @dev: Network device. 6386 * @stringset: String set identifier. 6387 * @buf: Buffer to store the strings. 6388 * 6389 * This procedure returns the strings used to identify the statistics. 6390 */ 6391 static void netdev_get_strings(struct net_device *dev, u32 stringset, u8 *buf) 6392 { 6393 struct dev_priv *priv = netdev_priv(dev); 6394 struct dev_info *hw_priv = priv->adapter; 6395 struct ksz_hw *hw = &hw_priv->hw; 6396 6397 if (ETH_SS_STATS == stringset) 6398 memcpy(buf, ðtool_stats_keys, 6399 ETH_GSTRING_LEN * hw->mib_cnt); 6400 } 6401 6402 /** 6403 * netdev_get_sset_count - get statistics size 6404 * @dev: Network device. 6405 * @sset: The statistics set number. 6406 * 6407 * This function returns the size of the statistics to be reported. 6408 * 6409 * Return size of the statistics to be reported. 6410 */ 6411 static int netdev_get_sset_count(struct net_device *dev, int sset) 6412 { 6413 struct dev_priv *priv = netdev_priv(dev); 6414 struct dev_info *hw_priv = priv->adapter; 6415 struct ksz_hw *hw = &hw_priv->hw; 6416 6417 switch (sset) { 6418 case ETH_SS_STATS: 6419 return hw->mib_cnt; 6420 default: 6421 return -EOPNOTSUPP; 6422 } 6423 } 6424 6425 /** 6426 * netdev_get_ethtool_stats - get network device statistics 6427 * @dev: Network device. 6428 * @stats: Ethtool statistics data structure. 6429 * @data: Buffer to store the statistics. 6430 * 6431 * This procedure returns the statistics. 6432 */ 6433 static void netdev_get_ethtool_stats(struct net_device *dev, 6434 struct ethtool_stats *stats, u64 *data) 6435 { 6436 struct dev_priv *priv = netdev_priv(dev); 6437 struct dev_info *hw_priv = priv->adapter; 6438 struct ksz_hw *hw = &hw_priv->hw; 6439 struct ksz_port *port = &priv->port; 6440 int n_stats = stats->n_stats; 6441 int i; 6442 int n; 6443 int p; 6444 u64 counter[TOTAL_PORT_COUNTER_NUM]; 6445 6446 mutex_lock(&hw_priv->lock); 6447 n = SWITCH_PORT_NUM; 6448 for (i = 0, p = port->first_port; i < port->mib_port_cnt; i++, p++) { 6449 if (media_connected == hw->port_mib[p].state) { 6450 hw_priv->counter[p].read = 1; 6451 6452 /* Remember first port that requests read. */ 6453 if (n == SWITCH_PORT_NUM) 6454 n = p; 6455 } 6456 } 6457 mutex_unlock(&hw_priv->lock); 6458 6459 if (n < SWITCH_PORT_NUM) 6460 schedule_work(&hw_priv->mib_read); 6461 6462 if (1 == port->mib_port_cnt && n < SWITCH_PORT_NUM) { 6463 p = n; 6464 wait_event_interruptible_timeout( 6465 hw_priv->counter[p].counter, 6466 2 == hw_priv->counter[p].read, 6467 HZ * 1); 6468 } else 6469 for (i = 0, p = n; i < port->mib_port_cnt - n; i++, p++) { 6470 if (0 == i) { 6471 wait_event_interruptible_timeout( 6472 hw_priv->counter[p].counter, 6473 2 == hw_priv->counter[p].read, 6474 HZ * 2); 6475 } else if (hw->port_mib[p].cnt_ptr) { 6476 wait_event_interruptible_timeout( 6477 hw_priv->counter[p].counter, 6478 2 == hw_priv->counter[p].read, 6479 HZ * 1); 6480 } 6481 } 6482 6483 get_mib_counters(hw, port->first_port, port->mib_port_cnt, counter); 6484 n = hw->mib_cnt; 6485 if (n > n_stats) 6486 n = n_stats; 6487 n_stats -= n; 6488 for (i = 0; i < n; i++) 6489 *data++ = counter[i]; 6490 } 6491 6492 /** 6493 * netdev_set_features - set receive checksum support 6494 * @dev: Network device. 6495 * @features: New device features (offloads). 6496 * 6497 * This function sets receive checksum support setting. 6498 * 6499 * Return 0 if successful; otherwise an error code. 6500 */ 6501 static int netdev_set_features(struct net_device *dev, 6502 netdev_features_t features) 6503 { 6504 struct dev_priv *priv = netdev_priv(dev); 6505 struct dev_info *hw_priv = priv->adapter; 6506 struct ksz_hw *hw = &hw_priv->hw; 6507 6508 mutex_lock(&hw_priv->lock); 6509 6510 /* see note in hw_setup() */ 6511 if (features & NETIF_F_RXCSUM) 6512 hw->rx_cfg |= DMA_RX_CSUM_TCP | DMA_RX_CSUM_IP; 6513 else 6514 hw->rx_cfg &= ~(DMA_RX_CSUM_TCP | DMA_RX_CSUM_IP); 6515 6516 if (hw->enabled) 6517 writel(hw->rx_cfg, hw->io + KS_DMA_RX_CTRL); 6518 6519 mutex_unlock(&hw_priv->lock); 6520 6521 return 0; 6522 } 6523 6524 static const struct ethtool_ops netdev_ethtool_ops = { 6525 .nway_reset = netdev_nway_reset, 6526 .get_link = netdev_get_link, 6527 .get_drvinfo = netdev_get_drvinfo, 6528 .get_regs_len = netdev_get_regs_len, 6529 .get_regs = netdev_get_regs, 6530 .get_wol = netdev_get_wol, 6531 .set_wol = netdev_set_wol, 6532 .get_msglevel = netdev_get_msglevel, 6533 .set_msglevel = netdev_set_msglevel, 6534 .get_eeprom_len = netdev_get_eeprom_len, 6535 .get_eeprom = netdev_get_eeprom, 6536 .set_eeprom = netdev_set_eeprom, 6537 .get_pauseparam = netdev_get_pauseparam, 6538 .set_pauseparam = netdev_set_pauseparam, 6539 .get_ringparam = netdev_get_ringparam, 6540 .get_strings = netdev_get_strings, 6541 .get_sset_count = netdev_get_sset_count, 6542 .get_ethtool_stats = netdev_get_ethtool_stats, 6543 .get_link_ksettings = netdev_get_link_ksettings, 6544 .set_link_ksettings = netdev_set_link_ksettings, 6545 }; 6546 6547 /* 6548 * Hardware monitoring 6549 */ 6550 6551 static void update_link(struct net_device *dev, struct dev_priv *priv, 6552 struct ksz_port *port) 6553 { 6554 if (priv->media_state != port->linked->state) { 6555 priv->media_state = port->linked->state; 6556 if (netif_running(dev)) 6557 set_media_state(dev, media_connected); 6558 } 6559 } 6560 6561 static void mib_read_work(struct work_struct *work) 6562 { 6563 struct dev_info *hw_priv = 6564 container_of(work, struct dev_info, mib_read); 6565 struct ksz_hw *hw = &hw_priv->hw; 6566 struct ksz_port_mib *mib; 6567 int i; 6568 6569 next_jiffies = jiffies; 6570 for (i = 0; i < hw->mib_port_cnt; i++) { 6571 mib = &hw->port_mib[i]; 6572 6573 /* Reading MIB counters or requested to read. */ 6574 if (mib->cnt_ptr || 1 == hw_priv->counter[i].read) { 6575 6576 /* Need to process receive interrupt. */ 6577 if (port_r_cnt(hw, i)) 6578 break; 6579 hw_priv->counter[i].read = 0; 6580 6581 /* Finish reading counters. */ 6582 if (0 == mib->cnt_ptr) { 6583 hw_priv->counter[i].read = 2; 6584 wake_up_interruptible( 6585 &hw_priv->counter[i].counter); 6586 } 6587 } else if (time_after_eq(jiffies, hw_priv->counter[i].time)) { 6588 /* Only read MIB counters when the port is connected. */ 6589 if (media_connected == mib->state) 6590 hw_priv->counter[i].read = 1; 6591 next_jiffies += HZ * 1 * hw->mib_port_cnt; 6592 hw_priv->counter[i].time = next_jiffies; 6593 6594 /* Port is just disconnected. */ 6595 } else if (mib->link_down) { 6596 mib->link_down = 0; 6597 6598 /* Read counters one last time after link is lost. */ 6599 hw_priv->counter[i].read = 1; 6600 } 6601 } 6602 } 6603 6604 static void mib_monitor(struct timer_list *t) 6605 { 6606 struct dev_info *hw_priv = from_timer(hw_priv, t, mib_timer_info.timer); 6607 6608 mib_read_work(&hw_priv->mib_read); 6609 6610 /* This is used to verify Wake-on-LAN is working. */ 6611 if (hw_priv->pme_wait) { 6612 if (time_is_before_eq_jiffies(hw_priv->pme_wait)) { 6613 hw_clr_wol_pme_status(&hw_priv->hw); 6614 hw_priv->pme_wait = 0; 6615 } 6616 } else if (hw_chk_wol_pme_status(&hw_priv->hw)) { 6617 6618 /* PME is asserted. Wait 2 seconds to clear it. */ 6619 hw_priv->pme_wait = jiffies + HZ * 2; 6620 } 6621 6622 ksz_update_timer(&hw_priv->mib_timer_info); 6623 } 6624 6625 /** 6626 * dev_monitor - periodic monitoring 6627 * @t: timer list containing a network device pointer. 6628 * 6629 * This routine is run in a kernel timer to monitor the network device. 6630 */ 6631 static void dev_monitor(struct timer_list *t) 6632 { 6633 struct dev_priv *priv = from_timer(priv, t, monitor_timer_info.timer); 6634 struct net_device *dev = priv->mii_if.dev; 6635 struct dev_info *hw_priv = priv->adapter; 6636 struct ksz_hw *hw = &hw_priv->hw; 6637 struct ksz_port *port = &priv->port; 6638 6639 if (!(hw->features & LINK_INT_WORKING)) 6640 port_get_link_speed(port); 6641 update_link(dev, priv, port); 6642 6643 ksz_update_timer(&priv->monitor_timer_info); 6644 } 6645 6646 /* 6647 * Linux network device interface functions 6648 */ 6649 6650 /* Driver exported variables */ 6651 6652 static int msg_enable; 6653 6654 static char *macaddr = ":"; 6655 static char *mac1addr = ":"; 6656 6657 /* 6658 * This enables multiple network device mode for KSZ8842, which contains a 6659 * switch with two physical ports. Some users like to take control of the 6660 * ports for running Spanning Tree Protocol. The driver will create an 6661 * additional eth? device for the other port. 6662 * 6663 * Some limitations are the network devices cannot have different MTU and 6664 * multicast hash tables. 6665 */ 6666 static int multi_dev; 6667 6668 /* 6669 * As most users select multiple network device mode to use Spanning Tree 6670 * Protocol, this enables a feature in which most unicast and multicast packets 6671 * are forwarded inside the switch and not passed to the host. Only packets 6672 * that need the host's attention are passed to it. This prevents the host 6673 * wasting CPU time to examine each and every incoming packets and do the 6674 * forwarding itself. 6675 * 6676 * As the hack requires the private bridge header, the driver cannot compile 6677 * with just the kernel headers. 6678 * 6679 * Enabling STP support also turns on multiple network device mode. 6680 */ 6681 static int stp; 6682 6683 /* 6684 * This enables fast aging in the KSZ8842 switch. Not sure what situation 6685 * needs that. However, fast aging is used to flush the dynamic MAC table when 6686 * STP support is enabled. 6687 */ 6688 static int fast_aging; 6689 6690 /** 6691 * netdev_init - initialize network device. 6692 * @dev: Network device. 6693 * 6694 * This function initializes the network device. 6695 * 6696 * Return 0 if successful; otherwise an error code indicating failure. 6697 */ 6698 static int __init netdev_init(struct net_device *dev) 6699 { 6700 struct dev_priv *priv = netdev_priv(dev); 6701 6702 /* 500 ms timeout */ 6703 ksz_init_timer(&priv->monitor_timer_info, 500 * HZ / 1000, 6704 dev_monitor); 6705 6706 /* 500 ms timeout */ 6707 dev->watchdog_timeo = HZ / 2; 6708 6709 dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG | NETIF_F_RXCSUM; 6710 6711 /* 6712 * Hardware does not really support IPv6 checksum generation, but 6713 * driver actually runs faster with this on. 6714 */ 6715 dev->hw_features |= NETIF_F_IPV6_CSUM; 6716 6717 dev->features |= dev->hw_features; 6718 6719 sema_init(&priv->proc_sem, 1); 6720 6721 priv->mii_if.phy_id_mask = 0x1; 6722 priv->mii_if.reg_num_mask = 0x7; 6723 priv->mii_if.dev = dev; 6724 priv->mii_if.mdio_read = mdio_read; 6725 priv->mii_if.mdio_write = mdio_write; 6726 priv->mii_if.phy_id = priv->port.first_port + 1; 6727 6728 priv->msg_enable = netif_msg_init(msg_enable, 6729 (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK)); 6730 6731 return 0; 6732 } 6733 6734 static const struct net_device_ops netdev_ops = { 6735 .ndo_init = netdev_init, 6736 .ndo_open = netdev_open, 6737 .ndo_stop = netdev_close, 6738 .ndo_get_stats = netdev_query_statistics, 6739 .ndo_start_xmit = netdev_tx, 6740 .ndo_tx_timeout = netdev_tx_timeout, 6741 .ndo_change_mtu = netdev_change_mtu, 6742 .ndo_set_features = netdev_set_features, 6743 .ndo_set_mac_address = netdev_set_mac_address, 6744 .ndo_validate_addr = eth_validate_addr, 6745 .ndo_eth_ioctl = netdev_ioctl, 6746 .ndo_set_rx_mode = netdev_set_rx_mode, 6747 #ifdef CONFIG_NET_POLL_CONTROLLER 6748 .ndo_poll_controller = netdev_netpoll, 6749 #endif 6750 }; 6751 6752 static void netdev_free(struct net_device *dev) 6753 { 6754 if (dev->watchdog_timeo) 6755 unregister_netdev(dev); 6756 6757 free_netdev(dev); 6758 } 6759 6760 struct platform_info { 6761 struct dev_info dev_info; 6762 struct net_device *netdev[SWITCH_PORT_NUM]; 6763 }; 6764 6765 static int net_device_present; 6766 6767 static void get_mac_addr(struct dev_info *hw_priv, u8 *macaddr, int port) 6768 { 6769 int i; 6770 int j; 6771 int got_num; 6772 int num; 6773 6774 i = j = num = got_num = 0; 6775 while (j < ETH_ALEN) { 6776 if (macaddr[i]) { 6777 int digit; 6778 6779 got_num = 1; 6780 digit = hex_to_bin(macaddr[i]); 6781 if (digit >= 0) 6782 num = num * 16 + digit; 6783 else if (':' == macaddr[i]) 6784 got_num = 2; 6785 else 6786 break; 6787 } else if (got_num) 6788 got_num = 2; 6789 else 6790 break; 6791 if (2 == got_num) { 6792 if (MAIN_PORT == port) { 6793 hw_priv->hw.override_addr[j++] = (u8) num; 6794 hw_priv->hw.override_addr[5] += 6795 hw_priv->hw.id; 6796 } else { 6797 hw_priv->hw.ksz_switch->other_addr[j++] = 6798 (u8) num; 6799 hw_priv->hw.ksz_switch->other_addr[5] += 6800 hw_priv->hw.id; 6801 } 6802 num = got_num = 0; 6803 } 6804 i++; 6805 } 6806 if (ETH_ALEN == j) { 6807 if (MAIN_PORT == port) 6808 hw_priv->hw.mac_override = 1; 6809 } 6810 } 6811 6812 #define KS884X_DMA_MASK (~0x0UL) 6813 6814 static void read_other_addr(struct ksz_hw *hw) 6815 { 6816 int i; 6817 u16 data[3]; 6818 struct ksz_switch *sw = hw->ksz_switch; 6819 6820 for (i = 0; i < 3; i++) 6821 data[i] = eeprom_read(hw, i + EEPROM_DATA_OTHER_MAC_ADDR); 6822 if ((data[0] || data[1] || data[2]) && data[0] != 0xffff) { 6823 sw->other_addr[5] = (u8) data[0]; 6824 sw->other_addr[4] = (u8)(data[0] >> 8); 6825 sw->other_addr[3] = (u8) data[1]; 6826 sw->other_addr[2] = (u8)(data[1] >> 8); 6827 sw->other_addr[1] = (u8) data[2]; 6828 sw->other_addr[0] = (u8)(data[2] >> 8); 6829 } 6830 } 6831 6832 #ifndef PCI_VENDOR_ID_MICREL_KS 6833 #define PCI_VENDOR_ID_MICREL_KS 0x16c6 6834 #endif 6835 6836 static int pcidev_init(struct pci_dev *pdev, const struct pci_device_id *id) 6837 { 6838 struct net_device *dev; 6839 struct dev_priv *priv; 6840 struct dev_info *hw_priv; 6841 struct ksz_hw *hw; 6842 struct platform_info *info; 6843 struct ksz_port *port; 6844 unsigned long reg_base; 6845 unsigned long reg_len; 6846 int cnt; 6847 int i; 6848 int mib_port_count; 6849 int pi; 6850 int port_count; 6851 int result; 6852 char banner[sizeof(version)]; 6853 struct ksz_switch *sw = NULL; 6854 6855 result = pci_enable_device(pdev); 6856 if (result) 6857 return result; 6858 6859 result = -ENODEV; 6860 6861 if (dma_set_mask(&pdev->dev, DMA_BIT_MASK(32)) || 6862 dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32))) 6863 return result; 6864 6865 reg_base = pci_resource_start(pdev, 0); 6866 reg_len = pci_resource_len(pdev, 0); 6867 if ((pci_resource_flags(pdev, 0) & IORESOURCE_IO) != 0) 6868 return result; 6869 6870 if (!request_mem_region(reg_base, reg_len, DRV_NAME)) 6871 return result; 6872 pci_set_master(pdev); 6873 6874 result = -ENOMEM; 6875 6876 info = kzalloc(sizeof(struct platform_info), GFP_KERNEL); 6877 if (!info) 6878 goto pcidev_init_dev_err; 6879 6880 hw_priv = &info->dev_info; 6881 hw_priv->pdev = pdev; 6882 6883 hw = &hw_priv->hw; 6884 6885 hw->io = ioremap(reg_base, reg_len); 6886 if (!hw->io) 6887 goto pcidev_init_io_err; 6888 6889 cnt = hw_init(hw); 6890 if (!cnt) { 6891 if (msg_enable & NETIF_MSG_PROBE) 6892 pr_alert("chip not detected\n"); 6893 result = -ENODEV; 6894 goto pcidev_init_alloc_err; 6895 } 6896 6897 snprintf(banner, sizeof(banner), "%s", version); 6898 banner[13] = cnt + '0'; /* Replace x in "Micrel KSZ884x" */ 6899 dev_info(&hw_priv->pdev->dev, "%s\n", banner); 6900 dev_dbg(&hw_priv->pdev->dev, "Mem = %p; IRQ = %d\n", hw->io, pdev->irq); 6901 6902 /* Assume device is KSZ8841. */ 6903 hw->dev_count = 1; 6904 port_count = 1; 6905 mib_port_count = 1; 6906 hw->addr_list_size = 0; 6907 hw->mib_cnt = PORT_COUNTER_NUM; 6908 hw->mib_port_cnt = 1; 6909 6910 /* KSZ8842 has a switch with multiple ports. */ 6911 if (2 == cnt) { 6912 if (fast_aging) 6913 hw->overrides |= FAST_AGING; 6914 6915 hw->mib_cnt = TOTAL_PORT_COUNTER_NUM; 6916 6917 /* Multiple network device interfaces are required. */ 6918 if (multi_dev) { 6919 hw->dev_count = SWITCH_PORT_NUM; 6920 hw->addr_list_size = SWITCH_PORT_NUM - 1; 6921 } 6922 6923 /* Single network device has multiple ports. */ 6924 if (1 == hw->dev_count) { 6925 port_count = SWITCH_PORT_NUM; 6926 mib_port_count = SWITCH_PORT_NUM; 6927 } 6928 hw->mib_port_cnt = TOTAL_PORT_NUM; 6929 hw->ksz_switch = kzalloc(sizeof(struct ksz_switch), GFP_KERNEL); 6930 if (!hw->ksz_switch) 6931 goto pcidev_init_alloc_err; 6932 6933 sw = hw->ksz_switch; 6934 } 6935 for (i = 0; i < hw->mib_port_cnt; i++) 6936 hw->port_mib[i].mib_start = 0; 6937 6938 hw->parent = hw_priv; 6939 6940 /* Default MTU is 1500. */ 6941 hw_priv->mtu = (REGULAR_RX_BUF_SIZE + 3) & ~3; 6942 6943 if (ksz_alloc_mem(hw_priv)) 6944 goto pcidev_init_mem_err; 6945 6946 hw_priv->hw.id = net_device_present; 6947 6948 spin_lock_init(&hw_priv->hwlock); 6949 mutex_init(&hw_priv->lock); 6950 6951 for (i = 0; i < TOTAL_PORT_NUM; i++) 6952 init_waitqueue_head(&hw_priv->counter[i].counter); 6953 6954 if (macaddr[0] != ':') 6955 get_mac_addr(hw_priv, macaddr, MAIN_PORT); 6956 6957 /* Read MAC address and initialize override address if not overridden. */ 6958 hw_read_addr(hw); 6959 6960 /* Multiple device interfaces mode requires a second MAC address. */ 6961 if (hw->dev_count > 1) { 6962 memcpy(sw->other_addr, hw->override_addr, ETH_ALEN); 6963 read_other_addr(hw); 6964 if (mac1addr[0] != ':') 6965 get_mac_addr(hw_priv, mac1addr, OTHER_PORT); 6966 } 6967 6968 hw_setup(hw); 6969 if (hw->ksz_switch) 6970 sw_setup(hw); 6971 else { 6972 hw_priv->wol_support = WOL_SUPPORT; 6973 hw_priv->wol_enable = 0; 6974 } 6975 6976 INIT_WORK(&hw_priv->mib_read, mib_read_work); 6977 6978 /* 500 ms timeout */ 6979 ksz_init_timer(&hw_priv->mib_timer_info, 500 * HZ / 1000, 6980 mib_monitor); 6981 6982 for (i = 0; i < hw->dev_count; i++) { 6983 dev = alloc_etherdev(sizeof(struct dev_priv)); 6984 if (!dev) 6985 goto pcidev_init_reg_err; 6986 SET_NETDEV_DEV(dev, &pdev->dev); 6987 info->netdev[i] = dev; 6988 6989 priv = netdev_priv(dev); 6990 priv->adapter = hw_priv; 6991 priv->id = net_device_present++; 6992 6993 port = &priv->port; 6994 port->port_cnt = port_count; 6995 port->mib_port_cnt = mib_port_count; 6996 port->first_port = i; 6997 port->flow_ctrl = PHY_FLOW_CTRL; 6998 6999 port->hw = hw; 7000 port->linked = &hw->port_info[port->first_port]; 7001 7002 for (cnt = 0, pi = i; cnt < port_count; cnt++, pi++) { 7003 hw->port_info[pi].port_id = pi; 7004 hw->port_info[pi].pdev = dev; 7005 hw->port_info[pi].state = media_disconnected; 7006 } 7007 7008 dev->mem_start = (unsigned long) hw->io; 7009 dev->mem_end = dev->mem_start + reg_len - 1; 7010 dev->irq = pdev->irq; 7011 if (MAIN_PORT == i) 7012 eth_hw_addr_set(dev, hw_priv->hw.override_addr); 7013 else { 7014 u8 addr[ETH_ALEN]; 7015 7016 ether_addr_copy(addr, sw->other_addr); 7017 if (ether_addr_equal(sw->other_addr, hw->override_addr)) 7018 addr[5] += port->first_port; 7019 eth_hw_addr_set(dev, addr); 7020 } 7021 7022 dev->netdev_ops = &netdev_ops; 7023 dev->ethtool_ops = &netdev_ethtool_ops; 7024 7025 /* MTU range: 60 - 1894 */ 7026 dev->min_mtu = ETH_ZLEN; 7027 dev->max_mtu = MAX_RX_BUF_SIZE - 7028 (ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN); 7029 7030 if (register_netdev(dev)) 7031 goto pcidev_init_reg_err; 7032 port_set_power_saving(port, true); 7033 } 7034 7035 pci_dev_get(hw_priv->pdev); 7036 pci_set_drvdata(pdev, info); 7037 return 0; 7038 7039 pcidev_init_reg_err: 7040 for (i = 0; i < hw->dev_count; i++) { 7041 if (info->netdev[i]) { 7042 netdev_free(info->netdev[i]); 7043 info->netdev[i] = NULL; 7044 } 7045 } 7046 7047 pcidev_init_mem_err: 7048 ksz_free_mem(hw_priv); 7049 kfree(hw->ksz_switch); 7050 7051 pcidev_init_alloc_err: 7052 iounmap(hw->io); 7053 7054 pcidev_init_io_err: 7055 kfree(info); 7056 7057 pcidev_init_dev_err: 7058 release_mem_region(reg_base, reg_len); 7059 7060 return result; 7061 } 7062 7063 static void pcidev_exit(struct pci_dev *pdev) 7064 { 7065 int i; 7066 struct platform_info *info = pci_get_drvdata(pdev); 7067 struct dev_info *hw_priv = &info->dev_info; 7068 7069 release_mem_region(pci_resource_start(pdev, 0), 7070 pci_resource_len(pdev, 0)); 7071 for (i = 0; i < hw_priv->hw.dev_count; i++) { 7072 if (info->netdev[i]) 7073 netdev_free(info->netdev[i]); 7074 } 7075 if (hw_priv->hw.io) 7076 iounmap(hw_priv->hw.io); 7077 ksz_free_mem(hw_priv); 7078 kfree(hw_priv->hw.ksz_switch); 7079 pci_dev_put(hw_priv->pdev); 7080 kfree(info); 7081 } 7082 7083 static int __maybe_unused pcidev_resume(struct device *dev_d) 7084 { 7085 int i; 7086 struct platform_info *info = dev_get_drvdata(dev_d); 7087 struct dev_info *hw_priv = &info->dev_info; 7088 struct ksz_hw *hw = &hw_priv->hw; 7089 7090 device_wakeup_disable(dev_d); 7091 7092 if (hw_priv->wol_enable) 7093 hw_cfg_wol_pme(hw, 0); 7094 for (i = 0; i < hw->dev_count; i++) { 7095 if (info->netdev[i]) { 7096 struct net_device *dev = info->netdev[i]; 7097 7098 if (netif_running(dev)) { 7099 netdev_open(dev); 7100 netif_device_attach(dev); 7101 } 7102 } 7103 } 7104 return 0; 7105 } 7106 7107 static int __maybe_unused pcidev_suspend(struct device *dev_d) 7108 { 7109 int i; 7110 struct platform_info *info = dev_get_drvdata(dev_d); 7111 struct dev_info *hw_priv = &info->dev_info; 7112 struct ksz_hw *hw = &hw_priv->hw; 7113 7114 /* Need to find a way to retrieve the device IP address. */ 7115 static const u8 net_addr[] = { 192, 168, 1, 1 }; 7116 7117 for (i = 0; i < hw->dev_count; i++) { 7118 if (info->netdev[i]) { 7119 struct net_device *dev = info->netdev[i]; 7120 7121 if (netif_running(dev)) { 7122 netif_device_detach(dev); 7123 netdev_close(dev); 7124 } 7125 } 7126 } 7127 if (hw_priv->wol_enable) { 7128 hw_enable_wol(hw, hw_priv->wol_enable, net_addr); 7129 hw_cfg_wol_pme(hw, 1); 7130 } 7131 7132 device_wakeup_enable(dev_d); 7133 return 0; 7134 } 7135 7136 static char pcidev_name[] = "ksz884xp"; 7137 7138 static const struct pci_device_id pcidev_table[] = { 7139 { PCI_VENDOR_ID_MICREL_KS, 0x8841, 7140 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 }, 7141 { PCI_VENDOR_ID_MICREL_KS, 0x8842, 7142 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 }, 7143 { 0 } 7144 }; 7145 7146 MODULE_DEVICE_TABLE(pci, pcidev_table); 7147 7148 static SIMPLE_DEV_PM_OPS(pcidev_pm_ops, pcidev_suspend, pcidev_resume); 7149 7150 static struct pci_driver pci_device_driver = { 7151 .driver.pm = &pcidev_pm_ops, 7152 .name = pcidev_name, 7153 .id_table = pcidev_table, 7154 .probe = pcidev_init, 7155 .remove = pcidev_exit 7156 }; 7157 7158 module_pci_driver(pci_device_driver); 7159 7160 MODULE_DESCRIPTION("KSZ8841/2 PCI network driver"); 7161 MODULE_AUTHOR("Tristram Ha <Tristram.Ha@micrel.com>"); 7162 MODULE_LICENSE("GPL"); 7163 7164 module_param_named(message, msg_enable, int, 0); 7165 MODULE_PARM_DESC(message, "Message verbosity level (0=none, 31=all)"); 7166 7167 module_param(macaddr, charp, 0); 7168 module_param(mac1addr, charp, 0); 7169 module_param(fast_aging, int, 0); 7170 module_param(multi_dev, int, 0); 7171 module_param(stp, int, 0); 7172 MODULE_PARM_DESC(macaddr, "MAC address"); 7173 MODULE_PARM_DESC(mac1addr, "Second MAC address"); 7174 MODULE_PARM_DESC(fast_aging, "Fast aging"); 7175 MODULE_PARM_DESC(multi_dev, "Multiple device interfaces"); 7176 MODULE_PARM_DESC(stp, "STP support"); 7177