1 // SPDX-License-Identifier: GPL-2.0-only 2 /* drivers/net/ethernet/micrel/ks8851.c 3 * 4 * Copyright 2009 Simtec Electronics 5 * http://www.simtec.co.uk/ 6 * Ben Dooks <ben@simtec.co.uk> 7 */ 8 9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 10 11 #include <linux/interrupt.h> 12 #include <linux/module.h> 13 #include <linux/kernel.h> 14 #include <linux/netdevice.h> 15 #include <linux/etherdevice.h> 16 #include <linux/ethtool.h> 17 #include <linux/cache.h> 18 #include <linux/crc32.h> 19 #include <linux/mii.h> 20 #include <linux/regulator/consumer.h> 21 22 #include <linux/gpio.h> 23 #include <linux/of_gpio.h> 24 #include <linux/of_mdio.h> 25 #include <linux/of_net.h> 26 27 #include "ks8851.h" 28 29 /** 30 * ks8851_lock - register access lock 31 * @ks: The chip state 32 * @flags: Spinlock flags 33 * 34 * Claim chip register access lock 35 */ 36 static void ks8851_lock(struct ks8851_net *ks, unsigned long *flags) 37 { 38 ks->lock(ks, flags); 39 } 40 41 /** 42 * ks8851_unlock - register access unlock 43 * @ks: The chip state 44 * @flags: Spinlock flags 45 * 46 * Release chip register access lock 47 */ 48 static void ks8851_unlock(struct ks8851_net *ks, unsigned long *flags) 49 { 50 ks->unlock(ks, flags); 51 } 52 53 /** 54 * ks8851_wrreg16 - write 16bit register value to chip 55 * @ks: The chip state 56 * @reg: The register address 57 * @val: The value to write 58 * 59 * Issue a write to put the value @val into the register specified in @reg. 60 */ 61 static void ks8851_wrreg16(struct ks8851_net *ks, unsigned int reg, 62 unsigned int val) 63 { 64 ks->wrreg16(ks, reg, val); 65 } 66 67 /** 68 * ks8851_rdreg16 - read 16 bit register from device 69 * @ks: The chip information 70 * @reg: The register address 71 * 72 * Read a 16bit register from the chip, returning the result 73 */ 74 static unsigned int ks8851_rdreg16(struct ks8851_net *ks, 75 unsigned int reg) 76 { 77 return ks->rdreg16(ks, reg); 78 } 79 80 /** 81 * ks8851_soft_reset - issue one of the soft reset to the device 82 * @ks: The device state. 83 * @op: The bit(s) to set in the GRR 84 * 85 * Issue the relevant soft-reset command to the device's GRR register 86 * specified by @op. 87 * 88 * Note, the delays are in there as a caution to ensure that the reset 89 * has time to take effect and then complete. Since the datasheet does 90 * not currently specify the exact sequence, we have chosen something 91 * that seems to work with our device. 92 */ 93 static void ks8851_soft_reset(struct ks8851_net *ks, unsigned op) 94 { 95 ks8851_wrreg16(ks, KS_GRR, op); 96 mdelay(1); /* wait a short time to effect reset */ 97 ks8851_wrreg16(ks, KS_GRR, 0); 98 mdelay(1); /* wait for condition to clear */ 99 } 100 101 /** 102 * ks8851_set_powermode - set power mode of the device 103 * @ks: The device state 104 * @pwrmode: The power mode value to write to KS_PMECR. 105 * 106 * Change the power mode of the chip. 107 */ 108 static void ks8851_set_powermode(struct ks8851_net *ks, unsigned pwrmode) 109 { 110 unsigned pmecr; 111 112 netif_dbg(ks, hw, ks->netdev, "setting power mode %d\n", pwrmode); 113 114 pmecr = ks8851_rdreg16(ks, KS_PMECR); 115 pmecr &= ~PMECR_PM_MASK; 116 pmecr |= pwrmode; 117 118 ks8851_wrreg16(ks, KS_PMECR, pmecr); 119 } 120 121 /** 122 * ks8851_write_mac_addr - write mac address to device registers 123 * @dev: The network device 124 * 125 * Update the KS8851 MAC address registers from the address in @dev. 126 * 127 * This call assumes that the chip is not running, so there is no need to 128 * shutdown the RXQ process whilst setting this. 129 */ 130 static int ks8851_write_mac_addr(struct net_device *dev) 131 { 132 struct ks8851_net *ks = netdev_priv(dev); 133 unsigned long flags; 134 u16 val; 135 int i; 136 137 ks8851_lock(ks, &flags); 138 139 /* 140 * Wake up chip in case it was powered off when stopped; otherwise, 141 * the first write to the MAC address does not take effect. 142 */ 143 ks8851_set_powermode(ks, PMECR_PM_NORMAL); 144 145 for (i = 0; i < ETH_ALEN; i += 2) { 146 val = (dev->dev_addr[i] << 8) | dev->dev_addr[i + 1]; 147 ks8851_wrreg16(ks, KS_MAR(i), val); 148 } 149 150 if (!netif_running(dev)) 151 ks8851_set_powermode(ks, PMECR_PM_SOFTDOWN); 152 153 ks8851_unlock(ks, &flags); 154 155 return 0; 156 } 157 158 /** 159 * ks8851_read_mac_addr - read mac address from device registers 160 * @dev: The network device 161 * 162 * Update our copy of the KS8851 MAC address from the registers of @dev. 163 */ 164 static void ks8851_read_mac_addr(struct net_device *dev) 165 { 166 struct ks8851_net *ks = netdev_priv(dev); 167 unsigned long flags; 168 u16 reg; 169 int i; 170 171 ks8851_lock(ks, &flags); 172 173 for (i = 0; i < ETH_ALEN; i += 2) { 174 reg = ks8851_rdreg16(ks, KS_MAR(i)); 175 dev->dev_addr[i] = reg >> 8; 176 dev->dev_addr[i + 1] = reg & 0xff; 177 } 178 179 ks8851_unlock(ks, &flags); 180 } 181 182 /** 183 * ks8851_init_mac - initialise the mac address 184 * @ks: The device structure 185 * @np: The device node pointer 186 * 187 * Get or create the initial mac address for the device and then set that 188 * into the station address register. A mac address supplied in the device 189 * tree takes precedence. Otherwise, if there is an EEPROM present, then 190 * we try that. If no valid mac address is found we use eth_random_addr() 191 * to create a new one. 192 */ 193 static void ks8851_init_mac(struct ks8851_net *ks, struct device_node *np) 194 { 195 struct net_device *dev = ks->netdev; 196 const u8 *mac_addr; 197 198 mac_addr = of_get_mac_address(np); 199 if (!IS_ERR(mac_addr)) { 200 ether_addr_copy(dev->dev_addr, mac_addr); 201 ks8851_write_mac_addr(dev); 202 return; 203 } 204 205 if (ks->rc_ccr & CCR_EEPROM) { 206 ks8851_read_mac_addr(dev); 207 if (is_valid_ether_addr(dev->dev_addr)) 208 return; 209 210 netdev_err(ks->netdev, "invalid mac address read %pM\n", 211 dev->dev_addr); 212 } 213 214 eth_hw_addr_random(dev); 215 ks8851_write_mac_addr(dev); 216 } 217 218 /** 219 * ks8851_dbg_dumpkkt - dump initial packet contents to debug 220 * @ks: The device state 221 * @rxpkt: The data for the received packet 222 * 223 * Dump the initial data from the packet to dev_dbg(). 224 */ 225 static void ks8851_dbg_dumpkkt(struct ks8851_net *ks, u8 *rxpkt) 226 { 227 netdev_dbg(ks->netdev, 228 "pkt %02x%02x%02x%02x %02x%02x%02x%02x %02x%02x%02x%02x\n", 229 rxpkt[4], rxpkt[5], rxpkt[6], rxpkt[7], 230 rxpkt[8], rxpkt[9], rxpkt[10], rxpkt[11], 231 rxpkt[12], rxpkt[13], rxpkt[14], rxpkt[15]); 232 } 233 234 /** 235 * ks8851_rx_skb - receive skbuff 236 * @ks: The device state. 237 * @skb: The skbuff 238 */ 239 static void ks8851_rx_skb(struct ks8851_net *ks, struct sk_buff *skb) 240 { 241 ks->rx_skb(ks, skb); 242 } 243 244 /** 245 * ks8851_rx_pkts - receive packets from the host 246 * @ks: The device information. 247 * 248 * This is called from the IRQ work queue when the system detects that there 249 * are packets in the receive queue. Find out how many packets there are and 250 * read them from the FIFO. 251 */ 252 static void ks8851_rx_pkts(struct ks8851_net *ks) 253 { 254 struct sk_buff *skb; 255 unsigned rxfc; 256 unsigned rxlen; 257 unsigned rxstat; 258 u8 *rxpkt; 259 260 rxfc = (ks8851_rdreg16(ks, KS_RXFCTR) >> 8) & 0xff; 261 262 netif_dbg(ks, rx_status, ks->netdev, 263 "%s: %d packets\n", __func__, rxfc); 264 265 /* Currently we're issuing a read per packet, but we could possibly 266 * improve the code by issuing a single read, getting the receive 267 * header, allocating the packet and then reading the packet data 268 * out in one go. 269 * 270 * This form of operation would require us to hold the SPI bus' 271 * chipselect low during the entie transaction to avoid any 272 * reset to the data stream coming from the chip. 273 */ 274 275 for (; rxfc != 0; rxfc--) { 276 rxstat = ks8851_rdreg16(ks, KS_RXFHSR); 277 rxlen = ks8851_rdreg16(ks, KS_RXFHBCR) & RXFHBCR_CNT_MASK; 278 279 netif_dbg(ks, rx_status, ks->netdev, 280 "rx: stat 0x%04x, len 0x%04x\n", rxstat, rxlen); 281 282 /* the length of the packet includes the 32bit CRC */ 283 284 /* set dma read address */ 285 ks8851_wrreg16(ks, KS_RXFDPR, RXFDPR_RXFPAI | 0x00); 286 287 /* start DMA access */ 288 ks8851_wrreg16(ks, KS_RXQCR, ks->rc_rxqcr | RXQCR_SDA); 289 290 if (rxlen > 4) { 291 unsigned int rxalign; 292 293 rxlen -= 4; 294 rxalign = ALIGN(rxlen, 4); 295 skb = netdev_alloc_skb_ip_align(ks->netdev, rxalign); 296 if (skb) { 297 298 /* 4 bytes of status header + 4 bytes of 299 * garbage: we put them before ethernet 300 * header, so that they are copied, 301 * but ignored. 302 */ 303 304 rxpkt = skb_put(skb, rxlen) - 8; 305 306 ks->rdfifo(ks, rxpkt, rxalign + 8); 307 308 if (netif_msg_pktdata(ks)) 309 ks8851_dbg_dumpkkt(ks, rxpkt); 310 311 skb->protocol = eth_type_trans(skb, ks->netdev); 312 ks8851_rx_skb(ks, skb); 313 314 ks->netdev->stats.rx_packets++; 315 ks->netdev->stats.rx_bytes += rxlen; 316 } 317 } 318 319 /* end DMA access and dequeue packet */ 320 ks8851_wrreg16(ks, KS_RXQCR, ks->rc_rxqcr | RXQCR_RRXEF); 321 } 322 } 323 324 /** 325 * ks8851_irq - IRQ handler for dealing with interrupt requests 326 * @irq: IRQ number 327 * @_ks: cookie 328 * 329 * This handler is invoked when the IRQ line asserts to find out what happened. 330 * As we cannot allow ourselves to sleep in HARDIRQ context, this handler runs 331 * in thread context. 332 * 333 * Read the interrupt status, work out what needs to be done and then clear 334 * any of the interrupts that are not needed. 335 */ 336 static irqreturn_t ks8851_irq(int irq, void *_ks) 337 { 338 struct ks8851_net *ks = _ks; 339 unsigned handled = 0; 340 unsigned long flags; 341 unsigned int status; 342 343 ks8851_lock(ks, &flags); 344 345 status = ks8851_rdreg16(ks, KS_ISR); 346 347 netif_dbg(ks, intr, ks->netdev, 348 "%s: status 0x%04x\n", __func__, status); 349 350 if (status & IRQ_LCI) 351 handled |= IRQ_LCI; 352 353 if (status & IRQ_LDI) { 354 u16 pmecr = ks8851_rdreg16(ks, KS_PMECR); 355 pmecr &= ~PMECR_WKEVT_MASK; 356 ks8851_wrreg16(ks, KS_PMECR, pmecr | PMECR_WKEVT_LINK); 357 358 handled |= IRQ_LDI; 359 } 360 361 if (status & IRQ_RXPSI) 362 handled |= IRQ_RXPSI; 363 364 if (status & IRQ_TXI) { 365 handled |= IRQ_TXI; 366 367 /* no lock here, tx queue should have been stopped */ 368 369 /* update our idea of how much tx space is available to the 370 * system */ 371 ks->tx_space = ks8851_rdreg16(ks, KS_TXMIR); 372 373 netif_dbg(ks, intr, ks->netdev, 374 "%s: txspace %d\n", __func__, ks->tx_space); 375 } 376 377 if (status & IRQ_RXI) 378 handled |= IRQ_RXI; 379 380 if (status & IRQ_SPIBEI) { 381 netdev_err(ks->netdev, "%s: spi bus error\n", __func__); 382 handled |= IRQ_SPIBEI; 383 } 384 385 ks8851_wrreg16(ks, KS_ISR, handled); 386 387 if (status & IRQ_RXI) { 388 /* the datasheet says to disable the rx interrupt during 389 * packet read-out, however we're masking the interrupt 390 * from the device so do not bother masking just the RX 391 * from the device. */ 392 393 ks8851_rx_pkts(ks); 394 } 395 396 /* if something stopped the rx process, probably due to wanting 397 * to change the rx settings, then do something about restarting 398 * it. */ 399 if (status & IRQ_RXPSI) { 400 struct ks8851_rxctrl *rxc = &ks->rxctrl; 401 402 /* update the multicast hash table */ 403 ks8851_wrreg16(ks, KS_MAHTR0, rxc->mchash[0]); 404 ks8851_wrreg16(ks, KS_MAHTR1, rxc->mchash[1]); 405 ks8851_wrreg16(ks, KS_MAHTR2, rxc->mchash[2]); 406 ks8851_wrreg16(ks, KS_MAHTR3, rxc->mchash[3]); 407 408 ks8851_wrreg16(ks, KS_RXCR2, rxc->rxcr2); 409 ks8851_wrreg16(ks, KS_RXCR1, rxc->rxcr1); 410 } 411 412 ks8851_unlock(ks, &flags); 413 414 if (status & IRQ_LCI) 415 mii_check_link(&ks->mii); 416 417 if (status & IRQ_TXI) 418 netif_wake_queue(ks->netdev); 419 420 return IRQ_HANDLED; 421 } 422 423 /** 424 * ks8851_flush_tx_work - flush outstanding TX work 425 * @ks: The device state 426 */ 427 static void ks8851_flush_tx_work(struct ks8851_net *ks) 428 { 429 if (ks->flush_tx_work) 430 ks->flush_tx_work(ks); 431 } 432 433 /** 434 * ks8851_net_open - open network device 435 * @dev: The network device being opened. 436 * 437 * Called when the network device is marked active, such as a user executing 438 * 'ifconfig up' on the device. 439 */ 440 static int ks8851_net_open(struct net_device *dev) 441 { 442 struct ks8851_net *ks = netdev_priv(dev); 443 unsigned long flags; 444 int ret; 445 446 ret = request_threaded_irq(dev->irq, NULL, ks8851_irq, 447 IRQF_TRIGGER_LOW | IRQF_ONESHOT, 448 dev->name, ks); 449 if (ret < 0) { 450 netdev_err(dev, "failed to get irq\n"); 451 return ret; 452 } 453 454 /* lock the card, even if we may not actually be doing anything 455 * else at the moment */ 456 ks8851_lock(ks, &flags); 457 458 netif_dbg(ks, ifup, ks->netdev, "opening\n"); 459 460 /* bring chip out of any power saving mode it was in */ 461 ks8851_set_powermode(ks, PMECR_PM_NORMAL); 462 463 /* issue a soft reset to the RX/TX QMU to put it into a known 464 * state. */ 465 ks8851_soft_reset(ks, GRR_QMU); 466 467 /* setup transmission parameters */ 468 469 ks8851_wrreg16(ks, KS_TXCR, (TXCR_TXE | /* enable transmit process */ 470 TXCR_TXPE | /* pad to min length */ 471 TXCR_TXCRC | /* add CRC */ 472 TXCR_TXFCE)); /* enable flow control */ 473 474 /* auto-increment tx data, reset tx pointer */ 475 ks8851_wrreg16(ks, KS_TXFDPR, TXFDPR_TXFPAI); 476 477 /* setup receiver control */ 478 479 ks8851_wrreg16(ks, KS_RXCR1, (RXCR1_RXPAFMA | /* from mac filter */ 480 RXCR1_RXFCE | /* enable flow control */ 481 RXCR1_RXBE | /* broadcast enable */ 482 RXCR1_RXUE | /* unicast enable */ 483 RXCR1_RXE)); /* enable rx block */ 484 485 /* transfer entire frames out in one go */ 486 ks8851_wrreg16(ks, KS_RXCR2, RXCR2_SRDBL_FRAME); 487 488 /* set receive counter timeouts */ 489 ks8851_wrreg16(ks, KS_RXDTTR, 1000); /* 1ms after first frame to IRQ */ 490 ks8851_wrreg16(ks, KS_RXDBCTR, 4096); /* >4Kbytes in buffer to IRQ */ 491 ks8851_wrreg16(ks, KS_RXFCTR, 10); /* 10 frames to IRQ */ 492 493 ks->rc_rxqcr = (RXQCR_RXFCTE | /* IRQ on frame count exceeded */ 494 RXQCR_RXDBCTE | /* IRQ on byte count exceeded */ 495 RXQCR_RXDTTE); /* IRQ on time exceeded */ 496 497 ks8851_wrreg16(ks, KS_RXQCR, ks->rc_rxqcr); 498 499 /* clear then enable interrupts */ 500 ks8851_wrreg16(ks, KS_ISR, ks->rc_ier); 501 ks8851_wrreg16(ks, KS_IER, ks->rc_ier); 502 503 netif_start_queue(ks->netdev); 504 505 netif_dbg(ks, ifup, ks->netdev, "network device up\n"); 506 507 ks8851_unlock(ks, &flags); 508 mii_check_link(&ks->mii); 509 return 0; 510 } 511 512 /** 513 * ks8851_net_stop - close network device 514 * @dev: The device being closed. 515 * 516 * Called to close down a network device which has been active. Cancell any 517 * work, shutdown the RX and TX process and then place the chip into a low 518 * power state whilst it is not being used. 519 */ 520 static int ks8851_net_stop(struct net_device *dev) 521 { 522 struct ks8851_net *ks = netdev_priv(dev); 523 unsigned long flags; 524 525 netif_info(ks, ifdown, dev, "shutting down\n"); 526 527 netif_stop_queue(dev); 528 529 ks8851_lock(ks, &flags); 530 /* turn off the IRQs and ack any outstanding */ 531 ks8851_wrreg16(ks, KS_IER, 0x0000); 532 ks8851_wrreg16(ks, KS_ISR, 0xffff); 533 ks8851_unlock(ks, &flags); 534 535 /* stop any outstanding work */ 536 ks8851_flush_tx_work(ks); 537 flush_work(&ks->rxctrl_work); 538 539 ks8851_lock(ks, &flags); 540 /* shutdown RX process */ 541 ks8851_wrreg16(ks, KS_RXCR1, 0x0000); 542 543 /* shutdown TX process */ 544 ks8851_wrreg16(ks, KS_TXCR, 0x0000); 545 546 /* set powermode to soft power down to save power */ 547 ks8851_set_powermode(ks, PMECR_PM_SOFTDOWN); 548 ks8851_unlock(ks, &flags); 549 550 /* ensure any queued tx buffers are dumped */ 551 while (!skb_queue_empty(&ks->txq)) { 552 struct sk_buff *txb = skb_dequeue(&ks->txq); 553 554 netif_dbg(ks, ifdown, ks->netdev, 555 "%s: freeing txb %p\n", __func__, txb); 556 557 dev_kfree_skb(txb); 558 } 559 560 free_irq(dev->irq, ks); 561 562 return 0; 563 } 564 565 /** 566 * ks8851_start_xmit - transmit packet 567 * @skb: The buffer to transmit 568 * @dev: The device used to transmit the packet. 569 * 570 * Called by the network layer to transmit the @skb. Queue the packet for 571 * the device and schedule the necessary work to transmit the packet when 572 * it is free. 573 * 574 * We do this to firstly avoid sleeping with the network device locked, 575 * and secondly so we can round up more than one packet to transmit which 576 * means we can try and avoid generating too many transmit done interrupts. 577 */ 578 static netdev_tx_t ks8851_start_xmit(struct sk_buff *skb, 579 struct net_device *dev) 580 { 581 struct ks8851_net *ks = netdev_priv(dev); 582 583 return ks->start_xmit(skb, dev); 584 } 585 586 /** 587 * ks8851_rxctrl_work - work handler to change rx mode 588 * @work: The work structure this belongs to. 589 * 590 * Lock the device and issue the necessary changes to the receive mode from 591 * the network device layer. This is done so that we can do this without 592 * having to sleep whilst holding the network device lock. 593 * 594 * Since the recommendation from Micrel is that the RXQ is shutdown whilst the 595 * receive parameters are programmed, we issue a write to disable the RXQ and 596 * then wait for the interrupt handler to be triggered once the RXQ shutdown is 597 * complete. The interrupt handler then writes the new values into the chip. 598 */ 599 static void ks8851_rxctrl_work(struct work_struct *work) 600 { 601 struct ks8851_net *ks = container_of(work, struct ks8851_net, rxctrl_work); 602 unsigned long flags; 603 604 ks8851_lock(ks, &flags); 605 606 /* need to shutdown RXQ before modifying filter parameters */ 607 ks8851_wrreg16(ks, KS_RXCR1, 0x00); 608 609 ks8851_unlock(ks, &flags); 610 } 611 612 static void ks8851_set_rx_mode(struct net_device *dev) 613 { 614 struct ks8851_net *ks = netdev_priv(dev); 615 struct ks8851_rxctrl rxctrl; 616 617 memset(&rxctrl, 0, sizeof(rxctrl)); 618 619 if (dev->flags & IFF_PROMISC) { 620 /* interface to receive everything */ 621 622 rxctrl.rxcr1 = RXCR1_RXAE | RXCR1_RXINVF; 623 } else if (dev->flags & IFF_ALLMULTI) { 624 /* accept all multicast packets */ 625 626 rxctrl.rxcr1 = (RXCR1_RXME | RXCR1_RXAE | 627 RXCR1_RXPAFMA | RXCR1_RXMAFMA); 628 } else if (dev->flags & IFF_MULTICAST && !netdev_mc_empty(dev)) { 629 struct netdev_hw_addr *ha; 630 u32 crc; 631 632 /* accept some multicast */ 633 634 netdev_for_each_mc_addr(ha, dev) { 635 crc = ether_crc(ETH_ALEN, ha->addr); 636 crc >>= (32 - 6); /* get top six bits */ 637 638 rxctrl.mchash[crc >> 4] |= (1 << (crc & 0xf)); 639 } 640 641 rxctrl.rxcr1 = RXCR1_RXME | RXCR1_RXPAFMA; 642 } else { 643 /* just accept broadcast / unicast */ 644 rxctrl.rxcr1 = RXCR1_RXPAFMA; 645 } 646 647 rxctrl.rxcr1 |= (RXCR1_RXUE | /* unicast enable */ 648 RXCR1_RXBE | /* broadcast enable */ 649 RXCR1_RXE | /* RX process enable */ 650 RXCR1_RXFCE); /* enable flow control */ 651 652 rxctrl.rxcr2 |= RXCR2_SRDBL_FRAME; 653 654 /* schedule work to do the actual set of the data if needed */ 655 656 spin_lock(&ks->statelock); 657 658 if (memcmp(&rxctrl, &ks->rxctrl, sizeof(rxctrl)) != 0) { 659 memcpy(&ks->rxctrl, &rxctrl, sizeof(ks->rxctrl)); 660 schedule_work(&ks->rxctrl_work); 661 } 662 663 spin_unlock(&ks->statelock); 664 } 665 666 static int ks8851_set_mac_address(struct net_device *dev, void *addr) 667 { 668 struct sockaddr *sa = addr; 669 670 if (netif_running(dev)) 671 return -EBUSY; 672 673 if (!is_valid_ether_addr(sa->sa_data)) 674 return -EADDRNOTAVAIL; 675 676 memcpy(dev->dev_addr, sa->sa_data, ETH_ALEN); 677 return ks8851_write_mac_addr(dev); 678 } 679 680 static int ks8851_net_ioctl(struct net_device *dev, struct ifreq *req, int cmd) 681 { 682 struct ks8851_net *ks = netdev_priv(dev); 683 684 if (!netif_running(dev)) 685 return -EINVAL; 686 687 return generic_mii_ioctl(&ks->mii, if_mii(req), cmd, NULL); 688 } 689 690 static const struct net_device_ops ks8851_netdev_ops = { 691 .ndo_open = ks8851_net_open, 692 .ndo_stop = ks8851_net_stop, 693 .ndo_do_ioctl = ks8851_net_ioctl, 694 .ndo_start_xmit = ks8851_start_xmit, 695 .ndo_set_mac_address = ks8851_set_mac_address, 696 .ndo_set_rx_mode = ks8851_set_rx_mode, 697 .ndo_validate_addr = eth_validate_addr, 698 }; 699 700 /* ethtool support */ 701 702 static void ks8851_get_drvinfo(struct net_device *dev, 703 struct ethtool_drvinfo *di) 704 { 705 strlcpy(di->driver, "KS8851", sizeof(di->driver)); 706 strlcpy(di->version, "1.00", sizeof(di->version)); 707 strlcpy(di->bus_info, dev_name(dev->dev.parent), sizeof(di->bus_info)); 708 } 709 710 static u32 ks8851_get_msglevel(struct net_device *dev) 711 { 712 struct ks8851_net *ks = netdev_priv(dev); 713 return ks->msg_enable; 714 } 715 716 static void ks8851_set_msglevel(struct net_device *dev, u32 to) 717 { 718 struct ks8851_net *ks = netdev_priv(dev); 719 ks->msg_enable = to; 720 } 721 722 static int ks8851_get_link_ksettings(struct net_device *dev, 723 struct ethtool_link_ksettings *cmd) 724 { 725 struct ks8851_net *ks = netdev_priv(dev); 726 727 mii_ethtool_get_link_ksettings(&ks->mii, cmd); 728 729 return 0; 730 } 731 732 static int ks8851_set_link_ksettings(struct net_device *dev, 733 const struct ethtool_link_ksettings *cmd) 734 { 735 struct ks8851_net *ks = netdev_priv(dev); 736 return mii_ethtool_set_link_ksettings(&ks->mii, cmd); 737 } 738 739 static u32 ks8851_get_link(struct net_device *dev) 740 { 741 struct ks8851_net *ks = netdev_priv(dev); 742 return mii_link_ok(&ks->mii); 743 } 744 745 static int ks8851_nway_reset(struct net_device *dev) 746 { 747 struct ks8851_net *ks = netdev_priv(dev); 748 return mii_nway_restart(&ks->mii); 749 } 750 751 /* EEPROM support */ 752 753 static void ks8851_eeprom_regread(struct eeprom_93cx6 *ee) 754 { 755 struct ks8851_net *ks = ee->data; 756 unsigned val; 757 758 val = ks8851_rdreg16(ks, KS_EEPCR); 759 760 ee->reg_data_out = (val & EEPCR_EESB) ? 1 : 0; 761 ee->reg_data_clock = (val & EEPCR_EESCK) ? 1 : 0; 762 ee->reg_chip_select = (val & EEPCR_EECS) ? 1 : 0; 763 } 764 765 static void ks8851_eeprom_regwrite(struct eeprom_93cx6 *ee) 766 { 767 struct ks8851_net *ks = ee->data; 768 unsigned val = EEPCR_EESA; /* default - eeprom access on */ 769 770 if (ee->drive_data) 771 val |= EEPCR_EESRWA; 772 if (ee->reg_data_in) 773 val |= EEPCR_EEDO; 774 if (ee->reg_data_clock) 775 val |= EEPCR_EESCK; 776 if (ee->reg_chip_select) 777 val |= EEPCR_EECS; 778 779 ks8851_wrreg16(ks, KS_EEPCR, val); 780 } 781 782 /** 783 * ks8851_eeprom_claim - claim device EEPROM and activate the interface 784 * @ks: The network device state. 785 * 786 * Check for the presence of an EEPROM, and then activate software access 787 * to the device. 788 */ 789 static int ks8851_eeprom_claim(struct ks8851_net *ks) 790 { 791 /* start with clock low, cs high */ 792 ks8851_wrreg16(ks, KS_EEPCR, EEPCR_EESA | EEPCR_EECS); 793 return 0; 794 } 795 796 /** 797 * ks8851_eeprom_release - release the EEPROM interface 798 * @ks: The device state 799 * 800 * Release the software access to the device EEPROM 801 */ 802 static void ks8851_eeprom_release(struct ks8851_net *ks) 803 { 804 unsigned val = ks8851_rdreg16(ks, KS_EEPCR); 805 806 ks8851_wrreg16(ks, KS_EEPCR, val & ~EEPCR_EESA); 807 } 808 809 #define KS_EEPROM_MAGIC (0x00008851) 810 811 static int ks8851_set_eeprom(struct net_device *dev, 812 struct ethtool_eeprom *ee, u8 *data) 813 { 814 struct ks8851_net *ks = netdev_priv(dev); 815 int offset = ee->offset; 816 unsigned long flags; 817 int len = ee->len; 818 u16 tmp; 819 820 /* currently only support byte writing */ 821 if (len != 1) 822 return -EINVAL; 823 824 if (ee->magic != KS_EEPROM_MAGIC) 825 return -EINVAL; 826 827 if (!(ks->rc_ccr & CCR_EEPROM)) 828 return -ENOENT; 829 830 ks8851_lock(ks, &flags); 831 832 ks8851_eeprom_claim(ks); 833 834 eeprom_93cx6_wren(&ks->eeprom, true); 835 836 /* ethtool currently only supports writing bytes, which means 837 * we have to read/modify/write our 16bit EEPROMs */ 838 839 eeprom_93cx6_read(&ks->eeprom, offset/2, &tmp); 840 841 if (offset & 1) { 842 tmp &= 0xff; 843 tmp |= *data << 8; 844 } else { 845 tmp &= 0xff00; 846 tmp |= *data; 847 } 848 849 eeprom_93cx6_write(&ks->eeprom, offset/2, tmp); 850 eeprom_93cx6_wren(&ks->eeprom, false); 851 852 ks8851_eeprom_release(ks); 853 ks8851_unlock(ks, &flags); 854 855 return 0; 856 } 857 858 static int ks8851_get_eeprom(struct net_device *dev, 859 struct ethtool_eeprom *ee, u8 *data) 860 { 861 struct ks8851_net *ks = netdev_priv(dev); 862 int offset = ee->offset; 863 unsigned long flags; 864 int len = ee->len; 865 866 /* must be 2 byte aligned */ 867 if (len & 1 || offset & 1) 868 return -EINVAL; 869 870 if (!(ks->rc_ccr & CCR_EEPROM)) 871 return -ENOENT; 872 873 ks8851_lock(ks, &flags); 874 875 ks8851_eeprom_claim(ks); 876 877 ee->magic = KS_EEPROM_MAGIC; 878 879 eeprom_93cx6_multiread(&ks->eeprom, offset/2, (__le16 *)data, len/2); 880 ks8851_eeprom_release(ks); 881 ks8851_unlock(ks, &flags); 882 883 return 0; 884 } 885 886 static int ks8851_get_eeprom_len(struct net_device *dev) 887 { 888 struct ks8851_net *ks = netdev_priv(dev); 889 890 /* currently, we assume it is an 93C46 attached, so return 128 */ 891 return ks->rc_ccr & CCR_EEPROM ? 128 : 0; 892 } 893 894 static const struct ethtool_ops ks8851_ethtool_ops = { 895 .get_drvinfo = ks8851_get_drvinfo, 896 .get_msglevel = ks8851_get_msglevel, 897 .set_msglevel = ks8851_set_msglevel, 898 .get_link = ks8851_get_link, 899 .nway_reset = ks8851_nway_reset, 900 .get_eeprom_len = ks8851_get_eeprom_len, 901 .get_eeprom = ks8851_get_eeprom, 902 .set_eeprom = ks8851_set_eeprom, 903 .get_link_ksettings = ks8851_get_link_ksettings, 904 .set_link_ksettings = ks8851_set_link_ksettings, 905 }; 906 907 /* MII interface controls */ 908 909 /** 910 * ks8851_phy_reg - convert MII register into a KS8851 register 911 * @reg: MII register number. 912 * 913 * Return the KS8851 register number for the corresponding MII PHY register 914 * if possible. Return zero if the MII register has no direct mapping to the 915 * KS8851 register set. 916 */ 917 static int ks8851_phy_reg(int reg) 918 { 919 switch (reg) { 920 case MII_BMCR: 921 return KS_P1MBCR; 922 case MII_BMSR: 923 return KS_P1MBSR; 924 case MII_PHYSID1: 925 return KS_PHY1ILR; 926 case MII_PHYSID2: 927 return KS_PHY1IHR; 928 case MII_ADVERTISE: 929 return KS_P1ANAR; 930 case MII_LPA: 931 return KS_P1ANLPR; 932 } 933 934 return -EOPNOTSUPP; 935 } 936 937 static int ks8851_phy_read_common(struct net_device *dev, int phy_addr, int reg) 938 { 939 struct ks8851_net *ks = netdev_priv(dev); 940 unsigned long flags; 941 int result; 942 int ksreg; 943 944 ksreg = ks8851_phy_reg(reg); 945 if (ksreg < 0) 946 return ksreg; 947 948 ks8851_lock(ks, &flags); 949 result = ks8851_rdreg16(ks, ksreg); 950 ks8851_unlock(ks, &flags); 951 952 return result; 953 } 954 955 /** 956 * ks8851_phy_read - MII interface PHY register read. 957 * @dev: The network device the PHY is on. 958 * @phy_addr: Address of PHY (ignored as we only have one) 959 * @reg: The register to read. 960 * 961 * This call reads data from the PHY register specified in @reg. Since the 962 * device does not support all the MII registers, the non-existent values 963 * are always returned as zero. 964 * 965 * We return zero for unsupported registers as the MII code does not check 966 * the value returned for any error status, and simply returns it to the 967 * caller. The mii-tool that the driver was tested with takes any -ve error 968 * as real PHY capabilities, thus displaying incorrect data to the user. 969 */ 970 static int ks8851_phy_read(struct net_device *dev, int phy_addr, int reg) 971 { 972 int ret; 973 974 ret = ks8851_phy_read_common(dev, phy_addr, reg); 975 if (ret < 0) 976 return 0x0; /* no error return allowed, so use zero */ 977 978 return ret; 979 } 980 981 static void ks8851_phy_write(struct net_device *dev, 982 int phy, int reg, int value) 983 { 984 struct ks8851_net *ks = netdev_priv(dev); 985 unsigned long flags; 986 int ksreg; 987 988 ksreg = ks8851_phy_reg(reg); 989 if (ksreg >= 0) { 990 ks8851_lock(ks, &flags); 991 ks8851_wrreg16(ks, ksreg, value); 992 ks8851_unlock(ks, &flags); 993 } 994 } 995 996 static int ks8851_mdio_read(struct mii_bus *bus, int phy_id, int reg) 997 { 998 struct ks8851_net *ks = bus->priv; 999 1000 if (phy_id != 0) 1001 return -EOPNOTSUPP; 1002 1003 /* KS8851 PHY ID registers are swapped in HW, swap them back. */ 1004 if (reg == MII_PHYSID1) 1005 reg = MII_PHYSID2; 1006 else if (reg == MII_PHYSID2) 1007 reg = MII_PHYSID1; 1008 1009 return ks8851_phy_read_common(ks->netdev, phy_id, reg); 1010 } 1011 1012 static int ks8851_mdio_write(struct mii_bus *bus, int phy_id, int reg, u16 val) 1013 { 1014 struct ks8851_net *ks = bus->priv; 1015 1016 ks8851_phy_write(ks->netdev, phy_id, reg, val); 1017 return 0; 1018 } 1019 1020 /** 1021 * ks8851_read_selftest - read the selftest memory info. 1022 * @ks: The device state 1023 * 1024 * Read and check the TX/RX memory selftest information. 1025 */ 1026 static int ks8851_read_selftest(struct ks8851_net *ks) 1027 { 1028 unsigned both_done = MBIR_TXMBF | MBIR_RXMBF; 1029 int ret = 0; 1030 unsigned rd; 1031 1032 rd = ks8851_rdreg16(ks, KS_MBIR); 1033 1034 if ((rd & both_done) != both_done) { 1035 netdev_warn(ks->netdev, "Memory selftest not finished\n"); 1036 return 0; 1037 } 1038 1039 if (rd & MBIR_TXMBFA) { 1040 netdev_err(ks->netdev, "TX memory selftest fail\n"); 1041 ret |= 1; 1042 } 1043 1044 if (rd & MBIR_RXMBFA) { 1045 netdev_err(ks->netdev, "RX memory selftest fail\n"); 1046 ret |= 2; 1047 } 1048 1049 return 0; 1050 } 1051 1052 /* driver bus management functions */ 1053 1054 #ifdef CONFIG_PM_SLEEP 1055 1056 int ks8851_suspend(struct device *dev) 1057 { 1058 struct ks8851_net *ks = dev_get_drvdata(dev); 1059 struct net_device *netdev = ks->netdev; 1060 1061 if (netif_running(netdev)) { 1062 netif_device_detach(netdev); 1063 ks8851_net_stop(netdev); 1064 } 1065 1066 return 0; 1067 } 1068 1069 int ks8851_resume(struct device *dev) 1070 { 1071 struct ks8851_net *ks = dev_get_drvdata(dev); 1072 struct net_device *netdev = ks->netdev; 1073 1074 if (netif_running(netdev)) { 1075 ks8851_net_open(netdev); 1076 netif_device_attach(netdev); 1077 } 1078 1079 return 0; 1080 } 1081 #endif 1082 1083 static int ks8851_register_mdiobus(struct ks8851_net *ks, struct device *dev) 1084 { 1085 struct mii_bus *mii_bus; 1086 int ret; 1087 1088 mii_bus = mdiobus_alloc(); 1089 if (!mii_bus) 1090 return -ENOMEM; 1091 1092 mii_bus->name = "ks8851_eth_mii"; 1093 mii_bus->read = ks8851_mdio_read; 1094 mii_bus->write = ks8851_mdio_write; 1095 mii_bus->priv = ks; 1096 mii_bus->parent = dev; 1097 mii_bus->phy_mask = ~((u32)BIT(0)); 1098 snprintf(mii_bus->id, MII_BUS_ID_SIZE, "%s", dev_name(dev)); 1099 1100 ret = mdiobus_register(mii_bus); 1101 if (ret) 1102 goto err_mdiobus_register; 1103 1104 ks->mii_bus = mii_bus; 1105 1106 return 0; 1107 1108 err_mdiobus_register: 1109 mdiobus_free(mii_bus); 1110 return ret; 1111 } 1112 1113 static void ks8851_unregister_mdiobus(struct ks8851_net *ks) 1114 { 1115 mdiobus_unregister(ks->mii_bus); 1116 mdiobus_free(ks->mii_bus); 1117 } 1118 1119 int ks8851_probe_common(struct net_device *netdev, struct device *dev, 1120 int msg_en) 1121 { 1122 struct ks8851_net *ks = netdev_priv(netdev); 1123 unsigned cider; 1124 int gpio; 1125 int ret; 1126 1127 ks->netdev = netdev; 1128 ks->tx_space = 6144; 1129 1130 gpio = of_get_named_gpio_flags(dev->of_node, "reset-gpios", 0, NULL); 1131 if (gpio == -EPROBE_DEFER) 1132 return gpio; 1133 1134 ks->gpio = gpio; 1135 if (gpio_is_valid(gpio)) { 1136 ret = devm_gpio_request_one(dev, gpio, 1137 GPIOF_OUT_INIT_LOW, "ks8851_rst_n"); 1138 if (ret) { 1139 dev_err(dev, "reset gpio request failed\n"); 1140 return ret; 1141 } 1142 } 1143 1144 ks->vdd_io = devm_regulator_get(dev, "vdd-io"); 1145 if (IS_ERR(ks->vdd_io)) { 1146 ret = PTR_ERR(ks->vdd_io); 1147 goto err_reg_io; 1148 } 1149 1150 ret = regulator_enable(ks->vdd_io); 1151 if (ret) { 1152 dev_err(dev, "regulator vdd_io enable fail: %d\n", ret); 1153 goto err_reg_io; 1154 } 1155 1156 ks->vdd_reg = devm_regulator_get(dev, "vdd"); 1157 if (IS_ERR(ks->vdd_reg)) { 1158 ret = PTR_ERR(ks->vdd_reg); 1159 goto err_reg; 1160 } 1161 1162 ret = regulator_enable(ks->vdd_reg); 1163 if (ret) { 1164 dev_err(dev, "regulator vdd enable fail: %d\n", ret); 1165 goto err_reg; 1166 } 1167 1168 if (gpio_is_valid(gpio)) { 1169 usleep_range(10000, 11000); 1170 gpio_set_value(gpio, 1); 1171 } 1172 1173 spin_lock_init(&ks->statelock); 1174 1175 INIT_WORK(&ks->rxctrl_work, ks8851_rxctrl_work); 1176 1177 SET_NETDEV_DEV(netdev, dev); 1178 1179 /* setup EEPROM state */ 1180 ks->eeprom.data = ks; 1181 ks->eeprom.width = PCI_EEPROM_WIDTH_93C46; 1182 ks->eeprom.register_read = ks8851_eeprom_regread; 1183 ks->eeprom.register_write = ks8851_eeprom_regwrite; 1184 1185 /* setup mii state */ 1186 ks->mii.dev = netdev; 1187 ks->mii.phy_id = 1; 1188 ks->mii.phy_id_mask = 1; 1189 ks->mii.reg_num_mask = 0xf; 1190 ks->mii.mdio_read = ks8851_phy_read; 1191 ks->mii.mdio_write = ks8851_phy_write; 1192 1193 dev_info(dev, "message enable is %d\n", msg_en); 1194 1195 ret = ks8851_register_mdiobus(ks, dev); 1196 if (ret) 1197 goto err_mdio; 1198 1199 /* set the default message enable */ 1200 ks->msg_enable = netif_msg_init(msg_en, NETIF_MSG_DRV | 1201 NETIF_MSG_PROBE | 1202 NETIF_MSG_LINK); 1203 1204 skb_queue_head_init(&ks->txq); 1205 1206 netdev->ethtool_ops = &ks8851_ethtool_ops; 1207 1208 dev_set_drvdata(dev, ks); 1209 1210 netif_carrier_off(ks->netdev); 1211 netdev->if_port = IF_PORT_100BASET; 1212 netdev->netdev_ops = &ks8851_netdev_ops; 1213 1214 /* issue a global soft reset to reset the device. */ 1215 ks8851_soft_reset(ks, GRR_GSR); 1216 1217 /* simple check for a valid chip being connected to the bus */ 1218 cider = ks8851_rdreg16(ks, KS_CIDER); 1219 if ((cider & ~CIDER_REV_MASK) != CIDER_ID) { 1220 dev_err(dev, "failed to read device ID\n"); 1221 ret = -ENODEV; 1222 goto err_id; 1223 } 1224 1225 /* cache the contents of the CCR register for EEPROM, etc. */ 1226 ks->rc_ccr = ks8851_rdreg16(ks, KS_CCR); 1227 1228 ks8851_read_selftest(ks); 1229 ks8851_init_mac(ks, dev->of_node); 1230 1231 ret = register_netdev(netdev); 1232 if (ret) { 1233 dev_err(dev, "failed to register network device\n"); 1234 goto err_id; 1235 } 1236 1237 netdev_info(netdev, "revision %d, MAC %pM, IRQ %d, %s EEPROM\n", 1238 CIDER_REV_GET(cider), netdev->dev_addr, netdev->irq, 1239 ks->rc_ccr & CCR_EEPROM ? "has" : "no"); 1240 1241 return 0; 1242 1243 err_id: 1244 ks8851_unregister_mdiobus(ks); 1245 err_mdio: 1246 if (gpio_is_valid(gpio)) 1247 gpio_set_value(gpio, 0); 1248 regulator_disable(ks->vdd_reg); 1249 err_reg: 1250 regulator_disable(ks->vdd_io); 1251 err_reg_io: 1252 return ret; 1253 } 1254 1255 int ks8851_remove_common(struct device *dev) 1256 { 1257 struct ks8851_net *priv = dev_get_drvdata(dev); 1258 1259 ks8851_unregister_mdiobus(priv); 1260 1261 if (netif_msg_drv(priv)) 1262 dev_info(dev, "remove\n"); 1263 1264 unregister_netdev(priv->netdev); 1265 if (gpio_is_valid(priv->gpio)) 1266 gpio_set_value(priv->gpio, 0); 1267 regulator_disable(priv->vdd_reg); 1268 regulator_disable(priv->vdd_io); 1269 1270 return 0; 1271 } 1272